struments

PRELIMINARY

Computer System
BASIC Reference Manual

GC22-9184

Preliminary Edition Only (December 1982)

Changes are continually made to the information herein; any such changes will be
reported in subsequent revisions.

Requests for copies of IBM Instruments, Inc. publications should be made to
your IBM Instruments, Inc. representative or via calling, toll-free,
800-243-3122 (in Connecticut, call collect 265-5791).

A form for reader's comments is provided at the back of this publication. If the
form has been removed, comments may be addressed to IBM Instruments, Inc.,
Department 79K, P.0. Box 332, Danbury, CT 06810. IBM Instruments, Inc. may use
or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation whatever.

© Copyright IBM Instruments, Inc. 1982

01234567890

Preliminary CS BASIC Reference Manual ii

PREFACE

This manual is a reference manual for CS BASIC. It is not intended as a user
» manual or a tutorial. Readers are assumed to have some grasp of programming
concepts and terminology, and to have at least a minimal understanding of BASIC.
There are many tutorial-style BASIC books available on the market that teach
programming through the BASIC language.

Chapter 1 -- "Introduction to CS BASIC -- briefly describes some main features
of the language, including its syntax and notation.

Chapter 2 -- "CS BASIC Commands" -- covers the commands that can be typed to the
CS BASIC interpreter itself: to run a program, save or retrieve programs,
display a program's statements, or to change an existing program.

Chapter 3 -- "Elements of CS BASIC" -- contains a description of the elements of
the language, including the character set used, line numbers, statements, and
identifiers.

Chapter 4 -- "Data Representation" -- describes the formats of numeric constants
and variables, string constants and variables, and array (matrix) constants and
variables.

Chapter 5 -- "Expressions' -- contains a discussion of expressions, in which
operators and operands are combined to generate numeric or string values.

Chapter 6 -- "Standard Functions" -- covers the built-in functions available in
CS BASIC.

Chapter 7 -- "Assignment Statements" -- describes assignment statements and
other simple statements.

Chapter 8 -- "Control Statements' -- contains a description of the statements
that direct the flow of execution of a CS BASIC program.

Chapter 9 -- "Input and Output Statements" -- describes the input and output
capabilities of CS BASIC.

Chapter 10 -- "Matrix Operations" -- describes the facilities for manipulating
matrices.

Preliminary ‘ CS BASIC Reference Manual iii

Chapter 11 -- "External Linkages" -- describes how external routines are called
from CS BASIC.

Chapter 12 -- CS BASIC Program Structure -- discusses the general structure of a
CS BASIC program, concentrating on the subroutine calls, functions, and error
handling.

The appendixes contain a list of error messages, a treatment of floating point

numbers, a summary of the language, a list of reserved words, and a chart of the
ASCII character set.

Related Publications:

Publications that discuss related aspects of the Computer System are:

Computer System Product Description, GC22-9183

Computer System BASIC Reference Manual, GC22-9184

Computer System Operating System Reference Manual
Part 1: Operating System, GC22-9199
Part 2: Logical I/0 and System Services, GC22-9200

Computer System Problem Isolation Manual, GC22-9192

Preliminary CS BASIC Reference Manual iv

CONTENTS

0
1
1
1.
0
2

\DOO\IO\U\-PO)NNNH

WORNNMNNNMDNMNNNMDRNDNDMDBNNMDNDNDDMDDDDNDDNDDDDNDDND

W ww.
\nwmmuwbwmww

Introduction to CS BASIC
General

1 . .
.2 CS BASIC Programs
3

Notation and Termlnology Used in thlS Manual
CS BASIC Commands .

Using the CS BASIC Interpreter .

.1.1 Immediate (Command) Operating Mode
.1.2 Restrictions on Immediate Mode

Interrupts ..

CS BASIC Commands -- Summary

APPEND e e e e

AUTO

BYE

CONT

DELETE

EDIT

.10 KILL

.11 LENGTH

.12 LIST

.13 LISTNH

.14 LLIST

.15 NEW

.16 OLD

.17 RENUM

.18 REPLACE e e e e e e
.19 RUN e e e e e e e e e
.20 RUNNH

.21 SAVE .

.22 TROFF and TRON

Elements of CS BASIC

Character Set .
.1.1 Collating Sequence and Graphlcs

Use of Spaces and Tabs

Line Numbers e e e e e e e
Statements . .
.4.1 Multiple Statements Per Llne
.4.2 Statement Continuation

Remarks and Comments

Identifiers . e e .
.6.1 Reserved Identlflers e e .
Use of Upper Case and Lower Case Letters

FTRNNRNONNENNMNDNNNODNE =
[
= O WO SNUMTWNNEF - WWH -

[

DN
i
[y
~

3-1

WWWwWLWWWwWwWLWwWwww
]
NNV P WLWWOLWN =

Preliminary

CS BASIC Reference Manual v

4.0 Data Representation in CS BASIC
4.1 Numeric Data Types
4.1.1 Numeric Constants
1.2 Numeric Variables
String Data Types
2.1 String Constants
2.2 String Variables
2.3 Numeric String Data .
.3 Arrays, or Dimensioned Varlables
4.3.1 Virtual Arrays e
.4 Initial Values of Variables
.5 Distinctness of Variable Names
.6 Defining Variable Data Types
CS BASIC Expressions .
Mixed Mode Arithmetic
Arithmetic Operators .
Arithmetic Relational Operators
Logical Operators
String Operators . .
Integers as Logical Varlables
CS BASIC Standard Functions
Mathematical Functions .
1 ABS -- Compute Absolute Value
2 SGN -- Find Sign of Number .
3 INT -- Round Down to Nearest Integer
4 FIX -- Truncate to Integer
.5 CO0S -- Trigonometric Cosine
6
7
8
9

4,
4.2
4.
4.
4,

mommmmmmob-’-\b -l-‘
o e e 20 e " 23K« 23K« A3 "SI« N« AN« A Nio JN ¢ AN JN'e AN« N \ W@ e)N AU @ W@ Y@ N« e \ 0 ol AL WN =

[ISIN ST I ST S I]
NP W

SIN -- Trigonometric Sine

TAN -- Trigonometric Tangent

ATN -- Trigonometric Arc Tangent
SQR -- Compute Square Root

.10 EXP -- Exponential Function

.11 LOG -- Natural Logarithm .
.12 LOG10 -- Logarithm to Base 10

.13 PI -- Constant Value of pi

.14 RND -- Random Number Generator
.15 SWAP% -- Swap Bytes in an Integer

[T T Y

.17 TAB -- Set Print Position
String Functions

MID -- Take Substring of String
LEN -- Compute Length of String

CHR$ -- Character Value of Integer

.16 CCPOS or POS =-- Current Position of Prlnt Head

.1 LEFT -- Take Left Substrlng of Strlng
RIGHT -- Take Right Substring of String

String Concatenation with the + Operator

ASCII -- Integer Equivalent of Character

L JNN RN N R R R RN DN TR N B B |

Ao OO TULINNLULLULLLLUUEAEESEPRPRPPEPPRERERPEPPEPPRPEEPS
O L '
"..-l'-\-l-'\-Ll\k:)d)t.:ot:)NNr—‘n—w—'mbwaHHm\l\lO\bewwwHHH

[o)9e)

(R« 23K« Yo 2N« Y« "N« AN)W« N« \We) @ \ W0)N @ AW e)}
L T L I R D B B |
CoOVVONNNOOAGRULULLOL &

Preliminary

CS BASIC Reference Marual vi

6.2.8 INSTR -- Search for Substring in String e e e e e e e .. 6-11
6.2.9 SPACES -- Generate String of Spaces e e e e e e e e e .. 6-12
6.2.10 NUM$ -- String Representation of Number B X ¥
6.2.11 NUM1$ -- String Representation of Number « e v 4+ . . . 6-13
6.2.12 VAL -- Convert String to Number . e e e e+ . . . 6-13
6.2.13 String$ -- Create Repeated Character Strlng e e e ... 6-14
6.2.14 CVT Conversion Functions . P 1 1
6.2.14.1 CVT%$ -- Map Integer to Strlng e e e e e e e e e .. 6-15
6.2.14.2 CVT$% -- Map Characters to Integer e e e e e v e e . . 6-15
6.2.14.3 CVTF$ -- Map Floating Point to String e v v 4 < . . 6-15
6.2.14.4 CVTSF -- Map Characters to Floating Point e v 6=16
6.2.14.5 CVT$S -- String Editing e 2 ()
6.2.15 XILATE -- Character Translation e 1 V)
6.2.16 RAD$ -- Convert From Radix 50 e e e e e e e e e o . . . 6-18
6.3 Numeric String Functions . e R
6.3.1 SUM$ -- Arithmetic Sum of Numerlc Strlngs e e e e e .. 6-19
6.3.2 DIF$ -- Arithmetic Difference of Numeric Strings co. . .. 6-20
6.3.3 PROD$ -- Arithmetic Product of Numeric Strings e e ... 6-20
6.3.4 QUOS =-- Arithmetic Quotient of Numeric Strings Coe e ... 621

~ 6.3.5 PLACES -- Round Numeric String 6-21
6.3.6 COMP% -- Numeric String Comparison 6-22
7.0 Assignment Statements 7-1
7.1 Let . . 7-1
7.1.1 Multlple A551gnment 7-2
7.1.2 String Assignment 7-2
7.1.2.1 Special Notes on A551gn1ng to Strlng V1rtua1 Arrays 7-3
7.1.3 LSET and RSET -- Change Strings in Place 7-4
7.2 CHANGE -- Character and Numeric Conversion 7-5
8.0 Control Statements . 8-1
8.1 IF THEN and IF GOTO Statements 8-1
8.2 IF THEN ELSE 8-2
8.3 WHILE NEXT 8-3
8.4 UNTIL NEXT 8-3
8.5 FOR NEXT . . 8-4
8.6 FOR WHILE and FOR UNTIL 8-5
8.7 GOTO 8-7
8.8 ON GOTO . 8-7
8.9 Statement Modlflers . 8-8
8.9.1 IF Statement Modifier . 8-8
8.9.2 UNLESS Statement-Modifier 8-9
8.9.3 FOR Statement Modifier 8-9
8.9.4 WHILE Statement Modifier 8-9
8.9.5 UNTIL Statement Modifier 8-10
8.10 Multiple Statement Modifiers 8-10
8.11 END 8-10
8.12 STOP e e e e e 8-11
8.13 CHAIN e e e e 8-11

Preliminary CS BASIC Reference Manual vii

8.13.1 MERGE Option 8-12

8.14 COMMON . . 8-12
9.0 Input and Output Statements e e e e e e e e e e -
9 Reading Data From Within the Program e e e e e e e e -

.1.1 DATA -- Define Data in Program
.1.2 READ -- Read Data From DATA List .
.1.3 RESTORE -- Reposition to. Start of DATA

9-1

1 9-1

9 9-1

9 9-3

9 9-4
9.2 File Input and Output . . 9-4
9.2.1 OPEN -- Open a File for Data Transfer 9-5
9.2.2 CLOSE -- Close a File . e e 9-6
9.3 Screen Control 9-7
9.3.1 CLS 9-7
9.3.2 Locate 9-7
9.4 Printing Data . 9-8
9.4.1 PRINT -- Print on Flle . . 9-8
9.4.2 PRINT USING -- Formatted Prlntlng 9-9
9.4.3 INPUT -- Input Data from File 9-12
9.4.4 INPUT LINE -- Input a String From a F11e 9-13
9.5 Block Input and Output Statements . 9-14
9.5.1 GET and PUT -- Read or WRITE Data 9-14
9.5.1.1 The COUNT Option in GET and PUT e e e e e e e e v . 9-15
9.5.1.2 The USING Option in GET and PUT B A &)
9.5.2 FIELD -- Set Buffer Structure - 2 19
9.5.3 Notes on the FIELD Statement 12 ¥
9.6 Input and Output Status Data .o e e e e e e 9-17
9.6.1 RECOUNT Variable - Number of Characters Read c e e e e e 9-17
9.6.2 BUFSIZ Function - Determine Buffer Size e e e e e e e e e 9-17
9.7 Graphics Calls L £ -]
10.0 Matrix Operations .o T (O RS |
10.1 How Array Variables Are Dlmen51oned e 013 |
10.2 Redimensioning a Matrix e 0]
10.3 Initializing a Matrix . Ko A
10.4 Matrix Input and Output . . e+« « +« .+« . . 10-5
10.4.1 MAT READ -- Read Matrix Elements from DATA v e e+« « . . 10-5
10.4.2 MAT PRINT -- Print Matrix Elements 10-6
10.4.3 MAT INPUT -- Read Matrix Elements from External Storage . 10-6
10.4.4 Status Variables for MAT INPUT e e e e e e e e e e e e .. 10-7
10.5 Matrix Arithmetic Operations e L 2
10.5.1 Matrix Assignment . e e e e e e e 4+« .« . 1l0-8
10.5.2 Addition and Subtractlon of Matrlces e 4+ e e e+« « +« . . 1l0-8
10.5.3 Scalar Multiplication of Matrices e e e e e e 4w« .« . . 10-8
10.5.4 Multiplication of Conforming Matrices e e e e e e e . ..o 10-9
10.6 Matrix Functions .o e e e e e e e e e e e e e e 10-10
10.6.1 TRN -- Transpose a Matrlx e e e e e e e e e e e e e 10-10
10.6.2 1INV -- Invert a Matrix R e e e e e e e 10-11
10.6.3 DET -- Find the Determinant of a Matrlx e e e e e e 10-11
10.7 Virtual Arrays e 10-12

Preliminary CS BASIC Reference Manual viii

10.7.1 Declaring a Virtual Array . e e e e e e e 10-12

10.7.2 Opening and Closing Virtual Array F11es e et e e e e 10-12
11.0 External Linkages . . . e B R
12.0 CS BASIC Program Structure .. B VS |

12.1 Correct Nesting of Subroutines and Functlons e e e e e e e 122
12.2 Subroutines . e e e e e .. 12-3

12.2.1 The GOSUB Statement -- Ca111ng a Subroutlne e e e e .. 12-3

12.2.2 The ON GOSUB Statement .o T A

12.2.3 RETURN -- Returning From A Subroutlne . 2

12.3 Functions . e e e e e e .. 12-4

12.3.1 DEF and DEF% Statements -- deflnlng functlons e e 12-5

12.3.2 The FNEND Statement D)

12.3.3 Referencing Functions - B VA

12.3.4 Passing Arguments to Functlons B VA

12.3.5 Scope of Function Arguments B VA

12.4 Error Handling .. . 2

12.4.1 The ON ERROR GOTO Statement e e e e e e e e e e e 12-10

12.4.2 The ERR and ERL Variables e e e e e e e e e e e e e 12-10

12.4.3 The RESUME Statement e e e e e e e e e e e e 12-11
A.0 Appendix A: CS BASIC Error Messages A-1

A.1 Recoverable-Error Messages . A-1
A.2 Nonrecoverable-Error Messages A-5
B.0 Appendix B: Implementation Notes B-1
B.1 Storage Allocation e e e e e e e e B-1
B.2 Data Representations .. . B-1
B.3 Arithmetic Operations on Extreme Values B-4
B.4 How Strings are Stored B-7
C.0 Appendix C: Language Summary . C-1
C.1 Notation Used for Syntactic Deflnltlons Cc-1
C.2 Elements of the BASIC Language Cc-1
C.3 Expressions e e e C-5
C.4 Assignment Statements c-7
C.5 Control Statements . C-8
C.6 Input and Output Statements C-10
C.7 Matrix Manipulation Cc-11
C.8 Program Structure . . C-13
D.0 Appendix D: Reserved Words in CS BASIC D-1
E.0 Appendix E: ASCII Character Set E-1
INDEX e e e e e e . . I-1

Preliminary - CS BASIC Reference Manual ix

Prelimiﬁarir . — ‘ » CS BASIC Reference Manual x

1.0 INTRODUCTION TO CS BASIC

1.1 GENERAL

CS BASIC is an implementation of the BASIC programming language for the Computer
System. CS BASIC is an extended version of the BASIC language.

BASIC stands for Beginners All-purpose Symbolic Instruction Code. BASIC was
developed at Dartmouth College in the 1950's and early 1960's. The design goals
of BASIC were to provide an interactive and user-friendly environment in which
people outside of computer science could program a computer easily and
effectively. ,

BASIC has evolved over the years, both in the application areas to which it has
been applied, and in the sophistication and features of its language dialects.
CS BASIC is among the more extensive dialects of the BASIC language, while
retaining the user-friendly environment that characterizes most implementations
of BASIC.

CS BASIC runs in an interactive manner. Programs are entered and run from the
terminal. There are facilities to store programs in the computer's disk system
for later retrieval.

The language supports real (floating point), integer, and string data types. A
numeric string data type provides for arithmetic carried to very high precision.
The language also contains facilities to define and manipulate matrices.

The interpretive nature of the language allows an ''immediate," or command, mode,
which lends itself to a "desk calculator" style of use with almost the same
power as the underlying BASIC language. In the immediate mode, it is possible
to debug CS BASIC programs easily, by examining and changing the state of the
program (after it has been suspended) and then restarting the program's
execution.

A CS BASIC program is (ultimately) composed of characters. Characters are
grouped into lines and statements, the elements which serve to make up programs.
A line is either a remark (comment), a declaration, or an executable statement.

Program elements include constants and variables. A constant is a group of
digits or other characters defining a value that does not change. Variables
occupy storage and have values that can be changed during program execution.
Variables and constants can have both a name and a data type. The name serves to

Preliminary . Introduction to CS BASIC 1-1

identify that element in a program. The data type of an element defines, among
other things, the amount of storage it occupies, its range and precision, and in
some cases, the operations that can be performed on it.

A variable can be a single element or it can be an aggregate. There are two
forms of aggregate data elements, namely dimensioned (array) variables (also
known as matrices) and string variables. An array variable is a collection of
data occupying consecutive storage units. Arrays can have one or two
dimensions. A string variable represents string data and is a sequence of ASCII
characters, which can be accessed individually or collectively by various string
functions. It is possible to define arrays of strings. CS BASIC supports what
are called "virtual arrays," whereby array data types can be stored on external
disk storage, and retrieved on demand.

A complete CS BASIC program can (but does not have to) contain subroutines and
functions. Subroutines are activated via the GOSUB statement to perform
out-of-line groups of statements. Functions compute and return a value in the
context of an expression.

Variables have a lifetime that is dependent on the way that they are defined.
Formal parameters to functions have a lifetime that begins when the function is
invoked and ends when the function returns to its caller. All other variables
have a lifetime that lasts for the duration of the program.

Expressions combine operands and operators to create new values. CS BASIC
supports arithmetic, string, and relational expressions. Mixed-mode
expressions are permitted, with well-defined rules for conversions between the
operands and for generating results. In addition, CS BASIC provides for
treating integers as logical operands, to which logical operators can be
applied. There are also built-in functions to treat character strings as
numbers, providing a higher degree of precision than is possible with the
regular integer or floating point data types.

The assignment statement assigns the value of an expression to a variable.
There are two variations of assignment, namely arithmetic and string.

Control statements are those that control the flow of execution in a program.
Various kinds of IF statements select other statements for execution, depending
on the result of evaluating a logical or arithmetic expression. The FOR, WHILE,
and UNTIL statements provide for repetition of a block of statements while a
control variable is assigned a sequence of values. The GOSUB and RETURN
statements provide for subroutine execution. Variations of the GOTO statement
provide for transfer of control within a program unit.

CS BASIC provides a powerful input and output capability. Files can be accessed
sequentially or randomly. Format conversion is performed via INPUT, READ,

Preliminary Introduction to CS BASIC 1-2

PRINT, or PRINT USING statements. There is a rich set of format specifications
to control the form and layout of converted data.

Functions may have arguments that are passed to them for processing. When a
function is declared, its formal arguments are declared. When the function is
referenced, actual arguments are assigned to the formal arguments. Control is
returned from a function by executing the function's associated FNEND statement.
The value of the function is that of the last value "stored" in the function
name.

CS BASIC supplies a comprehensive set of intrinsic functions that perform
data-type conversion and provide an extensive collection of arithmetic and
transcendental functions. There is also a rich set of string manipulation
functions built into the language.

1.2 CS BASIC PROGRAMS

The CS BASIC interpreter works on one BASIC program at a time. The program is
developed in the computer's memory, which may be thought of as a kind of
"workspace'" in which the user can enter, run, and debug CS BASIC programs.

Every CS BASIC program has a name associated with it. In the absence of an
explicit name given by the user, the system assigns the name "NONAME" to a
program. The name of the program is used in header messages that various
commands (such as RUN) display when they operate.

CS BASIC programs can be stored in and retrieved from files in the computer's
file system. By convention, the filename for a program called (say) PAYROLL is
given the name PAYROLL.BAS. The .BAS part of the filename is called an
extension, and is an abbreviation for BAsic Source.

The names given to programs and files are converted to all upper case by the CS

BASIC interpreter before they are stored on the disk system. Thus, the names
"program," "Program," and "PROGRAM" are identical when typed to CS BASIC.

1.3 NOTATION AND TERMINOLOGY USED IN THIS MANUAL

This section summarizes the conventions used in this manual to describe the
syntax of CS BASIC.

Words appearing in upper case, such as LET, are BASIC keywords.

Preliminary A Introduction to CS BASIC 1-3

In general, special characters such as the equals sign (=) represent themselves
when they appear in statement syntax.

2
The angle brackets (< and >) enclose elements of the language.
Elements that appear in the braces ({ and }) are optional.

When an element is followed by an ellipsis (...), that element can be repeated.

The vertical bar character (|) stands for "or". It separates choices in a list
of elements.

Example of Syntax Notation

MAT PRINT {{#<exp>,} <matrix>{(<subscripts>)} { , | ; }

The example above illustrates the syntactic definition of the MAT PRINT
statement, in which the phrase

MAT PRINT
is composed of CS BASIC keywords;
#<exp>,
is a file number, enclosed in braces because it is optional;
<matrix>
is the name of the matrix to be printed; and the optional term
{(<subscripts>)}
indicates that there can be optional dimension information following the name of
the matrix. Lastly, there is a choice of an optional comma or semicolon

following the statement. The braces indicate that the comma or semicolon are
- optional; the vertical bar indicates The choice of one or the other.

Preliminary ' Introduction to CS BASIC 1-4

.0 CS BASIC COMMANDS

lhis chapter describes the commands that CS BASIC handles. Commands are not
r>art of the language itself but are the means for directing the actions of the
3ASIC language interpreter.

2.1 USING THE CS BASIC INTERPRETER

[he user invokes CS BASIC by typing the command
basic
>n the keyboard or, more simply, by pressing function key F5.

The CS BASIC interpreter will display a header message. It will then prompt the
iser with the following message:

Ready

vhich means that the system is ready for input from the user's terminal. The
system is now said to be in the immediate mode.

2.1.1 IMMEDIATE (COMMAND) OPERATING MODE

[mmediate mode in CS BASIC refers to the execution of statements at the terminal
immediately after they are typed, without the need to compile and run them
first. Immediate mode thus provides a kind of "desk calculator" feature in the
language. Immediate mode is also useful for looking at the state of variables
in a program after a STOP or a run-time error has occurred.

3S BASIC recognizes immediate mode statements by the absence of a line number
>efore the statement. Statements that do not start with a line number are
sxecuted as soon as they are entered at the terminal.

[mmediate mode is useful for debugging programs as well as for trying out the
sffects of statements before they are entered into a program, and for doing
simple calculations at the terminal.

>reliminary) _ CS BASIC Commands 2-1

In immediate mode, there may be multiple statements per line. Statement
modifiers (but not the FOR statement modifier; see Section 8.9.3) can also be
used as the next example shows:

PRINT X, SIN(X) IF X = 10

2.1.2 RESTRICTIONS ON IMMEDIATE MODE

Certain statements are not allowed in immediate mode, and give rise to an error
message. These statements are:

DEF* and FNEND Function definition,

DIM Dimension declaration,
DATA Data definition,
FOR and NEXT FOR loops of any kind (including

statement modifiers).

Note that GOSUB statements and function references are allowed in immediate
mode, so the user has access to both user~-defined functions and to the built-in
functions. '

2.2 INTERRUPTS

Pressing the Ctrl and Break keys together while a BASIC program is running will
normally return the CS BASIC interpreter to immediate mode. If the interpreter
is awaiting the completion of input from the operating system, however, the
interpreter will not be interrupted until the input has been received. If this
state is entered and it is not possible to satisfy the input request, then the
Ctrl-Alt-Del warm start keystroke sequence must be used. This action will
return control to the operating system, and any unsaved work will be lost.

Any output from CS BASIC may be paused by pressing the Ctrl and NuimLock keys.
Output may be resumed by pressing any other key.

Preliminary CS BASIC Commands 2-2

2.3 CS BASIC COMMANDS -- SUMMARY

The set of commands listed below operate on CS BASIC programs in various ways,
saving them, retrieving them, renaming them, and so forth. The subsections
following this summary list discuss the individual commands in more detail.

APPEND

AUTO

BYE

CONT

EDIT

DELETE

KILL

LENGTH

LIST

LISTNH

LLIST

NEW

OLD

REPLACE

RENUM
RUN

RUNNH

Includes the source of another CS BASIC program in the current
program.

Automatically generates program line numbers.

Returns control to the operating system.

Continues the execution of a program after a STOP statement.
Enables the user to modify program lines.

Deletes one or more lines from a program.

Deletes a file.

Displays the length of the current program on the console screen.
Displays the current program on the console screen.

Displays the current program on the console screen, but without a
program heading.

Prints out the current program on the printer.

Clears the program work area, sets the program name, and reads in an
existing CS BASIC program from the computer's file system.

Clears the program work area, sets the program name, and reads in an
existing CS BASIC program from the computer's file system.

Same as SAVE except that the command presupposes that the program
named already exists in the computer's file system.

Renumbers all lines in the current program.
Initiates execution of a program.

Initiates execution of a program but without displaying a program
heading.

Preliminary

CS BASIC Commands 2-3

SAVE

TROFF

TRON

Appends the BAS suffix to the program name, then saves the program

in the computer's file system.
Exits trace mode.

Enters trace mode.

Preliminary

CS BASIC Commands 2-4

2.4 APPEND

The APPEND command includes the source of a previously saved program in the
current program. The format of the command is:

APPEND <filename>

where <filename> is the name of the disk file that is to be included in the
current program. The extension is .BAS.

The APPEND command performs a line-by-line insertion (or substitution or both)
of the existing program with the APPEND'ed program, just as if the user had
typed each line of the APPEND'ed program from the terminal. One of the examples
below clarifies this.

Example of the APPEND Command

To illustrate, assume that the Computer System has a file called MOREBAS.BAS,
containing the following program:

15 LET W=7
30 LET Z = 3
40 PRINTX+Y+Z+W

and that the existing program in memory looks like this:

listnh

“10 LET X =
20 LET Y =
30 PRINT X
99 END

1
2
+Y

then the APPEND command is used, and the result displayed with the LISTNH
command :

append more.bas
Ready
listnh

Preliminary = - CS BASIC Commands 2-5

As the example illustrates, new lines in the APPEND'ed file (those whose line
numbers do not exist in the in-memory version of the program) are. inserted in
their correct sequential place and lines in the APPEND'ed file whose line
numbers duplicate those in the in-memory version replace those lines in the
in-memory version of the program.

Preliminary CS BASIC Commands 2-6

2.5 AUTO

The AUTO command helps the user to input new statements by automatically
generating line numbers. The format of the AUTO command is:

AUTO {<line number> {,<increment>}}

This command begins numbering lines at <line-number> with each subsequent line
number incremented by <increment>. If the increment is not specified, it is

assumed to be 10. If neither the line number nor the increment is specified,
both are assumed to be 10.

If the line number being generated already exists, the user will be warned with
an asterisk that the old line is about to be replaced. If the user enters an
empty line (i.e., a single carriage return) the old line will be retained and a
new line number will be generated.

The user returns to the READY mode by entering a carriage return to an
unasterisked line number, or an escape-carriage return, <Esc><CR>, to any
automatically generated line number prompt.

Preliminary < CS BASIC Commands 2-7

2.6 BYE

The BYE command exits from the CS BASIC interpreter and returns control to the

operating system. Any files that are open are closed and saved. The format of
the command is:

BYE

The system asks for‘confirmation with the prompt:
Confirm:

The user should then type one of the following:

Y "Yes" -- go ahead and log out. -

N "No" -- negates the BYE command.

F "Fast logout" -- is equivalent to the Y response.

It is also possible to include the option directly in the BYE command. For
example:

BYE/Y

in which case the BYE command does not prompt for confirmation.

Preliminary CS BASIC Commands 2-8

2.7 CONT

The CONT command continues the execution of a program, after it has previously
executed a STOP statement. The format of the command is:

CONT

Programs that have been halted by the CS BASIC interpreter because of some kind

of error cannot be CONT'inued. Similarly, programs that have stopped because an
END statement was executed also cannot be CONT'inued.

Preliminary < CS BASIC Commands 2-9

. -

2.8 DELETE

The DELETE command removes lines from a program. The format of the command is:

DELETE <list of line numbers>

where <list of line numbers> can be any one of the following:

a single line numbers such as 125

a list of two or more line numbers separated by commas, such as 100, 230,
455, 690

a line number range, where the start and end of the range are separated by a
minus sign, such as 100-200. In this case, the range is line 100 through 200
inclusive

a combination of 1line numbers and line number ranges, such as 10, 20,
50-455, 600-700, 1010, 2050.

Line numbers and ranges of line numbers can appear in any order. Incorrect line
number ranges (such as 60-30) are ignored.

Example of the DELETE Command

DELETE 20-30,150-200,201,203,212,320-340

Preliminary CS BASIC Commands 2-10

2.9 EDIT

The EDIT command allows a user to perform simple editing on a source line that
has previously been entered. The form of the command is:

EDIT <line-number>

The EDIT command displays the contents of the current line with that number,
positions the cursor at the first position of that line, and allows modification
of that line with the cursor keys for positioning, and the insert and delete
keys for changing the text. Pressing the carriage return key causes the

modified line to be used as a replacement of the original line, and returns to
command mode.

Pressing the <Esc> key causes the edited line to be discarded and the original
line to be retained.

Note that when the Computer System is reset or started from a powered-down
state, the NumLock state is on. The cursor control keys, therefore, are not
active until NumLock is pressed once (each time NumLock is pressed, the keys
toggle between numeric and cursor control mode). The state of the
cursor-control keys is remembered across executions of the CS BASIC interpreter.

Similarly, the insert key toggles the insert mode each time it is pressed. The
initial state does not allow insertion.

Preliminary " CS BASIC Commands 2-11

2.10 KILL

The KILL command deletes a file. The format of the command is:

KILL <filename>

where <filename> is the name of the file to be removed. If the file is present
it is deleted from the disk. If not, an error message is printed.

KILL first attempts to delete a file with the name as given. If that file is not

found, the extension ".BAS" is appended, and it attempts to delete that file.
If neither file is present, an error message is printed.

Preliminary CS BASIC Commands 2-12

2.11 LENGTH

The LENGTH command displays the length of the current program in 1K increments,
as well as the maximum amount of available memory. The format of the command is:

LENGTH
For example:

LENGTH
19 (124)X of memory used

means that the program is between 18K and 19K, and the maximum memory available
is 124K.

Preliminary CS BASIC Commands 2-13

2.12 LIST

The LIST command displays the current program on the console screen with a
heading that contains the name of the program. The format of the command is:

LIST {<list of line number>}

LIST alone displays the whole program. Selected portions of the program can be
displayed by specifying them in <list of line numbers>, which can be any one of
the following:

- a single line number, such as 125

- a list of two or more line numbers, separated by commas, such as 100, 230,
455, 690

- a line number range, where the start and end of the range are separated by a

hyphen, such as 100-200. In this case, the range is line 100 through 200
inclusive

- a combination of line numbers and 1line number ranges, such as 10, 20,
50-455, 600-700, 1010, 2050
Line numbers and ranges of line numbers can appear in any order. Incorrect line

number ranges (such as 60-30) are ignored.

Example of the LIST Command

LIST 10-20,150-170,200,205,210,300-320

Preliminary CS BASIC Commands 2-14

2.13 LISTNH

The LISTNH command is exactly the same as LIST except that it displays the

current program without any heading to identify the program. The format of the
command is:

LISTNH {<1list of line numbers>}

See the LIST command for details.

Preliminary . ‘ CS BASIC Commands 2-15

2.14 LLIST

The LLIST command is the same as the LIST command except that it prints out the
current program on the printer (#PR). The format of the command is:

LLIST {<list of line number>}

See the LIST command for details.

Preliminary CS BASIC Commands 2-16

2.15 NEW

The NEW command clears the program work area in memory, so that the user can
start work on a completely new BASIC program. The format of the command is:

NEW {<program name>}

If the keyword alone is typed, the system clears the program work area and names
the program "NONAME".

If the user specifies a program name, the system clears the program work area
and assigns the specified name to the program.

Examples of the NEW Command

new
new pipefit

The first example clears the program work area and sets the program name to

"NONAME". The second example clears the program work area and sets the program
name to "PIPEFIT".

Preliminary - CS BASIC Commands 2-17

2.16 OLD

The OLD command clears the program work area in memory, sets the program name,
and recalls a previously saved program from disk. The format of the command is:

OLD <program name>

The CS BASIC system appends a suffix of .BAS to the program name, if the user has
not already done so.

Example of the OLD Command

OLD PLOTTER

The above example clears the program work area, sets the name of the current
program to '"PLOTTER", and loads the CS BASIC program from a file called
PLOTTER. BAS.

Preliminary CS BASIC Commands 2-18

2.17 RENUM

The RENUM command automatically renumbers the lines of the BASIC program that is
currently in memory. The format of this command is:

RENUM {<new> {,<start> {,<increment>}}}

<new> specifies the first line number of
the newly numbered group of lines.
The default is 10.

<start> specifies the first of the "old"
line numbers to be changed. The default
is the first line of the program.

<increment> is the increment of the renumbered
lines. The default is 10.

NOTES:

1. When no arguments are specified, all lines of the current program are
renumbered, and the renumbering is determined by the default parameters
(first 1line 10, increment 10). All line numbers in the program --
including those that occur in statements (e.g., a GOTO statement) -- are
changed in conformity with the new numbering.

2. If only <new> is specified, the first line of the program is chénged to
<new> and subsequent line numbers are incremented by 10.

3. If <start> and <increment> are both specified, the "old" program line
number, designated by <start>, is the first line number to be changed;
subsequent line numbers are incremented by <increment>.

4., If only ,<start> is specified, the default increment of 10 is used. (Note
that in this case an initial comma is required if <new> is not specified.)

5. If only ,,<increment> is specified, numbering begins with the first
statement of the program, and subsequent line numbers are incremented by
the <increment> specified. (Note that in this case two initial commas are
required if both <new> and <start> are not specified.)

Preliminary o CS BASIC Commands 2-19

Example of the RENUM Command

In this example, the command renumbers all line numbers from 10 to the end of the
program, assigns line number 20 to line 10, and increments all subsequent line
numbers by 2.

10 PRINT
20 PRINT
30 PRINT
40 NOFOLD
50 PRINT
60 PRINT TAB(75);"*";123456789

READY
RENUM 20,10,2 *RETURN*

will generate the following:

20 PRINT

22 PRINT

24 PRINT

26 NOFOLD1308

28 PRINT

30 PRINT TAB(75);"*";123456789

Preliminary CS BASIC Commands 2-20

2.18 REPLACE

The REPLACE command is like SAVE (see below) except that a copy of the program is
assumed to exist on disk. The current version of the program in memory then
replaces (overwrites) the disk version. The format of the command is:

REPLACE <filename>

where <filename> is the name of the disk file in which the current program is to
be placed. (See the SAVE command for more details.)

Preliminary- : CS BASIC Commands 2-21

2.19 RUN

The RUN command executes a program. The RUN command displays a header
containing the name of the program. The format of the RUN command is:

RUN {<program name>}
The keyword alone, without a filename, runs the current program in memory.
If a filename is specified, the system clears the program work area, sets the
~ current program name to that of the filename (minus any .BAS extension), fetches

that file from the computer's file system, compiles the program, and then runs
the program.

Preliminary CS BASIC Commands 2-22

2.20 RUNNH
The RUNNH command is exactly the same as RUN except that it does not display a
program heading. The format of the command is:

RUNNH {<program name>}

(See RUN for more details.)

Preliminary : CS BASIC Commands 2-23

2.21 SAVE

The SAVE command saves the program in memory by storing it on disk. The format
of the command is:

SAVE {<filename>}

where <filename> is the name of the disk file in which the ‘current program is to
be saved. The extension .BAS is appended to the name unless the user has already
done so. If the file to be SAVE'd already exists in the file system, CS BASIC
asks whether the old version should be deleted. A response of "Y" or "y'" deletes
the old version of the file. Any other response cancels the SAVE command.

If no <filename> is specified, CS BASIC uses the name of the current program
with a suffix of .BAS as the name of the file in the computer file system.

Examples of the SAVE and REPLACE Commands

save VIEWPACK

save PROGGY
Delete old PROGGY.BAS? y

replace VIEWPACK

The middle example shows the dialog that results when the user attempts to SAVE
an already existing file.

Preliminary CS BASIC Commands 2-2&

2.22 TROFF AND TRON

The TROFF and TRON commands turn off and turn on, respectively, the trace mode,
which is a BASIC program debugging aid. The command formats are:

TROFF
TRON

NOTES:

1. Trace mode is a program debugging aid that displays, on the screen, the
line numbers of a program while that program is executing. The line
numbers displayed are enclosed in brackets, and print commands are
actuated.

2. TROFF and TRON can also be used as statements in a BASIC program. In
program statements, a line number must precede the keyword.

Example

10 PRINT "THIS IS AN EXAMPLE OF TRACE MODE"
20 A=5

30 B=10

40 C=A+B

50 PRINT C

READY
TRON

READY
RUN%

will result in the following display:

[10]THIS IS AN EXAMPLE OF TRACE MODE
[20][30][40][50]15.0

READY

The trace mode can now be turned off and the program run again, producing two
lines on the display, as follows:

Preliminary . : CS BASIC Commands 2-25

TROFF

READY

RUN#

THIS IS AN EXAMPLE OF TRACE MODE
15.0

READY

Preliminary CS BASIC Commands 2-26

3.0 ELEMENTS OF CS BASIC

This chapter describes the lowest level elements of the BASIC language. Topics
covered here include the character set used; the definition of line numbers and

statements, with multiple-statement 1lines and continuation lines; and
identifiers.

3.1 CHARACTER SET

The CS BASIC character set consists of 26 upper case letters, 26 lower case
letters, and 21 other characters.

A <letter> is one of the 52 characters:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopgqrstuvwxyz

A <digit> is one of the ten characters:
0123456789
An <alphanumeric character> is a <letter> or a <digit>.

The other printing characters consist of the characters shown in the table
below:

Preliminary . : : Elements of CS BASIC 3-1

|
| Char- | . | Char- -
! acter Meaning acter Meaning
|
| Blank or space = Assignment or Equal
| + Addition - Subtraction
| * Multiplication / | Division
| A or **| Exponentiation . | Decimal Point
I\ Multiple Statements & | Continuation
(Left Parenthesis) | Right Parenthesis
s Compressed 5 | Record Suppression
$ String Variable % | Integer Variable
! String Delimiter | "™ | String Delimiter
< Less than sign > | Greater than sign
! Number sign] ! ! Comment Starter

3.1.1 COLLATING SEQUENCE AND GRAPHICS

CS BASIC uses the ASCII character set. The collating sequence in ASCII is:
o Space (blank) collates lowest, followed by:
e Digits "0" though "9", followed by:

¢ Upper case letters "A" through "Z", followed by:

* Lower case letters "a" through "z".

The other printing characters appear in between digits and upper case letters
and before and after lower case letters. There is an ASCII character set chart
in Appendix E.

Within each of the ordered sets, digits, upper case letters, and lower case
letters, the characters in those sequences are contiguous -- there are no
"holes" in them.

Preliminary Elements of CS BASIC 3-2

3.2 USE OF SPACES AND TABS

Spaces and tabs can appear only between CS BASIC language elements, where they
serve to delimit or separate those elements, and in character strings, where
they stand for themselves.

Where one space or tab can appear between language elements, any number of
spaces or tabs are equivalent to one.

3.3 LINE NUMBERS

Each program line in a BASIC program must be preceded by a line number. Line
numbers have the following functions in the language:

1. Indicate that the statement(s) following the line number are part of the
BASIC program, as opposed to a statement that is executed immediately
(i.e., a command).

2. Indicate the order in which program statements will normally be executed,
in the absence of any changes of control flow.

3. Provide a means whereby other statements can change the order of statement
execution by branching (conditionally or unconditionally) to numbered
statements.

4. Supply the means to change numbered statements without affecting other
statements in the same program.

Line numbers are integers in the range 1 through 32767. Line number 0 is used
for special purposes, for example in ON ERROR GOTO statements.

NOTE: 1If a statement is not preceded by a line number, it is considered an
"immediate mode" statement and is executed immediately (see Section 2.1.1).

3.4 STATEMENTS

A statement follows a line number (if it is part of a program), or is executed
immediately if there was no preceding line number. In this manual, statements
fall into four logical groups:

Preliminary . . Elements of CS BASIC 3-3

4 Empty statements

* Assignment and other arithmetic statements, including matrix ﬁanipulation
statements

o Control statements

° Input and output statements.

Assignment and other arithmetic statements are covered in Chapter 7; Control
statements are described in Chapter 8; input and output statements are discussed
in Chapter 9.

An empty statement is indicated by a line number on its own. Execution of an

empty statement has no effect but can be used as the target of a change of
control flow.

3.4.1 MULTIPLE STATEMENTS PER LINE

There can be more than one statement per line in a BASIC program. To put
multiple statements on a line, each statement except the last one on the line
must be terminated either by a colon (:) or by a reverse slash character (\).

Only the first statement on a multiple statement line may have a line number.

Examples of Single and Multiple Statements

Here is a single-statement line:
240 LET A = 25
and here is a line containing three statements:
1125 IF A = 10.5 GOSUB 1230 \ PRINTA \ LETA =0
The second and subsequent statements on a multiple-statement line should not be
considered as separate lines. There are cases in which such statements will not

get executed. For instance, if the example above were changed to read:

1125 IF A =10.5 GOTO 1230 \ PRINTA \ LETA =0

Preliminary Elements of CS BASIC 3-4

the following PRINT and LET statements would never be executed. If A is equal to
10.5, control passes to statement 1230 as indicated. But if A is not equal to

10.5, control passes to the next line in the program, not to the PRINT statement
on the same line.

3.4.2 STATEMENT CONTINUATION

A single statement can be continued over more than one line. Continuation of a

statement is signaled by an ampersand character (&) at the end of the line,
before the carriage return.

Example of a Continued Statement

100 LET TOTAL.FICTION = &
CRAWLING.ON.THE.GRASS .GOTHICS + &
SLUSHY.LOVE.STORIES + &
SOUTHERN.TERMITE.JULEPS + &
FEDERAL. BUDGET.RETURNS

3.5 REMARKS AND COMMENTS

" CS BASIC provides for the insertion of commentary material in a program, for the
purposes of identification and documentation. There are two ways to insert
commentary in a program:

. by using a REM statement

. using a ! sign after a statement.

The REM (for REMark) statement ignores everything that follows it on that line.

Examples of REM Statements

200 REM This program computes the whichness of the why.
250

300 REM This program simply asks the question.

Preliminary-) Elements of CS BASIC 3-5

The other means of introducing commentary is the ! sign after a statement For
example, the following statements have comments affixed:

980 LET AV = TOT.BOOK / BOOK.CATS ! compute average
1020 VOLUME = 4 / 3% PI * R 3 ! Spherical volume

A single program line with multiple lines can have comments on each of the
lines:

670 GOLDEN.SECTION = (1 + SQR(5)) / 2 ! compute Golden Ratio &
\ PRINT GOLDEN.SECTION ! and print it

3.6 IDENTIFIERS

Identifiers in CS BASIC are formed from the following elements:
* Upper case letters A through Z
* Lower case letter a through z,
* Digits O through 9,
®* The period character .
The syntactical definition of an identifier is:
<letter> {<letter> | <digit> |}
An identifier must start with a letter. 1Including the initial letter, an
identifier may contain up to a total of 30 characters, consisting of letters,
digits, and the period. Upper-case letters and lower-case letters are
considered the same in an identifier -- the BASIC processor '"folds" all letters

to a single case. Periods are used to break identifiers into words for
readability. Spaces and line breaks are not allowed in identifiers.

Examples of Correct Identifiers

Clock.Rate Example.23 RECEIPTS
accounts x2000 ANSI.and.ISO

Preliminary Elements of CS BASIC 3-6

Examples of Incorrect Identifiers

2nd.April (should not begin with a digit)
.that.moot (should not begin with a period)
Beginners.All.Purpose.Symbolic.Instruction.Code (Too long)

Identifiers are further qualified by using a trailing % sign to indicate an
integer variable, or by a trailing $ sign to indicate a string variable. An
unqualified identifier is automatically assumed to denote a floating point
variable.

Identifiers that are the names of functions are denoted by the letters FN in
front of them.

The same identifier can be used to represent a floating point variable, an
integer variable, a string variable, a dimensioned variable of any type, and a
function name, with no ambiguity. That is, the identifiers A, AS$, and A%, are
all distinct identifiers that can be used in the same CS BASIC program.

3.6.1 RESERVED IDENTIFIERS

CS BASIC uses many identifiers as reserved words in the language. User programs
cannot use these reserved words for user identifiers. There is a list of
reserved identifiers in Appendix D. Some of these reserved words are not CS
BASIC commands, statements, or functions.

3.7 USE OF UPPER CASE AND LOWER CASE LETTERS

Just as for identifiers, CS BASIC ignores the case of letters except within
character strings. «

This means that all CS BASIC keywords can be either uppercase, lowercase, or a
mixture of both.

Similarly, the letter E used for exponents (discussed below) can also be typed
either as the upper-case letter E or lower-case e.

Similarly, the FN keyword preceding a function name can be written in
lower-case, upper-case, or a mixture of cases.

Preliminary . . Elements of CS BASIC 3-7

The only place that upper case and lower case are significant is within
character string constants. °

Preliminary " Elements of CS BASIC 3-8

4.0 DATA REPRESENTATION IN CS BASIC

4.1 NUMERIC DATA TYPES
Numeric data in CS BASIC is represented internally in floating point format,
unless the programmer explicitly states that the data is of integer type.

There is also a means of representing numeric data by character strings.

4.1.1 NUMERIC CONSTANTS

Numeric constants are generally floating point values, unless they are suffixed
with a % sign, in which case they are integer values. An <integer> constant is
syntactically defined as:

<digit> {<digit> ...}

A numeric constant consists of the following elements:

{ +{ -} {<integer>} {.} {<integer>}
{E|e{+] -1} <integer>}

given the rules stated above, the following are examples of correct constants:

+1 -3
0.0 2. c14142
-10.5 +128. -.7071
2.99793E8 -1E-10 1.5E5

The following are examples of incorrect constants:

. a decimal point alone is incorrect,
+. or -. an operator with or without a period is also incorrect
E5 a variable name (not the value 10 5).

All the constants above are represented in floating point notation. Floating
point numbers are 64-bit quantities. The range is approximately * 10E * 308.
The precision is approximately 15 decimal places.

Preliminary _ Data Representation in CS BASIC 4-1

The floating point number system used in CS BASIC reserves certain values to
indicate that an erroneous operation has taken place. The values of positive
infinity, negative infinity, and Not a Number (usually called NaN) are such
values. When used in normal arithmetic operations, such values behave as one
would expect. For instance,

infinity + 1.0
is infinity, and
NaN + 1.0

is NaN, and so on. When printed, the value of positive infinity appears as
+.+++++, negative infinity appears as =-.-=---- , and NaN as ?7.77???7. These
strange values are "created" by operations such as dividing a number by zero or
taking the logarithm of a negative number. The user cannot represent infinity

or NaN as a numeric constant in a CS BASIC program.

Integer constants are indicated by placing a percent sign after the number.
Integers are represented by 16-bit numbers internally. The range of integers is
therefore -32768 through +32767. However, the most negative integer constant
allowed is -32767.

A percent sign placed after a floating point constant containing either a period
or an exponent, for instance

7.6E6%

causes a syntax error. Similarly, a percent sign placed after an integer
constant that is too large to be represented as an integer value also causes a
syntax error. For example, the numbers:

99999% and -50000%
generate syntax errors.

If a constant contains a period or an exponent, it will be stored as a floating
point data value by the CS BASIC interpreter. Similarly, a constant ending with
a % sign will be stored as an integer data value by the CS BASIC interpreter.

If neither a period nor an exponent is present in a numeric constant, and the
value is small enough to be stored as an integer, the constant is considered an
"ambiguous" constant, and is stored as a floating point value, unless a % sign
appears in the expression to the left of the constant, in which case, the CS
BASIC interpreter stores the constant as an integer value.

Preliminary Data Representation in CS BASIC 4-2

4.1.2 NUMERIC VARIABLES

Numeric variables are designated by identifiers. A plain identifier represents
the name of a floating point variable. If the name of the variable is followed
by a percent sign, it means that the variable is to contain integer data.

A variable with a % sign following it is completely distinct from a floating
variable of the same name, from a string variable of the same name, and from a
dimensioned variable of the same name.

4.2 STRING DATA TYPES

CS BASIC implements a string data type. A string is a sequence of characters

that can be manipulated as a single entity. A character string has a maximum
length of 32767 characters.

Note that strings that are part of virtual arrays have additional restrictions
on their length (see the discussion of virtual arrays later in this chapter).

4.2.1 STRING CONSTANTS

String constants in CS BASIC represent a sequence of ASCII characters. A string
constant is delimited by either apostrophes (') or by double quote signs (").

If the user wishes to represent the string delimiter as a character in the
string, two delimiters must be typed.

Examples of String Constants

"Haul on the bowline"
'Splice the mainspring'
'The time is Ten O''Clock'’

"Call for the Great 0'Reilly"

Preliminary . : Data Representation in CS BASIC 4-3

4.2.2 STRING VARIABLES

A string variable in CS BASIC is an identifier followed by a $ sign.

Examples of String Variables

wool.or.cotton$ A$

A variable with a § sign following it is completely distinct from a floating,
integer, or dimensioned variable of the same name.

4.2.3 NUMERIC STRING DATA

CS BASIC provides a means whereby character strings can be treated as numbers.
This mechanism allows for exact, high-precision arithmetic without the need for
scaling.

A numeric string is simply a string variable or constant whose characters
conform to the rules for numeric constants defined above. A numeric string has
a maximum size of 56 characters, including the + or - sign and the decimal point.

The language provides functions to operate on numeric string data, and these are
described in Chapter 6.

4.3 ARRAYS, OR DIMENSIONED VARIABLES

CS BASIC provides for dimensioned variables. These are also known as arrays or
matrices. Dimensioned variables can be introduced with the DIM (DIMension)
statement. Floating, integer, and string variables can be dimensioned.

The same name can be used for a simple variable and for a dimensioned variable
with no ambiguity.

There are powerful features in the language for manipulating entire arrays,
these facilities are described in Chapter 10.

Preliminary Data Representation in CS BASIC 4-4

The format of the DIM statement is:

<line number> DIM <identifier>(<subscripts>)
{, <identifier>(<subscripts>) ...}

where <subscripts> is:
<upper bound> {, <upper bound>}

and <upper bound> is a numeric constant that determines the upper bound of that
dimension of the array. Dimensioned variables can have one or two dimensions.

The DIM statement cannot be used in immediate mode.

Examples of DIM Statements

120 DIM hours(5)

130 DIM time.and.motion%(10, 20)

140 DIM days$(7),weeks%(52), seconds(366)
150 DIM names$ (100, 100)

This example shows that more than one dimensioned variable can be declared per
DIM statement, and also that the rules for floating, integer, and string data
types apply.

The bounds of each dimension in the declaration must be a positive, nonzero
integer. The bounds specify the upper bounds only; there is no facility for
specifying the lower bound of a dimension. In all cases, the lower bound of a
dimension is zero. In general, the zero'th element of a dimension is not used in
array manipulations, but it is used in some cases, such as the CHANGE statement.
Of course, the user can access element zero specifically, in the same manner as
with any other array element.

Chapter 10 contains a detailed discussion on the way in which matrices are
dimensioned and redimensioned.

Preliminary . : Data Representation in CS BASIC 4-5

4.3.1 VIRTUAL ARRAYS

-3
Virtual arrays are a method for associating a dimensioned variable with a file
on some external storage device. There are two applications for virtual arrays:

. manipulating arrays that are too big to fit in the available memory,
i performing random access to data stored on external devices.

Virtual arrays are declared in a variant of the DIM statement. The format of a
virtual array declaration is:

DIM #<integer constant>, <identifier>(<subscripts>)
{, <identifier>(<subscripts>) ...}

The <integer constant> is an integer in the range 1 through 12, which is the
internal file designator of a disk file. File descriptors are treated more
fully in Chapter 9.

Strings are treated specially in virtual arrays. Whereas string variables can
range in length from zero up to 32767 characters, virtual string arrays have
specific limits placed on them.

An element of a string virtual array has a maximum length of 512 characters. A
string element need not have the maximum length declared. Also, maximum lengths
shorter than 512 characters can be declared. The form of a string virtual array
variable is:

<identifier>$(<subscripts>){=<integer constant>}
The =<integer constant> part of the declaration specifies the number of
characters allocated for each element. The length specification is optional.

The system defaults to 16 characters per element as the maximum length, if the
length specification is omitted.

The maximum length specification for a string virtual array element must be one
of the following powers of two:

2, 4, 8, 16, 32, 64, 128, 256, 512

In the event that a maximum length specification other than those stated above
is specified, the system rounds up to the next larger power of two.

Preliminary Data Representation in CS BASIC 4-6

Examples of Virtual Array Declarations

200 DIM #4, ins.and.outs (50, 200)
300 DIM #5, names$(500)=64, addresses$(500)=512

The first example declares a 50-by-200 floating array. The second example
declares two 500-element string arrays, with their maximum lengths specified.

4.4 INITIAL VALUES OF VARIABLES

When a CS BASIC program first uses a variable, the CS BASIC system gives that
variable an initial value. The initial values assigned are:

0.0 for a floating variable,
0% for an integer variable,
" (the null string) for a string variable.

The CS BASIC system initializes arrays (except virtual arrays) by setting all of
their elements to the values stated above.

Variables that are formal arguments to functions have their initial values
assigned to the value of the actual arguments when the function is referenced.
See Chapter 12 -- '"CS BASIC Program Structure" -- for a description of how
arguments are assigned.

Note that virtual arrays are not automatically initialized by the system. The
programmer must explicitly write code to initialize a virtual array, or use the
MAT ZER matrix initialization statement.

RUN and RUNNH do not set all variables to their initial values.

4.5 DISTINCTNESS OF VARIABLE NAMES

The same variable name can be used for more than one type of object with no
ambiguity. This is because the name can be dlstlngulshed from the context in
which it is used.

A variable with a % sign following it is completely distinct from a floating
variable of the same name.

Preliminary _ ' Data Representation in CS BASIC 4-7

Similarly, a floating variable and an integer variable are dlstlnct from a
string variable of the same name.

Finally, the same names can be used for dimensioned variables and undimensioned
variables with no ambiguity.

For instance, each of the references below may appear in the same CS BASIC
program and refer to distinct variables:

I 1% I$
I(2) I%(2) I$(2)

4.6 DEFINING VARIABLE DATA TYPES

Three keywords -- DEFINT, DEFDOUBLE, and DEFSTRING -- may be used to create
BASIC statements as follows:

DEFINT . <letter range> { , <letter range> ... }
DEFDOUBLE <letter range> { , <letter range> ... }
DEFSTRING <letter range> { , <letter range> ... }

where <letter range> is either a single alphabetic character or an alphabetic
character followed by a minus sign followed by another alphabetic character, the
second of which collates (using the ASCII character set) at least as high as the
first. All alphabetic characters are treated as if entered in upper case.
These statements are not 'executable" but take effect when entered into CS
BASIC, and their effect continues until overridden by a subsequent DEFINT,
DEFREAL, or DEFSTRING statement is entered or BASIC is completely reinitialized
(e.g., via NEW, OLD, or CHAIN).

The effect of a DEFINT statement is to activate the indicated alphabetic
character such that variables (including parameters, function names, and array
names) subsequently entered into the BASIC system beginning with that character
are transformed as follows:

<var> is treated as <var>%
<yvar>% is treated as <var>%
<var>$ is treated as <var>$

Thus, for example, after the statement "DEFINT I-N" has been entered into the
BASIC system, a definition or reference to FNIII is treated in exactly the same
way as FNIII%. After the DEFINT statement it is no longer possible to enter
floating variables (etc.) beginning with the indicated letters.

Preliminary Data Representation in CS BASIC 4-8

The effect of the DEFSTRING statement is similar to that of the DEFINT statement
and induces the following transformations:

<var> 1is treated as <var>$
<var>% is treated as <var>%
<Var>$ is treated as <var>$

The effect of the DEFDOUBLE statement is to cancel any transformations on the
given letters, leaving the default state:

<var> 1is treated as <var>
<var>% is treated as <var>%
<var>$ is treated as <var>$

None of these statements has any effect on program portions already entered into
the BASIC system. The transformations are carried out strictly as new BASIC
program input is first scanned.

Preliminary - Data Representation in CS BASIC 4-9

Preliminary Data Representation in CS BASIC 4-10

5.0 CS BASIC EXPRESSIONS

Expressions in CS BASIC are mechanisms for computing new values. The values of

operands (constants, variables and function values) are combined by operators to
generate values.

This chapter describes the operators available for the different types of data
and gives the rules for combining those operators and operands.

5.1 MIXED MODE ARITHMETIC

CS BASIC provides for arithmetic operators to operate upon a mixture of floating
point and integer operands in the same expression.

If both the left and right operands of an arithmetic operator are integers, the
result of the operation is an integer. If both operands are floating point, the
result is also floating point. If one operand is a floating point number and the
other is an integer, the integer is first converted to a floating point value,
the operation is performed using floating point values, and the result is a
floating point value.

To ensure that a constant is represented as a floating point constant, it should
contain, or be terminated with, a decimal point.

A number should be suffixed with a % sign to ensure that it is represented as an
integer.

Constants without a suffix at all are termed ambiguous constants, and their
representation as floating point or integer depends on the statement in which
they are used. If an integer variable or constant appears anywhere to the left
of an ambiguous constant in a statement, that ambiguous constant represents an
integer, otherwise it represents a floating point number.

5.2 ARITHMETIC OPERATORS

Arithmetic operators operate upon numeric (integer or floating point) operands
and yield numeric results. The arithmetic operators are as shown in the table.

Preliminary — ’ CS BASIC Expressions 5-1

r T]
| Operator Meaning | Precedence |
| | |
| 1 i
| A or ** Exponentiation | Highest |
t | | |
| 1 — |
+ Unary Plus | |

| Next Highest |

- Unary Minus | |

| |

1 |

* Multiplication | |

| | Lower |

| / | Division I |
|] |

I 1 1

+ | Addition | |

| I | Lowest I
| - | Subtraction | |
L 1 | i

The arithmetic operators have a precedence, ranging from exponentiation (the
highest) to addition and subtraction (the lowest). The unary plus and minus
bind tighter than the operators below them in the table.

Parentheses may be used to change the precedence of operators in an expression.
In the absence of parentheses, operators of equal precedence are applied left to
right, including the exponentiation operator.

The result from an attempt to raise a negative number to a fractional power is
NaN (Not a Number).

The results of a division by zero depends upon the type of the operands. If the
operands are floating point, the result of a division by zero is either positive
or negative infinity. For example, the division:

1.0/ 0.0
generates positive infinity as a result, and the division:

-1.0 / 0.0

generates negative infinity as a result.

The representations and results of extreme values such as plus and minus
infinity and NaN are covered in Appendix B.

Preliminary CS BASIC Expressions 5-2

If the operands of a division are integers, division by zero, in an expression
such as:

A% /0%

results in a run-time error, that can be trapped by the ON ERROR GOTO facility
described in Chapter 12.

The plus (+) and minus (-) signs can also be used as unary operators. The plus
sign is simply ignored; the minus sign changes the sign of the expression that
follows.

5.3 ARITHMETIC RELATIONAL OPERATORS

Arithmetic relational operators evaluate relationships between numeric
operands. The precedence of arithmetic relational operators listed in the table
below is the same as that of the arithmetic operators described in the previous
section.

T 1
Operator | Meaning
|
1
= | Equal To
< | Less Than
| <= | Less Than or Equal To
| > | Greater Than
| >= | Greater Than or Equal To
| <> | Not Equal To
| == | Approximately Equal To
| |
The == sign stands for "approximately equal to" and is used when comparing

floating point numbers. Internally, CS BASIC carries floating point numbers to
a higher precision than is normally printed by PRINT statements. The use of the
== operator is to compare numbers that look equal when printed but are actually
unequal in the internal representation the computer. CS BASIC prints numbers to
a precision of approximately six decimal places but represents them internally
to a precision of approximately 15 decimal places.

Preliminary . CS BASIC Expressions 5-3

5.4 LOGICAL OPERATORS

Logical operators are used to combine relational expressions into compound
relational expressions. The logical operators have their usual meanings.

l T]

| Operator | Meaning | Precedence

| | |

| 1 1

| NOT | Logical Negation | Highest |
| f i |
| AND | Logical Conjunction | Next Highest

| | |

| OR | Logical Disjunction |

| XOR | Logical Exclusive OR | Lower |
| | ' ‘
| IMP | Logical Implication | |
| EQV | Logical Equivalence | Lowest |
L i 1 |

5.5 STRING OPERATORS

String operators are those that operate upon string operands to produce string
expressions. The basic string operator is concatenation, denoted by a plus sign

(+).

String relational operators are used for lexicographic comparisons between
string values. The string relational operators are as shown in the table below.

x
| Operator

Identical

1]

| Meaning |
F { f
=	Equivalent
<	Less Than
<=	Less Than or Equal To
>	Greater Than
>=	Greater Than or Equal To
% <> { Not Equal To }
1 | j

Preliminary CS BASIC Expressions 5-4

The equivalence operator (=) means that its operands are equivalent except for
possible trailing spaces.

The identity operator (=) means that its operands are identical, including
trailing spaces. That is, they are both of the same length, and contain the same
characters, in the same order.

The ASCII character set is used as the collating order for string comparison.

When strings of unequal length are compared, the shorter string (say of length
n) is compared with the first n characters of the longer string. If the firstn
characters are equal, and the rest of the longer string is only spaces, the two
strings are equivalent. If the first n characters are equal and the rest of the

longer string is not spaces, the longer string is considered greater than the
shorter string.

5.6 INTEGERS AS LOGICAL VARIABLES

CS BASIC allows integers to be used as logical variables. Logical operators can
be applied to integer operands to generate bitwise logical expressions.

In addition, whenever a logical expression is expected, the values of the
integers can represent the values TRUE and FALSE. An integer value of 0%
represents the logical value FALSE. Any nonzero value represents the logical
TRUE value. CS BASIC uses the integer value -1% (all ones) to represent the
logical value TRUE when generated as a truth value in an expression.

When the logical operations in the truth tables below are applied to integer
values, the values are considered as bit strings, not as signed integers.

In all cases, A and B are integer values.

Prelimihary . . CS BASIC Expressions 5-5

CS BASIC Expressions 5-6

Preliminary

6.0 CS BASIC STANDARD FUNCTIONS

This

chapter describes the three major types of functions built into the CS

BASIC interpreter:

mathematical and arithmetic functions, which operate on numeric arguments
and return numeric results;

string functions, which operate on character strings and return string
results;

functions that treat character strings as numeric data. These functioms
also operate on strings and return string results, but they are considered

a distinct type since they perform arithmetic operations on character
strings.

Two other kinds of functions are discussed elsewhere in this manual:

4.

6.1

User-defined functions are discussed in Section 12.3 of the chapter on
program structure.

Functions that operate on matrixes are described in Section 10.6 of the
chapter on matrix operations.

MATHEMATICAL FUNCTIONS

6.1.1 ABS -- COMPUTE ABSOLUTE VALUE

The ABS function returns the absolute value of its argument. The format of the
ABS function is

ABS (X)

where X is a numeric value.

Preliminary ' CS BASIC Standard Functions 6-1

6.1.2 SGN -- FIND SIGN OF NUMBER
The SGN function determines the sign of its numeric argument. The format of the
SGN function is:
SGN(X)
where X is a numeric argument. SGN returns':
-1 for a negative argument

0 for a zero argument
+1 for a positive argument

6.1.3 INT -- ROUND DOWN TO NEAREST INTEGER
The INT function returns the largest integer that is less than or equal to its
argument. The format of the INT function is:
INT(X)
where X is a numeric argument. The value of
INT(1.5)
is 1. The value of
INT(-0.5)

is -1.

6.1.4 FIX -- TRUNCATE TO INTEGER

The FIX function truncates its argument to the nearest integer. The form of the
FIX function is:

FIX(X)

Preliminary ‘) CS BASIC Standard Functions 6-2

where X is a numeric argument. The value of
FIX(0.5)

is 0.

6.1.5 COS -- TRIGONOMETRIC COSINE

The COS function returns the cosine of its argument. The format of the COS
function is:

Cos (X)

where X is a numeric argument. The argument to COS is in radians.

6.1.6 SIN -- TRIGONOMETRIC SINE

The SIN function returns the sine of its argument. The format of the SIN
function is:

SIN(X)

where X is a numeric argument. The argument to SIN is in radians.

6.1.7 TAN -- TRIGONOMETRIC TANGENT

The TAN function returns the tangent of its argument. The format of the TAN
function is:

TAN (X)

where X is a numeric argument. The argument to TAN is in radianms.

Preliminary : CS BASIC Standard Functions 6-3

6.1.8 ATN -- TRIGONOMETRIC ARC TANGENT

The ATN function returns the arctangent of its argument. The format of the ATN
function is:

ATN(X)

where X is a numeric argument. The value of the ATN function is in radians.

6.1.9 SQR -- COMPUTE SQUARE ROOT
The SQR function returns the square root of its argument. The format of the SQR
function is:
SQR(X)
where X is a numeric argument.

If the argument to SQR is negative, the value of the function is NaN (Not a
Number). See Appendix B.

6.1.10 EXP -- EXPONENTIAL FUNCTION

The EXP function returns the exponential of its argument, e , where e is
2.71828...The format of the EXP function is:
EXP(X)

where X is a numeric argument.

6.1.11 LOG -- NATURAL LOGARITHM

The LOG function returns the natural logarithm (log x) of its argument. The
format of the LOG function is:

LOG(X)

Preliminary CS BASIC Standard Functions 6-4

where X is a numeric argument.

If the argument X is a negative number, the value of the LOG function is Not a
Number (NaN).

6.1.12 LOG10 -- LOGARITHM TO BASE 10
The LOG10 function returns the logarithm to the base 10 (log x) of its argument.
The format of the LOG10 function is:
LOG10(X)
where X is a numeric argument.

If the argument X is a negative number, the value of the LOG10 function is Not a
Number (NaN). :

6.1.13 PI -- CONSTANT VALUE OF PI

The PI function returns a constant value of pi, the ratio of a circle's
circumference to its diameter. The value is approximately 3.14159.

6.1.14 RND -- RANDOM NUMBER GENERATOR
The RND function returns uniformly distributed pseudo-random numbers in the
range 0.0 to 1.0. The format of the RND function is
RND(X)
The argument X is ignored and can be omitted.

The RND function generates the same sequence of numbers each time the program is
run. '

Preliminary - CS BASIC Standard Functions 6-=5

6.1.15 SWAP% -- SWAP BYTES IN AN INTEGER

The SWAP% function swaps the bytes in an integer value. The format of the SWAP%
function is:

SWAP%

where N% is an integer expression.

6.1.16 CCPOS OR POS -- CURRENT POSITION OF PRINT HEAD
The CCPOS or POS function returns the current position of the "print head" for a
specific input-output channel. The format of the function

CCPOS (N%)

or

POS (N%)

where N% is an integer expression.

6.1.17 TAB -- SET PRINT POSITION

The TAB function can be used only in a PRINT statement. The TAB function moves
the printing position in the current print record to a specified position. The
format of the TAB function is:

TAB (N%)

where N% is an integer expression. The TAB function returns a string of spaces
to move the print position to column N on the output line.

If a PRINT statement that refers to file #0 (the user's terminal) contains a
TAB(N%) function, the TAB(N%) function returns the number of spaces necessary to
move the print position to column N.

Preliminary CS BASIC Standard Functions 6-6

6.2 STRING FUNCTIONS

This section describes the functions available in BASIC for manipulating
character strings.

6.2.1 LEFT -- TAKE LEFT SUBSTRING OF STRING

The LEFT function extracts a substring from a string, starting at the first
character in the string, and extending for the specified number of characters.
The format of the LEFT function is:

LEFT(AS$, N)

where AS is a string variable, and N is the number of characters to extract from
it. '

If the number of characters to extract is less than 1, the result of the LEFTS$
function is a null string. If the number of characters to extract is greater
than the length of the string variable A§, the result of the LEFT function is all
of AS.

Example of the LEFT Function

LET Sport$ = "Hunting The Snark"
PRINT LEFT{Sport$, 7%)

Hunting

6.2.2 RIGHT -- TAKE RIGHT SUBSTRING OF STRING

The RIGHT function extracts a substring from a string starting at a specified
character in the string, and extending to the last character in the string. The
format of the RIGHT function is:

RIGHT(A$, N)

where A$ is a string variable and N is the character position in the string at
which the extraction starts.

Preliminary) TS BASIC Standard Functions 6-7

v

If the starting position N is less than 1, the result of the RIGHT function is
all of the string A4. If the starting position is greater than the length of the
string variable A4, the result of the RIGHT function is a null string.

Example of the RIGHT Function

LET Sport$ = "Hunting The Snark"
PRINT RIGHT(Sport$, 9)

The Snark

6.2.3 MID -- TAKE SUBSTRING OF STRING

The MID function extracts a substring from a string, starting at a specified
character in the string and extending for the specified number of characters.
The format of the MID function is:

MID(AS, S, L)

where A$ is a string variable, S is the position in the string at which
extraction starts, and L is the number of characters to be extracted.

If the starting position S is less than 1 or greater than the length of the
string variable A$, the result of the MID function is a null string.

If L, the number of characters to extract, is less than 1, the result of the MID
function is a null string. If the number of characters to extract is greater
than the length of the string variable A$, the result of the MID function
extends from the starting position to the end of AS.

If the sum of the starting position S, plus the number of characters to extract,

L, is greater than the number of characters remaining in the string variable A$§,
the result of the MID function extends to the end of AS.

Example of the MID Function

LET Sport$ = "Hunting The Snark"
PRINT MID(Sport$, 9, 3)

The

Preliminary CS BASIC Standard Functions 6-8

6.2.4 LEN -- COMPUTE LENGTH OF STRING

The LEN function returns the length of a string, including trailing spaces in
the string. The format of the LEN function is:

LEN(AS$)

where AS is a string variable.

Example of the LEN Function

100 LET S$ = "ABCDEFGHIJKLM"
110 L% = LEN(S)

120 PRINT L%

130 END

runnh

13

Ready

6.2.5 STRING CONCATENATION WITH THE + OPERATOR

The plus sign (+), when applied to string data elements, signifies a
concatenation of its operands.

Example of the String Concatenation Function

100 LET Left.Hand$ = "ABC"

110 LET Right.Hand$ = "XYZ"

120 LET Whole$ = Left.Hand$ + Right.Hand$

130 PRINT Left.Hand$, Right.Hand$, Whole$, LEN(Whole$)
140 END

runnh

ABC XYZ ABCXYZ 6

Ready

Preliminary - : : CS BASIC Standard Functions 6-9

v

6.2.6 CHR$ -- CHARACTER VALUE OF INTEGER

The CHR$ function generates a one-character string whose value is the ASCII
character corresponding to its numeric argument. The format of the CHRS$
function is:
CHR$ (N)
where N is a number in the range 0 to 127.
For instance, the function call has as itsv value the space character,
CHRS$ (32)
and
CHR$ (65)
has the value of the letter "A".
If the numeric argument to CHR§ is negative or greater than 127, the lower eight

bits are used.

Example of the CHRS Function

PRINT CHR$(66)

B

6.2.7 ASCII -- INTEGER EQUIVALENT OF CHARACTER

The function
ASCII(AS)

generates an integer that is the numeric value of the first character of the
string AS$.

For example,

ASCII("F™)

Preliminary A CS BASIC Standard Functions 6-10

is the value 70. If the string variable V$ contains the string "Wizard," then
the function

ASCII(VS)

has the value of the first character, namely the value 87.

6.2.8 INSTR -- SEARCH FOR SUBSTRING IN STRING
The INSTR function performs a search for a specified substring within a string.
The format of the INSTR function is

INSTR(P, AS$, B$)

where AS is a string, B$ is the substring to be searched for in A$, and P is the
position in the string A$ at which the search is to start.

IF string B$ is not found in string AS$, INSTR returns a value of 0.

If string B$ is found in string A$, INSTR returns the position in string A$ at
which B$ was found. Character positions are numbered from 1, starting at the
leftmost character of the string.

If the starting search position S is less than 1, or greater than LEN(A$), the
INSTR function returns the value zero.

If the length of substring B$ is greater than the length of string A$, the INSTR
function returns the value zero.

Example of the INSTR Function

LET Sport$ = "Hunting The Snark"
PRINT INSTR(1, Sport$, '"The S")

9

PRINT INSTR(1, Sport$, "the S")

0

Preliminary . : CS BASIC Standard Functions 6-11

6.2.9 SPACE$ -- GENERATE STRING OF SPACES

The SPACE$ function generates a string of spaces. It is useful for filling a
string variable to all spaces or for inserting a number of spaces into a string.
The format of the SPACE$ function is:

SPACE$ (N%)

where N% is an integer value specifying the number of spaces to generate.

Example of the SPACE$ Function

B$ = SPACES$ (16%)

This example assigns a string of 16 spaces to the variable B§.

6.2.10 NUMS$ -- STRING REPRESENTATION OF NUMBER

The NUM$ function returns a string of characters that represents the value of a
numeric argument in the way that a PRINT statement would print it. The format of
the NUM$ function is:

NUMS (N)
where N is a numeric data value.
If the numeric argument is positive, NUM$ generates the string representation of
the number, with a space character on either side of the string. If the numeric
argument is negative, NUM$ generates the string representation of the number,
preceded by a minus sign, and followed by a space.
If the numeric argument is outside the range -999999 through 999999, the string

representation is generated in floating point format.

Example of the NUM$ Function

A$ = NUM$ (567)
B$ = NUM$(-234)
PRINT A$; BS
567 -234

Ready

Preliminary CS BASIC Standard Functions 6-12

6.2.11 NUMI1$ -- STRING REPRESENTATION OF NUMBER

The NUM1$ function returns a string of characters that is the string

representation of its numeric argument. The format of the NUM1$ function is:
NUM1$ (N)

where N is a numeric data value. The generated string does not contain any
spaces, nor is it converted to floating point format.

The NUM1$ function is useful for converting numbers to string-numeric data
types.

Example of the NUM1$ Function

AS = NUM1$§(2 24)
PRINT A$
16777216

Ready

6.2.12 VAL -- CONVERT STRING TO NUMBER
The VAL function converts its string argument to a floating point number. The
format of the VAL function is:

VAL(AS)

where A$ is a string data value containing the representation of a number. The
string A$ can contain a plus sign, minus sign, or decimal point.

If the string A$ contains characters that are not digits, + or - or

characters, the VAL function generates a run-time error, that can be trapped by
the ON ERROR GOTO facility if required.

Example of the VAL Function

A$ = "-12869.345"'
F = VAL(AS$)

PRINT F

-12869.3

Preliminary . . CS BASIC Standard Functions 6-13

6.2.13 STRINGS$ -- CREATE REPEATED CHARACTER STRING
The STRINGS function generates a string consisting of a specified number of
characters. The format of the STRINGS function is:

STRINGS (N, V)

where N is the number of characters to generate and V is the value of the
character.

If V is outside the range of 0 to 255, the lower eight bits of the value are
used.

Example of the STRINGS Function

A$ = STRINGS (10, 35) + STRING$ (15, 61) + STRINGS (10, 37)
PRINT A$

JHHHHEHEHHaaaaaaaaaaaaaaa%b bbb sttt
Ready

6.2.14 CVT CONVERSION FUNCTIONS

There are five variations of the CVT function, which maps between string and
integer forms. These functions map directly between numerical and string data,
and are used primarily to store floating point and integer data in block
input-output files.

The variations are described below, and are summarized here:

S$ = CVT%S$ (1%) Maps the integer expression I% into a two-character string S§.

I% = CVT$%(S$) Maps the first two characters of the string S$§ into an integer
1%.

S$§ = CVIF$(X) Maps the floating point expression X into an eight-character

string S§.

X = CVIS$F(S$) Maps the first eight characters of the string S$ into the
floating point value X. '

T$ = CVT$$(S$,M%) Performs editing on the string argument S$.

Preliminary CS BASIC Standard Functions 6-14

6.2.14.1 CVT%$ -- Map Integer to String

The CVT%$ Maps its integer argument into a two-character string. The form of
the CVT%$ function is:
CVT%S (1I%)

where I% is an integer expression. The result of the CVI%$ function is a
two-character string.

Example of the CVT%$ Function

PRINT CVT%$(16730)

AZ

6.2.14.2 CVT$% -- Map Characters to Integer

The CVT$% function maps the first two characters of its string argument into an
integer value. The format of the CVT$% function is:

CVT$%(S$)
where S$ is a character string expression. The result of the CVT$% function is

an integer.

Example of the CVT$% Function

PRINT CVT$%("MN")

19790

6.2.14.3 CVTF$ -- Map Floating Point to String

The CVTF$ function maps its floating point argument into an eight-character
string. The format of the CVIF$ function is:

CVTF$ (X)

Preliminary) CS BASIC Standard Functions 6-15

where X is a floating point expression. The result of the CVIF$ function is an
eight-character string.

6.2.14.4 CVT$F -- Map Characters to Floating Point
The CVT$F function maps the first eight characters of its string argument into a
floating point value. The format of the CVT$F function is:

CVTSF(S$)

where S$ is a character string expression. The result of the CVT$F function is a
floating point value.

6.2.14.5 CVT$$ -- String Editing
The CVTS function provides for editing of character string values under control
of its arguments. The format of the CVT$$ function is:
CVTS$ (8§, M)
where S§ is a character string data value, and M is a control parameter.

The characters in S$ are edited according to the value of M. M is a "bit-mask"
whose individual values have the following meanings:

1 Trim the parity bit from each character.
2 Discard all spaces and tabs from the string.
4 Discard carriage returns, line feeds, form feeds, escape, rubout, and

NULL characters.

8 Discard leading spaces and tabs only.

16 Reduce runs of spaces and tabs to a single space.
32 Convert lower case letters to upper case.

64 Convert [and] characters to (and).

Preliminary CS BASIC Standard Functions 6-16

128 Discard trailing spaces and tabs only.

256 Do not alter characters inside single or double quotes, except for
trimming the parity bit.

The bits in the M parameter can be combined additively. For example, setting M

to 96 (64+32) means that lower case letters are converted to upper case, and
brackets are converted to parentheses.

Example of the CVT$ Function

LET Sport$ = "Hunting The Snark"
PRINT CVT$$ (Sport$, 2%)

HuntingTheSnark

PRINT CVT$$ (Sport$, 32%)

HUNTING THE SNARK

PRINT CVTSS(Sport$, 34%)

HUNTINGTHESNARK
The result of the first CVT$$ function removes all spaces (and tabs) from the
string Sport$. The second example uses the mask that raises the entire string

to upper case. The third example combines the two previous masks, discarding
all spaces and tabs while raising the string to upper case.

6.2.15 XLATE -- CHARACTER TRANSLATION

The XLATE function provides a "table lookup" capability for translating
characters in a string. The format of the XLATE function is:

XLATE(S$, T$)

where S$ is a source string that is to be translated, and T$ is a lookup table
string that is used to do the translation.

The action of the XLATE function is that each character from S$ is used as an
index into the lookup table T$. Indexing starts from zero, with the first
character in T$ indexed by 0, up to the last possible position of 255. The
character at that position is used to form the value of the XLATE function.

Preliminary _ CS BASIC Standard Functions 6-17

The translation process terminates under one of two conditions:

1. The lookup table string T$ has a length shorter than the index from the
source string S$,

.

2. A zero value is found at the indexed position in the lookup table T$.

Example of the XLATE Function

T$ = STRING(32, ASCII(' ")) + STRING(16, ASCII('!')) &
+ STRING(10, ASCII('0')) + STRING(26, ASCII('A')) &
+ "1t + STRING(26, ASCII('A')) &

+ '"11111' + STRING(128, ASCII(' "))

A$ = '"Maryann Clark'

B$ = XLATE (A$, T$)

PRINT BS$

The example shown above has a translation table such that all alphabetic

characters translate to 'A', all digits translate to '0', all delimiters
translate to '!', and everything else translates to space.

6.2.16 RAD$ -- CONVERT FROM RADIX 50

The RAD$ function converts an integer value into three ASCII characters. The
format of the RADS function is: '
RADS (N%)

where N% is an integer expression. The result is a three-character string.

6.3 NUMERIC STRING FUNCTIONS

The BASIC language provides for operating on numbers that are represented by
strings of characters. This allows for arithmetic upon numbers up to 56

characters in length. The limit of 56 characters includes any plus sign, minus
sign, or decimal point.

Preliminary . CS BASIC Standard Functions 6-18

The functions described below are for performing arithmetic operations on these
data types.

The PROD$ (product), QUO$ (quotient), and PLACE$ (roundoff) functions each have
a parameter, P (for Places), that is the number of decimal places to which the
result of the function is to be rounded or truncated.

The P parameter is an integer expression. Values of P less than 5000 indicate
that the result of the function should be rounded. Values of P greater than
5000 indicate that the result of the function should be truncated. In this
second case, the actual number of places to which the result is truncated is
derived from the expression:

P - 10000

If the number of places to round or truncate is positive, the results are
rounded or truncated that number of places to the right of the decimal point.

If the number of places to round or truncate is negative, the results are
rounded or truncated to the left of the decimal point.

In all cases, if nonnumeric characters (other than + or - or .) are found in the
string, a run-time error is generated.

6.3.1 SUM$ -- ARITHMETIC SUM OF NUMERIC STRINGS

The SUM$ function adds two numeric strings together. The format of the SUMS$
function is:

SUM$ (A$, BS)

where A$ and B$ are both numeric strings.

Example of the SUM$ Function

PRINT SUM$('"12345", "67890")

80235

Preliminary . : CS BASIC Standard Functions 6-19

6.3.2 DIF$ -- ARITHMETIC DIFFERENCE OF NUMERIC STRINGS

The DIF$ function subtracts one numeric string from another. The format of the
DIF$ function is:

DIF$ (A$, BS)
where A$ and B$ are both numeric strings.

The result of the DIFS function is A$-BS.

Example of the DIF$ Function

PRINT DIF$("33554432", "16777216")

16777216

6.3.3 PROD$ -- ARITHMETIC PRODUCT OF NUMERIC STRINGS

The PRODS$ function multiplies two numeric strings together. The format the
PROD$ function is:
PRODS (A$, B§, P)

where A$ and B$ are both numeric strings and P is the number of places to which
the product is to be rounded or truncated.

The result of the function is the product of A$ and BS$, rounded or truncated to P
decimal places.

Example of the PROD$ Function

PRINT PRODS("1024", "1024" 10%)

1048576

Preliminary : CS BASIC Standard Functions 6-20

6.3.4 QUO$ -- ARITHMETIC QUOTIENT OF NUMERIC STRINGS

The QUO$ function divides one numeric string by another. The format of the QUOS$
function is:

QUOs (As, BS, P)

where A$ and B$ are both numeric strings and P is the number of places to which
the result is to be rounded or truncated.

The result of the QUO$ function is A$ divided by B$, with the quotient rounded or
truncated to P decimal places.

Example of the QUOS Function

PRINT QUOS("16777216". "1024", 10%)

16384

6.3.5 PLACE$ -- ROUND NUMERIC STRING

The PLACE$ function rounds a numeric string to a specified number of places.
The format of the PLACES function is:

PLACES (AS, P)
where AS is a numeric string, and P is the number of places to which the string

A$ is to be rounded or truncated.

Example of the PLACES Function

PRINT PLACES$("123.456", 2%)
123.46

PRINT PLACES$("123.456", 10000 + 2%)
123.45 :

PRINT PLACES$("126.6666", -2%)
13

PRINT PLACES$("126.666", 10000 + -2%)
12 X .

Preliminary - : CS BASIC Standard Functions 6j21

6.3.6 COMP% -- NUMERIC STRING COMPARISON

The COMP% function compares two numeric strings and returns an integer truth
value based on the results of the comparison. The format of the COMP% function

is:
COMP%(A$, BS)

where A$ and B$ are both numeric strings.

The COMP% function returns a value that represents the result of the comparison,
as follows:

-1 if A$ < BS

0 if A = BS
+1 if A$ > BS

Example of the COMP% Function

- PRINT COMP%("123", "456™)

-1

PRINT COMP%("'123", "100")

1

PRINT COMP%("'262144", '"262144")
0

Preliminary | CS BASIC Standard Functions 6-22

7.0 ASSIGNMENT STATEMENTS

This chapter discusses the assignment statements of CS BASIC: The LET
(assignment) statement, the LSET and RSET (in-place string assignment)
statements, and the CHANGE statement.

7.1 LET

Assignment statements are the fundamental statements of CS BASIC, where the
value of an expression can be assigned to a variable. The form of an assignment
statement is:

{LET} <variable> = <expression>

where <variable> is the name of a numeric variable, a string variable, or an
element of a dimensioned numeric or string variable.

<expression> is the value of a numeric or string expression, that is to be
assigned to the <variable>.

The LET keyword is optional and is retained for compatibility with other
implementations of BASIC.

The data type of <variable> must agree with the data type of <expression>. That
is, if <expression> is numeric, <variable> must be numeric; if <expression> is a
string expression, <variable> must be a string variable.

If <variable> is an integer variable and <expression> is a floating point
expression, the result is truncated (if possible) before the assignment. If the
result of the expression is too large to fit an integer value, the value of the
integer is undefined.

If <variable> is a floating point variable, and the <expression> is an integer
expression, it is converted to floating point before the assignment.

Preliminary . : CS BASIC Assignment Statements 7-1

Examples of Assignment Statements

100 LET Count% = 10%
120 LET Tax.Rate = 23.55
140 Emp%(Emp .Num%) = 795%

7.1.1 MULTIPLE ASSIGNMENT
In CS BASIC it is possible to assign the value of an expression to a collection
of variables. The form of a multiple assignment is:

{LET} <var> {, <var> ...} = <expression>

Each <var> in the format above is the name of a variable of the same type as the
<expression>. All the <var>'s are either numeric (float or integer) or string.

The <expression> is computed once, then the result is assigned to the list of
variables.

The order of assignment is undefined.
The same variable can appear in the list of variables more than once.

Note that a matrix can be initialized to certain values (such as all zeros, all
ones, or identity) by matrix initialization as described in Chapter 10.

7.1.2 STRING ASSIGNMENT

The form of a string assignment statement is just the same as that for numeric
assignment, namely:

{LET} <stringvar> = <expression>

There are some aspects of string assignment that the user must be aware of.
String variables are actually implemented as descriptors containing the length
of the string and the address of the storage area containing the string. When
one string variable is assigned to another, the system simply copies the
descriptor. The result is that both descriptors refer to the same area of
storage. (This is not true for string virtual arrays -- see below.)

Preliminary CS BASIC Assignment Statements 7-2

Suppose that the following assignment is made:
LET A$ = "Skyhook"

The variable A$ now is a descriptor to a storage area with the string "Skyhook"
in it. A subsequent assignment:

LET B$ = A$

makes the descriptor for B$§ reference the same storage area as the descriptor
for AS.

If either A$ or BS$ is subsequently changed, the storage areas are made
different. For example, the assignment:

LET A$ = "new string"

makes a new storage area containing the string 'new string". AS references this
new string, while B$ still references the "Skyhook" string.

If, when assigning one string variable to another, a distinct storage area is
actually required, it can be done with an assignment statement of the form:

LET B$ = A$ + "

In other words, BS and A$ now reference different areas of storage, even though
the concatenation only concatenated a null string. It is not necessary to do
this in general, unless LSET and RSET are being used in the same CS BASIC
program.

To change strings without moving their actual storage area, the LSET and RSET
statements must be used, as described below.

7.1.2.1 Special Notes on Assighing to String Virtual Arrays

For string virtual arrays, the assignment works differently from that of
ordinary strings. If the source or target of a string assignment is an element
of a string virtual array, the string is copied into the string virtual array.
This is in contrast to assignment with ordinary strings, where only the
descriptor is changed.

If the target of a string assignment is a string virtual array, and if the source
string is shorter in length than maximum length of the target string, the array
element is filed with zeros on_the right.

Preliminary . CS BASIC Assignment Statements 7-3

7.1.3 LSE‘T AND RSET -- CHANGE STRINGS IN PLACE

The LSET and RSET statements find most use in connection with block input and
output, as described in Chapter 7, but they are described here since they are
actually variations on the string assignment facilities.

LSET and RSET provide for changing the value of a string without moving the
string in storage in any way. The forms of the LSET and RSET statements are:

LSET <stringvar> {, <stringvar> ...} = <string>
RSET <stringvar> {, <stringvar> ...} = <string>

where <stringvar> is the name of an existing string, and <string> is a string
expression. Both LSET and RSET change the destination strings in place. The
string that was previously stored in <stringvar> is overwritten, but the length
of <stringvar> is unchanged.

If the length of <string> is greater than that of <stringvar>, the system
truncates <string> to fit.

The LSET statement places the new <string> left justified in <stringvar>. If

the length of <string> is less than that of <stringvar>, LSET pads on the right
with spaces.

The RSET statement places the new <string> right justified in the <stringvar>.
If the length of <string> is less than that of <stringvar>, RSET pads on the left
with spaces.

Example of the LSET Statement

AS$ = "ABCDE'
B$ = AS

C$ = 'MNOPQ'
D$ = C$

LSET A$ = 'XYZ'
C$ = 'DEFGH'

In the example above, the strings A$ and BS$ both refer to the same storage area.
After the LSET statement, both A$ and B$ will contain the value 'XYZ ', but the
strings C$ and D$ will contain different values because the final simple
assignment statement creates a new string.

Preliminary CS BASIC Assignment Statements 7-4

7.2 CHANGE -- CHARACTER AND NUMERIC CONVERSION

The CHANGE statement operates in one of two ways:
4 converts every character in a string variable into its numeric equivalent,

or

b converts an array of numeric values into characters in a string.
The form of the CHANGE statement is:
CHANGE <X> TO <Y>

If <X> is a string, <Y> must be a numeric array variable. If <X> is a numeric
array variable, <Y> must be a string.

When converting from a string variable to a numeric representation, element zero
of the destination numeric array will be set to the number of characters in the
string. The first converted character from the string is then placed in element
1 of the numeric array, and so on.

If the conversion is from string to numeric representation and the number of
characters in the string is greater than the number of elements in the numeric
array, a run-time error is produced.

If in changing from numeric to string format, the contents of the zero'th

element of the numeric array is 2zero or negative, a zero length string is
generated.

Examples of the CHANGE Statement

100 DIM Decimal%(3)

110 LET String$ = "ABC"

120 CHANGE String$ To Decimal%

130 PRINT Decimal%(0); Decimal%(1); &

Decimal%(2); Decimal%(3)

140 Decimal%(0) = 3 \ Decimal%(1l) = 88 &
Decimal%(2) = 89 \ Decimal%(3) = 90

150 CHANGE Decimal% TO String$

160 PRINT String$

170 END

runnh

3 65 66 67

XYZ

Ready

Preliminary . : CS BASIC Assignment Statements 7-5

Preliminary CS BASIC Assignment Statements 7-6

8.0 CONTROL STATEMENTS

This chapter covers CS BASIC control statements, which control the flow of
execution of a program. Input and output statements are not discussed in this
chapter but are covered in Chapter 9.

In the sections to follow, there are descriptions of statements, such as FOR and
WHILE, as well as IF-THEN-ELSE, that have "block structure." Control statements
can occur inside the range of other such control statements, but they must
"nest" properly. For example, the following structure is erroneous and is not
allowed:

100 FOR I =1 TO 10
110 WHILE X% =0
120 INPUT #1, A(I)
130 NEXT I

140 NEXT

The example illustrates incorrect nesting of statements. The NEXT I and the

plain NEXT statements should be interchanged. The BASIC interpreter generates
an error message in such situations.

8.1 IF THEN AND IF GOTO STATEMENTS
The IF THEN and IF GOTO statements are the most basic control statements in the
language. There are three forms of the IF statement:

IF <condition> THEN <statements>

IF <condition> THEN <line number>

IF <condition> GOTO <line number>
The first form executes the <statements> following the THEN keyword if the
<condition> is true. If the <condition> is false, the <statements>‘following

the THEN keyword are not executed.

The second and third forms are equivalent: if the <condition> is true, program
execution resumes at the line number specified by <line number>. If the

Preliminary , ‘ . Control Statements 8-1

w

<condition> is false, program execution continues at the statement following the
IF statement.

.

If there are multiple <statements> following the THEN keyword, all of those
statements are executed if the <condition> is true, and none of the <statements>
is_executed if the <condition> is false.

Examples of IF Statements

100 IF A <B THEN PRINT "A is less"
200 IF A$ <> B$ then 230

300 IF A$ = B$ GOTO 1435

400 IF A =B THEN PRINT A \ PRINT B

In the last example (line 400), both of the PRINT statements are executed if A
equals B, and neither of the PRINT statements is executed if A does not equal B.

8.2 IF THEN ELSE

The basic forms of IF THEN ELSE are similar to those of the IF THEN and IF GOTO
statements, with the addition of an ELSE clause in the construct. The forms are
as follows:

THEN <statement>
. { ELSE <statement>}
IF <condition> THEN <line number>
{ ELSE <line number>}
GOTO <line number>

The "piles" in the description above represent alternative ways of typing the
statements. Either of the ELSE forms can be optionally combined with any of the
forms of the basic IF statement.

If multiple statements follow the ELSE clause, all those statements are executed
in the event that the <condition> was false, causing the ELSE branch of the
statement to execute. If the <condition> is true, the ELSE branch is not taken,
and none of the statements that follow it are executed. '

Preliminary Control Statements 8-2

Examples of IF THEN ELSE Statements

100 IF X = Y THEN PRINT "Same" ELSE PRINT "Different"
240 IF A$ = "GROOVY" THEN PRINT "All groovy" ELSE 1950

300 IF ASCII(X$) = 9 THEN PRINT 'Starts with TAB' &
ELSE PRINT 'Tabless' \ STOP

350 IF A% <> B% THEN A% = 10 ELSE A% = 20 \ B% = 30
In the last example above (line 350), both of the statements following the ELSE

are executed if A% equals BY%, and neither of those statements is executed if A%
does not equal B%.

8.3 WHILE NEXT

The WHILE statement executes a block of subordinate statements while some
condition remains true. The form of the WHILE NEXT statement is:

WHILE <condition>
<statements>
NEXT

The <statements> between the WHILE and the NEXT are executed as long as
<condition> remains true. If <condition> is initially false, none of the
<statements> is executed.

Example of the WHILE Statement

100 WHILE A% <> O
120 GOSUB 1000
140 NEXT

Note that the WHILE NEXT statement is not available in immediate mode.

8.4 UNTIL NEXT

The UNTIL statement executes a block of subordinate statements while some
condition remains false. The form of the UNTIL NEXT statement is:

Preliminary . : Control Statements 8-3

UNTIL <condition>
<statements>
NEXT

The <statements> between the UNTIL and the NEXT are executed as long as
<condition> remains false. IF <condition> is initially true, none of the
<statements> is executed.

Example of the UNTIL Statement

100 UNTIL X == 0.0
150 INPUT #1, X
200 NEXT

Note that the UNTIL NEXT statement is not available in immediate mode.

8.5 FOR NEXT

The FOR NEXT statement is the basic mechanism for constructing loops in a BASIC
program. The form of the FOR NEXT statement is:

FOR <var> = <expl> TO <exp2> {STEP <exp3>}
.. . Statements subordinate to the FOR
NEXT <var> :
The <var> is a numeric variable that is initialized to the value of <expl>. The
second expression, <exp2>, represents a limit to the value of <var>. If the
optional third expression -- <exp3> -- following the STEP statement is present,
its value increments <var> (or decrements it if <exp3> is negative) every time
around the FOR loop, otherwise a value of one (1) is used for the increment.
If the step (<exp2>) is positive, the loop terminates when

<var> > <exp2>
If the step (<exp2>) is negative, the loop terminates when

<var> < <exp2>

If the step (<exp2>) is zero, the effect of the FOR loop is equivalent to:

<var> = <expl>

'Preliminary Control Statements 8-4

WHILE <var> <= <exp2>

NEXT
The NEXT <var> statement selects the next iteration on the loop variable <var>.

The subordinate statements between the FOR statement and the NEXT statement are
executed as long as the loop does not terminate.

It is possible for a FOR NEXT loop to execute zero times (in other words, not
execute at all) if the value of the control variable is greater than the limit at
the start (or less than the limit for a negative increment).

If a NEXT statement is executed without a matching FOR statement having been

previously executed (possible due to a transfer into the body of the FOR loop),
the results are undefined.

Examples of FOR-NEXT Statements

100 FOR I =1 To 10
110 PRINT 2AI
120 NEXT I

The example above is a simple loop that prints powers of 2 between 1 and 10.

Note that the FOR-NEXT statement is not available in immediate mode.

8.6 FOR WHILE AND FOR UNTIL

The FOR WHILE and FOR UNTIL statements are similar to the basic FOR statement,
but instead of counting to some specified limit the loop continues iterating
WHILE some condition remains true or UNTIL some condition becomes true. The
forms of the statements are:

FOR <var> = <expl> {STEP <exp2>} WHILE <condition>
..... Statements subordinate to the FOR
NEXT <var> :

FOR <var> = <expl> {STEP <exp2>} UNTIL <condition>
..... Statements subordinate to the FOR
NEXT <var>

Preliminary . . Control Statements 8-5

Both of these forms of the FOR statement start off in the same way: a numeric
variable <var> is set to an initial value, which is the expression <expl>.

In the case of the FOR-WHILE form of the statement, the loop terminates when the
conditional expression given by <condition> becomes false.

In the case of the FOR-UNTIL form of the statement, the FOR loop terminates as
soon as the conditional expression <condition> becomes true.

Each time the NEXT statement is encountered, the variable <var> is incremented
either by 1, or the optional expression, <exp2>, specified in the STEP part of
the loop.

It is possible that the FOR WHILE and FOR UNTIL execute zero times (in other
words they do not execute at all) if the <condition> is initially false (in the
case of the WHILE) or true (in the case of the UNTIL). In such a case, the NEXT
statement is never executed and <var> retains its initial value.

Example of a FOR-WHILE Statement

100 FOR I = 1 WHILE A(I) >0
110 A(I) =A(I) +1
120 NEXT I

The example above increments each element of an array, while an array element is
greater than zero.

Example of a FOR UNTIL Statement

100 FOR J = 2 STEP 2 UNTIL J >= 100 OR A(J) <=0
110 A(J) =AQJ) + A(J-1)
120 NEXT J

This example demonstrates the use of the UNTIL part of a FOR loop.

Note that neither the FOR WHILE nor the FOR UNTIL statements is available in
immediate mode.

Preliminary Control Statements 8-6

8.7 GOTO

The GOTO statement provides for unconditional transfer of control to another
part of the program. The form of the GOTO statement is:

GOTO <line number>

The GOTO statement unconditionally transfers control to the statement specified
by <line number>.

Example of a GOTO Statement

450 GOTO 295

8.8 ON GOTO

The ON GOTO statement transfers control according to the value of a numeric
expression. It is similar to the computed-GOTO of FORTRAN. The form of the ON
GOTO statement is:

ON <exp> GOTO <list of line numbers>

The expression given by <exp> is used to select one line number out of the list
of line numbers specified.

Indexing of the list starts at one (1). So in the example below, if I is equal
to 1, statement 2000 is selected. :

The <exp> part of the ON GOTO statement is converted to integer for the purposes
of selection.

If <exp> is less than 0 or greater than the number of elements in the list of
line numbers, the ON GOTO statement generates a run-time error. This error can
be trapped via an ON ERROR GOTO statement.

|

Example of an ON GOTO Statement

1650 ON I GOTO 2000, 2100, 2200, 2400, 2700

'Preliminary ‘ Control Statements 8-7

8.9 STATEMENT MODIFIERS

The statement modifier facility of the language provides a convenient way to
execute a statement conditionally, where the condition is actually a part of the
statement.
All the statement modifiers have the same basic format:

<statement> <modifier>
The <modifier> serves as a qualifier for the <statement>.
Note that in a multiple-statement line, a statement modifier affects only the

statement that it immediately qualifies. Other statements on the same line are
not affected by that specific statement modifier.

8.9.1 IF STATEMENT MODIFIER

The IF statement modifier is a qualifier indicating that the modified statement
is executed only IF a specified condition is true. The form of the IF statement
modifier is:

<statement> IF <condition>

This means that the <statement> is executed only if the <condition> is true.

Examples of an IF Statement Modifier

130 PRINT "Time to go" IF T > 5
140 PRINT 10: PRINT 11 IF I =99: PRINT 12
The first example simply prints the message "Time to go", if T is greater than 5.

The second example either prints the values 10, 11 and 12 (if I is equal to 99),
or prints the values 10 and 12 (if I is not equal to 99).

Preliminary Control Statements 8-8

8.9.2 UNLESS STATEMENT-MODIFIER

The UNLESS statement modifier is similar to the IF statement modifier, but the
statement is executed only if the specified condition is false. The form of the
UNLESS statement-modifier is:

<statement> UNLESS <condition>

Example of an UNLESS Statement Modifier

495 GOTO 1300 UNLESS A = 10

8.9.3 FOR STATEMENT MODIFIER

The FOR statement modifier adds an iterative clause to a statement such that the
statement is executed a number of times determined by the FOR clause. The form
of the FOR statement modifier is:

<statement> FOR <var> = <expl> TO <exp2> {STEP <exp3>}

Example of a FOR Statement Modifier

1580 A(I) =0 FOR I =1 TO 100

Note that the FOR statement modifier is not available in immediate mode.

8.9.4 WHILE STATEMENT MODIFIER

The WHILE statement modifier places a conditional qualifier on a statement,
which indicates that the statement is executed repeatedly, WHILE a condition is
true. The form of the WHILE statement modifier is:

<statement> WHILE <condition>

Example of a WHILE Statement Modifier

1210 LET T(I) = T(I) + FNF(I) WHILE I < 100

Preliminary- : Control Statements 8-9

8.9.5 UNTIL STATEMENT MODIFIER

The UNTIL statement modifier is similar to the WHILE statement modifier, but the
indicated statement is executed UNTIL a specified condition becomes true. The
form of the UNTIL statement modifier is

<statement> UNTIL <condition>

Example of an UNTIL Statement Modifier

1210 LET T(I) = T(I) + FNF(I) UNTIL I >= 100

This example is equivalent to the éxample given for the WHILE statement modifier
above.

8.10 MULTIPLE STATEMENT MODIFIERS
It is ‘possible to qualify a given statement with more than one statement
modifier. For example:
250 A=A+ 1IFA>01IFA<100
This example is equivalent to either of the forms below:
250 IF A> 0 AND A< 100 THEN LET A=A+ 1

250 IF A> O THEN IF A<100 THENA=A+1

8.11 END

The END and STOP statements both terminate program execution.

The END statement is the last statement in a CS BASIC program. If an END
statement is encountered in the normal flow of program execution (for instance,
if the program "falls through" to the END statement), the program is terminated.

Preliminary Control Statements 8-10

8.12 STOP

The STOP statement terminates execution of a program when it is executed. When
a STOP statement is executed, a message is displayed to that effect. There can
be multiple STOP statements throughout a program, with the (possibly
conditional) flow of program execution determining when a STOP statement should
be executed.

After a STOP statement has been executed, program execution can be started again
with a CONT command, as described in Chapter 3.

8.13 CHAIN

The CHAIN statement finds application when a program is too big to load into
memory all at once. If a program is too large, it can be split into independent
programs. In any one of the programs, the CHAIN statement starts execution of
another program. The form of the CHAIN statement is:

CHAIN <string> {LINE <exp>}

When the CHAIN statement is executed, CS BASIC loads, compiles, and starts
executing the program specified by <string>.

If the expression <exp> is present, it specifies a line number at which the
chained-to program is to start executing. If the line number is omitted, the
chained-to program starts executing at the lowest numbered line, as if a RUN
command had been issued to the system. If the specified line number does not
exist in the CHAIN'ed-to program, a fatal run-time error is generated.

A CHAIN statement causes a complete replacement of the existing program with the
chained-to program. Once a program issues a CHAIN statement, it never regains
control, unless of course, another program CHAIN back to it.

The CHAIN statement close all open files in the current program before chaining
to the target program. It should be noted, however, that partially filled
buffers or modified virtual array elements may be lost. It is better to issue
explicit CLOSE requests on open files before any CHAIN statements are issued.
If several independent programs use the same files, they must explicitly OPEN
the files in each program.

Note that all variables are reinitialized in the environment of a CHAIN'ed-to
program. That is, numeric values are set to zero and string values are set to
the null string.

Preliminary . . Control Statements 8-11

Examples of CHAIN Statements

CHAIN 'PHASE.TWO' ! Call up the next pass
CHAIN 'PAYABLES' LINE 1600

The first example passes control to the program called 'PHASE.TWO'. Execution
of 'PHASE.TWO' starts at the lowest numbered line in that program, just as if a
RUN command had been issued.

The second example starts execution of a program called 'PAYABLES', but in this
case, execution starts at line 1600 in that program.

8.13.1 MERGE OPTION

If ",MERGE" is appended to a CHAIN statement, then the statements of the
original program are not removed (unless the chained-to program uses the same
line numbers) and all variables retain their values.

8.14 COMMON

The COMMON statement allows the user to pass variables and their values to
another BASIC program when used in conjunction with a CHAIN command. The form
of a COMMON statement is:

COMMON <var> {, <var>}...

where <var> is the name of either a simple variable or an array variable
followed by left and right parenthesis '()'. When a CHAIN statement is
executed, the variables that have been listed in a COMMON statement and their
current values are passed to the new program. The CHAIN command will have a new
optional field ',ALL' which will override the chain command and cause all
variables to be passed. Virtual arrays cannot be placed into a COMMON area and
are never passed to a new program when the 'ALL' option is specified.

The implementation of the COMMON area, particularly with the ALL option, will
require certain resources. If there is not enough memory available to build the
necessary data structures, the CHAIN command will abort with an error message.

Preliminary Control Statements 8-12

This is particularly applicable to the 'ALL' option, though if large amounts of

data are passed and memory is almost full, it can happen to any CHAIN that
involves COMMON.

Note that CHAIN with the MERGE option does a COMMON,ALL equivalent in all cases.

Preliminary ; Control Statements 8-13

Preliminary 'H Control Statements 8-14

9.0 INPUT AND OUTPUT STATEMENTS

This chapter covers those statements in CS BASIC that perform input and output
to and from files and devices in the system.

There are two major divisions of input-output in CS BASIC

- Data can be defined directly in the program itself, with the DATA statement.
Data defined via DATA statements can be read with the READ statement, and
"rewound" with the RESTORE statement.

- Data can be written to and read from external files. In this method, the
external files can be used in one of three different ways. Two of these
ways, plain ASCII data transfers and block input-output are described in
this chapter. The other way is '"virtual arrays", and is described in
Chapter 10 -- '"Matrix Operations".

9.1 READING DATA FROM WITHIN THE PROGRAM

The simplest form of data transfer capability in CS BASIC is supplied by the
DATA, READ and RESTORE statements.

The DATA statement actually defines data in the body of the program itself. The
READ statement reads items from the list of elements defined by the DATA
statements. The RESTORE statement ''rewinds" to the start of the list of data
items.

9.1.1 DATA -- DEFINE DATA IN PROGRAM

The DATA statement defines data elements as part of the text of a BASIC Program.
The data so defined can be read by a READ statement. The form of a DATA
statement is:

DATA <value> {, <value> ...}

Preliminary - : Input and Output Statements 9-1

v

where any <value> can be integer, floating point, or string data values. String
data items do not need to be enclosed in quotes, but if they are not, all spaces
in the string are removed.)

Note that while the objects defined in a DATA statement may have the appearance
of integers or floating point numbers, it is a subsequent READ statement that
actually determines whether the objects are interpreted as integers, floating
point numbers, or strings. For example, the string of characters:

12345

while having the appearance of an integer, is actually a correct string, and can
be read into a string variable, where it is stored as the literal characters
" 17"

123457,

DATA statements can appear anywhere in a program, although common programming
practice seems to lump them all together at the end of the program, where they do
not clutter up the flow of the control statements. If DATA statements appear
mixed in with executable statements in the program, they are skipped over.

Data defined in DATA statements is defined in the order of the statement numbers
associated with the statements.

String data items must be written with quote signs surrounding them if they
contain any of the following characters:

. a comma,
. significant spaces or tabs

Integer data values should not have a trailing % sign appended. A subsequent
READ statement applied to such a data item will generate a run-time error.

A DATA statement must be the last statement of a multiple-statement line.

It is not possible to place comments after a DATA statement. Consider the DATA
statement shown here:

5000 DATA 1, 2, 3 ! Define three numbers

In the above example, the DATA statement defines two numbers (1 and 2), but the
last integer and the apparent comment is taken as the character string
"31Definethreenumbers".

Examples of DATA Statements

9000 DATA 1, 1, 3, 5, 8, 13

Preliminary Input and Output Statements 9-2

9010 DATA 123.45, Mince, 666, "Chicken Soup"

The first example defines a list of numeric values (that are also correctly
formed character strings).

The second example defines a floating point value, a string data item that has
the value "Mince", the numeric value 666, and finally the string "Chicken Soup"
(enclosed in quotes to preserve significant spaces).

9.1.2 READ -- READ DATA FROM DATA LIST

The READ statement assigns values to variables. The values to be assigned are
obtained from a list defined by DATA statements. The form of the READ statement
is:

READ <variable> {, <variable> ...}

The 1list of <variables> consists of integer, floating point, or 'string
variables. The variables can be simple variables or subscripted variables.

Data values read via a READ statement must conform in type with the variables to
which they are assigned. That means that a numeric variable expects to read a
numeric value, while a string variable expects a string value.

A string variable can accept any "value" from a data list, which looks like a
correct string; a floating point variable will accept either a floating point
value or an integer value; an integer variable must read an integer constant.
For example, the string of characters:

12345

is either the literal character string '"12345", the floating point number
12345.0, or the integer value 12345. Similarly, the string 1048576 is either
the literal character string "1048576", or the floating point number 1.048576E6
(an attempt to read such a number as an integer would generate a run-time
error). Therefore, it is actually the variables in the READ statement that
determine the nature of the strings of characters in a DATA statement.

If a READ statement tries to read more data than defined in DATA statements, a
run-time error is generated. The error can be trapped by the ON ERROR GOTO
statement described in Chapter 12.

Preliminary - : Input and Output Statements 9-3

Example of READ Statements

200 READ F%(I%) FOR I% =1TO 6

1025 READ H, E$, K%, M$

: .
B
9.1.3 RESTORE -- REPOSITION TO START OF DATA

The RESTORE statement restores the reading position to the lowest numbered DATA
statement in the program. The form of the RESTORE statement is:

RESTORE

There are no arguments to the RESTORE statement. A RESTORE statement can appear
in any position in a multiple-statement line.

The next READ statement to be executed in the program after execution of the
RESTORE statement will start reading data from the first (lowest numbered) DATA
statement in the program.

9.2 FILE INPUT AND OUTPUT

This section covers data transfers to and from external files. The two major
divisions of data transfer described here are ASCII (formatted) input and output
that are done with the INPUT and PRINT statements, and block input and output
that are done with the GET, PUT, and FIELD statements.

CS BASIC performs data transfers to and from external storage devices via
internal file descriptors. A file descriptor is an integer expression in the
range 1% through 12%. That is, there may be a maximum of 12 files open at any
one time. In addition, file descriptor 0% is the user's terminal.

The OPEN statement (described below) associates a file descriptor with a
specific named file.

A file remains open until it is explicitly closed with a CLOSE statement, or

until the program terminates, at which time the interpreter closes all open
files.) :

At the time a file is first opened, the CS BASIC system does not know what that
file will actually be used for. It might be used for plain ASCII input-output

Preliminary Input and Output Statements 9-4

using INPUT and PRINT statements, for block input-output using GET and PUT
statements, or for virtual array storage.

The first time that a file is used for any one of these purpose, the system then
designates that file as being used for that specific purpose. If an attempt is

subsequently made to use the file for any other purpose, a data run-time error
is generated.

9.2.1 OPEN -- OPEN A FILE FOR DATA TRANSFER

The OPEN statement opens a data file for transfer between the computer's memory
and external storage. The form of the OPEN statement is:

OPEN <string> {FOR INPUT | FOR OUTPUT} AS FILE #<exp>
{, RECORDSIZE <exp>} {, CLUSTERSIZE <exp>}
{, FILESIZE <exp> {, MODE <exp>}

The basic function of the OPEN statement is to associate the file designated by
the <string> immediately following the OPEN statement with the file descriptor
designated by the <exp> following the AS FILE clause.

The optional FOR INPUT or FOR OUTPUT clauses do mnot actually restrict

input-output on that file to input only or output only. The rules are as
follows:

1. The FOR INPUT clause tries to open an existing file in the file system. If
the designated file is not found, a run-time error is generated. This
error can be trapped by the ON ERROR GOTO facility.

2. The FOR OUTPUT clause creates a new file if it did not exist prior to this
OPEN statement. If the file did exist previously, it is re-created, and
its previous contents are lost.

3. If neither the FOR INPUT nor FOR OUTPUT clause appear in the OPEN
statement, the system tries to open the file for input as described in item

1 above. If this fails because the file does not exist, the OPEN statement
executes as in item 2 above.

Designating a file as open FOR INPUT does not prevent the program from writing
on that file. Similarly, a file designated as open FOR OUTPUT can be read from.

Preliminary . . Input and Output Statements 9-5

Simple Example of the OPEN Statement

200 OPEN "NUMBERS" FOR INPUT AS FILE #2

The options that follow the basic OPEN statement are to give the user finer
control over the physical aspects of the file characteristics.

Options, if specified, must appear in the order shown. That is, RECORDSIZE,
CLUSTERSIZE, FILESIZE, and MODE. ;
The RECORDSIZE option provides the means to specify the physical size of the
buffer that the system uses for data transfer to and from the program.

The system normally uses records (blocks) of 512 bytes. The RECORDSIZE option
can change this default size. The buffer size can be made larger than 512 bytes,
but not smaller.

Example of the RECORDSIZE Option

200 OPEN "NUMBERS" FOR INPUT AS FILE #2, RECORDSIZE 1024

The CLUSTERSIZE, FILESIZE, and MODE options have no meaning in CS BASIC, but the

interpreter accepts those options for compatibility with other implementations
of BASIC.

9.2.2 CLOSE -- CLOSE A FILE

The CLOSE statement breaks the connection between a file and its internal file
descriptor. The format of the CLOSE statement is

CLOSE <exp> {, <exp> ...}

Each <exp> is an integer expression referring to the number of an internal file
descriptor of the file(s) to be closed. If there are any partially written
buffers associated with that file, they are flushed (written to the file) before
the file is closed.

If any <exp> is negative, the file designated by the absolute value of the
expression is closed immediately. If there are any partially written buffers
associated with that file, they are not flushed (written to the file) before the
file is closed. This means that a CLOSE with a negative file number might lose
some data.

Preliminary Input and Output Statements 9-6

Examples of the CLOSE Statement

8090 CLOSE 2, 3
8100 CLOSE 5, -8

The examples illustrate closing files 2, 3, 5 and 8. Since file number 8 was
specified as a negative number, any data remaining in buffers for that file is
lost.

9.3 SCREEN CONTROL

Two CS BASIC statements are provided to facilitate text output to the screen --
CLS and LOCATE.

9.3.1 CLS

CLS clears the display screen of all alphanumeric, graphic, and system
information. The format of the command is:

9.3.2 LOCATE

LOCATE moves the display-screen cursor to the specified position. Information
from the next PRINT statement will appear at this position. The format of the
command is:

LOCATE (row, column) -

The value of "row'" ranges from O (top of screen) to 24 (bottom of screen), and of
"column" from 0 (left of edge) to 79 (right edge).

Preliminary - Input and Output Statements 9-7

9.4 PRINTING DATA

The PRINT and PRINT USING statements convert and print data. PRINT simply
prints a list of variables on a specified destination, with default formatting
rules determined by the system. PRINT USING prints data under control of a
format string.

There are three floating point number representations that are out of the normal
range. These are plus infinity, minus infinity, and Not a Number (NaN). When
printed, plus infinity displays as a row of plus signs, minus infinity displays
as a row of minus signs, and NaN displays as a row of question marks (see
Appendix B).

9.4.1 PRINT -- PRINT ON FILE

The PRINT command is the simplest mechanism for displaying data at the terminal,
or for printing to a file. The format of the PRINT command is:

PRINT {#<exp>,} <exp> {, <exp> ...}

If the optional #<exp> field is present in the PRINT statement, it refers to a
file descriptor on which the list of values is to be printed. If the #<exp> is
omitted, the display is directed to the user's terminal.

Each <exp> in the list of expressions can be a numeric or a string expression.
Elements in the list of expressions are normally separated by commas, but they
can alternatively be separated by semicolons. The different effects of the
commas and semicolons are described in the discussion on print zones that
follows.

The system divides each line of the terminal into a number of print zones, each
print zone being 14 characters wide.
The behavior of the PRINT statement is as follows:

1. Each PRINT statement that does not have a comma or a semicolon at the end of
the statement, completes printing on a given output line.

2. Leading zeros are suppressed, as are trailing zeros to the right of a
decimal point.

Preliminary Input and Output Statements 9-8

3. At most six significant digits are displayed, unless more are requested via
the PRINT USING statement described later.

4. Numeric values in the range -999999 through 999999 are printed in decimal
format. Numbers outside of this range are printed in exponential format.

5. Numbers are always printed with a trailing space. Positive numbers have a
leading space; negative numbers have a leading minus sign.

6. String values are printed verbatim, with no leading or trailing spaces.

7. Extra commas between print elements have the effect of skipping (or
tabbing) print zones.

8. After a value is displayed, the system moves the print position to the

start of the next available print zone if the value was followed by a
comma.

9. A semicolon after an expression inhibits the movement of the print position
to the next print zone, causing the displayed values to appear on the line
in a packed fashion.

Example of PRINT Statement

760 LET Emp.Num% = 795

765 LET Emp.Name$ = 'Harry Bloggs'

770 LET Hour.Rate = 6.45

780 PRINT Emp.Num%, Emp.Name$, Hour.Rate
800 PRINT Emp.Num%; Emp.Name$; Hour.Rate
1000 END

Runnh

795 Harry Bloggs 6.45

795 Harry Bloggs 6.45

The two PRINT statements above illustrate the differences between printing data

in a comma-separated list, and using semicolons to achieve the packed form of
the display.

9.4.2 PRINT USING -- FORMATTED PRINTING

The PRINT USING statement provides for 'formatted output", something like
FORTRANS's formatted WRITE statement. The PRINT USING statement supplies a

Preliminary Input and Output Statements 9-9

"template' that controls the formatting of the list of variables that are to be
printed. The format of a PRINT USING statement is as follows: -

PRINT {#<exp>,} USING <string>, <exp> {,<exp> ...}

The optional #<exp> field, if specified, designates a file descriptor on which
the printing is to take place. If the #<exp> field is omitted, printing is to
the user's terminal.

The <string> field after the USING Keyword is a template that controls the
layout of elements from the list of expressions following. The characters that
can appear in the <string>, and their interpretations, are as follows:

! An exclamation mark in the format field denotes a single character field
to appear in the output. For example:

PRINT USING '!!!', "MNO', 'XYZ', 'PQR'
MXP
\\ Two backslashes denote a variable length string field of two or more
characters. Two contiguous backslashes designates a field of two

characters. If there are n spaces between the backslash characters, n+2
characters are printed. For example:

PRINT USING '\\ \ \', 'Alfred Bloggs', 'Maryann'
Al Mary

The number sign indicates positions at which decimal digits should appear
in the output. A decimal point may appear at any position within a string
of # signs (or the decimal point can be omitted altogether). When numbers
are printed under this format, they are rounded appropriately.

Numbers are right justified in the specified field. If a field is too
large to fit inthe space allotted, the system prints a % sign to indicate
there is a problem, and the number is then printed without further
reference to the format. If the number of characters is smaller than the
allotted space, the space is filled with leading spaces, unless the *¥*
format control described below is used. For example:

PRINT USING '###HHt', 45.1

45
PRINT USING '##t.##', 45.168
45.17
PRINT USING '##', 5486
% 5486

Preliminary ‘ Input and Output Statements 9-10

wleala
WA

$$

If the value is to be displayed in exponential format, the use of four
contiguous signs indicates the placement of the xponent.

PRINT USING '# .71 JHHHE ', 5745.98, 5745.98
57.46E 02 5745.98

Two asterisks at the start of a numeric field designation indicates that
unfilled positions in the output field should be filled with asterisks.
The two asterisks serve a # signs as well as indicating asterisk fill.

Exponential format cannot be used in a field with leading asterisk fill.
In this format, negative numbers must be output with a trailing minus
sign.

PRINT USING '*¥t.##', 13.94, 430.70, 3681.00
*%13.94
%430.70
3681.00

If a numeric format field is terminated by a minus sign, the sign of the
number is printed after the number instead of before it.

PRINT USING '#fHt.##- ##Ht.##', -99.37, -99.37
99.37- =99.37

If two $ signs are printed in front of a numeric field designation, a §
sign is printed in front of the number on the output. The two dollar
signs, in addition to adding a $ sign in the output, serve as a single #
sign in the format string.

Exponential format cannot be used with the leading dollar sign. Also, if
negative numbers ar to be printed, the minus sign must follow the format.

PRINT USING 'S#.##', 37.40, 159.48, 2227.56
$37.40

$159.48

% 2227.56

A comma appearing in a numeric field format after a # sign and to the left
of the decimal point indicates the normal conventions for placing commas
in numbers, that is, every three digits. In this case, the comma acts
like a # sign in every other way.

A comma appearing in a format to the right of a decimal point terminates
the format field, and is printed as a literal character in the output.

PRINT USING 'sHE#H i dHHE HHE HHE I M, &

Preliminary - - Input and Output Statements 9-11

987654.321, 987654.321, 987654.321
987654.321 987,654.321 987,654.3, -

Any character appearing in a PRINT USING string that is not listed above, are
passed through to the output directly. For example:

PRINT USING 'xyzsf<<<', 123

xyz123<<<
If a nuﬁeric field asks for more significant digits than there are available,
trailing 2zeros are substituted for places after the last significant place.
Floating point numbers can have up to 15 significant digits.

In the PRINT USING statement, a comma or a semicolon at the end of the line
inhibits the system from printing an end of line at that position. Another
PRINT or PRINT USING statement will then print the data on the same line.

If a PRINT USING statement reaches the end of a list of values, and there are no
more format fields available in the USING string, the CS BASIC interpreter
starts a new line on the output file, and starts using the USING string again
from the beginning.

9.4.3 |INPUT -- INPUT DATA FROM FILE

The INPUT statement reads data from an external storage device. The format of
the INPUT statement is:

INPUT {#<exp>,} {<string>;} <var>
{{, <string>;} <var>...}

The optional #<exp> is the file descriptor of the file to read the data from. If
the #f<exp> is omitted, or if the #<exp> refers to file #0 (the user's terminal),
the system prompts the user's terminal for the data.

The optional <string> parts interspersed in the list of variables represent
messages that can be displayed at the user's terminal before prompting for data
values. This prompting string is only displayed if the INPUT statement either
does not indicate a file, or if the INPUT statement names file #0 (the user's
terminal) as the source of input.

The way that the system interacts with the user's terminal is as follows:

. The system prompts with a ? sign if no <string> was used in the INPUT
statement,

Preliminary Input and Output Statements 9-12

¢ The system prompts with a prompt of <string>? if a <string> was typed as
part of the INPUT statement,

® A <string> in the INPUT statement that is terminated by a semicolon prints
as is, with no ? sign,

. A <string> in the INPUT statement that is terminated by a comma moves the
print position to the start of the next print zone,

e It is possible to prompt with several <string> values in a row.
The <var>'s in the INPUT statement definition above are a list of variables,
separated by commas, into which the data elements are to be read. The system

continues to prompt until sufficient values have been input.

String values can be typed either with or without quotes. Quotes are only
necessary if the user wishes to embed commas or spaces in the string.

Example of the INPUT Statement

150 INPUT #1, List%(I) FORI =1 TO 10

250 INPUT 'Enter Year, Month, Day: ': Year%, Month%, Day%

9.4.4 INPUT LINE -- INPUT A STRING FROM A FILE
The INPUT LINE statement reads a line from a specified device into a character
string variable. The form of the INPUT LINE statement is:

INPUT LINE {#<exp>,} <string variable>

A line is read from the file specified by #<exp>, or from the user's terminal if
#<exp> is omitted.

Characters in the line are read and stored in <string variable>, without any
