
T~~-~ Instruments 
- - - --- Inc --------·- . 

PRELIMINARY 

Computer System 
BASIC Reference Manual 

GC22-9184 



Preliminary Edition Only (December 1982) 

Changes are continually made to the information herein; any such changes will be 
reported in subsequent revisions. 

Requests for copies of IBM Instruments, Inc. publications should be made to 
your IBM Instruments, Inc. representative or via calling, toll-free, 
800-243-3122 (in Connecticut, call collect 265-5791). 

A form for reader's comments is provided at the back of this publication. If the 
form has been removed, comments may be addressed to IBM Instruments, Inc. , 
Department 79K, P.O. Box 332, Danbury, CT 06810. IBM Instruments, Inc. may use 
or distribute any of the information you supply in any way it believes 
appropriate without incurring any obligation whatever. 

@Copyright IBM Instruments, Inc. 1982 

01234567890 

Preliminary CS BASIC Reference Manual ii 



PREFACE 

This manual is a reference manual for CS BASIC. It is not intended as a user 
manual or a tutorial. Readers are assumed to have some grasp of programming 
concepts and terminology, and to have at least a minimal understanding of BASIC. 
There are many tutorial-style BASIC books available on the market that teach 
programming through the BASIC language. 

Chapter 1 -- "Introduction to CS BASIC -- briefly des~ribes some main features 
of the language, including its syntax and notation. 

Chapter 2 -- "CS BASIC Commands" -- covers the commands that can be typed to the 
CS BASIC interpreter itself: to run a program, save or retrieve programs, 
display a program's statements, or to change an existing program. 

Chapter 3 -- "Elements of CS BASIC" -- contains a description of the elements of 
the language, including the character set used, line numbers, statements, and 
identifiers. 

Chapter 4 -- "Data Representation" -- describes the formats of numeric constants 
and variables, string constants and variables, and array (~atrix). constants and 
variables. 

Chapter 5 -- "Expressions" -- contains a discussion of expressions, in which 
operators and operands are combined to generate numeric or string values. 

Chapter 6 -- "Standard Functions" -- covers the built-in functions available in 
CS BASIC. 

Chapter 7 -- "Assignment Statements" -- describes assignment statements and 
other simple statements. 

Chapter 8 -- "Control Statements" -- contains a description of the statements 
that direct the flow of execution of a CS BASIC·program. 

Chapter 9 -- "Input and Output Statements" -- describes the input and output 
capabilities of CS BASIC. 

Chapter 10 -- "Matrix Operations" -- describes the facilities for manipulating 
matrices. 

Prelimina~ CS BASIC Reference Manual iii 



Chapter 11 -- "External Linkages" -- describes how external routines are called 
from CS BASIC. 

Chapter 12 -- CS BASIC Program Structure -- discusses the general structure of a 
CS BASIC program, concentrating on the subroutine calls, functions, and error 
handling. 

The appendixes contain a list of error messages, a treatment of floating point 
numbers, a summary of the language, a list of reserved words, and a chart of the 
ASCII character set. 

Related Publications: 

Publications that discuss related aspects of the Computer System are: 

Computer System Product Description, GC22-9183 

Computer System BASIC Reference Manual, GC22-9184 

Computer System Operating System R~ference Manual 
Part 1: Operating System, GC22-9199 
Part 2: Logical I/O and System Services, GC22-9200 

Computer System Problem Isolation Manual, GC22-9192 

Preliminary CS BASIC Reference Manual iv 



CONTENTS 

1.0 Introduction to CS BASIC 
1.1 General ...... . 
1.2 CS BASIC Programs 
1.3 Notation and Terminology Used in this Manual 

2.0 CS BASIC Commands ..... . 
2.1 Using the CS BASIC Interpreter 

2.1.1 Immediate (Command) Operating Mode 
2.1.2 Restrictions on Immediate Mode 

2.2 Interrupts ..... . 
2.3 CS BASIC Commands -- Summary 
2.4 APPEND 
2.5 AUTO 
2.6 BYE 
2. 7 CONT 
2.8 DELETE 
2.9 EDIT 
2.10 KILL 
2 .11 LENGTH 
2 .12 LIST 
2 .13 LISTNH 
2.14 LLIST 
2.15 NEW 
2.16 OLD 
2.17 RENUM 
2 .18 REPLACE 
2.19 RUN 
2.20 RUNNH 
2.21 SAVE 
2.22 TROFF and TRON 

3.0 Elements of CS BASIC 
3.1 Character Set 

3.1.1 Collating Sequence and Graphics 
3.2 Use of Spaces and Tabs 
3. 3 Line Numbers . . . . 
3.4 Statements ..... 

3.4.1 Multiple Statements Per Line 
3.4.2 Statement Continuation 

3.5 Remarks and Comments 
3.6 Identifiers ...... . 

3.6.1 Reserved Identifiers 
3.7 Use of Upper Case and Lower Case Letters 

Preliminary 

1-1 
1-1 
1-3 
1-3 
2-1 
2-1 
2-1 
2-2 
2-2 
2-3 
2-5 
2-7 
2-8 
2-9 

2-10 
2-11 
2-12 
2-13 
2-14 
2-15 
2-16 
2-17 
2-18 
2-19 
2-21 
2-22 
2-23 
2-24 
2-25 
3-1 
3-1 
3-2 
3-3 
3-3 
3-3 
3-4 
3-5 
3-5 
3-6 
3-7 
3-7 

CS BASIC Reference Manual v 



4.0 Data Representation in CS BASIC 
4.1 Numeric Data Types 

4.1.1 Numeric Constants 
4.1.2 Numeric Variables 

4.2 String Data Types 
4. 2 .. 1 String Constants 
4.2.2 String Variables 
4.2.3 Numeric String Data 

4.3 Arrays, or Dimensioned Variables 
4. 3 .1 Virtual Arrays . . . . . 

4.4 Initial Values of Variables 
4.5 Dist.inctness of Variable Names 
4.6 Defining Variable Data Types 

5.0 CS BASIC Expressions 
5.1 Mixed Mode Arithmetic 
5.2 Arithmetic Operators 
5.3 Arithmetic Relational Operators 
5. 4 Logical Operators . . . . 
5. 5 String Operators . . . . 
5.6 Integers as Logical Variables 

6.0 CS BASIC Standard Functions 
6.1 Mathematical Functions 

6.1.1 ABS Compute Absolute Value 
6.1.2 SGN Find Sign of Number 
6. 1. 3 INT Round Down to Nearest Integer 
6.1.4 FIX Truncate to Integer 
6.1.5 COS Trigonometric Cosine 
6.1.6 SIN Trigonometric Sine 
6.1.7 TAN Trigonometric Tangent 
6.1.8 ATN Trigonometric Arc Tangent 
6.1.9 SQR Compute Square Root 
6.1.10 EXP -- Exponential Function 
6 .1.11 LOG -- Natural Logarithm 
6 .1.12 LOGlO -- Logarithm to Base 10 
6.1.13 PI -- Constant Value of pi 
6.1.14 RND -- Random Number Generator 
6.1.15 SWAP% -- Swap Bytes in an Integer 
6.1.16 CCPOS or POS -- Current Position of Print Head 
6.1.17 TAB -- Set Print Position .... 

6. 2 String Functions . . . . . . . . . . . . 
6.2.1 LEFT -- Take Left Substring of String 
6.2.2 RIGHT -- Take Right Substring of String 
6.2.3 MID -- Take Substring of String 
6.2.4 LEN -- Compute Length of String 
6.2.5 String Concatenation with the +Operator 
6.2.6 CHR$ -- Character Value of Integer 
6.2.7 ASCII -- Integer Equivalent of Character 

4-1 
4-1 
4-1 
4-3 
4-3 
4-3 
4-4 
4-4 
4-4 
4-6 
4-7 
4-7 
4-8 
5-1 
5-1 
5-1 
5-3 
5-4 
5-4 
5-5 
6-1 
6-1 
6-1 
6-2 
6-2 
6-2 
6-3 
6-3 
6-3 
6-4 
6-4 
6-4 
6-4 
6-5 
6-5 
6-5 
6-6 
6-6 
6-6 
6-7 
6-7 
6-7 
6-8 
6-9 
6-9 

6-10 
6-10 

Preliminary CS BASIC Reference Manaal vi 



6.2.8 INSTR -- Search for Substring in String . 6-11 
6.2.9 SPACE$ -- Generate String of Spaces 6-12 
6.2.10 NUM$ -- String Representation of Number 6-12 
6.2.11 NUM1$ -- String Representation of Number 6-13 
6.2.12 VAL -- Convert String to Number 6-13 
6.2.13 String$ -- Create Repeated Character String 6-14 
6.2.14 CVT Conversion Functions . . . . . 6-14 

6.2.14.1 CVT%$ Map Integer to String 6-15 
6.2.14.2 CVT$% Map Characters to Integer 6-15 
6.2.14.3 CVTF$ Map Floating Point to String 6-15 
6.2.14.4 CVT$F Map Characters to Floating Point 6-16 
6.2.14.5 CVT$$ String Editing 6-16 

6.2.15 XLATE -- Character Translation 6-17 
6.2.16 RAD$ -- Convert From Radix 50 6-18 

6.3 Numeric String Functions . . . . 6-18 
6.3.1 SUM$ -- Arithmetic Sum of Numeric Strings 6-19 
6.3.2 DIF$ -- Arithmetic Difference of Numeric Strings 6-20 
6.3.3 PROD$ -- Arithmetic Product of Numeric Strings 6-20 
6.3.4 QUO$ -- Arithmetic Quotient of Numeric Strings 6-21 
6.3.5 PLACE$ -- Round Numeric String 6-21 
6.3.6 COMP% -- Numeric String Comparison 6-22 

7.0 Assignmept Statements 7-1 
7.1 Let . . . . . . . . . 7-1 

7.1.1 Multiple Assignment 7-2 
7.1.2 String Assignment 7-2 

7.1.2.1 Special Notes on Assigning to String Virtual Arrays 7-3 
7.1.3 LSET and RSET -- Change Strings in Place 7-4 

7.2 CHANGE -- Character and Numeric Conversion 7-5 
8.0 Control Statements . . . . . . 8-1 

8.1 IF THEN and IF GOTO Statements 8-1 
8.2 IF THEN ELSE 8-2 
8.3 WHILE NEXT 8-3 
8.4 UNTIL NEXT 8-3 
8.5 FOR NEXT 8-4 
8.6 FOR WHILE and FOR UNTIL 8-5 
8.7 GOTO 8-7 
8.8 ON GOTO . . . . . 8-7 
8.9 Statement Modifiers 8-8 

8.9.1 IF Statement Modifier 8-8 
8.9.2 UNLESS Statement-Modifier 8-9 
8.9.3 FOR Statement Modifier 8-9 
8.9.4 WHILE Statement Modifier 8-9 
8. 9. 5 UNTIL Statement Modifier 8-10 

8.10 Multiple Statement Modifiers 8-10 
8.11 END 8-10 
8.12 STOP 8-11 
8.13 CHAIN 8-11 

Prelimina:c:y CS BASIC Reference Manual vii 



8.13.1 MERGE Option 
8 . 14 COMMON . . . . 

9.0 Input and Output Statements 
9.1 Reading Data From Within the Program 

9.1.1 DATA -- Define Data in ~rogram 
9.1.2 READ -- Read Data From DATA List 
9.1.3 RESTORE -- Reposition to Start of DATA 

9.2 File Input and Output ...... . 
9.2.1 OPEN -- Open a File for Data Transfer 
9.2.2 CLOSE -- Close a File 

9.3 Screen Control 
9.3.l CLS 
9.3.2 Locate 

9.4 Printing Data 
9.4.1 PRINT -- Print on File 
9.4.2 PRINT USING -- Formatted Printing 
9.4.3 INPUT -- Input Data from File 
9.4.4 INPUT LINE -- Input a String From a File 

9.5 Block Input and Output Statements 
9.5.1 GET and PUT -- Read or WRITE Data 

9.5.1.1 The COUNT Option in GET and PUT 
9.5.1.2 The USING Option in GET and PUT 

9.5.2 FIELD -- Set Buffer Structure 
9.5.3 Notes on the FIELD Statement 

9.6 Input and Output Status Data 
9. 6 .1 RECOUNT Variable - Number of Characters Read 
9.6.2 BUFSIZ Function - Determine Buffer Size 

9.7 Graphics Calls ......... . 
10.0 Matrix Operations ........ . 

10.1 How Array Variables Are Dimensioned 
10.2 Redimensioning a Matrix 
10.3 Initializing a Matrix ..... . 
10.4 Matrix Input and Output .... . 

10.4.1 MAT READ -- Read Matrix Elements from DATA 
10.4.2 MAT PRINT -- Print Matrix Elements 
10.4.3 MAT INPUT -- Read Matrix Elements from External Storage 
10.4.4 Status Variables for MAT INPUT 

10.5 Matrix Arithmetic Operations .... . 
10.5.1 Matrix Assignment ..... . 
10.5.2 Addition and Subtraction of Matrices 
10.5.3 Scalar Multiplication of Matrices 
10.5.4 Multiplication of Conforming Matrices 

10.6 Matrix Functions ..... . 
10.6.1 TRN Transpose a Matrix ... . 
10.6.2 INV -- Invert a Matrix ... . 
10.6.3 DET -- Find the Determinant of a Matrix 

10.7 Virtual Arrays ............. . 

8-12 
8-12 
9-1 
9-1 
9-1 
9-3 
9-4 
9-4 
9-5 
9-6 
9-7 
9-7 
9-7 
9-8 
9-8 
9-9 

9-12 
9-13 
9-14 
9-14 
9-15 
9-15 
9-16 
9-17 
9-17 
9-17 
9-17 
9-18 
10-1 
10-1 
10-2 
10-4 
10-5 
10-5 
10-6 
10-6 
10-7 
10-7 
10-8 
10-8 
10-8 
10-9 

10-10 
10-10 
10-11 
10-11 
10-12 

Preliminary CS BASIC Reference Manual viii 



10.7.1 Declaring a Virtual Array ..... . 
10.7.2 Opening and Closing Virtual Array Files 

11.0 External Linkages . . . . . . . ... . 
12.0 CS BASIC Program Structure .... . 

12.1 Correct Nesting of Subroutines and Functions 
12. 2 Subroutines . . . . . . . . . . 

12.2.1 The GOSUB Statement -- Calling a Subroutine 
12.2.2 The ON GOSUB Statement ..... . 
12.2.3 RETURN -- Returning From A Subroutine 

12. 3 Functions . . . . . . . . . . . . . . . 
12.3.1 DEF and DEF* Statements -- defining functions 
12.3.2 The FNEND Statement 
12.3.3 Referencing Functions 
12.3.4 Passing Arguments to Functions 
12.3.5 Scope of Function Arguments 

12.4 Error Handling ....... . 
12.4.1 The ON ERROR GOTO Statement 
12.4.2 The ERR and ERL Variables 
12.4.3 The RESUME Statement 

A.O Appendix A: CS BASIC Error Messages 
A.1 Recoverable-Error Messages 
A.2 Nonrecoverable-Error Messages 

B.O Appendix B: Implementation Notes 
B.1 Storage Allocation .... . 
B.2 Data Representations ... . 
B.3 Arithmetic Operations on Extreme Values 
B.4 How Strings are Stored ...... . 

C.O Appendix C: Language Summary .... . 
C.1 Notation Used for Syntactic Definitions 
C.2 Elements of the BASIC Language 
C.3 Expressions .... 
C.4 Assignment Statements 
C.5 Control Statements 
C.6 Input and Output Statements 
C.7 Matrix Manipulation 
C.8 Program Structure .... 

D.O Appendix D: Reserved Words in CS BASIC 
E.O Appendix E: ASCII Character Set 
INDEX •••.••.•••.•••• 

,• 

10-12 
10-12 

11-1 
12-1 
12-2 
12-3 
12-3 
12-4 
12-4 
12-4 
12-5 
12-6 
12-7 
12-7 
12-9 
12-9 

12-10 
12-10 
12-11 

A-1 
A-1 
A-5 
B-1 
B-1 
B-1 
B-4 
B-7 
C-1 
C-1 
C-1 
C-5 
C-7 
C-8 

(;-10 
C-11 
C-13 

D-1 
E-1 
I-1 

Preliminary · CS BASIC Reference Manual ix 



.. ¥ 

,; 

Preliminary CS BASIC Reference Manual x 



1.0 INTRODUCTION TO CS BASIC 

1.1 GENERAL 

CS BASIC is an implementation of the BASIC programming language for the Computer 
System. CS BASIC is an extended version of the BASIC language. 

BASIC stands for Beginners All-purpose Symbolic Instruction Code. BASIC was 
developed at Dartmouth College in the 19SO's and early 1960's. The design goals 
of BASIC were to provide an interactive and user-friendly environment in which 
people outside of computer science could program a computer easily and 
effectively. 

BASIC has evolved over the years, both in the application areas to which it has 
been applied, and in the sophistication and features of its language dialects. 
CS BASIC is among the more extensive dialects of the BASIC language, while 
retaining the user-friendly environment that characterizes most implementations 
of BASIC. 

CS BASIC runs in an interactive manner. Programs are entered and run from the 
terminal. There are facilities to store programs in the computer's disk system 
for later retrieval. 

The language supports real (floating point), integer, and string data types. A 
numeric string data type provides for arithmetic carried to very high precision. 
The language also contains facilities to define and manipulate matrices. 

The interpretive nature of the language allows an "immediate," or command, mode, 
which lends itself to a "desk calculator" style of use with almost the same 
power as the underlying BASIC language. In the immediate mode, it is possible 
to debug CS BASIC programs easily, by examining and changing the state of the 
program (after it has been suspended) and then restarting the program's 
execution. 

A CS BASIC program is (ultimately) composed of characters. Characters are 
grouped into lines and statements, the elements which serve to make up programs. 
A line is either a remark (comment), a declaration, or an executable statement. 

Program elements include constants and variables. A constant is a group of 
digits or other characters defining a value that does not change. Variables 
occupy storage and have values that can be changed during program execution. 
Variables and constants can have both a name and a data type. The name serves to 

Preliminary Introduction to CS BASIC 1-1 



identify that element in a program. The data type of an element defines, among 
other things, the amount of storage it occupies, its range and precision, and in 
some cases, the operations that can be performed on it. 

A variable can be a single element or it can be an aggregate. There are two 
forms of aggregate data elements, namely dimensioned (array) variables (also 
known as matrices) and string variables. An array variable is a collection of 
data occupying consecutive storage ilnits. Arrays can have one or two 
dimensions. A string variable represents string data and is a sequence of ASCII 
characters, which can be accessed individually or collectively by various string 
functions. It is possible to define arrays of strings. CS BASIC supports what 
are called "virtual arrays," whereby array data types can be stored on external 
disk storage, and retrieved on demand. 

A complete CS BASIC program can (but does not have to) contain subroutines and 
functions. Subroutines are activated via the GOSUB statement to perform 
out-of-line groups of statements. Functions compute and return a value in the 
context of an expression. · 

Variables have a lifetime that is dependent on· the way that they are defined. 
Formal parameters to functions have a lifetime that begins when the function is 
invoked and ends when the fun.ct ion returns to its caller. All other variables 
have a lifetime that lasts for the duration of the program. 

Expressions combine operands and operators to create new values. CS BASIC 
supports arithmetic, s,tring, and relational expressions. Mixed-mode 
expressions are permitted., with well-defined rules for conversions between the 
operands and for generating results. In addition, CS BASIC provides for 
treating integers as logical operands, to which logical operators can be 
applied. There are also built-in functions to treat character strings as 
numbers, providing a higher degree of precision than is possible with the 
regular integer or floating point data types. 

The assignment statement assigns the value of an expression to a variable. 
There are two variations of assignment, namely arithmetic and string. 

Control statements are those that control the flow of execution in a program. 
Various kinds of IF statements select other statements for execution, depending 
on the result of evaluating a logical or arithmetic expression. The FOR, WHILE, 
and UNTIL statements provide for repetition of a block of statements while a 
control variable is assigned a sequence of values. The GOSUB and RETURN 
statements provide for subroutine execution. Variations of the GOTO statement 
provide for transfer of control within a program unit. 

CS BASIC provides a powerful input and output capability. Files can be accessed 
sequentially or randomly. Format conversion is performed via INPUT, READ, 

Preliminary Introduction to CS BASIC 1-2 



PRINT, or PRINT USING statements. There is a rich set of format specifications 
to control the form and layout of converted data. 

Functions may have arguments that are passed to them for processing. When a 
function is declared, its formal arguments are declared. When the function is 
referenced, actual arguments are assigned to the formal arguments. Control is 
returned from a function by executing the function's associated FNEND statement. 
The value of the function is that of the last value "stored" in the function 
name. 

CS BASIC supplies a comprehensive set of intrinsic functions that perform 
data-type conversion and provide an extensive collection of arithmetic and 
transcendental functions. There is also a rich set of string manipulation 
functions built into the language. 

1.2 CS BASIC PROGRAMS 

The CS BASIC interpreter works on one BASIC program at a time. The program is 
developed in the computer's memory, which may be thought of as a kind of 
"workspace" in which the user can enter, run, and debug CS BASIC programs. 

Every CS 
explicit 
program. 
commands 

BASIC program has a name associated with it. In the absence of an 
name given by the user, the system assigns the name "NONAME" to a 
The name of the program is used in header messages that various 

(such as RUN) display when they operate. 

CS BASIC programs can be stored in and retrieved from files in the computer's 
file system. By convention, the filename for a program called (say) PAYROLL is 
given the name PAYROLL. BAS. The . BAS part of the filename is called an 
extension, and is an abbreviation for BA sic Source. 

The names given to programs and files are converted to all upper case by the CS 
BASIC interpreter before they are stored on the disk system. Thus, the names 
"program," "Program," and "PROGRAM" are identical when typed to CS BASIC. 

1.3 NOTATION AND TERMINOLOGY USED IN THIS MANUAL 

This section summarizes the conventions used in this manual to describe the 
syntax of CS BASIC. 

Words appearing in upper case, such as LET, are BASIC keywords. 

Preliminary Introduction to CS BASIC 1-3 



In general, special characters such as the equals sign (=) represent themselves 
when they appear in statement syntax. • 
The angle brackets ( < and >) enclose elements of the language. 

Elements that appear in the braces ({ and }) are optional. 

When an element is followed by an ellipsis ( ... ), that element can be repeated. 

The vertical bar character (I ) stands for "or". It separates choices in a list 
of elements. 

Example of Syntax Notation 

MAT PRINT {#<exp>,} <matrix>{(<subscripts>)} { , I ; } 

The example above illustrates the syntactic definition of the MAT PRINT 
statement, in which the phrase 

MAT PRINT 

is composed of CS BASIC keywords; 

#<exp>, 

is a file number, enclosed in braces because it is optional; 

<matrix> 

is the name of the matrix to be printed; and the optional term 

{(<subscripts>)} 

indicates that there can be optional dimension information following the name of 
the matrix. Lastly, there is a choice of an optional comma or semicolon 
following the statement. The braces indicate that the comma or semicolon are 
optional; the vertical bar indicates The choice of one or the other. 

Preliminary Introduction to CS BASIC 1-4 



LO CS BASIC COMMANDS 

rhis chapter describes the commands that CS BASIC handles. Commands are not 
>art of the language itself but are the means for directing the actions of the 
3ASIC language interpreter. 

L 1 USING THE CS BASIC INTERPRETER 

rhe user invokes CS BASIC by typing the command 

basic 

>n the keyboard or, more simply, by pressing function key FS. 

rhe CS BASIC interpreter will display a header message. It will then prompt the 
iser with the following message: 

Ready 

which means that the system is ready for input from the user's terminal. The 
;ystem is now said to be in the immediate mode. 

L 1.1 IMMEDIATE (COMMAND) OPERATING MODE 

[mmediate mode in CS BASIC refers to the execution of statements at the terminal 
immediately after they are typed, without the need to compile and run them 
first. Immediate mode thus provides a kind of "desk calculator" feature in the 
Language. Immediate mode is also useful for looking at the state of variables 
in a program after a STOP or a run-time error has occurred. 

~S BASIC recognizes immediate mode statements by the absence of a line number 
>efore the statement. Statements that do not start with a line number are 
~xecuted as soon as they are entered at the terminal. 

[mmediate mode is useful for debugging programs as well as for trying out the 
~ffects of statements before they are entered into a program, and for doing 
;imple calculations at the terminal. 

?rel iminary CS BASIC Commands 2-1 



In immediate mode, ther·e may be multiple statements per line_ Statement 
modifiers (but not the FOR statement modifier; see Section 8.9.3) can also be 
used as the next example shows: 

PRINT X, SIN(X) IF X = 10 

2.1.2 RESTRICTIONS ON IMMEDIATE MODE 

Certain statements are not allowed in immediate mode, and give rise to an error 
message. These statements are: 

DEF7~ and FNEND 
DIM 
DATA 
FOR and NEXT 

Function definition, 
Dimension declaration, 
Data definition, 
FOR.loops of any kind (including 
statement modifiers). 

Note that GOSUB statements and function references are allowed in immediate 
mode, so the user has access to both user-defined functions and to the built-in 
functions. 

2.2 INTERRUPTS 

Pressing the Ctrl and Break keys together while a BASIC program is running will 
normally return the CS BASIC interpreter to immediate mode. If the interpreter 
is awaiting the completion of input from the operating system, however, the 
interpreter will not be interrupted until the input has been received. If this 
state is entered and it is not possible to satisfy the input request, then the 
Ctrl-Alt-Del warm start keystroke sequence must be used. This action will 
return control to the operating system, and any unsaved work will be lost. 

Any output from CS BASIC may be paused by pressing the Ctrl and NumLock keys. 
Output may be resumed by pressing any other key. 

Preliminary CS BASIC Commands 2-2 



2.3 CS BASIC COMMANDS -- SUMMARY 

The set of commands listed below operate on CS BASIC programs in various ways, 
saving them, retrieving them, renaming them, and so forth. The subsections 
following this summary list discuss the individual commands in more detail. 

APPEND 

AUTO 

BYE 

CONT 

EDIT 

DELETE 

KILL 

LENGTH 

LIST 

Includes the source of another CS BASIC program in the current 
program. 

Automatically generates program line numbers. 

Returns control to the operating system. 

Continues the execution of a program after a STOP statement. 

Enables the user to modify program lines. 

Deletes one or more lines from a program. 

Deletes a file. 

Displays the length of the current program on the console screen. 

Displays the current program on the console screen. 

LISTNH Displays the current program on the console screen, but without a 
program heading. 

LLIST Prints out the current program on the printer. 

NEW Clears the program work area, sets the program name, and reads in an 
existing CS BASIC program from the computer's file system. 

OLD Clears the program work area, sets the program name, and reads in an 
existing CS BASIC program from the computer's file system. 

REPLACE Same as SAVE except that the command presupposes that the program 
named already exists in the computer's file system. 

RENUM Renumbers all lines in the current program. 

RUN Initiates execution of a program. 

RUNNH Initiates execution of a program but without displaying a program 
heading. 

Preliminary CS BASIC Commands 2-3 



SAVE Appends the .BAS suffix to the program name, then saves the program 
in the computer's file system. 

TROFF Exits trace mode. 

TRON Enters trace mode. 

Preliminary CS BASIC Commands 2-4 



2.4 APPEND 

The APPEND command includes the source of a previously saved program in the 
current program. The format of the command is: 

APPEND <filename> 

where <filename> is the name of the disk file that is to be included in the 
current program. The extension is . BAS. 

The APPEND command performs a line-by-line insertion (or substitution or both) 
of the existing program with the APPEND'ed program, just as if the user had 
typed each line of the APPEND' ed program from the terminal. One of the examples 
below clarifies this. 

Example of the APPEND Command 

To illustrate, assume that the Computer System has a file called MOREBAS.BAS, 
containing the following program: 

15 LET W = 7 
30 LET Z = 3 
40 PRINT X + Y + Z + W 

and that the existing program in memory looks like this: 

listnh 
. 10 LET X = 1 

20 LET Y = 2 
30 PRINT X + Y 
99 END 

then the APPEND command is used, and the result displayed with the LISTNH 
command: 

append more.bas 
Ready 
listnh 
10 LET X = 1 
15 LET W = 7 
20 LET Y = 2 
30 LET Z = 3 
40 PRINT X + Y + Z + W 
99 END 
Ready 

Preliminary 

0 

CS BASIC Commands 2-5 



As the example illustrates, new lines in the APPEND'ed file (those whose line 
numbers do not exist in the in-memory version of the program) are inserted in 
their correct sequential .,place and lines in the APPEND' ed file whose line 
numbers duplicate those in the in-memory version replace those lines in the 
in-memory version of the program. 

Preliminary CS BASIC Commands 2-6 



2.5 AUTO 

The AUTO command helps the user to input new statements by automatically 
generating line numbers. The format of the AUTO command is: 

AUTO {<line number> {,<increment>}} 

This command begins numbering lines at <line-number> with each subsequent line 
number incremented by <increment>. If the increment is not specified, it is 
assumed to be 10. If neither the line number nor the increment is specified, 
both are assumed to be 10. 

If the line number being generated already exists, the user will be warned with 
an asterisk that the old line is about to be replaced. If the user enters an 
empty line (i.e., a single carriage return) the old line will be retained and a 
new line number will be generated. 

The user returns to the READY mode by entering a carriage return to an 
unasterisked line number, or an escape-carriage return, <Esc><CR>, to any 
automatically generated line number prompt. 

Preliminary CS BASIC Commands 2-7 



2.6 BYE 

The BYE command exits from the CS BASIC interpreter and returns control to the 
operating system. Any files that are open are closed and saved. The format of 
the command is : 

BYE 

The system asks for confirmation with the prompt: 

Confirm: 

The user should then type one of the following: 

Y "Yes'' -- go ahead and log out. 

N "No" -- negates the BYE command. 

F "Fast logout" -- is equivalent to the Y response. 

It is also possible to include the option directly in the BYE command. For 
example: 

BYE/Y 

in which case the BYE command does not prompt for confirmation. 

Preliminary CS BASIC Commands 2-8 



2. 7 CONT 

The CONT command continues the execution of a program, after it has previously 
executed a STOP statement. The format of the command is: 

CONT 

Programs that have been halted by the CS BASIC interpreter because of some kind 
of error cannot be CONT' inued. Similarly, programs that have stopped because an 
END statement was executed also cannot be CONT'inued. 

Preliminary CS BASIC Commands 2-9 



2.8 DELETE 

The DELETE command removes lines from a program. The format of the command is: 

DELETE <list of line numbers> 

where <list of line numbers> can be any one ·of the following: 

a single line numbers such as 125 

a list of two or more line numbers separated by commas, such as 100, 2:30, 
455, 690 

a line number range, where the start and end of the range are separated by a 
minus sign, such as 100-200. In this case, the range is line 100 through 200 
inclusive 

a combination of line numbers and line number ranges, such as 10, 20, 
50-455, 600-700, 1010, 2050. 

Line numbers and ranges of line numbers can appear in any order. Incorrect line 
number ranges (such as 60-30) are ignored. 

Example of the DELETE Command 

DELETE 20-30,150-200,201,203,212,320-340 

Preliminary CS BASIC Commands 2-10 



2.9 EDIT 

The EDIT command allows a user to perform simple editing on a source line that 
has previously been entered. The form of the command is: 

EDIT <line-number> 

The EDIT command displays the contents of the current line with that number, 
positions the cursor at the first position of that line, and allows modification 
of that line with the cursor keys for positioning, and the insert and delete 
keys for changing the text. Pressing the carriage return key causes the 
modified line to be used as a replacement of the original line, and returns to 
command mode. 

Pressing the <Esc> key causes the edited line to be discarded and the original 
line to be retained. 

Note that when the Computer System is reset or started from a powered-down 
state, the NumLock state is on. The cursor control keys, therefore, are not 
active until NumLock is pressed once (each time NumLock is pressed, the keys 
toggle between numeric and cursor control mode). The state of the 
cursor-control keys is remembered across executions of the CS BASIC interpreter. 

Similarly, the insert key toggles the insert mode each time it is pressed. The 
initial state does not allow insertion. 

Preliminary CS BASIC Commands 2-11 



2.10 KILL 

The KILL command deletes a file. The format of the command is: 

KILL <filename> 

where <filename> is the name of the file to be removed. If the file is present 
it is deleted from the disk. If not, an error message is printed. 

KILL first attempts to delete a file with the name as given. If that file is not 
found, the extension ".BAS" is appended, and it attempts to delete that file. 
If neither file is present, an error message is printed. 

Preliminary CS BASIC Commands 2-12 



2.11 LENGTH 

The LENGTH command displays the length of the current program in lK increments, 
as well as the maximum amount of available memory. The format of the command is: 

LENGTH 

For example: 

LENGTH 
19 (124)K of memory used 

means that the program is between 18K and 19K, and the maximum memory available 
is 124K. 

Preliminary CS BASIC Commands 2-13 



2. 12 LIST 

The LIST command displays the current program on the console screen with a 
heading that contains the name of the program. The format of the command is: 

LIST {<list of line number>} 

LIST alone displays the whole program. Selected portions of the program can be 
displayed by specifying them in <list of line numbers>, which can be any one of 
the following: 

a single line number, such as 125 

a list of two or more line numbers, separated by commas, such as 100, 230, 
455, 690 

a line number range, where the start and end of the range are separated by a 
hyphen, such as 100-200. In this case, the range is line 100 through 200 
inclusive 

a combination of line numbers and line number ranges, such as 10, 20, 
50-455, 600-700, 1010, 2050 

Line numbers and ranges of line numbers can appear in any order. Incorrect line 
number ranges (such as 60-30) are ignored. 

Example of the LIST Command 

LIST 10-20,150-170,200,205,210,300-320 

Preliminary CS BASIC Commands 2-14 



2.13 LISTNH 

The LISTNH command is exactly the same as LIST except that it displays the 
current program without any heading to identify the program. The format of the 
command is: 

LISTNH {<list of line numbers>} 

See the LIST command for details. 

Preliminary CS BASIC Commands 2-15 



2.14 LLIST 

The LLIST command is the same as the LIST command except that it prints out the 
current program on the printer (fFPR). The format of the command is: 

LLIST {<list of line number>} 

See the LIST command for details. 

Preliminary CS BASIC Commands 2-16 



2.15 NEW 

The NEW command clears the program work area in memory, so that the user can 
start work on a completely new BASIC program. The format of the command is: 

NEW {<program name>} 

If the keyword alone is typed, the system clears the program work area and names 
the program "NONAME". 

If the user specifies a program name, the system clears the program work area 
and assigns the specified name to the program. 

Examples of the NEW Command 

new 

new pipefit 

The first example clears the program work area and sets the program name to 
"NONAME". The second example clears the program work area and sets the program 
name to "PIPEFIT". 

Preliminary CS BASIC Commands 2-17 



2.16 OLD 

The OLD command clears the program work area in memory, sets the program name, 
and recalls a previously saved program from disk. The format of the command is: 

OLD <program name> 

The CS BASIC system appends a suffix of . BAS to the program name, if the user has 
not already done so. 

Example of the OLD Command 

OLD PLOTTER 

The above example clears the program work area, sets the name of the current 
program to "PLOTTER", and loads the CS BASIC program from a file called 
PLOTTER.BAS. 

Preliminary CS BASIC Commands 2-18 



2.17 RENUM 

The RENUM command automatically renumbers the lines of the BASIC program that is 
currently in memory. The format of this command is : 

RENUM {<new> {,<start> {,<increment>}}} 

<new> 

<start> 

<increment> 

NOTES: 

specifies the first line number of 
the newly numbered group of lines. 
The default is 10. 

specifies the first of the "old" 
line numbers to be changed. The default 
is the first line of the program. 

is the increment of the renumbered 
lines. The default is 10. 

1. When no arguments are specified, all lines of the current program are 
renumbered, and the renumbering is determined by the default parameters 
(first line 10, increment 10). All line numbers in the program -
including those that occur in state;ents (e.g., a GOTO statement) -- are 
changed in conformity with the new numbering. 

2. If only <new> is specified, the first line of the program is changed to 
<new> and subsequent line numbers are incremented by 10. 

3. If <start> and <increment> are both specified, the "old" program line 
number, designated by <start>, is the first line number to be changed; 
subsequent line numbers are incremented by <increment>. 

4. If only ,<start> is specified, the default increment of 10 is used. (Note 
that in this case an initial comma is required if <new> is not specified.) 

5. If only , , <increment> is specified, numbering begins with the first 
statement of the program, and subsequent line numbers are incremented by 
the <increment> specified. (Note that in this case two initial commas are 
required if both <new> and <start> are not specified.) 

Preliminary CS BASIC Commands 2-19 



Example of the RENUM Command 

In this example, the command renumbers all line numbers from 10 to the end of the 
program, assigns line number 20 to line 10, and increments all subsequent line 
numbers by 2. 

10 PRINT 
20 PRINT 
30 PRINT 
40 NOFOLD 
SO PRINT 
60 PRINT TAB(75); "*"; 123456789 

READY 
RENUM 2.0, 10, 2 ,..,RETURN'fr 

will generate the following: 

20 PRINT 
22 PRINT 
24 PRINT 
26 NOFOLD1308 
28 PRINT 
30 PRINT TAB(75);"*";123456789 

Preliminary CS BASIC Commands 2-20 



2. 18 REPLACE 

The REPLACE command is like SAVE (see below) except that a copy of the program is 
assumed to exist on disk. The current version of the program in memory then 
replaces (overwrites) the disk version. The format of the command is: 

REPLACE <filename> 

where <filename> is the name of the disk file in which the current program is to 
be placed. (See the SAVE command for more details.) 

Preliminary CS BASIC Commands 2-21 



2.19 RUN 

The RUN command executes a program. The RUN command displays a header 
containing the name of the program. The format of the RUN command is: 

RUN {<program name>} 

The keyword alone, without a filename, runs the current program in memory. 

If a filename is specified, the system clears the program work area, sets the 
current program name to that of the filename (minus any .BAS extension), fetches 
that file from the computer's file system, compiles the program, and then runs 
the program. 

Preliminary CS BASIC Commands 2-22 



2.20 RUNNH 

The RUNNH command is exactly the same as RUN except that it does not display a 
program heading. The format of the command is: 

RUNNH {<program name>} 

(See RUN for more details.) 

Preliminary CS BASIC Commands 2-23 



2.21 SAVE 

The ·SAVE command saves the program in memory by storing it on disk. The format 
of the command is : 

SAVE {<filename>} 

where <filename> is the name of the disk file in which the current program is to 
be saved. The extension .BAS is appended to the name unless the user has already 
done so. If the file to be SAVE'd already exists in the file system, CS BASIC 
asks whether the old version should be deleted. A response of "y" or "y" deletes 
the old version of the file. Any other response cancels the SAVE command. 

If no <filename> is specified, CS BASIC uses the name of the current program 
with a suffix of .BAS as the name of the file in the computer file system. 

Examples of the SAVE and REPLACE Commands 

save VIEWPACK 

save PROGGY 
Delete old PROGGY.BAS? y 

replace VIEWPACK 

The middle example shows the dialog that results when the user attempts to SAVE 
an already existing file. 

Preliminary CS BASIC Commands 2-24 



2.22 TROFF AND TRON 

The TROFF and TRON commands turn off and turn on, respectively, the trace mode, 
which is a BASIC program debugging aid. The command formats are: 

TROFF 

TRON 

NOTES: 

1. Trace mode is a program debugging aid that displays, on the screen, the 
line numbers of a program while that program is executing. The line 
numbers displayed are enclosed in brackets, and print commands are 
actuated. 

2. TROFF and TRON can also be used as statements in a BASIC program. In 
program statements, a line number must precede the keyword. 

Example 

10 PRINT "THIS IS AN EXAMPLE OF TRACE MODE" 
20 A=5 
30 B=10 
40 C=A+B 
50 PRINT C 

READY 
*TRON* 

will result in the following display: 

[ lO]THIS IS AN EXAMPLE OF TRACE MODE 
[20] [30] [40] [50]15.0 

READY 

The trace mode can now be turned off and the program run again, producing two 
lines on the display, as follows: 

Preliminary CS BASIC Commands 2-25 



*'.fR.OFF* 

READY 
*RUN* 
THIS IS AN EXAMPLE OF TRACE MODE 
15.0 

READY 

Preliminary CS BASIC Commands 2-26 



3.0 ELEMENTS OF CS BASIC 

This chapter describes the lowest level elements of the BASIC language. Topics 
covered here include the character set used; the definition of line numbers and 
statements, with multiple-statement lines and continuation lines; and 
identifiers. 

3. 1 CHARACTER SET 

The CS BASIC character set consists of 26 upper case letters, 26 lower case 
letters, and 21 other characters. 

A <letter> is one of the 52 characters: 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 
abcdefghijklmnopqrstuvwxyz 

A <digit> is one of the ten characters: 

0 1 2 3 4 5 6 7 8 9 

An <alphanumeric character> is a <letter> or a <digit>. 

The other printing characters consist of the characters shown in the table 
below: 

Preliminary Elements of CS BASIC 3-1 



Char- Char-
act er Meaning act er Meaning 

I I Blank or space = Assignment or Equal I 
I + I Addition Subtraction I 
I * I Multiplication I Division I 
111. or **I Exponentiation Decimal Point I 
I \ : I Multiple Statements & Continuation I 
I ( I Left Parenthesis ) Right Parenthesis I 
I I Compressed Record Suppression I 
I $ I String Variable % Integer Variable I 
I I I String Delimiter II String Delimiter I 
I < I Less than sign > Greater than sign I 
I # I Number sign Comment Starter I 

3. 1. 1 COLLA TING SEQUENCE AND GRAPHICS 

CS BASIC uses the ASCII character set. The collating sequence in ASCII is: 

• Space (blank) collates lowest, followed by: 

• Digits "o" though "9", followed by: 

• Upper case letters "A" through "Z", followed by: 

• Lower case letters "a" through "z". 

The other printing characters appear in between digits and upper case letters 
and before and after lower case letters. There is an ASCII character set chart 
in Appendix E. 

Within each of the ordered sets, digits, upper case letters, and lower case 
letters, the characters in those sequences are contiguous -- there are no 
"holes" in them. 

Preliminary Elements of CS BASIC 3-2 



3.2 USE OF SPACES AND TABS 

Spaces and tabs can appear only between CS BASIC language elements, where they 
serve to delimit or separate those elements, and in character strings, where 
they stand for themselves. 

Where one space or tab can appear between language elements, any number of 
spaces or tabs are equivalent to one. 

3.3 LINE NUMBERS 

Each program line in a BASIC program must be preceded by a line number. Line 
numbers have the following functions in the language: 

1. Indicate that the statement(s) following the line number are part of the 
BASIC program, as opposed to a statement that is executed immediately 
(i.e., a command). 

2. Indicate the order in which program statements will normally be executed, 
in the absence of any changes of control flow. 

3. Provide a means whereby other statements can change the order of statement 
execution by branching (conditionally or unconditionally) to numbered 
statements. 

4. Supply the means to change numbered statements without affecting other 
statements in the same program. 

Line numbers are integers in the range 1 through 32767. Line number 0 is used 
for special purposes, for example in ON ERROR GOTO statements. 

NOTE: If a statement is not preceded by a line number, it is considered an 
11 immediate mode" statement and is executed immediately (see Section 2 .1.1). 

3.4 STATEMENTS 

A statement follows a line number (if it is part of a program), or is executed 
immediately if there was no preceding line number. In this manual, statements 
fall into four logical groups: 

Preliminary Elements of CS BASIC 3-3 



• Empty statements 

-.. Assignment and other arithmetic statements, including matrix manipulation 
statements 

•· Control statements 

• Input and output stat.~ments . 

Assignment and other arithmetic statements are covered in Chapter 7; Control 
statements are described in Chapter 8; input and output statements are discussed 
in Chapter 9 . 

An empty statement is indicated by a line number on its own. Execution of an 
empty statement has no effect but can be used as the target of a change of 
control flow. 

3.4.1 MULTIPLE STATEMENTS PER LINE 

There can be more than one statement per line in a BASIC program. To put 
multiple statements on a line, each statement except the last one on the line 
must be terminated either by a colon (:) or by a reverse slash character (\). 

Only the first statement on a multiple statement line may have a line number. 

Examples of Single and Multiple Statements 

Here is a single-statement line: 

240 LET A "7' 25 

and here is a line containing three statements: 

1125 IF A = 10. 5 GOSUB 1230 \ PRINT A \ LET A = 0 

The second and subsequent statements on a multiple-statement line should not be 
considered as separate lines. There are cases in which such statements will not 
get executed. For instance, if the example above were changed to read: 

1125 IF A = 10. 5 GOTO 1230 \ PRINT A. \ LET A = 0 

Preliminary Elements of CS BASIC 3-4 



the following PRINT and LET statements would never be executed. If A is equal to 
10.5, control passes to statement 1230 as indicated. But if A is not equal to 
10.5, control passes to the next line in the program, not to the PRINT statement 
on the same line. 

3.4.2 STATEMENT CONTINUATION 

A single statement can be continued over more than one line. Continuation of a 
statement is signaled by an ampersand character (&) at the end of the line, 
before the carriage return. 

Example of a Continued Statement 

100 LET TOTAL.FICTION= & 
CRAWLING.ON.THE.GRASS.GOTHICS+ & 
SLUSHY.LOVE.STORIES+ & 
SOUTHERN. TERMITE . JULEPS + & 
FEDERAL.BUDGET.RETURNS 

3.5 REMARKS AND COMMENTS 

CS BASIC provides for the insertion of commentary material in a program, for the 
purposes of identification and documentation. There are two ways to in&ert 
commentary in a program: 

• by using a REM statement 

• using a ! sign after a statement. 

The REM (for REMark) statement ignores everything that follows it on that line. 

Examples of REM Statements 

200 REM This program computes the whichness of the why. 
250 
300 REM This program simply asks the question. 

Preliminary·, Elements of CS BASIC 3-5 



The other means of introducing commentary is the I sign after a statement. For 
example, the following statements have comments affixed: 

980 LET AV = TOT. BOOK / BOOK. CATS compute average 

1020 VOLUME = 4 I 3 * PI * R 3 Spherical volume 

A single program line with multiple lines can have comments on each of the 
lines: 

670 GOLDEN.SECTION= (1 + SQR(S)) / 2 ! compute Golden Ratio & 
\ PRINT GOLDEN.SECTION ! and print it 

3.6 IDENTIFIERS 

Identifiers in CS BASIC are formed from the following elements: 

• Upper case letters A through Z 

• Lower case letter a through z, 

• Digits 0 through 9, 

• The period character 

The syntactical definition of an identifier is: 

<letter> {<letter> I <digit> I .... } 

An identifier must start with a letter. Including the initial letter, an 
identifier may contain up to a total of 30 characters, consisting of letters, 
digits, and the period. Upper-case letters and lower-case letters are 
considered the same in an identifier -- the BASIC processor "folds" all letters 
to a single case. Periods are used to break identifiers into words for 
readability. Spaces and line breaks are not allowed in identifiers. 

Examples of Correct Identifiers 

Clock.Rate 
accounts 

Preliminary 

Example.23 
x2000 

RECEIPTS 
ANSI. and. ISO 

Elements of CS BASIC 3-6 



Examples of Incorrect Identifiers 

2nd.April (should not begin with a digit) 

.that.moot (should not begin with a period) 

Beginners.All.Purpose.Symbolic.Instruction.Code (Too long) 

Identifiers are further qualified by using a trailing % sign to indicate an 
integer variable, or by a trailing $ sign to indicate a string variable. An 
unqualified identifier is automatically assumed to denote a floating point 
variable. 

Identifiers that are the names of functions are denoted by the letters FN in 
front of them. 

The same identifier can be used to represent a floating point variable, an 
integer variable, a string variable, a dimensioned variable of any type, and a 
function name, with no ambiguity. That is, the identifiers A, A$, and A%, are 
all distinct identifiers that can be used in the same CS BASIC program. 

3.6.1 RESERVED IDENTIFIERS 

CS BASIC uses many identifiers as reserved words in the language. User programs 
cannot use these reserved words for user identifiers. There is a list of 
reserved identifiers in Appendix D. Some of these reserved words are not CS 
BASIC commands, statements, or functions. 

3. 7 USE OF UPPER CASE AND LOWER CASE LETTERS 

Just as for identifiers, CS BASIC ignores the case of letters except within 
character strings. 

This means that all CS BASIC keywords can be either uppercase, lowercase, or a 
mixture of both. 

Similarly, the letter E used for exponents (discussed below) can also be typed 
either as the upper-case letter E or lower-case e. 

Similarly, the FN keyword preceding a function name can be written in 
lower-case, upper-case, or a mixture of cases. 

Preliminary Elements of CS BASIC 3-7 



The only place that upper case and lower case are significant is within 
character string constants. • 

Preliminary Elements of CS BASIC 3-8 



4.0 DATA REPRESENTATION IN CS BASIC 

4.1 NUMERIC DATA TYPES 

Numeric data in CS BASIC is represented internally in floating point format, 
unless the programmer explicitly states that the data is of integer type. 

There is also a means of representing numeric data by character strings. 

4. 1. 1 NUMERIC CONSTANTS 

Numeric constants are generally floating point values, unless they are suffixed 
with a % sign, in which case they are integer values. An <integer> constant is 
syntactically defined as: 

<digit> {<digit> ... } 

A numeric constant consists of the following elements: 

{ + { - } {<integer>}{.} {<integer>} 
{ E I e { + I - } <integer>} 

given the rules stated above, the following are examples of correct constants: 

+1 
0.0 

-10.5 
2.99793E8 

-3 
2. 

+128. 
-lE-10 

.14142 
-.7071 
1.SES 

The following are examples of incorrect constants: 

+. or-. 
ES 

a decimal point alone is incorrect, 
an operator with or without a period is also incorrect 
a variable name (not the value 10 5) . 

All the constants above are represented in floating point notation. Floating 
point numbers are 64-bit quantities. The range is approximately± lOE ± 308. 
The precision is approximately 15 decimal places. 

Preliminary Data Representation in CS BASIC 4-1 



The floating point number system used in CS BASIC reserves certain values to 
indicate that an erroneous operation has taken place. The value~ of positive 
infinity, negative infinity, and Not a Number (usually called NaN) are such 
values. When used in normal arithmetic operations, such values behave as one 
would expect. For instance, 

infinity + 1. 0 

is infinity, and 

NaN+ 1.0 

is NaN, and so on. When printed, the value of positive infinity appears as 
+.+++++, negative infinity appears as - . -----, and NaN as ? . ?????. These 
strange values are "created" by operations such as dividing a number by zero or 
taking the logarithm of a negative number. "fhe user cannot represent infinity 
or NaN as a numeric constant in a CS BASIC program. 

Integer constants are indicated by placing a percent sign after the number. 
Integers are represented by 16-bit numbers internally. The range of integers is 
therefore -32768 through +32767. However, the most negative integer constant 
allowed is -32767. 

A percent sign placed after a floating point constant containing either a period 
or an exponent, for instance 

7.6E6% 

causes a syntax error. Similarly, a percent sign placed after an integer 
constant that is too large to be represented as an integer value also causes a 
syntax error. For example, the numbers: 

99999% and -50000% 

generate syntax errors. 

If a constant contains a period or an exponent, it will be stored as a floating 
point data value by the CS BASIC interpreter. Similarly, a constant ending with 
a % sign will be stored as an integer data value by the CS BASIC interpreter. 

If neither a period nor an exponent is present in a numeric constant, and the 
value is small enough to be stored as an integer, the constant is considered an 
"ambiguous" constant, and is stored as a floating point value, unless a % sign 
appears in the expression to the left of the constant, in which case, the CS 
BASIC interpreter stores the constant as an integer value. 

Preliminary Data Representation in CS BASIC 4-2 



4.1.2 NUMERIC VARIABLES 

Numeric variables are designated by identifiers. A plain identifier represents 
the name of a floating point variable. If the name of the variable is followed 
by a percent sign, it means that the variable is to contain integer data. 

A variable with a % sign following it is completely distinct from a floating 
variable of the same name, from a string variable of the same name, and from a 
dimensioned variable of the same name. 

4.2 STRING DATA TYPES 

CS BASIC implements a string data type. A string is a sequence of characters 
that can be manipulated as a single entity. A character string has a maximum 
length of 32767 characters. 

Note that strings that are part of virtual arrays have additional restrictions 
on their length (see the discussion of virtual arrays later in this chapter). 

4.2.1 STRING CONSTANTS 

String constants in CS BASIC represent a sequence of ASCII characters. A string 
constant is delimited by either apostrophes (') or by double quote signs ( 11 ). 

If the user wishes to represent the string delimiter as a character in the 
string, two delimiters must be typed. 

Examples of String Constants 

"Haul on the bowline" 

'Splice the mainspring' 

'The time is Ten O' 'Clock' 

"Call for the Great O'Reilly" 

Preliminary Data Representation in CS BASIC 4-3 



4.2.2 STRING VARIABLES 

A string variable in CS BASIC is an identifier followed by a $ sign. 

Examples of String Variables 

wool.or.cotton$ A$ 

A variable with a $ sign following it is completely distinct from a floating, 
integer, or dimensioned variable of the same name. 

4.2.3 NUMERIC STRING DATA 

CS BASIC provides a means whereby character strings can be treated as numbers. 
This mechanism allows for exact, high-precision arithmetic without the need for 
scaling. 

A numeric string is simply a string variable or constant whose characters 
conform to the rules for numeric constants defined above. A numeric string has 
a maximum size of 56 characters, including the + or - sign and the decimal point. 

The language provid,es functions to operate on numeric string data, and these are 
described in Chapter 6. 

4.3 ARRAYS, OR DIMENSIONED VARIABLES 

CS BASIC provides for dimensioned variables. These are also known as arrays or 
matrices. Dimensioned variables can be introduced with the DIM (DIMension) 
statement. Floating, integer, and string variables can be dimensioned. 

The same name can be used for a simple variable and for a dimensioned variable 
with no ambiguity. 

There are powerful features in the language for manipulating entire arrays, 
these facilities are described in Chapter 10. 

Preliminary Data Representation in CS BASIC 4-4 



The format of the DIM statement is: 

<line number> DIM <identifier>(<subscripts>) 
{, <identifier>(<subscripts>) ... } 

where <subscripts> is: 

<upper bound> { , <upper bound>} 

and <upper bound> is a numeric constant that determines the upper bound of that 
dimension of the array. Dimensioned variables can have one or two dimensions. 

The DIM statement cannot be used in immediate mode. 

Examples of DIM Statements 

120 DIM hours (5) 

130 DIM time.and.motion%(10, 20) 

140 DIM days$(7),weeks%(52), seconds(366) 

150 DIM names$ (100, 100) 

This example shows that more than one dimensioned variable can be declared per 
DIM statement, and also that the rules for floating, integer, and string data 
types apply. 

The bounds of each dimension in the declaration must be a positive, nonzero 
integer. The bounds specify the upper bounds only; there is no facility for 
specifying the lower bound of a dimension. In all cases, the lower bound of a 
dimension is zero. In general, the zero'th element of a dimension is not used in 
array manipulations, but it is used in some cases, such as the CHANGE statement. 
Of course, the user can access element zero specifically, in the same manner as 
with any other array element. 

Chapter 10 contains a detailed discussion on the way in which matrices are 
dimensioned and redimensioned. 

Preliminary Data Representation in CS BASIC 4-5 



4.3.1 VIRTUAL ARRAYS 

• 
Virtual arrays are a method for associating a dimensioned variable with a file 
on some external storage device. There are two applications for virtual arrays: 

• manipulating arrays that are too big to fit in the available memory, 

• performing random access to data stored on external devices. 

Virtual arrays are. declared in a variant of the DIM statement. The format of a 
virtual array declaration is: 

DIM ti<integer constant>', <identifier>(<subscripts>) 
{, <identifier>(<subscripts>) ... } 

The <integer constant> is an integer in the range 1 through 12, which is the 
internal file designator of a disk file. File descriptors are treated more 
fully in Chapter 9. 

Strings are treated specially in virtual arrays. Whereas string variables can 
range in length from zero up to 32767 characters, virtual string arrays have 
specific limits placed on them. 

An element of a string virtual array has a maximum length of 512 characters. A 
string element need not have the maximum length declared. Also, maximum lengths 
shorter than 512 characters can be declared. The form of a string virtual array 
variable is: 

<identifier>$(<subscripts>){=<integer constant>} 

The =<integer constant> part of the declaration specifies the number of 
characters allocated for each element. The length specification is optional. 
The system defaults to 16 characters per element as the maximum length, if the 
length specification is omitted. 

The maximum length specification for a string virtual array element must be one 
of the following powers of two: 

2, 4, 8, 16, 32, 64, 128, 256, 512 

In the event that a maximum length specification other than those stated above 
is specified, the system rounds up to the next larger power of two. 

Preliminary Data Representation in CS BASIC 4-6 



Examples of Virtual Array Declarations 

200 DIM #4, ins . and. outs (50, 200) 

300 DIM #5, names$(500)=64, addresses$(500)=512 

The first example declares a 50-by-200 floating array. The second example 
declares two 500-element string arrays, with their maximum lengths specified. 

4.4 INITIAL VALUES OF VARIABLES 

When a CS BASIC program first uses a variable, the CS BASIC system gives that 
variable an initial value. The initial values assigned are: 

0.0 
0% 
II II 

for a floating variable, 
for an integer variable, 
(the null string) for a string variable. 

The CS BASIC system initializes arrays (except virtual arrays) by setting all of 
their elements to the values stated above. 

Variables that are formal arguments to functions have their initial values 
assigned to the value of the actual arguments when the function is referenced. 
See Chapter 12 -- "CS BASIC Program Structure" -- for a description of how 
arguments are assigned. 

Note that virtual arrays are not automatically initialized by the system. The 
programmer must explicitly write code to initialize a virtual array, or use the 
MAT ZER matrix initialization statement. 

RUN and RUNNH do not set all variables to their initial values. 

4.5 DISTINCTNESS OF VARIABLE NAMES 

The same variable name can be used for more than one type of object with no 
ambiguity. This is because the name can be distinguish~d from the context in 
which it is used. 

A variable with a % sign following it is completely distinct from a floating 
variable of the same name. 

Preliminary Data Representation in CS BASIC 4-7 



Similarly, a floating variable and an integer variable are distinct from a 
string variable of the same name. 

Finally, the same names can be used for dimensioned variables and undimensioned 
variables with no ambiguity. 

For instance, each of the references below may appear in the same CS BASIC 
program and refer to distinct variables: 

I 
I(2) 

I% 
I%(2) 

I$ 
I$(2) 

4.6 DEFINING VARIABLE DATA TYPES 

'Three keywords - - DEF INT, DEFDOUBLE, and DEFSTRING - - may be used to create 
BASIC statements as follows: 

DEFINT <letter range> { , <letter range> } 
DEFDOUBLE <letter range> { , <letter range> } 
DEFSTRING <letter range> { , <letter range> } 

where <letter range> is either a single alphabetic character or an alphabetic 
character followed by a minus sign followed by another alphabetic character, the 
second of which collates (using the ASCII character set) at least as high as the 
first. All alphabetic characters are treated as if entered in upper case. 
These statements are not "executable" but take effect when entered into CS 
BASIC, and their effect continues until overridden by a subsequent DEFINT, 
DEFREAL, or DEFSTRING statement is entered or BASIC is completely reinitialized 
(e.g., via NEW, OLD, or CHAIN). 

The effect of a DEFINT statement is to activate the indicated alphabetic 
character such that variables (including parameters, function names, and array 
names) subsequently entered into the BASIC system beginning with that character 
are transformed as follows: 

<var> is treated as <var>% 
<var>% is treated as <var>% 
<var>$ is treated as <var>$ 

Thus, for example, after the statement "DEFINT I-N" has been entered into the 
BASIC system, a definition or reference to FNIII is treated in exactly the same 
way as FNIII%. After the DEFINT statement it is no longer possible to enter 
floating variables (etc.) beginning with the indicated letters. 

Preliminary Data Representation in CS BASIC 4-8 



The effect of the DEFSTRING statement is similar to that of the DEFINT statement 
and induces the following transformations: 

<var> is treated as <var>$ 
<var>% is treated as <var>% 
<Var>$ is treated as <var>$ 

The effect of the DEFDOUBLE statement is to cancel any transformations on the 
given letters, leaving the default state: 

<var> is treated as <var> 
<var>% is treated as <var>% 
<var>$ is treated as <var>$ 

None of these statements has any effect on program portions already entered into 
the BASIC system. The transformations are carried out strictly as new BASIC 
program input is first scanned. 

Preliminary , Data Representation in CS BASIC 4-9 



Preliminary Data Representation in CS BASIC 4-10 



5.0 CS BASIC EXPRESSIONS 

Expressions in CS BASIC are mechanisms for computing new values. The values of 
operands (constants, variables and function values) are combined by operators to 
generate values. 

This chapter describes the operators available for the different types of data 
and gives the rules for combining those operators and operands. 

5. 1 MIXED MODE ARITHMETIC 

CS BASIC provides for arithmetic operators to operate upon a mixture of floating 
point and integer operands in the same expression. 

If both the left and right operands of an arithmetic operator are integers, the 
result of the operation is an integer. If both operands are floating point, the 
result is also floating point. If one operand is a floating point number and the 
other is an integer, the integer is first converted to a floating point value, 
the operation is performed using floating point values, and the result is a 
floating point value. 

To ensure that a constant is represented as a floating point constant, it should 
contain, or be terminated with, a decimal point. 

A number should be suffixed with a % sign to ensure that it is represented as an 
integer. 

Constants without a suffix at all are termed ambiguous constants, and their 
representation as floating point or integer depends on the statement in which 
they are used. If an integer variable or constant appears anywhere to the left 
of an ambiguous constant in a statement, that ambiguous constant represents an 
integer, otherwise it represents a floating point number. 

5.2 ARITHMETIC OPERATORS 

Arithmetic operators operate upon numeric (integer or floating point) operands 
and yield numeric results. The arithmetic operators are as shown in the table. 

Preliminary CS BASIC Expressions 5-1 



Operator Meaning Precedence 

A or ** Exponentiation Highest 

+ Unary Plus 
Next Highest 

Unary Minus 

* Multiplication 
Lower 

I Division 

+ Addition 
Lowest 

Subtraction 

The arithmetic operators have a precedence, ranging from exponentiation (the 
highest) to addition and subtraction (the lowest). The unary plus and minus 
bind tighter than the operators below them in the table. 

Parentheses may be used to change the precedence of operators in an expression. 
In the absence of parentheses, operators of equal precedence are applied left to 
right, including the exponentiation operator. 

The result from an attempt to raise a negative number to a fractional power is 
NaN (Not a Number) . 

The results of a division by zero depends upon the type of the operands. If the 
operands are floating point, the result of a division by zero is either positive 
or negative infinity. For example, the division: 

i.o I o.o 

generates positive infinity as a result, and the division: 

-1.o I o.o 

generates negative infinity as a result. 

The representations and results of extreme values such as plus and minus 
infinity and NaN are covered in Appendix B. 

Preliminary CS BASIC Expressions 5-2 



If the operands of a division are integers, division by zero, in an expression 
such as: 

A% /0% 

results in a run-time error, that can be trapped by the ON ERROR GOTO facility 
described in Chapter 12. 

The plus (+) and minus (-) signs can also be used as unary operators. The plus 
sign is simply ignored; the minus sign changes the sign of the expression that 
follows. 

5.3 ARITHMETIC RELATIONAL OPERATORS 

Arithmetic relational operators evaluate relationships between numeric 
operands. The precedence of arithmetic relational operators listed in the table 
below is the same as that of the arithmetic operators described in the previous 
section. 

Operator 

= 
< 
<= 
> 
>= 
<> 

Meaning 

Equal To 
Less Than 
Less Than or Equal To 
Greater Than 
Greater Than or Equal To 
Not Equal To 
Approximately Equal To 

The = sign stands for "approximately equal to" and is used when comparing 
floating point numbers. Internally, CS BASIC carries floating point numbers to 
a higher precision than is normally printed by PRINT st.atements. The use of the 
= operator is to comp;are .numbers that look equal when printed but are actually 
unequal in the intern~l representation the computer. CS BASIC prints numbers to 
a precision of approximately six decimal places but represents them internally 
to a precision of approximately 15 decimal places. 

Preliminary, CS BASIC Expressions 5-3 



5.4 LOGICAL OPERA TORS 

Logical operators are used to combine relational expressions into compound 
relational expressions. The logical operators have their usuai meanings. 

Operator Meaning Precedence 

NOT Logical Negation Highest 

AND Logical Conjunction Next Highest 

OR Logical Disjunction 
XOR Logical Exclusive OR Lower 

IMP Logical Implication 
EQV Logical Equivalence Lowest 

5.5 STRING OPERATORS 

String operators are those that operate upon string operands to produce string 
expressions. The basic string operator is concatenation, denoted by a plus sign 
(+). 

String relational operators are used for lexicographic comparisons between 
string values. The string relational operators are as shown in the table below. 

Operator Meaning 

= Equivalent 
< Less Than 
<= Less Than or Equal To 
> Greater Than 
>= Greater Than or Equal To 
<> Not Equal To 
- Identical 

Preliminary CS BASIC Expressions 5-4 



The equivalence operator (=) means that its operands are equivalent except for 
possible trailing spaces. 

The identity operator (=) means that its operands are identical, including 
trailing spaces. That is, they are both of the same length, and contain the same 
characters, in the same order. 

The ASCII character set is used as the collating order for string comparison. 

When strings of unequal length are compared, the shorter string (say of length 
~) is compared with the first ~ characters of the longer string. If the first ~ 
characters are equal, and the rest of the longer string is only spaces, the two 
strings are equivalent. If the first n characters are equal and the rest of the 
longer string is not spaces, the long-er string is considered greater than the 
shorter string. 

5.6 INTEGERS AS LOGICAL VARIABLES 

CS BASIC allows integers to be used as logical variables. Logical operators can 
be applied to integer operands to generate bitwise logical expressions. 

In addition, whenever a logical expression is expected, the values of the 
integers can represent the values TRUE and FALSE. An integer value of 0% 
represents the logical value FALSE. Any nonzero value represents the logical 
TRUE value. CS BASIC uses the integer value -1% (all ones) to represent the 
logical value TRUE when generated as a truth value in an expression. 

When the logical operations in the truth tables below are applied to integer 
values, the values are considered as bit strings, not as signed integers. 

In all cases, A and Bare integer values. 

r------------------, r------------------1 
I A B A AND B I I A B A OR B I 
I I I I 
I 0 0 0 I I 0 0 0 I 
I 0 1 0 I I 0 1 1 I 
I 1 0 0 I I 1 0 1 I 
I 1 1 1 I I 1 1 1 I 
L------------------J L------------------J 

Preliminary CS BASIC Expressions 5-5 



r------------------1 r· ---- - - -- - ---·- - - --, 
I A B A XOR B I I A B A EQV B I 
I I I I 
I o o o I I o o 1 I 
I o 1 1 I I ·o . 1 o I 
I 1 o 1 I I 1 o o I 
I 1 1 o I I 1 1 1 I 
L ••• - - ··- •·••·• - - --·- •• J L-- ··- ---·- ··-····· - -·- __ J 

r------------------, r------------------1 
I A B A IMP B I I A NOT A I 
I I I I 
I o o 1 I I o 1 I 
I o 1 1 I I 1 o I 
I 1 o o I L------------------J 
I 1. 1 1 I 
L------------------J 

Preliminary CS BASIC Expressions 5-6 



6.0 CS BASIC STANDARD FUNCTIONS 

This chapter describes the three major types of functions built into the CS 
BASIC interpreter: 

1. mathematical and arithmetic functions, which operate on numeric arguments 
and return numeric results; 

2. string functions, which operate on character strings and return string 
results; 

3. functions that treat character strings as numeric data. These functions 
also operate on strings and return string results, but they are considered 
a distinct type since they perform arithmetic operations on character 
strings. 

Two other kinds of functions are discussed elsewhere in this manual: 

4. User-defined functions are discussed in Section 12. 3 of the chapter on 
program structure. 

5. Functions that operate on matrixes are described in Section 10.6 of the 
chapter on matrix operations. 

6.1 MATHEMATICAL FUNCTIONS 

6. 1.1 ABS -- COMPUTE ABSOLUTE VALUE 

The ABS function returns the absolute value of its argument. The format of the 
ABS function is 

ABS(X) 

where X is a numeric value. 

Preliminary CS BASIC Standard Functions 671 



6. 1.2 SGN ·- FIND SIGN OF NUMBER 

The SGN function determines the sign of its numeric argument. The format of the 
SGN function is: 

SGN(X) 

where X is a numeric argument. SGN returns: 

·1 for a negative argument 
0 for a zero argument 

+1 for a positive argument 

6.1.3 INT -- ROUND DOWN TO NEAREST INTEGER 

The INT function returns the largest integer that is less than or equal to its 
argument. The format of the INT function is: 

INT(X) 

where X is a numeric argument. The value of 

INT(l. 5) 

is 1. The value of 

INT(-0.5) 

is -1. 

6.1.4 FIX -- TRUNCATE TO INTEGER 

The FIX function truncates its argument to the nearest integer. The form of the 
FIX function is: 

FIX(X) 

Preliminary CS BASIC Standard Functions 6-2 



where X is a numeric argument. The value of 

FIX(0.5) 

is 0. 

6.1.5 COS -- TRIGONOMETRIC COSINE 

The COS function returns the cosine of its argument. The format of the COS 
function is: 

COS(X) 

where X is a numeric argument. The argument to COS is in radians. 

6.1.6 SIN -- TRIGONOMETRIC SINE 

The SIN function returns the sine of its argument. The format of the SIN 
function is: 

SIN(X) 

where X is a numeric argument. The argument to SIN is in radians. 

6.1. 7 TAN -- TRIGONOMETRIC TANGENT 

The TAN function returns the tangent of its argument. The format of the TAN 
function is: 

TAN(X) 

where X is a numeric argument. The argument to TAN is in radians. 

Preliminary CS BASIC Standard Functions 6-3 



6.1.8 ATN -- TRIGONOMETRIC ARC .TANGENT 

• The ATN function returns the arctangent of its argument. The format of the ATN 
function is: 

ATN(X) 

where X is a numeric argument. The value of the ATN function is in radians. 

6.1.9 SQR -- COMPUTE SQUARE ROOT 

The SQR function returns the square root of its argument. The format of the SQR 
function is: 

SQR(X) 

where Xis a numeric argument. 

If the argument to SQR is negative, the value of the function is NaN (Not a 
Number) . See Appendix B. 

6.1. 10 EXP -- EXPONENTIAL FUNCTION 

The EXP function returns the exponential of its argument, e , where e is 
2. 71828 ... The format of the EXP function is: 

EXP(X) 

where X is a numeric argument. 

6.1.11 LOG -- NATURAL LOGARITHM 

The LOG function returns the natural logarithm (log x) of its argument. The 
format of the LOG function is: 

LOG(X) 

Preliminary CS BASIC Standard Functions 6-4 



where X is a numeric argument. 

If the argument X is a negative number, the value of the LOG function is Not a 
Number (NaN) . 

6.1.12 LOGlO -- LOGARITHM TO BASE 10 

The LOGlO function returns the logarithm to the base 10 (log x) of its argument. 
The format of the LOGlO function is: 

LOGlO(X) 

where Xis a numeric argument. 

If the argument X is a negative number, the value of the LOGlO function is Not a 
Number (NaN) . 

6.1.13 Pl -- CONSTANT VALUE OF Pl 

The PI function returns a constant value of pi, the ratio of a circle's 
circumference to its diameter. The value is approximately 3 .14159. 

6.1.14 RND -- RANDOM NUMBER GENERATOR 

The RND function returns uniformly distributed pseudo-random numbers in the 
range 0. 0 to 1. 0. The format of the RND function is 

RND(X) 

The argument X is ignored and can be omitted. 

The RND function generates the same sequence of numbers each time the pro~ram is 
run. 

Preliminary CS BASIC Standard Functions 6-5 



6. 1. 15 SWAP% -- SWAP BYTES IN AN INTEGER 

The SWAP% function swaps the bytes in an integer value. The format of the SWAP% 
function is: 

SWAP% 

where N% is an integer expression. 

6. 1. 16 CCPOS OR POS -- CURRENT POSITION OF PRINT HEAD 

The CCPOS or POS function returns the current position of the "print head" for a 
specific input-output channel. The format of the function 

CCPOS(N%) 

or 

POS(N%) 

where N% is an integer expression. 

6.1.17 TAB -- SET PRINT POSITION 

The TAB function can be used only in a PRINT statement. The TAB function moves 
the printing position in the current print record to a specified position. The 
format of the TAB function is: 

TAB(N%) 

where N% is an integer expression. The TAB function returns a string of spaces 
to move the print position to column N on the output line. 

If a PRINT statement that refers to file #0 (the user's terminal) contains a 
TAB(N"~) function, the TAB(N%) function returns the number of spaces necessary to 
move the print position to column N. 

Preliminary CS BASIC Standard Functions 6-6 



6.2 STRING FUNCTIONS 

This section describes the functions available in BASIC for manipulating 
character strings. 

6.2.1 LEFT -- TAKE LEFT SUBSTRING OF STRING 

The LEFT function extracts a substring from a string, starting at the first 
character in the string, and extending for the specified number of characters. 
The format of the LEFT function is: 

LEFT(A$, N) 

where A$ is a string variable, and N is the number of characters to extract from 
it. 

If the number of characters to extract is less than 1, the result of the LEFT$ 
function is a null string. If the number of characters to extract is greater 
than the length of the string variable A$, the result of the LEFT function is all 
of A$. 

Example of the LEFT Function 

LET Sport$ = "Hunting The Snark" 
PRINT LEFT(Sport$, 7%) 

Hunting 

6.2.2 RIGHT -- TAKE RIGHT SUBSTRING OF STRING 

The RIGHT function extracts a substring from a string· starting at a specified 
character in the string, and extending to the last character in the string. The 
format of the RIGHT function is: 

RIGHT (A$, N) 

where A$ is a string variable and N is the character position in the string at 
which the extraction starts. 

Preliminary CS BASIC Standard Functions 6-7 



If the starting position N is less than l, the result of the RIGHT function is 
all of the string -A.4. If the starting position is greater than the length of the 
string variable A4, the .result of the RIGHT function is a null string. 

Example of the RIGHT Function 

LET Sport$ = "Hunting The Snark" 
PRINT RIGHT{Sport$, 9) 

The Snark 

6.2.3 MID -- TAKE SUBSTRING OF STRING 

The MID function extracts a substring from a string, starting at a specified 
character in the string and extending for the specified number of characters. 
The format of the MID function is: 

MID(A$, S, L) 

where A$ is a string variable, S is the position in the string at which 
extraction starts, and Lis the number of characters to be extracted. 

If the starting position S is less than 1 or greater than the length of the 
string variable A$, the result of the MID function is a null string. 

If L, the number of characters to extract, is less than 1, the result of the MID 
function is a null string. If the number of characters to extract is greater 
than the length of the string variable A$, the result of the MID function 
extends from the starting position to the end of A$. 

If the sum of the starting position S, plus the number of characters to extract, 
L, is greater than the number of characters remaining in the string variable A$, 
the result of the MID function extends to the end of A$. 

Example of the MID Function 

LET Sport$ = "Hunting The Snark" 
PRINT MID(Sport$, 9, 3) 

The 

Preliminary CS BASIC Standard Functions 6-8 



6.2.4 LEN -- COMPUTE LENGTH OF STRING 

The LEN function returns the length of a string, including trailing spaces in 
the string. The format of the LEN function is: 

LEN(A$) 

where A$ is a string variable. 

Example of the LEN Function 

100 LET S$ = 11ABCDEFGHIJKLM11 

110 L% = LEN(S) 
120 PRINT L% 
130 END 
runnh 
13 
Ready 

6.2.5 STRING CONCATENATION WITH THE + OPERATOR 

The plus sign (+), when applied to string data elements, signifies a 
concatenation of its operands. 

Example of the String Concatenation Function 

100 LET Left.Hand$ = "ABC" 
110 LET Right. Hand$ = 11XYZ 11 

120 LET Whole$= Left.Hand$+ Right.Hand$ 
130 PRINT Left.Hand$, Right.Hand$, Whole$, LEN(Whole$) 
140 END 
runnh 
ABC XYZ ABCXYZ 6 
Ready 

Preliminary CS BASIC Standard Functions 6-9 



6.2.6 CHR$ CHARACTER VALUE OF INTEGER 

The CHR$ function generates a one-character string whose value is the ASCII 
character corresponding to its numeric argument. The format of the CHR$ 
function is: 

CHR$(N) 

where N is a number in the range 0 to 127. 

For instance, the function call has as its value the space character, 

CHR$(32) 

and 

CHR$(65) 

has the value of the letter "A". 

If the numeric argum_ent to CHR$ is negative or greater than 127, the lower. eight 
bits are used. 

Example of the CHR$ Function 

PRINT CHR$(66) 

B 

6.2. 7 ASCII -- INTEGER EQUIVALENT OF CHARACTER 

The function 

ASCII(A$) 

generates an integer that is the numeric value of the first character of the 
string A$. 

For example, 

ASCII ("F") 

Preliminary CS BASIC Standard Functions 6-10 



is the value 70. If the string variable V$ contains the string "Wizard," then 
the function 

ASCII(V$) 

has the value of the first character, namely the value 87. 

6.2.8 INSTR -- SEARCH FOR SUBSTRING IN STRING 

The INSTR function performs a search for a specified substring within a string. 
The format of the INSTR function is 

INSTR(P, A$, B$) 

where A$ is a string, B$ is the substring to be searched for in A$, and Pis the 
position in the string A$ at which the search is to start. 

IF string B$ is not found in string A$, INSTR returns a value of 0. 

If string B$ is found in string A$, INSTR returns the position in string A$ at 
which B$ was found. Character positions are numbered from 1, starting at the 
leftmost character of the string. 

If the starting search position S is less than 1, or greater than LEN(A$), the 
INSTR function returns the value zero. 

If the length of substring B$ is greater than the length of string A$, the INSTR 
function returns the value zero. 

Example of the INSTR Function 

LET Sport$ = "Hunting The Snark" 
PRINT INSTR ( 1 , Sport$ , "The S") 
9 
PRINT INSTR(l, Sport$, "the S") 
0 

/ 

Preliminary , CS BASIC Standard Functions 6-11 



6.2.9 SPACE$ GENERATE STRING OF SPACES 

The SPACE$ function generates a string of spaces. It is useful for filling a 
string variable to all spaces or for inserting a number of spaces into a string. 
The format of the SPACE$ function is: 

SPACE$(N%) 

where N% is an integer value specifying the number of spaces to generate. 

Example of the SPACE$ Function 

B$ = SPACE$(16%) 

This example assigns a string of 16 spaces to the variable B$. 

6.2.10 NUM$ -- STRING REPRESENTATION OF NUMBER 

The NUM$ function returns a string of characters that represents the value of a 
numeric argument in the way that a PRINT statement would print it. The format of 
the NUM$ function is: 

NUM$(N) 

where N is a numeric data value. 

If the numeric argument is positive, NUM$ generates the string representation of 
the number, with a space character on either side of the string. If the numeric 
argument is negative, NUM$ generates the string representation of the number, 
preceded by a minus sign, and followed by a space. 

If the numeric argument is outside the range -999999 through 999999, the string 
representation is generated in floating point format. 

Example of the NUM$ Function 

A$ = NUM$(567) 
B$ = NUM$(-234) 
PRINT A$; B$ 
567 -234 
Ready 

Prelimi;nary CS BASIC Standard Functions 6-12 



6.2.11 NUM1$ -- STRING REPRESENTATION OF NUMBER 

The NUM1$ function returns a string of characters that is the string 
representation of its numeric argument. The format of the NUM1$ function is: 

NUM1$(N) 

where N is a numeric data value. The generated string does not contain any 
spaces, nor is it converted to floating point format. 

The NUM1$ function is useful for converting numbers to string-numeric data 
types. 

Example of the NUM1$ Function 

A$ = NUM1$(2 24) 
PRINT A$ 
16777216 
Ready 

6.2.12 VAL -- CONVERT STRING TO NUMBER 

The VAL function converts its string argument to a floating point number. The 
format of the VAL function is: 

VAL(A$) 

where A$ is a string data value containing the representation of a number. The 
string A$ can contain a plus sign, minus sign, or decimal point. 

If the string A$ contains characters that are not digits, + or - or 
characters, the VAL function generates a run-time error, that can be trapped by 
the ON ERROR GOTO facility if required. 

Example of the VAL Function 

A$= '-12869.345' 
F = VAL(A$) 
PRINT F 
-12869.3 

Preliminary CS BASIC Standard Functions 6-13 



6.2.13 STRING$ -- CREATE REPEATED CHARACTER STRING 

The STRING$ function generates a string consisting of a specified number of 
characters. The format of the STRING$ function is: 

STRING$ (N, V) 

where N is the number of characters to generate and V is the value of the 
character. 

If V is outside the range of 0 to 255, the lower eight bits of the value are 
used. 

Example of the STRING$ Function 

A$= STRING$(10, 35) + STRING$(15, 61) + STRING$(10, 37) 
PRINT A$ 
##########aaaaaaaaaaaaaaa%%%%%%%%%% 
Ready 

6.2.14 CVT CONVERSION FUNCTIONS 

There are five variations of the CVT function, which maps between string and 
integer forms. These functions map directly between numerical and string data, 
and are used primarily to store floating point and integer data in block 
input-output files. 

The variations are described below, and are summarized here: 

8$ = CVT%$ (!%) Maps the integer expression I% into a two-character string 8$. 

!% = CVT$%(S$) Maps the first two characters of the string S$ into an integer 
!%. 

S$ = CVTF$(X) Maps the floating point expression X into an eight-character 
string 8$. 

X = CVT$F(S$) Maps the first eight characters of the string S$ into the 
floating point value X. 

T$ = CVT$$(S$,M%) Performs editing on the string argument S$. 

Preliminary CS BASIC Standard Functions 6-14 



6.2.14. 1 CVTU -- Map Integer to String 

The CVT%$ Maps its integer argument into a two-character string. The form of 
the CVT%$ function is: 

CVT%$(I%) 

where I% is an integer expression. The result of the CVT%$ function is a 
two-character string. 

Example of the CVT%$ Function 

PRINT CVT%$(16730) 

AZ 

6.2.14.2 CVT$% -- Map Characters to Integer 

The CVT$% function maps the first two characters of its string argument into an 
integer value. The format of the CVT$% function is: 

CVT$%(S$) 

where S$ is a character string expression. The result of the CVT$% function is 
an integer. 

Example of the CVT$% Function 

PRINT CVT$%("MN") 

19790 

6.2.14.3 CVTF$ -- Map Floating Point to String 

The CVTF$ function maps its floating point argument into an eight-character 
string. The format of the CVTF$ function is: 

CVTF$(X) 

Preliminary , CS BASIC Standard Functions 6-15 



where X is a floating point expression. The result of the CVTF$ function is an 
eight-character string. 

6.2.14.4 CVT$F -- Map Characters to Floating Point 

The CVT$F function maps the first eight characters of its string argument into a 
floating point value. The format of the CVT$F function is: 

CVT$F(S$) 

where S$ is a character string expression. The result of the CVT$F function is a 
floating point value. 

6.2. 14.5 CVT$$ -- String Editing 

The CVT$$ function provides for editing of character string values under control 
of its arguments. The format of the CVT$$ function is: 

CVT$$(S$, M) 

where S$ is a character string data value, ~nd M is a control parameter. 

The characters in S$ are edited according to the value of M. M is a "bit-mask" 
whose individual values have the following meanings: 

1 Trim the parity bit from each character. 

2 Discard all spaces and tabs from the string. 

4 Discard carriage returns, line feeds, form feeds, escape, rubout, and 
NULL characters. 

8 Discard leading spaces and tabs only. 

16 Reduce runs of spaces and tabs to a single space. 

32 Convert lower case letters to upper case. 

64 Convert [ and ] characters to ( and ) . 

Preliminary CS BASIC Standard Functions 6-16 



128 Discard trailing spaces and tabs only. 

256 Do not alter characters inside single or double quotes, except for 
trimming the parity bit. 

The bits in the M parameter can be combined additively. For example, setting M 
to 96 (64+32) means that lower case letters are converted to upper case, and 
brackets are converted to parentheses. 

Example of the CVT$ Function 

LET Sport$ = "Hunting The Snark" 
PRINT CVT$$(Sport$, 2%) 

HuntingTheSnark 

PRINT CVT$$(Sport$, 32%) 

HUNTING THE SNARK 

PRINT CVT$$(Sport$, 34%) 

HUNTINGTHESNARK 

The result of the first CVT$$ function removes all spaces (and tabs) from the 
string Sport$. The second example uses the mask that raises the entire string 
to upper case. The third example combines the two previous masks, discarding 
all spaces and tabs while raising the string to upper case. 

6.2. 15 XLATE -- CHARACTER TRANSLATION 

The XLATE function provi:des a "tabl~ lookup" capability for translating 
characters in a string. The format of the XLATE function is: 

XLATE(S$, T$) 

wh~re S$ is a source string that is to be translated, and T$ is a lookup table 
st~ing that is used to do the translation. 

The action of the XLATE function is that each character from S$ is used as an 
index into the lookup table T$. Indexing starts from zero, with the first 
character in T$ indexed by O, up to the rast possible pos'ition of 255. The 
character at that position is used to form the value of the XLATE function. 

Preliminary CS BASIC Standard Functions 6-17 



The translation process terminates under one of two conditions: 

1. The lookup table string T$ has a length shorter than the index from the 
source string S$, 

2. A zero value is found at the indexed position in the lookup table T$. 

Example of the XLATE Function 

T$ = STRING(32, ASCII(' 1 )) + STRING(16, ASCII('!')) & 
+ STRING(lO, ASCII('O')) + STRING(26, ASCII('A')) & 
+ '!!!!!!!' + STRING(26, ASCII('A')) & 
+ '!!!!!' + STRING(128, ASCII(' 1 )) 

A$= 'Maryann Clark' 
B$ = XLATE(A$, T$) 
PRINT B$ 

The example shown above has a translation table such that all alphabetic 
characters translate to 'A', all digits translate to 'O', all delimiters 
translate to '!', and everything else translates to space. 

6.2. 16 RAD$ -- CONVERT FROM RADIX 50 

The RAD$ function converts an integer value into three ASCII characters. The 
format of the RAD$ function is: 

RAD$(N%) 

where N% is an integer expression. The result is a three-character string. 

6.3 NUMERIC STRING FUNCTIONS 

The BASIC language provides for operating on numbers that are represented by 
strings of characters. This allows for arithmetic upon numbers up to 56 
characters in length. The limit of 56 characters includes any plus sign, minus 
sign, or decimal point. 

Preliminary CS BASIC Standard Functions 6-18 



The functions described below are for performing arithmetic operations on these 
data types. 

The PROD$ (product), QUO$ (quotient), and PLACE$ (roundoff) functions each have 
a parameter, P (for Places), that is the number of decimal places to which the 
result of the function is to be rounded or truncated. 

The P parameter is an integer expression. Values of P less than 5000 indicate 
that the result of the function should be rounded. Values of P greater than 
5000 indicate that the result of the function should be truncated. In this 
second case, the actual number of places to which the result is truncated is 
derived from the expression: 

p - 10000 

If the number of places to round or truncate is positive, the results are 
rounded or truncated that number of places to the right of the decimal point. 

If the number of places to round or truncate is negative, the results are 
rounded or truncated to the left of the decimal point. 

In all cases, if nonnumeric characters (other than+ or - or.) are found in the 
string, a run-time error is generated. 

6.3.1 SUM$ -- ARITHMETIC SUM OF NUMERIC STRINGS 

The SUM$ function adds two numeric strings together. The format of the SUM$ 
fun ct ion is : 

SUM$(A$, B$) 

where A$ and B$ are both numeric strings. 

Example of the SUM$ Function 

PRINT SUM$ ( 11 12345", 1167890 11 ) 

80235 

Preliminary , CS BASIC Standard Functions 6-19 



6.3.2 DIF$ -- ARITHMETIC DIFFERENCE OF NUMERIC STRINGS 

The DIF$ function subtracts one numeric string from another. The format of the 
DIF$ function is: 

DIF$ (A$, B$) 

where A$ and B$ are both numeric strings. 

The result of the DIF$ function is A$-B$. 

Example of the DIF$ Function 

PRINT DIF$ ( 1133554432 11 , "16777216 11 ) 

16777216 

6.3.3 PROD$ -- ARITHMETIC PRODUCT OF NUMERIC STRINGS 

The PROD$ function multiplies two numeric strings together. The format the 
PROD$ function is: 

PROD$(A$, B$, P) 

where A$ and B$ are both numeric strings and P is the number of places to which 
the product is to be rounded or truncated. 

The result of the function is the product of A$ and B$, rounded or truncated to P 
decimal places. 

Example of the PROD$ Function 

PRINT PROD$("1024", "1024" 10%) 

1048576 

Preliminary CS BASIC Standard Functions 6-20 



6.3.4 QUO$ -- ARITHMETIC QUOTIENT OF NUMERIC STRINGS 

The QUO$ function divides one numeric string by another. The format of the QUO$ 
function is: 

QUO$(A$, B$, P) 

where A$ and B$ are both numeric strings and P is the number of places to which 
the result is to be rounded or truncated. 

The result of the QUO$ function is A$ divided by B$, with the quotient rounded or 
truncated to P decimal places. 

Example of the QUO$ Function 

PRINT QUO$ ("16777216". "1024", 10%) 

16384 

6.3.5 PLACE$ -- ROUND NUMERIC STRING 

The PLACE$ function rounds a numeric string to a specified number of places. 
The format of the PLACE$ function is: 

PLACE$ (A$, P) 

where A$ is a numeric string, and P is the number of places to which the string 
A$ is to be rounded or truncated. 

Example of the PLACE$ Function 

PRINT PLACE$("123.456", 2%) 
123.46 

PRINT PLACE$("123.456", 10000 + 2%) 
123.45 

PRINT PLACE$("126.6666", -2%) 
13 

PRINT PLACE$("126.666", 10000 + -2%) 
12 

Preliminary CS BASIC Standard Functions 6-21 



6.3.6 COMP'X. NUMERIC STRING COMPARISON 

The COMP% function compares two numeric strings and returns an integer truth 
value based on the results of the comparison. The format of the COMP% function 
is: 

COMP%(A$, B$) 

where A$ and B$ are both numeric strings. 

The COMP% function returns a value that represents the result of the comparison, 
as follows: 

-1 if A$ < B$ 
0 if A$ = B$ 

+1 if A$ > B$ 

Example of the COMP% Function 

PRINT COMP%("123", 1145611 ) 

-1 
PRINT COMP%("123", "10011 ) 

1 
PRINT COMP%("262144", 1126214411 ) 

0 

Preliminary CS BASIC Standard Functions 6-22 



7.0 ASSIGNMENT STATEMENTS 

This chapter discusses the assignment 
(assignment) statement, the LSET and 
statements, and the CHANGE statement. 

7.1 LET 

statements of CS BASIC: The LET 
RSET (in-place string assignment) 

Assignment statements are the fundamental statements of CS BASIC, where the 
value of an expression can be assigned to a variable. The form of an assigrunen~ 
statement is: 

{LET} <variable> = <expression> 

where <variable> is the name of a numeric variable, a string variable, or an 
element of a dimensioned numeric or string variable. 

<expression> is the value of a numeric or string expression, that is to be 
assigned to the <variable>. 

The LET keyword is optional and is retained for compatibility with other 
implementations of BASIC. 

The data type of <variable> must agree with the data type of <expression>. That 
is, if <expression> is numeric, <variable> must be numeric; if <expression> is a 
string expression, <variable> must be a string variable. 

If <variable> is an integer variable and <expression> is a floating point 
expression, the result is truncated (if possible) before the assignment. If the 
result of the expr~ssion is too large to fit an integer value, the value of the 
integer is undefined. 

If <variable> is a floating point variable, and the <expression> is an integer 
expression, it is converted to floating point before the assignment. 

Preliminary CS BASIC Assignment Statements 7-1 



Examples of Assignment Statements 

100 LET Count% = 10% 
120 LET Tax.Rate= 23.55 
140 Emp%(Emp.Num%) = 795% 

7.1.1 MULTIPLE ASSIGNMENT 

,\ 

In CS BASIC it is pos-sible to assign the value of an e~pression to a collection 
of variables. The form of a multiple assignment is: 

{LET} <var>{, <var> ... }= <expression> 

Each <var> in the format above is the name of a variable of the same type as the 
<expression>. All the <var>' s are either numeric (float or integer) or string. 

The <expression> is computed once, then the result is assigned to the list of 
variables. 

The order of assignment is undefined. 

The same variable can appear in the list of variables more than once. 

Note that a matrix can be initialized to certain values (such as all zeros, all 
ones, or identity) by matrix initialization as described in Chapter 10. 

7. 1.2 STRING ASSIGNMENT 

The form of a string assignment statement is just the same as that for numeric 
assignment, namely: 

{LET} <stringvar> = <expression> 

There are some aspects of string assignment that the user must be aware of. 
String variables are actually implemented as descriptors containing the length 
of the string and the address of the storage area cont.aining the string. When 
one string variable is assigned to another, the system simply copies the 
descriptor. The result is that both descriptors refer to the same area of 
storage. (This is not true for string virtual arrays -- see below.) 

Preliminary CS BASIC Assignment Statements 7-2 



Suppose that the following assignment is made: 

LET A$ = "Skyhook" 

The variable A$ now is a descriptor to a storage area with the string "Skyhook" 
in it. A subsequent assignment: 

LET B$ =A$ 

makes the descriptor for B$ reference the same storage area as the descriptor 
for A$. 

If either A$ or B$ is subsequently changed, the storage areas are made 
different. For example, the assignment: 

LET A$ = "new string" 

makes a new storage area containing the string "new string". A$ references this 
new string, while B$ still references the "Skyhook" string. 

If, when assigning one string variable to another, a distinct storage area is 
actually required, it can be done with an assignment statement of the form: 

LET B$ = A$ + "" 

In other words, B$ and A$ now reference different areas of storage, even though 
the concatenation only concatenated a null string. It is not necessary to do 
this in general, unless LSET and RSET are being used in the same CS BASIC 
program. 

To change strings without moving their actual storage area, the LSET and RSET 
statements must be used, as described below. 

7. 1.2.1 Special Notes on Assigning to String Virtual Arrays 

For string virtual arrays, the assignment works differently from that of 
ordinary strings. If the source or target of.a string assignment is an element 
of a string virtual array, the string is copied into the string virtual array. 
This is in contrast to assignment with ordinary strings, where only the 
descriptor is changed. 

If the target of a string assignment is a string virtual array, and if the source 
string is shorter in length than maximum length of the target string, the array 
element is filed with zeros on the right. 

Q 

Preliminary . CS BASIC Assignment Statements 7-3 



7.1.3 LSET AND RSET -- CHANGE STRINGS IN PLACE 

The LSET and RSET statements find most use in connection with block input and 
output, as described in Chapter 7, but they are described here since they are 
actually variations on the string assignment facilities. 

LSET and RSET provide for changing the value of a string without moving the 
string in storage in any way. The forms of the LSET and RSET statements are: 

LSET <stringvar> {, <stringvar> ... }=<string> 

RSET <stringvar> {, <stringvar> ... }=<string> 

where <stringvar> is the name of an existing string, and <string> is a string 
expression. Both LSET and RSET change the destination strings in place. The 
string that was previously stored in <stringvar> is overwritten, but the length 
of <stringvar> is unchanged. 

If the length of <string> is greater than that of <stringvar>, the system 
truncates <string> to fit. 

The LSET statement places the new <string> left justified in <stringvar>. If 
the length of <string> is less than that of <stringvar>, LSET pads on the right 
with spaces. 

The RSET statement places the new <string> right justified in the <stringvar>. 
If the length of <string> is less than that of <stringvar>, RSET pads on the left 
with spaces. 

Example of the LSET Statement 

A$ = I ABCDE I 

B$ =A$ 
C$ = 'MNOPQ' 
D$ = C$ 
LSET A$ = 'XYZ I 

C$ = 'DEFGH' 

In the example above, the strings A$ and B$ both refer to the same storage area. 
After the LSET statement, both A$ and B$ will contain the value 'XYZ ', but the 
strings C$ and D$ will contain different values because the final simple 
assignment statement creates a new string. 

Preliminary CS BASIC Assignment Statements 7-4 



7 .2 CHANGE -- CHARACTER AND NUMERIC CONVERSION 

The CHANGE statement operates in one of two ways: 

• converts every character in a string variable into its numeric equivalent, 

or 

• converts an array of numeric values into characters in a string . 

The form of the CHANGE statement is: 

CHANGE <X> TO <Y> 

If <X> is a string, <Y> must be a numeric array variable. If <X> is a numeric 
array variable, <Y> must be a string. 

When converting from a string variable to a numeric representation, element zero 
of the destination numeric array will be set to the number of characters in the 
string. The first converted character from the string is then placed in element 
1 of the numeric array, and so on. 

If the conversion is from string to numeric representation and the number of 
characters in the string is greater than the number of elements in the numeric 
array, a run-time error is produced. 

If in changing from numeric to string format, the contents of the zero'th 
element of the numeric array is zero or negative, a zero length string is 
generated. 

Examples of the CHANGE Statement 

100 DIM Decimal%(3) 
110 LET String$ = "ABC" 
120 CHANGE String$ To Decimal% 
130 PRINT Decimal%(0); Decimal%(!); & 

Decimal%(2); Decima1%(3) 
140 Decima1%(0) = 3 \ Decimal%(!) = 88 & 

Decima1%(2) = 89 \ Decimal%(3) = 90 
150 CHANGE Decimal% TO String$ 
160 PRINT String$ 
170 END 
runnh 
3 65 66 67 
XYZ 
Ready 

Preliminary CS BASIC Assignment Statements 7-5 



Preliminary CS BASIC Assignment Statements 7-6 



8.0 CONTROL STATEMENTS 

This chapter covers CS BASIC control statements, which control the flow of 
execution of a program. Input and output statements are not discussed in this 
chapter but are covered in Chapter 9. 

In the sections to follow, there are descriptions of statements, such as FOR and 
WHILE, as well as IF-THEN-ELSE, that have "block structure." Control statements 
can occur inside the range of other such control statements, but they must 
"nest" properly. For example, the following structure is erroneous and is not 
allowed: 

100 FOR I = 1 TO 10 
110 WHILE X~o = 0 
120 INPUT #1, A(I) 
130 NEXT I 
140 NEXT 

The example illustrates incorrect nesting of statements. The NEXT I and the 
plain NEXT statements should be interchanged. The BASIC interpreter generates 
an error message in such situations. 

8.1 IF THEN AND IF GOTO STATEMENTS 

The IF THEN and IF GOTO statements are the most basic control statements in the 
language. There are three forms of the IF statement: 

IF <condition> THEN <statements> 

IF <condition> THEN <line number> 

IF <condition> GOTO <line number> 

The first form executes the <statements> following the THEN keyw~rd if the 
<condition> is true. If the <condition> is false, the <statements>: following 
the THEN keyword are not executed. 

The second and third forms are equivalent: if the <condition> is true, program 
execution resumes at the line number specified by <line number>. If the 

Preliminary . Control Statements 8-1 



·' 

<conditi,on> is false, program execution continues at the statement following the 
IF statement. 

If there are multiple. <statements> following the THEN keyword, all of those 
statements are executed if the <condition> is true, and none of the <statements> 
is_executed if the <condition> is false. 

Examples of IF Statements 

100 IF A < B THEN PRINT "A is less" 

200 IF A$ <> B$ then 230 

300 IF A$ = B$ GOTO 1435 

400 IF A = B THEN PRINT A \ PRINT B 

In the last example (line 400), both of the PRINT statements are executed if A 
equals B, and neither of the PRINT statements is executed if A does not equal B. 

8.2 IF THEN ELSE 

The basic forms of IF THEN ELSE are similar to those of the IF THEN and IF GOTO 
statements, with the addition of an ELSE clause in the construct. The forms are 
as follows: 

THEN <statement> 
{ ELSE <statement>) 

IF <condition> THEN <line number> 
{ ELSE < 1 ine number>) 

GOTO <line number> 

The "piles" in the description above represent alternative ways of typing the 
statements. Either of the ELSE forms can be optionally combined with any of the 
forms of the basic IF statement. 

If multiple statements follow the ELSE clause, all those statements are executed 
in the event that the <condition> was false, causing the ELSE branch of the 
statement to execute. If the <condition> is true, the ELSE branch is not taken, 
and none of the statements that follow it are executed. ' 

Preliminary Control Statements 8-2 



Examples of IF THEN ELSE Statements 

100 IF X = Y THEN PRINT "Same" ELSE PRINT "Different" 

240 IF A$ = "GROOVY" THEN PRINT "All groovy" ELSE 1950 

300 IF ASCII(X$) = 9 THEN PRINT 'Starts with TAB' & 
ELSE PRINT 'Tabless' \STOP 

350 IF A% <> B% THEN A% = 10 ELSE A% = 20 \ B% = 30 

In the last example above (line 350), both of the statements following the ELSE 
are executed if A% equals B%, and neither of those statements is executed if A% 
does not equal B%. 

8.3 WHILE NEXT 

The WHILE statement executes a block of subordinate statements while some 
condition remains true. The form of the WHILE NEXT statement is: 

WHILE <condition> 
<statements> 

NEXT 

The <statements> between the WHILE and the NEXT are executed as long as 
<condition> remains true. If <condition> is initially false, none of the 
<statements> is executed. 

Example of the WHILE Statement 

100 WHILE A% <> 0 
120 GOSUB 1000 
140 NEXT 

Note that the WHILE NEXT statement is not available in immediate mode. 

8.4 UNTIL NEXT 

The UNTIL statement executes a block of subordinate statements while some 
condition remains false. The form of the UNTIL NEXT statement is: 

Preliminary Control Statements 8-3 



UNTIL <condition> 
<statements> 

NEXT 

The <statements> between the UNTIL and the NEXT are executed as .long as 
<condition> remains false. IF <condition> is initially true, none of the 
<statements> is executed. 

Example of the UNTIL Statement 

100 UNTIL X == 0.0 
150 INPUT ill, X 
200 NEXT 

Note that the UNTIL NEXT statement is not available in immediate mode. 

8.5 FOR NEXT 

The FOR NEXT statement is the basic mechanism f.or constructing loops in a BASIC 
program. The form of the FOR NEXT statement is: 

FOR <var>= <expl> TO <exp2> {STEP <exp3>} 
. . . . . Statements subordinate to the FOR 
NEXT <var> 

The <var> is a numeric variable that is initialized to the value of <expl>. The 
second expression, <exp2>, represents a limit to the value of <var>. If the 
optional third expression -- <exp3> -- following the STEP statement is _present, 
its value increments <var> (or decrements it if <exp3> is negative) every time 
around the FOR loop, otherwise a value of one (1) is used for the increment. 

If the step (<exp2>) is positive, the loop terminates when 

<var> > <exp2> 

If the step (<exp2>) is negative, the loop terminates when 

<var> < <exp2> 

If the step (<exp2>) is zero, the effect of the FOR loop is equivalent to: 

<var> = <expl> 

Preliminary Control Statements 8-4 



WHILE <var> <= <exp2> 

NEXT 

The NEXT <var> statement selects the next iteration on the loop variable <var>. 

The subordinate statements between the FOR statement and the NEXT statement are 
executed as long as the loop does not terminate. 

It is possible for a FOR NEXT loop to execute zero times (in other words, not 
execute at all) if the value of the control variable is greater than the limit at 
the start (or less than the limit for a negative increment). 

If a NEXT statement is executed without a matching FOR statement having been 
previously executed (possible due to a transfer into the body of the FOR loop), 
the results are undefined. 

Examples of FOR-NEXT Statements 

100 FOR I = 1 To 10 
110 PRINT 2AI 
120 NEXT I 

The example above is a simple loop that prints powers of 2 between 1 and 10. 

Note that the FOR-NEXT statement is not available in immediate mode. 

8.6 FOR WHILE AND FOR UNTIL 

The FOR WHILE and FOR UNTIL statements are similar to the basic FOR statement, 
but instead of counting to some specified limit the loop continues iterating 
WHILE some condition remains true or UNTIL some condition becomes true. The 
forms of the statements are: 

FOR <var>= <expl> {STEP <exp2>} WHILE <condition> 
. . . . . Statements subordinate to the FOR 
NEXT <var> 

FOR <var>= <expl> {STEP <exp2>} UNTIL <condition> 
. . . . . Statements subordinate to the FOR 
NEXT <var> 

Preliminary , Control Statements 8-5 



Both of these forms of the FOR statement start off in the same way: a numeric 
variable <var> is set to an initial value, which is the expression <expl>. 

In the case of the FOR-WHILE form of the statement, the loop terminates when the 
conditional expression given by <condition> becomes false. 

In the case of the FOR-UNTIL form of the statement, the FOR loop terminates as 
soon as the conditional expression <condition> becomes true. 

Each time the NEXT statement is encountered, the variable <var> is incremented 
either by 1, or the optional expression, <exp2>, specified in the STEP part of 
the loop. 

It is possible that the FOR WHILE and FOR UNTIL execute zero times (in other 
words they do not execute at all) if the <condition> is initially false (in the 
case of the WHILE) or true (in the case of the UNTIL). In such a case, the NEXT 
statement is never executed and <var> retains its initial value. 

Example of a FOR-WHILE Statement 

100 FOR I = 1 WHILE A(I) > 0 
110 A(I) = A(I) + .1 
120 NEXT I 

The example above increments each element of an array, while an array element is 
greater than zero. 

Example of a FOR UNTIL Statement 

100 FOR J = 2 STEP 2 UNTIL J >= 100 OR A(J) <= 0 
110 A(J) = A(J) + A(J-1) 
120 NEXT J 

This example demonstrates the use of the UNTIL part of a FOR loop. 

Note that neither the FOR WHILE nor the FOR UNTIL statements is available in 
immediate mode. 

Preliminary Control Statements 8-6 



8. 7 GOTO 

The GOTO statement provides for unconditional transfer of control to another 
part of the program. The form of the GOTO statement is: 

GOTO <line number> 

The GOTO statement unconditionally transfers control to the statement specified 
by <line number>. 

Example of a GOTO Statement 

450 GOTO 295 

8.8 ON GOTO 

The ON GOTO statement transfers control according to the value of a numeric 
expression. It is similar to the computed-GOTO of FORTRAN. The form of the ON 
GOTO statement is: 

ON <exp> GOTO <list of line numbers> 

The expression given by <exp> is used to select one line number out of the list 
of line numbers specified. 

Indexing of the list starts at one (1). So in the example below, if I is equal 
to 1, statement 2000 is selected. 

The <exp> part of the ON GOTO statement is converted to integer for the purposes 
of selection. 

If <exp> is less than 0 or greater than the number of elements in the list of 
line numbers, the ON GOTO statement generates a run-time error. This error can 
be trapped via an ON ERROR GOTO statement. 

Example of an ON GOTO Statement 

1650 ON I GOTO 2000, 2100, 2200, 2400, 2700 

Preliminary Control Statements 8-7 



8.9 STATEMENT MODIFIERS 

The statement modifier facility of the language provides a convenient way to 
execute a statement conditionally, where the condition is actually a part of the 
statement. 

All the statement modifiers have the same basic format: 

<statement> <modifier> 

The <modifier> serves as a qualifier for the <statement>. 

Note that in a multiple-statement line, a statement modifier affects only the 
statement that it immediately qualifies. Other statements on the same line are 
not affected by that specific statement modifier. 

8.9.1 IF STATEMENT MODIFIER 

The IF statement modifier is a qualifier indicating that the modified statement 
is executed only IF a specif.ied condition is true. The form of the IF statement 
modifier is: 

<statement> IF <condition> 

This means that the <statement> is executed only if the <condition> is true. 

Examples of an IF Statement Modifier 

130 PRINT "Time to go" IF T > 5 

140 PRINT 10: PRINT 11 IF I= 99: PRINT 12 

The first example simply prints the message "Time to go", if T is greater than 5. 
The second example either prints the values 10, 11 and 12 (if I is equal to 99), 
or prints the values 10 and 12 (if I is not equal to 99). 

Preliminary Control Statements 8-8 



8.9.2 UNLESS STATEMENT-MODIFIER 

The UNLESS statement modifier is similar to the IF statement modifier, but the 
statement is executed only if the specified condition is false. The form of the 
UNLESS statement-modifier is: 

<statement> UNLESS <condition> 

Example of an UNLESS Statement Modifier 

495 GOTO 1300 UNLESS A = 10 

8.9.3 FOR STATEMENT MODIFIER 

The FOR statement modifier adds an iterative clause to a statement such that the 
statement is executed a number of times determined by the FOR clause. The form 
of the FOR statement modifier is: 

<statement> FOR <var>= <expl> TO <exp2> {STEP <exp3>} 

Example of a FOR Statement Modifier 

1580 A(I) = 0 FOR I = 1 TO 100 

Note that the FOR statement modifier is not available in immediate mode. 

8.9.4 WHILE STATEMENT MODIFIER 

The WHILE statement modifier places a conditional qualifier on a statement, 
which indicates that the statement is executed repeatedly, WHILE a condition is 
true. The form of the WHILE statement modifier is: 

<statement> WHILE <condition> 

Example of a WHILE· statement Modifier 

1210 LET T(I) = T(I) + FNF(I) WHILE I < 100 

Preliminary. Control Statements 8-9 



8.9.5 UNTIL STATEMENT MODIFIER 

The UNTIL statement modifier is similar to the WHILE statement modifier, but the 
indicated statement is executed UNTIL a specified condition becomes true. The 
form of the UNTIL statement modifier is 

<statement> UNTIL <condition> 

Example of an UNTIL Statement Modifier 

1210 LET T(I) = T(I) + FNF(I) UNTIL I >= 100 

This example is equivalent to the example given for the WHILE statement modifier 
above. 

8.10 MULTIPLE STATEMENT MODIFIERS 

It is possible to qualify a given statement with more than one statement 
modifier. For example: 

250 A = A + 1 IF A > 0 IF A < 100 

This examp~e is equivalent to either of the forms below: 

250 IF A > 0 AND A < 100 THEN LET A = A + 1 

250 IF A > 0 THEN IF A < 100 THEN A = A + 1 

8.11 END 

The END and STOP statements both terminate program execution. 

The END statement is the last statement in a CS BASIC program. If an END 
statement is encountered in the normal flow of program execution (for instance, 
if the program "falls through" to the END statement), the program is terminated. 

Preliminary Control Statements 8-10 



8.12 STOP 

The STOP statement terminates execution of a program when it is executed. When 
a STOP statement is executed, a message is displayed to that effect. There can 
be multiple STOP statements throughout a program, with the (possibly 
conditional) flow of program execution determining when a STOP statement should 
be executed. 

After a STOP statement has been executed, program execution can be started again 
with a CONT command, as described in Chapter 3. 

8.13 CHAIN 

The CHAIN statement finds application when a program is too big to load into 
memory all at once. If a program is too large, it can be split into independent 
programs. In any one of the programs, the CHAIN statement starts execution of 
another program. The form of the CHAIN statement is: 

CHAIN <string> {LINE <exp>} 

When the CHAIN statement is executed, CS BASIC loads, compiles, and starts 
executing the program specified by <string>. 

If the expression <exp> is present, it specifies a line number at which the 
chained-to program is to start executing. If the line number is omitted, the 
chained-to program starts executing at the lowest numbered line, as if a RUN 
command had been issued to the system. If the specified line number does not 
exist in the CHAIN'ed-to program, a fatal run-time error is generated. 

A CHAIN statement causes a complete replacement of the existing program with the 
chained-to program. Once a program issues a CHAIN statement, it never regains 
control, unless of course, another program CHAIN back to it. 

The CHAIN statement close all open files in the current program before chaining 
to the target program. It should be noted, however, that partially filled 
buffers or modified virtual array elements may be lost. It is better to issue 
explicit CLOSE requests on open files before any CHAIN statements are issued. 
If several independent programs use the same files, they must explicitly OPEN 
the files in each program. 

Note that all variables are reinitialized in the environment of a CHAIN'ed-to 
program. That is, numeric values are set to zero and string values are set to 
the null string. 

Preliminary . Control Statements 8-11 



Examples of CHAIN Statements 

CHAIN 'PHASE. TWO' ! Call up the next pass 

CHAIN I PAYABLES I LINE 1600 

The first example passes control to the program called 'PHASE.TWO'. Execution 
of 'PHASE.TWO' starts at the lowest numbered line in that program, just as if a 
RUN command had been issued. 

The second example starts execution of a program called 'PAYABLES', but in this 
case, execution starts at line 1600 in that program. 

8.13.1 MERGE OPTION 

If ",MERGE" is appended to a CHAIN statement, then the statements of the 
original program are not removed (unless the chained-to program uses the same 
line numbers) and all variables retain their values. 

8.14 COMMON 

The COMMON statement allows the user to pass variables and their values to 
another BASIC program when used in conjunction with a CHAIN command. The form 
of a COMMON statement is: 

COMMON <var>{, <var>} ... 

where <var> is the name of either a simple variable or an array variable 
followed by left and right parenthesis ' ( ) '. When a CHAIN statement is 
executed, the variables that have been listed in a COMMON statement and their 
current values are passed to the new program. The CHAIN command will have a new 
optional field ' ,ALL' which will override the chain command and cause all 
variables to be passed. Virtual arrays cannot be placed into a COMMON area and 
are never passed to a new program when the 'ALL' option is specified. 

The implementation of the COMMON area, particularly with the ALL option, will 
require certain resources. If there is not enough memory available to build the 
necessary data structures, the CHAIN command will abort with an error message. 

Preliminary Control Statements 8-12 



This is particularly applicable to the 'ALL' option, though if large amounts of 
data are passed and memory is almost full, it can happen to any CHAIN that 
involves COMMON. 

Note that CHAIN with the MERGE option does a COMMON,ALL equivalent in all cases. 

Preliminary, Control Statements 8-13 



Preliminary Control Statements 8•14 



9.0 INPUT AND OUTPUT STATEMENTS 

This chapter covers those statements in CS BASIC that perform input and output 
to and from files and devices in the system. 

There are two major divisions of input-output in CS BASIC 

Data can be defined directly in the program itself, with the DATA statement. 
Data defined via DATA statements can be read with the READ statement, and 
"rewound" with the RESTORE statement. 

Data can be written to and read from external files. In this method, the 
external files can be used in one of three different ways. Two of these 
ways, plain ASCII data transfers and block input-output are described in 
this chapter. The other way is "virtual arrays", and is described in 
Chapter 10 -- "Matrix Operations". 

9.1 READING DATA FROM WITHIN THE PROGRAM 

The simplest form of data transfer capability in CS BASIC is supplied by the 
DATA, READ and RESTORE statements. 

The DATA statement actually defines data in the body of the program itself. The 
READ statement reads items from the list of elements defined by the DATA 
statements. The RESTORE statement "rewinds" to the start of the list of data 
items. 

9.1.1 DATA -- DEFINE DATA IN PROGRAM 

The DATA statement defines data elements as part of the text of a BASIC Program. 
The data so defined can be read by a READ statement. The form of a DATA 
statement is: 

DATA <value>{, <value> ... } 

Preliminary · Input and Output Statements 9-1 



where any <value> can be integer, floating point, or string data values. String 
data items do not need to be enclosed in quotes, but if they are not, all spaces 
in the string are removed. 

Note that while the objects defined in a DATA statement may have the appearance 
of integers or floating point numbers, it is a subsequent READ statement that 
actually determines whether the objects are interpreted as integers, floating 
point numbers, or strings. For example, the string of characters: 

12345 

while having the appearance of an integer, is actually a correct string, and can 
be read into a string variable, where it is stored as the literal characters 
11 1234511 • 

DATA statements can appear anywhere in a program, although common programming 
practice seems to lump them all together at the end of the program, where they do 
not clutter up the flow of the control statements. If DATA statements appear 
mixed in with executable statements in the program, they are skipped over. 

Data defined in DATA statements is defined in the order of the statement numbers 
associated with the statements. 

String data items must be written with quote signs surrounding them if they 
contain any of the following characters: 

a comma, 
significant spaces or tabs 

Integer data values should not have a trailing % sign appended. A subsequent 
READ statement applied to such a data item will generate a run-time error. 

A DATA statement must be the last statement of a multiple-statement line. 

It is not possible to place comments after a DATA statement. Consider the DATA 
statement shown here: 

5000 DATA 1, 2, 3 ! Define three numbers 

In the above example, the DATA statement defines two numbers (1 and 2), but the 
last integer and the apparent comment is taken as the character string 
"3 !Definethreenumbers". 

Examples of DATA Statements 

9000 DATA 1, 1, 3, 5, 8, 13 

Preliminary Input and Output Statements 9-2 



9010 DATA 123.45, Mince, 666, "Chicken Soup" 

The first example defines a list of numeric values (that are also correctly 
formed character strings). 

The second example defines a floating point value, a string data item that has 
the value "Mince", the numeric value 666, and finally the string "Chicken Soup" 
(enclosed in quotes to preserve significant spaces). 

9.1.2 READ -- READ DATA FROM DATA LIST 

The READ statement assigns values to variables. 
obtained from a list defined by DATA statements. 
is: 

READ <variable>{, <variable> ... } 

The values to be assigned are 
The form of the READ statement 

The list of <variables> consists of integer, floating point, or •string 
variables. The variables can be simple variables or subscripted variables. 

Data values read via a READ statement must conform in type with the variables to 
which they are assigned. That means that a numeric variable expects to read a 
numeric value, while a string variable expects a string value. 

A string variable can accept any "value" from a data list, which looks like a 
correct string; a floating point variable will accept either a floating point 
value or an integer value; an integer variable must read an integer constant. 
For example, the string of characters: 

12345 

is either the literal character string "12345", the floating point number 
12345.0, or the integer value 12345. Similarly, the string 1048576 is either 
the literal character string "1048576", or the floating point number 1. 048576E6 
(an attempt to read such a number as an integer would generate a run-time 
error). Therefore, it is actually the variables in the READ statement that 
determine the nature of the strings of characters in a DATA statement. 

If a READ statement tries to read more data than defined in DATA statements, a 
run-time error is generated. The error can be trapped by the ON ERROR GOTO 
statement described in Chapter 12. 

Preliminary Input and Output Statements 9-3 



Example of READ Statements 

200 READ F%(I%) FOR I%= 1 TO 6 

1025 READ H, E$, K%, M$ 

·~ 
9. l.3 RESTORE -- REPOSITl.ON TO START OF DATA 

The RESTORE statement restores the reading position to the lowest numbered DATA 
statement in the program. The form of the RESTORE statement is: 

RESTORE 

There are no arguments to the RESTORE statement. A RESTORE statement can appear 
in any position in a multiple-statement line. 

The next READ statement to be executed in the program after execution of the 
RESTORE statement will start reading data from the first (lowest numbered) DATA 
statement in the program. 

9.2 FILE INPUT AND OUTPUT 

This section covers data transfers to and from external files. The two major 
divisions of data transfer described here are ASCII (formatted) input and output 
that are done with the INPUT and PRINT statements, and block input and output 
that are done with the GET, PUT, and FIELD statements. 

CS BASIC performs data transfers to and from external storage devices via 
internal file descriptors. A file descriptor is an integer expression in the 
range 1% through 12%. That is, there may be a maximum of 12 files open at any 
one time. In addition, filedescriptor 0% is the user's terminal. 

The OPEN statement (described below) associates a file descriptor with a 
specific named file. 

A file remains open until it is explicitly closed with a CLOSE statement, or 
until the program terminates, at which time the interpreter closes all open 
files. 

At the time a file is first opened, the CS BASIC system does not know what that 
file will actually be used for. It might be used for plain ASCII input-output 

Preliminary Input and Output Statements 9-4 



using INPUT and PRINT statements, for block input-output using GET and PUT 
statements, or for virtual array storage. 

The first time that a file is used for any one of these purpose, the system then 
designates that file as being used for that specific purpose. If an attempt is 
subsequently made to use the file for any other purpose, a data run-time error 
is generated. 

9.2.1 OPEN -- OPEN A FILE FOR DATA TRANSFER 

The OPEN statement opens a data file for transfer between the computer's memory 
and external storage. The form of the OPEN statement is: 

OPEN <string> {FOR INPUT I FOR OUTPUT} AS FILE #<exp> 
{, RECORDSIZE <exp>}{, CLUSTERSIZE <exp>} 
{, FILESIZE <exp> {, MODE <exp>} 

The basic function of the OPEN statement is to associate the file designated by 
the <string> immediately following the OPEN statement with the file descriptor 
designated by the <exp> following the AS FILE clause. 

The optional FOR INPUT or FOR OUTPUT clauses do not 
input-output on that file to input only or output only. 
follows: 

actually restrict 
The rules are as 

1. The FOR INPUT clause tries to open an existing file in the file system. If 
th,e designated file is not found, a run-time error is generated. This 
error can be trapped by the ON ERROR GOTO facility. 

2. The FOR OUTPUT clause creates a new file if it did not exist prior to this 
OPEN statement. If the file did exist previously, it is re-created, and 
its previous contents are lost. 

3. If neither the FOR INPUT nor FOR OUTPUT clause appear in the OPEN 
statement, the system tries to open the file for input as described in item 
1 above. If this fails because the file does not exist, the OPEN statement 
executes as in item 2 above. 

Designating a file as open FOR INPUT does not prevent the program from writing 
on that file. Similarly, a file designated as open FOR OUTPUT can be read from. 

Preliminary , Input and Output St.atements 9-5 



Simple Example of the OPEN Statement 

200 OPEN "NUMBERS" FOR INPUT AS FILE #2 

The options that follow the basic OPEN statement are to give the user finer 
control over the physical aspects of the file characteristics. 

Options, if specified, must appear in the order shown. That is, RECORDSIZE, 
CLUSTERSIZE, FILESIZE, and MODE. 

The RECORDSIZE option provides the means to specify the physical size of the 
buffer that the system uses for data transfer to and from the program. 

The system normally uses records (blocks) of 512 bytes. The RECORDSIZE option 
can change this default size. The buffer size can be made larger than 512 bytes, 
but not smaller. 

Example of the RECORDSIZE Option 

200 OPEN "NUMBERS" FOR INPUT AS FILE #2, RECORDSIZE 1024 

The CLUSTERSIZE, FILESIZE, and MODE options have no meaning in CS BASIC, but the 
interpreter accepts those options for compatibility with other implementations 
of BASIC. 

9.2.2 CLOSE -- CLOSE A FILE 

The CLOSE statement breaks the connection between a file and its internal file 
descriptor. The format of the CLOSE statement is 

CLOSE <exp>{, <exp> ... } 

Each <exp> is an integer expression referring to the number of an internal file 
descriptor of the file(s) to be closed. If there are any partially written 
buffers associated with that file, they are flushed (written to the file) before 
the file is closed. 

If any <exp> is negative, the file designated by the absolute value of the 
expression is closed immediately. If there are any partially written buffers 
associated with that file, they are not flushed (written to the file) before the 
file is closed. This means that a CLOSE with a negative file number might lose 
some data. 

Preliminary Input and Output Statements 9-6 



Examples of the CLOSE Statement 

8090 CLOSE 2, 3 

8100 CLOSE 5, -8 

The examples illustrate closing files 2, 3, 5 and 8. Since file number 8 was 
specified as a negative number, any data remaining in buffers for that file is 
lost. 

9.3 SCREEN CONTROL 

Two CS BASIC statements are provided to facilitate text output to the screen -
CLS and LOCATE. 

9.3.1 CLS 

CLS clears the display screen of all alphanumeric, graphic, and system 
information. The format of the command is: 

9.3.2 LOCATE 

LOCATE moves the display-screen cursor to the specified position. Information 
from the next PRINT statement will appear at this position. The format of the 
command is: 

LOCATE (row, column)-

The value of "row" ranges from 0 (top of screen) to 24 (bottom of screen), and of 
"column" from 0 (left of edge) to 79 (right edge). 

Preliminary Input and Output Statements 9-7 



9.4 PRINTING DATA 

The PRINT and PRINT USING statements convert and print data. PRINT simply 
prints a list of variables on a specified destination, with default formatting 
rules determined by the system. PRINT USING prints data under control of a 
format string. 

There are three floating point number representations that are out of the normal 
range. These are plus infinity, minus infinity, and Not a Number (NaN). When 
printed, plus infinity displays as a row of plus signs, minus infinity displays 
as a row of minus signs, and NaN displays as a row of question marks (see 
Appendix B). 

9.4. 1 PRINT -- PRINT ON FILE 

The PRINT command is the simplest mechanism for displaying data at the terminal, 
or for printing to a file. The format of the PRINT command is: 

PRINT {#<exp>, } <exp> { , <exp> ... } 

If the optional #<exp> field is present in the PRINT statement, it refers to a 
file descriptor on which the list of values is to be printed. If the #<exp> is 
omitted, the display is directed to the user's terminal. 

Each <exp> in the list of expressions can be a numeric or a string expression. 
Elements in the list of expressions are normally separated by commas, but they 
can alternatively be separated by semicolons. The different effects of the 
commas and semicolons are described in the discussion on print zones that 
follows. 

The system divides each line of the terminal into a number of print zones, each 
print zone being 14 characters wide. 

The behavior of the PRINT statement is as follows: 

1. Each PRINT statement that does not have a comma or a semicolon at the end of 
the statement, completes printing on a given output line. 

2. Leading zeros are suppressed, as are trailing zeros to the right of a 
decimal point. 

Preliminary Input and Output Statements 9-8 



3. At most six significant digits are displayed, unless more are requested via 
the PRINT USING statement described later. 

4. Numeric 
format. 

5. Numbers 
leading 

values in the range -999999 through 999999 are printed in decimal 
Numbers outside of this range are printed in exponential format. 

are always printed with a trailing space. Positive numbers have a 
space; negative numbers have a leading minus sign. 

6. String values are printed verbatim, with no leading or trailing spaces. 

7. Extra commas between print elements have the effect of skipping (or 
tabbing) print zones. 

8. After a value is displayed, the system moves the print position to the 
start of the next available print zone if the value was followed by a 
comma. 

9. A semicolon after an expression inhibits the movement of the print position 
to the next print zone, causing the displayed values to appear on the line 
in a packed fashion. 

Example of PRINT Statement 

760 LET Emp. Num% = 795 
765 LET Emp.Name$ ='Harry Bloggs' 
770 LET Hour.Rate= 6.45 
780 PRINT Emp.Num%, Emp.Name$, Hour.Rate 
800 PRINT Emp.Num%; Emp.Name$; Hour.Rate 
1000 END 
Runnh 

795 Harry B loggs 6. 45 
795 Harry Bloggs 6.45 

The two PRINT statements above illustrate the differences between printing data 
in a comma-separated list, and using semicolons to achieve the packed form of 
the display. 

9.4.2 PRINT USING -- FORMATTED PRINTING 

The PRINT USING statement provides for "formatted output", something like 
FORTRANS' s formatted WRITE statement. The PRINT USING statement supplies a 

Preliminary Input and Output Statements 9-9 



"template" that controls the formatting of the list of variables that are to be 
printed. The format of a PRINT USING statement is as follows: 

PRINT {#<exp>,} USING <string>, <exp> {,<exp> ... } 

The optional #<exp> field, if specified, designates a file descriptor on which 
the printing is to take place. If the #<exp> field is omitted, printing is to 
the user's terminal. . 

The <string> field after the USING Keyword is a template that controls the 
layout of elements from the list of expressions following. The characters that 
can appear in the <string>, and their interpretations, are as follows: 

An exclamation mark in the format field denotes a single character field 
to appear in the output. For example: 

PRINT USING I!!! I' 'MNO', 'XYZ'' 'PQR' 
MXP 

\ \ Two backs lashes denote a variable length string field of two or more 
characters. Two contiguous backslashes designates a field of two 
characters. If there are n spaces between the backslash characters, n+2 
characters are printed. For example: 

PRINT USING'\\\ \', 'Alfred Bloggs', 'Maryann' 
Al Mary 

# The number sign indicates positions at which decimal digits should appear 
in the output. A decimal point may appear at any position within a string 
of # signs (or the decimal point can be omitted altogether). When numbers 
are printed under this format, they are rounded appropriately. 

Numbers are right justified in the specified field. If a field is too 
large to fit inthe space allotted, the system prints a % sign to indicate 
there is a problem, and the number is then printed without further 
reference to the format. If the number of characters is smaller than the 
allotted space, the space is filled with leading spaces, unless the ** 
format control described below is used. For example: 

PRINT us ING I##### I , 45 . 1 
45 

PRINT USING'##.##', 45.168 
45.17 
PRINT USING I### I, 5486 
% 5486 

Preliminary Input and Output Statements 9-10 



If the value is to be displayed in exponential format, the use of four 
contiguous signs indicates the placement of the xponent. 

PRINT USING '##.## 
57.46E 02 5745.98 

####.#fl', 5745.98, 5745.98 

'°''°' Two asterisks at the start of a numeric field designation indicates that 
unfilled positions in the output field should be filled with asterisks. 
The two asterisks serve a# signs as well as indicating asterisk fill. 

Exponential format cannot be used in a field with leading asterisk fill. 
In this format, negative numbers must be output with a trailing minus 
sign. 

PRINT USING '-.'d<#ff.##', 13.94, 430. 70, 3681.00 
;'<;':13. 94 
>'<430. 70 
3681. 00 

If a numeric format field is terminated by a minus sign, the sign of the 
number is printed after the number instead of before it. 

PRINT USING'###.##- ###.flt!', -99.37, -99.37 
99.37- -99.37 

$$ If two $ signs are printed in front of a numeric field designation, a $ 
sign is printed in front of the number on the output. The two dollar 
signs, in addition to adding a $ sign in the output, serve as a single # 
sign in the format string. 

Exponential format cannot be used with the leading dollar sign. Also, if 
negative numbers ar to be printed, the minus sign must follow the format. 

PRINT USING'$$##.##', 37.40, 159.48, 2227.56 
$37.40 

$159.48 
~~ 2227 .56 

A comma appearing in a numeric field format after a # sign and to the left 
of the decimal point indicates the normal conventions for placing commas 
in numbers, that is, every three digits. In this case, the comma acts 
like a# sign in every other way. 

A comma appearing in a format to the right of a decimal point terminates 
the format field, and is printed as a literal character in the output. 

PRINT us ING I MlfNNNI. ##ii ###, ###. flffo# ##if' INHI. ff,##' ' & 

Preliminary Input and Output Statements 9-11 



987654.321, 987654.321, 987654.321 
987654.321 987 ,654.321 987 ,654.3, 

Any character appearing in a PRINT USING string that is not listed above, are 
passed through to the output directly. For example: 

PRINT USING 'xyz###<<<', 123 
xyz123<k< 

If a numeric field asks for more significant digits than there are available, 
trailing zeros are substituted for places after the last significant place. 
Floating point numbers can have up to 15 significant digits. 

In the PRINT USING statement, a comma or a semicolon at the end of the line 
inhibits the system from printing an end of line at that position. Another 
PRINT or PRINT USING statement will then print the data on the same line. 

If a PRINT USING statement reaches the end of a list of values, and there are no 
more format fields available in the USING string, the CS BASIC interpreter 
starts a new line on the output file, and starts using the USING string again 
from the beginning. 

9.4.3 INPUT -- INPUT DATA FROM FILE 

The INPUT statement reads data from an external storage device. The format of 
the INPUT statement is: 

INPUT {#<exp>,} {<string>;} <var> 
{{,<string>;} <var> ... } 

The optional #<exp> is the file descriptor of the file to read the data from. If 
the #<exp> is omitted, or if the #<exp> refers to file #0 (the user's terminal), 
the system prompts the user's terminal for the data. 

The optional <string> parts interspersed in the list of variables represent 
messages that can be displayed at the user's terminal before prompting for data 
values. This prompting string is only displayed if the INPUT statement either 
does not indicate a file, or if the INPUT statement names file #0 (the user's 
terminal) as the source of input. 

The way that the system interacts with the user's terminal is as follows: 

• The system prompts with a ? sign if no <string> was used in the INPUT 
.statement, 

Preliminary Input and Output Statements 9-12 



• The system prompts with a prompt of <string>? if a <string> was typed as 
part of the INPUT statement, 

• A <string> in the INPUT statement that is terminated by a semicolon prints 
as is, with no ? sign, 

• A <string> in the INPUT statement that is terminated by a comma moves the 
print position to the start of the next print zone, 

• It is possible to prompt with several <string> values in a row. 

The <var>'s in the INPUT statement definition above are a list of variables, 
separated by commas, into which the data elements are to be read. The system 
continues to prompt until sufficient values have been input. 

String values can be typed either with or without quotes. Quotes are only 
necessary if the user wishes to embed commas or spaces in the string. 

Example of the INPUT Statement 

150 INPUT #1, List%(!) FOR I = 1 TO 10 

250 INPUT 'Enter Year, Month, Day: ': Year%, Month%, Day% 

9.4.4 INPUT LINE -- INPUT A STRING FROM A FILE 

The INPUT LINE statement reads a line f~om a specified device into a character 
string variable. The form of the INPUT LINE statement is: 

INPUT LINE {#<exp>,} <string variable> 

A line is read from the file specified by #<exp>, or from the user's terminal if 
#<exp> is omitted. 

Characters in the line are read and stored in <string variable>, without any 
interpretation, up to and including the first carriage-return. 

The optional message display is not available in the INPUT LINE statement. 

Example of INPUT LINE Statement 

200 INPUT LINE #3, Line$ 

Preliminary Input and Output Statements. 9-13 



9.5 BLOCK INPUT AND OUTPUT STATEMENTS 

Block Input and Output is provided for accessing specific blocks in a file in a 
random manner. 

A file must be opened with the OPEN statement (described previously) before 
block input-output can be performed on that file. 

A block input-output file has an input-output buffer associated with it. Data 
is transferred between block files and the buffer via GET and PUT statements, 
described below. Data is transferred between the user's program memory and the 
buffer by defining regions of the buffer with the FIELD statement, and moving 
data into those fields with the LSET and RSET statements, described in Chapter 
7. 

Block files are closed with the CLOSE statement described previously. 

9.5.1 GET AND PUT -- READ OR WRITE DATA 

The GET statement reads blocks from a file. The PUT statement writes blocks to a 
file. The format of the GET and PUT statements is: 

GET #<expl> {,RECORD <exp2> I BLOCK <exp2>} 
{,COUNT <exp3>} {,USING <exp4>} 

PUT #<expl> {,RECORD <exp2> I BLOCK <exp2>} 
{,COUNT <exp3>} {,USING <exp4>} 

The #<expl> is an expression designating the file descriptor of the file for 
data transfer. 

The optional RECORD and BLOCK clauses are synonymous. They refer to the block 
number (<exp2>) at which reading or writing is to start. If the RECORD or BLOCK 
clause is omitted, reading or writing is performed on the next sequential block 
in the file. When the file is first opened, it is positioned at the first block 
(block 1). 

Preliminary Input and Output Statements 9-14 



In order to PUT a specific block, it is not necessary to write all the preceding 
blocks. In other words, there can be "holes" in the file. 

Examples of the GET and PUT Statements 

100 GET #1%, RECORD 24% 

200 PUT #2%, RECORD 12% 

9.5.1.1 The COUNT Option in GET and PUT 

The COUNT clause in a GET statement defines the maximum number of characters to 
read, regardless of the size of the input-output buffer. For character oriented 
devices such as terminals, subsequent GET operations read remaining data from 
the device. For block oriented devices such as disks, data remaining in the 
block after COUNT characters have been read is discarded. A subsequent GET 
statement reads the next block from the device. 

The COUNT clause in a PUT statement defines the number of characters to write i 
the current record. The expression (<exp3>) associated with the COUNT Option 
cannot be larger than the size of the input-output buffer. The COUNT option in 
PUT can only be used with non-file oriented devices. 

Examp·les of the COUNT Option 

100 GET.fl!%, RECORD 24%, COUNT 100% 

200 PUT #2%, COUNT 240% 

9.5.1.2 The USING Option in GET and PUT 

The USING clause it he GET or PUT statement defines an offset into the 
input-output buffer associated with that file. 

Examples of the USING Option 

100 GET #1%, RECORD 24%, USING 128% 

Preliminary Input and Output Statements 9-15 



200 PUT #2%, RECORD 16%, USING 64% 

• 
9.5.2 FIELD -- SET BUFFER STRUCTURE 

The FIELD statement associates string names with portions of an input output 
buffer. The FIELD statement can be thought of as defining a template for the 
layout of data in the buffer. The form of the FIELD statement is: 

FIELD #<expr>, <expr> AS <stringvar> 
{ , <expr> AS <stringvar> ... } 

In the above FIELD statement, #<exp» is the internal file descriptor for the 
file under consideration. 

Each <expr> AS <stringvar> clause defines the length (<expr>) of a string 
variable ( <stringvar>) that is associated with a part of the buffer. The 
<stringvar> names are associated left to right with successive characters in the 
input output buffer. 

FIELD statements do not perform any data movement. Instead, a FIELD statement 
directly associates a string variable name with an area in an input output 
buffer. 

Example of FIELD Statement 

FIELD #5%, 31% AS name$, 4% AS Age$, 11% AS Social.Sec 

The above example associates three fields of the input output buffer of file 
number 5% with three string variabl_es. The record might be something like an 
employee record for a company. The first field says there are 3i characters for 
the name; the second field has four characters for the person's age; the third 
field has 11 characters for the employee's social security number. 

Data is moved into fields in a buffer with the LSET and RSET statements. The 
plain LET (assignment) statement cannot be used to move data, since LET actually 
creates new storag.e for the strings. LSET and RSET, on the other hand., replace 
data "in place". LSET and RSET are described in Chapter 5. 

Preliminary Input and Output Statements 9-16 



9.5.3 NOTES ON THE FIELD STATEMENT 

The FIELD statement achieves its effect of associating a string name with a 
portion of the buffer when the FIELD statement is actually executed. In this 
regard, the FIELD statement should not be considered a static declaration. The 
association of string names with buffer positions is therefore dynamic. 

This means that the association of a string name with a part of the buffer can be 
changed dynamically, simply by executing a different FIELD statement. 

As noted earlier, data is moved into FIELD-defined strings by using the LSET and 
RSET statements. If a string defined in a FIELD statement is ever used as the 
target of a plain LET statement, a new string is created, and the association of 
that string name with a part of the buffer is lost. 

9.6 INPUT AND OUTPUT STATUS DATA 

The input-output system in CS BASIC maintains some essential information that 
enables the user to keep track of the status of files. This information is 
specified in the subsections below. 

9.6.1 RECOUNT VARIABLE - NUMBER OF CHARACTERS READ 

RECOUNT is a variable that contains the number of characters actually read on an 
input operation. RECOUNT can be used anywhere an integer value can be used. 

9.6.2 BUFSIZ FUNCTION - DETERMINE BUFFER SIZE 

BUFSIZ is a function that returns the buffer size of an open input-output 
channel. The form of the BUFSIZ function is: 

BUFSIZ(I%) 

where I% is the file descriptor number of an open file. BUFSIZ returns an 
integer value that represents the buffer size for that file. 

If the file specified by I% is not open, BUFSIZ returns the value zero. 

PreliminarY: Input and Output Statements 9-17 



9. 7 GRAPHICS CALLS 

The Computer System features a graphics display superimposed over the user's 
display. The points, or "pixels," of this display are numbered from the lower 
left corner from 0 to 769 horizontally (x) and from 0 to 479 vertically (y). 
(Note that the origin of the user's console, row 0 column 0 is in the upper left 
corner). 

Each graphics function has an optional "mode" specification as its last 
parameter. If mode is 0, the affected pixels are turned off (cleared); if mode 
is 1 (the default) pixels are turned on; and if mode is 2, the state of each 
pixel is complemented. 

PSET (x,y{,mode}) 

Set the single point at (x,y). 

LINE (xl,yl,x2,y2 {,mode}) 

Draw a line from (x,y ) to (x ,y ). If x is negative, then draw a line from the 
last pixel position to (x ,y ). 

FILL (xl,yl,x2,y2{,mode}) 

Fill in the rectangular area where (xl ,yl) is one corner and (x2 ,y2) is the 
corner diagonally opposite. If x is negative, then one corner is the last pixel 
position affected. 

ELIPSE (xl,yl,x2,y2{,mode}) 

Draw an ellipse with center at (xl,yl) and x-radius of {(x2-xl){ and y-radius of 
{(y2-yl){. If x is negative, then the center is the last pixel affected by a 
previous graphics statement. If the y-radius is 1.2 times the x-radius, the 
ellipse will approximate a circle. 

TEXT (xl,yl string {,size {,orientation {,mode}}) 

Draw a string of characters beginning at (xl,yl). Character size ranges from 1 
to 8, where 1 is the normal character size (default), 2 is double, 3 is 4 times 
as large, 4 is 8 times as large, and so on. Orientation is 0 to 3, where 0 is 
left to right (default); 1 is bottom to top; 2 is right to left (upside-down); 
and 3 is top to bottom. Size, direction, and mode may be omitted and the 
defaults used; 2 mode alone may be omitted or mode and direction may both be 
omitted. If y is negative, the string will begin at the pixel last affected by 
a previous graphics command. 

Preliminary Input and Output Statements 9-18 



10.0 MATRIX OPERATIONS 

CS BASIC has facilities for matrix manipulation. A matrix is declared as a 
dimensioned variable, as described in Chapter 2. A matrix can have one or two 
dimensions. 

This chapter covers two main areas concerned with matrices. First, there is a 
discussion on the statements for manipulating matrices. Second, there is a 
description of virtual arrays, whereby matrices can be stored in the disk 
storage system. 

There are facilities for initializing a matrix to specific values (such as the 
identity). The MAT statements provide for adding, subtracting, multiplying, and 
inverting matrices, in addition to reading data into a matrix, and printing a 
matrix. 

The rules for declaring matrices and virtual arrays appear in Chapter 3 -
"Elements of the BASIC Language". The next two sections below discuss the 
details of how arrays are dimensioned and redimensioned. 

10.1 HOW ARRAY VARIABLES ARE DIMENSIONED 

This section describes the ways in that the CS BASIC system determines the shape 
and size of dimensioned variables. It is important that the user understand 
this process. 

An array variable or matrix is given its shape (whether one-dimensional or 
two-dimensional) either explicitly or implicitly. The shape of the array is 
determined contextually. Once the shape of an array has been determined, it 
must be used consistently thereafter. Any attempt to change the shape of an 
array results in a fatal run-time error. 

The size of an array (its dimensions) are either assigned explicitly by 
declaring the variable in a DIM statement, as described in Chapter 2, or the 
size is set to the default size by the CS BASIC interpreter. The default sizes 
for arrays corresponds to an implicit declaration of 

DIM A(lO) 

for a one-dimensional array, and to an implicit declaration of 

Preliminary Matrix Operations 10-1 



DIM,.A(lO, 10) 

for a two-dimensional array. 
(for a one-dimensional array) 
Arrays always have a zero' th 
column (two-dimensional). 

This means that the default sizes are 11 elements 
or 121 elements (for a two-dimensional array). 
element (one-dimensional) or a zero'th row and 

Storage for an array is allocated the first time that any portion of the program 
(or any immediate mode statement) is executed. At such a time, the CS BASIC 
interpreter performs a pre-pass to allocate storage for all array variables. 
Once the dimensions for an array are fixed, that is the maximum number of 
elements tha the array can ever have. But an array can be redimensioned to the 
same or a smaller size, and this is explained below in the section on array 
redimensioning. 

To explain this idea, the statement: 

120 DIM A(lOO) 

declares A as an array with 101 elements. However, if the above DIM statement 
had never appeared in the program, then the statement: 

500 MAT A = IDN(50, 50) 

would have (implicitly) declared A as a 10 by 10 array, and the statement above, 
which would otherwise redimension the array to a size larger than allocated, 
will generate a run-time error. 

Furthermore, if neither of t~e above statements had ever been executed in the 
program, the statement: 

200 MAT A = CON 

declares A as a single dimensioned array with its upper bound equal to 10, 
containing 11 elements, and initialized to all ones (l's). 

10.2 REDIMENSIONING A MATRIX 

As discussed in the previous section, a matrix initially starts with a specific 
number of elements in it. The number of elements is either explicitly 
determined by dimension information provided by the user, or default dimensions 
are provided by the system. 

Preliminary Matrix Operations 10-2 



Once the size of a matrix if fixed by the system, that matrix can never grow any 
bigger (it has a fixed amount of storage allocated for it). The matrix can, 
however, be made smaller, and can also change its shape, as long as the total 
number of elements never exceeds the maximum. This process is called 
redimensioning a matrix. 

In no case can redimensioning change the shape of an array. That is, it is not 
possible to change an array from one-dimensional to two-dimensional or vice 
versa. 

For example, suppose that the array A were declared like this: 

100 DIM A(20, 20) 

This declares A as an array with 441 elements. Now, the statement: 

MAT A= ZER(12, 16) 

redimensions A as a 12 by 16 array (containing 221 elements), while initializing 
A. It is possible that future statements can change the size yet again. For 
example, the statement: 

200 MAT A= IDN(20, 20) 

sets A to a square identity matrix, having the same number of elements as it did 
originally. 

However, consider this example: 

100 DIM C(12, 12), D(14, 14) 
120 MAT C = D 

This example is wrong, because the matrix assignment statement at line 120 is 
attempting to increase the total number of elements in the C matrix. This would 
generate a run-time error. Note that the converse assignment: 

120 MAT D=C 

is correct, because a smaller array is being assigned to a larger array. 

It is not possible to change the shape of an array from one-,dimensional to 
two-dimensional or vice versa. For example: 

100 DIM A(S, 5), B(4) 
120 MAT A = B + B 

Preliminary Matrix Operations 10-3 



The above example is incorrect, since the statement at line 120 is attempting to 
change the array A from two-dimensional to one-dimensional. 

10.3 INITIALIZING A MATRIX 

CS BASIC provides for initializing a matrix in one of three ways. The form of 
the matrix initialization statement is: 

MAT <matrix name> = ZER I CON I IDN { (<subscripts>)} 

<matrix name> is the name of the matrix to be initialized. The optional 
<subscripts>, if specified, have the effect of redimensioning the matrix. If 
the optional <subscripts> are omitted, the dimensions of the matrix are 
unchanged. 

The keywords ZER, CON or IDN have these meanings: 

ZER initializes the matrix to zeros. The result is called a zero matrix or a 
null matrix. Note that when a matrix is first created, it is initialized 
to all zeros. However, the MAT ZER is useful for initializing virtual 
arrays that are not initialized when they are created. 

CON initializes the matrix to ones. 

IDN initializes the matrix as an identity matrix (ones along the principal 
diagonal, zeros elsewhere). 

Examples of Matrix Initialization 

100 DIM line(5), checker.board(8, 8), diag(5, 5) 
110 REM 
120 MAT line = ZER 
130 REM 
140 MAT che.cker. board = CON 
150 REM 
160 MAT diag = IDN(4, 4) 

The statement at line 120 initializes all elements of the array variable 'line' 
to zero. The statement at line 140 initializes the entire 8-by-8 matrix called 
'checker.board' to all ones. The statement at line 160 initializes the 'diag' 
matrix as an identity matrix, while redimensioning that matrix to be a 4-by-4 
matrix. 

Preliminary Matrix Operations 10-4 



Note that an identity matrix need not be a square matrix. The action of IDN is 
to place a 1 in those positions of the matrix where the row and column subscript 
are equal, and 0 elsewhere inthe matrix. 

The MAT statements do not have any effect on row 0 and column 0 of a matrix. 

10.4 MATRIX INPUT AND OUTPUT 

CS BASIC provides three statements for input and output operations on whole 
matrices. The MAT READ statement reads data into a matrix from data defined in a 
DATA statement. The MAT PRINT statement prints the elements of a matrix. The 
MAT INPUT statement reads elements of a matrix from external storage devices. 
These statements are described in the following subsections. 

Note that the MAT READ and MAT INPUT statements can redimension a matrix. 

10.4.1 MAT READ -- READ MATRIX ELEMENTS FROM DATA 

The MAT READ statement reads data defined in a DATA statement, and uses that 
data to initialize the elements of a matrix. The form of the MAT READ statement 
is: 

MAT READ <matrix>{(<subscripts>)} 
{, <matrix>{(<subscripts>)} ... } 

Each element in the list of matrixes is the name of a matrix, optionally 
followed by <subscripts>. 

If a matrix name is specified without any <subscripts>, the entire matrix is 
read. 

If a matrix name is followed by dimension information, the matrix is 
redimensioned. If there is not enough data to fill the matrix as dimensioned, a 
run-time error is generated. 

The zero' th row and column of a matrix do not participate in a MAT READ 
statement. 

Preliminary Matrix Operations 10-5 



10.4.2 MAT PRINT -- PRINT MATRIX ELEMENTS 

The MAT PRINT statement prints elements from a matrix. The form of the MAT PRINT 
statement is: 

MAT PRINT {#<exp>.} <matrix>{(<subscripts>)} { , I ; } 

where <matrix> is the name of the matrix that is to be printed. 

If the name of the matrix has no dimension information following, the whole 
matrix is printed. If dimensions are specified, only those elements are 
printed. The MAT PRINT operation does not redimension the matrix, even if only a 
subset of the matrix is actually printed. 

The optional semicolon character ; specifies that the elements should be printed 
in a packed format. The command character , means that the elements are printed 
across the line, each element in a separate print zone. 

If neither a semicolon nor a comma follows the name of the matrix, each element 
is printed on a separate line. 

The zero' th row and column of a matrix. do not participate in a MAT PRINT 
statement. 

10.4.3 MAT INPUT -- READ MATRIX ELEMENTS FROM EXTERNAL STORAGE 

The MAT INPUT reads matrix elements from the user's terminal or an external 
file. The form of the MAT INPUT statement is: 

MAT INPUT {#<exp>,} <matrix>{ (<subscripts>)} 
{, <matrix>{(<subscripts>)}} 

If the optional #<exp> is present, it refers to a file descriptor from which the 
data destined for the list of matrixes is to be read. If the #/<exp> is omitted, 
data is read from the user's terminal. The MAT INPUT statement can redimension 
the target matrix. 

Note that only elements from a single line are read in a MAT INPUT statement. 
Remaining elements in the matrix are left unchanged. 

The zero' th row and column of a matrix do not participate in a MAT INPUT 
statement. 

Preliminary Matrix Operations 10-6 



10.4.4 STATUS VARIABLES FOR MAT INPUT 

There are two status functions connected with matrix input statements. 

The NUM function returns an integer value that is the number of elements input 
for a one-dimensional matrix, and the number of rows input for a two-dimensional 
matrix. 

The NUM2 function returns an integer value that is the number of elements input 
in the last row of a two-dimensional matrix. 

10.5 MATRIX ARITHMETIC OPERATIONS 

There are five arithmetical operations that can be performed on matrices, plus 
three built-in functions. 

The arithmetic operations are: 

• 

• 

• 

• 

matrix assignment, 

addition and subtraction, 

scalar multiplication, 

multiplication of conforming matrices. 
operations of the form: 

MAT C = A <op> B 

P.In all matrix arithmetic 

where <op> is +, or *, the matrix on the left of the equals sign is 
redimensioned to conform to the dimensions of the result of the operation. 

Matrix operations can only be done one at a time. That is, it is not possible to 
do: 

MAT A= B + C + D 

The zero'th row and column of a matrix do not participate in matrix operations. 

Preliminary· Matrix Operations 10-7 



.. 

10.5. 1 MATRIX ASSIGNMENT 

The matrix assignment operation assigns the value of one entire matrix to 
another. The form of the statement is: 

MAT A= B 

where A and B are matrices. The matrix assignment statement redimensions the 
target matrix if necessary. 

10.5.2 ADDITION AND SUBTRACTION OF MATRICES 

Matrix addition and subtraction is done with the familiar + and - operators in 
MAT statements. For example: 

MAT A= B + C 

is a matrix addition statement. 

Addition or subtraction may only be performed between matrices of equal 
dimensions. 

When matrices are added or subtracted, the result is the element-by-element 
addition or subtraction of the operands. 

10.5.3 SCALAR MULTIPLICATION OF MATRICES 

Scalar multiplication of a matrix involves multiplying each element of the 
matrix by a scalar constant, scalar variable, or scalar expression. 

The form of scalar multiplication is: 

MAT Y = (K) * X 

where Y and X are matrices (they can be the same matrix), and K is a scalar 
constant, scalar variable, or scalar expression. The syntax indicates that K 
must be enclosed in parentheses, even if it is a simple scalar constant or 
scalar variable. 

Preliminary Matrix Operations 10-8 



Example of Scalar Multiplication 

listnh 

100 DIM Triangle(S, 5) ! declare the matrix 
110 MAT Triangle = IDN ! make it an identity matrix 
120 MAT Triangle = (4) * Triangle ! Scalar multiply 
130 MAT PRINT Triangle; !Print it 
140 END 

Ready 

runnh 

4 0 0 0 0 
0 4 0 0 0 
0 0 4 0 0 
0 0 0 4 0 
0 0 0 0 4 

Ready 

The example shows the matrix called 'Triangle', first made into an identity 
matrix. Each element is multiplied by 4, then the matrix is printed out. 

10.5.4 MULTIPLICATION OF CONFORMING MATRICES 

Two matrices can be multiplied together using the standard* operator. In order 
for matrices to be multiplied, they must be conforming. That is, in the 
multiplication 

MAT C =A* B 

the number of columns in A must be equal to the number of rows in B. 

If the number of columns in A is not equal to the number of rows in B, a 
run-time error is generated, which can be trapped by the ON ERROR GOTO facility. 

l 

The definition of multiplication in this case is as follows. Assume that there 
are three matrices: ' 

A is a m by n matrix whose elements are addressed a 

B is a n by p matrix whose elements are addressed b 

Preliminary· Matrix Operations 10-9 



The result of the multiplication 

MAT C =A* B 

is a matrix C, which is a m by p matrix, and whose individual elements consist 
of the sum of the products: 

c = SUM(a * b ) FOR I = 1 TO n 

Note that if the C matrix is a virtual array, it must be distinct from both the 
A and B matrices. 

10.6 MATRIX FUNCTIONS 

CS BASIC supplies three functions for operating upon matrices. The built-in 
functions are: 

TRN - Take the transpose of a matrix, 
INV - Invert a matrix, 
DET - Find the determinant of a matrix. 

10.6.1 TRN -- TRANSPOSE A .MATRIX 

The TRN function computes the transpose of a matrix, meaning that the rows and 
columns of the matrix are interchanged. The target of the transpose function is 
redimensioned if necessary. 

Consider the following example, in which the matrix called d 
'Portrait' is already initialized as shown in the output from the MAT PRINT 
statement: 

listnh 

100 DIM Portrait(3, 6), Landscape(6, 3) 
105 PRINT "portrait is:" 
110 MAT PRINT Portrait; 
120 MAT Landscape = TRN(Portrait) 
125 PRINT "Landscape is:" 
130 MAT PRINT Landscape; 
140 END 

Preliminary Matrix Operations 10-10 



Ready 

RUNNH 
Portrait is: 
1 2 3 
4 5 6 
7 8 9 
10 11 12 
13 14 15 
16 17 18 
Landscape is: 
1 4 7 10 13 16 
2 5 8 11 14 17 
3 6 9 12 15 18 
Ready 

Note that in the statement: 

MAT A= TRN(B) 

matrix A must be distinct from matrix Bif matrix A is a virtual array. 

10.6.2 INV -- INVERT A MATRIX 

The INV function computes the inverse of a matrix. The matrix to be inverted 
must be a square matrix. 

If the matrix is not invertible, meaning its determinant is zero, a run-time 
error is generated. The error can be trapped by the ON ERROR GOTO facility if 
required. 

10.6.3 DET -- FIND THE DETERMINANT OF A MATRIX 

The DET function returns the determinant of the matrix whose name appeared in 
the most recently executed INV function. 

If the matrix is singular, the most recent INV function will have generated a 
run-time error. If the error has been trapped via the ON ERROR GOTO facility, 
the DET function can be used to determine this. 

Pre 1 iminary · Matrix Operations 10-11 



10. 7 VIRTUAL ARRAYS 

The virtual array facility of CS BASIC provides a means to address data 
randomly, and to hold very large amounts of data in the form of arrays. Such 
arrays look like regular arrays to the programmer, but in reality they are 
stored in the disk system. The data in virtual arrays is stored as Unformatted 
binary data. Thus there is no conversion performed whe~ reading or writing that 
data. 

Two things must be done when using virtual arrays: 

• The variables belonging to the virtual arrays must be declared, and also 
associated with a file descriptor number in a DIM statement. 

• The file associated with those arrays must be opened . 

The order of these operations is not important. 

Unlike matrices stored in memory, virtual arrays cannot be redimensioned. 

10. 7. 1 DECLARING A VIRTUAL ARRAY 

Virtual arrays are declared with a variation of the basic DIM statement, as 
described in Chapter 3 -- "Elements of the BASIC Language". 

10.7.2 OPENING AND CLOSING VIRTUAL ARRAY FILES 

Virtual array files are opened and closed with the normal OPEN and CLOSE 
statements described in Chapter 9. The form of the OPEN statement is: 

OPEN <string> {FOR INPUT I FOR OUTPUT} 
AS FILE #<expression> 

where <string> is the external name of the file, and #<expression> is the number 
of the file descriptor associated with that name. 

The other parts of the OPEN statement have their usual meaning. The RECORDSIZE, 
BLOCKSIZE, CLUSTERSIZE, and MODE options are preset for compatibility with other 
BASIC versions. 

Preliminary Matrix Operations 10-12 



When a virtual array is opened, the system does not initialize the elements of 
the array. It contains whatever data was previously written on the appropriate 
parts of the disk file. If the user desires that an array should be initialized, 
it should be done explicitly. The MAT ZER, MAT IDN, and MAT CON statements are 
convenient for this purpose. 

When assigning values to string virtual array elements, somewhat different rules 
apply from the normal actions of the assignment statement for string values. 
This is discussed in Chapter 7 -- "Assignment Statements". 

Preliminary Matrix Operations 10-13 



Preliminary Matrix Operations 10-14 



11.0 EXTERNAL LINKAGES 

External routines are called as statements in CS BASIC in the following manner: 

CALL <externalname> { ( {arg { , arg ... } ) } 

Parameters may be integer, real, or string variables, array elements, arrays, 
and expressions. Virtual arrays and virtual array elements cannot be passed as 
parameters. Pointers to the parameters are passed on the stack (call by 
reference). In the case where any array is being passed, the value passed is the 
addres_s of the zero' th element of the array -- (A(O) for the one-dimensional 
case, and A(O, 0) for the two-dimensional case). The syntax of an array 
parameter is the name of the array followed by pair of parentheses. Pointers to 
the parameters are passed on the stack. Pointers to integer (real) parameters 
point to 2-byte (8 byte) values. Pointers to string parameters point to a 
string descriptor. The string descriptor is a 4-byte pointer to the string 
value followed by a two-byte integer representing the length of the string. The 
external routine may change a string value in place only if the resulting string 
is no longer than the string value passed to it (not enforced by CS BASIC, but 
potentially disasterous if violated). 

The name of the external routine is the name of a real variable that has been 
initialized to the absolute machine address of the subroutine to be called. 

An additional, unnamed parameter consisting of a long word containing the number 
of bytes of parameters actually passed is passed as the last parameter. This 
count does not include the count itself or the return address. 

Missing parameters may be indicated by leaving the corresponding value out of 
the parameter list, such as CALL PROC(A, ,C). The value NIL (zero) will be 
pushed to indicate missing parameters. 

When a CALL statement is made the interpreter will check whether there are at 
least 2K bytes of stack space remaining. If not, a run-time error will be 
generated. 

CS BASIC implements a call by pushing pointers to the arguments and jump 
subroutine to the address specified. The called procedure must return to BASIC 
with the parameters popped off the stack. The interpreter expects a word length 
value on the stack that represents an error code. If the value is 0, no error is 
indicated. If the value is nonzero, then that value is the "BASIC error 
number," and BASIC' s usual run-time error path is taken (including ON ERROR 
GOTO). Thus, the BASIC statement 

Preliminary- External Linkages 11-1 



CALL X(A%,B%,C%) 

might be handled by a Pascal declaration of the form: 

FUNCTION X(UAR A,B,C:INTEGER;COUNT:LONGINT):INTEGER; 

or the equivalent machine language code. 

PEEK( <floating point expression> ) is an integer function that returns the 
unsigned byte (0 .. 255) at the absolute location that is the truncated value of 
the <floating point expression>. The floating point expres·sion is converted to 
a four-byte integer that is used as the address. Floating point values that 
cannot be represented in a signed four-byte integer representation have 
undefined conversions to four-byte integers. 

POKE (<floating point expression> , <integer expression> ) is a BASIC statement 
that places the least significant byte of the integer expression value into the 
location specified by the <floating point expression>. The address is computed 
in the same manner as for PEEK. 

Preliminary External Linkages 11-2 



12.0 CS BASIC PROGRAM STRUCTURE 

This chapter describes the overall structure and layout of a program written in 
CS BASIC, how subroutines are called, how functions are defined and referenced, 
and how error conditions can be trapped and handled by the user. 

There are four kinds of program constructs that may be executed "out of line" in 
a program: 

1. GOSUB and RETURN provide the familiar subroutine capability. Subroutines 
in BASIC do not have parameters as in other languages. If the caller of a 
subroutine wishes to pass parameters to the subroutine, they must be set up 
in ordinary variables, which are then global to the entire program. 

2. Single-line functions, which can have parameters. Single-line functions 
are defined with the DEF (or DEF*) statement, and their definition consists 
of a single line expression that is applied to the parameters (if any). 

3. Mul tiline functions are defined via the DEF (or DEF-ir) statement, and 
consist of BASIC statements up to and including a FNEND statement that 
marks the end of the function. A RETURN statement encountered in a 
multiline function returns control (and the value of the function) to the 
expression that referenced the function. 

4. The ON ERROR GOTO and RESUME constructs, which provides for trapping errors 
(such as divide by zero) in a program and taking whatever corrective 
actions the programmer desires. 

In principle, a CS BASIC program is simply a collection of statements. For 
instance, the existence of a subroutine is determined solely by a GOSUB 
statement making a call to a certain label in the program. The subroutine 
itself does not impose a structure on the program. A subsequent RETURN 
statement then returns control to the place in the program from which the 
subroutine was called. 

At another time, however, the collection of statements in the "subroutine" could 
simply be executed by just GOTO'ing into that body of statements, and then the 
way out of that "subroutine" might be by another GOTO. In this case, a RETURN 
statement would cause a return from the currently active subroutine, or a 
run-time error if there was no currently active subroutine. 

Preliminary CS BASIC Program Structure 12-1 



Similarly, it is possible to jump into the middle of a function and_execute some 
of the statements in it. In this case, an FNEND statement would cause a return 
from the currently active function, or a run-time error if there was no 
currently active function. 

As such, statements within subroutines and functions are unrestricted in their 
flow of control. It is possible to go "outside" the body, of a function to 
somewhere else, assign to the function from outside it, and RETURN from the 
subroutine or funct.ion from elsewhere. 

There is of course some structure in a CS BASIC program. Multiline functions 
must have their DEF and FNEND statements correctly matched. The execution of 
FOR-NEXT, WHILE-NEXT and UNTIL-NEXT loops must be correctly nested. 

12. 1 CORRECT NESTING OF SUBROUTINES AND FUNCTIONS 

The calling of subroutines and functions can be nested. 
can call other subroutines and can reference functions. 
can reference other functions, and call subroutines. 

That is, a subroutine 
Similarly, functions 

ON ERROR processing can also call subroutines and can reference functions. 

In all these constructs, execution must be properly nested.That is, a function 
that has been referenced from within a subroutine cannot exit the subroutine by 
executing a RETURN statement. The function must exit first by executing its 
FNEND statement, which returns control to the subroutine that called it. That 
subroutine can then exit correctly by executing a RETURN statement. 

Similarly, a subroutine that has been called from within a function cannot exit 
the function by executing an FNEND statement. The subroutine must first exit by 
executing a RETURN statement, then the calling function can exit correctly by 
executing its FNEND statement. 

Lastly, subroutines or functions called from within an ON ERROR processing 
routine cannot exit that routine by executing a RESUME statement. All such 
subroutines and functions must exit correctly and in the right order before any 
RESUME statement can be executed to exit from the ON ERROR processing routine. 

Preliminary CS BASIC Program Structure 12-2 



12.2 SUBROUTINES 

CS BASIC supplies the facility for subroutines: 
executed out of line. The subroutine facility 
constructing a large program from building blocks. 

bodies of code that are 
provides the means of 

A subroutine looks just like any other sequence of code in a program. The code 
body is entered when a GOSUB statement references the starting line number of 
the body of code. The subroutine is exited when a RETURN statement returns 
control to the part of the program that called the subroutine. 

12.2.1 THE GOSUB STATEMENT -- CALLING A SUBROUTINE 

The simplest means of calling a subroutine is by means of the GOSUB statement. 
The format of the GOSUB statement is: 

GOSUB <line number> 

Control is transferred to the line specified by <line number>. Tnat line is 
then the first line of the subroutine. When that subroutine executes a RETURN 
statement, program execution resumes at the statement after the GOSUB that 
called the subroutine. 

Subroutines can be nested to an arbitrary depth, that is, one subroutine can 
call another. A subroutine can call itself. 

Example of a GOSUB Statement 

200 GOSUB 1000 
210 ... 

1000 ... 

statements 

statements comprising the 
body of the subroutine 

1155 RETURN 

In the example above, the GOSUB statement at line 200 calls the subroutine whose 
first statement starts at line 1000. Execution of the subroutine's code 
continues until the RETURN statement is executed. ·At that time, control returns 
to the statement after the GOSUB statement. 

Preliminary CS BASIC Program Structure 12-3 



12.2.2 THE ON GOSUB STATEMENT 

The ON GOSUB statement supplies a multi-way transfer of control to a subroutine, 
depending on the value of an expression. The form of the ON GOSUB statement is: 

ON <exp> GOSUB <line number>{, <line number> ... } 

The expression given by <exp> is used to select one line number out of the list 
of line numbers specified. Indexing of the list of line numbers starts at one 
(1). The value of the expression <exp> is automatically converted to integer 
for the purposes of selecting from the list of line numbers. If the value of 
<exp> is less than one, or greater than the number of line numbers in the list, a 
run-time error is generated. 

Example of an ON GOSUB Statement 

ON I GOSUB 2000, 2100, 2200, 2400, 2700 

12.2.3 RETURN -- RETURNING FROM A SUBROUTINE 

The RETURN statement returns from executing a subroutine, and program execution 
resumes at the statement following the GOSUB that called the subroutine. The 
format of a RET-URN statement is simply: 

RETURN 

If a RETURN statement is encountered in a program when no previous GOSUB 
statement has been executed, a run-time error is generated. 

12.3 FUNCTIONS 

Functions in CS BASIC are analogous to mathematical functions. A function can 
be referenced as a part of an expression. A function can take arguments, which 
it uses to compute a value. The value of the function effectively replaces its 
reference in an expression. 

The DEF and DEF* statements define functions. That is, the actions that are to 
be performed on the functions arguments (if any) are defined. 

Preliminary CS BASIC Program Structure 12-4 



Fun ct ions cannot be defined in immediate mode. Functions can, however, be 
referenced in immediate mode. 

A function is later referenced when its name and arguments (if any) appear in an 
expression. Function invocations can be nested, and functions can call 
themselves. 

12.3.1 DEF AND DEF* STATEMENTS -- DEFINING FUNCTIONS 

The DEF and DEF* statements are used to define functions. The two different DEF 
statements are there for historical compatibility. From here on, the DEF* form 
is used. 

There are two forms of function definitions, namely single-line functions and 
multiple-line functions. The format of a single-line function definition is: 

DEF* FN<var>{ ( <arg> { , <arg> ... } ) } = <exp> 

The format of a multiple-line function definition is: 

DEF* FN<var> {(<arg> {, 
{<statements>} 
{FN<var> = <exp>} 
FNEND 

<arg> ... })} ! defines function 
! any number of <statements> 
! any number of these 
! indicates end of function 

In both forms, the name of the function is a variable identifier (floating, 
integer, or string), preceded by the letters FN to indicate that this is a 
function name. 

The function name is followed by an optional list of arguments. There may be 
zero to five arguments to a function. In the function definition, the arguments 
are dummy arguments. 

In the single-line version of the definition, the expression immediately 
following the equals sign designates the computation that is to be done and 
returned as the value of the function. 

In the multiple-line version, the statements in the body of the function, up to 
the FNEND statement, specify the actions that the function must perform. At 
some point in the body of a multi-line function, the function is assigned a 
value via the 

FN<var> = <exp> 

Preliminary · CS BASIC Program Structure 12-5 



line as shown in the definition above. There can be more than one such 
assignment to the function name. The value of the function is the last value 
assigned to the function name. 

A function is exited when the interpreter executes the FNEND statement. 

If a function is exited before any value has been assigned to the function, the 
value of that function is undefined in the expression that referenced the 
function, and hence the value of such an expression is unpredictable. 

The definition of a function cannot be nested inside the definition of another 
function. That is, the structure: 

100 DEF'i: FNA 
<statements for function A> 

200 DEF,.,. FNB 
<statements for function B> 

300 FNEND ! end of B 
400 FNEND ! end of A 

is an incorrect definition of functions. 

Example of a Single Line Function Definitions 

200 DEF* FNDiscriminant(A, B, C) = B 2 - 4 * A * C 

Example of Multi Line Function Definition 

430 DEF* FNLargest.Int%(A%, B%, C%) 
440 FNLargest.Int% =A% 
450 IF B% > FNLargest. Int% THEN FNLargest. Int% = B% 
455 IF C% > FNLargest. Int% THEN FNLargest. Int% = C% 
460 FNEND 

12.3.2 THE FNEND STATEMENT 

The FNEND statement indicates the end of a multiple-line function definition. 
The form fo the FNEND statement is simply: 

FNEND 

Preliminary CS BASIC Program Structure 12-6 



12.3.3 REFERENCING FUNCTIONS 

A function is referenced by stating its name and arguments in an expression. If 
a function (say, called FNParty) does not have any arguments, it can be 
referenced either by just stating its name: 

FNParty 

or by stating its name followed by empty parentheses: 

FNParty() 

Example of a Function Reference 

100 PRINT FNLargest.Int(-5%, 10%, 100) 

When the above program is run, it prints the value 100 that the function 
computed as the largest number among the actual arguments. 

12.3.4 PASSING ARGUMENTS TO FUNCTIONS 

When a function is referenced, 
assigned to the dummy arguments. 
dummy arguments is exactly as if a 

LET <dummy> = <actual> 

had been performed. 

the actual arguments in the reference are 
The assignment of the actual arguments to the 

The function's dummy arguments must agree in number with the actual arguments. 
If the dummy arguments of a function are string arguments, the actual arguments 
must also be strings. If the dummy arguments of a function are numeric 
arguments, the actual_ arguments must also be numeric. The types of numeric 
arguments are converted if necessary (and if possible) on entry to the function. 
For example, consider the following function: 

1000 DEF* FNM(I, J%, S$) 
<statements> 

1050 FNEND 

when FNM is referenced, its third argument must be a string. However, its first 
and second arguments may be either floating point or integer: 

Preliminary_ CS BASIC Program Structure 12--7 



FNM(lO.O, 10%, 'ABC') 

or 

FNM(10%, 10.0, 'ABC') 

Either of the above two forms is acceptable. 
value assigned to the second argument is 
intege·rs, the results would be undefined. 

Of course, if the floating point 
outside the allowable range for 

Arguments to functions are passed by value. This means that the function 
receives a copy of the actual arguments. The function can then alter the dummy 
arguments, without any effect on the actual values in the program that called 
the function. The following example illustrates the effects of call by value. 

100 LET I = 10 
110 LET J = 20 
130 LET Result= FNF(I,J) 
140 PRINT I, J 
190 REM 
1000 DEF* FNF-(I, K) 
1010 PRINT I, J 
1020 LET I = 13 
1030 LET K = 14 
1040 LET FNF = 99 
1050 FNEND 
9000 END 
Runnh 

10 
10 

Ready 

20 
20 

'When the function FNF is.referenced, the PRINT statement at line 1010 prints the 
value of I (local to FNF) as 10 (the value it was called with), and the value of 
J (global to the program as 20 - the value assigned in the program). Then the 
assignments to the local variables I and K in the function FNF do not change the 
values of the associated variables I and J in the program so the subsequently 
executed PRINT statement in the program prints the same values, because the 
variables I and J did not change. fuctions/arguments/scope of 

Preliminary CS BASIC Program Structure 12-8 



12.3.5 SCOPE OF FUNCTION ARGUMENTS 

Once a function's dummy variables are defined, they remain defined, local to the 
function, until the function is exited through the FNEND statement. Statements 
"outside" the body of the function can be executed, where any references to the 
function's dummy arguments access those arguments, not variables defined 
elsewhere in the program. 

To illustrate this point, consider the function: 

900 A= 99 
910 Y = FNF(3, 4) 
1000 DEF•': FNF(A. B) 
1020 LET A = 13 
1030 LET B = 14 
1035 GOTO 2100 
1040 LET FNF = 99 
1050 FNEND 
2000 REM 
2100 X = SQR(A) >br 2110 GOTO 1040 
9000 END 

In the example above, the first time that statement 2100 is executed, it is in 
the function (because of the assignment statement at line 910), and the variable 
A refers to the formal parameters of the function FNF. 

The second time that statement 2100 is executed, A refers to the global variable 
A that is defined at line 900. 

Note that after the statement at line 910 is executed, the interpreter skips 
over the function definition. 

12.4 ERROR HANDLING 

The CS BASIC language system detects errors generated during execution of a 
program. Errors fall into two major classes: 

1. Computational errors such as dividing by zero, taking the square root of a 
negative number, and so on, 

Preliminary CS BASIC Program Structure 12-9 



2. Input-Output errors such as reading from a file that is not ope~ed. In this 
class, end-of-file also appears as an error, although strictly speaking, 
end-of-file is a normal occurrence. 

Under normal circumstances, when CS BASIC detects a program error, it prints an 
error message, and terminates the program. 

It is possible, however, to set up the program such that a specific body of code 
is called when errors occur. The programmer can thus write a subroutine to 
determine the cause of error, and to attempt recovery. 

12.4.1 THE ON ERROR GOTO STATEMENT 

The ON ERROR GOTO statement caters to a user's code handling errors. The basic 
form of the ON ERROR GOTO statement is as follows: 

ON ERROR GOTO {<line number>} 

The <line number> that is the destination of the GOTO is optional. If the <line 
number> is present, and non-zero, it specifies the line number of the statement 
to which control is to be passed when a run-time error occurs. 

The ON ERROR GOTO statement must be executed before any statements that could 
generate errors. 

If the <line number> is omitted, or if it is specified as 0, the effect is to 
disable the error routine. 

Examples of ON ERROR GOTO Statements 

150 ON ERROR GOTO 9500 

200 ON ERROR GOTO ! disables the error routine 

210 ON ERROR GOTO 0 ! also disables error routine 

12.4.2 THE ERR AND ERL VARIABLES 

When an error occurs in a CS BASIC program, the interpreter sets up two 
variables that can assist in handling the error. 

Preliminary CS BASIC Program Structure 12-10 



The ERR variable contains the error number associated with that specific error. 
Appendix A contains a list of the user-recoverable error numbers and messages. 

The ERL variable contains the line number containing the statement that caused 
the error. 

12.4.3 THE RESUME STATEMENT 

The RESUME statement is used to continue the normal flow of program execution 
after an error has been handled. The RESUME statement is analogous to a RETURN 
statement in a subroutine. It should appear at the point in an error handling 
routine where the programmer has complete error handling. The format of the 
RESUME statement is: 

RESUME {<line number>} 

If the <line number> is specified, control is resumed at that specified line. A 
plain RESUME or RESUME 0 statement resumes execution at the line containing the 
statement that caused the error. If that statement is on a multiple-statement 
line, control is passed to the first DIM, DEF•':, FNEND, FOR, NEXT or DATA 
statement that precedes the erroneous statement. If none of these six 
statements appear on the line in question, control is passed to the first 
statement on that line. 

Note that if a RESUME statement is executed when no previous ON ERROR GOTO 
statement has been executed, a fatal run-time error is generated. 

If an ON ERROR processing routine has called any subroutines or referenced any 
functions in the course of its processing, those subroutines or functions must 
be exited correctly, and in the right order before the RESUME statement can be 
executed. 

Preliminary. CS BASIC Program Structure 12-11 



Preliminary CS BASIC Program Structure 12-12 



A.O APPENDIX A: CS BASIC ERROR MESSAGES 

This appendix is a list of the error messages that CS BASIC can issue to the 
user. The list is divided into two sections. The first contains those errors 
that are recoverable; the second se~ of errors are fatal and must be corrected 
before the program can be rerun. 

A.1 RECOVERABLE-ERROR MESSAGES 

These error messages can be generated via the ON ERROR GOTO facility of the 
language. The number shown in the "Error Number" column is the number that 
appears in the ERR variable. 

4 Cannot write values of a virtual array to channel 

The actual writing of a file buffer or output characters to the file 
system failed. 

4 Error in writing file 

The actual writing of a file buffer or output characters to the file 
system failed. 

4 Error writing virtual array element to channel 

The actual writing of a file buffer or output characters to the file 
system failed. 

4 Can't write to file 

The actual writing of a file buffer or output characters to the file 
system failed. 

5 Can't open (filename) 

The file specified in an OPEN statement cannot be opened. The 
filename may be misspelled. 

Preliminary Error Messages A-1 



5 Can't find (filename) 

The system cannot locate the file specified in an OPEN statement. 
Possibly due to a misspelling. 

9 Channel not open 

An input-output operation was performed to a channel that has not yet 
been OPEN' ed. 

9 FIELD channel not open 

A FIELD statement is referencing an input-output channel that has not 
yet been OPEN' ed. 

9 Attempt to reference an unopened channel 

An input-output operation was performed to a channel that has not yet 
been OPEN' ed. 

11 End of file on device 

A data input operation attempted to read past the end of a file. 

31 Buffer sizes smaller than default not supported 

In an OPEN statement, a RECORDSIZE option specified a buffer size 
smaller than the default value (512 bytes). 

31 Can't have USING value larger than recordsize 

A using option on a GET or PUT statement has a larger value than the 
size of the buffer. 

35 Stack overflow 

Too many nested GOSUBS or function calls. This situation can arise 
when a subroutine or function calls itself indefinitely with no means 
of terminating the nesting. 

43 Virtual array must be on disk file 

An attempt has been made to open a virtual array file on a device that 
is not a disk (a terminal, for instance). 

Preliminary Error Messages A-2 



45 Virtual array not yet open 

An attempt was made to reference a virtual array before its associated 
file was OPEN' ed. 

46 Channel number out of range in CLOSE statement 

Channel numbers must be between 1% and 12%. 

46 Channel number out of range in OPEN statement 

Channel numbers must be between 1% and 12%. 

46 Channel number out of range 

Channel numbers must be between 0% and 12% for statements other than 
OPEN and CLOSE. 

50 Bad input format in READ or INPUT statement 

A READ or INPUT statement detected data that is syntactically 
incorrect. 

52 Integer too big 

Integer overflow or underflow. Integers must be between -32768 and 
+32767. 

55 Subscript out of range 

An attempt was made to reference an array element outside the defined 
bounds of the array. 

55 Array index error 

An attempt was made to reference an array element outside the defined 
bounds of the array. 

55 Dimensions or maximum size prevents redimensioning 

This message arises from one of the following problems: 

• 

Preliminary 

An attempt was made to redimension a one-dimensional array to a 
two-dimensional array, or vice versa, or, 

Error Messages A-3 



• An attempt was made to redimension an array to a size with more 
elements than were originally allocated for that array. 

55 Current matrix dimensions smaller than specified 

In a MAT PRINT statement of the form 

MAT PRINT A(x, y) 

the dimensions x and y exceed the current size of a two-dimensional 
matrix. 

55 Current matrix dimension smaller than specified 

In a MAT PRINT statement of the form 

MAT PRINT A(x) 

the dimension x exceeds the current size of a one-dimensional matrix. 

55 Negative bounds not allowed 

Dimensions for a matrix must be positive integers. 

55 Matrix dimension error 

Operands to a matrix operator do not match. For example, in the 
matrix addition operation: 

MAT A= B + C 

the dimensions of the B and C matrices must be the same. 

55 Matrix must be square in order to compute inverse 

The INV function can invert only a square matrix. 

56 matrix cannot be inverted 

An attempt was made to invert a matrix that is singular. 

57 Out of data in READ statement 

A READ statement tried to read more data than defined in DATA 
statements. 

Preliminary Error Messages A-4 



58 ON GOTO range error 

The index value in an ON GOTO statement was outside the specified 
range of line numbers. 

58 ON GOSUB range error 

The index value in an ON GOSUB statement was outside the specified 
range of line numbers. 

61 Divide by zero 

Attempt to divide by zero (integers only). 

63 FIELD overflows buffer 

A FIELD statement tried to allocate more space than was available in 
the input-ou~put buffer. 

A.2 NONRECOVERABLE-ERROR MESSAGES 

The error messages listed below refer to fatal errors that the programmer cannot 
recover from via the ON ERROR GOTO facility. 

Invalid label number in CHAIN 

A line number specified in a CHAIN statement does not exist in the 
CHAIN'ed to program. 

CHAIN file not found 

The file specified in a CHAIN statement cannot be found. 

Only blanks allowed between \ in USING string 

Characters other than spaces appear between consecutive \ characters 
in a PRINT USING statement. 

Missing matching \ in USING string 

There is an odd number of \ characters in a PRINT USING statement. 

Incorrect USING format to print string 

Preliminary Error Messages A-5 

I' 



A USING string in a PRINT USING statement has characters that are not 
correct format characters for the kind of data to be printed. 

Must not GET Or PUT virtual array or I/O file 

A GET or PUT statement has been applied to a file that was previously 
used for ASCII input-output or for virtual array storage. 

Must not use file as virtual array and for I/O 

A file that was previously used for _virtual array storage has been 
referenced for ASCII input-output or for block input-output. 

Can't redimension virtual array 

An attempt was made to redimension a virtual array. 

Virtual array must not be both source and destination 

In a matrix operation of the form: 

MAT A= B * C 

where the matrix A is a virtual array, it must be distinct from the 
matrices B and C in the same operation. Similarly, in a matrix 
operation such as 

MAT A = TRN(B) 

where the matrix A is a virtual array, it must be distinct from the 
matrix B. 

String operand has incorrect format 

A statement in the program has attempted to do string arithmetic on a 
character string that does not have the correct format for a numeric 
string value. The only characters allowed in a numeric string are 
digits, plus sign(+), minus sign(-), and decimal point(.). 

Result of string arithmetic too long 

A string arithmetic operation generated a result that was longer than 
56 characters. 

Attempt to divide by zero in string arithmetic 

It is not possible to divide by zero in string arithmetic. 

Preliminary Error Messages A-6 



Result string too long 

The string resulting from a NUM1$ function must be less than 256 
characters in length. 

An ASCII I/O to virtual array or Block I/O file 

A file that was previously used for virtual array storage or for block 
input-output has been referenced in an INPUT or PRINT statement. 

Null string can't be used as USING string 

A USING string in a PRINT USING statement must have some characters in 
it. 

Incorrect USING format to print numeric 

A format character (such as!) was used for a numeric field. 

Must not use $$ format with exponential notation 

The exponential format 
format. 

cannot be used in conjunction with the $$ 

Must not use * fill with exponential notation 

The exponential format 
format. 

cannot be used in conjunction with the * 

Can't use* fill with leading minus sign 

If the * fill character is used in a PRINT USING statement, only 
trailing minus signs may be used. 

Can't use$$ format with leading minus sign 
,, 

If the $$ format is used in a PRINT USING statement, only trailing 
minus signs may be used. 

Missing END statement 

There is no END statement in the program, 

Syntax error 

The interpreter detects an incorrect statement syntax. 

Preliminary. Error Messages A-7 · 



. 
RETURN without GOSUB 

A RETURN statement has been executed, but no previous GOSUB had been 
executed. 

RETURN from DEF FNX 

A RETURN st.atement was encountered in the body of a multiline 
fim.ction. RETURN can be used only to return from a GOSUB subroutine. 

GOTO target does not exist 

The line number specified in a GOTO statement does not exist in the 
program. 

GOSUB target does not exist 

The line number specified in a GOSUB statement does not exist in the 
program. 

Can't LSET or RSET Virtual arrays 

An element of a string virtual array may not be the target of an LSET 
or RSET statement. LSET and RSET can be applied only to strings in 
memory or to string names associated with an input-output buffer 
through a FIELD statement. 

Can't RESUME 

An attempt has been made to RESUME execution of a program, when no ON 
ERROR routine has been entered. 

Can't CONTINUE 

A CONT command can be used only after the program has stopped as a 
result of a previously executed STOP statement. 

Call of undefined function 

A reference was made to a function that does not exist in the program. 

Can't use Virtual ·arrays in FIELD statement 

A string variable names in a FIELD statement is the name of a virtual 
array element. Only ordinary string names may be used in a FIELD 
statement. 

Preliminary Error Messages A-8 



Negative FIELD width 

Size of a field in a FIELD statement must be positive. 

Preliminary. Error Messages A-9 



Preliminary Error Messages A-10 



B.O APPENDIX B: IMPLEMENTATION NOTES 

This appendix describes the ways the CS BASIC represents data storage and the 
mechanisms for passing arguments to subroutines and functions. 

B.1 STORAGE ALLOCATION 

An integer value occupies 16 bits (two bytes). 

A floating point value occupies 64 bits (eight bytes). A floating point number 
has a sign bit, an 11-bit exponent, and a 52-bit mantissa. 

B.2 DATA REPRESENTATIONS 

Whatever the size of the data element in question, the most significant bit of 
that element is always in the lowest numbered byte. See diagrams below. 

Representation of Integers 

bit -->15 0 
+--------+--------+ 

Integer I byte 0 I byte 1 I 
+--------+--------+ 

Representation of Floating Point 

Floating point data elements are represented according to the proposed IEEE 
standard described in Computer magazine of March, 1981. The diagram below 
illustrates the representation. 

Preliminary Implementation B-1 



63 62 52 51 0 
+---+----------------+----------------------------------------+ 
I S I Exponent I Mantissa I 
+---+----------------+----------------------------------------+ 

I I I 
I I Mantissa (52 + 1 bits) 
I Exponent, biased by 1023 

Sign 

Floating Point Representation 

The parts of floating point numbers are as follows: 

• a one-bit sign bit designated by "s" in the diagrams above. The sign bit is 
a 1 if, and only if, the number is negative. 

• a biased exponent. The exponent is eleven bits. The values of all zeros and 
all ones are reserved values for exponents. 

• a normalized mantissa, with the high-order ;.bf 163;1;.pf; bit "hidden". 
The mantissa is 52 bits for a floating point number. A floating pointnumber 
is represented by the form: 

exponent-bias 
2 * 1.f 

where 'f' is the bits in the mantissa. 

Representation of Extreme Floating Point Numbers 

zero (signed) 

denormalized numbers 

Preliminary 

is represented by an exponent of zero, and a 
mantissa of zero. 

are a product of "gradual underflow". They are 
non-zero numbers with an exponent of zero. The 
form of a denormalized number is: 

exponent-bias+! 
2 * O.f 

where '£' is the bits in the mantissa. 

Implementation B-2 



signed infinity (that is, affine infinity) is represented by the 
largest value that the exponent can assume (all 
ones), and a zero mantissa. 

Not-a-Number (NaN) is represented by the largest value that the 
exponent can assume (all ones), and a non-zero 
mantissa. The sign is usually ignored. 

Normalized floating point numbers are said to contain a "hidden" bit, 
providing for one more bit of precision than would normally,be the case. 

Hexadecimal Representation of Selected Numbers 

+-----------+----------+------------------+ 
I Value I REAL I PRECISION I 
+-----------+----------+------------------+ 

+o 00000000 0000000000000000 
-o 80000000 8000000000000000 

+1.0 3F800000 3FFOOOOOOOOOOOOO 
-1.0 BF800000 BFFOOOOOOOOOOOOO 

+2.0 40000000 4000000000000000 
+3.0 40400000 4008000000000000 

+Infinity 7F800000 7FFOOOOOOOOOOOOO 
-Infinity FF800000 FFFOOOOOOOOOOOOO 

NaN 7F8xxxxx 7FFxxxxxxxxxxxxx 
+-----------+--------~-+------------------+ 

Deviations from the Proposed IEEE Standard 

Deviations from the proposed IEEE standard in this implementation are as 
follows: 

• affine mapping for infinities, 

• normalizing mode for denormalized numbers, 

• rounds approximately to nearest - 7 or more guard bits are computed, but the 
"sticky" bit is not, 

Preliminary, Implementation B-3 



· • exception flags are not implemented, 

• conversion between binary and decimal is not implemented. 

B.3 ARITHMETIC OPERATIONS ON EXTREME VALUES 

' ~' 
This subsection deacribes the results derived from applying the basic arithmetic 
operations on combinations of extreme values and ordinary values. 

No traps or any other exception actions are taken. 

All inputs are assumed to be positive. Overflow, underflow, and cancellation 
are assumed not to happen. 

In all the tables below, the abbreviations have the following meanings: 

+----------~---+--------------------------------------+ 
I Abbreviation I Meaning I 

+--------------+--------------------------------------+ 
I DEN I Denormalized Number I 

I NUM I Normalized Number I 
I Inf I Infinity (positive or negative) I 
I NaN I Not a Number I 

I Uno I Unordered I 
+--------------+--------------------------------------+ 

+-----------------------------------------------------+ I Addition and Subtraction I 
+-----------------------------------------------------+ I Left I Right Operand I 
I Operand I 0 I Den I Num I Inf I NaN I 

I +--------+-------+-------+-------+-------+ 
I 0 I 0 I Den I Num I Inf I NaN I 

+------------+--------+-------+-------+-------+-------+ 
I Den I Den I Den I Num I Inf I NaN I 

+------------+--------+-------+-------+-------+-------+ 
I Num I Num I Num I Num I Inf I NaN I 

+------------+--------+-------+-------+-------+-------+ 
I Inf I Inf I Inf I Inf I Note ll NaN I 

+------------+--------+-------+-------+-------+-------+ 
I NaN I NaN I NaN I NaN I NaN I NaN I 

+------------+--------+-------+-------+-------+-------+ 

Preliminary Implementation B-4 



Note 1: Inf + Inf = Inf; Inf - Inf = NaN 

+-----------------------------------------------------+ I Multiplication I 
+-----------------------------------------------------+ 
I Left I Right Operand I 

I 9perand I 0 I Den I Num Inf I NaN I 

I +--------+-------+-------+-------+-------+ 
I o I o I o I o I NaN I NaN I 

+------------+--------+-------+-------+-------+-------+ 
I Den I 0 I 0 I Num I Inf I NaN I 

+------------+--------+-------+-------+-------+-------+ 
I Num I 0 I Num I Num I Inf I NaN I 
+------------+--------+-------+-------+-------+-------+ 
I Inf I NaN I Inf I Inf I Inf I NaN I 

+------------+--------+-------+-------+-------+-------+ 
I NaN I NaN I NaN I NaN I NaN I NaN I 

+------------+--------+-------+-------+-------+-------+ 

+-----------------------------------------------------+ 
I Division I 
+-----------------------------------------------------+ I Left I Right Operand I 
I Operand I 0 Den I Num I Inf NaN I 

I +--------+-------+-------+-------+-------+ 
I o I NaN I o I o I o I NaN I 

+------------+--------+-------+-------+-------+-------+ 
I Den I Inf I Num I Num I 0 I NaN I 

+------------+--------+-------+-------+-------+-------+ 
I Num I Inf I Num I Num I 0 I NaN I 

+------------+--------+-------+-------+-------+-------+ 
I Inf I Inf I Inf I Inf I NaN I NaN I 

+------------+--------+-------+-------+-------+-------+ 
I NaN I NaN I NaN I NaN I NaN I NaN I 

+- ----- ------+------- -+-------+-------+-·------+-- -----+ 

Cl 

Preliminary Implementation B-5 



+-----------------------------------------------------+ 
I Comparison I 
+-----------------------------------------------------+ 
I Left I Right Operand I 

I Operand I 0 Den I Num Inf I NaN I 

I +--------+-------+-------+-------+-------+ 
I o I = I < I < I < I Uno I 

+----~-------+--------+-------+-------+-------+-------+ 
I Den I > I I < I < I Uno I 

+---------- --+---- -·- --+-------+---·- -- -+-------+-------+ 
I Num I > I > I I < I Uno I 
+------------+--------+-------+-------+-------+-------+ 
I Inf I > I > I > I I Uno I 

+------------+--------+-------+-------+-------+-------+ 
I NaN I Uno I Uno I Uno I Uno I Uno I 

+------------+--------+-------+-------+-------+-------+ 

Notes: 

NaN compared with NaN is Unordered, and also results in inequality. 

+O compares equal to -0. 

+-----------------------------------------------------+ 
I Max I 
+-----------------------------------------------------+ 
I Left I Right Operand I 
I Operand I 0 I Den I Num I Inf I NaN I 

I +--------+-------+-------+-------+-------+ 
I 0 I 0 I Den I Num I Inf I NaN I 

+------------+--------+-------+-------+-------+-------+ 
I Den I Den I Den I Num I Inf I NaN I 

+------------+--------+-------+-------+-------+-------+ 
I Num I Num I Num I Num I Inf I NaN I 

+------------+--------+-------+-------+-------+-------+ 
I Inf I Inf I Inf I Inf I Inf I NaN I 

+------------+--------+-------+-------+------~+-------+ 
I NaN I NaN I NaN I NaN I NaN I NaN I 

+------------+--------+-------+-------+-------+-------+ 

Preliminary Implementation B-6 



+-----------------------------------------------------+ 
I Min I 
+-----------------------------------------------------+ 
I Left I Right Operand I 
I Operand I 0 I Den I Num I Inf I NaN I 

I +--------+-------+-------+-------+-------+ 
I o I o I o I o I o I NaN I 

+------------+--------+-------+-------+-------+-------+ 
I Den I 0 I Den I Den . I Den I NaN I 

+------------+--------+-------+-------+-------+-------+ 
I Num I 0 I Den I Num I Num I NaN I 
+------------+--------+-------+-------+-------+-------+ 
I Inf I 0 I Den I Num I Inf I NaN I 
+------------+--------+-------+-------+-------+-------+ 
I NaN I NaN I NaN I NaN I NaN I NaN I 
+------------+--------+-------+-------+-------+-------+ 

B.4 HOW STRINGS ARE STORED 

Strings are stored in a storage area that is allocated for them 
as required. A string variable is actually a descriptor containing 
the address of the storeage area, and the length of the string, as 
shown: 

+-------------------------+-----------------+ 
I Four-byte Address I Two-byte Length I 
+-------------------------+-----------------+ 

Preliminary Implementation B-7 



Preliminary Implementation B-8 



C.O APPENDIX C: LANGUAGE SUMMARY 

This appendix provides a "quick reference" summary of the syntactic 
constructions of the CS BASIC language. The organization of this appendix 
follows that of the entire manual, and the major sections in this appendix 
correspond one for one with the chapters which have gone before. 

C.1 NOTATION USED FOR SYNTACTIC DEFINITIONS 

Words appearing in upper case, such as LET, are CS BASIC keywords. 

In general, special characters such as = signs represent themselves when they 
appear in statement syntax. 

The "angle brackets" < and > enclose elements of the language. 

Elements which appear in the braces { } are optional. 

The vertical bar I character stands for 
of elements. 

II II or . It separates choices in the list 

When an element is followed by an ellipsis( ... ), it indicates that the element 
may Qe repeated. 

C.2 ELEMENTS OF THE BASIC LANGUAGE 

The CS BASIC character set cons is ts of 26 upper case lette.rs, 26 lower case 
letters, and 21 other characters. 

A <letter> is one of the 52 characters: 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 
a b c d e f g h i j k 1 m n o p q r s t u v w x y z 

Preliminary . Language Summary C-1 



A <digit> is one of the ten characters: 

0 1 2 3 4 5 6 7 8 9 

An <alphanumeric character> is a <letter> or a <digit>. 

The other printing characters consist of the following characters: 

Char- I Char-
act er Meaning I act er Meaning 

I I Blank or space I = Assignment 
I + I Addition I Subtraction 
I * I Multiplication I I Division 
I /\ or .. l: .. k I Exponentiation I Decimal Point 
I I Multiple Statements! & Continuation 
I ( i Left Parenthesis I ) Right Parenthesis 
I I Compressed I ; Record Suppression 
I $ I String Variable I % Integer Variable 
I 

I I String Delimiter I II String Delimiter 
I < I Less than sign I > Greater than sign 
I # I Number Sign I Comment Starter 

CS BASIC uses the ASCII character set. 

Line Numbers and Statements 

There may be only one line number per statement. Line numbers may be in the 
range 1 through 32767. Line number 0 is used for special purposes, for example 
in ON ERROR GOTTO statements. 

A line number at the start of a line signals the presence of a (possibly empty) 
statement which is part of the BASIC program itself. 

If a statement is not preceded by a line number, it is considered an "immediate 
mode" statement, and is executed immediately. 

To get multiple statements on a line, each statement on the line, except the 
last one, is terminated by either a colon : or by a reverse slash character \ 

Continuation of a statement is signalled by an ampersand character & at the end 
of the line, before the carriage return. 

Preliminary Language Summary C-2 



Comments are indicated in one of two ways: 

• by using a REM statement, 

• using a ! sign after a statement 

Identifiers 

An identifier is defined syntactically as: 

<letter> {<letter> I <digit> I .... } 

Identifiers are further qualified by using a trailing % sign to indicate an 
integer variable, or by a trailing $ sign to indicate a string variable. An 
unqualified identifier is automatically assumed to denote a floating point 
variable. 

Identifiers which are the names of functions are denoted by the letters FN in 
front of them. 

Constants 

The definition of an <integer> is: 

<digit> {<digit> ... } 

The definition of a numeric constant is: 

{ + I - } { <integer> } { } { <integer } { E I e { + I - } <integer> } 

Numeric constants are floating point values, unless they are suffixed with a% 
sign, in which case they are of type integer. Note that there are some 
exceptions to the rule, which are defined in chapter 2. 

Numeric variables are designated by identifiers. A plain identifier represents 
the name of a floating point variable. If the name of the variable is followed 
by a percent sign, it means that the variable is to contain integer data. 

String constants represent a sequence of ASCII characters. A string constant is 
delimited by either apostrophes ( ' ) or by double quote signs ( " ) . 

To represent the string delimiter as a character in a string, two delimiters 
must be typed. 

Preliminary Language Summary C-3 



A string variable is an identifier followed by a$ sign. 

Dimensioned Variables 

Dimensioned variables are introduced with the DIM (DIMension) statement. 
Floating, integer, and string variables can be dimensioned. 

The format of the DIM statement is: 

<line number> DIM <identifier> (<subscripts>) 
{ , <identifier> (< subscripts>) } 

where <subscripts> is: 

<upper bound> { , <upper bound> } 

and <upper bound> is a numeric constant which determines the upper bound of that 
dimension of the array. Dimensioned variables can have one or two dimensions. 

The bounds of each dimension in the declaration must be a positive, non-zero 
integer. The bounds specify the upper bounds only; there is no facility for 
specifying the lower bound of a dimension. In all cases, the lower bound of a 
dimension is zero. 

Virtual arrays are declared in a variant of the DIM statement, the format of the 
declaration is: 

DIM #<integer constant>, <identifier> (<subscripts>) 
{ , <identifier>(<subscripts>) ... } 

The <integer constant> is an integer in the range 1 through 12, which is the 
internal file designator of a desk file. 

Initial values assigned to variables are: 

0.0 
0% 
II II 

for a floating variable, 
for an integer variable, 
(the null string) for a string variable. 

The same variable name can be used for more than one type of object with no 
ambiguity. 

Preliminary Language Summary C-4 



C.3 EXPRESSIONS 

Arithmetic Operators 

!Operator Meaning Precedence 

Exponentiation Highest 

+ Unary Plus 
Intermediate 

Unary Minus 

* Multiplication 
Intermediate 

I Division 

+ Addition 
Lowest 

Subtraction 

Arithmetic Relational Operators 

Operator Meaning 

= Equal To 
< Less Than 
<= Less Than or Equal To 
> Greater Than 
>= Greater Than or Equal To 
<> Not Equal To 
~ Approximately Equal To 

- Preliminary Language Summary C-5 



Logical Operators 

/Operator/ Meaning Precedence 

NOT Logical Negation Highest 

AND Logical Conjunction Intermediate 

OR Logical Disjunction 
XOR Logical Exclusive OR Intermediate 

IMP Logical Implication 
EQU Logical Equivalence Lowest 

String Operators 

/Operator/ Meaning 

= Equivalent 
< Less Than 
<= Less Than or Equal To 
> Greater Than 
>= Greater Than or Equal To 
<> Not Equal To 
-- Identical 

Preliminary Language Summary C-6 



Logical Operators on Integers 

A B 

0 0 
0 1 
1 0 
1 1 

A B 

0 0 
0 1 
1 0 
1 1 

A B 

0 0 
0 1 
1 0 
1 1 

A AND B 

0 
0 
0 
1 

A XOR B 

0 
1 
1 
0 

A IMP B 

1 
1 
0 
1 

C.4 ASSIGNMENT STATEMENTS 

Simple Assignment Statements 
.', 

A B 

0 0 
0 1 
1 0 
1 1 

A B 

0 0 
0 1 
1 0 
1 1 

A 

0 
1 

{ Ii,T } <variable> = <expression> 

Multiple Assignment 

A OR B 

0 
1 
1 
1 

A EQV B 

1 
0 
0 
1 

NOT A 

1 
0 

{ LET } <var> { , <var> . . . } = <expression> 

Preliminary Language Summary C-7 



String Assignment 

{ LET } <stringvar> = <expression> 

LSET and RSET - Change Strings in Place 

LSET <stringvar> { , <stringvar> } = <string> 

RSET <stringvar> { , <stringvar> } = <string> 

CHANGE - Character and Numeric Conversion 

CHANGE <from var> TO <to var> 

If <from_ var> is a string, <to_ var> must be an integer array variable. If 
<from var> is an integer array variable, <to var> must be a string. 

C.5 CONTROL STATEMENTS 

IF THEN and IF GOTO Statements 

IF <condition> THEN <statements> 

IF <condition> THEN <line number> 

IF <condition> GOTO <line number> 

IF-THEN-ELSE Statement 

THEN <statement> 
{ELSE <statement>} 

IF <condition> THEN <line number> 
{ELSE <statement>} 

GOTO <line number> 

Preliminary Language Summary C-8 



WHILE NEXT Statement 

WHILE <condition> 
<statement> 

NEXT 

UNTIL NEXT Statement 

UNTIL <condition> 
<statements> 

NEXT 

FOR NEXT Statement 

FOR <var> = <expl> TO <exp2> { STEP <exp3> } 
. . . . Statements subordinate to the FOR 

NEXT <var> 

FOR WHILE and FOR UNTIL Statements 

FOR <var> = <expl> { STEP <exp2> } WHILE <condition> 
. . . . Statements subordinate to the FOR 

NEXT <var> 

FOR <var> = <expl> { STEP <exp2> } UNTIL <condition> 
.... Statements subordinate to the FOR 

NEXT <var> 

GOTO Statement 

GOTO <line number> 

ON GOTO Statement 

ON <exp> GOTO <list of line numbers> 

Prelimj_nary Language Summary C-9 



Statement Modifiers 

<statement> IF <condition> 

<statement> UNLESS <condition> 

<statement> FOR <var> = <expl> TO <exp2> { STEP <exp3> } <statement> WHILE 
<condition> 

<statement> UNTIL <condition> 

C.6 INPUT AND OUTPUT STATEMENTS 

DATA - Define Data in Program 

DATA <value> { , <value> } 

READ - Read Data From DATA List 

READ <variable> { , <variable> } 

RESTORE - Reposition to Start of DATA 

RESTORE 

OPEN - Open a File for Data Transfer 

OPEN <string> {FOR INPUT I FOR OUTPUT} AS FILE #<exp> 
{, RECORDSIZE <exp>}{, CLUSTERSIZE <exp>} 
{, FILESIZE <exp>{, MODE <exp>} 

CLOSE - Close a File 

CLOSE <exp>{, <exp> ... } 

PRINT - Print on File 

PRINT {#<exp>,} <expr> {, <expr> ... } 

Preliminary Language Summary C-10 



PRINT USING - Formatted Printing 

PRINT {#<expr>,} USING <string>, <expr> {,<expr> ... } 

INPUT - Input Data from File 

INPUT {#<expr>,} {<string>;} <var> 
{{,<string>;} <var> ... } 

INPUT LINE - Input a String from a File 

INPUT LINE {#<expression>,} <string variable> 

GET and PUT - Read or WRITE Data 

GET #<exprl> {,RECORD <expr2> I BLOCK <expr2>} 

, COUNT <expr3>, USING <expr4> 

PUT #<exprl> {,RECORD <expr2> I BLOCK <expr2>} 
, COUNT <expr3>, USING <expr4> 

FIELD - Set Buffer Structure 

FIELD #<expr>, <expr> AS <stringvar> 
{, <expr> AS <stringvar> ... } 

C. 7 MATRIX MANIPULATION 

Initializing a Matrix 

MAT <matrix>= ZER I CON I IDN {(dimensions)} 

ZER initializes the matrix to zeros. 

CON initializes the matrix to ones. 

Preliminary Language Summary C-11 



IDN initializes the matrix as an identity matrix 
(ones along the principal diagonal, zeros 
elsewhere). 

Matrix Input and Output 

MAT READ <identifier> {(<subscripts>)} 
{, <identifier>{ (<subscripts>)} ... } 

MAT PRINT {#exp>,} <matrix name>.{, I ; } 

MAT INPUT {#<exp>,} <matrix>{(<dimensions>)} 
{, <matrix>{(<dimensions>)}} 

NUM returns the number of elements input for a one-dimensional matrix, and the 
number of rows input for a two-dimensional matrix. 

NUM2 returns the number of elements input in the last row of a two-dimensional 
matrix .. 

Matrix Arithmetic Operations 

• assignment, 

• addition and subtraction, 

• scalar multiplication, 

• multiplication of conforming matrices . 

Matrix Functions 

TRN - Take the transpose of a matrix, 
INV - Invert a matrix, 
DET - Find the determinant of a matrix. 

Virtual Arrays 

DIM# <integer constant>, <matrix>{, <matrix> ... } 

The form of a string virtual array is: 

<identifier>}(<dimensions>{=<integer constant>} 

Preliminary Language Summary G-12 



C.8 PROGRAM STRUCTURE 

Subroutines 

GOSUB <line number> 

ON <exp> GOSUB <line number>{, <line number> ... } 

RETURN 

Functions 

DEF* FN<var>{(<var>{(<arg> {<arg> ... })} 

DEF* FN<var> {, <arg> ... })} 
{<statements comprising the body of the function } {FN<var> =<exp>} 
FNEND 

Error Handling 

ON ERROR GOTO {<line number>} 

The ERR variable contains the error associated with that specific error. 

The ERL variable contains the line number containing the statement which caused 
the error. 

RESUME {<line number>} 

The END and STOP Statements 

The END and STOP statements both terminate program execution.~ 

CHAIN - Execute Another Program 

CHAIN <string> {LINE} {<exp>} 

Preliminary Language Summary C-13 



Preliminary Language Summary C-14 



D.O APPENDIX D: RESERVED WORDS IN CS BASIC 

Statement names and function names in the BASIC language are reserved words, and 
cannot be used for any other purpose. This is a list of the reserved words. 
Note that all these words are actually used in this implementation, but they are 
retained for compatibility with other implementations of CS BASIC. 

ABS COMMON END GE 
ABS% COMP% EQ GET 
ACCESS CON EQV GO 
ALLOW CONNECT ERL GO SUB 

ALTERNATE CONTIGUOUS ERN$ GOTO 
AND cos ERR GT 
APPEND COUNT ERROR HT 
AS" CR ERT$ IDN 

ASCII CTR LC ESCAPE IF 
ATN CVT$$ EXP IMP 
BACK CVT$% EXTEND INDEXED 
BEL CVT$F FF ECHO 

BLOCK CVT%$ FIELD INSTR 
BLOCKSIZE CVTF$ FILE INT 
BS DATA FILESIZE INV 
BUCKETSIZE DATE$ FILL KEY 

BUFFER DEF FILL$ KILL 
BUFSIZE DELETE FILL% LEFT 
BY DENSITY FIND LEFT$ 
CALL DESC FIX LEN 

CCPOS DET FIXED LET 
CHAIN DIF$ FNEND LF 
CHANGE DIM FNEXIT LINE 
CHANGES DIMENSION FOR LINPUT 

CHR$ DUPLICATES FORMAT$ LOC 
CLOSE INPUT FROM LOG 
CLUSTERSIZE EDIT$ FSP$ LOGlO 
COM ELSE FSS$ LSET 

Preliminary Version Reserved Words D-1 



MAGTAPE PEEK SCRATCH TEMPORARY 
MAP PI SEG% THEN 
MAT PLACE$ SEQUENTIAL TIME 
MID POS SGN TIME$ 

MID$ PRIMARY SI TO 
MODE PRINT SIN TRM$ 
MODIFY PROD SLEEP TRN 
MOVE PUT so UNDEFINED 

NAME QUO$ SP UNLESS 
NEXT RAD$ SPACE$ UNLOCK 
NOCHANGES RANDOM SPAN UNTIL 
NODUPLICATES RANDOMIZE SPEC UPDATE 

NO ECHO RCTRLC SQR USEROPEN 
NONE RCTRLO STATUS USING 
NOREWIND READ STEP VAL 
NOS PAN RECORD STOP VAL% 

NOT RECORDSIZE STR$ VALUE 
NUL$ RECOUNT STREAM VARIABLE 
NUM REF STRING$ VIRTUAL 
NUM$ RELATIVE SUB VT 

NUM1$ REM SUBEND WAIT 
NUM2 RESET SUBEXIT WHILE 
ON RESTORE SUM$ WINDOWSIZE 
ONECHR RESUME SWAP% WRITE 

ONERROR RETURN SYS WRKMAP 
OPEN RIGHT TAB XLATE 
OR RIGHT$ TAN XOR 
ORGANIZATION RND TAPE ZER 
OUTPUT RSET TASK 

Preliminary Version Reserved Words D-2 



E.O APPENDIX E: ASCII CHARACTER SET 

hex char hex char hex char hex char 

00 NUL 20 SP 40 @ I 60 
01 SOH 21 ! 41 A I 61 a 
02 STX 22 II 42 B I 62 b 
03 ETX 23 ti 43 c I 63 c 
04 EOT 24 $ 44 D I 64 d 
OS ENQ 2S % 4S E I 6S e 
06 ACK 26 & 46 F I 66 f 
07 BEL 27 I 47 G I 67 g 
08 BS 28 ( 48 H I 68 h 
09 HT 29 ) 49 I I 69 i 
OA LF 2A * 4A J I 6A j 
OB VT 2B· + 4B K .I 6B k 
oc FF 2C 4C L I 6C 1 
OD CR 2D 4D M I 6D m 
OE so 2E 4E N I 6E n 
OF SI 2F I 4F 0 I 6F 0 

10 DLE 30 0 I so p I 70 p 
11 DCl 31 1 I Sl Q I 11 q 
12 DC2 32 2 I S2 R I 72 r 
13 DC3 33 3 I S3 s I 73 s 
14 DC4 34 4 I S4 T I 74 t 
lS NAK 3S s I SS u I 7S u 
16 SYN 36 6 I S6 v I 76 v 
17 ETB 37 7 I S7 w I 77 w 
18 CAN 38 8 I S8 x I 78 x 
19 EM 39 9 I S9 y I 79 y 
lA SUB 3A I SA z I 7A z 
lB ESC 3B ; I SB [ I 7B { 
lC FS 3C < I SC \ I 7C I 
1D GS 3D = I· SD ] I 7D } 
1E RS 3E > I SE /\ I 7E 
lF us 3F ? I SF I 7F DEL 

Prelimi~ary ASCII Character Set E-1 



=:i:.' 

Preliminary ASCII Character Set E-2 



INDEX 

A 

ABS 
absolute value 6-1 

adding matrices 10-8 
APPEND 2-3, 2-5 
arithmetic operations 

on extreme values B-4-B-7 
arithmetic operators 5-1, C-5 
array variables 10-1, C-4 
arrays 4-4 

defining 4-5 
DIM statement 4-5 
virtual 4-6 

arrays virtual 10-12 
AS FILE 9-5 
ASCII 6-10 

character set 3-2, E-1 
assignment 10-8 

multiple 7-2 
string 7-2 

assignment statements 7-1-7-6, C-7 
CHANGE 7-4 
LET 7-1 
LSET 7-3 
RSET 7-3 

ATN function 6-4 
attention 

operating system 2-2 
AUTO 2-3, 2-7 

B 

BASIC 1-3, C-1 
character set 3-1 
commands (see commands) 2-1 
elements of 3-1-3-8 
elements of BASIC C-1 
functions 6-1-6-22 
interpreter 2-1-2-2 

Index I-1 



introduction 1-1-1-3 
invoking 2-1 
programs 1-3 
special characters (table) 3-2 
summary C-1 

BASIC expressions 5-6 
block input and output statements 9-14-9-17 

FIELD 9-16 
GET 9-14 
PUT 9-14 

buffer size 9-17 
buffer structure 
BUFSIZ function 
BYE 2-3, 2-8 

c 

9-16 
9-17 

CALL statement 11-1 
CCPOS function 6-6 
CHAIN function · 8-11 
character strings 

creating repeated 
character translation 
CHR$ function 6-10 
CLAUSES 

FOR INPUT 9-5 . 
CLOSE 9-6 

6-14 
6-17 

closing a file 9-6 
closing files 10-12 
CLS statement 9-7 
CLUSTERSIZE option 9-5 
command mode 2-1 
commands 2-1-2-26 

APPEND 2-5 
AUTO 2-7 
BYE 2-8 
CONT 2-9 
DELETE 2-10 
EDIT 2-11 
KILL 2-12 
LENGTH 2-13 
LIST 2-14 
LISTNH 2-15 
LLIST 2-16 
NEW 2-17 
OLD 2-18 

Index I-2 



RENUM 2-19 
REPLACE 2-21 
RUN 2-22 
RUNNH 2-23 
SAVE 2-24 
summary 2-2 
TRON (and TROFF) 2-25 

comments in programs 3-5 
COMMON 8-12 
COMP% function 6-22 
constants C-3 

numeric 4-1-4-2 
string 4-3 

CONT 2-3, 2-9 
control statements 8-1 

CHAIN 8-10 
COMMON 8-12 
END 8-10 
FOR NEXT 8-4 
FOR UNTIL 8-5 
FOR WHILE 8-5 
GOTO 8-6 
IF GOTO 8-1 
IF THEN 8-1 
IF THEN ELSE 8-2 
ON GOTO 8-6 
STOP 8-10 
UNTIL NEXT 8-3 
WHILE NEXT 8-3 

conversion 
character 7-5 
numeric 7-5 

conversion functions 6-14 
COS function 6-3 
CVT function 6-14 
CVT$$ 6-18 

string editing 6-16 
CVT$$ function 6-16 
CVT$ ~~function 6 -15 
CVT$Ffunction 6-16 
CVTF$function 6-15 

D 

DATA 9-1 
defining 9-1-9-3 

Index I-3 



data representation B-4 
hexadecimal B-3 
in BASIC 4-1 
1 floating point 4-1, B-1 
1 integer 4-1 

data transfer 9-1 
data types 

defining variable 4-8 
numeric 4-1 
numeric string 4-4 
string 4-3 

debugging 
trace mode 2-25 
TROFF 2-22 
TRON 2-23 

declaring a virtual array 10-12 
DEF 12-1, 12-5 
DEF>'• 12-5 
DEF]) 12-1 
defining 12-5 
defining functions 12-5 
defining statements 12-6 
DELETE 2-3, 2-10 
delivering statements 12-6 
DET function 10-11 
DIF$ function 6-20 
DIM 4-5, 10-1 
dimensioned variables 4-4, 10-1 

E 

EDIT 2-3, 2-11 
elements of C-1 
ELIPSE graphics call 9-18 
END 8-10 
ERL variables 12-10 
ERR variables 12-10, A-1 
error messages A-1-A-9 
errors 

nonrecoverable A-5, A-9 
recoverable A-1, A-5 

EXP function 6-4 
exponential function 6-4 
expressions 5-1 
extend mode 1-3, 3-3 
extensions 1-3 

Index I-4 



external linkages 11-1-11-2 

F 

FIELD 9-16, 9-17 
file descriptors 9-4 
file input and output 9-4, 9-7 
filenames 1-3 
files, printing to 9-8 
FILESIZE option 9-5 
FILL graphics call 9-18 
FIX 

truncation to integer 6-2 
FIX function 6-2 
floating point numbers B-1 
FNEND 12-2, 12-6 
FOR INPUT clause 9-5 
FOR NEXT 8-4 
FOR OUTPUT clause 9-5 
FOR statement modifier 8-9 
FOR UNTIL 8-5 
FOR WHILE 8-5 
formatted printing 9-9 
functions 12-4 

BUFSIZE 9-17 
conversion (see string functions) 6-14 
DEF 12-5 

G 

DEF~·~ 12-5 
defining 12-5 

DEF 12-1 
DEF~'~) 12-1 

FNEND 12-6. 
mathematical 

(see mathmatical functions) 
matrix (see matrix functions) 
nesting 12-2 
passing arguments to 12-7 
PEEK 11-2 
referencing 12-6 

6-1 
10-10 

string (see string functions) 6-7 
string concatenation (see string functions) 6-9 

GET 9-14 



count option 9-15 
GOSUP 12-1 
GOTO 8-7 
graphics calls 9-18 

I 

identifiers C-3 
element.s of 3-6 
reserved 3-7 
syntax 3-6 

IF GOTO 8-1 
IF statement modifier 8-8 
IF THEN 8-1 
IF THEN ELSE 8-2 
immediate mode 2-1, 3-3 

restrictions in 2-2 
in ASCII 

collating sequence 3-2 
initializing a matrix 10-4 
INPUT 9-12 
input and output statements 9-1 

CLOSE 9-6 
closing a file 9-6 
DATA 9-1 
INPUT 9-12 
matrix (see matrix statements) 10-5 
OPEN 9-5 
opening a file 9-5 
PRINT 9-8 
PRINT USING 9-9 
printing to a file 9-8 
READ 9-3 
RESTORE 9-4 

input and output status 9-17 
INPUT LINE 9 -13 
INSTR function 6-11 
INT function 6-2 
integers B-1 

as logical variables 5-5 
interrupts 2-2 
INV function 10-11 
inverting a matrix 10-11 

K 

Index I-6 



KILL 2-3, 2-12 

L 

LEFT function 6-7 
LEN function 6-9 
LENGTH 2-3, 2-13 
LET 7-1-7-3 
LINE graphics call 9-18 
line numbers 3-3, C-2 
LIST 2-3, 2-14 
LISTNH 2-3, 2-15 
LLIST 2-16 
LOCATE statement 9-7 
LOG (natural log) 6-4 
LOG function 6-4 
logical operators 5-4, C-6 
LOGIC 6-5 
LOGIO function 6-5 
lower case letters 3-7 
LSET 7-4 

M 

MAT CON 10-4 
MAT IDN 10-4 
MAT INPUT 10-6 

for status variables 10-7 
MAT PRINT 10-6 
MAT READ 10-5 
MAT ZER 10-4 
mathematical functions 6-1-6-6 

ABS 6-1 
ATN 6-3 
cos 6-3 
EXP 6-4 
FIX 6-2 
INT 6-2 
LOG 6-4 
LOGIC 6-5 
PI 6-5 
RND 6-5 
SGN 6-2 
SIN 6-3 
SQR 6-4 

':.,. 

,. 



TAN 6-3 
matrix 

dimensioning 10-1 
finding the determinant 10-11 
initializing 10-4 
redimensioning 10-2 

matrix arithmetic operations 10-7 
addition and subtraction 10-7 
assignment 10-7 
multiplication 10-9 
scalar multiplication 10-7 

matrix elements 
printing 10-6 
reading from DATA 10-5 
reading from external storage 10-6 

matrix functions 10-10 
INV 10-11 
TRN 10-10 

matrix input and output state~ents 10·5 
matrix manipulation c-11 
matrix operations 10-1-10·13 
matrix statements 

MAT CON 10-4 
MAT IDN 10-4 
MAT INPUT 10-4, 10-6 
MAT PRINT 10-5 
MAT READ 10-5 
MAT ZER 10-4 

MID function 6-8 
mixed mode arithmetic 5-1 
mode 

command 2-1 
extend 3-3 
immediate 2-1 

MODE option 9-5 
multiple assignment 7-2 
multiple statement modifiers 8-10 

N 

nesting 
functions 12-2 
subroutines 12-2 

NEW 2-3, 2-17 
non recoverable errors A-9 
nonrecoverable errors A-5 

·~ ' 

Index I-8 



numbers 
converting strings 6-13 
string representation of 6-12, 6-13 

numeric (see numeric string functions) 6-17 
numeric constants 4-1 
numeric string data 4-4 
numeric string functions 6-18-6-22 

COMP% 6-22 
DIF$ 6-19 
PLACE$ 6-20 
PROD$ 6-19 
QUO$A 6-20 
SUMS 6-19 

numeric strings 
arithmetic quotient of 6-21 
round 6-21 

numeric variables 4-3 
NUMS function 6-12 
NUM1$ function 6-13 

0 

OLD 2-3, 2-18 
ON ERROR 12-2 
ON ERROR GOTO 12-1, 12-10, A-1 
on error handling 12-9 

ERL 12-10 
ERR 12-10 
ON ERROR GOTO 12-10 

ON GOSUB 12-4 
ON GOTO 8-7 
OPEN 9-5 
OPEN statement 

options 9-5 
opening a file 9-5, 10-12 
operating system 

attention 2-2 
interrupts 2-2 

operations 
arithmetic (see operations) 5-1 
matrix (see matrix operations) 10-1 
matrix arithmetic (see matrix arithmetic operations) 10-7 

operators 
arithmetic 5-1, C-5 
arithmetic relational 5-3, G-5 
logical 5~4, C-6 

Index I-9 



p 

on integers G-7 
plus sign 6-9 
string 5-4, G-6 
table of arithmetic 5-1 
table of arithmetic relational 5-3 
table of string relational 5-4 

PI 6-5 
value of 6-5 

PLACE$ function 6-21 
POS function 6-6 
PRINT 9-8 
print head 

current position of 6-6 
print head setting 6-6 
PRINT USING 9-9 

and formatted printing 9-12 
printing data 9-8-9-14 
printing to a file 9-8 
PROD$ function 6-20 
program comments 3-5 
program structure 12-1-12-11, G-13 

RESUME 12-11 
subroutines 12-2 

programs 
debugging 2-25 
remarks 3-5 

programs in BASIC 1-3 
PSET graphics call 9-18 
PUT 9-14 

count option 9-15 

Q 

QUO$A function 6-21 

R 

RAD$ 6-18 
READ 9-3 
reading a string from a file 9-13 
reading data 9-1 

"" Index I-10 



reading data from 
ready prompt 2-1 
RECORDSIZE option 
recount variable 
recoverable errors 
ref 

arrays 
matrix 4-4 

errors 

a file 9-12 

9-5 
9-17 

A-1-A-5 

error messages A-1 
referencing 12-7 
REM 3-5 
remarks in programs 3-5 
RENUM 2-3, 2-19 
REPLACE 2-3, 2-21 
reserved words D-1-D-2 
RESTORE 9-4 
restrictions in immediate mode 2-2 
RESUME 12-1, 12-11 
RETURN 12-1, 12-2, 12-4 
RND 6-5 
RND function 6-5 
rounding to nearest integer 6-2 
RSET 7-4 
RUN 2-3, 2-22 
RUNNH 2-3, 2-23 

s 

SAVE 2-3, 2-24 
scalar multiplication 10-8 
screen control 9-7 
SGN function 6-2 
SIN function 6-3 
SPACES TABS 3-3 
SPACES$ function 6-12 
SQR 6-4 
SQR function 6-4 
statement modifiers 8-8-8-10 

FOR 8-9 
IF 8-8 
multiple 8-10 
UNLESS 8-8 
UNTIL 8-9 
WHILE 8-9 

statements C".'2 

Index t.:.i1 



assignment (see assignment statements) 7-1 
block input (see block input and output statements) 
block output (s.ee block input and output statements) 
CLS 9-7 
continuation 3-5 
control (see control statements) 8-1 
definition 3-3 
DIM 4-5 
external call 11-1 
input (see input and output statements) 9-1 
LOCATE 9-7 
modifiers (see statement modifiers) 8-7 
number per line 3-4 
output (see input and output statements) 9-1 
POKE 11-2 
REM 3-5 
types 3-3 

STOP 8-11 
storage allocation B-1 
string assignment 7-2 
string concatenation 6-9 
string constants 4-3 
string functions 6-7 

ASCII 6-10 
CHR$ 6-10 
CVT 6-14 
CVT$$ 6-15 
CVT$F 6-15 
CVT% 6-15 
CVT%$ 6-15 
CVTF$ 6-15 
INSTR 6-10 
LEFT 6-7 
LEN 6-9 
MID 6-7 
numeric (see numeric string functions 6-18 
NUMS 6-11 
NUM1$ 6-13 
RADS 6-18 
RIGHT 6-7 
SPACES$ 6-11 
string concatenation 6-9 
STRING$ 6-14 
VAL 6-13 
XLATE 6-17 

string operators 5-4, C-6 
string storage B-7 

9-14 
9-14 

Index I-12 



string variables 
STRING$ function 
subroutines 12-3 

calling 12-3 
GOSUB 12-3 
nesting 12-2 

4-4 
6-14 

'' 
J-. 

ON GOSUB 12-3 
returning from 12-4 

substring 
extracting 6-8 

subtracting matrices 10-8 
SUM$ function 6-19 
SWAP% function 6-6 
syntax 1-3 

T 

TAB 6-6 
TAN function 6-3 
TEXT graphics call 9-18 
transposing a matrix 10-10 
TRN function 10-10 
TRON (and TROFF) 2-4, 2-25 

u 

UNTIL NEXT 8-3 
UNTIL statement modifier 8-10 
upper case letters 3-7 
USING option 9-15 

v 

VAL function 
variable names 
variables C-4 

6-13 
4-7 

array (see array variables) 10·1 
DEF.DOUBLE 4-8 
DEFINT 4-8 
DESTRING 4-8 
dimensioned 4-4 
ERL 12-10 
ERR 12-10 
initial values 4-7 

Index I-13 



'l:n~gers as logical 5-5 
logical 5-5 
names 4-7 
numeric 4-3 
recount 9-17 
string 4-4 

variables array C-4 
.variJib~es d.~~ensi~~7d ~~.4 
virtual arrays 4-6, 7-3, 10•12 

w 

assignment to string 7-3 
closing 10-12 
decla:r;ing' •40 .. 12. · 
opening·>· 10""12': 

WHILE NEXT 8-3 
WHILE statement modifier 8-9 

x 

J<iLATE>.: 6-17 . 

Index I-14 



GC22-9184 READER'S 
OOMMENT 
J~PRM 

' ' . (.• .. ;, ;. r' .. ..... • ' :. .;::,. . '' ·. *' ~ ·, 
This form may be used to communicate your views about this publication. They,..will be'serit't'Ci~ ·aufhots'depattmeilt for 
whatever review and action, if any, is deemed appropriate. ' "' 1 ' '· '·· ••• ., •.''J' ·· ·. ·~ · · ·•. ,., ' 

IBM Instruments, Inc. shall have the nonexclusive right, in its discretion, to use and distrjbllte ~ s~b.11li.Hed jnformation, 
in any form, for any and all purposes, without obligation of any kind to the submitter. Your inte,r~st is~appfeciated< ·· 

Note: Copies of IBM Instruments, Inc. publications are not stocked at the location to which this form is addressed. Please 
direct any requests for copies of publications, or for assistance in using your IBM Instruments, Inc. product to your IBM 
Instruments, Inc. representative or to the IBM Instruments, Inc. office serving your locality. · . " · · · 

]~ 

Is there anything you especially like or dislike about the organization, presentation, or writing in this' manual?. ·' H~lpful 
comments include general usefullness of the book; possible additions, deletions, and clarifications; specific errors and 
omissions. 

Page Number: Comment: 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. 



e;c·~2~~~i4 

~~«t1i·1~Bt>t1'in~ti\ ~orm 

Please do not stai:ile . Fold and Tape 

---~-~--------------~-~--~---~-~~----------· 

Business Reply Mail 
No postage _.am1t -rv i.t mailed in the U.S,;~• 

Postage will be paid by: 

IBM Instruments, Jnc. 
P.O. Box 332 
Danbury, Ct. 06810 

First Class 
Permit 40 
Armonk 
New York 

-------~~-~----~--~~----------~-------------

" . 
3M lnst!uments, Inc.' · 
.0. Box 332 
lanbury, Ct. Q681Q 

Pleas& do not staple Fold and tape 




