
Systems Reference Library

IBM 1301 and 1302 Disk Storage

Sequential Data Organization

This manual describes a way of storing and retriev
ing . data on IBM 1301 and 1302 Disk Storage that
is largely independent of the characteristics of the
application. The method will enable most users to
install and operate disk storage efficiently, with min
imum detailed study of the data. A common set of
programs and techniques can be used for all data
files in disk storage. The approach allows data to be
loaded in the most useful sequence, yet allows for
random or sequential access to the records. As the
data file is loaded, an index is created that asso
ciates data identifiers with actual track addresses and
permits expansion by an easily used overflow tech
nique. Conversion is accomplished in an orderly and
efficient transition from data handling methods pres
ently in use.

File Number 1301/1302-07
Form A22-6784

This manual assumes knowledge of the manual, IBM 1301
Disk Storage with IBM 1410 and 7010 Systems, Form A22-
6770-1, or the General Information Manual, IBM 1301 Disk
Storage with IBM 7000 Series Data Processing Systems, Form
D22-6576-3. Examples in the text of this manual are based on
IBM 1301, Models 1 and 2, Disk Storage.

Copies of this and other IBM publications can be obtained through IBM branch offices.
Address comments concerning the contents of this publication to:
IBM Corporation, Customer Manuals, Dept. B98, PO Box 390, Poughkeepsie, N.Y.

Contents

Sequential Data Organization for IBM 1301
and 1302 Disk Storage 5

Random Processing of Exceptions .. 6
Sequential Processing 6
Batch Processing " 6
Scan Processing ... " 7
Programming Efficiency .. 7
Data File Indexes , " ., 8
Additions to Data Files .. 9
Data File Deletions .. 11
Data Directory Index .. 11
Data Storage Allocation .. 12
Conversion From One Type of Disk Storage to Another 13
Indexing Blocked Records .. 14
Reorganizing the Data File .. 14
Index Usage in Sequential Processing 15
Index Usage in Random Processing 15
Index Usage in Scanning .. 16
Sorting versus Distributing ... 16
Record Mode versus Full Track Mode 16
Input-Output Storage .. 17
Program Storage 18
Processing Sequential or Random Input Transactions 18
Balancing Partially Processed Data Files 18

Appendix A.
Index Formats for 1410 and 7010 Systems 21

Track Index Format.. 21
Prime and Intermediate Index Format 21
Data Directory Index Format .. 21

Appendix B.
Additions to Track Index 23

Appendix C.
File Growth and the Track Index 24

Appendix D.
A Comparison of Sequentially Processed Full
Track Mode and Record Mode Operations 25

Appendix E.
Estimating Access Motion Time for IBM 1301
Disk Storage 27

The purpose of mM 1301 and 1302 Disk Storage is
to provide a convenient place for storing and retriev
ing data. Data records should be stored with a plan
that will facilitate their later retrieval. This organi
zation of storage can have a random or sequential
plan. But before the plan is chosen, the manner in
which the stored data will be processed should be
considered. Figure 1 shows the relationships of data
organization and processing. The approaches shown
are:

Case 1: Sequential processing of sequentially or
ganized data.

Case 2: Random processing of sequentially organ
ganized data.

Case 3: Sequential processing of randomly organ
ized data.

Case 4: Random processing of randomly organized
data.

Cases 1 and 2 are the major approaches. Case 3
finds limited use in most applications, but Case 4
oHers unique benefits to selected applications, par
ticularly where the data files undergo frequent ad
ditions and deletions, or where the bulk of the
transactions must be processed randomly.

The great power of disk storage operations results
from the freedom, provided in Cases 2 and 4, from
the Case 1 requirement that input data be in
the same sequence as the sequence of the stored
data records. Figure 1 shows that, if data can be
processed either sequentially or randomly, the sys
tem can continue to enjoy the advantages of sequen
tial processing in addition to the benefits of random
processing. This manual presents a recommended
way of organizing data sequentially. Associated with
the organization scheme are indexes that facilitate
either sequential or random processing of the data
files.

The retrieval of current information permits an
in-line data processing concept, whereby all of the
records aHected by a transaction are posted at the
same time. For example, when a receipt of goods is
recorded in inventory records, the on-hand or on-order
records are changed, and a record of work-in-progress,
or a vendor's account can be posted. Back-order
releases and vendor payment also can be triggered

Sequential Data Organization for
IBM 1301 and 1302 Disk Storage

Sequential Random
Data Data

J J
~® @ Sequential C~"

Processing

Random
Processing

Figure 1. Four Relationships of Data Organization
and Processing

by such a series of actions, and sales and liabilities
in journal entries can be posted.

Other disk storage advantages are equally im
portant and may be more readily realized, thereby
oHering benefits to the user more quickly. The fol
lowing benefits are discussed throughout this manual.

Random processing of exceptions.
Batch processing advantages retained.
Scan processing and report preparation facilitated.
Simplified conversion of data files; extensive study

of identification key structure eliminated.
Simpler programs permitted - and simpler cross-

referencing to inter-related data files.
Reduced response time.
Reduced effective record access time.
Reduced system set-up time.
System readily accepts growth of data.
Disk storage filled efficiently.
Simple overflow procedure for record additions.
A practical means of balancing partially processed

data files.
Many of these advantages are retained from exist

ing sequential processing methods. Others derive di
rectly from the added capabilities of disk storage. Still
others are the particular advantages that accrue to
the combination of sequential, random, and scan
processing within a single system.

Sequential Data Organization for IBM 1301 and 1302 Disk Storage 5

Random Processing of Exceptions
The direct, rapid processing of exception data or of
individually initiated transactions leads to increased
accuracy of processing and to improved clerical
efficiency. The ability to process a single transaction
through an on-line terminal enables the data process
ing system to confirm or question the accuracy of
input data while the operator still has the details of
the transaction before him. The terminal operator
learns correct procedure from the start and is spared
multiple corrective actions; a mushrooming of errors
in the input data is avoided.

Because the data file is easily accessible, random
processing of exceptions in the input data may be
eliminated from one run and processed as a separate
run. An increase in efficiency may be realized, be
cause the main file run is relieved from exception
considerations and fast-path programming is possible.
The exception conditions sometimes prevent process
ing certain items in one run, with the result that the
affected record must be processed manually, for that
operation and all others as well. Other items are
found that fit the first run but are disqualified from
the second, and so forth until a substantial body of
exceptions is built up. The exceptions may appear
to be a small percentage of total volume, but they
can become a large job in themselves, requiring an
inordinate amount of work. The writing of a rela
tively few routines or special programs provides for
complete processing.

Sequential Processing
The most widely used system of orgamzmg data is
a sequential order based upon the alphabet, number
series, or ascending values of some kind. The number
can be a coded part number, customer number, etc.,
or it may be a serial number assigned in the sequence
of arrival, such as an insurance policy number. Such
a number or name, when it determines both the
order of the data file and identifies the record, is
called the primary record identifier or key. The key
is always associated with the record.

Most data files now in use are maintained in a
. particular sequence. Retention of this sequence avoids
~adical departure from the methods familiar to peo
ple outside the data processing activity. Their pro
cedure manuals need not be changed except where

. disk storage capabilities are to their advantage.
If the existing sequence is retained when loading

data into disk storage, detailed study of the structure
of the coding system used to identify individual rec
ords is not required. At installation time, data in disk
storage and in the unconverted data file are main-

6

tained in the same sequence; precision monitoring
of the conversion is made feasible.

Batch Processing
Batch processing existed long before the advent of
data processing systems. Mail deliveries, messenger
services, or other forms of data transmission may
tend to create batches out of individual transactions.
Work scheduling, cash control, and accounting con
trol are simplified by accumulating many separate
transactions into batches that are processed together
in a run. In short, data processing system require
ments have an effect of modifying the size of batches
or the frequency of processing, but many forces ex
ternal to a data processing operation continue to exert
themselves in the formation of batches.

Attempting to process batches as random transac
tions can introduce inefficiencies and unnecessary
control problems. If the transactions that form into
natural batches are permitted to be processed as such,
more time may become available to the system for
the processing of items that are not batches, but are
truly random transactions.

Rapid processing of all transactions may be un
necessary. In many instances the record-keeping can
lag behind the actual transactions without adverse
effect; for instance, detailed record posting on ac
counts receivable may lag in many applications by
hours or even days, and when cash may be deposited
and used before consulting the data records. Such
low priority transactions can be accumulated and
efficiently batch processed, thereby making the sys
tem more available for processing high priority
transactions.

This processing of small batches of transactions has
several advantages. Obviously, a few records can be
updated in disk storage in less time than is required
to pass a lengthy main file of data. The ability to
process small batches of transactions efficiently means
that the need to attain a high activity ratio on each
run is reduced and many different types of transac
tions can be processed in individual batches. Allowing
transactions to remain in their individual batches, and
processing them as such, permits attack upon fewer
logical problems at a time, simplifying program·s and
redUcing the amount of core storage needed for proc
essing.

A decision to process everything in batches or at
random should be avoided. A more efficient operation
will result from the use of judgment in separating the
total data processing task into batch elements and
individual elements. Each type can then be handled
appropriately and efficiently.

Scan Processing
Data file processing can be governed by factors other
than the receipt and posting of transactions. The
status of records can be affected by time; for example,
a quarterly date can require production of social se
curity reports or income tax statements. Premium
notice and cycle billing dates are other examples. Such
time considerations may be combined with other fac
tors: accounts receivable balances, account activity
and history, a.nd credit limits. One action may be
taken on accounts of a certain size when they are
overdue a specified number of days, and a different
action may be taken on accounts that are overdue for
a longer period, regardless of the balance due.

Such actions, depending on a record status with
respect to a particular point in time, require disk
storage data to be brought into core storage where
records can be scanned for particular conditions. This
is called scanning the data file. Each record in the
file is scanned to determine whether action is re
quired.

If the coding system used as a basis for the record
identifier keys has any classifying or grouping func
tion, the use of sequential organization provides a
unique advantage. When items in a group or section
of the coding structure are to be prQcessed, only the
area of the file containing them needs to be scanned
because the file organization preserves the intelligence
of the coding sequence. The coding scheme can be
presumed to have placed the data in its most frequent
ly used sequence. Therefore, reports produced from a
sequential scan usually will be in the most useful
sequence without requiring special sorting.

Most sequentially oriented data processing systems
combine the process of scanning records for action
with batch processing procedures, because it is usu
ally necessary to retrieve each record in the data file
anyway. Such scannjng is a by-product of the neces
sary transaction processing. But the combination of
batch processing and scanning can lead to conHict
when batches are withheld from processing until a
scanning operation is required, or when scanning is
performed more often than necessary. A data proc
essing system with random processing abilities di
minishes these problems by enabling each task to be
performed with its own optimum schedule.

Programming Efficiency
The use of disk storage devices offers many new op
portunities for the system designer and programmer.
The use of disk storage for subroutines or programs in
addition to the basic option of processing data se-

quentially or randomly provides a new level of Hex

ibility in systems design.
Subroutines stored on the disk require no space in

core storage except when they are needed. With
suitable programming standards, a number of sub
routines can share a given area in core storage that
will be used by the particular subroutine needed at
a given moment. The subroutines will not compete
with each other nor with the main routine for core
storage, and fewer compromises will be necessary
in each. Also, the programmer need be less concerned
with fitting his programming into as little space as
possible.

This compacting of programming can be time con
suming. In an effort to eliminate an additional pass
of the entire main file, the programmer frequently
recodes into tighter loops, and sometimes reduces the
processing of some conditions. This may be required
not only in the initial programming effort but in sub
sequent program maintenance as additional require
ments appear.

With disk storage space readily available for sub
routine storage, the systems designer can proceed in
the initial layout of a system with confidence that all
processing planned for a run can be achieved in that
run. If the program exceeds a single "core load," only
the time necessary for obtaining subroutines is added
to the run time, instead of the time necessary to
process the main file in an additional separate pass.

Records in disk storage usually are written back
in complete form and in their original location. There
fore, the use of extract or intermediate records gives
way to repetitive use of the complete record. This
facilitates the use of standard subroutines which are
modified at object time to accommodate the current
condition of desired data files. Freedom to combine
collections of standard subroutines can contribute
dramatically to program simplification.

Reduced System Set-Up Time

Use of disk storage as a program storage device, as
an input buffer, for main file storage, and as an output
buffer (all attached and on-line) can reduce the
set up time required to access and read a program.
This time is measured in seconds and fractions of
seconds rather than in the minutes required in many
instances. This reduction of set up time is realized to
an even greater extent by the entire elimination of
the special runs for the special data files previously
required to accumulate and hold exceptions.

Positive Control of File Referencing

In sequentially organized data, a data record can
exist in only one place - between the next lower and

Sequential Data Organization for IBM 1301 and 1302 Disk Storage 7

next higher numbered record. Failure to locate the
desired record in such a location is adequate proof
that the record does not exist. Such positive record
control reduces the possibility of accidental creation
of duplicate data records and facilitates their detec
tion.

Data File Growth

The recommended methods of data storage and in
dexing are relatively insensitive to changes made sub
sequent to the initial storage assignments. If planned
allocations of storage become insufficient due to
growth of the data file caused by acquisition, merger,
contract awards, etc., additional cylinders of disk
storage can be assigned without relocating other data
in storage or causing program changes. The cylinders
referenced by the index need not be adjacent or even
in sequence.

Disk Storage Filled Efficiently

Because data records are packed in the primary stor
age area without providing space for the overflow
records the primary storage area is completely util
ized. One track in each cylinder of 40 tracks (2.5
percent of the storage space) is used for file index
records.

Several data files can effectively share a pool of
available cylinders. Overflow areas are then allocated
from the pool as required. This avoids prior alloca
tion of overflow areas based upon maximum possible
expansion requirements for each data file.

Data File Indexes
When a data file is loaded sequentially into a disk
storage device, no particular relationship is auto
matically established between the record identifier
keys of the data records and the addresses of disk
storage tracks. In order to retrieve records without
starting at the beginning of the file and searching
until the desired records are found - to retrieve rec
ords randomly, a relationship between record keys
and track addresses must be established. One method
is to form a table that shows the storage address for
each data record key, but such a table becomes a
data file in its own right and has the same addressing
problem: a method would be required to provide
the addresses of the keys in the table if extensive
sequential searching of the table is to be avoided.

A better method is to form an index that takes ad
vantage of the sequential organization of the data and
the cylinder concept of disk storage. A single entry,
that of the highest key in each cylinder, will serve to

8

identify all the records located within a cylinder.
Within each cylinder a more detailed index that con
tains the highest key of each track of data is used to
provide the track address of each record. The index
to the cylinders is called the prime index. The index
within each cylinder that identifies specific tracks is
called the track index. With very large data files, the
prime index may become too large for convenient
use and intermediate levels of indexes may be formed.
These have the same general format as the prime and
track indexes.

In addition to relating record keys with track ad
dresses, indexes permit disk storage to be filled effi
ciently because empty space need not be provided for
future expansion. Disk storage is packed full, and
additional records are placed on an overflow track.
(Overflow techniques are discussed and illustrated
later in this manual.)

When formatting indexes or data for IBM 1301 and
1302 Disk Storage,' full track operations handle data
tracks formatted in either record or full track mode
and record mode operations depend on the data
track being formatted for record mode.

Prime Indexes

The prime index is formed each time the data file
is loaded or reloaded. It does not control the loading
of data but provides a record of where the data has
been placed .. The prime index is composed of two
basic portions, a fixed length header and a variable
-length entry. The header consists of an identification
field, coded to indicate that it refers to other lower
level indexes, and a count field that defines the num
ber of entries in the entry portion.

The entry portion has an entry for each indexed
cylinder. When intermediate indexes are used, each
entry in the prime index will refer to an intennediate
index. Each entry contains the record identifier key
of the last record loaded in the cylinder. It is the
highest record key in that cylinder. Associated with

. that key is the address of the track index that serves
that cylinder.

Because it is easy to calculate the address from the
known position of the key within the index, there is
a temptation to avoid the use of the address alto
gether. But this imposes a requirement that the data
file be located in adjacent cylinders of disk storage.
Substantial flexibility in storage assignment is gained
by including the address; data files can be spread
among multiple modules of IBM 1301 and 1302 Disk
Storage, or interspersed among data files that have
diminished in size or failed to grow as originally
anticipated. Inclusion of addresses provides a basic

independence from the sequence of the data file and
the sequence of the track addresses.

The prime index is carried in disk storage, but can
be read into core storage and retained there during
periods of heavy usage. When high performance is
required for inquiry responses, the prime indexes for
all data files and their associated intermediate in
dexes may be placed in an auxiliary device such as
IBM 7320 Drum Storage or in IBM 1311 Disk Storage.

Intermediate Indexes

Intermediate indexes are formed whenever it is nec
essary to limit the size of the prime index. The in
termediate index can also be limited in length to suit
the convenience of the using system, by creating
another level of intermediate index. The format is
identical to the prime index with a fixed header por
tion and a variable number 'of entries, one entry for
each cylinder referenced by the intermediate index.

Access time is reduced by storing the intermediate
indexes in the same cylinder with the prime index
or in an auxiliary device.

Track Indexes

Like prime and intermediate indexes, track indexes
are formed as loading of data occurs. To minimize
access time to data from the track index for sequen
tial or scan processing, the track index should ordi
narily be stored in the same cylinder as its data.

Track indexes have the same format as prime in
dexes; the header portion is followed by the entry
portions. Programming convenience requires fields in
all indexes to conform in size and relative position
so that they may be searched by one common sub
routine.

One of the fields in the header of a track index
contains a flag that identifies the index as referring to
data tracks, not to an intermediate index. This flag
can be tested to cause selection of a different work
area in core storage or to cause the selection of a
record address subroutine for the retrieval of indi
vidual records. It can also be used when data tracks
carry unique home address (HA) tags in the HA2 por
tion of the address.

Additional fields in the header portion contain
references to the prime index and to the next sequen
tial track index. These fields provide additional flex
ibility in the use of the indexes in sharing the same
core storage area or for sequential scanning of the
data file without constant referencing of the prime
index.

A count field of the number of subsequent entries
in the track index permits binary searching of the

index or termination of sequential searching of the
index entries.

The entry portions of the indexes are similar to
those in the prime and intermediate indexes. They
consist of two parts: a data key that is the key of the
highest numbered data record stored on the track
and the track address of that data. There will be an
entry for each track indexed; 39 entries are required
for a fully loaded 1301 cylinder. Where multiple data
files are contained in a system each data file would
have different indexes. The keys in different file in
dexes can be of different lengths, but within a data
file and its indexes the key lengths should be of equal
length.

Standard Index Format

The preceding considerations lead to a standard
format for indexes that can be searched by a common
subroutine. These fields can be employed in the
following order:

Flag: This is a two-digit field to identify the index
as a prime or intermediate index or as a track index.

Address: This field carries the track address of the
prime index for track and intermediate indexes. The
literal PRIME can be used in this field in the prime
index.

Next: In track indexes this field carries the track
address of the next sequential track address. In prime
and intermediate indexes this field carries the literal
PRIME or INTER.

Count: This three-digit field carries a count of the
num ber of reference entries in the index.

Entries: This field has multiple entries of highest
keys and their associated track addresses. The overall
length will vary with the number of keys and their
length.

A specific index design is described in Appendix A.

Additions to Data files
The indexes described pertain to sequentially loaded
data files. They are formed as part of the loading
process, with the prime and intermediate 'indexes
written in a selected area and the track indexes writ
ten with their data. Additional records for the data
files can be expected. They may be too few in number
to warrant reorganization of the file or they may
occur when reorganization of the data file is incon
venient. Provision must be made to add records to
the file without disrupting the organization and with
out causing undue system scheduling conflicts.

One way of adding records would be to provide
space at the time of loading in anticipation of the
future. This space could be on each data track or
space could be allowed in each cylinder. Either ap-

Sequential Data Organization for IBM 1301 and 1302 Disk Storage 9

proach, however, assumes that additions to the data
file will be evenly distributed throughout the file. In
practice this will seldom be true.

When growth does not occur, any space left open
is wasted, and where growth does occur any open
space based upon averages will soon be insufficient.
These inconveniences are inherent in the dynamics
of data files. Insurance policy files generally grow at
the high end of the sequential order (but even this
growth is uneven for there is no requirement that the
policies must be entered in the data processing system
in the order of number assignment). Public utility
customer files grow in areas represented by suburbs
and diminish in city areas (this growth is un
even as lots are built up and housing developments
are opened). Even inventory files evolve unevenly as
products become obsolete and new products with
different part number series take their place.

These difficulties often prevent accurate estimates
of the positions of growth in data files even when the
total growth can be forecast. As a result, the efficient
allocation of storage for future records within the
confines of a data file is nearly impossible. These
problems are minimized by taking advantage of the
efficiencies of packing data sequentially into data
storage. An overflow area can be provided fdr the
additional records as they occur.

Allocation of a single area into which all overflow
records are stored simplifies the considerations of file
growth. Growth within each portion of the data file
can be ignored and concentration given to total
growth of the file. This is particularly true of sequen
tially indexed files because they readily lend them
selves to reorganization at which time the overflows
are merged with the main file records and reloaded
into the primary disk storage area.

The space resulting from deletions that occur in
the data file can be ignored until the file is reorgan
ized. Deletions are discussed later on in this manual.
Space allocation for overflow data is based on the
gross number of additions expected, instead of net
file growth.

Since additions can occur anywhere in the file it
is just as likely that they would occur between items
stored within a track of data as it is that they would
occur at the end of the tracks. But if they did always
occur· at the end of the track the index would still
give the benefit of a positive indication of the location
of the record. There would be no need to respond to
a no record found condition by a further search of
the index or with some type of scanning of the over
flow area.

Additional records, therefore, should be inserted

10

in their proper sequence on a track by moving higher
numbered records toward the end of the track. Rec
ords at the end of the track are moved to the over
flow area then in use and entries are made in the
track index for the new records and for the overflow
records. The overflow entry is made in its correct
sequential position in the track index. Thus, insertion
in the file affects three tracks: the data track that
receives the addition, the track index of that cylinder,
and the track in the overflow area that receives the
last displaced record. Access time for index mainte
nance is eliminated because the track index is in the
same cylinder with the data in which the change is
made.

Figure 2 diagrams the effect an insertion has on the
data track and its track index; BEFORE and AFTER

conditions are shown. Data records significant to the
Figure 2 example are represented by their identifier
keys.

The record with key 2136 is inserted in the records
on track 0242. It is written in proper sequence be
tween record 2082 and record 2307. This changes
the highest track index key for track 0242 from 2684
to 2307. Record 2684 is bumped from track 0242 and
written on overflow track 1131.

Fields changed by the insertion procedure are un
derlined in the after part of Figure 2, including the
count field. All of these changes are reflected in the
track index on track 0240. Further insertions into the
data track would lead to additional displacement of
records from the primary area into the overflow area.
Any insertions made between the last record of a track
in the primary area and a record already in the over
flow area would be referred automatically to the
overflow area without changing the primary area.
Insertions that occur between a record already in the
overflow area and a record in a primary area track
would be made in the primary area with the resulting
displacement of a primary record into the overflow
area.

No insertions will ever be made that have a key
higher than the highest key already loaded into a
cylinder and therefore the higher levels of indexes
will not be changed by the insertion or addition of
records. The reason for this, of course, is that a search
for any key higher than the highest key in a cylinder
will be referred to the next cylinder in the file by the
higher levels of indexes.

U sing a field of nine's rather than the actual highest
key in the data file for the last entry in each level of
indexes prevents the possibility of searching for a
key that is higher than the highest key contained in
the indexes.

BEFORE

Track Index Header Count Key Address
Address

0240 39 0117 0241

0241

0242 0395 0460 0465 1839

0243

f
0279

AFTER

Track Index Header Count Key Address
Address

0240 40 0117 0241

0241

0242 0395 0460 0465 1839

0243

f
0279

Figure 2. Record Insertion Example

Data file Deletions
A record deleted from the data file leaves a blank
space unless the other data records are shifted to
close the gap. Even then a space remains unless a
record is brought into the primary area from the
overflow area. To use the place made available by
a deletion, a corresponding overflow record must
exist to fill the slot; the overflow record must come
from the same track in which the deletion occurs.

Additions to a data file tend to occur in clusters in
specific portions of the data file or at the high end of
the sequence. Deletions seldom occur in these same
areas. Where growth of the data file occurs at the up
per end, the deletions tend to occur throughout the file
(insurance policy files are an example). Where public
utility files grow in specific areas corresponding to real
estate developments, the deletions occur in other clus
ters from slum clearance arid road programs. When
new products lead to a new part number series in an
inventory file, discontinued products obsolete part
numbers in other number series.

The effect of clustering additions and deletions upon
a sequentially organized data file is more pronounced
than it is upon a randomly organized file because the
essential integrity of the key structure is maintained
in a sequential file. Thus there is much less chance of
deletions and additions offsetting each other in the
data file. The additions are readily accommodated by

Key Address Key Address Key

2684 0242 2893 0243
()~

7528

0117

2082 2307 2684

2893

7528

Key Address Key Address Key

2307 0242 2684 1131
))

7528

0117

2082 2136 2307

2893

7528

the overflow techniques already discussed. The dele
tions are harmless and can be ignored until the data
file is reorganized. At that time, the overflow records
are merged with the records in the primary area and
the file reloaded, without gaps or overflows, with all
records in the primary area.

Data Directory Index
In addition to the prime, intermediate, and track in
dexes for each data file, an index can be created that
contains information about each of the data files in
disk· storage. This data directory index is created in
dependently of the loading program and is used to
govern all disk storage operations. The data directory
index is entered by using the code number or name of
a desired data file to learn the track address of the
prime index for that data file. The data directory in
dex can also carry information about each data file that
can be used to modify generalized programs that use
the data files.

The data directory index provides central reference
information from which a single starting point can
gain access to any data file. Because the data files are
referenced through the data directory index with a
code or name, unintentional reference to data files is
minimized; a program must request the file informa
tion for a specific data file in order to gain access to an
individual record.

Sequential Data Organization for IBM 1301 and 1302 Disk Storage 11

Like the data file indexes, the data directory index
has a header portion and a series of entries. The
header portion can consist of the identifying literal
DIRECTORY INDEX, an overflow track address for this in
dex, and a count field showing the number of data
files referenced by this index. The header on the over
flow track can specify another overflow track; as many
tracks as necessary can be chained together in this
manner. The l~st overflow header would carry the lit
eral END in the overflow track field to identify the last
track in that index.

The entry portion of a data directory index con
tains a reference field for every data file in disk stor
age. Each reference field contains the code number
and name of the data file, the track address of the
prime index for that data file, and other parameters
used to modify generalized programs so that they will
operate on all data files in disk storage.

Considerable sophistication may be employed in
these parameters; fields may be provided for the fol
lowing:

The length of the identifiers or record keys used.
The position of the key within the record.
The length of records in the data file.
The modes - six or eight bit and full track or record.
The effective full track length for tracks formatted in record

mode.
The length of the track address fields in index references.
The address of the track currently used for overflow.
The address of the last track available for overflow use.
The date any entry in the data directory index was last

changed.
The identification of the program that last changed an entry

in the data directory index.
A chain address to seldom used information regarding the

data file described by this entry in the data directory index.
This supplementary information may be the following:

A list of programs that reference this data file.
Identification of the cylinders the file occupies in the pri

mary area and in the overflow area.
Identification of the yet unused cylinders assigned to this

data file.
An expiration data for this data file. (A permanent data

file could carry the literal PERM in the expiration date
field.)

This list can be expanded to meet the desires of in
dividual installations.

The data directory index provides a common source
for information on any data file in disk storage. It re
duces the number of control entries that must be
made. to the generalized programs that manipulate
the data files in disk storage. Generalized programs for
random access to many data files make usage of a
data directory index virtually unavoidable.

Data Storage Allocation
In the indexes described, each entry carries a direct
disk storage address. Many techniques are available to
eliminate these addresses and thereby lessen the stor-

12

age space required for the indexes. These techniques
depend, however, upon the sequential nature of the
addresses. They must be in some sort of computable
series and if a common routine that can search any
data file index is to be used, they must be in contin
uous series. Disk storage addresses are included in the
indexes in order to eliminate this requirement of con
tinuity. Addresses in the indexes permit the data :61e
sequence to be independent of the track address se
quence in disk storage.

The use of addresses provides many advantages:
Freedom from commitment to the initial disk storage alloca-

tions.
Ability to relocate data files without reprogramming.
Ability to intersperse data files.
Ability to distribute data files into multiple modules of disk

storage.
Simplified conversion from one type of disk storage to an

other.

Independence from Initial Allocation of Storage

In the course of developing applications for disk stor
age it is frequently impossible to develop the entire
set of programs for the ultimate system at one time.
Provisions must be made, therefore, for the data files
that will eventually reside in disk storage and often
these provisions must be made before the characteris
tics of the files can be studied adequately.

Many questions arise: How fast will the files grow
and how much space will they require when placed
in disk ston~ge? What will be the exact record require
ments for the next series of applications and what
arrangement will provide adequate space without un
due waste? What must be done if a data file sand
wiched between two other data files grows beyond
those boundaries?

The use of an indexed file with addresses in the in
dex provides ready solutions to these problems. A file
can be loaded into the first ten cylinders plus the
seventeenth, or the last 50 cylinders plus the 23rd,
36th, and the 8th without aHecting the programming
of that file. Even the eHect upon access time is negli
gible in sequential processing and in file scanning. In
random accessing, the diHerence between accessing
adjacent and distant cylinders is small when the pro
portion of distant cylinders is small.

Ability to Relocate Data Files without Programming
Changes

When a data file that is between two other files grows
beyond its bounds, or when it is being pressed for
space by one of the other files, it may be desirable to
move a file from its current location and relocate it
in another area of disk storage. This relocation requires
only a change in the content of the index without a

change in the format of the index, and the change can
be made easily with no effect upon the programs
that search the indexes.

Ability to Intersperse Data Files

When storage allocations have been made conserv
atively and data files have failed to grow to full oc
cupancy of their assigned space, it is possible to
recapture that space by loading a data file in the avail
able space between other files. It is easy to relocate the
file if it becomes necessary or advisable.

Where references are frequently made to related
data files, it may be desirable to intersperse them in
some manner. This is particularly true in disk storage
systems with a single module of storage. When ad
ditional modules are added later it may be more ef
fective to place the data files in different modules.
This would have no effect upon the programs using the
data. One file would be relocated into the additional
module; the other file would be consolidated within
the original module and the space remaining would
become available for an additional data file. Complete
flexibility of the allocation and subsequent manipula
tion of location data file is obtained.

Ability to Distribute Data Files into Multiple Modules
of Disk Storage

Although this manual is devoted to description of se
quential organization of data in disk storage and may
seem to emphasize sequential processing and scanning
of those files, the importance of random processing
should not be overlooked. When random processing
is desirable and multiple modules of disk storage are
available, the opportunity to minimize access delays
by overlapping accesses to different modules should
be considered. This can be done by dispersing a data
file into portions of several modules of storage in such
a way as to cause an approximately equal number of
random transactions to reference each disk storage
module. If the random activity is distributed equally
throughout the data file, its distribution should also be
equal throughout the available modules.

Such distribution of data files requires knowledge of
the processing dynamics of the files that may be un
known at the start of the system. The facility for re
locating files can be used to study the system after
installation by trying various allocations and timing
the procesing under actual conditions; some advant
age can be realized even without consideration of
overlap. Dispersing the file over multiple modules can
decrease the span of cylinders that anyone access
mechanism need cover.

If a given data file occupies cylinders 0-19 in one

module of storage, the average random access time
within the data file is 82.5 milliseconds. For the
same file distributed in cylinders 0-9 in each of two
modules of disk storage, the average random access
time within the data file is 45 milliseconds. (These
figures are based on the calculations in Appendix E.)

Conversion from One Type of Disk Storage
to Another

New paths of growth for data files are provided by
IBM 1302 Disk Storage. The use of indexed sequential
files and the use of generalized programs to function
with the data files minimizes the problems of disk
storage conversion. For if all data files are loaded with
a common routine and are retrieved with a common
subroutine, only these parts of disk storage program
ming need be changed in order to accommodate the
new storage device. If these routines are modified at
object time with data directory index information,
conversion from 1301 to 1302 disk storage is simplified.
This is accomplished in relation to whether data is
formatted in 1301 disk storage in record mode or in
full track mode.

Conversion of Record Mode Data

Data formatted in record mode in 1301 disk storage
can be readily formatted in record mode for 1302
disk storage. Two 1301 cylinders for data will usually
occupy one 1302 cylinder (Figure 4).

A problem may exist, however, where programming
has handled track indexes with full track operations.
For example, the track index associated with ten 1301
records of 245 characters each is a 2,518 character
"record" as shown in Figure 8 (Appendix B) when
handled in full track mode. If this track .index is placed
in the same 1302 cylinder as the prime/intermediate
indexes, it can be formatted to be read into the same
size core storage area as was used in 1301 index
operations; otherwise, if the track index is put in the
same cylinder as its data, the full track operation
would attempt to move a 1302 track with a format
length of two tracks of 1301 data (5,036 characters).

Consideration may be given to putting the record
mode 1301 data into 1302 disk storage as if it had been
recorded in full track mode in the 1301, as follows.

Conversion of Full Track Mode Data

The follOWing approach is suggested for conversion of
indexed sequential data files stored in 1301 disk
storage in full track mode. Format the 1302 data
tracks to accept two records, each 2,800 characters in
length. This will permit the data files to be loaded into

Sequential Data Organization for IBM 1301 and 1302 Disk Storage 13

the 1302 in record mode. Two cylinders of 1301 in
dexed data will fit into one 1302 cylinder with a track
left over for data or indexing (Fjgure 3). This track
is formatted for two 2,800 character records; one
record can be the track index.

A converted track index is different than the indexes
previously described because it has two entries for
each track of 1302· disk storage. Each entry refers to
a block of data records that can overflow. Previous
description has shown overflow to occur at the end of
a track; the method now described overflows at the
end of block instead of at the end of a track.

A consequence of this method is that a track index
will have twice as many entries. Adequate space is
available, however, as shown in Figure 8 (Appendix
B). In fact, the track index can be recorded twice on
the 1302 track, thereby reducing rotational delay time
to 8.5 milliseconds.

The prime or intermediate indexes must be changed
to indicate that they refer to index records written in
record mode instead of in full track mode. This change
can be indicated by flag bits in the prime/intermediate
indexes.

Furthermore, because the data was stored originally
in full track mode and now is stored in record mode,
the address length shown in the data directory index
should be changed to specify seven characters instead
of six. This permits the units position of the seven
character address to serve as a one-character record
address. It can be a 1 or a 2, depending upon whether
it is for the first or second block of 2,800 characters.

1301

Cylinder 1 Cylinder 2

0 Track Index 40 Track Index
1 Data 41 Data
2 Data 42 Data
3 Data
4 Data

I I 78 Data
39 Data 79 Data

I~ ~I \ ~I
1301 Format Tracks

Indexing Blocked Records

0
1
2

I
19
20

f
39

The procedures discussed for use in placing 1301 data
files in 1302 storage can also be adapted for indexing
groups of small records in 700 or 1,400 character
blocks for 1301 operations.

Reorganizing the Data file
Periodically, it will be necessary to reorganize the data
file. This requires unloading the data file, merging the
overflow records, and reloading the file into the origi
nal area. If the file has grown since the previous
loading, additional space will be required for the data
file. The overflow records are merged during the data
file unloading operation to produce a complete and
usable magnetic tape record of the data file that can
be useful in a normal reporting procedure or auditing
function. This tape is used directly for reloading by
the loading and indexing program. It may then be
filed to fulfill record retention protection requirements.

Reorganizing the file can be both a very simple
operation and a regular part of normal operations. The
time spent to reload and reindex the file may be
wasted if reorganizing is done too frequently, but
processing time may be wasted - particularly during
random processing - if overflow records cause too
many additional accesses to the overflow areas. The
time for each of these additional accesses can be de
termined quite accurately because it depends on the
distance between the primary storage area and the
overflow area. Since these overflow accesses are pro-

> 1302

Cylinder 1

0&40 I Duplicate Track
Track Indexes Indexes or Data
Data 1 Date 2
Data 3 Data 4

1 1
Data 39 Data 41
Data 42

f 1
Data 78 Data 79

I

I~ -II c ~I 1302 Format Track

Figure 3. Example of Conversion of 1301 Full Track Format to 1302 Record Mode Format

14

gram controlled, they can be counted and the total
time for them calculated. Whenever that time ex
ceeds the time to reorganize the file, reorganization is
in order. When a projection of future time losses that
would occur if reorganization waited for the next con
venient time to reload exceeds the time required for
reorganization, then reorganizing is also advisable.

Index Usage in Sequential Processing
The indexes used in random processing are also neces
sary for sequential processing. During sequential runs,
the overflow addresses on the track indexes provide
the means of retrieving these records in their proper
sequential order. Where only a portion of the file is
to be scanned, a comparison with the prime index per
mits skipping to the proper starting point. When
processing input data, reference to the cylinder index
can show whether a given cylinder has any activity at
all and reference to the track index can eliminate
reading many tracks in the primary or overflow storage
areas. This permits efficient processing of files that
have low activity.

Index Usage in Random Processing
Indexes provide the ability to access randomly an
individual record without scanning the entire data file.
If the cylinder index is in core storage during the
processing of random transactions, then the random
capability of disk storage is retained and comes close
to the performance of a system deliberately designed
for random processing. Only an additional read cycle,
that of the track index, has been added.

Index usage in random processing has several timing
considerations. For example, assume a file stored in a
single module of 1301 disk storage, and assume the
processing of 50,000 transactions.

Random Processing, Random File Organization: The time
to access the tracks on which the records are located is a func
tion of the number of records, the average number of accesses to
locate the records, and the average access time per seek. For
the purposes of this example, the estimated number of effective
seeks per item retrieved is 1.2. Therefore, random access time
= 50,000 x 1.2 x 0.165 seconds = 9,900 seconds = 2.75 hours.

Sequential and Random Processing, Sequential File Organi
zation: Assume that eighty percent of the transactions can be
accumulated and processed in batches. Five batch processing
runs are assumed, with 8,000 items in each batch. The re
maining 10,000 items will be processed randomly, as they arrive.

To access all the cylinders in a 1301 module sequentially
takes 14.9 seconds (minimum access times are used for all
cylinders except the first which is considered to be a maximum).
Therefore, batch processing access time = 5 x 14.9 seconds =
74.5 seconds = 1.25 minutes.

To access 10,000 records randomly requires 10,000 x 1.0
(average number of seeks) x 0.165 = 1,650 seconds.

Additional time is required to read and search the track index

stored on each cylinder. Average rotational delay time plus
read time equals 51 milliseconds and searcr time is 34 milli
seconds. These two factors total 85 milliseconds and 10,000
times 0.085 equals 850 seconds. Therefore, total random access
time = 1,650 +850 = 2,500 seconds = 41.6 minutes.

In order to achieve minimum access times in sequential
processing, the input data must be in the same sequence as
the data :file and the time to sort these items must be added.
1301 sorts can sequence 8,000 items (100 character records)
in approximately 4 minutes. Taking a conservative magnetic
tape sorting time (1410-729 VI) of 6.5 minutes, 6.5 minutes
x 5 = 32.5 minutes.

Finally, allowance must be made for additional accesses for
records that are in overflow locations. This time cannot exceed
24 minutes for the entire job, including both sequential and
random processing; reorganization of the :file would be called
for. Therefore, an average time of 12 minutes is used.

To recap:
Random Processing, Random File Organization

Total Access Time
Sequential and Random Processing, Sequential
File Organization

Sequential processing access time
Sequential index read and search time
Batch sorting time (magnetic tape)
Random processing access time
Additional access time for overflow records
Total Access Time

2.75 hours

1.25 minutes
1.77

32.5
41.6
12.0
89.12 minutes.
= 1.5 hours

Note that the example deals only with access times. The
process times which would be involved are not considered in
the timings used; they would be approximately the same for
sequential or random :file organizations after the data records
had been accessed.

The example shows an advantage in total access
time in favor of sequential processing. The advantage
is contingent upon the ability to process the bulk of
the work in batches. It is also contingent upon the
size and location of the data file.

On the other hand, a further advantage to sequential
processing can be realized by performing the sorting
operations on auxiliary equipment, thereby relieving
the central processing system of this task. In the ex
ample above, 32.5 minutes of sorting could be trans
ferred to auxiliary systems, leaving approximately 50
minutes of access time on the main system. This is
contrasted to the 165 minutes of access time required
if a random processing approach is used for all trans
actions.

Some additional time is required in the random
processing of sequentially stored data because the
indexes must be consulted in order to locate a data
record. It is assumed that the cylinder index can be
retained in core storage during the processing of ran
dom transactions but the additional time to read and
search the track index cannot be avoided. Where the
individual response times are critical, such a factor
should not be overlooked. Processing low-priority
items sequentially, however, reduces the requirement
for random processing and increases system avail
ability for random processing.

Sequential Data Organization for IBM 1301 and 1302 Disk Storage 15

Index Usage in Scanning
In sequential scanning of a data file the indexes are
the guide to the location of the data file. The location
of the initial track index is learned from the prime
index specified by the data directory index.

Track indexes are used to control scanning because
cylinders may not be assigned to the data file in as
cending sequence. Also, the use of track indexes facili
tates handling overflow records.

Each track index contains the address of the next
track index in sequence. When completing the proces
sing of a cylinder, the track index in use provides the
track index for the next cylinder of data. This chaining
of track indexes facilitates scanning.

Data from primary areas in disk storage is readily
scanned in core storage, but records from overflow
areas may present a problem. One way of solving the
problem is to transform the overflow record key in
the track index for use as a record address or for use
in selecting a record from a block in full track mode.

Sorting versus Distributing
Random processing of input data can eliminate sorting
runs and lists can be used to control scanning for the
generation of reports from a random fil~, but the func
tion of sorting, the business of putting data in order,
must still be accomplished in order to process the
data efficiently.

In sequential systems, input data are arranged in the
same order as the data in the file in order to efficiently
match transactions against the affected records. With
random processing, input data is matched with the
stored data record by accessing the proper data record,
matching it with the input, and then distributing the
data record back to its proper location. This procedure
of placing the input transactions into their proper
pigeon-holes is similar to sorting; the purpose is to put
the input transactions into order.

When using sequential file organization with both
sequential and random processing capability, the two
methods of putting data· into order can be compared
and the better one selected. Sorting time depends upon
the number and size of the records as well as the
equipment configuration. Random access time - the
time used to. distribute records - depends upon the
number of recol"ds, the size of the data file, and, in
some instances, upon the location of the cylinders as
signed.

The following example points up some of the con
siderations, but a comparison of conditions existing in
an operating environment is required to support a final
choice between the two methods.

16

Assume that 8,000 items consisting of 80 characters each
accumulate for processing. Further assume that the data records
occupy an entire module of 1301 disk storage.

Random Processing
Random Access Time

165 ms per item x 8,000 = 1,320 seconds = 22 minutes
Sequential Processing

Magnetic Tape Sorting Time (1410-729 VI)
Sort 8,000 items (80 characters) 6.5 minutes
Access Cylinders Sequentially 0.25

Disk Sorting Time
1410-1301 II

Sort 8,000 items (80 characters)
Access Cylinders Sequentially

6.75 minutes
(approx.)

4.00 minutes
0.25
4.25 minutes
(approx.)

Sorting the data and sequentially accessing each
cylinder is three to five times faster than eliminating
the sorting and processing randomly; the reverse is
true if a quantity of only ten items instead of 8,000 is
assumed, or if access time to the data is minimal.
Therefore, a calculation should be made for each case
before deciding to include or eliminate sorting.

Record Mode versus Full Track Mode
Records can be stored individually with record ad
dresses or grouped into single physical records that
comprise a full track of 1301 disk storage. Three con
siderations enter into the choice: storage utilization,
data transfer time, and processing time.

Figure 4 shows the number of records and their
lengths that can be stored on a track. Full· track mode
provides more characters per record than does record
mode. If the fullest possible use of character space
were the only consideration, full track mode would be
superior.

The second consideration is the channel require
ment to read and write the record. A complete disk
rotation is required to read a full track record from
disk storage into the computer. This takes 34 milli
seconds. The time to read a single record is propor
tionately less, depending upon the record length. If
ten records are stored on a track the time to read one
record is approximately one-tenth of the full rotational
time. Writing and checking times are similarly calcu
lated. In addition to the actual data transfer time
through the channel, the channel will be occupied
while it waits for the proper record to arrive at the
read-write head. The average waiting time will be half
a revolution or 17 milliseconds for the initial reading
of a record. The rotational delay for writing a record
is the difference between total process time and the
next multiple of 34 milliseconds. When the channel is
occupied by reading, writing, or checking data, it is

6 Bit Character Record Size*

1301 1302

Full Full
Number of Track Record Track Record
Records Mode Mode Mode Mode

1 2800 2800 5850 5850
2 1400 1381 2925 2900
3 933 908 1950 1916
4 700 671 1462 1425
5 560 529 1170 1130
6 466 435 975 933
7 400 367 835 792
8 350 316 731 685
9 311 277 650 605

10 280 245 585 540
11 254 220 531 486
12 233 198 487 441
13 215 180 450 403
14 200 164 417 371
15 186 151 390 343
16 175 139 365 318
17 164 128 344 297
18 155 119 325 277
19 147 111 307 260
20 140 103 292 245
21 133 97 278 230
22 127 91 265 218
23 121 85 254 206
24 116 80 243 195

*Maximum sizes of uniform length records per track are listed
(six character RA'Si two character HA2's)

Figure 4. Record Size and Number of Records per Track

not available for operations with other devices. Thus,
record mode requires less channel time and is prefer
able for random processing or low activity sequential
processing where channel time considerations are
paramount.

The third major consideration is process time. The
normal processing sequence with full track mode is to
read the record from disk storage into the central
processing unit, process the record and write it back
to disk storage, and check it. Because of processing
delay, the minimum possible time to perform these
operations would involve four revolutions of the disk.
With most systems, however, there is insufficient time
between the passing of the end of the track and the
index point at the beginning of the track to allow for
initiation of the checking operation. Therefore, an ad
ditional rotational delay is incurred. And at the com
pletion of checking, insufficient time is available to
initiate a read of the next track and additional rota
tional delay occurs.

In record mode, the IBM 7631 File Control need not
reference the index point to initiate the reading,
writing, or checking of the record. Therefore, the
total delay time is only that required to readdress the
same record. If the record is not at the far end of the
track, there is time after the completion of the check
ing operation to initiate a seek and obtain another

record from any other track in the cy linder. This
avoids a second rotational delay.

Figure 5 shows a substantial processing time ad
vantage for record mode. This is in addition to the
decreased requirement for input/output core storage
space and an absence of a requirement to deblock the
desired record from a group stored full track. The ad
vantage of single record processing holds true even for
sequential processing of the track, when the average
number of active records per track is less than two.

Figure 5 further suggests that a program should
look ahead at the input data and compare it with the
track index to learn whether there are more than two
items being processed on a track. When this is true,
the full track should be read, but when only one item
is active on the track, the item should be read in
record mode. Conversely, when a file is being scanned
for data file maintenance, the full track, with ad
dresses, should always be read and where only one
item was active in that particular group, it should be
written back separately into the proper place in disk
storage.

The process time relationships in Figure 5 are shown
graphically for a specific case in Figure 10 (Appendix
D).

41
E

41
t=

U 0) ~
>- .~ Q1-c

U .::/.
Z ...

~ .~ >- >- 0
-c u -c u u C 41 C o 41 g e ~ Q)c:: Q) 410<:
0<: ~ -c U -c 0<:

34ms ~~ 34 34 34 34 34

FULL TRACK MODE
>-
C 41

Q) E
0 t=
0 Cl

41 C .~
0)0 .::/.
E,:Z: -c ~ .~ >- U
41 C U C 41 > g e ~ Q)c::
«~ 0<: ~ -c U

117rns141~Y I I I I
4 30 4

RECORD MODE

Figure 5. Time Considerations for 1301

Input·Output Storage
Disk storage can be used for the accumulation of input
transactions or output items into batches. As input
transactions are accumulated, control totals and a
total count of the items are maintained. When a batch
is large enough to process, the system can be signalled
to schedule the operation, or conversely, whenever the
system finds time, it can test these counts to determine
if a batch is large enough to process.

Sequential Data Organization for IBM 1301 and 1302 Disk Storage 17

Output records can be accumulated in the same way
and processed when convenient. For example, random
transactions may have been processed during the
course of a day which call for the generation of output
documents such as confirmations of sale, special bill
ings, or similar documents. If these were produced at
the time, multiple setups of equipment or the con
tinuous reservation of a magnetic tape drive would be
necessary to receive these documents. For convenience
in scheduling a printing operation, records can be re
tained in a section of disk storage until printing is
warranted or until another batch that produces similar
documents is run. The accumulated document data
can then be added to a tape and printed in a com
bined run.

Program Storage
Disk storage is a good storage medium for programs
and subroutines. Obvious advantages include reduction
of setup time, elimination of searching time for a pro
gram stored on tape, and elimination of handling time
when a program tape must be dismounted to make
the tape drive available for data input and output.
The use of disk-stored programs and subroutines can
simplify programming in a number of ways.

Processing Sequential or Random Input
Transactions

Programs should be written to capitalize upon the
ability to process random transactions economically.
Conditions arise under which it may be desirable to
have a program process a single input or a very small
number of transactions despite the program having
been designed to process only large batches of trans
actions. Special payroll checks or vacation checks may
require all the processing of the regular payroll pro
cedure. If the payroll system is designed only for large
batches, processing ,of individual checks may be so
inconvenient as to necessitate manual handling with
subsequent adjustment of the records. If substantial
editing of the transaction is accomplished in the
sorting routine, it may not even be possible to run
individual items or batches that are too small to sort.

If the processing programs are written to be inde
pendent of the method of data matching and retrieval,
then single items or large batches can be processed
by the same program. In this way, random transactions
as well as large batches can be accommodated without
any need to write and maintain two separate programs.

Another benefit of such an approach is that the
sorting versus distribution calculations previously dis
cussed can be performed to choose the best procedure.

18

The addition of the concepts of program storage and
input buffering to the concept of sorting versus distri
bution points to programming that will permit the
system to choose automatically an efficient course of
action.

Balancing Partially Processed Data Files
When processing transactions against a data file on
cards or magnetic tape, every file record, inactive as
well as active, is read and a total balance is established
based upon the details of each record. The whole
process is assumed to be in balance if the total of
original balances, plus or minus the transactions,
equals the total of the resulting balance. When random
transactions or batches are processed against records
in disk storage, only the active records are consulted,
and control procedure modification is required. Since
the inactive records are not read, the balancing pro
cedure must depend upon the assumption that they
are correct. This assumption is proven by trial balanc
ing all accounts on some cyclic basis that is frequent
enough to enable corrective action.

The means for detecting record errors are provided
by establishing balance fields in addition to detailed
item fields. For accounts receivable records, a total
amount due field is established that is the cross toat
total of the gross amounts of the individual invoice
items.

Then all processing of such records would include
cross-footing the record before and after processing to
assure that the record was in balance and that it re
mains in a balanced condition. A before total of all
balances of the affected records is reconciled with the
changes and the total of the after balances. When this
is done, the total of the changes can be posted to the
total control records which will then reflect the cor
rect total of all record balances. An example follows:

Accounts Before Processing:
ITEM

Account A 50.00
Account D 75.00

Total Old Balance of All Accounts
Two Cash Receipts to be Processed:

Transaction A for 40.00
Transaction D for 75.00.

Accounts After Processing:

ITEM

00.00
75.00

ITEM ITEM

Account A 10.00 00.00
Account D 00.00 75.00

Total Balance of Affected Accounts «Before"
Total Balance of Affected Accounts "After"
Total ~Transactions

BALANCE
50.00

150.00
10,000.00

BALANCE
10.00
75.00

200.00
85.00

115.00

Since the old balance minus the new balance equals
$115, the amount posted, the procedure checks, and
the new total control balance of all accounts is reduced
from $10,000.00 to $9,885.00.

Such a balancing procedure is fundamentally the
same as that used in manual bookkeeping systems or
in tape systems where the total main file is split into
daily cycles and a total control balance covers all
cycles.

The sequential organization of data lends itself
particularly well to this kind of balancing because
subledger controls can be instituted to cover portions
of the total file. These controls should be reconciled
to the total control before and after processing or at
periodic intervals during processing. Provisions should
be made for retaining the original control figures
during the course of any interval of processing as well
as the new figure that reflects the changes. These are
then reconciled at any desired balancing point. The
general philosophy used is that if the changes balance
in detail they can be used in the subledger totals. If
the subledger totals balance similarly, the change can
be posted to the grand total.

If errors occur, only the subledgers that are in
doubt need be balanced to the details supporting
them, and searches of the entire file are substantially
eliminated.

An inactive account that is out of balance will go
undetected. But the procedure outlined guarantees
that the last time it was legitimately processed, the
record was correct, and the next time it is processed
or trial balanced, the error will be detected. Good
bookkeeping practice requires nothing more.

Audit Trail on Output Documents

Random processing can make the trail back through
output documents somewhat obscure. There is no
requirement that every account be reflected in every
document, nor is there a requirement that the items on
output listings be in any sequence. Under such circum
stances the job of searching back through historical
documents may be difficult if not impossible.

It is recommended, therefore, that a record of the
most recent output document that has a reference to
a given account be maintained within the disk stored
record of that account. For added convenience the
line number of that reference can also be included.
When a new reference is made the previous record is
printed out with the result that the most recent refer
ence is carried in disk storage, the next most recent
is shown on the referenced report, and that report
shows the previous report reference, etc. (See Figure
6.)

Program Signature

The previous example shows that any program that
produced an output document can be traced in its

DISK RECORD:

Account
Number Name Date

0731

Run

Cash

Line
Number

1097 Ixxxx AAAAA \\
~--------------------~

PRINTED REPORT:

Cash Journal July 31

Line Account Previous Reference

Number Number Name Date Run Line # Paid

1096

1097 xxxx AAAAA 0625 JnEntry 109 xxxx

Balance

xxxx

(On the Journal Entries report for June 25th a similar reference leads to
the previous report.)

Figure 6. Report Line Number Audit Trail Example

relationship to other programs that also produced out
put documents. The sequence in which several dif
ferent programs operated upon a particular data
record can be ascertained quickly.

Such a relationship is not so easy to establish with
programs which do not produce an output document,
but when difficulties are suspected some trail informa
tion is invaluable. An additional field can be used in a
data record to identify the last program that acted
upon the data record. A sequence number can be used
to identify multiple references to the same record. In
tracing unusual conditions, this field will eliminate
questions about how a record achieved its status if
the most recent program signed the record with a
date, number, and unique program designation. This
information should be passed on to the audit records
that are created from the transactions even though it
is not planned to print the records. This program
signature procedure can provide a single, common
trail for all programs, similar to that discussed for
printed reports.

Unintentional Data Reference

While the methods just described give assistance in
tracing unintentional data referencing, it is also true
that the organization scheme itself provides consider
able protection of the data. If the system uses a data
directory index, the addresses of data in disk storage
can be located only by referencing the data file by
name. The directory thus performs a fundamental role
in limiting the data access to those programs that have

Sequential Data Organization for IBM 1301 and 1302 Disk Storage 19

specifically requested records from that particular
data file.

Detailed information on accounting controls appears
in the ffiM manual, In-Line Electronic Accounting,

20

Internal Control and Audit Trail, Form F20-2019 (pre
pared by Price Waterhouse at ffiM'S request). This
manual draws upon experience with the IBM 305
RAMAC® Data Processing System.

The fields below are recommended for 1301 and 1302
data indexes to facilitate random and sequential data
processing, as well as sequential scanning of all records
in a data file.

Track Index Format

F p N C E2•••••••••••• En

LI _2 --11_6---1-_6-1.-1 _4 -LI_K--.J......-I _T ---,--K--J.-I _T --..J\ \ KIT

F - This two character flag refers to data and con
tains D, bI.

P - Address of prime index (AMTTTT).

N - Address of next track index (AMTT'IT) or, END

left justified for the last track index of the data file.
C - Count of entries (E-fields) in this track index.
E - This variable length field provides index infor

mation for data tracks. One E-field is created for each
data track in the primary cylinder plus one E-field for
each overflow record associated with this track index.
The E-field has two portions, K and T:

K - A variable length field for the alphanumeric
key of the record with the highest key in the primary
cylinder or of the overflow record. Blanks are per
mitted in the key.

T - The track address (AM'IT'IT) for the track as
sociated with K. When K refers to an overflow area,
the tens position of this T -field has a zone (B-bit).

Prime and Intermediate Index Format

F P NeE, E2 ••••••••••••• En

I 2 6 I 6 I 4 I KIT I KIT)) KIT

F - This flag field contains I, bl, to refer to a lower
level of index.

P - For a prime index, this field contains PRIME

left justified. For an intermediate index, the field
contains the address of the prime index (AMTTTT).

N - This name field carries the literal PRIME or
INTER.

C - Count of entries (E-fields) in this index.

Appendix A. Index Formats for 1410
and 7010 Systems

E - This variable length field serves a function simi
lar to that of the E-fields in the track index. In an in
dex of data cylinders, the key portion of the field (K)
contains the last (highest) key in the track index and
the track portion of the field (T) contains the track
address of the track index for the data. An index to a
data cylinder is complete when the data file is com
pletely loaded or when a maximum length is attained.
In the former case, the index would be a prime index;
in the latter case, the index would be an intermediate
index. A hierarchy of indexes can be created to meet
the needs of the data file with regard to system limita
tions.

Data Directory Index Format
This index is created independently of the data load
ing program to provide control information regarding
the data files in disk storage. It has this format:

L-F_2 __ ~IN_A_~_E __ L-_C_6 __ ~_~ __ -L __ ~_7 __ LI_R_;_ .. _.~.~~

F - This two character flag field is for identification.
NAME - Contains the literal DIR bl INDEX.

C - Track address of overflow portion of this index
or END.

N - Number of R-fields in this index.
R - An R-field is created in this index for each data

file in disk storage (Figure 7).

~
:l

C
~

c
~ 0>

0 0 Vi ..c 'E 'E ." OJ Q) Q) c
-:E c > > 0 Q) 0 0 Q) 0> ...J

..c c III 0> III
Q) .E c III

c m ...J ~ .E 0 ~ ..c
~

c ~ ..c ." m Q) ~ ." ~ U U ." U U ~ III C 0
...J e. « e. e. 4-

Q)
Q) ~ ...J a.. "E Q) I-- ~

I-- I-- 0 C
Q) E 0 ." U] 0 '0 ." ." >- >- u is C 0 0 ." Q) Q) Q) ~ :i e. ..c

U z « ~ ~ 0:: ll- I-- ll- ...J 0 u

1
3

1
10

1

6
1

2
1

3
1

4
1

1
14

1

2
1 6 I" 1

8
1

5
1

Figure 7. Format of R-Field

Appendix A 21

Code - Date file code.
Name - Data file identification.
Address - Address of the prime index of the data

file.
Key Length - The length of the key fields for the

data file in character positions.
Key Position - Units position of the key for the low

order position of the records in core storage.
Record Length - Length of the data record in char

acters.
Mode - Full track or record mode; 6- or 8-bit.
Full Track Length - Length of a full track of the

data file under format control. Lenth includes record
addresses.

Track Address Length - This field has 00 for normal
six character addresses (AMTTTT). When indexes for
data files are stored in record mode, additional track
address characters can be used to provide record ad
dresses. Such record mode storage of indexes is con
venient for data files converted from 1301 to 1302 disk
storage. When track addresses are longer than six char
acters in length, this field should be incremented by
one for each extra character.

First Track for Overflow - Track address (AMTrT'f)
for the beginning of the data overflow area in disk

22

storage. The address is updated as overflow tracks are
filled. Therefore, this field always indicates the address
of the next overflow track. As this field is updated, its
contents are compared with the contents of the next
field, Last Track for Overflow. A message is typed
when the remaining area for overflow becomes
minimal.

Last Track for Overflow - Track address (AMTT'IT)
for the end of data overflow area in disk storage.

Date of Change and Signature - The first five char
acters of this field indicate the date that the reference
was last changed. The last three characters are the
initials of the program making the change.

Chain Address - This field is reserved for future
use in track address (AMTTTT) chaining to additional
information.

When only two indexes are required the prime
index can be read into core storage. The area required
can be calculated in this manner:

Number of characters = W +N (K +6)
W = Length of prime index header.
N = Number of cylinders of data.
K = Length of key.

The key portion of the last entry in any index should
be all 9s in order to terminate a search of keys.

Figure 8 shows the number of track references that
can be packed into a 1301 track index before the track
index overflows. No allowance has been made for a
track index header. The cylinder carrying the track
index is formatted in record mode.

The following formula was used to compute the
numbers of references:

L+6
N=K+6 XR

Appendix B. Additions to Track Index

where: N = Number of references per track.
L = Number of characters per record plus six char

acters for record address.
K = Number of charaders per key plus six characters

for track address in index.
R = Number of records per track.
6 = Characters per record address.
6 = Track address.

Maximum No. of Number of References per Index Track by Key Size
Uniform Length Effective 5 6 7 8 9 10 11 12
Records per Area for Char Char Char Char Char Char Char Char
Data Track Index Storage Key Key Key Key Key Key Key Key

1 2806 255 233 215 200 187 175 165 155
2 2774 252 231 213 198 184 173 163 154
3 2742 249 228 210 195 182 171 161 152
4 2710 246 225 208 193 180 169 159 150
5 2678 243 223 206 191 178 167 157 148

6 2646 240 220 203 189 176 165 155 146
7 2614 237 217 201 187 174 163 153 145
8 2582 234 214 198 184 172 161 151 143
9 2550 231 212 196 182 170 159 149 141

10 2518 228 209 193 179 167 157 148 139

Figure 8. Maximum Number of References Per 1301 Index Track by Key Size When Formatted in Record Mode

Appendix B 23

Appendix C. File Growth and the
Track Index

The percentages of allowable 1301 data file growth
shown in Figure 9 are based upon the following
factors: .

Percentage of allowable record growth per
N-39

cylinder = R

where N = Number of overflow index references per track.
R = Number of records per cylinder (of 39 tracks).

Percentage Allowable Growth in Cylinder Records from Track Index Capacity
Maximum No. No. of Records 5 6 7 8 9 10 11 12
of Records per per 39 Track Char Char Char Char Char Char Char Char
Track Cylinder Key Key Key Key Key Key Key Key

1 39 554 497 451 413 379 348 323 297
2 78 273 246 223 203 185 171 158 147
3 117 176 158 144 133 122 112 104 96
4 156 132 121 109 100 91 84 78 72
5 195 104 94 85 77 71 65 60 55

6 234 85 77 70 64 58 53 49 46
7 273 72 65 59 54 49 45 41 38
8 312 62 56 50 46 42 39 35 33
9 351 54 49 44 40 37 34 31 29

10 390 48 43 39 35 32 30 27 25

Figure 9. Percentage of File Growth Before 1301 Track Index Overflow When the Cylinder is Formatted in Record Mode

24

The relationships in Figure 10 show that record mode
operations are favorable for low ranges of activity. For
higher ranges, full track mode is more attractive. The
two modes of operations are comparable at an activity
ratio of approximately 40 percent. Figure 10 refers to
1301 operations.

The assumptions for Figure 10 are as follows:
1. Record size - 367 characters.
2. File size - 70,000 records.
3. Processing time for one record - 17 ms.
4. The data file is stored in sequential order.
S. The input transactions are pre-sorted in the same

sequence as the data file.
6. Processing time includes:

a. Read, process, write, and write check the data
record; and

b. Rotational delay periods associated with the
operations.

The processing time elements have the following
relationships:

Appendix D. A Comparison of
Sequentially Processed Full
Track Mode and Record
Mode Operations

Full Track Mode: 10

READ PROCESS WRITE DELAY CHECK DELAY

34 34 34 34 34 34 = 204ms
Single Record Mode:

DELAY READ PROCESS WRITE DELAY CHECK

17 4 30 4 30 4 = 89 ms
Index Retrieval- Full Track or Record Mode:

DELAY READ PROCESS

17 34 34 = 85ms
7. For both modes of operations, the procedure is

as follows: The track index for a cylinder of data is
referenced once for all transactions affecting records
contained in that cylinder. Processing proceeds se
quentially from one cylinder to the next. No overflow
records are assumed.

The calculation considerations for Figure 10 are:
Record size - 367 characters
Number of records per file - 70,000 records
Number of tracks - 10,000
Process time per record = 17 ms
Cylinder access time = 14,600 ms for 250 cylinders
Time to read indexes = 85 ms per track
Index retrieval time including seek time = 14,600 +85 (250)

ms = 35.85 seconds
Full Track

N = Number of active records
Process = (34) 6 = 204 ms per record

N = 250 T = Process Time = 14,600 +85(250)
+0.204(250) seconds

= 86.85 seconds
= 1.45 minutes

o
10 20 30 40 50 60 70 80 90 100

Percentage of Activity

(Circled numbers Indicate number of records processed per track)

Figure 10. Activity Considerations with Record Mode
and Full Track Mode Operations

N = 1,000

N = 5,000

N = 10,000

N = 20,000

N = 30,000

N = 40,000

N = 50,000

N = 60,000

N = 70,000

T = (14.6 +21.25) +0.204(1,000) seconds
= 4 minutes

T = 35.85 + 0.204(5,000) seconds
= 17.6 minutes

T = 35.85 +0.204 (10,000) seconds
= 34.6 minutes

T = 35.85 +0.204 (10,000) seconds
= 34.6 minutes

T = 35.85 +O.238(10,000) seconds
= 40.2 minutes

T = 35.85 +0.238(10,000) seconds
= 40.2 minutes

T = 35.85 +0.272(10,000) seconds
= 45.9 minutes

T = 35.85 +0.272(10,000) seconds
= 45.9 minutes

T = 35.85 +0.306 (10,000) seconds
= 51.6 minutes

Appendix D 25

Single Record
Process = 17 +4 +30 +4 +30 +4 = 89 ms per record

N = 250 T = 35.85 +0.089(250) seconds
= 0.97 minutes

N = 1,000 T = 35.85 +0.089(1,000) seconds
= 2.06 minutes

26

N = 5,000

N = 10,000

N = 20,000

T = 35.85 +0.089(5,000) seconds
= 8.01 minutes

T = 35.85 +0.089(10,000) seconds
= 15.43 minutes

T = 35.85 +0.089(20,000) seconds
= 30.26 minutes

Access motion time is the time required for access arm
motion to get from the track last used to the next track.
There are three levels of motion time: cylinder, group,
and zone.

No motion time occurs between tracks in the same
cylinder. Motion time between tracks in cylinders in
the same group is 50 milliseconds, between tracks in
cylinders in different groups in the same zone motion
time is 120 milliseconds, and between tracks in dif
ferent zones it is 180 milliseconds. Thus, motion time
varies between 0 and 180 milliseconds, depending on
the motion involved. Six examples of various access
situations are shown below.

Example 1: Average motion time within a five cylin
der group.

Five cylinders can be accessed from any of the five cylinders
in the group. The starting cylinder requires 0 milliseconds mo
tion time and the other four each require 50 milliseconds motion
time. Assuming that the starting and ending cylinders are
chosen at random, the average time is:

115 X 0 +415 X 50 = 0 +40 ms.
A similar relationship exists for the tracks. Of 200 tracks

(40 X 5) in the group, 40 tracks have zero motion time and
160 have 50 milliseconds motion time. The average is 40/200
X 0 +160/200 X 50 = 40 milliseconds, the same result ob
tained with the cylinder calculation.

Example 2: Average motion time within a ten cylin
der group.

Here the chances are nine in ten of going to a different
cylinder against one in ten of accessing a track on the same
cylinder. The average time is:

1110 X 0 +9/10 X 50 = 0 +45 ms.
Example 3: Twenty cylinders in two groups of ten

within the same zone.
Half the tracks are in the starting group and the rest are in

the other group. vVithin the same group the average time is
45 milliseconds (Example 2); between groups it is 120 milli
seconds. The average time is:

.1/2 X 45 +112 X 120 = 22.5 +60 = B2.5 ms.

Example 4: Twenty-five cylinders in two groups of
ten and one group of five, all within the same zone.

This example illustrates how to take into account different
sized starting groups.

Case A: If the starting track is in a ten cylinder group.
Ten of the cylinders that can be accessed are in the same group
and have an average time of 45 milliseconds. Fifteen are in one
of the other groups with an average time of 120 milliseconds.
The average motion time for this situation is:

10/25 X 45 +15/25 X 120 = 1B +72 = 90 ms.

Appendix E. Estimating Access Motion
Time for IBM 1301 Disk
Storage

Case B: If the starting track is in the five cylinder group.
Five of the cylinders are in the same group with an average
access time of 40 milliseconds (Example 1). Twenty are in the
other groups having 120 milliseconds access time. The average
time is:

5/25 X 40 +20/25 X 120 = B +96 = 104 ms.
Cases A and B must now be combined in proper proportion

to get the overall average. Since there are 20 of the 25 cylinders
in the groups of ten, on the average 20 out of 25 starts will
be Case A. The other five will be Case B. Therefore, overall
average access time for this example is:

20/25 X 90 +5/25 X 104 = 72 +20.B = 92.B ms.
The next example is of the same type.

Example 5: A zone of 50 cylinders. Two groups of
ten, one of five, two more of ten, and one of five.

Case A: With the starting track in anyone of the ten cylinder
groups, ten of the cylinders that can be accessed are in the
same group with an average time of 45 milliseconds and 40 are
in other groups with 120 milliseconds access time. The average
time is:

10/50 X 45 +40/50 X 120 = 9 +96 = 105 ms.
Case B: With the starting track in one of the groups of five

cylinders, five of the 50 cylinders can be accessed in an aver
age of 50 milliseconds (Example 1) and the remaining 45
require 120 milliseconds. The average time is:

5/50 X 40 +45/50 X 120 = 4 + lOB = 112 ms.
In this example, ten of the 50 starting tracks are in groups of

five (two groups) and the other 40 are in groups of ten (four
groups). The overall average is:

10/50 X 112 +40/50 X 105 = 22.4 +B4 = 106.4 ms.

Example 6: A file of 250 cylinders. Five zones of
50 cylinders each.

Fifty of the cylinders are in the. same zone with an average
access time of 106.4 milliseconds (Example 5). The other 200
are in different zones requiring 1BO milliseconds of access time.
The average time is:

50/250 X 106.4 +200/250 X 1BO = 21.3 + 144
= 165.3 ms.

It is necessary to consider the proportion of starting
tracks only when the average time to all other tracks
in the data file depends on the location of the starting
track. While this is generally the case, by using the
group and zone averages calculated in examples 1, 2,
and 5 which take this effect into account, the computa
tions can be simplified as in example 5. The calcula
tions give average times; the motions can take times
varying from 0 to the maximum for the boundary
crossed in such a manner that they average out as
indicated by the calculations.

Appendix E 27

A22·6784

TIrnlk1r
(!)

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, New York

	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28

