
Personal Computer

3270-PC High Level Language
Application Program Interface

INTERNATIONAL BUSINESS MACHINES CORPORATION Armonk, New York 10504

IBM PROGRAM LICENSE AGREEMENT

YOU SHOULD CAREFULLY READ THE FOLLOWING TERMS AND CONDITIONS BEFORE OPENING
THIS PACKAGE. OPENING THIS PACKAGE INDICATES YOUR ACCEPTANCE OF THESE TERMS AND
CONDITIONS. IF YOU DO NOT AGREE WITH THEM, YOU SHOULD PROMPTLY RETURN THE PACK­
AGE UNOPENED AND YOUR MONEY WILL BE REFUNDED.

IBM provides this program and licenses its use in the
United States and Puerto Rico. Title to the media on
which the program is recorded and to the documenta­
tion in support thereof is transferred to the Customer,
but title to the program is retained by IBM. You
assume responsibility for the selection of the program
to achieve your intended results, and for the installation
and use of, and results obtained from, the program.

LICENSE

You may:

a. use the program on only one machine at any one
time;

b. copy the program into machine readable or printed
form for backup or modification purposes only in
support of such use. (Certain programs, however,
may include mechanisms to limit or inhibit copying.
They are marked "copy protected");

c. modify the program and/ or merge it into another
program for your use on the single machine. (Any
portion of this program merged into another pro­
gram will continue to be subject to the terms and
conditions of this Agreement.); and

d. transfer the program with a copy of this Agreement
to another party only if the other party agrees to
accept from IBM the terms and conditions of this
Agreement. If you transfer the program, you must
at the same time either transfer all copies whether
in printed or machine-readable form to the same
party or destroy any copies not transferred. This
includes all modifications and portions of the pro­
gram contained or merged into other programs.
IBM grants a license to such other party under this
Agreement and the other party will accept such
license by its initial use of the program. If you
transfer possession of any copy, modification or
merged portion of the program, in whole or in part,
to another party, your license is automatically ter­
minated.

Zl25-3301-l (UMOO) 10/83

You must reproduce and include the copyright
notice on any copy, modification. or portion
merged into another program.

You may not reverse assemble or reverse compile
the program without IBM's prior written consent.

You may not use, copy, modify, or transfer the
program, or any copy, modification or merged por­
tion, in whole or in part, except as expressly pro­
vided for in this Agreement.

You may not sublicense, rent or lease this program.

TERM

The license is effective until terminated. You may ter­
minate it at any time by destroying the program togeth­
er with all copies, modifications and merged portions in
any form. It will also terminate upon conditions set
forth elsewhere in this Agreement or if you fail to com ..
ply with any term or condition of this Agreement. You
agree upon such termination to destroy the program
together with all copies, modifications and merged por­
tions in any form.

LIMITED WARRANTY AND DISCLAIMER
OF WARRANTY

IBM warrants the media on which the program is fur­
nished to be free from defects in materials and work­
manship under normal use for 90 days from the date of
delivery to you by IBM or IBM's authorized represen­
tative as evidenced by a copy of your receipt.

IBM warrants that each program which is designated
by IBM as warranted in its program specifications.
supplied with the program, will conform to such spec­
ifications provided that the program is properly used on
an IBM machine for which it was designed. If you
believe that there is a defect in a warranted program
such that it does not meet its specifications, you must
notify IBM within the warranty period and in the man­
ner set forth in the program specifications.

continued on inside back cover

Personal Computer

3270-PC High Level Language
Application llrogram Interface

First Edition (November 1984)

Changes are made periodically to the information herein; these changes will be
incorporated in new editions of this publication.

Products are not stocked at the address given below. Requests for copies of this product
and for technical information about this product should be directed to your IBM
Marketing representative.

A Program Comment Form is provided at the back of this publication. If this form has
been removed, address comments to:

IBM Corporation
Department 68Y
220 Las Colinas Boulevard
Irving, Texas 75039-5513

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1984

To The Reader

This book provides the information needed to use the IBM
3270 Personal Computer High Level Language Application
Program Interface. This program gives the application
programmer a set of functions which can be called from an
application program running in the personal computer
session to access other presentation spaces in the 3270
Personal Computer.

How This Manual Is Organized

Chapter 1. Introduction introduces the 3270 PC High Level
API and tells you things you need to know
before you start:

Chapter 2. Getting Started describes what you do to install
the 3270 PC High Level APL

Chapter 3. The Function Calls describes your interface to the
3270 PC High Level API and provides you with
samples to help in your development effort.

Chapter 4. Using the 32 70 PC High Level AP! explains how
to use the 3270 PC High Level API from the
various high level languages that are supported.

Chapter 5. Application Development Tips has some helpful
hints for the development of your applications.

Appendix A. Messages documents the messages that you may
encounter.

Appendix B. Key Mnemonics explains the mnemonics
provided that allow you to use ASCII characters
to represent the special function keys of the
3270 Personal Computer keyboard.

Appendix C. Writing Your Own La.nguage Interface
Module shows how to build a "bridge" between
any language and the main interface program.

To The Reader iii

Appendix D. Quick Reference Summary gives a handy
reference guide for functions available with the
3270 PC High Level APL

Appendix E. System Modifications explains some system
modifications which could be made to customize
the system to specific environments.

Glossary defines terms that are used with this product.

Who Should Read This Book

• This manual is intended for programmers who will write
applications that use the services of the 3270 PC High
Level Language APL A working knowledge of the 3270
Personal Computer and IBM PC DOS is assumed. Users
desiring more information on the 3270 Personal
Computer should refer to the Control Program User's
Guide and Reference - Part Number 1837434. For
more information on IBM PC DOS, refer to the IBM PC
DOS Manual - Part Number 6024061.

• This manual assumes you are already familiar with the
language and compiler you will be using. If you need
more information on how to write, compile or linkedit
programs, you should refer to the appropriate reference
manuals for the specific language.

• This program offering supports multiple high level
languages and examples are provided for each of these in
the appropriate chapters. In order to provide examples
throughout the text, Interpretive BASIC has been used
to show sample coding techniques.

iv 3270 PC High Level Language API

References

Although it is presumed that you are familiar with the
operation of the IBM 3270 Personal Computer and the
related languages, you may wish to refer to the following
publications:

3270 PC Online Tutorial SA23-0163

3270 PC Control Program User's Guide & Reference
1837434

3270 PC Guide to Operations 1837432

IBM PC Disk Operating System Manual 6024061

IBM PC BASIC Manual 6025010

IBM PC BASIC Compiler Manual 6024003

IBM PC COBOL Reference 6024011

IBM PC PASCAL Manual 6024010

IBM PC Macro Assembler Manual 6024002

To The Reader V

vi 3270 PC High Level Language API

Contents

Chapter 1. Introduction 1-1
Why would I use this Program Offering? 1-1
Things You Need 1-2

Hardware 1-2
Software 1-2
Features 1-3
Host Requirements 1-3

Overview of System 1-4
The Language Interface Module 1-4
The Resident Module 1-5

Chapter 2. Getting Started 2-1
Diskette Contents 2-1
Loading the Program 2-2
Installing and Running the Sample Program 2-2
Using The Program 2-3
How to Call the Functions 2-3

Chapter 3. The Function Calls 3-1
CONNECT 3-2
CONNECT Return Codes 3-3
DISCONNECT 3-4
DISCONNECT return codes 3-5
SENDKEY 3-5
SEND KEY Return Codes 3-7
WAIT 3-8
WAIT Return Codes 3-8
COPYPS 3-9
COPYPS Return Codes 3-10
SEARCH 3-11
SEARCH Return Codes 3-12
COPY STRING 3-13
COPY STRING Return Codes 3-13
SET SESSION PARMS 3-14
SET SESSION PARMS Return Codes 3-16
QUERY SESSIONS 3-17
QUERY SESSIONS Return Codes 3-18
RESERVE 3-18
RESERVE Return Codes 3-19
RELEASE 3-19
RELEASE Return Codes 3-20

Chapter 4. Using The Functions From Your Application 4-1
Using BASIC 4-1
Using COBOL 4-3
Using PASCAL 4-4
Using 8088 Assembler 4-5

Chapter 5. Application Development Tips 5-1
Defining A Programmed Operator 5-1

Contents vii

Sending Keystrokes 5-2
String Specification 5-3
Performance 5-4

Appendix A. Messages A-1
Common Messages A-1

Appendix B. Key Mnemonics B-1

Appendix C. Writing Your Own Language Interface Module C-1
Revised Call Support for the 3270 Personal Computer C-2
Details of Writing Your Own Language Interface Module C-3

Appendix D. Quick Reference Summary D-1

Appendix E. System Modifications E-1
Changing the Session Parameter Defaults E-1
Changing the Keystroke Mnemonics E-1
Saving Storage E-2
Changing the Interrupt Number E-2

Glossary X-1

viii 3270 PC High Level Language API

Statement of Service

How to Obtain Service for the 3270 PC High Level Language
Application Program Interface

Product service is available to registered users of the IBM
3270 Personal Computer High Level Language API
(1753180). In order to register for this service, complete the
enclosed postage paid Service Registration Card and return
to:

IPS Product Support Center
IBM Corporation
P.O. Box 152560
Irving, TX 75015-2560

This product is provided " AS IS " without warranty of any
kind, either expressed or implied.

Description of the Service Available

If you believe that you have a problem which is caused by a
defect in an unmodified portion of the program or
documentation during the period of product service, you may
call IBM with a description of the problem with any related
information. Postage paid Program Response Forms and
Readers' Comment Forms are provided at the back of this
publication for your use. The Toll Free number is
800-527-5068.

On a best effort basis, your documentation will be used to
determine whether a program correction is necessary and:

1. You will be sent a notice of availability or an update
containing the correction if the problem is an error and
has been fixed;

Statement of Service ix

OR

2. A fix will be developed and sent to you, if the problem is
an error but has previously been reported

OR

3. You will be advised that the problem is not caused by a
product defect.

A response to the defect will be made only if the defect
occurs when the product is used in the operating
environment described in this document.

IBM does not guarantee service results or that the program
will be error free or that all program defects will be
corrected.

Duration of Service

Service will be available until December 31, 1986. During
the service period if you transfer this license to another party
you must provide IBM with information about the new user
by submitting a Program Response Form with the new user's
name, company, address, telephone number and the Program
Service Registration Number.

X 3270 PC High Level Language API

Chapter 1. Introduction

Why would I use this Program Offering?

• To generate host transactions from a personal computer
program.

• To read data from a host session or notepad into a
personal computer program.

• To simplify operator interactions with 3270 Personal
Computer workstation control functions.

• To simplify host interaction and setup.

In other words, the 3270 PC High Level Language API can
be used in conjunction with the capabilities of the 3270
Personal Computer to enhance the PC application
developer's ability to conduct interactive sessions with an
existing 3270 based host application.

Chapter 1. Introduction 1-1

Things You Need

Han/ware

Software

The 3270 PC High Level Language API is designed to
operate on the IBM 3270 Personal Computer machine
configuration 5271 standard models 2, 4, and 6. It requires
approximately 12,000 bytes of memory in addition to the
requirements of PC DOS and the 3270 Personal Computer
Control Program.

NOTE: The 3270 PC High Level Language API is not
supported on the 3270 PC/G or 3270 PC/GX.

• PC DOS 2.0 or 2.1 is required.

• Only release 1.2 of the 3270 Personal Computer Control
Program is supported.

• Interrupts 44-45 (hex) are reserved.

• The IBM PC Macro Assembler is required if you will be
creating your own Language Interface Modules.

NOTE: The use of Programmed Symbols is not supported
through the application interface.

1-2 3270 PC High Level Language API

Features

The 3270 Personal Computer High Level Language
Application Programming Interface is a set of programs
which allows you to perform the following functions on the
3270 Personal Computer:

• Connect to a target presentation space.

• Send keystrokes to the presentation space.

• Wait for a host response.

• Read the presentation space (or a selected string from
the presentation space.

• Query the number and types of presentation spaces.

• Reserve a presentation space for exclusive use by your
program.

• Release a reserved presentation space.

• Search a presentation space for a specific string.

The use of these functions will allow you to generate host
transactions, check the transaction status and then copy data
from the presentation space into your personal computer
program. These calls allow you to develop a "programmed
operator" to carry out host interactions. This simple set of
building blocks will allow the programming of a variety of
tasks extending from simple operator assistance to
sophisticated "cooperative processing" applications.

Host Requirements

• There are no special host requirements other than those
required for the installation of the 3270 Personal
Computer.

Chapter 1. Introduction 1-3

Overview of System

The 3270 PC High Level Language API is implemented in
two parts. The system is composed of a Language Interface
Module (LIM) that is specific to a given language (eg:
BASIC, COBOL, PASCAL) and a resident module
(PCIRES) that handles the actual interface functions
between your program and the 3270 PC Control Program.

The Language Interface Module

Each implementation of a programming language has unique
methods of storing data and calling subroutines. In order to
support multiple languages, the system is designed to use a
Language Interface Module (LIM) as a "bridge" between
your application and the main interface program. Your
application calls the appropriate Language Interface Module
which then takes your program's parameters and passes them
to the main program in a standard format.

Language interfaces are provided for both Compiled and
Interpretive BASIC, IBM COBOL and IBM PASCAL.
Programs written using the MACRO Assembler can invoke
PCIRES directly. If you prefer to use another language, see
Appendix C for information on writing a Language Interface
Module tailored to your needs.

You will invoke the program's services in one of two ways.
If you are using a compiled language (such as COBOL or the
BASIC Compiler) you call the appropriate language
interface as an external subroutine. When you linkage edit
your program (using the DOS LINK command), you will
include the appropriate language interface object module.

Examples are provided for each language in the section
describing that language's interface.

If you program in Interpretive BASIC, you will have to use
another technique for calling the interface. Since
Interpretive BASIC has no provision for using the linkage
editor to include an external subroutine, a technique is

1-4 3270 PC High Level Language API

provided for the user to access a special Interpretive BASIC
Language Interface Module. This language interface is
available whenever PCIRES has been made resident. An
example of how to access this interface is provided in
Chapter 4.

The Resident Module

After building a Parameter Control Block, the language
interface invokes the resident module (PCIRES) with a
software interrupt. PCIRES must be loaded prior to its use
and remains in memory as a resident extension of PC DOS.
PCIRES performs the requested function based on a
function code and other parameter data passed in the control
block built by the Language Interface Module. After
completing (or attempting) the requested task, a return code
is placed in the control block and control is returned to the
calling Language Interface Module. The interface module
then returns control to your calling program.

Chapter 1. Introduction 1-5

1-6 3270 PC High Level Language API

Chapter 2. Getting Started

Diskette Contents

The distribution diskette contains the following set of source,
object and executable modules:

• PCIRES.EXE - The primary executable function
module.

• PCIRES.ASM - The source to the main function module.

• COBLIM.ASM - The IBM COBOL language interface
module's source.

• COBLIM.OBJ - The COBOL interface object module to
use with LINK.

• CBASLIM.ASM - The BASIC Compiler language
interface module source.

• CBASLIM.OBJ - The BASIC Compiler's interface
object module.

• P ASLIM.ASM - The IBM PAS CAL language interface
module source.

• PASLIM.OBJ - The PASCAL interface object module.

• SAMPLEl.BAS - A sample program in BASIC.

The distribution diskette should be copied to a backup
diskette using the standard DISKCOPY program provided
with PC DOS.

To assemble the source modules provided, the IBM PC
Macro Assembler is required. However, unless you are
developing your own Language Interface Module there is no
requirement to reassemble any of the program modules. If

Chapter 2. Getting Started 2-1

you do wish to develop your own language interface module,
you may find the distributed source programs to the standard
language interfaces useful as sample programs.

Loading the Program

Prior to invoking the interface functions from an application,
you must load the resident program as an extension to PC
DOS. To do this, key in the command:

PCIRES

and press ENTER. The program will load and display
several identification and copyright messages. It should then
produce the message:

PCI-001 PCIRES is now resident

If you receive any other message refer to Appendix A -
Messages. Once this module is loaded it does not need to be
reloaded unless PC DOS is rebooted. Once loaded the only
way to remove the PCIRES module is to reboot PC DOS.

With PCIRES now resident you are ready to invoke the
system's function from your program. The details for each
language are outlined in Chapter 4.

Installing and Running the Sample Program

After you have successfully loaded the PCIRES program you
are ready to use the interface. The distribution diskette
contains an Interpretive BASIC sample program
(SAMPLEl.BAS) that lets you experiment with the various
function calls in a "real time" mode. The sample program
allows you to specify a function and its parameters and
observe the results. To run the sample you should use
BASICA to run the SAMPLEl program. If you are
unfamiliar with running programs under BASICA refer to

2-2 3270 PC High Level Language API

the IBM Personal Computer Hardware Reference Library
BASIC Manual (6025010). The sample program will
prompt you for the necessary input.

Using The Program

The 3270 PC High Level Language API is a "function code"
driven system. For each service that you require you will call
the interface with a function code requesting that service.
The service functions may require other parameter data in
support of your request. The function codes and the
requisite parameters are described in Chapter 3 - "The
Function Calls". After completing your request any
appropriate data and a return code will be passed back to
your program. Specific programming conventions and
requirements for the supported languages are described in
Chapter 4 - "Using the Functions from your Application"

How to Call the Functions

In order to use the program, your application must call a
Language Interface Module (LIM) passing it the necessary
parameters for that call. The interface will perform the
requested function and will then return a status code. The
requirements for each language are documented separately
but, in general, each call passes the following data:

• A function code

• A character string

• The string's length

• A return code

Chapter 2. Getting Started 2-3

For calls that don't require each of these elements, the LIMs
still require four parameters - this allows your program to
contain a single call format. (If you are calling a function
that doesn't require all four parameters, the unused
parameters do not need to be initialized). Likewise, many
return codes are designed to conform to a standard structure
so that they can be analyzed by a common error handling
subroutine in your program.

2-4 3270 PC High Level Language API

Chapter 3. The Function Calls

Fune Reqd
Code Name Parms Description

01 CONNECT Sess-id Access the requested
Retcode Presentation Space as

the active session.

02 DISCONNECT Retcode Drop the connection
to a presentation
space.

03 SEND KEY Length Send keystrokes to
Key string the active session.
Retcode

04 WAIT Retcode Wait for X clock/X
system to clear and
return status.

05 COPYPS String Translate the
Retcode presentation space to

ASCII and move it to
the user's buffer.

06 SEARCH Length Search the
Srch Str Presentation Space
Retcode for a given string.

08 COPY Length Translate a string to
STRING String ASCII and move it to

Offset the user's string.

09 SET SESSION Length Sets a variety of
PARMS Parm Str program parms.

Retcode

Chapter 3. The Function Calls 3-1

Fune Reqd
Code Name Parms

10 QUERY Data
SESS Retcode

11 RESERVE Retcode

12 RELEASE Retcode

CONNECT

Function code - 01

Parameters:

Purpose:

Session-id.
Return code.

Description

Get a list of sessions
and parms. (Name,
screen size, type,
etc.)

Locks the current
session to inhibit user
input.

Unlocks the current
session.

Connect puts the PC program in logical session with a
specified presentation space. Any subsequent calls will use
the selected presentation space as the active session.

Remarks:

Prior to any call to a logical session the PC program must
CONNECT to that session. To establish a connection, the 1
byte 11 short name 11 of the presentation space is passed during
the call to CONNECT. It is not necessary to set a length
parameter since the session name is a 1 byte field. The short
name is the single character identifier you have defined to
the Control Program during customization ''naming'' that
session.

3-2 3270 PC High Level Language API

CONNECT sets the return code to indicate the status of the
connection attempt and, if successful, the current status of
the selected session.

Connect operates in two modes - physical or logical connect.
If the session parameters specify logical connect mode
(which is the default) the connection to the requested session
occurs internally and the personal computer session
continues to be displayed as the active window. On the
other hand, if a physical connection is requested, the 3270
Personal Computer 11 jumps11 to the requested presentation
space just as though the operator pressed the JUMP key. In
this mode all keystrokes from the operator will then go to the
active session rather than to the personal computer
session.(See the SET SESSION PARMS function description
for information on how you set the connection mode).

The use of CONNECT only directs the internal keystroke
input from your PC program. Input from the actual keyboard
remains directed to the presentation space currently active
on the display.

You can connect to a presentation space that is already
connected. It is not necessary to DISCONNECT prior to
CONNECTing to another presentation space; however you
are only in session with one presentation space at a time.

You may connect to workstation control (WSCTRL) by
using the symbol:# ("pound sign") as the session-id.
SEND.KEY is the only function you may use with WSCtrl.
When you send keystrokes to WSCTRL, an entire
workstation control function must be completed in a single
keystroke string. For complex tasks such as COPY, this may
involve some lengthy and complex keystroke strings.

CONNECT Return Codes

0 Connection was successful, selected presentation
space is unlocked and ready for input.

1 Unable to connect to selected session name.

Chapter 3. The Function Calls 3-3

2 Not used.

3 Connection was successful, connection is to
WSCTRL.

4 Connection was successful, presentation space is busy.

5 Connection was successful, presentation space is
locked (input inhibited).

9 System error.

Example:

1000 FUNC% = 1
1010 DATASTR$ = "B"
1020 CALL BLIM(FUNC%,DATASTR$,DLEN%,RETC%)
1030 IF RETC% < > 0 THEN GOSUB 9000

This would connect to the 'B' presentation space. Error
analysis is done (if necessary) in a subroutine at 9000.

DISCONNECT

Function code - 02

Parameters:

Purpose:

None.
Return code.

DISCONNECT drops the connection between the PC and
the last connected Presentation Space.

Remarks:

Even after disconnecting, routines that reference the
presentation space (COPYPS, SEARCH and
COPYSTRING) still reference the last connected
presentation space.

3-4 3270 PC High Level Language API

Once a disconnect has occurred, calls that must interact with
an active presentation space are no longer valid (SEND
KEY, WAIT, RESERVE, RELEASE).

It is not necessary to DISCONNECT after each call to the
interface. The PC program may stay connected to a
presentation space for a series of calls. However, you should
always issue a DISCONNECT at the completion of a set of
programs. Failure to disconnect can inhibit the use of other
3270PC functions (such as file transfer). If you wish to leave
the operator in session with a given presentation space at the
completion of your program, you should "physically"
connect to the presentation space, change the session
parameters to "logical" connect mode (see the SET
SESSION PARMS function) and then DISCONNECT.

If the program is in "physical connect" mode, disconnect
jumps back to the PC window.

DISCONNECT return codes

O DISCONNECT was successful.

1 Program was not connected.

9 System error.

Example:

SEND KEY

1000 FUNC% = 2
1010 CALL BLIM(FUNC%,DATASTR$,DLEN%,RETC%)
1020 IF RETC% < > 0 THEN GOSUB 9000

Function code - 03

Parameters: String of keystrokes.
Length of string of keystrokes.
Return code.

Chapter 3. The Function Calls 3-5

Purpose:

SEND KEY sends a string of keystrokes to the connected
presentation space.

Remarks:

You must issue CONNECT to a logical session (active
presentation space) prior to sending keystrokes. This session
can be either a 3270 session, a notepad, or workstation
control (WSCTRL). The session must have the keyboard
unlocked for input prior to accepting keystrokes. Autokey
should not be active.

The string of keystrokes is handled just as though it was
entered by an operator at the keyboard; all fields that are
protected for input or are numeric only must be treated
accordingly.

Keystroke input is no longer accepted after the first AID
character is received (Clear, PA, PF or Enter).

You may only send 255 keystrokes in a single call to
SENDKEY. If you need to key in more data than this you
may do several calls to SENDKEY before you send the
ENTER key.

If you are sending keystrokes to Workstation Control
(WsCtrl), you MUST complete an entire WsCtrl "task" in a
single keystroke string. You CANNOT do a portion of a
function, such as copy, and then attempt to send another set
of keystrokes to complete the task.

In order to send the special 3270 control keys, a compound
character coding scheme is used. This coding technique uses
2 ASCII characters to indicate 1 keystroke and is comprised
of the @ sign followed by a key code.

As an example, to key the sequence: LOGON 12345
followed by an Enter key; the following string would be
coded: LOGON 12345@E. The purpose of this compound
coding scheme is to allow an ASCII string representation of
all necessary keystroke codes without requiring the use of
complex "hex" key codes. A complete list of the keycodes is

3-6 3270 PC High Level Language API

found in Appendix B. The string length passed to the
program should count these compound characters as being 2
bytes long.

SEND KEY Return Codes

0 Keystrokes were sent, normal status.

1 Not connected to a valid session.

2 Bad parameter was passed to interface.

3 Keystrokes were sent, you are in WSCTRL mode.

4 3270 session was busy, keystrokes could not be sent.

5 3270 session was locked, all keystrokes could not be
sent.

9 System error.

Example:

1000 FUNC% = 3
1010 DATASTR$ = "XREF 12345@E"
1020 DLEN% = 12
1030 CALL BLIM(FUNC%,DATASTR$,DLEN%,RETC%)
1040 IF RETC% < > 0 THEN GOSUB 9000

This example keys in XREF 12345 and hits ENTER in the
selected presentation space.

Chapter 3. The Function Calls 3-7

WAIT

Function code - 04

Parameters: Return code.

Purpose:

WAIT checks the status of the logical session; if the 3270
session is waiting on a host response (X clock or X
SYSTEM) the interface waits several seconds to see if the
condition will clear.

Remarks:

The interface must be connected to a valid presentation
space prior to issuing this call. The PC application program
should always analyze the return code issued by wait in case
of an error.

The SET SESSION PARMS function can be used to change
the "timeout" option for WAIT. When waiting for an "X
Clock or X SYSTEM" to reset, the system normally waits a
short period of time before reporting a host busy condition.
You can specify this wait to always wait for completion (the
LWAIT option) or to not wait at all (NWAIT). You should
use caution in requesting the L WAIT option since the system
will not return control to your program for error recovery in
the event the host never responds.

WAIT Return Codes

0 Keyboard unlocked and ready for input.

1 Not connected to a valid session.

2 not used

3 Connected to WSCTRL.

3-8 3270 PC High Level Language API

COPYPS

4 Timeout while still in "X clock" or "X SYSTEM"
mode.

S Keyboard is inhibited.

9 System error.

Example:

1000 FUNC% = 4
1020 COUNT = 0
1030 CALL BLIM(FUNC%,DATASTR$,DLEN%,RETC%)
1040 IF RETC% = 0 THEN GOTO 2000
1050 IF RETC% < > 4 THEN GOSUB 9000
1060 COUNT = COUNT + 1
1070 IF COUNT < 10 THEN GOTO 1030
1080 PRINT "THE HOST HAS NOT RESPONDED"
1090 END
2000

This routine waits for a host response. If an error is detected
a routine at line 9000 is invoked. If the host remains busy
(X Clock or X System) for a predetermined length of time,
the program will end.

Function code - 05

Parameters:

Purpose:

Data String.
Return code.

COPYPS copies the contents of the last selected
presentation space into the user's data area.

Chapter 3. The Function Calls 3-9

Remarks:

COPYPS translates the presentation space into ASCII.
Attribute bytes and other characters not represented in
ASCII are translated to blanks. Extended attributes are not
copied to the PC session.

This call is not valid from interpretive BASIC since it would
exceed the maximum string size allowed. Users of other
languages should ensure their data areas can handle the
largest possible presentation space size. If you want only a
portion of the presentation space use the COPY STRING
function. You can use the QUERY SESSIONS call to obtain
the presentation space sizes.

This call does not require the PC session to still be connected
to the presentation space; it will pass back the contents of
the last connected session.

If you don't want the attribute bytes translated to blanks, use
the ATTRB option of SET SESSION PARMS.

COPYPS Return Codes

0 PS Contents transferred, session was active and
keyboard unlocked.

1 PS Contents transferred from last active session,
however the session is no longer actively connected.

2 not used.

3 PS contents transferred, was in WSCTRL mode.

4 PS contents transferred, active session was waiting for
host response.

5 PS contents transferred, keyboard locked.

9 System error.

3-10 3270 PC High Level Language API

Example:

This function is not available to Interpretive BASIC
users.The following example could be used in a compiled
Basic program:

1000 FUNC% = 05
1005 DATASTR$ = SPACE$(1920) 'Preallocate target string
1010 CALL BLIM(FUNC%,DATASTR$,DLEN%,RETC%)

SEARCH

This example assumes that the receiving data string is at least
as large as the selected presentation space.

Function Code - 06

Parameters:

Purpose:

String to search for.
Length of string to search for.
Return code.

SEARCH allows the program to examine the presentation
space for the occurrence of a specified string.

Remarks:

SEARCH scans the selected presentation space for the first
occurrence of the specified string. If the string is not
located, the return code is set to 0. If the string is found, the
return code is set to the string's beginning location in the
presentation space. This location represents an offset into
the presentation space based on a layout where the upper left
corner (home position) is location 1 and the bottom right
(for a "3270 Model 2") is location 1920.

The SEARCH function is useful in determining when a
specific 3270 screen is available. If you are expecting a
specific prompt or message before keying in data, SEARCH

Chapter 3. The Function Calls 3-11

allows you to check for the message before continuing. If the
expected prompt has not yet been sent, you can continue
calling SEARCH until a non-zero return code is received.

SEARCH normally checks the entire presentation space,
however using the SET SESSION PARMS function you can
specify "SRCHFROM" mode. In this mode you may specify
a starting offset for SEARCH, which will then look for the
string from that offset thru the end of the presentation space.
As an exception to the normal call usage, the starting offset
is passed to the interface in the return code parameter. The
return code is still returned in the normal way. This option is
useful if you are looking for a keyword that may have
multiple occurrences in the presentation space since
SEARCH only reports the first location.

SEARCH examines the last connected presentation space if
the PC program is not currently connected.

SEARCH Return Codes

0 The string was not found.

>0 The string was found at this offset in the PS. (The
presentation space contains offsets from 1 thru the
max screen size)

Example:

1000
1020
1030
1040
1050
1060
1070
1080
1090

1095
2000

FUNC% = 6
DATASTR$ = "ENTER PART#:"
DLEN% = 13
COUNT = 0
CALL BLIM(FUNC%,DATASTR$,DLEN%,RETC%)
IF RET% < > 0 THEN GOTO 2000
COUNT = COUNT + 1
IF COUNT < 5000 THEN GOTO 1050
PRINT "THE CORRECT HOST SCREEN HAS NOT
BEEN RECEIVED"
END

This example looks for a host prompt to be sent. If, after a
predetermined period of time, the message is not received

3-12 3270 PC High Level Language API

the program ends. As an alternative to ending the program,
the program could be designed to search for several
alternative responses. For many applications, designing a
comprehensive set of SEARCH calls for possible host
responses will be a key element of your application design.

COPY STRING

Function code - 08

Parameters:

Purpose:

String variable.
String length.
Offset in PS to the string.

COPY STRING moves a string from the last connected
presentation space into the user's string variable.

Remarks:

The offset into the PS is based on a 1 's origin (ie 1 through
1920 for a 3270 model 2 session). The value of offset+
length may not exceed the maximum screen size for that
presentation space. As an exception to the normal calling
conventions, the return code is also used to pass the
beginning offset to the interface.

The string is returned as an ASCII string. The requested
length must not exceed the length of the receiving user
buffer.

COPY STRING Return Codes

0 The copy was successful.

2 Parameter error.

Chapter 3. The Function Calls 3-13

Example:

1000 FUNC% = 8
1010 DATASTR$ = SPACE$(80)
1020 OLEN% = 80
1030 RETC% = 1
1040 CALL BLIM(FUNC%,DATASTR$,DLEN%,RETC%)

This example copies the first line of the presentation space
into a personal computer program variable called
DATASTR$. Note that DATASTR$ had to be
pre-allocated. Also notice that the return code was used as
an input parameter.

SET SESSION PARMS

Function code - 09

Parameters:

Purpose:

Parameter string.
String length.
Return code.

SET SESSION PARMS allows you to change certain default
options of the PCIRES module.

Remarks:

The parameters can be separated by any delimiter you
prefer. You must NOT imbed blanks in the keywords.
Misspelled keywords are not flagged in error.

The new session parameters go into effect at the conclusion
of the function call and remain in effect until changed again
or the resident program (PCIRES) is reloaded.

You must always specify an explicit string length even if you
are in BOT mode. (See the STREOT parameter below).

3-14 3270 PC High Level Language API

..

The following is a list of the specifiable options:

NOTE: DEFAULTS ARE IDENTIFIBD BY•
PRECEDING OPTION.

ATIRB

*NOATIRB

CONPHYS

*CONLOG

ESC=n

*STRLEN

STREOT

EOT=

*SR CHALL

SRCHFROM

Pass back all codes that do not have an
ASCII equivalent as their original value.

Convert to blanks all unknown values.

During CONNECT, Jump to the
requested Presentation Space. (do a
physical connect)

During CONNECT do not jump to the
Presentation Space. (do a logical connect)

Specify the escape character for
keystroke mnemonics(@ is the default).
Do not leave a blank after the equal sign.

An explicit length will be passed for all
strings.

String lengths are not explicitly coded,
strings are terminated with an EQT (End
Of '.l'ext) character.

Allows you to specify the EQT character
for string terminators (in STREOT
mode). Binary zero is the default. Do not
leave a blank after the equal sign.

SEARCH will scan the entire
presentation space.

SEARCH will start from a specified
beginning offset.

Chapter 3. The Function Calls 3-15

*AUTORESET The program will attempt to reset
inhibited conditions by prefixing all
SENDKEYS with a reset.

NORESET Do not AUTORESET.

TRON Turns on a trace of interlace calls.

*TROFF Turns the trace off.

*TWAIT

LWAIT

NWAIT

NOTE: The Trace function may conflict
with messages on the screen from
languages or applications that manage
their own displays.

Wait will time out on a long X Clock/X
SYSTEM.

Long Wait - will wait until X "clock"/ X
SYSTEM clears. This option is NOT
recommended since control will not
return to your program until the host is
available.

Wait checks status and returns
immediately (No Wait).

SET SESSION PARMS Return Codes

O The session parameters have been set.

2 The length of the parameter list is invalid.

Example:

1000 FUNC" = 9
1010 DATASTR$ = 'STREOT,EOT=!'
1020 OLEN" = 12
1030 CALL BLIM(FUNC",DATASTR$,DLEN",RETC%)

3-16 3270 PC High Level Language API

This example sets the session parameter to allow strings to
be specified with an ending delimiter. In this mode, you do
not use the string length parameter. Instead you use an BOT
character (in this example an exclamation point is used).

QUERY SESSIONS

Function code - 10

Parameters:

Purpose:

Empty string for session data.
Return code.

QUERY SESSIONS sets the return code to the number of
Host and Notepad sessions defined to the 3270PC Control
Program. A data string is returned describing each of these
presentation spaces.

Remarks:

The string MUST always be large enough to contain 6
session descriptors of 12 characters each (i.e. 72 bytes). The
format of each descriptor record is as follows:

Short name 1 byte ASCII character.

Long name 8 bytes ASCII character.

Session type 1 byte ASCII character. (H =Host,
N =Notepad)

PS size 2 bytes binary number.

Note that the presentation space size is a binary
number and is not in display format.

Chapter 3. The Function Calls 3-17

QUERY SESSIONS Return Codes

The return code is set to the number of configured
host and notepad sessions.

Example:

1000 FUNC% = 10
1010 DATASTR$ = SPACE$(80) 'PREALLOCATE THE STRING
1020 OLEN% = 72
1030 CALL BLIM (FUNC%,DATASTR$,DLEN%,RETC%)

RESERVE

Function code - 11

Parameters: Return code.

Purpose:

RESERVE locks the active presentation space to
prevent all user keyed input.

Remarks:

The presentation space remains locked until a
RELEASE is issued. Multiple presentation spaces
can be locked. The RESERVE function does NOT
prevent the user from accessing the WSCTRL
functions.

This function can be used to prevent the terminal
operator from keying into a selected presentation
space. If your program is sending a series of
transactions to a host, you may need to prevent the
user from gaining access to that session until your
program completes. Without issuing a RESER VE,
the interface only inhibits keyboard input during the
processing of the SENDKEY keystrokes.

3-18 3270 PC High Level Language API

"

You may not lock the workstation control session.
The session being reserved should not be in an
inhibited status when RESER VE is issued.

RESERVE Return Codes

0 The function was successful.

1 Not connected.

5 Inhibited.

9 System error.

Example:

1000 FUNC" = 11
1010 CALL BLIM(FUNC",DATASTR$,DLEN",RETC")
1020 IF RETC" < > 0 THEN GOSUB 9000

RELEASE

If an error is detected, a routine at "9000" will
analyze the condition.

Function Code - 12

Parameters: Return code.

Purpose:

RELEASE unlocks a previously RESERVED
presentation space.

Chapter 3. The Function Calls 3-19

Remarks:

The presentation space to be released must be the
currently connected session.

If you forget to release a reserved presentation space
before ending your program, the user will be locked
out of that session until another program releases it
or the Control Program is reloaded.

RELEASE Return Codes

O Release was successful.

1 Not connected.

9 System error.

Example:

1000 FUNC% = 12
1010 CALL BLIM(FUNC%,DATASTR$,DLEN%,RETC%)

3-20 3270 PC High Level Language API

•

Chapter 4. Using The Functions From Your
Application

Using BASIC

Users of BASIC have a choice of two programming
environments: Interpretive BASIC and Compiled
BASIC. While these environments are similar,
differences exist in subroutine linkage and string
handling. If you use interpretive BASIC you will
need special initialization programming to access the
interpretive BASIC language interface that is in the
PCIRES module. This programming locates the
interface from a fixed pointer location and uses this
address to set the SEG and OFFSET values for the
subroutine call. If you don't understand the routine
involved, don't worry; just copy the provided
program statements into your program's initialization
routine.

10 REM Sample Interpretive BASIC Initialization
20 DEF SEG = 0
30 INTR = &H45
40 SEGM = 256*PEEK(INTR*4+3) + PEEK(INTR*4+2)
50 BLIM = 256*PEEK(INTR*4+1) + PEEK(INTR*4)
60 IF SEGM <> 0 THEN 80
70 PRINT "PCIRES IS NOT AVAILABLE": END
80 DEF SEG = SEGM

Users of compiled BASIC can just call the Compiled
Basic Language Interface Module (BUM) as an
external call and then at linkage edit time, using
LINK, include CBASLIM.OBJ. The LINK command
will be: LINK YOURPROG+CBASLIM;

To call the interface from BASIC, you use a fixed
format call with four parameters. These parameters
must occur in a fixed sequence and all four
parameters must be in the call list - even if they

Chapter 4. Using The Functions From Your Application 4-1

aren't used. If a parameter isn't needed for a given
call, you don't need to value it. The call format is as
follows:

100 CALL BLIM (FUNC%,SDATA$,DLEN%,RETC%)

Where:

FUNC% is the function code.
SDATA$ is a string of data.
DLEN% is the data length.
RETC% is the return code.

The variables can have any names, however they
MUST be of the proper type. The function code,
data length and return code MUST be fullword
integer variables. The data string MUST be a string
variable.

Users of BASIC need to carefully review the
restrictions for string processing. Since the maximum
string length for interpretive BASIC is 255 bytes, the
COPYPS function is not available and
COPYSTRING must be used to extract segments of
the presentation space. Furthermore, the string
variables are managed dynamically in BASIC's data
segment; this means that all strings MUST be
pre-allocated before they can receive data from the
interface. While this sounds complicated, all it means
is that the subroutine package CANNOT change the
size of a string so you must pre-format your string to
the required size. For example:

1000 SDATA$=SPACES$(100) 'PREALLOCATE TO 100 BYTES
1010 FUNC%=08 'COPYSTRING FUNCTION
1020 DLEN%=80 'COPY 80 BYTES
1030 RETC%=1 'LOCATIONS 1-80 FOR COPY
1035 REM NOTE USE OF RETC% TO PASS OFFSET FOR COPYSTRING
1040 CALL BLIM(FUNC%,SDATA$,DLEN%,RETC%)

If you forget to preallocate your strings, the
language interface attempts to detect this condition
and will return a parameter specification error.

An issue related to string preallocation for
interpretive BASIC is string performance. BASIC
manages strings dynamically. As you assign and

4-2 3270 PC High Level Language API

reassign data to a string, BASIC reacquires space in
its dynamic storage pool. While this is not a problem
for many programs, if you write a complex
application that uses strings frequently, BASIC may
go into "garbage collection" resulting in a lengthy
pause in your program's execution while BASIC
compresses strings. If you are writing complex or
long running applications you should understand the
implications of interpretive BASIC's string usage and
how to avoid these performance issues. As an
alternative, Compiled BASIC avoids many of these
problems.

Using COBOL

The COBOL program should declare the parameter
variables in the Data Division. The following is an
example of the parameter declaration.

77 FUNCODE
77 RETCODE
77 STRLEN
01 DATA-STRING

PIC 99
PIC 99
PIC99
PIC X(1920)

COMP-0.
COMP-0.
COMP-0.
VALUE SPACES.

You have the option of changing the data names to
fit your own programming conventions. The string
variable should always be large enough to receive the
largest presentation space size you will request.

The call to the COBOL Language Interface would be
coded as follows:

CALL 'COBLIM' USING FUNCODE DATA-STRING
STRLEN RETCODE.

Chapter 4. Using The Functions From Your Application 4-3

Once you have compiled your program, you will
LINK it. To do this you need the LINK command
from PC DOS and the language interface
COBLIM.OBJ module. The LINK command may be
issued as:

LINK COBPROG + COBLIM;

This will then produce an executable module called
COBPROG.EXE. After loading PCIRES you may
execute this COBOL program in the normal manner.

Using PASCAL

VAR

The PASCAL program needs to declare the required
variables and the PAS CAL language interface
module. The following is an example of the necessary
definitions:

API_FUNC, API_LEN, API_RETC: INTEGER;
API STRING: STRING (255);
API SCREEN: STRING (1920);

PROCEDURE PASLIM (VAR TST FUNC: INTEGER;
VAR TST::::_STR: STRING;
VAR TST LEN, TST RETC:
INTEGER); EXTERNAL;

The call to the language interface would then be
coded:

PASLIM (API FUNC, API STR,
API=LEN, API_RETC);

4-4 3270 PC High Level Language API

Once you have compiled your program, you will
need to linkage edit it. Using the PC DOS "LINK"
command you will link the PASLIM.OBJ module into
your program. Assuming PASLIM.OBJ is on the
same disk as your object module, you should issue
the following command:

LINK YOURPROG+PASLIM;

On completing this step, your program is ready to
execute.

Using 8088 Assembler

If you program in the Assembler language you do not
need a Language Interface Module. You may
directly invoke the PCIRES module by issuing an
Interrupt 44H. At the time of the interrupt DS:SI
should point to a Parameter Control Block specifying
your parameters. For more detail on how to access
the interface from the Assembler language, see
Appendix C - Writing Your Own Language Interface
Module.

Chapter 4. Using The Functions From Your Application 4-5

4-6 3270 PC High Level Language API

Chapter S. Application Development Tips

Defining A Programmed Operator

There are several techniques that you may find useful
in developing your applications. To write an
effective program you must think like a terminal
operator. When an operator sits down at a terminal,
they typically look at the screen, determine "where
they are" in the application and take the necessary
actions to get to the desired starting point. This may
involve an action as simple as "hitting Clear" or may
require routing through a VT AM network to the
proper application. The SEARCH function is useful
for determining which keyword messages or
prompting messages are on the terminal.

Once you have gotten to the correct starting point
you will then begin creating host transactions and
reading the results. After you create a host
"transaction" and enter it, getting the data you want
is a three part process. If you think about what an
operator does after entering a transaction, you can
break it down into the three phases: 1) Waiting for
the host to respond, 2) Analyzing the response to see
if it is the expected response and 3) Extracting and
using the data from the response. The elements of
the application interface allow you to carry out these
same activities. Using SENDKEY you can key in
and enter a host transaction. The WAIT function
waits for the "X Clock or X System" to go away (or
returns a keyboard locked condition if the terminal
has locked up). The SEARCH function allows you
to look for an expected keyword to validate that you
received the proper response. Finally, if you have
the expected data, you can use COPYPS and COPY
STRING to extract the data you want.

The SEARCH function is also key to simulating
another task of the terminal operator. Some host

Chapter 5. Application Development Tips 5-1

systems do not stay locked in "X Clock/X System"
mode until they respond; instead they quickly unlock
the keyboard and allow the operator to stack other
requests. In this environment the operator depends
on some other visual cue to know that the data has
returned (perhaps a screen title or label). SEARCH
allows you to do the same thing since you can loop
doing SEARCHes while waiting for the expected cue
(or checking for multiple possible cues). As a good
programming practice you should keep a counter
during this loop and after some appropriate number
of iterations have the application timeout and
produce an error indicating the host has not
responded as expected. Also, change control
becomes very important in this environment since the
"programmed operator" must be retrained
(reprogrammed) for even minor changes in the
display dialogues. As an example, if a person expects
the message:

ENTER PART NUMBER:

as a prompt, they will probably be able to respond
properly to an application change that produces the
message:

ENTER COMPONENT NUMBER:

However, if your "programmed operator" is looking
for a keyword string, subtle changes in message
syntax, even one as trivial as upper versus lower case,
can completely fool the program.

Sending Keystrokes

There are several techniques you should consider
when sending keystrokes. Again, it is necessary to
mimic the actions of a terminal operator. Some
application environments are very simple and you
need merely to key in a command or transaction code
and hit the ENTER key. Other applications involve
more complex 3270 formatted screens. In this

5-2 3270 PC High Level Language API

environment you must understand the keystrokes
required to "fill in" the display panel. The Tab key
mnemonic (@T) can be used to skip between fields.
Care must be used, however, when using tabs with
autoskip attribute bytes on the 3270 session. If your
keystrokes exactly fill a field the autoskip will take
you to the next field. If you then issue a tab you will
skip again to still another field. Also, you need to
anticipate any "left over" data in the field you will be
keying into and possible issue an "Erase EOF" to
clear the remainder of the field.

String Specification

The program, as a default, requires you to pass the
length of all strings in the length parameter. If you
wish to avoid calculating your string lengths, you can
use an "End of Text" (EOT) character at the end of
every string. You specify the EOT character and the
use of this mode with the SET SESSION PARMS
function. Thus, after a SET SESSION PARMS
command of:

STREOT, EOT=!

the string "XREF 12345@E!" would key in the
transaction:

XREF 12345

and then hit the ENTER key. The exclamation
point would serve as the end of string delimiter and,
therefore, no length declaration would be required.
In this mode, all strings you send (keystrokes and
search arguments) must have the EOT character.
The SET SESSION PARMS command ALWAYS
requires an explicit length. Also, remember that the
session parameters remain set for the duration that
the PCIRES module is loaded.

Chapter 5. Application Development Tips 5-3

Performance

The interface is designed to simulate interactive
terminal activity. As a result, the performance of
keystroke entry is similar to that of a typist. For
applications requiring the input of large quantities of
data, you should also evaluate the use of the various
batch file transfer programs.

5-4 3270 PC High Level Language API

Appendix A. Messages

Messages from the 3270 Personal Computer High
Level Language Application Program Interface can
be identified by the prefix "PCI" and a message code
followed by the message text. The message codes
have the following format:

• PCI-NNN 'Message Text'

Where 'NNN' is a message ID.

Common Messages

PCI - 001 PCIRES is now resident
The program is successfully loaded and
available for your use.

PCI - 009 Return Code = XXXX
If you have specified TRON (Trace On) as
a session parameter this message will
indicate ending status from each function
call. Note that this message may overlap
with messages from programs that track
their own screen management (ie,
BASIC). The value is displayed in hex.

PCI - 901 Internal Error XXX
The program has detected an error in its
internal processing. :XXX is a component
identifier. You should retry the operation
after reloading the Control Program and
PCIRES.

PCI - 902 Internal Error during Initialization
A program error has prevented the program
from initializing properly. This is an internal
system error.

Appendix A. Messages A-1

PCI - 903 Unable to install PCIRES
The program was not able to make itself
resident.

PCI - 907 PCIRES is already resident
The program is already resident. If you
have not already loaded PCIRES, another
program is using the interrupt vectors
needed by PCIRES.

PCI - 933 Program Damage has been detected
The PCIRES module has detected a
problem with the internal stack or possible
stack or overlay damage. Be sure your
program is not altering memory in an
unexpected fashion.

PCI - NNO IN XXXXX
If you have specified TRON (Trace On) as
a session parameter, this message will
indicate which function you have invoked.
NN will be the function number and
XXXXX will be the function name. The
trace messages may conflict (overlap) with
your application messages if you are using a
language like BASIC that manages its own
display.

A-2 3270 PC High Level Language API

Appendix B. Key Mnemonics

A set of keyboard mnemonics is provided to allow
you to use ASCil characters to represent the special
function keys of the 3270 Personal Computer
keyboard. The use of an escape character signals the
SENDKEY function that the next character will
represent a special key function. (The default escape
character is "@" but you can change this with the
SET SESSION PARMS function.) As an example of
this technique, code an ENTER key by using 11 @E 11 •

To make these special keys easier to remember, a
mnemonic abbreviation scheme has been used. In
trying to keep it easy to use, most common keys have
been provided - for example, the CLEAR KEY is
11 C", the TAB key is "T", etc. Please note that the
upper and lower case alpha characters are mnemonic
abbreviations for different keys. To send a key that
is in ALT shift, you simply send the @A preceding
the appropriate key. For example, ALT PFl would
be encoded as @A@l where @A indicates the ALT
key and @1 is the mnemonic for PFl. The shift key
works the same way (using @S). The Change
Screen function, which is the SHIFT and JUMP keys,
would be coded as @S@J.Notice that the key code
actually indicates the key pressed and that ALT and
SHIFT may change the "meaning" of the mnemonic
(i.e. @A@C (ALT+Clear) is the Test key). Your
regular text characters do not require any special
shift codes - they will be entered in upper or lower
case as required.

NOTE: To execute certain workstation control
functions (for example JUMP) you must first connect
to Workstation Control.

The following chart lists the valid codes for the
special keystrokes. These mnemonics must follow
the ESCAPE character which has a default of @ (At
sign). To send the escape character as a keystroke,
code the character twice (i.e.@@ sends a single "at
sign").

Appendix B. Key Mnemonics B-1

A-ALT
B-Backtab
C-Clear
D-Delete Char
E-Enter
F-Erase EOF

G-Not Used
H-Help

0 Home
1 PFl
2 PF2
3 PF3
4 PF4
5 PFS
6 PF6

7
8
9
a
b
c
d

I-Insert
J-Jump
K-Copy
L-Left Cursor Move
M-Enlarge(Magnify)
N-NewLine

0-Not Used
P-Print

PF7
PF8
PF9
PFlO
PFll
PF12
PF13

e PF14
f PF15
g PF16
h PF17

PF18
j PF19
k PF20

B-2 3270 PC High Level Language API

Q-Finish(Quit)
R-Reset
S-Shift
T-Tab
U-Up Cursor Move
V-Down Cursor
Move
W-Not Used
X-Not Used
Y-Not Used
Z-Right Cursor
Move

PF21
m PF22
n PF23
0 PF24
x PAl
y PA2
z PA3

Appendix C. Writing Your Own Language
Interface Module

The 3270 Personal Computer High Level Language
Application Program Interface is designed to allow
you to develop support for languages and features
that may be unique to your environment. By using a
Language Interface Module as a bridge between the
application program and the primary interface
program, you can:

• Write a Language Interface Module for any
language you may wish to support.

• Use an existing Language Interface Module as a
gateway to other external functions.

• Change the format of the function calls or
parameter lists to better suit your environment.

The primary function of a Language Interface
Module is as follows:

• Handle linkage from the calling application

• Obtain data parameter pointers or values

• Convert any language unique data formats

• Construct a control block for the primary
program

• Call (using an interrupt) the Resident Module

• Receive control back from the Resident Module

• Pass back necessary parameters and return
control to the calling application

If you are writing support for a language you only
need the above functions. If you want to extend
these functions, there are two primary areas for

Appendix C. Writing Your Own Language Intedace Module C-1

interface extension: 1) Support for additional
external functions and 2) Modifications or extensions
of user calls to the primary program.

Frequently, users of Personal Computer languages
develop multiple subroutine packages to provide
utility functions such as display managers and data
managers. Many of these packages require the
application developers to call external subroutines. If
you would like to consolidate several of your
subroutines into one function package you may write
extensions to the Language Interface Module for this
purpose. Two different techniques are available.
The easiest extension is to reserve a range of function
codes for each subroutine package. The Language
Interface then examines the function code being
invoked and calls the appropriate subroutine
package. You may need to make adjustments in the
number and type of parameters passed to the
interface . A second technique for interface
extensions is more complex. Function Code 0 has
been reserved for a SIGNAL GATEWAY function.
In this mode, you can pass a "gatename" to your
language interface. The interface can then use this
function to establish routing for all subsequent
function codes to a given subroutine. This technique
is useful when existing subroutine packages have
overlapping function codes. By switching all function
requests through a specified gateway until a new
"gateway" is requested you can access a variety of
external functions through a common call
architecture.

Revised Call Support for the 3270 Personal Computer

The provided Language Interface Modules are
designed to provide a fixed format, easy to use, call
format. You may wish to tailor the number or format
of the parameters to your specifications. For
example, calls to the interface use offsets into the
presentation space. As an ease of use feature, you
may want to redesign the function calls to use a

C-2 3270 PC High Level Language API

row I column format. In that case your language
interface would convert the row I column data into
the offset values required by the actual interface
function module. Other revisions you might make to
the call architecture could include:

• Restrict certain functions from your application
programmers

• Automatically setup the session parameters

• Extended validity checking of function calls

• Revisions in the call structure to fit your
requirements.

• Support for different data formats.

Details of Writing Your Own Language Interface Module

The distribution diskette contains the source code for
the provided Language Interface Modules. You can
use these as a starting point for your own
development efforts. The language interface is
responsible for building a Parameter Control Block
with the requisite data and issuing an INT 44H to call
the function module. As a good programming
technique, you should verify that an interrupt vector
has been established for the interface's PCIRES
module. The Parameter Control Block has the
following format:

PCB HDR DB
PCB FUNC DB
PCB DSEG DW
PCB DADDR DW
PCB LENGTH DW
PCB FILLER DB
PCB RETCODE DW

'PCB'
0
0
0
0
0
0

;PCB Header (in Caps)
;Function code VALUE
;String seg addr
;String offset addr
;Data length VALUE
;Unused
;Return code VALUE

The Control Block Header "PCB" (in upper case)
must appear at the start of the control block. The
function code must be the one byte numeric (binary)
function code. The pointer to the user's data string

Appendix C. Writing Your Own Language Interface Module C-3

must contain the segment and offset address (Note
that the segment address precedes the offset). The
string pointer should point to the actual data string
and not a length or pointer prefix. The length should
be the actual binary length value passed by the user.
Since some function calls pass data in the fourth
parameter (normally the return code) this value
should be passed in the Parameter Control Block.

Once the control block is built, you call the resident
module with the INT 44H interrupt. The DS:SI
registers should point to the control block. You
should save any required non-segment registers.
After executing the requested function, control is
returned to your next sequential instruction after the
INT44. The return code is in the Parameter Control
Block. You should pass this value back to the
application caller's data area. Note that the interface
passes the string data back directly but the return
code is passed back to the Parameter Control Block
and you must retain the user's data address and pass
back the return code. This allows you to examine
and, if necessary, reformat the return code.

C-4 3270 PC High Level Language API

Appendix D. Quick Reference Summary

Fune Reqd
Code Name Parms Description

01 CONNECT Sess-id Access the requested
Retcode Presentation Space as

the active session.

02 DISCONNECT Retcode Drop the connection
to a presentation
space.

03 SEND KEY Length Send keystrokes to
Keystring the active session.
Retcode

04 WAIT Retcode Wait for X clock/X
system to clear and
return status.

05 COPYPS String Translate the
Retcode presentation space to

ASCII and move it to
the user's buffer.

06 SEARCH Length Search the
Srch Str Presentation Space
Retcode for a given string.

08 COPY Length Translate a string to
STRING String ASCII and move it to

Offset the user's string.

09 SET SESSION Length Sets a variety of
PARMS Parm Str program parms.

Retcode

Appendix D. Quick Reference Summary D-1

Fune Reqd
Code Name Parms Description

10 QUERY Data Get a list of sessions
SESS Retcode and parms. (Name,

screen size, type,
etc.)

11 RESERVE Retcode Locks the current
session to inhibit user
input.

12 RELEASE Retcode Unlocks the current
session.

A-ALT I-Insert Q-Finish(Quit)
B-Backtab J-Jump R-Reset
C-Clear K-Copy S-Shift
D-Delete Char L-Left Cursor Move T-Tab
E-Enter M-Enlarge(Magnify) U-Up Cursor Move
F-Erase EOF N-NewLine V-Down Cursor

Move
G-Not Used 0-Not Used W-Not Used
H-Help P-Print X-Not Used

Y-Not Used
Z-Right Cursor
Move

0 Home 7 PF7 e PF14 PF21
1 PFl 8 PF8 f PF15 m PF22
2 PF2 9 PF9 g PF16 n PF23
3 PF3 a PFlO h PF17 0 PF24
4 PF4 b PFll PF18 x PAl
5 PFS c PF12 j PF19 y PA2
6 PF6 d PF13 k PF20 z PA3

D-2 3270 PC High Level Language API

Appendix E. System Modifications

The primary vehicle for system customization is the
Language Interface Module. In most cases this is
sufficient, however, some users may have a
requirement for additional modification of the
PCIRES module itself. While this is not
recommended, there are four areas where the
systems programmer might consider making
alterations.

Changing the Session Parameter Defaults

If you wish to change the session parameters to a
different set of default options, the PCIRES module
must be changed. The values are hardcoded into
PCIRES in a text string beginning at label
PCI PARMS. These codes are ASCII character
codes and you may either change them and
reassemble PCIRES or ZAP the constants in the
executable module.

Changing the Keystroke Mnemonics

The keystroke mnemonic compound characters use a
set of key codes that is driven from a translate table
at label CMPNDT ABLE. The ASCII key code is
translated against this table to determine the 3270
Personal Computer key scan code to send to the
keystroke interface. Values for A, Sand X are hard
coded into application logic and should NOT be
altered. If you wish to change the mnemonic
definitions you may alter this table.

Note that the scan codes used are 3270 PC scan
codes and NOT Personal Computer scan codes. You
may obtain these scan codes by running the keyboard
diagnostic program for the 3270PC.

Appendix E. System Modifications E-1

Saving Storage

The PCIRES module contains an internal buffer that
can contain the largest possible presentation space
size. If you are in a memory constrained
environment and will never have a display size larger
than a 3270 Model 2 (1920 bytes), you may reduce
the buffer size at VBUFFER to a smaller value. If
you do this and a user generates a larger presentation
space to the Control Program, it could cause an
unrecoverable error.

Changing the Interrupt Number

The system uses two interrupt vectors (Hex 44 and
45). The first vector is used for the actual PCIRES
interrupt. The second vector is used to provide a
fixed pointer to the integrated Interpretive BASIC
Language interface. If these interrupts conflict with
other software you are using, you may change the
interrupt assignments. The PCIRES program
establishes the interrupts based on the value at label
MYINTNUM. You may either ZAP this or change
the value and then reassemble/relink the PCIRES
module. Also remember to change the value in your
Language Interface Modules and the value for the
INTNUM in the Interpretive BASIC source modules.

E-2 3270 PC High Level Language API

Glossary

active window. The window
outlined with a double border
and containing the cursor,
indicating the session to which
your keyboard is logically
attached.

Alt key functions. Keyboard
functions printed on the front
of the keys that are selected
when the Alternate (Alt) key is
pressed in conjunction with the
desired key.

American National Standard
Code for Information
Interchange (ASCU). One of
the two standard codes used for
exchanging information among
data processing systems and
associated equipment; the
standard code used by the IBM
Personal Computer and other
microcomputers.

autokeying. A control program
capability that lets you record
frequently used groups of
keystrokes and plays them back
at designated locations on the
screen.

BASIC. Beginner's All-Purpose
Symbolic Instruction Code. A
high-level, widely used
computer programming
language.

combination keys. Keys that
must be used in conjunction
with another key or keys to
produce a desired function;
these include the personal
computer keys Control, Shift
and Alternate, and the host
computer keys Shift and
Alternate

connect. The function code
which allows the application

program to access the requested
presentation space as the active
session.

control program functions. The
set of functions in the IBM
3270 Personal Computer
allowing you to create windows,
change their size and position,
and hide and enlarge them; use
autokeying and copying; save
and restore autokey recordings,
notepad contents, and screen
profiles; and transfer files
between host computer and
personal computer sessions.

copy. The work station
function that allows you to
mark source lines in one text
mode window and move them
to a target location within the
same window or from one
window to another on the same
screen profile or a different
screen profile.

copy ps. The function code
which allows the application
program to translate the
presentation space to ASCU
and move it to the user's buffer.

copy string. The function code
which allows the application
program to move a string of
data from the presentation
space to the user's data area.

disconnect. The function code
which allows the application to
make the personal computer
session the active session.

hide. The work station function
that allows you to remove a
window temporarily from the
screen profile in which it
appears: it does not delete the

Glossary X-1

window or affect its presence
on other screen profiles; it
merely "hides it.

jump. The work station
function that allows you to
move from window to window
on a screen profile; initiated
with the Jump key or pressing
the WS Ctrl key and the letter
name of the window.

logging on. The procedure by
which you are linked to a
multiple-user host computer
system; the procedure requires
a user identification and a
password.

menu. A list of available
operations. You select which
operation you want from the
list.

notepad. The application mode
session that contains notes you
make to yourself at your work
station; its keyboard is similar
to the host keyboard; its
contents disappear at the end of
a session unless stored with the
Save utility.

operator information area
(OJA). The bottommost line of
your screen where you receive
information about the status of
your work station and your
host, notepad, and personal
computer sessions.

presentation space. A concept
that represents the area that
contains the data that goes to
your display screen during a
3270 host session, an IBM
Personal Computer session, or a
notepad session.

query session. The function
code which allows the
application program to get a list
of sessions and parameter.

X-2 3270 PC High Level Language API

release. The function code
which allows the application
program to unlock the current
session.

reserve. The function code
which allows the application
program to lock the current
session to inhibit user input.

restore command. The work
station command that allows
you to load autokey recordings,
notepad information and/ or
screen profiles from personal
computer diskette or fixed disk
storage to work station
temporary storage.

save command. The work
station command that allows
you to move autokey
recordings, notepad information
and/ or screen profiles from
work station temporary storage
to personal computer diskette
or fixed disk storage.

search. The function code
which allows the application
program to search the
presentation space for a given
string.

selected window. In work
station control mode, the
double-bordered window that
will be affected by work station
functions.

sendkey. The function code
which allows the application
program to send keystrokes to
an active session.

session. A connection between
your work station and a host
computer, a personal computer,
or a notepad.

set session panns. The function
code which allows the
application program to set a
variety of program parameters.

setup. The work station control
function from which aspects of
screen layout may be changed

short name. A letter name (A
through Z) of a window
displayed in the upper left
comer of a window border.

valid key. A key that is
recognized by the session type
(host, personal compute or
notepad) or mode (WS Ctrl) to
which your keyboard is logically
attach

wait. The function code which
allows the application program
to wait for the X Clock/X
System to clear from the OIA
and returns the status code.

window. The opening on the
screen through which you view
your application data. A
window can be the same size as
your full IBM 3270 Personal
Computer screen or as small as
one character.

work station control mode
(WsCtrl). The master control
mode of the IBM 3270 Personal
Computer from which the
control program functions are
initiated.

Glossary X-3

X-4 3270 PC High Level Language API

IBM Personal Computer

3270-PC High Level Language Application Program Interface
SH20-6544-0

You may use this form to communicate your comments about this publication, its organization, or
subject matter, with the understanding that IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any,
are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

READER'S
COMMENT
FORM

..; E If you wish a reply, give your name, company, mailing address, and date:

I~
·3 :c
O" ~

~~ c ~

·e B

i !
E i:

~ ~
E il,
B ~
al£

j ~
~ ·~
:0 ·~
e s:
~ ~
~ ~
CT~
~ ~ a. lQ

~ fi:

What is your occupation? ------------------------

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the .U.S.A. (Elsewhere, an IBM
office or representative will be happy to forward your comments or you may mail directly to the address
in the Edition Notice on the back of the title page.)

adeJ_

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK.NY

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Department 68Y
220 Las Colinas Boulevard
Irving, Texas 75039-5513

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITE 0 STATES

adeJ_

Program Comment Form IBM Personal Computer

3270-PC High Level Language Application Program Interface (1753180) SH20-6544-0

Service Registration Number:-----------------------------­
(Required 1ntormat1on-located on the first screen of program)

Please use this form only to identify errors or to suggest changes to programs. Defects in this program may be
corrected or its facilities may be enhanced by your comments. Provide specific information whenever possible.

Comments:

You may use this form to communicate your comments about this publication, its organization, or subject matter
with the understanding that IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

Do you want a reply? D Yes D No. If you do, give us your name and address:
Name _________________________________ _

Company ____________________ Customer No. ______ _

Address ______________________________ ~

City ________________ State _____ Zip Code _____ _

IBM employees only: Branch office no. City and State _________ _

Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

FOLD ON LINES, SEAL AND MAIL

ade_L

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

I PS Product Support Center
I BM Corporation
P. 0. Box 152560
Irving, TX 75015-2560

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

ade.L

SERVICE REGISTRATION CARD

Please fill in and return to IBM in order to register for service.

3270-PC HIGH LEVEL LANGUAGE APPLICATION
PROGRAM INTERFACE (1753180)
Name ________________________ _

Company _______________________ _

Title ---------- Dept. or P.O. Box ----------
Street ________________________ _

City-----------State------ Zip _____ _

Telephone Number---------------------

Date Product Received: Mo ____ Day ____ Year-------

Where Product Was Acquired:----------------­

Alternate Customer Service Contact---------------

Alternate's Telephone Number-----------------

Service Registration Number:-----------------­
(Required information-located on the first screen of program)

SH20-6544-0

ATTENTION

SEND THIS CARD IN TODAY

FOR

PROPER SERVICE AND COVERAGE

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

I PS Product Support Center
I BM Corporation
P. 0. Box 152560
Irving, TX 75015-2560

a1deis iou op asea1d

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

ade.l

ALL OTHER PROGRAMS ARE PROVIDED "AS
IS" WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORM­
ANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE,
YOU (AND NOT IBM OR AN IBM AUTHORIZED
REPRESENTATIVE) ASSUME THE ENTIRE COST
OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

IBM does not warrant that the functions contained in
any program will meet your requirements or that the
operation or the program will be uninterrupted or error
free or that program defects will be corrected.

THE FOREGOING WARRANTIES ARE IN LIEU
OF ALL OTHER WARRANTIES, EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTA­
BILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

SOME STATES DO Nor ALLOW THE EXCLU­
SION OF IMPLIED WARRANTIES, SO THE
ABOVE EXCLUSION MAY Nor APPLY TO YOU.
THIS WARRANTY GIVES YOU SPECIFIC LEGAL
RIGHTS AND YOU MAY ALSO HAYE orHER
RIGHTS WHICH VARY FROM STATE TO STATE.

LIMITATION OF REMEDIES

IBM's entire liability and your exclusive remedy shall
be as follows:

1. With respect to defective media during the warran·
ty period:

a. IBM will replace media not meeting IBM's
"Limited Warranty" if returned to IBM or an
IBM authorized representative with a copy of
your receipt.

b. In the alternative, if IBM or such IBM author­
ized representative is unable to deliver
replacement media free of defects in materials
and workmanship, you may terminate this
Agreement by returning the program and your
money will be refunded.

2. With respect to warranted programs, in all situ·
ations involving performance or nonperformance
during the warranty period, your remedy is (a) the
correction or bypass by IBM of program defects or
(b) if, after repeated efforts, IBM is unable to

make the program operate as warranted, you shall
be entitled to a refund of the money paid or to
recover actual damages to the limits set forth
below.

For any other claim concerning performance or
nonperformance by IBM pursuant to, or in any
other way related to, the warranted programs
under this Agreement, you shall be entitled to
recover actual damages to the limits set forth
below.

IN NO EVENT WILL IBM BE LIABLE TO YOU
FOR ANY LOST PROFITS, LOST SAVINGS OR
OTHER INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OF
OR INABILITY TO USE ANY PROGRAM
EVEN IF IBM OR AN IBM AUTHORIZED
REPRESENTATIVE HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES, OR
FOR ANY CLAIM BY ANY OTHER PARTY.

SOME STATES DO NOT ALLOW THE LIMI­
TATION OR EXCLUSION OF LIABILITY FOR
INCIDENTAL OR CONSEQUENTIAL DAM­
AGES SO THE ABOVE LIMITATION OR
EXCLUSION MAY NOT APPLY TO YOU.

IBM's liability to you for actual damages for any cause
whatsoever, and regardless of the form of action, shall
be limited to the greater of $5,000 or the money paid
for the program that caused the damages or that is the
subject matter of, or is directly related to, the cause of
action.

SERVICE

Service from IBM, if any, will be described in program
specifications or in the statement of service, supplied
with the program, if there are no program
specifications.

IBM may also offer separate services under separate
agreement for a fee.

GENERAL

Any attempt to sublicense, rent or lease, or, except as
expressly provided for in this Agreement, to transfer
any of the rights, duties or obligations hereunder is
void.

This Agreement will be construed under the Uniform
Commercial Code of the State of New York.

Z12S-3301-1(UMOO)10/83

