
General Information Manual

FORTRAN

General Information Manual

FORTRAN

@ 1961 by International Business Machines Corporation

Minor Revision
(December 1961)

This edition, F28-8074-1, supersedes but does not obsolete the previous
edition, F28-8074. Changes have been made only to correct errors in the
previous edition. Paragraphs that have been changed are indicated by the
symbol • in the margin.

PREFACE

Most electronic computers are designed to respond to special command
codes called "machine languages. " These machine languages vary among
computers; they are often difficult to work with and hard to learn. The
IBM FORmula TRAN slating system, FORTRAN, eliminates most of the
difficulties associated with machine languages for problems which are
primarily mathematical. FORTRAN is available for the IBM 650, 1620,
705, 7070, 704, 709, and 7090.

This manual will discuss FOR TRAN and will prepare the reader to use the
facilities which it provides. Parts I, II, and V are intended for all who
will use FORTRAN. Part III is of limited value to 650 FORTRAN users,
and is designed primarily for other users. Part IV is an analysis of
individual FOR TRAN processor requirements.

It is anticipated that the reader will be able to write some programs after
reading this manual; there will, however, be many additional aspects which
he will want to learn. For example, some FORTRAN processors are used
within an operating system; such usage usually requires that the programmer
be familiar with that operating system. Detailed instructions for the use of
FOR TRAN are given in reference manuals which are specifically oriented
to each class of IBM computers for which FORTRAN is available. These
publications are listed in Appendix A.

The use of this manual presupposes little familiarity with machine con
figurations, input/output devices, and the stored program concept. However,
the reader who is completely unfamiliar with these terms may be interested
in reading the Introduction to IBM Data Processing Systems, form F22-6517.

TABLE OF CONTENTS

Part I: General Concepts • • • • •
Chapter 1: Introduction • • • • •

Organization of Digital Computers
The Stored Program
The FOR TRAN System • • • •

The Source Program • • • • • • •
The Object Program • • • • • • •
Source and Object Machine • •
Statements . • • • • • •

Examples of FORTRAN Statements . • • • •
Writing FOR TRAN Programs
The FOR TRAN Coding Form •
The FOR TRAN Card • • •
Elements of the Language • • • • • • • •

Problems • • . • • • • • • • • • • • • • •
Chapter 2: Constants. Variables, and Subscripts

Integer and Floating Point Calculations •
Constants • • • • • • • . • • •

Integer Constants
Floating Point Constants • • • • • • • •

Variables • • • • • . •
Integer Variables
Floating Point Variables • • • •
Considerations in Naming Variables •

Subscripts • • • • • • • • • • • • • • • • • •
Form of Subscripts
Subscripted Variables

Problems • • • • • • •
Part II: The Basic FORTRAN Language • •

Chapter 3: Arithmetic Statements and Expressions
Arithmetic Statements • • • • • • • •
Expressions • • . • • • • • • •

Operation Symbols • • • • • •
Rules for Constructing Expressions • • • •

Mode of an Arithmetic Statement • • • •
Problems • • • • • • • • • • • • • • • • • •

Chapter 4: Control Statements and the Specification Statement
Unconditional GO TO • • • • •
Computed GO TO • • • •
IF

Looping • • • •
DO • • • •
CONTINUE
PAUSE ••
STOP

The Specification Statement
DIMENSION

Problems

Page

1
1
1
2
4
4
4
4
5
5
6
6
7
8
8

10
10
11
11
12
12
13
14
15
15
17
18
18
19
19
19
19
20
20
22
22
24
24
24
26
27
28
31
32
32
32
33
33

Chapter 5: Basic Input/Output Statements •

READ • • · · • • · . · • • •
Lists for Transmission of Data • • •

Indexing in Input/Output Lists
DO-Type Notation in Input/Output Lists • •

Additional Details of Input/Output Lists
PUNCH • • • • • • • •

Problems
Part III: Additional Language Facilities

Chapter 6: Input/Output •
PRINT • • • • . • • •

Specifying Format • • •
FORMAT

Conversion of Numeric Data •
I-Conversion • •
F-Conversion
E-Conversion • • • • • • • • •

Additional Rules for Specifying Format •
Multi-Record Format • •
Unit Record • • • •
Blank Fields • •
Alphameric Fields •

H-Conversion
A-Conversion

Data Input to the Object Program
Additional Input/Output Statements

WRITE OUTPUT TAPE
READ INPUT TAPE •
END FILE ••
REWIND •••
BACKSPACE •

Problems
Chapter 7: Subroutines

Functions . • • • •
Defining Functions • • • • •
Calling Functions

Arithmetic Statement Functions •
Defining Arithmetic Statement Functions
Using Arithmetic Statement Functions

SUBROUTINE Subprograms. • • • • • • • •
Machine-Language Subroutines • • • • • •

Part IV: Analysis of Individual FORTRAN Systems • • •
Chapter 8: System Specifications • • • •

Section 1 - 650 FOR TRAN • • • • • • •
Section 2 - 650 FOR TRANSIT • • • •
Section 3 - 1620 FORTRAN • • • • • •
Section 4 - Basic 7070/7074 FORTRAN • • • • • • • • •
Section 5 - 7070/7074 FORTRAN • • • • •
Section 6 - 705 FORTRAN • • • • • • •
Section 7 - 7 04 FOR TRAN • • • • • •
Section 8 - 709/7090 FORTRAN • • • • • • •

Chapter 9: The FOR TRAN Statements • • • •

35
36
36
37
37
38
39
39
41
41
41
41
41
42
43
43
44
45
46
46
47
47
47
48
49
50
50
50
51
51
51
52
53
53
54
55
55
57
58
58
58
59
59
59
60
61
61
62
63
63
64
65

Part V: Sample Problems
Problem 1 •
Problem 2 •
Problem 3 •
Problem 4 •

75
77
79
82
86

Appendix A: List of FORTRAN Publications • • • • 90
Appendix B: Admissible Characters in a FORTRAN Source Program 91

FORTRAN Special Characters. 91
Appendix C: Answers to Problems • 93

Chapter 2 • • • • • • • • • • 93
Chapter 3 • • • • • • • • • • • • • 93
Chapter 4 • • • • 9 3
Chapter 5 • • • • 94
Chapter 6 • • • • • • • • 94

Glossary • • • • • • • • • • • • 95
Index • • • • • • 102

PART I: GENERAL CONCEPTS

CHAPTER 1: INTRODUCTION

Most IBM computers are digital computers; that is, they count. This
counting function, however, has greatly evolved since the invention of the
abacus, the adding machine, and the desk calculator. Today's high-speed,
electronic digital computers can handle alphabetic data as well as numerica!
data, and instead of being restricted to simple mathematical operations,
can perform complicated calculations, manipulate information, and make
logical decisions, all at tremendous speed.

ORGANIZATION OF DIGITAL COMPUTERS

A digital computer has the following elements in one computing system:

1. Input. Digital computers accept numbers, letters, and symbols.
Information is usually fed into the system from punched cards,
punched paper tape, or magnetic tape, or inserted manually from a
keyboard or switches.

2. Control. The computer must operate under the direction of a control
unit. The sequence of steps to be performed must be translated into
detailed instructions which the computer can understand. A series of
instructions is called a program. When it is retained in a storage
device, it is called a stored program. These coded instructions in
storage are available to the control unit as needed to direct and
complete an entire sequence of operations. Special instructions may
enable the logical-arithmetic unit to make decisions based on inter
mediate results; these decisions allow the computer to select the
proper course among several alternatives for solving a problem.

3. Storage. Data can be internally stored by electro-mechanical, magnetic,
or electronic devices, until needed. This information is stored in a
manner quite similar to the way music or speech is stored on a tape for
playback on a tape recorder, although the notation used is quite
different. Stored information is accessible, can be referred to once
or many times, and can be replaced whenever desired. The information
stored by the computer can be original data, intermediate results,
reference tables, or instructions. Each storage location is identified
by an individual location number which is called an address. By means
of these numerical addresses, a computer can locate data and instructions
as needed during the course of a problem.

The speed of computer operation is largely dependent on the access
time - the length of time required to obtain a number from storage
and make it available to other units of the computer system.

4. Logical-Arithmetic. The logical-arithmetic unit can add, subtract,
multiply, divide, and compare numbers in a manner similar to a desk
calculator, but at lightning speed. Complex calculations are usually

1

combinations of these basic operations. The logical-arithmetic unit
can make logical decisions. It can distinguish positive, negative, and
zero values and transfer this information to other units of the computer.

5. Output. After doing its work, the computer can produce answers in
several forms. Results may be punched into cards, recorded on
magnetic tape, or printed in report form. Printers provide high
speed ·computer output by printing an entire line of information at
one time.

The organization of these components to form a computer may be illustrated
as follows:

STORAGE

&.___c_o_N_TR_o_L _ __,

LOGICAL
ARITHMETIC

8
The functioning of the elements of a computer may be compared to the steps
required for solving a problem by paper and pencil methods. The input
would correspond to the information given in the problem. A knowledge
of arithmetic controls the handling of the problem. The logical-arithmetic
unit performs the same function as manual calculations. Storage may be
compared to the work papers on which intermediate answers are noted.
The answers are the output.

THE STORED PROGRAM

"Program" is just another way of saying "series of instructions and fixed
data. " A program must define in complete detail just what a computer is
to do, under every conceivable combination of circumstances, with data
which is subsequently fed into it.

One such instruction may tell what operation to perform and where to locate
the number on which to perform it; another will tell what to do with the
result. Stored in the computer's control unit, in the proper sequence
necessary to accomplish a given task, these instructions form the stored
program.

The various operations covered in these instructions are usually stated
in a numerical or alphabetic code. Thus, the operations .in a simple
problem might be designated as follows:

2

Operation Code

10
11
21

Operation

Add
Subtract
Store the result

These operation codes might be used in a stored program in the following
manner:

Operation Storage
Code Location

Instruction #36 10 0679
Instruction #3 7 10 0680
Instruction #3 8 11 0681
Instruction #39 21 1027

Instruction #36 tells the computer to add the number stored at location
0679.

Instruction #37 - to add the number stored at location 0680.

Instruction #38 - to subtract the number stored at location 0681.

Instruction #39 - to store the result of the two additions and the one
subtraction at location 1027.

The same program, coded in FORTRAN, might be:

D = A+X-Y

The number of instructions required for the complete solution of a problem
may be a few hundred or many thousands, depending upon the problem.
The computer refers to them one after another, or it can be instructed to
repeat, modify or skip over certain instructions, depending on intermediate
results or circumstances. However, such circumstances must be
anticipated, and appropriate instructions included in the program.

The ability to repeat operations, usually called looping, combined with the
other facilities of modifying and skipping over instructions, permits a
significant reduction in the number of instructions required to perform
any given job. For example, suppose two sets of numbers exist and it
is desired to add the corresponding numbers of each set together.
Instructions may be written to add the first number of the first set to the
first number of the second set, and then to repeat this operation with the
second, third, fourth, etc., numbers of each set; a few instructions may
cause thousands of additions.

The decision-making ability enables computers to handle exceptions to
standard procedures. Since a system will "remember" instructions for
dealing with the exceptions, it can be made to handle automatically any
situation that develops.

3

Up to this point, the computer has been thought of as a separate piece of
equipment that is used by itself. However, in actual practice, the
computer is used in conjunction with other equipment and with programming
systems that are designed to aid the programmer in the preparation and
operation of his programs. These total facilities for receiving information
and producing desired results are called a data processing system. One
part of such a system may be FORTRAN, which is a programming system
that enables a programmer to write a program with less effort than would
otherwise be required. The FORTRAN program is written in a relatively
simple language - one which closely resembles the ordinary language of
mathematics.

THE FORTRAN SYSTEM

FORTRAN has two parts: the language and the processor. The language
is composed of the individual commands or statements of a program,
operators (such as + or -), and expressions (such as A+B-C). The
processor is a program for the computer which tells it how to translate
the program written in the FORTRAN language into a program written
in machine language.

The Source Program

The program which defines the operations which the computer is to do, and
which is written by the programmer in the FOR TRAN language, is called
the source program.

~he Object Program

The source program is then input to the computer along with the FOR TRAN
processor. The computer, following instructions from the processor,
converts the source program into a program in machine language, ready
to be run on the computer. This machine language program is called
the object program. When the object program is run on the computer to
cause the desired computations, it is said to be executed. That is,
execution is the actual operation of the computer while the control unit is
under the direction of the object program.

Source· and Object Machine

Although the FOR TRAN language is largely independent of the computer
on which the object program is to be executed (the object machine), the
FORTRAN processor is dependent on the object machine because it must
produce an object program in that machine's language. For this reason,
each object machine must have its own processor. (In this manual,
reference to a single object machine, a single data processing system, etc. ,
refers to all items in that category; thus, a single object machine might
be all IBM 704 computers.)

Since each object machine has its own processor, and each processor is
dependent upon that object machine, there is some variation in the FORTRAN
language statements which may be input to that processor. The variations
in source programs that are required by the variations in the processors

4

Statements

programs may be prepared which are suitable for input to several
processors; however, a separate object program must be produced for each
object machine (i.e., the source program must be input to each applicable
processor) on which the object program is to be executed.

Each FORTRAN source program is composed of a number of statements.
Each statement deals with one aspect of the problem; it may cause data
to be fed into the computer, calculations to be performed, decisions to
be made, results to be printed, etc.

Some statements written by the programmer do not cause specific computer
action, but rather provide information to the processor.

EXAMPLES OF FORTRAN STATEMENTS

Some examples of FOR TRAN statements and their effects are:

READ 1,A

C = 3. *A

This causes the computer to read an IBM card and
handle the data on it in such a way that if the card
read has the number 97. 0 on it, then A will have
the value 97. O.

The asterisk (*) indicates multiplication. Thus,
this statement means multiply A by 3. 0 and set C
equal to the result. Using the data of the previous
example, C would be given the value 291. 0 (3. 0 x
97. 0).

Notice that the computer is not instructed merely to find the value of C.
It is given the data (in this case 97. 0), instructed how to make the
computation, and told what to do with the result. Similarly, to find the
roots of a quadratic equation, the computer must be told how to find the
roots. Since there are two roots for each quadratic equation, the
computer must be instructed how to find each root separately. Thus,
using the formula:

ROOT= -B±./B2-4AC
2A

The computer may be instructed as follows:

ROOT!= (-B+SQRTF (B**2-4. *A*C))/(2. *A)

ROOT2 = (-B-SQRTF (B**2-4. *A*C))/(2. *A)

The rules for formulating these statements will be discussed later in this
manual.

5

Writing FORTRAN Programs

FORTRAN cannot distinguish between "UPPER CASE" and "lower case"
letters. Thus, UPPER CASE letters will be used in this manual to indicate
actual coding; lower case letters will be used for symbolic representation
o~. .

The FORTRAN Coding Form

The standard FORTRAN coding sheet is shown below.

IBJ.1
FORTRAN CODING FORM

fonn X28 • 7327 • 3
Printed in U. $.A.

Program ---------
Coded By ---------
Checked By --------- Identification

Date ____ _
Page __ of __ _

C POI COMMENT

~TEMENT i
NUMIH ~

I 5 6 7 10

I I I I I I I I I

73 80

FORTRAN STATEMENT
15 20 25 30 35 55 60 65 70 72

FORTRAN statements are written one to a line in columns 7-72. If a
statement is too long for one line, some processors permit it to be continued
on one or more successive lines by placing a character other than zero in
column 6. (If desired, the characters in column 6 may be used to indicate
the order of continuation lines.) Otherwise, column 6 - for initial lines of
a statement - must be blank or zero.

Except in column 6 and in alphameric fields of FORMAT statements (see
page 47), blanks are ignored by FORTRAN and may be used to improve
the readability of a FORTRAN program.

6

• Thus
A=B(I, J)-D-(C/E)-F**K

and
A = B(I, J) - D - (C/E) - F**K

are equivalent.

Columns 1-5 may be used to write numbers by which the statement may
subsequently be referenced. The magnitude of these numbers is determined
by the FORTRAN processor being used. These statement numbers may be
assigned in any order; the sequence of operations is dependent only on
the order of the statements, not on their statement numbers.

Columns 73-80 may be used for any desired identifying information.

Comments to explain the program may be written in columns 2-72 of a line
with a C in column 1. These comments are not processed by FORTRAN
but are printed on the program listings produced when the source program
is translated into the object program.

The FORTRAN Card

Each line of the coding sheet is then used to prepare a punched card. A
standard FORTRAN card is shown below.

/·

;',c-~~1~1--~~~~~~~~~~~~~~~~~~~~~~~~~~----1
STATEMENT ~ FORTRAN STATEMENT IDENTIFICATION

NUMBER !
oqoooooooo~ooo
1l2a4s1111rottnnu"nnnwm~nnN~an~~»~~~M••~•••~~~~··~••~~maM9S~sgoo~uaMu•gauronnnu~nnnn•

111 11 t 11 t 11111 111111111 1 11111 111111111 1111 1 1 1 11 11111 1 11111111111111 11111111111111
I
2122222~222

3l3

4i444

515 !j 5 s 5 5 5 5 5 5 5 5

Jsssss&&
I

717 7 77 7 7 7 7 7 77 7 7 77 7 77 1 7 7 77 7 77 77 7 7 7 77 77 7 77 7 7 7 77 7 77 77 7 77 77 7 77 77 7 7 7 7 7 77 7 77 7 77 77 7 7 7 77 7

a:a
91999
1l214s,111rottnnu"nnanm~nnN~anan»~~~~-•~•••~ua~••~•••~UaM9SMMM•~uaMu•mauronn~unnnnn•

... 888157

The information in column 1 of a line on the coding sheet is punched into
card column 1, column 2 into card column 2, and so forth. After the cards
are punched, they should be verified to prevent clerical errors from
causing source and object program errors.

An example of a partial FORTRAN program is shown below as it would
appear on a FOR TRAN coding sheet:

7

.r= C FOR C~MMENT

~ S~~TEMENT 'C
NUMIER 0::

5 6 7 10

FORTRAN STATEMENT
20 25 30 35 45 50 55 60 65 70 72

As a result of this sequence, ANS would be assigned the value 27. O.

Elements of the Language

PROBLEMS

In order to write FOR TRAN programs, it will be necessary to learn the
rules for writing the following:

1. Constants, such as 27 or 3. 14159.

2. Variables, such as X or Y.

3. Subscripted variables, such as Xi or Yi• which are written in FORTRAN
as X(I) or Y(I).

4. Arithmetic statements, which cause mathematical computations, such
as a=~ , which is written in FORTRAN as A=B/C.

5. Mathematical expressions, which are meaningful to FORTRAN, such
as X+Y or 3*J.

6. Control statements which tell the computer what it is to do.

7. Instructions to the FOR TRAN processor to assist it in producing the
object program.

8. Input/output statements which are used for getting data into the
computer and producing results.

9. Subroutine statements, which permit programs to be incorporated within
larger programs, allowing the programmer to cause a computation
without specifying each instruction every time the computation is to occur.

Each of these topics will be dealt with subsequently in this manual.

At various places throughout this manual, problems will be given. These
problems may be used by the reader to review what has been discussed.

Answers to problems are given in Appendix C.

8

No specific problems will be stated at this point; however, the reader should
thoroughly understand the following terms:

1. Source program

2. Object program

3. Source machine

4. Object machine

5. Execution of object program

6. Processor

9

CHAPTER 2: CONSTANTS, VARIABLES, AND SUBSCRIPTS

FORTRAN provides a means of expressing numerical constants, variable
quantities, and subscripted variables. The rules for expressing these
quantities are quite similar to the rules of ordinary mathematical notation.
However, each of these quantities may be expressed in one of two basic
modes.

INTEGER AND FLOATING POINT CALCULATIONS

Mode is important because FORTRAN permits two types of arithmetic
calculations: integer (often called fixed point) and floating point.

Floating point calculations are carried out between two decimal numbers
to an accuracy of several decimal digits. The exact accuracy depends on
the FOR TRAN system being used. Some typical floating point calculations
are:

Arithmetic Statement

A=. 4301/1. 7
B=5. /2.
C=l. 6*. 7
D=-2. 7+1. 2

Result of Calculation

A=. 253
B=2. 5
C=l. 12
D=-1. 5

Thus, floating point calculations are "conventional"; they are the familiar
type. Rounding does not occur; excessive digits are simply dropped
(truncated). ·

Integer calculations are carried out differently; calculations are with integers
only, no decimal remainders are retained or used in computations. For
example:

Arithmetic Statement

1=5/2

I=5/2+7/2

J=5*2

K=-4+1

10

Result of Calculation

I=2 (instead of 2. 5 since the • 5 is
truncated)

I=5 (intermediate truncation causes
this to be computed as 2+3
rather than 12/2)

J=lO

K=-3

CONSTANTS

A constant is any number which is used in computations without change
from one execution of the program to the next. It appears in its actual
numerical form in the source statement. For example, in the statement

J=3*K

3 is a constant, since it appears in actual numerical form.

Two types of constants may be written in FOR TRAN: integer constants
and floating point constants (characterized by being written with a decimal
point). The rules for writing each of these constants are given below.

Integer Constants

General Form of an Integer Constant

An integer is written without a decimal point, using the decimal
digits 0, 1, ••• , 9. A preceding + or - sign is optional. An un
signed constant is assumed to be positive.

The magnitude of an integer constant must not exceed specific limits
set for each FORTRAN processor. An integer constant of 1 to 4
decimal digits is acceptable to all processors.

Examples:

The following are valid integer constants:

0
+9

186
-327

6
45

On the other hand, the following are not valid integer constants:

11

-3.2
27.

28913

(contains a decimal point)
(contains a decimal point)
(as an example, assume that this number exceeds the
magnitude permitted by the processor)

..,

Floating Point Constants

VARIABLES

General Form of a Floating Point Constant

Any number written with a decimal point, using the decimal digits
O, 1, ••• , 9. A preceding + or - sign is optional. An unsigned
constant is assumed to be positive.

An integer exponent preceded by an E may follow a floating point
constant. The decimal exponent may have a preceding + or - sign.
An unsigned exponent is assumed to be positive.

The magnitude of a floating point constant must not exceed specific
limits set for each FOR TRAN processor. Also, for some
processors there is a maximum number of digits permitted. A
floating point constant of 1 to 8 decimal digits, with magnitude
zero or between 10-38 and 1038 is acceptable to all processors.

Thus, a floating point constant may be an integer written with a decimal
point, a decimal fraction, or a mixed integer and decimal fraction.

Examples:

The following are valid floating point constants:

1.
• 2
3.4
• 0097
6.0
5. OE3
5. OE+3
5.0E-3

(means 5. O x 103, i. e. , 5000)
(means 5. O x 103, i. e. , 5000)
(means 5. O x 10-3, i.e., • 005)

The following are not valid floating point constants:

4367 (no decimal point)
5. OE121 (as an example, assume that this exceeds the magnitude

permitted by the processor)
234. 48397639 (as an example, assume that this exceeds the number of

digits permitted by the processor)

A FOR TRAN variable is a symbolic representation which will assume a
value. This value may change either for different executions of the
program or at different stages within the program. For example, in the
statement

K = 3*1

12

both I and K are variables. The value of I will be assigned by a preceding
statement and may change from time to time, and K will vary whenever
this computation is performed with a new value of I.

As with constants, a variable may be integer or floating point, depending
on whether the value which it will represent is to be integer or floating
point, respectively.

In order to distinguish between variables which will derive their value
from an integer as opposed to those which will derive their value from a
floating point number, the rules for naming each type of variable are
different.

Integer Variables

•

General Form of an Integer Variable

A series of alphameric characters (except special characters), of
which the first is I, J, K, L, M, or N.

The length of the series (that is, the number of characters) must
not exceed specific limits set for each FORTRAN processor. An
integer variable of 1 to 5 characters is acceptable to all processors.

Alphameric characters are all of the alphabetic and numerical characters,
A to Z and 0 to 9. Alphameric characters also include the following special
characters (which may not be used in variable names):

' I

Examples:

+ $
(

*

The following are valid integer variables:

I
JO Bl
JOB2
M3
NEXT
MAX

The following are not valid integer variables:

13

PMAX
SILO
IMIN$
IABCDEFG

(first character is not an integer indicator)
(first character is not alphabetic)
($ not permitted - it is a special character)
(as an example, assume that this exceeds the number
of characters permitted by the processor)

WARNING:

1. A variable must not be given a name which coincides with the name of
a function without its terminal F. Thus, if a function is named TIMEF,
no variable should be named TIME.

• 2. Unless their names are less than four characters in length, subscripted
variables should not be given names ending with F, because FORTRAN
may consider variables so named to be functions.

For a discussion of the meaning of "function, " see page 53.

An integer variable may assume any value expressible as an integer
constant in the FORTRAN processor being used. For example, I is an
integer variable and 3 is an integer constant. Thus, I may be assigned the
value 3. I may not be assigned the value 3. 23, since that is a floating
point constant.

Floating Point Variables

General Form of a Floating Point Variable

A series of alphameric characters (except special characters), of which
the first is alphabetic but not one of the integer indicators (I, J, K, L,
M, or N).

The length of the series (that is, the number of characters) must not
exceed specific liinits set for each FOR TRAN processor. A floating
point variable of 1 to 5 characters is acceptable to all processors.

Examples:

The following are valid floating point variables:

A
B7
B22
DELTA
COST
VALUE
Z9X8Y

• The following are not valid floating point variables:

14

ITRNS
8BETA
ACST/
ADE LT AMAX

(first character is an integer indicator)
(first character is not alphabetic)
(/ not permitted - it is a special character)
(as an example, assume that this exceeds the number
of characters permitted by the processor)

The same warning concerning integer variable names applies to floating
point variable names.

A floating point variable may assume any value expressible as a floating
point constant in the FORTRAN processor being used.

Considerations in Naming Variables

SUBSCRIPTS

The rules for naming variables allow for extensive selectivity. In general,
it is easier to follow the flow of a program if meaningful symbols are used
wherever possible. For example, to compute distance it would be possible
to use the statement

X=Y*Z

but it would be more meaningful to write

D=R*T
or even

DIST=RATE*TIME

Similarly, if the computation were to be performed using integers, it
would be possible to write

I=J*K
or

ID=IR*IT
or

IDIST=IRATE*ITIME

In other words, variables can often be written in a meaningful manner by
using an initial character to indicate whether the variable is integer or
floating point and using succeeding characters as an aid to memory.

Another aid to writing a program is to vary the last character of a variable
name. For example, to compute four different quantities called HRS,
the following could be used:

HRSl
HRS2
HRS3
HRS4

Again, each of these could be preceded by I, J, K, L, M, or N to indicate
integer mode.

An array is a group of quantities. It is often advantageous to be able to
refer to this group by one name and to refer to each individual quantity
in this group in terms of its place in the group.

15

For example, assume the following is an array named NEXT:

15
12
18
42
19

Suppose it is desired to refer to the second quantity in the group; in
ordinary mathematical notation this would be NEXT2. In FORTRAN this
would be

NEXT(2)

The quantity "2" is called a subscript. Thus

NEXT(2) has the value 12
NEXT(4) has the value 42

Similarly, ordinary mathematical notation might use NEXTi to represent
any element of the set NEXT. In FOR TRAN, this might be written as
NEXT(I) where I equals 1, 2, 3, 4, or 5.

The array could be two dimensional; for example, the array MAX:

Column 1 Column 2 Column 3

Row 1 82 4 7
Row 2 12 13 14
Row 3 91 1 31
Row4 24 16 10
Row5 2 8 2

Suppose it is desired to refer to the number in row 2, column 3; this
would be

MAX(2, 3)

"2" and "3" are the subscripts. Thus

MAX(2, 3) has the value 14
MAX(4, 1) has the value 24

Similarly, ordinary mathematical notations might use MAXi, j to represent
any element of the set MAX. In FOR TRAN, this might be written as
MAX(I, J) where l equals 1, 2, 3, 4, or 5 and J equals 1, 2, or 3.

In some systems, the above notation may be extended to three dimensional
arrays.

16

Form of Subscripts

General Form of a Subscript

A subscript must be in one of the following forms only, where v
represents any unsigned non-subscripted integer variable, and
c and c' any unsigned integer constant:

v
c
v+c or v-c
c*v
c*v+c' or c*v-c'

1620 FOR TRAN has a more limited subscript format (see page 61).

Notice that a floating point quantity may not appear in a subscript and that
constants may not be signed. Notice also that the rules for forming the
quantities must be rigidly followed.

Examples:

The following are valid subscripts:

IMAX
19
JOB+2
NEXT-3
8*1QUAN
5*L+7
4*M-3

The following are not valid subscripts:

-I
A+2
1+2.
-2*J
1(3)
K*2

2+JOB

(the variable may not be signed)
(A is not an integer variable)
(2. is not an integer constant)
(the constant must be unsigned)
(a subscript may not be subscripted)
(for multiplication, the constant must precede the variable,
thus 2*K is correct)
(for addition, the variable must precede the constant,
JOB+2 is correct)

The value of the subscript is computed, and the quantity referred to is then
located. The location of a specific quantity is dependent upon the arrange
ment of the array in storage. This is discussed elsewhere in this manual.

17

Subscripted Variables

PROBLEMS

•

General Form of Subscripted Variables

An integer or floating point variable, followed by parentheses
enclosing one, two or three subscripts which are separated by
commas. (Some processors do not permit three subscripts.)

Examples:

The following are valid subscripted variables:

A(I)
K(3)
BETA(5*J-2, K+2, L)
MAX(J, K, 2)

The following are not valid subscripted variables:

A(l,)
IMAX(A)
NEXT(I(3))

(a comma is not allowed after the last subscript)
(a floating point variable cannot appear in a subscript)
(a subscript may not be subscripted)

Each variable which is subscripted must have the size of its array· specified
preceding the first appearance of the variable in subscripted form. This
is done by a DIMENSION statement (see page 33).

For each of the following, determine the type of quantity and whether it
is valid or invalid. If invalid, why?

1. MAX$8
2. QUANT(3*B)
3. -3. 78.
4. IOVR7
5. All
6. 427
7. A(+M)
8 • • 71E-8 •
9. ABLE(3*N-5)

10. 171
11. RATE(3+I, 2-J)
12. +17.2
13. JOBNO(I, 3, L)
14. MIN(A)
15. AAA
16. 6ABLE
17. 5E+9
18. I(-K)
19. 12. E15
20. JACK(-3*K)

18

PART II: THE BASIC FORTRAN LANGUAGE

CHAPTER 3: ARITHMETIC STATEMENTS AND EXPRESSIONS

ARITHMETIC STATEMENTS

The arithmetic statement defines a numerical calculation; it very closely
resembles a conventional arithmetic formula.

General Form of an Arithmetic Statement

"a= b" where a is a variable (subscripted or not subscripted) and
b is an expression as defined below.

Examples:

The following are valid arithmetic statements:

A=B+C
D(I) = E(I) +2. -F

In a FORTRAN arithmetic statement, the equal sign means "is to be
replaced by" rather than "is equivalent to. " This distinction is important;
for example, suppose an integer variable I has the value 3. Then, the
statement

I=I+l

would give I the value 4. This feature enables the programmer to keep
counts and perform other required operations in the solution of a problem.

The following is an example of a series of FOR TRAN arithmetic statements:

EXPRESSIONS

A= 3.0
B = 2. 0
C=A+B
C=C+l.

Store the value 3. 0 in A
Store the value 2. 0 in B
Add the values in A and B and store in C (3. + 2. = 5.)
Add 1. to the value in C (5. + 1. = 6.)

An expression in FORTRAN is a sequence of constants, variables (subscripted
or not subscripted) and operation symbols which indicates a quantity or a
series of calculations. It must be formed according to the rules for con
structing expressions. It may include commas and parentheses and may
also include functions (which will be discussed later). It appears on the
right-hand side of arithmetic statements and in certain types of control
statements.

19

Operation Symbols

The operation symbols are:

+ Addition

*
I
**

Subtraction
Multiplication
Division
Exponentiation

Rules for Constructing Expressions

Since constants, variables, and subscripted variables may be integer or
floating point quantities, expressions may contain either integer or floating
point quantities; however, the two types may appear in the same expression
only in certain ways. (In the following discussion, no mention is made of
the rules for using integer and floating point quantities in functions. These
rules will be stated when functions are discussed and will be considered as
addenda to the following rules.)

1. The simplest expression consists of a single constant, variable or
subscripted variable. If the quantity is an integer quantity, the
expression is said to be in the integer mode. If the quantity is a
floating point quantity, the expression is said to be in the floating
point mode.

Examples:

Expression

3
3. 0
I
A
I (J).

A (J)

Type of Quantity

Integer constant
Floating point constant
Integer variable
Floating point variable
Integer subscripted variable
Floating point subscripted variable

Mode of Expression

Integer
Floating point
Integer
Floating point
Integer
Floating point

In the last example, note that the subscript, which must be an integer
quantity, does not affect the mode of the expression. The mode of the
expression is determined solely by the mode of the quantity itself.

2. Exponentiation of a quantity does not affect the mode of the quantity;
however, an integer quantity may not be given a floating point exponent.
The following are valid:

20

I**J
A**I
A**B

Integer
Floating point
Floating point

The following is not valid:

I**A (Violates the rule that an integer quantity must
not have a floating point exponent)

•

NOTE: The expression A**B**C is not permitted. It must be written
A**(B**C) or (A**B)**C, whichever is intended.

3. Quantities may be preceded by a + or a - or connected by any of the
operators (+, -, *, /, **)to form expressions, provided:

a. No two operators appear consecutively.

b. Quantities so connected are all of the same mode. (Exception:
floating point quantities may have fixed point exponents; see 2 above.)

c. No operators are "assumed" to be present.

The following are valid:

-A+B
B+C-D
I/J
K*L

The following are not valid expressions:

A+-B
A+I
3J

(must be written as A+(-B))
(variables are of different modes)
(must be written as 3*J if multiplication is intended)

4. The use of parentheses in forming expressions does not affect the mode
of the expression. Thus, A, (A), and (((A))) are all floating point
expressions.

5. Parentheses may be used to specify the order of operations in an
expression. Where parentheses are omitted, the order is taken
to be from left to right as follows:

21

* * Exponentiation
* and / Multiplication and Division
+ and - Addition and Subtraction

For example, the expression

A+B*C/D+E**F-G

will be taken to mean

Using parentheses, the expression could.be written

(A+B)*C/D+E**F-G

which would be taken to mean

(A+B)*C +EF -G
D

A valid expression will be evaluated when the object program is executed.
An invalid expression may result in an error message from the FOR TRAN
processor or may result in inaccurate object program results.

MODE OF AN ARITHMETIC STATEMENT

PROBLEMS

Although expressions must be integer or floating point, the variable on the
left-hand side of the equal sign in an arithmetic statement need not be of the
same mode as the expression on the right-hand side.

If the variable on the left is an integer quantity and the expression on the
right is floating point, the expression will first be evaluated in floating
point, the portion following the decimal point will be dropped, and the
remainder will be. converted to an integer quantity. Thus, if the result
is +3. 872, the integer stored will be +3, not +4. If the variable on the
left is floating point and the expression on the right is integer, the latter
will be evaluated as an integer expression, and the result will be converted
to floating point.

Examples:

Arithmetic Statement

A=3/2
A=3. /2.
1=3/2
I=3. /2.
I=3. /2

Result of Calculation

A=l.
A=l. 5
I=l
I=l
Not allowed. "3." and "2" are not the
same mode.

1. May the variable on the left side of an equal sign in an arithmetic
statement be subscripted?

2. How is the mode of an expression determined?

3. When may an integer quantity appear in a floating point expression?

4. What notation should be used to indicate the order of computations in
an expression?

5. Evaluate the following arithmetic statements where A=3. , B=2. , C=l. ,
I=3, J=2, K=l:
a. L=I/J
b. M=J*K
c. N=K-I
d. D=C*A
e. E=B/C
f. F=C-A
g. A=I/J
h. M=A/B
i. I=2*I
j. C=C+l.

22

6. Which of the following are valid arithmetic statements?
a. A(I, 3)=M2+J
b. X(I+2, J)=-3. *D+(E-F)
c. Y=I**A
d. A(B)=l+2
e. A+3. =B*C
f. M=(A+B)
g. Z=A**R
h. l(J)=K(J)/ J
i. I(A)=H+ 14.
j. W=l+(-D)

23

CHAPTER 4: CONTROL STATEMENTS AND THE SPECIFICATION STATEMENT

Normally, FORTRAN statements may be thought of as being executed
sequentially. That is, after one statement has been executed, the statement
immediately following it will be executed. However, it is often undesirable
to proceed with each statement in this manner. This chapter will discuss
some of the statements which may be used to alter sequential execution and
some of the reasons why this may be desirable. This chapter will also
discuss use of the DIMENSION statement, which provides information
that the processor requires for the establishment of arrays.

UNCONDITIONAL GO TO

This statement is used to interrupt sequential execution; it indicates the
statement that is to be executed next.

General Form of the Unconditional GO TO Statement

"GO TO n" where n is a statement number.

This statement causes statement number n to be executed next.

Examples:

GO TO 16
GO TO 137

A coding example is shown below:

A=3.
B=4.
GO TO 7

12 B=2. *A
7 A=2. *B

Statement 12 will not be executed. Statement 7 will be evaluated and
A will be assigned the value 8. o.

COMPUTED GO TO

This statement also indicates the statement that is to be executed next.
However, it allows the next statement to be executed to be different at
various stages in the program.

24

General Form of the Computed GO TO Statement

"GO TO (n1, n2, ••• , nm), i" where ni, n2, ••• , nm are statement
numbers and i is a non-subscripted integer variable.

The parentheses enclosing the statement numbers, the commas
separating the statement numbers, and the comma following
the right parenthesis are all required punctuation.

This command causes transfer of control to the 1st, 2nd, 3rd, etc.,
statement in the list depending on whether the value of i is 1, 2, 3, ••• , etc.
i must never have a value greater than the number of items in the list.
The value which i has at any given time must be set by a preceding
arithmetic statement.

Examples:

GO TO (5,7,8,2,4),J

GO TO (4, 4, 4, 7, 8, 9), MAX

If J is 3, transfer to statement 8.

This example illustrates the fact that
several values of i may cause a
transfer to the same statement. In
this case, when MAX has the values
1, 2, or 3, transfer will be made to
statement number 4.

Further use of the Computed GO TO is illustrated below:

25

A= 3.
B = 4.
c = 5.
K = 0

1 K = K+l
GO TO (10, 20, 30), K

30 F = A-B
GO TO 12

20 E =A-C
GO TO 1

10 D =B-C
GO TO 1

12

As a study of this example will show, D, E and F are computed, in that
order, and control proceeds to statement 12. Of course, the example
itself is highly simplified; if these were the only required calculations in
this series, the programmer would just compute D, E, and F sequentially,
in any desired order and without using the Computed GO TO.

IF

This statement permits a programmer to change the sequence of statement
execution, depending upon the value of an arithmetic expression. This is
called a logical decision.

General Form of the IF Statement

11IF(a)n1, n2, na" where a is an expression and ni, n2 and na are
statement numbers.

The expression, a, must be enclosed in parentheses; the statement
numbers must be separated from one another by commas.

Examples:

IF(A-B)lO, 5, 7
IF(A(I)/D) 1, 2, 3

Control is transferred to statement number ni, n2, or na depending on
whether the value of a is less than, equal to, or greater than zero,
respectively.

Suppose a value, A, is being computed. Whenever this value is positive,
it is desired to proceed with the program. Whenever the value of A is
negative, an alternative routine starting at statement 12 is to be followed,
and if A is zero, an error routine at statement 72 is to be followed. This
may be coded as:

10

12

72

26

A = (B+C)/(D**E)-F
IF (A) 12, 72, 10

LOOPING

As discussed earlier, the ability of a computer to repeat the same operations
with different data, called looping, is a powerful tool which greatly reduces
programming effort. There are several ways to accomplish this looping;
one way is to use an IF statement. For example, assume that a plant
carries 1, 000 parts in inventory. Periodically it is necessary to compute
stock on hand of each item (INV), by subtracting stock withdrawals of that
item (!OUT) from previous stock on hand. It would be wasteful of effort
to write a program which would indicate each separate subtraction by a
separate statement. (It would also be wasteful of computer storage, since
each separate instruction to the computer must be in computer storage.)
The same results could be achieved by the following program:

5 J = 0
10 J = J+l
25 INV(J) = INV(J) - IOUT(J)
15 IF (1000-J) 20, 20, 10
20

An index, J, is established which will be increased by 1 each time statement
10 is executed. Statement 5 initializes J to zero so that statement 10 will
set J equal to 1 for the first execution of statement 25.

Statement 25 will compute the current stock on hand by subtracting the stock
withdrawal from the previous stock on hand. The first time statement 25
is executed, the stock on hand of the first item in inventory INV(l), will be
computed by subtracting the stock withdrawal of that item, IOUT(l).
Statement 15 tests whether all items in stock have been updated. If not,
the expression 1000-J will be positive and the program will transfer to
statement 10, which will increment J by 1. Statement 25 will be executed
again, this time for the stock on hand of item 2, INV(2), and the stock
withdrawal of item 2, IOUT(2). This procedure will be repeated until the
stock of item 1000 has been updated. At this point, J will be equal to
1000, and the expression in statement 15 will be equal to zero. Then
statement 15 will cause transfer to statement 20 to continue with other
parts of the program.

Notice that three statements (5, 10 and 15) were required for this looping;
this could have been accomplished with a single DO statement.

Not only does the DO simplify the programming of loops, it also provides
greater flexibility in looping.

27

General Form of the DO Statement

"DO n i =ml, m2" or
"DO n i =ml, m2, m3" where n is a statement number, 11s a non
subscripted integer variable, and ml, m2, and m3 are each either
an unsigned integer constant or non-subscripted integer variable.
If m3 is not stated, it is taken to be 1. The commas separating
the statement numbers are required.

Examples:

DO 20 JBNO=l, 10
DO 20 JBNO=l, 10, 2
DO 20 JBNO=K, L, 3

The DO statement is a command to repeatedly execute the statements
which follow, up to and including the statement with statement number n.
The first time, the statements are executed with i =ml. For each
succeeding execution of the statements, i is increased by m3. After the
statements have been executed with i equal to the highest of this sequence
which does not exceed m2, control passes to the statement following the
last statement in the range of the DO (the statement after statement
number n).

Thus, the DO statement does three things:

1. It establishes an index which may be used as a subscript or in computations.

2. It causes looping through any desired series of statements, as many
times as required.

3. It increases the index (by any amount that the programmer specifies)
for each separate execution of the series of statements in the loop.

Example:

15 DO 25 J = 1,1000
25 INV (J) = INV(J) - IOUT(J)
35

28

Statement 15 is a command to execute the following statements up to and
including statement 25; the first time J will be 1, thereafter J will be
increased by 1 for each execution of the loop until the loop has been executed
with J equal to 1000. After the loop has been executed with J equal to 1000,
the statement following statement 25 will be executed.

The following is a comparison of statement 15 with the general form of
the DO, and an introduction of some of the terms used in discussing
DO statements:

DO n i = ml, m2, ma

DO 25 J = 1, 1000
~ ~ ~ ~ ~

Range Index Initial Test Increment
Value Value

The range is the series of statements to be executed repeatedly. It
consists of all statements following the DO, up to and including statement
n. In this case, statement n is statement 25, and the range consists of
only one statement. The range can consist of any number of statements.

The index is the integer variable which will change for each execution of
the range. In the example, this index was used as a subscript, in another
problem it might be used in computations, etc. (The index need not be
used in the range, although it usually is.)

The initial value is the value of the index for the first execution of the range.
Although the initial value was 1 for this example, in another problem it
might be some different integer quantity. Often, the initial value will
change at different times within the program. In such cases it may be
stated as a non-subscripted integer variable. The variable must then be
assigned a value before the DO is executed.

The increment is the amount by which the value of the index will be increased
after each execution of the range. In the example, this is not coded because
the increment desired is 1, and the general form permits omission of the
increment when it is 1. As with the initial value, the increment may be
written as an integer variable.

The test value is the value which the index may not exceed. After the range
has been executed with the highest value of the index which does not exceed
the test value, the DO is satisfied, and the program continues with the first
statement following the range. In the example, the DO was satisfied after
the range was executed with th~ index equal to the test value. In some
cases, the DO is satisfied before the test value is reached. Consider, for
example, the following DO:

DO 5 K = 1, 9, 3

5

29

In this example, the range will be executed with K equal to 1, 4 and 7.
The next value of K would be 10; since this exceeds the test value, control
passes to the statement following statement 5 after the range is executed
with K equal to 7. The test value may also be written as an integer variable.

As a further example, consider the following program:

K=O
L = 10
DO 5 JOB = 1, L, 2
K= K+l

5 A(JOB) = B(JOB)-K*JOB

This would cause the following computations:

A(l) = B(l)-1 *1
A(3) = B(3)-2*3
A(5) = B(5)-3*5
A(7) = B(7)-4*7
A(9) = B(9)-5*9

When using DO statements, the following rules must be followed:

1. Within the range of a DO may be other DOs. When this is so, all
statements in the range of the latter must be in the range of the former.
A set of DOs satisfying this rule is called a nest of DOs.

For example:

.--------- DO
_____ DO

CDO

is a permitted configuration (brackets are used to indicate the range of
the DOs), but

,._ _____ DO
_____ DO

is not a permitted configuration.

2. Transfer of control from inside the range of a DO to outside its range is
permitted at any time. However, the reverse is not allowed •. A transfer
is not permitted into the range of any DO from outside its range. Thus,

30

in the configuration below, 1, 2 and 3 are permitted transfers, but 4,
5 and 6 are not.

DO

2
5

3. When control leaves the range of a DO in the ordinary way (that is, when
the DO becomes satisfied and control passes on to the next statement
after the range), the exit is said to be a normal exit. In some systems,
after a normal exit from a DO occurs, the value of the index controlled
by that DO is not defined, and the index cannot be used again until it is
redefined. That is, if J were the index and the DO were satisfied when
J equalled 1000, J may not still have the value 1000 after the DO is
satisfied. However, if exit occurs by a transfer out of the range, the
current value of the index remains available for subsequent use. If
exit occurs by a transfer which is in the range of several DOs, the
current values of all the indexes controlled by those DOs are preserved
for subsequent use.

4. No statement is permitted in the range of a DO which redefines the value
of the index or of any of the indexing parameters (m's). That is, none
of these quantities may appear on the left-hand side of the equal sign in
an arithmetic statement (nor in the list of an input statement) within
the range of a DO.

• 5. The first statement in the range of a DO must not be one of the
non-executable FORTRAN statements (DIMENSION, FORMAT,
etc.).

6. The range of a DO cannot end with a transfer (IF or GO TO type
statements).

CONTINUE

This statement is used as the last statement in the range of a DO where the
last statement would otherwise be a transfer-type command (which is not
permitted by item 6, above).

General Form of a CONTINUE Statement

"CONTINUE"

31

As an example of a program which requires a CONTINUE, consider the
following program:

10 DO 12 I = 1, 100
IF(ARG-VALUE(I)) 12, 20, 12

12 CONTINUE

This program will scan the 100-entry VALUE array until it finds an entry
which equals the value of the variable ARG, whereupon it will transfer to
statement 20 with the value of I available for use. If no entry in the array
equals the value of ARG, a normal exit to the statement following the
CONTINUE will occur.

PAUSE

This statement will cause the computer to come to a halt during object
program execution. Depressing the Start key causes the computer to resume
execution of the object program with the next FORTRAN statement.

General Form of the PAUSE Statement

"PAUSE"

STOP

This statement· causes the computer to halt during object program execution
in such a way that depressing the Start key has no effect. Therefore, in
contrast to PAUSE, this statement is used where a final, rather than a
temporary, stop is desired.

General Form of the STOP Statement

"STOP"

Some systems rely on supervisory programs (monitors) to control execution
of the object program. In a system of this type, the PAUSE and STOP
statements may not be desirable and should not be used.

THE SPECIFICATION STATEMENT

The following statement is considered to be non-executable because it does
not give rise to any instructions in the object program. Instead, the state
ment provides the processor with information required to allocate locations
in computer memory (where the various elements of an array are to be stored).

32

DTh1ENSION

General Form of the DIMENSION Statement

"DIMENSION v1, v2, ••• , Vn" where each v is the name of a variable
subscripted with 1, 2 or 3 unsigned integer constants.

The v' s must be separated from each other by commas.

Examples:

DIMENSION A(lO), B(5, 15), CVAL(3, 4, 5)
DIMENSION 1(100)
DIMENSION NEXT(lO, 10, 10)

Each variable which appears in subscripted form must appear in a
DIMENSION statement; the DIMENSION statement must preceed the first
appearance of that variable. The DIMENSION statement lists the maximum
dimensions of arrays; object program references to these arrays must
never exceed the specified dimensions.

• The statement

PROBLEMS

DIMENSION JOB (10, 15, 5)

means that JOB is a three-dimensional array for which the subscripts never
exceed 10, 15 and 5. The DTh1ENSION statement, therefore, causes
750 (that is, 10xl5x5) storage locations to be set aside for the array JOB.
Some processors do not permit three-dimensional arrays. A single
DIMENSION statement may specify the dimensions of any number of
arrays, and may include both integer and floating point arrays.

1. Which of the following are valid FOR TRAN statements?

a. DO 10 FEW = 1, 10, 4
b. DO 51K=1, K-1, 3
c. GO TOM
d. GO TO (1, 2, 3), A
e. GO TO 187
f. IF (A-I) 1, 2, 2
g. GO TO 3,4
h. DO 1, J = 1, 50, 1
i. GO TO (4, 7, 3)K
j. GO TO N-12

2. With the exception of input/output statements, write complete FORTR:AN
programs for the following problems. Assume all necessary data to be
available to the program. Be sure to use DIMENSION statements and
halt statements where appropriate.

33

a. In the integer mode, calculate the distance between ten sets of cities
when the rate and time are known. Use the formula Distance= Rate
x Time.

b. Rewrite the preceding program so that if the distance is over 1, 000
miles, transfer will be made to statement 5; otherwise the program
is to proceed to the next statement.

c. For an unknown quantity, X, find the value of X+(X-l)+(X-2) ••• +1.
Assume that Xis an integer greater than zero. Use the floating
point mode.

d. Assume that for any employee, E, net pay is equal to base pay plus
overtime pay minus income tax minus other deductions. Write a
program to compute the net pay of I number of employees, where I
is never greater than 500. Use floating point mode to compute pay.

e. Generate a two-dimensional array, A, such that the first column of
A will consist of the integers 1 to 25 and each item in the second
column will be 1 1/2 times the corresponding item in the first
column. Use the floating point mode.

34

f. Compute the reciprocals of X(I) where I = 1, ••• , 20. The reciprocal
of X is defined as+. If any Xi = O, the reciprocal should be set
equal to zero. Add the reciprocals of all of the X's together. Use
the floating point mode.

CHAPTER 5: BASIC INPUT/OUTPUT STATEMENTS

One great advantage of computers is their ability to handle great quantities
of data according to a fixed set of instructions. The data may vary from
time to time, thus requiring a re-execution of the program with new or
changed data.

To minimize programming cost, a program should not need to be rewritten
each time the data changes. This can only be achieved if the program is
written in such a manner that it calls in data for computations and prints
out results, without affecting the program. Thus, the data may change
without the programmer being concerned.

For example, suppose a payroll problem is being programmed. Taken in its
simplest form, the number of hours a man works is to be multiplied by the
rate he is paid for each hour he works; from this quantity are subtracted
certain fixed amounts and percentage amounts for such items as hospital
ization and Federal Income Tax. Instead of writing a program each week for
all employees, it is essential that a method be found whereby the program
can handle the payroll each week without being rewritten. This is the role
of input/ output. The computer can be instructed to read an IBM punched
card and recognize the following things from that card:

1. The first 20 columns contain the employee's name.

2. The next five columns indicate the total number of hours the employee
worked in the payroll period.

3. The next five columns indicate the hourly rate the employee is to
receive.

4. The succeeding columns indicate whether deductions are to be taken out
of the employee's pay for hospitalization, etc., and in the case of income
tax, the number of dependents claimed.

The computer, through the program, is then instructed to read a card, use
the information from that card to .compute the salary, and print out a check
for the proper amount to the man named on the card.

Although this example is highly simplified, it illustrates the manner of
holding the programming fixed while the data changes, and illustrates the
use and usefulness of input/ output of data.

Most input/output statements specify three things:

1. What is to be done. This may be to read a card, print a line, read a
magnetic tape, etc.

2. How the data is arranged for input or is to be arranged, for output. This
consists of specifying format (e.g. , what card columns represent a
particular item, etc.). 650 FORTRAN has a fixed format for data; the
other processors permit the programmer to specify how data is arranged.

35

Format specifications for 650 FORTRAN are given in the 650 reference
manuals. For those systems which permit the programmer to specify
format, a description of the FORMAT statement is found in Part III of
this manual.

3. What data is to be transmitted; i.e., by what variable names the program
will refer to the particular data items.

READ

This statement causes data to be read from an IBM punched card.

General Form of the READ Statement

"READ n, List" where n is the statement number of a FORMAT
statement, and List is as described below.

Examples:

READ 1,A
READ 1, A(2), B(3)
READ 2, JOB, A

The n portion of all input/ output statements· is the statement number of a
FORMAT statement. It is optional in 650 FORTRAN and will be ignored
when it appears. If n is not used, the statement ~ust be written with a
comma after READ and before List.

The READ statement causes data to be read from a card and causes those
quantities transmitted to the computer to become the values of the variable
names given in the List.

LISTS FOR TRANSMISSION OF DATA

The List actually specifies what quantities are to be transmitted. For
example, assume that a card is punched as follows:

36

25 102 -101 10 5

I
000000000000000000100000000010000000000100
1234s1111rottunuBnttnna~nn~aanaaaMnnMaanaa~uuu"a•u•••~n"M••"•••ouAMA•P••nnnnunanan•

11

2222222212222222222122

3 33

44

55555555515555555555555555555555555555555555555551555555555555555555555555555555

66

11 7 1 7 1 7 1 7 1111111 7 1 7 1 7 11111 7 11111 7 7 7 1 7 11111111111 7 7 1 7 7 1 7 7 77 7 7 7 111 7 11 7 1111111 7 1111

88

99
12345B719rottttUUBD»nna~nn~aanaaannn~aanaa~uuu"a•u•••~n"M"a"•••PUAMA•P•nronnnunannn•

lBM5081

Further, assume that the following statement appears in the source program:

READ5, I, J, K, L, M

The card will be read and the program will operate upon the data as though
the following statements had been written:

I= 25
J = 102
K = -101
L = 10
M = 5

Computations may take place, and then control may pass back to the READ
statement. For the next iteration of the statement, I, J, K, L, and M will
have new values depending upon what is punched in the next card to be
read.

Indexing in Input/Output Lists

Some systems permit DO-type notation for the transmission of data. For
example, suppose it is desired to transmit the five quantities A(l), A(2),
A(3), A(4) and A(5). This may be accomplished by writing

READ 2, (A(I), I = 1, 5)

• This would be very roughly equivalent to

DO 12 I= 1, 5
12 READ 2, A(I)

In other words, I would be given the value 1 and the first quantity would
become the value of A(l). I would then be increased by 1, and the second
quantity would become the value of A(2). This would continue until the fifth
quantity to be input becomes the value of A(5).

As with DO statements, a third indexing parameter may be used to specify
the amount by which the index is to be incremented at each iteration. Thus

READ 9, (A(I), I = 1, 10, 2)

causes transmission of values for A(l), A(3), A(5), A(7) and A(9).

DO-TYPE NOTATION IN INPUT /OUTPUT LISTS

37

General Form of DO-Type Notation

"(v1 (i), v2(i}, ... , vn(i), i =ml, m 2 , m3)" where each v is a variable
name, i is a non-subscripted integer variable, and m 1 , m 2 and m 3
are each either an unsigned integer constant or non-subscripted
integer variable. If m 3 is not stated, it is taken to be 1.

As with DOs, i is the index, m 1 is the initial value, m 2 is the test value and
m3 is the increment. In addition, this notation may be nested.

Example:

((C(I, J), D(I, J), I = 1, 5), J = 1, 4)

would transmit data in the form

C(l, 1), D(l, 1), C(2, 1), D(2, 1), ... , C(5, 1),D(5, 1), C(l, 2),D(l, 2), ... ,
C(5, 4), D(5, 4)

Additional Details of Input/Output Lists

Any number of quantities may appear in a single list. Integer and floating
point quantities may be transmitted by the same statement. However, each
quantity must have the correct format as specified in a corresponding
FORMAT statement.

If there are more quantities to be transmitted than there are in the list,
only the number of quantities specified in the list are transmitted, and
remaining quantities are ignored. Thus, if a card contains three quantities
and a list contains two, the third quantity is lost.

Conversely, if a list contains more quantities than the input record (for
READ, a single IBM card), succeeding cards will be read until all the items
specified in the list have been transmitted.

In some processors, when an array name appears in an input/output list in
non-subscripted form, all of the quantities in the array are transmitted.
For example, the statements

DIMENSION A(25)
PRINT 1,A

may cause all of the quantities A(l), ... , A(25) to be printed.

A more complex list is

A, B(3), (C(I), D(I, K), I=l, 10), ((E(I, J), I=l, 10, 2), F(J, 3), J=l, K)

Notes:

1. Each item (variable, subscripted variable or parenthetical expression)
in the list is separated by a comma.

2. The range of the implied DO statement must be clearly defined by means
of parentheses.

3. Only variables (not constants) may appear in the list, except as indexing
parameters or as subscripts.

38

PROBLEMS

4. A variable indexing parameter, in this case K, must be previously
defined by the program before the list is given (unless it is defined by
a preceding item in the input/ output list).

The above statement will transmit the data in the order:

A, B(3), C(l), D(l, K), C(2), D(2, K), ••• , C(lO), D(lO, K),
E(l, 1), E(3, 1), ••• , E(9, 1), F(l, 3), E(l, 2), E(3, 2), ••• ,
E(9, 2), F(2, 3), ••• , E(9, K), F(K, 3)

This is equivalent to the "program":

1. A
2. B(3)
3. DO 51=1, 10
4. C(I)
5. D(I, K)
6. DO 9 J = 1,K
7. DO 8 I= 1, 10, 2
8. E(I, J)
9. F(J, 3)

PUNCH

General Form of the PUNCH Statement

"PUNCH n, List" where n is the statement number of a
FORMAT statement, and List is as described above.

Examples:

PUNCH 2,A
PUNCH 3, A(l), JOBNO, B(3)

As with READ, n need not be coded for 650 FORTRAN.

This statement is used for output; the items in the list are transmitted
from the computer to the card punch. The value of the variable, as determined
by the program, is punched into the card according to the format specified.

1. Write the DIMENSION statement and the required statement to transmit
a 10 x 10 array, A, to the computer.

2. Write the required statement to transmit to the computer the following
data:
A(l), A(2), A(3), A(4), A(5), BJOB, NEXT, DELTA(2), E(3), E(5), E(7), E(9), E(ll).

3. Write a statement to punch a card with the following data:
F(2, 2), G(l, 4), G(2, 4), G(3, 4)

39

PART III: ADDITIONAL LANGUAGE FACILITIES

This Part consists of two chapters. Chapter 6, Input/Output, is not
applicable to 650 FORTRAN. Chapter 7, Subroutines, is not specifically
applicable to any single FORTRAN processor, but includes information
that is of general interest to all FOR TRAN users.

CHAPTER 6: INPUT/OUTPUT

This chapter provides information regarding format specification, and
presents some additional input/output statements.

PRINT

General Form of the PRINT Statement

"PRINT n, List" where n is the statement number of a FORMAT
statement, and List is a list of quantities for transmission.

Examples:

PRINT 2, (A(J), J=l, 10)
PRINT 5, A, I, NEXT, SOME

The PRINT statement causes the object program to print output data on the
on-line printer. Successive lines are printed in accordance with the
FORMAT statement, until the complete list has been satisfied.

Each print line has 120 print positions. As many lines as desired may be
printed. Each line is built up by appropriate PRINT and FORMAT statements.

SPECIFYING FORMAT

In order for quantities to be transmitted from the external medium (the
IBM card or IBM magnetic tape) to the computer, or from the computer
to the external medium (card, magnetic tape, or printed line), it is
necessary that the computer be informed in what form the data exists.

For purposes of simplification, the following discussion of format will deal
first with the printed line. The concepts developed will later be extended
to cover all permissible input/ output.

FORMAT

This statement specifies "how" the data is to be transmitted.

41

General Form of the FORMAT Statement

"FORMAT (Specification)" where Specification is as described
below. The Specification must be enclosed in parentheses.

Examples:

FORMAT (115)
FORMAT (14/F8. 4)
FORMAT (ElO. 6, (18))

Conversion of Numeric Data

Three types of conversion for numeric data are:

Internal Conversion External
Code

Floating Point E Floating Point (with
exponent)

Floating Point F Floating Point (without
exponent)

Integer I Integer

Numbers printed by E-type conversion are printed as a decimal fraction to
a power of 10. These numbers are normalized; that is, their first
significant digit is to the right of the decimal point. For example:

232. 3
• 003
17.4

may be printed as
may be printed as
may be printed as

O. 2323Eb03
O. 30E-02
0.174Eb02

Numbers printed by F-type conversion are printed in a "normal" fashion;
that is, they appear as output in a meaningful decimal notation without an
exponent. Typical output might be:

12. 3
-17.2
289.1

-0.726
1. 318
0.009

102.
-968.

721.

Numbers printed by I-type conversion are printed as integers. Typical
output might be:

42

12
-17

2342

These basic numeric field specifications are given in the forms:

Iw Ew.d Fw.d

where I, E or F represents the type of conversion,

w represents the field width for the converted data, and

d represents the number of decimal places to the right of
the decimal point.

The decimal point between the w and d portions of the specification is
required punctuation.

I-CONVERSION

Thus, the specification

no

may be used to print a number which exists in the computer as an integer
quantity. 10 print positions are reserved for the number. It is printed in
this ten-space field right-justified (that is, the units position is at the
extreme right). If the number converted is greater than 10 spaces, the
excess is lost; no rounding occurs. If the number has less than 10 digits,
the leftmost spaces are filled in with blanks. If the quantity is negative,
the space preceding the leftmost digit will contain a minus sign if sufficient
spaces have been reserved.

The following examples show how each of the quantities on the left is
printed according to the specification 13:

F-CONVERSION

Internal

721
-721
-12

9
8114

0
-5

Printed

721
721
-12
bb9
114
bbO
b-5

*

*

*Inaccurate due to insufficient specification
(b is used here to indicate blanks.)

For F-type conversion, w is the total field reserved, and d is the number
of places to the right of the decimal point (the fractional portion). The
fractional portion is truncated from the right if insufficient spaces are
reserved; zeros are filled in from the right if excessive spaces are
reserved. Within the remainder of the fteld, the integer portion is handled
in much the same fashion as numbers converted by I-type conversion.

43

Included in the count, w, must be a space for the decimal point and a space
for the sign. (For output, space for at least one digit preceding the decimal
point should be reserved.)

The following example shows how each of the quantities on the left is
printed according to the specification F 5. 2:

E-CONVERSION

Internal Printed

12.17 12.17
-41.16 41.16 *

-.2 -0.20
7.3542 b7.35 **

-1. -1. 00
9.03 b9.03

187.64 87.64 *

*Inaccurate due to insufficient specification
**Last two digits of accuracy lost due to insufficient

specification

For E-type conversion, the fractional portion is again indicated by d. w
includes the field d, plus spaces for a sign and the decimal point, plus four
spaces for the exponent. (For output, space for at least one digit preceding
the decimal point should be reserved.) The exponent is the power of 10 to
which the number must be raised to obtain its true value. The exponent is
written with an E followed by a space for a minus sign if the exponent is
negative or a plus or blank if the field is positive, and two spaces for the
exponent.

The following example shows how each of the quantities on the left is printed
according to the specification ElO. 3:

Internal

238.
-.002

• 00000000004
-21. 0057

Printed

0. 238Eb03
-b. 200E-02

0. 400E-10
-0. 210Eb02 *

*Last three digits of accuracy lost due to insufficient
specification

It is evident from the above examples that the programmer must know the
data in order to specify a satisfactory format. Insufficient format
specifications can result in inaccurate output. In general, specifications
should provide for the largest quantities to be transmitted and the greatest
accuracy desired.

44

Additional Rules for Specifying Format

The following rules permit variation in specifying format:

1. Field width may be specified greater than required in order to provide
spacing. Thus, if a number is to be converted by I-type conversion
and the number is not expected to exceed five spaces including sign, a
specification of no will reserve five leading blanks.

2. A specification may be repeated as many times as desired (within the
limits of the output device) by preceding the specification with an
unsigned fixed point constant. Thus (2Fl0. 4) is equivalent to (FlO. 4,
FlO. 4).

3. Succeeding specifications may be written in a single FORMAT statement
by separating them with commas. Thus (I2, ElO. 2) might be used to
convert two separate quantities, the first integer and the second
floating point.

4. The specifications in a FORMAT statement must have correspondence
in mode with the items in the input/output statement; integer quantities
require integer conversion, and floating point quantities require
floating point conversion.

Thus, the following statements are compatible:

PRINT 2, A, B, I
2 FORMAT (2F6. 4, IlO)

5. Successive items in the input/ output list are transmitted by successive
corresponding specifi<;iations in the FORMAT statement until all items
in the list are transmitted. If there are more items in the list than
there are specifications, control transfers to the preceding left
parenthesis of the FORMAT statement.

45

For example, suppose the following statements are written into a
program:

PRINT 10, A, B, C, D, E, F, G
10 FORMAT (FlO. 3, El2. 4, Fl2. 2)

then the following table shows the variable transmitted in the column on
the left, and the specification by which it is converted in the column on
the right.

Variable Transmitted Specification

A FlO. 3
B El2. 4
c Fl2. 2
D FlO. 3
E El2. 4
F Fl2. 2
G FlO. 3

6. Quantities are transmitted to consecutive print positions, starting in
print position 1. Quantities transmitted in excess of the 120 print
positions will be lost.

7. A limited parenthetical expression is permitted in order to enable
repetition of data fields according to certain format specifications
within a longer FORMAT statement specification. Thus, FORMAT
(2(Fl0. 6, ElO. 2), 14) is equivalent to FORMAT (Flo. 6, ElO. 2, Flo. 6,
ElO. 2, 14). An additional level of parentheses is not permitted. Thus
FORMAT (2(3(16, ElO. 2))) is not valid.

Multi-Record Format

Unit Record

To deal with a block of more than one line of print, a FORMAT specification
may have several different one-line formats, separated by a slash (/) to
indicate the beginning of a new line.

Thus

2 FORMAT (3F9. 2, 2Fl0. 4/8El4. 5)

would specify a multi-line block of print in which lines 1, 3, 5, ••• have
format (3F9. 2, 2Fl0. 4), and lines 2, 4, 6, ••• have format (8El4. 5).

If a multi-line format is desired such that the firsttwo lines will be printed
according to a special format and all remaining lines according to another
format, the last line specification should be enclosed in a second pair of
parentheses; for example:

FORMAT (12, 3El2. 4/2Fl0. 3, 3F9. 4/(10Fl2. 4))

If data items remain to be transmitted after the format specification has
been completely "used," the format repeats from the last left parenthesis.

Blank lines may be introduced into a FORMAT statement by listing con
secutive slashes. N+ 1 consecutive slashes produce N blank lines.

The discussion so far has been concerned only with printed output. At this
point the discussion will be extended to all input/ output by introducing the
concept of unit record. This will apply to those aspects of input/ output
already discussed as well as those yet to be discussed. Except where
noted, all references to printed line also apply to other input/ output records.

A unit record may be:

1. A printed line with a maximum of 120 characters.

2. A punched card with a maximum of 72 characters. (Although the
standard 80 column IBM card is used, the last 8 columns are reserved
for identifying information and are not usually processed by FORTRAN.)

46

Blank Fields

3. A BCD tape record with a maximum of 120 characters. The use of
tape records will be discussed later in this chapter.

Thus, for example, a specification may be written for reading data from
cards. Such a specification, used in conjunction with a READ statement,
is a means of instructing the computer regarding the appearance of data in
the external medium so that the data may properly be converted and
assigned as the values of the variables listed in the input list.

Blank characters may be provided in an output record, or characters of an
input record may be skipped, by means of the specification wX where w is
the number of blanks provided or characters skipped. When the specification
is used with an input record, w characters are considered to be blank
regardless of what they actually are, and are skipped over.

For example, if a card has six 10-column fields for integers, and it is
not desired to read the second quantity, then the statement

FORMAT (IlO, lOX, 4110)

may be used along with the appropriate READ statement.

Alphameric Fields

There are two specifications available for input/ output of alphameric in
formation. The specification wH is used for alphameric data which is not
going to be processed by the object program; the specification Aw is used
for alphameric data which is to be operated upon by the program.

Information handled with the A specification is given a variable or array
name and hence can be referred to by means of this name for processing
and/ or modification. Information handled with the H specification is not
given a name and may not be referred to or manipulated in any way.

H-CONVERSION

The specification wH is followed in the FORMAT statement by w alphameric
characters. For example,

24HbTHISbISbALPHAMERICbDATA

.
Note that blanks are considered alphameric characters and must be included
as part of the count w. This is the only case (except for column 6) where
blanks are not ignored in FORTRAN statements.

The effect of wH depends on whether it is used with. input or output.

1. Input. w characters are extracted from the input record and replace
the w characters included with the specification.

47

2. Output. Thew characters following the specification (or the characters
which replaced them as a result of input operations) are written as
part of the output record.

For example, suppose that the following statements are executed:

PRINT 2
2 FORMAT (20HTIME/QUANTITYbREPORT)

These would cause the following output to be printed:

TIME/QUANTITY REPORT

On the other hand, suppose the statements:

READ 1, I
1 FORMAT (3HYES, I5)

are used to read the data card

NO 238

II
ooaooaoooooooooooaoooooooooooooooooooooooooaoooooooooooooo11010101ao111101010111
1z1•11111a"uuMunna•annn~•anaaannnuzauaaeQuuM••u•••"uusaao•••naaM••n•••nnnuaan•••

111111 I 111 11 11 I I 111 I 111 11 I I I 11 I 1 I 1 I 11 I I 11111 I 11 111 11111111111111111111111111111 I

22222122~22222222222

3333331331

44

51555-55555555555

661666666668666666666666666666666666&66866666666666668666866666168&6&811&8&11111

11

18888881118118888888888888818888881818888881188188818888888888888888811188111118

99
IZ3411711d"UUMUd0ddaDDD~••naaannnH~•U•••QUUMU•~··•"UUM~•D••mnaaMU•P•••nnnn••n•••

and then the statement

PRINT 1,I

is given. This would cause the following printed output:

bNObb238

A-CONVERSION

• The specification Aw causes w characters to be read into, or written from,
a variable or array name. The name must be constructed in the same
manner as an integer or floating point variable name. The maximum field
width, w, varies depending upon the processor being used. For example,
the statements

PRINT 15, A, B, C, D, E, F
15 FORMAT (3HXY=, FS. 3, A5/)

48

•

might produce the following lines:

XY=b-93. 210bbbbb
XY=9999. 9990VFLW
XY=bb28. 768bbbbb

(b is used to indicate blank characters.)

This example assumes that there are steps in the source program which
read the BCD word "OVFLW," store this data in the word to be printed in
the format A5 when overflow occurs, and stores blanks in the word when
overflow does not occur.

Data Input to the Object Program

Numerical input data to be read by means of a READ or READ INPUT TAPE
when the object program is executed must be in essentially the same format
as given in the previous examples. Thus, a card to be read according to
FORMAT (12, El2. 4, FlO. 4) might be punched

27 -0.9321E 02 -0.0076
I I I

I I
000010000000100000101100
123451111unuuuuunuu~nttnN~annnmnnu~»•n•n~~~~«~uquu~uu"~~•u••m~RaMa•~••unnnunnnnn•

11111111111111111111II1 I I I I I I I I 11111I111I1III11I1II1IIII1I1II11I11111I11111I1111

1222222212222122

3333313133333333333133

44

55555555551555555555555555~555

6 &16

11

888BBIBB888888888BBIB88i888888

9999991999
123451111unuuuuunuu~nnnNnnnnnmnnnM»~n•n~~~~«~uqu•rom~"M~•n••m"~aM~w~u~mnnnunnnnuoo

Within each field, all information must appear at the extreme right. Plus
signs may be omitted or indicated by a+. Minus signs may be punched
with an 11-punch. Blanks in numerical fields are regarded as zeros.
Numbers for E- and F-type conversion may contain any number of digits,
but only the high order digits of accuracy will be retained if the number
exceeds the capacity of the system.

To permit economy in punching, certain relaxations in input data format
are permitted.

1. Numbers for E-type conversion need not have 4 columns devoted to the
exponent field. The start of the exponent field must be marked by an
E, or, if that is omitted, by a+ or - (not a blank). Thus E2, E+2, +2,
+02, E02 and E+02 are all permissible exponent fields.

2. Numbers for E"."" and F-type conversion need not have their decimal
point punched. If it is not punched, the format specification will
supply it. For example, the number -09321 +2 with the specification

49

E12. 4 will be treated as though the decimal point had been punched
between the 0 and the 9.

If the decimal point is punched in the card, its position overrides the
position indicated in the FORMAT specification.

ADDITIONAL INPUT/OUTPUT STATEMENTS

The following statements are not available to all FOR TRAN processors;
however, they are common to 704, 705, 7070, 709, and 7090 FORTRAN.

WRITE OUTPUT TAPE

General Form of the WRITE OUTPUT TAPE Statement

"WRITE OUTPUT TAPE i, n, List" where i is a tape unit desig
nation (unsigned fixed point constant or fixed point variable), n is
the statement number of a FORMAT statement, and List is a list
of quantities for transmission.

Examples:

WRITE OUTPUT TAPE 42, 30, (A(J), J=l, 10)
WRITE OUTPUT TAPE L, 30, (A(J), J=l, 10)

The WRITE OUTPUT TAPE statement causes the object program to write
BCD information on tape unit i.

Further information regarding writing and reading tapes, I/O unit desig
nation, and carriage cor:itrol for off-line printing is included in the individual
programming and operating manuals.

READ INPUT TAPE

General Form of READ INPUT TAPE Statement

"READ INPUT TAPE i, n, List" where i is a tape unit designation
(unsigned fixed point constant or fixed point variable), n is the
statement number of a FORMAT statement, and List is a list of
quantities for transmission.

Examples:

READ INPUT TAPE 24, 30, K, A(J)
READ INPUT TAPE N, 30, K, A(J)

The READ INPUT TAPE statement causes the object program to read BCD
information from tape unit i. Record after record is brought in, in accord
ance with the FORMAT statement, until the complete list has been satisfied.

so

END FILE

General Form of the END FILE Statement

"END FILE i" where i is a tape unit designation (unsigned fixed
point constant or fixed point variable).

Examples:

END FILE 29
END FILE K

The END FILE statement causes the object program to write an end-of-file
mark on tape unit i.

REWIND

General Form of the REWIND Statement

"REWIND i" where i is a tape unit designation (unsigned fixed
point constant or fixed point variable).

Examples:

REWIND 3
REWIND K

The REWIND statement causes the object program to rewind tape unit i.

BACKSPACE

General Form of the BACKSPACE Statement

"BACKSPACE i" where i is a tape unit designation (unsigned fixed
point constant or fixed point variable).

Examples:

BACKSPACE 3
BACKSPACE K

The BACKSPACE statement causes the object program to backspace tape
unit i by one record.

Some systems have additional storage facilities and/ or output devices.
Appropriate commands for these facilities are found in the individual
reference manuals.

si

PROBLEMS

•

1. Write the minimum specification by which each of the following may
be output (allow a blank for preceding plus signs).

a. 12.256
b. 18. 032
c. 27
d. -0. 3201E-04
e. O. 2000Ebl 7
f. O. 071Eb26
g. -0.178E-01
h. -321
i. 1.12
j. -7.01

2. Write the statements required to punch a card with the words
THE FOLLOWING ARE PAYROLL CARDS

3. Which of the following are valid statements ?

a. FORMAT (13, El2. 8/(5Fl0. 2))
b. PRINT 2, A, (B(I), I=l, 10)
c. FORMAT (312)
d. PRINT A
e. PRINT 276, A, I, B, J
f. FORMAT (3F10. 4)
g. PRINT 4, A, B, 3. 2, D
h. FORMAT (2(Fl0. 4, 14))
i. FORMAT (20HGObTObNEXTbJOB, ElO. 6, 13)
j. FORMAT (1100, F18. 9, El5. 7)

52

CHAPTER 7: SUBROUTINES

FUNCTIONS

Suppose that a program is being written which, at various points, requires
identical kinds of computation, with different data. It would simplify
writing that program if the computation could be written only once and then
could be referenced freely, each reference having the same effect as though
the computation were written completely at the place where reference was
made.

Likewise, programming would be simplified if pre-written routines could
be easily incorporated when desired. For example, to take the square
root of a number, a program must be written with this object in mind. If
a program is already written to take a square root, it would be desirable
to be able to incorporate that program into other programs where square
root calculations are required.

FORTRAN provides for both of the above situations through the use of
FORTRAN-coded subroutines and/or machine-language subroutines. A
subroutine is considered to be any sequence of instructions which performs
some desired operation.

Provisions for subroutines vary among processors; therefore, the reader
is referred to the individual reference manuals for precise information
concerning this subject. However, as an introduction to those manuals,
the following is a generalized discussion of subroutines and a specialized
sub-set of subroutines called functions.

In mathematics, a function is a statement of the relationship among a
number of variables; its value depends upon the values assigned to the
variables (arguments) of the function. The same definition of function is
true in FOR TRAN, with one restriction. Whereas a function may normally
be thought of as having one or more than one value, a function in FOR TRAN
always has a single value.

Suppose it is desired to use the function

f(x) = 7x2+5x+3

Thus, f(x) states a series of computations to be carried out regardless of the
value assigned to x. The value of f(x) will depend upon the value assigned
to x, which is the argument of the function.

To use a function in FOR TRAN, it is necessary to:

1. Define the function

2. Call the function

These two steps will be illustrated here and discussed later.

53

Definition. The following statement might define the function discussed
above:

SOMEF(X)=7. O*X**2+5. O*X+3. 0

Calling. The following statement employing SOMEF(X) might be used:

A=3. 5+SOMEF(Y+Z)

In this use of SOMEF(X), the quantity Y+Z will be substituted wherever X
appeared in the definition. SOMEF will then be computed and its value
will be added to 3. 5 to produce a value for A. The result will be the same
as if the following statement had been written

A=3. 5+7. O*(Y+Z)**2+5. O*(Y+Z)+3. 0

Defining Functions

There are three steps in the definition of a function in FORTRAN:

1. The procedure for finding the value of the function must be stated.
(This may be an arithmetic expression.)

2. The arguments of the function must be stated. All quantities which
affect the value of the function and which are not arguments are
treated as parameters; their values must be set before the function
may be evaluated.

3. The function must be assigned a unique name by which it may be called.

FOR TRAN provides four ways of stating the procedure for finding the value
of a function.

1. Arithmetic statement functions. These functions are defined by a
single arithmetic statement in the source program.

2. Built-in functions. These are functions which are pre-defined and
exist in the processor. They are significantly different from other
functions in that they are open subroutines. An open subroutine is
one that is incorporated into the object program each time it is referred
to by the source program. All other subroutines (closed subroutines)
appear only once in the object program, regardless of the number of
times they are referenced 'in the source program.

3. Library functions. These functions are pre-defined and exist in a
program library, which may be a card deck or a magnetic tape.
Library functions are originally coded in machine language.

4. FUNCTION subprogram. These functions are pre-defined and may
exist in a program library. They differ from other functions in that
they may originally be coded in FORTRAN and may consist of more
than one FOR TRAN statement.

54

Each type of function:

1. May use other functions in its definition.

2. May have as many of the variables as desired stated as arguments.

3. Must have names formed in accordance with the rules for naming
functions. The rules for naming arithmetic statement functions,
built-in functions, and library functions are the same; the rules for
forming FUNCTION subprogram names are different.

Calling Functions

When the name of a function appears in any FOR TRAN arithmetic expression,
it is construed to be a call-in of the subroutine to evaluate the named
function; thus, the appearance of the function with its arguments serves
to cause the computations indicated by the function definition.

The following rules must apply when calling functions:

1. The function name indicates the mode of the single value that will be
the result of the function evaluation. The function name may appear
anywhere in an expression that a subscripted variable of the same
mode may appear.

2. When calling a function, . the name must be followed by parentheses
enclosing the function arguments. These arguments must correspond
in number, order and mode with the arguments which appeared in the
function definition.

ARITHMETIC STATEMENT FUNCTIONS

At this point, in order to clarify some of the concepts that have been
developed, some of the rules for using arithmetic statement functions
will be discussed below.

The statement defining an arithmetic statement function closely resembles
a conventional arithmetic statement:

FUNF(A,B)=3. *A/B**2

FUNF is the function name
A and B are the function arguments
The expression on the right defines only the~ of computation
to be performed; it causes no computations to be performed.

This function might be used in the following arithmetic statement:

C=FUNF(D, E)

which would be exactly equivalent to writing the arithmetic statement

C=3. *D/E**2

55

Note the correspondence between A and B in the function statement and D
and E in the arithmetic statement.

The quantities enclosed in parentheses following the function name are the
arguments of the function. They are dummy variables for which substitution
is made when the function is used in an arithmetic statement. Any of the
variables in the expression on the right may be listed as arguments in the
parentheses following the function name on the left; however, those quantities
on the right which are not arguments must have their values assigned by the
program before the function is referred to in an arithmetic statement.

Example:

The arithmetic statemerit function

OTHERF(X, Y, I)=A*X+Y/2. -E**I

used in the arithmetic statement

D=B+C-OTHERF(R, Q, J)

would cause the following computations

D=B+C-(A*R+Q/2. -E**J)

General Form of an Arithmetic Statement Function Name

The name of the function consists of alphameric characters
(except special characters), of which the last must be F and the
first must be alphabetic. The first character must be X if and
only if the value of the function is to be an integer.

The name of the function is followed by parentheses enclosing the
arguments separated by commas.

The minimum and maximum number of characters in a function
name varies among FORTRAN processors. For the following
discussion, assume the name must consist of 4 to 7 characters.

Examples:

ABSF(B)
XMODF (MIN, K)
COSF(A)
FIRSTF(Z+B, Y)

Note that the integer indicators I, J, K, L, M, and N do not cause a function
to have an integer value; an arithmetic statement function will have an
integer value only if its first character is X.

56

Defining Arithmetic Statement Functions

These are functions which are defined by a single FORTRAN arithmetic
statement and apply only to the particular program or subprogram in
which their definition appears.

General Form of an Arithmetic Statement Function

"a=b" where a is a function name followed by parentheses en
closing its arguments (which must be distinct non-subscripted
variables) separated by commas, and b is an expression which
does not involve subscripted variables. Any functions appearing
in b must be defined previously.

Examples:

The following are valid arithmetic statement functions:

FIRSTF(X)=A*X+B
SECONDF(X, B)=A*X+B
THIRDF(D)=FffiSTF(E)/D
MAXF(A, I)=A**I+B-C

The following are not valid arithmetic statement functions:

MAXF(A, I)=A **B+I (expression on the right is mixed mode)
NEXTF(3, J, K)=3*I+J**K (arguments must be variables)
SOMEF(A(I))=A(I)/B+3 (argument must be non-subscripted in

the function definition)

As many as desired of the variables appearing in the expression on the right
hand side of the equal sign may be stated on the left-hand side to be the
arguments of the function. Since the arguments are really only dummy
variables, their names are unimportant (except as indicating integer or
floating point mode) and may even be the same as names appearing else
where in the program.

Those variables on the right-hand side which are not stated as arguments
are treated as parameters. Thus, if FffiSTF is defined in a function
statement as FffiSTF(X)=A*X+B, then a later reference to FIRSTF(Y) will
cause ay+b, based on the current values of a, b and y, to be computed.

The arguments of an arithmetic statement function reference may be
expressions and may involve subscripted variables; thus a reference to
FIRSTF(Z+Y(I)), with the above definition of FIRSTF, will cause a(z+yi)+b
to be computed based on the current values of a, b, Yi and z.

Rule: All of the arithmetic statements defining funct~ons to be used in a
program must precede the first executable statement of the program.

57

Using Arithmetic Statement Functions

Functions may be used in arithmetic statements in the same manner as
subscripted variables. As with the use of subscripted variables, the
mode of an expression may not be mixed.

Examples:

The following are valid uses of functions:

A=SOMEF(B, C)+D
B=XSOMEF(K, L)+I/J
C=OTHERF(X+Y-Z, l)/SOMEF(E, F)

The following are not valid uses of functions:

I=A+XSOMEF(H, R) (expression is mixed)
JOBl=MAX**MINF(I, J) (an integer quantity may not have

a floating point exponent)

SUBROUTINE SUBPROGRAMS

In addition to functions, FORTRAN provides for the use of SUBROUTINE
subprograms.

These subroutines are pre-defined and may exist in a program library.
They may be coded in FOR TRAN and may consist of more than one FOR TRAN
statement. These subroutines differ from functions in two ways:

1. They may not be referenced by their appearance in an arithmetic
expression. To be called, they require a special statement named
a CALL statement.

2. They may return more than one value.

MACHINE- LAN GU AGE SUBROUTINES

All FORTRAN processors provide for the use of subroutines which have
been coded in machine language. These subroutines may be given
FORTRAN-type names and may be called by FORTRAN statements. These
subroutines must be written in accordance with rules found in the individual
reference manuals.

58

PART IV: ANALYSIS OF INDIVIDUAL FORTRAN SYSTEMS

This portion of the manual will deal with the individual FOR TRAN processors
and their characteristics.

Chapter 8 is divided into 8 sections which deal individually with each
FORTRAN processor. These sections will state most of the more
important characteristics and special features. of each processor such as
the magnitude of fixed point constants, types of subroutines available, etc.

Chapter 9 gives a chart which shows the commands available for each
processor and gives the general form and examples of each statement in
the FOR TRAN language.

Additional details regarding the individual processors, actual machine
compilation, object program execution, and so forth, are available in
separate programming and operations reference manuals.

CHAPTER 8: SYSTEM SPECIFICATIONS

The following specifications are in addition to, and supplement, the rules
given in preceding sections for writing FOR TRAN programs.

SECTION 1: 650 FORTRAN

Note: Users of the IBM 650 may also be interested in Section 2,
"650 FOR TRANSIT. "

Source Machine. Basic IBM 650 with index registers, alphabetic device,
and special character device - Group II.

Object Machine. Same as above, plus the floating _point arithmetic device.

Representation of Integer Constants. 1 to 10 decimal digits.

Representation of Floating Point Constants. 1 to 8 decimal digits plus
optional exponent. The magnitude of the constant must lie between
approximately 10-50 and 1049 or be zero.

Length of Variable Names. 1 to 5 alphameric characters.

Subscripts. Two subscripts are permitted for any variable.

Arrangement of Arrays in Storage. Arrays are stored columnwise in the
form Ai 1,A2 1, ••• ,Am 1,A1 2, ••• ,Am n·

' ' ' ' '
Statement Numbers. Must consist of 4 decimal characters including
leading zeros.

Statements. Maximum of 125 characters excluding blanks, continued on
as many cards as desired. Each initial card of a statement (whether
continued or not) must have a zero punch in column 6. Continuation cards

59

must have a non-zero punch in column 6. If a statement with a statement
number is continued, the statement number must be punched in each
continuation card. Statements are punched in columns 7-36 only; columns
37-80 must be blank.

Subroutines. Built-in functions are available and provision is made for
Library functions. Machine language or symbolic language functions may
be added to individual programs.

SECTION 2: 650 FOR TRANSIT

Source Machine. IBM 650 with special features as outlined in reference
manual.

Object Machine. Basic IBM 650. (FOR TRANSIT II also requires index
registers and automatic floating decimal arithmetic.)

Representation of Integer Constants. 1 to 10 decimal digits.

Representation of Floating Point Constants. 1 to 8 decimal digits plus
optional exponent. The magnitude of the constant must be between 10-50
and 1050 or be zero.

Length of Variable Names. 1 to 5 alphameric characters.

Subscripts. Two subscripts are permitted for any variable.

Arrangement of Arrays in Storage. Arrays are stored columnwise in the
form Ai i,Az i, ••• ,Am i,A1 z, ••• ,Am n·

' ' ' ' '
Statement numbers. For FOR TRANSIT I and II, a statement number of
0000 to 0999 is required for all statements (all leading zeros must be
punched). For FOR TRANSIT I(S) and II(S), a statement may or may not
have a number, and that number may range from 1 to 999 without leading
zeros.

Statements. The specific format for writing statements varies between
FOR TRANSIT and FOR TRANSIT(S), and reference should be made to
the manual.

Subroutines. Built-in functions are available, and function subroutines may
be added by the programmer.

60

SECTION 3: 1620 FORTRAN

Note: Some 1620 FORTRAN systems use punched tape for input/output and
thus the rules for preparing FORTRAN statements for these systems vary
from other FOR TRAN systems.

Source Machine. Any IBM 1620 with the same size storage and the same
input/ output devices as the object machine.

Object Machine. Any IBM 1620 with the same size storage and the same
input/ output devices as the source machine.

Representation of Integer Constants. 1 to 4 decimal digits.

Representation of Floating Point Constants. Any number of decimal digits,
plus optional exponent, with magnitude between 10-50 and 1049, or zero.

Length of Variable Names. 1 to 5 alphameric characters.

Subscripts. Two subscripts are permitted for any variable. Where c is
a constant and v is a variable, each subscript may take one of the following
forms:

c
v
v+c
v-c

Arrangement of Arrays in Storage. Arrays are stored columnwise in the
form A1 1' A2 1' ... , Am 1' Ai 2, ••• , Am n· , , , , ,

Statement Numbers. Any number from 1 to 9999.

Statements. 72 characters including blanks; continuation cards are not
permitted.

Subroutines. Only built-in functions are available.

• Input/Output. DO-type notation not permitted in Lists. A conversion not
available.

SECTION 4: BASIC 7070/7074 FORTRAN

Note: Users of Basic 7070/7074 FORTRAN may also be interested in
Section 5, "7070/7074 FORTRAN."

Source Machine. IBM 7070/7074 with minimum core storage.

Object Machine. Any IBM 7070/7074 with sufficient core storage, regardless
of whether the source program is translated on the 7070 or 7074.

Representation of Integer Constants. 1 to 10 decimal digits.

61

Representation of Floating Point Constants. Any number of decimal digits,
plus optional exponent, with magnitude between io-50 and io49, or zero.

Length of Variable Names. i to 5 alphameric characters.

Subscripts. Two subscripts are permitted for any variable.

Arrangement of Arrays in Storage. Arrays are stored columnwise in the
form Ai i,A2 i, .•• ,Am i,Ai 2, ••• ,Am n•

' ' . ' ' '
Statement Numbers. i to 5 digits; leading zeros are flot required.

Statements. Columns 7-72 are used for the initial card of a statement, and
each statement may have up to 9 continuation cards.

Subroutines. Library subroutines are available, and provision is made
for symbolic language subroutines.

SECTION 5: 7070/7074 FORTRAN

Source Machine. IBM 7070/7074 with a minimum of six IBM 729 magnetic
tape units.

Object Machine. Any IBM 7070/7074 with sufficient core storage regardless
of whether the source machine was a 7070 or 7074.

Representation of Integer Constants. i to io decimal digits with magnitude
less than the size of core storage.

Representation of Floating Point Constants. Any number of decimal digits,
plus optional exponent, with magnitude between io-50 and io49, or zero.

Length of Variable Names. i to 6 alphameric characters.

Subscripts. Three subscripts are permitted for any variable.

Arrangement of Arrays in Storage. Arrays are stored columnwise in the
form Ai i, A2 i, ••• , Am i, Ai 2,. •• , Am n· Thus, the first of the

' ' ' ' ' subscripts varies most rapidly, and the last varies least rapidly. The
same is true of 3-dimensional arrays.

Statement Numbers. i to 5 decimal digits.

Statements. Each statement may have as many as nine continuation cards.

Subroutines. Built-in functions, Library functions, and Arithmetic State
ment functions are available as well as FOR TRAN Functions and
SUBROUTINE subprograms. Provision is made for symbolic language
routines.

62

SECTION 6: 705 FORTRAN

Source Machine. IBM 705 with 40, 000 memory positions and 8 tapes.

Object Machine. Any IBM 705 with sufficient memory.

Representation of Integer Constants. i to io decimal digits.

Representation of Floating Point Constants. Any number of decimal digits,
plus optional exponent, with magnitude between io-99 and io99, or zero.

Length of Variable Names. i to io alphameric characters.

Subscripts. Three subscripts are permitted for any variable.

Arrangement of Arrays in Storage. Arrays are stored row-wise (unless
modified by the input/output list) in the form Ai 1' Ai 2, ••• , Ai m'

' ' ' A2 i' ••• , An m· Thus, the first of the subscripts varies least rapidly,
' ' and the last varies most rapidly. The same is true of 3-dimensional arrays.

Statement Numbers. i to 5 digits.

Statements. Each statement may have up to nine continuation cards.

Subroutines. Library functions and Arithmetic Statement functions are
available.

Input/Output. X specification not permitted.

SECTION 7: 704 FORTRAN

Source Machine. IBM 704 with at least 4, 096 storage locations, i drum,
4 tape units, i on- or off-line card punch, i on-line card reader, and i
on-line printer.

Object Machine. Any IBM 704 with sufficient core storage.

Representation of Integer Constants. i to 5 decimal digits with magnitude
< 217.

Representation of Floating Point Constants. Any number of decimal digits,
plus optional exponent, with magnitude between 10-38 and io38, or zero.

Length of Variable Names. i to 6 alphameric characters.

• Subscripts. Three subscripts are permitted for any variable. The value of
a subscript may not exceed the size of core storage.

Arrangement of Arrays in Storage. Arrays are stored columnwise in the
form Ai, i, A2, 1, ••• , Am, i, Ai, 2, ••• , Am, n• Thus the first of the sub
scripts varies most rapidly, and the last varies least rapidly. The same
is true of 3-dimensional arrays.

63

Statement Numbers. 1 to 32767.

Statements. Up to nine continuation cards are permitted for each statement.

Subroutines. All of the subroutine types are available.

Additonal Features. Provision is made for Boolean arithmetic and
symbolic machine language in source statements.

SECTION 8: 709/7090 FORTRAN

Source Machine. IBM 709 or 7090 with at least 8, 192 storage locations,
5 tape units, ion- or off-line card punch, ion-line card reader, and i
on -line printer.

Object Machine. Any IBM 709 or 7090 with sufficient core storage, regardlesf
of whether the source program was compiled on the 709 or 7090.

Re~resentation of Integer Constants. 1 to 5 decimal digits with magnitude
< 2 7.

Representation of Floating Po.int Constants. Any number of decimal digits,
plus optional exponent, with magnitude between 10-38 and 1038, or zero.

Length of Variable Names. 1 to 6 alphameric characters.

Subscripts. Three subscripts are permitted for any variable. The value
of a subscript may not exceed 2is.

Arrangement of Arrays in Storage. Arrays are stored columnwise in the
form Ai, 1, A2, i, ••• , Am, i, Ai, 2, ••• , Am, n• Thus the first of the sub
scripts varies most rapidly, and the last varies least rapidly. The same
is true of 3-dimensional arrays.

Statement Numbers. i to 32767.

Statements. Up to nine continuation cards are permitted for· each statement.

Subroutines. All of the subroutin~ types are available.

• Additional Features. Provision is made for Boolean, double-precision,
and complex arithmetic and for source language debugging.

64

CHAPTER 9: THE FORTRAN STATEMENTS

•

The following table indicates the available commands for each of the
FOR TRAN processors. Statements that are common to all processors
are so noted.

~ r:!: ~ R ~
~

f-1 0 r:!: g r.... 0
R 0

~ ~
r....

0 0
R

0 ~ N r.n ...
R O'I r.n \0 R :q 0 R u \0 \0 ~ r....

ACCEPT n,List x
ASSIGN i TO n x x x x
BACKSPACEi x x x x x
CALL NAME (a1, a21 • • ·, ~) x x x
COMMON (a1, a2, ••• , an) x x x
CONTINUE x x x x x x x x x
DIMENSION vi, v21 ••• , vn x x x x x x x x x
DO n i=m1 1 m2, m3 x x x x x x x x x
END (11, I2, I3, I4, I5) 1 1 2 2 2 2 2
END FlLE i x x x x x
EQUIVALENCE (a, b, c, •••),(d, e,f, •••), ••• x x x x x
FORMAT (s1 1 s2, •• ·,Sn) x x x x x x
FREQUENCY n(i, j, •••), m(k, I, •••),· ••• 3 x x
FUNCTION Name (ai, a2, ••• , an) x x x
GOTOn x x x x x x x x x
GO TO n, (n1 1 n2, ••. , llro) x x x x
GO TO (n1, n2, ••• , nm), i x x x x x x x x x
IF ACCUMULATOR OVERFLOW ni, n2 x x x x x
IF DMDE CHECK ni, n2 x x x x x
IF QUOTIENT OVERFLOW ni,n2 x x x x x
IF (a) n1, n2, n3 x x x x x x x x x
IF (SENSE LIGHI' i) nv n2 x x x x
IF (SENSE SWITCH i) nl, n2 x x x x x
PAUSE n 4 5 5 4 5 5 5 5 5

PRINT n, List x x x x x x
PUNCH n, List 6 6 6 x x x x x x
PUNCH TAPE n, List x
READ n, List 6 6 6 x x x x x x
READ DRUM i, j, List 3 x x
READ INPUT TAPE i, n, List x x x x x
READ TAPE i, List x x x x x
READ TAPE n, List 7
RETURN x x x
REWIND i x x x x x
SENSE LIGHI' i x x x x
STOPn 4 4 5 4 x x x x x
SUBROUTINE Name (a1, a2, ••• , an) x x x
TYPE n, List x x x
WRITE DRUM i, j, List 3 x x
WRITE OUTPUT TAPE i, n, List x x x x x
WRITE TAPE i_i_List x x x x x
1. Ii are not permitted.
2. Ii are optional and may be ignored.
3. May be included but will be ignored.
4. Then is not permitted. _

5. Then is optional and may be ignored.
6. Then is optional and is ignored.

7. This statement was changed to 11 ACCEPT TAPE n, List" after this manual went to i:ress.

65

Following is a list of all FORTRAN statements. The general form of the
statement is given and explained, followed by an explanation of what the
statement does and examples of how it is coded.

GENERAL FORM: ACCEPT n, List where n is the statement number of
a FORMAT statement, and List is a list of quantities to be transmitted.

Purpose: This statement causes the program to read information from the
console typewriter in accordance with FORMAT statement n and
transmit this information into core storage as the values of the variables
in the list.

Example: ACCEPT 9, X, Y, Z

GENERAL FORM: ASSIGN i TO n where i is a statement number and n is
a non-subscripted integer variable which appears in an Assigned GO TO
statement.

Purpose: This statement causes a subsequent GO TO n, (n1, n2, ••• , nm)
to transfer control to statement number i where i is included in the series
nl, h2, ••• 'nm·

Example: ASSIGN 14 TO J

GENERAL FORM: BACKSPACE i where, depending on the system, i is a
symbolic tape name (unsigned integer constant or integer variable) or an
actual tape number.

Purpose: This statement causes the object program to backspace tape unit i.

Examples: BACKSPACE 10
BACKSPACE LX

GENERAL FORM: CALL Name (alt a2, ••• , an) where Name is the name
of a Subroutine subprogram, and each ai is an argument.

Purpose: This statement is used to call Subroutine subprograms; the CALL
transfers control to the subprogram and presents it with the parenthesized
arguments.

Examples: CALL MATMPY (X, 5, 10, Y, 7, 2)
CALL QDRTIC (P*9. 732,Q/4. 536,R-S**2. O,Xl,X2)

GENERAL FORM: COMMON (a1, a2, ••• , an) where each ai is the name of
a variable or non-subscripted array name.

Purpose: This statement causes each ai to be assigned a location in
common storage.

66

Examples: COMMON A, B, C, D, E
COMMON X,ANGLE,MATA,MATB

GENERAL FORM: CONTINUE

Purpose: This statement is used as the last statement in the range of a
DO when the DO would otherwise end with an IF- or GO TO-type statement
(which is not permitted).

Example: CONTINUE

GENERAL FORM: DIMENSION vi, v2, ••• , vn where each Vi is the name of
an array subscripted with 1, 2, or 3 unsigned integer constants. Each
subscript indicates the size of one dimension of the array.

Purpose: This statement provides the information necessary to allocate
storage in the object program for arr~ys.

Examples: DIMENSION A(lO), B(5, 5, 5)
DIMENSION J(12, 3), E(5)

GENERAL FORM: DO n i=mi, m2, m3 where n is a statement number, i
is a non-subscripted integer variable, and mv m2, m3 are each either an
unsigned integer constant or a non-subscripted integer variable. If m3 is
not stated, it is taken to be 1.

Purpose: This statement is a command to execute repeatedly the statements
which follow, up to and including the statement with statement number n.
The first time the statements are executed with i=m1. For each succeeding
execution i is increased by m3• After they have been executed with i equal
to the highest of this sequence of values which does not exceed m2, control
passes to the statement following statement n.

Examples: DO 25 J=l, 15
DO 25 J=l, I, 2

GENERAL FORM: END (Iv I2, ••• , In) where each Ii, if permitted by the
system, is O, 1 or 2.

Purpose: This statement is used to indicate the end of the source program
deck. Each Ii specifies an action to be taken by FORTRAN with regard to
the setting of the individual Sense Switches.

Examples: END (0, O, 0, O, 1)
END (0, 1, 2, O, 1)

67

GENERAL FORM: END FILE i where i, depending on the system, is a
symbolic (unsigned integer constant or integer variable) or actual tape unit
designation.

Purpose: This statement causes the object program to write an end-of-file
mark on tape unit i.

Examples: END FILE 14
END FILE INFLE

GENERAL FORM: EQUIVALENCE (a, b, c, •••), (d, e, f, •••), •••• where
a, b, c, d, e, f, ••• are variables optionally followed by a single unsigned
integer constant in parentheses.

Purpose: This statement causes all of the variables specified by each
parenthetical expression to be assigned the same location in storage.

Examples: EQUIVALENCE (E, F(3))
EQUIV ALEN CE (I, J(3)), (A, E, G(l4))

GENERAL FORM: FORMAT (sv s2, ••• 'Sn) where each Si is a format
specification.

Purpose: This statement describes the type of conversion and format of
data to be used in the transmission of an input/ output list.

Examples: FORMAT (12/(E12. 4, FlO. 4))
FORMAT (110)
FORMAT (E15. 6, FlO. 6/5110)

GENERAL FORM: FREQUENCY n(i, j, •••), m(k, 1, •••), •••• where n, m, •••
are statement numbers and i, j, k, 1, • • • are unsigned integer constants.

Purpose: This statement assists the FORTRAN executive program by
indicating the relative frequencies of the branches of various transfer type
statements.

Examples: FREQUENCY 30(1, 2, 1), 40(11)
FREQUENCY 50(1, 7, 1, 1), 10(1, 7, 1, 1)

GENERAL FORM: FUNCTION Name (a1, a2, ••• , an) where Name is the
name of a function and the ai are the arguments.

Purpose: This statement is used at the beginning of a FUNCTION-type
subprogram to define its name and its arguments.

Examples: FUNCTION ARCSIN(RADIAN)
FUNCTION ROOT(B, A, C)

68

GENERAL FORM: GO TO n where n is a statement number.

Purpose: This statement causes the program to. transfer control to
statement n.

Example: GO TO 3

GENERAL FORM: GO TO n, (ni, n2, ••• , nm) where n is a non-subscripted
integer variable appearing in a previously executed ASSIGN statement, and
nlt n2, ••• , nm are statement numbers which may have been assigned ton
by a previously executed ASSIGN statement.

Purpose: This statement causes transfer of control to the statement with
statement number equal to that value of n which was last assigned by an
ASSIGN statement.

Example: GO TO K, (17, 12, 19)

GENERAL FORM: GO TO (ni, n2, ••• , nm), i where nl, n2, ••• , nm are
statement numbers and i is a non-subscripted integer variable.

Purpose: This statement causes transfer of control to the first, second,
etc. , item in the list nlt n2, ••• , nm, depending on whether i is 1, 2, ••• , m.

Example: GO TO (30, 42, 50, 9), J

GENERAL FORM: IF ACCUMULATOR OVERFLOW nl, n2 where nl and
n2 are statement numbers.

Purpose: This statement causes transfer to statement nl if overflow has
occurred, or to n2 if no overflow has occurred.

Example: IF ACCUMULATOR OVERFLOW 10, 7

GENERAL FORM: IF DIVIDE CHECK ni, n2 where ni and n2 are statement
numbers.

Purpose: This statement causes transfer to statement ni if divide check
has occurred, or to statement n2 if divide check has not occurred.

Example: IF DIVIDE CHECK 12, 49

GENERAL FORM: IF QUOTIENT OVERFLOW nlt n2 where ni and n2 are
statement numbers.

Purpose: This statement causes transfer to statement ni if overflow has
occurred, or to n2 if overflow has not occurred.

69

Example: IF QUOTIENT OVERFLOW 12, 8

GENERAL FORM: IF (a) n 1,n2,n3 where a is an expression and n1 ,n2 ,
and n3 are statement numbers.

Purpose: This statement causes transfer of control to the statement
numbered n1 if the expression a is less than zero, n2 if a is equal to zero,
or n3 if a is greater than zero.

Examples: IF (X+Y) 10, 5, 3
IF (I+3) 2,7,4

GENERAL FORM: IF(SENSE LIGHT i) n1, n2 where i is the number of
a Sense Light and n1 and n2 are statement numbers.

Purpose: This statement causes transfer of control to statement n1 or n2
if Sense Light i is ON or OFF, respectively.

Example: IF (SENSE LIGHT 3) 30, 40

GENERAL FORM: IF (SENSE SWITCH 1) n1, n2 where i is the number of
a Sense Switch and n1 and n2 are statement numbers.

Purpose: This statement causes transfer of control to statement n1 or
n2 if Sense Switch i is DOWN or UP, respectively.

Example: IF (SENSE SWITCH 3) 30, 108

GENERAL FORM: PAUSE n where n, if permitted in the system, is a
number which is to be displayed on the operator's console.

Purpose: This statement causes the object program to halt in such a way
that depressing the Start key causes the object program to continue
execution with the next statement.

Example: PAUSE 3

GENERAL FORM: PRINT n, List where n, if permitted by the system, is
the statement number of a FORMAT statement and List is a list of quantities
to be transmitted.

Purpose: This statement causes the items in the list to be printed on-line
in the format specified by statement n.

Examples: PRINT 12, A, I, J(3)
PRINT 2, (A(I), I=l, 10, 2)

70

GENERAL FORM: PUNCH n, List where n, if permitted by the system,
is the statement number of a FORMAT statement and List is a list of
quantities to be transmitted.

Purpose: This statement causes the items in the list to be punched on-line
in the format specified by statement number n.

Examples: PUNCH 10, A, I, J(3)
PUNCH 12, (A(I), I=l, 10, 3)

GENERAL FORM: PUNCH TAPE n, List where n is the statement number
of a FORMAT statement and List is a list of quantities to be transmitted.

Purpose: This statement causes the items in the list to be punched on paper
tape in the format specified by statement number n.

Examples: PUNCH TAPE 10, A, I, J(3)
PUNCH TAPE 12, A, B, C

GENERAL FORM: READ n, List where n, if permitted by the system, is
the statement number of a FORMAT statement and List is a list of
quantities to be transmitted.

Purpose: This statement causes IBM cards to be read on-line and causes
the values read in to be assigned as the values of the variables in the list.

Examples: READ 4,A,B,C,D
READ 7, (I(J), J=l, 12)

GENERAL FORM: READ DRUM i, j, List where i and j are each either an
unsigned integer constant or an integer variable, with the value of i between
1 and 8 inclusive and List is a list of quantities to be transmitted.

Purpose: This statement causes information from drum i, beginning in
location j, to be transmitted to core storage and assigned as the values of
the variables in the list.

Examples: READ DRUM 3,400,A,B,C,D(3)
READ DRUM K, J, A, B, C, D(3)

GENERAL FORM: READ INPUT TAPE i, n, List where i, depending on
the system, is an unsigned integer constant or an integer variable symbolic
tape designation or is an actual tape number; n is the statement number of
a FORMAT statement, and List is a list of quantities to be transmitted.

Purpose: This statement causes the program to read BCD information from
tape unit i in accordance with FORMAT statement n, and transmit this
data into core storage as the values of the variables in the list.

71

Examples: READ INPUT TAPE 24, 30, K, A(J)
READ INPUT TAPE N,30,K,A(J)

GENERAL FORM: READ TAPE i, List where i, depending on the system,
is an unsigned integer constant or integer variable symbolic tape designation
or is an actual tape unit, and List is a list of quantities to be transmitted.

Purpose: This statement causes the program to read information in internal
machine-language notation from tape unit i, and transmit this data into core
storage as the values of the variables in the list.

Examples: READ TAPE 24,A,B, C,D
READ TAPE K, A, B, C, D

• GENERAL FORM: READ TAPE n, List where n is the statement number
of a FORMAT statement, and List is a list of quantities to be transmitted. *

Purpose: This statement causes the program to read information from paper
tape in accordance with FORMAT statement n, and transmit this data into
core storage as the values of the variables in the list.

Example: READ TAPE 21,A,B,C

GENERAL FORM: RETURN

Purpose: This statement is used to return control from a subprogram to
the main program which called it.

Example: RETURN

GENERAL FORM: REWIND i where i, depending on the system, is an
unsigned integer constant or integer variable symbolic tape designation
or is an actual tape unit.

Purpose: This statement causes the object program to rewind tape unit i.

Examples: REWIND 3
REWIND K

GENERAL FORM: SENSE LIGHT i where i is the number of a Sense Light
to be turned ON. If i is zero, the Sense Lights are turned OFF.

Purpose: This statement permits Sense Lights to be turned ON or OFF
so that they may later be tested to cause a program branch by
IF (SENSE LIGHT i) nlt n2•

Examples: SENSE LIGHT 4

*See footnote 7, page 65.

72

GENERAL FORM: STOP n where n, if permitted, is a number to be
displayed on the operator's console.

Purpose: This statement causes the object program to halt. In most
systems, the object program may not be continued after execution of the
STOP statement.

Example: STOP

GENERAL FORM: SUBROUTINE Name (a1, a2, ••• , au) where Name is the
symbolic name of a subprogram, and each ai is an argument.

Purpose: This statement is the first statement of a SUBROUTINE-type
subprogram and defines it to be such, as well as defining its name and its
arguments.

Examples: SUBROUTINE MATMPY (A, N, M, B, L, C)
SUBROUTINE QDRTIC (B, A, C, ROOT!, ROOT2)

GENERAL FORM: TYPE n, List where n is the statement number of a
FORMAT statement and List is a list of quantities to be transmitted.

Purpose: This statement causes the quantities in the list to be typed on
the on-line typewriter in accordance with FORMAT statement n.

Examples: TYPE 3, A, B, C
TYPE 3, A, I(3)

GENERAL FORM: WRITE DRUM i, j, List where i and j are unsigned integer
constants or variables, with the value of i between 1 and 8 inclusive, and
List is a list of quantities to be transmitted.

Purpose: This statement causes quantities in core storage to be transmitted
to drum i, location j, in accordance with the list.

Examples: WRITE DRUM 2, 1000, A, B, C, D(6)
WRITE DRUM K,J,A,B,C,D(6)

GENERAL FORM: WRITE OUTPUT TAPE i, n, List where i, depending on
the system, is an unsigned integer constant or integer variable symbolic
tape designation or is an actual tape unit, n is the statement number of a
FORMAT statement, and List is a list of quantities for transmission.

Purpose: This statement causes the object program to write its output
on tape for later off-line printing according to FORMAT statement n.

Examples: WRITE OUTPUT TAPE 42, 30, (A(J), J=l, 10)
WRITE OUTPUT TAPE L, 30, (A(J), J=l, 10)

73

GENERAL FORM: WRITE TAPE i, List where i, depending on the system,
is an unsigned integer constant or integer variable symbolic tape
designation or is an actual tape unit.

Purpose: This statement causes the object program to write the quantities
specified by the list on tape unit i in internal machine notation.

Examples: WRITE TAPE 24, A, B, C, D
WRITE TAPE K,A,B, C,D

74

PART V: SAMPLE PROBLEMS

This section will present several FORTRAN problems, along with possible
solutions to these problems.

As an aid to explaining the solutions of these problems, the technique of
diagramming will be introduced and used here.

Diagramming, often called flow charting or block diagramming, is a
technique of schematically showing the steps which the computer must take
to produce the answers required by the problem. Diagramming thus
shows the logic of the program.

Diagrams serve two very important purposes:

1. They offer an easy notation for analyzing the steps required in the
solution of a problem.

2. They provide basic documentation in the form of a "map" of the
program, so that someone unfamiliar with the program can easily
determine what the program does and how it does it.

It is for the above reasons that diagramming is not only highly recommended,
but is often required at data processing installations.

Techniques of diagramming vary greatly, as do the symbols used. In
addition, detail in diagramming may range from very basic to the point
where almost every single machine instruction is represented in the
diagram.

The more complete the diagram, the easier is the job of actually writing the
program; however, initial analysis of a problem can usually be noted only
in major steps.

Since it will serve our purposes, only simple diagramming technique will
be explained here. Further details of this important technique are available
in the IBM reference manual Flow Charting and Block Diagramming
Techniques, form C20-8008.

The symbols which will be used and which are explained below are:

D 0
Direction of Flow Program Step Stop

D <>
Input/ Output Decision

75

The direction of flow simply shows the relationship of one symbol to
another.

Example:

.____A____.i----->l __ B __

The above would show that A is executed and then B is executed.

The input/ output symbol is used to refer to any operation that involves an
input/ output device.

Examples:

Read
a

card

The program symbol is used to represent any steps in the program which
are not represented by special symbols.

Examples:

Compute
A=B+C

Increase pay

number by 1
Find average

temperature

The decision symbol represents any logical decision that is contained in
the program.

Examples:

The stop symbol is used to indicate the end of the program. If there are
several ways to end the program, there may be several stop symbols.

Example:

76

PROBLEM 1

The use of these symbols will become clearer by studying the diagrams used
to explain the steps required to solve the sample problems.

In the problems below, statement numbers required by the logic of the
program are either 1 or 2 digits (e.g., 1, 5, 18); statement numbers
required for explanatory purposes only are 3 digits (e.g., 101, 782).

The problems below could be coded by any FORTRAN programmer; all
formulas, etc., from specialized fields are given. The solutions presented
are not the only possible solutions, nor necessarily the best and most
efficient solutions. In addition, the problem solutions are not necessarily
acceptable to all FORTRAN processors, although the basic statements are
suitable. Where a solution may not be used in any given FORTRAN system,
it is generally due to specialized rules required by that system for writing
statement numbers or for input/ output.

Given values for a, b, c, and d punched on a card, and a set of values for
the variable x punched one per card, evaluate the function defined by

{

ax2 + bx+c
f(x) = 0

-ax2 + bx-c

if X<d

if x = d
if X>d

for each value of x, and print the value of x and f(x).

A possible FOR TRAN program to solve this problem follows:

77

Compute
f(x)=ax2+

bx+c

x<d

START

~
Read a

card with
values of

a, b, c, d

x=d

Compute
f(x)=O

x>d

Compute
f(x)=-ax2+

bx-c

.r= C FOR C~MMENT

tS~~TEMENT c
NUMBER .3

I 5 6 7 10 15 20 25 30

FORTRAN STATEMENT
35 50 55 60 65 10 n

C FUNCTION OF X PROBLEM

3 FOFX =0.0

Typical output, where A = 10. O, B = 11. O, C = 12. O, D = 13. O, might be:

9.50000
io.00000
10.50000
11. 00000
11.50000
12.00000
12.50000
13.00000
13.50000
14.00000
14.50000
15.00000

1018.99996
1121. 99988
1229.99985
1342.99986
1460.99986
1583.99988
1711.99988

o.
-1685.99977
-1817.99966
-1954.99973
-2096.99982

The first. statement is a comment which will appear on source program
listings.

Statement 100 causes the first card to be read and causes the values punched
in that card to be assigned as the values of A, B, C, and D.

Statement 6 causes the next card to be read; it contains the first value of
X to be used by the program.

Statement 101 determines the relationship between X and D and determines
which formula to use in the computation of f(x). If X-D is negative (X < D),
transfer is to statement 2; if X-D is zero (X=D), transfer is to statement 3;
if X-D is positive (X > D), transfer is to statement 4.

Statements 2, 3, or 4 are used to determine the correct value of f(x), i.e.,
FOFX. Regardless of which computation occurs, control goes next to
statement 5.

Statement 5 prints out the values of X and f(x).

78

PROBLEM 2

Statement 104 causes transfer to statement 6 to read in the next value of
X, and the pattern continues until all of the X-cards have been processed.

The computer will automatically halt when it attempts to execute the READ
with no more cards in the card reader.

A deck of cards is given to be read in format (I 3, F 10. 2), one card for
each person in a certain village. The number in the first field is the
person's age; the number in the second is his income for 1960. Following
this deck is a card with -1 in the first field; this information will be used
to test for the end of deck.

Find the average salary of the people in each 5 yr. age group, i. e. , 0-4,
5-9, 10-14, •.• , 95-99. Print out the lower age limit for each group, i.e.,
O, 5, 10, ..• , 95, the average salary for that group, and the number of
people in each group. Precautions should be taken to avoid division by
zero in case there are no people in an age group.

79

No

Which age
group does
card
belong to?

Add 1 to
number of
persons in

OU

Add salary
to proper
group

80

START

t
Read

a
card

Yes

Select a
group

What is
average
salary?

What is
lowest
age in
group?

Print age
group, average
salary, persons
in group

Yes

r= C FOR C~MMENT

tS~~TEMENT c
NUMBER ~

5 6 7 10 15 20 25 30

FORTRAN STATEMENT
35 40 45 50 55 60 65 70 72

C POPULATION AND SALARY PROBLEM

103

1 04

105 S(N)=S(N)+SAL

• 1 07

The first statement is a comment card that will appear on program listings.

Statement number 3 is a format statement; notice that it provides for three
fields and, thus, can provide for both the input and output requirements of
this problem.

Statement 100 provides dimension information for the arrays P and S. P
will be a count of the number of persons in each of the 20 age groups; S
will be the total of the salaries earned by persons in each of the 20 age
groups.

Statements 101, 102, and 9 are initialization statements. They set each of
the elements in the arrays P and S equal to O. Thus, if there is no entry
in one of the elements of these arrays, that element will be equal to zero
rather than equal to some quantity that may be present due to previous
computations.

Statement 1 causes the first card to be read and assigns the quantity in the
first three columns as the value of K and the quantity in the next 10 columns
as the value of SAL.

Statement 103 is an end-of-deck test. If the end-of-deck card is read, K
will have the value -1. The expression K+l will then have the value 0 (-1+1)
and transfer will occur to statement 4 which causes the final computation
in the problem. If a valid card is read, K+l will be positive, and the
program will continue to statement 2. If for any reason K+l is negative,
there is an error and the program will stop.

81

PROBLEM 3

Statement 2 determines which age group the card belongs to. Thus, if the
age is 7, N will equal 2 (7 /5+1, which will be truncated to 1 +l); the card
should be included in the group 5-9.

Statement 104 is a counter of the number of persons included in each
member of the array.

Statement 105 is a summation of the salaries included in each member of
the array.

Suppose, for example, that a card is read for a person 27 years old with
salary of $5, 000. 00 per year. From statement 2, th,is would apply to the
6th member of the array. Thus statement 104 would increase P(6) by 1,
and statement 105 would increase S(6) by $5, 000. 00.

Statement 106 causes transfer to statement 1, which will cause the next
card to be read.

When the end-of-deck card is read, statement 103 will cause transfer to
statement 4, which will complete the computations required by the program.

Statement 4 is a DO which controls the following statements with the
exception of the STOP.

Statement 107 tests each member of the P array to determine if there are
any persons in the group. If there are no persons in the group, statement
5 is skipped, and the program continues with statement 6; this avoids
division by zero in statement 5. If there is a negative quantity in a group,
there is an obvious error and the program stops. If there are persons in
the group, the program continues with statement 5.

Statement 5 computes the average salary for each group by dividing the
total salary for that group, S(N), by the persons in that group, P(N). By
storing this average back in S(N), there is no need for a new variable to
represent average salary.

Statement 6 determines the lowest age in each group and assigns this as
the value of K. Thus, P(N), where N=2, refers to the age group starting
at (5*2-5).

Statement 7 causes the following to be printed; the lowest age in each
group, K; the average salary of that group, S(N); and the number of persons
in that group, P(N). If the DO is not satisfied, the next group is computed.
If the DO is satisfied, control passes to the next statement.

Statement 8 causes the computer to stop.

Find all of the prime numbers between 1 and 1, 000. A prime number is
an integer that cannot be evenly divided by any integer except itself and 1.
Thus, 1, 2, 3, 5, 7, 11, ••• are prime numbers. (9, for example, is not
a prime since it can be evenly divided by 3.)

82

Since all even numbers have 2 as a factor, we can eliminate all even
numbers from our list of primes, with the exception of the number 2 itself.

Further, it can be proven that if an odd number, X, is not prime, the
number that can be divided into it will be in the range from 3 to the integer
portion of the square root of X.

A program to solve the problem is shown below:

83

Let I equal
possible prime
number. Set

1=3

Compute
integer
portion of
VI

Let K equal
possible fac
tor of I. Set

K=2

Yes

No

Increase
I by 2

Increase
K by 1

Yes

r= C FOR C~MMENT

+ S~~TEMENT c
NUMBER ,'.l

l 5 6 7 10

c

1 04

1 0 5

106

FORTRAN STATEMENT
15 20 25 30 35 40 45 50 55 60 65 70 72

NUMBER PROBLEM

The first statement is a comment that will appear on listings only.

Statement number 100 will cause a heading to be printed by the object
program and will print the first two prime numbers (which are not computed
by the program), as follows:

FOLLOWING IS A LIST OF PRIME NUMBERS FROM 1 TO 1000.
1
2

Notice that the statement following statement 8 is a continuation card and
thus may not be given a statement number even for reference purposes •.

Statement 101 establishes an index, I, and sets its initial value equal to 3.
I represents the number being examined as a possible prime.

Statement 3 sets up a floating point variable equivalent to the integer quantity
in the index I. Thus, A has the value 3. O. The purpose of this statement
is to permit use of the expression in statement 102.

Statement 102 uses a function, SQRTF, to find the square root of a floating
point quantity. Thus, A no longer has the value 3. O, but has the value of
the positive square root of that number.

Statement 103 converts the quantity in A to an integer quantity. Thus, we
have determined the integer portion of the square root of the number that
we are examining as a possible prime number (i.e., the square root of I).

84

Statement 104 is a DO; its index is K. Thus K represents the possible
factors of I. For each possible prime number, this DO will permit
execution of the statements to and including statement 1. The first time
through the DO, K will have the value 2. Thereafter, K will be increased
by 1 until it is about to exceed J. Notice, when we are examining 3 as a
possible prime number, J will be equal to the integer portion of the square
root of 3, i. e. , J will be equal to 1. The statement we have written is thus
equivalent to:

104 DO 1K=2,1

This illustrates the fact that a DO will always be executed the first time
through the loop, although the index (K=2) already exceeds the test value
(J=l).

Statement 105 causes I to be divided by K. The first time through, this
will be equivalent to 3/2 or L=l (since the result will be truncated). If
truncation occurs, we know that K is not a factor of I since it cannot evenly
be divided into I. To determine whether truncation occurred, proceed to the
next statement.

Statement 106 tests for truncation by multiplication. If truncation did not
occur, L*K-I will be equal to zero. If truncation occurred, L*K-I will be
less than zero. The first time through, I is equal to 3, K is equal to 2,
and Lis equal to 1. L*K-I is equal to -1; thus truncation occurred and K
is not a factor. Consider a later case where 9 is being examined as a
possible prime number. I would be equal to 9; when K is equal to 3, L
would be equal to 3. L*K-I would be equal to O, and thus K(i. e., 3) would
be a factor of 9. If for any reason L*K-I is greater than zero, it is due
to a program error and transfer occurs to statement 4, .which is an error
routine.

If K is a factor of I (truncation does not occur), transfer is out of the DO to
statement 2 for examination of the next possible prime. If K is not a factor
of I (truncation occurs), transfer is to statement 1.

Statement 1 is the last statement in the range of the DO. It is necessary
because the DO would otherwise end with an IF statement, which is not
permitted. If a factor has been found and the DO is not satisfied, K is
increased by 1, and the DO continues. If a factor has not been found and
the DO is satisfied, transfer occurs to statement 107.

Statement 107 prints I as a prime, since no factor has been found.

Statement 2 increases I by 2, since only odd numbers are being tested as
possible prime numbers.

Statement 108 determines whether all the numbers in the range 1to1000
have been examined. If they have been examined, transfer occurs to
statement 7, which prints an end-of-job message. If all the numbers in
the range have not been examined, transfer is to statement 3 to examine the
next number.

85

PROBLEM 4

Statements 4 and 9 are an error routine.

Statements 7 and 6 are an end-of-job routine.

Statement 109 ends the program by stopping the computer.

Determine the current in an alternating current circuit consisting of
resistance, inductance, and capacitance in series, given a number of sets
of values of resistance, inductance, and frequency. The current is to be
determined for a number of equally spaced values of the capacitance (which
lie between specified limits) for voltages of 1. O, 1. 5, 2. O, 2. 5, and 3. 0 volts.

~he equation for determining the current flowing through such a circuit is

i= E

jR2+(27TfL-~)2

where i = current, amperes
E = voltage, volts

86

R = resistance, ohms
L = inductance, henrys

C = capacitance, farads
f = frequency, cycles per second
7T= 3.1416

A possible FOR TRAN program to solve this problem follows:

87

Read card with
initial and
final values of
capacitance

Set E=l

Set C
equal to

· initial
value

Compute
current
in
circuit

Increase
C by given
increment

Increase
Eby

o. 5

r= C FOR C~MMENT

t S~ ~.TEMENT c
NUMBER ,3

s 6 7 10

c

FORTRAN STATEMENT
15 20 25 30 35 40 so 55 60 65 10 n

CURRENT IN AC CIRCUIT

The first statement is a comment that will appear when the source program
is listed.

Statement number 7 causes the values of the resistance, the frequency, and
the inductance to be read, in that order, from the first card.

Statement 100 causes the initial and final values of the capacitance to be
read from the next card.

Statement 101 causes the values of the resistance, frequency, and inductance
to be printed.

Statement 102 sets the initial value of the voltage.

Statement 9 prints the initial value of the voltage.

Statement 103 sets the current value of the capacitance (FARAD), equal to
the first value of the capacitance to be used in calculation (FRDl).

Statement 5 specifies the actual calculation of the current in the circuit.

Statement 104 prints the current value of the capacitance and the result of
the calculation in statement 5.

Statement 105 compares the current value of the capacitance with the final
value to determine whether or not all values have been investigated. If
all values have been investigated (the expression is zero or positive),

88

transfer is to statement 4. If all values have not been investigated, transfer
is to statement 3.

Statement 3 causes the current value of the capacitance to be increased by
the given increment.

Statement 106 is a transfer to statement 5, which causes the calculation to
be repeated for the new value of the capacitance. This pattern is repeated
until all values of the capacitance have been investigated and control is in
statement 4.

Statement 4 compares the value of the voltage with the upper bound to
determine whether or not all specified values of the voltage have been used.
If all the values of the voltage have been used, transfer is to statement 7
to begin the next case. If all values of the voltage have not been used,
transfer is to statement 6.

Statement 6 causes the value of the voltage to be increased.

Statement 107 causes transfer to statement 9, which prints the· new value
of the voltage and continues the calculations with the new data.

The computer will halt when it attempts to execute statement 7 with no
more cards in the card reader.

89

APPENDIX A: LIST OF FORTRAN PUBLICATIONS

650 FORTRAN - Automatic Coding System for the IBM 650 Data
Processing System, Form C29-4047

FOR TRANSIT Automatic Coding System for the IBM 650 Data
Processing System, Form C28-4028

• IBM 1620 FORTRAN Specifications, Form J28-5598-0
IBM 1620 GOTRAN: Preliminary Specifications, Form J29-4205
IBM 1620 GOTRAN for C~rd Input/O~tput, Form J28-5557

704 FORTRAN Programming System, Form C28-6106
704 FORTRAN Operations, Form C28-6097

705 FORTRAN Programming System, Form J28-6l22

7070 Basic FORTRAN, Form C28-6099
IBM 7070 FORTRAN, Form J28-6045

709/7090. FORTRAN Programming System, Form C28-6054-2
32K 709/7090 FORTRAN: Double-Precision and Complex Arithmetic,

Form J28-6114-1
32K 709/7090 FORTRAN: Source Language Debugging at Object Time,

Form J28-6133
32K 709/7090 FORTRAN: Adding Built-In Functions, Form J28-6135
FORTRAN Assembly Program (F AP) for the IBM 709/7090, Form J28-6098-l
709/7090 FORTRAN Operations, Form C28-6066-3

Advance Specifications: 7090 FORTRAN and FORTRAN Assembly
Program (FAP), Form J28-6132

90

APPENDIX B: ADMISSIBLE CHARACTERS IN A FORTRAN SOURCE PROGRAM

The following chart indicates the list of characters which may be used in
a FORTRAN source program.

Card Card
Character Code Character Code

Blank M 11-4
12-3-8 N 11-5
12-4-8 0 11-6

+ 12 p 11-7
$ 11-3-8 Q 11-8

* 11-4-8 R 11-9
11 s 0-2

I 0-1 T 0-3
0-3-8 u 0-4
0-4-8 v 0-5
3-8 w 0-6

A 12-1 x 0-7
B 12-2 y 0-8
c 12-3 z 0-9
D 12-4 0 0
E 12-5 1 1
F 12-6 2 2
G 12-7 3 3
H 12-8 4 4
I 12-9 5 5
J 11-1 6 6
K 11-2 7 7
L 11-3 8 8

9 9

NOTE: The character $ can be used in FOR TRAN only as alphameric text
in a FORMAT statement.

FORTRAN SPECIAL CHARACTERS

Only the special characters shown in the above chart are meaningful to
the FORTRAN processor. They are always identified by their card codes;
e.g., a column punched 12-8-4 will always be interpreted as a ")". How
ever, peripheral equipment is available with a choice of special character
sets. Depending on the set of characters supplied with a printer or a card
punch, a column punched 12-8-4 may be equated to a "0" or a "<" or
a ")". The various sets of characters are known as "Type Wheel Con
figurations A, B, C, D, etc." Type Wheel Configuration F is the special
character set used by FOR TRAN.

When punching a source program, the character must always be punched
according to the card code. For example, when punching ")", the card
must always be punched 12-8-4, regardless of whether a given printer
interprets 12-8-4 as ")" or not.

91

•

The special characters which are used in FOR TRAN are given below with
their equivalents in other type wheel configurations.

SPECIAL CHARACTERS IBM CARD TYPE WHEEL CONFIGURATION
USED IN FORTRAN CODE A B c D E F G H K

+ 12 & I & - - + + + +
. 12-8-3
) 12-8-4 a lJ lJ lJ <) IJ))

- 11 - - - - I - - - -
$ 11-8-3 $ $ $ $ 0 $ $ $ $

* 11~8-4 * * * * * * * * *
I 0-1 I & 0 I & I I I I

'
0-8-3

' ' ' ' ' ' ' ' ' (0-8-4 % % % % % (% ((

= 8-3 # # # # # = + = =

92

APPENDIX C: ANSWERS TO PROBLEMS

CHAPTER 2 (Page 18)

• 1. Special characters not permitted in variable names. 2. A floating point
variable is not permitted in a subscript. 3. Two decimal points not permitted.
4. Valid integer v~riable. 5. Valid floating point variable. 6. Valid integer
constant. 7. Variable in subscript may not be signed. 8. Decimal point not
permitted in exponent. 9. Valid subscripted floating point variable.
10. Valid integer variable. 11. Subscripts not in proper format. 12. Valid
floating point constant. 13. Valid subscripted integer variable. 14. A
floating point variable is not permitted in a subscript. 15. Valid floating
point variable. 16. A variable may not start with a digit. 17. Decimal
point required. 18. Subscript not in proper format. 19. Valid floating
point constant. 20. Subscript not in proper format.

CHAPTER 3 (Page 22)

1. Yes. 2. By the rules for forming expressions. 3. As subscripts, as
exponents and as arguments. 4. Parentheses. 5a. L=l; 5b. M=2; 5c.
N=-2; 5d. D=3.; 5e. E=2.; 5f. F=-2.; 5g. A=l.; 5h. M=l; 5i. I=6;
5j. C=2.; 6a. Valid; 6b. Valid; 6c. Integer quantity may not have a
floating point exponent; 6d. A floating point quantity cannot be a subscript;
6e. An expression may not appear on the left; 6f. Valid; 6g. Valid;
6h. Valid; 6i. A floating point quantity may not be a subscript; 6j. The
expression is mixed.

CHAPTER 4 (Page 33)

la. FEW is a floating point variable; lb. m2 may not be an expression;
le. M is a variable; ld. A is a floating point variable; le. Valid; lf. The
expression is mixed; lg. , 4 is not permitted; lh. Comma not permitted
before J; li. K must be preceded by a comma; lj. N-12 is not
permitted - it is an expression.

2a.

12

2b.

12

5

93

DIMENSION IDIST(lO), IB.ATE(lO), ITIME(lO)
DO 12I=l,10
IDIST(I)=IRATE(I)*ITIME(I)
STOP 777

DIMENSION IDIST(lO), IRATE(lO), ITIME(lO)
DO 12I=l,10
IDIST(I)=IRATE(I)*ITIME(I)
IF (1000-IDIST(I)) 5, 12, 12
CONTINUE

STOP 777

•

2c. Y=X
3 X=X-1.

IF (X-0.) 4, 4, 5
5 Y=Y+X

GOTO 3
4 STOP

2d. DIMENSION PAY(500), BASE(500), OVTM(500), TAX(500),
OTHRD(500)

DO 2 J=l,I
2 PAY(J)=BASE(J)+OVTM(J)-TAX(J)-OTHRD(J)

STOP

2e. DIMENSION A(25, 2)
DO 5 I=l, 25

2f.

A(I, l)=I
5 A(I, 2)=1. 5* A(I, 1)

STOP

DIMENSION X(20), RCIPX(20)
SUMX=O.
DO 5 I=l, 20
IF(X(I)) 3, 2, 3

2 RCIPX(l)=O.
GO TO 5

3 RCIPX(I)=l. /X(I)
5 SUMX=SUMX+RCIPX(I)

STOP

CHAPTER 5 (Page 39)

1.

2.

• 3 •

DIMENSION A(lO, 10)
READ l,A

READ 1, (A(I), I=l, 5), BJOB, NEXT, DELTA(2),
(E(I), 1=3, 11, 2)

PUNCH 1, F(2, 2), (G(I, 4), I=l, 3)

CHAPTER 6 (Page 52)

la. F7. 3; lb. F7. 3; le. 13; ld. Ell. 4; le. Ell. 4; lf. ElO. 3;
lg. ElO. 3; lh. 14; li. F5. 2; lj. F5. 2.

2. PRINT 7
7 FORMAT (31HTHEbFOLLOWINGbAREbPAYROLLbCARDS)

3a. Valid; 3b. Valid; 3c. Valid; 3d. No FORMAT statement number
or comma preceding A; 3e. Valid; 3f. Valid; 3g. Constants are not
permitted in a List; 3h. Valid; 3i. Should be 14H; 3j. Exceeds unit
record size (120 print positions).

94

GLOSSARY

•

The following terms are defined only as they relate to this manual. No
attempt has been made to resolve slight inconsistencies which exist between
the terms as they are used in FOR TRAN and as they are used in the general
field of computer programming.

ABSOLUTE CODING

ACCUMULATOR

ADDRESS

ALPHAMERIC
CHARACTERS

ALTERATION SWITCH

ANALOG COMPUTER

ARGUMENT

ARITHMETIC
STATEMENT

ARRAY

BACKSPACE TAPE

95

Coding written in machine language. It does not
require processing before it can be understood
by the computer.

A part of the logical-arithmetic unit of a computer.
It may be used for intermediate storage, to form
algebraic sums, or for other logical-arithmetic
operations.

A label, name or number identifying a register,
location, or unit where information is stored in
the computer.

A generic term for numeric digits, alphabetic
characters, and special characters.

A switch on the console of a computer which may
be set to ON or OFF. Statements may be included
in a program to test the condition of these switches
and to vary program execution based on these
settings.

A computer which produces output based upon
measured input. Input is of a continuous nature
such as the elevation of a lever or the temperature
of a solution as distinct from a digital computer
which accepts numbers, etc., which are
discrete.

A variable upon whose value the value of a function
depends. The arguments of a function are listed
in parentheses after the function name, whenever
that function is used. The computations specified
by the function definition occur using the variables
specified as arguments.

A type of FOR TRAN statement which specifies
a numerical computation.

A series of items, not necessarily arranged in
a meaningful pattern.

The operation of returning a magnetic tape to
the beginning of the preceding record on that
tape.

BCD (Binary Coded
Decimal)

BINARY DIGIT

BLANK

CARD FIELD

CARD PUNCH

CLOSED SUBROUTINE

CODING

CODING SHEET

COMPATIBILITY

COMPUTER

CONSOLE

CONTINUATION CARD

CONSTANT

96

A system of representing numerical, alphabetic
and special characters by means of binary notation.

Either of the digits 0 or 1 which may be used to
represent the binary conditions ON or OFF.

Either the absence of any information or the
specific character which represents the presence
of no information.

A fixed number of consecutive card columns
assigned to a unit of information; e.g., card
columns 15-20 can be assigned to an identification
number.

A machine which is used to punch holes in cards
in order to record information.

A subroutine which is not stored in the normal
sequence of the program. Instead, transfer is
made from the program to the area where the
subroutine is stored, and then, after the sub
r.outine is executed, control is returned to the
main program.

Writing instructions for a computer either in
machine or non-machine language.

A form upon which computer instructions are
written prior to being punched into IBM cards.

The quality of an instruction to be translatable
or executable on more than one class of computer.

A device for operating upon data so as to produce
desired and meaningful results.

The unit of a computer where the control keys
and certain special devices are located. This
unit may contain the Start key, Stop key, Power
key, Sense Switches, etc. , as well as lights
which display the information located in certain
registers.

A card which follows a special format and which
is used to permit a single statement to be written
on more than one IBM card.

A quantity that does not change either from one
execution of a program to another, or during
execution of that program; a number that
remains fixed.

CONTROL STATEMENTS A statement which is used to direct the flow of
the program, either causing specific transfers
or making transfers dependent upon meeting
certain specified conditions.

DATA PROCESSING

DEBUGGING

DIGITAL COMPUTER

DIVIDE CHECK

DRUM

END OF FILE

EXECUTION

EXPRESSION

FIXED POINT

FLOATING POINT

FLOW CHART

FORMAT

FORTRAN

97

Any procedure for receiving information and
producing a specific result.

Process of locating errors in a program and
correcting them.

A computer which accepts alphameric information
which it uses to produce results.

An indicator which denotes that a division has
been attempted or has occurred which is invalid.

A device for storage of information in a computer.

An indication that all records in the file have been
read or written.

The operation of computer under the direction
of the object program.

A valid series of constants, variables, and
functions which may be connected by operation
symbols and punctuated, if required, to cause
a desired computation.

A type of calculation with integers only and
without any decimal point or decimal portions.

A form of calculation where quantities are
represented by a decimal number times a
power of 10. Accuracy is to several decimal
digits.

A group of diagramming techniques which are
used to indicate the procedure for the solution
of a problem.

The arrangement of information for input to a
computer or the arrangement desired for output
of information.

A programming system, including a language
and a processor, allowing programs to be written
in a mathematical-type language. These programs
are subsequently translated by a computer (under
control of the processor) into machine language.

FUNCTION

IBM CARD

A means of referring to a type or sequence of
calculations within an arithmetic statement.

A type of paper card which may have information
recorded on it by means of punched holes and
which may be read by a computer.

ILLEGAL CHARACTERS Any character which is not part of the FORTRAN
character set.

INPUT/OUTPUT

LIBRARY

LIST

LOCATION

LOGICAL DECISION

MACHINE LANGUAGE

MAGNETIC TAPE

MAGNITUDE

MEMORY

The process of transmitting information from
an external source to the computer or from the
computer to an external source.

A group of standard, proven routines which
may be incorporated into larger routines.

A string of items, written in a meaningful format,
which designate quantities to be transmitted for
input/ output.

A unit of storage which may be identified by an
address and in which information may be stored.

The operation of selecting alternative paths of
flow depending on intermediate program data.

Information recorded in a form which may be
used by a computer without prior translation.

A tape which has an oxide coating to permit the
recording of information magnetically.

The size of a quantity as distinct from its sign.
Thus, +10 and -10 have the same magnitude.

An alternative term for storage.

MNEMONIC OPERATION Computer instructions written in a meaningful
CODES notation; e.g., ADD, MPY, STO.

MODE The characteristic of a quantity being suitable
for integer or for floating point computation.

MULTIPLIER-QUOTIENT A register of a computer which is used for
operations involving multiplication and division.

OBJECT MACHINE

OBJECT PROGRAM

98

The computer on which the object program is to
be executed.

The machine language program which is the final
output of a coding system.

OFF-LINE UNIT

ON-LINE UNIT

OPEN SUBROUTINE

OPERATION CODE

OPERATORS

OVERFLOW

PARAMETER

PRINTER

PROCESSOR

PROGRAM

Input/ output device or auxiliary equipment not
under direct control of the central processing
unit.

Input/ output device or auxiliary equipment under
direct control of the computer.

A separately coded sequence of instructions
which is inserted in another instruction sequence
directly in the line of flow.

The symbols which designate a basic computer
opera ti on to be performed.

The characters which designate mathematical
operations, such as +, -, etc.

The exceeding of the allowed capacity of a register.

A constant or independent variable which is not
stated as an argument and upon which an operation
depends.

A device that prints output data.

A machine language program which performs the
functions necessary to convert a source program
into the desired object program.

The plan for the solution of a problem, including
the instructions which will cause a computer to
perform the desired operation, and such required
information as data descriptions and tables.

PROGRAMMING SYSTEM Any method of programming problems, other
than machine language, consisting of a Language
and its associated processor(s).

PUNCHED PAPER TAPE A tape on which information is recorded by
punched holes.

QUANTITY

READ

REGISTER

REWIND TAPE UNIT

99

A constant, variable, function name, or expression.

To transmit information from an input device to
a computer.

A specialized storage device where data may be
operated upon.

The process of returning a magnetic tape to its
beginning.

SCALE FACTOR

SENSE LIGHT

SENSE SWITCH

SOURCE LANGUAGE

A method of modifying the location of a decimal
point.

A light which may be turned on or off and may be
interrogated by the computer to cause a program
branch.

A switch on the console of a computer which may
be set UP or DOWN. Statements may be included
in a program to test the condition of these switches
and to vary program execution based on these
settings.

The language in which the input to the FOR TRAN
processor is written.

SOURCE MACHINE The computer on which the source program is
translated into the object program.

SOURCE PROGRAM A program coded in other than machine language
which must be translated into machine language
before use.

STATEMENT An instruction (written in the FORTRAN language)
to the computer to perform some sequence of
operations.

STATEMENT NUMBER A number which is associated with a single
FORTRAN statement so that reference may be
made to that statement in terms of its number.

STORAGE A device in which data and instructions may be
stored.

STORE To place information in a location in storage so
that it may be retrieved for later use.

STORED PROGRAM A computer in which the instructions to be
COMPUTER executed are stored in memory.

SUBPROGRAM A part of a larger program which can be compiled
independently.

SUBROUTINE A program which defines desired operations and
which may be included in another program to
cause those desired operations.

SUBSCRIPT A notation used to specify a particular member
of an array where each member is referenced
only in terms of the array name~

SUBSCRIPTED A variable followed by one or more subscripts
VARIABLE enclosed in parentheses.

100

SYMBOLIC CODING

TAPE UNIT

TRANSFER

TRANSFER
INSTRUCTION

UNIT RECORD

VARIABLE

WRITE

101

Writing programs in any language other than
absolute machine language.

The mechanism upon which a magnetic tape is
mounted for reading or writing.

To terminate one sequence· of instructions and
begin another sequence.

Any instruction which causes a transfer, whether
conditional or not.

A printed line with a maximum of 120 characters;
a punched card with a maximum of 72 characters;
a BCD tape record with a maximu:rn of 120
characters.

A symbol whose numeric value changes from one
iteration of a program to the next or changes
within each iteration of a program.

To transfer information, usually from main
storage to an output device.

ACCEPT 66

Access Time 1
A- Conversion 48

Address 1
Admissible Characters 91

Alphameric Characters 13

Alphameric Fields 47

Arithmetic Statement Functions 54, 55
definition 57

names 56

using 58
Arithmetic Statements 19

mode of 22

Arrays 15
ASSIGN 66

BACKSPACE 51, 66
Blank Fields 47

Blanks 6

Built-in Functions 54

CALL 66

Card Format 7

Coding Form 6

Comments Card 7

COMMON 66

Computed GO TO 24

Constant 11

Continuation Lines 6

CONTINUE 31, 67

Control Statements 24

Control Units 1

Conversion of Numeric Data 42

Data Input 49

Data Processing System 4

Decision Making 3

Diagramming 75

Digital Computers 1
DIMENSION 31, 33, 67

DO 27, 28, 67
increment 29

index 29

initial value 29
range 29
rules for using 30-31
test value 29

DO-Type Notation 37

102

INDEX

E-Conversion 42, 44, 49

END 67

END FILE 51, 68

EQUIVALENCE 68
Execution 4
Exponentiation 20

Expressions 19

mode of 20

rules for constructing 20

F-Conversion 42, 43, 49

Floating Point
calculations 10

constants 12
variables 14

FORMAT 31, 41, 68
FORTRAN

characters 91

language 4
processor 4
publications 90

statements 65

FORTRAN for the IBM

1620 61

705 63

704 63

709/7090 64

7070/7074 61

650 59

FREQUENCY 68

FUNCTION 68

Functions 53
arguments 53-54

calling 53-55
definition 53-54

names o14
parameters 54

FUNCTION Subprograms 54

GO TO 24-26, 31, 69

H-Conversion 4 7

I-Conversion 42, 43

IF 26-31, 70
IF ACCUMULATOR OVERFLOW 69

IF DIVIDE CHECK 69
IF (SENSE LIGHT) 70

IF QUOTIENT OVERFLOW 69
IF SENSE SWITCH 70

Input/Output 3S

lists 36-38
indexing in 37

Input Units 1

Integer

calculations 10

constants 11

variables 13

Language 4

Library Functions S4

Lists for Transmission of Data 36

Logical-Arithmetic Unit 1

Logical decisions 2

Looping 3, 2 7

Machine Language Subroutines S8

Mode 10, 20, 22

Multi-Record Format 46

Naming Variables 1 S

Object Machine 4

Object Program 4

Operation Code 3

Operation Symbols 20

Output 2

Parentheses 21
PAUSE 32, 70

PRINT 41, 70
Processor 4
Program 1, 2

Programming System 4

PUNCH 39, 71

PUNCH TAPE 71

103

READ 36, 71
READ DRUM 71

READ INPUT TAPE SO, 71

READ TAPE 72

RETURN 72

REWIND Sl, 72

SENSE LIGHT 72

Source Machine 4

Source Program 4

Specification Statement 32

Specifying Format 41, 4S

Statement Numbers 7

Statements S

STOP 32, 73

Storage 1

Stored Program 1, 2

SUBROUTINE 73

Subroutines S3

SUBROUTI~E Subprograms S8

Subscripted Variables 14, 18, 33

Subscripts lS-17

System Specifications S9

TYPE 73

Unconditional GO TO 24

Unit Record 46

Variables 12

naming 13-1 S

WRITE DRUM 73

WRITE OUTPUT TAPE SO, 73
WRITE TAPE 74

F28-8074-1

International Business Machines Corporation

Data Processing Division

112 East Post Road, White Plains, New York

F28-8074- 1

International Business Machines Corporation

Data Processing Division

112 East Post Road, White Plains, New York

