

DEC4 1986

IB" PC Internals Fundamentals
Course notes

Document Number 6624-3057-00

March 21st, 1986

International Technical Support Center
Department 91J, Building 235-2

Boca Raton, Florida

This edition applies to Version 1.00 of PC Internals Fundamentals
class.

References in this pUblication to IBM products, programs, or services
do not imply that IBM intends to make these available in all countries
in which IBM operates. Any reference to an IBM program product in
this document is not intended to state or imply that only IBM's pro­
gram product may be used. Any functionally equivalent program may
be used instead.

The information contained in this document has not been submitted to
any formal IBM test and is distributed on an 'A~ Is' basis without
any warranty either expressed or implied. The use of this document
or the implementation of any of these techniques is a customer re­
sponsibility and depends on the customer's ability to evaluate and
integrate them into the customer's operational environment. While
each item may have been reviewed by IBM for accuracy in a specific
situation, there is no guarantee that the same or similar results will
be obtained elsewhere. Customers attempting to adapt these techniques
to their own environments do so at their own risk.

Publications are not stocked at the address given below. Requests
for IBM publications should be made to your IBM representative or to
the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publi­
cation. If the form has been removed, comments may be addressed to
IBM Corporation, International Systems Center, 901 NW 51st Street,
Boca Raton, Florida 33432, U.S.A. IBM may use or distribute whatever
information you supply in any way it believes appropriate without
incurring any obligation to you.

c Copyright International Business Machines Corporation 1986

ii IBM PC Internals

ABSTRACT

This document describes the different PC software layers and the archi­
tecture of the 8088 and 80286 processors.

The contents of this book is also designed as additional course material
for teachers and attendants of a PC Internals Workshop.

ws (192 pages)

ABSTRACT iii

iv IBM PC Internals

PREFACE

Over the years the IBM Personal Computer has become an industry-wide
standard in personal computing. For this and other reasons it is essential
that PC support people have in-depth technical expertise on the internals
of members of the Personal Computer family. The objective of the PC
Internals Fundamentals is to provide you with a solid framework for
understanding the technical concepts of Personal Computers, and to enable
you to give quality technical and marketing assistance for PC products.
This course may be considered a prerequisite for more in-depth courses
on existing and future PC hardware, operating systems and software.
Anyone in a support position for Personal Computers will find this course
an asset.

The Introduction contains information on course prerequisites, but is
also an integral part of the course. If you choose not to read the in­
troduction you will discover that you have missed a good many valuable
technical details. If you plan to teach the course, you should also read
the Note to Instructors.

Because the Introduction incorporates most details usually covered by
abstracts and overviews, we have not included separate sections for these
topics. When you are ready to begin the course, please turn to the In­
troduction.

PREFACE v

RELATED PUBLICATIONS

The following publications can be useful as complements to the information
contained in this bulletin:

•

•

•

•

•

•

•

!

vi

Macro Assembler Manual Version 2.0

DOS Manual Version 3.1

DOS Technical Reference Manual

PC Technical Reference Manual

Intel! iAPX 88 Book With An Introduction To The iAPX 188. Order Humber
210200-002

Intel! iAPX286 Programmer's Reference Manual. Order Humber 210498-001

Intel l iAPX286 Operating Systems Wrjter's Guide. Order Humber
121960-001

Intel is a registered trademark of Intel Corporation. 3065 Bowers
Avenue. Santa Clara. California 95051.

IBM PC Internals

1.0 Note to Instructors

2.0 Introduct;on
2.1 Prerequisites
2.2 Teaching the course

2.2.1 Sample "C" Program
2.3 What does this program do?

2.3.1 How does it all work?
2.3.1.1 Who did all the work?

2.4 Objectives
2.5 labs

3.0 The Intel 8088 microprocessor ch;p
Hi story
Structure of 8088-based Microcomputers
8088 Registers and Flags
Memory Addressing
8088 Instruction Format
Input/Output
Transfer of Control

TABLE OF CONTENTS

1

. 3
4
4
5
7
8
9

10
12

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8 Impact of 8088 architecture on PC Architecture

13
13
15
15
17
19
22
23
24
24 3.9 Summary

~.O PC Arch;tecture
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

Implementation vs Architecture
Hardware Architecture
Software Architecture
Hardware Details
RAM
Video
Keyboard
Interrupts
I/O Ports

DMA
Timers and the System Clock
Bu s
Building a Card for the PC
Architectural Extensions

4.15 Summary

5.0 8088 Assembler Fundamentals
5.1 The origin of assemblers
5.2 Types of instructions on the 8088
5.3 Format of instructions
5.4 Opcodes and operands
5.5 Valid operand types
5.6 The Eight Instruction Types

5.6.1 Arithmetic Instructions
5.6.2 Move instructions
5.6.3 logical instructions

27
27
28
29
30
30
31
33
34
35
35
36
37
37
39
40

~l

42
43
43
44
44
45
45
48
51

Table of Contents vii

5.6.4 Stack operations
5.6.5
5.6.6
5.6.7
5.6.8

Flag instructions
Control .•..•
The 8087/80287 Math Co-Processor
Input/output instructions •..•

5.7 Data encoding in Assembler .•...
5.7.1 Beware of stray data definitions

5.8 Other PC Programming languages
5.8.1 Other PC languages ...•.
5.8.2 Pascal
5.8.3 BASIC
5.8.4 FORTRAN
5.8.5 APl
5.8.6 "C"

5.9 Conclusion

6.0 BIOS
6.1 Objectives ••.
6.2 First I/O Control Systems
6.3 The purpose of the BIOS
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

Structure of BIOS
Power-on Diagnostics
Verify functioning of System hardware
Optional BIOS modules
loading the bootstrap
Power-on Diagnostics: Summary

Assembly language interface
I/O supported by BIOS

6.12 Keyboard
6.13 Scan codes
6.14 Keyboard buffer
6.15
6.16

Keyboard summary
Video .•.••

6.17 BIOS video output routines
6.18 Printing to display
6.19 Graphics character redefinition
6.20
6.21
6.22

Direct screen addressing ..••••••.
Graphics .••• • ••••••.
Video BIOS summary •••.

6.23 Diskette
6.24 Fixed Disk
6.25 Printer
6.26
6.27
6.28
6.29
6.30
6.31
6.32
6.33
6.34
6.35
6.36
6.37

Serial printers
Serial I/O
How and why programs bypass BIOS
Direct screen addressing
Bypassing keyboard routines
Bypassing other BIOS routines
How DOS uses BIOS • • • •
BIOS and other operating systems
Optional BIOS modules
Fixed Disk BIOS
NETBIOS •.••....
Enhanced Graphics Adapter

viii IBM PC Internals

53
55
58
63
63
64
66
67
68
68
68
69
69
69
70

71
71
72
72
73
73
74
74
75
75
76
76
77
78
79
80
81
81
82
82
83
83
84
84
85
85
86
86
86
87
87
88
89
91
91
91
92
92

6.38 Add-on BIOS module summary
6.39 Finally ...

7.0 DDS concepts and Facilities
7.1 Objectives
7.2 What is DOS?
7.3 What does DOS do?
7.4 IPl of a PC
7.5 Entering a Command
7.6 Disk Format
7.7 Memory Allocation
7.8 Program Interface
7.9 File, Disk, and Directory Management
7.10 Memory Management
7.11 Program Management
7.12
7.13
7.14
7.15
7.16
7.17
7.18

Miscellaneous Resource Management
Types of Program
Program loading
Program linking
Error Handling
Device Management
Summary

8.0 DOS Extensions
8.1 Objectives
8.2 Agenda
8.3 What kind of extensions do we have and why?
8.4 Multitasking Extensions

8.4.1 PRINT
8.4.2 TopView
8.4.3 PC Network Program
8.4.4 3270/PC Control Program

8.5 Device Drivers
8.5.1 What is a DOS device and a device driver?
8.5.2 Installation of the device drivers
8.5.3 Communicating with Device Drives
8.5.4 The inside of a device driver
8.5.5 The Request Header
8.5.6 Device driver functions
8.5.7 Example of IBM loadable device drivers

8.6 Other resident extensions
8.6.1 Keyboard enhancers
8.6.2 Popup utilities

8.7 Conclusion

9.0 80286 Architecture Fundamentals
9.1 Objectives
9.2 Agenda
9.3 Introduction to the 80286 processor

9.3.1 Memory management
9.3.2 Task management

92
93

95
95
96
96
97
98
99

102
103
103
104
104
104
104
105
106
107
108
109

111
111
111
111
112
112
113
116
116
117
117
118
122
123
125
126
128
128
129
129
129

131
131
131
132
132
133

9.3.3 Protection mechanisms 133
9.4 Comparing the registers in real and protected mode 134
9.5 Differences in the memory addressing scheme 135

Table of Contents ix

9.6 Control Transfer Mechanisms ••.•.•••••.
9.6.1 Task switching •.•.•

9.7 Interrupt vectoring in protected mode
9.8 Input/Output and Protection ...•
9.9 Conclusion

Appendix A. Sample "C" program complete listing

Appendix B. Schedule of In-Class version of course

Appendix C. 8088 Assembler Lab

APpendix D. BIOS LAB
D.1 Conclusion

APpendix E. DOS LAB
E.l Objectives
E.2 Materials
E.3 Instructions

x IBM PC Internals

154
159
160
163
164

165

167

169

179
184

187
187
187
187

LIST OF ILLUSTRATIONS

Figure 1. Device driver linkage list · · · · · · · · · · · · · 119
Figure 2. Device header · · · · · · · · · · · · · · · · · · 119
Figure 3. Device header chain with the IBM default device drivers 120
Figure 4. Device header chain with one installed devi ce · · · · 122
Figure 5. Bit fields of the attribute word · · · · 124
Figure 6. Request Header . · · · · · · · · 126
Figure 7. 80286 General Registers. · · · · 134
Figure 8. 80286 Segment Registers. · · · · 135
Figure 9. Segment Selector Interpretation (Real Address Mode) 136
Figure 10. Segment Selector Interpretation (Protected Mode) 137
Figure 11. Segment Selectors (Real and Protected mode) 138
Figure 12. Protected Mode Addressing · · · · · · · · · · · 139
Figure 13. Descriptors. . . · · · 139
Figure 14. 80286 Segment Registers. 141
Figure 15. Descriptor Loading. · · · · 141
Figure 16. 80286 New System Registers. 143
Figure 17. Flags and the Machine Status Word. 145
Figure 18. Privilege Levels. · · · · · · 147
Figure 19. Descriptors. · · · · · · · · · 148
Figure 20. Executable Segment Descriptor 150
Figure 21. Data Segment Descriptor. 152
Figure 22. System Segment Descriptor. · · · · 154
Figure 23. Gate Descriptor. 156
Figure 24. Task State Segment. · · · · · · 158
Figure 25. Interrupt Vectoring for Procedures. 162
Figure 26. Interrupt Vectoring for Tasks. 163

List of Illustrations xi

xi i IBM PC Internals

1.0 NOTE TO INSTRUCTORS

This guide, and the accompanying course materials, were developed at the
International Technical Support Center of IBM Corp. in order to teach a
PC Internals Fundamentals Course. The immediate objective of the devel­
opment was to allow us, the course developers, to prepare our own class
versions of the course; a more global objective was to provide a set of
materials which would enable anyone with a strong knowledge of PC Inter­
nals, or anyone having graduated from the original course, to teach the
course after minimal preparation and research, using the teaching mate­
rials provided.

Three sets of deliverables are required to teach this course. The first
is this guidebook, which covers each of the topics of the course in con­
siderable detail. The guide contains all of the technical information
which the original lectures were designed to contain (except for some of
the bad jokes), as well as some additional details for instructors and
for graduates of the course who may wish to enhance their PC Internals
knowledge.

The second deliverable consists of a set of PC Storyboard presentations.
The presentations step through each lecture in approximately the same
order as does the guide. We have used the animation features of PC
Storyboard in order to illustrate more concretely some of the difficult
concepts of PC internals. We have also attempted to make the presentations
visually stimulating and interesting. No matter how well a course on PC
internals is taught, there will be students who will simply not understand
some of the materials presented, and the verbal and visual asides will
at least keep these students awake so that they don't miss those aspects
of PC internals which they are able to grasp.

The third deliverable consists of a set of student handouts. These hand­
outs are essentially black-and-white copies of the more important
Storyboard displays. We have attempted to reduce the volume of the hand­
outs by not including more than one or two pages' worth for each animated
sequence, and by excluding some of those displays which were designed to
keep the students awake.

If you plan to teach this course you should obtain all the materials well
in advance. You will obtain these deliverables by attending the course.
You may have to print your own student handouts from diskette files the
ITSC provides, and this takes time; you should also print out overhead­
projection transparencies ("foils") if you do not wish to use a video
projector for the course, or for contingency purposes should the video
projector fail.

When preparing to teach the course, you should go through each Storyboard
lecture carefully, note the sequence of screens, practice explaining the
information on each screen, and become familiar with how screens blend
into one another. You should try to use the information provided in the
guide to orally complement the information on the displays. We have not
provided a detailed script of the Storyboard presentations for two rea-

Note to Instructors 1

sons. One is that we wish to provide instructors with the fr~edom to
present the materials their own way, with any changes, additions or de­
letions they see fit to make. The second, related reason is that, as any
student of such a course can testify, a lecture in which the instructor
merely reads or recites the script is much less engaging and no more ef­
fective than providing the script directly to the student.

We have provided three lab exercises to reinforce students' understanding
of some of the materials. The lab scripts should be distributed to the
students; students should do the labs in groups of two or three people
per PC. As instructors you will be responsible for installing the Resident
Debug Tool on the machines, for providing the sample programs to the
students, and for providing guidance and assistance in the course of the
lab. One implication of this is that you should become fully acquainted
with ROT, and should know intuitively how to do every step of the labs.

The only other general guidance we can provide is that, if you do choose
to teach the course using a video projector and the Storyboard presenta­
tions, you may want to do some of the lecturing using overhead transpar­
encies instead of PC Storyboard. Students will find it difficult to sit
through 24 hours of lectures presented in a single medium. By having
back-up transparencies of the Storyboard pr~sentations, you will be able
to switch between video and foil presentations according to the mood of
your audience.

After preparing or teaching the PC Internals Fundamentals course, if you
have criticisms or suggestions for improvement of the course or the
teaching materials, by all means submit your comments to the address on
the reader comment form at the back of this guide. We will attempt to
implement your suggestions in future releases of this course.

2 IBM PC Internals

2.0 INTRODUCTION

Imagine the perfect personal computer: one which has an integrated range
of complex applications built right into its hardware, that has a very
high-level interface so that even the least computer-literate user can
quickly learn to operate it; a computer which has all conceivable I/O
resources built right into it, all the memory you would ever want. A
personal computer with an architecture so thoroughly thought out, and with
applications so bug-free and easy to use, that no one would ever need to
program it.

While the above description seems to have some attractive characteristics
on first reading -- an integrated set of applications, I/O devices as
standard rather than optional, lots of memory, and so on -- it places
serious limitations on the eventual owner of such a computer. The most
obvious is that the customer will pay for every component of the computer,
whether s/he needs that component or not. Another limitation is that the
applications, or even the hardware, may not exactly meet the customer's
requirements. Every bell and whistle has been incorporated into the in­
tegrated text processing package, but you may only want to use the program
to write letters to your grandmother -- you don't need the ability to
create 9,999 page documents, or to see underscore and italics on the
screen. Conversely, you may decide that you need a program to calculate
the spawning patterns of Pacific Salmon; you won't find this in the in­
tegrated software built into the system's hardware.

What we learn from the above is that a closed-architecture personal com­
puter with a single set of fancy hardware and software components may
address the needs of a small number of users, but that as soon as a re­
quirement arises which isn't addressed by the computer, the computer be­
comes rather useless; conversely, as soon as a feature of the computer
is not actually needed by a user, the customer is wasting money on un­
needed components.

When IBM designed their Personal Computer the developers firmly believed
that an open architecture was essential to the success of the machine;
that the more hardware manufacturers and software developers knew about
the PC, and the more flexibility users had in choosing what hardware and
software configurations they needed, the more widely the PC would pro­
liferate. The belief paid off -- there are more programs and OEM hardware
available for the IBM PC than for any other architecture of personal
computer, and the PC family is one of the most successful ventures IBM
has undertaken. But there were negative aspects to the open architecture
as well, as far as IBM was concerned -- it took little time for
IBM-compatible PC's to appear on the market, because the open architecture
was well-known and easy to copy -- and OEM adapters and I/O resources for
the Personal Computer are as widely sold as IBM adapters and I/O.

Because of the PC's open architecture, and because of the resulting
abundance of software and peripherals available for the PC, it is crucial
that workstation support professionals, within IBM and elsewhere, under­
stand the inner workings of that architecture and know its strengths and

Introduction 3

weaknesses. The course on which this guide is based was designed for IBM
workstation specialists who have minimal knowledge of the Personal Com­
puter, with the intent of taking them step by step through the physical,
electronic and software components of the PC internals. If a workstation
specialist is to find viable solutions to an individual's or company's
personal computing needs and to provide support, the specialist must know
how to diagnose any problems the customer may encounter. The key to de­
termining the cause and possible remedy of IBM PC problems is to know the
PC architecture.

2.1 PREREQUISITES

The course was designed for people who have little prior training on the
IBM PC, but who are familiar with programming and computing concepts. It
is important that you understand, before participating in this course,
concepts such as hexadecimal and binary arithmetic, the difference be­
tween processor storage, main storage and secondary storage. and other
fundamental computer concepts. You should also have some programming ex­
perience in any programming language. If you do not have at least a
passing acquaintance with at least one language, we suggest you spend a
day or two learning IBM PC "C" or Pascal or BASIC before you begin the
course.

You should also have worked with IBM PC's before. You should know how to
use DOS commands and services such as Copy. Dir. Debug etc., and have
worked with applications on the PC. You should know what a diskette drive
looks like. and how to power on the PC.

The course was not designed for people who know PC Assembler, who under­
stand the operation of the 8088, and who know how the internals of BloS
and DOS work. The course will add little to the expertise of people in
this category. PC gurus should be teaching this course. not studying in
it. However, if you have only played around with Assembler or DOS/BIOS
internals, PC Internals Fundamentals will broaden your PC knowledge.

2.2 TEACHING THE COURSE

These course notes are designed to address three different audiences.
Students who have successfully completed the in-class version of this
course can use these materials for later reference and to clear up any
aspects of a lecture which they did not understand. Students who wish to
study PC Internals Fundamentals on their own can also do so, using the
International Technical Support Center Red Guide version of the course.
And successful graduates of the course who wish to teach it to others can
use the notes as a teaching guide. The course is designed in such a way
that it can be taught by anyone who has participated in it. after minimal
additional research and preparation. If you do plan to teach it, you
should read the Note to Instructors before this introduction; it will

4 IBM PC Internals

provid e you with information on how to obtain the diskettes used for
teaching, and on how to prepare the course. Nevertheless this text is
designed primarily for study and reference.

2.2.1 Sample "e" Program

Before we plunge into the individual components of the PC internals, and
before we even identify what those components are, we will examine a
simple program written in the "C" language, and follow one of its steps
through different layers of the Personal Computer. Over the remainder of
the course, we will examine the details of many of these layers, so that
you have a basic understanding of the fundamentals of PC Internals. The
"C" program is written to run on an IBM PC. We have removed two lines from
the example listed below because they are not relevant to understanding
the program itself; however, if you wish to compile the program in order
to test it or demonstrate it to students, you can refer to the complete
source code listing in Appendix A. The sample program follows:

int count; int keystroke; maine)
{
while (count <20)

}

{
keystroke=getch();
putch(toupper(keystroke»;
count++
}

We will explain the program line by line, before seeing how the various
aspects of the PC are used to accomplish some of its work.

1. Int count and int keystroke: The "int" statement declares the variable
which follows it as an integer variable. "Int count" means "declare the
variable 'count' as an integer". These two statements are required so
that later references to the 'count' and 'keystroke' variables can be
understood by the compiler.

2. Main(): Every "C" program must have a "main" routine. This is the
routine with which execution of the program begins. Notice the empty
brackets which follow the "main" statement. In "C" it is normal to declare
a function or routine by following it with brackets. The brackets contain
any parameters (also called arguments) which are passed to the routine
by routines invoking it. As the "main" routine does not receive any pa­
rameters, the brackets are left empty.

Notice also the braces on the fourth and last lines. These braces delin­
eate the beginning and end of the "main" routine.

3. While (count < 20): You should know the meaning of the "While"
statement if you have met the language prerequisites for this course. The

Introduction 5

"While" statement performs the operation or series of operations it pre­
cedes until the condition in the "While" statement is valid. So, "While
(count < 20)" repeatedly executes the three statements in the inner set
of braces until the value in "count" exceeds 20. Each time these three
statements are executed, the "while" loop returns to the condition in the
"while" statement and tests that condition. If it is true, the loop is
executed again. If not, processing will continue with the step following
the end of the "while" loop. In this program that step would be the final
brace of the "maine)" routine, which ends the program.

4. keystroke=getch(): This statement assigns the value in "getch" to the
variable "keystroke" which we declared earlier. What is the value in
"getchC)"? Well, "getch()" is, as the brackets which follow it suggest,
a routine or function, just like "maine)" was a routine. "Getche)", which
stands for "get character", is in fact a function built into "C" whose
purpose is to retrieve a keystroke from the keyboard. So this statement
assigns the value of the key pressed at the keyboard to the variable
"keystroke".

s. PutchCtoupper(keystroke));: We will examine this line in two stages.
First, the function "toupperCkeystroke)". "ToupperCstring)" is a "C"
function which converts any lowercase characters in the string contained
in its brackets to uppercase. So "toupper(keystroke)" converts the key­
stroke to uppercase if it is lowercase; otherwise "keystroke" remains
unchanged.

The statement surrounding the "toupperCkeystroke)" function is the
"putch" function, which stands for "put character". "Putch()" is a "C"
function which displays a character on the screen. The parameter normally
used with "putch()" is the character to display; in this case, we actually
use the value returned by another function ["toupperCkeystroke)"] as the
parameter for the "putchC)" function. This is an example of nesting
functions, where the parameter used in one function is actually a value
returned by another function. If we were to write this line of source code
out in English, it might read:

Display the character (r~turned by converting to uppercase the character
(keystroke».

If we wanted anyone to understand it, we would say "This line converts
the character "keystroke" to uppercase, then displays it on the screen."

6. Count++: This line adds 1 to the value in the variable "count". In
terms of the result it produces, it is equivalent to the statement
"count=count+l" in BASIC. By adding 1 to "count" each time the "while"
loop is executed, the condition tested at the beginning of the loop
["while (count < 20)"] will cause an exit from the loop after the loop
has executed 20 times. If we did not increment "count" or change it in
any way, the "while" loop would continue executing until we aborted the
program.

6 IBM PC Internals

2.3 WHAT DOES THIS PROGRAM DO?

look the program over again, and try to determine exactly what the purpose
of the program is. It is not a particularly useful program, but if you
can figure out what it does, you will find the rest of this course rela­
tively easy to understand. If you can understand the program after some
study or after having it explained by someone who knows the "e" language,
you will be able to follow this course but will find it challenging. If
you cannot understand the program at all, you should stop taking the
course until you have really met the requirement of understanding pro­
gramming concepts and knowing how to program in at least one language.

We'll list the program again below for your reference. We have included
comments, marked by "/*" at the beginning and "*/" at the end. Because
the comments are marked off with these symbols, the "e" compiler will not
pay any attention to them.

int count;
int keystroke;

maine)
{

while (count <20)

{

keystroke=getch();

/*initialize "count" and
/*"keystroke" as integers

/*this is the main routine
/*delineated by the outer braces

/*do the following routine while
/*the "count" variable is smaller */
/*than 20 */
/*the "while" routine is delineated*/
/*by these inner braces */

/*place a keystroke in "keystroke" */

putch(toupper(keystroke»; /*display the uppercase version of */

}

count++
}

/*the keystroke on the screen */

/*add 1 to the variable "count"

If you can't figure out what the program is doing, we will tell you. It
retrieves a character from the keyboard, converts it to uppercase, and
displays it on the screen. It does this set of actions twenty times (for
twenty different keystrokes), and then exits. Now that you know what the
program does, you should be able to understand every line of the source
code.

Introduction 7

2.3.1 How does it all work?

We will look at some of the levels the "C" program has to pass through
in order to do its work. Rather than examine every step of the program,
we will focus on a single step: the retrieval of a keystroke from the
keyboard. This step is contained in the statement "keystroke=getch()".

For those with some knowledge of the PC and certain compilers, the in­
formation below may seem inaccurate or overly simplified. However it is
important for students to grasp the fundamentals of this process before
we examine individual aspects of the process. We would prefer to teach
the rules before the exceptions.

1. Source code: In order to run the program, someone must first write
it. The source code can be written out by hand, or typed directly; even­
tually it must be entered into the computer as an ASCII file.

2. Compilation: The computer is only capable of executing machine in­
structions; it does not understand English or the mnemonics of our "C"
program. Therefore, we go through a compilation process, which in simple
terms converts our source code to an executable machine language program.
Don't worry about all the stages involved in compilation, we'll look at
them in a later module.

3. Get character: The "getch" routine actually calls a function which
was contained in a "C" routine library and which was merged with the
program during compilation. language compilers generally have a set of
routine libraries, and individual statements within a program often call
a routine taken from one of these libraries. This is one way of allowing
high-level programming steps to be translated into low-level machine in­
structions.

4. "C" library: The "C" library routine for "getch" does not physically
retrieve the keystroke itself; instead it issues a call to the PC Disk
Operating System (DOS) which will take care of retrieving a character from
the keyboard.

5. DOS: DOS manages system resources for applications; it contains a
high-level machine-language interface which allows programs easy access
to input and output. However, in many situations DOS itself merely acts
as a messenger between the application and the low-level I/O routines.
When our "C" program requests a keystroke from DOS, DOS actually invokes
the BIOS routine for keyboard input instead of processing the request
itself.

6. BIOS: The BIOS (Basic Input/Output System) is the low-level interface
to I/O devices on the PC. It includes a routine which will return a
keystroke from the keyboard to whoever requests it. Assuming no key had
been pressed when the BIOS call was made, BIOS will simply wait for a key
to be struck. In all the time BIOS waits, our program does nothing, and
DOS does nothing. In some situations an I/O routine may allow processing
to continue while the I/O event is pending, but for simplicity's sake
let's assume that nothing else happens in our example.

8 IBM PC Internals

7. A key ;s pressed: The act of pressing a key can occur while the system
is sitting and waiting for a keystroke, or while other work is proceeding.
Normally, if a program is calculating an equation, for example, that
calculation will be interrupted whenever a key is pressed, so that the
input may be processed. The calculation will then resume. In our case
however, we assumed that the program just stopped while waiting for the
keystroke. So now the keystroke must be processed.

8. The keystroke is received: When the key is pressed, a BIOS routine
is automatically invoked which receives the keystroke into the system.
This is not the same BIOS routine as the one which is waiting for a key­
stroke; we will see the difference between the two later in the course.
Once the BIOS routine which the keyboard invoked has received the input
into the system, the BIOS routine which DOS invoked retrieves the key­
stroke from the system, and passes it up to DOS.

9. DOS returns the character to the program: The "C" routine which called
the DOS routine for keyboard input now receives the keystroke from DOS,
and regains control so that program processing may continue.

10. The "e" program receives the keystroke: The "C" routine which was
called by our program now returns the character to our program. This
character is stored in the variable "keystroke" which we declared. How­
ever, as far as the compiled program is concerned, "keystroke" does not
exist -- the keystroke is simply stored in a location in memory. Once the
keystroke is received into the program, processing continues with the next
program step.

2.3.1.1 Who did all the work?

Throughout all of this, the 8088 microprocessor, which is the heart of
the IBM Personal Computer, performed every single instruction of the "C"
user program, the "getch" function, the DOS input request, the BIOS input
request and the BIOS input handling from the keyboard, and the return of
the value all the way up the chain. We say that "the BIOS does this" or
"DOS does that" but in fact what is happening is that instructions in the
BIOS or DOS are executed by the 8088, and allow the 8088 to retrieve the
I/O. BIOS, DOS, the "C" function, the program, are merely steps or in­
structions the 8088 must follow.

If we review the order in which events occurred, we obtain the following
sequence:

1. I/O request
Program

V
DOS

V
BIOS

Introduction 9

In all this, the 8088 performed every instruction.

2. I/O return
Program

A
DOS

A
BIOS

A
System board

A
Keyboard

In all this as well, the 8088 performed every instruction except the
signal from the keyboard which told the system board a keystroke was
ready.

If we modify some of the steps in this list, and re-order them from the
lowest level to the highest, we obtain the major topics we will discuss
in the course. They are:

• 8088 Processor

• Personal Computer Architecture (system board and I/O devices)

• Assembly language

• BIOS

• DOS

In addition we have included one other topic: The 80286 Processor.

We will study all of the above topics. in the order they appear.

A schedule of the in-class version of the course is provided in Appendix
B for your reference. Prospective teachers will find this of use in
planning their own version of the course; independent students may use
it to gauge their own progress through the reading materials.

2.4 OBJECTIVES

Upon completion or this course, the student should understand the fol­
lowing topics:

10 IBM PC Internals

* 8088 architecture

- History
- Structure of 8088-based microcomputers
- 8088 registers and flags
- Memory addressing
- Instruction format
- Input/output
- Transfer of control
- Impact of 8088 architecture on PC architecture

* PC architecture

- Implementations of PC architecture
- Hardware architecture
- Software architecture
- Hardware details

* 8088 Assembly language

- Origin of assemblers
- Format of instructions
- Instruction types
- Example instructions
- How data are coded
- Other programming languages

* IBM PC BIOS interface

- Origin and purpose of BIOS
- Power-on self-test
- Major I/O routines of BIOS
- Optional BIOS modules
- How and why programs bypass BIOS

* IBM PC DOS functions
- compact
- Purpose and components of DOS
- IPl of DOS
- Entering a command
- Disk format
- Memory allocation
- Program interface
- Types of program
- Program linking and loading
- Error handling
- Device management

* IBM PC DOS extensions

- Device drivers
- Multitasking
- PC Network

Introduction 11

* Basics and applications of the 80286

- Real vs. protected/virtual address mode
- Types of protection
- Task and state transitions
- Input/output
- Interrupts and extensions

2.5 LABS

During the class version of this course, several labs will be conducted
to help students gain a well-rounded understanding of the PC internals
through hands-on experience. If you are taking the course only through
reading this guide and do not intend to take the course in a class, we
suggest that you attempt to carry out the lab exercises described in the
various sections. They will aid your understanding of particularly com­
plex subjects such as 8088 Assembly language, the BIOS, and DOS functions.

Now we will proceed to our first technical module, and discuss the 8088
microprocessor, which is the heart of the IBM PC.

12 IBM PC Internals

3.0 THE INTEL 8088 MICROPROCESSOR CHIP

The Intel 8088 microprocessor is the heart of the IBM Personal Computer.
This 16-bit processor is a sophisticated general-purpose CPU, and also
has support for a wide range of peripherals. In order to understand any
of the other aspects of PC internals it is essential that you understand
the technical details of the 8088, and the reasons for which IBM chose
the 8088 in its design of the IBM PC. This module will introduce you to
the history of the 8088, its architecture and the format of its in­
structions. By the end of the lecture you should be able to meet all of
the following objectives!

• Discuss the development of the Intel 8088, its ancestors and succes­
sors

• Describe the internal structure of the 8088

• List all the registers of the 8088 and describe their uses

• Explain the memory addressing scheme of the 8088

• Discuss the format of machine instructions for the 8088

• Understand the significance of I/O port addressing in the 8088

• Discuss the various means of transferring control in the 8088

We will discuss the various topics in the same order as they are listed
in the objectives.

3.1 HISTORY

Intel was one of the earliest companies to develop a single chip
processor. Prior to this all CPUs consisted of multiple chips, even
multiple boards. Intel's first single chip processor was the 4004, a
4-bit processor, used mainly in desk calculators. It was followed by the
8008, an early 8-bit chip which was used in a few programmable peripher­
als. The 8008 design needed considerable work, and so the 8080 was born.
The 8080 was an extremely popular chip, and formed the basis for a number
of derivative chips, both from Intel (the 8085 being the best known), and
from other companies, the most famous of which is Zilog's Z80. It was with
the 8080 generation of microprocessors that the single user computer re­
ally began. Previous chips tended to be used simply as programmable
components of embedded systems, rather than as computers in their own
right. The 8080 generation are still regarded as the epitomal 8-bit ma­
chines, and a whole range of peripherals (memory, diskette drives,
printers, cassette recorders) was developed to support them.

The Intel 8088 microprocessor chip 13

Intel saw a market for a more powerful microprocessor. and invested con­
siderable research and development into the area. The new processor
should manipulate 16-bit quantities as easily as it handled 8-bit bytes.
This would enable it to perform arithmetic on numbers of a useful size,
for often 8 bits is insufficient (8 bits give us absolute values from 0
to 255; 16 bits give us values from 0 to 65536). A family of 16-bit pe­
ripherals would be developed to support this new processor, but these
peripherals would be somewhat more expensive than the older 8-bit offer­
ings, so Intel designed two variants of its 16-bit processor - the 8086,
which expected to use a 16-bit bus, and the 8088, which was designed to
use an 8-bit bus, allowing it to take advantage of the pre-existing and
cheaper 8-bit peripherals. The 8086 was introduced in 1978.

In 1980, when IBM Entry Systems Division was looking for a processor chip
on which to base the new "personal computer" the Intel 8088 and 8086 were
proven chips -- the 8086 had even been used in the IBM Displaywriter.
Moreover, Intel had continued development, and new, faster, and more so­
phisticated Intel processors were in progress, offering an upgrade path
from the 8088, should this ever prove necessary. The 8088 was chosen for
a number of reasons: it was available cheaply and in quantity, it was
capable of supporting a wi~e range of inexpensive 8-bit peripherals, and
it was noticeably more powerful than the 8-bit processors used in virtu­
ally every other large-selling microcomputer system. The 8088 is the
processor used in the IBM PC, the XT, the Portable PC, the PCjr, the PCjx,
and on the Professional Graphics Controller.

Intel followed the 8088 and 8086 with the 80188 and 80186. These were
fundamentally the same processors, but with a number of the usual support
chips integrated into the processor chip, allowing the design of micro­
computers with far fewer support chips. These processors were aimed at
portable computer manufacturers, and at computer-on-an-adapter con­
struction (the PC Network adapter uses an 80188). Similarly the 80C88
-- a low-power version of the normal 8088 -- allows the function of an
8088 in a low-power environment, such as for laptop computers. None of
these new chips was an advance in processor architecture, just an im­
provement in chip design.

The 80286 is different. The 80286 is a considerably more powerful and
versatile processor than the 8088. It is capable of emulating the 8088
almost exactly at many times the speed -- this emulation is called "real
address mode". It is also capable of running in its native mode -- called
"protected mode" -- where it realizes its true power. The 80286 has a
few additional instructions over the 8088, but its instruction set is
otherwise the same, which means that, in real mode, programs can run
equally well on the 8088 and 80286, discounting timing differences.
Theoretically, a program which does not interfere with the segment reg­
isters should be able to run in 80286 protected mode as easily as on an
8088, but in practical terms the segment registers are too integral to
most programs. The 80286 is used in the PC AT, running in real-address
mode for PC DOS, and in protected mode for Xenix. Because of its in­
creasing importance in the evolution of the PC family, a separate module
is devoted to the 80286 at the end of this course.

14 IBM PC Internals

Intel recently released the specifications for the latest in this family
of processors -- the 80386. The 80386 is a 32-bit processor, with some
amazing capabilities. One of its most powerful features is its ability
to support multiple "virtual processors", where these may be either 8088
or 80286 based, as well as native 80386. This facility, together with
its significantly higher speed (approximately five times that of the
80286) make it a processor to watch for the future. Production of the
80386 is planned to start about June 1986.

3.2 STRUCTURE OF 8088-BASED MICROCOMPUTERS

The 8088 microprocessor consists of three major elements:

• Execution Unit

• Bus Interface Unit

• Registers

The Bus Interface Unit provides the interface between the microprocessor
and the outside world. The BIU fetches values from memory whenever in­
structed to do so by the Execution Unit. When the BIU is not fetching
operands for the Execution Unit it fetches instructions and places them
in the instruction queue for the Execution Unit. This allows the overlap
of instruction fetching and execution in the 8088. The instruction queue
in the 8088 is four bytes in length.

The Execution Unit is divided into two parts -- the Control Unit and the
Arithmetic/Logic Unit. The Control Unit decodes instructions, and con­
trols their execution. The Arithmetic/Logic Unit provides the facility
for performing 8-bit and 16-bit calculations on many of the registers of
the 8088.

The structure of the 8088 is not important to an understanding of the
function of the 8088. It is useful to understand, however, to appreciate
the way in which the 8088 achieves notably better performance than its
8-bit equivalents. The overlap of instruction fetching and execution is
one of the more important aspects of this performance improvement. Others
involve the advantages of built-in 16-bit operations compared with simu­
lated 16-bit operations in an 8-bit microprocessor, and the more sophis­
ticated instruction set.

3.3 8088 REGISTERS AND FLAGS

The architecture of the 8088 is designed around a number of registers,
many bf which are devoted to special purposes. There are:

• fbur general purpose registers

The Intel 8088 microprocessor chip 15

AX (Accumulator)
BX (Base)
CX (Count)
DX (Data)

• two index registers

SI (Source Index)
DI (Destination Index>

• two base registers

BP (Base Pointer)
BX (Base Register -- this is also a general purpose register)

• two special pointer registers

SP (Stack Pointer)
IP (Instruction Pointer)

• four segment registers

CS (Code Segment)
DS (Data Segment)
ES (Extra Segment)
SS (Stack Segment)

• a flags register, with nine flag bits in a 16-bit register

CF (Carry Flag)
PF (Parity Flag)
AF (Auxiliary Carry Flag)
ZF (Zero Flag)
SF (Sign Flag)
TF (Trace Flag)
IF (Interrupt Flag)
DF (Direction Flag)
OF (Overflow Flag)

All of the above registers are 16 bits in length. Each of the general
purpose registers can also be addressed as two 8-bit registers. Both the
high (more significant byte) and low (less significant byte) can be ad­
dressed separately. The 8-bit registers have th~ same initial letter as
the 16-bit register they come from, with H or l indicating high or low.
That is, AH is the hi gh byte of AX, and Cl is the low byte of CX. Certai n
of these 8-bit registers have special uses, in particular AH, Al, and Cl.

Arithmetic and logical operations may only be performed on eight of the
16-bit registers, and on the 8-bit registers. The 16-bit registers that
can be manipulated are the general purpose registers, the index registers,
and BP and SP. CS and IP can only be affected by control instructions
(jumps, calls and interrupts), and the other segment registers can only
be changed by moving a new value into them.

16 IBM PC Internals

It is important to note that each of the registers is different from its
fellows. Certain 8088 machine instructions require their operands to be
in specific registers. Some of these instructions are:

MUL assumes data in AX C16-bit) or Al (8-bi t>
XLAT assumes translation table address in BX
LOOP assumes count is held in CX
IN assumes port number in DX
POP assumes top of stack address in SP
SCAS assumes address in DI
LODS assumes address in SI

(These instructions are provided here as examples of assumed register
usage only. You don't need to memorize them or their register assumptions.
Those assembly instructions which are important to this course will be
reviewed in the 8088 Assembly Language module.)

The BP register is not assumed for any operation in the 8088 architecture,
but is invariably used by high level languages for addressing a thing
called a stack frame pointer. (We will learn more about the Stack as we
go through this course. For now, think of the Stack as a location in
memory, in which the contents of registers can be stored for future re­
loading into the registers.) This stack frame pointing is so important
that the 80286 adds two instructions (ENTER and LEAVE) which use the BP
as the stack frame pointer, and implement the actions a high level lan­
guage goes through on entering and leaving a procedure.

This specialized usage of registers may seem somewhat foreign to someone
acquainted with other processor architectures, like the System/370. Even
in the S/370, however, some registers had special uses, like registers
14 and 15 in a BALR instruction, and many others had conventional uses,
like registers 0 and 1 in calls to subroutines. The 8088 has taken this
much further, implementing special uses for all the registers in the
processor hardware.

Everyone of these registers is contained inside the 8088 chip. Memory
is located off the chip, and a value held in memory has to be fetched into
the chip before it can be manipulated in any way. Registers are much
faster to deal with because they are on the chip.

3.4 MEMORY ADDRESSING

The 8088 can address one megabyte of memory. As there are 2 ** 20 bytes
in a megabyte this means that the 8088 uses a 20-bit address. To obtain
a 20-bit address using 16-bit values it uses a combination of two values.
It shifts one of these values left four bits -- this is called the Segment
value, and is held in a segment register. The segment value, being
shifted four bits left, cannot address individual bytes -- it can only
address groups of 16 consecutive bytes (called paragraphs). To resolve
the address to the byte level, a second 16-bit value is used -- called
the Offset value. The Offset is added to the Segment without being

The Intel 8088 microprocessor chip 17

shifted, meaning that the Offset can address anywhere within 64K bytes
above the Segment. For greater versatility, the Offset value may be a
single value, or it may be the sum of up to three 16-bit values.

The segment value of an address must be held in a segment register -- CS,
OS, ES, or 55.

The offset value may be:

the sum of (choose one to three values):
- a literal value
- a base register (BP or BX)
- an index register (01 or SI)

The conventional way in which a segment and offset address are written
is with a colon between them, segment first. For example "SS:SP", or
"OS:[OI + BX]". A literal segment address cannot be used by the 8088,
but it can be written: 0040:0078. Conventionally, all addresses used
by the 8088 are written in hexadecimal; this makes for easy computation
of the 20-bit address, as the 4-bit shift of the segment is a single
hexadecimal digit:

0040:0078 = 0040 shifted 4 bits (1 digit) plus 0078
= 00400 plus 0078
= 00478 (a 20-bit address, represented as five digits)

Because of the way 8088 addresses are made up, the same location may be
addressed in a number of different ways, depending on the segment and
offset values used. For example, the address used above (00478) can be
represented by a segment value of 0040 and an offset of 0078. or as a
segment value of 0000 and an offset of 0478, or by a segment value of 0020
with an offset of 0278.

In 8088 instructions addresses are represented in a number of ways. Some
instructions do not use addresses -- they deal exclusively with registers.
Some instructions use special addresses -- stack instructions always use
SS:SP. The instructions which do address memory use an addressing byte
to indicate what form of address to use. This byte specifies the offset
address to use, but does not mention the segment. There is a default
segment register to use with each form of address, which need not be
specified. This default segment register can be overridden using a seg­
ment override prefix instruction.

The default segment register depends on the type of instruction. Each
of the segment registers may be thought of as addressing a separate sec­
tion of memory, containing different kinds of information. The SS (Stack
Segment) register points to a stack area -- any instruction using SP
(Stack Pointer) will use SS (this cannot be overridden). The BP register,
when used alone or with a literal displacement, addresses the stack seg­
ment. Typically BP might be used to address some temporary variables and
procedure parameters on the stack, while the SP always points to the top
of the stack. (These temporary variables and procedure parameters are
known as the stack frame)

18 IBM PC Internals

The CS (Code Segment) register points to the current program area. The
IP (Instruction Pointer) points to the next instruction to be executed.
When an instruction is fetched from memory IP is moved to point to the
byte following the memory location of the current instruction. Unless
the current instruction modifies IP. its contents are interpreted as the
next instruction.

The DS (Data Segment) register points to the current data area. Any ad­
dress involving BX. SI. or a sum of registers. with or without a literal
displacement. is assumed to lie in the data segment.

The ES (Extra Segment) register can be used wherever an extra segment
register is required to address data. The only offset which defaults to
the extra segment is 01. with or without a literal displacement. ES is
particularly important when using string instructions.

There are two ways to address data which lies outside of this model:
either alter a segment register. or use a segment override. For example.
to address a location which lies in the code segment. at an offset of
0222. you may load the segment value of CS into OS and use an offset of
0222 (defaulting to the DS register). or you may use a segment override
of "CS:" to specify that the location may be addressed by the code segment
rather than by the data segment.

It is worth mentioning here that 16-bit values are stored in memory with
the less significant (ie. low) byte first. This allows the less signif­
icant byte to be fetched before it is known whether the value is 16-bit
or a-bit. It does not affect the use of 16-bit values. just the appear­
ance of memory when examined using a debugging tool of some kind -- the
two bytes of a 16-bit value will appear transposed.

3.S 8088 INSTRUCTION FORMAT

The format of 8088 instructions is:

opcode [addressing byte] [displacement] [immediate operand]

1 byte 1 byte 1 or 2 bytes 1 or 2 bytes

An instruction can be anywhere from one byte to six bytes long. depending
on its opcode and addressing byte (where present). The opcode specifies
what the instruction is. be it a movement of data or an I/O operation.
Instructions may involve registers and/or memory; this is specified by
the addressing byte. An address which involves the addition of a literal
value will involve a displacement. An instruction which uses a constant
value will have an immediate operand.

With the exception of the string instructions no instruction can operate
on two memory values; if two operands are involved one of them must be a
register or immediate value. Two register operands can be used. One of
the operands is termed the source. the other the destination. The oper-

The Intel 8088 microprocessor chip 19

ation is performed on the source and destination values, and the result
is placed in the destination location, be it register or memory location.

The following paragraphs provide details on a bit-by-bit basis for how
machine language instructions on the 8088 are constructed. Students need
not memorize the usage of the bits of an instruction if they do not wish
to; it is not required for an understanding of later topics. The important
point to retain from this is that various bits in the instruction deter­
mine the operand types (register or memory), the addressing techniques,
and the operand lengths (byte or word).

Where an instruction may apply to either 16-bit or 8-bit values the choice
is indicated by the lowest bit of the opcode (1 = 16-bit, 0 = 8-bit). This
is called the w-bit.

Where an instruction can operate in either direction, that is, where ei­
ther of the two operands may be the destination (not applicable with im­
mediate operands, for example), then the destination is indicated by the
second-lowest bit of the opcode. This is called the d-bit.

Where an instruction involves immediate data, the second lowest bit in­
dicates whether the immediate value is a 16-bit value, or an 8-bit value
which should be sign-extended to produce a 16-bit value. This is called
the s-bit, and is located in the same spot as the d-bit. It is ignored
if the w-bit indicates an 8-bit operation.

The addressing byte is split up into three pieces:

Mode Reg

2 bits 3 bits 3 bits

The mode value indicates how to interpret the R/M value. The reg value
indicates which register is one of the operands. The R/M value indicates
which register or combination of registers is the address of the other
operand.

The mode value can take on four values:

00 = no displacement is added to the R/M value

01 = a one byte displacement (-128 to +127) is sign extended and
added to R/M

10 = a two byte displacement is added to R/M

11 = register addressing -- R/M is a register, not a memory operand

The reg value can take on eight values, indicating one of eight registers.
The w-bit determines from which set of registers the choice is made:

20 IBM PC Internals

Reg w-bit = 1 w-bit = 0
(16-bit) (8-bit)

000 AX Al
001 CX Cl
010 DX Dl
011 BX Bl
100 SP AH
101 BP CH
110 SI DH
111 DI BH

The R/M value can take on eight values, indicating a choice of addressing
modes modified by the mode value. The effect is:

R/M Mode = 00 Mode = 01 Mode = 10 Mode = 11

000 BX+SI BX+SI+dl BX+SI+d2 AX or Al
001 BX+DI BX+DI+dl BX+DI+d2 CX or Cl
010 BP+SI BP+SI+dl BP+SI+d2 DX or Dl
011 BP+DI BP+DI+dl BP+DI+d2 BX or Bl
100 SI SI + dl SI + d2 SP or AH
101 DI DI + dl DI + d2 BP or CH
110 direct * BP + dl BP + d2 51 or DH
111 8X 8X + dl 8X + d2 DI or 8H

* : "directn is a 1 iteral address within the DS segment. There is no
offset register used, just the displacement.

dl: a single byte displacement sign-extended to two bytes before adding.
d2: a two byte displacement.
choice of AX or Al (when mode = 11) is controlled by the w-bit.

Note that the same offset registers are used for a given value of R/M for
each of the mode values 00, 01, 10. With a mode value of 11, the R/M value
indicates registers in the same way as the reg value.

The w-bit does not affect the memory addresses (mode values 00, 01, 10),
it simply affects the number of bytes taken from memory at the resulting
address.

The 8088 instruction set has a few irregularities. A number of operations
can be coded with shorter instructions if the accumulator (AX if 16-bit,
Al if 8-bit) is used rather than another register. Certain operations
are limited to specific registers (multiplication and division,
input/output, string operations, and some data translation operations).
These limitations were imposed to provide a powerful instruction set
without incurring overly complex chip design problems. These irregular­
ities simply increase the challenge of programming the 8088.

A few of the 8088 instructions do not execute immediately. They alter
the instruction which follows them, and so are called prefix instructions.
One of them has been mentioned already -- the segment override prefix.
A segment override prefix alters the segment register to be used in the
memory address of the next instruction. Another prefix instruction is
the lOCK prefix -- it locks the bus during the execution of the next in-

The Intel 8088 microprocessor chip 21

struction. and is usually use in a mul~iprocessor environment. The most
powerful prefix instruction of all is the REP prefix. This specifies that
the following instruction be executed until the CX register is zero -­
it decrements CX before testing it each time. The REP prefix is not
particularly useful for most instructions. because reexecuting most in­
structions is a waste of time. String instructions. however. combine very
nicely with the REP prefix to produce extremely powerful results.

The instruction format in the 8088 is "tight". packing a lot of function
into its opcodes. At the same time. it is a rich machine language. with
all manner of powerful and useful instructions.

3.6 INPUT/OUTPUT

The 8088 microprocessor supports 65.536 I/O port addresses. I/O ports
resemble ordinary memory in that they can be read and written. but oth­
erwise they are quite different. An I/O port is used to control or use
an external device. Writing to an I/O port that is part of an asynchro­
nous communications adapter may cause the data written to be transmitted
to a modem. Reading from an I/O port that is part of a diskette adapter
may read consecutive bytes from a diskette sector. Unlike memory, con­
secutive reads from the same I/O port are quite likely to read different
data.

The I/O ports of the 8088 are completely separate from memory. They re­
quire special instructions to read and write them (IN and OUT respec­
tively). Data may be read or written either one or two bytes at a time,
although few devices support two-byte transfers. An IN instruction reads
from an I/O port and places the data in the accumulator (Al for one byte.
AX for two). An OUT instruction takes data from the accumulator and
writes it to the specified I/O port. The I/O port address may be speci­
fied either literally (if the port is from 0 to FF). or by placing the
address in the DX register (port address from 0 to FFFF).

I/O ports are only one of the ways in which the outside world can commu­
nicate with the 8088. Two other ways are memory mapping. and DMA.

Memory-mapped I/O devices look exactly like memory to the 8088. The most
common is a memory-mapped display. The display accesses the memory to
produce a screen image. Whenever the 8088 alters the contents of the
screen memory. the display reflects the change. This provides a fast and
effective screen interface. but is not particularly useful for other pe­
ripherals. We will examine it in more detail in the PC Architecture mod­
ule.

DMA (Direct Memory Access) allows devices other than the processor to read
and write memory directly. The DMA device writes to memory by locking
the 8088 out for a few cycles -- this technique is referred to as cycle
stealing. DMA can be used to transfer large amounts of data without
processor intervention -- once the processor has set up the parameters
within the DAM controller. the DMA will take care of the I/O itself. DMA

22 IBM PC Internals

/

I

I

is a more expensive I/O method to implement than using I/O ports, but it
offers considerably more power. It is used by fixed disks.

3.7 TRANSFER OF CONTROL

The 8088 supports three different ways of transferring control from one
piece of a program to another. These three control transfers are termed
Jump, Call and Interrupt. Each of these is applicable in a different
context, and a typical program will probably use all three. The way in
which they all effect the transfer of control is by altering where the
CS:IP combination points, that is, by altering the pointer to the next
instruction. The jump may be any of three different "distances", where
"distance" refers to the relative address range within which the jump can
occur. The three possible distances are Short, Near and Far. Short
transfers can transfer control within 128 bytes from the current in­
struction, up or down; Near transfers can move within the current code
segment, and Far transfers can move anywhere in memory.

The call may be either of two distances, Near or Far; an interrupt is
always Far. The different distances require different lengths of in­
structions -- for example, a near jump requires three bytes of instruc­
tion, while a far direct jump requires five.

Jump: A jump simply alters IP, the instruction pointer, and sometimes
CS, the code segment, as well. There is no record of where the jump came
from. The three jump distances are described below:

• Short -- a short jump alters IP by adding a signed 8-bit value to it.
Thus a short jump may move IP by -128 to +127.

• Near -- a near jump loads a new value for IP. Thus a near jump may
move IP to anywhere in the current code segment.

• Far a far jump loads a new IP and a new CS value. Thus a far
jump may move CS:IP to anywhere in memory.

Call: A call saves the current instruction pointer on the stack before
altering IP, and sometimes CS. This enables the program to return to the
current spot after executing the called code. The return is effected by
a RET instruction, which must match the CALL. There are two different
forms of call:

• Near -- a near call stacks only the current IP value, and loads a
new value into IP. A near call must be matched with a near return,
which restores the IP value from the stack. A near call works within
the current code segment.

• Far -- a far call stacks both CS and IP, then loads new values for
both of these. A far call must be matched with a far return, which
restores both IP and CS from the stack. A far call works anywhere
in memory, provided the address of the code to be called is known.

The Intel 8088 microprocessor chip 23

Interrupt: An interrupt saves the current flag register as well as the
instruction pointer and code segment register before altering CS:IP. This
enables the complete state of the machine to be saved. An interrupt
service routine can return to interrupted code and continue execution no
matter what was being done when the interrupt occurred. There are two
kinds of interrupt in the 8088 -- hardware (external/involuntary), and
software (internal/voluntary). Both function in exactly the same way:
the flags register, then CS, then IP are saved on the stack, then CS and
IP are loaded from the appropriate interrupt vector. All interrupts may
be considered Far. The return from an interrupt is achieved with an IRET,
which restores IP, CS, and the flags register from the stack. Interrupts
are identified by interrupt numbers. Each interrupt number refers to a
separate entry in an interrupt vector table; each entry in this table
contains a 4-byte segment:offset address which the 8088 uses to find and
invoke the interrupt routine. This interrupt vector table is stored at
the bottom of memory (locations 0 to 3FF). The interrupt number, when
multiplied by four, gives us the offset into the interrupt vector table
at which the interrupt routine address can be found.

The different means for transferring control are used in different con­
texts. Typically, the jump is used in the control of program flow, while
the call is used to address functions and subroutines of the executing
program. Software interrupts are usually used to access system services,
such as device drivers. Hardware interrupts are generally associated with
the functioning of peripherals, such as hard disks and communications
adapters.

3.8 IMPACT OF 8088 ARCHITECTURE ON PC ARCHITECTURE

The choice of the 8088 as the CPU for the IBM PC had a dramatic effect
on the architecture of the PC, dictating its memory range, approximate
speed, and general performance characteristics. At the same time the
designers had a lot of latitude in the way in which they could build a
PC around the 8088. They chose a structure which was simultaneously quite
versatile, and a little restrictive, so as to guide third party manufac­
turers into a path that would lead to the widest possible compatibility
of diverse hardware. This is the open architecture of the PC, the part
of the announcement in 1981 that surprised more people than anything else
about the PC.

3.9 SUMMARY

This concludes our module on the 8088 microprocessor. At this point you
should understand the following:

• the development of the Intel 8088, and its successors

• the internal structure of the 8088

24 IBM PC Internals

the Bus Interface Unit
the Execution Unit
the registers

• the registers of the 8088 and their uses

the general registers AX, BX, CX, OX
the base registers BX, BP
the index registers OJ, SI
the pointer registers BP, SP, IP
the segment registers CS, OS, ES, SS
the flags register, flags: AF, CF, OF,

• the memory addressing scheme of the 8088

segments and offsets
default segment registers and overrides

IF, OF, PF,

forming of offsets from combinations of registers

• the format of machine instructions for the 8088

the opcode, with the w-bit, d-bit, s-bit

SF,

the addressing byte, with the mode, reg, and r/m fields
displacement
immediate value
prefix instructions

• I/O port addressing in the 8088

• the various means of transferring control in the 8088

jump, either short, near or far
call, either near or far
software interrupt

TF, ZF

If you have not grasped any of the above concepts then it is strongly
recommended that you review the relevant section again, as many of these
concepts are essential to the understanding of later parts of this course.
You may also wish to consult an IBM Workstation Specialist who is familiar
with the 8088, for additional assistance. When you feel you can meet all
the objectives identified at the beginning of this module you should
proceed to the PC Architecture module, which builds on this background
to discuss how the IBM PC is built around the 8088 microprocessor.

The Intel 8088 microprocessor chip 25

26 IBM PC Internals

4.0 PC ARCHITECTURE

If we consider the 8088 to be the engine of the Personal Computer, we must
be familiar with its operation to understand how the car works; however
we will also need to understand how the petrol supply and exhaust are
hooked up to it, how the wheels connect to their axles, how the windows
roll up and down, and how many doors are on the car. We could drive this
analogy many miles more; the point is that while the Personal Computer
does revolve around the 8088, other components in its design are equally
complex, and are equally important in improving our understanding of PC
internals.

By the time you complete this section you should understand the PC ar­
chitecture extensively, by meeting the objectives identified below. You
should be able to:

• distinguish between an architecture and an implementation
• describe the elements of the PC architecture
• define and describe the important parts of the PC:

Memory
Video
Keyboard
Interrupts
I/O Ports
DMA
Timers and System Clock
System Bus

• describe the considerations involved in designing for the PC
• be ready to learn about the BIOS that completes the PC design

You will need to understand the materials covered in the preceding module,
which dealt with the 8088 microprocessor. If you do not have at least
some knowledge of the 8088, go through the previous chapter again.

4.1 IMPLEMENTATION VS ARCHITECTURE

An architecture is quite separate from pieces of hardware or software.
Frequently a piece of hardware or software is said to conform to an ar­
chitecture -- this means that it follows the rules of the a~chitecture.
Sometimes it may even be said to be an implementation of that architec­
ture. A computer architecture is an abstract concept, generally designed
so that future expansion will be simple and clean. Sometimes the archi­
tecture is designed along with the first implementation, which can result
in the architecture being contaminated by practical considerations. An
implementation quite often does not exploit the full capabilities of the
architecture, for pragmatic reasons.

The IBM PC can be considered an implementation of the Intel 8088 archi­
tecture, in that it is a hardware realization of the possibilities in-

PC Architecture 27

herent in the 8088 microprocessor. At the same time, the IBM PC can be
considered an architecture of which the PC, the XT, and the AT, are all
implementations. The IBM PC architecture is more limited that the 8088
architecture in some aspects, but considerably more detailed in others.
Because of the greater detail in the PC architecture it is possible to
design hardware and software which will work with the entire range of PC
products, something that cannot be said for the 8088 architecture.

This discussion of the PC architecture will ignore individual machine
differences, but rather concentrate on the unifying identity between the
machines.

4.2 HARDWARE ARCHITECTURE

The IBM PC is more than just an 8088 surrounded by peripherals, and so
the architecture of the PC has to cover more than just the 8088. The
things that distinguish the PC from other 8088 based computers lie, in
part, in the other hardware on the system board, the support hardware.
Included in this is the 8259 interrupt controller, which turns hardware
interrupts received by I/O devices into software ones which the 8088 can
process; the 8237 DMA controller, the 8254 timer, and the 8042 processor
which controls the keyboard. The complete layout of the system board for
each of the members of the PC family can be found in the appropriate
Technical Reference manual, but all members have at least the functions
described below (with the exception of the PCjr, and the JX, neither of
which can be considered full PCs due to their lack of DMA logic.).

The 8088's one-megabyte memory address space is split into two pieces in
the IBM PC. The lower 640K is used for RAM, with installed RAM starting
at address 00000; installed RAM must be contiguously addressed for it to
be checked by the automatic memory tests. The upper 384K of address space
is used for system purposes. The first 128K (AOOOO to BFFFF) is allocated
to video RAM; so far the EGA uses AOOOO to AFFFF for its native mode
graphics, the Monochrome Display and Printer adapter (MDPA) uses 4K
starting at BOOOO, and the Color Graphics Adapter (CGA) uses 16K starting
at B8000. Adapters may have BIOS extensions in ROM modules; these may
be anywhere in the region C8000 to DFFFF, and we will discuss these in
detail in the BIOS module. The addresses from EOOOO to EFFFF are reserved
for I/O adapter ROMs in the PC, XT, and Portable PC, but for system board
ROMs in the AT. Addresses FOOOO to FFFFF are used by the system BIOS ROM,
and ROM Basic. Apart from the system identification byte (located at
FFFFE) and the BIOS ROM date <located at FFFF5 to FFFFC), none of the
addresses above the video RAM should be of particular interest to a pro­
grammer, because the addresses should not be used. All reference to the
BIOS should be made using software interrupts, which provide a consistent
interface across the entire PC family. The video RAM layout is consistent
within a given video mode, but will vary from one mode to another.

The full 8088 I/O port address space is available in the PC - all 64K port
addresses may be used, but the addresses below 100 are reserved for the
system board, and many of the addresses up to 3FF have been assigned to

28 IBM PC Internals

specific adapters. Addresses not currently used may be reserved for new
adapters, or may be free for use by other I/O devices. The complete map
of used ports may be found in the Technical Reference manual.

The~PC has eight hardware interrupt levels on an Intel 8259 interrupt
controller. An interrupt level can be thought of an access line through
which an I/O device can gain the system's attention. Two of these in­
terrupt levels are fixed in purpose: level 0 is used for the system timer,
and level 1 serves the keyboard. The other six levels are available on
the I/O bus for use by adapters. Many of the I/O adapters are interrupt
driven. The map of interrupt levels used by different adapters can be
found in the Technical Reference manual. In some cases several adapters
use the same interrupt level; this can cause problems when two such
adapters are installed in the same PC. The new PC AT Technical Reference
manual describes a hardware and software solution to sharing interrupt
levels. A hardware interrupt is usually used to indicate the completion
of some form of I/O processing: a disk may interrupt to indicate com­
pletion of a seek operation, or an asynchronous communications link may
interrupt to indicate that another character has been received.

The PC has four DMA channels on an Intel 8237 DMA controller. DMA allows
data transfers to proceed without the intervention of the 8088. A channel
of the 8237 is programmed to transfer data between memory and I/O adapt­
ers, and the transfer takes place with the DMA controller "stealing" bus
cycles from the 8088. Up to 64Kb can be transferred at a time. One DMA
channel is dedicated to memory refresh. The other three are available
on the I/O bus. A number of I/O adapters use DMA; a list of what channel
is used by what adapter can be found in the Technical Reference manual.

The PC supports the full range of interrupt numbers of the 8088. Inter­
rupts can be from 00 to FF, but interrupts 00 to IF are reserved for system
hardware functions, including the system BIOS interface. Inter~upt num­
ber 20 to 3F are reserved for operating system functions (DOS uses 20 to
27). 40 to 5F, and 70 to 77, are reserved for BIOS enhancements. 60 to
6F are available for use, as are FI to FF. 80 to 85 are reserved for
Basic, and many of 86 to FO are used by the Basic interpreter while it
is running.

let's refresh our memory on interrupt vectors, as these are a central
component of the PC architecture. The interrupt vector table is located
at the start of system RAM. The location of the interrupt vector for a
given interrupt number can be obtained by multiplying the number by four.
The word at that location is the IP value of the entry point of the in­
terrupt service routine; the CS value for the entry point is located im­
mediately after the IP value. This means that the first 400H bytes of
RAM are used for the interrupt vector table.

4.3 SOFTWARE ARCHITECTURE

The IBM PC has more than just a hardware architecture. Built into the
PC is a considerable quantity of software, held in ROM to provide the

PC Architecture 29

machine with ~ .power diagnostic system, a self booting facilttYi' and a
device-independent programming interface. This is the PC Basic I/O Sub­
system (BIOS), and the subject of a later module. On top ~f the BIOS,
most PCs are running PC DOS as their operating system, providing yet an-
other layer of architecture. •

4.4 HARDWARE DETAILS

The details of a number of the elements making up a PCwill be considered
in turn. The elements to be considered are:

• Memory - both RAM and ROM
• Video - the screen you see things happen on
• Keyboard - the way you make things happen
• Interrupts - the way the hardware gets service
• I/O Ports - the way much hardware talks to the system
• DMA - the way some devices transfer blocks of information
• System Bus - about which the PC revolves
• Timers and System Clock - that make the PC tick!

4.5 RAM

The RAM in a PC can be any ~f a wide number of kinds, and different kinds
can be mixed in one PC. Any size of module from 16K to 256K can (and has
been> used. The most common varieties of RAM used are all dynamic RAMs.
Dynamic RAM has two major advantages, and one serious disadvantage. The
advantages of dynamic RAM lie in its high density and low price. The
disadvantage lies in that it must be refreshed. Dynamic RAM cannot hold
the values it is asked to remember for very long - it starts to forget.
To prevent this it must be read from or written to on a regular basis,
several times a second. The PC uses one counter of the system timer to
initiate RAM refreshes at a preset rate, and one channel of DMA to request
dummy transfers from RAM. These dummy DMA transfers access'the RAM,
thereby keeping the data in it alive. Any application which locks out
interrupts for an extended period can interfere with the refresh of mem­
ory, and can cause a loss of information.

A bank of RAM in a PC typically consists of nine dynamic RAM chips, all
the same kind. Each chip holds the same number of bits. In the case of
64K chips, each chip holds 64K bits (not bytes). Eight of the chips
provide one bit in every byte of the 64K bytes the bank holds. The ninth
chip provides a parity bit for each byte. Thus the data being stored in
the bank of memory may be considered to be stored "across" the chips,
rather than one byte wholly in one chip, and another wholly in another.
Parity is calculated by counting the number of "1" bits in a given byte
value, and setting the parity bit to ensure that, including the parity
bit itself, there are an even number of ones. If ~he byte value was
11001100 the parity bit would be 0 since there are four ones in the byte.

30 IBM PC Internals

If the byte were 01001100 the parity bit would be a 1 to make the total
sum of l's into an even number. Every time information is read from RAM
the parity of the value read is checked. If an error is found it is im­
mediately reported by generating a Non-Maskable Interrupt. The default
action to take at this point is to display the dreaded "PARITY CHECK"
error message, together with a code indicating the bank in which the error
occurred.

Read Only Memory: Every PC contains at least two ROMs - the system BIOS
ROM and the ROM containing Cassette BASIC. The system BIOS ROM is located
at the high end of memory, in the FOOOO segment. There are three lo­
cations in the system ROM which are worthy of notice: FFFFO, FFFF5 and
FFFFE. FFFFO is where the 8088 starts executing instructions when it is
powered on. In the IBM PC this location holds a FAR JUMP instruction,
which jumps to the start of the Power-On Self Test. Immediately following
this jump instruction in memory (at FFFFS) is the date of the system ROM.
This date is important occasionally, when determining the compatibility
of certain hardware with the PC. At FFFFE is a single byte which iden­
tifies the type of PC. This can be used by software which is sensitive
to the kind of PC in use. The currently defined codes are:

XT, PPC, 3270 PC
FD = PCjr, PC JX
FC = PC AT, 3270 PC AT

It is possible to build an I/O adapter which contains its own BIOS code.
Such code can make the adapter much easier to interface to DOS. or can
take advantage of special features of the adapter. Some of the adapters
that have ROM BIOS code on them are: the Fixed Disk Adapter, the PC Net­
work Adapter. and the Enhanced Graphics Adapter. In each case the ROM
containing the BIOS extension is located in the memory map between C8000
and DFFFF. These optional ROM BIOS modules are discussed in the BIOS
module.

This ability to provide additional ROM BIOS support to a PC, built di­
rectly on an adapter, is one of the more powerful innovations of the PC
architecture. It allows the BIOS interface to be customized. or even
replaced (as in the EGA), to suit the installed hardware. An excellent
example is the Fixed Disk Adapter. which modifies the system BIOS so that
it attempts to IPl from the first fixed disk after failing to IPl from
the first diskette drive. A PC without a Fixed Disk Adapter will only
try the first diskette drive.

4.6 VIDEO

The video support of the IBM PC is based on a memory-mapped approach to
the screen. The two original display adapters for the PC -- the
Monochrome Display / Printer Adapter (referred to here as the MDPA) and
the Color Graphics Adapter (referred to here as the CGA) both use a simple
scheme to map the screen buffer into PC memory. The more recent Enhanced

PC Architecture 31

Graphics Adapter has to adopt a more elaborate method to be able to cope
with the large amount of memory it uses.

The 128K region of the PC memory space from AOOOO to BFFFF is allocated
to video RAM. The EGA uses 64K of this space, starting at AOOOO. The
MDPA uses 4K, starting at BOOOO, and the CGA uses 16K starting at B8000.
The memory layout for the text modes is the simplest, so we will start
with that.

All the text modes of the PC video systems use the same kind of memory
layout. Starting at the top left corner of the screen, which is termed
(0, 0), the positions on the screen are given row and column coordinates.
On the MDPA and the CGA the row number ranges from 0 to 24, and the column
from 0 to 79. The EGA supports considerably more rows, depending on the
character size selected. Every character on the screen has an attribute
byte, which determines the color of the character on the screen. The
character itself is stored in memory followed by its attribute. Row 0
is the first to be stored, followed by row 1, and so on. Within each row
the characters are stored in order. Thus the screen layout can be con­
sidered to be what might be obtained by placing row 1 at the end of row
0, then row 2 at the end of that, and so on.

The attribute bytes used in text modes are oriented towards the CGA. The
highest bit controls whether the character will blink. The next three
bits are the background color, with one bit for each of the Red, Green
and Blue components of the color. This gives a total of eight possible
background colors. The foreground color is determined by the low four
bits of the attribute byte. The lowest three bits are again the Red,
Green and Blue components, while the highest bit of the four is the In­
tensity bit, providing a choice of high or low intensity foreground col­
ors. This gives a total of 16 possible foreground colors.

On the MDPA the blink and intensity bits are supported, and the remainder
are operational to a very limited extent. Setting just the Blue bit of
the foreground color, with the Red and Green bits clear, causes the MDPA
to underline the character. Setting all the bits of the background colour
causes the MDPA to display in reverse video. Clearing all of the RGB bits
of the foreground colour cause the character to be invisible, unless in
reverse video. Any other combination of RGB bits displays the character
in living green on a dark background. This compatibility between CGA and
MDPA attributes has led to many programs using the same attribute for both
in an effort to simplify the programming task. This approach works well
everywhere except when using an EGA to emulate an MDPA, where certain
attributes can render the display unreadable.

Each graphics mode uses a different screen buffer layout, but there are
similarities. All of the CGA graphics modes display 200 lines of pels,
organized on an odd/even system - the odd numbered lines are held in the
upper half of the screen memory, while the even numbered lines (including
0) are held in the lower half of memory. The reason for this complicated
layout lies in the engineering of the CGA. In 320x200 resolution the CGA
displays lines of 320 dots, termed picture elements, or pels. Each dot
may be one of four colors. To indicate which of the four colors a given
dot is, it is represented by two bits. Four pels are represented in a

32 IBM PC Internals

byte of screen buffer. so the whole 320x200 require 16K of memory. The
background color can be any of the 16 colors available on the CGA. because
the background color setting is held in a register on the CGA card. called
a palette register. The other three colors are fixed. except that a
choice can be made between cyan/magenta/white and green/red/yellow.

The higher resolution mode of the CGA displays 640 pels on each row.
pel can be either colored or black. so the CGA places eight pels in a
of screen buffer. again using all of the 16K available. The palette
register determines the foreground color. so it can be any of the 16
available.

Each
byte

The EGA uses a more sophisticated screen buffer system. It has four
distinct "planes" of screen memory. with each plane mapped into the same
memory addresses as far as the system is concerned. This might seem to
indicate that the EGA must have the same value written into all of the
planes whenever the buffer is addressed. but this is not so. The planes
can be individually masked. so a given write can access any or all of the
planes without affecting those masked off. Again. a specific 4-bit color
value can be written into those locations the system attempts to set.
This allows the writing of large amounts of a given color quite easy.
The EGA is an extremely complex piece of hardware. and anyone wishing to
program it directly is referred to the Technical Reference manual for
details. The complexity of the EGA is increased by the sophistication
of the support it offers for the older displays -- the Monochrome Display
and the Color Display. To realize the full power of the EGA the Enhanced
Color Display must be used. The EGA replaces the system board video BIOS
interface. adding extra functions to support the host of features avail­
able on the EGA.

The EGA has sixteen palette registers. each addressed by a different
combination of bits in the screen memory planes. Each palette register
holds a six bit value. with two bits for each of the Red. Green and Blue
components. Two bits gives the ability to use four different levels of
each color. and a total of 64 different color settings. Only sixteen of
these colors can be used at any time. but the choice of which sixteen is
completely open.

~.7 KEYBOARD

The keyboard on the IBM PC is more than just a collection of buttons.
The keyboard contains an Intel 8042 microprocessor. which scans for keys
that are held down. When the 8042 finds a key down it transmits a "make"
scan code to the system unit. This code informs the system unit that the
key has been pressed down. After a preset delay the typematic function
of the 8042 takes over. and starts transmitting repeated "make" codes of
the last key pressed. This continues until the key is released. at which
time the 8042 transmits a "break" scan code. indicating that the key has
been released.

PC ~rchitecture 33

It may seem strange at first sight to transmit a code both for the
pressing and the releasing of a key, but the reason is simple. It allows
any key to be used as a shift key, without reprogramming the 8042 (some­
thing which is quite difficult, because its programming is fixed!). When
the system unit receives a "make" code for a shift key it sets a flag
indicating that the shift key is down. Any scan code received after that
is treated as shifted, until the "break" code for the shift key is re­
ceived. The game "Styx" (also known as "JX labyrinth") uses this tech­
nique to treat Fl as a shift key, while the IBM PC Network SNA 3270
Emulation package treats F4 as a special purpose shift key.

The ROM BIOS normally handles all the conversion of scan codes into
characters. Whenever the 8042 interrupts the system with a scan code
interrupt 9 is invoked. The interrupt 9 service code processes the scan
code. We will examine details of the interrupt 9 service routine in the
BIOS module.

4.8 INTERRUPTS

The PC provides 8 interrupt levels, using the Intel 8259 interrupt con­
troller. Two of the levels are sequestered for use on the system board,
by the system timer (level 0 -- highest priority), and by the keyboard
(level 1 -- second-highest priority). The other six levels are available
on the system bus for use by adapters.

The interrupt controller is programmed for strictly prioritized interrupt
handling. That is to say, an interrupt on level 3 will always be serviced
before one on level 4, assuming that both occurred at the same time.

Each of the interrupt levels corresponds to an interrupt number. The PC
has allocated interrupt numbers 8 to F to hardware interrupt levels 0 to
7 respectively. When a hardware interrupt occurs the 8088 will stop on
completing the currently executing instruction. It saves the current flag
register on the stack, then the current CS and IP values (as for a CAll),
before loading the CS and IP from the interrupt vector.

The interrupt
dress 00000.
two for IP).

vector table is located at the lowest point in memory, ad­
Each interrupt vector is four bytes long (two for CS and
Thus the first entry is at address 00000, the second at

00004, and so on. The full 256 interrupt vectors occupy addresses
00000-003FF.

As well as being used for hardware interrupts, the interrupt vector table
can be used by software interrupts. A software interrupt is a special
instruction which tells the 8088 to behave as though an interrupt were
occurring. The software interrupt specifies what interrupt number to use.
This mechanism allows the PC to treat some of the software interrupts as
a standard means for programs to use common routines. Both BIOS and DOS
use interrupts as their means of invocation. That is to say, the inter­
rupt vector table is used as a table of global routines.

34 IBM PC Internals

Using an interrupt vector for access has a number of advantages. It
eliminates any memory dependency of one program on another. It allows
the routines to be replaced, if necessary, either by ROM on a new adapter
(as in the EGA), or by a piece of software.

4.9 I/O PORTS

The I/O ports in a PC are used to control and exchange information with
all manner of peripheral devices. The I/O ports are addressed on the bus
in the same manner as memory, but with fewer bits in the address being
significant, as the 8088 will only address up to 65,536 ports. When an
I/O port is addressed instead of a memory location the I/O Read or I/O
Write control signal on the bus is active, as opposed to the Memory Read
or Memory Write. The 8088 will read from a port using the IN instruction,
and write to one using the OUT instruction.

I/O ports are often registers located on adapters. They may be used to
report the status of an adapter (ready for input, busy, etc), to control
the adapter (set speed, size, etc), or to transfer data -- a register may
provide the input or output buffer to a device. Because an I/O port is
performing such functions it is not unreasonable for the value read from
a port to vary without the CPU altering it -- in contrast to ordinary
memory, which is normally not changed except by the CPU.

4.10 DHA

Direct Memory Addressing (always termed DMA) is a fast and efficient way
to transfer blocks of data between I/O ports and memory. It is always
used by the fixed disk, and usually by diskette, for the transfer of
sectors of information to and from the device port. DMA operates without
involving the CPU in the transfer. This allows the CPU to continue with
other processing during the transfer. The keyboard can be used, and the
time of day updated, without the disk transfer being affected.

The PC has a DMA controller chip (Intel 8237), and a number of DMA control
registers to support DMA. The controller supports four channels of DMA,
each of which is separately programmable. Channel 0 is used by the RAM
refresh mechanism, and so is unavailable for use by adapters. The other
three channels are available, with the diskette controller using channel
2 and the fixed disk channel 3, when disk I/O is going on. Unlike hardware
interrupt levels, it is possible to share DMA channels, providing that
only one device is actually using the channel at a time.

The DMA controller does not support segmentation of memory. To get the
full 20-bit address needed to address 8088 memory the DMA subsystem uses
page registers. A channel's page register is a 4-bit register that sup­
plies the top 4 bits of the 20-bit address. The remaining 16 bits are
provided by the DMA channel's address register. Forming the 20-bit ad-

PC Architecture 35

dress in this way restricts the use of large block sizes. In normal 8088
memory addressing it is possible to start a 64K segment on any paragraph
(16-byte) boundary. The page register approach is restricted to the use
of 64K boundaries. This is the cause of the infamous FORMAT problem -­
if the FORMAT utility is loaded into memory in such a way as to make its
buffer overlap a 64K boundary it will fail. Moving the load point will
make it work again. The FORMAT program doesn't check for this condition.

When a DMA channel has been told which I/O port to use, where in memory
to find or store the block of data, and how many bytes to transfer, the
DMA transfer can be started. For each DMA cycle the controller will
transfer one byte. After every DMA cycle the 8088 is given a chance to
access memory. When the transfer is complete the status for the channel
changes to free.

4.11 TIMERS AND THE SYSTEM CLOCK

The PC is driven by the system clock. Every operation inside the PC is
synchronized to the clock. Memory accesses to RAM take exactly four clock
cycles. I/O port accesses take five. An ADD instruction between two
registers takes four clock cycles. The system clock in the PC is centered
on a crystal. A crystal is a carefully cut piece of quartz enclosed in
a metal case, with two leads coming out of it. The frequency of oscil­
lation of a crystal is extremely precise -- your quartz watch uses a
crystal to keep time. The PC and XT use a 14.3 MHz clock crystal, and
divide its frequency by 3 to derive a system clock rate of 4.77 MHz. That
means 4.77 million clock cycles per second. The AT uses a 12 MHz crystal,
and divides it by 2 to get a system clock rate of 6 Mhz, significantly
faster. A higher clock rate means that the PC is operating faster. but
there are limits. The PC is based on the 8088 processor, which until
fairly recently was only designed to operate at speeds up to SMHz. The
80286 processor used in the AT is specified to run at 6 MHz, but there
are faster 80286s out now -- 8MHz and even 10 MHz are said to be readily
available; there is even speculation on a 12 MHz version. The processor
is not the only item in the PC that is speed dependent -- the RAM and ROM
chips can only operate so fast. The PC uses 200ns RAM, which will operate
quite comfortably at 4.77 MHz. Raise the speed to 8 MHz and you need 120ns
memory or better. Faster RAM chips are available. but they get more ex­
pensive the faster you go. Many other components are speed critical -­
the old Asynchronous Communications Adapter will not operate reliably in
an AT because it cannot respond quickly enough.

The PC uses a single timer chip to provide a number of timer functions.
The most critical of these is the refresh timer, which is used to generate
the RAM refresh requests. Almost as important. the system timer. which
runs the time-of-day clock. is used for timing for diskette access. and
is central to any attempt to provide a form of multitasking for the 8088.
The third timer/counter in the PC is used for sound generation in the
built-in speaker. All three timer/counters are driven by a 1.19 MHz
signal. The 1.19 MHz signal is derived from the system clock in a PC or

36 IBM PC Internals

XT -- the 4.77 MHz is divided by four. The AT uses a separate crystal
to produce the timer signal.

The system timer has been programmed on the PC to count from its maximum
(65536) to zero before interrupting. This gives an effective interrupt
frequency of 18.16 Hz, that is a little over 18 times per second. When
it interrupts it invokes interrupt 8, which updates the time of day
counters. The service routine for interrupt 8 invokes interrupt lA, which
is the point at which timer-driven routines should intercept the inter­
rupt.

The refresh timer operates every 15 microseonds, with 256 refresh cycles
required every 4 milliseconds. Interfering in any way with this channel
of the timer chip is likely to destroy the currently running system, be­
cause RAM that is not being refreshed often enough is unreliable.

The timer which drives the speaker can be programmed to divide by any
number from 1 to 65536. This allows the programmer to choose the fre­
quency of the tone the speaker will generate. For example: dividing by
2705 will give a frequency of 440 Hz -- a concert A, while dividing by
4648 will give a frequency of 256 Hz -- a middle C. There is an I/O port
address which can be set or cleared to switch the speaker on or off. If
you turn it on you had better have a small program available to turn it
off -- a constant tone quickly becomes deafening!

4.12 BUS

The bus of the PC is the interface between the system board and adapters.
It consists of 62 lines in parallel across a number of circuit board edge
connectors. The lines on the bus include 20 address lines, 8 data lines,
3 DMA request and acknowledge lines, 6 interrupt request lines, and a
number of power, ground, and control lines. The address lines are sepa­
rated from the data lines before being placed on the bus (they are mul­
tiplexed coming out of the 8088).

The bus in the PC is run in maximum mode, permitting the use of multiple
processors in the PC. The most common is the use of an 8087 mathematics
coprocessor. The bus can be controlled by the 8088, another processor,
such as the 8087, or by the DMAcontroller.

4.13 BUILDING A CARD FOR THE PC

The most foolish thing that a hardware developer can do is to ignore all
of the guidelines that IBM has published about the various resources that
a card may use. Such an attitude is almost guaranteed to produce a
product that will sooner or later become incompatible with some other
product on the market. This has been observed on a number of occasions.
IBM has made incompatible adapters too -- the worst was the incompat-

PC Architecture 37

ibility of the original 5250 emulation card (for connecting a PC to a
System/36) and the XT fixed disk controller.

The resources that a new card may wish to use are:

• Memory addresses (both RAM and ROM)

• I/O port addresses

• Software interrupt/s

• Hardware interrupt/s

• DMA channel/s

Each of these will be discussed in turn. They have been ordered roughly
in order of simplest to hardest.

Memory addresses may not seem too difficult an area to address, with a
one megabyte address space. And they aren't, because the PC memory map
has been fairly well laid out, with explicit allocation of a lot of the
address space to specific functions. Generally, manufacturers seem to
manage to cope well with the allocation of addresses to their cards,
partly because very few peripherals are memory mapped. Very few add-on
cards contain ROM extensions, which is strange, because this is one of
the best ways to mask the differences of new hardware. Many addresses
are available for add-on ROM's, so this is unlikely to be a problem.

I/O port addresses are also documented in the Technical References.
Again, there seem to be few clashes in this area, and most cards are de­
signed to use any of a number of port addresses depending on the setting
of jumpers on the card. This allows clashes to be resolved by moving the
addresses used by one of the cards. This is a useful technique, but only
if the software support for the device will support all of the possible
choices.

Software interrupts are more limited. Particularly when the number of
interrupts used or reserved by IBM is taken into account. There are only
31 interrupts marked "not used" out of interrupts 0 to FFh, with another
8 marked "reserved for user programs". A large number of the rest are
marked reserved for various reasons. Several manufacturers have used
interrupts that were marked reserved, often without any problems so far.
One instance, however, is fairly well-known: the clock component of an
AST multifunction card uses an interrupt that is also used by the IBM
3278/9 Emulation adapter -- these two cannot be used together.

Hardware interrupts are a much more serious problem. There are only 8
levels of hardware interrupt in the PC (15 in the AT), and two of these
are used by the system to support the timer and the keyboard. A third
is used by the diskette drive controller, and yet another for the fixed
disk controller, if one is present. The remaining interrupt levels might,
theoretically, be shared, but few cards support this facility (the IBM
Cluster adapter is one of the few).

38 IBM PC Internals

DMA channels are the scarcest resource of all. The PC has only four DMA
channels (the AT has 7), of which one is required for dynamic RAM refresh,
leaving only three. Of these three, one is used by the diskette con­
troller when data transfer is in progress. Conflicts can arise very
easily with cards which wish to use DMA.

Both DMA channel and hardware interrupt number should be configurable to
help install the card along with other cards. The software interrupt
number, and the I/O port addresses should also be capable of being
changed, and the software should support all of the possible options.
Most cards seem to manage to fit fairly well by providing two choices for
each of the necessary items.

~.l~ ARCHITECTURAL EXTENSIONS

The IBM PC architecture was not carved in stone in August 1981. As the
scope of the product expands it has proven necessary to augment the ar­
chitecture in many areas.

The first of these to be acknowledged was the need to make video memory
layouts a part of the architecture. Because of the slow speed of the BIOS
graphics interface many software vendors were forced to address the video
memory directly. If IBM were to alter the layout of the graphics memory
in, for example, the Enhanced Graphics Adapter, without providing the
software with a means to distinguish between this and the previous hard­
ware, much software would be rendered unusable. So IBM decreed that the
layout of the video memory would remain fixed for each defined video mode.
Since then, each new layout in video memory has had a distinctive video
mode (so far the Enhanced Graphics Adapter has taken the number of defined
modes to 12, using mode numbers from 0 to 16).

One of the most important changes to the PC architecture was the inclusion
of the ability of adapter cards to change the machine by extending or
supplanting the system BIOS ROMs. This was the advance that made it
necessary to change the BIOS in old PCs when installing an expansion unit
or the PC Cluster adapter. The new BIOS scans the ROM address space
looking for additional BIOS ROMs on adapter cards during system reset.
If a BIOS ROM is found its initialization code is executed, allowing it
to install its interrupt handlers, possibly replacing system BIOS ones.

Possibly the two most significant recent changes to the PC architecture
were the NETBIOS interface and the inclusion of the 80286. The 80286 came
in the AT, proving that the PC architecture could extend beyond the 8088.
The NETBIOS interface was introduced with the PC Network, providing a
powerful local Area Network programming interface. Already the NETBIOS
interface has proven that it is independent of the PC Network hardware
-- it is also available for ~he Token Ring network.

PC Architecture 39

4.15 SUMMARY

You should now have an understanding and appreciation of the architecture
of the PC. The elements that you should understand are:

• the difference between an architecture and an implementation

• the pieces that make up the PC architecture

• the concepts behind the important parts of the PC:

Memory
Video
Keyboard
Interrupts
I/O Ports
DMA
Timers and System Clock
System Bus

• the considerations involved in designing hardware and software for

It is only necessary that you grasp the larger aspects of how the PC works
there is no need for you to be able to build one. You should appre­

ciate, for example, what DMA does and what it is used for -- the exact
timing of a DMA cycle and the hardware involved is not important to
understanding the remainder of the course. From here we will be looking
at the layers of software that lie between an application and the naked
hardware -- so the exact workings of the hardware become less and less
important.

The first layer of software over the hardware is the BIOS. That is the
next section of the course. Proceed to it when you feel comfortable with
the concepts of the hardware and the 8088 microprocessor.

40 IBM PC Internals

5.0 8088 ASSEMBLER FUNDAMENTALS

An understanding of major 8088 Assembler programming techniques is es­
sential as a prerequisite for subsequent sections of this course and for
future PC technical courses. In this section we will divide key 8088 ma­
chine instructions into eight arbitrary groups, and will examine the
groups one by one. By the end of this section the student should under­
stand the following:

• The categories of 8088 instructions

• The operands used with instructions

• The usage of 8088 registers and flags

• How data are coded in assembler source code

• The advantages and limitations of programming in assembler vis a vis
other programming languages

In addition the student should be able to follow a sample assembly lan­
guage program.

In order to accomplish these objectives, topics will be covered as follow:

1. The origin of assemblers will be explained to show that Assembler,
while some may think it crass and primitive today, was a godsend in
its early years and improved programmer effectiveness tremendously.

2. Instruction types will be identified and categorized.

3. The format of assembly language instructions will be explained.

4. Individual instructions will be examined and examples of these in­
structions will be shown in order to give the student a full under­
standing of their operation.

5. The student will learn how data definitions are imbedded in source
code.

6. We will briefly describe the use of other programming languages
available on the PC family in order to show how Assembly language,
while versatile and powerful, is not always the best solution to a
programming requirement.

7. Finally in the 8088 Assembler lab, students will use the Resident
Debug Tool (ROT) of the Professional Debug Facility, and will examine
the step-by-step workings of an assembled program, using what they
have learnt in the Assembler module.

8088 Assembler Fundamentals 41

5.1 THE ORIGIN OF ASSE"BLERS

On the earliest computers, the only way to write programs was to code each
instruction in its machine-language format. Machine-language instructions
on any computer appear to us as meaningless series of l's and O's, or
octal or hexadecimal characters. To construct a single instruction could
require a great deal of programming time -- each element of the instruc­
tion had to be analyzed to determine how particular bits of the instruc­
tion were used, and the whole instruction then had to be coded.

Not only was coding in machine language time-consuming and dehumanizing,
but errors were unavoidable and debugging was almost impossible. If one
bit in one instruction was coded wrong, how would the programmer locate
the wrong bit?

Assemblers solved the problems inherent in bit-by-bit programming, by
taking over the programmer's task of translating machine instructions
into bits and bytes. Instead of the programmer having to calculate what
bits needed to be set to code a particular MOV instruction, for example,
the programmer typed "MOV AX,BX" and the assembler did the translation
into machine code.

Consider how the following program, coded in 8088 assembly language and
ready for the assembler, would have to be coded if machine language were
the only way to program a PC today:

Assembly language Machine code (binary) Machine code (hex)

MOY AX,l 10111000 88
00000001 01

MOY BX,2 00000000 00
10111011 8B
00000010 02

SU8 BX,AX 00000000 00
00101001 29
11000011 C3

Assemblers reduced the frequency of errors and the amount of time spent
coding dramatically. Debugging time was reduced because the programmer
only had to look for misuse of instructions, not mistranslation of the
proper instructions into machine code.

Current assembler packages contain other facilities as well to make the
programmer's life easier. They often allow programmers to set up their
own macros so that they can use a single command to replace a number of
machine instructions. Instead of having to code the same set of assembler
mnemonics every time a function is needed, the programmer needs only the
name of the macro which performs this function. This allows a higher level
of programming than was available in the days of writing machine code
directly.

42 IBM PC Internals

Another enhancement of current assembler packages is the ability to use
labels to refer to elements in the program's data or code. This means
that, when programming, the programmer need not worry about the physical
location of a data element or a portion of code in memory; the location
can be referenced as a label and the assembly process will take care of
establishing the proper address.

Term;nology: Now that we know what an assembler does, what is the dif­
ference between the terms "Assembly language" and "Assembler"?

Assembly language: A language in which programmers use mnemonics to in­
dicate individual machine instructions.

Assembler: The program which processes assembly language source code and
assembles it into machine instructions for use as executable code.

Most people use the term 'Assembler' to mean 'Assembly language'.

5.2 TYPES OF INSTRUCTIONS ON THE 8088

We have divided the instruction types into eight categories. These cate­
gories have been chosen arbitrarily, with a view to making the learning
process easier. Your objective as a student should be to understand the
function of each instruction category, without memorizing the function
of more than the most basic of individual instructions. The categories
of instructions are:

1. Arithmetic
2. Move
3. logical
4. Stack
5. Conditional
6. Control
7. 8087 (Math co-processor)
8. Input/Output

5.3 FORMAT OF INSTRUCTIONS

Before we look at individual instruction categories, students should un­
derstand the format of 8088 assembly language instructions. Each in­
struction consists of two components:

Opcode: The operation to be executed (one per instruction) Operands: The
variable elements used to affect the meaning of the opcode (zero or more
per instruction).

Some instructions in assembly language will include labels for reference
to data or to code locations. However, in the machine language version

8088 Assembler Fundamentals 43

produced by the assembly process. these labels will be transiated into
numerical references.

5.4 OPCODES AND OPERANDS

Operands can be source operands or destination operands. A source operand
is a variable element which affects the result of an operation. but which
itself is not affected. For example. in the statement "MOVE into BX the
contents of AX". AX 1S the source operand. since something is coming from
it and going into BX.

likewise. the destination operand is the variable element which is af­
fected by the operation. In "MOVE into BX the contents of AX". BX is the
destination operand since the result is stored there.

In some cases. one or both operands may not be required (they can be as­
sumed. or they may not be used at all).

To complicate things further. the 8088 assembler requires the destination
operand to be placed before the source operand. This means that when we
want to "Move the contents of AX into BX", we actually code "MOV BX,AX",
or. if you like, "MOVE into BX the contents of AX". If you get used to
thinking in terms of moving into something from something else, this will
begin to make sense~

The format of assembler instructions can therefore be summarized as fol­
lows:

OPCODE [Destination-Operand,] [Source-Operand].

5.5 VALID OPERAND TYPES

Operands can be coded as registers, locations in memory, or immediate
values (absolute values specified in the source code>. Destination oper­
ands cannot be immediate (you can't do anything to an absolute value) but
can be memory or register values; source operands can be any of the three
types. For both source and destination operands the valid types (register,
memory or immediate> will depend on the particular instruction involved.

Example of Register operands:

ADD AX,BX
(add to AX the contents of BX>

44 IBM PC Internals

Example of Memory operands:

MOV AX, [01]
(move into AX the contents of the memory location pointed to by
ES:[DI] -- remember that ES is the default segment register used with
01)

Example of immediate data:

SUB AX,12
(subtract from AX the immediate value 12)

5.6 THE EIGHT INSTRUCTION TYPES

5.6.1 Arithmetic Instructions

The 8088 is capable of performing some basic arithmetic such as we learned
in primary school mathematics. We will review some important arithmetic
instructions and give examples of their usage.

Hote that in the examples below and in all ensuing Assembly language ex­
amples. any text preceded by a semicolon [;] is commentary. used to ex­
plain exactly what the instruction does. This is a standard practice in
writing 8088 Assembly language programs. Because the assembler discards
any comments after a semicolon when it assembles. the comments do not
affect the object code in any way, and they make the source code more
understandable.

ADD and SUB: ADD takes the contents of the source operand and adds them
to the contents of the destination operand.

ADD AX, BX ;adds to what's in AX the contents of BX.

The addition is done on the hexadecimal contents of the registers.

SUB takes the contents of the source and subtracts them from the desti­
nation.

SUB eX,2 ;subtracts from what's in ex the immediate value 2.

For both ADD and SUB, the source (the amount to be added or subtracted)
can be memory. immediate value, or a register. The destination can be
memory or a register.

nUL and DIV: MUltiply and DIVide assume the accumulator and its extension
as the destination operand, and this cannot be overridden. The accumulator
and its extension consist of:

• OX (high half) and AX (low half) for 16-bit operations

8088 Assembler Fundamentals 45

• AH (high half) and Al (low half) for 8-bit operations

Because the destination operand is assumed, it is not specified in the
instruction. The source operand is specified as a register or memory lo­
cation.

MUL:

DIY:

MUL BX imultiply AX by BX
;(product in DXAX)

MUL BL imultiply AL by BL
;(product in AX)

DIV CX idivide DXAX by CX
j(quotient in AX)
j(remainder in DX)

DIY BL idivide AX by BL
j(quotient in AL)
ieremainder in AH)

The important things to remember with MUL and DIV are:

1. They assume the accumulator and its extension to contain the desti­
nation operand.

2. Therefore, no destination operand is specified with the instruction.

other arithmetic ;nstructions: INC and DEC are used to add or subtract
a value of 1 from the destination operand. "INC DX" is the same as "ADD
DX,l". The advantages of using INC and DEC are that they require less
space in the code than ADD and SUB, and that they execute more quickly
than if you use ADD DX,I or SUB DX,l.

NEG is used to negate the operand. "NEG AX" forms the twos complement of
AX, which is equivalent to subtracting AX from O.

Examples:

INC CX iincrement count register by I
isame as "ADD CX,I"

DEC word ptr [BP] idecrement word value at SS:[BP] by I
;same as "SUB word ptr [BP],I"

NEG byte ptr [SI] ;subtract byte value at DS:[SIl from 0

Note: "word ptr" and "byte ptr" are used in assembly language to indicate
whether the memory element addressed is a word or byte length, respec­
tively.

Shifts and rotates: Shifts and rotates are used to move the bits in a
word or byte register around in sequence. We will look at three types of
instructions within this category: logical shifts, arithmetic shifts,
and rotates.

Logical Shift:

46 IBM PC Internals

A logical shift pushes the bits in a register out of the register in the
direction specified by the opcode. The bits which are moved out are dis­
carded. The vacated positions are filled with zeros. This is best illus­
trated graphically:

SHR (Shift logical right):

[register]
O's ----> 11011010 ---> bit bucket

For the above value, "SHR register, 3" would return:

[register]
00011011

where "3" is the number of positions to shift. '010' went into the bit
bucket.

SHl (shift logical left) follows the same rules as SHR except that the
direction of the shift is reversed.

One use for SHR/SHl is that it provides a quick way to multiply or divide
a register's contents by a power of 2. For example:

SHl Al,4

If we assume AX contained 3 before the shift, or binary 00000011, the
result of the operation will be binary 00110000, which is 30 hex, or 48
decimal, which is 3*(2-4)=3*(16)=48.

Arithmetic Shift:

An arithmetic shift functions in the same way as a logical shift except
that the vacated positions are filled with the sign bit instead of zero
in a Shift Arithmetic Right (SAR).

The sign bit is the original high bit of the register. The sign bit is
used to indicate whether a number is a positive integer, or a negative
integer in twos complement form. If the sign bit is 1, the number is a
negative integer in twos complement form.

The purpose of SAR is to ensure that, for operations using arithmetic
numbers (numbers which can be positive or negative), the sign bit (and
by extension the polarity of the number itself) is not lost.

There is no Shift Arithmetic left on the 8088 -- you can't shift a sign
bit into the low bit of a register, since the sign bit doesn't go there.
The PC Macro Assembler assembles SAL (Shift Arithmetic left) as SHl.

SAR (Shift Arithmetic Right)

[register]
sign bit ----> 11011010 ---> Bit bucket

8088 Assembler Fundamentals 47

For the above value, "SAR register,3" would give:

[register]
sign bit ----> 11111011 ---> Bit bucket

Rotate:

A rotate is a logical shift except that the vacated positions, instead
of being filled with zeros, are filled with the value of the bit that was
most recently shifted out. In other words, a ROl (rotate left) looks like
this:

[register]
+----< 11011010 <---+

I
+--------------------+

As each bit is pushed out one end of the register, it takes its place at
the ot~er end. For the above value, "ROl register, 3" would give:

[register]
11010110

The command ROR (Rotate Right) is similar to ROl except for the reversed
direction.

Ar;thmet;c summary: We have discussed the following instructions:

• ADD and SUB

• MUl and DIV
• INC and DEC (like ADD and SUB but source is an immediate value of 1)

• NEG (subtract destination from 0).

• SHR and SHl (shift logical right/left)

• SAR (shift arithmetic right)

• ROR and ROl (rotate right/left).

Note that for more complex mathematical operations, such as
exponentiation, the 8087 co-processor is required (80287 with 80286-based
PC's).

5.6.2 Have ;nstruct;ons

The purpose of all MOVE instructions is to move data from place to place
in the computer. In fact, a MOVE is actually a COPY, since the source of
the data is not usually altered by the operation. Data can be moved to
and from the following:

• To register from register
• To memory from register
• To register from memory
• To register or memory from immediate data

48 IBM PC Internals

• To memory from memory (for string moves only).

Bytes, words and strings can all be moved. The format of byte or word MOVE
instructions is:

MOV Destination, Source.

The format of string MOVE instructions is:

MOVSW or MOVSB.

In this case the Source and Destination are assumed, as will be shown
shortly.

MDV ;nstruct;on: MOV allows byte or word moves between registers alone,
between registers and memory, and from immediate data to registers and
memory.

Between registers:

MOV DS,AX imove into DS the value in AX

To memory from register:

MOV [BP],ES imove into word at SS:[BP] the value in ES

To register from memory:

MOV Dl,[SIl imove into Dl the value in memory at DS:[SIl

Note that both source and destination must be the same length. For in­
stance:

MOV
MOY

Al,BX
AX,Bl

iinvalid operation - BX can't fit in Al
iinvalid operation - Bl can't fill AX

To register/memory from immediate data:

MOV DX,5 imove into DX the value 5

MOV word ptr CS:[BX1, 90H
imove into memory at CS:[BXl
;the word value 90H

With immediate data source operands, not all registers can be destination
operands. Segment registers are invalid as destinations with immediate
sources. For example:

MOV DS,O iinvalid instruction, will not assemble

The proper way to code such an instruction is:

MOY AX,O
MOV DS,AX

iset AX to 0
imove 0 to DS from AX

8088 Assembler Fundamentals 49

Finally, you can never move anyth;ng into CS or IP because this would in
effect force the 8088 to jump to an undefined location.

MOVCS, .. .
MOV IP, .. .

iinvalid
;invalid

There is no alternate way of coding the above, and there is no need for
it.

str;ng moves: String moves move a byte or word string from one memory
location to another. These commands do not reference the memory locations
directly, but through the source and destination indexes (51 and 01) and
their associated segment registers (OS and ES respectively). To carry out
a word string move, 51 and 01 are loaded and the command is issued:

MOV 51, offset SOURCE

MOV 01, offset DEST

MOVSW

ithis moves into 51 the address offset of
ithe label SOURCE, which references a
iword string in memory

ithis moves into 01 the address offset of
ithe label DEST, which references a
ilocation in memory where the word string
ishould go

ithis copies the word value at DS:[SI] to
ithe location at ES:[DIJ.

The MOVSB command can be used to move byte strings instead of word
strings. Both MOVSW and MOV5B adjust 51 and 01 to point to the word or
byte following the one on which the string move was just performed.

IT you want to move more than one word/byte at a time, and the words/bytes
are adjacent in memory, you can use the REP prefix with MOVSW/MOVSB, as
follows:

MOV CX,10
MOV 51, offset SOURCE
MOV Dl, offset DEST
REP MOVSW

iCount of 10 words

imoves the word at DS:[S1J to ES:[DIJi
iadjusts S1 and 01 to point to the next
iwordi adds I to CXi compares CX to zero;
iif CX>O then execute the command again.

(REP loops the statement it is applied to until CX=O)

With the REP MOVSW command and a count in CX of FFFF. you can make a copy
of a 128KB block of memory in a single instruction!

Summary of Move commands: Three similar mnemonics are used for moves:

- MOV (for word or byte values)
- MOVSB (for byte strings)
- MOV5W (for word strings)

50 IBM PC Internals

Word- or byte-value moves can involve registers, memory and immediates.

string moves can use the REP function to copy up to 128K of data from one
location to another.

5.6.3 Logical instructions

The purpose of logical instructions is to "mask" on or off selected bits
in a byte or word value. Three of the four logical instructions compare
the source and the destination, and set the bits in the destination op­
erand according to their own individual criteria. The fourth logical in­
struction merely inverts every bit in the destination operand. The four
logical instructions are:

- AND
- OR
- XOR
- NOT

In the following examples we will illustrate the logical operations
through concrete examples. The 8088 logical operations are the same as
in other processors, so those with a firm understanding of the in­
structions need not concentrate on this section.

In our examples we will use the weekly schedules of several people to show
how logical operations can help us determine possible meetings between
the people.

AND and OR: Two lovers, Annabel and Bill. like to meet at night under
the moon. But Annabel plays bridge on Mondays, Thursdays. Saturdays and
Holidays; Bill plays shuffleboard on Wednesdays, Thursdays and Sundays.
If we want to determine what nights Annabel and Bill will be able to meet
beneath their favorite willow tree. we must find those nights where both
are not busy.

We have assigned a "1" to every night in which Annabel or Bill is avail­
able, and a "0" for any night in which they are not available. We will
perform an AND to determine what nights they can meet. We have chosen an
eight-day week (Monday through Sunday. plus a holiday) since the 8088
deals more readily with 8 bits than 7.

M T W T F S S H (Holiday)
Annabel 011 0 1 0 1 0

Bill 1 1 0 0 1 1 0 1
& &

Result: 0 1 0 0 1 0 0 0

Annabel and Bill only meet on Tuesdays and Fridays.

The AND instruction sets any bit in the destination operand which is set
in both operands before the operation took place. Only if both values

8088 Assembler Fundamentals 51

start out with 1 in a particular position will that position have a 1
after the AND. Note that the 8088 assembler format of AND is "AND Desti­
nation. Source". for example "AND Al.Bl".

If we want to determine on what nights at least one of the two lovers will
be able to go to the park and visit their favorite willow tree. we can
use the OR instruction.

Annabel OR Bi 11
M T W T F S S H (Holiday)

Annabel 0 I I 0 I 0 I 0
Bill 1 I 0 0 1 I 0 1

/ / / / / / /

Result: 1 1 I 0 1 I 1 I

At least one of them will be able to visit the willow tree every night
but Thursday.

The OR instruction sets any bit in the destination operand which is set
in either operand before the operation took place.

XOR and NOT: Gustav is an unruly type who likes to throw mud pies at
Annabel or Bill in the park. However he is a coward and will only try
to bother them when only one of them is there; and there's no point in
his going there if neither is around. So Gustav does an XOR of Annabel
and Bill to determine what nights only ONE of the two (not both. not
neither) will be around.

Annabel XOR Bi 11

M T W T F S S H

Annabel: o I I 0 I 0 I 0
Bi 11: I I 0 0 I I 0 1

X X X X X

Only one of 'em: I 0 I o 0 I I 1

Gustav can sneak up one one of the lovers on three of eight nights.

The XOR instruction sets any bit in the destination which is set in one
or the other of the operands. but not both. XOR is an exclusive OR.

Germaine is not as malicious as Gustav. but has an uncontrollable fear
of Annabel. She likes to visit the park but only on nights when she knows
Annabel won't be around. By performing a NOT on Annabel. Germaine can
determine what nights she can visit the park without fear.

M T W T F S S H

Annabel: I 1 001 101

Not Annabel: o 0 1 1 0 0 1 0

52 IBMPe Internals

Germaine can go on three of the eight nights, since Annabel goes on the
other five.

The NOT instruction has only a destination operand. It clears every set
bit, and sets every clear bit. of the destination operand.

Log;cal ;nstruct;on summary: As we have seen, logical instructions are
used to mask on or off selected bits of a value. This value can be byte­
or word-length. Remember that in 8088 Assembly language the format is
always OPCODE SOURCE-OPERAND, DESTINATION-OPERAND. so the "Annabel
AND/OR/XOR Bill" should really read "AND/OR/XOR Annabel. Bill".

The purpose of bit masking depends on the program's requirements; one
common usage is for passing several parameters to a routine within a
single byte. For instance, in a Get Status call to the BIOS printer rou­
tine. the status is returned in AH with bits set as follows:

BIT: 7 6 5 4 3 2-1 0
I I I I I I I_TIME OUT
I I I I I I_UNUSED
I I I I I I/O ERROR
I I I I_SELECTED
I I I_OUT OF PAPER
I I_ACKNOWLEDGE
1- NOT BUSY

A routine invoking the Get Status function call could use logical in­
structions to isolate a particular bit in the returned status byte. and
take appropriate action depending on which bits were set by the function.

5.6.4 Stack operat;ons

The stack is used by the 8088 to keep track of routines which call other
routines. When a program calls a subroutine, before the 8088 passes con­
trol it pushes the address of the calling routine onto the stack. Then,
when the subroutine returns control, the 8088 pops the address of the
calling routine back off the stack. and can thereby transfer control back
to the original routine which issued the call.

Programmers can also use the stack. as long as they make sure they don't
mess up the 8088's use of the stack and thereby cause control to be
transferred to undefined locations. Programmers can store the contents
of registers on the stack so that their values can be restored after a
subroutine or software interrupt handler has modified their contents.
Routines can also pass parameters to subroutines by pushing them onto the
stack -- the subroutine just pops them off again. PUSH and POP are the
two main stack instructions. For example:

8088 Assembler Fundamentals 53

MOV BX.12
PUSH BX
MOV AX,13
SUB BX,AX

POP BX

;value 12 stored in BX
;save value of BX on stack
;value 13 stored in AX
;subtract AX from BX. Ooops! We lost the original
ivalue of BX. But ...
i ••• BX is restored to 12 from the stack.

Two variants of the PUSH and POP instructions exist: PUSHF/POPF, which
push or pop the flags register onto/from the stack, and PUSHA/POPA, which
push or pop all general purpose registers. PUSHA and POP A work only on
the 80286, and operate on AX, BX, CX, DX, BP, SP. DI and SI all in a single
instruction.

All stack operations are word-based. Valid source operands can be any
16-bit register (you have to push AX if you want to save Al), or any word
in memory. Immediates cannot be pushed or popped.

Note that you cannot POP CS or IP. This would cause a branch to an unde­
fined location by setting the instruction address to an undefined value
from the stack (however, the RET NEAR instruction in effect does a POP
IP, and this is an often-used instruction).

Some students have trouble understanding how the stack is implemented in
the 8088 and other Intel microprocessors. The easiest way to understand
the stack is to think of a pile of plates. On the 8088, the stack is a
pile of plates stored in memory. You can only put plates on at the top
of the stack, or remove them from the top; every time you put a plate onto
the stack, the pointer to the top of the stack (the STACK pointer, SP)
changes to indicate the new top of stack. A PUSH places a plate on the
stack; a POP removes a plate. In the 8088, each plate is a word-value.

Parameters can be passed to routines by pushing the parameters onto the
stack. The called routine can then pop those values off and use them as
required. For example, in the following routine we push the AGE parameter
on the stack, and call a routine to determine if the AGE was odd or even.
The called routine pops the parameter off the stack, performs the neces­
sary calculation and pushes the result back onto the stack. When the
calling routine regains control, it pops that value off and now knows
whether the value was odd or even.

MAIN:

ODDEVEN:

PUSH
CAll
POP

POP
POP
AND
PUSH
PUSH
RET

AGE
ODD EVEN
AGE

RETADDR
AX
AX,l
AX
RETADDR

54 IBM PC Internals

jthis is the main part
;AGE points to a word in memory
iODDEVEN will determine whether it's even
iOn return, we pop the result back to memo
iand the MAIN routine goes on.
iThis routine checks the value.
iFirst store return address
iThen retrieve the value to change
iand AND it with 1 to check if it's odd
jIt's pushed back on the stack
iRestore return address so RET can work
;and control returns to MAIN.

Notice that we did not POP AX immediately on entering the routine. Why?
Because when we invoked the CAll, the 8088 automaticallY pushed the ad­
dress to return to onto the stack. If we had just POPped AX, changed it,
and PUSHed it back, we would have PUSHed an invalid return onto the stack,
thereby causing the program to return to who knows where.

To get around this we POPped the return address off the stack and into a
memory location defined elsewhere as RETADDR. Because our last PUSH was
of RETADDR, the original return address is kept intact.

stack summary: The stack is used by the 8088 for program control pur­
poses. Applications can also use it to save and restore the contents of
registers and memory before an operation which might inadvertently alter
those contents, and to pass parameters to a subroutine and retrieve those
parameters after the subroutine has operated on them.

The main Stack instructions are PUSH (push onto stack) and POP (pop off
stack). PUSHF and POPF are the equivalent instructions for the flags
register; PUSHA/POPA on the 80286 pushes or pops all general purpose
registers.

5.6.5 Flag ;nstruct;ons

The FLAG category of instructions is a very broad, lose category. We have
included in it any instruction which modifies one or more of the flags.
Some of these instructions belong in another category, but affect the
flags on the side. For instance, arithmetic instructions will affect the
arithmetic flags (sign flag, carry flag, auxilliary carry flag, overflow
flag etc.).

The purpose of changing flags is that a program can do a conditional
branch to another location depending on the setting of one or more flags.
Since the setting of the flags is in turn dependent on prior operations,
a branch can be made on the basis of the nature of the results the prior
operation produced.

An easy flag instruction to understand is the Compare instruction, or eMP.
In the example:

MOV AX,15
MOV BX,30
CMP AX,BX

we can see that by comparing AX and BX the result will be that BX is
greater than AX. But how is this indicated in the flags?

The eMP instruction works by subtracting the source from the destination
without returning the result -- only the flags are affected. If we do a
SUB AX,BX with the same values, the sign and carry flags are set, and the
result is stored in AX. With the eMP instruction, the registers would not
be altered but the sign and carry flags would be set. The CMP instruction

8088 Assembler Fundamentals 55

can be used to determine if one value is greater than, equal to or less
than another value.

The TEST instruction performs a logical AND of the two operands, affecting
the flags without returning the result. The TEST instruction can be used
to determine whether particular bits in a value are set or cleared. For
example:

MOV AL, 11001110B
TEST AL, 00000001B

;these numbers are in binary
;as is indicated by their terminal "B"

No result is returned, but the zero flag is set to indicate that the
source operand does not have the low bit set.

Direct flag-altering instructions: Some instructions have been included
in the 8088 exclusively to modify the flags. In some cases these modifi­
cations are done in order to fool another routine about the nature of a
result (whether it had an overflow, or was negative, etc). In others they
determine aspects of the environment under which the 8088 executes. Below
is a description of several of these instructions:

STD (Set direction flag): The Direction Flag is used in string operations
(MOVSB/MOVSW and others). If the direction flag is cleared, the string
indexes SI and DI will increment after each operation so that string
moves, for example, proceed from lowest byte/word in the string to highest
byte/word. The STD instruction changes the direction so that string op­
erations occur in highest-to-Iowest order instead. The complementary in­
struction to STD is CLD, which clears the direction flag, restoring the
direction to lowest-to-highest order.

STC (Set carry flag): The carry flag is normally altered through arith­
metic instructions to indicate the nature of a result. STC allows you to
set the carry flag without performing any operation. Its complement is
CLC, clear carry flag. These two instructions are sometimes used by ser­
vice routines which set the carry flag if an error occurred.

STI (Set interrupt flag): The interrupt flag is used to allow or disallow
certain external hardware interrupts. By using the STI instruction, you
allow a routine to be interrupted by external interrupts coming from the
keyboard, for example. By using the CLI instruction (Clear Interrupt
Flag), you prevent keyboard input from being processed until another STI
instruction is issued. (The Non-Maskable Interrupt, INT 2, cannot be
masked out.)

CMC (Complement carry flag): This switches the value in the carry flag.
It is equivalent to performing a NOT on the carry flag.

SAHF (Store AH in flags): By placing a value into AH and issuing the in­
struction SAHF, you can alter the values of several flags at once. The
following flags are altered by SAHF: Sign, Zero, Auxiliary Carry, Parity
and Carry. The LAHF instruction loads into specific bits of AH the value
in these five flags.

56 IBM PC Internals

other instructions: Other instructions modify the flags as well. par­
ticularly arithmetic instructions. In these cases the flags tell us
something about the result of the operation. For instance. in the code
excerpt:

MOV AX,l
SUB AX.2

The result of the operation is negative. so the carry flag is set. And
in the mUltiplication:

MOV AX. FFFFH
MOV BX. AX
MUl BX

the result of the operation is two words long (the result is stored in
DXAX) so the carry and overflow flags are set. In fact. by checking the
overflow flag, we can tell whether the result is meaningful. Because FFFF
times FFFF has a result longer than 16 bits, the overflow flag is set and
we know the result is stored in DXAX.

logical instructions also affect the flags. In the example:

MOV Al, 1010101B
XOR Al. 1010101B

the result is zero (there are no bits here which are set in only one op­
erand) so the zero flag is set.

Interrupt instructions save the flags register on the stack, then clear
the trace and interrupt flags before transferring control to the interrupt
routine. Interrupt routines often alter other flags (and registers too)
but the INT instruction limits itself to TF and IF.

Flags summary: Many instructions which fall primarily into other cate­
gories are also flag-altering instructions. These instructions alter one
or more flags to indicate the nature of the result of their execution.

A handful of instructions are used directly to modify the flags without
performing any other operation. These instructions are used to change the
operating environment of the 8088 (shut off external interrupts. change
the direction for string operations etc.) or to simulate the result of
an arithmetic or logical operation in order to cause a conditional branch
of control.

The flags are used as test values in conditional branches, which we will
discuss below. Basically by testing the value of one or more flags we can
determine whether to proceed with the next sequential instruction or
whether to branch to another location.

8088 Assembler Fundamentals 57

5.6.6 Control

In a machine language that did not have control instructions, the computer
would be useless. Control instructions are used to make decisions based
on the results of an operation; they are used to skip over blocks of code
which are not applicable in a particular situation; they are used to allow
several routines to access a common function without having to code that
function in duplicate. And for the programmer trying to understand a
source code listing, the effective use of control instructions allows a
more modular approach to programming and therefore clearer, more readable
code.

An important aspect of coding controls in 8088 Assembly language is the
fact that we don't need to hard-wire addresses of routines into our source
code. This means that instead of using instructions like "Execute the
routine at offset 06DE from the current segment", we can use instructions
like "Execute the routine labeled 'THIS_ROUTINE'". The Assembler takes
care of translating the labeled routine into an address so that the
control-passing works properly.

One advantage of coding with labels rather than hard-wiring is that in
the course of program debugging, addition or deletion of instructions
changes the addresses of routines, so hard-wiring controls may cause
branches to unexpected locations. Another is that names tend to be more
meaningful to programmers than memory addresses. "CALL PRINT_CHARACTER"
is a trifle more understandable than "CALL 7600:07F5".

The use of labels is illustrated below, followed by the object code which
the assembly process would be produced. The clarity of the labeled code
is contrasted with the obfuscation of the object code.

Source

Object

code with labels:

MAIN_ROUTINE:

SUB_ROUTINE:

code with addresses:

06DE:OFF3

06DE:I0D3
06DE:I0D5

CALL SUB_ROUTINE
.... ;other

ADD AX,BX
RET

CALL 10D3

ADD AX,BX
RET

code here

Three types of control instructions: Control instructions can be divided
into JUMPS, CALLS and INTERRUPTS. We have already studied these in­
structions in the 8088 architecture module. We will review each type here.

JUMPS: Jumps transfer control to another location. The location can be
SHORT, NEAR or FAR. As we learned in the 8088 module, a SHORT jump is
within -128 to +127 bytes of the current instruction; a NEAR jump is
within the current segment, and a FAR jump is anywhere in memory.

58 IBM PC Internals

A JUMP corresponds to a GOTO in a higher-level language. The 8088 does
not remember where a JUMP originated, so a programmer would have to figure
out her/his own way to jump back if a return to the calling routine was
necessary. In 8088 Assembly language the JUMP command is abbreviated to
JMP, as in:

iJump to the location labeled 'NEXT_STEP'

CONDITIONAL JUMPS: We discussed flags in the previous section, without
delving into why we would want to alter the flags or how we can base de­
cisions on their contents. Conditional Jumps allow us to pass control to
different routines depending on the values in the flags (or depending on
the value in CX). Conditional Jumps are SHORT only -- you can never jump
further than 128 bytes in either direction from the current instruction.

The important thing to understand about conditional jumps is not what
flags are tested in individual jumps, but what characteristics of a result
are tested. In other words, the jump "JB", or "Jump Below" means "Jump
if the destination was smaller than the source". We shouldn't have to
think about the flags at all. Just think of the mnemonic. Some common
conditional jumps are identified in this example:

CMP AX,BX
JA AX_ IS_GREATER iJA=Jump if Above
JB AX_IS_SMALLER iJB=Jump if Below
JE AX_EQUALS_BX iJE=Jump if Equal (same as JZ)
JZ AX_EQUALS_BX iJZ=Jump if Zero (Same as JE)
JCXZ CX_REGISTER_IS_ZERO iJCXZ=Jump if CX=O

These jumps can all be used to branch control depending upon the result
of an arithmetic operation.

The IBM Macro Assembler implements multiple conditional-jump mnemonics
for certain Assembly-language instructions, in order to allow the pro­
grammer to think about the result of an operation rather than the values
in the flags. Thus JE and JZ (Jump If Equal and Jump If Zero) have the
same machine-language code (14H and displacement) because both test the
Zero Flag and branch if it is set.

As with the JMP instruction, conditional jumps are one-way control
transfers -- once the jump has occurred, the 8088 does not know how to
return to the location from which the transfer originated.

Because conditional jumps are short only (-128 to +121 bytes from the
current instruction), you cannot do a far or near jump. If you want to
execute a large chunk of code for a conditional jump you will have to use
a format such as the following:

8088 Assembler Fundamentals 59

MOV AX,I
CMP AX,2
JB AX_IS_LESS

other code in here (less than 128 bytes though)
AX IS_LESS:

JMP AX_IS_LESS_FAR iAX_IS_LESS_FAR can be furthern than 128 bytes
ifrom the JB statement

In other words, we do a short conditional jump to a location which then
does a near or far jump. This indirectly allows a conditional jump to
transfer control to a near or far location, not just a short.

CALLS: The difference between a jump and a call is the difference between
moving to Swaziland for good, and taking a vacation there. If you move
there for good, you forget your old address and don't know where you came
fromi you have not paid for your return airfare. If you take a vacation
there, you probably bought your return ticket before you left on the trip.
If a program jumps to another location, it doesn't know how to get back
to where it came fromi in a call, it knows it has an easy way back to its
home town.

CALLS on the 8088 can be near or far -- control can be transferred within
the current segment (NEAR) or anywhere in memory (FAR). The difference
between a CALL and a JMP is that in a CALL the 8088 saves the address of
the instruction following the CALL onto the stack. When the 8088 en­
counters a RET instruction which asks for control to be returned to the
caller, the 8088 pops the address off the stack and control is returned.

We have already seen several examples of programs containing CALLS. Let's
look at another:

MAIN:
MOV
CALL

AH, 75
SHIFT_CHAR
;other code here

SHIFT_CHAR:
SHL AH, 1
ADD AH, BH
RET ;return to caller.

In this example, rather than build the shift-character routine into the
main portion of the program, we put it on its own, and use the CALL and
RET instructions to pass to and from the SHIFT_CHAR routine. There are
several reasons we might want to do this.

One is that we can chart out the main block of code in large steps, without
showing every detail of operation, by isolating lengthy routines else­
where in the code and calling them. Thus, a programmer can look at the
main block of code and more readily understand what the program is doing.

Another is that we may be calling the SHIFT_CHAR routine from several
different places. Granted, it's not a long routine and could easily be
coded into every location without impacting code size or speed of exe­
cution. But what happens if we decide that the SHIFT_CHAR routine should

60 IBM PC Internals

Shift left 2 instead of 1? If we coded the routine as a routine CAlled
by other routines, we would only have to recode the single SHIFT_CHAR
routine. If we coded the routine in every location where it was needed,
we would have to rewrite every piece of code where that routine was used.

The advantages of Calls over Jumps can be summarized as follows:

1. The same code can be called from many locations, which enables a
consistent use of that code. For instance, if you write a routine to
print a character on the screen, and c~ll that code from anywhere in
your program, you know the character will print the same way. If you
write the routine right into every block of code which uses it, you
may wind up with different versions of your print-character routine,
causing inconsistency in your program.

2. Calls reduce redundant coding by allowing access to a single routine
from multiple locations.

3. Programs are more modular with CAllS than with jumps. Modularity means
that program changes are more easily carried out, and that programs
can be more easily understood in their source form by programmers.

4. CAlled routines can return to their caller with the RET instruction.
They don't need to know where to return to, the 8088 takes care of
that.

SOFTWARE INTERRUPTS: Before we discuss the similarities between software
interrupts and calls, we should explain the difference between hardware
and software interrupts.

Hardware interrupts are caused by external I/O events. When a key is
struck on the keyboard, an interrupt is issued from the 8259 Interrupt
controller to the 8088, and the 8088 interrupts whatever it was doing to
process the keystroke. Conceptually, a hardware interrupt is having your
boss come up to you, interrupt your work, and demand a twenty-page report
on your career plans by 4 o'clock. You stop playing Space Invaders and
start to write the report.

Software interrupts have less to do with interruption and more to do with
requesting services. A software interrupt is issued by a program, usually
to access a system routine which is made available to all programs running
in the system. For example, the BIOS on the PC provides a routine to read
from the keyboard buffer. By issuin£ interrupt number 16H, an application
can obtain the value of the first key in the keyboard queue.

From a conceptual point of view, a software interrupt is like a service
provided to the public. You can write your twenty-page report on your
career plans, stick it in an envelope, and mail it to your boss. The act
of writing the report was the processing of the external interrupt. The
postal system is the software interrupt service, and you can invoke this
service by placing your report in the mail. The writing of the address
is the passing of parameters to the interrupt service (so that it knows
what to do with the package).

8088 Assembler Fundamentals 61

There is nothing to prevent a hardware interrupt-handler from invoking
software interrupts. It is during your processing of your boss's request
for a report that you invoke the mail system. Once you've mailed off the
package, you can return to your desk and go back to Space Invaders. You
don't care about how the mail system gets the report to your boss by four.
That's their business.

INTERRUPTS vs. CALLS: Like a CALL. an interrupt (indicated by the As­
sembly language mnemonic INT) transfers control to a routine which can
then return to the routine which invoked it. The 8088 implements this,
as with the CALL, by pushing the address to return to onto the stack be­
fore control is transferred. However several key differences allow soft­
ware interrupts to be more globally useful than CALLs.

1. The flags are saved on the stack automaticallY. The 8088 does this
when it first processes the INT instruction. Since interrupt handlers
alter the flags so frequently. the pushing and popping of the flags
is automatic whenever an interrupt is invoked or returned from, re­
spectively.

2. Encoding of the instruction is only 1 or 2 bytes. Interrupt 20H as­
sembles into CD20H. A CALL FAR 01DO:0335 with a PUSHF would assemble
into 9A3503D0019CH. or 6 bytes. Use of interrupt routines cuts down
on the size of your code and on the time it takes the 8088 to execute
it.

3. No memory address is required in the Interrupt instruction. To invoke
the BIOS get-keyboard-input interrupt. you merely issue INT 16H. You
don't have to worry about the actual address being called. This not
only makes coding easier, but enables you to access the keyboard input
routine even if its address has changed. (If a keyboard enhancer has
been loaded. for example. it will change the interrupt address.)

Because the routine which invokes an interrupt needs only the interrupt
number. it is easy for many different programs to access the same routines
using this interrupt interface. For this reason DOS and BIOS are accessed
by programs through the interrupt interface almost exclusively. The in­
voking routine does not need to worry about new releases of DOS or BIOS
changing the addresses of functions. because the interrupt vector table
will point to the proper location of the functions.

A simple example of using a software interrupt is:

MOV AH. 0

INT 16H

CMP AL, 'a'

jAH=O tells BIOS you want to
iget a keystroke
;INT 16H is the interrupt used for
iapplication keyboard input
iby BIOS
iBIOS returns the keystroke in AL.
iCheck to see if it's an 'a'.

As with the CALL which has a RETurn instruction, INT has an Interrupt
return instruction, the mnemonic of which is IRET. If you write a routine
which is invoked through an interrupt. you must return to the calling

62 IBM PC Internals

routine with an IRET so that the flags get restored, control gets returned
to the right place, and the stack is properly set.

SUMMARY of CONTROL INSTRUCTIONS:: We have looked at three major types
of controls:

JuMPs

CAlls

INTerrupts

Hon-conditional
Conditional
8088 doesn't know the way back to the caller

Hon-conditional
8088 can RETurn to the caller
several routines within a program can access it

Hon-conditional
8088 can IRETurn to the invoker
System-wide access to system routines: BIOS, DOS etc.

5.6.7 The 8087/80287 Math Co-Processor

We looked at arithmetic instructions as the first instruction type on the
8088. As we mentioned, many of these were instructions we could have un­
derstood even in primary school. They do not perform complex mathematical
functions such as engineers, scientists, statisticians and other numer­
ical manipUlators might want to perform. For this reason Intel created
the 8087/80287 math co-processors. The 8087 runs with the 8088; the 80287
with the 80286. These co-processors improve the accuracy and speed of
mathematical calculations tremendously. However, simply plugging one of
these into your PC will do you no good at all. You have to program ex­
plicitly for it.

Math co-processor mnemonics all start with an "F" as the first character.
ADD, SUB, MUl, DIV and so on still are carried out on the 8088; to get
the speed and accuracy of the co-processor, you would code FADD, FSU8,
FMUl and FDIV. You would also have to use different locations for storing
your operands; however the particular functioning of 8087 instructions
is beyond the scope of this course.

Some language compilers and interpreters, and some end-user applications,
require the 8087 in order to execute. Macro Assembler version 2.0 supports
the 8087 instructions. Macro Assembler version 1.0 did not.

5.6.8 Input/output instructions

The 8088 can address 64K (65,536) ports of input/output. Very few of these
are used on the PC. The 8088 allows access to these ports through IN and
OUT instructions. IH takes a byte in from a port, and OUT sends a byte
out to a port. In fact, at the lowest level, the IN and OUT instructions

8088 Assembler Fundamentals 63

are one of only two ways to send information to the world outside the main
processor and the math co-processor. The other way, which is more re­
stricted, is through the use of DMA.

In an IN or OUT instruction, AL is always the register used for the byte
to be input or output. The port can be an immediatG number from 0 to FFH,
or a word value

IN
MOV
MOY
OUT

stored in

AL, 61H
AL, 74H
DX,03DAH
DX,Al

DX. For example:

;input a byte from port 61H
iNow AL=74H
iset up DX to address port 3DAH
ioutput byte in AL to port addressed
;by DX (3DAH)

It is very rare for a programmer to use the IN and OUT instructions.
Because the BIOS and DOS interrupt routines provide all the I/O support
needed by most programmers, application programs use the interrupt
interface. The BIOS routines themselves, however, use IN and OUT in­
structions copiously because this is how they communicate with I/O de­
vices.

5.7 DATA ENCODING IN ASSEMBLER

We have already discussed the use of labels to make referencing of code
or data elements easier. Now we will examine how data are stored within
the source code in assembly language. There are four elements to a data
definition in assembly language. Two of these are optional, and are in­
dicated in parentheses:

[DATA_LABELl DEFINE-TYPE [LENGTH] VALUE

A real example would be:

MYAGE DB 24

The elements of this are:

LABEL DEFINE AS BYTE VALUE

Note that the blank spaces in this example are not significant to the
assembler.

The LABEL can be used in the source code, so that direct address refer­
encing is not used in the source code:

MOY AL, MYAGE

moves the value stored at the memory location labelled MYAGE into AL. The
Assembly process will figure out what the actual memory address is. A
label is optional in a data definition, however if a reference is to be

64 IBM PC Internals

made the starting address of a data element, it must be labeled. For ex­
ample, in the definition

MYADDRESS DB '29 Ranleigh Ave.'
DB 'Toronto, ONT Canada'

there is no label for the second line, because it is a continuation of
the first.

The Define-type tells the assembler what length to assign to the data
value. Some possible types are:

BYTE
WORD
OOUBLEWORO
QUAOWORO

(2 bytes)
(4 bytes)
(8 bytes)

(DB)
(OW)
(DO)
(OQ)

The value itself can be specified in binary, decimal, hexadecimal, octal,
ASCII characters, or a combination of the above. Octal, however, is rarely
used because it is designed for 6-bit machines and the 8088 works only
with values of 8 or 16 bits.

- Binary:
- Decimal:
- Hex:
- ASCII:
- Combination:

10100101B
1938 or 19380
20FAH
'Gelato'
'Gelato',20FAH, 101B

The assembler normally assumes that values which are not explicitly de­
clared as binary, hexadecimal or octal are decimal. However the default
value type can be changed to any of these. As for ASCII values, they are
always enclosed in single quotes.

The Length portion of a data definition allows you to define a longer
variable quickly, provided it contains the same byte/word value in each
position. The "n DUrn statement is used to indicate a repeat prefix of
the value which follows (where n is a value between 1 and 64K). For ex­
ample

LOTS DB 8 DUP (' a')

is the same as

LOTS DB 'aaaaaaaa'

In this example, little coding space is saved by using the DUP function.
However, consider a program in which a disk I/O buffer is established to
allow file access. At initialization of the program, the buffer will not
contain anything, but we would like to reserve space for it. The buffer
could be coded as follows:

FILE_BUFFER DB 4096 DUP (?)

8088 Assembler Fundamentals 65

This sets aside 4096 bytes of space for the buffer. The (?) value says
that it doesn't matter what value is placed into that buffer to start
with, but the space will be reserved.

5.7.1 Beware of stray data definitions

In some types of assembler programs (.COM programs). the data is stored
right in the code segment. whereas in others (.EXE programs> the data is
stored in a separate data segment. From the processor's point of view.
there is no difference between data and code in the code segment of a .COM
file. If you define a data variable in the middle of a subroutine. the
8088 may try to execute it! Consider the following example:

MOY
SILLY
INT

This assembles as:

MOY
HLT
INT

OX. 3
DB OF4H
37H

OX. 3

37H

You can still access the data
it will interpret the data as
way to
source

code around
code. thus:

MOY
JMP
SILLY

NEXT_STEP:
INT

this is to

OX, 3
NEXT_STEP
DB OF4H

37H

<--- halts the processor!

variable F4H. but if the 8088 runs into it,
an instruction, and your CPU will halt. A
JuMP over any data definitions defined in

This is not a serious problem. It just pays to remember that to the 8088.
instructions are just bits and bytes, and data is just bits and bytes,
and it will treat one as the other if you tell it to.

To summarize the data definition format. we code data definitions in
source code as:

[DATA_LABEL] DEFINE-TYPE [LENGTH] VALUE

The data label is optional, and is used to refer to the value inside
source code. The Define-Type can be byte, word, doubleword, or quadword.
The value itself can be written in Binary, Octal (obsolete>, Decimal,
Hexadecimal or in ASCII characters. And the optional LENGTH repeat prefix
allows a value to be repeated any number of times.

66 IBM PC Internals

5.8 OTHER PC PROGRAMMING LANGUAGES

Before we examine the value of other PC programming languages, we should
understand why people still do use assembly language. Many application­
oriented programmers regard assembly language as a dinosaurian tool which
takes forever to code, forever to debug, and has to be rewritten for every
new hardware release. All of this is true to a degree, but there are some
very good reasons for using Assembly language for a variety of system­
oriented programs.

The first consideration is that Assembly language runs very very fast.
It runs faster than BASIC, "C", APl, Pascal, or anybody else -- faster
than all of them put together! All these other programs eventually break
down into machine language anyway, so if you want speed, why not start
there? A compiled BASIC program uses a routine library to access its most
common routines; every time one of these routines is called, a complex
series of instructions is executed to check the validity of the call, the
parameters passed, and so on. In Assembly language you only generate the
instructions required to do the work.

Of course Assembler isn't any faster than BASIC if the programmer doesn't
know what s/he is doing. But a good assembly-language programmer can write
a program that runs faster on a PCjr than a BASIC program of similar
function will run on a 3090.

The second reason for using Assembly language is that it is very compact.
The sample program used in this course, which reads keystrokes and con­
verts lower-case characters to uppercase before displaying them, has been
coded in "C", BASIC, Assembler using BIOS and Assembler using DOS. The
Assembly-language versions are a small fraction of the size of the BASIC
version. For system-oriented programming, where many complex functions
must be crammed into as few bytes as possible, Assembly language offers
compactness of code, provided the programmer uses proper algorithms.

The third reason for using Assembly language is that it offers much more
control over the 8088 and the PC system. A BASIC programmer may not care
whether a value is being stored in a register or whether it's in memory,
but if an Assembly-language programmer knows a value is going to be ref­
erenced fifty thousand times per second during a particular routine, s/he
will be able to give that value a high-access-time location in storage
-- a general register.

The worst reason for using Assembly language is that it's easy to debug.
Actually it is harder to debug Assembly language than any other language
except APl. However, if the programmers have done their job and put tons
of lively comments in the source code, debugging becomes quite easy.

8088 Assembler Fundamentals 67

5.8.1 Other PC languages

Assembler may be fast and compact and offer lots of control, but it's not
everyone's kettle of fish. Many programmers prefer more high-level pro­
gramming languages because these languages don't expect the programmer
to know the machine inside out. Another feature of high-level languages
is that some languages come with interpreters -- tools which allow you
to run programs directly, without compiling them. Interpretive programs
are far slower than compiled ones, but during development of a program
it's much easier to test a simple change slowly in an interpreter than
to do it by recompiling, which may take ages.

other PC languages are easier to understand than Assembly language (except
for APl). These languages are designed to address the needs of the pro­
grammer, not the architecture of the processor. And because these lan­
guages are less directly associated with the processor, the code becomes
more transportable. An 8088 Assembly language program is useless on a VAX
system, but a "C" program which runs on the PC can be recompiled with no
major changes to run properly on the VAX system.

It may take dozens or hundreds of machine instructions to implement one
high level instruction. High-level languages speed up the application
development cycle by requiring minimal coding and producing powerful
programs. The programs may be slower and bulkier than machine-language
programs, but they won't have taken 17 years to write.

The five PC languages we will review are Pascal, BASIC, Fortran, APl, and
"C"o

5.8.2 Pascal

Pascal is a high-level, structured language, used heavily in Computer
Science courses to teach students true structured programming. Program­
mers who use a GOTO statement in Pascal are subjected to heavy
chastisement by their programming professors. Pascal is known for power­
ful data-structuring facilities and for modular programming units, which
allow extremely large programs to be written in small units. The Pascal
compiler on the PC provides good detection of syntax errors during com­
pilation -- unlike a compiler like most "C" compilers, which will give
you hundreds of syntax errors if you forget the first bracket in a pro­
gram.

5.8.3 BASIC

BASIC is another high-level language, although it is not structured in
its interpreter format, and only barely in its compiled format. It is
fairly easy to learn, easy to get addicted to, and difficult to use in

68 IBM PC Internals

an effective way. BASIC on the PC is available in compiled and interpre­
tive versions. The interpretive versions are very slow, but are good if
you want to write short, low-priority routines. For example, you can write
a ten-line program in BASIC to print out diskette labels, use the program
once, and not feel bad about throwing out the program. Compilers for BASIC
on the PC allow the code to run rather faster, but anyone serious enough
to want to compile their programs would be better off programming in a
more powerful structured language such as "C" or Pascal.

5.8.4 FORTRAN

Fortran stands for Formula Translator. The Fortran language is very old
-- dating back to the mid-fifties, when not much else was available. It
is still used extensively, particularly in engineering, scientific and
mathematical environments. On the PC, IBM Professional Fortran and IBM
Fortran version 2.0 both use the 8087/80287, providing fast execution of
math functions. Fortran is a medium-level language without the bells and
whistles of Pascal but with more punch. Fortran is not well-liked by
programmers of other languages, but it has its following, and its uses.

5.8.5 APL

APL stands for A Programming Language. This isn't nearly as cryptic as
the language itself. APL does not use alphabetic mnemonics for in­
structions, it uses funny-looking characters which pack a lot of function
into a single space on the screen. APL must have been designed for the
days when you bought video displays by the square centimeter. Because it
is so highly symbolic, it is also highly undecipherable, and the best way
to debug an APL program is to write a new one that works properly. Yet
the instructions are very powerful, and though APL on the PC is only
available in an interpretive version, it does work relatively fast and
is great for math. APL on the PC requires the 8087 co-processor.

5.8.6 nCR

"C" stands for "CR. It's the successor to "B", which probably sprang out
of "A". "C" is a low- to medium-level language, designed in Bell Labs and
about the only language used on UNIX-based systems. "C" source code is
designed to be extremely transportable; it is structured without being
obsessed about it. "C" produces compact and efficient object code, and
is heavily used by system hackers. Many operating systems and device
drivers are being written in "C" these days.

8088 Assembler Fundamentals 69

5.9 CONCLUSION

During this module we saw how Assembly language reduced the headaches of
programmers who previously had to code bit by bit in machine code; we
learned the eight categories of 8088 instructions -- Arithmetic, Move,
logical, Stack, Flag, Control. 8087 and Input/Output -- and we examined
specific examples of each instruction category. We learned the format of
instructions -- "OPCODE [Destination], [Source]", and looked at several
examples of instructions which follow this format. We also learned the
format of data encoded in Assembly language; finally, we examined the
reasons some programmers today still prefer to use Assembly language, and
we skimmed over the features and drawbacks of five other programming
languages used on the PC.

Students should now have accomplished the objectlves outlined at the be­
ginning of this module. We will repeat them here; think them over as you
read, and make sure you review any objective you haven't reached, by re­
reading the section involved or asking an experienced workstation spe­
cialist for help.

By the end of this section the student shOUld understand the following:

• The categories of 8088 instructions

• The operands used with instructions

• The usage of 8088 registers and flags

• How data are coded in assembler source code

• The advantages and limitations of programming in assembler vis a vis
other programming languages

In addition the student should be able to follow the assembly code of the
sample program used in the Assembly language lab.

If you go on to later topics without understanding the essentials of what
we covered in this lecture, you may become lost as references are made
to materials covered here. Finally, the sample assembly language program
is contained in Appendix C of this guide. Browse through it and make sure
you understand its major components, and recognize some of the in­
structions.

When you have achieved a strong comfort level with 8088 Assembler Funda­
mentals, you should proceed to the module on the PC BIOS.

70 IBM PC Internals

6.0 BIOS

The BIOS (Basic Input/Output System) of the IBM PC handles low-level I/O
to devices such as the keyboard, diskettes, printers and the like. It
allows programmers to perform I/O to and from these devices at a much
higher level: the program requests a service from the BIOS, and the BIOS
takes care of all the physical procedures which must take place in order
to fulfill the request.

The BIOS, in software terms, is what gives the IBM PC its individuality
over PC compatibles, just as the PC architecture gives the hardware its
individuality over other personal computer architectures. By individual­
ity we do not necessarily mean incompatibility, but in some cases features
existing in the IBM BIOS will not exist in compatible BIOS's. Through an
understanding of the BIOS you will be able to judge the differences be­
tween IBM Personal Computers and compatibles, and hopefully to some extent
between IBM PC's and incompatible but functionally equivalent computers
as well.

6.1 OBJECTIVES

By the end of this module, you should understand the following:

• The purpose and structure of BIOS

• The assembly language interface to BIOS routines

• What the six key BIOS routines are

• The importance of using the BIOS interface rather than direct hardware
addressing

• How direct hardware addressing works, and why it's dangerous.

In order to accomplish these objectives, we will examine the following
aspects of BIOS:

1. BIOS as compared to the first I/O control systems

2. The purpose and structure of BIOS

3. BIOS's power-on diagnostics

4. The assembly language interface

5. Several individual BIOS routines

6. How and why programs bypass BIOS

BIOS 71

7. How DOS and other PC operating systems use BIOS

8. BIOS support for add-on modules to the BIOS.

In the classroom version of this course, a lab will be conducted to show
differences between using the BIOS interface and using direct hardware
control.

6.2 FIRST I/O CONTROL SYSTEMS

long before the Personal Computer. in the days when a machine with a
PCjr's computing power would have filled a department store and weighed
sixty gigatons, every program written on a computer had complete control
of the machine. The program ran alone in the computer, unassisted by any
operating system, I/O support system, or anything else. This meant that
each program had to have its own hardware-level I/O support routines.
Imagine a routine as simple as our keyboard-to-display routine which
converts keystrokes to their uppercase equivalent and prints them on the
display. This routine, rather than involving a dozen or two dozen in­
structions from the programmer's point of view, would involve every IN,
OUT and other instruction our program invokes through interrupts. On the
first computers, in other words, a tremendous amount of effort was ex­
pended on coding and recoding the same old thing -- low-level I/O.

Then someone had a bright idea, and decided to write the routines once
and for all, and allow everyone to use them. They provided a mechanism
for accessing the routines from a program, and called the routines an I/O
Control System. Don't worry about who wrote it, when, or exactly what it
did. Suffice it to say that the first I/O control systems allowed many
different programs to use the same I/O routines, and that for a program­
mer, I/O coding became a much more elevated and simplified process.
Furthermore, if a hardware change occurred -- a new device was installed,
for example, or a shop decided to switch from a mag card reader to a 3380
disk subsystem -- as long as the I/O control system was revised to allow
the old interface to access the new device. there were no problems of
hardware dependence.

6.3 THE PURPOSE OF THE BIOS

The BIOS on the PC is similar to the first I/O Control Systems in that
it takes care of the lowest level of I/O support for the most common PC
devices, thereby allowing programs to make use of the available I/O
without expending a great deal of programming effort. In addition, the
BIOS was designed to allow programs which followed the BIOS interface to
be compatible with future BIOS releases <which would support new hard­
ware).

let's summarize the philosophy behind the BIOS:

72 IBM PC Internals

• Allows an easier interface to supported hardware than direct hardware
coding

• Allows a consistent interface -- if a program follows the BIOS rou­
tines. and IBM changes the hardware. the new BIOS shipped with the
new hardware will still respect the existing interface and old pro­
grams will still work

• Eliminates hardware-dependent code

• Provides system services for applications and operating systems

• Performs hardware diagnostics at power-on.

6.~ STRUCTURE OF BIOS

BIOS is stored in a read-only memory chip on the PC or AT system board.
From an addressing point of view it is identical to any other area of
memory, except that it cannot be modified. It is located at segment FOOOH.
from offset EOOO or thereabouts to offset FFFF. BIOS is the first thing
which the PC executes after power is switched on.

BIOS routines are accessed via software interrupts; hardware interrupts
cause BIOS routines to be invoked as well. so that when an external in­
terrupt occurs. BIOS can process it.

6.S POWER-ON DIAGNOSTICS

When the power switch is turned on. the CS register of the 8088 is ini­
tialized to aliI's in binary. or FFFF hex. The IP register is initialized
to all O's in binary. or 0000 hex. This causes the instruction at
FFFF:OOOO (which could also be viewed as FOOO:FFFO. or the very end of
the BIOS) to be executed. The instruction which is stored there does a
far jump to the RESET routines which perform power-on diagnostics for the
PC.

The power-on diagnostics are designed to perform the following:

• Verify the proper functioning of system hardware

• Initialize hardware to its start-up state for use by I/O routines

• Display any diagnosed errors on the screen

• Test memory to see if there are any optional BIOS modules installed.
such as the PC Network NETBIOS or the Fixed Disk BIOS

• load the bootstrap routine to bring up the operating system.

BIOS 73

We will examine each of these in more detail.

6.6 VERIFY FUNCTIONING OF SYSTEM HARDWARE

The power-on diagnostics check every component of the PC system board,
and several attached I/O devices, to ensure their proper functioning.
Memory is checked by writing values to it and reading the same values back
to make sure the data is properly recorded and returned. The 8088 itself
is run through a series of tests (ironically, it is testing itself) in
which individual registers and instructions are tried out, and erroneous
results cause a branch to an error routine. If the 8088 works properly,
the associated microprocessors are diagnosed as well -- the DMA control­
ler, the Interrupt controller, the math co-processor, etc.

Once these aspects of the system are deemed operational, the power-on
diagnostics check certain I/O devices including the display, keyboard and
diskette drive. The blinking cursor and the brief instant at power-on in
which the cursor shoots forward several columns before returning to the
home position are an indication that the display tests have executed. The
first spinning of the diskette drive on power-up, before the bootstrap­
loading spin, is a check of the drive motor. Once an I/O device is deemed
to be operational, any initialization routines required are carried out,
so that BIOS routines can perform I/O to the device properly.

Add-on BIOS modules, which are loaded at a later stage in the power-on
diagnostics, perform their own diagnostics as well. We will review these
add-on modules later on.

Diagnostic error messages are displayed on the console. They are not de­
signed to be highly enjoyable reading, and some of the 4-digit error codes
are undocumented. However they are useful in isolating problems when the
problems prevent the loading of the Diagnostics diskette. By using the
hardware maintenance manual you can determine whether an error is
memory-related, expansion-unit-related, keyboard-related and so on, and
to an extent you can isolate the problem. But many users have confessed
to being less than thrilled with the user-hostility inherent in messages
like '3015 ERROR. (RESUME = "FI" KEY)'

In cases where the error message cannot be printed -- tests did not even
proceed far enough to be able to display a message -- the sound generator
is used to indicate the nature of the problem. The length and number of
beeps determines whether the failure is processor-related, power-supply,
or one of several other hardware failures.

6.7 OPTIONAL BIOS MODULES

Once the BIOS has done its own dia~nostics and has initialized the hard­
ware, and before it loads the bootstrap from diskette or disk, it scans

74 IBM PC Internals

memory to see if any other BIOS modules are stored there. Anyone can write
their own BIOS module (it's not easy, but it can be done). BIOS scans
memory from segments C800 to F400, in 2K blocks. (In fact, the segments
it scans will depend upon the PC type -- PC, PC XT, PC AT etc. Consult
the appropriate technical reference manual for exact addresses.) The BIOS
looks at the first two bytes of each block; if the first two bytes of the
block are 55AAH, and if the block passes a number of other tests, control
is passed to the instruction following the 55AAH identifier. Normally,
the optional BIOS will do its own tests and initializing of its hardware;
it may also alter the environment the System-Board BIOS set up before
control was passed. For example, the Fixed-Disk BIOS resets interrupt
vectors set by the System-Board BIOS so that if the diskette drive is
empty on IPl, the system can be loaded from the hard disk rather than
branching to Cassette BASIC. Once the optional BIOS has finished its own
initializing, it returns control to the System-Board BIOS, which contin­
ues to scan up to F400 in search of other add-on BIOS modules, and finally
loads the bootstrap routine.

6.8 LOADING THE BOOTSTRAP

Once the hardware has been initialized the BIOS attempts to load the op­
erating system. An INT I9H is issued which invokes the BIOS bootstrap
routine. The bootstrap does not know in advance what operating system it
will find; in fact it never knows or cares. BIOS first reads track 0,
sector 1 from the first diskette drive (drive A: in DOS). If it is able
to load something from there, control is transferred to whatever it loads.
We will review the DOS loading procedure in the DOS module. However, if
the BIOS finds no diskette present in the diskette drive (or if no
diskette drive is installed), it will jump to the BASIC stored in ROM,
by issuing INT I8H, the Cassette BASIC interrupt.

The Fixed-Disk BIOS replaces this bootstrap module with its own, by in­
tercepting INT I9H, the bootstrap loader. Like the original bootstrap
routine, it starts by looking for a boot record on diskette. But it adds
a step between failed diskette bootstrap and the jump to BASIC: it at­
tempts to load from the first fixed disk. If it finds a valid bootstrap
record, control is passed there; if not, the Fixed-Disk BIOS jumps to
BASIC. This allows the operating system, whatever it is, to be loaded from
the fixed disk.

6.9 POWER-ON DIAGNOSTICS: SUMMARY

The Power-On Diagnostics perform testing and initialization of system
hardware, validation of optional BIOS modules, and bootstrap loading.
Once the operating system is loaded, applications may use the BIOS
interface to access the I/O devices (provided the operating system has
not altered the BIOS interrupt vectors to point elsewhere).

BIOS 75

6.10 ASSEMBLY LANGUAGE INTERFACE

To access BIOS routines an interrupt mechanism is used. Each I/O device
has one or more assigned interrupts. The usual procedure to follow is to
load the AH register with a value indicating the type of function to be
executed, to load other registers with whatever other parameters are
needed, and to issue the appropriate interrupt. It is not always necessary
to load AH with a function value -- some I/O interrupt routines have only
one option (such as PrintScreen -- INT 5) and don't look at the register
contents. Otherwise AH must be loaded.

An example of an Assembly-language interface to the BIOS is to print a
character to the first parallel printer port (lPTl).

MOV AH,O ifunction call 0 to Print Character
MOV Al. 'A' ;character to print is 'A'
MOV DX,O jDX contains the printer port:

O=lPTl
1=lPT2
2=lPT3

INT 17H JBIOS printer interrupt

By placing a different value in AH the function desired can be changed.
However you must ensure that the function you select is valid, or the BIOS
will return control to you without doing anything.

When a valid function call is issued to BIOS via the interrupt mechanism,
BIOS will return information to you: either the status of an operation,
if it was an output operation, or the data input from an input operation.
For Printer I/O, the Get Status function call returns a byte value into
AH, the various bits of which indicate the success or failure of a number
of aspects of the printing process. And the value returned from INT 16H,
which requests a keystroke from BIOS's keyboard buffer, is stored in the
accumulator: Al contains the ASCII value of the keystroke, or a zero if
no ASCII value corresponds to the key; AH contains the pseudo-scan code
of the key. We will review scan codes later in this module.

Applications written in languages other than assembler use the BIOS in­
directly -- from a programming point of view, the programmer need only
specify the function to accomplish, such as printing a character, and the
compiler takes care of constructing a machine language routine which sets
up the registers properly and issues the interrupt. Alternately the com­
piler may construct a routine to invoke a DOS function, which will in turn
invoke the BIOS.

6.11 I/O SUPPORTED BY BIOS

We will review six I/O areas which are supported by BIOS. The areas are:

76 IBM PC Internals

- Keyboard
- Video
- Diskette
- Disk
- Printer
- Serial

Keyboard, Video, Diskette, Printer and Serial I/O are the five major I/O
types supported by the System BIOS. Disk BIOS is an optional module, but
because hard disks are so common on PCs, and because of the similarities
between Diskette and Disk I/O, we will treat it as though it were sup­
ported directly by the System BIOS.

6.12 KEYBOARD

The keyboard is an input-only device. The BIOS keyboard routines allow
buffered keyboard input, which means several characters can be stored in
a buffered queue before being processed by the operating system or ap­
plication. This is what allows us to continue typing up to fifteen key­
strokes even when an application is busy doing something else.

Two I/O routines, and two interrupt interfaces, co-operate within the BIOS
to provide keystrokes to applications.

The high-level routine is responsible for providing input to applica­
tions, on request. This routine is accessed by applications through INT
16H. When an application issues INT 16H, BIOS reads a value from the
keyboard buffer and returns that value to the application. If no value
is present (if the keyboard buffer is empty), BIOS waits until a keystroke
is received. The high-level routine updates the pointer to the beginning
of the keyboard buffer, to point to the character after the most recently
read character. The value is a word-length value, containing a keyboard
scan code in the low byte and an ASCII value in the high byte. We will
discuss the contents of this word in a moment.

The low-level routine is responsible for receiving input from the keyboard
and placing it in the keyboard buffer. This routine is a hardware-invoked
interrupt (INT 9H) and occurs independently of any application requests
for keyboard input. Each time a key on the keyboard is pressed or released
(and also each time the keyboard sends a typematic repeat of a key which
is being held down), an INT 9 is issued by the 8259 interrupt controller.
(Remember -- the interrupt level of the keyboard is 1. The 8259 adds 8
to this to obtain software INT 9.) At this point the 8088 interrupts
whatever work it was doing, and processes the I/O event.

When INT 9 is invoked, its BIOS routine processes the input in one of four
ways:

• normal key, possibly shifted

BIOS 77

• toggle key

• special purpose key, requiring special actions

A normal key make code is converted into a character using one of a number
of translation tables built into the BIOS, depending on the current shift
status. The shift status includes the status of the two normal shift
keys, the Caps lock key, the Hum lock key, the Ctrl shift key, and the
Alt key. The converted character is placed into the keystroke buffer,
ready for the program/keyboard interface to collect it.

A normal key break code is generally discarded.

A shift key make code is a signal to set the appropriate shift flag, in­
dicating that shift status. A shift key break code is a signal to clear
the appropriate flag. No other processing is done, and no entry is made
in the keystroke buffer.

A toggle key differs from a shift key in one respect. It can be set by
the make code, but it is not cleared by the break code. Instead, the next
make code clears the flag. Thus the state of the flag associated with a
toggle key changes with each make code for the key encountered. The Ins
key, Caps lock, Hum lock, and Scroll lock, are all toggle keys. Again,
no entry is made in the keystroke buffer.

There are special processing keys. The first is the Del key; when the
Del key make code is received the interrupts service routine checks the
Alt and Ctrl shift flags. If both are set then a processor reset is in­
itiated by invoking IHT 19H. This is the Ctrl-Alt-Del reset. The second
special processing key is the Hum lock key; when a Hum lock make code is
received the Ctrl shift flag is checked. If it is set then the keyboard
routine spins, waiting for the next make scan code. This is Ctrl-Num lock
pause -- it pauses the machine by making it totally busy waiting for the
next key. The third special processing key is the Scroll lock key; when
its make code is received the Ctrl shift flag is checked; if it is set
then IHT IBH is invoked. The fourth special processing key is the PrtSc
key; when a make code for this key is received, and the shift flag is set,
INT 5 is invoked. The PC AT introduces a fifth special processing key -
the SysReq key. When a make or break code for this key is received in­
terrupt 15 is invoked with special parameters. The AT also provides a
special interface for code wanting to intercept every scan code; details
of this can be found in the AT Technical Reference manual. None of the
special processing keys place entries in the keystroke buffer when they
cause their special functions.

6.13 SCAN CODES

The microprocessor in the keyboard does not tell BIOS the ASCII value of
a key, and this allows keys such as the function keys, cursor keys and
shift keys to be defined. It also allows keyboard enhancement programs

78 IBM PC Internals

to redefine the values of keystrokes. The keyboard itself merely sends a
value to the keyboard input routine each time a keyboard action occurs.

Each key on the keyboard is assigned a scan code, from 1 to 83. The make
code consists of the scan code of the key involved. The break code con­
sists of the sum of the scan code + 80H.

If a make scan code is not a shift code, and if it does not have an as­
sociated ASCII value, the look-up into the keyboard table in BIOS will
return a value of -1 (FFH). If such a value is returned, the BIOS will
place a 0 value as the low byte of the keystroke, and the high byte will
consist of a pseudo-scan code. This pseudo-scan code is a number indi­
cating the key combination struck. Keys like F1-FIO will have their normal
scan code assigned as their pseudo-scan code; however if one of these is
pressed while a shift key is active, the pseudo-scan code will be dif­
ferent. This assignment of pseudo-scan codes allows software programs
receiving keyboard input from INT 16H to determine when such keystroke
combinations as SHIFT-F3, CTRL-F7, ALT-4, ALT-F and so on are struck. The
pseudo-scan codes for keystroke combinations are listed in the technical
reference in the System BIOS section.

6.14 KEYBOARD BUFFER

INT 9 can only place a character into the keyboard buffer if there are
free spaces in the buffer. If there are no free spaces, INT 9 causes a
beep and does not process the keystroke. If there is available space, INT
9 places the keystroke into the buffer at the first available two-byte
slot. It then updates the pointer to the next position in the queue.

If the buffer is full, no more characters can be placed in it until some
are read out by IHT 16H.

To understand the keyboard buffer it is important to understand the con­
cept of a circular queue. In a circular queue, each time a value is placed
at the end of the queue the end-of-buffer pointer is incremented; each
time a value is removed from the beginning of the queue the start-of­
buffer pointer is incremented. The queue is circular in that when one of
the pointers exceeds the highest address in the queue, it simply wraps
back around to the lowest value. The BIOS keyboard buffer is located at
segment 0040 from offset OOlEH to 030H. Let's examine a scenario where
several keys are pressed, then read by IHT 16H, in order to see how the
buffer pointers wrap around. We will ignore the low byte of each key­
stroke, which contains the scan code, since the alphanumeric character
is enough to understand the process.

Start of buffer
I

Buffer at 0040:001EH X X X X X X X X X X X X X X X X
I

End of buffer

BIOS 79

When we begin the example, our keyboard buffer is empty -- all keys that
have been input from the keyboard have been read by an application. Let's
assume that the pointers both point to the second-last position in the
buffer. Now a key is struck -- an "H":

Buffer at 0040:001EH

start of buffer
I

X X X X X X X X X X X X X X H X
I

End of buffer

The End-of-buffer pointer is incremented whenever a character is re­
ceived. Now what happens when INT 16H reads the character in?

Buffer at 0040:001EH

start of buffer
I

X X X X X X X X X X X X X X H X
I

End of buffer

H is read in, and the start-of-buffer pointer is incremented. Since the
start and end are the same, there are no keys left to be read in the
buffer. The fact that the "H" is still in the buffer is inconsequential
-- it has already been read, and will be overwritten after 16 more key­
strokes.

Now comes the circular aspect of the queue. Both pointers point to the
end of the queue, so what happens when "en is pressed?

Start of buffer
I

Buffer at 0040:001EH X X X X X X X X X X X X X X H e
I

End of buffer

The end-of-buffer does not increment if it is already at the highest ad­
dress of the buffer; instead it goes back to the lowest address. The
start-of-buffer pointer will do the same once it has read in the "e". An
easy way to think of this wrapping is to think of an odometer turning over
from 9999 to 0000. If there are only four digits on the odometer, it will
wrap around to 0 when it reaches 9999. When a pointer in the keyboard
buffer reaches the last buffer position, it wraps back to the first po­
sition.

6.15 KEYBOARD SUHHARY

Keyboard input is received by BIOS INT 9 and placed in the keyboard
buffer. Software programs can read in this input via INT 16H. INT 9
performs conversion from scan codes to ASCII values, or to pseudo-scan
codes where no ASCII value exists for the key-combination received. By
assigning hardware input to one interrupt and software input to a second,

80 IBM PC Internals

buffering allows programs to continue executing as soon as the lowest
level of keyboard input is processed, without the program's having to
actually read the value in from the buffer. Finally, the buffer is a
circular queue, whose head pointer is managed by INT 16H, and whose tail
pointer is managed by INT 9.

6.16 VIDEO

BIOS provides support for video output to the monochrome and color
graphics adapters, which in turn output to their respective displays. BIOS
has some support for input from the display -- but this is not really
input, it is only reading in values which were previously output to the
display.

BIOS supports both text and graphics modes on the color graphics adapter,
while it only allows text mode on the monochrome adapter. Text mode allows
the display of all base and extended ASCII characters, including the
graphics characters such as lines, corners, crosses etc. Graphics mode
allows all-points-addressable display of images. The video interface is
accessed via INT 10H.

In addition BIOS supports the redefinition of the appearance of extended
ASCII characters (characters with ASCII value 128 to 255) when displayed
in text mode with the color graphics adapter. By creating a table which
contains these character redefinitions, and pointing to that table with
interrupt vector 1FH, graphics characters can be defined which are not
available in a normal IBM-extended ASCII character set.

6.17 BIOS VIDEO OUTPUT ROUTINES

The following output routines are available for text-mode output:

• Print a character and attribute

• Set cursor location or type (ie. what cursor looks like)

• Set mode -- text, low, medium or high resolution graphics

• Set active display page (text only)

• Scroll display page (text only)

In addition, these simple input routines are supported:

• Read a character and attribute from the display

• Read position of cursor

BIOS 81

• Read current mode of display

• Read number of current video page

Video pages are available with the color graphics adapter only. The color
graphics adapter contains 16K of RAM -- this amount of memory is required
in the graphics modes to address all pixels on the screen. In text, only
4,000 bytes are required to display a single screen of text (25 lines by
80 columns=2,000 character positions; the screen requires two bytes per
position, one for the character to display, one for the
foreground/background attributes of the character>. Since 4,000 bytes fit
into 16K four times, the BIOS supports the use of four video pages. Ap­
plications can write data to any of the four pages, without necessarily
displaying the page they write to. Applications can also switch between
any of the four pages. This allows programs to write to an undisplayed
page, then switch to display that page and have all changes to the page
appear immediately,

Video pages are not supported on the Monochrome adapter, which only has
4K of video storage, and room for only one page.

6.18 PRINTING TO DISPLAY

An example of a BIOS video routine follows. Remember that the attribute
character is used to indicate what foreground and background are used to
display the character.

PRINT_TO_DISPLAY:

MOV AH,

MOV AL,
MOV BX,
MOV CX,

INT 10H

9

'A'
07
10

;function: write character and attribute
;at current position
;character to write is 'A'
;attribute is black bg, white fg
;CX contains count of times to display it -­
;here we display it ten times
;call BIOS Video I/O interface

The character 'A' will be printed in 10 consecutive positions on the
display, in white on a black background.

6.19 GRAPHICS CHARACTER REDEFINITION

With the color graphics adapter, programs can redefine the appearance of
the upper 128 ASCII characters. Eight bytes are required to redefine each
character. Since each character in text mode on the eGA consists of 8 by
8 pixels, the redefinition uses 8 bits (or one byte> times 8 bytes to
accomplish the redefinition of a character.

82 IBM PC Internals

Once the characters have been redefined, the beginning of the table must
be pointed to by placing the table's address in the vector table at lo­
cation for INT 1FH. This means that INT 1FH does not point to executable
code, like other interrupt vectors usually do -- it points to data. You
would never issue INT 1FH, because it would kill the system by trying to
execute data.

Example: redefine character 128 to be the thorn character

CHAR_128 DB 00001011B
DB 00111101B
DB 11010001B
DB 00010010B
DB 00011100B
DB 00010000B
DB 00010000B
DB 00100000B

1 11
1111 1

11 1 1
1 1
111
1
1

11

By defining every bit to be either 1 or 0, you define every pixel in the
8-by-8-pixel matrix to be either foreground or background. In the above
example the l's create an image somewhat like the thorn character used
in Old Anglo Saxon writing. By placing the segment and offset of CHAR_128
in the vector table at the location for INT 1FH, the thorn character will
display on the CGA in text mode every time ASCII code 128 is printed on
the display.

6.20 DIRECT SCREEN ADDRESSING

We have already discussed video memory mapping in the PC architecture
module. As we said. each of the display adapters has RAM built into it,
which has reserved segment addresses which any application can address.
The monochrome screen is mapped to segment BOOOH; the Color screen is
mapped to segment B800H. By writing to these memory locations directly,
characters and attributes can be displayed on the screen without using
the BIOS or DOS interfaces. Whereas a BIOS call's registers must be set
to display the character 'A' at the topmost, leftmost position by speci­
fying the character, attribute, position, page number and number of times
to print the character, in direct screen addressing a program just writes
to location B800:0000. We will examine direct screen addressing in more
detail in the section on bypassing BIOS routines, and during the BIOS lab.

6.21 GRAPHICS

BIOS supports APA graphics for the Color Graphics Adapter, whereby through
BIOS function calls individual pixels can be addressed in a variety of
resolutions and palettes. The details of BIOS graphics support can be
obtained from the technical reference manual. Direct Screen Addressing
is used by most programs to accomplish graphics-mode video output on the

BIOS 83

CGA. By writing to locations B800:0000 to B800:3FFF. programs can access
the full 16K used for displaying graphics. The CGA graphics modes have
already been discussed in the PC Architecture module.

6.22 VIDEO BIOS SUMMARY

The BIO~ routines for video I/O support a wide range of output functions.
as well as some elementary input functions which allow programs to find
out what characters. attributes. modes or pages are currently being dis­
played.

Direct Screen Addressing is an alternative way of displaying information
on the screen. However. although at first glance it may seem like an
easier interface than BIDS. it is in fact much more difficult for a pro­
gram to manage than using the BIDS. because a direct-screen-addressing
routine must itself take care of always knowing what position to print
the next character at. and must manage scrolling information up and down
on the screen.

In addition to the ease of use the BIDS provides over direct screen ad­
dressing. adherence to the BIOS video interface will ensure that programs
are compatible with future hardware and with software packages which do
not support direct screen addressing. For example. TopView does not sup­
port windowing or background operation of any task which does direct
screen addressing.

6.23 DISKETTE

BIOS handles only the lowest-level I/O to and from diskette. BIOS diskette
I/O is block-based rather than byte-based; this means that a block of
memory is used to transfer data between the physical medium and the re­
questing system or application program. Data transfer with a high-speed
device like a diskette through two-byte registers is simply impractical.

BIOS deals with diskette I/O in tracks and sectors. the physical units
of data recording on diskette. It does not know anything about files or
directories. File- and directory-based I/O routines are generally pro­
vided by the operating system. File-based I/O is far safer and easier to
use than direct usage of BIOS diskette I/O. and any application programs
which use BIOS diskette I/O directly risk damaging of valuable data, and
risk incompatibility with other programs.

BIOS supports three types of diskette activity:

• Reading of physical units (sectors) from diskette into a block of
memory

• Writing of a block of memory to physical units (sectors)

84 IBM PC Internals

• Formatting of diskettes.

Students of this course have a requirement to know anything more about
diskette I/O than the above. because application programs should never
attempt diskette I/O through any interface other than the operating system
interface. The BIOS diskette interface is provided for the use of oper­
ating systems. and for standalone programs which run without an operating
system.

6.24 FIXED DISK

In terms of the support provided for fixed disk by BIOS vis a vis the
support for diskette. there are very few conceptual differences. The In­
terrupt and parameter passing are different. but the same principals ap­
ply: BIOS handles only the lowest level of fixed disk I/O. and does so
on a memory-block basis. transferring data from disk to memory or vise
versa. not through registers. As with Diskette BIOS. Disk BIOS is designed
for use by operating systems only and should not be used by programs
running under an operating system.

6.25 PRINTER

BIOS supports output of characters to a line printer on a byte basis.
Individual characters are output by placing them in a register, setting
AH to the value for the Print function call and issuing INT 17H. In ad­
dition to character output. status can be obtained from a printer to de­
termine whether a previous print operation was successful or whether an
error has occurred. BIOS supports three parallel ports for a total of
three parallel printers.

The PrintScreen function is accessed via INT 5. This routine prints the
contents of any text screen onto the first line printer. INT 5 is invoked
by the keyboard interrupt INT 9 whenever the Shift-PrtSc key combination
is detected. INT 5 takes each character from the screen and prints it
using INT 17H.

The INT 17H interface is shown in this example:

MOY
MOV
MOY
INT

AH,O
Al.'K'
DX,2
17H

PUSH AX
TEST AH.1
JE PRINT_ERROR
POP AX

;Print character function
;Character to print is 'K'
;Printer is lPT3 (O=lPT1. 1=lPT2)
;BIOS Printer interrupt
;status returned in AH
;save value on stack
;if low bit=1 then there was an error
;so jump to our error handler
;restore stack and continue processing

BIOS 85

Notice that the printer interface automatically returns a status byte in
AH after any output operation. In addition, a BIOS call exists to ex­
plicitly request the printer status of any of the line printers without
an output being performed. The status covers Time-Out, Out-Of-Paper,
Printer-Busy, and other I/O errors.

6.26 SERIAL PRINTERS

Serial printers are printers which use the serial interface rather than
the parallel. Serial printers are not supported as printers by the BIOS
printer routine. However they are supported through DOS, which will re­
direct output from a parallel to a serial device by intercepting INT 17H,
checking to see which printer a byte is being printed to, and sending that
byte to a serial port if the printer number is assigned to a serial de­
vice.

6.27 SERIAL I/O

BIOS supports the use of two serial ports, known in DOS as COMI (or AUX)
and COM2. BIOS supports transmission speeds of up to 9600 baud. The three
functions supported by BIOS are initialization of a serial port, receiving
of a single byte and sending of a single byte. The serial I/O routine for
output is invoked by BIOS INT 14H. Hardware interrupt levels 3 and 4 are
used by serial ports (3 for COM!, 4 for COM2) for input, thereby giving
INT OBH and INT OCH as input interrupts which are invoked when a byte is
received by the adapter. BIOS itself does not provide any buffering of
characters; this is the responsibility of the application or operating
system using the serial interface.

6.28 HOW AND WHY PROGRAMS BYPASS BIOS

If the BIOS routines provide a high-level, easy-to-use interface to pri­
mary I/O devices on the PC, and ensure compatibility to that interface
for future hardware products, then why on earth would anyone want to use
any other interface?

There are several reasons why certain programs choose to bypass the BIOS
routines and control hardware directly through their own I/O routines:

• These programs require speed of execution, and therefore speed of I/O,
not the ease-of-use features of an I/O interface

• They have abnormal I/O requirements

86 IBM PC Internals

• They use certain copy-protection mechanisms which look at diskette
storage or hardware directly to make sure the system or diskette being
used to run the program is licensed to do so.

The principal reason for bypassing BIOS is to increase the speed and so­
phistication of I/O.

6.29 DIRECT SCREEN ADDRESSING

As we discussed in the VIDEO section, programs can display text (and
graphics on the CGA) by using the BIOS interface, or by writing directly
to video memory at segment BOOO or B800. The reason some applications
write directly to the screen (which is another way of saying Direct Screen
Addressing) is that the I/O occurs much faster. Since, in the end, BIOS
is writing to the screen itself. why not have the application write to
the screen directly, and do it a lot faster?

There are several good reasons why this kind of program behavior should
be avoided. In terms of development effort, writing a routine which does
direct screen addressing can be far more difficult than writing one which
uses the documented BIOS interfaces. For another, such routines risk in­
compatibility with their operating environment. For example, TopView,
which intercepts all BIOS video calls in order to take its own windowing
routines into account, can do nothing to stop direct-screen-addressing
applications from doing their video I/O directly to screen memory, and
therefore these applications cannot be windowed. A third reason for
avoiding direct screen addressing is that it is incompatible between
monitors. If a routine uses INT 10H to display characters, the text will
display on the active monitor whether that monitor is color or monochrome;
if the routine does direct screen addressing to the monochrome adapter's
memory location, it will still print to the monochrome display even if
the color display is active. And if future display adapters are announced
with new memory locations for their video memory, all the direct-screen­
addressing code will have to be rewritten.

6.30 BYPASSING KEYBOARD ROUTINES

By writing custom keyboard routines which bypass the BIOS routines, a
number of interesting effects can be produced. For one, routines can be
programmed to use different keystroke combinations. In TopView, for in­
stance, when no mouse is present, the ALT key can be pressed, then re­
leased, without pressing any other key, to bring up the TopView menu.
TopView traps the hit-and-release of the ALT key by processing hardware
INT 9H's from the keyboard before the BIOS routine does. A routine which
intercepts hardware INT 9H judges each keystroke by its scan code, not
its ASCII value. This means that such a routine can detect when a key like
the AlT or CTRL key was hit and released.

BIOS 87

By writing custom keyboard routines you can also reassign the values of
individual keys. DOS national language support allows different ASCII
values to result from the same scan-codes by loading the appropriate
keyboard driver (electronically. US and French keyboards. for instance.
function identically). Another benefit of writing custom keyboard rou­
tines is that the length of the keyboard buffer can be increased.
DisplayWrite 3 increases the length of the keyboard buffer to 80 charac­
ters, so that while DisplayWrite 3 is processing the character you typed
to paginate a document. you can type up to 80 characters of text at the
same time (although you won't see the text until the document has finished
paginating).

Another possible way of altering the keyboard routines is to intercept
INT 16H and cause keyboard input to applications to come from a file in­
stead of from the keyboard buffer. This amounts to sending artificial
keyboard input to applications. DOS performs a version of keyboard simu­
lation through its redirection of standard input -- you can use a file
to send input to a program instead of the keyboard. However DOS does not
intercept INT 16H in redirecting I/O. it intercepts the DOS function call
used for obtaining keyboard input.

Because the keyboard buffer is stored in memory. some applications read
this buffer directly, and update the head pointer to it themselves. This
is probably done to increase speed of execution of those programs. but
causes compatibility problems when INT 16H is revectored. For instance.
if you write a routine which redirects INT 16H input requests to its own
source of alternate input. and you feed those requests with data from a
file, programs which read the keyboard buffer directly won't hear a
whisper from your INT 16H routine.

6.31 BYPASSING OTHER BIOS ROUTINES

It is rare for an application to bypass BIOS' printer routines. There is
little benefit in writing one's own low-level printer routines. The only
instances where the printer routines are bypassed are for spooling pur­
poses or device-sharing purposes. If you install a spooling program on
your PC, your application can do all its printing through INT 17H. but
instead of the print going out to the printer, it is stored in memory or
in a file which is subsequently printed by the spooler, while you and your
application do other work. We will see how this kind of multitasking works
in the DOS Extensions module. Another reason for rewriting printer I/O
has to do with the PC Network. When a remote user on a network is using
a PC on another printer. the PC Network program intercepts INT 17H calls
and sends the data across the network to the remote print server instead
of printing out at the local station.

Serial I/O routines are rarely modified either, except in network envi­
ronments where a serial device is shared across a network.

With disk and diskette BIOS very few applications even descend to the BIOS
level: most use the operating system file services. However some appli-

88 IBM PC Internals

cations use copy-protect mechanisms which perform direct hardware I/O to
disk or diskette. For instance, certain spreadsheet packages alter the
speed of rotation of a diskette drive, and try to read in a track at the
reduced speed. If the track does not read properly, then the diskette is
presumed not to be an original and the program will refuse to load.

Using the BIOS routines directly for disk or diskette output, or going
below these and using the physical I/O interface, is a good way to ruin
the contents of a disk or diskette. For this reason and for simplicity's
sake, few people ever access secondary storage through any interface other
than the operating system.

6.32 HOW DOS USES BIOS

In addition to the BIOS interface, programs running under DOS can use a
DOS interface to accomplish I/O with the keyboard, display, printers,
serial devices, disk and diskette. In the case of disk/diskette I/O, the
DOS and BIOS interfaces are worlds apart; the other I/O routines supported
by DOS are only small-scale enhancements to the BIOS routines.

The DOS interface adds the following I/O capabilities to BIOS:

String I/O for console: Whereas the BIOS routines support the keyboard
input and video output of single characters only, certain DOS keyboard
and video function calls support input or output of entire strings of
characters. This makes it much easier for a program printing a long mes­
sage to do so -- instead of printing every byte of the message, it just
tells DOS to print the whole message.

File I/O for secondary storage: This allows programs to deal with sec­
ondary storage in logical, rather than physical, units: files and direc­
tories rather than sectors and tracks. DOS file support will be thoroughly
discussed in the DOS module.

Redirection of standard input and standard output: The standard input
device is the keyboard; the standard output device is the active display.
DOS allows redirection of input or output, so that instead of receiving
keystrokes from the keyboard, an application can receive them from a file,
and instead of displaying output on the display, an application will print
it to a file, or to a printer. The application itself has no idea that
the redirection is taking place; this is a DOS function.

To illustrate the similarity in programming terms between the DOS and BIOS
interfaces, observe how a character is printed to the printer with each
interface:

BIOS 89

BIOS: INT 17H
(AH)=O:function to print character to printer
(Al)=character to print
(DX)=printer to use (0,1,2 for lPT1,2,3)

DOS: INT 21H (same INT 2lH for most DOS functions)
(AH)=5:function to print character to standard printer
(Dl)=character

Notice that DOS assumes that output is to go to the standard printer.
Also, eventually DOS will use the BIOS INT 17H to do the actual printing.

The difference in video interface between DOS and BIOS is also worth
looking at:

BIOS: INT 10H
(AH)=9:function to write character/attribute to screen
(Al)=character
(Bl)=attribute

DOS: INT 21H
(AH)=9:function to print string to standard output
(Other video output functions are also available ...)
(DS:[DX])=Pointer to a character string (string must end in '$')

Notice that DOS can print a whole string of characters, whereas the BIOS
must proceed one character at a time (the EGA BIOS extension and the PC
AT BIOS both contain string-output to the screen, however the PC AT ver­
sion is not supported and is reputed to contain bugs). Also, in the BIOS
call the character will display on the screen no matter what redirection
of output is taking place, whereas with the DOS function, if output is
being redirected to a file, the string will print to the file instead of
to the screen.

The four important aspects of the relationship between DOS I/O routines
and BIOS I/O routines are:

• DOS and BIOS routines are sometimes similar in function

• DOS enhances some functions by reducing the amount of programmer
coding necessary to produce output or receive input, and by allowing
redirection of standard input and output

• DOS allows programs to be less device-dependent than BIOS

• Eventually in the process of the I/O handling, the DOS routine will
probably invoke its BIOS counterpart.

90 IBM PC Internals

6.33 BIOS AND OTHER OPERATING SYSTEMS

Although PC DOS makes heavy use of the BIOS to implement low-level I/O,
other operating systems do not use BIOS as heavily. In fact, by revec­
toring hardware interrupts to point to locations in RAM, an operating
system can control all I/O directly without ever using the BIOS except
at power-on time, before the operating system has been loaded.

XENIX does not use the BIOS at all; it replaces all BIOS I/O routines.
This is because XENIX uses the 80286 in protect mode (as opposed to real
mode where the 80286 operates as an 8088). The code in the BIOS is not
compatible with the 80286's protect mode so the BIOS won't run under
XENIX. In addition, the interrupt mechanism is substantially different
on the 80286 in Protect mode. Reasons for this will become apparent in
the 80286 architecture lecture. The resultant drawback is that with new
hardware releases, new device drivers must be written; and with the cur­
rent support of XEHIX, it is up to the end-user to write these device
drivers.

The programmers of PC IX figured they could do a better job than the BIOS
as well, so they wrote their own I/O control subsystem. We do not know
the rationale they used in deciding to write their own system. This is
proprietary information.

6.34 OPTIONAL BIOS MODULES

Our last BIOS topic deals with components of BIOS which are not included
in the original BIOS contained on the PC system board. These optional BIOS
modules allow the devices they support to have the same kind of BIOS
interface as keyboard, display and so on, without requiring the ROM chip
containing the BIOS to be changed. Detailed information on how these BIOS
modules are activated is contained in the section on power-on diagnostics.
The intent of this section is not to explain the theoretical functioning
of optional BIOS modules but to look at three actual examples of BIOS
modules: Fixed Disk BIOS, PC Network NETBIOS, and Enhanced Graphics
Adapter BIOS.

6.35 FIXED DISK BIOS

The original PC did not support a fixed disk. With the announcement of
the PC XT and the PC Expansion Unit, it became necessary to provide some
kind of fixed disk BIOS support. The Fixed Disk BIOS is stored on the
fixed disk adapter, in a ROM chip addressed by the system unit as starting
at segment C800H. This BIOS module not only provides I/O handling for
fixed disk but intercepts all diskette interrupts to make sure they
shouldn't be directed to the fixed disk instead; it also replaces the

BIOS 91

original bootstrap BIOS to make sure that if the boot record isn't found
in Drive A: the fixed disk is scanned for it.

6.36 NETBIOS

The HETBIOS for the PC Hetwork Adapter is contained on the adapter card.
It provides network diagnostics during power-on, and network I/O support
through an interrupt interface similar to the interface of other BIOS
routines. In fact this BIOS module is considerably more sophisticated than
most, and an entire course could be devoted to its study. The HETBIOS is
stored at segment CCOOH.

Programs written to the HETBIOS interface (which includes all programs
written to run under the PC Hetwork Program, since this uses the HETBIOS
interface) will also run on the IBM PC Token Ring adapter, when the
Token-Ring HETBIOS program is loaded on the PC or PC's involved. This
program is loaded from diskette or disk like any other DOS program, and
acts as a device driver to allow all HETBIOS function calls to be redi­
rected through the Token-Ring network.

The Token-Ring HETBIOS program illustrates above all other BIOS modules
the importance of coding to the BIOS interface. On the Token-Ring, without
even using a ROM chip for the network BIOS, programs written for the
HETBIOS interface can run without modification, and with increased per­
formance, once the Token-Ring HETBIOS program is loaded. Programs written
to interface directly with the PC Hetwork hardware will not work at all
on the Token-Ring.

6.37 ENHANCED GRAPHICS ADAPTER

The BIOS on the Enhanced Graphics Adapter replaces the Video BIOS by in­
tercepting INT 10H. The EGA BIOS provides a more sophisticated way of
displaying information in both text and graphics modes. As mentioned
above, it provides string output to the display, whereas the system-board
BIOS only provides single-character or same-character-repeat output. It
also provides support for the new Enhanced Display, and for the new dis­
play modes available on the monochrome and colour graphics displays.
Finally, when used with the Enhanced Display, it provides Color graphics
or Monochrome display emulation.

6.38 ADD-ON BIOS MODULE SUMMARY

IBM intentionally saved memory locations from CaOOOH up to F4000H for
add-on BIOS modules, to allow for support of additional or modified
hardware without requiring reinstallation of the system-board BIOS. The

92 IBM PC Internals

Fixed Disk BIOS, NETBIOS and EGA BIOS are good examples of add-on modules
which provide support for new I/O devices. And there are still many 2K
blocks of memory available for additional BIOS modules.

6.39 FINALLY •••

This concludes our discussion of the IBM PC BIOS. During this module we
examined the purpose and structure of BIOS, by comparing it to the first
I/O control systems; we examined individual components of BIOS, including
the power-on diagnostics and the assembly-language interface.

We also looked at individual BIOS routines, and noted their character­
istics and their assembly language interface. Some of the routines we
examined were:

- Keyboard
- Video
- Disk/Diskette
- Printer
- Serial

We looked at the DOS interface to BIOS -- how DOS enhances BIOS functions
with its own, and how DOS eventually gets around to using the BIOS routine
in its own way. We touched on redirection of standard input and output
as it relates to DOS vs. BIOS methods of performing I/O.

Finally, we examined several add-on BIOS modules brieflY: The fixed disk
BIOS, the PC Network NETBIOS, and the Enhanced Graphics Adapter BIOS.

At this point, you should have reached the objectives of this module. You
should understand:

• The purpose and structure of BIOS

• The assembly language interface to BIOS routines

• What the six key BIOS routines are

• The importance of using the BIOS interface rather than direct hardware
addressing

• How direct hardware addressing works, and why it's dangerous.

In addition you should be able to perform the BIOS lab outlined in the
appendix.

A lab is conducted for students in the class version of this course. The
script for this lab is contained in Appendix D, along with the source code
used. If you are studying this text on your own, we suggest you try the
lab exercise to strengthen your knowledge of PC BIOS fundamentals.

BIOS 93

When you have achieved a strong comfort level with the BIOS topic, you
should proceed to the module on PC DOS.

94 IBM PC Internals

7.0 DOS CONCEPTS AND FACILITIES

So far we have moved quite a long way up the chain of hardware and software
components which combine to form the total PC operating environment. We
have more or less wrapped up the hardware. and in the BIOS lecture in­
troducedthe first software component, although the BIOS is not entirely
"soft" -- it is rather difficult to change since it is written on an un­
writable ROM chip on the system board.

PC operating systems generally form the final layer between the hardware
and the user's applications. DOS is the primary operating system used on
IBM PC's (XENIX and PCIX are more elaborate operating systems but are not
as widely used). Although DOS can be subdivided into layers of its own,
in a larger sense it is a single. complex layer. In this module we will
show how DOS fits into PC internals. and will also examine the layers,
or components, of DOS itself.

7.1 OBJECTIVES

By the time you have completed this module you should be able to:

• explain what IBM PC DOS is and what it does

• detail the IPl process in a PC

• explain the process of reading a command

• describe the disk format used by DOS

• describe the file management facilities available under DOS

• understand memory allocation under DOS

• understand and use the DOS program interface

• differentiate the types of program DOS supports

• describe the support that DOS provides for programs

• explain DOS error handling

• describe device management in DOS

DOS Concepts and Facilities 95

7.2 WHAT IS DOS?

The IBM PC Disk Operating System (almost always referred to as PC DOS,
but in this document simply as DOS) is the most widely used operating
system for the IBM PC. It provides a powerful set of functions in an
easy-to-use format, and consumes very little memory.

An IBM PC needs an operating system to make it simple to load and execute
programs. Without an operating system every piece of software would have
to include its own operating environment. This would make it quite dif­
ficult to share information between software packages, because they would
probably use different disk formats. It would make it difficult to switch
between software packages, for they would probably use different operat­
ing environments, with different sets of I/O functions. Of course, if
they used the same disk formats, and the same, standard, operating envi­
ronment, it would be easy. That is what DOS is: an operating environment
for programs, providing a set of standards to allow programs to work to­
gether. DOS also happens to make writing programs much easier, for the
programmer can concentrate on the application, rather than the support
environment.

7.3 WHAT DOES DOS DO?

DOS is an operating system. What does it do? In a large mainframe the
operating system manages all the resources, sharing them amongst many
users, and making sure that one user does not corrupt another user's re­
sources, either intentionally or accidentally. DOS is the same, except
that DOS users are programs, and because the PC is a relatively simple
device it is only possible to protect programs from one another's acci­
dental corruption. The PC provides no security against malicious behav­
ior.

DOS manages resources. These include all the I/O peripherals, with an
emphasis on disk, but also including the screen, keyboard, printer, and
sundry other devices. Memory is a resource, and so, in a way, is the user!
DOS manages command interpreting for the user, to allow the user to enter
a command, have the appropriate program executed, and have control re­
turned to the point where another command may be entered.

DOS provides services. The simplest of these have to do with the man­
agement of resources like files. More complex services support the in­
stallation of new device drivers, the ability for one program to cause
the loading and execution of another, and the ability of the user to
tailor the DOS system to conform to the user's requirements.

DOS provides error handling. All manner of errors occur in a PC, not all
of them due to the user. DOS handles each of them in an appropriate
generalized way -- a diskette drive without a diskette in it brings the
familiar "Not ready error reading drive A - Abort, Retry, Ignore?". This

96 IBM PC Internals

error handling may seem crude at first, but consider how you might handle
a general error condition like this.

To get a feel for what DOS does, and how it does it, let us consider first
how DOS loads itself, and then some of the more complex considerations
associated with a DOS program.

7.4 IPL OF A PC

When the ROM BIOS completes its power-on diagnostics it checks the disk
drives for a boot record. The boot record is located in sector 1 of track
zero, head zero of a diskette, or the first sector of a hard disk parti­
tion. If a valid boot record is found on a diskette in drive A:, or on
hard disk C:, it is read into memory, and given control. The boot record
may simply issue a message describing the disk as a nonsystem disk, or
it may attempt to bootstrap the system, depending on the format of the
disk volume.

If it attempts to bootstrap the system it looks at the first two entries
in the root directory, and verifies that they are IBMBIO.COM and
IBMDOS.COM, in that order. If this is the case, the boot record reads
them both into memory and passes control to IBMBIO. Once that is done
the boot record is no longer required and the memory it occupied becomes
free.

IBMBIO.COM is the low-level DOS interface to the ROM BIOS routines. It
initializes the DOS interrupts, then reads CONFIG.SYS (if present) to
determine what optional device drivers to load, and how large to make
certain system tables (like the file handle table (FILES=), the disk
buffer table (BUFFERS=), and the block device table (LASTDRIVE=». Once
all the device drivers have been read in and initialized IBMBIO gives
control to IBMDOS.COM.

IBMDOS.COM initializes its internal data areas and the function call
handling mechanism -- all DOS function calls are handled in IBMDOS. DOS
service routines are located in IBMDOS too. When IBMDOS completes its
initialization it loads COMMAND.COM (unless another command interpreter
has been specified in CONFIG.SYS using SHELl=), and passes control to
COMMAND. COM initialization.

COMMAND.COM has three separate pieces: a resident portion, an initial­
ization portion, and the transient portion. The resident portion of
COMMAND.COM is loaded immediately above IBMDOS.COM (with the exception
of the boot record all of the previous pieces of code are loaded into the
lowest available memory locations). The resident portion of COMMAND.COM
handles program loading, termination and errors. The Critical Error and
Control-Break vectors point into here. The initialization portion of
COMMAND.COM establishes the interrupt vectors for the resident portion,
and processes AUTOEXEC.BAT (if present). When the end of AUTOEXEC.BAT
is reached the initialization portion passes control to the resident
portion which loads the transient portion.

DOS Concepts and Facilities 97

The transient portion of COMMAND. COM is the command interpreter. It reads
in a user command, interprets it, and instructs the resident portion to
load a program, if that is required. All internal commands (COPY, DIR,
etc) are contained in the transient portion. The interpreting of BAT
files is done by the transient portion. The transient portion of
COMMAND.COM is loaded as high as possible in free memory. If it is
overlaid by a program during the loading or execution of that program the
resident portion will load a new copy to interpret the next command. If
the transient portion is not overlaid the resident portion simply passes
control to it when the program terminates. The resident portion deter­
mines whether the transient portion was overlaid by running a checksum
on the memory that the transient portion occupied.

7.5 ENTERING A COMMAND

The reading of user commands is handled by the transient portion of
COMMAND.COM. The transient portion begins by displaying the command
prompt. The command prompt can be customized by the user using the DOS
command "PROMPT". The transient portion then uses a DOS function call.
number OAH, to request a line of text from the keyboard. When this line
is returned it 15 parsed for a command. The first string (sequence of
nonseparator characters not containing a separator. where a separator is
defined as any of blank, tab, null, comma, or slash) is assumed to be
either an internal command, or the name of an external command. The
internal commands are listed in the DOS Reference manual. An external
command may refer to a COM, an EXE, or a BAT file. The transient portion
looks first in its own data area to see if the command is an internal
command. If not it looks in the current directory of the current disk
volume to find the external command. It will look for a file with any
of the three extensions mentioned above. If no such file is not found
there, the sequence of directories listed in the PATH is searched until
a matching command file is found. If the end of the PATH is reached
without a match the transient portion reports the familiar "Bad command
or filename", and reissues the command prompt.

If the command is a COM or EXE file then the remainder of the command line
is parsed in an attempt to build two unopened FCBs for the program. The
transient portion then passes instructions to the resident portion of
COMMAND to load the specified program. Unless the program has been spe­
cifically created to be loaded high (a parameter in the linking process)
the resident portion looks for the lowest block of free memory large
enough to hold the program, and creates a Program Segment Prefix at the
beginning of it. This Program Segment Prefix contains information which
the program can use to access parameters which were passed to it, and
other information which we will soon discuss. COMMAND then loads the
program, performing any relocation required (if the file is an EXE file).
The resident portion passes control to the program at its specified entry
point.

If the command turns out to be a BAT file then the transient portion opens
the BAT file and parses the first line as a command line. When that

98 IBM PC Internals

terminates, it opens the file again and parses the next line, and so on,
until the end of the file is reached. Each line of the BAT file is read
from disk in its turn, which means that the file must remain accessible
to the transient portion whenever the next line is to be read. This can
be a problem with BAT files on diskette. Because the transient portion
has only one place in which it can store the name of the currently exe­
cuting BAT file, and a counter to determine what the next line of the file
is, nested BAT files are not supported. If the command interpreter dis­
covers a command in a BAT file to be a BAT file, it simply execute that
BAT file, without going back to the other BAT file. This technique is
sometimes known as "chaining". When the end of a BAT file is reached the
command interpreter returns to the keyboard for the next command.

7.6 DISK FORHAT

One of the most important resources that DOS handles is disk storage.
Diskettes and hard disks are handled similarly, the only difference being
that hard disks can be partitioned. A partition on a hard disk can be
considered a disk volume, as can a diskette. Every volume has the same
format. DOS numbers every sector on the disk, starting with track 0, head
0, sector 1, and proceeding through all the sectors on this track, then
all the sectors on the same track for the next head, and so on. The point
of this scheme is to minimize first head movement, and then head switch­
ing. (Note that heads and tracks are numbered from zero, while sectors
are numbered starting at one -- there are only historical reasons to
justify this strangeness.)

Disk space is allocated on a first-available basis, choosing free space
as close to the outer edge of the disk as possible. DOS attempts to keep
data, directories, and programs as close to the outside of the disk as
possible. This has two advantages, one being that it minimizes seeking,
resulting in better performance, the other being that data recording is
more reliable on the outer tracks, because they are longer.

DOS allocates space in groups of sectors called clusters. A given disk
volume has a fixed cluster size, typically one sector on diskette and four
or eight sectors on a fixed disk. A cluster is a group of sectors which
are sequential in sector number.

To track the allocation of space DOS uses a File Allocation Table, known
as a FAT. Multiple copies of the FAT are kept, to provide redundancy
should one become damaged. Normally two copies of the FAT are kept, in
separate sectors.

The FAT maps the allocation of clusters. The directory entry for a file
points to the first cluster of the file. The FAT entry for that cluster
contains the cluster number for the next cluster of the file. Each
cluster points to the next, except for the last one, which contains an
end of file marker. Unallocated clusters have a FAT entry of zero, since
cluster zero cannot be used (it holds the boot record). Bad sectors are
marked in the FAT to prevent their being allocated. The entries in the

DOS Concepts and Facilities 99

FAT may be either 12 or 16 bits, depending on the size of the disk (disks
of 10 Mb or less use 12-bit FAT entries). The end of file FAT entries
are in the range FFF8 to FFFF (FF8 to FFF for 12-bit FATs). The reserved
FAT entries are in the range FFFO to FFF7 (FFO to FF7 in 12-bit FATs).
Bad sectors are marked reserved with FFF7 (FF7 in 12-bit FATs).

A disk volume has a boot record in the first sector. Following this is
the first copy of the FAT, then the second. After the FAT comes the root
directory, which is of fixed size, with the size depending on the size
of the disk volume. Among the directory entries can be entries for sub­
directories, which are in fact files containing directory entries. Sub­
directories are variable in size, expanding as necessary to hold
additional directory entries. The root directory can only hold a limited
number of entries.

A directory entry is 32 bytes in length; its format is specified in the
DOS Technical Reference manual. A directory entry holds the name of the
file, its attributes, the date and time it was last changed, the size of
the file in bytes, and the cluster number of the first cluster in the
file.

The attribute of a file identifies the kind of file it is. The attribute
is a single byte, with bits indicating read-only, hidden, system, volume
label, subdirectory, and archived attributes. Many of these can be com­
bined.

The readonly bit prevents the file from bein~ opened for write, being
deleted, or being truncated to zero by a create.

The hidden bit conceals the file from normal directory searches. You can
hide your files or directories in this way, using a tool such as the Disk
Repair program of the Professional Debug Facility.

The system bit does the same as the hidden bit, but is intended for system
files only. Files like IBMBIO.COM and IBMDOS.COM are hidden from direc­
tory searches in this way.

The volume label bit is only valid for the volume label entry in the root
directory. The volume label is a name identifying the disk or diskette.

The subdirectory bit indicates that the file is a subdirectory, that is,
that it is a file containing directory entries.

The archived bit marks a file as having been backed up -- it is switched
off every time a file is changed. The DOS BACKUP command refers to the
archive bit when asked to do a partial backup, that is, a backup of all
files which have changed since the last backup.

Files in a DOS system can be fully named by specifying their disk volume,
path name, and filename. The disk volume name is a single letter, usuallY
followed with a colon to identify it. The path name is the sequence of
subdirectory names, starting from the root directory, that has to be
followed to find the file; the subdirectory names are usually separated
by backslashes to indicate where one ends and the next begins. The

100 IBM PC Internals

filename is in two parts. a name of up to eight characters. followed by
an extension of up to three characters; the two parts are usually sepa­
rated by a period. This full path- and filename can be abbreviated to
include only a portion of the path plus the file. or indeed only the
filename itself. DOS has the concept of a default. or current. disk vol­
ume. Any reference to a file that does not specify the disk volume on
which the file resides is assumed to refer to the current disk volume.
For each disk volume there is a current directory. This may be any di­
rectory on the volume. Any reference to a file on that volume (either
explicitly. or implicitly by way of the current disk volume) is assumed
to refer to the current directory, unless the pathname contains a back­
slash. which indicates a full or partial pathname. You should already be
familiary with the format of DOS directories and paths if you have met
the prerequisites for this course. If not, there are several tutorial
packages available for learning DOS directory structuring.

Files can be created only in existing directories. An attempt to specify
a pathname which contains a nonexistent directory name will fail. Simi­
larly. an attempt to remove a directory that still contains files will
fail.

DOS provides a number of function calls to allow the allocation, manipu­
lation. and deletion of files. None of these calls requires a detailed
knowledge of the disk format, just an understanding of how DOS regards a
file. To DOS a file is a sequence of bytes. Although consecutive sectors
of a file may be scattered allover a disk volume DOS masks this from the
program. To a program the file appears contiguous.

A program may request anything from 1 to 65535 bytes at a time from the
file, and DOS will fetch that amount into the specified buffer, then ad­
vance the read/write pointer past that piece of the file. If the file
does not have that much information left before the end of the file then
DOS will fetch what remains. place the read/write pointer at the end of
the file, and inform the program how much was returned. This simple ap­
proach allows a program to fetch large buffers of information for proc­
essing in memory. or to read the file record by record, or even character
by character. One of the effects of this mechanism is to provide what
might be regarded as automatic blocking and deblocking of the file; the
program is completely ignorant of the sectors of the physical disk.

The program may alter the read/write pointer to anywhere in the file, even
beyond the end oT the file, if writing. This allows completely random
access to the file contents. DOS provides no structure to the file, but
the facilities provided make it quite easy to build quite complex access
methods, including indexed sequential. relative record, key sequenced.
and all manner of indices. DOS does not provide insert or delete func­
tions for adding data to the middle of a file or removing data from the
middle -- these must be handled by a program.

If a program asks DOS to write zero bytes to a file the length of the file
will be changed. but no information is written. This is really only
useful when a program wishes to shorten a file that it has opened for
read/write. All the information past the current position of the
read/write pointer is discarded.

DOS Concepts and Facilities 101

7.7 MEMORY ALLOCATION

DOS manages the allocation of memory. When a single program is loaded
this is a simple matter. All free memory is allocated to the program when
it is loaded. and freed when it terminates. Complexities creep in when
considering resident programs, programs which load other programs, and
programs which use dynamic memory allocation (dynamic memory allocation
has nothing to do with DMA -- Direct Memory Access). DOS was built with
these complexities in mind, and so handles them appropriately.

Memory in a DOS system is handled in chunks. Each chunk is prefixed with
a memory control block. which indicates the size of the chunk, whether
it is free or allocated, and to what program the chunk is allocated.
Memory is allocated in paragraphs, meaning that only a segment value is
necessary to address the chunk. When a request to allocate storage is
processed, DOS finds a chunk of memory large enough to satisfy the request
and carves off the requested amount, splitting the chunk into two pieces,
one allocated, and one free. If there is insufficient storage to satisfy
the request available, DOS will tell the requestor how much is available
-- the size of the largest free block.

When a program is loaded all free memory is allocated to the program.
Before it can issue any requests requiring the allocation of storage it
must free some. Typically, a program will free all storage that it is
not using.

Free storage is required if a program wishes to use dynamic memory allo­
cation, or if it wishes to load and execute another program. Dynamic
memory allocation is convenient in a program which can use large buffers,
because the buffers can be made as large as the free memory.

A resident program is one which remains resident in memory after control
is returned to DOS. A resident program typically occupies a small amount
of memory and performs some specialized task. An example is a "hotkey"
program, which remains resident in memory and can be invoked at any time
by a special keystroke sequence. Such a program monitors the keyboard
and interrupts whatever program is running when the "hotkey" is recog­
nized. The hotkey program may provide support lacking in normal programs,
such as printer setup, or keyboard macros.

A program makes itself resident by using a "terminate and remain resident"
call to DOS. This instructs DOS not to free all of the memory that was
allocated to the program, but rather to leave the part that contains the
resident code allocated. Any program that DOS loads after this will not
be loaded on top of the resident program. Control is passed back to DOS,
usually bringing up the command interpreter again.

102 IBM PC Internals

7.8 PROGRAM INTERFACE

A program may request a number of services from DOS. These services fall
into several broad categories:

• file, disk, and directory management: a program need not worry and
the details of getting data to and from disk - DOS will handle it

• memory management: DOS handles the allocation of memory. A program
not using DOS to handle memory allocation is likely to crash the
system

• program management: program loading, termination. and checking of
return codes

• miscellaneous resource management: things like the date and time,
country data, network setup, and the state of many system flags. One
of the more important resource management features is the getting and
setting interrupt vectors.

Each of the functions that DOS can perform for a program is documented
in considerable detail in the DOS Technical Reference manual, including
the restrictions, requirements, and possible error conditions of the
call.

A function is requested by placing the number of the function into the
AH register and issuing interrupt 21h. Parameters to the function are
passed in other registers. DOS 3.1 offers 82 distinct function calls.
many of which are obsolete, and present only for programs which were
written for an earlier version of DOS. Services can also be requested
from DOS by way of certain other software interrupts (like interrupt 20h),
but all of these have been made obsolete by more powerful function calls
(interrupt 20h has been rendered obsolete by function call 4Ch). A pro­
grammer should only use the new function calls, as this allows a program
to take advantage of the advances since DOS 2.0.

7.9 FILE, DISK. AND DIRECTORY MANAGEMENT

DOS provides function calls to manipulate all aspects of the file system.
All of these are documented in the DOS Technical Reference manual. A
program can create, open, read, write, close. delete, and rename files.
It can change the current disk volume, and get information about any disk
volume. It can create, search, and remove directories, as well as getting
or changing the current directory.

DOS Concepts and Facilities 103

DOS provides functions to allocate and free memory, and to change the size
of allocated blocks. These functions must be used to avoid corrupting
the memory control block~. Corrupted memory control blocks lead to a
system crash.

7.11 PROGRAM MANAGEMENT

DOS allows a program to load and execute other programs by using the ap­
propriate function calls. Other function calls are provided to allow the
program to return control to DOS, with or without a portion of the program
remaining resident. The program can pass a completion or return code to
DOS at termination time, indicating successful or unsuccessful execution.
Where a program has loaded and executed another program it can retrieve
the completion code of that program.

7.12 MISCELLANEOUS RESOURCE MANAGEMENT

DOS controls a number of resources other than the file system, memory,
and programs; function calls are provided to access these. The system
date and time, the country information, the DOS version number, and the
Control-Break checking flag are amongst the available resources. The
network resources, like network names and the network printer setup, are
equally important. Interrupt vectors can be read and set using DOS
function calls -- this allows programs to redirect an interrupt vector
to point to an alternate interrupt routine, or to figure out where an
interrupt vector is currently pointing to. Extended error codes can be
retrieved, complete with advice on the action to take. All of these fa­
cilities are available to a program, and should be used where appropriate,
rather than accessing the hardware directly.

7.13 TYPES OF PROGRAM

DOS supports two kinds of executable program files, known by their file
extensions: EXE and COM. These two types of programs have complementary
attributes. An EXE program is essentially unlimited in size, but takes
a while to load. A COM program loads quickly, but is limited to 64K in
size. The reason for these differences lies in the segmented architecture
of the 8088.

Once a Program Segment Prefix for a COM file is built, the file can be
loaded into memory and run immediately. (Hold on! The PSP gets covered
in a moment.) All that DOS has to do to load a COM file is to set all of

104 IBM PC Internals

the segment registers to the segment holding the program, set IP to 100h,
and SP to FFFFh, then push a zero word. No relocation is required.

An EXE file has a special header built into it. This header specifies a
number of things, including the location of the stack segment, the start
of the executable program, and a number of relocation entries. The re­
location entries specify where the program has mentioned segment values.
The program loader has to alter each segment reference to the correct
value before starting to execute the program. This, however, allows the
program to contain a large number of segments, which means that it can
be larger than 64K in size.

Typically, COM files are used for small utility programs, where their
speed of loading is an advantage. They are also used for resident pro­
grams, where the fixed layout is easier to handle than the EXE format.
Extra care is required to build a COM file, because segment fixups must
be avoided -- effectively the program consists of a single segment.

Typically, EXE files are used for large programs. The output of most
compilers is converted into an EXE file. An EXE program is easier to
build in that multiple segments can be used, allowing the programmer (or
compiler writer) to take advantage of the 8088 separation of code, data
and stack.

When a COM file is to be loaded, the program loader (part of the resident
portion of COMMAND) allocates the memory the program will be loaded into.
It builds the PSP for the COM file in the first 256 bytes of the memory,
and loads the COM file immediately after it. All of the segment registers
are pointed to the start of the memory, where the PSP is, and IP is pointed
just past the end of the PSP, where the first instruction of the COM file
must be located.

When an EXE file is to be loaded, the program loader allocates the memory
for the program and builds a PSP in the first 256 bytes. The EXE file
is loaded after the PSP, and then processed for relocation. The relo­
cation process actually modifies all the locations in the program that
refer to absolute segment addresses. When that process is complete the
55 register is pointed to the program's stack segment (listed in the EXE
header), the DS and ES registers are pointed at the PSP, and the CS reg­
ister is pointed at the segment address of the program's defined entry
point (also listed in the EXE header). IP is set to the offset address
of the entry point, and the execution of the program begins.

The two types of program are otherwise equivalent -- both can make use
of DOS and BIOS calls freely.

7.14 PROGRAM LOADING

The loading of programs by DOS is a little more complicated than described
above. The first thing the program loader has to do is find a free chunk
of memory sufficiently large to hold the program. If this is not found

DOS Concepts and Facilities 105

then an error message is issued. Once a free piece of memory is found,
the loader builds a Program Segment Prefix (PSP) at the low end of it.

The PSP is a 256-byte control block containing a lot of information about
the way in which the program was invoked. The parts of interest to the
programmer are:

offset

2C

80
81-FF

contents

segment address of the environment for this program
(The environment is a string area in memory which describes
some of the operating characteristics of the program. The
environment will be discussed in a moment.)
length of the parameter list
parameters on the command line after the program name

There is a lot more information in the PSP, but a programmer using DOS
2+ function calls is unlikely to use it. All the details can be found
in the DOS Technical Reference manual.

Having built the PSP. the loader fetches the program from disk into mem­
ory. If the program is a COM file, the segment registers, SP, and IP,
are all set as described above, and control is passed to the program.
If the program is an EXE file, all its relocation information must be
processed first. This process is covered in detail in the DOS Technical
Reference manual. The relocation information covers only segment relo­
cation -- all else is handled during the linking of the program.

A loaded program is passed all of its parent's open files, and a copy of
its parent's environment. The parent of a program is the code that re­
quested the program be loaded -- most programs have the command inter­
preter as their parent. The fact that a program is passed a copy of the
parent's open files allows a parent to redirect the I/O of a loaded pro­
gram. The parent opens the files it wishes the program to use, then re­
quests that the program be loaded. The program is loaded, uses the open
files, then returns to the parent. Normally the only files which are
redirected are the standard I/O handles, because these are the only ones
a program is likely to use without opening - this is how the command in­
terpreter redirects I/O.

The environment is a list of strings (up to 32K total) which contain text
entered using the SET command, plus a copy of the current PATH, and the
specification of the command interpreter. At a minimum the environment
contains a string (eg. "COMSPEC = c:'command.com") consisting of the
specification of where the command interpreter was loaded from.

7.15 PROGRAM LINKING

The DOS program linker converts the output of compilers and assemblers
(object code) into an EXE file. In this process it takes one or more OBJ

106 IBM PC Internals

files and resolves all external references. One or more libraries of
object modules can be scanned to find required code, if requested.

The output of a compi ler or an assembler is not executable -- it is called
an object file (with an extension of OBJ), and is specifically intended
for processing by the program linker. Even a program consisting of a
single OBJ file must be processed by the linker before it can be executed.
The linker takes in OBJ files and produces EXE files. A program which
is intended to be an EXE file can be run after linking. A program which
is intended to be a COM file must be processed by the EXE2BIN utility
before it is ready - the EXE2BIH process removes the EXE file header, and
checks that the program does not violate any of the strictures placed on
COM files. EXE2BIH stands for "EXE to BINary".

The link process deals mainly with the combination of segments and the
resolution of external references. An OBJ file contains pieces of one
or more segments, each with a name, a combine-type, a class, and possibly
a group name. The relocation entries describe every point in the file
that refers to a segment relative address. Additionally, it may contain
a table of external and public references, listing all the locations in
the file that refer to or define external entities.

The linker combines all the pieces of segment of the same name, concat­
enating them or overlaying them, depending on the combine-type of the
segment. It then combines all the segments of a group, and then all the
groups of a class. Once this is done it processes all the offset relo­
cation entries, adjusting offsets to allow for the combination of segments

something that was at offset 4 may end up at offset 5A4, if a piece
of segment 5AO in length is included before it.

The linker attempts to resolve external references from the OBJ files it
is told to process. An external reference may be the call of a procedure
in one OBJ file by a procedure in another OBJ file, or it may be a ref­
erence to a data element in one OBJ file by a procedure in another OBJ
file. If an external reference cannot be satisfied within the OBJ files
the linker is processing, it may look in a library, if any libraries have
been made available to the linker. A library is a collection of object
modules which the linker can search. libraries are frequently used by
high-level languages to hold common routines, like I/O service routines.

7.16 ERROR HANDLING

Errors will occur, and DOS has to handle them. The kinds of errors DOS
handles range from the familiar "Bad command or filename" to the upsetting
"Read error on disk A: - Abort, Retry or Ignore?". DOS handles these
errors in a way intended to protect the user and his/her data.

Different errors are detected in different parts of DOS. There are three
categories of errors:

• command interpreter errors

DOS Concepts and Facilities 107

• function call errors

• critical errors

Command interpreter errors are errors detected by the command interpreter
while it is attempting to execute a user command. either directly from
the command line. or from a BAT file. These errors are generally not
serious. normally just a slip of the fingers. The errors include mis­
spelled commands ("Bad command or filename"). too little free memory to
execute the requested command ("Insufficient memory"), and BAT file er­
rors.

Function call errors are detected by IBMDOS. They generally occur when
a program makes a function call to DOS that cannot be successfully com­
pleted. These errors are indicated by a return with the carry flag set.
Normally these errors are the concern of the programmer. and are only
reflected to the user when some action is required to fix the problem.

Critical errors are detected by DOS during I/O processing and always re­
sult in the invocation of the Critical Error handler. This handler is
on interrupt 24h. Unless the critical error handler is changed by a user
program it displays the "Abort. Retry or Ignore" message. A program can
change the Critical Error handler to perform whatever processing is de­
sired. The information necessary to do so is contained in the DOS Tech­
nical Reference manual.

One circumstance is handled by DOS as an error condition. and yet is
usually not indicative of an error -- the user pressing Control-Break.
DOS detects this condition by checking the next character to be read from
the keyboard buffer. but without actually reading it (this is why the
Control-Break will only be detected when no other character is in the
keyboard buffer unread). DOS can check every time it gets control -­
provided the BREAK flag is set on -- or it may check only when doing I/O
using the console driver (screen and keyboard) -- provided the BREAK flag
is set off. The entry of Control-Break causes DOS to invoke interrupt
23h. DOS supplies a default handler for the interrupt. which aborts any
currently executing program and queries whether to abort an executing BAT
file. A program can replace the handler if desired. to provide appro­
priate processing.

7.17 DEVICE MANAGEMENT

One of the functions of IBMBIO.COM is to load any device drivers specified
in CONFIG.SYS. and then to initialize the default device drivers. Each
device driver in a DOS system is of one of two types: character or block.
A character device is a simple one. handling a single character at a time
-- a typical example is the keyboard. A block device driver handles a
block of data at a time -- the most common example is a disk driver. DOS
provides drivers for the standard IBM keyboard (plus national language
versions). the standard IBM screens, IBM disk drives. and general purpose
asynchronous and printer drivers. Two special purpose drivers are sup-

108 IBM PC Internals

plied with DOS -- ANSI.SYS. which is an ANSI standard screen and keyboard
driver. and VDISK.SYS. a RAM disk simulation driver. Drivers for any
other hardware must be supplied by someone else. The complete specifi­
cation of the requirements of a device driver can be found in the DOS
Technical Reference manual.

IBMBIO loads each device driver and passes control to its initialization
point. Character device drivers specify their own names. and IBMBIO re­
cords these to enable it to pass control to them when they are requested.
If a character device driver specifies the name of a default device driver
then the default driver will not be installed. There are a number of
default character device drivers built into DOS:

CON: -- the screen and keyboard (console) driver
PRN:, LPT1:, LPT2:. LPT3: -- printer device drivers
AUX:. COM1:, COM2: -- serial port drivers
NUL: -- the bit bucket

Block device drivers are identified by single letters, and are given their
identifiers by the order in which they are loaded. The first block device
driver to be loaded is usually the diskette drive device driver. which
supports two (or up to four) devices. and so gets letters A and B (C and
o as well if four diskette drives are present, but this is not usual).
If a hard disk is present its driver is usually loaded next, and so it
gets letter C. Assuming that there is only one hard disk present. a VDISK
driver which is loaded next would get letter D. and so on. This is the
allocation system for block device letters. It is not possible for a
block device driver specified in CONFIG.SYS to replace the default disk
drivers.

7.18 SUMMARY

This concludes the main DOS module. Because many programs and services
are available to programs which are nevertheless not an intrinsic part
of DOS. we have devoted a separate module to these DOS extensions. At this
point. you should understand the following points about DOS:

• what IBM PC DOS is and what it does

• the IPL process in a PC and the components of DOS:

IBMBIO
IBMDOS
COMMAND

resident portion
initialization portion
transient portion / command interpreter

• the process of reading a command

the kinds of command: internal. external and batch

DOS Concepts and Facilities 109

redirection of I/O

• the disk format used by DOS

the Boot record
the File Allocation Table (FAT)
the directory structure

• the file management facilities available under DOS

• memory allocation under DOS

• the DOS program interface

DOS function calls
resource management

• the types of program DOS supports

COM programs
EXE programs
BAT batch files

• the support that DOS provides for programs

program linking
program loading

the Program Segment Prefix (PSP)
relocation of EXE files
the environment

• DOS error handling

• device management in DOS

device drivers
block devices
character devices

The DOS module is the largest module in the course in terms of class time
allocated to it. In addition, a DOS lab is conducted with class students
to familiarize them with DOS functions through hands-on experience. If
you are studying this book on your own we urge you to use the DOS lab to
improve your DOS knowledge and reinforce the materials presented here.
The DOS lab is provided in Appendix E.

Once you have completed the DOS Lab, you can proceed to the DOS Extensions
module. Alternatively, you may pursue the DOS Extensions module first,
and then conduct the DOS Lab.

110 IBM PC Internals

8.0 DOS EXTENSIONS

8.1 OBJECTIVES

In this module we will discuss some of the the ways in which DOS can be
enhanced and extended. There are tasks normally associated with an oper­
ating system which DOS does not do, and there are others which DOS does
perform that could be done in other ways. At the end of this module, you
should understand the following:

• The kinds of extensions that exist and why

• What multitasking is and how it can be implemented

• How we can extend DOS support of devices through device drivers

• How we can enhance DOS with other types of resident extensions

8.2 AGENDA

In order to accomplish these objectives. we will proceed as follows:

1. Define the areas where DOS can be enhanced and extended.

2. Look at the available IBM multitasking extensions.

3. Learn how DOS arranges and uses device drivers, and how we can replace
or ado new device drivers.

4. Look more closely at the construction and function of device drivers.

5. Look at other types of utilities which enhance the operating system.

8.3 WHAT KIND OF EXTENSIONS DO WE HAVE AND WHY?

Up to this point in the course, we have looked at different levels of
application and end-user support. We have seen that we can control the
PC on different levels. Using the BIOS and hardware ports directly, we
are able to do almost anything with the PC, but it may take us a long time
to do the coding. DOS and some high level languages make it easy to con­
trol the PC in a relatively short time. Why would we want to extend DOS?

The answer is naturally that DOS does not support all the functions we
want. Examples of that could be:

DOS Extensions 111

• MULTITASKING - We want to use the keyboard and display for editing a
note while the PC is busy sending a file via a modem to another com­
puter. The processor in the PC has the capacity to do both things
at once, but DOS does not support it.

• DEVICE SUPPORT - DOS contains support for the different devices it
is announced to support. If we want to add some other type of equip­
ment to our PC, a drawing tablet or a mouse for example, and we also
want our programs to use normal DOS function calls to talk to this
device, then we have to write a device support program or driver.

• OTHER ENHANCEMENTS - When we are not satisfied with the support within
DOS for a device or application, then we may want to replace that
function with our own code. A common example of this are the so-called
keyboard enhancers -- programs which replace the normal keyboard
handling routines in DOS and allow a string of commands to be invoked
with a single key.

We will now take a look at the current IBM multitasking offerings.

8.4 HULTITASKING EXTENSIONS

A multitasking environment is one in which several programs can co-reside
in the system, in which software or hardware mechanism let each program
share the system's processing and I/O resources.

The complexity of such a system can range from a simple print spool pro­
gram running at the same time as we edit a text file with an editing ap­
plication under DOS, to a system with many applications running in
parallel, with a scheduling program to control resources and priorities
between programs and a dispatcher to control which program should execute
at a given time.

We will begin our examination of multitasking by examlnlng a print spool
program which is actually part of DOS -- the PRINT command.

8.4.1 PRINT

The DOS PRINT command loads itself into storage as a resident program the
first time we enter the command "PRINT". It intercepts the timer tick
interrupt which is issued 18.2 times per second, and in this way it is
called at each timer interrupt. After each time it is invoked, the PRINT
program will decide whether it wants to use part of the current time slice
itself (the time slice is the processing interval between the most recent
and the next timer ticks) or whether it will return control to the program
which was interrupted by the timer. (This program could even have been
the PRINT program itself if it was interrupted while printing something).

112 IBM PC Internals

The percentage of processor time during which the PRINT program is in
control can be defined by the user when the program is started. The PRINT
program will naturally not use any of its allotted time slice if the print
queue is empty.

There is only one way to communicate with the PRINT program, and that is
via the PRINT command. Every time the PRINT command is used, it will
check to see whether it has already been loaded into storage, and if it
has it will not install itself again, but will simply pass information
to the installed version, retrieve any required information back, and on
exit will return this information to the user.

8.4.2 TopV;ew

With TopView you can run several applications at once on a single PC, and
simultaneously view portions of the display of each of these applications.
TopView accomplishes application multitasking by using a time-slicing
technique, and performs multiple-application display with a windowing
system.

Hult;task;ng: The time-slicing technique operates by intercepting the
timer-tick interrupt. Each time the timer issues a timer tick (18.2 times
per second), TopView gains control. It checks a list it maintains called
the dispatch list or dispatch queue, which contains information about all
the currently loaded tasks. Based upon the status of each of these tasks
and upon an undocumented priority algorithm, it will select either to
begin a new task, or to resume execution of the task which was interrupted
by the timer tick.

Each time TopView gains control at a timer tick, it must save the envi­
ronment of the executing task. To do this it allocates several storage
areas for each loaded task, and in one of these storage areas it auto­
matically saves the contents of all the processor registers and flags as
they were when the task was interrupted. It also saves the interrupt
vectors for any interrupts the task has supposedly changed. For example,
if an application has changed the execution address of INT 75H, TopView
will save the vector pointing to that address. TopView will save other
environmental components as well, as documented in the TopView manuals.

When TopView decides to give control to a different task, it will reset
the interrupt vectors for that task so that they are vectored as they were
when the task was last interrupted. TopView restores the contents of the
registers and re-establishes the operating environment of the program;
it then allows the task to continue running wherever it left off.

This time-slicing is complicated by the concept of I/O-driven multitask­
ing. If a hardware input event occurs, it is important to dispatch as soon
as possible the task for which the I/O event was destined. Similarly, if
an application requests input which is not available, there is no point
in wasting processor cycles executing the application's wait for input.
Therefore, when an input event occurs (for a background application, it

DOS Extensions 113

could come from a serial port, for example), TopView gains control, saves
the environment of the current task, and loads the task for which the
input was destined. If an application requests input which is not avail­
able (for example, a background application requests keyboard input, or
the foreground application requests keyboard input when the user is not
typing), TopView stops that task and dispatches another task. It will not
allow the stopped task to resume execution until the requested input ar­
rives.

This dual method of multitasking is called "Time-slicing with natural
program breaks". The result of this technique is that I/O-bound programs
will not hog the processor while waiting for the next I/O operation, and
compute-bound programs will be able to soak up all processor capacity
during I/O waits. Such a multitasking method ensures maximum utilization
of the computer. TopView does not allow you to select the number of time
slices to give to an individual application; however, you can choose to
suspend an application by using the Suspend command. A suspended program
does not receive time slices until you resume it.

Windowing: TopView accomplishes windowing by intercepting DOS and BIOS
video function calls. If you have chosen to view several applications at
once, you could, for example, have the upper right portion of one appli­
cation displayed in a window on the lower left; the bottom half of another
application's logical display could be shown on the upper half of the
physical display. When an application issues a DOS or BIOS video call.
TopVi~w intercepts this call. It analyses the type of request, and updates
the window for that application as required. If a character is to be
displayed in an area of an application's display which is not mapped onto
its current window. TopView will remember that the character was displayed
there, but will not display anything. If an application requests that its
screen be cleared, only the portion of the physical screen contained in
that application's window will be cleared. In addition, TopView will re­
member that non-displayed portions of the screen have been cleared, but
these portions will not be displayed unless the size of the window is
changed.

We mentioned in several previous modules the importance of not using di­
rect screen addressing in an application, and now we can understand one
reason why. TopView intercepts BIOS and DOS video calls, decides on what
area of the physical screen to map the call, and then does direct screen
addressing itself to effectuate the call, provided the call results in
an update of the physical screen. If an application were to write directly
to the screen, it might overwrite the contents of other windows. For this
reason, programs which do write directly to the screen are not permitted
to run in the background, and when they run in the foreground they are
given control of the entire screen (that is. no other windows are dis­
played).

Programs which want to write directly to the video buffer when running
outside of TopView may also do direct writing within TopView and still
be regarded as well-behaved (that is, still be able to run in the back­
ground and to be windowed). TopView supports two special BIOS video
functions which allow windowing of direct-video-addressing applications:

114 IBM PC Internals

• Get Video Buffer (INT lOH, AH=OFEH)

This enables the program to get the address of an alternate video
buffer. If the program is running under TopView, the address of an
alternate buffer is returned, usually a segment in user RAM. If the
program is running under normal DOS, the physical video buffer address
is returned.

If the program finds the normal physical buffer address returned, it
may just write to the buffer directly. If the address is different
from the normal buffer address, this means TopView is loaded, and when
the program wants to change the display, it writes to the buffer ad­
dress returned by TopView.

• Update Video Display (INT lOH, AH=OFFH)

This call is used to tell TopView what parts of the memory screen
buffer have been updated, so that TopView can map the changes to the
physical screen.

APplication Program Interface: In addition to performing windowing and
multitasking functions for most DOS-based applications, TopView supports
a special interface for programs written specifically for TopView. This
interface allows TopView-specific programs to display multiple windows
for a single task, to perform task management functions like forcing an­
other task into the background, and to use TopView's full-screen-input
functions. We will identify several types of routines below.

• Window management

An application can request that its window be moved or changed in
size. It can request that an additional window be created for that
application (only TopView-specific applications can have multiple
windows>. It can request that TopView display a specific type of input
window, and return the input to the user.

• Full-screen input

Application programmers can use the Window Design Aid, provided with
the TopView Programmer's Toolkit, to design windows, including win­
dows of full-screen-input fields. When the programmer designs a
full-screen-input window, the length and appearance of each field,
as well as the valid ways of entering information into that field,
are designed with the Window Design Aid, and a file is created to
store the window. The application need only provide the name of the
appropriate window to TopView, and set up the necessary request, and
TopView will retrieve all the requested input from the user and return
it to the application. This not only reduces programmer time spent
on console I/O routines, but allows for a TopView-like interface so
that programs can blend more easily into the TopView environment.

• Task management

DOS Extensions 115

Programs can request that they be made the foreground task; they can
ask to be suspended. They can declare a section of their code as
critical, so that TopView will not time-slice it out; they can force
another task to execute a specific routine. They can initiate other
tasks -- one application can actually have multiple tasks working for
it.

The TopView Programmer's Toolkit manual provides detailed information on
supported TopView API (Application Program Interface) functions.

8.4.3 PC Network Program

The PC Network Program allows multiple computers hooked together on a PC
Network or PC Token-Ring Network to share resources and exchange infor­
mation. The PC Network Program can be considered a DOS extension insofar
as it allows you to assign resources on a server computer as local re­
sources -- in other words, you can access information on someone else's
C: drive by calling that drive your K: drive and reading from it just as
you would in stand-alone DOS. You can also name a print server's printer
to be your lPTl, lPT2 or lPT3 so that you can print data on someone else's
printer.

If we consider the PC Network Program as a DOS extension we must think
of it in terms of how it intercepts certain DOS function calls -- in
particular printer- and disk-related calls -- to redirect printer, file
and directory I/O from the local computer to the server who owns the re­
source being addressed. In addition to intercepting these types of calls,
the PC Network performs a multitasking of its own so that applications
can run at the same time as resources are being shared between computers.
like the DOS PRINT command and TopView, the PC Network program uses the
timer tick to interrupt applications in order to allow processing of
network jobs such as printing and disk access.

Several ITSC Red Guides have already been published on the PC Network
Program, so if you want additional information you may obtain one of
these. The important thing to remember in terms of the PC Network's place
in DOS extensions is that the PC Network Program works together with DOS
by providing logical DOS device support for remote resources. As such,
one might consider the PC Network Program to be a sophisticated device
driver for a wealth of different devices.

8.4.4 3270/PC Control Program

The 3270/PC Control Program performs multitasking and windowing in a
similar way to that employed by TopView. Some of the differences. however,
are worth noting.

116 IBM PC Internals

The Control Program is not running under DOS. It is loaded by DOS, and
upon obtaining control it hides itself at the top of physical storage.
It then ~hanges the "Top of Memory" indicator in low storage and re-IPl's
DOS, which loads into the now reduced storage area. To be able to control
the PC and DOS it then replaces the necessary interrupt vectors which
point to DOS with vectors pointing into the Control Program code.

Since we are in fact running DOS under the Control Program, we are perhaps
stretching our credibility in calling it a real DOS extension.

The 3270/PC is also using other screens and screen adapters than those
supported by DOS. This means that when DOS writes to the screen buffer
addresses, the CP has to map this data out to the physical screen in its
own way.

The API (Application Program Interface) for the 3270/PC is also very
powerful, but also quite different from the TopView API.

8.5 DEVICE DRIVERS

8.5.1 What;5 a DOS dev;ce and a dev;ce dr;ver?

Exactly what is a DOS device? A device can be thought of as a place to
and from which bytes travel. In most cases this place has a physical
counterpart -- a hardware peripheral of some kind -- that is actually
generating or using the bytes that are coming from or going to the device.
A display or a printer are examples of physical devices which receive
bytes, a keyboard is a device that emits bytes. An example of a non­
physical device is the DOS NUL device. It functions as a "bit-bucket"
and just eats anything coming into it.

Two types of devices exist: character and block. Character devices send
or receive bytes one at a time. Block devices are generally disk drives
or disk drive emulators, and they send or receive a block of bytes at a
time. A block typically consists of a physical sector of the disk drive.

Device drivers are programs created to control particular devices. They
have a fixed, specific format and are loaded by DOS during IPl. They give
application programs a consistent interface to different devices through
DOS.

DOS has some default device drivers which are initialized during IPl, and
DOS also gives us the capability to add our own device drivers or to re­
place existing ones. DOS contains default drivers for support of the NUL,
CON, AUX (COMl), PRN (lPTl), ClOCK$, lPT2, lPT3, and COM2 character de­
vices plus two to four (A, B and eventually C and D) block devices.

If we write our own device driver and get DOS to load it for us, how do
we then use it?

DOS Extensions 117

The answer is that you treat it exactly like other DOS devices: CON, lPTl.
COM1, A, B, C. etc. If the device driver is written properly, you should
be able to issue commands to the new device, or open it for input and
output, just like any other DOS device. The device driver should make
the input and output from the device transparent to the user.

8.5.2 Installation of the device drivers

The Device Chain: When DOS loads the device drivers during IPl. they are
connected into a one-way linked list. Each node in the list is an 18-byte
data structure called a device header. The first four bytes of each device
header comprise a 32-bit pointer (segment:offset) that points to the next
node in the list.

The first node is embedded in IBMDOS.COM and corresponds to the NUL de­
vice, a "bit-bucket" device that absorbs everything sent to it and emits
nothing. The last node is identified by a value of OFFFFH in the offset
portion of the 32-bit pointer to the next node. You can see what the chain
looks like in Figure 1 on page 119.

118 IBM PC Internals

Device Header

device in IBMDOS.COM

Device Header
>~-----------r-------------r------------~

device driver

Device Header
>Ir------------r-------------r--------------,

and so on for the length of chain

Gee He.der
>1 1

- ssss:FFFF -

The LAST device driver in
the chain (offset - FFFFh)

Figure 1. Device driver linkage list

The device header has five parts as shown in Figure 2:

Next Header Ptr Attribute Strategy Interrupt

Offset I word Routine Routine
Segment Offset Offset

Figure 2. Device header

8 character
Device Name

1. Chaining pointer to the next device driver header in the chain.

2. Attribute word

3. Offset pointer to the strategy routine entry point (the segment part
of the pointer is taken from the chaining pointer in the previous
device header).

DOS Extensions 119

4. Offset pointer to the interrupt routine entry point (the segment part
of the pointer is taken from the chaining pointer in the previous
device header>.

5. Eight character field for the device name.

The fields will be explained in more detail shortly.

Besides NUL, which is always present, DOS requires a minimum of four de­
vices in the system-initialization code. These devices are those that
follow NUL in Figure 1 on page 119: CON, AUX, PRN, and CLOCKS. The device
names are unimportant, but the function each performs must correspond to
the following sequence: standard I/O device, auxiliary I/O device, list­
ing device, and the realtime clock.

After these four devices have been installed, additional resident devices
are installed. These resident devices are used to initialize DOS.
Figure 3 shows what the device header chain looks like after DOS has in­
stalled all resident device drivers. Note that the address in the Next
Header field for each device becomes the starting address for the device
that follows in the device header chain.

At
memory
address

0133:0248
0082:0305
0082:0231
0082:02A6
0082:0345
0082:0416
0082:0110
0082:0307
0082:0B56
0082:0B80
0082:0BA6

Device Header

Next
Header

Strategy
Attr Entry pt.

0082:0305 8004
0082:0231 8013
0082:02A6 8000
0082:0345 8800
0082:0416 8008
0082:0110 0800
0082:0307 8000
0082:0B56 8800
0082:0B80 8800
0082:0BA6 8800
0082:FFFF 8000

1680
00B6
00B6
00B6
00B6
00B6
00B6
00B6
00B6
00B6
00B6

Interrup
Entry pt.

1686
00F8
OOFE
0100
0122
0128
OOFE
0100
0113
0119
0104

Device
Name

NUL
CON
AUX
PRN
CLOCKS
4 (disks)
COMI
LPTl
LPT2
LPT3
COM2

Figure 3. Device header chain with the IBM default device drivers

When installation is complete, an attempt is made to open CONFIG.SYS on
the IPL drive. If CONFIG.SYS exists, it is read into a buffer and the
contents are parsed into commands.

The command line for adding a device is as follows:

120 IBM PC Internals

DEVICE=(d:) (path) filename.ext (parameters)

where

(d:) is the name of the drive where the device driver
program is located.

(path) is the path to where the device driver program is
located.

filename.ext is the name and extension of the device driver
program.

(parameters) information to the init part of the device driver
program (everything after the equal-sign is passed
to the program).

The items within parentheses are optional and include drive and path
specifiers as well as a parameter field following the file name.

When a new device is installed, it is added to the linked list at the link
immediately following the NUL device. This addition is done in two oper­
ations:

• the Next Header pointer in the NUL device header is moved into the
Next Header field of the device header to be installed.

• the Next Header field in the NUL device header is replaced with the
segment:offset address of the newly installed device header and
driver.

New drivers are thus added to the linked list at the root (NUL), pushing
previously-installed drivers further down the list. You can se the result
in Figure 4 on page 122 after installation of the device driver for device
MYPRN

DOS Extensions 121

Device Header

At ---
memory Next Strategy Interrup Device
address Header Attr Entry pt. Entry pt. Name

--------- --------- --------- ------
0133:0248 129F:0000 8004 1680 1686 NUL

"""'"
129F:0000 0082:0305 COOO 0030 0180 MYPRN

"""'" """'"
0082:0305 0082:0231 8013 00B6 00F8 CON
0082:0231 0082:02A6 8000 00B6 OOFE AUX
0082:02A6 0082:0345 8800 00B6 0100 PRN
0082:0345 0082:0416 8008 00B6 0122 CLOCK$
0082:0416 0082:0110 0800 00B6 0128 4 (disks)
0082:0110 0082:0307 8000 00B6 OOFE COM1
0082:0307 0082:0B56 8800 00B6 0100 LPTl
0082:0B56 0082:0B80 8800 00B6 0113 LPT2
0082:0B80 0082:0BA6 8800 00B6 0119 LPn
0082:0BA6 0082:FFFF 8000 00B6 0104 COM2

Figure 4. Device header chain with one installed device

Once the CONFIG.SYS file has been completely parsed, all of the initial
stand~rd device handles are closed and then reopened so that user­
installed device drivers can preempt the default drivers for CON, AUX,
and PRN. When a device handle is opened, the first device in the linked
list that matches its name is used to satisfy the request. This allows
duplicate device names to be included in the CONFIG.SYS file for CON, AUX,
and PRN.

Because installed devices are inserted immediately after the head of the
chain, a user-installed CON, AUX, or PRN device driver will be found
before the DOS-supplied default drivers for these devices. Note that the
position of the NUL device prevents another NUL being loaded before it.
NUL is thus the only device that cannot be preempted.

8.S.3 Commun;cat;ng w;th Dev;ce Dr;ves

You use a device driver in order to convey commands to a "smart" physical
device, to make a "dumb" hardware device look "smart" to the system, or
to pass non-system information to the device. Communication can take two
forms: byte stream communication or control channel communication.

In byte stream communication, the driver must recognize some kind of es­
cape character in the byte stream and use the characters that follow the

122 IBM PC Internals

escape as control characters. For example, byte stream communication is
used when positioning the cursor with the ANSl.SYS device driver.

Control channel communication requires that the driver recognize a hard­
ware control channel. In control channel communication, you:

• Build the message.

• Build the device driver name.

• Create the handle (file control block).

• Send a message to the handle.

• Close the handle.

Control channel communication is used, for example, when telling a printer
to indent five spaces after each line feed.

8.5.4 The inside of a device driver

Now we will look a little closer at the device driver program. It con­
tains four different parts:

• an IS-byte Device header

• a Strategy routine

• an Interrupt routine

• normally an Initialization routine

Device header: The format of a device header memory image is given in
Figure 2 on page 119. The name and attribute words are user-selectable
and reflect the function of the device. The attribute word is a bit map
that indicates to DOS whether or not the driver has certain special
properties. Other entries are determined by driver placement in memory
and by the system configuration. The strategy and interrupt fields are
offsets into the segment begun by the first byte of the header.

As mentioned earlier, devices are either character type or block type,
depending on the way the driver deals with data. Figure 5 on page 124shows
definitions of bit fields in the attribute word of a device header.

DOS Extensions 123

BLOCK DEVICE

15 14 13 12 11 10 9 8 7 6 5 4 3 2

SPECIAL ~ J J J
CLOCK

NUL
STDOUT

STDIN

CHARACTER DEVICE

15 14 13 12 11 10 9 8

o = not used for this device type
X = valid for this device type

7

/ = not defined (force this bit to zero)

6

Figure 5. Bit fields of the attribute word

5 4 3 2

STDIN

1 o

1 o

X

Bits 0-3 of the device's attribute word are flags that indicate to DOS
whether the device is one of three devices treated specially by DOS. The
NUL device has a unique device driver embedded in IBMDOS and cannot be
altered. The NUL bit is a flag that tells DOS that this driver is to be
used for the NUL device. For a device that is to be used as the standard
I/O device, the pair of bits STDOUT and STDIN are set. Similarly, the
CLOCK bit is set on any device used as the clock device.

In the case of character devices, the name field of the device header is
an array of eight ASCII characters, making up a legal file name. Instead
of names, block devices are given unit numbers. For block devices, the
first byte of the name field contains a count of the units supported by
the driver, expressed in binary form. The rest of the name field 15 not
used.

strategy and Interrupt routines: The interface between DOS and devices
was designed with multitasking in mind. The intent was to allow each de­
vice in a multitasking environment to maintain its own queue of requests
for its services. The DOS executive would periodically scan its queue
of pending requests for completions and wake up waiting processes. A de­
vice request would call the strategy entry point. which would simply queue

124 IBM PC Internals

up the request in the form of a request header and return. Upon com­
pletion, a device would receive an interrupt and its service routine would
post results in the corresponding request header. Before returning, the
device would check again for waiting requests.

This capability has not been used in DOS versions 2.0, 2.1, or 3.0, none
of which handle multitasking. In a theoretical multitasking version of
DOS, requests for device services would almost certainly be handled this
way. In current DOS releases, the strategy entry point is used to pass a
32-bit pointer to a request block that is not queued. Next, an immediate
call is made to the interrupt entry point. Here the request is serviced,
and results are passed back in the request block.

The strategy and interrupt entry points do not have an explicit segment
in the device header. The segment address is given by the link pointer
of the preceding device header. The segment portion of the address for
the strategy and interrupt entry points is the same as the segment address
of the header.

In;t;a!;zat;on rout;ne: When DOS is installing the device driver program,
the program is called at the strategy entry point with a function code
of 0 (INIT) in the request header. The function 0 is the initialization
call. The device driver program should perform any initializing of the
device at this point and return information in the request header about
the ending address of the loaded code and/or buffer areas.

Since the init call occurs only once during device driver load, the in­
itialization routine is normally stored at the high end of the device
driver routine and is discarded by setting the ending address at the first
byte in the initialization routine.

If the device is a block device, some more information must be returned:

• The number of units this device driver will support. This number de­
termines the logical names that the devices will have. If we have one
diskette drive and one fixed disk, A, Band C are used. If our in­
stalled block device driver supports three devices, then these de­
vices will be named 0, E and F.

• A pointer to a BIOS parameter block (BPB) pointer array. BPB's con­
tain information about the characteristics of the supported device,
e.g sector size, number of sectors. Chapter 2 in the DOS Technical
Reference Manual contains more information on the subject.

8.5.5 The Request Header

The initialization call is only one of many function calls from DOS to
the device driver program. DOS approaches the device driver twice to
handle one request. The device strategy routine receives the first request
from DOS and saves a pointer to the Request Header. The strategy routine
enqueues the request, complete with parameters for the interrupt routine.

DOS Extensions 125

When the strategy routine returns to DOS. DOS immediately places a second
request to the interrupt routine which actually performs the request and
returns its status to DOS.

The area used for communication between DOS and the two device driver
routines is variable in length and headed by a 13-byte request header
(Figure 6) followed by data appropriate to the requested function.

Field length

length in bytes of the request BYTE
header plus any data at the end
of the request header

Unit code. Has no meaning for BYTE
character devices.

Command code BYTE

Status word WORD

Area reserved for DOS 8-BYTE

Data appropriate to the request Variable

Figure 6. Request Header

8.5.6 Dev;ce dr;ver funct;ons

The command code byte in the request header defines the function and there
are now sixteen different functions defined in DOS versions 3.00 and 3.10.

Following are descriptions of the different functions available:

INIT (Funct;on 0): The INIT function called once during device driver
installation:

• Defines the number of units for DOS.
• Sets up each device.
• Sets the ending address of the driver.
• Sets the address for the pointer to the BIOS parameter block.
• Sets the status word.

The initialization function sets up the device driver within DOS. It is
possible that the driver cannot set up the device. If this is the case.
it normally aborts without using memory.

126 IBM PC Internals

Media Check (Function 1): The Media Check function:

• Reads the media descriptor byte.
• Tests the media
• Sets the status word.
• Sets the media return code.

Build BIOS Parameter Block (Function 2): The Build BIOS Parameter Block
function.

• Checks the device to find the descriptor byte.
• Finds the matching BIOS parameter block.
• Sets the direct pointer to the BIOS parameter block.

This function causes the device driver to read the boot sector of the
media for the media description.

Input or output (Functions 3, 4, 8, 9, 12): The INPUT or OUTPUT function:

• Reads the sector byte count.
• Performs the requested function.
• Sets the actual count of sectors or bytes.
• Sets the status word.

Nondestructive Input No Wait (Function 5): The Nondestructive Input N~
Wait function:

• Provides a one-character look-ahead (character devices only).
• Sets the status word.
• Does not alter the input buffer.

Input or output status (Functions 6,10): The Input or Output Status
function:

• Determines the status of the input or output device.
• Sets the status word.

There is no data associated with this function.

Input or output Flush (Functions 7,11): The Input or Output Flush func­
tion:

• Clears the input or output buffer.
• Sets the status word.

There is no data for this function.

Open or Close (Functions 13,14): The Open or Close function is for set­
ting a device before starting a task.

Removable Media (Function 15): The Removable Media function sets the busy
bit (9) of the status word to 1 if the media is non-removable.

DOS Extensions 127

8.5.7 Example of IBM loadable dev;ce dr;vers

VDISK.SYS: The VDISK.SYS is a block device driver that comes with DOS.
This device driver simUlates a disk drive by using a portion of the com­
puter's memory as the storage medium.

• It is very fast.

• It can be installed in several copies.

• On the IBM PC/AT memory above the 1 Megabyte boundary can be used.

• The size of the simulated disk is defined at installation time.

• The source listing is available on the DOS Supplemental Programs
diskette. It is a good example of how to write a block device driver.

ANSI.SYS: The ANSI.SYS is a device driver that comes with DOS. It in­
terprets special character sequences (ESCape codes), using them to change
the behavior of the keyboard and display.

ANSI.SYS allows you to;

• reassign the keyboard key definitions. You can reassign a key to
issue other ASCII values, including character strings.

• control the position of the cursor on the screen.

• set attributes that determine how your display operates.

Set Graphics Rendition (SGR) codes allow you to change the fore­
ground and background color on your color display. It also allow
characters to be underlined (on IBM Mono Dispaly), blinking, re­
versed video, or invisible.

Set Mode (SM) codes allow you to set screen width and type.

Reset Mode (RM) codes are nearly the same as the SM codes (in fact
only one code is different)

8.6 OTHER RESIDENT EXTENSIONS

There are also a lot of other types of extensions for DOS that could make
the handling of the system easier. Sometimes is not DOS support good
enough, and then someone writes a program that intercept the DOS function
and replaces it. We will look at a few examples of that.

One thing that is common for this type of program is that they stay res­
ident when loaded. They usually redirect some interrupt vector into their
own code, and wait for the event (keyboard interrupt for example).

128 IBM PC Internals

8.6.1 Kevboard enhancers

This type of programs enhances the way DOS handles the keyboard. The
normal way to edit the commandline in DOS is quite limited. We may want
to be able to recall previous commands from some kind of buffer and we
would like it to stay on the command line so we can change it without parts
of it disappearing when we move the cursor.

There is also possible to have the program that wait for some key combi­
nation and emits a string of characters to DOS when it recognizes those
keys.

8.6.2 Popup utilities

This kind of utilities, when loaded, normally waits for a some key com­
bination that will wake it up. When the popup-keys are found The program
saves part of the screenimage and displays a window for communication with
the user.

These program is not multitasking in the normal sense. They are coresiding
with the normal DOS application running, but it is the user who decides
(via the popup/popdown key) which one is running.

A common type of function for these program is calendar. telephone di­
rectory etc.

8.7 CONCLUSION

This concludes our module on DOS extensions. At this point you should
understand the following:

• That DOS does not contain all the functions we need. It is just a base
for further improvements and additions.

• What a multitasking extension gives us. and how it is implemented on
top of DOS.

• Why DOS does not support any thinkable devices and how we can help
out by constructing our own device driver.

• That there is a lot of different ways to enhance functions that are
already present in DOS, but could be made easier to use or more ef­
ficient.

For further studies on the subject the DOS Technical Reference Manual and
the TopView Toolkit Manual are warmly recommended.

DOS Extensions 129

130 IBM PC Internals

9.0 80286 ARCHITECTURE FUNDAMENTALS

9.1 OBJECTIVES

The power of the Intel 80286 microprocessor used in the IBM PC/AT extends
far beyond the ability to run PC DOS programs at a faster rate than the
PC. The 80286 processor can run in two different modes -- real and pro­
tected. Real mode is compatible with the 8088 used in the rest of the
PC models and is also the mode PC DOS uses on the IBM PC/AT.

Because of the complexity and sophistication of the 80286, you will find
this section more difficult than most other sections in the PC Internals
Fundamentals course. It will only begin to make complete sense after two
or possibly more readings; at the outset, you will find yourself grasping
only individual details. In attempting to teach the 80286 architecture
one encounters a classic chicken-and-egg problem: there is no logical
place to begin, because in order to understand each component of the ar­
chitecture you must know the other components too. Hopefully this module
will at least acquaint you with some of the important features of the
80286 over its predecessors.

In this module we will look at the processor when it is running in pro­
tected mode, and at the end you should understand the following:

• The differences between real and protected mode

• The concept of global and local virtual address spaces

• The protection types available and how they function

• How task switching and state transitions are handled

• The concept of privileged Input/Output operations

• How Interrupts and exceptions are handled

9.2 AGENDA

In order to accomplish these objectives, we will proceed as follows:

1. The concept of segmented addressing and the registers of the 80286
in real mode will be compared with the new way in which they are used
and expanded in protected mode.

2. The virtual addressing scheme will be explained and we will look into
the use of global versus local address spaces.

80286 Architecture Fundamentals 131

3. The protection built into the addressing scheme will be expanded with
the concept of privilege levels.

4. The different methods of task switching and transfer of control will
be explained, as will the concept of using gate descriptors.

5. The way in which interrupts and exceptions are handled in real address
mode will be compared with how they are handled and expanded in pro­
tected mode.

6. The protection of memory-mapped and port-based Input/Output oper­
ations will be discussed.

9.3 INTRODUCTION TO THE 80286 PROCESSOR

The 80286 processor has many features in common with the 8088 and 8086
processors. Examples are byte-addressed memory, I/O interface hardware,
interrupt vectoring and support for multiple processors and processor
extensions. The addressing modes and the basic instruction set are also
the same.

The 80286 processor can function in two modes of operation. In one of
these modes CReal addressing mode) only the base architecture is available
to programs, whereas in the other mode (Protected addressing mode) a
number of very powerful advanced features have been added, including
support for virtual memory, multitasking and a sophisticated protection
mechanism.

9.3.1 "emo~y management

The memory architecture of the 80286 in Protected mode has been signif­
icantly enhanced and expanded. The physical address space has been in­
creased from 1 megabyte to 16 megabytes, while the virtual address space
(i.e., the address space visible to a program) has been increased from 1
megabyte to 1 gigabyte (1 gigabyte=2-30, or 1 r 024 megabytes). Moreover,
separate virtual address spaces may be provided for each task in a
multitasking system.

The 80286 supports a segmented memory architecture. It also fully inte­
grates memory segmentation into a comprehensive protection scheme. This
protection scheme includes hardware-enforced length- and type-checking
to protect segments from inadvertent misuse.

Mechanisms are included in the 80286 to allow an efficient implementation
of a virtual memory system. All instructions that could refer to a vir­
tual segment that is not in real memory at the time the instruction is
executed are fully recoverable. Such a situation would cause what is
called a Segment-Not-Present fault, and would invoke an operating-system

132 IBM PC Internals

.uutine to take care of the interrupt by loading the requested segment
into real storage from an external device. then by restarting the faulted
instruction.

9.3.2 Task management

The 80286 is designed to support multitasking systems. The architecture
provides direct support for the concept of a task. For example. a special
segment type. the Task State Segment. is a hardware-recognized and
hardware-manipulated structure which contains information on the current
state of all tasks in the system.

Very efficient task switching can be invoked with a single instruction.
Separate logical address spaces may be provided for each task in the
system. Finally. mechanisms exist to support inter-task communication.
synchronization, memory sharing and task scheduling.

9.3.3 Protect;on mechan;sms

The 80286 protection mechanisms are based on the notion of a "hierarchy
of trust". Four privilege levels are distinguished, ranging from Level
o (the most trusted) to Level 3 (the least trusted). level 0 is usually
reserved for the operating system kernel. The four levels may be visual­
ized as concentric rings, with the most privileged level in the center.

At anyone time. a task executes at one of the four levels. Moreover.
all data segments and code segments are also assigned to privilege levels.
A task executing at one level cannot access data at a more privileged
level, nor can it call a procedure at a less privileged level (i.e. trust
a less privileged procedure to do work for it). Thus. both access to data
and transfer of control are restricted in appropriate ways.

The 80286 also make a complete separation of logical address spaces for
different tasks possible. This part of the protection scheme is a natural
part of the 80286 memory management architecture.

Privilege levels and separation of logical address spaces enables us to
organize software systems so that each task is protected from damage by
other tasks and so that privileged procedures are protected from lower­
level procedures.

The processor interprets the protection parameters and automatically
performs all the checking necessary to implement protection.

80286 Architecture Fundamentals 133

9.4 COMPARING THE REGISTERS IN REAL AND PROTECTED MODE

The register structure of the 80286 in protected mode looks very much the
same as in real address mode. All the general registers (AX, BX. CX, DX,
BP, SP, 51 and DI) as shown in Figure 7 on page 134 are exactly the same.

7 o 7 o

AX AH Al

DX DH Dl

CX CH Cl

BX BH Bl

BP

51

DI

SP

15 o

Figure 7. 80286 General Registers.

The segment registers (CS, DS, ES and 55) are still present. but they are
called segment selectors because they no longer contain the base address.
They are now used as index pointers into a memory table, where the real
base address information is stored.

As you can see in Figure 8 on page 135 the segment selectors contain two
parts. The 16-bit part we can reach from programs; in addition there is
a 48-bit program invisible part. The first part contains the selector,
and the second part contains the physical address information that the
processor has picked up from the memory table.

134 IBM PC Internals

Segment
Selectors Program Invisible Part

CS

DS

SS

ES

15 0 47 o

Figure 8. 80286 Segment Registers.

There are some new registers in the 80286, but we will return to them
later.

9.S DIFFERENCES IN THE MEMORY ADDRESSING SCHEME

Let us refresh our memory on how we used the segment register in real
address mode to point directly into real memory, as shown in Figure 9 on
page 136. The processor added four binary zeroes to the segment value,
and that gave us the possibility to start the segment on any 16-byte
boundary within the I-megabyte physical address space.

80286 Architecture Fundamentals 135

Real Address Mode

I I
A

1
Selector

10000 1

/ /

> 1 Megabyte
Segment Base I ////////////// Physical
Address // Segment /// Address

Size V ////////////// Space

64 Kbyte

/ /

I I V

Figure 9. Segment Selector Interpretation <Real Address Mode)

Figure 10 on page 137 shows how the 80286 in protected mode instead uses
14 bits of the selector to indicate which segment we want to access. The
14 bits enables us to point to 16K different virtual segments. which could
be from 1 byte to 64K in size. Note that these 14 bits are not an address:
they are a segment number. By allowing 16K different segments of 64K
maximum size each. we are able to address a total of 1 Gigabyte of virtual
storage. and this is also the view an application programmer should use.
How these segments are mapped into the 16 Mbytes of real storage should
normally be of no concern for the application programmer. but we will look
at this more closely in a moment.

136 IBM PC Internals

Protected Mode
A

Selector Seg I 0

Seg I 1
L-______________ >~------------_;

Seg I 2
Each Segment
1 Byte - 64 Kbyte

/

Seg I 3FFD

Seg I 3FFE

Seg I 3FFF

1 Gigabyte
Virtual

/ Address
Space

V

Figure 10. Segment Selector Interpretation (Protected Mode)

If we look once more at the segment selector in Figure lion page 138,
we see that in real address mode the 16+4 bits give us the physical seg­
ment base address.

In protected mode we divide the selector into three parts. The high-order
13 bits are used as an index into one of two active memory tables. These
tables are called the Global Descriptor Table (GOT) and the Local De­
scriptor Table (LDT). The table entries are called Descriptors and con­
tain the information the processor needs to map the segment into real
storage. Each table may contain up to 8K descriptor entries and the TI
(Table Indicator) flag tells the processor which one to use.

The low-order two bits are called the Requested Privilege Level (RPL) and
we will discuss privilege levels in more detail later.

80286 Architecture Fundamentals 137

Real Mode

16 bit Segment Selector

<---------------------------------->
15 o

I I I I I I I I I I I I I I I I 10 I 0 I 0 I 0 I
19 0

< >
20 bit Segment Base Address (Physical)

Protected Mode

15 321 0

INDEX - Used to Select a Descriptor Entry
TI - Table Indicator (0 = GOT, 1 = lDT)

RPl - Requested Privilege level

Figure 11. Segment Selectors (Real and Protected mode)

When we addressed real storage in real address mode we needed a pointer
that consisted of two parts -- the segment register value plus an offset.

When we want to address real storage in protected mode the pointer also
consists of two parts -- the selector and an offset. You can see this
pointer at the lower left corner of Figure 12 on page 139. In fact, to
the programmer, there is no difference. The selector points to a de­
scriptor entry in a descriptor table. The descriptor entry contains the
physical base address of the segment, which is added to the offset by the
physical address adder to give us the real 24 bit storage address.

138 IBM PC Internals

CPU //

//

//

MEMORY

/

Segment Base <-----------------------,
Address Descriptor

Table

/

//

//

// L..---+--------------i<

Pointer

~------> //
~-------> //

>
>

Offset

Physical //
Address
Adder //

//

//

//

//

//

//

//

//

Figure 12. Protected Mode Addressing

What are descriptors and what do they contain?

/

>

/

Data / Code
Segment

/

/

Each descriptor in the Global or local descriptor table contains 8 bytes.
Figure 13 shows us the layout.

limi t Base Address Acc. INTEl
Code Reserved

I I I I

o 1 2 3 4 5 6 7

Figure 13. Descriptors.

The first two bytes contain a size limit value which points to the last
byte of the segment. When we try to address storage through this de­
scriptor, the processor will always check to see that our offset value
is within the limit. Any attempt to access memory outside our segment
will cause an exception, which hopefully some operating system routine
wi 11 handle.

The next 3 bytes (24 bits) contains the physical base address of the
segment when it is mapped into real storage. This is the only place where
we can find a genuine real-storage address. This enables the processor
to start a segment at any physical address within 16 megabytes, not just
on a paragraph boundary.

80286 Architecture Fundamentals 139

The fifth byte is the Access Code. This byte contains fields that iden­
tify the type of descriptor and some other fields controlling the access
available to this segment.

There are four types or classes of descriptors. They are:

1. DATA Segment Descriptors (these refer to segments containing system
or application data, including stacks).

2. EXECUTABLE Segment Descriptors (refer to segments containing execut­
able instructions).

3. SYSTEM Segment Descriptors (refer to segments containing special
hardware-recognized data structures).

4. GATE Descriptors (define entry points for control transfers).

When we addressed storage in Figure 12 on page 139, we described it as
if we fetched the segment base address from the descriptor table at that
time. This is not exactly true. It would be too much work for the
processor.

140 IBM PC Internals

If we look back at our segment selectors again, we will find that the
processor will not have to reference the descriptors every time it is
calculating a physical address. The program invisible part of the se­
lector has the space needed to keep the current information for every
selector, as you can see in Figure 14.

Segment
Selectors Program Invisible Part

CS

DS

SS

ES

15 0 47 39 15 0
A A A

L L L Limi t
Base Address

Access Rights

Figure 14. 80286 Segment Registers.

How do we get that information into these invisible selector extensions?

Figure 15 shows one of the descriptor tables, on the right of the figure.

GDTR or LDTR / SYSTEM o /

Baseaddress L I
MEMORY

imit

>

Segment Register
CS or OS or ES 0 r 55

Selector II It--- I
Inde=l> -Descri ptor-

Tabl ..

I
v

Acc Baseaddre ss I Limit I
Hidden Segment Descriptor / 16M /

Figure 15. Descriptor Loading.

80286 Architecture Fundamentals 141

This could be either the global or the active local descriptor table.
There are two new registers that point to these tables, the GDT register
and the lDT register. Don't worry about these for now.

When the program loads a new value into one of the four segment selectors
CS, OS, ES or 55, the processor will then use the Table Indicator bit to
point to the right descriptor table. The Index value in the selector
points to one of the descriptors, and the addressing information is moved
from real storage into the hidden part of the segment selector within the
processor.

From now on, any addressing that uses that specific selector as a segment
pointer can be resolved within the processor.

142 IBM PC Internals

Let's now look at some new hardware registers needed to enable these ad­
dressing schemes.

There are four new system registers used in protected mode. These are
shown in Figure 16.

Selector 40 bit hidden descriptor

GOT Reg

LOT Reg

lOT Reg

Task Reg

39
A
L Base Address

15
A
L Size

o

Figure 16. 80286 Hew System Registers.

They all contain a hidden 40-bit part and two of them also contain a
visible selector part.

GDT Reg

LDT Reg

The Global Descriptor Table Register points to the table that
provides a complete description of the global address space.
It is normally static and loaded during initialization. Two
dedicated instructions (only available at the most privileged
level in the system) are used for loading and storing this
40-bit value.

The Local Oescriptor Table Register is a dedicated 40-bit reg­
ister that contains, at any given moment, the base and size of
the local descriptor table (LOT) associated with the currently
executing task. Unlike GDTR, the LOTR register contains both
a "visible" and a "hidden" component. Only the visible compo­
nent is accessible, while the hidden component remains truly
inaccessible even to dedicated instructions.

The dedicated, protected instructions LLDT and SLOT are re­
served for loading and storing the selector part of the LOT
register. The 40-bit hidden part is automatically loaded from
the descriptor entry in the global descriptor table, pointed
to by the selector.

80286 Architecture Fundamentals 143

IDT Reg The Interrupt Descriptor Table Register points to the table
that defines interrupt handlers for up to 256 different inter­
rupts. It is normally static and loaded during initialization.
Two dedicated instructions (only available at the most privi­
leged level) are used for loading and storing this 40-bit value.

Task Reg The Task Register is a dedicated 40-bit register that contains
the base and size of the active Task state Segment (TSS). The
Task register contains both a "visible" and a "hidden" compo­
nent. Only the visible component is accessible. while the
hidden component remains truly inaccessible even to dedicated
instructions.

The dedicated, protected instructions lTR and STR are reserved
for loading and storing the selector part of the Task register.
The 40-bit hidden part is automaticallY loaded from the de­
scriptor entry in the global descriptor table. pointed to by
the selector.

144 IBM PC Internals

There is also two new flags used in the flags register. If you look at
Figure 17 you will find all the familiar flags from real mode, but also
two new ones.

FLAGS
Same as in Real Address Mode

<-->

A A
~ L--- I/O Privilege

Nested Task Flag

Level

MACHINE STATUS WORD (MSW)

A A A A

Task Switch ~~ I
Processor Extension Emulated ~

Monitor Processor Extension

Protection Enable

Figure 17. Flags and the Machine Status Word.

• NT -- Nested Task Flag indicates that one task has called another
task. This helps the processor to find the way back when the called
task ends.

• IOPL -- I/O Privilege Level indicates the highest priority that is
needed to perform the privileged I/O instructions.

The last new register is the MSW (Machine Status Word).

• TS -- Task Switched indicates the next instruction using a processor
extension will cause an exception 7, allowing software to test whether
the current processor extension context belongs to the current task.

• EM -- Emulate processor extension causes a processor extension not
present exception on ESC instructions to allow emulating a processor
extension.

• MP -- Monitor processor extension allows WAIT instructions to cause
a processor extension not present exception.

80286 Architecture Fundamentals 145

• PE -- Protected mode Enable places the 80286 into protected mode and
can not be cleared except by RESET.

So you can see that the MSW is used to get the processor from real to
protected mode. It is also used to indicate if you have processor ex­
tension of type 80287 (numerical processor) present or if programs should
take over and emulate the extension processors function.

146 IBM PC Internals

Before looking a little closer at the segment descriptors. we need to
understand the concept of privilege levels.

The 80286 processor protection scheme supports four privilege levels
where Level 0 is the most trusted level and Level 3 is the least trusted.
The four levels may be visualized as concentric rings. with the most
privileged level in the center. Figure 18 is a visualization of the
concept of the four levels.

r---------------------------------------,//--------------~
3333333333333333333333333333333333333 // 333333333333333
333333333333333333333333333333333333 // 3333333333333333

33333[§ //
33333 22222222222222222 // 22222222222 333333
33333 1 TASK A 12222222222222222 // 222222222222 333333
33333 "" / /---~ 222222 333333
33333 11111111111111 // 1111111 222222 333333

333333

333333 222222 1111111111111111 // 11111111 222222 333333
333333 222222 111111 //---- 111111 222222 333333
333333 222222 111111 0000000 // 000 111111 222222 333333
333333 222222 111111 000000 // 0000 111111 222222 333333

////////////////////////////// 00000 1111[§3333
333333 222222 111111 000000 // 0000 1111 3333
333333 222222 111111 0000000 // 000 1111 1 TASK B I 3333
333333 222222 111111 //---- 1111 - - 3333
333333 222[§11111111 // 111111 3333
333333 222 I I 111111111 // 11111111222222 333333
333333 222 TASK C // -222222 333333
333333 222 22222222222 // 222222222222 333333
333333 222 222222222222 // 22222222222 333333
333333 // 333333
333333333333333333333333333333333333 // 3333333333333333
3333333333333333333333333333333333333 // 333333333333333
~--------------------------------------//--------------~

00000 = Privilege Level 0 (Kernel>
11111 = Privilege Level 1 (System Services. I/O>
22222 = Privilege Level 2 (Custom Extensions>
33333 = Privilege level 3 (Applications)

Figure 18. Privilege Levels.

The levels and their recommended use are:

Level 0 This is the most trusted level. and code executing on this level
can use all the 80286 instructions. This level is used by the
routines in the operating system that are essential for re­
source allocation and control. This part of the system is often
referred to as the kernel in some operating systems and the
nucleus in others.

80286 Architecture Fundament~ls 147

Level 1

Level 2

Level 3

The second most trusted level is normally used for the rest of
the operating system routines and for the Input/Output support
routines.

This level could be used as the application support level. It
can be used for routines which do not belong to the operating
system, but which should still be protected from applications.
Examples of these are communications and database management
routines.

This is the least trusted level and this should be the level
used for normal applications.

Let's now return to the segment descriptors and take a closer look at
them.

A reference from one segment (e.g. a code segment) to another (e.g. a data
segment) is realized indirectly through a descriptor, which contains in­
formation about the referenced segment.

All descriptors reside in a descriptor table. Every segment must have
at least one descriptor, otherwise there is no way of addressing the
segment. Referring to Figure 19 we see that each descriptor has a size
of eight bytes. Six of these are used by the 80286 and the other two are
reserved for use by the next generation of processor from Intel -- the
80386.

Limit Base Address Acc. INTEL
Code Reserved

I I I I

o 1 2 3 4 5 6

Types are: - Executable Segment Descriptor
- Data Segment Descriptor
- System Segment Descriptor
- Gate Descriptor

Figure 19. Descriptors.

The main common fields are:

7

segment Limit The value of this field is one less than the length of the
segment (in bytes) relative to the beginning of the segment.
The 16 bits of this field make it possible to have segments up
to 64K bytes long. The hardware automatically checks all ad­
dressing operations to ensure that they do not exceed the seg­
ment limit of the segment to which they refer.

segment Base This field contains the physical address of the beginning
of the memory segment referred to by this descriptor. The 24
bits of this address give the 80286 a 16-megabyte range of real

148 IBM PC Internals

addresses. This is the only place in which physical addresses
are used. All other addresses are relative to the physical
addresses stored in descriptors, making it possible to relocate
executable and data segments without making any changes to the
relocated segments or to the code that refers to the segments.
The only necessary change to relocate a segment is to change
the physical address stored in the descriptor.

Access code This byte first defines the descriptor to be one of the four
different types. Depending on the type field, the remaining
fields in the byte have different meanings and purposes. The
fields will be explained when we look at each different de­
scriptor type below.

INTEL reserved This portion (16 bits) of the descriptor is reserved for
use by the next generation processor -- the 80386. It should
always be initialized with zeros.

80286 Architecture Fundamentals 149

Now it is time to look more closely at the information in the access code
field of the descriptor. We will start off with the executable segment
descriptor illustrated in Figure 20.

I Base Address
I I

o 1 2

I
\I

P

A 7
Present --'

Descriptor
Privilege level

3

DPl
I

A

J

***** Rese;ved I
4 5 6 7

Access Code

R A

5 4 3 A 2 A 1 A 0

Conform;ng --' J J
Readable

Accessed

Figure 20. Executable Segment Descriptor

I
\I

The two ones in bits 3 and 4 designates this descriptor as an executable
segment descriptor.

we will now look at the rest of the fields one at a time.

Present bit This bit is set on and off by the operating system and it is
checked by the processor hardware when we try to load the se­
lector.

• If the bit is on the segment addressed by this descriptor
is actually present in memory.

• If the bit is off any reference via this descriptor will
cause a fault and provide the operating system with the
opportunity to load the segment from external storage.

Descriptor Privilege Level The value of this item defines the privilege
level of the segment addressed by the descriptor. This value
could be 0, 1, 2 or 3. For the executable segment this will
normally be the privilege level of the actual running code.

conforming This field applies to executable segment descriptors only.
Ordinarily (when the bit is zero) a called procedure executes
at the privilege level defined by its own DPl. When the con­
forming bit is set however, the called procedure executes at
the calling procedures privilege level (which never could be
lower than the called procedure's own OPl).

150 IBM PC Internals

Readable This field applies only to executable segment descriptors.
When this bit is off. any attempt to read the code within this
segment will case a fault. The code is executable only. When
the bit is on. the code is executable and readable.

Accessed The processor sets this bit when the descriptor is accessed (ie.
loaded into a segment register). Operating systems which im­
plement virtual memory may use this bit to indicate whether this
segment should be written to secondary storage before the RAM
space it occupies is reused. This should not be necessary for
a executable segment since in cannot be written to. but it would
be used for a data segment (there is no way to know whether a
segment has been written to or has only been read).

80286 Architecture Fundamentals 151

What then is different for a data segment descriptor? As you can see in
Figure 21 the data segment descriptor is designated by bit 3 being off
and bit 4 being on. Bit 3 and 4 are checked by the processor hardware
when we try to refer to a segment. Trying to load the CS selector with a
data segment descriptor or OS, ES and SS with code segment descriptors
will always generate a fault interrupt.

lli mi ~ I Base Address
I I

o 1 2

I
V

P

A 7
Present --.J

Descriptor
Privilege Level

3

DPL ,
A

J

***** Rese~ved I
4 5 6 7

Access Code

W

5 4 3 A 2 A 1

~7~::;::~ ~ J
Writeable

Accessed

Figure 21. Data Segment Descriptor.

I
V

A

A 0

Let's look at the other fields in the data descriptor access code:

Present bit Same as in the executable segment descriptor.

Descriptor Privilege Level This defines the privilege level of the data
segment addressed by the descriptor. The data segment could
only be read from or written to by processes executing on the
same or a more privileged lavel.

Expansion Direction Data segments may contain stacks as well as other data
structures. Stacks expand toward lower addresses while most
other data structures expand toward greater (higher) addresses.
This field indicates the growth pattern for the segment.

If the bit is off, it indicates growth from the base address
upwards. The offset value must be less than the descriptor
limi t value

If the bit is on, it indicates growth from offset FFFFh down­
wards. The offset value must be equal or higher than the de­
scriptor limit value.

Writable This field applies to data segment descriptors. A value of one
permits writes into the segment and a value of zero inhibits
writes into the segment (read only).

152 IBM PC Internals

(

Accessed Same as in the executable segment descriptor.

80286 Architecture Fundamentals 153

The third type of segment descriptors is the system segment descriptor.
Bits 3 and 4 are both off and bit 2 1S off. Bit 2 enables the 80286
processor to differentiate this descriptor from the fourth type -- the
gate descriptor which we will look at later.

There are two types of system segments defined by this descriptor. As
you can see by Figure 22, they are specified by the type field in bits 0
and 1. The first type of system segment 1S the Local Descriptor Table
segment (LDT) and the second type is the Task Siate segment (TSS) which
could be marked either as available or busy. We will talk more about the
TSS a little later.

The Present bit and the Descriptor Privilege Level bits are used in the
same way as in the data segment descriptor above.

I limit I Base Address
I I I

0 1 2 3 4

I
V

A 7 A 5
Present -' J Descriptor
Privilege level

***** Reserved I I

5 6 7

Access Code

4

V V

1 0

o 1

1 1

3 2

local Descriptor
Table (lDT>

o

Task State Segment
(available state)

Task State Segment
(busy state)

Figure 22. System Segment Descriptor.

9.6 CONTROL TRANSFER MECHANISMS

I
V

We can divide the control transfer mechanism of the 80286 into two cate­
gor; es.

• Transfer of control within a task

154 IBM PC Internals

• Transfer of control between tasks (multitasking)

Transfer of control w;th;n a task can be of three kinds:

1. Within a segment, causing no change of privilege level (short jump,
call, or return)

2. Between segments at the same privilege level (long jump, call, or
return)

3. Between segments at different privilege levels (far call or return)

The two first types of control transfers need no special control with
respect to privilege protection. The third type is an inter-level
transfer and requires special considerations to maintain system integ­
rity. The 80286 hardware must check that:

• The task is currently allowed to access the destination address.

• The correct entry address is used.

To achieve control transfers, a special descriptor type called a gate is
provided to mediate the change in privilege level. Control transfer in­
structions call the gate rather than transfer directly to a code segment.
From the viewpoint of the program, a control transfer to a gate is the
same as to another code segment.

Gates allow programs to use other programs at more privileged levels in
the same manner as a program at the same privilege level. Programmers
need never distinguish between programs or subroutines that are more
privileged than the current program and those that are not.

let's look at that last type of segment descriptor now.

A gate is an 8-byte descriptor used to redirect a control transfer to a
different code segment in the same or a more privileged level, or (as we
will discuss later) to a different task. There are four types of gates:
call, trap, ;nterrupt and task gates. Figure 23 on page 156 shows the
format of the gate descriptor.

80286 Architecture Fundamentals 155

I Offset I Dest. sel·1 ISW ***** Reserved I I I

0 1 2 3 14 5 6 7

I I
V Access Code V

I P I DPl 1/ 0

':'
0 '~' 1 /1 Type I I

I
I

I I
v V V V

Offset B 0 0 CAll Gate
I

r 1 r - - 1
Hot Used H.U. 0 1 TASK Gate

l J l __ J

r - - 1
Offset H.U. 1 0 IHTR Gate

I l __ J

r - - 1
Offset H.U. 1 1 TRAP Gate

I l __ J

Figure 23. Gate Descriptor.

A key feature of a gate is the redirection it provides. All four gate
types define a new address which transfers control when invoked (the
destination selector plus offset in the gate descriptor). This destina­
tion address normally cannot be accessed by a program. When a program
invokes a gate to transfer control, only the selector portion (loaded into
CS) is used. The offset portion specified in the program is ignored and
the offset in the gate descriptor is used instead. All that a program
need know about the desired function is the selector required to invoke
the gate. The 80286 will automaticallY start the execution at the correct
address.

A further advantage of a gate is that it provides a fixed address for any
program to invoke another program. The calling program's address remains
unaltered even if the entry address of the destination program changes.
Thus, gates provide a fixed set of entry points that allow a task to ac­
cess. for example, operating system functions such as simple subroutines,
yet the task is prohibited from simply jumping into the middle of the
operating system's code.

Call gates are used for control transfers within a task which must either
be transparently redirected or which require an increase in privilege
level. A call gate normally specifies a subroutine at a greater privilege
level, and the called routine returns via a RET instruction.

156 IBM PC Internals

Trap and interrupt gates handle interrupt operations. and we will come
back to them when we discuss interrupt vectoring.

Task gates are used to control transfers between tasks. and this leads
us to the second category of control transfers -- transfers of control
between tasks (multitasking).

An 80286 task is a single. sequential thread of execution. Each task can
be isolated from all other tasks. There may be many tasks associated with
a 80286 processor. but only one task executes at any time. The state of
a task (from the processor's point of view) is the contents of the reg­
isters used by the task.

Switching the processor from executing one task to executing another can
occur as the result of either an interrupt or an inter-task call or jump.
The architecture of the 80286 defines a special type of hardware­
recognized segment. the Task State Segment (TSS). for storing the
80286-related state of a task. The format of the task state segment is
shown in Figure 24 on page 158.

80286 Architecture Fundamentals 157

/ /

SYSTEM MEMORY r-->
A Back Link Selector

SP for CPL 0
/ /

Global Descr. Table (GDT) SS for CPL 0

• •••• 'I> · · ... · SP for CPL 1
->

llllll BBBBBBBBB AAAA RRRRRRR SS for CPL 1

· · · ... · SP for CPL 2
-
· · · ... · SS for CPL 2
-

/ / IP (entry point)

Flag Word
/ ////////////////// ////////// //////////

V V // Registers AX, CX,

-1 Selector I I Limit I Baseaddress I // DX, BX, SP, BP, SI
//

> and DI
CPU - Task Register OR) //

// ES Selector
//

// CS Selector
//

// SS Selector
//

// DS Selector
//

// Task LDT Selector
// V
// / /

Figure 24. Task State Segment.

Multitasking operating systems on any processor need to store similar
information. The 80286 processor requires a specific format of the TSS
that will enable it to provide a very high performance in task switch
operations with complete isolation between tasks. A full task-switch
operation takes only about 25 microseconds on a normal PC/AT. This would
enable the PC/AT to give control to about 35- to 40,000 tasks in one
second (assuming the tasks do nothing more than a return instruction).

A special segment descriptor is used for Task State Segments. Refer to
Figure 22 on page 154. This type of descriptor must be accessible at all
times.
(GDT) .

158

Therefore. it can only appear in the Global Descriptor Table
The Task Register within the processor contains a selector to the

IBM PC Internals

current task segment descriptor. Each TSS selector value is unique.
providing an unambiguous "identifier" for each task.

A TSS contains 22 words that define the contents of all registers and
flags, the initial stacks for privilege level 0 to 2. the Local Descriptor
Table (LDT) selector for the task's private address space. and a link to
the TSS of the previously executing task.

9.6.1 Task switching

A task switch may occur in one of four ways:

1. The destination selector of a long JMP or CALL instruction refers to
a TSS descriptor in the GDT. The offset portion of the destination
address is ignored and the IP (entry point) in the TSS is used in­
stead.

2. An IRET instruction is executed when the NT (Nested Task) bit in the
flag register is on. The new task TSS selector is in the back link
field of the current TSS.

3. The destination selector of a long JMP or CALL instruction refers to
a task gate. The offset portion of the destination is ignored and
the new task selector is in the gate. Refer to Figure 23 on page
156.

4. An interrupt occurs. The interrupt's vector refers to a task gate
in the Interrupt Descriptor Table (IDT). The new task TSS selector
is in the gate. (We will come back to this when discussing interrupt
handling later).

There is no new instruction required for a task switch operation. The
standard JMP. CALL and IRET instructions used in real mode and in the 8088
processor are still valid. The distinction between the standard
transfer-of-control instruction and a task switch is made either by the
type of descriptor referenced or by the NT (nested task) bit in the flag
register (for the IRET instruction).

Access to TSS and task gate descriptors is restricted by the rules of
privilege levels. The data access rules are used. thereby allowing task
switches to be restricted to programs of sufficient privilege. Address
space separation does not apply to TSS descriptors since they must be in
the GDT.

Once access to the TSS has been granted, the task switch operation in­
volves six steps:

1. Recognizing that the JMP/CALL/IRET instruction or the interrupt re­
quires a task switch. The new TSS to use is defined either directly
by the TSS descriptor granted or is in the task gate descriptor.

80286 Architecture Fundamentals 159

2. Checking that the current task is allowed to switch to the designated
task. The current task becomes the outgoing task.

3. Checking that the new task is present and has a proper TSS limit.
The new task becomes the incoming task.

4. Saving the state of the outgoing task. The outgoing TSS selector is
in the task register (TR). The dynamic portion of the outgoing TSS
is written with the corresponding processor register values (e.g. AX,
BX, CX, OX, SI, 01, BP, SP, ES, OS, SS, CS, IP and flags register).

5. Load TR with the incoming task selector, mark the incoming task's
descriptor as busy, and set on the TS bit in the Machine Status Word
(MSW).

6. Load the incoming task state (the following registers are loaded: LOT,
AX, BX, CX, OX, SI, 01, BP, SP, ES, OS, SS, CS, IP and flag register).
If the switch was due to a CALL (or interrupt), the NT (nested task)
bit is set on, and the back-link field in the new TSS is set to point
to the previous TSS. If the switch was due to JMP or IRET, the old
task's descriptor type code is reset, indicating that the task is no
longer busy. Resume execution of new task.

9.7 INTERRUPT VECTORING IN PROTECTED MODE

Let us now look at what happens when the processor is interrupted by some
external or internal event.

The processor associates each event with an identifying number in the
range 0-255. The processor recognizes three classes of events:

External Events occurring outside the 80286 processor's environment are
communicated to the processor via the INTR or NMI (non­
maskable interrupt) pins. The NMI is interrupt 2. Other ex­
ternal interrupts share the INTR pin via one or more 8259A
Programmable Interrupt Controllers, which can map each inter­
rupt to a unique interrupt 10 in the range 32 - 255.

Processor When the processor detects a condition that it cannot handle
(e.g. Oivide error, Undefined Opcode, General Protection Ex­
ception etc.), it communicates this fact by causing an inter­
rupt with an 10 in the range 0-16.

Software Programs can signal events by executing the instructions 'INT
n' and INTO (INTerrupt on Overflow). With 'INT n', the value
n can be any interrupt identifier in the range 0-255. This
gives software the ability to simulate hardware interrupts as
well as the ability to cause interrupts that are not directly
associated with hardware events.

160 IBM PC Internals

When the 80286 is running in real address mode the interrupt vector is
used as an index from the bottom of real memory (address 0000:0000). This
is exatly the same process that has been described in earlier lectures
on the 8088 and PC architecture.

In protected mode the interrupt vector is instead used as an offset into
an Interrupt Descriptor Table (IDT). The IDT is a segment somewhere in
storage based on the IDT register in the processor. This register is like
the GDT register normally loaded during the initialization phase.

The IDT contains a minimum of 32 descriptors for the lowest 32 interrupt
vectors. If more interrupts are used, descriptors are added to the IDT
and the limit value of the IDT register has to reflect these additions.

The descriptors in the lOT are all gates and can be of three types:

• Trap Gate Descriptor

• Interrupt Gate Descriptor

• Task Gate Descriptor

The only difference between a trap gate and an interrupt gate is that the
interrupt gate specifies a procedure that enters with interrupts disa­
bled, while entry via a trap gate leaves the interrupt status unchanged.

Referring to Figure 25 on page 162 we can see that when the interrupt
arrives, the interrupt vector is used as an index into the lOT. The gate
descriptor contains a segment selector part and an offset part. The se­
lector part is loaded into the CS selector (pointing to a segment de­
scriptor in LDT or GOT), and the offset part is loaded into the IP
register (the old values in CS and IP plus the flag register are saved
on the active stack).

80286 Architecture Fundamentals 161

/ LDT or GDT
INT 1 /

/ ////////////

/// ////////////

/ Executable
/ //////////// Segment

I Interrupt I
//////////// .--->

ID -> B
Segment a
Descriptor -s

IDT e
////////////

0 //////////// ////////////

////////////

'----> I Offset
> Entry

1 Trap/lntr r- point
Gate Descr

2 ////////////

////////////

3 ////////////

////////////

Figure 25. Interrupt Vectoring for Procedures.

Another way of implementing interrupt handling routines is to have a task
gate descriptor in the IDT. Refer to Figure 26 on page 163.

Lets look at the interrupt vectoring for tasks:

162 IBM PC Internals

/

IHT /
/

///

/

/

I Interrupt ID I

IDT

////////////

////////////

'--->
Task Gate
Descriptor

////////////

////////////

GDT

////////////

////////////

//////////// TSS
//////////// ->

->
TSS
Descriptor -

////////////

////////////

r-

Figure 26. Interrupt Vectoring for Tasks.

The task gate points to a Task State Segment Descriptor in the GDT. This
causes the processor to switch tasks.

A task gate offers two advantages over trap/interrupt gates.

1. It automatically saves all of the processor registers as part of the
task-switch operation whereas a trap/interrupt gate saves only the
flag register and CS:IP.

2. The new task is completely isolated from the task that was inter­
rupted. Address spaces are isolated and the interrupt-handling task
is unaffected by the privilege level of the interrupted task.

9.8 INPUT/OUTPUT AND PROTECTION

The concept of protection as applied to I/O consists of two parts. One
part is the set of memory protection schemes which we already have de­
scribed in detail. This part of the protection is very useful to protect
memory-mapped I/O which is often used in conjunction with intelligent
controllers. The communication with the controllers is achieved by
interchanging information in specific common memory areas. These areas
can then easily be restricted to specialized system tasks and certain
privilege levels. The second part of the I/O protection scheme is what
makes it possible to limit the right to execute the I/O instructions and
some related instructions.

80286 Architecture Fundamentals 163

The instructions are:

IN
INS
OUT
OUTS
STI
ClI
lOCK

input (byte or word)
input string
output (byte or word)
output string
set interrupt flag (enable interrupts)
clear interrupt flag (disable interrupts)
lock bus

When the processor is interpreting any of these restricted instructions.
it compares the Current Privilege level (CPl) with the I/O Privilege level
(IOPl) in the flags register. If CPl exceeds IOPl. the processor causes
a general protection exception and does not carry out the instruction.

The IOPl part of the flags register can only be changed by a procedure
running on privilege-level O. There is no instruction that explicitly
affects IOPl. However. any of the operations that load the flag word can.
in some cases. change IOPl. The only mechanisms for changing the flag
word are:

- A task switch
- The POPF (pop flags) instruction
- IRET

When CPl is greater than zero. the POPF instruction does not change IOPl,
even though it changes other flags in the flag word. The processor issues
no error indication when this occurs.

A task switch loads the flags from the Task State Segment (TSS). As long
as the operating system does not make data-segment aliases for the TSS
available to less privileged levels, only the operating system can change
IOPl in the TSS.

To summarize the protection of I/O-operations. we can say that the 80286
has complete protection for both memory-mapped and port I/O, if the op­
erating system uses it in the right way.

9.9 CONCLUSION

We have come to an end of the 80286 architecture module. The reason for
the module in this course was to give some information about the protected
mode for workstation support personnel. There is almost nothing published
(outside INTEls manuals) about how the processor works in this mode. and
we already have some products that are using it on the market.

We have attempted to give the stUdent an understanding of what is going
on in a very complicated microprocessor. If you feel that you have not
understood it after reading it once. then remember that this is something
of a chicken-and-egg problem: a second reading may make it a little
clearer.

164 IBM PC Internals

APPENDIX A. SAMPLE "C" PROGRAM COMPLETE LISTING

Use this listing if you want to compile the sample "C" program, because
the one cited in the guide will not work. This version merely adds two
"include" files for the compiler's use. The program is compiled using the
IBM PC "C" Compiler for DOS.

/* TESTC.C */
/* Gets a character from keyboard */
and echoes its uppercase to display. */
/* This program loops 20 times, then exits. */

linclude <conio.h> /*needed for C function calls */
linclude <ctype.h> /*needed for C function calls */
int count;
int keystroke;
maine)

(
int keystrokei /*reinitialize for this routine */
while Ccount < 20)

}

(
keystroke=getchC)i
putchCtoupperCkeystroke»;
count++i
}

Appendix A. Sample "e" program complete listing 165

166 IBM PC Internals

APPENDIX B. SCHEDULE OF IN-CLASS VERSION OF COURSE

PC PC BIOS DOS Cont'd Compatible
Instructor Architec- PC's

ture
Set Up DOS

I I
Extensions

Assembler LAB 2 Conclusion

L U H C H

Intro Assembler LAB 3
Cont'd

DOS
8088 80286

Architec- Architec-
ture LAB 1 ture

Appendix B. Schedule of In-Class version of course 167

168 IBM PC Internals

APPENDIX c. 8088 ASSEMBLER LAB

This lab is designed to accomplish three objectives:

1. To teach you how to use some of the features of the Resident Debug Tool

2. To show you an assembler program in both source and object formats,
and allow you to follow the object through while using the source for
reference

3. To let you use some of the instructions we have seen so far. and to
let you change some of them using machine language encoding.

You should not have any difficulty in completing the lab within one hour,
providing your instructors have set up the PC's in advance for the lab.
You should have a diskette from the instructors containing the sample
programs, and a PC with which to work.

1. Turn on the PC and load DOS if it doesn't load itself. At the DOS
prompt, type "RDT". (In this all future instructions on what to type, we
assume you will press the Enter key after each instruction). This will
load the Resident Debug Tool, which allows you to step through the machine
code of a program. You will see a logo screen; press a key and the DOS
prompt will return.

2. How type "ASMLAB". This loads the file ASMLAB.COM, which is the object
code for the source file "ASMLAB.ASM", a printout of which is attached
to these lab notes.

3. A totally different screen will appear: The RDT Memory screen. How did
this screen appear? It is not part of the ASMLAB program. It was, however,
invoked by our program, using an interrupt, IHT 3, which RDT traps.

Type "DW". This will take you to the Disassembly window, which we will
examine first. Read through the following example and compare it to what
you see on the screen. Make sure you understand what our definitions of
the lines mean. If you don't, ask a lab instructor.

Appendix C. 8088 Assembler Lab 169

a.
b.
c.
d.

DISASSEMBLE WINDOW

1. Release and program title line
REl 1.00 IBM PERSONAL COMPUTER RESIDENT DEBUG TOOL D1 01/01/84

2. Variable line - V1 ••• V9 can hold 20-bit hex values
Vi: V2: V3: .••. V4: .••• V5: •... V6: ..•• V7: •..• V8: ...• V9: .•..

3. Breakpoint variable line - Sl ••• S9 can hold breakpoint addresses
Sl: S2: •••• S3: ..•• S4: •... S5: •.•. S6: ..•• S7: .•.• S8: ...• S9: .•.•

4. Window ID line. Characters are in ASCII, window is DISASSEMBLY

5-7. Register area, with contents

AX: 0000 BX: 0000 CX: OOFF
sp: FFFE BP: 0882 SI: 0100
CS: 1BA20 DS: IBA20 SS: 1BA20

8. Current instruction
LC: INT 3

DX:
Dl:
ES:

DISPLAY: ASCII WINDOW: DISASM

1BA2
FFFE

1BA20

Flag area

TR: 00 . . . •• • .•.•
FL:F246 OF:O DF:O IF:l TF:O

SF:O ZF:1 AF:O PF:1 CF:O

Op: ..•.•

9. IP value CS+IP Machine instruction
IP: 0100 EX: 1BB20 CC STEP CT: 0001 CO:

10. Command line ==>

11. status line
BLANK

12-25. Disassembly lines Ll-M5.

a b c d e f g

Ll: * IBA20: 0100 CC INT 3
L2: 1BA20: 0101 B91400 MOV CX,0014
L3 : 1BA20:0104 BE2101 MOV SI,0121
L4: 1BA20:0107 BF4101 MOY DI,0141
L5: lBA20:010A 8A04 MOV AL,DS:[SIl 1BB20=CC
L6: 1BA20: 010C 3C61 CMP AL,61
L7: IBA20: 010E 7206 JB 1BB36 IBB36
L8: IBA20: 0110 3C7A CMP AL,7A
L 9: IBA20: 0112 7702 JA IBB36 IBB36
Ml: IBA20: 0114 2C20 SUB AL,20
M2: IBA20: 0116 8805 MOV DS:[DI1,AL 2BA1E=00
M3: 1BA20: 0118 47 INC DI
M4: 1BA20:0119 46 INC SI
M5: 1BA20: 011A E2EE LOOP 1BB2A IBB2A

Line identifier Ll ••• M5
Code segment
Offset
Hex for lItachine code (1-6 bytes)

170 IBM PC Internals

e. Instruction mnemonic, disassembled from machine code
f. Operand(s)
g. Address references for control statements (eg. L7)

Address references indicating value at address, for addressing
statements (eg. LSl
Blank for instructions which do not reference a location through
addressing or control transfer (eg. Lil

Now type "MW" to go back to the memory window. Compare the screen you
obtain with the one we have identified below.

MEMORY WINDOW

1-10: Same as in Disassembly Window
REl 1.00 IBM PERSONAL COMPUTER RE5IDENT DEBUG TOOL 01 07/01/84
VI: V2: V3: V4: V5: V6: V7: V8: V9:
51: S2: 53: S4: 55: S6: 57: S8: S9:

AX: 0000 BX: 0000 CX:
sp: FFFE Bp: 0882 SI:
CS: 1BA20 OS: 1BA20 55:

OOFF OX:
0100 01:

1BA20 ES:

DISPLAY: A5CII
1BA2
FFFE

1BA20

WINDOW: MEMORY
TR: 00

lC: MOV CX,0014

Fl:F246 OF:O DF:O IF:1 TF:O
5F:0 ZF:1 AF:O PF:1 CF:O

o P : •••••
STEP CT! 0001 CO: IP: 0101 EX: 1BB21 B91400

==> IP=IP+1;EX
EXECUTING

12-25. Memory lines ll. .. M5
a b c d e f g
11 * 00000 E84E2EO 1 7B96BF09 7104BF09 C304BF09 *.N.· q *
l2 00010 FOO17000 54FFOOFO 23FFOOFO 23FFOOFO * .. p.T *
l3 00020 A5FEOOFO 9607BF09 23FFOOFO 23FFOOFO * *
l4 00030 23FFOOFO 600700C8 57EFOOFO FOO17000 * W p.*
l5 00040 65FOOOFO 4DF800FO 41F800FO AB097000 *e ... M ... A p.*
l6 00050 39E700FO 59F800FO 2EE800FO D2EFOOFO *9 ... Y *
17 00060 000000F6 DDOA7000 6EFEOOFO EA017000 * p.n p.*
l8 00070 4BFFOOFO A4FOOOFO 22050000 OOOOOOFO *K *
19 00080 C3122E01 11031009 2F01DC1A 3C01DC1A * *
Ml 00090 C404DCIA 5B142EOl 9E142EOl 4D5B2EOl * M ... *
M2 OOOAO C9122EOl 4A017000 C9122EOl C9122E01 * J.p *
M3 OOOBO C9122E01 C9122E01 57023B08 AB152E01 * W *
M4 OOOCO EACA122E 01122E01 C9122E01 C9122EOl * *
M5 OOODO C9122EOl C9122E01 C9122E01 C9122E01 * *

a. line identifier
b. 20-bit address
c,d,e,f. 4 bytes each of memory contents, 10K to high memory
g. ASCII equivalent of values in the hex portion of the line

Notice that the addresses start at 00000. What is in this location? The
interrupt vector table. Each block of four bytes of memory is the address
for one of the interrupt vectors. When a program or an I/O event issues
an interrupt, the 8088 looks in this table to find the address of the
interrupt routine. The address is stored in the following format: Ol OH
5l 5H where 0 indicates offset, 5 indicates Segment, and land H indicate

Appendix C. 8088 Assembler lab 171

low and High. See if you can figure out the interrupt routine address for
INT O. On our example above, it's 012E:4EE8.

Now type "OW" and watch the disassembly window reappear. Notice that the
IP register contains 0100 hex, not 0000. Why is this? We have not executed
100h bytes of our program yet. DOS however has reserved a 100h byte header
to our COM program; this header contains information we could use if we
wished. However, we will not study this header until the DOS lecture.

4. let's do some executing. Type "ST" at the command line. What happens?
Apparently, not much. "ST" means "single-step": it steps the current piece
of code one or more steps at a time. By asking ROT to step the INT 3 in­
struction, we simply reinvoked ROT and nothing has happened. In order to
actually execute our program now in debug mode, we will have to bypass
the INT 3 instruction.

5. Type "IP=IP+l". It is illegal to change the contents of IP in this way
as far as the 8088 is concerned, but ROT lets you get around this. We are
now at the instruction "MOV CX,0014". This instruction should be on
the l2 line, and on the line which indicates the current instruction.
Check our source code for this step. Why does the source code say 20, and
this say 14?

Because the value in our source code is decimal, whereas ROT operates in
hexadecimal. 200=14H.

6. Now we can step through parts of our program. Watch the CX register
as you enter the next command. Type "/ST". Notice that the CX register
now contains 0014; its previous contents are lost. However, they are not
needed by the program, and if DOS needed them, it saved CX on the stack
before loading our program.

7. Because you typed a slash in front of "ST", the same command reappears.
We will step through another instruction. Here, we load SI with a value.
Wait! Where did this value come from? Check your source code.

The value is actually an offset address into the current data segment
(which in this case is also the current code segment, the current extra
segment, and the current stack segment!). The assembly process has
translated a label into a relative address. By loading this value into
SI, we know that OS:SI will point to the source data area in our program.
Before you check this, press Enter to load SI; then press Enter again,
and 01 will also be loaded, so it now points to our destination string.

8. Now let's check that our strings are being addressed by OS:SI and
ES:OI. Type "MW". Notice that lines II through M5 no longer contain code,
they now contain data.

9. We would like to look at the contents of OS:[SI] and ES:[DIJ. So type
the following: "ll=OSSI;l3=ESOI". You can type it all on one line; the
semicolon separates the two commands. We can now view our source and
destination data areas directly on the screen. If you have done everything
correctly, the first line should contain the phrase contained in our
source string. Check the ASCII characters to the right to confirm this.

172 IBM PC Internals

The third line should contain zero's, since we haven't put anything there
yet.

10. Let's go back to the disassemble window. Type "OW". What is our cur­
rent instruction about to do?

It is about to load the AL register with the memory location at OS:[SI].
We know what is in this location: the first byte of our source string.
OS:[5I] is generally used to address a source string, whereas ES:[OI]
usually addresses a destination string.

11. Let's load AL with the byte at OS:[SI]. Type "/ST". Notice that AL
changes, but that AH remains unchanged.

12. Keep pressing Enter to reinvoke the "/ST" command until you get to
the statement "LOOP". You should understand what each of the assembly
language instructions is doing. If not, consult the source code listing,
which explains each instruction's function. Notice as you step through
how the registers change contents according to what the instructions are
doing. Notice that we update SI and 01 after we have done our work on the
byte in question -- the next time around, we want to access the next byte.

13. You should now be at the "LOOP" statement. If you accidentally stepped
past it, don't worry; just don't step it when we tell you to in a moment.
What does the "LOOP" statement do? Check our source code listing to find
out. "LOOP" is a control instruction. Why do we want to loop if CX is
greater than O? Because CX indicates how many times we still have to do
the work, and until zero times remain, we want to keep at it. Now press
Enter to go back to the top of the loop. Try to find where we are in the
source code listing. Also, look at CX: its value has decreased automat­
ically from 0014 to 0013. The LOOP instruction decrements CX before it
transfers control.

14. Let's step through all the instructions again. This time, watch for
the flags before and after we do the two "compare" instructions. (Or only
the first instruction -- sometimes we never get to the second one. Try
to figure out why we might not.) Keep stepping until you get to the LOOP
statement; step one more, and the top code line should return to the
statement which loads the next source byte into AL.

15. Go back to the memory window and look at the ASCII zone on the right
of Ll and L3. What has happened? Has the program worked? If you don't see
a character or two of the source string capitalized in the destination
string, something terrible has happened -- our program hasn't worked. Call
an instructor.

16. Go back to the disassembly window. We'll now use one of the Breakpoint
variables -- SI through S9. These variables allow us to specify an address
in memory. They are called Breakpoint because, when we execute our pro­
gram, if one of these locations becomes the current instruction location
(ie. the sum of CS and IP) execution will stop and we will be able to use
ROT once again.

Appendix C. 8088 Assembler Lab 173

You should be able to fjnd the line in the code area which contains the
lOOP statement. If not, try stepping through your code until the lOOP
statement appears. Once you have found it, you will load Sl, the first
breakpoint variable, with the address of the lOOP statement. How do you
do this? Simple! Type "Sl=Xn", where "Xn" js the line identifier of the
line containing the lOOP instruction -- ll ... l9, or M1 ... M5. Now when we
execute, the program will be stopped each time the lOOP instruction is
encountered, in other words, after each character is processed.

17. Go back to the memory window and execute -- type "EX". Notice that
another letter gets converted to uppercase and placed in the destination
area. Execute a few more; more letters should appear. Don't go beyond the
space after "there" -- we have other work to do with Annabel.

18. Go back to the disassembly window. Step from the lOOP statement to
the statement which loads Al. Our next project is to alter the assembled
code dynamically. RDT allows us to change the hex values of the opcodes
and operands -- the machine code -- just by moving the cursor down to the
hex value to change, and typing in the new value. What we want to do is
change the program so that instead of converting lowercase to uppercase,
it converts uppercase to lowercase. You must figure this out for yourself.

Here are the only three hints we can provide for the moment:

- lowercase 'a' is 61 hex. Uppercase 'A' is 41 hex.
- lowercase 'z' is 7A hex. Uppercase 'Z' is 5A hex.
- The machine code for "SUB" with byte values is 2C hex,

followed by the operand byte. The machine code for "ADD"
is 04 hex, followed by the operand byte.

Go to it. Think of what statements need modifying. First of all, if you're
checking for uppercase values, not lowercase, you'll have to change the
range of values to search for. Secondly, you'll have to change the way
in which you alter those values which are in the valid range. You don't
want to subtract; you want to add. You can do all this just by poking three
bytes of the machine code. Don't bother reading on until you've accom­
plished your task. Ask the instructor for help.

19. Did you succeed? The three bytes to change were:

a) At offset 010DH: 61 change to 41
b) At offset 0111H: 7A change to 5A
c) At offset 0114H: 2C change to 04.

The first change alters the lowest ASCII value we want to change: Instead
of 'a', we are looking for 'A'. The second change alters the highest ASCII
value to 'Z' instead of 'z'. The third change converts any of these values
to lowercase from uppercase, instead of vice versa. by adding 20H instead
of subtracting 20H ('a'-'A'=20H).

20. Press HOME to return to the command line. Now step through your pro­
gram from the disassembly window once -- until you've executed your

174 IBM PC Internals

changed instructions and gone back to the LOOP statement. Switch to the
memory window; make sure the conversion hasn't produced a wrong value.
The value may not have changed -- it should only change if it was upper­
case to start with.

21. Type "EX" three or four times. Notice the conversion: it should be
reversed from the initial conversion. Once you've converted most of the
characters, if the program hasn't already exited to DOS. type "Sl" Cess­
one, not ess-eye), which will clear the breakpoint register. Type "EX"
again, and you will exit to DOS without seeing any of the remaining
changes.

Through this lab we covered a number of 8088 assembly language in­
structions -- MOV, ADD, SUB, CMP, conditional jumps (JA. JB), INC. LOOP,
and INT 3. These are some of the more commonly used instructions. In
later labs we will use other instructions as well. It's best just to learn
a few instructions at one time. We also learned a bit about how to use
RDT, and saw how we can use some of the registers to address data and code.
We did not use the stack in this example. although it was used by DOS and
RDT in hidden ways. If you have extra time at the end of this lab, and
an instructor is available, ask him or her to show you how the stack is
used.

Appendix C. 8088 Assembler Lab 175

;* ASMLAB.ASM
;* Reads a character from the source data area of the program,
;* converts it to uppercase, and places it in the destination
;* data area. This program loops 20 times, then exits.

CODE

MAIN

STEP01:

STEP02:

STEP03:

STEP04:

STEP05:

SEGMENT PARA PUBLIC 'CODE'
ORG 100H ;---establish structure of a .COM file
ASSUME CS:CODE,DS:CODE,ES:NOTHING,SS:NOTHING

PROC NEAR

INT 3

MOV CX,20

;---MAIN PROC is the main procedure of
the program

;---Interrupt 3 invokes the Resident
Debug Tool if RDT is loaded. If
no debugging program is
loaded, INT 3 has no effect.

;---STEP01 sets the count to 20, which
means we do this routine 20 times.

;CX is count register

MOY 51, offset SOURCE

MOY 01, offset DEST

MOV AL. [51]

CMP AL. 'a'

JB STEP07

CMP AL. 'z'

JA STEP07

;---Sets the source index register
to point to the first byte of
the source data area (see the
bottom of the program for the
contents of SOURCE and DEST)

;---Sets the destination index register
to point to the first byte of
the destination area

;---Moves a character from the
source data area into AL

;---Compares the value to 'a'

;---Jump if the character is
below lowercase 'a'
(since it's not lowercase)

;---Compares the value to 'z'

;---Jump if the character is
above lowercase 'z'
(since it's not lowercase)

176 IBM PC Internals

STEP06:

STEP07:

STEP08:

STEP09:

SUB

MOY

INC
INC

LOOP

MOY
INT

SOURCE DB

DB

DEST DB

DB

MAIN ENDP
CODE ENDS

END

AL, 32

[DIJ,AL

DI
SI

STEP03

AX, 4COOH
2lH

;---Subtract 32 from the character
(this converts it to uppercase)

;---Places the character into
the destination data area

;---Increment both DI and SI
pointers so that they point
to the next character to be
converted

;---If CX>O then decrement CX,
loop and keep on converting.
LOOP LABEL is the same as the
following two statements:
DEC CX
JNZ LABEL (jump not zero)

;---STEP09 is reached if the LOOP fails,
ie. if CX is 0 and we've done our 20
chars.

;return control to DOS

'Hello there ANNABEL!'

12 DUP (0)

20 DUP (1)

12 DUP (-1)

;end
;end

MAIN ;END

;---SOURCE is a data area which contains
the data we wish to convert to
uppercase. Here it is coded in
ASCII format.

;---Defines 12 zeros.

;---DEST is the data area we will
put the results of the calculation
into. The ? means the data is
not initialized -- its contents
are undefined at program load time.

;---This data definition defines
twelve bytes of -1 (FF hex)

of MAIN procedure
of contents of CODE segment
directive -- says where program begins.

Appendix C. 8088 Assembler Lab 177

178 IBM PC Internals

APPENDIX D. BIOS LAB

The purpose of the BIOS lab is to give you a chance to learn how some of
the BIOS routines are invoked. to look at some of the reserved memory
areas of the PC and how they are used. and to strengthen your familiarity
with ROT and with 8088 assembly language. In the course of this lab you
will invoke a program coded for the BIOS interface. which performs the
same things our "C" program in the introduction did: reads 20 keys from
the keyboard, and outputs them in uppercase to the display. You will also
issue some BIOS calls yourself to see what they do.

1. From 005, load RDT with the 'A' and 'K' options: Type "ROT A K"

2. Invoke the BIOSLAB.COM file.

3. ROT's memory window appears. Change to the disassembly window.

4. The source code listing for this program is provided in these lab
notes.
doing.

Read through some of the first lines and see what the program is
Notice that INT 16H fetches a keystroke from the keystroke buffer.

Let's step through some of what INT 16H does. Wait -- we'd better set a
breakpoint first.

5. Set breakpoint variable 51 to the instruction after the INT 16H in­
struction. Remember -- type "SI=Nx" where Nx is the line designation for
the line following the INT 16H. Then type "IP=IP+l" to set the instruction
pointer to the instruction right after the INT 3. Now let's step, using
the "/ST" command.

6. Notice the "STI" instruction, the first instruction INT 16H invokes.
This allows other interrupts to be enabled while the keyboard routine is
processing input. so that I/O is not lost. After the STI instruction, we
see the INT 16H routine pushing two of the registers onto the stack since
it modifies these registers. It then calls a special routine which we
don't need to understand. but the routine is short so we can step through
it. You'll know you're back in the routine that called it when you see
the OR AH.AH instruction. Keep stepping until you encounter another STI
instruction. You should see the following:

STI
NOP
CLI

These three steps turn interrupts on. perform a no-operation instruction,
and turn interrupts back off. The NOP instruction does nothing at all,
except take a bit of processor time to process the instruction. This tiny
delay allows an interrupt to occur -- that is, allows a key to be struck
and read in by the INT 9 routines, which we WON'T be looking at. Let's
step through STI. NOP and CLI. If you keep stepping. you'll see that we
keep coming back to STI. NOP and CLI. Why? No key has been struck, so the
routine just keeps looping, waiting for a key. You could try hitting a

Appendix D. BIOS LAB 119

key in the brief instant after you start one of those steps. But chances
are the key won't get to BIOS.

7. let's be done with following the bits and bytes of INT 16H -- it's there
to make our lives easier, not to be admired and worshipped. Now we'll
execute. The system will wait for you to type a keystroke. You can type
"Hello there Annabel" if you like, but we can't enforce this. Type some­
thing; before the second character can even be entered, we're back into
our program. Because ROT is doing funny things with the keyboard hardware
interrupt routine (INT 9) the input isn't being buffered right now. Oon't
worry about why. You'll do some buffering later, if you have time.

8. let's now go through some of the video BIOS routines. Step through
our program until you get to the statement "MOV AH,OA". This is the first
line of preparation for a BIOS video function call. Three lines down
you'll see the "INT 10" instruction which calls the BIOS interface. Set
a breakpoint variable to the line which follows the CAll statement which
is directly below INT 10H.

9. You may have noticed a pause between the character being displayed and
the return to ROT. This is because we placed a CAll statement immediately
below the BIOS interrupt which invoked a small routine to force a pause
on the system. The routine CAlled essentially places FFFF into CX and
decrements CX by 1 until CX=O; then it returns. The reason we placed this
pause in the program is that for students using ROT with a single display
on their system, without the pause there would not be enough time to see
the character appear on the display.

10. You should have noticed that the cursor did not advance after the
character was displayed. The Video BIOS does not actually advance the
cursor automatically. Instead, we must ask the BIOS what the cursor po­
sition is, then tell the BIOS to update the cursor position. Step down
to the statement "MOV AH,03". Check your source code listing to see what
this and the following steps do. Set a breakpoint variable to the line
after the "CAll" statement which calls the same old pause routine. Execute
again. You won't see anything happen; but look at the contents of the OX
register. OH is set to the current row number; Ol is set to the current
column number. If we want to move the cursor one column right, what do
we do?

11. We increment Ol. This is what our program in fact does soon after­
wards. Note that, if we were really in the business of programming, we
would also check that the column was below 80 decimal -- the last column
on the display -- and if it wasn't, we would include a routine to incre­
ment the row number as well so that we wouldn't overwrite previous in­
formation.

12. The source code listing tells you that by loading AH with 2 and BH
with the current video page, and issuing the interrupt, the cursor posi­
tion will be updated. Don't forget, though, that we also used the value
returned to us in OX by the previous interrupt, and changed it.

13. Clear all breakpoint variables that are still set (unless you feel
like stepping or executing your way through them again -- it won't matter

180 IBM PC Internals

which you do, except that if you don't clear them things will take a
little longer). Now set one breakpoint variable only -- to the "INC Dl"
line. Execute the program. If you left other breakpoints in, step through
them. You will have to type a character, as usual. But stop when you hit
the breakpoint at "INC Dl". Step one step passed, to "MOV AH,02".

14. We shall now playa little trick on our program so that it doesn't
do exactly what it was designed for. We will change the location of the
next character to print. How? By changing the current cursor location.
See if you can figure out a way to do this. We give only one hint and one
caution. The hint is to reread step 11 above, where we identify how the
cursor position is set. The caution is to remember that the row and column
maximums are 25 and 80 decimal respectively, and that, since RDT works
in hex, you will want to limit yourself to 19 and 50 hex.

So set up your registers for the INT 10H call; now execute. Type another
character; it should appear where you moved the cursor to. If it didn't,
here's what you should try next time through:

After you have stepped the INC Dl step, you want to change the contents
of DX so that they address the middle of the screen. The middle of the
screen is at row 19h/2, column 50h/2. This gives us row ODh, column 28h.
So set DH to ODh, and DL to 28h. To do this type "DX=OD28". After have
done so, execute again. This should set the cursor to the middle of the
screen. If not, call your instructor.

15. We have had a good look at keyboard and video BIOS support. Now let's
do some BIOS bypassing -- first, with video. As you recall, video memory
is mapped to segment BOOO for monochrome, B800 for color graphics. If
your station is using an EGA adapter, ask the instructor what compat­
ibility mode it's set up for. (If the screen displays multiple colors,
it's in Color Graphics mode, so segment B800.)

We will look at the contents of the video memory -- well, sort of. Switch
to the Memory Window; type "ll=XXXXO", where XXXX is the proper segment
for the display type you are using. Believe it or not, you are now looking
at the memory contents of the screen you are now looking at. If you turn
your eyes to the ASCII character section of the screen, you should be able
to read "R.E.l ... 1 ... 0.0." and so on. What is this? It's the information
on the top line of the screen. (If you don't see this, you've set L1 to
the wrong value. Call an instructor if you need help.)

16. We can actually write directly to the screen in both senses of the
phrase here. Use the cursor keys to move the cursor into the hexadecimal
memory contents area. Start typing any hex values that come to mind. As
you do so, notice how the contents of the upper portion of the screen are
changing. Pretty neat, eh?

17. For our next video number, we'll just poke around a little more
mischievously. Skip this step if you're running behind -- the keyboard
section will be more worthwhile. On the command line type "ll=ll+6EO".
This will cause the first line of the memory display to display a repre­
sentation of -- the first line of the memory display. Here we have a
little more trouble writing directly to the screen. Try overwriting the

Appendix D. BIOS LAB 181

hexadecimal memory area. What happens? Every time you move to the next
byte, the previous one changes back. Why?

The reason is that every time you change a value on a line, RDT refreshes
the whole line. So if you change the value for the "l" in "ll", then move
the cursor, RDT refreshes the whole line; "ll" reappears, and therefore
so does the hex value representing "ll" in the buffer. If you don't un­
derstand this, don't worry. It's not at all important.

18. Finally, let's look at the keyboard buffer. Clear all your break­
points; execute. You will have to keep typing the full twenty characters.
Then your program will exit to DOS.

Remember that when we invoked RDT today we used the "K" option. The"K"
option, or switch, is used in RDT to tell it to trap the keyboard
PrintScreen interrupt. What does this mean? It means that when you press
Shift-PrtSc, which generates an INT 5 through the keyboard BIOS routine,
that INT 5 is captured by RDT and you are brought into RDT. We are going
to use this trick to fill the keyboard buffer up and jump into ROT before
the buffer can empty.

Read this entire paragraph before you do any of it -- you will have to
be very fast at typing. The best typist in your lab group should do this
step. First, place a diskette in drive A: and leave the door open. Then,
from the DOS command prompt, type "DIR A:" then Enter. Without waiting a
second, type "Hello X" (not something else) and "Enter", then hit
Shift-PrtSc as fast as you can. RDT will load; and your keyboard buffer
is still full.

19. Close the diskette door. Now go to the memory window of RDT; set
ll=004IE. You should see in the ASCII area beside II and l2 the characters
"H.e.l.l.o ... X." and other meaningless characters. You just typed these.
They are still in the keyboard buffer. The beginning of your phrase and
its end may be switched around -- you may, for example, see "110 X" and
later "He" -- a good example of the keyboard buffer wrapping around from
its highest position to its lowest. Move your cursor to the ASCII area
of ll. You will now write over characters in the buffer. The buffer is
located on lines II and l2. Start at the "H" of "Hello". Change the
characters as described, without pressing Enter; just move around with
the cursor. Make sure as you do this that you wrap around if you reach
the end of l2, since the buffer itself wraps around also.

I. Where you see the "H" of "H.e.l.l.o", type "B".
2. Over the "en type "I". Keep moving over two characters at a time.
3. On the first "1" (Ell) type "0" (oh).
4. On the second "1" type "S" (ESS).
5. On the "0" (oh) of "Hello" type "l".
6. Two positions further along, type "A".
7. Two more, type "B".

20. What did we just do? We just changed the contents of the keyboard
buffer from "Hello X" to something else. You know what else, we trust.
Move the cursor to the command line (press "Home"). Type "EX" which will
execute us back out to DOS. The diskette drive should spin; you'll get a

182 IBM PC Internals

directory; finally. BIOSLAB will be invoked. Ta-da! Lo - we load BIOSLAB
again.

21. If you did all the above in less than an hour. congratulations. and
here's more work for you. If you feel like stopping now. by all means do.
The following exercises merely reinforce what you have already learned,
they are not essential in any way.

We're sick of our little program by now, so let's not actually use it.
Instead, we'll rewrite it. We will do two things: First. write 2,000 G's
on the screen. Then. we'll load Cassette BASIC.

To write 2.000 G's, we'll first use the BIOS video call to set the cursor
to the top of the screen. To do this. load AH with the function call
(AH=02). Set DX to the row and column desired -- zero (DX=O). Set BH to
the current page number. zero (BH=O). Now we want to invoke INT 10H. How
shall we do that?

22.Go to the disassembly window. The first disassembled instruction
should be INT 3. with the "CC" machine code byte to its left. We want to
change the code from this point on to INT 10 and then INT 3 (so that ROT
is reinvoked by INT 3 after the BIOS INT 10 returns. So: move the cursor
over the first "C" in "CC". Type the following: "COlO" very slowly. Move
the cursor down to the next line. on the "1" in "1400", and type "CC".
These three values you just entered are the hex machine codes for INT 10H
and INT 3. and right now you should see the mnemonics for these in­
structions to the right of the two lines you just changed. We have set
up our machine code to invoke the BIOS video routine, then ROT again. So
now execute. What happens? The cursor should move to the top of the
screen.

23. Now we'll print our G's. First, let's set the instruction pointer back
two bytes to point to the INT 10 instruction. Type "IP=IP-2". Don't worry
about not being able to see the INT 10H instruction; it's there in the
code segment.

We'll set up the registers using BIOS Video call OAh. So: Type "AH=OA".
We've set the function call. Type "AL=47". 47 hex is the ASCII value for
"G", and in the function call we're using we place the character to print
in AL. Now put zero in BH (to make the active display page O);place 900
in CX. CX contains the count of times to display the character. By setting
the value to 900 we know we'll display lots of G's. Finally, execute. Lo
and behold!

24. The final step is to invoke the ROM BASIC. When the BIOS bootstrap
routine fails to find a valid boot record, it loads BASIC via INT 18H.
So we will do just this -- load BASIC via INT 18H. INT 18H points to the
BASIC ROM code. How do we do this? Move your cursor to the "CC" which
popped up on the "ll" line after you displayed lots of G's. Change the
"CC" to "CD". "CD", as you may have noticed earlier. is the machine code
for the opcode in most "INT" instructions. Change the byte value which
now follows "CD" to "18". The current instruction is now INT 18. Execute
this; Cassette BASIC should appear. Now, you're stuck! You can play with
BASIC; better just to end the lab by powering off the PC.

Appendix D. BIOS LAB 183

Dol CONCLUSION

If you managed the whole lab you either skipped lunch or already know the
BIOS intimately. In this lab we have looked at some common BIOS calls,
played with the video and keyboard buffers, and done some general mischief
with various BIOS calls. Please note that the final step in this lab, the
invocation of BASIC, was not a BIOS call! It just happens that Cassette
BASIC, like the BIOS, is stored in ROM, and that it's invoked by an in­
terrupt. It has no other connection with BIOS •

• * BIOSLAB.ASM .* Gets a character from keyboard and echoes its uppercase to *i
;* display. This program loops 20 times, then exits. H;

CODE

MAIN

STEP01:

STEP02:

STEP03:

STEP04:

STEP05:

STEP06:

SEGMENT PARA PUBLIC 'CODE'
ORG 100H ;---establish the structure of a

.COM file
ASSUME CS:CODE,DS:CODE,ES:NOTHING,SS:NOTHING

PROC

INT

MOV

PUSH

MOV
INT

CMP
JB

CMP
JA

NEAR

3

CX,20

;---MAIN PROC is the main procedure
of the program

;invoke RDT

;---STEPOI sets the count to 20, so
means we do this routine 20 Xs.

;CX is count register

;---STEP02 saves the count each time we
enter the loop, so that if CX gets
modified by the interrupt routines
we don't lose track.

CX ;count now on stack

;---STEP03 uses the BIOS keybd routine
to get a character from the keyboard.

AX,O ;Get character function call
16H ;BIOS keyboard routine

Al,'a'
STEP07

Al,'z'
STEP07

i---STEP04 and STEP05 check the returned
character to see if it's between 'a'
and 'z'.

;if below 'a' then it's not lowercase so skip

;if above 'z' then it's not lowercase so skip

;---STEP06 subtracts 32 from the ascii
value of the character, thus making

184 IBM PC Internals

STEP07:

STEP08:

STEP09:

STEPI0:

STEPll :

DelAY:

DElAY02 :

MAIN
CODE

SUB

MOV
MOV
MOV
INT
CALL

MOV
MOV
INT
CALL

INC
MOV
MOV
INT
CALL

POP
LOOP

AL,'a'-'A'

AH,10
CX,l
BH,O
10H
DELAY

AH,3
BH,O
10H
DELAY

DL
AH,2
BH,O
10H
DelAY

CX
STEP02

it an uppercase character.

i---STEP07 through STEP09 print the
character then move the cursor fwd
one position.

ifunction call to print character
i1 character to print <character is in Al)
ivideo page 0
iBIOS video display routine
iCal1 a routine to cause a delay
iSO we have time to view the screen

ifunction call to get cursor position
ivideo page 0

iadd 1 to column value
;function call to set cursor position
ivideo page 0

j---STEPI0 restores the counter into ex
from off the stack so that the lOOP
statement works correctly.

jmove stack value back into CX
;return to beginning of loop if CX <> 0

;---STEPII is reached if the LOOP fails,
ie. if CX is 0 and we've done our 20
inputs.

MOV AX,4CO~H ;return control to DOS
INT 21H

MOV

NOP
NOP
NOP
NOP
LOOP

RET
ENDP
ENDS
END

CX,OFFFFH

DELAY02

MAIN

;set count to ffff

;no operation (increases delay)

jkeep looping until ex=o (causes long
;delay)

;end of MAIN procedure
jend of contents of CODE segment
jEND directive -- says where program begins.

Appendix D. BIOS LAB 185

186 IBM PC Internals

APPENDIX E. DOS LAB

E.1 OBJECTIVES

This lab should help you to understand how DOS directories are organize
and maintained, how redirection of standard input and standard output
operate, and how some DOS function calls are used. In this lab we will
not be going into the Assembly Language interface very much; rather, we
will concentrate on what high-level functions are required.

E.2 MATERIALS

You will need the PC Lab diskette.

E.3 INSTRUCTIONS

1. First we will see how DOS directories are structured. Load DOS on your
PC Cif you're loading a 3270 PC, it's best to make sure the Control Pro­
gram doesn't load). Insert the lab diskette in drive A: and switch the
default drive to A:. Type "DR". This command loads the Disk Repair pro­
gram. How? Well, the DOS Command Interpreter's transient portion scans
the directory entries for a file named "DR.COM". If it finds none, it
looks for "DR.EXE". If it finds none, it looks for "DR. BAT". If it finds
none, it looks in the next directory in the PATH. You know the rest.
Fortunately, it found "DR.COM". (If it didn't. you don't have the right
lab diskette.>

2. Voila the first screen of Disk Repair. Press a key to continue. You
will come to a screen which explains some of the functions Disk Repair
can perform. Look through them if you like; when you're done. select the
Directory option by pressing <F7>. (Anything to be typed which we've in­
dicated in <> brackets should be interpreted as an actual key -- function
key, <ENTER> key and so on.)

3. A directory of your diskette appears, but Disk Repair tells you more
than just the file name. extension. date and time. It also has an attri­
bute byte to the right of each file. a cluster address for the first
diskette cluster of the file, and a set of reserved bytes we won't worry
about. The attribute byte is used to indicate a number of aspects of the
file's status, as we saw in the DOS lecture. This byte is broke" down as
follows :

Appendix E. DOS LAB 187

Bit: Function:

1 (OlH) Read-only
2 (02H) Hidden
3 (04H) System file
4 (08H) Volume label
5 (lOH) Subdirectory
6 (20H) Archive bit
7 not meaningful
8 not meaningful

How do you interpret the actual byte you see on the display? Suppose the
attribute byte of a file is IIH (the values on this screen are in
hexadecimal>. We can write IlH as 00010001B. We can consider the bits to
be numbered 8 to 1 from left to right. In this case the byte indicates
the following:

Bit:

1 set
2 clear
3 clear
4 clear
5 set
6 clear

7
8

Function:

Read-only
HOT hidden
NOT a system file
NOT a volume label
Subdirectory
Archived (it hasn't been changed since the last
backup)
not meaningful
not meaningful

So an attribute of 11H means that the file is a directory and is marked
read-only. which means you cannot remove the directory.

4. look at the attribute for BIOSlAB.COM on your A: drive's directory.
It should be 20. This means the file is a regular. read-write. unhidden,
non-system file which has not been changed since it was last backed up.
Don't worry if the attribute isn't 20. We're going to change it anyhow.

As with RDT, Disk Repair allows you to move the cursor around and change
numerical values on the display. So move the cursor up to the attribute
byte of BIOSlAB.COM and change the attribute so that the file is hidden.
How do we do this? Bit 2 indicates a hidden file. so we type "02" into
the file attribute byte.

Next we have to write this change out to diskette. Press <ENTER> so that
your cursor returns to the command line, then type "W <ENTER>". Thi will
write the change out to diskette. Then press "Q <ENTER>" to quit Disk
Repair. We'll use it again later.

5. Do a directory of the diskette. Notice that BIOSlAB.COM is no longer
there. However, if you type "BIOSlAB" and press <ENTER> the BIOSlAB pro­
gram will load and you will have to type twenty characters before control
is returned to DOS. 6. load Disk Repair again and change the attribute
of BIOSlAB.COM to non-hidden (attribute=O). Do a Write again (as directed
above) and quit.

188 IBM PC Internals

7. Next we will create some files in a new directory. Make a directory
called "JUICY" (type "MD JUICY"). Change to that directory ("CD JUICY").
Now we will use some of the standard DOS handles to create a file. p.8.
You should be familiar with the "COPY" command which copies one fi to
another. "COPY" is an internal DOS command. What we will now do is copy
from one file (the keyboard) to another file (the display). However, the
device name for both keyboard and display is "CON" (for "console"). So
type the following:

COPY CON CON
HELLO THERE ANNABEL
IT'S GREAT TO SEE YOU
<F6><ENTER>

You should see the two lines of text displayed on the screen, followed
by "1 File(s) copied". What happened?

You copied from CON (the keyboard) to CON (the display). By pressing <F6>
you generated a Ctrl-Z character (as you may have seen -- the "oZ" which
was displayed indicated a Ctrl-Z>. The Ctrl-Z is the end-of-file marker,
so DOS knew that you had finished inputing from "CON". It then did the
output operation which displayed the information on the screen.

9. Now create another file called "RAISINS.YUM". Type the following:

COPY CON RAISINS.YUM
GOOD MORNING GUSTAV
WHY DID YOU GET UP?
<F6><ENTER>

If you do a directory of drive A:, you should see a file called
"RAISINS.YUM" listed, about 60 bytes long.

Next we will redirect from standard output to a file. We will type out
a file using the DOS "type" command, but instead of displaying the file
on the screen, we'll send it to disk, like this:

TYPE RAISINS.YUM > BANANAS.YUM

If you do a directory, you will see that a new file called "BANANAS.YUM"
was created. Also, "RAISINS.YUM" did not really get typed on the screen,
it was redirected into a file.

Do the above step again, only instead of using BANANAS.YUM as the second
file name, use YUMMY.EGG. There is a reason for doing this don't ask,
just wait.

In the root directory of your lab diskette is a file called "DEBUG.YUK".
This file contains ASCII characters which will be used as input for the
DEBUG program. You will have to find the debug program on the "C:" drive
of your machine or off a DOS diskette, or ask an instructor for a copy.
First of all, copy the "DEBUG.YUK" file into the "JUICY" directory. Then
type the following (where <path> indicates the drive and path in which
the DEBUG program can be found):

Appendix E. DOS LAB 189

<path>DEBUG <debug.dat

12. What happens? You should see Debug loaded. and a screen full of in­
formation will appear. What has happened? Don't ask. All we did was use
an input data file instead of the keyboard; the commands contained in that
file went and created another file using facilities available for that
purpose in DOS Debug. How it worked is irrelevant; what matters is that
we actually used a file. instead of the keyboard. to tell Debug what to
do.

13. Piping. You may need instructor help with this step if you aren't
familiar with DOS. First. you must locate. on the "C" drive. two files:
"SORT.EXE" and "FIND.EXE". These will likely be in either the root di~
rectory or in a directory called "DOS". Once you have found them. set your
path up to point to the appropriate directory (for instance. you could
type "PATH=C:'DOS" if the files were in the DOS directory on drive "C:").
Then, from the A: prompt (still in the "JUICY" directory). type the fol­
lowing line:

DIR FIND "YUM" I SORT

What happens? You get an alphabetically sorted listing of all files in
the JUICY directory which contain the characters "YUM" in either their
extension or their file name. What happened?

1. "DIR" did a directory of the diskette's JUICY directory

2. The first "I" piped the results of the directory to another
command. the "FIND" command

3. "FIND" used the directory listing as its input. The purpose of
"FIND" is to find the given string (in this case "YUM") in the
specified input. and to send any lines containing that string
to the standard output. So "FIND" finds all files with "YUM"
somewhere in their name.

4. The second "I" piped the standard output (the results of the
find) to the SORT command.

5. The SORT command sorts those file names into alphabetical order.
and displays them on the screen. We could have redirected the
sorted list to a file as well.

Notice that this set of piped commands found all files with "YUM" in EI­
TH~R the file name OR the file extension. The DIR command has no way of
doing this in one single command.

14. Subdirectories. we learned. are actuallY just files like any other
file. but they contain listings of files instead of data or code. So we
will use our juicy directory as a file. Go into Disk Repair. look at the
root directory; you will see the Juicy directory there. Change the at­
tribute byte of the Juicy directory from 10 (directory) to 00 (read~write.
unhidden file). Move to the "length" field for the JUICY entry and type
.in a length of 200 or more. Press <ENTER> to return to the command line •

. 190 IBM PC Internals

then "W <ENTER>" to write the change out to disk. Now exit to DOS using
the "Q" command.

15. Change to the root directory if you aren't already there. Do a DIR
and you will see that JUICY is now a file, not a directory. Display its
contents using the DIR command. You will see that it contains the names
of the files we created earlier, as well as lots of strange codes which
are in fact some of the attribute and reserved bytes for directory en­
tries. We can see, then, that a directory other than the root directory
is really just a file which DOS sets as a directory file; the file con­
tains information on other files.

16. Enough of that -- go back to Disk Repair, and change the attribute
of JUICY back from 00 to 10, so that it becomes a directory again. Use
the Write command again to save the change; quit, do a directory, and make
sure you've restored it as a directory and that it still contains the
files you created. Now you can erase the files in it and remove the di­
rectory. Make sure you don't erase the root directory instead!

17. We will perform one last experiment, this time using batch files and
the DOS terminate function call. You will find a file in your diskette's
root directory called "ERROR.BAT". Display its contents by using the
"TYPE" command. It should read as follows:

DR

:A

:B

If errorlevel 3 goto A
If errorlevel 4 goto B
Echo No Error
Goto Exit

Echo Error Three
Goto Exit

Echo Error Four
:exit

What does this batch file do? First, it invokes Disk Repair. Then, when
Disk Repair has finished, the batch file checks Disk Repair's exit code.
If Disk Repair exited with exit code 3, the command at :A is processed
("Echo Error Three"); if the code is 4, the command at :B is processed,
and if the code is neither of these, the batch file exits.

How does Disk Repair return a return code? Normally it doesn't, but we
will make it do so.

18. Type "ERROR". The batch file will invoke Disk Repair. Now press <FlO>.
This brings you to the Interrupt window. In this window you can load
registers and issue interrupts.

19. What we will do is issue a DOS interrupt to terminate Disk Repair We
will use DOS Interrupt 21H, function call 4CH. To do this, move your
cursor up to the hex codes to the right of the AX register (use the HOME

Appendix E. DOS LAB 191

key). In AH (the first two characters of AX) type "4C". This sets AH to
the 4C function call, "Terminate a process". In Al (the second two char­
acters of AX), type either "03" or "04", for error code 3 or 4, whichever
you like. Then press Enter to return to the command line.

20. Make sure that the "INT" command in the middle of the screen is set
up for "INT 21". If the "INT" is set up for any other interrupt, change
it to "21". Ask an instructor for help if needed.

21. Type "I" then <ENTER>. This will invoke INT 21, Function call 4CH
Return code 03 or 04. Disk Repair will exit (we forced it to); the batch
file should continue executing, and it should tell us which error code
we specified in the DOS function call.

This concludes the DOS lab. You will notice that we did not use the As­
sembly language interface to DOS (except with our final function call).
This is because by now you should know enough about assembly language to
figure out how it works. The DOS assembly language interface looks much
like the BIOS one -- load a register with a function call, load others
with parameters or variables or data, and issue the appropriate interrupt.

You may also have noticed an abundance of references to food in this lab.
This is because it's 7:30 pm right now and I haven't yet had my dinner.
Ah, the overtime joys of being a PC guru!

192 IBM PC Internals

READER'S COMMENTS

Title: IBM PC Internals Fundamentals Course nates (GG24-3057-00)

You may use this form to communicate your comments about this publication,
its organization or subject matter with the understanding that IBM may
use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

Comments:

Reply requested Name :

Yes / No Job Ti tie

Address :

Reader's Comment Form

Fold and tape DoNol Fold and tape

,
I

2
t
i
I
i

•••••.••••••.•• 1

IIIIII
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK. N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

IBM International Technical Support Center
Department 91J, Building 235-2
901 Northwest 51st Street
Boca Raton, Florida 33432

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

.. "
Fold and tape Do Noll" Fold and tape

--.. --- --- -- -- --------

READER'S COHHENTS

Title: IBH PC Internals Fundamentals Course notes (GG24-3057-00)

You may use this form to communicate your comments about this publication.
its organization or subject matter with the understanding that IBM may
use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

Comments:

Reply requested Hame :

Yes / No Job Ti tle

Address :

Reader's Comment Form

Fold Inc:I tape Fold and tape

,., ... , .. .

I II II I

BUSINESS REPLY MAIL
FIASTCLASS PERMIT NO . .-0 ARMONK. N.V.

POSTAGE WILL BE PAID BY ADDRESSEE:

IBM International Technical Support Center
Department 91J, Building 235-2
901 Northwest 51st Street
Boca Raton, Florida 33432

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STA rES

•••••••• II ••••••• ~ •••••• 1 •• , ••••• II II •••• II •••••• ,. "' •••••••••• II 0"" •••••••••••••••• II, I ••••••••••••••••••••••••••••• II I •••• I •• II' II •••••••••• 11 •••••••••••••• 1.10

Fold and lape DoNoeS Fold and tape

====..==----.----- ----- -- ----------_.-

I

I

£ ,
i
J
i

