
NASA S_fANDARD

SPACECRAFT COMPUTER

HSSC -II

ASSEMBLER
LANGUAGE

IBM No. 75W-00142

July 15, 1975

(lI15A-CR-178827) NASA 5¢&IIDAI_I_ 5PAC£CR&FT
CCfSPO_I_IB !t55C-2 AESEBELEB ZJ_(;OtGZ (ZBtt
Fedezal _ystens Div.) 249 1; Avail: NZI5

0 O/61

tt87-7C5, z

Federal Systems Division, Civil and Space Systems, Huntsville, Alabama

f

CHANGE NOTICE

This revision cancels and supersedes the change issued February 1, 1974.

Copies of this document may be obtained from the IBM Corporation
(Department U34), 150 Sparkrnan Drive, Huntsville, Alabama 35803.

• 0 !

HTC/0S ASSEMBLER LANGUAGE

This publication contains specifications for the IBM System/360

Operating System Assembler Language (Level F) modified to he compatible

with the extended Hybrid Technology Computer (HTC) j i.e., the HTC including

the short precision option and the double precision flxed-polnt arithmetic
option.

The assembler language is a symbolic programming language used to

write programs for the HTC. The language provides a convenient means for

representing the machine instructions and related data necessary to program

the HTC. The IBM HTC Operating System Assembler Program processes the

language and provides auxiliary functions useful in the preparation and

documentation of a program, and includes facilities for processing the

assembler macro language.

Part I of this publication describes the assembler language.

Part II of this publication describes an extension of the assembler

language -- the macro language -- used to define macro instructions.

PREFACE

This publication is areference manual for the programmer using the
assembler language and its features.

Part I of this publication presents information common to all parts of

the language followed by specific information concerning the symbolic

machine instruction codes and the assembler program functions provided for

the programmer's use. Part II contains a description of the macro language
and procedures for its use.

Appendices A through J follow Part II. Appendices A through F are

associated with Parts 1 and II and present such items as a summary chart

for constants, instruction listings, character set representations, and

other aids to programming. Appendix G contains macro language summary

charts, and Appendix H is a sample program. Appendix I is a features

comparison chart of System/360 assemblers. Appendix J includes samples of
macro definitions.

Knowledge of HTC machine operations, particularly storage addressing,

data formats, and machine instruction formats and functions, is

prerequisite to using this publication, as is experience with programming

concepts and techniques or completion of basic courses of instruction in

these areas. HTC machine operations are discussed in the publication "HTC

Principles of Operation." Information on program assembling, linkage

editing, executing, interpreting listings, and assembler programming

considerations is provided in "OS Assembler (F) Programmer's Guide," Order
No. GC26-3756.

The following publications are referred to in this publication:

OS Introduction, Order No. GC28-6534

OS Utilities, Order No. GC28-6586

OS Loader and Linkage Editor, Order No. GC28-6538

OS Supervisor Services and Macro Instructions, Order No. GC28-6646

OS Data Management Macro Instructions, Order No. GC26-3794

OS Data Management Services Guide, Order No. GC26-3746

i/ii

S

CONTENTS

PART I -- THE ASSEMBLER LANGUAGE

SECTION 1 : INTRODUCTION i-i

Compatibility i i

The Assembler Language i-i

Machine Operation Codes 1-2

Assembler Operation Codes 1-2
Macro Instructions 1-2

The Assembler Program 1-3
Basic Functions 1-3

Programmer Aids 1-3

Operating System Relationships 1-4

SECTION 2: GENERAL INFORMATION 2-1

Assembler Language Coding Conventions 2-1

Coding Form 2-1
Continuation Lines 2-2

Statement Boundaries 2-2

Statement Format 2-2

Identlflcation-Sequence Field 2-5

Summary of Statement Format 2-5

Character Set 2-6

Assembler Language Structure 2-6

Terms and Expressions 2-7

Terms 2-7

Symbols 2-7

Self Defining Terms 2-10

Location Counter Reference 2-13

Literals 2-14

Symbol Length Attribute Reference 2-15

Terms in Parentheses 2-16

Expresslons 2-17• • • • 0 •

Evaluation of Expressions 2-18• • • • • • • • • • • • • • • • •

Absolute and Relocatable Expressions 2-18

iii

SECTION3: ADDRESSING-- PROGRAMSECTIONINGANDLINKING 3-1

Addressing 3-1
Addresses -- Explicit and Implied 3-1
Base Register Instructions 3-1

USING-- Use Base Address Register 3-2
DROP-- Drop Base Register 3-4

Programmingwith the USINGInstruction 3-4
Relative Addressing 3-6

Program Sectioning and Linking 3-6
Control Sections 3-7

Control Section Location Assignment 3-8
First Control Section 3-8

START-- Start Assembly 3-8
CSECT-- Identify Control Section 3-9
UnnamedControl Section 3-10
DSECT-- Identify DummySection 3-11

External DummySections (Assembler F) 3-14
DXD-- Define External DummySection 3-14
CXD-- Cumulative Length External DummySection 3-15
COM-- Define Blank CommonControl Section 3-17
Symbolic Linkages 3-18
ENTRY-- Identify Entry-Point Symbol 3-18
EXTRN-- Identify External Symbol 3-19

Addressing External Control Sections 3-20

SECTION4: MACHINE-INSTRUCTIONS.................... 4-1

Machine-lnstruction Statements 4-i
Instruction Alignment and Checking 4-1

OperandFields and Subfields 4-2
Lengths -- Explicit and Implied 4-4

Machine-lnstruction MnemonicCodes 4-5
Machine-Instruction Examples 4-5

4-6RRFormat
RXFormat 4-6
RSFormat 4-7
SI Format 4-7
SSFormat 4-8
RI Format 4-8

Extended MnemonicCodes 4-8

iv

S

SECTION 5: ASSEMBLER INSTRUCTION STATEMENTS 5-1

Symbol Definition Instruction 5-2

EQU -- EQUATE Symbol 5-2

Operation Code Definition Instruction 5-3

OPSYN -- EQUATE OPERATION CODE 5-3

Data Definition Instructions 5-4

DC -- DEFINE CONSTANT 5-4

Operand Subfield i: Duplication Factor 5-6

Operand Subfield 2: Type 5-7

Operand Subfleld 3: Modifiers 5-7

Operand Subfield 4: Constant " • • • 5-12

DS -- Define Storage 5-25

Special Uses of the Duplication Factor 5-28

Listing Control Instructions 5-29

TITLE -- Identify Assembly Output 5-29

EJECT -- Start New Page 5-30

SPACE --Space Listing 5-31

PRINT -- Print Optional Data 5-31

Program Control Instructions 5-33

ICTL -- Input Format Control 5-33

ISEQ -- Input Sequence Checking 5-34

PUNCH -- Punch a Card 5-35

REPRO -- Reproduce Following Card 5-36

ORG -- Set Location Counter 5-36

LTORG -- Begin Literal Pool 5-37

Special Addressing Consideration 5-38

Duplicate Literals 5-38

CNOP -- Conditional No Operation 5-39

COPY -- Copy Predeflned Source Coding 5-41

END -- End Assembly 5-41

PART 2 -- THE MACRO LANGUAGE

SECTION 6: INTRODUCTION TO THE MACRO LANGUAGE 6-1

The Macro Instruction Statement 6-1

The Macro Definition 6-1

The Macro Library 6-2

System & Programmer Macro Definitions 6-2

System Macro Instructions 6-3

v

Varying the Generated Statements 6-3

Variable Symbols 6-3
Types of Variable Symbols 6-3
Assigning Values to Variable Symbols 6-3
Global SETSymbols 6-4

Organization'of this Part of the Publication 6-4

SECTION 7: HOW TO PREPARE MACRO DEFINITIONS 7-I

MACRO -- Macro Definition Header 7-i

MEND -- Macro Definition Trailer 7-i

Macro Instruction Prototype 7-2
Statement Format 7-3

Model Statements 7-4

Symbolic Parameters 7-6

Concatenating Symbolic Parameters with Other Characters

or Other Symbolic Parameters 7-7

Comments Statements 7-9

COPY Statements 7-10

SECTION 8: HOW TO WRITE MACRO INSTRUCTIONS 8-i

Macro Instruction Operands 8-I

Statement Format 8-3

Omitted Operands 8-3

Operand Subllsts 8-4

Inner Macro Instructions 8-6

Levels of Macro Instructions 8-7

SECTION 9: HOW TO WRITE CONDITIONAL ASSEMBLY INSTRUCTIONS 9-1

SET Symbols 9-2

Defining SET Symbols 9-2

Using Variable Symbols 9-2

vi

i

Attributes

Type Attribute (T')

Length (L'), Scaling (S'), and Integer (I') Attributes

Count Attribute (K')

Number Attribute (N')

Assigning Attributes to Symbols.

9-3

9-5

9-6

9-7

9-7

9-8

Sequence Symbols 9-9

LCLA, LCLB, LCLC -- Define SET Symbols 9-11

SETA Set Arithmetic 9-11

Evaluation of Arithmetic Expressions 9-12

Using SETA Symbols 9-i3-

SETC -- Set Character 9-!5

Type Attribute 9-16

Character Expression 9-16

Substring Notation 9-17

Using SETC Symbols 9-18

SETB -- Set Binary 9-21

Evaluation of Logical Expressions 9-23

Using SETB Symbols 9-23• •

AIF Conditional Branch 9-24

AGO -- Unconditional Branch 9-26

ACTR -- Conditional Assembly Loop Counter 9-28

ANOP -- Assembly No Operation 9-28

Conditional Assembly Elements 9-29

SECTION i0: EXTENDED FEATURES OF THE MACRO LANGUAGE i0-i

MEXIT -- Macro Definition Exit i0-i

MNOTE -- Request for Error Message 10-2

Global and Local Variable Symbols 10-4

Defining Local and Global SET Symbols 10-5

Using Global and Local SET Symbols 10-5

Subscripted SET Symbols I0-ii

vii

SYSTEMVARIABLE SYMBOLS 10-12

&SYSNDX -- Macro Instruction Index 10-12

&SYSECT -- Current Control Section 10-15

&SYSLIST -- Macro Instruction Operand 10-17

Keyword Macro Definitions and Instructions 10-18

Keyword Prototype 10-18

Keyword Macro Instruction 10-19

Mixed-Mode Macro Definitions and Instructions 10-22

Mixed-Mode Prototype 10-23
Mixed-Mode Macro Instruction 10-23

Macro Definition Compatibility 10-24

APPENDICES

APPENDIX A" CHARACTER CODES A- i

APPENDIX B: HEXADECIMAL-DECIMAL NUMBER CONVERSION TABLE B-I

APPENDIX C: MACHINE-INSTRUCTION FORMAT C-I

APPENDIX D: MACHINE-INSTRUCTION MNEMONIC OPERATION CODES D-I

APPENDIX E : ASSEMBLER INSTRUCTIONS E-I

APPENDIX F: SUMMARY OF CONSTANTS F-I

APPENDIX G: MACRO LANGUAGE SUMMARY G-I

APPENDIX H" SAMPLE PROGRAM H- i

APPENDIX I: ASSEMBLER LANGUAGES -- FEATURES COMPARISON CHART I-I

APPENDIX J : SAMPLE MACRO DEFINITIONS J-i

viii

r i

Figures

Figure 2-1.

Figure 2-2.

Figure 2-3.

Figure 3-1.

Figure 4-1.

Figure 5-1.

Figure 5-2.

Figure 5-3.

Figure 5-4.

Figure 5-5.

Figure 5-6.

Tables

Table 4-1.

Table 4-2.

_TIONS

Coding Form 2-i

Punched Card Form 2-2

Assembler Language Structure--Machlne and Assembler

Instructions 2-8

Multiple Base Register Assignment 3-5

Extended Mnemonic Codes 4-9

Type Codes for Constants 5-7

Bit-Length Specification (Single'Constant) 5-9

Bit-Length Specification (Multiple Constants) 5-9

Bit-Length Specification (Multiple Operands) 5-_0

Floatlng-Polnt External Formats 5-19

CNOP Alignment 5-40

Address Specification Details 4-3

Details of Length Specifications in SS Instructions . . . 4-5

ix/x

PART I -- THE ASSEMBLER LANGUAGE

SECTION i:

SECTION 2:

SECTION 3:

SECTION 4:

SECTION 5:

INTRODUCTION

GENERAL INFORMATION

ADDRESSING AND PROGRAM SECTIONING AND LINKING

MACHINE INSTRUCTIONS

ASSEMBLER INSTRUCTIONS

SECTION i: INTRODUCTION

Computer programs may be expressed in machine language, i.e.,

language directly interpreted by the computer, or in a symbolic language,

which is much more meaningful to the programmer. The symbolic language,

however, must be translated into machine language before the computer can

execute the program. This function is accomplished by a processing
program.

Of the various symbolic programming languages, assembler languages are

closest to machine language in form and content. The assembler language

discussed in this manual is a symbolic programming language for the IBM

System/360. It enables the programmer to use all IBM System/360 machine

functions, as if he were coding in System/360 machine language.

The assembler program that processes the language translates symbolic

instructions into machine-language instructions, assigns storage locations,

and performs auxiliary functions necessary to produce an executable

machine-language program.

Compatibility

The HTC assembler uses the standard S/360 instruction set with the

following exceptions:

le The HTC I/O is different from S/360 and only uses the SlO

instruction. The SI0 instruction format has been changed from SI

to an RS format. The S/360 TIO, HIO, and TCH instructions are

not supported by the HTC assembler.

. A new instruction, Timer Read and Set (TMRS) has been added for

the HTC. The TMRS instruction has an RS format and the storage

operand must be aligned on a halfword boundary.

. The HTC assembler does not support the S/360 Floatin_ Point

Feature instructions, the Decimal Feature instructions, tn'_
_Direct Control Feature instructions , the Channel Command Word

(CCW) assembler instruction, or the Insert Storage Key (ISK)
instruction.

4. No S/370 instructions are supported by the HTC assembler.

. All extended HTC instructions, i.e., instructions in the short

precision option or the double precision fixed,point arithmetic

option, are not in the S/360 instruction set.

THE ASSEMBLER LANGUAGE

The basis of the assembler language is a collection of mnemonic

symbols which represent:

i-i

1. System/360 machine-language operation codes.

. Operations (auxiliary functions) to be performed by the assembler

program.

The language is augmented by other symbols, supplied by the

programmer, and used to represent storage addresses or data. Symbols are

easier to remember and code than their machine-language equivalents. Use

of symbols greatly reduces programming effort and error.

The programmer may also create a type of instruction called a macro

instruction. A mnemonic symbol, supplied by the programmer, serves as the
operation code of the instruction.

Machine Operation Codes

The assembler language provides mnemonic machine-instruction operation

codes for all machine instructions in the IBM System/360 Universal

Instruction Set and extended mnemonic operation codes for the conditional
branch instruction.

Assembler Operation Codes

The assembler language also contains mnemonic assembler-instruction

operation codes, used to specify auxiliary functions to be performed by the

assembler. These are instructions to the assembler program itself and,

with a few exceptions, result in the generation of no machine-language code

by the assembler program.

Macro Instructions

The assembler language enables the programmer to define and use macro
instructions.

Macro instructions are represented by an operation code which stands

for a sequence of machine and/or assembler instructions. Macro

instructions used in preparing an assembler language source program fall

into two categories: system macro instructions, provided by IBM, which

relate the object program to components of the operating system; and macro

instructions created by the programmer specifically for use in the program

at hand, or for incorporation in a library, available for future use.

Programmer-created macro instructions are used to simplify the writing

of a program and to ensure that a standard sequence of instructions is used

to accomplish a desired function. For instance, the logic of a program may

require the same instruction sequence to be executed again and again.

Rather than code this entire sequence each time it is needed, the

programmer creates a macro instruction to represent the sequence and then,

each time the sequence is needed, the programmer simply codes the macro

1-2

instruction statement. During assembly, the sequence of instructions

represented by the macro instruction is inserted in the object program.

Part II of this publication discusses the language and procedures for

defining and using macro instructions.

THE ASSEMBLER PROGRAM

The assembler program, also referred to as the "assembler," processes

the source statements written in the assembler language.

Basic Functions

Processing involves the translation of source statements into machine

language, the assignment of storage locations to instructions and other

elements of the program_ and the performance of the auxiliary assembler

functions designated by the programmer. The output of the assembler

program is the object program, a machine-language translation of the source

program. The assembler furnishes a printed listing of the source

statements and object program statements and additional information useful

to the progra_ner in analyzing his program, such as error indications. The

object program is in the format required by the linkage editor component of

Operating System�360. (See the linkage editor publication.)

The amount of main storage allocated to the assembler for use during

processing determines the maximum number of certain language elements that

may be present in the source program.

PROGRAMMER AIDS

The assembler provides auxiliary functions that assist the programmer

in checking and documenting programs, in controlling address assignment, in

segmenting a program, in data and symbol definition, in generating macro

instructions, and in controlling the assembler itself. Mnemonic operation

codes for these functions are provided in the language.

Variety in Data Representation: Decimal, binary, hexadecimal, or character

representation of machine-language binary values may be employed by the

programmer in writing source statements. The programmer selects the

representation best suited to his purpose.

Base Re_ister Address Calculation: As discussed in "IBM System/360:

Principles of Operation," the System/360 addressing scheme requires the

designation of a base register (containing a base address value) and a

displacement value in specifying a storage location. The assembler assumes

the clerical burden of calculating storage addresses in these terms for the

symbolic addresses used by the programmer. The programmer retains control

of base register usage and the values entered therein.

1-3

Relocatability: The object programs produced by the assembler are in a

format enabling relocation from the originally assigned storage area to any
other suitable area.

Sectioning and Linking: The assembler language and program provide

facilities for partitioning an assembly into one or more parts called

control sections. Control sections may be added or deleted when loading

the object program. Because control sections do not have to be loaded

contiguously in storage, a sectioned program may be loaded and executed

even though a continuous block of storage large enough to accommodate the

entire program may not be available.

The assembler allows symbols to be defined in one assembly and

referred to in another, thus effectlng a link between separately assembled

programs. This permits reference to data and transfer of control between

programs. A discussion of sectioning and linking is contained in Section

3 under the heading, "Program Sectioning and Linking."

Program Listings: A listing of the source program statements and the

resulting object program statements may be produced by the assembler for

each source program it assembles. The programmer can partly control the

form and content of the listing.

Error Indications: As a source program is assembled, it is analyzed for

actual or potential errors in the use of the assembler language. Detected

errors are indicated in the program listing.

OPERATING SYSTEM RELATIONSHIPS

The assembler is a component of the IBM System/360 Operating System

and, as such, functions under control of the operating system. The

operating system provides the assembler with input/output, library, and

other services needed in assembling a source program. The output object

program produced by the assembler will be linkage edited by a S/360 Linkage

Editor. The HTC Formatter Program translates linkage editor output into

magnetic tape or paper tape forms for loading into the HTC.

1-4

• |

: SECTION 2: GENERAL INFORMATION

This section presents information about assembler language coding

conventions and assembler source statement structure addressing.

ASSEMBLER LANGUAGE CODING CONVENTIONS

This subsection discusses the general coding conventions associated

with use of the assembler language.

Codin_ Form

A source program is a sequence of source statements that are punched

into cards. The standard card form, IBM 6509 (shown in Figure 2-2), can be

used for punching source statements. These statements may be written on

the standard coding form, GX28-6509 (shown in Figure 2-1), provided by IBM
One llne of coding on the form ls punched into one card. The vertlca!

columns on the form correspond to card columns. Space is provided on the

form for program identification and instructions to keypunch operators.

The body of the form (Figure 2-1) is composed of two fields: the

statement field, columns 1-71, and the identlflcatlon-sequence field,

columns 73-80. The identlffcatlon-sequence field is not part of a

statement and is discussed following the subsection "Statement Format."

The entries (i.e., coding) composing a statement occupy columns 1-71
of a line and, if needed, columns 16-71 of one or two successive

continuation lines.

XBN IBMST,,,mIE0 A.._., t_,.i ro_

I

|.|i!
_i[:I.i

!

,iiLi
Ill I II I I
;:L!!!_ .! ! ! i
i::: !!!!

" f "= " " : : i

;{Lti.lli] l I I ;I{
!!!;;! ;:t!:[!;L

: : : : ; : : ;
r

ill! :ii ii i
i'| I I

{llil
.... i

;l::i;lil iiii
;;ililltlll i!ltt

Figure 2-1. Coding Form

ti ittt[l:i.t:t tlitl I I Ill I1 t 1t I t!:I 1tl1:t71 I 1
I111t I;t.l ! I 1 t t<i ;t:H;:H lil; 1,I

t.11II;tI1:1t_tt1I_It IIitl ItltlIllLtI.tI:I ti
Iillliiltll!lllI!l I
lllillilllllllfI
illlilliillilllllll]I!lll] f '

illilt ;:I1t11Ittltit1II1111Iitt111I;1i: |i tltlltl li;tfllt];illltllll 11111ttltli[
!.I.t.! tlii1 tt 11.1 11 1I 1 II II tl I i II I I I li,tt t

i; ! _] r -,_i,ll,l[,,.llI: ili ;'.lllillili I1[
i;I il!li!:llli !!!1'!I"1II i

" I ; ' ! T T ; ' l

i i I./:t I t I tl 11:tllt 1t1:I I:I 1t t..It I I I i I i I I:.t t_

I I:;I;_i.t;t :1::III I./; _1t t[II :t_11 l i I f;;I 1 I :I1[[HI 1t:71!II fl;I1!1:;t1-It II;:i;tlt:;lll It I7111 I
iiil'iiili!illl!iilii";lii_ I '

i i] I I :i!,l'_i]:li,i,l,lilllltll
ii,i ::illi,llll[llllililll.:ili

[:t1.1.ttl;t II I;;l lI;ltll I 1::17;I,11II I I I1 t 1 1I I 1t _ itI I I 1 I]i I 1f 1t II I 1I: [I::t:f I 11 [I t;t t t I t ! t l
Ii I !!.1t I 1...1titl It II II 1i I !!i ttt1111 t] I t,,

l_li_illii_;ll]illiillliiiili[
iiiiillitlllllllililllliIillllllilil
iiiiiilllilllllllllillllllilllllllll

+ /

2-1

I

1,' ;lll ill L,I _111 I i _llliittl t I ;I) 1,11 I I IIitlt1: I_1T1_1111_111_])lltllllll]

I 22_2
Ih

1 J ' iiI;
_;_l_Tti7777117?;1771777t777777 _717171117i;71

i I '

0818d_01_IIIIII iIII$I!_ _ _ II_IilllOil[lEl_O_U_i_llilillllll_ZillS[91!_lllll'Jll_llllll I
:: t

Figure 2-2. Punched Card Form

Continuation Lines

When it is necessary to continue a statement on another line, the

followln 8 rules apply.

i. Write the statement up through column 71.

e Enter a continuation character (not blank and not part of the

coding) in column 72 of the line.

3. Continue the statement in column 16 of the next line, leaving

columns 1 through 15 blank.

. If the statement is not finished before column 71 of the second

line, enter a continuation character in column 72, and continue

in column 16 of the followlng llne.

5. The statement has to be finished before column 71 of the third

llne, because the maximum number of continuation lines is two.

6. Macro instruction can be coded on as many lines as are needed.

These rules assume that normal source statement boundaries are used

(see "Statement Boundaries" below).

Statement Boundaries

Source statements are normally contained in columns 1-71 of statement

lines and columns 16-71 of any continuation llnes. Therefore, columns 1,

71, and 16 are referred to as the "begin," "end," and "continue" columns,

respectively. (This convention can be altered by use of the Input Format

Control [ICTL] assembler instruction discussed later in this publication.)

The continuation character, if used, always immediately follows the "end"

column.

Statement Format

Statements may consist of one to four entries in the statement field.

They are, from left to right: a name entry, an operation entry, an operand

2-2

entry, and a comments entry. These entries must be separated by one or
more blanks, and must be written in the order stated.

The coding form (Figure 2-1) is ruled to provide an 8-character name

fleld, a 5-character operation field, and a 56-character operand and/or
comments field.

If desired, the programmer _can disregard these boundaries and write

the name, operation, operand, and comment entries in other positions,

•subject to the following rules:

le The entries must not extend beyond statement boundaries within a

line (either the conventional boundaries if no ICTL statement is

given, or as designated by the programmer via the ICTL
instruction).

2. The entries must be in proper sequence, as stated previously.

3. The entries must be separated by one or more blanks.

. If used, a name entry must be written starting in the begin
column.

e The name and operation entries must be completed in the first

llne of the statement, including at least one blank followlng the

operation entry.

A description of the name, operation, operand, and comments entries
follows:

Name Entry: The name entry is a symbol created by the programmer to

identify a statement. A name entry is usually optional. The symbol must

consist of eight characters or less, and be entered with the first

character appearing in the begin column. The first character must be

alphabetic. If the begin column is blank, the assembler program assumes no

name has been entered. No blanks can appear in the symbol.

Operation Entry: The operation entry is the mnemonic operation code

specifying the machine operation, assembler, or macro instruction operation

desired. An operation entry is mandatory and cannot appear in a

continuation line. It must start at least one position to the right of the

begin column. Valid mnemonic operation codes for machine and assembler

operations are contained in Appendices D and E of this publication. Valid

operation codes consist of five characters or fewer for machine or

assembler-lnstruction operation codes, and eight characters or fewer for

macro instruction operation codes. No blanks can appear within the

operation entry.

2-3

Operand Entries: Operand entries identify and describe data to be acted

upon by the instruction, by indicating such things as storage locations,

masks, storage-area lengths, or types of data.

Depending on the needs of the instruction, one or more or no operands

can be written. Operands are required for all machine instructions, but

many assembler instructions require no operand.

Operands must be separated by commas, and no blanks can intervene

between operands _nd the commas that _eparate them. The first blank

normally indicates the end of the operand field.

The operands cannot contain embedded blanks, except as follows:

If character representation is used to specify a constant, a literal,

or immediate data in an operand, the character string can contain

blanks, e.g., C'A D'.

Comment Entries: Comments are descriptive items of information about the

program that are shown on the program listing. All 256 valid characters

(see "Character Set" in this section), including blanks can be used in

writing a comment. The entry can follow the operand entry and must be

separated from it by a blank; each line of comment entries cannot extend

beyond the end column (column 71).

An entire statement field can be used for a comment by placing an

asterisk in the begin column. Extensive comment entries can be written by

using a series of lines with an asterisk in the begin column of each line

or by using continuation lines. Comment entries cannot fall between a
statement and its continuation line.

In statements where an optional operand entry is omitted but a comment

entry is desired, the absence of the operand entry must be indicated by a

comma preceded and followed by one or more blanks, as follows:

Name Operation Operand

END COMMENT

For instructions that cannot contain an operand entry, this comma is not
needed.

Note: Macro prototype statements without operands will not tolerate

comments, even if a comma is coded as shown above.

For information on rules for the operand field of different assembler

instructions, refer to the table in Appendix E.

2-4

Statement Example: The followlng example illustrates the use of name,

operatlon_ operand, and comment entries. A compare instruction has been

named by the symbol COMP; the operation entry (CR) is the mnemonic

operation code for a reglster-to-reglster compare operation, and the two

operands (5,6) designate the two general registers whose contents are to be

compared. The comment entry reminds the programmer that he is comparing
"new sum" to "old" with this instruction.

Name Operation Operand

COMP CR 5_6 NEW SUM TO OLD

Identiflcation-Sequence Field

The identification-sequence field of the coding form (columns 73-80)

is used to enter program identification and/or statement sequence

characters. The entry is optional. If the field_ or a portion of it, is

used for program identification, the identification is punched in the

source cards and reproduced in the printed listing of the source program.

To aid in keeping source statements in order, the programmer can

number the cards in this field. These characters are punched into their

respective cards, and during assembly the programmer may request the

assembler to verify this sequence by use of the Input Sequence Checking

(ISEQ) assembler instruction. This instruction is discussed in Section 5,

under "Program Control Instructions."

Summ-ry of Statement Format

The entries in a statement must always be separated by at least one

blank and must be in the following order: name, operation, operand(s),

comment(s).

Every statement requires an operation entry. Name and comment entries

are optional. Operand entries are required for all machine instructions
and most assembler instructions.

The name and operation entries must be completed in the first

statement line, including at least one blank following the operation entry.

The name and operation entries must not contain blanks. Operand

entries must not have blanks preceding or following the commas that

separate them.

A name entry must always start in the begin column.

2-5

If the column after the end column is blank, the next line must start

new statement. If the column after the end column is not blank, thea

following line is treated as a continuation line.

All entries must be contained within the designated begin, end, and
continue column boundaries.

Character Set

Source statements are written using the following characters:

Letters A through Z, and $, #, @

Digits 0 through 9

Special

Characters + - , = . * () ' / & blank

These characters are represented by the card-punch combinations and

internal bit configurations listed in Appendix A. In addition, any of the

256 punch combinations may be designated anywhere that characters may

appear between paired apostrophes, in comments, and in macro instruction

operands.

ASSEMBLER LANGUAGE STRUCTURE

The basic structure of the language can be stated as follows:

A source statement is composed of:

• A name entry (usually optional).

• An operation entry (required)

• An operand entry (usually required).

• Comments entry (optional).

A name entry is:

• A symbol.

An operation entry is:

• A mnemonic operation code representing a machine, assembler, or
macro instruction.

An operand entry is:

2-6

Oneor more operands composed of one or more expressions, which,

in turn, are composed of a term or an arithmetic combination of
terms.

Operands of machine instructions generally represent such things as

storage locations, general registers, immediate data, or constant values.

Operands of assembler instructions provide the information needed by the

assembler program to perform the designated operation.

Figure 2-3 depicts this structure. Terms shown in Figure 2-3 are

classed as absolute or relocatable, depending on the effect of program

relocatlon upon them. Program relocation is the loading of the object

program into storage locations other than those originally assigned by the

assembler. A term is absolute if its value does not change upon

relocation. A term is relocatable if its value changes upon relocation.

The following subsection "Terms and Expressions" discusses these items

as outlined in Figure 2-3.

TERMS AND EXPRESSIONS

TERMS

Every term represents a value. This value may be assigned by the

assembler (symbols, symbol length attribute, locatlon counter reference) or

may be inherent in the term itself (self-definlng term, literal).

An arlthemtic combination of terms is reduced to a single value by the

assembler.

The following material discusses each type of term and the rules for

its use.

Symbols

A symbol is a character or combination of characters used to represent

locations or arbitrary values. Symbols, through their use in name fields

and in operands, provide the programmer with an efficient way to name and

reference a program element. There are three types of symbols:

i. Ordinary symbols.

2. Variable symbols.

3. Sequence symbols.

Ordinary symbols, created by the progra=mer for use as a name entry

and/or an operand, must conform to these rules:

2-7

Name Entry !

I
Isa Symbol I

t

which is on I

I_r°"_En'_I
I

1,,o_man,oI
Operation Code I

i I
_ ILlIr_rvction InstrucHon

I

Macro
Instruction 11

I

Exp

I_,o_I'
l

IOperands that

ore compased
of on

I
I or Exp(Exp) or

I

Exp(Exp, Exp)

Symbol
(AT or RT)

or

Variable

Symbol

or 2

Symbol

I 1

e.g., BETA defining
(AT or RT) Term (AT)

1

i whlch may be
any one of

the following

I

Term

I

I which maybe
any one of

the fallowing

A Location

Counter Refer- I
ence i.e.,*

(RT) J

Exp Expfesslon

I I I 2

A Literal IAttribute Re|er-| At_rlbur.
e'g"=F'1259' jence e.g., | References (AT)

(RT) L'$_.1 (__AT_)_)..J

AT = Absolute Term

l I i l _T°RelocatableTe,m

e.g., 15 e.g.,X'C4' e.g.,B'101' e.g.,C'AB9'

Arithmetic I

Combination

of Terms

May be generated by combination of variable symbols and assembler language characters. (Conditional assembly only)

Coadltiorml amNm_bly only.

Figure 2-3. Assembler Language Structure -- Machine and Assembler Instructions

2-8

lo The symbol must not consist of more than eight characters. The

first character must be a letter. The other characters may be

letters, digits, or a combination of the two.

2. No special characters may be included in a symbol.

3. No blanks are allowed in a symbol.

In the following sections, the term symbol refers to ordinary symbol.

The following are valid symbols:

READER LOOP2 @B4

A23456 N SAI

X4F2 S4 #56

The following symbols are invalid, for the reasons noted:

256B

KECORDAREA2

BCD*34

IN AREA

(first character is not alphabetic)

(more than eight characters)

(contains a special character - *)

(contains a blank)

Variable symbols must begin with an ampersand (&) followed by one to

seven letters and/or numbers, the first of which must be a letter.

Variable symbols are used within the source program or macro definition to

allow different values to be assigned to one symbol. A complete discussion

of variable symbols appears in Section 6.

Sequence symbols consist of a period (.) followed by one to seven

letters and/or numbers, the first of which must be a letter. Sequence

symbols are used to indicate the position of statements within the source

program or macro definition. Through their use the programmer can vary the

sequence in which statements are processed by the assembler program. (See

the complete discussion in Section 6.)

NOTE: Sequence symbols and variable symbols are used only for the macro

language and conditional assembly. Programmers who do not use these

features need not be concerned with these symbols.

DEFINING SYMBOLS: The assembler assigns a value to each symbol appearing

as a name entry in a source statement. The values assigned to symbols

naming storage areas, instructions, constants, and controlsections are the

addresses of the leftmost bytes of the storage fields containing the named

items. Since the addresses of these items may change upon program

relocation, the symbols naming them are considered relocatable terms.

A symbol used as a name entry in the Equate Symbol (EQU) assembler

instruction is assigned the value designated in the operand entry of the

instruction. Since the operand entry may represent a relocatable value or

2-9

an absolute (i.e., nonchanging) value,

relocatable term or an absolute term,

equated to.

the symbol is considered a

depending upon'the value it is

The value of a symbol may not be negative and may not exceed 22_-i.

A symbol is said to be defined when it appears as the name of a source

statement. (A special case of symbol definition is discussed in Section 3,

under "Program Sectioning and Linking.")

Symbol definition also involves the assignment of a length attribute

to the symbol. (The assembler maintains an internal table - the symbol

table - in which the values and attributes of symbols are kept. When the

assembler encounters a symbol in an operand, it refers to the table for the

values associated with the symbol.) The length attribute of a symbol is

the length, in bytes, of the storage field whose address is represented by

the symbol. For example, a symbol naming an instruction that occupies four

bytes of storage has a length attribute of 4. Note that there are

exceptions to this rule; for example, in the case where a symbol has been

defined by an equate to location counter value (EQU *) or to a self-

defining term, the length attribute of the symbol is i. These and other

exceptions are noted under the instructions involved. The length attribute

is never affected by a duplication factor.

PREVIOUSLY DEFINED SYMBOLS: Some instructions require that a symbol

appearing in the cperand entry be previously defined. This simply means

that the symbol, before its use in an operand, must have appeared as a name

entry in a prior statement.

GENERAL RESTRICTIONS ON SYMBOLS: A symbol may be defined only once in an

assembly. That is, each symbol used as the name of a statement must be

unique within that assembly. However, a symbol may be used in the name

field more than once as a control section name (i.e., defined in the START,

CSECT, or DSECT assembler statements described in Section 3) because the

coding of a control section may be suspended and then resumed at any

subsequent point. The CSECT or DSECT statement that resumes the section

must be named by the same symbol that initially named the section; thus,

the symbol that names the section must be repeated. Such usage is not

considered to be duplication of a symbol definition.

Self-Definln_ Terms

A self-defining term is one whose value is inherent in the term. It

is not assigned a value by the assembler. For example, the decimal self-

defining term - 15 - represents a value of 15. The length attribute of a

self-deflnlng term is always i.

There are four types of self-defining terms: decimal, hexadecimal,

binary, and character. Use of these terms is spoken of as decimal,

2-10

hexadecimal, b_nary, or character representation of the machine-language

binary value or bit configuration they represent.

Self-definlng terms are classed as absolute terms, since the values

they represent do not change upon program relocation.

USING SELF-DEFINING TERMS: Self-deflning terms are the means of specifying

machine values or bit configurations without equating the values to symbols

and using the symbols.

Self-definlng terms may be used to specify such program elements as

immediate data, masks, registers, addresses, and address increments. The

type of term selected (decimal, hexadecimal, binary, or character) will

depend on what is being specified.

The use of a self-deflning term is quite distinct from the use of data

constants or literals. When a self-deflning term is used in a machine-

instruction statement, its value is assembled into the instruction. When

a data constant is referred to or a literal is specified in the operand of

an instruction, its address is assembled into the instruction. Self-

defining terms are always right-justifled; truncation or padding with zeros

if necessary occurs on the left.

Decimal Self-Defining Term: A decimal self-defining term is simply an

unsigned decimal number written as a sequence of decimal digits. High-

order zeros may be used (e.g., 007). Limitations on the value of the term

depend on its use. For example, a decimal term that designates a general

register should have a value between 0 and 15; one that represents an

address should not exceed the size of storage. In any case, a decimal term

may not consist of more than eight digits, or exceed 16,777,215 (22_-i).

A decimal self-definlng term is assembled as its binary equivalent. Some

examples of decimal self-defining terms are: 8, 147, 4092, and 00021.

Hexadecimal Self-Definin_ Term: A hexadecimal self-deflnlng term consists

of one to six hexadecimal digits enclosed by apostrophes and preceded by

the letter X: X'C49'.

Each hexadecimal digit is assembled as its four-blt binary equivalent.

Thus, a hexadecimal term used to represent an elght-blt mask would consist

of two hexadecimal digits. The maxlmumvalue of a hexadecimal term is:

X'FFFFFF'.

The hexadecimal digits and their bit patterns are as follows:

O- 0000

i- 0001

2- 0010

3- 0011

4- 0100 8- i000 C- ii00

5- 0101 9- i001 D- ii01

6- 0110 A- i010 E- iii0

7- 0111 B- i011 F- iiii

2-11

A table for converting from hexadecimal representation to decimal

representation is provided in Appendix B.

Binary Self-Defining Term: A binary self-definlng term is written as an

unsigned sequence of is and 0s enclosed in apostrophes and preceded by the

letter B, as follows: B'10001101'. This term would appear in storage as

shown, occupying one byte. A binary term may have up to 24 bits

represented.

Binary representation is used primarily in designated bit patterns of

masks or in logical operations•

The following example illustrates a binary term used as a mask in a

Test Under Mask (TM) instruction. The contents of GAMMA are to be tested,

bit by bit, against the pattern of bits represented by the binary term.

Name Operation Operand

ALPHA TM GAMMA,B'I0101101'

Character Self-Defining Term: A character self-deflnlng term consists of

one to three characters enclosed by apostrophes. It must be preceded by

the letter C. All letters, decimal digits, and special characters may be

used in a character term. In addition, any of the remainder of the 256

punch combinations may be designated in a character self-deflnlng term.

Examples of character self-deflning terms are as follows:

C'/' C' ' (blank)
C'ABC' C'13'

Because of the use of apostrophes in the assembler language and

ampersands in the macro language as syntactic characters, the following

rule must be observed when using these characters in a character term.

For each apostrophe or ampersand desired in a character self-deflnlng

term, two apostrophes or ampersands must be written. For example, the

character value A'# would be written as 'A''#', while an apostrophe

followed by a blank and another single apostrophe would be written as '''
IW!

Each character in the character sequence is assembled as its elght-bit

code equivalent (see Appendix A). The two apostrophes or ampersands that

must be used to represent an apostrophe or ampersand within the character

sequence are assembled as an apostrophe or ampersand.

2-12

Location Counter Reference

The Location Counter: A location counter is used to assign storage

addresses to program statements. It is the assembler's equivalent of the

instruction counter in the computer. As each machine instruction or data

area is assembled, the location counter is first adjusted to the proper

boundary for the item, if adjustment is necessary_ and then incremented by

the length of the assembled item. Thus, it always points to the next

available location. If the statement is named by a symbol, the value

attribute of the Symbol is the value of the location counter after boundary

adJustment_ but before addition of the length.

The assembler maintains a location counter for each control section of

the program and manipulates each location counter as previously described.

Source statements for each section are assigned addresses from the location

counter for that section. The location counter for each successively

declared control section assigns locations in consecutively higher areas of

storage. Thus, if a program has multiple control sections, all statements

identified as belonging to the first control section will be assigned from

the location counter for section i_ the statements for the second control

section will be assigned from the location counter for section 2, etc.

This procedure is followed whether the statements from different control

sections are interspersed or written in control section sequence.

The location counter setting can be controlled by using the START and

ORG assembler instructions, which are described in Sections 3 and 5. The

counter affected by either of these assembler instructions is the counter

for the control section in whlch they appear. The maximum value for the
location counter is 224-i.

The programmer may refer to the current value of the location counter

at any place in a program by using an asterisk as a term in an operand.

The asterisk represents the location of the first byte of currently

available storage (i.e., after any required boundary adjustment). Using an

asterisk as the operand in a machlne-lnstructlon statement is the same as

placing a symbol in the name field of the statement and then using that

symbol as an operand of the statement. Because a location counter is

maintained for each control section, a location counter reference

designates the location counter for the section in which the reference

appears.

A reference to the location counter may be made in a literal address

constant (i.e., the asterisk may be used in an address constant specified

in literal form). The address of the instruction containing the literal is

used for the value of the location counter. A location counter reference

may not be used in a statement which requires the use of a predefined

symbol, with the exception of the EQU and 0RG assembler instructions.

2-13

Literals _

A literal term is one of three basic ways to introduce data into a

program. It is simply a constant preceded by an equal sign (=).

A literal represents data rather than a reference to data. The

appearance of a literal in a statement directs the assembler program to

assemble the data specified by the literal, store this data in a "literal

pool," and place the address of the storage field containing the data in

the operand field of the assembled statement.

Literals provide a means of entering constants (such as numbers for

calculation, addresses, indexing factors, or words or phrases for printing

out a message) into a program by specifying the constant in the operand of

the instruction in which it is used. This is in contrast to using the DC

assembler instruction to enter the data into the program and then using the

name of the DC instruction in the operand. Only one literal is allowed in

a machine-instruction statement.

A literal term cannot be combined with any other terms.

A literal cannot be used as the receiving field of an instruction that

modifies storage.

A literal cannot be specified in a shift instruction or an I/O

instruction (HIO, HDV, TIO, SIO, SIOF).

When a literal is contained in an instruction, it cannot specify an

explicit base register or an explicit index register.

A literal cannot be specified in an address constant (see Section 5,

"DC--Define Constant").

The instruction coded below shows one use of a literal.

Name Operation Operand

GAMMA L I0,=F'274'

The statement GAMMA is a load instruction using a literal as the

second operand. When assembled, the second operand of the instruction will
be the address at which the value F'274' is stored.

NOTE: If a literal operand is a self-deflnlng term (X, C, B, or decimal)

and the equal sign (=) is omitted, the statement may assemble without error

(see "Using Self-Defining Terms").

In general, literals can be used wherever a storage address is

permitted as an operand. They cannot, however, be used in any assembler

2-14

instruction that requires the use of a previously defined symbol. Literals

are considered relocatable, because the addressof the literal, rather than

the literal itself, will be assembled in the statement that employs a

llteral. The assembler generates the literals, collects them, and places
them in a specific area of storage, as explained in the subsection "The

Literal Pool." A literal is not to be confused with the immediate data in

an SI instruction. Immediate data is assembled into the instruction.

Literal Format: The assembler requires a description of the type of

llteral being specified as well as the literal itself. This descriptive

information assists the assembler in assembling the literal correctly. The
descriptive portion of the literal must indicate the format of the

constant. It may also specify the length of the constant.

The method of describing and specifying a constant as a literal is

nearly identical to the method of specifying it in the operand of a DC

assembler instruction. The major difference is that the literal must start

with an equal sign (-), which indicates to the assembler that a literal

follows. The reader is referred to the discussion of the DC assembler

instruction operand format (Section 5) for the means of specifying a

literal. The type of literal designated in an instruction is not checked

for correspondence with the operation code of the instruction.

Some examples of llterals are:

=A (BETA)

=F'1234'

=C'ABC'

-- address constant literal.

-- a fixed-point number with a length of four bytes.
-- a character llteral.

The Literal Pool: The literals processed by the assembler are collected

and placed in a special area called the literal pool, and the location of

the literal, rather than the literal itself, is assembled in the statement

employing a literal. The positioning of the literal pool may be controlled

by the programmer, if he so desfres. Unless otherwise specified, the

literal pool is placed at the end of the first control section.

The programmer may also specify that multiple literal pools be

created. However, the sequence in which literals are ordered within the

pool is controlled by the assembler. Further information on positioning

the literal pool(s) is in Section 5 under "LTORG--BeEIn Literal Pool."

Symbol Length Attribute Reference

The length attribute of a symbol may be used as a term. Reference to

the attribute is made by coding L' followed by the symbol, as in:

L'BETA

The length attribute of BETA will be substituted for the term. The

use of the length attribute of a symbol defined with a DC or DS with

explicit length given by an expression is invalid. The following example

2-15

illustrates the use of L'symbol in moving a character constant into either

the hlgh-order or low-order end of a storage field.

For ease in following the example, the length attributes of AI and B2

are mentioned. However, keep in mind that the L'symbol term makes coding

such as this possible in situations where lengths are unknown.

Name Operation Operand

A1

B2

HIORD

LOORD

DS

DC

MVC

MVC

CL8

CL2 'AB '

AI (L'B2),B2

AI+L'AI-L' B2 (L' B2) ,B2

A1 names a storage field eight bytes in length and is assigned a

length attribute of 8. B2 names a character constant two bytes in length

and is assigned a length attribute of 2. The statement named HIORD moves
the contents of B2 into the leftmost two bytes of AI. The term L'B2 in

parentheses provides the length specification required by the instruction.

When the instruction is assembled, the length is placed in the proper field

of the machine instruction.

The statement named LOORD moves the contents of B2 into the rlghtmost

two bytes of AI. The combination of terms AI+L'AI-L'B2 results in the

addition of the length of A1 to the beginning address of AI, and the

subtraction of the length of B2 from this value. The result is the address

of the seventh byte in field AI. The constant represented by B2 is moved

into AI starting at this address. L'B2 in parentheses provides length

specification as in HIORD.

Note: As previously stated, the length attribute of * is equal to the

length of the instruction in which it appears, except in an EQU to *, in

which case the length attribute is i.

Terms in Parentheses

Terms in parentheses are reduced to a single value; thus, the terms in

parentheses, in effect, become a single term.

Arithmetically combined terms, enclosed in parentheses, may be used in

combination with terms outside the parentheses, as follows:

14+BETA-(GAMMA-AMBDA)

When the assembler program encounters terms in parentheses in combina-

tion with other terms, it first reduces the combination of terms inside the

parentheses to a single value which may be absolute or relocatable, depend-

2-16

ing on the combination of terms. This value then is used in reducing the

rest of the combination to another single value.

Terms in parentheses may be included within a set of terms in

parentheses:

A+B-(C+D-(E+F)+IO)

The innermost set of terms in parentheses is evaluated first. Five

levels of parentheses are a11owed; a level of parentheses is a left

parenthesis and its corresponding right parenthesis. Parentheses which

occur as part of an operand format do not count in this limit. An

arithmetic combination of terms is evaluated as described in the next

section "Expressions."

EXPRESSIONS

This subsection discusses the expressions used in coding operand

entries for source statements. Two types of expressions, absolute and

relocatable, are presented along with the rules for determining these

attributes of an expression.

As shown in Figure 2-3, an expression is composed of a slngle term or

an arithmetic combination of terms. The followlng are examples of valld

expressions:

* BETA*10

AREAI+X'2D' B'IOI'

*+32 C'ABC'

N-25 29

FIELD+332 L'FIELD

FIELD LAMBDA+GAMMA

(EXIT-ENTRY+I)+GO TEN/TWO

_F'1234'

ALPHA-BETA/(IO+AREA*L'FIELD)-I00

The rules for coding expressions are:

i. An expression cannot start with an arithmetic operator, (+-/*).

Therefore, the expression -A+BETA is invalid. However, the ex-

pression O-A+BETA is valid.

o An expression cannot contain two terms or two operators in

succession.

.

4.

An expression cannot consist of more than 16 terms.

An expression cannot have more than five levels of parentheses.

5. A multiterm expression cannot contain a literal.

2-17

Evaluation of Expressions

A single-term expression, e.g., 29, BETA, *, L'SYMBOL,
value of the term involved.

takes on the

A multiterm expression, e.g., BETA+IO, ENTRY-EXIT, 25*IO+A/B, is

reduced to a single value, as follows:

i. Each term is evaluated.

. Every expression is computed to 32 bits, and then truncated to

the rightmost 24 bits.

. Arithmetic operations are performed from left to right except

that multiplication and division are done before addition and

subtraction, e.g., A+B*C is evaluated as A+(B*C), not (A+B)*C.

The computed result is the value of the expression.

. Division always yields an integer result; any fractional portion

of the result is dropped. E.g., 1/2"10 yields a zero result,

whereas 10"1/2 yields 5.

5. Division by zero is permitted and yields a zero result.

Parenthesized multiterm subexpressions are processed before the rest

of the terms in the expression, e.g., in the expression A+BETA*(CON-10),

the term CON-10 is evaluated first and the resulting value is used in

computing the final value of the expression.

Negative values are carried in twos complement form. Final values of

expressions are the rightmost 24 bits of the results. Intermediate results

have a range of -231 through 231-1. However, the value of an expression be-

fore truncation must be in the range -224 through 22_-i or the results will

be meaningless. A negative result is considered to be a 3-byte positive

value.

NOTE: In A-type address constants, the full 32-bit final expression result

is truncated on the left to fit the specified or implied length of the

constant.

Absolute and Relocatable Expressions

An expression is called absolute if its value is unaffected by program

relocation.

An expression is called relocatable if its value depends upon program

relocation.

The two types of expressions, absolute and relocatable, take on these

characteristics from the term or terms composing them.

2-18

Absolute Expression: An absolute expression can be an absolute term or any

arithmetic combination of absolute terms. An absolute term can be a non-

relocatable symbol, any of the self-definlng terms, or the length attribute

reference. As indicated in Figure 2-3, all arithmetic operations are

permitted between absolute terms.

An expression is absolute, even though it may contain relocatable

terms (RT)--alone or in combination with absolute terms AT--under the

following conditions.

i. There must be an even number of relocatable terms in the ex-

pression.

. The relocatable terms must be paired. Each pair of terms must

have the same relocatability, i.e., they appear in the same con-

trol section in this assembly (see "Program Sectioning and Link-

ing," Section 3). Each palr must consist of terms with opposite

signs. The paired terms do not have to be contiguous, e.g.,

RT+AT-RT.

. No relocatable term can enter into a multiply or divide opera-

tion. Thus, RT-RT*I0 is invalid. However, (RT-RT)*10 is valid.

The pairing of relocatable terms (with opposite signs and the same

relocatability) cancels the effect of relocation since both symbols would

be relocated by the same amount. Therefore the value represented by the

paired terms remains constant, regardless of program relocation. For

example, in the absolute expression A-Y+X, A is an absolute term, and X and

Y are relocatable terms with the same relocatabillty. If A equals 50, Y

equals 25, and X equals 10, the value of the expression would be 35. If X

and Y are relocated by a factor of 100 their values would then be 125 and

110. However, the expression would still evaluate as 35 (50-125+110135).

An absolute expression reduces to a single absolute value.

The following examples illustrate absolute expressions. A is an abso-

lute term; X and Y are relocatable terms with the same relocatability.

A-Y+X

A

A*A

X-Y+A

*-Y (a reference to the location counter must be paired with another

relocatable term from the same control section, i.e., with the

same relocatabillty)

Relocatable Expressions: A relocatable expression is one whose value

changes by n if the program in which it appears is relocated n bytes away

2-19

from its originally assigned area of storage. All relocatable expressions

must have a positive value.

A relocatable expression can be a relocatable term. A relocatable

expression can contain relocatable terms--alone or in combination with

absolute terms--under the following conditions:

i. There must be an odd number of relocatable terms.

2. All the relocatable terms but one must be paired. Pairing is

described in Absolute Expression.

3. The unpaired term must not be directly preceded by a minus sign.

4. No relocatable term can enter into a multiply or divide

operation.

A relocatable expression reduces to a single relocatable value. This

value is the value of the odd relocatable term, adjusted by the values

represented by the absolute terms and/or paired relocatable terms

associated with it. The relocatabillty attribute is that of the odd

relocatable term.

For example, in the expression W-X+W-IO, W and X are relocatable terms

with the same relocatabillty attribute. If initially W equals I0 and X

equals 5, the value of the expression is 5. However, upon relocation this

value will change. If a relocation factor of i00 is applied, the value of

the expression is 105. Note that the value of the paired terms, W-X,

remains constant at 5 regardless of relocation. Thus, the new value of the

expression, 105, is the result of the value of the odd term (W) adjusted by
the values of W-X and i0.

The following examples illustrate relocatable expressions. A is an

absolute term, W and X are relocatable terms with the same relocatability

attribute, Y is a relocatable term with a different relocatabillty attri-

bute.

Y-32*A W-X+* =F'1234'(literal)

W-X+Y A*A+W-W+Y

* (reference to Y

location counter)

2-20

SECTION S: ADDRESSING -- PROGRAM SECTIONING AND LINKING

ADDRESSING

The IBM HTC addressing technique requires the use of a base register,

which contains the base address, and a displacement, which is added to the

contents of the base register. The programmer may specify a symbolic

address and request the assembler to determine its storage address composed

of a base register and a displacement. The programmer may rely on the

assembler to perform this service for him by indlcatin_ which general

registers are available for assignment and what values the assembler may

assume each contains. The programmer may use as many or as few registers

for this purpose as he desires. The only requirement is that, at the point

of reference, a register containing an address from the same control

section is available, and that this address is less than or equal to the

address of the item to which the reference is being made. The difference

between t_e two addresses may not exceed 4095 bytes.

ADDRESSES -- EXPLICIT AND IMPLIED

An address is composed of a displacement plus the contents of a base

register. (In the case of RX instructions, the contents of an index

register are also used to derive the address in the machine.)

The programmer writes an explicit address by specifying the

displacement and the base register number. In designating explicit

addresses a base register may not be combined with a relocatable symbol.

He writes an implied address by specifying an absolute or relocatable

address. The assembler has the facility to select a base register and

compute a displacement, thereby generating an explicit address from an

implied address, provided that it has been informed (i) what base registers

are available to it and (2) what each contains. The programmer conveys

this information to the assembler through the USING and DROP assembler
instructions.

BASE REGISTER INSTRUCTIONS

The USING and DROP assembler instructions enable programmers to use

expressions representing implied addresses as operands of machine-

instruction statements, leaving the assignment of base registers and the

calculation of displacements to the assembler.

In order to use symbols in the operand field of machine-instruction

statements, the programmer must (i) indicate to the assembler, by means of

a USING statement, that one or more general registers are available for use

as base registers, (2) specify, by means of the USING statement, what value

3-1

each base register contains, and (3) load each base register with the value
he has specified for it.

Having the assembler determine base registers and displacements
relieves the programmer of separating each address into a displacement
value and a base address value. This feature of the assembler will
eliminate a likely source of programmingerrors, thus reducing the time
required to check out programs. To take advantage of this feature, the
programmer uses the USING and DROPinstructions described in this
subsection. The principal discussion of this feature follows the
description of both instructions.

USING -- Use Base Address Register

The USING instruction indicates that one or more general registers are

available for use as base registers. This instruction also states the base

address values that the assembler may assume will be in the registers at

object time. Note that a USING instruction does not load the registers

specified. It is the programmer's responsibility to see that the specified

base address values are placed into the registers. Suggested loading

methods are described in the subsection "Programming with the USING

Instruction." A reference to any name in a control section cannot occur in

a machine instruction or an S-type address constant before the USING

statement that makes that name addressable. The format of the USING

instruction statement is:

Name Operation Operand

USINGA se-

quence

symbol

or

blank

From 2-17 expressions

of the form v,rl,

r2,r3,...,r16

Operand v must be an absolute or relocatable expression. It may be a
negative number whose absolute value does not exceed 224 . No literals are

permitted. Operand v specifies a value that the assembler can use as a

base address. The other operands must be absolute expressions. The

operand rl specifies the general register that can be assumed to contain

the base address represented by operand v. Operands r2, r3, r4, . .

specify registers that can be assumed to contain v+4096, v+8192, v+12288,

., respectively. The values of the operands rl, r2, r3, . . ., r16

must be between 0 and 15. For example, the statement:

3-2

NameI!OperationIOporandUSING *, 12,13

tells the assembler it may assume that the current value of the location

counter will be in general register 12 at object time, and that the current

value of the location counter, incremented by 4096, will be in general

register 13 at object time.

If the programmer changes the value in a base register currently being

used, and wishes the assembler to compute displacement from this value, the

assembler must be told the new value by means of another USING statement.

In the following sequence the assembler first assumes that the value of

ALPHA is in register 9. The second statement then causes the assembler to

assume that ALPHA+I000 is the value in register 9.

Name Operation Operand

ALPHA,9USING

USING ALPHA+IO00,9

If the programmer has to refer to the first 4096 bytes of storage, he

can use general register 0 as a base register subject to the following
conditions:

I. The value of operand v must be either absolute or relocatable

zero or simply relocatable.

2. Register 0 must be specified as operand rl.

The assembler assumes that register 0 contains zero. Therefore,

regardless of the value of operand v, it calculates displacements as if

operand v were absolute or relocatable zero. The assembler also assumes

that subsequent registers specified in the same USING statement contain

4096, 8192, etc.

NOTE: If register 0 is used as a base register, the program is not

relocatable, despite the fact that operand v may be relocatable. The

program can be made relocatable by:

i. Replacing register 0 in the USING statement.

2. Loading the new register with a relocatable value.

3-3

3. Reassembling the program.

DROP -- Drop Base Register

The DROP instruction specifies a previously

may no longer be used as a base register.
instruction statement is as follows:

available register that

The format of the DROP

Name Operation Operand

DROPA se-

quence

symbol

or

blank

Up to 16 absolute

expressions of the

form rl, r2,

r3,...,r16

The expressions indicate general registers previously named in a USING

statement that are now unavailable for base addressing. The following

statement, for example, prevents the assembler from using registers 7 and
ii:

Name Operation Operand

DROP 7,11

It is not necessary to use a DROP statement when the base address

being used is changed by a USING statement; nor are DROP statements needed

at the end of the source program.

A register made unavailable by a DROP instruction can be made

available again by a subsequent USING instruction.

PROGRAMMING WITH THE USING INSTRUCTION

The USING (and DROP) instructions may be used anywhere in a program,

as often as needed, to indicate the general registers that are available

for use as base registers and the base address values the assembler may

assume each contains at execution time. Whenever an address is specified

in a machine-instruction statement, the assembler determines whether there

is an available register containing a suitable base address. A register is

considered available for a relocatable address if it was specified in a

USING instruction to have a relocatable value. A register with an absolute

value is available only for absolute addresses. In either case, the base

address is considered suitable only if it is less than or equal to the

address of the item to which the reference is made. The difference between

the two addresses may not exceed 4095 bytes. In calculating the base

3-4

register to be used, the assembler will always use the available register
giving the smallest displacement. If there are two registers with the same
value, the highest numberedregister will be chosen•

Name Operation Operand

BEGIN

FIRST

LAST

BALR
USING

END

2,0

*,2

BEGIN

In the preceding sequence, the BALR instruction loads register 2 with

the address of the first storage location immediately following• In this

case, it is the address of the instruction named FIRST. The USING

instruction indicates to the assembler that register 2 contains this

location. When employing this method, the USING instruction must

immediately follow the BALR instruction. No other USING or load

instructions are required if the location named LAST is within 4095 bytes
of FIRST.

In Figure 3-1, the BALR and LM instructions load registers 2-5. The

USING instruction indicates to the assembler that these registers are

available as base registers for addressing a maximum of 16,384 consecutive

bytes of storage, beginning with the location named HERE. The number of

addressable bytes may be increased or decreased by altering the number of

registers designated by the USING and LM instructions and the number of

address constants specified in the DC instruction.

Name Operation Operand

BEGIN

HERE

BASEADDR

FIRST

LAST

BALR

USING

LM

B

DC

END

2,0

HERE,2,3,4,5

3,5,BASEADDR

FIRST

A(HERE+4096,HERE+8192,HERE+I2288)

BEGIN

Figure 3-1. Multiple Base Register Assignment

3-5

RELATIVE ADDRESSING

Relative addressing is the technique of addressing instructions and

data areas by designating their location in relation to the location

counter or to some symbolic location. This type of addressing is always in

bytes, never in bits, words, or instructions. Thus, the expression *+4

specifies an address that is four bytes greater than the current value of

the location counter. In the sequence of instructions shown in the

following example, the location of the CR machine instruction can be

expressed in two ways, ALPHA+2 or BETA-4, because all of the mnemonics in

the example are for 2-byte instructions in the RR format.

Name Operation Operand

ALPHA

BETA

LR

CR

BCR

AR

3,4

4,6

1,14

2,3

PROGRAM SECTIONING AND LINKING

It is often convenient, or necessary, to write a large program in

sections. The sections may be assembled separately, then combined into one

object program. The assembler provides facilities for creating

multisectioned programs and symbolically linking separately assembled

programs or program sections.

Sectioning a program is optional, and many programs can best be

written without sectioning them. The programmer writing an unsectioned

program need not concern himself with the subsequent discussion of program

sections, which are called control sections. He need not employ the CSECT

instruction, which is used to identify the control sections of a

multisection program. Similarly, he need not concern himself with the

discussion of symbolic linkages if his program neither requires a linkage

to nor receives a linkage from another program. He may, however, wish to

identify the program and/or specify a tentative starting location for it,

both of which may be done by using the START instruction. He may also want

to employ the dummy section feature obtained by using the DSECT
instruction.

NOTE: Program sectioning and linking is closely related to the

specification of base registers for each control section. _ Sectioning and

linking examples are provided under the heading "Addressing External

Control Sections."

3-6

CONTROL SECTIONS

The concept of program sectioning is a consideration at coding time,

assembly time, and load time. To the programmer, a program is a logical

unit. He may want to divide it into sections called control sections; if

so, he writes it in such a way that control passes properly from one

section to another regardless of the relative physical position of the

sections in storage. A control section is a block of coding that can be

relocated, independently of other coding, at load time without altering or

impairing the operating logic of the program. It is normally identified by

the CSECT instruction. However, if it is desired to specify a tentative

starting location, the START instruction may be used to identify the first

control section.

To the assembler, there is no such thing as a program; instead, there

is an assembly, which consists of one or more control sections. (However,

the terms assembly and program are often used interchangeably.) An

unsectioned program is treated as a single control section. To the linkage

editor, there are no programs, only control sections that must be fashioned

into a load module.

The output from the assembler is called an object module. It contains

data required for linkage editor processing. The external symbol

dictionary, which is part of the object module, contains information the

linkage editor needs in order to complete cross-referenclng between control

sections as it combines them into an object program. The linkage editor

can take control sections from various assemblies and combine them properly

with the help of the corresponding control dictionaries. Successful

combination of separately assembled control sections depends on the

techniques used to provide symbolic linkages between the control sections.

Whether the programmer writes an unsectioned program, a multisection

program, or part of a multisection program, he still knows what eventually

will be entered into storage because he has described storage symbolically.

He may not know where each section appears in storage, but he does know

what storage contains. There is no constant relationship between control

sections. Thus, knowing the location of one control section does not make

another control section addressable by relative addressing techniques.

The programmer must be aware that there is a limit to external symbol

dictionary entries. The total number of control sections, dummy sections,

unique symbols in EXTRN and WXTRN statements, V-type address constants, and

external dummy sections must not exceed 255. Certain constants may cause

a symbol to be counted twice: e.g., external symbols in V-type address
constants (unless they are explicitly defined in an EXTRN or WXTRN

statement), and external dummy sections implicitly defined by Q-type

address constants and corresponding DSECT statements. EXTRN and WXTRN

statements are described in this section; V-type and Q-type constants in

Section 5 under "Operand Subfield 4: Constant."

3-7

Control Section Location Assignment

Control sections can be intermixed because the assembler provides a

location counter for each control section. Locations are assigned to

control sections as if the sections are placed in storage consecutively, in

the same order as they first occur in the program. Each control section

subsequent to the first begins at the next available double-word boundary.

FIRST CONTROL SECTION

The first control section of a program has the following special

properties:

I. Its initial location counter value may be specified as an

absolute value, if the START instruction is used.

. It contains the literals of the program, unless their positioning

has been altered by LTORG statements.

START -- Start Assembly

The START instruction may be used to give a name to the first (or

only) control section of a program. It may also be used to specify an

initial location counter value for the first control section of the

program. The format of the START instruction statement is as follows:

Name

Any

symbol
or blank

Operation

START

Operand

A self-defining

term, or blank

If a symbol names the START instruction, the symbol is established as

the name of the control section. If not, the control section is considered

to be unnamed. All subsequent statements are assembled as part of that

control section. This continues until a CSECT instruction identifying a
different control section or a DSECT instruction is encountered. A CSECT

instruction named by the same symbol that names a START instruction is

considered to identify the continuation of the control section first

identified by the START. Similarly, an unnamed CSECT that occurs in a

program initiated by an unnamed START is considered to identify the
continuation of the unnamed control section.

The symbol in the name field is a valid relocatable symbol whose value

represents the address of the first byte of the control section. It has a

length attribute of i.

3-8

q

The assembler uses the self-definlng term specified by the operand as

the initial location counter value of the Program. This value should be

divisible by eight. For example, either of the following statements could

be used to assign the name PROG2 to the first control section and to

indicate an initial assembly location counter value of 2040. If the

operand is omitted, the assembler sets the initial location counter value

of the program at zero. The location counter is set at the next doubleword

boundary when the value of the START operand is not divisible by eight.

Name Operation Operand

PROG2 START 2040

PROG2 START X'7F8'

Note: The START instruction must not be preceded by any code that will

cause an unnamed control section to be assembled. (See "Unnamed First

Control Section" below.)

CSECT -- Identify Control Section

The CSECT instruction identifies the beginning or the continuation of

a control section. The format of the CSECT instruction statement is as

follows:

Name

Any

symbol
or blank

Operation

CSECT

Operand

Not used; should
be blank

If a symbol names the CSECT instruction, the symbol is established as

the name of the control section; otherwise the section is considered to be

unnamed. All statements following the CSECT are assembled as part of that

control section until a statement identifying a different control section

is encountered (i.e., another CSECT or a DSECT instruction).

The symbol in the name field is a valid relocatable symbol whose value

represents the address of the first byte of the control section. It has a

length attribute of i.

Several CSECT statements with the same name may appear within a

program. The first is considered to identify the beginning of the control

section; the rest identify the resumption of the section. Thus, statements

from different control sections may be interspersed. They are properly

assembled (aSsigned contiguous storage locations) as long as the statements

3-9

from the various control sections are identified by the appropriate CSECT
instructions.

Unnamed First Control Section

All machine instructions and many assembler instructions have to

belong to a control section. If such an instruction precedes the first

CSECT instruction, the assembler will consider it to belong to an unnamed

control section (also referred to as private code), which will be the first

(or only) control section in the module.

The following instructions will not cause this to happen, since they

do not have to belong to a control section:

Common Control Sections

Dummy Con£rol Sections

Macro Definitions

Conditional Assembly Instructions
Comments

COPY (depends on the copied code)
DXD

EJECT

ENTRY

EXTRN

ICTL

ISEQ

OPSYN

PRINT

PUNCH

REPRO

SPACE

TITLE

WXTRN

No other assembler or machine instructions can precede

instruction, since START, if used, must initiate the first control

in the program.

a START

section

An involuntary unnamed control section at the beginning can cause

trouble if literals are used. Then the programmer must be aware of the
fact, that unless he codes an LTORG statement in each control section where

he uses literals, literals will be assembled in the first control section,

which will in this case be the involuntary section. If that control

section does not establish addressability (through USING), an

addressability error will be the result. Therefore statements like EQU

should not be placed before the first CSECT or the START instruction.

Resumption of an unnamed control section at later points can be

accomplished through unnamed CSECT statements. A program can contain only

one unnamed control section. Of course, it is possible to write a program

3-10

that does not contain CSECT or START statements. It will then be assembled

as one unnamed control section.

DSECT -- Identlfy Dummy Section

A dummy section represents a control section that is assembled but is

not part of the object program. A dummy section is a convenient means of

describing the layout of an area of storage without actually reserving the

storage. (It is assumed that the storage is reserved either by some other

part of this assembly or else by another assembly.) The DSECT instruction

identifies the beginning or resumption of a dummy section. More than one

dummy section may be defined per assembly, but each must be named. The

format of the DSECT instruction statement is as follows:

Name Operation Operand

DSECTA vari-

able symbol

or ordinary

symbol

Not used; should

be blank

The symbol in the name field is a valid relocatable symbol whose value

represents the first byte of the section. It has a length attribute of i.

Program statements belonging to dummy sections may be interspersed

throughout the program or may be written as a unit. In either case, the

appropriate DSECT instruction should precede each set of statements. When

multiple DSECT instructions with the same name are encountered, the first

is considered to initiate the dummy section and the rest to continue it.

All assembler language instructions may occur within dummy sections.

Symbols that name statements in a dmmmy section may be used in USING

instructions. Therefore, they may be used in program elements (e.g.,

machlne-lnstructlons and data definitions) that specify storage addresses.

An example illustrating the use of a dummy section appears subsequently

under "Addressing Dummy Sections."

Note___._! Symbols that name statements in a dummy section may be used in A-

type address constants only when they are paired with another symbol from

the same dummy section in an absolute expression. (See "Absolute and

Relocatable Expressions", Section 2.) For example, if X and B name

statements in the same dummy section, C DC A(B-X) would be valid, but C DC

A(X) would be Invalld--yielding a relocatability error.

DUMMY SECTION LOCATION ASSIGNMENT: A location counter is used to determine

the relative locations of named program elements in a dummy section. The

location counter is always set to zero at the beginning of the dummy

3-11

section, and the location values assigned to symbols that name statements
in the dummysection are relative to the initial statement in the section.

ADDRESSING DUMMY SECTIONS: The programmer may wish to describe the format

of an area whose storage location will not be determined until the program

is executed. He can describe the format of the area in a dummy section,

and he can use symbols defined in the dummy section as the operands of

machine instructions. To effect references to the storage area, he does

the following:

i. Provides a USING statement specifying both a general register

that the assembler can assign to the machine-lnstructlons as a

base register and a value from the dummy section that the

assembler may assume the register contains.

. Ensures that the same register is loaded with the actual address

of the storage area.

The values assigned to symbols defined in a dummy section are relative

to the initial statement of the section. Thus, all machine-instructions

which refer to names defined in the dummy section will, at execution time,

refer to storage locations relative to the address loaded into the

register.

An example is shown in the following coding. Assume that two

independent assemblies (assembly i and assembly 2) have been loaded and are

to be executed as a single overall program. Assembly i is an input routine

that places a record in a specified area of storage, places the address of

the input area containing the record in general register 3, and branches to

assembly 2. Assembly 2 processes the record. The coding shown in the

example is from assembly 2.

The input area is described in assembly 2 by the DSECT control section

named INAREA. Portions of the input area (i.e., record) that the

programmer wishes to work with are named in the DSECT control section as

shown. The assembler instruction USING INAREA,3 designates general

register 3 as the base register to be used in addressing the DSECT control

section, and that general register 3 is assumed to contain the address of
INAREA.

Assembly I, during execution, loads the actual beginning address of

the input area in general register 3. Because the symbols used in the

DSECT section are defined relative to the initial statement in the section,

the address values they represent, will, at the time of program execution,

be the actual storage locations of the input area.

3-12

Name Operation Operand

ASMBLY2

BEGIN

ATYPE

WORKA

WORKB

INAREA

INCODE

INPUTA

INPUTB

CSECT

BALR

USING

USING

CLI

BE

MVC

MVC

DS

DS

DSECT

DS

DS

DS

END

2,0

*,2

INAREA,3

INCODE,C'A'

ATYPE

WORKA,INPUTA

WORKB,INPUTB

CL20

CL18

CLI

CL20

CLI8

The programmer must ensure that a section of code in his program is

actually described by the dummy section which references it. Consider the

following example, which illustrates how a dmmny section should no____tbe
addressed:

3-13

Name Operation

TEST

HALF

FULL

AREA

HALF

FULL

CSECT

CNOP

DS

DS

END

DSECT

DS

DS

Operand

2,4
CL2

F

CL2

F

Note that in the dummy section AREA, two bytes are skipped between

HALF and FULL in order to align FULL on a fullword boundary. In the

control section TEST, however, the CNOP instruction causes two bytes to be

skipped. Thus FULL is properly aligned without skipping any bytes between
HALF and FULL.

When the prograr_ner addresses the dummy section, the location of FULL

(relative to the location of HALF) will not be the same as the location of

FULL in the control section.

Note: To correct this example change the CNOP instruction to CNOP 0,4.

EXTERNAL DUMMY SECTIONS (ASSEMBLER F ONLY)

External dummy sections facilitate communication between programs by

allowing the programmer to define work areas in several different programs

and then at execution to combine them into one block of storage accessible

to each program. Several different programs may be assembled together,

each with one or more external dummy sections and after the linkage editor

processes these programs, the programmer can allocate storage for the dummy

sections in one block. External dummy sections are defined through the use

of the DXD instruction or a DSECT in combination with a Q-type DC

instruction. In order to allocate the correct amount of storage when the

program is executed, the programmer must use the CXD instruction, described

below, within one of the programs.

DXD -- DEFINE EXTERNAL DUMMY SECTION

The DXD instruction (also referred to as a Pseudo Register) defines an

external dummy section; when the assembler encounters a DXD instruction, it

computes the amount of storage required and the alignment and passes this

3-14

information to the linkage editor which will compute the total length of
the external dummy sections. The format for the DXD instruction is:

Name Operation Operand

A symbol DXD Duplication factor,

type, length,

constant

The symbol in the name field is a symbol that usually appears as a Q-type

constant in the operand field of a DC statement later in the program. It

has a length attribute of i. The operand form and alignment are the same

as that described for the DS instruction. If more than one external dummy

section with the same name is encountered by the linkage editor, it uses

the largest section in computing total length; if two or more identically

named external dummy sections have different boundary alignments, the

linkage editor uses the most restrictive alignment in computing total

length. An external dummy section is generated by a Q-type address
constant which references a DSECT name.

CXD- CUMULATIVE LENGTH EXTERNAL DUMMY SECTION

The CXD instruction allocates a four-byte full-word aligned area in

storage which will contain the sum of the lengths of all external dummy

sections when the program is executed. This sum is supplied by the linkage
editor. The instruction format is:

Name Operation Operand

Any symbol CXD Must be blank

or blank

The CXD instruction may appear anywhere within a program, or if several

programs are being combined, it may appear in each program. The symbol in

the name field has a length attribute of 4.

The following example shows how external dummy sections may be used.

3-15

ROUTINE A

Name

ALPHA

BETA

OMEGA

Operation

DXD

DXD

CXD

DC

DC

Operand

2DL8

4FL4

Q(ALPHA)

Q(BETA)

ROUTINE B

Name Operation Operand

GAMMA

DELTA

DXD

DXD

DC

DC

5D

10F

Q (GAMMA)

Q (DELTA)

ROUTINE C

Name Operation Operand

EPSILON DXD 4H

DC Q(EPSILON)

Each of the three routines is requesting an amount of work area. Routine
A wants 2 double words and 4 full words• Routine B wants 5 double words

and l0 full words. Routine C wants 4 half words• At the time these

routines are brought into storage the sum of the individual lengths will be

placed in the location of the C_ instruction labeled OMEGA. Routine A can

then allocate the amount of storage that is specified in the CXD location•

3-16

COM -- DEFINE BLANK COMMON CONTROL SECTION

The COM assembler instruction identifies and reserves a common area of

storage that may be referred to by independent assemblies that have been

linked and loaded for execution as one overall program•

Appearances of a COM statement after the initial one indicate the

resumption of the blank common control section•

When several assemblies are loaded, each designating a common control

section, the amount of storage reserved is equal to the longest common
control section• The format is:

Name Operation Operand

COM BlankA se-

quence

symbol or
blank

The common area may be broken up into subfields through use of the DS

and DC assembler instructions. Names of subfields are defined relative to

the beginning of the common section, as in the DSECT control section.

It is necessary to establish addressabillty relative to a named

statement within COM since the COM statement itself cannot have a name. In

the following example, addressability to the common area of storage is
established relative to the named statement XYZ.

Name Operation Operand

XYZ

PDQ

L

USING

I, =A(XYZ)

XYZ,I
MVC

COM

DS

DS

PDQ(16),=4C'ABCD'

16F

16C

No instructions or constants appearing in a common control section are

assembled. Data can only be placed in a common control section through

3-17

,J

execution of the program. A blank common control section may include any

assembler language instructions.

If the assignment of common storage is done in the same manner by each

independent assembly, reference to a location in common by any assembly

results in the same location being referenced. When the blank common

control section is assembled, the initial value of the location counter is

set to zero.

SYMBOLIC LINKAGES

Symbols may be defined in one module and referred to in another, thus

effectlng symbolic linkages between independently assembled program

sections. The linkages can be effected only if the assembler is able to

provide information about the linkage symbols to the linkage editor, which

resolves these linkage references at load time. The assembler places the

necessary information in the external symbol dictionary on the basis of the

linkage symbols identified by e.g., the ENTRY and EXTRN instructions. Note

that these symbolic linkages are described as linkages between independent

modules; more specifically, they are linkages between independently

assembled control sections.

In the module where the linkage symbol is defined (i.e., used as a

name), it must also be identified to the assembler by means of the ENTRY

assembler instruction unless the symbol is the name of a CSECT or START

statement. It is identified as a symbol that names an entry point, which

means that another module may use that symbol in order to effect a branch

operation or a data reference. The assembler places this information in

the control dictionary.

Similarly, the module that uses a symbol defined in some other module

must identify it by the EXTRN or WXTRN assembler instruction. It is

identified as an externally defined symbol (i.e., defined in another

module) that is used to effect linkage to the point of definition. The

assembler places this information in the external symbol dictionary.

Another way to obtain symbolic linkages, is by using the V-type
address constant. The subsection "Data Definition Instructions" in Section

5 contains the details pertinent to writing a V-type address constant. It

is sufficient here to note that this constant may be considered an indirect

linkage point. It is created from an externally defined symbol, but that

symbol does not have to be identified by an EXTRN or WXTRN statement. The

V-type address constant may be used for external branch references (i.e.,

for effectlng branches to other programs). It may not be used for external

data references (i.e., for referring to data in other programs).

ENTRY -- IDENTIFY ENTRY-POINT SYMBOL

The ENTRY instruction identifies linkage symbols that are defined in

one source module and referenced by other modules.

3-18

A se-

quence

symbol

or

b iank

ENTRY One or more reloca-

table symbols,

separated by

commas, that also

appear as state-
ment names

A source module may contain a maximum of i00 ENTRY symbols. ENTRY

symbols which are not defined (not appearing as statement names), although

invalid, will also count towards this maximum of i00 ENTRY symbols.

The symbols in the ENTRY operand field may be used as operands by

other programs. An ENTRY statement operand may not contain a symbol

defined in a dummy section or in a blank common control section. The

following example identifies the statements named SINE and COSINE as entry

points to the program.

Name Operation Operand

ENTRY SINE,COSINE

Note: Labels of START and CSECT statements are automatically treated as

entry points to a module. Thus they need not be identified by ENTRY
statements.

EXTRN -- IDENTIFY EXTERNAL SYMBOL

The EXTRN instruction identifies linkage symbols used by one source

module but identified in another module. Each external symbol must be

identified. This includes symbols that refer to control section names.

The format of the EXTRN statement is:

Name Operation Operand

"A se- EXTRN

quence

symbol

or

blank

One or more reloca-

table symbols,

separated by commas

3-19

The symbols in the operand field may not appear as the name of

statements in the module where the EXTRN statement is. The length

attribute of an external symbol is i.

The following example identifies three external symbols. They are

used as operands in the module where they appear, but they are defined in

some other module.

Name

Operation Operand

EXTRN

EXTRN

RATEBL,PAYCALC
WITHCALC

An example that employs the EXTRN instruction appears subsequently

under "Addressing External Control Sections." °

Note i: A V-type address constant does not have to be identified by an

EXTRN statement.

Note 2: When external symbols are used in an expression they may not be

paired. Each external symbol must be considered as having a unique

relocatability attribute.

Addressin_ External Control Sections

A common way for a program to link to an external control section is
to:

I. Create a V-type address constant with the name of the external

symbol.

, Load the constant into a general register and branch to the

control section via the register.

For example, to link to the control section named SINE, the following

coding might be used:

3-20

Name Operation Operand

MAINPROG

BEGIN

VCON

CSECT

BALR

USING

L

BALR

DC

END

2,0

*,2

3,VCON

1,3

V(SINE)
BEGIN

An external symbol naming data may be referred to as follows:

i. Identify the external symbol with the EXTRN instruction, and

create an address constant from the symbol.

2. Load the constant into a general register, and use the register

for base addressing.

For example, to add to register 3 the contents of a data area named

RATETBL, which is in another control section, the following coding might be

used:

Name Operation Operand

MAINPROG

BEGIN

RATEADDR

CSECT

BALR

US ING

EXTRN

L

USING

A

DC

END

2,0

*,2

RATETBL

4,RATEADDR

RATETBL,4

3,RATETBL

A(RATETBL)

BEGIN

3-21

The total number of control sections, dummy sections, external symbols

and external dummy sections must not exceed 255. Certain constants may

cause a symbol to be counted twice: external symbols in V-type address

constants (unless they are explicitly defined in an EXTRN or WXTRN

statement), and external dummy sections implicitly defined by Q-type

address constants and corresponding DSECT statements. (EXTRN and WXTRN

statements are discussed in this section; V-type constants in Section 5

under the DC assembler instruction.)

WXTRN -- IDENTIFY WEAK EXTERNAL SYMBOL

The WXTRN statement has the same format as the EXTRN statement. It is

used to identify weak external references. The only difference between a

weak (WXTRN) and a strong (EXTRN or V-type constant) external reference is

that the automatic library call mechanism of the linkage editor or loader

is not effective for symbols that are identified in WXTRN statements.

The automatic library call mechanism searches the call library for any

unresolved external references. If it finds any of these references, it

includes the module where the reference occurs in the load module produced

by the linkage editor or loader. Refer to OS Loader and Linkage Editor for

a full description of the automatic library call mechanism.

The format of the WXTRN instruction is:

Name Operation Operand

WXTRNA se-

quence

symbol
or blank

One or more reloca-

table symbols,

separated by

COrneas

Note: If a V-type address constant is identified by a WXTRN

instruction, the automatic library call mechanism is suppressed for it.

3-22

SECTION 4 : HACHINE-INSTRUCTIONS

This section discusses the coding of the machine-lnstructions repre-

sented in the assembler language. The reader is reminded that the

functions of each machlne-lnstructlon are discussed in the principles of

operation manual (see Preface).

MACHINE-ZNSTRUCTION STATEMENTS

Machlne-lnstructlons may be represented symbolically as assembler lan-

guage statements. The symbolic format of each varies according to the

actual machlne-lnstruction format, of which there are five: RR, RX, RS,

SI_ andSS. Within each basic format, further variations are possible.

The symbolic format of a machine-instructlon is similar to, but does

not duplicate, its actual format. Appendix C illustrates machine format

for the five classes of instructions. A mnemonlc operation code is written

in the operation field, and one or more operands are wrltten in the operand

field. Comments may be appended to a machlne-instructlon statement as

previously explained in Section i.

Any machine-instruction statement may be named by a symbol, which

other assembler statements can use as an operand. The value attribute of

the symbol is the address of the leftmost byte assigned to the assembled

instruction. The length attribute of the symbol depends on the basic

instruction format, as follows:

Basic Format Length Attribute

RR 2

RX 4

RS 4

S 4

Sl 4

SS 6

RI 4

R 2

Instruction Alignment and Checking

All machine-instructions are aligned automatically by the assembler on

half-word boundaries. If any statement that causes information to be

assembled requires alignment, the bytes skipped are filled with hexadecimal

zeros. All expressions that specify storage addresses are checked to

ensure that they refer to appropriate boundaries for the instructions in

which they are used. Register numbers are also checked to make sure that

they specify the proper registers, as follows:

i. Floating-point instructions must specify floatlng-point registers

O, 2, 4, or 6.

4-1

e Double-shift, full-word multiply, and divide instructions must

specify an even-numbered general register in the first operand.

OPERAND FIELDS AND SUBFIELDS

Some symbolic operands are written as a single field, and other

operands are written as a field followed by one or two subfields. For

example, addresses consist of the contents of a base register and a

displacement. An operand that specifies a base and displacement is written

as a displacement field followed by a base register subfield, as follows:

40(5). In the RX format, both an index register subfield and a base

register subfield are written as follows: 40(3,5). In the SS format, both

a length subfield and a base register subfield are written as follows:

40(21,5).

Appendix C shows two types of addressing formats for RX, RS, SI, and
SS instructions. In each case, the first type shows the method of specify-

ing an address explicitly, as a base register and displacement. The second

type indicates how to specify an implied address as an expression.

For example, a load multiple instruction (RS format) may have either

of the following symbolic operands:

R1 ,R3 ,D2 (B2) - -

RI,R3,S2 - -

explicit address

implied address

Whereas D2 and B2 must be represented by absolute expressions, S2 may

be represented either by a relocatable or an absolute expr_slon.

In order to use implied addresses, the following rules must be

observed:

i. The base register assembler instructions (USING and DROP) must be
used.

2. An explicit base register designation must not accompany the

implied address.

For example, assume that FIELD is a relocatable symbol, which has been

assigned a value of 7400. Assume also that the assembler has been notified

(by a USING instruction) that general register 12 currently contains a

relocatable value of 4096 and is available as a base register. The

following example shows a machine-instruction statement as it would be

written in assembler language and as it would be assembled. Note that the

value of D2 is the difference between 7400 and 4096 and that X2 is

assembled as zero, since it was omitted. The assembled instruction is

presented in hexadecimal:

4-2

Assembler statement:

ST 4,FIELD

Assembled instruction:

Op.Code R1 X2 B2 D2
50 4 0 C CE8

An address may be specified explicitly as a base register and

displacement (and index register for RX instructions) by the formats shown

in the first column of Table 4-i. The address may be specified as an

implied address by the formats shown in the second column. Observe that

the two storage addresses required by the SS instructions are presented

separately; an implied address may be used for one, while an explicit

address is used for the other.

Table 4-1. Address Specification Details

Type

RX

RS

SI

SS

Explicit Address

D2 (X2, B2)

D2(,B2)

D2 (B2)

DI(BI)

D1 (L1, BI)

DI(L,BI)

D2 (L2, B2)

Implied Address

S2(X2)

S2

S2

S1

SI(LI)

Sl(L)

$2(L2)

A comma must separate operands. Parentheses must enclose a subfield

or subfields, and a comma must separate two subfields within parentheses.

When parentheses are used to enclose one subfield, and the subfield is

omitted, the parentheses must be omitted. In the case of two subfields

that are separated by a comma and enclosed by parentheses, the following

rules apply:

lo If both subfields are omitted, the separating comma and the

parentheses must also be omitted.

L 2,48(4,5)

L 2 ,FIELD (implied address)

. If the first subfield in the sequence is omitted, the comma that

separates it from the second subfield is written. The paren-
theses must also be written.

MVC 32(16,5),FIELD2

MVC 32(,5),FIELD2 (implied length)

4-3

. If the second subfield in the sequence is omitted, the comma that

separates it from the first subfield must be omitted. The paren-
theses must be written.

MVC 32(16,5),FIELD2

MVC FIELDI(16),FIELD2 (implied address)

Fields and subfields in a symbolic operand may be represented either

by absolute or by relocatable expressions, depending on what the field

requires. (An expression has been defined as consisting of one term or a

series of arithmetically combined terms.) Refer to Appendix C for a

detailed description of field requirements.

Note: Blanks may not appear in an operand unless provided by a character

self-defining term or a character literal. Thus, blanks may not intervene

between fields and the comma separators, between parentheses and fields,

etc.

LENGTHS -- EXPLICIT AND IMPLIED

The length field in SS instructions can be explicit or implied. To

imply a length, the programmer omits a length field from the operand. The

omission indicates that the length field is either of the following:

l. The length attribute of the expression specifying the displace-

ment, if an explicit base and displacement have been written.

. The length attribute of the expression specifying the effective

address, if the base and displacement have been implied.

In either case, the length attribute for an expression is the length

of the leftmost term in the expression. The value of L'* is the length of

the instruction in all non-llteral machine instruction operands and in the

CCW assembler instruction. In all other uses its value will be I.

By contrast, an explicit length is written by the programmer in the

operand as an absolute expression. The explicit length overrides any

implied length.

Whether the length is explicit or implied, it is always

length. The value inserted into the length field of

instruction is one less than the effective length in

instruction statement.

an effective

the assembled

the machine-

Note: If a

zero or one.

length field of zero is desired, the length may be stated as

To summarize, the length required in an SS instruction may be

specified explicitly by the formats shown in the first column of Table 4-2

or may be implied by the formats shown in the second column. Observe that

4-4

m

the two lengths required in one of the SS instruction formats arepresented

separately. An implied length may be used for one, while an explicit

length is used for the other.

Table 4-2. Details of Length Specification in SS Instructions

Explicit Length Implied Length

DI(LI,BI)

SI(LI)

DI(L,BI)

SI(L)

D2(L2,B2)

$2(L2)

DI(,B1)
Sl

DI(,Bi)

Sl

D2(,B2)
S2

MACHINE-INSTRUCTION MNEMONIC CODES

The mnemonic operation codes (shown in Appendix D) are designed to be

easily remembered codes that indicate the functions of the instructions.

The normal format of the code is shown below; the items in brackets are not

necessarily present in all codes:

Verb[Modifier] [Data Type] [Machine Format]

The verb, which is usually one or two characters, specifies the

function. For example, A represents Add, and MV represents Move. The

function may be further defined by a modifier. For example, the modifier

L indicates a logical function, as in AL for Add Logical.

Mnemonic codes for functions involving data usually indicate the data

types by letters that correspond to those for the data types in the DC

assembler instruction (see Section 5). Furthermore, letters U and W have

been added to indicate short and long, unnormallzed floating-polnt

operations, respectively. For example, AE indicates Add Normalized Short,

whereas AU indicates Add Unnormallzed Short. Where applicable, full-word

fixed-point data is implied if the data type is omitted.

The letters R and I are added to the codes to indicate, respectively,

RR and SI machine instruction formats. Thus, AER indicates Add Normalized

Short in the RR format. Functions involving character and decimal data

types imply the SS format.

MACHINE-INSTRUCTION EXAMPLES

The examples that follow are grouped according to machine-instruction

format. They illustrate the various symbolic operand formats. All symbols

employed in the examples must be assumed to be defined elsewhere in the

4-5

sameassembly. All symbols that specify register numbers and lengths must

be assumed to be equated elsewhere to absolute values.

Implied addressing, control section addressing, and the function of

the USING assembler instruction are not considered here. For discussion of

these considerations and for examples of coding sequences that illustrate

them, the reader is referred to Section 3, "Program Sectioning and Linking"

and "Base Register Instructions."

RR Format

Name Operation Operand

ALPHA1

ALPHA2

BETA

GAMMA1

GAMMA2

LR

LR

SPM

SVC

SVC

1,2

REGI,REG2
15

250

TEN

The operands of ALPHA1, BETA, and GAMMA1 are decimal self-defining

values, which are categorized as absolute expressions. The operands of

ALPHA2 and GAMMA2 are symbols that are equated elsewhere to absolute
values.

RX Format

Name Operation Operand

ALPHAI

ALPHA2

BETA1

BETA2

GAMMAI

GAMMA2

GAMMA3

LAMBDAI

L

L

L

L

L

L

L

L

1,39(4,10)

REGI, 39 (4,TEN)

2, ZETA (4)

REG2, ZETA (REG4)

2,ZETA

KEG2, ZETA

2,-F' i000'

3,20(,5)

Both ALPHA instructions specify explicit addresses; REGI and TEN are

absolute symbols. Both BETA instructions specify implied addresses, and

both use index registers. Indexing is omitted from the GAMMA instructions.

GAMMA1 and GAMMA2 specify implied addresses. The second operand of GAMMA3

is a literal. LAMBDAI specifies no indexing.

4-6

• • •

RS Format

Name Operation Operand

ALPHAI

ALPHA2

ALPHA3

ALPHA4

ALPHA5

BXH

BXH

BXH

SLL

SLL

Z,2,20(14)

REG1,REG2,20(REGD)

REGI,REG2,ZETA

REG2,15

REG2,0(15)

Whereas ALPHAI and ALPHA2 specify explicit addresses, ALPHA3 specifies

an implied address. ALPHA4 is a shift instruction shifting the contents of

REG2 left 15 bit positions. ALPHA5 is a shift instruction shifting the

contents of REG2 left by the value contained in general register 15.

RI Format

Name Operation

ALPHAI

ALPHA2

BETA

AHI

AHI

AHI

Operand

REGI,X'I234'

2,C'AB'

REG2,TEN

The operands of ALPHAI and ALPHA2 are self-defining values which are

categorized as absolute expressions. The operand of BETA is a symbol which

is equated elsewhere to an absolute value.

SI Format

Name

ALPHA1

ALPHA2

BETAI

BETA2

Operation Operand

CLI

CLI

CLI

CLI

40(9),X'40'

40(REG9),TEN

ZETA,TEN

ZETAjC'A'

The ALPHA instructions specify explicit addresses, whereas the BETA

instructions specify implied addresses.

t

4-7

S Format

Name Operation Operand

GAMMA1

GAMMA2

GAMMA3

GAMMA4

SlO

SIO

SI0

SI0

40(9)

0(9)
40(0)
ZETA

The GAMMAI, GAMMA2, and GAMMA3 instructions specify explicit

addresses. The GAMMA4 instruction specifies an implied address. The GAMMA2

instruction specifies a displacement of zero. The GAMMA3 instruction does

not specify a base register.

SS Format

Name Operation Operand

ALPHA1

ALPHA2

ALPHA3

ALPHA4

BETA

GAMMA1

GAMMA2

GAMMA3

GAMMA4

AP

AP

AP

AP

AP

MVC

MVC

MVC

MVC

40(9,8) ,30(6,7)

40 (NINE, REG8), 30(L6,7)

FIELD2, FIELD1

FIELD2 (9), FIELD1 (6)

FIELD2 (9), FIELD1

40(9,8) ,30(7)

40 (NINE,REG8) ,DEC(7)

FIELD2, FIELD1

FIELD2 (9) ,FIELD1

ALPHA1, ALPHA2, GAMMA1, and GAMMA2 specify explicit lengths and

addresses. ALPHA3 and GAMMA3 specify both implied length and implied

addresses. ALPHA4 and GAMMA4 specify explicit length and implied

addresses. BETA specifies an explicit length for FIELD2 and an implied

length for FIELD1; both addresses are implied.

EXTENDED MNEMONIC CODES

For the convenience of the programmer, the assembler provides extended

mnemonic codes, which allow conditional branches to be specified

mnemonically as well as through the use of the BC machine-instruction.

These extended mnemonic codes specify both the machine branch instruction

and the condition on which the branch is to occur. The codes are not part

of the universal set of machine-instructions, but are translated by the

assembler into the corresponding operation and condition combinations.

The allowable extended mnemonic codes and their operand formats are

shown in Figure 4-1, together with their machine-instruction equivalents.

Unless otherwise noted, all extended mnemonics shown are for instructions

in the RX format. Note that the only difference between the operand fields
of the extended mnemonics and those of their Nachine-instruction

equivalents is the absence of the RI field and the comma that separates it

from the rest of the operand field. The extended -memonic list, like the

machine-instruction list, shows explicit address formats only. Each

address can also be specified as an implied address.

Extended Code Meaning Machine-Instruction

B D2(X2,B2) Branch Unconditional BC 15,D2(X2,B2)

BR R2 Branch Unconditional (RE format) BCR 15,R2

NOP D2(X2,B2) No Operation BC 0,D2(X2,B2)

NOPR R2 No Operation (RE format) BCR O,R2

Used After Compare Instructions

BH D2(X2,B2)

BL D2(X2,B2)

BE D2(X2,B2)

BNH D2(X2,B2)

BNL D2(X2,B2)

BNE D2(X2,B2)

Branch on High
Branch on Low

Branch on Equal

Branch on Not High
Branch on Not Low

Branch on Not Equal

Used After Arithmetic Instructions

BO D2(X2,B2)

BP D2(X2,B2)

BM D2(X2,B2)

BZ D2(X2,B2)

BNP D2(X2,B2)

BNM D2(X2,B2)
BNZ D2(X2_B2)

Branch on Overflow

Branch on Plus

Branch on Minus

Branch on Zero

Branch on Not Plus

Branch on Not Minus

Branch on Not Zero

Used After Test Under Mask Instructions

BO D2(X2,B2)

BM D2(X2,B2)

BZ D2(X2,B2)

BNO D2(X2,B2)

Branch if Ones

Branch if Mixed

Branch if Zeros

Branch if Not Ones

BC 2,D2(X2,B2)

BC 4,D2(X2,B2)

BC 8,D2(X2,B2)

BC 13,D2(X2,B2)

BC 11,D2(X2,B2)

BC 7,D2(X2,B2)

BC I,D2(X2,B2)

BC 2,D2(X2,B2)

BC 4,D2(X2,B2)

BC 8,D2(X2,B2)

BC 13,D2(X2,B2)

BC 11,D2(X2,B2)

BC 7,D2(X2,B2)

BC 1,D2(X2,B2)

BC 4,D2(X2,B2)

BC 8,D2(X2,B2)
BC 14,D2(X2,B2)

Figure 4-1. Extended Mnemonic Codes

In the following examples, which illustrate the use of extended mne-

monics, it is to be assumed that the symbol GO is defined elsewhere in the

program.

4-9

Name Operation Operand

B

B
BL

BL

BR

40(3,6)

40(,6)

GO(3)
GO
4

The first two instructions specify an unconditional branch to an

explicit address. The address in the first case is the sum of the contents

of base register 6, the contents of index register 3, and the displacement

40; the address in the second instruction is not indexed. The third

instruction specifies a branch on low to the address implied by GO as

indexed by the contents of index register 3; the fourth instruction does

not specify an index register. The last instruction is an unconditional

branch to the address contained in register 4.

4-10

SECTION 5: ASSEMBLER INSTRUCTION STATEMENTS

Just as machine instructions are used to request the computer to per-

form a sequence of operations during program execution time, so assembler

instructions are requests to the assembler to perform certain operations

during the assembly. Assembler-instruction statements, in contrast to

machlne-instruction statements, do not usually cause machine-instructions

to be included in the assembled program. Some, such as DS and DC, generate

no instructions but do cause storage areas to be set aside for constants

and other data. Others, such as EQU and SPACE, are effective only at

assembly time; they generate nothing in the assembled program and have no
effect on the location counter.

The following is a list of assembler instructions.

Symbol Definition Instruction

EQU - Equate Symbol

Operation Code Definition Instruction

OPSYN - Equate Operation Code (Assembler F only)

Data Definition Instructions

DC - Define Constant

DS - Define Storage

Program Sectionin B and Linkin i Instructions

START - Start Assembly

CSECT - Identify Control Section

CXD - Cumulative Length of External Dummy Section

(Assembler F only)

DSECT - Identify Dummy Section

DXD - Define External Dummy Section

(Assembler F only)

ENTRY - Identify Entry-Polnt Symbol

EXTRN - Identify External Symbol

WXTRN - Identify Weak External Symbol

(Assembler F only)

COM - Identify Blank Common Control Section

Base Register Instructions

USING - Use Base Address Register

DROP - Drop Base Address Register

Listin_ Control Instructions

TITLE - Identify AssemblyOutput

EJECT - Start New Page

SPACE - Space Listing

PRINT - Print Optional Data

5-1

Prosram Control Instructions

ICTL -

ISEQ -

PUNCH -

REPRO -

ORG -

LTORG -

CNOP -

COPY -

END -

Input Format Control

Input Sequence Checking

Punch a Card

Reproduce Following Card

Set Location Counter

Begin Literal Pool

Conditional No Operation

Copy Predefined Source Coding

End Assembly

SYMBOL DEFINITION INSTRUCTION

EQU -- EQUATE SYMBOL

The EQU instruction is used to define a symbol by assigning to it the

length, value, and relocatability attributes of an expression in the

operand field. The format of the EQU instruction statement is as follows:

Name

A variable

symbol or

ordinary

symbol

Operation

EQU

Operand

An expression

The expression in the operand field can be absolute or relocatable.

Any symbols appearing in the expression must be previously defined.

The symbol in the name field is given the same length, value, and

relocatability attributes as the expression in the operand field. The

length attribute of the symbol is that of the leftmost (or only) term of

the expression. In the case of EQU to * or to a self-deflning term, the

length attribute is i. The value attribute of the symbol is the value of

the expression.

The EQU instruction is used to equate symbols to register numbers,

immediate data, or other arbitrary values. The following examples

illustrate how this can be done:

Name Operation

REG2

TEST
EQU

EQU

I
2 (general register) J

X' 3F' (immediate data_

5-2

Toreduce programming time, the programmer can equate symbols to fre-

quently used expressions and then use the symbols as operands in place of
the expressions. Thus, in the statement:

Name Operation Operand

FIELD EQU ALPHA-BETA+GAMMA

FIELD is defined as ALPHA-BETA+GAMMAand may be used in place of it. Note,

however, that ALPHA, BETA, and GAMMA must all be previously defined. If

the final result of the expression is negative, it is treated as if it were

positive, i.e., the low-order 24 bits of the 2's complement is used.

The assembler assigns a length attribute of 1 in an EQU to *
statement.

OPERATION CODE DEFINITION INSTRUCTION

OPSYN -- EQUATE OPERATION CODE (ASSEMBLER F ONLY)

The OPSYN instruction is used to define a machine mnemonic or extended

mnemonic operation code as equivalent to another operation code. It is

also used to preventthe assembler from recoEnizing an operation code. The
OPSYN instruction has two formats:

Name Operation Operand

OPSYNAny

ordinary

symbol,

except an
assembler

operation
code

A machine instruc-

tion mnemonic code,
an extended mne-

monic code, or an

operation code de-

fined by a previous
OPSYN instruction

In this format, the OPSYN instruction assigns all the properties of

the operation code in the operand field to the symbol in the name field.

The symbol in the name field can be a previously defined machine or

extended mnemonic operation code. In this case, the latest definition

takes precedence.

5-3

Name

A machine or

extended mne-

monic opera-

tion code

Operation

OPSYN

Operand

Blank

w

In this format, the 0PSYN instruction prevents the assembler from

recognizing the operation code in the name field.

Only ICTL and OPSYN instructions may precede an OPSYN instruction.

Additional information on use of the 0PSYN instruction is contained in

"0S Assembler (F) Programmer's Guide."

DATA DEFINITION INSTRUCTIONS

There are two data definition instruction statements: Define Constant

(DC) and Define Storage (DS).

These statements are used to enter data constants into storage, to

define and reserve areas of storage, and to specify the contents of channel

command words. The statements can be named by symbols so that other

program statements can refer to the generated fields. The DC instruction

is presented first and discussed in more detail than the DS instruction
because the DS instruction is written in the same format as the DC

instruction and can specify some or all of the information that the DC

instruction provides. 0nly the function and treatment of the statements

vary.

DC -- DEFINE CONSTANT

The DC instruction is used to provide constant data in storage. It

can specify one constant or a series of constants. A variety of constants

can be specified: fixed-point, floating-point, decimal, hexadecimal,

character, and storage addresses. (Data constants are generally called

constants unless they are created from storage addresses, in which case

they are called address constants.) The format of the DC instruction

statement is as follows:

Name Operation Operand

DCAny symbol
or blank

One or more operands
in the format des-

cribed below, each

separated by a comma

5-4

Each operand consists of four subfields: the first three describe the

constant, and the fourth subfield provides the nominal value(s) for the

constant(s). The first and third subfields can be omitted, but the second

and fourth must be specified. Note that nominal value(s) for more than one

constant can be specified in the fourth subfield for most types of

constants. Each constant so specified must be of the same type; the

descriptive subfields that precede the nominal value apply to all of them.

No blanks can occur within any of the subfields (unless provided as

characters in a character constant or a character self-defining term), nor

can they occur between the subfields of an operand. Similarly, blanks

cannot occur between operands and the commas that separate them when

multiple operands are being specified.

The subfields of each DC operand are written in the following

sequence:

1 2 3 4

Dupllcation Type Modifiers Nominal Value(s)

Factor

Although the constants specified within one operand must have the same

characteristics, each operand can specify a different type of constant.

For example, in a DC instruction with three oparands, the first operand

might specify four decimal constants, the second a floating-point constant,
and the third a character constant.

The symbol that names the DC instruction is the name of the constant

(or first constant if the instruction specifies more than one). Relative

addressing (e.g., SYMBOL+2) can be used to address the various constants if

more than one has been specified, because the number of bytes allocated to
each constant can be determined.

The value attribute of the symbol naming the DC instruction is the

address of the leftmost byte (after alignment) of the first, or only,

constant. The length attribute depends on two things: the type of

constant being defined and the presence of a length specification. Implied

lengths are assumed for the various constant types in the absence of a

length specification. If more than one constant is defined, the length

attribute is the length in bytes (specified or implied) of the first

constant.

Boundary alignment also varies according to the type of constant being

specified and the presence of a length specification. Some constant types

are only aligned to a byte boundary, but the DS instruction can be used to

force any type of word boundary alignment for them. This is explained

under "DS -- Define Storage." Other constants are aligned at various word

boundaries (half, full, or double) in the absence of a length

specification. If length is specified, no boundary alignment occurs for
such constants.

5-5

Bytes that must be skipped in order to align the field at the proper

boundary are not considered to be part of the constant. In other words,

the location counter is incremented to reflect the proper boundary (if any

incrementing is necessary) before the address value is established. Thus,

the symbol naming the constant will not receive a value attribute that is

the location of a skipped byte.

Any bytes skipped in aligning statements that do not cause information

to be assembled are not zeroed. Bytes skipped to align a DC statement are

zeroed; bytes skipped to align a DS statement are not zeroed.

Appendix F summarizes, in chart form, the information concerning

constants that is presented in this section.

LITERAL DEFINITIONS: The reader is reminded that the discussion of

literals as machine-instruction operands (in Section 2) referred him to the

description of the DC operand for the method of writing a literal operand.

All subsequent operand specifications are applicable to writing literals,

the only difference being:

i. The literal is preceded by an equal sign.

2. Multiple operands may not be specified.

. Unsigned decimal self-defining terms must be used to express the

duplication factor and length modifier values.

4. The duplication factor may not be zero.

5. S-type address constants may not be specified.

. Signed or unsigned decimal self-defining terms must be used to

express scale and exponent modifiers.

7. Q-type address constants may not be specified in literals.

Examples of literals appear throughout the balance of the DC

instruction discussion.

Operand Subfield i: Duplication Factor

The duplication factor may be omitted. If specified, it causes the

constant(s) to be generated the number of times indicated by the factor.

The factor may be specified either by an unsigned decimal self-defining

term or by a positive absolute expression that is enclosed by parentheses.

The duplication factor is applied after the constant is assembled. All

symbols in the expression must be previously defined.

Note that a duplication factor of zero is permitted except in a

literal and achieves the same result as it would in a DS instruction. A DC

5-6

instruction with a zero duplication factor will not produce control

dictionary entries. See "ForclngAlignment" under "DS -- Define Storage."

Note: If duplication is specified for an address constant containing a
location counter reference, the value of the location counter used in each

duplication is incremented by the length of the operand.

Operand Subfield 2: Type

The type subfield defines the type of constant being specified. From

the type specification, the assembler determines how it is to interpret the

constant and translate it into the appropriate machine format. The type is

specified by a slngle-letter code as shown in Figure 5-1.

Code Type of Constant

C Character

X Hexadecimal

B Binary

F Fixed-point

H Fixed-point
I ASCII

E Floating-point

D Floating-polnt

L Floating-point

P Decimal

Z Decimal

A Address

Y Address

S Address

V Address

W Address

Q Address

Machine Format

8-bit code for each character

4-bit code for each hexadecimal digit

Binary format

Signed, flxed-polnt binary format;normally a full word

Signed, fixed-polnt binary format;normally a half word
8-blt ASCII code for each character

Short floating-polnt format; normally a full word

Long floatlng-point format; normally a double word

Extended floating-point format; normally two double

words (Assembler F only)

Packed decimal format

Zoned decimal format

Value of address; normally a full word

Value of address; normally a half word

Base register and displacement value; a half word

Space reserved for external symbol addresses; each

address normally a full word

Value of address; a full 16-bit halfword

Space reserved for dummy section offset (AsseWDier F

only)

Figure 5-1. .Type Codes for Constants

Further information about these constants is provided in the

discussion of the constants themselves under "Operand Subfield 4:
Constant."

Operand Subfield 3: Modifiers

Modifiers describe the length in bytes desired for a constant (in

contrast to an implied length), and the scaling and exponent for the

constant. If multiple modifiers are written, they must appear in this

sequence: length, scale, exponent. Each is written and used as described

in the following text.

LENGTH MODIFIER: This is written as Ln, where n is either an unsigned

decimal self-defining term or a positive absolute expression enclosed by

parentheses. Any symbols in the expression must be previously defined.

The value of n represents the number of bytes of storage that are assembled

for the constant. The maximum value permitted for the length modifiers

supplied for the various types of constants is summarized in Appendix F.

This table also indicates the implied length for each type of constant; the

implied length is used unless a length modifier is present. A length

modifier may be specified for any type of constant. However, no boundary

alignment will be provided when a length modifier is given.

Use of a length modifier may cause truncation. For example:

DC C'ABCDXYZ'

will generate a 7-byte constant, whereas

DC CL6'ABCDXYZ'

will generate a 6-byte constant and cause Z to be lost. Truncation of C,

X, B, Z, A, Y, and P constants is not flagged as an error. However, F, H,

E, D, and L constants will be flagged if significant bits are lost.

Finally, each type of constant has an imposed or natural length modifier

range limit. Appendix F shows which constants can be flagged for

truncation of significant digits. It also shows the allowable length

modifier range for each constant.

Bit-Length Specification: The length of a constant, in bits, is specified
by L.n, where n is specified as stated above and represents the number of

bits in storage into which the constant is to be assembled. The value of

n may exceed eight and is interpreted to mean an integral number of bytes

plus so many bits. For example, L.20 is interpreted as a length of two

bytes plus four bits.

Assembly of the first or only constant with bit-length specification

starts on a byte boundary. The constant is placed in the high or low order

end of the field depending on the type of constant being specified. The

constant is padded or truncated to fit the field. If the assembled length

does not leave the location counter set at a byte boundary, and another bit

length constant does not immediately follow in the same statement, the

remainder of the last byte used is filled with zeros. This leaves the

location counter set at the next byte boundary. Figure 5-2 shows a fixed-

point constant with a specified blt-length of 13, as coded, and as it would

appear in storage. Note that the constant has been padded on the left to

bring it to its designated 13-bit length.

5-8

As coded:

Operation Operand

DC FL.13'579'

In storage:

byte byte

padding[

_010010'00011000

579 fill

byte

Figure 5-2. Bit-Length Specification (Single Constant)

The implied length of BLCON is two bytes. A reference to BLCON would

cause the entire two bytes to be referenced.

When bit-length specification is used in association with multiple

constants (see Operand Subfield 4: Constant following), each succeeding

constant in the llst is assembled starting at the next available bit.

Figure 5-3 illustrates this.

As coded:

Name Operation Operand

BLMCON DC FL.I0'161,21,57'

In storage:

byte byte byte byte byte

Ipadding I paddin_ padd+g

I .-"-, I "--"_' I '_"'-'!

' 00101000_i0000010101000011100100

161 21 57 fill

Figure 5-3. Bit-Length Specification (Multiple Constants)

The symbol used as a name entry in a DC assembler instruction takes on

the length attribute of the first constant in the list; therefore, the

implied length of BLMCON in Figure 5-3 is two bytes.

5-9

If duplication is specified, filling occurs once at the end of the

field occupied by the duplicated constant(s).

When bit-length specification is used in association with multiple

operands, assembly of the constant(s) in each succeeding operand starts at

the next available bit. Figure 5-4 illustrates this.

As coded:

Name Operation Operand

BLMOCON DC FL.7'9' ,CL.10'AB',XL.14'C4'

In storage:

byte byte byte byte byte

1 0o000o001
A plus
first two

bits of B

Figure 5-4. Bit-Length Specification (Multiple Operands)

In Figure 5-4, three different types of constants have been specified,

one to an operand. Note that the character constant 'AB' which normally

would occupy 16 bits is truncated on the right to fit the 10-bit field

designated. Note that filling occurs only at the end of the field occupied

by all the constants.

Scale Modifier: This modifier is written as Sn, where n is either a

decimal value or an absolute expression enclosed by parentheses. All

symbols in the expression must be previously defined. The decimal self-

defining term or the parenthesized expression may be preceded by a sign; if

none is present, a plus sign is assumed. The maximum values for scale

modifiers are summarized in Appendix F.

A scale modifier may be used with fixed-point (F, H) and floating-

point (E, D, L) constants only. It is used to specify the amount of

internal scaling that is desired, as follows:

Scale Modifier for Fixed-Point Constants: the scale modifier specifies the

power of two by which the constant must be multiplied after it has been

converted to its binary representation. Just as multiplication of a

5-10

decimal number by a power of i0 causes the decimal point to move,

multiplication of a binary number by a power of two causes the binary point

to move. This multiplication has the effect of moving the binary point

away from its assumed position in the binary field_ the assumed position

being to the right of the rlghtmost position.

Thus, the scale modifier indicates either of the following: (1) the

number of binary positions to be occupied by the fractional portion of the

binary number, or (2) the number of binary positions to be deleted from the

integral portion of the binary number. A positive scale of x shifts the

integral portion of the number x binary positions to the left, thereby

reserving the rightmost x binary positions for the fractional portion. A

negative scale shifts the integral portion of the number right, thereby

deleting rightmost integral positions. If a scale modifier does not

accompany a flxed-polnt constant containing a fractional part, the

fractional part is lost.

In all cases where positions are lost because of scaling (or the lack

of scaling), rounding occurs in the leftmost bit of the lost portion. The

rounding is reflected in the rightmost position saved.

Scale Modifier for Floating-Point Constants: Only a positive scale

modifier may be used with a floating-point constant. It indicates the

number of hexadecimal positions that the fraction is to be shifted to the

right. Note that this shift amount is in terms of hexadecimal positions,

each of which is four binary positions. (Aposltive scaling actually

indicates that the point is to be moved to the left. However, a floating-
i

point constant is always converted to a fraction, which is hexadecimally

normalized. The point is assumed to be at the left of the leftmost

position in the field. Since the point cannot be moved left, the fraction

is shifted right.)

Thus, scaling that is specified for a floating-point constant provides

an assembled fraction that is unnormalized, i.e., contains hexadecimal

zeros in the leftmost positions of the fraction. When the fraction is

shifted, the exponent is adjusted accordingly to retain the correct magni-

tude. When hexadecimal positions are lost, rounding occurs in the leftmost

hexadecimal position of the lost portion. The rounding is reflected in the

rlghtmost hexadecimal position saved.

EXPONENT MODIFIER: This modifier is written as En, where n is either a

decimal self-defining term or an absolute expression enclosed by paren-

theses. Any symbols in the expression must be previously defined. The

decimal value or the parenthesized expression may be preceded by a sign; if

none is present, a plus sign is assumed.

An exponent modifier may be used with fixed-point (F, H) and floating-

point (E, D, L) constants only. The modifier denotes the power of i0 by

which the constant is to be multiplied before its conversion to the proper

internal format.

5-11

This modifier is not to be confused with the exponent of the constant

itself, which is specified as part of the constant and is explained under

"Operand Subfield 4: Constant." The exponent modifier affects each

constant in the operand, whereas the exponent written as part of the

constant only pertains to that constant. Thus, a constant may be specified

with an exponent of +2, and an exponent modifier of +5 may precede the

constant. In effect, the constant has an exponent of +7.

The range for the exponent modifier is -85 through +75. However, if

there is an exponent in the constant itself (see "Floating-Point Constants

-- E, D, and L" under "Operand Subfield 4: Constant") the sum of that

exponent and the exponent modifier must be within the range -85 - +75.

Thus, an exponent modifier of -40 together with an exponent of -47 would

not be permitted.

One further limitation is that the value specified must be contained

in the implied length of the constant. Refer to "Floating Point

Arithmetic" in IBM "System/360 Principles of Operation."

Operand Subfield 4: Constant

This subfield supplied the constant (or constants) described by the

subfields that precede it. A data constant (any type except A, Y, S, Q,

and V) is enclosed by apostrophes. An address constant (type A, Y, S, Q,

or V) is enclosed by parentheses. To specify two or more constants in the

subfield, the constants must be separated by commas and the entire sequence

of constants must be enclosed by the appropriate delimiters (i.e.,

apostrophes or parentheses). Thus, the format for specifying the

constant(s) is one of the following:

Single

Constant

'constant'

(constant)

Multiple
Constants*

'constant,...,constant'

(constant,...jconstant)

*Not permitted for character, hexadecimal, and binary constants.

All constant types except character (C), hexadecimal (X), binary (B),

packed decimal (P), and zoned decimal (Z), are aligned on the proper

boundary, as shown in Appendix F, unless a length modifier is specified.

In the presence of a length modifier, no boundary alignment is performed.

If an operand specifies more than one constant, any necessary alignment

applies to the first constant only. Thus, for an operand that provides

five full-word constants, the first would be aligned on a full-word

boundary, and the rest would automatically fall on full-word boundaries.

The total storage requirement of an operand is the product of the

length times the number of constants in the operand times the duplication

factor (if present) plus any bytes skipped for boundary alignment of the

first constant. If more than one operand is present, the storage

requirement is derived by summing the requirements for each operand.

• • N

5-12

If an address constant contains a location counter reference, the

location counter value that is used is the storage address of the first

byte the constant will occupy. Thus, if several address constants in the

same instruction refer to the location counter, the value of the location

counter varies from constant to constant. Similarly, if a single constant

is specified (and it is a location counter reference) with a duplication

factor, the constant is duplicated with a varying location counter value.

The following text describes each of the constant types and provides

examples.

Character Constant -- C: Any of the valid 256 punch combinations can be

designated in a character constant. Only one character constant can be

specified per operand. Since multiple constants within an operand are

separated by commas, an attempt to specify two character constants results

in interpreting the comma separating them as a character.

Special consideration must be given to representing apostrophes and

ampersands as characters. Each single apostrophe or ampersand desired as

a character in the constant must be represented by a pair of apostrophes or

ampersands. Only one apostrophe or ampersand appears in storage.

The maximum length of a character constant is 256 bytes. No boundary

alignment is performed. Each character is translated into one byte.

Double apostrophes or double ampersands count as one character. If no

length modifier is given, the size in bytes of the character constant is

equal to the number of characters in the constant. If a length modifier is

provided, the result varies as follows:

i. If the number of characters in the constant exceeds the specified

length, as many rlghtmost bytes and/or bits as necessary are

dropped.

o If the number of characters is less than the specified length,

the excess rightmost bytes and/or bits are filled with blanks.

In the following example, the length attribute of FIELD is 12:

Name Operation Operand

FIELD DC C'TOTAL IS ii0'

However, in this next example, the length attribute is 15, and three

blanks appear in storage to the right of the zero:

5-13

Name Operation Operand

FIELD DC CLI5'TOTAL IS ii0'

In the next example, the length attribute of FIELD is 12, although 13

characters appear in the operand. The two ampersands count as only one

byte.

Name Operation Operand

FIELD DC C'TOTAL IS &&10'

Note that in the next example, a length of four has been specified,
but there are five characters in the constant.

Name Operation Operand

FIELD DC 3CL4'ABCDE'

The generated constant would be:

ABCDABCDABCD

On the other hand, if the length had been specified as six instead of

four, the generated constant would have been:

ABCDE ABCDE ABCDE

Note that the same constant could be specified as a literal.

Name Operation Operand

MVC AREA(12),z3CL4'ABCDE'

ASCII Character Constant -- I: This constant is identically the same as

the above C type constant except that an ASCII character set is used

instead of the EBCDIC. Appendix A specifies these codes.

Hexadecimal Constant -- X: A hexadecimal constant consists of one or more

of the hexadecimal digits, which are 0-9 and A-F. Only one hexadecimal

constant can be specified per operand. The maximum length of a hexadecimal

constant is 256 bytes or 512 hexadecimal digits when specified using an

explicit length attribute (for example, HEX DC XL256'FF'). However, due to

, _.... _ i ¸ _ • • ,

the assembler's syntax restriction allowing only two continuation lines per

input statement, the maxlmum length of an implicitly specified hexadecimal

operand (X'FFFFFF', etc.) is176 digits when normal statement boundaries
are used.

Constants that contain an even number of hexadecimal digits are trans-

lated as one byte per pair of digits. If an odd number of digits is

specified, the leftmost byte has the leftmost four bits filled with a

hexadecimal zero, while the rlghtmost four bits contain the odd (first)

digit. No boundary alignment is performed.

If no length modifier is given, the implied length of the constant is

half the number of hexadecimal digits in the constant (assuming that a

hexadecimal zero is added to an odd number of digits). If a length

modifier is given, the constant is handled as follows:

l. If the number of hexadecimal digit pairs exceeds the specified

length, the necessary leftmost bits (and/or bytes) are dropped.

1 If the number of hexadecimal digit pairs is less than the

specified length, the necessary bits (and/or bytes) are added to
the left and filled with hexadecimal zeros.

An eight-dlglt hexadecimal constant provides a convenient way to set

the bit pattern of a full binary word. The constant in the following

example would set the first and third bytes of a word to l's:

Name Operation Operand

DS OF

TEST DC X'FFOOFF00'

The DS instruction sets the location counter to a full word-boundary.

(See DS--Deflne Symbol.)

The next example uses a hexadecimal constant as a literal and inserts

l's into bits 24 through 31 of register 5.

Name Operation Operand

IC 5,=X'FF'

In the following example, the digit A is dropped, because five hexa-

decimal digits are specified for a length of two bytes:

5-15

Name Op erand

ALPHACON 3XL2 'A6F4E '

The resulting constant is 6F4E, which occupies the specified two

bytes. It is duplicated three times, as requested by the duplication

factor. If it had merely been specified as X'A6F4E', the resulting

constant would have a hexadecimal zero in the leftmost position.

0A6F4EOA6F4EOA6F4E

Binary Constant -- B: A binary constant is written using l's and O's

enclosed in apostrophes. Only one binary constant can be specified in an

operand. Duplication and length can be specified. The maximum length of

a binary constant is 256 bytes.

The implied length of a binary constant is the number of bytes

occupied by the constant including any padding necessary. Padding or

truncation takes place on the left. The padding bit used is a 0.

The following example shows the coding used to designate a binary

constant. BCON would have a length attribute of i.

Name

BCON

BTRUNC

BPAD

Operation

DC

DC

DC

0perand

B'II011101'

BLI'100100011'

BLI'I01'

BTRUNC would assemble with the leftmost bit truncated, as follows:

00100011

BPAD would assemble with five zeros as padding, as follows:

00000101

Fixed-Point Constants -- F and H: A fixed-point constant is written as a

decimal number, which can be followed by a decimal exponent if desired.

The number can be an integer, a fraction, or a mixed number (i.e., one with

integral and fractional portions). The format of the constant is as

follows:

l. The number is written as a signed or unsigned decimal value. The

decimal point can be placed before, within, or after the number.

If it is omitted, the number is assumed to be an integer. A

positive sign is assumed if an unsigned number is specified.

5-16

Unless a scale modifier accompanies a mixed number or fraction,

the fractional portion is lost, as explained under "Subfield 3:
Modifiers."

. The exponent is optional. If specified, it is written

immediately after the number as En, where n is an optionally

signed decimal self-deflnlng term specifying the exponent of the

factor i0. The exponent may be in the range -85 to +75. If an

unsigned exponent is specified, a plus sign is assumed. The

exponent causes the value of the constant to be adjusted by the

power of i0 that it specifies before the constant is converted to

its binary form. The exponent may exceed the permissible range

for exponents, provided that the sum of the exponent and the

exponent modifier does not exceed that range.

The number is converted to a binary number, and scaling is performed

if specified. The binary number is then rounded and assembled into the

proper field, according to the specified or implied length. The resulting

number will not differ from the exact value by more than one in the last

place. If the value of the number exceeds the length specified or implied,

the sign is lost, the necessary leftmost bits are truncated to the length

of the field, and the value is then assembled into the whole field. Any

duplication factor that is present is applied after the constant is

assembled. A negative number is carried in 2's complement form.

An implied length of four bytes is assumed for a full-word (F) and two

bytes for a half-word (H), and the constant is aligned to the proper full-

word or half-word if a length is not specified. However, any length up to

and including eight bytes can be specified for either type of constant by

a length modifier, in which case no boundary alignment occurs.

Maximum and minimum values, exclusive of scaling, for fixed-point

constants are:

Length Ma____x Mi__n_n

8 263'1 -263

4 231-1 -231

2 215-1 -215

1 27-1 -27

.4 23 -i -23

.2 21 -i -21

.i 0 -i

A field of three full-words is generated from the statement shown

below. The location attribute of CONWRD is the address of the leftmost

byte of the first word, and the length attribute is 4, the implied length

for a full-word fixed-point constant. The expression CONWRI>+4 could be

used to address the second constant (second word) in the field.

5-17

Name Operation Operand

CONWRD DC 3F'658474'

The next statement causes the generation of a two-byte field

containing a negative constant. Notice that scaling has been specified in

order to reserve six bits for the fractional portion of the constant.

Name

HALFCON

Operation

DC

Operand

HS6'-25.46'

The next constant (3.50) is multiplied by i0 to the power -2 before

being converted to its binary format. The scale modifier reserves 12 bits

for the fractional portion.

Name Operation

FULLCON DC

Operand

HSI2'3.50E-2'

The same constant could be specified as a literal:

Name Operation Operand

AH 7,=HSI2'3.50E-2'

The final example specifies three constants. Notice that the scale

modifier requests four bits for the fractional portion of each constant.

The four bits are provided whether or not the fraction exists.

Name

THREECON

Operation

DC

Operand

FS4'I0,25.3,100'

Floatin_-Point Constants -- E_ D_ and L: A floating-point constant is

written as a decimal number. As an option a decimal exponent may follow.

The number may be an integer, a fraction, or a mixed number (i.e., one with

integral and fractional portions). The format of the constant is as
follows:

5-18

i, The number is written as a signed or unsigned decimal value. The

decimal point can be placed before, within, or after the number.

If it is omitted, the number is assumed to be an integer. A

positive sign is assumed if an unsigned number is specified.

. The exponent is optional. If specified, it is written imme-

diately after the number as En, where n is an optionally signed

decimal value specifying the exponent of the factor I0. If an

unsigned exponent is specified, a plus sign is assumed. The

range of the exponent is explained under "Exponent Modifier"
above.

The external format for a floatlng-point number has two parts: the

portion containing the exponent, which is sometimes called the

characteristic, followed by the portion containing the fraction, which is

sometimes called the mantissa. Therefore, the number specified as a

floating-point constant must be converted to a fraction before it can be

translated into the proper format. Figure 5-5 shows the external format of

the three types of floating-point constants.

%H/)_ 7 _'Lf)ATJNF, POINT NIJMBE R IE)

_Z_Ar_AL

TF_BTI(_

O 7

LONG F[OATING POINT NUMBER (Dt

? 811

S CHARAC. 568_T FRACTION

0 78

F ×TENDED FLOATING POINT NUMBER 4L)

]
63

[[7 ,T/ H,GHo o 1CH_RAC 11281T FRACTION
TERISTIC

0 7 8 63

__ l LowO.oE...t_ OF J
1128_T FRACTION j

0 7 8 53

Figure 5-5. Floating-Point External Formats

The type L constant resembles two contiguous type D constants. In the

type L constant the sign of the second double word is the same as the sign

of the first. The characteristic of the second double word is equal to the

characteristic of the first minus 14, modulo 128. For information on use

of the type L constant see the "OS Assembler (F) Programmer's Guide."

For example, the constant 27.35E2 represents the number 27.35 times i0

to the 2nd. Represented as a fraction, it would be .2735 times I0 to the

4th, the exponent having been modified to reflect the shifting of the

decimal point. The exponent may also be affected by the presence of an

exponent modifier, as explained under "Operand Subfield 3: Modifiers."

5-19

Thus, the exponent is also altered before being translated into machine

format.

In machine format a floating-point number also has two parts, the

signed exponent and signed fraction. The quantity expressed by this number

is the product of the fraction and the number 16 raised to the power of the

exponent.

The exponent is translated into its binary equivalent in excess 64

binary notation and the fraction is converted to a binary number. Scaling

is performed if specified; if not, the fraction is normalized (leading

hexadecimal zeros are removed). Rounding of the fraction is then performed

according to the specified or implied length, and the number is stored in

the proper field. The resulting number will not differ from the exact

value by more than one in the last place. Within the portion of the

floatlng-point field allocated to the fraction, the hexadecimal point is

assumed tQ be to the left of the leftmost hexadecimal digit, and the

fraction occupies the leftmost portion of the field. Negative fractions

are carried in true representation, not in the two's complement form.

An implied length of four bytes is assumed for a short (E) constant

and eight bytes for a long (D)constant• An implied length of 16 bytes is

assumed for an extended (L) constant. The constant is aligned at the

proper word (E) or double word (D and L) boundary if a length is not

specified. However, any length up to and including eight bytes (E and D)

or 16 bytes (L) can be specified by a length modifier. In this case, no

boundary alignment occurs.

Any of the following statements could be used to specify 46.415 as a

positive, full-word, floatlng-point constant; the last is a machine-

instruction statement with a literal operand. Note that the last two

constants contain an exponent modifier.

Name Operation Operand

DC

DC

DC

DC

DC

AE
_----

E'46.415'

E'46415E-3'

E'+464.15E-I'

E'+.46415E+2'

EE2'.46415'

6,'EE2'.46415'

The following would each be generated as double-word
constants.

floating-point

5-20

FLOAT

Operation

DC l OperandDE+4'+46,-3.729,+473'

Decimal Constants -- P and Z: A decimal constant is written as a signed or

unsigned decimal value. If the sign is omitted, a plus sign is assumed.

The decimal point may be written wherever desired or may be omitted.

Scaling and exponent modifiers may not be specified for decimal constants.

The maximum length of a decimal constant is 16 bytes. No word boundary

alignment is performed.

The placement of a decimal point in the definition does not affect the

assembly of the constant in any way because, unlike flxed-point and

floatlng-po!nt constants, a decimal constant is not converted to its binary

equivalent. The fact that a decimal constant is an integer, a fraction, or

a mixed number is not pertinent to its generation. Furthermore, the

decimal point is not assembled into the constant. The programmer may

determine proper decimal point alignment either by defining his data so

that the point is aligned or by selecting machine-lnstructions that will

operate on the data properly (i.e., shift it for purposes of alignment).

If zoned decimal format is specified (Z), each decimal digit is trans-

lated into one byte. The translation is done according to the character

set shown in Appendix A. The rightmost byte contains the sign as well as

the rightmost digit. For packed decimal format (P), each pair of decimal

digits is translated into one byte. The rightmost digit and the sign are

translated into the rightmost byte. The bit configuration for the digits

is identical to the configurations for the hexadecimal digits 0-9 as shown

in Section 3 under "Hexadecimal Self-Definlng Value." For both packed and

zoned decimals, a plus sign is translated into the hexadecimal digit C, and

a minus sign into the digit D.

If an even number of packed decimal digits is specified, one digit

will be left unpaired because the righCmost digit is paired with the sign.

Therefore, in the leftmost byte, the leftmost four bits will be set to

zeros and the rightmost four bits will contain the odd (first) digit.

If no length modifier is given, the implied length for either constant

is the number of bytes the constant occupies (taking into account the

format, sign, and possible addition of zero bits for packed decimals). If

a length modifier is given, the constant is handled as follows:
i

l. If the constant requires fewer bytes than the length specifies,

the necessary number of bytes is added to the left. For zoned

decimal format, the decimal digit zero is placed in each added

byte. For packed decimals, the bits of each added byte are set

to zero.

5-21

. If the constant requires more bytes than the length specifies,

the necessary number of leftmost digits or pairs of digits is

dropped, depending on which format is specified.

Examples of decimal constant definitions follow.

Name Operation Operand

DC

DC

DC

DC

P'+1.25'

Z'-543'

Z'79.68'

PL3'79.68'

The following statement specifies both packed and zoned decimal con-

stants. The length modifier applies to each constant in the first operand

(i.e., to each packed decimal constant). Note that a literal could not

specify both operands.

Name Operation Operand

DECIMALS DC PL8'+25.8,-3874,

+2.3',Z'+80,-3.72'

The last example illustrates the use of a packed decimal literal.

Name Operat ion

UNPK
OUTAREA, "PL2 '+25 '

Address Constants: An address constant is a storage address that is trans-

lated into a constant. Address constants can be used for initializing base

registers to facilitate the addressing of storage. Furthermore, they

provide a means of communicating between control sections of a multisection

program. However_ storage addressing and control section communication are

also dependent on the use of the USING assembler instruction and the

loading of registers. Coding examples that illustrate these considerations

are provided in Section 3 using "Programming with the USING Instruction."

An address constant, unlike other types of constants, is enclosed in

parentheses. If two or more address constants are specified in an operand,

they are separated by commas, and the entire sequence is enclosed by

parentheses. There are five types of address constants: A, Y, S, Q and V.

A relocatable address constant may not be specified with bit lengths.

5-22

Complex Relocatable Expressions: A complex relocatable expression can only

be used to specify an A-type or Y-type address constant. These expressions

contain two or more unpaired relocatable terms and/or negative relocatable

terms in addition to any absolute or paired relocatable terms that may be

present. A complex relocatable expression might consist of external

symbols and designate an address in an independent assembly that is to be

linked and loaded with the assembly containing the address constant.

A-Type Address Constant: This constant is specified as an absolute,

relocatable, or complex relocatable expression. (Remember that an

expression may be single term or multiterm.) The value of the expression

is calculated to 32 bits as explained in Section 2 with one exception: the

maximum value of the expresslonmay be 231-1. The value is then truncated

on the left, if necessary, to the specified or implied length of the field

and assembled into the rightmost bits of the field. The implied length of

an A-type constant is four bytes, and alignment is to a full-word boundary

unless a length is specified, in which case no alignment will occur. The

length that may be specified depends on the type of expression used for the

constant; a length of .i to 4 bytes may be used for an absolute expression,

while a length of only 3 or 4 may be used for a relocatable or complex

relocatable expression.

In the following examples, the field generated from the statement

named ACON contains four constants, each of which occupies four bytes.

Note that there is a location counter reference in one. The value of the

location counter will be the address of the first byte allocated to the

fourth constant. The second statement shows the same set of constants

specified as literals (i.e., address constant llterals).

Name Operation Operand

ACON DC A(108,LOP,END-STRT,*+4096)

LM 4,7,-A(108,LOP,END-STRT,*+4096)

Note: When the location counter reference occurs in a literal, as in the LM

instruction above, the value of the location counter is the address of the

first byte of the instruction.

Y-Type Address Constant: A Y-type address constant has much in common with

the A-type constant. It too is specified as an absolute, relocatable, or

complex relocatable expression. The value of the expression is also

calculated to 32 bits as explained in Section 2. However, the maximum

value of the expression may be only 215-1. The value is then truncated, if

necessary, to the specified or implied length of the field and assembled

into the rightmost bits of the field. The implied length of a Y-type

constant is two bytes, and alignment is to a half-word boundary unless a

length is specified, in which case no alignment will occur. The maximum

length of a Y-type address constant is two bytes. If length specification

5-23

is used, a length of two bytes may be designated for a relocatable or

complex expression and .i to 2 bytes for an absolute expression.

Warning: Specification of relocatable Y-type address constants should be

avoided in programs destined to be executed on machines having more than

32,767 bytes of storage capacity. In any case Y-type relocatable address

constants should not be used in programs to be executed under Operating
System/360 control.

W-Type Address Constant: A W-type address constant is identical with the

Y-type except that maxlmum value can be 215 as opposed to the 215-1 allowed

by the Y-type.

S-Type Address Constant: The S-type address constant is used to store an

address in base-dlsplacement form.

The constant may be specified in two ways:

i. As an absolute or relocatable expression, e.g., S(BETA)

. As two absolute expressions, the first of which represents the

displacement value and the second, the base register, e.g.,
s (4o0 (13)).

The address value represented by the expression in (i) will be

converted by the assembler into the proper base register and displacement

value. An S-type constant is assembled as a half word and aligned on a

half-word boundary. The leftmost four bits of the assembled constant

represents the base register designation, the remaining 12 bits the

displacement value.

If length specification is used, only two bytes may be specified. S-

type address constants may not be specified as llterals.

Q-Type Address Constant (Assembler F only): This constant is used to

reserve storage for the offset of an external dummy section. This offset

is added to the address of the block of storage allocated to external dummy

sections to access the desired section. The constant is specified as a

relocatable symbol which has been previously defined in a DXD or DSECT

statement. The implied lengt h of a Q-type address constant is four bytes

and boundary alignment is to a full-word; a length of 1-4 bytes may be

spec_fled. No bit length specification is permitted in a Q-type constant.

In the following example the constant VALUE has been previously defined in

a DXD or DSECT statement. To access VALUE the value of A is added to the

base address of the block of storage allocated for external dummy sections.

Q-type address constants may not be specified in literals.

5-24

t •

Name Operation Operand

A DC Q (VALUE)

V-Type Address Constant: This constant is used to reserve storage for the

address of an external symbol that is used for effectlng branches to other

programs. The constant may not be used for external data references within

an overlay program. The constant is specified as one relocatable symbol,

which neednot be identified by an EXTRN statement. Whatever symbol is

used is assumed to be an external symbol by virtue of the fact that it is

supplied in a V-type address constant.

To suppress the automatic library call mechanism of the linkage editor

for a constant identified in a V-type address constant, the programmer can

identify it in a WXTRN statement (Assembler F only).

Note that specifying a symbol as the operand of a V-type constant does

not constitute a definition of the symbol for this assembly. The implied

length of a V-type address constant is four bytes, and boundary alignment

is to a full-word. A length modifier may be used to specify a length of

either three or four bytes_ in which case no such boundary alignment

occurs. In the following example, 12 bytes will be reserved because there

are three symbols. The value of each assembled constant will be zero until

the program is loaded. It must be emphasized that a V-type address

constant of length less than 4 can and will be processed by the Assembler

but cannot be handled by the Linkage Editor.

Name I OperationVCONST DC

Operand

V(SORT,MERGE,CALC)

DS -- DEFINE STORAGE

The DS instruction is used to reserve areas of storage and to assign

names to those areas. The use of this instruction is the preferred way of

symbolically defining storage for work areas, Input/output areas, etc. The

size of a storage area that can be reserved by using the DS instruction is

limited only by the maximum value of the location counter.

5-25

Name Operation Operand

DSAny symbol

or blank

One or more operands

separated by commas,

written in the forma_

described in the fol-

lowing text

The format of the DS operand is identical to that of the DC operand;

exactly the same subfields are employed and are written in exactly the same

sequence as they are in the DC operand. Although the formats are

identical, there are two differences in the specification of subfields.

They are:

i. The specification of data (subfield 4) is optional in a DS

operand, but it is mandatory in a DC operand. If the constant is

specified, it must be valid.

. The maximum length that may be specified for character (C) and

hexadecimal (X) field types is 65,535 bytes rather than 256

bytes.

If a DS operand specifies a constant in subfield 4, and no length is

specified in subfield 3, the assembler determines the length of the data

and reserves the appropriate amount of storage. It does not assemble the

constant. The ability to specify data and have the assembler calculate the

storage area that would be required for such data is a convenience to the

programmer. If he knows the general format of the data that will be placed

in the storage area during program execution, all he needs to do is show it

as the fourth subfield in a DS operand. The assembler then determines the

correct amount of storage to be reserved, thus relieving the programmer of

length considerations.

If the DS instruction is named by a symbol, its value attribute is the

location of the leftmost byte of the reserved area. The length attribute

of the symbol is the length (implied or explicit) of the type of data

specified. Should the DS have a series of operands, the length attribute

for the symbol is developed from the first item in the first operand. Any

positioning required for aligning the storage area to the proper type of

boundary is done before the address value is determined. Bytes skipped for

alignment are not set to zero.

Each field type (e.g., hexadecimal, character, floating-point) is

associated with certain characteristics (these are summarized in Appendix

F). The associated characteristics will determine which field-type code

the programmer selects for the DS operand and what other information he

adds, notably a length specification or a duplication factor. For example,

the E floating-polnt field and the F flxed-point field both have an implied

length of four bytes. The leftmost byte is aligned to a full-word

5-26

boundary. Thus, either code could be specified if it were desired to

reserve four bytes of storage aligned to a full-word boundary. To obtain

a length of eight bytes, one could specify either the E or F field type

with a length modifier of eight. However, a duplication factor would have

to be used to reserve a larger area, because the maximum length speci-

fication for either type is eight bytes. Note also that specifying length

would cancel any special boundary alignment.

In contrast, packed and zoned decimal (P and Z), character (C), hexa-

decimal (X), and binary (B) fields have an implied length of one byte. Any

of these codes, if used, would have to be accompanied by a length modifier,

unless Just one byte is to be reserved. Although no alignment occurs, the

use of C and X field types permits greater latitude in length

specifications, the maximum for either type being 65,535 bytes. (Note that

thls differs from the maximum for these types in a DC instruction.) Unless

a fleld of one byte is desired, either the length must be specified for the

C, X, P, Z, or B field types, or else the data must be specified (as the

fourth subfleld), so that the assembler can calculate the length.

To define four 10-byte fields and one 100-byte field, the respective

DS statements might be as follows:

Name Operation Operand

FIELD DS 4CLI0

AREA DS CLI00

Although FIELD might have been specified as one 40-byte field, the

preceding definition has the advantage of providing FIELD with a length

attribute of i0. This would be pertinent when using FIELD as an SS

machlne-instruction operand.

Additional examples of DS statements are shown below:

Name Operation Operand

ONE

TWO

THREE

FOUR

FIVE

DS

DS

DS

DS

DS

CL80(one 80-byte field,

length attribute of 80

80C(80 one-byte fields,

length attribute of one

6F(six full words, length

attribute of four)

D(one double word, length

attribute of eight)

4H(four half-words,length

attribute of two)

5-27

Note: ADS statement causes the storage area to be reserved but not set to

zeros. No assumption should be made as to the contents of the reserved

area.

Special Uses of the DuplicationFactor

FORCING ALIGNMENT: The location counter can be forced to a double-word,

full-word, or half-word boundary by using the appropriate field type (e.g.,

D, F, or H) with a duplication factor of zero. This method may be used to

obtain boundary alignment that otherwise would not be provided. For

example, the following statements would set the location counter to the

next double-word boundary and then reserve storage space for a 128-byte

field (whose leftmost byte would be on a double-word boundary).

Name1 0peratiOnDS J0D_OperandARF_A DS CL128

DEFINING FIELDS OF AN AREA: ADS instruction with a duplication factor of

zero can be used to assign a name to an area of storage without actually

reserving the area. Additional DS and/or DC instructions may then be used

to reserve the area and assign names to fields within the area (and

generate constants if DC is used).

For example, assume that 80-character records are to be read into an

area for processing and that each record has the following format:

Positions 5-10

Positions 11-30

Positions 31-36

Positions 47-54

Positions 55-62

Payroll Number

Employee Name

Date

Gross Wages

Withholding Tax

The following example illustrates how DS instructions might be used to

assign a name to the record area, then define the fields of the area and

allocate the storage for them. Note that the first statement names the

entire area by defining the symbol RDAREA; the statement gives RDAREA a

length attribute of 80 bytes, but does not reserve any storage. Similarly,

the fifth statement names a slx-byte area by defining the symbol DATE; the

three subsequent statements actually define the fields of DATE and allocate

storage for them. The second, ninth, and last statements are used for

spacing purposes and, therefore, are not named.

5-28

t

Name Operation Operand

RDAREA

PAYNO

NAME

DATE

DAY

MONTH

YEAR

GROSS

FEDTAX

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

DS

0CLgO

CL4

CL6

CL20

OCL6

CL2

CL2

CL2

CLIO

CL8

CL8

CLI8

LISTING CONTROL INSTRUCTIONS

The listing control instructions are" used to identify an assembly

listing and assembly output cards, to provide blank lines in an assembly

listing, and to designate how much detail is to be included in an assembly

listing. In no case are instructions or constants generated in the object

program. Listing control statements with the exception of PRINT are not

printed in the listing.

NOTE: TITLE, SPACE, and EJECT statements will not appear in the source

listing unless the statement is continued onto another card. Then the

first card of the statement is printed. However, any of these three types

of statements, if generated as macro instruction expansion, will never be

listed regardless of continuation.

TITLE -- IDENTIFY ASSEMBLY OUTPUT

The TITLE instruction enables the programmer to identify the assembly

listing and assembly output cards. The format of the TITLE instruction

statement is as follows:

Name Operation Operand

TITLESpecial,

sequence

or variable

symbol or

blank

A sequence of char-

acters, enclosed in

apostrophes

The name field may contain a special symbol of from one to four

alphabetic or numeric characters in any combination. The contents of the

name field are punched into columns 73-76 of all the output cards for the

5-29

• I

program except those produced by the PUNCH and REPRO assembler

instructions. Only the first TITLE statement in a program may have a

special symbol or a variable symbol in the name field. The name field of

all subsequent TITLE statements must contain either a sequence symbol or a

blank.

The operand field may contain up to i00 characters enclosed in apos-

trophes. Special consideration must be given to representing apostrophes

a1_ ampersands as characters. Each single apostrophe or ampersand desired

as a character in the constant must be represented by a pair of apostrophes

or ampersands. Only one apostrophe or ampersand appears in storage• The

contents of the operand field are printed at the top of each page of the

assembly llsting.

A program may contain more than one TITLE statement. Each TITLE

statement provides the heading for pages in the assembly listing that

follow it, until another TITLE statement is encountered. Each TITLE

statement causes the listing to be advanced to a new page (before the

heading is printed).

For example, if the following statement is the first TITLE statement

to appear in a program:

D_

Name Operation Operand

PGMI TITLE I 'FIRST HEADING'

then PGMI is punched into all of the output cards (columns 73-76) and this

heading appears at the top of each subsequent page: PGMI FIRST HEADING.

If the following statement occurs later in the same program:

Name Operation Operand

TITLE 'A NEW HEADING'

then, PGMI is still punched into the output cards, but each following page

begins with the heading: PGMI A NEW HEADING.

Note: The sequence number of the cards in the output deck is contained in

columns 77-80.

EJECT -- START NEW PAGE

The EJECT instruction causes the next line of the listing to appear at

the top of a new page. This instruction provides a convenient way to

separate routines in the program listing. The format of the FTECT

instruction statement is as follows:

5-30

Name

A sequence

symbol or

blank

Operation I Operand

EJECT

I blank

Not used; should be

If the line before the EJECT statement appears at the bottom of a

page, the EJECT statement has no effect. Two EJECT statements may be used

in succession to obtain a blank page. A TITLE instruction followed

immediately by an EJECT instruction will produce a page with nothing but

the operand entry (if any) of the TITLE instruction. Text following the

EJECT instruction will begin at the top of the next page.

SPACE -- SPACE LISTING

The SPACE instruction is used to insert one or more blank lines in the

listing. The format of the SPACE instruction statement is as follows:

Name

A sequence

symbol

or blank

Operation

SPACE

Operand

A decimal value or

blank

A decimal value is used to specify the number of blank lines to be

inserted in the assembly listing. A blank operand causes one blank line to

be inserted. If this value exceeds the number of lines remaining on the

listing page, the statement will have the same effect as an EJECT

statement.

PRINT -- PRINT 0PTIONALDATA

The PRINT instruction is used to control printing of the assembly

listing. The format of the PRINT instruction statement is:

Name

A sequence

symbol or
blank

Operation

PRINT

0perand

One to three

operands

The one to three operands may include an operand from each of the

following groups in any sequence:

i. ON - A listing is printed.

5-31

• q

OFF - No listing is printed.

. GEN All statements generated by macro-instructions are

printed.

NOGEN Statements generated by macro-instructions are not

printed with the exception of MNOTE, which will

print regardless of NOGEN. However, the macro-

instruction itself will appear in the listing.

3. DATA - Constants are printed out in full in the listing.

4. NODATA - Only the leftmost eight bytes are printed on the

listing.

A program may contain any number of PRINT statements. A PRINT

statement controls the printing of the assembly listing until another PRINT

statement is encountered. Each option remains in effect until the corres-

ponding opposite option is specified.

Until the first PRINT statement (if any) is encountered, the following

is assumed:

Name I 0peratlOnpRINT

Operand

ON,NODATA,GEN

For example, if the statement:

Name Operation Operand

DC XL256'00'

appears in a program, 256 bytes of zeros are assembled. If the statement:

l!ime-- OperationPRINT OperandDATA

is the last PRINT statement to appear before the DC statement, all 256

bytes of zeros are printed in the assembly listing. However, if:

5-32

Operation

PRINTI Name

i Operand

is the last PRINT statement to appear before the DC statement, only eight

bytes of zeros are printed in the assembly listing.

Whenever an operand is omitted, it is assumed to be unchanged and

continues according to its last specification.

The hierarchy of print control statements is:

i. ON and OFF

2. GEN and NOGEN

3. DATA and NODATA

Thus with the following statement nothing would be printed.

Name Operation

PRINT

PROGRAM CONTROL INSTRUCTIONS

I Operand

OFF_DATA,GEN

The program control instructions are used to specify the end of an

assembly, to set the location counter to a value or word boundary, to

insert previously written coding in the program, to specify the placement

of literals in storage, to check the sequence of input cards, to indicate

statement format, and to punch a card. Except for the CNOP and COPY

instructions, none of these assembler instructions generate instructions or

constants in the object program.

ICTL -- INPUT FORMAT CONTROL

The ICTL instruction allows the programmer to alter the normal format

of his source program statements. The ICTL statement must precede all

other statements in the source program and may be used only once. The
format of the ICTL instruction statement is as follows:

5-33

Name

Blank

Operation

ICTL

Operand

1-3 declmal self-

defining values of

the form b,e,c

Operand b specifies the begin column of the source statement. It must

always be specified, and must be within 1-40, inclusive. Operand e

specifies the end column of the source statement. The end column, when

specified, must be within 41-80, inclusive; when not specified, it is

assumed to be 71. The end column must not be less than the begin column
+5. The column after the end column is used to indicate whether the next

card is a continuation card. Operand c specifies the continue column of

the source statement. The continue column, when specified, must be within

2-40 and must be greater than b. If the continue column is not specified,

or if column 80 is specified as the end column, the assembler assumes that

there are no continuation cards, and all statements are contained on a

single card. The operand forms b,,c and b, are invalid.

If no ICTL statement is used in the source program, the assembler

assumes that i, 71, and 16 zre the begin, end, and continue columns,

respectively.

The next example designates the begin column as column 25. Since the

end column is not specified, it is assumed to be column 71. No

continuation cards are recognized because the continue column is not

specified.

Name ___I OperatiOnicTL

Operand

25

ISEQ -- INPUT SEQUENCE CHECKING

The ISEQ instruction is used to check the sequence of input cards. (A

sequence error is considered serious, but the assembly is not terminated.)

The format of the 1SEQ instruction statement is as follows:

Name

Blank

Operation

ISEQ

Operand

Two decimal self-

defining values of

the form l,r;or blank

5-34

• I

The operands i and r, respectively, specify the leftmost and rightmost

columns of the field in the input cards to be checked. Operand r must be

equal to or greater than operand i. Columns to be checked must not be

between the begin and end columns.

Sequence checking begins with the first card following the ISEQ

statement. Comparison of adjacent cards makes use of the eight-bit

internal collating sequence. (See Appendix A.) Each card checked must be

higher than the preceding card.

An ISEQ statement with a blank operand terminates the operation.

(Note that this ISEQ statement is also sequence checked.) Checking may be

resumed with another ISEQ statement.

Sequence checking is only performed on statements contained in the

source program. Statements inserted by the COPY assembler-instruction or

generated by a macro-instruction are not checked for sequence. Also macro-

definitions in a macro library are not checked.

PUNCH -- PUNCH A CARD

The PUNCH assembler-instruction causes the data in the operand to be

punched into a card. One PUNCH statement produces one punched card. As

many PUNCH statements may be used as are necessary. The format is:

Name

A sequence

symbol or
blank

Operation

PUNCH

Operand

i to 80 characters

enclosed in apos-

trophes

Using character representation, the operand is written as a string of

up to 80 characters enclosed in apostrophes. All characters, including

blank, are valid. The position immediately to the right of the left

apostrophe is regarded as column one of the card to be punched.

Substitution is performed for variable symbols in the operand. Special

consideration must be given to representing apostrophes and ampersands as

characters. Each apostrophe or ampersand desired as a character in the

constant must be represented by a pair of apostrophes or ampersands. Only

one apostrophe or ampersand appears in storage.

PUNCH statements may occur anywhere within a program, except before

macro definitions. They may occur within a macro definition but not

between the end of a macro definition and the beginning of the next macro

definition. If a PUNCH statement occurs before the first control section,

the resultant card will precede all other cards in the object program card

deck; otherwise the card will be punched in place. No sequence number or

identification is punched in the card.

5-35

REPRO-- REPRODUCE FOLLOWING CARD

The REPRO assembler-instruction causes data on the following statement

line to be punched into a card. The data is not processed; it is punched

in a card: and no substitution is performed for variable symbols. No

sequence number or identification is punched on the card. One REPRO

instruction produces one punched card. The REPRO instruction may not

appear before a macro definition. REPRO statements that occur before all

statements composing the first or only control section will punch cards

which precede all other cards of the object deck. The format is:

Name

A sequence

symbol or
blank

Operation

REPRO

Operand

Blank

The line to be reproduced may contain any combination of up to 80

valid characters. Characters may be entered starting in column 1 and

continuing through column 80 of the line. Column i of the line corresponds
to column i of the card to be punched.

ORG SET LOCATION COUNTER

The 0RG instruction is used to alter the setting of the location

counter for the current control section. The format of the ORG instruction
statement is:

Name

A sequence

symbol or

blank

Operation

0RG

Operand

A relocatabie ex-

pression or blank

Any symbols in the expression must have been previously defined. The

unpaired relocatable symbol must be defined in the same control section in

which the ORG statement appears.

The location counter is set to the value of the expression in the

operand. If the operand is omitted, the location counter is set to the

next available (unused) location for that control section.

An ORG statement cannot be used to specify a location below the

beginning of the control section in which it appears. The following is

invalid if it appears less than 500 bytes from the beginning of the current
control section.

5-36

Name Operat ion Operand

ORG *-500

If it is desired to reset the location counter to the next available

byte in the current control section, the following statement would be used:

Name Operation Operand

ORG

If previous ORG statements have reduced the location counter for the

purpose of redefining a portion of the current control section, an ORG

statement with an omitted operand can then be used to terminate the effects

of such statements and restore the location counter to its highest setting.

Note: Through use of the ORG statement two instructions may be given the

same location counter values. In such a case the second instruction will

not always eliminate the effects of the first instruction. Consider the

following example:

ADDR DC A(LOC)

ORG *-4

B DC C wBETAt

In this example the value of B (BETA) will be destroyed by the relocation

of ADDR during linkage editing.

LTORG -- BEGIN LITERAL POOL

The LTORG instruction causes all literals since the previous LTORG (or

start of the program) to be assembled at appropriate boundaries starting at

the first double-word boundary following the LTORG statement. If no

llterals follow the LTORG statement, alignment of the next instruction

(which Is not an LTORG instruction) wlll occur. Bytes skipped are not
zeroed. The format of the LTORG instruction statement Is:

Name Operation

Symbol LTORG

or Blank

Operand

Not Used

The symbol represents the address of the first byte of the literal

pool. It has a length attribute of i.

5-37

The literal pool is organized into four segments within which the

llterals are stored in order of appearance, dependent on the divisibility

properties of their object lengths (dup factor times total explicit or

implied length). The first segment contains all literals whose object

length is a multiple of eight. Those remaining literals with lengths

divisible by four are stored in the second segment. The third segment

holds the remaining even-length literals. Any literals left over have odd

lengths and are stored in the fourth segment.

Since each literal pool begins at a double-word boundary, this

guarantees that all segment one literals are double-word, segment two full-

word, and segment three half-word aligned, with no space wasted except,

possibly, at the pool origin.

Literals from the following statement are in the pool, in the segments

indicated by the circled numbers, where_ means multiple of eight, etc.,

MVC A(12),'3F'I'

SH 3,mH'2 ' Q

LM 0,3,ffi2F'l,2'

IC 2,mXLI'I' O

AD 2,'D'2'

Special Addressin_ Consideration

Any literals used after the last LTORG statement in a program are

placed at the end of the first control section. If there are no LTORG

statements in a program, all literals used in the program are placed at the

end of the first control section. In these circumstances the programmer

must ensure that the first control section is always addressable. This

means that the base address register for the first control section should

not be changed through usage in subsequent control sections. If the

programmer does not wish to reserve a register for this purpose, he may

place an LTORG statement at the end of each control section thereby

ensuring that all literals appearing in that section are addressable.

Duplicate Literals

If duplicate literals occur within the range controlled by one LTORG

statement, only one literal is stored. Literals are considered duplicates

only if their specifications are identical. A literal will be stored, even

if it appears to duplicate another literal, if it is an A-type address

constant containing any reference to the location counter.

The following examples illustrate how the assembler stores pairs of

literals, if the placement of each pair is controlled by the same LTORG
statement.

X'FO'

C'O'

Both are stored

5-38

XL3'O'

HL3'0'

A(*+4)

A(*+4)

X'FFFF'

X'FFFF'

Both are stored

Both are stored

Identical; the first is stored

CNOP -- CONDITIONAL NO OPERATION

The CNOP instruction allows the programmer to align an instruction at

a specific half-word boundary. If any bytes must be skipped in order to

align the instruction properly, the assembler ensures an unbroken

instruction flow by generating no-operatlon instructions. This facility is

useful in creating calling sequences consisting of a linkage to a

subroutine followed by parameters such as channel command words (CCW).

The CNOP instruction ensures the alignment of the location counter

setting to a half-word, word, or double-word boundary. If the location

counter is already properly aligned, the CNOP instruction has no effect.

If the specified alignment requires the location counter to be incremented,

one to three no-operation instructions are generated, each of which uses

two bytes.

The format of the CNOP instruction statement is as follows:

Name

A sequence

symbol or

blank

Operation

CNOP

Operand

Two absolute ex-

pressions of the

form b,w

Any symbols used in the expressions in the operand field must have

been previously defined,

Operand b specifies at which byte in a word or double word the

location counter is to be set; b can be 0, 2, 4, or 6. Operand w specifies

whether byte b is in a word (w-4) or double word (w-8). The following

pairs of b and w are valid:

5-39

b,w Specifies

0,4

2,4

0,8

2,8

4,8

6,8

Beginning of a word
Middle of a word

Beginning of a double word

Second half-word of a double-word

Middle (third half-word) of a double-word

Fourth half-word of a double-word

Figure 5-6 shows the position in a double word that each of these

pairs specifies. Note that both 0,4 and 2,4 specify two locations in a
double-word.

Double Word

Word Word

Half Word Half Word

Byte Byte ByteByte Byte

Half Word

Byte] Byte

Half Word

Byte

0,4 2,4 0,4 2,4

0,8 2,8 4,8 _ 6,8

Figure 5-6. CNOP Alignment

Assume that the location counter is currently aligned at a double-word

boundary. Then the CNOP instruction in this sequence:

Name Operation Operand

CNOP 0,8

BALR 2,14

has no effect; it is merely printed in the assembly listing. However, this

sequence:

Name Operation Operand

CNOP

B_ALR

6,8
2,14

causes three branch-on-conditlons (no-operations) to be generated, thus

aligning the BALR instruction at the last half-word in a double-word as

follows:

5-40

\

Name Operation 0perand

BCR

BCR

BCR

BALR

0,0

0,0

0,0

2,14

After the BALR instruction is generated, the location counter is at

double-word boundary, thereby ensuring an unbroken instruction flow.

COPY -- COPY PREDEFINED SOURCE CODING

The COPY instruction obtains source-language coding from a library and

includes it in the program currently being assembled. The format of the
COPY instruction statement is as follows:

Name Operation Operand

Blank COPY One symbol

The operand is a symbol that identifies a partitioned data set member

to be copied from either the system macro library or a user library

concatenated to it. Inserting code in the library to be copied later is

performed by the IEBUPDAT or IEBUPDTE routines, details of which are
covered in the "OS Utilities."

The assembler inserts the requested coding immediately after the COPY

statement is encountered. The requested coding may not contain any COPY,

END, ICTL, ISEQ, MACRO, or MEND statements.

If identical COPY statements are encountered, the coding they request

is brought into the program each time. All statements included in the

program via COPY are processed using the standard format regardless of any

ICTL instructions in the program. (For a further discussion of COPY see

Section 7.)

END -- END ASSEMBLY

The END instruction terminates the assembly of a program. It may also

designate a point in the program or in a separately assembled program to

which control may be transferred after the program is loaded. The END

instruction must always be the last statement in the source program. A

literal may not be used. If an external symbol is used in the expression,

the value of the expression must be O.

5-41

The format of the END instruction statement is as follows:

Name Operation Operand

Blank END A relocatable ex-

pression or blank

The operand specifies the point to which control may be transferred

when loading is complete. This point is usually the first machine-

instruction in the program, as shown in the following sequence•

NAME

AREA

BEGIN

Operation

CSECT

DS

BALR

USING

END

Operand

50F

2,0

*,2

BEGIN

Note: Editing errors in system macro definitions (macro definitions

included in a macro library) are discovered when the macro definitions are

read from the macro library. This occurs after the END statement has been

read. They will therefore be flagged after the END statement• If the

programmer does not know which of his system macros caused an error, it is

necessary to punch all system macro definitions used in the program,

including inner macro definitions, and insert them in the source program as

programmer macro definitions, since programmer macro definitions are

flagged in-line. To aid in debugging it is advisable to test all macro

definitions as programmer macro definitions before incorporating them in

the library as system macro definitions•

k

5-/,2

PART II -- THE MACRO LANGUAGE

SECTION 6:

SECTION 7:

SECTION 8:

SECTION 9:

SECTION i0:

INTRODUCTION TO THE MACRO LANGUAGE

HOW TO PREPARE MACRO DEFINITIONS

HOW TO WRITE MACRO INSTRUCTIONS

HOW TO WRITE CONDITIONAL ASSEMBLY INSTRUCTIONS

EXTENDED FEATURES OF THE MACRO LANGUAGE

SECTION 6 : INTRODUCTION TO THE MACRO LANGUAGE

The Operating System/360 macro language is an extension of the

Operating System/360 assembler language. It provides a convenient way to

generate a desired sequence of assembler language statements many times in

one or more programs. The macro-deflnltion is written only once, and a

single statement, a macro-instruction statement, is written each time a

programmer wants to generate the desired sequence of statements.

This facility simplifies the coding of programs, reduces the chance of

programming errors, and ensures that standard sequences of statements are

used to accomplish desired functions.

An additional facility, called conditional assembly, allows one to

code statements which may or may not be assembled, depending upon

conditions evaluated at assembly time. These conditions are usually tests

of values, which may be defined, set, changed, and tested during assembly.

The conditional assembly facilty may be used without using macro-

instruction statements.

THE MACRO-INSTRUCTION STATEMENT.

A macro-instructlon statement (hereafter called a macro-instruction)

is a source program statement. The assembler generates a sequence of

assembler language statements for each occurrence of the same macro-

instruction. The generated statements are then processed llke any other

assembler language statement.

Macro -instructions can be tested by placing them before the assembly

cards of a test program.

Three types of macro-instructlons may be written. They are

positional, keyword, and mlxed-mode macro-instructlons. Positional macro-

instructlons permit the programmer to write the operands of a macro-

instruction in a fixed order. Keyword macro-instructlons permit the

programmer to write the operands of a macro-instruction in a variable

order. Mixed-mode macro-instructions permit the programmer to use the

features of both positional and keyword macro-instructions in the same

macro-instructlon.

THE MACRO-DEFINITION

A macro-definltion is a set of statements that provides the assembler

with: (i) the mnemonic operation code and the format of the macro-

instruction, and (2) the sequence of statements the assembler generates

when the macro-instruction appears in the source program.

Every macro-deflnition consists of a macro-definition header

statement, a macro-instruction prototype statement, one or more model

6-1

statements, COPY statements, MEXIT, MNOTE, or conditional
instructions, and a macro-definition trailer statement.

assembly

The macro-definition header and trailer statements indicate to the
assembler the beginning and end of a macro-definitlon.

The macro-lnstructlon prototype statement specifies the mnemonic
operation code and the type of the macro-lnstructlon.

The model statement_ are used by the assembler
assembler language statements that replace each occurrence
instruction.

to generate the
of the macro-

The COPYstatements maybe used to copy model statements, MEXIT, MNOTE
or conditional assembly instructions from a system library into a macro-
definition.

The MEXITinstruction can be used to terminate processing of a macro-
definition.

The MNOTEinstruction can be used to generate an error messagewhen
the rules for writing a particular macro-lnstructlon are violated.

The conditional assembly instructions maybe used to vary the sequence
of statements generated for each occurrence of a macro-instructlon.
Conditional assembly instructions may also be used outside macro-
definitions, i.e., amongthe assembler language statements in the program.

THE MACRO LIBRARY

The same macro-definition may be made available to more than one

source program by placing the macro-definition in the macro library. The

macro library is a collection of macro-deflnitions that can be used by all

the assembler language programs in an installation. Once a macro-

definition has been placed in the macro library it may be used by writing

its corresponding macro-lnstructlon in a source program. Macro-definitions

must be in the system macro library under the same name as the prototype.

The procedure for placing macro -definitions in the macro library is

described in the Utilities publication.

SYSTEM AND PROGRAMMER MACRO-DEFINITIONS

A macro-definitlon included in a source deck is called a programmer

_cro-deflnltlon, One residing in a macro library is called a system macro-

definition. There is no difference in function. If a programmer macro is

included in a macro library, it becomes a system macro-deflnltion, and if

a system macro -definition is punched and included in a source deck it

becomes a programmer macro-deflnition.

6-2

System and programmermacroswill be expanded the same, but syntax

errors are handled differently. In programmer macros, error messages are

attached to the statements in error. In system macros, however, error

messages cannot be associated with the statement in error because these
macros are located and edited after the entire source deck has been read.

Therefore, the error messages are associated with the END statement.

Because of the difficulty of finding syntax errors in system macros,

a macro-deflnltion should be run and "debugged" as a programmer macro

before it is placed in a macro library.

SYSTEM MACRO INSTRUCTIONS

The macro-instructions that correspond to macro-deflnltions prepared

by IBM are called system macro-instructlons. System macro-instructlons are

described in "OS Supervisor Services and Macro Instructions," and "OS Data

Management Macro Instructions."

VARYING THE GENERATED STATEMENTS

Each time a macro-lnstructlon appears in the source program it is

replaced by the same sequence of assembler language statements.

Conditional assembly instructions, however, may be used to vary the number

and format of the generated statements.

VARIABLE SYMBOLS

A variable symbol is a type of symbol that is assigned different

values by either the programmer of the assembler. When the assembler uses

a macro-deflnltion to determine what statements are to replace a macro-

instruction, variable symbols in the model statements are replaced with the

values assigned to them. By changing the values assigned to variable

symbols the programmer can vary parts of the generated statements.

A variable symbol is written as an ampersand followed by from one

through seven letters and/or digits, the first of which must be a letter.

Elsewhere, two ampersands must be used to represent an ampersand.

Types of Variable Symbols

There are three types of variable symbols: Symbolic parameters,

system variable symbols, and SET symbols. The SET symbols are further

broken down into SETA symbols, SETB symbols, and SETC symbols. The three

types of variable symbols differ in the way they are assigned values.

Assigning Values to Variable Symbols

Symbolic parameters are assigned values by the programmer each time he

writes a macro-instruction.

6-3

Systemvariable symbols are assigned values by the assembler each time

it processes a macro-instruction.

SET symbols are assigned values by the programmer by means of

conditional assembly instructions.

Global SET Symbols

The values assigned to SET symbols in one macro-definition may be used

to vary the statements that appear in other macro-deflnltlons. All SET

symbols used for this purpose must be defined by the programmer as global

SET symbols. All other SET symbols (i.e., those which may be used to vary

statements that appear in the same macro-definitlon) must be defined by the

programmer as local SET symbols. Local SET symbols and the other variable

symbols (that is, symbolic parameters and system variable symbols) are

local variable symbols. Global SET symbols are global variable symbols.

ORGANIZATION OF THIS PART OF THE PUBLICATION

Sections 7 and 8 describe the basic rules for preparing macro-

definitions and for writing macro-lnstructions.

Section 9 describes the rules for writing conditional assembly
instructions.

Section i0 describes additional features of the macro language,

including rules for defining global SET symbols, preparing keyword and

mlxed-mode macro-deflnitlons, and writing keyword and mlxed-mode macro-
instructions.

Appendix G contains a reference summary of the entire macro language.

Examples of the features of the language appear throughout the

remainder of the publication. These examples illustrate the use of

particular features. However, they are not meant to show the full

versatility of these features.

6-4

SECTION 7: HOW TO PREPARE MACRO-DEFINITIONS

A macro-definltlon consists of:

i. A macro-definition header statement.

2. A macro-instruction prototype statement.

. Zero or more model statements, COPY statements, MEXIT, MNOTE, or

conditional assembly instructions.

4. A macro-definition trailer statement.

Except for MEXIT, MNOTE, and conditional assembly instructions, this

section of the publication describes all of the statements that may be used

to prepare macro-definitions. Conditional assembly instructions are de-
scribed in Section 9. MEXIT and MNOTE instructions are described in

Section i0.

Macr0-definitions appearing in a source program must appear before all

PUNCH and REPRO statements and all statements which pertain to the first

control section. Specifically, only the listing control instructions

(EJECT, PRINT, SPACE, and TITLE), OPSYN, ICTL, and ISEQ instructions, and

comments statements can occur before the macro-definitions. All but the

ICTL and OPSYN instruction can appear between macro-definitions if there is

more than one definition in the source program. Conditional assembly,

substitution, and sequence symbols cannot be used in front of or between

macro definitions.

A macro-deflnition cannot appear within a macro-definition and the

maximum number of continuation cards for a macro-definition statement is

two.

MACRO -- MACRO-DEFINITION HEADER

The macro-deflnltion header statement

macro-deflnition. It must be the first

definition. The format of this statement is:

indicates the beginning of a

statement in every macro-

Name

Blank

 Operatlon
Operand

Blank

MEND -- MACRO-DEFINITION TRAILER

The macro-definition trailer statement indicates the end of a macro-

definition. It can appear only once within a macro-definltion and must be

7-1

the last statement in every macro-definition. The format of this statement

is:

Name Operation Operand

MEND BlankA se-

quence

symbol

or

blank

MACRO INSTRUCTION PROTOTYPE

The macro-lnstructlon prototype statement (hereafter called the

prototypestatement) specifies the mnemonic operation code and the format

of all macro-instructlons that refer to the macro-definitlon. It must be

the second statement of every macro-deflnitlon. The format of this

statement is:

Name Operation Operand

A symbolA symbolic

parameter

or blank

One or more sym-

bolic parameters

separated by com-

mas, or blank

The symbolic parameters are used in the macro-deflnition to represent

the name field and operands of the corresponding macro-instruction. A

description of symbolic parameters appears under "Symbolic Parameters" in

this section.

The name field of the prototype statement may be blank, or it may

contain a symbolic parameter.

The symbol in the operation field is the mnemonic operation code that

must appear in all macro-instructlons that refer to this macro-definition.

The mnemonic operation code must not be the same as the mnemonic operation

code of another macro-definitlon in the source program or of a machine or

assembler instruction as listed in Appendix G.

The operand field may contain 0 to 200 symbolic parameters separated

by commas. If there are no symbolic parameters, comments may not appear.

The following is an example of a prototype statement.

7-2

r

Name Operation Operand

&NAME MOVE &TO,&FROM

Statement Format

The prototype statement may be written in a format different from that

used for assembler language statements. The normal format is described in

Part I of this publication. The alternate format described here allows the

programmer to write an operand on each line, and allows the interspersing

of operands and comments in the statement.

In the alternate format, as in the normal format, the name and

operation fields must appear on the first llne of the statement, and at

least one blank must follow the operation field on that line. Both types

of statement formats may be used in the same prototype statement.

The rules for using the alternate statement format are:

i. If an operand is followed by a comma and a blank, and the column

after the end column contains a nonblank character, the operand

field may be continued on the next line starting in the continue

column. More than one operand may appear on the same line.

, Comments may appear after the blank that indicates the end of an

operand, up to and including the end column.

, If the next line starts after the continue column, the

information entered on the next line is considered comments, and

the operand field is considered terminated. Any subsequent
continuation lines are considered comments.

The following examples illustrate: (i) the normal statement format,

(2) the alternate statement format, and (3) a combination of both statement

formats.

7-3

Name

NAMEI

NAME2

NAME3

Operation

OPI

OP2

OP3

Operand Comments!
...... . ,w-4

OPERANDI, OPERAND2, OPERAN X I

D3 THIS IS THE NORMAL X I

STATEMENT FORMAT

OPERANDI, THIS IS THE AL X t

OPERAND2, OPERAND3 TERNA X]

TE STATEMENT FORMAT i-J

OPERANDI, THIS IS A COMB X!

OPERAND2,0PERAND3,OPERANX

D4,0PERAND5 INATION OF _X
BOTH STATEMENT FORMATS L

MODEL STATEMENTS

Model statements are the macro-definition statements from which the

desired sequences of assembler language statements are generated. Zero or

more model statements may follow the prototype statement. A model state-

ment consists of one to four fields. They are, from left to right, the

name, operation, operand, and comments fields.

The fields in the model statement must correspond to the fields in the

generated statement. It is not possible to generate blanks to separate

statement fields.

Model statement fields must follow the rules for paired apostrophes,

ampersands, and blanks as macro-instruction operands (see "Macro-

Instruction 0perands" in Section 8).

Though model statements must follow the normal continuation card

conventions, statements generated from model statements may have more than

two continuation lines. Substituted statements may not have blanks in any

field except between paired apostrophes. They may not have leading blanks

in the name field.

Name Field

The name field may be blank or it may contain an ordinary symbol, a

variable symbol, or a sequence symbol. It may also contain an ordinary

symbol concatenated with a variable symbol or a variable symbol

concatenated with one or more other variable symbols.

Variable symbols may not appear in the name field of ACTR, COPY, END,

ICTL, ISEQ, or OPSYN statements. The characters * and .* may not be

substituted for a variable symbol.

7-4

L_

Operation Field

The operation field may contain a machine instruction, an assembler

instruction listed in Section 5 (except END, ICTL, ISEQ, OPSYN, or PRINT),

a macro instruction, or variable symbol. It may also contain an ordinary

symbol concatenated with a variable symbol or a variable symbol

concatenated with one or more other variable symbols.

Variable symbols may not be used to generate

• Macro Instructions

• Macro prototypes

• The following instructions:

ACTR GBLA MEXIT

AGO GBLB MNOTE

AIF GBLC OPSYN

ANOP ICTL PRINT

COPY ISEQ REPRO

CSECT LCLA SETA

DSECT LCLB SETB

END LCLC SETC

MACRO START

MEND

Variable symbols may also be used outside of macro-definltions to generate

mnemonic operation codes with the preceding restrictions.

The use of COPY instructions is described under "COPY Statements".

Variable symbols in the llne following a REPRO instruction, will not

be replaced by their values.

Operand Field

The operand field may contain ordinary symbols or variable symbols.

However, variable symbols may not be used in the operand field of COPY,

ICTL, ISEQ, or OPSYN instructions.

Comments Field

The comments field may contain any combination of characters. No

substitution is performed for variable symbols appearing in the comments

field. Only generated statements will be printed in the listing.

7-5

SYMBOLIC PARAMETERS

A symbolic parameter is a type of variable symbol that is assigned

values by the programmer when he writes a macro-instruction. The

programmer may vary statements that are generated for each occurrence of a

macro-instruction by varying the values assigned to symbolic parameters.

A symbolic parameter consists of an ampersand followed by from one

through seven letters and/or digits, the first of which must be a letter.

Elsewhere, two ampersands must be used to represent an ampersand.

The programmer should not use &SYS as the first four characters of a

symbolic parameter.

The following are valid symbolic parameters:

&READER &LOOP2

&A23456 &N

&X4F2 &$4

The following are invalid symbolic parameters:

CARDAREA

&256B

&AREA2456

&BCD%34

&IN AREA

(first character is not an ampersand)

(first character after ampersand is not a letter)

(more than seven characters after the ampersand)

(contains a special character other than initial ampersand)

(contains a special character, i.e., blank, other than

initial ampersand)

Any symbolic parameters in a model statement must appear in the

prototype statement of the macro-definitlon.

The following is an example of a macro-definltion. Note that the

symbolic parameters in the model statements appear in the prototype

statement.

Header

Prototype
Model

Model

Model

Model

Trailer

Name Operation Operand

& NAME

& NAME

MACRO

MOVE

ST

L

ST

L

MEND

&TO,&FROM

2,SAVE

2,&FROM

2,&TO

2,SAVE

Symbolic parameters in model statements are replaced by the characters

of the macro-instruction that correspond to the symbolic parameters.

7-6

In the following example the characters HERE,FIELDA, and FIELDB of

the MOVE macro-instruction correspond to the symbolic parameters &NAME,

&TO, and &FROM, respectively, of the MOVE prototype statement.

Name Operation Operand

HERE MOVE FIELDA,FIELDB

Any occurrence of the symbolic parameters &NAME, &TO, and &FROM in a

model statement will be replaced by the characters HERE, FIELDA, and

FIELDB, respectively. If the preceding macro-lnstructlon were used in a

source program, the following assembler language statements would be

generated:

Name Operation Operand

HERE ST

L

ST

L

2,SAVE

2,FIELDB

2,FIELDA

2,SAVE

The example below illustrates another use of the MOVE macro instruction

using operands different from those in the preceding example.

Macro

Generated

Generated

Generated

Generated

Name Operation Operand

LABEL MOVE IN,OUT

LABEL ST

L

ST

L

2,SAVE

2,OL_

2,1N

2,SAVE

If a symbolic parameter appears in the comments field of a model

statement, it is not replaced by the corresponding characters of the macro-

instruction.

Concatenating Symbolic Parameters with Other Characters or Other Symbolic
Parameters

If a symbolic parameter in a model statement is immediately preceded

or followed by other characters or another symbolic parameter, the

characters that correspond to the symbolic parameter are combined in the

generated statement with the other characters or the characters that

7-7

correspond to the other symbolic parameter. This process is called
concatenation.

The macro-definition, macro-lnstruction, and generated statements in
the following example illustrate these rules.

Header
Prototype
Model
Model
Model
Model
Trailer

Macro

Generated
Generated
Generated
Generated

Name Operation Operand

&NAME
&NAME

MACRO
MOVE
ST&TY
L&TY
ST&TY
L&TY
MEND

&TY,&P,&TO,&FROM
2,SAVEAREA
2,&P&FROM
2,&P&TO
2,SAVEAREA

HERE MOVE D,FIELD,A,B

HERE STD
LD
STD
LD

2, SAVEAREA
2, FIELDB
2, FIELDA

i2_,SAVEAREA

The symbolic parameter &TY is used in each of the four model
statements to vary the mnemonicoperation code of each of the generated
statements. The character D in the macro-instruction corresponds to
symbolic parameter &TY. Since &TYis preceded by other characters (i.e.,
ST and L) in the model statements, the character that corresponds to &TY
(i.e., D) is concatenated with the other characters to form the operation
fields of the generated statements.

The symbolic parameters &P, &TO, and &FROMare used in two of the
model statements to vary part of the operand fields of the corresponding
generated statements. The characters FIELD, A, and B correspond to the
symbolic parameters &P, &TO, and &FROM,respectively. Since &P is followed
by &FROMin the second model statement, the characters that correspond to
them (i.e., FIELD and B) are concatenated to form part of the operand field
of the second generated statement. Similarly, FIELD and A are concatenated
to form part of the operand field of the third generated statement.

If the programmerwishes to concatenate a symbolic parameter with a
letter, digit, left parenthesis, or period following the symbolic
parameter, he must immediately follow the symbolic parameter with a period.
A period is optional if the symbolic parameter is to be concatenated with
another symbolic parameter, or a special character other than a left
parenthesis or another period that follows it.

If a symbolic parameter is immediately followed by a period, then the
symbolic parameter and the period are replaced by the characters that
correspond to the symbolic parameter. A period that immediately follows a
symbolic parameter does not appear in the generated statement.

7-8

• I

The following macro definition, macro-lnstructlon, and generated

statements illustrate these rules.

Header

Prototype

Model

Model

Model

Model

Trailer

Macro

Generated

Generated

Generated

Generated

Name

&NAME

&NAME

Operation

MACRO

MOVE

ST

L

ST

L

MEND

Operand

&P,&S,&RI,&R2

&RI,&S.(&R2)

&RI,&P.B

&RI,&P.A

&RI,&S.(&R2)

HERE MOVE FIELD,SAVE,2,4

HERE ST

L

ST

L

2, SAVE (4)

2,FIELDB

2,FIELDA

2,SAVE (4)

The symbolic parameter &P is used in the second and third model

statements to vary part of the 0perand field of each of the corresponding

generated statements. The characters FIELD of the macro-lnstruction

correspond to &P. Since &P is to be concatenated with a letter (i.e., B

and A) in each of the statements, a period immediately follows &P in each

of the model statements. The period does not appear in the generated

statements.

Similarly, symbolic parameter &S is used in the first and fourth model

statements to vary the operand fields of the corresponding generated

statements. &S is followed by a period in each of the model statements,

because it is to be concatenated with a left parenthesis. The period does

not appear in the generated statements.

COMMENTS STATEMENTS

A model statement may be a comments statement. A comments statement

consists of an asterisk in the begin column, followed by comments. The

comments statement is used by the assembler to generate an assembler

language comments statement, just as other model statements are used by the

assembler to generate assembler language statements. No variable symbol

substitution is performed.

The programmer may also write comments statements in a macro-

definition which are not to be generated. These statements must have a

period in the begin column, iu,nediately followed by an asterisk and the

comments.

7-9

The first statement in the following examplewill be used by the
assembler to generate a commentsstatement; the second statement will not.

Name I 0peration I Operand

* THIS STATEMENTWILL BE GENERATED
.*THIS ONEWILLNOTBE GENERATED

NOTE: To get a truly representative sampling of the various language
componentsused effectively in writing macro- instructions the programmer
may list all or selected macro-instructions from the SYSI.GENLIBor the
SYSI.MACLIBby using the IEBPTPCHsystem utility covered in the "OS
Utilities" manual.

COPY STATEMENTS

COPY statements may be used to copy model statements and MEXIT, MNOTE,

and conditional assembly instructions into a macro-definition, just as they

may be used outside macro-definitions to copy source statements into an

assembler language program.

The format of this statement is:

Name Operation Operand

Blank COPY A symbol

The operand is a symbol that identifies a partitioned data set member

to be copied from either the system macro library or a user library

concatenated to it. The symbol must not be the same as the operation

mnemonic of a definition in the macro library. Any statement that may be

used in a macro-definition may be part of the copied coding, except MACRO,

MEND, COPY, and prototype statements.

When considering statement positions within a program the code

included by a COPY instruction statement should be considered rather than

the COPY itself. For example if a COPY statement in a macro-deflnition

brings in global and local definition statements, it may appear immediately

after the prototype statement. However, since global definition statements

must come before local definition statements, if global and local defini-

tion statements are also specified explicitly in the macro-definition which

contains the COPY, the COPY must occur between the explicit global defini-

tion statements and the explicit local definition statements.

7-10

SECTION 8: HOW TO WRITE MACRO-INSTRUCTIONS

The format of a macro-instruction is:

Name

Any sym-
bol or

blank

Operation

Mnemonic

operation

code

Operand

0-200 operands,

separated by

commas.

The name field of the macro-lnstructlon may contain a symbol. The

symbol will not be defined unless a symbolic parameter appears in the name

field of the prototype and the same parameter appears in the name field of

a generated model statement.

The operation field contains the mnemonic operation code of the macro-

instruction. The mnemonic operation code must be the same as the mnemonic

operation code of a macro-definition in the source program or in the macro

library.

The macro-definition with the same mnemonic operation code is used by

the assembler to process the macro-instructlon. If a macro-definltion in

the source program and one in the macro library have the same mnemonic

operation code, the macro-definition in the source program is used.

The placement and order of the operands in the macro-lnstructlon is

determined by the placement and order of the symbolic parameters in the

operand field of the prototype statement.

MACRO-INSTRUCTION OPERANDS

Any combination of up to 255 characters may be used as a macro-

instruction operand provided that the following rules concerning

apostrophes, parentheses, equal signs, ampersands, commas, and blanks are
observed.

Paired Apostrophes: An operand may contain one or more quoted strings. A

quoted string is any sequence of characters that begins and ends with an

apostrophe and contains an even number of apostrophes.

The first quoted string starts with the first apostrophe in the

operand. Subsequent quoted strings start with the first apostrophe after

the apostrophe that ends the previous quoted string.

A quoted string ends with the first even-numbered apostrophe that is

not immediately followed by another apostrophe.

8-1

The first and last apostrophes of a quoted string are called paired
apostrophes. The following example contains two quoted strings. The first
and fourth and the fifth and sixth apostrophes are each paired apostrophes.

'A''B'C'D'

An apostrophe not within a quoted string, immediately followed by a
letter, and immediately preceded by the letter L (when L is preceded by any
special character other than an ampersand), is not considered in
determining paired apostrophes. For instance, in the following example,
the apostrophe is not considered.

L'SYMBOL
'AL'SYMBOL'is an invalid operand.

Paired Parentheses: There must be an equal number of left and right paren-

theses. The nth left parenthesis must appear to the left of the nth right

parenthesis.

Paired parentheses are a left parenthesis and a following right

parenthesis without any other parentheses intervening. If there is more

than one pair, each additional pair is determined by removing any pairs

already recognized and reapplying the above rule for paired parentheses.

For instance, in the following example the first and fourth, the second and

third, and the fifth and sixth parentheses are each paired parentheses.

(A(B) C)D(E)

A parenthesis that appears between paired apostrophes is not

considered in determining paired parentheses. For instance, in the

following example the middle parenthesis is not considered.

('3'3

Equal ' Signs: An equal sign can only occur as the first character in an

operand or between paired apostrophes or paired parentheses. The following

examples illustrate these rules.

=F'32'

,C=D ,

E(F=G)

Ampersands: Except as noted under "Inner Macro- Instructions," each

sequence of consecutive ampersands must be an even number of ampersands.

The following example illustrates this rule.

&&123&&&&

8-2

Commas: A comma indicates the end of an operand,

between paired apostrophes or paired parentheses.

illustrates this rule.

unless it is placed

The following example

(A, B) C' ,'

Blanks: Except as noted Under "Statement Format, a blank indicates the

end of the operand field, unless it is placed between paired apostrophes.

The following example illustrates this rule.

'A B C'

The following are valid macro-instruction operands:

SYMBOL A+2

123 (TO (8), FROM)

X'I89A' 0(2,3)

* =F'4096'

L'NAME AB&&9

'TEN = i0' 'PARENTHESIS IS)'

'QUOTE IS''' 'COMMA IS ,'

The following are invalid macro-instruction operands:

W' NAME

5A) B

(15 B)

'ONE' IS 'i'

(oddnumber of apostrophes)

(number of left parentheses does not equal number of right

parentheses)

(blank not placed between paired apostrophes)

(blank not placed between paired apostrophes)

STATEMENT FORMAT

Macro-lnstructions may be written using the same alternate format that

can be used to write prototype statements. If this format is used, a blank

does not always indicate the end of the operand field. The alternate

format is described in Section 7, under the subsection "Macro-lnstruction

Prototype." Unlike prototype statements, macro-instructions can have

omitted operands, and they can have consecutive commas or a comma at the

end of the operand list.

OMITTED OPERANDS

If an operand that appears in the prototype statement is omitted from

the macro-lnstruction, then the comma that would have separated it from the •

next operand must be present. If the last operand(s) is omitted from a

macro-instruction, then the co=ma(s) separating the last operand(s) from

the next previous operand may be omitted.

The following example shows a macro-lnstructlon preceded by its

corresponding prototype statement. The macro-instruction operands that

8-3

correspond to the third and sixth operands of the prototype statement are
omitted in this example.

Name Operation Operand

EXAMPLE &A,&B,&C,&D,&E,&F
EXAMPLE 17,*+4,,AREA,FIELD(6)

If the symbolic parameter that corresponds to an omitted operand is
used in a model statement, a null character value replaces the symbolic
parameter in the generated statement, i.e., in effect the symbolic
parameter is removed. For example, the first statement below is a model
statement that contains the symbolic parameter &C. If the operand that
corresponds to &C was omitted from the macro instruction, the second
statement below would be generated from the model statement.

Name Operation

MVC
MVC

THERE&C.25,THIS
THERE25,THIS

OPERAND SUBLISTS

A subllst may occur as the operand of a macro-instructlon.

Sublists provide the programmer with a convenient way to refer to a

collection of macro-instructlon operands as a single operand, or a single

operand in a collection of operands.

A sublist consists of one or more operands separated by commas and

enclosed in paired parentheses. The entire subllst, including the

parentheses, is considered to be one macro-lnstructlon operand.

If a macro-lnstruction is written in the alternate statement format,

each operand of the sublist may be written on a separate line; the macro-

instruction may be written on as many lines as necessary.

If &PI is a symbolic parameter in a prototype statement, and the

corresponding operand of a macro-instructlon is a subllst, then &Pl(n) may

be used in a model statement to refer to the nth operand of the sublist,

where n may have a value greater than or equal to i. n may be specified as

a decimal integer or any arithmetic expression allowed in a SETA

instruction. (The SETA instruction is described in Section 9.) If the nth

operand is omitted, then $Pl(n) would refer to a null character value.

8-4

If the sublist notation is used but the operand is not a sublist, then

&PI(1) refers to the operand and &PI(2), &PI(3),... refer to a null

character value. If an operand has the form (), it is treated as a
character string and not as a sublist.

For example, consider the following macro -definition, macro-
instruction, and generated statements.

Header

Prototype
Model

Model

Model

Model

Trailer

Macro

Generated

Generated

Generated

Generated

Name OperationiOperand

_CRO

ADD

L

A

A

ST

ADD

L

A

A

ST

&NUM,®,&AREA

®,&NIYM(1)

®,&NUM(2)

®,&NUM(3)

®,&AREA

(A,B,C),6,SUM

6,A

6,B

6,C

6,SUM

The operand of the macro-instruction that corresponds to symbolic

parameter &NUM is a sublist. One of the operands in the sublist is

referred to in the operand field of three of the model statements. For

example, &NUM(1) refers to the first operand in the sublist corresponding

to symbolic parameter &NUM. The first operand of the sublist is A.

Therefore, A replaces &NUM(1) to form part of the generated statement.

Note: When referring to an operand in a sublist, the left parenthesis of

the sublist notation must immediately follow the last character of the

symbolic parameter, e.g., &NUM(1). A period should not be placed between

the left parenthesis and the last character of the symbolic parameter.

A period may be used between these two characters only when the

programmer wants to concatenate the left parenthesis with the characters

that the symbolic parameter represents. The following example shows what

would be generated if a period appeared between the left parenthesis and

the last character of the symbolic parameter in the first model statement

of the above example.

8-5

Prototype
Model

Macro

Generated

Name Operation]

ADD

L

ADD

L

Operand

&NUM,®,&AREA

®,&NUM.(1)

(A,B,C) ,6, SUM

6,(A,B,C)(1)

The symbolic parameter &NUM is used in the operand field of the model

statement. The characters (A,B,C) of the macro-lnstruction correspond to

&NUM. Since &NUM is immediately followed by a period, &NUM and the period

are replaced by (A,B,C). The period does not appear in the generated

statement. The resulting generated statement is an invalid assembler

language statement.

INNER MACRO INSTRUCTIONS

A macro-lnstructlon may be used as a model statement in a macro-

definition. Macro instructions used as model statements are called inner

macro instructions.

A macro-lnstruction that is not used as a model statement is referred

to as an outer macro-instructlon.

The rule for inner macro-instruction parameters is the same as that

for outer macro-lnstructions. Any symbolic parameters used in an inner

macro-lnstruction are replaced by the corresponding characters of the outer

macro-lnstructlon. An operand of an outer macro-lnstructlon sublist cannot

be passed as a subllst to an inner macro-instructlon.

The macro-deflnltlon corresponding to an inner macro-instruction is

used to generate the statements that replace the inner macro-lnstructlon.

The ADD macro-instructlon of the previous example is used as an inner

macro-lnstruction in the following example.

The inner macro-instruction contains two symbolic parameters, &S and

&T. The characters (X,Y,Z) and J of the macro-lnstruction correspond to &S

and &T, respectively. Therefore, these characters replace the symbolic

parameters in the operand field of the inner macro-instructlon.

The assembler then uses the macro-definltlon that corresponds to the

inner macro-lnstructlon to generate statements to replace the inner macro-

instruction. The fourth through seventh generatedstatements have been

generated for the inner macro-lnstructlon.

8-6

Header
Prototype
Model
Model
Model
Inner
Model
Trailer

Macro

Generated
Generated
Generated
Generated
Generated
Generated
Generated
Generated

Name

&U

K

K

Operation

MACRO
COMP
SR
C
BNE
ADD
A
MEND

SR
C
BNE
L
A
A
ST
A

Operand

&RI,&R2,&S,&T,&U
&RI,&R2
&RI,&T
&U
&S,12,&T
&RI,&T

10,11,(X,Y,Z),J,K

i0,ii
10,J
K
12,X
12,Y
12,Z
12,J
10,J

Further relevant limitations and differences between inner and outer
macro-lnstructlons will be covered under the pertinent sections on sequence
symbols, attributes, etc.

Note: An ampersandthat is part of a symbolic parameter is not considered
in determining whether a macro-instructlon operand contains an even number
of consecutive ampersands.

LEVELS OF MACRO-INSTRUCTIONS

A macro-definition that corresponds to an outer macro-instruction may

contain any number of inner macro-lnstructions. The outer macro-

instruction is called a first level macro-instruction. Each of the inner

macro-instructions is called a second level macro-lnstruction.

The macro-definltion that corresponds to a second level macro-

instruction may contain any number of inner macro-instructions. These
macro-instructions are called third level macro instructions, etc.

The number of levels of macro-instructions that may be used depends

upon the complexity of the macro-definition and the amount of storage

available.

8-718-8

SECTION 9: HOW TO WRITE CONDITIONAL ASSEMBLY INSTRUCTIONS

The conditional assembly instructions allow the programmer to: (i)

define and assign values to SET symbols that can be used to vary parts of

generated statements, and (2) vary the sequence of generated statements.

Thus, the programmer can use these instructions to generate many different

sequences of statements from the same macro-deflnition.

There are 13 conditional assembly instructions, i0 of which are

described in this section. The other three conditional assembly

instructions -- GBLA, GBLB, and GBLC -- are described in Section i0. The

instructions described in this section are:

LCLA SETA AIF

LCLB SETB AGO

LCLC SETC ACTR

ANOP

The primary use of the conditional assembly instructions is in macro-

definitions. However, all of them may be used in an assembler language

source program.

Where the use of an instruction outside macro-definitions differs from

its use within macro-definitions, the difference is described in the

subsequent text•

The LCLA, LCLB, and LCLC instructions may be used to define and assign

initial values to SET symbols.

The SETA, SETB, and SETC instructions may be used to assign

arithmetic, binary, and character values, respectively, to SET symbols.

The SETB instruction is described after the SETA and SETC instructions, •

because the operand field of the SETB instruction is a combination of the

operand fields of the SETA and SETC instructions.

The AIF, AGO, and ANOP instructions may be used in conjunction with

sequence symbols to vary the sequence in which statements are processed by

the assembler. The programmer can test attributes assigned by the

assembler to symbols or macro-instructlon operands to determine which

statements are to be processed. The ACTR instruction may be used to vary
the maximum number of AIF and AGO branches.

Examples illustrating the use of conditional assembly instruction are

included throughout this section. A chart summarizing the elements that

can be used in each instruction appears at the end of this section.

9-1

SET SYMBOLS

SET symbols are one type of variable symbol. The symbolic parameters

discussed in Section 7 are another type of variable symbol. SET symbols

differ from symbolic parameters in three ways: (i) where they can be used

in an assembler language source program, (2) how they are assigned values,

and (3) whether or not the values assigned to them can be changed.

Symbolic parameters can only be used in macro-deflnltions, whereas SET

symbols can be used inside and outside macro-definitions.

Symbolic parameters are assigned values when the programmer writes a

macro-instruction, whereas, SET symbols are assigned values when the

programmer writes SETA, SETB, and SETC conditional assembly instructions.

Each symbolic parameter is assigned a single value for one use of a

macro- definition, whereas the values assigned to each SETA, SETB, and SETC

symbol can change during one use of a macro-definltlon.

Defining SET Symbols

SET symbols must be defined by the programmer before they are used.

When a SET symbol is defined it is assigned an initial value. SET symbols

may be assigned new values by means of the SETA, SETB, and SETC

instructions. A SET symbol is defined when it appears in the operand field

of an LCLA, LCLB, or LCLC instruction.

Using Variable Symbols

The SETA, SETB, and SETC instructions may be used to change the values

assigned to SETA, SETB, and SETC symbols, respectively. When a SET symbol

appears in the name, operation, or operand field of a model statement, the

current value of the SET symbol (i.e., the last value assigned to it)

replaces the SET symbol in the statement.

For example, if &A is a symbolic parameter, and the corresponding

characters of the macro-instructlon are the symbol HERE, then HERE replaces

each occurrence of &A in the macro-deflnltlon. However, if &A is a SET

symbol, the value assigned to &A can be changed, and a different value can

replace each occurrence of &A in the macro-deflnltlon.

The same variable symbol may not be used as a symbolic parameter and

as a SET symbol in the same macro-deflnltion.

The following illustrates this rule.

9-2

Name Operation Operand

&NAME MOVE &TO,&FROM

If the statement above is a prototype statement, then &NAME,&TO, and
&FROMmaynot be used as SETsymbols in the macro-definition.

The samevariable symbol maynot be used as two different types of SET
symbols in the samemacro-definition. Similarly, the samevariable symbol
maynot be used as two different types of SET symbols outside macro-
definitions.

For example, if &A is a SETAsymbol in a macro-definition, it cannot
be used as a SETCsymbol in that definition. Similarly, if &A is a SETA
symbol outside macro-definitions, it cannot be used as a SETCsymbol
outside macro-definitions.

The samevariable symbol maybe used in two or more macro-definitions
and outside macro-definitions. If such is the case, the variable symbol
will be considered a different variable symbol each time it is used.

For example, if &A is a variable symbol (either SETsymbol or symbolic
parameter) in one macro-deflnltlon, it can be used as a variable symbol
(either SETsymbol or symbolic parameter) in another definition. Similarly,
if &A is a variable symbol (SETsymbol or symbolic parameter) in a macro-

definition, it can be used as a SET symbol outside macro-definltions.

All variable symbols may be concatenated with other characters in the

same way that symbolic parameters may be concatenated with other

characters. The rules for concatenating symbolic parameters with other

characters are in Section 7 under the subsection "Symbolic Parameters."

Variable symbols in macro-instructions are replaced by the values

assigned to them, immediately prior to the start of processing the

definition. If a SET symbol is used in the operand field of a macro-

instruction, and the value assigned to the SET symbol is equivalent to the

sublist notation, the operand is not considered a sublist.

ATTRIBUTES

The assembler assigns attributes to macro-instruction operands and to

symbols in the program. These attributes may be referred to only in

conditional assembly instructions or expressions.

There are six kinds of attributes. They are: type, length, scaling,

integer, count, and number. Each kind of attribute is discussed in the

paragraphs that follow.

9-3

If an outer macro-instructlon operand is a symbol before substitution,
then the attributes of the operand are the same as the corresponding
attributes of the symbol. The symbol must appear in the namefield of an
assembler language statement or in the operand field of an EXTRNstatement
in the program. The statement must be outside macro-definitions and must
not contain any variable symbols.

If an inner macro-instruction operand is a symbolic parameter, then
the attributes of the operand are the same as the attributes of the
corresponding outer macro-lnstructlon operand. A symbol appearing as an
inner macro-instruction operand is not assigned the sameattributes as the
samesymbol appearing as an outer macro-instruction operand.

If a macro-instruction operand is a sublist, the programmermay refer
to the attributes of either the sublist or each operand in the sublist.
The type, length, scaling, and integer attributes of a sublist are the same
as the corresponding attributes of the first operand in the sublist.

All the attributes of macro-lnstructlon operands maybe referred to in
conditional assembly instructions within macro-deflnitions. However, only
the type, length, scaling, and integer attributes of symbols maybe
referred to in conditional assembly instructions outside macro-definitions.
Symbolsappearing in the name field of generated statements are not
assigned attributes.

Each attribute has a notation associated with it. The notations are:

Attribute

Type

Length

Scaling

Integer
Count

Number

Notation

T !

L'

S'

I'

K'

N'

The programmer may refer to an attribute in the following ways:

.

.

In a statement that is outside macro-definitions, he may write

the notation for the attribute immediately followed by a symbol.

(e.g., T'NAME refers to the type attribute of the symbol NAME.)

In a statement that is in a macro-definltion, he may write the

notation for the attribute immediately followed by a symbolic

parameter. (e.g., L'&NAME refers to the length attribute of the

characters in the macro-instructlon that correspond to symbolic

parameter &NAME; L'&NAME(2) refers to the length attribute of the

second operand in the sublist that corresponds to symbolic

parameter &NAME.)

9-4

Type Attribute (T')

The type attribute

letter.

of a macro-instruction operand, or a symbol is a

The following letters are used for symbols that name DC and DS

statements and for outer macro-instruction operands that are symbols that

name DC or DS statements.

A

B

C

D

E

F

G

H

K

L

P

Q
R

S

V

X

Y

Z

A-type address constant, implied length, aligned, (also in CXD statement).

Binary constant.

Character constant.

Long floating-point constant, implied length, aligned.

Short floating-point constant, implied length, aligned.

Full-word fixed-polnt constant, implied length, aligned.

Fixed-point constant, explicit length.

Half-word fixed-point constant, implied length, aligned.

Floating-point constant, explicit length.

Extended floating-point constant, implied length, aligned.
Packed decimal constant•

Q-type address constant, implied length, aligned.

A-, S-, Q-, V-, or Y-type address constant, explicit length.

S-type address constant, implied length, aligned.

V-type address constant, implied length, aligned.
Hexadecimal constant.

Y-type address constant, implied length, aligned.
Zoned decimal constant.

The following letters are used for symbols (and outer macro-

instruction operands that are symbols) that name statements other than DC

or DS statements, or that appear in the operand field of an EXTRN

statement.

J

M

T

W

$

Machine instruction

Control section name

Macro-instruction

EXTRN symbol
CCW instruction

WXTRN symbol

The following letters are used for inner and outer macro-instruction

operands only.

N

O
Self-defining term

Omitted operand

The following letter is used for inner and outer macro-instruction

operands that cannot be assigned any of the above letters. This includes

inner macro-instruction operands that are symbols. This letter is also

assigned to symbols that name EQU and LTORG statements, to any symbols

occurring more than once in the name field of source statements, and to all

symbols naming statements with expressions as modifiers.

9-5

U Undefined

The attributes of A, B, C and D are undefined
example:

Name

A
B
C
D

Operation

DC
DC
DC
DC

Operand

3FL(AA-BB)'75'
(AA-BB)F'I5'
&X'l'
FL(3-2)'I'

in the following

The programmer mayrefer to a type attribute in the operand field of
a SETCinstruction, or in character relations in the operand fields of SETB
or AIF instructions.

Length (L')_ Scaling (S')_ and Integer (I') Attributes

The length, scaling, and integer attributes of macro-instructlon

operands, and symbols are numeric values.

The length attribute of a symbol (or of a macro-instruction operand

that is a symbol) is as described in Part I of this publication. The use

of the length attribute of a symbol defined with a DC or DS with explicit

length given by an expression is invalid. Reference to the length

attribute of a variable symbol is illegal except for symbolic parameters in

SETA, SETB and AIF statements. If the basic L' attribute is desired, it

may be obtained as follows:

&A SETC 'Z'

&B SETC 'L'''

MVC &A.(&B&A),X

After generation, this would result in

MVC Z(L'Z) ,X

Conditional assembly instructions must not refer to the length

attributes of symbols or macro-lnstructlon operands whose type attributes

are the letters M, N, O, T, U, W, or $.

Scaling and integer attributes are provided for symbols that name

flxed-polnt, floatlng-polnt, and decimal fields.

Fixed- and FloatlnK-Point: The scaling attribute of a fixed-polnt or
floatlng-polnt number is the value given by the scale modifier. The integer

attribute is a function of the scale and length attributes of the number.

9-6

Decimal: The scaling attribute of a decimal number is the number of

decimal digits to the right of the decimal point. The integer attribute of

a decimal number is the number of decimal digits to the left of the assumed

decimal point after the number is assembled.

Scaling and integer attributes are available for .symbols and macro-

instruction operands only if their type attributes are H, F, and G (fixed-

point); D, E, L, and K (floating point); or P and Z (decimal).

The programmer may refer to the length, scaling, and integer

attributes in the operand field of a SETA instruction, or in arithmetic

relations in the operand fields of SETB or AIF instructions.

Count Attribute (K')

The programmer may refer to the count attribute of macro-instructlon

operands only.

The value of the count attribute is equal to the number of characters

in the macro-instruction operand. It includes all characters in the

operand, but does not include the delimiting commas. The count attribute

of an omitted operand is zero. These rules are illustrated by the

following examples:

Operand Count Attribute

ALPHA 5

(JUNE, JULY, AUGUST) 18

2(10,12) 8

A(2) 4

'A' 'B' 6

' ' 3

'' 2

If a macro-lnstructlon operand contains variable

characters that replace the variable symbols, rather than

symbols, are used to determine the count attribute.

symbols, the

the variable

The programmer may refer to the count attribute in the operand field

of a SETA instruction, or in arithemetic relations in the operand fields of

SETB and AIF instructions that are part of a macro-deflnition.

Number Attribute (N')

The programmer may refer to the number attribute of macro-instruction

operands only.

The number attribute is a value equal to the number of operands in an

operand sublist. The number of operands in an operand sublist is equal to

one plus the number of commas that indicate the end of an operand in the
sublist.

9-7

The following examples illustrate this rule.

(A,B,C,D,E)
(A,,C,D,E)
(A,B,C,D)
(,B,C,D,E)
(A,B,C,D,)
(A,B,C,D,,)

5 operands
5 operands
4 operands
5 operands
5 operands
6 operands

If the macro-lnstructlon operand is not a subllst, the number
attribute is one. If the macro-lnstructlon operand is omitted, the number
attribute is zero.

The programmermayrefer to the numberattribute in the operand field
of a SETAinstruction, or in arithmetic relations in the operand fields of
SETBand AIF instructions that are part of a macro-definition.

Assigning Attributes to Symbols

The integer attribute is computed from the length and scaling

attributes.

Fixed Point: The integer attribute of a flxed-point number is equal to

eight times the length attribute of the number minus the scaling attribute

minus one; i.e., I'=8*L'-S'-I.

Each of the following statements defines a fixed-point field. The

length attribute of HALFCON is 2, the scaling attribute is 6, and the

integer attribute is 9. The length attribute of ONECON is 4, the scaling

attribute is 8, and the integer attribute is 23.

Name Operation Operand

HALFCON DC HS6'-25.93'

ONECON DC FS8'I00.3E-2'

Floating Point: The integer attribute of a Type D or E floatlng-point

number is equal to two times the difference between the length attribute of

the number and one, minus the scaling attribute; i.e., 1'=2" (L'-I)-S'

Because of its low order characteristic, the integer attribute of a

Type L constant with a length greater than 8 bytes is two less than the

value indicated in the formula above. The integer attribute of a Type L

constant with a length of 8 bytes or less is the same as the value

indicated in the formula above.

Each of the following statements defines a floating-point field. The

length attribute of SHORT is 4, the scaling attribute is 2, and the integer

9-8

attribute is 4. The length attribute of LONGis 8, the scaling attribute
is 5, and the integer attribute is 9.

Name
SHORT
LONG

Operation Operand

DC
DC

ES2'46.415'
DS5'-3.729'

Decimal: The integer attribute of a packed decimal number is equal to two

times the length attribute of the number minus the scaling attribute minus

one; i.e., I'=2*L'-S'-I. The integer attribute of a zoned decimal number

is equal to the difference between the length attribute and the scaling

attribute; i.e., I'=L'-S'.

Each of the following statements defines a decimal field. The length

attribute of FIRST is 2, the scaling attribute is 2, and the integer

attribute is i. The length attribute of SECOND is 3, the scaling attribute

is 0, and the integer attribute is 3. The length attribute of THIRD is 4,

the scaling attribute is 2, and the integer attribute is 2. The length

attribute of FOURTH is 3, the scaling attribute is 2, and the integer

attribute is 3.

Name Operation Operand

FIRST

SECOND

THIRD

FOURTH

DC

DC

DC

DC

P'+1.25'

Z'-543'

Z'79.68'

p'79.68'

SEQUENCE SYMBOLS

The name field of a statement may contain a sequence symbol. Sequence

symbols provide the programmer with the ability to vary the sequence in

which statements are processed by the assembler.

A sequence symbol is used in the operand field of an AIF or AGO

statement to refer to the statement named by the sequence symbol.

A sequence symbol is considered to be local to a macro-definltion.

A sequence symbol may be used in the name field of any statement that

does not contain a symbol or SET symbol except a prototype statement, a

MACRO, LCLA, LCLB, LCLC, GBLA, GBLB, GBLC, ACTR, ICTL, ISEQ, or COPY

instruction.

9-9

A sequence symbol consists of a period followed by one through seven
letters and/or digits, the first of which must be a letter.

The following are valid sequence symbols:

.READER

.LOOP2

.N

.A23456

.X4F2

.$4

The following are invalid sequence symbols:

CARDAREA(first chracter is not a period)
.246B (first character after period is not a letter)
.AREA2456(more than seven characters after period)
.BCD%84 (contains a special character other than initial period)
.IN AREA (contains a special character, i.e., blank, other than initial

period)

If a sequence symbol appears in the namefield of a macro-instruction,
and the corresponding prototytpe statement contains a symbolic parameter in
the namefield, the sequence symbol does not replace the symbolic parameter
wherever it is used in the macro-definition.

The following example illustrates this rule.

i
2

Name Operation Operand

&NAME
&NAME

MACRO
MOVE
ST
L
ST
L
MEND

&TO,&FROM
2,SAVEAREA
2,&FROM
2,&TO
2,SAVEAREA

.SYM MOVE FIELDA,FIELDB

ST
L
ST
L

2,SAVEAREA
2,FIELDB
2,FIELDA
2,SAVEAREA

The symbolic parameter &NAMEis used in the name field of the
prototype statement (statement i) and the first model statement (statement

2). In the macro - instruction (statement 3) a sequence symbol (.SYM)

corresponds to the symbolic parameter &NAME. &NAME is not replaced by

.SYM, and, therefore, the generated statement (statement 4) does not

contain an entry in the name field.

9-10

LCLA_ LCLB t LCLC -- DEFINE LOCAL SET SYMBOLS

The format of these instructions is:

Name Operation Operand

Blank LCLA,

LCLB, or

LCLC

One or more variable

symbols, that are
to be used as SET

symbols, separated

by co-.-as

The LCLA, LCLB, and LCLC instructions are used to define and assign

initial values to SETA, SETB, and SETC symbols, respectively. The SETA,

SETB, and SETC symbols are assigned the initial values of 0, 0, and null

character value, respectively.

The programmer should not define any SET symbol whose first four

characters are &SYS.

All LCLA, LCLB, or LCLC instructions in a macro-definitlon must appear

immediately after the prototype statement and GBLA, GBLB or GBLC

instructions. All LCLA, LCLB, or LCLC instructions outside macro-

definitions must appear after all macro-deflnltions in the source program,

after all GBLA, GBLB, AND GBLC instructions outside macro-definitions,

before all conditional assembly instructions, and PUNCH and REPRO

statements outside macro-definltions, and before the first control section

of the program.

SETA -- SET ARITHMETIC

The SETA instruction may be used to assign an arithmetic value to a

SETA symbol. The format of this instruction is:

Name Operation Operand

A SETA SETA An arithmetic

symbol expression

The expression in the operand field is evaluated as a signed 32-bit

arithmetic value which is assigned to the SETA symbol in the name field.

The minimum and maximum allowable values of the expression are -231 and

4231-i, respectively.

The expression may consist of one term or an arithmetic combination of

terms. The terms that may be used alone or in combination with each other

are self-defining terms, variable symbols, and the length, scaling,

9-11

i q

integer, count, and number attributes. Self-defining terms are described

in Part I of this publication.

Note: A SETC variable symbol may appear in a SETA expression only if the

value of the SETC variable is one to eight decimal digits. The decimal

digits will be converted to a positive arithmetic value.

The arithmetic operators that may be used to combine the terms of an

expression are + (addition), - (subtraction), * (multiplication), and /

(division).

An expression may not contain two terms or two operators in

succession, nor may it begin with an operator.

The following are valid operand fields of SETA instructions:

&AREA+X'2D' I'&N/25

&BETA*I0 &EXIT-S'&ENTRY+I

L'&HERE+32 29

The following are invalid operand fields of SETA instructions:

&AREAX'C'

&FIELD+-

-&DELTA*2

*+32

NAME/15

(two terms in succession)

(two operators in succession)

(begins with an operator)

(begins with an operator; two operators in succession)

(NAME is not a valid term)

Evaluation of Arithmetic Expressions

The procedure used to evaluate the arithmetic expression in the

operand field of a SETA instruction is the same as that used to evaluate

arithmetic expressions in assembler language statements. The only

difference between the two types of arithmetic expressions is the terms

that are allowed in each expression.

The following evaluation procedure is used:

i. Each term is given its numerical value.

. The arithmetic operations are performed moving from left to right.

However, multiplication and/or division are performed before addition
and subtraction.

. The computed result is the value assigned to the SETA symbol in the
name field.

The arithmetic expression in the operand field of a SETA instruction

may contain one or more sequences of arithmetically combined terms that are

enclosed in parentheses. A sequence of parenthesized terms may appear

9-12

• I

within another parenthesized sequence. Only five levels of parentheses are

allowed and an expression may not consist of more than 16 terms.

Parentheses required for sublist notation, substring notation, and
subscript notation count toward this limit.

The following are examples of SETA instruction operand fields that
contain parenthesized sequences of terms.

(L'&HERE+32)*29

&AREA+X'2D'/(&EXIT-S'&ENTRY+I)

&BETA*IO*(I'&N/25/(&EXIT-S'&ENTRY+I))

The parenthesized portion or portions of an arithmetic expression are

evaluated before the rest of the terms in the expression are evaluated. If

a sequence of parenthesized terms appears within another parenthesized

sequence, the innermost sequence is evaluated first.

Usin_ SETA Symbols

The arithmetic value assigned to a SETA symbol is substituted for the

SETA symbol when it is used in an arithmetic expression. If the SETA

symbol is not used in an arithmetic expression, the arithmetic value is

converted to an unsigned integer, with leading zeros removed. If the value

is zero, it is converted to a single zero.

The following example illustrates this rule:

Name Operation Operand

&NAME

&A

&B

&C

&D

&NAME

MACRO

MOVE

LCLA

SETA

SETA

SETA

SETA

ST

L

ST

L

MEND

&TO,&FROM

&A,&B,&C,&D
i0

12

&A-&B

&A+&C

2,SAVEAREA

2,&FROM&C

2,&TO&D

2,SAVEAREA

HERE MOVE FIELDA, FIELDB

HERE ST

L

ST

L

2,SAVEAREA

2,FIELDB2

2,FIELDA8

2,SAVEAREA

9-13

Statements i and 2 assign to the SETAsymbols &A and &B the arithmetic
values +i0 and +12, respectively. Therefore, statement 3 assigns the SETA
symbol &Cthe arithmetic value -2. When&Cis used in Statement 5, the
arithmetic value -2 is converted to the unsigned integer 2. When&C is
used in statement 4, however, the arithmetic value -2 is used. Therefore,
&D is assigned the arithmetic value +8. When&Dis used in statement 6,
the arithmetic value +8 is converted to the unsigned integer 8.

The following example shows how the value assigned to a SETA symbol
maybe changedin a macro-definition.

2
3
4

Name Operation Operand

&NAME

&A
&NAME

&A

MACRO
MOVE
LCLA
SETA
ST
L
SETA
ST
L
MEND

HERE MOVE

HERE ST
L
ST
L

&TO,&FROM
&A
5
2,SAVEAREA
2,&FROM&A
8
2,&TO&A
2,SAVEAREA

FIELDA,FIELDB

2,SAVEAREA
2,FIELDB5
2,FIELDA8
2,SAVEAREA

Statement i assigns the arithmetic value +5 to SETAsymbol &A. In
statement 2, &Ais converted to the unsigned integer 5. Statement 3
assigns the arithmetic value +8 to &A. In statement 4, therefore, &A is
converted to the unsigned integer 8, instead of 5.

A SETAsymbolmay be used with a symbolic parameter to refer to an
operand in an operand sublist. If a SETAsymbol is used for this purpose
it must have been assigned a positive value.

Any expression that maybe used in the operand field of a SETA
instruction maybe used to refer to an operand in an operand sublist.

Sublists are described in Section 8 under "Operand Sublists."

The following macro-definition maybe used to add the last operand in
an operand sublist to the first operand in an operand sublist and store the
result at the first operand. A sample macro-instruction and generated
statements follow the macro-definition.

9-14

• 0

Name Operation Operand

&LAST

MACRO

ADDX

LCLA

SETA

L

A

ST

MEND

ADDX

L

A

ST

&NUMBER, ®

&LAST

N '&NUMBER

®, &NUMBER (i)

®, &NIRdBER (&LAST)

®, &NUMBER(l)

(A,B,C,D,E),3

3,A

3,E

3,A

&NUMBER is the first symbolic parameter in the operand field of the

prototype statement (statement i). The corresponding characters,

(A,B,C,D,E), of the macro-instructlon (statement 4) are a subllst.

Statement 2 assigns to &LAST the arithmetic value +5, which is equal to the

number of operands in the subllst. Therefore, in statement 3,

&NUMBER(&LAST) is replaced by the fifth operand of the subllst.

SETC -- SET CHARACTER

The SETC instruction is used to assign a character value to a SETC

symbol. The format of this instruction is:

Name

A SETC

symbol

Operation

SETC

Operand

ONE operand, of

the form described

below

The operand field may consist of the type attribute, a character

expression, a substring notation, or a concatenation of substring notations

and character expressions. A SETA symbol may appear in the operand of a

SETC statement. The result is the character representation of the decimal

value, unsigned, with leading zeros removed. If the value is zero, one
decimal zero is used.

9-15

Type Attribute

The character value assigned to a SETC symbol may be a type attribute.

If the type attribute is used, it must appear alone in the operand field.

The following example assigns to the SETC symbol &TYPE the letter that is

the type attribute of the macro-instruction operand that corresponds to the

symbolic parameter &ABC.

Name Operation Operand

&TYPE SETC T'&ABC

Character Expression

A character expression consists of any combination of (up to 255)

characters enclosed in apostrophes.

The first eight characters in a character value enclosed in

apostrophes in the operand field are assigned to the SETC symbol in the

name field. The maximum size character value that can be assigned to a

SETC symbol is eight characters.

Evaluation of Character Expressions: The following statement assigns the

character value AB%4 to the SETC symbol &ALPHA:

Name

&ALPHA

Operation Operand

SETC 'AB%4'

More than one character expression may be concatenated into a single

character expression by placing a period between the terminating apostrophe

of one character expression and the opening apostrophe of the next

character expression. For example, either of the following statements may

be used to assign the character value ABCDEF to the SETC symbol &BETA.

Name Operation Operand

&BETA SETC 'ABCDEF'

&BETA SETC 'ABC'.'DEF'

Two apostrophes must be used to represent an apostrophe that is part

of a character expression.

9-16

The following statement assigns the character value L'SYMBOL to the
SETC symbol &LENGTH.

Name Operation Operand

&LENGTH SETC 'L''SYMBOL'

Variable symbols may be concatenated with other characters in the

operand field of a SETC instruction according to the general rules for

concatenating symbolic parameters with other characters (see Section 7).

If &ALPHA has been assigned the character value AB%4, the following

statement may be used to assign the character value AB%4RST to the variable
symbol &GAMMA.

Name Operation Operand

&GAMMA SETC '&ALPHA.RST'

Two ampersands must be used to represent an ampersand that is not part

of a variable symbol. Both ampersands become part of the character value

assigned to the SETC symbol. They are not replaced by a single ampersand.

The following statement assigns the character value HALF&& to the SETC
symbol &AND.

Name Operation Operand

&AND SETC 'HALF&&'

Substring Notation

The character value assigned to a SETC symbol may be a substring

character value. Substring character values permit the programmer to

assign part of a character value to a SETC symbol.

If the programmer wants to assign part of a character value to a SETC

symbol, he must indicate to the assembler in the operand field of a SETC

instruction: (i) the character value itself, and (2) the part of the

character value he wants to assign to the SETC symbol. The combination of

(i) and (2) in the operand field of a SETC instruction is called a

substring notation. The character value that is assigned to the SETC

symbol in the name field is called a substring character value.

9-17

Substring notation consists of a character expression, immediately
followed by two arithmetic expressions that are separated from each other
by a commaand are enclosed in parentheses. Each arithmetic expression may
be any expression that is allowed in the operand field of a SETA
instruction.

The first expression indicates the first character in the character
expression that is to be assigned to the SETCsymbol in the namefield.
The second expression indicates the numberof consecutive characters in the
character expression (starting with the character indicated by the first
expression) that are to be assigned to the SETCsymbol. If a substring
asks for more characters than are in the character string only the
characters in the string will be assigned.

The maximum size substring character value that can be assigned to a
SETCsymbol is eight characters. The maximumsize character expression the
substring character value can be chosen for is 255 characters. If a value
greater than 8 is specified, the leftmost 8 characters will be used.

The following are valid substring notations:

'&ALPHA'(2,5)
'AB%4'(&AREA+2,1)
'&ALPHA.RST'(6,&A)
'ABC&GAMMA'(&A,&AREA+2)

The following are invalid substring notations:

'&BETA' (4,6)
(blanks between character value and arithmetic expressions)

'L''SYMBOL'(142-&XYZ)
(only one arithmetic expression)

'AB%4&ALPHA'(8 &FIELD*2)
(arithmetic expressions not separated by a comma)

'BETA'4,6
(arithmetic expressions not enclosed in parentheses)

Using SETC Symbols

The character value assigned to a SETC symbol is substituted for the

SETC symbol when it is used in the name, operation, or operand field of a
statement.

For example, consider the following macro-definition, macro-

instruction, and generated statements.

9-18

i

2

3

Name Operation Operand

&NAME

&PREFIX

&NAME

MACRO

MOVE

LCLC

SETC

ST

L

ST

L

MEND

&TO,&FROM

&PREFIX

'FIELD'

2,SAVEAREA

2,&PREFIX&FROM

2,&PREFIX&TO

2,SAVEAREA

HERE MOVE A,B

HERE ST

L

ST

L

2,SAVEAREA

2,FIELDB

2,FIELDA

2,SAVEAREA

Statement i assigns the character value FIELD to the SETC symbol

&PREFIX• In statements 2 and 3, &PREFIX is replaced by FIELD.

The following example shows how the value assigned to a SETC symbol

may be changed in a macro-definition.

2

3

4

Name Operation Operand

&NAME

&PREFIX

&NAME

&PREFIX

HERE

HERE

MACRO

MOVE

LCLC

SETC

ST

L

SETC

ST

L

MEND

MOVE

ST

L

ST

L

&TO,&FROM

&PREFIX

'FIELD'

2,SAVEAREA

2,&PREFIX&FROM
'AREA'

2,&PREFIX&TO

2,SAVEAREA

A,B

2, SAVEAREA

2 ,FIELDB

2, AREAA

2, SAVEAREA

9-19

Statement I assigns the character value FIELD to the SETC symbol

&PREFIX. Therefore, &PREFIX is replaced by FIELD in statement 2.

Statement 3 assigns the character value AREA to &PREFIX. Therefore,

&PREFIX is replaced by AREA, instead of FIELD, in statement 4.

The following example illustrates the use of a substring notation as
the operand field of a SETC instruction.

Name

&NAME

&PREFIX

&NAME

Operation

MACRO

MOVE

LCLC

SETC

ST

L

ST

L

MEND

HERE MOVE

HERE ST

L

ST

L

Operand

&TO,&FROM

&PREFIX

'&TO'(I,5)

2,SAVEAREA

2,&PREFIX&FROM

2,&TO

2,SAVEAREA

FIELDA,B

2,SAVEAREA

2,FIELDB

2,FIELDA

2,SAVEAREA

Statement i assigns the substring character value FIELD (the first

five characters corresponding to symbolic parameter &TO) to the SETC symbol

&PREFIX. Therefore, FIELD replaces &PREFIX in statement 2.

Note: An operand of a SETC symbol cannot be passed as a sublist to a
macro-instruction.

Concatentating Substring Notations and Character Expressions: Substring

notations may be concatenated with character expressions in the operand

field of a SETC instruction. If a substring notation follows a character

expression, the two may be concatenated by placing a period between the

terminating apostrophe of the character expression and the opening

apostrophe of the substring notation.

For example, if &ALPHA has been assigned the character value AB%4, and

&BETA has been assigned the character value ABCDEF, then the following

statement assigns &GAMMA the character value AB%4BCD.

9-20

4 I

Name Operation Operand

&GAMMA SETC 'ALPHA'.'&BETA'(2,3)

If a substring notation precedes a character expression or another

substring notation, the two may be concatenated by writing the opening

apostrophe of the second item immediately after the closing parenthesis of

the substring notation.

The programmer may optionally place a period between the closing

parenthesis of a substring notation and the opening apostrophe of the next

item in the operand field.

If &ALPHA has been assigned the character value AB%4, and &ABC has

been assigned the character value 5RS, either of the following statements

may be used to assign &WORD the character value AB%45RS.

Name Operation Operand

&WORD SETC '&ALPHA'(I,4)'&ABC'

&WORD SETC '&ALPHA'(I,4)'&ABC'(I,3)

If a SETC symbol is used in the operand field of a SETA instruction,

the character value assigned to the SETC symbol must be one to eight

decimal digits.

If a SETA symbol is used in the operand field of a SETC statement, the

arithmetic value is converted to an unsigned integer with leading zeros

removed. If the value is zero, it is converted to a single zero.

SETB -- SET BINARY

The SETB instructlon may be used to assign the binary value 0 or i to

a SETB symbol. The format of this instruction is:

Name Operation Operand

SETBA SETB

symbol

A 0 or a 1 enclosed or

not enclosed in paren-

theses, or a logical

expression enclosed

in parentheses

9-21

The operand field may contain a 0 or a i or a logical expression
enclosed in parentheses. A logical expression is evaluated to determine if
it is true or false; the SETBsymbol in the namefield is then assigned the
binary value 1 or 0 corresponding to true or false, respectively.

A logical expression consists of one term or a logical combination of
terms. The terms that may be used alone or in combination with each other
are arithmetic relations, character relations, and SETB symbols. The
logical operators used to combine the terms of an expression are AND,OR,
and NOT.

An expression may not contain two terms in succession. A logical
expression may contain two operators in succession only if the first
operator is either ANDor ORand the second operator is NOT. A logical
expression may begin with the operator NOT. It maynot begin with the
operators ANDor OR.

An arithmetic relation consists of two arithmetic expressions
connected by a relational operator. A character relation consists of two
character values connected by a relational operator. The relational
operators are EQ (equal), NE (not equal), LT (less than), GT (greater
than), LE (less than or equal), and GE(greater than or equal).

Any expression that may be used in the operand field of a SETA
instruction, may be used as an arithmetic expression in the operand field
of a SETBinstruction. Anything that may be used in the operand field of
a SETCinstruction maybe used as a character value in the operand field of
a SETBinstruction. This includes substring and type attribute notations.
The maximumsize of the character values that can be compared is 255
characters. If the two character values are of unequal size, then the
smaller one will always compare less than the larger one.

The relational and logical operators must be immediately preceded and
followed by at least one blank or other special character. Each relation
mayor maynot be enclosed in parentheses. If a relation is not enclosed
in parentheses, it must be separated from the logical operators by at least
one blank or other special character.

The following are valid operand fields of SETBinstructions:

(&AREA+2GT 29)
('AB%4' EQ '&ALPHA')
(T'&ABCNE T'&XYZ)
(T'&PI2 EQ 'F')
(&AREA+2GT29 or &B)
(NOT&B AND&AREA+X'2D'GT29)
('&C'EQ'MB')
(o)

9-22

The following are invalid operand fields of SETB instructions:

&B

(T'&PI2 EQ 'F' &B)

('AB%4' EQ 'ALPHA' NOT &B)

(AND T'&PI2 EQ 'F')

(not enclosed in parentheses)

(two terms in succession)

(the NOT operator must be preceded by AND or OR)

(expression begins with AND)

Evaluation of Logical Expressions

The following procedure is used to evaluate a logical expression in

the operand field of a SETB instruction:

l. Each term (i.e., arithmetic relation, character relation, or SETB

symbol) is evaluated and given its logical value (true or false).

. The logical operations are performed moving from left to right.

However, NOTs are performed before ANDs, and ANDs are performed before
ORs.

. The computed result is the value assigned to the SETB symbol in the
name field.

The logical expression in the operand field of a SETB instruction may

contain one or more sequences of logically combined terms that are enclosed

in parentheses. A sequence of parenthesized terms may appear within

another parenthesized sequence.

The following are examples of SETB instruction operand fields that

contain parenthesized sequences of terms.

(NOT (&B AND &AREA+X'2D' GT 29))

(&B AND (T'&PI2 EQ 'F' OR &B))

The parenthesized portion or portions of a logical expression are

evaluated before the rest of the terms in the expression are evaluated. If

a sequence of parenthesized terms appears within another parenthesized

sequence, the innermost sequence is evaluated first. Five levels of

parentheses are permissible.

Usin B SETB Symbols

The logical value assigned to a SETB symbol is used for the SETB

symbol appearing in the operand field of an AIF instruction or another SETB
instruction.

If a SETB symbol is used in the operand field of a SETA instruction,

or in arithmetic relations in the operand fields of AIF and SETB

instructions, the binary values 1 (true) and 0 (false) are converted to the

arithmetic values +i and +43, respectively.

9-23

If a SETBsymbol is used in the operand field of a SETC instruction,
in character relations in the operand fields of AIF and SETBinstructions,
or in any other statement, the binary values i (true) and 0 (false), are
converted to the character values i and O, respectively.

The following example illustrates these rules. It is assumedthat
L'&TO EQ4 is true, and S'&TOEQ0 is false.

i
2
3
4

Name Operation Operand

&NAME

&BI
&B2
&AI
&Cl

MACRO
MOVE
LCLA
LCLB
LCLC
SETB
SETB
SETA
SETC
ST
L
ST
L
MEND

&TO,&FROM
&AI
&BI,&B2
&CI
(L'&TO EQ4)
(S'&TOEQ0)
&BI
'&B2'
2,SAVEAREA
2,&FROM&AI
2,&TO&CI
2,SAVEAREA

HERE MOVE FIELDA,FIELDB

HERE ST
L
ST
L

2,SAVEAREA
2,FIELDBI
2,FIELDA0
2,SAVEAREA

Because the operand field of statement i is true, &BI is assigned the
binary value i. Therefore, the arithmetic value +i is substituted for &BI
in statement 3. Because the operand field of statement 2 is false, &B2 is
assigned the binary value 0. Therefore, the character value 0 is
substituted for &B2in statement 4.

AIF -- CONDITIONAL BRANCH

The AIF instruction is used to conditionally alter the sequence in

which source program statements or macro-definition statements are

processed by the assembler. The assembler assigns a maximum count of 4096

AIF and AGO branches that may be executed in the source program or in a

macro-definition. When a macro-definition calls an inner macro-definition,

the current value of the count is saved and a new count of 4096 is set up

for the inner macro-definition. When processing in the inner definition is

9-24

completed and a return is made to the higher definition, the saved count is

restored. The format of this instruction is:

Name Operation Operand

AIFA se-

quence

symbol or
blank

A logical expression

enclosed in paren-

theses, immediately

followed by a

sequence symbol

Any logical expression that may be used in the operand field of a SETB

instruction may be used in the operand field of an AIF instruction. The

sequence symbol in the operand field must immediately follow the closing
parenthesis of the logical expression.

The logical expression in the operand field is evaluated to determine

if it is true or false. If the expression is true, the statement named by

the sequence symbol in the operand field is the next statement processed by

the assembler. If the expression is false, the next sequential statement
is processed by the assembler.

The statement named by the sequence symbol may precede or follow the
AIF instruction.

If an AIF instruction is in a macro-definition, then the sequence

symbol in the operand field must appear in the name field of a statement in

the definition. If an AIF instruction appears outside macro-definitions,

then the sequence symbol in the operand field must appear in the name field
of a statement outside macro-definitions.

The following are valid operand fields of AIF instructions:

(&AREA+X'2D' GT 29).READER

(T'&PI2 EQ 'F').THERE

('&FIELD3' EQ'').NO3

The following are invalid operand fields of AIF instructions:

(T'&ABC NE T'&XYZ)
.X4F2

(T'&ABC NE T'&XYZ) .X4F2

(no sequence symbol)

(no logical expression)

(blanks between logical expression and sequence

symbol)

The following macro-definition may be used to generate the statements

needed to move a full-word flxed-polnt number from one storage area to

another. The statements will be generated only if the type attribute of

both storage areas is the letter F.

9-25

4

Name Operation Operand

&N

&N

•END

MACRO
MOVE
AIF
AIF
ST
L
ST
L
MEND

&T,&F
(T'&T NE T'&F).END
(T'&T NE 'F').END
2,SAVEAREA
2,&F
2,&T
2,SAVEAREA

The logical expression in the operand field of statement i has the
value true if the type attributes of the two macro-instruction operands are
not equal. If the type attributes are equal, the expression has the
logical value false.

Therefore, if the type attributes are not equal, statement 4 (the
statement named by the sequence symbol .END) is the next statement
processed by the assembler. If the type attributes are equal, statement 2
(the next sequential statement) is processed.

The logical expression in the operand field of statement 2 has the
value true if the type attribute of the first macro-instruction operand is
not the letter F. If the type attribute is the letter F, the expression
has the logical value false.

Therefore, if the type attribute is not the letter F, statement 4 (the
statement named by the sequence symbol .END) is the next statement
processed by the assembler. If the type attribute is the letter F,
statement 3 (the next sequential statement) is processed.

AGO -- UNCONDITIONAL BRANCH

The AGO instruction is used to unconditionally alter the sequence in

which source program or macro-definition statements are processed by the

assembler. The assembler assigns a maximum count of 4096 AIF and AGO

branches that may be executed in the source program or in a macro-

definition. When a macro-definition calls an inner macro-definition, the

current value of the count is saved and a new count of 4096 is set up for

the inner macro-definition. When processing in the inner definition is

completed and a return is made to the higher definition, the saved count is
restored. The format of this instruction is:

9-26

Name

A sequence
symbol or
blank

Operation

AGO

Operand

A sequence symbol

The statement namedby the sequencesymbol in the operand field is the
next statement processed by the assembler.

The statement namedby the sequence symbol may precede or follow the
AGO instruction•

If an AGO instruction is part of a macro-definition, then the sequence

symbol in the operand field must appear in the name field of a statement

that is in that definition• If an AGO instruction appears outside macro-

definitions, then the sequence symbol in the operand field must appear in
the name field of a statement outside macro-definitions.

The following example illustrates the use of the AGO instruction.

Name Operation Operand

&NAME

•FIRST

&NAME

•END

MACRO

MOVE

AIF

AGO

AIF

ST

L

ST

L

MEND

&T, &F

(T'&T EQ 'F').FIRST
•END

(T'&T NE T'&F).END

2, SAVEAREA

2,&F

2,&T

2, SAVEAREA

Statement 1 is used to determine if the type attribute of the first

macro-instruction operand is the letter F. If the type attribute is letter

F, statement 3 is the next statement processed by the assembler. If the

type attribute is not the letter F_ statement 2 is the next statement

processed by the assembler•

Statement 2 is used to indicate to the assembler that the next

statement to be processed is statement 4 (the statement named by sequence
symbol .END).

9-27

ACTR -- CONDITIONAL ASSEMBLY LOOP COUNTER

The ACTR instruction is used to assign a maximum count (different from

the standard count of 4096) to the number of AGO and AIF branches executed

within a macro-deflnltion or within the source program. The format of this

instruction is as follows:

Name i
Blank ACTR

Operation Operand

Any valid SETA

expression

This statement, which can only occur immediately after the global and

local declarations, causes a counter to be set to the value in the operand

field. The counter is checked for zero or a negative value; if it is not

zero or negative, it is decremented by one each time an AGO or AIF branch

is executed. If the count is zero before decrementing, the assembler will

take one of two actions:

. If processing is being performed inside a macro-definition, the entire
nest of macro-deflnitions will be terminated and the next source

statement will be processed.

2. If the source program is being processed, an END card will be

generated.

An ACTR instruction in a macro-definition affects only that

definition; it has no effect on the number of AIF and AGO branches that may

be executed in macro-definitions called.

ANOP -- ASSEMBLY NO OPERATION

The ANOP instruction facilitates conditional and unconditional

branching to statements named by symbols or variable symbols.

The format of this instruction is:

Name

A se-

quence

symbol

Operation

ANOP

Operand

Blank

If the programmer wants to use an AIF or AGO instruction to branch to

another statement, he must place a sequence symbol in the name field of the

9-28

statement to which he wants to branch However, if the programmer has

already entered a symbol or variable symbol in the name field of that

statement, he cannot place a sequence symbol in the name field. Instead,

the programmer must place an ANOP instruction before the statement and then

branch to the ANOP instruction. This has the same effect as branching to

the statement immediately after the ANOP instruction•

The following example illustrates the use of the ANOP instruction.

Name

&NAME

&TYPE

•FTYPE

&NAME

Operation

MACRO

MOVE

LCLC

AIF

SETC

ANOP

ST&TYPE

L&TYPE

ST&TYPE

L&TYPE

MEND

Operand

&T,&F
&TYPE

(T'&T EQ 'F').FTYPE

'E'

2,SAVEAREA

2,&F

2,&T

2,SAVEAREA

Statement 1 is used to determine if the type attribute of the first

macro-instructlon operand is the letter F. If the type attribute is not

the letter F, statement 2 is the next statement processed by the assembler•

If the type attribute is the letter F, statement 4 should be processed

next. However, since there is a variable symbol (&NAME) in the name field

of statement 4, the required sequence symbol (.FTYPE) cannot be placed in

the name field. Therefore, an ANOP instruction (statement 3) must be

placed before statement 4.

Then, if the type attribute of the first operand is the letter F, the

next statement processed by the assembler is the statement named by

sequence symbol .FTYPE. The value of &TYPE retains its initial null

character value because the SETC instruction is not processed• Since

.FTYPE names an ANOP instruction, the next statement processed by the

assembler in statement 4, the statement following the ANOP instruction•

CONDITIONAL ASSEMBLY ELEMENTS

The following chart summarizes the elements that can be used in each

conditional assembly instruction• Each row in this chart indicates which

elements can be used in a single conditional assembly instruction. Each

column is used to indicate the conditional assembly instructions in which

a particular element can be used.

9-29

The intersection of a column and a row indicates whether an element

can be used in an instruction, and if so, in what fields of the instruction

the element can be used. For example, the intersection of the first row

and the first column of the chart indicates that symbolic parameters can be

used in operand field of SETA instructions.

SETA

SETB

SETC

AIF

AGO

ANOP

ACTR

Variable Symbols

SET Symbols

S.P. I SETA J SETC

0 i N, O ! 0 0 3

O I 0 N, O 0

O J 0 O N, O

...... --4--

0 I 0 0 0

...... •-,I-,,

...... .--I--

i

I

i I

o I o o I o _

...... i p

T'

01

0

01

Attributes

L' !-;7-! I'

o I o o

.... -I

02 I 02 02

.... 4

0 q

02

i

0 2; 0 2 0 2 i 0 2

o o Io Io
i

N'

0

02

02

0

S.S.

N, 0

N, O

N

L

1 Only in character relations

2 Only in arithmetic relations

3 Only if one to eight decimal digits

Abbreviations

N is Name

O is Operand

S.P. is Symbolic
Parameter

L' is Length Attribute

S' is Scaling Attribute

I' is Integer Attribute

K' is Count Attribute

N' is Number Attribute

S.S. is Sequence Symbol

9-30

SECTION I0: EXTENDED FEATURES OF THE MACRO LANGUAGE

The extended features of the macro language allow the programmer

I. Terminate processing of a macro-definition.

2. Generate error messages.

3. Define global SET symbols.

4. Define subscripted SET symbols.

5. Use system variable symbols.

6. Prepare keyword and mixed-mode macro definitions

keyword and mixed-mode macro-instructions.

7. Use other System/360 macro-definitions.

MEXIT -- MACRO-DEFINITION EXIT

The MEXIT instruction is used to indicate to the

should terminate processing of a macro-definitlon.
instruction is:

to:

and write

assembler that it

The format of this

Name Operation Operand

MEXIT BlankA sequence

symbol or

blank

The MEXIT instruction may only be used in a macro-definition.

If the assembler processes a MEXIT instruction that is in a macro-

definition corresponding to an outer macro-instruction, the next statement

processed by the assembler is the next statement outside macro-definitions.

If the assembler processes a MEXIT instruction that is in a macro-

definition corresponding to a second or third level macro-instruction, the

next statement processed by the assembler is the next statement after the

second or third level macro-instruction in the macro -definition,

respectively.

MEXIT should not be confused with MEND. MEND indicates the end of a

macro-definition. MEND must be the last statement of every macro-

definition, including those that contain one or more MEXIT instructions.

i0-i

The following example illustrates the use of the MEXITinstruction.

Name

&NAME

•OK
&NAME

Operation

MACRO
MOVE
AIF
MEXIT

Operand

&T,&F
(T'&T EQ 'F').OK

ANOP
ST
L
ST
L
MEND

2,SAVEAREA
2,&F
2,&T
2,SAVEAREA

Statement i is used to determine if the type attribute of the first
macro-instruction operand is the letter F. If the type attribute is the
letter F, the assembler processes the remainder of the macro-definition
starting with statement 3. If the type attribute is not the letter F, the
next statement processed by the assembler is statement 2. Statement 2
indicates to the assembler that it is to terminate processing of the macro-
definition•

MNOTE -- REQUEST FOR ERROR MESSAGE

The MNOTE instruction may be used to request the assembler to generate

an error message. The format of this instruction is:

Name Operation Operand

MNOTEA sequence

symbol,
variable

symbol or
blank

A severity code,

followed by

a comma, followed

by any combination

of characters en-

closed in apostro-

phes

The operand of the MNOTE instruction may also be written using one of

the following forms:

10-2

Operand

Severity-code, 'message'
'message'

'message'

The MNOTEinstruction may only be used in a macro-definition.
Variable symbols maybe used to generate the MNOTEmnemonicoperation code,
the severity code, and the message.

The severity code maybe a decimal integer from 0 through 255 or an
asterisk. If it is omitted, i is assumed. The severity code indicates the
severity of the error, a higher severity code indicating a more serious
error.

When MNOTE* occurs, the statement in the operand field will be

printed as a comment.

Two apostrophes must be used to represent an apostrophe enclosed in

apostrophes in the operand field of an MNOTE instruction• One apostrophe

will be listed for each pair of apostrophes in the operand field• If any

variable symbols are used in the operand field of an MNOTE instruction,

they will be replaced by the values assigned to them. Two ampersands must

be used to represent an ampersand that is not part of a variable symbol in

the operand field of a MNOTE statement. One ampersand will be listed for

each pair of ampersands in the operand field.

The following example illustrates the use of the MNOTE instruction•

Name Operation Operand

&NAME

&NAME

.MI

•M2

MACRO

MOVE

MNOTE

AIF

AIF

ST

L

ST

L

MEXIT

MNOTE

MEXIT

MNOTE

MEND

&T,&F
*.'MOVE MACRO GEN'

(T'&T NE T'&F).MI

(T'&T NE 'F').M2

2,SAVEAREA

2,&F

2,&T

2,SAVEAREA

'TYPE NOT SAME'

'TYPE NOT F'

10-3

Statement i is used to determine if the type attributes of both macro-
instruction operands are the same. If they are, statement 2 is the next
statement processed by the assembler. If they are not, statement 4 is the
next statement processed by the assembler. Statement 4 causes an error
messageindicating the type attributes are not the sameto be printed in
the source program listing.

Statement 2 is used to determine if the type attribute of the first
macro-instruction operand is the letter F. If the type attribute is the
letter F, statement 3 is the next statement processed by the assembler. If
the attribute is not the letter F, statement 5 is the next statement
processed by the assembler. Statement 5 causes an error messageindicating
the type attribute is not F to be printed in the source program listing.

GLOBAL AND LOCAL VARIABLE SYMBOLS

The following are local variable symbols:

i. Symbolic parameters.

2. Local SET symbols.

3. System variable symbols.

Global SET symbols are the only global variable symbols.

The GBLA, GBLB, and GBLC instructions define global SET symbols, just

as the LCLA, LCLB, and LCLC instructions define the SET symbols described

in Section 9. Hereinafter, SET symbols defined by LCLA, LCLB, and LCLC

instructions will be called local SET symbols.

Global SET symbols communicate values between statements in one or

more macro-definitions and statements outside macro-definitions. However,

local SET symbols communicate values between statements in the same macro-

definition, or between statements outside macro-definitions.

If a local SET symbol is defined in two or more macro-definitions, or

in a macro-definition and outside macro-definitions, the SET symbol is

considered to be a different SET symbol in each case. However, a global

SET symbol is the same SET symbol each place it is defined.

A SET symbol must be defined as a global SET symbol in each macro-

definition in which it is to be used as a global SET symbol. A SET Symbol

must be defined as a global SET symbol outside macro-deflnitions, if it is

to be used as a global SET symbol outside macro-definitions.

If the same SET symbol is defined as a global SET symbol in one or

more places, and as a local SET symbol elsewhere, it is considered the same

symbol wherever it is defined as a global SET symbol, and a different

symbol wherever it is defined as a local SET symbol.

10-4

Definin 8 Local and Global SET Symbols

Local SET symbols are defined when they appear in the operand field of

an LCLA, LCLB, or LCLC instruction. These instructions are discussed in

Section 9 under "Defining SET Symbols."

Global SET symbols are defined when they appear in the operand field

of a GBLA, GBLB, or GBLC instruction. The format of these instructions is:

Name Operation Operand

Blank GBLA,

GBLB, or

GBLC

One or more variable

symbols that are to be

used as SET symbols,

separated by commas

The GBLA, GBLB, and GBLC instructions define global SETA, SETB, and

SETC symbols, respectively, and assign the same initial values as the

corresponding types of local SET symbols. However, a global SET symbol is

assigned an initial value by only the first GBLA, GBLB, or GBLC instruction

processed in which the symbol appears. Subsequent GBLA, GBLB, or GBLC

instructions processed by the assembler do not affect the value assigned to

the SET symbol.

The programmer should not define any global SET symbols whose first

four characters are &SYS.

If a GBLA, GBLB, or GBLC instruction is part of a macro-definition, it

must immediately follow the prototype statement, or another GBLA, GBLB, or

GBLC instruction. GBLA, GBLB, and GBLC instructions outside macro-

definitions must appear after all macro-deflnltlons in the source program,

before all conditional assembly instructions and PUNCH and REPRO statements

outside macro-definitions, and before the first control section of the

program.

All GBLA, GBLB, and GBLC instructions in a macro-definition must

appear before all LCLA, LCLB, and LCLC instructions in that macro-

definition. All GBLA, GBLB, and GBLC instructions outside macro-

definitions must appear before all LCLA, LCLB, and LCLC instructions

outside macro-definitions.

Using Global and Local SET Symbols

The following examples illustrate the use of global and local SET

symbols. Each example consists of two parts. The first part is an

assembler language source program. The second part shows the statements

10-5

that would be generated by the assembler after it processed the statements
in the source program.

Example i: This example illustrates how the same SET symbol can be used to

communicate (i) values between statements in the same macro-deflnition, and

(2) different values between statements outside macro-deflnitlons.

i

2

3

4

5

6

Name

&NAME

&NAME

&A

FIRST

FIRST

Operation

MACRO

LOADA

LCLA

LR

SETA

MEND

LCLA

LOADA

LR

LOADA

LR

END

LR

LR

LR

LR

END

Operand

&A

15,&A

&A+I

&A

15,&A

15,&A

FIRST

15,0

15,0

15,0

15,0
FIRST

&A is defined as a local SETA symbol in a macro-definition (statement

i) and outside macro-deflnltions (statement 4). &A is used twice within

the macro -definition (statements 2 and 3) and twice outsldemacro-

definitions (statements 5 and 6).

Since &A is a local SETA symbol in the macro-deflnltlon and outside

macro-definitlons, it is one SETA symbol in the macro-definltlon, and

another SETA symbol outside macro-definitlons. Therefore, statement 3

(which is in the macro-deflnition) does not affect the value used for &A in

statements 5 and 6 (which are outside macro-definitions). Moreover, the

use of LOADA between statements 5 and 6 will alter &A from its previous

value as a local symbol within that macro-definltion since the first act of

the macro-deflnitlon is to LCLA &A to zero.

Example 2: This example illustrates how a SET symbol can be used to

communicate values between statements that are part of a macro-definitlon

and statements outside macro-definitlons.

i0-6

j •

i

2

3

4

5

6

Name Operation Operand

&NAME

&NAME

&A

FIRST

FIRST

MACRO

LOADA

GBLA

LR

SETA

MEND

GBLA

LOADA

LR

LOADA

LR

END

LR

LR

LR

LR

END

&A

15, &A

&A+I

&A

15,&A

15, &A
FIRST

15,0

15,1

15,1

15,2

FIRST

&A is defined as a global SETA symbol in a macro-deflnltion (statement

i) and outside macro-definltlons (statement 4). &A is used twice within

the macro-definltion (statements 2 and 3) and twice outside macro-

definitions (statements 5 and 6).

Since &A is a global SETA symbol in the macro-definition and outside

macro-definitions, it is the same SETA symbol in both cases• Therefore,

statement 3 (which is in the macro-definltion) affects the value used for

&A in statements 5 and 6 (which are outside macro-definitions).

Example 3: This example illustrates how the same SET symbol can be used to

communicate: (I) values between statements in one macro-definition, and

(2) different values between statements in a different macro-definltion.

&A is defined as a local SETA symbol in

definitions (statements i and 4). &A is used twice

definition (statements 2, 3, 5, and 6).

two different macro-

within each macro-

Since &A is a local SETA symbol in each macro-definition, it is one

SETA symbol in one macro-definition, and another SETA symbol in the other

macro-definition. Therefore, statement 3 (which is in one macro-

definition) does not affect the value used for &A in statement 5 (which is

in the other macro-definition). Similarly, statement 6 does not affect the

value used for &A in statement 2.

10-7

1
2
3

Name

&NAME

&NAME
&A

&A

FIRST

FIRST

Operation Operand

MACRO
LOADA
LCLA
LR
SETA
MEND
MACRO
LOADB
LCLA
LR
SETA
MEND
LOADA
LOADB
LOADA
LOADB
END

LR
LR
LR
LR
END

&A
15,&A
&A+I

&A
15,&A
&A+I

FIRST

15,0
15,0
15,0
15,0
FIRST

Example 4: This example illustrates how a SET symbol can be used to

communicate values between statements that are part of two different macro-

definitions.

i0-8

I
2
3

Name Operation Operand

&NAME

&NAME
&A

&A

FIRST

FIRST

MACRO
LOADA
GBLA
LR
SETA
MEND

MACRO
LOADB
GBLA
LR
SETA
MEND
LOADA
LOADB
LOADA
LOADB
END

LR
LR
LR
LR
END

&A
15,&A
&A+I

&A
15,&A
&A+I

FIRST

15,0
15,1
15,2
15,3
FIRST

&A is defined as a global SETA_symbol in two different macro-
definitions (statements 1 and 4). &A is used twice within each macro-
definition (statements 2, 3, 5 and 6).

Since &A is a global SETAsymbol in each macro-definition, it is the
sameSETAsymbol in each macro-deflnltlon. Therefore, statement 3 (which
is in one macro-definitlon) affects the value used for &A in statement 5
(which is in the other macro-definitlon). Similarly, statement 6 affects
the value used for &A in statement 2.

Example 5: This example illustrates how the same SET symbol can be used to
communicate: (i) values between statements in two different macro-

definitions, and (2) different values between statements outside macro-
definitions.

10-9

4
5
6

Name

&NAME

&NAME
&A

&A

FIRST

FIRST

Operation

MACRO
LOADA
GBLA
LR
SETA
MEND
MACRO
LOADB
GBLA
LR
SETA
MEND
LCLA
LOADA
LOADB
LR
LOADA
LOADB
LR
END

LR
LR
LR
LR
LR
LR
END

Operand

&A
15,&A
&A+I

&A
15,&A
&A+I

&A

15,&A

15,&A
FIRST

15,0
15,1
15,0
15,2
15,3
15,0
FIRST

&A is defined as a global SETA symbol in two different macro-
definitions (statements i and 4), but it _is defined as a local SETA symbol
outside macro-deflnitions (statement 7). &A is used twice within each
macro-deflnition and twice outside macro-definitions (statements 2, 3, 5,
6, 8 and 9).

Since &A is a global SETAsymbol in each macro-definltion, it is the
sameSETAsymbol in each macro-definltion. However, since &A is a local
SETA symbol outside macro-definitions, it is a different SETAsymbol
outside macro-definitions.

Therefore, statement 3 (which is in one macro-definition) affects the
value used for &A in statement 5 (which is in the other macro-deflnitlon),
but it does not affect the value used for &A in statements 8 and 9 (which
are outside macro-definitions). Similarly, statement 6 affects the value
used for &A in statement 2, but it does not affect the value used for &A in
statements 8 and 9.

10-10

Subscripted SET Symbols

Both global and local SET symbols may be defined

symbols. The local SET symbo_.s defined in

nonsubscripted SET symbols.

as subscripted SET
Section 9 were all

Subscripted SET symbols provide the programmer with a convenient way

to use one SET symbol plus a subscript to refer to many arithmetic, binary,

or character values.

A subscripted SET symbol consists of a SET symbol immediately followed

by a subscript that is enclosed in parentheses. The subscript may be any

arithmetic expression that is allowed in the operand field of a SETA

statement. The subscript may not be 0 or negative.

The following are valid subscripted SET symbols.

&READER(17)

&A23456(&S4)

&X4F2(25+&A2)

The following are invalid subscripted SET symbols.

&X4F2

(25)

&X4F2 (25)

(no subscript)

(no SET symbol)

(subscript does not immediately follow SET symbol)

Defining Subscripted SET Symbols: If the programmer wants to use a

subscripted SET symbol, he must write in a GBLA, GBLB, GBLC, LCLA, LCLB, or

LCLC instruction, a SET symbol immediately followed by a decimal integer

enclosed in parentheses. The decimal integer, called a dimension,

indicates the number of SET variables associated with the SET symbol.

Every variable associated with a SET symbol is assigned an initial value

that is the same as the initial value assigned to the corresponding ty_e of

nonsubscripted SET symbol.

If a subscripted SET symbol is defined as global, the same dimension

must be used with the SET symbol each time it is defined as global.

The maximum dimension that can be used with a SETA, SETB, or SETC

symbol is 2500.

A subscripted SET symbol may be used only if the declaration

subscripted; a nonsubscripted SET symbol may be used only if

declaration had no subscript.

was

the

The following statements define the global SET symbols &SBOX, &WBOX,

and &PSW, and the local SET symbol &TSW. &SBOX has 50 arithmetic variables

associated with it, &WBOX has 20 character variables, &PSW and &TSW

each have 230 binary variables.

i0-ii

Name Operation Operand

GBLA
GBLC
GBLB
LCLB

&SBOX(50)
&WBOX(20)

&PSW(230)

&TSW(230)

Using Subscripted SET Symbols: After the programmer has associated a

number of SET variables with a SET symbol, he may assign values to each of

the variables and use them in other statements.

If the statements in the previous example were part of a macro-

definition, (and &A was defined as a SETA symbol in the same definition),

the following statements could be part of the same macro-definition.

Name Operation Operand

&A

&PSW(&A)

&TSW(9)

SETA

SETB

SETB

A

CLI

5

(6 LT 2)

(&PSW(&A))

2,=F'&SBOX(45)'

AREA,C'&WBOX(17)

Statement i assigns the arithmetic value 5 to the nonsubscripted SETA

symbol &A. Statements 2 and 3 then assign the binary value 0 to

subscripted SETB symbols &PSW(5) and &TSW(9), respectively. Statements 4

and 5 generate statements that add the value assigned to &SBOX(45) to

general register 2, and compare the value assigned to &WBOX(17) to the

value stored at AREA, respectively.

SYSTEM VARIABLE SYMBOLS

System variable symbols are local variable symbols that are assigned

values automatically by the assembler. There are three system variable

symbols: &SYSNDX, &SYSECT, and &SYSLIST. System variable symbols may be

used in the name, operation and operand fields of statements in macro-

definitions, but not in statements outside macro-deflnitions. They may not

be defined as symbolic parameters or SET symbols, nor may they be assigned

values by SETA, SETB, and SETC instructions.

&SYSNDX -- Macro-Instruction Index

The system variable symbol &SYSNDX may be concatenated with other

characters to create unique names for statements generated from the same
model statement.

10-12

&SYSNDXis assigned the four-dlglt number 0001 for the first macro-

instruction processed by the assembler, and it is incremented by one for

each subsequent inner and outer macEo-lnstructloD processed.

If &SYSNDX is used in a model statement, SETC or MNOTE instruction, or

a character relation in a SETB or AIF instruction, the value substituted

for &SYSNDX is the four-diglt number of the macro-lnstructlon being

processed, including leadlng zeros.

If &SYSNDX appears in arithmetic expressions (e.g., in the operand

field of a SETA instruction), the value used for &SYSNDX is an arithmetic

value.

Throughout one use of a macro-deflnltlon, the value of &SYSNDX may be

considered a constant, independent'of any inner macro-instructlon in that
definition.

The example in the next column illustrates these rules.

that the first macro-lnstructlon processed, OUTER1, is the

instruction processed by the assembler.

It is assumed

106th macro-

Statement 7 is the 106th macro-instruction processed. Therefore,

&SYSNDX is assigned the number 0106 for that macro-instruction. The number

0106 is substituted for &SYSNDX when it is used in statements 4 and 6.

Statement 4 is used to assign the character value 0106 to the SETC symbol

&NDXNUM. Statement 6 is used to create the unique name B0106.

10-13

Name Operation

1

2

3

4

5

6

7

3

A&SYSNDX

&NAME

&NDXNUM

&NAME

B&SYSNDX

ALPHA

BETA

ALPHA

A0107

B0106

BETA

A0109

BOI08

MACRO

INNER1

GBLC

SR

CR

BE

B

MEND

MACRO

OUTER1

GBLC

SETC

SR

AR

INNER1

S

MEND

OUTER1

0UTERI

SR

AR

SR

CR

BE

B

S

SR

AR

SR

CR

BE

B

S

N_ ------------.

Operand.

&NDXNUM

2,5

2,5

B&NDXNUM

A& SY SNDX

&NDXNUM

'&SYSNDX'

2,4

2,6

2,=F'I000'

2,4

2,6

2,5

2,5

BOI06

A0107

2,=F'I000'

2,4

2,6

2,5

2,5

BOI08

AOI09

2,=F'IO00'

Statement 5 is the 107th macro-instructlon processed. Therefore,
&SYSNDX is assigned the number 0107 for that macro-instruction. The number

0107 is substituted for &SYSNDX when it is used in statements I and 3. The

number 0106 is substituted for the global SETC symbol &NDXNUM in statement
2.

Statement 8 is the 108thmacro-instruction processed. Therefore, each

occurrence of &SYSNDX is replaced by the number 0108. For example,
statement 6 is used to create the unique name B0108.

10-14

Whenstatement 5 is used to process the 108th macro-instruction,

statement 5 becomes the 109th macro-instructlon processed. Therefore, each

occurrence of &SYSNDX is replaced by the n.umber 0109. For example,

statement i is used to create the unique name A0109.

&SYSECT -- Current Control Section

The system variable symbol &SYSECT may be used to represent the name

of the control section in which a macro-instructlon appears. For each

inner and outer macro-instruction processed by the assembler, &SYSECT is

assigned a value that is the name of the control section in which the

macro-instructlon appears.

When &SYSECT is used in a macro-deflnitlon, the value substituted for

&SYSECT is the name of the last CSECT, DSECT, or START statement that

occurs before the macro-lnstruction. If no named CSECT, DSECT, or START

statements occur before a macro-instructlon, &SYSECT is assigned a null

character value for that macro-lnstructlon.

CSECT or DSECT statements processed in a macro-deflnltion affect the

value for &SYSECT for any subsequent inner macro-instructlons in that

definition, and for any other outer and inner macro-lnstructlons.

Throughout the use of a macro-deflnltlon, the value of &SYSECT may be

considered a constant, independent of any CSECT or DSECT statements or

inner macro-lnstructions in that definition.

The next example illustrates these rules.

Statement 8 is the last CSECT, DSECT, or START statement processed

before statement 9 is processed. Therefore, &SYSECT is assigned the value

MAINPROG for macro-lnstructlon 0UTERI in statement 9. MAINPROG is

substituted for &SYSECT when it appears in statement 6.

Statement 3 is the last CSECT, DSECT, or START statement processed

before statement 4 is processed. Therefore, &SYSECT is assigned the value

CSOUTI for macro-lnstructlon INNER in statement 4. CSOUTI is substituted

for &SYSECT when it appears in statement 2.

Statement i is used to generate a CSECT statement for statement 4.

This is the last CSECT, DSECT, or START statement that appears before

statement 5. Therefore, &SYSECT is assigned the value INA for macro-

instruction INNER in statement 5. INA is substituted for &SYSECT when it

appears in statement 2.

10-15

4
5
6

8

9
i0

Name

&INCSECT

CSOUTI

MAINPROG

MAINPROG

CSOUTI

INA

INB

Operation

MACRO
INNER
CSECT
DC
MEND

MACRO
OUTER1

CSECT

DS

INNER

INNER

DC

MEND

MACRO

OUTER2

DC

MEND

CSECT

DS

OUTERI

OUTER2

CSECT

DS

CSECT

DS

CSECT

DC

CSECT

DC

DC

DC

Operand

&INCSECT

A(&SYSECT)

100C

INA

INB

A(&SYSECT)

A(&SYSECT)

200C

200C

100C

A(CSOUTI)

A(INA)

A(MAINPROG)

A(INB)

Statement 1 is used to generate a CSECT statement for statement 5.

This is the last CSECT, DSECT, or START statement that appears before

statement i0. Therefore, &SYSECT is assiEned the _ y_l_eINB for macro-
instruction ODTRR2 in statement I0. IN-B is substituted for &SYSECT when

it appears in statement 7.

10-16

&SYSLIST -- Macro-lnstructlon Operand

The system variable symbol &sYSLIST provldes the

alternative to symbolic parameters for referring

instruction operands;_l

&SYSLIST and symbolic parameters may be used

definition.

progran_er with an

to positional macro-

in the same macro-

&SYSLIST(0) may be used to refer to a symbolic parameter in the macro-

instruction prototype• If the symbolic parameter is omitted in the macro-

instruction prototype, then &SYSLIST(O) would refer to a null character
value.

&SYSLIST(n) may be used to refer to the nth positional macro-

instruction operand. In addition, if the nth operand is a sublist, then

&SYSLIST (n,m) may be used to refer to the mth operand in the sublist,

where n and m may be any arithmetic expressions allowed in the operand

field of a SETA statement, m may be equal to or greater than 1 and n has

a range of 1 to 200.

If the value of "subscript n is zero", then &SYSLIST(n) is assigned

the value specified in the name field of the macro-lnstructlon, except when

it is a sequence symbol.

The type, length, scaling, integer, and count attributes of

&SYSLIST(n) and &SYSLIST(n,m) and the number attributes of &SYSLIST(n) and

&SYSLIST may be used in conditional assembly instructions. N'&SYSLIST may

be used to refer to the total number of positional operands in a macro-

instruction statement. N'&SYSLIST(n) may be used to refer to the number of

operands in a subllst. If the nth operand is omitted, N' is zero; if the

nth operand is not a subllst, N' is one.

The following procedure is used to evaluate N'&SYSLIST:

i. A sublist is considered to be one operand.

. The count includes operands specifically omitted (by means of

commas).

Examples:

Macro-Instruction N'&SYSLIST

MAC KI=DS 0

MAC ,KI=DC i

MAC FULL,,F, ('i' ,'2'),KI-DC 4

MAC , 2

MAC 0

Attributes are discussed in Section 7 under "Attributes."

10-17

KEYWORD MACRO-DEFINITIONS AND INSTRUCTIONS

Keyword macro-definitions provide the programmer with an alternate way

of preparing macro-definitions.

A keyword macro-definition enables a programmer to reduce the number

of operands in each macro-instruction that corresponds to the definition,

and to write the operands in any order.

The macro-instructlons that correspond to the macro-definitions

described in Section 7 (hereinafter called positional macro-instructions

and positional macro-definltions, respectively) require the operandsto be

written in the same order as the corresponding symbolic parameters in the

operand field of the prototype statement.

In a keyword macro-definition, the programmer can assign standard

values to any symbolic parameters that appear in the operand field of the

prototype statement. The standard value assigned to a symbolic parameter

is substituted for the symbolic parameter, if the progranxner does not write

anything in the operand field of the macro-instruction to correspond to the

symbolic parameter.

When a keyword macro-instruction is written, the programmer need only

write one Operand for each symbolic parameter whose value he wants to

change.

Keyword macro-definitions are prepared the same way as positional

macro-definitions, except that the prototype statement is written

differently. The rules for preparing positional macro-definitions are in

Section 7.

Keyword Prototype

The format of this statement is:

Name

A symbolic

parameter
or blank

Operation

A symbol

Operand

One or more

operands of the
form described

below, separated

by commas

Each operand must consist of a symbolic parameter, immediately

followed by an equal sign and optionally followed by a standard value.

This value must not include a keyword.

10-18

A standard value that is part of an operand must immediately follow

the equal sign.

Anything that may be used as an operand in a macro-instruction except

variable symbols, may be used as a standard value in a keyword prototype

statement. The rules for forming valid macro-instruction operands are
detailed in Section 8.

The following are valid keyword prototype operands.

&READERffi

&LOOP2=SYMBOL

&S4==F'4096'

The following are invalid keyword prototype operands.

CARDAREA

&TYPE

&TWO =123

&AREA=X X'IBgA'

(no symbolic parameter)

(no equal sign)

(equal sign does not i,nediately follow symbolic

parameter)

(standard value does not immediately follow equal

sign)

The following keyword prototype statement contains a symbolic

parameter in the name field, and four operands in the operand field. The

first two operands contain standard values. The mnemonic operation code is
MOVE.

Name Operation Operand

&N MOVE &R=2,&A=S,&T-,&F-

s

Keyword Macro-Instruction

After a programmer has prepared a keyword macro-definition he may

it by writing a keyword macro-lnstruction.

The format of a keyword macro-instruction is:

use

Name Operation Operand

A symbol,

sequence

symbol,

or blank

Mnemonic

operation
code

Zero or more operands
of the form described

below, separated by

commas

10-19

Eachoperand consists of a keyword immediately followed by an equal

sign and an optional value which may not include a keyword. Anything that

may be used as an operand in a positional macro-lnstructlon may be used as

a value in a keyword macro-instruction. The rules for forming valid

positional macro-instruction operands are detailed in Section 8.

A keyword consists of one through seven letters and digits, the first
of which must be a letter.

The keyword part of each keyword macro-instructlon operand must

correspond to one of the symbolic parameters that appears in the operand

field of the keyword prototype statement. A keyword corresponds to a

symbolic parameter if the characters of the keyword are identical to the

characters of the symbolic parameter that follow the ampersand.

The following are valid keyword macro-instruction operands.

LOOP2=SYMBOL

$4--F'4096'

TO-

The following are invalid keyword macro-lnstruction operands.

&X4F2=0 (2,3)

CARDAREA=A+2

= (TO (8), (FROM))

(keyword does not begin with a letter)

(keyword is more than seven characters)

(no keyword)

The operands in a keyword macro-instructlon may be written in any

order. If an operand appeared in a keyword prototype statement, a

corresponding operand does not have to appear in the keyword macro-

instruction. If an operand is omitted, the comma that would have separated

it from the next operand need not be written.

The following rules are used to replace the symbolic parameters in the

statements of a keyword macro-definltlon.

le If a Symbolic parameter appears in the name field of the

prototype statement, and the name field of the macro-instruction

contains a symbol, the symbolic parameter is replaced by the

symbol. If the name field of the macro-instruction is blank or

contains a sequence symbol, the symbolic parameter is replaced by
a null character value.

e

.

If a symbolic parameter appears in the operand field of the

prototype statement, and the macro-instruction contains a keyword

that corresponds to the symbolic parameter, the value assigned to

the keyword replaces the symbolic parameter.

If a symbolic parameter was assigned a standard value by a

prototype statement, and the macro-instructlon does not contain

10-20

a keyword that corresponds to the symbolic parameter, the

standard value assigned to the symbolic parameter replaces the

symbolic parameter. Otherwise, the symbolic parameter is

replaced by a null character value.

Note i:! If a standard value is a self-deflnlng term, the type attribute

assigned to the standard value is the letter N. If a standard value is

omitted the type attribute assigned to the standard value is the letter O.

All other standard values are assigned the type attribute U.

Note 2: Positional parameters cannot be changed to keywords by

substitution. That is, in the following example, the expression AffiFB,

statement 2, will be treated as a positional operand consisting of a

character string in the generation of the MAC macro; it will not be treated

as a keyword A w_th the value FB.

Name

&VALUE

Operation

GBLC

SETC

MAC

Operand

&VALUE

'A-FB'

&VALUE

The following keyword macro-deflnitlon, keyword macro-instructlon, and

generated statements illustrate these rules.

i

2

3

4

5

Name

&N

&N

HERE

HERE

6

Operation

MACRO

MOVE

ST

L

ST

L

MEND

MOVE

ST

L

ST

L

I---
Operand

&R=2,&A'S,&T',&F"

&R,&A

&R,&F

&R,&T

&R,&A

T=FA,F=FB,A_THERE

_-__

2, THERE

2,FB

2, FA

2, THERE

Statement 1 assigns the standard values 2 and S to the symbolic

parameters &R and &A, respectively. Statement 6 assigns the values FA, FB,

and THERE to the keywords T, F, and A, respectively. The symbol HERE is
used in the name field of statement 6.

10-21

Since a symbolic parameter (&N) appears in the name field of the

prototype statement (statement i), and the corresponding characters (HERE)

of the macro-instructlon (statement 6) are a symbol, &N is replaced by HERE
in statement 2.

Since &T appears in the operand field, of statement i, and statement

6 contains the keyword (T) that corresponds to &T, the value assigned to T

(FA) replaces &T in statement 4. Similarly, FB and THERE replace &F and &A

in statement 3 and in statements 2 and 5, respectively. Note that the

value assigned to &A in statement 6 is used instead of the value assigned

to &A in statement i.

Since &R appears in the operand field of statement i, and statement 6

does not contain a corresponding keyword, the value assigned to &R (2),

replaces &R in statements 2, 3, 4, and 5.

Operand Subllsts: The value assigned to a keyword and the standard value

assigned to a symbolic parameter may be an operand sublist. Anything that

may be used as an operand subllst in a positional macro-lnstruction may be

used as a value in a keyword macro-instructlon and as a standard value in

a keyword prototype statement. The rules for forming valid operand

subllsts are detailed in Section 8 under "Operand Sublists."

Keyword Inner Macro-Instructions: Keyword and positional inner macro-

instructions may be used as model statements in either keyword or

posltlonalmacro-definitions.

MIXED-MODE MACRO-DEFINITIONS AND INSTRUCTIONS

Mixed-mode macro-definitions allow the programmer to use the features

of keyword and positional macro-definitions in the same macro-deflnitlon.

Mixed-modemacro-definitlons are prepared the same way as positional

macro-deflnitions, except that the prototype statement is written

differently. If &SYSLIST is used, it refers only to the positional

operands in the macro-instruction. Subscrlpting past the last positional

parameter will yield an empty string and a type attribute of "0". The

rules for preparing positional macro definitions are in Section 7.

Mixed-Mode Prototype

The format of this statement is:

10-22

Name Operat ion Operand

A symbolA symbolic

parameter
or blank

One or more oper-

ands of the form

described below,

separated by
COHmlas

The operands must be valid operands of positional and keyword

prototype statements. All the positional operands must precede the first

keyword operand. The rules for forming positional operands are discussed

in Section 7, under "Macro-Instruction Prototype." The rules for forming

keyword operands are discussed above under "Keyword Prototype."

The following sample mixed-mode prototype statement contains three

positional operands and two keyword operands.

Name Operation Operand

&N MOVE &TY,&P,&R,&TO=,&F-

Mixed-ModeMacro-lnstruction

The format of a mixed-modemacro-instructlon is:

Name Operation Operand

A symbol,

sequence

symbol,
or blank

Mnemonic

operation
code

Zero or more operands
of the form described

below, separated by
commas

The operand field consists of two parts. The first part corresponds

to the positional prototype operands. This part of the operand field is

written in the same way that the operand field of a positional macro-

instruction is written. The rules for writing positional macro-

instructions are in Section 8.

The second part of the operand field corresponds to the keyword

prototype operands. This part of the operand field is written in the same

way that the operand field of a keyword macro-instruction is written. The

rules for writing keyword macro-instructions are described above under

"Keyword Macro-lnstruction. ''_

10-23

The following mixed-mode macro-definition, mixed-mode
instruction, and generated statements illustrate these facilities.

macro-

2

Name Operation

&N

&N

MACRO

MOVE

ST&IT

L&TY

ST&TY

L&TY

HERE MOVE

HERE STH

LH

STH

LH

Op erand

&TY, &P, &R, &TO", &F"

&R, SAVE

&R, &P &F

&R, &P&TO

&R, SAVE

H,,2,F=FB,TO'FA

2,SAVE

2,FB

2,FA

2,SAVE

The prototype statement (statement i) contains three positional

operands (&TY,&P, and &R) and two keyword operands (&TO and &F). In the

macro-lnstructlon (statement 2) the positional operands are written in the

same order as the positional operands in the prototype statement (the

second operand is omitted). The keyword operands are written in an order

that is different from the order of keyword operands in the prototype

statement.

Mixed-mode inner macro-instructions may be used as model statements in

mixed-mode, keyword, and positional macro-deflnitions. Keyword and

positional inner macro-lnstructions may be used as model statements in

mlxed-mode macro-definitlons.

MACRO-DEFINITION COMPATIBILITY

Macro-definitlons prepared for use with the other System/360

assemblers having macro language facilities may be used with the Operating

System/360 assembler provided that all SET symbols are defined in an

appropriate LCLB, GBLA, GBLB, or GBLC statement. The AIFB and AGOB

instructions will be processed by the Operating System/360 assembler the

same way that the AIF and AGO instructions are processed. AIFB and AGOB

instructions will cause the count set up by the ACTR instructions to be

decremented in exactly the same way as the AGO and AIF instructions.

i0-24

APPENDIXES

APPENDIX A: CHARACTER CODES

APPENDIX B: HEXADECIMAL-DECLMAL NUMBER CONVERSION TABLE

APPENDIX C: MACHINE-INSTRUCTION FORMAT

APPENDIX D: MACHINE-INSTRUCTION MNEMONIC OPERATION CODES

APPENDIX E: ASSEMBLER INSTRUCTIONS

APPENDIX F: SUMMARY OF CONSTANTS

APPENDIX G: MACRO LANGUAEE SUMMARY

APPENDIX H: SAMPLE PROGRAM

APPENDIX I: ASSEMBLER LANGUAGES--FEATURES COMPARISON CHART

APPENDIX J: SAMPLE MACRO DEFINITIONS

8-Bit

Code

00000000

00000001

00000010

00000011

00000100

00000101

00000110

00000111

00001000

00001001

0000 I0 i0

00001011

00001100

00001101

00001110

00001111

00010000

00010001

00010010

00010011

00010100

00010101

00010110 !

00010111

00011000

00011001

00011010

00011011

00011100

00011101

00011110

00011111

00100000

00100001

00100010

00100011

00100100

00100101

00100110

00100111

00101000

00101001

APPENDIX A: CHARACTER CODES

Character Set

Punch

Combination

12,0,9,8,i

12,9,1

12,9,2

12,9,3

12,9,4

12,9,5

12,9,6

12,9,7

12,9,8

12,9,8,1

12,9,8,2

12,9,8,3

12,9,8,4

12,9,8,5

12,9,8,6

12,9,8,7

12,11,9,8,1

11,9,1

11,9,2

11,9,3

11,9,4

11,9,5

11,9,6

11,9,7

11,9,8

11,9,8,1

11,9,8,2

11,9,8,3

11,9,8,4

11,9,8,5

11,9,8,6

11,9,8,7

11,0,9,8,1

0,9,1

0,9,2

0,9,3

0,9,4

0,9,5

0,9,6

0,9,7

0,9,8

0,9,8,1

Decimal

0

1

2

3

4

5

6

7

8

9

10

ii

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

Hexa-

Decimal

00

Ol

O2

03

04

O5

' 06

O7

O8

09

OA

0B

0C

0D

0E

OF

I0

II

12

13

14

15

16

17

18

19

IA

IB

iC

ID

IE

IF

2O

21

22

23

24

25

26

27

28

29

ASCII

Code

00

01

02

03

04

09

06

7F

O8

09

0A

0B

0C

OD

0E

OF

I0

ii

12

13

14

15

08

17

18

19

IA

IB

IC

ID

IE

IF

20

21

22

23

24

0A

17

IB

28

29

EBCDIC

Printer

Graphics

ASCII

Printer

Graphics

NUL

SOH

STX

ETX

EOT

HT

ACK

DEL

BS

HT

LF

VT

FF

CR

SO

Sl

DLE

DCI

DC2

DC3

DC4

NAK

BS

ETB

CAN

EM

SUB

ESC

FS

GS

RS

US

SP

1®
I!

#

$
LF

ETB

ESC

(
)

A-1

8-Bit

Code

00101010

00101011

00101100

00101101

00101110

00101111

00110000

00110001

00110010

00110011

00110100

00110101

00110110

00110111

00111000

00111001

00111010

00111011

00111100

00111101

00111110

00111111

01000000

01000001

01000010

01000011

01000100

01000101

01000110

01000111

01001000

01001001

01001010

01001011

01001100

01001101

01001110

01001111

01010000

01010001

010_I0010

01010011

01010100!

01010101

Character Set

Punch

Combinaions

0,9,8,2

0,9,8,3

0,9,8,4

0,9,8,5

0,9,8,6

0,9,8,7

12,11,0,9,8,1
9,1

9,2

9,3

9,4

9,5

9,6

9,7

9,8

9,8,1

9,8,2

9,8,3

9,8,4

9,8,5

9,8,6

9,8,7

12,0,9,1

12,0,9,2

12,0,9,3

12,0,9,4

12,0,9,5

12,0,9,6

12,0,9,7

12,0,9,8

12,8,1

12,8,2

12,8,3

12,8,4

12,8,5

12,8,6

12,8,7

12

12,11,9,1

12,11,9,2

12,11,9,3

12,11,9,4

12,11,9,5

Decimal

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

Hexa-

Decimal

2A

2B

2C

2D

2E

2F

30

31

32

33

34

35

36

37

38

39

3A

3B

3C

3D

3E

3F

40

41

42

43

44

45

46

47

48

49

4A

4B

4C

4D

4E

4F

50

51

52

53

54

55
--DD--D------m--J

ASCII

Code

2A

2B

2C

O5

06

07

30

31

16

33

34

35

36

04

38

39

3A

3B

14

15

3E

IA

20

41

42

43

44

45

46

47

48

49

5B

2E

3C

28

2B

21

26

51

52

53

54

55

EBDIC

Printer

Graphics

(blank)

¢ (cent sign)

• (period)
<

(
+

I (Logical OR

&

ASCII

Printer

Graphic_

,

+

ENQ
ACK

BEL

0

i

SYN

3

4

5

6

EOT

8

9

DC4

NAK

>

SUB

A

B

C

D

E

F

G

H

I

E

<

(
+

I

&

Q
R

S

T

U

A-2

8-Bit

Code

01010110

01010111

01011000

01011001

0 I0 ii0 i0

01011011

01011100

01011101

01011110

01011111

01100000

01100001

0 Ii00010

01100011

0 ii00 i00

01100101

01100110

01100111

01101000

01101001

01101010

01101011

01101100

01101101

01101110

01101111

01110000

01110001

01110010

01110011

01110100

01110101

01110110

01110111

01111000

01111001

01111010

01111011

01111100

01111101

01111110

01111111

Character Sat

Punch

Combination

12,11,9,6

12,11,9,7

12,11,9,8

11,8,1

11,8,2

11,8,3

11,8,4

ii,8,5

11,8,6

11,8,7

ii

0,I

11,0,9,2

11,0,9,3

11,0,9,4

11,0,9,5

11,0,9,6

11,0,9,7

11,0,9,8

0,8,1

12,11

0,8,3

0,8,4

0,8,5

0,8,6

0,8,7

12,11,0

12,11,0,9,1

12,11,0,9,2

12,11,0,9,3

12,11,0,9,4

12,11,0,9,5

12,11,0,9,6

12,11,0,9,7

12,11,0,9,8

8,1

8,2

8,3

8,4

8,5

8,6

8,7

Decimal

86

87

88

89

9O

91

92

93

94

95

96

97

98

99

i00

i01

102

103

104

105

106

107

108

109

ii0

iii

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

Hexa-

Decimal

56

57

58

59

5A

5B

5C

5D

5E

5F

60

61

62

63

64

65

66

67

68

69

6A

6B

6C

6D

6E

6F

70

71

72

73

74

75

76

77

78

79

7A

7B

7C

7D

7E

7F

ASCII

Codes

56

57

58

59

5D

24

2A

29

3B

3E

2D

2F

62

63

64

65

66

67

68

69

7C

2C

25

5F

3E

3F

70

71
"79
14.

73

74

75

76

77

78

60

3A

23

40

27

3D

22

zBCDZC
Printer

Graphics

!

$

)

-_(logical NOT

- (hyphen)

!

, (comma)
%

(underscore

>

?

#
@
' (apostrophe',

ASCII

Printer

Graphics

V

W

X

Y

1
$

)

---I

!
b

C

d

e

f

g
h

!
/

%

_2' (under-

score)

>
?

P

q

r

s

t

u

V

w

x

#
@
' (apos-

trophe)
n

II

A-3

8-Bit

Code

i0000000

i0000001

i0000010

i0000011

i0000100

10000101

10000110

10000111

10001000

10001001

10001010

10001011

10001100

10001101

10001110

10001111

10010000

10010001

10010010

10010011

10010100

10010101

10010110

10010111

10011000

10011001

10011010

10011011

10011100

10011101

10011110

10011111

10100000

10100001

10100010

10100011

10100100

10100101

10100110

10100111

10101000

10101001

10101010

10101011

Character Set

Punch

Combination

12,0,8,1

12,0,i

12,0,2

12,0,3

12,0,4

12,0,5

12,0,6

12,0,7

12,0,8

12,0,9

12,0,8,2

12,0,8,3

12,0,8,4

12,0,8,5

12,0,8,6

12,0,8,7

.12,11,8,1

12,11,1

12,11,2

12,11,3

12,11,4

12,11,5

12,11,6

12,11,7

12,11,8

12,11,9

12,11,8,2

12,11,8,3

12,11,8,4

12,11,8,5

12,11,8,6

12,11,8,7

11,0,8,1

Ii,0,I

11,0,2

11,0,3

11,0,4

11,0,5

11,0,6

11,0,7

11,0,8

11,0,9

11,0,8,2

11,0,8,3

Decimal

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

Hexa-

Decimal

80

81

82

83

84

85

86

87

88

89

8A

8B

8C

8D

8E

8F

90

91

92

93

94

95

96

97

98

99

9A

9B

9C

9D

9E

9F

A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

AA

AB

ASCII

Code

80

61

62

63

64

65

66

67

68

69

8A

8B

8C

8D

8E

8F

90

6A

6B

6C

6D

6E

6F

7O

71

72

9A

9B

9C

9D

9E

9F

A0

7E

73

74

75

76

77

78

79

7A

AA

AB

EBCDIC

Printer

Graphics

a

b

C

d

e

f

8
h

i

J
k

1

m

n

o

P

q
r

8

t

u

V

W

X

Y
Z

ASCII

Printer

Graphics

a

b

C

d

e

f

g
h

i

J
k

1

m

n

o

P

q
r

s

t

u

V

W

X

Y

Z

A-4

8-Bit
Code

i0101100
i0101101
i0101110
i0101111
i0110000
i0110001
i0110010
i0110011
I0110100
10110101
i0110110
i0110111
i0111000
i0111001
i0111010
i0111011

.D_m_mt"

Character Set

Punch

Combination

11,0,8,4

11,0,8,5

11,0,8,6

11,0,8,7

12,11,0,8,1

12,11,0,i

12,11,0,2

12,11,0,3

12,11,0,4

12,11,0,5

12,11,0,6

12,11,0,7

12,11,0,8

12,11,0,9

12,11,0,8,2

12,11,0,8,3

ii,0,8,4

11,0,8,5

Ii,0,8,6

ii,0,8,7

i0111100 12,

I0111101 12,

10111110 '12,

i0111111 12,

ii000000

ii000001

ii000010

ii000011

ii000100

ii000101

ii000110

II000111

Ii001000

II001001

Ii001010

ii001011

Ii001100

Ii001101

ii001110

ii001111

Ii010000

ii010001

ii010010

ii010011

ii010100

ii010101

ii010110

ii010111

12,0

12,1

12,2

12,3

12,4

12,5

12,6

12,7

12,8

12,9

12,0,9,8,2

12,0,9,8,3

12,0,9,8,4

12,0,9,8,5

12,0,9,8,6

12,0,9,8,7

ii,0

ii,i

11,2

11,3

11,4

11,5

11,6

11,7

Decimal'

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

20O

201

202

203

204

205

206

207

2O8

209

210

211

212

213

214

215

Hexa-

Decimal

AC

AD

AS

AF

BO

B1

B2

B3

B4

B5

B6

B7

B8

B9

BA

BB

BC

BD

BE

BF

CO

C1

C2

C3

C4

C5

C6

C7

' C8

C9

CA

CB

CC

CD

CE

CF

DO

D1

D2

D3

D4

D5

D6

D7

EBCDIC

ASCII Printer

Code Graphics

AC

AD

AE

AF

B0

B1

B2

B3

B4

B5

B6

B7

B8

B9

BA

BB

BC

BD

BE

BF

7B

41 A

42 B

43 C

44 D

45 E

46 F

47 G

48 H

49 I

CA

CB

CC

CD

CE

CF

7D

4A J

4B K

4C L

4D M

4E N

4F O

50 P

ASCII

Printer

Graphics

{
A

B

C

D

E

F

G

H

I

}
J

K

L

M

N

0

P

A-5

8-Bit

Code

ii011000

ii011001

ii011010

ii011011

ii011100

ii011101

ii011110

II011111

iii00000

iii00001

iii00010

iii00011

iii00100

iii00101

iii00110

iii00111

iii01000

iii01001

Iii01010

iii01011

iii01100

Iii01101

iii01110

iii01111

iiii0000

iiii0001

iiii0010

Iiii0011

iiii0100

iiii0101

iiii0110

IIii0111

iiiii000

iiiii001

iiiii010

iiiii011

iiiiii00

iiiiii01

iiiiiii0

iiiiiiii

Character Set

Punch

Combination

ii,8

ii,9

12,11,9,8,2

12,11,9,8,3

12,11,9,8,4

12,11,9,8,5

12,11,9,8,6

12,11,9,8,7

0,8,2

11,0,9,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

11,0,9,8,2

11,0,9,8,3

ii,0,9,8,4

11,0,9,8,5

11,0,9,8,6

ii,0,9,8,7

0

1

2

3

4

5

6

7

8

9

12,11,0,9,8,2

12,11,0,9,8,3

12,11,0,9,8,4

12,11,0,9,8,5

12,11,0,9,8,6

12,11,0,9,8,7

Decimal

216

217

218

219

220

221

222

223

224

225

226

227

228

229

23O

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

Hexa-

Decimal

D8

D9

DA

DB

DC

DD

DE

DF

EO

E1

E2

E3

E4

E5

E6

E7

E8

E9

EA

EB

EC

ED

EE

EF

F0

F1

F2

F3

F4

F5

F6

F7

F8

F9

FA

FB

FC

FD

FE

FF

ASCII

Code

51

52

DA

DB

DC

DD

DE

DF

E0

5C

53

54

55

56

57

58

59

5A

EA

EB

EC

ED

EE

EF

30

31

32

33

34

35

36

37

38

39

FA

FB

FC

FD

FE

FF

EBCDIC

Printer

Graphics

Q
R

S

T

U

V

W

X

Y

Z

0

1

2

3

4

5

6

7
8

9

ASCII

Printer

Graphics

Q
R

\

S

T

U

V

W

X

Y

Z

0

i

2

3

4

5

6

7

8

9

A-6

Special Graphic Characters

¢ Cent Sign

• Period, Decimal Point

< Less-than Slgn

(Left Parenthesis

+ Plus Slgn

I Vertical Bar, Logical OR

& Ampersand

! Exclamation Point

$i Dollar Sign

* Asterisk

) Right Parenthesis

; Semicolon

--iLoglcal NOT

- Number Sign, Hyphen

/ Slash

, Co_ma

Z Percent

Underscore

> Greater-than Sign

? Question Mark

: Colon

Number Sign

@ At Slgn

' Prime, Apostrophe

= Equal

" Quotation Mark

Examplesl Type

Control Character

Bit Pattern

Bit Positions

01 23 4567

% Speclal Graphic

R Upper Case

00 O0 0100

01 i0 II00

Ii Ol ii01

a Lower Case 10 O0 0001

00 11 0000Control Character,

function not yet

assigned

Hole Pattern

i

Zone Punches Digit Punches

12-9-4

!
0-8-4

11!9

12-0!I

!

12-11-0-9-8-1
!

I

i

!

A-7/A-8

APPENDIX B: HEXADECIMAL-DECIMAL NUMBER CONVERSION TABLE

From hex: Locate each hex digit in its corresponding column position and note
the decimal equivalents. Add these to obtain the decimal value.

From decimal: (i) Locate the largest declmal value in the table that will fit

into the decimal number to be converted, and (2) note its hex equlvalent and hex

column position. (3) Flnd the decimal remainder. Repeat the process on this
and subsequent remainders.

NOTE: Declmal, hexadecimal, (and binary) equivalents of all

numbers from 0 to 255 are listed on panels 11-14.

6 I

HEXL DEC

0 0 ""

1 1,048,576

2 2,097,152

3 3,145,728

4 4,194,304

5 ,5,242,880

6 6,291,456

7 7,340,032

8 8,388,608

9 9,437,184

A 10,485,760

B 11,534,336

C 12,582,912

D 13,631,488

E 14,680,064

F 15,728,640

5

HEXADECIMAL COLUMNS

J3_

HEX - DEC HEX - DEC HEX - DEC HEX - DEC HEX - DEC

0 "0 0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

0

16

32

48

64

80

96

112

128

144

160

176

192

208

224

240

0123

BYTE

0 0

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

A i0

B ii

C 12

D 13

E 14

F 15

I

0 O'

1 65,536

2 131,072

3 196,608

4 262,144

5 327,680

6 393,216

7 458,752

8 524,288

9 589,824

A 655,360

B 720,896

C 786,432

D 851,968

E 917,504

F 983,040

0

1 4,096

2 8,192

3 12,288

4 16,384

5 20,480

6 24,576
7 28,672

8 32,768

9 36,864

A 40,960

B 45,056

C 49,152

D 53,248

E 57,344

F 61,440

4567 0123

BYTE

0

I 256

2 512

3 768

4 1,024

5 1,280

6 1,536

7 1,792

8 2,048

9 2,304

A 2,560

B 2,816

C 3,072

D 3,328

E 3,584

F 3,840

4567 01"23 4567

BYTE

t

POWERS OF 2

2n

256

512

1 024

2 048

4 096

8 192

16 384

32 768

65 536

131 072

262 144

524 288

1 048 576

2 097 152

4 194 304

8 388 608

16 777 216

8

9

i0

ii

12

13

14

15

16

17

18

19

20

21

22

23

24

20 = 160

24 = 161

28 = 162

212 = 163

216 = 164

220 . 165

224 = 166

228 . 167

232 .. 16 8

236 . 169

240 .. 16I0

244 . 1611

248 .. 1612

252 ., 1613

256 .. 1614

260 = 1615

POWER OF 16

16n

1

16

256

4 096

65 536

1 048 576

16 777 216

268 435 456

4 294 967 296

68 719 476 736

1 099 511 627 776

17 592 186 044 416

281 474 976 710 656

4 503 599 627 370 496

72 057 594 037 927 936

1 152 921 504 606 846 976

n

0

1

2

3

4

5

6

7

8

9

i0

ii

12

13

14

15

B-2

f

APPENDIX C:
m

BASIC MACHINE FORMAT

MACHINE-INSTRUCTION FORMAT

ASSEMBLER OPERAND

FIELD FORMAT APPLICABLE INSTRUCTIONS

i

8 4 4

Operation
Code Rl R2

8 4 4

Operation
Code M1 R2

RI,R2 All RE instructions except!

BCR, SPM, BR, and SVC

RE

MI,R2 BCR

8 4

Operation
Code , R1

i,

R1 BR

RI SPM

8 8

Operation
Code I

I

(See Notes 1,6,8,

and 9)

SVC

RX

8 4 4 4 12

)peration
Code R1 X2 B2 D2

OP Code Xl IB1 DI

8 4 4 4 12

)peration
Code M1 X2 B2 D2

RI,D2(X2,B2)

R1,D2(,B2)

R1 ,$2 (_2)
RI,S2

D2 (XI, BI)

DI(,BI)

Sl(xl)

MI,D2(X2,B2)

MI,D2(,B2)

MI,S2(X2)

MI,S2

(See Notes 1,6,8,

and 9)

All RX instructions except

BC and BUR

BUR

BC

C-I

BASIC MACHINE FORMAT

8

Operation

Code

8

Operat_n
Code

Operation
Code

Operation
Code

ASSEMBLER OPERAND

FIELD FORMAT

RI,R3,D2(B2)

RI,R3,S2

RI,D2(B2)

R1,S2

RI,I

DI(BI),I2

$1,12

DI(Sl)
Sl (See Notes 2,3,

6,7, and 8)

O... at.oo
Code

DI (LI, BI) ,D2 (L2 ,B2'

SI(LI) ,$2 (L2)

D1 (L, BI), D2 (B2)

SI(L) ,S2

APPLICABLE INSTRUCTIONS

BXH,BXLE,LM,STM,SIO,TMRS

All shift instructions

All 16 bit immediate

instructions

All Sl instructions except

those listed for other SI

formats

LPSW,SSM,TIO,TCH,TS

PACK,UNPK,MVO,AP,

CP,DP,MP,SP,ZAP

NC,OC,XC,CLC,MVC,MVN,

MVZ,TR,TRT,ED,EDMK

C-2

Notes for Appendix C:

i. RI, R2, and R3 are absolute expressions that specify general or

floatlng-point registers. The general register numbers are 0 through

15; floatlng-point register numbers are 0, 2, 4, and 6.

. D1 and D2 are absolute expressions that specify displacements. A value
of 0 - 4095may be specified.

o B1 and B2 are absolute expressions that specify base registers.
Register numbers are 0 - 15.

to X2 is an absolute expression that specifies an index register.
Register numbers are 0 - 15.

. L, LI, and L2 are absolute expressions that specify field lengths. An
L exprees$on can specify a value of 1 - 256. LI and L2 expressions can

specify a value of 1 - 16. In all cases, the assembled value will be

one less than the specified value.

. I, 12, and 13 are absolute expressions that provlde immediate data.

The value of I and I2 may be 0 - 255. The value of I3 may be 0 - 9.

. S1 and $2 are absolute or relocatable expressions that specify an
address.

. RE, RS, and Sl instruction fields that are blank under BASIC MACHINE

FORMAT are not examined during instruction execution. The fields are

not written in the symbolic operand, but are assembled as binary zeros.

o M1 specifies a 4-51t mask.

C/3-C-4

APPENDIX D. Hachine Instruction Mnemonic Operation. Codes

This appendix contains two tables of the mnemonic operation codes for all

machine instructions that can be represented in assembler language, including

extended mnemonic operation codes.

The first table is in alphabetic order by instruction. The second table is in

numeric order by operation code.

In the first table is indicated: both the mnemonic and machine operation, codes,

explicit and implicit operand_ formats, program interruptions possible, and
condition code set.

The column headings in the first table and the information each column provides
follow:

Instruction: This column contains the name of the instruction associated with

the mnemonic operation code.

Mnemonic Operation Code: This column contains the mnemonic operation code for
the machine instruction. This is written in the operation field when coding the
instruction.

Machine Operation Code: This column contains the hexadecimal equivalent of the
Actual machine operation code. The operation code will appear in this form in

most storage dumps and when displayed on the system control panel. For extended
mnemonics, this column also contains the mnemonic code of the instruction from
which the extended mnemonic is derived.

0perand Format: This column shows the symbolic format of the operand fleld in

both explicit and implicit form. For both forms, R1, It2, and R3 indicate

general registers in operands one, two, and three respectively. X2 indicates a

general register used as an index register in the second operand. Instructions

which require an index register (X2) but are not to be indexed are shown with a

0 replacing X2. L, LI, and L2 indicate lengths for either operand, operand one,

or operand two respectively. M1 and M3 indicate a 4-bit mask in operand one and

three, respectively. I, 12, and 13 indicate immediate data eight bits long (I

and I2) or four bits long (I3).

For the explicit format, DI and D2 indicate a displacement and BI and B2

indicate a base register for operands one and two.

For the implicit format, D1, B1, and D2, B2 are replaced by $1 and $2 which

indicate a storage address in operands one and two.

Type of instruction: This column gives the basic machine format of the

instruction (RR, RX, SI, SSI or RI). If an instruction is included in a special

feature or is an extended mnemonic, this is also indicated.

D-I

Prosram Interruptions Possible: This column indicates the possible program
interruptions for this instruction. The abbreviations used are: A -

Addressing, S - Specification, OV - Overflow, P - Protectlon, Op - Operation (if
feature is not installed), and Other - other interruptions which are listed.

The type of overflowIs indicated by: D - Decimal, E - Exponent, or F - Fixed
Point.

Cond!tlon Code Set: The condition codes set as a result of this instruction are
indicated in this column. (See legend following the table.)

'0-2

#

Instruction

Add

Add

Add Halfword

Add Logical

Add Logical

And Logical

And Logical

And Logical

And Logical

Immediate

Branch and Link

Branch and Link

Branch on Condition

Branch On Condition

Branch on Count

Branch on Count

Branch on Equal

Branch On High

Branch in Index

High

Branch on Index

Low or Equal

Branch on Low

Branch if Mixed

Branch on Minus

Branch On Not Equal

Branch on Not High

Branch on Not Low

Branch on Not Minus

Branch on Not Ones

Mnemonic

Operation
Code

A

AR

AH

AL

ALR

N

NC

NR

NI

BAL

BALR

BC

BCR

BCT

BCTR

BE

BH

BXH

BXLE

BL

BM

BM

BNE

BNH

BNL

BNM

BNO

Machine

Operation
Code

5A

1A

4A

5E

1E

54

D4

14

94

45

05

47

07

46

06

47 (BC 8)

47 (BC 2)

86

87

47 (BC 4)

47 (BC 4)

47 (BC 4)

47 (BC 7)

47 (BC 13)

47 (BC Ii)

47(BC lt)

47(BC 14)

Operand Format

Explicit

RI,D2(X2,B2) or RI,D2(,B2)

RI,R2

RI,D2(X2,B2) or RI,D2(,B2)

RI,D2(X2,B2) or RI,D2(,B2)

RI,R2

R1 ,D2 (X2 ,B2) or RI,D2 (,B2)

DI(L,B1),D2(B2)

R1,R2

DI(BI),I2

RI,D2(X2,B2) or RI,D2(,B2)

RI,R2

MI,D2(X2,B2) or MI,D2(,B2)

M1,R2

R1,D2(X2,B2) or RI,D2(,B2)

RI,R2

D2(X2,B2) or D2(,B2)

D2(X2,B2) or D2(,B2)

RI,R3,D2(B2)

RI,R3,D2(B2)

D2(X2,B2) or D2(,B2)

D2(X2,B2) or D2(,B2)

D2(X2,B2) or D2(,B2)

D2(X2,B2) or D2(,B2)

D2(X2,B2) or D2(,B2)

D2(X2,B2) or D2(,B2)

D2(X2,B2) or D2(,B2)

D2(X2,B2) or D2(,B2)

Implicit

RI,S2(X2) or RI,S2

RI,S2(X2) or RI,S2

RI,S2(X2) or RI,S2

RI,S2(X2) or RI,S2

!SI(L),S2 er SI,$2

Sl,12

RI,S2(X2) or RI,S2

MI,S2(X2) or MI,S2

RI,S2(X2) or RI,S2

S2(X2) or $2

$2(X2) or $2

RI,R3,S2

RI,R3,S2

$2(X2) or $2

$2(X2) or $2

$2(X2) or $2

S2(X2) or S2

S2(X2) or S2

$2(X2) or $2

$2(X2) or $2

$2(X2) or $2

D-3

INSTRUCTION

Add
Add
Add Halfword
Add Logical

Add Logical

And Logical

And Logical
And Logical
And Logical

Immediate

Branch and Llnk

Branch and Link

Branch on Condition

Branch on Condition

Branch on Count

Branch on Count

Branch on Equal

Branch on High

Branch on Index High
Branch on Index Low

or Equal
Branch on Low

Branch if Mixed

Branch on Minus

Branch on Not Equal

Branch on Not Hlgh

Branch on Not Low

Branch on Not Minus

Branch on Not Ones

TYPE OF

INSTRUCTION

RX

RR

RX

RX

RR

RX

SS

RR

SI

PROGRAM INTERRUPTION

POSSIBLE

RX

RR

RX

RR

RX

RR

RX, Ext .Mnemonic

RX, Ext .Mnemonic

RS

RS

RX,Ext.Mnemonic

RX,Ext.Mnemonic

RX,Ext.Mnemonic

RX,Ext.Mnemonic

RX,Ext.Mnemonic

RX,Ext.Mnemonic

RX,Ext.Mnemonic

RX,Ext.Mnemonic

A S OV P OP OTHER 00

X X F

iF

X X F

X X

ix Ix

X

X

X

X

CONDITION CODE SET

Sum-O

Sum-O

Sum-O

'Sum-O H

Sum-O H

J

01

Sum 0

Sum 0
Sum 0

SumOH

Sum-O H

K

K

K

K

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

iN

N

N

N

N

N

N

N

N

N

N

N

N

N

iN

N

10

Sum 0

Sum 0

Sum 0

Sum0 1

Sum-0 1

N

N

N

N

N

N

N

N

N

N

N

N

N

N

IN

N

N

N

11

Overflow

Overflow

Overflow

Sum O I

Sum0 1

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

D-4

Instruction

Branch on Not Plus

Branch on Not Zeros

Branch if Ones

Branch on Overflow

Branch on Plus

Branch if Zeros

Branch on Zero

Branch Uncondi-

tional

Branch Uncondi-

tional

Compare Algebraic

Compare Algebraic

Compare Halfword

Compare Logical

Compare Logical

Compare Logical

Compare Logical

Immediatei

Convert to Binary

Convert to Decimal

Divide

Divide

Exclusive Or

Exclusive Or

Exclusive Or

Exclusive Or

Immedlatei

Execute

Mnemonic

Operation

Code

BNP

BNZ

BO

BO

BP

BZ

BZ

B

BR

C

CR

CH

CL

CLC

CLR

CLi_

CVB

CVD

D

DR

X

XC

XR

Xll

EX

'Machine

Operation
Code

47(BC 13)

47(BC 7)

47(BC I)

47(BC i)

47(BC 2)

+7(BC 8)

47(BCS)

47(BC 15)

07 (BCR 15)

59

19

49

55

D5

15

95

4F

4E

5D

ID

57

D7

17

97

44

Operand Format

Explicit

D2(X2,B2) or D2(,B2)

D2(X2,B2) or D2(,B2)

D2(X2,B2) or D21(,-B2)

D2(X2,B2) or D2(,B2)

D2(X2,B2) or D2(,B2)

D2(X2,B2) or D2(,B2)

D2(X2,B2) or D2(,B2)

D2(X2,B2) or D2(,B2)

R2

Implicit

S2(X2) or S2

$2(X2) or S2

S2(X2) or S2

$2(X2) or $2

$2(X2) or $2

$2(X2) or $2

$2(X2) or $2

$2(X2) or $2

RI,D2(X2,B2) or R1,D2(,B2)

RI,R2

RI,D2(X2,B2) or RI,D2(,B2)

RI,D2(X2,B2) or RI,D2(,B2)

DI(L,B1) ,D2 (B2)

RI,R2

DI(BI),I2

RI,D2(X2,B2)

RI,D2(X2,B2)

RI,D2(X2,B2)

RI,R2

or RI,D2(,B2)

or RI,D2(,B2)

or RI,D2(,B2)

RI,D2(X2,B2) or RI,D2(,B2)

D1 (L,BI) ,DI(B2)

R1 ,R2

D1 (BI), 12

RI,D2(X2,B2) or RI,D2(,B2)

RI,S2(X2) or RI,S2

RI,S2(X2) or RI,S2

RI,S2(X2) or RI,S2

SI(L),S2 or Si,S2

Sl,12

RI,S2(X2) or RI,S2

RI,S2(X2) or RI,S2

RI,S2(X2) or RI,S2

RI,S2(X2) or RI,S2

SI(L),S2 or Sl,S2

SI,12

RI,S2(X2) or RI,S2

D-5

INSTRUCTION

Branch on Not Plus

Branch on Not Zeros

Branch if Ones

Branch on Overflow

Branch on Plus

Branch if Zeros

Branch on Zero

,TYPE OF
INSTRUCTION

RX,Ext.Mnemonic

EX,Ext.Mnemonic

RX,Ext.Mnemonic

RX,Ext.Mnemonlc

RX,Ext.Menmonic

RXtExt.Mnemonic

RXpExt.Menmonlc

Branch Unconditional RX,Ext.Mnemonlc

Branch Unconditional RR,Ext.Mnemonic

Compare Algebraic RX

Compare Algebraic RR

Compare Halfword RX

Compare Logical RX

Compare Logical SS

Compare Logical RR

Compare Logical SI
Immediate

Convert to Binary RX

Convert to Decimal RX

Divide RX

Divide RR

Exclusive Or RX

PROGRAM INTzKRUPTION

POSSIBLE
t

A S OV P OP OTHER O0

X X

X X

X X

X X

X

X

X X

X X

X X

X

CONDITION CODE SET

" 01 i0 "

X X

Exclusive Or SS X

Exclusive Or RR

Exclusive Or Sl X

Immediate

Execute RX X X

X

X

X

X

N N N

'N N N

N N N

N N N

N N N

N N N

N N N

N N N

N N N

Z AA BB

Z AA BB

Z AA BB

Z AA BB

Z AA BB

Z AA BB

Z AA BB

11

N

N

N

N

N

N

N

N

N

DataFN N N N

iN N N N

F N N N N

F N N N N

K

J K

J K

K

(May be set iby this [nstructlon)

D-6

Instruction

Insert Character

Load

Load
Load Address

Load and Test

Load Complement

Load Halfword

Load Multiple

Load Negative

Load Positive

Load PSW

Move Characters

Move Immediate

Move Numerics

Move with Offset

Mnemonic

Operation
Code

IC

L

LR

LA

LTR

LCR

LH

LM

LNR

LPR

LPSW

MVC

MVI

MVN

MVO

Move Zones

Multlply

Multiply

Multlply Halfword

No Operation

No Operation

Or Logical

Or Logical

Or Logical

Or Logical

Immediate

Packl

Set Program Mask

Set Storage Key

Set System Mask
Shift Left Double

Algebraic_

MVZ

M

MR

MH

/NOP

,NOPR

0

OC

OR

Ol

PACK

SPM

SSK

SSM

SLDA

Machl.=

Operation
Code

43

58

18

41

12

13

48

98

Ii

10

82

D2

92

D1

F1

D3

5C

IC

4C

47 (BC 0)

07 (BC 0)i
56

D6

16

96

F2

04

08

80

8F

Operand Format

Explicit

RI,D2 (X2 ,B2) or R1,D2 (,B2)

RI ,D2 (X2 ,B2) or RI,D2 (,B2)

RI,R2

RI,D2(X2,B2)

RI,R2

or RI,D2(,B2)

RI ,R2

RI,D2(X2,B2) or RI,D2(,B2)

RI,R3,D2 (B2)

RI,R2

RI ,R2
DI(BI)

DI (L,B1),D2 (B2)
DI(BI) ,12

D1 (L, B1 (,D2 (B2)

DI, (L1,B1) ND2 (L_ ,B2)

DI(L,B1) ,D2 (B2)

R1,D2(X2,B2) or R1,D2(,B2)

RI,R2

RI,D2(X2,B2) or RI,D2(,B2)

D2(X2,B2) or D2(,B2)

R2

RI,D2(X2,B2) or RI,D2(,B2)

D1 (L,B1) ,D2(B2)

R1, R2

Vl (BI), 12

D1 (L1,B1) ,D2 (L2 ,B2)

R1

R1,R2

DI(B1)

RI,D2(B2)

Implicit

RI,S2(X2) or RI,S2

RI,S2(X2) or RI,S2

RI,S2(X2) or RI,S2

R1,S2(X2) or RI,S2

RI,R3,S2

S1

l

iSI(L),S2 or Sl,S2

SI,12

SI(L),S2 or SI,$2

SI(LI),S2(L2) or Si,S2

SI(L),S2 or $1,$2

RI,S2(X2) or RI,S2

RI,S2(X2) or RI,S2

$2(X2) or $2

RI,S2(X2) or RI,S2

SI(L),S2 or iSI,S2

Si,12

SI(LI),S2(L2) or Sl,S_

Sl

RI,S2

D-7

INSTRUCTION

Insert Character

Load

Load

Load Address

Load and Test

Load Complement
Load Halfword

Load Multiple

Load Negative

Load Positive

Load PSW

Move Characters

Move Immediate

Move Numerics

Move with Offset

Move Zones

Multiply

Multiply

Multiply Halfword

No Operation

No Operation

Or Logical

Or Logical

Or Logical

Or Logical
Immediate

Pack

Set Program Mask

Set Storage Key

Set System Mask

Shift Left Double

Algebraic

TYPE OF

INSTRUCTION

RX

RX

RR

RX

RR

RR

RX

RS

RR

RR

SI

SS

Sl

SS

SS

SS

RX

RR

RX

RX,Ext.Mnemonic

RR,Ext.Mnemonic

RX

SS

RR

SI

SS

RR

RR

SI

RS

PROGRAM INTERRUPTION

POSSIBLE

A S OV P OP OTHER 00

_X

X X

X X

X X

F

F

X X A

X X

X X

X X

X X

X

X X

X

X X

X

X X

X X

iX X

X X

N

N

CONDITION CODE SET

X

X X

X

X F

X A

A

01

N

N

N N

N N

J L

P L

N N

N N

J L

J

QQ QQ

N N

N N

N N

N N

N N

N N

N N

N N

N N

N N

J K

J K

J K

J K

N N

RR RR

N N

N N

J L

I0

N

N

N

N

M

M

N

N

M

QQ

N

N

N

N

N

N

N

N

N

N

RR

N

N

M

ii

N

N

N

N

0

N

N

0

QQ

N

N

N

N

N

N

N

N

N

N

N

RR

N

N

0

D-8

Instruction

Shift Left Double

Logical

Shift Left Single

Algebraic

Shift Left Single

Loglcal

Shift Right Double

Algebraic

Shift Right Double

Logical

Shift Right Single

Algebraic

Shift Right Single

Logical

Start I/O

Store

Store Character

Store Halfword

Store Multiple

Subtract

Subtract

Subtract Halfword

Subtract Logical

Subtract Logical

Add Double

Add Double Register
Add Halfword

Immediate

Add Short

Add Short Immediate

Add Short Register

Branch Unconditional

Branch Unconditional

Register

Mnemonic

Operation
Code

SLDL

SLA

SLL

SRDA

SRDL

SRA

SRL

,SIO

ST

STC

STH

STM

S

SR

SH

SL

SLR

AD

'ADR

AHI

AS

ASI

ASR

BU

BUR

iMachine

Operation
Code

8D

8B

89

8E

8C

8A

88

l

,19c

50

42

40

90

5B

IB

4B

5F

1F

6A

2A

BA

53

AA

CA

73

CE

Operand Fornmt

Explicit Implicit

R1 ,D2 (B2)

R1,D2(B2)

El, D2 (B2)

R1 ,D2 (B2)

R1,D2 (B2)

RI,D21(B2)

RI ,D2 (B2)

RI, R3 ,D2 (B2)

RI,D2(X2,B2) or R1,D2(,B2)

R1,D2(X2,B2) or RI,D2(,B2)

RI,D2(X2,B2) or RI,D%('B2)

RI ,R2 ,D2 (B2)

R1,D2(X2) or RI,D2(X2,B2)

RI ,R2

R1,D2(X2,B2) or RI,D2(,B2)

RI,D2(X2,B2) or RI,D2(,B2)

RI ,R2

RI ,D2 (X2,B2)

RI, R2

RI,12

or R1,D2 (,B2)

RI,D2(X2,B2) or RI,D2(,B2)

RI,12

RI,R3

D2(X2,B2) or D2(,B2)

R2

RI,S2

RI,S2

RI,S2

Rl,S2

RI,S2

RI,S2

RI,S2

RI_R3,S2

R1,S2(X2) or R1,$2

R1,D2(X2) or R1,$2

RI,S2(X2) or R1,$2

RI,R2,S2

RI,S2(X2)

Rl,S2 (X2)

RI,S2 (X2)

or RI,S2

or RI,S2

or RI,S2

RI,S2(X2) or RI,S2

RI,S2(X2) or RI,S2

S2(X2) or S2

D-9

m

INSTRUCTION

Shift Left Double

Logical

Shift Left Single

Algebraic

Shift Left Single

Logical

Shift Right Double

Algebraic

Shift Right Double

Logical

Shift Right Single

Algebraic

Shift Right Single

Logical

Start I/0

Store

Store Character

Store Halfword

Store Multiple

Subtract

iSubtract
Subtract Halfword

Subtract Logical

Subtract Logical

Add Double

Add Double Register
Add Halfword

Immediate

Add Short

Add Short Immediate

Add Short Register

Branch Unconditional

Branch Unconditional

Register

TYPE OF

INSTRUCTION

RS

RS

RS

RS

RS

RS

RS

RS

RX

RX

RX

RS

RX

RR

RX

RX

_RR

RX

RR

RI

RX

RI

RR

PROGRAM INTERRUPT IO-NSI

POSSIBLE

A S OV P 0P OTHER

RX

RR

X

X

X X

X X X

X X

X X X

X X X

X X F

F

X X F

X X

X X F

X F

F

,X X F

F

F

CONDITION CODE SET

00 01 I0

N N N

J L M

N N N

J L M

N N N

J L M

N N N

MM EE N

N N N

N N N

N N N

N N N

V X Y

'V X

V X

W,H

W,H

Sums0 Sum<0

Sum-0 Sum<0

Sum-0 Sum<0

Y

Y

V,I

V,I

Sum_

Sum>0

S_

Sum-0 Sum<0 Sum>0

Sum=0 Sum<0 Sum>0

Sum=0 Sum<0 Sum>O

,N N N

:N N N

ii

N

0

N

N

N

N

N

N

N

N

0

0

W,I

W,I

Overflow

Overflow

Overflow

Overflow

Overflow

Overflow

N

N

D-10

Instruction

Compare Double

Compare Double

Register

•Compare Halfword

Immediate

Compare Logical

Short

Compare Logical

Shore Immediate

Compare Logical

Short Register _

Compare Short

Compare Short

Immediate

Compare Short

Register

Divide Short

Divide Short I

Immediate

Divide Short

Register

Load Address Short

Load Complement

Double Register

Load Complement

Short Register

Load Double

Load Double_egister

Load Full to

Short Register
Load Halfword

Immediate

Load Halfword

Register

Load Negative

Short Register
Load Positive

Short Register

Load Short

Mnemonic

Operation
Code

CD

CDR

CHI

CLS

CLSI

CLSR

CS

CSI

CSR

DSI

DSR

LAS

LCDR

LCSR

LD

LDR

LFSR

LHI

LHR

LNSR

LPSR

LS

Machine

Operation
Code

69

29

B9

65

B5

C5

61

A9

C9

4D

E0

CD

51

23

C3

68

28

0B

B8

DO

Cl

CO

74

Op.erand Format

Explicit

RI,D2(X2,B2) or RI,D2(,B2)

RI,R2

Rl,I2

RI,D2(X2,B2) or RI,D2(,B2)

RI,12

RI,R2

RI,D2(X2,B2) or RI,D2(,B2)

RI,12

R1,R2

RI,D2(X2,B2) or RI,D2(,B2)

R1,12

RI ,R2

RI,D2(X2,B2) or R1,D2(,B2)

RI,R2

RI,R2

RI,D2(X2,B2) or RI,D2(,B2)

RI,R2

RI,R2

RI,12

RI,R2

RI,R2

RI,R2

RI,D2(X2,B2) or RI,D2(,B2)

Implicit

RI,S2(X2) or RI,S2

RI,S2(X2) or RI,S2

RI,S2(X2) or RI,S2

RI,S2(X2) or RI,S2

RI,S2(X2) or RI,S2

RI,S2(X2) or RI,S2

RI,S2(X2) or RI,S2

D-II

INSTRUCTION

Compare Double

Compare Double

Register

Compare Halfword
Immediate

Compare Logical
Short

Compare Logical
Short Immediate

Compare Logical

Short Register

Compare Short

Compare Short

Immediate

Compare Short

Register

Divide Short

Divide Short

Immediate

Divide Short

Register

Load Address Short

Load Complement

Double Register

Load Complement

Short Register

Load Double

Load Double Register

Load Full to Short

Register
Load Halfword

Immediate

Load Halfword

Register

Load Negative Short

Register

Loae Positive Short

Register!

Load Short

D-12

TYPE OF

INSTRUCTION

PROGRAM INTERRUPTIONS

POSSIBLE CONDITION CODE SET

A S OV P OP oTHER 00 01 I0

RX

RR

RI

RX

RI

RR

RX

RI

RX

X X Z AA BB

X Z AA BB

Z AA BB

X X Z AA BB

Z AA BB

Z AA BB

X X Z AA BB

Z AA BB

Z AA BB

RX X X F N N N N

RI N N N N

RR N N N N

RX

RR

RR

X F

F

N N N IN

J L M 0

J L M 0

RX

RR

RR

RI

RR

RR

RR

RX

X X

X

X X

F

F

N N N N

N N N N

J L M O

N N N

J L

J M

N N N

Ii

N

0

N

-a

Instruction

Load Short Immediate

Load Short Register

Load and Test

Load and Test Short

Load and Test Short

Register

Multiple Halfword
Immediate

Multiply Short

Multiply Short
Immediate

Multiply Short

Register
Normalize

And Short

And Short Immediate

And Short Register

Or Short

Or Short Immediate

Or Short Register

Subtract Double

Subtract Double

Register
Subtract Halfword

Immediate

Shift Left

Arithmetic Short

Shift Left Logical

Short

Shift Right Arith-
metic Short

Shift Right Logical

Short

Subtract Sort

Subtract Short

Immediate

Subtract Short

Register

Mnemonic

Operation
Code

LSi

LSR

LT

LTS

LTSR

MHI

MS

MSI

MSR

NRM

NS

NSI

NSR

OS

OSl

OSR

SD

SDR

SHI

SLAS

SLLS

SRAS

SRLS

SS

SSI

SSR

_Machine

Operat£on
Code

A8

C8

62

52

C2

BC

71

eO

CC

CF

64

B4

C4

66

A6

C6

6B

2B

BB

A3

AI

A2

A0

72

AB

CB

Operaud Format
e' T

_licit

Rl,I2

RI,R2

R1,D2(X2,B2) or R1,D2(,B2)

R1,D2(X2,B2) or R1,D2(,B2)

Rl,R2

R1,R2

R1,D2(X2,B2) or R1,D2(,B2)

Rl,I2

RI,R2

Rl,R2

R1,D2(X2,B2) or R1,D2(,B2)

Rl,12

R1,R2

RI,D2(X2,B2) or RI,ID2(_),

RI,12

RI,R2

RI,D2(X2,B2) or RI,D2(,B2)

RI,R2

RI,I2

RI,D2(B2)

R1 ,D2 (B2)

RI,D2(B2)

RI,D2(B2)

RI,D2(X2,B2) or RI,D2(,B2)

Rl,I2

RI,R2

Implicit

RI,S2(X2) or RI,S2

RI,S2(X2) or RI,S2

R1,S2(X2) or RI,S2

R1,S2(X2) or RI,S2

RI,S2(X2) or RI,S2

RI,S2(X2) or RI,S2

RI,S2

RI,S2

RI,S2

RI,S2

RI,S2(X2) or RI,S2

D-13

I
I

INSTRUCTION

Load Short Immediate

Load Short Register
Load and Test

Load and Test Short

Load and Test Short

Register

Multiply Halfword
Immediate

Multiply Short

Multiply Short
Immediate

Multiple Short

Register

_Normalize
I

And Short

And Short Immediate

And Short Register

Or Short

Or Short Immediate

Or Short Register

Subtract Double

Subtract Double

Register
Subtract Halfword

Immediate

Shift Left

Arithmetic Short

Shift Left

Logical Short

Shift Right

Arithmetic Short

Shift Right

Logical Short
Subtract Short

Subtract Short

Immediate

Subtract Short

Register

TYPE OF

INSTRUCTION

RI

RR

RX

RX

RR

RI

RX

RI

RR

RR

RX

RI

RR

RX

IRI

RR

RX

RR

RI

RS

RS

RS

RS

RX

RI

RX

PROGRAM INTERRUPTIONS'

POSSIBLE

A S OV_P 0P 9THER

X X

X X

X X

X X

X X F

X F

F

F

X !X 'F

CONDITION CODE SET

00 01 i0

N N N

N N N

J L M

J L M

J L M

ii

N

N

N N N N

N N N N

N N N N

N N N N

J L M

J K

J K

J K

J K

J K

J K

V X Y 0

V X Y 0

V X Y 0

J L M 0

N N N N

J L M

N N N N

,.,V :X Y 0

V X Y 0

V X Y 0

D-14

i Instruction

Store Double

Exclusive or Short

Exclusive or Short

Immediate!

Exclusive or Short

Re_isterj

Test Bits

Test Bits Immediate

Supervisor Call
Test and Set

Test Under Mask

Timer Read and Set

Translate

Translate and Test

Unpack

Mnemonic

Code

Code

STD

XS

XSI

XSR

TB

TBI

SVC

TS

TM

TMRS

TR

TRT

UNPK

Machine Operand Format ""
Code

Code

60

63

A7

C7

75

AE

OA

93

91

A4

DC

DD

Explicit

RI,D2(X2,B2)

RI,D2(X2,B2)

R1,I2

R1)R2

R1,D2(X2,B2)

Rl,I2

I

DI(BI)

DI (BI), I2

RI,R3,D2 (B2)

D1 (L,B1) ,D2 (B2)

DI(L,B1),D2(B2)

or RIiD2 (,B2)

or RI,D2(,B2)

or RI,D2(,B2)

Implicit

RI,S2(X2) or RI,S2

RI,S2(X2) or RI,S2

RI,S2(X2) or RI,S2

$1

SI,12

RI,R3,S2

SI(L),S2 or SI,S2

SI(L),S2 or SI,$2

F3 DI(L1,B1),D2(L2,B2) SI(LI),S2(L2) or SI,S2

D-15

INSTRUCTION

Store Double

Exclusive Or Short
Exclusive Or Short

Immediate
Exclusive Or Short

Register
Test Bits
Test Bits Immediate

Supervisor Call
Test and Set

Test Under Mask
Timer Readand Set
Translate
Translate and Test

Unpack

I_PE OF
INSTRUCTION

RX

RX
RI

RX

RX
RI

RR
SI

SI
RS
SS

SS

SS

PROGRAM INTERRUPTIONS

PpSSIBLE
A S 0V P

CONDITION CODE SET

OP 0TRER i00 01 i0

X X X N N

X X J K

J K

J K

X X UU W

UU W

N N

X X SS TT

X UU VV

X X N N

X X N N

X PP NN

X X N N

N

N

N

N

00

ii

N

W

W

N

WW

N

N

N

D-16

Program Interruptions Possible

Under Ov: D - Decimal

E = Exponent
F - Fixed Point

Under Other:

A Privileged Operation

B Exponent Underflow

C Signlflcance
D Decimal Divide

E Floating Point Divide

F Fixed Point Divide

G Execute

GA Monitoring

Condition Code Set

H

I

J

K

L

M

N

O

P

Q
R

S

T

U

V

W

X

Y

Z

AA

BB

CC

DD

EE

FF

GG

HH

II

No Carry

Carry
Result.= 0

Result is Not Equal to Zero
Result is less than Zero

Result is Greater Than Zero

Not Changed
Overflow

Result Exponent Underflows

Result Exponent Overflows
Result Fraction - 0

Result Field Equals Zero
Result Field is Less Than Zero

Result Field is Greater Than Zero

Difference - 0

Difference is Not Equal to Zero
Difference is Less Than Zero

Difference is Greater Than Zero

First Operand Equals Second Operand

First Operand is Less Than Second Operand

First Operand is Greater Than Second Operand
CSW Stored

Channel and Subchannel not Working

Channel or Subchannel Busy

Channel Operating in Burst Mode

Burst Operation Terminated

Channel Not Operational

Interruption Pending in Channel

D-17

Program Interruptions Possible (Continued)

JJ

KK

LL

NN

O0

PP

QQ

RR

SS

TT

UU

W

NN

XX

YY

ZZ

AAA

AAB

AAC

AAD

AAE

AAF

AAG

AAH

AAI

AAJ

AAE

AAL

AAM

AAN

AA0

AAP

AAQ
AAR

AAS

AAT

AAU

AAV

Channel Available

Not Operational
Available

I/0 Operation Initiated and Channel Proceeding With its Execution

Nonzero Function Byte Found Before the First Operand Field is

Exhausted

Last Function Byte is Nonzero

All Function Bytes Are Zero
Set According to Bits 34 and 35 of the New PSW Loaded

Set According to Bits 2 and 3 of the Register Specified by R1

Leftmost Bit of Byte Specified - 0

Leftmost Bit of Byte Specified - 1

Selected Bits Are All Zeros; Mask is All Zeros

Selected Bits Are Mixed (zeros and ones)

Selected Bits Are All Ones

Selected Bytes Are Equal, or mask is zero

Selected field of first operand is low

Selected fleld of first operand is high

First-operand and second-operand counts are equal

First operand count is lower

First operand count is higher

No movement because of destructive overlap

Clock value set

Clock value secure

Clock not operational

Channel ID correctly stored

Channel activity prohibited during ID

Clock value is valid

Clock value not necessarily valid

Channel Working with Another Device

Subchannel busy or interruption pending

Clock in error state

Segment-or Page-Table Length Violation

Page-Table Entry Invalid (1-Bit One)

Reference Bit Zero, Change Bit Zero

Reference Bit Zero, Change Bit One

Reference Bit One, Change Bit Zero

Reference Bit One, Change Bit One

Segment Table Entry Invalid (1-Bit One)

Translation Available

D-18

d

RR Format

OPERATION

CODE

00

01

02

03

04

05

06

07

08

09

OA

0B

0C

0E

OF

i0

ii

12

13

14

15

16

17

18

19

IA

'IB

iC

ID

IE

IF

20

21

22

23

24

25

NAME

Set Program Mask

Branch and Link

Branch on Count

Branch on Condition

Set Storage Key

Supervisor Call

Load Full to Short Register

Load Positive

Load Negative
Load and Test

Load Complement
AND

Compare Loglcal
OR

Exclusive OR

Load

Compare
Add

Subtract

Multiply
Divide

Add Logical

Subtract Logical

Load Complement Double

Register

MNEMONIC

SPM

BALM

BCTR

BCR

SSK

SVC

LFSR

LPR

LNR

LTR

LCR

NR

CLR

OR

XR

LR

CR

AR

SR

MR

DR

ALR

SLR

LCDR

REMARKS

D-19

RR Format

OPERATION

CODE

26

27

28

29

2A

2B

2C

2D

2E

2F

30

31

32

33

34

35

36
37

38

39

3A

3B

3C

3D

3E

3F

• NAME

Load Double Register

Compare Double Register

Add Double Register

Subtract Double Register

MNEMONIC

LDR

CDR

ADR

SDR

REMARKS

RX Format

40

41

42

43
44

45

46

47

48

Store Halfword

Load Address

Store Character

Insert Character

Execute

Branch and Link

Branch on Count

Branch on Condition
Load Halfword

STH

LA

STC

IC

EX

BAL

BCT

LH

D-20

¢ •

P_ Format

OPERATION

CODE

49

4A

4B

4C

4D

4E

4F

50

51

52

53

54

55

56

57

58

59

5A

5B

5C

5D

5E

5F

60

61

62

63

64

65

66

67

68

69

6A

6B

6C

6D

6E

6F

NAME

Compare Halfword
Add Halfword

Subtract Halfword

Multiply Halfword
Divide Short

Convert to Decimal

Convert to Binary

Store

Load Address Short

Load and Test Short

Add Short

AND

Compare Logical
OR

Exclusive OR

Load

Compare
Add

Subtract

Multiply
Divide

Add Logical

Subtract Logical

Store Double

Compare Short
Load and Test

Exclusive Or Short

And Short

Compare Logical Short
Or Short

Load Double

Compare Double

Add Double

Subtract Double

MNEMONIC

CH

AH

SH

MH

DSX

CVD

CVB

ST

LAg

LTS

AS

N

CL

O

X

L

C

A

S

M

D

AL

SL

SD

CS

LT

XS

NS

CLS

OS

LD

CD

AD

SD

REMARKS

D-21

s 2

KX Format

OPERATION

CODE

70
71
72

73 (X)
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F

NAME MNEMONIC

RSj SI t and S

Multiply Short MS

REMARKS

Subtract Short
Branch Unconditional
Load Short
Test Bits

SS
BU
LS
TB

Format

80
81

82

83

84

85

86

87

88

89

8A

8B

8C

8D

8E

8F

90

91

92

93

Set System Mask

Load PSW

Diagnose

Branch on Index High
Branch on Index Low or Equal
Shift Right Single Logical
Shift Left Single Logical

Shift Right Single

Shift Left Single
Shift Right Double Logical
Shift LeftlDouble Logical
Shift Right Double
Shift Left Double

Store Multiple
Test Under Mask

Move (Immediate)

Test and Set

SSM

LPSW

BXH

BXLE

SRL

SLL
SPA

SLA

SRDL

SLDL

SRDA

SLDA

STM
TM
MVI
TS

D-22

_nd s Format

OPERATION

CODE

94

95

96

97

98

99

9A

9B

9C

9D

9E

9F

AO

A1

&2

A3

A4

A5

A6

A7

A8

A9

AA

AB

AC

AD

AE

AF

BO

B1

B2

B3

B4

B5

B6

B7

B8

B9

BA

NAME

AND (Immediate)

Compare Logical (Immediate)
OR (Immediate)
Exclusive OR (Immediate)

Load Multiple

Start I/O

Shift Right Logical Short

Shift Left Logical Short

Shift Right Arithmetic Short

Shift Left Arithmetic Short

Timer Read and Set

OR Short Immediate

Exclusive or Short Immediate

Load Short Immediate

Compare Short Immediate

Add Short Immediate

Subtract Short Immediate

Test Bits Immediate

Divide Short Immediate

Multiply Short Immediate

And Short Immediate

I Compare Logical Short Immediat_

I Load Halfword Immediate

[Compare Halfword Immediate

I Add Halfword Immediate

MNEMONIC REMARKS

_TC O.ly

D-23

RS SI and S Format

OPERATION

CODE

BB

BC

BD

BE

BF

NAME

Subtract llalfword Immediate

Multiply llalfword Immediate

MNEMONIC

i

SHI

MHI

REMARKS

SS Format

C0

CI

C2

C3

C4

CS(RR)
C6

C7
C8

C9

CA(RR)
CB
CC

CD

CE(R)

CF

DO

D1

D2

D3

D4

D5

D6

D7

D8

D9

DA

DB

DC

DD

DE

Load Positive Short Register

Load Negative Short Register

Load and Test Short Register

Load Complement Short Register

And Short Register

C.ompars Logical Short Register

Or Short Register

Exclusive or Short Register

Load Short Register

Compare Short Register

Add Short Register

Subtract Short Register

Multiply Short Register

Divide Short Register

Branch Uncondltlonal Register
Normallze

LoadHalfword Register

Move Numerics

Move (Characters)

Move Zones

AND (Characters)

Compare Logical (characters)

OR (Characters)

Exclusive OR (Characters)

Translate

Translate and Test

LPSR

LNSR

LTSR

LCSR

ASR

CLSR

OSR

XSR

LSR

CSR

ASR

SSR

MSR

DSR

BUR

NRM

LHR

MVN

MVC

MVZ

NC

CLC

OC

XC

TR

TRT

D-24

4

SS Format

OPERATION

CODE

DF

EO

E1

E2

E3

E4

E5

E6

E7

E8

E9

EA

EB

EC

ED

EE

EF

FO

F1

F2

F3

F4

F5

F6

F7

F8

F9

FA

FB

FC

FD

FE

FF

NAME

Move with Offset

Pack

Unpack

MNEMONIC

MVO

PACK

UNPK

D-25/D-26

I

APPENDIX E: ASSEMBLER INSTRUCTIONS

Operation

ACTR

AGO

AIF

ANOP

CNOP

COM

COPY

CSECT

CXD*

DC

DROP

DS

DSECT

DXD*

EJECT

Name Entry

Must not be present

A sequence symbol or not present

A sequence symbol or not present

A sequence symbol

A sequence symbol or not present

A sequence symbol or not present
m--_mmmn_

Must not be present

Any symbol or not present

Any symbol or not present

Any symbol or not present

A sequence symbol or not present

Any symbol or not present

A variable symbol or an

ordinary symbol

A symbol

A sequence symbol or not present

0perand Entry

An arithmetic SETA expresslo_

A sequence symbol

A logical expression enclosed in paren-

theses, immediately followed by a

sequence symbol

Will be taken as a remark

_o _solute expressions, separated by

acomma

Will be taken as a remark

A symbol

Will be taken as a remark

Will be taken as a remark

One or more operands, separated by

CO_Una8

One to sixteen absolute expressions,

separated by commas

One or more operands, separated by

connas

Will be taken as a remark

One or more operands, separated by

commas

Will be taken as a remark

E-1

Operation

END

ENTRY

EXTRN

GBLA

GBLB

GBLC

ICTL

Name Entry
N

A sequence symbol or not present

A sequence symbol or not present

A variable symbol or an

ordinary symbol

A sequence symbol or not present

Must not be present

PlllllllllN

Must not be present

Must not be present

Must not be present

Operand Entry

A relocatable expression

or not present

One or more relocatable symbols,

separated by commas

An absoluteor relocatable expression

One or more relocatable symbols,

separated by commas

One or more variable symbols that are

to be used as SET symbols, separated

2
by comas

One or more variable symbols that are

to be used as SET symbols, separated

2

by ,commas

One or more variable symbols that are

to be used as SET symbols, separated

2
by commas

One to three decimal values, separated

by commas

* Assembler F only

2
SET symbols may be defined as subacrlpted SET symbols.

E-2

Operation

Entry

ISEQ

Name Entry

LCLA

LCLB

LCLC

LTORG

.row

MACRO I

MEND I

MEXIT I

MNOTE I

ORG

PRINT

Must not be present

Must not be present

Must not be present

Must not be present

Any symbol or not present

Must not be present

A sequence symbol or nor present

A sequence symbol or not present

A sequence symbol, a variable

symbol or not present

An ordinary symbol

A machine or extended mnemonic

operation code

A sequence symbol or not present

A Sequence symbol or not present

Operand Entry

Two decimal values, separated by a
comma

One or more variable symbols that are

to be used as SET symbols, separated by
commas2

One or more variable symbols that are

to be used as SET symbols, separated by
commas 2

One or more variable symbols separated

by commas 2

Will be taken as a remark

Will be taken as a remark

Will be taken as a remark

Will be taken as a remark

A severity code, followed by a comma,

followed by any combination of charac-

ters enclosed in apostrophes

Amachine instruction mnemonic code, an

extended mnemonic code, or an operation

code defined by a previous OPSYN instruc-

tion

Blank

A relocatable expression or not present

One to three operands

_ay only be used as part of a macro-definition.

2SET symbols may be defined as subscripted SET symbols.

3See Section 5 for the description of the name entry.

*Assembler F only.

E-3

Operation

Entry

PUNCH

REPRO

SETA

SETB

SETC

SPACE

START

TITLE.31

USING

WXTRN

Name Entry

A sequence symbol or not present

A sequence symbol or not present

A SETA symbol

A SETB symSol

A SETC symbol

Operand Entry

One to eighty characters enclosed in

apostrophes

Will be taken as a remark

An arithmetic expression

A 0 or a i, or logical expression

enclosed in parentheses

A type attribute, a character expres-

sion, a substring notation, or a con-

catenation of character expressions

and substrlng notations

A sequence symbol or not present A decimal self-deflnlng term or not

present

Any Symbol or not present A self-deflnlng term or not present

A special symbol (0 to 4 char-
acters), a sequence symbol, a

variaSle symbol, or not present

A sequence symbol or not present

A sequence symbol or not present

One to i00 characters, enclosed in

apostrophes

An absolute or relocatable expression

followed by i to 16 absolute expres-

sions, separated by commas

One or more relocatable symbols, sepa-

rated by commas

3See Section 5 for the description of the name entry.

*Assembler F only.

E-4

ASSEMBLER STATEMENTS
. i

INSTRUCTIONS

Model Statements
34

Prototype Statement I

Macro-Instructlon

Statement I

Assembler Language

Statement 3 4

NAME ENTRY

An ordinary symbol, variable

symbol, sequence variable

symbol, a combination of

variable symbols and other

characters that is equivalent

to a symbol, or not present

A symbolic parameter or

not present

An ordinary symbol, a

varlable symbol, a sequence

symbol, a combination of

variable symbols and other
characters that is equivalent

2
to a symbol, or not present

An ordinary symbol, a var-

iable symbol, a sequence

symbol, a combination

of variable symbols and

other characters that is

equlvalent to a symbol,

or not present

,_Qmo_mgu

OPERAND ENTRY

Any combination of char-

acters (including variable

symbols)

Zero or more operands that

are symbolic parameters, sep-

arated by commas, followed by

zero or more operands (sep-

arated by commas) of the form

symbolic parameter, equal sign,

optional standard value

Zero or more positional

operands separated by commas,

followed by zero or more

keyword operands (separated

by commas) of the form

keyword, equal sign, value 2

Any combination of characters

(includlng variable symbols)

I
-May only be used as part of a macro definition.

2Variable symbols appearing in a macro instruction are replaced by their values

before the macro instruction is processed.

3Variable symbols may be used to generate assembler language mnemonic operation

codes as listed in Section 5, except ACTR, COPY, END, ICTL, CSECT, DSECT, ISEQ,

PRINT, REPRO, and START. Variable symbols may not be used in the name and

operand entries oft he following instructions: COPY, END, ICTL, and ISEQ.

Variable symbols may not be used in the name entry of the ACTR instruction.

4No substitution for variables in the llne following a REPRO statement is

performed.

5_en the name field of a macro instruction contains a sequence symbol, the sequence

symbol is not passed as a name field parameter. It only has meaning as a possible

branch target for conditional assembly.

E-5/E-6

,,U,PEm)ZX,1': S OF,CONSCZ rS,,

YPE

X

B

F

H

E

L(3)

P

Z

A

q(3)

v

IMPLIED

LENGTH

(BYTES)

ALIGN-

MENT

LENGTH

MODI-

FIER SPECIFIED

RANGE BY

as

needed
byte •1 to characters

2s61(1)

as byte •1 to hexadecimal

NUMBER

OF CON-

STANTS

PER

OPERAND

RANGE

FOR EX-

PONENTS

one

one

TRUN-

RANGE CATION/

FOR PADDING

SCALE SIDE

right

left

needed

as

needed
byte

256 (i) digits

•1 to binary

256 digits

word .i to

8 digits

half

word

.i to decimal

8 digits

4 word •I to decimal

8 digits

double

word

.i to decimal

8 digits

16 double

word

.i to decimal

16 digits

as

needed

as

needed

4

byte

byte

word

.i to decimal

16 digits

.i to decimal

16 digits

.i to any

4 (2) expression

word 1-4

word 3 or
4

I_

symbol nam-

ing a DXD
or DSECT

relocatab le

symbol

one

multi-

ple

multi-

ple

multi-

ple

multi-

ple

multi-

ple

multi-

ple

multi-

ple

multi-

ple

multi-

ple

multi-

ple

-85 to

+75

-85 to

+75

-85 to

+75

-85 to

+75

-85 to

+75

-187 to

+346

-187

+346

0-14

0-14

0-28

left

left (4)

left (4)

right (4)

i

right (4)

right (4)

left

left

left

left

left

F-1

TYPE

S

Y

I

W

(1)

(2)

(3)
(4)

IMPLIED

LENGTH

(BYTES)

2

as

needed

ALIGN-

MENT

half

word

half

word

byte

half

word

LENGTH

MODI-

FIER

RANGE

2 only

.i to

2 (2)

.1 to

256 (1)

.i to

2 (2)

SPECIFIED

BY

One absolute

or relocatabl_

expression or
two absolute

expressions:

exp (exp)

any
expresslon

any

expression

NUMBER

OF CON-

STANTS

PER

OPERAND

multi-

ple

multi-

ple

one

ple

RANGE

FOR EX-

PONENTS

RANGE

FOR

SCALE

TRUN-

CATION/

PADDING

SIDE

left

right

left

In a DS assembler instruction C and X type constants may have length specification

to 65535.

Bit length specification permitted with absolute expressions only. Relocatable

A-type constants, 3 or 4 bytes only; relocatable Y-type constants, 2 bytes only.

Assembler F only.
Errors will be flagged if significant bits are truncated or if the value specified

cannot be contained in the implied length of the constant.

F-2

f

APPENDIX G: MACRO LANGUAGE SUMMARY

The four charts in this appendix su_aarize the macro language described in Part

II of this publication.

Chart 1 indicates which macro langu_tge elements may be used in the name and
operand entries of each statement.

Chart 2 is a summary of the expressions that may be used in macro-instruction
statements.

Chart 3 is a sunnnary of the attributes that may be used in each expression.

Chart 4 is a summary of the variable symbols that may be used in each
expression.

Vor;oblt .%yv_ls

Chart i. Macro Language Elements G-_

Chart 2. Conditional Assembly Expressions

Expression

May

contain

Operators

are

Range
of values

May be
used in

Arithmetic Expressions

I. Self-deflnlng terms

2. Length, scaling,
integer, count, and
number attributes

3. SETA and SETB symbol#

4. SETC symbols whose
value is 1-8 declmal

digits

5. Symbolic parameters

if the corresponding
operand is a self-

defining term

6. &SYSLIST(n) if the

corresponding operan,

is a self-deflnlng

term

7. &SYSLIST(n,m) if the

corresponding operan¢

is a self-deflnlng

term

8. &SYSNDX

+,-,*, and/

parentheses permitted

-231 to +231-1

Character Expresslons

1. Any combination of
characters enclosed

in apostrophes
2. Any variable symbol

enclosed in apostrophes

3. A concatenation of

variable symbols and
other characters

enclosed in apostrophes

4. A request for a type
attribute

concatenation, with a

period (.)

0 through 255 characters

I. SETC operands 3

2. Character relations 2

Logical Expressions

1. SETB symbols

2. Arlthme_ic re-
latlons _

3. Character re-
locations I

AND, OR, and NOT

parentheses per-
mitred

0 (false) or

i (true)

i. SETA operands i. SETB operands

2. Arithmetic relations 2. AIF operands

3. Subscripted SET

symbols
4. &SYSLIST

5. Substrlng notation
6. Subllst notation

iAn arithmetic relation consists of two arithmetic expressions related by the operators

GT, LT, EQ, NE, GE, or LE.

2A character relation consists of two character expressions related by the operator

GT, LT, EQ, NE, GE, or LE. The type attribute notation and the substrlng notation
may also be used in character relations. The maximum size of the character expressions

that can be compared is 255 characters. If the two character expressions are of

unequal size, then the samller one will always compare less than the larger.

3Maxlmum of eight characters will be assigned.

G-2

w

Chart 3. Attributes

mmmm_ m_m

Attribute

Type

Length

Scallng.

Integer

Count

Numb er

Notation

T !

L !

S'

I t

mmN_Nmm.

K'

N'

May be used with:

Symbols outside

macro definitions;

symbolic parameters,
&SYSLIST(n), and

&SYSLIST(n,m) inside
macro definitions

Symbols outside
macro definitions;

symbolic parameters,

&SYSLIST(n), and
&SYSLIST(n,m) inside
macro definitions

Symbols outside
macro definitions;

symbolic parameters,
&SYSLIST(n), and

&SYSLIST(n,N) inside

macro definitions

Symbols outside

macro definitions;

symbolic parameters,
&SYSLIST(n), and

&SYSLIST(n,m) inside

macro definitions

Symbolic parameters

corresponding to
macro instruction

operands, &SYSLIST

(n), and &SYSLIST(n,m)
inside macro

definitions

mi_m_mNNN_

May be used only if

type attribute is :

(May always be used)

Any letter except

M,N,O,T, and U

H,F,G,D,E,L,K,P,
and Z

H,F,G,D,E,L,K,P,
and Z

_An-y' letter

Symbolic parameters,

&SYSLIST, and
&SYSLIST(n) inside

macro definitions

Any letter

May be used in

1. SETC operand
fields

2. Character
relations

iArithmetic

lexpresslons

Arithmetic

expressions

Arithmetic

expressions

Arithmetic

expressions

Arithmetic

expressions

*NOTE: There are definite restrictions in the use of these attributes. Refer to text,

Section 9.

G-3

Chart 4.

Varlab le

Symbol

Symbolic 1

parameter

SETA

SETB

SETC

&SYSNDX I

&SYSECT 1

&SYSLIST 1

&SYSLIST(N) 1

&SYSLIST

(N,M) 1

Varlable Symbols

Defined by:

LCLA or GBLA

instruction

LCLB or GBLB

instruction

LCLC or GBLC

instruction

mw_Nml

The assembler

The assembler

The assembler

The assembler

m _a

Initialized.
OT set to l

Correspondin$
macro instruction

operand

0

0

Null character
value

Macro instruction
Index

Control section
in whichmacro

instruction

appears

Not applicable

Corresponding
macro instruction

operand

_ay only be used in macro definitions.

mmmNmm_N_

Value Changed

by:

(Constant

throughout
definition)

SETA

instruction

SETB

instruction

SETC

instruction

(Constant

throughout

definition;

unique for
each macro-

instruction)

(Constant

throughout

definition;

set by CSECT,

DSECT, and

START)

Not applicable

(Constant

throughout

definition)

May be used in:

I. Arithmetic expressions

if operand is self-

defining term

2. Character expressions

1. Arithmetic expressiona

2. Character expressions

i. Arithmetic expressions

2. Character expressions

3. Loglcal expressions

i. Arithmetic expressions
if value is self-

defining term

2. Character expressions

1. Arithmetic expressions

h2. Character expressions

Character expressions

N'&SYSLIST in arithmetic

expressions

i. Arithmetic expressions

if operand is self-

defining term

2. Character expressions

G-4

e" ' q

aPPmzx u- SkMPLE,,150_a

lo

e

o*
o*

°*

o*

°*

o*

Given:

A TABLE with 15 entrles, each 16 bytes __J_i havlnK the followln8 format:

3 bytes

A LIST of items, each 16 bytes long, havins the following format.

1 byte 4 bytes 8 bytes

I _D_SS

8 bytes 1 byte 3 bytes 4 bytes

Find: Any of the items in the LIST which occur in the TABLE and put the

SWITCHes, NUMBER of items, and ADDRESS from that LIST entry into the

corresponding TABLE entry. If the LIST item does not occur in the

TABLE,. turn on the first bit in the SWITCHes byte of the LIST entry.

The TABLE entries have been sorted by their NAME.

TITLE

PRINT DATA

THIS IS THE MAC_) DEFINITION

MACRO

MOVE aTO, &FROM

DEFINE SETC SYMBOL

LCLC &TYPE

CHECK NUMBER OF OPERANDS

AIF (N'&SYSLIST NE 2) .ERROR1

CHECK TYPE ATTRIBUTES OF OPERANDS

AIF

AIF

AIF

AIF

AGO

*TYPEDEH ANOP

(T'&TO NE T'&FROM).ERROR2

(T'&TO EQ 'C t OR IT%TO EQ 'G' OR TW&TO EQ 'K'),TYPECGK

(T'&TO EQ 'D' OR T'&TO EQ 'E' OR T'&TO EQ 'H'),TYPEDEH

i(T:'_TO EQ 'F')•MOVE
•ERROR3

SAMPL001

SAMPL002

SAMPL003

SAMPLO04

SAMPL005

SAMPL006

SAMPL007

SAMPLO08

SAMPLO09

SAMPL010

SAMPL011

SAMPL012

SAMPL013

SAMPL014

SAMPL015

SAMPL016

SAMPL017

SAMPL018

SAMPL019

S_I_I.,020

S,_R_LO 2 "1

S_:_L022

S_PL023

SAMPL024

H-1

&TYPE

.MOVE

.TYPECGK

•ERRORII

•ERROR2

•ERROR3

. ERROR4

SAMPLR

BEGIN

MORE

LISTLOOP

ASSIGN TYPE ATTRIBUTE TO SETC SYMBOL

SETC T'&TO

ANOP

NEXT TWO STATemENTS GENERATED FOR MOVE MACRO

L&TYPE 2,&FROM

ST&TYPE 2,&TO

MEXIT

CHECK LENGTH ATTRIBUTES OF OPERANDS

AIFI (L'&TO NE L'&FROM or L'&TO GT 256).ERROR4

NEXT STATEMENT GENERATED FOR MOVE MACRO

MVC &TO,&FROM

MEXIT

ERROR

MNOTE

MEXIT

MNOTE

MEXIT

MNOTE

MEXIT

}{NOTE

MEND

MESSAGES FOR INVALID MOVE MACRO INSTRUCTIONS

1,'IMPROPER NUMBER OF OPERANDS, NO STATEMENTS GENERATED'

I,'OPERAND TYPES DIFFERENT, NO STATEMENTS GENERATED'

1,'IMPROPER OPERAND TYPES, NO STATEMENTS GENERATED'

L,'IMPROPER OPERAND LENGTHS, NO STATEMENTS GENERATED'

MAIN ROUTINE

CSECT

SAVE (14,12),,*

BALR R12,0 ESTABLISH ADDRESSABILITY OF PROGRAM

USING *,RI2 AND TELL THE ASSEMBLER WHAT BASE TO USE

ST 13,SAVE13

LM RS,R7,=A(LISTAREA,16,LISTEND) LOAD LIST AREA PARAMETERS

USING LIST,R5 REGISTER 5 POINTS TO THE LIST

BAL

TM

BO

USING

MOVE

MOVE

MOVE

BXLE

CLC

BNE

CLC

BNE

WTO

R14,SEARCH FIND LIST ENTRY IN TABLE

SWITCH,NONE CHECK TO SEE IF NAME WAS FOUND
NOTTHERE BRANCH IF NOT

TABLE,R1 REGISTER 1 NOW POINTS TO TABLE ENTRY

TSNITCH,LSWITCH MOVE FUNCTIONS

TNUMBER,LNUMBER FROM LIST ENTRY

TADDRESS,LADDRESS TO TABLE ENTRY

RS,R6,MORE LOOP THROUGH THE LIST

TESTTABL(240),TABLAREA
NOTRIGHT

TESTLIST(96),LISTAREA
NOTRIGHT

'ASSEMBLERSAMPLE PROGRAM SUCCESSFUL'

SAMPL025

SAMPL026

SAMPL027

SAMPL028

SAMPL029

SAMPL030

SAMPL031

SAMPL032

SAMPL033

SAMPL034

SAMPL035

SAMPL036

SAMPL037

SAMPL038

SAMPL039

SAMPL040

SAMPL041

SAMPL042

SAMPL043

SAMPL044

SAMPL045

SAMPL046

SAMPL047

SAMPL048

SAMPL049

SAMPL050

SAMPL051

SAMPL052

SAMPL053

SAMPL054

SAMPL055

SAMPL056

SAMPL057

SAMPL058

SAMPL059

SAMPL060

SAMPL061

SAMPL062

SAMPL063

SAMPL064

SAMPL065

SAMPL066

SAMPL067

SAMPL068

SAMPL069

SAMPL070

SAMPL071

SAMPL072

SAMPL073

SAMPLO 74

H-2

EXIT

NOTRIGHT

NOTTHERE

SAVE13

SWITCH

NONE

SEARCH

LOOP

HIGHEE

NOTFOUND

*

TABLAREA

L

RETUPa

WTO

B

OIi
B

DC

DC

EqU

RI3,SAVE13

(14,12) ,RC'O

'ASSEMBLER SAMPLE PROGRAM UNSUCCESSFUL'

EXIT

LSWITCH,NONE TURN ON SWITCH IN LIST ENTRY

LISTLOOP GO BACK AND LOOP

¥'0'
X'00'

X' 80 '

BINARY SEARCH ROUTINE

NI

LM
LA R1, TABLAKEA-16 (R1)
SRL P,3,I

CLC LNAME,TNAME
BH HIGHER

BCR 8,R14
SR R1,R3

SWITCHm255-NONE TURNOFF NOT FOUND SWITCH

RI,R3,-F'128,4,128' LOAD TABLE PARAMETERS

BCT P.2,LOOP
B _NOTFOUND

AR RIDR3

BCT P.2,LOOP

Ol SWITCH,NONE
BR _4

GET ADDRESS OF MIDDLE ENTRY

DIVIDE INCREMENT BY 2

COMPARE LIST ENTRY WITH TABLE ENTEY

BRANCH IF SHOULD BE HIGHER IN TABLE

EXIT IF FOUND

OTHERWISE IT IS LOWER IN THE TABLE

SO SUBTRACT INCIt_TENT

LOOP 4 TIMES

ARGUMENT IS NOT IN THE TABLE

ADD INCP.m_ENT

LOOP 4 TIMES
TURN ON NOT FOUND SWITCH

EXIT

THIS IS THE TABLE

DS OD

DC XL8'0'

DC XL8V0 '

DC XL8f0 '

DC XL8W0 '

DC XL8'O,

DC XL8'0'

DC XL8'0'

DC XL8'0'

DC XL8'0 t

DC XL8'0'

DC XL8'0 t

DC XL8'0'

IX: XL8'O'

DC
DC

,CL8'ALPHA t

,CL8'BETA'

,CL8'DELTA t

,CLS'EPSILON'

,CLS'ETA'

,CL8'GAMMA I

,CL8,IOTA w

,CL8'KAPPA'

,CL8'LAMBDA t

,CL8'MU'

,CL8'NU'

,CL8'OMICRON'
,CL8'PHI'

XL8'0',CLS'SIGMA'
XL8'0',CL8'ZETA'

THIS IS THE LIST

SAMPL075

SAMPL076

SAMPL077

SAMPL078

SAMPLO 79

SAMPL080

SAMPL081

SAMPL082

SAMPL083

SAMPL084
SAMPL085

SAMPL086

SAMPL087

SAMPL088

SAMPL089

SAMPL090
SAMPL091

SAMPL092

SAMPL093

SAMPL094

XSAMPL095

SAMPL096

SAMPLO9 7
SAMPL098

SAMPL099

SAMPL100

SAMPL101

SAMPL102

SAMPL103

SAMPL104

SAMPL105

SAMPLI06

SAMPL i07
SAMPLI08

SAMPLI09

SAMPLIIO

SAMPL111
SAMPLII2

SAMPLII3

SAMPLII4
SAMPLII5

SAMPLII6

SAMPLII7

SAMPLII8

SAMPLII9

SAMPLI20

SAMPLI21

SAMPLI22

SAMPL123

SAMPLI24

H-3

LISTA_.FA

LISTEND

*

TESTTABL

*

*

*

TESTLIST

R0

R1

112

R3

R5

R6

R7

R12

R13

R14

RI5

*

DC

DC
DC

DC

DC

DC

THI8 IS

DS

DC

DC

DC

DC

DC

DC

DC

. DC

DC
DC

DC

DC

DC

DC

DC

THIS IS

DC

DC

DC

DC

DC

DC

CLS'LAMBDA',X'OA',FL3'29'A(BEGIN)

CLS'ZETA',X'OS',FL3'5!,A__L_F)!
CLS'THETA',X'O2'tFL3'4$',A(BEGIN)

CL8'TAU',X'OO',FL3'O'tA(1)

CLS'LZST'oX'IFtpFL3'465',A_0)!

CLS!ALPHAt,Xt00',FL3'1',A(123)

THE CONTROL TABLE

0D

FL3'l',X'00',A(123),CL8'ALPHA'

XL810',CL8tBETA '

XL81'0',CLS'DELTA'

XL8t0',CL8tEPSILON t

XL8'01,CL8'ETA '

XLS'0',CLS'GAMMA I

XL8'0',CLS'IOTA'

XLS'0',CLS'KAPPA'

!FL3'29'_X'OAJ.A(BEGIN).CL8'_-A'

XL8'0',CL8'MU t

XL8'0',CL8WNU v

XL8'0'oCL8'OMICRON t

XL8'0',CLStPHI '

XLS'0',CL8'SIGMA'

FL3'5',X'O5',A(LOOP)I_L8'ZETA'

THE CONTROL LIST

CL8tLAMBDA',X'OA',FL3'29',A(BEGIN)

CL8'ZETA',X'05'mFL3'5',A(LOOP)

CL8'THETA',X'82',FL3'45',A(BEGIN)

CLS'TAU',X'80',FL3'0',A(1)

CLS'LIST',X'9FgFL3'465',Ai(O):

CLS'ALPHA',X'00',FL3'1',A(123)

0

1

2

3

5

6

7

12

13

14

15

THESE ARE

EQU
EqU
EqU
EQU
EQU
EQU
EQU
EQU
EQU
Equ
EqU

THIS

THE SYMBOLIC REGISTERS

IS THE FORMAT DEFINITION OF LIST ENTRYS

SAMPL125

SAMPL126

SAMPL127

SAMPL128

SAMPL129

SAMPL130

SAMPL131

SAMPL132

SAMPL133

SAMPLI34

SAMPL135

SAMPL136

SAMPL137

SAMPL138

SAMPL139

SAMPL140

SAMPL141

SAMPL142

SAMPL143

SAMPL144

SAMPL145

SAMPL146

SAMPL147

SAMPL148

SAMPL149

SAMPL150

SAMPL151

SAMPL152

SAMPL153

SAMPL154

SAMPL155

SAMPL156

SAMPL157

SAMPL158

SAMPL159

SAMPL160

SAMPL161

SAMPL162

SAMPL163

SAMPL164

SAMPL165

SAMPL166

SAMPL167

SAMPL168

SAMPL169

SAMPL170

SAMPLI71

SAMPL172

SAMPL173

SAMPL174

ll-4

LIST
LNAME
LSWITCH
LNUMBER
LADDRESS

,
TABLE DSECT
TNUMBERDS

TSWITCH DS

TADDRESS DS

TNAME DS

END

DSECT

DS CL8

DS C

DS FL3

DS F

THIS IS THE FORMAT DEFINITION OF TABLE ENTRYS

FL3

C

F

CL8

BEGIN

SAMPL175

SAMPL176

SAMPL177

SAMPL178

SAMPL179

SAMPL180

SAMPL181

SAMPL182

SAMPL183

SAMPL184

SAMPL185

SAMPLI86

SAMPLI87

SAMPL188

SAMPL189

B-sl -6

m
i

_PE_DIX t: _SmLEa L_ES--FEaTUnES c_JazsoN CSaaT

Features not shown are counon to all assemblers. In the chart:
Dash - Not allowed..

X - As defined in Operating System/360 Assembler Language Manual

Feature

No. of Continuation Cardsl

Statement (exclusive of
macro-instructions)

Input Character Code

ELEMENTS:

Maximum Characters per

symbol

Character self-defininK
terms

Binary selfTdefinins termsl

Length attribute reference

Literalsl

Extended Mnemonic8

MaximumLocation CounCeri

value I

i

Multiple Centrol Sections +
per assl._l__

EXPRESSIONS:

Operators

Nu_er of terms

Level of parentheses'

Basic

Proilr..--4 ng
Support/360
Basic
Assembler

0

7090/7094
Support
Package
Assembler

EBCDIC BCD&EBCDIC

6

i

1 Char. only

4--*

3

6

X

m

w m

D

X

224_1

t6

BPS 8K IT_ape,
BOS 8K Disk

Assemblers

1

EBCDIC

8

X

X

X

X

X

224_1

ii

X

+-*/

3

1

DOS/TOS 0S/360
Assembler Assembler

1 2

EBCDIC EBCDIC

8 8

X X

X X

X X

X X

X X

224_1 224_1

X X

+-'1 +-'1

16 16

5 5

1Assembler F only

2DOS 14K D Assembler onlY

I-1

Feature

Complex Relocatability - -

ASSEMBLER INSTRUCTIONS:

DC and DS

Expression allowed on - -
Modifiers

Multiple operands - -

Multiple constants in - -
an operand

Bit length specifications - -

Scale modifier - -

Exponent Modifier - -

DC types

DC duplication factor

DC duplication factor of - -
zerO

'i DC length modifier i _

DS types I

._JDS length modifier I

DS maximum length m_ifier 256

DS censtant subfield 1 '
permitted _ I

Basic

l_'osrmmtnS'
Support/360
Basic
Assembler

iAssembler F only

2DOS 14K D Aaeembler only

I-2

Except
B,P,Z

Except A

Except
H, E, ID

O ly c,
H, F, D

i

Only C

7090/7094.
Support
Packase
Assembler

m m

w

Except
B,V,L

X

X

Only C,
H, F, D

Only C

256

BPS 8K Tape,
BOS 8K Disk
Assemblers

X .

Except
address
con8 ts.

-- D

X

X

Except L

Except S

Except S

X

Except L

X

256

X

Doslzos
Assembler

i

X

X

X2

X

0S1360
Assembler

X

X

X

X'

X2 X

X

X

X

X

X2

X

X

X

Xl2

X

65,535

X

X

_X

X

X

X

X

65,535

X

g

Feature

COPY

CSECT

DSECT

ISEQ

LTORG

PRINT

TITLE

COM

ICTL

USING

DROP

CCW

ORG

ENTRY

EXTRN

Basic

Progra_atng,
Support/360
Basic
Assembler

m

D

m

D

1 operand
(1 or 25

only)

2 operands

(operand 1
relocatable

only)

1 operand
only

operand 2
(relocatable
only)

no blank

operand

709017094.
Support
Package
Assembler

D

X

m

I1 o perand

2-17 oper-
rands (oper-
and 1
relocatable

only)

X

X

no blank

operand

BPS 8K Tape,
BOS 8K Disk

Assemblers
DOS/TOS
Assembler

X

0S/360
Assembler

X

X X

X

X

X

X

X X X

X X X

X X X

X X

X X

X

IX

X

X

6 operands

5 operands

X

X

X

X

X

1 operand
only

1 operand

only (max 14)

1 operand
only

1 operand
only

I operand
only

1 operand
only

X X

X X

I-3

Feature
= i

_TRN

CNOP

PUNCH

REPRO

J

Macro Inetructtons

OPSYN

EQU

Butc

Progr_,
Support/360
Buic
Assembler

i J

m m

2 decimal

digits

m m

m m

Hi,

X

709017094
Support
Package
Assembler

uos/_os
Assembler

2 decimal
digits

-- X

-- -- X

m m

X X

BPS 8K Tape,
Bog 8K Disk
Assemblers

m

2 decimal

digits

m

I

X2

.

0S1360
Assembler

X 1 -

X

X X

i J

X X

IX X

_ _ _X1

X X

1Assembler F _?nly__1

2DOS 14K D Assembler onlyi

I-4

Macro Facility FeJtures

Oparand Subli'st8 ' '

Attributes of macro-instruction

operands inside macro definitions

and symbols used in condltlonal
assembly instructions outside macro
deflnlClons.

Subscripted SET symbols

14axtmum number of operands

Conditional use_bly instructtens
outside macro definitions

Maxlmuml number of .SET symbols

global SETA

global SETB

global SETC

local SETA

local SETB

local SEfC

BP8 8E Tape, _'
BO$ 8E Disk
Assemblers

m

49

I

m

16

128

16

16

128

0

'BO8 16K
Disk/Tape
An_bler

. .. , . ,|

X

X

X

I001

X

dependent Upon

0S/360
Assembler

X

X

X

20O

X

_q

*The number of $'ET sy_bols'perattt_d is variable, available

main storase.

NOTE: The maximum slze of a character expression is 127 characters for the DOS/TOS 1

Assembler D and 255 characters far the OS Assailer F.

1200 for Assembler F

,:-5/:-6

e.

,e.emm x J. S LE D DUZZos.g

The macro def_nJ:tions £n this appendix are typical app]/catious _ of the lacro language
and condit£onal assambly. Another macro definition is included in the sample program
ae pazt of Appendi£x H.

Notice the use of the inner macro £nstruet£on (IlIBEEMAC) within SAVE fo_ the purpose
of generating MNOTE statements. Included with SAVE are some examples of the state-
mants generated from it.

MEMBERNAME SAVE
MACRO

&NAME SAVE
LCLA
LCLC
AZF
AIF
AIF

&A SETA
&NAME B
&A SETA

DC
•CONTB AIF
•CONTAA AZF
&E 8ETC

DC

AGO

•BRAKDWN ANOP

&E SETC

DC

&B SETA

&A SETA

AGO

•SPLITUP ANOP
&E SETC

&F SETC

&G SETC

&H SETC
DC

&B SETA
&A SETA

AGO

.NULLID ANOP

&NAME DS
AGO

•SPECID AIF

&E SETC

&A SETA

®, &CODE, &ID

&A,&B.&C

&E,&F,&G,&H
('&PEG' EQ ").El

('&ID' EQ ").NULLID

('&ID' EQ '*').SPECID

((K' sn>,-2)/2).2+4
Sk. (0,15)
K' &ID

ALIC A)
(&A GT 32).SPLITUP
(&A GT 8).SRAK_
'&ID' (aB+I,&A)
CL&A'&E'

•CONTA

'aiD'(as+l,g)
CLS'&E'

&B+8

&A-8

•CONTAA

'&ID' (SB+I,8)

'&ID '(&B+9,8)

'&ID' (&B+I7,8)

'&ID' (&B+25,8)
CL32 '&E. &F. &G •&H 0

&B+32

&A-32

.CONTB

OH

•CONTA

('&NAME ' EQ '').CSECTN
'&NAME '

i

BRANCH AROUND ID

LENGTH OF IDENTIFIER

IDENTIFIER

IDENTIFIER

IDENTIFIER

00020000

00040000

00060000

00080000

00100000
00120000

00140000

001600O0

00180000

00200000

00220000

00240000

00260000

00280000

00300000

00320000

00340000

00360000

00380000

00400000

00420000

00440000

00460000

00480000

00500000

00520000

00540000
00560000

00580000
00600000

00620000

00640000

00660O00

00680000

00700000

00720000

00740000

IJ-1

•CO_q AI F
&A SETA

AGO

.LEAVE ANOP
&B SETA

&NAME E

D(

DC

AGO

.CSECTN AIF

&E SET(
&A SETA

AGO

('&E'CI,&A) EQ '&EO).LEAVE

&A+I

.CONTQ

((&a+2)/2)'2+4
&e.(0,15)
1()
CL&AI&E'

• CONTA

('&SYSECT' EQ '').E4
t&SYSECT '
1

•COICTQ

.E4 IHBERMAC 78,360
•CONTA AIF

AIF

AIF

&A_ SETA

AIF

&A SETA

•CONTD AIF

STM

MEXIT

.CONTE AIF (N'® NE 1).E3

sT aey.n(1) ,ea. (13,o)
MEXTT

•C01¢gC AIF

STM

&A 8ETA

AIF

$TM

MEXIT

.CONTG AIF (N'® NE 1).E3

ST ® (1) ,&A. (13,0)
MEXIT

•CONTF AIF (N'® NE 2), CONTH

STM 14 ,&I_G (2) ,12 (13)
MEXIT

.CONTH AIF (N'® NE 1).E3

s_ 14,aRSG(1) ,12 0.3)
MEXIT

•El IHBERMAC 18,360
MEXIT

.E2 IHBERMAC 37,360,&CODE
MEXIT

.E3 IHBERMAC 36,360,®
MEND

END OF DATA FOR SDS OR MEMBER

(T'aREG(1) NE 'N').E3

('&CODE' EQ 'T').CONTC

('&CODE ' ICE '').E2

® (1)'4+20

(&A LE 75).CONTD
&A-64

(N'&RSG NE 2).COgTE
&PEG(l), &PEG(2) ,&A, (13)

BRANCH AROUND ID

IDENTIFIER

CSECT NAME NULL

SAVE REGISTERS

SAVE REGISTER

(®(1) GE 14 OR ®(1) LE 2).CONTF
14,15,12 (13) SAVE REGISTERS
&_c (1).4+20
(N'® ICE 2).CONTG

&PEG(I) ,®(2) ,&A. (13) SAVE REGISTERS

SAVE REGISTERS

SAVE REGISTERS

SAVE REGISTERS

,PEG PARAMMISSING

INVALID CODE SPECIFIED

INVALID REGS. SPECIFIED

00760000
00780000
00800000
00820000
00840000
00860000
00880000
00900000
00920000
00940000
00960000
00980000
01000000
01020000

01040000
01061)000

01080000

01100000

01120000

01140000

01160000
01180000

01200000

01220000

01240000

01260000

01280000

01300000

01320000

01340000

01360000

01380000

01400000

01420000

01440O0O
01460000

O148O00O

01500000

01520000

01540000

01560000

0158O0O0

01600000

01620000

01640000

01660000
01680000

8" • r

SAMPLE SAVE MACROINST_CTIONS

FOGHORN SAVE

FORHORN DS

STM

(14,12)
OH

14,12,12(13) SAVER EGISTERS

SAVE

DS
(P.EG14,REG12),T
OH

12,*** IHBO02 INVALID FIRST OPERAND SPECIFIED-(REG14,R

SAVMACRO SAVE

SAVMACRO B

DC

DC

(14,12),T,*
14(o,15) Br_CSaaO_D ID
ALl(8)
CL8'SAVMACEO t IDENTIFIER

STM 14,12,12(13) SAVE IEGISTERS

MEMBER NAME NOTE
MACRO

&NAME NOTE &DCB

AIF ('&DCB' EQ '').ERR
&NAME IHBINNRA &DCB

L 15,84(0,1)

BALR 14,15
MEXIT

.ERR IHBERMAC 6

MEND

LOAD VOTE RIN ADDRESS

LINK TO NOTE ROUTINE

MEMBER NAME POINT

MACRO

&NAME POINT &DCB,&LOC

AIF (' &DCB' EQ

AIF ('&LOC' EQ

&NAME IHBINNRA & DCB, &LOC

L 15,84(0,I)

BAL 14,4(15,0)
MEXIT

.ERR1 IHBERMAC 6

MEXIT

.ERR2 IHBERMAC 3
MEND

LOAD POINT RTN ADDRESS

LINK TOPOINT ROUTINE

00020000

00040000

00060000

00080000
00100000

00120000

00140000
00160000

00180000

00020000

00040000

00060000

00080000

00100000

00120000

00140000

00160000

00180000

00200000

00220000

00240000

J-3

°

MEMBER NAME CHECK

MACRO

&NAME CHECK &DECB

&NAME

.El

AIF

IHBINNRA

L

L

BALR

MEXIT

('_DE¢_ EQ
&DECB

14,8(0,1)

15,52(0,14)

14,15

_HBERMAC 07,018
MEND

'').El

PICK UP DCB ADDRESS

LOAD CHECK ROUT. ADDR.

LINK TO CHECK ROUTINE

00020000
00040000

00060000

00080000

00100000

00120000

00140000
00160000

00180000

00200000

J-4

