C

Air Force Report No.	IBM Report No.
SSD-TR-67-XXX-Vol.	$67-\mathrm{M} 50-007$

PHASE I FINAL TECHNICAL REPORT (DRAFT)
(U) QUICK REACTION GUIDANCE AND TARGETING STUDY

$$
\text { Volume } 4
$$

Sections I through APPENDICES

By
H. R. Robbins, P. P. Mooney, et al Space Systems Center, FSD, IBM Corporation

JUNE 1967

Prepared For
Advanced Development Directorate Space Guidance Program Division Air Force Systems Command Los Angeles Air Force Station, California

Appendix I

TGP - TRAJECTORY GENERATOR PROGRAM

1.1
 INTRODUCTION

The Trajectory Generator Program (TGP) is a digital computer program written in FORTRAN IV to run on IBM 7090/7094 computers. The program is used in mission analysis and planning to generate a preliminary trajectory (or trajectories) from launch to orbit injection followed by several options for performing orbit transfer with or without rendezvous.

The program employs analytical equations for determining launch conditions and the atmospheric phase of ascent. The vacuum phase of ascent (to orbit injection or intercept) is generated with an explicit guidance algorithm. All orbital burns are considered as impulses and are planned by two different techniques to provide alternate solutions. The program is based on a spherical earth model which allows for the rapid generation of coast segments with Keplertype equations.

This program was written to demonstrate feasibility of the Preliminary Trajectory Generation Mode of the On-Board Mission Planning Function (see Section V of the main report). TGP is used to generate initial trajectories for the Trajectory Optimizer Program (TOP) which is described in Appendix II.
1.2 PURPOSE AND USF

TGP was written to demonstrate preliminary feasibility of on-board trajectory generation for the QRGT concept. The program also demonstrates the capability of the generalized guidance algorithms, developed during this study, for mission planning purposes. TGP represents the "Explicit" aspect of the "Optimal-Explicit" approach to on-board trajectory planning which is outlined in Par. 5.4 of the main report.

This program is employed to generate preliminary trajectories for various missions that may employ the QRGT concept. These preliminary trajectories are specified a set of parameters which identify: launch conditions,
ascent to orbit, and all major orbit burns. These parameter sets then become the input to the Trajectory Optimizer Program-TOP (Appendix II) where they are systematically varied in order to minimize some mission performance function (e.g. total ΔV or total mission time). TOP then represents the "Optimal" aspect of the "Optimal-Explicit" approach to trajectory planning.

1.3 PROGRAM FEATURES

The present version of TGP makes use of many subroutines generated in different subtasks of Task II during this phase of QRGT. This has resulted in some duplication and program inefficiency. These deficiencies can be corrected when a more general and sophisticated program (which will be

The present program employs fairly simple planning logic and launch routines in conjunction with quite sophisticated ascent and orbit maneuver routines to provide the following features:

- Direct ascent, ascent to orbit and orbit maneuvers (witk or without rendezvous) can be generated.
- Spherical gravity model.
- Kepler arcs for coast phases.
- Launch conditions options for minimum out-of-plane angle or for a specified launch time.
- Maximum and minimum launch azimuth constraints included. - Ascent to orbit or intercept with an optimal explicit guidance algorithm (UP 1 or UP 2 Subroutines, which are really two entries to a slightly modified version of OP-EX, the algorithm used for powered-flight guidance and described in Appendix III). 。
- Two-burn (RENDI Subroutine) or three-burn (VPG Subroutine) orbit transfers possible.
- Orbital burns treated as impuises.
- Mission can be planned from launch or from a parking orbit.
- The two burn rendezvous routine (RENDI) employs a search routine to locate local minimum- ΔV transfers.

1.4

PROGRAM OPERATION

The over-all operation of TGP is illustrated in Figure I-1. The program consists of an executive routine MAIN and seven major subroutines: LAUNCH, UP 1, UP 2, EPHEM, RVVR, RENDI and VPG. The MAIN program reads in all data, performs necessary conversions, sets up program paths, initializes and calls subroutines, and writes all output data. The LAUNCH subroutine is used to determine the launch time and launch conditions. The ascent to orbit or intercept phases is calculated in UP 1 and UP 2 respectively. Ephemeris for the spacecraft and target is updated with EPHEM. The RVVR routine is used to compute the required velocity necessary for an orbital burn. Two-burn orbital rendezvous maneuvers are generated with RENDI while VPG generates several different rendezvous trajectories with three (or more) burns per trajectory.

For each successful run, the printout includes all parameters necessary to specify each trajectory. These include: launch time and azimuth; ascent cut-off state, time, and $\triangle \mathrm{V}$ remaining; position, velocity, time and $\Delta \mathrm{V}$ at each orbital burn; and other related data.

1.4.1 MAIN PROGRAM

The executive routine MAIN represents the planning logic and prescriptions of the Preliminary Trajectory Generator Mode of the On-Board Mission Planning Function (see Section V of the main report). That is, it determines how a trajectory will be generated, the subroutines necessary and the linking of subroutines. In TGP this logic and prescriptions are dependent on the mission type but otherwise fixed. For example, aiimissions requiring rendezvous with an orbiting target (real or fictitious) are pianned in the same way; only the results differ. Figure I-2 is a detailed math flow of MAIN. The symbols used may be found in Table I-1.

Referring to Figures I-1 and I-2, after reading-in and converting input data MAIN branches if a Surveiliance case is to be planned ($M=4$), otherwise the EPHEM subroutine is called and certain parameters of the target's orbinare computed. If a parking orbit is required ($M=3$) the LAUNCH
routine is used to determine the best time to launch; that is, when the out-ofplane angle with the target orbit is minimum. The launch time (t_{L}) is constrained to occur after a reference time (t_{0}) and before a maximum time ($t_{\text {Lf }}$) both of which are inputs. The outputs of LAUNCH are used with UP 1 to generate a optional ascent trajectory to a circular parking orbit.

Once in the parking orbit, the orbital burns necessary to achieve rendezvous with the target vehicle are generated as a two-burn maneuver with RENDI or as a set of possible ihree-burn maneuvers with VPG.

The results from RENDI and VPG are printed-out with the launch conditions and ascent phase. Selected options are then ready to be optimized with TOP (Appendix II).

When a direct ascent is called for ($\mathrm{M}=1,2$), MAIN branches after generating the target parameters. The problem here is to determine the launch conditions and an ascent trajectory so that the coast trajectory after cutoff intersects the target orbit when the target is at the intercept point. This is the case, for example, when a direct-ascent rendezvous is to be planned. The first step is to employ LAUNCH to generate launch conditions for minimum out-of-plane angle at the earliest possible launch time ($t_{L}=t_{o}$). From this, the intercept direction is determined. The EPHEM routine is then called to determine the target's position and velocity at the intercept point, and the time required to reach that point $\left(t_{f}\right)$. The intercept position and time to intercept ($t_{f}-t_{0}$) are inputted to UP 2 which generates an ascent trajectory, if one exists, which will arrive at that position at the proper time. If the ΔV required on this trajectory is less than the maximum available, a solution has been found and the program writes the results and stops. If, on the other hand, the trajectory is not feasible, the program increments the launch time by an input constant (Δt_{L}) and proceeds to generate a new trajectory. The launch time is incremented in this fashion until a feasible trajectory results (i.e., one with $\left.\Delta V \leq \Delta V_{\text {max }}\right)$, or a maximum value for $t_{L}\left(t_{\text {Lmax }}\right)$ is exceeded. In the latter case, the launch time is fixed at the "best" time found so far (i.e., corresponding to a minimum value of (ΔV), and the launch azimuth is now incremented from its minimum value ($A_{L_{m i n}}$) by a fixed amount ($\triangle A_{L}$, an input).

In this iteration the maximum and minimum falues for lanch azimuth are set to the desired value in LAUNCH. This resultis in the launch conditions and intercept point when the launch time and the launch azimuth are specified and will, in general, not result in the minimum out-of-plane angle with the target's orbit. If a solution can not be found for $A_{L} \leq A_{L m a x}$ the program stops. Within the above mentioned constraints of launch time and launch azimuth, this exit indicates that the target cannot be reached with a direct ascent trajectory.

In the case of surveillance missions ($M=4$), MAIN initially checks the possibility of a direct over-flight by proper cutoff conditions during ascent. This is done by determining the maximum inclination attainable frorn the launch site when launch azimuth restrictions are considered. if this maximum inciination exceeds the latitude of the point to be overflown, a first pass uverflight is calculated. In this application the inputs to UP 1 are varied in an attempt to find an elliptic parking orbit which has the desired altitude over the point and gives overflight at the dosired time. In this iteration the parking orbit parameters and overflight time are varied.

If a solution cannot be found or if the target's latitude exceeds the maximum possible inclination, a parking orbit and transfer maneuver is used. UP 1 is used to put the spacecraft into a circular parking orbit which is as close to the target as launch azimuth constraints allow. The EPHEM and RVVR routines are then used in an iteration loop to determine the time or the orbital burn and the overflight time (which defines an aim point for the burn). The iterations are continued until a suitable trajectory is found which results in a total ΔV (ascent to parking orbit and orbital maneuver) which is less than the vehicle's capability ($\Delta V_{\text {max }}$).

1.4.2 LAUNCH SUBROUTINE

A math flow of the LAUNCH subroutine is presented in Figure I-3 and the corresponding symbols are in Table I-2. This routine is used to determine the launch conditions for: (a) a specified launch time, (b) the launch time which results in the minimum possible out-of -nlane angle, or (c) a specified launch time and launen azimuth.

Referring to Figure I-3, option (a) corresponds to LCL positive. The specified launch time (t) is used to determine the location of the launch site relative to the target's ascending mode $\left(\phi_{L}\right)$. The launch azimuth (A_{L}) is then computed which will result in the minimum out-of-plane angle with the given target orbit plane. This results in a 90 degree range angle between launch and target plane intersection $(\Delta \theta)$. The computed launch azmmuth is compared with the allowed minimum and maximum values ($A^{\prime} L_{m i n}$ and $A^{\prime} L_{m a x}$) and set equal to the appropriate limit when it is exceeded. If the launch azimuth is constrained the range angle $\Delta \theta$ is computed; otherwise it is set to 90 degrees. The launch conditions are then specifjed by generating unit vector along the launch radius (\underline{r}_{L}), in the launch plane defined by $A_{L}\left(\underline{V}_{L}\right)$ and normal to the launch plane ($\underline{\underline{I}}_{\mathrm{L}}$). Finally, the outwof-plane angle between the launch and target planes ($\triangle i$) is calculated.

Option (b), when LCL is negative, is used to determine the launch times (τ_{1} and τ_{2}) when the minimum possible out-of-plane angle ($\triangle \mathrm{i}$) can be achieved. If the launch site latitude $\left(\lambda_{L}\right)$ is less than the targets inclination (i_{T}) there are two opportunities each day when Δi is zero; otherwise both opportunities coincide and result in a value of Δi equal to the difference in λ_{L} and i_{T}. When this option is used, the launch unit vectors \underline{r}_{L}, \underline{V}_{L}, \underline{n}_{L} are obtained by setting $t=\tau_{1}$ (or τ_{2}), LCL positive, and re-entering LAUNCH.

The last option (c) is just a special case of (a) where the launch azimuth limits ($A_{L_{\text {min }}}^{\prime}$ and $A_{L_{\text {max }}}^{\prime}$) are both set equal to the desired launch azimuth, A_{L}.

1.4.3 UP 1 AND UF 2 SUBROUTINES

These two subroutines are really just two entry points to one routine. This is possible because of the large amount of commonality between the computations for ascent to a parking orbit (UP 1) and ascent to intercept (UP 2). This routine is based on the optimal-explicit guidance algorithm developed during this study which is discussed in Par. 6.4 of the main report and described in detail in Appendix III. This algorithm is used for the exoatmospheric phase of ascent and gives ascent trajectories with nearly minimal burning times (and therefore, minimum fuel consumption).

In order to initialize the explicit guidance equations, the vehicle's state at the "top of the atmosphere" (dynamic pressure less than $30 \mathrm{lbs} / \mathrm{ft}$. must be determined in terms of the launch conditions. Presently, both UP 1 and UP 2 determine these conditions by analytical equations which use three vehicle-dependent and payload-dependent parameters. These parameters, once determined, are then fixed and used for all launch azimuths. The three parameters, in conjunction with the launch conditions, are used to calculate the position and velocity at the beginning of explicit guidance by use of spherical trigonometry relations. This analytical technique of handling the atmospheric phase of ascent is very efficient computationally, but initial simulation results indicate prediction errors of the order of l-3 seconds in the final injection time. This aspect of plaming the ascent phase can and should be improved by a more accurate modeling of the atmospheric phase.

1.4.4 EPHEM SUBROUTINE

The ephemeris subroutine EPHEM, see Figure I-4 and Table I-3, is used to determine the spacecraft's or target's position and velocity ($\underline{\underline{r}}$ and $\underline{\dot{r}}$) at a given epoch based on a given ephemeris ($\underline{r}_{0}, \underline{\underline{r}}_{0}$) and epoch (T_{0}). The program has two modes of operation: (1) Option A (NOP $=0$) when the range angle (θ) between the epochs is specified, and (2) Option $B(N O P=1)$ when the transfer time (t) is specified. When Option A is employed, the transfer time ($t_{o f}$) is calculated in EPHEM in addition to the position and velocity. This routine was formulated during the studies of orbit maneuvers and a description of its operation and the algorithms employed in it are given in Section VI of the main report.

1.4.5 RVVR SUBROUTINE

The Required Velocity Vector Routine (RVVR) is used to determine the velocity required to transfer between two positions in space. The slope (target of the flight path angle) at arrival at the second point ($\left.{ }^{m} a\right)$ is the constraint imposed to completely define the problem. Figure I-5 is a math flow of this subroutioe and the syrnbols are defined in Table I-4.

This routine has five options available for specifying the slope and thus, generally, five transfer options ($K K=-1,0,1,2,3$). These options were developed during this study as part of the generalized guidance equations subtask in order to study different techniques for generating twoburn orbit transfer maneuvers. The rationale and implementation of these options is discussed in Section VI of the main report.

For those cases where a 180 degree transfer is involved and the transfer plane becomes undefined, an input quantity, a, is used in the subroutine to define the plane. If this case is not known when the routine is entered, $\alpha=0$ and the velocity at the first position is used to define the plane and an indicator is set (N180 $=+1$). The main program can then specify a value for α and re-enter the routine, if required. This subroutine calls its own time-of-flight routine for calculating the time on the transfer arc: TIME (Figure
I-6 and Table I-5) for elliptic arcs and SIMTIM (Figure I-7 and Table I-6) for parabclic and hyperbolic arcs.
1.4.6 RENDI SUBROUTINE

The Rendezvous-Intercept routine (RENDI) is a trajeetory planning program which is employed to find local minimum - ΔV two-burns orbit transfers which result in rendezvous with an orbiting target vehicle. The target may be fictitious as is the case of placing a payload in a synchronous equatorial orbit where a "target" is introduced to control the earth longitude of the final orbit injection.

The program uses the EPHEM and RVVR subroutines (paragraphs 1.4.4 and 1.4.5 above) to generate a two-burn rendezvous and a one-dimensional search routine (Subroutine BEST) to find local minimums of the total $\triangle V$ required. In TGP this routine is called to generate all local minimum ΔV rendezvous for which the first burn is allowed to occur between TSTART and TSTOP (two input times).

This routine represents the planning mode of operation of the Ren-dezvous-Intercept guidance algorithm which is discussed in detail ir Section VI of the main report. Figure I-8is a math flow of this subroutine and Table I-7
contains the symbols employed. The one-dimensional search routine (BEST), based on Powell's technique, is represented in Figure I-9 with a list of symbols in Table I-8.
1.4.7 VPG SUBROUTINE

The Variable Point Guidance (VPG) subroutine is a planning program used to generate a series of orbital burns which result in rendezvous with a specified target vehicle. This is an IBM program based on the technique developed in the Variable Point Guidance and Targeting Study, Reference (1).

This prograin was developed duxing this siudy based on earlier reports generated during the various VPG studies phases (especially references 1, 8, and 9 of Reference (1). The program incorporates many of the features reported in these earlier papers but differs in actual implementation from that reported in Reference (1). Some of the important features of the present version of the VPG subroutine are:

1. The spacecraft starts from a circular parking orbit.
2. The target (real or ficticious) is an arbitrary orbit (relative to the spacecraft).
3. All burns are considered as impulses.
4. Spherical gravity model assumed.
5. The flight path angle, relative to local horizontal, is unchanged by a burn (i.e. except for plane change the ΔV added is co-linear with the velocity).
6. All burns except the first occur on the iine-of-nodes between the spacecraft and target orbits.
7. The first burn is positioned in the parking orbit to satisfy (5) and (6).
8. Eight options are generated for each input case. Four options correspond to rendezvous occurring at one node, the other four to rendezveus at the opposite node. The four options are Bielliptic Chase, Bielliptic Lob, Full Orbit Phasing Chase, and Full Orbit Phasing Lob.
9. Bielliptic maneuvers involve three major burns: the first at parking orbit altitude, the last at target altitude (on the line-of-nodes) and the second 180 degrees from the third. The altitude of the second burn is adjusted to insure proper phasing at the third burn. If this altitude is below the target orbit, it is a Chase solution, if above, it is a Lob solution.
10. Full Orbit Phasing maneuvers also involve three major burns: The first at the parking orbit and the second and third coincident at the target altitude. The second burn, at the target orbit, is adjusted to produce a phasing orbit such that after an integer number of revolutions the spacecraft and target are coincident. The third burn then matches the spacecraft's velocity to that of the target. If the period of the phasing orbit is less than that of the target, it is a Chase solution, otherwise it is a Lob solution.
11. The plane change to be effected at each burn is determined by optimally splitting the total change between the major burns. This routine includes an option (input) of also considering a pure plane change maneuver at target altitude.

One of the major differences between this program and that in Reference (1) is that the ascent to orbit is not included in the VPG subroutine. This phase of the mission is generated with the UP l subroutine (Paragraph 1.4.3 of this Appendix) because of the flexibility and performance it offers.

A detailed description of the philesophy underlying the Variable Point Guidance and Targeting technique as well as its implementation can be found in Reference (1). A math flow of the VPG subroutine can be found in Figure I-10 and the symbols are listed in Table I-9. VPG itself employs three subroutines: an optimal Plane Change Angle routine - PCA (Figure I-11 and Table I-10); a Required Velocity routine - REQ (Figure I-12 and Table I-11); and a Time-of-Flight routine - TOF (Figure I-13 and Table I-12). The lat er two routines (REQ and TOF) were generated when VPG was initially
altitude ($\mathrm{LCO}=+1, \mathrm{LCS}=+1$) the radius magnitude is also calculated internally to insure a 24 hour period (\underline{R}_{T} is then used only to define the target's direction at the epoch, t_{T}).

If the mission is to start from a parking orbit (LCL $=-1$) the spacecraft's ephemeris is inputted:

$$
\begin{aligned}
& \underline{R}_{p}=\text { Parking orbit position at } t=t_{p} \\
& \underline{V}_{p}=\text { Parking orbit velocity at } t=t_{p} \\
& t_{p}=\text { Epoch time. }
\end{aligned}
$$

The type of mission to be planned is determined by the integer M :
$\mathrm{M}=1$ Intercept
$\mathrm{M}=2$ Direct Ascent Rendezvous
M = 3 Orbital Rendezvous
$\mathrm{M}=4$ Surveillance - from parking orbit
M = 5 Surveillance by first pass overflight (set in program if found possible)

For $M=4$, the surveillance point is defined by:
$\lambda_{\mathrm{T}}=$ Latitude
$\Omega_{T}=$ Longitude relative to launch site
$R_{T}=$ Overflight radius
$\delta_{M}=$ Error tolerance allowed in the overpass.
The additional input data required are: the circular parking orbit radius R_{P} (when $L C L=+1$); last possible launch time i_{L} max ; last possible final time $t_{f m a x}$; maximum ΔV capability of the vehicle $\Delta V_{\text {max }}$; and increments of launch time and launch azimuth (Δt_{L} and ΔA_{L}) which are used when $\mathrm{M}=1$ or 2 to find a feasible direct ascent trajectory.
1.6 TEST CASES

Three test cases are presented in order to illustrate the performance of TGP. Table T... 13 contains a description of the cases, and Table I-14 illustrates the results obtained with TGP.
written as an independent program. They were retained when VPG was converted into a subroutine for TGP (instead of using RVVR and EPHEM) because of the internal structure of VPG which would have required a major overhaul in order to make use of the more general RVVR and EPHEM routines.

1.5 PROBLEM SPECIFICATION

The coordinate system used to define the problem and in which all calculations are performed is the XYZ ECI (Earth Centered Inertial) system, illustrated in Figure I-14. The XY plane is the equatorial plane and the Z axis is through the north pole. This figure also illustrates some of the parameters involved in the program, which are defined in Table I-l.

If the mission is to be planned from launch ($\mathrm{LCL}=+1$) the launch site is specified by:
$\lambda_{L} \quad=$ Launch site latitude.
$\Omega_{\text {L.o }}=$ Launch site longitude relative to X -axis at t_{o}
$t_{0} \quad=$ Reference time.
$A_{\text {Lmin }}^{\prime}=$ Minimum allowable launch azimuth.
$A_{\text {Lmax }}^{\prime}=$ Maximum allowable launch azimuth.
Two alternative ways are provided for specifying the target orbit
If $L C O=-1$, the target orbit is specified by its ephemeris at some epoch:

$$
\begin{aligned}
& \underline{R}_{\mathrm{T}}=\text { Target's position at } \mathrm{t}=\mathrm{t}_{1} \\
& \underline{\mathrm{~V}}_{\mathrm{T}}=\text { Target's velocity at } \mathrm{t}=\mathrm{t}_{1} \\
& \mathrm{t}_{1}=\text { Epoch time; or, }
\end{aligned}
$$

If a circular target orbit is desired ($L C O=+1$) the orbit is specified by:

$$
\begin{aligned}
& \underline{\mathrm{n}}_{\mathrm{c}}=\text { Unit normal to target orbit } \\
& \underline{\mathrm{R}}_{\mathrm{T}}=\text { Target's position at } \mathrm{t}=\mathrm{t}_{1} \\
& \mathrm{t}_{\mathrm{t}}=\text { Epoch time. }
\end{aligned}
$$

and the program computes the circular velocity from $\underline{Q}_{\mathrm{T}}$ and formo the velocity vector with \underline{n}_{c} and \underline{R}_{T}. When the target orbit corresponds to a synchronous

Case 1 - This case requires planning the launch conditions and orbital maneuvers to achieve rendezvous with a fictitious target in a synchronous equatorial orbit stationary at launch site longitude. The program generates, with the LAUNCH subroutine, a launch at $t_{L}=0$ at an azimuth of 90° which gives the minimum out-of-plane angle possible ($\triangle \mathrm{i}=28.5617^{\circ}=\lambda_{L}$). The ascent to the circular parking orbit is calculated with UP 1 and requires 483.7 seconds with 14,444 feet $/ \mathrm{sec}$. of $\triangle V$ left for orbit maneuvers.

The orbit transfer necessary for rendezvous is generated as a twoburn maneuver with RENDI and as a series of three-burn maneuvers with VPG. In the case of RENDI, Table I-14 lists the results of the first local minimum $\Delta \mathrm{V}$ found and the best local minimum in the time span allowed for the search $\left(t_{f}<1\right.$ day). The VPG results in Table $\mathrm{i}-14$ represent one Bielliptic and one Full Orbit Phasing Option. Both are three-burn maneuvers and represent maneuvers which require less $\triangle V$ than is available (14,444 feet $/ \mathrm{sec}$.) and which, if possible, achieve rendezvous within 1 day (86,400 seconds).

The Bielliptic option requires 14,138 feet per second but final rendezvous is at 102,716 seconds. This is accomplished by gross phasing in the parking orbit for 7 full orbits after the first nodal crossing. The rendezvous is then effected by two 180 degree transfers, with the second burn being above the target orbit at $143,437,670$ feet (target radius is $138,607,380$ feet).

The second VPG option is a Full Orbit Phasing case which requires 14,032 feet/second of ΔV with rendezvous at 64,800 seconds. In this case, the phasing is accomplished with one orbit at initial altitude followed by a $180 \mathrm{de}-$ gree transfer to target altitude. The second burn ther prits the spacecraft into a phasing ellipse with a period of 38,990 seconds (target period is $86,400 \mathrm{sec}-$ onds) and after one phasing orbit the third burn matches the velocities for rendezvous.

Case 2 - The target in this case is at Space Station Altitude (185 nm) and the problem is to plan a rendezvous mission from launch. The LAUNCH routine is used to find the most favorable launch conditions, which are $\mathrm{t}_{\mathrm{L}}=$ 14, 502 seconds and $A_{L}=74.9178$ degrees. This results in the ascent trajectory intersecting the target orbit 90 degrees down range with zero out-of-plane
angle ($\mathrm{i}_{\mathrm{T}}>\lambda_{\mathrm{L}}$, so an in-orbit la unch time opportunity is available twice per day). The ascent to a 100 nm parking orbit is then generated with UP 1 and results in an injection time of 15,089 seconds (585 seconds after launch) with 8,762 feet $/ \mathrm{sec}$. of $\triangle V$ remaining for the rendezvous maneuvers.

The orbital maneuver represented in Table I-14 is a VPG Full Orbit Phasing option which requires $6,05 \%$ feet/sec. of $\triangle V$ with rendezvous at 27,383 seconds (12,881 seconds after launch). The maneuver involves a 180 degree transfer to target altitude followed by one revolution in a phasing orbit. The pericd of the phasing orbit is greater than that of the target orbit (8,280 seconds vs. 5,485 seconds) so that this is a Lob option.

Case 3 - The final test case is the same as Case 2 except that a direct ascentrendezvous is to be planned. TGP finds a solution corresponding to the launch site 80.25 degrees beyond the target's ascending node ${ }^{(}{ }_{L}=19,260$ seconds); this corresponds to approximately 80 minutes after the launch site has passed through the target orbit plane. The launch azimuth of $84.8443 \mathrm{de}-$ grees results in the intercept point being 90 degrees down range and an out-of-plane angle of 3.05 degrees. These conditions are inputted to UP 2 with the time that the target will arrive at the intercept point (2112 seconds after launch). An ascent trajectory is generated which achieves the desired final state and has 2,734 feet/sec. of ΔV left after the adaptation burn for rendezvous.

TABLE I-1,
MAIN PROGRAM SYMḂOLS

Math Flow Symbol	Description	Program Symbol
M	Run Type Variable	M
${ }^{\text {t }}$ 。	Reference Time	TREF
$\xrightarrow{\mathrm{R}} \mathrm{TO}{ }^{\prime}$	Initial Position Vector (Target)	RTO
$\xrightarrow{\mathrm{V}} \mathrm{TO}{ }^{\prime}$	Initial Velocity Vector (Target)	VTO
${ }^{\text {t }}$ TO	Initial Time (Target)	TTO
μ	Gravitational Constant $=1.4082878 \times 10^{16}$	GC
$\xrightarrow{\text { r }}$	Position Vector	RTN
$\stackrel{ }{ }$	Velocity Vector	VTN
TOF	Time of Flight	TOF
MA	Slope at Arrival	SLT
${ }^{\text {a }}$ T	Semi Major Axis of Target Orbit	A
h_{T}	Angular Momentum	ANG
$\xrightarrow{\mathrm{n}} \mathrm{T}$	Unit Cross Product Vector (Target)	UNT
${ }^{\mathrm{r}} \mathrm{T}$	Target Semi Latus Rectum	SEMILR
${ }^{\text {e }}$ T	Eccentricity	E
${ }^{\text {i }}$ T	Target Inclination Angle	EYE
Ω_{T}	Longitude of Ascending Node	CLONG
$\mathrm{AL}_{\text {MAX }}$	Maximum Allowable Launch Azimuth Angle	ALMAX

Math Flow Symbol	Description	Program Symbol
$\mathrm{AL}_{\mathrm{MIN}}$	Minimum Allowable Launch Azimuth Angle	ALMIN
τ_{1}	1st Zerc Out-of-Plane Launch Time	TAUl
τ_{2}	2nd Zero Out-of-Plane Launch Time	T.AU2
λ_{L}	Launch Site Latitude	SLAT
$\dot{\Omega}_{\mathrm{LO}}$	Launch Site Longitude at ${ }_{\text {o }}$	SLONG
t	Desired Launch Time	T
A_{L}	Launch Azimuth	AL
$\Delta \mathrm{i}$	Out-of-Plane Angle	DELEYE
$\Delta \theta$	Range Angle to Target Plane Intersection	TANG
$\xrightarrow{r} \mathrm{I}$	Unit Vector Thiru Launch Site	RL
$\xrightarrow{\text { v }} \mathrm{L}$	Unit Vector In Launch Plane	VL
$\xrightarrow{n} \mathrm{~L}$	Unit Vector Normal to Launch Plane	UNITL
N	Program Counter $=$ Number of Launch Time	
	Calculations	N
$t_{1,2,3, n}^{\prime}$	Launch Times	TP(N)
t_{1}	Best Launch Time	T_{1}
$\xrightarrow{\mathrm{R}} 1$	Unit Vector Thia Launch Site at t_{1}	R_{1}
R_{E}	Earth Radius	RE
$\xrightarrow{\mathrm{n}} 1$	Unit Vector Normal to Launch Plane at t_{1}	UNIT 1
r_{a}	Apogee Radius	RA
r_{p}	Pergee Radius	RP
R_{0}	Parking Orbit Altitude	RPARK
$\Omega_{\text {L }}$	Launch Site Longitude at Launch Time	XLONG

Math Flow Symbol	Description.	Program Symbol
ΔV^{*}	Current Max Value of ΔV_{R}	DVSTAR
θ_{f}^{\prime}	Range Angle to Target	THETF
t_{f}^{\prime}	Time of Insertion or Rendezvous	TFP
\xrightarrow{R}	Position Vector at $\mathrm{t}_{\mathrm{f}}{ }^{\prime}$	R F
$\xrightarrow{\mathrm{V}} \mathrm{f}$	Velocity Vector $3 t \mathrm{t}_{\mathrm{f}}{ }^{\prime}$	VF
t**	Time of Conditions with Highest Remaining ΔV	TSTAR
${ }^{\text {a }}$ L ${ }^{\text {\% }}$	Launch Azimuth with Highest Remaining $\triangle \mathrm{V}$	ALSTAR
LCl	Program Indicator to Step Launch Azimuth	LCl
$\triangle A_{L}$	Launch Azimuth Increment	AZ DEL
Δt_{1}	Launch Time Increment	TDEL
${ }^{\text {t }} 1$ MAX	Latest Possible Launch Time	TLMAX
${ }^{1}$ MAX	Maximum Inclination Angle	EYEMAX
$\lambda \mathrm{T}$	Target Latitude	TLAT
$\Delta \mathrm{T}$	Elapsed Time	DELT
t_{4}	Transfer Time for Zero Flight Path Angle	T4
$\xrightarrow{\mathrm{R}} \mathrm{T}$	Overpass Position Vector	R T
t_{f}	Time at Overpass Position	TF
e_{f}	Error in Time at Overpass Position	ERRF
$t_{\text {fMAX }}$	Last Possible Final Time	TFMAX

Math Flow Symbol	Description	Program Symbol
ΔV_{3}	Velocity Required for Overflight	DELTV3
δ	Angular Overpass Error	DEL
8*	Maximum Allowable Overpass Error	DELSTR
$\Omega_{\text {Lf }}$	Final Launch Longitude	XLONGF
Ω_{Tf}	Final Target Longitude	TLONGF
$\Delta \Omega$ T	Target Longitude Relative to Launch Site	TLONG
$\xrightarrow{\mathrm{n}} \mathrm{DN}$	Unit Vector to Parking Orbits Descending Node	CPDN
ΔV_{R}	Remaining ΔV	DELVN
$\Delta \Omega$	Range Angle Error	DELONG
LCO	Parameter to Select Circular Orbit Option	LCO
LCS	Parameter to Select Synchronous Orbit Option	LCS
LCL	Parameter to Select Parking Orbit Data	LCL
LCT	Parameter to Select VPG Option	LCT
$\xrightarrow[\rightarrow \mathrm{po}]{\mathrm{R}}$	Parking Orbit Position Vector	RPO
$\underset{\rightarrow \mathrm{po}}{\mathrm{~V}}$	Parking Orbit Velocity Vector	VPO
$t_{\text {po }}$	Parking Orbit Epoch Time	TPO
$\xrightarrow{\mathrm{R}} \mathrm{C}$	Radius of Circular Orbit	RC
$\stackrel{\mathrm{V}}{\mathrm{c}}$	Velocity of Circular Orbit	VC

LAUNCH SUBR OUTINE SYMBOL TABLE

Math Symbol	Description	FORTRAN Program Symbol
LCL	Option Indicator: +1 when launch time is specified; -1 determines best launch time(s)	LC
λ_{L}	Launch site latitude (degrees)	LAML
Ω_{LO}	Launch site longitude relative to x-axis at t_{o} (degrees)	OLO
Ω_{T}	Longitude of ascending node of target orbit (degrees)	OT
${ }^{\text {i }}$ T	Inclination of target orbit plane to $x-y$ plane $\left({ }^{(i} T \geq 0\right)(\text { degrees })$	IT
t	Desired launch time	T
${ }^{\text {o }}$	Reference time (sec)	T0
$\mathrm{A}_{\mathrm{L} \max }^{\prime}$	Maximum permissable launch azimuth (degrees)	A LMAX
$A^{\prime} L_{\min }$	Minimum permissable launch azimuth (degrees)	A LMIN
τ_{1}	Time at which launch site is nearest target plane	T 1
τ_{2}	Time at which launch site is nearest target plane	T 2
${ }^{\text {A }}$ L	Launch azimuth (degrees)	A L
$\Delta \mathrm{i}$	Out of plane angle between launch plane and target orbit (degrees)	DELI
$\Delta \theta$	Range angle from launch site to intersection with target orbit	DELTH
$\xrightarrow{\mathbf{r}} \mathrm{L}$	Unit vector through launch site	RL

Math Symbol	Description	FORTRAN Program Symbol
$\stackrel{\vee}{\rightarrow} L$	Unit vector in the launch plane and perpendicular to $\xrightarrow{r} \mathrm{~L}$	RL
$\xrightarrow[\rightarrow]{\mathrm{n}} \mathrm{~L}$	Unit vector normal to launch plane $\left(\underset{\rightarrow L}{\mathrm{n}}=\underset{\rightarrow}{\mathrm{r}} \mathrm{L}^{\mathrm{x}} \underset{\rightarrow}{\mathrm{v}} \mathrm{L}^{\text {}}\right.$)	NL
ω_{E}	Rate of the earth's rotation ($\mathrm{rad} / \mathrm{sec}$)	WE
ϕ_{L}	Longitude of lanch site at time t relative to target orbit's ascending node	PHIL
$\phi_{L 1}$	Value of ϕ_{L} when $t=\tau_{1}$	PHILLI
$\phi_{L 2}$	Value of ϕ_{L} when $t=\tau_{2}$	PHIL2
${ }^{\text {A Ll }}$	Value of A_{L}, at $t=\tau_{1}$, for minimum Δi	A Ll
$\mathrm{A}_{\mathrm{L} 2}$	Value of A_{L}, at $t=\tau_{2}$, for minimum Δi	A L2
$\Delta \mathrm{i}_{1}$	Value of $\Delta \mathrm{i}$ at $\mathrm{t}=\tau_{1}$	DELIl
Δi_{2}	Value of $\Delta \mathrm{i}$ at $\mathrm{t}=\tau_{2}$	DELI2

TABLE I-3

EPHEM (EPHEMERIS SUBROUTINE)

SYMBOL TABLE

Math Symbol	SYMBOL TABLE Description	FORTRAN Program Symbol
$\underset{\rightarrow 0}{\mathrm{r}}, \underset{\rightarrow}{\mathrm{r}}$	Initial position and velocity (ft. and ft/sec)	RO, RODOT
TO	Initial time (sec)	TO
μ	Gravitational constant	U
θ	Transfer angle (radian)	TH
t	Time of transfer-input for option B (sec)	T
DLE	Convergence criteria	DLE
NOP	$\begin{aligned} & =0 \text { for Option A (angle input) } \\ & =1 \text { for Option B (time input) } \end{aligned}$	NOP
$\xrightarrow{\mathbf{r}}, \stackrel{\underset{r}{\text { r }}}{ }$	Position and velocity at end of transfer	R, RDOT
tof	Time of flight (Option A only) (sec)	TOF
m_{a}	Arrival slope	MA
a	Semi-major axis (ft)	A
ro	Magnitude of ${ }_{\sim}^{0}$	ROM
$\mathrm{e}_{\boldsymbol{r}} \mathrm{O}$	Unit radial vector	ERO
$\mathrm{V}_{\text {ro }}$	Initial radial velocity (ft/sec)	VRO
$\xrightarrow{\text { C }}$	Moment of momentum ($\mathrm{ft}^{2} / \mathrm{sec}$)	C
C	Magnitude of $\underset{\rightarrow}{\mathrm{C}}\left(\mathrm{ft}^{2} / \mathrm{sec}\right)$	CM
V_{θ}	Initial horizontal velocity ($\mathrm{ft} / \mathrm{sec}$)	VTHO
m_{0}	Initial slope	XMO
r	Magnitude of $\underset{ }{r}$	RA
$\Delta \mathrm{E}$	Eccentric anomaly (radian)	DLEN

Math Symbol	\bullet	FORTRAN Program Symbol
P	Description	Period (sec)
V_{ra}	Radial velocity at arrival	P
$\mathrm{V}_{\theta \mathrm{a}}$	Horizontal velocity at arrival	VRA
		VTHA

TABLE I~4
RVVR (REQUIRED VELOCITY VECTOR SUBROUTINE) SYMBOL TABLE

FORTRAN
Math Symbol
$\underset{\rightarrow 0}{\mathrm{r}} \underset{\rightarrow}{\mathrm{r}}$ $\xrightarrow[\rightarrow]{r} a$
m.a

NN
${ }^{\mathrm{r}} \mathrm{Ta}$
KK
Initial position and velocity (ft. and $\mathrm{ft} / \mathrm{sec}$)
Aim point (ft)
Slope at arrival
Constant to determine 180° transfers
Gravitation constant
Number of complete orbits during transfer (input)
Magnitude of target radius (Option A-3 only)
=-1 for Option B of Rendezvous-Intercept
0 for Option A-1 of Rendezvous-Intercept
1 for Option A-2 of Rendezvous-Intercept
2 for Option A-3 of Rendezvous-Intercept
3 for Option A-4 of Rendezvous-Intercept
m_{Po}
Slope at $\underset{\rightarrow \infty}{ }$ before velocity change
Unit horizontal vector
Plane change angle used in 180° transfers (radian)
$=1$ when 180° transfer has been performed
$=0$ otherwise
Transfer angle (radian)
Time of flight ($s \in c$)
Velocity required for transfer (ft/sec)
Indicates type of conic transfer
Semi-major axis (ft)

XK1
RO, RODOT
RA
XMA

U
NN
RTAM
KK

XPO
ETHR
ALF
N180

THA

TA

NSIG
Program Symbol

XP

VR

A, AX

Table I-4 RVVR (Required Velocity Vector Subroutine) Symbol Table (Continued) AI-26

Math Symbol	Description	FORTRAN Program Symbol
r_{0}	Magnitude of r ($\mathrm{O}_{0}(\mathrm{ft})$	R OM
${ }^{\text {r }}$ a	Magnitude of r a (ft)	RAM
$\underset{\rightarrow r}{e}$	Unit radial vector	ER
$\xrightarrow{\mathbf{r}} \mathrm{ar}$	Radial component of $\underset{\rightarrow}{ } \quad(f t)$	RAR
$\xrightarrow{\mathrm{r}} \mathrm{a} \theta$	Horizontal component of $r \rightarrow 0(f t)$	RATH
$\mathrm{r}_{\mathrm{a}} \theta$	Magnitude of ${ }_{\rightarrow} \mathrm{a} \theta(\mathrm{ft})$	RATHM
$\xrightarrow{\mathrm{V}}$ O	Horizontal component of $\mathrm{r}_{(0}^{\circ}(\mathrm{ft} / \mathrm{sec})$	VTH
V_{θ}	Magnitude of $\mathrm{V}_{\rightarrow} \boldsymbol{\theta}(\mathrm{ft} / \mathrm{sec})$	VTHM

TABLE I-5
TIME SUBR OUTINE SYMBOL TABLE
TME

FORTRAN
Program Symbol

Horizontal component of velocity (ft/sec) . VTHR
Radial component of velocity (ft/sec)
Gravitational constant
Magnitude of position vector (ft)
Transfier angle (radian)

Slope at arrival
Magnitude of arrival point radius (ft)
Number of complete orbits
Time of flight (sec)
Magnitude of angular momentum
Semi-major axis (ft)
Eccentric anomaly (radian)

CTHA
STHA

XMA
RAM
NN
TA
CA
VRR

U
ROM

A
DE

SIMTIM SUBROU TINE SYMBOL TABLE

Math Symbol	Description	FORTRAN Program Symbol
θ	Transfer angle (radian)	TH
m_{0}	Departure slope	XMO
r_{o}	Departure radius (ft)	ROM
C	Magnitude of angular momentum	H
m_{a}	Arrival slope	MA
μ	Gravitational constant	U
tof	Time of flight (sec)	TOF, TOFN

RENDI - RENDEZVOUS-INTERCEPT SUBROUTINE

SYMBOL TABLE

Table I-7 RENDI - Rendezvous-Intercept Subroutine Symbol Table (Continued)

Math Symbol	Description	FORTRAN Program Symbol
t	Time of first burn relative to TSTART (sec)	T
	Interceptor position and velocity at time of first burn	RO, RODOT
$\xrightarrow{\dot{r}} \mathrm{~T}^{\prime} \dot{\mathrm{r}}_{\mathrm{T}} \mathrm{T}$	Target position and velocity at time of first burn	RT, RTDOT
\rightarrow inp	Projection of $\mathrm{r}_{\rightarrow 0}$ onto target plane (ft)	RINP
θ		THH
DLIM	Lower limit for transfer angle (radian)	DLIM
ULIM	Upper limit for transfer angle (radian)	U LIM
P	Period of interceptor (sec)	P
θ_{0}	Past guess at transfer angle (radian)	TH0
θ_{1}	Present guess at transfer angle (radian)	THI
${ }_{\rightarrow}^{\mathrm{T}^{\prime}}{ }^{\prime} \stackrel{\cdot}{\mathrm{r}} \mathrm{TA}$	Target position and velocity after being transferred in orbit through angle θ_{1} (or θ_{0}) from r_{T}	RTA, RTADOT
$\mathrm{m}_{\text {TA }}$	Target slope at r_{TA}	MTA.
$\begin{aligned} & \mathrm{T}_{\text {TA } 0}{ }^{\text {or }} \\ & \mathrm{T}_{\text {TAl }} \end{aligned}$	Time of target transfer from $\underset{\rightarrow}{\mathrm{r}}$ to $\underset{\rightarrow}{\mathrm{r}} \mathrm{TA}$ resulting from transfer angle of θ_{0} or θ_{1} (sec)	TTA0 or TTAI
$\xrightarrow{\mathrm{r}} \mathrm{a}^{\text {a }}$	Aim point (ft)	RA
m_{a}	Desired interceptor arrival slope	MA
$\begin{aligned} & \mathrm{T}_{\mathrm{A} 0} \text { or } \\ & \mathrm{T}_{\mathrm{A} 1} \end{aligned}$	Time of interceptor transfer from r to $r a c o r r e s-~$ ponding to target transfer angle θ_{0} or $\theta_{1}(\mathrm{sec})$	TAO or TAI
VALUE	The function which is reduced to zero by regula falsi iterations (sec)	VALUE

Table I-7 RENDI - Rendezvous-Intercept Subroutine Symbol Table (Continued)

Math Symbol	Description	FORTRAN Program Symbol
DERIV	Approximated derivative of VALUE	DERIV
θ_{2}	New value of θ_{1} (radian)	TH2
$\xrightarrow{\mathrm{V}} \mathrm{r}$ r	Veiocity required by interceptor at $\underset{\rightarrow 0}{ }$ to transfer $t \mathrm{to}_{\rightarrow \mathrm{a}}(\mathrm{ft} / \mathrm{sec})$	VR
$\mathrm{T}_{\text {A }}$	Fixed transfer time (sec)	TA
$\mathrm{m}_{\mathrm{A} 0}$	Past guess at arrival slope	MAO
m_{Al}	Present guess at arrival slope	MA1
$\mathrm{m}_{\mathrm{A} 2}$	New guess at arrival slope	MA2
$\underset{\rightarrow}{\stackrel{\bullet}{a}}$	Arrival velocity of interceptor (ft/sec)	RADCT
$\Delta \mathrm{V}$	Total change in velocity (ft/sec)	DELV

Math Symbol	Description	FORTRAN Program Symbol
DV	Velocity change ($\triangle \mathrm{V}$)	DV
T	Time of first burn	T
TH	Transfer angle	TH
IPL	Counter to tell when to apply quadratic fit	IPL
DT	Time increment equal to $1 / 4$ the interceptor or target period, whichever is smaller	DT
TMINSA	T at last minimum found	TMINSA
NOPT	$\begin{aligned} & =1 \text { when minimum has been found } \\ & =0 \text { otherwise } \end{aligned}$	NOPT
$\delta \mathrm{T}$	Time increment $=$ DT/10	SDT
$\begin{aligned} & \mathrm{TM}(\mathrm{I}) \\ & \mathrm{I}=1,4 \end{aligned}$	Storage for first burn times	TN(I)
$\begin{aligned} & \text { DVEL(I) } \\ & \mathrm{I}=1,4 \end{aligned}$	Storage for ΔV^{\prime} s corresponding to $T M(I)$	DVEL(I)
$I^{\boldsymbol{\tau}}=1,4$	Normalized values of TM(I)	TM(I)
τ	Normalized value of time indicated by quadratic to give minimum ΔV	

VPG - VARIABLE POINT GUULDANCE SUBROUTINE
SYMBOL TABLE

Table I-9 VPG - Variable Point Guidance Subroutine Symbol Table (Continued)

Math Symbol	Description	FORTRAN Program Symbols
ϵ_{α}	Error tolerance used to stop iterations in optimum plane change angle routine (rad)	EPA
$\mathrm{S}_{\Delta \mathrm{i}}$	Sign of the Δi input to subroutine	SDELI
ω_{P}	Angular rate of S/C in its orbit ($\mathrm{rad} / \mathrm{s} \in \mathrm{c}$)	WP
P_{P}	Period of S/C orbit (sec)	PP
V_{P}	Velocity in circular parking orbit (ft/sec)	VP
${ }^{P}$ T	Period of target orbit (sec)	PT
h_{T}	Angular momentum of target orbit ($\mathrm{ft}^{2} / \mathrm{sec}$)	HT
$\mathrm{R}_{\text {TA }}$	Target radius at Node $A(f t)$, see ${ }_{\rightarrow} \mathrm{N}$	RTA
$\mathrm{R}_{\text {TB }}$	Target radius at Node $B(f t)$, see ${ }_{\rightarrow}{ }^{\text {n }}$ N	RTB
$\mathrm{R}_{\mathrm{T} 3}$	Target radius at $\mathrm{t}=\mathrm{t}_{3}$	RT3
$\mathrm{V}_{\text {TA }}$	Target's velocity at Node A (ft/sec)	VTA
V_{TB}	Target's velocity at Node B (ft/sec)	VTB
$\mathrm{V}_{\mathrm{T} 3}$	Target's velocity at $\mathrm{t}=\mathrm{t}_{3}$	VT3
$\gamma_{\text {TA }}$	Target's flight path angle at Node A (rad)	GAMTA
$\gamma_{\text {тB }}$	Target's flight path angle at Node B (rad)	GAMTB
$\mathrm{R}_{\mathrm{i}} \mathrm{i}=3,7$	S / C radius at $\mathrm{t}=\mathrm{t}_{\mathrm{i}}, \mathrm{i}=3, \cdots, 7$	R3, $\cdot \cdots$, R 7
$\mathrm{V}_{\mathbf{i}}^{-}{ }^{\mathbf{-}}=3,7$	S / C velocity at $\mathrm{t}=\mathrm{t}_{\mathrm{i}}{ }^{-}, \mathrm{i}=3, \cdots, 7$	V3M, ..., V7M and $\mathrm{VM}(\mathrm{I}) \mathrm{I}=3,7$
$v_{i}^{+}, i=3,7$	S/C velocity at $t=t_{i}{ }^{+}, i=3, \ldots, 7$	V3PL, $\cdot \cdot$ V7PL and VPL(I) $\mathrm{I}=3$,
$\mathrm{R}_{\text {max }}$	Maximum radius allowed for intermediate aim point in Bielliptic option	RMAXS

Table I-9 VPG - Variable Point Guidance Subroutine Symbol Table

	(Continued)	
Math Symbol	- Description	FORTRAN Program Symbol
$\Delta \mathrm{T}$	Time of flight (sec)	DELT
T_{N}	Time for target to reach rendezvous point for the first time (sec)	TN
R**	Radius of intermediate aim point in Bielliptic option (ft)	RS
m^{*}	Slope of S/C orbit at R*	MS
m_{6}	Slope of target orbit at rendezvous point	M6
V_{r}	Radial component of required velocity ($f t / \mathrm{sec}$)	VR
${ }^{\mathrm{V}} \theta$	Tangential component of required velocity ($\mathrm{ft} / \mathrm{sec}$)	VTH
$\gamma_{i} i=3,7$	Fliight path angle of S/C orbit at $t=t_{i}, i=3,7$	GAM1,, and GAM(I) $I=3,7$
$\mathrm{T}_{\mathrm{Tl} 1}$	Transfer time to intermediate aim point (sec)	TTl
$\Delta \theta$	Position of first orbital burn ($t=t_{4}$) relative to Iine-of-nodes (rad)	DELTH
γ^{*}	Flight path angle at R^{*}	GAMS
$\mathrm{T}_{\mathrm{T} 2}$	Transfer time on second arc in Bielliptic option (sec)	TT2
T_{T}	Total transfer time, relative to t_{3}, for S / C excluding integral number of phasing orbits	TT
X'	Non-integer number of full parking orbits (for phasing) before first burn	XP
$\triangle \mathrm{R} *$	Increment to R * to correct phasing error (ft)	DELRS
$\mathrm{P}_{\text {PE }} 0$	Initial value of P_{PE} (sec)	PPEO
$\mathrm{P}_{P E}$	Period of phasing ellipse in Full Orbit Phasing option	PPE

Table I-9 VPG - Variable Point Guidance Subroutine Symbol Table
(Continued)

SYMBOL TABLE

Math Sy mbol	Description	FORTRAN Program Symbol
$\mathrm{J}, \mathrm{K}, \mathrm{L}$	Controls for indices on various vectors	J, K, L
NM	Iteration Counter	NM
$\triangle \mathrm{i}$	Total plane change angle	DELI
$\mathrm{V}^{-1}(\mathrm{I})$	Velocity magnitude before $\mathrm{I}^{\text {th }}$ burn	VM (I)
$\mathrm{V}^{+}(\mathrm{I})$	Velocity magnitude after $\mathrm{I}^{\text {th }}$ burn	VPL (I)
$\gamma(\mathrm{I})$	Flight path angle during $I^{\text {th }}$ burn	GAM (I)
α (I)	Plane change angle at $I^{\text {th }}$ burn	AIFA (I)
ΔV_{0} (I)	Impulse at $I^{\text {th }}$ burn with no plane change	DELVO (I)
$\Delta \mathrm{V}(\mathrm{I})$	Total impulse at $I^{\text {th }}$ burn	DELV (I)

REQ SUBROUTINE

SYMBOL TABLE

Math Symbol	Description	FORTRAN Program Symbol
r_{1}	Radius of vehicle position (ft)	R1
r_{2}	Radius of aim point (ft)	R2
θ.	Angle between vectors to vehicle position and aim point (radian)	TH
m	Slope at arrival at aim point	M
μ	Gravitational constant	U
V_{θ}	Horizontal component of required velocity ($\mathrm{ft} / \mathrm{sec}$)	VTH
V_{r}	Radial component of required velocity ($\mathrm{ft} / \mathrm{sec}$)	VR

TOF SUBROUTINE

SYMBOL TABLE

Math Symbol	Description	FORTRAN Program Symbol
${ }^{\text {r }}$	Radius of vehicle position (ft)	R1
r_{2}	Radius of aim point (ft)	R2
$\Delta \theta$	Angle between vectors to vehicle position and aim point (radian)	DELTH
V_{1}	Velocity of vehicle (ft/sec)	V1
μ	Gravitational constant	U
γ_{1}	Slope of vehicle	GAMI
$\Delta \mathrm{T}$	Time of flight	DELT
h	Magnitude of angular momentum	H
a	Semi-major axis (ft)	A
m	Slope at arrival at aim point	XM
$\Delta \mathrm{E}$	Eccentric anomaly (radian)	DE

Table I- 13

TEST CASES

Case	Initial Conditions	Final Orbit	Comments
1	Launch Latitude: $\lambda_{L}=28.5617^{\circ}$ Launch Longitude: ${ }^{L} \Omega_{\mathrm{LO}}=0$ Reference Time: $t_{0}=0 \mathrm{LO}^{=0}$ Launch Azimuth Limits: $65^{\circ} \leq \mathrm{A}_{\mathrm{L}} \leq$ 115°	$\begin{aligned} & \text { Semi-Major Axis: } \\ & a_{\mathrm{T}}=138,607,380 \mathrm{ft} . \\ & \text { Eccentricity: } \mathrm{e}_{\mathrm{T}}=0 \\ & \text { Inclination: } \mathrm{i}_{\mathrm{T}}=0 \end{aligned}$	Rendezvous with fictitious target in synchronous, equatorial orbit at launch site longitude.
2	Same as Case l	Semi-Major Axis: $\mathrm{a}_{\mathrm{T}}=22,060,185 \mathrm{ft}$ Eccentricity: $e_{T}=0$ Inclination: $i_{T}=32^{\circ}$ Longitude of Ascending Node: $\Omega_{\mathrm{T}}=0$	Rendezvous with vehicle in 185 n. m. circular parking orbit.
3	Same as Case l but no parking orbit used, and $\Omega_{\mathrm{LO}}=80^{\circ}$	Same as Case 2	Direction Ascent Rendezvous to target of Case 2

Table I－ 14
RESULTS QF TEST CASES

Case	Launch			Ascent			Orbital Maneuvers								
			4440范 П O呂啡 （deg）				RENDI				VPG				
									7 0 （ft／sec）			E 霜 （sec）			
1	0	90	28.56	483	100	14，444	$\begin{array}{r} 4032 \\ 43488 \end{array}$	$\begin{aligned} & 25050 \\ & 75863 \end{aligned}$	$\begin{aligned} & 17697 \\ & 15489 \end{aligned}$	(1) （2）	38553 6846	$\begin{aligned} & 58382 \\ & 25810 \end{aligned}$	$\begin{gathered} 102716 \\ 64800 \end{gathered}$	$\begin{aligned} & 14138 \\ & 14032 \end{aligned}$	（3） （4）
2	14502	74.92	0	15089	100	8762					19103	27383	30125	6057	（5）
3	$\begin{array}{r} (6) \\ 19260 \end{array}$	84.84	3.05	19764	276	10127	$\begin{array}{r} \hline(7) \\ 21372 \end{array}$	－－	$\begin{array}{r} 7(7) \\ 7378 \end{array}$						

RENDI

（1）First，Min－ΔV Found
（2）Best Min－ΔV Found VPG
（3）Bielliptic Lob
（4）Full Orbit Phasing Chase
（5）VPG Full Orbit Phasing Lob
（6）Launch site is 80.25 degrees from Target＇s Ascending Node at Launch
（7）One Orbital Burn At Target Altitude to Match Velocities．
（ ）O

Figure I-1 Trajectory Generator Program

Printout Input Data

C
${ }^{2} 7008$

$$
v_{c}=\left(\mu_{1}^{\prime} R_{c}\right)^{1 / 2}
$$

$$
\underset{\rightarrow}{V} T O^{\prime}=V_{C}\left({\underset{\sim}{n}} \times \frac{R_{-} T O^{\prime}}{R_{c}}\right)
$$

Figure I-2 Main Program
(Sheet 2 of 12)

> Calculate Times to Launch with Minimum out of Plane Angle ($\tau_{1} \& \tau_{2}$)
> $A L_{\text {MAX }}{ }^{\prime}=A L_{\text {max }}$
> $A L_{\text {MIN }}{ }^{\prime}=A L_{\text {MIN }}$
> Call Launch $\left(-1, \lambda_{L}, \Omega_{L}, \Omega_{T}: i_{T}, t, t_{0}\right.$,$\mathrm{AL}_{\text {max }}{ }^{\prime}, \mathrm{AL}_{\text {MIN }}{ }^{\prime}, \tau_{i}, \tau_{2}, \mathrm{~A}_{\mathrm{L}}, \Delta \mathrm{i}, \Delta \theta$ 。

Figure I-2 Main Program
(Sheet 3 of 12)

Figure I-2 Main Program
(Sheet 4 of 12)

Figure I-2 Main Program

Figure I-2 Main Program
(Sheet 7 of 12)

Figure I-2 Main Program (Sheet 8 of 12)

Figure I-2 Main Program
(Sheet 9 of 12)
$\Omega_{T}=\Omega L O+\Delta \Omega_{T}+W_{E}\left(t_{4}-t_{o}\right)$
$\underline{R}_{T}=R_{T}\left[\cos \lambda_{T} \cos \Omega_{T}, \cos \lambda_{T} \operatorname{SIN} \Omega_{T}{ }^{2}\right.$ $\left.\operatorname{SIN} \lambda_{T}\right]$

$\mu, \operatorname{NORB}_{3} \Delta \theta, \mathrm{R}_{\mathrm{T}}, \Delta \mathrm{T},{\underset{\mathrm{V}}{\mathrm{R}}}, 2_{3} \mathrm{SI}_{3}$
TUV, DUM, ris0, NSIG, a_{T})
$t_{f}=t_{3}+\Delta T$
$\epsilon_{f}=t_{f}-t_{4}$

Figure I-2 Main Program
(Sheet 10 of 12)

$$
\begin{aligned}
& \Omega_{L f}=\Omega_{L O}+\omega_{E}\left(t_{f}-t_{0}\right) \\
& \Omega_{T f}=\Omega_{L f}+\Delta \Omega_{T} \\
& \underset{\rightarrow}{r} T=R_{T}{\underset{\rightarrow}{r}}^{r}
\end{aligned}
$$

Figure I-2 Main Program
(Sheet 11 of 12)

Call Launch $\left(1.0, \lambda L, \Omega_{\text {LO }}, \Omega_{T}\right.$,
i_{T}, to, $A L_{\text {MAX }}^{\circ}, A L_{\text {MIN }}, \tau_{1}, \tau_{2}, A L$,

$$
\begin{aligned}
& r_{a}=R_{o} \\
& r_{p}=R_{T}
\end{aligned}
$$

$$
\ln _{\mathrm{DN}}=\left(-\cos \Omega_{\mathrm{T}},-\sin \Omega_{\mathrm{T}}, 0\right)
$$

$$
\left.\theta_{\mathrm{p}}=\cos ^{-1} \xrightarrow{\left(\mathrm{r}_{\mathrm{T}}\right.} \xrightarrow{n}_{\operatorname{DiN}}\right) * \operatorname{SIGN}\left[\begin{array}{ll}
\left(n_{\mathrm{DN}}\right. & \left.\times \underline{r}_{\mathrm{T}}\right) \\
\rightarrow \mathrm{n}
\end{array}\right]
$$

Call UP1 (\$110)
$\left.\theta=\cos ^{-1}\left(\frac{\underline{R}_{2} \cdot \underline{r}_{T}}{\left|R_{2}\right|}\right) * \operatorname{SIGN}\left[\underline{R}_{-2} \times r_{T}\right) \cdot \underline{n}\right]$
Call EPHEM $\left(\mathbb{R}_{2},{\underset{2}{2}}_{2}, \mathrm{t}_{2}, \mu, \theta^{1} ;\right.$ DUN, 0.001 , $\left.0, \underline{\underline{r}}, \underline{\mathrm{y}}, \Delta \mathrm{T}, \mathrm{ma}_{3} \mathrm{DUM}\right)$

$$
\begin{aligned}
& \mathrm{t}_{3}=\mathrm{t}_{2}+\Delta \mathrm{T} \\
& \mathrm{R}_{3}=\underline{\mathrm{r}} \\
& {\underset{\mathrm{~V}}{3}}=\underset{\mathrm{Y}}{ }
\end{aligned}
$$

$$
\Omega_{T 3}=\Omega_{L O}+\Delta \Omega_{T}+W_{E}\left(t_{2}-t_{0}\right)
$$

$\underline{\underline{r}}_{\mathrm{T} 3}=\cos \lambda_{\mathrm{T}} \cos \Omega_{\mathrm{T} 3}, \cos \lambda_{\mathrm{T}} \sin \Omega_{\mathrm{T} 3}, \sin \lambda_{\mathrm{T}}$

$$
\varepsilon=\cos ^{-1}\left[\left[R_{3} \cdot{\underset{T}{3}}\right) /\left|R_{3}\right|\right]
$$

Figure I-2 Main Program

Figure I-3 Launch Subroutine (Sheet 1 of 3)

$$
\begin{aligned}
& \Omega_{L}=\Omega_{L O}+W_{E}(t-t 0) \\
& \underline{r}_{L}=\left(\cos \lambda_{L} \cos \left(\Omega_{L}, \cos \lambda_{L} \sin \Omega_{L}, \sin \lambda_{L}\right)\right. \\
& v_{L}=\left(-\sin A_{L} \sin \Omega_{L}-\cos A_{L} \sin \lambda_{L} \cos \Omega_{L},\right. \\
& \sin A_{L} \cos \Omega_{L}-\cos A_{L} \sin \lambda_{L} \sin \Omega_{L} \text {, } \\
& \cos A_{L} \cos _{L} \\
& \mathrm{n}_{\mathrm{IV}}=\cos \Delta \theta_{\mathrm{I}}+\sin \Delta \theta_{\mathrm{V}}{ }_{\mathrm{L}}
\end{aligned}
$$

$$
\begin{aligned}
& \underline{n}_{\mathrm{T}}=\left(\sin \mathrm{i}_{\mathrm{T}} \sin \Omega_{\mathrm{T}},-\sin \mathrm{i}_{\mathrm{T}} \cos \Omega_{\mathrm{T}}, \cos \mathrm{i}_{\mathrm{T}}\right) \\
& \left.\Delta i_{i}=\cos ^{-1}\left({\underset{\sim}{n}}^{n} \cdot n_{T}\right) * \operatorname{SIGN}\left[\ln _{L} x_{T} n_{T}\right) \cdot n_{N}\right]
\end{aligned}
$$

Figure I-3 Launch Subroutine
(Sheet 2 of 3)

Figure I-3 Launch Subroutine
(Sheet 3 of 3)

Input: $\underset{\rightarrow 0}{\mathrm{r}}, \dot{\mathrm{r}}, \mathrm{TO}, \mu, \theta, \mathrm{t}$, DLE, NOP $(0 \leq \theta<2 \pi)$

Output: $\underset{\rightarrow}{r} ; \underset{\rightarrow}{\dot{r}}$ tof, m_{a}; a
nitialize
Kount $=0$
$\mathrm{r}_{0}=\left[\begin{array}{lll}\mathrm{r} & 0 & \mathrm{r}_{\mathrm{o}} \\ \rightarrow \mathrm{O} & \mathrm{O}\end{array}\right]^{1 / 2}$

$\underset{\rightarrow 0}{\mathrm{C}} \mathrm{r}_{\mathrm{o}} \times \mathrm{r}_{\mathrm{o}}^{0}$
$C=\left[\begin{array}{cc}C & C \\ \rightarrow & \rightarrow\end{array}\right]^{1 / 2}$
$\mathrm{V}_{\theta_{0}}=\mathrm{C} / \mathrm{r}_{0}$
$\mathrm{m}_{\mathrm{o}}=\mathrm{V}_{\mathrm{ro}} / \mathrm{V}_{\theta 0}$
$a=\frac{2}{r_{0}}-\frac{V_{r o}{ }^{2}+V_{\theta o}{ }^{2}}{\mu}$
$A_{0}=1-r_{0}{ }^{a}$

Figure I-4 EPHEM Subroutine (Sheet 1 of 3)

$$
\mathrm{B}_{\mathrm{o}}=\mathrm{r}_{\mathrm{o}} \mathrm{~V}_{\mathrm{ro}} / \sqrt{\mu}
$$

Figure I-4 EPHEM Subroutin (Sheet 2 of 3)

$$
\begin{aligned}
& \text { Value }=X_{\text {Left }}-B_{o} X^{2} C(y)-A_{o} X^{3} S(y)-r_{o} X \\
& \text { Deriv }=-B_{o}\left(X-\alpha X^{3} S(y)-A_{o} X^{2} C(y)-r_{o}\right. \\
& \text { Change }=\text { Value } / \text { Deriv } \\
& X_{\text {new }}=X=\text { Change }
\end{aligned}
$$

Write: "Ephemeris NR Iterations Did Not Converge"

$f=1-\frac{X^{2} C(y)}{r_{o}}$
$g=\frac{X_{\text {Left }}-X^{3} S(y)}{\sqrt{\mu}}$
$\underset{\rightarrow 0}{\mathrm{r}}=\underset{\rightarrow}{\mathrm{r}}+\underset{\mathrm{r}}{\mathrm{r}}$
$r=[\underline{r} \cdot \underline{r}]^{1 / 2}$
$\dot{f}=\frac{\sqrt{\mu}}{r_{o}}\left(a X^{3} S(y)-X\right)$
$\dot{g}=1-\frac{x^{2}}{r} C(y)$
$\dot{\mathrm{r}}=\dot{\mathrm{f}} \mathrm{r}_{\mathrm{O}}+\dot{\mathrm{g}} \dot{\mathrm{r}}_{0}$
$\mathrm{~V}_{\mathrm{ra}} \xrightarrow{\mathrm{r}} \cdot \dot{\mathrm{r}} / \mathrm{r}$
$V_{\theta a}=\left[\underset{\rightarrow}{\dot{r}} \cdot \underset{\rightarrow}{\dot{r}}-\mathrm{V}_{r a}{ }^{2}\right]^{1 / 2}$
$\mathrm{m}_{\mathrm{a}}=\mathrm{V}_{\mathrm{ra}} / \mathrm{V}_{\theta \mathrm{a}}$
$\cos \theta=\underset{\sim}{r_{0}} \cdot \underset{\sim}{r} /\left(r_{o} r\right)$
$\underset{\rightarrow}{\mathrm{Z}}=\underset{\rightarrow}{\mathrm{r}} \times \underset{\sim}{\mathrm{r}}$
$Z=[Z \quad Z]^{1 / 2}$
$\sin \theta=Z \cdot \underset{\rightarrow}{C} /$ r ir $_{o}^{r}$
$\theta=\tan ^{-1}(\sin \theta, \cos \theta)$

Return

Figure I-4 EPHEM Subroutir (Sheet 3 of 3)
 $r_{T a}, K_{K}, \mathrm{~m}_{\mathrm{Po}^{\prime}}, \mathrm{e}_{\theta}{ }^{\mathrm{R}}, a, \mathrm{~N} 180$
Output: θ_{a}, tof $_{\rightarrow} \mathrm{V}_{\mathrm{r}}$, NSIG, a
Initialize: $X_{K K}=0, Y_{K K}=0$

$$
\begin{aligned}
& r_{0}=\left[\underset{\rightarrow 0}{r} \cdot r_{0}\right]^{1 / 2} \\
& r_{a}=\left[\underset{a}{r_{a}}, r_{a}\right]^{1 / 2} \\
& e_{r}=r_{0} / r_{0} \\
& \overrightarrow{r_{a r}}=r_{a} \cdot e_{r} \\
& \cos \theta_{a}=r_{a r} / r_{a}
\end{aligned}
$$

$$
\begin{aligned}
& r_{a \theta}=\left[\begin{array}{ll}
r_{a \theta} \cdot & r_{a \theta}
\end{array}\right]^{1 / 2} \\
& \mathrm{e}_{\theta}^{\mathrm{R}}=\frac{\stackrel{r}{\mathrm{r}} \mathrm{a} \theta}{\mathrm{r}_{\mathrm{a} \theta}} \operatorname{SGN}\left\{\left(\underset{\rightarrow}{\left(\mathrm{e}_{\mathrm{r}}\right.} \times \underset{\mathrm{r}_{0}}{\dot{\mathrm{r}}^{\prime}}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{r}_{\mathrm{a} \theta}=\mathrm{ra}_{\mathrm{a}}-\mathrm{r}_{\mathrm{ar}}{ }_{\underline{\mathrm{r}}}
\end{aligned}
$$

$$
\sin \theta_{\mathrm{a}}=\left(\mathrm{r}_{\mathrm{a}} \cdot{ }^{\mathrm{e}_{\theta}}{ }^{\mathrm{R}}\right) / \mathrm{r}_{\mathrm{a}}
$$

$$
\mathrm{V}_{\mathrm{ro}}=\mathrm{e}_{\mathrm{r}} \cdot{ }_{\mathrm{O}}^{\dot{\circ}}
$$

$$
\begin{aligned}
& \mathrm{v}_{\theta 0}=\left[\begin{array}{lll}
\dot{r_{0}^{0}} \cdot \mathrm{r}_{0}^{0} & -\mathrm{v}_{\mathrm{ro}}^{2}
\end{array}\right]^{1 / 2} \\
& \mathrm{~m}_{\mathrm{P}_{0}}=\mathrm{v}_{\mathrm{ro}} / \overrightarrow{\mathrm{v}}_{\theta_{0}}
\end{aligned}
$$

Figure I-5 RVVR Subroutine (Sheet 1 of 3)

$\begin{aligned} m_{a} & =m_{a}-X_{K K}\left[\frac{r_{0}^{-r_{a}}}{r_{0}+r_{a}} C_{\theta}\right. \\ & \left.+\frac{r_{0} m_{T a}+r_{a} m_{P_{o}}}{r_{0}+r_{a}}\right] \\ & +Y_{K K} \delta_{m} \frac{r_{a}}{r_{0}+r_{a}}\end{aligned}$

Figure I-5 RVVR Subrout (Sheet 2 of 3)

Figure I-5 R VVR Subroutine
(Sheet 3 of 3)

> Input: ${ }_{V_{\theta}}^{R}, V_{r}^{R}, \mu, r_{o}, \cos \theta_{a}$, $$
\sin \theta_{a}, m_{a}, r_{a}, N N
$$ Output: $t_{o f}, c, a$

Figure I-6 Time Subroutine (For Elliptic Transfers)

Figure I- 7 SIMTIM Subroutine
$\mathrm{m}_{\mathrm{a}}, \mathrm{k}_{1}$, NIT, START, $\Delta \mathrm{V}_{\mathrm{M}^{3}} \mu$

Initialize: $\mathrm{N} 180=0$, $\mathrm{IPL}=1$
TMINSA $=0$, DIE $=10^{-3}, \mathrm{XK}=10^{-6}$, $\mathrm{NN}=0, \mathrm{TO}=0, \mathrm{t}=0, \rho=0$

Compute interceptor and target periods. Initialize $\Delta \mathrm{T}$ by setting it equal to $1 / 4$ the smaller of the two periods

Call EPHEM subroutine Option B to compute the interceptor ephemeris
 for t sec after epoch ($t=0$)

Compute interceptor position projection on target plane, $r_{\text {inf }}$

Compute angle θ between $\mathrm{r}_{\text {inf }}$ and $\mathrm{r}_{\mathrm{T}}(0 \leq \theta<2 \pi)$

Figure I-8 RENDI Subroutine (Sheet 1 of 4)

Figure I-8 RENDI Subroutine (Sheet 2 of 4)

Figure I-8 RENDI Subroutine (Sheet 3 of 4)

Figure I-8 RENDI Subroutine
(Shest 4 of 4)

Figure I-9 BEST Subroutine (Sheet " of 3)

Figure I-9 BEST Subroutine (Sheet 2 of 3)

Figure I-9 BEST Subroutine
(Sheet 3 of 3)

Figure I-10 VPG Subroutine

$$
P_{T}=2 \pi \cdot a_{T} \sqrt{\frac{{ }^{a} T}{\mu}}
$$

Figure I-10 VPG Subroutine

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{P}}=\sqrt{\mu / R \mathrm{P}} \\
& P_{T}=a_{T}\left(1-e_{T}{ }^{2}\right) \\
& h_{T}=\sqrt{\mu \cdot P_{T}} \\
& R_{T A}=P_{T} /\left(1+e_{T} \cos f_{L N}\right) \\
& R_{T B}=P_{T} /\left(1-e_{T} \cos f_{L N}\right) \\
& R_{T 3}=P_{T} /\left[I+e_{T} \cos \left(f_{L N}+\Delta f_{3}\right)\right] \\
& \mathrm{V}_{\mathrm{TA}}=\left[\mu\left(\frac{2}{\mathrm{R}_{\mathrm{TA}}}-\frac{1}{\mathrm{a}_{\mathrm{T}}}\right)\right]^{1 / 2} \\
& \mathrm{~V}_{\mathrm{TB}}=\left[\mu\left(\frac{2}{\mathrm{R}_{\mathrm{TB}}}-\frac{1}{\mathrm{a}_{\mathrm{T}}}\right)\right]^{1 / 2} \\
& \mathrm{~V}_{\mathrm{T} 3}=\left[\mu\left(\frac{2}{\mathrm{R}_{\mathrm{T} 3}}-\frac{1}{\mathrm{a}_{\mathrm{T}}}\right)\right]^{1 / 2} \\
& \gamma_{\mathrm{TA}}=\operatorname{SGN}\left(\mathrm{f}_{\mathrm{LN}}\right)\left[\cos ^{-1}\left(\frac{\mathrm{~h}_{\mathrm{T}}}{\mathrm{R}_{\mathrm{TA}} \mathrm{~V}_{\mathrm{TA}}}\right)\right] \\
& \mathrm{LC}=1 \\
& \mathrm{LC} 2=1 \\
& \gamma_{T B}=-\operatorname{SGN}\left(f_{L N}\right)\left[\cos ^{-1}\left(\frac{h_{T}}{\mathrm{R}_{\mathrm{TB}} \mathrm{~V}_{\mathrm{TB}}}\right)\right]
\end{aligned}
$$

Figure I-10 VPG Subroutine
(Sheet 3 of 13)

Figure I-10 VPG Subroutine

Figure I-10 VPG Subroutine

Figure I-10 VPG Subroutine
(Sheet 6 of 13)

Tigure I-io VPG Subroutine be

Figure I-10 VPG Subroutine

33

Figure I-10 VPG Subroutine

Figure I-10 VPG Subroutine

Figure I-10 VPG Subroutine

Figure I-10 VPG Subroutine
(Sheet 12 of 13)

FOR i $=3,6$
$R_{i}=R_{i} e_{i}$
$\mathrm{e}_{\mathrm{Vi}}=\mathrm{n}_{\mathrm{i}} \times \mathrm{e}_{\mathrm{i}}$
$\underset{i}{V_{i}}=V_{i}^{-}\left(\cos \gamma_{i}{ }_{\rightarrow i}+\sin \gamma_{i}{ }_{i}{ }_{i}\right.$
$a_{i}=\alpha_{i} \cdot S_{\Delta i} \cdot \operatorname{SGN}\left(e_{i} \cdot n_{N}\right)$
$\Delta V_{i}=V_{i}^{+}\left[\cos \gamma_{i} \cos \alpha_{i} e_{Y i}+\cos \gamma_{i} \sin \alpha_{i \underset{i}{ }}^{n_{i}}+\sin \gamma_{i} \underset{i}{e}\right]-V_{i}$
$n_{i+1}=\cos \alpha_{i} n_{i}-\sin \alpha_{i} e_{-\infty}$

Figure I-10 VPG Subroutine

Figure 1-11 PCA Subroutine
(Sheet 1 of 3)

Figure I-11 PCA Subroutine

Figure I-11 PCA Subroutine

Figure I-12 REQ Subroutine

Figure I-1 3 TOF Subroutine

Figure I-14 Coordinate System and Initial Geometry

REFERENCE

1. Capen, E. B., Camiel, J. J., McNaughton, R. V., et. al., Variable Point Guidance and Targeting Final Report, CR-67-588-2, December 1966.

Appendix II

TOP - TRAJECTORY OPTIMIZER PROGRAM

2.1

INTR ODUCTION

The Trajectory Optimizer Program (TOP) is a digital computer program written in FORTRAN IV to run on IBM 7090/7094 computers. The program is used in mission analysis and planning to generate local minimum time or minimum fuel trajectories from launch through various orbital maneuvers.

The program employs a direct search optimization algorithm which systematically varies the paramater of an initial (input) trajectory in order to minimize a pay-off function - the time or ΔV required to complete the mission. Inequality constraints on trajectory parameters are enforced in the search routine while functional constraints are handled by the addition of penalty terms in the calculation of the pay-off function.

This program was written to demonstrate feasibility of the Trajectory Optimization Mode of the On-Board Mission Planning Function (see Section V of the main report).

2.2 PURPOSE AND USE

TOP represents a flexible and efficient technique for generating local optimum time or fuel mission trajectories. The trajectories to be optimized can start at launch or from orbit and can include any number of orbital jurns for orbit transfer with or without rendezvous (the present version of TOP is limited to four orbital burns). Ail orbital burns are treated as impulses while the ascent-to-orbit employs an explicit guidance algorithm which provides nearly optimal performance.

This program is used to optimize the trajectories generated by the Trajectory Generator Program (Appendix I), but it can be used with any initial trajectory if the proper trajectory parametcas are specified fsee Paragraph 2.5 for input requirements).

PROGRAM FEATURES

The present version of TOP does not represent a production level program. It does represent a possible technique for on-board generation of locally optimal mission trajectories. The program is the result of different efforts of Task II during this phase. The present program configuration is not designed for high efficiency, and certain approximation used in it must be studied in more detail before a final version is constructed.

Some of the features of the present version are:

- Ascent to orbit or intercept (e.g., direct-ascent rendezvous capability).
- Spherical gravity model.
- Kepler arcs for coast phases.
- Total ΔV or total mission time can be minimized.
- Maximurn ΔV constraints enforced by a penalty term in the pay-off function (OBJECT) when minimizing total time.
- Components of the argument vector (\underline{U}) can be constrained in the search routine (TEXT).
- Up to four orbital burns can be considered.
- Transfers can be with or without rendezvous.
- Near-optimal vacuum ascent trajectories generated by an explicit guidance algorithm.
- Atmospheric ascent trajectories calculated with analytical equations and veliicle-deprendent empirical parameters.
- All orbital burns treated as impulses.
- Initial parking orbit, after the ascent phase, is circular.
- Impulse splitting cases can be handled.
- 180 degree transfers are allowed.
- Optimum transfer plane determined for 180 degree transfers.

Some of the approximations implicit in these features are discussed in Paragraph 2.4.3 of this Appendix.

2.4
 PROGRAM OPERATION

The over-all operation of TOP is illustrated in Figure II-1. The program consists of a Main Program (MAIN) and two major Subroutines, TEXT and OBJECT. The Main Program reads in all data, periorms necessary conversions, sets up program paths, salls OBJECT and TEXT, and formats all printout. TEXT is the optimization subroutine which itself consists of a number of subroutines that can be used in various combinations. OBJECT is the subroutine which calculates the value of the pay-off function (P) corresponding to the present value of the trajectory parameters (U) as determined in TEXT.

Referring to Figure II-1, MAIN reads in all data including the initial trajectory, which is spocified by a set of parameters (IU (I), $I=1, \ldots 15$). The initial trajectory specification, \underline{U}_{0}, is used with OBJECT to provide the initial value of the pay-off function, P_{0}. TEXT is then called to begin the search procedure, and control remains in TEXT until a solution has been found. At this time, MAIN formats and prints the output data and either proceeds to the next case or stops. In TEXT, the OBJECT subroutine is called to provide a new value of P whenever \underline{U} has been changed.

2.4.1 MAIN

A math flow of the executive program MAIN is presented in Figure II-2. The symbols employed may be found in Table II-1. In addition to reading input, printing output, and calling OBJECT and TEXT, this program:

- Sets constraints on appropriate terms of the argument vector (\mathbb{U}) with the read-in values of $U_{\max }(I)$ and $U_{\min }(I)$.
- Identifies the components of \underline{U} to be searched over $(B V A(I)=I$ if $U(I)$ is to be varied, BVA $(J)=0$ if $U(J)$ is to be held fixed).
- If an impulse-splitting maneuver is being considered, MAIN reverses the order of the orbital burns before calling TEXT and changes them back after returning from TEXT.

The last item relates to the problem of determining the velocity required to transfer between two points in space in a finite time when the points are coincident. This is the case for the so-called impulse splitting maneuver which is employed in rendezvous missions to introduce a phasing orbit. When OBJECT is first entered to determine the initial value of the pay-off function a check is made to see if the last two burns are within ρ (RHO)-feet (an input) of each other. If they are, an indicator is set which, on the return to MAIN,. causes the order of the orbital burns to be reversed.(i.e., the program starts at the target orbit and works back to the parking orbit). This is shown on Figure II-2 just before TEXT is called. The optimized orbital burns are then changed back to the proper order before final printoui. By reversing the order, the first two orbital burns are now coincident in space but, because of the technique employed in OBJECT to propagate trajectories, this causes no problems.

Abstract

2.4.2 TEXT

TEXT is the optimization algorithm subroutine. It consists of several options which can be used in various combinations. This subroutine is completely described in Appendix IV which includes Math flows, Input/ Output, and examples. In Appendix IVthis algorithm is entitled DSOP (Direct Search Optimization Program) and its various options are described. Only the Pattern Move Search (PMS) and UNIVAR options have been employed in TOP because of the ability of this combination to handle argument constraints. Any search type algorithm could be employed with TOP but some reprogramming would be required to interface it with MAIN and OBJECT.

2.4.3 OBJECT

The payoff function associatedwith a particular trajectory is computed in the OBJECT subroutine. The input to this routine is the
argument vector \underline{U} which describes the trajectory and the output is the corresponding value of the pay-off function P. The argument vector is supplied by TEXT while OBJECT calculates the time or ΔV (the presently available payoff options) required on that trajectory.

OBJECT makes use of five subroutines: LAUNCH, UP1, UP2, EPHEM, and RVVR. The launch conditions are calculated in LAUNCH as a function of the launch site and launch time. UP1 and UP2, employing the explicit guidance algorithm described in Par. 6.4 of the main report, generate near optimal ascent trajectories to orbit injection or intercept. The determination of position, velocity and time on coast arcs performed in EPHEM. The RVVR routine is used to calculate the velocity required for the orbitai burns. These subroutines are also used in the Trajectory Generator Program (TGP) and a complete description of them and TGP may be found in Appendix I.

Figure II-3 is a math flow of CBJECT and the symbols are defined in Table II-1.

The OBJECT subroutine employs certain approximations in order to provide an efficient technique for generating ascent and orbital segments (this routine is called hundreds of times in the process of optimizing a mission trajectory). These major approximations are related to three areas of trajectory generation: Ascent, Coast, and Orbital Burns.

- Ascent - the ascent segments are generated with UPl or UP2 depending upon whether orbit injection or intercept is required. Both of these routines (which are really two entry points to one program) use the explicit guidance equations, developed during this study, for the vacuum phase and analytical equations for the atmospheric phase. The form of the explicit equations are such that they introduce almost no performance degradation when compared to an optimal solution. The analytical equations, which are necessary to initialize the explicit guidance equations, are merely spherical trigonometry equations
relating conditions at first (zero) stage burnout to the launch conditions. The equations require three vehicledependent parameters which are used for all launch conditions. This analytical technique of handling the atmospheric phase of ascent is very efficient computationally but it does introduce prediction errors of the order of 1-3 seconds in the injection time. This aspect of the ascent phase can and should be improved with additional study of efficient techniques for generating conditions at the "top of the atmsophere" as a function of launch conditions and vehicle configuration.
- Coast - All coast ares are computed with an ephemeris routine (EPHEM) which employs Kepler-type equations, that is, assumes a spherical earth. In the case of long mission times, this will result in sizable errors if uncorrected. The present program could be upgraded by considering the effects of oblateness on coast trajectories. Closed-form expressions for these effects are available. Orbital Burns - All orbital burns after ascent are treated as impulses. This approximation is justified because of the almost negligible performance penalty incurred. The results of Reference (1), for example, indicate this penalty is less than 1% for an extreme case ($\Delta V=10,000$ fps.) and provide a prescription for generating a nearly optimal finite-thrust trajectory for data derived from the impulsive trajectory.

One other feature of OBJECT should be mentioned. This involves the program's ability to generate 180-degree transfers when the transfer plane is undefined. This would be the case, for example, for a simple Hohnann transfer between non-coplanar circular orbits. Specifying the times (positions) of the two burns is not sufficient because the transfer plane is still arbitrary (i.e., the plane change can all be made at the first burn, or
all at the second burn, or split between the two burns in an infinite number of ways). The logical solution, of course, is to divide the plane-change between the two burns so as to minimize the total ΔV required for the two burns. This is exactly what is done in OBJECT when the trajectory specification, \underline{U} vector, calls for two burns that are within XKl-degrees (a program constant, presently set at approximately 0.08°) of being 180 degrees apart. When this situation arises, a simple one-dimensional search is performed over the angle describing the transfer plane, to find the value which minimizes the ΔV required for these two burns. This capability is required in order to accept such transfers as part of an initial trajectory specification. The VPG Bielliptic uption, for example, always includes such a transfer.

2.5 PROBLEM SPECIFICATION

The coordinate system used in defining input and output mission data, and in which the problem is solved, is the XYZ ECI (Earth Centered Inertial) system illustrated in Figure II-4. The XY plane is the equatorial plane and the Z axis is through the north pole.

If the initial trajectory starts at launch ($\mathrm{LCL}=+1$) the launch site is specified by four parameters which are varied during the optimization.

$$
\begin{aligned}
& t_{L}=\text { Time of launch }=U(12) \\
& A_{L}=\text { Launch Azimuth }=U(13) \\
& \mathbf{R}_{p}=\text { Circular parking orbit radius }=U(14) \\
& \alpha_{L}=\text { Dog-leg angle }=U(15)
\end{aligned}
$$

The present program only handles circular parking orbits. The dog-leg angle $\quad \alpha_{L}$ denotes a rotation about the launch radius which defines the desired ascent plane after the atmospheric phase. A ${ }_{L}$ defines the plane for the atmospheric phase.

The target orbit is specified by the target's ephemeris at some epoch:

$$
\begin{aligned}
& \underline{R}_{T_{0}}=\text { Target's position at } t_{T_{0}} \\
& \underline{V}_{T_{0}}=\text { Target's velocity at } t_{T_{0}}
\end{aligned}
$$

$$
\mathrm{t}_{\mathrm{T}_{\mathrm{o}}}=\text { Target's epoch }
$$

If the initial trajectory starts from a parking orbit, $L C L=-1$, this orbit is defined by appropriate ephemeris data:

$$
\begin{aligned}
& \mathrm{R}_{0}=\text { Spacecraft position at } t_{0} \\
& \underline{V}_{0}=\text { Spacecraft velocity at } t_{0} \\
& t_{0}=\text { Spacecraft's epoch }
\end{aligned}
$$

The specification of the orbital burns requires $3+4(N-2)$ parameters, where N is number of burns ($N \geq 2$). If rendezvous is required, one less parameter is involved because of the phasing constraint (i.e., the spacecraft and target must be coincident at the time of the last burn). For all values of N , the first and last burns are defined by:

$$
\begin{aligned}
& t_{1}=\text { Time of first orbital burn }=U(1) \\
& t_{f}=\text { Time of last orbital burn }=U(2) \\
& \mathrm{ma}_{\mathrm{f}}=\text { Slope or arrival at last burn }=U(3)
\end{aligned}
$$

The position of the first burn is determined by t_{1} and the initial parking orbit (input or result of the ascent phase). The position of the last burn is determined by t_{f} and the target's ephemeris. For a two burn orbit transfer, this and the slope (tangent of the flight path angle) at arrival at the last burn are sufficient to determine the two impulsive burns required. In the case of rendezvous, ma_{f} is not used; the phasing constraint is employed instead. When there are more than two orbital burns, four more parameters are required for each additional burn. The parameters used are: $\Delta V_{i}=$ Velocity impulse at $i^{\text {th }}$ burn $=U(4 i), U(4 i+1), U(4 i+2)$ $\Delta \theta_{i}=$ Range angle between $i^{\text {th }}$ and $(i+1)^{\text {st }}$ burns $=U(4 i+3)$
where $i=1,2, \ldots(N-2)$. This combination allows for efficient generation of the intermediate trajectories, because only the ephemeris routine (EPHEM) is required. For example, t_{1} and the spacecraft's ephemeris with EPHEM yield the position and velocity just before the first impulse (\underline{R}_{1} and \underline{V}_{1}). Adding $\Delta \underline{V}_{1}$ to \underline{V}_{1} gives the velocity after the impulse which, with R_{1} and $\Delta \theta_{1}$, is sufficient for EPHEM to generate the position and velocity just
before the second burn $\left(\underline{R}_{2}\right.$ and $\left.\underline{V}_{2}\right)$. Adding $\Delta \underline{V}_{2}$ to \underline{V}_{2}, proceeding as before enables the next arc to be computed, and so on.

The initial trajectory (input) is thus specified by assigning the proper values to the initial value of the argument vector $\underline{U}(i), i=1,2, \cdots 15$. In addition, other input data is required to completely specify the problem. The total input required is indicated in Table II-1.
2.6 TEST CASES

To demonstrate the capability and performance of TOP, four test cases are included. Table II-2 contains a description of each case, and Table II-3 illustrates the results obtained from TOP.

Case 1 - This is a two burn orbit transfer without rendezvous between two similar orbits inclined at 5 degrees. The initial (input) trajectory corresponds to a perigee-to-perigee transfer arriving at the final orbit with zero flight path angle. This maneuver requires $7619 \mathrm{ft} / \mathrm{sec}$ of ΔV. The optimized trajectory requires $5663 \mathrm{ft} / \mathrm{sec}$, a saving of $1856 \mathrm{ft} / \mathrm{sec}$. This case required 155 evaluations of the pay-off function (i.e., passes through OBJECT) and 2.78 seconds of 7094 time. The running time figure contains I/O operations for writing input data, intermediate results, and final results. This case corresponds to Optimum 4, Table 1, page 1868 of Reference (2) which lists a value of 5800 for ΔV. This difference in results is due to the fact that the values for ΔV in Reference (2) are obtained by reading contour plots which have a contour interval of $500 \mathrm{ft} / \mathrm{sec}$.

Case 2 - The problem here is to rendezvous with a target in a highly elliptical orbit with a large semi-major axis. The initial orbit is a $100 \mathrm{n} . \mathrm{m}$. circular parking orbit inclined at 30 degrees to the target orbit. The starting solution is a three-burn bielliptic transfer which was generated with the Variable Point Guidance (VPG) routine. This routine is used in the Trajectory Generator Program and is described in Appendix i. The VPG planned trajectory requires $13,528 \mathrm{ft} / \mathrm{sec}$ of ΔV as compared to the optimized results of $12,715 \mathrm{ft} / \mathrm{sec}$. The very large number of function evaluations (1090) are a result of slow convergence in the algorithm and, especially,
because during many of the evaluations 180 degree transfers are involved and the optimum transfer plane must be determined (see Par.2.4.3).

Case 3 - This is exactly the same as Case 2 except that the starting solution is a three-burn, full orbit phasing result from the VPG routine. In this case the input contains an impulse splitting maneuver because the second and thrid burns occur at the same point in space. The technique described in 2.4 . 1 was employed to handle this case. The optimized trajectory requires $11,496 \mathrm{ft}$! sec as compared to 11,764 for the initial trajectory. This case, in particular, demonstrates the near-optimal performance of VPG in certain applications

Case 4 - The target orbit in this case is the same as Cases 2 ard 3 but now the missions start at launch. The input trajectory was generated with the Trajectory Generator Program (Appendix I) and involves a launch at $t=0$, at an azimuth of 90 degrees into a $100 \mathrm{n} . \mathrm{m}$. circular parking orbit with no dog-legging $(U(15)=0)$. This ascent trajectory results in the minimum out-of-plane angle with the target orbit that can be obtained from the given launch site (latitude of 30 degrees). The input specification then involves a two-burn rendezvous maneuver with the target which results in a total ΔV of $31,673 \mathrm{ft} / \mathrm{sec}$ and requires 15,706 seconds of time. The optimized trajectory required 255 evaluations of the pay-off function (total ΔV) and resulted in a mission requiring 14,769 seconds and $31,417 \mathrm{ft} / \mathrm{sec}$ of $\Delta \mathrm{V}$. This is a $256 \mathrm{ft} / \mathrm{sec}$ savings in $\Delta \mathrm{V}$ and 937 seconds in time. The optimized mission involves a launch at $t=0$ (launch time was constrained to be positive) at an azimuth of 92.7 degrees with a 1.287 degree dog-leg after the atmospheric phase. The parking orbit altitude was reduced to its constrained minimum value of approximately $90 \mathrm{n} . \mathrm{m}$. The two orbital burns were altered in time of occurrence, and thus in position because the parking orbit is different.

TRAJECTORY OPTIMIZATION PROGRAM SYMBOLS

$\begin{gathered} \text { Math * } \\ \text { Symbol } \end{gathered}$	Description	FORTRAN Program Symbol
LC L	I. Inputs to Main Program Equals +1 for Ascent, Equals -1 for maneuvers that start from Orbit Note: The following inputs are required only for $L C L=+1$, i. e. for ascent.	LCL
λ_{L}	Launch site latitude (degrees)	LAML
$\Omega_{L O}$	Launch site longitude relative to x -axis at t_{LO} (degrees)	OLO
${ }^{\text {L }} \mathrm{LO}$	Reference time	TLO
Ω_{T}	Longitude of ascending node of target orbit (degrees)	OT
$\Delta \Omega_{T}$	Longitude of target overflight point relative to launch site (degrees)	DELOT
$\lambda_{\text {T }}$	Latitude of target overflight point (deg.)	LAMT
${ }^{\text {i }}$ T	Inclination of target orbit plane to $\mathrm{x}-\mathrm{y}$ plane ($\mathrm{i} \geq 0$)	EYET
$\mathrm{R}_{\mathrm{T}}^{\prime}$	Radius of target overflight point (ft.)	RTP
$\Delta V_{\text {max }}$	Maximum $\Delta \mathrm{V}$ available ($\mathrm{ft} / \mathrm{sec}$)	DVM
${ }^{\text {t }}$	Time of launch	U(12)
${ }^{\text {L }}$ L	Launch azimuth (degrees)	U(13)

Table II-1 Trajectory Optimization Program Symbols (Continued)

Math * Symbol	Description	FORTRAN Program Symbol
R_{P}	Parking orbit radius (ft.)	U(14)
$\boldsymbol{\alpha}_{L}$	Dog-leg angle (degrees)	U(15)
$\mathrm{M}_{\text {T }}$	Equals 1 for Intercept	MT
	3 for Orbital Rendezvous .	
	4 for Reconnaissance with parking orbit	
	5 for Reconnaissance with first pass overflight	
	6 for Orbit injection using a parking orbit	
${ }^{\text {L min }}$	Lower bound on t_{L}	AC(1)
$\mathrm{A}_{\text {Limin }}$	Lower bound on A_{L} (deg.)	AC(2)
$A_{\text {Lmax }}$	Upper bound on A_{L} (deg.)	AC(3)
$\mathrm{R}_{\mathrm{Pmin}}$	Lower bound on R_{P} (ft.)	AC(4)
$R_{P \max }$	Upper bound on R_{P} (ft.)	$\mathrm{AC}(5)$
	Switch to control the use of above bounds.	$\mathrm{NAC}(1-5)$
	Note: The remaining inputs pertain to orbit maneuvers.	
N BURNS	Number of orbital burns (0, 1, 2, 3, or 4)	NBURNS
	Desired orbital maneuver. Equals +1 for rendezvous and -1 for orbit transfer.	MANEUV
	Desired minimum Equals +1 for minimum fuel and -1 for minimum time.	MINREQ
r_{0}	Spacecraft position at time t_{0}	RO

Table II-1 Trajectory Optimization Program Symbols (Continued)

Table II-1 Trajectory Optimization Program Symbols (Continued)

Table II-1 Trajectory Optimization Program Symbols (Continued)

Math * Symbol	Description	FORTRAN Program Symbol
$\Delta \theta$	Range angle from launch site to intersection with target orbit (radians)	DELTH
$\xrightarrow{r} \mathrm{~L}$	Unit vector through launch site	RL
$\stackrel{\stackrel{v}{\mathrm{~V}}}{\mathrm{~L}}$	Unit vector in launch plane and perpendicular to $\underset{\rightarrow}{r}$	VL
$\xrightarrow{n} \mathrm{~L}$	Unit vector normal to launch plane such that 	NL
$\xrightarrow{\mathrm{e}} 1$	Unit vector normal to orbital plane	UNIT 1, NI
θ_{p}	Longitude of perigee from descending equatorial node (radian)	THETP
$\xrightarrow{r} \text { LB }$	Position vector of launch site	RLB **
r_{a}	Orbit apogee radius	RA
$\underset{\rightarrow}{\mathrm{r}} \mathrm{c}$	Cut-off position vector (ft)	RC
$\xrightarrow{\mathrm{V}} \mathrm{C}$	Cut-off velocity vector (ft/sec)	VC
$\Delta \mathrm{V}_{\mathrm{R}}$	ΔV remaining at cut-off ($\mathrm{ft} / \mathrm{sec}$)	DELVR
$\Delta \mathrm{T}$	Cut-off time relative to launch	DELT
TF	Desired time of intercept relative to launch (sec)	T F
$\xrightarrow{r} \mathrm{R}$	Final intercept position (ft)	RR
$\stackrel{\mathrm{V}}{\rightarrow} \mathrm{V}$	S/C velocity at intercept (ft/sec)	VV
$\xrightarrow{\mathrm{v}} \mathrm{VT}$	Target velocity at intercept (ft/sec)	VVT

Table II-1 Trajectory Optimization Program Symbols (Continued)

Math * Symbol	Description	FORTRAN Program Symbol
a	Semi-major axis of orbit (ft)	A, AX
TOF	Time of flight (sec)	TOF
θ_{T}	Range angle (radians)	THT
$\underset{\rightarrow}{\text { VFIN }}$	Arrival velocity of S/C (ft/sec)	VFIN
m_{a}	Arrival slope	MA

* In some cases there is no math symbol corresponding to a FORTRAN program symbol. Such cases arise when in the math flow chart, descriptive phases are used instead of FORTRAN symbols.

TABLE II- 2

TEST CASES

Case	Initial State	Final Orbit	Out-of-Plane Angle (deg.)	Comments
1	Elliptical Parking Orbit Semi-Major Axis $=5208$ miles Eccentricity $=0.2$	Elliptical Orbit Semi-Major Axis $=6250$ miles Eccentricity $=0.2$	5.0	Two-Burn Orbit Transfer Without Rendezvous
2	100 n. m. circular parking orbit	```Semi-Major Axis = 8444 n.m. Eccentricity = 0.5 Line of Apsides 30* from Line of Nodes```	30.0	Three Burn Rendezvous with Target in Final Orbit
3	Same as 2	Same as 2	30.0	Same as above
4	Launch Site Latitude $=30^{\circ}$	Same Orbit as 2 and 3, Lying in the Equatorial Plane	30.0 (This is the minimum value obtainable from the Launch Site if Launch Azimuth $=90^{\circ}$)	Ascent to Párking Orbit and Rendezvous with Tárget in Final Orbit

TABLE II-3
RESULTS OF TEST CASES

												$\begin{aligned} & 0^{1-1} \\ & 1 \\ & 0 \\ & 0 \\ & 0 \\ & 4 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			
		$\begin{array}{r} U(1) \\ (\mathrm{sec}) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline U(2) \\ (\mathrm{sec}) \\ \hline \end{array}$	U(3)	$\begin{array}{\|l\|} \hline \mathrm{U}(4) \\ \mathrm{ft} / \mathrm{sec}) \end{array}$	$\begin{aligned} & \mathrm{U}(5) \\ & (\mathrm{ft} / \mathrm{sec}) \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{U}(6) \\ (\mathrm{ft} / \mathrm{sec}) \end{array}$	$\begin{aligned} & \mathrm{U}(7) \\ & (\mathrm{deg}) \\ & \hline \end{aligned}$	$\begin{array}{\|l} \mathrm{U}(12) \\ (\mathrm{sec}) \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{U}(13) \\ \mathrm{deg}) \\ \hline \end{array}$	$\begin{aligned} & \mathrm{U}(14) \\ & (\mathrm{ft}) \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{U}(15) \\ & (\mathrm{deg}) \end{aligned}$	$\begin{gathered} \Delta V \\ (\mathrm{ft} / \mathrm{sec}) \end{gathered}$	asses	Time
1	Input	0	2213	0	-	-	-	-	-	-	-	-	7619	-	-
	Output	552	2116	. 07216	-	-	-	-	-	-	-	-	5663	155	2.78
2	Input	7515	19920	-	-173.9	-4317	-2108	208.7	-	-	-	-	13528	-	-
	Output	7825	19114	-	2262.0	-4797	-645	189.9	-	-	-	-	12715	1090	-
3	Input	2305	33026	-	358.4	-5668	-2788	203.2	-	-	-	-	11764	-	-
	Output	2370	33373	-	879.3	-6329	-1070	201.7	-	-	-	-	11496	234	9.83
4	Input	3996.2	15706	-	-	-	-	-	0	90.0	21532438	80	31673	-	-
	Output	3970.2	14769	-	-	-	-	-	0	92.7	21472348	81.287	31417	255	-

Notes:
(1.) Not required for Rendezvous Cases
(2.) Used for Three-Burn Cases
(3.) Includes I/O Time to Write Output

Figure II-1 Trajectory Optimizer Program

Figure II- 2 MAIN Program (Sheet 1 of 3)

Figure II-2 MAIN Program (Sheet 2 of 3)

Figure II-2 MAIN Program (Sheet 3 of 3)

Figure II-3 OBJECT Program

Figure II-3 OBJECT Program

Figure II-3 OBJECT Program

Figure II-3 OBJECT Program

17
Figure II-3 OBJECT Program

Figure II-3 OBJECT Program

Figure II-3 OBJECT Program

Figure II-3 OBJECT Prograim

Figure II-3 OBJECT Program

Figure II-4 COORDINATE SYSTEM AND TRAJECTORY SPECIFICATION

REFERENCES

1. Robbins, H. M., "An Analytical Study of the Impulsive Approximation," AIAA Journal, Vol. 4, No. 8, August 1966, pp 1417-1423.
2. McCue, G.A., "Optimum Two - Impulse Orbital Transfer and Rendezvous Between Inclinded Elliptical Orbits," AIAA, August 1963, pp 1865-1872. FLIGHT OUTSIDE THE ATMOSPHERE

This appendix describes the theory and implementation of OP-EX, an IBM-developed guidance algorithm for all phases of powered flight outside the atmosphere, including the exoatmospheric phase of ascent i.e., that phase of ascent where the dynamic pressure is less than 30 pos. f_{0}). As its name implies, OP-EX is both optimal and explicit. That is, it accepts as inputs a given "present" state and propulsion performance models for the present and future stages of the rocket, and generates an optimal (fuelminimal) trajectory which satisfies explicitly stated constraints and final conditions, without dependence on off-board precomputations. OP-EX guidance is compatible with and is used by the Optimal-Explicit Flight Planner.

3.1 SUMMARY OF CAPABILITIES AND ADVANTAGES

OP-EX is a versatile guidance algorithm usable for exoatmospheric ascent, orbit transfers, direct rendezvous, direct intercept, deboost - in fact, for all powered phases outside the atmosphere. For each of these guidance requirements, the resulting fuel expenditure is minimal.

Also, for any given guidance phase, a variety of alternative terminal conditions can be easily specified. For example, orbit insertions can be achieved with specification of (l) orbital plane and orbit orientation, size and shape in that plane, or (2) orbit inclination, latitude of perigee, size and shape, or (3) orbit inclination and latitude and longitude of orbit perigee. In fact, almost any reasonable combination of termination conditions imaginable can be easily implemented. All that is required is the specification of six "terminal-error" equations (according to a set of rules which will be derived) which completely define the mission type. These equations, when satisfied, determine the unique optimal trajectory.

OP-EX can optimally perform any magnitude of plane change within the vehicle's capabilities during ascent. It can also optimally perform any orbital maneuvers for plane change, orbit transfer, rendezvous, or intercept.

OP-EX has flexible provisions for propulsion performance description (thrusts, stage masses, mass rates). An unlimited number of stages can be specified and, in theory, any modelable function of time can be used to represent engine mass flow and exhaust velocity. Even exotic schemes like the Saturn V PU (propellant-utilization) system, which involves a change of thrust level at a variable time after stage ignition, can be implemented satisfactorily. In fact, the optimal time at which to switch the level of thrust could be specified by OP-EX.

The OP-EX algorithm is computationally efficient, to be practical for real-time guidance, yet is sufficiently accurate to be used for rapid prediction of ΔV requirements for flight-planning purposes.

OP-EX provides predicted vehicle states at future staging times (and other critical times) which can be used in spent-booster impact prediction.

OP-EX has growth capability for the optimal inclusion of additional constraints such as fixed final attitude, recovery ceiling, etc. Implementation would require little more than a modification of the control law; the routines for trajectory generation and for iterative adjustment of trajectory parameters would be essentially unchanged.

3.2 DERIVATION OF EQUATIONS FOR OPTIMAL TRAJECTORIES

The equations of motion for rocket-powered flight outside the atmosphere are

$$
\begin{align*}
& \dot{\underline{r}}=\underline{v} \tag{1}\\
& \underline{\dot{v}}=\underline{g}(\underline{r}, t)+a(t) \underline{\hat{u}}(t) \tag{2}
\end{align*}
$$

where \underline{r} is the position vector, \underline{v} is the velocity vector, g is the acceleration due to gravity, $a(t)$ is the magnitude of thrust acceleration, and $\underline{\underline{u}}(t)$ is a unit vector giving the direction of thrust acceleration. For the one-burn case with nonthrottleable engines, $a(t)$ may be regarded as a given function of time, but in more complicated cases a propulsion-model must be included in the problem formulation. For an n-stage rocket, equations determining a (t) are

$$
\left.\begin{array}{l}
a=T_{j} / M_{j} \tag{3}\\
\dot{M}_{j}=-T_{j} / c_{j}+\omega_{j} \\
O \leq T_{j} \leq T_{j \max }
\end{array}\right\} \quad j=1,2, \ldots n
$$

where M is vehicle mass, T is thrust, $T_{\text {max }}$ is full-throttle thrust, $c *$ is the effective exhaust velocity, and ω is inert mass flow rate due to scheduled dumping of expendables and propellant leakage and evaporation. The effect of ω is, in general, very small, so to avoid needlessly complicating the discussion, it will be neglected. (Should ω become significant, the theory can, of course, be expanded to include its effect.) $c^{*}, T_{\text {max }}$, and M may change discontinuously at staging times. Also, c^{*} and $T_{\max }$ may be functions of the burning time since stage ignition. (For solid fuel rockets, this is usually the case.) The engines may be non-throttieable, non-restateable or both. However, for formulating the optimization theory, it is convenient to begin by considering perfectly throttieable engines. For cases in which staging is triggered by fuel depletion, $c *$ and $T_{\text {max }}$ may be regarded as given functions of the mass M. Also, (as a mathematical artifice) mass discontinuities at staging may be regarded as brief intervals with very small c* and correspondingly high values of \dot{M}.

Introducing a throttle variable S, Equation (3) can be rewritten as

$$
\begin{align*}
& a \quad=S_{\max }(t) \tag{4}\\
& a_{\max }=T_{\max }(M) / M \tag{5}\\
& \dot{M}=-S T_{\max }(M) / c *(M) \tag{6}\\
& O \leq S \leq 1
\end{align*}
$$

The optimization problem is to choose control policies $\underline{\underline{u}}(t)$ and $S(t)$ such that the resulting trajectory satisfies given final conditions and extremizes some function of the final values of $\underline{r}, \underline{v}, M$ and t. Usually, but not always, the quantity to be extremized is the final mass $M\left(t_{f}\right)$.

This is an optimization problem of the Mayer type. It can be expressed in standard form by introducing the seven-component state vector

$$
\underline{x}=\left[\begin{array}{l}
\underline{r} \tag{8}\\
\underline{v} \\
M
\end{array}\right]
$$

and the four-component vector

$$
\underline{v}=\left[\begin{array}{l}
\hat{\underline{u}} \tag{9}\\
\mathrm{~S}
\end{array}\right]
$$

Then the state equations can be expressed in the standard form

$$
\begin{equation*}
\underline{\underline{x}}=\underline{f}(\underline{x}, \underline{v}, t) \tag{10}
\end{equation*}
$$

where

$$
\underline{f}=\left[\begin{array}{l}
\underline{v} \tag{11}\\
\underline{g}(\underline{r}, t)+S_{\underline{\underline{u}} a_{\max }}(M) \\
-\mathrm{ST}_{\max }(M) / c \%(M)
\end{array}\right]
$$

The control constraints $|\underline{\underline{u}}|=1$ and $O \leq S \leq 1$ are independent of the state variables, so Pontriagin's maximum principle is applicable. Introducing the adjoint vector

$$
\underline{p}=\left[\begin{array}{l}
\frac{\eta}{\lambda} \tag{12}\\
\frac{\lambda}{\sigma}
\end{array}\right]
$$

the Hamiltonian can be written as

$$
\begin{align*}
\mathrm{H}(\underline{\mathrm{x}}, \underline{\mathrm{p}}, \underline{v}, \mathrm{t}) & =\underline{\mathrm{p}}^{\mathrm{T}} \underline{\mathrm{f}} \underline{(x, \underline{v}, \mathrm{t})} \tag{13a}\\
& =\underline{\eta} \cdot \underline{v}+\underline{\lambda} \cdot \underline{\mathrm{g}}+\mathrm{S}\left[\underline{\lambda} \cdot \underline{\hat{u}} \mathrm{a}_{\max }-\sigma \mathrm{T}_{\max } / \mathrm{c} *\right] \tag{13b}
\end{align*}
$$

It is convenient to introduce the abbreviation K for the bracketed quantity in Equation (13), and G as the symbol for the gravity-gradient matrix. Then the standard adjoint equation

$$
\dot{\underline{p}}=-\partial H / \partial x
$$

gives

$$
\begin{align*}
\dot{\lambda} & =-\underline{\eta} \tag{15}\\
\dot{\eta} & =-G \underline{\lambda} \tag{16}\\
\dot{\sigma} & =-S \bar{\partial} / \partial \mathrm{M} \tag{17}
\end{align*}
$$

The vector $\underline{\lambda}$ is Derek Lawden's "primer vector."
The maximum principle requires

$$
\begin{equation*}
\underline{\hat{u}}=\underline{\lambda} / \lambda \tag{18}
\end{equation*}
$$

and

$$
\dot{S}=\left\{\begin{array}{l}
1 \text { if } K>0 \tag{19}\\
O \text { if } K<0
\end{array}\right.
$$

An immediate consequence of Equations (6) and (17) is

$$
\begin{equation*}
\dot{\mathrm{K}}=(\underline{\lambda} \cdot \underline{\hat{u}})^{\cdot} \mathrm{a}_{\max } \tag{20}
\end{equation*}
$$

which simplifies to

$$
\begin{equation*}
\dot{\mathrm{K}}=|\lambda|^{\cdot} \mathrm{a}_{\max } \tag{21}
\end{equation*}
$$

when use is made of Equation (18). This relation enables K to be computed directly, so the quantity σ becomes unnecessary and need not be computed.

In many cases, the control of thr ust magnitude is prescribed or trivial (full on till cutoff, zero thereafter) so only the optimization of steering need be considered. For such cases, the differential equations for an optimal trajectory reduce to

$$
\begin{align*}
& \ddot{\underline{r}}=\underline{\dot{v}}=g(\underline{r}, t)+a(t) \underline{\lambda} / \lambda \tag{22}\\
& \underline{\ddot{x}}=G \underline{\lambda} \tag{23}
\end{align*}
$$

For an inverse-square central field, the quantities g and G are given by

$$
\begin{align*}
& \mathrm{g}=-\left(\mu / \mathrm{r}^{3}\right) \underline{\mathrm{r}} \tag{24}\\
& \mathrm{G}=-\left(\mu / \mathrm{r}^{3}\right)\left[I-\left(3 / \mathrm{r}^{2}\right) \underline{r^{T}}\right] \tag{25}
\end{align*}
$$

where \underline{r}^{T} is the transpose of the column vector $\underline{\underline{r}}$. For multiburn cases, or cases in which the trajectory starts from a parking orbit with a freely chosen ignition time, Equations (22) through (25) must be supplemented by (19) and (21).

Equation (21) shows that the quantiiies K and $|\underline{\lambda}|$ always increase or decrease together, so locai maxima or minima of K along an optimum trajectory are maxima or minima of $|\underline{\lambda}|$ also. During coast phases, M and $a_{\max }(M)$ are assumed constant, so K is linearly related to $|\underline{\lambda}|$. (Should an appreciable mass change occur during coast, due to scheduled dumping of expendables, propellant leakage or evaporation, or all three, the formulation could be expanded to include its effect.) Consequently, the magnitude of $|\underline{\lambda}|$ must be the same at both ends of a coast phase. The powered phases occur at local maxima of $|\underline{\lambda}(t)|$. These maxima may occur at the beginning or end of the trajectory (exterior maxima)
or at intermediate points (interior maxima). For interior maxima (i.e., burns whose beginning and end times are not determined by any consideration other than optimality), the conditions for optimal thrust control require the integral

$$
\begin{equation*}
J=\int_{\text {burn }}|\lambda|^{\bullet} a \max d t \tag{26}
\end{equation*}
$$

to vanish. This requirement does not hold for a burn whose beginning time or end time is constrained.

The optimality conditions given above reduce the problem of trajectory optimization to a two-point boundary value problem (TPBVP). The initial conditions generally consist of given values of $\underline{r}\left(t_{0}\right), \underline{v}\left(t_{o}\right), M\left(t_{0}\right)$, and t_{0}. For cases in which the final mass is to be maximized, the final conditions consist of $k \leq 6$ mission conditions (prescribed relations among the final values of $\underline{\underline{r}}\left(\mathrm{t}_{f}\right)$, $\underline{v}\left(\mathrm{t}_{f}\right)$, and t_{f} plus 6-k transversality conditions which come from optimal control theory. The transversality conditions can be analytically derived from the mission conditions by the requirement that

$$
\begin{equation*}
\underline{\dot{\lambda}} \cdot \underline{\delta r}-\underline{\lambda} \cdot \underline{\delta v}=0 \quad t \geq t_{f} \tag{27}
\end{equation*}
$$

must hold for every pair of infinitesimal variations $\underline{\delta r}$, $\underline{\delta v}$ consistent with the mission conditions and at every point on the coast trajectory.
3.3 NUMERICAL SOLUTION OF THE OPTIMAL TRAJECTORY PROBLEM

As derived in the previous section of this appendix, the differential equations defining the optimal trajectory of a rocket powered vehicle are

$$
\begin{align*}
& \ddot{\underline{r}}=\dot{\underline{v}}=\underline{g}(r)+a(t) \underline{\underline{u}} \tag{28a}\\
& \ddot{\underline{i}}=G \underline{\lambda} \tag{28b}\\
& \underline{\hat{u}}=\underline{\lambda} / \lambda \tag{28c}
\end{align*}
$$

A guidance scheme also based on Equations (28), but differing from OP-EX in computational techniques, has been described by Brown and Johnson (Reference 1). Numerical integrating of these equations from some initial time t_{o} to an estimated final tirne t_{f}, starting from the initial state $\underline{r}\left(t_{0}\right)$ and $\underline{v}\left(t_{0}\right)$ and estimated initial costate $\underline{\lambda}\left(t_{o}\right)$ and $\underline{\lambda}\left(t_{o}\right)$, determines the final state, $\underline{r}\left(t_{f}\right)$ and $\underline{v}\left(t_{f}\right)$, and the final eostate variables $\underline{\lambda}\left(t_{f}\right)$ and $\underline{\dot{\lambda}}\left(t_{f}\right)$. Seven error quantities, derived from k specified final state conditions and $6-k$ transversality conditions and a
desired normalization of $\underline{\lambda}\left(t_{0}\right)$, must be brought to null by iterative adjustment of the seven parameters $\underline{\lambda}\left(t_{o}\right), \underline{\dot{\lambda}}\left(t_{o}\right)$ and t_{f}. To this end a Newton-Raphson iteration procedure will be used.

Since the same trajectory integration algorithm is to be used for both flight planning of all powered phases and for operational guidance during the powered phases, the integration must be both fast and accurate. An obvious method of increasing the speed of solution is to increase the step-size used in numerical integration of Equations (28). Since the guidance is"closed loop" and can be máde accurate near cut-off at small cost, this does not cause guidance errors. However, it has three possible adverse and unavoidable effects:
(1) The steering policy becomes non-optimal, incurring a fuel penalty.
(2) The initial estimate of t_{f} becomes inaccurate, which distorts flight planning.
(3) Truncation erzors in the computation of sensitivity coefficients (which are required for iterative correction of the estimated parameters $\underline{\lambda}\left(t_{o}\right), \underline{\dot{\lambda}}\left(t_{0}\right)$ and $\left.t_{f}\right)$ cause them to differ from the actual sensitivities of the numerically integrated Equations (28). This degrades the convergence of the iterative solution, and in extreme instances, destroys convergence completely.

However, it is known that present day explicit guidance schemes, which are essentially one-step integrations of the trajectory equations improved by closed formulae for certain thrust integrals, have small performance penalties. It may therefore be expected that an "explicit-predictor" integration scheme which resembles the application of explicit.guidance to each integration step will have negligible performance penalty for very large integration steps. This, in fact, is the case. It has been demonstrated that one integration step per stage of the Titan IIIC booster produces a ΔV performance penalty of only $0.1 \mathrm{ft} / \mathrm{sec}$:

Errors in initial estimates of t_{f}, made when the time remaining until thrust cut-off is large, are quite significant for explicit guidance schemes, but have been found to be acceptably small when thae explicit-predictor integration
scheme is used with large steps. It has been repeatedly demonstrated, using the Titan IIIC booster, that integration steps of 100 seconds produced an error in predicted cut-off time of less than 0.3 secondsincases where the time remaining until cut-off was greater than 700 seconds. Even larger time steps are believed useable for mission planning.

The remaining factor governing useable step-size is the effect of truncation error on the convergence of the iterative solution. This effect disappears if the sensitivity coefficients are computed by finite differences. This is done by first generating an "unperturbed" trajectory and evaluating the error quantities. Ther "perturbed" trajectories are generated by changing components of the initial adjoint vector one at a time by a small specified variations. Subtracting the error quantities of cach perturbed trajectory from the corresponding error quantities of the unperturbed trajectory, and dividing by the change in the initial adjoint component, gives one column of the sensitivity matrix.

Computing sensitivities by finite difference is similar to performing experiments on the numerical trajectory solution. Regardless of truncation errors, approximations in the equations, etc., the sensitivity coefficients generated by finite differences will give an accurate prediction (except for roundoff and nonlinearity effects) of the way in which the numerical trajectory solution will change if its parameters are changed.

Experience with the ascent case has shown that there is no difficulty in choosing parameter changes large enough to avoid trouble from roundoff errors, but small enough for linearity to hold. In trial experiments, the sizes of the parameter increments were varied over a range of more than three urders of magnitude without appreciable degradation of convergence.

3.4 EXPLICIT-PREDICTOR INTEGRATION ALGORITHM

The "explicit-predictor" integration algorithm is designed to take advantage of closed formulae for integrals involving thrust acceleration. The formulae presented here assume that rocket engine mass flow rate \dot{M} and effective exhaust velocity c* are constant. This should not be construed as a limitation of the technicue. In theory, at least, any modelable function of burning
time can be used for either \dot{M} or $c *$. For example, a "propellant-utilization" model in which the level of thrust is altered sometime after engine ignition could be implemented within the framework of the algorithm. Also there is no limit imposed on the number of rocket stages.

The equations of the integration algorithm will be shown for the jth rocket stage and the nth time step. Since engine parameters and mass are generally discontinuous at staging, the integration time step is selected so that no more than one stage is ever included in any integral evaluation. In other words

$$
\begin{align*}
\Delta t_{n}= & \operatorname{Min}\left(\Delta t_{\max }, t_{j}-t_{n}\right) \\
& t_{n+1} \equiv t_{n}+\Delta t_{n} \tag{29}
\end{align*}
$$

where t_{j} is time at the end of stage j, t_{n} is present time and $\Delta t_{\max }$ is the largest time step allowed.

The thrust acceleration term $a(t) \underline{\underline{u}}$ is separated into two parts, that which defines its magnitude $a(t)$ and that which defines its direction $\hat{\underline{u}}$. Over each integration step, $\hat{\underline{u}}$ is approximated by a second-order vector function of time.

$$
\begin{equation*}
\underline{\hat{u}}(t)=\underline{\underline{u}}_{m}\left(t_{m}\right)+\underline{a}_{n}\left(t-t_{m}\right)+\underline{\beta}_{n}\left(t-t_{m}\right)^{2} \quad t_{n} \leq t \leq t_{n+1} \tag{30}
\end{equation*}
$$

where

$$
t_{m}=t_{n}+\Delta t_{n} / 2
$$

As will be shown subsequently, it is possible to predict $\underset{\underline{u}}{\hat{u}}\left(t_{m}\right)$ and $\hat{\underline{u}}\left(t_{n+1}\right)$. Given the three values of $\hat{\underline{u}}$, the vector coefficients are

$$
\begin{align*}
& \underline{a}_{n}=\left[\underline{\hat{u}}\left(t_{n+1}\right)-\underline{\hat{u}}\left(t_{n}\right)\right] / \Delta t_{n} \\
& \underline{\beta}_{n}=2\left[\underline{\hat{u}}\left(t_{n+1}\right)+\underline{\hat{u}}\left(t_{n}\right)-2 \underline{\hat{u}}_{n}\left(t_{m}\right)\right] / \Delta t_{n}^{2} \tag{31}
\end{align*}
$$

To complete the single and double integrals of thrust acceleration from t_{n} to t_{n+1}, it is necessary to evaluate six integrals:

$$
I_{5}=\int_{t_{n}}^{t_{n}} \int_{t_{n}}^{t_{j}+\left(s-t_{m}\right)} \frac{c_{j-1}-s}{\tau_{j}+t_{j-1}} d s d t
$$

$$
I_{6}=\int_{t_{n}}^{t_{n}} \int_{t_{j}}^{t_{j}} \frac{c_{j}^{*}\left(s-t_{m}\right)^{2}}{\tau_{j}+t_{j-1}-s} d s d t
$$

where

$$
\tau_{j}=-M_{o j} / \dot{M}_{j}
$$

$M_{o j}$ is the mass at the ignition of stage j.

$$
\begin{align*}
& I_{1}=\int_{t_{n}}^{t_{n+1}} \frac{c^{*}{ }_{j}}{\tau_{j}+t_{j-1}-t} d t \\
& I_{2}=\int_{t_{n}}^{t_{n+1}} \frac{c^{*} j\left(t-t_{m}\right)}{\tau_{j}+t_{j-1}-t} d t \\
& I_{3}=\int_{t_{n}}^{t_{n+1}} \frac{c^{*}{ }_{j}\left(t-t_{m}\right)^{2}}{\tau_{j}+t_{j-1}-t} d t \\
& I_{4}=\int_{t_{n}}^{t_{n}} \int_{n+1}^{t_{n}} \frac{c * j}{\tau_{j}+t_{j-1}-s} d s d t \tag{32}
\end{align*}
$$

For the assumptions made above, namely that c_{j}^{*} and \dot{M}_{j} are constan

$$
\begin{align*}
I_{1}= & c_{j}^{*} \log _{e}(I+\rho) \\
I_{4}= & c_{j}^{*} \Delta t_{n}-\left(\tau_{j}+t_{j-1}-t_{n+1}\right) I_{1} \\
I_{2}= & -I_{4}-\left(t_{m}-t_{n+1}\right) I_{1} \\
I_{3}= & \left(\tau_{j}+t_{j-1}-t_{m}\right)\left(I_{2}-c_{j}^{*} \Delta t_{n}\right) \\
& +c_{j}^{*}\left(\tau_{j}+t_{j-1}-t_{n+1}\right)^{2}\left(2 \rho+\rho^{2}\right) / 2 \tag{33}\\
I_{5}= & \left(\tau_{j}+t_{j-1}-t_{m}\right) I_{4}-c_{j}^{*} \Delta t_{n}^{2} / 2 \\
I_{6}= & \left(\tau_{j}+t_{j-1}-t_{m}\right)\left(I_{5}-c_{j}^{*} \Delta t_{n}^{2} / 2\right) \\
& -c_{j}^{*}\left[\left(\tau_{j}+t_{j-1}-t_{n+1}\right)^{3}\left(3 \rho+3 \rho^{2}+\rho^{3}\right) / 6\right. \\
& \left.-\left(\tau_{j}+t_{j-1}-t_{n}\right)^{2} \Delta t_{n} / 2\right]
\end{align*}
$$

where

$$
\rho=\Delta t_{n} /\left(\tau_{j}+t_{j-1}-t_{n+1}\right)
$$

Having constructed the closed formulae for the first and second integrals of thrust, the total "explicit-predictor" algorithm can now be shown. The contributions to position and velocity due to thrust acceleration, $\Delta \underline{r}^{\prime}$ and $\Delta \underline{\underline{v}}^{\prime}$, and due to gravitational acceleration, $\Delta \underline{r}^{\prime \prime}$ and $\Delta \underline{v}^{\prime \prime}$, will be isolated as a hedge against requiring extended precision integral accumulation. The primer vector can now be predicted at t_{m} and t_{n+1} by using the second order equations:

$$
\begin{align*}
& \underline{\lambda}_{m}=\underline{\lambda}_{n}+\dot{\lambda}_{n} \Delta t_{n} / 2+\ddot{\underline{i}}_{n} \Delta t_{n}^{2} / 8 \\
& \hat{u}_{m}=\underline{\lambda}_{m} / \lambda_{m} \\
& \underline{\lambda}_{n+1}=\underline{\lambda}_{n}+\dot{\underline{\lambda}}_{n} \Delta t_{n}+\ddot{\lambda}_{n} \Delta t_{n}^{2} / 2 \tag{34}\\
& \hat{u}_{n+1}=\dot{\lambda}_{n+1} / \lambda_{n+1}
\end{align*}
$$

After evaluating $\underline{\alpha}$ and $\underline{\beta}$ according to Equations (31) and I_{1}, \cdots, I_{6} according to Equations. (33), the thrust acceleration contributions to position and velocity are:

$$
\begin{align*}
& \Delta \underline{r}_{n+1}^{\prime}=\Delta \underline{r}_{n}^{\prime}+\Delta \underline{v}_{n}^{\prime} \Delta t_{n}+I_{4} \underline{u}_{m}+I_{5} \underline{q}_{n}+I_{6} \underline{\beta}_{n} \\
& \Delta \underline{v}_{n+1}^{\prime}=\Delta \underline{v}_{n}^{\prime}+I_{1} \underline{u}_{m}+I_{2} \underline{a}_{n}+I_{3} \underline{\beta}_{n} \tag{35}
\end{align*}
$$

The gravitational acceleration contributions to position are:

$$
\begin{equation*}
\Delta \underline{r}_{n+1}^{\prime \prime}=\Delta \underline{r}_{n}^{\prime r}+\Delta \underline{v}_{n}^{\prime \prime} \Delta t_{n}+g_{n} \Delta t_{n}^{2} / 2+G_{n} v_{n} \Delta t_{n}^{3 / 6} \tag{36}
\end{equation*}
$$

Total position is

$$
\begin{equation*}
\underline{r}_{n+1}=\underline{r}_{0}+\underline{v}_{0}\left(t_{n+1}-t_{0}\right)+\Delta \underline{r}_{n+1}^{\prime}+\Delta \underline{r}_{n+1}^{\prime \prime} \tag{37}
\end{equation*}
$$

Gravitational acceleration and the gravity gradient matrix can now be evaluated using the predicted value of \underline{r}_{n+1}; then $\ddot{\vec{X}}_{n+1}$ can be evaluated

$$
\begin{align*}
& \underline{g}_{n+1}=-\left(\mu / r_{n+1}^{3}\right) \underline{r}_{n+1} \\
& G_{n+1}=-\left(\mu / r_{n+1}^{3}\right)\left[I-\left(3 / r_{n+1}^{2}\right) \underline{r}_{n+1} \underline{r}_{n+1}^{T}\right] \tag{38}\\
& \ddot{\lambda}_{n+1}=G_{n+1} \underline{\lambda}_{n+1}
\end{align*}
$$

Finally, velocity and primer vector rate are

$$
\begin{align*}
& \dot{\underline{\lambda}}_{n+1}=\dot{\underline{\lambda}}_{n}+\left(\ddot{\lambda}_{n}+\ddot{\lambda}_{n+1}\right) \Delta t_{n} / 2 \\
& \Delta \underline{v}_{n+1}^{\prime \prime}=\underline{\Delta v}_{n}^{\prime \prime}+\left(\underline{g}_{n+1}+\underline{g}_{n}\right) \Delta t_{n} / 2 \tag{39}\\
& \underline{v}_{n+1}=\underline{v}_{0}+\underline{\Delta v}_{n+1}^{\prime \prime}+\underline{\Delta v}_{n+1}^{\prime}
\end{align*}
$$

Equations (34) to (39) are the explicit-predictor integration technique. As the problem is integrated, the index j must refer to the "current" stage. It is worth noting that no restrictions are placed on the time at which the problem is begun. In this way the algorithm is appiicable to the real-time guidance requirement.
3.5 ITERATIVE DETERMINATION OF ESTIMATED PARAMETERS

As pointed out previously, sevenerror quantities must be brought to null by iteratively adjusting the estimated parameters $\underline{\lambda}\left(t_{0}\right), \underline{\dot{\lambda}}\left(t_{0}\right)$ and t_{f}.

Also, since the normalization of the primer vector at t_{o} is irrelevant, by an expeditious choice of coordinates a "preferred coordinate" can be established along which the component of $\underline{\lambda}$ can be left invariant. What this means is that the "preferred axis" should not be chosen orthogonal or nearly orthogonal to the expected direction of thrust acceleration. In general, this is an easy requirement to meet and is worthwhile since it reduces iteratively corrected parameters from seven to six.

It is now necessary to establish the six-by-six matrix of sensitivities, the so called Jacobian matrix, which relates the variation of estimated aramesters to the variation in error quantities. The error quantities used are unique to, and indeed define, the type of trajectory being generated. Error quantities for several trajectory types will be presented in a subsequent section.

The Jacobian matrix will be computed, as was stated previously, by employing finite difference techniques. Only five "perturbed" and one "upperturbed" trajectories must be generated. (At this point, one can see the obvious advantage of an extremely rapid trajectory generation technique.) Each perturfed trajectory yields one column of the Jacobian matrix. The sixth column, which represents the changes induced in the error quantities by a unit charge of the final time, can be evaluated by extrapolating the final state of the unpercurbed trajectory over some small time increment and then reevaluating the error quantities.

If the error quantities for the six perturbed trajectories are designate by column vectors $\epsilon_{1}, \ldots, \epsilon_{6}$ of dimension 6 , and the unperturbed frajectory error quantities by ϵ_{0}, the six-by-six Jacobian matrix is

$$
\begin{align*}
J= & \left(\underline{\epsilon}_{0}-\epsilon_{1}\right) / \Delta \dot{\lambda},\left(\epsilon_{0}-\underline{\epsilon}_{2}\right) / \Delta \dot{\lambda},\left(\underline{\epsilon}_{0}-\underline{\epsilon}_{3}\right) / \Delta \dot{\lambda},\left(\underline{\epsilon}_{0}-\epsilon_{4}\right) / \Delta \lambda, \\
& \left.\left(\underline{\epsilon}_{0}-\epsilon_{5}\right) / \Delta \lambda,\left(\underline{\epsilon}_{0}-\underline{\epsilon}_{6}\right) / \Delta t_{f}\right] \tag{40}
\end{align*}
$$

The Newton - Raphson iteration equation in vector form is
$\left[\begin{array}{l}\dot{\lambda}_{1} \\ \dot{\lambda}_{2} \\ \dot{\lambda}_{3} \\ \lambda_{2} \\ \lambda_{3} \\ t_{f}\end{array}\right] \leftarrow\left[\begin{array}{l}\dot{\lambda}_{2} \\ \dot{\lambda}_{1} \\ \dot{\lambda}_{3} \\ \lambda_{2} \\ \lambda_{3} \\ t_{f}\end{array}\right]+J^{-1}\left(\Gamma \epsilon_{o}\right)$
where the numbered subscripts on λ and $\dot{\lambda}$ refer to the first, second, and third components. Note that λ_{1} is arbitrarily chosen to be along the "preferred" coordinate.

In Equation (4J), Γ is a convergence progress control parameter which is adjusted according to a "performance indicator". The performance indicator is defined as

$$
\begin{equation*}
P=\sum_{i=1}^{6} W_{i} \epsilon_{o i}^{2} \tag{42}
\end{equation*}
$$

which is the weighted sum square of the unperturbed error quantities. The weighting factors W_{i}, are required because the error quantities are not (in general) of the same dimensions.

It can be argued that if the Jacobian matrix is correct and non singular, progress must be made by Equation (41) in reducing the error quantities if a sufficiently small Γ is used. On the other hand, if $\Gamma^{\prime \prime}$ is too small, the reduction process will be unnecessarily sluggish. The rule used to adaptively adjust Γ is as follows: if the performance indicator on the present iteration is less than it was on the last iteration, Γ is set

$$
\Gamma \simeq \operatorname{Min}(2 \Gamma, 1)
$$

and the evaluation of a new Jacobian proceeds. If the performance indicator is greater than it was on the last iteration, Γ is set

$$
\Gamma-\Gamma / 2
$$

As shown previcusly, it is necessary to specify six error quantities which uniquely define a mission type and, when brought to zero, satisfy the mission objectives. Of these six, k are specified final state conditions (or functions of firal state conditions) and 6-k are transversality conditions which insure an optimal trajectory.

Three basic options most used by QRGT will be described below. . The other orbit injection options described in the summary of capabilities can be derived in a straightforward manner but are not presented here.

1) Injection into Orbit, with Specification of Orbit Size, Shape, and

Orientation.
For injection into orbit with prescribed orbit size, shape and orientaticn, the only degrees of freedom remaining are the time and location at which orbit insertion is to occur. Let us assume that the desired orbit is specified by its radius and velocity vectors at perigee, \underline{r}_{p} and \underline{v}_{p}. With this specification, the required velocity vector at any location in the orbit is given by

$$
\begin{align*}
\underline{v}_{R}= & \frac{1}{r_{p}} \sqrt{\frac{\mu}{s}} \sin \theta \underline{r}_{p} \\
& +\left\{1-\frac{r}{s}[1-\cos \theta]\right\} \underline{v}_{p} \tag{45}
\end{align*}
$$

where θ is the true anomaly: The semilatus rectum, s, is given by

$$
\begin{equation*}
s=v_{p}^{2} r_{p}^{2} / \mu \tag{46}
\end{equation*}
$$

The magnitude of the required radius at any point in the orbit is

$$
\begin{equation*}
r_{R}=\frac{s}{(1+e \cos \theta)} \tag{47}
\end{equation*}
$$

where the orbit eccentricity is given by

$$
\begin{equation*}
e=\left(s / r_{p}-1\right)^{1 / 2} \tag{48}
\end{equation*}
$$

The unit vector normal to the orbital plane is

$$
\begin{equation*}
\underline{\hat{n}}={\widehat{\underline{r}} \underset{p}{ } \times \underline{v}_{p}} \tag{49}
\end{equation*}
$$

As shown above, the required velocity vector and required radius are functions of the true anomaly. The true anomaly of the generated trajectory is given by

$$
B=\operatorname{Tan}^{-1}\left\{\begin{array}{l}
\frac{r\left(t_{f}\right) \cdot v_{p} / v_{p}}{} \tag{50}\\
\frac{\underline{r}\left(t_{f}\right) \cdot \underline{r}_{p} / r_{p}}{}
\end{array}\right\}
$$

Five of the six required error quantities are

$$
\begin{align*}
{\left[\begin{array}{l}
\epsilon_{\mathrm{n} 4} \\
\epsilon_{\mathrm{n} 5} \\
\epsilon_{\mathrm{n} 6}
\end{array}\right] } & =\underline{v}_{\mathrm{R}}(\theta)-\underline{v}\left(t_{\mathrm{f}}\right) \\
\epsilon_{\mathrm{n} 2} & =\mathbf{r}_{\mathrm{R}}(\theta)-\mathrm{r}\left(t_{\mathrm{f}}\right) \tag{51}\\
\epsilon_{\mathrm{n} 3} & =-\underline{\hat{n}} \cdot \underline{r}\left(t_{\mathrm{f}}\right)
\end{align*}
$$

These five quantities are sufficient to satisfy all mission specification. The sixth quantity ϵ_{n} gives the deviation from satisfaction of a transversality condition, which is

$$
\begin{equation*}
\underline{\lambda}\left(t_{f}\right) \cdot g\left(t_{f}\right)-\underline{\dot{\lambda}}\left(t_{f}\right) \cdot \underline{v}\left(t_{f}\right)=0 \tag{52}
\end{equation*}
$$

and expresses the fact that phase-in-orbit is not specified. This is the wellknown transversality condition for "time-free" cases.
2)

Direct Ascent to Rendezvous, with Rendezvous Time Specified
Direct-ascent-to-rendezvous means that, after thrust is initially terminated, only a velocity matching burn at the specified rendezvous radius is required. For this case, the required velocity, V_{R} is determined by means of Lambert's theorem. One statement of Lambert's theorem is that, if two position vectors, the time required to traverse between them, and whether the true anomaly to be traversed is greater than or less than 180° are specified, the orbit of traverse is unique and ueterministic. The equations used to determine
v_{R} can be found in Reference 2 and are not repeated here. The remaining three error quantities must be specified by transversality conditions.

To determine the applicable transversality conditions let us first examine the equation of perturbed motions obtained from Equation (28a).

$$
\begin{equation*}
\delta \ddot{\underline{\underline{x}}}=\delta \underline{\underline{\dot{v}}}=G \delta \underline{\underline{r}}+\delta \underline{a} \tag{53}
\end{equation*}
$$

To obtain Equation (53), it is assumed that $|\delta \underline{r}|$ is small enough to justify ignoring terms of the order of $|\delta \underline{r}|^{2}$.

Recalling Equation (28b), we see that on a coast trajectory, where $\delta a=0$, Equation (28b) is identical in form to Equation (53). Hence, the well known state transition matrix solution for Equation (53) must also be a solution for Equation (28b). Symbolically,

$$
\left[\begin{array}{l}
\underline{\lambda}\left(t_{r}\right) \tag{54}\\
\underline{\dot{\lambda}}\left(t_{r}\right)
\end{array}\right]=\Phi\left(t_{r}, t_{f}\right)\left[\begin{array}{l}
\underline{\lambda}\left(t_{f}\right) \\
\underline{\dot{\lambda}}\left(t_{f}\right)
\end{array}\right]
$$

where t_{r} is the time of rendezvous. If $\dot{\dot{\lambda}}\left(t_{r}\right)$ is assumed to be zero (i.e., a fixed attitude orbit matching burn) the required primer vector rate at thrust cut-off is given by

$$
\begin{equation*}
\underline{\dot{\lambda}}_{R}\left(t_{f}\right)=\Phi_{12}^{-1}\left\{\underline{\lambda}_{r}\left(t_{r}\right)-\Phi_{11} \underline{\lambda}\left(t_{f}\right)\right\} \tag{55}
\end{equation*}
$$

where

$$
\Phi\left(t_{r}, t_{f}\right)=\left[\begin{array}{c:c}
\Phi 11 & \Phi 12 \\
\hdashline \Phi 21 & \Phi 22
\end{array}\right]
$$

All that remains is to determine $\underline{\lambda}\left(t_{r}\right)$. Recalling Equation (21), we see that for an optimal trajectory the magnitudes of the primer vector at the first thrust termination and at the beginning of the velocity matching burn must be equal. The direction of the primer vector at the beginning of the velocity matching burn must be approximately in the direction of the velocity-to-begained vector. Symbolically,

$$
\begin{equation*}
\underline{\lambda}\left(t_{r}\right)=\lambda\left(t_{f}\right)\left[{\underline{v_{T}}\left(t_{r}\right)-\underline{v}\left(t_{r}\right)}\right. \tag{56}
\end{equation*}
$$

where $\underline{v}_{T}\left(t_{r}\right)$ is the target velocity and $\underline{v}\left(t_{r}\right)$ is the interceptors velocity at rendezvous. Hence, the three additional error quantities are

Reference 3 describes a very simple and elegani way of computing the required state transition matrix which is valid for all orbits except the degenerate rectilinear orbit.
3)

Direct Ascent to Intercept--Intercept Time Specified
Direct-ascent-to-intercept is very similar io direct-ascent-torendezvous just described. The principal difference is that no velocity matching burn is performed at intercept. The required velocity for intercept v_{R}, is computed in the same manner as for rendezvous but the transversality conditions are not.

Recalling Equation (27), we have

$$
\begin{equation*}
\underline{\dot{\lambda}} \cdot \underline{\delta r}=\underline{\lambda} \cdot \underline{\delta v} \quad t \geq t_{f} \tag{58}
\end{equation*}
$$

This equation must hold at all points on the coast arc. If we choose the point at intercept, the perturbation in position, $\delta \underline{r}$, must, by definition, be zero. Since there is no constraint on velocity at intercept, the only way Equation (58) can be satisfied is if $\underline{\lambda}$ at intercept is also zero.

Equation (57) can now be rewritten for the intercept case and is

$$
\left[\begin{array}{c}
\epsilon_{n 1} \tag{59}\\
\epsilon_{n 2} \\
\epsilon_{n 3}
\end{array}\right]=-\Phi_{12}^{-1}{\underset{11}{ }}^{\underline{\lambda}\left(t_{f}\right)-\underline{\dot{\lambda}}\left(t_{f}\right)}
$$

3.7 USE OF OP-EX FOR ORBITAL MANEUVERS

OP-EX has several attributes which make it ideally suitable for guiding orbit maneuvers as well as ascent. Pincipal among these is its ability to optimally perform large plane changes. In fact, the direct-ascent-to-rendezvous
option can be directly applied (except for minor changes in initialization) to all intermediate burns and their subsequent coast arcs. As has been shown previously, additional guidance options can be easily added without sacrificing the optimal performance of OP-EX.

In keeping with the QRGT mission planning policy, the time of initiation of each thrusting maneuver and the location and time of the subsequent thrusting maneuver are determined by the mission planner. Since the planner assumes impulsive changes in velocity, the actual time of engine ignition during active guidance will be modified to make the nominal centroid time of the burn correspond with the impulse time specified by the planner.

3. 8 EFFECT ON OP-EX OF MEASUREMENT OF ENGINE PERFORM-
 ANCE DURING ACTIVE GUIDANCE
 OP-EX guidance relies on propulsion performance descriptions for

 the various stages to extrapolate the trajectory forward to thrust termination. In active guidance, variation of engine performance from that specified will cause the extrapolated trajectory to be in error. However, because the guidance is "closed-loop" by design, (that is, the trajectory is recursively extrapolated every ten seconds during early stages and more frequently in the final stage) such performance variations do not seriously effect the satisfaction of guidance objectives, but the fuel optimizing ability of OP-EX is handicapped (although certainly not disastrously) by the variations.A "mass-rate" prediction scheme, which will be derived subsequently, was implemented for study purposes and was found to enhance the fiel efficiency of OP-EX guidance in the presence off-nominal engine performance. The amount of ΔV saved, in every case, was a few $\mathrm{ft} / \mathrm{sec}$.

The "mass-rate" predictor is formulated as follows: the theoretical ΔV gained in stage j between the k and ($k+1$) predictions of OP-EX is (if c* is constant)

$$
\begin{equation*}
\Delta V=c_{j}^{*} \log _{e}\left\{\frac{M_{o j}+\tilde{\dot{M}}_{j}\left[t_{k+1}-t_{j-1}\right]}{M_{o j}+\widetilde{\mathbb{M}}_{j}\left[t_{k}-t_{j-1}\right]}\right\} \tag{60}
\end{equation*}
$$

where $M_{o j}$ is initial mass, $c *_{j}$ is effective exhaust velocity, t_{j-1} is time of ignition (a measured quantity) and $\tilde{\mathrm{M}}_{\mathrm{j}}$ is estimated mass rate of the jth stage. The measured ΔV^{\prime} gained is approximately

$$
\begin{equation*}
\Delta V^{\prime} \approx \underline{\hat{u}}\left(t_{k}\right) \cdot\left[w\left(t_{k+l}\right)-w\left(t_{k}\right)\right] \tag{61}
\end{equation*}
$$

where $\hat{\underline{u}}(t)$ is the direction of thrust acceleration and $w(t)$ is the velocity-meter output vector at time t. Predicted average mass rate is then

$$
\begin{equation*}
\widetilde{M}_{j}=\frac{-M_{0 j}\left[1-\exp \left\{-\Delta V^{\prime} / c_{j}^{*}\right\}\right]}{\left[t_{k+1}-t_{j-1}\right]-\left[t_{k}-t_{j-1}\right] \exp \left\{-\Delta V^{\prime} / c_{j}^{*}\right\}} \tag{62}
\end{equation*}
$$

It can be seen from Equation (62) that errors in initial mass are absorbed in the estimated mass rate.

If every last ounce of fuel is to be saved, perhaps a multistate filter of the Kallman type could be uscd to estimate $M_{o j}, \dot{M}_{j}$ and $c_{j}{ }_{j}$. 3.9 GROWTH CAPARILITY FOR TREATMENT OF CONSTRAINTS

For some vehicles and missions, the flight guidance must satisfy constraints other than the usual constraints on final position and velocity. Examples are (1) recovery-ceiling constraints and (2) requirements for a prescribed attitude at cutoff, together with a low angular rate. The structure of the OP-EX guidance algorithm facilitates the introduction of modifications to make it capable of handling such constraints. The principal changes required are (1) modification of the form of the control policy, in a way that introduces new trajectory parameters, and (2) providing equations for computing new error quantities which measure constraint violation. The explicit-predictor algorithm of OP-EX can be used, without change, to generate trial trajectories by which the old and new error quantities can be evaluated for any given values of the old and new trajectory parameters.

Before active guidance begins, the on-board flight planner (using part of OP-EX as a subroutine) will generate a feasible, optimized nominal trajectory and so provide an initial set of values for the trajectory parameters. Some of these trajectory parameters will remain constant during active guidance, others will be iteratively adjusted by OP-EX. For this purpose, the matrix of
sensitivity coefficients must be enlarged by additional columns corresponding to new error quantities, and additional rows for new trajectory parameters. Since the matrix elements are evaluated by finite-difference methods, this enlargement is straightforward.

Appropriate forms for the control-policy modifications can be derived from optimal control theory. It is not necessary to implement the true optimal solutions (which would require, in general, the computation of new adjoint variables) since it is generaliy not difficult to find simple approximations which give satisfactory performance.

For example, for the recovery-ceiling constraint, a preliminary analysis indicates that a satisfactory scheme may be realizable as follows: the control policy is modified by introducing discontinuous changes of $\underline{\lambda}$ and $\dot{\lambda}$ at a scheduled future time t_{s} which is prior to the predicted cutoff but after the latest time at which the recovery-ceiling constraint might be active. These changes are of the form

$$
\begin{align*}
\Delta \underline{\lambda} & =\mathrm{k} \underline{b}_{1} \\
\Delta \underline{\dot{\lambda}} & =\mathrm{kb} \underline{b}_{2} \tag{63}
\end{align*}
$$

where k is a parameter to be iteratively adjusted by OP-EX. The vectors \underline{b}_{i} and \underline{b}_{2} are generated by the flight planner, together with the time t_{s}, and are not changed during active guidance. When the danger of violating the recoveryceiling has passed (which will occur before time t_{s}) the parameter k is set to zero, restoring the normal control policy. At times immediately after this switch-over, the rate of change of commanded thr ust direction must be limited to prevent undesirable transient behavior.

The problem of satisfying attitude constraints at cutoff involves both guidance and control. Optimal control theory indicates that the optimal trajectories consist of two arcs. On the first arc, which covers most of the trajectory, the present OP-EX control policy is optimal, and constraints on angular rates or angular accelerations have no direct influence. On the second arc, the attitude control system is working at maximum effort to achiewe the desired final attitude and attitude rate. In an actual implementation, the maximum-effort
phase must be followed by a precision-control phase that tries to realize accurate end conditions. A reasonable approach to the over-all problem is to first consider the attitude-change maneuver as a separate optimization problem (intimately related to the autopilot design) and devise a quasi-optimal policy (with margins for performance uncertainties) for achieving a given final orientation with a low final angular rate. This gives a formula for the maneu-ver-time required, as a function of angle-to-be-turned-through, which is valid when the initial angular rate is low. This formula (and approximate forms for the angular rate profile during the maneuver) can be used in the explicitpredictive algorithm for generating predicted trajectories. When the attitudechange maneuver begins, control of cutoff position will probably have to be relaxed. However, accurate control of both attitude and velocity is possible by a policy which rapidly rulls the components of velocity-te-be-gaincd which are normal to the desired final roll-axis direction, and controls the parallel component by cutoff time.

3.10 SIMULATION RESULTS

The OP-EX guidance algorithm has been tested by simulation, using the IBM-developed GISMO simulation program, with the following guidance options:

1) Direct ascent to intercept; initial ascent plane coincident with target plane
2) Direct ascent to intercept; target plane rotated 40° from initial ascent plane
3) Direct ascent to rendezvous; initial ascent plane coincident with target plane
4) Direct ascent to rendezvous; initial ascent plane rotated 40° from target plane
5) Insertion into circular orbit; no dog-leg during ascent
6) Insertion into circular orbit; 40° dog-leg during ascent
7) Insertion into noncircular orbit (eccentricity 0.047) with no dog-leg during ascent
8) Insertion into noncircular orbit (eccentricity 0.047) with 40° dog-leg during ascent
9) Direct rendezvous from orbit; 40° plane change
10) Orbit insertion from orbit; 40° plane change.

In all cases, the Titan IIIC booster was used. Three payload options were used for the various missions. A spherical Earth Model in GISMO was used for all tests since gravity oblatness correction equations were not complete at the time of testing.

In every case the guidance algorithm performed with aplomb. No evidence of non convergence was indicated. The number of iterations for initial convergence ranged from one for option 4) to nine for option 1). This difference is probably due to the fact that all ascent cases were initialized with the same standard set of initial parameter values, and this set is closer to the requirements for injection into a circular orbit than to those for intercept. For all orbit-toorbit burns, the primer vector is initially aligned along the estimated velocity-to-be-gained vecto furnished by the mission planner. It is possible that this rule (or an adaptation of it) should be followed for direct-ascent intercept cases also.

In all intercept or rendezvous cases, the error in position at the specified time of intercept was less than 20 feet. In all orbit insertions, the error in radial and out of plane position components was less than 20 feet, and the error in velocity was less than $0.05 \mathrm{ft} / \mathrm{sec}$. These errors were, of course, for nominal engine performance and probably represent, to a high degree, the numerical resolution of the 7094 computer.
3.11 OP-EX MATH FLOW DIAGRAMS

Math flow diagrams of OP-EX guidance are presented in Figure III-1. Table III-l gives math flow symbol definitions.

Figure III-1 OP-EX Guidance Algorithm

$$
\begin{aligned}
& \text { Compute } \\
& \text { Performance } \\
& \text { Indicator } \\
& P=\sum_{6} W_{k} \epsilon_{k}^{2}
\end{aligned}
$$

Vectors with Time Increment

0 On

Figure III-1 OP-EX Guidance Algorithm
Sheet 4 of 9

Figure III-1 OP-EX Guidance Algorithm

Guidance Initializer

 Option 1

Figure III-1 OP-EX Guidance Algorithm

Steering Equations Entry

Update Primer Vector

$$
\underset{\rightarrow}{\lambda}={\underset{\rightarrow}{\lambda}}_{0}+\dot{\lambda}_{0}^{\dot{0}}\left[t-t_{0}\right]+\dot{\lambda}_{0}^{\bullet}\left[t-t_{0}\right]^{2} / 2
$$

Compute Desired Roll
and Pitch Axes

$$
\begin{aligned}
& \hat{\mathrm{p}}=\lambda / \lambda \\
& \hat{\hat{q}}=\overrightarrow{\lambda \times r}
\end{aligned}
$$

Return to Calling Routine

Table III- 1

OP-EX GUIDANCE MATH FLOW SYMBOL TABLE

$\mathrm{C}(\mathrm{m})$	Effective exhaust velocity of stage m
e	Eccentricity of specified orbit (option dependent)
$\xrightarrow{\text { g }}$ 1 ${ }^{\text {g }}$	Gravitational acceleration at beginning and end of trajectory integration step
Go	Gravity gradient matrix at ${ }_{\text {o }}$
G	Gravity gradient matrix during integration
i	Initial stage index
I_{1}, \ldots, I_{6}	Thrust integrals used during integration step
j	Newton-Raphson iteration count
J	Jacobian matrix of sensitivity coefficients
$\underset{\rightarrow}{\mathrm{J}}$	nth column of Jacobian matrix
K	Newton-Raphson convergence control coefficient
$M_{0}(\mathrm{~m})$	Nominal initial mass of stage m
$\mathrm{M}^{\prime}{ }_{0}(\mathrm{~m})$	Estimated present mass of stage m
$\dot{M}(\mathrm{~m})$	Nominal mass flow rate of stage m
$\dot{M}^{\prime}(\mathrm{m})$	Estimated mass flow rate of stage m
M_{f}	Nominal fuel mass in present stage
m	Present stage index
n	Final stage index
\underline{n}	Unit vector normal to specified orbital plane (option dependent)

Table III-1. OP-EX Guidance Math Flow Symbol Table (continued)

$\xrightarrow{\hat{p}}$
P
P_{L}
$\mathrm{P}_{\text {min }}$
$\underline{\text { q. }}$
$\xrightarrow{\text { r }}$
$G \xrightarrow{\text { r }}$
$\mathrm{T} \xrightarrow{\text { r }}$
$\stackrel{r}{\mathrm{C}} \mathrm{CO}$
$\xrightarrow{r} i$
$\xrightarrow{r} \mathrm{p}$
s
t
t_{0}
t_{co}
$t_{\text {coL }}$
$t_{d}(\mathrm{~m})$
$\mathrm{t}^{\prime} \mathrm{d}^{(m)}$
$t_{f}(\mathrm{~m})$
${ }_{\text {t }}^{\text {g }}$
t_{i}

Unit vector along desired body-fixed roll axis
Present value of performance indicator
Last value of performance indicator
Required value of performance indicator for successful convergence

Unit vector along desired body-fixed pitch axis
Position vector at ${ }_{\mathrm{o}}^{\mathrm{o}}$

Gravitational acceleration contribution to position vector

Thrust acceleration contribution to position vector
Position vector at $t_{\text {co }}$
Position vector at intercept or rendezvous (option dependent)
Specified perigee position vector (option dependent)
Semilatus rectum of specified orbit (option dependent)
Present time
Time at start of trajectory generation
Present predicted time of thrust termination
Last predicted time of thrust termination
Nominal burning time of stage m
Estimated remaining burning time of stage m
Estimated time at end of stage m
Time of last guidance iteration
Time of intercept or rendezvous (optior dependent)

Table III-1. OP-EX Guidance Math Flow Symbol
Table (continued)

${ }^{t}{ }_{m}$	Time at midpoint of trajectory integration step
$t_{\text {po }}$	Time at beginning of present stage
t^{\prime}	Running time during trajectory integration
$\stackrel{\mathrm{u}}{\mathrm{u}}^{(}$	Steering vector at t_{0}
${\underset{\rightarrow}{\underline{u}}}_{1}, \hat{u}_{m}, \hat{u}_{-2}$	Steering vectors at beginning, midpoint and end of trajectory integration step
$\stackrel{\square}{\square}$	Velocity vector at t_{0}
$\mathrm{G}^{\text {V }}$	Gravitational acceleration contribution to velocity vector
T^{V}	Thrust acceleration contribution to velocity vector
$\stackrel{\square}{\square}$	Velocity vector at $\mathrm{t}_{\text {co }}$
$\mathrm{v}_{\text {- }}+$	Target velocity at rendenzvous (option dependent)
$\stackrel{\mathrm{v}}{\mathrm{i}} \mathrm{i}$	Interceptor velocity at intercept (option dependent)
$\stackrel{\mathrm{v}}{\square}$	Specified perigee velocity vector (option dependent)
$\xrightarrow{\square}$	Required velocity (option dependent)
${ }_{-}^{\mathrm{v}}$ m	Present velocity meter output
${ }_{-m L}$	Last velocity meter output
W_{k}	Weighting factors for performance indicator computation
$\xrightarrow{\boldsymbol{a}}, \underset{\sim}{\beta}$	Coefficients of parabolic approximation of steering vector over one trajectory integration step
$\delta t_{c o}$	Correction to estimated time of thrust termination
$\delta \lambda_{0}$	Correction to estimated initial primer vector

Table III-1. OP-EX Guidance Math Flow Symbol Table (continued)

Δt^{\prime}	Trajectory integration time step
$\Delta t_{\max }$	Maximum trajectory integration time step
$\Delta t_{c o}$	Perturbation value for $\mathrm{t}_{\text {co }}$
$\Delta \mathrm{V}$	Velocity meter increment added since last guidance iteration
$\Delta \lambda_{0}$	Perturbation value for components of λ_{0}
$\underset{\sim}{\epsilon_{0}}$	Error quantities for unperturbed trajectory
$\underline{\square}$	Error quantities for perturbed trajectories
θ	True anomaly in specified orbitai plane (option dependent)
$\underset{\rightarrow}{\lambda}$	Estimated primer vector at t_{0}
$\underset{\rightarrow}{\lambda}$	Primer vector at t co
$\underset{\rightarrow 0 L}{ }$	Last estimated primer vector at t_{0}
$\underset{\rightarrow}{\lambda}$	Primer vector at midpoint of trajectory integration step
μ	Gravitational coefficient of spherical Earth modef
p	"defined by equation"
τ	"defined by equation"
$\Phi\left(t_{i}, t_{f}\right)$	$\begin{aligned} & \text { State transition matrix relating state at } t_{f} \text { to state at } t_{i} \\ & \text { (option dependent) } \end{aligned}$
Φ_{nm}	Three-by-three partition of state transaction matrix (option dependent)

REFERENCES

1. Brown, K. R., and Johnson, G. W., "Rapid Computation of Optimal Trajectories", IBM Report 66-220-0002; November 1966.
2. Battin, Richard H., Astronautical Guidance, McGraw-Hill Book Company, New York, l964, pp. 80-82.
3. Lion, P. M., and Handelsman, M., "The Printer Vector on FixedTirne Impulsive Trajectories", AIAA Paper 67-54, January 1967.

Appendix IV

DIRECT SEARCH OPTIMIZATION PROGRAM "DSOP"

1.

INTRODUCTION
A FORTRAN IV program named DSOP (Direct Search Optimization Program) has been developed for the experimental study of optimization algorithms and their application to mission planning in the QRGT study. DSOF finds a local minimum of any given function of a set of independent variables, subject to a given set of constraints. Explicit constraints (bounds on the independent variables) are handled directiy. More general constraints are treated by the penalty-function method,

As the name implies, the optimization algorithms of DSOP are of the "direct search" type; that is, they make no use of analytical derivatives. A test problem (or any problem to which DSOP is applied) is therefore completely defined by equations for evaluating the function to be minimized and the constraint functions (if any). No equations for partial derivatives of these functions are required. This characteristic is highly desirable in an optimizer designed for use on-board a spacecraft, since it greatly reduces the number of routines that must be provided if there are a large number of different optimization problems which may require solution. Also, it makes the optimizer applicable to problems where analytic derivatives would be difficult or expensive to generate, and improves flexibility by simplifying the specification of new problems for optimization and the modification of existing ones to accommodate changes in mission objectives and/or constraints, etc.

DSOP consists of a main program and ten subroutines. This structure facilitates experimentation since the interconnection of the subroutines can easily be changed. The structure of MAIN is described in Paragraph 2.

The two principal search methods used are PMS (Pattern Move Search) and VA04A (Powell's method). PMS is a modification of the direct search technique developed by Hook and Jeeves (Ref. 1). VA04A is described in Powell's 1964 paper (Ref. 2). PMS, VA04A, and the other search methods used are described in Paragraphs 3 and 4 of this Appendix.

Results of this optimization experiments on test functions are presented in Paragraph 5. For the experiments without constraints, Powell's method (VA04A) gave the best performance. Experiments using penalty functions to enforce constraints were successful with PMS, but relatively unsuccessful with VA04A. The reasons for this are not fully understood at present.

This report emphasizes:
a) How to use DSOP
b) Block diagrams and listings for better under starding of DSOP so that future improvements can be easily implemented
c) Results obtained on certain test problems

The following paragraphs discuss the above mentioned iterns in more detail. The 7094 FORTRAN IV program listings are given in Faragraph 6. A list of references, with emphasis on those used in the work in this report, is given in Paragraph 7. For theoretical background, the reader is referred to these references. Many further references on direct seaich techniques are given in the referenced papers.
2.

MAIN PROGRAM
The primary functions performed in the MAIN program are:
a) Input-Output
b) Selection of Type of Search
c) Pattern Search Logic
d) Penalty Function Cycling

A block diagram of the MAIN program is shown in Figure IV-1. Table IV-1 is a General Symbol Table which explains the most used symbols. Table IV-2 contains the symbols used in VA04A and such key symbols as U, P etc. The underlined symbols are vectors, each with the dimension N, where N is the number of independent variables.

The first operation performed by MAIN is initialization and card reading. The formats for the input cards can be obtained from the listing in Paragraph 6.

Figure IV -l Block Diagram of Main Program for DSOP

GENERAL SYMBOL TABLE

Table IV-1

FORTRAN Symbol	Programs Where Used	Definition
BIAS	MAIN	Controls minute improvement exit test.
BVA	UNIVAR, EXPLOR	Input specifying if \mathbb{U} components are to be fixed or varied.
BVB	UNIVAR	Records which \mathbb{U} components are at bounds.
BVBS	MAIN	Storage vector fri BVB.
DELE	OBJECT	Intermediate quantity used in PFV.
IFIN	MAIN	Counter used in minute improvement exit test.
IPENF	MAIN	Penalty function cycle counter.
IPENFK	MAIN	Number of penalty function cycles to be tried.
K1	EXPLOR	STF Parameter. $1 / 2 \mathrm{~N} \leq \mathrm{Kl} \leq 1 / \mathrm{N}$.
K2	EXPLOR	STE Parameter.
K3	EXPLOR	Success STE Parameter K3 > 1.
K4	EXPLOR	Parameter controlling interpolatory step.
K5	MAIN	Parameter controlling Pattern Move step size.
Kll	UNIVAR	STE Parameter.
LCCONV	SUCCES, MAIN	Specifies state of convergence for last iteration.
LCPF	VA04A	Controls retaining W for multiple cycles.
LCl	SUCCES, MAIN	Controls exit on failure to reduce P.

Table IV-1. General Symbol Table (continued)

FORTRAN Symbol	Programs Where Used	Definition
LC3	SUCCES, EXPLOR, UNIVAR	Controls exit for converged.
LC4	MAIN	Type of basic search.
LC5	OBJECT	Selects an objective function.
LC6	MAIN	Selects UNIVAR or EMR for Pattern Move.
LC7	MIAIN	Selects plotting for Pattern Move.
LC8	UNIVAR	Selects New Block Search.
LCll		Not used.
LC 12	UNIVAR	Controls entry to quadratic fit.
LC14	OBJECT	Controls initialization for orbit transfer O.F.
LCl5	OBJECT	Controls printout of objective function title.
LCl7	OBJECT	Controls initialization for Test Problem \#1.
MINC	UNIVAR, EXPLOR, VA04A	Minimum magnitude for stepsize in the \underline{U} coordinates. (Also see Table 2).
NPT	SUCCES	Counter for points to be plotted.
OCOUNT	OBJECT	Objective function evaluation count.
OFV	OBJECT	Objective function value using penalty functions.
PA, PB	UNIVAR, EXPLOR, MAIN, NEWB	Remembered past values oi P.

Table IV-1 General Symbol Table (continued)

FORTRAN Symbol	Programs Where Used	Definition
PC	ONEDS	Remembered past value of P.
PE	MAIN	Remembered value of PA for Pattern Move.
PF	ONEDS	Final iteration value for P.
PFV	OBJECT	Penalty function value.
PT	EXPLOR, UNIVAR, NEWB	Remembered past value of P.
PFCON	OBJECT	Penalty function parameter.
STE	EXPLOR	Vector used in generating "steps" which change \underline{U}.
STF	EXPLOR, NEWB	Vector used in generating interpolatory step.
STG	NEWB	. 5 (UA - UB) calculation for STF.
SUM	EXPLOR	Used in interpolatory step decision.
UA	EXPLOR, ONEDS, MAIN, NEWB	The "advance-point" - the best point found to date during the current exploration.
UB	EXPLOR, ONEDS, MAIN, NEWB	"Base point" (from which) exploratory moves begin.
UE	MAIN	Remembered values of UA in pattern search.
UF	ONEDS	Final iteration values for UA.

Table IV-1 General Symbol Table (continued)

FORTRAN	Programs	
Symbol	Where Used	Definition
UT	NEWB	Used for UB storage.
UMAX	UNIVAR	Input upper bounds for \underline{U} components.
UMIN	UNIVAR	Input lower bounds for \underline{U} components.
XCOUNT	MAIN	Counter for number of UNIVAR or EMR iterations.

Table IV - 2

SYMBOL TABLE FOR VA04A

FORTRAN Symbol	$\text { Symbol }_{\text {Math }}^{\text {Symben }}$	Definition	Statement Sequence Numbers Where Set in VA04A Listing
A		Intermediate qty. used in D \& DD	111
AAA		Convergence Control Parameter	187, 192, 200, 206, 209
B		Intermediate qty. used in D \& DD	112
COUNT	MAXIT	No. of iterations allowed	Fixed, Input, 237
D	d	L.S. Increment Parameter	43, 60, 73, 108, 141, 172
DA	a	Direction Increment from DB to FA Coordinate	47, 71, 96, 100, 105, 115, 132
DACC		L.S. Parameter for Absolute Accuracy Cutoff	37
DB	b	Midpoint for Quadratic Fits	66, 69, 92, 107, 117, 134
DC	c	Direction Increment from DB to FC Coordinate	90, 100
DD	D	Change of D at current step \& 2cd derivative estimate	48, 142, 168
DDMAG		Used in DMAG Calculation	5, 84, 195, 227, 235
DDMAX		Ten Times DMAG	80, 83, 86, 103

(1) From Reference 5

Table IV-2 Symbol Table for VA04A (continued)

C

FORTRAN Symbol	Math Symbol	Definition	Statement Sequence Numbers Where Set in VA04A Listing
DI		Used in Absolute \& Relative Accuracy Tests	120, 123
DL		Last Value of D	42, 49, 102
DMAG		Maximum Allowed Step Size	38, 39
DMAX		Used in DMAG Calculation	36
ESCALE		Limits Max. Change of Variables	Fixed Input, 5, 6, 18
FA	f_{a}	P value at an end point in l.s.	46, 70, 95, 99, 104, 114, 131
FB	f_{b}	P value at midpoint in l.s.	65, 68, 91, 106, 116, 133
FC	f_{c}	P value at an end point in l.s.	89, 109
FHOLD		Value of F after N l.s. \& before s. in new direction	161
FI		Intermediate min. P setting	121, 124
FKEEP		Value of F at previous convergence, used in complex convergence procedure when ICON $=2$.	25, 224, 252
FP		Value of P at beginning of iteration	27, 248, 2.51
FPREV		Value of P at beginning of $1 . s$.	156, 157

Table IV-2 Symbol Table for VA04A (continued)

FORTRAN Symbol	Math Symbol	$\underline{\text { Definition }}$	Statement Sequence Numbers Where Set in VA04A Listing
ICON		Controls restart for accuracy test	Fixed Input, 214
IDIRN		Index for s. Direction Components in W.	34, 146, 183
ILINE		Index for s. Direction	35, 199, 197
IND		A control integer used when $I C O N=2$	11, 215, 233
INN		A control integer used when ICON $=2$	12, 217, 267
IPRINT		A parameter controlling printing	Fixed Input, 150
IS		Controls Search Mode	$\begin{aligned} & 77,79,82,136,138,162, \\ & 45 \end{aligned}$
ISGRAD		2 for 1 st iteration, 1 thereafter	23: 235
ITERC		Count of iterations	22, 236
ITONE		New direction control	26, 126, 184
IXP		$\begin{aligned} & \text { Index for } \underset{W}{W}(N+!) \\ & \text { components } \end{aligned}$	$\begin{aligned} & 29,31,163,165,186,189, \\ & 199,203,253,255 \end{aligned}$
J		Controls integration of new direction	174
JIL	m	Value of ILINE for max. SUM	158, 247, 250, 264
JJ	$\mathrm{N}^{2}+\mathrm{N}$	Index for new direction components	7
JJJ	$\mathrm{IJ}+\mathrm{N}$	$\begin{aligned} & \text { Inciex for } W(\mathrm{~W}+2) \\ & \text { components } \end{aligned}$	8,243

Table IV-2 Symbol Table for VA04A (continued)

FORTRAN Symbol	Math Symbol	Definition	Statement Sequence Numbers Where Set in VA04A Listing
K		A parameter for $D O$ loops	$\begin{aligned} & 9,19,50,53,178,185,193, \\ & 218,220,256 \end{aligned}$
MINC	E	$E(I)$ specifies required accuracy of $I^{\text {th }}$ argument	Fixed Input, 16, 205, 206
N	n	Dimensionality of space	Fixed Input
NFCC		Count of Function Evaluations	56, 225
P	$F=f(p)$	$P(U)$ - the iunction to be minimized	55, 140, 201, 225, 241
SCER		f(ESCALE) used in calculating DACC	6, 37
SUM	Δ	$\begin{aligned} & \operatorname{Max}[F P R E V-P] \\ & \operatorname{ILINE} \quad 1 \rightarrow N \end{aligned}$	28, 157
U	p	N - component argument vector	52, 144, 204, 222, 261
$\underline{W}(0)^{(2)}$		Holds direction scaling variables	18, 148, 196
$\underline{W}(\mathrm{j})^{(2)}$	$\xi 1 . . . \xi n$	N stored search directions	17, 145, 190
$\underline{W}(\mathrm{~N}+1)^{(2)}$	pn - po	U from iteration or new search direction	32, 166
$\underline{W}(N+2)^{(2)}$		Terminal point of a previous convergence when $I C O N=2$	

[^0]As shown in Figure IV-1, the program input LC4 selects the search procedure to be used. Setting LC4 $=5$ selects VA04A, LC4 $=4$ selects Accelerated Convergence, LC4 $=3$ selects PMS, LC4 $=2$ selects EXPLOR with ONEDS, and LC4 $=1$ selects EXPLOR alone. Additional options can easily be added. All of these search procedures are subroutines except PMS and Accelerated Convergence, which are built into MAIN. The operation of PMS will be explained in the next section. PMS is not a self-contained optimization algorithm; it requires an "exploratory" subroutine which performs a restricted local search about a given point. The two exploratory subroutines presently included in DSOP are EMR (Exploratory Move Routine) and UNIVAR. EMR is modeled after the exploratory subroutine used by Hook and Jeeves (Ref. 1). UNIVAR is similar to part of a published optimization algorithm called BEST UNIVAR (Ref. 3). These subroutines are described in Paragraph 4. "Acce1erated Convergence" was an experimental procedure combining a modified UNIVAR (produced by setting program input LC8 positive) with a special subroutine called NEWB. The Accelerated Convergence method, which was an attempt to incorporate part of Powell's method into UNIVAR, produced generally favorable results in experiments with test functions (see Table IV - 3 and Paragraph 5) but has been superseded by VA04A.

PMS and UNIVAR incorporate logic for enforcing upper and lower limits on each component of the argument vector. The other search algorithms do not include any provisions for constraints. However, regardless of the search algorithm selected, MAIN provides means for handling general constraints by use of penalty functions. In the penalty-function method, the objective function is modified by adding extra terms which depend on the constraints. This enables a constrained minimization problem to be solved (approximately) by a sequence of unconstrained minimizations. Each cycle of the sequence consists of an unconstrained minimization of the modified objective function, followed by an adjustment of the coefficients in the penalty terms. In the usual form of the penalty function method, these coefficients are scale factors which are increased each cycle. DSOP experiments have been made with a more sophisticated scheme, in which the penalty terms include bias

Table IV-3

TABLE OF THE NUMBER OF OBJECTIVE FUNCTION EVALUATIONS FOR SEVERAL D.S. SCHEMES AND TEST FUNCTIONS

Test Function (Starting Value)	$\begin{aligned} & \text { LC5 } \\ & \text { Value } \end{aligned}$	Point of Recording	Accelerated Convergence Test	Pattern Move		$\begin{gathered} \text { Powell's VA04A } \\ \text { ESCALE }=1000 . \\ \text { ICON }=2 \end{gathered}$	
				With New Block	WithOut New Block	$\frac{\text { MINC }}{\text { equals }}$.005	$\begin{gathered} \frac{\text { MINC }}{\text { equals }} \\ .05 \end{gathered}$
Quadratic $(0,1)$	1	$\text { N.A. }{ }^{(1)}$ C.	$\begin{array}{r} 31 . \\ 212 . \end{array}$	$\begin{array}{r} 74 . \\ 305 . \end{array}$	$\begin{aligned} & 111 . \\ & 152 . \end{aligned}$	$\begin{aligned} & 16 . \\ & 34 . \end{aligned}$	$\begin{array}{r} 5 . \\ 13 . \end{array}$
$\begin{aligned} & C U B E \\ & (0,1) \end{aligned}$	2	$\begin{aligned} & \text { N.A. } \\ & \text { C. } \end{aligned}$	$\begin{aligned} & 183 . \\ & 368 . \end{aligned}$	$\begin{aligned} & 451 . \\ & 544 . \end{aligned}$	$\begin{aligned} & 247 \\ & 247 . \end{aligned}$	$\begin{array}{r} 45 \\ 120 \end{array}$	$\begin{array}{r} 7 \\ 14 . \end{array}$
$\begin{aligned} & \text { Colville's } \\ & \text { T. P. \#4 } \\ & (-3,-1,-3,-1) \end{aligned}$	6	$\begin{aligned} & \dot{\text { N.A. }} \\ & \text { C. } \end{aligned}$			1039.	$\begin{aligned} & 814 . \\ & 944 . \end{aligned}$	$\begin{aligned} & 183 . \\ & 330 . \end{aligned}$
$\begin{aligned} & \text { Colville's } \\ & \text { T.P. \#1 } \\ & (0,0,0,0,1) \\ & 1 \text { cycle only } \end{aligned}$	7	$\begin{aligned} & \text { N. A. } \\ & \text { C. } \end{aligned}$			555.	$\begin{aligned} & 3075 . \\ & (\text { PFCON }= \\ & 1000 .) \end{aligned}$	333. ${ }^{(2)}$

N. A. - Near Answer

C. - Cutoff Point
(1) - Under . 5% error in each component (. 0005 for 0. minimum)
(2) - Objective function value close to correct value but coordinates in error (also ICON = 1).
coefficients that are adjusted each cycle, in a manner designed to give rapid convergence to the constrained minimum.

Figure IV-lshows the logic which handles penalty function cycling. Each cycle, the hopefully improved values of \underline{U} and F are stored in UB and DELE and the flow is routed to block 64 to start the next cycle. OBJECT is called again in block 43 because the last computed penalty function values may not correspond to the best obtained values of U. The input IPENFK controls the number of cycles. This automatic cycling has only been used on Test Problem \#l but it could easily be generalized for use with most objective functions with implicit constraints.

The mathematical form of the penalty function calculation for Test Problem \#l in OBJECT originally was:

$$
P=P_{o . f .}+\operatorname{PFCON} \sum_{i} f^{2}\left(E_{i}+\Delta E_{i}\right)
$$

where: $f(x)=\min (0, x)$

$$
E_{i}=\left[\sum_{j=1}^{10} a_{i j} u_{j}-b_{i}\right]
$$

$$
\Delta E_{i}=\text { ofor lst cycle }
$$

and the summation on i goes over $\mathrm{i}=3,4,5,6,9$ only since it can easily be shown that the others need not be considered. At the end of the convergence cycle, set $E_{i}=f\left(E_{i}\right)$ using the converged U values and start the next cycle. However, recent tests have indicated that only $i=5$ and 6 were active for VA04A trials on T.P. \#l, and OBJECT reflects this. Manual cycling was used with the Penalty Function Test function shown in Figure IV-6.
3.

PATTERN MOVE SEARCH (PMS)
The basic logic of Pattern Move Search is shown in Figure IV - 2, and its detailed logic shown in Figure IV-1. The program makes use of an exploratory subroutine, which operates in two different modes. The exploratory subroutine starts at a given base point UB, and makes exploratory moves, aczording to built-in rules, in a search for a smaller value of P. The output of the exploratory

Figure IV -2 Basic Logic of PMS
C

subroutine is an "advance point" UA and function value $P A$, with $P A \neq P B$ if the search succeeds, and with $P A=P B, \underline{U A}=\underline{U B}$ if it fails. In "Mode Plus", the subroutine keeps trying, varying step sizes and/or other search parameters, until it either succeeds, or concludes that PMS has converged to a solution. In 'Mode Minus'", the subroutine stops after one run through its exploration sequence, regardless of success or failure.

Pattern Move Search proceeds by generating a sequence of accepted base points, each of which gives a lower function value than the previous one. A "pattern move" generates a tentative new base point by displacing the newest accepted base point by a vector equal to (or proportional to) the difference between the newest and next-newest accepted base points. The tentative new base point is improved by use of the exploratory subroutine (in "Mode Minus") and the result tested to see if it is an improvement. If so, it becomes the newest accepted base point, and the cycle repeats. If it is not an improvement, i.e., if the pattern move (together with its associated local exploration) is a failure, the program returns to the newest accepted base point (UE) and executes the exploratory subroutine in "Mode Plus". If this fails, the search ends. If it succeeds, the output and input of the subroutine become the newest and nextnewest accepted base points respectively.

A special merit of Pattern Move Search is that the tentative new base point generated by a pattern move is not tested for success until after an attempt has been made to improve it by a local exploration. This means that Pattern Move Search can follow a curving valley; even if a pattern move misses the valley floor and hence gives a high function value, the subsequent explc=ation sequence may find the valley again, so the over-all move is a success. Search programs which always reject points that do not show an immediate improvement will sometimes be much less efficient than Pattern Miove Search. (Sometimes they may be more efficient; persistence is not always a virtue.)

Most of the logic in. Figure IV-1 can be understood from the previous discussion, and comparing with Figure IV-2. FORTRAN reference numbers to the left of the blocks are used in the following discussion. LCCONV is a branching control quantity set by the exploratory subroutine in subroutine

SUCCES, and subsequently tested by PMS to decide whether to continue or to terminate the search. Another possible termination of the search is by the Minute Improvement Test, which counts the number of consecutive iterations that have failed to improve the function value by amounts above a given threshold, named BIAS. A third mode of termination occurs if the number of exploratory moves, XCOUNT, exceeds a given limit, COUNT.

Block 17 is initialization. Block 27 saves the newest accepted base point (labeling it UE) and performs a pattern move. The coefficient K_{5} in Block 27 is currently set at $K_{5}=2$. By choosing K_{5} greater than 2, the lengths of a sequence of pattern moves can be made to grow more rapidly, but with increased probability of failure. Block 22 restores the saved base point after failure of the pattern move. The vector BVB, which remembers which components of the argument vector are at their bounds (and hence requires different treatment in the exploratory subroutine) is saved and restored along with UE. The operation denoted by BOUND U, in Blocks 55 and 27, is a subroutine that examines each component of U to see if it exceeds the prescribed upper or lower bound. If so, $\underline{U}(I)$ is set equal to whichever bound was violated, and BVB is changed accordingly.

Pattern Move Search provides a very general framework into which almost any type of optimization algorithm can be fitted as an exploratory subroutine, with minimal changes in PMS itself. For example, if it should be decided to modify the optimizer so it can handle general sets of equality and/or inequality constraints, this could be done by developing a new exploratory subroutine with the Cesired capabilities. The only changes required in PMS itself would be (a) replacing BOUNDU with a more elaborate operation which enforces, or approximately enforces, all active constraints, by projecting the search point onto constraint surfaces, and (b) saving and restoring information that remembers which constraints are active; this requires an extension of the BVB vector.

The PMS program and its associated subroutines were first designed for minimization without constraints, and modified until they accomplished this reliably and moderately efficiently on a set of test problems.

From these experiments, UNIVAR appeared to be a better "valley-follower" than EMR and was therefore selected for further development. PMS and UNIVAR were modified to provide for the enforcement of specified upper and lower bounds for each component of the argument vector. Also, PMS was modified to incorporate an improved stopping rule (the "Minute Improvement Test'). EMR was not modified, but EMR and the original version of UNIVAR are still usable for problems where argument bounds are absent, or do not affect the solution.

4.

SUBROUTINES

The ten subroutines and their interrelationships are indicated in Figure IV-3. The arrows indicate which subroutines are called by each individual subroutine. The subroutines are diviced into two groups: the primary search techniques, and accessory subroutines which accomplish smaller tasks. The subroutine OBJECT evaluates the objective function, and therefore is used by all the search programs. Block diagrams of the key subroutines are included in Figures IV-4. IV-5 and IV-7.
4.1 VA04A (POWELL'S METHOD)

Powell's method is what is known as a "conjugate direction" method. It proceeds by a sequence of one-dimensional searches. The search directions are chosen in a manner which will find the exact minimum of a quadratic function of n variables with continuous second derivatives, in a finite number of steps. For functions which are not quadratic, but can be approximated by quadratic functions in the neighborhood of the minimum, rapid convergence may be expected. VA04A has no provisions for handling constraints except by penalty functions.

A detailed flow diagram of VA04A; as defined by Powell's unpublished program listing (Ref. 4) is given in Figure IV-4. The principal symbols are listed in Table IV-2. To understand the program logic, which is fairly complex, Figure IV - 4 and Table IV-2 should be studied together with Powell's paper (Ref. 2) which explains the principles behind his program. The basic operating cycle of VA04A has been concisely described in a review paper by Fletcher (Ref. 5) who presents it in pseudo - ALGOL notation as:

```
y: = x;
for i: = l step l until N do MIN(i);
```

Primary
Search

Figure IV-3 Interconnection of Subroutines

Figure IV-5 Block Diagram of UNIVAR Subroutine

FUNCTION	$\begin{gathered} \text { LC5 } \\ \text { SETTING } \end{gathered}$	TEST OBJECTIVE FUNCTION P
Quadratic	1	$\mathrm{u}_{1}^{2}+50 \cdot-u_{2}^{2}$
Cube	2	100. $\left(u_{2}-u_{1}{ }^{3}\right)^{2}+\left(1 . m u_{1}{ }^{2}\right)+10 \cdot * u_{3}{ }^{2}$
Orbit Transfer	3	Lerigthy Evaluation
Sharp Valley	4	$\left(1 .-u_{1}^{2}\right)+100 \cdot\left\|u_{2}-u_{1}{ }^{3}\right\|$
Penalty Function Test	5	$F(u)+A \cdot G(u)+B \cdot G(u)^{2}$
Colville's Test	6	100. $\left(u_{2}-u_{1}^{2}\right)^{2}+\left(1 .-u_{1}\right)^{2}+90 \cdot\left(u_{4}-u_{3}^{2}\right)^{2}+$
Problem \#4		$\left(1 .-u_{3}\right)^{2}+10.1\left(u_{2}-1\right)^{2}+\left[\left(u_{4}-1\right)^{2}\right]+$
	7	$19.8\left(u_{2}-1\right)\left(u_{4}-1\right)$
		$\sum_{j=1}^{5} e_{j} u_{j}+\sum_{j=1}^{5} \sum_{j=1}^{5} c_{i j} u_{i} u_{j}+\sum_{j=1}^{5} d_{j} u^{3}{ }_{j}$
Problem \#1		And constraints are present.

Figure IV-6 Available Test Functicns in Subroutine "Object"

Figure IV-7 Block Diagram Sor Subroutine Success

$$
\begin{aligned}
& \text { for } i:=1 \text { step } 1 \text { until } N-1 \text { do } p_{i}:=p_{i}+1 ; \\
& p_{N}:=y=x ; \operatorname{MIN}(N) .
\end{aligned}
$$

where x is an N-component argument vector (equivalent to the \underline{U} of our notation), y is the value x had at the beginning of the cycle, and $\operatorname{MIN}(i)$ is a subroutine which performs a one-dimensional minimizing search parallel to p_{i}, starting from the best point found previously. The vectors p_{i} are originally chosen to be parallel to the coordinate directions. The routine performs a linear search parallel to each p_{i} in sequence. The net resulting change in x defines a new p-vector, and all the p-vectors shift down in the list, the oldest (the previous p_{i}) being discarded.

Powell's actual procedure is somewhat more complex than this. It is evident that if his set of vectors p_{i} ever become linearly dependent, his search process becomes trapped on a hyperplane and will never find the solution if it is not on this plane. T'o avoid this, he does not always discard the oldest vector; another vector, chosen by a rather complex set of rules, is sometimes discarded instead. Also, the newly generated direction is not always accepted.

Poweli's program performs $\mathrm{N}+1$ one-dimensional searches per iteration, each search requiring at least two new function evaluations. It will find the exact minimum of a quadratic function in N iterations, requiring a total of $N^{2}+N$ linear searches. For non-quadratic functions, the exact answer is generally not found, and more than N iterations will usually be required to obtain the accuracy desired. The convergence is ultimately quadratic. That is, if the function to be minimized behaves like a quadratic function in the neighborhood of the optimum, then if the search point is sufficiently close to the solution and at least N cycles have occurred, each subsequent iteration will double the number of significant figures. The number of linear searches required for minimizing a quadratic function could be halved by a slight change in the program logic, but this change would not double the program's efficiency for minimizing non-quadratic functions; at most, it might save half of the first $N^{2}+N$ searches that would otherwise beperformed, but subsequent operation would not be improved.

The version of VA04A used in DSOP differs from Powell's original program by two small changes. The first of these changes eliminates a difficulty that would otherwise occur in unusual conditions: The zero output of the branch on FP-P, at Block 96, is now treated like a negative output (GO to 37). This change prevents a division by zero which would otherwise cause the program to fail. The second change was introduced to facilitate the efficient use of VA04A with penalty-function cycling. It provides an option of bypassing Powell's initialization, so search directions and scaling are preserved from the last use of the VA04A routine.

4.2 UNIVAR

The subroutine UNIVAR exists in two versions: an original version which has no provision for bounds on the argument variables, and a revised version that incorporates such bounds. Fither version works with PNiS, but only the revised version, whose flow diagram is shown in Figure IV -5, is included here.

The original UNIVAR proceeds by making a sequence of one-dimensional searches, each parallel to a coordinate direction, until all directions have been tried except those for which BVA(I) $=0$. Each one-dimensional search begins from the best point found by the previous search. The logic for a one-dimensional search is as follows:

Step in the stored direction (and by the stored amount; both are defined by a component of the step vector STE). If this succeeds, increase step size and repeat. If it fails, reverse direction and go the other way. Proceed until the minimum along the search direction has been bracketed, i.e., until a set of three points has been found with the smallest function-value in the middle. This occurs when a success is followed by a failure, or when the first step fails and is immediately followed by a second failure when the reverse direction is tried. Fit a quadratic function to the values found at these three points, and try the point where this quadratic is minimal. The search result is either this new point or the previous middle point, whichever has the least function-value. The step size is reduced to cancel the last increase and is
further reduced by an extra factor of one-half if the last trial (from the quadratic fit) is not a success. However, step size is not allowed to go below a prescribed minimum size.

This one-dimensional search procedure is known to be inefficient, since it requires a minimum of three new function evaluations per direction, whereas Powell's one-dimensional search procedure (based on remernbering and updating an estimate of the second derivative) reduces the minimum to two. Adopting Powell's rules for one-dimensional searches might reduce the number of function evaluations for each execution of UNIVAR by as much as 33%. The average reduction would be less than this, but still significant. This improvement has not been incorporated because other developments have had higher priority.

The revised UNIVAR is the same as the original UNIVAR except for extra logic to handle upper and lower bounds on the independent variables. The binary-valued vector BVB keeps track of which variables are at their bounds. If $\mathrm{BVB}(\mathrm{I})=0$, indicating that the Ith coordinate is in the interior of its allowed range, the search along the Ith direction is the same as in the original UNIVAR, unless a tentative step reaches or exceeds a boundary. In this case, a step to the boundary is tried instead. If this step fails, the search along the Ith direction will end at an interior point. If it succeeds, BVB(I) is set to $1, \operatorname{STE}(\mathrm{I})$ is set to call for a small step (4 times the minimum size) away from the boundary, and the routine goes on to the next direction.

If $\operatorname{BVB}(\mathrm{I})=1$, indicating that the Ith variable is at a boundary, this coordinate is left unaltered unless $L C I=+$, in which case a step away from the boundary is attempted. If this succeeds, $B V B(I)$ is set to 0 and the search proceeds as from an interior point. If it fails, step size is reduced to half its previous magnitude, or to the minimum magnitude allowed, whichever is greater.

The motivation for restricting attempted moves away from a boundary to cases when LCI $=+$ (i.e., to times when the pattern-move sequence is being started for the first time, or is being restarted from an old base point after failure of a pattern move) is to educe the number of unsuccessful attempts to move away from the boundary that would otherwise occur if the true final
solutions call for one or more variables to be at their bounds. Since search termination on stepsizeis permitted only when LCl = + , the program cannot exit on step size without having tried moves away from all boundaries. It can "exit on test" if there is a prolonged sequence of pattern moves which are all successful but give very small improvement, but this is highly unlikely; in general, one of the pattern moves will fail, and the next execution of UNIVAR will attempt moves away from the boundaries.

4.3

EXPLOR

This was the first "exploratory" program tried with the Pattern Move Search. Its principles are describedin Reference l. No exercisedconstraints are allowed. Test runs generally indicated EXPLOR was inferior to UNIVAR (see Paragraph 5 of this Appendix). The EXPLOR listing in Paragraph 6 can be used to follow the discussion below.

Components of the argument vector \underline{U} for which $\operatorname{BVA}(\mathrm{I})=0$ are treated as constant constraints; other components of \underline{U} are varied systematically in a search for a local minimum. For each value of I for which $B V A(I)=1$, the routine tentatively changes $U(I)$ in one direction and then (if this fails to reduce the function value) in the opposite direction. The direction tried first is determined by the sign of STE(I), and the magnitude of this quantity determines the step size. If either change succeeds, the value of PA (which is the best value of P found so far) is updated, and the search proceeds from the altered argument vector, by considering the next value of I. If both directions of change along the Ith coordinate axis are unsuccessful, no change is made in U(I), and the routine moves on to the next value of I after saving some auxiliary information.

When all variable components of $U(I)$ have been treated as described above, the routine decides whether to accept the result, or try one additional "interpolatory" step, whose components are given by a vector STF. The value of $\operatorname{STF}(\mathrm{I})$ is zero for any value of I for which $B V A(I)=0$ or for which either of the steps \pm STE(I) succeeded. For the remaining cases (i.e., BVA(I) $=1$, and \pm STE(I) both unsuccessful), STF(I) is computed by considering the location of
the minimum of a quadratic function fitted to the function values found at the three points $U(I)$ and $U(I) \pm S T E(I)$, with all other components of \underline{U} fixed. If K_{I} were chosen to be $1 / 2$, and no other coordinates were involved, STF(I) would give a move to this minimum. A value of K_{1} less than $1 / 2$ is appropriate in multidimensional cases. If $P(\underline{U})$ is a quadratic function, and if all coordinate steps have failed, it can be shown that the interpolatory step always succeeds if $K_{1}<1 / N$, and is always too short (undershoots the minimum) if $K_{1}<1 / 2 N$. Therefore, K_{1} should be between $1 / \mathrm{N}$ and $1 / 2 \mathrm{~N}$.

The decision to try the interpolatory step, or not try it, is made by comparing the total function reduction obtained by steps \pm STE(I) with the expected further reduction obtainable by the interpolatory step. This expected reduction is proportional to SUM, if interaction between coordinates is ignored. A coefficient K_{4} is provided which can be adjusted to bias the decision. If $K_{4} \leq 0$, the interpoiatory step is never tried unless all the steps \pm STE(I) failed. If K_{4} is made very large, the interpolatory step will always be tried.

The step vector STE is updated during the routine, to provide a favorable step for next time. If step $\operatorname{STE}(\mathrm{I})$ is successful, the new $\operatorname{STE}(\mathrm{I})$ is larger ($\mathrm{K}_{3}>1$). If $\operatorname{STE}(\mathrm{I})$ fails but the reverse step succeeds, $\mathrm{STE}(\mathrm{I})$ reverses sign but does not change magnitude. If both steps \pm STE(I) were unsuccessful the new STE(I) has its sign determined by comparison of the two unsuccessful trials.

An input option (LCl) is tested in SUCCES to allow the routine to exit on failure to reduce the function, or try again with reduced step sizes until either success is attained, or the step sizes are reduced to the allowed minimums given by MINC.

The performance of EMR could probably be improved significantly by adding a one-dimensional search along the direction defined by STE, i.e., parallel to the "interpolatory move." However, this experiment has not been tried.
4.4 $\quad \frac{\text { ONEDS }}{\text { This is simply a one-dimensional search program which is used by }}$

New Block and with a search variation with EXPLOR in the MAIN program.

4.5

OBJECT

This program computes a single number which corresponds to the value of the objective function. The inputs are essentially just the independent variables U. Seven different test functions (see Figure IV - 6) have been used in the experimental tests of the optimization aigorithms. The selection is controlled by the input integer LC5. The two dimensional version of CUBE was taken from Reference 3; Colville's test problems came from Reference 6; the orbit transfer problem came from Reference 7.

Additional functions can be readily added to OBJECT by using new LC7 branches. Also, any available function-evaluation program can be substituted for OBJECT by appropriately renaming variables and adding COMMON statements.

$4.6 \quad \underline{N E W B}$

NEWB (New Block) uses some of Poweli's basic ideas to accelerate convergence. As is shown in Table IV -3, it nas been used both with the separate accelerated convergence test and in UNIVAR with PMS.

4.7 SUCCES

This program is used by UNIVAR and EXPLOR after every iteration to test the condition of the search and set LCCONV accordingly. LCCONV is then tested in the PMS in the MAIN program. Also the iteration counter, XCOUNT, is updated and information for plotting is stored. See Figure IV-7 for the Block Diagram.
4.8 SETQ

SETQ performs some simple necessary settings for UA, UB, PA and $P B$.
4.9 BOUNDU

This program limits all components of \underline{U} to their bounds, called UMAX and UMIN. These quantities must be inputted on cards (or by modification through COMMON). BOUNDU is cailed exclusively from MAIN, initially and in PMS, Similar operations are also performed in UNIVAR.

Table IV-4
A. R. COLVILLE'S FORMAT FOR

TEST PROBLEMS \# 1 AND \# 4

Test Search Method	MINC	OBJ, Function Value	Prep. Time Guess (Hrs.)	Execute Time (Sec.)	 Constr. Calcs.	Std. (2) Time Ratio
Test Problem \#4 Powell (ICON = 2)	$.05^{(1)}$	0.	.5	1.3167	330.	.0196
Test Problem \#4 Pattern with UNIVAR (ICON =2)	.005	0.	.5	3.667	1235.	.0545
Test Problem \#1 Powell (l cycle) (ICON = l)	$.05^{(1)}$	-32.38	1.	2.450	333.	.0364

1 MINC $=.05$ for Powell is equivalent to .005 for Pattern Move since Poweil tests for . 1 (MINC = E)
27094 Standard Time $=67.2 \mathrm{sec}$.

Table IV-5

- ACCURACY AND TIMING COMPARISONS BETWEEN UNIVAR AND EXPLOR WITH PMS

Test Problem $=$ CUBE
Starting Conditions

Running Time (sec.)

Case $1(0,0,0)$
2.583
2.317

Case 2 ($10,0,0)$
1.683
2.466

PLOTOP
UA, UB, PA and PB from UNIVAR and EMR can be plotted as functions of XCOUNT by setting LC7+. The necessary storage of quantities is done in SUCCES.
5.

COMPARATIVE TABLES
Four of the test functions shown in Figure IV-6 were used with various search methods to determine the number of objective functional evaluations required since this factor is important for problems with the complicated objective functions expected to be encountered in the QRGTS. Observations from the results shown in Table IV-3 include:

1) Powell's method was superior in almost all unconstrained cases, as was expected from a review of References 2 and 8.
2) Accelerated Convergence approached the minimum faster than PMS but PMS terminated sooner.
3). PMS with New Block was generally worse than without it.
3) Powell's rate of convergence is definitely a function of the MINC and ESCALE settings. It appears that MINC in addition to ESCALE should be set to reasonably high values.
4) PMS was generally better than VA04A on Colville's Test Problem \#1 (a problem with constraints) since VA04A failed for MINC $=0.5$ and $\operatorname{ICON}=2$ and had an excessive number of evaluations for $\mathrm{MINC}=.005$.
Table IV-4 is included so Standard Time Ratios of several of the runs in Table IV - 3 can be compared with the results in Colville's Nonlinear Programming Study summary. All three rank in the top half of his listings with . 0196 ranking 5 th out of 24 methods. The Standard Time Ratio is an index developed by Colville (Ref. 6) to compare optimizer efficiencies independently of computer speeds.

Table IV-5 is comparisons between UNIVAR and EMR when used with PMS on CUBE. These results, along with anoiner run not shown, were the determining factors in the decision to further develop UNIVAR rather than

EMR. For CUBE, EMR has lower OCOUNTS but has a U(2) error of 2% in Case 1 , and its running time is longer on the average.
B
6. FORTRAN IV LISTINGS
MAINOP

- EfN SOURCE STATEMENT - IfN(S)
C BOB COFER 3/72/67
C MAIN PROGRAM FOR DSOP
DIMENSINN UE(1C), BVBS(20!
COMACN N,UN(10), UB(10),PA,PG,U(10), P,PF,UF(10),LC11
C
, QVA(10), K1,K2,K3,K4,COUNT,STE(10),MINC,LC1,LC3
6 ,LCCONV,XCOUNT,L,LC17,LCS,STFi20),STG(20), PFCON
COMMON /FUNCT/ LCS,LC14,OCOUNT,BIAS,NX,LC15
COMMON IUNIV/ KII, UCOUNT,UMIN(20), UMAX(20),BVB(20),ILIMI,ILIM
COMMON /VAC/ ESCALE,IPRINT,ICON,LCPF
COMMON /PLOT/ US(20,500),NPT,PAS(500i,PBS(500)
COMMCN /PENF/ EX(1C), DELE(10),Fil3), OFV,PFV
REAL MINC(10),K1,K2,K3,K4,K11,NX(10),K5
FORMAT (24:3)
FORMAT (SER.5)
FORMAT (i/(5E20.8))
FORMAT (IH ///32HO LIST CF IAPUT PARAMETER VALUES)
FORMAT (It: ///17HO TIME(SECONDS: =, 1E20.8)
FORMAT (IHI/i/43HO DIRECY SEARCH OPTIMIZATION PROGRAM (DSOFI)
FURMAT ILH //25HO LCGICAL CHCICE SETT:NGSI
FORMAT (LH /34HO LCI (NEGATIVE IS FAILURE EXIT) =, II)
FORMAT (42HO LC4 (TYPE OF EASIC SEARCH - PATTERN=3) \quad (3 , Il)
FURMAT $(39 H 0$ LC5 (SELECTS AN ORJECTIVE FUNCTION) $=, 11)$
FORMAT (45HO LCG (SELECTS UNIVAR(2) OR EMR WHEN LC4=3) $=.111$
FORHAT (IH /LILHO N UB MINC
STE BVA UMIN UMAX 1
FORMAT (7E16.8)

C = E15.8,7H K5 =E15.8/1X,8H COUNT = E15.8,7H BIAS =E15.8.7H K11
$C=E 15.8,9 H E S C A L E=E 15.8,8 H$ PFCCN =E15.8)
87 FORMAT (IH $/ 26$ HO THE INITIAL VALUE OF $P=, E 15.8$)
88 FORMAT $11 H / / / 41 H O$ BEGINNING CF DIRECT SEARCH CALCULATIONS:
89 FORMAT $133 H O$ SEARCH CONVERGED - BIAS CONTRCL)
91 FORMAT (36HO SEARCH TERMINATEO - COUNT EXCEEDED)
92 FORMAT (31HO LCT (POSITIVE FOR PLOTTING) =,I1)
93 FORMAT (32HO LC8 (POSITIVE FOR NEW BLOCK) $=11)$
94 FORMAT (33HO IPRINT (POWELL PRINT CONTROL) =,11)
95 FORMAT $(33 H 0$ ICON (POWELL RESTART CONTROL) =, I 1)
96 FORMAT (46HO IPENFK (NUMBER OF PENALTY FUNCTION CYCLES) E,I2)
11 RTIM = CLOCKF(OOQ)
XCOUNT $=0$.
LCEONV $=0$
UCOUNT $=0$
OCOUNT $=0$.
LCII = n
LC14 $=$ =
LC15 = ?
LC17 =
ILIM $=$
NPT $=r$
IPENF = 0
LCPF $=n$
READ (5,1) N,LC1,LC4,LC5,LCG,LC7,LC8,IPRINT,ICON,IPENFK
PEAD 19,21 KI,K2,K3,K4,K5 ,COUNT, B: AS,K11,ESCALE,PFCON
DO 99 I $=1, N$
99 READ(5, 2) NX(I):(JB(I),MINC(I),STE!I), BVAII),UMIN(I),UMAX:I)35

```
WRITE \((6,4)\) ..... 36
WRITE \((6,7)\) ..... 37
WRITE \((6,8)\) LCI ..... 38
WRITE (3.81) LC4 ..... 39
WRITE \((6,82)\) LC5 ..... 40
WRITE (6.83) LC6 ..... 41
WRITE (6.92) LC7 ..... 42
WRITE (5,93) LC8 ..... 43
WRITE \((6,94)\) IPRINT ..... 44
WRITE (6.95) ICON ..... 45
KRITE ( 0,96 ) IPENFK ..... 46
WRITE \((6,36)\) K1,K2,K3,K4,K5 ,COUNT, BIAS,K11,ESCALE,PFCON ..... 47
64 WRITE \((6,84)\) ..... 48
WRITE (6,85) (NX(I), UB(I), MINC(I),STEII), 8VA(I),UMIN(I),UMAX(I),
C \(i=1, N\) ) ..... 49
```NC \(* N+1\)DO \(55 \mathrm{I}=\mathrm{NC}, 10\)
```

55 U(I) $=0$.
C INITIALIZE DR
IF ILCS .EQ. 3) CALL OBJECT ..... 71
0010 I $=1, N$

```call boundu81
```

DO 9 I $=1, N$
9 UB(I) = U(I)

```CALL OBJECT91
```

$P 8=P$
WRITE $(6,88)$ ..... 93
WRITE (5.87) PB ..... 94
50 DO 51 I $=1, N$
51 STF(I) = MINC(I)
IF ILC4 .EQ. 3! GO TO 17

```IF ILCA .EQ. 4) GO TO 52IF ILCA.EO. 51 GO 1061
```

12 CALL EXPLOR
IF (LCA.EO.2) GO TO 1 ..... 15

```114
```

$\overline{P B}=P A$

```DO 13 I \(=1, N\)
```

13 UB(I) $=$ UA(I)
$14 \times$ XCOUNT $=$ XCOUNT +1 .

```IF (IXCTUUNT .GE. COUNT) .OR. (LC3 .LT. O)IGO TO \&AGO TO !?13615 CALL ONEDSSEARCH
```

$P B=P F$
DO 16 I $=1, N$
16 UB(I) = UF(I)
GO TO 14
C PATTERN SEARTH

```17 DO 18 i = \(1, N\)
```

            B
    ```
 B
 MAINOP - EFN SOURCE STATEMENT - IFN(SI -
 MAINOP - EFN SOURCE STATEMENT - IFN(SI -
 \bullet
 \bullet
 WRITE (A,6)
 WRITE (A,6)
G ONE DIMENSITNAL SEARCH
G ONE DIMENSITNAL SEARCH
 15 CALL ONEDS
 15 CALL ONEDS
 18 UE(I) = UB(I)
 18 UE(I) = UB(I)
 LC 11=0
 LC 11=0
 IFIN=n
 IFIN=n
 20 LCL = +1
```

    20 LCL = +1
    ```
B
MAINOP - EFN SOURCE STATEMENT - IFN(S) -
IF ILCE.EQ. 2) GO TO 24
CALL EXDLOR 162
GO TO 25
24 CALL UNTVAR 165
25 IF (LCCONV .EQ. 2) GO TO 43IF (LCCONV .EQ. 3) GO TO 24
C EAIT TEST FDR SUCCESSIVE TRIALS WITH MINUTE IMPROVEAENT\(L C 1=-1\)
21 IF (\((P A-P E+B I A S)\).LT. 0.\()\) iFIN \(=0\)
IF IIFIN .GE 51 GO TO 41
IFIN = IFIN + I
\(00271=1, N\)
27 BYBSII! : SVBII)
DO 19 I \(=1, N\)
19 U(I) = UEII) + K5*(UAII) - UE(II)
CALL BDUNDU 198
CALL ORJECT 20 C
DO 23 1 \(1, N\)
UE(I) = UAIII
23 :j8(1) = U(I)
\(P E=P A\)
\(P B=P\)
IF ILCG .EQ. 21 GO TO 31
CALL EXPLOR215
GO TO 37
31 CALL UNTYAR 218
32 IF (XCOUNT .GE. COUNT) SO TO 42
IF (PA.LT. PEI GO TO 21
\(P B=P F\)
\(00221=1, N\)
BVB(I) = BVBS(I)
22 UBIII \(=\)
41 WRITE \((R, 89)\) 236
60 TO 43
42 URITE \((6,91)\) 238
GO 1044
C TEST FOR PEN\<Y FUNCTION ITERATICN
43 IPENF \(=\) IPENF +1
WRITE (G,3) EX,DELE,F,OFV,PFV 241
CALL ORJECT 245
WRITE (A, 3) EX,DELE,F,OFV,PFV 246
CPF = ?
DO \(621=1,10\)
UB(I) \(=U(I)\)
62 DELE(I) \(=\) F(I)
44 RTIM2 \(=\) CLOCKF (OQQ) 262
TIME = IRTIMZ - RTIMI . . 6 WRITE (A,5) TIME 263
IF (IIPENF - IPENFK) .LT. O) GO TO 64 268
IF ILC 7
C Expertment with accelerated convergence
52 CALL UNIVAR 272
DO 53 I \(=1, N\)
UB(I) = UA(I)
8
MAINOP - EFN SOURCE STATEMENT - IFN(S)
IF ILCE .EQ. 21 GO TO 24
CALL EXOLOR162
GO TO 25
24 CALL UNIVAR 165
25 IF (LCCONY.EQ. 21 GO TO 43
IF (LCCONV .EQ. 3) GO TO 24
C EXIT TEST FDP SUCCESSIVE TRIALS HITH AINUTE IMPROVEMENT
\(L C 1=-1\)
21 IF ((PA-PE+BIAS) .LT. O.) IFIN= 0IF IIFIN .GE. 51 GO TO 41
IFIN \(=\operatorname{IFIN}+1\)
DO 27 ! = I,1\(278 \mathrm{BGS}(\mathrm{I})=8 \mathrm{BB}(\mathrm{I})\)
DO 19 I \(=1, N\)
19 U(I) \(=\) UE(i) + K5* (LA(I) - UE(i))
CALL BDUNDU 198
CALL OBJECT 20 C
DO 23 I = I,N
UE(I) = UA(I)
23 UB(I) = Ull)
\(P E=P A\)
\(P B=P\)
If ILCA.EQ. 21 GO 1031
CALL EXPLOR215
GO TO 37
31 CALL UNIVAR 218
32 IF (XCOUNT .GE. COUNT) GO TO 42IF (PA .LT. PE) GO TO 21
\(P B=P F\)
DO 22 1 = \(1, N\)
BVB(I)= BVBS(I)
22 U8(I) \(=\) UE(I)
GO TO 20
41 WRITE (R,89) 23660 TO 43
42 WRITE \((6,91)\) 238
GO 1044
C TEST FGR PENALTY FUNCTION ITERATICN
43 IPENF \(=\) IPENF +1
WRITE (B,3) EX,DELE,F,OFV,PFV 241
CALL ORJECT 245
WRITE (A, 3) EX,DELE,F,OFV,PFV \(24 t\)
LCPF =?
DO 62 1 \(=1,10\)
UB(I) \(=U(I)\)
\(\leqslant 2\) DELE(I) = FII:
44 RTIM2 \(=\) CLOCKF (QQQ) 262
TIME \(=\) (RTIMZ - RTIMI *. 6WRITE (6,5 S) TIME263
IF (IIPENF - IPENFK).LT. O) GO TO 64
IF ILC7.GT. O) CALL PLOTOP 268
GO TO 11
C Experiment hith accelerated convergence
52 CALL UNTVAR272
0053 ! = \(1, N\)
UB(I) = UA!I)

B
```

            MAINOP - EFN SOURCE STATEMENT. - IFN(S) -
    ```
 53 STF(I) \(=\) STG(I)
 \(P 8=P A\)
 IF (LLCCONV .EQ. 21 GO 1043
 GO 10 5?
C POWELL SUBRTUTINE
 61 CALL VAAAA
 GO TO 43
 END
 8
 NEWB1 - EFN SUURCE STATEMENT - IFN(S) -
C MODIFIED POWELL APPROACH H. ROEBINS, R. COFER
 SUePCUTINE NEEB
 DIMENSION UT:20)
 COMAON N,UA (10), U8(10), PA,PB, U(10), P, PF, UF(10):LC1\&
 c
 \(c\)
 -BVA(10),K1,K2, X3,K4,COUNT,STE(10), M1NC,LC1,LC3
 -LCCONY, XCOUNT, E,LC:7,LCO,STF(20),STG\{20)
 COMMON /UNI V/ KII, UCOUNT,UMIM(20), UAAX(20), BVE(20). ILIM1.ILIM
 REAL K11,MINC(10),K10K2.K3.K4
 PT \(=P B\)
 DO \(11 \quad I=1, N\)
 UT(I) = UB(I)
 \(11 \mathrm{U}(1)=\mathrm{UA}(1)+\mathrm{STF}(1)\)
 CALL OBJECT
 IF (P .GE. PA) GO TO 10
 CALL SETO
 co TO 9
 10 DO \(131=1 . \mathrm{N}\)
 13 UE(I) \(=\) U(I)
 \(P B=P\)
 9 CALL ONEDS
 \(P E=P T\)
 \(P A=P F\)
 DO \(141=1, N\)
 UB(I) \(=\) UT(I)
 14 UA(I) \(=\) UF(I)
 CALL ONEDS
 \(P A=P F\)
 DO 15 I=1,*
 UA(1) \(=\) UF(1)
 15 StG(I) \(=.5 *(L H(1)-U B(I))\)
 RETURN
 END
 B
 VAO4 - EFN SOURCE STATEMENT - IFN(S) -
 -
C BOB COFER 3/72/Ó7
C POWELL PROGRAM CONVERTED TO FORTRAN 4 WITH MINOR CHANGES FOR P.F. CYCLES
 SUBROUTINE VAO4A
 DIMENSION W(40 \(1, X(10), E(10)\)
 EQUIVALFNCE (X(1), U(1)), (E (1), MINC(1)), (F,P)
 COMMON N, UA(10), UB(10),PA,PB,U!10i, P, PF,UF(10),LC11
 C , QVA(10),K1,K2,K3,K4,COUNT,STE(10),MINC,LCI,LC3
 COMMON /VAO/ ESCALE,IPRINT,ICON:LCPF
 REAL MINC (10), K1,K2,K3,K4,K11,NK(10),K5
511 FORMAT (5E16.8)
 IF (LCDF .EQ. 2) GO TO 211
 MAXIT \(=\) COUNT
 DDMAG \(=\) O. 1 *ESCALE
 SCER \(=0\). ก5/ESCALE VA04A006
 \(J J=A \triangle N+N\) VAO4A007
 JJJ \(=\) JJ + N VAO4A008
 \(K=N+1\)
 VAC\&A009
 NFCC \(=1\)
 \(1 M D=1\)
 INA = 1
 DO \(1 \quad 1=1, N\)
 DO \(2 \mathrm{j}=1, \mathrm{~N}\)
 \(W(K)=0\).
 IF I-J)4,3,4 VA04A016
 \(3 H(K)=A B S\) IEII) VAOAAOI7
 W(I)=ESCALE VAO4AOIB
 \(4 K=K+1\)
 2 CONTINUF VAO4AO2O
 1 CONTINUE VAOAAO21
 ITERC=1
 ISGRAE=?
 GO TO 212
211 IND \(=\) ?
212 FKEEP=ABS (F)+ABS (F) VAO4A025
 5 ITONE=1 VAO4AO26
 \(\begin{array}{ll}I \text { TONE } \\ F P=f & \text { VAO4A026 } \\ V A O H A O 27\end{array}\)
 SLB \(=0\) 。
 \(\lfloor x P=\mathrm{JJ}\)
 DO \(6 I=1, N\) VAO4A030
 \(1 X_{P}=\left\{X^{p}+1\right.\)
 \(W(I X P)=X(i)\)
 6 CONTINUF VAO4AO33
 IDIRN \(=N+1\)
 ILINE =1
 VAOLAO1S
 VAOAAO21
 VA04A022
 VAO4A029
 VA04A030
 VAOHAO31
 VA04\&032
 VA04A035
 7 DMA \(X=W(I L I N E)\)
 DACC \(=\) DMA K*SCER VAO4A037
 DAAG =AMIN1 (DOMAG,0.1*DMAXI
 DRAG=AMAXI(DMAG,20.*DACC)
 DDMAX=1n.:DMAG
 VA04AC40
 CO TO \(170,70,711\), ITONE VAO4AO41
\(70 \mathrm{DL}=0\).
 \(D=D M A G\)
 FPREVAF
 \(15=5\)
 \(F A=F\)
VAO4AO42
VAO4A043
VAO4A044
VAOLAC45
VAO4A046
\begin{tabular}{|c|c|c|c|}
\hline & \begin{tabular}{l}
8 \\
VAn4 - EFN SOURCE STATEMENT
\end{tabular} & - IFN(S) - & \\
\hline & \(D A=D L\) & & VA04A047 \\
\hline 8 & \(D D=D-D L\) & & VAO4A048 \\
\hline & \(\mathrm{DL}=0\) & & VA04A049 \\
\hline 58 & \(K=I D I R N\) & & VA049.050 \\
\hline & DO S ! \(=1, N\) & & VAO4A051 \\
\hline & \(X(I)=X(I)+D D * W(K)\) & & VA04A052 \\
\hline & \(x<x+1\) & & VA04A053 \\
\hline 9 & continue & & V204A054 \\
\hline & CALL ORJECT & & VA04A055 \\
\hline & NFCC \(=\) NFT, \(\mathrm{C}+1\) & & VA04A056 \\
\hline & G0 TO (10,11,12,13,14,96), IS & & VAC4A057 \\
\hline 14 & IF(F-FA)15,16,24 & & VAO4A058 \\
\hline 16 & IF (AES(D) - DMAX) 17,17.16 & & \\
\hline 17 & \(D=D+0\) & & VA04A060 \\
\hline & GO TO: & & VAO4A061 \\
\hline 18 & WRITE (6,19) & & VAG4A0b2 \\
\hline 19 & FORMATI 5X,44HVA04A MAXIMUM CHAPSGE DOES NOT & ALTER FUNCTION) & VAO4A063 \\
\hline & GO TO 20 (\({ }^{\text {a }}\) & & V2044064 \\
\hline 15 & \(F B=F\) & & VAO4A065 \\
\hline & \(D E=0\) & & VEOLADES \\
\hline & GO TO 21 & & VA04A0S? \\
\hline 24 & FE F FA & & VAC4A058 \\
\hline & \(D 8=0 \mathrm{~A}\) & & VA04A069 \\
\hline & FAEF & & VA04A070 \\
\hline & DA \(=\) D & & VA04A071 \\
\hline 21 & GO ro (83,23).ISGRAD & & VA04A072 \\
\hline 23 & \[
D=D B+D R-D A
\] & & \\
\hline & \[
I S=1
\] & & VAOBAO74 \\
\hline & G0 TO A & & VA04A075 \\
\hline 83 & \[
D=0.5=(D A+D B-(F A-F B) /(D A-D B))
\] & & VAO4A076 \\
\hline & \[
15=4
\] & & VAO4A077 \\
\hline 25 & \(I F(10 A-D) *(0-08)) 25,8,8\)
\(I S=1\) & & VA04A079 \\
\hline & IF \(\mathrm{ABS}(\mathrm{D}-\mathrm{DB})\)-DDMAX) \(8,8,26\) & & VAO4A080 \\
\hline 26 & \(D=O B+S I T N\) (DDinax, \(08-D A)\) & & VA04A08! \\
\hline & \(15=1\) & & VA06A082 \\
\hline & DDMAX \(=\) DDAA \(X+\) DDMA \(X\) & & VA04A083 \\
\hline & DDMAG \(=\) DTMAG + DOMAG & & VAOLA084 \\
\hline & & & VA04A085 \\
\hline 27 & DOMAX \(=\) TMAX & & VA04A086 \\
\hline & Go ro & & VAO4ÂÓ 7 \\
\hline 13 & IF(F-FA)28,23,23 & & VA04A083 \\
\hline 28 & \(F C=F B\) & & VA04A089 \\
\hline & \(D C=08\) & & VA04A090 \\
\hline 29 & \(F B=F\) & & VA04A091 \\
\hline & D8 \(=0\) & & VA04A092 \\
\hline & G0 ro 30 & & VA04A093 \\
\hline 12 & IFiF-FRI2E,28,31 & & \\
\hline 31 & FAxF & & \\
\hline & \(O A=0\) & & YA042096 \\
\hline & 60 ro 9 F & & VA04A097 \\
\hline 11 & (F) \(F\)-FA) \(32,10,10\) & & \\
\hline 32 & FixF3 & & \\
\hline & DA \(\times 08\) & & VAO4A 100 \\
\hline & 60 T0 30 & & VA04A101 \\
\hline 71 & Di \(=1\). & & \\
\hline
\end{tabular}
 B
 VAn4 - EFN SOURCE STATEMENT - IFN(S) -
 DDMAX=5. VAOHA103
 \(F A=F P\) VAO4A104
 \(D A=-1\).
 FB=FHOLC VAO4A106
 VAO4A105
 \(D B=0\). VAO4A107
 \(D=1\) 。
 10. \(F C=F\)
 \(O C=0\)
 (A04A103
 VA04A110
\(30 \quad A=(D B-D C)(F A-F C)\)
 \(B=(D C-D A):(F B-F C) \quad\) VA04A112

33 FAxFB
 \(\mathrm{DA}=\mathrm{DQ} \quad\) VAOMA115
 \(F B=F C\) VAO4A116
 \(08=D C\) VAO4A117
 60 TO 76
 VA04A118
\(34 D=0.5 *(A *(D B+D C)+B *(D A+D C)) ;(A+B)\)
 \(01=D B\)
 VAOAA120
 FIEFB VAC4A121
 IFIFB-FC.)44.44.43 VAO4A122
43 DI=OC
\(F I=F C\)
VAO4A124
44 GO TO (96,86,85),!TONE
85 ITONE =?
 GO TO 45 VAO4A127
86 IF !ABS (D-DI)-DACC) \(41,41,93\)
93 IF (ABS (こ-D!)-0.03*ABS (D)) 41.41.45
45 IF (\((D A-D C)(D C-0)!4 ?, 46,46\)
\(46 \quad F A=F B\)
 \(D A=D B \quad\) VAO4A132
 FB=FC VAO4A133
 \(D B=D C \quad\) VAOAA134
 GO 10 25 VAO4A:35
\(47 \quad 15=2\)
 IF \((10 R-D)=(D-D C)) 48,8,8\) VA04A137
\(48 \quad 15=3\)
 60 ro g
VAOCA139
\(41 F=F\)
 \(D=D I-D L\) VAO4A141
 \(O D=S Q R T(10 C-D B) *(D C-D A) *(D A-D B) /(A+B))\) VAO4A142
 \(0049 I=1, N\) VAO4A143
 X(I) \(=X(\) P) \(+D\) WH(IDIRN) VAO4A144
 W(IDIRN) \(=D D *\) VIIDIRN) VAO4A145
 IDIRN=IOIRN+1 VAO4A146
49 CONTINUF
 W(ILINE)=W(ILINE)/DD VAO4A148
 ILINE=ILINE+1 YAO4A149
 IFIIPRINT-1)5i,50,51 VAO4A150
50 WR!TE(t,52)ITERC,NFCC,F,(X(I),I=1,N)
52 FQQMAT (/IX,9HITERATION,I5,I:5,16H FUNCTION VALUES,
 1 10X,3HF =,E21.14/(5E24.14))
 GO TO (51,53),IPRINT
 VA04A154
51 GO TO (55,38),ITONE
55 IF (FPREV-F-SUM) 94,95,95
95 SUM =FPREV-F
 JIL=iLINE
VA04A158

\(B\)
```

UNIVA - EFN SOURCE STATEMENT - IFN(S) -

```
```

C H. RUBEINS, R. COFER 3/22/67
SUBROUTINE UNIVAR
C BEST UNIVAR DIRECT SEARCH PROGRAM - wITH PROVISIONS FOR MIN-MAX CONSTRAINTS
COMMON N.UA(10),UB(10),PR,PE,U(10),P,PF,OUF(10),LC11
C ,BVA:10),K1,K2,K3.KA,COUNT,STE(10),MINC.LC1,LC3
C .LCCONV,XCOUNT,E,LC1T.LCU,STF(20),STG(20)
COMMON /UNIV/ KII,UCOUNT,UMIN(20),UMAX(20),EVE(20), ILIMI,ILIM
REAL K11,MINC(10),K1,K2,K3,K4
4 FORMAT (//(5E18.8))
PA}=P
uCOUNT = 0
IF (LCI .GE. O) GO TO 9
CO I = 1,N
STF(I) = STG(I)
9 LC3 = - ?
DO 11 I = 1,N
11 U(I)= US(i)
C START INNER LOOP
DO 2\Omega 1 = 1,N
IF (BVA(I) .EQ. O.)GO TC 29
If (Eve:I) .EQ. O.) GO TO 88
IF (LCI \&LT. O) GO TO 29
UT = U(I)
U(1) = U(I) + STE(I)
CALL OBJECT
IF (P \&LT. PA) GO TO B6
GO TO 99
86 EVB(I)=0
87 PT = PA
PA =P
DEL2 = STE(1)
60 TO 90
8 LC12=2
G0 TO 89
90 STE(1)= K11*STE{I)
LC12 = -2
89 UT = U(I)
U(I) = U(I) + STE(I)
DEL = UMIN(I) - U(I)
IF (DEL .GE. O.)GO TO 94
DEL = UMAX(I) - U(I)
IF (DEL .LE. O.)GO TO 93
CALL OBJECT
IF(PP - PA) \&LT. O.) GO TO 87
92 DEL1 = U(I) - UT
U(1) = UT
IF ILC12 -LT.O) GO TO 98
PT = P
STE(X) = -STE(!)
DEL2 = -DEL 1
60 ro 90
93 U(I) = UMAX(I)
CT = - MINC(I)
60 80 }9
g4 U(I) = UMIN(I)

```
```

            B
            OUNIVA - EFN SOURCE STATEMENT - IFN(S) -
            DT = MINC(I)
    95 CALL OBJECT
            IF ((P-PA) .GE. 0.) GO TO }9
            PA = P
            BVE(I)=1
            STE(I)= DT*4.
            GO TO 29
    98 PMPA = P-PA
            PTMAPA = PT - PA
            E=(.5*{(DEL2**2)*PMPA - (DEL1*&2)*PTMPA))/(DEL2*PMPA &DEL1*PTMPA;
            U(I) = U(I) - E
            CALL OBJECT
            STE(I) = STE(I)/ K:I
            IF ((P-PA) &LT. 0.) GO TO 71
            99 STE(1) = STE(I)/2.
            U(I) = UT
            GO TO }7
    71 PA = P
    72 DEL = ABS(STE(I))- MINC(I)
            IF (DEL ©GT. O.) LCS = 2
            IF (DEL -LT. O.) STE(I) = SIGN&MINC(I),STE(I))
    29 COMTYNUE
    C EmD OF INNER LOGP
DO 31 I =1.N
31 UA(E) = U(I)
IF (LC8.GT. 0) GO TO 51
32 LCCONV = 0
CALL SUCCES
IF (LCCONV .EQ. 4) GO TO }
RETURN
C PROVISION FOR NEW BLOCK - ACCELERATED CONVERGENCE
51 CALL NEWB
GO TO 32
END

```
```

    B
                EXPL - EFN SOURCE STATEMENT - IFN(S) -
            。
    C EXPLORATORY MOVE ROUTINE - H. ROBBINS. R. COFER
SUBROUTINE EXPLOR
DIHENSION STF{1O)
COAMON N,UA(10), UR(10),PA,PG,U{10),P,PF,UF(10),LC11
C
C
REAL MINC(10),K1,K2,K3,K4
FORMAT (//(5E18:8))
11 LC3 = -1
SUR=0.
HA = PB
DO 12 I = 1.N
U(I) = US(1)
12 STF(I)=0.
C START OF FIGURE I
00 29 = 1.N
IF (BVA(I) \&EG. O.) GO 10 29
U(I) = U(I) \& STE(I)
CALL OBJECT
1F (P - PA) 13.14:14
13 STE(I) K3*STE(I)
15 PA = F
LC3 = +1
GC TO 29
14 PT=P
U(I) = U(I) - 2.*STE(I)
CALL OBJECT.
IF (P - PA) 16.18.18
16 STE(I) = -STE(I)
60 TO 15
18 L(I) = U(I) + STE(I)
PMPT = P - PT
PPPY = P + PT
PPPYPA = PPPY - 2.\#PA
STF(I) = KI* FidPT *STE(I)/ PPPTPA
OO = SIGN{1.,PMPT)
IF (PMPT .EQ. O.) OQ = 1.
STE(I)=K2*STE(I)*GG
SUM = SUM + (PMPT*\#2/PPPTPA)
DELTA = ARS(STE(I)) - MINC(I)
IF (DELTA) 21.21.19
i9 LC3 = +1
GO TO 29
21 STE(i) = MINC(I)*SIGN(1.,STE(I))
29 CONTINUE
C END OF INNER LODP
GRITE (6.4) U.STE,STF.P.PA,PT.SUM
C END OF FIGUPE 1
DELTA =PA - PE + K\&*SUM
IF (OELTA) 31.33.33
31 OO 32 I =1,N
32 UA\:%)=U\I;
LCCONV =1
Go ro 4l
33 DO 3A I = 1.N

```
```

        EXPL - EFN SOURCE STATEMENT, - IFN(S) -
    34 U(I) = U(I) + STF(I)
CALL OEJECT
IF (P - PA) 35.37.37
35 PA = P
DO 36 I = 1.N
36 UA(I)=U(I)
LCCONV = 1
GO TO 41
37 DO 38 I = 1,N
38 UA(I) = U(I) - STF(I)
LCCONV = 0
41 CAL! SUCCES
IF (LCCONY .NE. 4) RETURN
43 DO 44 I = 1.N
44 STE(I)=.5*STE (I)
GO TO 11
END
C OOB COFER 3/22/67
C WRITES FINAL CONDITIONS AND STORES PLOTTING INFCRNATICN
SUBROUTINE SUCCES
COMMON N,UA(10),U(:10), PA,PR,U(10:,F,PF,UF(10),LC11
C ,BVA(10),K1,K2,K3,K4,COUNT,STE(1O),MINC.LC1.LC3
C ILCCONV,XCOUNT,E
COMMON /FUNCT, LC5.LC14,OCDUNT.EIAS,NX,LC15
COMMON /PLOT/ US{20,S00).NPT,PAS(500), PBS(500)
REAL K11,MINC(10),K1,K2,K3,K4,NX(10)
FORMAT (15HO SEARCH FAILED)
FORMAT (16HO SEARCH SUCCESS)
FORMAT (4OHO SEARCH CONVERGED * PA=PE AND LCS MINUS)
FORMAT (//(5E18.8))
FORMAT(IH ///4\&HO END OF DNE COMPLETE PASS THROUGH UNIVAR OR EWR)
FORMAT (7H P =E15.8.7HM PA =E15.8.7H PE = E15.8.9H. XCL
CUNT =E15.8.9H OCOUNT =E15.8)
FORMAT S5%OU U UB
C STE/(4E16.8))
WRITE (6.5)
IF (PA \&LT. PB) GO TO 41
IF (LC3 -LT. 0) GO TO 39
LCCONV =4
IF (LCI .GE. O) GO TO 42
WRITE (6.1)
LCCONV = 3
GO TC 42
39 WRITE (6,3)
LCCONV - 2
GO TO 42
4: WRITE (6.2)
L.CCONV = 1
42 MCOUNT = XCOUNT + 1.
C STORE FOR PMOTTING
NPT = NPT + 1
00 43 1 = 1,N
4. L:S(i.NPT) = U(1)
PAS(NPT) = PA
PES(NOY) = PE
WRITE (6,E)F.PA,PE,XCOUNT,OCOUNT
WRITE (6,7) (NX(I),U(I),UB(I),STE(I). I= = N)
RETLWN:
E%O

```
```

        B
            ONED - EFN SOURCE STATEMENT - IFN(S) -
    C DNE DIIAENSIOAAL SEARCH PROGRAM H. ROSEINS. R. CGFER
SUBROUTINE ONEDS
1 FORMAT (//(5E20.8))
COM\&ON N.UA(10),UB(10),PA.PB.U(10),P,PF,UF(10)
REAL K
10 DO 11 I = 1.N
11 U(i) = UA(I) + 2.*(UA(I) - U{(I))
CAL: OSJECT
IF (P .GE, PA) GO TO g
CALL SETO
CO TO 10
9 PC = P
DO 12 = 10N
12U(I)=UA(I) + (UA(I) - UB(I))
CARL GSJECT
IF (P ,GE. PA) PC = P
IF (FP.LT. PA) CALL SETO
K=.5*(PB-PC)/(PS\&FC-2.*PA)
DO 13 I = 1.N
13 U(I) = UA(I) \& K\&(UA!(I) - UE(I))
CAgL ONAECT
IF (P - PA) 16.14.14
14 PF =PA
DO 15 1 = 1,N
15 UF(I) = UA(I)
CO TO }1
16 PF=P
DO 17 = 1.N
s) UF(I) = U(1)
18 WRITE (E\&1) UA,UN,U.UF,PA,PB,P,PFF,K
RETURN
END
8
SETQ1 - EFN SOURCE STATERENT - IFN(S) -
C BOB COFER 3/22/37

```



```

    PB = PA
    PA=P
    DO 12 1 = 1.N
    UB{!; = UA{!)
    y% U(&:" U%!
    ```

```

    END
    ```
```

    B
                OBJT - EFN SOURCE STATEMENT - IFN(S) -
    C BOB COFER 3/22/67
C LC5 SELECTS NNE OF EIGHT TEST FUNCTIONS
SUBROUTINE OBJECT
DIAENSION EU1(5),EU2(5),R2MR1(5),只2(5),R1(5),V1(5),V2(5),V(5)
C
-R1CR2(5)
DIMENSINN W1(5),W2(5),E1(5),E2(5),U1(5),U2(5)
DIMENSINN AA(10,5),BB(10),CC(5,5),DD(5),EE(5)
COMMON N,UA(10),UB(10),PA,PB,1J(10:,P,PF,UF(10),LC11
C
C
COMmOMG IFUNCT/ LC5,LC14,OCOUNT,BIAS,NX,LCI5
COMMON IPENF/ EX(10),DELE(IO),Fi:O),CFV,PFV
REAL MU,II(5),I2(5),IN,MF,HINC(10),NX(10)
FORMAT (9ER.5)
2 FORNAT |IH /4IHO THE OBJECTIVE FUNCIION = ORBIT TRANSFERI
3 FORHAT IIH /85HO THE OBJECTIVE FUNCTION = CUBE = 100.*(UI2:-UIII:
C*3)*2 * (1.-U(1))**2 +10.*U(3)*e2)
4 FORMAT (IH /63HO THE DBJECTIVE FUNCTION = (1.-U|1)|\& % + AESIU(2)-
CU(1:**3)=10C.)
7 FORMAT (IH /4GHO THE OBJECTIVE FUNCTION =F(U) +A*G!U) \&B\#G(U)* (2)
8 FORMAT (1H /48HO THE OBJECTIVE FUNCTION = U|LIEs2 + 50. AUl2) E2:
FORMAT i//(5E18.8i)
99 FORMAT (5E16.8)
C PRINT OBJECYIVE FUNCYICN NAME
IF ILCI5 .EQ. O; GO TO 10
CC15=A
IF ILC5 .EQ. 2) WRITE (6,3)
IF (LC5 .EQ. 4) WRITE (6.4)
IF (IC5 .EQ. 5) WRITE (6,7)
IF (LC5 .EQ. 1) WRITE (6,8)
10 CCOUNT = OCOUNT + 1.
IF (LC5 .EQ. 2) GO TO 6
IF ILC5 .EQ. 3) GO TO 21
IF ILC5 .EO. 41 GO TO 42
IF (LC5 .EQ. 5) GO TO 51
IF ILC5 .EQ. 6) GO TO 61
IF ILC5 .EQ. 7) GO TO 71
P=U(1)**2 + 50.*U(2)**2
GO TO 5
6 P = 10n.*(U(2)-U(1)**3)*:2 + (1. - U(1))**2 + 10.*U(3)**2
5 IF (IP .GE. PA).OR. (LCIL.EO. O)| GO TO 12
CALL SETQ
GO 10 13
12 LC11=?
13 RETURN
21 IF ILCI4 ,EQ. 2) GC TO 30
C INITIALIZATITNN FOR ORBIT TRANSFER CBJECTIVE FUNCTION
URITE (G,2)
LCI4=?
READ (5,1: WW1,EE1,P1,WW2,EE2,P2,IN
WRITE (G,G) WW1,EE1,P1,WW2,EE2,P2,IN
MU = 14.076539E15
MF = 5200.
FM = 1./5280.
DR =. 1174532925

```
```

    8
            OBJT - EFN SOURCE STATEHENT - IFN(S) -
        RD = 57.2957795
        WHL = \R*WWI
        WW2 = DR WWW2
        Pl = MF*Pl
        P2 = MF*F2
        PAR3 = SQRT(MU/P1)
        PAR4 = SQRT(MU/P2)
        IN = DR|IN
        CI= COC(IN)
        SI = SIN(IN)
        SWH1 = SIiN(WH1)
        DO 41 I = 1,2
        STE(I) = DR*STE(I)
        UB(I) = OR*UB(!)
        41 MINC!I) = MINC(I):DR
        STE(3) = MF*STE(3)
        UB(3) = MF*UB(3)
        MINC(3) - MF*MINC(3)
        H1!1)=0.
        W1(2)=-S!
        Wl(3) = CI
        W2(1) = 0.
        W2(2)}=0
        W2(3) = 1.
        El(1) = EEl*COS(WWl)
        El(2) = SWhl*CI*EEI
        E1!3! = SWHI*SI*EEI
        E2(1) = EE?*COS(WW2)
        E2(2) = EE?*SIN(WW2)
        E2(3) = 0.
        GO TO 75
    C START OF REPETITIVE SECTION
30 SUl = SIN{U(ll)
Ul(1)= cos(u(1))
U1(2) = SUl*CI
U1(3) = SUI*SI
u2(1)= cos(u(2))
U2(2) = SIN(U(2))
U2(3) = 0.
VAR1 = 01/(1. + EEI*COS(U(1) - WW1))
VAR2 = P2/(1. + EE2*COS(U(2) - WW2))
VAR3 = SQRY(MU\#U(3))
VAR4 = SQRT(MU/U(3))
00 31: : = 1,3
RI(I) VARI\#UI(I)
R2(I; = VAn2*U2!!)
EUI(I) = El(I) + Ul(I)
EUZ!Ij = EZ(II + U2(I)
3! R2malll) = R2(!) - R1(I)
VL!L) = PAR3*{W1(2)*EUl(3) - W1(3)*EU1(2))
VI(2) =-PAR30(N1(1)\&EUI(3) - Wl(3)*EUl(1))
V1(3) = PAR3*(W1(1)*EU1{2) - W1!2!*EU 1(1)|
Y2(1) = PAR4*(W2(2)*EU2(3) - W2(3)*EU2(2))
VZ(2) =-PAR4E(H2(1)*EU2(3) - W2(3)*EU2(1))
Y2!3) = PAR4*(W2(1)*EU2{2) - W2(2)*EU2(1))
RLCR2il)=R1(2)*R2(3)-R1(3)*R2(2)

```
```

            B
                OBJT - EFN SOURCE STATEMENT - IFN(S) -
    R1CR2(2)=-R1(1)*R2(3) + R1(3)*R2(1)
            RICR2(3) = R1(1)*R2(2) - R1(2)*R2(1)
            RICR2H=SORT(R1CR2(1)**2+R1CR2(2)**2+RICR2(3)**2)
            DO 32 I = 1,3
        32V(I) = VAR3*R2MR1(I)/RICR2M
            Dr =ARCOS(U1(1)*U2(1) + U1(2)*U2(2) + U1(3)*U2(3))
            Z = VAR4*TANPDT/2.1
            DO 33 I = 1,3
            IIII! = V(I) + Z#Ul(I) - Vi(I)
        33 12(I) = V2(I) - (V(I) - Z*U2(I))
            P = SQRT(II(1)**2 + I1(2)**2 + II(3)**2)+ SQRT(I2(1)**2 + I2(2)**
            C2+12(3)*2)
            35 RETURN
    c test function
42 P= (1.-U(1))\#\#2 + ABS(U(2)-U(1)\#\#3)*100.
LCLI = n
RETURN
C PENALTY FUNETICN
51.F=U(1) + U(2)
A=.705468
8=50.
G = U(1)**2 + U(2)**2 -1.
P=F+A*CH + B\#G**2
RETURN
61P=10n.*(U(2)-U(1)**2)**2* (1.-U(1))**2+90.*(U(4)-U系)**2)**2
C+(1.-U(3))**2+10.1*((U(2)-1:)**2+(U(4)-1.)**2) + 19.8*(U{2)-
C1.)*(U!'1)-1.)
RETURN
C TEST PRDBLEM NO. 1
71 IF ILC17.EO. 21 GO TO }7
LC17 = 2
DO 72 1 = 1,10
72 READ (5,1) (AA(1,J),J=1,5),BB(I)
DO 73 1 = 1,5
73 READ (5,1) (CC(I,J),J=1,5)
READ (5,1) DD
READ (5,1) EE
READ (5,1)DELE(3),DELE(4),DELE(5),DELE(6),DELE(9)
WR!TE (6,99) AA,BR,CC,DD,EE
C compure objfetive functicN value
74 SCYY = n.
OD 77 J=1,5
SCY = n.
DO 7% \& = 1,5
76 SCY = CC:II,J)\#U(I) + SCY
77 SCYY = SCY\#U|J) + SCYYY
EPOY = ?
DO 70 J = 1,5
78 EPDY = U(J)*(EE(J) + DD(J)*U(J)**2) + EPOY
OFV = SCYY + EPDY
c penalty function calculation
DO El \ = 5,6
Ex(:)=n.
00 79 : = 1,5
79 Ex(I) = AA(I,J)\&U(J) +EX(I)
81 F(II = FX(I) - BB(I) + DELE(I)

```
```

    B
    OQJT - EFN SOURCE STATEMENT - IFN(S) -
    F(3)=n.
    F(4)=0.
    F(9)=n.
    PFV aPFCON*(F(3)**2 +F(4)**2 + Fi5)**2 + F(6)**2 +F(9)**2)
    P= OFV + PFV
    RETURN
    END
        B
            BOUND - EFN SOURCE STATEMENT - IFN(S) -
    C BOB COFER 3/22/67
C LIMITS EACH COAPONENT OF U TO ITS EXPLICIT CONSTRAINTS
SUBROUTINE BOUNDU
COM\&ON N,UA(10),U日(10),PA,PB,U(10),P,.PF,UF(10),LC11
C ,BVA(10),K1,K2,K3.KA,COUNT,STE(1O),MINC,LCIFLC3
COMMON /UNIV/ KIL,UCCUNT,UMIN(20).UmAX(20), EVE(20),ILIMI.ILIM
DC 1:I = I|N
11 BVB{I! = 1.
DO 48 I = 1.N
DEL = UMIN(I) - U(I)
IF (DEL) 43.46,46
43 DEL F UMAX(I) - U(I)
IF (DEL) 45,45.4.4
44 BVE(I) =0.
60 TO 48
45 U{E} = U**AX(I)
STE(I)=-ABS(STE(I))
60 TO 4\&
46 U(I) = UMIN(I)
STE(I) = ASS(STE(I))
48 CONTINUE
RETURN
END

```

B
```

PLOTO - EFN SOURCE STATEMENT - IFN(S) -

```
```

C BOA COFER 3/22/67
C PLOTS PA.PG. AND U COMPONENTS VS. UNIVAR PASSES FCR PAYTERN SEARCH
SUBROUTINE PLOTOP
DIMENSIUN ULABEL(10),UPS(500).,EAXIS(500)
COMMON N,UA(10),UB(10),FA,PB=1,10),P,PF:UF(10).LC(11
C .BVA(10),K1,K2.K3,KA,COUNT,STE(10),MINC,LC1,LC3
COMMON /PLOT/ US(20.500),NPT,PAS:500),PES(500)
REAL IN
DATA (ULABEL(I),I=1,10) /OHU(1)...EFHU(2)....\sigmaHU(3)...6HU(A)...6HUC
C5)...6HU(6)..,6HU(7)...6HU(8).=.6HU(9)...6HU(10)./
C SCALE X AX:S FOR ALL PLOTS
IN =G.
OO 10 1 = 1.NPT
IN = IN + 1.
10 xAXIS(I) = IN
5 FORMAT (5E20.8)
WRITE (G.J) XAXIS,PAS,PES
CALL FSCLE (XAXIS,NPT.IO.,XMIM\&XSCL)
C PLOT FA AND PB YS= COMPLETE PASSES THRDUGH UNIVAR
C SET INITIAL PA AND PB = O. TO AVOID EXTREmELY LARGE FE VALUES
DO 12 1 = 1.3
PAS(I) = 0.
12 PBS(I) = 0.
CALL PSCLE (PAS,NPT,G..FAMINOPASCL)
CALL PSCLE (PBS,NPT,8.,PBMIN,PESCL)
CALL PANIS (0.,0.,25H COMPLETED EXPLORATORY MOVES.28:10..50.,XMIN.
CXSCL)
CALL PAXIS (0..0..10H PA AND PE.10.10..90..PAWIN.PBSCL)
CALL PLINE (XAXIS,PAS,NPT,1)
CALL PLINE (XAXIS,PBS,NPT,1)
CALL PLEND (14.0.0)
C PLOT U COORDINATES VS. COMPLETE PASSES THROUGH UNIVAR
00 15 1 = 1.N
DO 11 J = 1,NPT
11 UPS(J) = US(I,J)
CALL PSCLE (UPS.NPT,8.,OUMIN.USCL)
CALL PAXIE (O.,0..28H COMPLETED EXPLORATORY MOVES,28.10.,0..XMIN,
CXSCL)
CALL PAXIS(0.,0..ULABEL(I),6,8.,90..UMIN,USCL)
CALL PLINE (XAXIS.UPS,NPT.1)
15 CALL PLEND (14.,0)
CALL PLEND (1.,01)
RETURN
ENO

```

\section*{REFERENCE}
1. Hooke,.R., and Jeeves, T., Direct Search Solution of Numerical and Statistical Problems, J. Assoc. Computing Mach. 8, 212-229, 1961.
2. Powell, M.J.D., An Efficient Way of Finding the Minimum of a Function of Several Variables Without Computing Derivatives, Computer Journal I, 155-162, 1964.
3. Leon, A., A Comparison Among Eight Known Optimizing Procedures, in Recent Advances in Optimization Techniques, John Wiley, 1966.
4. Powell, M.J.D., Subroutine VA04A, Unpublished Notes, 1964, 8 pp.
5. Fletcher, R., Function Minimization Without Evaluating Derivatives a Review Computer Journal 8, 33-41 1965.
6. Colville, A. R. Non Linear Programming Study, Unpublished Notes, 1966, 35 pp.
7. McCue, G. A. Optimum Two-Impulse Orbital Transfer and Rendezvous between Inclined Eliptical Orbits, AIAA Journal, Vol. I, No. 8, 1963, pp 1865-1872.

\section*{1. INTRODUCTION}

In recent years, there has been an increasingly widespread recognition that many important practical problems can be formulated as problems of constrained minimization or maximization. That is, many problems of design, control, resource allocation, etc., can be formulated as follows: find the vector argument \(\underline{x}\) which minimizes (or maximizes) a given scalar function \(f(\underline{x})\), subject to a given set of equality and/or inequality constraints. The function \(f\) is called the objective function. It is also known as the cost function, the perfcrmance index, the payoff function, etc.

If the function \(f\) is linear, and the constraints are linear equalities and/or inequalities, this is the general linear programming problem, for which theory and practice are highly developed. If the odjective function or the constraints, or both, are nonlinear, it is the general nonlinear programming problem, also known under various other names: function minimization, constrained minimization, mathematical programming, optimization, parameter optimization, design optimization, etc. These names have differing connotations and associations. "Nonlinear programming" is the term favored by mathematicians. "Mathematical programming" is a general expression which includes linear, nonlinear, and integer programming, and is principally used in the field of operations research. The other terms are mostly used by engineers. The terms "function minimization" and "parameter optimization \({ }^{\text {1 }}\) definitely imply that there are only a finite number of variables, so the minimization/optimization problem is a problem in the ordinary calculus, as distinguished from the calculus of variations. The other names are ambiguous in this respect; they may be used in a broad sense which includes both finite-dimensional and infinite-dimensional cases, but are more often used in a restricted sense which excludes the latter alternative.

The development of numerical methods for solution of nonlinear programming problems is still in a relatively primitive state, but is a very active area of research. Unfortunately, most of the research work has been strongly biased toward one or the other of two distinct approaches which have not, as yet, been satisfactorily combined. One of these approaches views nonlinear programming as a gencralization of linear programming. In linear programming the constraints are everything; without constraints there would be no problem. Therefore, this approach leads to emphasis on handling medium to large numbers of constraints, by modifications of the highly successful algorithms for linear programming. The basic assumption made is that the objective and constraint functions are approximately linear over regions large enough to permit reasonable-size steps toward the solution. The other approach starts with consideration of difficult problems in unconstrained minimization (e.g, problems where the objective function has very narrow, curving valleys) and adds provisions for constraints as an afterthought, if at all. An important aspect of the research work based on this approach has been the development of methods with second-order (or at least, higher than first-order) convergence in the neighborhood of the sclution. This is not only desirable in itself; it is almost a necessity in cases where the matrix of second partial derivatives of the objective function has a wide range of eigenvalues.

The constraint-oriented approach has been the basis of some highly successful, large scale optimization programs, such as POP (Ref. 1), COP (Ref. 2) and NDS (Ref. 3). These programs have been made highly versatile and efficient by sophisticated programming techniques, which may make them competitive even in applications where the other approach is more appropriate in principle. They are potentially inefficient in cases where very narrow valleys occur, but in practical problems of design optimization, process control, etc., such cases do not occur very frequently if reasonabie care is used in problem formulation. Usually, the objective function and constraints are quite simple and well-behaved, so constraint-oriented optimization algorith.ms can be highly efficient. However, important exceptions are known to exist.

By combining the principles of both approaches, it should be possible to develop algorithms which handle general sets of constraints efficiently and have accelerated convergence even for unfavorable (but smooth) forms of the objective function, or the constraints, or both. Such a combination has not yet been demonstrated in a completely satisfactory form, but numerous investigators are working toward this goal, and significant progress has already been made. Major advances may therefore be expected during the next few years.

The review briefly describes the nonlinear programming problem and some of the principal techniques that have been proposed for its solution. Most of the discussion is restricted to the finite-dimensional case, but optimization in function space (i.e., the optimal control problem) is considered in one section. A brief Bibliography is included. It is limited to books, review articles, and technical papers which describe significant technical advances.

\section*{2. FORMULATIONS OF THE PROBLEM}

The general nonlinear programming problem in \(n\) dimensions is to find an \(n\)-component argument vector x which is feasible (i.e., satisfies a given set of constraints) and minimizes the objective function \(f(\underline{x})\) subject to these constraints. Two extreme special cases are those with no constraints (unconstrained minimization) and those where the constraints completely determine x , so the nonlinear programming problem reduces to solving a set of nonlinear equations. There are many ways of expressing the constraints. One way is given by the relations
\[
\begin{array}{ll}
g_{i}(\underline{x})=0 & 0<i \leq m_{1} \\
g_{i}(\underline{x}) \geq 0 & m_{1}<i \leq m \tag{lb}
\end{array}
\]
which give \(m_{1}\) equality constraints and (\(m-m_{1}\)) inequality constraints. This form will be used in most of the discussions below. Other forms may be better for computational use. Inequality constraints often occur in pairs, giving a limited range for some variable, and this can be exploited to reduce
the number of separate relations. For example, in the optimization algorithm POP (Ref. 1) the constraints are stated in the form
\[
\begin{align*}
& \underline{a} \leq \underline{x} \leq \underline{b} \tag{2a}\\
& c \leq \sum \leq \underline{d} \tag{2b}
\end{align*}
\]
where \(\underline{a}, \underline{b}, \underline{c}\), \(\underline{d}\) are constant vectors, and \(\underline{y}=\underline{y}(x)\) is a vector function of x, not necessarily of the same dimensionality. Another form, which appears different but is equivalent to either of the above formulations, is.
\[
\begin{align*}
& \underline{a} \leq \underline{x} \leq \underline{b} \tag{3a}\\
& g_{i}(\underline{x})=0 \tag{3b}
\end{align*} \quad 0<i \leq m_{2}
\]

This formulation is used in Abadie's Reduced Gradient method (Ref. 4).

\section*{3. NECESSARY CONDITIONS FOR OPTIMALITY}

If \(f(\underline{x})\) possesses continuous first partial derivatives, a necessary condition for an unconstrained local minimum at \(\underline{x}_{0}\) is
\[
\begin{equation*}
\operatorname{grad} f\left(\underline{x}_{0}\right)=0 \tag{4}
\end{equation*}
\]

The corresponding necessary conditions for constrained cases are the Kuhn-Tucker conditions (Ref. 5) which involve the function
\[
\begin{equation*}
F(\underline{x}, \underline{\lambda})=f(\underline{x})+\sum_{1}^{m} \quad \lambda_{i} g_{i}(\underline{x}) \tag{5}
\end{equation*}
\]

The Kuhn-Tucker conditions are that the constraint relations given by Eq (l) hold, that the gradient of \(F(\underline{x}, \underline{\lambda}\)) with respect to \(\underline{x}\) vanishes, and that for values of i corresponding to inequality constraints (\(m_{1}<i \leq m\)) the multipliers \(\lambda_{i}\) satisfy
\[
\begin{array}{ll}
\lambda_{i} \leq 0 & \text { if } g_{i}\left(\underline{x}_{o}\right)=0 \tag{6}\\
\lambda_{i}=0 & \text { if } g_{i}\left(\underline{x}_{0}\right)>0
\end{array}
\]

There are also second-order necessary conditions, if the relevant partial derivatives exist. For unconstrained minimization, the second-order necessary condition is that \(M(x)\), the matrix of second partial derivatives of \(f(x)\), be positive semidefinite at \(\underline{x}_{0}\) :
\[
\begin{equation*}
M\left(\underline{x}_{0}\right) \geq 0 \tag{7}
\end{equation*}
\]

The second-order necessary condition for constrained cases is less familiar. It is given by Hadley (Ref. 6, page 101-102) in the following form: Let \(M_{F}\) \((\underline{x}, \underline{\lambda})\) denote the matrix of second partials of \(F(\underline{x}, \underline{\lambda})\) with respect to components of \(\underline{x}\), and define \(G(\underline{x})\) to be the \(m \times n\) matrix whose ith now is the gradient of \(g_{i}(\underline{x})\) if the ith constraint is active (holds as an equality) and is a row of zeros if the ith constraint is inactive (holds as a strict inequality). The latter alternative is possible only for inequality constraints. The necessary condition is that \(\underline{d}^{T} \underline{M}_{F} \underline{x}_{o}\), \(\underline{\lambda}\)) d be positive semidefinite for every vector \(\underline{d}\) satisfying \(G\left(\underline{x}_{0}\right) \underline{d}=0\). An equivalent condition is that some \(\mathrm{m} \times \mathrm{m}\) matrix N must exist such that
\[
\begin{equation*}
M_{F}^{*}\left(\underline{x}_{0}, \underline{\lambda}\right)=M_{F}\left(\underline{x}_{0}, \underline{\lambda}\right)+G^{T}\left(\underline{x}_{0}\right) N G\left(\underline{x}_{0}\right) \tag{8}
\end{equation*}
\]
is positive semidefinite. Without loss of generality, N may be assumed to be some multiple of the unit matrix. This necessary condition is related to the obvious fact that if \(\underline{x}_{o}\) gives a constrained local minimum of \(f(\underline{x})\), it must do the same for
\[
\begin{equation*}
f^{*}(\underline{x})=f(\underline{x})+\sum_{\text {a.c. }} g_{i}(\underline{x}) N_{i j} g_{j}(\underline{x}) \tag{9}
\end{equation*}
\]
where N is positive semidefinite but otherwise arbitrary, and the summation is over constraints active at \(\underline{x}_{0}{ }^{\circ}\)

A sufficient condition for a strong local minimum is that the firstorder conditions hold, and that \(M\) (in the unconstrained case) or \(M_{F}^{*}\) (in the constrained case) be positive definite, rather than semidefinite only.

\section*{4. THE NEWTON-RAPHSON METHOD}

The Newton-Raphson method of solving a nonlinear programming problem is based on solving the first-order necessary conditions as a set of simultaneous equations and/or inequaiities. For unconstrained cases, a Taylor expansion of \(\underline{h}(\underline{x})=\operatorname{grad} f(\underline{x})\) gives
\[
\begin{equation*}
\underline{h}(\underline{x}+\Delta \underline{x}) \approx \underline{h}(x)+M(\underline{x}) \Delta \underline{x} \tag{10}
\end{equation*}
\]
which suggests the Newton-Raphson iteration
\[
\begin{equation*}
\text { new } \underline{x}=\underline{x}-M^{-1}(\underline{x}) \underline{h}(\underline{x}) \tag{1i}
\end{equation*}
\]

This iteration converges rapidly in some neighborhood of the minimum. Unfortunately, it converges just as readily to stationary points which are not minima, and often fails to converge at all. Powell (Ref. 7) has noted that convergence can be improved by regarding the Newton-Raphson step as indicating only a direction of change of \(x\), and letting the magnitude of the step be determined by a one-dimensional search for the minimum of \(f(\underline{x})\) along a line. However, he found cases in which this also fails, even if \(f(x)\) has no stationary points other than the minimum.

If \(M(\underline{x})\) is positive definite (as it must be, in the neighborhood of a strong local minimum) a sufficiently short move in the direction given by the Newton-Raphson correction necessarily decreases \(f(x)\). The convergence difficulty arises if \(M(\underline{x})\) has negative eigenvalues for somie values of \(\underline{x}\), enabling \(f(x)\) to be increased or left unchanged. An obvious remedy is to modify the inverse matrix in Eq (11), forcing it to becone positive definite if not already so. An elegant procedure for doing this was invented by Davidon (Ref. 8). Davidon's method will be discussed in Section 8 of this Appendix. .

For constrained cases, the procedure is to assume that certain constraints are active and others are inactive, ignore the inactive constraints, and treat all active constraints as equality constraints. The assumed set of active constraints is justified (or corrected) after the fact. A Taylor expansion of the first-order conditions gives
\[
0=\left[\begin{array}{l}
\underline{h} * \tag{12}\\
\underline{g}
\end{array}\right]+\left[\begin{array}{lc}
M_{F}^{*}(\underline{x}, \underline{\lambda}) & G^{T}(x) \\
G(x) & 0
\end{array}\right]\left[\begin{array}{c}
\Delta \underline{x} \\
\Delta \underline{\lambda}
\end{array}\right]
\]
where \(g\) is a column vector of the constraint functions \(g_{i}(\underline{x})\), and
\[
\begin{equation*}
\underline{h} *(\underline{x}, \underline{\lambda})=\underline{h}(x)+G^{T}(\underline{x})[\underline{\lambda}+2 N \underline{n}(\underline{x})] \tag{13}
\end{equation*}
\]
is the gradient, with respect to \(\underline{x}\), of
\[
\begin{equation*}
F *(\underline{x}, \underline{\lambda})=f *(x)+\underline{\lambda}^{T} \underline{g}(\underline{x}) \tag{14}
\end{equation*}
\]

The matrix \(N\) is to be chosen (if possible) to make \(M_{F}^{*}\) positive definite. Eq (12) suggests a Newton-Raphson iteration analogous to Eq (11). If this iteration converges, it converges to a constrained stationary point, which is not necessarily a constrained minimum unless \(M_{F}^{*}\) can be made positive semidefinite by some choice of \(N\). Convergence to non-minimai stationary points can presumably be prevented, as in the unconstrained case, by modification of the matrix \(M_{F}^{*}\) to force positive-definiteness. However, no analog of Davidun's method, applicable to constrained cases, appears to have been published so far.

\section*{5. CLASSIFICATION OF METHODS}

In spite of its attractive feature of rapid convergence near the solution, the Newton-Raphson method is generally unsatisfactory because of (a) need for second derivatives which may be difficult and/or expensive to compute, (b) convergence uncertainties, including the possibility of false convergence, and (c) in constrained cases, the need to guess which constraints are active, with tedious recomputations if the initial guess is wrong. Therefore, a large variety of other methods have been developed. These may be classified according to the way in which they acquire derivative information (analytical derivatives, numerical derivatives obtained by finite differences, or no explicit computation of derivatives) and according to their speed of convergence near the solution (first order, second order), As with most classification systems, these classifications are not entirely clear-cut. Some algorithms, for example, use analytic first derivatives but compute second derivatives by finite differences. Also, many of the algorithms loosely described as second order have not been proven to have true second-order convergence, although this convergence is faster than first order. The two classifications are related, since any method with superlinear convergence must make use of second derivatives or equivalent information. For applications where a large variety of different problems must be solved, algorithms which use no derivatives, or compute derivatives by finite differences, are generally to be preferred over algorithms which require analytic derivatives,
since the latter require much more input information for specification of a new problem. Explicit computation of derivatives by finite differences, as compared to implicit use of derivative information from changes of function value, has the advantage that the differencing technique can be changed in the course of the computation, to provide increased accuracy when needed; the algorithm can use simple differences at first, and then go over to symmetric differences.

For applications where essentially the same problem is to be solved many times, with slightly different parameter values each time (as in on-line optimal control) superlinear convergence is highly desirable not only for economy of computation, but because it gives a more smoothly varying output.

\section*{6. \\ HEURISTIC DIRECT-SEARCH METHODS}

The two best-known methods which make no use of derivative information, and are purely heuristic in motivation, are Rosenbrock's method (Reference 9) and the "Direct Search" or "Pattern Move Search" method of Hooke and Jeeves (Reference 10). Numerous variants of both of these methods exist. Neither method, in its original form, included provisions for constraints, but ad hoc modifications for constrained problems have been proposed by several authors.

In Rosenbrock's method, the program remembers a set of orthogonal search directions and uses them in sequence. The relative success of the different directions, as measured by net displacements of the argument vector, is then used to generate a new set of search directions. The procedure is intended to make the search directions tend to align themselves with principal axes of the quasi-ellipsoids which are iso-value contours of the objective function near a minimum. This behavior has never been proved mathematically, but is supported by experimental evidence. Convergence is first-order, but usually reasonably rapid.

The basic idea of Pattern Move Search is that what succeeds once, should be tried again. Starting from an initial 'base point', an exploratory subroutine generates another point with smaller objective function. This constitutes a new base point. The vector difference between the two most recent base points defines a "pattern move" which is applied to the newest base point to generate an "advance point" from which the exploratory subroutine is used again. If the overall result of the pattern move and subsequent exploration is an improvement, it defines a new base point and the process repeats. Otherwise, the procedure restarts from the most recent base point, with an exploratory sequence. Pattern Move Search is a general framework, into which almost any other algorithm can be fitted as exploratory subroutine. With an appropriate choice for this subroutine, it has been found to be an efficient "valley-follower", and gives reasonably rapid (but first-order) convergence in most cases. It can handle constraints if the exploratory subroutine has this capability, and if the main program is modified to enforce feasibility initialiy and after each pattern move.

\section*{7. GRADIENT METHODS}

For unconstrained cases, the basic equation of the gradient, or steepest descent, approach to function minimization is
\[
\begin{equation*}
\text { new } \underline{x}=\underline{x}-k H \underline{h}(\underline{x}) \tag{15}
\end{equation*}
\]
where \(k\) is a positive scalar multiplier which may be held constant or iteratively adjusted, and the positive-definite matrix \(H\) is the "inverse metric" i.e., the matrix whose inverse defines vector magnitudes by the relation
\[
\begin{equation*}
|\Delta \underline{x}|^{2} \triangleq \Delta \underline{x}^{T} H^{-1} \Delta \underline{x} \tag{16}
\end{equation*}
\]

The use of a factor like \(H\) in Equation (15) is unavoidable since the vectors \(\underline{x}\) and \(\underline{h}\) do not transform alike under coordinate transformations, and generally do not even have the same dimensionality. The convergence properties of the gradient method can be studied by considering the special case of a quadratic function with its minimum at \(\underline{x}=0\). This function is of the form
\[
\begin{equation*}
f(\underline{x})=0.5 \underline{x}^{T} M_{0} \underline{x} \tag{17}
\end{equation*}
\]
-so its gradient is
\[
\begin{equation*}
\underline{h}(\underline{x})=M_{0} \underline{x} \tag{18}
\end{equation*}
\]

If the vectors \(\underline{v}_{i}\) and scalars \(u_{i}\) are the eigenvectors and eigenvalues, respectively, of \(\mathrm{HM}_{0}\), \(x\) has an expansion of the form
\[
\begin{equation*}
\underline{x}=\sum_{i} c_{i} v_{i} \tag{19}
\end{equation*}
\]
with scalar coefficients \(c_{i}\). The eigenvectors have the orthogonality property
\[
\begin{equation*}
\underline{v}_{i}^{T} H^{-1} \underline{v}_{j}=0=\underline{v}_{i}^{T} M_{o} \underline{v}_{j} \quad \text { if } i \neq j \tag{2,0}
\end{equation*}
\]
so
\[
\begin{equation*}
|\underline{x}|^{2}=\sum_{i}\left|c_{i}\right|^{2} \tag{21}
\end{equation*}
\]

Expressing both sides of Fquation (15) in terms of eigenvectors gives
\[
\begin{equation*}
\text { new } c_{i}=\left(1-k \alpha_{i}\right) c_{i} \tag{22}
\end{equation*}
\]

If all the \(a_{i}\) are nearly equal, i. e., if \(H_{o}\) approximates a multiple of the unit matrix, it is possible to choose \(k\) so that
\[
\begin{equation*}
\left|1-\mathrm{kx}_{\mathrm{i}}\right| \ll 1 \tag{23}
\end{equation*}
\]
for all \(i\), and the gradient method gives rapid convergence. In the more usual case where the \(a_{i}\) differ greatly from each other (in particular, if the magnitudes of the largest and smallest eigenvalues have a large ratio) this is not possible. every choice of \(k\) either makes some \(c_{i}\) increase in magnitude, or leaves other \(c_{i}\) almost unchanged, so a \(k\) chosen small enough for stability gives very siuggish convergence. Dynamic variation of \(k\) from iteration to iteration alleviates this situation only slightly. Ultimate convergence of \(f(\underline{x})\) to a local minimum can be assured (if \(H\) is positive definite) by controlling \(k\) by rules that force monotone decrease of \(f(\underline{x})\), but computational efficiency depends on choosing the metric \(H^{-1}\) to be similar to \(M_{0}\), the matrix
of second partial derivatives at the solution-point. Davidon's method, described in Section 8 of this Appendix, is an automatic procedure for iteratively adjusting \(H\) to make it approach \(M^{-1}(\underline{x})\) if possible, but remain positive definite always.

For constrained cases, the gradient method is replaced by the "projected gradient" method of Rosen (Refs 11, 12) or the "reduced gradient" method of Wolfe (Ref 4). In the projected gradient method, the specified \(\Delta \underline{x}\) at each iteration is the sum of two displacements: a displacement which attempts to null all deviations from the active constraints, plus another displacement parallel to the projection of the gradient vector unto the constraint surfaces. In the reduced gradient method, the active constraints are used to eliminate some components of \(\underline{x}\) by determining them as functions of the remaining components, and the unconstrained gradient method is then applied in a smaller-dimensional space. In both these techniques, efficient means are provided for treating changes in the set of active constraints. However for both methods, efficiency depends on an appropriate choice of metric. No automatic procedure for iteratively adjusting the metric (analogous to Davidon's method) has yet been proposed for constrained cases, although Kelley's method (Ref 13) accomplishes essentially the same result.

Three gradient methods which warrant special discussion have already been mentioned in the Introduction. One of these is the NDS program of Beskind (Ref 3). This program is based on the projected-gradient method. It emnloys a logarithmic scaling which gives a reasonable metric in most practical cases. Also, computation is economized by a method of obtaining and updating approximate gradient information for the objective and constraint functions, as a byproduct of function evaluations performed in the natural course of the search for the optimum. The other two methods are POP and COP (Refs 1 and 2) which are slightly different versions of the same algorithm, designed for different computers. The algorithm is a sophisticated form of the Simplex (LP) method, applied by localineariza* tion. A number of ingenious techniques are employed to minimize computation.

\section*{8. \\ SECOND-ORDER METHODS FOR UNCONSTRAINED \\ MINIMIZATION}

There are three principal methods of unconstrained minimization which are commonly referred to as second-order methods: Davidon's method (Ref 8), the Fletcher-Reeves conjugate gradient method (Ref 14), and Powell's conjugate directions method (Ref 15). Strict mathematical proofs of second-order convergence for these methods have not been given, but their convergence is known to be super-linear (faster than first order).

In Davidon's method, which has already been referred to, each change of \(x\) and \(h(\underline{x})\) is followed by an adjustment of the \(H\) matrix, of the form
\[
\begin{equation*}
\text { new } H=d_{1}(H \Delta \underline{h})(H \Delta \underline{h})^{T}+d_{2}(\Delta \underline{x})(\Delta \underline{x})^{T} \tag{24}
\end{equation*}
\]
where \(d_{1}\) and \(d_{2}\) are computed coefficients. Since Davidon's paper is not easily accessible, his method is most widely known in a slightly modified form given by Tletcher and Powell (Ref 16). However, some users of the modified method have reported numerical difficulties (loss of positive definiteness, due to computational errors) which apparently do not occur with Davidon's original method.

Both the original and the Fletcher-Powell versions of Davidon's method require analytical evaluation of the gradient vector \(\underline{h}(\underline{x})\). A form of Davidon's method using finite differences to determine approximately \(\underline{h}(\underline{x})\) from changes of \(f(\underline{x})\) has recently been reported by Stewart (Ref I7). This constitutes a significant advance.

The Fletcher-Reeves method of conjugate gradients uses analytic evaluation of the gradient, but could presumably be modified to use finite differences instead. Its basic cycle involves 3 vectors: \(\underline{x}, \underline{h}\), and \(\underline{s}\). Initially, \(\underline{s}=-\underline{h}\). The cycle steps are
1. Choose k to minimize \(\mathrm{f}(\underline{\mathrm{x}}+\mathrm{ks})\)
2. New \(\underline{x}=\underline{x}+k s\)
3. Evaluate new \(\underline{h}=\underline{h}\) (new \(\underline{x}\))
4. \(b=\mid\) new \(\left.\underline{h}\right|^{2} /|\underline{h}|^{2}\)
5. New \(\underline{s}=\mathrm{b} \underline{\mathrm{s}}-(\) new h\()\)
6. Go to 1

For a quadratic function, this procedure gives the exact minimum in \(n\) cycles. For non-quadratic functions, it gives rapid convergence, but requires periodic restart cvery \(n\) cycles. A modified version not requiring restart is probably possible.

In Powell's method of conjugate directions, the algorithm remembers a set of \(n\) search directions, and performs a one-dimensional minimizing search in each of these directions in sequence. The net resulting change of x defines a new direction, which (usually) replaces one of the stored directions. No analytical derivatives are used, but equivalent information is obtained from changes of furction value. The method finds the exact minimum of a quadratic function in \(n\) cycles, and has rapid (superlinear) convergence for non-quadratic functions. However, there are reports of decreased efficiency when \(n\) is large (above 15 or so). None of these second-nrder methods have, as yet, been generalized to deal with constraints, except by the use of penalty functions.

\section*{9. PENALTY-FUNCTION METHODS FOR CONSTRAINTS}

A convenient and flexible, but approximate, method of enforcing constraints in function-minimization problems is by the use of penalty functions. In one version of the penalty-function method, the objective function \(f(x)\) is replaced by the modified objective function
\[
\begin{equation*}
f_{p}(\underline{x})=f(\underline{x})+\sum K_{i} d_{i}^{2}\left(g_{i}(\underline{x})\right) \tag{25}
\end{equation*}
\]
where the coeficients \(K_{i}>0\) are chosen constants, \(g_{i}(x)\) is the \(i^{\text {th }}\) constraint function, and
\[
d_{i}(y)=\left\{\begin{array}{l}
y \tag{26}\\
\min (0, y)
\end{array}\right\} \begin{aligned}
& \text { if the ith constraint }
\end{aligned}\left\{\begin{array}{l}
g_{i}=0 \\
g_{i} \geq 0
\end{array}\right\}
\]

Eq (25) could be generalized by using a quadratic form in the quantities \(d_{i}\) instead of a weighted sum of squares, but no particular advantage would be gained by doing so. The quantities \(d_{i}^{2}\) in Eq (25) are called penalty functions. The larger \(K_{i}\) is chosen, the moreaccurately the
\(i^{\text {th }}\) constraint is enforced. Therefore, an approximate solution found with a moderate value of \(K_{i}\) can be improved by trying again with a larger value of \(\mathrm{K}_{\mathrm{i}}\). The \({ }^{\circ}\) displacement from the true solution will be approximately proportional to \(1 / K_{i}\). Therefore, constraints which must be satisfied with high accuracy require large values of \(\mathrm{K}_{\mathrm{i}}\). This is a potential source of difficulty, since large values of \(K_{i}\) make the function \(f_{p}(x)\) have "valleys" with at least one steep wall. The valleys are curved if the constraint.surfaces are curved, and not all algorithms for unconstrained minimization car follow such valleys efficiently. Algorithms with quadratic convergence (such as Powell's or Davidon's) become highly desirable, though other methods (e.g., Rosenbrock's or Pattern Move) may also be effective. An automatic method for adjusting the coefficients \(K_{i}\) has been given by Kelley (Ref 13) who uses penalty functions in conjunction with Davidon's method. As a byproduct, Kelley's ingenious method generates an excellent metric for use with the projectcd-gradient method in a "refinement phase" which follows his rough preliminary minimization.

In the SUMT algorithm (Ref 18) equality constraints are treated as described above, but a slightly different approach is used for inequality constraints. The penalty function is nonzero even when the constraint is satisfied, and varies inversely with distance from the constraint surface. On the violation side, the penalty is infinite: moves across this surface are rejected as absolute failures. To improve accuracy, the coefficient of the penalty function is decreased, rather than increased as for quadratic penalties. The advantage of the SUMT methol is that each approximate solution is feasible, so far as inequality constraints are concerned.

It is instructive to compare the penalty-function method with the Lagrange multiplier method of function minimization. In the latter method, we form
\[
\begin{equation*}
F(\underline{x}, \underline{\lambda})=f(\underline{x})+\sum_{i} \lambda_{i} g_{i}(\underline{x}) \tag{27}
\end{equation*}
\]
and seek values of the multipliers \(\lambda_{i}\), such that the solution of the resulting uncoristrained problem satisfies the constraints. We also require
\[
\begin{aligned}
& \lambda_{i}=0 \text { for all inequality constraints which are inactive (strongly } \\
& \text { satisfied) }
\end{aligned}
\]
\[
\lambda_{i} \leq 0 \text { for all inequality constraints of the form } g_{i}(x) \geq 0
\]

A necessary condition for \(\underline{x}_{0}\) to give the unconstrained minimum of \(F(\underline{x}, \underline{\lambda})\) is
\[
\begin{equation*}
\nabla F\left(\underline{x}_{o}, \underline{\lambda}\right)=\underline{h}\left(\underline{x}_{0}\right)+\sum_{i} \lambda_{i} \nabla g_{i}\left(\underline{x}_{0}\right) \tag{28}
\end{equation*}
\]

Compare this with the result of differentiating Equation (25), which is
\[
\begin{equation*}
\nabla f_{p}\left(\underline{x}_{0}\right)=\underline{h}\left(\underline{x}_{0}\right)+2 \sum_{i}\left[K_{i} \mathrm{~d}_{\mathrm{i}}\left(\mathrm{~g}_{\mathrm{i}}\left(\underline{\mathrm{x}}_{0}\right)\right)\right] \nabla g_{\mathrm{i}}\left(\underline{x}_{0}\right) \tag{29}
\end{equation*}
\]
so the two are alike if we identify
\[
\begin{equation*}
2 \mathrm{~K}_{\mathrm{i}} \mathrm{~d}_{\mathrm{i}}\left(\mathrm{~g}_{\mathrm{i}}\left(\mathrm{x}_{0}\right)\right)=\lambda_{i} \tag{30}
\end{equation*}
\]

This suggests that if \(K_{i}\) is increased, \(g_{i}\left(\underline{x}_{0}\right)\) and \(d_{i}\left(g_{i}\left(x_{0}\right)\right)\) will decrease in magnitude, and the product will approach a limit which is one-half the Lagrange multiplier. Therefore, the penalty method may be regarded as a servo for adjusting \(\lambda_{i}\) to make it enforce the \(i^{\text {th }}\) constraint, and \(2 \mathrm{~K}_{\mathrm{i}}\) as the feedback gain for this servo. The servo has a standoff error inversely proportional to the gain.
10. COMPARATIVE STUDIES OF NLP ALGORITHMS

Relatively little has been published about extensive, objective comparisons of different algorithms for nonlinear programming. Numerous authors have reported comparisons between their proposed new methods and one or more previously existing methods, with invariably favorable conclusions. A number of reasonably objective comparisons of selected methods have been reported (see review articles in the Bibliography). Ar extensive survey has been conducted by Colville (Ref 19) by sending a questionnaire and set of problems to possessors of optimization algorithms, with requests for
(a) additional test problems
(b) description of algorithm
(c) performance data for the test problems (success or not, preparation time, running time, number of evaluations, etc.)

Several dozen replies were received. To correct for differences in computer speed, each reported running time was normalized by dividing by the time required for execution, on the same computer, of a standard computation defined by Colville. However, even the normalized times are difficult to interpret, since no standard was given for the degree of accuracy to be sought. More meaningful, perhaps, is the fact that for most of the methods, success was not reported for all problems. However, this may reflect limited effort rather than limited capability. Since all but one of Coiville's problems involve constraintz, algorithms designed purely for unconstrained minimization rated poorly in his comparisons (and rightly so).
11. NONLINEAR PROGRAMMING FOR TRAJECTORY OPTIMIZATION

There are two distinct ways of applying nonlinear programming to problems of optimal control of dynamic systems (trajectory optimization). The first way, which is called the "indirect" method for historical reasons, is to make use of necessary conditions for optimality derived from the calculus of variations (or its modern counterpart, optimal control theory) to reduce the candidate trajectories to an \(n\)-parameter family of extremals defincd by given sets of differential equations. The objective function and the constraint functions then become ordinary functions of \(n\) parameters, and the algorithms for finite-dimensional NLP are applicable. Each evaluation of the objective function or the constraints requires integration of a set of differentisl equations.

The second way, which is called the "direct" method, is to use NLP in function space. The \(n\)-component argument vector x is replaced by a control history \(\underline{u}(t)\), regarded as a vector \(\underline{u}\) in function-space, and the objective function becomes a functional of \(\underline{u}\). The constraints may involve instantaneous values of \(\underline{u}(t)\), or functionals of \(\underline{u}\), or both. Many of the NLP algorithms for \(n\) dimensions have analogs in function space. For example, the function-space analog of the \(n\)-dimensional Newton-Raphson methodras been popularized by Bellmannas his "quasilinearization" method, and by

McGill and Roberts as the "Generalized Newton-Raphson" method (Ref 20). The "Steepest ascent" methods of Bryson and Kelley (Refs 21, 22) are analogous to the projected gradient method in \(n\) variables. As might be expected, these methods are critically dependent on the choice of metric. The convergence properties can be analyzed by considering the case where the cbjective function is a quadratic furictional of \(\underline{u}\), written symbolically as
\[
\begin{equation*}
f=0.5 \underline{u}^{T} M \underline{u} \tag{31}
\end{equation*}
\]
where M is a linear operator in function space. The inverse metric is defined by scme other linear operator \(H\), which must have an easily com puted inverse. Then
\[
\begin{equation*}
|\underline{\mathrm{u}}|^{2} \triangleq \underline{\mathrm{u}}^{\mathrm{T}} \mathrm{H}^{-1} \underline{\mathrm{u}} \tag{32}
\end{equation*}
\]

The convergence analysis sketched in Section 7 can be carried out in function space by considering the eigenvalue problem
\[
\alpha \mathrm{H}^{-1} \underline{v}=\mathrm{M}_{\underline{v}}
\]

There will gencrally be an infinite number of eigenvalues. If their magnitudes vary over a wide (or infinite) range, convergence will be poor (or impossible). Under fairly general conditions, an especially favorable choice of the metric is
\[
\begin{equation*}
\underline{u}^{T} H^{-1} \underline{u} \triangleq \int_{t}^{t_{u}} \underline{u}^{T}(t) W(t) \underline{u}(t) d t \tag{33}
\end{equation*}
\]
where \(W(t)\) is the matrix of partial derivatives of the variational Familtonian with respect to control variables. With this choice of metric, it can be shown that the eigenvalues approach a finite limit, so all but a finite number of them will be within a small range. This greatly improves the convergence properties, and is the theoretical justification of the "Min-H" method of Kelley (Ref 22) and Gottleib (Ref 23). In favorable cases, the "Min-H" method can give excellent convergence. Gottleib has generalized the "Min-H" method to cases which cannot be handled by the metric given by Eq. (33). His generalization involves certain matrices which must be chosen arbitrarily, and critically affect the convergence. No general rules are available for selecting these matrices, but Gottleib has beer able to find good-choices for his example cases.

A function-space analog of the Fletcher-Reeves conjugate gradient method has been proposed by Mitter and Lasdon (Ref. 24). The second order convergence of the conjugate gradient method in \(n\) dimensions does not carry over into function space, but a major improvement over ordinary gradient methods can be expected. Theory indicates that this method, modified by use of the "Min-H" metric, should be capable of convergence rates not greatly inferior to a second order method.
12. SELECTED BIBLIOGRAFHY ON NONLINEAR PROGRAMMMING
12.1 Books on NLP and Optimization
A. Balakvishnan and C. Neustadt (Eds), "Computing Methods in Optimization Problems', Academic Presss 1964
R. Bellmann (Ed), "Mathematical Optimization Techniques",

Univ. of California Press, 1963
G. Hadley, "Norlinear and Dynamic Prograinmirg", AddisonWesley, 1964
G. Leitmann (Ed), "Optimization Techniques with Applications to Aerospace Systerns'", Academic Press, 1962
T. Vogi and A Lavi (Eds), "Recent Advances in Optimization Techniques'", Wiley, 1965
D.J. Wilde, "Optimum Seeking Methods", Prentice-Hall, 1964
G. Zoutendizk, "Methods of Feacihle Directions", Elsevier, 1960
12.2 Review Articles
J. Breakwell, "The Optimization of Trajectories", J. SIAM 7, 21.5-247 (1959)
A. Colville, "Nonlinear Programming Study" (Preliminary only; replies to a questionnaire circulated with test problems), IBM New York Scientific Center, 590 Madison Avenue, New York
W. Dorn, "Nonlinear Programming - A Survey", Manage. Sci. \(\underline{9}\) 171-208(1963)
T. Edelbaum, "Theory of Maxima and Minima", Chapter of "Optimization Techniques with Applications to Aerospace Systems'", G. Leitmann, (Ed), Academic Press, 1962
P. Fleischer, "Optimization Techniques", Chapter of "System Analysis by Digital Computer", F. Kou (Ed), Wiley, 1966
R. Fletcher, "Function Minimization Without Evaluating Derivatives - A Review'", Brit. Comp. J. 8, 33-41 (1965)
H. Kelley, "Method of Gradients" Chápter of "Optimization Techniques with Applications to Aerospace Systems'", G. Leitmann (Ed), Academic Press, 1962
A. Leon, "A Comparison Among Eight Known Optimizing Techniques" Chapter of "Recent Advances in Optinization Techniques" T. Vogl and A. Lavi (Eds), Wiley, 1965
J. Lewallen and B. Tapley, "Analysis and Comparison of Several Numerical Optimization Methods" (for trajectories), AIAA Paper, 58-67, January 1967
B. Paiwonsky, "Optimal Control: A Review of Theory and Practice", AIAA Journal 3, 1985-2006
M. Poweil, "Minimization of Functions of Several Variables", Chapter of unpublished book; no further information
H. Spang, "A Review of Minimization Techniques for Nonlinear Functions", SIAM Review 4, 343-365 (1962)
C. Wood, "Review of Design Optimization Techniques", IEEE Trans. Systems Sc. and Cybemetics 1, 14-20 (1965)
P. Wolfe, "Recent Developments in Nonlinear Programming", RAND Corp. Papers, P-2063 and P-2333-1 (1961), R-401PR (1962):

\subsection*{12.3 Significant Papers on Nonlinear Programming Methods (for N Variables.)}
(No author) "1800 Control Optimization Program (COP) Application Descriptions", IBM Report H20-0208-1
J. Abadie, "Generalization of Wolfe's Reduced-Gradient Method for the Case of Nonlinear Constraints', Proc. IFORS Congress, Boston, September 1966 HR7 262/0-JA-JC MSA
J. Barnes, "An Algorithm for Solving Nonlinear Equations Based on the Secant Meihod'", Bri.t. Comp. J 8, 66-72 (1965)
B. Beskind, "An N-Dimensional Search and Optimization Procedure'", Aerospace Corp. Report TDR-269 (4550-20)-2, December 1963
C. Broyden, "A Class of Methods for Solving Nonlinear Simultaneous Equations", Math. Comp. 18, 577-593 (1965)
C. Carroll, "The Created Response Suríace Technique of Optimizing Nonlinear, Restrained Systems'", Oper. Res. 9, 169-184 (1961)
A. Colville, "Process Optimization Program (POP) for the IBM 7040/40 or 7090/94" Share General Program Library, H9IBM007
C. Davidon, "Variable Metric Method for Minimization'", Argonne National Lab., ANL-5990, November 1959, 21 pp
A. Fiacco and G. McCormick, "Computational Algorithm for the Sequential Unconstrained Minimization Technique (SUMT) for Nonlinear Programming", Manag. Sci. 10, 601-617 (1964)
A. Fiacco and G. McCormick, "Extensions of SUMT for Nonlinear Programming: Equality Constraints and Extrapolation', Manage. Sci. 12, 816-820 (1966)
R. Fletcher and M. Powell, "A Rapidly Convergent. Descent Method for Minimization'', Brit. Comp. J 6, 163-168 (1963)
R. Fletcher and C. Reeves, "Function Minimization by Conjugate Gradients", Brit. Comp. J 7, 149-154 (1964)
M. Hestenes, "The Conjugate-Gradient Method for Solving Linear Systems", Proc. of Symp. in Appl. Math, McGraw-Hill, Vol. VI, 83-102 (1956)
R. Hooke and T. Jeeves, "Direct Search Solution of Numerical and Statistical Problems", J. Assoc. Comput. Mach. 8, 212-229 (1961)
H. Kelley, et. al., "An Accelerated Gradient Method for Parameter Optirnization with Nonlinear Constraints'", presented at AAS Space Flight Mechanics Specialist Conference, July 1966
H. Kuhn and A. Tucker, "Nonlinear Prograrnming", Proc. Second Berkeley Symposium on Math, Stat. and Probability, 481-492 (1951)
M. Powell, "A Method for Minimizing a Sum of Squares of Nonlinear Functions Without Calculating Derivatives' \({ }^{1 \prime}\), Brit. Comp. J. 7, 303-307
J. Rosen, "The Gradient Projection Method for Nonlinear Programming, Part I: Linear Constraints' \({ }^{\prime \prime}\), J. SIAM 8, p 181-217
J. Rosen, "The Gradient Projection Method for Nonlinear Programming, Part II: Nonlinear Constraints", SIAM J. 9, 514-532 (1961)
H. Rosenbrock, "An Automatic Method of Finding the Greatest or Least Value of a Function', Brit. Comp. J. 3, 175-184 (1960)
G. Stewart III, "A Modification of Davidon's Minimization Method to Accept Difference Approximations of Derivatives', J. ACM 14, 72-83 (1967)

\subsection*{12.4 Significant Papers on Trajectory Uptimization Methods}
J. Breakwell, J. Speyer, A. Bryson "Optimization and Control of Nonlinear Systems Using the Secind Variation', SIAM J. on Control, Ser. A 1, 193-223 (1966)
K. Brown and G. Johnson, "Real-Time Optimal Guidance", IBM Federal Systems Division Report \#66-220-001, August 1966
A. Bryson and W. Denham, "A Steepest-Ascent Method for Solving Optimüm Programming Problems", J. Appl. Mech., Trans. ASME, Ser. E, 29 247-257
S. Conte, "The Numerical Solution of Linear Boundary Value Problems", SIAM Review 8, 309-321 (1966)
R. Gottleib, "Rapid Convergence to Optimum Solutions Using a Min-H Strategy', AIAA Journal 5, 322-329 (1967)
M. Handelsman, "Optimal Free-Space Fixed-Thrust Trajectories Using Impulsive Trajectories as Starting Iteratives", AIAA J. 4, 1077-1082 (19066)
H. Ingram, "The Automation of Optimization Problems", AAS Preprint 66-116, July 1966
H. Kelley, "Gradient Theory of Optimal Flight Paths", J. ARS 50, 947-954 (1960)
H. Kelley, "Method of Gradients". Chapter in "Optimization Techniques with Applications to Aerospace Systems", G. Leitmann, (Ed), Academic Press, 1962
H. Kelley, R. Kopp, H. Moyer, "A Trajectory Optimization Technique Based On the Teory of the Second Variation", AIAA Paper 63-415 (1963)
G. Leitmann, "The Optimization of Rocket Trajectories - A Survey", Progress in Astronautical Sciences (S. Singer, Ed) N. Holland, 1961
P. Lion and M. Handelsman, "The Primer Vector on Fixed-Time Impulsive Traiectories", AIAA Paper 67-54, January 1967 G. McCue, "Satellite Orbit Transfer Studies (Final Report)", North American Aviation, Space and Information Systems Division, STD 66-1224, August 1966
G. McCue, "Quasilinearization Determination of Optimum FiniteThrust Orbital Transfers", North American Aviation, inc., SID 66-1278 (1966)
R. McGill and P. Kenneth, 'Solurion of Variational Problenis By Means of a Generalized Newton-Raphson Method", AIAA J. 2,
S. Mitter, L. Lasdon, A. Waren, "The Method of Conjugate Gradients for Optimal Control Problems", IEEE Journal, June 1966, 904-905
S. Pines, "Optimal Guidance for Ascent Trajectories Into Circular Orbits", AIAA Paper 67-56, January 1967
H. Robbins, "An Analytical Study of the Impulsive Approximation", AIAA J. 4, 1417-1423 (1966)
R. Wingrove, "A Method of Trajectory Optimization by Fast-Time Repetitive Computations", NASA Ames Res. Ctr., NASA-TND-3404, April 1966

REFERENCES
1. Colville, A., "Process Optimization Program (POP) for the IBM 7040/40 or 7090/94" Share General Program Library, H91 BM007
2. (No Author) "l800 Control Optimization Program (COP) Application Descriptions", IBM Report H20-0208-1
3. Beskind, B., "An N-Dimersional Search and Optimization Procedure", Aerospace Corp. Report TDR-269 (4550-20)-2, Decermber 1963
4. Abadie, J., "Generalization of Wolfe's Reduced-Gradient Method for the Case of Nonlinear Constraints", Proc. IFORS Congress, Boston, September 1966, HR \(7262 / 0\) - JA - JC MSA
5. Kuhn, H. and Tucker, A., "Nonlinear Programming", Proc. Second Berkeley Symposium on Math Stat. and Probability, 481-492 (1951)
6. Hadley, G., "Nonlinear and Dynamic Programming", Addison-Wesley, 1964
7. Powell, M., "Minimization of Functions of Several Variables'i, Chapter of unpublished book, no further information
8. Davidon, C., "Variable Metric Method for Minimization", Argonne National Lab., ANL-5990, November 1959
9. Rosenbrock, H., "An Automatic Method of Finding the Greatest or Least Value of a Function'", Brit. Computer J. 3, 175-184 (1960)
10. Hooke R., and Jeeves, T., "Direct Search Solution of Numerical and Statistical Problems", J. Assoc. Comput. Mach. 8, 212-219 (1961)
11. Rosen, J., "The Gradient Projection Method for Nonlinear Programming, Part I : Linear Constraints', J. SIAM 8, pp 181-217
12. Rosen, J., "The Gradient Projestion Method fon Nonlinear Programming, Part II : Nonlinear Constraints'", SIAM Journal 9, 514-532 (1961)
13. Kelley, H., et. al., "An Accelerated Gradient Method for Parameter

Optimization with Nonlinear Constraints', presented at AAS Space Flight Mechanics Specialist Conference, July 1966
14. Fletcher, R., and Reeves, C., "Function Minimization by Conjugate Gradients", Brit. Computer J. 7, 149-154 (1964)
15. Powell, M., "An Efficient Method for Finding the Minimum of a Function of Several Variables Without Calculating Derivatives", Brit. Computer J. 7, 155-162 (1964)
16. Fletcher, R., and Poweli, M., "A Rapidly Convergent Descent Method for Minimization", Brit. Computer J. 6, 163 - 168 (1963)
17. Stewart, G., III, "A Modification of Davidon's Minimization Method to Accept Difference Approximations of Derivatives", J. ACM 14, 72 - 78 (196́7)
18. Fiacco, A.: and McCormick, G., "Computational Algorithm for the Sequential Unconstrained Minimization Technique (SUMT) for Nonlinear Programming', Manag. Sci. 10, 601-617(1964)
19. Colville, A., "Nonlinear Programming Study" (Preliminary only: replies to a questionnaire circulated with test problems) IBM New York Scientific Center, 590 Madison Avenue, New York
20. McGill, R., and Kenneth. P., "Solution of Variational Problems By Means of a Generalized Newton-Raphson Method", AIAA J. 2, 1761-1766 (1964)
21. Bryson, A., and Denham, W., "A Steepest-Ascent Method for Solving Optimum Programming Problems', J. Appl. Mech., Trans. ASME, Ser. E, 29247-57
22. Kelley, H., "Method of Gradients" Chapter in "Optimization Terhniques with Applications to Aerospace Systems", G. Leitmann, Ed., Academic Press 1962
23. Gottleib, R., "Rapid Convergence to Optimum Solutions Using a Min-H

Strategy'", AIAA Journa1 5, 322-329 (1967)
24. Mitter, S., Lasdon, L., Waren, A., "The Method of Conjugate Gradients for Optimal Control Problems'", iEEE Journal, June 1966, 904-905```

[^0]: (2) For notation simplicity write: $W(I, J)=W(N J+I)$ where $1 \leq I \leq N$ and $\underline{W}(J)=[W(I, J), W(2, J), \ldots W(N, J)]$

