
y :.:~--=- Instruments
- - - --- Inc --------·- .

PRELIMINARY

Computer System

Operating System Reference Manual

Part 1. Operating System

Release 1.0

GC22-9199

•

Preliminary Edition Only (February 1983)

The contents of this edition are preliminary and subject to change.
Changes will be included in subsequent Technical Newsletters or editions
of this publication.

Requests for copies of IBM Instruments, Inc., publications should be made
to your IBM Instruments, Inc., representative or by calling, toll-free,
800-243-3122 (in Connecticut, call collect 265-5791).

A form for reader's comments is provided at the back of this publication.
If the form has been removed, comments may be addressed to IBM
Instruments, Inc., Department 79K, P.O. Box 332, Danbury, CT 06810. IBM
Instruments, Inc. may use or distribute any of the information you supply
in any way it believes appropriate without incurring any obligation
whatever.

e Copyright IBM Instruments, Inc. 1982

00208830

01234567890

Preliminary CS Operating System Reference Manual ii

PREFACE

This manual
Instruments
appendix.

describes the operating system -- CS-OS -- of the IBM
Computer System. It consists of five chapters and an

• Chapter 1 -- "Introduction to the Operating System" -- describes the
operating system and the system commands used with it.

• Chapter 2 -- "Computer System Text Editor" -- describes the main
features of the text editor, including the various commands that can
be used to create and edit program and data files.

• Chapter 3 -- "Computer System Macro Assembler" describes the
instructions, instruction formats, addressing modes, and related
aspects of the two-pass macro assembler that runs under the operating
system.

• Chapter 4 -- "Linker, Locater, and Library Manager" -- describes the
three programs available to the user for the development of modular
code.

• Chapter 5 -- "CS-Debug" -- describes the special debugging utility
designed to run in the multitasking environment of CS-OS.

• Appendix -- "Error Messages" -- lists and defines the various error
messages that may be generated in the operation of CS-OS.

Related Publications:

Publications that discuss related aspects of the Computer System are:

Computer System Product Description, GC22-9183

Computer System BASIC Reference Manual, GC22-9184

Computer System Operating System Reference Manual
Part 2: Logical I/O and System Services, GC22-9200

Computer System Problem Isolation Manual, GC22-9192

Preliminary CS Operating System Reference Manual iii

CONTENTS

1.0 Introduction to the Operating System 1-1
1.1 General Information 1-1

1.1.1 Command Structure 1-1
1.1.2 Naming Files 1-1

1.1.2.1 Filename Format 1-2
1.1.2 .. 2 Entering Filenames 1:..3

1.1.3 Wildcard Feature 1-4
1.1.4 Ctrl-Alt-Del Function 1-4
1.1.5 Tasks and Multitasking 1-5

1.1.5.1 Predefined Tasks (System and Idle) 1-5
1.1.5.2 Task Priority, Task Status, and Task Interrupts 1-6

1.2 System Commands 1-7
1.2.1 User Transients 1-7
1.2.2 ATCHDEV (resident) 1-8
1.2.3 ATCHDRV (resident) 1-9
1.2.4 CLRDSPL (resident) 1-10
1.2.5 COPY (transient) 1-11
1.2.6 DELETE (resident) 1-14
1.2.7 DIR (resident) 1-15
1.2 .. 8 DISKCOPY (transient) 1-17
1.2.9 DISKUTIL (transient) 1-19
1.2.10 DTCHDEV (Resident) 1-20
1.2.11 DTCHDRV (Resident) 1-21
1.2.12 FORMAT (transient) 1-22
1.2.13 HELP (transient) 1-24
1.2.14 JUMP (resident) 1-25
1.2.15 KILL (resident) 1-26
1.2.16 LISTDEV (resident) 1-27
1.2.17 LOAD (resident) 1-28
1.2.18 PAGDSPL (resident) 1-29
1.2.19 PRI (resident) 1-30
1.2.20 RENAME (resident) 1-31
1. 2. 21 RESUME (resident) 1-32
1.2.22 RUN (resident) 1-33
1.2.23 SAVE (resident) 1-34
1.2.24 SECURE (resident) 1-35
1.2.25 SET (resident) 1-36
1.2.26 SHOW (resident) 1-38
1.2.27 SPOOL (resident) 1-39
1.2.28 SPOOLC (resident) 1-40
1.2.29 SPOOLQ (resident) 1-41
1.2.30 SUBMIT (resident) 1-42
1.2.31 SUSPEND (resident) 1-43

Preliminary CS Operating System Reference Manual iv

1.2.32 TASKS (resident)
1.2.33 TIME (resident)

2.0 Computer System Text Editor
2.1 Using The Text Editor
2.2 Editing Modes

2.2.1 Command Mode
2.2.2 Input Mode

2.3 Command Structure and Command Strings
2.4 The Escape and Backspace Keys
2.5 Editor Input and Output Commands
2.6 Editing Commands
2.7 Summary of Commands

3.0 Computer System Macro Assembler
3. 1 Introduction
3.2 Operating Instructions

3.2.1 Cross-referencing Program Labels with XREF
3.3 Instruction Formats

3.3.1 Statement Characteristics
3.3.2 Field Delimiters
3.3.3 Character Set
3.3.4 Statement Length
3.3.5 Label Field
3.3.6 Label Symbol
3.3.7 Opcode Field
3.3.8 Operand Field
3.3.9 Symbolic Terms
3.3.10 Numeric Terms
3.3.11 Expression Operators
3.3.12 Macro Call Argument Lists
3.3.13 Evaluation of Symbols and Expressions
3.3.14 Comment Field

3.4 Addressing Modes
3.4.1 Data Register Direct Addressing
3.4.2 Address Register Direct Addressing
3.4.3 Address Register Indirect Addressing
3.4.4 Address Register Predecrement Addressing
3.4.5 Address Register Postincrement Addressing
3.4.6 Address Register with Index Addressing
3.4.7 Absolute Short Addressing
3.4.8 Absolute Long Addressing
3.4.9 Program-counter Relative Addressing
3.4.10 Program-Counter-with-Index Addressing
3.4.11 Immediate Addressing
3.4.12 Special-Register Addressing
3.4.13 Register-list Addressing

3.5 Instruction Set Summary
3.6 Pseudo Instructions
3. 7 Macros

3.7.l Macro Prototype

1-44
1-45
2-1
2-1
2-3
2-3
2-3
2-3
2-4
2-4
2-7

2-14
3-1
3-1
3-1
3-2
3-3
3-3
3-3
3-4
3-4
3-5
3-5
3-5
3-5
3-6
3-7
3-7
3-7
3-8
3-8
3-8
3-8
3-9
3-9
3-9
3-9

3-10
3-10
3-10
3-11
3-11
3-12
3-12
3-12
3-13
3-17
3-22
3-23

Preliminary CS Operating System Reference Manual v

3.7.2 Example of a Macro Prototype
3.8 Interprogram Linkage

3.8.1 Common
3.8.2 Use of COMMON
3.8.3 Organization of the Common Block
3.8.4 Entry
3.8.5 External
3.8.6 Listing Output Format
3.8.7 Relocatable File Formats

4.0 Linker, Locater, and Library Manager
4.1 Section I. LINK

4.1.1 Description
4.1.2 Input Types
4.1.3 R~location
4.1.4 External References
4.1.5 Module and Library Maximums
4.1.6 Operating Instructions for LINK
4.1.7 Examples of LINKER Use

4. 2 Section II. LOCATE
4.2.1 Description
4.2.2 Operating Instructions for LOCATE
4.2.3 Output Filename
4.2.4 Format of CS-OS Binary Files

4.3 Section III. LIB
4.3.1 Description
4.3.2 LIB Commands
4.3.3 Operating Instructions for LIB
4.3.4 Examples of LIB Use

5. 0 CS-Debug
5.1 Introduction
5.2 Operating CS-Debug

5.2.1 Debugging Multiple-Module Programs

,\

5.2.2 Example of Setting up CS-Debug for a Multiple-Module
Program

5.3 CS-Debug Commands -- Syntax and Definitions
5.4 Summary of CS-Debug Commands
5.5 Register Display

5.5.1 Register Display Examples
5. 6 Memory Display

5.6.1 Memory Display Examples
5.7 Memory Change (Entering the Subcommand Mode)

5.7.1 Subcommand Mode
5.7.2 Memory Change Examples

5.8 Execution Control
5.8.1 Examples of Execution Control
5 . 8 . 2 Hard Copy

A.O Appendix: Error Messages
A.1 Processor Trap Handling
A.2 System Device Error Messages

3-23
3-24
3-25
3-25
3-26
3-26
3-27
3-28
3-31
4-1
4-1
4-1
4-1
4-2
4-2
4-3
4-3
4-4
4-7
4-7
4-7
4-8
4-8
4-9
4-9
4-9

4-10
4-11

5-1
5-1
5-1
5-2

5-3
5-3
5-5
5-6
5•7
5-8
5-8
5-9
5-9

s-10
5-10
5-11
5-11
A-1
A-1
A-2

Preliminary CS Operating System Reference Manual vi

A.3 CS-OS System Error Messages
A.4 Macro Assembler Error Messages
A.5 Link Error Messages
A.6 Locate Error Messages
A.7 Library Error Messages
A.8 Graphics Error Codes

A-3
A-6
A-6
A-8
A-8

A-10

Preliminary CS Operating System Reference Manual vii

Preliminary CS Operating System Reference Manual viii

1.0 INTRODUCTION TO THE OPERATING SYSTEM

The IBM Instruments Computer System has a disk-based multitasking
operating system -- CS-OS -- that supports standard peripherals such as a
line printer, CRT display, floppy disks, hard disks, and auxiliary
consoles.

This chapter is designed to get you started using CS-OS. It is neither a
tutorial on operating systems nor an exhaustive treatment of how to use or
modify the software, but it should tell you what you need to know to begin
working with the software.

1.1 GENERAL INFORMATION

1. 1.1 COMMAND STRUCTURE

Commands in CS-OS consist of a command name and optional parameters. Some
commands are resident in memory and will execute immediately; others are
transient (stored on disk) and must be loaded from disk before they are
executed. User-defined commands are invoked by entering their full names.
These command files must be binary type with transfer addresses (access
type 01).

Where CS-OS requires numeric values, either decimal or hexadecimal
notation may be used. Hex values must be preceded by a dollar sign ($).
The operator prompt is:

O>

The digit before the ">" symbol is the drive number of the default disk.

1. 1.2 NAMING FILES

A fully specified filename consists of four fields: A volume label, a
catalog name, a filename and an extension. When filenames are specified

Preliminary Introduction 1-1

in system commands, specific delimeters must be used to separate the
fields.

1.1.2.1 Filename Format

The standard filename format for use in system commands is either

<volume:><catalog.>filename.ext

or

<drive:><catalog.>filename.ext

where

volume

drive

catalog

is a field of one to six alphanumeric characters and is always
terminated by a colon. This field can be omitted, in which case
the default volume is used. A volume name cannot be a single
numeric digit.

is a single digit number corresponding to the last digit of the
disk device name. For drive #FDOO the drive number would be 0,
for #FDOl it would be 1, and so on.

is a field of one to eight alphanumeric characters (with the
leading character alphabetic) and is always terminated with a
period. This field can be omitted, in which case the default
catalog is used.

Note: For the current release of the operating system there is
no supprt for the catalog field; however, it is defined for use
in future releases. If specified as part of a command it will
be flagged as an error.

filename is a field of one to eight alphanumeric characters with the
leading character alphabetic. It is always followed by a period
and the filename extension.

ext is a field of one to three alphanumeric characters with the
leading character alphabetic.

EXAMPLES OF VALID FILENAMES

INPUT.TXT DOREEN! .REL Hl.H LINDAS.FIL

Preliminary Introduction 1•2

O:INPUT.TXT 1: INPUT. HEX O:INPUT2.TXT

123456:COLORS:BLUE.SRC CLYDE:TESTCASE.BIN

VOL7:Zl.HERRYPGM.REL POLLY.TEMPFILE.SRC

RESTRICTIONS ON THE USE OF FILENAMES FOR SYSTEM COMMANDS

1. The catalog name is not supported in this release of the operating
system. It should not be used in commands.

2. The volume field is presently used only in the COPY program. You
should use the drive number as a means of selecting diskettes in all
other system operations.

1. 1.2.2 Entering Filenames

To specify a file, give the disk drive number, filename, and extension.
The drive number is given as a decimal digit followed by a colon. The
following are examples of unique files:

O:INPUT.TXT l:INPUT.TXT !:INPUT.HEX O:INPUT2.TXT

The system maintains a default drive. If a file is on the default drive,
the drive number and colon may be omitted from the file specification.
Normally, the default drive is set to zero. Hence, the following two file
descriptors are identical:

O:MELS.BIN MELS.BIN

Using the SET command, the user may modify the default drive. Any drive
in the system may become the default drive.

Note that only alphanumeric characters may appear in filenames or
extensions. The following are invalid filenames:

l:TERRYSFILE.HEX
2:TEMP.FILE
0 TEST.TMP
BASIC+.BIN
EDITOR

Preliminary

(name more than 8 characters)
(extension more than 3 characters)
(colon missing after drive number)
(+ is a nonalphanumeric character)
(file extension missing)

Introduction 1-3

1. 1.3 WI LDCARD FEATURE

CS-OS permits manipulation of classes of files. The mechanism for forming
such classes is called wildcarding. Two wildcard characters perform
unique identification tasks. The asterisk (*) matches an entire string of
characters of arbitrary length. Since a complete filename consists of two
strings (a name and an extension) the wildcard filename*·* expresses all
possible filenames. The wildcard filename *.BLD expresses all filenames
with the extension BLD.

The second wildcard character is the question mark (?). This character
substitutes for any single character (including any blanks the system may
have incorporated to "fill out" the filename to it maximum legal length).
Hence, the filename TEST?.HEX is equivalent to TEST.HEX or TESTP.HEX or
TEST2.HEX. It is not equivalent to TESTING.HEX. The filename ~'r.~'r is
equivalent to????????.???.

The asterisk character c~··) can be used to match any remainder of a string.
When it is used in positions other than the first in a string, it is
equivalent to the number of "?" characters sufficient to fill out the
string (up to 8 for filenames, up to 3 for extensions). For example, the
following wildcard file spe.cifications match all files on the default
drive whose names begin with the letters "WILD" and whose extension begins
with the letter "T."

WILD*.T* WILD????.T* WILD????.T??

1.1.4 CTRL-AL T-DEL FUNCTION

There may be times when the user wishes to restart the system without
resetting it: a device may not be working, an erroneous command may have
been typed·, and so forth. CS-OS uses a three-key sequence as an abort
mechanism: Ctrl-Alt-Del. This set of keystrokes causes a restart that
closes any open files, flushes any pending I/O, prints the start-up
banner, and readies the system for new commands. Any pending SUBMIT file
is terminated.

WARNING: This abort function should be used sparingly.

Preliminary Introduction 1-4

1.1.5 TASKS AND MULTITASKING

A "task" (sometimes termed "process") is a program that is run under the
control of CS-OS. In fact, parts of CS-OS are themselves "tasks." Tasks
run concurrently: that is, they appear to share the resources of the
computer. (Such resources include the processor itself, console, memory
areas, disk files, etc.) Each task is associated with a data structure
called a Process Control Block (PCB), which contains fields that store
information about the task and provide the mechanisms for the support of
concurrency. Tasks call on the features of CS-OS to gain access to system
resources in a controlled manner. CS-OS schedules tasks so as to give
each a share of the computer's time and resources. Synchronization
mechanisms and intertask communication channels are provided through
system calls described elsewhere in this manual.

Each task in the system has an identifying name of up to 8 alphanumeric
characters. This name is the means for calling upon system tasks (by
means of system commands that will be described later in this chapter. No
two tasks in the system may have duplicate names. No wildcarding is
permitted in task names.

1.1.5.1 Predefined Tasks (System and Idle)

The task name SYSTEM is predefined. This task performs all CS-OS commands
and actually constitutes the "system" with which the user interacts. The
SYSTEM task begins running when CS-OS is started. The user may issue
commands to SUSPEND or change the priority of the SYSTEM task, but should
do so with care.

There is a second predefined task in CS-OS: the "idle" task. This task is
an exception to the rule that tasks have names. The "idle" task has no
name and does not appear in the TASKS display, but it is always in the
system. The "idle" task has the lowest priority possible -- it runs only
when all other tasks (including SYSTEM) cannot run for some reason. The
user cannot SUSPEND or KILL the "idle" task. There is no need to in any
case, since "idle" will not run if there are any other tasks that are
ready to run.

Preliminary Introduction 1-5

1.1.5.2 Task Priority, Task Status, and Task Interrupts

Each task has a priority value associated with it. The priority is a
number between 1 and 127, with the higher numbers representing tasks of
greater priority. Within CS-OS, tasks are ordered by priority, the higher
numbers run ahead of lower ones. Tasks of equal priority are scheduled on
a round-robin basis. A task's priority is set when the task is created,
but may be changed if desired. The priority of SYSTEM is 64, while the
priority of "idle" is 0.

Each task has an associated status byte. This byte indicates the current
status of the task and may take on one of the following values:

0 - No task (PCB is unallocated or task has been killed)
1 - Task is ready to run (on "ready queue")
2 - Task is delayed (SUSPENDed or DELAYed)
3 - Task is waiting for a resource (in a monitor)

The time -at which a task is created (as determined by the time-of-day
clock) is part of the task PCB. SYSTEM is always shown at the time that
CS-OS was started or restarted.

Tasks are switched on each real-time clock interrupt (every twentieth of a
second). A task switch could also occur when the running task must wait
for a system resource or I/O device. The highest-priority task.on the
ready queue (which could be the task that had been running) is dispatched
and the new task begins its execution. This task switching is transparent
to the user except for the time delays that become involved when more than
one task shares the computer. If a task has a priority greater than
SYSTEM (>64), then SYSTEM will run only when the higher-priority task is
waiting for some system resource or I/O device. This could make it appear
that SYSTEM is not running at all. Similarly, if a user's task has
priority lower than SYSTEM (<64), it may appear that the user task never
runs. Actually, the user task runs whenever SYSTEM must wait for a system
resource or I/O device. Task priorities must be chosen with care.

It is possible to delay a task (make it stay off the ready queue) for a
specified number of real-time clock "ticks." The SUSPEND command and the
DELAY system-call provide this facility. A SUSPENDed task will be placed
back on the ready queue after a specified number of "ticks." The RESUME
command and WAKEUP system call provide a means to immediately place a
SUSPENDed (or DELAYed) task back on the ready queue. These commands and

Preliminary Introduction 1-6

system calls give the user more flexibility in the control of task
execution.

Tasks are started up by using the RUN command with an initial priority.
The task priority can be changed at any time by using the PRiority
command.

1.2 SYSTEM COMMANDS

1.2. 1 USER TRANSIENTS

Any access-type 01 binary file can be executed directly as part of the
SYSTEM task. For example, if drive #1 has a program file called PGM.BIN,
then the program can be run with the command:

l:PGM

The system loads the transient file into memory and jumps to its transfer
address. (Invoking the program is thus equivalent to a LOAD command.) If
there is no transfer address, control returns to the system. Parameters
required by the user transient may be input on the same command line that
invokes it. A space, comma, or other nonalphanumeric delimiter must
separate the parameters from the file specification. For example,

!:COPY.BIN INPUT.TXT,MYVOL:OUTPUT.TXT

invokes the COPY program on drive 1 and specifies the input and output
files to be used. The COPY transient must parse the command line starting
with the delimiter.

Preliminary Introduction 1..:7

1.2.2 ATCHDEV (RESIDENT)

The ATCHDEV command attaches a device to an existing driver that is part
of the system. The format of the command is:

ATCHDEV device

where 'device' is the device name to be attached. The first character must
be a '#' to indicate a device name. The next three characters must match
the device driver name to which it will be attached. An error will occur
if the driver does not support additional devices. Upon successful
completion of the command, the list of attached devices is displayed via
the LISDEV command.

ERROR MESSAGES:

SYNTAX ERROR
INVALID COMMAND FOR DRIVER
DEVICE ATTACH ERROR

Preliminary Introduction 1-8

1.2.3 ATCHDRV (RESIDENT)

The ATCHDRV command attaches a device driver to the system by loading a
binary image file from disk and executing it. The file is assumed to
contain the device driver code. If no extension is specified in the
filename, the command assumes '.DVR'. The command examines register D7.B
on return for an indication of the driver's success at initialization. A
nonzero value indicates failure. The format of the command is:

ATCHDEV filename.ext

where 'filename.ext' is the name of the file containing the driver code.

ERROR MESSAGES:

DRIVER ATTACH ERROR
NO DRIVER INITIALIZATION ADDRESS

Preliminary Introduction 1-9

1.2.4 CLRDSPL (RESIDENT)

This command clears the display page of g:caphics memory. It should be
used with discretion. The format .of the command is:

CLRDSPL

P:reliminary Introduction 1-10

1.2.5 COPY (TRANSIENT)

The COPY program transfers data from one device or file to another. The
format of the command is:

COPY source,destination[;options]

where source and destination can be a devicP. specification (Part 2,
Section 1.2.5):

#device

or a file specification (Part 2, Section 1.2.4):

[volume:]filename.ext

In the case of a file specification, the volume identifier field is
optional. If omitted, the default volume identifier is used.

As an additional alternative, the drive number may be entered in place of
the volume identifier. In this case, the system looks for the volume
identifier of the disk mounted in the given drive. Currently 0 through 3
specify diskette drives, and 4 through 7 specify hard disk drives.
Directly accessing the disk drives through their device names (#FDOX or
#HDOX) is not accepted by COPY command.

The wildcard character asterisk (*), may be used within or in place of the
filename, the extension fields, or both. The wildcard feature may be used
only in a file-to-file copy. If both source and destination are files,
the following options may be implemented:

V verify the file contents of the destination diskette.

C compare files. A byte-by-byte comparison is made between the two
files specified.

The format of the output is:

RELATIVE
SECTOR

xxxxxxxx

FILE 1
OFFSET BYTE

xxxx xx

FILE 2
BYTE

xx

All values are printed in hexadecimal. If ten or more mismatches are
encountered, a mess~ge is printed and the file comparison is aborted.

Preliminary Introduction 1-11

When the destination of data is a device, the following keyboard control
characters are accepted:

Ctrl/Break -- quit
Ctrl/Numlock -- halt until any key pressed.

If the fields following the COPY command are omitted, copy will prompt the
user for the desired input, as shown in the following example:

COPY
CS/9000 COPY 1. 0 1/06/83
COPYRIGHT 1982 IBM INSTRUMENTS, INC.
ENTER SOURCE DEVICE OR FILE SPECIFICATION: *. SMP
ENTER DESTINATION DEVICE OR FILE SPECIFICATION: TEST:*. SRC
ENTER OPTIONS: V
COPY (Y /N/Q) RAMVOL: GRTEST02. SMP TO TEST : GRTEST02. SRC ? Y
FILE EXISTS: OVERWRITE (Y/N) TEST : GRTEST02. SRC ? Y
COPY (Y /N/Q) RAMVOL: PRTESTOO. SMP TO TEST : PRTESTOO. SRC ? Q

ANOTHER COPY ? N

This prompts all files with the extension .SMP on the default volume (here
it was RAMVOL) that is to be copied to the volume identifier TEST, with
the extension .SRC. If the file already exists on the destination
diskette, the user is asked whether it should be overwritten. Each file is
verified after it has been copied. Y =Yes, N =No, Q= Quit •

.
COPY l:SAMPLE.SRC,#PR

This copies the text file SAMPLE. SRC (file type 3) from the volume
identifier mounted in drive 1, to the printer.

COPY #CON,#SEROO

This transfers characters typed in from the keyboard, to the device
connected to the auxiliary port. The terminating character is CTRL-D (hex
04).

COPY #CON,TEST:MYTEXT.SRC

The text file MYTEXT.SRC is created on the volume identifier TEST. It
contains all the data typed in from the keyboard, until an end-of-file
character (CTRL-D) is typed.

ERROR MESSAGES:

SYNTAX ERROR
ILLEGAL DEVICE NAME

Preliminary Introduction 1-12

ILLEGAL VOLUME NAME
ILLEGAL FILENAME
CANNOT HAVE AMBIGUOUS FILENAME
FILENAMES MUST BE SAME FORMAT
ILLEGAL DEVICE FOR COPY PROGRAM
INPUT MUST BE TEXT FILE
******: FILE ALREADY EXISTS
******: VOLUME NOT FOUND
*•n'r***: FILE NOT FOUND
***m'r*: OPEN INPUT DIRECTORY ERROR
***•n'r*: READ DIRECTORY ERROR
•'r*•'r-i•*•'<: OPEN INPUT ERROR
•'•*•'<irn* : OPEN OUTPUT ERROR
•hh'<-i••'<*: OUTPUT DIRECTORY FULL
**•n'r*•'<: READ ERROR
•'<*•nb'<•'•: WRITE ERROR
•'r*•'<•'r*•'<: CLOSE OUTPUT ERROR
FILE SIZES ARE NOT THE SAME
STATUS= XXXX (value in hexadecimal)

(*•'r>'r**'i• is a device name or a volume name)

Preliminary Introduction 1-13

1.2.6 DELETE (RESIDENT)

This command removes a file from disk. Wildcard characters in filenames
can be used to remove categories of files. The format of the command is:

DELETE [drive:] filename.ext

where the drive number will be given the default value (O) if no drive is
specified. This command will delete only those files with an access code
of 00. (See the listing of access codes under the SECURE command>) The
filename and extension fields may contain wildcard characters. When a
named file is found, the system issues a prompt that gives the user a
chance to save the file.

DELETE MYFILE.TMP

DELETE- 0: MYFILE. TMP ? YES

The YES response assures the operating system that this is the file to be
deleted. The YES can be abbreviated to Y; any other input is interpreted
as a NO.

DELETE *.TMP

DELETE-0 :MYFILE. TMP ? NO

would be the correct response if MYFILE.TMP was not the one that was to be
deleted. This strategy saves files from being wiped out accidentally by
typographical errors. If there are several matches -- due to the use of a
wildcard character in the filename -- each will be prompted in turn, and
any of the matches may be removed. Suppose, for example, that drive 1 has
three TXT files named TEST!, TEST2, and TEST~. Then the following command
sequence removes files TEST2.TXT and TEST3.TXT but not TESTl.TXT:

DELETE l:TEST?.TXT

DELETE-1 :TEST!. TXT ? NO

DELETE-1: TEST2. TXT ? YES

DELETE-1 :TEST3. TXT ? YES

Preliminary Introduction 1-14

1.2. 7 DIR (RESIDENT)

The DIR command provides a list of the files on a specified disk. The
listing prints on the console device unless it is directed to the line
printer. The

DIR (goes to console)

DIR /L (goes to line printer)

The directory listing has the following format:

NAME TYPE-CODE ACCESS-CODE FIRST-SECTOR LAST-SECTOR SECTOR-COUNT TIME

The type code, access code, first sector, and so on are output in
hexadecimal. The number of sectors is output in decimal.

The type codes defined in CS-OS are:

00 binary file
01 binary file with transfer address
02 unused
03 text file (hex file)
04 unused
05 Contiguous file (used only by DIR.DIR)

For access-code definitions, see the section on the SECURE command.

Filenames are listed as 8-character strings with 3-character extensions.
Following the directory list, the total number of disk sectors used by the
listed files is given in decimal.

The DIR command allows several levels of file qualification for listing
categories of files.

DIR [/L] [drive] (filename.ext]

If the drive number is not specified, the default value is assumed.

DIR 1

will list the entire directory. The filename and extension may use
wildcards. For example:

Preliminary Introduction 1-15

DIR 1:*.HEX

will list on the console all files from disk 1 that have the extension
HEX. Another example:

DIR /L TEST? . *
will list on the line printer all files from the default disk that have
names beginning with TEST followed by a character (or blank).

You can stop the displayed directo,ry from scrolling by pressing
Ctrl-numlock. Press any other key to resume.

Preliminary Introduction 1-16

1.2.8 OISKCOPY (TRANSIENT)

The DISKCOPY command copies the contents of the source diskette to the
destination diskette. The sectors are copied, starting with logical
sector 1 and copying through the total number of sectors per diskette.
The volume label sector is not copied. When the diskette copy is
completed, the destination diskette volume identifier may be changed. If
both source and destination diskettes have identical volume identifiers,
a warning is printed. Both source and destination diskettes must have the
same format, (e.g., 2-sided, double density). The format of the command
is:

DISKCOPY source,destination[;options]

where source and destination are drive numbers (O, 1, 2 or 3), or they may
be omitted. In this case the user is prompted for source, destination,
and desired options. Legal options are:

V -- verify destination diskette

DISKCOPY prompts the user, providing a chance to save the contents of the
destination diskette. For example:

DISKCOPY
WARNING: . DESTINATION DISKETTE CONTENTS

WILL BE DESTROYED
COPY FROM DRIVE 0 TO DRIVE 1? Y
CURRENT DESTINATION VOLUME IDENTIFIER IS: FOLl
DO YOU WANT TO CHANGE THE VOLUME IDENTIFIER (Y /N)? Y
ENTER NEW VOLUME IDENTIFIER: TEST
DISKCOPY COMPLETED

For a system with only one diskette drive, DISKCOPY prompts the user to
change from input diskette to output diskette in the drive specified. The
program utilizes the maximum amount of memory space available in the
system, in order to read and write a multiple number of sectors at a time.
This enables the user to change diskettes the least number of times.

DISKCOPY 0

ERROR MESSAGES:

SYNTAX ERROR
DISKETTE FORMATS DO NOT MATCH
END OF MEMORY ADDRESS ERROR
CHANGE VOLUME IDENTIFIER ERROR

Preliminary Introduction 1-17
,.

OPEN INPUT ERROR
OPEN OUTPUT ERROR
READ ERROR
WRITE ERROR
STATUS: ****
VERIFY ERROR: LOGICAL SECTOR ********

Preliminary Introduction 1-18

1.2.9 DISKUTIL (TRANSIENT)

The DISKUTIL program allows the user to examine the contents of diskette
sectors. The format of the command is:

DISKUTIL

The sector contents are displayed in both hexadecimal and ASCII notation.
On entry, DISKUTIL prompts for the drive number, followed by the sector
number that you wish to display. The sector number may be issued in
decimal or hexadecimal (e.g., 21 decimal=$ 15 hexadecimal). After the
first file sector is entered, the user may type 'F' or 'B' to step forward
or backward through the file as indicated. Typing 'Q' exits the program.

ERROR MESSAGES:

· INVALID SECTOR NUMBER
OPEN ERROR
READ ERROR
STATUS = ~·:~':»:>': (>'ddd: = error code in hexadecimal)

Preliminary Introduction 1-19

1.2.10 DTCHDEV (RESIDENT)

The DTCHDEV command detaches a device from an existing driver. The format
of the command is:

DTCHDEV device

where 'device' is the device name that is to be detached. Upon successful
completion of the command, the list of remaining attached devices is
displayed via the LISTDEV command.

ERROR MESSAGES:

SYNTAX ERROR
INVALID COMMAND FOR DRIVER
DEVICE DETACH ERROR

Preliminary Introduction 1-20

1.2.11 DTCHDRV (RESIDENT)

The DTCHDRV command detaches a device driver from the operating system.
The format of the command is:

DTCHDRV device

where 'device' is the master device name of the driver. All control blocks
associated with the device driver are disabled. These include Physical
Device Blocks (PDB), Time Out Blocks (TOB), Interrupt De.scriptor Blocks
(IDB), etc. Upon successful completion of the command, the list of
remaining attached devices is displayed via the LISTDEV command.

ERROR MESSAGES:

SYNTAX ERROR
INVALID COMMAND FOR DR IVER
DRIVER DETACH ERROR

Preliminary Introduction 1-21

1.2. 12 FORMAT (TRANSIENT)

The FORMAT command creates physical sectors on a diskette in the density,
numi:>er of sides, and sector size specified. The configuration information
and the given volume identifier, are placed in the volume label of an 8"
diskette according to IBM Diskette Standards. The information is placed
in logical sector 0 for a 5 1/4-inch diskette (PASS 1). Then the prc1gram
initializes the sectors to zero and creates a chain of logically l~nked
free sectors that are available to the user. A level number is plac~d in
logical sector 0, indicating the file access structure (!=linked
sectors). The file entry 'DIR.DIR' is created in the directory, to be
used for file access. The time portion of this file indicates when the
diskette was last formatted (PASS 2). The format of the command is:

FORMAT

PROGRAM FUNCTIONS: (1) Format diskette -- creates physical sectors on
a new diskette in the specified format, then
initializes and links the logical sectors.

DRIVE NUMBER:

FORMATS SUPPORTED:

(2) Initialize diskette -- clears and relinks
existing sectors. It does not change physical
attributes of the diskette, including volume
identifier.

(3) Change Volume Identifier--does not destroy
data on diskette.

(Q) End program.

Diskette drive numbers are: O, 1, 2, or 3

8-INCH DISKETTE
(1) Double sided, double density, sector size
(2) Single sided, single density, sector size
(3) Double sided, single density, sector size

S;i--INCH DISKETTE
(1) Double sided, double density, sector size
(2) Single sided, double density, sector size

256
2S6
256

2S6
2S6

Note: the default for both diskette types is choice
1 (2D diskette).

VOLUME IDENTIFIER: One to six digits or letters without blanks; e.g.,
TESTS

Preliminary Introduction 1-22

Note: Prohibited volume names: 'o' through '9'

SECTOR SEQUENCE NUMBER: This is used as a fixed value when the physical
sector numbers are incremented on the diskette.
Accepted values are:

ERROR MESSAGES:

OPEN ERROR
CONFIGURATION ERROR
WRITE TRACK ERROR
WRITE SECTOR ERROR

8-inch double density -- 1 to 13 (default =13)
8-inch single density -- 1 to 8 (default =8)
5 1/4-inch double density -- 1 to 8 (default=3)

STATUS = **~'<>'< ("•~'<** = error code in hexadecimal)

Preliminary Introduction 1-23

1.2. 13 HELP (TRANSIENT)

The HELP command displays a list of CS-OS commands on the conS'.ole screen.
The HELP command is invoked by typing:

HELP

Preliminary Introduction 1-24

1.2. 14 JUMP (RESIDENT)

This command allows the user to leave CS-OS and go to any arbitrary
absolute address. if the program at that address does a subroutine return
(RTS instruction), CS-OS will continue at the command level:

JUMP E112

will go to the address E112 (hexadecimal).

JUMP 256

will go to the address 256 (decimal).

Preliminary Introduction 1-25

1.2.15 KILL (RESIDENT)

..
The KILL command removes tasks from the system. KILL works only on tasks
that are running or ready to run (on ready queue). The syntax of the KILL
command is:

KILL taskname

where 'taskname' is the name of any task currently in the system (except
SYSTEM). If the SYSTEM task were to be KILLed, none of the CS-OS commands
described in this manual would be available. If the KILL command is tried
on the SYSTEM task, the error message will be displayed.

KILL should be used with great care since resources acquired by a task can
be permanently lost if that task is KILLed. All the CS-OS devices are
protected from this; if a task has acquired one or more of the SYSTEM
resources, it cannot be KILLed until it releases the resources. The error
message

TASK HOLDS RESOURCES

indicates that the task must release its resources before it can be
KILLed. Similarly, the error message

NOT ON READY QUEUE

indicates that the task is not in the proper state, which probably means
that it has acquired some user resource.

Preliminary Introduction 1-26

1.2.16 LISTDEV (RESIDENT)

The LISTDEV command lists all device drivers currently known to the
system.

LISTDEV

A device driver is known if it has done an ATACHPDB to the IOMGR. The
six-character identifier in the Physical Device Block (PDB) is displayed
along with the driver logical attributes, one hexadecimal byte. If an
alternate device identifier is supported, its six-character name is also
displayed. The following example shows the format of the LISTDEV output.

LISTDEV
#SCRNO 21 #SCRNl 21 #CNS LO 21
#CON 30 #KPD 30 #PR BO
#GR 01 #SEROO 30 #SEROl 30
#SER02 30 #PPU BO #BUSA? 12
tJFDOO TEST lA tJFDOl DMS403 lA #FD02 IA
#FD03 lA

Preliminary Introduction 1-27

1.2.17 LOAD (RESIDENT)

This command puts programs into the transient area. They are not executed
-- control returns to CS-OS command level. LOAD requires that files be
binary type (00 or 01 type). The format of the command is:

LOAD [drive:] filename.ext

where the drive will default if omitted. No wildcard characters are
permitted in the filename or extension.

LOAD 1: PROGl. BIN

loads PROGl.BIN into the transient area.

Preliminary Introduction l:-28

1.2.18 PAGDSPL (RESIDENT)

This command switches the displayed pages of graphics memory. That is,
page 0 becomes page 1 and page 1 becomes page 0. The format of the command
is:

PAGDSPL

Preliminary Introduction 1-29

1.2.19 PRI (RESIDENT)

This command changes the priority of a running task. The format of the
command is:

PRI taskname,priority

where 'taskname' is the name of a running task, and priority is the new
priority. Priorities can be in the range 1 to 127 with the SYSTEM task
having priority 64.

If the priority is not in this range then the error message

INVALID PRIORITY

will be displayed.

Preliminary Introduction 1-30

1.2.20 RENAME (RESIDENT)

This command changes the name of a file without modifying its contents.
The command format is:

RENAME [drive:) oldname.oldext,newname.newext

where the drive will default if omitted. The file access code must be 00
or 01 to allow renaming. The newname must not exist already with that
extension on that disk. The following command, for example, will rename
the file DAVES.OLD to DAVES.NEW:

RENAME DAVES.OLD,DAVES.NEW

No wildcard characters are permitted in either the new or old names or
extensions.

Preliminary Introduction 1-31

...

1.2.21 RESUME (RESIDENT)

The RESUME command immediately places a SUSPENDed task in the ready queue.
RESUME has no effect on a task already running or on the ready queue. The
format of the command is:

RESUME taskname

where 'taskname' is the name of some task currently in the system. If
"taskname" is not a current task, then the error _message

NO SUCH TASK

will be issued by the operating system.

Preliminary Introduction 1-32

1.2.22 RUN (RESIDENT)

A process (task) is started from the console by using this command. The
command format is:

RUN filename.ext,priority

where filename.ext is the name of a binary program file of type=Ol (i.e.,
has a transfer address) and priority is the desired priority. After the
task is loaded and has been placed on the READY queue, control returns to
the system.

NOTE: A maximum of 6 tasks (in addition to the SYSTEM task) is allowed.

If the priority is not in the range 1 to 127 then the error message

INVALID PRIORITY

will be displayed. If there are no available PCB's for starting the task
then the message

xxxxxxxxxx

will be displayed.

Preliminary Introduction 1-33

1.2.23 SAVE (RESIDENT)

This command saves an area of memory as a binary file. The command format
is:

SAVE [drive:] filename.ext,startad,endad [,transfer ad]

where the drive defaults if omitted. The filetype of the save-file will
be 00 if no transfer address is present, and 01 if a transfer address is
supplied. For example, the following command will save the first 16k of
memory as a system file to be entered at the address lOAC hexadecimal:

SAVE !:USER.BIN, 9000, 9800, 9000

Addresses can also be entered in decimal notation. To save the first 256
bytes of memory:

SAVE BASEPAGE.SAV,0,256

No wildcard characters are permitted in the filename or the extension.

Preliminary Introduction 1-34

1.2.24 SECURE (RESIDENT)

The security of a file is determined by its access code (see below). The
code permits protection of certain files from deletion or renaming. The
format of the command is:

SECURE [drive:] filename.ext,access-code

where the drive will default if omitted. For example,

SECURE DOS.SYS,O

removes any protection from the file DOS.SYS on drive zero.

SECURE INIT.CMD,2

protects the file INIT.C~ID from deletion.

SECURE INIT.CMD,1

allows INIT.CMD to be renamed but not deleted.

No wildcard characters are permitted in either the filename or extension.

The access codes defined in CS-OS are:

0 not protected
1 cannot be deleted
2 cannot be renamed
3 cannot be deleted or renamed
4 is read only (cannot be written)
5 is read only and cannot be deleted
6 is read only and cannot be renamed
7 is read only, cannot be deleted, and cannot

be renamed.

Preliminary Introduction 1-35

1.2.25 SET (RESIDENT)

This command allows the user to control characteristics of the console and
line-printer devices, and to change the default drive and volume
identifier used in disk and file operation. The format of the command is:

SET param.eter = value

where 'paramet.er' is one of the fol lowing two-letter mnemonics:

TS -- tab s.e·ttings -- defines the tab stops to be used for the console.
The default value is 8 columns.

LD -- depth -- set the number of lines per page for the line printer. The
default value is 60 lines.

LW -- width -- sets the number of characters per line for the line
printer. The default value is 132 characters.

DD -- default drive -- sets the disk drive to be used if the drive
specification is omitted. This value is initially
set for drive 0. The default volume is updated to
the diskette volume identifier in the given drive.

DV -- default volume sets the volume identifier to be used when it is
omitted in a file specification. The volume
identifier must be mounted in a diskette drive in
order to execute the 'SET DV' command. The
default is initially set to the volume identifier
of the diskette in drive 0. The default drive is
updated to the drive number that contains the
diskette with the given volume identifier.

With the exception of DV, all parameters take a value that may be either
decimal or hexadecimal. To view the current value of the parameter, type
'SET' followed by the parameter name and a carriage return. The following
are valid commands:

SET DD = 2 (set default to drive 2, update default volume)

SET DV (displays default volume)

SET LW = 80 (set printer line width to 80 characters)

Preliminary Introduction 1-36

ERROR MESSAGES:

SYNTAX ERROR •

BAD PARAMETER

VALUE TOO LARGE -- a number larger than 255 was used in the SET command

VOLUME IDENTIFIER NOT MOUNTED -- on SET DV = name, the volume identifier
is not mounted in any drive

SET DEFAULT VOLUME ERROR -- an I/O error occurred during an attempt to
set the default volume

DRIVE NOT FOUND -- on SET DD = n, the drive number was not valid

SET DEFAULT DISKETTE ERROR -- an I/O error occurred during an attempt to
set the default disk.

Preliminary Introduction 1-37

1.2.26 SHOW (RESIDENT)

The SHOW command lists all logical unit numbers and the associated devices
currently opened for the task specified in the command line. The format
of the command is:

SHOW taskname

The system finds the task identifier, searches the list of Device Control
Blocks (DCBs) for that task, and prints out the logical unit number and
device name for each entry in the list. The following example shows the
opened devices for the system task.

SHOW SYSTEM
00246 #CON
00252 #FDOO

ERROR MESSAGES:

NO SUCH TASK

00249 #SCRNO
00253 #FDOl

00250 #CNSLO
00254 #FD02

00251 #SCRNl
00255 #FD03

The printer spooler is a multitasking facility that allows the user to
retain use of the system while ASCII files are copied to the printer.
Requests to the spooler are queued on a first come first serve basis. Upon
receipt of the first request to spool a file, a task is involved that
removes files from the spool queue and copies them to the printer. Copying
proceeds until the queue is exhausted or an error occurs. If an error
occurs it is logged, and copying is terminated for the file being
processed. The contents of the queue remain intact following an error and
the spooling task can be restarted by issuing a spool command. The
contents of the spool queue may be cleared by using the SPOOLC command
(see separate listing of this command). Information on the spooler task,
spooler queue and error log may be obtained by the SPOOLQ command (see
separate listing of this command).

Preliminary Introduction 1-38

1.2.27 SPOOL (RESIDENT)

The spool command invokes the spooler task. If a filename accompanies the
command, it will be verified, located, and added to the spooler file
queue. If errors are encountered in the filename or if the file is not
active (on the system), an error will result. The format of the command
is:

where

SPOOL [<VOLUME>:<FILENAME>.<EXT>]<CR>

<VOLUME> is a six-character volume label
<FILENAME> is an eight-character filename
<EXT> is a three-character file extension
<CR> is a carriage return

Example:

SPOOL SYSVOL:TEXTFILE.TXT<CR>

Preliminary Introduction 1-39

1.2.28 SPOOLC (RESIDENT)

The SPOOLC command clears the spooler queue of all files but the one
currently being copied. The format of the command is

SPOOLC<CR>

where

<CR> is a carriage return

Example:

SPOOLQ<CR>

For more information on spooler commands, see Spool.

Preliminary Introduction.1-40

1.2.29 SPOOLQ (RESIDENT)

The SPOOLQ command displays status information about the spooling task on
the console screen. This information includes

SPOOLER TASK STATUS (ACTIVE/INACTIVE)
SPOOLER ERROR LOG
SPOOLER FILE QUEUE CONTENTS

The format of the command is:

SPOOLQ<CR>

where

<CR> is a carriage return

Example:

SPOOLQ<CR>

For more information on spooler commands, see Spool.

Notes on Using the Spooler The spooler task runs in operating system space
and thus does not interfere with user task memory allocation. However, the
spooler does use operating system resources, and care should be taken to
avoid conflict with other user activities. Resources used by the spooling
task include

#PR Printer (nonshareable device)
(once the spooler has acquired the printer other tasks may not
use it until it has been released)

Disk files at time of submission and copy
(do not remove disk from drive until all spooled files on the
disk have been copied to the printer)

The spooler task currently runs at priority level 10 (A).

Preliminary Introduction 1-41

1.2.30 SUBMIT (RESIDENT)

This command allows the use of a file containing CS-OS command lines as a
source of console commands. The text lines in the file are executed as
though they were typed at the console. The memory resident SUBMIT can
invoke any other command under CS-OS. The file must be a text file (type
03) . The format of the command is:

SUBMIT [drive:] filename.ext [,param, ... ,param]

where the drive defaults if omitted. All commands from the file will be
echoed as they are read.

SUBMIT files use a special macro indicator -- the ampersand symbol (&).
This macro indicator permits a SUBMIT file to use parameters from the
SUBMIT command line as it executes. There can be up to 10 parameters in a
given SUBMIT command line. All parameters must be set off with commas.
Within the SUBMIT file, a parameter is called out by the macro indicator
and a single decimal digit. Hence, &O is the first parameter and &9 is the
tenth parameter. The parameter from that position in the command line
will be substituted in the SUBMIT file t.ext in place of the macro
indicator and parameter number. If the parameter does not exist, or the
parameter number is bad, the parameter value will default to a carriage
return.

No wildcard characters are permitted in the filename or extension of the
SUBMIT file. We recommend that the filename extension "SUB" be used for
SUBMIT files.

Preliminary Introduction 1•42

1.2.31 SUSPEND (RESIDENT)

The SUSPEND command causes a task to lose its place in the ready queue and
to wait for a specified number of real-time clock "ticks." The task will
not run during this time, even if its priority is higher than other tasks
·in the system. Once the specified time has passed, the task will resume
its place in the ready queue. The format of the command is:

SUSPEND taskname [,ticks}

where 'taskname' is the name of some task currently in the system. The
'tick' parameter is optional; its default value is FFFFFFFF. (This is a
delay measured in years, effectively "forever.") The tick count may be
any numeric value. Some examples of SUSPEND are:

SUSPEND SYSTEM,200
SUSPEND TASKl
SUSPEND MYTASK, 8000

Preliminary

(ten seconds)
("forever")
(about 27 minutes)

Introduction 1-43

1.2.32 TASKS (RESIDENT)

The TASKS command displays the current state of the tasks in the system.
The format of the command is :

TASKS

The tasks are listed in order of their PCB (Process Control Block) number,
which will probably also correspond to the order in which they were
generated. There will be a single line of console output for each task in
the system (except "idle"). The task name, priority, status, and time of
generation will be printed. The priority is output in hex notation.
Recall that the status of a task in the system can take the following
values:

01 - on the ready queue
02 - delayed or SUSPENDed
03 - waiting for a resource

An example of the TASKS command is:

TASKS

SYSTEM 40 01 13 NOV 82
TASKl 07 01 13 NOV 82
MYTASK 11 03 13 NOV 82
SPOOLER 50 02 13 NOV 82

Preliminary

07:30:05
07:31:01
08: 01: 20
0&:15:01

Introduction 1-44

1.2.33 TIME (RESIDENT)

This command displays the date and current time of day in the following
format:

dwk dm mon yr hh:mm:ss

The day of the week (dwk) and month (mon) are represented by three-letter
abbreviations. The other time elements are represented by numbers.

The TIME value is pre-set upon delivery. The system keeps proper elapsed
time by use of a battery-operated clock. To display the current TIME,
simply use the command name:

TIME

At noon on Christmas day 1982, this command would produce:

SAT 25 DEC 82 12:00:00

When files are created under CS-OS, the current time value will be
included in their directory entry.

To change the TIME setting, use the command "TIME=" followed by the
desired new TIME value in the format same used for displaying the time, as
shown above. Any legal delimiter may be used (see Part 2, Section 2.4.9),
with the addition of spaces used to delimit the date fields only. If an
incorrect ·syntax or an invalid TIME parameter is encountered, the current
TIME will be printed, along with the appropriate error message.

Preliminary Introduction 1-45

Preliminary Introduction 1-46

2.0 COMPUTER SYSTEM TEXT EDITOR

The Computer System text -- CS-Edit -- editor is a line-oriented editor
for creating and updating text and program and data files. CS-Edit
commands are divided into two groups: those that move data to and from
temporary processor storage, and those that modify the data in temporary
storage. The temporary storage used by the editor is called the "text
buffer". Input commands bring a file or part of a file into the text
buffer for editing. Edit commands modify or change the contents of the
text buffer. Output commands write the corrected file from the text
buffer to the output file after the contents have been updated. Input and
output commands are described in Section 2.4. Edit commands are described
in Section 2.5.

2.1 USING THE TEXT EDITOR

CS-Edit is invoked from the operating system (CS-OS) by typing EDIT on the
keyboard. The operating system responds by loading and executing the
editor, which then prompts for a filename:

FILE TO BE EDITED

When you respond with a filename (and extension) followed by a carriage
return, CS-Edit does one of two things depending on whether the file named
exists on disk or not. (A carriage return alone will return control to
the operating system.)

1. If the file already exists, CS-Edit saves the original (input) file
as a backup by changing its extension from ':TxT" to "BAK". In
addition, it creates a temporary (output) file for storing the
results of the editing session. This file has the same name and
contents as the original file, but its filename extension is TMP.

NOTE: If a file with the same name as the temporary file already
exists on disk, the disk file is automatically deleted by the
editor.

2. When a new file is being created, (that is, when no file with the
specified name and extension can be found on disk),°CS-Edit responds
with the following prompt:

Preliminary Computer System Text Editor 2-1

CREATE NEW FILE?

This query serves to prevent the accidental creation of a file (as the
result, for example, of mistyping a filename).

If you respond with a Y, the editor will open a new file having the name
and extension specified and will use that file to store the results of the
editing session.

If you respond with an N, the initial prompt (FILE TO BE EDITED) will be
repeated.

When you finish editing (that is, when you type the ZIP command and return
to the command mode of CS-Edit), the file you worked with (under the
extension TMP) will be given the name and extension you specified.

The following table summarizes the manipulation of "old" and "new" files.

you specify

OLDFILE.TXT

NEWFILE.TXT

CS-Edit creates

OLDFILE.BAK
and

OLDFILE.TMP

NEWFILE.TMP

Additional Notes on Running the Editor:

after editing,
you have

OLDFILE.BAK
and

OLDFILE. TXT

NEWFILE.TXT

NOTE: The above
"TXT" files include
the changes made
during the editing
session.

It is important to remember that the automatic creation of the backup file
(BAK) by the Editor will result in the deletion of any file having the
same name.

When a new file is created by the Editor, it does not create any backup
(BAK) file. At the end of the edit session there will only be one file
that has the filename and extension that was specified in response to FILE
TO BE EDITED.

Preliminary Computer System Text Editor 2-2

2.2 EDITING MODfS

2.2.1 COMMAND MODE

The initial prompt (FILE TO BE EDITED) in an editing session indicates
that CS-Edit has entered the command mode. It is in this mode that most
CS-Edit commands are executed. The prompt character for the command mode
is ">". As each command is completed, CS-Edit responds with a ">",
indicating that it is ready to accept another command. During execution
of a command string (see below), the ">" is displayed only when the entire
sequence of commands has been completed.

In command mode, any line that is not a legal command generates the
following message on the display:

COMMAND ERROR

2.2.2 INPUT MODE

When you invoke an APPEND, INSERT, or REPLACE command, CS-Edit enters the
input mode. The editor will now accept input lines of text and store them
in the text buffer. When you type a line consisting only of the Esc
character, the editor returns to command mode.

2.3 COMMAND STRUCTURE AND COMMAND STRINGS

A command directs CS-Edit to perform an operation. With two exceptions, a
command consists of a single-letter code. (The exceptions have a
two-letter code.) The command code can have an optional integer argument
(n) following it, separated from the code by at least one blank space, or
it can be followed by an optional string argument. The range of allowed
values for the integer argument is 1 to 65,535 decimal.

Two or more commands can be entered on a single line for seque~tial
execution. The resulting series of commands is called a command string.
Each command must be delimited from the previous command by the Esc

Preliminary Computer System Text Editor 2-3

character. The last command in the string must be followed by a carriage
return.

If an error is encountered during the execution of a command string, the
£ditor returns to command mode and does not execute the error-causing
command or any command that follows it.

2.4 THE ESCAPE AND BACKSPACE KEYS

The Esc key has two functions:

1. Pressing the Esc key while the editor is in input mode (and the input
line consists of the Esc character only) returns it to command mode.

2. Esc is used to delimit commands in a command string.

You may depress the backspace key (<- -) at any time to "rub out" a
character. This action deletes the last typed character each time the
backspace key is depressed.

2.5 EDITOR INPUT AND OUTPUT COMMANDS

The input and output commands described below can be used to read files or
parts of files into the text buffer or to write files from the text buffer
to an output file.

Preliminary Computer System T"ext Editor 2-4

EOF

The (EOF) end-of-file command writes an EDF indicator to the output file.

Command format: E

Response: Control returns to the editor

Error messages: none

GET

The GET command reads n lines of text from the input file into the text
buffer and inserts them after the last text 1 ine in the buffer. If an
end-of-file (EDF) is reached, the message "EDF ON READ" is shown on the
display to indicate that the entire file has been read.

Command format: G n

Response: >

Error messages: TEXT BUFFER IS FULL

HTAB

The HTAB command sets the tab stops to every~ columns. If n is set to 0,
no tabs are set. The tab character (09 hex) is stored in the text buffer
but does not take up any "text space" when data is entered.

Command format: H n

Response: >

Error messages: none

WRITE

The WRITE command writes the first n lines of text from the text buffer to
the specified output file. After the lines are written, they are deleted
from the text buffer.

Command rormat: W n

Preliminary Computer System Text Editor 2-5

Response: >

Error messages: DSK ERROR:nn

XMIT

The XMIT command writes the entire contents of the text buffer to the
output file.

Command format: x

Response: >

Error messages: none

YANK

The YANK command reads lines from the input file into the text buffer
until it is full. The lines read in are inserted after the last line in
the text buffer.

Command format: y

Response: >

Error messages: none

ZIP

The ZIP command is the standard way of completing tne editing of a file.
First the contents of the text buffer are written to the output file. The
remaining lines of the input file are then read into the text buffer and
written to the output file. Finally, an EOF is written and control passes
back to the editor .

Command format: z

Response: Control is returned to the editor.

Error messages: None

Preliminary Computer System Text Editor 2-6

2.6 EDITING COMMANDS

The editing commands described below can be used to modify the contents of
the text buffer.

APPEND

The APPEND command puts the editor in input mode and allows you to add
text to the end of the text buffer from the console. The editor will
accept input lines not exceeding 79 characters. When the Esc key is
pressed, the editor returns to command mode.

Command format:

Response:

Error messages:

BOTTOM

A

A carriage return; the editor is waiting
for input

TEXT BUFFER IS FULL

LINE LENGTH EXCEEDED

This command moves the internal pointer to the last line of text in the
buffer.

Command format: B

Response: >

Error messages: None.

Status message: BOTTOM OF BUFFER

CHANGE

This command can be used to change one character string to another. If
the character 11G11 (for 11global 11) is present, every occurrence of
11oldstring11 is replaced with 11newstring11 • If the 11G11 is not present, only
the first occurrence of "oldstring" is replaced with 11newstring".

The slash character (/) is the delimiter or "quote" character. (If 11 / 11

appears in the text you wish to change, the quote character may be any
ASCII character not appearing in "oldstring" or "newstring"). The two
character strings may be of different lengths.

Preliminary Computer System Text Editor 2~7

Command format: C /oldstring/newstring/[G]

Response: changed line(s)

Error messages: SYNTAX ERROR

STRING NOT FOUND

For the following examples, the text is assumed to be in the text buffer:

If the command

A computer provides a means of
managing a collection of data

C /computer/Computer System/

were entered, the resulting text would be

If the command

A Computer System provides a means of
managing a collection of data

c I a I the /G

were entered, the resulting text would be

A Computer System provides the means of
managing the collection of data

Note that both occurrences of "a" were altered (because G was specified)
and that the upper case A was not altered. When changing single
characters or small character strings, be sure that you include, spaces in
the command; otherwise strings within words may be altered. For example,
C/a/the/G would yield:

A Computer System provides the methens of
mthentheging the collection of dthetthe

Computer System Text Editor 2-8

DELETE

This command deletes n lines of text from the text buffer starting with
the current line. If !! is left unspecified, only the current line is
deleted.

Command format: D n

Response: >

Error messages: TEXT BUFFER IS EMPTY

FIND

This command finds and moves the first line containing the specified
character string to the cursor line.
standard delimiter. (If "!" is part of
delimiter may be any ASCII character
character string).

Command format: F /string/

The slash character (/) is the
the string you wish to find, the
not appearing in the specified

Response: displays first line containing the specified
character string

Error messages: SYNTAX ERROR

STRING NOT FOUND

As with the CHANGE command, be sure to include blank spaces where
necessary. "F /thing/", for example, would locate "something",
"anything", "things", or "thing", whichever appears first.

INSERT

This command puts the editor in insert mode and allows you to insert a
line or lines into the text buffer preceeding the line at which the
internal pointer is currently pas i tioned. The buffer size is 16, 384
bytes. The maximum line length is 79 characters of data and a carriage
return. If the insertion exceeds this maximum, the line will be truncated
to 79 characters. The editor returns to command mode when the Esc key is

" pressed.

Preliminary Computer System Text Editor 2-9

Command format: I n (default = 1)

Response: carriage return, linefeed

Error messages: TEXT BUFFER IS FULL

LINE LENGTH EXCEEDED

LIST

This command lists the entire contents of the text buffer on the system
console. (To display individual lines of text, refer to the PRINT
command).

Command format: L

Response: displays lines from the text buffer

Error messages: none

MOVE-FROM/MOVE-TO/MOVE-LINES

The MOVE-FROM and MOVE-TO commands are used in conjunction with the
MOVE-LINES command to reposition material in a test file.

MOVE-FROM saves the location of the correct line. When the ML command is
executed this line will be the first line of the text material moved.

Command format: MF

Response: >

Error messages: none

The MOVE-TO comand saves the location of the current line. When the ML
command is executed, this line will be used as the insert location (i.e.,
data will be positioned before this line).

Command format: MT

Response: >

Error messages: none

Preliminary Computer System Text Editor. 2-10

The MOVE LINES command moves g lines of text from the line pointed to by
the MF command and inserts them before the line pointed to by the MT
command.

Command format: ML n

Response: >

Error messages: COMMAND ERROR

MOVE FEWER LINES

MT OR MF POINTER NOT SET

EXAMPLE:

For the following example, the text below represents the total contents of
the text buffer and has been listed (see LIST command).

a aaaa aaaaaa aa aaaaa aaaa aa
bbbbbb bbb bbbb bbbbb bb bbb b
ccccc cc ccccc ccccc ccccccccc
dddd dddddddd dd ddddd dddd dd

(line 1 (MF)
(line 2)
(line 3)
(line 4(MT)

Any line of listed text can be positioned at the current-line locaton by
means of the NEXT or UP command. If line 1 is brought to the current line
location and the MF command entered, line 1 will be the "move from"
location. If line 4 is moved to the current-line location and the MT
command entered, it becomes the "move to" location. (These locations are
marked only internally. The "MF" and "MT" markers shown in the example do
not appear on the display itself).

The command

ML 2

would move two lines (starting at line 1) to the location preceeding line
4, producing the following text.

ccccc cc ccccc ccccc ccccccccc
a aaaa aaaaaa aa aaaaa aaaa aa
bbbbbb bbb bbbb bbbbb bb bbb b
dddd dddddddd dd ddddd dddd dd

Preliminary

(line 3)
(line 1)
(line 2)
(line 4)

Computer System Text Editor 2-11

NEXT

This command moves the location of the current line forward, in effect
moving the text upward on the display. An integer value (~) is used to
specify the number of lines to be skipped over. If~ is unspecified, it is
assumed to be one (1) and the line moved to the current-line location will
be the next line. (See the UP command.)

Command format:

Response:

Error messages:

N n

displays nth line
after the current line

TEXT BUFFER IS EMPTY

BOTTOM OF BUFFER

If,. for example, you were positioned at the top of the text buffer and
wished to see the t:ext on line 10, you would enter N9.

PRINT

This command displays n lines from the text buffer on the CRT, starting
with the current-line. -The current-line is not changed by this command.
If n is unspecified, it is assumed to be one (1). (To display the entire
contents of the text buffer, refer to the LIST command.)

Command format: p n

Response: displays line(s)

Error messages: TEXT BUFFER IS EMPTY

If, for example, you wished to see lines 10 through 29 of a file in the
text buffer and you were positioned at the top of the text buffer, you
would enter N9 to move down to line 10 and PlO to display ten lines of text
beginning with line 10.

QUIT

QUIT terminates editing and returns the user to the operating system
command mode.

Command format: Q

Preliminary Computer System Text Editor 2-12

Response: Control is returned to the operating system

Error messages: none

REPLACE

This command puts the editor in input mode and causes the current line to
be replaced by a line or lines of text that you enter. You are, in effect,
11 typing over" the line. The editor will return to the command mode when
the Esc key is pressed.

Command format:

Response:

Error messages:

SCRATCH

R

A carriage return; the editor is waiting
for input

TEXT BUFFER IS EMPTY

LINE BUFFER EXCEEDED

This command erases the contents of the text buffer and removes all
internal pointers, preparing the buffer for new work.

Command format: s

Response: >

Error messages: none

TOP

This command positions the first line in the text buffer at the
current-line location.

Command format: TOP

Response: displays the first line of the text buffer

Error messages: TOP OF TEXT BUFFER

Preliminary Computer System Text Editor 2-13

UP

This command moves the current line backward from its present position in
the text buffer. An integer value (g) is used to specify the number of
lines to be skipped over. If g is unspecified, it is assumed to be one and
the preceding line is moved to the current-line location. (See the NEXT
command.)

Command format: Un

Response: displays nth line after current line

Error messages: TEXT BUFFER IS EMPTY

2. 7 SUMMARY OF COMMANDS

A Append text to the end of the
text buffer.

B Move cursor to the end of the
text buffer.

C /oldstring/newstring/[G]

D n

E

F /string/

G n

Hn

I n

L

MF

Preliminary

Change the occurrence(s) of
"oldstring" to "newstring"

Delete~ line(s).

Write out an EOF.

Find the first occurrence of
"string" in the text buffer.

Get n lines of text
from the input file.

Set the tab stops to every n
columns.

Insert line(s) of text. (Input Mode)

List the contents of the text buffer.

Save the move-from location.

Computer System Text Editor 2-14

MT

ML n

N n

p n

Q

R

s

T

Un

W n

x

y

z

Preliminary

Save the move-to location.

Move n lines of text in the
text buffer to a specified location.

Skip ahead g line(s).

Display ~ line(s) of the
text buffer.

Return to the system.

Replace the current line with line(s)
of text.

Clear the text buffer.

Make the first line in the text
buffer the current line.

Skip back g line(s).

Write ~ line(s) of text from
the text buffer to the output file.

Write the entire contents of the
text buffer to the output file.

Read lines of text from the input
file into the text buffer until it
is full.

Write the contents of the text
buffer to the output file; write
the remaining lines of text from
the input device to the output
device; write an EOF mark to the
output device.

Computer System Text Editor 2-15

Preliminary Computer System 1,'ext Editqr 2~16

3.0 COMPUTER SYSTEM MACRO ASSEMBLER

3. 1 INTRODUCTION

The Computer System macro assembler described in this manual is a two-pass
macro relocating assembler that runs on the Computer System processor with
the CS-OS.

Pass 1 of the assembler defines every user symbol. The symbol table built
in pass 1 generates code in pass 2. Errors are trapped in both passes, and
listings and object code are output from pass 2.

The format of the object code output from the assembler is that defined
for the Computer System LINK and LOCATE programs. The operating
instructions for LINK and LOCATE are included in Chapter 4 of this manual.

3.2 OPERATING INSTRUCTIONS

The assembler is executed as a
Computer System macro assembler,
keyboard:

command under CS-OS. To invoke the
enter the following command on the

where

filename.ext

options

device

Preliminary

ASMB FILENAME.EXT,OPTIONS,DEVICE

specifies the name and extension of the
file to be assembled (e.g., l:GRTESTOl.SMP).

are any combination of the letters L, M,
0, S, and X (e.g., LSO).

is the name of the listing/error-message
device and can be any of the following:

CON
LPT
DSK 0
DSK 1
DSK 2
DSK 3

Macro Assembler 3-1

For example:

ASMB_l:GRTESTOl.SMP,LSO,DSK

The available 'options' are:

"L" -- Listing produced on "device." If the device is DSK, then a file
is produced named filename.LST.

"M" -- Macro expansions listed in the listing if the "L" option was also
selected.

"o" Object code produced on disk named filename.REL.

"s" Sorted symbol table listing produced on the same device as the
listing output.

"X" -- Cross-reference file produced on disk named filename.CRF. The
XREF utility produces the cross-reference listing (see below).

Note: When specifying DSK as the device, the drive number used is the
drive number of filename.ext. If a ·different drive is desired,
specify OSK n. Specifying LPT sends output to #PR.

EXAMPLES:

1. ASMB l:TEST.ASM,LSO,LPT
2. ASMB l:TEST.ASM,LSO,DSK
3. ASMB l:TEST.ASM,,CON

Example 1: The listing and symbol table go to the LPT device, and the
object code to !:TEST.REL.

Example 2: The listing and symbol table go to l:TEST.LST, and the object
code to !:TEST.REL.

Exampl #3: No options are set, and any error messages are sent to the
console device.

3.2. 1 CROSS-REFERENCING PROGRAM LABELS WITH XREF

Note: The XREF function cannot be used if the Computer System does not
have a line printer attached.

It is often useful to have a sorted list of the labels in a program, along
with all the references made to those labels.

Preliminary Macro Assembler 3-2

/
- I

To generate a cross-reference listing, you must first run the assembler
with the "X" option, which produces an output file r.ontaining the unsorted
symbols. This file will be the same as the input file except that its
filename suffix is "CRF".

The next step is to execute the XREF utility program as follows:

XREF filename.CRF

For example, to produce a cross-reference list for the SAMPLE program, you
would type:

XREF SAMPLE.CRF

3.3 INSTRUCTION FORMATS

A source language statement consists of a label, an operation code, an
operand, and comments. The label is used when needed as a reference by
other statements. The operation code may be a mnemonic machine operation,
an assembly directing pseudo-op, or a macro call label. An operand may be
an expression consisting of an alphanumeric symbol, a number, a special
character, a string of one to four characters, or any of these combined by
arithmetic operations; In certain instances there may be no operand at
all. The comments may also be left out. The fields in a source statement
are separated by at least one space character.

3.3.1 STATEMENT CHARACTERISTICS

The fields of every source-program line appear in the following order:

Label Opcode Operand(s) Comments

3.3.2 FIELD DELIMITERS

One or more spaces separate the fields in a statement. An
end-of-statement mark (carriage return) terminates the entire statement.
A single space following an end-of-statement mark from the previous
statement is the null field indicator of the label field.

Preliminary Macro Assembler 3-3

3.3.3 CHARACTER SET

The characters recognized by the assembler are:

-A through Z
0 through 9
* (asterisk) comment, multiply, or loc. counter
+ (plus) addition
- (minus) subtraction
I (slash) division
$ (dollar) hexadecimal indicator
()(parentheses)
' (apostrophe) quoted-string delimiter
, (comma) operand delimiter
(pounds) immediate-mode indicator
& (ampersand) macro-parameter indicator

(period) alphabetic character
(space)

Any other ASCII characters may appear in the comments field. The letters
A through Z, the numbers 0 through 9, and the period (.) may be used in an
alphanumeric symbol. In the first position of the label field, an
asterisk indicates a comment line; in the first position of an operand, it
stands for the location-counter value; othexwise, it is the
multiplication operator. The plus, minus, slash, and asterisk are used as
operators in arithmetic expressions.

The pounds sign indicates the immediate addressing mode; the dollar sign
($) indicates hexadecimal numbers; the apostrophe indicates ASCII
strings; the ampersand indicates substitutable parameters in macro
definitions; the comma separates operands. Parentheses are used in the
syntax of some of the addressing modes.

Spaces separate fields of a statement and may also be used to format the
output listing.

3.3.4 STATEMENT LENGTH

A statement may be up to 80 characters in length.

Preliminary Macro Assembler 3-4

3.3.5 LABEL FIELD

The label field serves to identify the statement and may be used as a
reference by other statements in the program.

The field starts immediately following an end-of-statement mark and is
terminated by a space. A space in the first position indicates that the
statement is unlabeled.

3.3.6 LABEL SYMBOL

A label is composed of from one to eight characters. The first one must be
an alpha character. The rema1n1ng characters must be alphanumeric
characters. If the label is composed of more than eight characters the
assembler truncates the symbol to eight characters.

An asterisk in position one indicates that the entire statement is a
comment. An asterisk in any position of the label field other than the
first position is illegal.

3.3. 7 OPCODE FIELD

The operation code defines an operation to be performed by the computer or
by the assembler (opcodes, pseudo-ops, or macro calls). The opcode field
follows the label field and is separated from it by at least one space. If
there is no label, the opcode/pseudo-op/macro call may begin anywhere
after position one. The opcode field is terminated by a space immediately
following the mnemonic.

3.3.8 OPERAND FIELD

The meaning and format of the operand field is dependent on the type of
operation code used in the source statement.

Preliminary Macro Assembler 3-5

This field follows the opcode field and is separated from it by at least
one space. A set of reserved labels identify the processor -registers.
The s.et of 8-bit data registers is:

DO.B, Dl.B, ... D7.B

The set of 16-bit data registers is:

DO.W, Dl.W, ... D7.W

The set of 32-bit data registers is:

DO.L, Dl.L, ... D7.L

which may be abbreviated to:

DO, Dl, ... D7

The set of 32-bit address registers is:

AO, Al, ••• A7

The set of special registers is:

PC (p~ogram counter)
SP (stack pointer = A7)
USP (user-mode stack pointer)
SR (16-bit status register)
CCR (8-bit condition-code register)

The operand field is terminated by a blank space or a carriage return.
Any data between a blank space and a carriage return will be interpreted
as a comment.

3.3.9 SYMBOLIC TERMS

A symbolic term follows the same rules as those that govern the formation
of labels. A symbol used in the operand field must be a symbol that is
defined elsewhere in the program. An asterisk can refer to the value of
the location counter at the time the source statement is encountered.

Preliminary Macro Assembler 3-6

3.3. 10 NUMERIC TERMS

A numeric term may be either decimal or hexadecimal. A decimal number is
represented by one to ten decimal digits and may range from 0 to
2147483648. A hexadecimal number is indicated by one to eight hexadecimal
digits within the range 0 to FFFFFFFF and is preceded by a dollar sign
($).

3.3.11 EXPRESSION OPERATORS

The asterisk (location counter), symbols, and numbers may be joined by the
four arithmetic operators (+ - * /) to form arithmetic expressions. The
assembler evaluates expressions from left to right without regard to
precedence or operator hierarchy. A fractional result, if obtained during
the evaluation of an expression, is truncated to an integer value. The +
and - symbols may be used as unary operators. All expressions are
evaluated using 32-bit unsigned arithmetic. No blanks are permitted in an
expression.

Quoted character strings containing one to four characters may also be
used in expressions. Their value is formed from the 7-bit ASCII code,
which represents the characters. The characters are right-justified in
the 32-bit value and any unused high-order bits are cleared. The quote
character (apostrophe) may not appear in the string.

Some examples of valid expressions are:

ALPHA+ I $FF 'AB'-3 ~': /256 $123456

'ZZZZ'-'AAAA' BETA-GAMMA/DELTA

-99999 -lO+'stuff' ~·~-LABEL

3.3. 12 MACRO CALL ARGUMENT LISTS

Arguments are passed to macros by placing them in the operand field;
individual arguments are separated by commas. The actual arguments are
substituted as character strings into the positions of the corresponding
dummy arguments in the macro definition. If comments are to be included
in the statement, a comma must follow the last argument. A macro may have
up to 10 arguments, numbered 0 to 9.

Preliminary Macro A~sembler 3-7

3.3.13 EVALUATION OF SYMBOLS AND EXPRESSIONS

Because of the 2-pass nature of the assembler, only one level of forward
referencing is legal when using symbols and expressions in the operand
field of source statements. All expressions are evaluated using 32-bit
unsigned arithmetic, ignoring any overflows or underflows. Instructions
using byte operands use the low-order byte of the expression value. Count
fields used in the COMMON and DS pseudo-ops are 16-bit only. The SET and
EQU pseudo-ops generate 32-bit values that are matched with their symbolic
names. The location counter is an unsigned 32-bit value.

3.3.14 COMMENT FIELD

A comment may be included in a source statement as long as it is separated
by at least one space from the operand field. Any printable character may
appear in a comment.

3.4 ADDRESSING MODES

There are eleven basic types of addressing permitted by the Computer
System processor. Some of these have multiple forms, and some
instructions take special addressing formats not permitted in other
cases. The CS-OS assembler is quite particular in that it requires the
operands to match the types allowed by the operation mnemonic. CS-OS will
not reform the mnemonic in response to the operands found -- it will
simply flag such operands as syntax errors. Hence, the assembled
operation will always be the one indicated by the mnemonic.

For more detailed information on the addressing modes allowed by
particular instructions you may want to obtain a copy of the 68000 16-Bit
Microprocessor User's Manual.

3.4.1 DATA REGISTER DIRECT ADDRESSING

This addressing mode uses one of the data registers as the source (or
destination) operand. Some examples are:

MOVE. W DO ,Dl
ADDI. L #$123 ,D4

Preliminary Macro Assembler 3•8

3.4.2 ADDRESS REGISTER DIRECT ADDRESSING

This addressing mode uses one of the address registers as the source (or
destination) operand. Some examples are:

MOVEA.L TABLE,A2
MOVE. L DO ,A3

3.4.3 ADDRESS REGISTER INDIREC r ADDRESSING

This addressing mode uses one of the address registers as the address of
the source (or destination) operand. A 16-bit signed offset in the
instruction is added to the contents of the address register to form the
effective address used. The offset is formed from an expression included
in the operand field of the instruction. This offset cannot be
Relocatable or Common, nor can it exceed the range allowed by a signed
16-bit value. Some examples are:

MOVE.B 10(A3),DO
LEA (A4),A2 Note: expression omitted= 0

If the expression is omitted, the value "zero" will be used.

3.4.4 ADDRESS REGISTER PREDECREMENT ADDRESSING

This addressing mode uses the contents of an address register as the
address of a source (or destination) operand. It is like address register
indirect addressing, except that no expression is allowed. The value in
the address register is decremented before the effective address is
computed. Some examples are:

CMP. W - (A4) , DO
MOVE. L DO, - (A6)

3.4.5 ADDRESS REGISTER POSTINCREMENT ADDRESSING

{)

This addressing mode uses the contents of an address register as the
address of a source (or destination) operand, then increments the address

Preliminary Macro Assembler 3-9

register value. Some examples are:

CMPA.L (A4)+,A2
MOVE.W (A3)+,(A5)+

•

3.4.6 ADDRESS REGISTER WITH INDEX ADDRESSING

This addressing mode uses the contents of two registers to generate the
effective address. The first register specified must be an address
register. The index register may be either a data or address register.
If a data register is used as an index, it may be considered as either a
signed-word or long-word value. The assembler assumes that the index is a
long-word unless the index register is specifically declared as a word
register. An 8-bit displacement expression must also be included in the
address. This expression must not be Relocating or Common, and it must
not exceed the range of a signed byte. Some examples are:

ADD.W Cl(Al,Dl),D2
MOVE .L $12(A2,D3 .W) ,O(A3 ,D4)

where Al, A2, and A3 are address registers; Dl, D3, and D4 are index
registers; and Cl, $12, and 0 are 8-bit displacement expressions.

3.4. 7 ABSOLUTE SHORT ADDRESSING

This mode of addressing uses a 16-bit signed value in the instruction as
the source (or destination) address. The value comes from an expression
in the operand. The expression must not be Relocating or Common, and it
must not exceed the range of a signed word. Some examples are:

JSR $0400
JMP *-LABEL (Note: LABEL is relocating)

3.4.8 ABSOLUTE LONG ADDRESSING

This mode of addressing uses a 32-bit value in the instruction as the
source (or destination) address. The value comes from an expression in
the operand. Relocation and Common expressions are permitted. Some
examples are:

Preliminary Macro Assembler 3-10

JSR LABEL
MOVE.W *+2,LABEL-4

3.4.9 PROGRAM-COUNTER RELATIVE ADDRESSING

This addressing mode uses the program counter register (PC) in a form
similar to that of address register indirect addressing described above.
The offset value is computed as the displacement between the expression
value and the current PC value. This mode is useful for generating
position-in~ependent code. Some examples are:

LEA 2(PC) ,A4
JMP TAG(PC)

Note: The offset expression may contain Relocating symbols. The
resulting effective address is not relocating.

Another form of program-counter relative addressing is used in the branch
instructions. Here the assembler computes a displacement value that is
incorporated in the instruction itself. Some examples are:

BNE.S LABEL
BSR *+5

3.4.10 PROGRAM-COUNTER-WITH-INDEX ADDRESSING

This addressing mode parallels the address-register-with-index addressing
except that the program-counter register (PC) is used as the address
register, and the 8-bit displacement is computed as the difference between
the expression value and the present location. Note that, as in program
counter indirect addressing, the expression may contain Relocating
symbols. Some examples are:

MOVE.L ARG(PC,Dl),D3
JMP TABLE(PC,D2.W)

Preliminary Macro Assembler 3-11

3.4.11 IMMEDIATE ADDRESSING

In this mode the instruction itself contains the necessary data. This
mode is always indicated by the pounds sign (#) preceding the immediate
expression. The restrictions on the magnitude of the immediate value
depend on the instruction in use. Only those instructions requiring
32-bit immediate data may have Relocating or Common immediate values.
Some examples are:

MOVEQ #'C' ,D2
ADDI.L #$123456,2(A3)

3.4.12 SPECIAL-REGISTER ADDRESSING

This addressing mode is used only with certain instructions. The source
(or destination) operand is one of the special registers. The MOVE
instruction can use the SR, CCR, and USP registers. Some examples are:

MOVE.W D2,SR
MOVE.B CCR, (A2)+
MOVE. L USP ,A3
MOVE.L A4,USP

The ANDI, ORI, and EORI instructions may use the SR and CCR registers.
Some examples are:

ANDI.B #1,CCR
ORI.W #$1F ,SR

3.4.13 REGISTER-LIST ADDRESSING

This addressing mode is only permitted in the MOVEM instruction. A list
of registers (data or address) is specified. The assembler builds a
bit-map that indicates which registers are to be operated upon. Two types
of syntax are allowed in a register list. First, specific registers may
be specified, separated by slashes. Second, ranges of registers may be
specified by giving the first register name, a minus sign, and the last
register name. The ordering assumed is DO, Dl, ... D7, AO, Al, ... A7.
Hence, DO-A7 implies all registers. Both forms may be combined in a
single register list as follows:

Preliminary Macro Assembler 3-12

MOVEM.L (A7)+,DO/Dl/D5-AO regs. DO,Dl,D5,D6,D7,AO
MOVEM.W A5-D2/D7,(A6) regs. A5,A6,A7,Dl,D2,D7

3.5 INSTRUCTION SET SUMMARY

This section summarizes the mnemonics provided in this assembler and the
syntax allowed for each operation. Some abbreviations used in this
section are:

An an address register
Dn a data register
Rn a register (data or address)
<data> an expression
<ea> an address operand (effective address)

(see Section 3.4, "Addressing Modes")
cc one of the set of conditionals

CC-carry clear
CS-carry set
EQ-equal
F -always false
GE-greater than or equal (signed)
GT-greater than (signed)
HI-greater than (unsigned)
LE-less than or equal (signed)
LS-less than or equal (unsigned)
LT-less than (signed)
MI-less than 0
NE-not equal
PL-greater than or equal to 0
T -always true
VC-no overflow
VS-overflow

d(Ay) Address Register Indirect addressing
.s :Size specification (.B, .W, or .L)

Preliminary Macro Assembler 3-13

MNEMONIC

ABCD

ADD.B (.W, .L)

ADDA.W (.L)

ADDI.B (. w, .L)

ADDQ.B (. w, .L)

ADDX.B (. w, . L)

AND. B (. W,. L)

ANDI.B (.W, .L)

ASL.B (.W, .L)
ASR. B (. W, . L)

Bee (.S)

BCHG

BCLR

BRA (. S)

BSET

BSR (.S)

BTST

CHK

Preliminary

OPERATION

Add decimal extend

Add binary

Add to address reg.

Add immediate value

Add value quick

Add with extend

Logical AND

Logical AND Immed.

Arithmetic shift

Conditional Branch

Test bit and change

Test a bit and clear

Branch always

Test a bit and set

Branch to subroutine

Test a bit

Check bounds

ASSEMBLER SYNTAX

ABCD Dy,Dx
ABCD -(Ay),-(Ax)

ADD.s <ea>,Dn
ADD.s Dn,<ea>

ADD.s <ea>,An

ADD.s #<data>,<ea>

ADDQ.s fl<data>,<ea>

ADDX.s Dy,Dx
ADDX.s -(Ay),-(Ax)

AND.s <ea>,Dn
AND.s Dn,<ea>

ANDI. s #<data>, <ea>
ANDI.B #<data>,CCR
ANDI.W #<data>,SR

ASd. s Dx,Dy
ASd.s fl<data>,Dy
ASd.W <ea>

Bee <label>

BCHG Dn,<ea>
BCHG #<data>,<ea>

BCLR Dn,<ea>
BCLR #<data>,<ea>

BRA <label>

BSET Dn,<ea>
BSET #<data>,<ea>

BSR <label>

BTST Dn,<ea>
BTST #<data>,<ea>

CHK <ea>,Dn

Macro Assembler 3•14

CLR.B (.w' .L)

CMP.B (.w' .L)

CMPA.W (. L)

CMPI.B (.w' .L)

CMPM.B (.w' .L)

DB cc
(Note: DBRA

DIVS

DIVU

EOR. B (. W, . 1)

EORI. B (. W, . 1)

EXG

EXT.W (.L)

JMP

JSR

LEA

LINK

LSL.B (.W' .L)
LSR.B (.w' .L)

MOVE.B (.W, .L)

MOVEA.W (.L)

Preliminary

Clear operand

Compare

Compare Address

Compare Immediate

Compare Memory

Test, deer. and branch
accepted for "test false" =

Signed division

Unsigned division

Exclusive OR

Exclusive OR Immed.

Exchange Regs.

Extend Sign

Jump

Jump to Subroutine

Load Effective Addr.

Link and Allocate

Logical Shift

Move Data

Move to Adgress

CLR.s <ea>

CMP.s <ea> ,Dn

CMPA.s <ea>,An

CMPI.s #<data>,<ea>

CMPM.s (ay)+, (Ax)+

DB cc Dn,<label>
DBF)

DIVS <ea>,Dn

DIVU <ea>,Dn

EOR.s Dn,<ea>

EORI.s #<data>,<ea>
EORI.B #<data>,CCR
EORI.W #<data>,SR

EXG Rx,Ry

EXT.s Dn

JMP <ea>

JSR <ea>

LEA <ea>,An

LINK An,/l<data>

LSd.s Dy,Dx
LSd.s /l<data>,Dy
LSd.W <ea>

MOVE.s <ea>,<ea>
MOVE.B <ea>,CCR
MOVE.W <ea>,SR
MOVE.W SR,<ea>
MOVE.L USP,An
MOVE.L An,USP

MOVEA.s <ea>,An

Macro Assembler 3-15

MOVEM.W (.L)

• MOVEP.W (.L)

MOVEQ

MULS

MULU

NBCD

NEG.B (. w, .L)

NEGX.B (.w, .L)

NOP

NOT.B (.w, .L)

OR.B (.w, .L)

ORI.B (.w, .L)

PEA

RESET

ROL.B (.w, .L)
ROR.B (.w, .L)

ROXL.B (.w, .L)
ROXR.B (.w, .. L)

RTE

RTR

RTS

SBCD

Preliminary

Move Multiple Regs.

Move Peripheral Data

Move Data Quick

Signed Multiplication

Unsigned Multiply

Negate Decimal extend

Negate

Negate with extend

No operation

Logical Inverse

Logical OR

Logic.al OR Immed.

Push Effective
Address

Reset Ext. Devices

Rotate

Rotate with Extend

Return from Exception

Return and Restore CC

Return from Subroutine

Subtract decimal

MOVEM.s <reg-list>,<ea>
MOVEM.s <ea>,<reg-list>

MOVE.s d(Ay) ,Dx
MOVE.s Dx,d(Ay)

MOVEQ #<data>,Dn

MULS <ea>,Dn

MULU <ea>,Dn

NBCD <ea>

NEG.s <ea>

NEGX.s <ea>

NOP

NOT.s <ea>

OR.s <ea>,,Dn
OR.s Dn,<ea>

ORI.s #<data>,<ea>
ORI.B #<data>,CCR
ORI.W #<data>,SR

PEA <ea>

RESET

ROd.s Dx,Dy
ROd.s #<data>,Dy
ROd.W <ea>

ROXd. s Dx,Dy
ROXd.s #<data>,Dy
ROXd.W <ea>

RTE

RTR

RTS

SBCD Dy,Dx

Macro Assembler 3-16

SBCD -(Ay), - (Ax)

Sec Set by Cond. Codes Sec <ea>

STOP Load SR and Stop STOP #<data>

SUB.B (.w, .L) Subtract Binary SUB.s <ea>,Dn
SUB.s Dn,<ea>

SUBA.W (. L) Subtract Address SUBA.s <ea>,An

SUBI.B (. w' .L) Subtract Immediate SUBI.s #<data>,<ea>

SUBQ.B (.w' .L) Subtract Data Quick SUBQ.s #<data>,<ea>

SUBX.B (. w' .L) Subtract with Extend SUBX.s Dy,Dx
SUBX.s -(Ay),-(Ax)

SWAP Swap Register Halves SWAP Dn

TAS Test and Set TAS <ea>

TRAP Trap TRAP #<data>

TRAPV Trap on Overflow TRAPV

TST.B (.w' . L) Test an Operand TST.s <ea>

UNLK Unlink UNLK An

3.6 PSEUDO INSTRUCTIONS

COMMON

This pseudo-op is used to reserve or declare an area in Common for
interprogram data communication. The syntax is:

COMMON SYMBOL,operand

The operand may be a number, symbol, or expression. The operand is
evaluated, and the value obtained is used to reserve or declare that
amount (in bytes) in ithe Common area. The low-order 16 bits of the
operand value are used. The COMMON pseudo-op must not be labeled.

Preliminary Macro Assembler 3-17

DC.B

This pseudo-op forms constant bytes of object code. The operands may be
expressions or quoted character strings. If the operand is an expression,
then the low-order byte of the express ion's value is used. The express ion
must not be Relocating or Common. If the operand is a quoted string, then
a byte will be formed for each character in the string. A quote character
(') may be formed by using two quotes in a row. The bytes formed by DC.B
need not lie on an even-word boundary. The DC. B pseudo-op may have
multiple operands, separated by commas. The listing will show only the
first expression value or the first four characters of the quoted string.
Some examples of this pseudo-op are:

DC.B 1,2,3,4
DC.B 'This is a character string'
DC.B 22+LAB1, 'I don't believe this'

The DC.B pseudo-op may be labeled.

DC.L

This pseudo-op forms 32-bit long-words of constant data. The assembler
forces these long-words to lie on even-byte boundaries by outputting null
bytes as necessary. Like DC. B, the DC. L pseudo-op may take either
expressions or quoted strings as operands. Quoted strings will be padded
with nulls at the right to make the boundaries correct. The full 32-bit
values of expressions will be used. These expressions may be Relocating
or Common. The listing will show the first expression value or the first
four characters of the first quoted string. The DC.L pseudo-op may be
labeled. Some examples of DC.Lare:

LABEL! DC.L *-LABELl,LABELl-2,$12345
DC.L 'This string has lots of character'

DC.W

This pseudo-op, like DC.B and DC.L, is used to form constant data. The
DC.W pseudo-op forms words of data, using either expressions or quoted
strings as operands. The assembler forces the words to lie on even-byte
boundaries. Null bytes are used to fill out character strings. The
low-order 16-bit values of expressions are used. Expressions must not be
Relocating or Common. The listing will show the first expression value or
the first four characters of the first character string. Some examples of
DC.Ware:

LABEL2 DC.W $123,$321, 'ABCD'
LABEL3 DC.W LABEL3-LABEL2, 'example of DC.W '

Preliminary Macro Assembler 3-18

QS.B

This pseudo-op is used to reserve a block of memory whose length in bytes
is the value of the operand. The syntax is:

[Label] OS operand

The operand may be a number, symbol, or expression. The DS.B pseudo-op.
may be labeled and the block of memory reserved is cleared to zeroes.
Symbols used in the operand field must have been previously defined in the
program. Only the low-order 16 bits of the operand value are used.

DS.L

This pseudo-op is like DS. B except that memory is allocated in 32-bit
long-word units. The location counter is adjusted to force even-byte
boundary alignment.

os.w

This pseudo-op is like DS. B except that memory is allocated in word
(16-bit) units. The location counter is adjusted to force even-byte
boundary alignment.

END

This pseudo-op terminates a program. It marks the physical end of the
source language program. The last statement of a program must be an END
statement. The END statement must not be written with a label; it
generates no object code and has no operand.

ENDIF

This pseudo-op is used as a terminator to an IF pseudo-op. It must be
unlabeled and have no operand.

ENDM

This pseudo-op is used to indicate the end of a macro definition. It must
not have a label or an operand.

ENTRY

This pseudo-op declares a symbol that may be referenced by separately
assembled programs. The syntax is:

ENTRY SYMBOL

Preliminary Macro Assembler 3-19

This pseudo-op must not be labeled and the operand field must contain a
symbol that is defined elsewhere in the program.

EQU

This pseudo-op assigns to a symbol a value other than the value normally
assigned by the program-location counter. Th·e syntax is.:

Label EQU operand

The EQU statement must be labeled. The operand fiela may co.at a.in a
number, symbol, or expression. Symbols aT>pearing in the operand field
must be previously defined in the source program. The full 32-bit operand
value is used. This pseudo-op generates no object code.

Note: Once a symbol has been defined with an EQU statement, it cannot be
redefined.

EXTERNAL

This pseudo-op declares a symbol that may be referenced by the program but
is defined in some other program. The syntax is:

EXTERNAL SYMBOL

This pseudo-op must not be labeled. SYMBOL in the operand field must be
declared by an ENTRY pseudo-op in the program in which it is defined.

IF

This pseudo-op causes the assembler to process the following code normally
if the value of the operand is not zero but to ignore all source
statements until a matching ENDIF statement is encountered if the value of
the operand is zero. The syntax is:

IF operand

The operand may be a number, symbol, or expression. The IF pseudo-op must
not be labeled and must have an operand.

INCLUDE

This pseudo-op is used to specify source files that are to be included !in
the input source stream to the assembler. The syntax is:

INCLUDE filename.ext

The filename can be any source file present on the same disk as the input
source file.

Preliminary Macro Assembler 3-20

..

MACRO

This pseudo-op is used in the definition of a macro. All statements
following the MACRO pseudo-op up to the next ENDM pseudo-op are stored in
the Macro Table as a macro definition. The syntax is:

Label MACRO [CJ

MACRO statements require labels. The label is the symbol (name) by which
a macro is expanded or called. The operand field may contain a "c," which
specifies whether or not comment lines in the macro definition are to be
stored in the Macro Table. If the "C" is present then the comment lines
are stored and thus expanded with the rest of the lines in the macro
definition when it is called. By omitting the "C," the user can lower the
main-memory requirements needed to store the macro definition.

Note: Macro definitions may not be nested but may contain calls to other
macros.

NAME

This pseudo-op names the program. The syntax is:

NAME SYMBOL

SYMBOL in the operand field is passed to the Linking Loader as an Entry
point. It must not be used as a label in the program. A NAME pseudo-op
must be included in each program as the first statement.

NOPRINT

This pseudo-op turns off the L option for selected portions of a listing
and is used in conjunction with the PRINT option. The syntax is:

NOPRINT [n]

where n is a decimal number. The default value is 1.

PAGE

This pseudo-op causes the listing device to advance to the top of the next
page. This statement d6es not appear on the listing, generates no object
code, and must not be labeled. The syntax is:

PAGE [n]

where n is a decimal number. The default value is 1 .

Preliminary Macro Assembler 3-21

PRINT

This pseudo-op is used to turn on the L option previously turned off by a
NOPRINT stat.ement. The syntax is:

PRINT [n]

SET

This pseudo-op assigns to a symbol a value other than tl:,le value normally
assigned by the program-location counter. The syntax is:

Label SET operand

The SET statement must be labeled. The operand field may contain a
number, symbol, or express ion. Symbols appearing in the operand fiel<i
must have been previously defined. This pseudo-op is like the EQU
pseudo-op except that symbols may be defined more than once. The entire
32-bit operand value is used.

3.7 MACROS

Macros are sections 0£ cod.e that are defined once at the beginning of .a
program and used and referenced by .a mnemonic code, wj.th or witho1,rt
parameters.

Usually the code in a macro contains statements that are repeated many
times throughout a program. Macros provide a shorthand notation for
repeating these sections of code.

The statements to be repeated are grouped in on.e place at the beginning of
the program and are pr.eceded by the MACRO pseudo-op and followed by the
ENDM pseudo-op. The macro is named by placing the name in the MACRO
statement's label field. A macro is called by placing its name in a
statement's opcode field along with any parameters to be passed to the
Macro in the ope~ap.d fiell1 (sepa~ated by coUUJ1as),

The effect of a macro operation is the same as an open subroutine in that
it produces in-line code. The in-line code is inserted in the normal flow
of the program so that the generated statements are assembleQ. with the
rest of the program.

J?reliminary M11cro Assembler 3-22

3. 7. 1 MACRO PROTOTYPE

The macro definition is known as the prototype. The source statements
included in the prototype may be any legal assembler or processor
instruction except for another MACRO pseudo-op.

Macro prototypes are of the form:

Header MN AME MACRO [c]

Body

Termination ENDM

where:

3.7.2

line
line
line
line
line
line
line
line
line
line
line
line

MNAME is the name of the Macro.

C is an optional operand to control the storing of comment lines from
the prototype body.

Body is the sequence of source statements.

Termination is the line containing the pseudo-op ENDM.

ENDM is recognized by the assembler as the end of the macro
definition.

EXAMPLE OF A MACRO PROTOTYPE

1 LOOP MACRO C
2 MOVEQ #&0,Dl LOAD Dl WITH ARGUMENT 0
3 MOVEQ #&1,D2 LOAD D2 WITH ARGUMENT 1
4 *
5 SUBQ.L #1,D2 COUNT DOWN D2
6 BNE. S ~·:-2

7 *
8 SUBQ.L #1,Dl COUNT DOWN Dl
9 BNE.S *-8
10 *
11 RTS ALL DONE
12 ENDM

Preliminary Macro Assembler 3-23

Line 1 is the header. It names the macro as LOOP and specifies that
comment lines in the. body are to be stored in the macro definit-ion in the
Macro Table.

Lines 2 and 3 are source statements with substitutable arguments
(parameters) in the variable field (&O, &l). A substitutable argument is
recognized by the presence of the ampersand. The digit after the "&" is
the argument number. Ten is the maximum number of arguments usable in a
single macro (0-9).

Lines 4-11 make up the rest of the prototype body.

Line 12 is the termination line.

Lines 2 through 11 are stored in the Macro Table by the assembler fo.r
later use. If the "c" was not on the header statement, then lines 4, 7~
and 10 will not have been saved.

The macro name "LOOP" is stored in the symbol table with a pointer to the
location of the macro definition in the Macro Table.

A typical call to the macro LOOP might be:

LABEL LOOP 100~12

This would expand into the following:

MOVEQ #100,Dl LOAD Dl WITH ARGUMENT 0
MOVEQ #12,D2 LOAD D2 WITH ARGUMENT 1

*
SUBQ.L #1,D2 COUNT DOWN D2
BNE. S ~·r-2

*
SUBQ.L #1,Dl COUNT DOWN Dl
BNE.S *-8

*
RTS ALL DONE

The parameter argument 11 100" is substituted for 0 and the parameter
argument 11 1211 is substituted f.or &l. The parameters can be any character
string at all. They may be used anywhere in the macro body to stand for
the character string they will represent when the macro is expanded.

3.8 INTERPROGRAM LINKAGE

Linking pseudo instructions are used to provide a means of communications
between a main program and its subroutines or among several subprograms
that are to be linked together to run as a single program.

Preliminary Macro Assembler 3-24

3.8.1 COMMON

COMMON reserves a block of storage locations that may be used in common by
several programs. Each SYMBUL identifies a segment of the block for the
subprogram in which the COMMON statement appears. The operand is the
length of the related segment. The format of the statement is:

COMMON SYMBOL,operand

Any number of COMMON statements may appear in a subprogram. Storage
locations in common are assigned contiguously. The length of the clock is
equal to the sum of the lengths of all segments named in COMMON statements
in the subprogram.

3.8.2 USE OF COMMON

To refer to the Common block, other subprograms must also include a COMMON
statement. The segment names and lengths may be the same or they may
differ. Regardless of the names and lengths specified in the separate
subprograms, there is only one Common block for the combined set. It has
the same relative origin; the content of the nth byte of Common storage is
the same for all subprograms.

NAME PROGl
COMMON AAA,5
COMMON BBB,10
COMMON CCC,10

MOVE.B BBB+l,DO

END

NAME PROG2
COMMON DDD,2
COMMON EEE,2
COMMON FFF,1
COMMON GGG,20

MOVE.B GGG+l,DO

END

Preliminary

EXAMPLE

ALLOCATE 5 BYTES OF COMMON
ALLOCATE 10 BYTES OF COMMON
ALLOCATE 10 BYTES OF COMMON

LOAD BYTE 2 OF SEGMENT BBB

AL,1.0CATE 2 BYTES OF COMMON
AtiLOCATE 2 BYTES OF COMMON
ALLOCATE 1 BYTE OF COMMON
ALLOCATE 20 BYTES OF COMMON

LOAD BYTE 2 OF SEGMENT GGG

Macro Assembler 3-25

3.8.3 ORGANIZATION OF THE COMMON BLOCK

PROGl

AAA

BBB

CCC

PROG2

DDD

EEE

FFF
GGG

COMMON
BLOCK

BYTEl
BYTE 2
BYTE 3
B'YTE 4
l'Y"n 5
B¥TE 6
BYTE 7

BYTE 15
BYTE 16
BYTE 17

BYTE 25

The MOVE. B instruction in both of the subroutines refer to the same
location in Common (Byte 7).

The segment names that appear in the COMMON statements can be used in the
operand fields of EQU, DC.L, or any memory reference statement; they may
not be used as labels elsewhere in the program. All references to Common
are relocatable.

The user establishes the origin of the Common block when the Linking
Loader is executed. Two or more subprograms may declare Common blocks
that differ in size.

3.8.4 ENTRY

ENTRY defines entry points to the program or subprogram. SYMBOL is an
assigned label for some statement in the program. Entry points allow
another subprogram to refer to this subprogram. All entry points must be
defined in the program. The format of the statement is:

ENTRY SYMBOL

Preliminary Macro Assembler 3-26

3.8.5 EXTERNAL

EXTERNAL designates labels in other subprograms that are referenced in
this subprogram. The format of the statement is:

EXTERNAL SYMBOL

SYMBOL must be defined as an ENTRY in some other subprogram.

Example of Entry and External

*

SUBl

*

NAME PROGl

ENTRY SUBl
ENTRY SUB2

MOVE.W #$1234,D4

RTS

SUB2 MOVE.B #'C' ,D2

RTS
END

NAME PROG2
EXTERNAL SUB!
EXTERNAL SUB2

JSR SUBl
JSR SUB2

END

DEFINE SUBl AS AN ENTRY POINT
DEFINE SUB2 AS AN ENTRY POINT

DEFINE SUB! AS EXTERNAL
DEFINE SUB2 AS EXTERNAL

CALL SUB! IN PROGl
CALL SUB2 IN PROG2

SUB! and SUB2 are referenced in PROG2 but are actually locations in PROGl.

The COMMON pseudo-op is provided to allow data communication and the
EXTERNAL and ENTRY pseudo-ops are provided to allow control communication
between separately assembled subprograms that are linked together to form
a single program to be executed as a unit.

Preliminary Macro Assembler 3-27

3.8.6 LISTING OUTPUT FORMAT

Fields of the program are listed in the following format:

COLUMNS

1-4
5
6
7-14
15
16-19
20

CONTENT

Line number generated by the assembler
Blank
Blsnk ("+" if line is macro expansion)
Location (32-bit hexadecimal)
Blank
Opcode-word (hexadecimal)
Blank

There are seven possible formats for instruction listing~~

FORMAT 1.

21-32
33-

FORMAT 2.

21-24
25-32
33-

FORMAT 3.

21-28
29-30
31
32
33-

FORMAT 4.

21-24
25
26-29
30-32
33-

Preliminary

Blank
Source line

Second instruction word,
Blank
Source line

32-bit operand
Blanks
Reloc. or Common indicator (R, C)
Blank
Source line

One-word operand
Blank
Second one·word operand
Blank
Source line

Macro Assembl~r 3•28

FORMAT 5.

21-24
25
26-29
new line
1-20
21-28
29-30
31
32
33-

FORMAT 6.

21-28
29-30
31
new line
1-20
21-24
25-32
33-

FORMAT 7.

21-28
29-30
31
new line
1-20
21-28
29-30
31
32
33-

One-word operand
Blank
Second word operand

Blanks
32-bit operand
Blanks
Relocation or Common indicator (R or C)
Blank
Source line

32-bit operand
Blanks
Relocation or Common indicator (R or C)

Blanks
word operand
Blanks
Source line

32-bit operand
Blanks
Relocation or Common indicator (R or C)

Blanks
32-bit operand
Blanks
Relocation or Common indicator (R or C)
Blank
Source line

Lines consisting entirely of comments are listed:

1-4
5
6
7-32
33-

Preliminary

Line number
Blank
Blank or "+" if line is a macro expansion
Blanks
Source statement

Macro Assembler 3-29

Pseudo-operations are listed:

1-4
5
6
7-14
15

Line number
Blank
Blank or 11+0 if line is in macro expansion
Location (32-bit hexadecimal)
Blank

o-word pseudo-ops

16-32
33-

Blanks
Source line

1-word pseudo-ops

16-19
20-32
33-

Data word
Blanks
Source line

2-word pseudo-ops

16-23
24-30
31
32
33-

Data long-word
Blanks
Relocation~ Common~ Entry, External Indicator
Blank
Source line

3-word pseudo-ops

16-27
28-30
31
32
33-

Preliminary

3 words of data
Blanks
Relocation, Common, Entry, External Indicator
Blank
Source line

A Symbol Table listing has the following format:

COLUMNS

1-8
9
10-17
18
19-

CONTENT

SYMBOL
Blank
Value in hex (32-bits)
Blank
Symbol Type:

R-Relocatable
M-Macro
N-Entry
X-External
C-Common

3.8. 7 RELOCATABLE FILE FORMATS

The relocatable files are text: that is, they contain only printable
ASCII characters and are formed into 70-character lines.

Binary bytes are encoded as two ASCII characters each. As an example, the
byte 39 hex would be encoded as ASCII "3" followed by ASCII "9." Object
code is simply a stream of such ASCII-encoded bytes.

A relocatable address is flagged with the ASCII "R" character. The "R"
indicates that the preceding 8 characters represented an address which is
to be relocated using the base address.

An address in COMMON is flagged with the ASCII "M" character. The "M"
indicates that the preceding 8 characters represented an address which is
to be relocated using the COMMON starting address.

An external reference consists of 16 characters which are the encoded form
of the eight-character name of the reference followed by the ASCII "X"
character.

An entry point consists of 16 characters which are the encoded form of the
e~ght-character name of the entry, a relocatable address, and the ASCII
"N" character. The relocated address becomes the address of the entry
point which is used to resolve all references to the entry.

A program name consists of an encoded address followed by the ASCII "p"
character followed by an entry-point which includes the name and
relocatable address. The first address is the COMMON length of the
program.

Preliminary Macro Assembler 3-31

'>•, ', ,.

4.0 LINKER, LOCATER, AND LIBRARY MANAGER

CS-OS software development products provide the user with several
software tools for the modular development of code. Modular software
development makes programs that are lengthy or complex much easier to code
and maintain. The tools that CS-OS provides for such development are a
linker (LINK), a locator (LOCATE) and a library management program (LIB).

The linker program enables the user to combine two or more modules into a
single one. The locator binds the relocatable addresses in a linked
program to absolute memory locations. The library management program
allows the user to form a library that can be accessed by the linker.
Together, these programs comprise a powerful and versatile module
management package.

4. 1 SECTION I. LINK

4. 1. 1 DESCRIPTION

The linking program, LINK, accepts assembler or language translator
output as input. This input contains entry points, relocatable addresses,
common addresses, and possible references of external symbols.

4. 1.2 INPUT TYPES

LINK recognizes three input types:

1. Simple relocatable modules produced by an assembler or language
translator.

2. Specific modules in a library.

3. An entire library.

Preliminary CS-OS Link, Locate, Lib 4-l

In this manual the term "specific module" always means input types 1 and
2. The linker combines all specific modules in the order in- which it
receives them as input. Output from a previous execution of LINK may also
be used as input to LINK, at a later time, if additional modules are to be
added.

4. 1.3 RELOCATION

The linker combines modules by relocating them with respect to the
previous modules processed. The relocatable addresses of the first module
remain unchanged, but the subsequent modules are relocated to reflect
their relationship to the previous modules. Thus the length of the first
module is added to the relocatable addresses of the second module. The
combined length of the first and second modules are added to the
relocatable addresses of the third module, and so on.

4. 1.4 EXTERNAL REFERENCES

RESOLVED

When an external reference is encountered, the linker searches the
cont~nts of all the modules it has already processed for an entry point
that matches the external reference. If it does not find any, the linker
searches for it in the modules not yet processed. If unsatisfied external
references remain after all specific modules have been processed by LINK,
the program will check any general libraries that have been given as
inputs. These are searched for any modules having an entry point
satisfying any resolved external reference. Library modules that have the
matching entry points are then linked in with the specific modules already
linked. When a library module that is added contains unresolved external
references, another search of the libraries occurs.

UNRESOLVED

If unresolved externals still remain after searches of the libraries, a
WARNING message is produced by LINK. This message does not necessarily
indicate an error condition. Both entry points and unresolved external
references are left in the linker output to allow the option of future
linking. Programs can then be developed and linked together in stages.
Other modules can be linked to satisfy these unresolved externals at a
later time.

Preliminary CS-OS Link, Locate, Lib 4-2

4.1.5 MODULE AND LIBRARY MAXIMUMS

LINK allows a maximum of twenty (20) specific modules as input at one
time. Up to ten (10) general libraries are allowed at one time. These
limits apply to each execution only. Multiple executions of LINK provide
the means for exceeding these maximum values. For example, the linker
could be run once with twenty specific modules and then rerun with the
previous linker output and nineteen specific modules. This process allows
a virtually infinite linking capability.

4.1.6 OPERATING INSTRUCTIONS FOR LINK

1. To invoke LINK, type

LINK

The system will produce the following prompt:

ENTER FILES TO BE LINKED
INPUT FILE:

The user should respond with one of the three file.types:

name.ext

name.LIB (module name)

name.LIB

A carriage return will enter the filename and generate a repetition of the
INPUT FILE: prompt. Another filename can now be typed and entered. A
carriage return without a filename will terminate the input process.

2. The system now produces the following prompt:

DO YOU WANT A LINK MAP?

Answer YES or NO for a LINK map. (The letter "y" is sufficient for
specifying a YES answer. Any word beginning with a letter other than "y"
will be interpreted as a NO answer.)

The LINK map is printed on the line printer by default. If the Computer
System does not have a line printer attached, the answer must be no, to
avoid "hanging up" the system.

Preliminary CS-OS Link, Locate, Lib 4-3

M,swer: n:$ or ,N() fer 1 ink~,; ~t~t. It ¥!6 , the lilYs t.eJa will gen~i-ate the
following prompt:

(The letter "Y1' if! s1'1Hicient fQJ: sp#eifyin_g a Yi:S uswei,-. Any wol'.'d
beginning With a letter other than ''Y'' wHi b,e interpJ'et.ed a:B .a NO
B.I).sweJ: •) · ·

Respond with

name.eKt.

Note: lt is suggested that you adopt the c.pnvention of using nLNK'1 a.s th•
extensiof). for all LINK oµtput filenames,

4. 1. 7 EXAMPLES Of LINKER US!

The following e~amples ill'!Jstra'te the µ~e. of LINK t<.> perform cOf'lllJIOn
operations.

EXAMPLE I

This first example deQ!.onstrates a simple linking procedure:
of three subroutine!:! (named as external) to a main program.
the p1'.'ogram is MAIN.REL. The names of the three subroutines
CONSTR. J.U:L, and CENT. REL.

FiFst:, invoke the U.nke1'." by typing

LINK.BIN

~NTl!:l F!LES. TO BE LlNDD
INPUT FI!Jti

(respond) HAIN.fltL (carriage r~tu~n.)

the linking
The name of

are CON . REL,

which enters the name of the main program. If files to be linked are
implemented as subroutines, as they are in this case, it is important for
the calling program to be listed first because the linker links files in
the order they are received.

INPUT FILE:

(respond) CONV.REL (carriage return)

which enters the name of the first module.

INPUT FILE:

(respond) CONSTR.REL (carriage return)

INPUT FILE:

(respond) CENT.REL (carriage return)

INPUT FILE:

(carriage return)

which terminates the input process. All the modules have been input.

DO YOU WANT A LINK MAP?

(respond) YES

Sample LINK map:

LINK MAP

MAIN
CONV
CONSTR
CENT

00000000
000002AB
000002FO
00000310

The address following the global symbol is the location that the module
was relocated to.

DO YOU WANT AN OUTPUT MODULE:

(Respond) YES

If the user responds YES, an output module containing the relocated linked
modules will be created.

OUTPUT FILE:

Preliminary CS-OS Link, Locate, Lib 4-5

This prompt asks for the name of .a new file. (It i~ s~gg"ted th4t ycg.
adopt the convent.too. of naming linker ou:tpg.t fileiil with "~ a ~
exte'lts ion .)

EXAMPLE II

This seecmd example as•umes that the t.h.ree subroutae.s froa ttl!.• f:ir'$t
example have been st:cn:ed in a library (by -~~ of the library prograni).
The libirary is callee ~!L.LIB. The main pr()gi-aa is :still MAU4.UL and
still needs the same tb.r&e routines.

Invoke the linker by typing LINK.

ENTER FILES TO BE LINKE]}.
INPUT FILE:

(respond) MAUI.REL (cari-iag.e return)

which enters the name of the ma.ill file to be linked.

INro'l' FlLE:

Since the main prograa needs three external routines that a.re known
to be in UTIL.LIB, that libracy n.atae can he given as input to LINK. The
linker will search all of the specific modules first.. If unresclved.
external references are found, the link.er will then check any ge11eral
libraries given. Tue JDOdules will be found in the library in this case.

INPUT P'ILE:

(respond) (-carriage retw:n)

The rest of the session. will be identical to th.e eorresporuU.~.g portion ·Of
Example I.

4.2 SECTION II. LOCATE

4.2.1 DESCRIPTION

LOCATE produces an absolute, binary module from the relative, ASCII output
of LINK. LOCATE will also accept, as input, single modules of assembler
output. LOCA'f.E adds a base address to each of the relative addresses, and
a common base address to each of the common addresses. This binary module
is created on disk (not in memory), thereby allowing greater versatility.

If a module sent to LOCATE contains unresolved external references, no
error condition occurs, but the occurrence itself generates a warning
message, and the address is replaced by zero. This allows the user to
substitute an address by hand or to enter a breakpoint before the
instruction is executed.

4.2.2 OPERATING INSTRUCTIONS FOR LOCATE

Note: LOCATE cannot be used unless the Computer System has a line printer
attached.

1. To invoke LOCATE, type in LOCATE.

2. Enter the name of the file to be bound to absolute addressing.

3. Enter the base address.

4. Enter the common address. (Note: If you enter only a carriage return ,
the common address will be set to the base address.)

5. Enter the transfer address. (Note: If you enter only a carriage re
turn, the transfer address will be set to the base address.)

Note: The user has the option of specifying the base, common, and
transfer input addresses in either hexadecimal or decimal
notation. If hex is chosen, the number must be preceded by a
dollar sign.

Preliminary CS-OS Link, Locate, Lib 4-7

4.2.3 OUTPUT FILENAME

The ortput of :tOOA'l'E is created in a file wit& th'e' s~' fde.l't~ &s dt-t!'
input file; howevet, the elttension: o·f the· I.Oem outpttt fil& w:i:H ~
''BIN. II

WARNING •- H a: file already exists with the LOC!Tt o\!l'tp-at filerrmtte·, it
w:Ul automatic.ally be deletecf. by LOCA11 b'efo'te· tile outptl't i§
fo-tMff.

4.2.4 FORMAT Of; cs-o~ BtNARY Ffi..E.~

Binary files unde:t cs-Os ate stoted as segm·etrts of m'etWot' il'i'lif~es. 1"fd~
class o·f file ineiudes s·ystem utilities;; nmr:tesidettt c~.S;. ~An
files, and output ftonr LOCATE.

There are two types of data in a bina·:ty file; ttansfer addte'S'S- llltd nte!lYOt'Y
image data. Each type df data iS stored itt a block ol Uf>' -to 23& G'gteai •

The format of a transfer address iS:

BYTE 1 t:tansfet address'matk $16
BYTE 2-5 transfer address - 4 bytes/32 bits

The format of memory dsts is:

BYTE l
BYTE 2-5
Bnt 6
BYTE 7-n

metttb':ty data ma:tk $0'2
memory address 4 byt~s/3Z bits
cO"tmt of dsts byte§
data bytes eX\a.et 1y a§ in rM!mry

1f there is more than one transfer sddtess; then the last otte encotrttte:ted
is tts~d. The" last sector i~ psdded with $d0. fits has no effect cm m~
lO'ttc:H:ng;

:PreHmi:tittty

4.3 SECTION Ill. LIB

4.3.1 DESCRIPTION

The library management program (commonly referred to as "LIB") allows the
user to manipulate libraries quickly, easily, and powerfully. The LIB
utility is especially useful for creating a library that contains
frequently used routines.
These routines are listed as an external in the program that uses them.
For example, one library could contain scientific subroutines, another
could be created to contain programs of special interest to the user.

4.3.2 LIB COMMANDS

The LIB program has five commands:

1. CREATE

2. ADD

3. DELETE

4. LIST

5. EXIT

• CREATE or CR

The CREATE command formats a new library file. All libraries must be
named with. the extension "LIB" or they will not be recognized as
libraries by the LINK program.

• ADD or AD

The ADD command adds a module to a previously existing library or
forms a new one following the use of the CREATE command.

Preliminary CS-OS Link, Locate, Lib 4-9

• LIST or LI

The LIST command lists the names of all modules contained in a given
library. The LIST command also provides the option of listing all of
the entry points contained in each module as well as the module names.

• DELETE or DE

The DELETE command removes a module from a given library.

Note: When using either the ADD or DELETE commands, it is important
to remember that a file with the same name as the library being
modified, but with the extension "TMP," is used and then
deleted. If the user has a file with that name on the disk, it
will be destroyed.

• EXIT or EX

The EXIT command returns control to the operating system.

4.3.3 OPERATING INSTRUCTIONS FOR LIB

To invoke LIB, type in LIB. The resulting prompt will be a dollar sign
($).

Then enter any legal command.

The legal command formats are as follows:

CREATE <name.LIB>

where <name.LIB> is the name of a new library

LI ST <name . LIB> E

where <name. LIB> is an existing library. If
the library is empty, it will be noted. If the
E option is not specified, only the names of the
the modules themselves will be listed. If the E
option is specified, the names of each module
will be listed, along with their entry points.

ADD <name.ext> TO <name.LIB>

adds a new module to an existing library. The

Preliminary CS-OS Link, Locate, Lib 4-10

same module cannot occur more than once in the
same library.
Note: the module name in the library will be
the name within the file. It is recommended that
the name within the file and the filename be the
same.

DELETE <module name> FROM <name.LIB>

EXIT

where <module name> is the name of the module to
be deleted from the given library.
Note: <module name> is not a filename. To find
the name of the modules in a given library, use
the LIST command before using DELETE.

returns the user to system mode.

4.3.4 EXAMPLES OF LIB USE

The following are some typical examples of how the library management
program can be used. All examples assume that the library program has
been invoked by typing LIB.BIN. The dollar sign ($) on the left is the
prompt generated by the library and is not to be typed in by the user.

EXAMPLE I

This example presupposes that the user wishes to develop a software
library of scientific functions that can be conveniently Linked to other
modules.

• Assume that one of these functions is a subroutine contained in a file
named SQRT.REL. This subroutine performs a square root operation with
certain calling conventions.

• The library is to be called SCI.LIB.

• The contents of the library will be listed after it is created.

$CREATE SCI.LIB

Preliminary

This command formats a new library called SCI.LIB
(as long as a library by that name does not al
ready exist). The library manager returns the
message "LIBRARY CREATED" to confirm that the

CS-OS Link, Locate, Lib 4-11

command has been executed.

$ADD SQRT.REL TO SCI.LIB

The LIST command w,ill list al'l module names con
tained in the library. In our example, LIST will
respond with,:

MODULE NAME: SQRT

$EXIT

EXAMPU II

assuming the module name and filename were both
SQRT.

This command returns control to the operating
system.

In this example, two modules are deleted from an existing library.
The library will be listed and the modules deleted.

• Assume WOR'DP. LIB contains some word-processing functions called
STRINGL, STRINGR, STRINGC, and STREND.

The object is to delete STREND and STRINGR from the library.

$LIST WORDP.LIB

The LIST command lists the contents of the
library. In this example the output would be:

MODULE NAME: STRINGL
MODULE NAME: STRINGR
MODULE NAME: STRINGC
MODULE NAME: STREND

The next step is to delete the two modules
modules STREND and STRINGR from the library
by using the DELETE command:

$DELETE STREND FROM WORDP.LIB
$DELETE STRINGR FROM WORDP.LIB

The revised library can then be listed:

Preliminary CS-OS Link, LocatA, Lib 4-12

$LIST WORDP.LIB

$EXIT

EXAMPLE III

which would produce:

MODULE NAME: STRINGL
MODULE NAME: STRINGC

returns control to the operating system.

The third example demonstrates the replacement of an existing library
module with a new version.

• Assume that SQRT is a module contained in SCI.LIB. and that a faster
method of computing square roots is implemented in a new version of
SQRT.REL.

The new program routine is to be incorporated in SCI. LIB as a
replacement for the outdated version.

• Assume that SCI.LIB contains SQRT, COS, and SIN.

$LIST SCI.LIB

lists the contents of the library:

MODULE NAME: SQRT
MODULE NAME: COS
MODULE NAME: SIN

Library member names are listed in the order in
which they were added to the library.

$DELETE SQRT FROM SCI.LIB

Delete the old version of SQRT.

$LIST SCI.LIB

The library now contains:

MODULE NAME: COS

Preliminary CS-OS Link, Locate, Lib 4-13

MODULE NAME: SIN.

$ADD SQRT.REL TO SCI.LIB

$LIST SCI.LIB

$EXIT

The library now contains the new version of
SQRT.

will produce:

MODULE NAME: COS
MODULE NAME: SIN
MODULE NAME: SQRT

Notice that the order of the modules in the
library is now different. SQRT was the last
library member added and this is reflected in
the output produced by LIST.

returns eontrol io the system.

CS-0$ Link J . Loe~t;.e, Lib . t..:..14

- (

5.0 CS-DEBUG

5.1 INTRODUCTION

CS-Debug is a debugging utility designed to run in the multitasking
environment of CS-OS.

5.2 OPERATING CS-DEBUG

DEBUG is located to operate in high memory, out of the way of user
programs.

First LOAD the program to be debugged, then type DEBUG.

To begin testing a program, the programmer sets breakpoints (optional) and
uses the GO command to jump execution to the first statement of the
program. This address is contained in relocation register RO ..

To terminate the debugging (after the program releases any resources it
may have acquired), the programmer places a breakpoint where the program
KILLs or terminates itself. When this breakpoint is hit, the EX command
is used to leave the debugging process. If any channel other than the EX
command is used to return to the system, performance becomes unpredictable
and hangups may occur.

Debugging Modular Software

There is a fundamental problem in debugging a program consisting of
modules that have been linked after being assembled independently. While
the assembler listing for each module displays relocatable addresses
relative to zero, the user must do some arithmetic to locate an address or
label within a module after it has been linked into a larger program.
This procedure is not only inconvenient but time-consuming and vulnerable
to error' as well.

Preliminary CS-Debug 5·-1

Relocation Registers

CS-Debug contains a set of eight additional registers not found in the
computer hardware. These are the eight relocation registers, implemented
in software. The relocation registers are displayed, set and changed in
the same manner as the address (A) and data (D) registers.

Although in certain cases the relocation registers may be legally used in
place of hex values, their primary purpose is to aid in converting the
zero-based addresses of assembler listings to the absolute run-time
addresi:;es needed to debug software.

When the debugger module is invoked, RO will contain the base address of
the debugger code itself. Rl and the PC should be set to the base address
of the first program module. These addresses alone suffice for the
debugging of a single-module program. Any relative address in the module
can be translated to an absolute address with the command

<relative address> Rl

5.2. 1 DEBUGGING MULTIPLE-MODULE PROGRAMS

CS-Debug' s relocation registers greatly facilitate debugging of
multiple-module programs. The base address of each module is contained in
one of therelocation registers, ready for use whenever an address in that
module is referenced.

Assigning the base addresses of modules to the relocation registers
requires the use of the LOCATE map. First, the debugger sets the base
address of itself and assigns it to RO. Then the user sets the base
address of the first module by assigning to Rl, the value corresponding to
that module on the LOCATE map. Additional modules are set in the same
manner.

Debugging can begin after each module's base address has been set and
assigned to a relocation register. Any relative address from the
assembler listing of any module can be accessed with the command

·<relative address> R#

where "#" is the number of the relocation register to which that module
has been changed.

Preliminary CS-Debug 5-2

5.2.2 EXAMPLE OF SETTING UP CS-DEBUG FOR A MULTIPLE-MODULE
PROGRAM

For purpose of this example consider a software package consisting of
three modules: MODl, MOD2, and MOD3. Assume that this software does not
work, so needs debugging. Use the linker (LINK) to link together the
MODl, MOD2 and MOD3. Note: In order to avoid confusion it is recommended
that the user adopt a convention in naming debug modules. A suggestion is
to name the linker output with the original module's name plus an appended
letter (e.g. "D").

Save the LOCATE map, which in this example looks like the following:

MODI
MOD2
MOD3

lOEOO
1124E
l18EC

Now form a loadable program by using the LOCATE utility. Bring up the
debugger by typing

DEBUG <parameters>

When the debugger comes up, RO will contain the base address of CS-Debug.
To set Rl, R2, and R3 to MODl, MOD2, and MOD3 respectively, type

Rl lOEOO
R2 1124E
R3 118EC

where the values have been obtained from the LOCATE map.

In order to access a value in any module, simply type in the relative
address found on the assembly listing and then the number of the
relocation register (e.g., R2) containing the base address of the module.
The address for debugging will then be computed for you.

5.3 CS-DEBUG COMMANDS -- SYNTAX AND DEFINITIONS
\

The syntax notation used with CS-Debug is:

Parentheses -- () -- indicate that the enclosed parameter is required.
These symbols are used to define the command format. They are not part of
the command itself and are not to be entered.

Preliminary CS-Debug 5-3

(num) is a value expression of the form:

(hex value)
(hex value) + R#
(hex value) Rt#

Rt#

where R# is a relocation register.

reg

class

hex value

hex exp

<count>,<end>,<start>

Address Registers:

Data Registers

Relocation Registers:

Preliminary

any address, data, or relocation register;
program counter, status register, or system
stack

defines a register as address (A), data (D),
or relocation (R)

values 0 through 7, specifying a register

hexadecimal numeric expression

a value expression of the form:
<hex value>
<hex value> + R#
<hex value> R#
R#

are hexexps

AO, Al, A2, A3, A4, AS, A6, A7

DO, Dl, D2, D3, D4, DS, D6, D7

RO, Rl, R2, R3, R4, RS, R6, R7

CS-Debug S-4

5.4 SUMMARY OF CS-DEBUG COMMANDS

Command

A
A:

A#
A#: hexexp

A# hexexp
BR
BR hexexp
BR -hexexp
BR CLEAR
D
D:
DtF
D#:
D# hexexp
DR
DM hexexp hexexp

DM hexexp
EX

G hexexp
G
OP hexecp
PC
P:
PC hexexp
SS
SS:
SS hexexp
SR
SR:
SR hexexp
R
R:

R#
R#:
R#

Preliminary

Description

Prints contents of all address registers
Prints and prompts for change on all address
registers
Prints contents of an address register
Prints and prompts for change of an address
register
Sets an address register to hexexp
Prints all breakpoints set
Sets a breakpoint at hexexp
Removes a breakpoint at hexexp
Clears all breakpoints set
Prints contents of all data registers
Prints and prompts for change on all data registers
Prints contents of a data register
Prints and prompts for change on a data register
Sets a data register to hexexp
Display all registers
If second hexexp >= first hexexp, then display
memory between first and second hexexps.
If second hexexp < first hexexp, then display
second-hexexp bytes starting at first hexexp.
Display 16 bytes starting at hexexp
Release console and kill debug task
Note: Program being debugged must not hold any
resources when this CS-Debug command is executed
Begin execution at hexexp
Begin execution at location contained in PC
Change memory starting at hexexp
Print contents of PC
Print and prompt for change on PC
Set PC to hexexp
Print contents of system stack
Print and prompt for change on system stack
Set system stack to hexexp
Print contents of status register
Print and prompt for change in status register
Set status register to hexexp
Print contents of all relocation registers
Print and prompt for change on all relocation
registers
Print a relocation register
Print and prompt for change on relocation register
Set relocation register to hexexp

CS-Debug 5-5

Note: In the list above, several commands and their initial operand are
separated by a blank space. In practice, this space is not
required.

5.5 REGISTER DISPLAY

Format

reg# hexexp

reg#:

reg#

class

class:

DR

Preliminary

Description

Puts value of hexexp in reg#

Prints original value and prompts for a new
hex exp

Prints register value

Prints the value of all registers in class

Cycles through all the registers in the
class, printing old values and prompting for
new ones

Display values of all registers

CS-Debug 5-6

5.5.1 REGISTER DISPLAY EXAMPLES

Command Description

AO 8004 ASSIGN A VALUE TO AO
Al: DISPLAY Al AND PROMPT FOR CHANGE
Al=OOOOOOOO ?824
Al DISPLAY Al
Al=00000824
AO DISPLAY AO
A0=00008004
A DISPLAY ALL A REGISTERS
A0=00008004 Al=00000824 A2=00000000 A3=00000000
A4=00000000 A5=00000000 A6=00000000 A7=0001C5EE
R2 600 SET R2
RO 5280 SET RO
R DISPLAY ALL R REGISTERS
R0=00005280 Rl=OOOOB076 R2=00000600 R3=00000000
R4=00000000 R5=00000000 R6=00000000 R7=00000000
D: PRINT AND PROMPT FOR CHANGE ON ALL D REGISTERS
DO=OOOOOOOO ?32 STORE 32 IN DO
Dl=OOOOOOOO ? NO CHANGE
D2=00000000 ?23
D3=00000000 ?43
D4=00000000 ?
D5=00000000 ?
D6=00000000 ?42
D7=00000000 ?66
D DISPLAY ALL D REGISTERS
D0=00000032 Dl=OOOOOOOO D2=00000023 D3=00000043
D4=00000000 D5=00000000 D6=00000042 D7=00000066
A: PRINT AND PROMPT FOR CHANGE ON ALL A REGISTERS
A0=00008004 ? HITTING CR ALONE GIVES NO CHANGE
Al=00000824 ?
A2=00000000 ?630
A3=00000000 ?
A4=00000000 ?
A5=00000000 ?
A6=00000000 ?
A7=0001C5EE ?
DR DISPLAY ALL REGISTERS
PC=OOOOB076 SR=2000 S6=0001656E
D0=00000032 Dl=OOOOOOOO D2=00000023 D3=00000043
D4=00000000 D5=00000000-D6=00000042 D7=00000066
A0=00008004 Al=00000824 A2=00000630 A3=00000000
A4=00000000 A5=00000000 A6=00000000 A7=0001C5EE
R0=00005280 Rl=OOOOB076 R2=00000600 R3=00000000

Preliminary CS-Debug 5-7

5.6 MEMORY DISPLAY

Format

DM <start> <end>

DM <start> [count]

Description

Display ~emory in hex and ASCII
<start> must be less than <end>

Dis.play [count] bytes beginning at
<start>. [count] must be less than
<start>. Default [count] is 16.

All displays are done in 16-byte units, with the number of bytes displayed
rounded to the next highest multiple of 16.

5.6.1 MEMORY DISPLAY EXAMPLES

Command Description

DM 8000 8010 DISPLAY MEMORY BETWEEN 8000 and 8010
008000 4D F9 00 00 82
DM 800 25

76 4E 40 00 12 4E 40 00 11 42 00 M VN .. N .. B.
DISPLAY 25 (HEX) BYTES STARTING AT 800
NOTICE THAT 30 (HEX) BYTES ARE ACTUALLY PRINTED
BECAUSE AN EVEN MULTIPLE OF 16 MULTIPLE BYTES
IS ALWAYS PRINTED

000800 4E 4F 57 20 49 53 20 54 48 45 20 54 49 4D 45
000810 46 4F 52 20 41 4C 4C 20 47 4F 4F 44 20 4D 45
000820 20 54 4F 20 43 4F 4D 45 20 54 4F 20 54 48 45

20 NOW IS THE TIME*
4E FOR ALL GOOD MEN
20 TO COME TO THE

RO 8000 SET RO
DM 500RO 30 USE RO TO SPECIFY THE ADDRESS
008500 00 14 00 15 00 00 00 00 00 00 07 CS 07 C3 00 00
008510 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
008520 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
DM 500 DEFAULT IS ONE LINE (10 HEX) BYTES
000500 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
DM 15
000015
DM 100
000100
000110

00 12 E2 00 00 13 06 00 00
15

13 2C 00 00 13 54 00

00 FE
00 FE

17 06 00 FE 17 06 00 FE 17 06 00 FE 17 06
17 06 00 FE 17 06 00 FE 17 06 00 FE 17 06

Preliminary CS-Debug 5-8

(
• I

5. 7 MEMORY CHANGE (ENTERING THE. SUBCOMMAND MODE)

Format

OP hexexp

Description

Open memory at address specified in hexexp.
Enter subcommand mode.

5. 7.1 SUBCOMMAND MODE

In suhcommand mode, the address contained in hexexp when the OP command
was entered is displayed, as well as the value at that address. Then a
prompt is issued for a response. A response consists of either a location
control character or a value and a location control character. The
location control character is required; the value is optional. If a value
is specified, the location control character follows it.

Use the escape character to exit the subcommand mode.

Format Description

[hexexp] <lac ctrl char> Set the value of the address to [hexexp] if
desired. Use the location control character
to determine what location to process next.

Location control characters:

<er> go to next address

= stay at current address

A go to previous address

without [hexexp], terminate subcommand mode

Preliminary CS-Debug 5-9

5. 7 .2 MEMORY CHANGE EXAMPLES

Command Descripdo~

OP 8000 Enter address
008000 42 ?53
008001 50 ?
008002 00 ?A
008001 50 ?45
008002 45 ?46
008001 46 ?
008002 00 ?
008003 00
008004 82
008005 76 ?46
008006 4E ?
008007 40 ?
008008 00 ?
008009 12 ?A
008008 00 ?A
009007 40 ?22

change at 8000
Set value, go to next address
Don't change, go to next address
Go to previous address
Set value and stay at same address

II II II II 11 II II

No change, go to next address
II II II II II II

"
"

II

II

II II

" "
II

"
"
"

Change value; go to next address

Go to previous address, no change
"
Set value

008008 00
008008 00

?=
?=

Stay at same address; do not change (could be used to
monitor an I/O port)

008008 00 ?
008009 12 ? . Terminate subcommand mode

5.8 EXECUTION CONTROL

Format Description

BR Display all breakpoints

BR hexexp Set at breakpoint at hexexp

BR -hexexp Remove a breakpoint from hexexp

BR CLEAR Clear all breakpoints

G Begin execution at address in PC

G hexexp Begin execution at hexexp

EX Return control to system

Preliminary CS-Debug 5-10

5.8. 1 EXAMPLES OF EXECUTION CONTROL

Command Description

BR
BREAKPOINT(S)=
BR 8004
G 8000

DISPLAY BREAKPOINTS
NONE IS SET
SET ONE AT 8004
BEGIN EXECUTION AT 8000

PC=00008004 SR=2000 SS=0001C5EE BREAKPOINT WAS HIT AND CONTROL RETURNED
TO CS-Debug

D0=00000032 Dl=OOOOOOOO D2=00000023 D3=00000043
D4=00000000 D5=00000000 D6=00000042 D7=00000066
A0=00008004 Al=00000824 A2=00000630 A3=00000000
A4=00000000 A5=00000000 A6=00000000 A7=0001C5EE
BR BREAKPOINT IS REMOVED AFTER IT IS EXECUTED
BREAKPOINT(S)=

PC 8200
BR 8320
BR
BREAKPOINT(S)=008320

SET PC
SET BREAKPOINT
DISPLAY IT

G BEGIN EXECUTION AT ADDRESS SPECIFIED IN PC
PC=008320 SR=2000 SS=0001C5EE BREAKPOINT HAS BEEN ENCOUNTERED
D0=00000032 Dl=OOOOOOOO D2=00000023 D3=00000043
D4=00000000 D5=00000000 D6=00000042 D7=00000066
A0=00008004 Al=00000824 A2=00000630 A3=00000000
A4=00000000 A5=00000000 A6=00000000 A7=0001C5EE

5.8.2 HARD COPY

Format Description

LPT ON Issue a form feed and begin to send a copy o·f debug
session to line printer.

LPT OFF Stop sending to line printer.

Preliminary CS-Debug 5-11

rre 11min1.p:y - cs-pebug 5-12
.. ~-· ,."

A.O APPENDIX: ERROR MESSAGES

A.1 PROCESSOR TRAP HANDLING

CS-OS includes a facility for detecting processor TRAPS and providing a
display of the pertinent information available as an aid in
troubleshooting.

There are two types of TRAPS:

TYPE 1 Standard processor TRAP

includes OPCO
DIVO
CHKC
TRPV
PRIV

invalid OP code trap
divide by zero trap
check instruction trap
Trap V instruction
privelege violation

TYPE 2 Extended information TRAPS

ADDR illegal address trap
SPUR spurious interrupt trap
BUS bus error trap
ABUS address bus error
DBUS data bus error
PROT memory protection error
DTAK missing DTACK error

(This message can result from an attempt to
address memory or devices that are not
implemented on your machine. Every access must
terminate with "Data Transfer Acknowledge" or
DTACK. If it does not, an error message is
generated.

MPAR parity error
POWR power failure error

TRAP DISPLAY FORMAT

FNC=XXXX ADD=XXXXXXXX INR=XXXX

TASK=TASKNAME

PC=XXXXXX
DO=XXXXXXXX

Preliminary

XXXX TRAP ERROR

SR=XXXX
Dl=XXXXXXXX

} TYPE 2 ONLY

USP=XXXXXX
D2=XXXXXXXX

SSP=XXXXXX
D3=XXXXXXXX

Error Messages A-1

NOTES

D4=XXXXXXXX
AO=XXXXXXXX
A4=XXXXXXXX

D5=XXXXXXXX
Al=XXXXXXXX
A5=XXXXXXXX

PRESS ANY.KEY TO REBOOT

D6=XXXXXXXX
A2=XXXXXXXX
A6=XXXXXXXX

The extended information for type 2 traps is:

FNC = processor function code
ADD = access address at time of trap
INR = Instruction register at time of trap

A.2 SYSTEM DEVICE ERROR MESSAGES

D7=XXXXXXXX
A3=XXXXXXXX
A7=XXXXXXXX ..

Note: You are advised that the information given here will r.hange
substantially in future releases.

Device errors in CS-OS are reported in the following format:.

device-name ERROR: number

where 'device-name' is a three-character logical name and the error number
is hex encoded. For example:

LPT ERROR: OA
DSK ERROR: 02

are system device error messages. The set of errors defined in CS-OS are:

01 file not found
02 file already in use
03 file already exists
04 no such file
05 read/write error
06 directory overflow
07 disk full
08 end-file encountered
09 bad disk sector, bad media
OA device not ready
OD illegal use of File Control Block
12 illegal operation (write a read file, etc.)

Preliminary Error Messages A-2

15 bad file name
16 back-link error (disk corrupted during write)
17 missing file extension

A .3 CS-OS SYSTEM ERROR MESSAGES

FORMAT ERROR

SYNTAX ERROR

NUMBER ERROR

FILE NOT FOUND

INVALID SET PARM
BAD PARAMETER

The command line does not conform to
the syntax specified for the command.
The command line does not conform to
the syntax specified for the command.

A bad numeric argument is present.
The drive number is out of range
or is not followed by a colon.

The requested file could not be
found.

These error messages come from the
SET command. They indicate that a bad
SET command line was encountered.

The following errors come from COPY:

BAD INPUT (OUTPUT)

ILLEGAL INPUT (OUTPUT) DEVICE

BUFFER OVER-RUN

ILLEGAL SWITCH

READ (WRITE) ERROR

DIR ERROR

Preliminary

A device error; usually accompanied
by a device-error message.

Refers to attempts to use a
device in an invalid manner, such as
reading from a line printer.

An overly long input line was
encountered. The input file is probably
the wrong type for the ope:rat iondes ired.

Indicates a syntax error in the switch
portion of the command line.

Encountered in disk-to-disk
copying; accompanied by a device
error message.

The directory on a disk could not be
read properly. This•message is usually
accompanied by a device-error message.

Error Messages A-3

· .. ,·,,

Additional errors are:

SUBMIT FILE ERROR

BAD FILE TYPE

UNABLE TO CHAIN: filename.ext

The filename in the SUBMIT command
line could not be found or was not
a TEXT file.

The file specified for LOAD was not
a binary file.

This error message indicates that a
CHAIN request was made to the CS·OS
system with filename.ext but cannot
be executed (no such file, disk read
error, file not the right type, etc.).

The next three error messages result from use of the RENAME command:

RENAMING ERROR

DUPLICATE NAME

FILE PROTECTED

Indicates a disk error in accessing
the drive containing the old file.

Indicates that the new name already
exists on the disk.

Indi.cates that the old file is pro ..
tected from renaming (access code ::o:

01 or 02).

The next 3 messages come from the RUN command:

NO TRANSFER ADDRESS

NO MORE TASKS MAY BE STARTED

DUPLICATE PROCESS NAME

SUBMIT FILE ERROR

COMMAND FORMAT ERROR

/IPR ERROR

Preliminary

The binary load module specified in
the RUN command does not have a
transfer address.

There is no PCB available to start a
task with the RUN command. All PCBs
are in use.

There is already a PCB with the menu
specified in the RUN command.

An error occurred while trying to
open the requested SUBMIT file.

The syntax of a system command is
incorrect.

The printer is not able to perform
a DIR /L function.

Error Messages A-4

The following error messages are related to diskette operations.

DISKETTE WRITE PROTECTED

#FDOX NOT READY

A write operation was attempted to
a write protected diskette.

The requested drive is not ready.
Place a diskette in the drive and
close the drive door.

XXXX ERROR: #FDOX, CMD=XX, TRK=XX, SEC=XX, STA=XX, SEL=XX
This is a disk error message

RVOL ERROR = Error
READ ERROR = Error
WRIT ERROR = Error
WTRK ERROR = Error
SEEK ERROR = Error

The next error messages are from the SET command

SYNTAX ERROR
BAD PARAMETER

reading volume
in sector read
in sector write
in track write
performing seek

VALUE TOO LARGE -- Value entered is unreasonable for the type
of command

VOLUME IDENTIFIER NOT MOUNTED
SET DEFAULT VOLUME ERROR
DRIVE NOT FOUND
SET DEFAULT DISKETTE ERROR

label

The next 4 messages are related to commands involving tasks (i.e.,
PRiority, DELAY, WAKEUP, RUN, KILL, SUSPEND, RESUME, SHOW)

NO SUCH TASK

NOT ON READY QUEUE

TASK HOLDS RESOURCES

INVALID PRIORITY

Preliminary

There is no PCB with a task name
that matches the one entered.

A task cannot be KILLed if it is not
on the ready queue

A task cannot be KILLed if it has
not released acquired resources.

A priority outside the range 1-127
was used in a RUN or PRIORITY
command.

Error Messages A-5

A .4 MACRO ASSEMBLER ERROR MESS.AGE~

NVMBER

0202
0204
0205
0206
0207
0208
0210
0211
0213
0216
0220
0221
0223
0226
0227
0228
0230
0251
0254
0260
0261

TYPE

Qpc,Qde or label erro.r
SyntaJt error
~ab~l @rror
~e,g~f ined symbol
U.n.t~fined opcode
V/il.l!+@ Jange error
Byt:El 1;1verflow
Und~fined symbol
EQU. Qr SET pseudo~op error
Pse-qqq-op error
Phlls.in~ error
Sy~~ol taple overflow
'l'h@ p§el.l~o ... op can:11ot b~ labeled
Th,e MAGRO pseudo-op is l.lnlabeled
ENDM pseudo~op cannot be labeled
Macro ta.ble overflow
M'cfg e~piA~ion line, overflow
Mie:J!'o :n~~t;:i,i1~ err<;>r
U' ~t{l,q.~ QVerflgw/widerfl.C>W (nesting errqr)
~i§§ing ENO ~tatement
Illesa.l chara.cter in line

A.5 LINK E,;RROR MESSAGES

BAD FILE NAME

EOF OCCt.JRR&D lN R~Glff NIBBLE

ERROR OCC~REP lN LIBRARY

The file name given does nqt ma.tch
the req~ir~ents of the o~era,tiqg
system.

The format of input files to LIN~
is A$0ll.. ~a.ch byte of machine ex.~
e~q~a.bl.e ~age is there~ore repre~
s@nted PY two bytes. Tliis means
th3i ~~me~QW a. noqhe~ ~ha+a.cte~ is
ift lftft ~~~Qnq byt@ Q# a.~ A~CII paiE
~eDr~~enting a. HE~ byte, 'fhis i~ a.
fa.tal errof, Rea.§se~pl.e th~ ~r~~f~·

An errQ~ gcgq~r@q while qpe~in~ a.
aeRer~l library t.Q s@4r~~ f~J e.at&y
points th~t wou14 +esoiv~ @Jtt~tnAl.

ERROR OCCURRED OPENING FILE
FROM FILE TABLE

ERROR OCCURRED WHILE ATTEMPTING
PASS2 IN LIBRARY

FILE ALREADY EXISTS

FILE NOT FOUND

ILLEGAL CHARACTER OCCURRED
IN RIGHT NIBBLE

LIBRARY IS EMPTY

MAXIMUM NUMBER OF INPUT
FILES REACHED

MAXIMUM NUMBER OF LIBRARY
FILES REACHED

MODULE NAME TOO LONG
REENTER ENTIRE INPUT

MODULE NOT IN LIBRARY

NO FILES GIVEN -
EXECUTION TERMINATED

Preliminary

references. The name of the library
will be printed.

The names of each file given as in
put are each opened one at a time for
pass one of LINK. These names are
saved in a table to prevent having
to rename these files for pass two.
An error occurred while trying to
open one of these files to process it
for pass two.

A general library was found to have
modules that resolved previously
unsatisfied external(s), but the li
brary could not be opened for pass
two.

The file specified for LINK output
already exists.

, The file given does not exist in
the disk directory.

See EDF OCCURRED IN RIGHT NIBBLE

The library given contains no
modules.

Link allows a maximum of twenty
specific files to be entered.

Link allows a maximum of ten
general libraries to be entered
at one time.

The module name given as a spe
cific module from a library can
only be eight characters long.
Reenter both library names and
symbols.

A specific module of a library
given as an input was not found
in the library.

At least one specific file must
be given as an input to LINK.

Error Messages A-7

NONEXISTING LIBRARY

REDEFINED ENTRY POINT

UNRESOLVEP EmRNAL R,IFERENC~

A.6 LOCATE ERROR MESSAGES

BAD NUMBER - .. REtNTER

ERROR OCCURRED FORMATTING
THE OUTPUT FlLE

UNRESOLVED EXTERNAL REFERENCE
REMAINING:

A. 7 LIBRARY ERROR MESSAGES

BAD FlLENA~lE

Pre Um:fo.ary

File given as an input has the
ex1'ension "LIB" but does not ex
ist in the disk directory.

Two or more of the modules given as
input share a common entry point.
The value of the first one en•
countered will be retained.
Only a warning.

This is a warning message only.
An external reference in one of
the modules did not find a matchw
ing entry point.

The base address, common base
addre$s or transfer address that
was e11tered was e:i,.ther illegal hex
or illegal decimal.

LOCATE forms the output file by
opening a file with the same
filename as the input but with the
the extension "BIN". An error
occurred while attempting to format
or open this file.
Note: This is a system failure.

The file being bound to absolute
addresses contains an external
that was never resolved. The exter
nal is replaced by an address of
~ero. Thi$ is a warning message only.

Filename. given does not fulfill the
the requirements of the system.

Error Messages A-8

BAD MODULE NAME

DELETE REQUIRES MODULE NAME
AND LIBRARY NAME

DELETE REQUIRES "FROM"
AND LIBRARY NAME

ERROR DELETING OLD
VERSION OF LIBRARY

The module name given to be deleted
is not eight characters long or less,
containing an alphabetic character
following alphanumeric ones.

Illegal syntax in DELETE command.
Check command syntax.

Illegal syntax in DELETE command.
Check command syntax.

An error occurred while trying to
delete the old version. The old
version name (name.LIB) should be
present as well as the new name
(name.TMP).
Note: This is a system failure.

Note: ADD and DELETE make temporary copies of the library to be modified.
Once the modification is finished, the original version of the
library is deleted and the temporary file is renamed to the
original name.

FILE ALREADY EXISTS

FILE NOT FOUND -
"FROM" REQUIRED

ILLEGAL MODULE NAME

ILLEGAL SYNTAX -- "TO" REQUIRED

LIBRARIES MUST BE CREATED
BY "CREATE" COMMAND

LIBRARY IS EMPTY

LIBRARY MO~DULE CONTAI·NS
NO NAME

Preliminary

An attempt was made to CREATE a
library that already exists.

File given as input does not exist.
LIB expected an.already existing
file Illegal syntax in DELETE command.
Check command syntax

The module name given to be DELETED
is not eight characters or less with
alphanumeric characters following
an alphabetic one.

The ADD command requires the
keyword "TO''.

Attempt to DELETE or ADD to a library
that has an illegal internal format.
Possibly a library created by
editing.

Library given as a parameter in a
command contains no modules.

Error in the internal format of the
library given. It is not empty,

Error Messages A-9

MODULE ALREADY EXISTS IN
THE LIBRARY

NO FILE NAME ·GIVEN

NO NAME FOUND IN MODULE TO
BE ADDED

NO PROGRAM DELIMITED FOUND
IN LIBRARY

REQUIRES BOTH A MODULE NAME
AND A LIBRARY NAME

REQUIRES LI~RY: NmE

A.8 GRA'PH'ICS ERROR CODES

0 No e-rro;r
2 Window not open
3 Axis not equal to 1 or 2
4 Mode not supported
5 NPTS ·exceeds maximum.
6 NPTS<=O

but it, contains no module '11Bllle.

An attempt was made oo ADD a module
to a library that already ~n:ta.ins '&

module with the same name.

No file name given wh.ere one was re
quired. Check command syntax if-0rmats
•fa>r requir-ed inputs .

The internal format of the,module to
be added did not contain a ·moduile
name. ·Reassemble the -source <that
produced the input.

Library has faulty internal format.
Create and modify li•braries exclus
ively through LIB commaruis.

Illegal syntax in Am> command.
Check command syntax.

A 1i:brary name is .a requiired param
-e·t.er iR both ADD and DELETE commands .
Check command syntax.

7 'Device ·window eK-ceeds device space·
8 Windew dimens:i:ens incorrectly specified
9 WINNUM: exceeds limit
10 Device namber not supported
1.'.2 Font not s·trpp0rted
14 LINSTYL'E net supported
15 Text length ·exceeds ;ange
16 *
17 *
18 *
19 *
20 Lin.e e~ceeds window; clipping will 'be performed

PreHmil'l:ary -:&r.r.G>r Mess ages A-10

21 Text exceeds window; clipping .will be performed
22 *
23 NIPTS<O
24 Mark not supported
25 Mark exceeds window; clipping will be performed
26 Fill area exceeds window; clipping will be performed
27 POS exceeds window; clipping will be performed
28 MAG<l
29 Window already open
30 No window control block space remaining
31 Zero block cannot be filled
32 XOR out of range

Preliininary Error Messages A-11

Preliminary Error Messaaes A-12

GC22-9199 READER'S
COMMENT
FORM

This form may be used to communicate your views about this publication. They will be sent to the author's department for
whatever review and action, if any, is deemed appropriate.

IBM Instruments, Inc. shall have the nonexclusive right, in its discretion, to use and distribute all submitted information,
in any form, for any and all purposes, without obligation ofany kind to the submitter. Your interest is appreciated.

Note: Copies of IBM Instruments, Inc. publications are not stocked at the location to which this form is addressed. Please
direct any requests for copies of publications, or for assistance in using your IBM Instruments, Inc. product to your IBM
Instruments, Inc. representative or to the IBM Instruments, Inc. office serving your locality.

Is there anything you especially like or dislike about the organization, presentation, or writing in this manual? Helpful
comments include general usefullness of the book; possible additions, deletions, and clarifications; specific errors and
omissions.

Page Number: Comment:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.

GC22-9199

•

Please do not staple Fold and Tape ----------------.-.--------------------------.--------- -....

IBM l~. tnc:.
P.O. Box 332
Danbury, Ct. 06810

Businan Reply MaiJ No,...... -.mp 111 muy If tMilld in the U.S.A.

P-.... will be peid by:

IBM Instruments, Inc.
P.O. Box 332
Danbury, Ct. 06810

Pl- do not stapk!

First Cl~ss
Permit 40
Armonk
New York

Fold and tape

