
s~ =-.if Instruments
- - - --- Inc --------·- .

Computer System

Operating System Reference Manual
Part 2. Logical 1/0 and System Services

Release 1.0

GC22-9200

Preliminary Edition (February 1983)

The contents of this preliminary edition are subject to change. Changes
will be included in subsequent Technical Newsletters or editions of this
publication.

Requests for copies of IBM Instruments, Inc., publications should be made
to your IBM Instruments, Inc., representative or by calling, toll-free,
800-243-3122 (in Connecticut, call collect 265-5791).

A form for reader's comments is provided at the back of this publication.
If the form has been removed, comments may be addressed to IBM
Instruments, Inc., Department 79K, P.O. Box 332, Danbury, CT 06810. IBM
Instruments, Inc. may use or distribute any of the information you supply
in any way it believes appropriate without incurring any obligation
whatever.

C Copyright IBM Instruments, Inc. 1982

00207830

01234567890

Preliminary Version CS Operating System Reference Manual ii

PREFACE

This manual describes the programming interfaces to the operating system
of the IBM Instruments Computer System. It consists of eleven chapters
and an appendix.

• Chapter 1 -- "Logical I/O, Event Posting, and Timer Services"-
introduces the general featues of the programming interfaces.

Chapters 2 through 10 discuss the programming of the various interfaces.
These are:

• Chapter 2 "Keyboard, Keypad, and Softkey Driver"

• Chapter 3 "CRT Display Driver"

• Chapter 4 "Printer/Plotter Driver"

• Chapter 5 "RS-232 Asynchronous Communications Driver"

• Chapter 6 "IEEE-488 Interface Driver"

• Chapter 7 "User Parallel Port Driver"

• Chapter 8 "Diskette Driver"

• Chapter 9 "Sensor I/O Driver"

• Chapter 10-- "CRT Graphics Driver"

• Chapter 11-- "System Services" -- describes the system call routines
available to the programmer.

• Appendix -- "Auxiliary Software -- describes several kinds of files
that can be used as programming aids.

Preliminary Version CS Operating System Reference Manual iii

Publications that discuss related aspects of the Computer System are:

Computer System Product Description, GC22-9183

BASIC Programming Manual, GC22-9184 GC22-9184

Computer System Operating System Reference Manual
Part 1: Operating System, GC22-9199.

Computer System Problem Isolation, GC22-9192

The U.S. Federal Government requires that the following statement be
printed in operating manuals for all Class A computing devices:

"WARNING - This equipment generates, uses, and can radiate radio frequency
energy and, if not installed and used in accordance with its associated
publications, may cause interference to radio communications. It has been
tested and found to comply with the limits for a Class A computing device
pursuant to Subpart J of Part 15 of FCC Rules, which are designed to
provide reasonable protection against such interference when operated in
a commercial environment. Operation of this equipment in a residential
area is likely to cause interference in which case the user at his own
expense will be required to take whatever measures may be required to
correct the interference."

Preliminary Version CS Operating System Reference Manual iv

CONTENTS

1.0 LOGICAL I/O, TIME SERVICES, AND EVENT POSTING
1.1 Introduction

1.1.1 Device-Independent I/O
1.1.2 Logical Unit Numbers
1.1.3 Synchronous And Asynchronous I/O
1.1.4 Asynchronous Event Posting
1.1.5 Timer Services
1 . 1 . 6 COMMAND SUMMARY

1.2 Application Program I/O Interface
1.2.1 Exception Handling
1.2.2 Byte I/O Facilities
1.2.3 Exception Codes
1.2.4 File Name Format
1.2.5 Device Naming

1.3 Application Macros
1.3.1 SYSIO
1.3.2 SUSPEND
1.3.3 ASYNCHRONOUS EVENT POSTING
1. 3. 4 TIMER

1.4 Application Control Blocks
2.0 Keyboard, Keypad, and Softkey Driver

2.1 Introduction
2.2 Features
2.3 Method of Operation
2.4 Keyboard Scancode Definitions

2.4.1 Keyboard Encoding and Usage
2.4.1.1 Encoding
2.4.1.2 Character Codes

2.4.2 Extended Codes
2.4.2.1 Extended Functions
2.4.2.2 Shift States
2.4.2.3 Shift Key Priorities and Combinations

2.4.3 Special Handling
2.4.3.1 System Reset
2.4.3.2 Typematic Action Syppressed
2.4.3.3 Print Screen

2.4.4 Keyboard Usage
2.4.5 Lookup Tables
2.4.6 #CON Functions

2.4.6.l Summary of Functions
2.4.6.2 #CON Function Descriptions

2.4.7 Definition of Ctrl-Break
2.4.8 Definition of Ctrl-Numlock

1-1
1-1
1-1
1-1
1-2
1-2
1-2
1-3
1-5
1-6
1-6
1-7
1-8
1-9

1-10
1-11
1-14
1-16
1-18
1-20

2-1
2-1
2-1
2-2
2-2
2-5
2-5
2-5
2-8
2-8
2-9

2-10
2-10
2-10
2-10
2-10
2-10
2-14
2-17
2-17
2-17
2-21
2-21

Preliminary Version CS Operating System Reference Manual v

/

2.4.9 Command Parsing
2.4.10 Token Classification
2.4.11 Error Codes Returned by #CON
2.4.12 Keypad And Softkey Description
2.4.13 KEYPAD FUNCTIONS
2.4.14 Error Codes

3.0 CRT Display Driver
3.1 Programming Systems
3.2 Characteristics and Features

3.2.1 SCRIB (Screen Initialization Block)
3.2.2 Mode Or Option Word Description
3.2.3 Character Attributes

3.2.3.l Attribute Code
3.2.4 Call Requirements of the CRT Character Interface

3.3 Summary of CRT Functions
4.0 Printer/Plotter Driver

4.1 Description of the User Interface
4.1.1 Printer Device Information Block (DIB)
4.1.2 Printer Data Transfer Control Block (DTCB)
4.1.3 Printer Function Packet (FPKT

4.2 Printer Modes
4.2.1 Modes of Printer Operation-General Information
4.2.2 Alphanumeric Mode
4.2.3 Graphics Mode

4.3 Printer Support Functions
4.3.1 Summary of Printer Control Functions
4.3.2 SETWRMODE - Set Data Transfer Mode
4.3.3 SETMODE - Set Printer Mode
4.3.4 INQMODE - Inquire Mode
4.3.5 SETFONT - Set Font
4.3.6 INQFONT - Inquire Font
4.3.7 SETCOLOR - Select Ribbon Setting (Color)
4.3.8 INQCOLOR - Inquire Ribbon Setting
4.3.9 SETDENS - Set Character Density-10/12/16.8 CPI
4.3.10 INQDENS - Inquiry Character Density
4.3.11 SETFORM - Set Form Length/Field
4.3.12 INQFORM - Inquire Form Length ·
4.3.13 SETMARGN - Set Right/Left Margins
4.3.14 INQMARGN - Inquire Right/Left Margins
4.3.15 SETNHANC - Set Character Enhance On/Off
4.3.16 INQNHANC - Inquire Character Enhance
4.3.17 SETPRPSP - Set Proportional Spacing On/Off
4.3.18 INQPRPSP - Inquire Proportional Spacing
4.3.19 SETNTRSP - Set Inter Character Spacing
4.3.20 INQNTRSP - Inquire Inter Character Spacing
4.3.21 SETTAB - Set Vertical/Horizontal Tab Stops
4.3.22 INQTAB - Inquire Tab Stops
4.3.23 SETJSTFY - Set Text Justification On/Off
4.3.24 INQJSTFY - Inquire Text Justification

2-22
2-23
2-24
2-24
2-25
2-26

3-1
3-1
3-1
3-6
3-6
3-7
3-8
3-8
3-9
4-1
4-1
4-1
4-2
4-3
4-3
4-3
4-3
4-4
4-5
4-5
4-6
4-6
4-7
4-8
4-8
4-8
4-9
4-9

4-10
4-10
4-11
4-11
4-12
4-12
4-12
4-13
4-13
4-14
4-14
4-15
4-15
4-16
4-17

Preliminary Version CS Operating System Reference Manual vi
(

4.3.25
4.3.26
4.3.27
4.3.28

SETVADV - Set Vertical Advance Distance
INQVADV - Inquire Vertical Advance
VERTADV - Perform Vertical Advance
SETPOS - Move Head to ABS. Horizontal/Vertical

Position
4.3.29 SETCHPOS - Move Head to ABS. Column/Row Position
4.3.30 SETRHPOS - Set Relative Horizontal Position

4.4 PRSET Hard Printer Reset
5.0 RS-232 Asynchronous Communications Driver

5.1 Introduction
5.2 Features
5.3 Overview - General Description

5.3.1 User Initialization of the Port
5.3.2 Write Record
5.3.3 Read Record
5.3.4 Byte 1/0
5.3.5 Function Entry
5.3.6 Transmit Modes
5.3.7 Receive Modes
5.3.8 Functions
5.3.9 Return Status Codes

5.4 Appendix
5.4.1 DIBOPT Bit Specification
5.4.2 Baud Equates for #SEROO to #SER02
5.4.3 Baud Equates for #SER03 to #SER06
5.4.4 Frame Equates
5.4.5 Control Characters

6.0 IEEE-488 Interface Driver
6.1 Introduction

6.1.l Characteristics and Features
6.2 Device Addressing
6.3 Request Queuing
6.4 I/O Entry Points

6.4.1 INIT
6.4.2 AWRITE, SWRITE
6.4.3 AREAD, SREAD
6.4.4 FUNCTION
6.4.5 Device Detachment

6.5 Service Requests
6.6 DIB Specification
6.7 Device Functions

6.7.1 Function Packet Specification
6.8 Examples and Illustrations

6.8.l DIB Example
6.8.2 FPKT Example

7.0 User Parallel Port Driver
7.1 Overview
7.2 Initialization Sequence
7.3 Interrupt Handling

4-17
4-18
4-19

4-19
4-20
4-20
4-21
5-1
5-1
5-1
5-2
5-2
5-2
5-3
5-3
5-3
5-4
5-6
5-7

5-10
5-11
5-11
5-12
5-13
5-14
5-14

6-1
6-1
6-1
6-2
6-2
6-3
6-3
6-3
6-4
6-4
6-4
6-4
6-5
6-5
6-6

6-11
6-11
6-11

7-1
7-1
7-1
7-1

Preliminary Version CS Operating System Reference Manual vii

7. 4 Driver Functions
7.5 Device Initialization Block (DIB)
7.6 Driver Definitions of System Control Block Fields
7.7 Error Codes

8.0 Diskette Driver
8.1 Introduction
8.2 Data Management Functions
8.3 Features
8. 4 Definitions
8.5 Using Relative Sector Access Method
8.6 Disk Information Block (DIB)
8.7 Function Packets
8.8 Device Control Block Extension (Internal System Control

Block)
8.9 Physical Device Block Extension (Internal System Control

Block)
8.10 Hardware Register Specifications
8.11 Diskette Formats to be Supported
8.12 Error codes

9.0 Sensor I/0 Driver
9.1 Introduction
9.2 A/D Converter Channels

9.2.1 A/D Transfer Requests
9.2.2 A/D Device Initialization Block
9.Z.3 Device Names
9.2.4 A/D Function Packets

9.3 Switch Inputs
9.3.1 Switch Input Device Initialization Block (SWIB)
9.3.Z Device Names

9 . 4 LED Outputs
9.4.1 Shared Access
9.4.2 LED Transfer Requests
9.4.3 LED Outputs Device Initialization Block (LEDIB)
9.4.4 Device Names

9.5 Timer/Counters
9.5.1 32-Bit Counter

Shared Access
Supported I/O Functions

9.5.2
9.5.3
9.5.4
9.5.5
9.5.6
9.5.7
9.5.8
9.5.9
9.5.10
9.5.11
9.5.12
9.5.13
9.5.14

Timer/Counter Device Initialization Block (CTIB)
Device Names . . .
Timer/Counter Function Packet
Parallel I/O Channels
Size
Strobe

Shared Access
Transfer Direction
Resource Allocation
Transfers ...

•,

Parallel I/O Device Initialization Block

7-2
7-3
7-4
7-5
8-1
8-1
8-1
8-1
8-2
8-2
8-3
8-5

8-7

8-8
8-9

8-10
8-12

9-1
9-1
9-1
9-2
9-2
9-3
9-4
9-4
9-5
9-5
9-6
9-6
9-6
9-7
9-7
9-8
9-8
9-8
9-8
9-9

9-10
9-10
9-11
9-11
9-11
9-11
9-12
9-12
9-12
9-13

Preliminary Version CS Operating System Reference Manual viii

9.5.15 Device Names
9.6 Error Codes

10.0 CRT Graphics Driver
10.1 Introduction

10.1.1 Coordinate Systems
10.1.2 The Graphics Window
10.1.3 Coordinate Mapping
10.1.4 Pixel Control
10.1.5 Current Operation Point (COP)

10.2 Graphics Driver Control Blocks
10.2.1 The Graphics Device Information Block (DIB)
10.2.2 The Graphics Function Packet

10.3 Graphics Functions
10.3.1 End of Packet -- ENDFPKT
10.3.2 Set Window Boundaries -- SETWIN
10.3.3 Inquire Window Boundaries -- INQWIN
10.3.4 Set Graphics Page-Setpage
10.3.5 Inquire Graphics Page -- INQPAGE
10.3.6 Set Pixel Control Mode -- SETPXCTL
10.3.7 Inquire Pixel Control Mode -- INQPXCTL
10.3.8 Set Mapping Mode -- SETMPMOD . .
10.3.9 Inquire Coordinate Mapping Mode -- INQMPMOD
10.3.10 Set Coordinate Interpretation Mode -- SETCORIM
10.3.11 Inquire Coordinate Interpretation Mode -- INQCORIM
10.3.12 Set Character Orientation Mode -- SETCHOR
10.3.13 Inquire Character Orientation Mode -- INQCHOR
10.3.14 Set Character Magnification-SETMAG
10.3.15 Inquire Character Magnification-INQMAG
10.3.16 Set Character Font -- SETFONT .
10.3.17 Inquire Character Font Dimensions-INQFONT
10.3.18 Set Character Field -- SETCHFLD
10.3.19 Inquire Character Field -- INQCHFLD
10.3.20 Set fill word -- SETFILWD
10.3.21 Inquire Fill Word -- INQFILWD
10.3.22 Set Mapping Coordinates -- SETMAP
10.3.23 Inquire Mapping Coordinates -- INQMAP
10.3.24 Set Current Operating Point -- SETCOP
10.3.25 Inquire Current Operating Point -- INQCOP
10.3.26 Set a Pixel - SETPIXEL
10.3.27 Inquire a Pixel -- INQPIXEL
10.3.28 Draw A Vector -- SETVEC
10.3.29 Fill A Rectangular Area -- BLKFIL
10.3.30 Draw A Character String -- SETCHR
10.3.31 Clear The Window -- CLRWIN
10.3.32 Draw A Box Around The Window -- Frame
10.3.33 Draw an Elipse -- SETELIPS .
10.3.34 Scroll Window Contents Window -- SCRLWIN

10.4 Error Messages
11.0 SYSTEM SERVICES

9-13
9-14
10-1
10-1
10-1
10-2
10-2
10-2
10-3
10-3
10-3
10-4
10-5
10-5
10-5
10-6
10-6
10-6
10-7
10-7
10-7
10-9
10-9
10-9

10-10
10-10
10-11
10-11
10-11
10-12
10-12
10-13
10-13
10-14
10-14
10-14
10~15

10=15
10-16
10-16
10-16
10-16
10-17
10-17
10-17
10-18
10-18
10-19

11-1

Preliminary Version CS Operating System Reference Manual ix

11.1 Issuing System Calls (SC)
11.2 SC Routine Index
11.3 Command-Parsing Routines
11.4 Filename Formatting
11.5 Directory-Handling Routines
11.6 Initialization and Warmstart
11.7 Display Control
11.8 Utility System Calls
11.9 Program Chaining
11.10 Time Operations
11.11 Multitask System Calls
11.12 System Monitors

11.12.1 Example of a Simple Monitor
11.12.2 Example of a More Complex Monitor

A.O Appendix: Auxillary Software
A.l TOOLKIT.INC -- A Collection of System Call MACROS
A.2 IOMCLBXX.INC-A Collection of MACROS to Perform Input/Output
Calls

A.3 Mnemonic Include Files
A.4 Sample Application Programs

11-1
11-1
11-3
11-4
11-5
11-7
11-7
11-7
11-8
11-9
11-9

11-11
11-12
11-13

A-1
A-1

A-2
A-3
A-3

Preliminary Version CS Operating System Reference Manual x

1.0 LOGICAL 1/0, TIME SERVICES, AND EVENT POSTING

1.1 INTRODUCTION

1. 1. 1 DEVICE-INDEPENDENT 1/0

Data transfers involving specific physical devices can be initiated by
instructions within applications programs, but this would require
rewriting the applications program when a need arose to redirect data to
or from alternate devices. To a great extent this effort can be avoided
if device can be referred to in a generic sense or by use of logical labels
rather than physical ones. Then the association between logical and
physical labels can be deferred until runtime either using command line
parameters or user input in response to application program menus. Thus,
references within applications programs to logical label X need not be
changed if, for example, one desired to redirect printed output from the
CRT display to a printer. This could be accomplished by simply changing
the definition of X to mean printer rather than CRT just before running a
program.

The utility of this device independence to sequential data transfer. For
example, data intended for a random access read/write device cannot be
redirected to a standard line printer.

1.1.2 LOGICAL UNIT NUMBERS

The Computer System associates or "binds" logical device names, called
logical unit numbers, with physical device names by use of a system OPEN
command. The syntax of this and other commands is given below. A task may
open up to 127 LUNs, limited in addition by system space requirements.
Any number of LUNs may be assigned to a single device. However, only a
single opening of a given LUN is allowed.

Preliminary Logical I/O 1-1

Futher references to an open device need only be by LUN. The LUN is only
known to the task that opened it, in other words, logical unit numbers are
"local" variables; other tasks may open identical LUN's against an
entirely different set of physical devices.

After the task opens the device and anytime before closing, it may change
the device state to something other than the default by issuing a FUNCTION
command. This command requires a pointer to a data structure cal.led a
FUNCTION PACKET. The format of this structure is identical for al 1
devices, with individual fields of the packet containing commands and data
unique to an individual device.

1.1.3 SYNCHRONOUS AND ASYNCHRONOUS 1/0

Tasks may select to wait for completion of an I/O request (synchronous
I/O) by being blocked from access the CPU resorce. Alternatively, a task
may select to gain access to the CPU on the basis of priority after
initializing an I/O request (asynchronous I/0). This task may check on
the completion status of the request by polling, or conserve the CPU
resource by suspending its operation until awakened by the request's
completion.

1. 1.4 ASYNCHRONOUS EVENT POSTING

Asynchronous event posting allows tasks to synchronize their activities
with the detection of external interrupt-producing events. System
commands allow system recognition of user area data structures containing
event flags and status fields allowing a task to either poll or suspend
operations until awakened by occurrences of the specified event.

1.1.5 TIMER SERVICES

Users may allocate a timer to start and stop it and conduct inquiries of
its current state. In addition, a user may "arm" the timer so that
resumption of a suspended task's execution can occur upon expiration of a
specified time period.

Preliminary Logical I/O 1-2

1. 1.6 COMMAND SUMMARY

COMMAND

SYS I/O
OPEN

SYS I/O
CLOSE

SYS I/O
FUNCTION

SYS I/O
ARE AD

SYS I/0
SREAD

SYS I/O
AWRITE

SYS I/O
SWRITE

Preliminary

DESCRIPTION

Assigns a logical unit number (LUN) to
a file or device specified in the Device
Initialization Block.

Designs a LUN. In addition, device specific
actions may be taken such as cleanup, return
memory to the free pool, etc.

This command handles device specific requests
defined in a Function Packet.

Initiates an asynchronous or non-blocking
transfer of a record or block from a device
or device buffer into a user buffer. The
parameters defining the transfer conditions
are contained in a Data Transfer Control
Block. Execution of the task's instruction
stream continues upon completion of querying
of the request.

Initiates a synchronous transfer of a record
or block from a device or device buffer into
a user buffer. The parameters defining trans
fer conditions are contained in a Data Transfer
Control Block. Execution of the task's in
struction stream is blocked until completion
of the transfer is signaled by the device driver.

Initiates an asynchronous or non-blocking transfer
of a record or block from a user buffer into a
device handler's buffer or directly to the device.
The parameters defining the transfer conditions are
contained in a Data Transfer Control Block. Execu
tion of the task's instruction stream continues
upon completion of querying of the request~

Initiates a synchronous transfer of a record or
block from a user buffer into a device handler's
buffer or directly to the device. The parameters
defining the transfer conditions are contained in
a Data Transfer Control Block. Execution of the
task's instruction stream is blocked until completion
of the tr.ansfer is signaled by the device driver.

Logical I/O 1-3

SUSPEND
TILL ANY

SUSPEND
TILL ALL

SUSPEND
SYNCH

SYS I/O
OPNEVELK

SYS I/O
CLSEVBLK

SYS I/O

TMER
OPEN

TIMER
CLOSE

TIMER
SET

TIMER
START

TIMER
STOP

TIMER
STATUS

Preliminary

Suspend the execution of the invoking task's
instruction stream until the completion of
any prior asynchronous I/Oy time out request
or armed event posting.

Suspends the execution of the invoking task's
instruction stream until the completion of all
prior asynchronous I/O time out requests and
armed event postings.

Returns with the current number of outstanding
'asynchronous event postings, I/O requests of
time out requests.

Associates an Event Block in user task space
with a specific event which has been defined to
the system by a device driver.

Disassociates an Event Block with any event.

If a user task is suspended, posting of specified
event will resume the task.

Allocates a user timer.

Deallocates a user time.

Initializes a timer but does not start it.

Allows either blocked or unblocked task
execution pending expiration of a specified
interval.

Freezes the current state of the timer.

An inquiry concerning the current timer status.

Logical I/O 1-4

1.2 APPLICATION PROGRAM 1/0 INTERFACE

The interface consists of two imperative macros: SYSIO and SUSPEND, and
three system control blocks: DTCB, DIB, and FPKT.

• SYSIO

This macro issues commands through the I/O manager by use of a TRAP #6
instruction. I/O commands include:

OPEN - establish logical unit
!NIT - configure device
CLOSE - release logical unit
FUNCTION - set device option
CANCEL - reset device driver

• SUSPEND

SREAD - synchronous read
SWRITE - synchronous write
AREAD - asynchronous read
AWRITE - asynchronous write
BREAD - byte read
BWRITE - byte write
BTEST - byte test

This macro invokes I/O manager WAIT functions by use of a
TRAP #9 instruction. Functions include:

SYNCH - Retrieve the number of outstanding I/O requests.
SUSPEND TILLANY - Wait till any outstanding request is completed.
SUSPEND TILLALL - Wait till all outstanding requests are complete.

SYSIO makes use of the following control blocks. The one that you use
··depends on the I/O command.

• DIB

This block is somewhat device dependent, therefore it is given a
different name for each device category. For communications it is
called a Port Initialization Block (PIB). For disk it is called a
Disk Initialization Block (DIB). For graphics it is called a Graphics
Initialization Block (GIB).

The information in the DIB is used by the I/O manager at OPEN time.
First it is checked for validity, then it is copied from user space
into the appropriate control block in system space.

• DTCB

The Data Transfer Control Block (DTCB) holds I/O status and buffer
information during reads and writes.

Preliminary Logical I/O 1-5

• FPKT

The Function Packet control block provides for device specific
operations not necessarily involving data transfer. This would
include things like setting the baud rate, reading the cursor
position, repositioning a file pointer, etc. It is required for the
FUNCTION command and optional for the OPEN command.

See the macro and control block sections for details on structure and
usage.

1.2. 1 EXCEPTION HANDLING

Application programs receive a status code in register 07 to inform them
of exceptional conditions that occurred during I/O operations that they
had initiated via SYSIO.

If D7 is zero then the operation concluded without exception; otherwise
D7.L contains an exception code which can be interrogated by the caller.

Register bytes are numbered 3, 2, 1, and 0.

Byte 0: contains exception codes from the device driver. Values
from $01 through $OF have common meanings across all device
drivers. See "COMMON EXCEPTION CODES" below. Values
from $10 through $7F can be assigned as needed by the
device driver developer for device specific exceptions.
These are indexed in "DEVICE EXCEPTION CODES" below.

Byte 1: If the sign bit is on, then this byte contains an exception
code from the I/O manager. See "I/O Manager Codes" below.
If the sign bit is off then this byte contains a PDB refer·
ence number which can be used to access the PDB involved
in the exception for constructing error messages, etc.

Bytes 2 and 3 are reserved.

1.2.2 BYTE 1/0 FACILITIES

An efficient mechanism for transferring data on a byte basis has been
provided. Upon opening a device for byte I/O (DIBBI0=-1) and a specific

Preliminary Logical I/O 1-6

-I

direction (DIBTO - 0 for write, 1 for read), subsequent transfers may be
initiated using SYSIO-BREAD, SYSIO-BWRITE or SYSIO-BTEST trap calls.
These calls require the following register usage: DO.B contains the byte
on write and is returned with a byte on test or reads. Register D7.B is
returned with a status code. (See codes for asynchronous request). No
scheduling is done for these requests and if the device is busy with
another request, the code returned in D7 so indicates. This facility,
then, is best used for application programs using nonshareable devices
(the first task to open a nonshareable device owns the device until it is
closed) or devices supported by reentrant drivers such as the CRT. In
addition, register A6.L must contain the system identifier returned in the
DIBBIO field of the device initialization block. If a device will not
support byte 1/0, an 1/0 manager error code will be returned in D7 at open
time.

Note that single-byte transfers (either asynchronous or synchronous may
be initiated using the other I/O facilities, but these transfers are
scheduled and incur some system overhead.

1.2.3 EXCEPTION CODES

COMMON EXCEPTION CODES

$0001
$0002
$0003
$0004
$0005
$0006
$0007
$0008
$0009
$000A
$000B
$000C
$000D
$000E
$000F

reserved
reserved
reserved
reserved
READ or WRITE error occurred.
reserved
reserved
End Of File
Input record larger than buffer length, truncated.
Device not ready.
Byte 1/0 - Buffer Full on Write
Byte 1/0 • Buffer Empty on Read
not assigned.
Invalid CODE in Function Packet.
reserved

COMMAND EXCEPTION CODES

$0060
$0061
$0062
$0063

!NIT
CANCEL
READ
WRITE

Preliminary Logical I/O 1·7

$0064 FUNCTION
$0065 WTBYTE
$0066 RD BYTE
$0067 CLOSE
$0068 TSTBYTE
$0069 DTACHDVR
$006A ATACHDEV
$006B DTACHDEV
$006C reserved
$006D reserved
$006E reserved
$006F reserved

I/0 MANAGER EXCEPTION CODES

$8200
$8300
$8400
$8500
$8600
$8700
$8800
$8900
$8AOO
$8BOO
$8COO
.$8DOO
$8EOO

Invalid I/O Manager call.
Logical Unit Number not opened.
Inadequate system space for control blocks.
Duplicate Logical Unit Number.
Named Device Not Found.
Not Device Owner
Still Pending Opens Against Device.
Device Does Not Support Byte I/O
Non-Null request Queue for Byte I/0
Not Open For Byte I/O
No Suspended "FOR" Task Found
Named Event Not Found
Event Not Opened

CODES FOR ASYNCHRONOUS REQUESTS

SYSIO will return a -1 in register 07 if the asynchronous operation has
started successfully. Completion status is returned in the DTCSTA field
of the Data Transfer Control Block. The convention is the same as for
register D7 status. A -1 indicates that the operation is not yet
complete, a zero indicates complete with no exception, and a positive
number indicates completion with an exception code.

1.2.4 FILE NAME FORMAT

A fully qualified filename consists of four fields: A volume label, a
catalog name, a filename, and an extension. When file names are specified
within system commands you must use specific delimiters to separate the
fields.

Preliminary Logical I/O 1-8

·(

STANDARD FILENAME FORMAT FOR USE IN SYSTEM COMMANDS

<volume:><catalog.>filename.ext

volume is one to six alphanumeric characters always terminated
by a colon. This field can be omitted in which case
the default volume is used.
Specifying a logical drive number in the volume field
(0-3 for diskette drives and 4-7 for hard disk drives)
opens the volume name that is mounted in the specified
physical drive.

catalog (not supported in current operating system) is one
to eight alphanumeric characters with the leading
character alphabetic and always terminated with a period.
This field can be omitted in which case the default
catalog is used.

filename is one to eight alphanumeric characters with the leading
character alphabetic. This is always followed by a
period and the filename extension.

ext is one to three alphanumeric characters with the leading
character alphabetic.

EXAMPLES

123456:COLORS.BLUE.SRC
VOL7:Zl.JERRYPGM.REL

WILDCARD FEATURE

CLYDE: TESTCASE. BIN
DOREENl .REL

This feature is the same as described earlier; however, it applies
also to catalog names but not to volume names.

1.2.5 DEVICE NAMING

Physical device names are three to six characters in length. The first
character is always "#". The next two to four characters are a device
mnemonic. A two digit suffix is used to distinguish between multiple
devices of the same kind in the system. The first digit is a board number
where 11011 means the planar board and the numbers 11 111 through "9" and the

Preliminary Logical I/0 1-9

letters "A" through "Z" refer to plug-in boards. (This leaves plenty of
room for expansion.) The second digit allows selection of multiple
devices on the same board.

Device names are established by the device drivers. The names of devices
attached to the system can be displayed by the operating system LISTDEV
command. Device names are bound to application program logical unit
numbers with the SYSIO-OPEN command and a Device Initialization Block
(DIB) supplied by an application program. Task logical unit assignments
can be displayed with the SHOW command.

ASSIGNED DEVICE NAMES

Floppy Disk
Hard Disk
IEEE-488 Bus

Keyboard/Keypad
Keypad/control
Null Device
Printer
RS-232 Asynch
RS-232 Bisynch/Asynch
CRT (see note)

#FDOO through #FD03
#HDOO through #HD03
#BUSOO (additional devices would be

#BUSOl, etc.)
#CON
#KPD
#NULL (not implemented)
fl PR
#SEROO, #SEROl
flSER02
#SCRNO for page 0
#SCRNl for page 1
#CNSLO for page 0. There is no page 1.
note: CRT has ability to display one of the two
memory pages at any given time. The page
to be displayed can be set by function call.

SENSOR I/O PLUG IN BOARD (Board 1)

Analog/Dig Conv
Clock/Timer Ch
Switches
LEDs
Parallel ports

#ADClO through #ADC03
#CTClO thorugh #CTCOl
#SWilO through #SWI07
#LEDlO through #LED07
#PPAlO through #PPAll
#PPBlO through #PPBll

1.3 APPLICATION MACROS

Preliminary Logical I/O 1-10

1.3. 1 SYSIO

GENERAL INFORMATION

Application programs will use SYSIO to perform all Logical I/O operations.
SYSIO allows you to issue one of twelve commands as detailed in the
examples below. There are two mechanisms used by SYSIO. One is a fast
path for Byte operations (BREAD, BWRITE, and BTEST), the other is a block
oriented path for record I/O, Open, Close, and Function calls.

1. ALL COMMANDS EXCEPT BYTE I/O

SYSIO generates in-line code to carry out the command. It loads
register A6 with the address of the control block, then it loads
register DS.B with the Logical Unit Number. Next it issues a TRAP #6
instruction followed by the command word. This is followed by a long
PC relative branch to your exception handling routine. If the
command is unsuccessful then the branch is taken and register 07.W
will contain an error code. If the call is successful then the
branch is not taken and control will continue with the next
sequential instruction following the macro.

CODING

The commands have a common form for coding. First is the COMMAND,
next is the Logical Unit Number, next is the name of a control block,
and finally is the address of an exception handling routine. You may
specify the Logical Unit Number either in immediate notation using a
ti sign, i.e. #1 or #INUNIT, or as the label of a byte containing the
value, i.e. LOGUNIT or D3. If register DS already contains the
Logical Unit Number then code DS and no load instruction will be
generated.

SYNCHRONOUS/ASYNCHRONOUS OPERATIONS

The AREAD and AWRITE commands are asynchronous operations while the
other commands are synchronous.

Synchronous operations execute in the invoking program's instruction
stream. This means that you will be blocked from continued execution
until the operation is complete. When you get' control back from
SYSIO register D7 will contain the completion status.

Asynchronous operations such as Direct Memory Access are initiated
in the invoking program's instruction stream with an interrupt being

Preliminary Logical I/O 1-11

used to signal completion of data transfer. The invoking program gets
coptrol back immediately with a -1 in register D7 to indicate that
the operation has started successfully. Any other status in register
D7 means that an exception had occurred and that the operation had
never gotten started.

With asynchronous I/O it is possible for the invoking program to
perform other things while the data transfer takes place.

When the program wants to see if the transfer is complete it can do
either of two things. It can keep checking the contents of the
DTCSTA field of the Data Transfer Control Block: -1 indicates still
busy, zero indicates successful completion, any other positive
status is an exception completion code. Otherwise it can use the
SUSPEND macro to wait for completion.

SYSIO COMMANDS WITH EXAMPLE CODE

a. SYSIO OPEN,#1,INPIB,ERRORLAB

INPIB is the "Port Initialization Block" for RS232 input which
configures the port to user specified characteristics and
enables the device as an interrupt source. This example OPENs
the port as Logical Unit Number 1.

b. SYSIO CLOSE,#1,0,ERRORLAB

This example shows the CLOSE for Logical Unit Number 1. It
disables interrupts from the device and resets buffer pointers.
Note that no control block need be specified for CLOSE.

c. SYSIO SREAD,#1,INDTCB,ERRORLAB

This is a synchronous READ from Logical Unit Number 1. The
buffer address and termination characters are passed using Data
Transfer Control Block INDTCB.

d. SYSIO SWRITE,#2,0UTDTCB,ERRORLAB

Synchronous WRITE to Logical Unit Number 2. This request uses
the Data Transfer Control Block OUTDTCB.

e. SYS IO AREAD , tJINUNIT, INDTCB, ERRORLAB

Asynchronous READ from the Logical Unit Number equated to
INUNIT.

Preliminary Logical I/O 1-12

f. SYSIO AWRITE,OUTLUN,OUTDTCB,ERRORLAB

Asynchronous WRITE to Logical Unit Number contained in the byte
labeled OUTLUN.

g. SYSIO FUNCTION,#1,FPKTl,ERRORLAB

This is a FUNCTION command which sends the Function Packet FPKTl
to the device driver associated with Logical Unit Number 1.

h. SYSIO INIT,#1,SCRNGIB,ERRORLAB

SCRNGIB is a "Graphics Initialization Block" which is used to
configure the CRT window to user specified characteristics.

i. SYS IO CANCEL, ti 1 , 0, ERRORLAB

The CANCEL command causes the device driver to disable
interrupts, reset device buffer variables, and reset current
default conditions for Logical Unit Number 1. Note that no
control block specification is necessary for CANCEL.

2. BYTE I/O COMMANDS

The Byte I/O mechanism is meant to be a fast path between application
programs and device drivers. There is no scheduling and no use of
dynamic control blocks. On the average, less than 25 instructions
are executed by the I/O manager between SYSIO and entry to the
driver.

Unlike the block oriented requests, the Byte I/O requests will not
have an error return label. It is up to the application program to
monitor D7.W for completion status. Register DO.B is used to pass
the byte. Register A6 is loaded with the system identifier obtained
from DIBBIO. Register D7. W contains the completion status or return.

To OPEN a device for BYTE I/O you must place a -1 in the DIBBIO field
and a specific direction (either 0 for write or 1 for read) in the
DIBDTD field. After OPEN, the DIBBIO field will contain an
identifier to be used for SYSIO-BREAD, SYSIO-BWRITE, and
SYSIO-BTEST.

BYTE I/O COMMANDS WITH EXAMPLE CODE

a. SYS IO BREAD, BYTE ID
-- or --

SYSIO BREAD,A6

Preliminary Logical I/0 1-13

b.

c.

This is a Byte I/0 Read. The macro will load register A6 with
the system identifier obtained from DIBBIO at open time. You
should code A6 as the system identifier if it already contains
the correct value.

SYS IO BWRITE , ID
-- or --

SYSIO BWRITE,A6

This is a Byte I/O Write.

SYSIO BTEST,IDFIELD
-- or --

SYSIO BTEST,A6

This is a Test Byte call. It will return a byte from the input
buffer in register DO.B without moving the buffer pointer. If
there is no byte to read then it will set register D7.B to]OC,
Buffer Empty on Read.

SYSIO is contained in the IOMGMAC2.SA macro include file on sign-on 2000.
Specify INCLUDE SYS:2000 .. IOMGMAC2.SA.

1.3.2 SUSPEND

Application programs will use SUSPEND to wait for the completion of
outstanding I/O and timer requests. The application may elect to wait for
the completion of one request or all requests.

The SUSPEND function will not wait for a specific request, but only for a
change in the count of outstanding requests that is kept for each task.
Application programs that are interested in the completion of one specific
request out of several outstanding requests must check the DTCSTA field of
the Data Transfer Control Block.

If the application program uses decision logic based on the DTCSTA fields
then there is a possibility that the status will change between the time
that the application tests the field and the time that a SUSPEND is
issued. To allow synchronization there is a SUSPEND-SYNCH command to
capture the number of outstanding requests before any decision logic takes
place. This number will subsequently be used as an operand of a
SUSPEND-TILLANY command so the I/O manager can work with the same set of
initial conditions. See the examples below.

Preliminary Logical I/O 1-14

The macro generates in-line code to carry out the command. It issues a
TRAP #9 to the I/O manager and either passes or receives a value contained
in register DO.

SUSPEND COMMANDS WITH EXAMPLE CODE

1. SUSPEND SYNCH,DO

The number of outstanding requests for the current task is returned
in register DO. The macro always returns the count in register DO,
however it is made a required operand for documentation purposes.

2. SUSPEND TILLALL

The current task is suspended until all outstanding requests are
complete.

3. SUSPEND TILLANY,DO

The current task is suspended until any outstanding request is
completed. The command is non-specific as to which request will
satisfy the wait. Register DO must contain the number of requests
that were outstanding before it decided to perform the SUSPEND. This
value is obtained via SUSPEND-SYNCH. The I/O manager will resume the
task as soon as the number of outstanding requests is less than the
number passed in register DO.

4. SUSPEND TILLANY,NOSYNCH

The current task is suspended until any outstanding request is
completed. The operand NOSYNCH instructs the I/0 manager to use the
current request count as a starting number. The command is
non-specific as to which request will satisfy the wait. No wait will
take place if the number of outstanding requests is zero.

EXAMPLE CODE USING SUSPEND-SYNCH

We will assume that there are three outstanding requests which use Data
Transfer Control Blocks AAADTCB, BBBDTCB, and CCCDTCB. The program wishes
to wait until AAADTCB is complete, the other requests don't matter. We
know that the fields AAASTA, BBBSTA, and CCCSTA are all set to -1
indicating request not yet complete.

WAITAAA SUSPEND SYNCH,DO
IF AAASTA <EQ> -1 THEN

Preliminary

Get current number of requests.
If the one you want is not done

Logical I/O 1-15

SUSPEND TILLANY,DO
GOTO WAITAAA

END IF

1.3.3 ASYNCHRONOUS EVENT POSTING

Then wait for a change in status
and recheck if it is done

The Asynchronous Event Posting facility provides a mechanism for user
tasks to detect the occurrence of specific events. By associating a data
structure in user space with a predefined event the user can· either poll
the data structure to determine when the event occurs, or suspend himself
until the event occurs. Polling the data structure is analogous to
monitoring a Data Transfer Control Block (DTCB) for completion of an
asynchronous I/O request. Monitoring for an event consists of performing
a Test-and-Set (TAS) instruction on a specific byte in the data structure.
The TAS sets one of three condition codes. This indicates whether or not
the event occurred, occurred more than once, or did not occur at all.
Because it is an indivisible instruction, the TAS also prevents the
operating system from modifying the byte while the user examines it.

In addition to the event indicator byte, the event data structure also
contains a 32-bit longword which may be used to pass status from the
driver to the user. Its meaning is completely device-dependent. This
field could be used to transfer things like A/D status registers, or
pointers to blocks containing additional data about the event.

In addition to polling, the user can suspend his task until the event
occurs. This is analogous to suspending a task until an asynchronous I/O
request completes. Both cases make use of operating system services to
resume a task when the I/O request count for the task falls below a
certain value. Interrupt handlers within the operating system are
responsible for decrementing the I/O request count when events occur or
I/O operations complete.

The interface to Asynchronous Event Posting consists of three SYSIO
functions. For a detailed description of each function, the following
section illustrates SYSIO event functions with specific examples.

a. SYSIO OPNEVBLK,O,EVENTBLK,ERRORLAB

The OPNEVBLK function associates an Event Block in user space
with a specific event which has been defined to the system by a
device driver. The association is by event name, which is four
characters long. The format of the Event Block is as follows:

EVBSEM DS . B 1 TAS byte

Preliminary Logical I/O 1-16

EVBRSO DS. B 1 Reserved

EVBSTA DS.B 4 Status Word

EVBNAM DS.B 4 ASCII name of the event

The user should use the TAS (Test and Set) instruction to
interrogate EVBSEM. TAS sets the condition code in the following
manner:

MI - No event has occurred since the last TAS

EQ - One event has occurred since the last TAS

PL - More than one event has occurred since the last TAS

When more than one event has occurred since the last TAS the user
can determine the event count from the low-order seven bits of
EVBSEM (TAS sets the most significant bit).

A sequence of operations might look like this:

LEA EVBLK,AO ;point AO to event block
TAS EVSEM(AO) ;TAS the semaphore
BMI EXIT ;nothing happened
BPL OVRRUN ;more than one happened

ONEEVT EVTMOVE.L EVBSTA(AO),DO ;just one happened
BRA EXIT ;return

OVRRUN MOVE.B EVSEM(AO),DO ;pick up event count
AND.B #]7F ,DO ;turn off MSB
MOVE.B DO,OVRCNT ;save overrun count
BRA EXIT

b. SYS IO CLSEVBLK, 0, EVENTBLK, ERRORLAB

The CLSEVBLK function removes the association between the Event
Block and the event. No further references to this Event Block
are valid.

c. SYS IO ARMEVENT, 0, EVENTBLK, ERRORLAB

The ARMEVENT function specifies that the user task is to be
resumed from the suspended state when the event occurs. This
allows a task to later suspend itself until the event occurs via

Preliminary Logical I/O 1~17

the SUSPEND macro. ARMEVENT increments the I/O request count the
same as an asynchronous I/O call does. When the event occurs the
request count is decremented by one. If the new count is less
than the trigger count and the task is suspended it is placed
back on the ready queue.

1.3.4 TIMER

GENERAL INFORMATION

Application programs use the TIMER macro to perform logical timer
operations. Timers are resources which must be allocated by an OPEN
function and deallocated by a CLOSE function. Examples of these and other
functions are detailed in subsequent paragraphs.

Once opened, the timeout period and mode of use is specified by the SET
function. The timeout period must be given as a multiple of tenths of a
second. The timer is activated by the START function and deactivated by
the STOP function. The current state and value of the timer is obtained
from the STATUS function.

When setting the timeout period, the user has a choice of one of three
modes in which to use the timer. Polled mode is used in situations where
he periodically wants to query the timer to determine elapsed time,
without blocking his task. Blocked mode suspends his task until the timer
expires. Asynchronous mode treats timer expiration as an ordinary I/O
request awaiting completion. It is useful when used in conjunction with
the SUSPEND macro.

TIMER generates in-line code to carry out its functions. It loads
register A6 with the address of a control block, then it loads register
D5.B with a logical timer number. Next it issues a TRAP #10 instruction
followed by the function word. This is followed by a long PC relative
branch to the exception handling routine. If the function is unsuccessful
the exception branch is taken and register D7.W contains an error code.
If the call is successful the exception branch is not taken and control
continues with the next sequential instruction following the macro.

CODING

Timer functions have a common coding form. First is the function word,
next is the logical timer number (obtained from the OPEN command), next is
the name of a control block, and finally is the address of an exception
handling routine. Logical timer numbers are specified as either immediate
values or as the address of a byte of storage containing a value.

Preliminary Logical I/O 1-18

TIMER FUNCTIONS WITH EXAMPLE CODE

a. TIMER OPEN, TMRID, ERRORLAB

This example allocates a timer and sets its state to OPENed. The
logical timer number is returned in the least significant byte of
'fMRID. No control block is required.

b. TIMER CLOSE , TMRID, , ERRORLAB

This example frees the timer for use by other tasks. No further
references can be made to this logical timer number. No control
block is required.

c. TIMER SET,TMRID,SETBLK,ERRORLAB

This example sets the state of the timer to !NIT, and sets the
MODE attribute and initial countdown from the values specified
in the control block labelled SETBLK. This command does not
activate the timer.

d. TIMER START, TMRID, , ERRORLAB

This example sets the state of the timer to ACTIVE, and starts
the countdown. If the mode is BLOCKed, the calling task is
suspended until the timer expires, regardless of any pending I/O
requests. If the mode is ASYNCHRONOUS, no control block is
required.

e. TIMER STOP, TMRID, , ERRORLAB

This example sets the state of the timer to STOPPED, and freezes
its current value. No control block is required.

f. TIMER STATUS, TMRID, STATBLK, ERRORLAB

This example fetches a snapshot of the timer's current value and
state, and returns them in the control block labelled STATBLK.

The format of the SET Timer Conrol Block is as follows:

MODE
VALUE

DS.W
DS.L

1
1

Mode of Use
Interval

Mode of use is specified as polled, blocked or asynchronous via the
equates MODPOL, MODBLK or MODASY, respectively.

Preliminary Logical I/O 1-19

Value is a 32-bit value specifying the number of tenths of seconds the
timer is to run.

The format of the STATUS Timer Control Block is as follows:

STATUS
VALUE

DS.W
DS.L

1
1

Timer Status
Timer Value

Status is a 16-bit work indication the current state of the timer. Its
values are as follows:

NOTS ET Timer has not been initialized
OPENED Timer has been opened
IN I TED Timer has been initialized
ACTIVE Timer is currently counting down to zero
STOPPED Timer has been stopped by the user
EXPIRED Timer has counted down to zero

Value is a 32-bit word indicating the number of tenths of seconds the
timer has left before expiring.

1.4 APPLICATION CONTROL BLOCKS

DIB

"DIB" refers to a form of control block to be used by an application
program at OPEN time which can specify a non-default mode of operation for
the device.

Each device driver has a version of "DIB" in a device support macro
library. There is unique information that the device driver needs to know
at OPEN time, so the customized DIB meets these needs. The macro library
also provides instructions and examples to go along with the customized
DIB.

SYSIO OPEN, #5,INPUTDIB,OPENERR

DIB FORMAT

DIB
DIBVOL
DIBDTD
DIBFOR
DIBOPT

DS.W
DS.B
DS.B
DS.B
DS.W

Preliminary

0
6
1
1
1

(U) Volume or device name
(U) Device transmit direction (see below)
(U) 'FOR' Task number
(U) Device Configuration Options

Logical I/O 1-20

DIBFCN DS.L 1 (U) Configuration Function Packet Pointer
DIBBIO DS.L 1 (S) For BYTE I/O into manager
DIBLEN EQU *-DIB Current length of DIB = 18
---------- DIB EXTENSION AREA ------------------------------
DIBxx.x EQU O+DIBLEN Device specific things may be defined by the

device support macro library.

Note: (U) means application sets this field.
(S) means I/O manager sets this field.

EXPLANATION OF DIB FIELDS

• DIB EXTENSION

•

The DIB extension area is designed to allow device dependent
information to be passed from the application to the device driver.

DIBOPT - Device Configuration Options

This defines to the driver at open time the kind of operation that we
expect to be doing. Bits 0-7 are reserved for common definition
across all device drivers.

• DIBFCN - Configuration Function Packet Pointer

Optional address of list of function/data words to set up port at OPEN
time.

• DIBDTD - Data Transfer Direction

EQUATES

DTCB

0 = Out (Write)
1 = In (Read)
2 = Both (Read/Write)

Application programs will use equates provided in a macro support library.

The Data Transfer Control Block is a required operand of the SYSIO macro
for READs or WRITEs. The application program uses it to supply

Preliminary Logical I/O 1-21

information for each data transfer requ~st, and to monitor status after
the request has been issued.

DTCB FORMAT

DTCSTA DS.L 1 (S) Completion or current status
DTCTBU DS.B 1 (U) Buffer termination byte range - upper
DTCTBL
DTCBFS
DTCBFL
DTCPTR

EQUATES

DS.B 1 (U) Buff er termination byte range -
DS.L 1 (U) Buffer start address
DS.W 1 (U) Buffer length
DS.L 1 (S) Buffer Pointer

Note: (U) means Application sets this field.
(S) means I/O manager sets this field.

lower

Code "INCLUDE IOMGR.MAK" for equates to the above labels.

FPKT

The Function Packet is a list of COMMAND-DATA word pairs that an
application program uses to configure a device to something other than its
default mode. The SYSIO-FUNCTION macro uses a Function Packet as a
required operand. The SYSIO-OPEN macro allows optional use of Function
Packets to configure the device to desired characteristics.

Typically the format of a Function Packet is a word representin.g the
COMMAND followed by a word that represents the DATA for that command.
Several pairs of COMMAND-DATA make up the Function Packet, with a
terminating COMMAND of zero indicating end-of-list. Appendix A contains a
summary of the functions and function codes for all standard drivers.

SAMPLE FUNCTION PACKET

The following is an actual Function Packet from the RS-232 driver program.
It is used to set the Baud rate to 9600 and to set character framing. Note
that the driver developer has provided equates for each COMMAND and DATA
parameter.

DC.W SETBAUD
DC.W B9600
DC.W SETFRM
DC.W DATA8+PARNONE+STOP2
DC.W ENDLIST

Preliminary Logical I/O 1-22

In the above example, SETBAUD, SETFRM, and ENDLIST are commands while
B9600, DATA8, PARNONE, and STOP2 are data. The equates become binary
numbers or bit coded words that the driver can interpret.

Preliminary Logical I/O 1-23

Preliminary Logical I/O 1-24

2.0 KEYBOARD, KEYPAD, AND SOFTKEY DRIVER

2.1 INTRODUCTION

The IBM Instruments Computer System can be configured with keyboard,
keypad, and soft keys, or with just keypad and soft keys. Application
programs looking for console input need not be aware of the input device;
a logical unit reference is the only thing necessary.

Two Physical Device Blocks are available for console access: #CON for
keyboard and console-oriented keypad entry, and #KPD for device oriented
keypad and softkey entry.

2.2 FEATURES

1. The logical unit number for CRT character echoing can be specified by
the caller. This allows for multiple windowing.

2. Optional prompt string for input lines.

3. Read Byte or Read Line operation.

4. I/O and proceed for Read Line.

5. Editing options may be specified by the caller.

6. Keyboard control-function keys

Ctrl-Break Sets globally accessable exception byte. Normally
used to break out of a programmed loop.

Ctrl-NumLock Sets globally accessible exception byte, reset by any
other key. Normally used to start/stop programmed
operations.

Shift-PrtSc Copy CRT screen to printer.
Ctrl-Alt-Del System warmstart.

7, All keystrokes (except above control-function) are available to the
caller via Byte I/O. Each key has a unique scancode.

Preliminary Key Driver 2-1

8. Optional table lookup of control and function keys in line input.

- ASCII strings can be generated from keystrokes.
- Task Wakeup or Suspend from keystroke.

9. Caller can specify whether non-ASCII control and function keys should
be ignored in line input or returned as exceptions.

10. Optional command parsing of #CON line input.

2.3 METHOD OF OPERATION

The keyboard, keypad, and soft keys share a common interrupt. Upon
receiving an interrupt, the interrupt handler reads one of two parallel
ports to retrieve the scancode of the key.

2.4 KEYBOARD SCANCODE DEFINITIONS

Figure 2-1 shows the key positions of the keyboard. The corresponding
scan codes are listed in Table 2-1.

Preliminary Key Driver 2-2

"ti
11
CD
......
~-....
I:!
II>
11
'<

~
CD
'<
t:::I
11
<
CD
11

N
I

t.>

Fl F2
59EJ&J[J

F3 F4 "EJ'2EJ
F5 F6 6JEJ6"EJ
F7 F8

(;5[]66EJ
F9 FIO (;7EJl>BEJ

I EJ2D](]4[] SD 6(] 7[] 8[]9[JIO(]ll(]12[]1JD 14EJ ;;;EJ Num
Loe~

70 ·sc.rel
LoclC

61e••

,5(: j 1 6[J7[~]1e[J19[]20[]2'[]22[]2102"[)25[]26D 2
1
[]

20

11 [~0 ...)72[] 73!~uJ"O

"El '"EJ" []"EJ'[]"EJ"EJ"D"t:J"DTJ""D"' D 8 "tJ"[)'[)
"2EJ 43[rl~Js[)"'[)47[)"a[J"9EJso[Js•lJs2[]53D 54EJ

57 58§
CllPS
Loe•

56EJ AH

5ltScr9nao121a1 (3lrnr:-i
. ~LJ~t_j

82f0l
~

a Jn
~

Figure 2-1. Keyboard. The number in the upper left-hand corner
of each key is the key position (see Table 2-1).

Table 2-1. Keyboard Scan Codes

Key Posit ion Scan Code Key Position Scan Code
in Hex Hex

1 01 43 2B
2 02 44 2C
3 03 45 2D
4 04 46 2E
5 05 47 2F
6 06 48 30
7 07 49 31
8 08 50 32
9 09 51 33
10 OA 52 34
11 OB 53 35
12 OC 54 36
13 OD 55 37
14 OE 56 38
15 OF 57 39
16 10 58 3A
17 11 59 3B
18 12 60 3C
19 13 61 3D
20 14 62 3E
21 15 63 3F
22 16 64 40
23 17 65 41
24 18 66 42
25 19 67 43
26 lA 68 44
27 1B 69 45
28 lC 70 46
29 1D 71 47
30 1E 72 48
31 lF 73 49
32 20 74 4A
33 21 75 4B
34 22 76 4C
35 23 77 4D
36 24 78 4E
37 25 79 4F
38 26 80 50
39 27 81 51
40 28 82 52
41 29 83 53
42 2A

Preliminary Key Driver 2-4

2.4.1 KEYBOARD ENCODING AND USAGE

2.4. 1. 1 Encoding

The keyboard software routine converts the keyboard scan codes into a form•
of ASCII called "Extended ASCII".

Extended ASCII encompasses one byte character codes with possible values
of 0-255, an extended code for certain extended keyboard functions and
functions that are handled by the keyboard software routine or through
interrupts.

2.4.1.2 Character Codes

The character codes in Table 2-2 are passed through the keyboard routine
to the system or application program. A "-1" means the combination is
suppressed'in the keyboard routine.· The codes are returned in AL. (See
Table 2-1 for scan codes).

Table 2-2. Character Codes

KEY fl BASE CASE UPPER CASE CTRL ALT

1 ESC ESC ESC -1
2 1 1/2 -1 Note
3 2 @ NUL (000) Note 1 Note
4 3 fl -1 Note
5 4 J -1 Note
6 5 % -1 Note
7 6 RS (030) Note
8 7 & -1 Note
9 8 * -1 Note

10 9 (~1 Note
11 0) -1 Note
12 us (031) Note
13 = + ~1 Note

Preliminary Key Driver 2-5

1
1
1
1
1
1
1
1
1
1
1
1

I
I

14 Backspace (008) Backspace (008) DEL (127) -1
15 ----->I (009) <----- (Note 1) -1
16 q Q DCl (017) Note 1
17 w w ETB (023) Note 1
18 e E ENQ (005) Note 1
19 r R DC2 (018) Note 1
20 t T DC4 (020) Note 1
21 y y EM (025) Note 1
22 u u NAK (021) Note 1
23 i I HT (009) Note 1
24 0 0 SI (015) Note 1
25 p p DLE (016) Note 1
26 ESC (027) -1
27 GS (029) -1
28 CR CR LF (010) -1
29CTRL -1 -1 -1 -1
30 a A SOH (001) Note 1
31 s s DC3 (019) Note 1
32 d D EQT (004) Note 1
33 f F ACK (006) Note 1
34 g G BEL (007) Note 1
35 h H BS (008) Note 1
36 j J LF (010) Note 1
37 k K VT (011) Note 1
38 l L FF (012) Note 1
39 : -1 -1
40 " -1 -1
41 -1 -1
42SHIFT -1 -1 -1 -1
43 7 FS (028) -1
44 z z SUB (026) Note 1
45 x x CAN (024) Note 1
46 c c ETX (003) Note 1
47 v v SYN (022) Note 1
48 b B STX (002) Note 1
49 n N so (014) Note 1
50 m M CR (013) Note 1
51 < -1 -1
52 > -1 -1
53 I ? -1 -1
54SHIFT -1 -1 -1 -1
55 * (Note 2) (Note 1) -1
56ALT -1 -1 -1 -1
57 SP SP SP SP
58CAPS -1 -1 -1 -1

LOCK

Preliminary Key Driver 2-6

59
60
61
62
63
64
65
66
67
68
69NUM

NUL (Note 1)
NUL (Note 1)
NUL (Note 1)
NUL (Note 1)
NUL (Note 1)
NUL (Note 1)
NUL (Note 1)
NUL (Note 1)
NUL (Note 1)
NUL (Note 1)

NUL (Note 1)
NUL (Note 1)
NUL (Note 1)
NUL (Note 1)
NUL (Note 1)
NUL (Note 1)
NUL (Note 1)
NUL (Note 1)
NUL (Note 1)
NUL (Note 1)

LOCK
70SCROLL

LOCK

KEY # NUM LOCK

71 7
72 8
73 9
74
75 4

76 5
77 6

78 +
79 1

80 2
81 3

82 0
83

-1

-1

-1

-1

BASE CASE

Home (Note 1)
t (Note 1)
PageUp (Note 1)

+- (Note 1)

-1
-+- (Note 1)

+
End (Note 1)

• (Note 1)
PageDown (Note 1)

INS
DEL (Notes 1,2)

NUL (Note 1)
NUL (Note 1)
NUL (Note 1)
NUL (Note 1)
NUL (Note 1)
NUL (Note 1)
NUL (Note 1)
NUL (Note 1)
NUL (Note 1)
NUL (Note 1)

NUL (Note 1)
NUL (Note 1)
NUL (Note 1)
NUL (Note 1)
NUL (Note 1)
NUL (Note 1)
NUL (Note 1)
NUL (Note 1)
NUL (Note 1)
NUL (Note 1)
-1

ALT

Note 1
Note 1
Note 1
-1
Note 1

Note 1
Note 1

-1
Note 1

Note 1
Note 1

Note 1
Note 2

Pause
(Note 2)
Break

(Note 2)

CTRL

-1

Clear Screen
-1
Top of Text & Home
-1
Reverse Word
(Note 1)
-1
Adv Word
(Note 1)
-1
Erase to EOL
(Note 1)
-1
Erase to EOS

(Note 1)
-1
Note 2

Note 1: Refer to Extended Codes(2.4.2).
Note 2: Refer to Special Handling(2.4.3).

Keys 71-83 have meaning only in base case, in NUM LOCK (or shifted)
states, or in CTRL state. It should be noted that the shift key
temporarily reverses the current NUMLOCK state.

Preliminary Key Driver 2-7

2.4.2 EXTENDED CODES

2.4.2. 1 Extended Functions

For certain functions that cannot be represented in the standard ASCII
code, an extended code is used. A character code of 000 (NUL) is returned
in the low-order byte of register DO. This indicates that the system or
application program should examine a second code that will indicate the
actual function. Usually, but not always, this second code is the scan
code of the primary key that was pressed. This code is returned in the
second byte (bits 15-8) of register DO.

Table 2-3. Keyboard Extended Functions

SECOND CODE

3
15
16-25
30-38
44-50
59-68
71
72
73
75
77
79
80
81
82
83
84-93
94-103
104-113
114
115
116
117
118
119
120-131
132

Preliminary

FUNCTION

NUL Character
+-

ALT Q, W, E, R, T, Y, U, I, 0, P
ALT A, S, D, F, G, H, J, K, L
ALT Z, X, C, V, B, N, M
Fl-FlO Function Keys Base Case
Home
t
Page Up & Home Cursor

End

"' Page Down & Home Cursor
INS
DEL
Fll-F20 (Upper Case Fl-FlO)
F21-F30 (CTRL Fl-FlO)
F31-F40 (ALT Fl-FlO)
CTRL PRTSC (Start/Stop Echo to Printer) Key 55
CTRL +- Reverse Word
CTRL -+ Advance Word
CTRL END Erase EOL
CTRL PG DN Erase EOS
CTRL HOME Clear Screen and home
ALT 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, - =(Keys 2-13)
CTRL PG UP TOP 25 Lines of Text & Home Cursor

Key Driver 2-8

2.4.2.2 Shift States

Most shift states are handled within the keyboard routine transparently to
the system or application program. In any case, the current set of active
·shift states are available by calling an entry point in the keyboard
routine. The following keys result in altered shift states:

Shift - Temporarily shifts keys 2-13, 15-27, 30-41, 43-53, 55, 59-68 to
upper case (lower case if in CAPSLOCK state). Temporarily reverses
NUMLOCK/NONUMLOCK state of keys 71-73, 75, 77, 79-83.

CTRL - Temporarily shifts keys 3, 7, 12, 14, 16-28, 30-38, 43-50, 55,
59-71, 73, 75, 77, 79, 81 to CTRL state. Used with ALT and DEL to cause
"system reset" function described in Section 2.4.3.1. Used with SCROLL
LOCK to cause "break" function described in Section 2.4.3.2. Used with
NUMLOCK to cause "pause" function described in Section 2. 4. 3. 3.

ALT - Temporarily shifts keys 2-13, 16-25, 30-38, 44-50, and 59-68 to ALT
state. Used with CTRL and DEL to cause system reset function described in
Section 2.4.3.1.

ALT has a special use to allow the user to enter any characer code (0-255)
into the system from the keyboard. The user holds down the ALT key and
types the decimal value of characters using the numeric keyboard (keys
71-73, 75-77, 79-82). The ALT key is then released. If more than three
digits are typed, a modulo 256 result is created. These three keys are
interpreted as a character code (000-255) and are transmitted through the
keyboard routine to the system or application program. ALT is handled by
the to keyboard routine.

CAPS LOCK - Shifts keys 16-25, 30-38, 44-50 to upper case A second
depression of CAPS LOCK reverses the action. CAPS LOCK is handled by the
keyboard routine.

NUM LOCK - Shifts keys 71-73, 75-77, 79-83 to numeric state. A second
depression of NUM LOCK reverses the action. NUM LOCK IS handled by the
keyboard routine.

SCROLL LOCK Interpreted by appropriate application programs as
indicating that the use of the cursor control keys should cause windowing
over the text rather than cursor movement. A second depression of SCROLL
LOCK reverses the action. The keyboard routine simply records the current
shift state of SCROLL LOCK. It is up to the system or application program
to perform the function.

Preliminary Key Driver 2-9

2.4.2.3 Shift Key Priorities and Combinations

If combinations of ALT, CTRL and SHIFT are pressed and only one is valid,
the precedence is as follows: Highest is ALT, then CTRL, then SHIFT. The
only valid combination is ALT CTRL, which is used in system reset.

2.4.3 SPECIAL HANDLING

2.4.3. 1 System Reset

The combination of ALT CTRL DEL (Key 83) will result in the keyboard
routine initiating the equivalent of a system reset/reboot (handled by the
keyboard routine).

2.4.3.2 Typematic Action Syppressed

The following keys will have their typematic action suppressed by the
keyboard routine: CTRL, SHIFT, ALT, NUM-LOCK, SCROLL-LOCK, CAPS LOCK,
INS.

2.4.3.3 Print Screen

The combination SHIFT-PRINT SCREEN (Key 55) will result in an interrupt
invoking.the print screen routine. This routine works in graphics mode,
with unrecognizable characters printing as blanks.

The keyboard routine does its own buffering. The buffer is big enough to
support a fast typist. If a key is entered when the buffer is full, the
key will be ignored.

2.4.4 KEYBOARD USAGE

This section outlines a set of guidelines for key use when performing
commonly used functions.

Preliminary Key Driver 2-10

Table 2-4. Keyboard -- Commonly Used Functions.

FUNCTION

Home Cursor

Return to outermost menu

Move cursor up

Page up, scroll backwards
25 lines & home

Move cursor left

Move cursor right

Scroll to end of text
Place cursor at end of
line

Move cursor down

Page down, scroll forwards
25 lines & home

Start/Stop insert text at
cursor, shift text right
in buffer

Delete character at cursor

Destructive backspace

Tab forward

Tab reverse

Clear screen and home

Scroll up

Scroll down

Preliminary

KEY(S)

HOME

HOME

PG UP

+- Key 75

END

PG DN

INS

DEL

+- Key 14

... ,
, ...
CTRL HOME

t

~

COMMENT

Editors; word processors

Menu driven applications

Full screen editor, word
processor

Editors; word processors

Text, command entry

Text, command entry

Editors; word processors

Full screen editor, word
processor

Editors; word processors

Text, command entry

Text, command entry

Text, command entry

Text entry

Text entry

Command entry

In scroll lock mode

In scroll lock mode

Key Driver 2-11

Scroll left

Scroll right

Delete from cursor to
EOL

Exit/Escape

Start/Stop Echo screen
to printer

Delete from cursor to
EOS

Advance word

Reverse word

Window Right

Window Left

Enter insert mode

Exit insert mode

Cancel current line

Suspend system (pause)

Break interrupt

System reset

Top of document and home
cursor

Standard Function Keys

Secondary function keys

Preliminary

+-

CTRL END

ESC

PRTSC
CTRL K55

CTRL PG
DN

CTRL -+

CTRL +-

CTRL -+

CTRL +-

INS

INS

ESC

CTRL

NUMLOCK

CTRL
BREAK

ALT CTRL
DEL

CTRL PG UP

Fl-FlO

SHIFT Fl-FlO

In scroll lock mode

In scroll lock mode

Text, command entry

Editor, 1 level of
menu, etc.

Any time

Text, command entry

Text entry

Text entry

When text is too wide
to fit screen

When text is too wide
to fit screen

Line editor

Line editor

Command entry, text entry

Stop list, stop program,
etc.
Resumes on any key

Interrupt current process

Reboot

Editors, word processors

Primary function keys

Extra function keys if

Key Driver 2-12

Extra function keys

Extra function keys

Preliminary

CTRL Fl-FlO
ALT Fl-FlO

ALT Keys
2-13
(1-9,0,-,=)

ALT A-Z

10 are not sufficient

Used when stickers are
put along top of keyboard

Used when function starts
with same letter as one of
the alpha keys

Key Driver 2-13

2.4.5 LOOKUP TABLES

The scancode is used as an argument in lookup tables that may be set by the
user. These tables can perform translations on the scancode:

• Separation of keypad #KPD device commands from #CON console input .

• Scancode to ASCII character conversion .

• Scancode to ASCII string conversion .

• Scancode to immediate program function (task WAKEUP or SUSPEND)

These tables are initially set to empty. Application programs may issue a
function call to set or clear a lookup entry.

The general format of the following three tables is the same. Each table
starts with a long-word displacement to the next free table entry. This
would initially be zero. An entry consists of the scan code, followed by
an operation code, followed either by a character string or a one-byte
task number. A character string can be one to N characters followed by a
carriage return ($OD) or EOF ($04).

Keyboard Table

This works with scan codes from the keyboard function keys Fl-FlO.
Possible operation codes include WAKEUP and DELAY to the task number
that follows, or insertion of an ASCII string into the #CON buffer.

Operation Code 01 = WAKEUP
02 = SUSPEND
03 = ASCII string insertion into the #CON buffer.

Keypad-Shifted Table

This works with scan codes from the keypad in situations where the
SHIFT key is already being pressed. Three operation codes determine
whether to send a character string to CONRBF or to KPDRBF or to let
the destination of the previous keystroke determine which buffer
should receive the character string.

Operation Code 00 = Use destination of previous keystroke
01 = ASCII string insertion into #KPD buffer.
02 = ASCII string insertion into #CON buffer.

Preliminary Key Driver 2-14

Keypad-unshifted Table

This is the same as KPTBLl except that the SHIFT key will not already
have been pressed,

EXAMPLES

" KBTBL code to assign the string "DIR" with carriage return to function key
FlO and to WAKEUP task number 3 with function key Fl,

9 Displacement to next free entry
Scan code of function key FlO

DC.L
DC,B
DC,B
DC,B
DC.B
DC.B
DC.B
DC,B

$44
$03
'DIR'
$DD
$3B
$01

ASCII string insertion into #CON buffer
ASCII string 'DIR'

3

#CON BYTE I/O

Carriage Return
Scan code of function key Fl
WAKEUP operation
Task number to wake up

Each SYSIO-BREAD will retrieve a keystroke from the input ring buffer.
Register DO,L will contain the keystroke data as follows:

BYTE 0: Contains "KBFLAG" defined as follows
Bit 7: Insert state
Bit 6: Caps lock has been toggled
Bit 5: Numeric lock has been toggled
Bit 4: Scroll lock has been toggled
Bit 3: Alt shift key depressed
Bit 2: Control shift key depressed
Bit l: Left shift key depressed
Bit 0: Right shift key depressed

BYTE 1: Contains "KBFLAGl" defined as follows
Bit 7: Insert key depressed
Bit 6: Caps lock key depressed
Bit 5: Numeric lock key depressed
Bit 4: Scroll lock key depressed
Bit 3: Suspend key has been toggled

BYTE 2: Contains the scancode of the key that was pressed.

BYTE 3: Contains the translated ASCII code of the key that was

Preliminary Key Driver 2-15

pressed. Contains zero if there is no ASCII representation.

#CON LINE I/O

Each SYSIO-AREAD or SYSIO-SREAD will transfer a line of console input to
the buffer specified in the Data Transfer Control Block (DTCB). There are
several line-editing options that may be specified with function packets
using SYSIO-OPEN or SYSIO-FUNCTION. See "#CON FUNCTION SUMMARY".

There are lookup tables that may be used to translate non-ASCII keystrokes
into program control functions or into ASCII strings. The use of these
tables is optional. Note that the translation is global, meaning that all
programs using console input must agree on the same translations.

Function and control keys are normally ignored if they do not appear in
the lookup table. However, you can use "Function Key Mode" to gain access
to them. In this mode you will receive an exception code of $10 whenever a
control or function key is pressed that could not be translated. Three
bytes will be placed in the buffer specified in your data transfer control
block starting at the address contained in the DTCB buffer pointer. The
first byte is KBFLAG, the second is KBFLAGl, and the third is the
SCANCODE. Text entered before the exception key was pressed remains in
the buffer.

Preliminary Key Driver 2-16

2.4.6 #CON FUNCTIONS

2.4.6. 1 Summary of Functions

The SYSIO-FUNCTION command can perform the following operations to #CON.

DESCRIPTION CODE

SET TRANSFER MODE 1
SET EDIT OPTIONS 2
PROMPT ON 3
PROMPT OFF 4
ECHO ON 5
ECHO OFF 6
RESET CTRL-BREAK 7
GET CTRL-BREAK 8
GET CTRL-NUMLOCK 9
SET ECHO 10
SET TAB AMOUNT 11
SET PROMPT 12
PARSE NEXT TOKEN 13
FUNKY MODE ON 14
FUNKY MODE OFF 15
PARSING ON 16
PARSING OFF 17

DATA FOLLOWING

WORD
WORD
NONE
NONE
NONE
NONE
NONE
LONGWORD ADR RETURNED
LONGWORD ADR RETURNED
LONGWORD
WORD
LONGWORD POINTER
NONE
NONE
NONE
NONE
NONE

2.4.6.2 #CON Function Descriptions

The functions listed in this section are all callable by the FUNCTION
command of the I/O manager using FUNCTION packets.

SET TRANSFER MODE Allows transfer mode to be set to either fixed length
transfer or variable length transfer. Fixed length
uses the DTCLEN field of the Data Transfer Control
Block as the amount to transfer. Variable length uses
the DTCTBU and DTCTBL fields as delimeters on the
amount of data to transfer.

Function code: 1 (SETTRANS)

Function data: Word. O=Fixed, l=Variable length.

Preliminary Key Driver 2-17

SET EDIT OPTIONS

Function code:

Function data:

PROMPT ON

Function code:

Function data:

PROMPT OFF

Function code:

Function data:

ECHO ON

Function code:

Function data:

ECHO OFF

Function code:

Sets bits into the Edit Control Word.

2 (SETEDIT)

Word. Bit 8: O=Enable backspace
9: O=Enable forward tab

11: O=Swallow nulls not in lookup table

Enables prompt before read. You use the SET PROMPT
function to establish a prompt string.

3 (PRMPTON)

None

Disable prompt before read.

4 (PRMPTOFF)

None

Enable echo to the CRT. The CRT window on which to
echo may be either the default window or else a window
specified by

5 (ECHOON)

None

Disable echo to the CRT.

6 (ECHOOFF)

Function data: None

RESET CTRL-BREAK Sets the CTRL-BREAK byte to zero. This byte is set
to $FF when the CTRL-BREAK keys are depressed. It may
be used within a program to determine when to leave a
loop or abort a function. You would normally reset the
byte to zero before starting a loop to be broken by
CTRL-BREAK.

Function code: 7 (RESCTLBK)

Preliminary Key Driver 2-18

Function data: None

GET CTRL-BREAK Returns the address of the CTRL-BREAK byte which will
be set to $FF whenever CTRL-BREAK is pressed.

Function code: 8 (GETCTLBK)

Function data: Longword to receive the address of the CTRL-BREAK
byte.

GET CTRL-NUMLOCK Obtains the address of a byte which is set to $FF
whenever CTRL-NUMLOCK is pressed and is reset to $00
whenever any other key is pressed.

Function code:

Function data:

SETECHO

Function code:

Function data:

SET TAB AMOUNT

Function code:

Function data:

SET PROMPT

Preliminary

9 (GETCTLNM)

Longword to receive the address of the CTRL-NUMLOCK
byte.

Set CRT echo reference word. The user can open a can
open a window for Byte I 0 and use it for keyboard
echoing.

10 (SETECHO)

Longword. Either the word returned in DIBBIO
following an open for Byte I 0 to to a window, or else
a -1 to specify that the default screen should be used.

Sets a value to be used as the tab amount.
the conceptual space between tab columns.
is moved to the next tab column when the
pressed.

11 (SETTAB)

Word to contain tab amount.

This is
The cursor
tab key is

Sets a prompt string up to eight characters in length
which will be sent to the echo device before reading.
If fewer than eight characters are needed for a prompt
then the bytes should be padded on the right with
blanks.

Key Driver 2-19

Function code:

Function data:

PARSE NEXT TOKEN

Function code:

Function data:

FUNKY MODE ON

Function code:

Function data:

FUNKY MODE OFF

Function code:

Function data:

PARSING ON

Function code:

Function data:

Preliminary

12 (SETPRMPT)

Longword. Points to prompt string.

Causes the next token in the input line to be parsed.
See COMMAND PARSING.

13 (PARSE)

None

This establishes a mode of operation called "Function
Key Mode" where keystrokes that result in an ASCII
byte of zero will cause an exception code of $10 to be
returned to the caller. The input buffer # will
contain the scan code of the key thatwas pressed,
followed by the bytes KBFLAG and KBFLAGl, which
represent the state of the keyboard at the time the key
was pressed. See #CON Byte I 0 for KBFLAG and KBFLAGl
definitions. This information is placed in the buffer
offset DTCBFS from the start. The buffer will contain
ASCII codes for any key pressed before the ASCII code
zero was pressed.

14 (FUNKYON)

None

This turns off Function Key Mode.

15 (FUNKYOFF)

None

Establishes a mode of operation whereby the input
line on each read is sent to the parsing routine which
parses the first token in the line and makes the rest
of the line available for parsing via the PARSE NEXT
TOKEN function.

16 (PARSEON)

None

Key Driver 2-20

PARSING OFF

Function code:

Turns off the mode of operation established by
PARSING ON.

17 (PARSEOFF)

Function data: None

2.4. 7 DEFINITION OF CTRL-BREAK

Many programs need a way to "break" out of a loop at the console
operator's discretion. The Ctrl-BREAK feature provides a global byte that
may be tested within an application program. The byte can be reset to
zero by the RESCTLBK function call. It will be set to -1 when Ctrl-BREAK
is pressed. You issue the GETCTLBK function call to get the address of
the byte. Please note that this is a global byte, accessable to all users
of fjCON.

2.4.8 DEFINITION OF CTRL-NUMLOCK

Many programs need a way to temporarily halt their operation and then
later resume via operator command. One example is screen scrolling. The
CTRL-NUMLOCK feature provides a global byte that may be tested within an
application program. The byte is set to -1 whenever CTRL-NUMLOCK is
pressed and reset to zero when any other key is later pressed. You issue
the GETCTLNM function call to get the address of CTRL-NUMLOCK.

EXAMPLE

This example shows an OPEN of #CON. A function packet is used at OPEN TIME
to set the eight-character prompt string and to enable prompting.

SYSIO OPEN,#2,#CONSOLE,#ERRORLAB

Preliminary Key Driver 2-21

CONSOLE DS.W
DC.B
DC.B
DC.B
DC.L
DC.W
DC.L
DC.L

CONFPKT DC.W
DC.L
DC.W
DC.W:

PROMPTER DC.B

0
'!ICON
1
1
0,0
$0000
CONFPKT
0

DIBVOL
DIBDTD = INPUT
DIBTRN = VARIABLE
DIBFOR
DIBOPT
DIBFCN
DIBBIO

SETPRMPT
PROMPTER
PRMPTON
0

ENTER:

2.4.9 COMMAND PARSING

This feature breaks up a command into "tokens." A token is a substring of
a line that is treated as a unit. The following definitions apply to
command parsing.

NAME A name is a string of characters that begins with an alphabetic
character and containsonly alphanumeric characters, (i.e.
imbedded spaces) .

NAME WITH WILDCARD CHARACTERS
A name that may include the special characters "*" and "?".

NUMBER A string of digits that may be decimal or hexadecimal.
Hexadecimal numbers must start with a dollar sign. ($)

DELI METER
One of the following special characters: period (.), comma (,),
colon(:), semicolon(;), and the arithmetic symbols+,-, and

CARRIAGE RETURN
The ASCII carriage return character. ($OD)

ERROR A token not falling into one of the above classes.

COMMAND PROCESSING PARAMETER BLOCK

Preliminary Key Driver 2-22

Command parsing makes use of a parameter block to hold token processing
variables. This block is available in the PCB. Its address may be
obtained from the GSTAT system call.

CU CHAR DS.L 1 Address of the next character
DESCRA DS.L 1 Address of the first character of a token
DESCRC DS.W 1 Length in bytes of the current token
CLASS DS.B 1 Class of the current token
RC DS.B 1 Return code of the current token
VALUE DS.L 1 Binary value of a numeric token (unsigned)

2.4.10 TOKEN CLASSIFICATION

The address of the first character of the token is returned in DESCRA.
Note that spaces are not part of any token.
unless they are imbedded in a token. The
characters in a token is returned in DESCRC.
classification of the token as follows:

NAME CLASS = 02 RC = 01
NAME (wildcard) CLASS = 02 RC = 02
NUMBER CLASS = 02 RC = 03

Spaces are skipped over
count of the number of
RC and CLASS return the

DELIMETER CLASS = 04 RC = ASCII code of character
CARRIAGE RETURN CLASS = OD RC = OD
ERROR CLASS = 00 RC = 00

CUCHAR is returned pointing one character beyond the end of the present
token. If the token is a number (RC=03) then its binary value is returned
in VALUE. Numbers in hexadecimal or decimal are automatically converted
to binary form. Numbers that are too large are classified as ERROR.

EXAMPLE

Input line is "LOAD l:MYFILE.EXT" carriage return

fourth token='MYFILE'
fifth token='.'
sixth token='EXT'
seventh token=c.r.

Preliminary

RC=Ol,
RC=2E,
RC=Ol,
RC=OD,

CLASS=02
CLASS=04
CLASS=02
CLASS=OD

Key Driver 2-23

2.4.11 ERROR CODES RETURNED BY #CON

$09 Input record longer than buffer length
$0C Buf ter empty on byte I 0 BTEST or BREAD
$OE Invalid code in function packet
$10 Keyboard function key exception
$2D Command parsing not enabled
$61 Invalid operation CANCEL
$63 Invalid operation WRITE
$65 Invalid operation WRITE BYTE
$6A Unimplemented entry - ATACHDEV
$6B Unimplemented entry - DTACHDEV

2.4. 12 KEYPAD AND SOFTKEY DESCRIPTION

The keypad is confirgured as a 3 row X 19 column tactile switch matrix and
is located in front of the printer. The softkey assembly is a 1 X 10
matrix and is located directly beneath the CRT screen. *(1) Each key
actuation produces a unique 1-byte scan code*(2) which can be read and
decoded by the keypad driver routine.

The system user has the ability to define through a function call to the
keypad driver key depression. The user established entry in a table
(Figure 2-1) which can be decoded by the keypad driver to place a string
of data in either the console buffer (#CNIN) or the keypad (#KPD). Date
placed in the console buffer is treated just as though it were typed in
through they keyboard. Data placed in the keypad buffer can be accessed
via SYSIO calls to the keypad and used in an application as required.

To open the keypad, the user must create a DIB (See Figure 2-2) and within
an initialization routine perform a SYSIO-OPEN to the device (see Figure
2-3). Afther this is performed, all standard SYSIO operations are
allowed, with the exception of CANCEL, WRITE, and WRITE BYTE, to access
the keypad and softkeys.

*(1) soft-key definition should be user displayed on the CRT above
above the respective key position.

•'<'(2) one duplication os scan code on the keypad. See list of keypad
scan-codes.

Preliminary Key Driver 2-24

2.4.13 KEYPAD FUNCTIONS

SYSIO-FUNCTION calls are defined in Figure 2-4. The following list gives
a basic definition of each function:

SET TRANSFER MODE: See section 2.4.6.2 for definition

BEEPER ON: Turns system audible alarm on continuously

BEEPER OFF: Turns system audible alarm off

TIMED BEEP: System audible alarm sounds for a period defined
in the time out word following the CODE word

BEEP SINGLE SHOT: System alarm sounds for approximately20 milli-
20 milli-seconds

LED ON: Turns on LED number defined in the word following
the CODE word. LED's are numbered as follows:

LEFT TOP

LED OFF:

CLEAR LEDS:

SET LEDS:

ENABLE KEYBOARD:

DISABLE KEYPAD:

ADD TO TABLE:

Preliminary

LED NUMBER

1
2
3

6
5
4

KEYPAD

RIGHT BOTTOM

Turns off defined LED above

Turns off all LEDS

Turns on all LEDS

Allows keypad to interrupt and be read by operating
by operating system.

Disables keypad interrupt to system.

SCANCODE
TABLE TYPE

TASK CODE

- See table of scan codes
- 0 = keypad shift table

1 = keypad table
2 = function key table (see 2.4.5)
3 = soft-key table

- 0 = put data in last used buffer
1 = put data in #KPD buffer

Key Driver 2-25

2 = put data in #CNIC

STRING LENGTH - length of message string,
max 20 bytes

KEY CODE

EQT

DELETE FROM TABLE: SCANCODE
TABLE TYPE
TASK CODE

2.4. 14 ERROR CODES

- user defined string to be
presented in the defined
buffer upon key actuation

- string termination character

- as above
- as above
- as above

Error return codes for the keypad driver are defined in Figure 2-5.
Additional codes returned from table build delete functions are as
follows:

HEX CODE

$11

$12
$13
$14
$15
$16

Preliminary

FUNCTION

BUILD

BUILD
BUILD DELETE

DELETE
BUILD
BUILD

ERROR

scan-code entry exists, must
delete first
total table limits exceeded
error in table organization,
number not in table
invalid task or table code
invalid wake-up code (function-keys)

Key Driver 2-26

3.0 CRT DISPLAY DRIVER

3.1 PROGRAMMING SYSTEMS

The information contained in this section on the CRT display applies only
to assembler language programming. It will be expanded at a future date
to include higher level programming languages, specifically Basic,
Fortran, and Pascal.

3.2 CHARACTERISTICS AND FEATURES

The CRT screen has a display capacity of 2240 characters in a format of 28
lines of 80 characters each. This format will normally consist of a user
character-display area of 25 lines and a "console box" of 3 lines at the
bottom of the screen. The latter displays system messages (e.g. prompts
and error messages). The console box cannot be disabled, though it can be
programmed by the user to display material other than system messages.
The user implements such programming at his own risk, however.

The CRT display also functions as a graphics device, providing a high
resolution of 760 by 480 pixels. All points on the screen are
addressable. The character block is 9 x 16; the character size is 7 x 12.

Character generation is implemented by software mapping of standard
fonts, but the display will also support user-defined fonts (see Figure
3-1). Each word in the CRT memory is 12 bits long. The image buffer uses
the most significant four bits for attribute storage. Figure 3-2 shows a
map of the CRT memory.

Preliminary CRT Driver 3-1

To Be Supplied

Figure 3-1. Standard Font

Preliminary CRT Driver 3-2

To Be Supplied

Figure 3-1. Standard Font

Preliminary CRT Driver 3-3

DISPLAY BUFFER

30,720 12-BIT WORDS

PAGE 0

IMAGE BUFFER

2048 12-BIT WORDS

DISPLAY BUFFER

30,720 12-BIT WORDS

PAGE 1
IMAGE BUFFER
2048 12-BIT WORDS

Figure 3-2. CRT Memory Map

Preliminary CRT Driver 3-4

The normal user area may be divided into up to five separate display
areas, or "windows." These windows can be opened from within the user's
program by using logical I/O facilities, each display area is then
associated with a unique logical unit number. The default window position
and dimensions are the entire 25x80 character user area. Subsequent
Function calls allow redefinition of the window's position and dimensions
without closing and reopening the logical unit.

Each window is opened with a one-character border around the perimeter.
This border is not included in the dimension specified by the user, but
must be taken into account in designing screen usage. No space management
is in effect and overlapping windows are allowed.

Windows may be "framed" at the option of the user at any time. The pixels
forming the frame are taken from those in the character border.

Information within each window may be updated in several modes. Default
mode processing includes upward scrolling of the characters within the
window when the current character position is incremented past the lower
right-hand corner. The cursor symbol position is updated after each
character write, and will be the underline character.

Carriage return ($OD) and line feed ($OH) character are used in formatting
text when the control-character ($00-$19) filter is enabled. A carriage
return places the cursor in column 0 of the current line, while a line
feed places the cursor in the next line with the column unchanged. If the
control character filter is disabled, all characters in the range $00-$FF
are displayed and carriage return and line feed characters do not produce
the above cursor movements.

If scrolling of the display is not desired, the window may be placed in
the page mode. Receipt of carriage-return/line-feed pairs (in either
order) increments the cursor to column 0 of the next line with subsequent
clearing of this line except when the cursor initially resides on the last
line. In this case, the cursor is placed in column 0 of line 0 and the
line is cleared. The above actions also result if the cursor is
incremented past the end of the current line.

In addition to high-performance transfers of the image buffer contents to
the display buffer, users may specify dumps from specified buffers in
application memory.

Since font generation is accomplished in software, the user may specify
any of the available fonts as a cursor indicator. Thus different windows
can use different cursor symbols.

Preliminary CRT Driver 3-5

Performance can be enhanced somewhat by forcing the cursor to be updated
as infrequently as possible, or disabled entirely. Thus FUNCTION calls
allow the user to choose the cursor update mode.

Attribute nibbles can be used tp modify the display characteristics of
individual characters; however, these modifiers must accompany the
character when the display buffer is the target and attribute decoding has
been activated by a prior FUNCTION call.

Hardware switching between two different display buffers is available,
allowing a coordinating task control over the currently viewed page. Each
page is considered to be a separate physical device for logical I/O use.
Similarly, there are two separate complimentary image buffers, typically
used as repositories of the ASCII image of the window con~ents. These
areas are used for screen dumps to the printer, and a SYSIO SREAD will
result in a transfer of a line from this bufffer to the user buffer
specified in the DTCB. Optionally, keyboard echoing can take place to
both the display and image buffers if fast dumping of the screen contents
to a printer is anticipated; otherwise, a dump to the printer can be done
in the graphics mode.

The default font table consists of a total of 256 characters. In
addition, users may specify their own font table arranged in a linear
14-byte-per-character array.

3.2.1 SCRIB (SCREEN INITIALIZATION BLOCK)

Characteristics of the display area or window can be specified at open
time. The following fields describe SCRIB usage.

SCRIVOL DS.B 6 #CNSCO ,fJCNSCl
SCRIBDTD DS.B 1 Bidirectional (=2)
SCRIBFOR DS.L 1 "FOR" Task PCB
SCRIBOPT DS.W 1 See mode word description below; uses default

if null.
SCRIBFCN DS.L 1 Pointer to function packet; uses default if null .
SCRIBBIO DS.L 1 Byte I/O field

3.2.2 MOOE OR OPTION WORD DESCRIPTION

If the mode word field is nulled at open time, then default conditions are
used. Bit assignments are as follows:

Preliminary CRT Driver 3-6

BIT NO.
(DEFAULT)

15 (0)

14-13 (0)

12 (O)
11 (0)
10 (0)

9 (0)
8 (0)
7 (0)

6 (0)
5 (O)
4 (0)

3 (O)
2-1(0)

0 (0)

OPTION/MODE

Mode word active
0 -- ignore mode word
1 -- mode word significant

Cursor update mode (applies to display buffer)
0 Single byte increment
1 -- Stationary cursor
2 -- Record/Block update

User font euable (must supply table pointer)
Scroll/Page mode
Attribute decode enable
System use (cleared by user)
System use (cleared by user)
Target buffer

0 -- Display
1 -- Image

Truncate enable flag
System use (cleared by user)
Auto line feed

0 -- no line feed generated on carriage return
1 -- line feed generated on carriage return

System use (cleared by user)
Character write mode ·

0 overwrite existing data
1 exclusive OR with existing data
2 OR with existing data
3 inverted overwrite

System use (cleared by user)

Note that if the above conditions are to be modified after OPEN time,
FUNCTION commands must be issued against the logical limit number
specified in the OPEN command.

3.2.3 CHARACTER ATTRIBUTES

Special attributes that apply to the initial data transfer (record or
b.lock) may be selected using the FUNCTION command of SISIO. Display
attributes of individual characters can be applied by activating
attribute decode using a FUNCTION command, then sending full-words (2
bytes) to the display buffer. The LSB of the word contains the character
code, while the low order four bits of the MSB contain the attributes that
apply to the character. If attribute decoding is deselected, successive

Preliminary CRT Driver 3-7

bytes in the user buffer are interpreted as successive character codes for
transfer to the display buffer. For transfers to the image buffer,
activating attribute decode simply allows the attribute nibble to be
stored along with the character code, then subsequent dumps to the display
butfer can be made with the desired attribute decode state. In addition,
attributes only can be modified if the image buffer is the selected target
by using the ATTRIBUTE UPDATE FUNCTION.

3.2.3.1 Attribute Code

Since character fonts are software generated, transfers to the display
buffer must be accompanied by the corresponding attribute byte. Only the
least significant nibble is used.

Attribute Byte
Bit &

0

Attribute

User font (USER FONT SELECT
FUNCTION command must have been
issued to set user font table
address)

1 Underline

2 Inverse

3 Non - display

4 Not Used

3.2.4 CALL REQUIREMENTS OF THE CRT CHARACTER INTERFACE

Any user program involving the character CRT interface must contain system
calls, if the program language is assembler; procedure calls, if the
program language is Pascal; and subroutine calls if the program language
is Basic or Fortran.

Preliminary CRT Driver 3-8

3.3 SUMMARY OF CRT FUNCTIONS

The functions listed in this section are all callable by the FUNCTION
command of the 1/0 manager (SYSIO), using FUNCTION packets.

CODE FUNCTION DESCRIPTION

1 VARIABLE/FIXED TRANSFER SELECT: activates terminal character
checking to delimit a record that
is being transferred. See a
description of the Data Transfer
Control Block (DCTB) and the mode
word field in the SCRIB.

Function data:

2 USER FONT SELECT/DESELECT:

Function data:

3 FLOOD WINDOW:

Preliminary

one word integer
0 fixed length
1 -- variable length

permits specification of a
user-defined table for a
specific window, making it
possible to display output in a
foreign language or an APL
character set. This font will be
the one displayed in output until
it is deselected. The address
pointing to the user's font table
must appear in the long word
following the function code.
This same table will be used if
the user font bit is set in the
attrubute nubble on a
character-by-character basis.

long word pointer to user
table; if null, font is
deselected

modifies information displayed
in an entire window (information
displayed outside the window
remains unaffected.) This
command will not affect any frame
around the window.

CRT Driver 3-9

Function data:

5 FLOOD LINE:

Function data:

6 CLEAR PAGE:

Function data:

13 READ CURSOR:

Function data:

Preliminary

0 - clear window
1 - fill with current fill word
2 - exclusive OR fill word with

previous contents
3 - OR fill word with

previous contents

deletes displayed output from
the cursor position to the end of
the line on which the cursor
appears.

0 - clear line
1 - fill with current fill word
2 - exclusive OR fill word

with previous content
3 - OR fill word with
previous contents

is a "global" function (i.e., it
affects the entire screen) and
"wipes" the screen clean of all
displayed output by changing the
contents of the display buffer in
the CRT memory (instead of
disabling the screen). Affects
all windows, including those of
other tasks so must be used with
caution.

0 - page 0
1 - page 1

asks for the position of the
cursor relative to the upper
left-hand corner (X = 0, Y = 0)
of window.

returns with long-word response-
most significant word: Y
(0 S Y S line count -1)
least significant word: X
(O S X S column count -1)

CRT Driver 3-10

14 WRITE CURSOR:

Function data:

15 READ POINTER:

Function data:

16 WRITE POINTER:

Function data:

17 CURSOR FONT SELECT:

Preliminary

XORS the cursor font with
exisiting data at a position
defined by the X-Y coordinates
specified in the function (i.e.,
relative to the upper left-hand
corner of window). Does not
erase the cursor at the previous
position. (See Function Code
40.)

long word
MSW: Y (0 S Y S line count -1)
LSW: X (O S X S column count -1)

used in stationary cursor mode.
X and Y coordinates are relative
to the upper lefthand corner of
the window; subsequent writes to
the window increment this
pointer.

long word
MSW: Y(O S Y S line count -1)
LSW: X(O S X S column count -1)

positions current pointer. Used
in stationary mode. X and Y
coordinates are relative to the
upper left-hand corner of the
window; subsequent writes to the
window increment this pointer.

returns in long word
MSW: Y (O S Y S line count -1)
LSW: X (0 S X S column count -1)

allows the user to select any
symbol from the default font
table or from a user defined
table. This function allows the
user to specify a unique symbol
for each window.

CRT Driver 3-11

Function data:

18 DUMP IMAGE BUFFER:

Function data:

19 SCROLL/PAGE MODE SELECT:

Function data:

21 ATI'RIBUTE ENABLE/DISABLE:

Preliminary

one-word integer character
code (see Figure 3-1)

dumps the contents of the image
buffer (treated as a circular
buffer of lines) of the CRT
memory into the display buffer,
which displays the dump on the
screen. The dump begins with the
first character of the current
top line of the image buffer.
The top line may be changed by
using the SET TOP LINE function
command.

none

al lows the user to control the
screen display update mode. In
scroll mode, either line feeds
beyond the end of the window or
attempts to write beyond the last
character position result in an
upward movement of the screen
contents by one line with
clearing of the last line and
positioning of the cursor at
column 0 of the next line and
subsequent clearing of the line.
This action also results if
attempts to write beyond the end
of the current line are made.
The cursor is positioned at
column 0, line 0 if attempts are
made to write beyond the end of
the last line.

one-word integer
0 scroll
1 -- page

can be used to enable or disable
attributes
on the
attributes

characters displayed
screen. The four

are user font,

CRT Driver 3-12

Function data:

23 FRAME ENABLE/DISABLE:

Function data:

24 TARGET BUFFER SELECT:

Function data:

25 SET TOP LINE:

Function data:

Preliminary

underline, display inversion,
and blanking (i.e., not
displaying the character).
Attributes are decoded upon
output to the display buffer (2
bytes per transfer) or are stored
in the image buffer for decoding
upon dump.

one-word integer
0 disable attribute decode
1 -- enable attribute decode

can be specified for individual
windows. This command results in
exclusive OR of the frame pixels
with the previous data.
Successive function calls will
erase the frame pixels.

none

sends display information to one
of two buffers in the CRT memory

the display buffer or the
image buffer. Also identifies
source buff er for SREAD
operations.

one-word integer
0 display buffer
1 -- image buffer

can be used to specify the that
is to be displayed at the top of
the screen when the image buff er
is dumped to the display buffer.
In scroll mode, this line is
incremented modulo window line
count -1. Bottom of window is
then previous line.

one-word integer
Y-coordinate of line relative
to top of window.

CRT Driver 3-13

26 READ TOP LINE:

Function data:

27 SCROLL UP N LINES:

Function data:

28 SCROLL DOWN N LINES:

Function data:

can be used to return
Y·coordinater of top line in
image buffer.

returns one-word integer
Y·coordinate of top line
relative to top of window.

specifies the number of lines
the screen display is to be
scrolled upward. The top n lines
are lost; the bottom n lines are
cleared to blanks.

one-word integer = n

specifies the number of lines the
screen display is to be scrolled
downward. The bottom n lines are
lost; the top n lines are cleared
to blanks.

one-word integer = n

29 TRUNCATE LINES ENABLE/DISABLE: allows the user to choose beween

Preliminary

displaying the first n
~haracters of a line or
displaying the "overrun" on the
next line. For example, if this
function is enabled for the
display if a directory in a
window space 10 lines deep and 20
characters wide, that space will
show the first 20 characters of
each of 10 successive lines of
the directory. If the function
is is disabled, the CRT will
display the first 20 characters
of line 1 on the top line of the
window space, the second 20
characters on line 2, and so on
until the space is completely
filled.

CRT Driver 3-14

30

31

32

33

Function data:

CLEAR ATI'RIBUTES:

Function data:

CONTROL CHARACTER
FILTER ENABLE
DISABLE:

Function data:

CURSOR UPDATE MODE:

Function data:

ATI'RIBUTE UPDATE:
ENABLE/DISABLE

Preliminary

one-word integer
0 disable
1 -- enable

nulls the attribute bits in the
image buffer

none

is used if an "image mode" is
desired whereby ASCII conkrol
will be displayed (utilizing
fonts described in the
accompanying font table
description). If the filter is
disabled, carriage returns (/OD)
and line feeds (/OA) will not be
used for format control.
Otherwise, if the filter is
enabled, no characters in the
range will be displayed; line
feeds and carriage returns are in
effect.

one-word integer
0 enable filter
1 -- disable filter

is used to control the frequency
of cursor update. If this
function is disabled, the next
character is placed at the
pointer position (see READ
POINTER and WRITE POINTER)

0
1
2

single-character update
disable cursor
block record update

allows a user to update attribute
bytes only in image buffers rent
image buffer pointer.

CRT Driver 3-15

34

35

36

38

39

Function data:

CHARACTER OVERWRITE
MODE SELECT:

Function data:

XOR CURSOR:

Function data:

FILL WORD UPDATE:

Function data:

FILL BORDER:

Function data:

SET/RESET AUTO
LINE FEE MODE:

Preliminary

one word integer
0 disable
1 -- enable

allows user control over the
treatment of existing data
during character generation

one word
0 overwrite existing data
I exclusive OR with existing

data
2 logical OR with existing

data
3 inverted overwrite

exclusive-OR' s cursor font with
existing data at current cursor
position. If cursor font pixels
are illuminated, this function
will rease the cursor.

none

allows a user to define a fill
word to be used in FLOOD WINDOW,
FLOOD LINE, and SCROLL/UP SCROLL
DOWN and FILL BORDER function
calls.

one word
fill pattern

allows user to XOR fill word in
one-character border around
window using preset fill word
defined by FUNCTION 32.

none

allows every carriage return
to be followed by a line feed.

CRT Driver 3-16

Function data:

40 MOVE CURSOR:

Function data:

41 WINDOW SET:

Function data:

42 IMAGE BUFFER ADDRESS:

Function data:

43 IMAGE POINTER WRITE:

Function data:

44 IMAGE POINTER READ:

Prelimiiiary

none

unlike write cursor, this
function assumes existence of
cursor font at current posit ion
and erases it before rewriting at
specified locations.

long word
Y (O S Y S line count -1)
X (0 S X S column count -1)

allows user to set non-default
window position and dimensions
without reopening logical unit.

one-word integers
X upper left-hand corner column

(0 S X S column count -1)
Y upper left-hand corner line

(O S Y S line count -1)
Column count
Line count

allows a user to set the
image-buffer in FUNCTION 18.

long word
buffer address or, if null,
resets default image buffer

sets current pointer
buffer. Subsequent

in image
writes

X-Y
to top

update this pointer.
coordinates are relative
line.

Long word
MSW--Y (0 S Y S line count -1)
LSW·-X (0 S X S column count -1)

reads current
coordinates relative

pointer
to top

CRT Driver 3-17

Function data:

Preliminary

line. X-Y coordinates are
relative to current top line.

Long word
MSW--Y (O ~ Y , line count -1)
LSW--X (O , X , column count -1)

CRT Driver 3-18

4.0 PRINTER/PLOTTER DRIVER

4.1 DESCRIPTION OF THE USER INTERFACE

INTRODUCTION

Access to the printer is provided through the general purpose system calls
to the I/O manager ---> OPEN, CLOSE, AWRITE, SWRITE, FUNCTION, CANCEL and
INIT. Note that SREAD and AREAD are not among the above since they are not
valid for the printe~. Calls to the I/O manager are performed using the
SYSIO Macro. In order to make effective use of the information that
follows the reader should review to documentation on the I/O manager
thoroughly.

4.1.1 PRINTER DEVICE INFORMAT~ON BLOCK (DIB)

The Device Information Block (DIB) for the printer is used to describe the
state of the printer at OPEN TIME and is used in conjunction with the
SYS IO MACRO call to open a device. The DIB for the printer is composed of
the following.

PRDIB EQU *
DC.B 'PR
DC.B 0
DS.B 8
DS.W 1
DS.L 1
DS.L 1

WHERE:

Printer Mnemonic
Xmit Direction-Out
"For" Task Number
Configuration Options
Pointer to Function Packet
Table offset for byte I/O
returned by I/O manager

'FOR' TASK NUMBER: Is the number of the task for

CONFIGURATION OPTIONS:

whom the device is to be opened
if different from the calling
task

There are two options selectable
through this field

Preliminary Printer/Plotter Driver 4-1

FUNCTION PACKET POINTER:

BIT 0
Fixed Variable block length (0 1)

BIT 1
Enable Suppress (O 1)

Bit 2-14
Not used at present

Bit 15
Option select enable-if set the
option bits above will be decoded

Points to a function packe·t
containing the printer options
desired at open time. If no
function packet is needed then
enter 0 in this field. See below
for description of the printer
function packet.

TABLE OFFSET FOR BYTE I/O: At open time the I 0 manager
passes a table offset value to
the user in this field. If the
user wishes to use byte I/O he
must pass this parameter back to
the I/O manager in the SYSIO call

4.1.2 PRINTER DATA TRANSFER CONTROL BLOCK (DTCB)

The Printer Data Transfer Control Block (DTCB) is identical to other
devices and consists of the following fields:

PRDCTB DS.L 1
DS.B 1
DS.B 1
DS.L 1
DS.W 1
DS.L 1

Current Status of I 0 Transfer
Termination Byte (Upper)
Termination Byte (Lower)
Buffer Start Address
Buffer Length
Buffer Offset Pointer

See Logical I 0 Documentation For Further Details Explanation.

Preliminary Printer Plotter Driver 4-2

I

\

4.1.3 PRINTER FUNCTION PACKET (FPKT

The Printer Function Packet is the vehicle through which a user can change
the operation of the printer. This data structure is composed entirely of
single word integers in sequence. The sequence consists of function
numbers followed by parameters (if needed) and terminated with A (i.e.
function 0 is interpreted as the end of the function packet).

--------> FUNCTION NUMBER ----------> PACKET TERMINATOR
~

I ,
\

\
\

' ' - -- FUNCTION ARGUMENT -+ - 1

' ' FUNCTION 0
I

I
I

FUNCTION PACKET SYNTAX DIAGRAM

4.2 PRINTER MODES

4.2.1 MODES OF PRINTER OPERATION-GENERAL INFORMATION

There are three modes of printer operation - one alphanumeric mode and two
graphics modes. The alphanumeric mode is used to output text character
while the graphics modes are used to output graphics information.

4.2.2 ALPHANUMERIC MODE

Alphanumeric mode is used to output text either byte at a time or in
blocks of fixed or variable length. A variety of functions exist to
support alphanumeric output including:

Multiple Colors Proportional Spacing Text Justification Character
Enchancement Subscript Superscript

Each of these and more are described below. Printing in alphanumeric mode
is bidirectional.

Preliminary Printer Plotter Driver 4-3

4.2.3 GRAPHICS MODE

There are two modes of graphics output to the printer - 100 dots per inch
and 200 dots per inch. Both are otherwise identical. When operating in
graphics mode only fixed length block output is permitted (note:
successive blocks may vary in length!!!). Bytes received by the printer
in graphics mode are interpreted as the firing pattern for the first seven
wires on the print head for successive horizontal positions (see diagram).
The wires are spaced 4 336' s of an inch apart. If desired graphics output
lines can be interlaced one or three times to achieve increased vertical
resolution. The amount of vertical advance which takes place can be
controlled with the vertical advance function or the absolute position
fU!lction. In general, vertical advance 1 is used for this purpose. An
horizontal return is automatically performed following each block of
graphics data.

Illustration .2f_ E!!!_ firing in successive horizontal locations
corresponding to graphic data.

----l-----l--X--1-----1------- BIT 0 =>LINEN
----1--x.-.-.1-·---·1.-----1-----·-
---· I ··x--1----- I -·---1------- ·
----l--X-·l--X··l--X--l--·----
----1-----1--X--l--X--I-------
----1-----1--x--1--x--1-------
----1--x·--1-----1--x--1------- BIT 6 => LINE M+6

A A A
0111001 000111

1001110 BYTE VALUE

N N+l N+2 BYTE NUMBER

Preliminary Printer Plotter Driver 4-4

I
I

\

4.3 PRINTER SUPPORT FUNCTIONS

4.3.1 SUMMARY OF PRINTER CONTROL FUNCTIONS

The following is a list of available printer control functions:

FUNCTION
NUMBER

1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

Preliminary

MNEMONIC

SETWRMOD

SETMODE
INQMODE

SETFONT
INQFONT

SETCOLOR
INQCOLOR

SE TD ENS
INQDENS

SETFORM
INQFORM

SETMARGN
INQMARGN

SETNHANC
INQNHANC

SETPRPSP
INQPRPSP

SETNTRSP
INQNTRSP

SETI AB
INQTAB

TABLE 3.0 PRINTER FUNCTIONS

DESCRIPTION OF FUNCTION

Set data transfer mode fixed horizontal

Set printer mode
Inquire mode

Set font
Inquire font

Select ribbon setting (color)
Inquire ribbon setting

Set character density-10 12 16.8 CPI
Inquire character density

Set form length field
Inquire form length

Set right left margins
Inquire right left margins

Set character enhance on off
Inquire character enhance

Set proportional spacing on off
Inquire proportional spacing

Set inter character spacing
Inquire inter character spacing

Set vertical horizontal tab stops
Inquire tab stops

Printer Plotter Driver 4-5

22
23

24
25

26
27
28
29
30

SETJSTFY
INQJSTFY

SETVADV
INQVADV

VERT ADV
SETPOS
SETCHPOS
SETRHPOS
PKSET

Set text justification on off
Inquire text justification

Set vertical advance distance
Inquire vertical advance

Perform vertical advance
Move head to abs. X Y position
Move head to abs. col. row position
Set relative horizontal position
Printer reset-hard reset+soft reset

4.3.2 SETWRMODE - SET DATA TRANSFER MODE

This function enables the user to change the data transfer mode following
open. A value of 0 is used for fixed block transfers while a value of one
is used for variable length transfers.

4.3.3 SETMODE - SET PRINTER MODE

SETMODE places the printer in either alphanumeric mode or graphics mode.
Mode Q (or alphanumeric mode) configures the printer to produce
alphanumeric output from ASCII character input. The normal alphanumeric
control characters are accepted in this mode:

BS
HT
LF
VT
FF
CR

BACK SPACE
HORIZONTAL TAB
LINE FEED
VERTICAL TAB
FORM FEED
CARRIAGE RETURN

08
09
OA
OB
oc
OD

Other ASCII control characters are ignored.

MODE 1 (or graphics mode) configures the printer to produce 100 dot per
inch graphics output from Byte width integer input. (See section
2.2 on Graphics for details)

Preliminary Printer Plotter Driver 4-6

MODE 2 Configures the printer to produce 200 dot per inch graphics output
from byte wide integer input. (See section 2.2 on Graphics for
details)

Control functions may be performed in either alphanumeric or graphics mode

Note: Only fixed length block transfers are allowed in graphics mode.

Number of arguments for this function = 1

ARGUMENT ti

1

DESCRIPTION

ALPHANUMERIC MODE
100 DPI GRAPHICS
200 DPI GRAPHICS

DEFAULT = 0

RANGE VALUE

0
1
2

Note: All arguments whether function input or return information
occupy one 16 bit word each following the function number
in the function packet.

4.3.4 INQMODE - INQUIRE MODE

INQMODE returns the present printer mode in the word following the
function in the function packet.

Number of arguments in this function = 1

ARGUMENT II DESCRIPTION RANGE VALUE

1 RETURN VALUE OF PRINTER MODE 0-2

Note: All arguments whether function input or return information
occupy one 16 bit word each following the function number
in the function packet.

Preliminary Printer Plotter Driver 4-7

4.3.5 SETFONT - SET FONT

Set font allows the user to -select the desired character font to be used
for alphanumeric output

Number of arguments for this function = 1

ARGUMENT IJ

1

DESCRIPTION

CHARACTER FONT

CORRESPONDENCE FONT
-90 DEGREE ROTATED GRAPHICS FONT

0 DEGREE ROTATED GRAPHICS FONT
DRAFT QUALITY FONT

RANGE VALUE

0-2

0
1
2
3

Note: All .arguments whether function input or return information
occupy one 16 bit word each following the function number
in the function packet.

4.3.6 INQFONT - INQUIRE FONT

INQFONT returns the current character font number in the word following
the function number in the function packet.

ARGUMENT # DESCRIPTION RANGE VALUE

1 RETURN VALUE OF CURRENT FONT SELECTION 0-2

Note: All arguments whether function input or return information
occupy the 16-bit word each following the function number
in the function packet.

4.3. 7 SETCOLOR - SELECT RIBBON S.ETTING (COLOR)

SETCOLOR shifts the printer ribbon t.o cause a different color to be
output. The color number corresponds to one of the four possible ribbon
positions numbered 0-3 starting at the top of the ribbon. Typically the
order from the top will be red green blue black.

Preliminary Printer Plotter Driver 4-8

(

\

Number of arguments for this function

ARGUMENT Ii DESCRIPTION RANGE VALUE

1 RIBBON POSITION 0-3

DEFAULT = 3

Note: All arguments whether function input or return information
occupy one 16 bit word each following the function number
in the function packet.

4.3.8 INQCOLOR - INQUIRE RIBBON SETTING

INQCOLOR re~urns the current ribbon position number in the word following
the function number in the function packet.

Number of arguments for this function = 1

ARGUMENT Ii DESCRIPTION RANGE VALUE

1 RETURN VALUE OF RIBBON POSITION 0-3

Note: All arguments whether function input or return information
occupy one 16 bit word each following the function number
in the function packet.

4.3.9 SETDENS - SET CHARACTER DENSITY-10 12 16.8 CPI

SETDENS allows the user to select the character density to be used for
alphanumeric output. Three densities are available - 10, 12 and 16. 8
characters per inch.

Number of arguments for this function= 1

ARGUMENT Ii

1

Preliminary

DESCRIPTION

OUTPUT CHARACTER DENSITY

10 CPI
12 CPI

RANGE VALUE

0-2

0
1

Printer Plotter Driver. 4-9

16.8 CPI 2

DEFAULT = 0

Note: All arguments whether function input or return information
occupy one 16 bit word each following the function number
in the function packet.

4.3.10 INQDENS - INQUIRY CHARACTER DENSITY

INQDENS returns the number corresponding to the output character density
in the word following the function number in the function packet.

Number of a~guments for this function = 1

ARGUMENT # DESCRIPTION RANGE VALUE

1 RETURN CHARACTER DENSITY NUMBER 0-2

Note: All arguments wheter function input or return information
occupy one 16 bit word each following the function number
in the function packet.

4.3.11 SETFORM .,. SET FORM LENGTH FIELD

SETFORM allows the user to select the form length and print field length.
The first argument is the form length and the second argument is the form
field length. The form length must be greater than the form field. Each
argument is expressed in 1 336 of an inch.

Number of Arguments for this Function = 2

ARGUMENT #

1

2

DESCRIPTION

FORM LENGTH IN 1 336 IN
DEFAULT = 3696

FORM FIELD IN 1 336 IN
DEFAULT = 3996

RANGE VALUE

0-9999

0-9999

Note: All arguments whether function input or return information
occupy one 16 bit word each following the function number

Preliminary Printer Plotter Driver 4-10

in the function packet.

4.3.12 INQFORM - INQUIRE FORM LENGTH

INQFORM returns the current form length and field length in the two words
following the function number in the function packet.

Number of arguments for this function = 2

ARGUMENT ti

1
2

DESCRIPTION

RETURN FORM LENGTH
RETURN FORM FIELD LENGTH

RANGE VALUE

0-9999
0-9999

Note: All arguments whether function input or return information
occupy one 16 bit word each following the function number
in the function packet.

4.3.13 SETMARGN - SET RIGHT LEFT MARGINS

SETMARGIN sets the right and left margins. Argument 1 is left margin and
argument 2 is the right margin. Both are expressed in 1 120 inch units.
The right margin must exceed the left margin.

Number of arguments for this function = 2

ARGUMENT fl

1

2

DESCRPTION

LEFT MARGIN POSITION IN 1 120 IN.
DEFAULT = 0

RIGHT MARGIN POSITION IN 1 120 IN
DEFAULT = 960

RANGE VALUE

0-960

0-960

Note: All arguments whether function input or return information
occupy one 16 bit word each following the function number
in the function packet.

Preliminary Printer Plotter Driver 4-11

4.3.14 INQMARGN - INQUIRE RIGHT LEFT MARGINS

INQMARGIN returns the right and left margin positions in the two words
following the function number in the function packet.

Number of arguments for this function = 2

ARGUMENT #

1
2

DESCRIPTION

RETURN POSITION OF THE LEFT MARGIN
RETURN POSITION OF THE RIGHT MARGIN

RANGE VALUE

0-960
0-960

Note: All arguments whether function input or return information
occupy one 16 bit word each following the function number
in the function packet.

4.3.15 SETNHANC - SET CHARACTER ENHANCE ON OFF

SETNHANC selects or deselects character enhancement. If enhancement is
selected then characters will be printed with double width.

Number of arguments for this function = 1

ARGUMENT fl

1

DESCRIPTION

CHARACTER ENHANCEMENT SELECT

ENHANCEMENT OFF
ENHANCEMENT ON

DEFAULT = 0

RANGE VALUE

0-1

0
1

Note: All arguments whether function input or return information
occupy one 16 bit word each following the function number
in the function packet.

4.3.16 INQNHANC - INQUIRE CHARACTER ENHANCE

INQNHANC returns a zero in the word following the function number in the
function packet if enhancement is not selected otherwise a one is

Preliminary Printer Plotter Driver 4-12

returned.

Number of arguments for this function = 1

ARGUMENT # DESCRIPTION RANGE VALUE

1 RETURN ENHANCEMENT STATE (ON OFF) 0-1

NOTE: All arguments whether function input or return information
occupy one 16 bit word each following the function number
in the function packet

4.3.17 SETPRPSP - SET PROPORTIONAL SPACING ON OFF

SETPRPSP selects deselects proportional spacing of output text. If a
value of 0 is entered in the argument field then proportional spacing is
deselected. If one is entered then proportional spacing is selected.

NOTE:Proportional spacing may not be used if the inter-character spacing
is >O.

Number of arguments for this function= 1

ARGUMENT fl

1

DESCRIPTION RANGE VALUE

DESELECT SELECT PROPORTIONAL SPACING 0-1

PROPORTIONAL SPACING OFF
PROPORTIONAL SPACING ON

DEFAULT = 0

0
1

NOTE: All arguments whether function input or return information
occupy one 16 bit word each following the function number
in the function packet.

4.3.18 INQPRPSP - INQUIRE PROPORTIONAL SPACING

INQPRPSP returns A 0 or A 1 according to whether proportional spacing is
on of off. The argument is returned in the word following the function
number in the function packet.

Preliminary Printer Plotter Driver 4-13

Number of arguments for this function = 1

ARGUMENT # DESCRIPTION RANGE VALUE

1 Proportional spacing off on 0-1

NOTE: All arguments whether function input or return information
occupy one 16 bit word each following the function number
in the function packet.

4.3. 19 SETNTRSP - SET INTER CHARACTER SPACING

SETNTRSP allows the user to adjust the inter-character spacing. The
argument of this function is the inter-character spacing in 1 24's of a
character width.

NOTE: Inter-character width >O cannot be used with proportional spacing.

Number of arguments for this function = 1

ARGUMENT # DESCRIPTION RANGE VALUE

1 Intercharacter spacing in 1 24's of 0-999
a character width

DEFAULT = 0

NOTE: All arguments whether function input or return information
occupy one 16 bit word each followint the function number
in the function packet.

4.3.20 INQNTRSP - INQUIRE INTER CHARACTER SPACING

INQNTRSP returns the value of the inter-character spacing increment in the
word following the function number in the function packet.

Number of arguments for this function = 1

ARGUMENT fl DESCRIPTION RANGE VALUE

1 Return inter-character space value 0-999

Preliminary Printer Plotter Driver 4-14

expressed in 1 24's of a character
width

NOTE: All arguments whether function input or return information
occupy one 16 bit word each following the function number
in the function packet.

4.3.21 SETTAB - SET VERTICAL HORIZONTAL TAB STOPS

SETTAB allows the user to set the horizontal vertical tab stops for the
printer. The first argum~nt selects either horizontal or vertical tabs
with A 0 or 1. The second argument is the number of tabs the user wishes
to set. The following arguments are the positions of the tab stops in
order from left to right or top to bottom in ascending numerical order.
Thirty-two (32) horizontal tabs may be specified in units of 1 120's of an
inch. Eight vertical tabs may be specified in units of 1 336' s of an
inch.

Number of arguments for this function = 2-34

ARGUMENT fl

1
2

3-35

DESCRIPTION

HORIZONTAL VERTICAL TAB SELECT
NUMBER OF HORIZONTAL OR VERTICAL
TABS TO BE SELECTED
TAB POSITIONS

UP TO 32 HORIZONTAL TAB POSITIONS 1 120,
UP TO 8 VERTICAL TAB POSITIONS 1 336,

RANGE VALUE

0-1
0-32 HOR.

0-8 VERT.

0-960
0-9999

Note: All arguments whether function input or return informatio
occupy one 16 bit word each following the function number
in the function packet.

4.3.22 INQTAB - INQUIRE TAB STOPS

INQTAB returns the current horizontal vertical tab positions. The first
argument selects vertical or horizontal .tabs. The second argument selects
the number of tabs the user wishes to inquire. The printer driver will
return the umber of tabs selected in the second argument in successive

Preliminary Printer Plotter Driver 4-15

words in the function packet. If a tab has not been set the driver will
return a zero in the cooresponding location.

Number of arguments for this function = 2-34

ARGUMENT #

1

2

DESCRIPTION

HORIZONTAL VERTICAL TAB SELECT

NUMBER OF HORIZONTAL OR VERTICAL
TABS TO BE RETURNED

3-35 RETURNED TAB POSITIONS

UP TO 32 HORIZONTAL TAB POSITIONS 1 120,
UP TO 8 VERTICAL TAB POSITIONS 1 336,

RANGE VALUE

0-1

0-32 HOR.
0-8 VERT.

0-960
0-9999

NOTE: All arguments whether function input or return information
occupy one 16 bit word each following the function number
in the function packets.

4.3.23 SETJSTFY - SET TEXT JUSTIFICATION ON OFF

SETJSTFY turns justification off or on according to whether the function
argument is 0 ir 1. While in this mode, the printer will adjust the length
of a printed line to conform to the left and right margins. Text should be
sent as a single line without carriage returns or line feeds. The
carriage return is used to terminate a paragraph. If indenting is desired
it may be accomplished with an absolute head movement or tab. If
proportional spacing is selected with this mode the printed text will
approach publication quality.

Number of Agruments for this function = 1

ARGUMENT f)

1

DESCRIPTION RANGE VALUE

DESELECT SELECT TEXT JUSTIFICATION 0-1

TEXT JUSTIFICATION OFF
TEXT JUSTIFICATION ON

DEFAULT = 0

0
1

Note: All arguments whether function input or return information
occupy one 16 bit word each following the function number
in the function packet.

Preliminary Printer Plotter Driver 4-16

4.3.24 INQJSTFY - INQUIRE TEXT JUSTIFICATION

Returns an argument value of 0 or 1 in the word following the function
number according to whether text justification is off or on.

Number of arguments for this function = 1

ARGUMENT # DESCRIPTION

Number of arguments for this function = 1

ARGUMENT

1

DESCRITPION

RETURN ARGUMENT

TEXT JUSTIFICATION OFF
TEXT JUSTIFICATION ON

RANGE VALUE

RANGE VALUE

0-1

0
1

Note: All arguments whether function input or return information
occupy one 16 bit word each following the function number
in the function packet.

4.3.25 SETVADV - SET VERTICAL ADVANCE DISTANCE

SETVADV allows the user to set one of the three programmable Vertical
Advance lengths.

Note: Vertical Advance 0 is the same as a Line Feed.

The first argument selects the Vertical Advance to be programmed. The
second argument is the desired length of the Vertical Advance. Vertical
Advance 0 and 1 are forward advances while Vertical Advance 2 is a Reverse
Advance. Vertical Advance lengths are in units of 1 336' s of an inch.
Advance 0 is equivalent to a line feed and is used for this purpose

in alphanumeric mode
Advance 1 is typically used as a line feed in Graphics Mode.
Advance 2 is typically used for super-scripting in alphanumeric mode.

Number of arguments for this function = 2

Preliminary Printer Plotter Driver 4-17

ARGUMENT

1

2

DESCRITPION

VERTICAL ADVANCE SELECT

VERTICAL ADVANCE 0
VERTICAL ADVANCE 1
VERTICAL ADVANCE 2

VERTICAL ADVANCE LENGTH
IN 1 336's OF AN INCH

DEFAULT = 56
28
28

ADVANCE 0
ADVANCE 1
ADVANCE 2

RANGE VALUE

0-2

0
1
2

0-9999

Note: All arguments whether function input or return information
occupy one 16 bit word each following the function number
in the function packet.

4.3.26 INQVADV - INQUIRE VERTICAL ADVANCE

INQVADV returns the current length of the vertical advance selected in the
first argument in the second argument.

Number of arguments for this function = 2

ARGUMENT ti DESCRIPTION RANGE VALUE

1 VERTICAL ADVANCE SELECT 0-2

2 RETURN LENGTH OF THE VERTICAL ADVANCE 0-9999
SELECTED IN ARGUMENT 1 IN 1 336's OF
AN INCH

Note: All arguments whether function input or return information
occupy one 16 bit word each following the function number
in the function packet.

Preliminary Printer Plotter Driver 4-18

4.3.27 VERTADV - PERFORM VERTICAL ADVANCE

VERTADV performs a vertical advance 0, 1 or 2 according to the value of the
function argument. Vertical Advance 0 or 1 will move the paper forward
while Vertical Advance 2 will move the paper backward. (See above for
defaults etc.)

Number of arguments for this function = 1

ARGUMENT # DESCRIPTION RANGE VALUE

1 SELECT VERTICAL ADVANCE 0,1,2 0-2

Note: All arguments whether function input or return information
occupy one 16 bit word each following the function number
in the function packet.

4.3.28 SETPOS - MOVE HEAD TO ABS. HORIZONTAL VERTICAL
POSITION

SETPOS moves the print head to ·an absolute horizontal or vertical
position. The first argument selects the horizontal or vertical axis,
while the second argument specifies the absolute coordinate to be moved to
on that axis. Horizontal units are in 1 120's of an inch while vertical
units are in 1 336's of an inch.

Number of arguments for this section = 2

ARGUMENT # DESCRIPTION

1 HORIZONTAL VERTICAL AXIS SELECT
2 POSITION VALUE

RANGE VALUE

0-1
0-960 HOR.
0-9999 VERT.

Note: All arguments whether function input or return information
occupy one 16 bit word each following the function number
in the function packet.

Preliminary Printer Plotter Driver 4-19

4.3.29 SETCHPOS - MOVE HEAD TO ABS. COLUMN ROW POSITION

Moves the print head to an absolute horizontal or vertical position
expressed in column or row units. Argument 1 selects either the
horizontal or vertical axis while argument 2 specifies the position to be
moved to on the axis .

Note: The column row unit dimension correspond to the current
character width line height.

Number of arguments for this function = 2

ARGUMENT if

1

2

DESCRIPTION RANGE VALUE

SELECTING HORIZONTAL OR VERTICAL
AXIS
COORDINATE ON HORIZONTAL OR VERTICAL
AXIS

0-1

0-120 HOR.
0-9999 VERT.

Note: All arguments whether function input or return information
occupy one 16 bit word each following the function number
in the function packet.

4.3.30 SETRHPOS - SET RELATIVE HORIZONTAL POSITION

SETRHPOS move the print head an incremental amount in the horizontal axis.
Units for relative horizontal movement are in 1 120's of an inch.

Number of arguments for this function = 1

ARGUMENT. fl

1

DESCRITPION

HORIZONTAL INCREMENT
IN 1 120's OF AN INCH

RAi.~GE VALUE

-120 to +120

Note: All arguments whether function input or return information
occupy one 16 bit word each following the function number
in the function packet.

Preliminary Printer Plotter Driver 4-20

4.4 PRSET HARD PRINTER RESET

PRSET performs a hard and soft printer reset. There are no arguments for
this function"

Preliminary Printer/Plotter Driver 4-21

Preliminary Printer/Plotter Driver 4-22

5.0 RS-232 ASYNCHRONOUS COMMUNICATIONS DRIVER

5. 1 INTRODUCTION

The RS-232 Asynchronous communications driver provides support for
multiple RS-232 ports from a single ROM'd version of code. Port vectoring
upon entry to the driver enables independent control via separate control
blocks and status save areas for each port. Default configuration
mechanisms free the user from the burden of setting up the port for normal
system I/O. Alternatively, the driver allows a large degree of user
programmability for customization needs in constructing high level
protocols.

5.2 FEATURES

The driver is position-independent and can be moved in memory prior to
opening the port.

The asynchronous port software is interrupt-driven. This allows I/O
transactions to be of the "call and proceed" type, decoupling the calling
task from the actual I/O rate of the port.

The driver provides resident buffer space for output and for accumulating
unsolicited input data. These are circular buffers with overrun
indication or lockout on input. Alternate buffers can be specified by the
user if desired, such as during block I/O or DMA transfers.

Read and write operations through the port are potentially independent,
and may be concurrent. (The ACIA provides a hardware restriction that
baud and framing be the same for input and output.) Some protocols may
require that the port be restricted to input only or output only at any
one time. The choice is user-selectable.

Programmable timeout periods are provided for transmission and reception.
The possible "hanging" of the port will create an interrupt which is
reported to the user.

There is separate status reporting to the I/O manager and to the user.
This provides the calling task with interrupt-time updating of the state
of the port, and allows for task switching based upon I/O completion or
other state-change of the port.

Preliminary RS-232 Driver 5-1

User customization routines may be attached to the driver which allow the
driver to continue providing interrupt service and system maintenance,
but which pass control to the user routines for character processing.

5.3 OVERVIEW - GENERAL DESCRIPTION

User data associated with an entry into the driver is passed in a couple
of ways. Usually the driver is given a pointer to the request packet
formed by the I/O manager. This packet has the location of all control
blocks and information required.to perform the operation. For byte I/O
operations, the system overhead associated with the control blocks and
request packet is circumvented by passing data directly in registers.

5.3.1 USER INITIALIZATION OF THE PORT

Attaching the port notifies the system of the existence of the RS-232
driver. A user (it may be the system) must initialize the port for a
specific protocol.

At OPEN time the user prepares a device initialization block (DIB), which
· allows user configuration of the port. Default data is supplied by the

RS-232 driver if the user supplies a blank data field (all zeros).

The data word at DIB location 11DIBOPT11 is used for mode specification. The
format of the DIBOPT is driver specific, and is listed under "MODES".

Other port parameters may be selectively changed from default values by
specifying a pointer in the 11DIBFCN11 location. This identifies the start
of a list of items to be changed in the protocol. (As an example, the user
may want the default configuration except for the receive timeout
interval.) The format of this list is described in the "FUNCTIONS" text.

5.3.2 WRITE RECORD

For record input or output, the user must set up a data transfer control
block (DTC). This block indicates the start and length of the user

Preliminary RS-232 Driver 5-2

buffer, end-of-record indicators for variable length records, and a
buffer-pointer that indicates the current position within the user
buffer.

The RS-232 driver moves the user data into the driver's internal buffer
before transmission. The buffer-start address and buffer-pointer are
added together to identify the start of the data. Transfer will continue
until an end-of-record character or end of user buffer is encountered.

The 11MODES 11 description further on in this document provides details of
fixed versus variable-length record writes and end-of-record decision
making.

5.3.3 READ RECORD

Reading a record is similar to writing.
buffer start, length, pointer, and
variable-length reads are in effect.

The user must set up a DTC with
a termination characters if

Non-DMA transfers move data into the user's buffer starting at the pointer
offset, and ending at buffer-end or with the end-of-record terminator.

See the "MODES" description in this document for details of the various
read-record formats.

5.3.4 BYTE 1/0

Byte I/O avoids the overhead of creating control structures in order to
access the driver. Byte I/O is always synchronous, and proceeds only if
the driver is idle at the time of the call. Three functions are provided
for byte 1/0: write, read and test. The test function reads a character
but does not increment buffer pointers; the character is left there for
the next test or read.

5.3.5 FUNCTION ENTRY

The functions entry into the RS-232 driver provides a means of changing or
querying a driver parameter, without having to completely re-initialize
the port.

Preliminary RS-232 Driver 5-3

Associated with a SYSIO FUNCTION call is a pointer to a function packet.
The function packet is a list of commands and associated data which the
driver processes. The commands allow specification or inspection of
certain device parameters, such as buffer lengths or timeout periods.
Function calls are always unique to the driver.

5.3.6 TRANSMIT MODES

Fixed or Variable Length Records

Fixed: No checking for record termination characters is performed.
The output transfer starts at DTCBFS+DTCPTR, and stops at the end of
the DTC buffer, at DTCBFS+DTCBFL. The buffer point is updated by the
driver as characters are moved from the DTC buffer to the driver's
circular buffer, and will have a value equal to DTCBFL at the end of
the transfer.

Variable: An interval of record termination characters is supplied
by the user via DTCTBU (upper termination byte) and DTCTBL (lower
termination byte). The driver will check characters as it moves them
from the DTC to the circular ouput buffer. After a character is
moved which is in the range of termination characters data transfer
stops. The buffer pointer, DTCPTR, will point to the termination
character encountered. Note that termination character checking is
done after calling the user-supplied character processing
subroutine.

Method of specification: via bit in DIBOPT word, FCN CODE 1 or 2.

Character or Block Mode

Character: This mode should be the one used in most cases. The data
characters are moved into the circular output buffer, then
transmission starts. If a is record longer than the circular buffer,
the buffer will be filled up once, transmitted, then refilled as
necessary. The default length of the circular output buffer is 256
bytes. Long records may be transmitted more efficiently via the
#SER02 port DMA, but this allows no character processing.

Block: This mode should only be used if the port is a dedicated
device. Transmission does not necessarily start after the record is
moved into the circular buffer, but is subject to a 'prompt' or
'send' character to start transmission. The port will stay in a busy
state until the transmit buffer is empty. Timeouts are in effect.

Method of specification: bit in DIBOPT word or FCN CODE 2.

Preliminary RS-232 Driver 5-4

I/O Time Character Processing Enabled/Disabled

I/O time character processing refers to checks done as data is moved
between the circular buffer and the port hardware. Output characters
are compared against characters in a control-character table, and
certain actions are taken if a match is found. An example would be to
have the first character of an output record reset the input buffer
in order to synchronize record transfers. Local control characters
are not transmitted. Characters in the control-character table are
user programmable.

Method of specification: bit in DIBOPT word or FCN CODE 2

XON/XOFF Enable/Disabled

XON/XOFF enabled on output allows the transmission of an XON or XOFF
character according to the number of characters in the input circular
buffer. The length of the circular buffer is 256 bytes. An XOFF will
be transmitted when the character count is 192, an XON when the count
is 64. Note that the port owner may replace the default circular
buffer with one in his own memory space. This is done via a function
call.

Method of specification: bit in DIBOPT word or FCN CODE 2.

Half/Full Duplex

Full duplex: The port transmitter and receiver are independent
(except for baud and framing). The I/O manager implements separate
queus for transmit and receive. The user can choose to loosely couple
the transmitter by allowing recognition of XON/XOFF characters by

·the receiver, which in turn controls the transmission rate. This
coupling would not effect the receiver and would only show up as an
increased delay before transmission for the output. Transmit and
receive can be operating concurrently.

Half duplex: The port may only transmit or receive at any one time.
The port must be in the transmit mode before starting record output.
The port switches from receive to transmit modes upon the receipt of
a line-turnaround character (receive-side control character checking
must be enabled). The port switches from transmit to receive modes
after transmitting a turn-around character (transmit control
character checking must be enabled).

Method of specification: bit in DIBOPT word or FCN CODE 2.

Preliminary RS-232 Driver 5·5

Echoplex Enabled/Disabled

The port will wait for an echo after the transmission of each data
character if Echoplex is enabled for output. The echoed character is
n.ot compared to the character sent, and is treated as per a normal
received data character.

Method of specification: bit in DIBOPT word or FCN CODE 2.

5.3. 7 RECEIVE MODES

Fixed or Variable Length Records

Fixed: No checking for record termination characters is performed.
The input transfer starts at DTCBFS+DTCPTR, and ends at
DTCBFS+DTCBFL. The buffer pointer is at the value DTCBFL.

Variable: An interval of record termination characters is supplied
by the user via DTCTBU (upper termination byte) and DTCTBL (lower
termination byte). The driver will check characters as it moves them
to the DTC buffer. After a character is moved which is in the range
of termination characters data transfer stops. At termination the
buffer pointer, DTCPTR, points to one beyond the last character.
This allows the pointer to be used as a record length indicator, or
for contiguous records to be input without having to adjust the
buffer pointer.

Method of specification: bit in DIBOPT word or FCN CODE 2.

Character or Block Mode

Character: This is an asynchronous read. If a complete record is
not in the circular input buffer at the time of call, the incomplete
record is moved to the DTC buffer. The transaction is then regarded
as complete. The return status should be checked for indication of a
complete record.

Block: In this mode a complete record is read into the DTC buffer.
If a complete record is not available in the circular receive buffer
at the time of call a receive timeout is started. If no new
character is received in the timeout interval' the transaction is
ended with a timeout return status. If no timeout occurs, reception
will continue until a termination character is detected.

Method of specification: bit in DIBOPT word or FCN CODE 2.

Preliminary RS-232 Driver 5-6

Transfer-Time Character Processing Enabled/Disabled

Character processing at transfer timer refers to the transfer of data
between the circular input buffer and the DTC buffer. This is a
point at which a user may provide a custom subroutine. The
variable-length record termination byte checking is effected by the
processing routine, in that termination characters are checked after
the routine.

Method of specification: bit in DIBOPT word or FCN CODE 2.

I/O Time Character Processing Enabled/Disabled

I/O time character processing refers to checks done as data is moved
between the port hardware and the circular buffer. Processing at
this point causes state changes to the port at reception time.
Examples would be the reception of line turnaround characters.

Method of specification: bit in DIBOPT word or FCN CODE 2.

Half/Full Duplex

The discussion under Transmit Modes is applicable to both transmit
and receive.

Echo Enabled/Disabled

If echo is enabled, the received character is echoed to the output
side of the port. The character will intervene in any output in
progress.

5.3.8 FUNCTIONS

The Function Packet is a list of FCN CODE and FCN DATA words. The start of
the list is passed to the driver via the SYSIO FUNCTION call. The meaning
of the codes, and the data associated with them, is unique for each driver
in the system. The following list displays FCN CODE and associated FCN
DATA for the RS232 driver. Some functions allow setting or querying of the
driver configuration. If the driver is being queried, space must be
provided in the function list for the return data.

CODE Description and DTA

0 End of function list.

Preliminary RS-232 Driver 5-7

No data.

1 Transfer Mode: Fixed or Variable Length Records
Word: O= fixed length, l=variable length

2/3 Set/Get Mode Bits.
Word: Mask, a '1' indicates bit in next word is active.
Word: Bits same as DIBOPT specification.

4/5 Set/Get Transmit Timeout Period (50ms Intervals)
Word: -1 is infinite timeout period. Positive number must
be between 1 and $7FFF.

6/7 Set/Get; Receive Timeout Period (50ms Intervals)
Word: same as transmit

8/9 Set/Get Transmit Control Character in Current Table
Byte: character offset in table
Byte: data character

10/11 Set/Get Receive Control Character in Current Table
Byte: character offset in table
Byte: data character

12/13 Not used

14/15 Not used

16/17 Set/Get Transmit Control Character Table
Longword: Pointer to start of 16 byte character table.

18/19 Set/Get Receive Control Character Table
Longword: Pointer to start of 16 byte character table.

20/21 Set/Get Baud
Word: value as per table in appendix

22/23 Set/Get Framing
Word: value as per table in appendix

24/25 Set/Get Transmit Buffer Parameter Block

26/27

Preliminary

Longword: a pointer to a parameter block in user space,
used to create a new circular buffer. If the pointer is
a 0 value the driver defaults back to its internal
circular buffer.

Set/Get Receive Buffer Parameter Block
Longword: same as transmit

RS-232 Driver 5-8

28/29

30/31

32/33

34/35

36/37

38

Preliminary

Not used

Not used

Set/Get Transmit Character Translation Subroutine
Longword: the address of a user subroutine to process
characters. A zero value defaults to the driver dummy
subroutine.

Set/Get Receive Character Translation Subroutine
Longword: same as transmit

Set/Get DMA Limit
Word: buffer length at which #SER02 uses DMA.

Transmit Break
Word: duration (in 50ms intervals) of the break condition

RS-232 Driver 5-9

5.3.9 RETURN STATUS CODES

During a record transaction the driver returns status to the user in the
DTCSTA byte in the user's DTC control block. The status information is
given below; the periods are don't care bits, the numerals are values for
various bit fields.

Bit Number
7 6 5 4 3 2 1 0

1-1-----1-------1
0
1

1-1-----1-------1
0
1
2
3
4
5
6

0 7
0 7 0
0 7 1
0 7 2

1-1-----1-1-----1
0-6 0 0-7
0-6 1 1
0-6 1 . 1 .
0-6 1 1 . .

1-1-----1-1-----1
0-6 0
0-6 1
0-6 0
0-6 1
0-6 2

1-1-----1-1-----1
7 6 5 4 3 2 1 0

Preliminary

Transaction complete/incomplete:
port operation complete
port operation incomplete

Record transfer to/from DTC buffer:
no data in bits 6-4
transfer suspended: circular buffer full

circular buffer empty
transfer ended: term character found

term character not found
circular buffer empty
circular buffer full

data transfer aborted or not started:
port already active
port half-duplex, contention problem
timeout

Codes specific to read operations:
unused
receiver parity error
receiver overrun
receiver framing error

Codes specific to write operations:
transmit circular buffer empty
transmit circular buffer not empty
unused
XOFF currently active
port is in RCV mode (half-duplex)

RS-232 Driver 5-10

5.4 APPENDIX

5.4.1 DIBOPT SIT SPECIFICATION

Transmit Mode Bits

Bit 0:
Bit 1:
Bit 2:
Bit 3:
Bit 4:
Bit 5:
Bit 6:
Bit 7:

O=fixed length records
O=not used
O=character mode
O=no XON/XOFF transmitted
O=filter chars disable
O=half duplex
O=no echoes expected
O=not used

Receive Mode Bits

Bit 8: O=fixed length records
Bit 9: O=not used
Bit 10: O=character mode
Bit 11: O=no XON/XOFF checked
Bit 12: O=f ilter chars disable
Bit 13: O=half duplex
Bit 14: O=no echoes
Bit 15: O=not used

Preliminary

l=variable length records

l=block mode
l=XON/XOFF chars enabled
!=filter chars enabled
l=full duplex on transmit
l=get echo after each char xmt

l=variable length records

l=block mode
l=XON/XOFF chars checked at input
l=filter chars enabled
l=full duplex on receive
l=transmit echo of each rcv'd char

RS-232 Driver 5-11

5.4.2 BAUD EQUATES FOR #SEROO TO· #SER02

These equates list the baud rates possible for ports. /ISEROO, /ISEROl,, and
#SER02. The data is used in FCN CODE 20.

B45.5 EQU $00
B50 EQU $01
B75 EQU $OZ
BIIO EQU $03
Bl34.5 EQU $04
B150 EQU $05
B300 EQU $0&
B600 EQU $fr7
Bl200 EQU $08
Bl800 tQU $09
B2000 EQU $0A
B2400 EQU $OB
B4800 EQU $0C
B9600 EQU $OD
B19200 EQU $OE
B38400 EQU $OF

Preliminary ·RS-232 Driver 5-12

5.4.3 BAUD EQUATES FOR #SER03 TO #SER06

These equates list the baud rates possible for ports #SER03, #SER04,
#SEROS, and #SER06. The data is used in FCN CODE 20.

BSO EQU $00
B75 EQU $01
BllO EQU $02
B134.5 EQU $03
B150 EQU $04
B300 EQU $05
B600 EQU $06
Bl200 EQU $07
B1800 EQU $08
B2000 EQU $09
B2400 EQU $0A
B3600 EQU $OB
B4800 EQU $0C
B7200 EQU $OD
B9600 EQU $OE
B19200 EQU $OF

Preliminary RS·232 Driver 5-13

5.4.4 FRAME EQUATES

STOPl EQU $40 1 stop bit
STOPl.5 EQU $80 1.5 stop bit
STOP2 EQU $CO 2 stop bits
PAREVEN EQU $30 even parity
PARODD EQU $10 odd parity
PARNONE EQU $01 no parity
DATA5 EQU $00 5 data bits
DATA6 EQU $04 6 data bits
DATA7 EQU $08 7 data bits
DATA8 EQU $0C 8 data bits

5.4.5 CONTROL CHARACTERS

This table shows the default control characters and their placement in the
character tables. Separate tables are maintained for the transmitter and
the receiver. The XON and XOFF characters are referenced if XON/XOFF is
enabled via mode bit #3. Other characters are referenced if mode bit #4 is
set. Applications may change or query any character or table via function
calls 16-19. ·

IGNl EQU $1F 0: delete this character from the stream
IGN2 EQU $7F 1: delete this character from the stream
XON EQU $11 2: xmt/rcv this character for XON
XOFF EQU $13 3: xmt/rcv this character for XOFF
RSXB EQU $18 4: reset transmit circular buffer
RSRB EQU $12 5: reset receive circular buffer
DLXC EQU $04 6: delete last character from transmit buffer
DLRC EQU $1F 7: delete last character from receive buffer
SEND EQU $01 8: enable transmit to send record

$1F 9: unassigned
TURN EQU $14 10: line turn-around character in half-duplex

$1F 11: unassigned
IGN3 EQU $7F 12: delete this character from the stream
IGN4 EQU $1F 13: delete this character from the stream

$7F 14: unassigned
$1F 15: unassigned

Preliminary RS-232 Driver 5-14

6.0 IEEE-488 INTERFACE DRIVER

6.1 INTRODUCTION

The IEEE-488 Interface Driver acts as a single controller or
talker/listener on the IEEE-488 General Purpose Interface Bus.

6.1.1 CHARACTERISTICS AND FEATURES

Single controller states Cl-C4 and C26

Automatic talker and listener addressing, with extended addressing
(TES and LE3)

Service requests (SRl) with parallel (PPl) and serial (C26) polling

Remote and Local lockout (RLl)

Device clear (DCl)

Independent device trigger (DTl)

Multiple simultaneous listeners only for group execute trigger (GET)

DMA used for transfers greater than programmable limit.

Optional timeouts on all transfers

Optional EOS character generation and recognition

All GPIB handshaking invisible to high-level caller

Direct user access to GPIB via FUNCTIONcall sequences

Preliminary IEEE-488 Driver 6-1

6.2 DEVICE ADDRESSING

The controller device, and other devices on the GPIB, are attached with an
address which is used for all subsequent talker and listener addressing.
The controller device is typically attached and opened by the system task.
Other devices on the bus are attached and opened by application tasks.

The attachment of user devices should be routed through the main
controller jump table in order to find the device attach entry point in
the driver. At the entry into the driver, data register Dl.W is expected
to have the device address, with the primary address in the MSB, the
extended adgress (if used) in the LSB. Only the low five bits of each byte
are significant, and the range of allowable addresses is $00-$ lE. If
extended addressing is not used the extension address should be set to
value greater than $1E. The printable character '?' can be used to do
this.

The system attaches the controller via the call

MOVE.B
JSR

#'A? I ,Dl
ATCHCTLR

controller address binary 00001
driver entry point

where the agdress 'A?' creates a primary address of 1 for the controller
(extended addressing is not supported for the Computer System itself). The
driver entry point is known via the system link map.

A user may attach a device on the bus by the ATCHDEV command. The file
must execute the following code

MOVE.B
JSR

II' BC I ,Dl
ATCHDEV

device address binary 00010 00011
driver entry pQint

where Dl.B is loaded with the particular device address. The code would
then proceed with a device OPEN. In this example the bus device has a
primary address 2 ('B') and extension 3 ('C').The ATCHDEV label for the
JSR is an entry point into the driver; it has nothing to do with the system
command.

6.3 REQUEST QUEUING

With multiple devices attached to the GPIB, access is on a first-come
first-serve basis; the queueing is done by the I/O manager. The length of

Preliminary IEEE-488 Driver 6-2

any particular bus transaction is a function of that device's response
time, the length of the transfer, and eventually the timeout period
specified for the device.

Service requests
transaction, even
queue.

are handled after the completion of the current
though other transactions may be waiting in the I/O

6.4 1/0 ENTRY POINTS

6.4. 1 INIT

The !NIT entry point processes the Device Initialization Block (DIB).
This is called when SYSIO OPEN is invoked, or may be called explicitly by
the user to re-initialize a device via SYSIO INIT.

An example of a DIB for a device which does not have service request
capability would be:

GPBDIB EQU *
DC.B 'jlGPBBC' device address 23
DC.B 2 open for input/output
DC.B 0
DC.L o,o
DC.W $000F all options except SRQ
DC.L 0 no function list
DC.L 0 byte I/O not supported via SYSIO call

The bit signifance of the DIBOPT field is explained further on in the
text.

6.4.2 AWRITE, SWRITE

SYSIO calls AWRITE and SWRITE to initiate record output to a device on the
bus. A Data Transfer Control (DTC) block must be specified. An example of
a valid DTC would be:

GPBDTC EQU
DC.B
DC.B

Preliminary

*
1
o,o,o

status byte
termination bytes - not used

IEEE-488 Driver 6-3

DC.L
DC.W
DC.W
DC.L

BUF
16
0
0

6.4.3 AREAD, SREAD

pointer to write buffer
buffer length- length of record
buffer pointer, reset by user
not used

SYSIO calls AREAD and SREAD to initiate input of a record from a device on
the GPIB. A DTC must be supplied, as in the case of write-record.

6.4.4 FUNCTION

The FUNCTION entry point is called during a SYSIO OPEN, and may be called
explicitly later via SYSIO FUNCTION. This entry point provides a means of
supplying device parameters to the driver, as well as performing certain
bus operations. The function packet is explained later in this chapter.

6.4.5 DEVICE DETACHMENT

This entry point is called during a SYSIO CLOSE, when a device is being
removed from the bus. No control structures are required from the user.

6.5 SERVICE REQUESTS

Service requests are handled by the controller, supporting both parallel
and serial polling. The controller configures a device for parallel poll
response if, at INIT, bits #5 and #4 are set in DIBOPT. If only bit #4 is
set, the device is serviced by serial polling. If parallel polling is
specified for the device, but all bit positions for parallel poll response
are taken, the polling method will default to serial and an error code
will bereturned. The user is responsible for setting the device serial
poll response byte via a function packet sequence.

Preliminary IEEE-488 Driver 6-4

After the controller identifies the source of the service request and
fetches the status byte, it will post the service request event for the
task owning the device. The poll status byte will be transfered to the
event block for use by the task.

Task wakeup upon an asynchronous event is not currently implemented. As an
interim measure, the task may specify an address pointer to a byte of
storage in its own space. The driver will deposit the poll status byte
there following a service request. The task must interrogate the contents
of the byte in order to detect the service request occurance. This
pointer is specified by FCN CODE 31.

6.6 DIB SPECIFICATION

The driver supports six individual mode bits, specified in the DIBOPT
field:

Bitf/

0
1
2
3
4
5

Value Description

1 = Enable auto detection of EOS character
1 = Enable auto generation of EOS character
1 = Use 8 bit EOS character (else 7)
1 = Enable timeouts
1 = Device has service request capability
1 = Configure device for parallel poll

6. 7 DEVICE FUNCTIONS

The FUNCTION PACKET allows data specification as described in the DEVICE
FUNCTIONS section below. However, it also provides the facility to chain
individual subroutine calls together during one system I/O request. The
FPKT may supply a list of GPIB operations which are executed in sequence
by the driver before returning to the applications program.

Preliminary IEEE-488 Driver 6-5

6.7. l FUNCTION PACKET SPECIFICATION

The function packet is processed by the driver in a sequential manner.
The driver provides access to the GPIB via subroutine calls specified in
the FPKT. Access at the subroutine call level allows a convenient means
of performing transactions on the GPIB without having to consider haJ:dware
programming or handshaking. However, these subroutine calls can be strung
together in any order by the applications programmer; the bus sequences
are not checked by the driver and are the sole responsibility of the
programmer.

Should an el'i'.ror occur in processing the function packet, the value of the
FCN CODE exeeuting when the error occured will be placed in the return
status.

INVALID Format: DC.W $0001

DCL

END

EOS

FSH

GET

This code, which is used by the system to select fixed or variable
length records, is invalid for the GPIB driver.

Format: DC.W

This code issues an. UNLISTEN, then a universal DEVICE CLEAR.

Format: DC.W $0003

This code requests CS-OS to send EOI on the next data byte
transmitted. The driver must be in talker mode.

Format: DC.W $0004

This routine sends the EOS character, as specified in the DIB
extension area during OPEN, or later during a function call.

Format: DC.W $0005

This command issues a local FINISH: HANDSHAKE command to the NEC 07210
chip.

Format: oc.w $Q006.

Preliminacy IEEE-488 Driver 6-6

GTL

GTS

RSM

IFC

LLO

LDC

MLA

MTA

This code sends a GROUP EXECUTE TRIGGER command to the GPIB.

Format: DC.W $0007

This code sends a GO TO LOCAL command onto the bus.

Format: DC.W $0008

This issues a local GO TO STANDBY to the NEC D7210 chip.

Format: DC.W
DC.W

$0109
data word

This command sets the handshake mode on the NEC D7210 chip. Only bits
1 and 0 are significant. The format for these bits is:

%00 Normal handshake mode
%01 RFD holdoff on all data mode
%10 RFD holdoff on END mode
%11 Continuous mode

Format: DC.W $000A

This command issues an INTERFACE CLEAR command onto the GPIB. The
duration of the clear command is approximately 200 microseconds.

Format: DC.W $000B

This routine issues a LOCAL LOCKOUT command onto the bus. This will
effect all listeners in the REMOTE state.

Format: DC.W $000C

This command resets the REN line on the GPIB.

Format: DC.W $000D

This command sends the driver address onto the bus as a listener
device. Extended address.ing is supported.

Format: DC.W $000E

Preliminary IEEE-488 Driver 6-7

OLA

OTA

REM

SCOM

SDC

SPD

SPE

UNL

This command sends the driver address onto the bus as a talker
device. Extended addressing is supported ..

Format: DC.W
DC.W

$010F
device address

This code sends an OTHER LISTENER ADDRESS onto the bus. Extended
addressing is supported.

Format.: DC.W
DC.W

$0110
device address

This code sends an OTHER TALKER ADDRESS onto the bus. Extended
addressing is supported.

Format: DC.W $0011

This command sets the REN line on the GPIB.

Format: DC.W
DC.W

$0112
command byte

This code sends a byte command onto the GPIB. The driver must be bus
controller. The routine will wait until the driver is ready to
accept the command byte for transmission, i.e., it will wait for
previous handshaking to be completed.

Format: DC.W $0013

This code sends a SELECTED DEVICE CLEAR onto the GPIB.

Format: DC.W $0014

This will send a SERIAL POLL DISABLE command onto the GPIB.

Format: DC.W $0015

This will send a SERIAL POLL ENABLE command onto the GPIB.

Format: DC.W $0016

Preliminary IEEE-48.8 Driver 6-8

UNT

DBI

TCE

TCS

SPL

TCS

This code sends an UNLISTEN command onto the GPIB.

Format: DC.W $0017

This code sends an UNTALK command onto the GPIB.

Format: $0418 DC.W
DC.W space in which driver places data byte

This code reads a single data byte from the GPIB. The bus talker and
listeners (including the driver) must be previously configured. A
timeout will be started if the option is enabled.

Format: DC.W $0019

This command will TAKE CONTROL on END. The driver will take control
of the bus following the next END message.

Format: DC.W $001A

This command will tell the driver to TAKE CONTROL SYNCHRONOUSLY after
the data byte transfer.

Format: DC.W $0F1B
DC.W device address
DC.W space for device status response
DC.W device address
DC.W space for device status response

DC.W .'??'

This command issues a SERIAL POLL to a list of devices. The list
must be terminated with an illegal device address (the printable
characters '??' do it). The device response is entered into the
location in the FPKT list following the device address.

Format: DC.W $001C

This command will tell the driver to TAKE CONTROL ASYNCHRONOUSLY
regardless of the current bus state.

Preliminary IEEE-488 Driver 6-9

TMRDI Format: DC.W $001D

This command disables timeouts.

TMREN Format: DC.W
DC.W

$011E
timeout period per byte

This command enables timeouts and specifies the timeout interval.

SRQBFS Format: DC.W
OC.L

$021F

EOSC

DAB

address pointer

This command specifies an address pointer to a location in user
space. In the case of a service request by the device, the driver
will place the status in this location. This is a temporary means of
asynchronous event posting.

Format: OC.W
DC.W

$0120
data byte

This command specifies the EOS character for automatic EOS
generation and detection.The character must be in the high byte

Format: DC.W
DC.W

$0121
data byte

This code sends a data byte onto the GPIB. The Computer System must
be previously configured as a talker. A timeout, if enabled, will be
started.

OMALIM Format: OC.W
OC.W

$0122
data byte limit

This command sets the limit at which data transfers switch from
direct I/O to a OMA operation. If timeouts are enabled while OMA is
in progress, the timeout period is 100 ms multiplied by the record
length.

Preliminary IEEE-488 Driver 6-10

6.8 EXAMPLES AND ILLUSTRATIONS

6.8.1 DIB EXAMPLE

This example specifies a device with the primary address $18 (via
printable character 'X'). Extended addressing is not used, as indicated
by the invalid extension address $1F (via printable character'?').

DC.B
DC.B
DC.B
DC.L
DC.W
DC.L
DC.L

'#GPBX? I

2
0
o,o
$0010
0
0

6.8.2 FPKT EXAMPLE

Primary address $18
Bi-directional data transfer
System stuff
More stuff
Device has service request capability
User functions, none specified
System stuff

This example executes a GET to two devices. In the test, one device was a
programmable WAVETEK signal generator, previously configured via a WRITE
command, and the other device was an HP programmable digital voltmeter,
also previously configured via a WRITE command. The GET initiated
waveform generation which was then sampled by the DVM.

Function packet start

DC.W
DC.W
DC.W
DC.W
DC.W
DC.W
DC.W

Preliminary

UNL
OLA
'X? I

OLA
'Y?'
GET
END LIST

Un listen
DVM to listen
DVM address
signal generator to listen
signal generator address
Group Execute Trigger; start devices
end of function packet list

IEEE-488 D~iver 6-11

Preliminary IEEE-488 Driver 6-12

7 .0 USER PARALLEL PORT DRIVER

7.1 OVERVIEW

The IBM Instruments Computer System can be configured with an
interrupt-driven parallel port supporting a Centronics-compatible
interface. This interface employs an Intel 8255 which has been programmed
for strobed output operation. This means that data is transmitted in
conjunction with handshake signals. The parallel port generates and
accepts these handshake signals off Port C on the 8255. Port A is used for
transmitting data, and Port B is used by the keyboard.

7.2 INITIALIZATION SEQUENCE

For a description of how the driver-defined control block fields are
initialized during cold start, see Section 7 .6. The driver configures the
8255 Port A for output and disables interrupts on <not> Output Buffer
Full. The spare I/0 lines on Port C are programmed for input to prevent
sending the interface spurious signals. The interrupt timeout block is
disabled until data is to be transmitted. The Physical Device Block
informs the IOMGR that the driver supports (1) nonshareable device
attribute, (2) byte I/O, and (3) surrogate task operation. Nonshareable
means that only one task at a time can open the parallel port. Byte I/O is
a faster way of transferring data without requiring excess IOMGR overhead.
Surrogate task means that a separate instruction stream is started up for
each 1/0 operation unblocking the user task.

7 .3 INTERRUPT HANDLING

The parallel port driver receives an interrupt when 1) a character is
moved out of the parallel port output buffer and 2) when no transfer
acknowledge is received from the interface within 5 seconds. In this case
the interrupt handler assumes that the device is 'NOT READY', issues an
IOMGR DRVRDONE with that error status, and does an RTE.

Preliminary Parallel Port Driver 7-1

7 .4 DRIVER FUNCTIONS

1. OPEN

The OPEN function sets the transfer mode to fixed or variable,
according to the DIB, processes the function packet if there is one
specified in the DIB, and enables interrupts on <not> Output Buffer
Full.

2. WRITE

SYSIO AWRITE or SWRITE transfer a line from the user buffer specified
in the DTCB to the parallel port. The format of the DTCB is as
follows:

DTCSTA DS.B 1

DTCTBU DS.B 1

DTCTBL DS.B 1

DTCRSO DS.B 1

DTCBFS DS.L 1

DTCBFL DS.W 1

DTCBPT DS.W 1

DTCREC DS.L 1

3. WRITE BYTE

User looks here for status on I/O operation.

User puts-upper bound character for variable
length transfer here.

User puts lower bound character for variable
length transfer here.

This field is reserved.

User puts pointer to data buffer here.

User puts count of bytes in data buffer here.

User puts byte offset into data buffer here.
This field is updated by the driver for every
byte transmitted.

This field is not used by the parallel port.

The byte write logic tests the output buffer full signal on Port C,

Preliminary Parallel Port Driver 7-2

transfers the byte from DO.B if <not> OBF is true, and returns with a
completion status. Otherwise it returns with a status indicating
buffer full on write byte. (OB)

4. READ

Until bidirectional mode is supported in the hardware, READ and READ
BYTE are not supported by this driver, and return with error codes
$62 and $66, respectively.

5. FUNCTION

The only function packet supported is the standard function packet,
which sets the transfer mode to fixed or variable.

6. CLOSE

The close logic resets internal variables and disables interrupts on
<not> Output Buffer Full.

7. CANCEL

The cancel logic resets internal variables and disables interrupts
on <not> Output Buffer Full.

8. The detach driver entry point detaches the driver timeout block,
closes the interrupt descriptor block and detaches the physical
device block whose address is passed in register A6 when the detach
driver entry point is entered.

9. The function packet entry point verifies that the function to be
performed is SET TRANSFER mode. If not it returns with a $OE error
status. If it is, it sets the transfer mode to FIXED or VARIABLE, as
specified in the function packet. If the transfer mode is not one of
these, it returns with a $21 error status.

7.5 DEVICE INITIALIZATION BLOCK (DIB)

The user will be provided with a DIB generation macro to initialize a
skeletal DIB for the parallel port. All he needs to provide is a

Preliminary Parallel Port Driver 7-3

parameter specifying whether he wants fixed or variable-length transfers
and an optional pointer to a function packet, if desired. The macro
syntax is: 'PPUDIB dibname, <FIXED> or <VARIABLE>' , fpktname, where
'dibname' is the address of the storage area to contain the DIB. Fpktname
is the address of an area containing the SETTRANS function packet. The
macro will initialize the DIB device name to 'f..!PPU ' , and set the DIBTRN
field to indicate which type of transfer is desired and place the address
of the function packet into the DIB.

7 .6 DRIVER DEFINITIONS OF SYSTEM CONTROL BLOCK FIELDS

1. INTERRUPT DESCRIPTOR BLOCK (IDB)

a. Hardware interrupt level - 6

b. Controller ID - 1 PIC6 1

c. Device ID - 'USER'

d. Local interrupt level - 0

e. Device mask for same hardware interrupt level - 0

2. PHYSICAL DEVICE BLOCK (PDB)

a. PDB name - 'fFPPU ' (for Parallel Port User)

b. PDB attributes - $BO for nonshareable device, byte I/O, and
asynchronous I/O

c. PDB task control block - 1500 bytes combined for PCB and stack

Preliminary Parallel Port Driver 7-4

7. 7 ERROR CODES

Error codes are code returned (in hexadecimal) to register &7.B.

Code Condition

OA device not ready

OB buffer full on write byte

OE invalid code in function packet

OF invalid transfer mode in DIB

21 invalid value for SETTRANS function packet

62 read not supported

66 read byte not supported

68 tstbyte not supported

6A attach device not supported

6B detach device not supported

Preliminary Parallel Port Driver 7-5

,

Preliminary Parallel Port Driver 7-6

8.0 DISKETTE DRIVER

8.1 INTRODUCTION

The floppy disk device driver provides both physical-sector and track
access as well as a relative-sector access method within the IBM
Instruments Computer System scheme of logical I/O.

8.2 DATA MANAGEMENT FUNCTIONS

1. Logical Volume-File Access

a. Relative Sector Access Method

2. Physical Device Access

a. Sector I/O

b. Track formatting

8.3 FEATURES

1. 811 diskettes follow IBM standards for media compatibility, including
volume-label recognition.

2. 5.25" diskettes use a volume label field for compatibility with 8"
diskette volume recognition.

3. Four diskette drives are supported in any mixture of 5. 25" and 811 •

4. Designed around direct memory access and interrupts for true
asynchronous data transfer.

Preliminary Diskette Driver 8-1

5. Auto-Mount Feature: Every time a diskette is accessed, a hardware
"door-open" status is tested. If the condition is set, the volume
label sector of the inserted diskette is read, thus automatically
reconfiguring the drive for density, sector size, number of sides per
diskette, and volume identifier. The user need not indicate to the
operating system that a diskette has been changed.

8.4 DEFINITIONS

1. LOGICAL SECTOR NUMBER

This is a long word used by an application program to refer to a
sector on a diskette without regard for physical characteristics of
the diskette such as sectors per track, tracks per diskette, number
of sides, and sector origin.

2. LOGICAL SECTOR NUMBER ALGORITHM

The logical sector number is divided by the number of sectors per
track, giving a physical track number (quotient), and a physical
sector number (remainder+!). If the diskette is two sided then the
physical track number (actually cylinder) is divided by two giving
the track number (quotient) and diskette side number (remainder =
side 0 or side 1).

8.5 USING RELATIVE SECTOR ACCESS METHOD

1. SYSIO OPEN, lun,DIBname,errorlabel is the call to openi a file. End
of file information for an old file is returned in the DIB. If a file
is to be created at - OPEN and the same filename already exists, the
existing copy is automatically deleted.

2. SYSIO SREAD,lun,DTCBname,errorlabel is the call to read a relative
sector in the above opened file. No matter what sector in the file
has been read or written last the requested relative sector within
the present file will be read and placed in the users buffer.
Currently the buffer should be word-aligned and 252 bytes (a sector's
worth of data) .

Preliminary Diskette Driver 8-2

, ..

3. SYSIO SWRITE,lun,DTCBname,errorlabel is the call to write a relative
sector to the above opened file. Whatever sector specified will be
written whether within present file or beyond it. Currently the
buffer should be word-aligned and 252 bytes (a sector's worth of
data).

4. SYSIO CLOSE,lun,FKPTname,errorlabel is the call to close the above
opened file. FKPT name can be one of three choices: 0 - no function
packet, end of file information function packet, delete file
function packet. See function packets EOFOFS and DELFILE.

Note: The delete funtion packet will always be honored. If an EDF
function packet is specified, and the file was not written to during
this open, the function packet will be ignored.

8.6 DISK INFORMATION BLOCK (DIB)

The "DIB" is a control block to be used by the application program at OPEN
time.

DIB FORMAT

DIB DS.W 0
DIBVOL DS.B 6 Volume or device name
DIBDTD DS.B · 1 Device transmit direction
DIBTRN DS.B 1 Transfer mode. 0 = fixed 1 = variable
DIBFOR DS.B 8 "FOR" task number
DIBOPT DS.W 1 Device configuration options (see below)
DIBFCN DS.L 1 Configuration function packet pointer
DIBBIO DS.L 1 For byte I/O into manager
---------------------- DIB EXTENSION ------------------------
DIBNMS DS.W 1 Return area (number of sectors in file)
DIBOFS DS.W 1 Return area (EOF offset in last sector of old file)
DIBCAT DS.B 8 File catalog (not currently used, set to zero)
DIBNAM DS.B 8 File name
DIBEXT DS.B 3 File name extension
DIBTYP DS.B 1 File type (see below)
DIBACS DS.W 1 File access attributes (see below)
DIBEND DS.B 0 End of DIB

DIB EXTENSION

This area is used by the device driver as an extension of the DIB to hold
file-related information. The fields are set by the caller prior to OPEN,

Preliminary Diskette Driver 8-3

with the exception of DIBNMS and DIBOFS fields, which are information
returned to the caller.

DIBOPT DEFINITION

This defines to the driver at OPEN time the kinds of things that the
application expects to be doing. This will be the key as to which "access
method" is going to be used (i.e. physical, logical, etc).

Bit 15: 0 = Ignore bits 0-14 1 = Use bits 0-14
Bit 14: 0 = Return error status 1 = Always return good status

(see note 1)
Bit 13:
Bit 12:
Bit 11:
Bit 10:
Bit 9&8:

Reserved
Reserved
0 = Old f ;i.le 1 = Create new file
Reserved
0 0 = Rel<itive Sector Access
0 1 = Contiguous Relative Sector Access (bit 8 on)

(used only for DIR.DIR)
Bit 0-7: Reserved

Note 1: Used only by system at coldstart.

DIBTYP DEFINITION

Byte value:

$00 = Binary file
01 = Binary file with transfer address
02 = Unused
03 = Text file
04 = Unused
05 = Contiguous file (Used only by DIR.DIR)

DIBACS DEFINITION

Bit
Bit
Bit
Bit

3-7: Unused
2: 0 = Writes are accepted, 1 = File is read-only
1: 0 = File can be renamed, 1 = File cannot be renamed
0: 0 = Fiie can be deleted, 1 = File cannot be deleted

EXAMPLE: Setting value $07 indicates file is not deletable, not
renamqb!e, and read-on!y.

Prelimina~y Diskette Dr:i,.ver 8-4

8. 7 FUNCTION PACKETS

The general organization of floppy disk function packets is a
variable-length list of CODE DATA words followed by a terminating code of
zero to delimit end-of-list. The list can include stand-alone codes with
no data, codes with a single word of data, codes with a long word of data,
or multiple data words.

1. GETPDB - Retrieve Physical Device Block

COPE is $0002. DATA is a long word containing a buffer address.
This command transfers the current physical device block (PDB) to the
buffer specified in the function packet.

2. WTRACK - Write Track

CODE is $0003. DATA is a word containing a track number, followed by
a long word containing a buffer address. This function is normally
used for formatting a diskette. It causes a track of data to be sent
to the disk controller with a write track-command. The track data
must be contained in the buffer specified in the function packet.

3. WSECTOR - Write Sector

CODE is $0004. DATA is a long word following the code word which
contains the logical sector number, followed by a long word
containing a buffer address. This function transfers a sector from
diskette to the buffer specified in the function packet.

4. DELFILE - Delete File
'

CODE IS $0005. There is no data value. The function packet need
only be the word containing the function packet code.

5. SETORG - Set Sector Origin

CODE is $0006. DATA is a word following the code word and must
contain 0 (origin cylinder 0) or 1 (origin cylinder 1). This
function can be used to change the sector origin, which is used in
translating the logical sector number into physical information such
as side number, track number, and sector number. It would be issued
by programs attempting to access diskettes that are not recorded in
the standard formats.

Preliminary Diskette Driver 8-5

6. SETSPD - Set Sectors Per Diskette

CODE is $0007. DATA is a long word following the code word and must
contain the new number of sectors per diskette. This function can be
used to set the number of sectors per diskette in the PDB. It would
be issued by programs attempting to use diskettes that are not
recorded in the standard formats.

7. SETBYT - Set Bytes per Sector

CODE is $0008. DATA is a word following the code word and must
. contain the number of bytes per sector. This function can be used to
· set the sector size in the PDB. It would be issued by programs
attempting to access diskettes that are not recorded in the standard
formats.

8. SETSPT - Set Sectors Per Track

CODE is $0009. DATA is a word fol lowing the code word and must
contain the number of sectors per track. This function sets the
number of sectors per track in the PDB. It would be issued by
programs attempting to access diskettes that are not recorded in the
standard formats.

9. SETS IDES - Set Number of Sides

CODE is $000A. DATA is a word following the code word and must
contain either 0 (1 side) or 1 (2 sides). This function sets the
number of sides in the PDB. The variable is used in translating
logical sector number into physical device information. It would be
issued by programs attempting to access diskettes that are not
recorded in the standard formats .

10. SETDEN - Set Density

CODE is $000B. DATA is a word following the code word and must be
either 0 (single density) or a 1 (double density). This function
sets the density parameter in the PDB. It would be issued by
programs attempting to access diskettes that are not recorded in the
standard formats.

11. SETBPT - Set bytes per track

CODE is $000C. DATA is a word following the code word. This
function sets the number of bytes written by the WTRACK function when
formatting a diskette.

Preliminary Diskette Driver 8-6

12. SETTPD - Set tracks per disk

CODE is $000D. DATA is word following the code word. This function
sets the logical number of tracks per diskette used by the WTRACK
function when formatting a diskette.

13. EOFOFS - Store EOF Offset in File Directory

CODE is $000E. DATA is a word following the code word. A word of
zeroes follows the data word to indicate the end of the function
packet. This function accompanies SYS IO CLOSE to store the EOF
offset in the file's last sector into the directory. It is
recommended that the data value be the number of good data bytes in
the file's last sector.

14. SETVOL - Set Volume Name

Code is $000F. DATA is six bytes following the code word. This
function writes the given volume identifier into the diskette volume
sector, and also sets it in the alternate name field of the PDB.

15. REINIT - Reinitialize PDB

CODE is $0010. There is no DATA value.
volume label of the diskette and updates
the PDB. It also invalidates the sector
sector value in FRETAB.

This function reads the
the appropriate fields in
cache and the free space

8.8 DEVICE CONTROL BLOCK EXTENSION (INTERNAL SYSTEM
CONTROL BLOCK)

The device control block (DCB) should be used to hold information that
pertains to a sequence of commands to the device driver through a logical
unit number. This list includes all fields from the FCB used in earlier
drivers. Some fields (relative sector number and number of sectors) have
been made long words. A second level of qualification to the filename has
been allowed for.

DCB EXTENSION FORMAT

DCBRES
DCB VOL
DC BO PT

DCB EXTENSION AREA (18 BYTES) ---------------
DS.B 6 Reserved
DS.B 6 Volume or Device Name
DS.W 1 Copy of DIBOPT

Preliminary Diskette Driver 8-7

DCBDCBX DS.L 1 Address of DCB Extension (DCBX)
DCBEND DS.B 0 End of DCB

DCBXBUF
DCBXCAT
DCBXNAM
DCBXPER
DCBXEXT
DCBXDLM
DCBXTYP
DCBXACS
DCBXCWD
DCBXFTS
DCBXLTS
DCBXNMS
DCBXFWD
DCBXBAK
DCBXCSN
DCBXCLR

DCBXPTR
DCBXLFWD
DCBXOFS
DCBXRES
DCBXEND

DCBX
DS.B
DS.B
DS.B
DS.B
DS.B
DS.B
DS.B
DS.B
DS.B
DS.L
DS.L
DS.W
DS.L
DS.L
DS.L
DS.L

DS.L
DS.L
ns.w
DS.B
DS.B

Control
256

8
8
1
3
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1
1

Block --------------------------
Access method buffer
Catalog name (2nd level qualifier to filename)
Filename
Period in filename
Filename extension
Filename delimiter
File type (see DIBTYP)
File access attributes (see DIBACS)
00 = Close do not write the directory FF = write
First sector in file
Last sector in file
Number of sectors in file
Forward link (of chain file)
Backward link (of chain file)
Sector # of current sector in DCBXBUF
Logical record (relative sector) of
current sector in DCBXBUF
Pointer within DCBXBUF space
Forward link for old last sector
EOF offset into last sector of file
Reserved for future
End of DCBX

8.9 PHYSICAL DEVICE BLOCK EXTENSION (INTERNAL SYSTEM
CONTROL BLOCK)

PDBFRl DS.L 1 Reserved
PDBSPD DS.L 1 Sectors Per Diskette
PDBBYT DS.W' 1 Bytes Per Sector
PDBBPT DS.W' 1 Bytes per track
PDBSPT DS.W 1 Sectors per track
PDBTPD DS.W 1 Tracks per diskette
PDBTRK DS.B 1 Current track
PDBSEL DS.B 1 Drive-select byte
PDBFLG DS.B 1 Diskette attribute flags
PDBLEV DS.B 1 File structure format
PD BEND DS.B 0 End of PDB

Preliminary Diskette Driver 8-8

PDBFLG DEFINITION (This byte used to remember drive attributes)

Bit 7: Unused
6: Unused
5: Configure drive --- 0 = no, 1 = yes (see note 1)
4: Seek track -------- 0 = verify, 1 = no verify
3: Discharged -------- 0 = no, 1 = yes
2: Sector origin ----- 0 = cylinder 0, 1 = cylinder 1
1: Number of sides --- 0 = single, 1 = double
0: Current side ------ 0 = side 0, 1 = side 1

Note l: Each drive must be configured for either an 811 or a 5. 25"
diskette drive. This can only be determined when there
is a drive ready status, which may or may not occur at
coldstart. Once the drive type is determined, the con-
figure bit is cleared.

PDBSEL DEFINITION (This byte is sent to hardware select register)

Bit 7 = Mini-floppy motor 0 = On, 1 = Off
6 = Clock divider 0 = No div, 1 = Divide by 2
5 = Density select 0 = Double, 1 = Single
4 = Side select 0 = Side 0, 1 = Side 1
3 = Drive #FD03 Only one of the
2 = Drive #FD02 drive select bits
1 = Drive #FDOl will be on in each
0 = Drive #FDOO PDBSEL field

8.10 HARDWARE REGISTER SPECIFICATIONS

The following registers are specified by Western Digital:

FDSTCMND - Western Digital Status Command register
FDTRACK - WD Track register - holds track of currently selected drive
FDSECTOR - WD Sector register
FDDATA - WD Data register -used for seeks and read write

The following registers are implemented on the planar board specifically
for the Computer System. A definition of each register is included here.

FDIRQDRQ - Computer System Floppy disk status register

Bit 7: 1 =Data request, transfer data byte, also wired to DMA.
6: Unused, set to 0 by hardware
5: Unused, set to 0 by hardware

Preliminary Diskette Driver 8-9

4: Unused, set to 0 by hardware
3: 0 =Single Sided 811 , 1 =Double Sided 811

2: 0 =No disk change 5.25", 1 =disk change 5.25" (see notes 1,2)
1: 0 = 811 disk change, 1 = no disk change (see note 1)
0: 1 = Interrupt request (see note 3)

Note 1: These bits are latched in the hardware and can be
read only when the specific drive has been selected.
Deselecting the drive resets the bit.

Note 2: The 5.25" diskette change bit is also used as a
ready not ready status indication for the 5.25" drive.

Note 3: This is also tied to an interrupt input line which
will allow the floppy device driver to WAIT on the
OMA-oriented I 0 without a spin loop.

FDSELECT - Floppy Disk command register

Bit 7: 0 = 5.25" motor on, 1 = 5.25 11 motor off (see note 4)
6: 0 = No clock divider, 1 = divide clock by 2. Used with
5: 0 = Double density, 1 = Single density
4: 0 = Side O, 1 = Side 1
3: 1 = Select drive 3
2: 1 = Select drive 2
1: 1 = Select drive 1
0: 1 = Select drive 0

mini - floppy

Note 4: All 5.25" drive motors turn on and off with the selection
of this bit.

8. 11 DISKETTE FORMATS TO BE SUPPORTED

• 5 1/4-inch Double Sided/Double Density
40 Tracks per side (all available for data).
16 Sectors per track.
256 Bytes per sector.
Total of 1280 sectors available, or 327,680 bytes.
User data storage is 1257 sectors at 252 bytes/sector,
or 316,764 bytes.

• 5 1/4-inch Single Sided/Double Density
40 Tracks per side (all available for data).
16 Sectors per track.
256 Bytes per sector.

Preliminary Diskette Driver 8-10

Total of 640 sectors available, or 163,840 bytes.
User data storage is 617 sectors at 252 bytes/sector,
or 155,484 bytes.

• 8-inch" Double Sided/Double Density IBM 2D Format
Cylinder 0 reserved as index cylinder per IBM Diskette Standards.
Cylinders 1 through 74 available for data.

26 Sectors per track.
256 Bytes per sector.
Total of 3848 Sectors available, or 985,088 bytes.
User data storage is 3825 sectors at 252 bytes/sector,
or 963,900 bytes.

Cylinders 75 and 76 reserved.

• 8-inch Single Sided/Single Density IBM Diskette 1
Cylinder 0 reserved as index cylinder per IBM Diskette Standards.
Cylinder 1 through 74 available for data.

15 Sectors per track.
256 Bytes per sector.
Total of 1110 Sectors available, or 284,160 bytes.
User data storage is 1087 sectors at 252 bytes/sector
or 273,924 bytes.

Tracks 75 and 76 reserved.

• 8-inch Double Sided/Single Density IBM Diskette 2
Cylinder 0 reserved as index cylinder per IBM Diskette Standards.
Cylinder 1 through 74 available for data.

15 Sectors per track.
256 Bytes per sector.
Total of 2220 Sectors available, or 568,320 bytes.
User data storage is 2197 sectors at 252 bytes/sector,
or 553,644 bytes.

Tracks 75 and 76 reserved.

VOLUME LABELS

• 5 1/4-inch Diskette have volume label 5-lOinformation in logical
sector 0 in the data area of the diskette. Bytes 5-10 are the volume
identifier, byte 11 is the surface indicator ("M" = 2D, "N" = lD), and
byte 12 is the sector size (11 111 = 256). There is no index cylinder
defined.

• 8-inch diskettes have volume label information on the index cylinder
recorded in ASCII per standard. Remaining areas of the index cylinder
are initialized per IBM Diskette standard.

Preliminary Diskette Driver 8-11

8. 12 ERROR CODES

1. See Exception Codes (Section 1.2.3) for common error codes.

2. Disk Driver

$0010 Track seek or restore error
$0011 Logical sector or track number too big
$0012 Volume name changed
$0013 No storage for control blocks
$0014 DMA timeout, no interrupt received (sector not found)
$0015 Illegal file access method
$0016 I/O buffer boundary error
$0017 Diskette format not recognized
$0018 Diskette write protected
$0019 Sector buffer too small
$001A Invalid data transfer direction
$001B CRC error

3. Functions

$0023 Write Track error
$0024 Write Sector error
$002F Set Volume Identifier error
$0030 Reinitialize PDB error

4. Disk Access Methods

$0081 Delete not supported for file type
$0082 File not found
$0083 Directory full
$0084 Invalid filename
$0085 Read beyond end of file
$0086 Buffer size incorrect
$0088 Disk full
$0089 Writing to read-only file
$008A Wrong file type for access
$008B Invalid sector specified
$008C Disk file protected from deletion

Preliminary Diskette Driver 8-12

9.0 SENSOR 1/0 DRIVER

9.1 INTRODUCTION

This software package contains drivers for interfacing application
programs to hardware devica on the Sensor I/0 board. This software
package contains device drivers for interfacing application programs to
hardware devices on the Sensor I/O board. The devices supported by this
package are:

1) 4 - A/D Converter Channels
2) 8 - Switch Input Channels
3) 8 - LED Output Channels
4) 2 - Timer /Counters
5) 32- bit Parallel I/O

The package will initially be configured for a single Sensor l/O board.
However, the drivers can be easily configured to multiple board systems.

The driver package is divided into 5 independent drivers, one for each of
the basic types on the Sensor I/O board. The drivers interface to the
operating system via the Interrupt Manager, the Timer Manager, and the I/O
Manager.

Device protection is provided by the requirement that the device be
"opened" by any process that accesses the device. The drivers are written
to allow more than one process to "open" the same device only if the
"shared" option is used during the "open." If the shared option is not
used, then only one open is allowed for the device at a time. A "close"
command is used to release a process from the device.

9.2 A/D CONVERTER CHANNELS

The A/D converter device driver allows an application program to collect
data from A/D converter channels. Each channel can be configured to
desired characteristics at open time, or reconfigured with a function
packet.

Auto-Range/Fixed-Gain. In the autorange mode, the converter self-adjusts
its gain for an optimum scale to make the reading. In the fixed-gain
mode, the converter gain can be fixed at 1, 8, 64, or 256.

Preliminary Sensor I/O Driver 9-1

Attenuation. With this parameter the full scale voltage can be changed
from +l V to± 10 V. (A hardware wiring jumper must be installed to make
this attenuation function operative).

Sample Rate. The hardware A/D conversion rate has a maximum sample rate
of 30 samples per second. The rate is specified using a period in
microseconds.

Averaging. If a sample rate of less than 30 samples per second is wanted,
then the averaging mode may be selected. If averaging is selected, then
the data returned to the application program is the average of the data
converted during the sample period.

Shared access. If shared access to an A/D channel is desired, then this
option can be selected. This allows more than one process to have the
channel open at the same time. The collection request of a process will
be completely serviced before another request from this or another process
is started. This option is specified only during an open operation.

Alternate Channels. The alternate channels option allows the collection
of data from more than one physical A/D converter. The option specifies
which physical A/D converters to read in each sample period. Note that
all channels must be on the same board.

9.2.1 A/D TRANSFER REQUESTS

The A/D device driver supports synchronous and asynchronous read
requests. The request specifies the buffer address and buffer length.
The buffer length is given in bytes. The buffer address must be word
aligned. The data is returned in a scaled 32-bit integer format. The
relation between returned value and actual voltage is:

actual voltage (V) = returned value/1048576

The specified channels are sampled and stored in the buffer in sequential
order.

If an overrange condition is detected, the result returned is the largest
signed number.

9.2.2 A/D DEVICE INITIALIZATION BLOCK

Preliminary Sensor I/O Driver 9-2

The A/D DIB is designated as ADIB. The format for the ADIB is:

ADIB DS.W 0

DIBVOL DS.B 6 Device name

DIBDTD DS.B 1 Device transmit direction

DIBFOR DS.B 1 "FOR" task Number

DIBOPT DS.W 1 Device configuration options

DIBFCN DS.L 1 Function packet address

DIBBIO DS.L 1 For byte I/O

9.2.3 DEVICE NAMES

The A/D converter channels are assigned the following names:

#ADCOO A/D converter 1

#ADCOl A/D converter 2

#ADC02 A/D converter 3

#ADC03 A/D converter 4

If a second sensor I/O board is installed, the converters would be named
#ADClO etc.

The DIBDTD field is 0 for output, 1 for input, and 2 for bidirectional
I/O.

The DIBOPT field has the following bits defined.

bit 8 Shared-access option

bit 9 Attenuation on

bits 10-15 Not assigned

Preliminary Sensor I/O Driver 9-3

The DIBFCN field specifies the address of a function packet if desired.

9.2.4 A/D FUNCTION PACKETS

The A/D function packet is used to set or change one or more of the
operating characteristics of an A/D channel. The format of the packet is:

FCNPKT Function Name

Function Value

Function Name

Function Value

Zero word as Function name for end of list

Valid function name - Function value combinations are:

Function Name Function Value

ADGAIN = 1

SAMPRATE = 2

AVERAGE = 3

ALTCHN =

9.3 SWITCH INPUTS

Preliminary

Parameter Value

0 = AUTO, 1, 8, 32, 128

Number of micro-seconds (32 bits)

OFF = 0, ON = 1

Value specified as a list of words.
Each word specifies a channel.
Range of channels is 0-4
The list is ended with a value of -1

Sensor I/O Driver 9-4

The switch input device driver allows an application program to read the
state of one of the switch inputs. Each individual switch is viewed as a
separate device. A switch value when read always goes to the off state.
There is one option that can be specified when a switch is opened.

Shared Access. If shared access to a switch input is desired, then this
option can be selected. This will allow more than one process to have a
switch open at the same time.

Switch Transfer Requests. The switch input device driver supports byte,
synchronous, and asynchronous read requests. In each case, only one value
is returned.

In byte read requests, the current state of the selected switch is
returned as a value of 0 for open, and 1 for closed.

For synchronous and asynchronous read requests the driver will wait for
the next time that the switch is pressed. At that time it puts the value 1
in the buffer and the request is terminated.

9.3.1 SWITCH INPUT DEVICE INITIALIZATION BLOCK (SWIB)

The switch input DIB is designated as SWIB. The format of the SWIB is

SWIB DS.W 0

DIBVOL DS.B 6 Device name

DIBDTD DS.B 1 Device transmit direction

DIBFOR DS.B 1 "FOR" task number

DIBOPT DS.W 1 Device configuration options

DIBFCN DS.L 1 Function packet pointer

DIBBIO DS.L 1 For ~y-_te I/O

9.3.2 DEVICE NAMES

The switch inputs are assigned the following names:

Preliminary Sensor I/O Driver 9·5

(ISWOO Switch input 0

(/SWOl Switch input 1

tlSW02 Switch input 2

Switch input: 7

Switch inputs in multiple board systems are similarly named with the first
numerical digit reflecting the board number. ·

The only valid valu.efor the DIBDTD is 1, designating input.

There is one bit defined in the DIBOPT field:

bit a Shared-access option

The DIBFCN field is not used.

9.4 LED OUTPUTS

The LED output device 4river allows applicatoion programs to output to a
selected LED. Each in.4.ividual LED is considered a separate device. There
is one option that can be specified when an LED channel is opened.

9 .4. 1 SHARED ACCESS

If shared access to an individual LED channel is desired, each process
must use the .shared acc.esis option wh0fl they open the channel.

9.4.2 LED TRANSFER REQU.E.STS

Prelimiri.ary Sensor I/O Driver 9-6

The LED device driver uses only the "Byte Output" form of transfer. All
other types of transfer requests will be rejected with an error. A zero
byte output to the LED channel will turn the LED off. A non-zero value
will turn the LED on.

9.4.3 LED OUTPUTS DEVICE INITIALIZATION BLOCK (LEDIB)

The LED output DIB is designated as LEDIB. The format of the LEDIB is:

LEDIB DS.W 0

DIBVOL DS.B 6 Device name

DIBDID DS.B 1 Device transmit direction

DIBFOR DS.B 1 "For" task number

DIBOPT DS.W 1 Device configuration options

DIBFCN DS.L 1 Function packet address

DI BB IO DS.L 1 For byte I/O

9.4.4 DEVICE NAMES

The LED outputs are assigned the following names:

#LEDOO LED Output 0

(ILEDOl LED Output 1

#LEDOl LED Output 2

#LED07 LED Output 7

LED outputs in multiple board systems are named similarly with the first
numerical digit reflecting the board number.

The only valid value for DIBDTD is 0 for output.
One bit is defined in the DIBOPT field.

Preliminary Sensor I/0 Driver 9-7

bit 8 Shared-access option

The DIBFCN field is not used.

9.5 TIMER/COUNTERS

The timer/counter device driver allows an application programs to
interface to two of the 16-bit counters of the 8253 CTC. The two counters
can be opened as two 16 bit counters or as one 32-bit counter. Options
available during open are:

9.5.1 32-BIT COUNTER

If the 32-bit counter option is used during an open, the 16 bit counter
specified during the open is the least significant 16 bits, and the other
counter is the most significant 16 bits. Requests to this device act on
both counters when this option is selected.

9.5.2 SHARED ACCESS

If shared access is desired to a 16- or 32-bit counter, then this option
must be used by all processes when they open the counter. Note, if the
32-bit counter option is used during an open, then all shared opens must
also use that option.

9.5.3 SUPPORTED 1/0 FUNCTIONS

I. Function Request

The function request allows the counter/timer to be configured to desired
characteristics. The parameters that can be specified are:

Initial Count. The initial count is a 32-bit number. Only 16 bits are
used if in the 16 bit counter mode.

Preliminary Sensor I/O Driver 9-8

Counter Mode. This specifies the mode of the counter or counters (if in
the 32-bit mode). It is always specified by a word. The low byte
specifies the mode for the least significant 16 bits of the counter. The
high byte specifies the most significant bits if in the 32-bit mode.

Start. If the function request is to load the counter and start it at this
time, the start option can be specified. This is useful for waveform
generation and event counting.

II. Delay.

The synchronous and asynchronous write requests are used to implement a
delay function. When the request is issued, the counter is loaded with
the current mode and count. The write is then finished when the interrupt
is received.

II I . Read Counter.

The synchronous and asynchronous read requests are used to read the
current count value in the counter. A 32-bit result is returned if the
32-bit counter mode is selected. If the count has overflowed since the
last access, a status indicating this fact is also returned.

9.5.4 TIMER/COUNTER DEVICE INITIALIZATION BLOCK (CTIB)

The Timer DIB is designated CTIB. The format for the CTIB is:

CTIB DS.W 0

DIBVOL DS.B 6 Device name

DIBDTD DS.B 1 Device transmit direction

DIBFOR DS.B 1 "FOR" task number

DI BO PT DS.B 1 Device configuration options

DIBFCN DS.L 1 Function packet address

DIBBIO DS.L 1 For byte I/O

Preliminary Sensor I/O Driver 9-9

9.5.5 DEVICE NAMES

The timer/counters are assigned the following names.

#CTOOO Counter #1 of 8253

f/CTCOl Counter #2 of 8253

If additional sensor I/O boards are installed in the system, then the
names of those counters have the first numerical digil: as the board
number.

The DIBDTD has the value 0 for output, 1 for input, and 2 for
bidirectional I/O.

The DIBOPT field has the following bits defined.

bit 8 Shared access option

9 32-bit counter option

The DIBFCN specifies the address of an optional function packet.

9.5.6 TIMER/COUNTER FUNCTION PACKET

The timer/counter function packetis used to set or change one or more of
the operating characteristics 1)f the timer/counter channel. The format of
the packet is :

FCNPKT parameter name

parameter value

parameter n.ame

Preliminary Sensor I/O Driver 9-10

zero for parameter name to end list

Valid parameter name - parameter value combinations are:

Parameter Name

Initial Count = 1

Counter Mode = 2

Start = 3

9.5. 7 PARALLEL 1/0 CHANNELS

Parameter Value

32-bit value

0, 1, 2, 3, 4, 5 See
8253 documentation

1 = load, 0 = no load

The parallel I/O device driver enables application programs to interface
to the 32 bits of parallel I/O. The channels can be opened in units of
bits, bytes, or words. The options that can be specified during open are:

9.5.8 SIZE

The size of the channel to be opened can be a bit, byte, or words. If a
bit is desired, then the bit number must also be specified.

9.5.9 STROBE

If this option is selected, the channel operates in the strobed mode of
operation. This mode is not legal for bit I/O.

9.5. 10 SHARED ACCESS

Preliminary Sensor I/O Driver 9-11

If. shared access is desired with a parallel I/O channel, the shared-access
option must be used by all processes when they open that channel.

9.5. 11 TRANSFER DIRECTION

A parallel I/O channel can be opened for input, output, or bidirectional
input/output. The bidirectional input/output mode is legal.only on the
port A bytes of the 8255' s in byte or word mode.

9.5.12 RESOURCE ALLOCATION

The 32 bits of parallel I/O can be viewed as analgous to 32 "sectors" on a
disk. Opening a byte of parallel I/O would be equivalent to opening a
file containing 8 sectors. Files cari be of word, byte, or bit size. The
following rules determine whether a file can be opened or not.

1. The file cannot overlap an already open file.
la) An exception to (1) is that shared access to the same in 10 file
is allowed if all opens to that file are for shared acce;;:

2. Strobed mode is not legal on bit files.

3. Bidirectional strobed mode is available only on byte or word files on
the 8255 port A's.

9.5. 13 TRANSFERS

The parallel I/O device driver supports byte and buffered requests. Byte
requests are used in the nonstrobed mode for bit and byte "files". On
input, bit files return a "zero" byte or a "one" byte reflecting the state
of the bit. On output, a zero byte results in the bit being cleared. A
non-zero value results in the bit being set.

Buffered I/O is used with channels in the strobed mode of operation. The
request specifies the buffer start address and the buffer length in bytes.
In the bidirectional strobed mode, separate read and write requests can be

Preliminary Sensor I/O Driver 9-12

(

serviced simultaneously.

9.5.14 PARALLEL 1/0 DEVICE INITIALIZATION BLOCK

The parallel I/O DIB is designated as PPIB. The format for the PPIB is:

PPIB DS.W 0

DIBVOL DS.B 6 ·Device name

DIBDTD DS.B 1 Device transmit direction

DIBFOR DS.B 1 "FOR" task number

DIBOPT DS.W 1 Device configuration options

DIBFCN DS.L 1 Function packet address

DI BB IO DS.L 1 For byte I/O

9.5. 15 DEVICE NAMES

The parallel I/O channels of a single sensor I/O board are divided into 4
physical devices.

llPPAOO Port A, high byte

llPPBOO Port B, high byte

i'IPPAOl Port A, low byte

i'IPPBOl Port B, low byte

bit 8 Shared-access option

9-10 Size: 0 = Byte, 1 = bit, 2 = word, 3 = undefined

Preliminary Sensor I/O Driver 9-13

11-13 Bit number for bit I/O

14 Non-strobed I/O option

15 Not assigned

The DIBFCN field is not used.

Note: If bits 8-15 of DIBOPT are zero, then the port is opened
as a strobed byte.

9.6 ERROR CODES

The following error codes have been defined and may be returned
by this driver package.

Error Code

Preliminary

$10

$11

$12

$13

$14

Meaning

Device Locked

Device Already open

A/D overrange

CTC counter overflow

Illegal open mode

Sensor I/O Driver 9-14

10.0 CRT GRAPHICS DRIVER

10.1 INTRODUCTION

The CRT graphics driver is intended to provide the user with a means of
performing graphics primitive operations in 2 dimensions via the I/O
manager. Access to the graphics routines is primarily through the I/O
manager function call. The user gains access to the CRT by opening a
graphics window, which is treated as an independent logical unit. A
graphics window is similar to an alpha window in that it is a rectangular
area of the screen in which the graphics primitives will be displayed.
Once a window has been opened the user is free to perform any one of the
supported functions, including:

SETCOP
SETVEC
SETCHR
BLKFIL
CLRWIN
FRAME
SETMAP

Move the current operating point
Draw a line
Draw a character string
Fill a rectangular area
Clear the window
Draw a box around the window
Define a 2-D mapping

When the user has completed his display, the window may be closed by
issuing a "close" call to the 1/0 manager against the logical unit number
of the window.

10.1.1 COORDINATE SYSTEMS

There are three coordinate systems that the graphics driver interacts
with.

User coordinates are the coordinates in which the user
specifies information to the graphics
driver.

Device coordinates~ are the integer coordinates from 0 .. 767 in
the X dimension and 0-479 in the Y
dimension that correspond to pixel

Preliminary CRT Graphics Driver 10-1

location on the screen relative to the
lower left corner.

Memory coordinates - refer to the final address and bit number
in either of two pages of graphics memory.

10.1.2 THE GRAPHICS WINDOW

The graphics window is a rectangular region in either of the two pages of
graphics memory coresponding to an area on the CRT on which graphics
primitives are to be displayed. The window is defined in terms of device
coordinates at open time.

Note: primitives occuring outside the window boundaries will not be
displayed.

10.1.3 COORDINATE MAPPING

Coordinates are supplied to the graphics driver in user coordinates which
must be mapped into device coordinates. Three integer 2-D mappings are
supported at present.

1 User coordinates = Device coordinates
2 User coordinates = Device coordinates -

Window offset vector
3 User coordinates = Device coordinates with

scale and offset

In the third mapping the user must supply the coordinates that correspond
to the graphics window.

10. 1.4 PIXEL CONTROL

Graphics primitives will cause pixels (bits in graphics memory) to be
filled according to the graphics control word and the fill word. The fill
word is a means by which the user can generate fill patterns and dotted
lines etc. As each pixel is encountered the fill word is rotated one bit
to the right. The least significant bit determines whether any action
will be performed on the pixel. If the bit is set, the pixel will be set,
reset, or exclusive-ORed according to the pixel control bits in the

Preliminary CRT Graphics Driver 10-2

graphics control word. If the least significant bit of the fill word is
not set then no action will take place.

10.1.5 CURRENT OPERATION POINT (COP)

The current operation point (COP) may be considered as a graphics cursor
and is a point in two-dimensional space. When a primitive is drawn it
starts at the COP. Some primitives cause the COP to move a SETVEC,
SETCHR, and SETCOP, while others simply use the COP as a reference point.

10.2 GRAPHICS DRIVER CONTROL BLOCKS

10.2.1 THE GRAPHICS DEVICE INFORMATION BLOCK (DIB)

The particular information necessary to complete the graphics device
information block is as follows:

Device name (DIBVOL) =
Transmit direction (DIBDTD)
Options (DIBOPT) =
Initial function packet

(DIBFCN):

'#GR
= $00

$XX
$00000000
$NNNNNNNN

not used
no packet or
address of packet

The open option word is a bit significant word that can be used to select
graphics control parameters at open time

Bits 1,0

Bit 2

Bits 4,3

Preliminary

Pixel control options

00 = set pixels
01 = reset pixels
10 = exclusive or pixels
11 = not used-error

coordinate interpretation select

0 = absolute coordinates
1 = relative coordinates

map mode select

00 = screen coordinates-mode 0

CRT Graphics Driver 10-3

For

01 = screen coordinates+offset-mode 1
10 = scale+offset-mode 2

Bits 6,5

Bit 7

11 = not used-error

character orientation

00 = left to right
01 = bottom to top
10 = right to left
11 = top to bottom

page select

0 = page 0
1 = page 1

Bits 14-8 ignored

Bit 15 option word enable

0 = ignore bits 14-0
1 = decode option bits

example: The following is a valid

GRDIB EQU *
DC.B '#GR
DC.B 0
DC.B 0
DC.B 0
DC.W 0
DC.L GRFPKTOO
DS.L 0

GRFPKTOO EQU *
* ETC ...

DIB for the graphics driver.

DIBVOL
DIBVOL
DIBDTD
DIBRSl
DIBOPT
DIBFCN
DI BB IO

GRAPHICS FUNCTION PACKET
(SEE BELOW)

10.2.2 THE GRAPHICS FUNCTION PACKET

The graphics function packet is the principal means by which information
is relayed to the driver. The function packet consists of one or more
individual function information cells. Each cell specifies a complete
function call to one of the functions described below. The cell begins
with a one word number corresponding to the desired function followed by
the required information fields. All fields in the function cell must be
specified as shown in the function descriptions below. Completely missing

Preliminary CRT Graphics Driver 10-4

fields will cause termination of function packet processing and generate
an error message. Function number '0' terminates the packet.

Note: All function packets are an integral number of words in length

10.3 GRAPHICS FUNCTIONS

10.3. 1 END OF PACKET -- ENDFPKT

ENDLIST terminates function packet processing.

MNEMONIC: ENDLIST FUNCTION NUMBER: 0

ARGUMENTS: NONE

10.3.2 SET WINDOW BOUNDARIES -- SETWIN

SETWIN redefines the window boundaries in device coordinates.
time the window is given the default values of 0,0,767,479,
screen window. SETWIN is used to modify these values.
Note that the following must be true:

0 <= XDl < XD2 <= 767
0 <= YDl < YD2 <= 479

MNEMONIC: SETWIN

ARGUMENT LENGTH DEFAULT

FUNCTION NUMBER:

DEFINITION

XDl Word 0 Left window boundary

1

YDl Word 0 Bottom window boundary
XD2 Word 767 Right window boundary
XD2 Word 479 Top window boundary

At open
or a full

RANGE

0 .. 767
0 .. 479
0 .. 767
0 .. 479

Preliminary CRT Graphics Driver 10-5

10.3.3 INQUIRE WINDOW BOUNDARIES -- INQWIN

INQWIN returns the values of the window boundaries in device coordinate.
The arguments are identical to SETWIN and are returned in the function
packet.

MNEMONIC: INQWIN FUNCTION NUMBER: 2

ARGUMENT LENGTH DEFAULT DEFINITION RANGE

XDl Word 0 Left window boundary 0 .. 767
YDl Word 0 Bottom window boundary 0 .. 479
XD2 Word 767 Right window boundary 0 .. 767
YD2 Word 479 Top window boundary 0 .. 479

10.3.4 SET GRAPHICS PAGE-SETPAGE

SETPAGE selects the page of graphics refresh RAM to be written to.

MNEMONIC: SETPAGE FUNCTION NUMBER: 3

ARGUMENT LENGTH DEFAULT DEFINITION RANGE

1 Word 0 Graphics page 0,1

10.3.5 INQUIRE GRAPHICS PAGE -- INQPAGE

INQPAGE returns the graphics page number in the function packet.

MNEMONIC: INQPAGE FUNCTION NUMBER: 4

ARGUMENT LENGTH DEFAULT DEFINITION RANGE

1 Word 0 Graphics page 0,1

Preliminary CRT Graphics Driver 10-6

10.3.6 SET PIXEL CONTROL MODE -- SETPXCTL

SETPXCTL defines the logic by which the graphics primitives will set/reset
pixels in graphics memory. Three modes are available: set, reset and
exclusive OR.

MNEMONIC: SETPXCTL

ARGUMENT LENGTH DEFAULT

1 Word 1

FUNCTION NUMBER: 5

DEFINITION

Pixel control mode

Reset pixels
Set pixels
XOR pixels

10.3. 7 INQUIRE PIXEL CONTROL MODE -- INQPXCTL

RANGE

0-2

0
1
2

INQPXCTL returns the current pixel control mode in the function packet.

MNEMONIC: INQPXCTL FUNCTION NUMBER: 6

ARGUMENT LENGTH DEFAULT DEFINITION RANGE

1 Word 1 Pixel control mode 0-2

10.3.8 SET MAPPING MODE -- SETMPMOD

SETMPMOD selects the desired coordinate mapping mode. Three modes
are supported:

Mode 0

Preliminary

Device coordinates = user coordinates
(l-to-1 mapping)

IE XD=XW
YD= YW

CRT Graphics Driver 10-7

Mode 1

Mode 2

Where:

Device coordinates = user coordinates with window
offset vector

IE XD = XW-XDl
YD = YW-YDl

Device coordinates = user coordinates with
window offset and scale

IE XD = (XW·XWl)"':(XD2-XDl)/(XW2-XWl)+XD1
YD = (YW-YWl)•<'(YD2-YDl)/(YW2-YWl)+YD1

XDI, YDl, XD2, YD2 are the device-coordinate
window boundaries

XWl, YWl, XW2, YW2 are the user-coordinate
window boundaries

(XD,YD) defines a point in device coordinates

(XW,YW) defines a point in user coordinates

Nondefault values for the device coordinate window
boundaries may be supplied with SETWIN

device-window default boundaries= (0,0,767,479)

Nondefault values for the user-coordinate window boundaries
may be supplied with SETMAP

user-window default boundaries= (0,0,767,479)

MNEMONIC: SETMPMOD FUNCTION NUMBER: 7

ARGUMENT LENGTH DEFAULT DEFINITION RANGE

1 Word 0 Coordinate mapping mode 0-2

Mode 0 0
Mode 1 1
Mode 2 2

Preliminary CRT Graphics Driver 10-8

10.3.9 INQUIRE COORDINATE MAPPING MODE -- INQMPMOD

INQMPMOD returns the current coordinate mapping mode in the
function packet.

MNEMONIC: INQMPMOD FUNCTION NUMBER: 8

ARGUMENT LENGTH DEFAULT DEFINITION

1 Word 0 Coordinate mapping mode

RANGE

0-2

10.3.10 SET COORDINATE INTERPRETATION MODE -- SETCORIM

SETCORIM allows the user to select either absolute or relative coordinate
interpretation. Absolute coordinates are interpreted literally.
Relative coordinates are interpreted as offsets relative to the current
operating point.

MENMONIC: SETCORIM

ARGUMENT LENGTH DEFAULT

1 Word 0

FUNCTION NUMBER: 9

DEFINITION RANGE

Coordinate interpretation mode 0/1

Absolute
Relative

0
1

10.3.11 INQUIRE COORDINATE INTERPRETATION MODE -- INQCORIM

INQCORIM returns the current coordinate interpretation mode in the
function packet.

MNEMONIC: INQCORIM FUNCTION NUMBER: 10

Preliminary CRT Graphics Driver 10-9

ARGUMENT LENGTH DEFAULT DEFINITION RANGE

1 Word 0 Coordinate interpretation mode 0/1

10.3.12 SET CHARACTER ORIENTATION MODE -- SETCHOR

SETCHOR allows the user to select the orientation of text strings on the
page. Four modes are available: left to right, bottom to top, right to
left and top to bottom. In each of these modes the characters are rotated
to match the text orientation.

MNEMONIC: SETCHOR

ARGUMENT LENGTH DEFAULT

1 Word 0

FUNCTION NUMBER: 11

DEFINITION

Character orientation

Left to right
Bottom to top
Right to left
Top to bottom

RANGE

0-3

0
1
2
3

10.3.13 INQUIRE CHARACTER ORIENTATION MODE -- INQCHOR

INQCHOR returns the current value of the chracter orientation mode in the
function packet.

MNEMONIC: INQCHOR FUNCTION NUMBER: 12

ARGUMENT LENGTH DEFAULT DEFINITION RANGE

1 Word 0 Character orientation 0-3

Preliminary CRT Graphics Driver 10-10

10.3.14 SET CHARACTER MAGNIFICATION-SETMAG

SE1'MAG allows the user to select an integer magnification value for
character field dimensions times the character magnification.

MNEMONIC: SETMAG FUNCTION NUMBER: 13

ARGUMENT LENGTH DEFAULT DEFINITION RANGE

1 Word 1 Character magnification >=1

10.3.15 INQUIRE CHARACTER MAGNIFICATION-INQMAG

INQMAG returns the character magnification factor in the function packet.

MNEMONIC: INQMAG FUNCTION NUMBER: 14

ARGUMENT LENGTH DEFAULT DEFINITION RANGE

1 Word 1 Character magnification >=l

10.3.16 SET CHARACTER FONT -- SETFONT

SETFONT allows the user to select a non-default font. A pointer to a font
control block is passed with the SETFONT function call. The font control
block consists of the following:

* FONT CONTROL BLOCK

FNTCB DC.W
DC.W
DC.L

FNTCOL
FNTLIN
FNTPTR

NUMBER OF COLUMNS IN FONT (1-32)
NUMBER OF LINES IN FONT (1-32)
POINTER TO FONT TABLE

The purpose of the font control block is to convey physical information
about the font to the driver. The font is assumed to be organized as
follows:

Preliminary CRT Graphics Driver 10-11

1. Characters are arranged in the font table in numerical order starting
at 0-256.

2. Characters are entered in the font table line at a time from the top
down.

3. All lines must be entered.

4. Each line entry is a byte, word or long word -- whichever is the
smallest (i.e., a 9 column character would use a word length line).

MNEMONIC: SETFONT FUNCTION NUMBER: 15

ARGUMENT LENGTH DEFAULT DEFINITION RANGE

1 L.Word INTERNAL Pointer to control block O-$FFFFFF

10.3.17 INQUIRE CHARACTER FONT DIMENSIONS-INQFONT

INQFONT returns the physical font dimensions in the function packet.

MNEMONIC: INQFONT

ARGUMENT LENGTH DEFAULT

1
2

Word
Word

8
14

FUNCTION NUMBER: 16

DEFINITION

Font width (columns)
Font height (lines)

RANGE

1-32
1-32

10.3.18 SET CHARACTER FIELD -- SETCHFLD

SETCHFLD selects the field in which the physical font is to be set. The
font field is a means by which the font can be extended or clipped by a few
columns or lines. For instance, the default font is 8 by 14 but is
displayed in a 9 by 16 field. A separate field definition allows the user
to minimize the size of the font table by eliminating the need for
borders. The character is positioned in the upper right corner of the

Preliminary CRT Graphics Driver 10-12

font field. If the font field exceeds the dimensions of the font, the gap
will be filled with null bits.

MNEMONIC: SETCHFLD

ARGUMENT LENGTH DEFAULT

1
2

Word
Word

9
16

FUNCTION NUMBER: 17

DEFINITION

Character field width
Character field height

10.3.19 INQUIRE CHARACTER FIELD -- INQCHFLD

RANGE

1-32
1-32

INQCHFLD returns the character field dimensions in the function packet.

MNEMONIC: INQCHFLD

ARGUMENT LENGTH DEFAULT

1
2

Word
Word

9
.16

FUNCTION NUMBER: 20

DEFINITION

Character field width
Character field width

10.3.20 SET FILL WORD -- SETFILWD

RANGE

1-32
1-32

SETFILWD sets the value of the graphics fill word. The graphics fill word
is used by functions such as SETVEC, BLKFIL, CIRCLE etc. to generate
patterns. The fill word acts as a mask through which pixels are acted on
according to the pixel control bits in the graphics control word (see
above).

MNEMONIC:SETFILWD FUNCTION NUMBER: 19

ARGUMENT LENGTH DEFAULT DESCRIPTION RANGE

FILWD Word $FFFF Fill word 0000 .. $FFFF

Preliminary CRT Graphics Driver 10-13

10.3.21 INQUIRE FILL WORD -- INQFILWD

INQUIRE fill word returns the value of the fill word in the function
packet.

MNEMONIC:INQFILWD FUNCTION NUMBER: 20

ARGUMENT LENGTH DEFAULT DESCRIPTION RANGE

FILWD Word $FFFF Fill Word OOO.$FFFF

10.3.22 SET MAPPING COORDINATES -- SETMAP

SETMAP sets the user coordina~e window boundaries necessary to perform
mapping option 2 described in SETMODWD.

MNEMONIC:SETMAP FUNCTION NUMBER: 21

ARGUMENT LENGTH DEFAULT DEFINITION RANGE

XWl Word 0 Left window boundary +/-32767
(user coordinates)

YWl Word 0 Bottom window boundary +/-32767
(user coordinates)

XW2 Word 767 Right window boundary +/-32767
(user coordinates)

YW2 Word 479 Top window boundary +/-32767
(user coordinates)

10.3.23 INQUIRE MAPPING COORDINATES -- INQMAP

INQMAP returns the user coordinate map in the function packet.

Preliminary CRT Graphics Driver 10-14

MNEMONIC:INQMAP FUNCTION NUMBER: 22

ARGUMENT LENGTH DEFAULT DEFINITION RANGE

XWl Word 0 Left window boundary +/-32767
(user coordinates)

YWl Word 0 Bottom window boundry +/-32767
User coordinates)

XW2 Word 767 Right window boundary +/-32767
(user coordinates)

YW2 Word 479 Top window boundry +/-32767
(user coordinates)

10.3.24 SET CURRENT OPERATING POINT -- SETCOP

SETCOP defines the current operating point. The current operating point
is the last point referenced during a primitive operation. The current
operating point may be considered analogous to the position of the pen
carriage on a plotter.

Note 1: The COP is initialized to 0.0
Note 2:The COP may exceed the window boundaries.

MNEMONIC: SETCOP FUNCTION NUMBER: 23

ARGUMENT LENGTH DEFAULT DESCRIPTION
XCOPW Word None COP X value
YCOPW Word None COP Y value

RANGE
User coordinates
User coordinates

10.3.25 INQUIRE CURRENT OPERATING POINT -- INQCOP

INQCOP returns the current operating point in the function packet.

MNEMONIC: INQCOP

ARGUMENT LENGTH
XCOPW Word

Preliminary

FUNCTION NUMBER: 24

DEFAULT DESCRIPTION
None COP X value

RANGE
User Coordinates

CRT Graphics Driver 10-15

YCOPW Word None COP Y Value User Coordinates

10.3.26 SET A PIXEL - SETPIXEL

10.3.27 INQUIRE A PIXEL -- INQPIXEL

10.3.28 DRAW A VECTOR -- SETVEC

SETVEC draws a vector from the current operating point to a specified
point. If all or a portion of the vector lies outside the window
boundaries, it will be clipped and only the portion within the window will
be displayed.

MNEMONIC: SETVEC FUNCTION NUMBER: 27

ARGUMENT LENGTH DEFAULT DESCRIPTION RANGE
xw Word None Vector end point User coordinates
YW Word None Vector end point User coordinates

Note: Following SETVEC the COP is repositioned to XW,YW

10.3.29 FILL A RECTANGULAR AREA -- BLKFIL

BLKFIL fills a rectangular area defined by the current operating point and
a point in user coordinates. If the fill area exceeds the window boundary,
it will be clipped and only the region within the window will be filled.

MNEMONIC: BLKFIL

ARGUMENT LENGTH
XW Word
YW Word

Preliminary

FUNCTION NUMBER: 28

DEFAULT DESCRIPTION
None Fill X Boundary
None Fill Y Boundary

RANGE
User coordinates
User coordinates

CRT Graphics Driver 10-16

I
"\

10.3.30 DRAW A CHARACTER STRING -- SETCHR

SETCHR draws a character string from the current operating point in a
direction specified in the graphics control word. If the string exceeds
the window boundaries it will be clipped. The string is defined as a one
word byte count followed by that number of bytes.

MNEMONIC: SETCHR FUNCTION NUMBER: 29

ARGUMENT LENGTH DEFAULT DESCRIPTION RANGE

STRNGPTR Long None Pointer to string 0 ... $FFFFFF

Note: Following SETCHR the COP is repositioned to the lower left corner of
the character position following the last character printed.

10.3.31 CLEAR THE WINDOW -- CLRWIN

CLRWIN clears the window by using the inverse of the fill word.

CLRWIN repositions the COP to 0,0 in device coordinates.

MNEMONIC: CLRWIN

ARGUMENT LENGTH
None

FUNCTION NUMBER: 30

DEFAULT DESCRIPTION RANGE

10.3.32 DRAW A BOX AROUND THE WINDOW -- FRAME

FRAME draws a box around the window. FRAME does not affect the position
of the cup.

Preliminary CRT Graphics Driver 10-17

MNEMONIC: FRAME

ARGUMENT LENGTH
None

FUNCTION NUMBER: 31

DEFAULT DESCRIPTION

10.3.33 DRAW AN ELIPSE -- SETELIPS

RANGE

SETELIPS draws an elipse centered at the COP. The X and Y radii of the
elipse are to the distance betweent he COP X and Y values and the X and Y
values supplied as arguments to the function call. The maximum X or Y
radius is 256 pixels!

MNEMONIC: CIRCLE

ARGUMENT LENGTH DEFAULT

xw
YW

Word None
Word None

FUNCTION NUMBER: 32

DESCRIPTION

Circumferential point
Circumferential point

RANGE

User coordinates
User coordinates

NOTE: SETELIPS does not effect the COP.

10.3.34 SCROLL WINDOW CONTENTS WINDOW -- SCRLWIN

SCRLWIN scrolls the contents of the window by distance between the COP and
a point passed as arguments.

MNEMONICS: SCRLWIN

ARGUMENT LENGTH DEFAULT

1
2

Word None
Word None

Preliminaa:y

FUNCTION NUMBER: 33

DESCRIPTION

X coordinate
Y coordinate

RANGE

+/-32767
+/-32767

CRT Graphics Driver 10-18

10.4 ERROR MESSAGES

Error messages from the graphics driver are returned in D7.B and follow
the conventions for device drivers under the I/O manager.

No error = 0

Unsupported entry = 6X

Open error = 11 no available windows
12 parameter error in DIB

Function error = ~20 + FUNCTION NUMBER

Preliminary CRT Graphics Driver 10-19

Preliminary CRT Graphics Driver 10-20

11.0 SYSTEM SERVICES

11.1 ISSUING SYSTEM CALLS (SC)

All system calls are performed by a system call (TRAP #0) instruction
followed by a routine number word. CS-OS automatically vectors the call
to the appropriate address. The SC handler saves the contents of all the
registers not explicitly changed by the specific system function.

Since each CS-OS routine call is done in the same way, TRAP #0 with a
routine number, they can be made macros and used like new instructions.
For example, CS-OS has a routine to print a message from an open file. It
would be called as follows:

TRAP #0
DC.W 18

call CS-OS
PRTMSG is no. 18

A macro could be written:

PRTMSG MACRO
TRAP #0
DG.W 18
ENDM

so that whenever a message is to be printed, a PRTMSG instruction can be
given. CS-OS was written with the express purpose of providing a list of
such useful "extended instructions."

Using the system call mechanism, up to 65536 different system calls are
possible. Programs that use TRAP #0 instructions must be modified to
avoid the first 69 vectors, or CS-OS routines will be called with
unpredictable results.

11.2 SC ROUTINE INDEX

The following table lists the GS-OS system routines by their number. See
the following section for a description of each routine.

1 reserved
2 reserved

Preliminary System Services 11-1

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

reserved
reserved
OPEND
reserved
reserved
GETDR
PUTDR
reserved
CHAIN
reserved
WARMST
LOADB
reserved
NXTOK
GTCMD
PRTMSG
unused
FMTS
CMWC
SECSIZ
GETT IM
SETT IM
GETPCB
GIVPCB
GSTAT
SETPRI
DELAY
WAKEUP
unused
unused
unused
unused
unused
unused
unused
unused
unused
unused
unused
unused
unused
unused
unused
unused
unused
unused
unused
unused
unused

Preliminary

open directory

get an FIB from directory
update an FIB in directory

chain in a new program

warm restart of system
load a binary-format file

parse a token from input line
get a command line
print a message

format a filename string
string compare with wildcards
access DSKTAB entry for drive
get the current time-of ·day/date
update the time-of-day/date
allocate PCB to task (start task)
deallocate PCB (kill task)
get data from task PCB
change task priority
set PCBDEL value in PCB (suspend task)
clear PCBDEL value (resume task)

System Services 11-2

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

GBASPTR
SETCRTCR
INQCRTCP
unused
unused
unused
AFRETAB
RFRETAB
reserved
reserved
reserved
reserved
ACQDIR
RELDIR
CLOSED
unused

get the starting address of system common
set CRT control register
inquire CRT control register

acquire the free-table resource
release the free-table resource

acquire a disk directory
release a disk directory
close a disk directory

to be documented
to be documented

The remainder of this chapter describes the TRAP #0 services handled by
the system call handler.

11.3 COMMAND-PARSING ROUTINES

16 NXTOK

This routine breaks up a command line into "tokens."
substring of the command line which is treated as a unit.
the following tokens:

A token is a
CS-OS defines

NAME: A name is a string of characters which begins with an alphabetic
character and contains only alphanumeric characters (no imbedded spaces).

NAME WITH WILD-CARD CHARACTERS: A name which may include the special
characters "~':" and "? 11 •

NUMBER: A string of digits which may be decimal or hexadecimal.
Hexadecimal numbers must begin with a dollar sign ($).

DELIMITER: One of the special characters defined by CS-OS. This includes
the period (.), comma (,), colon (:), dollar sign ($), equals sign (=),
semicolon(;), and the arithmetic symbols+,-, and I .

CARRIAGE RETURN: The ASCII carriage return character (OD hex).

Preliminary System Services 11-3

ERROR: A token not falling into one of the above classes.

NXTOK uses system common for its parameters. Scanning the command line
begins at the character whose address is in CUCHAR. The address of the
first character of the token is returned in DESCRA. Note that spaces are
not part of any token. Spaces are skipped over by NXTOK unless they are
imbedded in a token. The count of the number of characters in a token is
returned in DESCRC. The system common locations RC and CLASS return the
classification of the token as follows:

NAME RC=Ol CLASS=02
NAME (WCRD) RC=02 CLASS=02
NUMBER RC=03 CLASS=02

DELIMITER RC=ASCII code of character CLASS =04

CARRIAGE RET. RC=OD hex CLASS=OD hex

ERROR RC=OO CLASS=OO

CUCHAR is returned pointing one character beyond the end of the present
token. If the token is a number (RC=03), then its binary value is
returned in the system common location VALUE. NXTOK will automatically
convert unsigned decimal or hexadecimal numbers into binary form. The hex
numbers must have a leading dollar sign ($). NXTOK will trap numbers that
are too large (> 32 bits) as errors.

Example of use of NXTOK:

command line='LOAD l:MYFILE.EXT' carriage return

first token='LOAD'
second token='l'
third token=' : '
fourth token='MYFILE'
fifth token='.'
sixth token='EXT'
seventh token=c.r.

RC=Ol, CLASS=02
RC=03, CLASS=02, VALUE=OOOOOOOl
RC=3A, CLASS=04
RC=Ol, CLASS=02
RC=2E, CLASS=04
RC=Ol, CLASS=02
RC=OD, CLASS=OD

11.4 FILENAME FORMATTING

20 FMTS

This routine formats a filename from the input form which may vary in
length to the fixed internal form. It also handles the expansion of
widecard characters. The calling sequence puts the "from" address into

Preliminary System Services 11-4

register AO and the "to" address into register Al. A byte count is passed
in register DO. The from-address is typically the start of a token in the
command line. The to-address is typically the FCBNAM field of an FCB.
The byte count is the total length of the name; the sum of the length of
the three tokens (name, . , ext) which comprise it. FMTS expands the
wildcard character "*" into a string of "?" of the proper length. FMTS
returns a condition byte in register DO as follows:

DO.B=OO unambiguous name
DO.B=Ol ambiguous name (wildcards found)
DO.B=02 bad name (error)

Example of the use of FMTS:

CMDLIN DC.B 'ABC?.*'

LEA FCB+FCBNAM,Al
LEA CMDLIN,AO
MOVEQ #6,DO
FMTS

length=6 characters

point to FCB name field
point to command line
set length
format name

at this point, DO.b=Ol and the name field of the FCB contains

ABC? . ? ? ? where " " indicates a space

21 CMWC

This routine compares strings skipping over the wildcard character "?"
which matches any character, including a space, when it occurs in the
nfrom" string. Register AO points to the "from" string, while register Al
points to the uto" string. Register DO contains a byte count. Strings
with up to 255 characters may be compared. A string terminator (04 hex)
in either string terminates the comparison at that point. The results of
the comparison are returned in the condition codes.

11.5 DIRECTORY-HANDLING ROUTINES

5 OPEND

This routine accesses the directory space on a particular disk and returns
a pointer to the first FIB on the disk. It is called with register A6
pointing to an FCB which has the drive number set up in FCBDRV and 1 DSK 1 or
'FDS' in FCBGDT. The FCBDBA must point to a buffer large enough for one
disk sector. The status (FCBSTA) is returned as follows:

Preliminary System Services 11-5

OO=good
Ol=end of directory found
>l=error condition valu·e

If the status is good, the buffer (FCBDBA) contains the first sector of
the directory from.the indicated disk and FCBIND is initialized to the
start of the first FIB. It is up to the user to check that the FIB is not
a deleted file. This is done by looking for a space (20 hex) in the first
byte of FIBNAM. Hence, if the index register points to an FCB which has
FCBGDT, FCBDRV, and FCBDBA properly set, the following code will check for
a valid FIB entry.

*

OPEND
TST.B FCBSTA(A6)
BNE ERROR

MOVEA.L FCBIND(A6),Al
CMPI.B tF' -',(Al)
BEQ NOGOOD

open directory
good status?
no, error!

point to FIB
is first char. blank?
if so, not valid

Note: GCBSTA=Ol indicates a totally empty disk.

8 GETDR

This routine gets subsequent directory entries from a disk after OPEND has
been used. Each call to GETDR will move the pointer FCBIND to the next FIB
in the sector buffer. GETDR automatically reads new directory sectors as
necessary until the end of the directory is encountered. The calling
sequence for GETDR is the returned in FCBSTA.

9 PUTDR

This routine i.s used to put a new FIB into a disk directory. It assumes
that OPEND and GETDR have been used to find a spot for the new FIB where it
will overlay either a deleted FIB or the next unused FIB on the disk. It
assumes that the necessary file specification has been placed into the FCB
(FCBNAM, FCBTYP, FCBACS, FCBFTS, FCBLTS, and FCBNMS) and register A6 is
pointed to the FCB. PUTDR will copy the FIB entries from the FCB to the
disk directory location pointed to by FCBIND. Status information is
returned in FCBSTA.

66 CLOSED

This routine closes and releases the directory previously opened with an
OPEND SC. If the directory is not closed, further access to that
directory is blocked. CLOSED is called with register A6 pointing to the
same FCB that was used for the OPEND SC.

Preliminary System Services 11-6

11.6 INITIALIZATION AND WARMSTART

13 WARMST

This routine returns control to CS-OS from a running program. WARMST will
close all open files on the FCB chain, clear the free-space entries in
system common, and prompt for a new command. WARMST only affects the
SYSTEM task, all other tasks will be unaffected. (Unless those tasks are
working on open files. Programs called from the SYSTEM task can use a
simple RTS (return-from-subroutine) instruction to return to the system.
This will not affect any open files.) WARMST does not change any device
assignments, SET operations, or the TIME values. It also does not affect
any device monitors.

11.7 DISPLAY CONTROL

Video Display Control

54 SETCRTCR

This routine loads the contents of DO.B into the CRT control register.
The bits on the one-byte field have the following significance:

BITO
BITl
BIT2
BIT3
BIT4-7

55 INQCRTCR

PAGE SELECT
NOT USED
INVERSE VIDEO
VIDEO BLANKING
NOT USED

O=PAGE O; l=PAGE 1

O=NORMAL; l=INVERSE
O=BLANK; l=NORMAL

INQCRTCR returns the one-byte value of the CRT control register in DO.B
(See above).

11.8 UTILITY SYSTEM CALLS

17 GTCMD

This routine accepts a command line from the console or and open SUBMIT
file. If in a SUBMIT file, GTCMD reads characters from the file and

Preliminary System Services 11-7

expands any macro .parameters. If not in a SUBMIT file, the user is
prompted and a new line may be typed in. GTCMD passes the line directly to
NXTOK, so on return from GTCMD, the first token on the line has been
parsed. If the user desires to back up to the start of the line, set
CUCHAR=DESCRA in system common.

18 PRTMSG

This routine prints a string on the
pointed to the start of the string.
carriage return, a new string is issued.
hex, no linefeed is issued.

22 SECSIZ

console device. Register A6 is
If the string terminates with a
If the string terminates with 04

This routine returns in register DO the size of the sector in bytes.

52 GBASPTR

This routine returns the starting address of system common in register AS.
This is needed by those programs that must examine variables in system
common such as the "SET" variables.

11.9 PROGRAM CHAINING

11 CHAIN

This routine loads a new program file into memory and starts executing it.
It uses LOADB to bring in the new file. CHAIN is called with register A6
pointing to an FCB with the desired FCBDRV, FCBNAM, etc. CHAIN moves the
data from the user FCB into a system space so that the new file may overlay
the user FCB memory. If there was some error, CHAIN will issue an error
message and return to the system for a new command. If the file to be
CHAINed had no transfer address, this will be flagged as an error. If
there was no error, the new file will begin execution at its transfer
address.

14 LOADB

This routine loads a binary-format file into memory. The file type
(FIBTYP) must be 00 or 01. If it is not, LOADB will issue an error message
and return without changing memory. LOADB expects register A6 to point to
an FCB with FCBGDT='DSK' or 'FDS', FCBDRV, FCBNAM set to the desired file
specification, FCBDBA = address of a sector-long buffer, and FCBDBL =

Preliminary System Services 11-8

length of sector. If an error condition is encountered while reading in
the new file, LOADB will close the file and return to the system. If the
file had a transfer address, it will be stored in the location VALUE in
system common. If there was no transfer address, VALUE will be zero.

11. 10 TIME OPERATIONS

23 GETIIM

This system call retrieves the time-of-day and date information from the
system and returns it in registers Dl.L and D2.L. Each register uses the
low-order three bytes only, with the high-order byte undefined. Within
each register, the time values are formatted as BCD-encoded bytes (except
for the day-of-year, which is 2 bytes). Register Dl.L contains the
hours:minutes:seconds, while register D2.L contains the day-of-year/year.
Hence, if the current time is 02:45:10 0355/80, then the registers will
contain:

Dl.L = xx024510 D2. L = xx035580

24 SETIIM

This system call takes the current values in registers Dl.L and D2.L and
uses them to update the current time-of-day and date in the system. The
register contents should be formatted as shown in GETIIM above. SETIIM
does no error checking for nonsense values.

11.11 MULTITASK SYSTEM CALLS

There are 6 system calls devoted to task control functions. Most require
a PCB number in register DO. B as a calling argument. The PCB number
identifies the task by providing internal addressing to the PCB allocated
to the task. The user should normally not try to directly address a PCB.

25 GETPCB

This system call acquires a PCB and assigns it to a task. GETPCB starts
all tasks under CS-OS. The desired task name is passed in registers Dl.L
and D2.L. The task's priority is passed in register DO.B. The starting

Preliminary System Services 11-9

address for the task is passed in register A6. GETPCB returns status in
DO.B and the PCB-number allocated to the task in Dl.B. The status can
take on the following values:

00 =good
01 = no available PCBs (the task did not start)
FF = duplicates an existing task name (did not start)

The value in Dl.B is valid only if the status is 00. Otherwise, the task
did not actually start. An example of how a task might be started under
CS-OS is illustrated below.

LOOP MOVE.L #'NEWT' ,Dl
MOVE.L #'ASK ',D2
MOVE.B #100,DO
LEA.L TASKCD,A6
GETPCB

name of task is NEWTASK

TST,B DO
BNE.S LOOP

*
MOVE .B Dl ,MYPCB

priority is 100
starting address
start task
good status?
no, try again

save PCB number

NEWTASK is placed on the ready queue and will run when its time comes.
Note that GETPCB affects only registers DO and Dl.

26 GIVPCB

This system call deallocates a PCB and thus "kills" the task associated
with it. GIVPCB is called with the PCB-number of the task to be killed in
register DO.B (if DO.B=O, then kill running task). This PCB must be
either running or on the ready-queue. It cannot hold any resources
(PCBACQ nonzero). GIVPCB returns a status byte in DO.B. The values
returned by GIVPCB are:

00 =good
01 = PCB-number invalid
02 = PCB not running or on ready-queue
03 = PCBACQ nonzero

If GIVPCB returns nonzero status, the task still exists. Note: It is
possible for a task to kill itself, in which case GIVPCB does not return
but instead dispatches a new task to run. GIVPCB affects only register
DO.

27 GSTAT

This system call returns information from the PCB whose number is passed
in DO.B. If DO.B is zero, GSTAT returns information on the
currently-running task PCB, regardless of its actual number. (Note:

Preliminary System Services 11-10

PCB-1 is normally the "idle" task and PCB-2 is the SYSTEM task.) GSTAT
returns the following information:

DO.B
Dl.L, D2.L
D3.L, D4.L
D5.B
A5

task priority
task name
task time-of-generation (in GETTIM format)
task status
address of "token-procassing" variables in PCB
(see CUCHAR description)

If the PCB-number specified is invalid, GSTAT returns task status (D5.B)
as zero. (PCB not allocated.)

28 SETPRI

This system call changes the priority value of the task whose associated
PCB-number is passed in DO.B. If DO.B is zero, SETPRI will use the
currently-running PCB regardless of its actual PCB-number. The priority
value desired is passed in Dl.B.

29 DELAY

This system call suspends the execution of a task for a specified number
of time-slices. DELAY is called with the PCB-number of the desired task
in DO.B. If DO.B is zero, the currently-running task will be used
regardless of its actual PCB-number. The desired number of time-slices to
delay is passed in Dl. L. DELAY requires that the task to be delayed have a
name (so that "idle" cannot be delayed). DELAY does not change any
registers.

30 WAKEUP

This system call clears the PCBDEL field in the PCB whose PCB-number is
passed in DO.B. If DO.B is zero, currently-running task will be used
regardless of its actual PCB-number. WAKEUP overrides DELAY and the task
associated with the PCB will resume its place on the ready-queue (or
device queue). WAKEUP changes no registers.

11. 12 SYSTEM MONITORS

There are a number of resident monitors that the system uses that are
available to the user. They protect the free-space table and free-space
sector, the CON and LPT devices for long-term use and the disk
directories.

Preliminary System Services 11-11

58 AFRETAB

This monitor acquires the free-space table and the free-space sector. It
is called with the device number in DO.B. If the resource is available it
acquires it and returns, otherwise the calling process is placed on the
FRETABQ(drvnum).

59 RFRETAB

This monitor releases the free-space table and the free-space sector. It
is called with the drive number in DO.B. It releases the resource and
signals on the FRETABQ(drvnum).

64 ACQDIR

This monitor acquires the directory of a particular drive to prevent
improper processing of the directory. It is called with an FCB with
FCBDRV containing the drive number. If the directory is available ACQDIR
acquires it and returns, otherwise the calling process is placed on the
DIRQUE(drvnum).

65 REI.DIR

This monitor releases the Directory of a particular drive and signals on
the DIRQUE(drvnum). It is called with an FCB with FCBDRV containing the
drive number.

11.12.1 EXAMPLE OF A SIMPLE MONITOR

The following example illustrates how simple an CS-OS monitor can be. The
monitor has three entry points: INITIT initializes the state variable and
queue, GETIT acquires the resource controlled by the monitor, and GIVEIT
releases the resource. It is vital that INITIT be called before any task
tries to use the resource. Failure to initialize the queue and state
variable will produce unpredictable system response. Once initialized,
the monitor entry points GETIT and GIVEIT control access to the resource.
A task requiring the resource calls GETIT. Upon return from GETIT, the
task has exclusive use of the resource. No other task can interfere with
the use of the resource until this task calls GIVEIT which releases the
resource. It is important that tasks release resources they no longer
need.

Note the use of the four monitor TRAPS in building up monitors. ENTERMON
and EXITMON enclose the GETIT and GIVE IT code. INITIT need not be
enclosed, since initialization is done before any task needs the resource

Preliminary System Services 11-12

controlled by this monitor. The critical parts of a monitor are its state
variable and queue header. There could be more than one acquire or
release entry, or multiple state variables and queue headers could exist.

* * EXAMPLE OF AN CS-OS MONITOR
*
STATE DS.W 1
HEAD DS.L 1

* * INITIALIZATION ENTRY POINT
* INITIT CLR.W STATE

CLR.L HEAD
RTS

*
*

STATE VARIABLE
QUEUE HEADER

INITIALIZE VARIABLES

* ACQUIRE-RESOURCE ENTRY POINT
* GETIT ENTERMON

TST.W STATE
BEQ.S GOTIT

*

*

LEA.L HEAD,A6
WAIT

GOTIT MOVE.W$FF,STATE
EXITMON

*
*

RTS

START CRITICAL SECTION
RESOURCE IN-USE?
NO

YES, CALLER MUST WAIT ON QUEUE

SET IN-USE
END CRITICAL SECTION

* RELEASE-RESOURCE ENTRY POINT
* GIVEIT ENTERMON

CLR.W STATE
LEA.L HEAD,A6
SIGNAL
EXITMON
RTS

ENTER CRITICAL SECTION
NOT IN-USE

GET NEXT TASK ON QUEUE
END CRITICAL SECTION

11.12.2 EXAMPLE OF A MORE COMPLEX MONITOR

The following example illustrates the use of CS-OS monitor constructs to
control a circular-buffer pool. Here there is one state variable FULL,

Preliminary System Services 11-13

but there are two queues VACANT and OCCUPIED. The VACANT queue holds
tasks waiting to put bytes into the buffer, OCCUPIED holds tasks wishing
to remove bytes from the buffer pool. The resource consists of a buffer
CIRCLE, and head-pointer TOP, and a bottom-pointer BOTTOM. The entry GET
places the byte passed in DO.B into the circular buffer, while entry GIVE
returns the next byte from CIRCLE in register DO.B. In this example, GET
is the acquire-resource entry and GIVE is the release-resource entry.

* MONITOR TO CONTROL CIRCULAR BUFFER POOL
* CIRCLE DS.B 80
TOP DS.L 1
BOTTOM DS.L 1
FULL DS.W 1
VACANT DS.L 1
OCCUPIED DS.L 1

* * INITIALIZATION ENTRY

INITBUF CLR.W FULL

*
*

CLR.L VACANT
CLR.L OCCUPIED
LEA.L CIRCLE,A6
MOVE.L A6,TOP
MOVE.L A6,BOTI'OM
RTS

* ACQUIRE-RESOURCE ENTRY POINT

* GET

*

*

ENTERMON
MOVE.W FULL,Dl
CMPI.W #80,Dl
BNE.S NOWAIT

LEA.L VACANT,A6
WAIT

NOWAIT MOVEA.L BOTTOM,Al
MOVE.B DO, (Al)+
CMPA.L #CIRCLE+80,Al
BLT. S NOWRAP

*

CIRCULAR STORAGE BUFFER
HEAD-POINTER TO CIRCLE
TAIL-POINTER TO CIRCLE
STATE VARIABLE
QUEUE HEADERS

INITIALIZE VARIABLES

SET POINTERS
CIRCLE IS EMPTY

START CRITICAL SECTION
GET STATE VARIABLE
BUFFER FULL?
NO

YES, MUST WAIT

GET BOTTOM POINTER
STORE BYTE INTO BUFFER
WRAP AROUND?
NO

LEA.L CIRCLE,Al YES

* NOWRAP MOVE.L Al,BOTTOM
ADDQ.W #1,FULL
LEA.L OCCUPIED,A6
SIGNAL

Preliminary

NEW BOTTOM POINTER
BUMP COUNT

SIGNAL THAT DATA rs AVAILABLE

System Services 11-14

*
*

EXITMON
RTS

* RELEASE-RESOURCE ENTRY POINT
* GIVE ENTERMON

TST.W FULL
BNE.S HAVDAT

* LEA.L OCCUPIED,A6
WAIT

*
HAVDAT MOVEA.L TOP,Al

MOVE.B (Al)+,DO
CMPA.L #CIRCLE+80,Al
BLT.S NOWRAP2

*
LEA.L CIRCLE,Al

* NOWRAP2 MOVE.L Al,TOP
SUBQ.W #1,FULL
LEA.L VACANT,A6
SIGNAL
EXITMON
RTS

END CRITICAL SECTION

START CRITICAL SECTION
ANY DATA IN CIRCLE?
YES

NO, MUST WAIT

GET POINTER
GET DATA BYTE
WRAP AROUND?
NO

YES

NEW POINTER
ONE FEWER BYTE IN CIRCLE

SIGNAL BUFFER AVAILABLE
END CRITICAL SECTION

Note that this straightforward monitor completely solves the
producer/consumer problem. The four monitor primitives ENTERMON,
EXITMON, WAIT, and SIGNAL are sufficient to solve any task
synchronization problem in CS-OS. They are also capable of providing
inter-task communication, although the mailbox mechanism described in the
next example makes task-to-task communication simpler.

Preliminary System Services 11-15

Preliminary System Services 11-16

A.O APPENDIX: AUXILLARV SOFTWARE

Several auxillary files have been created to aid the user in preparing Computer
System Programs. These files can be broken down into the following categories:

1. MACRO and EQUATE files to be merged in with user source code at assembly
time using the include option.

These files may be distinguished by their names which will terminate
with a ".INC" for example:

TOOLKIT.INC, - a collection of system calls.

2. Test programs and utilities which are in source or load module form or
both.

These files may be distinguished by their names which will terminate
with a ".SRC", ".SMP" or a ".BIN" for SOURCE SAMPLE or OBJECT MODULES
respectively. For example:

GRTESTOO.SMP - a sample graphics program

MENU.BIN - a menu program

The following is a discussion of the auxillary files for the Computer System.

A.1 TOOLKIT.INC -- A COLLECTION OF SYSTEM CALL MACROS

The TRAP #0 system calls described earlier in the documentatio may be accessed
using this MACRO collection. This collection contains MACROS for individual
system calls as well as a general purpose system call MACRO to perform all TRAP #
calls.

Preliminary Auxillary Software A-1

Note: When performing the TRAP flO system calls described earlier,
precede the call with an "@". For example @~K.

A.2 IOMCLBXX.INC·A COLLECTION OF MACROS TO PERFORM INPUT/OUTPUT CALLS

The MACROS in this collection are for use in passing information to the I/0
manager. DEVICE INFORMATION BLOCK (DIB) equates are included.

The SYSTO MACRO is used to perform the OPEN CLOSE READ, WRITE, AREAD, AWRITE and
cancel operations to device drivers with the following syntax:

SYSIO <OPCO>, <#LUN>, <CBPTR>, <ERRP>

Where <OPCO> is one of the following:

Open close read write aread awrite function

<flLUN> in a logical unit number

DEVICE INFORMATION BLOCK (DIB),

FUNCTION PACKET (FPKT) or

DATA TRANSFER CONTROL BLOCK (DTCB)

<ERRPTR> is an error branch pointer

The SYSIOB MACRO is used to perform byte I/O operations with device drivers via
the I/O manager with the following syntax:

SYSIOB <OPCO>, <DIBBIO>

Where <OPCO> is one of the following:

BREAD WBRIT OR BTEST

<DIBBIO> is a long word table offset supplied in the DIBBIO field
by the I/O manager at open time.

The DIBGEN MACRO is used to aid users in the preparatio of the device
information block to open a device.

DIBGEN DIBVOL,DIBDTD,DIBTRN,DIBOPT,DIBFCN

Preliminary Auxillary Software A-2

See DOCUMENTATION on DEVICE INFORMATION BLOCK (DIB) for
explanation of the above fields.

A.3 MNEMONIC INCLUDE FILES

Several MNEMONIC equate tables have been creating function packets for the vari
ous device drivers--these include--

FDMCLBXX.INC floppy disk driver equates

GRMCLBXX.INC graphics driver equates

RSMCLBXX.INC RS23 driver equates

PRMCLBXX.INC printer driver equates

A.4 SAMPLE APPLICATION PROGRAMS

Several sample application progrms have been prepared to illustrate the use of
the various drivers via the I/O manager. These include:

GRTESTXX.SMP A sample graphics program

PRTESTXX.SMP A sample printer program

Preliminary Auxillary Software A-3

Preliminary Auxillary Software A-4

GC22-9200 READER'S
COMMENT
FORM

This form may be used to communicate your views about this publication. They will be sent to the author's department for
whatever review and action, if any, is deemed appropriate.

IBM Instruments, Inc. shall have the nonexclusive right, in its discretion, to use and distribute all submitted information,
in any form, for any and all purposes, without obligation of any kind to the submitter. Your interest is appreciated.

Note: Copies of IBM Instruments, Inc. publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance in using your IBM Instruments, Inc. product to your IBM
Instruments, Inc. representative or to the IBM Instruments, Inc. office serving your locality.

Is there anything you especially like or dislike about the organization, presentation, or writing in this manual? Helpful
comments include general usefullness of the book; possible additions, deletions, and clarifications; specific errors and
omissions.

Page Number: Comment:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.

GC22-9200

Reader's Comment Form

Please do not staple Fold and Tape ------------- --------------------------------·

IBM Instruments, Inc.
P.O. Box 332
Danbury, Ct. 06810

Business Reply Mail
No postage stamp necesury if mailed in the U.S.A.

Postage witl be paid by:

IBM Instruments, Inc.
P.O. Box 332
Danbury, Ct. 06810

Please do not staple

First Class
Permit 40
Armonk
New York

Fold and tape

6092396

GC22-9200

IBM Instruments, Inc.
P.O. Box 332
Danbury,Ct. 06810

' --

