0o

INBIIV]

NPL Technical Report.

NPL Technical Report.

This manual provides a detailed and comprehensive description of a
new programming language, NPL. This new language is designed not
only for applications programming in the traditional commercial and
scientific fields, but also for programming in other applications areas.
At the same time, the language is so designed that different levels of
language facility can be selected for given classes of applications or for
given levels of programmer experience.

The NPL Technical Report is only intended to describe the language

and not to serve as a specification of the language for implementation by
a particular compiler.

December 1964

PREFACE

This manual constitutes a description of NPL. It is a technical report
of NPL, not a student text, nor a user's guide for a particular compiler
implementation of the language. Further publications describing the language
are planned for a later date.

In general, this manual assumes a relatively high level of programming
knowledge and experiencé on the part of the reader. Specifically, it assumes
a thorough knowledge of modern programming concepts and techniques and
some knowledge of current high-level programming languages. Accordingly,
the manual is not intended for general distribution.

The "Introduction'' chapter provides the reader with a review of the design
criteria of NPL and a discussion of the more significant features of the
language; it also gives an indication of those parts of the manual that are of
interest to particular classes of users. The language description comprises
the succeeding twenty-seven chapters. Various kinds of reference information
have been organized into eight appendices, the last of which is concerned with
implementation of NPL for the IBM System/360.

This description of NPL is based largely on reports issued by the SHARE
Advanced Language Development Committee which included GUIDE representa-
tion. IBM wishes to express its deep appreciation to that committee and to
acknowledge the efforts of its members.

This publication was prepared for production using an IBM computer to
update the text and to control the page and line format. Page’
impressions for photo-offset printing were obtained from an IBM 1403
Printer using a special print chain.

© 1964 by IBM World Trade Laboratories (Great Britain) Ltd.

PREFACE
CHAPTER 1: INTRODUCTION . « ¢ =« o o o o o o =

Design Criteria « « o ¢ o o o «

New FEALULEeS « « o o o o o s o o s s o o o = =
Program Structure . . « ¢ o« « o o & o o =« &
TYPES OF DATA o« « o o o o » o o o s s o o o
I NPUT/OUTPUT - - - - - L] - L] - - - - £ - -
Nonsequential Facilities . ¢ « « « « ¢ . -
Compile-Time Facilities « « « « ¢« ¢ o ¢ < =

Suggestions for use of this Publication . . .
CHAPTER 2: CHARACTER SET AND IDENTIFIERS . . .
Language Character Set . « « « « « « = = « « =«
Data Character Set o« o « « o o o o o o o o « =
Identifi€rs o« « o« o o o o o o = o s o o o o
CHAPTER 3: DATA TYPES AND REPRESENTATION . . .

Data T‘y pes - - L Ll - L d o

Arithmetic DAt « » o o o o o o e o o o o =
Character String Data « « « « o o o o o o &
Bit String Data « « « « o o o o o o o o o o
Statement Label Data . ¢« « « « o o o « o o

CONStantsS .« « o o o o o « & o o o o o o o o o

Real Arithmetic Constants . o o @ .
The Precision of Real Arlthmetlc Constants
Imaginary Arithmetic Constants -
Bit String Constants . « « « « = o ¢ o o o
Character String Constants .« . « o « « « =«
Statement Label Constants « « « « « o « « =

Scalar Variables « « o« o o o o o o o o o o o

CHAPTER 4: DATA AGGREGATES « « ¢ ¢ o o o o =

Arrays e ®© ®© ® e e o o e o o

Subscripted NameS « « « « o o o o 2 o o o o
Cross Sections Of AYraysS « « = o o o o o o
COHStI\ICted Arr ays - 3 - - ° Qe e @ » L - -
StTUCLUXES « o o o o o o o o o ¢ o o o o o o =
Arrays Of Structures . « « « « « « o » o -«
Qualified Names . « o o o o o o o 2 o o o «
Subscripted Qualified Names . « « « « « - »
CHAPTER 5: ELEMENTARY LANGUAGE STRUCTURE . . -
Del imiters - - - L] L] - - - - L] - - - - - - - -
operators - - . - - - - - - - - - - . - L] L]
Brackets . . . - e e o @ o« o o o o o
Separators and other De11m1ters e« o o o o o

o & & o & 8 O

s o &

4 o ¢ @

. . * & . .

L . L I

[e o & s 0 & 0 .

¢ s & s & s

s & 8 & e o & o L] s & 0 0 o 0 0 ¢« 6 o & 0

e 5 &

. . . ¢ @ L[]

e o & & &

. ¢ & 0 o o o &

. . L I] L[]

* & s 0 o & 2

¢ 9 & s O

L . L]

e & & o &

e & 8 & 9 b

s s 5 & &

] L I .

* 5 ¢ &

L] . 0 L]

[] * & 9 0 . o 0

CONTENTS

R T R N]
s o ¢ 8 &
-

w

.
-
(o o]

.
.

N
&

TR T S]
N
W

O I R
"]
=)}

. ¢ 0 0 .
. T] « o s 0
W w N
w (=} (<<

¢ & o 0
w
&

Keywords . L] - - - - - - - - L] - -) - - - - -
BlanKkS ¢ o o o« o« o« 2 o o o 2 o o & o o o « =

Comen t s - - - L] - - . - Ld - - - - - - - - -

CHAPTER 6: FUNCTION REFERENCES AND EXPRESSIONS . .

Function REferences . o « « s « o o o o o

Scalar Expressions

Bit String Operations . . « < . o « « « o
Concatenation Operations . . « o« + « o &
Arithmetic Operations . « « o ¢ o o « o &
Comparison Operations . « « « o« o o « o &
Type CONVErSion o« « o« « o « o o o o o o o
Evaluation of EXpressions . « « « « « « «

Array Expressions . . ¢« ¢« ¢ o o o o «

Structure EXpresSsions . « ¢« ¢ o « o o o o «
Structure Expressions BY NAME . ¢ o o o « «
CHAPTER 7: PROGRAM STRUCTURES . v o o o o &«

Statements and Statement Format
Simple Statements . « ¢« « o 2 ¢ o o « o o
Compound Statements « o o « o ¢ o « o o o

Labels o« o o o o« & »
Initial vValues for

Label Arrays . « « o« «
Groups - - - - - - L] L] . - L] - - - - - - - e

Blocks « o ¢ o« e o o o

The PROCEDURE Statement « « o« o o o o « «
The ENTRY Statement « « o« o « « o o o « »
The BEGIN Statement « « « « o « « o o o «
Programs and ProcedureS . « « o 2 o o o o o

Declarations [] - - - - - - - * - - - L] L] L] -
Sequence Of CONtIOLl .« ¢ o o« o o ¢ o o o o @
Procedure and Block Termination
The END Statement « « « « o o o o o o o
Multiple ClOoSUre . o o« 2 4 o « « o o » «
CHAPTER 8: STORAGE CLASSES AND ALLOCATION OF
The STATIC Storage ClaSS . o « « « « o o o »
THE AUTOMATIC STORAGE CLASS & o « ¢ o o o o
The CONTROLLED Storage ClaSS « « o« « « o « «
The ALLOCATE Statement . . « o« o « « o «
The FREE Statement . « o« o o ¢ o o o o

CHAPTER 9: CHARACTERISTICS OF PROCEDURES . .

s 6 9 0 2 e
o o & s s
] L[] * » e

¢ s a2 »
. 8 & O
» & 0o

L] L 2)

. ¢ 8 L] L] L] »

s 0 9 &

¢ & 8 o

LI T T)

[Y I I I

4y
46
Lo
46

46
47

47
48
49
50
51
51
51
54
55
56
57
57
57
58
58
59

60

Subroutine Procedures
FUnctions .« « ¢ o o = o o o o«
Function procedures . . . =«
Built-in Functions
The ENTRY Attribute
Abnormality of Procedures . .
The ABNORMAL Attribute . .
The NORMAL Attribute . . .
The USES and SETS Attribute
CHAPTER 10: FORMAL PARAMETERS,
Arguments Passed by Name . . .
Arguments Passed by Value . .

Default Parameter Attributes .

Adjustable Dimensions and Length

s & 9 0

¢ & o ¢

»
)
e =
e

ADJUSTABLE DIMENSIONS

e e o

Parameters, Dimensions and Length . .

Name Parameters, Adjustable

Allocation of Name Parameters

Lengths

» ®© o e

CHAPTER 11: THE ASSIGNMENT STATEMENT .

Scalar Assignment
Pseudo Variables«
String Assignment

Array Assignment . . . + o o .

Simple Structure Assignment .

Statement Label Assignment . .

CHAPTER 12: THE SAVE AND RESTORE

The SAVE Statement . . « - « =«
The RESTORE Statement . . . «
CHAPTER 13: CONTROL STATEMENTS
The GO TO Statement . . « « &
The IF Compound Statement . .
The DO Statement and Iteration
The CALL Statement « . « « « =
The RETURN Statement . « « «

The DISPLAY Statement . . . «

and Dimension
Value Parameters, Adjustable Lengths and Dimension Bounds . .

-

¢ &+ & 0
.

[2N T B

. [] [.
L]
.

« AND LENGTH

e e ® @ o

Bounds . .

e o o e = o

« 8 B

66
66
67
67
67
67
68
69
69
70
A
72
72
13
73
73
75

75
76
78
79
79

The WAIT Statement « .« « « « ¢ o ¢ = o o « « @
The STOP Statement « « « o » = s s 2 o o o o »
The EXIT Statement « « o « ¢ « « « o o o o o« o
The DELAY Statement . « ¢ o o o ¢ o o o o o «
The FETCH Statement . « « o o « 2 « o « « o
The DELETE Statement . o« « ¢ ¢« ¢ « « = o « o «
CHAPTER 14: ERROR CONTROL AND DEBUG STATEMENTS
The On Compound Statement «o ¢ o« . &
The Revert Statement .« « ¢ o o o ¢ o = o « o o
The Signal Statement . . o o ¢ o 2 o « o« « « =
CHAPTER 15: ATTRIBUTES o 2 o o + ¢ = s o o o =
Attribute ClassSes . . 2 o o o o o s o ¢ o o o

Data Attributes

Arithmetic Attrlbutes e o o o o o o o ® s
Bit String Attributes e e o o o o o o
Character String Attrlbutes e e o o s s e o
Label Variable Attributes « ¢ o o o o o o &
The Dimension Attribute« o« o .

The ABNORMAL, NORMAL, and SECONDARY Attributes
ABNORMAL - - - L] - Ld - - - - - - - . - - -
NORMAL - . - - - - - - - - - - - - - - - -
SEC ONDARY - - - L] L] Ld - - - L] - Ll L d . - - -

Entry Name Attributes . . . ¢« & & & &« & & . .
The Generic Attribute
The Builtin Attribute . . . ¢ ¢ ¢ o o « & .

Scope AttribUteS ¢ o ¢ o o o o o o o o o » o @
Storage Class Attributes

The Defined Attribute

Scalar Defining « « o o 2o ¢ o o = « o « « »
Array Defining . « ¢ o ¢ ¢ ¢ ¢ o o ¢ o « @
Mixed Defining o« « o o o o 2 o « o o = o «

The INITIAL Attribute . . ¢ ¢ o o« o o o ¢ « »
Symbol Table Attributes . . &« ¢ ¢ o ¢ o « «
Parameter Attributes . « « o ¢ ¢ o ¢ o o o o &
The LIKE Attribute ¢ ¢ &« 4 & & o o . .

File Description Attributes .

Dynamic Control Attributes . . « « « o o »
ACCESS Attribute . - - - - L] - * - - ® - -
The Zero Attribute . . . & ¢ ¢ ¢ ¢ o o o »

* & s 0 ¢ 8 s 0 L] L[] .

.

e 8 & 0

. 0o 0 . LN L L] L[]

L I I]

e & 9 » . o L]]

s o & o

L[] LI L] LI)] [] L] *

L]

e & & 0

L L

¢ 0 s & s

. . L] L]

* & o ¢« & o 0 0

.

[. . *

L N) * L[]

*

¢ & 2 2 0 0

L. 1] * . .

s 0 0

L) . L]

¢ & s 0 0 @

L[] L 2] .

80
81
81
81
81
82
83
83

84

CHAPTER 16: THE DECLARE STATEMENT
Name Declaration . « « « o o = o o o o « &
Declarations and Factoring of Attributes .
The Declare Statement . « ¢ ¢ o o o o o =
Structures . « « « « o« . e e o o o
Structure Description by Level Number .
Structures and the Dimension Attribute
Data Attributes and Structures
Scope Attributes and Structures
Storage Class Attributes . . . « . .+ «
Structures and the Defined Attribute .
Prologues o « o o o o o o o o o = o o o =
CHAPTER 17:
The Implicit Statement « . & « « o o o « &
Implicit and Default Attributes
IMPLICIT ATTRIBUTES « o« ¢ ¢ o o s o o o
Default Attributes .« « « « o o o o o
The Sequence Statement . « « « « « o « o
CHAPTER 18: ASYCHRONOUS OPERATION OF TASKS
Task relationships « « « o« o o « o o o = @
The Task OptiOn « ¢ o ¢ o o o o « o = = =
Data Allocation across TaSkS « « « o o « o«
Termination Of TasKksS « « « o o o o o o o «
Stacking of Task Identifiers . . « . . . =«
CHAPTER 19: PROGRAM MODIFICATION . . « « =«

Macro Variable€sS . « o« o« o o o o o o = » =

Macro Procedures . . « - e o o ® o o =
The Operation of Macro Procedures o o o

Macro EXpPressSions . « e« = « o o o o = =+ =«

Compile-time Statements . . « « . « . .
The Macro DECLARE Statement =
The Compile-time Assignment Statement
The Compile-Time NULL Statement . . .
The Compile-time IF Statement
The Compile-time GO TO Statement . .

Compi lE"time ACtiVity e o ®© o o ©® o 8 o
CHAPTER 20: INTRODUCTION TO I/O FACILITIES

CHAPTER 21: OPENING AND CLOSING FILES . .

IMPLICIT AND DEFAULT FACILITIES

e ¢ 0o s s 0

s o 93 0 & &

e & o 0 3 0

¢ 8 0 8 b & b

L] 1] L] » 0 * []

s & 0 5 b

o 8 & 0o &

® o 8 o b B

¢ & & + & e B

[[I [] . [

® & 8 5 0 0o B

e s & 0 & 8 b

¢« ¢ & 0 0 0

*

s s & o

.

102
103
103
103
104
106
106
106
107
107
107
109
109

109
110

110
110
110
11
111
11
111
112
115

116

The OPEN and CLOSE StatementsS . « o v « « o o o o o o
CHAPTER 22: DATA SPECIFICATION « v o ¢ « « o o © o o =

Modes of Data Transmission . . .

- - - - - - - - - - -
Format Directed TranSmiSSiOn .« e o « o o o o o o o
List Directed TransmisSsion . « o « v o « o o « o o
Data Directed Transmission = = 2 o @ ® & o 5 ®

Format and List Directed Data LiStS . v v v o o o o »

Format Li sts - -] - - L] - - - - - - - - L] - L] L] - - L]
The FORMAT Statemen e ® o & o s o s o o 2 o e o =

Modes of Data Specification . ¢ ¢ o ¢ o ¢ o o o o o «
Data Specification for Format Directed Transmission
Data Specification for List Directed Transmission .
Data Specification for Data Directed Transmission .

CHAPTER 23: DATA TRANSMISSION « o ¢ « @ o o o o o o o
The READ and WRITE Statements .« . o o o ¢ o o o o o o
The GET and PUT Statements . .

The GET Sta tement - - - - L] - . - L] - - L] - * L] L] .
The PUT Statement « « « o« « o o o « 2 o« o o o o o o

[]
[]
L]
[]
.
L]
L[]
L]
.
[
[]
.

CHAPTER 24: POSITIONING STATEMENTS . 2 v « « « o o o o
The POSITION Statement « v« ¢ o 2 ¢ « « « o o » o o o o
The REPOSITION Statement . « v« o« 2 o o « « « o o o o =
The TAB Statement . . ¢ «¢ 2 &4 & ¢ o = o « o « o o o =

Interrecord Positioning

The SKI P Stateﬂlent L] - - - L d - - - L] - > - L] - L] -
The SPACE Statement « o « o o o 2 « 2 « o o o o o o
THE GROUP STATEMEM - - - - - - - - - - - - - - - -
The SEGMENT Statement « « o o o o o o o o « o o o o

CHAPTER 25: REPORT GENERATION 2 v o o ¢ o o 2 o o o o
The PAGE Statement « « o o 2 ¢ ¢ v o « o« « o o o o » o
The LAYOUT Statement . o o v o o o o « o o o o o o o o
CHAPTER 26: ASYNCHRONOUS LOCATION OF DATA « o o o « «
The SEARCH Statement ¢« « v o v« ¢ o o o o 2 o o o « o =
CHAPTER 27: THE SORT STATEMENT « o o ¢ « ¢ o = o o o
APPENDIX 1: BUILT-IN FUNCTIONS o o o o o o o o o o o .
Arithmetic Generic FuUnctions ¢ v v v o o o o«
Float Arithmetic Generic Functions o o o o o .

String Generic FUNCLIONS ¢ v v v o o o o o o o o o o .

¢« 2 0 2

.

L] . L] e 0

116
118
118
118
118
118
119

119
120

120
120
120
121
123
123
126
126
127
128
128
128
128
129
129
129
129
130
131
131
132
134
134
136
138
138
140

141

Built-in Functions for Manipulation of Arrays
Array Built—in Functions . « ¢ o ¢ ¢ o s o « =
Condition Built—in FUnctions . « « « « « « + »
Other Built-in Functions . . ¢ ¢« o o =« « « « &
APPENDIX 2: PICTURE SPECIFICATIONS « o « o +
Numeric Field Data and the PICTURE description

Picture CharacteristicCs . « ¢« o o o o s o =«
General Form of Picture Specifications . .

-

»

Digit, Point and Subfield Delimiting Characters

Zero Suppression Characters « « « « « « o« o
Drifting Editing Symbols . « « « « =«
Sterling Pictures « « o o o o « o o «
Picture Specifications and Precision
Picture Specifications and Size . . .
Repetition of Picture Characters . .

L[] L] ¢ & 8
¢« & 8 &
* & 9 0

Pictures for Character Strings « « « « « &
APPENDIX 3: NPL STATEMENTS o + « o a s o o o o
APPENDIX 4: PERMISSIBLE KEY-WORD ABBREVIATIONS
APPENDIX 5: ON CONDITION « o o ¢ « o o o = = o
Computational Conditions « - = « « « « & o . &
Input/sOutput Conditions .« ¢ o o o o & o o « &
Program Checkout Conditions . « « « « « ¢ « o«
The CONDITION Condition .« « o o o o o o « = o
The FINISH and ERROR Conditions . « « « « o &
APPENDIX 62 FORMAT ITEMS . o o o o o o o o o
Data Format ItemS .« « « o « o » o o
Fixed Point Format Items . « . .
Floating Point format Items . .
Complex Format Items . « « . .
Arithmetic Format Specification
Bit String Format Items . . « . «

Character String Format Items
General Format Specification

o]
<
o
e
Q
e ¢ 4 ple s s b
=]
s 0 s Se s s o
=]

Spacing Format ItemS o« « o o o = o o o o o o o

Further Control Format Items . .
Remote Format Specification « « « « « « « &

.
.
]
L]
L]
.
[

APPENDIX 7: LIST AND DATA DIRECTED OUTPUT . .

List Directed Output . . .

Coded Arithmetic DAta o « o « o o o o o =
Numeric Field Data . o« o « o o o a o o o =
"Character String Data « o« « o o o = o o o &

s 0 2 0 @

¢ o o , * & 0

® s 6 8 & o 0 9

L]] L L] [] L] *

s o 4 »

® o o s o s

s o & s 0

L LI] * 0 L I L]

e & & 0o & o+ o+

LI I I

LI] [. L] . .

¢« 8 e & LI .

s o 0

s & % & & 4 5 s B

* o o & & L] . []

o s o @

» & & L N []

] [] . L s o »

[[. 9 [

143
144
144
144
146
146
146
147
148
148
149
152
153
154
154
154
155
156
157
157

158

158

159
159
160

160
160
161
162
162
162
163
163

164

165
165

166

166
166
167
167

Bit String Data « « & « < .
List Directed Output Format

Data Directed Output
APPENDIX 8: NPL FOR SYSTEM/360
Character Sets « v o o o o o .
Length of Identifiers
Representation of Data

Array Bounds . « « « « o o o

167
167

167
169
169
170
170
171

CHAPTER 1: INTRODUCTION

A modern data processing system should serve as a comprehensive tool
for the solution of today's data processing problems. In addition, it
should provide a broad base for meeting the future needs of the ever
increasing spectrum of applications. whereas, in the past, data
processing equipment was often designed specifically for either scienti-
fic or for business requirements, today's equipment should 1lend itself
equally well to both business and scientific applications and to newer
areas, such as real time processing.

Similarly, a modern operating system should offer comprehensive
programming support for the efficient solution of traditional computing
problems in many fields and, at the same time, should provide an
up-to-date environment for newer techniques, such as asynchronous
program execution and shared data processing facilities.

An advanced programming language is a critical element of a modern
data processing system. This idea provided the basic motivation for the
design and development of NPL, a new programming language. NPL is
designed to serve the needs of an unusually large group of programmers,
including scientific, business, real time, and systems programmers. The
language is so organized that each programmer, no matter how extensive
his experience, finds facilities at his own level. The NPL programmer
can write programs simply, without concern for arbitrary restrictions;
he can devote his energy to the problem and its analysis, rather than to
its programming.

This chapter consists of three sections. The first section describes
the design criteria or philosophical bases of NPL. The second section
discusses some of the significant features of the language, with special
emphasis on those advanced features that are critically important for a
new prograrmming language. The third section discusses the organization
of the remainder of this publication and attempts to assist the reader
in his study of NPL.

DESIGN CRITERIA

In order to better understand NPL and to appreciate some of its
characteristics, it is helpful to know the basic rules that governed its
design. Following is an explanation of six such bases.

Freedom of expression: If a particular combination of symbols had a
useful meaning, that meaning was embodied in the language. Invalidity
was a last resort. This will help to insure uniformity between
different NPL compilers.

Full access to machine and operating system facilities: The NPL
programmer will rarely, if ever, need to resort to assembly language
coding. No facility was discarded because it belonged more properly to
assembly or control languages.

Modularity: NPL has been designed so that many of its features can be
ignored by the programmer without fear of adverse effects. Thus,
manuals can be constructed of subsets of the language for different
applications and different levels of complexity. These need not mention

the unused facilities. _To accomplish this end, every attribute of a
variable, every Optionmwg’#
inte etation, and this was chosen to be the one most 1likely to e
tﬁﬁﬁfféﬁ‘ﬁ?‘fﬁﬁ'ﬁfbgrammer who does not know that alternatives exist.

Chapter 1: Introduction 11

Relative machine independence: Although NPL allows the programmer to

-take full advantage of the powerful facilities of System/360, it is

essentially a machine-independent language. Parameters which would
reflect the characteristics of a particular machine were not allowed to
intrude into the language. Thus, for example, the programmer specifies
the precision of an arithmetic variable in digits rather than by
"single® or "double® precision; input/output is specified in a device-
independent manner.

Catering to the novice: Although the general specification is there for
power and growth, the frequently used special case is specifiable
redundantly in an explicit way. This approach allows the compiler to
maximize efficiency for the commonly-used case, and, again, permits the
novice to learn only the notation which is most natural to him.

A programming lanquage, not an algorithmic language: Programming
languages are most often written on coding sheets, punched at key
punches or terminals, and listed on printers. While the specification
of a publication language is considered essential, the first and most
important goal of syntax design has been to make the listings as
readable, and to make the writing and punching as error-free, as
possible. A free-field format has been chosen to help meet these goals.

NEW FEATURES

A large part of NPL 1is, of course, based on earlier programming
languages. On the other hand, several concepts not manifested in
previous higher-level languages are reflected in NPL. Also, certain
ideas have been extended or modified so as to take on broader
significance. The following paragraphs describe some of the salient
features to be found in the new language.

PROGRAM STRUCTURE

In most high level programming languages the basic element that
denotes a certain action to be executed is called a statement; the
collection of all the statements required to achieve solution to the
problem at hand is called a program. Generally, it has proved necessary
or desirable to introduce into programs a structure which is more
complex than that of a single statement. The motivations for such
structuring are:

1. to delimit a procedure which may then be invoked from several
different places with different arguments;

2. to delineate the scope of applicability or uniqueness of a name so
that names may be non-unique within a program and yet well-defined
locally;

3. to group a set of statements for control purposes so that they are
treated syntactically as a single statement;

b. to specify the duration of allocation of storage for variables.

In NPL, four syntactically different methods are used to accomplish
the four functions mentioned above.

Blocks

In specifying a block to delimit scope of names but not to be called
out-of-line it is inefficient to be prepared to store register contents
and return locations. Therefore, PROCEDURE ... END are used for the
first and second purposes and BEGIN ... END for the second purpose. The
procedure may be thought of as a block with the additional properties of
argument handling and return mechanisms.

12

Groups

The grouping of a set of statements for control purposes requires a
much simpler and more common structure than one in which the scope of
names is delimited. Therefore, in NPL, DO ... END are used for the
third purpose. The DO statement also takes on the naturally related
function of loop control.

Storage Allocation

Unlike the first three purposes discussed above, storage allocation
frequently requires dynamic rather than static structure. 1In fact, the
allocation structure may not even be well nested. Therefore, in NPL, an
artificial correspondence between scope of names and storage allocation
is rejected in favor of a scheme which allows the programmer to specify
for a variable the appropriate treatment in each of the two categories.

ay be EX NAL or INTERNAL depending on whether its name
is _or is not known to other blocks. Its allocation may be STATIC,
AUTOMATIC, or CONTROLLED. An AUTOMATIC allocation takes place upon
entry to a block, storage being freed or unallocated upon exit from the
block. A STATIC allocation is one made once for the entire execution of
the program.

If a variable is declared to be CONTROLLED, allocation (or freeing)
of storage takes place when and only when an explicit ALLOCATE (or FREE)
statement is encountered during program execution. To meet the need for
flexibility, a built-in procedure ALLOCATION (arg) returns the value 1
(True) if and only if allocated storage exists for arg.

In keeping with the philosophy of simplicity of expression for
straignt-forward applications, the default allocation attribute for
EXTERNAL data is STATIC while the default for INTERNAL is AUTOMATIC.

Storage allocation, whether automatic or controlled, causes previous
storage allocated for the given variable to be stacked. Similarly,
freeing results in the previous allocation being unstacked.

Procedures

NPL procedures may have multiple entry points. Thus, the initializa-
tion part of a procedure may be invoked the first time and the wusual
entry called thereafter. The parameters of the two entries need not
agree.

Normal return of control from a procedure to the invoking procedure
is specified by a RETURN statement, which may specify return with a
function value.

TYPES OF DATA

In NPL, a variable is described in a DECLARE statement. In order to
improve documentation and because of the number of attributes specifia-
ble, all of the attributes of a variable are listed together rather than
including the variable name in the 1list for each attribute. Common
attributes may be factored, however, to reduce the amount of text.

For every category of attribute there is a default which is the one
most frequently used by the novice programmer. The programmexr may
therefore choose to ignore the existence of a facility without concern
for the related attributes and their meaning. As an example, the
programmer would not normally need to declare a storage class attribute
for an item since, by default, allocation is static for EXTERNAL
variables and automatic for INTERNAL variables.

Chapter 1: Introduction 13

Data are basically of two types, string and numeric. String data may
be either CHARACTER string or BIT string and may be declared to be of
fixed or varying length. Numeric data may be of two radices, binary and
decimal; two scales, fixed and float; and two modes, real and complex.
The size of numeric data, in bits if binary or digits if decimal, is
specifiable directly, as is the location of a binary or decimal point.
Such data is stored internally in a standard encoded representation.

If the programmer wishes he may specify a nonstandard representation
by means of a picture, thereby attaching numeric significance to a
string. Picture specifications apply to input/output formatting as
well. This facility allows the programmer to specify conveniently zero
suppression , insertion of blanks and other special characters, and
general editing.

Conversion

In keeping with the freedom of expression concept, mixed expressions
are allowed in NPL. Thus, in

DECLARE F FIXED, G FLOAT, H CHARACTER (10) ;
H=F + G;

F will be converted to floating, the floating addition will be
performed, and the result will be converted to a character string of
length ten and assigned to H.

Aggregates

Aggregates of data are defined in NPL as arrays or structures.
Structures are defined by a level number notation, and their elements
are represented by qualified names.

DECLARE 1 RECORD1,

2 NAME,
3 LAST CHARACTER (14) ,
3 FIRST CHARACTER (6) ,

2 ADDRESS,
3 STREET CHARACTER (20) ,
3 CITY CHARACTER (12),
3 STATE CHARACTER (8) ,

2 AGE CHARACTER (2) ;

defines a structure containing name, address, and age information, the
name and address portions being further structured. The qualified name,

RECORD1.ADDRESS.STATE
represents the fifth elementary item in the structure.

Array elements are. represented in the conventional manner, by
subscripting. For example, the statement

DECLARE 9 (3,5) ;

defines Q to be a 3x5 array. ¢ (2,3) represents the element in the
second row, third column.

The concept of cross sections of arrays is introduced in NPL as a
logical extension of the subscripting notation. If Q is defined as
above, Q0 (2,%) denotes the second row of the matrix while Q (*,1) refers
to the first column, the * indicating that the corresponding subscript
is to vary between its defined bounds. Q(*,*%) is therefore equivalent
to Q, meaning the entire array.

14

To many programmers, the word "variable" has always meant a single
jtem which may assume one value at a time. Yet, in matrix algebra, an
entire matrix may be treated as a variable. For example, one value of a
matrix might be the identity matrix, another value the zero matrix,
another value a matrix consisting of all 5's, etc. In this concept, if
any one element of the matrix changes its value, the entire matrix has
changed its value.

In NPL, arrays and structures are treated as variables in their own
right. Arrays {(or structures) may be used as operands of an expression.
The expression is then an array (or structure) expression and returns an
array {or structure) result.

Additionally, if several structures have elements with identical
names, operations may be specified on these structures to be applied
only to these corresponding elements. For example, if in addition to
RECORD1 defined above, there is the further declaration

DECLARE 1 RECORD2,
2 ADDRESS,
3 STATE CHARACTER(8) ,
3 CITY CHARACTER (12),
3 STREET CHARACTER (20) ,
2 OCCUPATION CHARACTER (10) ,
2 NAME,
3 FIRST CHARACTER (6) ,
3 LAST CHARACTER (14) ;

then the assignment statement
RECORD2 = RECORD1, BY NAME;

would cause the values of the elements of NAME and ADDRESS in RECORD1 to
be rearranged and assigned to the corresponding elements of RECORD2.
AGE and OCCUPATION do not participate in the operation.

All operations performed on arrays are performed on an element by
element basis. Therefore, all arrays in an array expression must be of
identical bounds.

Built-in functions are provided in NPL to assist the compiler in
producing efficient in-line code and/or in selecting the appropriate
member of a family of functions available.

Several built-in functions help to provide a string handling capabil-
ity. BIT and CHAR allow arithmetic data to be treated as a string.
SUBSTR (string,m,n,) refers to the n bits (or characters) of string
beginning with the m'th bit (or character). INDEX @, b) finds the first
"occurrence of the string b in the string a. UNSPEC (item) is a bit
string whose value is the internal representation of item.

When the elements of a structure are all character strings or all bit
strings the structure may be treated as a string by use of the STRING
built—in function. Unedited transfers of collections of data may be
accomplished in this manner.

INPUT/OUTPUT

One of the most successful fulfillments of the design criteria for
NPL is its broad input/output facility. Here, in a machine independent
manner, the programmer may control input/output activity to whatever
degree he requires, invoking normal transmission and conversion simply,
and utilizing the full capability of the language, in a consistent
manner, to meet more sophisticated needs.

Chapter 1: Introduction 15

The programmer who uses the standard input and output formats and
media may cause data-directed transmission without resorting to format
or file descriptions.

List-directed transmission assumes a one-to-one correspondence
between data names and data elements and permits specification of data
element delimiters other than the standard.

Format-directed input/output is accomplished in a conventional way by
giving a 1list of data names and a corresponding format specification
list. The format list may appear in the READ or WRITE statement or in a
remote FORMAT statement.

The most general form of input/output specification is the CALL
option which invokes a programmer's procedure as part of the
input/output process. This option allows the full NPL language facili-
ties to be used in describing the transmissions. The procedure assumes
a record or logical grouping of data has been read (in the case of
input) or is to be written (in the case of output) . Whereas READ and
WRITE statements generally involve an entire record, by means of GET and
PUT statements within the invoked procedure one may secure or dispose of
portions of a record. Thus the pProgrammer might use a GET statement to
transmit the value of a key and then by testing that value determine
what 1list and/or format should apply in getting the next portion of the
record, or whether to process the remainder of the record at all.

A wide variety of options may be specified in a READ or WRITE
statement. For example, one may specify by means of the PRINT option
that data transmitted in the corresponding READ statement also be
written on the standard output file.

By means of the KEY option one may specify that a specific record is
to be transmitted or that a programmer-supplied selection procedure is
to be invoked to 1locate the next record to be transmitted. In this
manneér, a sequence may be imposed on what otherwise would be a random
file, or the implied Sequence of a sequential file may be overridden.
Thus a user may define and refer to files chained in random storage or
files which are indexed by a dictionary.

The SEARCH statement enables one to access a record from a random
file based either on a logical key address or on the content of the
record. The user may specify the beginning and end of the search and
may specify the action to be taken on successful completion of the
search.

The programmer may specify in an OPEN or CLOSE statement that a file
be opened or closed and positioned at a specific point. If no explicit
OPEN is given, the file is opened when the first READ or WRITE statement
is encountered.

Useful report generation facilities are available to the programmer
in the form of statements which enable him to describe a printed page
(with heading, footing, sub-total lines, pagination, etc.). Other
Statements permit setting tab positions and margins on a line, restoring
a page, and skipping to a specified line.

The full conversion facilities of input/output are available to the
user for internal data transmission. Internal transmission is accom-
plished by specifying a string name instead of a file name in the READ
or WRITE statement. Scattering and gathering of collections of data may
be accomplished in this manner.

READ, WRITE,OPEN,CLOSE, and SEARCH may all be invoked asynchronously
by means of the TASK option as discussed in the following section.

16

NONSEQUENTIAL FACILITIES

This section and the next describe facilities that are available for
use in more advanced programs.

when writing programs for a multiprocessor data processing system, or
for a single processor system with either overlapped input/output
facility or real time processing requirements, it is necessary to be
able to specify concurrent execution of portions of a program. This is
a critically important and relatively new requirement that has received
great attention in the design of NPL. Programmers normally describe
concurrent execution as either asynchronous operations or as interrupts.
NPL allows both, or any mix of the two, so that programs can be
approached in the way which seems most natural and leads to most
efficient code.

Asynchronous Operations

In languages that can describe only sequential algorithms, it is
possible to confuse two different concepts:
1. The program, which is a collection of procedures loaded into
storage as needed.
2. The execution of one, or many programs, Or of part of a program, to
perform some task upon some data.

In NPL, this confusion is not possible. The collection of procedures
is called a program, and that which has a job to do, a task. Sequential
languages describe a single task executing a single program.

Suppose P is an NPL program, consisting of procedures P1, P2, «..,
PN. A task A wishes to execute P, starting, say, at pPl. 1If there is a
place in P1 when concurrent execution of the part of P beginning at P2
is possible, the programmer writes,

CALL P2 (argl, arg2, ...), TASK (B);

This statement, identical to a sequential call except for the TASK
option, causes the creation of a second task, called B, which will begin
its execution at procedure P2 simultaneously with A's execution of the
rest of its job.

It is possible to specify the relative priority of B with respect to
A, as a second argument to the task option.

B can communicate with A by the explicit arguments listed at the call
or through shared storage.

Often both P1 and P2 will invoke P3. 1In this case, P3 must be able
to be executed simultaneously by two tasks. This requirement is called
re-entrance and is a declarable attribute of NPL procedures. It imposes
several restrictions on the object code. The code must not modify its
own instructions (i.e., it must be read-only). It must also refer to
all data areas indirectly through the task which is in control. The
property is extremely useful in such programs as message processors and
central control programs of a multi-terminal system.

Once task A has created B, it proceeds with its own execution. It
may come to a point where no further execution is possible until B has
been completed. The NPL programmer writes,

WAIT (B):
This causes execution of task A to be suspended until task B is
completed. By writing the statement DELAY (n), the programmer will

cause the current task to go into wait status for n milliseconds before
resuming execution.

Chapter 1: Introduction 17

It may be that A would like to discover whether B is complete or not,
but is not willing to give up control. The programmer then can use the
built-in procedure COMPLETE (B), which has the value 1 (True) if, and
only if, B is completed.

A task may be terminated either by returning up past the main
procedure for that task, with a RETURN statement, or by the explicit
EXIT statement. An entire family of tasks may be terminated by the
execution of the STOP statement in any member of the family.

Interrupt Operations

Whereas asynchronous operations involve one task asking for the
initiation of another task, and later verifying its completion, inter-
rupt operations involve the establishment of what code should be
executed when, later, some event occurs.

There is an executable statement in NPL which is powerful. It is
written:

ON condition action;

For example,
ON OVERFLOW Y = YMAX;

enables an asynchronous interrupt of the task which executes it when the
specified condition occurs (regardless of what procedure the task is
executing) so that the specified action may be taken. This action
consists of a group of any NPL statements optionally preceded by the
word SNAP, indicating the writing of machine status information for
later inspection. The statements may contain a GO TO out of the group,
which implies that control will never return to the point of interrupt.

The conditions fall into three categories:

DEBUGGING AIDS: These are programmed interrupts which can check whether
subscripts are out of range, can document every possible change of value
of a set of variables, and trace every execution of a set of statements,

eogo ’
ON SUBSCRIPT RANGE SNAP COUNT = COUNT + 1;

UNUSUAL CONDITIONS: The programmer may override the system action on
most machine interrupts, such as overflow, underflow, end-of-file,
transmission error, or many system interrupts such as conversion error,
and fixed-point overflow. There are built-in functions in NPL to help
detect the cause of error and correct it.

CONCURRENT EXECUTION: The enabled condition may be a programmer-defined
name. He can simulate a machine interrupt by executing the statement
SIGNAL, at which time control is interrupted exactly as if the machine
interrupt had occurred.

ON statements have as scope the block in which they appear. They may
be stacked (for each condition) in push-down fashion as blocks and
procedures are invoked, and unstacked on returns. 1In the same block,
conditions may be overridden, or unstacked {by the REVERT statement) .

COMPILE-TIME FACILITIES
A programmer describes an algorithm for the solution of his problem.

The description may be processed by several programs (such as preproces-
sor, compiler, loader) and finally executed in its machine language

18

version. A subset of the information present in the description is used
by each of these programs. Previous languages have addressed themselves
almost entirely to the last phase, the execution. What attention is
given to the other phases consists almost entirely of statements about
the nature of the data.

And yet, as compilers become more sophisticated and preprocessors
more efficient, much processing is performed before execution time.
Common subexpressions are found and evaluated only once; constant
expressions are evaluated at compile time; statements which will never
be executed are not compiled at all. But this task is difficult and
limited without the active cooperation of the programmer. Allowing him
to help not only leads to efficient code, but results in more natural
problem-oriented languages which are compatible dialects of the base
language, and provides for compile-time editing of large general-purpose
programs for special applications.

The compile-time facilities in NPL can be categorized as follows:

Hints and Commands to the Compiler

The NPL programmer may include in his program information which will
aid the compiler to compile more quickly or to produce more efficient
code, documentation, and diagnostics.

He can impart special information relevant only to some compilers by
the open-ended attribute OPTIONS (attribute 1, attribute 2, ...). He
can describe some characteristics of another procedure which is to be
invoked. These characteristics may include the exact nature of each
argument, what data it will use (via USES attribute), what data it will
change (via SETS attribute), whether it has side effects or will
sometimes produce different results with the same set of arguments (via
ABNORMAL attribute). He can specify, via ABNORMAL attribute, that a
variable is subject to change from outside, in a multiprocessing
environment or due to asynchronous interrupt. He can suggest, via
SECONDARY attribute, that if high-speed storage is unavailable, this
table or procedure should be stored in secondary addressable storage.
He can declare the set of statement labels to which a GO TO can transfer
(by a list appended to the LABEL attribute).

Compile-Time Statements

Most programming languages are written explicitly on one level only,
as statements to the computer to perform certain operations on the data.
As stated above, any higher level assertions that are present must be
ferreted out by an intelligent compiler. NPL not only commands the
computer to operate on the data but also commands the compiler to
operate on the program. This operation on the program determines the
statements to be constructed and compiled. Compile-time statements are
ordinary NPL statements distinguished by being immediately preceded by a
%. A set of compile-time statements operates on the program to
determine which source statements will be compiled. The following kinds
of statements are allowed:

DECLARATIONS: Variables and procedures may be declared in compile-time
declarations. These are called macro variables and macro procedures
(see below) .

ASSIGNMENTS: Macro variables may be assigned new values during compila-
tion by execution of compile-time assignment statements.

CONDITICNAL COMPILATION: The compile-time statement IF macro Boolean
expression THEN group causes the group of statements after the THEN to
be compiled only if the macro expression is True.

Chapter 1: Introduction 19

TRANSFER OF CONTROL: All compile-time statements may have labels. The
compile-time statement,

GO TO label;

causes compilation to proceed starting from the compile-time label
specified. For example, to generate a series of similar statements,

% DECLARE I FIXED INITIAL (0), LABEL CHARACTER (2) ;
XL:I=I+1;

SLABEL='L'||I;

LABEL: X (I) =Y (I) +I;

%IF I<4 THEN % GO TO L;

will compile the following NPL statements:
L1: X () =Y (1) +1;

L2:X (2) =Y (2) +2;
L3:X(3)=Y (3) +3;

Macro Variables and Procedures

In order to aid the compile-time facility described above, to
facilitate program modification, and, most important, to allow for a
reasonably efficient, easy-to-specify development of the language into
many different problem-oriented dialects, a macro facility has been
included in NPL, as follows:

MACRO VARIABLES: A variable may be declared in a compile-time declara-
tion statement. It may be given an initial value there; it may have
values assigned to it by compile-time assignment statements. Whenever a
compile~-time statement which contains it is executed, its current value
is used. Whenever a base language statement is being compiled, all
appearances of any macro variable in this statement result in the
current value of the variable being substituted for each occurrence.
For example,

XDECLARE X FIXED INITIAL (3),
Y CHARACTER (10) VARYING INITIAL (*JOE+2*) ;
L: O=Y+X;

Compilation of statement I will first produce, as the statement to be
compiled:

L: O=JOE+2+3;
Subsequent optimization could compile:

L: Q=J0E+5;

MACRO PROCEDURES: A procedure may be declared in a compile-time
declaration statement. It may, or may not, require an argument list.
Whenever a base language statement which contains a reference to this
procedure is encountered by the compiler, the procedure is first invoked
and its returned value substituted for its appearance. Note that since
all data to the compiler are character strings, all macro procedures
must have character string values.

Thus one can introduce special purpose statements and make them
appear to be part of the NPL language.

20

SUGGESTIONS FOR USE OF THIS PUBLICATION

This publication is a language definition, intended to be used
primarily as a reference manual. It has not been designed as a tutorial
document. In this section an attempt is made to guide the user
according to his programming experience and application requirements.

Basic components of the language of interest to every reader, no
matter what his level of experience or area of interest, are found in
Chapter 2 in its entirety; Chapter 3 in its entirety; Chapter 5 in its
entirety; Chapter 6, "Function References” through "Array Expressions”;
Chapter 7, “Statements® through "The Procedure Statement,” and “Programs
and Procedures® through *"Procedure and Block Termination®; Chapter 9,
*Subroutine Procedures” and *“Functions®; Chapter 11, "Scalar
Assignment®™; Chapter 12 in its entirety; Chapter 13, "The GO TO
Statement® through “The RETURN Statement®; Chapter 15, ™Attribute
Classes®™ through "Label variable Attributes,® “Scope Attributes," "The
INITIAL Attribute," and "Symbol Table Attributes®; Chapter 16, "Name
Declaration® through "The DECLARE Statement”; Chapter 20 in its
entirety; Chapter 22, "List Directed Transmission® et seq.; Chapter 23,
"The READ and WRITE Statements"; Chapter 25 in its entirety; and
Appendices 7 and 8.

The commercial or business program will frequently involve facilities
such as the definition and use of structures and the use of picture
specifications for editing and numeric computation. The pertinent
sections are Chapter 4, “Structures®; Chapter 6, "Structure Expressions”
and "Structure Expressions BY NAME"; Chapter 11, *Simple Structure
Assignment® and "BY NAME Structure Assignment®; Chapter 15, "The LIKE
Attribute®”; Chapter 16, “Structures"”; and Appendix 6. These facilities
may be less useful in sientific programs.

On the other hand, other NPL features are vital to the solution of
purely scientific problems. These are concerned primarily with arrays
and mathematical functions, discussed in Chapter 4, "Arrays"; Chapter 6,
"Structure Expressions"; Chapter 11, “Array Assignment®; Chapter 15,
»The Dimension Attribute®; and Appendix 1.

The more advanced programmer, whether scientifically or commercially
oriented, will be interested in the subject of storage allocation and
related subjects. His attention is drawn to Chapter 7, "The ENTRY
Statement” and "The BEGIN Statement®; Chapter 8 in its entirety; Chapter
9, "The ENTRY Attribute® through *"Abnormality of Procedures®; Chapter 10
in its entirety; Chapter 11, "Statement Label Assignment®; Chapter 14,
“rhe ON Compound Statement"; Chapter 15 in its entirety; Chapter 22 in
its entirety; Chapter 23 "The GET and PUT Statements®; and Appendix 5.

The remaining sections provide additional topics of interest, such as
program modification and asynchronous operation.

Chapter 1: Introduction 21

CHAPTER 2: CHARACTER SET AND IDENTIFIERS

The NPL language uses a basic character set of 60 characters. All
the elements of the language (names, constants, etc.) are constructed
from these characters. However, data in an NPL program is not
restricted to the basic character set, but can be any character or bit
pattern (legal card-column punch combination) permitted by a particular
implementation.

A specific use of some of the basic characters is in identifiers,
which are names, statement labels, keywords, etc., that appear in an NPL
program.

LANGUAGE CHARACTER SET

The NPL language is constructed from the following basic characters:
alphabetic characters, digits, and special characters.

The alphabetic characters are the 26 characters of the alphabet, A
through 2z, and, in addition, three characters that are defined to be,
and are treated as, alphabetic characters. These additional characters
and the graphics by which they are represented in this manual are given
in the following list.

Name Graphic

Currency symbol
Commercial At sign
Number sign

» B

Digits are either decimal or binary. Decimal digits are the digits 0
through 9. A bit (binary digit) is either a 0 or a 1.

The names of the special characters used in the language and the
graphics by which they are represented in this manual are given in the
following list.

Name Graphic

*Blank
* Equal or Assignment symbol
"Plus

*Minus

Asterisk or Multiply symbol
*Slash or Divide symbol
‘Left Parenthesis

‘Right Parenthesis

Comma

Decimal Point or Period
Quote

Percent symbol
Semicolon

Colon

Not symbol

And symbol

Or symbol

*Greater Than symbol
*Less Than symbol

Break Character
Question Mark

AV—@= s s 308 a0 o« ~_ N n |+ |

-\)|

22

DATA CHARACTER SET

Characters permitted in data are defined for each particular implem-
entation.

IDENTIFIERS

An identifier is a string of alphabetic characters, digits, and break
characters with the initial character always alphabetic. Any number of
break characters are allowed within an identifier; however, consecutive
break characters are not permitted. Also, a break character cannot be
the final character of an identifier.

Identifiers in the language are used for scalar variable names, array
names, structure names, statement labels, entry names, file names,
keywords, task identifiers, condition names, headings for external
names, macro variable names, and macro function names.

Examples:

A $32_45
$L32 BCD320
Xa_52 XR20A
RATE_OF _PAY @531

Chapter 2: Character Set and Identifiers 23

CHAPTER 3: DATA TYPES AND REPRESENTATION

Information that is operated on by an NPL object program during
execution is called data. Each data item has a well determined type and
representation as described in the following paragraphs.

DATA TYPES

The permitted data types are: arithmetic, character string, bit
string, and label.

ARITHMETIC DATA

Arithmetic data is represented either as a numeric field or in coded
form. A numeric field is a string of characters which is given a
numeric interpretation using the PICTURE attribute. The picture may
include editing characters, such as currency symbols or commas, which
are ignored during arithmetic computation. The absence of the PICTURE
attribute specifies that arithmetic data is of the coded form.

Arithmetic data has the characteristics radix, scale, mode, and
precision. These characteristics are implicitly specified for numeric
fields in the PICTURE attribute. They may be explicitly declared for
arithmetic data of coded form.

Radix
The permitted radices are decimal and binary.
Scale

The permitted scales are fixed point and floating point. Fixed-point
data consists of rational numbers for which the number of decimal or
binary digits and the position of the decimal or binary point may be
specified. Floating-point data consists of rational numbers considered
in the form of a fraction and an exponent; the number of significant
digits may be specified.

Mode
Arithmetic data may be operated on in two modes, real and complex.
Precision
The precision of fixed-point data involves two quantities
1. the total number of decimal or binary digits to be maintained (W) »
2. the scale factor for the data (d); If 4 is omitted, it is assumed
to be zero. The scale factor may be negative; its magnitude need
not be less than (w). If r is the radix of the data, then the
scale factor, d, effectively multiplies the w-digit integer data by
r*#¢-3d. For example, decimal data of precision (5,2) will represent
numbers less than 1,000 and at least 0.01 in magnitude.
The preceding values are specified as either (w,d) or (w).

The precision of floating-point data is the number of significant
binary or decimal digits to be maintained. This value is specified as

w .

24

CHARACTER STRING DATA

Character string data consists of strings of characters. A character
string may be of fixed or variable length.

BIT STRING DATA
Bit string data consists of strings of bits. A bit string may be of

fixed or variable length. In the former case, the actual length may be
specified; in the latter case, the maximum length may be specified.

STATEMENT LABEL DATA

Statement label data consists of statement labels (see "rabels" in
Chapter S

CONSTANTS
A constant is a data item that cannot take on different values during

the execution of a program. The types of constants permitted in NPL are
described in the following paragraphs.

REAL ARITHMETIC CONSTANTS

Arithmetic constants are of radix binary or decimal. Both radices
use a decimal representation.

Decimal Fixed-Point Constants

A decimal fixed-point constant is represented by one Or more decimal
digits with an optional decimal point.

Examples:

72.192
.308
255

Binary Fixed-Point Constants

A binary fixed-point constant is represented by a decimal fixed-point
constant followed by the letter B.

Examples:

1278
3.24B
.001B

Sterling Fixed-Point Constants

Sterling quantities may be specified and will be interpreted as
decimal fixed-point pence. A sterling quantity consists of the follow-
ing concatenated fields:

Chapter 3: Data Types and Representation 25

pounds field that is a decimal integer

period ;

shillings field that is a decimal integer less than 20

period

pence field that is one or more decimal digits with an optional
decimal point. The integral part must be less than 12.

[V I VI O]

an L

Examples:

101.13.8L
1.10.0L
0.0.2.5L

Decimal Floating-Point Constants

A decimal floating-point constant is represented by one or more
decimal digits with an optional decimal point, followed by the letter E,
followed by an optionally signed decimal exponent.

Examples:

12.E23
317.5E-16
0.1E+03
0.42E+73

Binary Floating-Point Constants

A binary floating-point constant is represented by a decimal
floating-point constant followed by the letter B.

Examples:

27E+3B

THE PRECISION OF REAL ARITHMETIC CONSTANTS

Real decimal fixed-point constants have apparent precision (p,q)
where q significant digits are specified after the decimal point, and
(p-q) before the decimal point.

Real binary fixed-point constants have apparent precision
(p*3.32,9%3.32) where p and q are as defined above. The ceiling of
these products is used. (The ceiling of a number is the Smallest
integer greater than the number.)

Real decimal floating-point constants have apparent precision (p)
where p significant digits are specified before the E.

Real binary floating-point constants have apparent precision (p*3.32)
with p defined as above. The ceiling of the product is used.

Implementations may specify an assumed minimum precision for con-
stants which are involved in expression evaluation, and apply the
minimum precision to a constant if its apparent precision is less.
IMAGINARY ARITHMETIC CONSTANTS

An imaginary constant represents a complex value whose real part is

zero, and whose imaginary part is the value specified.

26

An imaginary constant is represented by a real constant, other than a
sterling constant, followed by the letter I. The language does not
define complex constants with nonzero real parts but provides the
facility to specify such data through expressions, e.g., 10.1+9.2I.

Exanples:

271
3.968E101

BIT STRING CONSTANTS

A bit string constant is one or more binary digits enclosed in quotes
followed by the letter B. The constant may optionally be preceded by a
decimal integer constant in parentheses to specify replication.

Examples:

'01011'B
(10) *1'B

The latter is exactly equivalent to

*1111111111°B

CHARACTER STRING CONSTANTS

A character string constant is one or more characters enclosed in
quotes. A quote mark used in a character string constant is represented
by two immediately adjacent quote marks. The constant may optionally be
preceded by a decimal integer constant in parentheses to specify
replication.

Examples:

*$123.45"
' INBUSLAB*
'ITQ lso
(3) 'TOM®
The latter is exactly equivalent to

TOMTOMTOM

STATEMENT LABEL CONSTANTS

A statement label constant is an identifier which appears in the
program as a statement label (see "Labels" in Chapter 7).

SCALAR VARIABLES

A scalar variable may take on values over one and only one data type,
and, in the case of type arithmetic, only one radix, scale, mode and
precision. If its range is not restricted, it may assume values over
the entire set of data of that type.

A scalar variable is represented in the language by a name that is an

identifier, a qualified name, a subscripted name, or a subscripted
qualified name.

Chapter 3: Data Types and Representation 27

CHAPTER 4: DATA AGGREGATES

A data aggregate is a variable which may take on a set of data as a
value. In NPL, this type of variable is either an array variable or a
structure variable.

ARRAYS

An array 1is an ordered collection of data, all of which must be of
the same type. Arithmetic data in an array must be of the same radix,
scale, mode and precision, and, where applicable, the same picture.
String data must have the same length (if fixed) or maximum length (if
variable) .

An array name is declared as an identifier with the dimension
attribute (see "The Dimension Attribute® in Chapter 15). This specifies
the number of dimensions of the array, and the upper and lower bounds of
each dimension.

Reference to an array in the language is by an array name, which may
be an identifier, a qualified name, a subscripted name, or a subscripted
qualified name.

SUBSCRIPTED NAMES

General Fbrm:

array name (subscript 1, ... , subscript n)

An element of an array is referenced in the language by a subscripted
name which 1is an array name followed by a list of subscripts. The
Subscripts are separated by commas and the 1list is enclosed in
parentheses. A subscript is an expression which is evaluated and
converted to integer before use (see Chapter 6). The number of
subscripts must be equal to the number of dimensions of the array and
the value of a specified subscript must fall within the bounds declared
for that dimension of the array.

Examples:

A (3)
FIELD (B,C)

PRODUCT (SCOPE * UNIT + VALUE, PERIOD)
ALPHA (1,2,3,4)

CROSS SECTIONS OF ARRAYS

A cross section of an array is represented in the language by an
array name, followed by a list of subscripts and asterisks, separated by
commas, and enclosed in parentheses. The number of items in the list
must be equal to the number of dimensions of the array. If the nth list
position is occupied by an asterisk, the cross section of the array
includes elements covered by varying the nth subscript between its
bounds. The dimensionality of the cross section is equal to the number
of asterisks in the subscript list. If all subscript positions are
occupied by asterisks, this is equivalent to a reference to the entire
array. Subsequently, this document will use the word "array® to include
cross sections of arrays.

28

Examples:

A(*, J)
B(X, *, Y, ¥

1 2 3
If MATRIX is the array 4 5 6
7 8 9
2
MATRIX (*, 2) is the vector 5
8

CONSTRUCTED ARRAYS

Scalars or arrays of the same dimensionality may be collected in a
form that is considered to be an array by the following notation:

ARRAY (Aq4,A2,e-++s8n) All A are array expressions of dimensionality m
with the same bounds. The function value is an
array of dimensionality m+1 with bounds (1:n) for
the first dimension, and the bounds of the A for
the next m dimensions. The A will be converted
to the highest type, radix, scale, mode, and
precision of the arguments.

STRUCTURES

A structure is an hierarchical collection of scalars, arrays, and
structures. These need not be of the same type and characteristics.

Structures may contain structures. The outermost structure is the
major structure; contained structures are minor structures. A major
structure is at level 1. Items contained in structures at level n are
at levels greater than n.

1A,2 B,2C,3D(2,3 E,2F

has form A B
IC ¢D(1)
| ID(2)
| LE
Lp

ARRAYS OF STRUCTURES
A structure may be given a dimension attribute; it is then an array

of structures. All contained items are arrays as a result of the
structure having a dimension attribute.

Examples:
1 CARDIN(3), 2 NAME, 2 WAGES, 3 NORMAL, 3 OVERTIME

The decimal integers before the identifiers specify the 1level. The
name CARDIN represents a one-dimensional structure of bounds 1 to 3.
Each element of the structure contains the variable NAME and the minor
structure WAGES. WAGES contains the variables NORMAL and OVERTIME.

Chapter 4: Data Aggregates 29

Because CARDIN is dimensioned, NAME, NORMAL and OVERTIME are arrays, and
their elements are referred to by subscripted names.

The form of the data is illustrated as follows:

CARDIN (1) (NAME (1)
|WAGES (1) (NORMAL (1)
L LOVERTIME (1)
CARDIN (2) (NAME (2)
|WAGES (2) rNorkrkx, (2)
L LOVERTIME (2)
CARDIN (3) (NAME (3)
|WAGES (3) (NORMAL (3)
L LOVERTIME (3)

-

X, 2 Y, 22(2), 3 P(2:3,2), 39Q, 2R

is an undimensioned major structure

is a scalar variable

is a dimensioned structure containing P and Q
is an array

is an array

is a scalar variable

O 0N X

The form of the data is

Y
| P (1,2,1)
| 1P (1,2,2)
Iz () |p (1,3,1)
I {P (1,3,2)
X | Lo (1)
' fp (2'21 1)
| P (2,2,2)
12 (2) [P (2,3,1)
| P (2,3,2)
| 0 (2
LR

QUALIFIED NAMES

At any point within a program, an identifier usually has only one use
specified by the programmer; however, an identifier may have more than
one use if all uses represent elements of structures. The separate uses
are then referred to by qualified names, which are a sequence of
containing structure names in order of increasing level, followed by the
ambiguous identifier. The items are separated by periods; blanks may be
placed as desired around the periods. The sequence need not include all
the containing structures, but it must include sufficient items to
resolve any ambiquity.

The qualified name, once composed, is itself a name. Subsequently in
this language document, when the terms scalar variable name, array name,
or structure name are used, they should also be taken to include
qualified names.

Examples:

A program may contain the structures

1 CARDIN, 2 PARTNO, 2 DESCRIPTION, 2 PRICE and
1 CARDOUT, 2 PARTNO, 2 DESCRIPTION, 2 PRICE

30

Elements are then referred to by qualified names such as
CARDIN.PARTNO
CARDOUT.PARTNO
CARDIN.PRICE
A program may contain the structure
1 MARRIAGE, 2 MAN, 3 NAME, 3 DATE, 2 WOMAN, 3 NAME, 3 DATE

Elements are then referred to by qualified names such as

MAN.NAME or MARRIAGE.MAN.NAME
WOMAN.NAME or MARRIAGE.WOMAN.NAME

I1f the same program also contained the structure
1 BIRTH, 2 WOMAN, 3 NAME, 3 DATE, 2 COMPLEXION
Elements must then be referred to by qualified names such as
MAN. NAME or MARRIAGE.MAN.NAME
MARRIAGE.WOMAN.NAME
BIRTH.NAME or BIRTH.WOMAN.NAME
COMPLEXION
and the minor structures by
MARRIAGE.WOMAN
BIRTH.WOMAN
SUBSCRIPTED QUALIFIED NAMES

General Form:

major structure name (subscript list) minor structure name
{ subscript list) ... array name (subscript list)

The elements of an array contained in a structure and requiring name
qualification for identification are referred to by subscripted quali-
fied names. A subscripted qualified name is a sequence of names and
subscripted names separated by periods. The names represent the
structures containing the array, followed by the array name. The
structure names mnmust be in order of increasing level. The subscript
list following each name refers to the dimensions associated with that
name (as specified in the structure description). If no dimensions are
associated with a particular name in the list, the subscript 1list and
its containing parentheses may be omitted.

As long as the order of the subscripts remains unchanged, subscripts
may be moved to the right and attached to names at a deeper level.

Provided that the total number of subscripts is the same as the total
dimensionality of the array and that no ambiguity of identification may

occur, structure names may be omitted. Ambiquity of names cannot be
resolved by subscripting.

Examples:

A is an array of structures with the following description

1A((10,12), 2 B(5, 3 C(NHh, 3 D

Chapter 4: Data Aggregates 31

The following subscripted qualified names refer to the same element
of C:

(@ A(I,J). B(K). C(L) (f) A.B(I). C(J,K,L)
(b) A(I). B(I,K). C(L) (9 A.B.C(I,J,K,L)

(© A(I). B(J. C(K, L) (hy A(I,J). B.C(K,L)
(d A.B(I,J,K). C(L) (i) A(I). B.C(J,K,L)

() A.B(I,J). C(K,L)

If B, but not A, is necessary for unique identification of this use
of C, any of forms (d), (e), (f) or (g) may be used with the A. absent.
If A, but not B, is necessary for unique identification of C, forms (9) ,
(h) , or (i) with B. omitted may be used. If neither A nor B is
necessary for wunique identification of C, form (g) with A.B. onmitted
may be used.

32

CHAPTER 5: ELEMENTARY LANGUAGE STRUCTURE

The basis for the elementary language structure of NPL is the basic
character set described in Chapter 2. Single characters from the set,
or strings of characters formed from the set, have specific properties
or uses when they appear in an NPL program. In addition, certain items
within the elementary language structure can have more than one use
within the same program; but the different uses are recognized by
context.

DELIMITERS

Delimiters used by the language fall into three classes, operators,
brackets, and separators.

OPERATORS

Operators used by the language are divided into four types, arithmet-
ic operators, comparison operators, bit string operators, and string
operators.

The arithmetic operators are

+ denoting addition

- denoting subtraction or negation
+ denoting multiplication

/ denoting division

** denoting exponentiation

The comparison operators are

denoting greater than

denoting greater than or equal to
denoting equal to

denoting not equal to

denoting 1less than or equal to
denoting 1less than

AA= A\
([] \ﬂ

The bit string operators are
7 denoting not
§ denoting and
| denoting or

The following table defines the bit string operators:

X ' l1IB l !1OB l !olB l !OIB
Y | *1'B | '0°B | *1'B | '0'B
JX | *0'B | *0'B | *1'B | *1'B
X&Y | "1'B | '0'B | '0'B | '0'B
X|Y | *1'B | *1'B | "1'B | *0'B

Where bit string operands are of length greater than 1, the
operations are performed bit by bit from left to right. Where operands
are of different lengths, the shorter is extended on the right with
Z€eros.

Chapter 5: Elementary Language Structure 33

The string operator is

|| denoting concatenation

BRACKETS
Brackets used by the language are

(1left parenthesis
) right parenthesis

Parentheses are used in expressions and to enclose lists.

SEPARATORS AND OTHER DELIMITERS

Separators and other delimiters are

s comma blank

; semicolon ' quote

= assignment symbol _ break character
: colon . period

The comma is used for separating elements of lists.

The semicolon is used for terminating statements.

The assignment symbol is used in the assignment statement.

Quotes are used for enclosing string constants.

The break character is used in identifiers.

The colon is used in dimension specifications and to follow labels.
The period is used for Separating items in qualified names, and as a
decimal or binary point in constants.

KEYWORDS

A keyword is an identifier that has a special meaning. Keywords are
not reserved words. They are classified as follows.

Statement Identifiers: A statement identifier is used to identify the
nature of a statement. Some statement identifiers consist of more than
one identifier, separated by blanks.

Attributes: Attributes specify identifier characteristics.

Separating Keywords: The separating keywords are THEN, ELSE, BY, TO,
WHILE.

Built-in Function Names: A built-in function name is the name of an
algorithm provided by the language and accessible to the programmer.

Options: An option is a specification which may be used by the
programmer to influence the execution of a statement.

Conditions: A condition is used in the ON, SIGNAL, and REVERT
statements. The programmer may specify special action on occurrence of
the condition.

BLANKS

A word is an identifier, a constant, a picture specification (see
"Arithmetic Attributes® in Chapter 15), or a Sequence specification (see
"The SEQUENCE Statement™ in Chapter 17). Blanks are not allowed in

words. In those cases in the language where two words lie adjacent, not
N— T ——

34

separated a an assignment si a _parenthesis, a colon, a
comma, Or a semico a blank is required to separa . ne or
more may appear n id adjacent delimiters.

Blanks are not permitted within composite operators like ** or >=.

CALLA is not equivalent to CALL A
9.6E+2 is not equivalent to 9.6E +2
AB+BC is equivalent to AB + BC

A TO B BY C is not equivalent to ATOBBYC

COMMENTS

General Form:

/* character string */

A comment may appear anywhere that a blank is permitted. A comment
may be replaced by a blank without changing the meaning of the program.
The character string must not contain the characters %/ in that
sequence.

Examples

LABEL:/# THE BLOCK OF CODING BETWEEN BEGIN-END IS USED FOR COSH
CALCULATIONS */
BEGIN;

Chapter 5: Elementary Language Structure 35

CHAPTER 6: FUNCTION REFERENCES AND EXPRESSIONS

Expressions are of three types: scalar, array, or structure. When

expressions are evaluated, the type of the value returned is the type of
the expression; i.e., the evaluation of a scalar expression returns a
scalar result, etc.. However, an array or structure expression is
evaluated on an element-by-element basis.
An . expression can consist of a single operand, €.g., a function
reference, or a constant, or multiple operands connected by operators,
€.g., A+B/C or A||B. Operands in an expression need not have identical
data attributes. If the characteristics of the operands are different,
the necessary conversion is performed before evaluation.

FUNCTION REFERENCES

General Form:

function name (arqument 1 , ... » arqument n)

A function reference appearing in a program calls upon an algorithm
to provide a value. In the language, the value of a function is
represented by the function name followed by an optional list of
arguments separated by commas. If arguments are not needed, the
enclosing parentheses are omitted. (See Chapter 9 for a full discussion
of functions.)

An argqument may be a scalar expression, an array expression, a
structure expression, a statement label designator, an entry name, an
entry parameter, a file name, or a file parameter.

Examples of Function References:

SIN (X)
MAX (A,B,C)
PROFITCALCULATION (INFLATIONRATE,LOSS)

SCALAR EXPRESSIONS

Scalar expressions are expressions which return a scalar value. The
type of the expression is the type of the scalar value. A scalar
expression is evaluated by performing a sequence of operations, where an
operation involves an operator and one or two operands. If one operand
is involved, the operator is a prefix operator; otherwise, the operator
is an infix operator.

Note: 1In this manual, the word ‘expression' means 'scalar expression’
unless explicitly qualified.

An operator has an associated type as follows:

¥ /4 - operators of type arithmetic

7 &] operators of type bit string

= D> 3= = £ L= comparison operators of context dependent
type

Il string operator of context dependent type

Before the performance of every operation, the operands are converted
to the type of the operator. In the case of the context dependent
operators, the conversion is a function of the type of the operands (see
"Arithmetic Operations™ in Chapter 6).

36

The +type of the value resulting from an arithmetic or a bit string
operation is the type of the operation.

The type of the value resulting from a comparison operation is a bit
string of length 1.

The type of the value resulting from a concatenation operation is a
bit or character string.

The sequence in which the operations specified in a scalar expression
are performed is described in "Type Conversion" in Chapter 6.

A scalar expression is

a constant

a scalar variable

a function reference

an expression enclosed in parentheses

any of the above preceded by a prefix operator

any two expressions connected by an infix operator

A scalar expression may not include statement label designators (see
*Array Expressions" in this chapter).

BIT STRING OPERATIONS

~ General Forms:

3 operand
operand & operand

operand | operand

These general forms specify the operations "not®, ®"and", "or",
respectively. The operands will be converted to type bit string before
the operation is performed. The result will be of type bit. If the
operands are of different lengths after conversion, the shorter is
extended on the right with zeros to the length of the longer. The
length of the result will be this extended length.

As an illustration of bit string operations, if Q, P, and R are bit
strings whose values are, respectively, '010111'B, *111111'B and *101'B,
then

19 yields '101000°'B

REP yields '101000'B
QJ]7R yields *010111'B
1Q]1REP yields '111000'B

CONCATENATION OPERATIONS

General Form:

operand || operand

If the operands are both of type bit string, no conversion is
performed and the result will also be of type bit. 1In all other cases,
the operands are converted where necessary to type character string
before the concatenation is performed. The result will be of type
character.

Chapter 6: Function References and Expressions 37

As an illustration of concatenation, if Q and R are the same as
above, and if W and X are character strings whose values are,
respectively, 'AB,VV' and *?/PZ', then

- QJIR yields '010111101'B
R||R||Q yields '101101010111'B
W||X yields *AB,VV?/PZ'
X||W yields '?/P2AB,VV"
ARITHMETIC OPERATIONS

General Forms:

+ operand
- operand
operand *# operand
operand #* operand
operand / operand

operand + operand
operand - operand

These general forms specify the prefix operations, affirmation and
negation, and the infix operations exponentiation, multiplication,
division, addition and subtraction, respectively. Arithmetic operations
require operands of type arithmetic. Thus, if necessary, the operands
are converted to type arithmetic before the operation is performed.

Mixed Characteristics

The radix, scale, mode, or precision of the operands of an arithmetic
infix operation may differ. When these characteristics are mixed,
conversion is performed.

Consider an operation x op Y, where x and y are operands, and op is
an arithmetic operator. Let the result of the operation be z. Let the
precision of x be (p,q) or (p). Let the precision of y be (r,s) or (r).

The rules for the conversion of operands and the characteristics of
the results are as follows:

RADIX: If either operand is a constant, the radix of the constant is
converted at compile time to the radix of the variable. If the two
operands are both constants or both variables, and the radices differ,
the binary operand is converted to decimal. The result is decimal.

SCALE: If either operand is a constant, the scale of the constant is
converted at compile time to the scale of the variable. If the scales
of the operands differ and the operation is not exponentiation, the
fixed-point operand will be converted to floating point. The result
will be floating point. If the operation is exponentiation, and the
second operand (y) is a positive integer, the operation will be treated
as repeated multiplication. The scale of the result will be the scale
of the first operand (x). If the operation is exponentiation, and the
second operand is not a positive integer, then the result will be
floating point and will be found by an approximation method; the
precision of the approximation method will be the precision of the first
operand.

MODE: If either operand is complex, neither operand will be converted.
The result will be complex.

PRECISION: This conversion depends on the scale of the operands, as
follows:

38

Floating Point: Precision is defined for floating-point numbers as the
number of digits carried in the representation of the fraction. The
precision of a floating-point result will be the greater of the
precisions of the two operands.

Fixed Point: The rules for fixed-point arithmetic use a symbol, N, which
represents the length of the largest number in the implementation.

If the scale of the result (z) is FIXED, then the precision (m,n) of the
result is related to the values t and u-as follows:

Addition and Subtraction:

t=max (p~ g, r - s) + u + 1
u = max (4q,S)
Multiplication:
t=p+r
u=gq+s
Division:
t = max (p,r)
u=gqgqg-s
Exponentiation:

If y is a positive integer constant
t = p* value (y)
u = g¥* value (y)

However, if (p*value(y)) > N or y is not a positive integer
constant, conversion to FLOAT occurs.

The relation among t, u, m, and n is defined as follows:

If t <N, thenm=¢t, n=u
If £t < N, thenm=¢t¢t, n=1u
If ¢t >N, thenm =N, n =1u

The latter case implies that truncation is performed on the left.
The conversion from floating point to fixed point will occur only

when a destination precision is known. The destination precision will
define the conversion precision.

Arithmetic Mode Conversion

If a complex value is converted to a real value, the result is the
magnitude of the complex value; i.e., the square root of the sum of the
squares of the real and imaginary parts.

If a real value is converted to a complex value, the result is a

complex value that has the real value as the real part and zero as the
imaginary part.

Integer Conversion

Where conversion to integer is specified, as in the evaluation of
subscript expressions, the conversion will be to coded FIXED BINARY
(x,0), where x will be implementation defined.

Chapter 6: Function References and Expressions 39

Arithmetic Radix and Scale Conversion

The following table defines the precision resulting from radix and
scale conversion. CEIL is a built-in function described in Appendix 1.

r 1
] Before Conversion |

3

i After | Binary |Decimal | Binary | Decimal |
| |Fixed (p,q) |Fixed (p,q) | Float (p) | Float (p) |
| I
| Binary | (p,q) | (CEIL (p*3.32),|] |
| Fixed | | CEIL (q*3.32)) | | |
I |
| Decimal | (CEIL (p/3.32), | (Prq) | | |
| Fixed JCEIL (gq/3.32)) | | |]
| - |
| Binary | (P) | (CEIL (p*3.32)) | (P) | (CEIL (p*3.32)) |
: Float | | i | ;
| Decimal | (CEIL(p/3.32)) | {p) | (CEIL (pr3.32)) | (r) |
l Float | | | | J

COMPARISON OPERATIONS

General Form:

operand >= operand
operand > operand
operand = operand
operand = operand
operand <= operand
operand < operand

The operation of comparison may be performed in three ways:
1. algebraic, implying comparison of signed numeric values.

2. character, implying 1left to right, pair by pair comparison of
characters according to a collating sequence. If the operands are
of different length, the shorter is extended with characters which
compare low with all other characters. See “The SEQUENCE
Statement" in Chapter 17 for details of collating sequence specifi-
cation.

3. Dbit, implying left to right comparison of binary digits. If the
strings are of different lengths, the shorter is extended on the
right with zeros.

The result of a comparison is a bit string of length 1 that has the
value *1'B if the relation is true and '0'B if it is false.

If the operands of a comparison are of different types, the operand
of lower type is converted to the higher type. The priority of types is
arithmetic, character string, bit string. As a result of conversion,
both the operands will then be arithmetic, bit string or character
string. Algebraic, bit, or character comparison, respectively, will
then be performed.

40

TYPE CONVERSION

Bit String to Character String

The bit 1 becomes the character 1, and the bit 0 the character 0.
The length is unchanged.

Character String to Bit String

The characters 1 and 0 become the bits 1 and 0. The conversion is
illegal if the character string contains characters other than 0 and 1.

Character String to Arithmetic

The character string is interpreted according to the rules of 1list
directed input; i.e., the contents of the string must be a valid
constant, with optional sign prefixed, with optional surrounding blanks.
The value is converted directly to an operand with the same radix,
scale, mode, and precision that the constant designated by the string
would have been converted to if it had appeared.

Bit String to Arithmetic

The bit string is interpreted as an unsigned binary integer, and
converted to BINARY FIXED precision (S,0), where S will be implementa-
tion defined.

Arithmetic to Character String

CODED ARITHMETIC AND RADIX BINARY NUMERIC FIELDS: The arithmetic value
is converted to a character string according to the rules of list
directed output specified in Appendix 7.

NUMERIC FIELDS OF RADIX DECIMAL: The numeric field is interpreted as a
character string (see Appendix 2).

Arithmetic to Bit String

CODED ARITHMETIC AND RADIX DECIMAL NUMERIC FIELDS: The magnitude of the
arithmetic value is converted to BINARY FIXED precision (p,0), where p
is related to the precision before conversion as follows (with ceilings
of expressions used) :

BINARY FIXED (r,s) P = (r - s

BINARY FLOAT (r) p = (x)

DECIMAL FIXED (r,s) p=(xr-s) * 3,32
DECIMAL FLOAT (r) p=1r * 3.32

The sign is dropped and the resulting binary fixed value is
interpreted as a bit string of length p.

NUMERIC FIELDS OF RADIX BINARY: The numeric field is interpreted as a
bit string.

EVALUATION OF EXPRESSIONS

An expression may be enclosed in parentheses to force it to be
considered as a single operand. The parenthesized expression is
evaluated before the operation of which it is an operand is performed.
If both operands of an operator are expressions, the left expression
will be evaluated first. Thus parentheses modify the rules specifying
the normal order of operatjons.

Chapter 6: Function References and.Expressions 41

The priority of operations is

*+# prefix + prefix - highest
* /

infix + infix -

> > 1= < <=

1 .

&

®o0F@mNAEMT

I
| lowest

Subject to the rules associated with parentheses, operations within
an expression are performed conceptually in order of decreasing
priority. Thus, an exponentiation is effectively performed before an
addition, and the latter before a string operation. The rules relating
to abnormal functions and abnormal data should be noted (see
“"Abnormality of Procedures® in Chapter 9). If an interrupt resulting
from an enabled ON condition (see Chapter 14) occurs while an expression
is being evaluated, then the Stage reached in the evaluation before the
interrupt is undefined.

If an expression involves operations of the same priority, then,
subject to the effect of parentheses, the operations **, prefix +, and -
are performed from right to left and all others are performed from left
to right.

Although operators * and + are associative, low order rounding errors

will depend on the order of evaluation of an expression. Thus (A + B +
C) is not necessarily equivalent to (A + C + B) .

ARRAY EXPRESSIONS

The operands of an array expression are arrays or a mixture of
Scalars and arrays. The expression is then an array expression and
returns an array result. All operations performed on arrays are
performed on an element by element basis. Thus, all arrays appearing in
any array expression must be of identical bounds. 1t is important to
note that array expressions are not always expressions of conventional
matrix algebra.

The result of the operation of a prefix operator or a built-in
function upon an array is an array of identical bounds, each element of
which is the result of the operator having operated on the corresponding
element of the original array.

The appearance of a function reference (other than a built-in
function) will imply a scalar operand. Thus, if A is an array, PROC (a)
is a scalar function with an array argument. -

Example:
5 3 -9
If A is the array 1 -2 7
6 3 -y
-5 -3 9
then -A is the array -1 2 =7
-6 -3 4

The result of an operation in which a scalar and an array are
connected by an infix operator is an array, of identical bounds to the
original, each element of which is the result of the operation performed
on the scalar and the corresponding element of the original array.

42

Example:

If A is the array 5 10 8
12 11 3

then 3#A is the array 15 30 24
36 33 9

The result of an operation in which two arrays of identical bounds
are connected by an infix operator is an array of identical bounds to
both original arrays, each element of which is the result of the
operation performed on the corresponding elements of the two original
arrays by the infix operator.

Example:

If A is the array 2 4
3 6

1 7

4 8

and if B is the array 1 5
7 8

3 4

6 3

then A+B is the array 3 9
10 14

4 11

10 11

and A*B is the array 2 20
21 48

3 28

24 24

STRUCTURE EXPRESSIONS

The operands of a structure expression are structures or a combina-
tion of structures and scalars. A structure expression yields a
structure result. Array operands are not allowed in structure expres-
sions. Note that the term 'expression', as used in this specification,
does not include array expressions.

All operations performed on structures are performed on an element by
element basis. Thus all structures appearing in a structure expression
must have identical structuring. This implies that the structures must
have the same number of contained scalars and arrays. The positioning
of the scalars and arrays within the structure must be the same, and
arrays similarly positioned must have identical dimensions and bounds.
The data types need not be the same.

When an operation has one structure and one scalar operand, it is
interpreted as many operations, one for each scalar element in the
structure. Each suboperation involves a structure element and the
scalar operand. '

A structure expression may be thought of as a shorthand for the same
form of the expression applied to each elementary item of the structure.

Chapter 6: Function References and Expressions 43

For example, consider the following structures:

1A 1B

2 PART1 3 PART1
4 01 5 Q1
4 p1 5 ALPHA
4w 5 P1

2 PART2 3 PART2
3 Q2 5 ALPHA
3 p2 5 Q2
3 2(3) 5 2 (3)

Then the expression A-2+#B is a shorthand for the following expressions:

A.QT"Z"‘B.Q1
A.P1-2*B,.PART1.ALPHA
A.W-2%B,P1 :
A.Q2~2*B.PART2.ALPHA
A.P2-2%B.Q2
A.2~2%B.2

Note that the last expression is an array expression.
The value of a structure expression 1is a structure of identical
structuring to the structure operands. The characteristics of the

various elements are defined by the rules of scalar expression evalua-
tion applied to each subexpression.

STRUCTURE EXPRESSIONS BY NAME

A structure expression by name may be formulated according to the
rules for scalar expressions, but with all the operands either struc-
tures or scalars. The expression must have the appendage: , BY NAME. A
Structure expression by name may be used only as the right hand side of
an assignment statement (see "BY NAME Structure Assignment™ in Chapter
11) . The evaluation of a structure expression by name involves the
following steps:

Take each structure operand, and extract the names of all contained
scalars and arrays.

Qualify these names by all the minor Structure names which contain
them, up to but not including the structure names specified in the
Structure expression by name.

The above processes will have generated n sets of qualified names,
each set being associated with one of the n structure operands.
Select a subset of these qualified names, such that it is a subset
of all the n sets. Let this subset contain m names.

Construct m subexpressions, and associate one of the m names of the
subset with each. The Subexpression is identical in form to the
original structure expression, except that where a structure name
operand appeared, it is replaced by the qualified name associated
with the subexpression, further qualified by the structure name
which it replaces. Where the original expression involved a
scalar, each subexpression also has the scalar.

The resulting subexpressions must be legal scalar or array expres-
sions. At the termination of the above processes, the operands
should all be unique names. Each subexpression is then evaluated
to give a scalar or array value. The characteristics of the
results are defined by the rules of scalar expression evaluation.

4y

The result returned by a structure expression by name is a set of
array or scalar values each having associated with it a qualified
name, being the qualified name associated with the subexpression
which gave as result the value.

If A and B are the sample structures described in "Structure
Expressions", then the structure expression A-2%#B, BY NAME is a
shorthand for the following expressions:

A.PART1.Q1-2%B.PART1.Q1
A.PART1.P1-2%B.PART1.P1

A.PART2.Q2-2*%B.PART1.Q2
A.PART2.Z-2*B.PART2.2

Note that the last expression is an array expression.

Furthermore, the structure expression

B.PART1/B.PART2, BY NAME
is equivalent to the expression

B.PART1.ALPHA/B.PART2.ALPHA

Chapter 6: Function References and Expressions 45

CHAPTER 7: PROGRAM STRUCTURES

In NPL, the basic element of the language is a statement. The set of
statements that is required to solve a particular problem constitutes a
program. However, within the framework of an NPL program, a structure
more complex than a single statement is used. Sets of statements are
grouped to provide flexibility and control.

A set of statements called a group is delimited by DO...END and is
used for control purposes. Other sets of statements called blocks are
delimited by BEGIN...END or PROCEDURE...END. A begin block is activated
in line and limits the Scope of names; a procedure block or procedure is
activated remotely and has the additional facilities of argument
handling and return mechanisms.

STATEMENTS AND STATEMENT FORMAT

Statements are of two types simple statements and compound
statements. The permitted statements are listed in Appendix 3.

SIMPLE STATEMENTS

General Form:

statement identifier statement body ;

The statement identifier is either a keyword or null.
The statement body is defined for each individual statement.

Where both the statement identifier and the statement body are null,
the statement is a null statement. Where the statement identifier alone
is null, the statement is an assignment statement.

COMPOUND STATEMENTS

A compound statement is a statement which may contain other state-
ments. Also, compound statements can be nested. The statements
contained in a compound statement are in the form of a group or begin
block. Compound statements are not terminated by a semicolon. The
final character of a compound statement is the semicolon of the last
contained statement.

The two compound statements of the language are the IF compound
Statement (see Chapter 13) and the ON compound statement (see Chapter
14) .

LABELS

Statements may be labeled to permit reference to them. Labeling is
achieved by preceding a statement identifier by one or more labels.
Each label is followed by a colon. Blanks may be placed as desired
around the colon.

46

Example:
START: COMMENCE: BEGIN: A=B;

Multiple 1labels preceding a statement are synonyms and may be used
interchangeably when referencing the statement. Labels appearing before
PROCEDURE and ENTRY statements are entry names. All other labels are
statement labels.

An entry name is used for identifying main or secondary entry points
to a procedure (see "Blocks®™ in this chapter). An entry name preceding
a PROCEDURE statement is called a procedure name.

Statement labels appearing before DECLARE, IMPLICIT, and SEQUENCE
statements are ignored. Any reference to them is an error.

INITIAL VALUES FOR LABEL ARRAYS

If a label array is declared in a block (see "Blocks" in this
chapter) , then any statement (other than PROCEDURE or ENTRY) within that
block may be preceded by a subscripted reference to the label array.
The subscripts are optionally signed decimal integer constants.

The effect of preceding a statement with a subscripted reference is
as follows: An INITIAL attribute (see Chapter 15) is constructed for the
label array and added to the declaration. A label constant is
constructed for the statement carrying the subscripted reference. This
label constant is appropriately placed, with respect to the specified
subscripts, in the INITIAL attribute. 'The subscripted reference preced-
ing the statement is deleted.

It is not permitted to specify both the INITIAL attribute and the
preceding form of initialization for a label array.

Example:
A: Z(3): X=4;
Z(2): %=1;
:GO TO Z (I) ;
GROUPS

General Forms:

label 1 : ... 1label m : DO statement
item 1
item 2
item n
END; or END label;

label 1 : ... label m : statement

The statement is any NPL statement other than DO, PROCEDURE, BEGIN,
DECLARE, IMPLICIT, FORMAT, SEQUENCE, or any compile-time statement.

Chapter 7: Program Structures 47

The items may be a group, a block, or any statement.
The statement labels preceding the statement are optional. In the
first form, one label may optionally be specified in the END statement.

The DO statement may specify iteration of the group (see discussion
of DO in Chapter 13).

BLOCKS

General Form

label 1 : ... label m : block heading statement
item 1
item 2
item n
END; or END label ;

The heading statement may be

a PROCEDURE statement; the block is then a procedure block or
procedure.

a BEGIN statement; the block is then a begin block.

The items in the general form may be a block, a group, or any
statement.

A begin block is activated by normal sequential program flow. A
procedure is activated remotely by CALL statements (see Chapter 13),
function references and I/0 statements.

The PROCEDURE statement must be preceded by one or more labels.
These labels are entry names which are used for referencing the primary
entry point of the procedure. The labels preceding a BEGIN statement
are optional.

Every procedure must logically end with either a RETURN, STOP, EXIT,
or END statement, and physically with an END statement.

The inclusive text between the block heading statement and the
keyword END, with the reservation explained below, is said to be
contained in the block. A part of the text is called internal to a
block B if it is contained in B, but not in any other block contained in
B.

Labels preceding PROCEDURE and BEGIN statements internal to a block
B, and ENTRY statements internal to a procedure block contained in B,
are considered to be internal to the block B. The name of an external
procedure and the names of all secondary entry points are said to be
external.

48

Blocks may be nested, but partial overlap is not permitted.

Example:
A: PROCEDURE (X,Y); 1
Y=Y-F (Y) -R(Y) ; |
IF ¥Y>10 THEN BEGIN; 11
Y=SIN (X): I
X=X+1; B!
CALL C (X,Y) ; |
END; 4
D=E+D; |
F: PROCEDURE (9Q) : 11l
P=2%Q; Il
SAVE (H) ; 11
G: BEGIN; a1
X=1; P11
¥=2; P
2=3; I
END G; I
RESTORE (H) ; 11
END F; 4
END A; 4

THE PROCEDURE STATEMENT

General Form:

entry name 1 : ... entry name n : PROCEDURE
(formal parameter list) attribute 1 ... attribute m;

A PROCEDURE statement

heads a procedure.

defines the primary entry point to the procedure.

specifies the formal parameters for the primary entry point.

defines any special attributes of the procedure.

specifies the attributes of the value that will be returned if the
procedure is invoked at the primary entry point.

The formal parameter list specifies the formal parameters of the
entry point. The parameters are names and are separated by commas.
When the procedure is invoked, a relationship is established between the
arquments of the invocation and the parameter list. (Full details of
this relationship are given in Chapter 10.) If the entry point requires
no parameters, the parameter list and the enclosing parentheses are
omitted.

The attributes are any of the following, separated by blanks where
necessarye. .

OPTIONS (list)

The list is a list of implementation defined option. separated by
commas. The list may include options such as the following:

MAIN

REENTRANT

SECONDARY
The OPTIONS attribute may be specified only for an external
procedure.
RECURSIVE

This attribute specifies that this procedure may be invoked

Chapter 7: Program Structures 49

recursively. It does not apply to contained procedures which, if
recursive, must also have the attribute.

FIXEDOVERFLOW
SUBSCRIPTRANGE
SIZE

MODULO

These options are related to the ON conditions with the same
identifiers. They specify that the occurrence of the condition
within the procedure should be signalled.

Data Attributes
Any of the data attributes + Separated where necessary by blanks.

The data attributes Specify the characteristics of the value returned
by the procedure, when invoked as a function at the primary entry point,
The value specified in the RETURN statement (see Chapter 13) will be
converted to the characteristics specified.

If insufficient data attributes are specified at the entry point, the
default rules of Chapter 17 will be applied, as determined by the name
of the entry point.

If a procedure has multiple labels and no data attributes, there is
potential ambiguity of the characteristics of the value to be returned.
To avoid this ambiguity, succeeding labels are interpreted as if they
were ENTRY names for successive ENTRY statements. For example,

A: I: PROCEDURE;
is equivalent to

A: PROCEDURE;

I: ENTRY; '
If ‘a RETURN (expression) is executed ang no data attributes are
specified, default rules will be applied to the 1label used in the
invocation.

Example.
CLARET: PROCEDURE (AZURE,MAGENTA) RECURSIVE FLOAT;

THE ENTRY STATEMENT

General Form:

entry name 1 : ... entry name n

: ENTRY (formal parameter list)
attribute 1 ... attribute m;

the rules described for the PROCEDURE statement. There need not be any
correlation between 1lists at primary and secondary entry points (see
"Parameters, Dimensions and Length" in Chapter 10).

If a procedure has multiple labels and no data attributes, there is
potential ambiguity of the characteristics of the value to be returned.
To avoid this ambiguity, succeeding labels are interpreted as if they
were ENTRY names for successive ENTRY statements. For example,

_ A: I: ENTRY;
is equivalent to

A: ENTRY;

I: ENTRY;
If a RETURN (expression) is executed and no data attributes are
specified, default rules will be applied to the label wused in the
invocation.

50

For example, in the following illustration, CALCS is the name of the
secondary entry point of procedure CALCH.

CALCL: PROCEDURE (X, Y, ERROR, Z2) FLOAT (S5)
ALPHA = SQRT (X*%2-Y**2) - ERROR;
GO TO MEETING;
CALCS: ENTRY (X, Y, 2) FLOAT(7) ;
ALPHA = 2.5E-10 * SQORT (X-Y+1);
MEETING: IF ALPHA > SQRT (ALPHA + 2) THEN 2 = X;
ELSE 2 = ¥Y;
RETURN (ALPHA *X + Y - 2z %% -5);
END CALCH;

The ENTRY statement must be internal to the procedure block for which
it defines a secondary entry point. It may not be internal to any block
contained in this procedure. It may not be within a DO group which
specifies iteration, nor in a DO group which is the unit of an ON
statement.

THE BEGIN STATEMENT

General Form:

label 1 : ... 1label n : BEGIN ;
The labels are optional.
A BEGIN statement specifies the start of a begin block which is

activated by normal sequential program flow.

PROGRAMS AND_ PROCEDURES

A program is a set of independent external procedures. Each external
procedure 1is a complete nest of blocks. All blocks nested within an
external procedure are internal.

DECLARATIONS

An identifier or qualified name may have more than one use in a
program. Different uses are established by declarations, and references
to different uses are distinguished by the rules of scope.

Declaration in a DECLARE Statement

The DECLARE statement is provided to enable the explicit specifica-
tion of attributes of identifiers. Identifiers thus declared are said
to be declared within the block to which the DECLARE statement is
internal.

In the following example, X and V are declared in block B.

B: BEGIN;
DECLARE (X,V) FLOAT (5) ;
X = ALPHA - 4 + BETA ** 2;
DELTA = X *% 2 - V *%* 2 + SORT (X - V + 1);
END B;

Declaration in a Formal Parameter List

A name appearing in a formal parameter list is said to have been
declared within the block to which the list is internal. The declara-
tion of the same name with the same use in a formal parameter 1list and

Chapter 7: Program Structures 51

in a DECLARE statement internal to the same block constitutes a single
declaration. In the following example, A, I, and W are declared in
block SINK.

SINK: PROCEDURE (A, I, W);
DECLARE W BIT (4) ;

END SINK;

Label Declarations

A statement label is said to have been declared in the block to which
the associated statement is internal.

A label appearing before a PROCEDURE, BEGIN, or ENTRY statement is
said to have been declared in the immediately containing block.
However, if this latter block is the external procedure, the declaration
is said to be internal to this external procedure, and is an external
declaration.

In the following example, the first occurence of LOOP is said to be a
declaration of the statement label in block P; the second occurence of
LOOP is said to be a declaration of the statement label in the nested
begin block. The name Q is a declaration in block P.

P: PROCEDURE;
LOOP: DO I = 1 TO N;
Q: BEGIN;
LCOP: DO J =0 10 I;
END LOOP;
END Q;
END LOOP;
END P;

Implicit Declarations

An identifier which is referenced in a procedure, but which is not
explicitly declared, is assumed to have an implicit declaration in the
containing external procedure. In addition, such identifiers which can
be recognized from the context as file names, entry names, or task
identifiers are assumed to be external.

In the following example TEMP1 and TEMP2 are said to be implicitly
declared in block Z.

Z: PROCEDURE (PARAM1, PARAM2) COMPLEX;
TEMP1=ABS(PARAM1-PARAM2);
TEMP2=ABS(PARAM1+PARAM2);
IF TEMP1=TEMP2 THEN RETURN 9 ;
RETURN (COMPLEX(MAX(TEMPT,TEMP2)**2,MIN(TEMP1,TEMP2)**2)):
END Z;

52

In the next example TEMP1 and TEMP2 are said to be implicitly
declared in block ZZ.

2Z: PROCEDURE (ZA,ZB);
TEMP 1=ABS (ZA*2+ZB*%2) ;
ZBZ: BEGIN;
TEMP2= (TEMP 1+ZB) **%-2
IF TEMP2>TEMP1 RETURN (TEMP2) ;
END ZBZ;
RETURN (TEMP1Y) ;
END Z7Z;

Scope of Declarations

The scope of a declaration is the block to which the declaration is
internal, but excluding those contained blocks to which a redeclaration
of the same name is internal. Distinct declarations of the same name
may be linked by means of external declarations. This is achieved
either explicitly by use of the attribute EXTERNAL, oOr implicitly as
described above. (See "Scope Attributes® in Chapter 15 for details of
*headed' EXTERNAL.) The scope of an external declaration is the
collected scopes of all declarations of the same name for which the name
is declared as EXTERNAL, as described above.

Identifiers linked by external declarations must have the same
attributes. It is an error to declare explicitly or implicitly an
identifier as EXTERNAL with one set of attributes, and elsewhere in the
same program to declare the same identifier as EXTERNAL with conflicting
attributes. The external attribute may be used to obtain noncontinuous
scopes (i.e. with holes) within an external procedure. A name Or
identifier use is said to be known or accessible within its scope.
Identifiers which are not external are internal.

Examples:

A: PROCEDURE;
DECLARE X FLOAT;

eeeoa

B: PROCEDURE (Y) ;
DECLARE Y BIT (6) ;
SAVE (X) ;

C: BEGIN;
DECLARE A CHARACTER (10) ;
DECLARE X FIXED;
Y: RETURN;
END C;
END B;
D: PROCEDURE;
DECLARE X FILE;

Y =B (¥);
END D;
END A;

The following table illustrates the scope of each identifier appear-
ing in the above example.

Chapter 7: Program Structures 53

Identifier Use Scope (in terms of blocks)

external entry name A,B,D
floating-point variable
internal entry name

bit string

internal entry name
character string
statement label
fixed-point variable
internal entry name
file name
floating-point variable

-
to o
@]
o

LAt Aad

-
(9]

-
o
N

0

-

RKXOXKPOKD XD
-
¥ W

Sorao0Oowwd

Since file names and entry names are automatically EXTERNAL, the
scope of the file name X and the entry name A may also include
procedures in other external procedures of the program.

The following example illustrates interaction of scope and name
qualification. All gqualified names in the procedure are unique. Note
that the reference to CARDOUT.RATE.NORMAL is legal, even though the
qualifying identifiers CARDOUT and RATE have been redeclared in the
internal procedure SICKPAY.

PAYROLL: PROCEDURE;
DECLARE 1 CARDIN, 2 NAME, 2 RATE, 3 NORMAL, 3 OVER;
DECLARE 1 CARDOUT, 2 NAME, 2 RATE, 3 NORMAL, 3 OVER;

CARDOUT.RATE = CARDIN.RATE;
CALL SICKPAY (CARDIN) ;

SICKPAY: PROCEDURE (CARD) ;
DECLARE 1 CARD, 2 NAME, 2 RATE, 3 NORMAL, 3 OVER;
DECLARE 1 CARDOUT, 2 NAME, 2 SICKRATE, 3 NORMAL, 3
UNINSURED;
WAGES = CARD.NORMAL*HOURS;
SICKRATE.NORMAL = CARDOUT.RATE.NORMAL;

END SICKPAY;

END PAYROLL;

SEQUENCE OF CONTROL

Within a program, control normally passes sequentially from one
Statement to the next. However, sequential operation is modified by the
following statements:

The GO TO statement Chapter 13
The CALL statement Chapter 13
The RETURN statement Chapter 13
The END statement Chapter 7

The PROCEDURE statement Chapter 7

The SIGNAL statement Chapter 14
The STOP statement Chapter 13
The EXIT statement Chapter 13

A GO TO statement transfers control to the specified statement label.

54

A CALL statement passes control to the specified entry point.

A RETURN statement returns control from a procedure to the invoking
procedure.

An END statement logically terminating a procedure acts as a RETURN
statement.

A PROCEDURE statement heads a procedure. Procedures may be consid-
ered as independent blocks, and placed anywhere within an external
procedure consistent with desired identifier scopes. However, a proce-
dure may be invoked only by a CALL statement or a function reference.
Thus control passes around a nested procedure, from the statement before
a PROCEDURE statement to the statement after the appropriate END
statement.

A SIGNAL statement causes control to pass to the group specified
within the associated ON statement.

The STOP and EXIT statements cause control to leave a program.

A function reference causes control to pass to the function procedure
having the specified name.

The occurrence of a condition specified in an ON compound statement
causes control to pass to the unit contained in the statement.

The flow of control through the IF and ON compound statements and
through a DO group is not necessarily sequential (see Chapters 13 and
14) .

In an appropriate environment, the asynchronous execution of several
operations may involve transfer of control under the influence of
external occurrences.

Example:

A: PROCEDURE;
B: X=Y + Z;
C: CALL D;

E: W= P* Q;
D: PROCEDURE;
G: S = T/P;
H: RETURN;
I: END D;

J: U =V ** W;
K: GO TO L;

ceevee

L: END;
Control passes in the following order

A,B,C,D,G,H,E,J,K,L.

PROCEDURE AND BLCCK TERMINATION

THE END STATEMENT

General Forms:

END;
END label

-

Chapter 7: Program Structures 55

The END statement is used for terminating blocks and groups. The
statement may optionally specify one of the labels declared before the
heading statement of the group or block. If control passes to an END
statement, it is treated as a RETURN statement (see Chapter 13).

MULTIPLE CLOSURE

When more than one block or group is terminated at the same point, it
is unnecessary to provide multiple END statements. It is sufficient to
supply one END statement that specifies the label of the outermost block
to be terminated. The label specified must be known in the block which
immediately contains the outermost block or group to be terminated.

An END statement causing multlple closure is equivalent to a sequence
of END statements, equal in number to the number of groups or blocks
being closed. If this statement is labeled, the label is on the 1last
END statement in this equivalent sequence.

Example.
A

[

PROCEDURE;

B

1]

BEGIN;

o

PROCEDURE;

L R U ——
D L —— |

[P ——

END B;

Bt e e s o it e e S e St s s s S et et il

END A;

56

CHAPTER 8: STORAGE CLASSES AND ALLOCATION OF DATA

Storage allocation involves the association of storage with a
particular variable. Storage must have been allocated for a variable
before any reference is made to that variable. In choosing the class of
storage to be associated with a given variable, the programmer has three
alternatives:

1. He may specify that storage 1is to be allocated at the start of
execution of the program and never released during execution. This
is the static storage class.

2. He may specify that, during execution, storage is to be automati-
cally allocated upon entry to a procedure and automatically freed
upon return. This is the automatic storage class.

3. He may retain full control over the allocation and freeing of
storage. This is the controlled storage class.

All variables must have a storage class. The storage class may be
explicitly declared, using the storage class attributes STATIC, AUTOMA-
TIC, and CONTROLLED; it may be given by default (see "Default Attribute"
in Chapter 17) or it may be deduced from usage (for name parameters, see
Chapter 10; for defined items see "DEFINED Attribute® in Chapter 15).

In addition, the qualifying scope attributes INTERNAL and EXTERNAL
may be declared for STATIC and CONTROLLED data. If unspecified, the
default scope is INTERNAL. AUTOMATIC data can only have the scope
INTERNAL; AUTOMATIC EXTERNAL is not permitted. The qualifying scope
attributes are described in Chapter 7.

THE STATIC STORAGE CLASS

Static storage is allocated at the start of execution and is not
released until completion of program execution. STATIC variables may
have internal or external scope.

Variables declared with adjustable size or dimensions (see
"apllocation of Name Parameters® in Chapter 10) may not have the STATIC
attribute. However, STATIC arguments can be passed by name as formal
parameters with adjustable size or pimensions.

If a procedure involving static storage is invoked from within or as

a separate task, then the static storage is common to all invocations.
(See Chapter 18).

THE AUTOMATIC STORAGE CLASS

Automatic storage is allocated on each entry to the block to which
jits declaration is internal. This storage is released on leaving the
block. If the block is a procedure which is invoked recursively, the
previously allocated storage is pushed down on entry and popped up on
return. AUTOMATIC variables have internal scope.

Label variables must be automatic; they may not be declared STATIC or
CONTROLLED.

The following procedure illustrates the use of static and automatic
storage.

Chapter 8: Storage Classes and Allocation of Data 57

P: PROCEDURE (X,Y); ‘
DECLARE I STATIC INITIAL(O),X(10),TEMP(10);
I=1I+1;
TEMP=X*%*3/Y*%2;
DO J = 1 TO 10;
IF (ABS (ABS (TEMP (J))-1) <= «3E~5) THEN RETURN (1) ; END;
RETURN (SUM (TEMP*#2)) ; :
END P;

In this example the variable named I is of the static storage class

(and, effectively, keeps count of how many times the procedure is
invoked) ; TEMP is by default of the automatic storage class.

THE CONTROLLEL STORAGE CLASS

The allocation and freeing of storage for variables declared as
CONTROLLED are specified by the programmer by means of the statements
ALLOCATE and FREE. CONTROLLED variables may have either internal or
external scope.

If in the course of executing a statement any controlled data
referenced by the statement is allocated or freed (by an abnormal
function, for instance) , then the effect is undefined.

THE ALLOCATE STATEMENT

General Form:

ALLOCATE allocation declaration 1,+..., allocation declaration n;

An allocation declaration is of the form:

identifier attribute 1 ... attribute n

The identifier is an unqualified unsubscripted variable name. The
variable must be of the controlled storage class. Attribute 1 may be a
dimension attribute. Attribute i may be null or one of the attributes
INITIAL, CHARACTER, or BIT. For a full discussion of attributes see
Chapter 15.

A dimension or data attribute given in an allocation declaration must
also be given in the corresponding declaration in a DECLARE statement.
The number of dimensions in the dimension attribute must be the same in
both declarations. If different upper or lower bounds or lengths are
specified, those given in the allocation declaration override. The
asterisk notation may be given in the DECLARE statement.

If any part of a structure is to be specified in this way, the entire
major structure with all level numbers and identifiers must be included
in the specification in the ALLOCATE statement. Only the attributes
allowed in the ALLOCATE statement and which are desired to override
those in the DECLARE statement may be specified. The form of the
Structure declaration is the same as that in the DECLARE statement (see
Chapter 15).

A formal parameter passed by name may be specified in an ALLOCATE
statement if the associated argument was of controlled storage class and
not contained in a structure (see “Arguments Passed by Name® and
"Allocation of Name Parameters® in Chapter 10).)

The evaluations implied by the ALLOCATE statement are subject to the

Same rules as the evaluations involved in prologue activity (see
"Prologues™ in Chapter 16) .

58

THE FREE STATEMENT

General Form:

FREE identifier 1 , ... , identifier n;

The identifier is an ungualified unsubscripted variable name. The
variable must be of the controlled storage class.

The statement causes the storage most recently allocated for the
variable to be freed., The next most recent allocation is popped up, and
subsequent references to the identifier will reference that allocation.

In the case of asynchronous operation (see Chapter 18) the concept of
most recent allocation is interpreted in the context of dynamically
embracing tasks. Controlled storage allocated in a task after it has
attached another task cannot be freed by the attached task.

If a specified identifier currently has no allocated storage, no
action is taken.

The following example illustrates the use of controlled storage.

SUPER:PROCEDURE;
DECLARE X (M) CONTROLLED, Y (M) AUTOMATIC;
READ LIST (M,Y):
ALLCCATE X;
X=M*Y;

CALL COMPUTE1;
Y=X;

WRITE LIST (X)
FREE X;

CALL COMPUTEZ2;
END SUPER:;

Chapter 8: Storage Classes and Allocation of Data 59

CHAPTER 9: CHARACTERISTICS OF PROCEDURES

A procedure is invoked by specifying the name of an entry point at
which the execution of the procedure is to begin, together with a list
of arguments which correspond to the list of formal parameters at that
entry point. A procedure may be referenced by any procedure to which
its name is known; however, an internal procedure may be referenced only
if the immediately containing block is active.

Procedures may be either subroutine procedures or functions.

SUBROUTINE PROCEDURES

Subroutine procedures are programmer specified. They define an
algorithm which may perform operations on the data known to the
procedure. Subroutines may be invoked from CALL statements and from
within I/0 statements. Any arguments of the invocation are made
available to the procedure. Values may be returned to the invoking
procedure using arguments passed by name (see Chapter 10).

FUNCTIONS

Functions are invoked by function references which may include an
argument list. These arguments are made available to the function,
which returns a value.

Functions are of two types, function procedures and built-in func-
tions.

FUNCTION PROCEDURES

A function is specified by writing a procedure. The name of the
function is then an entry name of the procedure. Details of how a value
is returned by a function procedure and rules relating to the type and
precision of the value are specified in "The RETURN Statement" in
Chapter 13.

BUILT-IN FUNCTIONS

Built-in functions are provided by the language and contain a
subclass of generic functions. The built-in functions provided are
listed in Appendix 1.

A generic function is a family of functions. A reference to a
generic function causes the selection of a particular member of the
family. The member chosen depends on the arguments provided.,

The characteristics of the value returned by a generic function
reference depend on the member of the family chosen.

Built-in functions other than generic functions have only a single
member. Where necessary, the arguments provided are converted to the
appropriate characteristics before the function is invoked. The charac-
teristics of the value returned are invariant.

60

Built-in function names have the same scope rules as normal external
identifiers. If undeclared built-in function names are referenced, they
have implicit external declarations in the external procedure. If a
built-in function name has been declared with another use in a block,
then the built-in function is made accessible in contained blocks by
declaring it with the attribute BUILTIN.

THE ENTRY ATTRIBUTE

General Forms:

ZNTRY
TNTRY {parameter attribute list 1, ...
parameter attribute list n)

The ENTRY attribute may be declared in a procedure for entry names
referred to in that procedure. The first form is used to specify that
the identifier being defined is an entry name. An entry name must be
declared with the ENTRY attribute unless a reference is made in a CALL
statement or in a function reference with arguments.

in the second form, each parameter attribute list is a succession of
attributes describing the corresponding formal parameters of the entry
point. sermissible attributes are those allowed for formal parameters
(see Chapter 10). The attributes are separated by blanks. The number
of parameter attribute 1lists must agree with the number of formal
parameters required by the entry point. It a parameter attribute 1list
is null, its place must be kept by a comma.

The second form of the ENTRY attribute need not be used unless the
formal parameters of the entry are to be described. An ENTRY attribute
of the first form specifies nothing about the number or nature of the
parameters.

The dimension attribute may be specified for array parameters (see
“The Dimension Attribute®™ in Chapter 15.) It must, however, be the
first attribute specified. If expressions are included, they will be
evaluated on entry to the declaring block. The * notation (see
“parameters Dimensions and Length®" in Chapter 10) may be used.

If the argument is to be a structure, the structuring may be
specified by a structure description using level numbers (see
"Structures®” in Chapter 16). This description does not involve identi-
fiers, the level number being immediately followed by the attribute
list. The first item in the structure description must be specified as
being at level one. However, when argument checking is performed,
importance will only be attached to relative levels; thus, it is not
necessary for the argument to be a major structure so long as the
structuring is the same. For instance, P is a proper argument to A in
the following example.

DECLARE 1 0, 2P, 3Q, 4R, S, 3T, 40U,
A ENTRY (1, 5, 6, 6, 4, 5);
CALL A(P);

If the argument is to be an entry name, an ENTRY attribute may be
specified for the argument. Consider, for example, passing a function
without arguments as an argument to a procedure. If one wants to pass
the entry name RANDOM as the second argument to a procedure named DETER,
one declares

DETER ENTRY (BIT (6) , ENTRY FLOAT)

and then invokes DETER:

Chapter 9: Characteristics of Procedures 61

CALL DETER (MASK, RANDOM)
The entry name RANDOM will be the second argument sent to DETER.
In the above example, if the declaration had been
DETER ENTRY (BIT (6) , FLOAT)

then the function RANDOM would be invoked and its value sent as the
(floating point) second argument to DETER.

If no attributes are given for a particular formal parameter, no
assumptions are made about it. Otherwise, attributes required for full
definition of a parameter but not specified in the ENTRY attribute, are
deduced from default rules given in "Implicit and Default Attributes® in
Chapter 17. The effect of the ENTRY attribute is described in Chapter
10. Expressions occuring in ENTRY attributes are evaluated on entering
the block to which the ENTRY attribute is internal.

The use of NAME or VALUE attributes does not necessarily describe the
way the corresponding formal parameter will be used in the invoked
procedure, but describes the way the argument is presented. If neither
a NAME nor a SETS attribute appears, the programmer should assume that a
dummy argument may be created. If SETS appears, NAME is assumed. NAME,
however, does not imply SETS. If NAME, VALUE and SETS do not appear, no
uniform choice is made between NAME and VALUE: the choice will be made
at each invocation according to the actual argument presented.

The following example illustrates the use of the ENTRY attribute:

Q: PROCEDURE;
DECLARE A ENTRY FIXED (4) ,

B FLOAT ENTRY (FLOAT, BIT),

C ENTRY (FIXED(7), FLOAT(7), FIXED(7)),

D FLOAT ENTRY (FIXED) ,

M FIXED INITIAL (0) STATIC, (X,Y) EXTERNAL;
M+ 1 ;
A* (14D (M)) ;
CALL C (X*#*3, B, Y)
IF Y > 100 THEN X
END Q;

M
X

[

[

X+A;

In this example, A is a function procedure with no arguments and
hence must be declared with the ENTRY attribute. The only reference to
B is as an argument, and hence B must be similarly declared. C has been
declared in order to effect conversion of the arguments, D has been
declared to facilitate documentation.

ABNORMALITY OF PROCEDURES

Abnormality is a property of both external and internal procedures.
Blocks invoking procedures which are abnormal must declare those names
with the ABNORMAL, USES, or SETS attributes. This enables program
optimization to be performed.

An external procedure is abnormal if it, or any procedures invoked by
it

access, modify, allocate, or free external data;

modify, allocate, or free their arguments;)

return inconsistent function values for identical argument values;
maintain any kind of history;

perform I/0O operations; or

return control from the procedure by means of a GO TO statement.

62

An internal procedure is abnormal under the conditions listed for
external procedures; it is also abnormal if it, or any procedures called
by it, access, modify, allocate, or free variables declared in an outer
block.

In the absence of ABNORMAL, NORMAL, USES, or SETS attributes, entry
names invoked as functions are assumed to be normal and all other entry
names are assumed to be abnormal.

If an expression contains a reference to an abnormal variable (see
"The ABNORMAL, NORMAL and SECONDARY Attributes® in Chapter 15), or to an
abnormal function that may alter another operand in the expression, then
the order in which data 1is accessed within the expression becomes
significant. (See “Evaluation of Expressions™ in Chapter 6 for the
hierarchy in which operations are performed.) This order is defined as
follows:

Consider an infix operator op with operands a, b of the form a op b
in a scalar expression. Then either a, b or both may be a
subscripted name, a function reference, or a subexpression of the
form ¢ op d. In the following discussion, the term ‘'elements®' will
denote the expressions that must be evaluated, such as subexpres-
sions, arguments, and subscripts, and the functions that must be
invoked before op can be applied.

If a is an unsubscripted name or a constant, and b 1is neither an
unsubscripted name nor a constant, then a will not be accessed
until all the elements of b have been accessed.

In all other cases, all elements of a are accessed before any
elements of b are accessed.

Subscript 1lists are evaluated and accessed 1left to right, and
immediately before accessing the subscripted variable.

Function argument lists are evaluated and accessed left to right,
immediately before accessing (or invoking) the function.

The order of assignment in multiple assignment is left to right.

Array expressions are evaluated by performing a complete scalar
evaluation of the expression in turn, for each position of the
array in row major order. The result of the evaluation for an
earlier position will not be altered by an evaluation of a later
position. (See "Array Expressions" in Chapter 6) .

Structure expressions are evaluated by performing a complete scalar
evaluation of the expression for each eligible field in the order
in which the fields of the target structure were declared. The
result of the evaluation for an earlier position will not be
altered by an evaluation of a later position.

THE ABNORMAL ATTRIBUTE

Abnormal procedures, invoked as functions, must be declared in the
invoking block with one or more of the attributes, ABNORMAL, USES, and
SETS.

ABNORMAL used alone specifies complete abnormality. ABNORMAL used in
combination with USES or SETS specifies that the function maintains a
history, performs I/0, returns inconsistent function values, or contains
an abnormal return. It 1is unnecessary to specify ABNORMAL for the
built-in functions TIME and DATE.

Chapter 9: Characteristics of Procedures 63

The ABNORMAL attribute may also be specified for data (see Chapter
15) . In particular, data which is changed by executing an ON unit is
abnormal.

THE NORMAL ATTRIBUTE
This attribute specifies that the entry name is for a procedure which

is not abnormal. The attribute may be used to override a factored or
implicit ABNORMAL attribute.

THE USES AND SETS ATTRIBUTES

General Forms:

USES (item 1, ... , item n)
SETS (item 1, ... , item n)

The USES and SETS attributes may be declared in the invoking block
for any entry name. If either is declared, complete information must be
given about the abnormality of the specified entry name arising from
data manipulation.

The items may be

a decimal integer n, specifying the n'th argument of the
invocation.

an external identifier known to the invoking block.

an asterisk that implies all external identifiers known to the
invoking block.

The appearance of an item in the SETS list specifies
that the procedure, or other procedures invoked by it, reassign

that item.

that neither the procedure, nor procedures invoked by it, access
that item other than to reassign it unless it is also specified in
a USES attribute.

The appearance of an item in a USES list specifies
that the procedure, or other procedures invoked by it, access that

item.

that neither the procedure nor procedures invoked by it reassign
that item unless it is also specified in a SETS attribute.

64

CHAPTER 10: FORMAL PARAMETERS, ADJUSTABLE DIMENSIONS, AND LENGTH

when a procedure is invoked, a relationship is established between
the arguments of the invocation and the formal parameters of the entry.
pPermissible arguments are listed in "Function References" in Chapter 6.
An explicit ENTRY attribute may be specified for an invoked entry name
(see "The ENTRY Attribute® in Chapter 9). This specifies the attributes
of parameters of the entry. when a procedure is invoked, the data
attributes of arguments passed must match those of the associated formal
parameters. If the specified argument has different data attributes
from the parameter, a dummy argument, with the value of the given
argument, will be constructed, and converted to the characteristics of
the parameter. The dummy argument is then passed to the entry. If the
conversion is impossible, the program is in error (e.g. filename to
bit) . If no ENTRY attribute is specified, it is assumed that the
attributes of the arguments given match those of the associated formal
parameters.

If an argument is a lapel variable, a dummy argument having the
current value of the label variable or array will be constructed and
passed to the entry. If expressions involving operators or constants
are specified as arguments, a dummy argument having the current value of
the expression (or constant) is constructed and passed to the entry.

If the argument is a statement label constant, this wvalue is
qualified by an identification of the current invocation of the block
containing the label and by the current task, before the invocation is
performed and the value assigned to the parameter.

If a subscripted item is an argument, then the subscript is evaluated
before the invocation. The specified element is then passed as the
argument. Subsequent changes in the subscript during the execution of
the invoked procedure do not influence the associated parameter. 1f a
parameter is a scalar, the associated argument must also be a scalar.

1f an argument is an array expression, the associated formal
parameter must be declared as an array with identical dimensions and
pounds to the argument (see "Parameters, Dimensions, and Length®" in
Chapter 10).

If an arqument is a structure expression, the associated formal
parameter must be declared as a structure with identical structuring.

Note that a scalar is a valid array or structure expression. Thus, a
scalar argument may be passed to an array or structure parameter.
However, it must be known before the invocation that the scalar
constitutes an array or structure expression. Thus an explicit ENTRY
attribute specifying this information must be declared for the entry
name in the invoking procedure. An appropriate dummy array or structure
will then be constructed and passed to the entry.

Formal parameters must be declared in the invoked procedure. They
may not be declared in outer containing blocks. If no explicit
declaration is given, an implicit declaration is assumed, internal to
the invoked procedure, with default attributes. (See Chapter 17) .

Chapter 10: Formal Parameters, Adjustable Dimensions, and Length 65

ARGUMENTS PASSED BY NAME

If a formal parameter has the attribute NAME, the associated argument
is said to be passed by name. This means that during execution of the
invoked procedure the formal parameter name is made synonymous with the
name of the argument passed, and all references to the former are
treated as references to the latter. Note, however, that where a dummy
argument has been constructed as described previously, the parameter is
synonymous with the dummy rather than with the actual argument .

If the argument is CONTROLLED, the name parameter is made synonymous
with the most recent generation of the argument at the point of
invocation, and this synonym normally remains fixed until the invoked
procedure returns control to the caller. But if the name parameter also
has the attribute CONTROLLED, then the parameter is always synonymous
with the most recent generation at the point of reference, which may be
different from the generation existing at the point of invocation. In
this case, the invoked procedure may also ALLOCATE and FREE the name
parameter (see “Allocation of Name Parameters®™ in Chapter 10).

NAME formal parameters may not be declared with the storage class
attributes STATIC or AUTOMATIC, with the scope attributes, or with the
DEFINED attribute.

This relationship between argument and name parameter is not esta-
blished unless the invoked procedure is entered at an entry point where
the parameter declared NAME appears in the formal parameter list. If
the procedure is entered at an entry point where the parameter is not in
the parameter list, it is inaccessible in the invoked procedure.

A formal parameter by name may be an unsubscripted unqualified
variable name (including a label variable name) , a file parameter, or an
entry parameter.

A file parameter may be used within a procedure wherever a file name
may be used; an entry parameter may be used wherever an entry name may
be used.

If a formal parameter by name is a fixed-length string variable, the

actual argument must be a fixed-length string. If the parameter is a
variable-length string, the argument must also be one.

ARGUMENTS PASSED BY VALUE

If a formal parameter has the attribute VALUE, the associated
argument is said to be passed by value. This means that when the
procedure is invoked, the value of the argument is assigned to the
associated parameter.

Value parameters may be scalar, array, or structure names. The
parameters have explicit or implicit storage class and scope attributes
which need not be the same as those of the corresponding argument.

Value parameters may only be CONTROLLED if storage has been allocated
for them before the procedure is invoked. This implies that either of
the following cases exist:

The parameter is CONTROLLED EXTERNAL and is declared so in the
invoked procedure. Storage may then be allocated before the
invocation by other procedures. :

The' parameter is CONTROLLED INTERNAL, and the procedure has an

alternative entry point where the value parameter is not in the
parameter list. The first invocation of the procedure can be

66

through this entry point and the CONTROLLED INTERNAL storage
allocated. Subsequent invocations may use the other entry point
where the value parameter is in the parameter list.

If a formal parameter by value is a variable-length string, the

actual argument may be either a fixed-length or a variable-length
string.)

DEFAULT PARAMETER ATTRIBUTES

Formal parameters to be passed by value may be explicitly declared
using the attribute VALUE. Formal parameters not declared NAME or VALUE
are given the default attribute NAME.

ADJUSTABLE DIMENSIONS AND LENGTH

AUTOMATIC and CONTROLLED arrays and strings may be declared with
adjustable dimensions and lengths, i.e. with expressions involving
variables and function references as bounds or lengths. When storage is
allocated for the array or string, these expressions are evaluated and
converted to integer; thus, at this point, the variables in the
expressions must have had storage allocated for them and must have been
assigned a value. Full details of how such expressions may be
formulated are given in the section headed "Prologues® in Chapter 16.

PARAMETERS, DIMENSIONS AND LENGTH

In general, the dimensions, bounds, and sizes of arguments must be
the same as those of the corresponding formal parameter. (For the
exception, see "Allocation of Name Parameters” in this chapter. This
correspondence may be achieved by

declaring the values for the parameters as constants. This method
of specification must be used for STATIC VALUE parameters.

specifying the length by an asterisk, or each and every dimension
bound by an asterisk to indicate that the length or bounds are the
same as those of the argument passed. Asterisk notation may not be
used for STATIC VALUE parameters; if the asterisk notation is used
for a CONTROLLED VALUE parameter, the ALLOCATE statement must
specify the length or bounds.

declaring the bounds or 1length as any expression which, when
" evaluated, will give the appropriate value, i.e., adjustable bounds
or lengths (see above) .

NAME PARAMETERS, ADJUSTABLE LENGTHS AND DIMENSION BOUNDS

The expressions specified for dimension bounds or 1length must be
formulated according to the rules stated under "Prologues®™ in Chapter
16.

VALUE PARAMETERS, ADJUSTABLE LENGTHS AND DIMENSION BOUNDS

The only difference between value parameters and variables that are
not parameters is that the associated argument value is copied at entry
points if the parameter is in the parameter list. Thus, storage is
allocated for value parameters in exactly the same way as for other
variables of the same storage class. The rules for adjustable dimen-
sions and length of value parameters are exactly as described under
"pefault Parameter Attributes® in this chapter.

Chapter 10: Formal Parameters, Adjustable Dimensions, and Length 67

Storage is allocated for AUTOMATIC VALUE parameters on every entry to
a procedure, whether the parameter is in the parameter list of the entry
or not. Thus, if adjustable dimensions or length are specified for an
AUTOMATIC VALUE array or string, the constituent expressions must be
able to be evaluated at all entry points, i.e., not contain a name
parameter which only appears in a subset of the parameter lists.

Value parameters may have the INITIAL attribute (see Chapter 15).
Where both initial value assignment and argument copying should take
place at the same point, the latter overrides tne former.

ALLOCATION OF NAME PARAMETERS

variables passed by name may be allocated and freed in an invoked
procedure if the original argument was declared CONTROLLED, and the nane
parameter also has the attribute CONTROLLED.

If the variable is a string or an array, the 1length or dimension
bounds must be declared in the invoked procedure. Either the asterisk
notation may be used, or explicit bounds or length given.

If the asterisk notation is used, it means

If storage has already been allocated for the argument, then in the
invoked procedure the formal parameter will be assumed to have the
length or bounds that were specified when the storage was
allocated. Further allocations of the data will use these same
values.

If no storage has been allocated for the argument, then the program
is in error. Bounds or lengths must be declared in the invoked
procedure if the argument was passed unallocated.

If dimensions or length are explicitly specified in the invoked
procedure, the following rules apply:

If storage has already been allocated for the argument, then on
entry to the invoked procedure the expressions specifying the
parameter bounds or length are evaluated and must give values the
same as those of the argument. If the parameter is subsequently
re-allocated, these expressions will again be evaluated to give new
bounds or length for the new allocation.

If no storage has been allocated for the argument, then no
requirements are made at the point of entry to the invoked
procedure on the value of the expressions specified for bounds or
length of the parameter. These expressions will only be evaluated
at a subsequent point of allocation.

The initial value attribute may be specified in the invoked procedure
for a name parameter which is allocated in that procedure.

68

CHAPTER 11: THE ASSIGNMENT STATEMENT

The assignment statement is used for evaluation of expressions and
assignment of values to scalars, arrays, and structures.

SCALAR ASSIGNMENT

General Form:

variable 1, ... , variable n = scalar expression, option list;

The items on the left of the equal sign may be a scalar variable
name, or a pseudo variable (see below). These items may be of type
arithmetic, bit, or. character. The statement causes the following
action:

Expressions on the left, in subscripts or pseudo variables, are
evaluated from left to right.

The scalar expression is evaluated.

The value of the expression on the right is assigned to the scalars
on the left. The value is converted, if necessary, to the
characteristics of the variable on the left according to the rules
stated under “Scalar Expressions®™ in Chapter 6.

One or more options may appear to the right of the scalar expression.
The list items are separated by commas. The permitted options are:

FIXEDOVERFLOW
SUBSCRIPTRANGE
SIZE

MODULO

The first three options are related to ON conditions which have the same
identifiers. They specify that the occurrence of the condition should
be signalled when it occurs during execution of the statement, but
excluding execution of any functions invoked by the statement. The
treatment of the occurrence of the condition in such functions is
determined by the function procedures themselves. 1In the absence of the
option, the occurrence of the condition will not be signalled, unless
the absence of the option is overruled by the presence of a procedure
attribute with the same identifier.

The MODULO option specifies that replacement will be performed
ignoring any SIZE error conditions.

PSEUDO VARIABLES

The following are permitted:

COMPLEX (a,b) a and b are real arithmetic variables which need not
have the same characteristics. On assignment, the
real part of the expression on the right is assigned
to a, the imaginary part to b.

REAL (c) c is a complex variable. On assignment, the real value

of the expression is assigned to the real part of c.

Chapter 11: The Assignment Statement 69

IMAG (c) c is a complex variable. On assignment, the real value
of the expression is assigned to the imaginary part of
c’

SUBSTR (s,i,k) s is a string. On assignment, the expression is
assigned to the substring of s from the ith character
or bit, k characters or bits long. If k is omitteqd,
the expression will be assigned from the ith character
or bit to the end of the string (see Appendix 1).

UNSPEC (V) v is a scalar variable. The expression on the right is
converted to a bit string and assigned to v without
conversion.

~ ONCHAR The expression on the right is converted to a

character string of length 1. On assignment, the
character which caused an 1/0 conversion error inter-
rupt 1is replaced by the value assigned. This pseudo
variable is only defined while such an interrupt is
being processed.

ONFIELD The expression on the right is converted to a
character string. On assignment, the field that was
being processed when an I/0 interrupt occurred is

All pseudo variables are also built-in functions (see Appendix 1j.

STRING ASSIGNMENT

When strings are assigned, the assignment is performed from left to
right starting with the leftmost positions.

Assignment to Fixed-Length Strings

If the expression value is longer than the string on the left, the
value is truncated. If it is shorter, it is extended on the right with
zeros or blanks (bit or character).

Assignment to Variable-Length Strings

If the expression value is 1longer than the maximum length of the
string on the left, the value is truncated. The new length of the
string is the maximum length.

If the expression value 1is shorter than the maximum length of the
string on the left, the value is assigned; and the new length ot the
string is the length of the value.

If the destination 1is the SUBSTR pseudo variable with a variable
length string argument, the assignment is performed to this substring.

If the expression value is shorter than the substring, the rest of
the substring is filled with blanks or zeros precisely as if the
specified substring were in an assignment statement. If the expression
value 1is longer than the substring, it will be truncated as if it were
in an assignment statement. If no substring 1length is specified,
truncation is only performed when the left hand string part before the
substring and the assigned value exceed the maximum length for the
argument.

70

To illustrate string assignment, suppose that:

A is a fixed-length string whose value is *XZ/BQ'.

B is a variable-length string of maximum length 8 whose value is
'MAFY'.

C is a fixed-length string of length 3.

D is a variable length string of maximum length 5.

If C=A; the value of C will be 'XZ/°'.

If C='A'; the value of C will be 'A".

If D=B; the value of D will be 'MAFY'.

If D=SUBSTR(A,2,3) || SUBSTR(A,2,3); the value of D will be
‘*2/BZ/"'.

If SUBSTR(A,2,4)=B; the value of A will be 'XMAFY'.

If SUBSTR (A,U4)=B; the value of A will be 'XZ/MA°‘.

If SUBSTR (B, 2) =SUBSTR (A,2) ; the value of B will be °'MZ/BQ°'.

If SUBSTR (B, 2,2) =SUBSTR (A.3) ; the value of B will be *'M/BY'.

ARRAY ASSIGNMENT

General Form:

array 1, ... , array n = array expression ;

The items on the left of the equal sign may be an array variable name
or a pseudo arraye.

All the arrays on the left, and the array expression must have the
same number of dimensions and identical dimension bounds. The action
caused by the statement is identical to that described for scalar
assignment, except array values are used and assigned on an element by
element basis.

The permitted pseudo arrays have a syntax the same as the permitted
pseudo variables, except that the first argument must be an array of
appropriate dimensions and bounds. The meaning, taken on an element by
element basis, is the same.

To illustrate array assignment, suppose that:

A is the array 2 4
3 6
1 7
4 8
and B is the array 1 5
7 8
3 4
6 3
Then, if A= (A+B) #*2-A(1,1);
A will have the value 7 79
98 194
1w 119
98 119

Chapter 11: The Assignment Statement 71

SIMPLE STRUCTURE ASSIGNMENT

General Form:

structure name = structure expression, options ;

The options that can be used on scalar assignment may also be used on
structure assignments. There is an option, BY NAME, that is permitted
only on a structure assignment. In the absence of the BY NAME option,
the structure on the left must have identical structuring to the
expression on the right. The action caused is identical to that
described for scalar assignment, except that structure values are used
and result in element by element assignment of corresponding elements.

If the BY NAME option is used, the structure assignment statement
causes the following action:

Subscript expressions on the left are evaluated.

The structure expression BY NAME is evaluated. (See "Structure
Expressions BY NAME" in Chapter 6). This gives a set of array
and/or scalar values, each with an associated qualified name.

All names of elementary scalars and arrays of the structure on the
left are qualified with all appropriately containing minor struc-
ture names up to but not including the name specified in the by
name assignment statement. This results in a set of qualified
names.

Pairs of identical qualified names from the two lists are selected.

Values from the right are assigned to items on the left for the
pairs of identical qualified names. These assignments must be
legal, e.g., arrays may not be assigned to arrays of different
dimensions or bounds.

In by name structure assignment, it is unnecessary for the structur-
ing of all participating structures to be identical. Names defined on
structures appearing in by name assignment take no part in the name
pairing.

STATEMENT LABEL ASSIGNMENT

General Form:

label variable 1 , ... , label variable n =
statement label designator, options;

The above form of the assignment statement causes the assignment of
the value of the statement label designator on the right to the label
variables on the left. The options that may be used are the same as
those for scalar assignment.

When a statement label is assigned to a label variable, the value is
qualified by an identification of the current invocation of the block
containing the label and by the current task (see Chapter 18).

The qualification information is wused when a GO TO specifies the

label variable in order to make the identified invocation current and to
check that control does not cross task boundaries.

72

CHAPTER 12: THE SAVE AND RESTORE STATEMENTS

The SAVE and RESTORE statements provide means for holding data by
name in auxiliary storage.

THE SAVE STATEMENT

General Forms:

SAVE (item 1 , ... , item n) ;
SAVE (item 1, ... ,item n) , (expression) ;

The items may be variable names, subscripted names, qualified names,
or subscripted qualified names.

The first form of the statement is exactly equivalent to the series
of simple SAVE statements

SAVE (item 1) ;

SAVE (item n);
The second form is equivalent to

temp = expression;
SAVE (item 1), (temp);

SAVE (item n), (temp):;

A simple SAVE statement causes the data encompassed by the specified
name to be placed in auxiliary storage. This data is identified by the
data name qualified by the allocation of data and details of the current
task (see Chapter 18.)

If no expression is specified, and items of the same name and
allocation are repeatedly stored, the values are stacked. If an
expression is specified, only one value for a given name (qualified) and
given expression value will be saved at any one time, and subsequent
execution of a SAVE statement with matching identification will cause
the previously saved value to be overridden.

THE RESTORE STATEMENT

General Forms:

RESTORE (item 1, ... , itemn) ;
RESTORE (item 1, ... ,item n) , (expression);

The permitted items, and the breakdown of the statements into simple
RESTORE statements is the same as that described for the SAVE statement.
The name specified in a simple RESTORE statement is qualified as
described for the SAVE statement. This identification specifies a value
previously saved; this value 1is assigned to the associated scalar,
array, or structure.

Chapter 12: The Save and Restore Statements 73

Once a value has been restored, it may not be restored again. Thus
if the same item has been repeatedly saved with no qualifying
expression, the action of restoring the data causes the top item of the
stacked information to be deleted. Therefore the stacked information is
treated in a first in last out manner.

A value may be saved in one external procedure and restored in
another if the data name 1is EXTERNAL and 1if the SAVE and RESTORE
statements refer to the same allocation of the data name.

Data saved cannot be restored in part. Thus, if an array is saved,
an element cannot be restored; if a structure is saved, an array element
cannot be restored, etc.

74

CHAPTER 13: CONTROL STATEMENTS

THE GO TO STATEMENT

General Form:

GO TO statement label designator ;

The GO TO statement transfers control to the statement specified by
the statement label designator. The designator may be a statement label
or a scalar label variable, For example, the designator may be a
subscripted label variable, giving the effect of a multiway switch. A
GO TO may not pass control from outside a DO group to a statement
inside, if the DO group specifies iteration.

A GO TO from one block to another has the effect of terminating all
blocks dynamically descendant from the block implied by the destination.
Conditions are reinstated and automatic variables freed in the same way
as if the blocks terminated normally. When this form of termination is
used to terminate a procedure that was invoked as a function, the
evaluation of the expression that contained the corresponding function
reference will be discontinued and control transferred to the designated
label.

Control may not be passed to an inactive block.

A GO TO may not terminate a procedure invoked by a CALL from a
statement allowing the CALL option.

The following example serves to illustrate some uses of statement
label constants and variables in GO TO statements:

TSET: PROCEDURE (TO, TF, TBAR, ERROR) ;
DECLARE ERROR LABEL VALUE, (R,X,W,V) EXTERNAL,
SWITCH (5) LABEL INITIAL (TERROR, HIGHT, FINET, LOWT,
TERROR) ;
ON SUBSCRIPTRANGE GO TO TERROR;
IF (TBARDTO) & (TBARKTF) THEN TEMP=TBAR/2;
GO TO SWITCH (ROUND (2%#SIN (TEMP) *COS (TEMP) +TO)) ;
TERROR: X,W,V=0; GO TO ERROR;
HIGHT: IF V>W THEN GO TO TERROR; RETURN (TF) ;
FINET: TEMP=TBAR-TO;
RETURN (TEMP/ (R*#3+X#%%2+W) +2#COS (TEMP) *SIN (TEMP) ;
LOWT: IF V<KW THEN GO TO TERROR; RETURN (TO);
END TSET;

THE IF COMPOUND STATEMENT

General Forms:

IF expression THEN unit
IF expression THEN unit 1 ELSE unit 2

The unit appearing in the general forms may be a group or a begin
block.

In the first form, the scalar expression is evaluated and, if

necessary, converted to a bit string. If any bit in the resulting
string has a value '1', the unit is executed; and control passes to the

Chapter 13: Control Statements 75

next statement following the IF compound statement. If all bits have
the value '0', the unit is not executed; and control passes to the next
statement.

In the second form, the expression is similarly evaluated. If any
bit is *'1', unit 1 is executed; and control passes to the next statement
following the IF compound statement. If all bits have the value ‘'0°,
unit 2 is executed and control passes to the next statement.

The units may contain statements which specify transfer of control,
and so override these normal sequencing rules.

The IF compound statement is not itself terminated with a semicolon.
The last character is the semicolon of the last contained statement.

‘IF' compound statements may be nested and an ELSE clause is always
associated with the innermost preceding IF. Null ELSE clauses may be
required to specify the desired effect.

Examples:

IF QUEUE = EMPTY THEN CALL COMPILE;
ELSE GO TO MULTIPROCESS;

A: IF X > Y THEN p
. W THEN

THEN Y

’

THEN X = 3;

]
-
-

Ol

THE DO STATEMENT AND ITERATION OF A DO GROUP

General Forms:

DO;
DO WHILE expression;
DO variable = specification list ;
or DO pseudo variable = specification list ;

The DO statement delimits the start of a DO group (see “Groups" in
Chapter 7), and, in the first general form, performs this function
alone. The DO statement, however, may also specify iteration of the
group which it heads.

The iteration specified by the second general form is defined by the
following expansion:

76

LABEL: DO WHILE expression;
statement 1;
statement n;
END;

NEXT : statement;

is exactly equivalent to

LABEL: IF , (expression) THEN GO TO NEXT;
statement 1;

statement n;
GO TO LABEL;
NEXT = statement;

The third general form specifies controlled iteration. The variable
is a subscripted or unsubscripted scalar variable. The specification
list is a list of specifications separated by commas.

In general each specification involves three expressions,giving the
starting value of the scalar, the increment to be added to the value of
the scalar after each iteration of the loop, and the terminating wvalue
of the scalar. Iteration is terminated as soon as the value of the
scalar passes its terminating value. The iteration for the next
specification is then begun. When the last specification is complete,
control passes to the statement following the DO group.

Each specification may be one of the following forms:

expression 1 TO expression 2 BY expression 3
or expression 1 BY expression 3 TO expression 2

expression 1 TO expression 2

expression 1 BY expression 3

expression 1

or any of the specifications followed by

WHILE expression 4

The second form is the same as the first, with the 'BY* expression
understood to be the integer 1. ‘

The third form is the same as the first, with expression 2 infinite.

The fourth form is the same as the first, with all three expressions
equal to the specified expression, and implies a single execution of the
group with the control variable having the value of the expression.

The fifth form specifies that before each associated execution of the
group expression 4 will be evaluated, and, if necessary, converted to
give a bit string value. If any bit in the resulting string has a value
'1', the iterations continue uninterrupted. 1If all bits have value 0,
the iterations associated with the current specification are terminated.

All the expressions specified must lead to legal statements in the
language, when they are substituted in the following expansion:

Chapter 13: Cbntrol Statements 77

LABEL: DO variable = expression 1 TO
expression 2 BY expression 3
WHILE expression U;
statement 1;

statement n;
END;
NEXT: statement;

is exactly equivalent to

LABEL: variable = expression 1;
LABEL1: IF (expression2?2 - variable)
* SIGN ({expression 3) < 0
THEN GO TO NEXT;
IF (expression 4) THEN GO TO NEXT;
statement 1;

statement n;
variable = variable + expression 3;
GO TO LABEL1;

NEXT: statement;

LABEL1 and NEXT are introduced statement labels. If more than one
specification had been given, NEXT would refer to the initialization for
the next specification. If the WHILE clause is omitted, the IF compound
statement involving expression 4 is replaced by a null statement.
Some examples of DO statements are:
DO INDEX=CTR WHILE A<B, 5 TO 10 WHILE A=B, 100;
DO I=J TO K BY I, I+1 TO N BY 1;

THE CALL STATEMENT

General Forms:

CALL entry name (argument list) , task option ;
CALL (expression) { arqument list) , task option ;

The first form causes the invocation of the specified entry name by
activating the containing procedure and passing control to the entry
point.

On execution of the second form of the CALL statement, the scalar
expression is evaluated and, if necessary, converted to a character
string. This string specifies a program name which must have been
specified previously in a FETCH statement, and must not have been
specified subsequently in a DELETE statement. The specified program is
invoked and the listed arqguments are passed. No conversion is performed
for the arguments; those specified must have characteristics that match
the associated formal parameters. The arguments passed cannot be entry
names or built-in function names,

The argument 1list is a 1list of arguments separated by commas.
Permissible arguments are specified under “"Function references" in
Chapter 6. A relationship is established on entry between the items in
the argument list and the formal parameters specified at the entry point
to the invoked procedure (see Chapter 10). If the entry point does not
specify any formal parameters, the argument list and its enclosing
brackets must be omitted from the CALL statement.

78

The TASK option may be specified if the environment allows and it is
desired that the invoked procedure be executed asynchronously with the
invoking procedure (see "Data Allocation Across Tasks® in Chapter 18).
If the option is omitted, the preceding comma is omitted.

Examples:

CALL CRITICAL_PATH (A,B*C,D);

AEIPROFIT: CALL SCRIP_ISSUE (BULLS, BEARS, BUTTERFLIES) ;
CALL TRANSMIT ('LAB',TIME),TASK (QTAB);

CALL RANDOM_GENERATE;

CALL ('PROCTL');

CALL (A}|B) (C,D,E);

THE RETURN STATEMENT

General Forms:

RETURN;
RETURN (expression) ;

The RETURN statement causes termination of execution of the contain-
ing procedure, and returns control to the invoking procedure.

The first form terminates all but function procedures and returns
control to the first executable statement 1logically following the
statement which invoked the procedure. This is the only form which may
be used to terminate a procedure invoked with the TASK option.

The second form must be used to terminate a procedure invoked as a
function procedure. The value returned by the function is the value of
the expression specified in the RETURN. If the entry point at which the
procedure was invoked specified data attributes, the value of the
expression is converted to these characteristics before it is returned.

THE DISPLAY STATEMENT

General Form:

DISPLAY (scalar expression);

DISPLAY (scalar expression), task option;

DISPLAY (scalar expression) (character variable);

DISPLAY (scalar expression) (character variable) ,task option;

The statement causes the evaluation of the expression and, where
necessary, its conversion to a character string. This string is
displayed to the operator as a message. The task option specifies
asynchronous operation (see Chapter 18).

The third and fourth forms specify a character string which will
receive a message from the operator. The third form will cause the
program to wait until the operator's message has been received; other
forms do not cause the program to wait.

Chapter 13: Control Statements 79

THE WAIT STATEMENT

General Forms:

WAIT (wait specification 1, ..., wait specification n) ;
WAIT (wait specification 1, ..., wait specification n) (scalar

expression) ;

A wait specification has one of these two forms -

task identifier

task identifier (scalar expression)

In either form of the wait specification, the task identifier must
reference a task which has been attached by the task executing the WAIT
statement. In the second form, the scalar expression is evaluated on
execution of the WAIT statement and converted, where necessary, to give
an integer p.

Each attachment of a task with a given identifier causes an entry to
be made in an attachment list for that identifier. The first entry in
the attachment list indicates the oldest attachment of the task, and the
last entry in the 1list indicates its newest attachment. A wait
specification causes interrogation of the status of the attachment list
relevant to the specified task identifier.

With a wait specification of the first form, the attachment list for
the specified identifier is scanned from the oldest to the newest entry,
as many times as is necessary, until one attachment of the identifier
task is found to have completed. This entry is then marked so that it
will not be considered by further wait specifications (of the first
form) for that identifier, and the wait specification is said to be
satisfied. If the tasks indicated by the attachment list have all
completed and have all been marked by earlier wait specifications, or if
the attachment list is null, the wait specification is also said to be
satisfied.

With a wait specification of the second form, only the p'th entry
(the oldest entry is numbered 1) of the attachment 1list for the
specified identifier is considered. When the task which it indicates is
found to have completed, regardless of whether earlier wait specifica-
tions of either form may have interrogated the same entry, the wait
specification is said to be satisfied. If the attachment list contains
fewer than p entries, or if p is zero or negative, the wait specifica-
tion is also said to be satisfied.

When a WAIT statement of the first fo