Z22-2798-1

IBM Field Engineering

Manual of Instruction

IBM Confidential

Solid Logic Technology

Component Circuits

Field Engineering Manual of Instruction

IBM Confidential

This document contains information of a proprietary nature. ALL INFORMATION CONTAINED HEREIN SHALL BE KEPT IN CONFIDENCE. None of this information shall be divulged to persons other than IBM employees authorized by the nature of their duties to receive such information or individuals or organizations authorized by the Systems Development Division in accordance with existing policy regarding release of company information.

Solid Logic Technology Component Circuits

Preface

This manual describes Solid Logic Technology (SLT) circuits and their relation to Automated Logic Diagrams (ALD's). It is to be used in conjunction with the Field Engineering Manual of Instruction SLT Packaging, Form Z22-2800

The major sections of this book are:

Symbology and Definitions, which illustrates and defines the ALD logic block.

Automated Logic Diagrams (ALD's), which explains ALD terminology and layout.

SLT Circuits, which shows the basic parameters of SLT circuits. The basic SLT circuit is the AND-OR-inverter. The section contains a brief circuit description and schematic of the general SLT circuits.

Card Layout, which explains the sLT card, the card ALD sheet, assembly drawing, and schematic.

Circuit Numbers, which is a list of circuit numbers, including representative examples of different types of circuits.

Modules, which shows the schematic of the modules in part-number order.

This manual, Form Z22-2798-1, is a major revision which obsoletes the former edition, Form Z22-2798-0. The circuit descriptions are rearranged; the circuit number list is updated; and the examples are changed to represent both the circuit descriptions and the modules. The cross-referencing between sections is increased and the index expanded.

Revisions to text are indicated by a vertical line to the left of the change; revised illustrations are denoted by the symbol \bullet to the left of the caption.

Address comments concerning the contents of this publication to: IBM Corporation, FE Manuals, Dept. B96, PO Box 390, Poughkeepsie, N. Y. 12602

Contents

SLT Component Circuits	
Physical Description	
Physical Design of Circuits	
Symbology and Definitions	
Standard Logic Blocks	
AND	
OR	
Inverter	
Amplifier	
Threshold	
ODD Count	
Even Count	
Flin Flon	
Flip Flop Latch or Flip Latch	
Polarity Hold	
Singleshot	
Solmitt Trigger	
Ogeilleter	
	• • • • • • • • • • • • • • • • • • • •
Special Blocks	
T D	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •
Limiter	• • • • • • • • • • • • • • • • • • • •
Current Switch	
Component and Auxiliary Blocks	
Component Blocks	
Switch Blocks	
Relay Coil and Contact Blocks .	
Multiple Block Configurations	
Bi-Stable Circiuts	
DOT OR, DOT AND	•••••••••••••••••••••
Suffixes to the Block Function Symb	ol
Automated Logic Diggrams (AL	D(c)
Page Number	3)
Machine Version	• • • • • • • • • • • • • • • • • • • •
Title Pleek	
Logic Plask	• • • • • • • • • • • • • • • • • • • •
Logic block	• • • • • • • • • • • • • • • • • • • •
Information Inside the Block	• • • • • • • • • • • • • • • • • • • •
Information Outside the Block	•••••••••••••••••••••••••••••••••••••••
Information on the Side of the BI	ock
Line Names	
Input Line	••••••
Output Line	
Logic Circuit Blocks	
AND, OR, and Inverter Circuits	

Singleshot and Oscillator Circuits	27
Driver Terminator Circuits	28
Combination Circuits	28
Pseudo Blocks	28
Component and Auxiliary Logic Blocks	32
Engineering Changes	32
Connector Listing	32
Connector Listing	32
SLT Circuits	33
Circuit Speeds	33
Circuit Voltages	33
Transitions	33
Basic Circuits	34
The Diode AND Gate	34
The Diode OR Circuit	35
The Inverter	35
Operating Characteristics	36
Circuit Descriptions	36
Englasian OB Circuits	36
Bi Stable Circuits	41
Singleshot and Oscillator Circuits	44
Inverter Circuits	40
Transmission Line Circuits	45
Indicator Driver Circuits	47
Driver Circuits	48
Extender and DOT Functions	49
	51
Card ALD Sheet	51
Logic Block	51
Input Lines	51
Output Lines	51
Assembly Drawing	52
Schematic Sheet	52
A Particular Example	52
.	
Circuit Numbers	56
Modules	72
Glossgry	82
Annendiv	ູ
Index	00
	- 93

Ì

Illustrations

Figure	Figure Title	
SLT Cor	nponent Circuits	
1	Relay Circuits Combining Two or More Logical Functions	10
2	Symbols and Truth Tables for Electronic Circuits	11
Autom	ated Logic Diagrams (ALD's)	
3	The Automated Logic Diagram (ALD)	20
4	ALD Page Annotated	21
5	Definitions of Page Number Prefixes	22
6	Example of Title Block, Page Number and	
	Version, and Engineering Changes	23
7	The ALD Logic Block	23
8	Circuit Number Code	24
9	AND, OR, Inverter	27
10	Flip Flop and Flip Latch	27
11	Singleshot and Oscillator	27
12	Miscellaneous Circuits	28
• 13	Exclusive OR	28
14	Threshold Circuit (A-2)	28
15	Odd Count	28
16	Even Count	28
17	Dot Blocks	29
18	Entry and Exit Blocks	29
19	Service-Voltage Logic Blocks	29
20	Cable Logic Blocks	30
21	Cable Routing	31
22	Component Logic Blocks	32

SLT Circuits

é

23	Transitions and Circuit Measurements	33
24	The AND Gate	34
25	The OR Circuit	35
26	The Inverter	35
27	AND-Inverter, Medium-Speed (AI)	36
28	AND-OR-Inverter, Low-Speed (AOI)	37
29	AND-OR-Inverter, Medium-Speed (AOI)	37
30	AND-OR-Extender, Low-Speed (AOX_1)	37
31	AND-OR-Extender, Low-Speed (AOX ₂)	37
32	AND-OR-Extender, Medium-Speed (AOX)	37
33	AND-OR-Extender, Medium-Speed (AOX_B)	38
34	AND-OR-Power-Extender, Low-Speed	
	(AOPX-1)	38
35	AND-Power-Inverter, Medium-Speed (API)	38
36	AND-OR-Power-Inverter, Low-Speed (AOPI)	38
37	AND-OR-Inverter, High-Speed (AOI ₁₀)	39
38	AND-OR-Inverter, High-Speed (AOI ₁₀ B)	39
39	AND-OR-Extender, High-Speed (AOX ₁₀)	39
40	AND-OR-Extender, High-Speed (AOX ₁₀ T)	39
41	Four Double Diodes, High-Speed (FDD)	39
42	AND-OR-Inverter-Terminate, High-Speed	
	$(AOI_{10}T)$	40
43	AND-OR-Inverter, High-Speed (AOI ₁₀ BT)	40
44	Four Double Diodes (FDD ₁₁)	40
45	AND-OR-Inverter, High-Speed (AOI_{11})	40
46	AND-OR-Inverter (Two-Way OR), High-Speed	
	$(AOI_{11}B)$	41
47	AND-OR-Inverter-Terminate, High-Speed	
	$(AOI_{11}T)$	41
48	AND-OR-Inverter, High-Speed (AOI ₁₁ BT)	41
49	AND-OR-Extender, High- \overline{S} peed (AOX ₁₁)	41

Figure	Title	Page
50	Exclusive OR, Medium-Speed (XOR)	41
51	Exclusive OR Latch, Medium-Speed (XORL).	. 42
52	Flip Flop (FF)	. 42
53	AC Trigger (ACT)	. 42
54	Singleshot, Medium-Speed (SSA)	. 43
55	Singleshot, Low-Speed (SSL)	. 43
56	SSL Timing Capacitors	. 44
57	Crystal Oscillator	. 44
58	Isolating Inverter, Medium-Speed (II)	. 44
59	Direct Coupled Inverter, Medium-Speed (DCI)	. 45
60	Line Terminating Network (LTN)	. 45
61	Delay Circuit (DLY)	. 45
62	Timing Capacitors (DLY)	. 45
63	Line Sensing Amplifier (LSA)	. 46
64	Transmission Line Receiver (TLR)	. 46
65	Delay Line Driver and Terminator (DLD)	. 47
66	Direct Coupled Inverter, Low-Speed (DCI)	. 47
67	Indicator Driver, High-Speed (ID)	. 47
68	Indicator Driver, 40 ma (ID)	. 48
69	Indicator Driver (IDL)	. 48
70	Sample Pulse Driver, Medium-Speed (SPD)	. 48
71	High Power Driver (HPD)	. 49
72	The OR DOT Block	. 50
73	The AND DOT Block	. 50

Card Layout

74	Regular Card Layout (Sheet 1 of 3)	53
74	Regular Card Layout (Sheet 2 of 3)	54
74	Regular Card Layout (Sheet 3 of 3)	55

Circuit Numbers

75	An Example of the Circuit Number Listing	57
76	T03AC, AND	58
77	T03AE, OR-Inverter Loaded	58
78	T03AI. Exclusive OR	58
79	T03AI, AND-Power-Inverter Loaded	58
80	T03AK, Exclusive OR Latch	58
81	U03AF, AND Inverter with Load	58
82	U03AG, Four-Way Exclusive OR (ODD)	59
83	U03AI, AND	
	U03AL, OR-Inverter with Load	60
84	U03AM, AND-Inverter with Load	
85	U03AP, AND Network to 1.2K	
	U03CN, OR-Inverter-Terminate with Load	61
86	U03AR, AND-Inverter-Terminate with Load	61
87	U03AU, AND-Terminate	
	U03AW, OR-Terminate-Inverter with Load	
	U61AC, 125 Ohm to $+3v$	62
88	U03AY, AND-Inverter-Terminate with Load	62
89	V03AN, OR-Inverter for Low-Speed Flip Flop	63
90	V03AG, OR-Power-Inverter – 2.9K Load	63
91	S05AH, Isolating Inverter	63
92	S05CE, S to SLT Level Converter	63
93	T05AB, Inverter Direct Coupled – 350 Ohm Load	64
94	T06AA, Line Sensing Amplifier	
	U61AN, LSA Resistor Network	64
95	S06AN, Transmission Line Receiver with Load.	64
96	V06EF, NPL Line Receiver – 5K Load	64
97	S07AE, Sense Amplifier 2 Part B	
	S07AF, Sense Amplifier 2 Part A	65
98	T10BB, Sense Amplifier	66

Figure	Title	Page	Figure	Title	Page
99	T11BI, Emitter Follower	66	124	(AOI ₁₁ BT) AND-OR-Inverter, High-Speed	75
100	T15AA, High Power Driver – 175 Ohm Load	66	125	(FDD ₁₁) Four Double Diodes, High-Speed	75
101	T15AQ, XY Gate OR Inhibit Driver	66	126	(TLR) Transmission Line Receiver, Low-Speed.	75
102	S16SA, XY Gate		127	(ID) Indicator Driver, 40 ma	75
	S16SB, XY Driver	67	128	(TLR) Transmission Line Receiver	76
103	T20AD, AC Trigger Number 2	68	129	(FTX) Four Transistors 12v, Medium-Speed	76
104	T21CF, Variable Singleshot	69	130	(FTX) Four Transistors	76
105	S22CH, 4.0 mc Crystal Oscillator	69	131	(FTX) Four Transistors	76
106	S25AA, Z Clamp	69	132	(AOI) AND-OR-Inverter, Medium-Speed	77
107	T27BB, Sense Clamp Power Amplifier	70	133	(AOI) AND-OR-Inverter, Medium-Speed	77
108	T32BD, Threshold Gate	70	134	(DCI) Direct Coupled Inverter, Medium-Speed.	77
109	T40AA, NPL Final Amplifier Rectifier and		135	(AOX) AND-OR-Extender, Medium-Speed	77
	Channel Separator	70	136	(AOX_B) AND-OR-Extender, Medium-Speed	77
110	U55AD, 15 ma Switch ID – 1K Load	70	137	(FTX) Four Transistors 9v, Medium-Speed	77
111	V55AJ, 700 ns – 40 ma Indicator Driver Unloaded	l	138	(FDD) Four Double Diodes, Medium-Speed	78
	V55AM, Resistor for V55AK	71	139	(AOI ₁₀) AND-OR-Inverter, High-Speed	78
112	S61TS, Resistor -1 Ohm	71	140	(AOX ₁₀) AND-OR-Extender, High-Speed	78
113	S63AD, Coil Six Pole Reed Relay		141	(API) (3v) AND-Power-Inverter, Medium-Speed	78
	S61AZ, Reed Relay Suppression	71	142	(HPD) High Power Driver	78
114	S63AE, Relay Point Reed	71	143	(LSA) Line Sense Amplifier	79
Madula			144	(XOR) Exclusive OR, Medium-Speed	79
Module	:5		145	(II) Isolating Inverter, Medium-Speed	79
115	Modules	72	146	(ID) Indicator Driver	79
116	(AOI ₁₀ T) AND-OR-Inverter-Terminate,		147	(FDD) Four Double Diodes, High-Speed	79
	High-Speed	73	148	(FDD) Four Double Diodes (General Purpose),	,
117	(AOX ₁₀ T) AND-OR-Extender-Terminate,			Medium-Speed	79
	High-Speed	73	149	(XORL) Exclusive OR Latch, Medium-Speed	80
118	AOI $_{10}B$) AND-OR-Inverter, High-Speed	73	150	(AOX_2) AND-OR-Extender, Low-Speed	80
119	$(AOI_{10}BT)$ AND-OR-Inverter-Terminate,		151	(AOPI) AND-OR-Power-Inveter, Low-Speed	80
	High-Speed	73	152	(AOI) AND-OR-Inverter, Low-Speed	80
120	(AOI ₁₁) AND-OR-Inverter, High-Speed	74	153	(DCI) Direct Coupled Inverter, Low-Speed	81
121	(AOX_{11}) AND-OR-Extender, High-Speed	74	154	(AOX ₁) AND-OR-Extender, Low-Speed	81
122	$(AOI_{11}T)$ AND-OR-Inverter-Terminate,		155	(AOPX ₁) AND-OR-Power-Extender	81
	High-Speed	74	156	(FTX) Four Amplifier and Saturating Transistors,	
123	(AOI ₁₁ B) AND-OR-Inverter (Two-Way OR),			Low-Speed	81
	High-Speed	74	157	(FDD) Four Double Diodes	81

Abbreviations

Α	AND	HD	Magnetic Head Driver
\mathbf{A}	AND Circuit	HP	High Power
A-2, A-3	Threshold	HPD	High Power Driver
ACT	AC Trigger	HS	High Speed
AI	AND-Inverter	Ι	Inverter
AIT	AND-Inverter-Terminate	ICN	Indicator Coupling Network
ALD	Automated Logic Diagram	ID	Indicator Driver
AOI	AND-OR-Inverter	IDL	Indicator Driver Lamp
AOPI	AND-OR-Power-Inverter	II	Isolating Inverter
		Ind	Indicator
AOPX	AND-OR-Power-Extender		
AOX	AND-OR-Extender	LLOV	T 1
API	AND-Power-Inverter	JACK	Jack
AR	Amplifier	JMPR	Jumper
Array	Array		
		\mathbf{L}	Inductor
C	Conseitor	\mathbf{Ld}	Loaded
CARI	Cable	Lim	Limiter
CD	Caple	Lp	Loop
Chan	Channel	LŜ	Low Speed
Clair	Cell	LSA	Line Sensing Amplifier
	Clock	LTN	Line Terminating Network
CIK	Clock		
CB	Diode	Mach	Machine
CS	Current Switch	MD	Magnet Driver
Ctrl	Control	Mem	Memory
Ctr	Counter	Mpx	Multiplex
CV	Converter	MŠ	Medium Speed
01	Converter		internation officer
n	Driver	N	Inventor
DCI	Direct Coupled Inverter	NI	No Lood
DL	Delay Line	INL	NO LOAU
	Delay Line Driver		
Dly	Delay	ODD	Odd Count
Diy	Denay	OE	Exclusive OR
		OI	OR-Inverter
ENTR	Entrance from Machine Type	OIT	OR-Inverter-Terminate
EVEN	Even Count		
EXII	Exit to Machine Type	OR	OR
		OR	OR OB Circuit
FDD	Four Dual Diodes		On Chronit
\mathbf{FF}	Flip Flop	Ose	Oscillator
FFL	Flip Flop Latch		
FL	Flip Flop Latch or Flip Latch	PB	Push Button
FTX	Four Transistors	\mathbf{PH}	Polarity Hold
FUSE	Fuse	Pwr	Power

R	Resistor
R-C	Resistor-Capacitor
Rcvr	Receiver
Rd	Read
Reg	Register
Rly	Relay
RW	Read-Write
Sel	Select
Ser	Serial
SERV	Service
SERV	Service Voltage
SLT	Solid Logic Technology
SPD	Sample Pulse Driver
SPEC	Special
SS	Singleshot
SSL	Singleshot Low-Speed
SSA	Singleshot Medium-Speed
ST	Schmitt Trigger
SW	Switch
T TD Tgr THRM TLD TLR TLT TLT Tx	Terminate Time Delay Trigger Thermal Switch Transmission Line Driver Transmission Line Receiver Transmission Line Terminator Transistor
V	Voltage Amplifier
Var	Variable
XOI	Exclusive-OR-Inverter
XOR	Exclusive-OR
XORL	Exclusive-OR Latch
Xtl	Crystal
Z	Impedance

- Solid Logic Technology (SLT) is the technology of current IBM systems.
- Chip, module, card, board, and gate are the physical building blocks.
- Circuit speeds demand computer use for figuring wire lengths.

Solid Logic Technoogy (SLT) is the newest technology applied to the design of IBM products. SLT uses microminiaturization techniques in the production of devices for high-speed computers.

In slt, the modules and other electronic components are mounted on cards. The cards plug into $8\frac{1}{2} \times 12\frac{1}{2}$ inch boards. The boards are cabled into gates. The gates are cabled together to form the machine or system.

The basic semiconductors are the dual diode and the transistor chip. These chips are about the size of a grain of salt. The chips, along with screened resistors and interconnections, are packaged in ½-inch square modules. The modules have 12 or 16 pins for connections to a card.

The module and other electronic components are designed into circuits that have three operating speeds: 700 nanoseconds (slow speed), 30 nanoseconds (medium speed), and 5-10 nanoseconds (high speed).

Design automation has developed several programs for SLT. One of these programs, called Automated Logic Diagrams (ALD's), is the computer-generated logic of the machine or system. Another computer program designs the printed wiring of the boards for optimum operation.

As machines operate at faster speeds, wire lengths between components become a design problem. Electrons travel at about 186,300 miles per second, which equals 11.8 inches per nanosecond. If we assume 1 nanosecond of delay for approximately each foot (11.8 inches) of wiring, we see that the wiring paths for circuits in the 5-10 nanosecond range of operation become critical. The design automation program calculates wiring paths on the card and board so that wire lengths and circuit paths are minimal.

Physical Description

The smallest physical component is the dual diode or the transistor chip, each of which is 0.025-inch square A chip is mounted on a substrate along with other chips, screened resistors, and the printed wiring. The substrate and its components are encapsulated to form a $\frac{1}{2}$ -inch square module. Modules and molded R-c components are mounted on pluggable cards. The cards have a printed land (wiring) pattern and, generally, a voltage-ground plane. Card sizes are such that 6, 12, 24, 36 or more modules may be mounted on each card. The cards may plug into one or two sockets, depending upon the particular type of card.

In summary, physical size from the smallest to the largest is: chip to module to card to board to gate to frame to machine.

Physical Design of Circuits

The physical building blocks of SLT are modules, cards, boards, and gates. The physical building blocks of electronic circuits (the function block found on the ALD page) are the modules and the printed land pattern of the card. The modules are designed so that they may be used separately or in combinations with other modules or separate components. Circuits are designed to use parts of modules in combinations with other modules or parts of modules and/or components. For example, Figure 54 shows that the medium speed singleshot is made up of: one-half of a FDD, R-1 of an R-pack, one-half of a II module, one-half of a DCI module, and a timing capacitor. All these separate parts are tied together by the printed land pattern of the card.

Symbology and Definitions

- The standard SLT symbol for logic is the rectangular block:
- All blocks must have a defined function.
- Standard functions are: A, OR, N, A-(n), OE, AR, ODD, EVEN, FF, FL, PH, SS, ST, CV, TD, CS, OSC, SPEC.
- Components have defined functions: relays, switches, resistors, capacitors, transformers, etc.

SLT component circuits are represented by a standard set of symbols. A symbol only conveys information; the symbol is not the information itself but merely a representation of it. However, a standard set of symbols allows us to represent the wiring of a computer, no matter how complex or large, with a logic diagram. A logic diagram (ALD) is a representation of logical elements and their interconnections.

The basic SLT component circuit is an AND, an OR, or an inverter. An AND circuit is a circuit that has an output when all inputs are satisfied. A simple analogy is a relay circuit representing an AND circuit:

When A is satisfied (the normally open point is closed) and when B is satisified, then, and only then, is an output present at point Z. If 0 is the value for an unsatisfied point, and 1 is the value for a satisfied point, the function of the AND circuit may be expressed in a truth table:

An OR circuit, by definition, has an output if any input is present. It can be represented by the relay circuit and its truth table as follows:

103-65SLT Component Circuits

With this or circuit, there is an output at Z if either point A is satisfied, or if point B is satisfied, or if both A and B are satisfied.

An inverter, as the name implies, is a circuit that has an output when the input is not satisfied, and no output when the input is satisfied. An analogy of the relay circuit and truth table follows:

With this circuit, there is an output at point Z when A is not satisfied – expressed as (not A or \overline{A}); there is no output from point Z when A is satisfied.

These concepts can be thought of as logical functions: AND, OR, and inverter. Logical functions may be combined to provide such complex circuits as shown in Figure 1.

•Figure 1. Relay Circuits Combining Two or More Logical Functions

NOTE: In truth tables:

1 means a satisfied input or output 0 means an unsatisfied input or output

- (or no symbol) means and X means not X

Once the rules for writing symbols have been established, logical functions may thereafter be expressed in symbols. ALD's use the rectangular block as the basic symbol for a circuit:

The function of a circuit is placed inside the block at the top. The foregoing example represents an AND circuit. The function symbols, of the three circuits discussed are: A for the AND circuit; OR for the OR circuit; and, N for the inverter circuit. Other symbols and their definitions will be discussed later. An inverter circuit is represented below.

Point A is the input; Z is the output, or output line.

The wedge (\square) at an input or output indicates that the line must be at the least positive potential when the function of the block is satisfied. Blocks with different functions may be connected together to perform a logical operation. Figure 2 shows blocks connected together and the resultant truth tables. For example, as shown in Figure 2F, there is a plus (+) output at Z when either A and B are plus (+), or C and D are plus (+).

Standard Logic Blocks

AND

The output of the AND block is at its indicated polarity only when all of its inputs are at their indicated polarities. Note, the letter(s) in the block is the symbol of the function. In this case, A is the symbol for the function AND.

Circuit Description: Figures 27–49 Example: Figures 76 and 79

•Figure 2. Symbols and Truth Tables for Electronic Circuits

Positive AND (Negative OR)

The output of the positive AND is in its more positive condition only when all the inputs are in their more positive condition.

Example: Figure 76

Positive AND Inverter

The output of the positive AND inverter is in its more negative condition only when all of the inputs are in their more positive condition.

OR

The output of the OR block is at its indicated polarity only when one or more of its inputs are at their indicated polarity.

Positive OR (Negative AND)

The output of the positive OR is in its more positive condition only when one or more of the inputs are in their more positive condition.

Positive OR Inverter

The output of the positive or inverter is in its more negative condition when one or more of the inputs are in their more positive condition.

Exclusive OR

The output of an exclusive or will be at its indicated polarity when one and only one of its inputs is at the indicated polarity.

The following examples describe types of inverter, amplifier, threshold, ODD, and EVEN functions.

Inverter

The output of the inverter is of opposite potential to the input.

Amplifier

The amplifier provides adequate driving energy and an appropriate impedance match to other blocks. The amplifier output is at its indicated polarity only when the input is at its indicated polarity. An amplifier can have no more than one logic input. An amplifier having input or output of other than standard logic signal voltage will have distinctive labeling at the block.

Threshold

The output of the threshold is at its indicated polarity when and only when the number of inputs (at their indicated polarity) reaches or exceeds the number specified in the function symbol. The threshold symbol is also used when an input has greater weight than 1 in the determination of the threshold. In this case the input is titled with a number denoting the particular weighting factor. "Weight," as used here, denotes a value that is relative to the other inputs. For example, if two inputs are weighted at 2 each and six others are weighted at 1 each, and the symbol is A-4, the output is up if: both 2-weighted inputs are up; or four 1weighted inputs are up; or if one 2-weighted input and two 1-weighted inputs are up.

The A-(n) symbol (shown in the accompanying illustration) will have at least three inputs. The num-

ber specified in the function symbol will not be 1, or equal to the number of inputs, or their total weighted value.

A - (n) A - (n) A - 2 B - (n) A - 3 A - 3 A - 3 A - 3 A - 3

Example: (A-2)

ODD Count

The output of odd count (ODD) is at its indicated polarity when, and only when, an odd number (1, 3, 5, 7, etc.) of inputs are at their indicated polarity.

NOTE: An ODD may be shown as an even count (EVEN) through proper change in polarity indication, and vice versa. There is a simular relationship in the AND and OR circuits.

Even Count

The output of even count is at its indicated polarity when and only when an even number (0, 2, 4, 6, etc.) of inputs are at their indicated polarity.

EVEN

As noted earlier an EVEN may be shown as an ODD through proper change in polarity indication, and vice versa. This change may be compared to the AND and OR circuit.

Flip Flop

The flip flop has two stable states. One of these is called the 1 state or set state; the other is the 0 state or clear state. The flip flop block normally has two outputs, a 1 output and a 0 output. In the ALD's a line from the upper part of the block represents the 1 output and a line from the lower part of the block represents the 0 output.

The flip flop is in the 1 state when the 1 output (the upper output on the ALD) is at its indicated polarity. Regardless of a flip flop's inputs, its 1 output and 0 output in the stable state are always opposite in polarity.

A signal of indicated polarity sent to the line opposite the 1 output causes the outputs of the block to assume their indicated polarities.

A signal of indicated polarity sent to the line opposite the 0 output causes the outputs to assume polarities opposite to those indicated.

A signal of indicated polarity sent to a line centered between the two lines already mentioned, or sent to both the set and clear inputs simultaneously, changes the state of the flip flop (complement the flip flop).

The polarities shown at the inputs and outputs of a flip flop of a particular circuit type are unchanging parts of the symbol itself.

Flip Flop Latch or Flip Latch

The definition of the flip flop latch or the flip latch is the same as that given for a flip flop except that simultaneous signals of the indicated polarity at the 1 input and the 0 input will cause both the 1 output and the 0 output to go to either the negative polarity or the positive polarity for the duration of that input signal.

Note: A simultaneous set and reset is not a normal operation. If, however, simultaneous set and reset did

happen, the design of the circuit would determine which polarity both outputs would have.

The complement input is not used with the fliplatch block.

Polarity Hold

The output of this block it at the indicated polarity whenever the data line is at its indicated polarity and the control line is at its polarity. When, at a particular moment in time, the control input goes to the polarity opposite to that indicated, the output remains at whatever polarity it possesses at that moment. The PH block may have a clear input. If so, when the clear polarity is at its indicated polarity, the output will be opposite of its indicated polarity.

The output line is located towards the top of the block. The data line is opposite the output line. The control line is centered on the input side of the block. The clear line is located towards the bottom of the block.

Singleshot

clear

The output of the singleshot changes temporarily to the indicated polarity when it receives an input signal of the indicated polarity. The output remains in this quasi-stable state for a time characteristic of the particular block. The singleshot always has the time duration shown in the title area of the block. If a singleshot has more than one output not of the same duration, the block will be labeled or a reference note on the page will relate pin numbers to time durations.

14 3-65 SLT Component Circuits

Schmitt Trigger

The output of the Schmitt trigger goes to its indicated polarity whenever the input crosses the threshold in the direction of the indicated polarity. The output remains at this indicated polarity until the input signal crosses the threshold in the opposite direction.

Oscillator

The oscillator produces a uniform, repetive continuous output, or produces an output only when the input signal is at the indicated polarity.

Special Blocks

Two conditions must exist for a block to be designated as special:

1. The function is not covered by any single block symbol.

2. The function cannot be expressed in terms of an interconnected set of individual block symbols.

The function of a special block is described by the wording on the ALD, located either at the block or in a comment area referenced by a note in the title area of the block.

Converter

Example: Figure 92

The converter block provides the necessary conversion or translation between two types of logic, i.e., voltage mode to current mode, voltage to voltage, etc. An indication of input and output voltage levels, or line types, is shown in the block title area of the block.

Time Delay

The time delay block delays a signal without intentional distortion of the signal. The time delay symbol must always be accompanied by the time delay.

Time delays having a delay time for the leading edge of the output that is different from the time delay for the trailing edge shall be identified by the placement of an L for leading and a T for trailing immediately prior to the separate delay times in the block area. The input polarity at the block must be that associated with the "leading" edge of the output.

Limiter

The limiter block sets one or both extremes of a waveform to a predetermined level without intentional distortion of the remaining waveform.

Example: Figure 106

Current Switch

Under some circumstances it is difficult to describe the logic operations of AND'ing and OR'ing in the standard block symbols because of the use of series control of current flow, e.g., handling the drive currents in a magnetic core array. At times the purpose of a circuit is to allow a flow of current (either in or out) under logic voltage control. When this condition exists, the circuit cannot cause the current to flow solely through electrical action at its own logic input. Because of the series flow of this current through other controlling circuits, the circuit may be given the function label cs (current switch).

The control input of the cs is placed towards the top of the block. Sending a signal of indicated polarity to this input allows (not necessarily causes) the flow of current through the block in the direction indicated by the polarity symbol located at the output side of the block (on the current line). A negative polarity symbol, for example, indicates electron flow away from the output side. A line opposite the output line is assumed to be the same current line, separated by the circuitry of the cs. The polarity indication for this line is the same as that of the corresponding output line.

Example: Figure 101

The accompanying illustration shows the use of the current switch in the control of a series flow of current through more than one circuit. A negative signal at (1) causes current to flow in the array, provided the control signal is negative at (2)

Component and Auxiliary Blocks

Many types of components may be mounted on an SLT card. The following examples are typical (but not all-inclusive) of these components.

Component Blocks

Switch Blocks

Relay Coil and Contact Blocks

Note: 1. One set of contact points will be shown in each block. 2. This symbology refers to relays mounted on cards.

Example: Figures 113,114

Multiple Block Configurations

Bi-Stable Circuits

The flip flop, flip latch, or the polarity hold circuits (see examples A, B, C, D) may be designed with ANDor blocks instead of a single circuit. When these bistable circuits are shown in multiple block form, one of the blocks will be an or block placed towards the top (or left) in the block arrangement containing the cross-coupled parts. The title of the arrangement is placed above this or block.

When AND-OR blocks are arranged to perform the function of a flip latch, flip flop, or polarity hold, the symbol FL, FF, or PH is added to the AND-OR function symbol in the top of every block making up the cross-coupled arrangement. An exception to this arrangement occurs when the AND-OR block is part of a DOT AND OR DOT OR. (See discussion on DOT functions that follows.)

Example A

Example C

DOT OR, DOT AND

Basic blocks whose outputs are connected externally to perform an AND or OR operation (DOT AND, DOT OR) are identified by an additional A or OR placed in the block to the right of the primary block function symbol. In the ALD's a block labeled OR DOT OF A DOT is used to form the junction of the lines being joined.

When the output of a block enters into both a DOT OR and a DOT AND, the letters WL (for wired logic) are placed to the right of the primary block function symbol.

Suffixes to the Block Function Symbol

The suffix is information added to the block function to clarify the logic usage. Some of the suffixes are:

- LTTransmission line terminator
- LDTransmission line driver
- ID Indicator driver
- $\mathbf{C}\mathbf{D}$ Core driver
- HD Magnetic head driver
- MD Magnet driver v
- Voltage amplifier DF Differential amplifier

FF Used for emphasis of storage type blocks when \mathbf{FL} these blocks are in multiple block form. PH

Used in the identification of blocks whose outputs are connected in the DOT OR or DOT AND ar-OR

rangement; these suffixes take precedence over all others. When the DOT AND or DOT OR takes WL J

precedence over a suffix, the suffix is placed in the title area of the block.

Ρ Used with the RY (relay) blocks to indicate coil Н and contacts. \mathbf{CT}

Some possible uses of the suffix are:

AND circuit being used as a transmission line terminator

Amplifier used as a magnet driver

Amplifier used as a core driver

OR circuit used as an indicator driver

Automatic Logic Diagrams (ALD's)

- ALD's are computer generated.
- ALD's for all SLT machines use the same symbols and page format.

Computer-automated design helps engineers check designs and connect individual circuit sections involving literally hundreds of thousands of electrical connections, components, cables, and other items. The computer maintains an interim magnetic tape record of circuits as they are developed and produces the final tape used in an automatic system to make new circuit patterns.

In slt, the design automation program is used to: 1. Print the ALD's.

2. Document on magnetic tape the logical design of computers, determining the layout of printed boards and cards.

3. Assist the engineer to simulate logical designs and verify circuit loading before the designs are committed to manufacture.

4. Assist the engineer in assigning the logical elements to boards and cards and in locating printed wiring on boards.

5. Compute cable length requirements for different interconnections.

6. Provide a monitoring service to help enginneering and manufacturing groups coordinate their activities.

The sLT design automation program accepts various forms of information from design engineers and processes it into machine logic. Design automation gives the engineer the option of using the computer to package a logic design or to check manual packaging. In addition, it allows him to treat a portion of a system as a unit for simulation, packaging, or design modification.

Simulation and circuit load checking programs verify logic designs recorded on a logic master tape. Packaging programs, which pertain to card selection, card-toboard assignments, pin locations, and card placement, assist in mapping logic circuits into the circuit cards. The computer also aids integration of cable design and installation data with cable manufacturing data.

After the computer determines the connections and designs the board wiring, it records the printed connections on a master tape. This tape is later used to generate other tapes containing circuit board design data.

The basic document produced by design automation is the Automated Logic Diagram (ALD), a computerdrawn schematic representation of machine functions. The ALD for Solid Logic Technology is a 11 x 17 inch sheet. See Figures 3 and 4.

On an ALD, circuits are represented by rectangular blocks, which symbolize logical functions. They are connected by printed lines, which symbolize electrical connections. Inputs enter the circuits on the left; outputs leave at the right. Most of the page is used for the representation of logic; page identification and supplemental information appear at the bottom of the sheet.

Page Number

The page number is located in three places on the sheet. The page number in Figure 3 is κ H142. In this illustration the page number is in the upper right-hand corner, as well as in both the lower right and the lower left corners.

Logic pages are numbered according to a coded prefix consisting of two alphabetic letters, representing the major and the minor characters. The general scheme of the coding is shown in Figure 5.

For example, the coding for the A register is RA. "R" is the major character; it means register. "A" is the minor character, designating the particular register. Another example is κ R101, which means control (κ), check triggers (R), page 101.

Figure 5 is processor oriented. Slight variations appear both in the processor pages and in the 1/0 pages.

Machine Version

A version page shows wiring and cards that are not on the basic machine. This wiring must be added to that used by the basic machine. This is in direct contrast to the additive card code, in which the wiring is part of the basic machine, and only cards are added to make the feature operative. An example of a version page is those pages that added the cards and wiring for floating point.

A version page is made up of all basic page blocks which are unchanged in the version design plus additional blocks (version blocks) needed to change the basic page into a version page. A version number is printed at the top of each version block to differentiate it from a basic block.

The machine version number appears below the page number; for a basic (standard) machine this number is 000. A version page assigned by Design automation has a number other than 000.

Figure 3. The Automated Logic Diagram (ALD)

20 3-65 SLT Component Circuits

IBM Confidential

- POWER GOOD-KM101 AC4 244 AX4 FLOOT + HALT CONDITION-BA4 - + SYNC RUS--BE4 - + SYNC MS LATCH--BC4 - SYNC ROS AND MS--BD4 HALT LATCH AND SYNC POINTS DATE 05-12-64 MACH. 2040 LOG 074A FRAME 01 42 JACKSON P.N. 5348169 8F 000 IBM CORP. WTC BLK.

+ POWER GOOD

000 KH142

•Figure 4. ALD Page Annotated

* Asterisk in Last Character Of <u>Line 1</u> Denotes A Special
Non-Check Logic Block Sink Page
TC128 - 2 READ DATA LINE-AF4
A Note is Available
For Each Sink Page Listed
or a Net
Line Origin
The Above Combination With This Logic Page Number Make Up the 8 Character Net Number TC129 – P READ DATA LINE
TC251 - LRCR P INPUT-ANA
ion - Alphabetic <u>Portion</u> - Numeric <u>CTC231</u> + TRANSFER READ DATA <u>LTC232</u> + TC234 <u>LTC262</u>
+ HI CLIP P TR → TC261 + LD CLIP P TR → TC275 + LD CLIP P TR → TC275 + LD CLIP P TR → TC275 →
Line 2
Frame, Only Appears Here
Page Title 2 Lines
-63 B63-001 -63 B63-002 er DATE Jum of 20 E.C.'s LOG inted in 2 IBM CORP. DSL BLK. AX
Next Available Serial Number

1.	Adders		VI. Main Storage Registers and Controls	MA-MC
	1. Addressing Adder	AA-AB	in CPU (Includes SDR Registers,	
	2. IC Incrementer	AC-AD	Storage Buses, SAR, SBI "OR", M	
	3. Exponent Adder	AE-AF	and N Regs in Mod 30)	
	4. Main Adder	AM-AQ	~	
	5. Serial Adder	AS	VII. Controls	
	6. VFL and DEC Adder	AV-AW	1. Advance or Sea Cntls	KА
			2. Branch and IC Cntls	КВ
н.	Decoders		3. Clock Cntls	KC
	1. On Decoders	DN	4 Exec (Mod 70) Fetch &	
	2 ELP and Gen Decoder	DP	Exec (Mod 60)	KD
	3 Addressing and Pre ETH		5 Chan Catals	KE
	4 Tran Decede		6 Eix Sog Catle	KE
	5 Pag Dacada	DG	7 Gon Bon Cotla	KG
	5. Reg Decode		9 ELT Carda	KG VU
	6. KOM Decode	DK-D3	0. FLI Chilis	
	C .		9. ROS Chris	
	Counters	<u> </u>	10. Local Store Chris	K L
	1. Instruction Ctrs	CA-CB	11. Priority and Interrupt Chils	KM
	2. Local Store Address Ctr	CC-CD	12. I/O Instr Cnfls	KN
	3. Misc. Ctr	CE-CZ	13. VFL Cnfls	KP
			14. VFL Cntls	KQ
Ι٧.	Busing (Excluding Memory Bus)	BA-BZ	15. Check Triggers	KR
			Status Triggers	KS
			VFL Cntls & Decimal Cntls	KY
٧.	Registers		Any Misc. Cntls such as FP	KT-KU
	1. A Reg	RA	Fixed Pt, Storage Protect,	
	2. B Reg (BOP REG, Mod 70)	RB	Real Time clk, Status Cntls	KW-KZ
	3. D Reg	RD		
	4. E Reg (PSW for Mod 70)	RE	VIII. Consoles	PA-PE,PJ-PZ
	5. F Reg (I/O Reg, Mod 70)	RF	1052 Console Adapter	PF,PG,PH
	6. G Reg (Gen Purpose, Mod 70)	RG	•	
	7. H Reg	RH	IX. Local Store	LS-LT
	8. J Reg	RJ		
	9. K Reg	RK	X. TROS	EA-EC
	10. L Reg	RL		
	11. M Reg	RM	XI. CROS	FD-FF
	12. N Reg (Op Code Reg. Mod 70)	RN		
	13. P Reg. (FLT Pt Reg. Mod 70)	RP	XII Spec Features	X A- X7
	14 Q Reg (FLT Pt Reg, Mod 70)	RQ	All: Spec. redioles	
	15. R Reg (Reg Bus Latch Mod 70)	RR	XIII Hardware Oriented Pages	74-77
	16. S Reg (Shift Ctr & Evp in	NN	All. Haldware Offerned Luges	
	Mad 70)	DC	XIV I/O Christopha	
	17 T Par	NJ DT	Multi-law Channel	EA E7
	19 11 Bar		Solosten Channel #1	CA-CZ
		RU DV	Selector Channel "1	GA-GZ
	17. V Keg	KV DV/	Selector Channel "2	
	ZU. W Keg	KW	Direct Data	JI-J∠
	ZI. X Keg	кX		<u></u>
	22. VFL and Decoder Reg, Mod 70 23. Direct Data Reg	RY R7	XV. KOS Flow charts	QA-QZ
		114-	XVI. Power Supplies	YA-YZ

Figure 5. Definitions of Page Number Prefixes

Title Block

The title block is printed in the lower right corner of the page. As Figure 6 shows, information can be found at three places in the block:

1. At the top

a. The page title ("Ls Address Register J Bits 0 Through 3" in Figure 6).

2. On the left side

a. Date of processing by design automation (05-12-64).

b. Log number (or computer run), "074A," assigned by design automation.

c. The corporate division, wtc (World Trade Corporation).

3. On the right side

a. Machine type, "2040." This may be a pseudo number or it may be the machine number followed by a suffix. The suffix differentiates between models or features of the machine number.

b. Frame, "01"; within the machine, may be 01 to 63.

c. Part number of the page, "5348221."

d. Block DF is, in terms of design automation, the next available block serial number available for for use on that page.

Figure 6. Example of Title Block, Page Number and Version, and Engineering Changes

1	
FunctionFunction Suffix * here denotes special inputs OR FL* here denotes a special Additive Card CodeT03AJ Card Part NumberT03AJ Card Part Number* here denotes a connect Card LocationA-C1L4Portion and Sub-Portion (Page Coordinate71	block nar.) or 2 char.)

Figure 7. The ALD Logic Block

Logic Block

Logic blocks shown in Figure 7 are positioned on the page in a matrix seven columns wide and 13 rows high. The columns are numbered 1-7. Rows are lettered A-N, excluding I.

A logic block is six increments wide by seven increments high; it may be lengthened downward to a maximum of 24 increments. The block may have one to seven input and/or output lines on the basic block; one to 24 input and/or one to 10 output lines on the extended block.

Information Inside the Block

Line 1

The logical function being performed by the circuit represented appears on line 1; for example A, OR, N, FF, etc. An asterisk (*) preceding the logical function symbol means to design automation that the input line positions are placed in a certain arrangement.

The suffix, preceded by a space and following the function, is additional information describing the function. The suffix is used to indicate DOT functions such as A OR, OR A, N OR, OR WL; to indicate the blocks in a multi-block configuration of bi-stable circuits such as A FF, OR FF, A PH, OR PH, N PH; and to indicate additional information in special component blocks such as RY CT, RY P, A LT. (See "Symbology and Definitions.")

An asterisk (*) following the suffix and/or in position six indicates a special block that does not follow the rules of design automation. Some of the special blocks are exit and entry, service-voltage logic, switch, and jack blocks, as well as discrete components such as capacitors, resistors, etc.

Line 2

The additive card code (special machine feature) appears here in the first four characters, for example, 7TR (seven-track tape feature). Additive card codes identify those logic blocks which pertain to a special class of machine features in which the feature can be installed by plugging in the feature cards.

The last two characters of line 2 contain the symbolic package designation. The use of these two characters allows design automation to generate the ALD's, to position the card on the board, and to generate the wiring (printed or discrete) on the board. Blocks with the same characters in the symbolic package field will be placed on the same board by the card partitioning program used by design automation.

NOTE: Blocks with different symbolic packages may be packaged on the same board.

Line 3

The circuit number (Figure 8) appears on line 3 except when design automation generates a pseudo block for a DOT function. In this case DOT appears on line three. A DOT block is a tie point for the output of two or more circuits feeding one circuit.

The circuit number is the coded name given to a particular circuit. The number is defined in Figure 8 and discussed in greater detail later. It will be used to

understand the logic and to identify particular components on the SLT card.

SRETL - Screened Resistor Etched Transistor Logic

Logic General Form - XYYZZ

X Defined

- S SRETL General
- T 30 ns
- U 5-10 ns V - 700 ns
- O Anglog

YY Defined

- 03 Logic Blocks
- 05 Voltage Translate Circuits
- 06 Transmission Line Drivers and Receivers
- 07 Sense Amplifiers
- 10 Inverting Drivers less than 50 ma
- 11 Non-Invert Driver less than 50 ma
- 15 Power Driver more than 50 ma
- 16 Magnetic Head and Core Driver
- 20 Triggers
- 21 Singleshots
- 22 Oscillators
- 25 Regulators, Clamps, Clippers, and Limiters
- 32 Gates
- 40 Specials
- 45 Delay Circuits 55 – Indicator Circuits
- 60 Integrators and Filters
- 61 Components
- 63 Reed Relays
- 65 Functional Card
- 66 Field Replacement Card

ZZ Defined - The Unique Card

Note: Appendix lists all circuit numbers.

Figure 8. Circuit Number Code

Line 4

The last four digits of the card part number appear here. The first three numbers, 580, are the same for all cards and are not recorded.

The last two characters on line 4 represent the portion and sub-portion. A portion represents an independent section of a card. A section may be represented by one or more logic blocks, each of which has a subportion number. The portion character is of the form A, B, ... Z, excluding I, O, and R. ALD blocks which are interconnected on a card are in the same portion. Every block in a portion has a unique sub-portion number. These sub-portion numbers are assigned in the sequence 1, 2, ... 9, A, B, ... Z (excluding I, O, and R).

Exception: When a circuit with an unloaded collector and an associated load resistor packaged on the same card are used together, the block designating the

load resistor has the same portion as the unloaded circuit, and the sub-portion character is R.

Line 5

The card location is placed at line 5 as follows:

1. Character one is the gate (A-Z) followed by a dash.

2. Characters three and four are the board location, one alphabetic and one numeric.

3. Characters five and six are the card location, one alphabetic and one numeric.

Line 6

The print location in positions 1 and 2 of line 6 are the grid co-ordinates of the block on the ALD page, for example, 1B, 3F. The serial number of the logic block appears in positions 5 and 6, and is expressed in alphabetic characters. Serial numbers begin with AA and proceed in a sequential order (AA, AB, AC, ... ZZ). Serial numbers AA through RZ refer to the basic system group, and numbers sA through ZZ, to the special engineering group.

An Engineering Change (EC) may add logic blocks in which case the sequence of double alphabetic characters would be continued. An EC may move a block to another print location, but the serial number for that block will stay the same. If an EC eliminates a block, that serial number will not appear again on that page. The block serial number is an integral part of the net number. (See the "Glossary.")

Information Outside the Block

Title and Version Number

When logic blocks have been assigned a title, the title appears over the block. The version number appears in the title area for all version blocks.

Pin Numbers

Pin numbers are in line with the input or output line. They are the actual numbers of the base pins of the card.

Asterisk (*) On an Input or Output Line

An asterisk (*) on an input or output line denotes a connection that leaves the board. The routing is found at the bottom of the ALD page, keyed with the serial number of the block and the output line number, e.g., AQ4.

Information on the Side of the Block

Wedges

The wedge (\square) is a small triangle at the point where a signal line joins a logic block. The wedge indicates that the active state of this line (the state which satisfies the function of the block to produce an output line of the state indicated) is at the least positive potential with respect to the most positive potential shown by the signal line without a wedge.

A wedge is placed in the edge of the block in line with an input or output line. When the block or circuit is performing its function, the wedge indicates the most negative (least positive) pc voltage that will be found on the line.

Note: Signal lines are operated at one of two voltages, an up level and a down level. Because slt circuits operate at different speeds and at different pulse levels (0.0v to +12.0v; +0.9v to 3.0v, etc.), the line level designated by the wedge must be described as the most negative (least positive); the absence of the wedge is the most positive (least negative) level of the line.

E in the Side

An E is placed in the side of the block whose inputs are being extended. An example is a circuit that is used to add inputs to another AND or OR circuit; the connection from this second circuit to the first is made at other than a normal input or output of the first circuit. A connection of this kind is shown without polarity and is labeled E (for extender).

K in the Side

Non-logical outputs of different blocks are not tied together by DOT blocks. Instead, a K is put in the edge of the block in line with each (except one) of the outputs connected together. The one exception is the output used to determine the net number.

Output (or input) lines on the same block may be tied together. In this case the net number will be the position without the K in the edge of the block.

Nonlogical outputs on different blocks may be tied together when:

1. All the outputs tied together appear on the same page. The net number then includes the line origin of one of the outputs from one block. The commoned outputs are differentiated from the source by a K in the edge of the box position.

2. All of the outputs tied together are not on the same page. In a situation of this kind the outputs tied together on one page show an output to the right side of that page. The outputs in the same net on other pages return to the left of their respective pages and are referenced to the first page in the normal manner. The net number includes the line origin of one of the commoned outputs of the first page. In the edge of all the other blocks having outputs in the same net, a K appears in line with each commoned output.

P or N in the Side

When a capacitive input to a block is designated, a P or N in the side of the block indicates the polarity of the shift necessary to satisfy the function of the block.

X in the Side

Non-logic connections to a logic block have an X in the side at the place where the polarity indicator (wedge) is normally placed. This non-logic input or output can be a bias line. In the accompanying illustration D06x is a non-logic connection to the two-way on block.

The following example shows the use of the X in the edge of the block. There is an X on the lines labeled D05 and J13, showing that these lines are the same. (It is really one ground line that is common to several blocks and completes the ground circuit in these blocks.) At location 1L, lines D13 and G13 are similar to lines D05 and J13 except that there is a K at G13 because a net may have only one source. (Other input lines to a net are designed with the K.)

Line Names

Input Line

Each input line (Figure 4) entering an ALD page has a net number and a line name.

The net number is composed of the source page, the serial number of the source block, and the line origin of the source block. For example, KH141AT4 means that this line came from page KH141, from the block whose serial number at AT on that page, and from the fourth line position on the block. When an input line comes from more than one particular unit, such as one of many types of I/O units, or from more than one memory, a pseudo-net number will be put on the ALD net number position. These pseudo-net numbers will generally be in sequence on a page starting at 000.

A net is a set of signal points (a source and sinks) which are electrically interconnected. Generally the source point refers to the output pin of the driving block, and the sink points refer to the input pins at the driven blocks. The net identification is used to indicate which points (pins) belong to a given network.

The line name is generally a description of the line function and is signed plus (+) or minus (-), depending upon the active condition of the line at that point. If most of the lines in the box are plus (+), the sign may not appear unless it is minus (-).

Figure 9. AND, OR, Inverter

Figure 10. Flip Flop and Flip Latch

Output Line

On each output line (Figure 4) leaving the ALD page, the sink page number (where the line is going), the line name (with the sign of the active state of the line), and the line origin are printed.

The line origin is composed of the serial number of the last logic block before the line name and the number of the printing line of that block.

Whenever the output line branches to several pages, the other "to" pages are listed below the sink page number.

In Figure 4, the top output line is "TC128 -2 Read Data Line AF4." The sink page number is TC128 (the page where the line is going); the active state of the line is minus (-) and a description of the line would be "2 Read Data Line"; the source point is the logic block whose serial number is AF, and the line leaves the block at position 4.

Logic Circuit Blocks

AND, OR, and Inverter Circuits

The basic logic blocks (Figure 9) are the AND (A), OR (OR), and the inverter (N). Almost all other circuits can be built from a combination of these basic circuits. Specifically:

AND circuits (either diodes or transistors) have the designated output when all inputs are at the designated level.

OR circuits (either diodes or transistors) have the designated output when one input is at the designated level.

Inverters change the line from one level to the other as designated. (The inverter is really an AND circuit with one input.)

Bi-Stable Circuits

The basic SLT logical storage blocks (Figure 10) are the flip flop (FF), the flip latch (FL), and the polarity hold (PH). Each may be a single circuit or a combination of individual AND, OR, and inverter circuits.

Singleshot and Oscillator Circuits

The basic timed storage block (Figure 11) is the singleshot. The oscillator produces crystal-controlled timing pulses.

•Figure 11. Singleshot and Oscillator

Driver Terminator Circuits

A need for varied circuits exists in all machines. Some of these circuits are (Figure 12): indicator and relay drivers, line terminators, converters, and integrators.

•Figure 12. Miscellaneous Circuits

Combination Circuits

Circuits may be combined to provide a particular need or function. These combinations may be:

Exclusive OR

The output of an exclusive OR (OE) (Figure 13) is at its indicated polarity when one and only one of its inputs is at its indicated polarity.

DII ODD

312

U030+

Even Count

Odd Count

The output of even count (Figure 16) is at its indicated polarity when and only when an even number of its inputs are at their indicated polarity.

The output of odd count (Figure 15) is at its indi-

cated polarity when and only when an odd number

of its inputs are at their indicated polarity.

Figure 16. Even Count

Figure 13. Exclusive OR

Threshold (A-2, A-3, A-(n))

The output of the threshold (Figure 14) is at its indicated polarity when and only when the number of its inputs which are at their indicated polarity reaches or exceeds the number specified in the function symbol. The A-(n) symbol has at least three inputs. The number specified in the symbol may not be 1, nor may it be equal to the number of inputs or their total weighted value.

Figure 14. Threshold Circuit (A-2)

Special Circuits

Under certain conditions a block will have a "special" designation. These conditions, both of which must exist, are:

1. The function is not covered by any single block symbol.

2. The function cannot be expressed in terms of an interconnected set of individual block symbols.

The functions of a special block are described on the ALD page, either at the logic block or in the comment area with a reference note in the title area of the block.

Pseudo Blocks

DOT Blocks

The DOT block (Figure 17) is a pseudo block that is used whenever a functional DOT is performed. It is necessary because a net can have only one source. The DOT block has the function, DOT, a print position, and a serial number.

Figure 17. Dot Blocks

The DOT block by definition is the block used on logic pages to show the DOT OR and DOT AND functions. This function is physically accomplished by tying two signals together at a pin. In this manner one logical net may be combined with other logical nets by means of a DOT block to show a single combined physical net.

A net is a complex of nodes (normally pins or connectors on a logic page) that are all common electrically. A node is one end of a circuit that is a point of a net, e.g., a pin on a card, a connector on a board or panel. A source is the beginning of a net from which the signals flow. A sink is the end or ends of a net to which signals flow.

Entry and Exit Blocks

Entry and exit blocks (Figure 18) can be used to show cross-referencing from one machine to another or when a line crosses a machine type. The information may be associated with the line name or it may be shown in a pseudo block. These pseudo blocks are identified by an asterisk in the sixth position of line 1. The machine type from which or to which the line is coming is on line 2. The machine type where the logic block is located is on line 3. The page of the other end of the line is shown on line 4. Line 5 is the serial number of the block on the other end of the line. The print location and serial number of the logic block are shown in line 6.

Service-Voltage Logic Blocks

The four-character mnemonic code (SERV) identifies one type of the pseudo block. An asterisk (*) in the first character of line 1 indicates that the inputs are in particular positions; the asterisk (*) in the last character of line 1 indicates that the block is special. Line 3 identifies the voltage. Line 5 locates the card socket. The logic block pin numbers identify which pins are wired for the particular voltage.

A SERV logic block (Figure 19) indicates that a voltage is wired into a connector area by printed wiring.

Page

Ser #

- 1 A

AB-

Note: No voltages are present in each outside column (A and N) of card sockets on the board.

Page

Ser ph

-1A AB

Normally the sockets in columns A and N of the board are used for cable connectors. When these sockets are used for cards, service voltages are brought to these sockets by printed wiring. This arrangement is shown with the SERV special block (Figure 19). When a half cable connector plugs into columns A or N on the printed board, additional ground wires are shown on the ALD's in the lower half of the socket. A board is not normally wired this way. Normally, on a given board all blocks that are used for service voltages appear on the same ALD page(s).

•Figure 19. Service-Voltage Logic Blocks

IBM Confidential

Automated Logic Diagrams (ALD's)

Cable Logic Blocks

Two logic blocks (Figure 20) are used to define each cable: one logic blocks shows the "from" location; the other logic blocks shows the "to" location. Line 1 contains CABL* for regular cables (both intergate and intragate) and xovr* for crossover cables.

Basic data in the block provide cable block identification: location of the end points, cable assembly part number, location suffix (half cable can be plugged into top or bottom section, or left or right section of the connector socket), intergate sequence numbers, and orientation of intergate cable.

The code used in Figure 20 is:

- NNNN last four numbers of the cable assembly drawing appear only on the "from" block. The first three numbers (580) are understood as relating to the part number.
- P socket portion used, i.e., T for top, B for bottom, F (or blank) for full; this will appear as a location suffix.
- QQQQ installation sequence number (required in both blocks of the intergate cable).
- GGBBSS gate, board, and socket for the respective end of the cable.
- Z L or R indicates left or right for the direction this cable takes in leaving the board specified in the "from" block. (Assume a position facing the card side of the board.)

Cable blocks will have "from" and "to" orientations similar to the orientations of the particular cable assembly reference drawings.

Line 2 may contain an additive card code, but it is not required.

Installation Sequence: Intergate cables are divided into groups; each group contains all of the cables connecting a particular pair of logic or 1/0 gates. The group number is the first number of the code QQQQ. It defines the cabling sequence required for gate pairs. The number may be 1 through 9. Other numbers of the code QQQQ are the installation order of the cables in the group, with the lower numbers being installed first, advancing in order to the higher numbers.

Cak	le	Blog	ck F	orm	ats							
	х	0	٧	R	*	(CROSSOVER CABLE)		х	0	٧	R	*
Z	Z	Ν	Z		Ρ							Р
G	G	В	В	S	S		G	G	В	В	S	S

* denotes via listing at the bottom of the ALD page.

•Figure 20. Cable Logic Blocks

Via Points: The point at which the intergate cable leaves the gate is designated as a via and the point at which it enters the "to" gate is designated as a via.

Via coordinates identify channel intersections as well as identify segments of the vertical channel. Within the channel intersection and within the vertical segments, channel coordinates are specified. It is at these coordinates that the cable is folded and the lengths are specified.

The via points are shown in order from one end of the cable to the other. The format of routing vias is in the form FFG-VVCC---; FF designates frame, G- designates gate, vv designates via coordinate, cc designates channel coordinate, and --- (three dashes) fill out the 11 characters. An example is O1A-C2D5---.

Cable Routing: The routing of the cable is given by via and channel coordinates (Figure 21). These coordinates will be identified by the asterisk (*) on the line between the to and from block. The asterisk (*) references the connector field at the bottom of the (cable) ALD logic page.

The general form of the via designation is:

01	' A-	C2	D5		
		Via	Channel	Not	
Frame	Gate	Coordinate	Coordinate	Used	
The general form of a logic connector is:					
01	A-	D3	B2	D09	
Frame	Gate	Board	Socket	Pin	

Example 1 in Figure 21 shows a six pack cable on gate A in frame 01 between board A1 socket N3 and board C2 socket A3. In this example the connector listing is:

01A-A1N3(appears in CABL* block)01A-A1N3Identification01A-B1H2---
01A-B2B2----
01A-C2H2----
01A-C2A3Cable Viascable Vias(appears in second CABL* block)

•Figure 21. Cable Routing

Example 2 in Figure 21 shows a split pack cable on gate B in frame 01 between board B1, top half of the socket A4, and board A2, bottom half of socket A6. In this example the connector listing is:

01B-B1A4T	(in CABL* block)
01B-B1K1	
01B-B2C1 (Cable Vias
01B-A2C3(Cable vias
.01B-A2T3 J	
01B-A2A6B	(in CABL* block)

Component and Auxiliary Logic Blocks

Special components such as switches, relays, fuses, resistors, capacitors, R-C networks, thermals, and indicators are shown on the ALD's. An asterisk (*) in the last position of the function line indicates a special block. Examples of component logic blocks are shown in Figure 22. See "Symbology and Definitions."

Engineering Changes

To the left of the title block, 20 engineering change levels, with dates, may be listed in two columns of 10 each. For example Figure 3 shows EC 25355C on 05-07-64.

Comments

Comments are found at the bottom left of the page. There may be up to 10 lines of comments.

•Figure 22. Component Logic Blocks

Connector Listing

Connectors (Figure 4) are listed at the bottom center of the page. There is space to list 100 connectors. The general form of a logic connector is:

01	A-	D3	B 2	D09
Frame	Gate	Board	Socket	Pin

- The basic SLT circuit is the AND-OR-Inverter (AOI).
- Circuit Speeds are: 700 ns, 30 ns, and 5-10 ns.
- Voltage levels are: 0.0v to +3, +12v.
- Logic may be diode, transistor, or a combination.
- A logic block may use different circuits for each of the three speeds.

A transistor circuit can be understood by knowing the logic relation of the inputs to the outputs, or by knowing the power dissipation of components and the relation of loading and input transition times to circuit delays.

This manual is written for those who service, rather than design, machines using SLT circuits. For this reason circuit information is restricted to:

- 1. Relation of circuit inputs to circuit outputs.
- 2. How the circuit converts input signals to output signals.
- 3. Important input and output requirements.

The manual describes only those SLT circuits that are most widely used. Less widely used circuits are described in FE manuals covering specific machines.

Circuit Speeds

Presently there are three circuit speeds, depending upon the semiconductor (diode and/or transistor) and its switching speed. Switching speeds are in the order of 10, 30, and 700 nanoseconds for each logical block.

Circuit Voltages

Approximate voltage levels for each of the three speeds of circuits are:

10 ns circuit:+0.9v, most negative; +3.0v, most positive.30 ns circuit:+0.0v, most negative; +3.0v, most positive.700 ns circuit:+0.0v, most negative; +12.0v, most positive.

Transitions

Transition (Figure 23A) is the time a transistor output takes to switch from one logic state to the other. The voltage levels at which the transitions are measured for the different families are:

TRANSITION
POINTS
+1.2v & 1.9v
+0.3v & 1.8v
+0.29 & 2.0v

•Figure 23. Transitions and Circuit Measurements

Switching times include turn-on transition, turn-off transition, turn-on delay, and turn-off delay. The different transition times are turn-on-transition, and turnoff transition. These values are basically the same for each of the circuit families. The major difference is that the transition points and voltage levels vary for each family.

Turn-on transition (Figure 23B) is the switching time from an off state to an on state. Turn-on transition is measured on the output waveform from a specified value in the nonconducting state, to a specified value in the conducting state.

Turn-off transition (Figure 23C) is the switching time from an on state to an off state. Turn-off transi-

tion is measured on the output waveform from a specified value in the conducting state to a specified value in a nonconducting state.

Turn-on delay (Figure 23D) or turn-off delay (Figure 23E) is the time the circuit takes to change its output state due to a change in the state of the input. Switching time is measured from a point where the input waveform has reached a specified value to a point where the output waveform has reached a specified value.

Basic Circuits

The basic circuit of SLT is the AOI (AND-OR-inverter) (Figures 28, 29, and 37). The AOI is comprised of an AND gate, an OR circuit, and an inverter. These three circuits comprise most of the design circuits for the computer.

The Diode AND Gate

The AND gate is a diode AND circuit (Figure 24A). An AND circuit may be considered a plus AND or a minus OR. The logical operation of these circuits requires:

+AND circuit: must have all plus inputs for a plus output. -OR circuit: has a minus output if any input is minus.

The two circuits are identical; only the logical usage is different. The +AND circuit insures that both inputs are up before the output comes up; the -OR circuit has a minus output as long as any input is down. In this simplified description, the example specifies two diodes. The same descriptions, however, applies to (n) diodes. If both inputs are minus, the polarity is correct, and both diodes will conduct (Figure 24B). The resultant current flow through R causes a voltage drop to maintain a minus voltage output. Because of the forward resistance of the diodes, the output voltage will be approximately that of the input voltage.

If input 1 change instantaneously to a positive voltage, diode 1 is cut off because the cathode is more positive than the anode (Figure 24C). Diode 2, with a minus voltage on its cathode, maintains conduction and the output voltage remains unchanged (minus).

When input 2 also changes to a positive voltage, diode 2 is cut off (Figure 24D). When the output voltage reaches +3.0v, the diodes go back into conduction. When input 1 falls to +0.0v, diode 1 conducts harder, and diode 2 is cut off (Figure 24E). The output follows the input down to +0.0v. When input 2 falls to +0.0v, diode 2 goes back into conduction to help to maintain the +0.0v output.

In summary, the output voltage of a positive AND circuit approximately equals the most negative input voltage. This statement applies regardless of the number of inputs.

•Figure 24. The AND Gate

The Diode OR Circuit

Circuit configurations (Figure 25A) for the +OR and the -AND circuits are identical. Logical operation of these two circuits requires:

+OR circuit: gives a plus output, if an input is plus.

-AND circuit: requires all minus inputs for a minus output. Therefore, the +OR circuit differs from the +AND circuit because the OR circuit needs only one input up to bring the output up.

(In this simplified description the example specifies two diodes but the description applies as well to (n) diodes.) The operation is as follows. If both inputs are at the most negative level, the polarity is correct so that both diodes will conduct (Figure 25B). The voltage drop across the load resistor (R) sets the output level.

If either input diode rises to the most positive level, that diode conducts harder (Figure 25C). The other diode then cuts off and the output follows the input rising to the most positive level of input voltage. Normally only one input to an OR circuit comes up at a time.

When the input that was up drops, the input diode is cut off (Figure 25D). The input diode conducts again when the output voltage reaches a point slightly more plus than the most negative input level.

In summary, the output voltage of a positive or circuit approximately equals the most positive input voltage.

The Inverter

In SLT circuits the transistor provides inversion. The inverter used in SLT applications is the grounded emitter transistor of the NPN (P base) type.

Figure 26. The Inverter
The voltages applied to the elements of a transistor are the basis for controlling the transistor's conduction. Figure 26A compares conduction for a transistor and a tube. Transistor conduction, as defined here, is current which flows through the collector or emitter circuit.

Bias is the term given to the control potential in both transistor and tube applications. Bias voltage is the pc voltage difference in potential between the base (grid) and the emitter (cathode). Bias voltage is the controlling factor in transistor conduction.

To determine conduction control, consider the emitter voltage held at a constant ground level; then apply the input voltage to the base (Figure 26B).

To control the conduction of the transistor, the base voltage must be capable of level either above or below the emitter voltage.

The following rules cover conduction:

1. An NPN (P base) transistor will conduct if its base is more positive than its emitter.

2. A PNP (N base) transistor will conduct if its base is more negative than its emitter.

In tube theory if the dynamic resistance between the cathode and plate is decreased by the grid voltage, current will flow in the plate circuit. This rule is also true in transistors: the bias potential decreases the dynamic resistance between the emitter and collector so that current will flow through the transistor. Otherwise, the bias potential will increase the dynamic resistance of the transistor so that little or no current will flow. This direction of bias potential is called either "forward bias," which causes conduction, or "reverse bias," which cuts off conduction.

The property of displaying a large or a small resistance is the primary consideration in analyzing basic transistor (and tube) circuits.

The following rules govern resistance:

1. A conducting (or "conditioned") transistor presents small resistance to current flow.

2. A cut-off (or "deconditioned") transistor presents a large resistance to current flow.

Even though direction of current flow through a transistor is released with the sister of the sist

1. The collector of an NPN must be returned to a more positive voltage than it emitter.

2. The collector of a PNP must be returned to a more negative voltage than its emitter.

Operating Characteristics

There is approximately a 0.6v drop across a conducting diode. A conducting diode will have +0.6v on the anode, if it has ground (0.0v) on the cathode.

A transistor with a grounded emitter will be cut off with 0.3v at the base. An input voltage above 0.3v will start a transistor into conduction. With 0.8v at the base, the transistor will be conducting at saturation.

The translate diode (Figures 28, 29, diode 5, i.e., the diode between the AND gate and the transistor acting as an OR diode) suppresses noise and provides uniform voltage at the base of the transistor. The voltages are 0.3v for cut off and 0.8v for saturation.

Circuit Descriptions

AND-OR-Inverter Circuits

The AND-OR-inverter circuit is used in many ways. The most frequent uses are described here.

Note that there are differences in the same circuit when it operates at different speeds; i.e., the AOI, medium-speed (Figure 29), and the AOI_{10} , high-speed (Figure 37).

AND Inverter (AI)

The AI (Figure 27) consists of a diode positive AND circuit followed by a saturating transistor inverter. Pins 2, 3, and 4 are the AND inputs. Pin 5 is available for extending the fan-in to the AND by connecting it to common-anode diodes from an FDD or AOX module. Pins 8 and 9 are connected on the card for most applications. However, when collectors are dotted, only one collector resistor is needed for the common collector connection. If more collector resistors are connected, the fan-out is reduced accordingly.

The output, pin 9, fans out to a maximum of five AI loads for medium-speed circuits and to a maximum of seven AI/AOI loads for slow-speed circuits.

•Figure 27. AND-Inverter, Medium-Speed (AI)

Figure 28. AND-OR-Inverter, Low-Speed (AOI)

P/N 361453

•Figure 29. AND-OR-Inverter, Medium-Speed (AOI)

AND-OR Inverter (AOI)

The AOI module (Figures 28 and 29) consist of a threeway diode positive AND function and one diode for an or function, followed by a saturating transistor inverter. Pins 2, 3, and 4 are the AND inputs. Pin 5 extends the fan-in to the AND by connecting it to the common-anode diodes of the FDD module. Pin 1 can extend the or fanin from the or diode of the AOX (or AOX_2) module. The maximum or fan-in is five.

The output pins, 8 and 9, are connected on the card for most applications. However, when collectors are dotted, only one collector resistor may be connected to retain the specified fan-out capability. The AOI can drive a maximum of five AOI circuits (medium-speed) or seven AI/AOI circuits (low-speed).

AND-OR-Extender (AOX)

The AOX module (Figures 30 thru 34) has two identical extender circuits on one substrate. The extender cir-

cuits are used with the AI, AOI, API, and ACT to increase the input capabilities of these circuits. Each extender circuit can:

Increase the AND fan-in of the AI and AOI by four.
Increase the OR fan-in of the AOI by one while

simultaneously increasing and AND fan-in by three.

3. Increase the number of AC gates on one side of one AC trigger (ACT) by three.

4. Provide one DC set input for the ACT.

5. Increase the AND fan-in of the API by four; this requires two extender circuits.

AND-Power-Inverter (API)

The API module (Figure 35) is used as a power inverter with input logic capability. It serves the same logic function as the AI module and can drive more loads than the AI. The API module consists of a three-way

Figure 30. AND-OR-Extender, Low-Speed (AOX₁)

Figure 31. AND-OR-Extender, Low-Speed (AOX₂)

Figure 32. AND-OR-Extender, Medium-Speed (AOX)

Figure 33. AND-OR-Extender, Medium-Speed (AOX_B)

Figure 34. AND-OR-Power-Extender, Low-Speed (AOPX-1)

diode positive AND circuit followed by a saturating transistor power inverter. Pins 2, 3, and 4 are the AND inputs. | (Pin 5 is not used to extend the AND circuit. Pin 1 and a special hook-up of AOX's are used.)

Pins 8 and 9 are connected on the card for most applications. However, when the collectors are dotted, only one collector resistor can be connected to retain the specified fan-out capability.

3000 5 8 4 -9 ₩ D4 3 ₽ D3 2 ю D1 D2 \square AND Ext 11 10

P/N361473

•Figure 35. AND-Power-Inverter, Medium-Speed (API)

38 3-65 SLT Component Circuits

The API can drive a maximum of 14 AI/AOI, or equivalent, loads.

AND-OR-Power-Inverter (AOPI)

The AOPI module (Figure 36) consists of a three-way positive AND function and one diode for an OR function, followed by a saturating transistor power inverter. Pins 2, 3, and 4 are the AND inputs. Pin 5 extends the AND fan-in by connection to the common-anode diodes of the FDD module. Pin 1 can extend the OR fan-in by connection to the oR diode of the AOPX₁ module. The maximum OR fan-in is five. The output pins, 8 and 9, are connected on the card for most applications. However, when collectors are dotted, only one collector resistor may be connected to retain the specified fan-out capability.

The AOPI can drive a maximum of 14 AI/AOI, or equivalent, loads.

P/N 361492

•Figure 36. AND-OR-Power-Inverter, Low-Speed (AOPI)

AND-OR-Inverter (AOI10)

The AOI_{10} is the basic circuit of a logic family consisting of the AOI_{10} , $AOI_{10}T$, and line terminator circuits. Both the AOI_{10} and $AOI_{10}T$ are logic circuits with maximum fan-in of five or inputs and five AND inputs per or input. The AOI_{10} differs from the $AOI_{10}T$ only in input and delay characteristics. The $AOI_{10}T$ has better delay characteristics, while the $AOI_{10}T$ has a greater positive goingnoise rejection level. The AOI_{10} is used when block-toblock wiring lengths do not exceed 12 inches. The $AOI_{10}T$ is used when long line lengths or certain logical situations require a greater positive-going noise rejection level.

The output characteristics of the AOI_{10} and $AOI_{10}T$ circuits are identical. Both circuits have maximum fanouts of 10 AOI_{10} and/or $AOI_{10}T$ circuits. Either circuit can drive a 93-ohm transmission line terminated by an

LTN or LSA. Outputs of both the AOI_{10} and/or $AOI_{10}T$ can be wired together to perform a negative or function.

The AOI_{10} circuit uses the 12-pin AOI_{10} module (Figure 37) or the 16-pin $AOI_{10}B$ module (Figure 38). The 12-pin AOI_{10} module has one or gate containing three positive AND diode inputs. The 16-pin $AOI_{10}B$ module contains a two-way or gate with each or gate having three positive AND diode inputs. Each module has an or-extender pin and an AND-extender pin.

The AOx_{10} module (Figure 39) is used to extend the OR function of the AOI_{10} circuit. The FDD₁₀ module (Figure 41) is used to extend the AND function of the AOI_{10} circuit. In addition, the diodes on the AOx_{10} (Figure 39) and $AOx_{10}T$ (Figure 40) modules may be used to extend the AND function.

Figure 37. AND-OR-Inverter, High-Speed (AOI10)

•Figure 38. AND-OR-Inverter, High-Speed (AOI₁₀B)

Figure 39. AND-OR-Extender, High-Speed (AOX10)

Figure 40. AND-OR-Extender, High-Speed (AOX₁₀T)

Figure 41. Four Double Diodes, High-Speed (FDD)

AND-OR-Inverter (AOI10T)

The $AOI_{10}T$ circuit provides the same system function as the AOI_{10} circuit, except that an additional diode level shift is incorporated to give the circuit additional immunity to positive noise pulses. It may be used in line terminator applications and other system locations requiring greater immunity to positive noise than the AOI_{10} circuits provides.

The $AOI_{10}T$ circuit uses either the 12-pin $AOI_{10}T$ (Figure 42) module or the 16-pin $AOI_{10}BT$ module (Figure 43) plus an external resistor package containing the collector resistors R5 and R6.

The $AOI_{10}T$ module consists of a three-input positive AND diode gate, followed by a single or diode, a level shifting diode pair, and a non-saturating inverter amplifier. The basic three-way AND function can be extended by connecting the diodes of the FDD₁₀ module to the AND extend input (pin 5) of the $AOI_{10}T$ module. The AOX_{10} (Figure 39) or $AOX_{10}T$ (Figure 40) modules may be used for the same purpose if pins 5 and 6 are not connected to +6v. The trivial one-way or function of the $AOI_{10}T$ module may be extended by connecting the $AOI_{10}T$ module to pin 1 of the $AOI_{10}T$ module. The OR function can also be extended by connecting an AOx_{10} module to pin 10. However, in this case the level shift diode pair is by-passed. Therefore, the input legs so involved do not have the extra noise immunity.

The $AOI_{10}BT$ module is identical to the $AOI_{10}T$ except that an extra AND/OR leg is provided to make it a twoway OR as compared to a trivial one-way OR for the $AOI_{10}T$. Also the AND gate on this extra leg is only twoway, compared with three-way for the other leg as on the $AOI_{10}T$. The basic AND/OR capability may be extended in the same manner as the $AOI_{10}T$.

The fan-in for the AND and OR functions is limited to five each. Fan-out is limited to 10. Circuit outputs may be wired together.

AND-OR-Inverter (AOI11)

The AOI₁₁ circuits are similar to the AOI₁₀ circuits. They differ in speed and in some component values. The circuits that make up the AOI₁₁ circuits are: FDD_{11} (Figure 44), AOI₁₁ (Figure 45), AOI₁₁B (Figure 46), AOI₁₁T (Figure 47), AOI₁₁BT (Figure 48), and AOX₁₁ (Figure 49).

P/N 361414

•Figure 44. Four Double Diodes (FDD₁₁)

Figure 45. AND-OR-Inverter, High-Speed (AOI₁₁)

•Figure 46. AND-OR-Inverter (Two-Way OR), High-Speed $(AOI_{11}B)$

Figure 47. AND-OR-Inverter-Terminate, High-Speed (AOI₁₁T)

Exclusive OR Circuits

Exclusive OR (XOR)

This circuit (Figure 50) performs the exclusive or of the signals applied to pins 6 and 3 when pins 6 and 1 are tied together. When the inputs are both up or both down, the output is at a potential of less than 0.30v. When the inputs are not identical (i.e., one up and one down), the output is between 2.0v and 3.0v, depending on the loads.

Figure 48. AND-OR-Inverter, High-Speed (AOI₁₁BT)

Figure 49. AND-OR-Extender, High-Speed (AOX₁₁)

•Figure 50. Exclusive OR, Medium-Speed (XOR)

The xor module will not perform the exclusive or latch function. The xor-L module is the exclusive or latch.

Exclusive OR Latch (XOR-Latch)

The xor latch (Figure 51) has a single bi-stable output that can be changed by proper sequencing of the control and data inputs. The inputs can be used in either sequence 1 or sequence 2.

P/N 361486

Figure 51. Exclusive OR Latch, Medium-Speed (XORL)

Sequence 1:

a. Data Line Up — With the rise of the clock pulse the output is set to the 0 state. All further changes in the control line will not affect the state of the latch.

b. Data Line Down — With the rise of the clock pulse the output is set to the 1 state. All further changes in the control line will not affect the latch state.

Sequence 2:

a. Data Line Up — With the fall of the clock pulse the output is held in the 0 state.

b. Data Line Down - With the fall of the clock pulse the output is held in the 1 state. In either sequence 1 or 2, the control is normally down.

After the fall of the control line, changes in the data line will not affect the latch state.

Bi-Stable Circuits

Flip Flop (FFL)

The FFL (Figure 52) consists of two cross-coupled AI modules, an R-c pack, and an R-pack. The AI's are fed at the cathode of D6 through a 175 pf capacitor from the negative going transition of an AC set pulse at the AC input. During the negative transition, currents from the AND resistor of the ON transistor and 30K bias resistor are directed into the collector of the AC set driver. This forces the ON transistor off. As a result the other transistor will turn on.

Each side of FFL has two DC set/reset inputs available, which can be driven from any low-speed logic block.

Collector resistors of AI's must not be programmed. Two AI's, an R-c pack, and an R-pack all must be mounted on the same card.

AC Trigger (ACT)

The AC trigger (ACT) (Figure 53) consists of two AI modules, one AOX module, and a four-capacitor C-pack. Additional components may be added to increase flexibility.

The cross-coupled inverters are fed at their respective bases either from the up level of a DC set

Figure 53. AC Trigger (ACT)

pulse (at a DC set or DC reset input), or from the positive-going edge of an AC set pulse (at the AC inputs).

The current from an AC set pulse is directed either into the base of a transistor in the cross-coupled latch or is by-passed through a gate diode determined by the voltage at the cathode of this diode. If the cathodes of the three gate diodes associated with a common AC input are at an "up level" (+3 volts), current from the AC input starts trigger switching by turning the transistor, connected to this gate network, from off to on. If the cathode of any gate diode is tied to a saturated collector (0.3v), the AC input current for the gate is sent to the gate diode through the saturated collector to ground, preventing trigger switching.

The pc set inputs (11) and (12) can be driven from any 30 ns logic block. It is impossible to program collector resistors as in other 30 ns circuits. Maximum fan-in on each side of the trigger is:

AC inputs	2
Input Gates available for use	
with each AC input	3
DC input	1

Singleshot and Oscillator Circuits

Singleshot (SSA)

The ssA (Figure 54) uses one half of a II module, one half of a DCI module, one half of an FDD module, a trim pot, and a timing capacitor. The II module provides a transistor and two resistors; the DCI module gives powering at the output of the singleshot. The output pulse is controlled by the 10K trim pot and the timing capacitor. For a given timing capacitor, the range of the output pulse width is fixed. A continuous variation is obtained by the trim pot.

The ssa serves the same function as a delay-line singleshot, but in addition, it gives longer and con-

tinuously variable pulse widths. The input to the ssa must be a down-going pulse of width 30 ns or larger. On triggering, the output level drops from +3v to about +0.3v and stays at this level for the preset duration before returning to the +3v level again. Before the next trigger pulse is received a minimum time must be allowed for the timing capcitor to charge through R1, or a trigger pulse received during the recharging period of the capacitor will result in an output pulse of incorrect width. The collector of T1 may be inhibited with the collector of another logic block in the pot OR configuration.

Singleshot (SSL)

Variable Singleshot: The singleshot (Figure 55) consists of one AOX_1 module, one II module, one trim pot and one capacitor. D2, D3, D4 are AND fan-in's. The fan-in can be extended by using FDD or AOX modules.

An up-going pulse triggers the singleshot. It has two complementary outputs with output 2 in phase with the input. The output pulse width is controlled by the

Figure 55. Singleshot, Low-Speed (SSL)

2K trim pot and the timing capacitor. For a given timing capacitor the range of the output pulse width is fixed (Figure 68). A continuous variation can be obtained by adjusting the trim pot.

cupacitor		Colboi		nac mun	
0.00068	υf	0.99	-	5.1	US
0.0018	υf	3.4	-	13.5	US
0.0047	υf	9	-	35	US
0.012	υf	23	-	90	US
0.033	uf	62	-	248	US
0.082	uf	153	-	615	US
0.22	υf	410	-	1,650	US
0.56	υf	1.1	-	4.2	ms
1.5	υf	2.8	-	11	ms
3.9	υf	7.3	-	29	ms
10	υf	19	-	75	ms
27	υf	50	-	200	ms

Figure 56. SSL Timing Capacitors

Between the end of the output pulse and the start of next trigger, a minimum time (recovery time is equal to or greater than the desired output pulse width) must be allowed for the timing capacitor to be fully charged, or a "premature" triggering will result in an incorrect output pulse width.

Note: Output 1 is a negative-going pulse and output 2 is a positive-going pulse. The singleshot cannot drive a DCI of II. Output 1 cannot be used if the input pulse width is longer than the desired output pulse width.

Fixed Singleshot: An R-C module combines with one Aox_1 module and one II module to form a singleshot with fixed pulse width of 2.8 μ s or 5.6 μ s ± 30 percent. The module contains two resistors and one capacitor. The interconnections between modules remain as in the preceding description except that an R-C module replaces the 2K trim pot and the timing capacitor.

Oscillator

The free-running crystal oscillator (Figure 57) serves as a pulse generator. The oscillator produces pulses or voltage variations of a definite frequency, e.g., 4.0 mc. The circuit consists of a basic switching circuit whose output is determined by the quartz crystal. The crystal vibrates at 4.0 mc and develops a sinusoidal voltage that is amplified and clipped to produce the square wave output of the oscillator. The inductively tuned tank circuit provides regenerative feedback to sustain the crystal oscillations.

Inverter Circuits

Isolating Inverter

The II module (Figure 58) consists of two isolating inverters. This is one way of connecting direct coupled inverters with the advantage of allowing the driver to have full fan-out like the II. However, because of the current-limiting resistor in the base, the II fan-out capability is only seven AI/AOI, or equivalent, loads.

•Figure 57. Crystal Oscillator

P/N 361479

Figure 58. Isolating Inverter, Medium-Speed (II)

Pins 1 and 6 are the input, and 2, 3, and 8, 9 the output pins. Pins 2, 3 and 8, 9 are connected on the card for most applications. When the collectors are dotted, only one collector load register is connected to retain the specified fan-out capability.

Direct Coupled Inverter (DCI)

The DCI module (Figure 59) contains two separate direct coupled inverters. These inverters are designed to provide a fast, economical way of extending the

P/N 361454

Figure 59. Direct Coupled Inverter, Medium-Speed (DCI)

fan-out of an AI or AOI module approximately three times. The lead between the AI or AOI output pin 9 and the DCI input pin 5 or 12 must be kept as short as possible to realize the speed capability of this circuit.

The collector resistor must be connected on the driving AI or AOI to provide the necessary base current drive to the DCI. The DCI collector resistor has been left programmable but must be connected on the card for the intended use of this module. Connect pin 2 to 3 and 8 to 9.

The circuit will not drive long transmission lines because of fast output transitions, unless the lines are terminated.

Transmission Line Circuits

Line Terminator Circuits (AOI10 Circuit Family)

The line terminating network (LTN) circuit (Figure 60) consists of a single terminating resistor (four different values: 125, 165, 230, or 420 ohms, depending upon the load) connected at the end of the line and returned to +3 volts. The resistors are discrete components placed immediately at the end of the line with one to four AOI₁₀ circuits. Essentially, the LTN allows the line to be terminated in a logic block without the insertion of an active buffering circuit.

R1, R2, R3, R4 are on RC Modules

•Figure 60. Line Terminating Network (LTN)

The line sensing amplifier (LSA) line termination consists of a resistor network at the end of the line and one to ten LSA circuits placed at the end of the line or distributed along the line. Each LSA may drive only one AOI_{10} circuit.

The transmission lines are slt printed wire, slt flat cable, or commercial coax. All have approximately a 93-ohm characteristic impedance.

Delay Circuit (DLY)

Variable Delay Circuit: The delay circuit (Figure 61) consists of one AOX₁ module, one II module, one potentiometer, and one capacitor. It has a fan-in of one and fan-out of five AI's. The circuit functions as an inverter with worst case turn-off delay of 520 ns and variable turn-on delay, ranging from 1.9 μ s to 220 ms, controlled by the 2K potentiometer and the timing capacitor. For a given timing capacitor, the range of the turn-on delay is fixed (Figure 62). A continuous variation can be obtained by adjusting the potentiometer. After the circuit is turned off, a minimum time must be allowed for the timing capacitor to charge up fully before it can be turned on. Otherwise, incorrect turn-on delay will result.

Fixed Delay Circuit: An R-C module combines with one AOX₁ module and one II module to form a delay circuit with a fixed turn-on delay of 2.8 μ s or 5.6 μ s \pm 30 percent.

Figure 61. Delay Circuit (DLY)

Capacito	or	Turn	-Or	Delay	
0.00068	uf	1.4	-	5.5	usec
0.0018	υf	4.5	-	14.6	usec
0.0047	υf	12	-	38	usec
0.012	υf	30	-	97	usec
0.033	υf	83	-	260	usec
0.082	υf	205	-	660	usec
0.22	υf	550	-	1,780	usec
0.56	υf	1.4	-	4.5	ms
1.5	uf	3.7	-	12	ms
3.9	υf	9.7	-	31	ms
10	υf	25	-	81	ms
27	uf	67	-	220	ms

•Figure 62. Timing Capacitors (DLY)

The module contains two resistors and one capacitor. The interconnections between modules remain as shown except that an R-c module replaces the 2K trim pot and the timing capacitor.

Line Sensing Amplifier (LSA)

When it is necessary to tap a transmission line at two or more locations, the tapped connections must present a high impedance to the transmission line to prevent reflections. The LSA (Figure 63) is the medium and high-speed circuit used for this purpose.

The terminating resistor (RT) is external to the module. (RT) is connected only on the LSA at the receiving end of the transmission line. There can be only one RT connection per transmission line. It is always located at the receiving end of the transmission line.)

In Figure 63 resistor R4 is used to obtain emitter follower stability. Transistor T2 does not saturate. Therefore, the LSA presents an impedance of approximately h_{FE} (static forward current transfer ratio) times R4 to the transmission line. In the selection of R4, the following must be considered:

1. $h_{FE}R4$ must be >> the characteristic impedance of the line.

2. The voltage drop across R4 (when the input to the LSA is down), because of the worst case off diode current from the connecting AI logic block, cannot exceed 0.495v for an AI and 1.01v for an AOI.

When the input signal of the LSA is up, T2 conducts with an emitter-base voltage drop of approximately 0.6 to 0.7v. At this time, the input diode of the connecting logic block is back biased so that the LSA presents a minimum impedance of 6000 ohms to the transmission line. When the input to the LSA is down, T2 is turned off. Thus, the LSA presents an infinite impedance to the transmission line.

With T2 off, the diode current from the driven logic block flows into R4. The voltage level, developed by this diode's current into R4, cannot exceed 0.495v for an AI and 1.01v for an AOI. As the LSA's input begins to rise, the voltage level at the emitter of the LSA does not change until the base of the LSA becomes 0.6 to 0.7v, more positive than the emitter. This V_{eb} drop is maintained as the base's input voltage continues to rise. The driven block does not turn on until the emitter of the LSA has passed the 0.7v level. When the LSA's input is up and begins to fall, the driven block does not turn off until the emitter of the LSA is at the level of 0.912 volts for the AI and 1.652 volts for the AOI. The pulse widths at the emitter of the LSA must be at least 40 ns in order to obtain unity gain. All other diode inputs of the driven block may be used in their normal manner.

Transmission Line Receiver (TLR)

The transmission line receiver (TLR) (Figure 64) is used with the interface driver. Up to eight receivers and eight drivers may be placed on any one transmission line.

The circuit operates as follows: the input transistor (isolating transistor), T1, is heavily saturated. T2, a current amplifying transistor, is on regardless of the input line level. When the input is up, T3, another current amplifying transistor, is on, and the output from T3 is down. When the input is down, T3 is cut off, and the output from the TLR is up. When the power is turned off on the TLR, it presents a high input im-

6 +3、 ľ R2 R2 1500 150 Ω 5 2 8 []--① 7 - 9 12 200 0 200 Ω 向 上

P/N 361476

•Figure 63. Line Sensing Amplifier (LSA)

46 3-65 SLT Component Circuits

•Figure 64. Transmission Line Receiver (TLR)

pedance which will not load down the driver; the other drivers and TLR's on the transmission line operate normally.

Delay Line, Driver and Terminator (DLD)

The DLD (Figure 65) consists of an API driver, a programmable delay line, a line terminating network (LTN), and an AOI output stage. It yields an output transition pulse which is the same as the input transition pulse delayed in time.

The API line driver accepts the LTN current plus the AOI drive current, a total of 29 ma. The API collector resistor is not used.

The programmable delay lines offer delays of 5-500 ns maximum in 5 ns increments, or four separate 5-125 ns maximum delay lines used individually. The LTN with the ON input impedance of the AOI matches the characteristic impedance of the delay line (93 ohms). The AOI with the LTN acts as a terminator and as an output stage.

Figure 65. Delay Line Driver and Terminator (DLD)

Direct Coupled Inverter (DCI) and Transmission Line Driver (TLD)

The DCI module (Figure 66) contains two separate direct coupled inverters. The inverters are designed to

P/N 361494

Figure 66. Direct Coupled Inverter, Low-Speed (DCI)

provide a fast, economical way of extending the fanout of an AI or AOI module approximately four times.

A DCI stage, when driven by API/AOPI, serves as a 56 ma transmission line driver (TLD).

The collector resistor must be connected on the driver to provide the necessary DCI or TLD base current.

The collector load resistor of the DCI/TLD is programmable. For most applications module pins 2 and 3 or 8 and 9 are connected on the card.

Note: Except for external connectives, this module is identical to π (isolating inverter).

Indicator Driver Circuits

Indicator Driver (ID)

The indicator shows evidence of the output state of the driving circuit. For the up-level indicator, lamp L1 is on only when the driving circuit is at an up level. For the down-level indicator, lamp L2 is on only when the driving circuit is at a down level.

Because of the high (2K) input impedance, neither circuit loads down the driver (Figure 67) when it is used singularly. As a general rule, no two indicators will be driven from the same driver. However, the driver may drive the regular AND logic blocks plus an ID.

P/N 361480

•Figure 67. Indicator Driver, High-Speed (ID)

40 ma Switch (Indicator Driver) (ID₂)

The 40-ma switch (Figure 68) is a driver capable of accepting 40 ma at its output. It is used in slow-speed applications such as an indicator driver.

The m_2 may be driven by high-, medium-, or lowspeed circuits. Its driver may drive the regular AND blocks and the m_2 block. It can not be driven from an LSA.

Indicator Driver (IDL)

An II stage (a saturating transistor) (Figure 69) serves as a driver for both the up- and down-level indicators (bulbs).

P/N 361426

Figure 68. Indicator Driver, 40 ma (ID)

Figure 69. Indicator Driver (IDL)

The bulb, when lit, indicates the state of the input level. The up-level indicator requires a 1, and the down-level indicator a 0 at the input to turn the light on.

Because of the high input impedance of the Π , the driver can drive its full load plus the indicator driver (Π).

The indicator driver, besides driving either of the indicators, can drive also an API/AOPI load for latch-back (transient noise indication).

Using one II/DCI module, two R-packs, and two bulbs, these combinations are possible:

1. Two up-level indicators

2. Two down-level indicators

3. One up- and one down-level indicator.

Special Conditions

1. The indicator driver(s) must not be used as a link in a logic chain.

2. The indicator driver(s) cannot drive an 11 or DCI.

3. The indicator driver(s) can drive, besides the bulb and its network, an additional AI/AOI or API/AOPI load only for latch-back purposes.

Driver Circuits

Sample Pulse Driver (SPD)

The spd (Figure 70) consists of one half of a DCI, one half of an FDD, one quarter of an FTX, and a pulse transformer. The input to the sPD can be an AI, AOI, or API minus the collector resistor. When the input is at the up level, T1 is turned on and current is built up in the primary inductance L1 with a time constant of L1/R1. During the time that T1 is on, T2 remains off. When the input is at the down-level, T1 switches off. The current in the primary inductance falls at a rate of di₁/dt, which turns on T2 by the mutual coupling in the transformer. When T2 is turned on, a large current is delivered to the load.

The diodes at the collector of T2 limit the voltage swing, while the diodes between the collector of T1 and the emitter of T2 are used for the off current from the AC inputs. The SPD must drive at least 16 AC inputs on two separate lines of no more than 10 inches each when the output of the SPD has no load resistor. When only two AC inputs are used, the output of the SPD must be terminated with a 50-ohm resistor. The SPD can drive 20 AC inputs when the output is not terminated. The output of the SPD is an emitter follower, and the impedance reflected back to the emitter decreases

•Figure 70. Sample Pulse Driver, Medium-Speed (SPD)

as the number of AC inputs increases. The current available to the load increases when the emitter follower recognizes the low impedance load. Therefore, the output of the SPD can be readily loaded by a 100-ohm or 50-ohm resistor depending on the fan-out.

High Power Driver (HPD)

The HPD (Figure 71) is a high current driver made by connecting the two inverters in parallel on a specially selected DCI module. The HPD can be driven by an AI or an AOI if the collector resistor on the driving block is returned to +6v. The HPD will be mounted in the adjacent module position.

Figure 71. High Power Driver (HPD)

The API-3v will also drive the HPD with normal power supplies.

The HPD may be used to drive a large number of loads (36 AI or 28 AOI), or it may drive long transmission lines. The HPD may not be used to drive both LSA's and regular loads simultaneously. It cannot drive long lines when it is driving a high fan-out of AI, etc., because of the reflections on the unterminated transmission lines.

NOTES: 1. This is not a standard application of the DCI module. The HPD is a selected DCI that has closely matched transistors to allow paralled operation of the two inverters.

2. The collector current can become 80 ma for the most unbalanced transistor pair.

3. The HPD module may not be used as a DCI.

Extender and DOT Functions

AND circuits and or circuits may be connected together to produce a single output.

When the circuit of the AND OF OR block is diode logic, one logic block is connected to the other by an extender (E). The extender is in effect a method of adding diodes to the input of a circuit. The symbol E is only used on the ALD's when the connection is made between two cards.

When the output of the AND or OR block comes from a transistor (vs. a diode), the logic blocks are connected with the DOT block (Figures 72 and 73). The DOT block is simply wiring connecting the outputs of two or more transistors.

The function of the DOT block depends upon the desired logical use of the shared transistors. Generally, the AND DOT is a +A; the OR DOT is a -OR.

T03AB

Figure 73. The AND DOT Block

Figure 72. The OR DOT Block

- Card ALD sheet shows ALD logic blocks.
- Assembly drawing sheet shows physical placement of components on card.
- Schematic sheet shows circuit diagram of electronic components.

The card layout is defined as the card ALD sheet, the assembly drawing sheet, and the schematic sheet. These sheets (Figure 74) are a three-way representation of the actual SLT card.

There is at least one page for each type of sheet but one page only for the assembly drawing. The circuit complexity, the circuit speeds, functional versus logical card packaging, and the size of the card are some of the factors determining whether a card will have more than one page of card ALD sheets and/or schematic sheets.

Card ALD Sheet

The card ALD sheet (Figure 74, sheet 1) is similar to a regular ALD logic sheet. The part number (P/N) appears at three corners of the sheet. The part number consists of four digits and a suffix. A 580 always is understood to precede the four digits, as it is in the ALD logic block. The suffix consists of the number of the card ALD sheet. The engineering change level (EC) appears to the left of the title block.

Logic Block

The logic block is similar to the ALD logic block, except that specific machine information is left out. Line 1 gives the function of the block; an asterisk (*) is placed before the function name if the input line position is significant. Line 3 designates the circuit number. Line 4 describes the portion and subportion of the block. Line 6 indicates the block position and the serial number of the block of the card ALD. In some cases the engineering specification of the circuit is placed above the block; for example, the on block at location 2B of Figure 74, sheet 1, is labeled 890972. The pin numbers of the card, if they exist for the block, are placed on the input and output lines of the logic block.

As in regular ALD logic blocks, wedges (Δ) denote the line levels to satisfy the function of the block.

Card Characterization

The lower left-hand corner contains information concerning the card size, the voltage pins, and the card characterization code. Five card sizes are in general use: 1-6, 1-12, 2-6, 2-24, and 2-36, where the first digit (1 or 2) designates the number of the socket the card fits into, and the next digit or digits (6, 12, 24, or 36) designate the number of standard module positions on the card.

The voltage pin information indicates where and what actual voltages are present on the card.

The card characterization code tells the general voltage and the logical use of the card. The code has a voltage code (T, V, U, S, L, or O) and a use code, which consists of the number portion of the circuit number. See Figure 8 for the use code interpretation. The voltage codes are:

- T requires a +3, -3v, or +6v power supply or any combination.
- V requires only a +12v power supply.
- U requires a +3, -3v, or +6v power supply or any combination and specifically associated with the 5 ns family.
- S requires either a combination of the voltages listed for U or may be used in category.
- L are the SMS circuits associated with the SMALL family.
- O are the nondigital circuits associated with analog families.

For example, T03 (Figure 74, sheet 1) means the card uses a combination of +3v, -3v, or +6v (T) and has logic circuits (03).

Input Lines

Input lines are identified in two ways: (1) by the pin number of the card, and (2) by a net number. An example of a pin number of a card is D05.

The net number may be a number assigned by design automation, such as 001 or 002. On the other hand, it may be a net number of the type used when there are multiple card ALD sheets; the number 41681AB4, for example, means the line originates from the block located on part number 5804168, page 1, with serial number AB, fourth line.

Output Lines

Output lines are identified by the source block and line origin and by a net number. The source block and line origin (example: AA5) is the same as that shown on the ALD page.

The net number is either the card pin number or a combination of the card pin number and the page number to which the line goes. An example of the card pin number is J10. If the line goes to page 41682, the combination is 41682J10.

Assembly Drawing

The assembly drawing sheet (Figure 74, sheet 2) contains two parts: (1) on the left portion of the page, a graphic representation of the components on the card and (2) on the right side of the page, a chart listing the part numbers.

This sheet has the part number in the upper right and lower left corners, a title block in the lower right corner, the EC record in the upper right portion of the sheet, and a chart of the voltages and their respective pins near the part number chart.

The part number chart (Figure 74, sheet 2) consists of a listing of the component parts used on the card. Each different component is listed with part number, description or value, quantity used on the card, and a code that is used on the schematic sheet and the assembly drawing sheet. The module code is A for an RC module and Z for an SLT module.

The graphic representation numbers each component, modular and discrete, from top to bottom and from right to left.

Schematic Sheet

The schematic sheet (Figure 74, sheet 3) has the schematic of the circuits, along with the card part number, a regular title block, and an EC block. The schematic has the actual components (such as resistors, transistors, diodes, and capacitors) of the ALD logic block (by circuit numbers). The components are keyed to the assembly drawing by a location code.

Each ALD logic block in the ALD's reference an SLT card by part number. Each particular ALD logic block has card pin numbers and a circuit number. The same ALD block is found on the card ALD sheet of the card layout and also on the schematic sheet with the same card pin numbers and circuit number.

The circuit number on the schematic sheet identifies its components. The identification of each component is its physical location on the card as shown on the assembly drawing sheet, Figure 74, sheet 2.

The complexity of the card may require more than one sheet of schematics. Sometimes each sheet (Figure 74) is complete as far as the individual circuits are concerned, that is, there are no electrical connections between circuits on the card. However, if the circuits are electrically connected, the schematic is interconnected on more than one sheet.

A Particular Example

Let us examine a particular logic line by using Figure 74. The logic line labeled D11 is the top line of sheet 1. This line has a net number, assigned by design automation, of 017. This line enters the card on card pin D11. This line in its more positive condition will condition one leg of the AND circuit T03AC. Sheet 3 shows that the logic line entering the card at D11 is connected to pin 3 of a module. Numbers with squares around them (\square) refer to pins of a module. Pin 3 of the module is connected to the cathode of the diode labeled 5Z1. The diode 5Z1 is one of two legs of the circuit T03AC. Circuits are usually labeled with their circuits numbers on the schematic sheet.

The part number chart on sheet 2 shows that the Z1 is part number 361453. The complete schematic of this module may be found in the last section of this manual. The 5 of the 5Z1 designation of the diode locates the module as the fifth component on the card when counting top to bottom and right to left. Looking at the chart, we find module 5Z1 located in the upper left part of the card.

4-21NPUT-2MAY AND DR INVERT DATE 02-24-64 RACH, ASSENBLY LDG 0451 FRAME P.N. 5800006 0 IBM COMP. ED BLK, AN	00061
	21NPUT-2007 AND DR INVERT DATE 0224-64 PACH. ASSERBLY LDG 0451 PRAFE P.N. 5800006 IBR CORP. ED BLK. AN

× . # .

÷.,

•Figure 74. Regular Card Layout (Sheet 1 of 3)

ŧ

Card Layout 3-65 53

Figure 74. Regular Card Layout (Sheet 2 of 3)

Circuit Numbers

Circuit numbers are the common denominator between ALD's and the card layout. The understanding of circuit numbers is one step in the understanding of a particular system or unit.

All circuit numbers used in systems or units are listed in the "Appendix." Figure 75 is a sample of the list. The first column of the listing is the circuit number; the second column is a word description of that particular circuit number. In the item "T03AJ AND-PWR IN-VERT 300 OHM LOAD" for example:

T means the circuit speed is in the 30 ns range; 03 means that it is a logical circuit; AJ is the unique circuit;

AND-PWR INVERT 300 OHM LOAD means the circuit is an API with the 300 ohm load resistor connected.

Figures 76 to 114 are representative examples of circuit numbers as actually used on the card layout. The ALD block is also shown. Note that module pin numbers and connections within the card are shown in a square with the number within. Card pin numbers are shown as a circle with the card pin number adjacent.

X DEFINED

- S SRETL GENERAL T - 30 NS U - 5-10 NS
- V 700 NS
- 0 ANALOG

YY DEFINED

3 - LOGIC BLOCKS 5 - VOLTAGE TRANSLATE CIRCUITS 6 - TRANSMISSION LINE DRIVERS AND RECEIVERS 7 - SENSE AMPLIFIERS 10 - INVERTING DRIVERS LESS THAN 50 MA 11 - NON-INVERT DRIVER LESS THAN 50 MA 15 - POWER DRIVER MORE THAN 50 MA 16 - MAGNETIC HEAD AND CORE DRIVER 20 - TRIGGERS 21 - SINGLESHOTS 22 - OSCILLATORS 25 - REGULATORS, CLAMPS, CLIPPERS, AND LIMITERS 32 - GATES 40 - SPECIALS 45 - DELAY CIRCUITS 55 - INDICATOR CIRCUITS 60 - INTEGRATORS AND FILTERS 61 - COMPONENTS 63 - REED RELAYS 65 - FUNCTIONAL CARD 66 - FIELD REPLACEMENT CARD

ZZ DEFINED - THE UNIQUE CIRCUIT

CIRCUIT NUMBER	TITLE	CIRCUIT NUMBER	TITLE
TO3AJ	AND-PWR INVERT 300 OHM LOAD	TOSAL Tosam	TRANSLATE BLOCK
TUDAK	EACLUSIVE OR LAICH	TUDAM	WRITE DRIVER CHECK
TOJAL	B WAY EXCLUSIVE UR	105A0	45 MA IRANSMISSION LINE DRIVER
TOJAM	4 WAY EXCLUSIVE OR	TO5AP	INTERLOCK CIRCUIT TERMINATOR
TOJAN	7 WAY API-NO LOAD	TOSAQ	INVERTER

•Figure 75. An Example of the Circuit Number Listing

Basic Module may be P/N 361453, 361455, 361456, 361459

Figure 76. T03AC, AND

Basic Module - P/N 361477

Figure 78. T03AI, Exclusive OR

busic Module = F/14301400

Figure 80. T03AK, Exclusive OR Latch 58 3-65 SLT Component Circuits

T03AE

+3\ 9

Bosic Module P/N 361453

Figure 77. T03AE, OR-Inverter Loaded

Basic Module - P/N361473

Figure 79. T03AJ, AND-Power-Inverter Loaded

Figure 81. U03AF, AND-Inverter with Load

4

Basic Module - P/N 361468

•Figure 82. U03AG, Four-Way Exclusive OR (ODD)

Basic Module - P/N361408

03AM

в

•Figure 84. U03AM, AND-Inverter with Load

Basic Module - P/N361412

•Figure 83. U03AI, AND U03AL, OR-Inverter with Load

G

k

Basic Module - P/N 361404

•Figure 86. U03AR, AND-Inverter-Terminate with Load

Basic Module - P/N361407

N

CIDIUOJAY LOID

•Figure 88. U03AY, AND-Inverter-Terminate with Load

Basic Module - P/N361413

•Figure 87. U03AU, AND-Terminate U03AW, OR-Terminate Inverter with Load U61AC, 125 Ohm to +3v

•Figure 89. V03AN, OR-Inverter for Low-Speed Flip Flop

OR

•Figure 90. V03AG, OR-Power-Inverter 2.9K Load

•Figure 91. S05AH, Isolating Inverter

T06AA

T05 AB

Basic Module P/N 361454

Figure 93. T05AB, Inverter Direct Coupled -350 Ohm load

S06AN

Basic Module P/N 361427

•Figure 95. S06AN, Transmission Line Receiver with Load

64 3-65 **SLT** Component Circuits

Figure 96. V06EF, NPL Line Receiver - 5K Load

Figure 98. T10BB, Sense Amplifier

T15AQ

Figure 101. T15AQ, XY Gate OR Inhibit Driver

66 3-65 SLT Component Circuits

S165B

Figure 102. S16SA, XY Gate S16SB, XY Driver

Figure 103. T20AD, AC Trigger Number 2

-B02

DOS

0

-3 v

121 CI T21CF Ð 2 ø -GT \$0121 \$7500 ₹ 05Z2 350Ω 123 [2] -7 05Z2 550Ω 9 8 9 P 17 -0 D09 01Z1 3,6K 06C ₫ 11-07C2 3 *||-08C3 047U 0.012 2 ļ 09C4 0 012 10C5 .15UF O B13 Basic Module P/N 361455, 361451, 361454

•Figure 104. T21CF, Variable Singleshot

Figure 105. S22CH, 4.0 mc Crystal Oscillator

Basic Module P/N 361497

B03

is

=

Figure 106. S25AA, Z Clamp

O D04

T27BB

Basic Module P/N 361457

•Figure 109. T40AA, NPL Final Amplifier Rectifier and Channel Separator

Basic Module P/N 361457

•Figure 108. T32BD, Threshold Gate

U55AD

•Figure 110. U55AD, 15 ma Switch ID - 1K Load

•Figure 112. S61TS, Resistor – 1 Ohm

Basic Module P/N 361426

Modules

Several types and speeds of modules are used in SLT circuits. Figures 116 through 157 show the circuit configuration with pin numbers of the modules used. For

ease in cross-referencing, we have listed the modules in Figure 115 by part number and by name.

Ĝ

1

3

MODULES BY PART	NUMBER AND	TYPE	MODULES BY NAM	E	
361404	AOIIOT	HS	241451	A T	
361405	A0X101	HS	501451	AI	MS
361406	AOIIOB	HS	361453	AOI	MS
361407	AOIIOBT	HS	361493	AUI	LS
361408	A0I11	HS	361468	AOTIO	HS
			201400	AOLIOB	HS
361409	AOX11	HS	261407	AOTIOPT	цс
361410	AOIIIT	HS	261407	AOIIOBI	
361412	AOIIIB	HS	361404	ACTIL	
361413	AOIIIBI	HS	361412	A0111 A01110	но ыс
361414	FDD11	HS	361413	AOTIIB	HS
241415	TID	ıc	502115	AUTIE,	115
261425		LJ	361410	AOIIIT	HS
261420			361492	AOPI	1.5
261629		MC	361496	AOPX-1	LS
261429		C M	361455	AOX	MS
301430			361495	AOX 1	1.5
361423	FTY				
36,451		MS	361469	AOX10	нs
361453	A01	MS	361405	AOX10T	HS
361454		MS	361409	AOX11	HS
361455	AOX	MS	361456	AOXB	MS
561455	AUA	MO	361489	AOX2	1.5
361456	AOXB	MS			
361457	FTX	MS	361473	API	MS
361459	FDD	MS	361454	DCI	MS
361468	A0110	HS	361494	DCI	LS
361469	AOX10	HS	361459	FDD	MS
			361482	FDD	НŚ
361473	API	MS			
361475	HPD	MS	361483	FDD	MS
361476	LSA		361499	FDD	LS
361477	XOR	MS	361414	FDD11	НS
361479	11	MS	361429	FTX	MS
			361430	FTX	
361480	ID		261622	CTV.	
361482	FDD	HS	201422		
361483	FDD	MS	261407		MS
361486	XORL	MS	261471		LS
361489	AOX2	LS	361473		MS
	+		J01420	10	
361492	ΑΟΡΙ	LS	361480	ID	
361493	IOA	LS	361479	II	MS
361494	DCI	LS	361476	LSA	
361495	AOX1	LS	361415	TLR	15
361496	AOPX-1	LS	361427	TLR	
				*	
361497	FIX	LS	361477	XOR	MS
361499	FDD	LS	361486	XORL	MS

•Figure 115. Modules

1

Figure 117. (AOX10T) AND-OR-Extender-Terminate, High-Speed

Figure 118. (AOI₁₀B) AND-OR-Inverter, High-Speed

AOI₁₀BT +3 v 10 AOX10 Ext \$ R5 9-OR Ext 140Ω 5 AND Ext 3 Å 10 12 ₩ D4 4 Ð ₩ D1 Ð 2 R2 1.2K -Dt D8 D10 -15 Đ +6 v **O**--₹ 81 1.2К Đ Ρ D9 T2 6 AND Ext Ρ 7 ₹^{R3} 1K 8 日本 13 16 _____ -3 v P/N 361407

Figure 120. (AOI $_{11}$) AND-OR-Inverter, High-Speed

T LR

Figure 124. (AOI $_{11}BT$) AND-OR-Inverter, High-Speed

P/N 361415

•Figure 126. (TLR) Transmission Line Receiver, Low-Speed

P/N 361426

Figure 127. (ID) Indicator Driver, 40 ma

P/N 361429

FTX

T2

Т4

P/N 361430

Figure 130. (FTX) Four Transistors

Figure 131. (FTX) Four Transistors

FTX

FTX

Figure 132. (AI) AND-Inverter, Medium-Speed

P/N 361454

Figure 134. (DCI) Direct Coupled Inverter, Medium-Speed

•Figure 133. (AOI) AND-OR-Inverter, Medium-Speed

4 2 Τ2 T1 1 Ρ 3 Р 12 5 9 7 T3 Τ4 11 6 Ρ Ρ 8 10

P/N 361457

Figure 137. (FTX) Four Transistors 9v, Medium-Speed

AOXB

FTX

Figure 140. (AOX $_{10}$) AND-OR-Extender, High-Speed

Figure 141. (API) (3v) AND-Power-Inverter, Medium-Speed

Figure 142. (HPD) High Power Driver

Figure 144. (XOR) Exclusive OR, Medium-Speed

P/N 361476

Figure 143. (LSA) Line Sense Amplifier

P/N 361479

à

Figure 145. (II) Isolating Inverter, Medium-Speed

P/N 361480

Figure 146. (ID) Indicator Driver

Figure 148. (FDD) Four Double Diodes (General Purpose), Medium-Speed

IBM Confidential

FDD

ID

AOX2

Figure 149. (XORL) Exclusive OR Latch, Medium-Speed

•Figure 151. (AOPI) AND-OR-Power-Inverter, Low-Speed

Figure 154. (AOX1) AND-OR-Extender, Low-Speed

FTX

AOX

P/N 361497

AOPX-1

Figure 156. (FTX) Four Amplifier and Saturating Transistors, Low-Speed

Figure 157. (FDD) Four Double Diodes

Glossary

Basic refers to the standard design of the machine; it includes optional features (MFI's) if drawn as part of the standard logic page. "Basic" is in contrast to "Version."

Circuit Number consists of five alphameric characters of the form ANNAA, which uniquely define a particular basic circuit.

Design Automation refers to the programs that prepare and print the ALD's. They consist of four major stages of processing: logic master tape, simulation, packaging and checking, and physical master tape. The outputs consist of documents to aid engineering in the development of computers, release documents (ALD's), and tapes for manufacturing.

DOT Block is an ALD block used on ALD logic pages to show DOT AND and DOT OR functions, which are physically accomplished by tying two signals together at a pin. Thus, one logical net on the ALD is combined with other logical nets by the DOT block to produce one combined physical net.

Note: One pot block does not connect to another pot block.

Grouping refers to the associating of certain circuit configurations prior to partitioning. Circuits represented on the ALD's by more than one block but always found on the same card are said to be in the same group.

Logic Master Tape (LMT) is the machine language record in logic page order. Each time a portion of this machine record is altered, logic pages containing the changes are produced for the engineer.

Net is a complex of modes, normally pins or connectors on the ALD, all common electrically.

Net Number consists of the source block page number, block serial number, and output line position of the source block. It consists of eight alphameric characters of the form AANNNAAB (A-alphabetic, N-numeric, B-either alphabetic or numeric).

Node is one circuit end point of a net (such as a pin on a card or a connector on a board).

Packaging and Checking refers to a series of programs that aid the engineer in the physical packaging of the logic and check data that is manually inserted on the pages.

Partitioning refers to that part of the design automation program that breaks up logic into cards and assigns the cards to boards.

Physical Master Tape (PMT) is a machine language record of the physical aspects of the design. It is arranged in physical sequence. Its purpose is (1) to retain in a convenient form the physical data from LMT, as well as the physical data from the PMT (wiring data primarily), (2) to retain the physical design at a fixed level while the logical design is undergoing change, and (3) to extract information from the tapes at the request of the engineer or other users.

Pins are the male parts of the connection between card and board or between cable connector and board. *Portion* refers to those circuits on a card that are connected together by printed wiring.

Signal Name is the title (may be blank) that gives meaning to a logical net; each net has only one signal name.

Simulation refers to programs that allow the engineer to exercise the logic dynamically before the machine is packaged.

Sink is the end or ends of a net to which signals flow. Source is the beginning of a net from which signals flow.

Symbolic Package is two characters to be used by design automation in the partitioning and placement programs. Blocks with the same characters in the symbolic package field are placed on the same board by the card partitioning program.

Note: Blocks with different symbolic packages may be packaged on the same board.

Version is a term used by design automation and indicates the particular manner in which logic records are kept for certain features; a feature is a version of its records and is kept as an add-delete (by block) to the basic records.

NOTE: "Version" gives automatic or implied updating of the feature by the basic, since an added basic block is, in effect, in the version.

Version Page is the ALD page made up of all blocks on the basic page which appear unchanged in the version design, plus additional version blocks needed to change the basic page into the version page.

Via Hole is the plated-through hole which may or may not contain a pin; it is used to make contact between conducting layers of the board. It is not a node.

Appendix

CIRCUIT NUMBER LISTING

CIRCUIT NUMBER

061EK 061EM 061EN 061EP 062EB

TITLE

CRF I INTEGRATOR-COMP SWEEP PACK III SWEEP PACK IV CIRCLE FORMATION

CIRCUIT NUMBER CODE

LOGIC GENERAL FORM - XYYZZ

X DEFINED

te.

بر م

. **.** .

4

S - SRETL GENERAL T - 30 NS U - 5-10 NS V - 700 NS O - ANALOG

1 - 50 M	3		
U - 5-10	NS	062EC	CIRCLE FORMATION III
V - 700	NS	Q61AA	JUMPER BLOCK
0 4 1 4 1		50346	MULTIDIEY INTEDEACE DRIVED-MA
U - ANAL	06	SOBAG	ACTIVER INTERFACE DRIVER-M4
		SUJAH	SELECT SAFETY
		S03AI	AND-DOUBLE GATE
YY DEFIN	ED		
		S0 3A.1	AND-HARPER GATE
	TC BLOCKS	SOAM	SPECIAL DECEIVED ZEO OUM LOAD
3 - LOG	IC BLOCKS	JUJAW	SPECIAL RECEIVER 150 UNM LUAD
5 - VOL	TAGE TRANSLATE CIRCUITS	SUBSA	NEGATIVE OR DIODES
6 – TRA	NSMISSION LINE DRIVERS AND RECEIVERS	S03SC	CURRENT CONTROL AND EMITTER LOAD
7 - SEN	SE AMPLIELERS	503SD	RESISTOR OR
10 - TNV	EPTING DELVERS LESS THAN 50 MA		
10 - 100	INVERT DRIVER LEGG THAN SO MA	50255	HICH VOLTAGE AND
11 - NUN	-INVERT DRIVER LESS THAN DU MA	3033E	HIGH VOLTAGE AND
15 - POW	ER DRIVER MORE THAN 50 MA	503SF	AC AND
16 - MAG	NETIC HEAD AND CORE DRIVER	S035G	AC AND
20 - TRI	GGERS	S03SJ	BINARY OUTPUT
21 - CIN		SOBSK	AC SET AND RESET
21 - 516		00501	AC OLT AND REDET
22 - 050	ILLATORS		
25 - REG	ULATORS, CLAMPS, CLIPPERS, AND LIMITERS	SUBSE	MINUS AND
32 - GAT	ES	SO3SM	NEGATIVE AND
40 - SPF	CTALS	S03SN	DUAL DIODE OR
45 - DEL	AV CIRCUITS	50350	DUAL DIODE AND
		00000	NON SYNETDICAL OD
55 - IND	DICATOR CIRCUITS	5035P	NUN STMETRICAL UR
60 - INT	EGRATORS AND FILTERS		
61 - COM	IPONENTS	S035Q	AND-DOUBLE GATE
63 - REE	D RELAYS	SOSAB	U TO T CONVERTER
65 - EUN	ICTIONAL CARD	50540	I TO U CONVERTER
		SOSAC	MULTIDIEN INTEREACE DECENTED
00 - FIC	LU REPLACEMENT CARD	SOSAE	MULTIPLEA INTERFACE RECEIVER
		SUSAG	SLI STANDARD INTERFACE DRIVER
ZZ DEFIN	IED - THE UNIQUE CIRCUIT	S05AH	ISOLATING INVERTER
		505AJ	HI-GAIN AMPLIFIER
C. DOULT		SOSAK	LINITY GAIN AMPLIFIER
CIRCUIT		COEAN	
NUMBER	11165	SUDAM	FINAL AMPLIFICK
		505A0	DELAY LINE TERMINATOR
017AE	EMITTER FOLLOWER	S05AR	MULTIPLEX INTERFACE DRIVER
018AC	LOW COST VOLTAGE DISCRIMINATOR	SOSAS	ISOLATING INVERTER NO LOAD
01840	PRECISION OPERATIONAL AMPLIFIER	SOSAT	IL TO I CONVERTER
01040	DECISION VOLTAGE DISCRIMINATOR	COEAU	
UIGAE	PRECISION-VOLTAGE DISCRIMINATOR	SUSAU	I TO L CONVERTER
018AF	HI GAIN AMPLIFIER	SO5AW	5NS TO 30NS INTERFACE
018AG	UNITY GAIN AMPLIFIER	SO5AZ	INTERFACE TRANSMITTER
018EA	LOW COST OPERATIONAL AMPLIFIER	50564	INPUT AMPLIFIER DISC SPEED DETECTO
DIREG	VOLTAGE SWITCH	CÓÉCD	AUTOUT AND IFIED DIGG COEED DETECT
01020		SUSCE	UNIPUT AMPLIFIER DISC SPEED DETECT
023EA	Z COBED I	S05CD	50 OHM CABLE DRIVER CIRCUIT
025AB	ZOT CLAMP	S05CE	S TO SLT LEVEL CONVERTER
025AC	HGA BUFFERS	S05CF	CABLE TERMINATOR CIRCUIT
031AB	VOLTAGE SWITCH	505CH	CONVERTER
02154	VOLTAGE SWITCH	SOFCI	
USILA		SUSCI	CLAMPING TERMATOR
032EA	CRF II	505CJ	TRANSMISSION LINE RECEIVER WITH GA
032EB	CRF III	S05CM	SLT +3V TO +5V CONVERTER
032EC	CRF IV	S05EB	NAND SLT CONVERTER
061EA	G.C. II	SOSEC	SLT NAND CONVERTER
061EB	RESISTORS-ANALOG	SUPEC	ISOLATING INVERTED WITH DELAY
0(150		SOSSA	CONVERTER WITH DELAT
UBIEC		5055B	CUNVERIER
U61ED		S05SC	LEVEL CONVERTER
061EE	G.C. IV	S06AB	INHIBIT TIMER
061EF	G.C. I	\$06AC	MULTIPLEX INTERFACE DRIVER
061EG	GeCe VI	SOLAF	FIX STROBE EF
00100		SOURE	TRANSMICCION LINE DECENSED
061EH	G.C. VII	SUDAK	TRANSMISSION LINE RECEIVER
01151	G.C. VIII	506AN	TRANSMISSION LINE RECEIVER WILD

NUMBER TITLE NUMBER TITLE S06AS LOOP 2.0MC RD BUS TERM 300MA DRIVER PROLAY DRIVER **S15AK** S06AT EMITTER FOLLOWER C13 S15AQ S06AV RESISTOR TERMINATORS 100 OHM S15AR RELAY DRIVER NPL TERMINATION S06EA S15AW 1.7A SOLENOID DRIVER DATA CONCENTRATOR 2 RDM S06SA LINE DRIVER S15AZ DATA LINE RECEIVER MULTIPLEX LINE DRIVER MULTIPLEX LINE DRIVER 3 S06SC S15CA 650 MA SOLENOID DRIVER 400 MA DRIVER DRIVER FOR 2.2 A DRIVER DRIVER FOR 2.2 A DRIVER S06SD S15EB S15EC S06SE SO7AA PREAMPLIFIER S15ED SENSE AMPLIFIER 1 PART A S15EF 2.2 A DRIVER S07AC R/W DRIVER S07AD SENSE AMPLIFIER 1 PART B S15EJ CLUTCH DRIVER S07AE SENSE AMPLIFIER 2 PART A SENSE AMPLIFIER 2 PART B S15LA S15LB S07AF BRAKE DRIVER 48V 0.1AMP RELAY DRIVER INHIBIT DRIVER PHOTOCELL AMPLIFIER S15LC S07AQ **S07AS** SENSE AMPLIFIER S155A S155F S07AT SENSE AMP C13 STROBE DRIVER DRIVER GATE CONTROL 1AMP 8MS SOLENOID DRIVER S07CF SYNC SENSE AMP S155G S155H S07FA PUNCH DETECTOR PREAMPLIFIER **S15SL** 1 AMP PNP DRIVER S07ED S07EE PREAMPLIFIER OUTPUT S155M 1 AMP NPN DRIVER PHOTO TRANSISTOR SENSE AMPLIFIER \$155N 2.5 AMP DRIVER 1 S07LA PHOTO TRANSISTOR EF \$1550 .5 AMP NPN DRIVER S07LB 2.5 AMP DRIVER 2 507SF PRE-AMPLIFIER S15SP HIGH CURRENT SWITCH I S155Q S07S1 CYLINDER PULSE PRE-AMP INHIBIT DRIVER PREAMPLIFIER S155T S07SJ WRITE DRIVER INVERTER 5075K LOW LEVEL SOLAR CELL AMP S155V READ AMPLIFIER POWER TRANSISTOR **S07SL** S155X PUNCH CHECK AMPLIFIER WRITE ERASE CURRENT DETECT S07SM 515SY POWER TRANSISTOR 257 S07SN S15SZ POWER INVERTER HEAD LOAD \$0750 PREAMPLIFIER S16AE Z DRIVER S07SP DIFF-LIN AMP S16AG TITLE R/W DRIVER HEAD DE-SELECT CKT INDEX PRIMARY AMP CYLINDER PREAMP CORE DRIVER-INHIBIT 5075Q S16AH S16AI 50755 CURRENT SWITCH-CORE 507SU S16AJ DETENT PREAMP S16AK SWITCH DRIVER S075V INDEX PREAMP WRITE DRIVER S075W S16AL 5075X **READ AMPLIFIER 2** S16AT DIFFERENTIATOR 507SZ CE TEST AMP AMPLIFIER AND FILTER S16AU AC COUPLED AMPLIFIER READ AMP FILTER SO7TA 516CH **S07TB** AMP-DIFFERENTIATOR S16CJ STROBE DRIVER SP4 SINGLE SHOT CONTROL ARRAY DRIVER C13 WRITE DRIVER S07TE PRE AMPLIFIER S16CK TACH BUFFER AND FILTER POWER AMPLIFIER S07TF S16CL S16CM S07TG S10AF 25MA RELAY DRIVER S16EA Z-DRIVER TERMINATOR GATE LOOP 2.0MC VFO CLAMP DRIVER SIOAG S16EB 37MA RELAY DRIVER GATE CONTROL INVERTER WITH LOAD S16EC INHIBIT TIMER S10AH X-Y DRIVER X-Y DRIVER SIOSB S16SA S16SB S10SC S105E AI WITH LOAD S165C ERASE DRIVER 510SH EMITTER AMPLIFIER **S16SD** WRITE DRIVER INVERTER WITH LOAD INVERTER POWER S16SE WRITE CURRENT SOURCE S1051 siosj S165G WRITE HEAD SELECT INVERTER UNLOADED S105K S20SA TRIGGER SIOSL 50-60 PULSE PER SECOND INVERTER S21AA PULSE FORMER SINGLE SHOT S105M INVERTER CLAMP S21AF S10SN INVERTER S21AI VAR. FREQ. SINGLE SHOT S215B MAGNETIC CB SHAPER INVERTER \$1050 SIOSP POWER INVERTER \$21SC PRECISION TIMER \$105Q INVERTER S21SD 2 SECOND TIMER S11AE EMITTER FOLLOWER **S21SE** SINGLE SHOT 60NS SINGLE SHOT 165 USEC SINGLE SHOT 800 USEC DELAY LINE DRIVER DATA CONCENTRATOR ROU \$11AG 511AL S21SF S21SG OSCILLATOR AMP 4 MC OSCILLATOR S22AA S11AM S22AE 5KC XTAL OSCILLATOR DELAY LINE DRIVER EMITTER FOLLOWER - V.C. S11EA S11SA S22AK 500KC XTAL OSCILLATOR S22AL 720KC XTAL OSCILLATOR EMITTER FOLLOWER HEAD LOAD S115B 1.3 AMP DRIVER S22AS S15AE DRIVE FOR 1.3AMP DRIVER S15AG S22AT

500KC GATED OSCILLATOR 700KC GATED OSCILLATOR 5 WAY PLO 4 MC XTAL OSCILLATOR

Y-SELECT

100 MA HAMMER DRIVER

S15AH

S15AI

CIRCUIT

S22AZ

S22CH

CIRCUIT

CIRCUIT	TITLE	CIRCUIT NUMBER	TITLE
522CI	1.36 MC CRYSTAL OSC	S40EA	SWITCH NETWORK
SZ2CJ	1.496 MC CRYSTAL OSC	S40EB	TEMP SENSING NETWORK
S22CK	3.2648KC XTAL OSCILLATOR	S40SA	POWER SUPPLY 28V
S22CL S22CM	4.004KC XTAL OSCILLATOR 4.84KC XTAL OSCILLATOR	5405B 5405D	SENSE LEVEL VOLTAGE
S22CN	5.0063KC XTAL OSCILLATOR	540SE	REF VOLTAGE
S22C0	SLT 5.9176KC XTAL OSCILLATOR	S40SF	+4V SPECIAL VOLTAGE
S22CP	1460 MCS OSCILLATOR	S4USH	LEVEL SETTING
S22CU S22CV	CRYSTAL OSCILLATOR 4•0 MC CRYSTAL OSCILLATOR	54051 5405J	NULL BIAS
S22CW	3.3KC XTAL OSCILLATOR	S40SK	VARIABLE CURRENT SOURCE
S22CX	4.4KC XTAL OSCILLATOR	S40SL	DC SAFETY
S22DE	2.0 K.C CRYSTAL OSCILLATOR	5405M	AC SAFELT
SZZLA SZZLB	5.824 KC XTAL OSCILLATOR	54050 S405P	LEVEL INDICATOR MINUS
S22LC	3.64 KC XTAL OSCILLATOR	5405Q	LEVEL INDICATOR PLUS
S22LE	6.4 KC XTAL OSCILLATOR	5405K	DETECTOR AMPLIFIER
SZZLF	4.8 KC XIAL OSCILLATOR	54053 5405T	FALL SAFE BLOCKING VALVE DET
SZZLG	9.6 KC XTAL OSCILLATOR	5405V	REFERENCE VOLTAGE
S22SA	185 KC OSCILLATOR	S40SW	ZERO S DETECTOR
S22SC	400 CPS OSCILLATOR	54058	DETECTOR
525AA		540SZ	RAMP GENERATOR
S25AC	REFERENCE VOLTAGE	S40TA	CAP SENSOR
S25AD	REFERENCE VOLTAGE	S40TB	TEST REFERENCE CIRCUIT
S25AE	RW DRIVER CLAMP	S401E SAOTE	0.45 AMP DRIVER
525AF	LUOP Z.UMC AMP-LIMITER	540TF	LEVEL DETECTOR
S25AI	REGULATOR 9V	S40TH	VOICE COIL AMPLIFIER
S25AJ	13V CLAMP	S40TL	DETECTOR CIRCUIT
S25AK	VOLTAGE REGULATOR C13	S40TM	WRITE SELECT
S25AL	VOLTAGE REGULATOR	SAUTN	A C UNSAFE
525AM 525AT	VOLTAGE CLAMP +0.125 V DC CLAMP DIODES +3V	54010 540TP	VOLT TO HIGH FREQ CONV ZERO S DETECTOR (0.438 MBS)
S25CF	SINGLE SHOT REF	S40TQ	GAP SENSOR (0.438 MBS)
S25EA	VOLTAGE DIVIDER	S40TR	DETECTOR 0.438MBS
S25EC	+12 CCROS DRIVER SUPPLY	S40TS	RAMP GENERATOR 0.438MBS
S25EB S25EE	CAPACITOR COUPLING NETWORK DIODE	S40TW S40TX	WRITE SAFETY LATCH SCHMIDT TRIGGER
S25EF	R/W DRIVER CLAMP	S40TY	TRANSDUCER DETECTOR
S25LA	POSITIVE TRANSITION DETECTOR	S40TZ	LEVEL DETECTOR
S255A	VOLTAGE SET FOR SAR	S45AB	5 TO 25 NS DELAY LINE
S25SB S25SD	REFERENCE TEMPERATURE LEVEL DRIVER CONTROL	545AC S45AD	5-125NS DELAY LINE
53555		S45AE	DELAY LINE TERMINATOR WZO-I
5255E	CURRENT SOURCE	S45AH	ELAPSED TIME METER DISPLAY
S255G	POWER REGULATOR 20V	S45AK	DELAY LINE 0-125
S25SH	VOLTAGE REFERENCE 50 MV	545AN 545FA	VARIABLE DELAY +2 SEC TO 2+0 SE
52551		SARER	
S25SL	VOLTAGE REGULATOR	545EB 545EC	3 IU 8.6 SECOND LIME OUT
5255M	POWER REGULATOR 60V	545SB	500NS DELAY LINE
52550	OVER DRIVEN AMPLIFIER	\$455C	DELAY LINE 1MS
S25SP	VOLTAGE REGULATION 36 OHM	\$45\$D	DELAY 90 SEC
S255Q	RECTIFIER	S55AA	40 MA INDICATOR DRIVER
S32AB	GATE	S55AD	15 MA INDICATOR NETWORK
S32AC	TERMINATOR GATE	SSSEA	LAMP DRIVER-ID 2
S32AE S32AF	LOOP 2.0MC LWR GATE	S55EB	40 MA LAMP RESISTOR NETWORK 40 MA INDICATOR DRIVER
532AG	LOOP 2.0MC LINEAR GATE	S55EG	SCR SIGNAL ENTRY RESISTOR
S32EB	GATE TRANSISTORS WITH CLAMP	555EH	SCR INDICATOR DRIVER
S32EC	GATE TRANSISTORS WITH CLAMP	\$555B	40 MA INDICATOR NETWORK
S40AB	SPEED DETECTOR	\$555D	LAMP DRIVER
540AD	INDEX GENERATOR	560AB	CAM INTEGRATOR
S40AG	LOOP 2.0MC REF CLOCK GEN	S60AC	CAPACITOR NETWORK
540AJ	LOOP 2.0MC PEAK PULSER	S60AH	SINGLE SHOT FILTER
S40AM	LOOP 2.0MC SQUELCH DRIVER	S60AR	
\$40A0	FREQUENCY DETECTOR DISC SPEED DET	SOUDA	JUMPER CARD

IBM Confidential

ý

2

SEC

CIRCUIT NUMBER	TITLE		CIRCUIT NUMBER	TITLE
560EA	FILTER 25 KC		S61LA	1K RESISTOR
S60EC	TUNGSTEN CONTACT NETWORK		S61S0	DIODE MATRIX
S60FE	DRIVER FILTER		S61SA	VERNIER RESISTANCE
S60SA S60SB	RESISTOR EMITTER LOAD		S61SC S61SE	RESISTOR 14.3 OHM 5.1 OHM RESISTOR
54050			56155	
56050	DECOUPLING CAPACITORS		56156	POWER SEQUENCE BLOCK
5605E	VELOCITY INTEGRATOR		5615H	FMITTER LOAD
SEUSE	I INF ELLITER		S61S1	DIODE SUPPRESSION
5605G	FILTER		S61SJ	18 OHM RESISTOR
S60SH	INTEGRATOR 07 PERCENT SPEED		S615K	COMMON BAR JUMPER
S605I	INTEGRATOR LESS THAN 98 PERCENT SP		S61SL	READ-WRITE SELECTION MATRIX
S61AD	MULTIPLEX TERMINATING NETWORK		561SM	PROGRAM CAP HUB
S61AF	JUMPER		SEISP	DIODE MATRIX
S61AJ	STANDARD INTERFACE TERMINATOR		56150	36 OHM 1 WATT RESISTOR
S61AM	DISCRETE CAPACITOR		S61SR	DIODE SUPPRESSION
S61AN	2.7K RESISTOR 1/4 W		S61ST	RESISTOR 2.49K
S61A0	TRANSMISSION LINE RECEIVER		S61SU	TRACK DIVIDER 2
S61AP	TYPE 6V DIODE		S615W	RESISTOR SAFETY
S61AR	TERMINATING RESISTOR-100 OHM		S615X	CURRENT FEEDING
S61AU	INTEGRATOR		561SZ	RESISTOR 21 OHM
S61AX	39K RESISTOR		SELLA	AC TERMINATOR
SEIAY	PLUGGABLE SWITCH		56118	DEOUPLING CAPACITUR
SEIAZ	REED RELAY SUPPRESSION		56170	VOLTAGE DECLI ATOD
SOIBE	JUMPER		56110	VOLTAGE REGULATOR
S61BG	200 OHM RESISTOR TO +3V		S61TE	1.8K RESISTOR
S61CA	220 OHM RESISTOR		S61TF	RESISTOR-100 OHM
S61CC	TYPE DD DIODE CLAMP		S61TG	2.4K RESISTOR
S61CG	THERMISTOR		S61TH	RESISTOR 1100 OHM 1/2W
SOICH	POTENTIOMETER		5611J	RESISTOR - 1.5K 1/2W 5 PER CENT
S61CM	DEC CAPACITOR +3V		SGITK	2K RESISTOR
S61CN	DEC CAPACITOR -3V		561TL	HEAD PLUG-13RK
S61C0	DEC CAPACITOR +66V		SELIM	RESISTOR 220 OHM
561CP 561CQ	DECOUPLING CAPACITOR TO +12V DEC CAPACITOR -12V		561TO	RESISTOR 62 OHM RESISTOR 130 OHM
SALCR	ISOLATING RESISTOR-102		S61TP	RESISTOR 2 OHM
SALCS	200 OHM RESISTOR TO +6V		S61TQ	DIODE CLAMP
SELCT	DELAY CAPACITOR		S61TR	RESISTOR 25 OHM
S61CU	SPECIAL DN LVL IND RESISTOR		S61TS	RESISTOR 1 OHM
S61CW	TYPE AM DIODE TO -12V		S61TT	RESISTOR 825 OHM
S61CX	22 MEG OHM RESISTOR		S61TU	DIODE SUPPRESSION
S61CY	THERMOSWITCH		S61TV	RESISTOR 1K
S61CZ	330 OHM RESISTOR		S61UF	DIODE AAS
S61DA	AC INPUT		S63AA	4-POSITION REED RELAY
S61DB	36 OHM RESISTOR		S63AB	6-POSITION REED RLY
S61DC	TERMINATOR C13		S63AC	COIL 1-POLE REED RELAY
S61DD	5 UF CAPACITOR NP		S63AD	COIL 6- POLE REED RELAY
S61DE	10 UF COUPLING CAPACITOR		S63AE	RELAY POINT REED
S61DF	2.0 KC CRYSTAL		S63AK	REED RELAY COIL OR 2N/O 2N/C ASSM
S61DG	DECOUPLING CAPACITOR TO GROUND		S63AL	REED RELAY 2N/O 2N/C
S61DH	1.0 UH CHOKE		S63AM	REED RELAY HOLD WINDING
S61D1	ALS DIODE		S63AN	REED RELAY PICK WINDING
S61DJ	CAPACITOR 680PF 5 PER CENT		SCOAG	6 N/O P AND H REED RELAY
SOIDK	3K RESISTOR		563A5	A N/O P AND H REED RELAY
SEIDL	MAGNETIC HEAD		36 3AU	I POSITION REED RELAT
S61DM	SOLAR CELL		S63AW	TELEGRAPH RELAY - RECEIVE
S61DN	•1UFD DELAY CAPACITOR		S63AY	TELEGRAPH RELAY - TRANSMIT
S61DQ	AM DIODE		SOJLA .	REED POINT-NORMALLY OPEN
S61DR	CAPACITOR +02UF		S63EC	REED RELAY ASSM 2N/O 2N/C
SAIDW	6.8UED DECOUPLING CAPACITOR		S63ED	REED RELAY ASSM 64
S61DX	LOAD RESISTOR 95 OHM		S63FF	6V COIL FOR REED RELAY
S61EA	CAPACITORS I		S63EG	REED POINT-NORMALLY OPEN
S61EB	CAPACITORS II		S63EH	REED POINT-NORMALLY CLOSED
S61EE	PLUGGABLE JUMPERS		5635A	COIL-2 POLE REED RELAY
SEIEK	LOAD RESISTOR -52 OHM		S63SB	COIL 2-POLE REED RELAY
S61EM	100 OHM RESISTOR LOAD TO GND		S63SC	COIL 2-POLE REED RELAY
S61EQ	1 K RESITOR TO -3V		S63SD	48V REED RELAY COIL
S61IG	95 OHM TERMINATING RESISTOR TO GR	D	S63SE	2 POINT - REED - RELAY
S61II	DEC CAPACITOR +12V		S63SF	4 POINT - REED - RELAY

CIRCUIT NUMBER	TITLE	CIRCUIT NUMBER	TITLE
S63SG S63SH T03AA T03AB T03AC	• 1-POINT REED RELAY 4 POINT RELAY AND INVERT NO LOAD AND INVERT-750 OHM LOAD AND	TO3TK TO3TL TO3TM TO3VA TO3VB	READ SELECT OR INVERTER INVERTER AOI-GROUPING-NO LOAD AOI-GROUPING-W/LOAD
TO3AC	AND	T03VC	MULTIPLEX DRIVER GROUPING-NO LOAD
TO3AD	OR INVERT-NO LOAD	T05AA	INVERT DIRECT CPLD NO LOAD
TO3AE	OR INVERT-750 OHM LOAD	T05AB	INVERTER DIRECT CPLD350 OHM LOAD
TO3AF	AND POWER INVERT NO LOAD	T05AF	NPL FINAL AMP HI + LO ACCEPT DRIVE
TO3AI	EXCLUSIVE OR W/LOAD	T05AJ	TERMINATING EIA TO SLT CONVERTER
TO3AJ	AND-PWR INVERT 300 OHM LOAD	T05AL	TRANSLATE BLOCK
TO3AK	EXCLUSIVE OR LATCH	T05AM	WRITE DRIVER CHECK
TO3AL	8 WAY EXCLUSIVE OR	T05AO	45 MA TRANSMISSION LINE DRIVER
TO3AM	4 WAY EXCLUSIVE OR	T05AP	INTERLOCK CIRCUIT TERMINATOR
TO3AN	7 WAY API-NO LOAD	T05AQ	INVERTER
T03A0	7 WAY API-300 OHM LOAD	T05BG	DELAY LINE DRIVER
T03AP	EXCLUSIVE OR-NO LOAD	T05BI	DRIVER STROBE
T03AQ	AND FOR MULTIPLEX INTERFACE DRIVE	T05BJ	LAMP TEST CCT FOR DLID
T03AR	MULTIPLEX INTERFACE DRIVE	T05BK	GATE
T03AS	AND-1K	T05BM	LATCH STAGE I
T03AX	AND EXT MULTIPLEX INTERFACE DR	T05 BN	INVERTER
T03BF	MINUS OR INVERT UNLOADED	T05 BO	GATE INVERT
T03BN	GATE	T05EA	FINAL AMPLIFIER
T03B0	MINUS OR INVERT LOADED	T05SA	FORMAT X-READ SELECT
T03BP	DECODER	T05SB	DATA X-READ SELECT
T03BQ	SENSE LATCH AND	T05SC	DIRECT COUPLED INVERTER
T03BR	SENSE STROBE AND	T05SD	ISOLATING INVERTER DISCRETE
T03BS	SENSE AMPL AND	T05SE	CONVERTER
T03BT	EXTENDED API WITHOUT LOAD	T05SG	MAGNETIC CB SHAPER
T03BV	EXTENDED API	T06AA	LINE SENSE AMP LSA
T03BW	EXTENDED API 270 OHM +6	T06 AE	CORE-DRIVER
T03BX	SELECTOR	T06AG	MULTIPLEX LINE TERMINATOR
T03BY	GATE DECODER	T06AH	MULTIPLEX INTERFACE DRIVER
T03CC	Y-SELECT LOGIC	T06AI	SLT TO E1A CONVERT LINE DRIVER
T03CD	Y-SELECT 2	T06AJ	DIRECT COUPLED INVERTER DRIVER
T03CE	AND GATE	T06AL	STD INTERFACE LINE DRIVER
T03CG	AND FOR SENSE AMP LCM	T06AM	GATED LINE INTRFC TERM
T03C1	POSITIVE OR DIODES	T06AN	STD INTERFACE LINE TERMINATOR
T03CK	TITLE WRITE DRIVER	T06AR	HIGH POWER DRIVER - 100 OHM LOAD
T03CO	MULTIPLEX RECEIVER	T06AY	PHASE DETECTOR
T03CP	OR-INVERT	T06AZ	LINE TERMINATOR AND GATE
T03EF	AND FOR API	T06BC	LINE SENSING AMPLIFIER
T03EH	OR INVERT NO LOAD	T06BD	DELAY LINE SENSING AMPLIFIER
T03EI	OR INVERT WITH LOAD COMBINED LOGIC	T06CE	SENSE AMP TERM C13
T03EL	AND-OR INVERT NO LOAD	T06CF	EMITTER FOLLOWER C13
T03EM	AND-OR INVERT WITH LOAD	T06CG	LINE REPEATER
T03EN	AND-FOR AI	T06CH	LINE TERMINATOR AND GATE II
T03JB	SENSE AMPLIFIER AND	T06CI	MULTIPLEX LINE DRIVER
T03JC	AND - LATCH CONTROL	T06CJ	LINE DRIVER
T03JD	AND	T07AD	NPL FINAL AMP PEAK DETECTOR
T03JE	AND	T07AG	C9 SENSE LATCH 2
T03JF	OR	T07AH	C9 SENSE AMP 1
T03SA	AND	T07AI	SENSE AMPLIFIER
T03SF	OR INVERTER	T07AJ	PRE AMPLIFIER AND FILTER
T03SG	AND INVERTER	T07AK	FILTER
T03SH	OR DIODES	T07AS	SENSE AMPLIFIER REFERENCE FLYERLOM
T03SI	AND INVERTER WITH LOAD	T07AT	NPL FINAL AMP INPUT TERM
T03SJ	API WITH LOAD	T07AZ	MAGNETIC HEAD SENSE AMPLIFIER
T03SK	SPECIAL OR CIRCUIT	T07BB	PARAPHASE AMP
T03SL	AND INVERT	T07BC	SENSE AMPLIFIER
T03SN	POSITIVE AND WITH DELAY	T0 7BD	CCROS RHO SENSE AMPLIFIER
T03SV	REPLACED BY TO3SI	T0 7BE	CR SENSE AMPLIFIER
T03TB	POSANDEL	T0 7CA	PROBE AMPLIFIER
T03TC	AOI WITH EXTEND	T07CB	PROBE AMPLIFIER
T03TD	MINUS AND	T07CF	SENSE AMP
T03TE	AND EMITTER FOLLOWER	T07CH	SENSE AMPLIFIER
T03TG	DIODE OR	T07CK	SENSE AMPLIFIER
T03TH	STEP MODE OR	T07CM	MOTION INTEGRATOR II
T03TI	STEP MODE AND	T07CN	DETECTOR AMPLIFIER 2
T03TJ	SEPARATE COMPONENT AI	T07SA	SUMMING AMP INPUT

IBM Confidential

NUMBER	TITLE
Т07SB	FUNCTION GENERATOR INPUT
Т07SC	LOW LEVEL POSITION AMP
Т07SD	LOW LEVEL VELOCITY AMP
Т07SG	FUNCTION GENERATOR OUTPUT
Т07SH	INNER FUNCTION GENERATOR
T07SI	VELOCITY ARRIVAL BUFFER
T07SJ	TACHOMETER BUFFER AND FILTER
T07SK	COMPLEX ZERO INPUT
T07SL	POSITION ARRIVAL BUFFER
T07SM	CLASS A POWER AMPLIFIER
T07SN T07SP T07SQ T07SR T07SS T07SS	2 SECOND CIRCUIT INPUT SOLAR CELL AMPLIFIER CYLINDER DETECTOR CIRCUIT INDEX DETECTOR CIRCUIT READ AMPLIFIER 1
T07ST	WRITE AMPLIFIER 1
T07SU	BLOCKING VALVE DET INPUT
T07SW	DETENT DETECTOR CIRCUIT
T07SX	PUNCH CHECK AMPLIFIER
T10BB	SENSE AMPLIFIER
T10BC	DRIVER SUPPLY
T10BE	FORCE CARD PRINT INVERTER
T10BF	LATCH RESET DRIVER 1
T10BG	INVERTER DRIVER
T10BH	GATED INVERTED DRIVER
T10BI	LATCH RESET DRIVER 2
T10EA	HARPER GATE DRIVER
T10SA	CURRENT CONTROL
T10SC	AMPLIFIER-STROBE DRIVER
T10SF	TRIGGER DRIVER
T10SI	INVERTER
T10SL	INVERTER
T10SN	INVERTER-CLAMPED
T10SP	INTEGRATOR SWITCH
T10SQ	INVERTER SPEC
T10SR	ISOLATING INV WITH FILTER
T10SS	HIGH POWER INVERTER
T11AB	SA GATE DRIVER
T11BH	SENSE STROBE FOLLOWER
T11BI	EMITTER FOLLOWER
T11BJ	DRIVER
T11BK	RESET DRIVER
T11BL	GATE DRIVER
T11BD	SENSE AMP STROBE DRIVER
T11BP	EMITTER FOLLOWER
T11BQ T11BR T11BS T11BS T11BT T11BU	EMITTER FOLLOWER EMITTER FOLLOWER EMITTER FOLLOWER EMITTER FOLLOWER EMITTER FOLLOWER
T11BW	EMITTER FOLLOWER
T11EA	STROBE DRIVER
T11EC	CCROS DECODE DRIVER
T11ED	CCROS EMITTER GATE
T11EE	CCROSS GATED DRIVER
T11SA T15AA T15AE T15AJ T15AJ T15AM	AND EMITTER FOLLOWER HIGH POWER DRIVER - 175 OHM LOAD HIGH POWER DRIVER-NO LOAD SOLENOID DRIVER→ 1.5A 1 POLE REED RELAY DR
T15AN	REED RELAY DRIVER
T15AO	STROBE DRIVER
T15AQ	XY GATE OR INHIBIT DRIVER
T15AT	4 AMP DRIVER NPL
T15AY	HIGH POWER DRIVE-COMBINED LOGIC
T15AZ T15BC T15BD T15BE T15BE T15BF	434 MA RELAY DRIVER GATE STROBE UP LEVEL INDICATOR DRIVER SENSE STROBE DRIVER DRIVER SUPPLY AMP

CIRCUIT

CIRCUIT NUMBER TITLE DRIVER SUPPLY OUTPUT SENSE STROBE DRIVER 2 DRIVER SUPPLY AMP 2 DRIVER DECODER T15BG P T15BH P T15BI P TISBU F T158K P HIGH POWER INVERT T15EF P SONIC LINE DRIVER T15SH P T15SJ P BOOTSTRAP AMPLIFIER T15SK P HIGH POWER T15SL P 450 MA DRIVER T15SN P 2.5 AMP DRIVER T16AF P T16AH P S9-WRITE DRIVER A WORD GATE LCM SWITCH GATE T16AI P T16AJ P A GROUP AND DRIVER WORD GATE TIGAK P TIGAL P TIGAM E TIGAM E B SWITCH GATE-LCM TIGAM P A B GROUP AND LCM TIGAO E A WORD DRIVER A GROUP AND CONVERTER LCM A GROUP PULSE GEN LCS WRITE DRIVER WRITE SAFETY T16AP P TIGAO P T16AT P T16AU P T16AY E STROBE DRIVER LCM T16BB T DOWN LEVEL INDICATOR DRIVER T16BC P CLOCK LINE DRIVER T16CA P A GROUP DRIVER- LCS T16CB E A WD GATE DRIVER LOAD RESISTOR LCM T16CC E B WD GATE DRIVER LOAD RESISTOR LCM T16CF P TI6CF P A SWITCH GATE DRIVER- LCM TI6CG P B SWITCH GATE DRIVER LCM A WORD GATE DRIVER-LCS B WORD GATE DRIVER-LCM STRIP HIGH DETECTOR T16CH P T16CI P T16CJ P T16CK E HEAD PRE-AMP T16CL E A SHUNT CLIPPER LCM T16CN E A COMPENSATION AMPLIFIER LCM T16C0 E B COMPENSATION AMPLIFIER TIGCT P BIT GATE CONVERTER LCM B GROUP AND DRIVER- LCS B GROUP DRIVER LCS B GROUP AND CONVERTER LCS BIT DRIVER T16CU P T16CW P T16CX P T16CY E T16CZ P BIT DRIVER LCM T16DA P A EMITTER CLAMP- LCM B EMITTER CLAMP TI6DB P T16DC P A REFERENCE CLAMP LCM B REFERENCE CLAMP T16DD E T16DE E B WORD DRIVER LCM T16DG P S-9 BIT DRIVER T16DK P INVERTER FOR C E F COMP EMITTER FOLLOWER CURRENT DRIVER TI6DL P T16DN E T16D0 E TIMING SWITCH A

T16DP E A CURRENT GATE B CURRENT GATE VFC DENSITY SWITCHES WRITE CURRENT CONTROL T16DQ E T16DR E T16DS E T16DT P SP4 BIT DRIVER TI6DU P SP4 WRITE DRIVER LCS BUFFER AND READ BIT RESISTOR LCS DETECTOR TI6DW E T16DY E T16DZ E LCS FINAL AMPLIFIER LCS AMPLIFIER INVERTER T16IA E T16IB E LCM BIT GATE PULL DOWN

TIGIC E TIMING SWITCH B TIGSA P PHOTO TRANSISTOR AMPLIFIER T20AB B 400 KC TRIGGER T20AD T AC TRIGGER NO• 2

CIRCUIT NUMBER	TITLE	CIRCUIT NUMBER	TITLE
T20AE	HARPER GATE	T25AD	REGULATOR 28.5V
T20AF	HARPER GATE	T25AG	SENSE LEVEL SET
T20AG	INTEGRATOR-STROBE	T25AH	VOLTAGE REFERENCE
T20AH	S9-LATCH	T25AL	AB GROUND CLAMP- LCM
T20AH	LOGIC TRIGGER	T25AM	BASE CLAMP C13
T20AM	AC TRIGGER	T25BB	SENSE CLAMP PWR AMPL
T20AR	GATED AC TRIGGER	T25BC	SENSE CLAMP
T20AT	GATED AC TRIGGER	T25BD	+3V CLAMP
T20AW	GATED AC TRIGGER 2	T25BE	SENSE CLAMP PWR AMP
T20BB	CCROSS SENSE LATCH	T25BF	SENSE CLAMP PWR AMP
T20BC	SPECIAL LATCH	T 25BG	OVER VOLTAGE LIMITER
T20BD	SPECIAL LATCH	T 25EE	SIGMAL DETECTOR
T20EB	400 KC TRIGGER	T 25EF	GATE CLAMP
T20SA	WRITE TRIGGER	T 25EH	DELAY LINE DETECTOR
T20SC	MULTIPLE INPUT TRIGGER	T 25SB	CURRENT CONTROL
T20SD	WRITE TRIGGER	T25SC	CURRENT CONTROL
T20SE	TRIGGER 2.1	T25SD	OFFSET VOLTAGE
T21AH	NPL FINAL AMP PULSE SHAPER + DR	T26AA	NPL FINAL AMP LO ACCEPT CLIP
T21AN	LEADING EDGE TIME DELAY	T26AB	NPL FINAL AMP HI ACCEPT CLIP
T21AP	B GROUP PULSE GENERATOR PNP-LCS	T27BB	SENSE CLAMP POWER AMP
T21AR	HALF PERIOD GEN	T27BC	SENSE CLAMP
T21AW	SINGLE SHOT-VARIABLE	T27BD	+3 V CLAMP
T21AZ	VARIABLE SINGLE SHOT	T30BC	PUNCH MAGNET DRIVER GROUPING
T21CC	VARIABLE SINGLE SHOT	T31BB	TROM GATE GROUPING
T21CF	VARIABLE SINGLE SHOT	T31BC	CHANGE OVER SWITCH
T21CH	SINGLE SHOT-FIXED	T31BD	3-WAY CHANGE OVER
T21CI	SINGLE SHOT 410 NS-NF	T31BE	LAMP TEST SWITCH
T21CK	250 NS SINGLE SHOT	T32AF	NPL FINAL AMP GATE
T21CM	FIXED SINGLE SHOT 1	T32AH	CORE-GATE
T21CN	PRECISE SINGLE SHOT ADJ	T32BA	LINE RECEIVER GROUPING
T21CT	VARIABLE SINGLE SHOT	T32BD	THRESHOLD GATE
T21CU	HALF PERIOD GEN II	T32BE	LATCH STAGE II
T21CW	SINGLE SHOT SSB(VAR) 78NS-68.5US	T32BF	GATE
T21SC	SINGLE SHOT 1400 NS	T32EB	TRIGGER GATE
T21SD	SINGLE SHOT 185 NS	T32SA	ARRIVAL DETECTOR
T21SE T21SH T21SJ T21SK T21SK T21SL	SINGLE SHOT WITH DELAY 500 NS SINGLE SHOT 7MS SINGLE SHOT SINGLE SHOT 600 MS 300MS SINGLE SHOT	T32SC T32SF T32SG T32SH T32SI	RESISTOR-CAPACITOR AND GATE HOME DRIVE AND INTEGRATOR RESET CE RUN DETENT DRIVER
T21SS	SINGLE SHOT	T40AA	NPL FINAL AMP RECT + CHAN SEP
T21ST	SINGLE SHOT 1	T40AB	NPL FINAL AMP 9V ZENER SUPPLY
T21SU	SINGLE SHOT 2	T40AE	LIMIT AMPLIFIER
T21SV	1060 NS SINGLE SHOT	T40AF	INDEX PULSE AMPLIFIER
T21SW	300 NS SINGLE SHOT	T40AG	FORMAT SELECT
T21SX	1100 NS SINGLE SHOT	T40 AH	8 POSITION CLOCK
T21SY	VARIABLE SINGLE SHOT	T40AI	6 POSITION COUNTER
T21TA	110 NS SINGLE SHOT	T40AJ	DIFFERENTIAL AMP FOR SENSE AMP LCM
T21TB	VARIABLE-SINGLE-SHOT	T40AK	VFC PULSER
T21TC	2 MS SINGLE SHOT	T40AL	VARIABLE FREQUENCY CLOCK
T21TD	10 MS SINGLE SHOT	T40AN	VARIABLE CURRENT SOURCE
T21TE	800NS SS	T40AP	SA GATE GENERATOR
T21TG	15 MS SS	T40AR	VARIABLE FREQUENCY CLOCK 2
T21TJ	100 NS SINGLE SHOT	T40BB	BUFFERED SENSE LATCH
T21TK	500 NS SINGLE SHOT	T40SA	CONSTANT CURRENT LAMP SUPPLY
T22AB	2KC OSCILLATOR	T40SB	CURRENT SOURCE
T22AC	20KC OSCILLATOR	T40SC	SUMMING AMP CURRENT SOURCE
T22AF	1.667 MC CRYSTAL OSCILLATOR	T40SD	WRITE BYPASS
T22AH	2.4MC XTAL OSC	T40SE	DIFFERENTIATOR
T22BC	CLOCK OSCILLATOR 3.2 MC/S	T40SG	POWER SUPPLY SAFETY +6 V
T22BD	170 KC/S OSCILLATOR	T40SH	BLOCKING VALVE DET. OUTPUT
T22EA	2.0MC CRYSTAL OSCILLATOR	T40SI	SINGLE SHOT 750 USEC
T22EB	3 PER CENT 117.2 CPS OSCILLATOR	T40SJ	CURRENT CONTROL
T22SB	2 MC OSCILLATOR	T40SK	SENSE LEVEL
T22SC	4 MC CRYSTAL OSCILLATOR	T40SL	REFERENCE VOLTAGE
T22SD	CLOCK 1.44 MC	T45AC	125 NS DELAY LINE
T22SE	2.5MC XTAL OSCILLATOR	T45AF	15 SECOND DELAY
T22SG	GATED MULTIVIBRATOR	T45AG	250 NSEC TAPPED DELAY LINE
T25AA	NPL FINAL AMP LOW ACCEPT CLIP	T45AH	500 NSEC DELAY LINE TAPPED
T25AB	NPL FINAL AMP HI ACCEPT CLIP	T45AL	MOTOR DELAY CIRCUIT

•

.

....

CIRCUIT NUMBER

T4588 VARIABLE DELAY LINE T45BC CLOCK DELAY T45EC 200 NS DELAY CIRCUIT 350 NS DELAY LINE T45ED T45LC RC DELAY CIRCUIT 250 NS T45LD RC DELAY CIRCUIT 440 NS RC DELAY CIRCUIT 440 NS RC DELAY CIRCUIT 160 NS RC DELAY CIRCUIT 2•1 S RC DELAY CIRCUIT 500 MS RC DELAY CIRCUIT 176 MS T45LE T45LG T45LH T45L1 **T45SA** DELAY FILE READY **T55AA** INDICATOR COUPLING NETWORK T55AB ICN-LAMP T55AC INDICATOR LAMP-3V T55AD 15MA SWTCH ID NO LOAD T55AH 40 MA IND DRIVER UNLOADED **T55AI** 40 MA INDICATOR DRIVER 15 MA INDICATOR DRIVER 15 MA INDICATOR WITH NETWORK T55AM T55AN T558B INDICATOR T60AA 50V DECOUPLING NETWORK T60AB 20V DECOUPLING NETWORK T60AI +48V INTEGRATOR T604.1 20V INTEGRATOR SWITCH INTEGRATING NETWORK T60BF TEOSA AC WRITE CURRENT INT T60SE INTERGRATOR **T61AA** 750 OHM LOAD RESISTOR 750 OHM LOAD RESISTOR T61AB T61AC 350 OHM LOAD RESISTOR TO +3V T61AD LINE TERMINATOR NETWORK T61AG BIT GATE CONVERTE LOAD RESISTE LCM T61AJ 300 OHM LOAD RESISTOR TO +3V 750 OHM RESISTOR T61AK 630 OHM LOAD RESISTOR T61AM T61AN LOAD RESISTOR-2322 T61A0 NPL FINAL AMP INPUT TERMINATOR T61AP 100 OHM TERMINATING RESISTOR T61AW 100UH INDUCTOR TO -3V 160 OHM RESISTOR TO +3V T61AX T61BD DRIVER DAMPING NETWORK DRIVER COLLECTOR LOAD DRIVER EMITTER LOAD T61BF T61BF T61BG 130 OHM TO +3V T61BI RESISTOR COMB DELAY LINE TERMINATOR RESISTOR 759 OHM TO -3V 100 OHM TO +3V 220 OHM TO +3V T61BJ **T61BK** T61BL T61BM T61BN 300 OHM TO +3V T61B0 RESISTOR 300 OHM TO -3V RESISTOR 1.8K TO -3V T61BP T61BR 180 OHM RESISTOR TO +3V SELECTOR DECOUPLING NETWORK DRIVER COLLECTOR LOAD T6185 T61BT T61BU DECOUPLING NETWORK A DECOUPLING NETWORK B T618V T61BW +12V MARGINAL POWER SUPPLY 110 OHM TO +3V 180 OHM TO +3V **T61BX T61BY** 120 OHM TO +3V 430 OHM TO +6M T61BZ T61CC T61CF FDD DIODE TYPE DD DIODE T61CG TYPE DE DIODE T61CH T61CK RESISTOR-CHOKE T61CL 175 OHM TO +3V BIASING NETWORK WRITE BIT RESISTOR-LCM T61CN T61CR

NUMBER TITLE T61CV TYPE DE DIODE T61CW HPD LOAD RESISTOR T61CY 1.175K LOAD RESISTOR 2K POTENTIOMETER T61CZ T61DA 750 OHM TO +3V T61DC 100 OHM LINE TERMINATOR TO +3V MAGNETIC HEAD DIFFERENTIATOR BIT GATE DIODE LCM T61DD T61DE T61DF RESISTOR 38.3 OHM T61DG BIT GATE CONVERTER LOAD RESISTOR T61EA 600 OHM RESISTOR LOAD TO +6V 164 OHMS TO -3V 820 OHM RESISTOR TO +6V 680 OHM TO +6V T61EE T61FF T61JB 240 OHM TO -3V T61JD T61JE 6V DECOUPLING NETWORK T61SB DETENT LEVEL SETTER CYLINDER A.C. LEVEL SETTER INDEX LEVEL SETTER 51 OHM RESISTOR TO -3V T61SC T61SD T61SE R.C. FILTER 130 OHM RESISTOR TO +6V BIASING NETWORK SINGLE STEP DIFFERENTIATOR T61SJ T61SN T61SQ T61SS RESISTOR 2K T61ST COIL FOR 6 CONTACT REED RELAY POINTS FOR 6 CONTACT RR 6 CONTACT REED RELAY NPL FINAL AMP PULSE SHAPE AND DR AND T63AA T63AB T63AC U03AA U03AD AND INVERT WITHOUT LOAD U03AE OR INVERT WITH LOAD U03AF AND INVERT WITH LOAD 4 WAY EXCLUSIVE OR 8 WAY EXCLUSIVE OR U03AG U03AH AND OR INVERT NO LOAD UO3AI U03AJ U03AK AND INVERT NO LOAD U03AL OR INVERT WITH LOAD U03AM AND INVERT WITH LOAD UO 3AN 4 WAY EXCLUSIVE OR, U03A0 U03AP 8 WAY EXCLUSIVE OR - WITH LOAD AND NETWORK TO 1.2K AND INVERT TERM WITHOUT LOAD U03AQ U03AR AND INVERT TERM WITH LOAD OR INVERT TERM NO LOAD OR INVERT TERM WITH LOAD U03AS U03AT AND TERMINATE OR TERM INV NO LOAD OR TERM INV WITH LOAD U0 3AU U03AV U03AW AND INV TERM NO LOAD AND INV TERM WITH LOAD OR TERM INV NO LOAD OR TERM INV WITH LOAD U03AX U03AY U03AZ U03CA U03CD MEM DRVR GATE AND U03CE MEM DRVR GATE OR U03CF MEMORY DRIVER GATE MEM DRVR GATE GROUPING U03CG AOI GROUPING NO LOAD U03C1 U03CJ AOI TERMINATOR GROUPING-W/LOAD U03CM OR INVERT TERM NO LOAD OR INVERT TERM WITH LOAD U03CN AND INVERT-200 OHM LOAD OR INVERT TERM NO LOAD U03CQ U03CT OR INVERT TERM WITH LOAD U03CU U03CV OR CIRCUIT MEM GATE MEMORY DRIVER GATE GROUPING U03CW U03VC AOI GROUPING-NO LOAD AOI GROUPING WITH LOAD

CIRCUIT

TYPE DO DIODE

TGICS

U03VD

U03VE

AOI GROUPING NO LOAD

CIRCUIT NUMBER	TITLE	CIRCUIT NUMBER	TITLE
U03VF	AOI GROUPING WITH LOAD	V03V0	AND-OR-SS GROUPING
U03VG	AOI NO LOAD GROUPING	V03VP	AND-OR-SS GROUPING
U03VI	OR INVERT WITH LOAD M-40	V05AE	II NO LOAD
U06AA	LSA HIGH SPEED	V05EA	HIGH SPEED INVERTER NO LOAD
U07AH	RRE-AMP GATE DRIVER-IOLI	V05EB	HIGH SPEED CONVERTER 700NS W/L
U07AI	M-4 SENSE PRE-AMPLIFIER	V05EJ	DCI-II-TLD NO LOAD
U07AL	SENSE DETECTOR- M-10	V05EK	DCI-II-TLD 3K LOAD
U07AM	M-4 SENSE AMPLIFIER OR INVERT WITH	V06AE	EIA TERMINATOR
U07AN	M-10 PREAMPLIFIER	V06AF	EIA DRIVER
U07AN	M4 SENSE DETECTOR II	V06EE	NPL LINE RECEIVER NO LOAD
U07AQ	M-10 STROBE DRIVER	V06SA	LINE TERMINATOR
U16AL	M-10 BIT DRIVER B	V07AE	D C HOLE DETECTOR
U20AB	GATED AC TRIGGER	V07AG	A C MARK DETECTOR
U22AA	8.0MC CRYSTAL OSCILLATOR	V07EB	SENSE AMPLIFIER
U22AB	10.0 MC CRYSTAL OSCILLATOR	V07EC	P•D•S AMPLIFIER
U32AA	WORD GATE	V10SB	INVERTER
U40AG	MATRIX SWITCH INPUT-2362	V11AA	SIGNAL EMITTER FOLLOWER
U40AH	MATRIX SWITCH BIAS-2362	V15AA	280MA DRIVER
U40AI	MATRIX OUTPUT-2362	V15AC	REED RELAY DRIVER
U40AJ	DETECTOR STROBE 2362	V15AD	MAGNET DRIVER
U45AE	DELAY LINE-TAPPED	V15AE	TRIGGER DRIVER INVERT
U55AA	15MA SWITCH ID	V15A1	MÅGNET DRIVER 2
U55AD	15 MA SWITCH ID 1K LOAD	V15EC	100 MA HAMMER DRIVER LATCH
U61AB	140 OHM RESISTOR TO +3V	V15ED	350 MA RELAY DRIVER
U61AC	125 OHM TO +3V	V15EH	407 MA DRIVER
U61AD	420 OHM TO +3V	V15SA	RELAY DRIVER 200 MA
U61AE	165 OHM TO +3V	V15SB	RELAY DRIVER 100 MA
U61AF	230 OHM TO +3V	V20AA	LOW SPEED FLIP-FLOP
U61AG	180 OHM TO +3V	V20AB	MG TRIG-700
U61AN	LSA RESISTOR NETWORK	V20SB	150 KC AC TRIGGER
U61AO U61AP U61AQ U61AR U61AU	3/4 AMP FUSE TO +30V LINE TERMINATING NETWORK DELAY LINE DRIVER TERMINATOR DELAY LINE TERMINATOR M-10 SENSE TERMINATION RES	V2OSD V21AL V21AT V21AU V21AU V21AX	500 KC TRIGGER 4.0 USEC FIXED OR DR SINGLE SHOT 45 M S SINGLE SHOT AND S S GROUPING 100 MSEC SINGLE SHOT
U61AV	M-10 MATRIX READ-WRITE RESISTOR TE	V21AY	AND S S GROUPING
U61AW	M-10 MATRIX GATE TERMINATION RESIS	V21AZ	OR VAR SS •99US-200MS
V03AA	AND FOR A1/A01	V21CA	OR VARIABLE SINGLE SHOT
V03AF	OR POWER INVERT NO LOAD	V21CB	MSEC SINGLE SHOT
V03AL	AND EXTEND	V21CC	AND - SS GROUPING
VO3AN	OR-INVERT FOR LO SPEED FLIP FLOP	V21CE	0.5 MS FIXED SINGLE SHOT
VO3AO	AND	V21EA	750 MS SINGLE SHOT
VO3AR	AND EXTENDER	V21EB	2.9 OR 5.6 USEC SINGLE SHOT
VO3AT	OPI NO LOAD	V21EC	1.3 US NON-LATCHING SINGLE SHOT
VO3AU	OPI 2.9K LOAD	V21EE	AND SS GROUPING
VO3AV	OR INVERT NO LOAD	V21EF	1.3 US NON-LATCHING S/S LOAD-3K
VO3AW	OR INVERT 5K LOAD	V21EP	AND SS GROUP FOR FIXED 750 MS
VO3AX	AND EXTEND FOR API-AOPI	V21EQ	VARIABLE SINGLE SHOT
VO3AZ	PARITY CHECK NO.1	V21ER	VAR SS 5.0-20MS
VO3CA	PARITY CHECK NO.2	V21SB	67 MS SINGLE SHOT
V03EA	OR	V21SC	3.1 MS SINGLE SHOT
V03EB	AND INVERT NO LOAD	V21SD	40 MS SINGLE SHOT
V03EC	AND INVERT 5K LOAD	V21SE	50 US SINGLE SHOT
V03EJ	AND OR GROUPING	V21SF	1.6 USEC DELAY CIRCUIT
V03SD	150 KC AC TRIGGER-INPUT NET	V22AA	CONTROL MULTIVIBRATOR
V03SG	DIODE	V22AC	5(100 CPS OSCILLATOR
V03SH	OR-DIODES	V22EG	360 KC OSCILLATOR XTAL
V03SI	40 MS SINGLE SHOT	V22EH	1•6 MC OSCILLATOR XTAL
V03SJ	40 MS SINGLE SHOT	V22EI	100 KC XTAL OSCILLATOR
V03SK	TRIGGER AC GATE	V22EJ	1•44 MC XTAL OSCILLATOR
V03VE	AND-OR-SS GROUPING	V22EL	720 KC XTAL OSCILLATOR
V03VF	AND-OR-SS GROUPING	V22EM	128 KC XTAL OSCILLATOR
V03VG	AND-OR-SS GROUPING	V22EN	200 KC XTAL OSCILLATOR
V03VH	AND-OR-SS GROUPING	V22ET	15.059KC XTAL OSC
V03VI	AND-OR-SS GROUPING	V22SB	.5 PERCENT 269 CPS OSCILLATOR
V03VJ	AND-OR-SS GROUPING	V22SC	0.5 PER CENT 1200 CPS OSCILLATOR
V03VK	AND-OR-SS GROUPING	V40AA	A C CLOCK DETECTOR
V03VL	AND-OR-SS GROUPING	V45AA	4.5-14.6 USEC DELAY CIRCUIT
V03VM	AND-OR-SS GROUPING	V45AB	12-38 US DELAY CIRCUIT
V03VN	AND-OR-SS GROUPING	V45AC	30-97 US DELAY CIRCUIT

а 1

.

CIRCUIT		CIRCUIT	
NUMBER	TITLE	NUMBER	TITLE
V45AG	4.4-17 MS DELAY CIRCUIT	V45EH	DELAY CIRCUIT
V45AH	16-63 MS DELAY CIRCUIT	V455A	75 SEC TIME OUT
V45AI	59-220 MS DELAY CIRCUIT	V55AB	INDICATOR DRIVER
V45AJ	2.0 USEC FIXED DELAY CIRCUIT	V55AE	RESISTOR INDICATOR UP LEVEL
V45AK	4.0 USEC FIXED DELAY CIRCUIT	V55AF	INDICATOR-UPLEVEL RESISTOR
V/65A1	INVERTER FOR DELAY CIRCUITS	V55AG	RESISTOR DOWN LEVEL INDICATOR
	A 5-14 6 USEC DELAX GROUPING	V55A I	700 NS 40 MA IND DRIVER UNLOADED
VAEAN	12-28 USEC DELAY GROUPING	VESAU	IR LEVEL INDICATOR LAND
	20 07 USEC DELAY GROUPING	VESAL	UP LEVEL INDICATOR LAMP
V45AU	2 OUS SIVED DELAT GROUPING	VESAM	DESISTOR FOR VESAV
V45AP	2.003 FIXED DELAT GROUPING	VSJAH	RESISTOR FOR VSDAR
V45AQ	4.0US FIXED DELAY GROUPING	V55AN	UP LEVEL RESISTOR INDICATOR
V45AR	205-660US DELAY GROUPING	V55AO	HP INDICATOR DRIVER
V45AS	1.4-4.5US DELAY GROUPING	V55AP	LP INDICATOR DRIVER
V45AT	67-220MS DELAY GROUPING	V55EA	40 MA LAMP RES NW COMB LOGIC
V45AU	9.7-31 MSEC DELAY GROUPING	V60AA	INTEGRATOR CKT
V45AV	25-81 MSEC DELAY GROUPING	V60AB	INTEGRATOR-G
V45AW	550-178 USEC DELAY GROUPING	V60AC	INTEGRATOR-S
V45AX	1.7-5.5 USEC DELAY CIRCUIT	V60AD	INTEGRATOR-L
V45AY	1.7-5.5 USEC DELAY GROUPING	V60AE	12 VOLT INTEGRATOR
V45AZ	83-260 USEC DELAY CIRCUIT	VOOAF	48 VOLT INTEGRATOR
V45CA	83 260 US DELAY CROUDING	VADED	CARRIAGE TARE INTEGRATOR
VASCA	2 7-12 MS DELAY CROUPING	VAOFE	DECOUPLING NETWORK
VASCD	1 SEC TIMER	VAIAA	2.9K LOAD RESISTOR
VARCE	1 JUG DOME DELAN CHT	VALAC	24 LOAD RESISTOR
V45CF	1.7 US-22UMS DELAT CKI	V61AD	2K RESISTOR TO +/ BV
V45CG.	200 MS DELAT	VOIAD	5K KESISIOK 10 +40V
V45CH	140 MS FIXED DELAY CKT	V61AE	4.5 V DIVIDER
V45CJ	30 MS FIXED DELAY CKT	V61AF	RESISTOR 1.5K
V45EA	1.7 2.9 OR 3.4 US DELAY CKT	V61EA	LOAD RESISTOR 270 OHM
V45EB	VARIABLE DELAY CIRCUIT	V61ED	390 OHM 1 WATT RESISTOR TO +12V
V45EF	FAST RECOV 1.8US DELAY CKT	V61EF	VOLTAGE REFERENCE NETWORK

Index

Α	11
A-(n)	12
Additive Card Code	23
AI	, 77
ALD	
Basic Block	23
Cable Logic Blocks	30
Comments	32
Connector Listing	32
DOT Blocks	28
Engineering Changes	32
Entry and Exit Blocks	29
Example	, 21
Information Inside the Block	23
Information on the Side of the Block	24
Information Outside the Block	24
Input Line	26
Line Names	26
Logic Circuit Blocks	27
Machine Version	19
Output Line	27
Page Number	19
Pseudo Blocks	28
Service-Voltage Logic Blocks	29
Title Block	23
ALD Block	
AND-OR-Inverter Circuits	27
Asterisk on an Input or Output Line	24
Auxiliary Logic Blocks	32
Bi-Stable Circuits	27
Cable Logic Blocks	30
Combination Circuits	28
Component Logic Blocks	32
DOT Blocks	28
E in the Side	25
Entry and Exit Blocks	29
Information Inside the Block	23
Information on the Side of the Block	24
Information Outside the Block	24
Input Line	26
K in the Side	25
Line Five	24
Line Four	24
Line Names	26
Line One	23
Line Six	24
Line Three	23
Line Two	23
Logic Circuit Blocks	27
N in the Side	25
Output Line	27
P or N in the Side	25
Pin Numbers	24
Pseudo Blocks	28
Service-Voltage Logic Blocks	29
Singleshot and Oscillator Circuits	27
Size	23
Special Circuits	28
Title and Version Number	24
Wedges	24
X in the Side	25
Amplifier	
Circuit Description	46
Circuit Numbers Example-T06AA	64

Definition	12 12
ALD Block Circuit Description	11 36
Circuit Number Example-T03AC	$\frac{58}{11}$
Diode AND Gate DOT AND	34 17
Modules Multiple Block Configurations	16
Positive AND (Negative OR)	12 12 10
Symbol	10 10 10
AOI AOPI	36 38
AOX	37 37
ARAsterisk	12
Cable Connector	30 31
Connector Designation	24 26
Following Sumx	23 23 24
Line One of ALD Block.	23 24
Preceding Function	23
Basic Definition	82
Basic Definition Machine Version	82 19 36
Basic Definition Machine Version Bias Blocks ALD	82 19 36 23
Basic Definition Machine Version Bias Blocks ALD Basic Cable	82 19 36 23 23 30
Basic Definition Machine Version Bias Blocks ALD Basic Cable Circuit DOT	82 19 36 23 23 30 27 28
Basic Definition Machine Version Bias Blocks ALD Basic Cable Circuit DOT Entry and Exit Exit Logic Circuit	82 19 36 23 23 30 27 28 29 29 28
Basic Definition Machine Version Bias Blocks ALD Basic Cable Circuit DOT Entry and Exit Exit Logic Circuit Pseudo Serial Number	82 19 36 23 30 27 28 29 29 28 28 28 28 24
Basic Definition Machine Version Bias Blocks ALD Basic Cable Circuit DOT Entry and Exit Exit Logic Circuit Pseudo Serial Number Service-Voltage Special	82 19 36 23 23 30 27 28 29 29 28 28 28 24 29 28
Basic Definition Machine Version Bias Blocks ALD Basic Cable Circuit DOT Entry and Exit Exit Logic Circuit Pseudo Serial Number Service-Voltage Special Voltage	82 19 36 23 23 30 27 28 29 28 29 28 24 29 28 29 28 29
Basic Definition Machine Version Bias Blocks ALD Basic Cable Circuit DOT Entry and Exit Exit Logic Circuit Pseudo Serial Number Service-Voltage Special Voltage	82 19 36 23 23 23 20 27 28 29 28 29 28 29 28 29 28 29 28 29 28 29 28 29 28 29 28 29 28 29 29 29 29 29 29 29 29 29 29 29 29 29
Basic Definition Machine Version Bias Blocks ALD Basic Cable Circuit DOT Entry and Exit Exit Logic Circuit Pseudo Serial Number Service-Voltage Special Voltage C	82 19 36 23 23 30 27 28 29 29 28 28 24 29 28 29 28 29 28 29 28 30 29 28 30 30 27 30 30 30 27 30 30 27 30 30 27 30 30 30 30 30 30 30 30 30 30 30 30 30
Basic Definition Machine Version Bias Blocks ALD Basic Cable Circuit DOT Entry and Exit Exit Logic Circuit Pseudo Serial Number Service-Voltage Special Voltage C Example Cable Crossover Intergate Intragate	82 19 36 23 23 30 27 28 29 29 28 28 24 29 28 29 15 30 30 20
Basic Definition Machine Version Bias Blocks ALD Basic Cable Circuit DOT Entry and Exit Exit Logic Circuit Pseudo Serial Number Service-Voltage Special Voltage C Example Cable Crossover Intergate Intragate Cable Logic Blocks Cable Routing	82 19 36 23 23 27 27 28 29 29 28 29 28 29 28 29 28 29 15 30 30 20 31
Basic Definition Machine Version Bias Blocks ALD Basic Cable Circuit DOT Entry and Exit Exit Logic Circuit Pseudo Serial Number Service-Voltage Special Voltage C Example Cable Crossover Intergate Intragate Cable Routing Code Description Let U time Comments	82 19 36 23 23 27 28 29 29 28 29 28 29 28 29 28 29 28 29 29 28 29 29 28 29 29 28 29 29 29 29 29 29 29 29 29 29 29 29 29

Location Designation	31
Via Points	31
Capacitor	15
ALD Block	15
Card Layout Designation	54
Assembly Drawing	54
Card ALD Sheet	51
Card Characterization	51
Schematic	54
Channel Coordinate	31
Circuit Number	
Definition	82
Examples	54
List	83
Circuit Speeds	33
Circuit Voltages	33
Codes	• •
Cable Block	30
Card Characterization	54
Circuit Number	23
Circuit Speed	33
Component	32
Diserete	54
Modular	04 54
Connector Listing	20
Converter	04
Definition	14
Symbol	14
CB	15
Crossover Cable	.30
CS	15
Current Switch	
Definition	15
Symbol	15
CV	14
DCI	44
Design Automation	
Definition	82
Use	19
Diode	
AND Gate	34
Chip	9
Extender	49
Operating	36
	35
	36
	41
DOT AND	40
ALD Block	98
Definition	17
Symbol	29
DOT Blocks	29
DOT Function	_0
ALD Block	28
DOT AND	17
DOT OR	17
Function	49
DOT OR	
ALD Block	28
Definition	17
Symbol	29
DOT Block	-
AND	, 28
Definition	, 82
UR	, 28
	~~
Engineering Changes	32
CONTRACTOR DATE DATES	29

EVEN	13
Even Count	
Definition	13
Symbol	. 28
ALD Page 20	21
Card Layout	54
Circuit Number	56
Module Circuit	73
Licitize OK	00
Circuit Description	20 41
Definition	12^{11}
Example of Circuit	58
Latch	42
Symbol	12
Exit Blocks	29 40
	49
FF	12
FL	13
Flip Flop	
ALD Block	16
Circuit Description	42
Definition	13
Symbol	10
Flip Latch	10
Circuit Description	42
Definition	13
Multiple Block Configurations	16
Symbol	13
Crowning	00
Grouping	02
НРП	40
	10
ID	47
IDL	47
II	4 4
IND	15
Information Inside the Block	02
Block Serial Number	23 94
Card Location	24
Card Part Number	24
Circuit Number	2,4
Function	23
Line Five	23
Line Four	24 24
Line One	23
Line Six	24
Line Three	23
Line Two	23
Page Coordinate	24 93
Sub-Portion	23
Symbolic Package	23
Information on the Side of the Block	
E	25
K	25 95
P or N	20 25
Wedge	24
X	
	26
Information Outside the Block	26
Information Outside the Block Asterisk on an Input Line or Output Line	26 24
Information Outside the Block Asterisk on an Input Line or Output Line Pin Numbers Title and Version Number	26 24 24 24

Input Line	. 26 . 30 . 30
Inverter ALD Block Circuit Description	. 27 . 44 . 12
Example of Circuit. Multiple Block of Configurations Relay Circuit Analogy.	. 63 . 16 . 10
Symbol	. 12 . 10
L LIM Limiter	. 15 . 15
Definition Example of Circuit Symbol	. 15 . 69 . 15
Line Names	. 20 . 30 . 24
Connector Logic Circuit Blocks AND-OR-Inverter	. 32
Bi-Stable Circuits Combination Circuits Special Circuits	27 28 28
Logic Master Tape (LMT)	. 82 . 46
Machine Version	. 19
	10
Net	. 10 26, 82 26, 82 . 82
Net 25, Net Number 25, Node 25, ODD 0DD Count UD D D I 1	. 10 26, 82 26, 82 . 82 . 13
Net 25, Net Number 25, Node 25, ODD	10 26, 82 26, 82 . 82 . 13 . 13 . 82 . 13 . 59
Net 25, Net Number 25, Node 25, ODD 25, ODD Count 25, ALD Block 25, Definition 25, Example of Circuit. 5 Symbol 00 OR ALD Block	. 10 26, 82 26, 82 . 82 . 13 . 13 . 82 . 13 . 59 . 13 . 12 . 12
Net 25, Net Number 25, Node 25, ODD 25, ODD Count 25, ALD Block 25, Definition Example of Circuit Symbol 00 OR ALD Block Definition Definition Dot OR Circuit Dot OR Circuit	10 26, 82 26, 82 82 82 13 82 13 59 13 12 12 27 12 27 12 53 11 2
Net 25, Net Number 25, Node 25, ODD Count 25, ALD Block 25, Definition 25, Example of Circuit 5 Symbol 0E OR ALD Block Definition 1000 Circuit Doffinition 1000 Circuit Doff OR 1000 Circuit DOT OR 1000 Circuit Exclusive Multiple Block Configurations Positive OR (Negative AND) 1000 Circuit	$\begin{array}{c} 10\\ 26,82\\ 26,82\\ 26,82\\ . 82\\ . 82\\ . 82\\ . 13\\ . 13\\ . 13\\ . 13\\ . 13\\ . 12\\ . 27\\ . 12\\ . 35\\ . 17\\ . 12\\ . 16\\ . 12\\ \end{array}$
Net 25, Net Number 25, Node 25, Node 25, ODD Count 25, ALD Block 26, Definition 25, Example of Circuit 5 Symbol 0E OR ALD Block Definition Diode OR Circuit DoT OR Exclusive Multiple Block Configurations Positive OR (Negative AND) Positive OR Inverter Relay Circuit Analogy Symbol 5	$\begin{array}{c} 10\\ 26,82\\ 26,82\\ 26,82\\ . 82\\ . 82\\ . 82\\ . 13\\ . 13\\ . 13\\ . 13\\ . 13\\ . 12\\ . 13\\ . 12\\ . 13\\ . 12\\ . 12\\ . 12\\ . 16\\ . 12\\ . 12\\ . 10\\ . 10\\ \end{array}$
Net 25, Node 25, ODD Count ALD Block Definition 06 OR ALD Block Definition Diode OR Circuit DOT OR Exclusive Multiple Block Configurations Positive OR (Negative AND) Positive OR Inverter Relay Circuit Analogy Symbol Truth Table Osc Osc Osciilator Circuit Densitive	$\begin{array}{c} 10\\ 26,82\\ 26,82\\ 26,82\\ . 82\\ . 82\\ . 13\\ . 13\\ . 82\\ . 13\\ . 13\\ . 13\\ . 27\\ . 12\\ . 12\\ . 12\\ . 12\\ . 12\\ . 12\\ . 12\\ . 10\\ . 10\\ . 10\\ . 14$
Net 25, Node 25, ODD Count ALD Block Definition Diode OR Circuit DOT OR Exclusive Multiple Block Configurations Positive OR (Negative AND) Positive OR (Negative AND) Positive OR Inverter Relay Circuit Analogy Symbol Truth Table Osc Osc 0sc Oscillator Circuit Description Definition Example of Circuit Symbol Symbol	$\begin{array}{c} 10\\ 26,82\\ 26,82\\ 82\\ 82\\ 13\\ 82\\ 13\\ 59\\ 13\\ 59\\ 13\\ 12\\ 27\\ 12\\ 27\\ 12\\ 16\\ 12\\ 12\\ 16\\ 12\\ 12\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 14\\ 44\\ 14\\ 44\\ 14\\ 14\\ 14\\ 14\\ 14\\ 14$
Net 25, Node 25, ODD Count ALD Block Definition 26, OR ALD Block Definition Diode OR Circuit DOT OR Exclusive Multiple Block Configurations Positive OR (Negative AND) Positive OR (Negative AND) Positive OR Inverter Relay Circuit Analogy Symbol Osc 0sc Osc 0sc Osc 0sc Ostition Example of Circuit Symbol Output Line	$\begin{array}{c} 10\\ 26,82\\ 26,82\\ 82\\ 82\\ 13\\ 82\\ 13\\ 59\\ 13\\ 12\\ 27\\ 12\\ 35\\ 17\\ 12\\ 35\\ 17\\ 12\\ 16\\ 12\\ 12\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 14\\ 44\\ 14\\ 44\\ 14\\ 44\\ 14\\ 14\\ 84\\ 14\\ 27\\ 82\\ 82\\ 82\\ 82\\ 82\\ 82\\ 82\\ 82\\ 82\\ 82$

×

PH Physical Master Tape	14 82
Pins	82
Circuit Description	42
Example of Circuit	14 58
Multiple Block Configurations	16
Symbol Portion	14 82
Positive AND (Negative OR)	12
Positive AND Inverter	12
Positive OR Inverter	$\overline{12}$
Cable	30
DOT	68
Entry and Exit Exit	29 29
Service-Voltage	29
Voltage PWB	29 15
	10
R	15
Resistor	15
	10
Schmitt Trigger	
Definition	14
Symbol Service-Voltage Blocks	14 29
Signal Name	82
Singleshot	82
ALD Block	27
Definition	43 14
Example of Circuit	69
Symbol	14 82
SLT	9
Card Layout	54
List by Name	72
Part Numbers	72 72
Physical Description	9
Use	73
Source	82
SPD	40 14
Special	14
Symbol	14
SS	14
SSA	43 43
ST	14
Sub-Portion	24 23
SW	16
Symbolic Package	82
Amplifier	12
Components	$11 \\ 15$
Converter	14
DOT AND	15 17
DOT OR	17

Exclusive OR	12
Flip Flop	13
Flip Flop Latch	14
Flip Latch	14
Inverter	12
Limiter	15
Multiple Block Configurations	16
Odd Count	13
OR	12
Oscillator	14
Polarity Hold	14
Relay Coil	16
Relay Contacts	16
Schmitt Trigger	14
Singleshot	14
Special	14
Switches	16
Threshold	13
Time Delay	15
ТЪ	15
THRM	15
Threshold	10
ALD Block	28
Definition	12
Symbol	13
Weighting of Inputs	12
Time Delay	14
Circuit Description	45
Definition	15
Symbol	15
Title Block	10
Date	23
Division Requesting	23
Log	23
Machine Type	23
Name	23
	20

Next Available Block	23
Part Number	23
TLD	47
Transistor	9
Transistor Conduction	- 36
Transition	33
Translate Diode	36
Trigger (See "Flip Flop")	
Truth Table	
AND	10
Combination Circuits). 11
Inverter	10
OR	10
Turn-Off Delay	34
Turn-Off Transition	33
Turn-On Delay	34
Turn-On Transition	33
	00
Version	82
Version Page	82
Via	31
Via Coordinate	31
Via Hole	82
Voltage Code	
Card Layout	51
Voltage Logic Blocks	29
Wala	
Defenition 11	
	., 24
Symbol	27
weight	12
XOR	41
	**
Ζ	15

IBM Confidential

COMMENT SHEET

SLT COMPONENT CIRCUITS

FIELD ENGINEERING MANUAL OF INSTRUCTION, FORM Z22-2798-1

FROM	
NAME	OFFICE/DEPT NO.

DATE.

CITY/STATE _

To make this manual more useful to you, we want your comments: what additional information should be included in the manual; what description or figure could be clarified; what subject requires more explanation; what presentation is particularly helpful to you; and so forth.

FOLD

ALONG LINE

5 L J

FOLD

FOLD

How do you rate this manual: Excellent _____ Good _____ Fair _____ Poor _____

Suggestion from IBM Employees giving specific solutions intended for award considerations should be submitted through the IBM Suggestion Plan.

NO POSTAGE NECESSARY IF MAILED IN U.S.A.

FOLD ON TWO LINES, STAPLE, AND MAIL

FOLD

FOLD

CUT ALONG LINE

FIRST CLASS PERMIT NO. 81

POUGHKEEPSIE, N.Y.

BUSINESS REPLY MAIL NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY IBM CORPORATION P.O. BOX 390 POUGHKEEPSIE, N.Y. 12602

ATTN: FE MANUALS, DEPARTMENT B96

FOLD

FOLD

Z22-2798-1

IBM Confidential

 $\hat{\mathbf{x}}_{i}$

International Business Machines Corporation Field Engineering Division 112 East Post Road, White Plains, N.Y. 10601