

--- ------ ----- ---- - ---- - - ----------_ .. -

,

Introduction to IBM Direct-Access
Storage Devices and
Organization Methods

Student Text

Major Revision, (February 1974)

This is a major revision of the previous edition, GC20-l649-6,
and obsoletes all prior editions.

Requests for copies of IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality. Address comments concerning the
contents of this publication to IBM Corporation, DPD Education Development -
Publications Services, Education Center, South Road, Poughkeepsie, New York 12602.

© Copyright International Business Machines Corporation 1966, 1973, 1974

All rights reserved. No portion of this text may be reproduced without express
permission of the author.

This text discusses the physical characteristics and capacities of
the following Direct Access Storage Devices:

2305 Fixed Head Storage
Available for a System/360 Model 195 or a System/370
Models 145, 155, 158, 165, 168 or 195. This device is
also supported by OS/VS.

2314 Disk Storage F acili ty
Available for a System/360 Models 30, 40, 50, 65, 67,
75, 195 or a System/370 Models 135, 145, 155, 158,
165, 168 or 195. This device is also supported by
OS/VS.

2319 Disk Storage Facility
Available for a System/360 Models 30, 40, 50, 65, 67,
75, 195 or a System/370 Models 135, 145, 155, 158,
165, 168 or 195. This device is also supported by
OS/VS.

3330-Series Disk Storage
Available for a System/360 Model 195 or a Systemj370
Models 125,135,145,155,158,165,168,195, and is
supported by OSjVS.

3340 Disk Storage
Available for a Systemj370 Models 115, 125, 135, 145,
155, 158, 165, 168, and is supported by DOSjVS and
OSjVS2.2.

The file organization methods and access methods for these
devices are also discussed. The use of direct access storage, basic
terminology, and the establishment of controls for a direct access
system are other topics addressed by this text.

The intent of this text is to introduce the reader to the Direct
Access devices and their Control Units, and the data set organiza
tions supported by OSjVS and DOSjVS. There is no discussion
pertaining to the various macro's used by the different access
methods. If more detail information is required refer to the refer
ences listed in the bibliography of this text.

No attempt at completeness is made. Refer to the publications
listed in the Bibliography for additional details.

The following Direct Access Devices are not covered in this text:

Preface

2312 and 2318 Disk Storage - composed of a single (2312) or
dual (2318) disk storage module for attachment to a 2314 DASF
- A Series or to a 2319 AI, A2, or A3 in a System/370 configu
ration with an Intergrated File Adapter (IF A).

2~ 13 Disk Storage - composed of four disk drive modules. May
be attached to a 2314-A 1 as a part of 2314 DASF -A Series or to a
2319 Disk Storage Al in a System/370 configuration with an IFA.

2319 Disk Storage - composed of three disk storage modules for
attachment to System/370 models 135 and 145, or in a 2314
DASF-B Series configuration.

The above devices are similar in concept to the 2314. For addi
tional information on a specific device refer to the reference
material listed in the Bibliography.

ii

Introduction ••••.•.••
Terminology
Uses of Direct Access Storage

Online Processing with Direct Access Storage
Direct Access Storage Inquiry
Complex Activity Modification
Direct Access Storage and Low·Activity Data Processing
High Activity••..
Program Residence •.............
Direct Access Storage and Online Systems
Direct Access Storage as Intermediate Storage
Direct Access Storage and the Responsive System

System/360 - System/370 Direct Access Storage Devices
Physical Description
Recording of Data
Access Mechanisms
Cylinder Concept and Capacities
Timing
DASD Control Units • •
Control Unit Functions

File Commands ..
Status Information
Data Transfer
Checking

Track Format
Index Point
Home Address
Gaps
Track Descriptor Record (RO)
Data Record Formats . . .

Count-Data Format
Count-Key·Data Format

Track Descriptor Reoord (RO)
Record Formats •.

Fixed, Unblocked ••
Fixed, Blocked
Variable, Unblocked
Variable, Blocked ..
Undefined
Reasons for Blocking

Track Capacity
File Commands

Control Commands
Search Commands
Read Commands
Write Commands .

Verification of Write Operations
Data Integrity . . .

Control Unit Features
File Scan
Record Overflow .
2844 Auxiliary Control Unit
Two Channel Switch
Rotational Position Sensing .

Introduction 10 File Organization
Data File Characteristics .
Processing Characteristics
Methods of Organization
IBM Operating Systems
Sequential Organization
Description of Records
DASD Storage Requirements

• 1
. 1

. 3

.3

.4

.5

.6

.6

.7

.8

.8

.9
11
11
16
17
20
21
25
26
26
26
26
26
26
28
28
28
28
28
28
29
30
31
31
31
32
32
32
32
32
35
35
36
37
37
38
39
39
39
39
40
40
41
45
45
46
47
48
51
51
51

Timing•.
Sequential Processing
Non-Sequential ...

File Maintenance
Uses for Sequential Organization
Operating SYstem Functions

Queued Access Method
Basic Access Method
User Options

Partitioned Organization
Description of Records
DASD Storage Requirements
Operating System Functions .
Indexed Sequential Organization

Prime Area ..
Indexes

Track Index
Cylinder Index
Master Index

Overflow Area . .
Cylinder Overflow Area
Independent Overflow Area
Overt low Records

Additions Procedure
First Addition to a Prime Track
Subsequent Additions to a Track
Addition of High Keys

Variable Length Records
Operating System Functions

Queued Access Method
Basic Access Method

Direct Organization
General Characteristics
Addressing
Directly Addressed File

Using the Key as the Address
Using a Cross Reference List
IndirectlY Addressed File ..

Address Conversion •.....
DiVision/Remainder Method
Digit Analysis ...•
Folding
Radix Transformation
Evaluation of Results

Description of a Directly Organized File
File Creation and Maintenance
Chaining Method

Creation of the File ..
Additions to the File .
Deletions from the File
Reorganization of the File

Progressive Overflow Method
Creation of the File ..
Additions to the File
Deletions from the File
Reorganization of the File
Progressive Overflow Compared to Chaining

Extended Search
Additions to the File ...
Deletions from the File ..
Reorganization of the File

Activity Loading

Contents
51
51
51
52
52
52
52
52
52
53
53
53
53
55
55
55
55
57
57
57
58
58
59
59
59
61
62
62
63
63
63

65
65
65
66
66
66
66
67
67
68
69
69
69
70
71
71
72
73
74
74
74
74
75
75
75
75
75
76
76
76
76

Blocked Records . • 77
Directly Addressed File • 77
Indirectly Addressed File 78

Operating System Functions 78
Introduction to Virtual Storage Access Method (VSAMI 79
What is VSAM . • • . • • . . • • • • 79
Data Stored Independently of Devices 80

How Data is Physically Stored 80
Key-Sequenced Data Set . . • • • • . 83
Entry-Sequenced Data Set . . • • • • 87
Utility Functions carried Out by Access Method Services 88
VSAM's Use of Catalogs . . • • • . • . . • • •• 88

A VSAM Catalog's Use in Data and Space Management 88
The Special Uses of User catalogs • • • • • • 90

Improving Performance and Reliability . . . • . • 90
Moving Data from One Operating System to Another 91
Processing VSAM Data Set with an ISAM Program 93
Using the Time Sharing Option with VSAM 93
System Design Consideration 95
Data Validation at Initial Input 95

Character Checking • • • 96
Field Checking 97
Batch or Level Checking .103
Control Field Checking . .105

Systemsor Internal Controls .106
Output. Controls • • .113
Program Testing • .114
Direct Access Label Checking .114
The Audit Trail ..•••• .115
Reconstruction Procedures .117
Bypass Procedures .118
Restart Procedures .120
Bibliography . • • .122

Introduction

This chapter presents System/360, System/370, and direct access
terminology and concepts that are prerequisite to an under
standing of the remainder of the text. It also discusses various
ways in which direct access devices can be used.

Direct Access Storage Device (DASD). A direct access storage
device (DASD) is one on which each physical record has a discrete
location and a unique address. Thus records can be stored on a
DASD in such a way that the location of anyone record can be
determined without extensive searching. Records can be accessed
directly as well as serially.

File. The term "file" can mean a physical unit (a DASD, for
instance), or an organized collection of related information. In this
text, the latter definition usually applies. An inventory file, for
example, contains all the data concerning a particular inventory. It
may occupy several physical units or part of one physical unit.
The Operating System (OS), one of the programming systems
available for S/360 and S/370, uses the term "data set" instead of
"file" to describe an organized collection of related information.

Record. The term "record" can also mean a physical unit or a
logical unit. A logical record may be defined as a collection of data
related to a common identifier: An inventory file, for example,
would contain a record (logical record) for each part number in
the inventory. A physical record consists of one or more logical
records. The term "block" is equivalent to the term "physical
record". On a DASD, certain "nondata" information required by
the control unit of the device is recorded in the same record area
as the physical record. This nondata information and the physical
record may be referred to as a whole with the term "data record".

Key. Each logical record contains a control field or key that
uniquely identifies it. The key of the inventory record, for
example, would probably be the part number.

Page 1

Terminology

OS/VS data management programs also provide a variety of
methods for gaining access to a data set. The methods are based
on data set organization and data access techniques.

Data sets can be organized in several ways:

• SEQUENTIAL: Records are placed in physical rather than
logical sequence. Given one record, the location of the next
record is determined by its physical position in the data set.
Sequential organization is used for all magnetic-tape devices,
and may be selected for direct-access devices. Punched tape,
punched cards, and printed output are sequentially organ
ized. Access to records in a sequential file can be made
through the use of the Queued Sequential Access Method
(QSAM) or the Basic Sequential Access Method (BSAM).
(See Chapter 5)

• INDEXED SEQUENTIAL: Records are arranged in sequence,
according to a key that is a part of every record, on the
tracks of a direct-access volume. An index or a set of in
dexes maintained by the system gives the location of certain
principal records. This permits direct as well as sequential
access to a record. Access Methods used to access an Indexed
Sequential file are the Basic Index Sequential Access Method
(BISAM) or the Queued Index Sequential Access Method
(QISAM). (See Chapter 7)

• DIRECT: The records within the data set, which must be on
a direct-access volume, may be organized in any manner you
choose. All space allocated to the data set is available for
data records. No space is required for indexes. You specify
addresses by which records are stored and retrieved directly.
Direct data sets are created by using special Basic Sequential
Access Method (BSAM) macro's. Records can be accessed by
using the Basic Direct Access Method (BDAM). (See Chapter
8)

• PARTITIONED: Independent groups of sequentially organ
ized records, called members, are on direct-access storage.
Each member has a simple name stored in a directory that is
part of the data set and contains the location of the mem
ber's starting point. Partitioned data sets are generally used to
store programs. As a result, they are often referred to as
libraries. (DOS/VS does not support Partitioned organiza
tion). (Chapter 6)

• KEY-SEQUENTIAL: This type of data organization is used
with Virtual Storage Access Method (VSAM). Records are

Page 2

loaded in the data set in key sequence and controlled by an
index. Records are retrieved and stored by keyed access or by
addressed access, and new records are inserted in the data
set in key sequence by means of distributed free space. (See
Chapter 9)

• ENTRY-SEQUENCE: This is also a data set organization
used with Virtual Storage Access Method (VSAM). The re
cords are loaded in the data set in physical sequence without
respect to their contents. Records are retrieved and stored by
addressed access. New records are added at the end of the
data set. (See Chapter 9)

Requests for input/output operations on data sets through macro
instructions employ two techniques: the technique for QUEUED
ACCESS and the technique for BASIC ACCESS. Each technique
is identified according to its treatment of buffering and synchro
nization of input and output with processing. The combination of
an access technique and a given data set organization is called an
Access Method. In choosing an access method for a data set,
therefore, you must consider not only its organization, but also
what you need to specify through macro instructions. Also, you
may choose a data organization according to the access techniques
and processing capabilities available.

System/370 provides a variety of devices for collecting, storing,
and distributing data. Despite the variety, the devices have many
common characteristics. The generic term VOLUME is used to
refer to a standard unit of auxiliary storage. A volume may be a
reel of magnetic tape, a disk pack, or a drum.

This text will address the use of direct-access volumes.

Direct-access volumes are used to store executable programs, in
cluding the operating system itself. Direct-access storage is also
used for data and for temporary working storage. One direct
access volume may be used for many different data sets, and space
on it may be reallocated and reused.

One requirement for many applications is the ability to process
data as it becomes available. The term applied to this type of
processing is "online,"meaning that input data does not have to be
subjected to preliminary editing or sorting before entering the
system, whether the input consists of transactions of a single appli
cation or transactions of multiple applications.

Page 3

Uses of Direct Access
Storage

Online Processing with
Direct Access Storage

Direct Access
Storage Inquiry

High-capacity direct access storage devices make the online pro
cessing approach feasible. While sorting may still be advantageous
before certain processing runs, in many cases the necessity for
presorting transactions before processing is eliminated. In addi
tion, the ability to process data online provides solutions to
systems problems for which previous solutions were impractical.

As an example of an online systems solution, an automotive parts
distributor maintains records for awarehouse inventory of 25,000
items, each of these items identified by a ten-character part num
ber. The distributor wanted to record each transaction affecting
each item as it occurred, so that if anyone item in inventory was
depleted he would immediately receive an out-of-stock noti
fication, thus permitting the inventory to be replaced as soon as
possible. His existing data processing system provided these
notifications only once a day, because his orders were batched and
processed; all transactions affecting inventory were accumulated,
sorted into part-number sequence and processed against a master
inventory file at the end of each day. The problem was solved with
the installation of a direct access storage system. All inventory
transactions would be processed online, as they occurred, and the
required status notifications would be provided almost imme
diately.

Although the example refers to multiple types of inventory input
transactions which were processed online, it should not be inferred
that inline processing is a unique requirement of inventory appli
cations, or that the online concept should be limited to trans
actions involving a single application. Direct access storage enables
the user to maintain up-to-date records for diversified applications
and to process nonsequential and intermixed input data for
multiple application areas.

Data processing installations have always found it desirable to
obtain specific information from files in the middle of an opera
tion. Before the development of direct access storage, the ability
to request information directly from temporary or permanent
storage devices was limited. Procedures were developed but at best
they resulted in time-consuming interruptions, and often the infor
mation was not completely up to date when received. The special
ability of direct access storage systems to process input data of
various types for multiple applications inline, along with the
ability to immediately update all affected records, makes it
possible to request information directly from storage and have the
reply displayed in readable form. This is significant because it no
longer makes it necessary to disrupt normal processing, nor is
there need for a delay between a requirement for informaton and
a reply. To illustrate, a large airline operated a number of reser-

Page 4

vations offices throughout the country and attempted to maintain
a record of all flights and passenger reservations on ledger-type
cards in a central location. The records were updated and inquiries
made by telephone. Replies were often inaccurate and delayed. An
analysis of the problem indicated that a direct access storage
system would be a solution. Flight-passenger records could be
maintained in direct access storage and given the proper communi
cations link from reservation desks to a computer, thus permitting
all inquiries to be answered quickly and accurately.

Other examples emphasize the importance of immediate inquiry
"What is the balance of account number 133420?" An inventory
control question might be: "How many of part number 55632 are
there on order?" Manufacturing: "How many subassemblies of
part number 16414 are on hand?" And in payroll: "What are the
year-to-daie earnings of employee number 13862?" Granted that
each of these questions could eventually be answered in other data
processing approaches, the question is when and how. Normally, it
would be at the end of a completed run, which might be too late
to be of significant value.

It is necessary, therefore, to consider the impact of immediate
inquiry capability on any system, for inquiry may be needed
regardless of previous data processing experiences.

The ability to request information directly from a computer and
receive an immediate response without involved or complex oper
ational procedures is in itself a justification for direct access
storage devices in many applications.

As the data processing requirements of a business increase, there Complex Activity Modification
also tends to be an increased interdependency between applica-
tions. Various applications require the same input records, or, for
processing, require reference to the same master file records used
in other applications. Modification of existing procedures to vary
the sequence of file referencing and/or to accommodate additional
references is more easily accomplished on direct access storage
systems.

In the case of a company with production control, inventory
maintenance and budgetary accounting, frequent procedure
changes were required when new products were manufactured and
when budget revisions were issued. Therefore, the referencing
sequence changed and additional references to master file records
became necessary. Regardless of the system selected to do the job,
the procedures had to be altered when changes occurred. However,
a dire~t access storage system was selected to make changes easier.
With it, master file records were always accessible regardless of
referencing requirements. In addition, direct access storage units

Page 5

Direct Access Storage and
Low-Activity Data Processing

High Activity

contained both inventory records and budgetary records and each
could be referenced as needed. Thus complex activity was handled
with a minimum of effort.

In the solution to this problem lies the solution to other data
processing problems where multiple, interdependent activities and
multiple reference to interrelated records are required.

Many of the applications installed today involve the processing of
a limited number of input transactions against very large master
files. Although very few master file records are altered or refer
enced by the input data for a particular run, an entire master file,
which is necessarily maintained in sequence, must be searched. As
an example, in a representative billing system, 100,000 customer
master records are maintained, only 9000 of which are referenced
daily. The 9000 records could be collected and sorted into master
file customer-number sequence and processed against the file in a
single run daily. However, the billing operation requires that bills
be completed throughout the day. The data is therefore batch
processed nine times during the day, with the result that 1000
input transactions are processed against the 100,000 master
records on each run. Since there is no practical way to skip
through a file, every record must be examined by the system in
each of the nine runs.

An answer to this billing problem, as well as to many other similar
processing problems, lies in the use of direct access devices, which
permit the retrieval of a single record. The storing of data records
so that the location of anyone can be determined without exten
sive searching is the unique capability of data processing systems
using direct access storage efficiently.

The use of direct access storage should be considered as a solution
to the problems of high-activity applications, that is, those in
which a comparatively small number of records are referenced or
updated frequently. As an example, in the processing of piecework
payroll calculations for a company having 10,000 employees, each
employee working on ten or more different jobs each day, each at
a specific rate and under a specific guarantee, and each calculation
based upon the employee's unique work history, there is a need
for continual reference to a comparatively small number of rate
tables. In a batch approach, as job completion tickets were
received they would be batched by employee, and a master rate
file would be searched for all the employee rate tables required to
process each employee's job tickets - or, as an alternate, a separ
ate edit run could be made to determine which rate tables would
be required. In either case job ticket data would be tagged with a
rate table requirement sequence, and all reference to a particular
rate table would be completed. When all rate data was extracted,

Page 6

another run would be required to complete the calculation. In a
direct access approach there would be access to all rate tables as
they were required, without having to batch or to search through
the file for each one and without having to go through an involved
procedure of repeated sorting and processing to complete the job.

Program steps required for processing can also be stored on direct
access storage so that they can be used when required. Doing this
offers several advantages:

1. The size of real storage can be reduced because only the
optimum number of program steps for processing data need
be in real storage at anyone time.

2. Time-between runs is reduced significantly because tapes no
longer have to be rewound and set up. Instead, operational
setup time can be limited to those functions pertaining to
output, such as changing printer output forms.

3. Data can be processed inline, regardless of the type of record
referenced or updated. As an example, a company with an
inventory control data processing tape system required a
total of 35,000 individual computer program steps for the
processing of many types of input data. The system selected
for the job could contain about 750 program steps in main
real storage at one time. A tape program library was
considered but the maintenance and continual searching of
the library tape was inefficient because runs could not be
made in the same sequence as the library tape. A better
solution for this problem resulted with the attachment of a
direct access storage device to the computer. When an order
was entered, it triggered a seek of the order program and a
transfer of it to real storage. If there came a time in the
processing where the back-order program was required,
back-order program steps would overlay the order program in
core storage and the back order processed. If a receipt was
processed, it would trigger the transfer of the receipt program
to real storage and be processed - and so on through the
many transactions which affect inventory. All this was done
au tomatically.

Another difficulty that can be resolved by having direct access to
program steps is program compaction. (Compacting occurs when
the programmer attempts to get as many program steps as possible
within a limited number of storage locations.) Although direct
access storage does not remove the need for efficiency, the
programmer's job is assisted. If his program is not limited by
space, he can better spend his time on writing a program that

Page 7

Program Residence

Direct Access Storage and
Online Systems

Direct Access Storage as
Intermediate Storage

operates efficiently. By setting up his programs as a series of
blocks, each with its own specified locations in direct access
storage, he also simplifies the task of modifying them. He can
organize his programs into sets of expandable subroutines and
proceed with the initial layout of the system, confident that all
processing planned can be achieved. Large programs can be broken
into primary and secondary subroutines with the access and
transfer of secondary subroutines when needed and in the
sequence required. Only when main storage is exceeded may
additional processing time be required for further transfers of
subroutines.

"Online" refers to the operation of input/output devices under
direct control of the CPU (central processing unit). When this can
be accomplished, it eliminates the need for human intervention
between input origination and output destination within computer
processing. "Online" can be applied to those units under direct
control of the CPU and physically located next to it - for
example, an online printer. It is also used for teleprocessing units
not located next to the CPU but requiring a communications link.

In the airline flight reservation problem the need for inquiry was
discussed. Since the reservations offices were remote from the
computer, a teleprocessing communications link was necessary.
Teleprocessing and direct access equipment therefore were
mutually supplemental. Without direct access storage the main
tenance of and access to flight records on a computer system
would be extremely difficult. Without teleprocessing equipment
online, the ability to change records or to inquire regarding infor
mation on those records would also be difficult. The lack of either
would make a computer system impractical. The reservations
office console I/O units were online to make inline processing
possible. Any computer system requiring remote I/O units online
must be carefully analyzed to determine whether the advantages
of direct access storage can also be applied.

When immediate processing of certain I/O types is not required,
direct access storage can be used to accumulate the infrequently
occurring transactions. For example, in an installation of a manu
facturer with serveral salesmen, the sales credits for commission
calculation are saved until the end of the week, at which time
commission statements are printed. Credit is given to the salesmen
at billing time, but credits are accumualted for a weekly run.
Rather than calculate the commission for each order at billing
time, the required information can be stored as it occurs on a
DASD. At the end of the week all of the credit data is processed
and statements are printed. This means that all processing of
credits can be done at once and that the setup time for printing a
special commission statement from the online printer is required
only once a week.

Page 8

In any application where selected input transactions can be
accumulated, control totals taken, and total counts of items main
tained, it might be advisable to use direct access storage as inter
mediate storage to gain a time-balanced system. When the
accumulated batch is of sufficient size to warrant processing, a
signal may be given to the system calling for initiation of pro
cessing when the system is temporarily idle; or the system may be
programmed to look at a count to determine when the number is
of sufficient size for processing.

Output records may be accumulated in the same way. During the
course of a day, random transactions may have been processed
calling for the generation of output documents which, if produced
at that time, involve multiple setups of equipment or the
continuous reservation of a magnetic tape drive. For convenience
in scheduling the printing operations, records may be retained in a
section of the DASD until the information file is large enough to
warrant printing, or until some other batch that produces a similar
document is run.

In an application that produces several outputs, the intermediate
results can be stored on a DASD. For example, when doing a
payroll on a system with one printer, all the calculations can be
done and the payroll register printed. At the same time, the infor
mation required for the checks can be written on a DASD. When
all employee records have been processed, the check records can
be quickly read back and the checks printed.

The ability to process input data inline regardless of the diversity
of applications and to store both master records and programs
makes direct access storage systems uniquely responsive. They can
process data randomly, give an immediate response, or, even more
appropriately, give these responses on a priority basis.

When a system is called upon to process many applications and the
input data is received randomly, it often becomes necessary to
schedule processing and establish a priority for processing. The use
of direct access storage gives unlimited flexibility in doing this
without creating an overpowering burden upon the operators of
the system. For example, a general file maintenance run can be
interrupted to process an inquiry; upon completion of inquiry pro
cessing, the machine can return to its file maintenance run. A
payroll job ticket calculation run can be interrupted to do an
assembly of a new program or even to test a new program. In
other words, a direct access storage system responds to changing
priorities and requirements. Rather than always processing data on
a first-come, first-served basis, a direct access storage system re
sponds effectively on a controlled first-things-first priority basis.

Page 9

Direct Access Storage
and the Responsive System

When a direct access system is selected to fulfill the data pro
cessing needs of an installation, it may not obviate the need for
sorting records into sequence. Direct access storage devices can be
used for very efficient sorting operations.

Page 10

System/360
System/370

Di rect Access
Storage Devices

Several DASD's are available for System/360 and System/370. The
devices differ in physical appearance, capacity, and speed. This
chapter discusses these characteristics for each of the devices.

Functionally and logically, however, they are similar in terms of
data recording, checking, formatting, and programming (see
Chapter 3).

Refer to the preface of this text for device type and Models of
S/360 or S/370 for which it is available.

2314 Direct Access Storage Facility (see Figure 2.1). The 2314
uses the 2316 removable disk packs. The packs, when removed
from the drive, are enclosed in a protective cover. Each pack con
sists of 11 disks mounted on a vertical shaft. The disks are 14
inches in diameter and are made of metal with a magnetic oxide
coating on both sides. Since the top surface of the top disk and
the bottom surface of the bottom disk are not used for recording,
each pack contains 20 recording surfaces.

Page 11

Physical Description

Figure 2.1 2314 Direct Access Storage Facility

3330 Disk Storage. (see Figure 2.2). The 3330 closely follows the
design concepts introduced by the IBM 2314. The facility consists
of a 3830 Storage Control unit and up to four 3330 Disk Storage
Modules, with each module containing two independent disk
drives.

Removable logical address plugs permit changing the logical device
addresses of the drives within the facility. An additional service
address plug is provided with each facility for customer engineer
servicing from the CE panel.

Figure 2.2 3330 Disk Storage Facility

Page 12

The 3330 uses the IBM 3336 disk pack (see Figure 2.3).

Figure 2.3 3336 Disk Pack

2305 Fixed Head Storage Facility. (see Figure 2.4). The 2305
fixed head storage facility consists of a 2835 Control unit and one
or two 2305 fixed head storage modules.

The 2305 fixed head storage module uses six disks permanently
mounted in each storage module.

Page 13

Figure 2.4 2835 Storage Control and 2305 Fixed Head Storage Module

3340 Disk Storage Facility. The 3340, together with the 3348
Data Modules (see Figure 2.5), differs in design from previous
DASD devices in that the 3348 Data Module contains the disks,
the spindle, the read/write heads, and the access arms. The 3348
Data Module is a sealed cartridge, which reduces exposure to out
side contamination.

The data module concept offers the following advantages:

• Drive capacity can be changed by changing the data modules.

• Preventive maintenance of the heads, disks, and spindle is
eliminated by reducing the exposure to outside contamin
ation.

• Reliability is improved by dedicated read/write heads. Each
head reads only the data it previously wrote.

Another feature of the data module is defect skipping. Defect
skipping allows data to be written before and after a surface de
fect. Thus, all of the track can be used except for that portion

Page 14

that has the defect. This also eliminates the access time that was
formerly required to move the read/write heads to an alternate
track.

The 3340 configuration includes combinations of these disk stor
age modules (see Figure 2.6).

3340-A2 (control unit and 2 drives)
3340-BI (1 drive)
3340-B2 (2 drives)

All 3340 subsystems must have one 3340-A2 module.

3340-A2

Figure 2.5 3348 Data Module

Figure 2.6 3340 Disk Storage Facility

Page 15

Record ing of Data

I

The recording surface of each device is divided into many tracks.
A track is defined as a circumference of the recording surface. The
tracks are concentric, not a spiral like a phonograph record.

Data is recorded serially bit by bit, eight bits per byte, along a
track. The parity bit associated with each byte in core storage is
not recorded (for the way in which data transfer is checked, see
Chapter 3). On the 2301, data is recorded in parallel groups of
four bits. Actually, each addressable track of the 2301 consists of
four physical tracks.

The number of tracks per recording surface and the capacity of a
track for each device are as shown in Figure 2.7. Each track has
some "nondata" information recorded on it (again see Chapter 3).
The capacity given is the maximum number of data bytes that can
be recorded on a track. Where alternate tracks are shown, these are
reserved for use in case of damage to the recording surfaces. For
the drum devices, "spare" tracks are provided for this purpose.

~ 2314 St""go F",mty' 200 ""k' PO' ."'.re Ip'.' 3 "",,"",;
;:< 7294 bytes per track.

3330 Disk Drive: 404 tracks per surface (plus 7 alternates);
13,030 bytes per track.

2305 Fixed Head Facility:
Mod. 1 384 addressable tracks;

Mod. 2

3340 Disk Drive:

14,576 bytes per track (RO no key);
14,136 bytes per track (R1 no key).

768 addressable tracks;
14,866 bytes per track (RO no key);
14,660 bytes per track (R1 no key),

with 3348-35 module

348 tracks per surface (plus 1 alternate);

8,368 bytes per track

100,416 bytes per cylinder

34,944,768 bytes per data module

with 3348-70 module

696 tracks per surface (plus 2 alternates);

8,368 bytes per track
100,416 bytes per cylinder

69,889,536 bytes per data module

Figure 2. 7 DASD tracks

Page 16

Each device has some type of access mechanism whereby data is Access Mechanisms
transferred to and from the device. The mechanisms are different
for each device, but each mechanism contains a number of read/
write heads that transfer data as the recording surfaces rotate past
them. Only one head can be transferring data (either reading or
writing) at a time.

2314 Disk Storage Facility (see Figure 2.8). The access mechanism
consists of a group of access arms that move together as a unit.
This comb type access mechanism can move horizontally to the
different positions on the disk, thus giving access to all the tracks.
Each arm has two read/write heads. There are ten arms giving a
total of twenty heads - one for each recording surface.

3330 Storage Facility. Each drive of the 3330 has a comb type
mechanism like the 2314. The 3330 having 19 tracks per cylinder
has 19 read/write heads - one for each recording surface.

Comb-type access assembly

Access arms

Track

Figure 2.8 Comb type access mechanism

Page 17

Disks

Cylinder

2305 Model 1. An addressable recording track occupies a 180-
degree arc on a disk surface (see Figure 2.9). It consists of two
logical track segments, one on the top surface of a disk and the
other directly below it on the lower surface of the same disk. Two
recording elements (R/W heads) are paired to access each address
able track in parallel. Data is recorded serially by bit but parallel
by byte. All odd bytes are recorded on the upper segment and all
even bytes are recorded on the lower segment. Half a rotation is
required to record a full logical track of data and the average
latency is one quarter of a revolution. There are 384 tracks each
with a capacity of 14,576 bytes, giving a module a capacity of
over 5M bytes.

Head for
Upper
Segment

Head for
Lower
Segment

Figure 2.9 2305 Modell

Page 18

Track 2

o
'--_- Head for

Upper
Segment

Head for
Lower
Segment

2305 Model 2. Four non-removable access mechanisms are
positioned around the disks (see Figure 2.10). Each access
mechanism accesses one quarter of the tracks on each surface.
Data is recorded serially by bit on each track. There are 768
addressable tracks. Only having one head per track allows twice as
many recording tracks to be used per surface compared with the
Modell. Each track has a normal capacity of 14,866 bytes, giving
a module capacity of over 11M bytes.

Figure 2.10 2305 Model 2

768 Recording Tracks/Module

96 Spare Tracks/Module

3340 Disk Drive. The 3340 uses the 3348 disk module which has
the access mechanism contained in the sealed cartridge. The 3348
having 12 tracks per cylinder has 12 read/write heads - one for
each recording surface. Because these data modules are removable,
they permit unlimited offline storage capacity.

Page 19

I

Cylinder Concept

and Capacities
A cylinder of data is the amount that is accessible with one posi
tioning of the access mechanism. This is an important concept,
since movement of the access mechanism represents a significant
portion of the time required to access and transfer data. A large
amount of data can be stored in a single cylinder, thus minimizing
the movements of the access mechanism. Using the 2314 as an ex
ample, physically the pack consists of twenty separate horizontal
recording surfaces, while from an access point of view it consists
of 203 separate vertical cylinders of twenty tracks each (see
Figure 2.11).

Figure 2.11 2314 cylinders

The capacities given below do not include the surfaces or tracks
reserved as alternates or spares and assume the use of part of each
track for information required by the IBM operating systems.

2314 Storage Facility. Each pack has 200 cylinders (plus three
alternates), which is equal to the number of positions to which the
access mechanism can move. Each cylinder has 20 tracks, which is
equal to the number of recording surfaces. A cylinder has a
maximum capacity of 145,880 data bytes (7294 bytes per track,
20 tracks per cylinder). A pack has a maximum capacity of 29.17
million bytes. A 2314 Model Al (eight drives) has a maximum of
233.4 million bytes available to the system at one time. A 2314
Model A2 (five drives) has an on-line capacity of 145.880 million
bytes.

Page 20

I

3330 Storage Facility. Each pack has 411 cylinders (including 7
alternates), which is equal to the number of positons to which the
access mechanism can be moved. Each cylinder has 19 tracks,
which is equal to the number of recording surfaces. A cylinder has
a maximum capacity of 247,570 data bytes (13,030 bytes per
track, 19 tracks per cylinder). A pack has a maximum capacity of
100M bytes.

2305 Fixed Head Storage Module. The storage module is a fixed
head disk drive with each addressable track having it's own fixed
read/write element.

The 2305 Modell has 864 R/W elements, 768 are positioned to
address 384 recording tracks (two elements per data track handle
data in parallel (see Figure 2.9). 96 elements are positioned to
address the 48 spare tracks. These spare tracks can be physically
connected by the customer engineer to replace a faulty original
track. The module has a capacity in bytes (full track records; no
key) of 5,428,224.

The 2305 Model 2, like the Modell, also has 864 R/W elements,
but since it records data serially by bytes, it has 768 elements
positioned to address 768 recording tracks, and 96 elements for
the spare tracks. Module capacity of the Model 2 is 11,258,880
bytes (full track records, no key).

3340 Disk Drives. Drives of the 3340 series use the 3348 sealed
data module. Drive capacities may be changed by selecting one of
the following options:

• 3348-35 has 348 cylinders with 1 alternate. There are 12
tracks per cylinder. The byte capacity of a track is 8,368
bytes giving the data module a capacity of 34,944,768 bytes.

• 3348-70 has 696 cylinders with 2 alternate tracks available.
As with the 3348-35, this data module also has 12 tracks per
cylinder but has a capacity of 69,889,536 bytes.

The time required to access and transfer data consists of four
parts: access motion, head selection, rotational delay, and data
transfer.

Access Motion Time. This is the time required to position the
access mechanism at the cylinder containing the specified record.
If the mechanism is already at the correct cylinder, there is no
need to move it, so access time is zero. In the following discussion
of each device, the figure given is the minimum access time if the
mechanism does move.

Page 21

Timing

\I)

'0
C

8
Q)

.!!!

'E
c
Q)

E
f=

I

140

120

100

80

t:

I
60

40 r
20

o
o 20

• 2314 Storage Facility: As shown in Figure 2.12, acceleration
of the mechanism is a factor, but the access motion time is
essentially a function of the number of cylinders moved. For
a movement of one cylinder, the minimum time is 25 ms, the
maximum is 130 ms with an average of 60 ms.

V
/

V"
./

'/ I'
./

~

I I I

40 60 80 100 120 140 160 180 200

Number of tracks traveled

Figure 2.12 2314 access time

• 3330 Disk: For a movement of one cylinder, the minimum
time is 10 milliseconds; the maximum is 55 ms; the average
over the entire pack is 30 ms.

• 2305 Fixed Head: None, since the access mechanism does
not move.

• 3340 Storage Facility: For a movement of one cylinder, the
minimum time is 10 milliseconds; the maximum is 50 ms; the
average over the entire pack is 25 ms.

Head Selection. Electronic switching is required to select the
correct read/write head of the mechanism. The time is negligible in
all cases.

Rotational Delay. This is the time required for the correct data to
rotate to the read/write head so that the data transfer can begin. It

Page 22

I

can range from zero to a full rotation (revolution). Half a rotation
(average rotational delay) is generally used f~r timing purposes.
The full rotation and average rotational delay for each device are:

Full Average

2314 storage f acili ty 25 ms 12.5 ms
3330 16.7 ms 8.4 ms

2305-1 10 ms Rotation 2.5 ms
5.1 Access

2305-11 10 ms Rotation 5.0 ms
10.25 Access

3340 disk drive 20.25 10.12

Data Transfer. The time required to transfer data between the
device and core storage is a function of rotation speed and the
density at which the data is recorded.

Milliseconds
KB* per byte

2314 storage facility 312 KB 0.0032051
3330 disk drive 806KB 0.0012407
2305 Model I 3000 KB 0.0003333

Model 2 1500 KB 0.0006666
3340 disk drive 885 KB 0.0011300

* Thousands of bytes per second

Summary of Timing. In timing a job, the direct access portion
consists of access motion time plus rotational delay plus data
transfer. An average of half a rotation is generally used for rota
tional delay. Complete timing for a job requires, of course, the
consideration of additional factors such as problem program pro
cessing time, access method processing time, and control program
time. In this text, only direct access device timing is discussed.

Page 23

DASD Control Units

This chapter discusses the ways in which the devices are alike.
They all attach to a control unit which in turn attaches to the CPU
via a channel. It is the control unit that determines the functional
and logical characteristics of the devices.

The 2314 Storage Facility has a self contained control unit. Modu
lar growth of the facility is provided by attaching various combin
ations of 2312, 2313, and 2318 disk storage units to the 2314
storage control.

A 2844 Auxiliary Storage Control unit can be attached to the
2314 as an integral unit. The IBM 2844 is a second control unit (in
addition to the basic 2314 control) for the disk modules in the
2314. It attaches to the 2314 facility as an integral unit. Any on
line 2314 disk module can be controlled through either the 2844
or the basic 2314 control. Switching of any module to operate
with either control unit is effected by programming.

This second control unit, when attached to two System/360
Model 30's or 40's or to a Model 50 and up (where a second chan
nel is available), potentially doubles 2314 throughput and signi
ficantly increases system throughput. A 2314/2844 complex is
ideally suited for very high activity applications and for real
time and teleprocessing applications that require maximum disk
storage availability.

The 2314/2844 complex provides for:

1. Simultaneous operation (such as for reading and writing opera
tions) of any two 2~}4 on-line disk modules with two selector
channels.

2. Systems availability to the 2314 modules if either control unit
(Le., the basic 2314 or the 2844) should require preventive or
unscheduled maintenance.

Page 25

Control Unit Functions

The 3830 control unit is used for the 3330 Disk Drive and
controls up to four 3330s.

The control unit for the 2305 Fixed Head Storage Facility is the
2835. The 2835 control unit will handle 1 or 2 fixed head storage
modules.

This chapter also discusses the record formats permitted when
using IBM programming systems.

File Commands The control unit interprets and executes the file commands
obtained from the CPU via the channel. It is these commands that
control the operation of the devices. They are discussed in more
detail later in this chapter.

Status Information The control unit furnishes status information to the CPU.
Examples are (1) transfer of data has been completed, (2) the end
of the data file has been sensed, and (3) an error has been de
tected.

Data Transfer The control unit provides a path for data between the CPU and
the devices, and translates the data between the CPU and the
devices.

Checking The control unit checks the validity of data transfer. As data is
written (transferred from the CPU to a device), the control unit
removes the parity bit from each byte. It then computes two
Cyclic Check bytes, which are written at the end of each area. The
two Cyclic Check bytes are coded to represent the data in the
associated area. As data is read (transferred from a device to the
CPU), all areas read are inspected by the control unit. Cyclic
Check bytes are recalculated for each area and compared with
those retrieved from storage. As the control unit transmits data to
the CPU, Cyclic Check bytes are removed and parity bits are re
stored as needed to maintain odd parity.

There are two advantages to this method of checking. It detects
more errors than can be checked with a parity check. It also saves
storage space on the devices; checking requires 16 bits per data
area rather than one bit per byte.

Track Format Information is recorded on all devices in a format which is pre
scribed by the control unit and which is identical for all devices.
Each track contains certain "nondata" information (such as the
address of the track, the address of each record, the length of each
record, and gaps between area) as well as data information (see
Figure 3.1).

Page 26

Index
Point

Track Descriptor
Record (RO)

1

Data Record (Rl)
1

Data Record (Rn)
~ ____ ~1~ ______ ~
(I

~G I CountlG ~GrA1G I CountlG[DatclG DDGrA"lGICount IG I Data I o Area ~ LJ Area ~ 0 Area Area

A. Count-data format

r----- Index Point

,..---- Gap

r Home Address r Track Descriptor Record (RO) r Data Record (Rl)

(
1 1~ __________ ~

v r;:l. I Count I [DaiOl G
G J..:.:..l.G Area G ~
/ ,

// "
"

[FI T I r l~cJ
t t lCycll, <he,k

Head Number

Cylihder Number

'-------- Flag

~
Cyclic Check

Data Length

Key Length

Record Number }

Head Number

Cylinder Number

Identifier

Index
Marker

V GI

Record 0

Figure 3.1 Track formats

F lag

'----------------- Address Marker

B. Count-key data format

Record 1

C. 2305 Record Format

Page 27

Record 2/ Record N

G5 V

t
Note: Lost record on track

followed by G5.

Index Point

Home Address

For each device, there is one Index Point to indicate the physical
beginning of each track.

On each track, there is one Home Address to define the physical
location of the track (the track address) and the condition of the
track. As shown in Figure 3.1 B, it is a seven-byte area consisting
of:

• Flag - one byte indicating the condition of the track
(operative or defective) and the use of the track (primary or
alternate).

• Cylinder Number - two bytes indicating the cylinder in
which the track is located.

• Head Number - two bytes indicating the read/write head
that services this track. The combination of cylinder and
head numbers indicates the address of the track.

• Cyclic ~heck - two bytes used for error'detection, as already
described. Special Home Address commands are used to read
or write home addresses. Normally, this function is per
formed only by utility programs.

Gaps Gaps separate the different areas on the track. Certain equipment
functions take place as the gap is rotating past the read/write head.
The length of the gap varies with the device, the location of the
gap, and the length of the preceding area. For instance, the gap
that follows the index point is a different length from the gap that
follows the home address, and the length of the gap that follows a
record depends on the length of that record.

Track Descriptor Record (RU) This record, sometimes referred to as RO, is the first record after
the Home Address and is also illustrated in Figure 3.1. IBM pro
gramming systems use RO to store various information about the
track. Details about its contents and use are discussed later.

Data Record Formats One or more user data records follow record RO on the track. The
first part of each data record is an Address Marker, a two-byte area
which is supplied by the control unit as the record is written and
which enables the control unit when reading records to locate the
beginning of the record. As shown in Figure 3.1, there are two
possible data record formats (Count-Data and Count-Key-Data),
one of which may be chosen for a particular file.

Count-Data Format Records of this format (see Figure 3.1 a), consist of an Address
Marker, a Count Area and a Data Area. Records formatted in this
way are said to be formatted without keys.

Page 28

The count area is an eleven-byte field which identifies the record
(in terms of cylinder number, head number, and record number)
and indicates the record's format (Count-Key-Data or Count-Data)
and length. The fields within the Count Area are as follows:

• Flag - a byte containing the same information as the Home
Address flag byte and some additional information used by
the control unit.

• Identifier (lD) - a collective term used to refer to the
cylinder number, head number, and record number fields as a
whole.

Cylinder and Head numbers - four bytes normally contain
ing the same information as the corresponding bytes in the
Home address.

Record Number - one byte containing a record number (in
binary notation) ranging from I to 255. The first user data
record is record I (R I), the second is record 2 (R2), etc.

• Key Length - a one-byte field always containing 0 for a
record of the Count-Data format.

• Data Length - two bytes specifying the number of bytes in
the Data Area of the record excluding the Cyclic Check. It is
in binary notation, so it can range from 0 - to a theoretical
maximum of 65,535. A data length of 0 indicates the end of
a logical file.

• Cyclic Check - two bytes used for error detection, as already
described.

Records of this format (see Figure 3.1 b), consist of an Address Count-Key-Data Format
Marker, a Count Area, a Key Area, and a Data Area. Records
formatted in this way are said to be formatted with keys. The Key
Area, which can range from I to 255 bytes, contains the key (part
number, man number, account number, etc.) that identifies the
following Data Area. In most cases records will be formatted with
keys so that they can be quickly located.

The major difference between the two formats is that the Count
Key-Data format contains a Key Area while the Count-Data
format does not. The existence of a Key Area causes one other
difference between the two formats. The Key Length field of the
Count Area in the Count-Data format is always zero, but in the
Count-Key-Data format it specifies (in binary notation) the length
of the Key Area and therefore contains a number from I to 255.

Page 29

The 2305 does not record a home address area between the index
point and RO (see Figure 3.lc). However, for compatibility with
other similar devices, it does accept and emulate Write Home
Address, Read Home Address, and Search Home Address
commands.

Track Descriptor Record (RO) The Track Descriptor Record, as mentioned earlier, follows the
Home Address and is used by IBM programming systems to store
information about the track. The programming systems require
that it contain a Count Area and a Data Area and no Key Area.
The Count Area.is the same as described for data records except
that record number is always 0 (hence its name RO), Key Length is
always 0, and Data Length is always 8. The Data Area is therefore
eight bytes long plus two bytes for the Cyclic Check.

Figure 3.2 shows that the track Descriptor Record serves another
purpose in addition to its use by programming systems. In case a
track on a non-drum device becomes defective, RO's Count Area
provides a cross reference between the original primary track and
the alternate track to which data has been moved by containing
the cylinder number and head number (track address) of the alter
nate track, instead of (as is normal) the track address of the
original primary track. On drum devices, the address of an alter
nate track is changed by the customer engineer to the address of
the original primary track.

If IBM programming systems are not used, the data area of RO
may contain user's data. If this choice is made, the restrictions
noted above that Key Length equal 0 and Data Length equal 8 do
not apply. This choice, however, is not recommended, since the
use of IBM programming systems greatly simplifies the user's pro
gramming.

* A 2 in the flag byte indicates that this is a defective
primary track; a 1 indicates that this is an operative
alternate track.

Figure 3.2 Cross-referencing between original track
and alternate track via RO

Page 30

Count

When using IBM programming systems, logical records may be in
one of five formats, as shown in Figure 3.3. The same five formats
shown are permissible without Key Areas. In all cases, if the
records are formatted with keys, all records in the file must have
Key Areas and all of the Key Areas must be the same length.

Fixed, Unblocked

I AAA I r---Re-c-o-rd-a-a-a--w

Key Data

Fixed, Blocked

Record Formats

[ill] I"'IA-A-A""I--::-R-ec-o-rd-a-aa-""I'III~C~c~c""1 ~Re-c-o-rd-c-c-c-"'II~F""FF--rl-R-e-co-rd-f-ff---'

Count Key Data

Variable, Unblocked

D I AAA I I Blil Rl I Record aaa
Count Key Data

Variable, Blocked

D ~ =1 B=l=II=R=l =IA=A~A:I ~-=--=-Re-=-c-o_-rd_-_a-a_a-_~~IT"K""'IIr-R-l""'lc-c-C""'I-Re-c-ord-c-cc-""'IIr-R-l""'l F-F-F ""'I-R-e-co-rd-ff-f --,

Count Key Data

Undefined
IAAA I --Re-c-o-rd-a-a-a----

_'-1

Count Key Data

Figure 3.3 Record formats

All records in the file are the same length. Each Data Area con
tains one logical record. If the records are formatted with keys as
shown, the key is usually not repeated in the Data Area. In some
cases, the key may appear in both areas, as discussed in Chapters
5-8.

All records in the file are the same length. Each Data Area con
tains a block of more than one logical record. All blocks are the
same length except for a possible short block at the end of the file.
The Key Area usually contains the key of the highest record in the
block. The key is also a field in each logical record, so that records
can be identified during processing.

Page 31

Fixed,Unbiocked

Fixed,Blocked

Variable, Unblocked The records in the file are of varying lengths. Each Data Area
contains one logical record and the special fields shown. BL (block
length) indicates the number of bytes in the block including itself.
RL (record length) indicates the number of bytes in the record
including itself.

Variable, Blocked The records in the file are of varying lengths. Each Data Area
contains a block of logical records. BL and RL have the same
significance as for Variable, Unblocked.

Undefined This format is provided to permit the handling of records that do
not conform to the other formats. An example is variable-length
records that do not contain the BL and RL fields.

Reasons for Blocking Records The primary reason for blocking records is to pack direct access
storage more efficiently. With blocked records, there is an Address
Marker, Count Area, Key Area, and gaps for each block of records
rather than for each logical record.

Another reason for blocking is that it may save time. If records are
processed consecutively, there is only one rotational delay before
reading or writing a block of records. If records are not processed
consecutively, however, blocking may be a disadvantage, since it
takes longer to transfer the entire block rather than the single
record to be processed.

Track Capacity In Chapter 2 the capacity of a track was expressed in terms of the
maximum number of data bytes. This maximum may be achieved
when there is one physical data record (block) per track formatted
without a key. As the track is divided into multiple data records,
the additional Address Markers, Count Areas and gaps reduce the
number of bytes available for data. This section discusses track
capacity from the more realistic standpoint of how many physical
data records of a given length will fit on a track.

In the tables and formulas presented in Figures 3.4 and 3.5, the
capacities are based on th~ Track Descriptor Record being used as
specified by IBM programming systems rather than for user's data.

In most cases, the table shown in Figure 3.4 can be used to look
up the number of given-length records per track. Note that the
table is divided into'two parts, since the capacity varies depending
on whether records are formatted with or without keys. Examples
using the table:

• Device is the 3330, records are unblocked and formatted
without keys, and data length is 200 bytes. There will be 28
records per track.

Note: Use formula in Fig. 3.5 to calculate physical record size.

Page 32

• Device is the 3330, records are unblocked and formatted
with keys, data length is 200 bytes, and key length is 8 bytes.
In using the right-hand side of the table, the number to look
up is data length plus key length. There will be 13 records per
track.

Note: Use formula in Fig. 3.5 to calculate physical record size.

In some cases, the table in Figure 3.4 cannot be used and the
number of records per track for a given record design must be
calculated using the formulas shown in Figure 3.5. The formulas
are different for each device because the gap lengths required by
each device are different. The formulas in Figure 3.5 indicate the
number of bytes required for each data record other than the last
one on the track, as well as the number of bytes required for the
last data record on the track. These two categories are further
divided into data records formatted with keys and data records
formatted without keys. In the formulas, KL = Key Area Length
(not including the Cyclic Check), and DL = Data Area length (not
including the Cyclic Check).

Maximum Bytes per Physical Record Physical Maximum Bytes per Physical Record
Formatted without keys Records Formatted with Keys

per
2314 3330 2305 2305 Track 2314 3330 2305 2305

Mod.1 Mod.2 Mod.1 Mod.2
7294 13030 14136 14660 1 7249 12974 13934 14569
3521 6447 6852 7231 2 3476 6391 6650 7140
2298 4253 4222 4754 3 2254 4197 4222 4663
1693 3156 3210 3516 4 1649 3100 3008 3425
1332 2498 2480 2773 5 1288 2442 2278 2682
1092 2059 1996 2278 6 1049 2003 1794 2187
921 1745 1648 1924 7 . 878 1689 1446 1833
793 1510 1388 1659 8 750 1454 1186 1568
694 1327 1186 1452 9 650 1271 984 1361
615 1181 1024 1287 10 571 1125 822 1196
550 1061 892 1152 11 506 1005 690 1061
496 962 782 1040 12 452 906 580 949
450 877 688 944 . 13 407 821 486 853
411 805 608 863 14 368 749 406 772
377 742 538 792 15 333 686 336 701
347 687 478 730 16 304 631 276 639
321 639 424 676 17 277 583 222 585
298 596 376 627 18 254 540 174 536
276 557 334 584 19 233 501 132 493
258 523 296 544 20 ' 215 467 94 453
241 491 260 509 21 198 435 58 418
226 463 230 477 22 183 407 386
211 437 200 448 23 168 381 357
199 413 174 421 24 156 357 330
187 391 150 396 25 144 335 305
176 371 128 373 26 133 315 282
166 352 106 352 27 123 296 261
157 335 88 332 28 114 279 241
148 318 70 314 29 105 262 223
139 303 52 297 30 96 247 206

Figure 3.4 Track capacity table
Page 33

I

BYTES REQUIRED BY PHYSICAL DATA RECORDS

Track
Capacity

Device (in bytes) Data Records (except for last) Last Data Record

2314 7294 [534(KL+DL)/512] *+C+l01 KL+DL+C C= 0 when KL=O
C=45 when KLjkO

(with key) (no key)
2305-1 14136 632+KL+DL 430+DL ***
2305-2 13934 289+KL+DL 198+DL

3330 13030 135+C+KL+DL *** C= 0 when KL=O
C=56 when KLjkO

3340 8,368 C+KL+DL *** C=167 when KL=O

C=242 when KLfO

* Truncate any fraction KL
DL

Key Length
Data Length *** last record calculated as any other record on the track

Figure 3.5 Traak capacity formulas

• The track capacity figure is the number of bytes left for data
records after subracting the bytes required for the Home
Address, the Track Descriptor Record (RO is used by pro
gramming systems), and the Address Marker, Count Area,
Cyclic Check and gaps for one data record.

• The formula for the number of bytes required for the last
data record represents only Data Area length (and Key Area
length if formatted with keys). The number of bytes required
for the fixed portion of the last record and the gaps has
already been subtracted from the track capacity figure.

• The formula for the number of bytes required for each data
record except the last includes the bytes required for the
Address Marker, Count Area, Cyclic Check, and fixed gaps
for a record of this type. The 2314, for instance, requires 146
bytes for this information. This formula sometimes includes a
fixed factor to account for the allowable deviation in the
position of the record. The 2314 formula is an example of
this.

• The formulas for data records with keys differ from those for
data records without keys in that they include the length of
the Key Area itself (represented by KL) and a fixed factor
which accounts for the Cyclic Check and gap that follow the
Key Area. The fixed factor for the 2314 is 45.

Page 34

The formulas can be combined in the following way to determine
the number of data records per track:

data records per track =

1 + (

capacity per track - bytes required)
for last data record

bytes required for each data record
except the last

The formulas in Figure 3.5 are used rather than the table in Figure
3.4 if the data records are shorter than those shown in the table.
In an example where the records to be recorded are unblocked and
formatted with keys, the key length is 6, the data length is 50, and
the device to be used is the 2314, how many records can be placed
on each track? The solution is as follows:

Bytes for each data record except the last =

534 (6+50) + 45 + 101 = 204
512

Bytes for the last data record = 45 + 6 + 50 = 101

Records per track = 1 + 7294-101 = 1 + 36 =37
204

Note: The remainder is dropped in both division calculations.

Although the IBM programming systems relieve the user of the File Commands
need to program I/O operations at the command level, a famil-
iarity with the commands is helpful in understanding the various
access methods. The commands, which are interpreted and
executed by the control unit, are the same for all direct access
devices and fall into the four groups discussed as follows.

The Seek command positions the access mechanism at the speci- Control Commands
fled cylinder and/or selects the specified read/write head. Once the
specified address has been transferred from main storage to the
control unit, the channel is not busy during a Seek. (There are
several other control commands not pertinent to this discussion.)

Page 35

Search Commands The search commands cause a comparison between data from
main storage and the specified area (lD, Home Address, or Key)
on the device. The search may be restricted to one track or it may
continue on successively higher tracks. The search terminates
when the specified condition has been satisfied or when the end of
the search occurs. A single-track search is ended when the end of
the track is reached. A multiple-track search may be extended to
the end of the drum. The search does not itself cause any transfer
of data; it is normally followed by a read or a write command
which performs the data transfer. The channel is busy during a
search operation. The search commands are:

• Search Home Address Equal

• Search Identifier Equal. This causes a search of the five-byte
I den tifier (cylinder-head-record number) portion of the
Count Areas. This and the other search identifier commands
start the search with the ID of the record following the next
Address Marker or Index Point.

• Search Identifier High. The condition searched for is an
Identifier on the device higher than the search argument in
real storage.

• Search Identifier High or Equal

• Search Key Equal. This causes a search of the Key Areas.
This and the other search key commands start the search with
the Key Area of the record following the next Address
Marker.

• Search Key High

• Search Key High or Equal

• Search Key and Data Equal. This command, like the next
two, requires that the control unit has the File Scan feature.
It causes a search of all or part of the Key and Data Areas.
The search argument in core storage has all I-bits in the bytes
that are not to be compared.

• Search Key and Data High

• Search Key and Data High or Equal

When a search is restricted to one track and followed by a read or
write command to transfer the data, and the search condition is
satisfied, the search-read sequence or search-write sequence takes

Page 36

place during one rotation. One can, in this case, think of the
search as taking place during rotational delay time. If the search
ends without the condition being satisfied (that is, if a Search Key
Equal for one track was programmed but no equal key was
found), one rotation should be estimated as the direct access time
for that search.

The read commands cause the specified area to be transferred to Read Commands
real storage and checked. The Cyclic Check bytes of the area are
not transferred to real storage. The channel is busy during a read
operation. The read commands are:

• Read Home Address. This transfers five bytes of the Home
Address (all except the Cyclic Check).

• Read Track Descriptor Record. Both the Count Area and the
Data Area of RO are transferred.

• Read Count. Eight bytes of the Count Area (all except the
flag byte and Cyclic Check) following the next Address
Marker encountered are transferred.

• Read Count, Key and Data. The entire record (except gaps
and Cyclic Checks) following the next Address Marker
encountered is transferred.

• Read Data. This command is normally chained from a search
command. The Data Area transferred is that of the record
which satisfied the search condition. Both the search and the
read take place on the same revolution. If not chained from a
search command, the Data Area following the next Address
Marker encountered is transferred.

• Read Key and Data. The same comments as for Read D.ata
apply, except that both the Key Area and Data Area are
transferred.

The write commands cause data to be transferred from core Write Commands
storage to the specified area on the device. During the transfer, the
control unit generates and adds tl}e Cyclic Check bytes to each
area. The channel is busy during a write operation.

Three of the write commands are used to initialize tracks or
records. After a chain of these commands has been completed, the
remaining portion of the track is erased. These format write
commands are:

• Write Home Address.

Page 37

Verification of

Write Operations

• Write Track Descriptor Record. The first eight bytes trans
ferred become the Count Area (the flag byte is generated by
the control unit). The remaining data becomes the Key Area
and Data Area as specified by the Key Length and Data
Length fields of the Count Area.

• Write Count, Key and Data. This is the same as Write Track
Descriptor Record, except that an Address Marker is gener
ated by the control unit and written in front of the Count
Area.

The other two write commands are used to add records to a pre
viously formatted track or to update records. They must be
chained from a search equal command. These data write
commands are:

• Write Data. This must be chained from a Search Identifier
Equal or a Search Key Equal. As with Read Data, both the
search and the data transfer take place on the same revolu
tion.

• Write Key and Data. This must be chained from a Search
Identifier Equal. Again, both the search and the write take
place on the same revolution.

As already discussed under "Checking", the parity check verifies
that data transfer between the CPU and the control unit is correct,
and the Cyclic Check verifies that data transfer from the device to
the control unit on a read operation is correct. The Cyclic Check
does not verify that data transfer from the control unit to the
device is correct. It only establishes a check for subsequent reads.

As data is transferred from the channel to disk storage (write
operation), the storage control removes the parity bit associated
with each byte. It then computes the error correction code bytes,
which are written after each recorded area. The correction code
bytes, coded to represent the data in the recorded area, are used
for both error detection and correction.

As data is transferred from disk storage to the channel (read opera
tion), each area is inspected by the storage control and the error
correction code bytes are recalculated for each area.

If a correctable data error is detected in the home address, count,
or key areas, the storage control internally executes the error cor
rection function through the use of command retry. If an un cor
rectable data error, or a correctable data error in a data area, is
detected, the correction function is determined by the system
error recovery procedures.

Page 38

The correction code bytes are removed and proper parity is gen
erated by the storage control before the data is transferred to the
channel.

Unless corrected immediately, soft write errors cause hard read
errors. Therefore, where data integrity is required, verification
should be incorporated within the program. Thus, in the event of
soft errors, the record can be rewritten and verified before the
original data is destroyed.

Either of two verification methods may be used: full readback
check or correction code check.

Full Readback Check: All of the data just written is read back
into real storage and compared, byte-for-byte, with the original
information.

Correction Code Check: A read operation is performed with the
skip bit on. This method causes the storage control to check the
validity of the record using the error correction code bytes.

The features discussed below are standard for some control units
and available as a special feature on others. The support of each
feature by programming systems and the estimated date at which
the support will be available should be verified with the local IBM
representative. To review, the control units are:

• 2314 - self-contained control unit of the disk storage
facility.

• 2835 - Controls the 2305 fixed head storage facility.

• 3340 - has a self contained control unit as part of the 3340-
A2 module.

• 3830 - Controls the 3330 series disk drives.

Data Integrity

Control Unit Features

As already discussed, this feature permits the use of the Search File Scan
Key and Data Equal, High, and High and Equal commands, which
in tum permit a search of all or part of both the Key and Data
Areas of records. It is standard on the 2314 and available as a
special feature on the 2841. When installed on a 2841, this feature
is effective for any 2311 s, and 2321 s attached to that 2841.

This feature permits a record to overflow from one track to the Record Overflow
next. It is useful in achieving a greater data packing efficiency and
in formatting records that exceed the capacity of a track. The

Page 39

2844 Auxiliary Control Unit

cylinder boundary is the factor that limits the size of a record
(DOS/VS does not support track overflow).

Each segment of an overflow record (the portion written on one
track) has a Count Area. The Data Length field specifies the length
of that segment only. For all segments except the last, a bit in the
flag byte indicates that the record is an overflow record. If the
records are formatted with keys, there is normally just one Key
Area associated with the first segment. On read or write opera
tions, all segments of the overflow records are transferred on
successive revolutions. The record overflow feature is standard on
the 2314.

A 2844 may be attached to the basic 2314 facility to serve as a
second control unit. When so attached, any online 2314 disk
module can be controlled through either the 2844 or the basic
2314 control. Switching of any module to operate with either
control unit is effected by programming.

The 2844 and the basic 2314 control can be attached to the same
or to two different selector channels. If two channels are used, the
2844 attaches to only one, and the basic 2314 control attaches
only to the other. Each control can communicate with only one
channel except when the Two Channel Switch feature is used.

The 2314/2844 complex provides for:

1. Simultaneous operation of any two 2314 online disk modules
with two selector channels.

2. Availability of the 2314 modules to the system if either
control (that is, the basic 2314 or the 2844) should require
preventive or unscheduled maintenance.

The Two Channel Switch feature can be installed on either the
2314 or the 2844 or both to permit operations with any 2314
module to be initiated through any of the four (maximum)
channels to which the 2314/2844 complex is attached.

Two Channel Switch The Two Channel Switch feature enables the control unit to be
shared by two channels and also allows individual devices (access
mechanisms) to be reserved for the exclusive use of either of the
two channels. The two channels may be attached to the same CPU
or different CPU's. Channel switching and device reservation is
under program control. The Two Channel Switch feature is limited
to eight access mechanisms.

When a 2844 Auxiliary Control Unit is installed on a 2314 facility,
the Two Channel Switch feature can be installed on either the

Page 40

2314 or the 2844 or both to permit operations with any 2314 or
the 2844 or both to permit operations with any 2314 module to
be initiated through any of the four (maximum) channels to which
the 2314/2844 complex is attached.

When a control unit is attached to two channels that are attached
to two different CPU's, it permits the two CPU's to share the same
direct access devices.

This special feature for the 3830-1 and 2 provides an additional
two channel switch for a control unit with a two channel switch,
i.e. the control unit can be shared by four channels.

Rotation position sensing (RPS) is an optional feature. Block
multiplexer channel support is a prerequisite for RPS. If present,
the RPS feature should be on every drive of the string. It will be
supported in DOS/VS after June 1974. RPS is transparent at the
programmer level if OS/VS or DOS/VS access methods, e.g. SAM,
DAM, ISAM, or VSAM, are used. The RPS feature is optional be
cause the performance advantages cannot be realized in all system
configurations and environments. The 3330, 3340 and 2305
direct access storage devices have the RPS feature as a standard
part of the device configuration.

Rotational position sensing reduces the time the channel is busy
searching for a record. This procedure permits a search command
to be initiated just before the desired record is positioned under
the read/write heads.

To accomplish this, a "sector" concept is employed. The tracks in
each cylinder of a disk storage drive are divided into equally
spaced sectors; each record on the track has a sector location as
well as a record address. Although the sector location is not phys
ically indicated on the tracks, the sector number is stored at the
beginning of all read, write, and search commands. When chained
to a read, write, or search CCW, the read sector command pro
vides the sector number required to access the record processed
by the previous command. A subsequent set sector command can
be used to fetch the sector number from main storage to reposi
tion the track at that record. This type of operation is particularly
useful in write verification (Figure 3.6) and sequential disk pro
cessing operations.

The sector in which a record is recorded is a function of the
length of all records that precede it and its sequential position on
the track.

Page 41

Rotational Position Sensing

Without RPS

With RPS

The following example shows some of the advantages of using
rotational position sensing to locate and retrieve records.

Channel program I.

Command

Seek

Channel program 2.

Command

Search ID Equal

TIC *-8
Read Data

Selector Channel and Storage
Control Status

Available as soon as the storage
control accepts the seek address.

Selector Channel and Storage
Control Status

Busy (average 12.5 ms on the
2314).

Busy.

When the sector address is known or can be calculated,
the following channel program can be used:

Command

Seek

Set Sector

Search ID
Equal

TIC *-8

Read Data

Block Multiplexer Channel and
Storage Control Status

Available during access move
ment.

Available until sector is located.

Busy (average 250 ms on the
3330).

Normally the first ID read is
that of the desired record and
the TIC is not executed.

Busy.

Note that with RPS only one channel program is required to lo
cate the record and transfer the data. This eliminates a seek I/O
interrupt and the I/O processing required to schedule a data trans
fer channel program.

Page 42

Also, the channel and disk storage are available during access
motion and rotational positioning, allowing seek and set sector
operations to be overlapped with other I/O operations on the
storage control and channel.

RPS is used in conjunction with block multiplexing. This signifi
cantly reduces the time required by the I/O channel and control
unit to search for a particular record location on a track (as
pointed out in the previous example). RPS permits multiple re
quests to be active on the channel at the same time, thereby pro
viding increased device utilization. Depending on the number of
devices and degree of multiprogramming within the system, the
increase device utilization improves the direct-access storage de
vice throughput.

Page 43

m Set ~--... ~ •. ---......

IiIRead Sector---~

Index

127~0

ReadlWrite Head----t======~~21

End of Record n

Start record n --------__
Channel
Reselection Delay

If channel does not
respond, connection
is tried on subsequent
revolutions.

Figure 3.6 Rotational Position Sensing

Page 44

64

Channel program for write verification of record n.

Seek

II Search I D Rn
TIC *-8 II Write data Rn

1'1 Read Sector (82)

OJ Set Sector (82)
After channel reselection:
Search ID Rn
TIC *-8
Read data Rn

3330 - 128 Sectors (shown in this Figure)
2305 - Model 1 - 90 Sectors

Model 2 - 180 Sectors

32

Introduction
to File

Organ izati on

Records in a file must be logically organized so that they can be
retrieved efficiently for processing. This chapter discusses some
factors to be considered in selecting a method of organization. It
also presents an introduction to the methods of file organization
supported by the IBM operating systems for System/360 and
System/370.

The inherent characteristics of the file must be considered in
selecting an efficient method of organization:

Volatility. This term refers to the addition and deletion of records
from a file. A static file is one that has a low percentage of addi
tions and deletions, while a volatile file is one that has a high rate
of additions and deletions. No matter how the file is organized,
additions and deletions are of significant concern, but they can be
handled more efficiently with some methods of organization than
with others.

Activity. The percentage of activity is one of the factors to be
considered. If a low percentage of the records are to be processed
on a run, the file should probably be organized in such a way that
any record can be quickly located without having to look at all the
records in the file.

The distribution of the activity is also a consideration. With some
methods of organization, some records can be located more
quickly than others. The records processed most frequently should
certainly be the ones that can be located most quickly.

The amount of activity also makes a difference. An active file
(that is, one which is frequently referred to) must be organized
very carefully, since the time involved in locating records may
amount to an appreciable period of time. At the other extreme, an
inactive file may be referred to so infrequently that the time re
quired to locate records is immaterial.

Page 45

Data File Characteristics

Processing
Characteristics

Size. A file so large that it cannot all be online (available to the
system) at one time must be organized and processed in certain
ways. A file may be so small that the method of organization
makes little difference, since the time required to process it is very
short no matter how it is organized.

The growth potential of the file is also a consideration. Usually,
files are planned on the basis of their anticipated growth over a
period of time. Initial planning must also consider how growth
that exceeds this size will eventually be handled.

The distinction between the organization of a master file and the
order of the input detail records processed against that file is
important. In sequential processing, the input transactions are
grouped together, sorted into the same sequence as the master file,
and the resulting batch is then processed against the master file.
When tape and cards are used to store the master files, sequential
processing is the most efficient means of processing. Direct access
storage devices are also very efficient sequential processors, espe
cially when the percentage of activity against the master file is
high.

Non-sequential processing is the processing of detail transactions
against a master file in whatever order they occur. With direct
access devices, non-sequential processing can be very efficient,
since a file can be organized in such a way that any record can be
quickly located.

It is possible, on a run, to process the input transactions against
more than one file. This saves setup and sorting time. It may also
minimize control problems, since the transactions are handled less
frequently.

It is feasible to handle unscheduled transactions. This is particu
larly significant in a teleprocessing system or in a system where
there are many inquiries about the data in the files.

It is not necessary to wait until a batch of transactions. has been
accumulated to make processing worthwhile. The transactions can
be processed inline - that is, as soon as they are available. If it is
not necessary to do inline processing of all transactions, most of
them can be batched for scheduled runs, and only high-priority or
exceptional transactions processed inline - that is, as soon as they
enter the system.

The use of a DASD to store a master file makes it possible to
choose the processing method to suit the application. Thus some
applications can be processed sequentially, while those in which
the time required to sort or the delay associated with batching is

Page 46

undesirable can be processed non-sequentially. Real savings in
overall job time can only be made by combining runs in which
each input affects several master files; the details can be processed
sequentially against a primary file and non-sequentially against the
secondary files, all in a single run. This is the basis of inline pro
cessing.

Five methods of organization for direct access devices are sup
ported by IBM programming systems. They are described briefly
in this section.

Sequential Organization. In a sequential file, records are organized
solely on the basis of their successive physical locations in the file.
The records are generally, but not necessarily, in sequence accord
ing to their keys (control numbers) as well as in physical sequence.
The records are usually read or updated in the same order in which
they appear. For example, the hundredth record is usually read
only after the first 99 have been read.

Individual records cannot be located quickly. Records usually
cannot be deleted or added unless the entire file is rewritten. This
organization is generally used when most records are processed
each time the file is used.

Partitioned Organization. A partitioned file is one that is divided
into several members. Each member has a unique name. Members
may be called by name for processing. Members may be added or
deleted as required. The records within the members are organized
sequentially and are retrieved or stored successively according to
physical sequence.

Partitioned organization is used mainly for the storage of sequen
tial data, such as programs, subroutines, and tables. For example, a
library of subroutines may be a partitioned file whose members
are the subroutines.

Indexed Sequential Organization. An indexed sequential file is
similar to a sequential file in that rapid sequential processing is
possible. Indexed sequential organization, however, by reference
to indexes associated with the file, makes it also possible to
quickly locate individual records for non-sequential processing.
Moreover, a separate area of the file is set aside for additions; this
obviates a rewrite of the entire file, a process that would usually
be necessary when adding records to a sequential file. Although
the added records are not physically in key sequence, the indexes
are referred to in order to retrieve the added records in key
sequence, thus making rapid sequential processing possible.

Page 47

Methods of Organization

In this method of organization, the programming system has
control over the location of the individual records. The user, there
fore, need do very little I/O programming; the programming
system does almost all of it, since the characteristics of the file are
known.

Direct Organization. A file organized in a direct manner is charac
terized by some predictable relationship between the key of a
record and the address of that record on a DASD. This relation
ship is established by the user. This organization method is
generally used for files whose characterisitcs do not permit the use
of sequential or indexed sequential organizations, or for files
where the time required to locate individual records must be kept
to an absolute minimum.

This method has considerable flexibility. The accompanying disad
vantage is that although the programming system provides the
routines to read or write a file of this type, the user is largely
responsible for the logic and programming required to locate
records, since he establishes the relationship between the key of
the record and its address on the DASD.

Virtual Storage Access Method (VSAM) Data Organization. The
data organization for VSAM differs from the preceding organiza
tions so as to establish a data organization that will be, from a
user's point of view, device independent. The data organization
should be suitable for all kinds of accessing (keyed, addressed,
direct and sequential) and should be extendable to anticipated
requirements. Once a user adopts the VSAM organization, his data
will be portable from system to system. This will facilitate migra
tion from smaller systems to larger systems.

Data records of fixed or variable length are stored in the same
format in both key-sequenced and entry-sequenced data sets. The
records of a key-sequenced data set are in collating sequence,
defined by a key field in the records; the records of an entry
sequenced data set are in the same sequence as the order in which
they are entered in the data set. An index is used to physically
locate and sequentially order the records of a key sequenced data
set.

IBM Operating Systems Operating systems are part of the programming systems support
supplied by IBM. The operating systems include access methods
which schedule and control the transfer of data between real
storage and I/O devices.

Operating systems that support direct access devices are discussed
in this text. They differ from one another in the operating system
functions provided and in the machine configuration supported.

Page 48

Since this text must deal with the operating systems in rather
general terms, refer to the texts cited in the Bibliography for
specific information on a particular operating system.

Sequential, indexed sequential, and direct methods or organization
are supported by all the operating systems. OS and OS/VS also
supports partitioned organization. The operating systems allow
users to concentrate their programming efforts on processing the
records read and written by the access method routines. The
responsibility of the assembler language programmer in the area of
input/output is essentially to describe the fIles to be processed and
then issue instructions to cause records to be transferred to real
storage, and instructions to cause records to be transferred to I/O
devices.

The access methods are divided into two catagories: queued access
methods and basic access methods.

The queued access methods are used in situations where the
sequence in which records are to be processed is known to the
system and the programmer wishes the operating system to per
form anticipatory buffering and scheduling of I/O operations using
the buffers (I/O areas) requested by the user. (More than one I/O
area and/or a work area can be specified for a fIle.) As soon as a
channel and device are free, the system can read the next record(s)
into the buffers or write the preceding record(s) from the buffers
at the same time that the current record is being processed. There
fore, more than one record is normally in real storage at the same
time, so that processing and I/O operations can be overlapped. A
queued access method, if the records are blocked, performs auto
matic blocking and deblocking and makes the next logical record
available to the user when he issues the next input statement.
Queued access methods are provided for sequential organization
and indexed sequential organization.

The basic access methods are used when the operating system
cannot predict the sequence in which records are to be processed
or when the programmer does not want some or all of the auto
matic functions that are performed by the queued access method.
Since the system does not provide anticipatory buffering and
scheduling, these can be performed through user programming.
Basic access methods read and write physical, not logical, records.
Thus, blocking and deblocking of records is (in most basic access
methods) the user's responsibility.

As previously implied, access methods are identified primarily by
the fIle organization to which they apply. For instance, we speak
of a basic access method for direct organization. Although an
access method is identified with a particular organization, there

Page 49

are times when an access method identified with one organization
can be used to deal with a file usually thought of as organized in a
different manner. Thus, a file that is considered to be a directly
organized file is formatted and must be created with the basic
access method for sequential organization. It is processed non
sequentially with the basic access method for direct organization.

Virtual Storage Access Method (VSAM) is designed to meet most
of the common data organization needs of both batch and inquiry
processing. Batch processing requires the efficiency of a sequential
organization; inquiry processing requires efficient direct access for
random requests. The two types of processing are intermixed in
the processing of a common data base.

Both of VSAM's two organizations permit both direct and sequen
tial access. The key-sequenced organization provides quick
sequential retrieval in collating sequence; the entry-sequenced
organization is suitable for quick record entry and for sequential
processing where sequence is not important. A key-sequenced data
set can be processed by key as well as by record address; it pro
vides a convenient method of identifying data records. The records
of an entry-sequenced data set are identified only by their
addresses within the data set.

The two data organizations and VSAM's range of access options
permit the user to select the combination that best suits his appli
cation.

Page 50

Sequential
Organization

In a sequential file, records are written one after the other - track
by track, cylinder by cylinder - at successively higher addresses.
The records are usually in key sequence.

Records may be fixed- or variable-length, blocked or unblocked,
or undefined.

The records may be formatted with or without keys. If the file is
always processed sequentially, as is normally the case with this
method of organization, there is no point in formatting with keys.
If for some reason there is an appreciable amount of non-se
quential processing, records should be formatted with keys so that
they can be located more quickly.

The amount of DASD storage required is simply enough to hold
all the records in the file. The area should be large enough for the
maximum number of records, although it is permissible to have
the file extend over several noncontiguous areas.

Description of Records

DASD Storage

Requirements

Timing

The time required is one seek per cylinder and one read per record Sequential Processing
(or block of records). Remember that in this text we are using a
simplified timing approach of allotting a full rotation for each read
(or write) to include both rotational delay and data transfer.

Non-sequential processing of a sequential file is, at best, very Non-Sequential
inefficient. If it is done infrequently, the time required to locate
the records may not matter. There are several ways to program
non-sequential processing, with significant differences in the time
required. The slowest way is to read the records sequentially until
the desired one is located. On the average, half of the file would
have to be read. A sequential search takes less time if the records
are formatted with keys. The search is done on Search Key High
or Equal at the speed of one revolution per track. When the search
condition is satisfied, the corresponding record is read.

Another way of processing a sequential file in a non-sequential
fashion is first to perform a binary search of the file in order to
determine in which small section of the file the desired record is
located. Then only that small section need be searched in full. A
binary search of an eight-cylinder file formatted with keys is illus
trated in Figure 5.1. The last record in cylinder 4 is read and

Page 51

File Maintenance

Uses for Sequential
Organization

Operating System

Functions

Queued Access Method

Basic Access Method

User Options

compared with the search argument. Then the last record in either
cylinder 2 or 6 is read and a comparison performed again. Then,
depending on the result of that comparison, the last record in
either cylinder I, 3, 5, or 7 is read and compared against the
search argument. This last comparison indi~ates in which one of
the eight cylinders the desired record is to be found. That cylinder
can then be searched in full.

LO

Figure 5.1 A binary search of an eight-cylinder file

Additions and deletions require a complete rewrite of a sequential
file. This is desirable from a timing standpoint only if additions
and deletions can be combined with another job that also requires
reading and updating all the records.

Sequential organization is used on direct access storage devices
primarily for tables and intermediate storage rather than for
master files. Its use is recommended for master files if they have a
high percentage of activity and if virtually all processing is sequen
tial.

The queued access method is used for creating a sequential file and
for reading or updating all of the records in physical sequence. The
operating system takes care of any required blocking or deblock
ing of records. It provides anticipatory buffering, overlap of
input/output with processing and error checking.

The basic access method does not provide anticipatory buffering
and blocking/deblocking routines. The basic access method can be
used to read or write records formatted with keys (OS, OS/VS
only)or without keys (OS,OS/VS and DOS). It can be used, to a
limited extent, to store and retrieve records non-sequentially. Note
that the DOS basic access method for sequentially organized files
does not permit the processing of files formatted with keys. A
basic access meth(')d for directly organized files may be used in
DOS to create and process (sequentially or non-sequentially) such
files. A corresponding access method exists in OS that can be used
to process sequential files formatted with keys non-sequentially.

The operating system performs a Write Verify after write opera
tions if the user so requests. OS only supports the Record Over
flow feature.

Page 52

Partitioned
Organization

A partitioned data set consists of several sequential units or
members. The data set also includes a directory containing the
name and beginning address of each member. This method of
organization is supported only by OS.

The records in the members may be fixed-or variable-length,
blocked, unblocked, or undefined, and may be formatted with or
without keys. The records in all the members must have identical
formats. Members are stored one after another in the order in
which they are written.

The directory contains one record for each existing or projected
member of the data set. The directory records are grouped into
256-byte blocks, each containing as many records as will fit into
the block. The directory records, which are in alphabetic sequence
by member name, vary from 12 to 74 bytes in length, depending
on how much user data is included in addition to the member's
name and starting address. Each directory block has an eight-byte
Key Area containing the name of the last member in the block.

Enough DASD storage is required to hold the sequentially organ
ized members and the directory. As new members are added, OS
allocates additional area if the original area is full. If the directory
is full, however, no new members can be added until the file is
reorganized. A deleted directory entry can be reused. Deleted
member Data Areas cannot be reused.

The basic access method is always used for partitioned organ
ization. The members are created or processed through use of the
basic access method for sequentially organized files after the name
has been entered into the directory or the starting address has
been determined.

Page 53

Description of Records

DASD Storage

Requirements

Operati ng System

Functions

I ndexed Sequential
Organ ization

An indexed sequential file is a sequential file with indexes that
permit rapid access to individual records as well as rapid sequential
processing. An indexed sequential file has three distinct areas: a
prime area, indexes, and an overflow area. Each area is described
in detail below.

The prime area is the area in which records are written when the Prime Area
file is first created or subsequently reorganized. Additions to the
file may also be written in the prime area. The prime area may
span multiple volumes and (in OS and OS/VS) consist of several
noncontiguous areas. The records in the prime area are in key
sequence.

Prime records must be formatted with keys. They may be blocked
or unblocked. If blocked, each logical record contains its key and
the key area contains the key of the highest record in the block.

There are two or more indexes of different levels. They are created
and written by the operating system when the file is created or
reorganized.

This is the lowest level of index and is always present. Its entries
point to data records. There is one track index for each cylinder in
the prime area. It is always written on the first track (s) of the
cylinder that it indexes.

Each track index may contain a special first record called a "Cylin
der Overflow Control Record" (see "Overflow Area"). The rest of
each track index consists of alternating normal and overflow
entries. There is a pair of entries for each prime data track in the
cylinder. The normal entry contains the home address of the
prime track and the key of the highest record on the track. The
key of the overflow entry is originally the same as the normal
entry. The data area contains 255 to indicate "end of chain." It is
changed when records are added to the file (see "Additions Pro
cedure").

Page 55

Indexes

Track Index (See Figure 7.1)

CYLINDER INDEX

11'. I 0000 I 1·'500 1 .10. I 1.'975 1 0200 I
t Data: Home add ress of track index

for cyl inder 00
Key: Highest key on cylinder 00 t

I 05432 1 0300 I
One such entry for
each cylinder of
the prime data area

Dummy

TRACK INDEX

Normal Overflow Normal Overflow

10000 I ICOCRI 1114 I j'. I I 000141 02551 I 00027 1 0002 1 I 000271 02551
Home
Addr.

Data: Home address of) One normal and one
prime data track 0001 t overflow entry for

ey: Highest key on l each prime data track
prime data track 0001 , on cylinder 00

Normal Overflow
100610 16642 1 100610 I 02551 Dummy IData Records'll

\

PRIME DATA AREA

Home
Addr.

I £1 I 1000031 100004 I 1000061
Data Record: Count, Key and Data for

record with key 100001

Figure Z 1 An indexed sequential file with no additions

The last entry of each track index is a dummy entry indicating the
end of the index. The rest of the index track contains prime
records if there is room for them. In this case, the first pair of
entries in the index refers to this track.

Each index entry (normal,overflow, or dummy) has the same
fomlat. It is an unblocked, fixed-length record consisting of a
Count Area, a Key Area and a Data Area. The length of the Key
Area is as specified by the user. It contains the key of the data
record to which the entry points, except for the dummy entry
whose key is all I-bits (highest in collating sequence). The Data
Area is always ten bytes long. It contains the full address of the
track or record to which the index points and other information
such as the level of index and type of entry. The Data Area of the
dummy entry is null (all O-bits). For simplicity, in Figure 7.1 only
the cylinder and head portion of the address in the Data Areas is
shown.

Page 56

This is a higher level of index and is always present. Its entries
point to track indexes. There is one cylinder index for the file. It
may be on a different type of DASD than the rest of the file. In
OS and OS/VS it may be placed in an independent index area, an
independent overflow area, or in the prime area.

The cylinder index consists of one entry for each cylinder in the
prime area, followed by a dummy entry. The entries are formatted
in the same fashion as the track index entries. The Key Area
contains the key of the highest record in the cylinder to which the
entry points. The Data Area contains the Home Address of the
track index for that cylinder.

If the prime area is not filled when the file is created, the last
cylinder index entries are inactive. These inactive entries have all
I-bits in the Key Area and a null Data Area, just like the dummy
entry. The track indexes for prime cylinders that do not yet con
tain data records also have inactive entries. The inactive entries
provide for adding higher records to the end of the file or for
expanding the file when it is reorganized.

This is the highest level of index and is optional. It is used when
the cylinder index is so long that a search through it is too time
consuming. It is suggested that a master index be requested when
the cylinder index occupies more than four tracks.

A master index of one level consists of one entry for each track of
the cylinder index and is formatted in the same way as the cylin
der index. The Data Area of each entry contains the Home
Address of the track of the cylinder index to which the entry
points. The Key Area contains the highest key in the cylinders
indexed by that track of the cylinder index.

OS and OS/VS permits three levels of master indexes and allows
them to be written in an independent index area, an independent
overflow area, or in the prime area. Each bears the same relation
ship to the next lower one as the lowest one bears to the cylinder
index. That is, if the user specifies that he wants a master index if
the cylinder index exceeds four tracks, there will be a second
master index if the first one exceeds four tracks and a third master
index if the second one exceeds four tracks.

There are two types of overflow areas: a cylinder overflow area
and an independent overflow area. Either one or both may be
specified for an indexed sequential file. Records are written in the
overflow area(s) as additions are made to the file.

Page 57

Cylinder Index (See Figure 7.1)

Master Index

Overflow Area

Cylinder Overflow
Area (See Figure 7.2)

Independent Overflow
Area (See Figure 7.3)

A certain number of whole tracks, as specified by the user, are
reserved in each cylinder for overflows from the prime tracks in
that cylinder. When a cylinder overflow area is specified, record 0
(the track descriptor record) of each track index is used as a
Cylinder Overflow Control Record (COCR, Figure 7.1). The Oper
ating Systems use the COCR to keep track of the address of the
last overflow record in the cylinder and the number of bytes left
in the cylinder overflow area. OS and OS/VS also uses this record
for additional information needed when the file has variable-length
records.

An advantage of having a cylinder overflow area is that additional
seeks are not required to locate overflow records. A disadvantage
is that there will be unused space if additions are unevenly distri
buted throughout the me.

CYLO CYL1 CYL2 I CYL31 CYL4 CYL5 CYL6

Track Indexes

I I
Prime Area

I
Cylinde: Overflow Area

I I

Figure 7.2 Cylinder overflow area

Overflows from anywhere in the prime area are placed in a certain
number of cylinders reserved solely for overflows. The size and
unit location of the independent overflow area are as specified by
the user. The area must, however, be on the same type of DASD as
the prime area.

CYLO CYL3
Track Indexes

Prime Area

Figure 7.3 Independent overflow area

Page 58

CYLX CYLY

Independent
Overflow

Ala

An advantage of having an independent overflow area is that less
space need be reserved for overflows. A disadvantage is that
accessing overflow records takes additional seeks.

A suggested approach is to have cylinder overflow areas large
enough to contain the average number of overflows caused by
additions and an independent overflow area to be used as the
cylinder overflow area are filled.

Overflow records must be unblocked. They must be formatted
with keys. They may be fixed-length or, in OS and OS/VS, vari
able-length. If prime records are blocked, the key of an overflow
record is contained in both the Key Area and the Data Area so
that all logical records have the same format.

The first field in the Data Area of an overflow record is a link
field. It is used to chain together in key sequence the records that
have overflowed from a prime track. The link field is ten bytes
long and contains the same type of information as the Data Area
of index entries. If an overflow record is not the last link in a
chain, its link field so indicates and contains the address of the
next overflow record in the chain. If an overflow record is the last
link in a chain, its link field so indicates and points back to the
track index.

The fact that an overflow record has a link field while a prime
record does not is of significance to the user only in that the link
field requires space on the DASD and in core storage. The opera
ting system presents logical records to the user in such a way that
he is not aware of the difference in formats.

As records are added to the file, they are no longer physically in
key sequence. They are still logically in key sequence, however,
through use of the track indexes and link fields. Three different
situations may occur when a record is added to the file, and
following is a discussion of each situation.

The new record (key 00010) is written in its proper sequential
location on the prime track. The rest of the prime records are
moved up one location. The bumped record (00014) is written in
the first available location in the overflow area. The record is
placed in the cylinder overflow area for that cylinder if it exists
and if there is space in it; otherwise, it is placed in the independent
overflow area. The Key Area of the normal index entry is changed,
since record 000 11 is now the highest record on the track. The
Data Area of the overflow index entry is changed; it now contains
the address of the overflow record. The first additIon to a track is
always handled in this way. Any record that is higher than the
original highest record on the preceding track but lower than the

Page 59

Overflow Records

Additions Procedure

First Addition to a Prime Track

(See Figure 7.4)

CYLI NDER INDEX (No change)

original highest record on this track is written on this track.
Record 00015, for example, would be written as the first record
on track 0002, and record 00027 would be bumped into the over
flow area. Note that no change to higher-level index~s is required.
Record 00611 would be written as the first record in the second
cylinder. Record 00610 is still and will remain the highest record
in the first cylinder.

I 00610 1 0000 I 101500 I 0100' I 03975 1 0200 I 105432 1 0300 I Dummy

TRACKtNDEX

Normal Overflow Normal

I 0000 1 ICOCR' I 00011 I 0001' 100014 100431 I 1000271 0002 , .•......

H.A. [Key of normal ! Overflow entry changed -- now points
entry changed to record 1 on track 0043

PRIME DATA AREA

I 0001 I I 0000 l' I 00003 I I 000041 100006 1 I 00009 1 1 i 10 1 lor I
H.A. New record

Original record moved up

. , I 000251 I 000271

OVERFLOW AREA

I 00431 100431 100014 I xxx0255xxx Rest of data
H.A. Count Key Link field: This is the last link of a chain, so it contains

the original value of the track index entry - that is,
255 to indicate "end of chain".

Figure 7. 4 An indexed sequential file after the first addition to a prime track

Page 60

Subsequent additions are written either on the prime track where
they belong or as part of the overflow chain from that track. If the
addition belongs between the last prime record on a track and a
previous overflow from that track (as is the case with record
00013), it is written in the first available location in the overflow
area, with its link field containing the address of the next record in
the chain. The link field of a previous overflow may need to be

CYLINDER INDEX (No change)

Subsequent Additions to a Track

(See Figure 7.5)

10061010000 I 101500 1 0100 I 10397510200 I 105432 I 0300 I Dummy

TRACK INDEX
Normal Overflow Normal

I 0000 1 ICOCRI 100011 I 00011 100014 100432 I 1000271 0002 1
H.A. [Key of normal ! Overflow entry changed -- now points

entry changed to record 2 on track 0043

PRIME DATA AREA

I 00011 I 0000 1 I I 00003 I I 000041 I 00006 I
H.A.

OVERFLOW AREA

I 00431 100431 I 00014 I xxx0255xxx Rest of data

H.A. Count Key

1 00009 1 fOOOiOl 1 i 11 I
NewRecord~

Original record moved up

I 000251 1000271

II 00432100013 1 xx00431 rest of data

Count Key Link Field: ?oints
to next higher record
on chain.

Figure 7.5 An indexed sequential file after subsequent additions to a track

Page 61

changed; it is not necessary in this example. Because the Data Area
of the overflow index entry always refers to the address of the
lowest key in a chain, it is changed if necessary (as in this
example).

If the addition belongs on a prime track (as would be the case with
record 00005), it is written in its proper sequential location on the
prime track. The bumped record (00011) is written in the first
available location in the overflow area. The Key Area of the
normal index entry is changed (to 000 1 0). The link field of a
previous overflow and the Data Area of the overflow index entry
are changed if necessary.

Note the logical similarity between the normal and overflow index
entries. The normal entry indicates that a sequence of records
starts at the beginning of track 000 1, the last record having a key
of 000 11. the overflow entry indicates that a sequence of records
(chained together by the link fields), starts with the second record
on track 0043, the last record having a key of 00014.

Although the cylinder overflow area may eventually contain over
flows from all prime tracks in the cylinder, and the independent
overflow area may eventually contain overflows from anywhere in
the file, each prime track has its own chain.

Addition of High Keys A record with a key higher than the current highest key in the file
is placed on the last prime track containing data records if that
track is not full. If that track is full, the record is placed in the
overflow area. The sequence link for these records is chained to
the last prime track containing data records. The Key Area of
higher level indexes is changed to reflect the addition.

Variable-Length Records One approach to variable-length records is to use trailer records. A
trailer record is an extension of a master record. It is separate froni.
the master and written as required. Using an open-item accounts
receivable file as an example, the master records contain infor
mation common to all accounts, and the number of invoices
sufficient for most of the accounts, while the trailer record con
tains more invoices. A master may have as many trailer records
associated with it as are required.

The trailer records may be written immediately after the asso
ciated master record. Since duplicate keys are not allowed, it is
necessary to add a digit or character to the true key. Thus l23A
would be the master record for account number 123; l23B would
be the first trailer, 123C the second trailer, and so forth.

Page 62

The trailer records may be written as a separate file. This approach
would be advantageous if many jobs referenced only the master ,
records. Reference between a master record and its trailer record
can be effected by having a link field in each record. The master
record would contain the address of the first trailer record, the
first trailer record would contain the address of the second, and so
forth. The trailer file would probably be written and processed
using the basic access method for directly organized files. The
logic of handling the trailer records as a separate file is more
complex and requires more programming by the user than the first
approach described above.

The queued access method for indexed sequential files is used
when reading or updating the records in key sequence. The entire
file may be processed, or processing may begin at a specified key
or record number. The operating system takes care of all searching
of the indexes and link fields and any required deblocking and
presents the next sequential logical record to the user. OS and
OS/VS provides anticipatory buffering and overlap of input/
output with processing.

The basic access method for indexed sequential files is used when
adding records to the file. The operating system writes the new
record, rewrites existing records as required, rewrites index entries
and link fields as required, and takes care of blocking if required.

This access method is also used when reading or updating records
directly. The user supplies the key of the desired record. The
operating system takes care of all searching of the indexes and link
fields, along with any required deblocking, and either presents the
specified logical record to the user or indicates that it could not be
found.

Page 63

Operating System
Functions

Oueued Access Method

Basic Access Method

Direct
Organization

This chapter discusses some commonly used methods of direct
organization, as well as the access methods provided for files so
organized. The user is not restricted to the methods of organiza
tion discussed here; they are presented as suggestions only.

• •
With direct organization, there is a definite relationship between General Characteristics
the key of a record and its address. This relationship permits rapid
access to any record if the file is carefully organized. The records
will probably be distributed nonsequentially throughout the file.
If so, processing the records in key sequence requires a preliminary
sort or the use of a finder file.

With direct organization, the user generally develops a record Addressing
address that ranges from zero to some maximum. Track addresses
on most DASD's, however, are noncontiguous. For example, the
address of the last track on the first cylinder of a 2314 is ao 19,
while the first track on the next cylinder is 0100. Furthermore,
the file may start at other than the first track of a device and it
may occupy several nonadjacent areas.

Most operating systems allow the user to refer to a record in
several ways:

(1) Relative Track Address - here the user presents to the system
a 3 byte binary number in the form TTR where:

TT is the position of the track relative to the first track on
which the data set resides. The first track of the data
set always has a relative position of O.

R is the number of the block relative to the first block of
data on the track specified TT. The first block of data
on a track has a relative value of 1.

(2) Relative Track and Key - here the user specifies a 3 byte
binary number which the system converts to a relative track ad
dress. The track is then searched for the record which has the key
specified by the user.

Page 65

(3) Relative Block Address - here the user presents the system
with a 3 byte binary number that indicates the position of a
block in relation to the first block of a data set. The first block of
a data set always has a relative block address of O.

(4) Actual Address - here the user presents a pattern of charac
ters that, without further modification, identifies a unique direct
storage location. The format is an 8 byte address (MBBCCHHR).

Directly Addressed File With direct addressing, every possible key in the file converts to a
unique address. This makes it possible to locate any record in the
file with one seek and one read.

Using the Key as the Address In order to be able to use the key of a record directly as its
address, the records must be fixed-length and the keys must be
numeric. One computation is required. Divide the key by the
number of records per track; the quotient equals the relative track
address, and the remainder plus one (record 0 is used as a capacity
record) equals the record number.

This method of direct addressing not only allows minimum disk
time when processing directly, but is also ideal for sequential
processing since the records are written in key sequence. A
possible disadvantage is that there may be a large amount of
unused direct access storage. A location must be reserved for every
key in the file's range even though many of them are not used.

Using a Cross-Reference List With this method, each record in the file is assigned an address and
a cross-reference list of keys and assigned addresses is maintained.
The list may be a printed one. Some clerical and keypunch time is
required for each transaction, since the address must be looked up
and included in the input to the job. Controls must be tight, since
the list, as well as the file, must be kept up to date. The list may
itself be a file recorded on a DASD. Although any record can be
located directly when its address is known, time is required to
look up the address in the list. Indexed sequential organization is a
variation of this method.

Indirectly Addressed File Indirect addressing is generally used when the range of keys for a
file includes such a high percentage of unused ones that direct
addressing is not feasible. For example, employee numbers range
from 0001 to 9999 but only 3000 of the possible 9999 numbers
are assigned. Indirect addressing is also used for nonnumeric keys.

With indirect addressing, the range of keys for a file is compressed
to the smaller desired range of addresses by some sort of address
conversion. Address conversion techniques inevitably cause

Page 66

"synonyms" - two or more records whose keys convert to the
same address. Two objectives must be considered in selecting a
technique: (1) every possible key in the file must convert to an
address in the allotted range, and· (2) the addresses should be
distributed evenly across the range so that there are few syno
nyms.

A record that is written at the address to which its key converts is
called a "prime record." Any other records whose keys convert to
this address are "synonyms." What to do about synonym records
is discussed later in this chapter, but the point to be made now is
that synonyms should be kept to a minimum because of the addi
tional time required to locate these records.

A way to minimize synonyms is to allot more space for the file
than is actually required to hold all the records. The term
"packing factor" means the percentage of allotted locations that
are actually used. For an indirectly addressed file, an initial pack
ing factor of 80-85% is suggested. For example, a 1O,000-record
file packed 83% would be allotted space for 12,000 records.

There are many address conversion techniques. Selecting a good Address Conversion
one for a particular file may require some trial and error. A sug-
gested goal is no more than 20% synonyms. If converting to track
address, count only the synonyms in excess of the number of
records per track.

It is suggested that this technique be tried first, because it is a Division/Remainder Method
simple one that often gives good results. The key is divided by a
prime number (a number evenly divisible only by itself and by
one) that is close to the number of addresses allotted to the file.
The remainder is used as the address.

Example 1: Load 8000 200-byte records on a 2314, converting to
track address.

a. With 80% packing, 10,000 locations are required.

b. Can load 20 records per track, so 500 tracks are re
quired.

c. A prime number close to 500 is 499.

d. Divide the key by 499.

e. The remainder (000 to 498) equals the relative track
address.

Page 67

Example 2: Same as above, but converting to record address.

a. A prime number close to 10,000 is 9973.

b. Divide the key by 9973.

c. Divide the remainder by the number of records per
track (20).

d. The quotient equals the relative track address; the
remainder plus one equals the record number.

This method can also be used with nonnumeric keys. Using binary
arithmetic will probably give better results than using decimal
arithmetic, since the uniqueness of the letters and special charac
ters in the key is retained.

The division/remainder method automatically achieves the first
objective mentioned earlier - that is, to have all keys convert to
addresses within the allotted range. Whether it achieves the second
objective for a particular file - that is, to have few synonyms -
can be determined only by trying it.

Digit Analysis Since the primary objective of an address conversion technique is to
develop addresses spread evenly across a range, it may be possible
to make use of any existing evenness in the distribution of the
keys.

Figure 8.1 shows the output of a digit analysis program that
counted the number of times each digit appeared in each position
of the keys of a particular file.

If allotting 20,000 locations for the 16,045 records, the keys must
convert to addresses that range from 00000 to 19999. Since posi
tions 7, 8, 9 and 10 of the key are evenly distributed, they may be
used as the four low-order digits of the address. Of the four posi
tions chosen as the four 10w-order digits of the address, use one
position as the basis of forming the high-order digit of the address;
if that position is odd, use 1 as the high-order digit of the address;
if even, use zero.

If converting to track address, divide the record address developed
above by the number of tracks required for the 20,000 records.
The remainder equals the relative track address.

Page 68

TOTAL NUMBER OF RECORDS 16,045

DIGIT· KEY POSI TI ON

2 3 4 5 6 7 8 9 10 11

0 16045 1852 5168 1807 1738 1574 1597 1579 87

1 4408 3147 5638 2120 1748 1652 1651 1599 235

2 2198 3792 1174 4958 1745 1743 1587 1569 1604 334

3 576 2231 2724 281 1684 1610 1620 1576 1603 9371

4 1195 2459 1194 1378 1617 1647 1652 1619 3164

5 12076 3155 1267 1647 1688 1580 1605 1645 1939

6 1243 1560 1606 1538 1611 1625 565

7 1228 1329 1450 1560 1598 1557 253

8 1227 1415 1411 1630 1618 1622 76

9 989 1360 1434 1657 1568 1592 21

I Figure 8.1 Digit analysis table

The key is split into two or more parts, which are added together. Folding
The sum, or part of it, is used as a relative address.

Examples of folding a key of 7 4 6 2 9 8:

746+ 298 = 1044 (split in half)
74 + 62 + 98 = 234 (split in thirds)

769+ 428 = 1197 (alternate digits)

The key is transformed to a different radix or base. Excess digits Radix Transformation
are discarded, leaving an address of the required length.

Example of converting a key of 4 2 3 5 6 to radix II to pro-
duce a four-digit address:

(4 x 114) + (2 x 11 3) + (3 X 112) + (5 X 111) + (6 x 11 0) =
58564 + 2662 + 363 + 55 + 6 = 61650
Use 1650 as the relative address.

The selected address conversion technique should be applied to Evaluation of Results
the entire file of keys and carefully evaluated before deciding to
use it. When evaluating a conversion technique, it is not sufficient

Page 69

to calculate the percentage of synonyms. The expected average
number of reads (revolutions) per record should also be developed.
For example, if ten keys convert to addresses 1,2,3,4,5,6, 7,8,
I, 2, then 20% are synonyms. Assuming that one read (revolution)
is required for each of the first eight, and two reads for each of the
last two, the average number of reads per record is 1.2. If the keys
convert to addresses 1,2,3,4,5,6,7,8, 1, 1, however, 20% are
synonyms, but if one read is required for each of the first eight,
two for the ninth, and three for the tenth, the average number of
reads per record is 1.3.

The evaluation, then, should be based on the average number of
reads (revolutions) per record. An average of 1.2 is considered to
be good. The final question may be: "Does this rather rapid access
time justify the additional preinstallation planning and program
ming required for a directly organized file?" Another question
may be whether it justifies the effort involved in the development
of a new conversion technique and the subsequent reprogramming
that might be necessary if the directly organized file were later
relocated on another type of DASD. A directly organized file is
relatively device-dependent, since it implies a specific relationship
between the key of a record and its address on a DASD.

Description of a Directly With direct organization, records may be fixed-length, variable-
Organized File length, or undefined.

Records may be formatted with or without keys. If the file is
indirectly addressed and conversion is to track address, the records
should be formatted with keys for efficiency. If not, each record
on the track must be read to determine whether it is the desired
one.

The records may be blocked or unblocked. If they are blocked,
the user is responsible for all blocking and deblocking, because in
the access method for directly organized files the operating system
handles physical records rather than logical records. If the file is
indirectly addressed, the records are probably unblocked. The
problems that may occur with blocked records are discussed later
in this chapter.

With most directly organized files, RO of each track is used as a
capacity record. It contains the address of the last record written
on the track and is used by the operating system to determine
whether a new record will fit on the track. The capacity records
are updated by the operating system as records are added to the
fIle. They do not account for deletions. Once a track is full, it
remains full as far as the operating system is concerned (until the
fIle is reorganized), even though the user deletes records.

Page 70

An indirectly addressed file generally consists of just one logical
area, which may actually be several nonadjacent physical areas.
The location of synonym records is up to the user, but they are
generally put in unused locations in the main (and only) area.
Synonym records can be put in a separate area if the user desires.
The disadvantage of doing this is that each synonym record will
require an additional seek. If there is just one area, and if a good
conversion technique has been selected and the file is not packed
too tight, synonym records are likely to be in the same cylinder as
the prime record, thus eliminating the need for an additional seek.

With indirect addressing, the logic of creating and maintaining the
file depends mainly on the synonym records. The area in which to
place the synonym records has already been discussed. Now the
problem of how to locate them quickly must be considered.

Approaches to the handling of synonym records are discussed in
the following sections: chaining and progressive overflow, two
approaches used by the DOS programmers, and the extended
search option of the BSAM and BDAM access method creation
and retrieval routines for OS/VS. They are discussed in order to
point out how the maintenance of a file depends on the way in
which it was created and the interaction between operating system
functions and the user's programming. They are presented as sug
gestions only; other more complex and possibly more efficient ap
proaches are possible. All three approaches assume that:

• The records are unblocked.

• The records are formatted with keys.

• Address Conversion is to track address.

• Synonym records are placed in unused locations.

File Creation and

Maintenance

One record on each track is used, and maintained by the DOS pro- Chaining Method
grammer, as a chaining record to provide a link between the prime
track and the track on which the synonym record was placed.
Synonym records are written on the next higher available track.

Page 71

Creation of the File

Track Chaining Data Records
Record

A 8 A1 A2 A3

8 D 81 A4 82

C C1 C2 C3

D D1 83 A5

Figure 8.2 Chaining

Figure 8.2 shows a chained file. The sequence in which the records
were loaded was AI, Bl, A2, Dl, CI, A3, C2, A4(synonym), B2,
C3, B3 (synonym), AS (synonym). The following questions and
answers explain how records in a chained file are located:

Q. If looking for a "A" record, where does the search begin?

A. On track A. Searches always begin with the prime track.

Q. If an "A" record is not found on track A, what is the next
track searched?

A. Track B. Searches always continue at the track specified in
the chaining record.

Q. If the "A" record is not found on track B, what is the next
track searched?

A. Track D.

Q. If a "C" record is not found on track C, what is the next
track searched?

A. None. The blank chaining record shows that there are no
more "C" records.

The way in which the records are loaded may have a significant
effect on the average number of reads that it will take to locate
them.

The file may be completely loaded in one pass. The results of this
one-pass load and the number of reads required to subsequently
locate each record are shown in Figure 8.3. This example and

Page 72

those following show one record per track for simplicity. The
logical results will be the same with multiple records per track.
With the one-pass load, the record is written on its prime track, if
there is room. If the track is full, the record is written on the next
available track, and the chaining record of the home track is up
dated. Assume that prime records require one read, first synonym
requires two reads (prime track and placement track), second over
flows require three reads (home track, first placement track,
second placement track), etc. Notice that record C should have
been a prime record, but a synonym from track I took its place
first.

Key Home Where Chaining Number
Track Loaded Address of Reads

A 1 1 2 1
B 1 2 3 2
C 2 3 4 2
D 7 7 9 1
E 5 5 - 1
F 6 6 - 1
G 8 8 - 1
H 7 9 10 2
I 2 4 - 3
J 7 10 - 3

Average reads per record = 1 .7

Figure 8.3 One-pass load

The file m.ay be loaded in two passes. The results of this are shown
in Figure 8.4. On the first pass, only prime records are loaded. On
the second pass, the synonym records are loaded and the . chaining
records updated. Because all prime records are written on their
prime track, less chaining is required, and the average number of
reads per record has decreased.

Key Home Whe re Loaded Chaining Number
Track Pass 1 Pass 2 Address af Reads

A 1 1 3 1
B 1 - 3 - 2
C 2 2 4 1
D 7 7 9 1
E 5 5 - 1
F 6 6 - 1
G 8 8 - 1
H 7 - 9 10 2
I 2 - 4 - 2
J 7 - 10 - 3

Average reads per record = 1.5

Figure 8.4 Two-pass load

The logic of making additions to a chained file is a combination of
pass I and pass 2 of the load routines. The same problem that was
illustrated with a one-pass load will eventually occur: there should
be room for the new record on its prime track, but it is already

Page 73

Additions to the File

mled with synonyms from other tracks. There is no really effec
tive, simple solution to this problem. Placing the new record where
it belongs involves a dump and reload of all affected records,
which can be very complicated and time- consuming. For example,
try to add record D2 to the sample me shown in Figure 8.2
(assume that this is only part of the file and that a location is
available somewhere). The complexity is due to the fact that when
converting to track address, a track may contain snyonyms from
more than one prime track. A suggested solution is to ignore the
problem for the time being and write the record on the next
higher track on which there is available space. The situation will be
corrected when the file is reorganized.

Deletions from the File Records to be deleted may be tagged in some way and omitted
when the me is reorganized. If the operating system is responsible
for finding locations for new records, there is no point in literally
deleting records since the capacity record is not updated to reflect
this.

Reorganization of the File Particularly with a volatile file, a change in the distribution of the
keys may adversely affect the results of the converting technique
and the speed with which the file can be referenced. Directly
organized files may therefore require frequent reorganizations.
The operating system maintains no statistics as it does with
indexed sequential organization. Therefore the user should, at
least periodically, calculate the average number of reads per record
to ensure that the existing organization continues to provide the
desired degree of efficiency. Reorganization will be needed less
frequently if the user develops more complicated addition and
deletion routines than those that have been discussed.

Progressive Overflow
Method

Creation of the File

As with indexed sequential, there are two ways to handle reorgani
zation. The file can be written elsewhere and then, on a separate
run, re-created in the original area, or it can be reorganized
directly into a different area of direct access storage.

As with chaining, synonym records are written on the next higher
available track. The difference is that there is no chain from the
prime track to the next available track. The links in the chain are
simply consecutive tracks.

With progressive overflow, a one-pass load produces the same
results as a two-pass load. Some of the records may be written in
different locations, but the average number of reads per record is
the same. Figure 8.5 shows the results of a one-pass load of the
same file used to illustrate the loading of a chained file. Note that
the average number of reads (revolutions) per record is higher than
those shown in Figure 8.3 and 8.4 because all tracks between the

Page 74

prime track and the one where a synonym record is located must
be searched. Note that a search without a read takes place for all
tracks except the one on which the desired record is located.

Key Home Where Number
Track Loaded of Reads

A 1 1 1
B 1 2 2
C 2 3 2
0 7 7 1
E 5 5 1
F 6 6 1
G 8 8 1
H 7 9 3
I 2 4 3
J 7 10 4

Average reads per record = 1.9

Figure 8.5 Progressive overflow

The logic is the same as the load routine.

The comments made for the chaining method apply here also.

The comments made for the chaining method apply here also.

The chaining method of handling synonyms requires somewhat
more complicated load and addition programs but in some circum
stances it may result in a shorter search for snyonym records. If a
fairly low packing factor is used, however, synonyms will usually
be located on the track that follows the prime track, and pro
gressive overflow with a track-by-track search will result in tim
ing equivalent to that provided by the chaining method described.
Progressive overflow with extended search provides the fastest
timing. Only when the packing factor approaches 100% will the
time required for progressive overflow increase significantly.

To utilize the extended search option, the data set must be for
matted with:

• Unblocked records.

• Records formatted with fixed length keys.

• Unused record spaces in the data set contain standard dum
my records. That is records having the first byte of the key

Page 75

Additions to the File

Deletions from the File

Reorganization of the File

Progressive Overflow
Compared to Chaining

Extended Search

set to a hex value of 'FF' and the first byte of the data por
tion containing the block reference count.

• Conversion of keys can be to relative track or relative block.

• Synonym records will be placed in the next higher available
space. That is a space containing a dummy record.

You may request that the system begin its search with a specified
starting location and continue for a certain number of records or
tracks. This option can be used to request a search for unused
space in which a record can be added.

To use the extended search option, you must indicate to the
access method the number of track (including the starting track)
or number of records (including the starting record) that are to be
searched. If you indicate a number of records, the system may ac
tually examine more than this number. In searching a track, the
system searches the whole track (starting with the first record); it
therefore may examine records that preceed the starting record or
follow the ending record.

If you specify a number equal to or greater than the number of
tracks allocated to the data set or the number of records within
the data set, the entire data set is searched in an attempt to satisfy
your request.

Additions to the File Because the entire file must be formatted with standard dummy
records (records having the first byte of the key set to a value of
hex 'FF') in unused record spaces, additions are in reality updates
to dummy records (replacement of the dummy record with the
actual record and its key). Since dummy records contain a value of
hex 'FF' in the first byte of the key, you cannot use keys with a
hex 'FF' value in the first byte and utilize the extended search
option.

Deletion to the File The comments made for the chaining method apply here also.

Reorganization of the File The comments made for the chaining method apply here also.

Activity Loading With an indirectly addressed file, the sequence in which the
records are loaded may have a significant effect on the time to
locate records, regardless of how overflows are handled. The
average number of reads per record depends on the frequency with
which each record is processed as well as on the number of reads
required to locate it. Figure 8.8 shows what a drastic difference
the method of loading makes when 20% of the records (I and J)

account for 80% of the activity. The example uses progressive
overflow.

Page 76

If uneven distribution of activity is a characteristic of the file, the
most active records should be loaded first, so that they have the
greatest probability of being home records. If activity statistics are
not available before installation of the system, they can be accum
ulated once the system is installed. Activity statistics should
continue to be accumulated, since the distribution of activity may
change seasonally or over another time period. The file can then
be sorted into the current activity sequence as part of each reor
ganization.

Loading in key sequence:

Key Home Where Number Frequency of Reads Times
Track Loaded of Reods Reference FreQuency

A 1 1 1 2.5% .025
B 1 2 2 2.5'ro .050
C 2 3 2 2.SOAl .050
D 7 7 1 2.5% .025
E 5 5 1 2.5% .025
F 6 6 1 2.5% .025
G 8 8 1 2.5% .025
H 7 9 3 2.5% .075
I 2 4 3 40% 1.200
J 7 10 4 40% 1.600

Average reads per record = 3.1

Loading in activity sequence:

Key Home Where Number Frequency of Reads Times
Track Loaded of Reads Reference Frequency

.
I 2 2 1 40% .400
J 7 7 1 40% .400
A 1 1 1 2.5% .025
B 1 3 3 2.5% .075
C 2 4 3 2.5% .075
D 7 8 2 2.5% .050
E 5 5 1 2.5% .025
F 6 6 1 2.5% .025
G 8 9 2 2.5% .050
H 7 10 4 2.5% .100

Average reads per record = 1 .225

Figure 8.6 Effect of loading sequence on timing

Although blocking records is advantageous as far as direct access Blocked Records
storage utilization is concerned, it may have an adverse effect on
timing when direct organization is used. Moreover, as already
noted, the user is responsible for all blocking and deblocking
routines.

Blocking presents no problems if direct addressing is used. It Directly Addressed File
simply requires a different computation of the address of a record:

Page 77

1. Divide the key by the number of logical records per track.
The quotient equals the relative track address.

2. Divide the remainder from step I by the number of records
per block. The quotient plus one equals the identifier (record
number of the block). The remainder equals the position of
the logical record within the block which can be used in the
blocking and deblocking routines.

A point to remember is that when adding a record to the file, an
entire block must be written.

Indirectly Addressed File The problem here is that there is no logical key to a block of
indirectly addressed records. Therefore, the points already dis
cussed will have to be modified as follows.

Operating System
Functions

Records are formatted without keys. Address conversion is to
record address (actually block address) as shown in the second
example under "Division/Remainder Method" in this chapter. The
prime number to be used is one close to the number of blocks
allotted for the file. In step c divide by the number of blocks per
track.

When loading the file or making additions to it, the user has to
read and search an entire block. If it is full, the next sequential
block (progressive overflow) or the next block in the chain (chain
ing) is read and the search continued until a location is found.
Note that if the chaining method is used, the linkage is between
blocks, not be.tween tracks.

If the primary reason for using direct organization is to minimize
the time required to locate records, the effect of blocking on
timing should be carefully evaluated.

For direct organization only a basic access method is provided.
The operating system does not provide automatic buffering and
overlap of input/output with scheduling. Macros are provided,
however, so that the user can program these functions if he knows
in advance which record he will want next. This access method is
used for writing new records and for reading and updating existing
records as already discussed.

Page 78

Introduction to
Virtual Storage
Access Method

(VSAM)

VSAM is a set of programs (an access method) for use with OS/
VS 1 and OS/VS. VSAM is used with direct-access storage devices
to provide fast storage and retrieval. Figure 9.1 shows how VSAM
relates a processing program and stored data.

Virtual Storage

OS/VS

I
I
I

1-

Logical
Data

Processing Program

Program's Address Space

Physical Data

Figure 9.1 VSAM's relative position. VSAM relays data between the
processing program and direct-access storage.

Page 79

What IS VSAM

Data Stored Independently
of Device in Two Types

of Data Sets

How Data is Physically
Stored

VSAM gives you both direct access to records in any order and
sequential access to records that follow one another. You can
identify a record for retrieval by its key (a unique value in a pre
defined field in the record) or by its displacement from the be
ginning of the data set.

VSAM also provides options to allow you to set up security pro
cedures and to optimize the performance of VSAM.

Using VSAM entails deciding which of its several options to use
for best results and communicating your decision to VSAM. You
communicate with VSAM through the commands of a service pro
gram called Access Method Services, VSAM macros, and JCL Gob
control language).

VSAM has key-sequenced data sets and entry-sequenced data sets.
The primary difference between the two is the sequence in which
data records are stored in them.

Records are stored in a key-sequenced data set in key sequence:
that is, in the order defined by the collating sequence of the con
tents of the key field in each of the records. Each record has a
unique value, such as employee number or invoice number, in the
key field. To determine where to insert a new record into the data
set in key sequence, VSAM uses an index that pairs the key of a
record with the record's location. You can optionally distribute --- - -- - - ._. -- ---~-,.,,-- ~.~~. - ""'"

free space throughout the data set to make record Insertion easier.

Records are stored in an entry-sequenced data set without respect
to the contents of the records. Their sequence is determined by
the order in which they are stored: their entry sequence. A new
record is stored after the last record in the data set.

When a data set is created, it is defined, along with its index, if
any, in a cluster. A key-sequenced data set and its index (which is
also a data set) make up a cluster. An entry-sequenced data set is
also defined as a cluster, even though it does not have an index.

VSAM data sets-both key-sequenced and entry-sequenced-are
stored on direct-access storage devices. The VSAM data set is inde
pendent of the type of device on which it is stored. A storage de
vice is a physical thing. It has tracks and cylinders upon which
bits of information are stored. VSAM frees you from considering
stored data in those physical terms. The records of a data set need
not be stored in a continuous area of storage, but may be stored,
some here, some there. VSAM pretends, from your point of view,
that the area is continuous, starting at address O. VSAM addresses
a point in the area by its displacement, in bytes, from 0, called its
RBA (relative byte address). For example, the first record in a data

Page 80

set has RBA O. The second record has an RBA equal to the length
of the first record, and so on, except for intervening control infor
mation and free space. RBAs are independent of a data set's being
stored in nonadjacent areas on a volume or on several volumes.

The total space of a data set is considered to be divided into a
continuous set of areas called control intervals. When you retrieve
a record, the contents of the control interval in which it is stored
are read in by VSAM. A control interval is thus the unit of data
transmission between virtual and auxiliary storage.

Each control interval contains control information describing the
records that are stored in it. The records come first, with no inter
vening fields or gaps, and the control information comes at the
end. Figure 9.2 shows how data records and control information
are stored in a control interval.

Control I ntervI'

Data Data Data Data Data Data
Record Record Record Record Record Record

Figure 9.2 Control-interval format. Data records are stored in the front of a
control interval, and control information in the back.

Each control interval in a data set has an RBA: it is the same as
the RBA of the first record in the control interval. The RBA of
the first control interval in a data set (and of the first record in
the control interval) is O. The RBA of the second control interval
in the data set (and of the first record in the control interval) is
equal to the length of the first control interval.

The length of control intervals in a given data set is fixed. All of
them are the same length, and the length cannot be changed with
out defining a new data set and copying the old into it. From data
set to data set, the optimum length of a control interval varies
with the type of storage device (number of bytes of storage per
track), the size of your data records, and the amount of virtual
storage that you provide for I/O buffers.

Besides simplifying the addressing of records for you, the use of
relative byte addresses for records stored in control intervals frees
a data set from the physical restraints of the type of device used to
store the data set. The information recorded on a track is divided
into physical records that are limited by the capacity of a track.
The physical-record sizes that VSAM uses begin at 512 bytes and
increase by powers of 2 up to 4096 bytes: 512, 1024,2048, 4096.

Page 81

Control
Informetion

I Physica

Record
~

I' I

I

Control Interval

I I
Track 1

Control Interval

I
Track 1

(The physical-record size of 4096 applies only to the 2305 Fixed
Head Storage and 3330 Disk Storage.) Control-interval size is
limited by the requirements that it be a whole number of physical
records (1, 2, 3, ... , up to 64, or a maximum size of 32,768 bytes)
and that, if it is greater than 8192 bytes, it be a multiple of 2048.
A data set whose control intervals correspond with the tracks of
one device might have more or less than one control interval per
track if it were stored on a second device. Figure 9.3 illustrates the
independence of control intervals from physical records.

Control Interval Control Interval

I I I I I I
Track 2 Track 3

Control Interval Control Intarval

I I I I
Track 2 Track 3 Track 4

Figure 9.3 Control intervals and physical records. Control intervals can span tracks and cylinders.

However, when space for a data set is allocated by tracks, a con
trol interval may not span tracks. Therefore, the maximum size of
a control interval is the largest multiple of 512 that will fit on a
track of the device used to store the data set, and a whole number
of control intervals must fit on a track.

The reason for this limitation is that, with track allocation, VSAM
would have to use more than one channel program to gain access
to the contents of a control interval that spanned tracks, and
VSAM could not ensure data integrity.

VSAM uses track allocation when you define a data set, if you
specify track allocation or specify record allocation for a very
small number of records.

VSAM gets and manages space on a storage volume in units called
data spaces. One or more data sets are stored in a data space. Con
versely, a data set may be stored in one or more data spaces, on
one or more storage volumes. Data spaces and data sets may be
extended beyond their original size. Data spaces are extended by
whole numbers of tracks or cylinders; VSAM extends them auto
matically as more space is needed. A data space can be as large as a
volume; it can be extended up to 15 times. A data set can contain

Page 82

up to 2 32 (approximately 4,290,000,000) bytes of information
(data records and control information); it can be extended up to
100 times.

The collection of control intervals that make up the area of a data
set is divided into groups of control intervals called control areas.
A control area is the unit of space that VSAM preformats for data
integrity as records are added to a key-sequenced or an entry
sequenced data set. In a key-sequenced data set, VSAM distributes
unused control intervals throughout a data set as a percentage of
free control intervals per control area.

The number of control intervals per control area of a data set is
fixed by VSAM, with a minimum of 3. If 50 were the number
chosen, for example, the first 50 control intervals would be the
first control area; the next 50 would be the second control area,
and so on. Whenever the space for a data set is extended, it is ex
tended by a whole number of control areas.

A key-sequenced data set is always defined along with an index, Key-Sequenced Data Set
which is a mechanism for keeping track of records. An index is a
data set (separate from the key-sequenced data set) consisting of
records (one per control interval) that relate key values to the
relative locations of the records in the key-sequenced data set. A
key is put into the index from a record's key field, whose size and
position are the same for every record in the data set, and whose
value cannot be altered. VSAM uses the index to locate a record
for retrieval and to locate the collating position for insertion.

An index has one or more levels, each of which is a set of records
that contain entries giving the location of the records in the next
lower level. The index records in the lowest level are collectively
called the sequence set; they give the location of control intervals
in the data set. The records in all of the higher levels are collectIve
ly called the index set; they give the location of index records.
The highest level always has only a single record. The index of a
data set with few enough control intervals for a single sequence-set
record has only one level: the sequence set itself.

An entry in an index-set record consists of the highest key that an
index record in the next lower level contains, paired with a vertical
pointer to that index record. An entry in a sequence-set record
consists of the highest key in a control interval, paired with a ver
tical pointer to that control interval. Not all data records have
sequence-set entries, for there is only one entry for each control
interval in the data set.

Page 83

Index

D~.~ (

For direct access by key, VSAM follows vertical pointers from the
highest level down to the sequence set to find a vertical pointer to
data. For sequential access by key, VSAM refers only to the se
quence set; it uses a horizontal painter in a sequence-set record to
get from that sequence-set record to the one containing the next
key in collating sequence so it can find a vertical pointer to data.
Figure 9.4 shows vertical and horizontal pointers and the relation
ship between the levels of an index and the control areas of the
key-sequenced data set.

A } '"d .. ~

I ~"~~~
...

Control Intervals of First Control Area Control Intervals of Second Control Area

Figure 9.2 Index levels and data. The highest-level index record (A) controls the entire next level (records B

through Z); each sequence-set index record controls a control area.

VSAM uses free space to insert records into a key-sequenced data
set or to lengthen records. When you define a data set, you can
cause free space to be distributed in two ways: as entirely free
control intervals in each control area and as unused space within a
control interval containing records, as Figure 9.5 illustrates.

Each entirely free control interval has an index entry giving its lo
cation. When free space in a used control interval is insufficient to
insert or lengthen a record, a free control interval is used, and its
index entry changed form a free-space indicator to a high-key indi
cator. This action is called a control-interval split. The control
interval without sufficient space for an insertion or a lengthening
is relieved of some it
is relieved of some of its records also, so that the old and the new
control intervals share the total of their free space.

Figure 6 illustrates a control-interval split and shows the resulting
free space available in the two affected control intervals. Because
the number of records in the first control intervals is reduced,

Page 84

subsequent insertions revert to the simpler case, instead of becom
ing more complex.

If the control intervals involved in a split are not adjacent, the
entry sequence of data records (their sequence by ascending
RBAs) is no longer the same as their key sequence. In Figure 9.6,
the entry sequence of the records in the last three control inter
vals on the right is: 55, 56, 57, 60, 61, 58, 59. But the sequence
set index record reflects the key sequence, so that, for keyed
sequential requests, the data records are retrieved in the order:
55,56,57,58,59,60,61.

If no free control intervals remain in a control area when one is
needed, VSAM sets up a new control area at the end of the data
set. The control area without a free control interval similarly is
relieved of enough of its records that the old and the new control
areas share the records and the free space. This action is called a
control-area split. A control-area split automatically provides free
control intervals: it facilitates the insertion of a record into a data
set that has no free space. Since about half of the control inter
vals of each of these control areas are now free, subsequent inser
tions won't require control-area splitting. Splitting should be an
infrequent occurrence for data sets with sufficient distributed free
space; splitting a control area does make it possible, however, to
insert records into a key-sequenced data set without previously
distributed free space.

Free
Records Records Space

Control Information

Sequence - Set Index Record

• • •

Highest-Key
Entries

Free

Space

Entries

Free

Records Space

Control Intervals of a Control Area

Free Space Free Space

Figure 9.5 Free-space distribution. There are two kinds of distributed free space: space left in used control
intervals and empty control intervals.

Page 85

I

Control Information

01 04 07 I Free : ... ~ IY 01 I 04 I 07 I Free
: Space II .

• Free Space
•

Iff I 57 59 I 56
Free II 55 56 55 57
Space

II
Insertion of

II 60 61 Free Spece
Record 58

60 61 Free Spece
Splits a

Control Interval

Free Space II I 58 59 Free Spece II
Control Intervals in Control Area Control Intervals in Control Area

Before Insertion After Insertion

Figure 9.6 Control-interval split. Some of the records in the control interval that is too full for insertion are
moved to a free control interval, and the new record is inserted into the control interval dictated
by the key sequence.

The free space in a control interval lies between the records at the
beginning and the control information at the end. VSAM com
bines the space vacated by a deleted or a shortened record with
the free space already in a control interval, if any. This reclaimed
space is available for future insertions or lengthenings.

The RBAs of records can change when free space is used or re
claimed. If a record is inserted or lengthened, any succeeding
records in the control interval are moved to the right into free
space and their RBAs are changed. Conversely, if a record is de
leted or shortened, any succeeding records in the control interval
are moved to the left and their RBAs are changed so that the space
vacated can be combined with the free space already in the control
interval.

A key-sequenced data set should be used for most applications. It
permits the full range of options for gaining access to data: keyed
access (as well as addressed access), insertion, deletion, changing
the length of a record. VSAM automatically orders the records in
a key-sequenced data set by key field, and the index relates a
record's location with its key field, so that you need refer to a
record only by its key field, and not in some location-dependent
manner.

In general, assume that you should store your records in a key
sequenced data set. Handle those applications for which an entry-

Page 86

sequenced data set is suitable as exceptions. This approach to de
ciding which of the two types of data sets to use for a particular
body of data for a particular application will simplify your plan
ning, as there will probably be few exceptions.

The records in an entry-sequenced data set are in the order they
are stored in time. That is, each new record is stored at the end;
none is inserted. Records are not deleted, shortened, or length
ened; they are not moved from one location to another. Once a
record is added to an entry-sequenced data set, it stays there and
keeps its original RBA. An entry-sequenced data set is essentially a
sequential data set, but one whose records can be retrieved at ran
dom by direct access and can be updated. The search argument
for direct retrieval is a record's RBA.

An entry-sequenced data set is appropriate for applications that
require no special ordering of data by the contents of a record. It
is appropriate for a log or a journal, since its order corresponds to
the chronology of events. To retrieve records directly from an
entry-sequenced data set, you must keep track of the records'
RBAs and somehow associate RBAs with the contents of records.
With an application calling for direct processing, you would prob
ably elect to store your data in a key-sequenced data set, but after
considering all of the factors, you might decide to store them in an
entry-sequenced data set.

Figure 9.7 summarizes the differences between a key-sequenced
data set and an entry-sequenced data set.

Entry-Sequenced Data Set

Key-Sequenced Data Set Entry-Sequenced Data Set

Records are in collating sequence
by key field

Access is by key through an index
or by RBA

A record's RBA can change

Distributed free space is used for
inserting records and changing
their length in place

Space given up by a deleted or
shortened record is automatically
reclaimed

Records are in the order in which they
are entered

Access is by R BA

A record's RBA cannot change

Space at the end of the data set is used
for adding records

A record cannot be deleted, but you
can replace it with a record of the same
length

Figur~ 9.7 Data-set attributes. Key-sequenced and entry-sequenced data sets
differ in the use of an index and free space and in the
changeability of RBAs.

Page 87

Uti I ity Fu nctions
Carried Out by

Access Method Services

VSAM's Use of Catalogs

A VSAM Catalog's Use in
Data and Space Management

Access Method Services is a multifunction service program that
you use to define a VSAM data set and load records into it, con
vert a sequential or an indexed-sequential data set to the VSAM
format, list VSAM catalog information or data-set records, copy a
data set for reorganization, create a backup copy of a data set,
recover from certain types of damage to a data set, and make a
data set portable from one operating system to another.

You tell Access Method Services what to do by giving a command
and descriptive parameters through an input job stream or by cal
ling it in a processing program and passing it a command. You can
also execute Access Method Services from a TSO (Time Sharing
Option) terminal, either by executing a program that calls it or by
executing it directly and giving commands and parameters through
an input data set.

There are sets of Access Method Services commands for:

• Defining data sets

• Altering data-set definitions

• Deleting data sets

• Listing catalog entries

• Copying and listing data sets

• Moving data sets from one operating system to another

• Aiding in recovery from damage to data

OS/VS Access Method Services, GC35-0009, describes the func
tions and commands of the service program in detail.

VSAM uses catalogs as a central information point for all VSAM
data sets and the direct-access storage volumes on which they are
stored. There are two kinds of VSAM catalogs: master and user. A
master catalog is required with VSAM, and any number of user
catalogs are optional. Almost everything that is true of the master
catalog is true of user catalogs, but user catalogs have special uses
that we will discuss after we consider the general functions of a
VSAM catalog.

VSAM catalogs provide VSAM with the information to allocate
space for data sets, verify authorization to gain access to them,
and relate RBAs to physical locations.

Page 88

VSAM data sets aren't catalogued in the system catalog: you must
catalog each of them in a VSAM catalog. That is, you must enter
in the catalog a data set's name and other facts about it when you
use Access Method Services to define it. Access Method Services
also allocates space for new data sets. With VSAM catalogs, you do
not use JCL either to catalog data sets or to allocate space for
them, except in some special cases.

All VSAM data sets on a volume must be catalogued in the same
VSAM catalog, either the master catalog or a user catalog. A data
set is defined in only one catalog.

Each VSAM catalog defines itself; that is, it contains records that
describe itself. In addition to being defined in this way, the master
catalog is pointed to by the system catalog, and user catalogs are
pointed to by the master catalog.

When you execute a program to process a data set, catalogs are
searched to find out which volume(s) the data set is stored on, un
less you give volume serial number(s) by way of JCL. VSAM cata
logs are always searched before the system catalog. It is recom
mended that you define not only your VSAM data sets, but also
the other data sets in your installation, in a VSAM catalog. Gen
eration data sets, however, cannot be defined in a VSAM catalog.

Figure 9.8 illustrates how data sets can be divided up for cata
loging among the system catalog, the master catalog, and user
catalogs.

Page 89

System Catalog

VSAM

Generation
-------Data

Sets

--/
_Data·Set and Volume

- /"

VSAM
and Other
Data Sets

VSAM

Data Sets

VSAM
and Other
Data Sets

Optional
VSAM
User
Catalog

Data Sets and
,,/ /' Volume Records

VSAM
Data Sets

Optional
VSAM
User
Catalog

•
Data Sets and
Volume Records

VSAM
Data Sets

Figure 9.8 Catalog relationships. All VSAM data sets are catalogued in a VSAM catalog, and data sets of other
access methods may also be catalogued in a VSAM catalog.

The Special Uses
of User Catalogs

Improving Performance
and Reliability

User catalogs can improve catalog-processing performance and
VSAM reliability and facilitate volume portability.

A large number of requests for information from a VSAM catalog
may result in some of the requests being answered more slowly
than they would be if several catalogs had parts of the informa
tion. You might have the master catalog primarily contain pointers
to user catalogs, which would contain records for most data sets
and volumes. By decentralizing data-set information, you also
reduce the time required to search a given catalog and minimize
the effect of a catalog's being unavailable.

Page 90

Because all VSAM data sets must be catalogued, moving a whole
volume or an individual data set from one operating system to
another requires that catalog information be moved along with
the volume or data set.

Transporting a volume. If you want to be able to move a volume
or volumes from one OS/VS system to another, define a user cata
log on one of the volumes and define the volumes and the VSAM
data sets on them in the user catalog. You can then transport the
volumes by demounting them and removing them from the first
system, taking them to the second system, and remounting them.
You use Access Method Services to disconnect the user catalog
from the master catalog of the first system and to define a pointer
to it in the master catalog of the second system. Any number of
user catalogs can be transported in this way.

You can move volumes between OS/VS and DOS/VS systems,
but user catalogs are not used with VSAM on DOS/VS. You must
treat the user catalog from an OS/VS system as the master catalog
of a DOS/VS system.

You can also move individual data sets from one system to an
other by using Access Method Services. Figure 9.9 compares vol
ume and data-set portability.

Page 91

Moving Data from One
Operating System to Another

First System

Volume Portability with a User Catalog

In Transit

Disconnect
User Catalog

Access
Method
Services

Second System

Connect

Access
Method
Services

User Catalog

~-----~ I I
I I
I I

I L ,/
Demount

Mount

~
I I
I I

L J

Data-Set Portability with Access Method Services

Catalog Information

Access
Method
Services

Access
Method
Services

Define the
Data Set

Figure 9.9 Data portability. You achieve data portability by moving volumes or by moving individual data sets.

Page 92

VSAM provides an interface program that permits you to use
programs coded to use ISAM (indexed-sequential access method)
to process VSAM data sets. To use the ISAM interface, you must
convert indexed-sequential data sets to VSAM data sets, convert
ISAM JCL to VSAM JCL, and ensure that your eXisting ISAM
programs meet the restrictions for using the interface. .

To convert an indexed-sequential data set to a VSAM data set
that you can process either with an ISAM program by way of the
interface or with a VSAM program, you use Access Method Ser
vices to define a key-sequenced data set and its index in a VSAM
catalog and allocate space for them. You may use an ISAM pro
gram by way of the ISAM interface to load records into the data
set, or you may use Access Method Services REPRO. For more
details about the procedure, see the chapter "How to Use ISAM
Programming with VSAM."

In most cases, if you use the performance options described in the
chapter "How to Optimize the Performance of VSAM," you can
get better performance with VSAM while achieving essentially the
same results that you can achieve with ISAM. The use of your
existing ISAM processing programs to process key-sequenced data
sets depends upon the extent to which VSAM and ISAM are
similar jn what they do, as well as upon the limitations of the
ISAM interface itself.

TSO is an optional subsystem of OS/VS2 that provides conversa
tional time sharing from remote terminals. You can use TSO with
VSAM to:

• Write a program using VSAM macros

• Execute a program to process a VSAM data set

• Execute Access Method Services (commands must be entered
through an input data set to Access Method Services)

• Execute a program to call Access Method Services

• Allocate a VSAM data set by way of a LOGON procedure

• In release 2, dynamically allocate space for a VSAM data set
during the execution of a job step, provided a single volume
contains the data set and is already mounted

VSAM data sets must be catalogued in the master catalog. The
master catalog is allocated when the system is initialized.

Page 93

Processing a VSAM
Data Set with an
ISAM Program

Using the Time Sharing
Option (TSO)
with VSAM

For details about writing and executing programs and allocating
data sets with TSO, see OS/VS2 TSO Terminal User's Guide,
GC28-0645, and OS/VS2 TSO Command Language Reference,
GC28-0646.

Page 94

System Desi gn
Consideration

This chapter discusses some factors to be considered when design
ing a system using direct access storage devices.

Controls are established and used to ensure accuracy throughout
data processing operations.

The controls established for direct access storage operations are
basically the same as for any system; the difference lies in the
manner in which they are applied. With direct processing, new
data is entered to update an old master record; the old record is
destroyed or erased when the new record replaces it in the fIle.
This updating process may occur once or several thousand differ
ent times a day. Because the master record is continually updated,
it is more difficult to establish the status of a record at a given
time in the past, select the transactions that affected it (which are
in random sequence), provide the correct output (which may have
related transactions), and maintain control so that all records are
still in balance and can be checked. For these reasons, the controls
that will keep any type of error from going through the system
will certainly increase productive time.

The largest single checking problem exists in the validation of
input data at the time it initially enters the system. At this time,
the data is on cards, or in the form of card images on magnetic
tape, or on paper tape. The entire record should be checked, and
any record which cannot be processed by all subsequent programs
should be rejected.

Programmed validation checks fall into four catagories: character
checking, field checking, batch or level checking, and control field
checking. Since all this validation represents an extensive amount
of programming, it probably will be desirable to have a separate
program for input editing. In such a case, the input data is not
actually processed to update the file records until editing is com
pleted.
Several techniques are discussed in this section.

Page 95

Data Validation
at I nitial Input

Character Checking The checking of each character is usually done by examining the
characters as a group or field.

Test for Blanks. An indication must be made as to which fields
must be blank. If the field requires blanks, a constant of the
proper number of blanks is compared against the field, and a test
made for an equal condition. An unequal comparison indicates an
error condition.

There is a case where, even though certain positions do not in
themselves need to be checked for blanks, it may be necessary to
perform the check to show up a keypunch error in an adjacent
position. For instance, if column 25 is not used, but column 26
can be a blank or contain a I, then a 1 in column 25 would
indicate a keypunch error and, therefore, column 25 should be
checked for a blank.

In some cases, because of a keypunch procedure, a field can con
tain either blanks or zeros. In this case a test for blanks or zeros is
made. Usually it is desirable to replace blanks with zeros. When
possible, fields should be punched with zeros rather than left
blank.

Test for Sign. This type of check is made to ensure that the proper
algebraic sign is present for the type of transaction involved.

Test for Numeric. A numeric field is tested to ensure against
having interspersed blanks and/or extraneous zone bits. Blanks are
replaced by zeros. If the numeric field may not contain zone bits,
zones are stripped from the field by the appropriate instructions.

Zone bits over characters that are supposed to be strictly numeric
generally indicate that the numeric portion is also a probable
error. For instance, if zone bits that are the equivalent of an 11 or
X punch are present over a digit I, it cannot be assumed that 1 is
the correct numeric digit, since both a J and a 4 are on the same
key of the card punch. Therefore, the intended digit may very well
be a 4 and not a 1. If this is the case, the incorrect numeric digit
might be caught on the hash or control total check.

Test for Alphabetic. Normally, it is not serious if alphabetic infor
mation is omitted, since the phrase "No Description" can be
inserted in the record and a message put out to correct the record
later. If however, this information is vital to the application, such
as the name on a payroll check, an error should be signaled.

Page 96

These checks are concerned with the contents of fields within Field Checking
records.

Sequence Check. A sequence check is performed if incoming data
records must be sequenced for further processing. If applicable,
this type of check can be expanded to include a check on multiple
records making up one transaction. For example, if three records
are necessary to complete a transaction, the program should check
to determine whether they are all there, in order. Further dis
cussion of this check is included under "Completeness Check". A
check for duplicate records may be inlcuded if it is necessary.

Reasonableness Check. A reasonableness check is a programmed
judgment on data to determine whether it is normal. An example
is scanning sales for unusual quantities or amounts such as a sale of
50 mink coats, or a $1000 charge from a cosmetics department.
Another possible check would be testing a discount percentage to
see that it does not exceed 15%. Then again, the check may be
more complex and require first that an extrapolation of previous
data be made, and then that a test be made to ensure that the new
data does not vary by more than a given percentage from the
computed expectation.

These examples are obvious, but in practice it may be difficult to
determine correct limits on reasonableness; the best solution is to
experiment. A constant can be set up for each limit; then as
experience is gained or as the situation changes, the appropriate
constant can be changed to reflect the new test.

Sometimes data will be entered which is known to be exceptional.
In order to process this type of data, the program must include
provisions for omitting certain tests or negating their results.

Consistency Check. A check for consistency means that two or
more pieces of data are considered in relation to each other. For
example, the classification and credit rating of a customer may
indicate that he is eligible for discounts on merchandise up to a
certain percentage, that his total order may not exceed a specified
dollar value, and that he must pay for merchandise on a COD
basis. An order from this customer must be checked against these
three requirements to ensure that it is consistent with specified
credit terms.

Range Check. A range check is usually applied to a code in order
to verify that it falls within a given set of characters or numbers.

Special care must be taken if alphabetic, signed and unsigned
numeric, and special characters fall within the standard collating
sequence of this range. In this case the collating sequence of all
possible good and error combinations must be considered. Tables
can be used effectively in many range checks.

Page 97

Limit Check. A limit check places either upper or lower quantita
tive limits on a field. For example, net pay on a payroll check may
be limited to $250; or a total order to be delivered must amount
to a minimum of $10 to avoid a delivery charge.

Limits may also be set according to a percentage of a previously
used figure. For instance, in updating a master product file on
prices, a check can be made that the new price is 10% plus or
minus the old price.

Checking That a Code Exists. It is often necessary to verify that a
code is valid for a program and does exist. Tables are used for this
purpose. The size of the table depends upon the number of valid
codes against which a check is made. Various programming tech
niques are used to search the table for the code and thus deter
mine its existence or nonexistence.

It is possible that a code shown to be nonexistent is a new addi
tion to the valid list, and one that will be included in the figure.
When tables are originally set up, therefore, some memory space
should be reserved for expansion.

Completeness Check. A completeness check verifies that no fields
are missing and that no part of the record has been skipped in
sequence. In discussion of checks thus far, a one-card record has
been assumed. Since each field was checked, a completeness check
was implied. The new consideration here is for multiplecard
records that constitute a single transaction.

If all cards in the record are present and in sequence, the program
continues making the remaining checks. If an error in number is
found in the group of cards making up the transaction, the entire
group is rejected.

The group sequence check depends upon how many of the
sequenced records appear in memory at one time. If one record at
a time comes in, and there is an out-of-sequence condition, the
entire batch is rejected. However, if several cards, say three or
four, are in memory at the same time, and they are out of
sequence within the group, this condition can be program
corrected by selecting the coded records in sequence.

Page 98

Date Check. A date check on incoming records is done primarily
to ensure that the record date is acceptable.

Date is carried on records in various formats. The usual ones are
two digits for month, day and year, as in 12 31 66, or a three
character representation of month, as in OCT 12 66. A one
position code for month can be used, such as 1-9 for January to
September, and 0, -, + for October, November and December.
Day can be compressed from the two digits required for 01-31 to
one position by using alphabetic characters A-Z plus 0-4. Year can
be carried as either one or two positions - that is, 66, 67, or 6, 7.

Another more concise method of carrying date is to number the
working days. This number can start with the first working day
the system is operative and continue indefinitely, or it can restart
each year, in which case it would contain a digit designating year.

The checks made on date verify that month falls between Oland
12, day between Oland 31, and year according to actual year.

In addition, limits are checked for dates in the future or in the
past. In order to do this, a decision is made as to how far in the
future a record may be dated, or how late the record may be on
entering the system. An arbitrary length of time may be used, such
as five days, or six months, in either direction. If these limits are
exceeded, a message is put out to signal an investigation.

Records with old dates can be reentries to the program and should
be distinguished from records that might be rejected as too late.

Self-Checking Number. A self-checking number is one that has a
precalculated digit appended to the basic number for the purpose
of catching keypunch or transmission errors. Any size number can
be checked. For instance, a five-digit code with the self-checking
digit would be carried as a six-position code. Normally, the self
checking digit is used with identification codes, such as part
number, customer number, or employee number.

There are two techniques for calculating a self-checking digit: the
modulus 10 and modulus 11 methods. In both methods the digit is
originated by a special device on the IBM 24 Card Punch, 26
Printing Card Punch, or 29 Card Punch, or by an initial calculation
operation.

Page 99

• Modulus 10 Method

•

The modulus 10 method, which is completely described in
Self-Checking Number Feature (G24-1057), is as follows:

1. The units position and every alternate position of the
basic code number are multiplied by 2.

2. The digits in the product and the digits in the basic code
number not multiplied by 2 are crossfooted.

3. The crossfooted total is subtracted from the next-higher
number ending in zero.

4. The difference is the check digit.

Example:
Basic code number: 6 2 4 8
Units and every alternate position
of basic code number: 6 2 8
Multiply by 2: x2

Product: 1 2 5 6
Digits not multiplied by 2: 1 4

Cross-add: 1+ 2+ 1+ 5+ 4+ 6=19
Next-higher number ending in zero: 20
Subtract crossfooted total: -19

Check digit: 1
Self-checking number: 6 1 2 4 8 1

Other examples:
Basic code number Self-checking number

45626 456269
30759 307595
73074 730747

Modulus 11 Method

The modulus 11 method, which is covered in Self-Checking
Number Feature, Modulus 11, and Its Associated Self
Checking-Number Generator, Modulus 11 (G24-1022), is as
follows: Each digit position of any basic number is assigned a
"weight" (checking factor). These factors are 2, 3,4,5,6, 7,
2, 3, 4, 5, ... ,starting with the units position of the number
and progressing toward the high-order digit. Any size field
may be converted into a self-checking number.

Page 100

1. Write the number, as illustrated below, leaving space
between the digits.

2. Below each digit, starting at the right and working left,
place the corresponding checking ("weighting") factor.

3. Multiple each digit by its checking factor and add the
products.

4. Since this is a modulus 11 system, divide the sum of the
products by 11, and subtract the remainder from 11.

5. The result is the check digit.

Example:
Basic number: 9 4 3 4 5 7 8 4 2
From right to
left, the check-
ing factors: 4 3 2 7 6 5 4 3 2 ----------------Multiply and
add the
products: 36+12+ 6+28+30+35+32+12+ 4 =195
Divide total by 11: 195 7 11 = 17, remainder 8
Subtract: 11-8 = 3 (the check digit)
Self-checking number: 9434578423

The self-checking digit is used to verify the correctness of a
code by recalculating the check digit and comparing the
result with the digit in the record. An equal condition signals
that the code is correct.

This type of check catches about 97% of transposition and
substitution errors, which are the most common type of
keypunch and clerical errors.

The fact that the check digit is the same on recalculation
does not mean that the code does in fact exist as a valid code,
but only that the combination of digits in the code field is
correct. For instance, it is possible for an employee number
to check out correctly, but for that employee to be no longer
on the payroll.

Page 101

Borderline Tests. There will be cases when the data in a record just
passes the acceptance test - that is, when a particular field is
borderline but does not invalidate the record. If, however, several
fields in the record are borderline cases, their cumulative effect
may cause the record to be unacceptable. This situation should be
considered and such records put out for investigation.

Methods for Processing Records Containing Field E"ors. In some
types of applications it is possible to process records even though
they contain erroneous data. Some techniques for dealing with
such conditions are:

• Use of Approximations. It is often possible, when data is
either omitted, unavailable or unreasonable, to use an
approximate figure and process the record. A common
example of this technique is the use of a minimum charge on
utility bills. If a meter cannot be read for a certain billing
date, either a standard minimum billing figure is used, or a
figure is computed on the basis of average past usage. The
record can then be completely processed.

In some circumstances a special listing must be kept of
records that use approximations, and the necessary follow-up
must be maintained to replace the approximations with
actual figures when they become available. In other situations
no special record is necessary since the condition will be
self-correcting. Such is the case for utility minimum charges.

Another use of approximations occurs when certain informa
tion is not presently available and a dummy number is used
to process the record. For instance, an order received from a
new customer who has not yet been assigned a customer
number could be processed by using a constant customer
number and by putting out a message for follow-up. In cases
such as this, a fixed constant is used which is recognizable as
an unreal code, quantity, or amount.

• Invalidating Part of a Record. In order to continue processing
automatically under all conditions, the technique of invalid
ating or disabling part of a record may be employed. This
means that a significant code is inserted in the record to
prevent processing of a portion of the input data. Follow-up
would, of course, be necessary.

Another use of this technique is in the updating of a master
file. It is possible to include new data in the master which is
not valid until a certain date. Before the conversion date it is
coded as invalid, and at the proper date it is made available to
the program.

Page 102

• Unscrambling. Programs to unscramble data are used in many
instances. Unscrambling means rearranging the data by
character or digit. This technique can be used in relation to a
multicharacter code or an entire record including the quanti
tative data.

The unscrambling technique is generally used on data that
has originated from paper tape or some other data trans
mission medium. In the case of paper tape, it is possible that
an operator may have put the tape on backwards when
converting to magnetic tape, so that all records are reversed.

The procedure for unscrambling is to read the record in the
usual manner and check it. If it is in error, the fields are then
checked backwards - that is, from right to left; if still in
error, the record is offset one position to the left and
checked; if still in error, it is offset one position to the right
and checked; and so on. This type of check has innumerable
combinations that can be tried. The most successful rear
rangements result from experiment.

A batch or level is a subgroup of a logical file of information. Batch or Level Checking
Input data is batched for the purpsoe of balancing small groups of
data to control totals. If an error is discovered, the erroneous
batch can be rejected without the loss of the entire run. Also, the
error can be located more quickly and easily in a small section of a
file.

A batch may be made up of groups of records having a common
identity, such as department or branch, or it may be made up of a
specified number of records, say 500.

The type of batch is generally based on the manner in which the
data arrives at the data processing department. if it arrives by
department, or location, these would seem to be logical groups
despite volume. If, however, data is to be batched in size group
ings, the only consideration is convenience in error trackdown.
The smaller the batch, the easier it is to find the errors, but since
more totals are required, additional clerical and machine time is
necessary.

Each batch of input data includes as a first or last record a batch
control card, which is created either in the originating department
or by a control group within the data processing department. The
batch control record contains batch number, date, originating
source, record count, hash totals of identifying information, and
control totals of quantities and amounts.

Page 103

As the batch is processed through the edit program, totals of the
detail records are accumulated for both accepted and rejected
records. If all control totals balance, the batch is accepted; if any
do not balance, it is rejected. Complete lists of rejected batches are
maintained for follow-up purposes.

The detail records may or may not contain all the information in
the batch control card. If the information is present in the detail
record, it is checked; otherwise, only record count and control
totals checks are made.

If the batch balances, but certain records in it are rejected on
other tests, such as reasonableness, the batch may be (1) rejected
until the error record is corrected, or (2) reentered with new batch
control totals from which the error records have been deleted.

Batch Number Check. A check is made that the batch number in
the control card matches the batch number in all the detail
records. If any record in the group does not contain the same
batch number, it is investigated. If the batch is rejected for this
reason, and if the totals for the batch balance, the error is prob
ably a keypunch error in batch number and can be easily
corrected.

Batch Record Count. A count is made of all detail records in each
batch. This count must balance to the record count in the batch
card. An out-of-balance condition indicates missing, additional, or
duplicate records that must be checked.

A simultaneous error in record count and in batch number would
indicate that an additional record has been picked up in the batch
and is probably a record that is missing from another batch.

Batch Control Totals. All quantitative fields in the detail records
are accumulated and checked against the batch totals. Any error
causes the batch to be rejected. This is the classic check that has
always been made on data as it is processed through any data
processing system. Except for compensating errors, a balance here
is proof that the batch is complete and correct on quantity and
amount fields.

Batch Hash Totals. A hash total is an accumulation of digits
generally taken from an identification or control field. This type
of total is taken solely for checking purposes, since the actual total
has no quantitative significance.

Hash totals enable the user to positively identify an added or
missing record. For instance, if a record in the amount of $25
were missing from one batch and appeared in another batch where

Page 104

there was also one for $25, it would be difficult to determine on
the basis of the amount field which of the two was out of place.
However, if the control fields were different, the out-of-place
record could be easily identified.

The control field check is not normally made during the edit
program. Rather, it is included in the first processing run against
the master fIle. At that time, each detail record is compared with
the master on the appropriate control field. Nonmatches must be
investigated further - either in the program or manually. The
program can, for example, interrogate a code to determine
whether the nonmatch is a new product that has not yet been
added to the master fIle. If the nonmatch cannot be resolved by
the program, it is put out as an error for follow-up.

Sometimes the job is such that the check must be made during the
edit run. If this is the case, it can be done in several ways. A short
master record containing only the code numbers can be used for
comparison. Or, if the number of codes is small enough, a table
can be created in memory and a table lookup done on the code.

Once an error has been found during the edit program, its cause
must be determined and the error corrected. The usual procedure
for correction is to route the listing of error records and related
messages to someone who investigates each record and makes the
proper correction. If the errors have resulted from a new appli
cation just put on the computer, or if the data has originated at a
remote location, the process of tracking down the error is more
involved. With a new application, it may be necessary for several
experienced people to review the error records.

After the cause of each error has been found and the correction
made, the record is reentered into the edit program. The rules for
reentries may be different from those for original data. For
example, reentered records may be 10 to 30 days late, whereas
current records may be a maximum of 5 days late.

In handling errors:

1. Overall control of good data plus error data must be main
tained.

2. Reconstruction of the error record from the source data must
be possible.

3. The rules on resubmission of corrected records must be
clearly defined.

4. Overall controls must be reestablished. after correction runs.

Page 105

Control Field Checking

System s or Internal
Controls

Often, input data is edited at more frequent intervals than it is
processed. For instance, in a weekly processing run, the input data
might be edited daily, while in a daily run of, say, invoices, the
input order data might be edited in several batches throughout the
day. Thus peak loads on corrections are avoided.

An external control on all records is established as close to the
originating source as possible. This means that as soon as the data
is keypunched or received over transmission media, control totals
are established which balance back to accompanying group totals.

A record is also kept as to exactly what data has been received.
This may be a manually filled-in form referencing the source
department and the number of records, or it may be as elaborate
as a machine listing of all incoming records. The point is that the
records must be controlled from the moment they come in the
door of the data processing department until processing is com
pleted.

The internal controls to be discussed here are directly related to
the external controls and must tie back to them.

Systems or internal controls include the checks incorporated into
a programmed system, exclusive of the validation checks on input
data, for controlling the number of records being processed and
the correctness of the machine calculations. Even though input
data is acceptable on range and limit checks, calcualted results
using these factors may be outside an accepted limit and should
also be checked. For instance, factors A and B may satisfy the
validation tests made, but A times B, or A divided by B, may be
out of range.

Control Totals. Control totals can be taken on amount fields, or
quantity fields of like sizes, such as units, dozens, or cases. These
totals are added algebraically.

Batch control totals on input data have already been discussed. In
addition, overall control totals are used which include totals by
various groupings, such as department, branch, or total file. These
totals generally are of interest in themselves, since they represent
specific control groups.

A balance on all control totals can usually be interpreted as proof
that a file is complete and has been processed correctly.

A programming consideration worth noting in regard to control
totals concerns the memory space reserved for these totals. It is
:wise to reserve enough memory positions to accommodate totals
for two to four times the normal volume of records going through

Page 106

each program. This is because two days' work may be put through
the machine at one time, or volume may suddenly spurt as a result
of a current advertising compaign.

Hash Totals. Hash totals have also been mentioned under batch
hash totals. A hash total is the sum of the digits of an identifying
field. On some machines, hash totals may be taken of the numeric
part of alphabetic fields. A hash total is unlike a control total in
that the sign is ignored and carries are dropped.

Quantity totals may also be hash totals if all quantity sizes are
added together - for instance, units, dozens, and packages.

Hash totals are used for checking purposes only, and are of no
interest in themselves.

Crossfooting Checks. Crossfooting, in the checking sense, means
cross-adding or subtracting two or more fields and zero-balancing
the result against the original result. This is an effective control
when total debits, total credits, and a balance-forward amount are
maintained in each account; total debits and total credits can be
crossfooted to prove that the difference equals the balance
forward.

For discussion purposes, assume an accounts receivable applica
tion. In posting to accounts in disk storage, the stored program
must select for each transaction the proper account record, read it
into a working storage area, update it there, and, if posting is
correct, write it back in the same disk storage location. In the final
phase of posting, the old account record is replaced by the up
dated one.

The accuracy of posting should be proved between the last two
steps; this is the last point at which the old account record is still
available. For proof, total debits and total credits are crossfooted
and the net result compared with the new balance-forward
amount; they should be equal. If they are not, the last step is
skipped and the updated record is not returned to disk storage
until the error is corrected.

Crossfoot checking can also be used on a recalculate basis by
reversing the additions and subtractions. For example, the original
calculation would be:

+A+B+C+D+E = F

and the recalculate:

-A-B-C-D-E+F = 0

Page 107

Balancing Partially Processed Data Files. When random trans
actions or batches are processed against records in disk storage,
only the active records are consulted. Since the inactive records
are not read, the balancing procedure must depend upon the
assumption that they are correct. This assumption is proved by
trial-balancing all accounts on some cyclic basis that is frequent
enough to enable corrective action.

The remaining control problem rests upon assurance that the
active records are processed correctly and that a record which is in
error can be detected within the system.

The means for detecting errors with this technique is provided by
establishing balance fields in addition to detailed item fields. For
accounts receivable records, a total-amount-due field is established
which is the crossfoot total of the gross amounts of the individual
(invoice) items.

All processing of those records includes crossfooting the record
before and after processing to ensure that the record was and
remains in a balanced condition. A total of all balances of the
affected records "before" is reconciled with the changes and the
total of the balances "after". When this is done, the total of the
changes may be posted to the total control records, which will
then reflect the correct total of all record balances. An example is
shown below.

Accounts before processing:
Item Item Balance --

Account A 50.00 00.00 50.00
Account D 75.00 75.00 150.00
Total old balance of all accounts 10,000.00

Two cash receipts to be processed:
Transaction A for 40.00
Transaction B for 75.00

Accounts after proressing:
Item Item Balance

Account A 10.00 00.00 10.00
Account D 00.00 75.00 75.00
Total balance of affected accounts ''before'' 200.00
Total transactions 115.00
Total balance of affected accounts "after" 85.00

Since 200.00-115.00=85.00, the procedure checks, and the new
control balance of all accounts is reduced from $10,000.00 to
$9,885.00.

Such a balancing procedure is no different from that used in
manual bookkeeping systems where the total main file is split into
daily cycles and a total control covers all cycles.

Page 108

If subledger controls are used for controlling smaller groups of
records, they should be reconciled to the grand total before and
after processing runs or at periodic intervals during processing.
Provision must be made for restoring changed subledger totals to
the last previous reconciled figures, but otherwise changes are
made as posting is accomplished. The general philosophy is that if
the changes balance in detail, they may be used in the total sub
ledger. If the subledger totals balance &imilarly, the change may be
posted to the grand total.

If they do not balance, the'detail records are trial-balanced to the
subledger and the subledger to the grand total.

It is noted that if an account which is inactive is out of balance, it
will go undetected. However, the procedure outlined guarantees
that the last time it was legitimately processed, the record was
correct, and that the next time it is processed or trial-balanced, the
error will be detected.

Multiplication Checking. Multiplication checking can be done in a
variety of ways, depending upon the format of the record.

One of the simplest methods of multiplication verification is to
reextend with the multiplier and multiplicand reversed, and zero
balance the products. Another method is to obtain one of the
factors from a different source, such as a table lookup based upon
an identification code, and zero-balance the recalculation with the
original product. Still another method is to total the quantities to
be multiplied by the same multiplicand and then do one multipli
cation per multiplicand instead of several. The product would then
be zero-balanced with the total of the individual products.

If the machine time required for multiplication checking is
excessive, a check on every hundredth or five-hundredth record
may be considered. This check, however, will catch only a con
sistent machine failure.

Rounding Considerations. Error conditions can be incorrectly
signaled as a result of attempting to balance the multiplication of a
total against the sum of its parts which have been individually
extended and half-adjusted.

In order to avoid error signals on such conditions, it is possible to
use a group half-adjustment in the individual extensions. This
method requires that an artificial five be introduced only once per
group calculation (vs. each calculation) and that the adjustment
position be cumulative until the end of the group. The following
example illustrates this case:

Page 109

I(Time,) Hours Rate
,I Decimal Individually Achlal Accumulated Accumulated

Adjusted Calculation Decimals Adjustment
half adj. /01 5

,.'" I
2.5 1.25 3.13 3.125~::_ 1:0 3.13

I

2.5 1.25 3.13 3.125 0:5 3.12
I

2.5 1.25 3.13 3.125 1:0 3.13
I

0.5 1.25 .63 0.625 15 0.62
I

Total 8.0 10.02 10.000 15 10.00
Daily 8.0 1.25 10.00 10.000

In this example, the individually adjusted extensions of hours
times rate add up to .02 more than the group total extension. It
can be readily seen that this type of discrepancy could grow sub
stantially if perpetuated through an entire program.

Another method of dealing with the rounding situations is to use a
limit on the amount of tolerable error and consider the amount as
correct if under the limit. If this method is used, it is preferable
that the limit be tested on as small a group of calculations as
possible, since it is very difficult to determine whether an error of
a fairly large amount is due to thousands of rounding errors or is
in fact one large error.

Division Checking. Division is usually checked by multiplication.
This is done by multiplying the quotient by the divisor, adding the
remainder, and zero-balancing the result against the original
dividend. For example, if the original calculation is:

A+B=Q+R

the verification is:

(Q x B) + R - A = 0

The remainder situation may be handled by the use of formulas
that test for successive plus or minus conditions. Examples of such
formulas are available in the 602 and 604 reference manuals.

Another possibility for division checking is a multiplication of the
dividend by the reciprocal of the divisor and a comparison of this
result with the original quotient.

Negative Amount Considerations. Control totals have been defined
as being algebraic additions. This recognizes the fact the credit
items occur and also that reversing entries are possible for every
plus entry.

Page 110

Because of these negative entries, it is possible to develop totals
that bear a strange relationship to each other. For example,
consider the case of two sales transactions, one of which paid a
commission to a salesman while the other, a credit item, did not:

Net Sales

+100.00
-500.00

-400.00

Commission

+6.00

+6.00

If these two transactions were the only two processed for this
salesman on this day, it would appear that a commission was paid
for credit business. Also, if a reasonableness check were applied to
the totals, for instance to determine that the commission per
centage ranged from 4% to 10%, an error condition would be
signaled.

Unexpected results like the above do occur when negative
numbers are being processed. Consideration should be given to
such possibilities, and procedures should be developed to handle
them properly.

Processing Nonstandard Input and Output. Processing programs
that are run after the edit program do not include editing as such.
However, they do incorporate a similar principle, in that they
must provide a programming path for nonstandard conditions. For
instance, a program may be set up to expect three types of input
per transaction. If one type is missing, it may be desirable to have
the program skip that transaction, continue processing other trans
actions, and send out a message about the transaction and the
missing data.

The point is that programs should be written to continue to run
under as many conditions as possible. Error messages would, of
course, be put out on every error or nonstandard operation. In
programming, one should never decide that a condition will not
occur. Experience shows that if it can happen, it will happen.

Record Coding. File data destruction, when it does occur, is often
the result of programming error. Some of the causes have been (1)
attempting to run a program before thorough testing, (2) entering
incorrect beginning or ending addresses for sequential file changes,
and (3) blanking records. To avoid having such incidents occur

Page 111

unnecessarily, a code can be placed in each data record and
matched against a constant associated with the proper program.
This establishes the fact that the program has the right to work
with the given record. Although not foolproof, it will prevent a
large percentage of accidental program errors. It requires few
instructions and little storage space.

Messages. Messages are usually associated with error conditions,
but they are also used with control totals. The principal rule in
regard to messages is that they should be clear, complete, and
concise.

An error message should identify the error record, specify what is
wrong with it, and use as few memory positions as possible. For
example, a message such as:

INVOICE 12345 AMOUNT OVER LIMIT

is not sufficient to describe the actual case. A better message
would be:

INVOICE 12345 PROD 6789 AMT OVER $500.

QUANTITY 25 PRICE $100.00 AMT $2500.00

This message enables the control clerk to determine that if a
quantity of 25 is reasonable, the error condition is in the price. In
this example, it is probable that the price is incorrect in the master
record and should be $10 rather than $100.

Message standards can be set up that will aid in proper format and
content.

If a sufficient amount of memory is not available for the necessary
error messages, a coding system can be used. The original program
detecting the error would then put out an error code and the
identifying information. When the error message tape is printed,
the codes can be translated into English and the identifying infor
mation inserted into the message format.

Undetectable Errors. In input data, errors can occur which defy
detection. They result from human mistakes and can be in detail
transactions, or, worse yet, in data used to update a master file.

An example of an undetectable error in a detail transaction is the
case where a customer phones an order for twelve pieces of an
item and the order clerk writes down 11. The quantity is punched
as 11, and since 11 is as valid to the program as 12, it is processed
as 11. Not until the customer receives only 11 pieces is the error
found.

Page 112

While it should be realized that human errors undetected by the
program can occur, this should in no way detract from the use of a
comprehensive set of checks. The vast majority of error conditions
are detectable and can be discovered by a complete checking
operation.

Controls on output are more difficult to establish because the Output Controls
resulting output may not coincide with input. For example, if an
input control total were taken on quantity, it might not balance
with the invoice because of back orders or items deleted from
inventory. Had the total been on a part number or hash total, a
substitute item would have caused an out-of-balance condition.
One solution to a problem such as this is to obtain totals of the
quantities that were invoiced or back-ordered, as well as sales that
were lost or adjusted. A tally of these totals should balance with
the input control total.

Since the volumes processed by a system are normally so great
that the taking of external totals on the output documents them
selves would be too unwieldy and costly, a more practical
approach would be to control by batch. The number of docu
ments processed would be totaled and compared with input
controls to prove the inclusion of all. As an output control, forms
can be prenumbered so that the total number of documents
invoiced (output) could be balanced.

For example:

Input documents
Invoices
Lost sales
(incomplete orders)
Back orders
(complete orders)

2200

31

131

2362

-2362
0000

There are other output controls, such as systematic manual
checks, statistical sampling, physical inventories, and analysis of
reports. The last of these may well fit into the category of system
atic checks if they are reports that are created weekly or monthly.

Many means can be devised for output controls, but the degree of
control should depend to some extent on the type and number of
input as well as process controls and the nature of the job. Payroll
checks, for instance, should have the ultimate in controls, whereas
an invoice for chain stores may have few output controls from the
data processing department.

Page 113

Program Testing

Direct Access
Label Checking

Intermediate controls are generally included in output controls
because they are the result of a given run. In addition, however,
they may be carried forward to another system or run before they
have any meaning for balancing purposes. This injection of the
time element requires other considerations. The time difference in
taking the control totals may vary from a few minutes to days.
The specific situation must govern this; however, two guides are:

1. Keep the time period between control totals as reasonably
short as possible.

2. Provide for convenient systems and physical handling of the
controls.

Built-in Checks. Advantage should be taken of all automatic and
built-in checks, all transfers to output devices are parity-checked
and the devices themselves have automatic checks. For instance,
printers have setup checks, and tapes have dual-gap heads to
ensure accurate recording. Direct access files have a very positive
checking method in their Cyclic Check.

Accounting controls that are too tight can hamper processing;
inadequate controls can make the processed data worthless.
Controls should therefore be used wisely. Only those that satisfy a
need should be included, and they should be simple and easy to
maintain.

Programs must be thoroughly checked out before they are put
into production. An attempt should be made to anticipate and
allow for all possible errors, exceptions and unusual combinations
of circumstances. Routines or separate programs must be written
for correcting errors when they do occur. For example, updating
files while printing a report with the wrong form inserted can be
disastrous if there is no program written to print the report with
out updating. Up-to-date copies of all programs should be main
tained, and any changes authorized and fully documented.

The operating systems require that each direct access volume (a
disk pack, data cell, drum, or part of a 2301 served by one access
mechanism) must have one 80-position standard volume label. The
operating system will check that the volume serial number in the
volume label (each volume is assigned a unique volume serial
number) matches the volume serial number stated by the user at
job initiation time, thus ensuring that the correct volume has been
mounted. The volume label also contains the address of the area
on the volume that contains the standard file labels of the files
that reside on the volume. This area is called the volume table of
contents (VTOC). The standard file label or set of standard file
labels for a file identifies that file, gives its location or locations on

Page 114

the volume, and contains infonnation to prevent premature
destruction of the file. The number and format of the labels
required for anyone file depend on the file organization structure
and the number of separate areas (extents) used by the file. The
operating system writes file labels for new files. It also checks the
fIle labels for existing files to ensure that the correct file is online
and that a new file being created will not destroy an unexpired
fIle.

The audit trail must provide the detailed business infonnation for The Audit Trail
the period of time that will satisfy legal, accounting, and practical
requirements. It must also provide a method of extracting the
information that is most economically consistent with the require-
ments.

In some computer runs, there are no audit trails; such is the case
with engineering problems having variables that are entered for
trial fits. There will also be runs where added procedures are
unnecessary as well as uneconomical because the amount of source
data is small and readily available for checking and rerun purposes.
Most commercial applications, however, require audit trails - for
several reasons:

1. The audit trail is the means for checking any discrepancies
that occur.

2. Business has legal requirements to provide this infonnation.

3. The audit trail is necessary for the accountant to perfonn a
valid audit.

4. It is a means of updating master records in a file reconstruc
tion procedure.

Before establishing an audit trail, the length of time that the detail
documents are to be retained must be detennined. This will be
based upon:

1. Legal requirements.

2. The auditor's needs for annual or semiannual audits.

3. The operational requirements of the business.

4. The operational requirements of the data processing depart
ment.

Page 115

The degree of detail required for anyone of these may vary over a
long period of time, and the source document, depending on the
length of time it is required, may remain intact or be microfilmed
for condensed storage. Because of storage expense, cost of tapes,
maintenance, etc., management should try to condense or
summarize the necessary data as much as possible.

There are various ways to establish a good audit trail for data
processing systems having direct access storage. In the disucssion
that follows, the availability of tape is a basic assumption. It does
not preclude the use of cards or other files to accomplish the same
results.

The one basic method of creating an audit trail is through a file
dump. By reading the file and writing it on tape, a correct master
fIle is always available as of a given point in time. To make it
current, all transactions since the dump must be passed against it
for updating. The dump to tape may be the entire file, only the
portions used, or only the groups of records affected by a day's
runs. In many cases, the speed of files and tapes makes it feasible
to perform a file dump on a daily basis.

Where many master records are involved and the transaction
volume is low, another method should be investigated. This
approach requires a complete file dump less frequently. For
example, if an inventory record is used today, a tag is placed in the
record and its address is written out on tape. Each successive item
going to that same record will find the tag present and not write
the address. At the end of the day the address tape is used to read
the corresponding file records. Each is dated and written on tape.
When needed, these tape records are sorted and merged; the
merged records, along with those on the master tape file, are read
into the processor, where the record with the latest date is used in
reconstructing the disk file. This approach has the advantage of
taking less daily time than a full dump, and requires further pro
cessing only when it is necessary to reconstruct the file. File
reconstruction will take longer when it occurs. The user should be
cautioned against letting too much time elapse between complete
fIle dumps; sorting and merging them can become quite tirne
consuming.

A way to create an audit trail when processing at random is by
having a program "sign" each record that it updates. An example
of this is shown in Figure 10.1. Each record contains a field for
the date and source of the last update. As the field is changed, the
previous reference can be printed. In the example shown, the

Page 116

reference field will be updated to 0731 CASH. If every update
does not result in printed output, an additional field can be in
cluded which contains the number of times the record has been
updated since the last printout. This information can be useful in
tracing errors or unusual conditions.

In most applications there are transactions that require special
handling and therefore cannot be processed with the others. A
record of these must be kept to avoid creating gaps in control and
audit procedures. Processing can be monitored by the stored pro
gram and these transactions handled as exceptions. The system can
be programmed to notify the operator of them and expedite their
handling. Such transactions are held in a pending file and
accounted for until completed. Thus they are readily available
when an out-of-balance condition occurs or when information
about them is needed.

Additional discussion of controls as they are related to data pro
cessing systems is found in Management Control of Electronic
Data Processing (F20-0006).

DASD RECORD

Acct. No, Name Last Reference

~1_2~ __ ~~_S_J_W_'L_S_O_N __ ~\\~ ___ 06_2_5_JR_N_L ____ \~

CASH JOURNAL JUl..Y 31,1973

Account Last Reference Amount Balance
Number Name Date Run Paid Due

12~76 S. J. Wilson 06-25 JRNL 250.00 182.94

~L---
.... -----
Figure 10.1 Audit Trail

It is necessary to fully plan the type of action to be taken under
all conditions that might arise which would prevent normal execu
tion of data processing procedures. Each type of unit making up
the system should be considered as non operational, and an alter
nate plan should be devised for each specific unit (as well as
combinations of units) in order to continue processing in some
manner. These plans should be devised and adhered to in all cases.

The need for reconstruction arises when information in the file is
destroyed. Reconstruction methods used will vary depending on
job priority, time considerations, processing time necessary to
provide reconstruction data, etc.

Page 117

-

Reconstruction

Procedures

The first requirement for a file reconstruction procedure is that
the data in the file be dumped periodically. The dump can be
made either to cards or tape (the latter is the basis for this
discussion). The time required for the dump and the frequency
with which it is done will vary. In cases where reports are prepared
periodically, the file dump can probably be obtained as a by
product.

The feasibility of a daily file dump should be investigated as a
starting point. With a daily dump, file reconstruction is greatly
simplified in that the file as of yesterday can be loaded into the
direct access storage device and today's transactions reprocessed.
This approach can, of course, be used even though the file is not
dumped every day. The deciding factor is whether another method
might cost less or perhaps be more timely.

As the number of direct access storage modules increases, a daily
dump of all modules will probably become less desirable unless an
auxiliary processor is available.

If it is not feasible to reprocess all transactions that occur in the
interval between file dumps, the approach outlined under "The
Audit Trail" might be applicable. With it, as each record is up
dated in the file, the updated record was written on tape. When it
becomes necessary to reconstruct a file, the latest status of each
active record affected can be selected from this tape and merged
with the previous dump tape to provide a current file status as of
the last processing cycle. Current date should be included in the
record to facilitate selection of the most current record. An advan
tage of this over-reprocessing is that program changes will have no
effect, whereas they could cause different action to be taken if
reprocessing were attempted.

It should be recognized that program storage is considered in the
same manner as data storage. Each time a program change is made,
it must be reflected on a tape record or some other medium to
ensure retrieval capability, should reconstruction become
necessary.

The method used for reconstruction should be well planned, well
documented, thoroughly checked out, and then followed when
reconstruction is necessary.

Bypass Procedures In the event of machine nonavailability during critical time
periods, a method of alternate processing must be designed to
allow the major portion or most critical portion of the job to
continue.

Page 118

If the computer produces output that governs the immediate
action of another part of the operation (stockpicking, for
example), the decision may be made to institute the prescribed
bypass procedure immediately upon encountering an unusual con
dition in order to keep this function operational. On the other
hand, applications that have a critical period once a month might
be able to wait a considerable longer period of time before a
bypass operation is begun.

Probably one of the most difficult decisions to make in a multifIle
application is when to go into a bypass mode of operation. One
way to determine the amount of time that can elapse is shown
below:

Critical time period:

:Reconstruction time:

Process time:

Total wait time possible:

Passible
wait titRe

2 hrs.

1 hr.

6 hrs.

-3 hrs.

3 hrs.

~ IReconstruc-1 Process
tion time time

I Critical time period

o 1 2 3 4 5 6

The critical time period consists of that time which can elapse
without disrupting another operation.

The possibility that each unit in the machine configuration, as well
as combinations of units, may be unavailable. must be considered
in order to establish adequate bypass procedures. One DASD may
contain an index to the files on other DASD's, making normal
processing impossible when it is inoperative. In such a case, partial
processing may be accomplished by dumping the contents of
another direct access storage unit and loading the index in its
place.

Another approach that might be considered is to have duplicate
critical content files, or to dump only these fIles daily to minimize
reconstruction time.

Every application should be desinged to maintain at least a partial
processing capability as long as possible before initiating a bypass
operation.

Page 119

Some applications demand assurance that downtime be virtually
impossible, and go so far as to require duplexed processors.

For applications requiring fast response, one approach to main
taining operational status when the system is down is to utilize the
previous dump tapes and daily action tapes to create a printout
which could then be used in a manual operation. Such is the case
when there are priority transactions that must be handled imme
diately. The file contents are printed by using the last dump tape,
merging in the action tapes and providing a printout which can
then be utilized by clerks to process the priority transactions
manually. The results of the clerical processing are fed back to the
computer when operational status is restored and post-posting
updates the file to relect the manual action taken.

If once-a-day processing is adequate, the tapes created above could
be used to perform tape processing of the application. In consider
ing a tape bypass operation, tape unit availability must be ensured.

In cases where an alternate processor is available, its use for bypass
should be considered.

The major factor for satisfactory bypass operation is to have a
definite procedure.

Restart Procedures The theory behind restart is that if for any reason operation is
interrupted, there is a time advantage in being able to resume
processing without having to start at the beginning of the run.

To accomplish this, a system of checkpoints must be developed
whereby the contents of memory are dumped at specified inter
vals. In many cases a checkpoint occurs at the end of an input or
output tape.

The checkpoint routine will dump not only the contents of
memory, but also the contents of accumulators and registers, in
dicators, and input and output records in process.

When a restart is initiated in a tape system, the tapes are reposi
tioned, the contents of memory, registers, etc., are reestablished,
and processing then continues.

When direct access media are employed, a new consideration
arises, since each updated record has destroyed the prior status of
the records. In order to restart, the file must be reestablished as of
the last checkpoint. This can be done by dumping an image of the
direct access record on tape as soon as it has been read. When a
restart is initiated, these records can be used to rewrite the me and

Page 120

establish the status that existed when the corresponding check
point was taken. When this is completed, normal restart proce
dures can be accomplished and reprocessing begun.

Page 121

Bibliography

IBM 3830 Storage Control - 3330 Disk Storage Reference Manual
(GA26-l592)

IBM 2820 Storage Control - 2301 Drum Storage Component
Description (GA22-6895)

IBM 2841 Storage Control - 2311 Disk Storage Drive - 2321
Data Cell Drive - 2303 Drum Storage Component Description
(GA26-5988)

IBM 2835 Storage Control - 2305 Fixed Head Storage Facility
Component Summary (GA26-1589) .

IBM 2314 Direct Access Storage Facility - 2844 Auxiliary
Storage Control (GA26-3599)

IBM 2319 Disk Storage Component Description (GA26-l606) and
is also described in (GA26-3599)

REFERENCE CARDS

IBM 2301 Drum Storage
IBM 2303 Drum Storage
IBM 2311 Disk Storage
IBM 2314 Disk Storage
IBM 2321 Data Cell Drive

(X20-l7l7)
(X20-l7l8)
(X20-l705)
(X20-l7l0)
(X20-l704)

These reference cards contain the capacity formulas, a table of
bytes per record depending on records per track (down to a data
length of five bytes), and a table of transmission time depending
on record length.

Additional information can be found in the following references:

System/360 Principles of Operation (GA22-6821)
System/370 Principles of Operation (GA22-7000)
System/370 System Summary (GA22-700l)
Data Management Services Guide (GC26-3746)
Data Management Macro Instructions (GC26-3794)
Supervisor Services and Macro Instructions (GC28-6646)
Direct Access Device Space Management (GY28-6607)
Index Sequential Access Methods Progr~m Logic Manual (GY28-66l8)
Sequential Access Method Program Logic (GY28-6604)
Basic Direct Access Method Program Logic (GY28-66l7)
A Guide to the IBM System/370 Model 145 (GC20-l734)

Page 122

A Guide to the IBM System/370 Model155 (GC20-1729)
A Guide to the IBM System/370 Model165 (GC20-1730)
DOS Supervisor and I/O Macros (GC24-5037)
VSAM Programmer's Guide (GC26-3818)
VSAM Access Method Services (GC35-0009)

OS/VS Data Management Services (GC26-3786)
OS/VS Data Management Macro Instructions (GC26-3793)
OS/VS Supervisor Services and Macro Instructions (GC27-6979)
OSVS DADSM Logic (SY26-3787)
OS/VS ISAM Logic (SY26-3786)
VS SAM Logic (SY26-3788)
VS BDAM Logic (SY26-3789)

Page 123

READER·S COMMENT FORM

Introduction to IBM DASD and Organization Methods G C20-1649-B

Please comment on the usefulness and readability of this publication; suggest
additions and deletions, and list specific errors and omissions (give page numbers).
All comments and suggestions become the property of 18M.

Reply Necessary

Yes D
No D

COMMENTS

Name -------------------------------------
Job Title ________________________________ __

Addre~ ________________________________ ___

_________________________ Zip ____________ _

Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

fOLD ON TWO LINES, STAPLE AND MAIL.

FOLD

YOUR COMMENTS PLEASE •••••.

Your comments on the other side of this form will help us improve future editions of this
publication. Each reply will be carefully reviewed by the persons responsible for writing
and publishing this material.

Please note that requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or the IBM branch office serving
your locality.

FOLD

..

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

POSTAGE WILL BE PAID BY:

IBM Education Center, Building 005
Department 78l, Publications Services
South Road
Poughkeepsie, New York 12602

FIRST CLASS

PERMIT NO. 40

ARMONK, NEW YORK

.............. -.. .

FOLD FOLD

