<|lI!

Data Stream and Object Architectures

Mixed Object Document Content
Architecture Reference

SC31-6802-07

<|lI!

Data Stream and Object Architectures

Mixed Object Document Content
Architecture Reference

SC31-6802-07

Note!
FBefore using this information and the product it supports, read the information in|[“Notices” on page 625,

Eighth Edition (May 2006)

This edition applies to the IBM Mixed Object Document Content Architecture. It replaces and makes obsolete the
previous edition, SC31-6802-06. This edition remains current until a new edition or Technical Newsletter is
published.

Technical changes are indicated by a vertical bar to the left of the change. Editorial changes that have no technical
significance are not noted. For a detailed list of changes, seel“Summary of Changes” on page 623.|

Requests for IBM publications should be made to your IBM representative or to the IBM branch office serving your
locality. If you request publications from the address given below, your order will be delayed because publications

are not stocked there. Many of the IBM Printing Systems Division publications are available from the web page
listed below.

Internet
FVisit our home page at: http://www.ibm.com/printers

A Reader’s Comments form is provided at the back of this publication. If the form has been removed, you can send
comments by fax to 1-800-524-1519 (USA only) or 1-303-924-6873; by E-mail to printpub@us.ibm.com; or by mail to:

IBM Printing Systems Division
Department H7FE Building 004N
Information Development

PO Box 1900

Boulder CO 80301-9191 USA

IBM may use or distribute whatever information you supply in any way it believes appropriate without incurring
any obligation to you.

© Copyright International Business Machines Corporation 1990, 2006. All rights reserved.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Preface

™

This book describes the functions and services associated with the MO:DCA
architecture.

This book is a reference, not a tutorial. It complements individual product
publications, but does not describe product implementations of the architecture.

Who Should Read This Book

This book is for systems programmers and other developers who need such
information to develop or adapt a product or program to interoperate with other
presentation products.

I AFP Color Consortium

Portions of the content in this book relating to color management were developed
by the current members (the "Members”) of the AFP Color Consortium™
("AFPCC™"). The AFPCC began in 2004 with a goal of adding color management
support to AFP. It is an industry-wide collaboration whose members include both
AFP application providers and AFP printer manufacturers. A list of the current
Members of the AFPCC can be found at http://www.afpcolor.org. The Members have
entered into a separate agreement by which they have identified those Members
who have made contributions to, and therefore have ownership rights in, such
portions of the content. Such Members shall be referred to as "Contributing
Members.”

How to Use This Book

This book is divided into seven chapters, five appendixes, and a glossary.

+ [Chapter 1, “Overview of Presentation Architecture”|introduces the IBM®
presentation architectures and positions the MO:DCA architecture as a strategic
presentation data stream architecture.

* [Chapter 2, “Introduction to the MO:DCA Architecture”] introduces the concepts
that form the basis of the MO:DCA architecture.

* [Chapter 3, “MO:DCA Overview”| provides an overview of MO:DCA data
structures and their use.

* |Chapter 4, “MO:DCA-P Objects”| provides the structure definitions for
MO:DCA-P objects.

+ [Chapter 5, “MO:DCA Structured Fields”] provides the syntax and semantics for
MO:DCA structured fields.

Chapter 6, “MO:DCA Triplets”| provides the syntax and semantics for MO:DCA
triplet data structures.

Chapter 7, “MO:DCA Interchange Sets”| provides complete descriptions of the
MO:DCA interchange sets and describes how products can become valid
generators and receivers of the MO:DCA architecture.

Appendix A, “Color Resources”| provides information on color resources and on
I color to grayscale conversion.

© Copyright IBM Corp. 1990, 2006 iii

* |Appendix B, “Resource Access Table (RAT)”|defines the Resource Access Table,

which is used to locate and process resources such as TrueType and OpenType
I fonts.

* |Appendix C, “MO:DCA Migration Functions”| provides the syntax and semantics
for MO:DCA migration structured fields, triplets, parameters, and provides the
structure definitions for MO:DCA migration objects.

Appendix D, “MO:DCA Registry”| provides a registry for object type identifiers,
media type identifiers, and color profile identifiers.

» |Appendix E, “Cross-References”| provides tables of MO:DCA structured fields
and triplets sorted by identifier and by name.

* The “Glossary” defines some of the terms used within this book.

iV Mixed Object Document Content Architecture Reference

How to Read the Syntax Diagrams

Throughout this book, syntax is described using the following formats. The syntax
of the structured field, the principal MO:DCA data structure, is shown with a
horizontal representation, followed by a table that lists the data elements contained
in the structured field. The syntax of the triplet, the secondary MO:DCA data
structure, is shown using the table only. Six basic data types are used in the syntax

descriptions:

CODE Architected constant

CHAR Character string, which may consist of any code points
BITS Bit string

UBIN Unsigned binary

SBIN Signed binary

UNDF Undefined type

Structured Field Introducer

Structured Field Introducer

SF Length (2B)

ID = X'D3TTCC'

Flags
(1B)

Reserved
X'0000'

Structured Field Data

The meanings of the elements of the horizontal representation are as follows:

¢ The Structured Field Introducer, which identifies the length and the function or
type of the structured field, is composed of the following parameters:

Element

SF Length

ID = X'D3TTCC'

Flags

contained in the set of parameters described in the table.

Meaning

The total length of the structured field including
the length of the SF Length element.

The structured field identifier—consisting of the
structured field class, type, and category
codes—that uniquely identifies each MO:DCA
structured field.

The set of bits or flags that identify if the
structured field is segmented of if a structured
field extender or padding is to be used.

* The Structured Field Data, which provides the structured field’s effect, is

For a detailed discussion of the data elements comprising MO:DCA structured

fields, see [“MO:DCA Structured Field Syntax” on page 20

Data
The syntax for a MO:DCA data structure is as follows:
Offset Type Name Range Meaning M/O Exc
The field’s The Name of field, if [Range of valid Meaning or purpose of the M Code
byte offset. field’s applicable. values, if data element. or
data applicable. O
type.

A blank entry in the Range column indicates that there are no restrictions on the
acceptable values.

Preface V

Certain fields may be denoted in the Meaning column as reserved. A reserved field
is a parameter that has no functional definition at the current time, but may have
at some time in the future. All bytes in any field that the MO:DCA architecture
defines as a reserved field should be given a value of zero by generating
applications. Receiving applications should ignore any values contained in a
reserved field.

Additional columns appear to the right of the Meaning column. These columns
are:
M/O Mandatory or optional

Exc Exception code for the exception conditions that are possible for the data
element. See [“Exception Conditions” on page 73| for further information
concerning exception conditions.

The following is an example of the MO:DCA syntax:

Structured Field Introducer

SF Length (2B) | ID = X'D3AFDS' Flags Reserved Structured Field Data
(1B) X'0000'

Offset Type Name Range Meaning M/O Exc

0-7 CHAR | OvlyName Name of the overlay resource. M X'06'

8-10 SBIN XolOset 0-32767 X axis origin for the page M X'06'
overlay

11-13 SBIN YolOset 0-32767 Y axis origin for the page M X'06'
overlay

14-15 CODE OvlyOrent X'0000', X'2D00', | The overlay’s X axis rotation @] X'02'

X'5A00', X'8700' from the X axis of the
including page coordinate

system:
X'0000' 0 degrees
X'2D00' 90 degrees
X'5A00' 180 degrees
X'8700' 270 degrees
16-n Triplets See [“IPO Semantics” on page| (@) X'10'

for triplet applicability.

Vi Mixed Object Document Content Architecture Reference

Related Publications

Several other publications may help you understand the licensed programs used

with the data streams described in this book.

IBM Architecture Publications

Table 1. IBM Architecture Publications

Title

Order Number

Bar Code Object Content Architecture Reference 5544-3766
Font Object Content Architecture Reference 5544-3285
Image Object Content Architecture Reference SC31-6805
Intelligent Printer Data Stream Reference 5544-3417
Graphics Object Content Architecture Reference SC31-6804
Mixed Object Document Content Architecture Reference SC31-6802
Presentation Text Object Content Architecture Reference SC31-6803
Graphics Object Content Architecture for Advanced Function Presentation 5544-5498
Reference

Character Data Representation Architecture Reference SC09-2190
Color Management Object Content Architecture Reference 5550-0511

You can order any of these architecture publications separately, or order the first

seven publications using SBOF-6179.

IBM Advanced Function Presentation Publications

Table 2. IBM Advanced Function Presentation Publications

information about the PPFA product that is used to create AFP page
definitions and form definitions.

Title Order Number
Guide to Advanced Function Presentation. Contains a comprehensive G544-3876
overview of AFP™ and AFP concepts.

Advanced Function Presentation: Programming Guide and Line Data Reference |S544-3884
Advanced Function Presentation: Printer Information. Contains detailed G544-3290
characteristics about IBM'’s page printers.

Technical Reference for IBM Expanded Core Fonts 5544-5228
Technical Reference for Code Pages 5544-3802
Font Summary for AFP Font Collection 5544-5633
IBM Advanced Function Presentation Fonts: Font Summary G544-3810
IBM Technical Reference for AFP Font Collection Japanese Fonts 5544-5685
IBM Technical Reference for AFP Font Collection Korean Fonts 5544-5686
IBM Technical Reference for AFP Font Collection Simplified Chinese Fonts 5544-5687
IBM Technical Reference for AFP Font Collection Traditional Chinese Fonts 5544-5688
Overlay Generation Language/370: User’s Guide and Reference. Contains 5544-3702
information about the OGL product that is used to create AFP overlays.

Page Printer Formatting Aid User’s Guide and Reference. Contains G544-5284

Preface Vil

Table 2. IBM Advanced Function Presentation Publications (continued)

Title

Order Number

version of most of the books referred to in this chapter.

Advanced Function Presentation Workbench for Windows: Using the Viewer G544-3813
Application. Contains information about using it with AFP APIL

Advanced Function Presentation Conversion and Indexing Facility: Application | G544-3824
Programming Guide. Contains information about using ACIFE.

Advanced Function Presentation: Toolbox for Multiple Operating Systems G544-5292
User’s Guide

AFP API Programming Guide and Reference. Contains information for using | 5544-3872
the AFP Application Programming Interface.

Printing and Publishing Collection Kit. Contains the online, softcopy SK2T-2921

IBM Content Manager Image Plus Publications

Table 3. IBM Content Manager Image Plus Publications

Title

Order Number

IBM ImagePlus Online Library CD-ROM SK2T-2131
ImagePlus MVS/ESA™ General Information Manual GC31-7537
ImagePlus Visuallnfo™ for AS/400 Application Programming Guide and SC34-4586
Reference

IBM EDMSuite™ OnDemand User’s Guide SC26-9810

IBM Graphics and Image Publications

Table 4. IBM Graphics and Image Publications

Title

Order Number

GDDM, 5748-XXH: General Information Manual. Contains a comprehensive

overview of graphics and image support for MVS ", VM, VSE and OS400
systems.

GC33-0100

Introducing GDQF. Contains a comprehensive overview of Graphic Query
and Display Facilities for complex manufacturing graphics, image, and
publishing products.

GH52-0249

OS/2 Presentation Manager GPI. Contains a description of the PM Graphic
Programming Interface.

G362-0005

Print Services Facility Publications

Table 5. Print Services Facility Publications

Title

Order Number

Print Services Facility/MVS: Application Programming Guide 5544-3673
Print Services Facility/VM: Application Programming Guide 5544-3677
Print Services Facility/VSE: Application Programming Guide 5544-3666
Print Services Facility/2: Getting Started G544-3767
IBM AIX Print Services Facility/6000: Print Services Facility for AIX Users G544-3814
AS/400 Information Directory GC21-9678

viii Mixed Object Document Content Architecture Reference

Infoprint Manager Publications

Table 6. Infoprint Manager Publications

Title

Order Number

Infoprint Manager for AIX Publications (CD-ROM)

SK2T-9266

Infoprint Manager for Windows Publications (CD-ROM)

SK2T-9288

Transform Manager Publications

Table 7. Transform Manager Publications

Title

Order Number

Infoprint Transform Manager for Linux: Administration

5550-0391

Preface

ix

X Mixed Object Document Content Architecture Reference

Contents

Preface.

Who Should Read Thls Book

AFP Color Consortium.

How to Use This Book.
How to Read the Syntax Dlagrams

Related Publications .
IBM Architecture Pubhcatlons . . .
IBM Advanced Function Presentation Pubhcatlons .
IBM Content Manager Image Plus Publications .
IBM Graphics and Image Publications .
Print Services Facility Publications
Infoprint Manager Publications .
Transform Manager Publications

Figures .
Tables .

Chapter 1. Overview of Presentation Architecture.
The Presentation Environment
Architecture Components .
Data Streams .
Objects
Application- Enabhng Products

Chapter 2. Introduction to the MO:DCA Architecture.

What is the Mixed Object Document Content Architecture?.
Organization of the Architecture
Compliance with the Architecture .
MO:DCA Concepts .

Documents

Pages

Overlays

Page Segments

Objects .

Object Containers

Environment Groups .

Resource Groups

Page Groups . .

Print Control Objects .

Process Elements

Chapter 3. MO:DCA Overview .

MO:DCA Data Structures.

Notation Conventions . .

MO:DCA Structured Field Syntax .
Structured Field Introducer .
Structured Field Data .
Structured Field Introducer Extensmn
Structured Field Segmentation .
Structured Field Padding .
Structured Field Formats .
Data Stream Format

MO:DCA Data Stream States

© Copyright IBM Corp. 1990, 2006

. iii
. i
. iii
. il

. vii
. Vil
. vil
. Viii
. Viii
. Vviil
. ix
. ix

. XXV

. XXVii

UL W NN~ =,

.11
.11
.12
.12
.12
.13
.13
.13
.15
. 16
.17
. 18
.18
.18

. 19
.19
.19
. 20
. 20
.24
.24
.24
.24
. 25
. 25
. 25

xi

State Hierarchies.
Environment Hierarchies .
Processing Order
Resource Search Order.
Structured Field Parameters .

Mandatory and Optional Parameters .

Parameter Categories .
Parameter Values
Parameter Occurrence .
Parameter Types.
Coordinate Systems. .
Measurement and Rotation .
Measurement.
Rotation
Presentation Space Mlxmg
Foreground and Background
Merging Presentation Spaces
Mixing Rules .
Default Mixing Rule
UP3i Print Data Mixing
Color Management .
CMR names .
CMR types
Processing modes
CMR Installation .
CMRs and presentation devrces

Associating CMRs with document components

Rendering intent.
CMRs and print media
CMR Processing .

Font Technologies

Relationship Between FOCA Character Metrlcs and TrueType Character Metrlcs Implementatlon Issues

Document Indexing

Index Elements .

Tag Logical Elements .
Document Links.

Link Logical Elements

Annotations and Appends
N-up Presentation .

Cut-sheet Emulation (CSE) Prmt Mode .

Document Finishing

Exception Conditions .
Classifications
Detection .
Exception Action

Chapter 4. MO:DCA-P Objects.
Object Syntax Structure
Print File .
Document .
Document Index.
Resource Environment Group
Page.
Page Group
Resource Objects
Font Objects .
Overlay Objects .
Page Segment Objects .
Resource Groups

External Resource Nammg Conventlons

Print Control Objects .

xil Mixed Object Document Content Architecture Reference

.27
. 28
. 29
. 29
. 30
. 30
. 30
.31
.32
. 33
. 36
. 37
. 37
. 40
.43
. 43
. 44
. 46
. 47
. 47
. 48
. 48
. 48
. 49
. 51
. 51
. 51
. 53
. 54
. 55
. 57
. 58
. 64
. 64
. 66
. 68
. 69
. 70
.71
.72
.72
.73
. 74
. 74
. 76

.77
.77
.78
. 78
. 80
. 80
. 81
. 83
. 84
. 85
. 85
. 87
. 88
.90
.92

Form Map. .
Medium Map.
Data Objects .
Bar Code Objects
Graphics Objects
Image Objects .
Text Objects .
Object Containers .

Chapter 5. MO:DCA Structured Fields .

General Information . .

Begin Active Environment Group (BAG)
BAG (X'D3A8CY9') Syntax .
BAG Semantics .

BAG Exception Condltlon Summary

Begin Bar Code Object (BBC) .

BBC (X'D3A8EB') Syntax.
BBC Semantics .
BBC Exception Condltlon Summary

Begin Color Attribute Table (BCA)

BCA (X'D3A877') Syntax.
BCA Semantics .
BCA Exception Condltlon Summary

Bar Code Data (BDA)

BDA (X'D3EEEB') Syntax
BDA Semantics .

Bar Code Data Descriptor (BDD)
BDD (X'D3A6EB') Syntax
BDD Semantics.

Begin Document Envrronment Group (BDG) .

BDG (X'D3A8C4') Syntax

BDG Semantics.

BDG Exception Condltlon Summary
Begin Document Index (BDI) .

BDI (X'D3A8A7') Syntax.

BDI Semantics . .

BDI Exception Condltlon Summary
Begin Document (BDT) .

BDT (X'D3A8AS8') Syntax

BDT Semantics . .

BDT Exception Condltlon Summary.
Begin Form Map (BFM) .

BFM (X'D3A8CD’) Syntax

BFM Semantics . .

BFM Exception Cond1t1on Summary.
Begin Graphics Object (BGR) .

BGR (X'D3A8BB') Syntax

BGR Semantics . .

BGR Exception Condltlon Summary.
Begin Image Object (BIM) .

BIM (X'D3A8FB') Syntax.

BIM Semantics . .

BIM Exception Condltlon Summary .
Begin Medium Map (BMM)

BMM (X'D3A8CC") Syntax .

BMM Semantics

BMM Exception Condltlon Summary
Begin Overlay (BMO) .

BMO (X'D3A8DF') Syntax .

BMO Semantics

BMO Exception Condltlon Summary

.92
. 94
. 98
.99
. 101
. 106
111
. 112

. 117
. 117
. 118
. 118
. 118
. 118
. 119
. 119
. 119
. 120
. 121
. 121
. 121
. 122
. 123
. 123
. 123
. 124
. 124
. 124
. 125
. 125
. 125
. 125
. 126
. 126
. 126
. 127
. 128
. 128
. 128
. 129
. 130
. 130
. 130
. 131
. 132
. 132
. 132
. 133
. 134
. 134
. 134
. 135
. 136
. 136
. 136
. 137
. 138
. 138
. 138
. 139

Contents Xiii

Begin Named Page Group (BNG).

BNG (X'D3A8AD') Syntax .

BNG Semantics.

BNG Exception Condltlon Summary
Begin Object Container (BOC) .

BOC (X'D3A892") Syntax.

BOC Semantics .

BOC Exception Condltlon Summary
Begin Object Environment Group (BOG)

BOG (X'D3A8C7') Syntax .

BOG Semantics.

BOG Exception Condltlon Summary
Begin Page (BPG) . .

BPG (X'D3A8AF') Syntax

BPG Semantics . .

BPG Exception Condltlon Summary.
Begin Page Segment (BPS) .

BPS (X'D3AS85F'") Syntax .

BPS Semantics . .

BPS Exception Condltlon Summary .
Begin Presentation Text Object (BPT)

BPT (X'D3A89B') Syntax . .

BPT Semantics . .

BPT Exception Condltlon Summary .
Begin Resource Group (BRG) .

BRG (X'D3A8C6') Syntax

BRG Semantics . .

BRG Exception Condltlon Summary.
Begin Resource (BRS).

BRS (X'D3A8CE') Syntax

BRS Semantics .

Using the BRS to Envelop Inlme TrueType / OpenType Resources .

Using the BRS to Envelop Inline Color Management Resources.
BRS Exception Condition Summary .
Begin Resource Environment Group (BSG)

BSG (X'D3A8D9Y') Syntax

BSG Semantics . .

BSG Exception Conchtlon Summary .
Color Attribute Table (CAT)

CAT (X'D3B077') Syntax .

CAT Semantics .
Container Data Descriptor (CDD)

CDD (X'D3A692") Syntax

CDD Semantics. .
End Active Environment Group (EAG) .

EAG (X'D3A9C9") Syntax .

EAG Semantics. .

EAG Exception Condltlon Summary.
End Bar Code Object (EBC).

EBC (X'D3A9EB') Syntax

EBC Semantics . .

EBC Exception Condrtlon Summary .
End Color Attribute Table (ECA) .

ECA (X'D3A977') Syntax.

ECA Semantics . .
ECA Exception Condltlon Summary.
End Document Environment Group (EDG)

EDG (X'D3A9C4') Syntax .o

EDG Semantics.

EDG Exception Condltlon Summary
End Document Index (EDI).

Xiv Mixed Object Document Content Architecture Reference

. 140
. 140
. 140
. 142
. 143
. 143
. 143
. 146
. 147
. 147
. 147
. 147
. 148
. 148
. 148
. 150
. 151
. 151
. 151
. 152
. 153
. 153
. 153
. 154
. 155
. 155
. 155
. 156
. 157
. 157
. 157
. 160
. 161
. 165
. 166
. 166
. 166
. 166
. 167
. 167
. 167
. 168
. 168
. 168
. 169
. 169
. 169
. 169
. 170
. 170
. 170
. 170
. 171
. 171
. 171
. 171
. 173
. 173
. 173
. 173
. 174

EDI (X'D3A9A7') Syntax.

EDI Semantics .

EDI Exception Condltron Summary
End Document (EDT)

EDT (X'D3A9AS8') Syntax

EDT Semantics . .

EDT Exception Condltlon Summary.
End Form Map (EFM)

EFM (X'D3A9CD’) Syntax

EFM Semantics . .

EFM Exception Condltron Summary.
End Graphics Object (EGR).

EGR (X'D3A9BB') Syntax

EGR Semantics . .

EGR Exception Condltron Summary.
End Image Object (EIM).

EIM (X'D3A9FB') Syntax.

EIM Semantics . .

EIM Exception Condltlon Summary .
End Medium Map (EMM) .

EMM (X'D3A9CC") Syntax .

EMM Semantics

EMM Exception Condltlon Summary
End Overlay (EMO) . .

EMO (X'D3A9DF') Syntax .

EMO Semantics

EMO Exception Condltlon Summary
End Named Page Group (ENG) .

ENG (X'D3A9AD') Syntax .

ENG Semantics.

ENG Exception Condrtron Summary
End Object Container (EOC)

EOC (X'D3A992") Syntax.

EOC Semantics .

EOC Exception Condltlon Summary
End Object Environment Group (EOG)

EOG (X'D3A9C7') Syntax

EOG Semantics.

EOG Exception Condltlon Summary
End Page (EPG)

EPG (X'D3A9AF') Syntax

EPG Semantics .

EPG Exception Condltlon Summary
End Page Segment (EPS)

EPS (X'D3A95F'") Syntax .

EPS Semantics .

EPS Exception Condltlon Summary
End Presentation Text Object (EPT) .

EPT (X'D3A99B') Syntax .

EPT Semantics .

EPT Exception Condltron Summary
End Resource Group (ERG).

ERG (X'D3A9C6') Syntax

ERG Semantics .

ERG Exception Condltron Summary
End Resource (ERS) .

ERS (X'D3A9CE') Syntax

ERS Semantics . .

ERS Exception Condrtlon Summary

End Resource Environment Group (ESG) .

ESG (X'D3A9D9') Syntax

Contents

. 174
. 174
. 174
. 175
. 175
. 175
. 175
. 176
. 176
. 176
. 176
. 177
. 177
. 177
. 177
. 178
. 178
. 178
. 178
. 179
. 179
. 179
. 179
. 180
. 180
. 180
. 180
. 181
. 181
. 181
. 181
. 182
. 182
. 182
. 182
. 183
. 183
. 183
. 183
. 184
. 184
. 184
. 184
. 185
. 185
. 185
. 185
. 186
. 186
. 186
. 186
. 188
. 188
. 188
. 188
. 189
. 189
. 189
. 189
. 190
. 190

XV

ESG Semantics . .

ESG Exception Condrtron Summary .
Graphics Data (GAD).

GAD (X'D3EEBB') Syntax

GAD Semantics
Graphics Data Descriptor (GDD)

GDD (X'D3A6BB') Syntax

GDD Semantics
Image Data Descriptor (IDD)

IDD (X'D3A6FB') Syntax.

IDD Semantics . .
Index Element (IEL) .

IEL (X'D3B2A7') Syntax .

IEL Semantics . .

IEL Exception Condltlon Summary .
Invoke Medium Map (IMM)

IMM (X'D3ABCC') Syntax .

IMM Semantics. .
Include Object (IOB) .

IOB (X'D3AFC3') Syntax.

IOB Semantics . .

IOB Exception Condrtron Summary .
Image Picture Data (IPD)

IPD (X'D3EEFB') Syntax .

IPD Semantics . .
Include Page (IPG)

IPG (X'D3AFAF') Syntax.

IPG Semantics .
Include Page Overlay (IPO)

IPO (X'D3AFDS') Syntax.

IPO Semantics . .

IPO Exception Condltlon Summary .
Include Page Segment (IPS)

IPS (X'D3AFSF') Syntax .

IPS Semantics .o

IPS Exception Condition Summary .
Link Logical Element (LLE)

LLE (X'D3B490') Syntax .

LLE Semantics . .

LLE Exception Conchtlon Summary .
Map Bar Code Object (MBC) .

MBC (X'D3ABEB') Syntax

MBC Semantics.

MBC Exception Condltlon Summary
Map Color Attribute Table (MCA)

MCA (X'D3AB77') Syntax

MCA Semantics

MCA Exception Condltlon Summary
Medium Copy Count (MCC) .

MCC (X'D3A288') Syntax

MCC Semantics

MCC Exception Condltlon Summary
Map Container Data (MCD)

MCD (X'D3AB92") Syntax

MCD Semantics

MCD Exception Condltlon Summary
Map Coded Font (MCF) Format 2

MCF (X'D3ABS8A") Syntax

MCF Semantics.

MCEF Usage Informatron

Double-Byte Font References

XVl Mixed Object Document Content Architecture Reference

. 190
. 190
. 191
. 191
. 191
. 192
. 192
. 192
. 193
. 193
. 193
. 194
. 194
. 194
. 195
. 196
. 196
. 196
. 198
. 198
. 199
. 208
. 210
. 210
. 210
. 211
. 211
. 211
. 214
. 214
. 214
. 216
. 217
. 217
. 217
. 218
. 219
. 219
. 219
. 225
. 226
. 226
. 226
. 226
. 227
. 227
. 227
. 228
. 229
. 229
. 229
. 230
. 231
. 231
. 231
. 232
. 233
. 233
. 233
. 236
. 237

Using the X'50" Triplet to Specify Encoding
MCEF Exception Condition Summary
Medium Descriptor (MDD).
MDD (X'D3A688") Syntax
MDD Semantics
Map Data Resource (MDR)
MDR (X'D3ABC3') Syntax .
MDR Semantics
Using the X'50" Triplet to Spec1fy Encodmg .
Using the MDR to Map a TrueType/OpenType Font

Using the MDR to Map a Color Management Resource (CMR) .

Using the MDR to Map a Data Object Resource .

MDR Exception Condition Summary
Medium Finishing Control (MFC)

MFC (X'D3A088") Syntax

MEFC Semantics.
Map Graphics Object (MGO)

MGO (X'D3ABBB') Syntax .

MGO Semantics

MGO Exception Condltlon Summary
Map Image Object (MIO)

MIO (X'D3ABFB') Syntax

MIO Semantics .

MIO Exception Condltlon Summary
Medium Modification Control (MMC) .

MMC (X'D3A788') Syntax .

MMC Semantics

MMC Exception Condltlon Summary
Map Medium Overlay (MMO)

MMO (X'D3B1DF') Syntax .

MMO Semantics .
Map Media Type (MMT)

MMT (X'D3AB88') Syntax .

MMT Semantics

MMT Exception Condltlon Summary
Map Page (MPG) . .o

MPG (X'D3ABAF') Syntax .

MPG Semantics

MPG Exception COI’Idlthl’l Summary
Map Page Overlay (MPO) .

MPO (X'D3ABDS') Syntax .

MPO Semantics

MPO Exception Condltlon Summary
Map Page Segment (MPS) .

MPS (X'D3B15F') Syntax.

MPS Semantics . .
Map Suppression (MSU).

MSU (X'D3ABEA") Syntax .

MSU Semantics.
No Operation (NOP) .

NOP (X'D3EEEE') Syntax

NOP Semantics.
Object Area Descriptor (OBD)

OBD (X'D3A66B') Syntax

OBD Semantics. .

OBD Exception Condltlon Summary.
Object Area Position (OBP).

OBP (X'D3AC6B') Syntax

OBP Semantics . .

OBP Exception Condltlon Summary.
Object Container Data (OCD) .

. 237
. 238
. 240
. 240
. 240
. 243
. 243
. 243
. 250
. 250
. 254
. 260
. 261
. 263
. 264
. 265
. 272
. 272
. 272
. 272
. 273
. 273
. 273
. 273
. 275
. 275
. 276
. 285
. 286
. 286
. 286
. 287
. 287
. 287
. 289
. 290
. 290
. 290
. 291
. 292
. 292
. 292
. 293
. 294
. 294
. 294
. 295
. 295
. 295
. 296
. 296
. 296
. 297
. 297
. 297
. 298
. 299
. 299
. 300
. 302
. 303

Contents XVii

OCD (X'D3EE92') Syntax
OCD Semantics.

Presentation Environment Control (PEC)
PEC (X'D3A7AS8') Syntax
PEC Semantics .

Presentation Fidelity Control (PFC)
PFC (X'D3B288') Syntax .

PFC Semantics . .
Page Descriptor (PGD)
PGD (X'D3A6AF') Syntax
PGD Semantics .
PGD Exception Condltlon Summary

Page Position (PGP) Format 2 .

PGP (X'D3B1AF') Syntax.

PGP Semantics .

PGP Exception COI’ldlthl’l Summary
Partition Numbering for N-Up

Page Modification Control (PMC)
PMC (X'D3A7AF') Syntax
PMC Semantics.

Preprocess Presentation Ob]ect (PPO)
PPO (X'D3ADC3') Syntax
PPO Semantics .

Presentation Text Data Descrlptor (PTD) Format 2
PGD (X'D3B19B') Syntax. o
PTD Semantics .

Presentation Text Data (PTX)

PTX (X'D3EE9B') Syntax
PTX Semantics .

Tag Logical Element (TLE)
TLE (X'D3A090") Syntax .
TLE Semantics . .

Chapter 6. MO:DCA Tr|plets

General Information .

Triplet Format .
Triplet Syntax
Triplet Semantics .

Coded Graphic Character Set Global Identlfler Tr1plet X 01' .

Triplet X'01' Syntax: GCSGID/CPGID Form .
Triplet X'01' Syntax: CCSID Form. .
Triplet X'01' Semantics .
Structured Fields Using Triplet X' 01

Fully Qualified Name Triplet X'02'

Triplet X'02' Syntax .
Triplet X'02' Semantics . .
Structured Fields Using Triplet X' 02‘

Mapping Option Triplet X'04' .

Triplet X'04' Syntax

Triplet X’04” Semantics . .

Structured Fields Using Triplet X' 04'
Object Classification Triplet X'10" .

Triplet X'10' Syntax

Triplet X'10" Semantics .

Structured Fields Using Triplet X' 10

MO:DCA Interchange Set Triplet X'18" .
Triplet X'18' Syntax .
Triplet X'18' Semantics .
Structured Fields Using Triplet X' 18

Font Descriptor Specification Triplet X'1F' .
Triplet X'1F' Syntax

xviil Mixed Object Document Content Architecture Reference

. 303
. 303
. 304
. 304
. 304
. 306
. 306
. 306
. 308
. 308
. 308
. 310
. 311
. 311
. 312
. 318
. 318
. 326
. 326
. 326
. 328
. 328
. 328
. 337
. 337
. 337
. 338
. 338
. 338
. 339
. 339
. 339

. 341
. 341
. 341
. 343
. 343
. 345
. 345
. 346
. 346
. 347
. 348
. 348
. 350
. 358
. 360
. 360
. 360
. 362
. 363
. 363
. 363
. 366
. 367
. 367
. 367
. 368
. 369
. 369

Triplet X'1F' Semantics .
Structured Fields Using Triplet X' 1F' .
Font Coded Graphic Character Set Global Identlfler Tr1p1et X 20
Triplet X'20' Syntax e
Triplet X'20' Semantics .
Structured Fields Using Triplet X' 20
Object Function Set Specification Triplet X'21'.
Triplet X'21' Syntax .
Triplet X'21' Semantics . .
Structured Fields Using Triplet X' 21'
Extended Resource Local Identifier Triplet X'22' .
Triplet X'22' Syntax
Triplet X'22' Semantics . .
Structured Fields Using Triplet X' 22'
Resource Local Identifier Triplet X'24'
Triplet X'24' Syntax
Triplet X'24' Semantics . .
Structured Fields Using Triplet X' 24'
Resource Section Number Triplet X'25'
Triplet X'25' Syntax
Triplet X'25' Semantics .
Structured Fields Using Triplet X' 25
Character Rotation Triplet X26'
Triplet X'26' Syntax
Triplet X'26' Semantics .
Structured Fields Using Triplet X' 26
Object Byte Offset Triplet X'2D'
Triplet X'2D' Syntax
Triplet X'2D' Semantics . .
Structured Fields Using Triplet X' 2D'
Attribute Value Triplet X'36' .
Triplet X'36' Syntax
Triplet X'36' Semantics .
Structured Fields Using Triplet X' 36
Descriptor Position Triplet X'43'
Triplet X'43' Syntax
Triplet X'43' Semantics .
Structured Fields Using Triplet X' 43
Media Eject Control Triplet X'45" .
Triplet X'45' Syntax
Triplet X'45' Semantics .
Structured Fields Using Triplet X' 45 .
Page Overlay Conditional Processmg Triplet X'46' .
Triplet X'46' Syntax . o
Triplet X'46' Semantics . .
Structured Fields Using Triplet X' 46 .
Resource Usage Attribute Triplet X'47" .
Triplet X'47' Syntax .o
Triplet X'47' Semantics . .
Structured Fields Using Triplet X' 47'.
Measurement Units Triplet X'4B' .
Triplet X'4B' Syntax
Triplet X'4B' Semantics .
Structured Fields Using Triplet X' 4B‘.
Object Area Size Triplet X'4C" .
Triplet X'4C' Syntax
Triplet X'4C' Semantics . .
Structured Fields Using Triplet X' 4C'
Area Definition Triplet X'4D' .
Triplet X'4D' Syntax
Triplet X'4D' Semantics .

Contents

. 370
. 372
. 373
. 373
. 373
. 373
. 374
. 374
. 374
. 375
. 376
. 376
. 376
. 377
. 378
. 378
. 378
. 378
. 379
. 379
. 379
. 379
. 380
. 380
. 380
. 380
. 381
. 381
. 381
. 381
. 382
. 382
. 382
. 382
. 383
. 383
. 383
. 383
. 384
. 384
. 384
. 388
. 389
. 389
. 389
. 390
. 391
. 391
. 391
. 391
. 392
. 392
. 392
. 392
. 393
. 393
. 393
. 393
. 394
. 394
. 394

Xix

Structured Fields Using Triplet X'4D'
Color Specification Triplet X'4E'

Triplet X'4E' Syntax

Triplet X'4E' Semantics . .

Structured Fields Using Triplet X' 4E .
Encoding Scheme ID Triplet X'50'.

Triplet X'50" Syntax

Triplet X'50' Semantics . .

Structured Fields Using Triplet X' 50‘
Medium Map Page Number Triplet X'56'

Triplet X'56' Syntax .

Triplet X'56' Semantics . .

Structured Fields Using Triplet X' 56‘
Object Byte Extent Triplet X'57'

Triplet X'57' Syntax

Triplet X'57' Semantics . .

Structured Fields Using Triplet X' 57‘

Object Structured Field Offset Tr1plet X'58'.

Triplet X'58' Syntax
Triplet X'58' Semantics .
Structured Fields Using Triplet X' 58

Object Structured Field Extent Triplet X'59'

Triplet X'59' Syntax

Triplet X'59' Semantics .

Structured Fields Using Triplet X' 59
Object Offset Triplet X'5A" . .

Triplet X'5A" Syntax

Triplet X'5A" Semantics . .

Structured Fields Using Triplet X' 5A'

Font Horizontal Scale Factor Triplet X'5D' .

Triplet X'5D" Syntax

Triplet X'5D' Semantics . .

Structured Fields Using Triplet X' 5D'
Object Count Triplet X'5E' . .

Triplet X'5E' Syntax

Triplet X'5E' Semantics .

Structured Fields Using Triplet X' 5E'
Local Date and Time Stamp Triplet X'62'

Triplet X'62' Syntax Lo

Triplet X'62' Semantics . .

Structured Fields Using Triplet X' 62'.
Comment Triplet X'65' .

Triplet X'65' Syntax

Triplet X'65' Semantics . .

Structured Fields Using Triplet X' 65 .
Medium Orientation Triplet X'68".

Triplet X'68' Syntax

Triplet X'68' Semantics . .

Structured Fields Using Triplet X' 68 .
Resource Object Include Triplet X'6C'

Triplet X'6C' Syntax .o

Triplet X'6C' Semantics . .

Structured Fields Using Trlplet X 6C

Presentation Space Reset Mixing Triplet X' 70 .

Triplet X'70' Syntax
Triplet X'70" Semantics .
Structured Fields Using Triplet X' 70

Presentation Space Mixing Rules Triplet X'71'.

Triplet X'71' Syntax
Triplet X'71' Semantics . .
Structured Fields Using Triplet X' 71'

XX Mixed Object Document Content Architecture Reference

. 394
. 395
. 395
. 395
. 399
. 400
. 400
. 400
. 402
. 403
. 403
. 403
. 403
. 404
. 404
. 404
. 404
. 405
. 405
. 405
. 405
. 406
. 406
. 406
. 406
. 407
. 407
. 407
. 408
. 409
. 409
. 409
. 409
. 410
. 410
. 410
. 411
. 412
. 412
. 412
. 413
. 414
. 414
. 414
. 414
. 415
. 415
. 415
. 416
. 417
. 417
. 417
. 418
. 419
. 419
. 419
. 420
. 421
. 421
. 421
. 422

Universal Date and Time Stamp Tr1plet X72".
Triplet X'72' Syntax . .
Triplet X'72' Semantics . .
Structured Fields Using Triplet X' 72'.

Toner Saver Triplet X'74'. .
Triplet X'74' Syntax
Triplet X'74' Semantics . .
Structured Fields Using Triplet X' 74'.

Color Fidelity Triplet X'75' . .o
Triplet X'75' Syntax
Triplet X'75' Semantics . .
Structured Fields Using Triplet X' 75'.

Font Fidelity Triplet X'78' RN
Triplet X'78' Syntax
Triplet X'78' Semantics . .
Structured Fields Using Triplet X' 78'.

Attribute Qualifier Triplet X'80'

Triplet X'80' Syntax
Triplet X'80" Semantics . .
Structured Fields Using Triplet X' 80'.

Page Position Information Triplet X'81" .
Triplet X'81' Syntax
Triplet X'81' Semantics . .
Structured Fields Using Triplet X' 81'.

Parameter Value Triplet X'82" .

Triplet X'82' Syntax

Triplet X'82' Semantics .

Structured Fields Using Trlplet X' 82'.
Presentation Control Triplet X'83".

Triplet X'83' Syntax

Triplet X'83' Semantics .

Structured Fields Using Trlplet X' 83'.

Font Resolution and Metric Technology Trlplet X 84'
Triplet X'84' Syntax . S
Triplet X'84' Semantics . .
Structured Fields Using Triplet X' 84'.

Finishing Operation Triplet X'85' .

Triplet X'85' Syntax
Triplet X'85' Semantics . .
Structured Fields Using Triplet X' 85'.

Text Fidelity Triplet X'86' .o
Triplet X'86' Syntax
Triplet X'86' Semantics . .
Structured Fields Using Triplet X' 86‘.

Media Fidelity Triplet X'87". .
Triplet X'87' Syntax
Triplet X'87' Semantics . .
Structured Fields Using Triplet X' 87‘.

Finishing Fidelity Triplet X'88'.

Triplet X'88' Syntax
Triplet X'88' Semantics . .
Structured Fields Using Triplet X' 88‘ .

Data-Object Font Descriptor Triplet X'8B' .
Triplet X'8B' Syntax .
Triplet X'8B' Semantics .
Structured Fields Using Triplet X' 8B'

Locale Selector Triplet X'8C' .
Triplet X'8C' Syntax
Triplet X'8C' Semantics . .
Structured Fields Using Triplet X' 8C'

UP3i Finishing Operation Triplet X'8E' .

Contents

. 423
. 423
. 423
. 424
. 426
. 426
. 426
. 427
. 428
. 428
. 429
. 430
. 431
. 431
. 431
. 431
. 432
. 432
. 432
. 432
. 433
. 433
. 433
. 433
. 434
. 434
. 434
. 434
. 435
. 435
. 435
. 435
. 436
. 436
. 436
. 436
. 437
. 437
. 438
. 443
. 444
. 444
. 444
. 445
. 446
. 446
. 446
. 447
. 448
. 448
. 448
. 449
. 450
. 450
. 450
. 453
. 454
. 454
. 455
. 457
. 458

xxi

Triplet X'8E' Syntax
Triplet X'8E' Semantics .
Structured Fields Using Triplet X' 8E' .
Color Management Resource Descriptor Triplet X' 91' .
Triplet X'91' Syntax
Triplet X'91' Semantics . .
Structured Fields Using Triplet X' 91'.
Rendering Intent Triplet X'95' .
Triplet X'95' Syntax
Triplet X'95' Semantics . .
Structured Fields Using Triplet X' 95 .
CMR Tag Fidelity Triplet X'96'.
Triplet X'96' Syntax
Triplet X'96' Semantics . .
Structured Fields Using Triplet X' 96 .
Device Appearance Triplet X'97' .
Triplet X'97' Syntax
Triplet X'97' Semantics .
Structured Fields Using Trlplet X' 97'

Chapter 7. MO:DCA Interchange Sets .

Interchange Sets
Interchange Set Comphance Requlrements
SAA Interchange Sets. .
MO:DCA Presentation Interchange Set 1
Data Stream Syntax Structure .
Document
Page
Active Env1ronment Group (AEG)
Graphics Object (GOCA DR/2V0)
Object Environment Group (OEG) for Graphlcs Ob]ect
Image Object (IOCA FS10) . . .
Object Environment Group (OEG) for Image Ob]ect
Presentation Text Object (PTOCA PT1) . .o
Resource Syntax Structure . .
Overlay
Permitted Structured Flelds .
MO:DCA Presentation Interchange Set 2
Data Stream Syntax Structure .
Document
Document Index
Resource Group
Page
Overlay . .
Active Environment Group .
Bar Code Object (BCOCA BCD1) .
Object Environment Group (OEG) for Bar Code Ob]ect
Graphics Object (GOCA DR/2V0)
Object Environment Group (OEG) for Graphlcs Ob]ect
Image Object (IOCA FS10 or FS11) . .
Object Environment Group (OEG) for Image Ob]ect
Presentation Text Object (PTOCA PT1) . .
Permitted Structured Fields.
MO:DCA Resource Interchange Set .
Data Stream Syntax Structure .
Document Resource Group .
Color Attribute Table .
Image Object (IOCA FS20) .
Image Resource Group .
Object Environment Group (OEG) for Image Ob]ect
Graphics Object (GOCA DR/3V1) S

xxil Mixed Object Document Content Architecture Reference

. 458
. 458
. 458
. 459
. 459
. 459
. 460
. 461
. 461
. 462
. 463
. 464
. 464
. 464
. 465
. 466
. 466
. 466
. 466

. 467
. 467
. 468
. 470
. 471
. 471
. 472
. 472
. 472
. 472
. 473
. 473
. 473
. 474
. 474
. 474
. 474
. 486
. 486
. 487
. 487
. 487
. 488
. 488
. 488
. 489
. 489
. 489
. 489
. 490
. 490
. 490
. 490
. 505
. 505
. 506
. 506
. 506
. 507
. 507
. 507

Object Environment Group (OEG) for Graphlcs Ob)ect
Permitted Structured Fields. .

Appendix A. Color Resources
Standard OCA Color Value Table.
Converting Colors to Grayscale in MO:DCA- P Env1ronments
CIELab Color Space .
RGB Color Space .
CMYK Color Space .
Standard OCA Color Space (Named Colors)
Highlight Color Space e
The Color Mapping Table Resource . .
Color Mapping Table in MO:DCA-P Env1ronments
Color Mapping Table in IPDS Environments .
Color Mapping Table Definition . .
The Color Table Resource
Color Representation in MO: DCA—L Data Streams and IOCA FSll Ob]ects
Color Table Definition in MO:DCA-L Data Streams and IOCA FS11 Objects
Carrying Color Tables in MO:DCA-L Data Streams. e

Appendix B. Resource Access Table (RAT)
IBM Font Interchange Information
The Resource Access Table (RAT).
Resource Access Table in MO:DCA-P Env1ronments
Resource Access Table in IPDS Environments.
Resource Access Table Definition .
Resource Access Table Syntax .
Resource Access Table Semantics . .
Resource Access Table Exception Condltlon Summary
Repeating Group Definition for TrueType and OpenType Font Resources
Repeating Group Flag Definitions for TrueType and OpenType Font Resources
Table Vector Definitions for TrueType and OpenType Font Resources . .
Repeating Group Definition for Color Management Resources (CMRs)
Repeating Group Flag Definitions for Color Management Resources .
Table Vector Definitions for Color Management Resources
Repeating Group Definition for Data Object Resources
Repeating Group Flag Definitions for Data Object Resources
Table Vector Definitions for Data Object Resources .

Appendix C. MO:DCA Mlgratlon Functions .

Migration Functions .

Obsolete Functions .
Obsolete Structured Frelds .
Obsolete Structured Field Names.

Retired Functions . .

Retired Structured Flelds
Retired Triplets.
Retired Parameters

Coexistence Functions
Coexistence Objects .
Coexistence Structured Fields .
Coexistence Parameters .

Appendix D. MO:DCA Reglstry
Object Type Identifiers .
Registered Object-type OIDs
Object Type Summary . .
Non-OCA Object Types Supported by the IOB Structured Fleld.
Data Objects and Supported Secondary Resources . .
Media Type Identifiers .o

. 507
. 507

. 515
. 515
. 517
. 517
. 517
. 517
. 518
. 518
. 518
. 518
. 519
. 519
. 525
. 525
. 526
. 530

. 533
. 533
. 533
. 533
. 534
. 534
. 535
. 536
. 537
. 537
. 538
. 540
. 543
. 543
. 545
. 546
. 547
. 548

. 553
. 553
. 554
. 554
. 555
. 557
. 557
. 557
. 567
. 572
. 572
. 575
. 586

. 589
. 589
. 590
. 599
. 600
. 600
. 602

Contents Xxiii

Media Type Summary
Color Profile Identifiers .
Color Profile Summary .

Appendix E. Cross-References .

MO:DCA Structured Fields Sorted by Identifier .
MO:DCA Structured Fields Sorted by Acronym .

MO:DCA Triplets Sorted by Identifier .
MO:DCA Triplets Sorted by Name

Summary of Changes.

Notices .
Trademarks .

Glossary

Index .

XXiv Mixed Object Document Content Architecture Reference

. 603
. 608
. 609

. 611

. 611
. 615
. 618
. 620

. 623

. 625

. 627

. 629

. 645

Figures

PN N

AR s R R R R 0 00 U0 L) 0 0 L) W W W NI NN NNNNNN S R s s s
NS RORNEFSOONIFTTRADRN LSO RIISNGT RN, OOOINT RO~ O 0

Presentation Environment .

Presentation Model

Presentation Page . . .
MO:DCA Presentation Document (MO DCA P) Components .
A MO:DCA Presentation Space Coordinate System
Presentation Space Extents e

Offset of a Coordinate System

Examples of Coordinate System Orlentatlon

Inheritance of Coordinate System Orientation .

Rotation of the X and Y Axes

. A Page Overlay Applied to a Page in Two leferent Orlentatlons

Merging Presentation Spaces .

Horizontal Metrics: TrueType/ OpenType Fonts and FOCA Fonts
Vertical Metrics: TrueType/OpenType Fonts and FOCA Fonts .
Page-Level IEL: Offset and Extent . e
Page-Group-Level IEL: Offset and Extent.

Page-Level IEL: Use of Medium Map Informatlon

A Document with Logical Tags . S

Document Annotation using the LLE .

. N-up Partitions for Various Physical Media . .
. Logical Division of Continuous Forms for Cut-sheet Ernulatlon .
. Print File Structure .

. Document Structure.

. Document Index Structure

Resource Environment Group Structure .

. Page Structure .

. Page Group Structure .

. Overlay Structure

. Page Segment Structure

. Internal (Page-Level) Resource Group Structure

. External (Print-File-Level) Resource Group Structure . .
BRS/ERS Envelope for Resources in External (Print-File- Level) Resource Group.

Form Map Structure
Document Environment Group Structure
Copy Subgroups .

. Medium Map Structure

Object Area Positioning on a Page .

. Bar Code Object (BCOCA BCD1 Level) Structure

Bar Code Presentation Space Mapping: Position .

. Graphics Object (GOCA DR/2VO0 Level) Structure

. Graphics Presentation Space Mapping: Scale to Fit .

. Graphics Presentation Space Mapping: Scale to Fill .

. Graphics Presentation Space Mapping: Center and Trim

. Graphics Presentation Space Mapping: Position and Trim . .
. Image Object (IOCA FS10, FS11, FS40, FS42, or FS45 Level) Structure .
. Image Presentation Space Mapping: Scale to Fit . .o

. Image Presentation Space Mapping: Scale to Fill .

. Image Presentation Space Mapping: Center and Trim

49.
50.
51.
52.
53.
54.
55.

Image Presentation Space Mapping: Position and Trim .
Presentation Text Object (PTOCA PT1, PT2, or PT3 Level) Structure
Use of the IOB to Include Object Container Data. o
Object Container Structure for Presentation Objects .

Object Container Structure for Non-Presentation Objects .

Triplets in Link Attribute, Source, and Target Repeating Groups
Example of a Full Font Name in Two Languages. .o

© Copyright IBM Corp. 1990, 2006

. 100
. 101
. 102
. 103
. 104
. 105
. 106
. 107
. 108
. 109
. 110
111
111
. 112
. 113
. 114
. 222
. 251

XXV

56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.
80.
81.
82.
83.
84.
85.
86.
87.
88.
89.
90.
91.
92.
93.
94.
95.
96.
97.
98.
99.
100.
101.
102.
103.
104.
105.
106.
107.
108.
109.

XXV1

Examples of MDR Repeating Groups

Examples of MDR Repeating Groups .

Normal Duplex and Tumble Duplex Printing .

1-Up Partition Numbering, Front Sheet-Side

2-Up Partition Numbering, Front Sheet-Side

3-Up Partition Numbering, Front Sheet-Side

4-Up Partition Numbering, Front Sheet-Side .
1-Up Partition Numbering, Back Sheet-Side, Normal Duplex.
2-Up Partition Numbering, Back Sheet-Side, Normal Duplex.
3-Up Partition Numbering, Back Sheet-Side, Normal Duplex.
4-Up Partition Numbering, Back Sheet-Side, Normal Duplex.
1-Up Partition Numbering, Back Sheet-Side, Tumble Duplex .
2-Up Partition Numbering, Back Sheet-Side, Tumble Duplex .
3-Up Partition Numbering, Back Sheet-Side, Tumble Duplex .
4-Up Partition Numbering, Back Sheet-Side, Tumble Duplex .
Landscape and Portrait Orientation and Layout . .
Examples of Finishing Operations.

Media Reference Edge and Corner Defmltrons

Character Placement Based on Character Rotation and Inlme and Baselme Dlrectlon

MO:DCA-P 1S/1:
MO:DCA-P IS/1:
MO:DCA-P IS/1:
MO:DCA-P IS/1:
MO:DCA-P 1S/1:
MO:DCA-P IS/1:
MO:DCA-P IS/1:
MO:DCA-P IS/1:
MO:DCA-P 1S/1:
MO:DCA-P 1S/2:
MO:DCA-P 1IS/2:
MO:DCA-P 1S/2:
MO:DCA-P IS/2:
MO:DCA-P 1S/2:
MO:DCA-P IS/2:
MO:DCA-P 1S/2:
MO:DCA-P 1IS/2:
MO:DCA-P IS/2:
MO:DCA-P 1S/2:
MO:DCA-P 1S/2:
MO:DCA-P 1S/2:
MO:DCA-P 1S/2:

Document Structure

Page Structure . .

Active Environment Group Structure
Graphics Object Structure

Object Environment Group for Graphlcs Ob]ect Structure .

Image Object Structure . .
Object Environment Group for Image Ob]ect Structure
Presentation Text Object Structure.

Overlay Structure .

Document Structure

Document Index Structure .

Resource Group Structure

Page Structure .

Overlay Structure .

Active Environment Group Structure

Bar Code Object Structure

Object Environment Group for Bar Code Ob]ect Structure.

Graphics Object Structure

Object Environment Group for Graphlcs Ob]ect Structure .

Image Object Structure .
Object Environment Group for Image Ob]ect Structure
Presentation Text Object Structure.

MO:DCA-L: Document Structure .

MO:DCA-L: Document Resource Group Structure

MO:DCA-L: Color Attribute Table Structure

MO:DCA-L: Image Object Structure . .

MO:DCA-L: Image Resource Group Structure.

MO:DCA-L: Object Environment Group for Image Ob]ect Structure
MO:DCA-L: Graphics Object Structure . .

MO:DCA-L: Object Environment Group for Graphlcs Ob]ect Structure
Color Mapping Table Container .o e
AFP Page Segment Structure

Two Forms of IM Image . .

IM Image Object Structure: Slmple (non celled) Image

IM Image Object Structure: Complex (celled) Image.

Mixed Object Document Content Architecture Reference

. 254
. 260
. 283
. 319
. 320
. 320
. 321
. 321
. 322
. 322
. 323
. 323
. 324
. 324
. 325
. 416
. 441
. 442
. 452
. 472
. 472
. 472
. 473
. 473
. 473
. 473
. 474
. 474
. 487
. 487
. 487
. 488
. 488
. 488
. 489
. 489
. 489
. 489
. 490
. 490
. 490
. 506
. 506
. 506
. 506
. 507
. 507
. 507
. 507
. 518
. 572
. 574
. 574
. 575

Tables

A R s 00 00 W0 L0 WO G0 L0 W) W W RN NN NN N RN RN DN o e e e e
Ok WO P O0VRNNURPXNDEO00NNOT R PNDEO00NN W

—_
COPNT RN

IBM Architecture Publications .

IBM Advanced Function Presentation Pubhcatlons
IBM Content Manager Image Plus Publications
IBM Graphics and Image Publications

Print Services Facility Publications

Infoprint Manager Publications .

Transform Manager Publications.

Structured Field Introducer (SFI)

Type Codes

Maximum Absolute Values of Numbers in the MO DCA Archltecture .

MO:DCA Coordinate Systems . .

Format for Numbers Expressed in Rotatlon Umts .
Foreground /Background in Data Object Presentation Spaces .
Default Color Mixing Rules . .

CMR type: processing mode and generlc Capablhty . .
Bit Representation of MO:DCA Exception Condition Categorles .
Default BPT Page-Level Initial Text Conditions .
Print Server CMR Processing: Inline CMRs.

IOB: Valid Values for XoaOrent and YoaOrent.

Link Sources and Link Targets . .

Valid ESidCP/ESidUD Combinations for the MCF .

Valid ESidUD/ESidCP Combinations for the MDR .

Print Server CMR Processing: CMRs in Resource Libraries

Print Server CMR Processing: Inline CMRs.

Sheet Jogging and Conditional Ejects.

OBP: Valid Values for XoaOrent and YoaOrent

Supported ESidCP Values

Supported ESidUD Values . .

Additional ESidUD Values in AFP Lme Data .

Color Values .

MO:DCA-L: Calculatmg Color Values

MO:DCA-L: Sample Index Values.

Data Object Resources Processed with RAT RG .
Position and Rotation of Objects in Line Data and MO: DCA Data .
IOC: Valid Values for XoaOrent and YoaOrent

Registered Object Types Sorted by Component ID

Non-OCA Object Types Supported by the IOB

Data Objects and Secondary Resources . .

Registered Media Types Sorted by Component ID

Registered Media Types Sorted by Media Names

Color Profile Registry . . e

Structured Fields Sorted by ID

Structured Fields Sorted by Acronym

Triplets Sorted by ID . .

Triplets Sorted by Name .

© Copyright IBM Corp. 1990, 2006

. vil
. vii
. viii
. Vviil
. viii
. ix
. ix
. 20
.22
. 35
. 36
.42
.43
. 47
. 50
. 76

. 154

. 162
. 202
. 221
. 238
. 250
. 256
. 258
. 279
. 300
. 402
. 402
. 402
. 515
. 529
. 530
. 546
. 562
. 585
. 599
. 600
. 600
. 603
. 605
. 609
. 611
. 615
. 618
. 620

xxvii

xxviili Mixed Object Document Content Architecture Reference

Chapter 1. Overview of Presentation Architecture

This chapter gives a brief overview of Presentation Architecture.

The Presentation Environment
shows today’s presentation environment.

import/export
edit/revise
format
scan
DOCUMENT _ transform
CREATION
SERVICES

browse

navigate

search DOCUMENT
clip VIEWING

annotate SERVICES

tag

print

store
retrieve
DOCUMENT index
ARCHIVING search
SERVICES extract

DOCUMENT

PRINTING

SERVICES submit
distribute
manage
print
finish

Figure 1. Presentation Environment. The environment is a coordinated set of services architected to meet the
presentation needs of today’s applications.

The ability to create, store, retrieve, view and print data in presentation formats
friendly to people is a key requirement in almost every application of computers
and information processing. This requirement is becoming increasingly difficult to
meet because of the number of applications, servers, and devices that must
interoperate to satisfy today’s presentation needs.

The solution is a presentation architecture base that is both robust and open-ended,
and easily adapted to accommodate the growing needs of the open system
environment. AFP architectures provide that base by defining interchange formats
for data streams and objects that enable applications, services, and devices to
communicate with one another to perform presentation functions. These
presentation functions may be part of an integrated system solution or they may
be totally separated from one another in time and space. AFP architectures provide
structures that support object-oriented models and client/server environments.

AFP architectures define interchange formats that are system independent and are
independent of any particular format used for physically transmitting or storing
data. Where appropriate, AFP architectures use industry and international
standards, such as the ITU-TSS (formerly known as CCITT) facsimile standards for
compressed image data.

© Copyright IBM Corp. 1990, 2006 1

Architecture Components

Architecture Components

AFP architectures provide the means for representing documents in a data format
that is independent of the methods used to capture or create them. Documents
may contain combinations of text, image, graphics and bar code objects in device-
and resolution-independent formats. Documents may contain fonts, overlays and
other resource objects required at presentation time to present the data properly.
Finally, documents may contain resource objects, such as a document index and
tagging elements supporting the search and navigation of document data, for a
variety of application purposes.

In the AFP architecture, the presentation architecture components are divided into
two major categories: data streams and objects.

Data Streams

A data stream is a continuous ordered stream of data elements and objects
conforming to a given format. Application programs can generate data streams
destined for a presentation service, archive library, presentation device or another
application program. The strategic presentation data stream architectures are:

* Mixed Object Document Content Architecture’” (MO:DCA)

« Intelligent Printer Data Stream~ (IPDS™) Architecture

The MO:DCA architecture defines the data stream used by applications to describe
documents and object envelopes for interchange with other applications and
application services. Documents defined in the MO:DCA format may be archived
in a database, then later retrieved, viewed, annotated and printed in local or
distributed systems environments. Presentation fidelity is accommodated by
including resource objects in the documents that reference them.

The IPDS architecture defines the data stream used by print server programs and
device drivers to manage all-points-addressable page printing on a full spectrum of
devices from low-end workstation and local area network-attached (LAN-attached)
printers to high-speed, high-volume page printers for production jobs, shared
printing, and mailroom applications. The same object content architectures carried
in a MO:DCA data stream can be carried in an IPDS data stream to be interpreted
and presented by microcode executing in printer hardware. The IPDS architecture
defines bidirectional command protocols for query, resource management, and
error recovery. The IPDS architecture also provides interfaces for document
finishing operations provided by preprocessing and postprocessing devices
attached to IPDS printers.

[Figure 2 on page 3 shows a system model relating MO:DCA and IPDS data streams
to the presentation environment previously described. Also shown in the model are
the object content architectures which apply to all levels of presentation processing
in a system.

2 Mixed Object Document Content Architecture Reference

Architecture Components

Presentation Architecture Model

Specifies open architectures and international standards that
allow interoperability and portability of data, applications, and skills.

Archive
Services

Appli- Viewing :
i |
cation o Display

Print * Printer

> Services
bource Int%g/ciag;ate
rar
v Post
Processor
IPDS
MO:DCA to printers
to presentation servers and post processors
Object Architectures
Data Objects Resource Objects
Text Fonts Color Table
Image Overlays Document Index
Graphics Page Segments
Bar Codes Form Defintion S
Object Containers Color Management Resources 3
©

|
| Figure 2. Presentation Model. This diagram shows the major components in a presentation system and their use of
| data stream and object architectures.

Objects

Documents can be made up of different kinds of data, such as text, graphic, image,
and bar code. Object content architectures describe the structure and content of each
type of data format that can exist in a document or appear in a data stream.
Objects can be either data objects or resource objects.

A data object contains presentation data, that is, presentation text, vector graphics,
raster image, or bar codes, and all of the controls required to present the data.

A resource object is a collection of presentation instructions and data. These objects
are referenced by name in the presentation data stream and can be stored in
system libraries so that multiple applications and the print server can use them.

All object content architectures (OCAs) are totally self-describing and
independently defined. When multiple objects are composed on a page, they exist
as peer objects, which can be individually positioned and manipulated to meet the

needs of the presentation application.

The IBM object content architectures are:

Chapter 1. Overview of Presentation Architecture 3

Architecture Components

* Presentation Text Object Content Architecture (PTOCA): A data architecture for
describing text objects that have been formatted for all-points-addressable
presentations. Specifications of fonts, text color, and other visual attributes are
included in the architecture definition.

* Image Object Content Architecture (IOCA): A data architecture for describing
resolution-independent image objects captured from a number of different
sources. Specifications of recording formats, data compression, color and
gray-scale encoding are included in the architecture definition.

* Graphics Object Content Architecture (GOCA): A data architecture for describing
vector graphic picture objects and line art drawings for a variety of applications.
Specification of drawing primitives, such as lines, arcs, areas, and their visual
attributes, are included in the architecture definition.

* Graphics Object Content Architecture for Advanced Function Presentation (AFP
GOCA): A version of GOCA that is used in Advanced Function Presentation
(AFP) environments.

* Bar Code Object Content Architecture” (BCOCA™): A data architecture for
describing bar code objects, using a number of different symbologies.
Specification of the data to be encoded and the symbology attributes to be used
are included in the architecture definition.

* Font Object Content Architecture (FOCA): A resource architecture for describing
the structure and content of fonts referenced by presentation data objects in the
document.

* Color Management Object Content Architecture” (CMOCA™): A resource
architecture for describing the color management information required to render
presentation data.

The MO:DCA and IPDS architectures also support data objects that are not defined
by IBM object content architectures. Examples of such objects are Tag Image File
Format (TIFF), Encapsulated PostScript (EPS), and Portable Document Format
(PDF). Such objects may be carried in a MO:DCA envelope called an object
container, or they may be referenced without being enveloped in MO:DCA
structures.

In addition to supporting data objects, the MO:DCA architecture defines envelope
architectures for other objects of common value in the presentation environment.
Examples of these are form definition resource objects for managing the production
of pages on the physical media, overlay resource objects that accommodate
electronic storage of forms data, and index resource objects that support indexing
and tagging of pages in a document.

[Figure 3 on page 5 shows an example of an all-points-addressable page composed
of multiple presentation objects.

4 Mixed Object Document Content Architecture Reference

Application-Enabling Products

Letterhead can be an overlay resource
containing text, image, and graphics objects

>
=

To: Joan Rogers

Security Systems, Inc. Page

205 Main Street

Plains, Iowa

Dear Joan:

Sales have improved so dramatically since Presentation
have joined the t .1 1dliketo — | .

you have joined the team. I would like to Text ObjeCt(S)

know your techniques.

Graphics Object

Let’s-get-together and discuss your promotion!

fwﬂ Ba&// Image Object

Jim e Bolt !

Object area

scan overlap
Figure 3. Presentation Page. This is an example of a mixed-object page that can be composed in a
device-independent MO:DCA format and printed on an IPDS printer.

Application-Enabling Products

Some of the major application enabling products and application services using
presentation interchange architectures are summarized below.

e Advanced Function Presentation (AFP)

A set of licensed programs that use all-points-addressable concepts to present
data on a wide variety of printer and display devices. AFP includes creating,
formatting, viewing, retrieving, printing, and distributing information.

* AFP Conversion and Indexing Facility (ACIF)

An AFP program for converting a line-data print file into a MO:DCA document
and for indexing the document for later retrieval, viewing and selective printing
of pages.

¢ AFP Toolbox

AFP Toolbox provides application programmers with ease of use in formatting
printed output. Without requiring knowledge of the AFP data stream, the AFP
Toolbox provides access to sophisticated AFP functions through a callable C,
C++, or COBOL interface. It is available on MVS, AIX®, 0S/2®, and AS/400®
platforms.

With IBM AFP Toolbox you can:

— Combine variable data with electronic forms, electronic signatures, and
images

— Define variable length paragraphs

— Precisely position and align text anywhere on a page using a wide variety of
fonts

— Draw fixed or variable depth and width boxes

— Generate barcode objects

— Draw horizontal and vertical fixed or variable length lines

— Include indexing tags for use in efficient viewing, archival, and retrieval

Chapter 1. Overview of Presentation Architecture 5

Application-Enabling Products

— Accent printed output with color and shading
— Dynamically control fonts, including user-defined fonts

e AFP Workbench

A platform for the integration of AFP workstation enabling applications and
services. The Viewer application is a Workbench application that runs under
0S/2, WIN-0S/2%, or Microsoft® Windows®.

s Advanced Function Printing " Utilities/400

An IBM licensed program that includes a group of utilities that work together to
provide Advanced Function Printing on AS/400.

« Content Manager ImagePlus® for 0S/390® and Content Manager for AS/400

A set of IBM licensed programs that are designed to work in conjunction with
the ImagePlus Workstation Program to provide host support for Folder
Applications and WorkFlow Management. Documents in the MO:DCA
Interchange format are supported.

* Content Manager OnDemand

An IBM licensed program that provides document capture, indexing, archive,
retrieval and presentation services. Documents in the MO:DCA Interchange
format are supported.

* Graphical Data Display Manager (GDDM®)

An IBM licensed program containing utilities for creating, saving, editing, and
displaying visual data such as page segments, charts, images, vector graphics,
composites (text, graphics, image), and scanned data.

* ImagePlus Workstation Program

An IBM licensed program designed to capture, view, annotate, print and
manipulate text and image documents on a Windows 95, Windows 2000,
Windows NT®, or OS/2 platform. Documents can be generated in the MO:DCA
interchange format and can be transmitted to OS/390 and AS/400 hosts for
folder management and archival storage by other Content Manager components.

* Infoprint® Manager for AIX and Windows

A print server that drives IPDS page printers. In addition to managing printer
resources and providing error recovery for print jobs, Infoprint Manager
provides data stream conversions to MO:DCA format for interoperability with
other AFP products on AIX and other system platforms.

* OS/2 Presentation Manager GPI

An extensive graphics programming interface (GPI) provided in OS/2 for
creating, saving, editing and manipulating picture data composed of graphics
primitives, such as lines, arcs, and areas with fill patterns. Metafiles created
using the GPI can be archived for later retrieval in the MO:DCA-L interchange
format.

* Print Services Facility " (PSF)

The IBM software product that drives IPDS printers. PSF is supported under
z/0S®, VSE, and VM and as a standard part of the operating system under
0S/400®. PSF manages printer resources such as fonts and electronic forms, and
provides error recovery for print jobs. Multiple data streams are accepted by PSF
and are converted into an IPDS data stream for printing.

* Print Services Facility/2 (PSF/2)

An OS/2-based print server that drives IPDS page printers and IBM PPDS and
HP-PCL compatible printers. PSF/2 manages printer resources and provides
error recovery for print jobs. PSF/2 supports distributed printing of MO:DCA
print jobs from PSF/MVS, PSF/VM, PSF/VSE, and OS/400. It also supports

6 Mixed Object Document Content Architecture Reference

Application-Enabling Products

printing from a wide range of workstation applications, including Microsoft
Windows and the OS/2 Presentation Manager.

* Infoprint Transform Manager for Linux®: Administration

An IBM Linux-based software product which can transform PDF, PS, PCL, GIF,
TIFF and JPEG into AFP. It can help speed transform processing of large,
complex PDF/PS/PCL files into AFP print datastreams.

For more information on these and other products, see the publications listed in
[“Related Publications” on page vii

Chapter 1. Overview of Presentation Architecture 7

Application-Enabling Products

8 Mixed Object Document Content Architecture Reference

Chapter 2. Introduction to the MO:DCA Architecture

This chapter:
* Provides a definition of the MO:DCA architecture
* Describes the MO:DCA document component hierarchy

What is the Mixed Object Document Content Architecture?

A mixed object document is the collection of data objects that comprise the
document’s content, and the resources and formatting specifications that dictate the
processing functions to be performed on the content. The term mixed in the
MO:DCA architecture refers both to the mixture of data objects and the mixture of
document constructs that comprise the document’s components. A MO:DCA
document can contain a mixture of presentation data objects. Each data object type
has unique processing requirements. An Object Content Architecture (OCA) has
been established for each IBM data object to define its respective syntax and
semantics. MO:DCA documents can contain data and data objects governed by the
following OCAs:

* Bar Code Object Content Architecture (BCOCA), which is used to describe and
generate bar code symbols.

* Font Object Content Architecture (FOCA), which is used to support the digital
presentation of character shapes by defining their attributes, such as shape
definitions, shape dimensions, and positioning information. Unlike the other
OCAs, font objects are not carried inside the MO:DCA data stream. However,
the MO:DCA architecture does provide and carry references to external font
objects.

* Graphics Object Content Architecture (GOCA), which is used to represent
pictures generated by a computer, commonly referred to as computer graphics.

¢ Image Object Content Architecture (IOCA), which is used to represent image
information such as scanned pictures.

* Presentation Text Object Content Architecture (PTOCA), which is used to define
text information.

MO:DCA documents can also contain or reference non-OCA data object types that
are registered in the MO:DCA architecture. Such data object types may be carried
in a generic MO:DCA object envelope called an object container. Examples of
non-OCA data object types that can be included in MO:DCA documents are TIFF
(Tag Image File Format), EPS (Encapsulated Postscript), and single-page PDF
(Portable Document Format).

The MO:DCA architecture is designed to facilitate document interchange as well as
document exchange. Interchange is the predictable interpretation of shared
information in an environment where the characteristics of each process need not be
known to all other processes. Exchange is the predictable interpretation of shared
information by a family of system processes in an environment where the
characteristics of each process must be known to all other processes.

The MO:DCA architecture is designed to integrate the different data object types
into documents that can be interchanged as a single data stream. The MO:DCA
architecture provides the data-stream structures needed to carry the data objects. It
also provides syntactic and semantic rules governing their use to ensure that

© Copyright IBM Corp. 1990, 2006 9

What Is MO:DCA?

different applications process them in a consistent manner. illustrates the
relationship of MO:DCA data structures to a presentation document composed of
pages and data objects.

DOCUMENT
{highest level}

Begin End
Document | Page1 | Page2 | --- | Pagen | Document
(BDT) {EDT)

PAGE v

{intemediate level}
Begin Active Image | Presentation | Graphics| End
Page | Environment | Object | Text Object | Object | Page
{BP&) | Group (AEG) (EPG}

*_I

Begin | Map Page Presentation | End
AEG | Coded | Descriptor Text AEG
(BAG) | Font (PGD) Descriptor | {EAG)

\/

OBJECT
{lowest level)

Begin Object Graphics | End
Graphics | Environment Data | Graphics
Object | Group {OEG) | (GAD) | Data

+_I

Begin | Object | Object | Graphics | End
OEG Area Area | Descriptor | OEG
(BOG) | Descriptor| Position| {(GDD} |{EOG)

Figure 4. MO:DCA Presentation Document (MO:DCA-P) Components

In its simplest form, a MO:DCA document contains only data objects without any
document composition structure. This form is called a MO:DCA resource
(MO:DCA-L) document. In its most complex form, a MO:DCA document contains
data objects along with data structures that define the document’s layout and
composition features. This form is called a MO:DCA presentation (MO:DCA-P)
document.

MO:DCA components are defined with a syntax that consists of self-describing
structures. Structured fields are the main MO:DCA structures and are used to

10 Mixed Object Document Content Architecture Reference

What Is MO:DCA?

encode MO:DCA commands. A structured field starts with an introducer that
uniquely identifies the command, provides a total length for the command, and
specifies additional control information such as whether padding bytes are present.
The introducer is followed by up to 32,759 data bytes. Data may be encoded using
fixed parameters, repeating groups, keywords, and triplets. Fixed parameters have
a meaning only in the context of the structure that includes them. Repeating
groups are used to specify a grouping of parameters that can appear multiple
times. Keywords are self-identifying parameters that consist of a one-byte unique
keyword identifier followed by a one-byte keyword value. Triplets are
self-identifying parameters that contain a one-byte length, a one-byte unique triplet
identifier, and up to 252 data bytes. Keywords and triplets have the same
semantics wherever they are used. Together, these structures define a syntax for
MO:DCA data streams that provides for orderly parsing and flexible extensibility.

Organization of the Architecture

The MO:DCA definition in this document is organized into three parts:
* Definition of the general architecture

¢ Definition of MO:DCA interchange sets

* Definition of MO:DCA migration functions

The general architecture is defined in Chapters through ChaEter 6F This
Chapter 5,

includes the general architecture definition for structured fields in
“MO:DCA Structured Fields,” on page 117 the general architecture for triplets in
Chapter 6, “MO:DCA Triplets,” on page 341 |and the general architecture for
MO:DCA-P object structure in [Chapter 4, “MO:DCA-P Objects,” on page 77| The
general architecture for MO:DCA-L object structure is defined by the MO:DCA-L
interchange set.

MO:DCA interchange sets are defined in [Chapter 7, “MO:DCA Interchange Sets,”|
Interchange sets consist of structured field, triplet, and object
structure specifications that are formal subsets of the general architecture. The
purpose of interchange sets is to provide concise, complete document definitions
with clear compliance rules that are agreed on and implemented by MO:DCA
generators and receivers. It is strongly recommended that MO:DCA support
includes compliance with an interchange set.

MO:DCA migration objects, structured fields, triplets, parameters, and rules for
processing these structures are defined in|Appendix C, “MO:DCA Migration|
[Functions,” on page 553.| These constructs may appear in MO:DCA data streams,
but they are not considered to be part of the formal architecture definition and
may not be supported by all MO:DCA products.

Compliance with the Architecture

MO:DCA-compliant products do not necessarily support all of the structures and
functions defined in this document. MO:DCA compliance may be based on
document interchange, in which case a product must support one of the defined
interchange sets in accordance with the rules specified in [‘Interchange Set]
ICompliance Requirements” on page 468] MO:DCA compliance may also be based
on document exchange, in which case a product must support a subset of the
general architecture and must define, in its product documentation, which
MO:DCA structures and functions are supported.

Chapter 2. Introduction to the MO:DCA Architecture 11

Compliance

Application Note: The MO:DCA structures and functions that are supported by
AFP print servers are specified in the Advanced Function
Presentation: Programming Guide and Line Data Reference.

MO:DCA Concepts

The document is the highest level of the MO:DCA data-stream document
component hierarchy. Documents can be made up of pages, and the pages, which
are at the intermediate level, can be made up of objects. Objects are at the lowest
level, and can be bar codes, graphics, images, and presentation text. The MO:DCA
document component hierarchy for a document containing image, graphics, and
presentation text objects is illustrated in [Figure 4 on page 10| Multiple documents
can be grouped together into a print file.

At each level of the hierarchy certain sets of MO:DCA data structures, called
structured fields, are permissible. The document, pages and objects are bounded by
structured fields that define their beginnings and their ends. These structured
fields, called begin-end pairs, provide an envelope for the data-stream components.
This feature enables a processor of the data stream that is not fully compliant with
the architecture to bypass those objects that are beyond its scope, and to process
the data stream to the best of its abilities.

Documents

MO:DCA documents can belong to either of two categories: presentation
documents or resource documents.

* A presentation document (MO:DCA-P document) is one that has been formatted
and is intended for presentation, usually on a printer or display device. A data
stream containing a presentation document should produce the same document
content in the same format on different printers or display devices dependent,
however, on the capabilities of each of the printers or display devices. A
presentation document can reference resources that are to be included as part of
the document to be presented.

* A resource document (MO:DCA-L document) is a collection of resource objects
and data objects that can be stored in a library for later retrieval and use.

Pages

Pages contain the data objects that comprise a presentation document.
portrays the location of the page within the data-stream hierarchy. Each

page has a set of data objects associated with it. Each page within a document is
independent from any other page, and each must establish its own environment
parameters.

The page is the level in the document component hierarchy that is used for
printing or displaying a document’s content. The data objects contained in the
page envelope in the data stream are presented when the page is presented. Each
data object has layout information associated with it that directs the placement and
orientation of the data on the page. In addition, each page contains layout
information that specifies the measurement units, page width, and page depth.

The presentation of a document by a presentation device is a process that consists
of presenting the document’s pages on a physical medium in accordance with the
document’s layout and formatting specifications. Examples of physical media are

sides of a sheet of paper and display screens.

12 Mixed Object Document Content Architecture Reference

MO:DCA Concepts

Overlays

Overlays are page-like resource objects that contain data objects and that define
their own environment parameters. Overlays can be included directly on the
medium presentation space using a keyword on the Medium Modification Control
(MMC) structured field. Such overlays are positioned at the origin of the medium
presentation space and are called medium overlays. Overlays may also be included
on the logical page presentation space using the Include Page Overlay (IPO) and
Page Modification Control (PMC) structured fields. Such overlays are positioned at
an offset from the logical page origin that is defined by the IPO and PMC and are
called page overlays. Page overlays that are included with a PMC are also referred
to as PMC overlays. Note that the MMC and PMC are specified in a Medium Map
print control object, whereas the IPO is specified directly in the data stream.

Page Segments

Page segments are resource objects that contain data objects but that do not define
their own environment parameters. Page segments can be included on the logical
page presentation space or on the overlay presentation space using the Include
Page Segment (IPS) structured field, and inherit the environment parameters
defined by the including page or overlay.

Objects

Objects contain the data that is to be presented. They also may contain
environment information needed to establish the proper location and orientation
for the data on the presentation surface. Objects in the data stream are bounded by
delimiters that identify their type, such as graphics, image, or text. The MO:DCA
architecture supports two categories of objects: data objects and resource objects.

Data Objects

In general, data objects consist of data to be presented and the directives required
to present it. The content of each type of data object is defined by an object
architecture that specifies presentation functions that can be used within its
MO:DCA coordinate space. All data objects function as equals in the MO:DCA
data-stream environment. Data objects are carried as separate entities with no
dependencies on the MO:DCA layout structures or on the containing data-stream
environment.

The object area is the space on a page that is used to present the data object. An
object area is defined by layout information, such as the object area’s origin, width,
depth, and orientation on the page.

Resource Objects

Resource objects are named objects or named collections of objects that can be

referenced from within the document. In general, the referenced resources can

reside in a resource group or an external library and can be referenced repeatedly.

They may be used in numerous places in a document or in several documents.

They are characterized by an unchanging and often complex composition. It is

inefficient, and thus undesirable, for applications to generate these objects each

time they are required. Instead, the inclusion of these objects in a resource group

or a library enables applications to retrieve them repeatedly as they are needed to

obtain the desired presentation effect. Examples of resource objects are:

* Fonts that support presentation text and graphics objects

* Referenced data objects

* Page overlays that contain corporate logos, copyright notices, or other such
material

* Color attribute tables

Chapter 2. Introduction to the MO:DCA Architecture 13

MO:DCA Concepts

* Page segments
* Color mapping tables

Secondary Resource Objects

A data object that is processed as a resource may itself require additional resources
for presentation. Such resources are called secondary resources. Examples of data
objects and their secondary resources are:

* An IOCA FS45 image object that references a tile resource
* A single-page PDF object that requires a custom font
* An EPS object that is to be rendered with a SWOP or Euroscale color profile

A secondary resource may be referenced explicitly from a data object, such as a
IOCA tile resource; or it may be tied implicitly to the data object, such as a color
profile. A secondary resource must be mapped with an MDR that carries the
external identifier of the resource in an FQN type X'DE' triplet. This identifier is
used to identify the secondary resource in the data stream and in the presentation
system. If there is also an explicit reference to the secondary resource from within
the data object, the internal identifier is specified in an FQN type X'BE' triplet. The
FON type X'DE' and FQN type X'BE' triplets are paired at object include time
(when the Include Object structured field that includes the data object is processed)
to match up the internal and external identifiers.

Resource Object Mapping

The MO:DCA architecture defines Map structured fields for objects that are to be
processed as resource objects. Examples are the Map Page Overlay (MPO), Map
Page Segment (MPS), Map Coded Font (MCF), and Map Data Resource (MDR)
structured fields. Map structured fields are specified in environment groups and
indicate to the presentation server that the referenced object is to be processed as a
resource object and will be required for presentation. They may also provide
additional information, such as a mapping of the resource reference to a local
identifier for the resource. The scope of the environment determines the scope of
the mapping. For example, if a resource is mapped in the Active Environment
Group (AEG) for a page, the scope of the mapping is the page. Any object that is
to be treated as a resource must be mapped. For some objects like page segments,
IOCA objects, and non-OCA data objects, treating the object as a resource is
optional. Therefore for these objects, the mapping is optional. If a mapping is
specified, the object is sent to the presentation device and may be used multiple
times via an include command. In that case, the object is sometimes called a hard
object. If a mapping is not specified, the object is sent to the presentation device as
part of the page or overlay, and is sometimes called a soft object.

Note: To optimize print performance, it is strongly recommended that the same
encoding scheme be used for a resource reference wherever in a print file
that resource reference is specified. That is, the encoding scheme used for
the resource include, the resource map, and the resource wrapper should be
the same.

Preloading and Preprocessing Resource Objects

The Resource Environment Group (REG) allows preloading of complex resources
before printing for the first page is started. This can avoid device underruns that
might occur if the resource downloading takes place between pages.

Resource preprocessing is an extension of the resource preload concept. It can be
used with objects that have a long rasterization time, and causes this rasterization
to be done after the resource is preloaded, but before printing of the first page is

14 Mixed Object Document Content Architecture Reference

MO:DCA Concepts

started. This can avoid device underruns that might occur if such rasterization
takes place between pages. Examples of resource objects that might benefit from
resource preprocessing are:

¢ Large IOCA FS45 image objects that need to be rotated, scaled, or trimmed
* Complex EPS and PDF objects

The penalty for underrunning a device is dependent on the device characteristics.
For example, on a cut-sheet printer the penalty is normally a larger time delay
between page printing, which may be acceptable. On a continuous-forms printer
that can backhitch and recover from an underrun, the penalty is normally a loss of
throughput and possibly increased printer maintenance. On a continuous-forms
printer that cannot backhitch, the penalty is most severe in that unwanted blank
sheets are generated during the underrun. These blank sheets must be accounted
for and discarded by the post-processing system.

Resource preloading and preprocessing does come at a cost. The undesirable effect
of resource preloading and preprocessing is that the time to first print is increased.
To achieve optimum throughput, an application should be tuned to preload and
preprocess only those resources whose downloading and processing between pages
would cause an unacceptable device underrun.

Object Containers

An object container is an envelope for object data. The object data may or may not
be defined by an IBM presentation architecture. The container consists of a
mandatory Begin/End structured field pair, an optional Object Environment Group
(OEG), and mandatory Object Container Data (OCD) structured fields. The Begin
structured field specifies information about the object data such as object-type
identifier, class, type, level, and structure, so that a MO:DCA receiver can
determine whether it is an object that can be processed given its capabilities. The
OCD structured fields are used to carry the object data.

If the object is to be carried in MO:DCA resource groups and interchanged, it must
at a minimum be enveloped by a Begin/End pair, the Object Classification (X'10')
triplet on the Begin structured field must specify the registered object-type
identifier (object-type OID) for the object data format, and all object data must be
partitioned into OCDs. If the object container is to appear directly in a page or
overlay, the container must be structured in accordance with the MO:DCA-P
syntax for data objects supported directly in pages and overlays, such as IOCA,
GOCA, and BCOCA objects. For a definition of this structure, see
[Containers” on page 112] Object containers can be included indirectly by name in a
document using the Include Object (IOB) structured field.

If the object data is traditional time-invariant presentation data, it must be
paginated, that is the presentation space within which the object data is presented
must be restricted to a single page. However, the object data within the container
is not constrained to be traditional presentation object data. Examples of
presentation object data that can be carried in an object container are image objects
in TIFF (Tag Image File Format), PCX (Paintbrush Picture Format), and DIB
(Device Independent Bitmap) format. Examples of non-presentation object data that
can be carried in an object container are COM Set-up Files and Color Mapping
Tables.

Chapter 2. Introduction to the MO:DCA Architecture 15

MO:DCA Concepts

Environment Groups

An environment group in the data stream is used to carry layout information and to
identify mappings to resources for resource management. Environment groups can
be specified at the object, page, or document level. An environment group consists
of a set of MO:DCA structured fields enveloped in a begin-end pair.

Document Environment Groups

A Document Environment Group may be associated with a Form Map print control
object. The document environment group contains presentation specifications such
as resource mappings and medium information that apply to all Medium Maps in
the Form Map. The scope of a document environment group is the scope of its
containing Form Map.

Resource Environment Groups

A Resource Environment Group (REG) is associated with a document or a group of
pages in a document. It is contained in the document’s begin-end envelope in the
data stream. The REG is used to identify complex resources, such as
high-resolution color images, that need to be downloaded to the presentation
device before the pages that follow are processed. The scope of a REG is the pages
that follow, up to the next REG (which is a complete replacement for the current
REG) or the end of the document, whichever occurs first. Specification of a REG is
optional. Identifying a resource in a REG does not remove the need to map that
resource in the environment groups for the pages and objects that use the resource.

Active Environment Groups

An Active Environment Group (AEG) is associated with each page, and is contained
in the page’s begin-end envelope in the data stream. [Figure 4 on page 10| depicts
the relationship of the active environment group to the page. The active
environment group contains layout and formatting information that defines the
measurement units and size of the page, and may contain resource information.
Any objects that are required for page presentation and that are to be treated as
resource objects must be mapped with a map structured field in the AEG. The
scope of an active environment group is the scope of its containing page or
overlay. In many cases the information contained in an active environment group
can be inherited by objects contained in the page. See|”Default Values” on page 31|
for a discussion of defaults and inheritance.

Object Environment Groups

An Object Environment Group (OEG) may be associated with an object and is
contained within the object’s begin-end envelope. [Figure 4 on page 10| depicts the
relationship of the object environment group to its corresponding object. The object
environment group defines the object’s origin and orientation on the page, and can
contain resource information.

Any objects that are required for object presentation and that are to be treated as
resource objects must be mapped using a map structured field in the OEG.

Application Note: For PSF resource management, any mapping specified in the
OEG for an object must also be specified in the AEG for the
page or overlay that includes the object. This is sometimes
referred to as factoring the resource mapping from OEG to AEG.

The scope of an object environment group is the scope of its containing object. An
application that creates a data-stream document may omit some of the parameters
normally contained in the object environment group, or it may specify that one or
more default values are to be used. The values to be used may be:

16 Mixed Object Document Content Architecture Reference

MO:DCA Concepts

¢ Inherited from the active environment group on the current page
* Supplied by default values defined by the MO:DCA architecture
e Supplied by default values defined by the application

See [“Default Values” on page 31|for a discussion of defaults and inheritance.

Resource Groups

A resource group is used in the data stream to contain resources during
transmission. The resources can be referenced or included at other locations within
the data stream. A document can consist entirely of resource groups and can be
used to pass any type of resource between products without any document
composition overhead.

Resource groups can exist at the print file level, the document level, the page level,
and the data object level. A resource group has the same scope as its container.
That is, the contents of the resource group are available for referencing until the
containing component is ended. For example, when a resource group is contained
within a page, the contents of the resource group are available for referencing only
within that page. Once the End Page structured field is encountered, the resources
contained within that resource group are no longer available.

Although the MO:DCA architecture has several ways of referencing a resource
object, ultimately they all result in matching a referenced identifier with the
identifier used for the resource object. If the resource object is within a resource
group in the data stream, the resource object’s identifier is specified on the Begin
structured field that defines the object. If the resource is in an external library, the
resource object’s identifier is the library name associated with the object. The
MO:DCA architecture does not require that the library name be the same as the
identifier specified on the Begin structured field.

In addition to matching the identifier, the resource object type must also match the
reference. Thus, if a reference is made to a page overlay named ABCDEF and a
color attribute table named ABCDEEF is encountered in the resource group, it is not
considered a valid match because the Begin structured field is of the wrong type.

Although the MO:DCA architecture permits objects of different resource types to
have the same identifier, it requires that objects of the same resource type within the
same resource group have unique identifiers. However, there is no restriction on
having multiple objects of the same resource type and identifier in multiple
resource groups.

The MO:DCA architecture defines the order in which resource groups must be
searched when attempting to locate a specific resource. When searching for a
resource, the first resource located that satisfies the search criteria ends the search.
Thus, although two different versions of the same resource type with the same
name may exist in different resource groups, the MO:DCA resource scope and
search rules remove any uncertainty as to which of the resources will be selected.

When the reference is from within a data object, the MO:DCA search order is:
The current data object level resource group, if one exists

The current page level resource group, if one exists

The document level resource group, if one exists

The print file level resource group, if one exists

oD~

When the reference is from outside a data object, the MO:DCA search order is:
1. The current page level resource group, if one exists

Chapter 2. Introduction to the MO:DCA Architecture 17

MO:DCA Concepts

2. The document level resource group, if one exists
3. The print file level resource group, if one exists

If no resource groups exist or if the referenced resource object is not found in any
of the resource groups searched, the search is extended to an external library. The
search convention does not include library access methods, since these are
dependent upon the implementing system. For the formal definition of resource
groups in MO:DCA-P data streams, see [“Resource Groups” on page 88

Page Groups

A page group is used in the data stream to define a named, logical grouping of
sequential pages. Page groups are delimited by begin-end structured fields that
carry the name of the page group. Page groups are defined so that the pages that
comprise the group can be referenced or processed as a single entity. Examples of
page group processing are:

* Assigning a set of common indexing attributes to the page group

* Retrieving the page group from an archive system for viewing

Print Control Objects

Print control objects are resource objects that contain formatting, layout, and
resource-mapping information used to present the document’s pages on physical
media. Print control objects may be selected at the time of the print request, or
they may be invoked directly from the document. There are two types of print
control objects, form maps, also known as form definitions or formdefs, and medium
maps. A form map print control object contains one or more medium map print
control objects. Note that a medium map is also sometimes referred to as a

copygroup.

Process Elements

Process elements are document structures that facilitate particular forms of
document processing. A process element is defined by a structured field and does
not contain any presentation specifications, that is, it does not affect the appearance
of a document when the document is presented. An example of a process element
is a Tag Logical Element (TLE), which specifies object attribute information that
can be used to support attribute-based document indexing and attribute-based
document navigation. Another example is a Link Logical Element (LLE), which
specifies a linkage from a source document component to a target document
component.

18 Mixed Object Document Content Architecture Reference

Chapter 3. MO:DCA Overview

This chapter:

Describes the general syntax and semantics for MO:DCA structured fields
Describes state, as defined by the MO:DCA architecture

Describes the types and categories of MO:DCA parameters

Describes conventions used in the MO:DCA architecture for coordinate systems,
measurement units, and rotation units

Describes MO:DCA mixing rules

Describes MO:DCA color management

Describes font technologies used in MO:DCA documents

Describes MO:DCA document indexing

Describes other aspects of MO:DCA document presentation

Describes and defines the MO:DCA exception conditions

MO:DCA Data Structures

Each component of a mixed object document is explicitly defined and delimited in
the data stream that transmits it. This is accomplished through the use of MO:DCA
data structures, called structured fields, that reside in the data stream. Structured
fields are used to envelop document components and to provide commands and
information to applications using the data stream. Structured fields may contain
one or more parameters. Each parameter provides one value from a set of values
defined by the architecture.

Notation Conventions

In addition to the information provided in|“How to Read the Syntax Diagrams” on|
page v, the following notation conventions apply throughout this document:

Bytes are numbered from left to right beginning with byte zero, which is
considered the high order (most significant) byte position. This is referred to as
big-endian byte order. For example, a three-byte field would consist of byte zero,
byte one, and byte two.

Each byte is composed of eight bits.

Bits in a single byte are numbered from left to right beginning with bit zero, the
most significant bit, and continuing through bit seven, the least significant bit.
This is referred to as big-endian bit order.

When bits from multiple consecutive bytes are considered together, the first byte
always contains bits zero to seven and the bits of the additional bytes are
numbered eight to n, where # is equal to one less than the total number of bytes
multiplied by eight. For example, a two-byte field would consist of bits zero to
fifteen and a four-byte field would consist of bits zero to thirty-one.

Negative numbers are expressed in two’s-complement form. See|”Number” o
page 34

for details.
Field values are expressed in hexadecimal or binary notation:

B'01111110"' = X'7E' = +126

X'7FFF' = +32767

X'8000" -32768 (when signed binary is used)
X'8000" +32768 (when unsigned binary is used)

© Copyright IBM Corp. 1990, 2006 19

Structured Field Syntax

MO:DCA Structured Field Syntax

MO:DCA structured fields consist of two parts: an introducer that identifies the
length and type of the structured field, and data that provides the structured
field’s effect. The data is contained in a set of parameters, which can consist of
other data structures and data elements. The maximum length of a structured field
is 32,767 bytes. The general format for a structured field is as follows:

Structured Field Introducer

Length
(2B)

Identifier
(3B)

Flags (1B)

Reserved; | Extension Data
X'0000'

Padding

Structured Field Introducer

The MO:DCA Structured Field Introducer (SFI) introduces a structured field, and
identifies its type and its length. SFIs have the following format:

SFI Syntax
Table 8. Structured Field Introducer (SFI)
Offset Type Name Range Meaning M/O Exc
0-1 UBIN | SFLength 8-32767 Total length of the structured M X'82'
field including the length of
the introducer
24 CODE | SFTypelD A three-byte code that M X'78'
uniquely identifies the
structured field. See |”SFi|
[Semantics” on page 21 for a
description.
5 BITS |FlagByte Used to indicate whether an M X'82'
extension, segmentation, or
padding is in use
Bit 0 ExtFlag B'0', B'1l' B'0' No SFI extension
exists
B'1' SFI extension is
present
Bit 1 Reserved; must be zero
Bit 2 SegFlag B0, Bl B'0' Data is not segmented
B'1' Data is segmented
Bit 3 Reserved; must be zero
Bit 4 PadFlag B'0', B'1' B'0' No padding data
exists
B'1' Padding data is
present
Bits 5-7 Reserved; must be zero
6-7 Reserved; should be zero M X'82'
The following optional extension appears only if bit 0 of FlagByte is B'1":
8 UBIN | ExtLength 1-255 Length of the extension (@) X'82'
including the length of
ExtLength itself

20 Mixed Object Document Content Architecture Reference

Structured Field Syntax

Table 8. Structured Field Introducer (SFl) (continued)

Offset

Type

Name

Range Meaning M/O Exc

9

ExtData

Reserved (@] X'00'

SFI Semantics

SFLength
SFTypelD

FlagByte

Bytes 6-7

Defines the length of the structured field, including itself.

A three-byte field that uniquely identifies the structured field. It
has the form D3TTCC, where:

Code Description

D3 The structured field class code that has been assigned to
the MO:DCA architecture.

T The structured field type code. The type code identifies the
function of the structured field, such as begin, end,
descriptor, or data. See|“Type Codes” on page 22| for a
description of type codes.

ccC The structured field category code. It identifies the
lowest-level component that can be constructed using the
structured field, such as document, active environment
group, page, or object. The same category code point
assigned to a component’s begin structured field also is
assigned to that component’s end structured field. These
code points identify and delimit an entire component
within a data stream or an encompassing component. See
[“Category Codes” on page 23 for a description of category
codes.

Specifies the value of the optional indicators. Indicator bits are
defined as follows:

Bit Indicator name and meaning

0 ExtFlag is the SFI extension flag. See [“Structured Field|
[Introducer Extension” on page 24|for details.
B'0’ No SFI extension exists.

B'1' This structured field has an SFI extension.

2 SegFlag is the segmentation flag. See |[“Structured Field|
[Segmentation” on page 24| for details.
B'0’ No segmentation in effect.
B'1' The data for this structured field has been
segmented.

4 PadFlag is the padding flag. See [“Structured Field|
[Padding” on page 24| for details.
B'0' No padding data appended.
B'1' Padding data has been appended to the end of this
structured field.

All others
Reserved; must be binary zero

Reserved; should be zero

Application Note: In AFP environments, some applications use
bytes 6-7 of the Structured Field Introducer to

Chapter 3. MO:DCA Overview 21

Structured Field Syntax

specify a sequence number for the structured
field. This is an unarchitected use of these bytes
and should be avoided.

ExtLength Specifies the length of the SFI extension, including the length of
ExtLength itself. For ExtLength to be valid, bit 0 of FlagByte must
be B'1".

ExtData Contains up to 254 bytes of application-defined SFI extension data.
For ExtData to be valid, bit 0 of FlagByte must be B'1".

Type Codes
The following type codes have been defined. All other type codes are reserved.

Table 9. Type Codes

Type Code

Function Description

X'A0'

Attribute An attribute structured field defines an attribute with parameters
such as name and value.

X'A2'

Copy Count A copy count structured field specifies groups of sheet copies,
called copy subgroups, that are to be generated, and identifies
modification control structured fields that specify modifications
to be applied to each group.

X'A6'

Descriptor A descriptor structured field defines the initial characteristics and,
optionally, the formatting directives for all objects, object areas,
and pages. Depending on the specific descriptor structured field
type, it may contain some set of parameters that identify:

* The size of the page or object

* Measurement units

* Initial presentation conditions

X'A7

Control A control structured field specifies the type of modifications that
are to be applied to a group of sheet copies, or a copy subgroup.

X'A8

Begin A begin structured field introduces and identifies a document
component. In general, a begin structured field may contain a
parameter that identifies the name of the component.

X'AY

End An end structured field identifies the end of a document
component. In general, an end structured field may contain a
parameter that identifies the name of the component.

X'AB'

Map A map structured field provides the following functions in the
MO:DCA architecture:

* All occurrences of a variable embedded in structured field
parameter data can be given a new value by changing only
one reference in the mapping, rather than having to physically
change each occurrence. Thus all references to font X may
cause a Times Roman font to be used in one instance and a
Helvetica font in another instance merely by specifying the
proper map coded font structured field.

* The presence of the map structured field in a MO:DCA
environment group indicates use of the named resource
within the scope of the environment group.

X'AC'

Position A position structured field specifies the coordinate offset value
and orientation for presentation spaces.

X'AD'

Process A process structured field specifies processing to be performed
on an object.

22 Mixed Object Document Content Architecture Reference

Table 9. Type Codes (continued)

Structured Field Syntax

Type Code

Function

Description

X'AF

Include

An include structured field selects a named resource which is to
be embedded in the including data stream as if it appeared
inline. External resource object names on the begin structured
field may or may not coincide with the library name of that
object, as library name resolution is outside the scope of the
MO:DCA architecture.

X'BO'

Table

A table structured field contains a list of items of the same or
similar type that are related to one another.

X'B1'

Migration

A migration structured field is used to distinguish the MO:DCA
structured field from a structured field with the same acronym
from an earlier data-stream architecture. The earlier version is

called Format 1. The MO:DCA version is called Format 2.

X'B2'

Variable

information.

A variable structured field defines or contains variable

X'B4'

Link

A link structured field defines a logical connection, or linkage,
between two document components.

X'EE'

Data

particular data object type.

A data structured field consists of data whose meaning and
interpretation is governed by the object architecture for the

Category Codes

The following category codes have been defined. All other category codes are

reserved.

Category Code Description

X'5F'
X'6B'
X'77'
X'7B'
X'88'
X'8A'
X'90'
X'92'
X'9B'
X'A7'
X'A8'
X'AD'
X'AF'
X'BB'
X'cs
X'cq'
X'Ce'
X'c7
X'Co'
X'cC'
X'CD'
X'CE'
X'D8'
X'D9'
X'DF'
X'EA'
X'EB'

Page Segment

Object Area

Color Attribute Table

IM Image

Medium

Coded Font

Process Element

Object Container

Presentation Text

Index

Document

Page Group

Page

Graphics

Data Resource

Document Environment Group (DEG)
Resource Group

Object Environment Group (OEG)
Active Environment Group (AEG)
Medium Map

Form Map

Name Resource

Page Overlay

Resource Environment Group (REG)
Overlay

Data Suppression

Bar Code

Chapter 3. MO:DCA Overview 23

Structured Field Syntax

X'EE' No Operation
X'FB' Image

Structured Field Data

The structured field’s data is contained in a parameter set that immediately follows
the structured field’s introducer. The syntax and semantics for each MO:DCA
structured field parameter set is given in [Chapter 5, “MO:DCA Structured Fields,”|
Depending on the structured field and its purpose, the parameter set
may contain zero or more parameters. If parameters are present, they contain
specific information appropriate for the structured field. The data occupies as
many bytes as needed, up to a maximum of 32,759 bytes.

Structured Field Introducer Extension

A structured field introducer may be extended by up to 255 bytes. The presence of
an SFI extension is indicated by a value of B'1" in bit 0 of the SFI flag byte. If an
extension is present, the introducer is at least 8 bytes, but not more than 263 bytes,
in length. The first byte of the extension specifies its length. If an extension to the
structured field introducer is present, the structured field’s data can occupy up to
32,759 bytes, less the length of the extension.

Structured Field Segmentation

When the total length of the introducer and the data portion of a structured field
exceeds 32,767 bytes, the data must be split into two or more fragments and
specified on multiple consecutive structured fields. This is known as segmenting a
structured field. Segmenting normally only occurs for those structured fields that
contain OCA data.

When a structured field is segmented, the OCA may require that the data be split
on specific data element boundaries. The MO:DCA architecture permits other
structured fields to be interspersed between the segmented structured fields.
However, for those cases where it is undesirable to split the data at a specific
boundary or to permit other structured fields to appear between the segmented
structured fields, the MO:DCA architecture provides a segmentation flag. This flag
indicates that the segmented structured fields are all part of a single, uninterrupted
parameter string. When bit 2 of the SFI flag byte is set to B'l, the parameter data
may be split at any byte boundary and no other structured fields are permitted to
appear between the segmented structured fields. The segmentation flag value for
the last structured field in a sequence of structured fields containing a segmented
parameter string must be B'0'.

Structured Field Padding

Padding bytes may be used by an application to extend the physical length of a
structured field beyond what is required by its introducer and parameter set. This
could be done, for example, to make all structured fields the same length or to
make each structured field’s length a multiple of some number. The use of
padding is indicated by a value of B'l" in bit 4 of the SFI flag byte.

If padding is indicated, the length of the padding is specified in the following
manner:

e For 1 or 2 bytes of padding, the length is specified in the last padding byte.

* For 256 to 32,759 bytes of padding, the length is specified in the last three bytes
of the padding data. The last byte must be X'00" and the two preceding bytes
specify the padding length.

24 Mixed Object Document Content Architecture Reference

Structured Field Syntax

* For 3 to 255 bytes of padding, the length can be specified by either method.

When padding is indicated:

* The structured field length value specifies the total length of the structured field,
including the padding data.

* The padding length value specifies the total length of the padding data,
including the padding length byte(s).

Structured Field Formats

The MO:DCA architecture has evolved from several previous IBM data streams,
namely the Composed Page Data Stream (CPDS), the Composite Document
Presentation Data Stream (CDPDS), and the Advanced Function Print Data Stream
(AFPDS). Because of this, the MO:DCA architecture uses many of the same
structured fields originally defined for these architectures. However, in some cases
new structured fields have been defined that have the same name, acronym, and
usage as these older structured fields. This has only been done for those cases
where it became necessary to expand the function of the structured field, but the
definition of the original structured field did not lend itself to expansion.

These new structured fields are always assigned a structured field identifier closely
resembling the old one. Although the structured field identifiers clearly
differentiate between the two versions of the same structured field, when referring
to them by name or by acronym, the older version is known as Format 1 and the
newer MO:DCA version is know as Format 2. Two such structured fields are the
Map Coded Font structured field and the Presentation Text Data Descriptor
structured field.

Data Stream Format

The MO:DCA architecture does not dictate the physical format of the data stream
or how it is transported. The data stream may be carried within a communication
protocol or it may be stored on a tape or disk. It may be one continuous string of
bytes or it may be broken up into multiple records. When broken into multiple
records, the records may be fixed length or variable length. Each record may
contain an individual structured field, a portion of a structured field, or any
number of contiguous structured fields. The receiver must be capable of receiving
the data stream and parsing or processing it sequentially from start to finish. While
receivers may impose reasonable limits on blocking factors for buffer management
purposes, they should not be designed to process only one type of data stream
format.

MO:DCA Data Stream States

The MO:DCA architecture defines a state to be a domain within the data stream,
bounded by a begin-end structured field pair, within which certain structured
fields are permitted. The processor of a MO:DCA data stream is required to check
the validity of the structured field sequence received. A valid structured field
sequence is one in which each structured field that is processed belongs to the set
of permissible structured fields for the begin-end envelope in which it is found. If
a structured field other than one belonging to the set of permissible structured
fields is detected, a violation of the state has occurred, and the processor is
required to raise an exception condition.

Chapter 3. MO:DCA Overview 25

Data Stream States

The MO:DCA architecture recognizes the following states:
State Description

Document
Initiated by a Begin Document structured field and terminated by an End
Document structured field. The Begin Document structured field defines
the beginning of the MO:DCA data stream, within which all other
MO:DCA document-level structured fields are contained.

Index Initiated by a Begin Document Index structured field and terminated by an
End Document Index structured field. Structured fields that define a
document index may be encountered in the index state.

Resource Group
Initiated by a Begin Resource Group structured field and terminated by an
End Resource Group structured field. Structured fields that define
resources, such as page overlays and color tables, may be encountered in
the resource group state.

Named Resource
Initiated by a Begin Resource structured field and terminated by an End
Resource structured field. Structured fields that define resources may be
encountered in the named resource state.

Resource Environment Group
Initiated by a Begin Resource Environment Group structured field and
terminated by an End Resource Environment Group structured field.
Structured fields that identify resources for presentation may be
encountered in the resource environment group state.

Page Group
Initiated by a Begin Named Page Group structured field and terminated by
an End Named Page Group structured field. Structured fields that define
pages, or that define other nested page groups, or that specify attributes of
the page group may be encountered in page group state.

Page Initiated by a Begin Page structured field and terminated by an End Page
structured field. Structured fields that define objects and active
environment groups or that specify attributes of the page may be
encountered in page state.

Active Environment Group
Initiated by a Begin Active Environment Group structured field and
terminated by an End Active Environment Group structured field.
Structured fields that provide environment specifications affecting a page
and objects within a page may be encountered in the active environment
group state.

Data Object
Initiated by a begin object structured field for bar code, graphics, image, or
presentation text, and terminated by a corresponding end object structured
field. Structured fields that define object environment groups and contain
object data may be encountered in the data object state.

Resource Object
Initiated by a begin resource object structured field for resources such as
color attribute tables, medium maps, and page overlays, and terminated by
a corresponding end resource object structured field. Structured fields that
define the contents of resource objects may be encountered in the resource
object state.

26 Mixed Object Document Content Architecture Reference

Data Stream States

Object Container

Initiated by a Begin Object Container structured field and terminated by an
End Object Container structured field. Structured fields that define object
environment groups and contain object data may be encountered in the

object container state.

Object Environment Group

Initiated by a Begin Object Environment Group structured field and
terminated by an End Object Environment Group structured field.

Structured fields that provide environment specifications affecting objects
within a page may be encountered in the object environment group state.

State Hierarchies

States are grouped and organized hierarchically. Although individual interchange
sets may impose additional restrictions, the general state hierarchy within the
MO:DCA architecture is as follows:

States permitted within Document state:
- Index

— Page

Page Group

Resource Group (MO:DCA-L)
Resource Object

— Resource Environment Group

States permitted within Index state:
— None

States permitted within Resource Group state:
— Resource Object
— Named Resource

States permitted within Named Resource state:
— Resource Object

States permitted within Resource Environment Group state:
— None

States permitted within Page Group State:
— Page

— Page Group

— Resource Object

— Resource Environment Group

States permitted within Page state:
— Resource Group

— Active Environment Group

— Data Object

— Object Container

States permitted within Active Environment Group state:
— None

States permitted within Data Object state:
— Resource Group (MO:DCA-L)
— Object Environment Group

States permitted within Resource Object state:
— Active Environment Group if the object is a page overlay
— Object Environment Group if the object is a data object

States permitted within Object Container state:
— Object Environment Group
States permitted within Object Environment Group state:

Chapter 3. MO:DCA Overview

27

Data Stream States

— None

See [Chapter 4, “MO:DCA-P Objects,” on page 77,||'MO:DCA Presentation|

[nterchange Set 1” on page 471 ||"MO:DCA Presentation Interchange Set 2” on page|

486, and ['MO:DCA Resource Interchange Set” on page 505|for details of the

structured fields that may be encountered in each state in MO:DCA-P, MO:DCA-P
IS/1, MO:DCA-P 1S/2, and MO:DCA-L data streams respectively.

Environment Hierarchies

The Active Environment Group and Object Environment Group are also
hierarchically related. Parameters specified in the OEG override like parameters
specified in the AEG, while like parameters specified within the same
environment—whenever this is allowed—replace the previous specification. To
illustrate this point, consider the following example. Note that the same LID
mapping rules apply when a resource object is mapped with a Map Data Resource
(MDR) structured field.

* A page contains an AEG with the following two Map Coded Font structured
fields:
— An MCF that maps LID 1 to font A and LID 2 to font B
— An MCF that maps LID 3 to font D

* A graphics data object on that same page contains an OEG with the following
two Map Coded Font structured fields:
— An MCF that maps LID 3 to font E and LID 4 to font F
— An MCF that maps LID 5 to font H

For objects on that page that do not specify their own MCFs within their own
OEGs, the LIDs and their associated fonts would be:

e LID 1 = font A, from AEG MCF #1

e LID 2 = font B, from AEG MCF #2

» LID 3 = font D, from AEG MCF #2

The LIDs and their associated fonts available within the graphics object would be:
e LID 1 = font A, from AEG MCF #1

e LID 2 = font B, from AEG MCF #2

e LID 3 = font E, from OEG MCF #1

e LID 4 = font F, from OEG MCF #1

e LID 5 = font H, from OEG MCF #2

In this case, fonts A and B were made available from the MCFs contained in the
AEG which was higher in the environment hierarchy. However, font D was
overridden when the first MCF in the OEG mapped LID 3 to font E.

Similarly, if a Presentation Space Reset Mixing triplet were specified on both the
Page Descriptor structured field and one or more Object Area Descriptor structured
fields within a particular overlay within a resource group, the PGD would control
the presentation space mixing for the entire overlay presentation space and the
OBDs would control the presentation space mixing for their individual object area
presentation spaces.

Resource Environment Groups (REGs) are optional and do not affect AEGs and
OEGs. Identifying a resource in a REG does not remove the need to map that
resource in the environment groups of the pages and objects that use the resource.

28 Mixed Object Document Content Architecture Reference

Data Stream States

Processing Order

Unless otherwise specified in a structured field’s definition, all structured fields are
processed in the order in which they appear in the data stream. For example, if a
presentation data stream contains a page with a text object, an Include Page
Overlay, a graphic object, a second Include Page Overlay, and an image object, in
that order, the objects are presented (imaged) on the page in that same order. That
is, the text object is presented first, the first overlay is presented second, the
graphic object is presented third, the second overlay is presented fourth, and the
image object is presented last.

Likewise, unless otherwise specified in the structured field or triplet definition,
structured field and triplet parameters are also processed in the order in which
they appear in the structured field or triplet.

Resource Search Order

Resources used by a MO:DCA document may be located in resource groups that
are internal to the document, in resource groups that are external to the document
(print-file-level resource groups), or in resource libraries.

The general search order for MO:DCA resources is as follows:
1. Internal resource groups

2. External (print-file-level) resource groups

3. External resource libraries

For the formal definition of resource groups in MO:DCA-P data streams, see
[‘Resource Groups” on page 88

Chapter 3. MO:DCA Overview 29

Structured Field Parameters

Structured Field Parameters

A structured field is composed of a set of parameters that provides data and
control information to processors of the data stream. The MO:DCA architecture has
established a length, a set of permissible values and a functional definition for each
structured field parameter.

Mandatory and Optional Parameters

A parameter can be mandatory or optional. [Chapter 5, “MO:DCA Structured|
[Fields,” on page 117|provides a description of each structured field’s parameters.
The description indicates whether each parameter is mandatory or optional.

Mandatory Parameters

A mandatory parameter appears in a structured field because the function of the
parameter is required and a value is essential for proper interpretation of the data
stream. A value must be specified for a mandatory parameter. The value specified
either must be within the range of permissible parameter values, or it must
designate that an existing default value is to be used. A mandatory parameter
requires that a suitable value for the parameter must appear somewhere in the
hierarchy of structured fields in the data stream.

Optional Parameters

An optional parameter can be omitted from a structured field if the function of that
parameter is not required, or if, although the function is required, a default value
is acceptable. An optional parameter cannot be omitted if the function is required
and the default value is not acceptable.

Parameter Categories

A parameter’s category refers to its structure. A parameter can consist of a single
data element or it can be a data structure composed of several data elements.
Parameters that are data structures can have either a fixed length or a variable
length. In the MO:DCA architecture two types of parameters are used: fixed and
self-identifying.

Fixed Parameters

A parameter consisting of a single data element is called a fixed parameter. A fixed
parameter has a constant size in terms of bits and bytes and it always appears at
the same location within its structured field. Fixed parameters also are called
positional parameters.

Self-identifying Parameters

Self-identifying parameters are data structures that consist of three or more data
elements, one of which is used to identify the purpose of the parameter. The
self-identifying parameter in the MO:DCA architecture is known as a triplet.

A triplet can have a variable length of up to 254 bytes. A triplet must consist of at
least three data elements: a length data element, an identifier data element, and
one or more data elements for its contents. It can occupy any location after any
fixed parameters that occur in the structured field.

Repeating Groups

The MO:DCA architecture also supports another category of parameters known as
a repeating group. A repeating group consists of specific fixed or self-identifying
parameters that have been combined into a defined group. This group then
becomes a data structure that may be specified multiple times.

30 Mixed Object Document Content Architecture Reference

Structured Field Parameters

When the repeating group contains self-identifying parameters, the first parameter
in the repeating group is a length parameter that indicates how many bytes
comprise that repeating group. This length parameter is called the RGLength
parameter and the value specified always includes the length of the RGLength
parameter itself, which is usually two bytes.

When the repeating group contains only fixed parameters, the MO:DCA
architecture may or may not specify that the repeating group contains a RGLength
parameter. When it does, the value specified for the RGLength parameter always
includes the length of the RGLength parameter itself.

Note: Frequently, a structured field may contain both positional and
self-identifying parameters. When this occurs, the positional parameters
always occur before any self-identifying parameters. At times, some or all of
the positional parameters may be defined as optional. Optional parameters
may only occur at the end, after all mandatory parameters. When optional
self-identifying parameters such as triplets are added to a structured field
that has optional positional parameters defined, all of the positional
parameters are considered mandatory and must appear before the first
self-identifying parameter. See [“Include Page Overlay (IPO)” on page 214 for
an example of this type of structured field.

Parameter Values

A parameter’s value can be specified directly, or it can be obtained indirectly
through the use of defaults.

Specified Values

The values to be given to a parameter must be consistent with its length and data
type. Additional constraints on values may eliminate one or more values that
otherwise could be assigned to a parameter.

Default Values

The use of defaults enables the sender of data-stream documents to omit the
values for defaulted parameters, permitting the receiving application to use
predetermined values. A default value can be given to a parameter by omitting
any value for it, or by entering a value, defined by the architecture, requesting use
of the default. The source of the default value used for a parameter may be an
environment group higher in the document component hierarchy, or it may be an
architected default established by the MO:DCA architecture.

Hierarchical Defaults: Parameter values established by an environment group at
a higher level in the document component hierarchy will be the default for a
subordinate level unless a value is specified at the subordinate level. The scope of
a parameter is the same as the scope of the structured field that contains it. Thus
the parameters established in an active environment group for the current page
will be in effect for the duration of the page, and will be the default parameters for
all objects contained in the page. If an object in the page has an associated object
environment group that specifies new values, the new parameter values will be in
effect for the duration of the object. If the parameters for a subsequent object in the
page are unspecified, or if they specify that the default value is to be used, the
values from the current page’s active environment group will be used. The
placement of parameter values at a higher level in the document hierarchy, for the
purpose of enabling lower levels to inherit these values as defaults, is known as
factoring.

Chapter 3. MO:DCA Overview 31

Structured Field Parameters

Architected Defaults: Certain parameters may be given default values by the
MO:DCA architecture. Parameters that have been given defaults are identified in
the structured field descriptions in [Chapter 5, “MO:DCA Structured Fields,” on|
If a default is not listed for a parameter, no architected default exists.

Default Indicator

One of the values that usually can be given to a parameter is the default indicator.
Use of the default indicator for a parameter’s value specifies that the current
default value for the parameter is to be used. In the MO:DCA architecture the
default indicator has the value X'F...F'. The default indicator specifies that either a
hierarchical default value or an architected default value is to be used for the
parameter. A default indicator is implied when a fixed parameter has been omitted
at the end of a structured field. A fixed parameter cannot be omitted if any
subsequent, optional, positional parameter is present, or if any triplet is present.

Any parameter for which the default indicator is valid must have a default value
assigned. This value, which must be valid for the parameter, is used when the
default indicator is specified or implied. A structured field whose parameter values
are all default indicators has no effect and can be omitted from the data stream.

Parameter Occurrence

Parameters may be single-occurrence or multiple-occurrence. The syntax tables in
(Chapter 5, “MO:DCA Structured Fields,” on page 117 identify which parameters
are single-occurrence and which are multiple-occurrence.

Single-Occurrence Parameters

Single-occurrence parameters can occur only once in a structured field.
Single-occurrence parameters can be fixed parameters or triplets. If a value is
specified for a single-occurrence parameter, it will be in effect for the scope of its
structured field. If the value of a single-occurrence parameter is omitted or if the
default indicator is specified, then normal default value inheritance will apply.

Multiple-Occurrence Parameters

Multiple-occurrence parameters are parameters that can appear more than once in
a structured field. Multiple-occurrence parameters can be triplets or repeating
groups. A repeating group may consist of fixed parameters, triplets, or a
combination of fixed parameters and triplets. The following rules apply to
multiple-occurrence parameters:

¢ Triplets will not inherit values from higher levels of the document component
hierarchy.

— If some triplets are omitted from a structured field at a lower level, default
values will not be used. The result will be that no values will exist for the
omitted parameters for the scope of the structured field.

— If all triplets are omitted from a structured field, architected default values
will be used for those parameters that have them. The result will be that only
those parameters having architected defaults will have effect for the scope of
the structured field.

* Fixed parameters will inherit values from higher levels of the document
component hierarchy. If repeating groups of fixed parameters are specified at
more than one level within the document component hierarchy and semantic
conflicts occur, then the conflicts are resolved in favor of the lowest level for the
scope of the structured field.

32 Mixed Object Document Content Architecture Reference

Structured Field Parameters

Parameter Types

The term parameter type refers to a parameter’s function rather than to the data
type of the parameter’s data. For a listing of the six basic data types used by the
MO:DCA architecture, see [‘How to Read the Syntax Diagrams” on page v|A
parameter’s function may be closely related to a data type, for example, in the case
of a bit string parameter and the BITS data type. A MO:DCA parameter may be a
bit string, character string, code, global identifier, local identifier, name, number, or
an undefined type.

One of the most important functions for certain types of parameters is their use in
referencing other document components. A reference is the use of an identifier to
refer to a component, structured field, or repeating parameter group. References
are usually found in structured fields that map component identifiers to local
identifiers, and that invoke or include components at specific data-stream locations.
The effect is the same as if the component appeared at the location in the data
stream that contains the structured field that invokes or includes it. Components
that are referenced by include structured fields provide resource definitions or
object definitions. Components that are referenced by invoke structured fields
provide format information, such as that contained in environment groups.

Bit String

A bit string is a string of binary elements and corresponds to the BITS data type.
Each bit of a bit string has a value of either B'1' or B'0', which represents on or off
respectively. Each bit usually is independent of the others. Some combinations of
bits may be invalid depending on what has been defined for the data element by
the MO:DCA architecture. The convention used for addressing bits within a bit
string is that the leftmost bit is bit 0.

Character String

A character string corresponds closely to the CHAR data type. It is used for
identifiers composed of a string of one or more graphic characters. Character
strings are compared on the basis of the identifiers of the graphic characters that
are presented for the corresponding code points. In the MO:DCA data stream, this
is governed by the Coded Graphic Character Set Global Identifier (CGCSGID).

Code

A code is a value assigned by the MO:DCA architecture that relates to a particular
meaning. The code parameter type relates to the CODE data type. In general,
parameters having a code type are given hexadecimal values or value ranges to
distinguish them from parameters with a number type.

Global Identifier

A global identifier (GID) is a string of bytes that is from 1 to 250 bytes in length. It is
usually a coded graphic character string with a data type of CHAR, but it can also
be a number or a code. A global identifier has either an alphanumeric character
value that is a global name, such as the name of a document, or a numeric value
that is unique in the interchange environment. If an identifier is to be used where
uniqueness is required, for example to reference a component by name, the same
name or value cannot be used more than once within the scope of its reference. For
example, the same name must not be given to two different resource definitions of
the same type in the same resource group.

Local Identifier

A local identifier (LID) is used within the data stream to reference a resource, such
as a color attribute table or coded font, from within a structured field or an OCA.
The application creating the data stream is responsible for establishing the cross

Chapter 3. MO:DCA Overview 33

Structured Field Parameters

references or mapping between the resources and their LIDs. The use of LIDs and
mapping enables an application to make one change in the mapping to effect
multiple changes for the scope of an LID, rather than having to make a change at
each location where the LID appears.

Once established, an LID has meaning only within the context of the data stream
that contains it. An LID has a data type of CODE and its meaning is independent
of where the data stream is created, filed, transmitted, or presented.

Whenever a local identifier parameter type is used to relate structured fields
present in the data stream, the scope of reference for the LID is the begin-end pair
enveloping the referenced resource. Thus both the referenced resource and the
referencing structured field must reside in the same begin-end envelope.

Structured fields, known as map structured fields, that specify a global to local
mapping follow the normal MO:DCA environment hierarchy rules.

Name

A name is an identifier composed of alphanumeric characters, and is closely related
to the CHAR data type. A name parameter type can relate either to a global or a
local identifier. Names are compared on the basis of the identifiers of the graphic
characters that are presented for the corresponding code points. When comparing
names of unequal length, the shorter name is padded with space characters until it
is the same length as the longer name.

Generally, names of begin structured fields within a MO:DCA data stream are
required to be unique only if their names will be referenced and they reside in the
same containing envelope with another begin structured field of the same type. For
example, the presence of two color tables named colortbl in the same resource
group would cause an exception condition.

Name parameters for end structured fields, if used, must match the name
parameter for corresponding begin structured fields. However if the first two bytes
of the name parameter for an end structured field have the value X'FFFF', it will,
by default, match any name on the corresponding begin structured field.

A value of X'0...0" for any positional parameter having a name type indicates that a
Fully Qualified Name (FQN) triplet exists in the structured field. The Fully
Qualified Name triplet contains a name that is used to replace the positional name
parameter value.

The scope of any name reference is limited to the scope of the document
component where the name is specified. Thus a name appearing in an Active
Environment Group has a scope that is limited to the page or page overlay
containing the Active Environment Group, and a name appearing in an Object
Environment Group has a scope that is limited to the object containing the Object
Environment Group.

Number

A number or arithmetic value implies count or magnitude. All numbers used within
the MO:DCA architecture are either signed or unsigned integers as indicated in the
syntax tables by the SBIN and UBIN data types respectively.

In an unsigned number, all bits are used to express the absolute value of the

number. For signed numbers, the leftmost, or high order bit represents the sign,
which is followed by the integer field.

34 Mixed Object Document Content Architecture Reference

Structured Field Parameters

Positive numbers are represented in true binary notation with the sign bit set to
zero. Negative numbers are represented in two’s-complement binary notation with
the sign bit set to one. Specifically, a negative number is represented by the two’s
complement of the positive number. The two’s-complement of a number is
obtained by inverting each bit of the number and adding a one to the low-order bit
position.

Since the MO:DCA architecture defines X'F...F' as a default indicator, the arithmetic
value -1 generally is not permitted. However, in the case where a parameter
cannot be defaulted, the value which normally is the default indicator is
interpreted as —1. [Chapter 5, “MO:DCA Structured Fields,” on page 117| and
(Chapter 6, “MO:DCA Triplets,” on page 341]identify parameters that cannot be
defaulted. The maximum absolute values for numbers that can be assigned to data
elements that also can be assigned the default indicator are listed in

Table 10. Maximum Absolute Values of Numbers in the MO:DCA Architecture

Number of Bytes Data Type Absolute Values
Hexadecimal Decimal

1 SBIN X'7F 127
1 UBIN X'FE' 254
2 SBIN X'7FFF' 32767
2 UBIN X'FFFE' 65534
3 SBIN X'7FFFFF' 8,388,607
3 UBIN X'FFFFFE' 16,777,214
4 SBIN X'7FFFFFFF' 2,147 483,647
4 UBIN X'FFFFFFFE' 4,294,967,294

Unique syntax is used for the expression of values that pertain to units of
measurement and to rotation. See [‘Measurement Units” on page 37| and [“Rotation|
[Units” on page 42| for details of this syntax.

Chapter 3. MO:DCA Overview 35

Coordinate Systems

Coordinate Systems

The MO:DCA architecture defines a multilevel coordinate system hierarchy that
allows a large degree of flexibility in presenting data on a physical medium. A
MO:DCA coordinate system is an orthogonal coordinate system based on the
fourth quadrant of a standard Cartesian coordinate system. Both the X axis and the
Y axis specify positive values, which is a difference from the Cartesian system
where the Y axis in the fourth quadrant specifies negative values.

Wherever negative offsets are supported, such as in the positioning of a page
presentation space on the medium presentation space, the negative X axis is
generated by extending the X axis left of the origin, and the negative Y axis is
generated by extending the Y axis above the origin. Negative numbers are
expressed in two’s complement notation.

Each individual coordinate system is associated with a specific presentation space.
The MO:DCA architecture defines the following presentation spaces:

Medium Presentation Space
The presentation space for the physical medium. This is the base
presentation space onto which all other presentation spaces are merged.

Page Presentation Space
The presentation space for the page, also called a logical page.

Overlay Presentation Space
The presentation space for an overlay.

Object Area Presentation Space
The presentation space for an object area.

Data Object Presentation Space
The presentation space for a data object. This presentation space is defined
by the corresponding data object architecture. For details on data object
presentation spaces, refer to the reference manual for each specific data
object architecture.

The coordinate systems that correspond to the MO:DCA presentation spaces are
listed in|Table 11| Each coordinate system defines its own coordinate axes,
measurement units, and extents.

Table 11. MO:DCA Coordinate Systems

Coordinate System Notation for Axes

x direction y direction
Medium Xim Yo
Page Xog Yog
Overlay Xor Y.,
Object Area Xoa Y.,

The origin of all MO:DCA coordinate systems is the point (0,0) where X equals
zero and Y equals zero. The X and Y axes form the top and left edges, respectively,
of the presentation space, as shown in [Figure 5 on page 37

36 Mixed Object Document Content Architecture Reference

Coordinate Systems

The presentation space associated with the MO:DCA page can be specified to exist
on either side of a sheet, and multiple page presentation spaces can exist on the
same side of a sheet.

— > X
5 1 15 20 25 30 3 40 45 ... n
]]] |

L YT S,
rFresenialon opace

25 — Left Edge

Figure 5. A MO:DCA Presentation Space Coordinate System

Measurement and Rotation

Measurement and rotation conventions are essential to the specification and
interpretation of layout information for data-stream documents. MO:DCA’s
conventions for measurement include data element formats and definitions for
units, extent, and position. Its conventions for rotation include data element
formats and definitions for units.

Measurement

The distance of a point from an origin is known as its absolute position. The
distance of a point from another point is known as its relative position. Distances
are measured in addressable positions, and can mean X,,,Y,, units, ng,ng units,
Xo1 Yo units, or X, Y, units, depending on the extent or offset being measured.

Measurement Units

Measurement units are used throughout the MO:DCA architecture to identify the
units of measure to be used for such things as extents and offsets along the X and
Y axes of a coordinate system.

Each individual measurement unit is specified as two separate values:

Unit base
This value represents the length of the measurement base. It is specified as
a one-byte coded value. The valid codes and their associated meanings are
as follows:
X'00' Ten inches
X'01' Ten centimeters

Chapter 3. MO:DCA Overview 37

Measurement and Rotation

Units per unit base
This value represents the number of units in the measurement base. It is
specified as a two-byte numeric value between 1 and 32767.

The term units of measure is defined as the measurement base value divided by the
units per unit base value.

For example, if the measurement base is 10 inches and the units per unit base is
5000, then the units of measure is 10 inches / 5000 or one five-hundredth of an
inch.

The base measurement units for each axis is specified as part of the definition of a
presentation space. Each MO:DCA coordinate system may specify base
measurement units independent from other coordinate systems appearing on the
same medium. Although the overall architecture design permits each axis to have a
different unit base, current implementations require that both unit bases be
identical.

Measurement Unit Formats
The format used to resolve addressable positions into a unit of measure is a set of
four parameters that specify the X and Y units of length used for measurements in
the X and Y direction, respectively.

Parameter Description

X unit base A one-byte code

Y unit base A one-byte code

X units per unit base A two-byte binary number from 1 through 32767 in

units of the X unit base

Y units per unit base A two-byte binary number from 1 through 32767 in
units of the Y unit base.

Since presentation devices can be built to support different units of measure along
different axes, the units of measure to which the presentation spaces have been
designed can be specified in the data stream. The target presentation device may
determine if it can accept the specified length unit, if it can convert from the
specified addressable positions to one of its own, or if it recognizes a problem and
possibly rejects that portion of the data stream. The origins of coordinate systems
can be established at any addressable position that exists within a presentation
space.

Extent

Each presentation space has two extents: the X extent, which parallels the X axis as
it currently is oriented, and the Y extent, which parallels the Y axis as it currently
is oriented. Extents start at the origin of a presentation space and end at a point
determined by summing the extent value and the origin value. Negative extent
values are not permitted since the area enclosed by a MO:DCA coordinate system
always starts at the origin and proceeds in positive X and Y directions within its
current orientation. In [Figure 6 on page 39 the X extent of the presentation area is
represented by line segment OR and the Y extent by line segment 0D.

38 Mixed Object Document Content Architecture Reference

Measurement and Rotation

—» X
5 10 15 20 25 30 35 40 45 n
|]]]] | | | |
| R
5 (0,0 Top Edge
10—
Presentation Space Y
18 — p Extent
20+ |eft Edge
25 —
D
%0 H!V_
X Extent o
35
40_
a5 _|
+Y .

n —|

Figure 6. Presentation Space Extents

The bottom edge of a presentation space is a line parallel to the X axis of the
presentation space that intercepts the Y axis at the end point of the Y extent. The
right edge of a presentation space is a line parallel to the Y axis of the presentation
space that intercepts the X axis at the end point of the X extent.

The two extents specify the size of the presentation space. Using the example of a
measurement base of 10 inches and a units per unit base of 5000, if the X extent
were specified as 4250 and the Y extent as 5500, the presentation space size would
be 8.5 by 11 inches.

Offset

The origin of any MO:DCA coordinate system is expressed as an offset from the
origin of another coordinate system. The offset values for the X and Y axes can be
positive or negative. Negative offset values are expressed in two’s complement
notation. Any MO:DCA coordinate system that is offset from a reference coordinate
system need not be contained within that reference coordinate’s extents.

The medium coordinate system is the base coordinate system from which all the
other coordinate systems are directly or indirectly offset. A coordinate system for a
document component that is placed within a superior document component
references the coordinate system of the superior document component. For example,
the coordinate system of an object or a page overlay that is placed on a page
references the page’s coordinate system. Since each MO:DCA coordinate system
can be expressed in different base measurement units, the offset of the origin of a
subordinate coordinate system, relative to the origin of the reference coordinate
system, is always measured in the reference system’s base measurement units. This
permits the reference system to influence the placement of the contained system.

The offset coordinate system inherits the orientation of the reference coordinate
system. In [Figure 7 on page 40} the origin for coordinate system B is offset ten X
units and ten Y units from the reference coordinate system A. Coordinate system

Chapter 3. MO:DCA Overview 39

Measurement and Rotation

B’s origin is specified as the intersection of the lines drawn perpendicular to the X
and Y axes at the specified X and Y offset values from coordinate system A.

©0 5 1 15 20 25 3 3/ 4 45 ... n
| | | | | | | | |
5 | Y
Offset
10—4—»
X

Offset (10,10}
Coordinate System B

Coordinate System A

Figure 7. Offset of a Coordinate System

Any portion of a coordinate system may be overlapped by one or more peer
coordinate systems. For example, two different object areas could be defined with
the same origin so that one completely overlapped the other, or their origins could
be specified such that only a portion of the object areas overlapped.

Rotation

Rotation is used to change the presentation orientation of a document component
with respect to that of the superior document component that contains it.

Orientation refers to the rotation of a document component and its coordinate
system with respect to the coordinate system that contains it. After a MO:DCA
coordinate system’s origin and X and Y extents have been established, the
orientation value of the coordinate definition may cause the defined space to rotate
in a clockwise direction around its origin. Orientation is expressed in degrees, with
the Y axis orientation value being 90 degrees greater than the X axis orientation
value.

[Figure 8 on page 41| shows the effect of rotating one coordinate system, shown as a
series of rectangles, within a containing coordinate system. Note how the X and Y
extents, and thus the rectangle formed by these extents, rotate around the
contained coordinate system’s origin point of 3 and 4 units from the origin of the
containing coordinate system.

40 Mixed Object Document Content Architecture Reference

Measurement and Rotation

(0,0) (0,0)

Y (3,4)

‘} Y A J
Y 0° Orientation Y X 80° Otentation
(0,0) (0,0}
» X » X
X
Y
A
X % Y
(3,4} (3,4)
A J 180° Orientation Y 270° Orientation
Y Y

Figure 8. Examples of Coordinate System Orientation

Medium Origin
X Axis = O°
Y Axis = 90°
Medium T,p Edge
Page Origin /
X Axis = 90°
Y Axis = 180°
-
iy
[{+]
[
g
©
m
ebpg doj &
——raly Joelgpy —= @
Obiect Arca Ovigin |
X Axis = 90°
Y Axis = 180°

Figure 9. Inheritance of Coordinate System Orientation

The orientation characteristics possessed by a MO:DCA coordinate system do not
have to be the same as those of its reference coordinate system. Any MO:DCA
coordinate system may possess orientation characteristics that are the same as, or
different from, their reference coordinate system or any other MO:DCA coordinate
system. shows the effect of offsetting a page from a medium, then rotating
it 90 degrees and then offsetting an object area from the page and rotating it 90
degrees. The object area inherited the 90 degree page rotation which, when added
to its 90 degrees rotation, produced a cumulative orientation value of 180 degrees.

Chapter 3. MO:DCA Overview 41

Measurement and Rotation

Rotation Units
The rotation of the X and Y axes of a page overlay or an object area are specified

in terms of rotation units. Rotation unit values are expressed in degrees and
minutes using two-byte, three-part binary numbers as shown in [Table 12

Table 12. Format for Numbers Expressed in Rotation Units

Bit Position Name Meaning

Bit 0-Bit 8 Degrees Used to represent 0 through 359 degrees.
Values from 360 through 511 are invalid.

Bit 9-Bit 14 Minutes Used to represent 0 through 59 minutes.
Values from 60 through 63 are invalid.

Bit 15 Reserved Value must be zero.

A rotation value of zero, X'0000', specifies no rotation with respect to the X axis of
the presentation space in which the origin of the page overlay, object area, or object
is located. Increasing values indicate increasing clockwise rotation. The four major
orientations, plus-X, plus-Y, minus-X, and minus-Y, have values of 0 degrees, 90

degrees, 180 degrees, 270 degrees respectively. They are encoded as X'0000',
X'2D00', X'5A00', and X'8700'. See

270°
X'8700
-Y
A

C S oy
x5a00 X > +X 30000

A J
+Y

o

90
X'2D00
Figure 10. Rotation of the X and Y Axes

Overlays for a page are always positioned relative to the current orientation of the
page coordinate system. However, their X and Y extent values remain constant
regardless of the orientation. [Figure 11 on page 43|shows this graphically.

Shape

The X and Y axes are perpendicular to each other, and the rotation of the Y axis is
exactly 90 degrees more than the rotation specified for the X axis. All MO:DCA
presentation spaces must be rectangles. The shape of the data object is not defined
by the MO:DCA architecture and can take on any visual appearance.

42 Mixed Object Document Content Architecture Reference

Mixing

Page Orentation 0° Page Orientation 90°

Xeo

Overlay Orientation 0°

0 uopelueuy AepeAr

Figure 11. A Page Overlay Applied to a Page in Two Different Orientations

Presentation Space Mixing

Foreground and Background

MO:DCA presentation spaces such as the medium, page, overlay, and data object
presentation spaces consist of two parts: foreground and background. Foreground
is the part of the presentation space that is occupied with object data. This data can
be pure object data such as text, or mixed object data such as image overlaying
text. Background is the part of the presentation space that is not occupied with
object data. For data object presentation spaces, the data object defines foreground
and background, and may specify a color attribute for both. For each data object
type, foreground, background, and color attributes are defined by the architecture
that defines the object content. For example, in a text presentation space, characters
and rules are foreground, everything else is background. Foreground is assigned a
color attribute using the “Set Extended Text Color” control sequence. Background
cannot be assigned a color and is therefore implicitly assigned the color of the
medium. When no color is specified for the background of a presentation space,
the background is implicitly assigned the color of the medium. The medium, page,
and overlay presentation spaces are initially empty. Empty MO:DCA presentation
spaces contain only background, which is assigned the color of the medium.

summarizes the definition of foreground and background in IBM
OCA-based object presentation spaces:

Table 13. Foreground/Background in Data Object Presentation Spaces

Data Type Foreground Background
PTOCA Text * Stroked and filled portion of text Everything else
characters
* Stroked area of text rules
* Stroked area of underscores
IM image B'l' image points B'0" image points

IOCA bilevel image
IOCA bilevel tiled
image

Significant image points, except image points
for which a transparency mask specifies B'0’

Insignificant image points

Image points for which a transparency
mask specifies B'0’

 All portions of the presentation space not
covered by image or tiles

Chapter 3. MO:DCA Overview 43

Mixing

Table 13. Foreground/Background in Data Object Presentation Spaces (continued)

Data Type

Foreground

Background

IOCA grayscale or
color image

Entire image, except image points for which
a transparency mask specifies B'0'

* Image points for which a transparency
mask specifies B'0’

 All portions of the presentation space not
covered by image points

IOCA grayscale or
color tiled image

Entire tile, except image points for which a
transparency mask specifies B'0'

Image points for which a transparency
mask specifies B'0’

* All portions of the presentation space not
covered by tiles

GOCA Graphics

* Stroked area of arcs

 Stroked area of lines

* Stroked and filled portion of pattern
symbols

* Stroked and filled portion of marker
symbols

* Stroked and filled portion of graphic
characters

* B'l' image points

* Entire area with solid fill

Everything else

BCOCA Bar Code

* Bars
* Stroked and filled portions of HRI
characters

Everything else

Colored object area,
page, or overlay
presentation space

Complete presentation space

None

Empty object area,
page, or overlay
presentation space

None

Complete presentation space

Non-OCA
Presentation Objects

See [“Object Type Identifiers” on page 589

See ["Object Type Identifiers” on page 589

Merging Presentation Spaces

Presentation spaces in a MO:DCA document are merged in the order in which the
document components that define these presentation spaces appear in the data

stream, as follows:

* Medium presentation space. This is the base MO:DCA presentation space upon
which all other presentation spaces are merged.

— Medium overlay presentation space. Merged on the medium presentation
space with a keyword on the Medium Modification Control (MMC)
structured field in a Medium Map. Medium overlays are merged on the
medium presentation space before any pages are merged. Multiple medium
overlay presentation spaces are merged in the order in which their keywords

appear on the MMC structured field.

— Page presentation space. Merged on the medium presentation space in the
order in which the corresponding page appears in the document, in
accordance with the specifications in the active Medium Map.

- Object area presentation space. Merged on the page presentation space in
the order in which the corresponding data object is included on the page.

* Data object presentation space. Merged on the corresponding object area

presentation space.

44 Mixed Object Document Content Architecture Reference

Mixing

- Page overlay presentation space. If the page overlay is included via an
IPO, it is merged on the page presentation space in the order in which the
overlay is included on the page. If the page overlay is included via a PMC
in a Medium Map, it is merged on the page presentation space before any
data objects or overlays included via an IPO are merged.

* Object area presentation space. Merged on the overlay presentation
space in the order in which the corresponding data object is included on
the overlay.

— Data object presentation space. Merged on the corresponding object
area presentation space.

The MO:DCA presentation space merge-order is shown in [Figure 12 on page 46|

Chapter 3. MO:DCA Overview 45

Mixing

] Data Object Dat;Obiect Data Object Data Object
- Presentation .- . Presentation ..~ .-~ Preseniation .-~ .- Preseniation .-~
" Space e Space L o Spacs . " Space

* P o mmmmmm e N
z : z

- - -

.

.

_.-" " ObjectArea .- e Object Area - .~y ObjectArea .-~ .-” ObjectArea .-~
,-~ Presentation -~ _-- Presentation .-~ .- Presentation -~ _.- Presentation .~
<" Space P .+~ Space P .-~ Space s _»" Space ra
e , e |____," P e ————— e P e e == .7
__________ = - —
P - - - - | - - é g
- Darma Mysamlace - ~ - — . -~
Pre ¥ rage uveliay e FFage Overiay - -
- Presentation - -7 | -
- e - Presentation
s Space (PMC) -~ - Space (IPQ) -~
- - -7 -7
P -— P _[- __r
//- -_—--T-—"=-"-" *_/" e ——— _—=r
- -7 e 7
/’/ P -7 -7 -~
age - - . -
Pl
-7 Presentation Space .~ e Pre&eﬂ%mnﬁverlay e
¥ e e -
» - - Space -
L/ ___________ _ - 1: ___________ P <
= 1~
3 ()

/' Medium Presentation Space /
\ 4

@ Merged first on the medium presentation space as specified in a Medium Map print control object.
Multiple medium overays are merged in the order in which they occur.

@ Merged first on the page presentation space as specified in a Medium Map print control object.
Multiple overays are merged in the order in which they occurin the data stream.

@ May ocour multiple times and is merged in the order in which it occurs in the data stream.

Figure 12. Merging Presentation Spaces

Mixing Rules

When multiple MO:DCA presentation spaces are merged, the background and
foreground of the presentation spaces mix. The resultant foreground is the union of
all presentation space foregrounds, that is, once an area is defined to be
foreground, it remains foreground even if its color attribute is changed due to an
“underpaint” mixing rule. The resultant background is everything else. The color
of the resultant foreground and background is determined by the mixing rules
specified in the MO:DCA architecture.

46 Mixed Object Document Content Architecture Reference

Mixing

When a new presentation space P, is merged onto an existing presentation space
P,, four types of mixing must be considered. Let F, and B, denote the P,
foreground and background, respectively, and let F, and B, denote the P,
foreground and background, respectively, then the mixing types can be
characterized as follows:

Mixing Type Description

B, on B, Background on background
B, onF, Background on foreground

F, on B, Foreground on background
F,onF, Foreground on foreground

For each type of mixing, the resultant color is determined by the mixing rule that
is specified. The following mixing rules are defined for presentation space mixing:

Mixing Rule Definition

Overpaint When part of P,, overpaints part of P, the intersection is assigned
the color attribute of P,.. This is also referred to as opaque or
knock-out mixing.

Underpaint =~ When part of P,, underpaints part of P, the intersection keeps the
color attribute of P,. This is also referred to as transparent mixing or
leave alone mixing.

Blend When part of P, blends with part of P,, the intersection assumes a
new color attribute which represents a color-mixing of the color
attribute of P,, with the color attribute of P.. For example, if P, has
foreground color attribute blue and P, has foreground color
attribute yellow, the area where the two foregrounds intersect
would assume a color attribute of green.

Default Mixing Rule

When no presentation space mixing rule is specified, the following default
MO:DCA mixing rule applies:

When a new presentation space P, is merged onto an existing presentation space
P,, the background of P,, underpaints the background and foreground of P, and
the foreground of P, overpaints the background and foreground of P..

This default mixing rule can be summarized as follows:

Table 14. Default Color Mixing Rules

Mixing Type Default Mixing Rule
B,, on B, Underpaint

B, on F, Underpaint

F, on B, Overpaint

F,onF, Overpaint

UP3i Print Data Mixing

Special mixing rules are defined for mixing the UP3i Print Data object type with
other data on a page or overlay. In that case, since the print data is presented by a
UP3i device after (or possibly before) the complete page or overlay is rendered by
the printer, the presentation container cannot mix with the remainder of the page
data according to the default MO:DCA mixing rules. It would be difficult to merge
this object type in the order in which it is specified on a page since the UP3i Print

Chapter 3. MO:DCA Overview 47

Mixing

Data object is normally rendered last (or first) due to the physical configuration of
the system. A new type of mixing is therefore architected for UP3i Print Data that
is defined as follows:

* The object area of the presentation container mixes in accordance with the
default MO:DCA mixing rules. An empty object area is transparent. If a
Presentation Space Reset (X'70") Mixing triplet is specified on the OBD, it can
reset the space under the object area to color of medium. If a Color Specification
(X'4E") triplet is specified on the OBD, it can color the object area. Any object on
the page that is specified after the Print Data object can overpaint the object area
with other data.

e The UP3i Print Data object is processed in its own presentation space by the
UP3i device in accordance with the Print Data format, as identified with the
Print Data Format ID in the first 4 bytes of the object. It mixes with the
remainder of the page data in a manner that is defined by the Print Data format.
For example, Print Data format X might define the mixing such that a bar code
is printed with invisible ink that underpaints all underlying data (i.e. the Print
Data is transparent). Print Data format Y might define the mixing such that a
MICR ink is used to stroke the characters and overpaints all underlying data (i.e.
the Print Data is opaque).

Color Management

The AFP Color Management Architecture” (ACMA™) is based on the concept of a
color management resource (CMR). A CMR is an architected resource that is used
to carry all of the color management information required to render a print file,
document, group of pages or sheets, page, or data object with color fidelity. CMRs
are defined in a new Advanced Function Presentation (AFP) architecture: the Color
Management Object Content Architecture (CMOCA). This architecture is defined in
the Color Management Object Content Architecture (CMOCA) Reference.

In AFP environments, CMRs can be associated with document components and are
processed as AFP resources by print servers and printers so that they can be
downloaded once, captured, and used repeatedly without requiring additional
downloads. CMRs are also applicable to non-AFP environments such as PostScript,
PDF, and PCL.

CMR names

A CMR is identified with a fixed-length name that is specified in the CMR header
and that is generated based on an architected naming scheme to ensure
uniqueness. This naming scheme includes fields such as CMR type, manufacturer,
device type and device model number, and properties specific to the CMR type.

CMR types

Each CMR carries a single type of color management resource. The type of CMR
resource is specified by the CMR type parameter in the CMR header. The
following CMR types are defined:

Color conversions (CCs)
International Color Consortium (ICC) profiles that tie a device-specific
color to or from the profile connection space (PCS).

The accuracy of color rendering is heavily dependent on the accuracy of
the description of the input colors using color conversion CMRs. Therefore,

48 Mixed Object Document Content Architecture Reference

Color Management

AFP applications, document generators, and resource generators are
strongly encouraged to focus on defining the input colors as accurately as
possible.

Tone transfer curves (TTCs)
CMRs that are used to modify the values of a particular color component.

Halftones (HTs)
CMRs that are applied to multi-bit data.

Indexed (IX) CMRs
CMRs that map indexed colors in the data to output device colors or
colorant combinations.

Indexed (IX) CMRs are used to map a two-byte indexed color value,

specified in the data stream using the highlight color space, to device
colors on a highlight color, process color, or monochrome device. The
device colors can be one of the following;:

* A fractional mixture of one or more specific device colorants.

* A device-dependent process color (CMYK for printers, RGB for
displays).
¢ A gray value.

* A CIELAB value. This value is always specified, even in the above cases,
to provide a substitute color value if the device cannot generate the
requested device color.

Link color conversions (LKs)
CMRS that provide look-up tables (LUTs) that directly convert from an
input color space in the presentation data to the output color space of the
presentation device. An LK CMR is created by combining the CC CMR
that defines an input color space with the CC CMR that defines the output
color space.

LK CMRs are resources that are generated and processed internally in AFP
systems; they are not exposed to the AFP application or the job submitter,
and they cannot be referenced in the data stream. LK CMRs can be
important for presentation device performance; therefore a goal of the AFP
color management system is to provide LK CMRs for the presentation
device whenever it needs to convert from an input color space in the
presentation data to its own output color space.

For more information on ICC profiles, see the International Color Consortium
Specification ICC.x, File Format for Color Profiles, where x stands for the current level
of the specification.

Processing modes

The attributes that dictate how the CMR is processed by an AFP system are
referred to as processing modes for CMRs. The following processing modes are
defined:

Audit Reflects processing that has been done on a document component.

The accuracy of color rendering is heavily dependent on the accuracy of
the description of the input colors using audit color conversion CMRs.

Instruction
Specifies processing that is to be done to a document component.

Chapter 3. MO:DCA Overview 49

Color Management

Link Links an input color space in the presentation data to the output color
space of the presentation device. Only Link color conversion (LK) CMRs
can be processed as link CMRs.

Because some CMR types, such as a color conversion CMR, can be used in an
audit mode or in an instruction mode, the processing mode is not specified in the
CMR itself. Instead, it is specified in the context within which the CMR is
associated with a document component.

IX CMRs should always be referenced as instruction CMRs. If they are referenced
as audit CMRs, the output device ignores them. Because IX CMRs specify a direct
mapping from the indexed color value in the data stream to an output color, audit
CC CMRs and link CMRs are not used when an IX CMR is processed. Instruction
CC CMRs are used with IX CMRs only if the Lab value from the IX CMR is used.
In that case, the active CC CMR provides the conversion from the Lab value to the
output device color value (CMYK, RGB, or gray). Note that, as with all other CMR
types, the output device uses the CMR hierarchy to select a single IX CMR to be
used with the data. If an indexed color value is not found in that IX CMR, no
attempt is made to look for that indexed color value in another IX CMR.

Halftone CMRs and tone transfer curve CMRs can be specified in a generic sense
and referenced as instruction CMRs to request an intended output appearance.
Such CMRs are called generic CMRs. They are identified with a fixed character
pattern in the version field of the CMR name and with the absence of
device-specific fields in the name. The CMR Architecture registers all valid generic
CMR names for HT and TTC CMRs. Generic CMRs are never used directly by an
output device; they are always replaced by device-specific CMRs that provide the
intended appearance. This replacement is done either by the print server based on
processing inline CMRs or processing the CMR RAT, or by the output device. The
output device ignores generic audit HT and TTC CMRs.

shows what processing modes are valid for each CMR type and whether
the CMR type can be specified as a generic CMR.

Table 15. CMR type: processing mode and generic capability

Non-generic CMR Generic CMR
Processing modes Processing modes
CMR type Audit Instruction Link Audit Instruction Link
Color Valid Invalid: error |Invalid: error Invalid: error
conversion
(CO)
Tone transfer | Valid Valid Valid: ignored | Valid
curve (TTC)
Halftone (HT) |Valid: ignored | Valid Valid: ignored | Valid
Indexed (IX) | Valid: ignored | Valid Invalid: error
Link (LK) Invalid: error Valid Invalid: error

Server Considerations:

1. Servers should download all valid combinations of CMR type and processing
mode, even if the device ignores them. This allows the architecture to define
possible future use of such combinations without causing errors on existing
devices.

50 Mixed Object Document Content Architecture Reference

Color Management

2. Servers should not download invalid combinations of CMR type and
processing mode. Instead, they should generate an error.

CMR Installation

CMRs in resource libraries are accessed using a CMR Resource Access Table (RAT).
When CMRs are installed in a resource library, the install program must build the
CMR RAT entry that maps the CMR name to a file name, to an object OID, and
optionally to additional CMRs such as link CMRs. When a color conversion CMR
is installed, a flag bit in the CMR RAT entry specifies whether this CMR would
normally be used to define input colors in the print file, that is, as an audit CMR.
This flag bit is used to trigger the generation of LK CMRs that convert from the
input color space defined by that CMR to the output color spaces, defined by other
CMRs, of all target presentation devices that are configured to the install program
and that are to be used on the target print servers. These link CMRs are then
mapped to the color conversion CMR in the CMR RAT. For generic CMRs, the
install program automatically builds a CMR RAT entry for each architected generic
CMR name that points to a dummy generic CMR object and to an object OID for
the dummy generic CMR object. This entry allows users to map device-specific
CMRs to the generic CMR in the RAT.

CMRs and presentation devices

When a print server accesses the CMR RAT with a reference to an audit CMR in
the data stream, it may encounter link color conversion CMRs that are mapped to
the referenced audit CMR. If the target device supports downloaded link CMRs,
the server uses the current target device type and model to select appropriate link
CMRs for converting the input color space defined by the audit CMR to the output
color space of the target presentation device. Such link CMRs are downloaded to
the target device; if necessary.

Similarly, when a print server accesses the CMR RAT with a reference to a generic
CMR in the data stream, it may encounter device-specific CMRs of the same type
that are mapped to the referenced CMR. If the device supports downloaded CMRs
of that type, the server uses the current device type and model to select
appropriate device-specific CMRs that are to be sent to the device in place of the
generic CMR.

Device support for downloaded CC CMRs and generic HT and TTC CMRs is
mandatory. Device support for downloaded device-specific HT and TTC CMRs, for
LK CMRs, and for IX CMRs is optional. If print file refers to an optional CMR that
is not supported by the output device, the print server recognizes an exception
condition. User-specified fidelity controls determine whether this exception
condition is reported and whether print file processing continues.

Associating CMRs with document components

An audit or instruction CMR can be associated with a Mixed Object Document
Content Architecture (MO:DCA) document component and becomes a part of the
CMR hierarchy that the presentation device uses to apply color management to
presentation data. A link CMR is not tied into the CMR hierarchy used by the
presentation device. Instead, if supported by the presentation device, it is sent to
the device by the server and is always used if a color conversion is needed to
render presentation data and that conversion is defined precisely by that link
CMR.

Chapter 3. MO:DCA Overview 51

Color Management

CMRs are associated with MO:DCA document components in the following
manner:

Print file
A CMR can be associated with the print file by referencing it as a resource
in the Document Environment Group (DEG) of the form definition that is
invoked for the print file by the job submitter.

Document
A CMR can be associated with a specific document in the print file by
using a CMR that is referenced for the print file and targeting this CMR at
the specific document.

Group of pages or sheets
A CMR can be associated with a group of pages by referencing it as a
resource in the medium map that is invoked to process those pages.

Page or overlay
A CMR can be associated with a page or overlay by referencing it as a
resource in the Active Environment Group (AEG) for the page or overlay.
This reference is identified with scope page or overlay to differentiate it
from similar object-level references that can be factored up from the Object
Environment Group (OEG) of a data object or from an Include Object (I0B)
structured field.

Data object
A CMR can be associated with a data object such as IOCA, EPS, PDEF, TIFF,
JFIF, GIF in multiple ways:

* The data object can be installed with an install program that generates a
data object Resource Access Table (RAT). When this program builds the
RAT entry for the data object, it can also specify one or more CMRs that
are to be associated with the object. Each CMR reference indicates the
processing mode of the CMR (audit or instruction).

e If the data object is included on a page/overlay with an IOB, a CMR can
be associated with this object by specifying the name of the CMR on the
IOB as an external resource reference and then referencing the CMR with
a Map Data Resource (MDR) in the Active Environment Group (AEG) of
the page. This method is similar to how a resident SWOP or Euroscale
color profile is associated with an EPS or PDF object, and how a PDF
resource is associated with a PDF object.

* If the data object is specified directly on the page/overlay, it can
reference the CMR in its OEG with a MDR that references the CMR.
Note that, for resource management, any CMR reference in the OEG
must be factored up to the AEG of the including page or overlay.

* The data object can contain embedded CMR-like information. An
example is the inclusion of an audit-like ICC profile in a TIFF object.
Such information is used by the presentation device when an object-level
CMR is not provided. If the data object is installed using an install
program, an embedded audit-like ICC profile can be copied and
converted into an audit CC CMR that is then associated with the data
object in the data object RAT. Optionally, the embedded profile can also
be extracted from the object to reduce the object size; this version of the
object is referred to as the compacted object. The copy and extract
functions are allowed only if the embedded ICC profile can be used
independently of the data object, as specified with a flag in the ICC
header.

52 Mixed Object Document Content Architecture Reference

Color Management

Note that if a data object is to be preprocessed with the Preprocess
Presentation Object (PPO) structured field, the same CMRs that are to be
associated with the object when rendered need to be associated with the
object on the PPO. This is done by specifying the CMRs on the PPO as
external resource references and by mapping the CMRs with a MDR in the
Resource Environment Group (REG) that contains the PPO.

Rendering intent

The proper use of CC CMRs and LK CMRs in a presentation device involves the
concept of rendering intent. Rendering intent is used to modify the appearance of
color data. Rendering intents supported in AFP color management are based on
the rendering intents defined by the ICC, which are also used in other presentation
environments such as PostScript and PDF. The ICC defines four rendering intents:

* Perceptual

* Saturation

* Media-relative colorimetric
* ICC-absolute colorimetric

For more information on rendering intents, see the International Color Consortium
Specification ICC.x, File Format for Color Profiles.

Rendering intent is specified with the Rendering Intent (X'95') triplet on the
Presentation Environment Control (PEC) structured field. For document hierarchy
levels other than the object level, rendering intents can be specified independently
for each major AFP color object type category, as follows:

* IOCA objects

* Object containers (EPS, PDF, TIFF, etc.)

* PTOCA text

* GOCA graphics objects

This allows one object type, such as text, to be rendered with a different rendering

intent than another object type, such as continuous tone IOCA image, with a single
specification of the Rendering Intent triplet.

Process colors can also be specified for a Bar Code Object Content Architecture
(BCOCA) object with the Color Specification (X'4E') triplet on the Bar Code Data
Descriptor (BDD) structured field. However, the rendering intent for BCOCA
objects is fixed as media-relative colorimetric.

Rendering intents may be associated with a MO:DCA document component at the
same levels of the document hierarchy as CMRs, as follows:

* Print file.

* Document.

* Group of pages or sheets.
* Page or overlay.

 Data object. The rendering intent may be associated with a data object in a
number of ways:

— By specifying a PEC with RI triplet in the OEG for the data object
— By specifying the RI triplet on the IOB that includes the data object

— By specifying the RI triplet on the PPO that is used to preprocess the data
object

Chapter 3. MO:DCA Overview 53

Color Management

— By specifying the rendering intent in the data object RAT entry for a data
object.

Normal MO:DCA hierarchy rules apply for processing rendering intents. That is, a
rendering intent specified for a document component at a lower level in the
hierarchy applies only to that document component and overrides any other
rendering intent specified at a higher-level in the hierarchy.

CMRs and print media

Color rendering may also be significantly affected by the characteristics of the print
media. CMRs may therefore be tuned to specific media; this is indicated by
specifying one of the following four media attributes in an instruction CMR:

* Media brightness
* Media color

* Media finish

* Media weight

Each attribute has a valid range of values that is defined in the Color Management
Object Content Architecture (CMOCA) Reference. An instruction CMR may specify
none, some, or all of these attributes. The output device uses these CMR media
attributes and the media attributes of the current media to select an optimum CMR
using the following algorithm:

* If none of the media attributes are specified in an instruction CMR, the printer
uses it

e If one or more of the media attributes in an instruction CMR are invalid,
exception processing mode is entered

* If all of the media attributes are specified in an instruction CMR and are valid,
the CMR is processed as follows:

— If all attributes match the current media, the CMR is used.

— If one or more attributes do not match the current media, the printer searches
the hierarchy for a media-specific CMR that matches the current media.
Multiple applicable CMRs may exist at each level of the hierarchy and are
included in the search, and each level of the hierarchy is searched in the
normal order, except for the printer default level, which is not part of the
search. If no matching media-specific CMR is found, exception processing
mode is entered.

* If some, but not all, of the media attributes are specified in an instruction CMR
and are valid, the CMR is processed as follows:

— If all the specified attributes match the current media, the printer searches the
hierarchy for a CMR whose media attributes are a better match with the
current media. Multiple applicable CMRs may exist at each level of the
hierarchy and are included in the search, and each level of the hierarchy is
searched in the normal order, except for the printer default level, which is not
part of the search. If a better matching CMR is not found, the original CMR is
used.

— If one or more of the specified attributes do not match the current media, the
printer searches the hierarchy for a CMR whose media attributes do match
the current media. Multiple applicable CMRs may exist at each level of the
hierarchy and are included in the search, and each level of the hierarchy is
searched in the normal order, except for the printer default level, which is not
part of the search. If no CMR is found whose attributes match the current
media, exception processing mode is entered.

54 Mixed Object Document Content Architecture Reference

Color Management

CMR Processing

CMR association and scope
CMRs are associated with a document component implicitly. That is, that document
component does not call out the associated CMRs directly.

* At the print-file level, a CMR is associated by referencing the CMR in a MDR in
the DEG for the form definition. The CMR applies to all documents in the print
file.

* At the document level, the CMR is associated by referencing the CMR in a MDR
in the DEG for the form definition, and by pointing to the specific document in
the print file. The CMR then applies only to that document.

At the page-group or sheet-group group level, the CMR is associated by
referencing the CMR with a MDR in the invoked medium map. The CMR
applies to all pages or sheets processed with that medium map.

* At the page or overlay level, the CMR is associated by referencing the CMR in a
MDR in the AEG for that page or overlay. The CMR applies only to that page or
overlay.

At the data-object level, the CMR is associated with a data object in any of the
following ways:

— By referencing the CMR in the RAT entry for the object in a data object RAT
— By referencing the CMR on the IOB that is used to include the data object
— By referencing the CMR on the PPO that is used to preprocess the data object

— By referencing the CMR with a MDR in the Object Environment Group (OEG)
of the data object

In general, when a CMR is associated implicitly with a document component, the
scope of the CMR is the complete document component, unless noted otherwise.

Resident SWOP or Euroscale color profiles are examples of color management
resources that are associated implicitly with an EPS or PDF object. They are not
called out directly within the object. Their scope is the complete EPS or PDF object
with which they are associated.

CMR processing mode

The processing mode determines how a CMR is used in the presentation system.
The audit processing mode indicates that the CMR defines an operation that has
been done on a document component. For example, an audit CC CMR defines the
device color that was used to generate the presentation data. It does that by
defining the relationship between the input device color space (often called the
input color space) and PCS. An audit HT CMR defines the halftone that was used
to create the data. An audit TTC CMR defines a tone adjustment that was applied
to a color component before the halftone was applied to that component.

The instruction processing mode indicates, in a similar manner, that the CMR
defines an operation that is to be done on a document component. For example, an
instruction CC CMR defines the relationship between PCS and the output device
color space (often called the output color space). An instruction TTC CMR defines a
tone adjustment that is to be applied to a color component before it is halftoned.
An instruction HT CMR defines the halftone that is to be applied to the color
component. An instruction IX CMR defines the mapping of indexed colors in a
document component to output device colors.

Audit and instruction processing modes are specified when a CMR is associated
with a document component. For print files, documents, page or sheet groups,

Chapter 3. MO:DCA Overview 55

Color Management

pages, and overlays, the processing mode is specified with the CMR Descriptor
triplet on the MDR. For data objects, the processing mode can be specified in
multiple ways:

* With a CMR Descriptor triplet on the MDR in the OEG for the object
* With a CMR Descriptor triplet on the IOB that includes the object
* With a CMR Descriptor triplet on the PPO that is used to preprocess the object

¢ With a CMR Descriptor table vector (TV) in the data object RAT entry for the
object

IX CMRs should be processed as instruction CMRs. IX CMRs that are to be
processed as audit CMRs are ignored by the output device.

The link processing mode is valid only with LK CMRs. Such CMRs are not
associated directly with a document component. Instead, link CMRs are associated
with, or mapped to, CC CMRs either in the CMR RAT entry, or, for CC CMRs in
print file level resource groups, on the Begin Resource (BRS) structured field that
wraps the container of the CMR.

CMR inheritance rules

The interaction of CMRs at different levels of the document hierarchy follows
MO:DCA hierarchy and state rules. When a CMR is associated with a document
component at a given level, it replaces (for that level or state only) any conflicting
CMR that is associated with a document component at a higher level. For example,
if audit color conversion CMR X is associated with the print file, and audit color
conversion CMR Y is associated with a data object on a page in a document in that
print file, audit color conversion CMR Y is used as the active audit color
conversion CMR for the duration of the data object processing, or the duration of
the object state. When the object state is terminated, audit color conversion CMR X
again becomes the active audit color conversion CMR.

Note that this CMR replacement rule applies only to conflicts. In the above
example, if CMR X converts device RGB to PCS and CMR Y converts device
CMYK to PCS, the CMRs do not conflict. Both can be used to process RGB and
CMYK colors in the data object.

Generic CMR processing

Halftone CMRs and tone transfer curve CMRs can be specified in a generic sense
to request an intended output appearance. Such CMRs are called generic CMRs.
They are identified with a fixed character pattern of generic (encoded in
UTE-16BE) in the version field of the CMR name. Generic HT and TTC CMRs
should be referenced as instruction CMRs. Generic HT and TTC audit CMRs are
ignored by the output device. Generic CMRs are processed as follows:

* A server processes a reference to a generic instruction CMR in the same manner
that it processes a reference to a device-specific CMR, with one exception.
Because the CMR is generic, the server checks whether device-specific CMRs
that match the device type and model of the target printer have been mapped to
the generic CMR in the CMR RAT. If yes, the device-specific CMRs are used
instead. Note that this mapping could occur inline as well by placing the generic
CMR in an inline resource group and referencing device-specific CMR
replacements that match the device type and model of the target printer on the
BRS of the container. If no matching device-specific CMR is mapped to the
generic CMR either inline or in the CMR RAT, the server downloads (if
necessary), activates, and invokes the generic CMR.

56 Mixed Object Document Content Architecture Reference

Color Management

* The printer processes the CMR hierarchy in the normal manner, with one
exception. If the active instruction halftone CMR or TTC CMR is a generic CMR,
the printer substitutes an appropriate version of a device-specific default CMR.

Default CMRs

When the presentation device requires color management information to render
presentation data but no CMRs have been associated with the data, default CMRs
are used. For a definition of these defaults, see the Color Management Object Content
Architecture (CMOCA) Reference, S550-0511.

CMR exception processing

A CMR exception is detected when a CMR that has been referenced in the data
stream (which includes FormDefs and Medium Maps) or a data object RAT cannot
be processed as specified. For example, a FormDef may reference a device-specific
instruction TTC CMR, but the output device does not support downloaded TTC
CMRs. The processing of such exceptions is controlled by the Color Fidelity (X'75")
triplet.

The above does not apply to CMRs that are mapped to referenced CMRs but that
are themselves not directly referenced in the data stream or a data object RAT. This
includes:

¢ Link CMRs that are mapped to color conversion CMRs in a CMR RAT or on the
BRS of an inline CMR

* Device-specific halftone and tone transfer curve CMRs that are mapped to
generic CMRs in a CMR RAT or on the BRS of an inline CMR

The processing of such mapped CMRs is not governed by the Color Fidelity triplet.
If a device does not support the download of such a mapped CMR, it does not
cause a CMR exception and the mapped CMR is ignored.

A CMR tag exception is detected when an unsupported CMR tag is encountered in
a CMR. The processing of such exceptions is controlled by the CMR Tag Fidelity
(X'96) triplet.

CMRs in Print-File-Level Resource Groups

CMRs may also be carried in the resource group for a print file, in which case they
are called inline CMRs. The CMR is first wrapped in a BOC/EOC object container,
which in turn is wrapped in a BRS/ERS resource envelope. The BRS specifies the
CMR name, and may also specify the names of CMRs that are mapped to the
inline CMR. When resolving a CMR reference in the data stream, the print server
must always search the print file resource group—if one exists—first. The CMR
name is matched against the CMR name that is specified on the BRS structured
field of the resource container. For a definition of the algorithm used by a print
server to process inline CMRs, see [“Using the MDR to Map a Color Management|
[Resource (CMR)” on page 254

Font Technologies

The MO:DCA architecture supports references to various font technologies for
rendering character data. These font technologies can be separated into two classes:

FOCA fonts
Non-FOCA fonts, also called data-object fonts
FOCA fonts have a structure that is defined by the Font Object Content

Architecture (FOCA). They are referenced in a MO:DCA data stream using a Map
Coded Font (MCF) structured field. Non-FOCA fonts are fonts whose structure is

Chapter 3. MO:DCA Overview 57

Fonts

not defined by the FOCA architecture. The structure of such fonts is not modified
when they are used in MO:DCA data streams and in AFP environments. However,
such fonts may be carried in MO:DCA object containers, if, for example, they are to
be placed in an AFP resource group. Non-FOCA fonts are referenced in a MO:DCA
data stream using a Map Data Resource (MDR) structured field. Examples of
non-FOCA fonts that are supported in MO:DCA data streams are TrueType fonts
(TTFs) and OpenType fonts (OTFs).

Relationship Between FOCA Character Metrics and TrueType
Character Metrics: Implementation Issues

It is important to have consistent presentation results regardless of the font
technology used. The FOCA Architecture defines the basic concepts and provides a
rich set of font and character metrics; these FOCA concepts lay out the
presentation goals. The PTOCA architecture provides the capability to present
strings of text at various orientations as shown in [Figure 74 on page 452| The
following describes the relationship between various TrueType metrics and the
corresponding FOCA-defined metrics and provides recommendations for
simulating metrics that are needed for presentation but are not directly provided in
some TrueType fonts.

Horizontal Metrics

When a TrueType rasterizer RIPs the outline descriptions into character bitmaps,
TrueType metrics are provided for positioning the bitmaps horizontally within a
line of text. These metric values provide enough information to calculate the
metrics defined by FOCA for the 0 degree character rotation. This information
includes the width and depth of the bitmap, the distance from the character origin
to a corner of the bitmap, and the distance to the origin of the next character.

[Figure 13 on page 59| compares the parameters commonly used with TrueType
fonts to the horizontal (0 degree) metrics provided by a FOCA font. In practice,
many TrueType fonts are built so that there is no top indent or left indent; in this
case, the bitmap is a tight box around the character and the indent values are zero.

58 Mixed Object Document Content Architecture Reference

Fonts

TrueType Horizontal Metrics

0° character rotation

FOCA Horizontal Metrics

K——Bitmap Width——>f
> Left Indent 0° inline direction, 0° character rotation
AN ¢
Top Indent T T \
(=} = = =
& 4 g 3 O
= ~ (5} 5 [}
e & £ & =
0 2 3 273
<
E 2 2
m
Vv e Character
HHH Origin
EiE EiE Descender
FH L I~ Character Increment———>
)
% X Origin Character A-space H B-space —>{
K————Escapement———> Bitmap C-space 7

Character Origin

Figure 13. Horizontal Metrics: TrueType/OpenType Fonts and FOCA Fonts

Based on this illustration, the key FOCA horizontal metrics can be calculated as
follows:

Character Increment (HCI) = Escapement

A-space (HAS) = Left Indent - X Origin

B-space (HBS) = Black Width

C-space (HCS) = Escapement - A-space - B-space

Baseline Extent (HBE) = Black Depth

Baseline Offset (HBO) = Y Origin - Top Indent

Character Descender (HCD) = Top Indent + Black Depth - Y Origin

The FOCA metrics for 180- degree rotation (upside-down) have a simple
relationship to those for 0-degree rotation. The A-space and the C-space metrics are
reversed, as are the baseline offset and character descender metrics. The character
increment, B-space, and baseline extent metrics are identical.

Note that, in practice, font rasterizers don’t provide all of the parameters shown in
the picture, but do provide other parameters. For example, the font rasterizer can
return the offset (xorigin, yorigin) from the character origin of the top-left corner of
the bitmap. This information can be related to the metrics formulas; for example:

A-space (HAS) = Left Indent - X Origin = Left Indent + xorigin
Baseline Offset (HBO) = Y Origin - Top Indent = yorigin - Top Indent

Vertical Metrics

Character rotations of 90 and 270 degrees are used to support vertical forms of
writing. In addition to the metrics mentioned earlier, vertical positioning and
character increment metrics are needed to place characters in these rotations. Some
TrueType fonts provide metrics for vertical writing in a structure called a “vtmx
table”, but others don’t provide these metrics. The TrueType advance height
corresponds to the FOCA vertical character increment (VCI) and the TrueType top

Chapter 3. MO:DCA Overview 59

Fonts

sidebearing corresponds to the FOCA vertical A-space (VAS), but there is no
TrueType metric that corresponds to the FOCA baseline offset.

When the vtmx metrics are available they can be used to calculate the equivalent
FOCA vertical metrics. But, when the font designer omitted them or when they
can’t be obtained from the TrueType rasterizer, a method is needed to estimate
appropriate FOCA equivalent values.

Simulating Vertical Metrics

[Figure 14 on page 61| shows again the TrueType horizontal metrics and some
additional TrueType metrics that can be obtained to describe the em-square. The
figure also shows the target FOCA vertical metrics and a method for simulating
270 degree FOCA vertical metrics from TrueType horizontal metrics.

60 Mixed Object Document Content Architecture Reference

Fonts

TrueType Horizontal Metrics

0° character rotation

TrueType em-Square

K— Bitmap Width——> | |

Left Indent em
&——Black Width———> \L R S E L -

ack Wi i \ i

Top Indent r i i

W | N |

! i

1 1

! i

1 1

5 ! !

%‘) < > |

o H & 51 i

S H a =) 1 |

=~ o : I

g ! i

F @ i :

1 1

1 1

! i

1

/| |

pre ! o !

EEEE| : :

fiil fiad | :

HHHH HH = Ag/:ﬂ__ _______4______________________________:

% <X Origin Character 1’ Character Bounding box that approximates the union
Escapement Bitmap Origin of the individual character black boxes

Character Origin

FOCA Vertical Metrics Method for Simulating Vertical Metrics

90" inline direction, 270° character rotation

Character Increment = em

Vertical _ _)) ..
Character A_Space lnt((em (urY HY))/Z) +urY-Y Orlgln
A-space Positioning
Point B-space = Black Depth
!

C-space = em - A-space - B-space

A

Baseline Extent = Black Width

Baseline Offset = Left Indent - X Origin +
Black Width - int(Escapement/2)

B-space

Character Descender = X Origin - Left Indent +
int(Escapement/2)

Character Increment———>
S|
7

Note: The equation for vertical A-space was derived from the

-~ t """"" following formulas which are close to those used for Adobe
TrueType and CID-Keyed fonts:
- %Descender%Ascender% B ..
C-space Baseline Offset VAS = Vy - Y Origin
Horizontal Bascline Extent : Vy = int((em - maxHBE)/2) + maxHBO
Character
Origin

Figure 14. Vertical Metrics: TrueType/OpenType Fonts and FOCA Fonts

Any approach taken to approximate these metrics is well served to consider the
scripts in which vertical writing is most popular: East Asian scripts which use
ideographic characters. These full width characters have properties that can be
utilized to make these estimations. First, they typically have an equal, or fixed,

Chapter 3. MO:DCA Overview 61

Fonts

increment. Second, they are designed on a square grid, so their width and height
are equal. Third, they are usually the largest characters in the font.

For these reasons, using a fixed vertical character increment (VCI) equal to the
largest horizontal increment will be quite satisfactory for vertical writing.
Generally, the maximum values for many basic metrics, such as character
increment, descender, and baseline offset can be obtained from the font file.
Alternatively, the properties listed previously make it reasonable to set VCI to the
Em-Space Increment. The Em-space is defined such that one em equals the height
of the design space. Scalable font metrics are expressed as fractions of this unit-Em.

These alternatives can be summarized mathematically as:
Character Increment (VCIestimated) = max(Escapement)
Character Increment (VCIestimated) = 1 em

Techniques to estimate appropriate values for VAS must keep two goals in mind.
First, it should result in the bitmaps of ideographic characters being placed within
the vertical increment. Second, the vertical position of the bitmap should reflect the
relative horizontal baseline offset of the character. For example, the bitmap widths
for the BLACK LENTICULAR BRACKETS, U+3010 and U+3011, are small
compared to their increment and are designed to be positioned close to the
character they enclose. This property must be preserved for vertical writing.

To accomplish these goals, first compute a constant value (Vy) to place the
horizontal character origin relative to the vertical character positioning point, using
the TrueType em-square metrics and the following equation (note that max(HBE) =
urY + 1Y and max(HBO) = urY):

Vy(est) = int((em - max(HBE))/2) + max(HBO)

The first component of this equation, int((em - max(HBE))/2), is designed to
position all of the character bitmaps of the font within the vertical increment. The
second component, max(HBO), calibrates the V Origin metric to the highest
character(s) within the font. With this reference, then calculate VAS for individual
characters with the equation:

VASestimated = Vy(est) - Y Origin
and achieve the design goals.

For fonts that are not based on ideographic characters, a different method of
constructing a vertical character increment and A-space could be used. For
example, a fixed percentage (20%) of extra space, based on the desired pointsize,
could be added to the black depth to yield the VClestimated. The extra space
could be divided evenly between the vertical A-space and vertical C-space. For
characters without any black depth (space characters), the pointsize could be used
as VClestimated.

The last task to address is estimating the horizontal position of the character
bitmap. For vertical rotations, this is reflected in the baseline offset (VBO) and
character descender (VCD) metrics. Similar to the goal for vertical positions, this
metric should reflect the character’s horizontal position within its horizontal
increment. Therefore, the metric calculations should essentially center the
character’s horizontal increment on the baseline and preserve its horizontal
position with respect to the increment. This is achieved with the equations:

Baseline Offset (VBO) = Left Indent - X Origin + Black Width - int(Escapement/2)
Character Descender (VCD) = X Origin - Left Indent + int(Escapement/2)

62 Mixed Object Document Content Architecture Reference

Fonts

The remaining metrics for 270-degree character rotation can be calculated from the
horizontal bitmap metrics and those derived previously:
Baseline Extent (VBE) = Black Width

B-space (VBS) = Black Depth
C-space (VCS) VCI - VAS - Black Depth

The vertical metrics for 90-degree character rotation can be directly deduced from
the 270-degree metrics, in the same manner used to convert 0-degree metrics to
180-degree metrics.

Chapter 3. MO:DCA Overview 63

Document Indexing

Document Indexing

The document index defined by the MO:DCA architecture provides functions for
indexing the document based on document structure and on application-defined
document tags. The index is delimited by a Begin Document Index structured field
and an End Document Index structured field and may be located within the
document or external to the document. MO:DCA elements that may be indexed are
pages and page groups. When referenced by an index, they are called indexed
objects. The MO:DCA elements within a document index that reference indexed
objects are Index Element (IEL) structured fields. The MO:DCA elements within a
document index that support content-based tagging are Tag Logical Element (TLE)
structured fields.

A MO:DCA document index consists of the following structured fields. These
structured fields are described in detail in|[Chapter 5, “MO:DCA Structured Fields,”|
Note that the IEL and TLE structured fields may occur multiple times.

Begin Document Index (BDI)
Index Element (IEL)
Link Logical Element (LLE)
Tag Logical Element (TLE)
End Document Index (EDI)

When the document index is external to the document, the BDI structured field
references the document using a Fully Qualified Name type X'83' triplet. The
document name specified in this triplet is inherited by all IEL and TLE strucured
fields in the index.

Index Elements

The Index Element (IEL) structured field supports indexing of pages and page
groups. When an IEL references an indexed object, the type of indexed object (page
or page group) is indicated by the name reference to the indexed object. The name
of the IEL structured field is specified by a Fully Qualified Name type X'CA'
triplet, and the name of the indexed object is specified by either a Fully Qualified
Name (FQN) type X'87" triplet for a page or by a FQON type X'0D' triplet for a page
group. An IEL that references a page is called a page-level IEL. An IEL that
references a page group is called a page-group-level IEL. A MO:DCA index may
contain page-level IELs, page-group-level IELs, or both. The order in which
page-level IELs and page-group-level IELs appear in the index must be the same
as the order in which the indexed Begin Page and Begin Page Group structured
fields appear in the document.

The IEL structured field provides the following information for the indexed object:

* Direct byte offset of the Begin indexed object structured field from the start of
the Begin Document structured field.

* Byte extent of the indexed object, from the first byte in the Begin structured field
to the last byte in the End structured field.

* Structured field offset of the Begin indexed object structured field, where the
Begin Document structured field has offset 0, and all following structured fields
increment the offset by 1.

* Structured field extent of the indexed object, which is a count of the number of
structured fields in the indexed object, starting with the Begin indexed object
structured field and ending with the End indexed object structured field.

64 Mixed Object Document Content Architecture Reference

Document Indexing

* Object offset of the Begin indexed object structured field, using a specified object
type. For example, this parameter may specify the number of pages that precede
an indexed page group in the document.

* Object extent of the indexed object, using a specified subordinate object type. For
example, if the subordinate object is a page, this parameter may specify the
number of pages in an indexed page group.

o If

o If

the indexed object is a page:

The name of the medium map object that is active for formatting the indexed
page on a physical medium

The number of the indexed page in the set of sequential pages controlled by
the active medium map, where the first page in the set is number 1

The PGP repeating group used to process the page.

the indexed object is a page group:

The number of pages that precede the page group in the document

The number of pages contained in the page group

The name of the medium map object that is active for formatting the first
page in the indexed page group on a physical medium

The number of the first page-group page in the set of sequential pages
controlled by the active medium map, where the first page in the set is
number 1, and where “active medium map” refers to to the medium map that
is active at the beginning of the page-group.

The PGP repeating group used to process the first page-group page.

An example of a page-level IEL that specifies page offset and page extent is shown

in [Figure 19

Indgxed Ohject
DOCUMENT | PAGE2 |
BDT BNG | BPG: |...| EPG: | BPG: |...| EPG: ENG | ... | EDT
'PAGET’ 'PAGET’ | 'PAGE?’ 'PAGE2’

A
|<— *(Offset to "PAGE2" —1€— *Extent of 'PAGE2" —

INDEX

f

BDI

Name — L
IEL: Offset J DI

Extent

* Can be m

easured in number of bytes or number of structured fields

Figure 15. Page-Level IEL: Offset and Extent

An example of a page-group-level IEL that specifies page group offset and page
group extent is shown in [Figure 16 on page 66

Chapter 3. MO:DCA Overview 65

Document Indexing

Indexed Object
'GROUPY’

BPG | ... | EPG|...| BNG: BPG | ... | EPG|...| ENG: |...|EDT
"GROUPY’ "GROUPY’

I(—"DﬁseﬂoT'GROUP‘I' 1< + *Extent of 'GROUP1’ 4’|

INDEX

|

BDI

I
PP |
QG = . EDI

N
IEL: Offsat

* Can be measured in number of bytes or number of structured fields

Figure 16. Page-Group-Level IEL: Offset and Extent

[Figure 17 on page 67 shows how the Medium Map information in a page-level IEL
is used to determine page placement on a side of a sheet.

Tag Logical Elements

The Tag Logical Element (TLE) structured field supports the tagging of pages and
page groups with an attribute that may be used as an index key. The attribute is
specified using attribute name and attribute value triplets on the TLE structured
field. When the TLE is specified in a document index, the element to be tagged
may be identified using a Fully Qualified Name triplet on the TLE structured field:

* FON type X'87' triplet for a page
* FON type X'0D' triplet for a page group

If a TLE in a document index does not contain an explicit page or page group
reference, it inherits such a reference from the last preceding IEL in the index. A
TLE that explicitly references a page, or that inherits a page reference from the last
preceding IEL, is called a page-level TLE. A TLE that explicitly references a page
group, or that inherits a page group reference from the last preceding IEL, is called
a page-group-level TLE.

66 Mixed Object Document Content Architecture Reference

Document Indexing

DOCUMENT
BDT| ...| IMM BPG: | --.| EPG: BPG: | ...| EPG: EDT
"PAGEX 'PAGEX | 'PAGEY "PAGEY’
A A
ACTIVE MEDIUM MAP
BMM| ---|MMG: | ... |EMM
Duplex —
INDEX
BDI | ... Name — Name — EDI
IEL: Medium Map—' | IEL: Medium Map —
MM Page No. 1— MM Page No. 2
'PAGEX’ 'PAGEY
Sheet Front v Sheet Back

b ey 5 el
Py
wors Y 14 oo
oy Yhe LAM EZ SmanTE e

ek B Fr e ary
[] = D S

SETLRIS

NOTE: IEL contains sufficient ﬁresentation—control information to present the page

on media without processing the entire document.

Figure 17. Page-Level IEL: Use of Medium Map Information

The TLE structured field tags the referenced element with the following

information:
¢ Name of the attribute
e Value of the attribute

* Sequence number of the attribute, used to distinguish otherwise identical

attributes

* Level number of the attribute, used to logically position the attribute in an

application-defined hierarchy

[Figure 18 on page 68 shows how logical tags are applied to pages in a document

using TLEs in an external document index.

Chapter 3. MO:DCA Overview 67

Links

\ Page 'PAGE1’ attribute; 1 Page 'PAGE2’ attribute: |

g S
1
1

Page Group 'GROUP1’ attribute:

1 1
1 Name=HOUSEHOLD i ' Name=MEMBER i+ Name=MEMBER '
| Valug=DOE + 1 Value=JOHN DOE ' ! Value=JANEDOE
INDEX
OBJECT
BDI IEL: TLE: IEL: TLE: IEL: TLE: EDI
'GROUPT’ Pagf-Grloup "'PAGE1’ | Page-Level | 'PAGEZ’ | Page-level
eve
PAGE GROUP
I DAMNEC DANE I
BDT .| BNG: BPG: | ... | EPG: BPG: | ...| EPG: [ENG| ... |EDT
'GROUP1* |’PAGET’ 'PAGE1’ | 'PAGEZ 'PAGE2'
| I 1 |
/ \
Tirsurene Poliey | | insuranss Poliey
Insured: Datatof ot o 13y Insured: Daberof ot e 13y
John Doe ™ mumdm Jane Doe °™ mEmanhe
SRR i e
et | | G e
- i st e e
R e R e

Figure 18. A Document with Logical Tags

Document Links

Online, interactive forms of document processing require that linkages be
established among components within the document and from components within
the document to components external to the document. One example of such
processing is the use of hypertext links, which are logical connections from one
string of text in a document to another string of text that is contextually related to
the first. A viewing application can highlight the source text, such as a technical
term, and using hypertext links can provide the user with the option of jumping to
the linked text that is the glossary definition of the technical term. Another
example is the processing of annotations. A reviewer of a document may add
comments to a string of text in a source document, and require a link to connect
these comments as annotations to the appropiate area in the source document. A
third example is the processing of appends. A document may be composed of
pages summarizing monthly phone calls. If a particular phone call is recorded late,
it may need to be appended to an existing page in the document, which requires a
link from the existing page to the document component that contains the late
phone bill.

Document links in the MO:DCA architecture are supported with Link Logical
Element (LLE) structured fields.

68 Mixed Object Document Content Architecture Reference

Links

Link Logical Elements

Link Logical Elements (LLE) structured fields are process elements that provide a
general and extendable linking capability between document components such as
documents, page groups, pages, overlays, data objects, and logical tags. The LLE
structured field identifies a source and a target and specifies the purpose of the
link from source to target. The LLE optionally can specify a name that may be
used to reference the LLE and parameter data to be associated with the link.

LLEs may be embedded directly in the document that contains the source for the
link. In that case, the source link specified in the LLE inherits the document name
and the names of all objects that are higher in the document hierarchy. For
example, if the LLE is in a page that is part of a page group, and if the source link
specifies an area on the page, then the source link inherits the names of the
document, page group, and page.

LLEs may be embedded directly in the document that contains the target for the
link. In that case, the target link specified in the LLE inherits the document name
and the names of all objects that are higher in the document hierarchy. For
example, if the LLE is in a page that is part of a page group, and if the target link
specifies an area on the page, then the target link inherits the names of the
document, page group, and page.

LLEs may also be embedded in the index for the document that contains the
source for the link, the target for the link, or both. In that case, the source or target
link in the LLE can inherit the document name from the index if the document
name is not explicitly specified in the respective repeating group. The source or
target link may also inherit the page or page group name specified by a preceding
Index Element (IEL) structured field if such names are not specified by the
corresponding repeating group in the LLE and if the repeating group specifies an
object that is lower in the document hierarchy than the object defined by the IEL.

Document links defined by LLEs do not provide a presentation specification. It is
left up to the application using the LLEs to determine how to present the
relationship between document components that are linked with an LLE. For
example, if an LLE is used to link a source document page to an object containing
an annotation, a viewing program may choose to highlight the annotated area on
the source page and to display the annotation in a separate window next to the
source page. On the other hand, a print subsystem may choose to simply gather all
annotations and print them at the end of the source document with appropriate
pointers to the source pages.

An example showing how an LLE can be embedded in a document index to link
an area on a page in the source document to a text annotation is shown in
IFigure 19 on page 70l

Chapter 3. MO:DCA Overview 69

Annotations

DOCUMENT
BDT - BPG: e EPG: - EDT
'PAGERN’ 'PAGEN’
/ l
Index Object /
1
BDI e IEL: ..
'PAGEn’| LLE
i Type = Annotation :
! Source = Area ;
i Target = Object in resource r\\SOUfce '
' hierarchy i i
e gz T et R R
Lyls, o epegsaner | DAL Do BT
Target Looks like AFP provides us Lminenss sate_ 1 SRR
with the right solutions! T NS o g [~
Pete T et
Text Annotation

Figure 19. Document Annotation using the LLE

Annotations and Appends

An annotation is a comment or explanation that is associated with the contents of a
source document. Annotations are normally generated based on a review of the
final-form document using an interactive presentation device such as a document
viewer. Annotation data can be generated with a variety of data types such as text
and image, and can be carried within a number of document components
including object containers, overlays, pages, page groups, resource groups, and
documents. Annotations are linked to the source document component to which
they apply using a Link Logical Element structured field.

An append is an addition to a source document component or a continuation of a
source document component. Appends can be generated with any MO:DCA-P
document component. The simplest form of an append is one document appended
to another document. Appends are linked to the source document component to
which they apply using a Link Logical Element structured field.

The location of document components that carry annotations and appends follows
the normal MO:DCA-P object structure rules. For example, if an annotation is built
using a page or a page group, it must be carried in a document. If it is built using
a data object, resource object, or object container, it can be carried in a resource

group.

70 Mixed Object Document Content Architecture Reference

N-up Presentation

N-up Presentation

N-up is a presentation format where multiple pages are presented on a single
physical medium. This format provides the user with a high degree of flexibility
for composing page objects onto sheets. When used on a continuous-forms printer
with a wide carriage, it can result in significant paper savings and improvements
in print reliability. In N-up presentation, each side of the physical medium is
divided into a number of equal-size partitions, where the number of partitions is
indicated by the number N in N-up. If duplex is specified, the same N-up
partitioning is applied to the back side as is applied to the front side. With simplex
N-up presentation, N pages are placed on the physical medium, and with duplex
N-up presentation, 2N pages are placed on the physical medium. Pages are placed
into partitions using either a default N-up page placement or an explicit N-up page
placement, as specified in the Page Position (PGP) structured field. In the default
N-up page placement, consecutive pages in the data stream are placed into
consecutively-numbered partitions. In explicit N-up page placement, consecutive
pages in the data stream are placed into explicitly-specified partitions. For more
information on page placement, see [“Page Position (PGP) Format 2” on page 311)
Pages may be rotated within their partitions, and Page Modification Control (PMC)
overlays may be applied to pages before they are placed in their partition.

shows the partitioning for wide continuous-forms media, narrow
continuous-forms media, and cut-sheet media; partitioning is not used with
envelope media. Partition numbering for various media is shown in
fpage 319 to [Figure 70 on page 325|

Physical Media Width Physical Media Width Physical Media Width

o!
o
.

:

.

.

.

:

.

.

.

:
~Ci
i

.

1Up o

i0O0DCOOCODOOD

o
o
o
[N
ol
1
o
o
o
¥

2Up

3 Up

4 Up

Figure 20. N-up Partitions for Various Physical Media

Chapter 3. MO:DCA Overview 71

CSE Print Mode

Cut-sheet Emulation (CSE) Print Mode

Some IPDS printers provide a cut-sheet emulation mode that can be used to print on
continuous-forms media that, once slit and collated, emulates two sheets of
cut-sheet output. In this mode, the printer logically divides the continuous-forms
media in half parallel to the carrier strips and controls the placement of pages on
either the left side or the right side of the physical media as defined by a printer
configuration option. The two portions of the physical media are called sheetlets
and are treated as if they were two separate pieces of cut-sheet media. This logical
division of the continuous-forms media is shown in When a MO:DCA
document is sent to a print server for printing in CSE mode, MO:DCA sheets and
their content are mapped to cut-sheet CSE sheetlets at the printer. Note that the top
of each sheetlet is a narrow edge, and the default sheetlet origin is the top-left
corner of the sheetlet.

Sp y 5 : YT

° ° o o

o| Left Right |o H -
o| Left Right |

g Sheetlet Sheetlet g : Sheetlet! Sheetlet :

o o 0]

o o o o

i c §| o
o L
0 0
l°l °

(-] b | h [:]

ol %F e o ..

o 2 [N o ' Default sheetlet origin

of & & o

ol & & o

Wide continuous-forms Narrow continuous-forms

media media

Figure 21. Logical Division of Continuous Forms for Cut-sheet Emulation

The printer is configured for cut-sheet emulation mode by the printer operator
while the printer is disconnected from the print server. Cut-sheet emulation mode
is activated by the print server after the printer has indicated support for the
mode. Note that cut-sheet emulation mode is not supported in viewing
environments. Note also that cut-sheet emulation mode is not supported with
N-up presentation. When N-up is specified in the active Medium Map, CSE mode
is deactivated for the duration of that Medium Map.

When finishing operations are specified for a printer operating in CSE mode, the
operations are specified for and applied to each CSE sheetlet. That is, for finishing
operations in CSE mode, the media is the sheetlet. This is true whether the
finishing operation is specified with a Finishing Operation (X’85’) triplet or a UP3i
Finishing Operation (X’8E’) triplet.

Document Finishing

Finishing operations, such as stapling and folding, for a print file may be specified
using structures in the form definition invoked for the print file. Such finishing
operations may be applied at different levels of the print file, and at each level the
finishing operations have a defined scope:

* Print-file-level finishing: the scope is the complete print file.

* Document-level finishing, all documents: the scope is each individual document in
the print file.

72 Mixed Object Document Content Architecture Reference

Document Finishing

* Document-level finishing, selected document: the scope is a single document in the
print file.

* Medium-map-level finishing, group of sheets: the scope is a collection of sheets.
* Medium-map-level finishing, each sheet: the scope is a single sheet.

Finishing operations for all levels are specified with a Medium Finishing Control
(MFC) structured field. For print-file-level and document-level finishing, the MFC
is specified in the document environment group (DEG) of the form definition. For
medium-map-level finishing, the MFC is specified in a medium map.

The actual finishing operation and its parameters are specified on the MFC with
finishing triplets. Two triplets are supported:

* Finishing Operation (X'85') triplet

 UP3i Finishing Operation (X'8E') triplet

These two triplets may be specified in any combination at any level, however the
finishing operations must be compatible.

When more than one finishing operation that involves a collection of media is
specified for some portion of the print file, a nesting of the operations is defined
first by the scope of the operation (print file, document, medium collection), and
second by the order of the operation in the data stream. Finishing operations with
an inherently broader scope, for example, operations at the print file level, are
nested outside of finishing operations with an inherently narrower scope, for
example, operations at the medium-map-level. If more than one operation is
specified with the same scope, the order of the finishing operation triplets defines
the order of the nesting. The first finishing operation specified defines the
outermost nesting, and the last finishing operation specified defines the innermost
nesting. When a finishing operation is applied, all finishing operations nested
inside this operation are also applied. Finishing operations that are nested outside
this operation are not affected. For a complete definition of the finishing operation
nesting rules, see |“Finishing Operation Nesting Rules” on page 269.|

Exception Conditions

The application creating the data stream is responsible for producing a valid
MO:DCA data stream, and the application using the MO:DCA data stream is
responsible for preserving a valid format. Nonetheless, exception conditions may
arise. A valid MO:DCA data stream is one that does not violate the architecture. A
MO:DCA data stream is in violation of the architecture when its structure or
contents do not conform to the requirements of the architecture.

An error is a product failure that produces or results in a data stream that violates
the architecture. Since the cause of an architecture violation cannot be determined
when an application interprets a data stream, all architecture violations are
handled as exception conditions.

If absolute fidelity of a presentation document is not required, MO:DCA
documents can be interchanged among a larger set of products. It is possible for
the processor of a MO:DCA data stream to continue processing when it encounters
exception conditions. This permits a process that cannot faithfully present a
document to continue with its best approximation.

Chapter 3. MO:DCA Overview 73

Exception Conditions

Classifications

Exception conditions can be classified as:
* Syntactic
* Semantic

Syntactic exception conditions defined for this architecture include:

* Invalid or unknown structured field introducer (SFI); see |”MO:DCA Structured|
[Field Syntax” on page 2(| for further discussion

* Invalid or unknown parameter within a recognized structured field

* Invalid parameter value within a recognized structured field

¢ Component appears in an invalid location or is missing

e Structured field appears in an invalid location or is missing

* Parameter is missing within a recognized structured field

Semantic exception conditions defined for this architecture include:
* Inconsistent or contradictory specifications
¢ Invalid relationships among the data-stream structured fields

Detection

A MO:DCA-compliant product must detect the exception conditions defined by the
architecture that apply to the interchange set supported, within the scope of the
supported OCAs. Exception conditions detected in the structured fields and
parameters that it interprets as it processes the data stream should be identified to
an exception handler within the receiver. The MO:DCA architecture defines eight
categories of exception conditions that can occur in an interchange data stream.
The eight categories and their descriptions are as follows:

Category Description

Invalid structured field identifier
The structured field identifier contains invalid parameter values.
Examples are structured field identifiers with length values less
than eight or invalid flag settings. Not included in this category are
invalid class codes, type codes, or category codes.

Unrecognized identifier code
This exception condition is caused by an unrecognized structured
field identifier code. It includes class codes or type codes that are
not valid in this architecture, or that are valid in this architecture,
but are not acceptable in the particular interchange set being used.
It does not include invalid category codes.

Data stream state violation
A valid structured field appears in an invalid context in the data
stream. This exception includes:

* Repetition of a structured field within a state where repetition is
not permitted. An example is the appearance of two Page
Descriptor structured fields in a MO:DCA-P Active Environment
Group.

* Appearance of a structured field within a state where it is not
permitted. An example is a Page Descriptor structured field
appearing in a MO:DCA-P Object Environment Group.

* Appearance of a structured field outside the specified structured
field order for that particular state. An example is a Begin
Presentation Text Object structured field appearing in a
MO:DCA-P Page before the Active Environment Group.

74 Mixed Object Document Content Architecture Reference

Exception Conditions

Note: Not included in this category is the omission of a required
structured field.

Unrecognized structured field or triplet
This exception includes:

* An SFI containing a category code:
— That is not valid in this architecture, or
— That is valid in this architecture, but is not acceptable in the
particular interchange set being used

* A triplet containing an identifier:
— That is not valid in this architecture, or
— That is valid in this architecture, but is not valid in the
particular interchange set being used

Required structured field missing
A structured field, required to begin a containing component or to
satisfy an explicit invocation, is missing from the correct location in
the data stream. An example is a Begin Active Environment Group
structured field missing from the beginning of a page overlay.

Required parameter missing
A parameter or parameter group, required in a specific structured
field or in a set of structured fields, is missing from the document
component where it is required. An example is a Begin Document
structured field missing a Coded Graphic Character Set Global
Identifier triplet.

Unacceptable parameter value
A parameter contains a value that is not valid in this architecture,
or it contains a value that is valid in this architecture, but that is
not acceptable in the particular interchange set being used. An
example is a value of 254 for the X page units-base parameter in a

Page Descriptor structured field. See ["PGD (X'D3A6AF') Syntax”|

Inconsistent parameter values
A parameter contains a value that is inconsistent with the value of
another parameter in the structured field, or a parameter in
another structured field. An example is a name in an end
structured field that does not match the name in the corresponding
begin structured field.

MO:DCA syntax tables identify the categories of exception conditions that can
occur for each data element through the use of a code listed in the Exc column.
Each of the exception conditions is related to a bit position, as shown in
The value assigned to Exc is based on the positions of the bits that
represent the exception condition categories that can apply to the data element. If
no exception condition is possible, the Exc column will contain X'00'".

For example, if it is possible for the data element to contain a value outside of the
prescribed range, or if it is possible for its value to conflict with that of another
parameter, then both the unacceptable parameter value and the inconsistent
parameter value exception conditions can apply. The unacceptable parameter value
is represented by bit position six or B'00000010', and the inconsistent parameter
value is represented by bit position seven or B'00000001'. The code that is entered
into the Exc column is formed by ORing the bit representations of the exception
condition categories that are possible, in this example resulting in B'00000011" or
X'03'.

Chapter 3. MO:DCA Overview 75

Exception Conditions

Table 16. Bit Representation of MO:DCA Exception Condition Categories

Code
Bit Position Exception Condition Category Binary Hexadecimal
Bit 0 Invalid structured field identifier B'10000000' X'80'
Bit 1 Unrecognized identifier code B'01000000' X'40'
Bit 2 Data stream state violation B'00100000' X20'
Bit 3 Unrecognized structured field or B'00010000' X'10'
triplet
Bit 4 Required structured field missing B'00001000' X'08'
Bit 5 Required parameter missing B'00000100' X'04'
Bit 6 Unacceptable parameter value B'00000010' X'02'
Bit 7 Inconsistent parameter values B'00000001"' X'01'
None None B'00000000' X'00'

Exception Action

The action to be performed by a product that detects an exception condition is
product-dependent.

76 Mixed Object Document Content Architecture Reference

Chapter 4. MO:DCA-P Obijects

This chapter:

* Defines the structure of a MO:DCA-P print file

* Defines the structure of a MO:DCA-P document

* Defines the structure of a MO:DCA-P index

¢ Defines the structure of a MO:DCA-P page

* Defines the structure of a MO:DCA-P page group

* Describes the resource objects that may be referenced in a MO:DCA-P document
and defines their structure

* Describes how resource objects may be carried in resource groups

* Defines the structure of print control resource objects

* Describes the data objects that may be included in a MO:DCA-P document and
defines their structure

* Defines the structure of object containers

Object Syntax Structure
This section specifies the syntax used to define MO:DCA-P objects.

If a structured field that is not identified as being part of the object appears
anywhere within the object, a X'40' exception condition exists. If a structured field
appears out of the stated order or more than the permitted number of times, a
X'20" exception condition exists. If a structured field that is identified as required
does not appear within the object, a X'08' exception condition exists.

The conventions used in these structured field groupings are:

) The structured field acronym and identifier are shown in parentheses. The
presence of dots or periods in the identifier indicates that the item is not a
structured field, but instead is a structure, for example a medium map. The
structure is composed of an assortment of structured fields, and is defined
separately.

[] Brackets indicate optional structured fields. When a structured field is
shown without brackets, it must appear between the begin and end
structured fields.

+ Plus signs indicate structured fields may appear in any order relative to
those that precede or succeed it except when the preceding or succeeding
structured field does not have a plus (+) sign. In that case, the order is as
listed.

S) The enclosed (S) indicates that the structured field may be repeated. When
present on a required structured field, at least one occurrence of the
structured field is required, but multiple instances of it may occur.

F2 An F2 indicates that the structured field is a format two structured field.
See [“Structured Field Formats” on page 25|

Note: The No Operation structured field may appear within any begin-end
domain. Therefore, it is not listed in the structured field groupings.

© Copyright IBM Corp. 1990, 2006 77

Print File

Print File

The print file is an object that contains one or more documents to be printed. A
print file may also optionally contain an external resource group, also referred to
as a print-file-level resource group, as well as document indexes. Resources carried
in a print-file-level resource group are sometimes referred to as inline resources.

[(D3..C6) Resource Group]
(D3..A7/A8) Index + Document (S)
Index + Document Structure
[(D3..A7) Document Index 1
(D3..A8) Document (S)

Figure 22. Print File Structure
shows the interchange form of a MO:DCA-P print file.

Warning: Any other form may cause inconsistent, presentation-system-dependent
results.

For a definition of the Resource Group structure, see [“Resource Groups” on page|
Notes:

1. The index, as shown in the Index + Document Structure, is optional. When
specified, it must precede the document to be indexed and is implicitly tied to
that document. Pointers from the index to the document and pointers from the
document back to the index are not needed in this case and are ignored. That
is, any FQN type X'83'—Begin Document triplet on the BDI is ignored, and any
X'98'—Begin Document Index on the BDT is ignored.

2. Only a single resource group is permitted at the print file level. If multiple
resource groups appear before the first document, or if one or more resource
groups follow the first document, the treatment of these resource groups is
presentation-system dependent.

3. A single document index before the inline resource group is accepted by AFP
print servers and is implicitly tied to the first document in the print file.
However, this format is not compliant with the MO:DCA-P interchange print
file format and its use is discouraged.

Document

The document is the highest level object in the MO:DCA-P document component
hierarchy. A document is delimited by Begin Document and End Document
structured fields.

78 Mixed Object Document Content Architecture Reference

Document

Begin Document

[(D3..A7) Document Index 1
+ [(IMM, D3ABCC) Invoke Medium Map (s) 1
+ [(IPG, D3AFAF) Include Page () 1
+ [(LLE, D3B490) Link Logical Element (s) 1
+ [(D3..CC) Medium Map (s) 1
+ [| D3..D9) Resource Environment Group () 1
+ [D3..AF) Page (s) 1
+ [(D3..AD) Page Group (S) 1

End Document (EDT, D3A9A8)

(BDT, D3A8A8)

Figure 23. Document Structure

shows the general form of a MO:DCA-P document. MO:DCA-P
interchange sets may specify a more restrictive document structure; however, such
a structure must be a proper subset of the general form.

Notes:

1.

At the beginning of a document, if a document does not invoke a medium map
by name, and if it does not include an internal medium map, the first medium
map in the selected form map controls the printing. The Media Eject Control
(X'45") triplet, which may be included on the Begin Medium Map structured
field to specify a partition eject, is ignored when it occurs on the medium map
that is activated at the beginning of a document regardless of whether this
medium map is explicitly invoked or implicitly invoked as the default. As a
result, a sheet-eject is processed when the first medium map in a document is
selected to control printing. Note that in Cut-sheet Emulation mode (CSE), this
means an eject to the front side of a new sheetlet.

If a medium map is included internal (inline) to the document, it is activated
by immediately following it with an IMM that explicitly invokes it; otherwise,
the internal medium map is ignored. An IMM that does not follow an internal
medium map may not invoke an internal medium map elsewhere in the
document and is assumed to reference a medium map in the processing
system’s form map.

A page that is included with an IPG in document state may be indexed using
an offset to the location of the IPG in the document.

A Resource Environment Group (REG) maps some of the resources required to
present the pages that follow. Resources mapped in a REG must still be
mapped in the AEG for the page that uses the resources. The scope of the
resource mapping in the REG is from the point where it occurs up to the next
REG, which is a complete replacement for the current REG, or the end of the
document, whichever occurs first.

Application Notes:

1.

Internal (inline) medium maps are not supported by all AFP print servers. See
the Advanced Function Presentation: Programming Guide and Line Data Reference
for a specification of the MO:DCA structures and functions supported by AFP
print servers.

The use of internal medium maps may significantly decrease document
processing throughput, especially if the internal Medium Map specifies
conditional media ejects using the Media Eject Control (X'45") triplet.

For optimum performance a REG is normally placed at the beginning of the
document before the first page.

Chapter 4. MO:DCA-P Objects 79

Document Index

Document Index

A document index is an object that provides functions for indexing the document
based on document structure and on application-defined document tags. A
document index is delimited by Begin Document Index and End Document Index
structured fields.

A document index is used for informational purposes only. Parameters in a
document index are descriptive in nature and do not provide presentation
specifications.

Begin Document Index (BDI, D3A8A7)

+ (IEL, D3B2A7) Index Element (S)
+ [(LLE, D3B490) Link Logical Element (s) 1
+ [(TLE, D3A090) Tag Logical Element (S) 1]

End Document Index (EDI, D3A9A7)

Figure 24. Document Index Structure

Resource Environment Group

A resource environment group (REG) is associated with a document or a group of
pages in a document. It is contained in the document’s begin-end envelope in the
data stream. The REG is used to identify complex resources, such as
high-resolution color images, that need to be downloaded to the presentation
device before the pages that follow are processed. The scope of a REG is the pages
that follow, up to the next REG, which is a complete replacement for the current
REG, or the end of the document, whichever occurs first. The mapping of
resources in a REG is optional. Resources mapped in a REG must still be mapped
in the AEG for the page that uses the resources. When more than one REG is
specified in a document, each REG is a complete replacement for the preceding
REG.

Begin Resource Environment Group (BSG, D3A8D9)

[(MDR, D3ABC3) Map Data Resource (S) 1
[(MPO, D3ABD8) Map Page Overlay (S) 1
[(PPO, D3ADC3) Preprocess Presentation Object (s) 1

End Resource Environment Group (ESG, D3A9D9)

Figure 25. Resource Environment Group Structure

Notes:

1. When an MDR is specified in a REG, the FON type X'BE' triplet, which
specifies the internal identifier used to reference the resource being mapped, is
ignored. An example of an internal identifier is the local ID used to reference a
data-object font in a PTOCA object. The assignment of internal identifier to
resource name is made when the MDR is specified in the environment group of
the object that uses the resource. For example, in the case of a data-object font
used in a PTOCA object, the internal identifier of the font is mapped to the font
name in the AEG of the page. If the data-object font is used in an AFP GOCA
object or a BCOCA object, the internal identifier of the font is mapped to the
resource name in the OEG of the object.

2. There is no correlation between MPO Resource Local IDs (LIDs) in an AEG and
MPO LIDs in an REG. For example, an MPO in an AEG can use LID x, and an
MPO for the same overlay in a REG can use LID x or a different LID. The only

80 Mixed Object Document Content Architecture Reference

Resource Environment Group

restriction is that regardless of where the MPO is specified, it is not permissible
within a given MPO to map the same LID to more than one overlay.

An MDR reference to a specific resource may only be specified once in the
REG.

Any object specified for preprocessing in a PPO must first be mapped in an
MDR or an MPO in the same REG. This includes secondary resources that are
specified in the PPO and that are required by the object to be preprocessed.

When an MDR in the REG is used to map a Color Management Resource
(CMR), the processing mode, as specified in the mandatory CMR Descriptor
(X'91") triplet, is downloaded along with the CMR and is used by the
presentation device. However, the CMR scope, which is also specified in the
CMR Descriptor triplet, is ignored and must be established in an ensuing
mapping of the same CMR with the same processing mode at the page/sheet
group (Medium Map) level, page/overlay level, or data object level.

Application Note: For optimum performance a REG is normally placed at the

beginning of the document before the first page.

Page

A page is an object that contains the data objects to be presented. A page
establishes its own environment and is independent of any other page in the
document. A page is delimited by Begin Page and End Page structured fields. A
MO:DCA-P page object has the following syntax structure:

Begin Page
(

+
+
+
+
+
+
+
+
+
+
+
d

En

Active Environment Group (AEG)
Begin Active Environment Group (BAG, D3A8C9)

End Active Environment Group (EAG, D3A9C9)

[

(
(108,
(1PG,
(1PO,
(1pS,
(LLE,
(TLE,

—~ N~~~

[
[
[
[
[
[
[
[
[
[
[
g

(BPG, D3A8AF)

D3..C6)
D3..C9)
D3AFC3)
D3AFAF)
D3AFD8)
D3AF5F)
D3B490)
D3A090)
D3..EB)
D3..BB)
D3..FB)
D3..92)
D3..9B)

Page (EPG, D3A9AF)

(PEC,
(MCF,
(MDR,
(MPG,
(MPO,
(MPS,
(PGD,
[(oBD,
[(oBP,
(PTD,

L U Fae Vo e Ty |

D3A7A8)
D3AB8A)
D3ABC3)
D3ABAF)
D3ABDS)
D3B15F)
D3A6AF)
D3A66B)
D3AC6B)
D3B19B)

Resource Group]
Active Environment Group

Include Object (s) 1
Include Page]
Include Page Overlay (S) 1
Include Page Segment (S) 1
Link Logical Element (S) 1
Tag Logical Element (s) 1
Bar Code Object (S) 1
Graphics Object (s) 1
Image Object (s) 1
Object Container (S) 1
Presentation Text Object (S) 1

Presentation Environment Control

Map Coded Font F2 (S)
Map Data Resource (S)
Map Page

Map Page Overlay (S)
Map Page Segment (S)
Page Descriptor

Object Area Descriptor 1
Object Area Position 1
Presentation Text Data Descriptor F2

[S Y Ty "'

Figure 26. Page Structure

Chapter 4. MO:DCA-P Objects 81

Page

[Figure 26 on page 81| shows the general form of a MO:DCA-P page object.
MO:DCA-P interchange sets may specify a more restrictive page structure;
however, such a structure must be a proper subset of the general form.

Notes:

1. The OBD and OBP structured fields in the AEG for the page are only used for
presentation text objects and are optional.

2. The PTD structured field in the AEG for the page is only required when the
page contains one or more presentation text objects. When the PTD is
included in the AEG for a page, some AFP print servers require that the
measurement units in the PTD match the measurement units in the Page
Descriptor (PGD). It is therefore strongly recommended that whenever the
PTD is included in the AEG, the same measurement units are specified in
both the PTD and PGD.

3. If a presentation text object specifies a coded font other than the presentation
environment default font, the font local ID must be mapped to a font global
name with an MCF or MDR structured field in the AEG for the page. This
mapping must be unique, that is, the font local ID can only be mapped to one
font in the AEG. However different font local IDs can be mapped to the same
font. For rules on mapping local IDs (LIDs) to resource identifiers such as font
global names, see [“Environment Hierarchies” on page 28]

4. If an object container is included directly in a page, it must specify, at
minimum, BOC/EOC, an OEG with OBD, OBP, CDD, and the object data
must be carried in OCDs.

5. When an IPG structured field occurs in a page, the bit map for the referenced
page is merged with the data defined for the current page. The referenced
page must be mapped in the AEG for the current page and must not contain
another IPG. Only a single IPG may occur within a page.

6. When an IPG occurs in a page, the included page becomes a part of the
containing page, therefore only the containing page may be indexed using an
offset to its location in the document.

7. For purposes of Print Services Facility resource management, each MDR that
is specified in an object container OEG must have a corresponding MDR
mapping the same resource in the AEG for that page. Note that an FQN type
X'BE' triplet, if specified on the MDR in the OEG, is not factored up to the
AEG, unless the MDR maps a data-object font.

8. An MDR reference to a specific resource may only be specified once in the
AEG.

9. The resource group following BPG, which is also called an internal resource
group or a page-level resource group, is not supported in AFP environments.

10. The PEC structured field in the AEG for the page is only used to specify the
rendering intent for the page using the Rendering Intent triplet; all other PEC
triplets are ignored.

MO:DCA-P supports IM image objects on a page for migration purposes. One or
more IM image objects may be included on a page in the same manner that 10
image objects are included on a page. Both forms of image may coexist on the
same page. For a definition of the IM image object, see |[Appendix C, “MO:DCA|
Migration Functions,” on page 553

MO:DCA-P supports the Map Coded Font format-1 (MCF-1) structured field in the
AEG for migration purposes. An MCF-1 may appear in place of an MCF format-2
(MCEF-2) structured field. If both MCF-1 and MCEF-2 structured fields are in the
same environment group, the MCF-1 structured fields must precede the MCF-2

82 Mixed Object Document Content Architecture Reference

Page

structured fields. For a definition of the MCF-1 structured field, see

[“'MO:DCA Migration Functions,” on page 553

Application Notes:

1.

For purposes of Print Services Facility resource management, each MCFor MDR
that maps a font in a data object OEG must have a corresponding MCF or
MDR mapping the same font in the AEG for that page. The local ID used in the
page AEG need not match the ID in the object OEG. ID X'FE' may be used in
the AEG for fonts mapped in the AEG solely due to their presence in an
object’s OEG.

For purposes of Print Services Facility resource management, each overlay
included on a page with an IPO must first be mapped to a local ID with an
MPO in the AEG for that page.

A page segment included on a page with an IPS may optionally be mapped
with an MPS in the AEG for that page. If such a mapping exists, the page
segment is sent to the presentation device as a separate object and is called a
hard page segment. If such a mapping does not exist, the page segment is sent
to the presentation device as part of the page and is called a soft page segment.

Page Group

A page group object is a named set of sequential pages in a document. All pages in
a page group inherit the attributes and processing characteristics that are assigned
to the page group. A page group is delimited by Begin Named Page Group and
End Named Page Group structured fields.

Begin Named Page Group

[(TLE,
+ [(IMM,
+ [(IPG,
+ [(LLE,
+ [(
+ [(
+ [(
+ [(

End Nam

Named Page Group

D3A090)
D3ABCC)
D3AFAF)
D3B490)
D3..CC)
D3..D9)
D3..AF)
D3..AD)

(BNG, D3A8AD)
Tag Logical Element (S) 1
Invoke Medium Map (S) 1
Include Page (S) 1
Link Logical Element (S) 1
Medium Map (S) 1
Resource Environment Group (S) 1
Page (S) 1
Page Group (S) 1
(ENG, D3A9AD)

Figure 27. Page Group Structure

shows the general form of a MO:DCA-P page group object. MO:DCA-P
interchange sets may specify a more restrictive page group structure; however,
such a structure must be a proper subset of the general form.

Notes:

1.

If a medium map is included internal (inline) to the document, it is activated
by immediately following it with an IMM that explicitly invokes it, otherwise
the internal medium map is ignored. An IMM that does not follow an internal
medium map may not invoke an internal medium map elsewhere in the
document and is assumed to reference a medium map in the processing
system’s form map.

A page that is included with an IPG in page-group state may be indexed using
an offset to the location of the IPG in the document.

A resource environment group (REG) maps some of the resources required to
present the pages that follow. Resources mapped in a REG must still be
mapped in the AEG for the page that uses the resources. The scope of the

Chapter 4. MO:DCA-P Objects 83

Page Group Structure

resource mapping in the REG is from the point where it occurs up to the next
REG, which is a complete replacement for the current REG, or the end of the
document, whichever occurs first.

Application Notes:

1. Internal (inline) medium maps are not supported by all AFP print servers. See
the Advanced Function Presentation: Programming Guide and Line Data Reference
for a specification of the MO:DCA structures and functions supported by AFP
print servers.

2. The use of internal medium maps may significantly decrease document
processing thruput, especially if the internal Medium Map specifies conditional
media ejects using the Media Eject Control (X'45") triplet.

3. Page groups are often processed in stand-alone fashion; that is, they are
indexed, retrieved, and presented outside the context of the containing
document. While the pages in the group are independent of each other and of
any other pages in the document, their formatting on media depends on when
the last medium map was invoked and on how many pages precede the BNG
since this invocation. To make the media formatting of page groups
self-contained, a Medium Map should be invoked at the beginning of the page
group between the Begin Named Group (BNG) structured field and the first
Begin Page (BPG) structured field. If this is not done, the presentation system
may need to “play back” all pages between the invocation of the active
medium map and the BNG to determine media formatting such as sheet-side
and partition number for the first page in the group.

It is therefore strongly recommended that in environments where stand-alone
page group processing is required or anticipated, page groups are built with an
Invoke Medium Map (IMM) structured field specified after the BNG and before
the first BPG. IBM AFP applications that generate page groups will support a
user option which ensures that an IMM is specified after BNG and before the
first BPG, and IBM AFP archive servers will expect an IMM there and may not
present the page group correctly if none is found. However, note that this may
cause the complete document to print differently.

A newer method to specify how a page or page group should be formatted
involves use of the Page Position Information (X'81') triplet. This triplet may be
specified on a BPG and indicates the repeating group in the PGP structured
field in the active medium map that should be used to format the page.

4. For optimum performance a REG is normally placed at the beginning of the
document before the first page.

Resource Objects

Objects are considered to be resource objects when they are explicitly referenced
from the document instead of being directly included in the document. Resource
objects may reside in external resource libraries, or in resource groups external to
the document, or in resource groups internal to the document. Note that data
objects such as IOCA image objects and object containers become resource objects
when included with an Include Object (IOB) structured field.

Architecture Note: Any presentation object, other than an overlay, when processed
as a resource, must not contain font mappings defined with
Map Coded Font (MCF) structured fields in the object
environment group. A presentation object is processed as a
resource when it is mapped using a Map structured field and
included using an Include stuctured field.

84 Mixed Object Document Content Architecture Reference

Resource Objects

Font Objects

A font is a collection of graphic characters with the same type family, typeface, and
size. Fonts are referenced by MO:DCA-P documents for presenting text.

Font Object Content Architecture (FOCA) Fonts

The IBM Font Object Content Architecture (FOCA) defines a font format that is
supported in MO:DCA-P documents. Suche fonts are referenced in the data stream
using an MCF structured field. This font format defines three types of font objects:
* Coded font objects

¢ Code page objects

* Font character set objects

Each object is bounded by begin and end structured fields that are registered as
private structured fields in the MO:DCA architecture. The content of each object is
carried in structured fields that are also registered as private structured fields in
the MO:DCA architecture. For a description of these objects and their structured
fields, see the Advanced Function Presentation: Host Font Data Stream Reference.

TrueType and OpenType Fonts

TrueType and OpenType fonts are non-FOCA fonts, also called data-object fonts,
that are supported in MO:DCA-P documents. They are referenced in the data
stream using an MDR structured field. They can be installed in a resource library
in their native, unaltered format, or they can be carried in a print-file-level resource
group in an object container. Collections of TrueType or OpenType fonts, called
TrueType Collections, are also supported.

The TrueType font format is based on scalable outline technology with flexible
hinting. Mathematically, TrueType shapes are based on quadratic curves; this is in
contrast to Adobe Type 1 outlines which are based on cubic curves. TrueType is an
open font standard and is widely published. The technology is described in the
following documents available from the Microsoft and Apple web sites:

* TrueType Font Files Technical Specification (Microsoft Corporation)
* TrueType Reference Manual (Apple Computer, Inc.)

The OpenType font format is an extension of the TrueType font format that allows
better support for international character sets and broader multi-platform support.
OpenType defines tables that can be used to carry the formatting information
needed to fully support Unicode. Additionally, this format allows either TrueType
or Adobe Type 1 outlines to be packaged as an OpenType font. The OpenType font
format was developed jointly by the Adobe and Microsoft Corporations, and it is
described in the OpenType Specification, which is available on the Microsoft web
site.

Overlay Objects

An overlay is a MO:DCA-P resource object. It may be stored in an external
resource library or it may be carried in a resource group. An overlay is similar to a
page in that it defines its own environment and carries the same data objects.

Chapter 4. MO:DCA-P Objects 85

Resource Objects

Begin Overlay

(BMO, D3A8DF)

(D3..C9) Active Environment Group
+ [(LLE, D3B490) Link Logical Element (s) 1
+ [(TLE, D3A090) Tag Logical Element (S) 1
+ [(D3..EB) Bar Code Object (s) 1
+ [(D3..BB) Graphics Object (S) 1
+ [(D3..FB) Image Object () 1
+ [(D3..9B) Presentation Text Object (S) 1
+ [(D3..92) Object Container (S) 1]
+ [(I0OB, D3AFC3) Include Object (s) 1
+ [(IPS, D3AF5F) Include Page Segment (S) 1
End Overlay (EMO, D3A9DF)
Active Environment Group (AEG)
Begin Active Environment Group (BAG, D3A8C9)
[(PEC, D3A7A8) Presentation Environment Control 1
[(MCF, D3AB8A) Map Coded Font F2 (S) 1
[(MDR, D3ABC3) Map Data Resource (S) 1
[(MPS, D3B15F) Map Page Segment (s) 1
(PGD, D3A6AF) Page Descriptor
[(0BD, D3A66B) Object Area Descriptor 1
[(0BP, D3AC68) Object Area Position 1
(PTD, D3B19B) Presentation Text Data Descriptor F2

End Active Environment Group (EAG, D3A9C9)

Figure 28. Overlay Structure

shows the general form of a MO:DCA-P overlay object. MO:DCA-P
interchange sets may specify a more restrictive overlay structure; however, such a
structure must be a proper subset of the general form.

Notes:

1.

The OBD and OBP structured fields in the AEG for the overlay are only used
for presentation text objects and are optional.

The PTD structured field in the AEG for the overlay is only required when the
overlay contains one or more presentation text objects. When the PTD is
included in the AEG for an overlay, some AFP print servers require that the
measurement units in the PTD match the measurement units in the Page
Descriptor (PGD). It is therefore strongly recommended that whenever the PTD
is included in the AEG, the same measurement units are specified in both the
PTD and PGD.

If a presentation text object specifies a coded font other than the presentation
environment default font, the font local ID must be mapped to a font global
name with an MCF or MDR structured field in the AEG for the overlay. This
mapping must be unique, that is, the font local ID can only be mapped to one
font in the AEG. However different font local IDs can be mapped to the same
font. For rules on mapping local IDs (LIDs) to resource identifiers such as font
global names, see ['Environment Hierarchies” on page 28]

If an object container is included directly in an overlay, it must specify, at
minimum, BOC/EOC, an OEG with OBD, OBP, CDD, and the object data must
be carried in OCDs. See [“Object Containers” on page 112| for a complete
definition of the object container structure.

For purposes of Print Services Facility resource management, each MDR that is
specified in an object container OEG must have a corresponding MDR mapping
the same resource in the AEG for that overlay. Note that an FQN type X'BE'
triplet, if specified on the MDR in the OEG, is not factored up to the AEG,
unless the MDR maps a data-object font.

86 Mixed Object Document Content Architecture Reference

Resource Objects

6. An MDR reference to a specific resource may only be specified once in the
AEG.

7. The PEC structured field in the AEG for the overlay is only used to specify the
rendering intent for the overlay using the Rendering Intent triplet; all other
PEC triplets are ignored.

MO:DCA-P supports IM image objects on an overlay for migration purposes. One
or more IM image objects may be included on an overlay in the same manner that

IO image objects are included on an overlay. Both forms of image may coexist on
the same overlay. For a definition of the IM image object, see

[“MO:DCA Migration Functions,” on page 553/

MO:DCA-P supports the Map Coded Font format-1 (MCF-1) structured field in the
AEG for migration purposes. An MCF-1 may appear in place of an MCF format-2
(MCEF-2) structured field. If both MCF-1 and MCEF-2 structured fields are in the
same environment group, the MCF-1 structured fields must precede the MCEF-2
structured fields. For a definition of the MCF-1 structured field, see
[(“MO:DCA Migration Functions,” on page 553

Application Notes:

1. For purposes of Print Services Facility resource management, each MCF or
MDR that maps a font in a data object OEG must have a corresponding MCF
or MDR mapping the same font in the AEG for that overlay. The local ID used
in the overlay AEG need not match the ID in the object OEG. ID X'FE' may be
used in the AEG for fonts mapped in the AEG solely due to their presence in
an object’s OEG.

2. A page segment included on an overlay with an IPS may optionally be mapped
with an MPS in the AEG for that overlay. If such a mapping exists, the page
segment is sent to the presentation device as a separate object and is called a
hard page segment. If such a mapping does not exist, the page segment is sent
to the presentation device as part of the overlay and is called a soft page
segment.

Page Segment Objects

A page segment is a MO:DCA-P resource object. It may be stored in an external
resource library or it may be carried in a resource group. Page segments contain
any combination of the following data objects:

* Image objects in IOCA format

* Graphics objects in GOCA format

* Bar code objects in BCOCA format

A page segment does not define a presentation space and has no coordinate
system, therefore objects cannot be positioned relative to each other within a page
segment. Instead, all objects in a page segment must specify an object area offset of
zero. Objects within the page segment may be positioned on the including page or
overlay at a reference point specified by the IPS structured field, or they may be
positioned at the including page or overlay origin. This positioning is specified by
the Reference Coordinate System parameter in the object’s Object Area Position
(OBP) structured field.

Application Note: A page segment included on a page or overlay with an IPS may
optionally be mapped with an MPS in the AEG for that page or
overlay. If such a mapping exists, the page segment is sent to
the presentation device as a separate object and is called a hard
page segment. If such a mapping does not exist, the page

Chapter 4. MO:DCA-P Objects 87

Resource Objects

segment is sent to the presentation device as part of the page or
overlay and is called a soft page segment.

A page segment resource object does not contain an active environment group and
therefore does not define its own environment. Instead, the page segment assumes
the environment definition of the including page or overlay.

Begin Page Segment
+

(BPS, D3A85F)

[(D3..EB) Bar Code Object (S) 1
+ [(D3..BB) Graphics Object (s) 1
+ [(D3..FB) Image Object (S) 1

End Page Segment (EPS, D3A95F)

Figure 29. Page Segment Structure

MO:DCA-P supports the AFP Page Segment object for migration purposes. For a
definition of this object, see|”AFP Page Segment” on page 572.|

Application Note: For hard page segments included via IPS, the OEGs for all
objects in the page segment must not contain any secondary
resource mappings using MCF or MDR structured fields; such
mappings are ignored. For page segments included via IOB,
which are always processed as soft page segments, the OEGs
for all objects in the page segment can only contain secondary
resource mappings using MCFs to map FOCA fonts and MDRs
to map data-object fonts (TrueType/OpenType fonts); all other
secondary resource mappings are ignored.

Resource Groups

A resource group is an object that contains a collection of resource objects,
including:

* Overlays

* Page segments

* Form maps

* Referenced data objects

* Object containers

Resource groups in MO:DCA-P documents may be located inside the document, in
which case they are called internal or page-level resource groups, or outside the
document in a print file, in which case they are called external or print-file-level
resource groups. Resources that are carried in resource groups are said to be inline.
A resource group is delimited by Begin Resource Group and End Resource Group
structured fields.

The scope of a resource group is the object or component that contains the resource
group. That is, the resources within the resource group are available for use by the
presentation system only for the duration of the containing object or component.
For example, when a resource group is specified outside the document as part of a
print file, that is, when it is specified as an external resource group, the resources
within the group are available only for the duration of the print file. Once the last
document in the print file has been processed, these resources are no longer
available to the presentation system for use with another print file.

The general search order for MO:DCA resources is as follows:
1. Internal (page-level) resource groups
2. External (print-file-level) resource groups

88 Mixed Object Document Content Architecture Reference

3.

Resource Groups

External resource libraries

Within a resource group, resource objects of the same type must have unique
identifiers; if they do not, the treatment of such resources is presentation-system
dependent.

Begin Resource Group (BRG, D3A8C6)

+ [(D3..DF)

End Resource Group (ERG, D3A9C6)

Overlay (s) 1

Figure 30. Internal (Page-Level) Resource Group Structure

Begin Resource Group (BRG, D3A8C6)

+ [(D3..DF)
+ [(D3..5F)
+ [(D3..CD)
+ [(D3..EB)
+ [(D3..BB)
+ [(D3..FB)
+ [(D3..92)

[(D3..A8)

End Resource Group (ERG, D3A9C6)

Overlay (s) 1
Page Segment (s) 1
Form Map (s) 1
Bar Code Object (s) 1
Graphics Object (s) 1
Image Object (s) 1
Object Container (s) 1
Document (s) 1

Figure 31. External (Print-File-Level) Resource Group Structure

Notes:

1. In AFP environments, resources carried in external resource groups are called
inline resources.

2. If an object container is included in a resource group, it must at a minimum be
bounded by a BOC/EOC pair, an Object Classification (X'10") triplet must be
specified on the BOC with a registered object-type identifier (object-type OID)
for the object data, and the data must be carried in OCDs.

3. Within a resource group, resource objects of the same type must have unique
identifiers.

4. Documents are carried as resource objects in a resource group so that pages in
these documents can be processed and saved in the presentation device for fast
subsequent retrieval using Include Page (IPG) structured fields.

5. The resource group following BPG, which is also called an internal resource

group or a page-level resource group, is not supported in AFP environments.

Each resource object in an external resource group may be wrapped with an
optional Begin Resource (BRS) and End Resource (ERS) envelope as shown in

[(BRS, D3A8CE)
(D3..xx)
[(ERS, D3A9CE)

Begin Resource 1
Resource Object
End Resource 1

Figure 32. BRS/ERS Envelope for Resources in External (Print-File-Level) Resource Group

The BRS and ERS structured fields must be specified as a pair, that is, one may not
be specified without the other.

Notes:

1.

The BRS/ERS envelope is mandatory for resources carried in an external
resource group in AFP presentation environments.

Chapter 4. MO:DCA-P Objects 89

Resource Groups

2. In AFP environments, the following objects are also included in external
resource groups:
* Page maps (also called page definitions or pagedefs)
 Font objects
— Coded fonts
— Code pages
— Font character sets
For a description of page maps, see the Advanced Function Presentation:

Programming Guide and Line Data Reference. For a description of font objects, see
the Advanced Function Presentation: Host Font Data Stream Reference.

External Resource Naming Conventions

MO:DCA-P objects can be named using one of the following two formats:

* Token name. This name is specified using a fixed-length 8-byte parameter on
Begin, Invoke, Map, and Include structured fields.

* Fully qualified name. This name can be up to 250 bytes long and is specified using
the Fully Qualified Name (FQN) X'02' triplet on Begin, Map, and Include
structured fields, as well as on object-processing structured fields. For names, the
FQNFmt parameter on this triplet is set to X'00' to specify a character string
format, and the FQNType parameter specifies how the name is used. When a
fully qualified name is specified using FQNType X'01' on a Begin structured
field, it overrides any token name that may have been specified on the
structured field. The length of the name is determined by the length of the
triplet, and all bytes in the triplet are considered to be part of the name.

MO:DCA-P object names are encoded using the code page and character set
specified in a Coded Graphic Character Set Global ID X'01' triplet, except in those
cases where the name defines a fixed encoding. Examples of such cases are the
Code Page, Font Character Set, and Coded Font names carried in the FQN type
X'85', X'86', and X'8E' triplets, respectively, which define a fixed EBCDIC encoding.
The X'01' triplet can specify the encoding in two forms; use of the Coded Character
Set Identifier (CCSID) form is recommended. For a definition of the X'01' triplet
and its scope in the document hierarchy, see [’Coded Graphic Character Set Globall
[[dentifier Triplet X'01"” on page 345] The X'01' triplet is mandatory on the Begin
Document (BDT) structured field and may be specified on most MO:DCA
structured fields that contain character data such as an object name. Careful
specification of code page and character set is essential for interchange since the
system defaults for code page and character set may vary from one system
environment to another.

Application Note: In AFP environments, print Servers treat an external object
name—other than a TrueType or OpenType full font name—as
a resource library member name and attempt to process a
resource library member with the same name. This means that
the external names are subject to the system-imposed file
naming rules.

To ensure portability across all AFP platforms, external object
names other than TrueType or OpenType full font names must
be composed according to the following conventions:

* Names consist only of the following characters: A-Z, 0-9, $,
#, @. When the object name is specified using the
fixed-length 8-byte token name parameter, different systems
impose additional constraints:

90 Mixed Object Document Content Architecture Reference

Application Note:

Resource Groups

— Systems that use fixed 8-byte file names require the
complete 8-byte token name parameter, even if padded
with space (X'40" in the EBCDIC encoding) or null (X'00')
characters, match the name of the resource, whether the
resource is located in an inline resource group or a
resource library.

— Systems that can use fewer than 8-byte resource names
may require padding bytes be stripped from the 8-byte
token name field. IBM systems expect the space character
to be used for padding; other systems may also accept the
null code point for padding.

* To ensure portability across older versions of print servers
that do not support encoding definitions in the X'01' triplet,
names use only the recommended characters and are
encoded in EBCDIC using code page 500 and a character set
that includes the above-mentioned characters. The preferred
character set is 961, which includes only those characters,
however character sets such as 697, which contain additional
characters, are also appropriate. With this encoding, the code
points for the characters are:

A-I (code points X'C1'-X'C9")

J-R (code points X'D1'-X'D9')

S5-Z (code points X'E2'-X'E9")

0-9 (code points X'FO'-X'F9")

$, #, and @ (code points X'5B', X'7B', and X'7C'
respectively).

Note that such older print servers normally assume this
EBCDIC encoding as the default encoding for the document.
This EBCDIC encoding can be identified with CCSID 500,
which represents the combination of code page 500 and
character set 697.

TrueType and OpenType full font names specified in the MDR
structured field are not restricted to these characters and may
be encoded as required by the AFP-generating application.
However, since these names are used to search inline font
containers and Resource Access Tables (RATs) which use a fixed
UTF-16BE encoding for full font names, efficiency is gained if
the full font names in the MDR are also encoded in UTF-16BE.
This avoids an encoding conversion. The UTF-16BE encoding
can be identified with CCSID 1200. This encoding needs to be
specified with a X'01' triplet on the MDR that specifies the full
font name.

To optimize print performance, it is strongly recommended that
the same encoding scheme be used for a resource reference
wherever in a print file that resource reference is specified. That
is, the encoding scheme used for the resource include, the
resource map, and the resource wrapper should be the same.
For TrueType/OpenType fonts, optimal performance can be
achieved by using UTF-16BE as the encoding scheme.

Chapter 4. MO:DCA-P Objects 91

Print Control Objects

Print Control Objects

Print control objects are resource objects that are used to control the presentation of
pages on physical media, also known as forms or sheets, in a printer. There are
two types of print control objects, form maps, also known as form definitions or
formdefs, and medium maps.

Form Map
A form map is a print control resource object that consists of:

* An optional document environment group (DEG) that defines the print
environment for the form map

* One or more medium map resource objects that are invokable on document and
page boundaries and that specify a complete set of print controls. The name
assigned to each medium map object is unique within the form map.

A form map is selected for controlling document presentation when the document
print request is generated.

The scope of a form map is a document, and control for presentation starts with
the first medium map in the form map. If the form map is associated with a print
file that contains multiple documents, the scope of the form map is the print file,
and control for presentation is returned to the first medium map in the form map
whenever a new document is encountered.

Begin Form Map (BFM, D3A8CD)
[(D3..C4) Document Environment Group 1
(D3..CC) Medium Map (S)
End Form Map (EFM, D3A9CD)

Figure 33. Form Map Structure

Document Environment Group

The document environment group (DEG), when present, establishes the
presentation environment for a form map resource object. This presentation
environment consist of the following:

* A definition of the medium presentation space, including units of measure, size,
and orientation

* The default position of the logical page on the medium presentation space

* A mapping of overlay local IDs, as specified in a medium map in the form map,
to overlay names

* A mapping of text suppression local IDs, as specified in a medium map in the
form map, to text suppression names

* A specification of the fidelity that is required for presentation
* A specification of finishing operations that are to be applied to media

* A specification of the rendering intent that is to be applied to the print file or to
documents in the print file

* A specification of an appearance to be assumed by the presentation device for
the processing of the print file.

* A specification of Color Management Resources (CMRs) that are to be associated
with the print file or with a document in the print file.

92 Mixed Object Document Content Architecture Reference

Print Control Objects

If a parameter is specified in the DEG as well as in a medium map, the
specification in the medium map takes precedence.

Note: When an internal (inline) medium map is used, structured fields which can

be specified in the DEG and/or in a medium map, specifically the MDD,
MMO, PEC, and PGP, must be specified in the internal medium map. If they
are specified in the Document Environment Group (DEG), they do not apply
to internal medium maps. Therefore if a PEC with the Device Appearance
(X'97") triplet is not specified in the internal medium map, the device
assumes its device default appearance, it does not inherit the appearance
specified in the DEG. Similarly, if a PEC with Rendering Intent (X'95') triplet
is not specified in the internal medium map, the rendering intent from the
DEG is not inherited and does not apply to the pages/sheets processed with
the inline medium map. Structured fields which can only be specified in the
DEG and not in a medium map, such as the MSU, and PFC, apply to the
complete document or print file and are independent of internal medium
maps and medium maps in the form map. The MFC structured field can be
specified in the DEG and/or a Medium Map and defines its scope explicitly.

Begin Document

[
[
[
[

[
[

End Document Environment Group (EDG, D3A9C4)

(PFC,
(PEC,
(MMO,
(MSU,
(PGP,
(MDD,
(MFC,
(MDR,

Environment Group (BDG, D3A8C4)

D3B288)
D3A7A8)
D3B1DF)
D3ABEA)
D3B1AF)
D3A688)
D3A088)
D3ABC3)

Presentation Fidelity Control (s) 1
Presentation Environment Control (S) 1
Map Medium Overlay 1
Map Suppression]
Page Position F2

Medium Descriptor

Medium Finishing Control (S) 1
Map Data Resource (s) 1

Figure 34. Document Environment Group Structure

Notes:

1.

An MMO is required in either the document environment group or a medium
map if an MMC structured field references a medium overlay. If specified in
both, the structured field in the medium map takes precedence.

A PGP and an MDD is required in either the document environment group or a
medium map. If specified in both, the structured field in the medium map
takes precedence.

The DEG may contain one print-file-level MFC that applies to the complete
print file, one document-level MFC that applies to all documents in the print
file, and one or more document-level MFCs that apply to single documents in
the print file. In the last case, only one MFC in the DEG may select a given
document in the print file. If the DEG contains more than one print-file-level
MEC, more than one document-level MFC that applies to all documents, or
more than one document-level MFC that selects the same document, only the
last-specified MFC having that particular scope is used.

The PEC may be specified with the Rendering Intent (X'95') triplet, the Device
Appearance (X'97') triplet, or both. Only a single rendering intent and a single
device appearance should be assigned to the print file or to a specific document
in the print file; if more than one is assigned, only the last assignment is used
and the rest are ignored. For example, if two PECs assign a rendering intent to
the third document in the print file, the second rendering intent is used and the
first is ignored.

Chapter 4. MO:DCA-P Objects 93

Print Control Objects

5. The PEC may be specified with the Device Appearance (X'97') triplet in the
DEG and in a medium map. If specified in both, the PEC with Device
Appearance triplet in the medium map takes precedence.

6. The MDR may only be used in the DEG to reference Color Management
Resources (CMRs); MDR repeating groups referencing any other resource are
ignored.

Medium Map

A medium map is a print control resource object that contains the print control
parameters for presenting pages on a physical medium and for generating copies
of the physical medium. Print control parameters may be grouped into two
categories:

¢ Medium-level controls

* DPage-level controls

Medium-level controls are controls that affect the medium, such as the specification
of medium overlays, medium size, medium orientation, medium copies, simplex or
duplex, medium finishing, device appearance, rendering intent, and media source
and destination selection. These controls are defined by the Map Medium Overlay
(MMO), Medium Descriptor (MDD), Medium Copy Count (MCC), Medium
Finishing Control (MFC), Map Media Type (MMT), Presentation Environment
Control (PEC), and Medium Modification Control (MMC) structured fields.
Page-level controls are controls that affect the pages that are placed on the
medium, such as the specification of page modifications, page position, and page
orientation. These controls are defined by the Map Page Overlay (MPO), Page
Position (PGP), and Page Modification Control (PMC) structured fields. When
N-up partitioning is specified, the Media Eject Control (X'45") triplet may be
included on the Begin Medium Map structured field to specify the type of media
eject that is performed and the type of controls that are activated when the
medium map is invoked.

A medium map contains one Medium Copy Count (MCC) structured field that
generates a copy group for each sheet, therefore a medium map is also sometimes
referred to as a copy group. Each MCC contains one or more copy subgroups that
specify the number of copies of a sheet to be generated for the copy subgroup and
the modifications to be applied to all copies in the copy subgroup. The
modifications are specified by a Medium Modification Control (MMC) structured
field. If the modifications for a copy subgroup specify duplexing, that copy
subgroup and all successive copy subgroups are paired such that the first copy
subgroup in the pair specifies the copy count as well as the modifications to be
applied to the front side of each copy, and the second copy subgroup in the pair
specifies the same copy count as well as an independent set of modifications to be
applied to the back side of each copy. The pairing of copy subgroups continues as
long as duplexing is specified. Note that with simplex printing, each copy
subgroup builds the front sheet-side on all sheet copies generated by the copy
subgroup. With duplex printing, the first and second copy subgroup in each pair
of copy subgroups build front and back sheet-sides, respectively, on all sheet copies
generated by the pair of copy subgroups. [Figure 35 on page 95|illustrates the copy
subgroup concept.

94 Mixed Object Document Content Architecture Reference

Print Control Objects

Medium Copy
Count (MCC)
copies|copies| ' |copies
/ID /1D “ |/ID
Medium Modification Control (MMC)
Fixed] .
ID| Modium | Offset | Media | Overlays Suppressions | 5 | pac| cre
Information Source [ipTip[... |ip| ib|ip| ... |iD| plex
Medium Meadification Control (MMC)
Fixed i
D! Modium Offset | Media Overlays Suppressions bu- | Pac| cre
Information source| D[1p[... |i0] D] D] - |iD| Plex
Medium Mocdification Control (MMC)
Fixed i Overlays Suppressions
»| ID| Medium | Offset | Media y PP Du- |PQC |CFC
Information o[io] ... [io[ip]ip] ... [io] plex

Figure 35. Copy Subgroups

Invocation of Medium Maps

* A medium map can be invoked by name on any page boundary in a document.
This is done by including an IMM (Invoke Medium Map) structured field in the
document data stream. Multiple IMMs may be used within a single document.

* A medium map can be directly included on any page boundary in the document
data stream. Such a medium map is called an internal medium map. Multiple
internal medium maps may be included in a document. An internal medium
map is activated by following it immediately with an IMM that invokes the
internal medium map. If an internal medium map is not explicitly invoked with
an immediately-following IMM, it is ignored. IMMs cannot be used to invoke
internal medium maps elsewhere in the document. When an IMM does not
follow and reference an internal medium map, it references an external medium
map in the processing system’s form map.

The name assigned to each internal medium map object is unique within the
document.

Note: When an internal (inline) medium map is used, structured fields which
can be specified in the DEG and/or in a medium map, specifically the
MDD, MMO, PEC, and PGP, must be specified in the internal medium
map. If they are specified in the document environment group (DEG),
they do not apply to internal medium maps. Therefore if a PEC with the
Device Appearance (X'97') triplet is not specified in the internal medium
map, the device assumes its device default appearance, it does not inherit
the appearance specified in the DEG. Similarly, if a PEC with Rendering
Intent (X'95") triplet is not specified in the internal medium map, the
rendering intent from the DEG is not inherited and does not apply to the
pages/sheets processed with the inline medium map. Structured fields
which can only be specified in the DEG and not in a medium map, such
as the MSU, and PFC, apply to the complete document or print file and
are independent of internal medium maps and medium maps in the form
map. The MFC can be specified in a DEG and/or a medium map and
defines its scope explicitly.

Chapter 4. MO:DCA-P Objects 95

Print Control Objects

Application Notes:

1. Internal (inline) medium maps are not supported by all AFP print servers.
See the Advanced Function Presentation: Programming Guide and Line Data
Reference for a specification of the MO:DCA structures and functions
supported by AFP print servers.

2. The use of internal medium maps may significantly decrease document
processing throughput, especially if the internal medium map specifies
conditional media ejects using the Media Eject Control (X'45') triplet.

3. Internal medium maps are also sometimes referred to as inline medium
maps. The term “internal” is preferred.

If a parameter is specified both in the Document Environment Group (DEG) and
in a medium map, the specification in the medium map takes precedence.

A medium map remains in effect until another medium map is selected or the
end of the document is reached.

If a document does not invoke a medium map by name, and if it does not
include an internal medium map, the first medium map in the selected form
map controls the printing.

When an invoked medium map is used to process medium overlays or variable
page data, it causes a media eject to occur before any data is presented. If not
explicitly specified otherwise, the eject is to a new physical medium (form).
When N-up partitioning is specified, the Media Eject Control (X'45') triplet may
be included on the Begin Medium Map structured field to specify one of the
following partition ejects:

— Conditional eject to next partition

— Conditional eject to next front-side partition

— Conditional eject to next back-side partition

However, this triplet is ignored when it occurs on the medium map that is
activated at the beginning of a document regardless of whether this medium
map is explicitly invoked or implicitly invoked as the default.

If a contiguous sequence of IMMs is specified in the data stream, they are
processed according to the following rules:

— If the sequence of IMMs is followed by a page, the last IMM must invoke a
medium map that allows the presentation of pages. If it does not, an
exception is generated.

— If the sequence of IMMs is followed by a page, only the last invoked medium
map is used for processing; preceding medium maps are ignored. For
example, if the first invoked medium map specifies a conditional eject to the
next front partition and the last invoked medium map specifies a conditional
eject to the next partition, the page is placed into the next partition. Similarly,
if the first invoked medium map specifies “constant front” but allows page
placement on the back, and if the last invoked medium map specifies
“constant back” but allows page placement on the front, the first invoked
medium map is ignored and the page is placed on the front, with constant
data placed on the back. For a definition of the constant forms control, see

— If the sequence of IMMs invoke medium maps that prohibit the presentation
of pages but that present medium overlays or PMC overlays, each medium
map generates a sheet or multiple copies of a sheet with constant overlay
data, as specified. These sheets are generated whether the last IMM is
followed by a page or not.

Application Note: Page groups are often processed in stand-alone fashion, that is,

96 Mixed Object Document

they are indexed, retrieved, and presented outside the context
of the containing document. While the pages in the group are

Content Architecture Reference

Print Control Objects

independent of each other and of any other pages in the
document, their formatting on media depends on when the last
medium map was invoked and on how many pages precede
the BNG since this invocation. To make the media formatting of
page groups self-contained, a Medium Map should be invoked
at the beginning of the page group between the Begin Named
Group (BNG) structured field and the first Begin Page (BPG)
structured field. If this is not done, the presentation system may
need to “play back” all pages between the invocation of the
active medium map and the BNG to determine media
formatting such as sheet-side and partition number for the first
page in the group.

It is therefore strongly recommended that in environments
where stand-alone page group processing is required or
anticipated, page groups are built with an Invoke Medium Map
(IMM) structured field specified after the BNG and before the
first BPG. IBM AFP applications that generate page groups will
support a user option which ensures that an IMM is specified
after BNG and before the first BPG, and IBM AFP archive
servers will expect an IMM there and may not present the page
group correctly if none is found. However, note that this may
cause the complete document to print differently.

A newer method to specify how a page or page group should
be formatted involves use of the Page Position Information
(X'81") triplet. This triplet may be specified on a BPG and
indicates the repeating group in the PGP structured field in the
active Medium Map that should be used to format the page.

[(MmO,
[(mPo,
[(MMT,
[(MDR,
(PGP,
(MDD,
(mcc,
(MMC,
(PMC,
(MFC,
(PEC,
End Medium Map

Begin Medium Map (BMM, D3A8CC)

D3B1DF) Map Medium Overlay 1
D3ABD8) Map Page Overlay (S) 1
D3AB88) Map Media Type (S) 1
D3ABC3) Map Data Resource (S) 1
D3B1AF) Page Position F2

D3A688) Medium Descriptor

D3A288) Medium Copy Count

D3A788) Medium Modification Control (S) 1]
D3A7AF) Page Modification Control (S) 1
D3A088) Medium Finishing Control (S) 1
D3A7A8) Presentation Environment Control 1
(EMM, D3A9CC)

Figure 36. Medium Map Structure

Notes:

1. An MMO is required in either the document environment group or a medium
map if an MMC structured field references a medium overlay. If specified in
both, the structured field in the medium map takes precedence.

2. Within a medium map, a given media type local ID may only be mapped
once to a media type OID and/or a media type name using an MMT.

3. The MDR may only be used in a Medium Map to reference Color
Management Resources (CMRs); MDR repeating groups referencing any other
resource are ignored.

Chapter 4. MO:DCA-P Objects 97

Print Control Objects

4. A PGP and an MDD is required in either the document environment group or
a medium map. If specified in both, the structured field in the medium map
takes precedence.

5. MMC identifiers must be unique for all MMC structured fields in the medium
map. PMC identifiers must be unique for all PMC structured fields in the
medium map.

6. Each overlay included on a page with a PMC must first be mapped to a local
ID with an MPO in the medium map containing the PMC.

7. Modifications specified by PMC structured fields are applied to pages on the
medium dependent on the MMC N-up Format Control (X'FC') keyword as
follows:

* If N-up is not specified, the page on each sheet-side is processed with the
PGP repeating group for that sheet side. All modifications specified by all
PMCs in the active medium map are applied to the page on the sheet-side.

* If N-up with default page placement is specified, all pages on a sheet-side
are processed with the PGP repeating group for that sheet side. If this
repeating group does not specify a PMC identifier, or if the PMC identifier
specifies X'FF', all modifications specified by all PMCs in the active medium
map are applied to each page on the sheet side. If this repeating group
specifies a PMC identifier, only the modifications included by the selected
PMC are applied to all pages on the sheet-side.

* If N-up with explicit page placement is specified, each page is processed
with a PGP repeating group. If this repeating group does not specify a PMC
identifier, or if the PMC identifier specifies X'FF', all modifications specified
by all PMCs in the active medium map are applied to the page. If this
repeating group specifies a PMC identifier, only the modifications included
by the selected PMC are applied to the page.

8. The actual presentation of the selected PMC modifications is controlled by the
MMC Constant Forms Control (X'F9') keyword and the PGP PgFlgs parameter.
See [“Page Position (PGP) Format 2” on page 311]

9. All overlays included with a PMC structured field are presented on the page
presentation space before any variable page data is presented.

10. MEFCs can be specified in the document environment group, in a medium
map, or in both places. When specified in both places, all specified finishing
operations are applied according to their scope, as long as the operations are
compatible. Note that the location of the MFC may restrict which operations
are supported. For rules on how finishing operations are nested, see
[“Finishing Operation Nesting Rules” on page 269.|

11. The PEC may be specified with the Rendering Intent (X'95') triplet, the Device
Appearance (X'97') triplet, or both. Only a single rendering intent and a single
device appearance should be assigned to the group of pages/sheets processed
by this medium map; if more than one is assigned, only the last assignment is
used and the rest are ignored.

12. The PEC may be specified with the Rendering Intent (X'95") triplet and the
Device Appearance (X'97') triplet in the DEG and in a medium map. If
specified in both, the triplet on the PEC in the medium map takes precedence.

Data Objects

Data objects contain presentation data and the controls to present this data. Data
objects are generated in an object presentation space in accordance with controls
defined by the data object architecture. The object presentation space is mapped to
an object area on the page in accordance with controls defined in MO:DCA

98 Mixed Object Document Content Architecture Reference

Data Objects

environment groups. Data object mappings are shown in the specific object
_

descriptions that follow. Object area positioning is shown in

Page Presentation Space

Xpg
Origin of Data
Object Area specified
in Cbject Area Position {OBP)
* Xoa
Ypg -

Data Object Area

Yoa
/ A
Size of Data Orientation of
Object Area Data Object Area
specified in specified in
Object Area Object Area

Descriptor (OBD) Position (OBP)

Figure 37. Object Area Positioning on a Page

Data objects are defined for the following types of presentation data: text, image,
graphics, bar codes. The corresponding data object architectures may define
various functional levels for the data objects. When such levels are formally
defined, they are called function sets or subsets. Wherever support for a data object
in MO:DCA-P is limited to particular function sets, the function-set level is
indicated in the object structure definition. Wherever a MO:DCA-P interchange set
further restricts the level of function set that is supported in the interchange set,
such restriction is indicated in the interchange set definition.

Bar Code Objects

Bar code data consists of patterns of bars and spaces that represent alphanumeric
information. Characteristics of the patterns are defined by specific bar code
symbologies. A bar code object carries the alphanumeric information that is to be
presented as a bar code and the controls to present this information using a
specific bar code symbology. The bar code data object is defined by the Bar Code
Object Content Architecture.

Chapter 4. MO:DCA-P Objects 99

Data Objects

Begin Bar Code Object (BBC, D3A8EB)
(D3..C7) Object Environment Group
[(BDA, D3EEEB) Bar Code Data (s) 1
End Bar Code Object (EBC, D3A9EB)

Object Environment Group (OEG) for Bar Code Object

Begin Object Environment Group (BOG, D3A8C7)
(0BD, D3A66B) Object Area Descriptor
(0BP, D3AC6B) Object Area Position

[(MBC, D3ABEB) Map Bar Code Object 1

[(MCF, D3AB8A) Map Coded Font F2 (S) 1]

[(MDR, D3ABC3) Map Data Resource (S) 1
(BDD, D3AG6EB) Bar Code Data Descriptor

End Object Environment Group (EOG, D3A9C7)

Figure 38. Bar Code Object (BCOCA BCD1 Level) Structure

Application Note:

1. For purposes of Print Services Facility resource management, each MCF that
maps a font in the bar code OEG must have a corresponding MCF mapping the
same font in the AEG for the page or overlay that includes the bar code object.
The local ID used in the page or overlay AEG need not match the ID in the
object OEG. ID X'FE' may be used in the AEG for fonts mapped in the AEG
solely due to their presence in an object’s OEG.

2. An MDR is used to map a non-FOCA data-object font resource in a bar code
object. For purposes of Print Services Facility resource management, each MDR
that is maps a font in the bar code OEG must have a corresponding MDR
mapping the same font resource and attributes in the AEG for the page or
overlay that includes the bar code object. The local ID used in the page or
overlay AEG need not match the ID in the object OEG. ID X'FE' may be used in
the AEG for fonts mapped in the AEG solely due to their presence in an
object’s OEG.

3. An MDR is used to map a Color Management Resource (CMR) that is to be
associated with the bar code object and that is to be used for rendering the bar
code object. For purposes of Print Services Facility resource management, each
MDR that maps a CMR in the bar code OEG must have a corresponding MDR
mapping the same CMR in the AEG for the page or overlay that includes the
bar code object.

100 Mixed Object Document Content Architecture Reference

Data Objects

Bar Code Presentation Space

T “
IS - 0000 - B4 \\
- Page Presentation Space
| RO N RN TR (TR N
N
LR Object Content
S Position
~ >~. specified in the
. ~. Object Area
RNy Position (OBP)
\'\\ ‘\\
\\\\\ \\\\
\\ \\
\\\\ N
\\ 138 - 8908 - 84
WA RNNTD
\\
. L R
\\\ 8- 08 -4
h N
\'\
N
/ 5
Bar Code Bar Code
Object Area Presentation Space

Figure 39. Bar Code Presentation Space Mapping: Position

Note: Refer to the Bar Code Object Content Architecture Reference for a full
description of the BCOCA object content, syntax, and semantics for
MO:DCA-P.

Mapping the Bar Code Presentation Space
The mapping option is specified by the Mapping Option (X'04') triplet on the Map
Bar Code Object (MBC) structured field. The only valid option is position. This

mapping is shown in |[Figure 39,

Graphics Objects

Graphics data consists of controls and parameters to generate pictures based on
lines, characters, and shaded areas. The graphics data object is defined by the
Graphics Object Content Architecture for Advanced Function Presentation.

Chapter 4. MO:DCA-P Objects 101

Data Objects

Begin Graphics Object (BGR, D3A8BB)
(D3..C7) Object Environment Group
[(GAD, D3EEBB) Graphics Data (s) 1
End Graphics Object (EGR, D3A9BB)

Object Environment Group (OEG) for Graphics Object
Begin Object Environment Group (BOG, D3A8C7)

[(PEC, D3A7A8) Presentation Environment Control 1
(0BD, D3A66B) Object Area Descriptor
(0BP, D3AC6B) Object Area Position
[(MGO, D3ABBB) Map Graphics Object]
[(MCF, D3AB8A) Map Coded Font F2 (S) 1
[(MDR, D3ABC3) Map Data Resource (S) 1
(GDD, D3A6BB) Graphics Data Descriptor

End Object Environment Group (EOG, D3A9C7)

Figure 40. Graphics Object (GOCA DR/2V0 Level) Structure

Application Note:

1. For purposes of Print Services Facility resource management, each MCF that
maps a font in the graphics OEG must have a corresponding MCF mapping the
same font in the AEG for the page or overlay that includes the graphics object.
The local ID used in the page or overlay AEG need not match the ID in the
object OEG. ID X'FE' may be used in the AEG for fonts mapped in the AEG
solely due to their presence in an object’s OEG.

2. An MDR is used to map a non-FOCA data-object font resource in a graphics
object. For purposes of Print Services Facility resource management, each MDR
that maps a font in the graphics OEG must have a corresponding MDR
mapping the same font resource and attributes in the AEG for the page or
overlay that includes the graphics object. The local ID used in the page or
overlay AEG need not match the ID in the object OEG. ID X'FE' may be used in
the AEG for fonts mapped in the AEG solely due to their presence in an
object’s OEG.

3. An MDR is used to map a Color Management Resource (CMR) that is to be
associated with the graphics object and that is to be used for rendering the
graphics object. For purposes of Print Services Facility resource management,
each MDR that maps a CMR in the graphics OEG must have a corresponding
MDR mapping the same CMR in the AEG for the page or overlay that includes
the graphics object.

4. The PEC structured field in the OEG for the graphics object is only used to
specify the rendering intent for the object using the Rendering Intent triplet; all
other PEC triplets are ignored.

Note: Refer to the Graphics Object Content Architecture for Advanced Function
Presentation Reference for a full description of the GOCA object content,
syntax, and semantics for MO:DCA-P.

Mapping the Graphics Presentation Space

The mapping option is specified by the Mapping Option (X'04') triplet on the Map
Graphics Object (MGO) structured field. The valid mapping options are:

* Scale to fit

* Scale to fill

* Center and trim

* Position and trim

The replicate-and-trim mapping option has been retired for graphics objects; see
[‘Retired Parameters” on page 567

102 Mixed Object Document Content Architecture Reference

These mapping options are shown in [Figure 41} [Figure 42 on page 104} [Figure 43

fon page 105} and

igure 44 on page 106

Graphics Presentation Space
\ +Yg Axis

/ {Xg = +32K, Yg = +32K)

P |
-Xg Axis _m 4 +Xg Axis

. / — -
Graphics — 'ﬁ

(Ml Ty
I \W

Page Presentation Space

Presentation

Space Window .
r ~,
specified \ \\
~,

in the Graphics

Data Descriptor (Xg = -32K, \\’9 = -32K)
(GDD) N~ T
S |
~,
Scaie-io-fit - \\\ =]
mapping specified S~ @
in the Map Graphic e
Object (MGO) N
~
\\\\\ ‘-b"‘%
/
Graphice Objact Area

Figure 41. Graphics Presentation Space Mapping: Scale to Fit

Chapter 4. MO:DCA-P Objects

Data Objects

103

Data Objects

Graphics Presentation Space

X, =+32,767,y, = +32,767
3 s

-X, Axis
Page Presentation Space
A
Graphics -
Presentation T~<_
Space Window T~ -
Specified T-a X,
inthe Graphics T oy,
Data Descriptor - I | |
(GDD) K |
~
. ~.}
~
Scale-to-ﬁll/ ~.
mapping specified ROy
inthe Map Graphics RSN
Object (MGO) N
You \
v
Graphics Object Area

Figure 42. Graphics Presentation Space Mapping: Scale to Fill

Note that the scale to fill mapping option is similar to scale to fit except that the
Graphics presentation space window may be scaled asymmetrically to fill the
object area completely. This means that the aspect ratio of the graphics picture may
not be preserved.

104 Mixed Object Document Content Architecture Reference

Data Objects

Graphics Presentation Space

-Xg Axis +Xg Axis

Page Presentation Space

Graphics -~

P tati . ~d

Prosentation ~~ Yo Ave

"'""“":'. LA LR \ \\- \\

_.o.pecmed) (Xg = -32K, Yg = -32K) s

in the Graphics ~ -

Data Descriptor T \\‘\

{GDD) o e~
Center-and-trim -~ \\\\ s
ma&pln’?’l sp(eamfl?:.i _\ nmiummm
in the Map Graphic
oy Grap i

~ =

G;aphics Object Area

Figure 43. Graphics Presentation Space Mapping: Center and Trim

Chapter 4. MO:DCA-P Objects 105

Data Objects

Graphics Presentation Space

+Yg Axis

o (Xg = +32K, Yg = +32K)

-Xg Axis

_| +Xg Axis

Page Presentation Space

Graphics
Presentation
Space Window
specified

im tha Crambhins
N Wis SGrapnics

Data Descriptor
{GDD)

(Xg =

-32K, Yg

-32K)

Position-and-trim

mapping specified

iy tha Man (Sranbisa
i Wi wiap arapnic

Object {(MGO)

Object Content
Y offset
specified

in Object Area
Position (OBP)

———————— [y
I
|
|
|
|

!
Object Content
X offset specified
in Object Area
Position (OBP)

Figure 44. Graphics Presentation Space Mapping: Position and Trim

Image Objects

Image data consists of an electronic representation of a picture in the form of an
array of raster data, along with the controls to present this data. The image data
object is defined by the Image Object Content Architecture and is sometimes

referred to as an IO image object.

MO:DCA-P also supports the IM image object for migration purposes. For a

definition of this object, see|“IM Image Object” on page 573.|

106 Mixed Object Document Content Architecture Reference

Data Objects

Begin Image Object (BIM, D3A8FB)
(D3..C7) Object Environment Group
[(IPD, D3EEFB) Image Picture Data (s) 1
End Image Object (EIM, D3A9FB)

Object Environment Group (OEG) for IOCA FS10, FS11, FS40, FS42, or FS45 Image Object
Begin Object Environment Group (BOG, D3A8C7)

[(PEC, D3A7A8) Presentation Environment Control 1
(0BD, D3A66B) Object Area Descriptor
(0BP, D3AC6B) Object Area Position

[(MIO, D3ABFB) Map Image Object

[(MDR, D3ABC3) Map Data Resource (s) 1
(IDD, D3A6FB) Image Data Descriptor

End Object Environment Group (EOG, D3A9C7)

Figure 45. Image Object (IOCA FS10, FS11, FS40, FS42, or FS45 Level) Structure

Note: Refer to the Image Object Content Architecture Reference for a full description
of the IOCA object content, syntax, and semantics for MO:DCA-P.

Application Notes:

1. An MDR is used to map a Tile Resource that is invoked by the IOCA object.
For purposes of Print Services Facility resource management, each MDR that
maps a Tile Resource in the image OEG must have a corresponding MDR
mapping the same resource in the AEG for the page or overlay that includes
the image object.

2. An MDR is also used to map a Color Management Resource (CMR) that is to
be associated with the IOCA object and that is to be used for rendering the
IOCA object. For purposes of Print Services Facility resource management, each
MDR that maps a CMR in the image OEG must have a corresponding MDR
mapping the same CMR in the AEG for the page or overlay that includes the
image object.

3. The PEC structured field in the OEG for the image object is only used to
specify the rendering intent for the object using the Rendering Intent triplet; all
other PEC triplets are ignored.

Mapping the Image Presentation Space

The mapping option is specified by the Mapping Option (X'04') triplet on the Map
Image Object (MIO) structured field. The valid mapping options are:

* Scale to fit

* Scale to fill

* Center and trim

* Position and trim

These mapping options are shown in [Figure 46 on page 108} [Figure 47 on page 109}
[Figure 48 on page 110} and [Figure 49 on page 111}

Chapter 4. MO:DCA-P Objects 107

Data Objects

10 Image Presentation Space

AN
N,
~
~,
hY
~
~
Y
“
~,
~,
~
N,
~
~,
\\
Page Presentation Space
~
N,
~\
N,
~
hY
hS
\\
S AN
~ Y
o AN
~ N,
~. N
~.
\\\
\\\
.
. \\\
Scale-to-fit S
mapping specified e
in the Map Image S~
Object (MIO) ~
M
\\\
IO Image Object Area

Figure 46. Image Presentation Space Mapping: Scale to Fit

108 Mixed Object Document Content Architecture Reference

Data Objects

I0ImagePresentation Space

Page Presentation Space

Scale-to-fill
mapping specified
inthe Map Image
Object (MIO)

IO Image Object Area

Figure 47. Image Presentation Space Mapping: Scale to Fill

Note that the scale to fill mapping option is similar to scale to fit except that the
Image presentation space may be scaled asymmetrically to fill the object area
completely. This means that the aspect ratio of the image may not be preserved.

Chapter 4. MO:DCA-P Objects 109

Data Objects

IO Image Presentation Space

Page Presentation Space

4y, Center-and-trim
mapping specified
in the Map Image
Object (MIO) -y

z

10 Image Object Area

Figure 48. Image Presentation Space Mapping: Center and Trim

110 Mixed Object Document Content Architecture Reference

Data Objects

IO Image Presentation Space

Page Presentation Space

Object Content
: H Y offset
mapping specified specified

in the Map Image | oA a AL

1 in objuul Area
Object (MIO) \‘ Position (OBP)
~

A Dasition-and-trim
Positich-and-trim

/ IO image Object Area

Object Content
X offset specified
in Object Area
Position {OBP)

Figure 49. Image Presentation Space Mapping: Position and Trim

The MO:DCA-P architecture supports three additional mappings for the IOCA
FS10 object for IM image migration purposes. For a definition of these mappings,
see [“Coexistence Parameters” on page 586

Text Objects

Presentation text data consists of graphic character code points and the controls
required to position and present the corresponding graphic characters. The
presentation text data object is defined by the Presentation Text Object Content
Architecture.

Begin Presentation Text Object (BPT, D3A89B)
[(PTX, D3EE9B) Presentation Text Data (S) 1
End Presentation Text Object (EPT, D3A99B)

Figure 50. Presentation Text Object (PTOCA PT1, PT2, or PT3 Level) Structure

Note: Refer to the Presentation Text Object Content Architecture Reference for a full
description of the PTOCA object content, syntax, and semantics for
MO:DCA-P.

When the BPT structured field is processed, all initial text conditions specified in

the Presentation Text Descriptor (PTD) structured field are set prior to processing
the text object.

Chapter 4. MO:DCA-P Objects 111

Data Objects

Application Note: Whenever a BPT is encountered, AFP presentation servers set
default page-level initial text conditions before the PTD initial
conditions are set, see [Table 17 on page 154}

Object Containers

Yp

Page Xp
’

Object containers are MO:DCA objects that envelop and carry object data. The
object data may or may not be specified by an IBM presentation architecture. The
object data is not constrained to be traditional text, image, or graphics. However if
it is a presentation object, it must have a well-defined processing semantic
resulting in a fixed, deterministic presentation when processed by a receiver
capable of presenting the object. If the object is a traditional time-invariant
presentation object, it must be paginated, that is its presentation space must be
constrained to a single page. For presentation objects, the object data in the
container is presented when the object container is included on a page or overlay
using the Include Object (IOB) structured field. The object container may also be
included directly on a page or overlay. shows how object container data
is included on a page using the Include Object (IOB) structured field.

Begin Page (BPG)

Page Environment Group

—— Object Area Position

i "] Include Object (10B)

- Object Area Rotation
MNhinat RMarmans { T

: x% Y o Object Mapping i
i E 8 // ?.n..uvut name s/ 1ype

AN
/ // End Page (EPG)

Scale-to-fit /
Mapping

Xo /
Yo W

/

y

Obiject = flatiron . tiff

Figure 51. Use of the IOB to Include Object Container Data

The object container provides a range of functions that may be used to identify
and structure the enveloped object data. At minimum, the container provides Begin

112 Mixed Object Document Content Architecture Reference

Object Containers

and End structured fields, categorizes the object into a class, identifies the object
type using a registered numeric identifier, and carries the object data in OCD
structured fields. Above this minimum level of function, the object container may
include additional optional functions such as an OEG to specify data object
presentation space size, position, mapping and orientation.

For presentation objects, the required container structure depends on where the
object is stored and how it is included in a page or overlay:

If the object is included directly in a page or overlay, the container must, at a

minimum, have the following structure:

- BOC/EOC with the Object Classification (X'10') triplet on the BOC specifying
the registered object-type identifier (object-type OID) for the object data
format

- OEG with OBD, OBP, and CDD

— All object data partitioned into OCDs

If the object is included using an Include Object (IOB) structured field and is
carried in an external (print-file-level) resource group, the container must, at a
minimum, have the following structure:

— BOC/EOC with the Object Classification (X'10') triplet on the BOC specifying
the registered object-type identifier (object-type OID) for the object data
format

— All object data partitioned into OCDs

If the object is included using an Include Object (IOB) structured field and is
stored in a resource library, there is no minimum container structure
requirement, that is, the object may be stored and included in its unaltered,
original form. However, if the included object is carried in a BOC/EOC
container, the object data must be partitioned into OCDs.

Begin Object Container
[« D3..C7)
[(ocD, D3EE92)

End Object Container (EOC, D3A992)

Object Environment Group (OEG) for Object Container
Begin Object Environment Group (BOG, D3A8C7)

[(PEC, D3A7A8)
[(0BD, D3A66B)
[(0BP, D3AC6B)
[(MCD, D3AB92)
[(MDR, D3ABC3)
[(CDD, D3A692)

End Object Environment Group (EOG, D3A9C7)

(BOC, D3A892)
Object Environment Group]
Object Container Data (S) 1]

Presentation Environment Control

Object Area Descriptor

Object Area Position

Map Container Data

Map Data Resource (S)
Container Data Descriptor

—

Figure 52. Object Container Structure for Presentation Objects

Application Notes:

1.

For purposes of Print Services Facility resource management, each MDR that is
specified in the object container OEG must have a corresponding MDR
mapping the same resource in the AEG for the page or overlay that includes
the object container. Note that an FQN type X'BE' triplet, if specified on the
MDR in the OEG, is not factored up to the AEG, unless the MDR maps a
data-object font.

An MDR is used to map a Color Management Resource (CMR) that is to be
associated with the object in the container and that is to be used for rendering
the object. For purposes of Print Services Facility resource management, each

Chapter 4. MO:DCA-P Objects 113

Object Containers

MDR that maps a CMR in the object container OEG must have a corresponding
MDR mapping the same CMR in the AEG for the page or overlay that includes
the object container.

An MDR reference to a specific resource may only be specified once in the
object container OEG.

The PEC structured field in the OEG for the object container is only used to
specify the rendering intent for the object using the Rendering Intent triplet; all
other PEC triplets are ignored.

For non-presentation objects, the required container structure depends on where
the object is stored:

If the object is carried in an external (print-file-level) resource group, the
container must have the following structure:

— BOC/EOC with the Object Classification (X'10') triplet on the BOC specifying
the registered object-type identifier (object-type OID) for the object data
format

— All object data partitioned into OCDs

If the object is stored in a resource library, there is no minimum container

structure requirement, that is, the object may be stored in its unaltered, original

form. However, if the object is stored in a BOC/EOC container, the object data
must be partitioned into OCDs.

Begin Object Container
[(ocb, D3EE92)
End Object Container

(BOC, D3A892)
Object Container Data (S) 1

(EOC, D3A992)

Figure 53. Object Container Structure for Non-Presentation Objects

Application Notes:

1.

When a TrueType/OpenType font or a TrueType Collection is installed in an
AFP resource library, it is not stored in a BOC/EOC container so that non-AFP
applications that do not understand MO:DCA object containers are able to use
the same font or collection.

When an object container is carried in an external (print-file-level) resource
group in AFP environments, a BRS/ERS envelope is mandatory.

Mapping the Container Data Presentation Space
The mapping option is specified by the Mapping Option (X'04') triplet on the Map
Container Data (MCD) structured field. The valid mapping options are:

Scale to fit

Scale to fill

Center and trim

Position and trim

Position

UP3i Print Data mapping; only valid for the UP3i Print Data object.

For a description of the supported mapping options see[“Mapping Option Triplet]

[X'04" on page 360/ For the scale-to-fit and scale-to-fill mapping of presentation

data in an object container, a data object presentation space size is required. See

[“Object Type Identifiers” on page 589|for information on how the presentation

space size is specified by various data objects. If the presentation space size is not
specified by the object, the achitected default is the presentation space size of the
including page or overlay.

114 Mixed Object Document Content Architecture Reference

Object Containers

The UP3i Print Data mapping is only valid for the UP3i Print Data object type; if
any other mapping option is specified for this object type a X'02' exception
condition exists.

Chapter 4. MO:DCA-P Objects 115

Object Containers

116 Mixed Object Document Content Architecture Reference

Chapter 5. MO:DCA Structured Fields

This chapter:

* Briefly describes the purpose of each MO:DCA structured field

* Provides the syntax and semantics for each MO:DCA structured field
* Identifies each structured field’s parameter set

* Identifies exception conditions

General Information

Chapter 3, “MO:DCA Overview,” on page 19|provides a general discussion of the
syntax and semantics of MO:DCA structured fields. Detailed formats, syntaxes and
semantics are provided here to enable product developers to design and produce
applications that can use MO:DCA data streams.

The syntax tables in this chapter describe the less restrictive requirements of the
overall architecture. Thus, these syntax tables may not agree exactly with a specific
interchange set with regard to:

* Whether a data element is mandatory or optional

¢ The number of times a particular data element may validly occur

* The order in which the data elements must occur

In those cases where there is disagreement with an interchange set, the interchange
set requirement governs.

The exception condition column of the syntax tables for these structured fields
identifies only those exception conditions that could occur for the individual
parameters.

Structured fields that have triplets reflect an exception condition code of either
X'10" or X'14" in this column for the triplet entry. This reflects only the possibility
that the structured field could include an invalid triplet, or that a required triplet
could be missing. Any exception conditions relating to a triplet’s data elements are
addressed in [Chapter 6, “MO:DCA Triplets,” on page 341

Those exception conditions that may occur because of special conditions such as a
mismatch between the individual parameters of one or more structured fields are
listed under the Semantics headings when only one such exception condition is
identified. When multiple exception conditions are identified, all are listed under
the “Exception Condition Summary” heading. A more detailed explanation may be
provided under the “Semantics” heading.

Architected defaults are identified in the semantic description of the individual

parameters. When an architected default exists for an entire structured field, the
default is documented at the end of the semantic description for that structured
field.

The following structured field definitions are sorted in alphabetical order based on
structured field acronym.

© Copyright IBM Corp. 1990, 2006 117

Begin Active Environment Group (BAG)

Begin Active Environment Group (BAG)

The Begin Active Environment Group structured field begins an Active
Environment Group, which establishes the environment parameters for the page or
overlay. The scope of the active environment group is the containing page or
overlay.

BAG (X'D3A8C9') Syntax

Structured Field Introducer

SF Length (2B) | ID = X'D3A8C9' Flags Reserved; Structured Field Data

(1B) X'0000'
Offset Type Name Range Meaning M/O Exc
0-7 CHAR AEGName Name of the active (@) X'02'
environment group
8n Triplets See["BAG Semantics”| for o) X'10'
triplet applicability.

BAG Semantics

AEGName Is the name of the active environment group.

The page or overlay containing the Begin Active Environment
Group structured field must also contain a subsequent matching
End Active Environment Group structured field, or a X'08’
exception condition exists.

Triplets Appear as follows:
Triplet Type Usage
X'01' Coded Graphic Character Set Optional. May occur more than once. Specifies encoding for
Global Identifier structured field parameters defined with a CHAR data type. See

“Coded Graphic Character Set Global Identifier Triplet X'01" onl|
[page 345.|

X'65' Comment Optional. May occur more than once. Carries unarchitected data.
See [“Comment Triplet X'65"” on page 414

Note: If a triplet is included on this structured field, the optional positional
parameter becomes mandatory.

BAG Exception Condition Summary

* A X'08" exception condition exists when a subsequent matching End Active
Environment Group structured field is not present in the page or overlay.

118 Mixed Object Document Content Architecture Reference

Begin Bar Code Object (BBC)

Begin

Bar Code Object (BBC)

The Begin Bar Code Object structured field begins a bar code data object, which
becomes the current data object.

BBC (X'D3ASEB') Syntax

Structured Field Introducer

SF Length (2B) | ID = X'D3ASEB' Flags Reserved; Structured Field Data
(1B) X'0000'

Offset Type Name Range Meaning M/O Exc

0-7 CHAR |BCdoName Name of the bar code data O X'02'

object

8-n Triplets See |"BBC Semantics”| for triplet O X'10'

applicability.
BBC Semantics
BCdoName Is the name of the bar code data object.
The page, overlay, or resource group containing the Begin Bar
Code Object structured field must also contain a subsequent
matching End Bar Code Object structured field, or a X'08’
exception condition exists.
Triplets Appear as follows:
Triplet Type Usage
X'01' Coded Graphic Character Set Optional. May occur more than once. Specifies encoding for
Global Identifier structured field parameters defined with a CHAR data type. See
“Coded Graphic Character Set Global Identifier Triplet X'01'” onf
page 345

X'02' Fully Qualified Name Optional. May occur once. See|“Fully Qualified Name Triple
[X'02" on page 348]

The Fully Qualified Name type that may appear is
X'01'—Replace First GID Name. This GID overrides the Begin Bar
Code Object structured field name and is used as the name of
the bar code data object.

X'62' Local Date and Time Stamp Optional. This triplet or the Universal Date and Time Stamp
(X'72") triplet may occur once. Assigns a date and time stamp to
the object. See[“Local Date and Time Stamp Triplet X'62" on|
lpage 412

X'65' Comment Optional. May occur more than once. Carries unarchitected data.
See|“Comment Triplet X'65"” on page 414

X'72' Universal Date and Time Stamp | Optional. This triplet or the Local Date and Time Stamp (X'62)

triplet may occur once. Assigns a universal date and time stamp
to the object. See [“Universal Date and Time Stamp Triplet X'72"]

|on page 423.|

Chapter 5. MO:DCA Structured Fields 119

Begin Bar Code Object (BBC)

Note: If a triplet is included on this structured field, the optional positional
parameter becomes mandatory.

Application Note: In AFP environments, the following retired triplet is used on
this structured field:
* Line Data Object Position Migration (X'27") triplet; see |”Line|
[Data Object Position Migration Triplet X'27" on page 559]

BBC Exception Condition Summary

* A X'08" exception condition exists when a subsequent matching End Bar Code
Object structured field is not present in the page, overlay, or resource group.

120 Mixed Object Document Content Architecture Reference

Begin Color Attribute Table (BCA)

Begin Color Attribute Table (BCA)
The Begin Color Attribute Table structured field begins a Color Attribute Table

resource object,

which becomes the current resource object. A color attribute table

contains color attribute data.

Note: The BCA

structured field is used only in MO:DCA-L data streams.

BCA (X'D3A877') Syntax

Structured Field Introducer

SF Length (2B)

ID = X'D3A877' Flags Reserved; Structured Field Data

(1B) X'0000'
Offset Type Name Range Meaning M/O Exc
0-7 CHAR CATName Name of the color attribute M X'06'
table
8-n Triplets See ["BCA Semantics”] for triplet| O X'10'
applicability.
BCA Semantics
CATName Is the name of the color attribute table. This name may not appear
on more than one Begin Color Attribute Table in the same resource
group or a X'01” exception condition exists.
The resource group containing the Begin Color Attribute Table
structured field must also contain a subsequent matching End
Color Attribute Table structured field, or a X'08" exception
condition exists.
Color attribute tables may reside in external libraries, in one or
more resource groups within a MO:DCA document, or in a
combination of the two. See|“Resource Groups” on page 17] for
details on locating resource objects within libraries and resource
groups.
Triplets Appear as follows:
Triplet Type Usage
X'or Coded Graphic Character Set Optional. May occur more than once. Specifies encoding for
Global Identifier structured field parameters defined with a CHAR data type. See
“Coded Graphic Character Set Global Identifier Triplet X'01" onf
page 345
X'02' Fully Qualified Name Optional. May occur once. See [‘Fully Qualified Name Triplef]

[X'02" on page 348.|

The Fully Qualified Name type that may appear is X'01'—Replace
First GID Name. This GID overrides the Begin Color Attribute
Table structured field name and is used as the name of the color
attribute table.

Chapter 5. MO:DCA Structured Fields 121

Begin Color Attribute Table (BCA)

Triplet Type Usage

X'65' Comment Optional. May occur more than once. Carries unarchitected data.
See [“Comment Triplet X'65"” on page 414

BCA Exception Condition Summary

¢ A X'08 exception condition exists when a subsequent matching End Color
Attribute Table structured field is not present in the same resource group.

* A X'01" exception condition exists when multiple Begin Color Attribute Table
structured fields with the same name exist within the same resource group.

122 Mixed Object Document Content Architecture Reference

Bar Code Data (BDA)

Bar Code Data (BDA)

The Bar Code Data structured field contains the data for a bar code object.

BDA (X'D3EEEB') Syntax

Structured Field Introducer

SF Length (2B) | ID = X'D3EEEB' Flags Reserved; Structured Field Data

(1B) X'0000'
Offset Type Name Range Meaning M/O Exc
0-n UNDF BCOCAdat Up to 32,759 bytes of O X'00'
BCOCA-defined data

BDA Semantics

BCOCAdat Contains the BCOCA-defined data. See the MO:DCA environment
appendix in the Bar Code Object Content Architecture Reference for
detailed information.

Note: The number of data bytes allowed in this structured field may be restricted
by an interchange set.

Chapter 5. MO:DCA Structured Fields 123

Bar Code Data Descriptor (BDD)

Bar Code Data Descriptor (BDD)

The Bar Code Data Descriptor structured field contains the descriptor data for a
bar code data object.

BDD (X'D3A6EB') Syntax

Structured Field Introducer

SF Length (2B) | ID = X'D3A6EB' Flags Reserved; Structured Field Data

(1B) X'0000'
Offset Type Name Range Meaning M/O Exc
0-n UNDF BCOCAdes Up to 32,759 bytes of @] X'00'
BCOCA-defined descriptor
data

BDD Semantics

BCOCAdes Contains the BCOCA-defined descriptor data. See the MO:DCA
environment appendix in the Bar Code Object Content Architecture
Reference for detailed information.

Note: The number of data bytes allowed in this structured field may be restricted
by an interchange set.

124 Mixed Object Document Content Architecture Reference

Begin Document Environment Group (BDG)

Begin Document Environment Group (BDG)

The Begin Document Environment Group structured field begins a document
environment group, which establishes the environment parameters for the form
map object. The scope of the document environment group is the containing form
map.

BDG (X'D3A8C4') Syntax

Structured Field Introducer

SF Length (2B) | ID = X'D3A8C4' Flags Reserved; Structured Field Data

(1B) X'0000'
Offset Type Name Range Meaning M/O Exc
0-7 CHAR DEGName Name of the document (@) X'02'
environment group
8n Triplets See["BDG Semantics”| for 0] X'10'
triplet applicability.

BDG Semantics

DEGName Is the name of the document environment group.

The form map containing the Begin Document Environment Group
structured field must also contain a subsequent matching End
Document Environment Group structured field, or a X'08’
exception condition exists.

Triplets Appear as follows:
Triplet Type Usage
X'or Coded Graphic Character Set Optional. May occur more than once. Specifies encoding for
Global Identifier structured field parameters defined with a CHAR data type. See

“Coded Graphic Character Set Global Identifier Triplet X'01" on|
[page 345.|

X'65' Comment Optional. May occur more than once. Carries unarchitected data.
See [“Comment Triplet X'65" on page 414

Note: If a triplet is included on this structured field, the optional positional
parameter becomes mandatory.

BDG Exception Condition Summary

* A X'08" exception condition exists when a subsequent matching End Document
Environment Group structured field is not present in the form map.

Chapter 5. MO:DCA Structured Fields 125

Begin Document Index (BDI)

Begin Document Index (BDI)

The Begin Document Index structured field begins the document index.

BDI (X'D3A8A7') Syntax

Structured Field Introducer

SF Length (2B)

ID = X'D3A8A7' Flags Reserved; Structured Field Data

(1B) X'0000'

Offset

Type

Name

Range

Meaning M/O Exc

0-7

CHAR

IndxName

Name of the document index (@) X'02'

Triplets

See |“BDI Semantics”|for triplet (@] X'10'
applicability.

BDI Semantics

IndxName

Triplets

Is the name of the document index.

If specified within a document, this structured field must be the
first structured field after the Begin Document structured field, or a
X"20” exception condition exists.

The print file or document containing the Begin Document Index
structured field must also contain a subsequent matching End
Document Index structured field, or a X’08” exception condition

exists.

Appear

as follows:

Triplet

Type

Usage

X'or'

Coded Graphic Character Set
Global Identifier

Optional. May occur more than once. Specifies encoding for
structured field parameters defined with a CHAR data type. See
“Coded Graphic Character Set Global Identifier Triplet X'01" on|

[page 345.|

X'02'

Fully Qualified Name

Optional. May occur once. See [‘Fully Qualified Name Tripleq
[X'02"" on page 348.|

The Fully Qualified Name type that may appear is X'01'—Replace
First GID Name. This GID overrides the Begin Document Index
structured field name and is used as the name of the document
index.

X'02'

Fully Qualified Name

Optional. May occur once.

The Fully Qualified Name type that may appear is X'83'—Begin
Document Name. Specifies the name of the document that is
indexed by this document index. See |“Fully Qualified Name]
[Triplet X'02'” on page 348.|

X'62'

Local Date and Time Stamp

Optional. This triplet or the Universal Date and Time Stamp
(X’72’) triplet may occur once. Assigns a date and time stamp to
the object. See ['Local Date and Time Stamp Triplet X'62" onl

Lr_)age 412|

126 Mixed Object Document Content Architecture Reference

Begin Document Index (BDI)

Triplet Type Usage

X'65' Comment Optional. May occur more than once. Carries unarchitected data.
See [“Comment Triplet X'65" on page 414

X'72' Universal Date and Time Stamp | Optional. This triplet or the Local Date and Time Stamp (X'62")

triplet may occur once. Assigns a universal date and time stamp
to the object. See|“Universal Date and Time Stamp Triplet X'72"

|on page 423J

Note: If a triplet is included on this structured field, the optional positional
parameter becomes mandatory.

BDI Exception Condition Summary

* A X'08" exception condition exists when a subsequent matching End Document
Index structured field is not present in the print file or document.

* A X'20" exception condition exists when this structured field is specified in a
document but does not follow the BDT structured field.

Chapter 5. MO:DCA Structured Fields 127

Begin Document (BDT)

Begin Document (BDT)

The Begin Document structured field names and begins the document.

BDT (X'D3A8A8') Syntax

Structured Field Introducer

SF Length (2B)

ID = X'D3A8AS' Flags Reserved; Structured Field Data

(1B) X'0000'
Offset Type Name Range Meaning M/O Exc
0-7 CHAR DocName Name of the document M X'06'
8-9 Reserved; must be zero M X'06'
10-n Triplets See|“BDT Semantics”| for triplet M X'14'
applicability.
BDT Semantics
DocName Is the name of the document described by the data stream. If a
Fully Qualified Name type X'01” (Replace First GID) appears in
this structured field, the name specified in this parameter is
ignored and the GID provided by the triplet is used instead. If the
value of the first two bytes of DocName are X'FFFF', the processing
system provides the document name.
Triplets Appear as follows:
Triplet Type Usage
X'01' Coded Graphic Character Set Mandatory. May occur more than once. Specifies encoding for
Global Identifier structured field parameters defined with a CHAR data type. See
“Coded Graphic Character Set Global Identifier Triplet X'01" onl
[page 345.|
X'18' MO:DCA Interchange Set For interchange data streams, this triplet is mandatory and must
occur once. For private or exchange data streams, this triplet is not
permitted. See["MO:DCA Interchange Set Triplet X'18" on page
b
X'02' Fully Qualified Name Optional. May occur once. See [“Fully Qualified Name Triplef]
[X'02" on page 348.|
The Fully Qualified Name type that may appear is X'01'—Replace
First GID name. This GID overrides the Begin Document
structured field name and is used as the name of the document.
X'02' Fully Qualified Name Optional. May occur once.

The Fully Qualified Name type that may appear is X'0A'—Begin
Resource Group Name. Specifies the name of a resource group that
contains resources referenced in this document. See
[Qualified Name Triplet X'02” on page 348

128 Mixed Object Document Content Architecture Reference

Begin Document (BDT)

Triplet Type Usage

X'02' Fully Qualified Name Optional. May occur once.
The Fully Qualified Name type that may appear is X'98'—Begin
Document Index Name. Specifies the name of a document index
resource object that provides index information for this
document. See [“Fully Qualified Name Triplet X'02"” on page 348

X221 Object Function Set Optional. May occur once for each object type that exists in the

Specification data stream. See [Object Function Set Specification Triplet X'21'

|or1 page 374]

X'65' Comment Optional. May occur more than once. Carries unarchitected data.
See [“Comment Triplet X'65” on page 414

X'72' Universal Date and Time Stamp | Optional. May occur once. Assigns a universal date and time

stamp to the object. See [“Universal Date and Time Stamp Triplet|
[X'72" on page 423.|

The data stream containing the Begin Document structured field must also contain
a subsequent matching End Document structured field, or a X’08” exception

condition exists.

BDT Exception Condition Summary

* A X'08" exception condition exists when a subsequent matching End Document
structured field is not present in the data stream.

* A X'01” exception condition exists when:
— Multiple type X'01” (Replace First GID) Fully Qualified Name triplets appear.
— Multiple MO:DCA Interchange Set (X'18) triplets appear.

Chapter 5. MO:DCA Structured Fields 129

Begin Form Map (BFM)

Begin Form Map (BFM)

The Begin Form Map structured field begins a form map object, also called a form
definition or formdef. A form map is a print control resource object that contains one
or more medium map resource objects that are invokable on document and page
boundaries and that specify a complete set of presentation controls. It also contains
an optional document environment group (DEG) that defines the presentation
environment for the form map.

BFM (X'D3A8CD') Syntax

Structured Field Introducer

SF Length (2B) | ID = X

'"D3A8CD' Flags Reserved; Structured Field Data

(1B) X'0000'

Offset Type Name Range Meaning M/O Exc

0-7 CHAR |FMName Name of the form map @] X'02'

8-n Triplets See ["BFM Semantics”| for @) X'10'

triplet applicability.
BFM Semantics
FMName Is the name of the form map.
A form map resource object must be terminated with a subsequent
matching End Form Map structured field, or a X’08" exception
condition exists.
Triplets Appear as follows:
Triplet Type Usage
X'or' Coded Graphic Character Set Optional. May occur more than once. Specifies encoding for
Global Identifier structured field parameters defined with a CHAR data type. See
“Coded Graphic Character Set Global Identifier Triplet X'01" on|
page 345)

X'62' Local Date and Time Stamp Optional. This triplet or the Universal Date and Time Stamp
(X'72’) triplet may occur once. Assigns a date and time stamp to
the object. See [“Local Date and Time Stamp Triplet X'62" on|
|Eage 412.|

X'65' Comment Optional. May occur more than once. Carries unarchitected data.
See [“Comment Triplet X'65"” on page 414

X'72' Universal Date and Time Stamp | Optional. This triplet or the Local Date and Time Stamp (X'62")

triplet may occur once. Assigns a universal date and time stamp
to the object. See|“Universal Date and Time Stamp Triplet X'72"

|on page 423J

Note: If a triplet is included on this structured field, the optional positional
parameter becomes mandatory.

130 Mixed Object Document Content Architecture Reference

Begin Form Map (BFM)

BFM Exception Condition Summary

* A X'08" exception condition exists when the form map is not terminated with a
subsequent matching End Form Map structured field.

Chapter 5. MO:DCA Structured Fields 131

Begin Graphics Object (BGR)

Begin Graphics Object (BGR)

The Begin Graphics Object structured field begins a graphics data object which
becomes the current data object.

BGR (X'D3A8BB') Syntax

Structured Field Introducer

SF Length (2B) | ID = X'D3A8BB' Flags Reserved; Structured Field Data
(1B) X'0000'
Offset Type Name Range Meaning M/O Exc
0-7 CHAR |GdoName Name of the graphics data (@] X'02'
object
8-n Triplets See["BGR Semantics”] for triplet O X'10'
applicability.
BGR Semantics
GdoName Is the name of the graphics data object.
The page, overlay, or resource group containing the Begin Graphics
Object structured field must also contain a subsequent matching
End Graphics Object structured field, or a X’08” exception condition
exists.
Triplets Appear as follows:
Triplet Type Usage
X'01' Coded Graphic Character Set Optional. May occur more than once. Specifies encoding for
Global Identifier structured field parameters defined with a CHAR data type. See
“Coded Graphic Character Set Global Identifier Triplet X'01"” on|
page 345]
X'02' Fully Qualified Name Optional. May occur once. See [‘Fully Qualified Name Tripleq
[X'02" on page 348.|
The Fully Qualified Name type that may appear is X'01'—Replace
First GID Name. This GID overrides the Begin Graphics Object
structured field name and is used as the name of the graphics
data object.
X'62' Local Date and Time Stamp Optional. This triplet or the Universal Date and Time Stamp
(X'72") triplet may occur once. Assigns a date and time stamp to
the object. See [“Local Date and Time Stamp Triplet X'62" o
page 412]
X'65' Comment Optional. May occur more than once. Carries unarchitected data.
See [“Comment Triplet X'65" on page 414
X'72' Universal Date and Time Stamp | Optional. This triplet or the Local Date and Time Stamp (X'62")

triplet may occur once. Assigns a universal date and time stamp
to the object. See|“Universal Date and Time Stamp Triplet X'72"

|on page 423]

132 Mixed Object Document Content Architecture Reference

Begin Graphics Object (BGR)

Note: If a triplet is included on this structured field, the optional positional
parameter becomes mandatory.

Application Note: In AFP environments, the following retired triplet is used on
this structured field:
* Line Data Object Position Migration (X'27") triplet; see |”Lina
[Data Object Position Migration Triplet X'27" on page 559]

BGR Exception Condition Summary

* A X'08" exception condition exists when a subsequent matching End Graphics
Object structured field is not present in the page, overlay, or resource group.

Chapter 5. MO:DCA Structured Fields 133

Begin Image Object (BIM)

Begin Image Object (BIM)

The Begin Image Object structured field begins an IOCA image data object, which
becomes the current data object.

Architecture Note: A migration form of the image object is supported in AFP
environments and is defined as the IM Image Object in
[fmage Object” on page 573/

BIM (X'D3A8FB') Syntax

Structured Field Introducer

SF Length (2B)

ID = X'D3ASFB' Flags Reserved; Structured Field Data

(1B) X'0000'

Type

Name

Range

Meaning M/O Exc

CHAR

IdoName

Name of the image data object (@] X'02'

Triplets

See |“BIM Semantics”| for triplet (@) X'10'
applicability.

BIM Semantics

IdoName

Triplets

Is the name of the IOCA image data object.

The page, overlay, or resource group containing the Begin Image

Object s

tructured field must also contain a subsequent matching

End Image Object structured field, or a X’08" exception condition

exists.

Appear

as follows:

Triplet

Type

Usage

X'01'

Coded Graphic Character Set
Global Identifier

Optional. May occur more than once. Specifies encoding for
structured field parameters defined with a CHAR data type. See
“Coded Graphic Character Set Global Identifier Triplet X'01" on|

[page 345.|

X'02'

Fully Qualified Name

Optional. May occur once. See [“Fully Qualified Name Triplef]
[X'02" on page 348.]

The Fully Qualified Name type that may appear is X'01'—Replace

First GID Name. This GID overrides the Begin Image Object

structured field name and is used as the identifier of the image

data object. The identifier may be specified in one—and only

one—of the following formats:

* If FQNFmt = X'00', the identifier is a character-encoded name.
See|“External Resource Naming Conventions” on page 90| for
a description of the naming conventions used in AFP
environments.

X'62'

Local Date and Time Stamp

Optional. This triplet or the Universal Date and Time Stamp
(X’72’) triplet may occur once. Assigns a date and time stamp to
the object. See ["Local Date and Time Stamp Triplet X'62" onl

[page 412]

134 Mixed Object Document Content Architecture Reference

Begin Image Object (BIM)

Triplet Type Usage

X'65' Comment Optional. May occur more than once. Carries unarchitected data.
See [“Comment Triplet X'65" on page 414

X'72' Universal Date and Time Stamp | Optional. This triplet or the Local Date and Time Stamp (X'62")

triplet may occur once. Assigns a universal date and time stamp
to the object. See|“Universal Date and Time Stamp Triplet X'72"

|on page 423J

Note: If a triplet is included on this structured field, the optional positional
parameter becomes mandatory.

Application Note: In AFP environments, the following retired triplet is used on
this structured field:
* Line Data Object Position Migration (X'27") triplet; see |”Lina
[Data Object Position Migration Triplet X'27"” on page 559]

BIM Exception Condition Summary

* A X'08 exception condition exists when a subsequent matching End Image
Object structured field is not present in the page, overlay, or resource group.

Chapter 5. MO:DCA Structured Fields 135

Begin Medium Map (BMM)

Begin Medium Map (BMM)

The Begin Medium Map structured field begins a medium map resource object. A
medium map is a print control resource object that contains a complete set of
controls for presenting pages on physical media such as sheets and for generating
multiple copies of sheets with selectable modifications. These controls may be
grouped into two categories:

* Medium-level controls

* Page-level controls

Medium-level controls are controls that affect the medium, such as the specification
of medium overlays, medium size, medium orientation, medium copies, simplex or
duplex, medium finishing, media type, and media source and destination selection.
These controls are defined by the Map Medium Overlay (MMO), Medium
Descriptor (MDD), Medium Copy Count (MCC), Medium Finishing Control
(MFC), Map Media Type (MMT), and Medium Modification Control (MMC)
structured fields. Page-level controls are controls that affect the pages that are
placed on the medium, such as the specification of page modifications, page
position, and page orientation. These controls are defined by the Map Page
Overlay (MPO), Page Position (PGP), and Page Modification Control (PMC)
structured fields.

BMM (X'D3A8CC') Syntax

Structured Field Introducer

SF Length (2B) | ID = X'D3A8CC' Flags Reserved; Structured Field Data

(1B) X'0000'
Offset Type Name Range Meaning M/O Exc
0-7 CHAR MMName Name of the medium map M X'06'
8-n Triplets See["BMM Semantics”|for (@) X'10'
triplet applicability.
BMM Semantics
MMName Is the name of the medium map.
A medium map resource object must be terminated with a
subsequent matching End Medium Map structured field, or a X'08’
exception condition exists.
Triplets Appear as follows:
Triplet Type Usage
X'01' Coded Graphic Character Set Optional. May occur more than once. Specifies encoding for
Global Identifier structured field parameters defined with a CHAR data type. See
“Coded Graphic Character Set Global Identifier Triplet X'01" on|
[page 345.|

136 Mixed Object Document Content Architecture Reference

Begin Medium Map (BMM)

Triplet

Type

Usage

X'45'

Media Eject Control

Optional. May occur once. See ["Media Eject Control Triplet|
[X'45" on page 384.|Specifies the type of media eject that should
be performed when this medium map is invoked and N-up
partitioning is specified. This triplet is ignored when it occurs on
the medium map that is activated at the beginning of a
document regardless of whether this medium map is explicitly
invoked or implicitly invoked as the default.

Note: If this triplet is not present, the architected default for the
EjCtr]l parameter in the triplet is X'01', that is perform a sheet
eject and activate all controls specified by the medium map.

X'65'

Comment

Optional. May occur more than once. Carries unarchitected data.
See [“Comment Triplet X'65" on page 414

BMM Exception Condition Summary

¢ A X'08 exception condition exists when the medium map is not terminated with
a subsequent matching End Medium Map structured field.

* A X'01" exception condition exists when:

— The Begin Medium Map structured field specifies a conditional eject to a
front-side partition and the PGP in the medium map does not specify a
front-side partition

— The Begin Medium Map structured field specifies a conditional eject to a
back-side partition and the PGP in the medium map does not specify a
back-side partition.

Chapter 5. MO:DCA Structured Fields 137

Begin Overlay (BMO)

Begin Overlay (BMO)

The Begin Overlay structured field begins an overlay. An overlay contains an
active environment group to establish parameters such as the size of the overlay’s
presentation space and the fonts to be used by the data objects. It may also contain
any mixture of:

* Bar code objects

* Graphics objects

* Image objects

* Object containers

* Presentation text objects

BMO (X'D3A8DF') Syntax

Structured Field Introducer

SF Length (2B) | ID = X'D3A8SDF' Flags Reserved; Structured Field Data

(1B) X'0000'
Offset Type Name Range Meaning M/O Exc
0-7 CHAR OvlyName Name of the overlay M X'06'
8-n Triplets See ['BMO Semantics”| for @) X'10'
triplet applicability.

BMO Semantics

OvlyName Is the name of the overlay. This name may not appear on more
than one Begin Overlay within the same resource group or a X'01’
exception condition exists.

The resource group containing the Begin Overlay structured field
must also contain a subsequent matching End Overlay structured
field, or a X’08” exception condition exists.

Triplets Appear as follows:
Triplet Type Usage
X'01' Coded Graphic Character Set Optional. May occur more than once. Specifies encoding for
Global Identifier structured field parameters defined with a CHAR data type. See

“Coded Graphic Character Set Global Identifier Triplet X'01" on|
page 345

X'02' Fully Qualified Name Optional. May occur once. See [“Fully Qualified Name Triplef]
[X'02 on page 348

The Fully Qualified Name type that may appear is:
X'01'—Replace First GID Name. This GID overrides the Begin
Overlay structured field name and is used as the name of the
overlay.

X'62' Local Date and Time Stamp Optional. This triplet or the Universal Date and Time Stamp
(X'72’) triplet may occur once. Assigns a date and time stamp to
the object. See [“Local Date and Time Stamp Triplet X'62" onl

|Eage 412.|

138 Mixed Object Document Content Architecture Reference

Begin Overlay (BMO)

Triplet Type Usage

X'65' Comment Optional. May occur more than once. Carries unarchitected data.
See[“Comment Triplet X'65” on page 414.|

X'72' Universal Date and Time Stamp | Optional. This triplet or the Local Date and Time Stamp (X'62")

triplet may occur once. Assigns a universal date and time stamp
to the object. See [“Universal Date and Time Stamp Triplet X'72'""]

on page 423

Overlays reside in external resource libraries or in resource groups. See [“Resource
(Groups” on page 17| for details on locating resource objects within libraries and
resource groups.

Application Note: In AFP environments, the following retired triplets are used on
this structured field:

* Object Checksum (X'63’) triplet; see [“Object Checksum Triplet]
[X'63" on page 563

* Object Origin Identifier (X’64’) triplet; see

[[dentifier Triplet X'64" on page 565|

BMO Exception Condition Summary

¢ A X'08" exception condition exists when a subsequent matching End Overlay
structured field is not present in the same resource group.

¢ A X'01” exception condition exists when multiple Begin Overlay structured fields
with the same name exist within the same resource group.

Chapter 5. MO:DCA Structured Fields 139

Begin Named Page Group (BNG)

Begin Named Page Group (BNG)

The Begin Named Page Group structured field begins a page group, which is a
named, logical grouping of sequential pages. A page group may contain other
nested page groups. All pages in the page group and all other page groups that are
nested in the page group inherit the attributes that are assigned to the page group
using TLE structured fields.

BNG (X'D3A8AD') Syntax

Structured Field Introducer

SF Length (2B)

ID = X'D3ASAD'

Flags Reserved;
(1B) X'0000'

Structured Field Data

Offset

Type

Name

Range

Meaning

M/O Exc

0-7

CHAR

PGrpName

Name of the page group

M X'06'

8-n

Triplets

See ["BNG Semantics”| for
triplet applicability.

@) X'10'

BNG Semantics

PGrpName

Triplets

Is the name of the page group.

The document containing the Begin Named Page
Group structured field must also contain a
subsequent matching End Named Page Group
structured field, or a X'08” exception condition
exists.

Appear in the Begin Named Page Group structured
field as follows:

Triplet

Type

Usage

X'01'

Coded Graphic
Character Set Global
Identifier

Optional. May occur more than once. Specifies

encoding for structured field parameters defined
with a CHAR data type. See |"Coded Graphia

Character Set Global Identifier Triplet X'01" on|

page 345.|

X'02'

Fully Qualified Name

Optional. May occur once. See |”Fu11v Qualifiedl

[Name Triplet X'02" on page 348

the page group.

The Fully Qualified Name type that may appear
is X'01'—Replace First GID name. This GID
overrides the Begin Named Page Group
structured field name and is used as the name of

140 Mixed Object Document Content Architecture Reference

Begin Named Page Group (BNG)

Triplet

Type

Usage

X'02'

Fully Qualified Name

Optional. May occur once. See |”Fully Qualifiedl
[Name Triplet X'02" on page 348

The Fully Qualified Name type that may appear
is X'8D'—Begin Medium Map Reference. Specifies
the name of the medium map that is active at
the beginning of the page group.

Application Note: This triplet is typically
specified on the BNG structured fields when the
page group is to be archived with a specific
form map. It allows the page group to be
retrieved and viewed at a later time without
“playing back” the whole document. This triplet
is ignored by print servers.

X'56'

Medium Map Page
Number

Optional. May occur once. Specifies the
sequence number of the first page-group page in
the set of sequential pages controlled by the
medium map that is active at the beginning of
the page group. The first page in the set has
sequence number 1. See ["Medium Map Page]
[Number Triplet X'56" on page 403.]

Application Note: This triplet is typically
specified on the BNG structured fields when the
page group is to be archived with a specific
form map. It allows the page group to be
retrieved and viewed at a later time without
“playing back” the whole document. This triplet
is ignored by print servers.

Note that similar functionality can be achieved
by specifying the Page Position Information
(X'81") triplet on the BPG for the pages in the

page group.

X'5E'

Object Count

Optional. May occur once for each subordinate
object type counted. Specifies how many
subordinate objects of a particular type, such as
a page, are contained within the page group. See
[“Obiect Count Triplet X'5E"” on page 410.

X'65'

Comment

Optional. May occur more than once. Carries
unarchitected data. See [“Comment Triplet X'65'"

X'83'

Presentation Control

Optional. May occur once. Specifies whether the
page group is intended to be indexed. If this
triplet is not specified, the architected default is
that the page group is intended to be indexed.
This triplet is ignored for printing. See
[“Presentation Control Triplet X'83"” on page 435.|

Architecture Note: If page-group-level indexing is used for a document that
contains page groups, it is recommended that the page group
name, whether it is specified by an 8-byte token name or by a
fully qualified name, be unique with respect to other page
group names within the document.

Chapter 5. MO:DCA Structured Fields 141

Begin Named Page Group (BNG)

Application Notes:

1. The FON Begin Medium Map Reference (type X'8D') triplet and the Medium
Map Page Number (X'56') triplet may be used by viewing applications to
present the page group in stand-alone fashion as it would be presented within
the context of the complete document. These triplets are ignored by print
servers.

2. Page groups are often processed in stand-alone fashion, that is, they are
indexed, retrieved, and presented outside the context of the containing
document. While the pages in the group are independent of each other and of
any other pages in the document, their formatting on media depends on when
the last medium map was invoked and on how many pages precede the BNG
since this invocation. To make the media formatting of page groups
self-contained, a medium map should be invoked at the beginning of the page
group between the Begin Named Group (BNG) structured field and the first
Begin Page (BPG) structured field. If this is not done, the presentation system
may need to “play back” all pages between the invocation of the active
medium map and the BNG to determine media formatting such as sheet-side
and partition number for the first page in the group.

It is therefore strongly recommended that in environments where stand-alone
page group processing is required or anticipated, page groups are built with an
Invoke Medium Map (IMM) structured field specified after the BNG and before
the first BPG. IBM AFP applications that generate page groups will support a
user option that ensures that an IMM is specified after BNG and before the first
BPG, and IBM AFP archive servers will expect an IMM there and may not
present the page group correctly if none is found. However, note that this may
cause the complete document to print differently.

A newer method to specify how a page or page group should be formatted
involves use of the Page Position Information (X'81') triplet. This triplet may be
specified on a BPG and indicates the repeating group in the PGP structured
field in the active medium map that should be used to format the page.

BNG Exception Condition Summary

* A X'08 exception condition exists when a subsequent matching End Named
Page Group structured field is not present in the document.

* A X'01' exception condition exists when the same subordinate object type, such
as a page, is counted in more than one X'5E' triplet.

142 Mixed Object Document Content Architecture Reference

Begin Object Container (BOC)

Begin Object Container (BOC)

The Begin Object Container structured field begins an object container, which may
be used to envelop and carry object data. The object data may or may not be
defined by an IBM presentation architecture.

Application Note: To optimize print performance, it is strongly recommended that

the same encoding scheme be used for a resource reference
wherever in a print file that resource reference is specified. That
is, the encoding scheme used for the resource include, the
resource map, and the resource wrapper should be the same.
For TrueType/OpenType fonts, optimal performance can be
achieved by using UTF-16BE as the encoding scheme.

BOC (X'D3A892') Syntax

Structured Field Introducer

SF Length (2B)

ID = X'D3A892' Flags Reserved; Structured Field Data

(1B) X'0000"
Offset Type Name Range Meaning M/O Exc
0-7 CHAR | ObjCName Name of the object container M X'06'
8-n Triplets See [“BOC Semantics”| for M X'14'
triplet applicability.
BOC Semantics
ObjCName Is the name of the object container.
The page, overlay, or resource group containing the Begin Object
Container structured field must also contain a subsequent
matching End Object Container structured field, or a X'08’
exception condition exists.
Triplets Appear in the Begin Object Container structured field as follows:
Triplet Type Usage
X'10' Object Classification Mandatory. Must occur once. Specifies information used to
classify and identify the enveloped object data. See
|Classification Triplet X'10"” on page 363
X'0or Coded Graphic Character Set Optional. May occur more than once. Specifies encoding for

Global Identifier

structured field parameters defined with a CHAR data type. See
“Coded Graphic Character Set Global Identifier Triplet X'01" on|

page 345

Chapter 5. MO:DCA Structured Fields 143

Begin Object Container (BOC)

Triplet

Type

Usage

X'02'

Fully Qualified Name

Optional. May occur once. See [‘Fully Qualified Name Tripleq

[X'02" on page 348.|

The Fully Qualified Name type that may appear is X'01'—Replace
First GID name. This GID overrides the Begin Object Container
structured field name and is used as the identifier of the object
container. The identifier may be specified in one—and only
one—of the following formats:

If FQNFmt = X'00', the identifier is a character-encoded name.
See|“External Resource Naming Conventions” on page 90| for
a description of the naming conventions used in AFP
environments. The character-encoded name on the BOC is
optional if the container is in a print-file-level resource group
and the name is already specified on the BRS that
immediately precedes the BOC.

If the object in the container is a TrueType/OpenType font
(TTF), this version of the triplet may occur more than once,
and each instance of the triplet is used to specify the full font
name in a language used in the font naming table. The
character encoding is UTF-16BE.

If FQNFmt = X'10', the identifier is a ASN.1 OID encoded
using the definite short form. This format provides a unique
and system-independent method to identify a resource. It may
be used to identify resources that are resident in, or have been
captured by, the presentation device. Such an identifier is
referred to as an object OID.

Note that the object OID is associated with the resource
content; it does not reflect the MO:DCA wrappers used to
carry the content.

If the BOC specifies an object OID and envelopes either a
TTF/OTEF, a TrueType collection file, or a CMR, the OID may
be used to locate a printer-resident version of the object. It
also makes the object a candidate for capture by the printer. In
this case this version of the triplet may only occur once.
Architecture Note: If the BOC is used to carry a TTF/OTF or
a CMR in a print-file-level resource group, the FQON type X'01'
triplet on the mandatory BRS must specify the full font name
or the CMR name using FQNFmt = X'00'. The FON type X'01'
triplet on the BOC may then be used to specify the object OID
for the object using FQNFmt = X'10; this enables the server to
use a printer-resident version of the object and also makes the
object a candidate for capture by the printer.

144 Mixed Object Document Content Architecture Reference

Begin Object Container (BOC)

Triplet

Type

Usage

X'02'

Fully Qualified Name

Optional. May occur more than once. See [“Fully Qualified Name|
[Triplet X'02'” on page 348.[This triplet is optional on the BOC if
the container is in a print-file-level resource group and the same
triplet is already specified on the BRS that immediately precedes
the BOC.

The Fully Qualified Name type that may appear is X'41'—Color
Management Resource (CMR) Reference. This triplet may be
specified on a BOC to indicate the following:

e If the resource is a Color Conversion (CC) CMR, this triplet
specifies the name of a Link Color Conversion CMR that is to
be mapped to the CC CMR in the container.

* If the resource is a generic Halftone (HT) or Tone Transfer
Curve (TTC) CMR, this triplet specifies the name of a
device-specific CMR of the same type that is to replace the
generic CMR.

The identifier may be specified in the following format.

* If FQNFmt = X'00', the identifier is a character-encoded name.
The character string that identifies the CMR must be the CMR
name specified in the CMR. The character encoding is
UTF-16BE.

X'02'

Fully Qualified Name

Optional. May occur more than once. See [“Fully Qualified Name|
[Triplet X'02” on page 348.|This triplet is optional on the BOC if
the container is in a print-file-level resource group and the same
triplet is already specified on the BRS that immediately precedes
the BOC.

The Fully Qualified Name type that may appear is
X'6E'—Data-object Font Base Font Identifier. This triplet may be
specified on a BOC to indicate the following:

¢ If the BOC envelopes a TrueType Collection (TTC) file, the
FON type X'6E' triplet specifies a base TrueType/OpenType
font that is contained in the collection.

The identifier may be specified in the following format.

* If FQNFmt = X'00', the identifier is a character-encoded name.
The character string that identifies the font must be the full
font name specified in a name record in the mandatory
Naming Table of the font file. This parameter is specified in a
name record with Name ID 4. An example of a full font name
is Times New Roman Bold. Each instance of the FQN X'6E'
triplet with FQNFmt = X'00' is used to specify the full font
name of the base font in a language used in the font’s Naming
Table. The character encoding is UTF-16, which matches the
encoding defined by EncEnv = Microsoft (X'0003"') and EncID
= Unicode (X'0001') in the Naming Table. The byte order is big
endian.

For example, if the font Naming Table contains two name
records for the full font name (Name ID 4), one in
English—United States (LCID = X'0409") and one in
German—Standard (LCID = X'0407'), both in the encoding
defined by EncEnv = Microsoft (X'0003') and EncID = Unicode
(X'0001"), each of these names, encoded in UTF-16BE, is
carried in a FQN X'6E' triplet on the BOC.

Chapter 5. MO:DCA Structured Fields 145

Begin Object Container (BOC)

Triplet

Type

Usage

X'02'

Fully Qualified Name

Optional. May occur more than once. See [“Fully Qualified Name|
[Triplet X'02" on page 348.|This triplet is optional on the BOC if
the container is in a print-file-level resource group and the same
triplet is already specified on the BRS that immediately precedes
the BOC.

The Fully Qualified Name type that may appear is
X'7E'—Data-object Font Linked Font Identifier. This triplet may be
specified on a BOC to indicate the following;:

¢ If the BOC envelopes a TrueType/OpenType font (TTEF/OTEF)
file, the FQN type X'7E' triplet specifies a linked font for the
base font. The order in which the FQN type X'7E' triplets are
specified determines the order in which the linked fonts are
processed.

* If the BOC envelopes a TrueType Collection (TTC) file, the
FON type X'7E' triplet specifies a linked font for the base font
that is identified with the immediately preceding FQN type
X'6E' triplet. Note that if the base font is specified in multiple
languages using multiple FQN type X'6E' triplets, each
instance of the FQN type X'6E' triplet must be followed by the
sequence of FQN type X'7E' triplets that identify the linked
fonts for the base font.

The identifier may be specified in the following format.

e If FQNFmt = X'00', the identifier is a character-encoded name.
The character string that identifies the font must be the full
font name specified in a name record in the mandatory
Naming Table of the font file. This parameter is specified in a
name record with Name ID 4. An example of a full font name
is Times New Roman Bold. The character encoding is UTE-16,
which matches the encoding defined by EncEnv = Microsoft
(X'0003") and EncID = Unicode (X'0001") in the Naming Table.
The byte order is big endian.

X'57'

Object Byte Extent

Optional. May occur once. Specifies the number of bytes
contained in the object container. The byte extent is measured
starting with the first byte of the Begin Object Container (BOC)
structured field up to and including the last byte of the End
Object Container (EOC) structured field. See [“Object Byte Extent]
[Triplet X'57 on page 404.]

X'62'

Local Date and Time Stamp

Optional. This triplet or the Universal Date and Time Stamp
(X'72") triplet may occur once. Assigns a date and time stamp to
the object. See [“Local Date and Time Stamp Triplet X'62" o

|Eage 412.|

X'65'

Comment

Optional. May occur more than once. Carries unarchitected data.
See [“Comment Triplet X'65" on page 414

X'72'

Universal Date and Time Stamp

Optional. This triplet or the Local Date and Time Stamp (X'62")
triplet may occur once. Assigns a universal date and time stamp
to the object. See[“Universal Date and Time Stamp Triplet X'72"

|0n page 423J

BOC Exception Condition Summary

* A X'08" exception condition exists when a subsequent matching End Object
Container structured field is not present in the page, overlay, or resource group.

146 Mixed Object Document Content Architecture Reference

Begin Object Environment Group (BOG)

Begin Object Environment Group (BOG)

The Begin Object Environment Group structured field begins an Object
Environment Group, which establishes the environment parameters for the object.
The scope of an object environment group is its containing object.

BOG (X'D3A8C7')

Syntax

Structured Field Introducer

SF Length (2B) | ID = X'D3A8C7' Flags Reserved; Structured Field Data
(1B) X'0000'
Offset Type Name Range Meaning M/O Exc
0-7 CHAR |OEGName Name of the object O X'02'
environment group
8-n Triplets See [‘BOC Semantics” on page| @) X'10'
for triplet applicability.
BOG Semantics
OEGName Is the name of the object environment group.
The object containing the Begin Object Environment Group
structured field must also contain a subsequent matching End
Object Environment Group structured field, or a X’08" exception
condition exists.
Triplets Appear as follows:
Triplet Type Usage
X'01' Coded Graphic Character Set Optional. May occur more than once. Specifies encoding for
Global Identifier structured field parameters defined with a CHAR data type. See
“Coded Graphic Character Set Global Identifier Triplet X'01"” on|
[page 345.|
X'65' Comment Optional. May occur more than once. Carries unarchitected data.

See [“Comment Triplet X'65" on page 414

Note: If a triplet is included on this structured field, the optional positional
parameter becomes mandatory.

BOG Exception Condition Summary

* A X'08" exception condition exists when a subsequent matching End Object
Environment Group structured field is not present in the object.

Chapter 5. MO:DCA Structured Fields

147

Begin Page (BPG)

Begin Page (BPG)

The Begin Page structured field begins a presentation page. A presentation page
contains an active environment group to establish parameters such as the size of
the page’s presentation space and the fonts to be used by the data objects. It may
also contain any mixture of:

* Bar code objects

* Graphics objects

* Image objects

* Object containers

* Presentation text objects

BPG (X'D3A8AF'") Syntax

Structured Field Introducer

SF Length (2B) | ID = X'D3A8AF' Flags Reserved; Structured Field Data

(1B) X'0000'
Offset Type Name Range Meaning M/O Exc
0-7 CHAR PageName Name of the page @] X'02'
8-n Triplets See ["BPG Semantics”|for triplet @) X'10'
applicability.

BPG Semantics

PageName Is the name of the page.

The document containing the Begin Page structured field must also
contain a subsequent matching End Page structured field, or a
X’08” exception condition exists.

Triplets Appear as follows:
Triplet Type Usage
X'01' Coded Graphic Character Set Optional. May occur more than once. Specifies encoding for
Global Identifier structured field parameters defined with a CHAR data type. See

“Coded Graphic Character Set Global Identifier Triplet X'01" on|

[page 345.|

X'02' Fully Qualified Name Optional. May occur once. See [“Fully Qualified Name Triplef]
[X'02" on page 348.]

The Fully Qualified Name type that may appear is X'01'—Replace
First GID Name. This GID overrides the Begin Page structured
field name and is used as the name of the page.

148 Mixed Object Document Content Architecture Reference

Begin Page (BPG)

Triplet

Type

Usage

X'02'

Fully Qualified Name

Optional. May occur once. See [‘Fully Qualified Name Triple
[X'02" on page 348.|

The Fully Qualified Name type that may appear is X'8D'—Begin
Medium Map Reference. Specifies the name of the medium map
object that is active for presenting the page on a physical
medium.

Application Note: This triplet is typically specified on the BPG
structured fields when the page or page group is to be archived
with a specific form map. It allows the page or page group to be
retrieved and viewed at a later time without “playing back” the
whole document. This triplet is ignored by print servers.

X'56'

Medium Map Page Number

Optional. May occur once. Specifies the sequence number of the
page in the set of sequential pages controlled by the active
medium map. The first page in the set has sequence number 1.
See [“Medium Map Page Number Triplet X'56'" on page 403/
Application Note: This triplet is typically specified on the BPG
structured fields when the page is to be archived with a specific
form map. It allows the page to be retrieved and viewed at a
later time without “playing back” the whole document. This
triplet is ignored by print servers. Note that the Medium Map
Page Number (X'56") triplet is not needed if a Page Position
Information (X'81') triplet is specified, and is overridden by the
latter.

X'65'

Comment

Optional. May occur more than once. Carries unarchitected data.
See [“Comment Triplet X'65” on page 414

X'81'

Page Position Information

Optional. May occur once. Specifies the PGP repeating group
that is used to view the page and its PMC overlay data. The
PGP is specified in the medium map referenced by a FQN type
X'8D'—Begin Medium Map Reference triplet. If the X'81" triplet
is specified, it overrides a Medium Map Page Number (X'56')
triplet. This triplet is not used for printing and is ignored by
print servers. See [“Page Position Information Triplet X'81"” on|

[page 433]

X'83'

Presentation Control

Optional. May occur once. Specified on a BPG to indicate
whether the page is intended to be viewed. If this triplet is not
specified, the architected default is that the page is intended to
be viewed. If this triplet is also specified on an Index Element
(IEL) that indexes the page, the IEL triplet overrides if there is a
conflict. This triplet is ignored for printing. See
[Control Triplet X'83" on page 435.|

Note: If a triplet is included on this structured field, the optional positional
parameter becomes mandatory.

Architecture Notes:

1. If a page is to be indexed or if it is to be included in a resource document, a
page name is required so that the page can be identified and referenced. It is
therefore highly recommended that the BPG structured field always specify a

page name.

2. If page-level indexing is used for the document that contains this page, or if
this page is part of a resource document, it is recommended that the page
name, whether it is specified by an 8-byte token name or by a fully qualified
name, be unique with respect to other page names within the document.

Chapter 5. MO:DCA Structured Fields 149

Begin Page (BPG)

Application Note: The FQN Begin Medium Map Reference (type X'8D') triplet, the
Medium Map Page Number (X'56") triplet, the Page Position
Information (X'81") triplet, and the Presentation Control (X'83')
triplet may be used by viewing applications to present the page
in stand-alone fashion as it would be presented within the
context of the complete document. These triplets are ignored by
print servers.

BPG Exception Condition Summary

* A X'08" exception condition exists when a subsequent matching End Page
structured field is not present in the document.

150 Mixed Object Document Content Architecture Reference

Begin Page Segment (BPS)

Begin Page Segment (BPS)

The Begin Page Segment structured field begins a page segment. A page segment
is a resource object that can be referenced from a page or overlay and that contains
any mixture of:

* Bar code objects (BCOCA)

* Graphics objects (GOCA)

* Image objects IOCA)

Objects in a page segment must specify an object area offset of zero so that they
are positioned either at the origin of the including page or overlay coordinate
system or at a reference point that is defined on the including page or overlay
coordinate system by the Include Page Segment (IPS) structured field.

A page segment does not contain an active environment group. The environment

for a page segment is defined by the active environment group of the including
page or overlay.

Architecture Note: A migration form of the page segment resource object is
supported in AFP environments and is defined in|“AFP Page

[Segment” on page 572

BPS (X'D3A85F') Syntax

Structured Field Introducer

SF Length (2B) | ID = X'D3AS85F' Flags Reserved; Structured Field Data

(1B) X'0000'
Offset Type Name Range Meaning M/O Exc
0-7 CHAR PsegName Name of the page segment M X'06'
8-n Triplets See |"BPS Semantics”|for triplet O X'10'
applicability.

BPS Semantics

PsegName Is the name of the page segment. This name may not appear on
more than one Begin Page Segment within the same resource
group or a X'01” exception condition exists.

A page segment resource definition must contain a subsequent
matching End Page Segment structured field, or a X’08" exception
condition exists.

Triplets Appear as follows:

Triplet Type Usage

X'01' Coded Graphic Character Set Optional. May occur more than once. Specifies encoding for
Global Identifier structured field parameters defined with a CHAR data type. See
“Coded Graphic Character Set Global Identifier Triplet X'01'"” on|

page 345

Chapter 5. MO:DCA Structured Fields 151

Begin Page Segment (BPS)

Triplet Type Usage

X'62' Local Date and Time Stamp Optional. This triplet or the Universal Date and Time Stamp
(X'72’) triplet may occur once. Assigns a date and time stamp to
the object. See [“Local Date and Time Stamp Triplet X'62" on|

|}2age 412.|

X'65' Comment Optional. May occur more than once. Carries unarchitected data.
See [“Comment Triplet X'65" on page 414

X'72' Universal Date and Time Stamp |Optional. This triplet or the Local Date and Time Stamp (X'62)
triplet may occur once. Assigns a universal date and time stamp
to the object. See|“Universal Date and Time Stamp Triplet X'72"”

|0n page 423J

Page segments reside in external resource libraries or in resource groups. See
[“Resource Groups” on page 17|for details on locating resource objects within
libraries or resource groups.

Application Notes:

1. For purposes of PSF resource management, the OEGs for all objects in a page
segment must not contain MCF or MDR structured fields when the page
segment is referenced with an IOB or IPS structured field.

2. In AFP environments, the following retired triplets are used on this structured
field:

* Object Checksum (X'63’) triplet; see [“Object Checksum Triplet X'63"” on page|
* Object Origin Identifier (X'64’) triplet; see [‘Object Origin Identifier Triplet|
[X'64"” on page 565

BPS Exception Condition Summary

* A X'08" exception condition exists when the page segment resource definition is
not terminated by a subsequent matching End Page Segment structured field.

* A X'01” exception condition exists when multiple Begin Page Segment structured
fields with the same name exist within the same resource group.

152 Mixed Object Document Content Architecture Reference

Begin Presentation Text Object (BPT)

Begin

Presentation Text Object (BPT)

The Begin Presentation Text Object structured field begins a presentation text object
which becomes the current data object.

BPT (X'D3A89B') Syntax

Structured Field Introducer

SF Length (2B) | ID = X'D3A89B' Flags Reserved; Structured Field Data

(1B) X'0000'
Offset Type Name Range Meaning M/O Exc
0-7 CHAR |PTdoName Name of the presentation text O X'02'
data object
8-n Triplets See ['BPT Semantics”] for triplet @) X'10'
applicability.
BPT Semantics
PTdoName Is the name of the presentation text data object.
The page, or overlay containing a Begin Presentation Text Object
structured field must also contain a subsequent matching End
Presentation Text Object structured field, or a X'08” exception
condition exists.
Triplets Appear as follows:
Triplet Type Usage
X'01' Coded Graphic Character Set Optional. May occur more than once. Specifies encoding for
Global Identifier structured field parameters defined with a CHAR data type. See
“Coded Graphic Character Set Global Identifier Triplet X'01" onl
page 345]
X'02' Fully Qualified Name Optional. May occur once. See [‘Fully Qualified Name Triple
[X'02" on page 348.|
The Fully Qualified Name type that may appear is X'01'—Replace
First GID Name. This GID overrides the Begin Presentation Text
Object structured field name and is used as the name of the
presentation text data object.
X'62' Local Date and Time Stamp Optional. This triplet or the Universal Date and Time Stamp
(X'72") triplet may occur once. Assigns a date and time stamp to
the object. See [‘Local Date and Time Stamp Triplet X'62"” o
[page 412]
X'65' Comment Optional. May occur more than once. Carries unarchitected data.
See [“Comment Triplet X'65" on page 414
X'72' Universal Date and Time Stamp |Optional. This triplet or the Local Date and Time Stamp (X'62)

triplet may occur once. Assigns a universal date and time stamp
to the object. See|“Universal Date and Time Stamp Triplet X'72"

|on page 423;|

Chapter 5. MO:DCA Structured Fields 153

Begin Presentation Text Object (BPT)

Note: If a triplet is included on this structured field, the optional positional
parameter becomes mandatory.

When the BPT structured field is processed, all initial text conditions specified in
the Presentation Text Descriptor (PTD) structured field are set prior to processing
the text object.

Application Note: Whenever a BPT is encountered, AFP presentation servers set
the following default page-level initial text conditions before the
PTD initial conditions are set:

Table 17. Default BPT Page-Level Initial Text Conditions

Parameter Value

Initial (I,B) Presentation Position (0,0)

Text Orientation 0°,90°

Font Local ID X'FF' (default font)
Baseline Increment 6 Ipi

Inline Margin 0

Intercharacter Adjustment 0

Text Color X'FFFF' (default color)

BPT Exception Condition Summary

* A X'08" exception condition exists when a subsequent matching End Presentation
Text Object structured field is not present in the page, or overlay.

154 Mixed Object Document Content Architecture Reference

Begin Resource Group (BRG)

Begin Resource Group (BRG)

The Begin Resource Group structured field begins a resource group, which
becomes the current resource group at the same level in the document hierarchy.

BRG (X'D3A8C6') Syntax

Structured Field Introducer

SF Length (2B)

ID = X'D3A8Ce6' Flags Reserved; Structured Field Data

(1B) X'0000'
Offset Type Name Range Meaning M/O Exc
0-7 CHAR |RGrpName Name of the resource group O X'02'
8-n Triplets See|"BRG Semantics”| for triplet (@) X'10'
applicability.
BRG Semantics
RGrpName Is the name of the resource group.
The print file, document, page, or data object containing the Begin
Resource Group structured field must also contain a subsequent
matching End Resource Group structured field, or a X’08’
exception condition exists.
Triplets Appear as follows:
Triplet Type Usage
X'01' Coded Graphic Character Set Optional. May occur more than once. Specifies encoding for
Global Identifier structured field parameters defined with a CHAR data type. See
“Coded Graphic Character Set Global Identifier Triplet X'01'” on|
page 345/
X'02' Fully Qualified Name Optional. May occur once. See |[“Fully Qualified Name Triplef]
[X'02" on page 348
The Fully Qualified Name type that may appear is X'01'—Replace
First GID Name. This GID overrides the Begin Resource Group
structured field name and is used as the name of the resource
group.
X'02' Fully Qualified Name Optional. May occur more than once.
The Fully Qualified Name type that may appear is X'83'—Begin
Document Name. Specifies the name of a document that
references resources contained in this resource group. See
|Qualified Name Triplet X'02"” on page 348
X'62' Local Date and Time Stamp Optional. This triplet or the Universal Date and Time Stamp
(X'72") triplet may occur once. Assigns a date and time stamp to
the object. See|“Local Date and Time Stamp Triplet X'62" on
[page 412
X'65' Comment Optional. May occur more than once. Carries unarchitected data.

See|“Comment Triplet X'65" on page 414.|

Chapter 5. MO:DCA Structured Fields 155

Begin Resource Group (BRG)

Triplet

Type

Usage

X'72'

Universal Date and Time Stamp

Optional. This triplet or the Local Date and Time Stamp (X’'62")
triplet may occur once. Assigns a universal date and time stamp
to the object. See [“Universal Date and Time Stamp Triplet X'72""

|on page 423.|

Note: If a triplet is included on this structured field, the optional positional
parameter becomes mandatory.

BRG Exception Condition Summary

* A X'08" exception condition exists when a subsequent matching End Resource
Group structured field is not present in the print file, document, page, or data

object.

156 Mixed Object Document Content Architecture Reference

Begin Resource (BRS)

Begin Resource (BRS)

The Begin Resource structured field begins an envelope that is used to carry

resource objects
the data stream

in print-file-level (external) resource groups. Resource references in
are matched against the resource identifier specified by the Begin

Resource structured field.

Application Note: To optimize print performance, it is strongly recommended that

the same encoding scheme be used for a resource reference
wherever in a print file that resource reference is specified. That
is, the encoding scheme used for the resource include, the
resource map, and the resource wrapper should be the same.
For TrueType/OpenType fonts, optimal performance can be
achieved by using UTF-16BE as the encoding scheme.

BRS (X'D3A8CE') Syntax

Structured Field Introducer

SF Length (2B)

ID = X'D3AS8CE' Flags Reserved; Structured Field Data

(1B) X'0000'
Offset Type Name Range Meaning M/O Exc
0-7 CHAR RSName Identifier of the resource M X'02'
8-9 Reserved; must be zero M X'06'
10-n Triplets See for triplet M X'14'
applicability.

BRS Semantics

RSName

Triplets

Is the identifier used to select the resource. This identifier is
matched against the resource reference in the data stream.

The resource group containing the Begin Resource structured field
must also contain a subsequent matching End Resource structured
tield, or a X’08” exception condition exists.

Appear in the Begin Resource structured field as follows:

Chapter 5. MO:DCA Structured Fields 157

Begin Resource (BRS)

Triplet

Type

Usage

X'02'

Fully Qualified Name

At least one occurrence of this triplet is mandatory if the BRS
envelopes a TrueType Collection (TTC) file; may occur more than
once. See|“Fully Qualified Name Triplet X'02'"” on page 348

The Fully Qualified Name type that may appear is
X'6E'—Data-object Font Base Font Identifier. This triplet may be
specified on a BRS to indicate the following:

* If the BRS envelopes a TrueType Collection (TTC) file, the
FON type X'6E' triplet specifies a base TrueType/OpenType
font that is contained in the collection.

The identifier may be specified in the following format.

e If FQNFmt = X'00', the identifier is a character-encoded name.
The character string that identifies the font must be the full
font name specified in a name record in the mandatory
Naming Table of the font file. This parameter is specified in a
name record with Name ID 4. An example of a full font name
is Times New Roman Bold. Each instance of the FQN X'6E'
triplet with FQNFmt = X'00' is used to specify the full font
name of the base font in a language used in the font’s Naming
Table. The character encoding is UTF-16, which matches the
encoding defined by EncEnv = Microsoft (X'0003') and EncID
= Unicode (X'0001') in the Naming Table. The byte order is big
endian.

For example, if the font Naming Table contains two name
records for the full font name (Name ID 4), one in
English—United States (LCID = X'0409") and one in
German—Standard (LCID = X'0407'), both in the encoding
defined by EncEnv = Microsoft (X'0003') and EncID = Unicode
(X'0001"), each of these names, encoded in UTF-16BE, is
carried in a FQN X'6E' triplet on the BRS.

X'10'

Object Classification

Mandatory if the Resource Object Type triplet specifies ObjType
= X'92', Object Container, in which case it must occur once.
Characterizes and identifies the object data carried in the object
container. See|“Obiject Classification Triplet X'10'” on page 363.|

X271

Resource Object Type (X'21")
triplet; retired triplet, see

“Resource Object Type Triplet|

X'21" on page 558)

In AFP environments, one occurrence of this retired triplet is
mandatory to identify the type of resource object delimited by
the BRS.

X'01'

Coded Graphic Character Set
Global Identifier

Optional. May occur more than once. Specifies encoding for
structured field parameters defined with a CHAR data type. See

“Coded Graphic Character Set Global Identifier Triplet X'01" on|

[page 345.|

158 Mixed Object Document Content Architecture Reference

Begin Resource (BRS)

Triplet

Type

Usage

X'02'

Fully Qualified Name

Optional. May occur once. See [‘Fully Qualified Name Triple
[X'02" on page 348.|

The Fully Qualified Name type that may appear is X'01'—Replace
First GID name. This identifier overrides the Begin Resource
structured field name and is used as the identifier of the
resource. The identifier may be specified in one—and only
one—of the following formats:

o If FQNFmt = X'00', the identifier is a character-encoded name.
See|“External Re