4-2-6010-0

IBM

STANDARD TRANSISTORS

STANDARDS ENGINEERING

4-2-6010-0

GUIDANCE INFORMATION

The ratings contained in Section 1 of the individual data sheets and indicated with an asterisk are absolute maximum ratings above which the performance of the devices may be permanently impaired. The remaining values are specified maximums and may possibly be exceeded in some applications without permanent damage to the transistor.

Section 2, General Characteristics, contains the specified procurement limits for the parameters indicated including EOL values where available. Design criteria should be toward the EOL values. The circuit components used for testing purposes are shown on the IBM part drawings. The characteristic curves for the type 033 labeled "typical" should be used only as a general guide for application. They are valid only for Texas Instrument production and are taken as initial values not derated to EOL changes in vendor, material, or manufacturing processes could cause a shift in these curves.

Special circuit applications not covered by the specifications should have the approval of Semiconductor Applications Engineering.

TRANSISTOR JEDEC OUTLINE TO-5

Note 1: This zone is controlled for automatic handling. The variation in actual diameter within this zone shall not exceed . 010.

Note 2: The specified lead diameter applies in the zone between .050 and .250 from the base seat. Between .250 and end of lead a maximum of .021 diameter is held. Outside of these zones the lead diameter is not controlled.

Note 3: Measured from maximum diameter of the actual device.

PAGE	2
ISSUE	
DATE	4/61
	PRINTED IN USA

0-0-2041-0

TRANSISTOR NOMENCLATURE

1. SCOPE

1.1 USAGE. This standard gives a glossary of transistor terms in general use at IBM. These terms are applied to the transistor as a device and not to the associated circuitry.

1.2 DERIVATION OF SYMBOL. The symbols used herein are taken from IRE standards on Letter Symbols for Semi-Conductor Devices, 56 IRC 28, S1. When necessary to derive symbols for parameters not listed, the rules as stated in the IRE standard should be used.

 COMPATIBILITY WITH MILITARY STANDARD.
 Where military and commercial IBM differ in the use of a symbol, the military symbols are given in parenthesis.
 NOTE: In military publications and IBM military standards, subscripts are not employed on the symbols.

2. GLOSSARY

2.1	I _{CBO} , (I _{CO})	Collector Cut-Off Current: The current which flows through the collector when the emitter is open circuited and a reverse collector to base voltage is applied.
2.2	I _{CBO*}	Reverse Biased Collector Cut-Off Current: The current which flows through the collector when the base is common and the emitter and collector are at specific reverse voltages.
2.3	$I_{\rm EBO}$, ($I_{\rm EO}$) $I_{\rm BEO}$, ($I_{\rm BO}$)	Emitter Cut-Off Current, Base Cut-Off Current: The current which flows through the emitter or base when the collector is open- circuited and a reverse emitter to base voltage is applied.
2.4	I _{CEO}	The current which flows through the collector when the base is open circuited and a reverse collector to emitter voltage is applied.
2.5	I _{CEO*} I _{BEO*}	Reverse Biased Collector Cut-Off Current, Reverse Biased-Base Cut-Off Current: The base or col- lector current which flows when the emitter is common and the base and collector are at specific reverse voltages.
2.6	I _{ECO*}	Reverse Biased Emitter Cut-Off Current: The current which flows through the emitter when the col- lector is common and the emitter and base are at specific reverse

voltages.

2.7	^{BV} CBO, ^{BV} CO	The reverse voltage required be- tween collector and base to give a specified current when the emitter is open circuited.
2.8	^{BV} EBO, ^{BV} EO	The reverse voltage required be- tween emitter and base to give a specific current when the collector is open-circuited.
2.9	^{BV} CEO, ^{BV} CO	The reverse voltage required be- tween collector and emitter to give a specific current when the base is open-circuited.
2.10	V _{CE}	Collector to Emitter Voltage: The voltage drop from collector to emitter when specific values of col- lector current and base current are applied.
2.11	v _{BE}	Base to Emitter Voltage: The volt- age drop from base to emitter when specific values of collector current and base current are applied.
2.12	$\alpha_{\rm FE}$	The ratio of the output current (I_C) to the input current (I_B).
		$\alpha_{\rm FE}$ is determined by the equation
		$\alpha_{\rm FE} = \frac{I_{\rm C}}{I_{\rm P}}$
		where I_B is the applied base current and I_C (the collector current) is measured in a common emitter configuration.
2.13	α _{FE*} , α _{CB}	Computed common emitter current gain. $\alpha_{FE*} = \frac{I_E}{I_{E-0} + I_E}$ where I_E
		(emitter current) is applied and I_B and I_{CBO} are monitored at a spec- ific collector voltage.
2.14	h _{FE}	The static value of the forward cur- rent transfer ratio. (common emitter)
2.15	V _{PT}	Punch-Through Voltage: The maxi- mum voltage at which the collector can be reverse-biased with respect to the base when the emitter is open- circuited, without causing a spec- ified voltage to appear between the emitter and base.
2.16	t _r	Rise Time (See Fig. 1):The rise time of the input pulse is that time in which the amplitude of the leading edge is increasing from 10% to 90% of the maximum pulse amplitude.

ISSUE						
PAGE						
APPLIC	ABILITY:	DSD	ETD	GPD	SD	

PAGE	1 of 3
ISSUE	,2
DATE	1/61
	PRINTED IN USA

0-0-2041-0

TRANSISTOR NOMENCLATURE

0-0-2041-0

TRANSISTOR NOMENCLATURE

2.25	^f α _b , ^f α _c , ^f α _e	Cut-Off Frequency: The frequency at which the magnitude of the small-signal common base current ratio $(\alpha_{\rm fb})$ has fallen to .707 of the low frequency value.
2.26	^в т, к	Thermal resistance, K factor, is defined as the temperature rise of the junction per unit rise in power dissipation of the device.
2.27	Р	Total Power: The total average power dissipation of a transistor.
2,28	Pc	Collector Power (P_b - Base, P_e - Emitter) : The average power dissipation of the designated electrode.
2.29	т _А	Ambient Temperature: The temp- erature of the medium surrounding an encapsulated transistor.
2.30	т _с	Case Temperature
2,31	т _ј	Junction Temperature

PAGE 3 ISSUE 2 DATE 1/61 PRINTED IN USA

4-2-6010-0

IBM Division Standard

TYPE 013 PT. NO. 344892 EC. 203601 DESCRIPTION Ge Alloy Logic PNP

•	1. MAXIMUM RATINGS - DC															
ſ								11	VITIAL			END OF LIFE				
ľ	VCBO							20	V				15 V			
	VEBO							20	V				15 V			
*	IC or IE							70 1	ma							
ſ	POWER	@ 55°C	2					80	mw							
*	TJLT							75°	С							
	K – fa	ctor (Junctio	on to (Case)			0.2	5							
_						2. 0	SENER	AL CHA	RACTE	RISTIC	S					
			TEST (COND	ITION	IS				DCO	СНА	RACTERI	STICS		S	
		۷c	۱ _C	VB	Ι _Β	V _E	ΙE	Temp	M	IN	T١	PICAL	MA	٩X	LIZ	
			ma		ma		ma	°C	INIT	EOL	INI	T EOL	INIT	EOL	5	
	focb	-5					3	25	5						Mc	
	ICBO	-5						55					32	64	ua	
	IEBO					-5		55		L			32	64	ua	
	IBEO*															
	ICBO*	-5				-0.2							32		ua	
	h _{FE}		7.5		0.19			25	39.5					L		
			7.5		0.267			25		28.1						
	V _{CE}		7.5		0.19			25					0.2		V	
			7.5		0.267			25						0.2	V	
	<u></u>			ļ		L										
	∨ BE		7.5	L	0.19	ļ		25					0.3		V	
						L			ļ							
													<u> </u>			
	. ^t d } t _{on} -	6 -				L		- 25 -	- 0 1-		_	Ļ	+ 1. 0		-us -	
	tot)					ļ										
	ts } toff			-		L					Ļ	1	ļ .	ļ .		
-	t _{st}) on					ļ							-			
-	BVCBO		0.07			L		55	20	15					V	
-	BVEBO						0.07	55	20	15			ļ	ļ	V	
L	RA CEO														ļ	

ISSUE	
PAGE	
APPLIC	CABILITY:

PAGE 1 ISSUE DATE 4/61 PRINTED IN USA

4-2-6010-0

TYPE015 PT.NO.526797 EC. 203349 DESCRIPTION Ge Diffused Logic PNP

1. MAXIMUM RATINGS - DC														
							11		END OF LIFE					
VCBO	•						20 V		15 V					
VEBO							2.8	v			2	.5 V		
C or IE							8 m	a						
POWER	∂ 55°0	C					100	mw						
TJLT							75° (<u>.</u>						
K - fac	ctor (lunctio	n to C	ase)			0.2							
2. GENERAL CHARACTERISTICS														
		TEST (COND	ITION	S				DCO	CHAR	ACTERI	STICS		
	Vc		Vp	1p	VE	le	Temp	M	IN	TY	PICAL	MA	X	IITS
		ma	, D	ma	. 6	ma	°C	INIT	EOL	INI	EOL	INIT	EOL	S
focb	-4					6	.25	70						Mc
ICBO														
LEBO											-			
IBEO*														
ICFO*	-6		0 05				55					55	84	ua
GLU	-			•										
her		8		0.4			25	20				,		
TFE														
Vct	•	8		0 4			25					1 0		· v
I CE												1.0		·
V _{BE}														
td)														
tot tot										t	+	+ -		+ -
t,)														
t _{st} toff			+ -		ŀ				+ -	t	+	+ -	+ ·	+ -
BVCBO		04					55	20	15					v
BVFBO		0.1				0 04	55	2 8	2.5					v
BVCFO						0.04	00	2.0						
	L	I	L	I	L		1	11	L	J	1		1	3

ISSUE	
PAGE	
APPLIC	ABILITY:

PAGE	2
DATE	4/61
	PRINTED IN USA

4-2-6010-0

TYPE 016 PT. NO.526880 EC. 203349 DESCRIPTION Ge Diffused Logic PNP

•	1. MAXIMUM RATINGS - DC															
ſ								11	VITIAL			END OF LIFE				
	V _{CBO}							20 V	τ			1	5 V			
	VEBO							1.8	v			1	.5 V			
*	IC or IE							8 m	a							
	POWER	@ 55°0	C					100	mw							
*	ТЭСТ							75° (3				•			
	K – fa	ctor (Juncti	on to (Case)			0.2								
-		-			2.	GENI	ERALO	HARAC	CTERIST	ICS						
			TEST (COND	ITION	IS				DCO	CHA	RACTERI	STICS		S S	
		٧ _C	۱c	VB	Ι _Β	ν _E	١ _E	Temp	M	IN	TY	PICAL	M	٩X	Ę	
			ma		ma		ma	°C	INIT	EOL	INI	T EOL	INIT	EOL	5	
ſ	focb	-4					6	25	70						Мc	
	ICBO*															
	IEBO															
	IBEO*															
	h _{FE}		8		0.4			25	20							
	V _{CE}		8		0.4			25					1.0		V	
	VBE															
					λ.											
_	^{td} } tan-								L _						_	
	tot on															
	^t s } t															
	t _{st}) off															
	^{BV} CBO		0.4					55	20	15					v	
	^{BV} EBO						0.04	55	1.8	1.5					V	
L	^{BV} CEO															

ISSUE	
PAGE	
APPLICABILITY:	

PAGE 3 ISSUE DATE 4/61 PRINTED IN USA

4-2-6010-0

TYPE 021 PT. NO. 526796 EC. 203601 DESCRIPTION Alloy Logic PNP

				1.	MAXI	MUN		∋s – Do	2					
							1	NITIAL			EN	ID OF	LIFE	
VCBO							25	v			25	v		
VEBO							10) V			10	v		
C or IE							70	ma						
POWER	@ 55°C	2					80							
ТЈСТ							75	°C						
K - fac	ctor (.	Junctio	on to (Case)	**		0.	25						•
				2. (GENER	RALC	CHARACT	ERISTIC	CS					·
		TEST		ITION	IS	_			DCO	CHARA	ACTERIS	STICS		S
	٧ _C	۱c	V _B	I _B	VE	Ι _Ε	Temp	м	IN	TYP	ICAL	MA	X	Ę
		ma	_	ma		ma	°C	INIT	EOL	INIT	EOL	INIT	EOL	5
f cc b														
ICBO														
IEBO														
I _{BEO*}	-6		0.2				55					26	52	ua
	-15		10				55					30	60	ua
ICEO*	-25		0.2				55					30	60	ua
h _{FE}		7.5		0.19			25	39.5				,		
		70		2.0			25	35						
		7.5		0.25			25		30					
V _{CE}		7.5		0.19			25					0.2		v
		70		2.0			25				<u> </u>	0.38		V
		7.5		0.25		ļ	25						0.2	V
[∨] BE		7.5		0.25		ļ	25				ļ	0.3	-	V
		70		2.6		L	25					0.48	, .	V
$\frac{t_d}{t_{on}}$	6 -		. .		[ļ		- 0. 1 -	L .	L	Ļ .	1.0-	L .	us -
tot)				ļ	<u> </u>	ļ								
t _s } t _{off}	18-	ļ	- - 18-		-6	ļ		0.4 -		Ļ	Ļ .	-1.5-	L .	us -
t _{st})			ļ		ļ									
BVCBO			ļ									ļ	ļ	
BVEBO										ļ		ļ	ļ	
BV CEO			· ·							1				

ISSUE PAGE APPLICABILITY:

PAGE 4 ISSUE DATE 4/61 PRINTED IN USA

4-2-6010-0

TYPE 025 PT. NO.318322 EC 203601 DESCRIPTION Alloy Logic PNP

				1. 1	MAXIN	NUM R	ATING	s - DC	2					
							11	VITIAL			EN	ID OF	LIFE	
Vсво							16 V				16 V			
VEBO							6 V				<u>6 V</u>			
IC or IE							70 m	a						
POWER	₽ 55°C	2					80 n	w						
TJCT							75° C	2						
K – fac	tor (_	lunctic	on to C	Case)			0.25							
				2.	GEN	VERAL	CHARA	CTERIS	STICS					
		TEST	COND	ITION	IS				DC	CHAI	RACTERI	5		
	٧ _C	۱c	VB	IB	ν _E	IE	Temp	N	MN	TY	PICAL	MA	٨X	Ë
	-	ma	_	ma	_	ma	°C	INIT	EOL	INI	T EOL	INIT	EOL	5
focb														
ICBO							·					1		
IEBO														
IBEO*	-6		0.2				55					30	60	υa
	-10		6				55					35	70	υα
ICEO*	-16		0.2				55					35	70	υa
hrr		7.5		0.28			25	26.8						
12		20		0.71			25	28.2						
		7.5		0.34			25		22					
VCF	•	7.5	İ	0.28			25					0.2		V
UL.		20		0.71			25					0.2		V
		7.5		0.34			25						0, 2	V
V _{BE}		7.5		0.34			25					0.3		V
		20	[0.89		1	25					0.35		V
td 🔪											•	8		
tot) ^{ton-}	6 -		÷ .				- 25 -	-0.1	+ •	t	Ŧ	+ 1.5	+ -	- US
t _s)			1.0				0.5					1.5		
t _{st} } [†] off	18	 	- 18 -		-6		- 25 -	-0.4	+ ·	t	†	+ 1.5-	+ -	⊢ US
BV _{CBO}														
BVEBO							1		<u> </u>					
BV and							+					 	 	

ISSUE PAGE APPLICABILITY:

PAGE ISSUE DATE 5 4/61 PRINTED IN USA

4-2-6010-0

TYPE 026 PT.NO. 535441 EC. 203600 DESCRIPTION Medium Power Alloy PNP

					1. M	AXIM	UM RA	ATINGS	- DC						
								1	NITIAL			EN	ID OF	LIFE	
Vc	CBO							45 V	7			4	5 V		
VE	BO							15 \	7			1	5 V		
* IC	or l <u>e</u>							350	ma						
PO	WER	@ 55°(C					150	mw						
* Tj	СТ							85° (С						
K	K – factor (Junction to Case)														
					2.	. GEI	NERAL	. CHARA	ACTERI	STICS					
			TEST (COND	ITION	IS				DCO	CHARA	ACTERIS	STICS		S
		٧ _C	۱c	VB	Ι _Β	ν _E	١ _E	Temp	M	IN	TYP	ICAL	MA	X	Ë
			ma		ma		ma	°C	INIT	EOL	INIT	EOL	INIT	EOL	5
fα	c b														
ICE	BO														
IEB	30														
IBE	0*	-20		0.3				55					120		ua
		-30		15				55					200	400	ua
I CE	EO*	-45		0.3				55					200	400	ua
hFI	E		7.5		0.19			25	39.5						
			350		14			25	25						
			350		17.5			25		20					
V _C	E		7.5		0.19			25					0.2		v
			350		14			25					0.35		v
			350		17.5			25						0.35	V
VBI	E		7.5		0.25			25					0.3		v
			350		17.5			25					0.75		v
td }	} t	20-		12				25 -					5		116
tot)	on	20		10				20							ub
t _s	t							<u> </u>							L
t _{st})) .ott														
BV	СВО														
BV	EBO														
BV	CEO														

ISSUE PAGE APPLICABILITY:

PAGE 6 ISSUE DATE 4/61 PRINTED IN USA

ISS DA

4-2-6010-0

TYPE 033 PT. NO. 318324 EC. 203601 DESCRIPTION Alloy Logic PNP

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						1.	MA	XIMUN	A RATIN	1GS - I	DC	0.6					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									11	VITIAL			ËN	ID OF	LIFE		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		VCBO							25 \	7			25 V	r			
* IC or IE 70 ma POWER \odot 55°C 80 mw * JJCT 75°C K - factor (Junction to Case) 0.25 2. GENERAL CHARACTERISTICS VC IC VB IB VE IE Temp C MIN TYPICAL MAX VC IC VB IB VE IE Temp C MIN TYPICAL MAX INIT EOL INIT EOL INIT EOL ICBO 10 0.25 F \simeq 55 F \simeq 55 ICBO 10 0.2 ICBO 10 0.2 I		VEBO							10 \	7			10 V	r			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	*	IC or IE	<u> </u>						70 r	na							
* TJCT 75°C K - factor (Junction to Case) 0.25 2. GENERAL CHARACTERISTICS TEST CONDITIONS D C CHARACTERISTICS D C C HARACTERISTICS D C C O L C H C HARACTERISTICS D C C O L C HARACTERISTICS D C		POWER	@ 55°(C					80 r	nw							
K - factor (Junction to Case) 0.25 2. GENERAL CHARACTERISTICS VC IC VB IB VE IE Temp ma OC CHARACTERISTICS MIN TYPICAL MAX	*	ТЈСТ							75° (2							
2. GENERAL CHARACTERISTICS TEST CONDITIONS D C CHARACTERISTICS 92 f α b l l l Typical MAX MAX MAX ICBO ICBO ICBO ICBO INIT EOL INIT INIT INIT INIT INIT INIT INIT INIT<		K - fa	ctor (.	Junctio	n to C	Case)			0.2	5							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$,					2. 0	SENER	AL CH	IARACT	ERISTIC							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				TEST C	COND	ITION	IS		DCC				HARACTERISTICS				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			V _C	۱c	VB	Ι _B	VE	ΙE	Temp	M	IN	TYF	PICAL	MA	X	L Z	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				ma		ma		ma	°C	INIT	EOL	INIT	EOL	INIT	EOL	5	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		fccb															
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		ICBO															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		IEBO															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		IBEO*	-6		0.2				55					2 6	52	ua	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			-15		10				55					30	60	ua	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		ICEO*	- 25		0.2				55					30	60	ua	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		h _{FE}		7.5		0,19			25	39.5							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				50		2			25	25							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				7.5		0.25			25		30						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		V _{CE}		7.5		0.19			25					0.2		v	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				50		2			25					0.3		v	
V_{BE} 7.5 0.25 25 0.3 V 50 2.5 25 0.48 V td tot ton -6 25 0.1 1 us ts tst toff -18 -6 25 0.4 1.5 us BV_{CBO} 0 0 0 0 0 0 0 BV_{CBO} 0 0 0 0 0 0 0 0 BV_{CBO} 0 0 0 0 0 0 0 0 BV_{CEO} 0 0 0 0 0 0 0 0				7.5		0.25			25						0.2	V	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		VBE		7.5		0.25			25					0.3		V	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				50		2.5			25					0.48		V	
$ \begin{array}{c} t_{d} \\ t_{ot} \\ t_{on} \\ t_{ot} \\ t_{on} \\ t_{on$																	
$ \begin{array}{c} t_{ot} \\ \hline t_{s} \\ \hline t_{st} \\ t_{st} \\ \hline t_{st} \\ t_{st$		- ^{td} } ton-	6 -						25 -	0.1		L	Ļ.	1		us.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		tot) on															
tst) OII BVCBO Image: State Sta		ts toff	18_		18-		-6		25 _	0.4		L	l.	1.5		_us.	
BV _{CBO} BV _{EBO}		t _{st}) on															
BV CEO		^{BV} CBO															
		^{BV} EBO									1.5						
	L	^{BV} CEO															

ISSUE	
PAGE	
APPLIC	CABILITY:

PAGE 7 ISSUE DATE 4/61 PRINTED IN USA

Division Standard

4 TI-033 ÷.

N ł ó 010-TRANSISTOR

ò

4-2-6010-0

TI-033 TRANSISTOR

TI - 033 Transistor @25°C

4-2-6010-0

TI-033 TRANSISTOR

4-2-6010-0

TI-033 TRANSISTOR

4-2-6010-0

TYPE 034 PT.NO. 535009 EC, 203601 DESCRIPTION Alloy Logic PNP

				1. /	MAXIM	MUM	RATING	s – do						
							11	VITIAL			EN	ID OF	LIFE	
Vсво							25 V	-			25 V			
VEBO							10 V	-			10 V			
IC or IE							70 n	1a.						
POWER	@ 55°C	2					80 n	n w						
ТІСТ							75° (5						
K - fac	ctor (_	lunctic	on to C	Case)			0.25	5						
				2	. Ge	NERA	L CHAR	ACTERI	STICS					
		TEST (COND	ITION	IS		DCC				ACTERI	STICS		
	Vc	Ic	VR	IB	VF	١Ē	Temp	N	NIN	TYP	ICAL	MA	X	AITS
		ma		ma	-	ma	۰Ċ	INIT	EOL	INIT	EOL	INIT	EOL	5
focb														
ICBO														
IEBO				* /////										
IBEO*	-6		0.2				55					26	52	ua
	-15		10				55					30	60	ua
ICEO*	-25		0.2				55					30	60	ua
				•		l								
hee		20		0.50		1	25	40						
16		20		0 69					29					
				0.00		1								
VCF	•	20		0.50			25					0.3		v
01		20		0.69									0.3	v
V _{BE}		20		0.69			25				1	0.37		v
$\begin{bmatrix} t_d \\ t_{ot} \end{bmatrix} t_{on}$	6 -						- 25 -	- 0.1-		-	+ -	- 1 -		- us-
-t_+ { toff-	18-		=18 -		-6		- 25 -	- 0.4			+ + -	-1.75		- us-
BVCDC														
BVERO											<u> </u>			
BV														
DI CEO						l								

ISSUE	
PAGE	
APPLIC	CABILITY:

PAGE 8 ISSUE DATE 4/61 PRINTED IN USA

4-2-6010-0

EC.203348 TYPE 063 PT. NO.344891 DESCRIPTION Alloy Logic NPN

1. MAXIN	AUM RATING	5 - DC		
	11	VITIAL	END OF LIFE	
VCBO	20 V	-	15 V	
VEBO	20 V	-	16 V	
IC or IE	50 m	ıa		
POWER @ 55°C	100	mw		
ТЈСТ	75° (2		
K – factor (Junction to Case)	0.2			
2. GEI	NERAL CHARA	CTERISTICS		
TEST CONDITIONS		DCC	HARACTERISTICS	

								J	DC			JIIC5		S
	٧ _C	I _C	VB	1 _B	٧ _E	ΙE	Temp	M	IN	TYP	ICAL	MA	X	5
		ma		ma		ma	°C	INIT	EOL	INIT	EOL	INIT	EOL	5
f cc b	5					3	25	5						Mc
Ісво	5						55					32	64	ua
IEBO					5		55					32	64	ua
IBEO*														
I _{CBO*}	5				0.2							32		ua
600														
h _{FE}		7.5		0.19			25	39.5						
		7.5		0.267			25		28				*	
V _{CE}		7.5		0.19			25					0.2		<u>v</u>
		7.5		0.267			25	_					0.2	v
VBE		7.5		0.19			25			L		0.3		v
td } ton-	- +6 -		L .				25 _	0.1-	Ļ .	Ļ .		1.0	- .	us.
tot) on						ļ						ļ		
t _s } t _{off}		L	L .			L		<u> </u>	Ļ.	Ļ.	Ļ.		_ .	
t _{st}) on														
BVCBO		0.02					25	20						v
BVEBO						0.02	25	20						v
BV CEO														

I	ISSUE			
	PAGE			
	APPLIC	CABILITY:		

PAGE ISSUE DA TE 9 4/61

PRINTED IN USA

4-2-6010-0

TYPE 065 PT.NO. 526798 EC. 203350 DESCRIPTION Diffused Logic NPN

					1. M	AXIM	JM R/	ATINGS	- DC							
								[]	VITIAL			EN	ID OF	LIFE		
Γ	Vсво							20 V	7			1	5 V			
	VEBO							2.8	v			2	.5 V			
*[IC or IE	<u>.</u>						8 m	a							
	POWER	@ 55°0	2					100	mw							
*	TJLT							75° (2							
	K – fa	ctor (J	lunctio	n to C	ase)			0.2								
_					2.	. GEI	NERA	L CHARA	ACTERI	STICS						
			TEST (COND	ITION	IS				D C CHARACTERISTICS					6	
		٧ _C	ι _C	VB	۱ _B	VE	ΙE	Temp	N	IN	TYP	ICAL	MA	X	Ę	
			ma	-	ma		ma _	°C	INIT	EOL	INIT	EOL	INIT	EOL	5	
Γ	focb	4					6	25	70						Mc	
	ICBO															
	IEBO															
Γ	IBEO*															
	ICEO*	6		-0.05				55					55	84	ua	
	h _{FF}		8		0.4			25	20							
	1.5															
							 									
F	VCF	•	8		0.4			25					1.0		v	
	01															
	V _{BE}															
	'd 〉 .															
- Fi	ot fon-							- 1		+ -			+ -		t	
T	s)															
F	t _{st} ^t off			-						+ -					F	
	BVCBO		0.4				*******	55	20	15					v	
F	BVEBO						0.04	55	2.8	2.5					v	
	BV CFO														ļ—	
۴			 	L	L	l	I		u	L		·	L	F	L	

APPLIC	CABILITY:
PAGE	
ISSUE	

4-2-0010-0	4 -	-2-	60	10	- 0
------------	-----	-----	----	----	-----

TYPE 066 PT.NO. 526881 EC. 203350 DESCRIPTION Diffused Logic NPN

	1. MAXIMUM RATINGS - DC														
							[]	NITIAL			ËN	ID OF	LIFE		
VCBO							20 \	7			15 V				
VEBO							1.8	v			1.5 V				
IC or IE							8 m	a							
POWER	@ 55°¢	2					100	mw							
TJCT							75° (2							
K - fa	ctor (.	lunctio	n to C	Case)			0.2								
				2.	GEN	VERAL	CHARA	CTERIS	TICS						
	· · · · · · · · · · · · · · · · · · ·	TEST (ITION	IS				DCO	CHAR/	ACTERIS	STICS		6	
	V _C I _C V _B I _B V _E I							M	IN	TYP	ICAL	MA	٩X	Ë	
		ma		ma		ma	°C	INIT	EOL	INIT	EOL	INIT	EOL	5	
focb	4					6	25	70						Mc	
ICBO*	+6				0.1		55					55	84	ma	
IEBO															
IBEO*															
4															
ICEO*					1							1		1	
h _{FE}		8		0.4			25	20							
×															
V _{CE}		8		0.4			25					1.0		V	
V _{BE}															
td } tar														· .	
tot) on															
ts } tere										L	l .		L.		
t _{st}) off															
BV CBO		0.4					55	20	15					v	
BVEBO						0.04	55	1.8	1.5					v	
BV CEO															

ISSUE			
PAGE			
APPLIC	CABILITY:		

PAGE ISSUE DATE 11 4/61 PRINTED IN USA

4-2-6010-0

TYPE 075 PT.NO. 318323 EC. 203348 DESCRIPTION Alloy Logic NPN

$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	1. MAXIMUM RATINGS - DC															
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								11	VITIAL			EN	ID OF	LIFE		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Vсво							16 V	r			16 V				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	VEBO							6 V	•			6 V				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	IC or IE							50 n								
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	POWER	∂ 55°0	С					100 n	۱w							
K - factor (Junction to Case) 0.2 Z. GENERAL CHARACTERISTICS TEST CONDITIONS D C CHARACTERISTICS 92 Image: transformed colspan="4">VC IC VB IB VE IE mage ma Temp of C MIN TYPICAL MAX ICBO Image: transformed colspan="4">INIT EOL INIT EOL INIT EOL INIT EOL 92 ICBO Image: transformed colspan="4">S55 Image: transformed colspan="4">INIT EOL INIT EOL INIT EOL 92 IEBO Image: transformed colspan="4">Image: transformed colspan="4" </td <td>TJLT</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>75° (</td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	TJLT							75° (2							
2. GENERAL CHARACTERISTICS VC IC VB IB VE IE Temp na Temp °C MIN TYPICAL MAX MAX ICBO I I IO IO IO IO IOI IOI </td <td>K – fac</td> <td>ctor (J</td> <td>Junctio</td> <td>n to C</td> <td>lase)</td> <td></td> <td></td> <td>0.2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	K – fac	ctor (J	Junctio	n to C	lase)			0.2								
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					2.	GEN	IERAL	. CHARA	CTERIS	TICS						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			TEST (ITION	IS				DC	CHAI	RACTERI	STICS			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Vc	IC.	VB	IB	VF	١F	Temp	M	IN	TY	PICAL	MA	λX	LI I	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Ŭ	ma		ma	-	ma	°Ċ	INIT	EOL	INI	I EOL	INIT	EOL	5	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	f∝b															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ICBO															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IEBO															
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	IBEO*	6		-0.2				55					36	72	ua	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		10		6				55					45	90	ua	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ICEO*	16		-0.2				55					45	90	ua	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	h _{FE}		7.5		0.28			25	26.8				· ·			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			20		0.71			25	28.2							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			7.5		0.34			25		22						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	V _{CE}		7.5		0.28			25					0.2		v	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			20		0.71			25					0.2		V	
VBE 7.5 0.34 25 0.3 V 20 0.89 25 0.35 V t_{ot} t_{on} t_{on} t_{on} t_{on} t_{on} t_{on} t_{on			7.5		0.34			25						0.2	v	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{BE}		7.5		0.34			25					0.3		v	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			20		0.89			25					0.35		v	
$\begin{bmatrix} t_{d} \\ t_{ot} \end{bmatrix} t_{on} + 6 = 25 - 0.1 - 1.2 - us -$																
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	^{td} }	-+6 -						25	0 1				1 2	i	110	
$ \begin{array}{c} t_{s} \\ t_{sf} \end{array} t_{off} 12 \hline 12 \hline 25 -0.31.2 - us \\ \hline BV_{CBO} \hline BV_{EBO} \hline BV_{CEO} \hline 0 \hline $	tot) on								0.1				1.2		- 45	
tst) Oti 12 12 23 0.3 1.2 us BV _{CBO} BV	t _s } t ₋ c	- 19 -		19 -				- 25 -	-02-				1 2			
BVCBO BVEBO BVCEO BVEBO	t _{st}) 'orr	12		12				20	-0.3				1.2		us	
BV _{EBO}	BV CBO															
BV CEO	BVEBO															
	BV CEO															

ISSUE	
PAGE	
APPLIC	CABILITY:

PAGE 12 ISSUE DATE 4/61 PRINTED IN USA

4	-2	2 -	6	0	1	0	_	0
•			•	•		•		~

TYPE 077 PT.NO.369067 EC. 203602 DESCRIPTION Thyratron PNPN

				1. MA	XIMU	M RA	rings	- DC							
					_		1	NITIAL			EN	ID OF	LIFE		
VCBO		1					93 1	7			79 V				
VEBO							13 \	T			13 V				
* IC or IE							200	ma							
POWER	@ 55°(C													
* TJCT							75° (2							
K – fa	ctor (J	unctio	n to C	lase)											
				2.	GEN	IERAL	CHARA	CTERIS	TICS						
		TEST O		ITION	IS				DCO	CHAR	ACTERI	STICS			
	Vc	1 _C	VB	IB	VF	١ _F	Temp	M	IN	TYI	PICAL	MA	٨X		
	Ū	ma		ma	_	ma	°Ċ	INIT	EOL	INIT	EOL	INIT	EOL	5	
f oc b															
ICBO															
IFBO															
IBEO*	80		-13				55				1	0.5		ma	
	66		-2				55					0.5	0.75	ma	
I _D C	55						15				1	0.01		ma	
TRIG	60						15						0. 05	ma	
hee															
16															
											1				
VCF	•	200					25					1		v	
V _{BE}															
td) .															
tot ton			F .				- 1			t	+ ·	† ·			
t _s)											1				
t _{st} toff			-				† -		t -	ţ	† .	+ -	† 1		
BVCBO							1								
BVEBO							1								
BV CFO															
	L	I	L	L	I	I	L	Ц	L	L		POINT CONTRACTOR	#	L	

ISSUE	
PAGE	
APPLIC	CABILITY:

PAGE 13 ISSUE DATE 4/61 PRINTED IN USA

4-2-6010-0

TYPE 078 PT. NO. 369068 EC. 203598 DESCRIPTION Thyratron PNPN

			1	. MA	XIMU	M RAT	INGS -	- DC						
							11	VITIAL			EN	ID OF	LIFE	
Vсво							79 V	r			68 V			
VEBO							15 V	T			15 V			
IC or IE							200 ma							
POWER	∂ 55°0	2												
TJCT							75° (3						
K - fac	ctor (.	Junctio	on to C	Case)										
·				2.	GENE	RALC	HARAC	TERIST	ICS					·
		TEST	COND	ITION	IS		.		DC	<u>CHAI</u>	RACTERI	STICS		S
	٧ _C	۱c	VB	Ι _Β	٧ _E	١ _E	Temp	N	<u> </u>	TY	PICAL	MA	٩X	Ę
		ma		ma		ma		INIT	EOL	INI	T EOL	INIT	EOL	5
focb														
Ісво						L								
IEBO									L					
IBEO*	64		-15		L		55		L			0.66		ma
	53		-1.5		L	l	55					0.66	1	ma
IBE	35						25					0.15	0.30	ma
TRIG														
h _{FE}					L							ļ	ļ	
												L		
VCE		200					25					1		V
					ļ	ļ								
♥ BE					ļ									
			L		ļ		8							
					ļ									
$\begin{bmatrix} t_{d} \\ t_{on} \end{bmatrix}$			L .		ļ				÷ -	Ļ	+	Ļ .	- -	Ļ .
tot >					ļ									
t _s t _{off}		ļ			ļ				+ -	Ļ	+	Ļ .	ļ	Ļ .
t _{st})					ļ		8							
BVCBO									ļ				ļ	
BVEBO										ļ		ļ	ļ	
BV CEO														

ISSUE	
PAGE	
APPLIC	CABILITY:

PAGE 14 ISSUE DATE 4/61 PRINTED :N USA

4-2-6010-0

TYPE 083 PT. NO.318325 EC.203348 DESCRIPTION Alloy Logic NPN

	1. MAXIMUM RATINGS - DC															
							I	NITIAL			EN	ID OF	LIFE			
VCBO							20 \	7			20 V					
VEBO							10 \		10 V							
LC or IE							50 ma									
POWER	@ 55°0	С					100 r	nw								
' TJCT							75° (3								
K – fa	ctor (J	unctio	n to C	ase)			0.2		_							
					2. GE	ENER,	AL CHA	RACTER	ISTICS							
		TEST C	COND	ITION	S				DCO	CHARA	ACTERIS	STICS				
	V _C I _C V _B I _B V _E							M	IN	TYP	ICAL	MA	λХ	Ë,		
		ma		ma	_	ma	°C	INIT	EOL	INIT	EOL	INIT	EOL	5		
focb											T					
ICBO																
IEBO																
IBEO*	6		-0.2				55					32	64	ua		
	10		-10				55					36	72	ua		
ICEO*	20		-0.2				55					36	76	ua		
h _{FF}		7.5		0.19			25	39.5								
		50		1.25			25	40								
		7.5		0.25			25		30							
VCE	-	7.5		0.19			25					0.2		V		
		50		1.25			25					0.3		V		
		7.5		0.25			25						0.2	V		
V _{BE}		7.5		0.25			25					0.3		v		
		50		1.7			25					0.45		V		
$\begin{bmatrix} t_d \\ t_{ot} \end{bmatrix} t_{on}$	- 6 -						- 25 -	0.1 -		F	-	-0.8	-	us-		
$\begin{bmatrix} t_s \\ t_{st} \end{bmatrix} t_{off}$	- 12 -		- 12 -				25 -	-0.3 -		-		- 1. 0-		- us -		
BV CBO		[[
BVEBO																
BV CEO								1			1					
	L	ł	L	L	L	1		u	L	1		F100000000000	400000000000000000000000000000000000000	4		

ISSUE	
PAGE	
APPLIC	CABILITY:

PAGE 15 ISSUE DATE 4/61 PRINTED IN USA

4-2-6010-0

TYPE 089 PT. NO. 369559 EC. 203105 DESCRIPTION Diffused Med. Power NPN

I				1.	MAX	IMUM	RATI	NGS -	DC							
								11	VITIAL			EN	D OF	LIFE		
	VCBO							90			9	0 V				
	VEBO							3.		3	.5 V					
*	IC or IE							60	0 ma							
	POWER	@ 55°C	2					2.	5 W							
*	ТЈСТ							85	° C				•			
	K - fa	ctor (J	unctio	n to Co	ase)			12								
					2.	GENE	ERALC	HARAC	TERIST	ICS					r	
			TEST	COND	ITION	IS	1			DC	CHAI	RACTERI	STICS		S	
		۷c	IC	VB	Ι _Β	ν _E	ΙE	Temp	N		TY	PICAL	M/	4X	Ē	
			ma		ma		ma	-0	INIT	EOL	INI	T EOL	INIT	EOL	<u> </u>	
	focb				ļ			8					ļ			
	ГСВО				ļ		ļ						ļ			
	IEBO									L			ļ			
	IBEO*	50	L	-3.5				55		ļ			250	500	ua	
					ļ								ļ			
	ICEO*	90		-0.3				55		L			300	500	ua	
							ļ									
	h _{FE}												ļ	ļ		
														ļ		
	VCE															
								ļ								
	Var															
	' DE															
	+ 1 >							<u> </u>				•	ļ			
	-'a { t _{on} -	- 76 -		-6.				- 25 -			+	+ .	0 . 15-	+	- us-	
	+.)															
	-'s { t _{off} -	-77.5		-5.				- 25 -		+ -	+	+ ·	0. 08-	+ +	- us-	
	BVCRO							¶								
	BVERO													.		
	BVCEC												 	 		
	CEO	i,			I	l	l	I	II	L	L					

ISSUE	
PAGE	
APPLIC	CABILITY:

PAGE 16 ISSUE DATE 4/61 PRINTED IN USA

4-2-6010-0

TYPE 091 PT. NO.369561 EC. 203105 DESCRIPTION Diffused Med. Power NPN

				1. M	AXIM	UM R	ATINGS	- DC							
							I	NITIAL			E٢	ND OF	LIFE		
VCBO							90	V			90 V				
VEBO							3.	5 V			3	.5 V			
۱ _C or l	IC or IE						60	0 ma							
POWER	@ 55°	С					2 \								
TJCT							85	ЪС							
K – fa	ctor (Junctic	on to C	Case)			15								
				2.	GEN	IERA	CHARA	CTERIS	TICS						
		TEST C	OND	ITION	IS				DCO	CHARA	CTERIS	STICS		S	
	٧ _C	۱c	VB	۱ _B	ν _E	١ _E	Temp	M	IN	TYP	ICAL	MA	X	Ë	
		ma		ma		ma	°C	INIT	EOL	INIT	EOL	INIT	EOL	5	
f oc b															
ICBO															
IEBO															
IBEO*	50		-3.5				55					250	500	ua	
ICEO*	90		-0.3				55					300	500	ua	
h _{FE}		100		2.25			25	44.5				4			
		350		8.8			25	39.8							
		100		3.3			25		30.3						
V _{CE}		100		2.25			25					0.4		v	
		350		8.8			25					0.6		v	
		100		3.3			25						0.4	V	
VBE		100		3.3			25					0.4		v	
		350		11.7			25	0.3				0.6		v	
^{td} }	- 30 -		-0 3				25					0.07		us	
tot) on															
t _s } t _s co	_ 30 _		30				25			Ĺ.	ĺ.	0.6		us	
t _{st}) on														,	
BVCBO															
BVEBO		L			L								L		
BV CEO															

ISSUE PAGE APPLICABILITY:

PAGE 17 ISSUE 4/61 PRINTED IN USA

4-2-6010-0

TYPE092PT. NO369562EC.203105DESCRIPTIONDiffused Med. Power NPN

1				1.	MAX	MUM	RATI	NGS – E	DC							
								L	NITIAL		EN	ID OF	LIFE			
	Vсво							50		50 V						
	VEBO							3.	5 V			3	.5 V			
*	IC or IE							60	0 ma							
	POWER	@ 55°	C				2	W								
*	ТЈСТ							85	° C							
ĺ	K – fa	ctor (.	Junctio	n to C	Case)			15								
						2. G	ENER	AL CHA	RACTER	RISTICS	5					
			TEST (COND	ITION	S				DC	CHAR	ACTERI	STICS		S	
		٧ _C	۱c	VB	Ι _Β	ν _E	١ _E	Temp	N	IN	TY	PICAL	MA	۸X	Ę	
			ma		ma		ma	°C	INIT	EOL	INIT	EOL	INIT	EOL	5	
ſ	focb															
	ICBO															
	IEBO															
ſ	IBEO*	30		-3.5				55					500	1000	ua	
	ICEO*	50		-0.3				55					500	1000	ua	
	h _{FE}		100		2.25			25	44.5							
	. –		500		10			25	50							
			100		3.3			25		30.3						
	V _{CE}		100		2.25			25					0.4		v	
			500		10			25					0.6		v	
			100		3.3			25						0.4	v	
	V _{BE}		100		3.3			25					0.4		v	
			500		12.5			25					0.6		v	
	^{td} }	30 -		0 3				25					0 09		us	
	tot on															
	$\begin{bmatrix} t_s \\ t_{st} \end{bmatrix}$ toff	-30 -		. 30 -				_ 25 _			-	+ -	_0.75_		us -	
ľ	BVCBO							×4			<u> </u>					
ľ	BVEBO															
ľ	BV CFO															
L		L			L	L			1	L	L				L	

ISSUE	
PAGE	
APPLIC	ABILITY:

PAGE 18 ISSUE DATE 4/61 PRINTED IN USA

4-2-6010-0

TYPE 093 PT.NO.369560 EC. 203105 DESCRIPTION Diffused Med. Power NPN

					1. /	ΜΑΧΙΛ	NUM I	MRATINGS - DC								
								11	VITIAL			E٢	ID OF	LIFE		
	Vсво							70		7	0 V					
	VEBO							3.		3	.5 V					
*	IC or I	2						60	0 ma							
	POWER	@ 55°	С					2.	5							
*	ТЈСТ							859	° C				-			
	K – fa	ctor (.	Junctio	on to C	Case)			12								
_					2	2. GE	NERA	L CHAR	ACTER	ISTICS						
			TEST O	COND	ITION	IS				DCO	CHA	RACTERI	STICS		5	
		V _C	۱c	VB	IB	VE	ΙE	Temp	N	NIN	TΥ	PICAL	MA	X	Ë	
			ma	-	ma		ma	°C	INIT	EOL	INI	r eol	INIT	EOL	5	
٠ſ	focb															
	ICBO															
	IEBO															
ſ	IBEO*	30		-3.5				55					250	500	ua	
	ICEO*	70		-0.3				55					300	500	ua	
	h _{FE}															
	V_{CE}															
	VBE															
	. ^{td} } ton-	- 56 -		6 -				25	L .	L -		1.	0.15		_us _	
	tot > 011															
ł	$\left\{ \begin{array}{c} t_{s} \\ t_{s+} \end{array} \right\} t_{off}$	-57.5		- - 50 -				- 25 -	-		+	+ .	0.1-		_us _	
	BVCBO															
ł	BVFBO					· · · · · ·				1						
ŀ	BVCFO															
L		L	L	L	L	L	I		l	L	L				1	

ISSUE	
PAGE	
APPLIC	CABILITY:

PAGE 19 ISSUE DATE 4/61 PRINTED IN USA

4-2-6010-0

TYPE 094 PT.NO.369081 EC.203105 DESCRIPTION Diffused Med. Power NPN

	1. MAXIMUM RATINGS - DC														
							INITIAL				END OF LIFE				
VCBO							70	V			70 V				
VEBO							2 V				2 V				
IC or IE							60	0 ma							
POWER	@ 55°0	С					1.	2 W							
^t TJCT							85	° C							
K - fac	ctor (J	lunctio	n to C	ase)			25								
				2.	GEN	ERAL	. CHARAG	CTERIST	ICS						
		TEST		ITION	IS				DCO	CHAR	ACTERI	STICS		S	
	٧ _C	۱c	VB	۱ _B	ν _E	١ _E	Temp	M	IN	TY	PICAL	MA	X	Ξ	
		ma		ma		ma	ەر	INIT	EOL	INI	EOL	INIT	EOL	5	
fœb				L											
ICBO						L									
IEBO		L				ļ									
IBEO*	50		-2			L	55					250	375	ua	
						.									
ICEO*	70		-0.3			L	55					300	500	ua	
						ļ									
h _{FE}		70		2.3			25	30.4							
		350		11.7		l	25	29.9				L			
		70		3.2		L	25		21.8						
V _{CE}		70		2.3			25					0.4		V	
		350		11.7			25				_	0.6		V	
Var		70		3.2			25						0.4	V	
▼ BE		70		3.2		ļ	25			ļ		0.4		V	
		350		16		ļ	25					0.8		V	
			ļ		ļ						•				
td ton-	- 30 -	ļ	-0.3	ļ	.		25 -			-	÷ .	0. 07		us -	
tot)															
L ^t s } ^t off⁻	- 30 -		30-		ļ	ļ	- 25 -			-	+ -	-0.6-	- .	us -	
BV CBO															
BVEBO															
BV CEO															
	L	L	L	L	l	L		II	L	L		1		1	

ISSUE		
PAGE		
APPLIC	ABILITY:	

PAGE 20 ISSUE DATE 4/61 PRINTED IN USA

4-2-6010-0

EC 203010 3-9-60

NPN TRANSISTORS

	TABLE OF CONTENTS	4.6 Dynamic Test
SECTION 1:	SCOPE	4.8 Life Test
SECTION 2:	GENERAL REQUIREMENTS AND CONSTRUCTION	4.8.1 Power Dissipation Life Test 4.8.2 Storage Life Test 4.8.3 Life Test Cut-Off Condition
2.1 2.2 2.3 2.4 2.5 2.7	Applicable Drawings and Specifications Applicable Requirements and Tests Engineering Approval Changes in Construction Workmanship Construction	 4.9 Impact Shock Test 4.10 Thermal Resistance, R_T 4.10.1 Equation 4.10.2 Collector Cut-Off Measurement 4.10.3 Method I
	2.7.1 Hermetically Sealed Case 2.7.2 Case Material and Sealing Method 2.7.3 Soldering to the Leads	4.10.4 Method II 4.10.5 Failure Definition
2.8	Markings	4.11 Visual Examination 4.12 Hermetic Sealing of Transistor Cases
SECTION 3:	ELECTRICAL REQUIREMENTS AND TESTS	SECTION 5: GENERAL NOTES.
3.1 3.2 3.3	General I _{CBO} Collector Cut-Off Current Reverse Biased Cut-Off Currents	1. SCOPE
	$\begin{array}{llllllllllllllllllllllllllllllllllll$	1.1 This specification sets forth requirements for NPN semi-conductor transistors in hermetically sealed cases. (Ref. Paragraph 4.12)
3.4 I _{EBO} 3.5 BV _{CE} 3.6 BV _{EE}	Emitter Cut-Off Current O Collector Breakdown Voltage D Emitter Breakdown Voltage	1.2 The words "component" and "transistor", shall be used hereinafter to indicate the product identified in para- graph 1.1 and described by this specification.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Common Emitter Current Ratio Collector to Emitter Saturation Voltage Base to Emitter Voltage Computed Common Emitter Current Gain Emitter to Base Voltage Common Emitter Turn-On Time Output Shape After Turn-On Output Cornatizance	1.3 Transistors covered by this specification are intended to be used as high reliability components, with a useful life of the order of 20,000 hours of service when properly applied within their ratings in commercial business ma- chines. The transistors are intended to be suitable for use in secondary circuits of equipment for which Underwriters Laboratories listing is required.
3.16 V _{ST} 3.17 f c 3.18 t _{OFF} 3.21 t _{OFF}	Minority Carrier Storage Alpha Cut-Off Frequency Common Emitter Turn-Off Delay Common Emitter Turn-Off Time	1.4 The transistors shall be suitable for storage at and between the ambient temperatures specified on the appli- cable IBM drawing.
SECTION 4:	TESTS TO VERIFY SUITABILITY OF MATERIAL AND DESIGN	2. GENERAL REQUIREMENTS AND CONSTRUCTION
4.1	General	2.1 APPLICABLE DRAWINGS AND SPECIFICATIONS. Components furnished under this specification shall comply with all requirements given honoin and
	4.1.5 Catastrophic Failure	(a) On the applicable IBM drawing;
4.2	Lead Strength Tests	(b) In IBM Quality Specification No. 4015.
4.9	4.2.2 Pull 4.2.3 Bend	In case of conflict between the quality specification and this specification, except as pertaining to acceptance requirements a compliant plane, would be leave a specific the second se
4.3 4.4 4.5	Temperature Shock Test Temperature and Humidity Test	menus, sampling plans, quality levels, grouping of tests and order of tests, this specification shall take precedence. In case of conflict between this specification and the draw-

PAGE	1 of 6
DATE	4/61
	PRINTED IN USA

4-2-6010-0

EC 203010 3-9-60

ing, this specification shall take precedence unless the drawing specifically states that such requirements are modified or superseded by the requirements of the drawing.

2.2 APPLICABLE REQUIREMENTS AND TESTS. Components submitted or supplied in accordance with this specification shall be capable of meeting or passing any and all requirements or tests as follows:

- Section 3: Electrical requirements and tests as specified on the applicable drawing.
- Section 4: Any and all requirements or tests except those specifically designated by the applicable drawing as "Not Applicable".

2.3 ENGINEERING APPROVAL. IBM reserves the right to require that components supplied under this specification be a manufacturer's product previously approved by IBM Engineering. Such approval shall normally be given only after samples representative of the manufacturer's normal production have been examined and tested. Such approval shall not be construed to be a waiver of any requirements of this specification at any time. Engineering approval may be withdrawn or withheld if any of the following conditions exist:

- Performance of any test or inspection process reveals that the requirements of paragraph 2.4, "Changes in Construction" are not being met.
- (2) Inspection of the manufacturer's facilities or records, in accordance with paragraphs 5.2 and 5.3, reveals conditions unsatisfactory to IBM.
- (3) Long-time tests on the product or experience with the product, when properly applied within the ratings defined by the specification and part drawing, indicate that the product does not have the degree of reeliability intended by this specification,

2.4 CHANGES IN CONSTRUCTION. If the manufacturer of a previously approved component desires at any time to change the material, the design, or processing, he shall submit a statement describing the proposed changes together with evidence to justify such changes. IBM reserves the right to require the manufacturer to submit samples incorporating the proposed changes for evaluation by IBM.

2.5 WORKMANSHIP. Transistors shall be processed in a careful and workmanlike manner. The manufacturer shall use good measurement and production techniques to insure the highest degree of product reliability and uniformity practicable under the present state of the art.

2.6 NO PROVISIONS or portion of this specification shall be construed to require the manufacturer to make any production or preshipment tests other than those normally performed during the manufacturing and packaging of the components described herein.

2.7 CONSTRUCTION.

2.7.1 The Transistor shall be enclosed in an hermetically sealed \overline{case} . This shall form a container which is capable of protecting the transistor element under all test conditions specified herein. The active transistor element shall be completely enclosed by the case. (Ref. Paragraph 4.12)

2.7.2 The <u>Case Material</u> and sealing method shall be of such a nature that no loss of sealing effectiveness shall occur due to temperature variations or conditions of humidity as verified by the tests specified in paragraphs 4.4 and 4.5.

2.7.3 The Transistor shall be so constructed as to permit soldering to the leads without impairing any electrical characteristics, as verified by the Thermal Shock Test specified in paragraph 4.7. The wire leads shall be capable of withstanding the mechanical lead strength tests specified in paragraph 4.2.

2.8 MARKINGS.

2.8.1 The Transistor shall be permanently and legibly marked with its IBM type number, manufacturers identification, EIA Date code, and as specified by the applicable IBM drawing.

2.8.2 The Collector Lead shall be positively identified.

3. ELECTRICAL REQUIREMENTS AND TESTS

3.1 GENERAL.

3.1.1 Test Conditions. Unless otherwise specified, standard conditions for testing and making measurements are the following:

Barometric Pressure: 28 inches to 32 inches of mercury.

Relative Humidity: Less than 80%

Ambient Temperature as specified under "Applied Conditions" on the applicable IBM drawing + 2°C.

All voltages and current specified under "Applied Conditions" on the applicable IBM drawing shall be of at least $\pm 2\%$ accuracy.

All electrical components, other than transistors, shown in test circuits herein will have tolerances of $\pm 1\%$ unless otherwise specified.

3.1.2 When Test Conditions or measured quantities are referred to herein as "specified", it shall mean as specified on the applicable IBM drawing unless otherwise stated.

3.2 COLLECTOR CUT-OFF CURRENT, ICBO :

With the emitter open circuited the specified reverse collector to base voltage V_C shall be applied. The collec-

PAGE		2
ISSUE		
DATE		4/61
	PRINTED	IN USA

4-2-6010-0

EC 203010 3-9-60

tor current I_{CBO} shall be as specified.

3.3 REVERSE BIASED CUT-OFF CURRENTS:

3.3.1 Collector Cut-Off Current, $I_{\rm CBO*}$: With the base common and the emitter and collector at the specified voltages the Collector Cut-Off Current $I_{\rm CBO*}$ shall be as specified.

3.3.2 <u>Base Cut-Off Current</u>, $I_{\rm BEO*}$. With the emitter common and the base and collector at the specified voltages, the Base Cut-Off Current $I_{\rm BEO*}$ shall be as specified.

3.3.3 <u>Collector Cut-Off Current</u>, $I_{\rm CEO\ast}$. With the emitter common and the base and collector at the specified voltages, the Collector Cut-Off Current $I_{\rm CEO\ast}$ shall be as specified.

3.4 EMITTER CUT-OFF CURRENT, $I_{\rm EBO}$: With the collector open circuited the specified reverse emitter to base voltage ($V_{\rm E}$) shall be applied. The emitter currents $I_{\rm EBO}$ shall be as specified.

3.5 COLLECTOR BREAKDOWN VOLTAGE, BV_{CEO}. With the emitter open circuited the specified reverse collector current $\rm I_C$ shall be applied. The collector voltage drop shall be as specified.

3.6 EMITTER BREAKDOWN VOLTAGE, BV_{EBO}. With the collector open circuited, the specified reverse emitter current I_E shall be applied. The emitter voltage drop shall be as specified.

3.7 PUNCH THROUGH VOLTAGE: $V_{\rm PT}$ With the specified reverse collector to base voltage (V_C) applied, the emitter to base voltage shall be as specified. The impedance of the emitter circuit must be equal to or greater than 1.0 megohm.

3.8 CURRENT RATIO, COMMON EMITTER, $\swarrow_{\rm FE}$: When the specified values of base current and collector voltage are applied, the collector current shall be as specified.

3.9 COLLECTOR TO EMITTER SATURATION VOLTAGE, V_{CE} : With the specified values of collector current I_C and base current I_B applied in a common emitter configuration, the collector to emitter voltage shall be as specified.

3.10 BASE TO EMITTER VOLTAGE, $v_{\rm BE}$: Using the circuit configurations specified in paragraph 3.9, the base to emitter voltage shall be as specified.

3.11 COMPUTED COMMON EMITTER CURRENT GAIN \mathcal{K} FF*: When the specified values of collector to base voltage V_C and emitter current I_E are applied, the total base current I_B shall be monitored. Under the same dissipation dondic

$$\swarrow_{\text{FE*}} = \frac{I_{\text{E}}}{I_{\text{CBO}} + I_{\text{B}}}$$

Note: The sum of $I_{\mbox{CBO}}$ and $I_{\mbox{B}}$ is an algebraic sum.

3.12 EMITTER TO BASE VOLTAGE, $V_{\rm EB*}$. Using the circuit configuration specified in paragraph 3.11 the emitter to base voltage shall be as specified.

3.13 COMMON EMITTER TURN ON TIME, t_{ON} : The turn on time is defined as the time interval from t = 0 to t = T_r t = 0 is the 10% point of the input pulse . t = T_r is the point at which the output pulse (V_O) reaches the value specified. Turn on time measured in the circuit below, shall not exceed the value specified. The input pulse, R₁, R₂, R₃, C₁, V_c and V_b shall be as specified. V_E shall be ground potential unless otherwise specified. The input shall be a rectangular wave.

3.14 OUTPUT SHAPE AFTER TURN ON: For times greater than t = Tr, described in paragraph 3, 13, the output must be a montoonically increasing function to the value of $V_{\rm Ce}$ specified.

3.15 OUTPUT - CAPACITANCE, C_{ob}. The common collector to base capacitance shall be measured at the specified values of frequency, collector voltage, and emitter current. The collector (Output) capacitance shall be as specified on the applicable IBM drawing.

3.16 MINORITY CARRIER STORAGE, V_{st} : Minority carrier storage will be measured in the circuit below. The output pulse amplitude shall be as specified on the applicable IBM drawing. The input pulse voltage will vary between the two voltages specified in column titled "Input pulse-amplitude," The input pulse, R_1 , R_2 , C_1 and V_E are as specified.

PAGE 3 ISSUE DATE 4/61

4-2-6010-0

EC 203010 3-9-60

3.17 ALPHA CUT OFF FREQUENCY, f _C: Alpha cut off frequency is defined as the frequency at which the magnitude of the small signal (common base) current ratio _{fb} has falled to 0.707 of its initial frequency value, and shall be measured in the circuit shown below. The initial frequency using the theory of the value of specified frequency cut off, V_C, I_E, Δ i_e and R₁ are as specified. The measured alpha cut off frequency shall be greater than or equal to the value specified.

3.18 COMMON EMITTER TURN OFF DELAY, t_{OFF}: The turn off delay time is defined as the time interval from t = 0 to $t = T_1$. t = 0 is the 10% point of the fall time of the input pulse. $T = T_1$ is the 10% point of the change in output voltage. The delay time shall be measured in the circuit below and shall not exceed the value specified. The input pulse, and R_1 are as specified.

3.21 COMMON EMITTER TURN OFF TIME, T_{off} : The turn off time shall be measured using the circuit specified in paragraph 3.13. Turn off time is defined as the time interval from t = 0 to t = t_{off} . t = 0 is the 10% point of the input pulse, t_s t_{off} is the point at which the output pulse (V₀) reaches the value specified. The input pulse R₁, R₂, R₃, C₁, V_c and V_b shall be as specified. V_E shall be at ground potential unless otherwise specified.

4. TESTS TO VERIFY SUITABILITY OF MATERIAL AND DESIGN

4.1 GENERAL.

4.1.1 <u>Components</u> to be subjected to the tests in this Section shall have been previously determined to have individually met all applicable requirements of Section 3.

4.1.2 Components subjected to any of the tests in Section 4 shall not be used in subsequent tests.

4.1.3 Unless Otherwise Specified under individual tests in this Section, a unit failing a particular test is defined as one which fails to meet any or all of the applicable requirements of paragraphs 3.2, 3.3, 3.4, 3.5, and 3.6 after completion of the test. A unit failing a particular test is defined as either a degradation failure or a catastrophic failure, depending on the amount of change in its applicable parameters.

4.1.4 <u>A Component</u> exhibiting a degradation failure is defined as one whose particular parameter under consideration changes from its initial value by an amount greater than either of the following, whichever is larger:

- ±20% of its initial value if a maximum limit is specified, -20% of its initial value, if a minimum limit is for that parameter.
- ±20% of the specified maximum initial limit, -20% of the specified minimum initial limit.

If the specified limit has both a maximum and a minimum value, the allowable change shall be $\pm 20\%$ of its initial value. (See Paragraph 4.8.4 for Life Test Criteria)

4.1.5 <u>A Component</u> considered a catastrophic failure is defined as one whose particular parameter under consideration has a final falling outside the specified 1000 hours limit(s).

PAGE	4
DATE	4/61
	PRINTED IN USA

4-2-601.0-0

4.2 LEAD STRENGTH TESTS.

4.2.1 The Transistors to be subjected to the lead strength tests shall be divided into two groups. Each group shall be subjected to one sub-test only as follows:

4.2.2 With One Axial Lead of the Transistor clamped, a force of 1 pound shall be applied without shock, at right angles to the axis of the transistor at the farthest end of the other leads in turn. A broken lead and/or evidence of loss of seal shall be considered a failure.

4.2.3 Bend Test. Each transistor lead shall be subjected to 3 separate 90 degree bends at the base of the transistor. A broken lead and/ or evidence of loss of seal shall be considered a failure.

4.3 VIBRATION.

4.3.1 Transistors to be subjected to the vibration test shall be mounted rigidly on a vibration platform by a suitable clamp.

4.3.2 The Transistors shall be subjected to a simple harmonic motion having a total displacement of .062 inches with the frequency of motion being varied uniformly between the limits of 10 to 55 cycles per second. The entire frequency range from 10 to 55 cycles shall be traversed in not less than 1 minute.

4.3.3 The Vibrating Motions shall be applied for a period of 20 minutes along each of the three mutually perpendicular axes of the transistors.

4.3.4 A Component exhibiting either of the following shall be considered a failure:

- (a) Evidence of mechanical damage, loosening of the leads or loosening of the element within the case.
- (b) Electrical characteristics out of limits as outlined under paragraph 4.1.3.

4.4 TEMPERATURE SHOCK TEST. The transistors to be tested shall be subjected to five successive temperature cycles each of which shall be as follows:

Step	Temperature	Duration
1	Room Ambient	30 minutes (max)
2	-18° C	15 minutes (min)
3	Room Ambient	30 minutes (max)
4	As specified in para. 4.8.2	15 minutes (min)

The test may be started at any step in the cycle.

4.5 TEMPERATURE AND HUMIDITY TEST. Components to be tested shall be subjected to the following cycle:

Step	Temp. (°C)	Rel. Hum. %	Time(hrs)
Start	25°C +10	Existing Rel. Hum.	
1.Raise to	55±3	90-95	2.5 max.
2. Maintain at	55±3	90-95	3.0
3.Lower to	25 ⁺¹⁰ -2	90-95	2,5
4. Maintain at	25 ⁺¹⁰ -2	90- 95	0.5
5.Raise to	55±3	90-95	2.5 max.
6. Maintain at	55±3	90-95	3.0
7.Lower to	25^{+10}_{-2}	90-95	2.5 max.
8. Maintain at	25 ⁺¹⁰ -2	90-95	remainder of 24 hr. period.

At the completion of step 8, the cycle shall be recommenced at step 1. Four successive cycles (step 1 through 8) shall be performed.

4.6 DYNAMIC TEST.

4.6.1 <u>Conditions of Test</u>. A dynamic display of the voltage-current characteristics of the transistor shall be used for all dynamic tests. The test voltage shall be a continuous, half rectified 60 cps sine wave. Sensing resistor shall be of sufficient magnitude of sense specified cut off currents.

The peak reverse voltage applied across each junction shall be the value where the initiation of breakdown is observed.

Breakdown is that phenomenon occurring in a reverse blased junction, the initiation of which is observed as a transition from the region of high dynamic resistance to a region of substantially lower dynamic resistance for increasing magnitude of reverse current. In certain device types, permanent changes in the characteristics have been observed when the breakdown voltages are exceeded independent of power dissipation. In these cases the maximum instantaneous current must be limited to some value less than that which causes irreversable changes to occur in the characteristic.

4.6.2 The Dynamic Display shall exhibit little or no evidence of instabilities such as drift, hystersis, creep, flutter, etc.

4.7 THERMAL SHOCK TEST. Each lead of each transistor to be tested shall be dipped to a point 3/8 inch from the body of the transistor into a pot of molten solder having a temperature of $260 \pm 5^{\circ}$ C and shall remain there for approximately 3 seconds.

4.8 LIFE TEST.

PAGE		5	
DATE		4/	61
	PRINTED	iN	USA

4-2-6010-0

EC 203010 3-9-60

4.8.1 Power Dissipation Life Test. Each transistor to be tested shall continuously dissipate in a common base configuration the power dissipation and collector current specified, for 1000 hours (without a heat sink unless otherwise specified) at the temperature specified.

4.8.2 Storage Life Test. The transistors to be tested shall be stored at the temperature specified for one thousand hours.

4.8.3 Life Test, Cut Off Condition. Each transistor to be tested shall be placed in a common emitter configuration at the specified values of Collector Voltage ($V_{\rm c}$) and Base voltage ($V_{\rm b}$) for 1000 hours without a heat sink, (unless otherwise specified) at the temperature specified.

4.8.4 Failure of a Transistor on life test shall be determined by the criteria stated in paragraphs 4.1.3, 4.1.4, and 4.1.5, except that the initial value referred to shall be the values measured at the 250 hour point of the 1000 hour life test. These measured values shall be taken for all parameters for which 1000 hour limits are specified on the applicable IBM drawing.

4.9 IMPACT SHOCK TEST.

4.9.1 <u>Transistors</u> to be subjected to the impact shock test shall be securely mounted on a rigid surface.

4.9.2 The Transistors shall be subjected to 6 blows of 2.5 x $\overline{10-3 \text{ LB-Sec}}$ of impulsive force to the side of the case.

4.9.3 During the Test the forward voltage vs. current characteristic of both junctions, shall be observed concurrently.

4.9.4 <u>A Transistor</u> failing the impact shock test is defined as one exhibiting a 1 ohm change in its forward voltage vs. current characteristics.

4.10 THERMAL RESISTANCE.

4.10.1 Thermal Resistance (R_T) shall be computed from the equation:

$$R_{T} = \frac{T_{j} - T_{a}}{Pav}$$

where:

T_i = specified junction temperature in °C.

T_a = ambient temperature in °C.

Pav = average power dissipation.

Pav and T_a shall be determined according to paragraph 4, 10. 3 or 4, 10. 4 whichever is specified.

PAGE	6
DATE	4/61
	PRINTED IN USA

4,10,2 With Each Transistor to be tested maintained at an ambient temperature equal to T_i, the collector cut-off current ($I_{\rm CBO}$) shall be measured and recorded. All measurements of $I_{\rm CBO}$ shall be made with the specified reverse voltage ($V_{\rm c}$) applied between the collector and base leads.

4.10.3 <u>Method I:</u> With the entire transistor case maintained at the specified value of $T_{\rm a}$, the power dissipation shall be adjusted until LCBO equals the value obtained in paragraph 4.10.2. In the equation above, set Pav equal to the adjusted power dissipation, and set $T_{\rm a}$ equal to the specified value.

4.10.4 Method II: $\rm T_a$ shall be monitored at a specified point on the transistor case while power dissipation is adjusted until $\rm I_{CBO}$ equals the value obtained in paragraph 4.10.2.

In the equation of paragraph 4.10.1 set Pav equal to the adjusted power dissipation, and set $\rm T_a$ equal to the monitored value obtained when $\rm I_{CBO}$ equals it specified value.

4,10,5 <u>A Component</u> failing the Thermal Resistance test is defined as one for which the computed value of $\rm R_T$ is greater than the specified value.

4.11 VISUAL EXAMINATION.

4.11.1 The Body Dimensions and lead diameter or terminal dimensions shall be as specified on the applicable IBM drawing.

4.11.2 Markings shall be as specified by paragraph 2.8.

4.11.3 Lead Length and lead or terminal construction shall be as specified on the applicable IBM drawing and by paragraph 2.7 3 Workmanship and/or appearance shall be or must seem to be as required by paragraph 2.5.

4.12 Hermetic Sealing or Transistor Cases.

4.12.1 The Transistor shall meet the Hermetic Seal Requirements outlined in Engineering Specification No. 895874.

5. GENERAL NOTES

5.1 IBM reserves the right to subject transistors submitted or supplied in accordance with this specification to any internal or external visual inspection processes in order to verify that the electrical and mechanical properties of the transistors are consistent with their ratings and the requirements of this specification.

5.2 The manufacturer shall, on request, permit access to his manufacturing facilities and such information as may be necessary to reasonable satisfy IBM that the manufacturer is complying with the provisions and intention of this specification.

5.3 No provisions or portions of this specification shall be interpreted to mean that the manufacturer shall be required to reveal any proprietary information.

TABLE OF CONTENTS

4-2-6010-0

EC 203010 3-9-60

PNP TRANSISTORS

4.8

Life Test

SECTION 1:	SCOPE			4.8.1	Power Dissipation Life Test
SECTION 2:	GENER	AL REQUIREMENTS AND CON-		4.8.2 4.8.3	Storage Life Test Life Test Cut-Off Condition
	STRUCT	TION			
			4.9	Impact	Shock Test
2.1	Applical	ble Drawings and Specifications	4.10	Therma	ll Resistance, R _T
2.2	Enginee	ning Approval		4 10 1	Equation
2.3	Changes	in Construction		4, 10, 2	Collector Cut-Off Measurement
2.5	Workma	inship		4.10.3	Method I
2.7	Constru	ction		4.10.4	Method II
				4.10.5	Failure Definition
	2.7.1	Hermetically Sealed Case			
	2.7.2	Case Material and Sealing Method	4.11	Visual	Examination
	2.7.3	Soldering to the leads	4.12	Hermet	ic Sealing of Transistor Cases
2.8	Marking	şs			
			SECTIO	5: GEN	ERAL NOTES
SECTION 3:	ELECT.	RICAL REQUIREMENTS AND TESTS			
3.1	General	Collector Cut Off Current			
3.2	¹ CBO	Bissed Cut-Off Currents			1. SCOPE
5.5	neverse	Blased Cut-On Currents			
	3.3.1	ICPO* Collector Cut-Off Current	1.1 This	s specific	ation sets forth requirements for PNP
	3.3.2	IBEO*, Base Cut-Off Current	semi-co	nductor tr	ransistors in hermetically sealed cases.
	3.3.3	ICEO*, Collector Cut-Off Current	(Ref. Pa	ragraph 4	4.12)
3.4	IEBO,	Emitter Cut-Off Current			
3.5	BVCBO	Collector Breakdown Voltage	1.2 The	words,	'component' and 'transistor', shall be
3.6	^{BV} EBO	Bunch Through Voltage	used ner	emaiter t	o indicate the product identified in para-
3.1	V PT	Common Emitter Current Patio	graph 1.	1 and des	cribed by ans specification.
3.9	Ver	Collector to Emitter Saturation Voltage	13 Tra	nsistors	covered by this specification are intended
3.10	VDE	Bass to Emitter Voltage	to be use	d as high	reliability components. with a useful
3.11	a FF*	Computed Common Emitter Current Gain	life of th	e order c	f 20,000 hours of service when properly
3.12	VEB	Emitter to Base Voltage	appli e d v	vithin the	ir ratings in commercial business ma-
3.13	tON	Common Emitter Turn-On Time	chines.	The tran	sistors are intended to be suitable for use
3.14		Output Shape After Turn-On	in secon	dary circ	uits of equipment for which Underwriters
3.15	C _{OB}	Output Capacitance	Laborato	ories listi	ng is required.
3.16	VST	Minority Carrier Storage			
3.17	fac	Alpha Cut-Off Frequency	1.4 The	transiste	ors shall be suitable for storage at and
3.18	tOFF	Common Emitter Turn-Off Delay	between	the ambie	-
3,19		Common Base Sense Amplifier	cable IB	w drawin	g.
3.21	$^{\rm t}$ OFF	Common Emitter Turn-Off Time			
SECTION 4.	TESTS	TO VERIFY SUITABILITY OF		2. 0	ENERAL REQUIREMENTS
	MATER	IAL AND DESIGN		А	ND CONSTRUCTION
4 1	General		2.1 API	PLICABL	E DRAWINGS and SPECIFICATIONS.
1.1	General		Compone	ents furni	shed under this specification shall comply
	4.1.4	Degradation Failure	with all	requirem	ents given herein and:
	4.1.5	Catastrophic Failure			
4.2	Lead St	rength Tests	(a)	On the	applicable IBM drawings;
	4.2.2	Pull	(b)	In IBM	Quality Specification No. 4014
	4.2.3	Bend	In case of	of conflict	between the quality specification and this
1 2	Wibnet	27	specifica	tion. exc	ept as pertaining to acceptance require-
4.3	Tempor	sture Shock Test	ments.	ampling	plans, quality levels, grouping of tests an
4 5	Temper	ature and Humidity Test	order of	tests, th	is specification shall take precedence. In
4.6	Dynami	c Test	case of c	conflict be	etween this specification and the drawing,
4.7	Thermal Shock Test		this spec	ification	shall take precedence unless the drawing

PAGE	1	of 7
DATE		4/61
	BRINTED	

4-2-6010-0

EC 203010 3-9-60

specifically states that such requirements are modified or superseded by the requirements of the drawing.

2.2 APPLICABLE REQUIREMENTS AND TESTS. Components submitted or supplied in accordance with this specification shall be capable of meeting or passing any and all requirements or tests as follows:

Section 3:

Electrical requirements and tests as designated on the drawing.

Section 4:

Any and all requirements or tests, except those specifically designated on the drawing as "Not Applicable".

2.3 ENGINEERING APPROVAL. IBM reserves the right to require that components supplied under this specification be a manufacturer's product previously approved by IBM Engineering. Such approval shall normally be given only after samples representative of the manufacturer's normal production have been examined and tested. Such approval shall not be construed to be a waiver of any requirements of this specification at any time. Engineering approval may be withdrawn or withheld if any of the following conditions exist:

- Performance of any test or inspection process reveals that the requirements of paragraph 2.4 "Changes in Construction", are not being met.
- (2) Inspection of the manufacturer's facilities or records, in accordance with paragraphs 5, 2 and 5, 3, reveals conditions unsatisfactory to IBM.
- (3) Long time tests on the product or experience with the product, when properly applied within the ratings defined by the specification and part drawing, indicate that the product does not have the degree of reliability intended by this specification,

2.4 CHANGES IN CONSTRUCTION. If the manufacturer of a previously approved component desires at any time to change the material, the design, or processing, he shall submit a statement describing the proposed changes together with evidence to justify such changes. IBM reserves the right to require the manufacturer to submit samples incorporating the proposed changes for evaluation by IBM.

2.5 WORKMANSHIP. Transistors shall be processed in a careful and workmanlike manner. The manufacturer shall use good measurement and production techniques to insure the highest degree of product reliability and uniformity practicable under the present state of the art.

2.6 NO PROVISIONS or portion of this specification shall be construed to require the manufacturer to make any production or preshipment tests other than those normally performed during the manufacturing and packaging of the components herein.

2

4/61

PRINTED IN USA

PAGE ISSUE

DATE

2.7 CONSTRUCTION.

2.7.1 The Transistor shall be enclosed in an hermetically sealed case. This shall form a container which is capable of protecting the transistor element under all test conditions specified herein. The active transistor element shall be completely enclosed by the case. (Ref. Paragraph 4.12)

2.7.2 The Case Material and Sealing Method shall be of such a nature that no loss of sealing effectiveness shall occur due to temperature variations or conditions of humidity as verified by the tests specified in paragraphs 4.4 and 4.5

2.7.3 The Transistor shall be so constructed as to permit soldering to the leads without impairing any electrical characteristics, as verified by the Thermal Shock Test specified in paragraph 4.7. The wire leads shall be capable of withstanding the lead strength tests specified in paragraph 4.2.

2.8 MARKINGS.

2.8.1 The Transistor shall be permanently and legibly marked with its IBM type number, manufacturers identification, EIA date code, and as specified by the applicable IBM drawing.

2.8.2 The Collector lead shall be positively identified.

ELECTRICAL REQUIRE-MENTS AND TESTS.

3.1 General.

3.1.1 Test Conditions. Unless otherwise specified, standard conditions for testing and making measurements are the following:

Barometric Pressure : 28 inches to 32 inches of mercury

Relative Humidity: Less than 80%

Ambient Temperatures as specified under "Applied Conditions" on the applicable IBM drawing $\pm 2^{\circ}$ C.

All voltages and current specified under "Applied Conditions" on the applicable IBM drawing shall be of at least $\pm 2\%$ accuracy.

All electrical components, other than transistors, shown in test circuits herein will have tolerances of $\pm 1\%$ unless otherwise specified.

3.1.2 When Test Conditions or measured quantities are referred to herein as "specified", it shall mean as specified on the applicable IBM drawing unless otherwise stated.

3.2 COLLECTOR CUT-OFF CURRENT, ICBO

With the emitter open circuited the specified reverse collec-

4-2-6010-0

EC 203010 3-9-60

tor to base voltage $\rm V_C$ shall be applied. The collector current $\rm I_{CBO}$ shall be as specified.

3.3 REVERSE BIASED CUT-OFF CURRENTS:

3.3.1 Collector Cut-Off Current, $I_{\rm CBO*}$: With the base common and the emitter and collector at the specified voltages, the collector Cut-Off Current, $I_{\rm CBO*}$ shall be as specified.

3.3.2 <u>Base Cut-Off Current</u>, $I_{\rm BEO*}$: With the emitter common and the base and collector at the specified voltages, the base Cut-Off Current, $I_{\rm BEO*}$ shall be as specified.

3.3.3 <u>Collector Cut-Off Current</u>, I_{CEO*} : With the emitter common and the base and collector at the specified voltages, the Collector Cut-Off Current I_{CEO*} shall be as specified.

3.4 EMITTER CUT-OFF CURRENT, $I_{\rm E\,BO}$: With the collector open circuited the specified reverse emitter to base voltage ($V_{\rm E}$) shall be applied. The emitter current $I_{\rm E\,BO}$ shall be as specified.

3.5 COLLECTOR BREAKDOWN VOLTAGE, BV_{CEG}: With the emitter open circuited the specified reverse collector current ($I_{\rm C}$), shall be applied. The collector to base voltage drop shall be as specified.

3.6 EMITTER BREAKDOWN VOLTAGE, BV_{EBO}: With the collector open circuited, the specified reverse emitter current ($I_{\rm E}$), shall be applied. The emitter to base voltage drop shall be as specified.

3.7 PUNCH THROUGH VOLTAGE, V $_{\rm PT}$: With the specified reverse collector to base voltage (V_C) applied, the emitter to base voltage shall be as specified. The impedance of the emitter circuit must be equal to or greater than 1.0 megohm.

3.8 CURRENT RATIO, COMMON EMITTER, $_{\rm FE}$: When the specified values of base current (I_b) and reverse collector voltage (V_c) are applied, the collector current shall be as specified.

3.9 COLLECTOR TO EMITTER SATURATION VOLTAGE, v_{CE} : With the specified values of collector current IC and base current I_B applied in a common emitter configuration the collector to emitter voltage shall be as specified.

 $3.10~\rm{BASE}$ TO EMITTER VOLTAGE, (V_{\rm{BE}}). Using the circuit configuration specified in paragraph 3.9, the base to emitter voltage shall be as specified.

3.11 COMPUTED COMMON EMITTER CURRENT GAIN \propto FE*: When the specified values of collector to base voltage V_C and emitter current (I_E) are applied, the total base current (I_B) shall be monitored. Under the same dissipation conditions, the collector cut-off current (I_{CBO}) shall be monitored. The computed common emitter current gain shall be as specified.

$$_{\rm FE*} = \frac{I_{\rm E}}{I_{\rm CBO} + I_{\rm B}}$$

 $\operatorname{NOTE: The sum of} I_{\operatorname{CBO}}$ and I_{B} is an algebraic sum.

3.12 EMITTER TO BASE VOLTAGE, V_{EB*} : Using the circuit configuration specified in paragraph 3.11 the emitter to base voltage shall be as specified.

3.13 COMMON EMITTER TURN ON TIME, t_{ON} : The turn on time is defined as the time interval from t=0 to t = Tr. t = 0 is the 10% point of the input pulse. t = Tr is the point at which the output pulse (V_O) reaches the value specified. Turn on time measured in the circuit below, shall not exceed the value specified. The input pulse, R_1 , R_2 , R_3 , C_1 , V_c and V_1 shall be as specified. V_E shall be at ground potential unless otherwise specified. The input shall be a rectangular wave.

3.14 OUTPUT SHAPE AFTER TURN ON. For times greater than t = Tr, described in paragraph 3.13, the output must be a monotonically increasing function to the value of $V_{\rm ce}$ specified, for one cycle of input waveform.

3.15 OUTPUT CAPACITANCE, C_{OB} : The collector to base capacitance shall be measured at the specified values of frequency (f), collector voltage (V_C), and emitter current (I_E). The collector (Output) capacitance shall be as specified on the applicable IBM drawing.

3.16 MINORITY CARRIER STORAGE, v_{st} : Minority carrier storage shall be measured in the circuit below. The output pulse shall be as specified on the applicable IBM drawing. The input pulse R_1 , R_2 , C_1 , V_c and V_b are as specified.

PAGE ISSUE

DATE

3

4/61 printed in USA

4-2-6010-0

3.17 ALPHA CUT OFF FREQUENCY, f \checkmark C: Alpha cut off frequency is defined as the frequency at which the magnitude of the small signal (common base) current, ratio. (\checkmark fb) has fallen to 0.707 of its initial frequency value, and shall be measured in the circuit shown below. The initial frequency shall be 10% of the value of specified frequency cut off. V_C , I_E , Δi_e and R_1 are as specified. The measured alpha cut off frequency shall be greater than or equal to the value specified.

3.18 COMMON EMITTER TURN OFF DELAY, toff: The turn off delay time is defined as the time interval from t = 0 to t = T_1 . t = 0 is the 10% point of the fall time of the input pulse. t = T_1 is the 10% point of the change in output voltage. The delay time shall be measured in the circuit below and shall not exceed the value specified. The input pulse, and R_1 are as specified.

3.19 COMMON BASE SENSE AMPLIFIER. The time interval from 10% to 90% of the output rise time and the amplitude of the output measured in the circuit below shall be within specifications. The input shall be as specified on the applicable IBM drawing.

PAGE		4	
DATE		4/61	
	PRINTED	IN USA	

 $R_{T_{.}}$ = Inductor Resistance = 100 ohms maximum

 $R_1 + R_1 = 300 \pm 5\%$ ohms.

3.21 COMMON EMITTER TURN OFF TIME, T_{OFF}: The turn off time shall be measured using the circuit descrived in paragraph 3.13. Turn off time is defined as the time interval from t = 0 to t = t_{off}, t = 0 is the 10% point of the input pulse. t = t_{off} is the point at which the outpulse (V₀) reaches the value specified. The input pulse R₁, R₂, R₃, C₁, V_C and V_b shall be as specified. V_E shall be at ground potential unless otherwise specified. The input shall be a rectangular wave.

4. TESTS TO VERIFY SUITABILITY OF MATERIAL AND DESIGN

4.1 GENERAL.

4.1.1 Components to be subjected to the tests in this Section shall have been previously determined to have individually met all applicable requirements of Section 3.

4.1.2 Components subjected to any of the tests in Section 4 shall not be used in subsequent tests.

4.1.3 Unless Otherwise Specified under individual tests in this section, a unit failing a particular test is defined as one which fails to meet any or all of the requirements of paragraphs 3.2, 3.3, 3.4, 3.5, and 3.6 after completion of the test. A unit failing a particular test is defined as either a degradation failure (see paragraph 4.1.4) or a catastrophic failure (paragraph 4.1.5), depending on the amount of change in its applicable parameters.

4-2-6010-0

EC 203010 3-9-60

4.1.4 <u>A Component</u> exhibiting a degradation failure is defined as one whose particular parameter under consideration changes from its initial value by an amount greater than either of the following, whichever is larger.

- ±20% of its initial value if a maximum limit is specified, -20% of its initial value if a minimum limit is specified.
- (2) ±20% of the specified maximum initial limit, -20% of the specified minimum initial limit.

If the specified limit has both a maximum and a minimum value, the allowable change shall be $\pm 20\%$ of its initial value. (See paragraph 4.8.4 for Life Test Criteria)

4.1.5 <u>A Component</u> considered a catastrophic failure is defined as one whose particular parameter under consideration has a final value falling outside the specified 1000 hour limit(s).

4.2 LEAD STRENGTH TESTS.

4.2.1 The Transistors to be subjected to the lead strength tests shall be divided into two groups. Each group shall be subjected to one sub-test only as follows:

4.2.2 With One Axial Lead of the transistor clamped, a force of $1 \mod shall$ be applied without shock, at right angles to the axis of the transistor at the farthest end of the other leads in turn. A broken lead and/or evidence of loss of seal shall be considered a failure.

4.2.3 Bend Test. Each transistor lead shall be subjected to 3 separate 90 degree bends at the base of the transistor. A broken lead and/ or evidence of loss of seal shall be considered a failure.

4.3 VIBRATION.

4.3.1 Transistors to be subjected to the vibration test shall be mounted rigidly on a vibration platform by a suitable clamp.

4.3.2 The Transistors shall be subjected to a simple harmonic motion having a total displacement of .062 inches with the frequency of motion being varied uniformly between the limits of 10 to 55 cycles per second. The entire frequency range from 10 to 55 cycles shall be traversed in not less than 1 minute.

4.3.3 The Vibrating Motions shall be applied for a period of 20 minutes along each of the three mutually perpendicular axes of the transistors.

4.3.4 <u>A Component exhibiting either of the following shall</u> be considered a failure:

- (a) Evidence of mechanical damage, loosening of the leads or loosening of the element within the case.
- (b) Electrical characteristics out of limits as outlined under paragraph 4.1.3.

4.4 TEMPERATURE SHOCK TEST. The transistors to be tested shall be subjected to five successive temperature cycles each of which shall be as follows:

Step	Temperature	Duration
1	Room Ambient	30 minutes (max.)
2	-18° C	15 minutes (min.)
3	Room Ambient	30 minutes (max.)
4	As specified in para. 4.8.2	15 minutes (min.)

The test may be started at any step in the cycle.

4.5 TEMPERATURE AND HUMIDITY TEST. Components to be tested shall be subjected to the following cycle:

Step	Temp(° C)	Re.Hum.%	Time(hrs)
Start	25° C ⁺¹⁰ -2		
1 Raise to	55 ± 3	90-95	2.5 (max.)
2 Maintain at	55 ± 3	90-95	3.0
3 Lower at	25 + 10 - 2	90-95	2.5
4 Maintain at	25 + 10 - 2	90-95	0.5
5 Raise to	55 ± 3	90-95	2.5 (max.)
6 Maintain at	55 ± 3	90-95	3.0
7 Lower at	25 + 10 - 2	90-95	2.5 (max.)
8 Maintain at	25 + 10 - 2	90-95	remainder of 24 hour period.

At the completion of step 8, the cycles shall be recommenced at step 1. Four successive cycles (step 1 through 8) shall be performed.

4.6 DYNAMIC TEST.

4.6.1 Conditions of Test: A dynamic display of the voltage current characteristics of the transistor shall be used for all dynamic tests. The test voltage shall be a continuous half rectified 60 cps sine wave. Sensing resistor shall be of sufficient magnitude to sense specified cut off currents. The peak reverse voltage applied across each junction shall be the value where the initiation of breakdown is observed.

PAGE	5
ISSUE	
DATE	4/61
	PRINTED IN USA

4-2-6010-0

Breakdown is that phenomenon occurring in a reverse biased junction, the initiation of which is observed as a transition from the region of high dynamic resistance to a region of substantially lower dynamic resistance for increasing magnitude of reverse current. In certain device types, permanent changes in the characteristics have been observed when the breakdown voltages are exceeded independent of power dissipation. In these cases the maximum instanteous current must be limited to some value less than that which causes irreversable changes to occur in the characteristic.

4.6.2 The Dynamic Display shall exhibit little or no evidence of instabilities such as drift, hysteresis, creep, flutter.

4.7 THERMAL SHOCK TEST. Each lead of each transistor tested shall be dipped to a point 3/8 inch from the body of the transistor into a pot of molten solder having a temperature of 260 \pm 5°C and shall remain there for approximately 3 seconds.

4.8 LIFE TEST.

4.8.1 Power Dissipation Life Test. Each transistor to be tested shall continuously dissipate in a common base configuration the power dissipation and collector current specified, for 1000 hours (without a heat sink unless otherwise specified) at the temperature specified.

4.8.2 Storage Life Test: The transistors to be tested shall be stored at the temperature specified for one thousand hours.

4.8.3 Life Test, Cut Off Condition. Each transistor to be tested shall be placed inaa common emitter configuration at the specified values of collector voltage $(V_{\rm D})$ and base voltage $(V_{\rm B})$ for 1000 hours without a heat sink, (unless otherwise specified) at the temperature specified.

4.8.4 Failure of a Transistor on life test shall be determined by the oriteria stated in paragraphs 4.1 3, 4.1.4, and 4.1.5, except that the initial value referred to shall be the values measured at the 250 hour point of the 1000 hour life test. These measured values shall be taken for all parameters for which 1000 hour limits are specified on the applicable IBM drawing.

4.9 IMPACT SHOCK TEST.

4.9.1 Transistor to be subjected to the impact shock test shall be securely mounted on a rigid surface.

4.9.2 The Transistor shall be subjected to 6 blows of 2.5 X 10-3 LB-Sec. of impulsive force to the side of the case.

4.9.3 During the Test the forward voltage vs. current characteristics of both junctions, shall be observed concurrently.

4.9.4 <u>A Transistor</u> failing the impact shock test is defined as one exhibiting a 1 ohm change in its forward voltage vs. current characteristics.

PAGE 6 ISSUE DATE 4/61 PRINTED IN USA

4.10 THERMAL RESISTANCE.

4.10.1 Thermal Resistance (R_T) shall be computed from the equation:

$$R_{T} = \frac{T_{j} - T_{a}}{Pav}$$

where:

$$T_j$$
 = specified junction temperature in °C.

T_a = ambient temperature in °C.

Pav = average power dissipation.

Pav and T_a shall be determined according to paragraph 4.10.3 or 4.10.4, whichever is specified.

 $4.10.2~With Each Transistor to be tested maintained at an ambient temperature equal to T_i, the collector cut-off current (<math display="inline">I_{\rm CBO}$) shall be measured and recorded. All measurements of $I_{\rm CBO}$ shall be made with the specified reverse voltage ($V_{\rm c}$) applied between the collector and base leads.

4.10.3 <u>Method I:</u> With the entire transistor case maintained at the specified value of T_a, the power dissipation shall be adjusted until I_{CBO} equals the value obtained in paragraph 4.10.2. In the equation above, set P_{A_V} equal to the adjusted power dissipation, and set T_a equal to the specified value.

4.10.4 Method II: T_a shall be monitored at a specified point on the transistor case while the power dissipation is adjusted until I_{CBO} equals the value obtained in paragraph 4.10.2. In the equation of paragraph 4.10.1 set P_{av} equal to the adjusted power dissipation and set T_a equal to monitored value obtained when I_{CBO} equals its specified value.

4.10.5 <u>A Component failing the Thermal Resistance test is</u> defined as one for which the computed value of $\rm R_T$ is greater than the specified value.

4.11 VISUAL EXAMINATION.

4.11.1 The Body Dimensions and Lead Diameter or terminal dimensions shall be as specified on the applicable IBM drawing.

4.11.2 Markings shall be as specified by paragraph 2.8.

4.11.3 Lead Length and Lead or terminal construction shall be as specified on the applicable IBM drawing and by paragraph 2.7.3. Workmanship and/or appearance shall be or must seem to be as required by paragraph 2.5.

4.12 HERMETIC SEALING OF TRANSISTOR CASES.

4.12.1 The Transistor shall meet the hermetic seal requirements outlined in Engineering Specification No. 895874.

4-2-6010-0

EC 203010 3-9-60

5. GENERAL NOTES.

5.1 IBM reserves the right to subject transistors submitted or supplied in accordance with this specification to any internal or external visual inspection processes in order to verify that the electrical and mechanical properties of the transistors are consistent with their ratings and the requirements of this specification.

5.2 The manufacturer shall, on request, permit access to his manufacturing facilities and such information as may be necessary to reasonably satisfy IBM that the manufacturer is complying with the provisions and intention of this specification.

5.3 No provisions or portions of this specification shall be interpreted to mean that the manufacturer shall be required to reveal any proprietary information or any information not directly related to the procurement of components under this specification.

PAGE	7
ISSUE	
DATE	4/61
	PRINTED IN USA

4-2-6010-0

EC 203352 12-1-60

2.2.5.3 Criteria for Failure for transistors which are not included in 2.2.5.1 or 2.2.5.2 above or are not on the device spec. drawing, have not yet been determined. Transistors in this category are to be exempted from any Water Entry Lot-Sampling tests until their failure criteria have been determined and added to this specification or the device specification drawing.

2.2.6 Disposition of Transistor Lots which have been rejected because of Lot-Sample failure for the Water Entry Test. (Ref. Quality Control Spec. 4014 and 4015)

The transistors of Lots which fail because of the Lot-Sample Water Test must not be submitted to IBM until the IBM approved test to eliminate Gross Leak Transistors (Paragraph 2, 2, 7 below) has been applied to the entire lot.

2.2.7 Test for Transistors of lots which have failed the Water Entry Test. (A test to remove gross leak transistors from failed lots - Ref. Paragraph 2.2.6 above)

2.2.7.1 Transistor Lots which have failed the Lot-Sampling, Water Entry Test may be re-submitted to IBM after the following test has been performed on all the transistors which make up the lot.

2.2.7.2 The Transistors of Lots to be tested should be placed in a suitable chamber and the chamber shall be evacuated to a vacuum of 28^{10} of Hg (or lower). The vacuum shall be maintained for a period of 5 minutes. After this period pure water shall be introduced into the chamber so that all of the contained transistors are fully submerged for 5 minutes in water which is under an exerted gage pressure of 15 lbs./sq.inch (see Paragraph 2.2.3 for definition of pure water)

2.2.7.3 All Transistors which have been subjected to the Water Test (Paragraph 2, 2, 7.2 above) must be tested according to the appropriate test procedure and failure criteria outlined in Paragraph 2, 2, 5, 1 and 2, 2, 5, 2 above. Transistors that fail must be removed from the lot.

2.2.7.4 Transistors which are removed from the lot are not eligible for further re-submission to IBM. All other transistors which make up the lot may be re-submitted to IBM for acceptance according to Quality Control Spec. 4014 and 4015.

2.3 GENERAL STATEMENT concerning the use of additional types of Water Entry tests on IBM Semi-conductor devices.

2.3.1 The Use of Any Other Form of Water Entry Test or variation thereof must not be used on Semi-conductors supplied to IBM without prior approval by IBM.

2.4 GENERAL STATEMENT concerning the use of any technique employed to fill or otherwise stop-off transistor case leaks.

2.4.1 The Use of Any Technique to fill or otherwise stopoff transistors case leaks on transistors which are to be supplied to IBM must first be approved by IBM.

PAGE ISSUE DA TE	2 of 2
	4/61
	PRINTED IN USA

3. GENERAL NOTES

3.1 IBM reserves the right to subject Semi-conductors submitted or supplied in accordance with this specification to the tests outlined herein, in order to verify that the Hermetic Seal properties of the semi-conductors are consistent with the requirements of this specification.

3.2 The manufacturer shall, on request, permit access to his manufacturing facilities and such information as may be necessary to reasonably satisfy IBM that the manufacturer is complying with the provisions and intention of this specification.

3.3 No provisions or portions of this specification shall be interpreted to mean that the manufacturer shall be required to reveal any proprietary information or any information not directly related to the procurement of components under this specification.