
IBM
PROPOSAL

MOL COMPUTER

IBM DOCUMENT NO.
67-M3l-0l00A, 0101, 0102

PROGRAM DEVELOPMENT

Volume One - Technical Proposal

Submitted to

General Electric Company
Valley Forge, Pennsylvania

March 24, 1967

This data, furnished in response to RFP No. RB-004. dated March 17, 1967,
shall not be disclosed outside General Electric Company or the government or
be duplicated. used, or disclosed in whole or in part for any purpose other than
to evaluate the proposal provided that, if a contract is awarded to this offeror
as a result of or in connection with the submission of such data, General Electric
and the government shall have the right to duplicate. use or disclose this data to
the extent provided in the contract. This restriction does not limit General
Electric I s right to use information contained in such data if it is obtained from
another source.

Federal Systems Division
INTERNA TIONAL BUSINESS MACHINES CORPORA TION

Gaithersburg. Maryland

TABLE OF CONTENTS

Section Title

INTRODUCTION 1

1 COMPUTER PROGRAM FUNCTIONAL
REQUIREMENTS (ATTACHMENT NO. 1) 4

Part 1 ADC Executive Control System 5
1.1 Introduction 5
1.2 Storage Management 6
1.3 Interrupt Supervision 8
1.4 Input/Output Superivosr 10
1.5 System Services 12
1.6 The Environmental Interface 14
1.7 Tables 16
1.8 Program Units and Scheduled Program

Operation (Option 1) 16
1.9 Queue Control (Option 2) 20

Part 2 Mathematical Utility Programs 22
2. 1 Introduction 22
2.2 Sine/Cosine Routine 23
2.3 Arc Sine/Arc Cosine Routine 23
2.4 Tangent Routine 23
2. 5 Arc Tangent Routine 24
2.6 Square Root Routine 24
2.7 Exponential Routine 24
2.8 Logarithm Routine 24
2.9 Matrix Operation Routine 25
2.10 Appendix - Development of Error Bounds 25

Part 3 Program Preparation Processor 26
3. 1 Introduction 26
3. 2 Initialization Phase 26
3.3 Card Processing Phase 27
3.4 Post Processing Phase 31
3. 5 Library Maintenance Phase 32

Part 4 Simulation Supervisor 33
4. 1 Introduction 33
4.2 Initialization Phase 34
4.3 Interrupt Handling and Processing 36
4.4 Appendix 39

Part 5 System/360 M44 ADC Support 41
5. 1 Introduction 41
5. 2 System/360 M44 Routines for ADC I/O

Simulation 41

ii

Section

2

3

Part 6
6. 1
6. 2

Part 1

1.1
1.2
1.3
1.4
1.5

APPENDIX

Title

System/360 M44 ADC Support
Introduction
ADC Program for AMU Tape Loading and

Verification

INPUT/OUTPUT FUNCnONAL AND
DCSG SELF-TEST AND DIAGNOSTIC
FUNC TIONAL REQUIREMEN TS

(A TTACHMENT NO.2)

I/O and DCSG Self- Test and Diagnostic

Page

44
44

44

45

Programs 46
Printer Output Processor 46
Display Output Processor 46
Keyboard Input Processor 47
DCSG Self- Test 50
Maintenance Diagnostic 52

SOFTWARE DEVELOPMENT SCHEDULES
(ATTACHMENT NO.3) 60

RESUMES A-l-A-14

iii

FOREWORD

This Technical Proposal for the MOL Computer Program Development

activity is being submitted to GE in response to their Request for Proposal

No. RB-004, dated 17 March 1967. The three major sections, contained

herein, and identified below, describe in detail Attachments Nos. 1, 2,

and 3 referenced in our Statement of Work (Section 1 - Cost Proposal):

o Section 1 - Computer Program Functional Requirements

(Attachment No.1)

o Section 2 - Input/Output Functional and DCSG Self-Test and

Diagnostics Requirements (Attachment No.2)

o Section 3 - Software Development Schedule (Attachment No.3)

Qualifications and experience resumes of the key scientific and software

personnel proposed to implement this program are presented in the

Appendix to this proposal.

iv

INTRODUCTION

IBMI s MOL Progrannning Organization, because of the importance of soft-­

ware developITlent in achieving optiITluITl usage of the DCSG, will report

directly to the MOL PrograITl Director. By cOITlbining the experiences

gained in cOITlITlercial operating software systeITls, NASA and SSD ground

support systerns, and, in preparing operational space prograITls on Titan

III, Saturn, and GeITlini, this organization will continue to bring a full

spectruITl of capabilities and experience to bear on the MOL PrograITl.

In addition to providing those software eleITlents, this group will be in a.

position to support GE as required on the preparation and integration of

the application (operational) prograITls.

IBM' s specific experience related to the MOL prograITlITling requireITlents

is shown in Figure 1. This spectruITl of prograITlITling experience for

applied prograITlITling systeITls supporting space applications is reflected

in the description coluITln. In addition, prograITlITling experience with

SysteITl 360 job processing applications is readily available as an IBM

servIce.

Mr. B. P. Whipple is ITlanager of the MOL Software DevelopITlent Depart­

ITlent, reporting directly to Mr. R. T. Ellsworth, Jr., PrograITl Director.

In this capacity, he as sures that software developITlent for all MOL efforts

is consistent with respect to specification detail, planning detail, program.

approach, validation techniques and level of docuITlentation.

This departITlent is organized as project groups to assure proper eITlphasis

on each of the required prograITlming systeITls. Each project manager is

fully responsible for the specification, iITlplementation, validation and

1

PROGRAMMING
EFFORTS

~
'" ~w SATELLITE
~ COMPUTER

DESCRIPTION ~
~ ~u

SY5TEM AGENCY 0« PROBE '" Z ..:5 ~~
~ 5~ Q~ l: >-~ ~() l:z

~g
r", "'>- ~~ "' ..

~ "'''' .. ", ::S'" ;:::!:: ~z 58 "'" rZ ;2 ~z ~~ ~t: 0:1 ~ .. "'0 ~~ '" ~::i ~" a ... I:!l:

CAUllAnON I'lOCEDUIf, OI'TIMUM
I. AM'S RBlARCH CENTER PIONEER X INTERVAL SEl£CTION, DATA

ORGANIZATION SCHEME

fTj
(Jq

~
t-1

DEVELOI'fD LAUNCH MONlTOI"U.-
SY5TEM, ANAL'IYli, F~HAIT5,

I. GOIlOo\ID SfACffUGHT CENTER PIlO.lfCT X X X X X
11M 7Il901'14 f'IOGIAMMING, TEST,IMPl£_TA-

MfICUilY lION, SIMUlATED FUGHT TEST FOI
SY5TEM CHECKOUT

(1)

....
'EXPLOIIfa'

11M 1410, DATA SMOOTHING, C~ HmNG, SEIIIB.
11M 7IMO/IIIN HUaNG, -.NG_

A. Sl'ACE SCIlNCES DIVISION IMP. X X X X
~TCOU- DATA, SOIl F11fS, IlIC~ATE

EGO.
N SY5TEM INIO _TCKANNP5

NASA POGO

:;! l:O
(1)

1IlO§ 5HlfS. -10IIII/_ ADVANCED _NG. STAlTS-
1ICAI. AND -..:AI. _lWS, •• IMTA $\'S1lMS DIVISION 5-4,

X X X x IIIIfCT COU- ATTIlUDE _MAllON. _-SEa. NSY5TEM IBENT1Al~TION ltC __
RElAY

!»
rt-
(1)

0..

SV5TfM DESIGN AND tM"--fA-
nON I/O fOUl_NT, SffCIFICA-

3. JP\. SPACE fUGHT OftlA1ION5 IAHGEI X K K II II --I TIONS, DESIGN OF MONIfOl NO-
fACIUTY

__
IaN _, -'NOSTIC _fOl

N (f.l
0

SVSftM TESf, IEAI.-l'_ -.-
NOSfICS -.NG MISSION

......
rt-

~
!»

11M JIMO/ DEVElOP AND I_T FIfXlll£ 4. _D Sl'ACKIAFT CENTEI
GEMINI AND X X x x x IaN Sflf-OlGANlZlNG 1EAl-1l_ COM-
AIOUO 1'IIft£X, PU1HCOWUX. AS'INC_

A. IlEAL T_ CONTlOI. CfNTEI
-=TCOU- IMTA 1M'\m, SUMATE NOCS-

t-1 N SVS1EM 5OI-.J1fS
(1) DESIGN DfVBIlI' AND __

M
~

"d

•• (SWCONTIACT TO MCDONNEll AlICIAFT) GEMINI x X x
0ftIA-..

GEMINI IllEL.AtN:H, IESEM:H, IEHDEZYOUS,
~,IE.fN1aY, _C~ ,
IElATED POST-FLIGHT

(1)

t-1 DESIGN, Df\IElOP AND VAWDlllIE flIGHT
(1)

::s
ASC-15 tlUAUFItD OftIATIONAI. __ ,

5. IMI5KAU. SNCE fUGHT CENTER SATUItN X X x SA~v PIf-'AUNCH, 5lH'CHECK,~,
AND POST-FUGHT

()
(1)

I. IAUISTICS $\'SIlM5 DIVISION
TITAN II

I
DEVElOP AND VAUDATE FLIGHT

(SUICONTIACT TO AC ElfClIIONICS)
tlUAUFIED OftIATIONAlI'llOGlAlO6. X X X ASC-IS PlE4AUNCH, 5lLF~HECK, GUlIMNCf 2. SPlICE S\'STEMS DIVISION
AND POST -FUGHT (lUlCOHIIACl fO AC ElfCmoNICS) TITAN In I

DESIGN AND DEVELOP AlnlCATION" 3. _461
II X X X X X -- ftIOGaAM5, DISIlAY5, _~_

'LJaMr AND _101 fOtMAT
USN 4NALYZI ANDC~LATE !»oTA

11M 7IMO/ DEVELOP REAL-TIME EXfCUTTVE AIlfS 709_ MONlTOII'IIOGIMt, AUTOMATIC 4. PRO./KT ATHENA lE-lONTlV X X X)(DiIECT I'tE-lAUNCHCOUNTDOWN, IMPACT BODiES 1 COUflJ: I'tEDICTION
SY5TEM - --

documentation of all prof:rams associated wi:h bi[.; :;"2Fpective programming

system in accordance 'kith specified software ilnplementation plans and

schedules.

Successful implementation of the effort depends upon the application of

proven programm.ing skills and methods throughout the development and

validation effort.

In accordance with our Statement of Work (Section 1 - Cost Proposal), we

have organized this Technical Proposal arouncj Attachments Nos. 1, 2,

and 3 --as indicated by the following Section breakdown:

o

0

o

Section 1

Part 1

Part 2

Part 3

Part 4

Part 5

Section 2

Part 1

Section 3

Computer Program Functional Require:rnents

(Attachment No.1)

ADC Executive Control System

Mathelllatical Utility Prograllls

Progralll Preparation Processor

Silllulation Supervisor

Systelll/360 M44 ADC Support

Input/Output Functional and DCSG Self-Test and

Diagnostic Requirements (Attachment No.2)

I/O and DCSG Self-Test and Diagnostic Program.s

Software Development Schedules (Attachment No.3)

Resumes of key scientific and program:rning personnel are presented as

an appendix to this proposal.

3

Section 1

COMPUTER PROGRAM FUNCTIONAL REQUIREMENTS

(ATTACHMENT NO.1)

4

PART I

ADC EXECUTIVE CONTROL SYSTEM

1. 1 INTRODUCTION

The ADC Executive Control System (ECS) shall supervise operational con­

trol over the execution of programs required for support of the MOL

mission.

The basic performance and design objectives of the ECS are:

Provision for a multi-programmed environment which shall

permit programs to be constructed and executed independently.

Centralization of functions which control the flow of infor­

mation between programs, the external subsystems and

crew.

Management of system resources to obtain efficient use of

the hardware and to insure the response required by the ap­

plication programs.

Continuous monitoring and control of program and hardware

operation.

The basic ECS package shall be designed to supervise the execution of

programs in unscheduled sequence. In this environment an application

program shall be initiated by the occurrence of an asynchronous event,

and receive control directly from an interrupt or during the course of in­

terrupt proces sing. The system structure for this basic package shall

consist of five components and associated tables.

Storage Management shall control core utilization and access

to the Auxiliary Memory Units.

Interrupt Supervision shall process all interrupts and synchro­

nize the ECS with external subsystems.

5

Input/Output Supervision shall provide access to the services

associated with the use of I/O devices.

System Services shall provide a number of services used by the

ECS and application programs.

Environmental Interface routines shall respond to and modify

the conditions under which the system is to operate.

Optional packages shall be designed to expand the capability of the basic

ECS package.

The first option shall provide for scheduled program operation I in which a

program shall receive control under specified conditions as the result of

a decision by a scheduling algorithm. Scheduled programs implement ap­

plications for which CPU time may be shared. The scheduling algorithm

shall have the capability to multiplex program execution. Programs oper­

ating in the multiplexed environment shall be structured as program units.

The system routines implementing this option are called Scheduled Pro­

gram Control. They shall govern the initiation, termination and execution

of multiplexed programs.

The second option shall provide capability for queue control. Queue con­

trol shall permit location - independent passage of data and control in­

formation between program units.

1 • 2 STORAGE MANAGE MENT

The Storage Manager shall control allocation of all core not permanently

assigned at system generation time and control access to the Auxiliary

Memory Unit (AMU).

6

1. 2.1

1. 2. 2

1. 2.3

BCSM

The Basic Core Storage Manager (BCSM) shall maintain a pool of unas­

signed core and upon request assign or release blocks of the pool. Man­

aged core blocks can be variable in size and shall be members of one of

three storage groups.

Program Storage

Data Storage

Free Storage

Storage Macro Capability

Allocation - There shall be two macros ,one which generates a request for

data storage and one which generates a request for program storage. The

BCSM shall respond by assigning the core and supplying the location to

the requestor. If a block of the size requested is not available I the

BCSM shall inform the requestor of this condition.

Retrieval - Execution of this macro shall generate a request to release

a specified core block. The BCSM shall respond by returning the block to

the free storage group.

AMU Routine

The AMU Routine shall provide access to programs and data resident on

the AMU. There shall be two basiC functions implemented:

Position and read

Directory research

The Position and Read Routine shall forward space or backspace the AMU

to a specified record number and read that record into a specified core

location. The Position and Read Routine shall be the sole means of ac­

cessing the AMU.

7

---------~--~~----==:-.~. ~. -==

The Directory Search Routine shall accept requests for locating items on

the AMU tape by symbolic name. It shall return to the requestor informa­

tion which specifies the tape position and the number of words in the

item requested.

1.3 INTERRUPT SUPERVISION

1. 3.1

The ECS shall provide routines to process:

Machine Check interrupts

Supervisor Call (SVC) interrupts

Program interrupts

External interrupts

Input/Output interrupts

System functions available to these routines shall also be available to

user-provided priority interrupt routines.

The interrupt supervisor routines shall be designed to:

Minimize the time required to save and re store machine

conditions

Run with interrupts enabled as much as possible

Permit stacking of interrupts

Permit the use of common system code at multiple interrupt

levels by means of a gate mechanism.

In order to accomplish these objectives all interrupt routines shall follow

a set of specified system conventions.

Interrupt Save Mechanisms

Machine conditions shall be saved for all interrupts except SVC interrupts

in save areas to be provided by the system. Save areas required for

8

1. 2.3

processing SVC interrupts shall be provided by the user requesting the

service. The code to perfonn save and restore machine conditions shall

be provided in macros expanded into in-line code in the individual in­

terrupt routines. The code performing save and restore shall sequence

the system - provided save areas to allow interrupted routines to regain

control in priority order.

Interrupt Processing Routines

The following interrupt routines shall be provided:.

The Machine Check Interrupt routine shall transmit a message

identifying the conditions to the operators, and shall attempt

recovery if specified.

The SVC Interrupt routine shall perfonn initial proces sing of

these interrupts to include saving of the Program Status Word

(PSW) in the user-supplied area and transfer of control to the

requested subroutine by means of the SVC Transfer Table.

The Program Interrupt routine shall analyze the cause of the in­

terrupt. Interrupts which indicate a possible system mal­

function shall cause a message to be transmitted to the opera­

tor. Interrupts which are program specific shall be ignored.

The External Interrupt routine shall have the ability to process

multiple sources causing a given external interrupt. It shall

transfer control to the processing routines indicated by the

PSW interrupt codes in a pre-specified order.

The Input/Output Interrupt routine shall analyze the Channel

status Word (CSW) to detennine the cause of the interrupt.

If the cause is attention or error, control shall be pas sed to a

device routine to take the appropriate action. If the cause is

9

1. 3.3

I/O completion I the result shall be posed and the next opera­

tion shall be initiated on the channel.

Interrupt Control Gates

Interrupt control gates shall be provided to permit serially-reusable code

to be accessed by more than one interrupt level.

1.4 INPUT/OUTPUT SUPERVISOR

1.4.1

The input/output service shall consist of a set of device independent super­

visory routines and a set of device routines. The supervisory routine s

shall accept I/O requests and perform the requested operations. The de­

vice routines shall prepare for I/O operations and take appropriate action

for the device.

Input/Output Macros

Requests for I/O operations shall be communicated to the system I/O

routines by use of I/O macros. The macros provided shall be:

READ

WRITE

EXIO

The operands of the macros shall specify a device and the location of an

I/O Request Block (IORB). The IORB shall contain space for Channel Com­

mand Word (CCW) speCification to be used with the request. For the

EXIO macro I the CCW specification shall be assumed to have been pre­

viously established. For the READ and WRITE macros I additional operands

shall specify the number of bytes to be transmitted and the location of a

user provided I/O area.

10

1.4.2

1.4.3

1.4.4

Input/Output Request Processor

The I/O Request Processor shall accept and interpret I/O macros. For

READ and WRITE I a device routine shall be called to create appropriate

CCW's. For EXIO I and after returning from the device routine s for READ

and WRITE I the IORB shall be queued by device. The operation shall be

initiated whenever the IORB reaches the top of its queue. The IORB shall

be extracted from its queue by the I/O Interrupt Routine when the opera­

tion is completed.

Device Routine

There shall be a device routine for each of the following:

Command Uplink

Command Output

AMU

Hz Timing

Channel to Channel

Internal Control Register

CSC Data Error

These device routines shall provide the interface between the devices and

the Input/Output Supervisor. A device routine shall:

Create CCWs required for the READ or WRITE operation

Respond to attention interrupts

Initiate device-peculiar error recovery procedures

Post device-peculiar completion information

Logical Posting

Routines shall be provided to post I/O completion information for synchro­

nization with the I/O operation. The following functions shall be

implemented:

11

Coordination of the internal real time clock with the external

timing subsystem,

AMU directory search

1.5 SYSTEM SERVICES

1. 5.1

The following system service s shall be provided:

Timing

Timing

Message Handling

Power Conservation

Universal Common

Table Search I/O Macro

1.5.1.1 Malfunction Timer. The eight-second malfunction timer shall be reset at

regular intervals by ECS.

1.5.1.2. Absolute Time. A clock shall be kept internally by the system in the form

of a 32-bit integer representing time in milliseconds. The clock shall re­

cord time in a continuous manner. Time I in milliseconds I shall be avail­

able to programs by means of a service macro and shall be synchronized

with a clock external to the ADC.

1.5.1.3 Interval Timer. An interval timer queue shall be available to accept re­

quests for execution of routines at a specified time of day. Provision

shall be made to delete a request.

In the basic ECS the request for an interrupt shall be accompanied by the

location of the routine that will perform the desired functions.

12

1.5.2

1. 5.3

1. 5.4

1. 5.5

In any of the extended ECS systems there shall be provision for timing

services to program units which shall implement the timed initiation and

elimination of program units.

Message Handling

A system message handling routine shall centralize the transmission of all

data between the ADC and the crew. The Message Handler shall process

all output messages (via Printer, Downlink f and Display), and shall con­

struct the parameters necessary for the I/o routine.

Power Conservation

ECS shall have access to the CPU time requirements of the currently exe­

cuting programs. Whenever the current program environment permits f ECS

shall turn off power by means of a power conservation request:

to the logic of the CPU

to the MDAU and the DCSG except for the CSC

Universal Common

ECS shall provide for Universal Common f an area of contiguous core, per­

manently resident in nonprotected memory, fixed in format, and accessible

to both application and system routines. It may be used as a data base

area for information declared at as sembly time, for data provided by the

system to the application programs, and for the dynamic data received and

created during real time operation which is common to more than one pro­

gram. Data in Universa.1 Common shall be accessed directly or in con­

junction with the gating mechanisms.

Table Search I/O Macro

ECS shall provide a means of extracting items of data from records on the

13

AMU. A list containing the identification of the items to be extracted

from the data records and the locations in memory at which the information

is to be placed after extraction f shall be supplied as an input parameter.

This service routine shall use the AMU routines to transfer the specified

data.

1.6 THE ENVIRONMENTAL INTERFACE

1. 6.1

ECS shall provide environmental interface routines for initiation and termi­

nation of the system f for control of the system configuration f and for the

recovery from specified error conditions.

System Initiation

The Basic Initialization Routine (BIR) shall be responsible for initial table

construction and for the loading of all programs and data not loaded at IPL.

The information for loading these programs shall be obtained from the AMU

Directory Search routine. The AMU directory shall be segmented and only

one segment shall be required in core at a given time.

The BIR shall be non-resident and shall be loaded as the result of the IPL.

It shall perform a standard initialization or an alternate initialization.

Standard Initialization A table internal to the BIR shall con­

tain the symbolic names of the first non-resident programs to

be loaded and operated. After the BIR has performed its table

construction f these programs shall be loaded and prepared for

operation.

Alternate Initialization The BIR shall receive information from

an input device which specifies the initial set of programs to

load and shall ignore the table used by the Standard

Initialization.

14

1. 6.2

1. 6.3

1.6.4

System Termination

The Basic Termination Routine (BTR) shall assure an orderly shutdown by:

completing all active I/O requests

giving control to a user-defined program to complete

processing

powering down upon return from the user-defined program

Error Recovery

The system sha.ll provide a set of routines to be used for the purpose of

error recovery. These routines shall be accessible to any program which

detects a specified error condition. The following functions shall be

provided.

IORB deactivation

Configuration change

Configuration Control

There shall be a machine configuration list maintained by the system which

describes the current hardware configuration. This table shall contain the

following:

CPU error indicator

Number and status of the channels attached to the machine

Unit Control Block locations for devices implementing specified

functions

Data adapter status information

'Physical core availability

Current setting of configuration control register

Routines shall be supplied to update the information in this table.

15

1.7 TABLES

The following tables and control blocks shall be employed for intra-system

information transfer and for communication between programs and ECS:

System Communication Region This table shall provide resi­

dence for universally required system infonnation such as ad­

dress constants for locating the major data structure.

SVC Transfer Table This table shall locate programs and sys­

tem subroutines accessed by the SVC.

System Transfer Table This table shall contain address con­

stants for locating independently assembled portions of the

systems.

Unit Control Block (UCB) There shall be a UCB for each I/O

device in the system. It shall contain information regarding

the physical characteristics and status of a device and other

infonnation required by the system to service the device.

Message This table shall contain a set of messages that

serve as a basis of communication between the ADC and the

operator.

1.8 PROGRAM UNITS AND SCHEDULED PROGRAM OPERATION (OPTION 1)

1. 8. 1

Option I shall be obtained by the addition of a set of routines and tables

to the basic ECS. The additional capability provided by Option I shall

pennit the operation of programs in a scheduled multiplexed manner.

ProgramU ni t Definition and Structure

Scheduled programs shall be constructed from structural entities called

program units.

16

1. 8.2

A program unit. shall consist of:

A Program Control Block (PCB) shall be the interface between

the program unit and the system,

Text shall be relocatable code.

Common shall be a data area private to the program unit

(optiona 1) .

A Relocation Dictionary shall provide for address modification

upon relocation.

In addition I program units shall be written in segments. Each segment

shall form a logical division in the program unit which provides an entry

point for execution and which returns control to ECS prior to the expira­

tion of a specified time interval. Interval timer interrupts shall be used

as a guard against excessive execution time in a given segment. Opera­

tional specifications for the program unit shall be supplied during pro­

gram preparation and incorporated into the PCB.

Scheduled Program Control

The operation of program units in a scheduled I multiplexed manner shall

be implemented by a set of system routines which shall execute:

Program Unit Initiation

Program Unit Scheduling

Program Unit Termination

Intersegment Supervision

1.8.2.1 Resident Program List (RPL). Intercommunication between the Scheduled

Program ContrOll routines shall be provided by a data structure called the

Resident Program List (RPL). This data structure shall provide an index

to I and the means for controlling the activity of I all program units in core

or in the process of being loaded into core. Program unit entries shall be

17

grouped into five queues which correspond to the five possible states of

program unit activity.

Initiation requested and awaiting loading

Resident in core and waiting to be assigned CPU time

Currently receiving CPU time a s the PU' s priority and avail­

able CPU time permits

Execution terminated and storage work areas awaiting release

Resident in core but currently in an inactive state.

1.8.2.2 Program Unit Initiation. Requests to initiate the execution of program units

shall be made by means of macros. The following processing shall be

performed:

Initial processing shall determine the current status of the re­

quested program unit and select the appropriate routine to con­

tinue the initiation process.

During the next intersegment time I a routine shall initiate the

reading from the AMU of the requested program unit's PCB, if

it is not in core.

Routines which provide service to load the program unit and

adjust the location dependent quantities in the text shall

operate in multiplex mode under control of the PCB of the pro­

gram unit being serviced.

1.8.2.3 Scheduler. Program units shall receive CPU time according to their opera­

tional requirements. These requirements shall be expressed in terms of a

repetition rate which specifies the desired number of segment executions

per second. The scheduler shall achieve priority multiplexing by examin­

ing the repetition rate sand prioritie s of all active program units in order

to interleave their execution.

18

Three classes of scheduling service shall be provided:

Cyclic

CPU time shall be assigned at equally spaced intervals accord­

ing to the repetition rate specified for the program unit.

Priority

CPU time shall be assigned in proportion to the repetition rate

to meet overall processing requirements.

Non-Priority

CPU time shall be assigned when available.

The Activate Routine shall place in the priority multiplexing loop a s many

of the program units requiring CPU time as unused time in the loop permits.

Program units shall be placed in the loop in priority order I starting with

cyclic program units and descending through the various priority levels to

the lowest level. Selection Routines ,one each for cyclic I priority and

non-priority service I shall select the next program unit at that level of

service to receive CPU time. An Entry Routine shall complete preparations

for transfer of control to the selected program.

1.8.2.4 Program Unit Termination Function. A macro capability shall be provided

which will permit an executing program unit to deactivate itself or to de­

activate another program unit. Such macros shall be initially processed by

a routine which shall perform the necessary adjustment of the program

unit's entry in the RPL. This routine shall also request the initiation of a

second routine I to be operated as an independent multiplexed program unit,

which shall complete the deactivation process by releasing any data stor­

age assigned to the program unit.

1.8.2.5 Intersegment Supervision. Routines executed during intersegment time

shall be controlled by the Intersegment Supervisor. In addition to the Pro­

gram Unit Initiation and Termination routines and the Scheduler, the Inter-

19

segment Supervisor shall drive a subroutine to collect and save information

describing the status of Program Units.

1. 8.2.6 Program Unit Gates. Program Unit Gates shall be provided to control ac­

cess to serially reusable code shared by program units. The Program Unit

Gates Mechanism shall place a requesting program unit in wait status if

the gated code is in use. Program Units in wait status shall be bypassed

by the Schedule until the gate is opened. Unstacking of program unit re­

quests to enter the gated code shall be done in FIFO order.

1. 9 . QUEUE CONTROL (OPTION 2)

Option 2 shall be implemented by the addition of a queue control capability

to the Option 1 package. Provision shall be made for input queue s to be

associated with program units. Macros shall be provided to process these

queues which shall implement the following capabilities:

Creating a permanent or temorary queue

Adding an item either to the top or bottom of a queue

Disconnecting either the top or bottom item from a queue

Disconnecting an item from a user specified place in a queue

Locating an item either forward or backward from a given start­

ing point within a queue without disconnecting the item in the

process

Transferring an item or group of items from one queue to

another

Releasing an item or group of items from a queue directly to

free storage

Deleting a temporary queue

20

Queue control shall be maintained by means of queue headers which shall

be contained in a system data structure called the Queue Header List.

21

PART 2

MATHEMATICAL UTILITY PROGRAMS

2.1 INTRODUCTION

The following mathematical functions shall be implemented:

* Sine/Cosine Routine

Arc Sine/Arc Cosine Routine

Tangent Routine

* Arc Tangent Routine

* Square Root Routine

Exponential Routine

Logarithm Routine

Matrix Operation Routine

* As sumed to be in ROS memory.

The basic design requirement shall be the use of fixed-point arithmetic. A

secondary requirement shall be that computation speed be as rapid as pos­

sible. An optimal time-space combination for each routine shall be sought.

Unless specified otherwise I the error allowance for these subroutines sh

shall be:

If f(x) is one of the functions and s (x) is the function generated

by its subroutine I then

I f(x) - s(x) I <2 -25

for all x in the domain (input range) of s (x) •

Each subroutine shall assume the argument to be in a fixed General Regis­

ter and deliver the function value to another fixed General Register. When

other General Registers are required during execution I their contents before

entry to the subroutine shall be saved and restored upon exit.

22

In the following descriptions, input/output formats will be specified as

SA. B, where A and B are integers giving the number of bits the left and

right of the binary pOint respectively; A + B = 31. S denotes sign.

2.2 SINE/COSINE ROUTINE

Y = Sine X, Y = Cosine X

Domain: -n.:::X.::: n, Format.±. 3.28

Range: -l.:::Y.::: I, Format.±. 1.30

Error return if I X I» IT.

2.3 ARC SINE/ARC COSINE ROUTINE

Y = Arc Sine X, Y = Arc Cosine X

Domain: -I,::: X.::: I, Format.±. 1. 30

Range: -.IT. .::: Y .::: l!. (Arc Sin e) Format + 3.28
2 2

O,:::Y .::: n (Arc Cosine) Format + 3. 28

Error return if I X I >1.

2.4 TANGENT ROUTINE

Y = Tangent X

Domain: - l!.< X <.II ' Format ± 3 • 28
2 2

Range:
8 8

-2 <Y<2 Format.±.8.23

Error return if I X 12:.!!.
2

For this subroutine the error bound must be increased to 2- 24 •

23

2.5 ARC TANGENT ROUTINE

Y = Arc Tangent X.

Domain: _28 <X<28 , Format + 8.23

Range: -IT. < Y <TT, Format ± 3.28
2 2

For this function, it shall be the programmer's responsibility to determine

if I X I > 2 8, in which ca se Y = ±TI..
2

2.6 SQUARE ROOT ROUTINE

Y= rx
Domain: O'=:X<I, Format + 0.31

Range O.=:Y<l, Format + 0.31

Error return if X < O.

The 1€ ast significant 7 bits of X shall be set to zero before computation.

Thus, if X < 2 -24, it is assumed to be zero.

2. 7 EXPONENTIAL ROUTINE

Domain: -l~X~l,

Range: 1.. < Y < 2 I
2 - -

Error return if I X I > 1 .

2.8 LOGARITHM ROUTINE

Domain:

Y = LOg 2X

1..<X<2,
2- -

Format + 1.30

Format + 2.29

Format + 2.29

Range: -1 ~ Y ~ I, Format ± 1.30

Error return if X< ~ or X > 2.

24

2.9 MATRIX OPERATION ROUTINE

2.10

The remarks concerning accuracy from Sec. 2. 1 do not apply.

A routine for obtaining the product AB of matrices A and B shall be written.

The dimensions of A and B shall be pennitted to be as high as 4 X 4.

Design of the subroutine shall be directed to low execution time when the

dimensions of A and Bare 3 X 3 and 3 X I, respectively.

Access to the matrix multiply subroutine shall be via a calling sequence

specifying locations and dimensions of A and Band pennitting the user to

specify he desires B to be multiplied by the transpose of A.

APPENDIX. DEVELOPMENT OF ERROR BOUNDS

The algorithms selected to implement the basic design requirements may be

affected by the error bounds.

Only a detailed error analysis of the computation done in an application can

detennine allowable error bounds for subroutines which are components of

the computation. With the exception of the Tangent and Arctangent functions

(Paragraphs 2.4 and 2.5), the error bounds given above were adopted from

preliminary analysiS of the applications. In the case of Tangent and Arc­

tangent, the bounds were dictated by a desire to stay away from a multiple

word or floating point representation of the numbers involved.

25

PART 3

PROGRAM PREPARATION PROCESSOR

3.1 INTRODUCTION

The Program PreparaUon Processor (pPP) shall convert program object

module s into a form suitable for loading and executing in the ADC. A1l

programs executed in the ADC shall first be processed by PPP.

This processor shall accept, as input, both the output of the System/360

Model 44 Programming System (44PS) processors, and statements by the

programmer which specify program construction.

The output from PPP shall be in the form of program units. These program

units shall consist of one or more object modules including those from the

System Reference Library that shall require combination with new object

modules. An object module may be independent or self-contained. There

may be numerous cross references between object modules and between

control sections within object module s.

PPP shall be constructed in four phases:

Initialization Phase

Card Processing Phase

Post Processing Phase

Library Maintenance Phase

(See 4. 1 for definition of PSCS/LPSS configurations).

3.2 INITIALIZATION PHASE

This phase shall determine the location of tables and buffers, check

options saved by the Job Control Processor from the / / EXEC PPP job con­

trol statement, set switches, save information for subsequent pha se s I

perform module card processing, and initiate processing of input data. It

shall contain constants and subroutines common to all phases I and two

computer program routines:

26

3.2.1

3.2.2

Initialize for Execution Routine

MODULE Processor Routine

Initialize for Execution Routine

This routine shall make necessary preparations for subsequent operation of

PPP.

This shall be the first routine operated for each program unit to be con­

structed. It shall initialize switches and buffers, define core maps, and

establish pointers to various buffers.

When all input has been processed or when the Temporary Program Unit

Library is full, this routine shall caH in and operate the Library Mainten­

ance Phase.

MODULE Processor Routine

This routine shall check the System Input data set for object modules. If

any are found, this routine shall transfer them to the Language Processor

Output data set and reflect this change in the Language Processor Output

Directory data set.

At the end of input on the System Input data set, this routine shall return

to the Initialize for Execution routine with an indication of such. Other­

wise, this routine shall call in and operate the Card Processing Phase.

3.3 CARD PROCESSING PHASE

This phase shall be a group of computer program routines whose function

shall be the production of an intermediate program unit. This processing

shall consist of:

Reading the control statements which identify the output pro­

gram unit and specify its construction in terms of format and

content.

27

These control statements shall be:

1. Program Unit (PROGUNIT)

2. Symbol Dictionary (SYMBDICT)

3. Include (INCLUDE)

4 . En try (EN TRY)

Reading the object module cards that are to be used to construct

the program unit. These object module cards shall be:

1. External Symbol Dictionary (ESD)

2. Text (TXT)

3. Replacement (REP)

4. Relocation List Dictionary (RLD)

5. End (END)

Resolving the cross references within the program unit

Constructing the Intermediate Relocation Dictionary

This phase shall contain the following computer program routines:

Start Program Unit Routine

Read Next Card Routine

Control Card Scan Routine

PHASE Processor Routine

ENTRY Proce s sor Routine

SYMBDICT Processor Routine

INCLUDE Processor Routine

AUTOLINK Processor Routine

ESD Processor Routine

TXT Processor Routine

REP Processor Routine

RLD Processor Routine

END Proce s sor Routine

28

3.3. 1

3.3.2

3.3.3

3.3.4

Start Program Unit Routine

This routine shall start construction of the program unit by indicating gross

structure I identifying by name I and creating a skeleton Program Control

Block (PCB) (if there is a PCB).

This shall be accomplished by analyzing the information presented on a

PROGUNIT control statement I creating a PHASE control statement I and oper­

ating the PHASE Processor Routine.

Read Next Card Routine

This routine shall read a card from one of three data sets; System Input I

Language Processor Output I System Reference Library I and operate a

routine to process the card read according to type Ie. g. I the Control Card

Scan Routine shall be operated when a control statement is read.

Control Card Scan Routine

This routine shall be operated when the Read Next Card Routine has read a

control statement from the System Input data set. It shall determine the

type of control statement and perform a sequence check. It shall transfer

to the appropriate routine to process it, e.g. I the ENTRY Processor Routine

shall be operated when an ENTRY control statement is read.

PHASE Proce s s or Routine

This routine shall analyze the PHASE control statement produced by the

Start Program Unit Routine. This analysis shall set up the program unit

origin in the appropriate save areas, set switches indicating whether or not

"Autolinking" (See Paragraph 3.3.8 of this Specification) shall be provided I

and construct the first two entries in the Control Dictionary that define the

program unit.

29

3.3.5

3.3.6

3.3.7

3.3.8

3.3.9

ENTRY Proce s s or Routine

This routine shall detennine the Initial Segment Entry Point of the program

unit from the ENTRY control statement and finalize the processing of the

Card Processing Phase.

SYMBDICT Processor

This routine shall construct a Symbol Table indicating the symbols required

in the Symbol Dictionary from an analysis of the SYMBDICl' control state­

mentes) .

INCLUDE Processor Routine

This routine shall locate object modules to be included in the program unit.

These object modules shall be defined by INCLUDE control statements or

implied via "Autolinking".

AUTOLINK Processor Routine

This routine shall detennine which object modules are to be automatically

incorporated into the program unit by assuming unresolved external refer­

ences are names of object modules in the System Reference Library.

ESD Processor Routine

This routine shall create an entry in the Control Dictionary for each entry in

the input ESD object module cards.

3 .3 . 10 TXl' Proce s sor Routine

This routine shall extract the text from the TXT object module cards and in­

sert it into the Text element of the program unit.

30

3.3.11 REP Processor Routine

This routine shall convert REP object module cards into TXT object module

cards.

3.3.12 RLD Processor Routine

This routine shall build the Intermediate Relocation List Dictionary data set

from the input RLD object module cards.

3.3.13 END Processor Routine

This routine shall save the transfer information on an END object module

card and complete the processing of the current input object module by:

Completing cross references within the Control Dictionary

Obtaining the length of the last control section

Preparing PPP to process the next input object module

3.4 POST PROCESSING PHASE

3.4.1

This phase shall complete the construction of the program unit I produce the

Map as specified on the / / EXEC PPP job control statement I and place the

program unit in the Temporary Program Unit Library. This phase shall be

composed of the following computer program routines:

MAP Proce s s or Rou tine

RLD Post Processor Routine

Save Program Unit Routine

MAP Processor Routine

This routine shall perform three functions:

Print COMMON Entries

31

---~ .. ~. c~·_-~

3.4.2

3.4.3

Compute the length of Private Common

Print a Storage Assignment Map, unless NOMAP option is

specified on the / / EXEC PPP job control statement

RLD Post Processor Routine

This routine shall complete the construction of the program unit by:

Allocating storage within the program unit for Private Common

Constructing the Symbol Dictionary from the Symbol Table and

the Control Dictionary

Assigning addresses to all address constants and simultaneously

creating the Relocation Dictionary portion of the program unit

from the Intermediate Relocation List Dictionary data set and the

Control Dictionary.

Save Program Unit Routine

This routine shall place the constructed program unit into Temporary Program

Unit Library for storage until PPP is ready to update the Program Unit

Library.

3.5 . LIBRARY MAINTENANCE PHASE

This phase shall be a single computer program routine whose function shall

be to combine the current Program Unit Library with the Temporary Program

Unit Library creating an updated Program Unit Library reflecting the newly

prepared program units.

32

4. 1 INTRODUC1'ION

PART 4

SIMULATION SUPERVISOR

The Simulation Supervisor (SS) shall provide the capability to test I debug I

and integrate ADC programs within the pscs/LPSS. The Programming Sup­

port Computer System (PSCS) shall have a minimum configuration of:

A System/360 Model 44G

Four 2400 Series Tape Drives I two of which must have

9-track read/write heads. Any 7-track tape drives require

the data conversion feature.

A 1403 or 1443 Printer

A 2540 or 1442 Card Read Punch

A Single Disk Storage Drive

A Floating Point Arithmetic feature if FORTRAN is used

Appropriate control units and a multiplex channel

Appropriate computer supplies

The Laboratory Programming Support System (LPSS) shall have a minimum

configuration of:

A System/360 - Model G or higher

Four 2400 Series Tape Drives I two of which must have 9-track

read/write heads. Any 7-track tape drives require the data

conversion feature

A 1403 or 1443 Printer

A 2540 or 1442 Card Read Punch

A Floating Point Arithmetic feature if FORTRAN is used

A 2311 Disk Storage Drive

Appropriate control units

A multiplex channel and/or a selector channel

Appropriate suppUe s

33

Facilities shall be incorporated within SS to accommodate:

The interface between System/36 a Model 44 Programming

System (44PS) I SS I and ADC programs

Loading and monitoring ADC programs during execution

Simulation of I/O devices associated with ADC programs

Debugging information I and program flow traces

SS shall consist of two phases:

Initialization Pha se

Interrupt Handling and Processing Phase

4. 2 INITIALIZATION PHASE

4.2.1

44PS shall be modified to recognize an Execute Control Card and load the

Initialization routines into main storage. The Initialization Phase shall

contain the following routine s:

Control Routine

Get Control Card Routine

Card Type Determination Routine

Build Table Routines

Control Routine

This routine shall control the processing flow of the Initialization Pha se.

It shall establish queue and table areas I transfer control to the proper pro­

cessing routines I construct the communication region containing the inter­

face between an Interrupt Handling Processing Phase and the constructed

queues and tables I load an Executive Control System (ECS) and relinquish

control to the Interrupt Handling and Processing Phase.

34

•

4.2.2

4.2.3

Get Control Card Routine

This routine shall read the SS control cards and store them in a buffer area

for inspection by the Card Type Determination Routine.

Card Type Determination Routine

This routine shall inspect the control card read by the Get Control Card

Routine.

This Routine shall:

Determine control card type

Edit and extract parameters

Transfer control to the processing routines to construct the

queues and tables

Control card types that shall be recognized are:

AMU Directory Control Card

I/O Equivalence and Data Definition Control Card

Debugging Aids Control Card

Replace Text Control Card

Time Dependent Events Control Card

Interval Timer Conversion Control Card

ECS Queue Dump Control Card

4.2.3.1 AMU Directory Control Card. This card shall contain the names of the

program units involved in the simulation. The following tables shall be

constructed:

AMU Program Directory

Program Unit Library Directory

AMU Directory Queue List

35

4.2.3. 2 I/O Equivalence and Data Definition Control Card. This control card

shall specify the I/O device equivalence between the simulated devices

and those of the PSCS/LPSS.

4. 2. 3 . 3 Debugging Aids Control Card. This control card shall conta in the para­

meters required by the Debugging Aids Routine (4.3.5).

4.2.3.4 Replace Text Control Card. This control card shall contain information

required to alter a portion of code within a program without reassembling.

4.2.3.5 Time Dependent Event (TDE) Control Card. This control card shall contain

the parameters required to build a TDE queue and table. The information

contained in the table shall allow SS to initiate an I/O attention interrupt

at the time speCified on the control card.

4.2.3.6 Interval Timer Conversion Control Card. This control card shall contain

the parameters required to compute a conversion factor to be applied to all

interval timer actions. This conversion factor shall be used to correct

resolution differences between the simulated timer and PSCS/LPSS time.

4.2.3.7 ECS Queue Dump Control Card. This control card shall contain information

required to dump the ECS queues after completion of a specific program unit.

4.2.4 Build Table Routines

These routines shall process and construct queues and tables for each type

of control card. After completion of this function, control shall be re­

turned to the Control Routine (Paragraph 4.2.1).

4.3 INTERRUPT HANDLING AND PROCESSING PHASE

This phase shall contain the routines to interface and insure execution of

ADC programs. This phase shall use the interrupt capabilities of the PSCS/

LPSS.

36

4.~.1

All SS routines shall be executed in the supervisor state while the ECS

and problem programs shall be executed in the problem state. SS shall

gain control during the simulation by any of the following interrupts:

Program Interrupt

External Interrupt

Machine Check Interrupt

Supervisor Call (sve) Interrupt

Before proce s sing an interrupt I SS shall:

Save the status of the machine

Save the remaining time in the interval timer

Convert the interval timer value to ADC time units

Update the ADC programs running time

After processing the interrupt SS shall:

Reset the saved machine status

Re set the interval timer

Program Interrupt Routine

Program interruption shall occur due to error conditions and attempted exe­

cution of privileged operations in the problem state. The error conditions

shall cause debugging information to be ouput by SS. Control shall then

be transferred to the EeS Program Interrupt Handler with the error condition.

The privileged operation shall be examined and simulated by SS. This simu­

lation shall be intended not to change the sequence of DCSG operations.

For example I the Start I/O (SIO) instruction shall cause SS to perform the

following sequences:

Determine the simulated device being referenced

Find the real device associated with the simulated device

37

4.3.2

4.3.3

4.3.4

Interrogate the channel command word to determine the

intent of the command

Accomplish the I/O request

Construct a psuedo I/O interrupt to be forced upon the ECS

Return to the ADC program that causes the interrupt

External Interrupt Routine

This routine shall cause the Timer Routine to proces s this interrupt. The

functions of this routine shall be:

Update the total running time of the ADC programs

Enter the Debugging Aids routine to output data concerning this

interrupt

Construct the return to the Externa.l Interrupt Handler of the ECS

Machine Check Interrupt Routine

Machine Check Interrupts shall be caused by machine malfunction. If the

interrupt initiates within an ADC program t SS shall allow the Machine

Check Handler of the DCSG to attempt recovery. If it is not initiated with­

in an ADC program t the execution shall be terminated.

SVC Interrupt Routine

SS shall be concerned with two SVC' s originating from ADC programs.

These are the Segment End, and Program Unit End SVC's. When recognized,

program unit traces and optional debugging information shall be output if

requested on the Debugging Aids Control Card. Control, after all SVC's

have been processed by SS, shall be transferred to the EGS SVC Handler.

38

4.3.5 Debugging Aids Routine

This routine shall prov de the debugging support for SS. Output from this

routine shall consist of such debugging information as program traces I

main storage dumps I and contents of the general registers. When speci­

fied on the Debugging Aids Control Card I a trace shall be produced. Once

specified I the trace shall be output at the end of each segment of the pro­

gram unit I at a program interrupt error condition or at an interval timer

interrupt.

Trace shall consist of:

Program unit name

The location of the segment end

Starting location of the segment

Trace label (segment end I type of error I etc.)

Next segment entry point

Timer information

Contents of the general registers

Optional main storage dumps (or a dump of the entire program

unit if an error condition)

If the trace option is not specified I a main storage dump and contents of

the registers shall be output if an interrupt occurs because of an execution

error I or the interval timer.

4.4 APPENDIX

Ins ertion of Da ta

Data shall be inserted (input) to the ADC programs in two ways:

Programmer generated data residing on a tape unit

Programmer generated data residing in core within the par­

ticular program unit.

39

Inputs Residing on Tape

Data residing on tape shall be formatted into files for each device ac­

cessed within a program unit. If more than one program unit accesses the

same device, separate files shall be maintained. Within these files a

record shall be generated by the problem programmer for each time the de­

vice is accessed.

A time dependent event file shall also reside on tape. This file shall be

generated by the problem programmer to introduce data required to respond

to a TDE caused I/O interrupt.

Inputs Residing in Core

The problem programmer shall have the option to insert data as a separate

segment within his program unit. This shall be accomplished by using the

SYMBDICT control statement in the Program Preparation Processor (Para­

graph 3.0)

40

PART 5

SYSTEM/360 M44 ADC SUPPOR T

5. 1 INTRODUC TION

System/360 M44 ADC Support shall contain a set of programs, routines,

and macros to:

Simulate the AMU, the Airborne Vehicle Equipment (AVE)

printer, and partially simulate the Keyboard Display Unit

(KDU) on the System/360 M44.

5.2 SYSTEM/360 M44 ROUTINES FOR ADC I/O SIMULATION

These routines shall provide the means to:

Simulate the AMU

Simulate the AVE Printer

Partially simulate the KDU

These routines shall operate under control of 44PS. There shall be no

simulation of error conditions. Each of the routines shall accept requests

from and send data to the Airborne Digital Computer Adapter Subsystem

(ADCAS) Interface Routines. (The ADCAS Interface Routine description is

not included in this document.)

5. 2. 1 AMU Simulation Routine

This routine shall accept requests from the ADCAS Interface Routine to

position the Simulated AMU Tape, and to supply data and sense information to

the ADCAS Interface Routine for delivery to the ECS.

41

5.2.1.1

5.2.1.2

5. 2. 2

5.2.2.1

Normal Functions. AMU commands shall be simulated by the AMU

Simulation Routine. If a sense command is received by this routine,

a Ilno error II condition shall be presented to the ADCAS Interface

Routine.

Error Detection. There are two types of errors which could arise in exe­

cution: actual errors for the 2400 tape and simulated errors for the

AMU.

Permanent 2400 tape errors shall be logged as such and

the appropriate error return shall be given

AMU errors shall not be simulated in the status or the

sense bits.

AVE Printer Simulation Routine

This routine shall provide functional simulation of the AVE printer.

Data input to the Printer Simulation Routine shall consist of 8 bit;

each byte containing a 6 bit code. Each valid byte shall be converted

from ADeII (6 bit) to one of the 8 bit EBCDIC codes in the 48 charac­

ter print chain by the Printer Simulation Routine. Data shall be out­

put to the 1403 printer.

Modes of Output. Output shall normally consist of 24 character data

lines centered on a 132 character print line. An option shall be pro­

vided to include additional commentary pertaining to the print com­

mand received, the data received, diagnostic information, etc.

Options shall be provided for assembly and execution.

42

5. 2. 2. 2

5. 2. 2. 3

5. 2. 3

5.2.3.1

5.2.3.2

Classification of Output. An indicator shall be set to specify whether

or not the output is to be formatted with security classification

headers. A security classification value defining classification of

the job shall be provided. One classification per job shall be per­

mitted. If no clas sification value is provided and clas sification is

requested, the highest defined security classification shall be

as surned.

Error Handling. The provisions of 44PS shall be used for error

recovery. If a sense command is received by this routine, a "no error"

condition shall be presented to the ADCAS Interface Routine

KDU Simulation Routine

This routine shall partially simulate the functions of the KDU by means

of a 1052 console typewriter. The functional keyboard facility shall

not be simulated by this routine. The simulation routine shall provide

input and output of printed data only.

Information Code Conversion. ADC data input to the KDU Simulation

Routine shall consist of 8 bit bytes, each byte containing a 6 bit code

indicating character or control. Each byte shall be interpreted and

converted as necessary from ASCII (6 bit) to 8 bit EBCDIC code or out­

put on the 1052. Alphabetic characters (upper or lower case) from the

1052 shall be interpreted as upper case only.

Display Output Representation.

Because 1052 input and output consists of printed characters,

output representing displayed information on the KDU shall be

distinguished by indicators.

43

PART 6

SYSTEM/360 M44 ADC SUPPORT

6. 1 INTRODUC TION

System/360 M44 ADC Support shall contain a set of programs, routines,

and macros to:

Generate an AMU Tape

6. 2 ADC PROGRAM FOR AMU TAPE LOADING AND VERIFICATION

6. 2. 1

6. 2. 2

The AMU Tape Loading and Verficiation Program (TLV) shall load an

AMU Tape and verify data transmission. Data transmission or com­

parison errors shall be displayed. This program shall execute on an

ADC with a 2400 series tape, an AVE printer, and a KDU that interface

with the ADC through a Printer / AMU Adapter (PAM). This two phase

program shall be complete in itself.

AMU Tape Load Phase

This phase shall read data from the AMU Load Tape and write it on the

AMU Tape. The input for this program shall be the second file on the

AMU Load Tape. The progress of the writing process shall be displayed.

Each data transmission error shall be presented with an indication of its

location. The program shall log every error. Permanent errors shall be

logged as such and termination shall take place.

AMU Tape Verification Phase

This phase shall read the second file of the AMU Load Tape and the AMU

Tape synchronously and compare all the data. Indication shall be provided

of the progress of the verifying process. Each data transmission or com.­

parison error shall be presented with an indication of its location. The

program shall log every error. Permanent errors shall be logged as such

and termination shall take place.

44

Section 2

INPUT /OUTPUT FUNCTIONAL AND DCSG

SELF-TEST AND DIAGNOSTIC REQUIREMENTS

(ATTACHMENT NO.2)

45

PART 1

I/O AND DCSG SELF-TEST AND DIAGNOSTIC PROGRAMS

1.1 PRINTER OUTPUT PROCESSOR

This program shall accept data from anyon-board operational program and

initiate data output to a hardcopy printer.

1.1.1 Source and Type of Inputs

The following are input to the Printer Output Processor.

1.1. 2

a. Output data from any operation program.

b. Conversion request and format specification from any

operational program requesting output to the printer.

Destination and Type of Outputs

Print with a request to the Executive Control System to initiate transmission of

print data to the hardcopy prin 1er is output.

1.1. 3 Informa tion Proce s sing

This function shall be initiated upon receipt of priri data from any operational

program. The data to be printed shall be converted to ASCII code. Two levels

of priority shall be recognized in the data to be printed.

1. 2 DISPLAY OUTPUT PROCESSOR

This function shall accept display data from any operational program and initiate

transmission of these data to the display unit.

1.2.1 Source and Type of Inputs

Inputs to the Display Output Processor are as follows:

a. Display data from any operational program.

b. A request for conversion of numerical data to ASCII codes I

and format specifications from a program requesting a display.

46

1. 2. 2 De stination and Type of Outputs

Display data with a request to the Executive Control System to initiate

transmission of display data to the display is output.

1. 2.3 Information Processing

This function shall accept display data from any operational program.

Data to be displayed shall be converted to ASCII code. Two levels of

priority shall be recognized in the data to be displayed for at least 10 seconds

before being replaced by a higher priority message.

1.3 KEYBOARD INPUT PROCESSOR

The Keyboard Input Processing Function shall accept, and translate inputs

originating at the Keyboard and the Master Control Console.

1. 3.1 Source and Type of Inputs

The following are inputs to the Keyboard Input Proce s sing Function:

a. The inputs shall consist of 8-bit codes representing

the following:

1. Alphabetic characters

2. Numeric characters

3. Special characters

4. Function control s

5. Data entry controls

6. Backup code s

b. A complete message consisting of a string of these codes

shall be accepted as a higher-level input. These inputs

shall include the following:

1. A request for the value of a specified telemetry parameter.

47

1. 3. 2

2. A request for the contents of a specified location in

main memory to be displayed

3. An immediate or delayed command to the Command

Processor

4. A request to the Executive Control System for the

initiation of a specified program

5. A data input to a specified memory location

6. A message to the Downlink Processor

De stination and TYEe of Output

The following are output from the Keyboard Input Processing Function:

1. 3.3

a. A Keyboard input message shall be output to the display.

b. A request to the Data Acquisition Function for the acquisition,

conversion, limit check and display of a specified telemetry

parameter.

c. A request to the Display Output Processor to display the

contents of a specified memory location.

d. An immediate or delayed command to the Command Processor.

e. A request to the Executive Control System for the initiation

of a specified program.

f. A data transfer to a specified memory location.

g. A message to the Downlink Processor.

h. A Time Reference Signal to the Gemini Deorbit Data Handler.

Information Processing

The processing of the Keyboard Input Processing Function is as follows: .

a. The Keyboard Input Process shall be initiated upon the receipt

of a Keyboard or Master Control Console code. Alphabetic,

numeric and special characters shall be routed to the Display

Output Processor. A string of these characters shall be

48

assembled in memory as a message capable of being edited

from the Keyboard. The following control codes shall be

interpreted as requiring the indicated implementation:

1. CLEAR -- The entire message shall be erased from

the memory and from the display.

2. BACKSPACE -- The last character input at the Keyboard

shall be erased.

3. SPACE -- The next character position shall be skipped.

4. ENTER -- Processing of the completed message shall

be initiated.

The capability shall be provided to substitute a backup code

for a malfunction code.

b. A completed message shall be checked for syntax, validated

and interpreted as follows:

1. Request for a telemetry parameter -- A request shall be

sent for the Data Acquisition function to sample the

specified telemetry parameter.

2. Request for memory data -- This input message shall

enable smapling, and display of the contents of a

specified location in memory in hexadecimal code.

3. Immediate and Delayed Commands -- The input message

shall enable the immediate execution of an immediate

command and shall provide the storage for later execution

of a delayed command. The commands shall be sent

to the command processor.

4. Request for Initiation of a Program -- A request shall be

made to the Executive Control System for the initiation

of the speCified program.

49

5. Manual Input of Data to Computer -- The input of certain

data into code storage shall be permitted under control

of the Executive Control System.

6. Downlink Message -- The input message shall be

transmitted to the Downlink Processor without modification

for PCM transmis s ion to the ground.

1.4 DCSG SELF-TEST

The DCSG Self-Test Program shall be co-resident in main storage with the

Executive Control System (ECS) and the operational programs I or alternately

may be stored on the AMU and called when needed. It shall be executed

periodically as a nonpriority program under control of the ECS and shall not

interfere with the operation of the operational programs. The DCSG Self­

Test shall provide a moderate check of the ADC I LDA I and KACU. The DCSG

Self-Test program shall perform the following functions:

1.4.1

a. ADC Test -- This function shall test the arithmetic and logical

elements of the ADC .

b. LDA Test -- This function shall echo-check each interface

of the LDAU.

c. KACU Test -- This function shall echo-check the KACU.

Source and Type of Input.

Inputs to the DCSG Self Test are:

a. ADC Test -- None

b. LDA Test -- Input to the LDA Test shall be test data read

from the LDA interface shift registers.

c. KACU Te st -- Input to the KACU Te st shall be a data byte

returned from the keyboard data register.

50

1.4.2 Destination and Type of Output

Output of the DCSG Self-Test Program is as follows:

1.4.3

a. ADC Test -- Upon detection of an ACD failure, output from

the ADC te st function shall be the ADC malfunction signal to

the DCSG Computer Subsystem Controller (CSC).

b. LDA Test

1. Test commands to the LDA interface shift registers.

2. Notification to the ECS of the status of each of the

LDA interfaces.

3. The LDA malfunction signal to the CSC if any of the

interfaces fail.

c. KACU Test

1. Test data to the Display data register.

2. If the test was unsuccessful, notification to the ECS

of the failure.

Information Processing

The processing of the DCSG Self-Test Function is as follows:

a. The ADC test shall determine the operational capability of

the major ADC data paths and functional elements, as follows:

1. Each of the ten mover actions shall be executed using

data patterns designed to detect hardware malfunctions.

With the exception of I/O facilities, all sources of

data to the right and left mover inputs shall be exercised.

With the exception of the I/O facilities, all destinations

of mover output shall be exercised.

2. Each of the eight adder actions shall be executed using

data patterns designed to detect hardware malfunctions.

51

3. With the exception of I/O facilities, each of the

sources of data to the right - and left - adder inputs

shall be exercised. With the exception of I/O facilities,

all adder output destinations shall be exerCised.

4. Each of the eight shift instructions shall be executed

using data patterns designed to detect hardware malfunctions.

5. Each local storage register shall be addressed, and

proper data transfer and retention shall be established.

b. The LDA te st shall echo check the AMU Interface, Printer

Interface, ACTS Interface, DASG Interface, Command Output

Interface, and Command Uplink Interface. The AMU, Printer,

ACTS, DASG, and CSG themselves shall not be exercised

during this test. For each interface, the computer shall issue

a Te st Write command with bit 5 set to a I. As a re sult, the

command code byte shall be placed in the interface shift

register. A test read command shall then cause the byte to

be read back into the computer where it shall be compared

with the original byte. If the bytes are not the same, the

ECS shall be notified that this particular interface is malfunctioning.

If any of the interfaces do not work properly, the LDA

malfunction signal shall be set and the ECS notified.

c. The KACU Test shall:

1. Issue a write command to the Display with bit 0 set

to 1.

2. Is sue a read command to the Keyboard and compare

the byte returned with the original byte.

3. If the comparison fails, notify the ECS.

1. 5 DCSG MAINTENANCE DIAGNOSTIC

This function shall provide a thorough test of each DCSG device. It shall

be operated during activation of the laboratory and thereafter at the crew's

request. The Maintenance Diagnostic functions other than the ADC test

52

shall be performed only on the master functions other than the ADC test

shall be performed only on the master computer. The Maintenance

Diagnostic shall perform the following tests:

a. ADC Test.

The DMDP ADC test shall prove the operational capability

of the following ADC functions:

1. Instruction Execution

2. CPU Data flow

3. Arithmetic/Logical Processing

4. ROS Addressing and Decoding

5 . Micro-order Execution and flow

6. Main Storage Addressing and Data Transfer

7. Local Storage Addressing and Data Transfer

b. LDA Test -- The LDA test shall check the LDA interfaces I

the Internal Control Registers I the Channel to Channel

Adapters I and the CSC channels.

c. KACU Test -- The KACU Test shall provide a thorough test

of the KACU

d. Printer Test -- This function shall test each Printer Unit's

ability to accept and print each of the 48 possible character

codes at each of the 24 possible character positions.

e. Keyboard Test -- The Keyboard test shall check the Keyboard's

ability to accept an operator input and process it properly.

f. Display Test -- The Display Assembly Test shall check the

ability of the Display to accept data from the ADC and

display it properly. It shall requ:ire operator verification

of the displayed data.

53

1. 5.1

g. AMU Test -- The AMU Test shall employ and test the opera­

tional ability of the following components of the Auxiliary

Memory Unit.

1. Command/control logic as required for on-orbit.

2. Commands (read I read backward I sense I and control).

3. Amplifier and detect functions.

4. Voter matrix function.

S. Output data register and parity bit generator.

6 • Parity and validity.

7 . End and beginning of tape sensing.

Source and Type of Input

Inputs to the DCSG Maintenance Diagnostic Function are as follows:

a. ADC Test -- None

b. LDA Test -- The following shall be inputs to this test:

1. Notification from the ECS of the status of the Slave

Computer.

2. Test data returned from the LDA interface shift

registers.

3. Test data read from the LDA Internal Control Register.

4. Test Data returned by the slave computer

5. Telemetry sample of the CSC configuration register.

c. KACU Test -- The following shall be inputs to this test:

1. Test data returned from the Keyboard data register.

2. Bus-out parity errors from the Keyboard and Display

sense registers.

d. Printer Test -- Input to Printer test shall be operator keyboard

verification of the printed data patterns.

e. Keyboard Test -- Input to the Keyboard Test shall be bytes

of data from the Keyboard As sembly •

54

1. 5. 2

f. Display Test -- Input to the Display test shall be operator

verification of the test data via the Keyboard assembly.

g. AMU Test -- The inputs to the AMU test routine shall

be te st data blocks read from the AMU .

De stination and Type of Output

Outputs of the DCSG Maintenance Diagnostic Program are as follows:

a. ADC Test -- Upon detection of an ADC failure I output

from the ADC test shall be the ADC malfunction signal

to the CSC.

b. LDA Test

I, Test Command bytes to the LDA interface shift

registers.

2. Notification to the ECS of the status of each of

the LDA interfaces I of the internal control register I

the Channel to Channel Adapter I and the CSC.

3. The LDA malfunctiOn signal to the CSC if any interfaces

of an LDA fail.

4 . Te st data to be transferred to the Slave Computer.

5. Command outputs to the CSC.

c. KACU Test

1. Test commands and data to the Display data register.

2. Test commands to the Keyboard.

3. Invalid commands to the Display and Keyb<ll rds •

4. If the test was unsuccessful, notification to the

ECS of the failure.

d. Printer Test

1. A block of test data written to the DCSG Printer.
"

2. Notification to ECS of each Printer!s operability.

3. A display requesting operator verification of the test.

55

--~ ... ~ .. '_'~=-_----"''''''='C "_._------ .. -"--.. - ~--' .. -- .. -- --~ .. --... <= .. --.-'-, ... ," •.. ~~-

1. 5.3

e. Display Test

1. Test data displayed on the DCSG Display Unit.

2. A printer message denoting the start of the test.

3. Notification to the ECS of test failure.

f. Keyboard Te st

1. A message to the DCSG Display Assembly requesting

the start of operator inputs.

2. Notification to the ECS of the operability of the Keyboard.

g. AMU Test

1. In the event of an AMU test failure I notification to

the ECS.

2. I/O commands writ ten to the AMU .

Information Proce s sing

The processing of the DCSG Maintenance Diagnostic Program is as follows:

a. ADC Test

1. With the exception of I/O instructions I each machine

instruction shall be executed using data patterns

explicitly chosen to detect malfunctions in the

arithmetic/logical unit and data paths.

2. With the exception of the I/O mode microinstructions I

and those which would cause permanent loss of control,

each microinstruction in the ADC microprogram shall

be addressed and executed.

3 • A sum check of all main storage available to the ADC

test shall be executed. In addition, all available

main storage shall be hard cycled as one of the

functions of the Diagnose instruction.

4. Proper local storage data retention and change of state

shall be verified by cycling ones and zeros through

each general register. To establish proper local

56

storage addressing, an array of 16 distinct data

factors shall be loaded in one order, re stored in a

different order, and the re sult array analyzed for

errors.

b. LDA Test -- The LDA test shall perform as follows:

1. Issue a test write command to each interface followed

by read commands.

2. Upon return of the test byte ,compare it to the original

byte.

3. Is sue invalid commands to each interface and await

a command reject response.

4. Write a comprehensive set of patterns to the Interface

Control Register, read those patterns back, and compare

them to the original.

S. Write patterns of test data to the slave computer,

read them back and compare the patterns.

6. Read backwards the Channel to Channel Adapter

te st patterns and again compare results.

7 . Write configuration commands to the CSC, wait

approximately 400 sec, sample the CSC configuration

register and verify that the commands were received

properly.

8. Notify the ECS of any malfunction detected.

c. KACU Test -- The KACU Test shall perform as follows:

1. Issue test write commands to the Display which shall

transfer test data bytes to the display data register.

2. Issue (test) read commands to the Keyboard data

register and compare the results to the original.

3. Is sue invalid commands to the Keyboard.

57

4. Issue invalid commands to the Display.

5. Notify the ECS of any failure of the KACU to

respond properly.

d. Printer Test -- A complete set of characters from a

preestablished pattern in core shall be printed. After­

wards the operator shall be asked, via the Display

Assembly, to verify the printout. If the response is

negative, the ECS shall be notified.

e. Keyboard Te st -- The operator shall be asked, via the

Display, to depress a predetermined sequence of keys.

The keyed input shall be compared to a predetermined

pattern. If the input does not match the pattern in storage,

the ECS shall be notified of the Keyboard malfunction.

£. Display Test -- The Display Test shall perform the

following:

1. Notify the operator via the printer that the display

test is to begin.

2. Write patterns of data to the Display Assembly

which will cause each of 46 characters to be displayed

in each possible position.

3. If the test fails, notify the ECS.

g. AMU Te st -- The AMU te st function shall perform the

following:

1. Cause the AMU to seek the test data record by

execution of the forward space multiple record

command.

2. Read the test block and compare it to its known

contents.

58

3. Cause the tape to skip backwa£d the then

skip forward.

4. Cause the AMU to execute the read backward command

and I again, check the data.

5. Cause the AMU to execute the rewind command.

6. If the test fails I notify the ECS.

59

Section 3

SOFTWARE DEVELOPMENT SCHEDULES

(ATTACHMENT NO.3)

60

Section 3

SOFTWARE DEVELOPMENT SCHEDULES (ATTACHMENT NO.3)

DAC *Self Test Math Simulation Program AMU Tape System/360

I/O
& ECS Prep.

Load & Vera
M44

Diag.
Uti!. Supervisor Proe. ADC I/O Sima

Part I CEI 5/15/67 5/15/67 5/1/67 5/1/67 7/15/67 5/15/67

Item Test Plan 5/15/67 5/15/67 5/1/67 5/1/67 9/15/67 6/19/67

GE-PDR 6/1/67 6/1/67 5/17/67 5/17/67 8/15/67 6/1/67

Part 2 CEI 8/15/67 10/2/67 8/15/67 8/15/67 6/15/67 6/15/67 10/15/67 8/1/67

Item Test Proc. 8/15/67 10/2/67 8/15/67 8/15/67 7/15/67 7/15/67 1/15/68 9/15/67

GE-CDR 8/30/67 11/1/67 8/30/67 8/30/67 7/12/67 7/12/67 11/15/67 8/15/67
0-....

Prel. Opera Guide 8/30/67 8/30/67 8/30/67 8/15/67 8/15/67 1/15/68 8/1/67

Prel. Delivery 10/2/67 10/2/67 10/2/67 10/2/67 9/1/67

(Not Validated)

Version Dise. 3/1/68 5/1/68 3/1/68 3/1/68 1/15/68 1/15/68 5/15/68 12/4/67

Item Test Report 3/1/68 5/1/68 3/1/68 3/1/68 1/15/68 1/15/68 5/15/68 12/4/67

Final User's Man. 3/1/68 5/1/68 3/1/68 3/1/68 1/15/68 1/15/68 5/15/68 12/4/67

G. E. Acceptance 3/1/68 5/1/68 3/1/68 3/1/68 1/15/68 1/15/68 5/15/68 12/4/67

*Based on DAC PDR 5/1/67

APPENDIX

RESUMES

A-I

APPENDIX

RESUMES

ResulTIes of the key scientific and progralTIlTIing personnel to be used on

this MOL COlTIputer ProgralTI DeveloplTIent Program follow:

ROBER T T. ELLSWORTH, JR., MOL ProgralTI Director

Education:

Experience:

BS, Massachusetts Institute of Technology
MBA, University of Buffalo

12 years experience, 10 at IBM

Mr. Ellsworth's 12 years in adlTIinistration, engineering, and markei

have provided him with a wide range of experience in all aspects of aero-

space programs. His last position before this as signment was assi stant

to the President of the Federal SystelTIs Division.

Mr. Ellsworth's previous as signlTIents have provided an extensive back··

ground in the technical, fiscal, and contract requirelTIents of both ground-

based and spaceborne inforlTIation handling systelTIs for the government ..

His technical experience includes navigation and guidance equipment;

inertial optical and radar sensors; special purpose ground data handling

systems; and syste:rns integration. Those previous assignments include.

• Assistant ProgralTIs Director of scientific and space operations.

In this position, Mr. Ellsworth was concerned with NASA

programs including Project Mercury range cOlTIputation,

Saturn cOlTIputer and instrumentation unit, real time r

complex, and GelTIini inertial guidance syste:rn, and with

intelligence data processing projects such as 438L (IDHS),

466L, and fleet intelligence centers.

• ProgralTI Manager for aerospace syste:rns (Air Force program:::;

Mr. Ellsworth's experience ranged from Air Force study

A-2

requirements in the space area through data handling support

to Lockheed on 117 -L.

Mr. Ellsworth's assignment as Assistant to the President of FSD, Market­

ing Manager for the Electronics System Center, and FSD Washington

Marketing Manager, have provided him with direct contact and familiarity

with the government community. His overall experience will insure

effective communication and integration between IBM, Douglas Aircraft

Company, and the General Electric Company, rapid response to customer

direction and efficient application of IBM resources to the 632A program.

A-3

BURTON P. WHIPPLE, MOL Programming Manager

Education: BA Mathematics, University of Connecticut, 1951

Experience: 14 Years Experience, 6 at IBM.

Mr. Whipple is presently responsible for all programming projects re­

lated to MOL, reporting directly to the MOL Program Director. Prior to this

assignment, he was manager of the Systems Conversion Department Group

responsible for converting computer programs from IBM's 1401, 1410, 1620,

7040 I 7070, 7080, and 7090 to System/360 .

Previously, Mr. Whipple was a Special Representative in Programming

Systems, acting as a consultant to IBM customers.

He also has six years of experience as Programming Manager, working

on various scientific programming projects for the Federal Government and

performing systems and analyses for Rocketdyne Division of North American

Aviation.

A-4

RICHARD B. TALMADGE I PhD - Consultant: Software Problems

Education

Experience:

Time: 50%

BS I California Institute of Technology - 1948

PhD I California Institute of Technology - 1951

10 Years at IBM

Dr. Talmadge has 14 years experience in computing I 6 of wich were spent

in aerospace applications. His present assignment is special assistant for pro­

gramming to Mr. A. E. Cooper I Vice-President and General Manager of Space

Systems Center. Dr. Talmadge's experience include s a variety of applications

in system programming efforts I including numerical analysis I radar tracking I com­

pressible fluid flow I free-jet nozzle design I and missile trajectories. System

work includes design and implementation of interpretative processors, compilers,

assemblers and control programs.

Previous as signments with IBM include:

• Manager, Experimental Systems Group, Los Angeles Scientific

Research and Development Center. Dr. Talmadge's group devel­

oped the design for a large scale multi-processing network.

• Senior Programmer, Programming Systems," Data Systems Division

where he was active in the design of the IBJOB processor for the

7090/94, and had responsibility for the design, implementation,

and checkout of the 7090/94 IBMAP Assembler.

• Manger I Commercial Translator Project, Applied Programming De­

partment, Data Systems Division. During this two year period,

Dr. Talmadge's group designed and produced the 709/7090 com­

mercial translator processor, the 709/7090/7094 input/output

control system, and the initial version of the 709/7090/7094

I13SYS monitor.

A-5

Experience prior to IBM includes the following:

• 3-1/2 years with Lockheed Missile Systems Division as Manager

of Systems Programming and as a research scientist. System pro­

gramming efforts produced a complete operating system for the

UNNAC l103A. Prior work involved a number of applications; the

most significant of which was an extensive' 3D missile trajectory

program with which design optimization could be performed.

• 1-1/2 years with Marquardt Aircraft Corporation as Research

Scientist and Manager of Computer Programming. Work performed

involved design of variable Mach number free-jet nozzle.

• 2 Years with Hughes Aircraft Company engaged in various aspects

of analysis and computation.

A-6

WILLIAM F. HUBBARTH, PhD - Senior Engineer - Mission Simulator Development
Manager

Education:

Experience:

BA, College of Wooster - 1952

MA, Ohio State University - 1953

PhD, Ohio State University - 1956

11 years at IBM.

While employed at IBM, Dr. Hubbarth has directed and performed

system analyses on advanced manned systems including a variety of air, missile,

and spacecraft systems. He has been program director of human factor systems

analysis, simulation studies and control studies. He has developed methods

of systems analysis and simulation that extend into all aspects of subsystems

implementa tion.

He was Director of human engineering, system analysis and procedures simulation

on AN/ASQ-28(V) program; Director of human factors design activities at IBM

SGC; Director of the IBM manned space guidance and control program;

Experiment definition and Simulation consultant for MORL, AORL, and OSSS;

MOL simulation project director; IVSS Assistant Study Director and Simulation

Task Director; MOL Mission Simulator Phase 0, Phase l(b) and Phase II

Program Manager. He is currently responsible for all aspects of Simulation

in Program 632A as a manager in the MOL Software Function.

A-7

ANDREW H. OLSON, Technical Assistant MOL Software Development

Education: BS, University of Southern California

Advanced Graduate Studies, University of Southern California

Experience: 10 Years I 2 Years with IBM

Mr. Olson reports directly to the MOL Programming Manager and is re­

sponsible for insuring contractual compliance for MOL Programming activities.

Prior to this assignment, Mr. Olson was on the Saturn Systems Program­

ming Staff activity at Huntsville in KSC.

Prior to joining IBM, Mr. Olson spent two years with the computer pro­

gramming integration contractor for the USAF Satellite Control Network. He

spent two years on the staff of the GSBA Computer Center at the University of

Southern California. Prior to this, Mr. Olson was with the Rocketdyne

Division of North American Aviation on the Atlas ICBM Program.

A-8

BERNARD D. RUDIN, PhD - Consultant, Computing Techniques

Education:

Experience:

Time: 50%

BS, California Institute - 1949

MS, University of Southern Calif. - 1951

PhD, Stanford University - 1965

Dr. Rudin's experience has all been in computing for the

aerospace industry. His present assignment is that of Manager, Information

Technology Development, reporting directly to the Manager MOL Software

Development. Dr. Rudin's experience includes work in numerical analysis,

trajectory computation, and other tasks in applied mathematics. In

addition, he has participated in and directed research and development

activities in linguistics, programming systems, and special purpose

computer design.

Experience prior to joining IBM includes:

12 years with Lockheed Missile and Space Co., Palo Alto, California.

During the last six years of this period, Dr. Rudin was a consulting

scientist and Senior Member of the Research Laboratory directing a group

of 20 scientists and engineers in research and development in the information

sciences field. Before that, he was Manager of Programming Research and

head of Scientific Computation for the company's Computating Center.

• 1-1/2 years with Marquardt Aircraft Company, Van Nuys,

California, as Mathematical Engineer, Numerical Analysis

group. Work included programming of missile system

simulations.

• 1-1/2 years with Lockheed California Company, Burbank,

California as Mathematical Analyst doing analysis and

programming on problems in aircraft structures and flutter.

A-9

GEORGE T. HAZELWOR TH I Manager I Laboratory Vehicle Programming Development

Education: BS I Michigan State University

Experience: 15 Years

Mr. Hazelworth is presently Manager of Laboratory Vehicle Programming

Development. He is responsible for the overall design and development of the

On-Board Executive I Math. Utilities I Program Preparation Processor, Simu­

lation Supervisor I and System/360 ADC Support.

Prior to his current position, Mr. Hazelworth was a Special Represen­

tative in the Western Region Programming Systems Department for IBM.

A-I0

MARIO SURDI - Development Manager

Education: BS, Math, Queens College

Experience: 10-1/2 years experience with IBM.

Mr. Surdi is presently responsible for the On-Orbit Executive. Mr. Surdi

was also Manager of FORTRAN G for IBM System/360 Programming Systems.

Prior to that, he worked on the Advanced Operating System for the IBM

System/360. Previously he was an Advisory Programmer on COBOL F for

System/360 and Manager of COBOL for the IBM 7040/44 systems and

COB01/7070 project coordinator.

He has also worked on Language Development, 7070 Comtran, BOUARC

Simulation I LOBAL System and on Software error recovery for hardware

failures.

A-II

STANLEY COHN, Project Manager

Education:

Experience:

BS Accounting I New York University
Graduate Studies - 1 Year Towards
BS, Operation Research .. Rutgers

7 Years - 5-1/2 with IBM

Mr. Cohn is presently a manager on the MOL Project. Previously I he

was manager of FORTRAN E and COBOL E maintenance for IBM System/360.

Prior to that I he wa s Project Coordinator for COBOL F, Coordinator for

COBOL and IBM 7040/44 systems and worked on COBOL for the IBM 7070

system.

Before joining IBM I he worked on He JOVIAL Compiler for System De­

velopment Corporation.

A-12

..

•

MONTE MINAMI - Development Programmer

Education: BA Mathematics, UCLA - 1954

Experience: 12 years, 5 with IBM

Design, programming and modifying operating systems

for large scale digital computers, compilers (FORTRAN, PACT), Assemblers

(SAP, FAP, SCAT, etc.) He also has 5 years experience with IBM as a

systems programmer (IBM 709 - 7094).

Experience Previous to IBM:

• 3-1/2 years at North American Aviation as a systems

programmer for a large scale digital computer (IBM 701/704)

• 3-1/2 years at TRW Systems (was Space Tech. Laboratories),

as a systems programmer (IBM 704/709) •

A-13

•

f

•

HAROLD W. JOHNSON I Manager of System/360 Model 44 and ADC Support

Experience: 12 Years with IBM

Mr. Johnson is presently Manager of System/360 Model 44 and ADC

Support reporting directly to Mr. G. T. Hazelworth, Manager of Laboratory

Vehicle Programming Development, on matters of Model 44 I 44 Programming

System and ADC Integration Support.

Previously he was manager of Systems Techniques in the Data Proces­

sing Division; as such I he was responsible for the design and implementation

of System/360 data utilities. His other experiences included Systems En­

gineer for a large aerospace customer, systems programming for IBM regional

support and Customer Engineer on the 700 Series equipment.

A-l4

