PROCFEDINGS OF THE
1620 USERS GROUP JOINT CANADIAN-MIDWESTERN REGION

FEBRUARY 19-21, 196k
AT THE O'HARE INN, TES PLAINES, ILLINOIS

FRANK H. MASKIELL
REGIONAL SECRETARY

MEETING SCHEDULE

1620 USERS Group

TABLE OF CONTENTS v February 19-21, 1964 O'HareSnif; Des Plaines, 111,
WEDNESDAY, FEBRUARY 19, 1964
PAGES '
8:45 GEN ERAL SESSION Convention Hall
2 MEETING SCHEDULE 8:45 Announcements " S B. Burrows
8:55 IBM Announcements " o I- Jessee
57- ATTENDANCE ROSTER 9:00 IBM Announcements " " (33 Bercpcoes
9:10 Programming Syst. Announcements " " L. Fostes
A RELOCATABIE SYMBOLIC PROGRAMMING SYSTEM
n 9:30 Index Register Concepts " " B. Soc%
31 KINGSTON FORTRAN II 9:50 Kingstran " " D. Jardine
85 CARLTON COLLEGE CQMPILER - CARLTON BINARY SIMULATOR 10:30 Coffee & Rolls " "
86 MODIFYING MONITOR I TO INCLUDE OTHER PROGRAMMING SYSTEMS 10:45 SELECTED SPS TOPICS-Elementary " "
A NEW COURSE IN COMPUTER APPRECIATION
m SPS WORKSHOP-ADVANCED Grecian Room D. Pratt
117 EDUCATION PANELISTS
12:15 Lunch Convention Hall
124 A SURVEY OF THE BEGINNING PROGRAMMING COURSE
.30 . w - " . ;
127 DATA PR STNG TECHNICIAN TRAINING 1 EXPLORATORY PROGRAMMING J. Morrissey
15h INTRODUCTION TO MATRICES 3:00 Coffee
163 A FAMILY OF TEST MATRICES 3:30 PANEL OF 1710 USERS D 4 J. C. Hill
166 THE 1620 AS ANALYTICAL AND CQMPOSITIONAL AID IN 12 TONE MUSIC SPS WORKSHOP-ADVANGCED Grecian Room D. Pratt
169 L0GIC THEORRM DETEGTION PROGRAM 7:30 SOUND-OFF SESSION " " J.A.N. Lee
172 AN ADDITIVE PSEUDO-RANDOM NUMBER GENERATOR
THURSDAY, FEBRUARY 20, 1964
178 A MODEL DIFFUSION-REACTION PROGRAM
7:45 NEW USERS MEETING (coffee &rolls) D 3 B. Burrows
186 AUTOSPOTLESS NUMERICAL CONTROL
195 AUTOSPOT IT PREPROGESSOR PROGRAM 8:45 INTRODUCTION TO MONITOR I Convéntion Hall IBM
20h MANAGEMENT INFORMATION PANEL OF 1311 USERS Grecian Room B. Burrows
10:15 Coffee & Rolls " " & Conven. Hall
10:45 INTRODUCTION TO MONITOR 1 Convention Hall IBM
MONITOR I WORKSHOP-ADVANCED D 4 IBM

Magnetic Tape UUsers Meeting D 3 B, Robinson

2

12:15

1:30

6:30
7:30
8:30

(o

Lunch Convention Hall
) 10:45
INTRODUCTION TO MATRICES " " C. Maudlin, Jr.
MONITOR I WORKSHOP-ADVANCED D 4 IBM
EDUCATION PAPERS Grecian Room
1:30 A New Course in C. Davidson
*Computer Appreciation" " B 10:45
1:45 A Survey of the Beginning C. B. Germain
Programming Course " "
2:00 Data Processing Technicians; " " W. J. McGraw
an Integrated Training Approach
at Hibbing Area Tech. Inst.
3:00 Coffee Conven. Hall, Grec.,Rm. & D 4 10:45
3:30 Introduction to Regression Conven. Hall C.Phillip Cox 12:15
MONITOR I WORKSHOP-ADVANCED D 4 IBM 1:30
APPLICATION PAPERS Grecian Room .
3:30 The IBM 1620 as an A. Tepper
3:00

Analytical & Pre-

Compositional Aide in

12-Tone Music
3:50 A Family of Test Matrices
4:10 A New Random Number Generator
4:30 Logic Theorm Detection Program

Movies Convention Hall
MONITOR I & II Demos D 2
Repeat of 6:30 Program Repeat

Repeat of 6:30 Program

FRIDAY, FEBRUARY 21, 1964

8:45

I
!
f 10;15

Panel of Commercial Data Processing D 4
PROGRAMMING SYSTEMS PAPERS Convention Hall
8:45 Magic I and II " "
9:15 Kingstran " "
PANEL ON EDUCATION Grecian Room

Coffee & Rolls

A.C.R. Newberry
H.T., Wheeler
J. Wheatley

IBM
IBM

e

R, Thomas

J.A. N. Lee
D. Jardine

Conven. Hall, Grec. Rm, and D 4

e

ENGINEERING & CONTROL PAPERS D 4

10:45 AUTOSPOT 11 Pre-Processor Prog. D 4

11:00 Autospotless Numerical Control D 4
with the 1620

11:30 Montecarlo Techniques applied to

D. McManigan
E. Ray Austin

Radio Chemistry D 4 J.K. Lewis
PROGRAMMING SYSTEMS PAPERS Convention Hall
10:45 Carleton College Compiler D. Taranto
11:00 Carleton Binary Simulator W. Gage
11:15 A Completely Relocatable SPS M. Dorl
11:30 Modifying Monitor I to Include

Other Programming Systems A, Purcell

PANEL ON EDUCATION Grecian Room
Lunch Convention Hall
GENERAL SESSION "o "
Sound-Off Answers " "
Questions & Answers " "

Adjournment

BGCGERGAARD PAUL L GREEN GIANT CCMPANY LE SUEUR MINN CAVIDSCON JAMES L LONG ISLAND LTG HICKVILLE NV
ALCORN _HERBERT R MISSOURI SCHOCL OF MINES & MET ROLLA MO DAVIESON CHARLES UNIVERSITY OF WISCONSIN MADISON WISC
BLCRICH F C CLDSMCBILE CIVISICN LANSING WICH TAWSCN J T8M CCRPORATION CALGARY ALS
ALTENHOFE JCHN ELECTRO-MOTIVE DIV-GMC LA CRANGE ILL _ BECK JAMES € INLAND STEEL COMPANY EAST CHICAGO IND
AMCRT ANTHONY BELCIT CCRPCRATION BELGIT wWisC CEMERATH ALBERT J KIMBERLY-CLARK CORPORATICN WEST CARROLLTON OHIO
ARENA A IBM CCRPORATICN WHITE PLAINS N Y CENISON GEORGE B FAIRBANKS MORSE CO BELCIT WIS
ATKINS JOSEPH ¥ £ 1 DUPCNT DE NEMCURS CO INC PARKERSBURG W VA DEUEL MICHAEL KEARNEY & TRECKER CORPORATION WEST ALLIS WISC
ATKINS DR D FERREL EASTERN ILLINGIS UNIVERSITY CHARLESTCN ILL CEVENNEY WILLIAX S WABASH COLLEGE CRAWFORDSVILLE INC
AUSTIN E R CCMBUSTION ENGINEERING INC CHATTANOGGA TENN DICKERSGN RICHARD F CONTAINER CORP GF AMERICA CHICAGO TLL
AUSTIN HUBERT TRI-STATE COLLEGE ANGCLA IND _ BILLINGER DR J & UNIVERSITY OF ILLINOIS CHICAGO I
BABIENE RCBERT C USAF - ACIC ST LCUIS G BORL MICHAEL UNIVERSTITY OF WISCONSIN MADISCN WISC
BACHHUBER JOHN J INST OF PAPER CHEM APPLETCN WIS DOUBLAS LEC € ARGCNNE NATL LAB LAMONT ILL
SAEVERSTAD HARGLD L SUNDSTRAND MACHINE TGOL BELVIDERE 1L COULCFF A A TRANS CANAOA PIPE LINES TORONTO ONT
SARBUTES ROBERT F I1BM CORPORATICN YOUNGSTOWN CHIO DRESSLER BYRCN B KENT_STATE UNIV KENT OHIO
——BARRON J0 1E¥ TORCNTO ONT BUCEAN JOFN HAWKER SIDDELEY CANADA LTD TORCNTO ONT
BARTH WILLIAM EDO CORPORATICN CCLLEGE POINT N Y DULICK REEERT W YCUNGSTCWN SHEET AND TUBE CO YOUNGSTOWN gHIO
—— BATRORST LYRN L RUST ENGINEERING CO BIRMINGHAM ALA DUNN JACK T AVCC CORPORATICN HUNTSVILLE ALA
BATSON WILLIAM B JR NASHVILLE BRIDGE COMPANY NASHVILLE TENN DYE CAVID 1BM WHITE PLAINS NY
EAU N UNIVERSITY OF WISCONSIN FILWAUKEE WISC EDIE ROBERT STATE UNIVERSITY OF NEW YORK BUFFALO N Y
BELONOS S P COLUMBIA GAS SYSTEM COLUNBUS 12 oHIO EDWARDS DAVID © E I DU PCNT CIRCLEVILLE OHIO
T BENENT LVAE ¥ WALLORY TIMERS COMPANY _ INCIANAPCLIS IND EDWARDS UR ¥ LLCYD KANSAS STATE TEACHERS COLLEGE EMPORIA KAN
. BERNIER J L GREAT NORTHERN CIL COMPANY ST PAUL MINN EIKENBERRY PROF R S UNIVERSITY OF NOTRE DAME NOTRE DAME INC
BEST ALBERT GLIDDEN CCMPANY " JACKSCNVILLE FLA ELWEEL WALTER G NEBRASKA WESLEYAN UNIVERSITY LINCOLN NEER
SEST WILLIAM R VA BICSTATISTICAL RSCH SUPP HINES I __ESCHBACH CAREL THE UNIVERSITY CF TOLEDQ TOLEDD OHID
BICKFORD PAUL OKLA UNIV RESEARCH COMP CTR OKLAHOMA CITY OKLA FIELD A WANNE FIRST AEROSPACE CONTROL SQUAD COLGC SPRINGS COLO
BILLINGHAM CAROL LEONARD REFINERIES INC ALMA MICH FIELD J A UNIVERSITY OF TORONTO TORCNTO 5 ONT
SLACK RICHARD H UNIVERSITY OF WISCONSIN MILWAUKEE 11 WISC FLATT JAMES © PUB UTIL DIST #2 GRANT COUNTY EPHRATA WASH
SLOMOUIST ROY iLL INST OF TECH CHICAGO ILL FLIESS MANFRED JONES & LAUGHLIN STEEL CORP PITISBURGH_ 30 PA
SOENHOFF PETER G MRD GATC NILES TLL FOCCR JCYCE UNIVERSITY OF WISCONSIN MADISON WISC
BONYYN DAVID A LOYOLA COLLEGE MONTREAL QUE FORSS LEONARD SUNDSTRAND AVIATION ROCKFORD L
BOWRAN RUTH 7 E M KLEIN & ASSOC CLEVELAND CHID FORSYTH O W CONTINENTAL CAN COMPANY CHICAGD T
8RIGGFORD RCBERT UNIVERSITY OF WISCONSIN MILWAUKEE WISC FOSTER C L IBM_CORPORATION SAN JOSE CAL
"~ SRESER DAVID WASHINGTON UNIVERSITY ST LGUIS ¥ISS FGX J BAINE WASHINGTON & LEE UNIVERSITY LEXINGTON VA
SREFIAIN PAUL E U S NAVAL ACADEMY ANNAPOLIS MD SRAIEING WILLIAM D UPJCHN COMPANY KALAMAZOO MICH
BRONN ROBERT N GENERAL MOTORS INSTITUTE FLINT 4 MICH FRANK DR WERNER BOWLING GREEN STATE UNIVERSITY BOWLING GREEN OHIO
BUCHLER DANTEL ANACONDA WIRE AND CABLE SYCAMORE ILL FREDERICK DR KENNETH J ABBCTT LABORATORIES NORTH CHICAGO - ILL
BUHLIC W L SPENCER CHEMICAL COMPANY KANSAS CITY MO FUCHS 1VAN UNITED ATRCRAFT OF CANADA MONTREAL QUE
BURKETT S B JR PAN AM_AIRWAYS PATRICK AFB FLA GADE EUGENE T ABBCTY LABORATORIES NORTH CHECAGC _ ILL
BURNS R E AMERICAN WELDING E MFG CO WARREN CHIOD GAGE WILLIAN CARLETON COLLEGE NORTHFIELD MINN
BURRONS WILLIAM A DRAVO CORPORATION PITTSBURGH PA EANIERE CARL KEARNEY € TRECKER CCORPORATION WEST ALLIS WISC
CALLIS CLIFFORD L GREENVILLE TEC GREENVILLE SC GAUNT WENDY 1BM CORPORATION MINNEAPOLIS MINN
CAPPS. JOAN UNIVERSITY OF ILLINCIS CHICAGO ni GERMAIN CLARENCE B COLLEGE OF ST THOMAS ST PAUL MINN
CARLSCN MILTON E NORTHERN TLLINCIS UNIVERSITY OE KALB L GILBERT PAUL NN STATES PORTLAND CEMENT MASCN CITY 10kA
CARLSCN KERMIT H VALPARAISC UNIVERSITY VALPARAISG IND GILBERT PAUL F USAF - ACIC ST LOUIS ¥0
TASLIN JAWES C U S AIR FORCE WRIGHT-PAT AFB CHIO GIVENS CLYDE JR NCRTHERN ILLINDIS UNIVERSITY DE KALB L
CHERNIAK DR E A CARLETON UNIVERSITY CTTAWA ONT SLANBER HARCLD CARRCLL COLLEGE WAUKESHA WISC
THRISTIANSON G DOUGRBOY INDUSTRIES INC NEW RICHMCND WISC GCLCSRITH T1 LAWRENCE COLLEGE APPLETON WIS
CHRISTOFK RUSSELL E ELECTRIC MACHINERY MFG CC MINNEAPCLIS 13 MINN GCNZALES RICHARD L BRADLEY UNIVERSITY PEORIA it
CHRISTIANS DONALD D U S NAVAL ACADEMY ANNAPOLIS MD GRANT JEAN M J & L STEEL-GRAHAN RES_ LAB PITISBURGH 3C PA
COLE NESLEY 6 PIONEER HI-BRED CORN COMPANY DES MOINES IGWA GRAVES EARL CCNDUCTRON CORPORATION ANN_ARBOR MICH
LOOK LEROY L TIV OF RADIOLCGICAL HEALTH ROCKVILLE MD GREGG RGBERT D LINK-BELT CONPANY CHICAGD 9 TLL
COSTELLO DONALD F WIS STATE COLLEGE OSHKCSH WIS BRIBBEN CLIFFORD J INDIANAPOLIS POWER & LIGHT CO INDIANAPOLIS INC
COUCKH JORN D KANSAS STATE TEACHERS COLLEGE EMPCRIA KAN BRIFFITH WALLACE CENTRAL MO STATE COLLEGE WARRENSBURG MO
£OX -ROBERT C HUMBLE OIL & REFINING CO BATON ROUGE LA GUTEKUNST HANS ELECTRO-MCTIVE DIV-GMC LA GRANGE I
CRULL JANES . XEARNEY & TRECKER CORPORATION WEST ALLIS WISC HATLCCK ALAN BELCIT CORPORATION BELCIT WISC
_ OABE RODNEY € CONSOER TOWNSEND ASSOC _ __ CHICAGD ______ ILL ~~~ PAGER HARCLC W SOUTHEAST MISSOURL STATE COL _ CAPE GIRARDEAU MO
DALTEN CLARENCE H SOUTHEAST MISSOURI STATE COL CAPE GIRARDEAU MO FAJNAL TIECR E TRANS CANADA PIPE LINES TORCNTO ONT
DALY JAMES E DIV OF RADICLOGECAL HEALTH ROCKVILLE XD KAKE CAVID A LOUISIANA POLYTECHNIC INST RUSTON LA
DANCN REBECCA WESTERN RE§§RVE UNIVERSITY CLEVELAND CHIO HAMILTCN JAKES R JR 16M ARLINGTON VA

O

e

O

e

HARR STEPFEN B 1BM PITTSBURGH PA MASKIELL FRAMNK H PENNSYLVANTIA TRANSFORMER DIV CANONSBURG PA
HARRIS EDIE IBM . CETRCIT MICH #ATHEWS GERALD BELCIT CORPCRATION BELOIT WISC
HATFIELD FREC A LINE MATERTAL INDUSTRIES ZANESVILLE CHIO MATTHEEISS PALL K SUN CIL COMPANY PARCUS HCCK PA
_MATTERL M KOZC-KEIKAKU STRUCT ENG FIRM TOKYC JAP MATTMUELLER DCNALD __ _ ARMY MAP_SERVICE WASHINGTCN oC
HELLER NORA L FONSANTC RESEARCH CGRP MIAMISBURG oHIO MAUDLIN CHARLES E JR UNIVERSITY OF OKLAHOMA NCRMAN CKLA
HERSHEY CCLLIN DRAVC CCRPORATICN PITTSBURGH PA MAURER ROBERT WESTERN MICHIGAN UNIVERSITY KALAMAZCC MICH
HETHERINGTON RICHARD UNTVERSITY CF KANSAS LAWRENCE KAN WC DGNALD DAVID R FEDERAL RESERVE BANK MINNEAPOLIS MINN
MEWETT SYLVIA E I DUPCNT DE NEMCURS FLINT MICH ¥C KEE LOWRY i HOFSTRA UNIVERSITY HEMPSTEAD N Y
BEYNCRTH A UNIVERSITY OF ALBERTA EONCNTON ALE MC MANIGAL CAVIC F IBM CCRPORATICN POUGFKEEPSIE NY
MILL JOHN CARRCLL PURDUE UNIVERSITY LAFAYETTE INC ~ MCGRAW WILLIAM J KIBBING AREA TECH SCHOOL HIBBING MINN
BINTZ ANN TBM CCRPCRATICN CHICAGO ILL MEAGHER PRCF JACK R WESTERN MICHTGAN UNIVERSITY KALAFAZCC ¥ICH
HOLLMEIER RONALL J PIONEER SERVICE & ENGINEERING CHICAGO L MEIDL RANCOLPH A JCSEPH SCHLITZ BREWING CC MILWAUKEE wisC
HOLMES JOFN W CCOPER-BESSEMER CCRP MGUNT VERNCN CHIO NELLC LEGNARD GEOPHYSICS CCRP OF AMERICA BEDFCRC FASS
HOCK EVERETT L WAGNER ELECTRIC CORP ST LCUIS s HERGEN FRANK BRACLEY UNIVERSITY PEORIA Lt
HORRIGAN TINCTHY J COOK ELECTRIC CO FCRTCN GROVE T MILLER EDWARD W R B - SINGER INC STATE COLLEGE PA
HOTCHKISS GARY ETHYL CCRPORATICN FERNCALE MICH FINNE DAVE _IBM CHICAGO i
HUGHES NORMAN L VALPARAISO UNIVERSITY VALPARAISO INC MCRRISSEY J 18M CORPORATION NEW YORK N Y
1YENGAR SRINIVASA H SKIDMORE OWINGS & MERRILL CHICAGO 3 ILL NCSCHETTI JOHN ELLIOTT CCMPANY GREENSBURG PA
GANSEN JOWN B CENTURY ELECTRIC COMPANY ST LOUTS %0 MYERS CLARENCE E ELL LILLY AND COMPANY INDIANAPGLIS 6 ING
JARCINE D A CUPCNT OF CANADA LTC KINGSTCN CNT ¥YLIUS WM G JR RUST ENGINEERING CO BIRMINGHAM ALA
“JESSEE J J TEM CORPORATICN CHICAGC ILL NAIKELIS U STANLEY UNIVERSITY OF ILLINGIS CHICAGO TLL
JORGENSEN 0CC DRAVO CCRPORATION PITTSBURGH PA _ NAYLCR R W SPENCER CHEMICAL COMPANY KANSAS CITY MO
KALLER C L UNIVERSITY OF SASKATCHEWAN SASKATCHEWAN CAN NELSGN MARVIN L CAWES LABORATCRIES INC CHICAGO 32 L
KAPPLE FRANK WHEATON COLLEGE WHEATON L NEUHAUSER VINCENT E LUKENS STEEL COMPANY COATESVILLE PA
KAUFNAN MARVIN UNIVERSITY OF MISSOURI COLUMBIA Ty NEWBERY CR A C R UNIVERSITY OF ALBERTA CALGARY ALE
KEEFER EDWARD K AMERICAN CYANAMID BOUND BRCOK N J NEWTCN LAWRENCE E ¥ D ANDERSON HOSETUM INST HOUSTON 25 TEX
KELEWAR BRANY 1BM BIRMINGHAM ALA NICELEY JCHN B RICHLAND TECH EDUC CENTER COLUMBIA s C
KELLER CR RCY UNIVERSITY OF MISSOURI CGLUMBIA #0 NOBLE HENRY J RCA SERVICE CO COCOA BEACH FLA
KELLMAN SIDNEY NAVAL AIR ENGINEERING LAB PHILADELPHIA 12 PA NOCNAN BERNARD UNIVERSITY GF MANITOBA WINNIPEG 19 MAN
KERR H B TENNESSEE POLYTECHNIC INST COCKEVELLE TENN NCREY RALPH LINK-BELT COMPANY CHICAGO § L
KIEN DR GERALD NORTHWESTERN U MEDICAL SCHOOL CHICAGO 1L NORTHAM JADE 1 UPJCHN COMPANY KALAMAZOO MICH
SLATSKY STEPHEN S ERIE MINING CCMPANY HOYT LAKES MINN CNEIL R T AMERICAN OIL COMPANY WHITING INC
KOLLER E PULP & PAPER RES INS OF CAN FONTREAL 2 QUE ERLCFF MILTCN J GENERAL MCTORS INSTITUTE FLINT MICH
XKRAFT DEN ELECTRO-MOTIVE DIV-GMC LA GRANGE iLL _ CTIC FREDERICK ¥ CLARK OIL & REFINING CD BLUE ISLANC It
KRUPEA R ¥ CONTINENTAL CAN CCMPANY CHICAGO It BWEN DAVIT 6 MIAMI-DADE JUNICR COLLEGE MIANT FLA
AANGE ROBERT € AUTCMATIC ELECTRIC LABS NORTHLAKE Lt PACHON HEBERTO AUTCMATIC ELECTRIC LABS NORTHLAKE It
LARCADE GEOREE A HALLIBURTON CCMPANY DUNCAN CKLA PALMER P € PCLYMER CORPORATICN LIMITED SARNIA ONT
LAWRENCE CEAN ¥ MIDWEST RESEARCH INSTITUTE KANSAS CITY 10 WO @ARKER CHARLES © GENERAL MCTORS PROVING GROUND MILFCRD MICH
LEEOR J A N QUEENS UNIVERSITY KINGSTON ONT PARKER S THCMAS KANSAS STATE UNIV PANHATTAN KAN
LEEE S UNIVERSITY OF TCRONTO TCRCNTG 5 ONT ©ARKER RGEERT NCRTHERN ELECTRIC OTTANA CNY
LEICHUS RICHARD 18K NYC NY PATERSON A R IBM MONTREAL QUE
LERICK GECRGE E ERIE MINING CCMPANY HOYT LAKES MINN _ PAUL_RONALD STANDARD CIL COMPANY CLEVELANC OHIO
LERRY DAVID P TEM CORPORATION NEW YORK CITY N Y EERCECC G IBM CCRPGRATICN WHITE PLAINS N Y
LITTELL DR ARTHUR S WESTERN RESERVE UNIVERSITY CLEVELAND OHIO PETRABORG JARRCLD LINK-BELT COMPANY CHICAGO § L
LOGAN S W¥ P R MALLORY & CO INC INDIANAPCLIS IND PLUM GEORGE ¥C DOWELL-WELLMAN ENG CC CLEVELANC 14 OHIO
ROGUE W E AMERICAN WELDING & MF6 CO WARREN CHIO PCORE JESSE KW JR LOUISIANA PCLYTECHNIC INST RUSTCN LA
LOHREY JOHN GIDDINGS & LEWIS MACH TCOL CC FCNC DU LAC WISC @CRTEAN CARCL NUMERICAL CONTECCMP SERVICES CLEVELAND OHIO
&ONG JULIA ABBCTT LABORATORIES NORTH CHICAGD _ ILL PRATT RICEARD L _AIR FORCE INSTITUTE OF TECH WRIGHT-PAT AFB _CGHIO
*ONG PHIL 1BM KANSAS CITY Mo PRITZ MCWARC B TRI-STATE COLLEGE ANGOLA INC
RONGNAN JACK WESTERN MICHIGAN UNIVERSITY KALAMAZOG MICH QURCELL PHILIP LECNARD REFINERIES INC ALMA MICH
RYNCH MARY L1Z IBM CLEVELAND CHID QURCELL ALAN V UNTVERSITY OF WISCONSIN MADISON 6 WISC
MAAS ALBERT C GREEN_GIANT CCMPANY LE SUEUR MINN ____RAAB PAUL V ALLEN-BRADLEY COMPANY MILWAUKEE WISC
WACDONNELL L M ROYAL MILITARY COLLEGE OF CAN KINGSTON ONT RAFAELIAN LECN A CCNT AVIATICN & ENG CORP DETROIT MICH
MAGEE RCLAND H THE MAGNAVOX_ COMPANY FORT WAYNE INC ~ RECTER RCBERT R LCUISIANA PCLYTECHNIC INST RUSTON LA
MANIGTES CR JCRN PURDUE UNIVERSITY HAMMCND INC REIMAN CAVIC H NATIONAL LIFE € ACC INS CO NASHVILLE TENN
MARINERLI RICHARD STATE UNIVERSITY GF NEW YORK __ BUFFALQ N Y REITER NED SEWS REG PLAN COMM WAUKE SHA WIS
NARKEVICH ERNEST UPJCHN CCMPANY KALAMAZGC MICH RESTA EDNARD V 1BM SAN JOSE CAL
MARQUARDCT ROBERT W MONSANTC RESEARCH CORP MIAMISBURG OHID RICHPCND EUGENE L JCSEPH SCHLITZ BREWING CC MILWAUKEE WISC
MARTIN KATHLEEN CINCINNATI 21 CHIO RCBINSCN T G KINGSTON ONT

UNIVERSITV_I7 GF CINCINNATI

CUPCNT CFé:ANADA LTC

9

ROBINSCN ROBERT J MARCUETTE UNIV MILWAUKEE WIS " VERVAERT JCKN BELCIT CCRPCRATION BELCIT WISC
ROEDER LY GECRGE L FIRST AEROSPACE CONTROL SGUAC COLC SPRINGS CCLO VICK E DCUGHBOY INDUSTRIES INC NEW RICHMOND WISC
ROSS RICRARC D UNIVERSITY OF MISSISSIPPI UNTVERSITY M1SS VICEEECK LR RICFARD UNIVERSITY OF MISSCURI COLUMBIA i)
RUGH J PALMER E 1 DUPONT DE NEMGURS FLINT MICH VRCCM K E PULP & PAPER RES INS OF CAN MONTREAL 2 QUE
SANDERS PAUL G ABBCTT LABORATORIES NCRTH CHICAGC ILL " WALKER DCNALE T TRAVO CCRPCRATICN PITTSBURGH PA
SANTILLI A J NATIONAL STEEL CCRPCRATICN WEIRTCN WVA NANG JAKES C TUSKEGEE INSTITUTE TUSKEGEE ALA
SCARLETT JOKN C SURFACE COMBUSTION DIVISION TOLELO 1 CHID WAYERIGHT GLENN E RUST ENGINEERING COMPANY PITTSBURGH PA
BCHATZ NATHAN NAVAL AIR ENG LAB PHILA PA WEBER HEINZ C SURVEYER NENNIGER &€ CHENEVERT MONTREAL 25 QUE
SCHAUSS CHARLES E U S WEATHER BUREAU WASHING TGN D C NEIDEFAN WILLIAW ¥ARCUETTE UNIV MILWAUKEE WIS -
SCHERER MATHIAS E PIONEER SERVICE & ENGINEERING CHICAGC I NESTERMAN E A JOHN MCRRELL AND COMPANY CTTUMNA IOKA
"SCHETTLER RICHARD C SCUTHERN ILLINOIS UNIVERSITY CARBONDALE TLL WHEATLEY CR J GUEENS UNIVERSITY KINGSTON ONT
SCHROEDER ROBERT L H F_CAMPBELL COMPANY DETRCIT 10 MICH WHEELER K T CARLETCN UNIVERSITY CTTANA GNT
SCOYVI CARNMIN J 1BW CCRPORATICN CHICAGO (N WIGCAKL ALLEN B ALLEN-BRACLEY COMPANY MILWAUKEE WISC
SCONT EDWARD E LUKENS STEEL COMPANY COATESVILLE PA NIGHTFAN MARY G HEWITT ASSCC LIBERTYVILLE ILL
SENN JOHN TBM CORPORATICN MILWAUKEE ®ISC WILHEL¥® JACCUELYN THE UNIVERSITY CF TOLEDO TOLEDO CHIO
SHANAMAN GRECORY J CECO SVEEL PRODUCTS CICERO ILL KILLIAMS C R DCW_CHEMICAL COMPANY HOUSTON TEX
SHEEDY PAUL J CLARK OIL & REFINING CO BLUE ISLAND TLL WILEHCFF KENNETE F THE MAGNAVOX COMPANY FORT WAYNE IND
SHIGURA NCRIO UNIVERSITY OF ILLINGIS CHICAGO 1LL WILSON RCBERT JEFFERSCN CITY PUBLIC SCHOOLS JEFFERSON CITY MO
SIRRONS HARCLD ¥ CLARK OIL ¢ REFINING CORP BLUE ISLAND [WINK ANNA T INDIANA STATE COLLEGE INDIANA PA
SMALTZ WUBERT J CE PAUW UNIVERSITY GREENCASTLE INC NCCL 6 W NATIONAL TECH CORP WEIRTON WVA
SNIAH WELBORN H ATRBORNE INSTR LAB NELVILLE NY NCOCS ARTHUR P JR ARMCO STEEL CCRP MIDDLETOWN OHID
SNITH NGEL T INDIANA STATE COLLEGE TERRE HAUTE IND NCOCE STANLEY W STATE HGWY CCMM OF WISCONSIN MADISON WISC
SWITH BRYAN NORTHERN ELECTRIC OTTAWA ONT NOCONORTH J A TCW CHEMICAL COMPANY HOUSTON TEX
SMIAW ¥V 6 UNIVERSITY OF TORONTO TORCNTO 5 CNT WRIGHT CONALD t GEORGETOWN UNIVERSITY WASHINGTON DC
SOCKS 8 J TBM CORPORATICN CHICAGO [} YACU ZTURAIR A RALSTCN PURINA COMPANY ST LOUIS 8 WO
SOLOMON. LTULS NATIONAL LEAGUE FOR NURSING NEW_YORK N Y YAMAMURA E A DUPGNT OF CANADA LTD KINGSTON ONT
SARADLING GARY A UNIVERSITY OF OKLAHCHMA NORMAN OKLA YANAGI SANA HARUC CONTAINER CORP GF AMERICA CHICAGO T
STEBER GEORGE R UNIVERSITY OF WISCONSIN MILWAUKEE WISC ZAKN JULIA MCDCNNELL AIRCRAFT CORPORATION ST LOUIS 66 Mo
STRELE LAURA B GENERAL MOTORS INSTITUTE FLINT MICH TUKE LOIS VA HINES HOSP-BIOSTAT RES DEPT HINES Tt
SYEINKARDY RICHGLAS INDIANAPOLIS POWER § LIGHT CO INDIANAPOLIS IND

SYEPRENUTCH J R ROCKFCRD BD OF EDUCATION ROCKFORD L

STONE J IBM CORPORATICON WHITE PLAINS N Y

STORRY J © SOUTH DAKOTA STATE COLLEGE BROCKINGS SCAK

STRANGE € CLINTON JR BELOIT CORPORATION BELOIT WIS

SYRDWSE E 1 COLUMBIA GAS SYSTEM COLUMBUS 12 GHIO

BTYLES JIMMIE C JUNIOR COLLEGE OF BROWARD CY FT LAUDERDALE FLA

SULLIVAN RONALD A CANADA DEPT OF AGRICULTURE CTTANA ONT

FACK O CHARLES U OF MD SCHOOL OF MEDICINE BALTIMORE ¥D

SARANTO DONALD CARLETON COLLEGE NCRTHFIELD MINN

FAYLOR DEAN JR U S NAVAL ACADEMY ANNAPOLIS MD

TEPPER ALBERT HOFSTRA UNIVERSITY HEMPSTEAD N Y

TERAJEMICZ GEO AMERICAN AIRLINES FLUSHING 71 N Y

THAYER RAYMOND J LINE MATERIAL INDUSTRIES ZANESVILLE OHIO

FHIEL CONNIE ANN 1BM CLEVELANC CH10

THOMAS RCBERT J DE PAUW UNIVERSITY GREENCASTLE IND

THOMAS RICHARD B FEDERAL RESERVE BANK MINNEAPOLIS MINN

THOFPSON MAJCR IVAN B SCHOOL OF SYSTEMS € LOGISTICS DAYTCON CHID

THONSON CEORGE ETHYL CORPORATICN FERNDALE MICH

"THURSTON A M 1BM COMPANY LIMITED TORCONTO ONT

TRANTUR. JOHN MRD GATC CHICAGD 1L

TRAVER WARD B AMERICAN OIL COMPANY WHITING IND

TREVINO JOSE INSTITUTO TECH DE MONTERREY MONTERREY MEX

TUCK HARVEY R 18M CAYTON CHIO

JUCKER LEE SOUTH DAKOTA STATE COLLEGE BROCKINGS SDAK

TUNNEY JAPES L JR J R AHART INC CAYTON 6 CHIO

TURNER RONALD R LANSING BOARD OF EDUCATION LANSING MICH

UREAN CRARLOTYE A 1BM ST PAUL MINN

VANSEN RICHARD J CONT AVIATION & ENG CORP CETRCIT 15 MICH

VANSICKLE GEORGE INDIANAPCLIS POWER & LIGHT CC INDIANAPCLIS IND

»

)

A Relocatable Programming System

A relocating assembler for the purpose of this discussion is one which
assembles a program in such a form that it may be placed anywhere in memory
at load timejy i.e. the program does not have to be re-assembled to change its
origin, This has been accamplished in the past by manually placing flags on the
-digits of the op-code or by using origins greater than the machine size. The
author finds that these systems have definite disadvantages and has decided on a
system in which each operand (either instruction or DSA) carries with it a system
assigned relocating tag which determines its relocatability status.

An bler which prod a relocatable object deck should be of much use

in programs employing subroutines (Fortran, SPS) or in systems of programs.

The R-SPS system which should be in the library by June of 1964 consists of
essentially a 3 pass systcmg Two assemdbly passes and one compressing pass. The
assembly passes may be batched as may the compressing pass,

The main disadvantage of the system is the increased size of the object
deck.,

The following pages taken from the program write-up further serve to explain

the system and its use.

Michael Dorl
Bngineering Computing Laboratory
University of Wisconsin

5-5-64

Progrsm Abstract

Titles R-SPS
Author: Michsel Dorl

Engineering Computing Lsboratory
University of Wisconsin

Date: 1-1-64

Users Group Codes 3155

Direct Inquiries to: Prof. C. H, Davidson
Director,

Engineering Computing Laboratory
University of Wisconsin

Madison, Wisconsin 53706

Phone 608.262.3892

Description/Purpose

R-SPS provides the capability of relocating ordinary SP5 progrems at
load time. The assembled decks which it produces are relocetsble in the
full sense of the word, The system provides the programmer with compiete
control over the relocating feature, either through manus! intervention
or through programming, In addition error checking has been expanded
end assembly speed incressed,

Specifications
Storaget 40 K or larger (seifeadjusting)

Equlipments
a) Card system
b) Automatic divide
c) Indirect addressing

The automatlic divide feature is used only to process one seldom used
instruction (MORG), Thus the Auto-divice restriction cou!d be easily over-
come by not using that instruction,

The progrem cannot be used on & 20 K machine,

Progrem Langusge U~-SPS
Language Used In Wr-ite-Up Engiish

Remarks

Although UW-SPS is not In the progreamming librery, ir is quite similar
to R-SPS (see write-up). Copies are availabie upon request from the suthor.

Tab!

Deck Labelling Sheet

Program Write-up
General Data « + « « «
Introduction « o o « »
Input Format « o« o o »
Statements {(types) .« «
Special Cheracters . «
Processor Instructions
Processor Instructions,
Machine Instructions
EFrors o o« o ¢ o o o o
Table of Op-Codes « o
Tabie of Errors o« o «
Output Format . « « o

Operating Instrictions o «

“Patch Cards » « o o ¢ o o o

Important Addresses « ¢ « #
407 Board « « . v . o e o

P
x.)‘vm

e of Contents

ENTRY
PR 1
« o 1
PR 2
PRI 2
o o o 2
and Declerative Instructions 4
Examples &
.« o 3
.« oo 11
RPN 9
PO 12
Y 15 .
e 12
oo o 16
PPN 17
17

Progrem Write-up

Genera! Dats

Program Neme: ' R-SPS
Date:
Progrzmmer: Michael Dor! .
Englneering Computing Laboratory
University of Wisconsin
Medison, Wisconsin
Phone 608-262-3892
User Code 3155

_ Machine Configuration Required

a) Cerd 1/0

b) 40 K or more

¢) Indirect addressing
d) Aute-divide - '

Program Deveioped On
s) 1620 MOD 1
b) Cerd 1/0
c) Indirect addressing
d) 60 K
e) Auto-divide

Programming System Used in Deveiopment
R-SPS was assembled using an R-SPS assembied by UW.SPS, Although
UW~SPS is not in the program library, it is quite similar to R-SPS,
Copies of UW-SPS may be obtained from the author,

The final form of R-SPS is a dumped deck. The dumper is also availa=
ble from the author, .

Introduction

R-SPS is & Relocateble Symbolic Programming System, It gives the pro-
grammer much more complete and ecsy control over the loading and relocating
operation then any of the severzi other systems available for the 1620. The
decks which it produces can be reiocated at toed time under complete control
cf the progremmer, In addition, cssembly has been speeded up by a random
symtzol table store and recovery technigue So that the assembler is reader
pound during pass 1 end punch bound during pass 2,

In the following discussion it is assumed that the reader is familiar

with the use of 18M SPS and the SPS Reference Manua! (IBM 1620/1710 Symbolic
Zrogremming Sy: ;em-=C 26-5600).

-2-

Card lnput Formst

Two separate card inpu! formats are provided,
1) UW-SPS format

columns 7-12 for label

columns 14-17 for instruction

columns 19-77 for operands and comments

2) 1BM SPS format
columns 6-11 for labet
columns 12-15 for instruction

columns 16-74 for operands and comments

The author believes the UW.SPS format to be superior in that all three

fietds are sepcrated by at least one blank on the card, permitting consistent
skipping to the beginning of each new field during keypunching,

Note that the IBM SPS format is modified slightly in that columns 16.74

are available for operands end comments, rather than columns 16-75.

Use of either card format is et the option of the user, The essembler

recognizes both types as legal, and they may be intermixed in the same pro-

gram,

mats;

Columns 1.5 are svailsble for cerd identification under both card for-
however these columns will not appear on the object listing, Since

column 6 is used in determining the card format, its use is prohibited for
other than label fleld under IBM Format,

Columns 78.80 for UW~SPS Format and columns 7580 for IBM SPS Format

are also available for card identification,

Statements

Statements are of three types:
1) Processor Instructions, which give the sssembler certain commands,

2) Machine Instructions, which are transiated to actua! Machine oper-
ations,

3) Declarative Instructions, which tell the processor to set aside
certain work areas or set up actual constants to be used.

Special Characters

The @, *, and § are used for special purposes In R-SPS,

)

-3-

The @sign is used to call for » record mark to be incorporated in
eltner o declarative operation or in the P or Q field of an instruc-
tion,

If an(@ sign is used in a declarative operation it must appear as
the last character in the constant, For example,

X 0C 3,03@
DC 2,39
oC 1,@, *
DAC 2,0Q
DACF 2,A@

In the DAC and DACF instruction only terminal @ signs generate re-
cords marks.

In the case where a2 label is attached to 8 DC with an@ sign, the
address assigned to the label will be the address of the record mark,

The @ sign may be used to generate ® record mark.in position P6
or Q of an instruction:

11
A = 15000
TOM A@ 15 15000 0000#%
8 @ 49 0000% 00000

The @ wiill be translated as a record mark in position P6 or 011

respectively; however the @ when used in this way must appesr aslone,

The * when usec for address adjustment refers to:

1) the last assigned sddress when used in declarative or pro-
cessor Instructions.

2) the address of the Instruction in which it is used.

The * is treated as a relative address.

The § sign is used to call for a symbolic address under a glven
head character., For example,

A$HT

refers to HI headed by A .,

Operands used in instructions, for length definition, or for assigned
addresses may be of the following form,

: A : B8 : [: D
Up to four terms may be included and mey be added or subtracted as

indiceted, No multiplicetion is allowed,

The dollar sign may be used to generate a group merk at the end of
a numeric constant in the same manner es an@® sign,

te

-b o

The rules which determine whether an operand is relocatable (and
therefore mus! be changed during foad time) or sbsolute sre given below:

1) The sum or difference of two absolute quantities is sbsolute,

2) The sum or difference of an absolute and a relative quantity
is relative,

3) The difference of two relative quantities is absolute.
4) Calling for the sum of two relative quantities is illegal.

The sign of a relocatabie operand is preservec at load time, for
only its magnitude is increased by the relocating vector,

Processor and Declarative Operations

In declarative operations,isbels or symbolic sddresses may be as-
signed as in I3% SPS; however, the relocating of such 2 labe! is deter-
mined by its assigned sddress according to the following rules:

1) An integer eddress is absolute and mokes the associatea label
sbsolute. For exemple, in
A DS 2, 807
A will be teken as equivaient to an sbsolute 807 wherever
it sppears.

2) A symboiic address gives its relocatability to the lepel. If
Q is an absolute quantity and Z is a reiative quantity then
In the following statements

A DS ,0Q
AL DS, 2

A wlil pe absolute and AA will be relative,
3) A processor-sssigned address is relative,
e.go A DS 2

In the Dectarative Operations which follow al] constent iengths must
be absoiute.

DC, DAC, DS, Das, DNB

These pseudo-operations define storage in exactly the same way as
described in the IBM 1620/1710 SPS Manual. The sole difference is that
if comments are included without assigning sn address to the constent
end if the assigned address field consists of severa! blanks, the pro-
cessor does not take the address to be zero but rather sssumes it to be
oml tted,

Slanks must not appear in the middle of & numeric constent,

17

-5a

DACF (Define Alphabetic Constant Flagged)

This pseudo-operation performs the ssme function as does the DAC,
except that alphabetic pairs sppear with their high order digits flagged,

DSC, DSS, DSB

These pseudo-operations are not available in RuSPS,

DORG

This pseudo-operation is used as described in the IBM 1620/1710
Manuai, Although its operand may be either absolute or relative, it
is treated as reiative,

DEND

This pseudo-operation is used to define the end of a R-SPS program
+. optionally to specify the location at which it is to begin, The
beginning address may be either reistive or absolute; if relative the
relocating vector will be added to it st load time, Whenever ‘this
operation is used control is teken from the loader and passed either
to the specified sddress or to a “Halt; Brench-to-zero® pair, This
operstion does not ceuse the arithmetic tables to be includea in the
ob ject progrem, .

MORG (Modify ORiGin)

This operation is used to set the next assigned address register to
the next larger multiple of the operand, The operand which must sppear
must also be absolute, non-negative, and non-zero,

This operation is especially useful for starting tables at even
multiples of 10, 100, or 1000. It should be kept in mind that the re-
locating vector will influence the value of the last assigned address
at load time,

It is for this operatlon that automatic divide hardware is.required,

LOAD (Punch LOADer)

The R-SPS system employs 2 retocatebie loader which must be‘calied
for, The statement:

LOAD X
causes. the loader to be incorporated in the object deck in such a form

that its first digit wili be X , The operand must be absolute, or may
be omitted, If the operand is omitted the beginning digit of the loader

)

O

-6 -

must be supplied from the console typewriter at load time., The operation
aiso causes the add tasble to loaded,

This festure makes It possible to load part of the progrem from a
loader at position X and load another part from a loader at a different
position Y ., It should be remembered, however, that incorporation of a
second loader destroys all old velues of Relocating Vector and the next
Load Address. The loader occuples 1220 digits.

The instruction makes it possible to assemble a program in parts
while including only one logder in the final deck,

RVEC (Set Relocating VECtor)

This instruction is used for specifying the velue of the relocating
vector at assembly time, The operation

RVEC 10184

causes location 99 to be filled in with 10284 at load time, This in-
struction has no effect on the last assigned address register, The
operand must be absolute, The relocating vector is initially set to 1000.

TABL (Punch TABie)

This instruction, which requires no operand, causes the arithmetic
tables to be punched out., The add table is loaded along with the loader
but the multiply table is not; thus if any use is made of the multiply”
table this command must be given,

HED (HEaD)

This instruction is used as in IBM SPS, The heading character may
be either alphabetic or numeric,

L INK
The pseudo-op
LINK A,B,C,D,E,F

is used to pass control at load time from the loader to 8 program which
has either been loaded previously by the loader or to a program originally
in core,

The A operand, which may be a relocatable symbol, is the address
to which control is to pass. The B, C, D, E, and F operands serve
as identification fields, and are available for use by the user's pro-
gram. Upon reading the card at load time the fotlowing fields are in
core.

19

Present Relocating Vector
The memory address into which
the next digit of an in-
struction will be toaded,
locations £5-89 The address to which s branch
must occur to pass control
back to the loader,
tocation 84 A zero,
tocations 26-30 A
locatlons 43-47 The last assigned sddress re-
gister at the end of pass 1 .
The operands 8, C, D, E, F

tocations 95-99
locations 90-94

locations L8.62

Upon filling in these areas, a B to 0 is executed thus transferring
control to & type six card at zero. (See Output Format).

This card relocetes the A operand if necessary and transmits con-
trol to the address A via a BT A, Acl. After the user has modified
any of the above constants which are required, control msy be passed
back to the loader via 8 B8 to <89 or BB Instruction.

The single digit at location B4 is a switch which controls whether
or not the program following the LINK instruction is: to be loasded into
core or ignored. If tocation 84 contains 2 zero the program following
the LINK statement down to the next LINK statement will be loaded; if
on the other hand location 84 is set to a flagged one the program following
the LINK stztement down to the next LINK statement will be ignored by the
| cader (alfhough the cards will be sequence checked), ~

1t should be noted that the loader does not relocate the operand's
8-F,

END

This instruction, which also requires no operand, is to define the
end of an R-SPS program without halting the loading operation, This in.
struction is used to end part of s fragmented program which is to be
loaded 8s one piece, '

20

-8 -

Examples of Use of Processor Instructions

A) This example shaws how LINK might be used to type a progrem name on
the console typewriter after the first few cards have been loaded,

LOAD
RVEC
DOORG
TYPE RCTY
WATY
8B
DORG
ComMg DAC
LINK

sseee

30000
0
50000

COML
»»s (B -89 would also do).
»

-9
13,PROGRAM NAME@ ,
TYPE

B) This progrem shows how LINK could be used to read the reloceting vector
for & program from the typewriter,

LOAD
RVEC
START RCTY
WATY
RNTY
8ch
SF
o]
BN
B
MESSA DAC

55000
1000

MESSA

95

0_36

95

99,0

START
-89,,,(0r B88)
6,RVEC=@, *.2

Mechine Instructions

Any of the symbolic operations in the following teble may be used and

ore trenste-cd es shown, In addition numeric op-codes in the operetion field
are recogni:ed providing that only two sppear and are left Jjustified,
" new opereticns,

TON
TOFF
BON
BOFF

= Jurn ON
- Turn OFF
- Branch ON
- Branch OFF

ore included, They ere used zs switches as expiained below.

D

21

Four

-9 .

It is often convenient to remember s past condition by setting s two
way switch to elther » zero or flagged one, and then testing it st some
leter time with either a BNF or BD instruction,

instructions is equivalent to the following old instructions,

TON ADSW
TOFF ADSW
BON 2,ADSW
BOFF Z,ADSW

TOM
TOM
BNF
BD

The use of the four new

ADSW,0
ADSW, -1
Z,AD5W
Z,A0SW

A symbolic label sssociated with an instruction is a relative

quentity,

The fiag operand is used as in IBM SPS with one exception,

Blenks

may be included in the flag operand to set spart its various parts.

e.g.

However o pair of characters cannot be connected across s blenk.

€.g.

TABLE OF ALLOWABLE MNENONIC OPCODES AND THEIR 1620 EQUIVALENTS

A
AM
8
BA
88
8C1
BC2
3¢3
Bch
8D
BE
BH
Bl
8L
BLC
BME
B8N0
BN
BNA
BNC1
BNC2
BNC3
BNCE

01

10

0 is illegatl

is legal:

11
1 10

TABLE 1

21 XXXXX
11 XXXXX
49 XXXXX
46 XXXXX
B2 xxxxx
86 xxxxX
46 xXXxXX
46 xxxxx
46 Xxxxx
43 Xxxxx
86 xxxXXX
L6 xxxxx
46 Xxxxx
47 XxXXXX
86 xxxxx
U6 XxXxXXX
46 xxxxx
47 XXXXX
47 XXXXX
47 XXXXX
47 xxxxx
47 xxxxx
47 xxxxx

22

XXXXX
XXXXX
XXXXX
01900
XXXXX
00100
00200
00300
00400
XXXXX
01200
01100
XXXXX
01300
00900
01600
01700
01300
01900
00100
00200
00300
00400

-

N

- 10 - - 11 -
BKE 47 XXXXX 01200 S 22 XXXXX XXXXX
8NF Ll XXXXX XXXXX SF 32 XXXXX XXXXX
SNH 47 XXXXX 01100 SM 12 XXXXX XXXXX
BNI L& XXXXX XXXXX . SPTY 3 XXXXX 00101
BNL b6 XXXXX 01300 TBTY 34 XXXXX 00108
BNLC 47 XXXXX 00900 ' 0 25 XXXXX XXXXX
BNME 47 XXXXX 01600 TOM 15 XXXXX XXXXX
BNMO u7 XXXXX 01700 TF 26 XXXXX XXXXX
BNN b6 - XXXXX 01300 TFM 16 XXXXX XXXXX
8NP 47 XXXXX 01100 TNF 73 XXXXX XXXXX
BNR b5 XXXXX XXXXX TNS 72 XXXXX XXXXX
BNRD 47 XXXXX 00600 TOFF 15 XXXXX 0000J)a—FLAGGED ONE
BNV 47 XXXXX 01400 TON 15 XXXXX 00000
BNWD 47 XXXXX 00700 TR 31 XXXXX XXXXX
BNZ 47 XXXXX 01200 WA 39 XXXXX XXXXX
BOFF 43 XXXXX XXXXX WACD 39 XXXXX 00400
80N B XXXXX XXXXX YINTY 38 XXXXX 00100
8P 46 XXXXX 01100 N 38 XXXXX XXXXX
BRO U6 XXXXX 00600 WNCD 38 XXXXX 00400
BT 27 XXXXX XXXXX WATY 39 XXXXX 00100
3TH 17 XXXXX XXXXX SK 3 XXXXX XO7X1
BV 4 XXXXX 01400 ROGN 36 XXXXX X07X0
BWD 46 XXXXX 00700 WDGN 3B XXXXX XO07X0
BZ b6 XXXXX 01200 . CDGN 36 XXXXX X0701
c 2 XXXXX XXXXX RTGN 36 XXXXX X0704
CF 33 XXXXX XXXXX WTGN 38 XXXXX XO7X&
cM 1L XXXXX XXXXX CTGN 36 XXXXX X07X5
D 29 XXXXX XXXXX RDN 36 XXXXX X0702
DM 19 XXXXX XXXXX WON 38 XXXXX X07X2
DN 35 XXXXX XXXXX CDN 36 XXXXX X07X3
DNCD 35 XXXXX 00500 RTN 36 XXXXX XO7X6
DNTY 35 XXXXX 00100
H 48 XXXXX XXXXX
K . b XXXXX XXXXX Errors
Lo 28 XXXXX XXXXX e
LOM 18 XXXXX XXXXX In the course of assembling a program, various error conditions can
L) 23 XXXXX XXXXX arise as lllustrated in the following teble.
MF 71 XXXXX XXXXX
Ly 13 XXXXX XXXXX After encountering en error condition the sssembler types out an error
NOP L1 XXXXX XXXXX code, a line number as referred to the last labeled statement, and & copy
RA 37 XXXXX XXXXX of the offending statement. The machine then halts.
RACD 37 XXXXX 00500
RATY 37 XXXXX 00100 Depending on the setting of console switches one and two, the error
RCTY 34 XXXXX 00102 is treated as shown below when the start key is depressed:
RN 36 XXXXX XXXXX
RNCD 36 - XxXxx. 00500 SWitCh 2 ON =eewmem-e== errors are ignored
RNTY 36 XXXXX 00100 Switch 1 ON —=wweee-e= Statements in which errors

occur are treated as NOP's,

23 24

- 12 -

If the user elects to NCP an instruction in which an error occurs,
the listirg of the program contains a comment that the error has occurred
in place of the mnenonic instruction.

If switches 1 and 2 are off the assembier expects a corrected state~
ment to be entered from the console typewriter,. The statement is read into
the cleared input-erea. Correct processing can not be assured if more than
80 characters are typed,

If an error in typing is mede, the user cen recover via console switch 4,

Additiona) Errors

Three additional error conditions can occur which are not trested as
sbove,

1) If the program is loaded in & 20K machine the comment “MACHINE
TOO SMALL® will be typed on the console typewriter, It is not
possible to proceed,

2) If the symbol table becomes full the comment “SYMBOL TABLE FULL™
will be typed, All following symbols will be checked for multiple
definition, but they will not be defined, The comment is typed
only once.

3) If 2t the end of pass 2 the contents of the last assigned address
counter do not agree with the contents of that counter as of the
end of pass 1, the comment ™END CONFLICT" is typed, Processing
proceeds after this comment,

TABLE 2
ERROR CODES
C-1 DORG operand is missing or zero
Ce2 DEND or <ND operand is negeztive
(o555 ONB longth'is illegal
Cal Assemdier instruction contains a label
C-5 Incorrect cerd format
0-0 Iilegl length specified in constant or
iltlege! first operend
D-1 Ittegal length specification for DS, OC,
OAS, DAC, or DACF .
0.2 DAC or DACF length specified witl not fit
on card
0-3 111egal sddress specified for DS, DC, DAS,

DAC, or DACF‘

25

©

- 13 -

D4 More than one erithmetic sign occurs in a DC

D-5 More than fifty numeric characters supplied
or more charecters supplied than specified
in 8 DC, DAC or DACF

D-6 Field not blank after record mark in DC

D-7 Field after alphabetic constant not blank

0-8 More than 10 terms in a DSA

D-9 DSA -term includes@ or **

Fal Non-numeric character in flag operand

F-2 Flag operand sub terms not In ascending order

I-1 Illegel identification opersnd in LINK

1.2 Iltegal LINK address

1.3 Illegal LOAD eddress

-4 T{iegel RVEC operand

P.0 Field contains something in addition to **
or character

Pl Too complicated an expression

“e2 Alphabetic symbol contains too many cheracters
or numeric constant contains too many digits

P.3 Unmatched operetor or operand

Pl Illegal use of alphabetic symbol

Pu5 Two operators in a row

P-6 Two operands in a row

P.7 Illegal cherecter in an operand

P.8 Multiply relocatabie constant

N1 Leading numeric character folliowed by alphabetic
charscter in op-code

N2 Valid numeric op-code followed by non-biank ctharacters

N-3 Op-code not in table

S-0 Symbol contains special character or leading numeric
character

S-1 Undef ined symbol

S.2 Previously defined symbol

S-3 Symbol undefined with fuli symbol table,

Operating Procedure

The foilowing list of operations must be performed in order to run
R-SPS:

1) Loca the R-SPS deck. It is not ﬁecessery to clear memory.
2) Press start. If you desire operating procedures to be typed

out *urn switch 4 on and press start again. If you wish to
bypass this type~out turn switch L off and press start,

26

-

3) The console typewriter ssks: ™IS SOURCE DECK TO BE STORED ON
DISK, TYPE YES OR NO*, If you have a disk file and wish to
store the source deck on the disk for use during pass 2,
type & YES, .If you do not wish to use this option type NO,

The machine then comments “SWITCH 1 ON TO CHANGE DISK
MODE®, This provides for change in the case of error In
the above operation,

&) Place the source program in the read hopper and start the
reader,

The source progrom will be resd in and processed, If any errors
are discovered, they may be treated individually as described in the
ERROR section. At the end of pess one the comment WEND OF PASS 1"
will Se typed out,

5) 1If you desire output on pass 2 turn switch 3 off and press
start, If you desire R.SPS to suppress output turn switch
3 on and press start,

6a) If the source program has been stored on disk during pass 1,
processing for pass 2 will proceed using the stored source
statements,

6b) If the source program was no! stored on disk during pass 1
it must be read in agsin during pass 2,

7) 1f the R-SPS program nas been producing an object deck, near
the end of pass 2 the program will type "SWITCH 1 ON FOR SYM30L
TABLE®, The symbol table will be punched out if switch 1 is on
and start is pressed, Otherwise the pass is finished, after
start is depressed end a comment is typed,

Steps 3.5 may be repeated for many source programs without relocading
the processor,

For those installations without & disk file steps 3 and 62 mey be

ignored, They may be eliminated from the processor by placing a “INUS
SIGN in column 1 of the last card,

The object deck which R.SPS produces will not in general be ready
to use until it is compressed, (The compressor punches out the ioader).

8) Load the compressor.
9) Enter your object deck and press start,

The compressor will read the object deck and produce a compressed
deck which may be losded into the mmchine.

27

e

- 15 -

Steps 8 and 9 may be repeated for meny object decks without re-
loading the compressor.

Alt decks which are processed or loaded must be in correct sequence,
If an error in sequence is discovered a8 typewriter comment will be made,
Rearrange the deck in correct order and proceed,

Output Formet

There are six types of output cards as specified by the digits 1-6
in cotumn 76 of esch card, They are used as specified below:

1) Cerd type 1 is used to load up to five instructions per card
into memory, Columns 1-60 hold the instruction while columns
6170 hold a pair of rel-tags (digits which determine the re-
locatability of the various P and Q fields) for each instruc-
tion on tne card., Each pair of rel-tags pertains to one ina
struction, the first to the P field and the second to the Q
field, Ir all such uses of rel-tags a 2 implies o reinotive
quantity while a &4 stands for an absolute quantity, Further-
more, the number of instructions is determined by the number.
of rei-tag pairs,

2) Type 2 cards are used to specify the next digit into which an
instruction witl be loaded, The value in columns 1-l+ of the
cerd is stepped by the relocsting vector and saved in NEXDIG
of the loader,

3) Type 3 cards cause the lozder to transfer control to the card
itself, Instructions loceted in columns 0-79 of the card are
then executed and control is returned to the ioader by a branch
to 89 indirectiy, These cards are used to:

8) load or reset the relocating vector,

b). change the next card check number (see patch cards).

4) Cards witn a 4 in column 76 are used to load records of abso-
tute numeric information into memory, They consist of a record
of information beginning in column 1 of the card, a2 beginning
address A in memory for the record, a2 memory address B to
be preserved during the loading operation, and a singie reil-tag
which determines the relocatability of A end B . A is in
columns 56-60, B in columns 61-65, end the rel-tag in column
55. This card type is similar to the one used exclusively in
SPS to load information,

5) This card type is used to loed DSA's into core, up to 10
sddresses appear in columns 1.50 of the card foliowed by one
rel-tag for each address in cotumns 52-61. Again the number
of items is determined by the number of rel.tags.

28

- 16 -

6) This final card type is used to process the LINK statement,
The cord loads the following data into tocations 0-72:

A %+ 30, 99,, THESE INSTRUCTIONS ARE
A *+ 23, 99,, NOP S IF A ABSOLUTE

aT A, Aol

B -89, WIDTH

DSA X1,X2,X3,X4,X5

A return address to the loader is filled in locations 85.89 and
location 84 is set to ¢ zero before control is transferred to location
zero (see LINK stztement),

A 4 digit consecutive card number is found in columns 77-80 of
all cards.
Patch Cards
Verious errors in the object deck cen be corrected by means of
patch cards placed in the compressed deck. These patch cards may
be of the form of any of the six card types specified above,
for example to place an

AN A,2,10

in tocation 1000 relative, where A is 14287 relative, the
following two cards could be used,

_ -~ 287
01000 2
1114387000-2 24 1
- 288
column 1 /
column 61
column 76

These two cards would be !ncorporg'ea into the patched deck before the
tast card and the whole deck renumbered,

An alternate procedure to renumbering the deck is to incorporate
a type .3 ceard to change the next card check number located in tne
digit of the loader. The following 3 cards would then do the trick,

- -287
01000 2.288
1114287000-2 - 24 1-289
1100089-002216000890-2881200089-0022_- 3-290
-288

M

column 76

29

- 17 -

Important Addresses

Assembler
Beginning Pess 1 00822
3eginning Pass 2 00894
Symbol Teble Punch Routine 05582
Initialization 30002

Loader (locatec at L)

Next Csrc Check Number L+22
Relocating Vector 00099
Next Instruction Address - 00094
Compressor
Entry - 20506
407 8oard

The board wiring shown in the following diagram can be used for
listing the unccmpressed output of an R-SPS program, It zlso serves
to list IBMA and UW-SPS uncompressed output, The switch operations sre
as foilows:

Switch 1 on double space
off single space

Switch 2 on for ISM SPS
Switch 3 on for R.SPS

All switches are off for UW-SPS,

30

KINGSTON FORTRAN II

FOR THE IEM 1620 DATA PROCESSING SYSTEM

by:

J.A.A, Pield,* D.A, Jardine,®, E.S. Lee,?
J.A.N. Lee,® and D.G. Robinson?

Presented at the Joint Canadian-Midwest Region
Meeting of the 1620 Users Groug, Chicago,
February 19-21, 196

1. Dept. of Electrical Engineering, University of Toronto,
Toronto, Ontario.

2. Research Centre, Du Pont of Canada Limited, Kingston,
Ontario Co

3. Computing Centre, Queen's University, Kingston, Ontario

31

ACKNOWLEDGEMENTS

During the early stages of developing this system,
many people in the 1620 Users Group were canvassed for
useful ideas on compiler and systems construction. To all
those who, in any way, contributed to this venture, the
authors extend their heartfelt thanks.

We would like to recognize the following people
who made particularly useful contributions to the project:

J.w; Holmes! - for his extremely well written arithmetic
and function subroutines which appear, with
some modification, in this system,

F.H. Maskiell®_- for many helpful suggestions, particularly
in the coding and testing of the arithmetic
and function subroutines.

C.H. Davidson®- 1620 Users Group representative on the
A.S.A. Fortran II subcommittee, for
explaining to us the structure of American
Standard Fortran II, and for pointing us
in the right ‘direction for extending the

language. .
1. Cooper-Bessemer Corp., Mount Vernon, Ohilo.
2. McGraw-Edison Corp., Penn. Trans. Div., Canonsburg, Pa.
a. University of Wisconsin, Madison, Wis.
32

T T oIS T e e s we e —

-1 -

HISTORY

The writing of compllers seems to be one of the
more popular pursuits of the members of the 1620 Users
Group. At least six different FORTRAN compilers for the
1620 have been written by non-IBM personnel, which
testifies to the enthusiasm and ability of 1620 users and
to their very real desire to build the best possible
mousetrap.

. A1l previous user-written compilers have accepted
variations of the FORTRAN I language, with the exception
of the University of Wisconsin FORGO, a load-and-go
compiler for student problems, which accepted a somewhat
restricted FORTRAN 1I. To our knowledge, KINGSTON
FORTRAN II is the first user-written FORTRAN II for the
1620. We hope that this initial effort will encourage
others to tackle the problem and improve on our system in
the same way that improvement followed improvement in the
user-written FORTRAN I compillers.

The initial impetus for KINGSTON FORTRAN II came
in about August 1963, from those of us living in Kingston,
Ontario, when we started to find out how UTO FORTRAN
operated, with the intention of providing a suitable
FORTRAN for a 40K 1620. It soon became apparent that
many useful features of FORTRAN II could be incorporated
at little extra work. Messrs. Lee and Field, authors of
UTO FORTRAN, were approached for ideas and suggestions, the
outcome of which was a decision to Join forces. After some
preliminary discussion, it was found that it would be no
more work to write a whole new system than to make the
desired alterations in UTO FORTRAN.

The basic concepts were conceived in three
rather long evening sessions during the October 1963,
1620 Users Group Meeting in Pittsburgh, Pa. By the end
of this meeting the source language structure and the
organization and general logic of the compiler were
developed and agreed upon., The various sections were
then allocated to the individuals best qualified to
handle them. By the first week in January, the main
sections of the compller had been written and tested
and 1t remained to tie the pleces together 1n a operating
system. This was done in Kingston, Ontario, durilng late
January, when all 5 authors worked for five days on two
identical 40K 1620's (Du Pont of Canada and Queen's
University).

33

-2 -

We hope that Users with 40K 1620's will find the
system useful and easy to operate. We have tried to
include every useful idea from other people's efforts so
that the system would be as speedy and compact as possible.

The work was divided as follows:

J.A. Fileld - Input/Output statements, DO statements,
input/output subroutines, FORMAT
statement.

D.A. Jardine - Arithmetic and function subroutines,
write-ups and operating manuals.

E.S. Lee - Compilation of arithmetic expressions.

J.A.N. Lee - Compilation of everything not handled

by the other authors.

D.G. Robinson - Symbol table organization, including
COMMON, DIMENSION, EQUIVALENCE, TYPE.

34

-3 -

KINGSTON FORTRAN II

This write-up describes a FORTRAN system for the
IBM 1620 equipped with automatic division, indirect
addressing, additional instructions (TNS, TNF, MF),
card input-output and minimum 40K memory. It is assumed
that a Model E-8 or larger 407 is avallable for listing.

The language is that of IBM's FORTRAN II with a
few modifications and a number of additions. For the
purposes of this write-up it is expected that the reader
1s at least on speaking terms with the FORTRAN II
language.

The compiler for this system batch compilles a
source program in one pass, at approximately twice the
speed of existing compilers for the 1620. The execution
speed of the object program 1s also approximately twice
that of IBM's FORTRAN II. Considerable effort has been
made to speed up all important parts of the system; in
addition, more core storage is available for the object
program than existing FORTRAN II compilers allow.

-SOURCE PROGRAM CARDS

These are as required for IBM FORTRAN II. Any
number of continuation cards are possible, but the
statement may not contain more than 300 characters
{blanks not included except in Format statements).

ARITHMETIC PRECISION
Real numbers: .B digit mantissa, 2 diglt exponent,

Notation is excess 50; (i.e. 1.0 = 5110000000)
Integer numbers: 4 digits, modulo 10000
VARIABLES '

These are as in IBM FORTRAN II, 1 to 6
alphabetic or numeric characters, starting with a letter,
which, for integer variables, must be one of I, J, K, L,
M, N, unless otherwlse specified in a TYPE declaration,

SUBSCRIPTS

A variable with, at the most, two subscripts
appended to it can refer to an element of a one- or two-
dimensional array. Three dimensional subscripting is not
permitted. A subscript may be an expression of any

35

desired complexity, provided only that the result of the
evaluation of the expression be an integer quantity.
This should be positive if you want to avoid trouble.
However, a zero or a negative subscript can be used. To
use this effectively, the programmer must know how data
areas are laid out in memory. See the operating
instructions:

Examples of Subscripts:

1

3

2+MU

MU+2

J*5+M

5*J

6*J-K+2-10/L+M
brJ(K+2-L+M)+K(M(N+2)) /3
FIXF(A*B+3,0**SIN(X) +L/2

The variable in a subscript may itself be subscripted, and
this process of subscripting may be carried on to any

desired depth of subscripting. It can, in fact, be carried
far beyond the point where the average programmer understands
what he 1s doing.

SUBSCRIPTED VARIABLES

Only singly or doubly subscripted arrays may be
defined. The size of these must be speciflied in a DIMENSION
statement.

EXPRESSIONS

These are defined and organized exactly as in IBM
FORTRAN II. . .

LIBRARY FUNCTIONS

Ten library (closed) functions ‘are included in the
KINGSTON PORTRAN II System. These are listed in Table I.

-5 -

TABLE 1

Closed Subroutines

Punction R Function No. of Type Of -
Definition Name(s) Arguments Function Argument
Sine of the argument SIN 1 Real Real
Cosine of the argument [o{0 1 Real Real
Exponential (ex) of the EXP 1 Real Real
argument "

Square Root of the argument SQRT 1 Real Real
Natural logarithm of
the argument LOG 1 Real Real

Arctangent of the
argument ATAN 1 Real Real

Arctangent of (arg,/
args) ARCTAN 2 Real Real

Signum of the argument;
=-1.for X<0.,=0. for)
X,0.,=t1. for X>0. SIGNUM 1 Real Real

Absolute value of Arg 1
with the sign of Arg 2. SIGN 2 Real Real

Choosing the larger value
of the two arguments - MAX 2 Real Real

Choosing the smaller value
of the two arguments) MIN 2 Real Real

Table 2 1ists the open or built-in functions. These are
complled in-line every time the function is referred to.

TABLE 2
+ Function Function No. of Type Of
Definition . Name Arguments Function Argument
Absolute value of the
argument ABS 1 Real Real
ABS 1 Integer Integer

N\ ~

Table 3.1ists closed functions which are permanently
‘stored in the machine, whether or not they are mentioned by
name in a FORTRAN source program. .

37

-6 -

Function Function No. of Type Of
Definition Name Arguments Functlon Argument
Floating an integer FLOAT 1 Real Integer
Truncation, largest integer
in the argument, modulo

10,000, with sign of

argument FIX 1 Integer Real

THE ARITHMETIC STATEMENT

‘The arithmetic statement is the same as in IBM
FORTRAN II except for the extensions in complexity of
evaluation of subscripts.

CONTROL STATEMENTS

The control -statement flexibility in standard
FORTRAN's leaves something to be desired, particularly
where the program is complex and core storage is at a
premium. These conditions, it might be noted, are the
normal ones for almost all problems. KINGSTON FORTRAN II
attempts to improve this situation by expanding the
capabilities of the ASSIGN and assigned 60 TO statement
and by extending the ASSIGN concept to the other control
statements.

ASSIGN STATEMENT

ASSIGN 1 TO n

In IBM FORTRAN II, the ASSIGN statement is used only
in conjunction with an assigned GO TO statement. For
instance,

ASSIGR 3 TO J

GO TO J, (3,5,9,243)
will cause a branch to the statement numbéred 3.

The effect of the ASSIGN statement is to "equate" the

non-subscripted integer variable J to statement number 3., The
subsequent GO TO J, (3,5,9,243) is then interpreted as GO TO 3.

38

-7 -

In KINGSTON FORTRAN II, this concept has been
modified and expanded considerably. To describe these
changes, the following definitions are used:

Statement Label - A statement label is the name attached
to the memory location containing the first instruction
compiled from the statement identified by the label. There
are two kinds of statement labels:

Numeric Statement Label - usually kKnown as a

from one to four digits long.

Alphabetic Statement Label - A variable which may
be Ssubscriptéd €6 any desIred complexity and which
by one or more ASSIGN statements has been equated
to a numeric statement label (statement number).

It is most important to realize the difference between a
statement label and an arithmetic variable. ASSIGN 3 TO J
will place in J the address of the first instruction compiled
from statement number 3. J = 3 will cause the number 0003
to be placed in J. The sequence of statements

ASSIGN 3 TC J

GO TO J

will cause a branch to statement numbered 3. However,

J =23
GO TO J
will result in disaster. Moreover,

ASSIGN 3 TO J
J=Jd+1
GO TO J

will not transfer control to the statement numbered U.
Arithmetic on assigned. variables is not permitted; assigned
variables are not in any way the samé as arithmetic variables,
except that they may be subscripted and stored in an array.
They may also appear in COMMON, DIMENSION, and EQUIVALENCE
statements.

It is possible in KINGSTON FORTRAN II, to equate two
alphabetic statement labels by an ASSIGN statement. If the
first statement label in the ASSIGN statement is alphabetic,
it must be enclosed in parentheses.

39

-8 -

The following examples illustrate the ASSIGN statement:

ASSIGN > TO N (St. label N is equated to St. label 3)
ASSIGN (N) TO J (St. label J is equated to St. label N)

ASSIGN 3 TO I(K) (same as the line above. K must have been
defined before this statement and I must be
dimensioned).

ASSIGN (I(K)) TO L(3+M/4-M**3)
(same as above. The alphabetic statement
labels can be subscripted as desired).

Since the primary definition of a statement identifier 1s its
occurrence as a statement number, it is necessary that any
given statement identifier must ultimately be defined (through
a series of ASSIGN statements if necessary) in terms of a
statement number. Failure to observe this rule will cause
trouble. For example,

3 A =B
ASSIGN (J) TO K(L)
is not correct, because J has not been assoclated with any
statement identifier when the ASSIGN statement 1s executed.

However,

3 A =B

ASSIGN 3 TO J

ASSIGN (J) TO K(L)

is correct.

Alphabetic statement labels may be used in the
following control statements:

GO TO (both unconditional and assigned)
IF (SENSE SWITCH 1)

IF (arithmetic expression)

Computed GO TO

Alphabetic statement labels may not be used in a DO statement.

GO TO STATEMENT

GO TO n unconditional GO TO
G0 TO n, (n,n2,---ny) assigned GO TO

40

where n is a statement label. If n is alphabetic, then it
must previously have been defined in an ASSIGN statement.
The assigned GO TO statement is treated exactly like the
GO TO statement. The comma and parentheslized list are
optional and will be accepted but ignored by the compller.

Computed GO TO Statement

GO TO (ni,nz,ns---npj,1

where n, ,na2---ny are statement labels. If alphabetic they
must have been previously defined by ASSIGN statements.

1 is a fixed point (integer) variable or expression. 1 may
be subscripted as desired.

ARITHMETIC IF STATEMENT

IF(a)n,,nz,ns

where a 1s an integer or real (floating point) expression
of any complexity, and n;,nz,ns are statement labels. If
alphabetic, n,,nz,ns must have been previously defined in
ASSIGN statements.

IF (SENSE SWITCH) STATEMENT

IF (SENSE SWITCH 1i)n,,nz

where 1 is a one or two digit unsigned integer number or an
integer expression, and n,,nz are statement labels. If i is
an integer expression, the low order two digits of the value
of the expression are used as the value of 1. The two diglt
numbers resulting from this are the numbers of machine
indicators, not Just console switches.

THE DO STATEMENT

DO n i =m,mz,ns

where n is a statement number, 1 1s an unsigned integer
variable which may be subscripted and m,,me,ms are

integer variables or integer expressions of any desired
complexity, positive or negative. n may not be an
alphabetic statement label, and 1 may not beé an expression.
There are no particular restrictions onh mp,mg,Ma. In
particular they may be positive or negative quantities.

If my=mg, the DO will be executed once only. m,,Ma2,Ms
should be chosen so that the DO loop terminates. See below
for an example of a never-ending DO-loop.

Example:
DO 5J = K+L-5, M-I(JOB(KK)),-L

41

- 10 -

If m,,mz,mz are expressions, their values are the values of
the expressions when the DO statement is encountered at
object time, and these values are unaffected by alteration
inside the DO of the values of the variables in the
expressions m; ,mz,ma.

As a result of allowing positive or negative values
for m; ,mz,ma, it is legal to have DO loops which count
down. For example,

DO 3 I =10, 1,-1

will cause I to run from 10 to 1 in steps of (-1). The

following is also permitted.

DO 10 J = -10,5,2

which will cause J to assume successlvely the values -10, -8,
-6, -4, -2, 0, 2, 4. If the DO variable assumes zero or
negative values, it may be used, with caution, as a subscript.
Intelligent use of negative or zero subscripts demands
knowledge of the layout of data areas in memory, as described
in the operating instructions.

Care should be taken to see that the DO index
terminates properly. For instance,

DO 20 K = -10, -1, -2

will increment nearly 5000 times before termination. The
same 1s true of

DO 40 K = 10, 1, 2

Termination in both cases occurs because integer arithmetic
is performed modulo 10000.

All the restrictions on DO statements currently
imposed by IBM FORTRAN II are also in force in KINGSTON
FORTRAN, except as already mentioned.

CONTINUE STATEMENT

Same as IBM FORTRAN II.
PAUSE STATEMENT
PAUSE

PAUSE n, where n 1s a fixed point constant, variable
or expression.

42

- 11 -

The typewriter types PAUSE n, together with error
messages (see operating instructions) and the machine halts.

If n is a variable or expression, its current value is typed.

PAUSE (without n) generates an in-line halt command; there
1s no typing. 1In either case, depression START will cause
resumption of program.

STOP STATEMENT
STOP

STOP n, where n 1s a fixed point constant, variable
or expression.

The typewriter will type STOP, followed by the
current value of n. If n 1s not specified, STOP 0000 will
be typed. CALL EXIT is then executed (see operating
instructions).

END STATEMENT

END is an instruction to the compiler that the
program is complete. An END statement must be physically
the last card of the main line program and of each sub-
program which is associated with the job. The END statement
results in CALL EXIT except in a sub-program, where it is
interpreted as a RETURN statement.

FUNCTION AND SUBPROGRAM STATEMENTS

FUNCTION and SUBPROGRAM statements are the same in
KINGSTON FORTRAN as in IBM 1620 FORTRAN II, and the same
restrictions apply.

Because the compiler is one-pass, the subprograms

are not complled separately from the main program. See the
operating instructions for further details.

INPUT/OUTPUT STATEMENTS

The INPUT/OUTPUT statements in KINGSTON FORTRAN II
are similar to those of IBM FORTRAN II, except that
expressions are permitted, as well as simple variables,
in certain places in INPUT/OUTPUT lists. Indexed lists,
array names (to handle a whole array) and all other standard
FORTRAN II features are allowed. It is not necessary to
specify a FORMAT statement number in an I/0 statement., If
no FORMAT statement number is glven, the system will supply
FORMAT (5N). Sce the description of FORMAT for an
explanation of FORMAT /5N).

43

O

- 12 -

The permitted INPUT/OUTPUT statements are:

READ (card input), ACCEPT TAPE, ACCEPT (input on console
typewriter), REREAD (re-reads last input record), PUNCH,
PUNCH TAPE, TYPE (console typewriter), PRINT (on-line
printer).

Indexed I/0 Lists

As in IBM FORTRAN 1I, the statement
READ 10, {((A)I1,J), I=l,10), J=1,10)

will cause 100 numbers A(1,1) to A(10,10} to be read into
array A. Similarly,

READ 10, ((A(I,J), I-K,L), J=M,N)

will cause various elements of A to be read in under the
control of the indices I and J.

In KINGSTON FORTRAN II, the limits on the implied
DO*s (I=K,L; J=M,N) may be expressions. Furthermore, the
names of the input variables may be subscripted to any
desired depth. For example:
READ 10,{((A(I(Kl), J(M1)), K1=K-JOB*2,1+5-J6),M1=M*8-MM9,N-3*N18)
Wwill be executed as
DO 100 M1 = M*8-MM9, N-3*N18
DO 100 K1 = K-JOB*2,L+5-J6
106G READ 10, A(I/Kl:, JIM1))

where I and J are names of one-dimensional arrays which must
previously have been defined.

KINGSTON FORTRAN II permits the same kinds of expressions
in indexing as are permitted in standard DO statements. The
implied DO in and I1/0 list may run forward or backward, and
may have integer expressions of any desired complexity.

INPUT LISTS
In an input list, the variables may be only simple

variables or indexed variables. Input of expressions is
meaningless, and not permitted, For example:

Yy

- 13 -

READ 10, M, Q, A(I(K+4*L), M(N-S*L+k4)),B

is permitted, provided I, K, L, N and M are previously defined.

READ 10, A+B-C(K) 1is not permitted.

OUTPUT LISTS

Output 1lists may be fully indexed lists, as’
described above. 1In addition, expressions may appear in the
list as output quantities. For example:

PUNCH 20, C*D/(LOGF(X-Y*2)+10.3) Y, D
will cause
C*D/LOGF (X-Y*Z)+10.3

to be calculated at the time the punch statement is encountered
and its value to be punched, together with the values of Y and
D, on a card, according to Format statement 20. The value

of the expression in an output 1list is lost when it is

output, and is not available for further calculation. The
expression in an 1/0 list may be of any desired complexity,
and may be indexed as required, either by DO statements, or

by implied DO statements in the 1list itself. For example:

PUNCH 20, (((C*SQRTF(A(I1,J))-M(I)),I=1,L+4,3),J=I+1,K-10,5)
will cause values of C*SQRTF(A(I,J))-M(I)
to be punched out for values of J from I+l to K-10 in steps
of 5 and values of I from 1 to L+4 in steps of 3.

ASSIGNED FORMAT NUMBERS

Format statement numbers may be assigned by ASSIGN
statements in the same way any other statement number can.
Hence, input/output statements may use alphabetic statement
labels in place of Format statement numbers. For example,
the following program is permitted:

3 FORMAT (
b FORMAT (
5 FORMAT (
ASSIGN 3
ASSIGN &
ASSIGN 5

10 READ K(L

- 14 -

Note that the flrst statement wlll be executed according to
Format statement 3, while the second READ statement will be
executed according to Format Statement 4 when L=1, and
according to Format Statement 5 when L=2,

The subscripted variables in all the above examples
must previously have been mentioned in a DIMENSION statement.

ARRAY NAMES IN I/0 LIST

. As in IBM FORTRAN II, array names without subscripts
may appear in I/O lists. Mention of an array name will
cause the entire array, as specified in the DIMENSION
statement to be input or output. Two dimensional arrays
are handled column-wise -

DIMENSION A(10,10)
READ, A

will cause the entire 100 elements of ‘A to be read in, in 5N

notation. The elements of A must be in order A(1,1), A(2,1),
A(3,1), A(u,l), A(5,1), A(G,l), etc.

FORMAT STATEMENTS

Format statements are, in general, equivalent to
Format statements allowed in 7090/9# FORTRAN II. E, F, I
and A conversion are permitted. Repetition of field format
is allowed before E, F,I or A. Thus FORMAT (I2,3El2.4) is
equivalent to

FORMAT (I2,E12.4,E12.4,E12.4)

Parenthetical expression is permitted in order to
enable repetition of data flelds according to certain Format
specifications within a longer FORMAT statement. The number
of repetitions is limited to 99. Thus,

FORMAT (2(F10.6,E10.2),I4)

The level of parenthesizing can be eXfended to a second level,
thus:

FORMAT (2(I4,2(F6.2,F8.3))) is equivalent to
PORMAT (I4,P6.2,FP8.3,F6.2,F8.3,14,F6.2,F8.3,F6.2,F8.3)

The depth of such nesting of parentheses must not exceed 5,
which appears to be more than would ever be necessary.

6

- 15 -

N-Format

Rigid format on input data is not always desirable,
and in many cases makes key-punching more difficult.
KINGSTON FORTRAN allows so-called "free form" input, as well
as the more familiar fixed or rigid format. If the FORMAT
statement specifies I, E or F format on input, then the
input data record must conform to the normal rules for such
format as specified in IBM manuals. However, if N format
(denoting "free form") is used, the data numbers may appear
anywhere on the card, and input is controlled by the input
list.

N format is used 1like E, F or I format except that
no width or decimal point location digits are required or
permitted. Por example,
‘READ 10, I, J, A, C, Z
10 FORMAT (5N)
will cause the program to read in a record of 2 integer
numbers followed by 3 floating-point numbers. In N format,
a number is defined as: any number of leading blanks,
followed by a neaningful collection of digits, followed by
1 trailing blank. Note that the blank column immediately
following the right-most digit or character of the number
is considered part of the number, and serves to delineate
the right-hand end of the number.
In the case of E numbers handled with N-format,
blanks after the letter E are ignored, and the machine
uses the next set of digits as the exponent. For example:
bl .2345678E-05b

will be interpreted as .000012345678.

The number bl.2345678Ebbbbb-05b

will be interpreted in the same way.
b1.2345678Ebbbb103

will résult in an error condition (see operating instructions).
b1.2345678E bb 00005

will be interpreted as 123456.78. Leading zeros before
either the mantissa or exponent are ignored.

#7

A

- 16 -

An E- type number handled by N-format ends with the
blank after the exponent digits. :

A FORMAT statement may specify N, E, F, I or A format
as required, thus allowing both free and rigid format on the
same card. Note that, in N format, if a floating point
number does not have a decimal point, it is assumed to be
after the low-order digit of the number.

Some examples may help:

READ 10, I, J, A, C, 2

10 FORMAT (5N)

The card might look like:

bb123bbbbbb12bbbl6.3bbbbbl .2E6b123000bbb etc.

N Format requires only that at least 1 blank column
follow the number. In this case, I, J, A, C, Z would be
stored as 123, 12, 16.3, 1.2E06, 123000. resp.

RMDll,I,J,A,C,Z
11 FORMAT (I3, 16, N, qu.}, N)

The Format requires that I, J, C follow rigid format.
The card might look like:

¢
b12bbb12bbbbbb120.b bob1234567bbb16.8bbb etc.

This would give the following results:

Variable Value
I 12
J 120
A 120,
C 1234 .567
Z 116.8

Note that the F-specification for C starts on the
first column after the blank following 120., (see the position
of the arrow) since this blank is considered part of the
value of an N-Format number.

An output, N format is equivalent to 1PE14.7,1X
for floating point numbers, and I5,1X for integer numbers.

Y8

AW e e T W —

- 17 -

N Format allows repeated format and parenthesizing,
and follows the usual rules for them.

If a number is positive, the output under E, F, I
or N Format will not contain a leading plus sign. On I
Pormat, no space 1is left for it, so that it is possible to
construct a fully packed output record provided all numbers
are positive. N Format generates a space for a + sign and a
space following the number.

If a floating point number is output under Iw Format,
the integer part of the floating point number is convered to
Iw Format. Thus 1283%2.56 output with I10 Format would
appear as bbbb128342.

SCALE FACTORS

To permit more general use of E and F conversion, a
scale factor followed by the letter P may precede the
specification. The scale factor is defined such that

Output number = internal number x 10scale factor

Internal number = input number x 10-5cale factor

This operates exactly the same as in IBM FORTRAN 'II for the
larger machines. For example

FORMAT (2PF10.4)

used on ocutput will multiply the nﬁmber by 100 before output.
On input, it will divide the external number by 100 before
storing it in the machine.

On E-Format output, the effect of P-scaling 1s to
shift the decimal point in the mantissa and to adjust the
exponent by the amount of the shift. :

Thus, if FORMAT(E15.8), used for output, produced
the number .12345678E-04, then FORMAT (3PE15.5) would produce
123.456T8E-07 for the same number., Note that for E-Format
output, P-scaling does not change the ma, i the numb
It shifts the decimal point, and makes a compensating change
in the exponent, For F-FPormat, P-scaling alters the magnitude
of the number on input/output.

VARIABLE FORMAT

KINGSTON FORTRAN II allows variable Format. That is,
Format specifications may be read in at object time. In this
way, data may be read in under control of a Format Statement
which itself has been read in. Variable Format statements
must be read under A-Format into an array by means of a
normal Read statement.

49

- 18 -

For example:
DIMENSION FMT (15)
READ 10, (FMT(I), I=1,14)
10 FORMAT (15A5)

will cause 70 characters of input record (i.e. the Format
Statement being read in) to be stored in array FMT. 1t is
then possible to write: :

READ FMT, A, B, X, 2, (A(J),J=1,10)

where the input variables will be read in according to the
Format Statement stored in array FMT.

It is also possible to alter array FMT by programming.
This should be done with some care, otherwise the Format
Statement stored in array FMT may become completely
unintelligible. : R

~The name of the variable Format’ specification must
apgea{ in a DIMENSION Statement, even if the Array size is
only 1.

The Format read in at object time must take the same
form as a source program Format Statement except that the
word Format is omitted, 1i.e. the variable Format begins
wlth a left parenthesis.

SPECIFICATION STATEMENTS

COMMON

Variables, including array names, appearing in
COMMON statements will be assigned core storage locations
beginning at the high end of memory, and will be stored at
object time in descending sequence, 10 digits per variable,
or per item of a dimensioned variable, as they are
encountered in the COMMON statement. If a variable is a
dimensioned variable, the size of the dimensioned array must
appear in the COMMON statement, and the variable must not
again be dimensioned in a DIMENSION statement. The COMMON
statement must precede EQUIVALENCE or DIMENSION statements
(if any) and must precede the first statement of the source
program. For example:

COMMON A,B,I,J,X(10,3),Y(5)

(Inclusion of dimensioning information in COMMON statements
is allowed in FORTRAN 1IV).

50

- 19 -

DIMENSION
The DIMENSION statement is the same as IBM PORTRAN II

except that variables already mentioned in COMMON may not

again be dimensioned and that only 2 subscripts are allowed.

DIMENSION Z(10,5),V(4#00) is permitted
DIMENSION X(10,5,10) is not permitted

EQUIVALENCE
BQUIVALENCE (2,b,c,---), (d,e,f,--),---

where a,b,c,d,e,f, are variable names. KINGSTON FORTRAN
imposes some restrictions on EQUIVALENCE statements which are
not pesent’ in IBM FORTRAN II. These are noted below:

1.
2.
3.

4,

Single variables may be equivalenced only to single
variables.

Arrays may be equivalenced to other arrays, of the same
size only.

Single variables may not be equivalenced to individual
items of arrays, nor may single items of two arrays be
equivalenced. In general, no subscripts may appear in
an Equivalence statement.

Because the compiler is single pass, it is crucial that
the order in the source deck be:

COMMON (if any), DIMENSION(if any), BEQUIVALENCE (if any).

They must precede the first executable statement of the
program.

If arrays are to be equivalenced, the first item only

in the list must have been defined previously In a
COMMON, or DIMENSION declaration, and the remaining ltems
in the list must not have been so defined. e
Equivalence statement itself defines these remaining
items. If single variables are to be equivalenced, and
any item in the Equivalence 1ist has been defined in a
previous COMMON or TYPE statement, it must be first in
the .Equivalence 1ist, and the other items must not have
been defined in a COMMON or TYPE statement., For example,

COMMON A,B(10,3),C
DIMENSION D(50)
EQUIVALENCE (A,F,G), (D,X)

This puts A, array B, and C in common storage; defines

array D; defines F and G as single variables in the same
memory location as A; and defines X as a 50-item vector in the
same location as D. The following are errors: (in the

example above).

5/

_ 20 -

EQUIVALENCE (DA /para.1,2)

EQUIVALENCE (B(1,1),G) {para. 3)

EQUIVALENCE (X,D) {para.5, X not defined}
EQUIVALENCE (G,A,F) (para.5, G not defined,

A defined)
EQUIVALENCE (D(50),X(50); (para.3)

6. To preserve compatibility with other FORTRAN systems,
which require DIMENSION statements for all array variables
in an Equivalence list, KINGSTON FORTRAN allows extra
DIMENSION statements after the Equivalence statements.
Such DIMENSION statements may be used to mention the
equivalenced variables, but since they have already been
defined in the Equivalence Statement, the compiler will
ignore them. It will not, however, call them errors. For
example:

DIMENSION X(10), Y(20)
EQUIVALENCE (X,A,B), (Y,C,G)
DIMENSION A(10), B(10), C(20), G(20)

is permitted. The variables A,B,C,G in the second
DIMENSION statement are ignored by the compller, because
they have already been defined in the preceding EQUIVALENCE
Statement.

7. It is possible to equivalence items not of the same type
or mode: e.g. EQUIVALENCE (A,I) - where A is real and
I 1is integer.

TYPE

Two TYPE declarations are permitted. These statements
determine the type of variable associated with each variable
name appearing in the statement. Thils TYPE declaration is in
effect throughout the program. The two declarations are

INTEGER a,b,c,....
REAL a,b,c,....

where a,b,c, are variable names appearing within the program,
Function names may not appear in TYPE declarations.

Rules: -

(1) A variable defined to be of a given type remains of
that type throughout the program.

(2) INTEGER indicates that the variables listed are integer,
and over-rides the alphabetic naming convention.

(3) REAL indicates that the variables listed are floating
point, and over-rides the alphabetic naming convention.

52

- 21 -

The TYPE declaration must occur before the first
executable statement of the program. If any of the variables
mentioned in a TYPE declaration are mentioned in a COMMON or
DIMENSION statement, the TYPE declaration must follow such
mention.

If a TYPE declaration precedes an EQUIVALENCE
statement, then it defines a variablé in the sense required
by the EQUIVALENCE statement, and all variables equivalenced
to the one declared in the TYPE statement will be of the same

type.

If a TYPE declaration follows an EQUIVALENCE statemert ,
then only the specific variable names mentioned in the
declaration will be affected.

Examples,

1. INTEGER A
EQUIVALENCE (A,B,C)

2. EQUIVALENCE (A,B,C)
INTEGER A

3. FQUIVALENCE (A,B,C)
INTEGER A,B,C

4, INTEGER A,B,C
EQUIVALENCE (A,B,C)

Examples 1 and 3 cause A,B,C, to be integer variables and
occupy the same memory location.

Example 2 causes A to be integer, B,C to be real, and
A,B,C to occupy the same memory location.

Example 4 is an error in KINGSTON FORTRAN (see para. 5 under
EQUIVALENCE).

53

m[

KINGSTON FORTRAN II

OPERATING CONCEPTS AND SUBROUTINE DECK DESCRIPTIONS

by:

J.A.A. Fleld,! D.A. Jardine,® E.S. Lee,?
J.A.N. Lee,® and D.G. Robinson®

Presented at the Joint Canadian-Midwest Region
Meeting of the 1620 Users Grouﬁ, Chicago,
February 19-21, 196

Dept. of Electrical Engineering, University or Toronto,
Toronto, Ontario,

Research Centre, Du Pont of Canada Limited, Kingston,
Ontario

Computing Centre, Queent!s University, Kingston, Ontario

54

1.

KINGSTON FORTRAN II

OPERATING CONCEPTS

KINGSTON FORTRAN has incorporated in it the ability
to recognize certain control cards both at compile and object
time. The control cards recognized by the compller are, with
one exception,instructions to the compiler to execute various
options such as symbol table output, compile with or without
trace, etc. A list of these and their functions appears later.
The control cards recognized by the object program are intended
to help in the operation of programs involving blocks of data
and to permit continuous flow of programs through the machine
with a minimum of operator intervention. The system will
allow stacking of programs in the read hopper and execution
of these programs, in the order they are presented to the
machine, without requiring button pushing at each program
load.

COMPILER OPERATION
The compiler deck is self-loading and self-

identifying. To load the compiler, push RESET, LOAD. The
switch settings are:

Parity - STOP
I/0 - Program -
Sense Switches - not used. Position immaterial.

Because the 1620 typewriter is prone to write-checks, any
errors in its operation are completely ignored. Card I/0
read- and write-checks are handled by programming.

The source deck is assembled with the main-line
program accompanied by all subprograms in source language.
The main-line and subprograms may be in any order., Because
the compiler is one pass, and to avoid the complications
of subprogram object loaders, the entire deck is compiled
at one time. The job size must be such that the main
program and all its subprograms can be accommodated in
core at one time. That is, no overlay of subprograms by
other subprograms is permitted. This restriction also
exists in IBM 1620 FORTRAN II.

The end of the mainline program and of each
subprogram must be indicated by an END statement. Thus a
program may contain more than one END statement. A
special control card is used to indicate the end of the
entire job; a job, in this context, means the set of
main-line program and all required subprograms.

55

The following section gives the compiler control
cards and, their function. All control cards must have a
g, *, or % symbol in column 1, and the identifying word
in cols. 7 and following.

BEGIN TRACE

Form: Col 1 - g,*, or 4
Col 7 - BEGIN TRACE

Location in Deck: anywhere

Function : fTrace instructions are compiled,
beginning with the next arithmetic
statement. Tracing generates no
additional instructions. :

END TRACE

Form: Col 1l -g, *, or #
Col 7 - END TRACE

Location in Deck: anywhere

Function : If trace instructions Wwere being complled,
thils card stops compilation of trace
instructions., If trace instructions were
not being compiled, this card has no
effect.

LIST

Form: coll -g, *, ort
Col 7 - LIST

Location in Deck : anywhere

Function: The typewriter starts typing the object
time location of the first machine
language 1instruction of each source
statement. The source statement ltself
is not typed. The typed locations can
be matched with a 407 off-line 1listing
of the source program, if desired.

56

9

3.

Coll-g, *, or 4
 Col 7 - UNLIST

Location in Deck: anywhere

If the typewriter had previously been
typing locations as a result of a
LIST card, the UNLIST card stops it.
Otherwise, the UNLIST card has no
effect.

Coll-g, *, ord
Col~7 - MAP

Location in deck: anywhere before any END

statement.

The symbol table for the main program
or subprogram (depending on which END
statement is currently being processed)
is punched on cards when the END
statement 1s encountered, provided a
MAP card occurred previously in that
section of the job. A separate MAP

card is required for each section of the
Job for which a symbol table 1is wanted.

Cox1 -§, % ord
Col 7-9 - JOB
Col 10-79- any valid information

Location in deck: The JOB card must be the first

card of any source deck.

The JOB card informs the compiler that
what follows is a FORTRAN source

program. The compiler will not recognize

a source program until a JOB card is
found, and will read cards indefinitely
until it finds one. " The JOB card is
reproduced (from column 7 onwards) into
the object deck so that the obJect deck
is self.identifying when it is loaded.

57

5,
END OF JOB
Form: Coll-g, *, or 4
Col 7 - EOJ

Location in Deck: The EOJ card must be the last
card of any source deck, 1i.e. must be
the last card of the Jjob, It is in
fact, the super END card.

Function: The EOJ card informs the compiler that
the end of the source deck has been
reached, The machine will stop,
allowing removal of the object deck.
Pressing start will cause the compiler
to read cards searching for a JOB card
or a LOAD card (q.v.).

LOAD

Form: Coll - g, *, or }
Col 7 - LOAD

Location in Deck: following the last EOJ card of
the last source deck.

Function: Because this is a batch compiler, a
control card is needed to inform the
compiler that what follows is not a
source deck, but rather a new program
to be loaded. When the compiler finds
a LOAD card, it executes a 1620 load
operation on the card immediately
following, on the assumption that it
is the first card of a self-loading
program, If it is not, you will be in
trouble.

PRESCAN

Form: Col l-g, *, or#
Col 7 - PRESCAN
Location in Deck: anywhere
Function: Inhibits punching of object deck.
. Error cards are punched if errors are

found. A PRESCAN card may be used in
place of a JOB card.

58

Coll -g, *, or ¢
Col 7 - SIZE NNNN9

Location in Deck: Immediately following JOB card,

SIZE
Form:
Function:
ORIGIN
Form:

i.e. 2nd card of source deck.

The SIZE card specifies the highest
numbered core location which the object
program 1s to occupy. NNNN are any 4
digits, but for instance would usually
be 1999 if compiling for a 20K machine
on a 40K machine. It, however, can be
any 4 digits whatsoever. If the
assignment of this highest memory
location is such that the job will not
fit, an overlap message will result.

Col 1l -g, *, or 4
Col 7 - ORIGIN NNNNN

Location in Deck: Immediately follows SIZE card

Function:

if one exists. Otherwise it follows
the JOB card.

The ORIGIN card specifies the core
location in which the first machine
language instruction of the compilled
program will be placed. NNNNN must
be an even number. If not, you wiIl
Rave dIITIcultles. By suitable
choice of SIZE and ORIGIN, the object
program can be put almost anywhere in
core. In fact, it is possible to
specify so 1little core for the object
program that no source program whatsoever
will fit in 1%.

If the origin is not specified by an
ORIGIN card, the object program will

‘start at location 5300. This is not

quite as good as it looks, because, as
1s common with many computing systems,
you may need extra bits and pleces to
make things work. See the section on
subroutines.

59

SUMMARY

To compile a program, load the compiler followed
by the source deck. The source deck order 1is:

JOB card
Main-line program with END card)these may be
Subprogram(s) with END card(s))in any order
EOJ card.

If another source deck is to be compiled, make it
up in the same way, and stack up in the reader
hopper. If the next thing to be done is a self-
loading program, precede i1t with a FLOAD card.

Symbol Table

If a MAP card occurred in the source deck, a
symbol table will have been punched. Because a separate
symbol table may be punched for the main program and each
subprogram, it is not possible to avoid interspersing the
object deck and the symbol table. For this reason, the °
symbol table cards are identified by a particular code
on the card. The 407-E8 wiring diagram in this write-up
will detect which are symbol table cards and print only
those, ignoring object program cards. The symbol table
is punched 4 symbols per card.

Whether or not a symbcl table is punched, the
compiler punches 1 blank card following completion of the
job. This allows removal of the objJect deck without
using the non-process runout feature on the 1622, The
next deck to be punched will be preceded by the blank
card, which must be discarded.

Error Checking

The KINGSTON FORTRAN compiler has built in provision
for checking errors in the scurce program. Because of the
expansions in the language, certain statements which are
unacceptable to a normal FORTRAN compller will, of-course,
be accepted by the KINGSTON FORTRAN compiler.

All errors will te punched on cards suitable for
407 1isting using the panel described in this write-up.
The 407 will ignore any obJect program cards in the deck.
The error card will contain an error code followed by the
line number in which it occurred. The errors and their
codes are described in Table 1.

60

Error

Ql
Q2
Q3
Ql

Q5
Q6
Q7
Q8
Q9
Pl
P2
P>
PY
P5
P6
P7

WA

wC
WD

£33

WG
wJ
ws

WP

WT

WK

TABLE I
ERRORS AT COMPILE TIME

Reason

Character after Format not (

No EOJ card

Continued Error

Argument List in Subroutine or Function Declaration
not a simple variable.

Unpaired Parentheses. _

No statement number in Format.
Unrecognizable.

Statement exceeds 300 characters.
Doubly defined St. No.

Incorrect Go To Statement.

Invalid Assign Statement.

Invalid If Statement.

Invalid Computed Go To Statement.
EOJ Card not preceded by an End Card.
Expression in Subr.

Invalid Call.-

Illegal Operator in Expression is g or @.

Illegal sequence of operators.

Mode Error.

OP-VAR-OP Sequence Illegal; Syntax error in
Statement.

) not followed by an operator.

Invalid operator in subscripting.

Number of subscripts does not agree with DIMENSION
Statement.

Floating Subscript.

Expressicn Ends in Illegal Character.

Invalid expression on left-hand side of Arithmetic
Statement.

Invalid expression on right-hand side of Arithmetic
Statement.

One of the tables used in compiling Arithmetic is
full; 1.e. Statement is too long. :
Syntax error in Arithmetic expression.

G/

Table I (cont'd)

Error

Rl
R2
R3

F1

F2

F3

ER99
ER98
ER97
ER96
ER95
ER9M
EBY3
ER92
EROL
ER90
ER89
ER88
ER87
ER86
ER85
ER8Y4

Reason

Incomplete DO or I/0 Statement.
Expression in Input List.

Unpaired () in Assigned Format No.
Invalid Delimiter in I/0 Statement.
Invalid Use of {) in I/O Statement.

Format too verbose for simple minded compiler or,
(before completion of repeating format.

Most likely, invalid format, DO, I1/0, or Arithmetic
Statement. If Format, can be: - sign that is not
part of P-Type, incorrect specification of length
of H type; no closing); statement not complete;
non permissible character.

More than 5 levels of repeating format
Repeated Power Format has more than 49 repeats
Field Width is missing in I, A, F, E, Specs
A-Width greater than 50

D missing in EW.D or FW.D

Decimal missing in EW.D or FW.D
Non-permissible character.

D greater than W in EW.D or FW.D

(W-D) greater than 45

Fleld Width greater than 80.

A-Type has zero field width.

Symbol is more than 6 characters.

Fixed point number has too many digits.
Floating point number too big.
Floating point number too small.

Symbol table full.

Symbol which should be a function is not.
Simple variable in Dimension Statement.
Dimension IMAX not followed by) or ,
Missing) on Dimension Variable.

No , between Dimension or Common items.
Unidentified Card.

First item in Equiv List not in Table.
Missing or , in Equivalence.

Number in Equiv Statement.

Variable Dimensioned Twice.

Arith, St. Func. Defined Twice.

62

)

. e

OBJECT PROGRAM OPERATION

1. Introduction

The permanent subroutines package contains
routines which facilitate the handling of multi-part
programs and the handling of multiple data sets for
the same program. The routines also have the ability
to recognize certain control cards as described below.
This 1is not by any means a resident monitor, but it
uses some of the simpler concepts involved in monitor
systems.

An object program will operate perfectly satis-
factorily without referring to the résident supervisor
program. If this kind of operation is desired, then
the running of the object program is the same as for
any other card 1620 FORTRAN. Load the object program,
followed by the subroutine deck, followed by the data,
and pray.

2. Error Messages at Object Time

No method really satisfactory to all people can
be devised for handling errors at object time. Some
people want every error, however trivial, brought to
their attention every time it happens, either by type-
writer message or by stopping the machine. Others say
that any error should result in passing control to the
monitor and delivering to the programmer a core dump
(preferably in binary) together with a cryptic indication
as to the possible source of his trouble. Still others
assert that no errors should be detected at all, that
the machine should run merrily on and that it is up to
the programmer to figure out post facto why his answers
‘are out by a factor of 10%5,

The position taken in KINGSTON FORTRAN is that a
40K 1620 is a littie too expensive to permit unbridled
chattering by the typewriter, but is still cheap enough
to permit some stopping during the course of debugging
a program.

Object time errors are collected in an 18 digit
error field located in the permanent subroutines. Digits
are inserted in this fleld to indicate various kinds of
errors, and system CALL statements have been included
to allow interrogation, typing, and resetting of this
error fileld.

Most errors do not result in stopping the machine,
and the error is not communicated when it occurs.

63

10.

The error field is also typed out when a PAUSE,
STOP or END statement 1s encountered. The error codes
are given in Table 2. If a check digit is zero, the
error in question did not occur.

The systems CALL statements for interrogating
and using the error field, follow:

CALL EPRT

If the error field contains one or more non-zefo digits

" (i.e.. at least one error has occurred) the typewriter

types the 18 digit field followed by CHECK. If the
error field was zero throughout, only the word CHECK
is printed. The error field 13 not reset to zero by
CALL EPRT. Control is passed to the next executable
statement of the program.

CALL RESET

The error field is reset to zero. It is not typed
out. Control is passed to the next executable statement
of the program. . . .

CALL ERRCK(J)

The error field is interrogated. If it is non-
zero (at least one error has occurred) the integer
variable J 1s set equal to 1. If no errors have
occurred, J is set equal to 2. The error field is
printed out (if non-zero) and reset to zero. Control is
passed to the next executable statement of the program.

The error field is also typed out by certain
supervisor control cards, as described in the next
section.

THE SUPERVISOR

The resident supervisor can recognize 3 kinds of
control cards, One of these signals that the following
card is the first card of a new job and that a load
operation is called for. The other two are used to
delineate blocks and files of data for a given program.

New Program Card

Form : Col 1 g
) Col 2-80 any alpha numeric information

Location: first card of an 3§gpct program deck.

e T v e —

Punction:

.

End of Block

11.

This card informs the object program

that a new job is waiting to be loaded.

If the current object program reads such
a card under the misapprehension that it
is a data card, the words END OF DATA are
typed followed by the word CHECK and the
error fleld (if non-zero). The typewriter
then types out the contents of the card,
and the computer simulates the load
operation to read in the next job.

Form : Col .1,2 - g§¥

Col 3-80-

Location:

Function:

End of Pile

Porm: Col 1,2,3
Col 4-80

Location :

Function:

any alﬁhanumeric information.
At the end of a block of data.

When a card containing g§ is read under
control of a READ statement, the End of
Block Indicator is turned on, and the
typewriter types the contents of the

Bnd of Block card, followed by the word
CHECK and the error field . (if non-zero).
Control is then transferred to the first
executable statement of the program.

The End of Block Indicator may be
interrogated by calling the End of File

or Block subprogram. See below. (The

End of Block Indicator is a program switch,
not a hardware feature).

e
any alphanumeric information
at the end of a set of blocks of data

When a card containing J¥§ 1is read under
control of a READ statement, the End of
File Indicator is turned on, and the
typewriter types the contents of the End

of File card, followed by the word CHECK
and the error field (if non-zero). Control
1s then transferred to the first executable
statement of the program.

The End of File Indicator may be inter-
rogated by calling the End of File or
Block Subprogram. See below. (The End of
File Indicator is a program switch, not a
hardwareéfgfture)

12.

The End of File or Block Subroutine Subprogram
(which is built into the system) may be used to
interrogate the End of File and End of Block
Switches.

CALL EOFB(J)

The End of File and End of Block indicators are
interrogated.

If the End of File Indicator is on, J 1s set equal
to 1.

" If the End of Block Indicator is on, J 1s set equal
to 2. If neilther is on, J is set equal to 3. Both
indicators are set to the OFF position after inter-
rogation. Control is transferred to the next
executable statement of the program.

Note on the use of End-of-File, End-of-Block

In a job which is processing data in batches, it
1s convenlient to have some way of telling the computer
where the end of a data set is, and also to tell the
machine which is the last set of such data.

The end of a set of data is called a "block" in
our nomenclature. It may be of variable number of data
points (as in many statistical problems), but at least it
is the amount of data which is appropriate for the whole
Job or for a section of 1it.

Many Jobs are set up to process several blocks of
data in more or less the same way for each block. It 1s
useful, however, to identify the end of the last block so
that the program is informed that no more data exist., The
End of File Indicator accomplishes this. In our nomen-
clature, a "file"™ is a set of one or more "blocks" of data.

Since reading an End of Block or End of Pile card

returns control to the first executable statement of the
program, it, 1s suggested that this first statement should

be
CALL EOFB(J)

followed at a sulitable place by a computed GO TO using J
as 1ts index.

Two other system subroutine call statements are
provided in KINGSTON FORTRAN:

CALL EXIT (g

13.

When this subroutine call is encountered the object
program is stopped and control is passed to the
supervisor. The machine will read cards until it finds

a new job card. When this is found, the number of cards
read before finding the new program card is typed out as
BYPASS N where N is the number of cards. The error check
fleld is typed and the new program card is handled in the
normal way.

CALL SKIP

This subroutine call causes interruption of the
normal program. The machine will read cards until the
next end-of-block or end-of-file (g or FF¥) card is
encountered, at which time control is transferred to the
first statement of the program. If a new Jjob card is
encountered before at g or Fgg card, a normal exit to
new program will result. 1In any case, the check field is
typed, together with BYPASS N as explained above under
CALL EXIT.

CALL SKIP will usually be employed to stop
calculation on a block of data because of an abnormal
situation (e.g. failure to converge on an iteration,
bad data) which has occurred in the block of data.

In such a case, CALL SKIP will cause that particular
calculation to be abandoned, and a new set of data to be
presented to the program.

CALL EXIT and CALL SKIP may also result from
certain object time error conditions. See Table 2.

Certain input-output errors are also detected
at object time., If one of these 1s encountered, the
typewriter will type the words I/O ERROR, followed by a
digit. A 1list of these errors is shown in Table III.

67

TABLE 2

Object Time Errors

Position
in Error .
Field Digit Meaning ‘Action Taken (FAC = Accumulator = Result Field)
1st digit 1 Floating Point Underflow FAC = 0000000000
2nd 2 Floating Point Overflow FAC = $9999999999
3rd 3 Floating Point Divide by
Zero FAC = 193999999999
4th 4 Fixed Point Divide by Zero FAC is unchanged, 1.e. J/o =J
5th Square Root of Neg. Number Square root of absolute value of arg.
b
6th 6 Log of zero or Neg.Number Log(0) = -9999999999; otherwise log of abs. value =
[SN of arg.
oo
7th 7 Sin or cos, arg. > 10° CALL EXIT
8th 8 Exp(x) out of range FAC = 19999999999
gth 9 Input number too small The number entered memory as 0000000000
10th 1 Input number too big The number entered memory as +£9999999999
1ith 2
12 3
13 b
14 5 Unused. Available for
15 6 user-defined relocatable
16 7 subprograms .,
17 8
18 9
TABLE 3
I/0 Errors at Object Time
1/0 '
Error Reason Result
0 Input record from T/W or paper tape over 120 characters long CALL EXIT
1 Non-alphabetic data on A-type output CALL EXIT
2 Field Width too small on I, E, F, output CALL SKIP
3 Invalid character on input data on I, E, F, or N Format CALL SKIP
y Read in integer with E, F, or N Format and has lost right-hand end digits CALL SKIP
5 Input-Output 1list with no numeric specifications between last opening-
closing parenthesis pair in Format statement CALL EXIT
6\6 Format requires more than 120 characters in a record CALL EXIT
7 Write-check occurred > times when attempting to punch output or trace =
card CALL EXIT W
1F Error in Variable Format - similar to error F1l at complle time CALL SKIP
2F Ditto - similar to error F2 at compile time . ' CALL SKIP
3F Ditto - similar to error F3 at compile time CALL SKIP
READ 1 Read check on T/W Computer halts.
READ 3 " " " paper tape When start is
READ 5 " " " cards pressed, the

machine will

attempt to read

the record again

D

O S

16.

MEMORY ALLOCATION AT OBJECT TIME

A1l constants and variables are stored in 10 digit
words. The address of the low order digit ends always in Q.
Hence the address of the high order digit ends in 0.

' SIMPLE VARIABLES

Real Variables - 10 digits, low order digit address ends
in 9.

Integer Varilables - 4 digits, low order digit address ends in

Real Constants - same as real variables.

Integer Constants - In the rare cases that flxed point
constants are stored in the object program,
both the negative and positive value of
the constant are stored. The positive
value occupies the low order digits of
the 10 digit word; the negative value has
i1ts low-order digit address ending in 4.
The other 2 cores are unused.

address
e.g. 0123456789

0567805678
This illustrates storage of 5678

A-Format Words - are stored in a 10 digit field, the low
order address of which ends in 9. The
digit at the high order address (ending
in 0) 1is flagged.

ARRAYS

Vectors- one-dimensional arrays.

Vectors are stored starting with the first
element at the highest numbered address,
and with succeeding elements at
progressively lower numbered addresses.
That is, the vector dimensioned A(10)
would be stored A(1),A(2),A(3),--A(10)
at successively lower memory locations.
The address of element A(I) may be
calculated from:
Address of A(I) = Address of A(0)-10*I
where the address of A(0O) 1s called the
base address of A.
Note that A(0) = A(1) + 10
Zero and negative subscripts will perform
properly on a vector provided space is
avallable.

70

Matrices -

7.

two dimensional arrays. Matrices are
stored starting with the first element,
B(1,1), stored at the highest numbered
address. The elements are stored column-
wise at progressively lower numbered
addresses: B(1,1),B(2,1),B{(3,1) etc.
The address of B)I,J) may be calculated
from:
Address of B(I,J) = Address of B(0,0)-10
(J*IMAX+I)
where the address of B(0,0) is called the
base of B. IMAX is the maximum number of
rows ln B as specified in the DIMENSION
statement.

Note that:

The address of B(0,0)=address of B(1,1)+10
(IMAX+1) ’

Negatlive or zero subscripts on a matrix
will work properly on the second subscript,
but not on the first subscript. For
instance, if B is dimensioned B(3,3), then
B(3,1) and B(0,2) will be in the same
memory location, a conditlion which may be
undesirable. However, B(2,0) will te
stored in the second item before B(1,1).

An example of a memory layout may help.
Suppose the program has the following
COMMON statement:

COMMON X, A(L4), B(2,3)

The layout of memory 1is:

Memory Location

Variable - (low order digit)

f R} as€ o }
9

A?Z} : 79 {Base of B)

A(3) 69

Af‘*) 59

B 1,1; 49

B(2,1 39

B(l,2g 27

B(2,2 19

B(1,3) 09

B(2,3) 39899

71

18.

STATEMENT NUMBERS

The address of the statement is stored.in a 5 digit
field, which is referred to indirectly. Two such 5 digit
fields are contained in a 10 digilt word, whose low order
address ends in 9.

SUBPROGRAM ADDRESSES

FORTRAN subprograﬁs or arithmetic statement functions
require two 5 digit addresses for their entry points. These
are stored in a 10 digit word whose low order address ends in

9.

TEMPORARY ACCUMULATORS

(1) lo-digit iébuhdlators may be required during the
evaluation of an arithmetic expression. These are
treated exactly like storage for simple variables.

(2) 5-digit accumulators are used in subscripting calculations.
Two of these are stored per 10 digit word.

72

19.

THE SUBROUTINE DECK

No provision is made for reproducing the subroutine
deck into the object program. It is the opinion of the
writers of KINGSTON FORTRAN II ithat the 1620 should not be
used to reproduce subroutine decks indiscriminately. For
that reason it is required that the subroutine deck be
placed behind the object deck when loading. If a condensed
program is desired, use a suitable core-dump-and-reload
program.

The subroutine deck consists of 3 parts, which are,
in order: (a) the relocator, which handles the lcading of
the relocatable subprogram (as requested by the obJject
program) into core storage; (b) the relocatable subprograms
which consist of the library function subprograms(sin,
cos, exp, etc.), parts of the input-output subroutines and
any subroutine subprograms which the user may wish to
write; (c) the permanent subroutines containing the
programmed floating-point arithmetic routines, the fixed
point routines, the supervisor, the trace routine, and a
hard cord of the input-output routines.

These three sections are essentially -independent.
The relocator is a completely separate program which uses
information contributed by the obJect deck (memory size,
subprograms desired, where empty space is avallable for those
subprograms, etc.) to select and load into core storage the
relocatable subprograms needed for the job.

In a small machine, like the 1620, it is essential
to conserve memory space. For this reason, the input-
output routines have been broken up into pleces, and are
treated like any other relocatable routines. For instance,
if the object program does not use A-specification, the
routine to handle this will not be loaded into core.

Thus, only the input-output routines needed by the object
program will be loaded. -

The questlon arises, how far should this be
carried. About 2000 cores of input-cutput routine are
used by all other input-output routines, and these are

- part of the permanent subroutines package. The routines

for exponentlation, floating and integer, and for integer
division were made relocatable. All others are part of
the permanent package. Some consideration was glven to
making the trace routine (300 cores) relocatable. This
was rejected on the grounds that any program which fits
into the machine should also be traceable. The only way
this can be assured is to have the trace routine
permanently in place.

73

20.

The permanent subroutines are a self-contained deck
independent of the relocator. This deck is so programmed
that after loading, control 1is transferred to the core
location containing the first machire language instruction
of the object program.

A 1ist of the relocatable subprograms is glven in
Table II.

RELOCATABLE SUBPROGRAMS

User-defined-relccatable-subprograms (abbreviated
UDRS) may be of several types, depending on the coding
generated by the compiler when the subprogram name is
encountered in a FORTRAN source statement. The generated
coding is controlled by the makeup of cards placed at the
end of the compiler deck. These trailer cards inform the
compiler what subprograms are available and also supply
auxiliary information about them.

Each entry on a trailler card consists of a two digit
subprogram number, followed by the subprogram name (six
characters maximum) followed by a 3 digit ccde number
enclosed 1in parentheses, A typlcal entry has the form:

NNXXXXXX (nynzna)
where NN 1s a two digit number unflagged).
XXXXXX is a 1 to 6 characzter name

ningnsg is a 3 digit code which describes the subprogram
properties tc the compiler

NN is any two digit number between 01 and 66.

XXXXXX 1s any name beginning with a letter. It does not
have to end in F and its starting letter is
independent of the function mode; e.g. integer
functions do not have tc begin with I, J, K, L,
M, or N.

ningna 1s made up as follews: n;na2 form a two diglt number
controlling the coding generated by the compller;
na describes the function properties. Table I
describes this.

SVECT is a location in a subprogram transfer vector
located in the permanent subroutines. This vector
contains the relocated address cf the subprogram,
as explained below.

74

21.
TABLE 1
Digits Coding
n;Ng Generated Use and Notes
10 TF BJgFAC,ARG Single arg. UDRS which may inter-
BTM -SVECT, *+12 nally branch and transmit
20 BT -SVECT,ARGk Multi-argument, single entry UDRS.
BT -SVECT,ARGk If one of the arguments is already
. . 7} in B@FAC when the UDRS 1is called,
M M . it will not be transmitted by a
: : N BT-SVECT,ARG. If one of the
BT -SVECT,ARG1 arguments is not already in BZFAC,
then ARG, 1is placed in BZFAC and
ARGy _ tO ARG, are transmitted
through SVECT. This type of
entry is designed for functions
like MAX and MIN.
25 BT ~SVECT,ARG Single argument UDRS which may nct
internally branch and transmit
30 TF BFFAC, ARGy Similar to n;n2=20 above, where
BT -SVECT ARG ARGy is forced into BEFAC
. . . =1
BT -SVECT ,ARGe
BT -SVECT,ARG;
35

BTM -SVECT ,ARGK A UDRS which may have any number
. . : of arguments (including no
: : : arguments at all) and which may
BTM -SVECT ,ARG, branch and transmlt internally,
BTM ~-SVECT+5,*+12 and which does not have any of its
arguments in BFFAC when entered.
This entry is required 1if the UDRS
is to be used as a subroutine sub-
program, :

If n, is flagged, the UDRS is expected to produce a floating
point result. If n; is not flagged, the UDRS 1s expected to
produce an integer result.

na
0
1

0

can have 3 possible values:

denotes an even function, i.e. f(x)=f(-x); used only
for single arg. functions

denotes an odd function, i.e. f(x)=-f(-x); used only
for single arg. functilons.

denotes a function which is neither odd nor even.

8

22.

’ If in doubt, set ns=0, which will never cause
trouble. (Certain economies at object time are possible
if the compller knows whether the function is odd or even).

A UDRS may Be used as an arithmetic function or
as a subroutine subprogram. If a UDRS is called as the
result of the appearance of 1its name in FORTRAN arithmetic
statement or expression, it will be compiled as if it were
a function; that is, it must have a single number for a
result, and this result must be left in BFFAC on exit from
the UDRS.

However, if the UDRS is used as a subroutine
subprogram its name must appear in a PORTRAN CALL statement.
In this case, more than one result can be generated, and
these are transmitted back to the calling program by the
formal parameter list or through COMMON storage. The only
permissible n;ng for this case is 35.

The same subprogram may be given several names.
All that 18 necessary is to construct several entries in
the trailer card using the same subprogram number and code
digits, but different names. Entries on the trailer cards
must be packed with no blanks. After the last entry on
each card, a single record mark (0-2-8) is placed. After
the last entry on the last trailer card, two record marks
are placed.

For example, a traller card might loock like:

OSBLAP (100) 0SBLAPF (150) 10GURK(200) 18A (151) LORUNCH(200)
10FLAPF (200)#

The code digits have been described above.
Subprogram 05 1s known by the names BLAP and BLAPF,
subprogram 10 by GURK,RUNCH and FLAPF, and subprogram 18 as

As many trailer cards as necessary are constructed
and placed after the compiler deck. They should be inserted

between the second and third card from the end. The last
two cards contain the names of the system relocatables; the
last card contains two record marks at the end of its
entries (see above).

PROGRAMMING RELOCATABLE SUBPROGRAMS

UDRS are to be coded and assembled using elther
IBM 1620/1710 SPS II or AFIT SPS. To aid in understanding
the process of adding subprograms, a short description of
the subprogram relocator behaviour follows.

70

23.

The relocator will relocate all addresses of 80000
or more. Thus subprograms are preceded with a DORG 80000
instruction. Any address below 80000 will not be relocated.
The relocator assumes that all instructlons are to be
relocated; however a constant (defined by DC, DSC, DAC) or
a DSA will be relocated only if 1its location is at or above
80000. Furthermore, the constant assembled from a DSA will
have both its value and 1its location relocated if they
1lie at or above 80000 and provided also that it occurs
before the first executable instruction of the subprogram.
This willl become clearer later.

The compiler constructs entry commands to the
subprogram as described previously. Note that the user
can force compilation of instructions (in the object
program) which culminate with BTM -SVECT,*+12. Since in
this case, the UDRS has a real 5-digit return address
stored away and control is passed back to the maln program
by branching indirectly to this 5 digit address. This
allows the user to employ BT and BTM instructions In his
own subprogram. Tnls reature permlits dIrect access to all
the Tloating arithmetic routines and also to other
relocatable subprograms. 1t 1s also possible for a UDRS to
call other relocatables, even though the FORIRAN source
program does not require them directly.

Linkage to the relocated subprogram is provided
by a transfer vector located in the permanent subroutine
package. It is defined by a DSB in the permanent package
source deck, a copy of which is included wilth the systems
decks. There 1s thus no reason for the user to concern
himself with absolute addresses, since each UDRS will be
compiled with the aid of the permanent subroutlnes source
deck.

The user must specify certain information, 1in
SPS, before the coding of his UDRS. This information
becomes the header cards used by the relocator to select
and relocate the subprogram properly.

For functions entered by BT -SVECT, ARG, the
coding must look like: .

DORG 0

DC 2,NN

DC 2,11

DC 2,33

DC 2,KK

DORG BFSVECT -9+5 *NN

DSA START, 99999, NXX-80001
DORG 80000

DS 0 55

24,

START function coding

NXX DAS . 1
DEND

The 1ist of DC's at the beginning define the subprogram
number NN, followed by the numbers II, JJ, KK, etc. of the
relocatable subprograms required by this subprogram. These
constants must be preceded by a DORG O (zero); the

relocator identifies them as subprogram numbers by this

fact. A subprogram may call a limit of 29 other subprograms,
1.e. there may be a maximum of 30 DC's in this 1list.

The next item is a DORG to the proper place in the
transfer vector BJSVECT, followed by a DSA 1ist. The first
item in this 1list is the address of the first executed
instruction of the subprogram. The next item in the DSA
1ist must be 99999. The next item is constructed such that
it will assemble to a 5 digit number which is the size of
the subprogram. Note that NXX (or other suitable label) is
a DAS 1 which must appear just before the DEND statement of
the subprogram. ObvIously NXX-8000I wIIl be an even number
and wIIE Pe The number of digits occupied by the subprogram.
The relocator assumes that the DSA immediately following
a DSA 99999 is the subroutine size.

The coding of the subprogram itself 1is preéeded
by DORG 80000.

In the case of multiple argument subprograms, two
entries in the transfer vector are necessary. The subprogram
arguments are transmitted through vector location
BFSVECT +5*N¥, where NN is the subprogram number; the
return address is transmitted through BESVECT- 9 +5*NN.

The programmer must provide coding to handle the arguments
and return address as they are transmitted. For such a
subprogram, two DSA's for transfer vector entries must be
programmed. For example,

DORG 0
DC 2,MM
DORG BJSVECT -~ O +5*MM
DSA START, SOAK,99999,NY-80001
DORG 80000
SOAK -
START -
NY DAS 1

78

O

25.

In such a case, SOAK is the entry for coding to
handle argument addresses, and START is the beginning of the
multi-argument subprogram.

MM 1is the 2-digit subprogram number. Note that
the two entries in the transfer vector must be contiguous,
and that the first one may not be used for any other
subprogram. Thus, if MM is the number of this subprogram,
MM+1 may not be used as the number of any other subprogram,
since the transfer vector location which it needs has
already been used by multiple argument subprogram MM.

For example, let us progrém a subprogram to
calculate the hyperbolic sine of a floating point argument,
by the well known formula

SINH(X) = 3(e* - e7X)
To do this we will need the exponential routine, subprogram
number 69 and we will use the floating subtract and multiply
routines.

HEAD K

HYPERBOLIC SINE OF X, SUBPROGRAM NO. 12
DORG 0 .
DC 2,12
DC -2,69
DORG’ BESVECT-9+5*12.
DSA SINH,99999,N12-80001
DORG 80000
DS 5
SINH TF BIN2,BZFAC
BT BZSVECT-5+5*69 ,BFFAC,6
TF BIN1,BgFAC
TF BgFAC,BIN2
BT BZRVSGN ,BERVSGN -1
BT BESVECT-5+5*69,BFFAC,6
BT BZFSBR,BIN2
BT BZFMP ,FLHAF
B SINH-1,,6
DORG *.3
FLHAF DC 10,5050000000
BIN1 DS 10
BIN2 DS 10
N12 DAS 1
DEND
79

26.

Several points should be noted

(1) This is an example only. Much better methods -for
SINH(X) exist.

(2) A UDRS must be heajed. DO NOT USE HEADING CHARACTERS B
NOR S. These are already used in the permanent -
subprograms .

(3) The first DC defines this subprogram as number 12.
The second DS causes the relocator to load in
subprogram number 69, the exponential routine (see
Table II for a list of systems relocatables).

(%) The next DORG and DSA define the transfer vector entry
and the subprogram length.

(5) Since this subprogram calls other subprograms, it
will be entered by having the argument in BgFAC, and
the compiler will generate BTM BESVECT-5+5*12,%*+12,6.
The compller trailer card entry would be:

12SINH(100)

(6) The coding for the subprogram follows directly. The
first instruction saves the argument x, the second
calculates eX, the third instruction stores this
result away. We then reverse sign of x in the next
two instructions, and calculate e-X, .

The two exponentials are then subtracted, and multiplied
by 0.5. The result remains in BFFAC, and the subprogram
branches indirectly to the return address carried into
the subprogram.

A special method must be used to handle DSA's which
are used internally in a UDRS. A DSA used internally must
have both its value and itslocation adjusted by the relocator.
A true constant, defined by a DSC, DC or DAC, must have 1ts
location adjusted but its wvalue left unchanged. Unfortunately,
in a condensed deck prepared by IBM 1620/1710 SPS I1I, a DSA
and a constant are indistinguishable. For this reason, the
following rules must be observed.

RULE 1: Any DSA which is local to the subprogram and which
I8 t0 have both Its location and its value adjusted by the
relocator, must be defined after the DORG 80000 statement
and before the first instruction of the subprogram.

RULE 2: Any constant which is local to the subprogram and
which 1s to haVve only its location adjusted by the relocator,
must be defined after the first instruction of the subprogram.
Por example,

80

27.
* EXAMPLE SUBPROGRAM NO. 38
DORG ©
DC 2,38
DORG BESVECT-9+5%38
DSA GLOP, 99999 ,N38-80001
DORG 80000
DSA Al,A2,A3
DS 20

GLOP (an instruction)

LI A |

Al
A2 -

A3 -

GORP DC 25,0
GORP1 DC 35,1
N38 DAS 1

The DSA Al,A2,A3, will be adjJusted as required, because it
occurs before the first instruction which in this case is
labelled GLOP. The two DC's, GORP arid GORP1 will have their
locatlon adjusted, but their value unchanged, because they
occur after the first instruction. .

ASSEMBLY OF A UDRS

Program the subprogram as described abo .
it behind the source deck for the permanent subprggramg%ace
Using IBM 1620/1710 SPS II, or AFIT SPS, put this combined
source deck through Pass 1 of the assembly in the normal way.
For PASS II of the assembly, read in only the source deck for
the UDRS; 1t is not necessary to read in the source deck of
the permanent subprograms for Pass I. Get a condensed objebt
deck for the UDRS. Throw away the first two and last seven
cards of this deck. What remains is the subprogram coding
itself, preceded by its built-in headers.

The UDRS condensed deck 1s to be inserted

ggckuﬁﬁger t?ebre%ocator, which ends with card No. Zég.the

e mus e located physically in front of a subpr
which 1t ¢alls, If this {s not adhered to, an er:gr mggsggzam
wITT result when loading an object deck (see operating
instructions). Obviously the relocator cannot load a
subprogram which it has already bypassed before the calling
subprogram appeared,

&/

Subprogram Length of

Sub.called

Number Subprogram by this Sub.

TABLE II

Entry to
Subprogram® Purpose of Subprogram

67 o] 68 BT -SVECT,ARG Trigonometric COSINE of argument
68 694 BT -SVECT,ARG Trigonometric Sine of argument
\ 96 132 69,70 BT -BFEXP@3,A Reverse Float-Float Exponentiation A**FAC-FAC
P BT -BZEXP@4,B Float-Float Exponentiation FAC**B-FAC
69 528 BT -SVECT,ARG Exponential function of argument,Exp(arg)
70 578 BT -SVECT,ARG Natural logarithm of argument
71 308 BT - SVECT,ARG Square Root of argument
72 866 BT -SVECT,*+12 Arctangent of argument; arg. in BgFAC
76 . 5k BT -SVECT,ARG Signum of Arg; Argument: >0 Result: +1.
=0 0.
’ <0 -1.
Th 304 BT -SVECT,ARG Random number generator; see spec.description
77 Larger of (arg,,arges)
78 Smaller of (arg,,args)
73 72 Arctangent of (arg,/arga)
75 Sign of arg,,args. Magnitude of arg. with the §
sign of arga. .
79 1048 Special Input of E,F,I, or N-type numbers
CDBO 1056 Special Output of E,F,I, or N type numbers
N81 124 Special Routine to handle Hollerith Fields
82 100 Special Routine to handle I/0 implied DO's
83 104 84 Special Routine to handle I/0 of arrays (formal)
84 68 Routine to handle I/0 of arrays
85 156 Special . I/0 subscripting routine for A(I,J)
86 122 92 Special Accept
87 Th Special Type
88 436 . Special Print {on-line)
89 122 92 Special Accept tape
90 130 Special Punch tape
91 268 Special Reread
92 64 Special Snip (part of Accept and Accept Tape)
93 1794 94,95 Special Variable Format
ok 180 Special Routine to handle repeated,parenthesized,Format
95 176 Special Routine to handle A-type numbers
97 188 BT -BZEXP@l,A Reverse Float-Flxed Exponentlation,A**FAC-FAC
BT -BSEXP@2,I1 Float-Fixed Exponentiation,FAC**I-»FAC
98 226 BT -BSEXPg5,I Reverse Fixed-Fixed Exponentiation,A**FAC-FAC
BT -BSEXP@6,J Fixed-Fixed Exponentiation FAC**I-FAC
99 122 BT -BgD1,1 Reverse integer division I/FAC-FAC
BT -BgD2,J Integer division FAC/J»FAC

7 SVECT 1s the location in the transfer vector which contains the 1Ink address for the subprogram.
Its exact position is BESVECT-S5+5*NN, where NN is the subprogram number

o

TABLE III
Permanent Subroutines

Symbolic
Routine Purpose Address Entry to Subroutine
Floating Add FACHA-FAC BFFAD BT BgFAD,A
Floating Subtract FAC-A-FAC BFFSB BT BgFSB,A
Reverse Floating Sub- .
tract . A-FAC-»FAC BZFSBR BT BgFSBR,A

Floating Multiply FAC*A-FAC BZFMP BT BgFMP,A
Floating Divide . FAC/A-FAC BEFDV BT BgZFDV,A
Reverse Floating Divide A/FAC-FAC BFFDVR BT BYFDVR,A
Reverse Fixed Subtract I-FAC»FAC BFFXSR BT BgZFXSR,I
Fixed Multiply FAC*I-FAC BZFXM BT BJZFM,I
Reverse Sign ~FAC-FAC BZRVSGN BT BZRVSGN,BERVSGN-1
Float (A=I)-»FAC BZFLOAT BT BgZFLOAT,I
Fix (I=A)-FAC BEFIX BT BgFIX,A
Zero Accumulator Floating Zero»FAC BZZERFC BT BYZERFC,BFZERFC-1 o
Floating Overflow * Floating nines O

> BZER9 BT B 9,B 9-1(sign of answer .
(sets error code) »FAC ﬁEZt ngin location 00099)
Floating underflow Floating zero»FAC BZERY BT BgER{@,BFERJ-1
STOP N See general BZST@P BT BZST@P,N

specifications
PAUSE N " " BZPZUSE BT BZPAUSE,N
CALL ERRCK(N) Check error field BFERRCK BTM BZERRCK,N
CALL EPRT Print out error BFEPRT BT BgEPRT,BFEPRT-1
. field
CALL RESET Reset error field BgRESET BT BJRESET,BJRESET-1
- to zeros
0 CALL SKIP Find next block BEEXIT BTM BZEXIT,O0,10
") or file card
CALL EXIT . Find next program BZEXIT BTM BgEXIT,1,10
CALL EOFB(N) Interrogate block BFEOFBR BTM BZEOFBR,N
and file indicators

Return typewriter .
carriage and type a Obvicus BZTWSR BTM BFTWSR,LOC, ,where LOC 1s the address

messags?

of the record to be typed.

30.

TABLE IV

Useful Constants and Their Addresses’

Address Constant

BEFLONE Field Address of 5110000000
BFNINES Field Address of 9999999999999
BEPNINE Field Address of 9999999999
BJFZERY Field Address of 5000000000
BJFZERC Defined as DC 21, @

BJONE Defined as DC 14,10000000000000
BZERRF Defined as DSC 18,0

This is the error field.

HINTS AND NOTES

(1) All object time subprograms should assume thét the

arithmetic overflow light is ON.

Fixed add and

subtract are done in line, not by subroutine, so
there 1s lots of opportunity for it to get turned
on. All the routines of Table III assume the

overflow is ON.

Conversely, 1f your subprogram

turns on the overflow light, the other routines

could not care less.

They turn it off themselves

if they need it.

(2) The console area (locations 00000 to 00099) is
. avallable for work area. Routines of all sorts use

it for temporary storage.

Watch out for possible

complications if your subprogram calls other
subprograms which also use the console area as a

scratch pad.

The accumulator is in BEFAC, loc 50-59.

Put the result of a function subprogram there,

(3) The error field has blank spaces in it for user-defined

error codes,
is 1n location B
suitable digit in the right place.
digits in the error field.

The high order digit of the error field
. Use a TDM instruction to put a
Do not used flagged
It will Youl up the compare

Instruction used to rInd out whether the fileld is all
Zero or not.

84

The following papers were presented at the jJoint Canadian and }id-western Regional
Neeting of the IBM 1620 Users Group in Chicago, February 19-21, 1964,

These programs will be submitted to the 1620 Users Group Program Library in the
near future,

' CAPLETON COLLEGE CO.PILEZ by Donald H, Taranto, Carleton College, Northfield, Minn,

The Carleton College Compiler is a load-and-go algébraic compiler designed especially
for the 20K, automatic floating-point card system with indirect addressing and additional
instructions, Compilation and execution are fast, and batch operation is handled quickly,

The language includes the usual 4-digit fixed-point, 10-digit mantissa floating-point,
and elementary function arithmetic., In addition, there are boolean, maximum-minimum, and
remainder operations, Subroutine calls are allowed and flexible alphameric typed output
is available.

The entire compiler occupies 9-11K of core (depending upon what function subroutines
are included) and is practically fool-proof. Source statements .are thoroughly checked
for legality during compilation,

This fast, versatile compiler is bought at the price of severe (but not serious)
restrictions on variable and statement formats,

CARLETON BINARY SIULATOR by William R, Gage, Carleton College, Northfield, Minn,

The Carleton Binary Simulator is an interpreter which turns the 1620 into a
fixed-word-length, single address, binary computer., There are 4096 words of 16
bits (15 bits and sign) each, a 32-bit accumulator-remainder urit, and a 12-bit
index register. There is a generous supply of arithmetic, boolean, control, and
input~output instructions,

This versatile and unusual interpreter is bought at the price of rather slow
execution of a source program, Machine requirements are 20K Card System, Automatic
Divide, Indirect Addressing, and Additional Instructions,

85

i
i

Modifying Monitor I
to Include other Programming Systems

by
Alan V. Purcell
Engineering Computing Laboratory
University of Wisconsin
Madison, Wisconsin

86

Modif: Monitor I
Eal Include other Programming Systems

I Introduction
A. Objectives of Modification
1. Monitor T Compatibility
2. Compatibility with system
to be added

B. FORGO as an example of such a Modification

ITI Integration of the Systems
4. Modifications to Monitor I

B. Modifications to FORGO--a typical
system to be added

C. Operation of the Resulting System
IIl Som: Suggested Changes to Monitor I

Appendix

87

Modifying Monitor I
to Include oéer Programming Systems

I Introduction

The purpose of this paper is to show how it is possidble to include
other programming systems in the Monitor I package, even if the systems
to be added require different types of control cards and occupy the same
memory locations as the Monitor I Supervisor. To warrant such a modifi-
cation, the system would have to be in use frequently enough to justify
including it on a level with FOHTRAN II-D, the Disk Utility Program, and
SPS II-D and it would presumably be undesireable to re-assemble it under
SPS II-D and use it under the XEQ option of Monitor I.

The resulting modified monitor system would have complete compati-
bility with Monitor I, i.e. all Monitor I functions would be performed
as before. In addition, the modified Supervisor would recognize control
cards for the additional system and transfer control to it when such
an option is specified. The system to be added would require some modi-
fication to regquire it to return control to the Supervisor routine when
a Monitor I control card is specified.

In this paper the necessary changes to Monitor I are explained.
As an example of a typical system to be added, the FORGO Fortran com-
pilér is used throughout. By way of explanation and background, FORGO
is a compiler which is uniquely suited for educational use because:

(a) FORGO is a load-and-go.FORTRAN compiler. Since it resides
. in memory at all times, it eliminates processor reloading
and object deck handling.

(b) It has exrememly complete diagnostics, both at compile time
and run time. Even at run time, all comments are referred
back to the user's source language program.

(c’) FORMAT is optional, permitting the postponing of this single
. most complicated FORTRAN statement until after running ex-
perience has been gained.

It should also be noted that the version of FORGO used was the
two pass system, in which the compiler section is overlayed in memory
by the subroutines at program execution time. The compiler section
s known as FOR-TO-GO A and the subroutine section is known as FOR-
TO-GO B.

_ Under this scheme, if a FORGO control card is recognizéd by the
Monitor I Supervisor, FOR-T0-GO A is called into core. If the program
is accepted, FOR-T0-GO B is called in and the program executed. If a
Monitor I Control Record is then read in, control returns to the Super-
visor, and the appropriate system is called in. Thus mixing types of
jobs (i.e. FORTRAN II, SPS, FORGO, previously assembled or compiled
object program, etc.) is perfectly allowable and requires no operator
intervention to load decks.

88

N

»

69

06

" Supervisor Program

’ N
FORTRAN IX-D SPS II-D Disk Utility
Compiler Assemblor Program
Figure 1 - IEY 1620 Nonitor I System
Supervisor Program
FORTRAN II-D §PS 1I-D Disk Utility FORGO
Coripiler Assembler Progrem

Figure 2 = Educational Monitor System

II Integration of the systems

A. Modifications to Monitor I

The basic modification to the Monitor I system is, of course,
the inclusion of the additional system to be added. FORGO is used
here as an example.

This modification is made more difficult by the fact that the
supervisory routine of Monitor I requires all core locations below
location 2402, as does the FORGO compiler., This means that FORGO
will have to replace the Supervisor in memory, yet be called into
memory under control of the Supervisor. Also, patches to Monitor I
must go above the area used by the Supervisor (i.e. above 13160)
and must be replaced every time they are destroyed. The specific
patches to accomplish this are found in the Appendix; it suffices
to outline them generally here.

The patches to Monitor consist of two main parts; one is the
routine which reads in the patch area of the Supervisor every time
it is destroyed, and the other is the routine which scans the in-
coming cards for FORGO control cards-~as well as for Monitor I con-
trol cards. This first patch area, beginning at location 2914 in
the Supervisor, reads the Monitor I Supervisor patch area into lo-
cation 13162 and branches to it to execute the instructions dis-
placed by the first patch area. The choice of location 291} to
begin these read instructions was not arbitrary. The instructions
in this area are executed every time the Supervisor is read into
core, thus assuring that the second patch is in core also. It is

a location that makes certain that several disk indicators are reset,

so that reading in the second patch area does not cause erratic disk
operations.

The second patch area forms the linkage between the Monitor I
System and the FORGO compiler. Upon recognition of a FORGO control
card, the FORGO campiler is read in and supervisory control passes

to it. Thus, in this patch area is the routine which scans for FORGO

control cards.
B. Modifications to FORGO--A typical System to be added

The patches to FORGO are chiefly those required to link FORGO
and the Monitor I Supervisor (see flow chart, Fig. 3). Using the
modified system, if a FORGO control card is recognized by the Super-
vigor, FOR-T0-GO A (the compiler) is called into core from disk., If
the program is acceptable, FOR-T0-GO B (the subroutines) is called
in and the program is executed. Control is then returned to the
Supervisor, and the process repeated. Every card read under the
supervisory control of FORGO is checked to see if it is a Monitor I
control card; if it is, FORGO operation is terminated with an error
comment if appropriate, the Supervisor is read from disk, the card
i3 set-up in the Supervisor input area in memory, and supervisory
control is relinquished to the Supervisor,

9

N

un.
Conf’ll

yes

Loa
FOR~TO-60

Reayl (,:dr;s

sr Moniter I

(_@

Proeceed
under Monilr

T Contre ’

A

from Dislf

Camp:/{
f’rajrnm

Sw 25

To- 60 O
from Disk

Load
Monitor I V4

from Disk Execute
Pragrum

c‘TLn pr

Prog remer
Error

Ldad FOR~

1

ng _Suilch no v

Load
Man}far I
from DisK

Figure 3 - Flow-chart of Modified System

-6-

C. Creation of the Resulting System

The procedure used in creating the working version of the resulting
system is given here. The pertinent listings and typewriter sheets are
given in the appendix of this paper.

The same basic procedure is used in adding the main patch area to
Monitor I and in adding the additional system. It is necessary that
the actual changes to the Supervisor, which are done using the D. U. P.
routine DALTR, be done last,

The basic procedure was to first load the Monitor 1 system on disk
as described in the Monitor I Systems Reference Manual. After this has
been accomplished the system to be added, for example, FOR-TO-GO A, is
loaded into core. The Disk Write Program is used to transfer it to the
work cylinders, and the Monitor I D. U, P. routine DLOAD is used to
move the information from the work cylinders to the desired disk cylinders-
in this case cylinders twenty-six and twenty-seven were used to contain
FORGO and the Supervisor patch area. Exactly the same procedure is followed
for adding the chief Supervisor patch area (which starts in core at 131&2).

To make the patches within the Monitor I Supervisor itself, the
Disk Utility routine DALTR was used, and the desired changes were typed
in (see typewriter sheets). Now the entire system in on disk in the
form required for operation.

To get decks which will load under control of the Monitor I System
Loader and to eliminate the need to do all of the preceding steps every
time it is desired to reload the system on to disk, the DUP routine DDUMP
was used, The system tables, the modified Supervisor, FOR-TO-GO A, FOR-
TO-GO B, and the Monitor patches were dumped on cards. It was then nec-
essary only to add the System Loader control card to each deck, the format
of which is described in the Monitor I Systems Reference Manual., The
systems tables deck replaces deck two of the original system, the Super-
visor deck replaces deck seven, and the other decks are added at the end
of the other Monitor I decks when it is desired to load the system on to
disk.

Concerning ordinary operation of the modified system, it is the same
as the Monitor I system. Cold start procedures are exactly the same.
Disk cylinders twenty-six and twenty-seven are not available for use,
however, These cylinders are protected by the Monitor 1 system tables.

III Some Suggested Changes to Monitor I
B. Improvements to Monitor I

Other systems conld be added to Monitor I, using much the same
techniques as were used in adding FORGO to Monitor I. Possible
additional systems could be ALGOL, UW-SPS, COGO, etc. Suitable con-
trol cards could be designed, and the routine which scans for FORGO
control cards could easily Le expanded to include a scan for the
other control card types. .

23

-7~

A very important modification which should be ma‘2 to the
Monitor I system loader,whether FORGO has been added to the Monitor I
system as described in this paper or not, would be one which puts
read-only flags on the sector addresses of the Monitor I system
routines as they are loaded onto the disk. The purpose of these
flags is to file-protect the information contained on the flagged
sectors; information contained thereon may then be read bit cannot
be written over and destroyed. Although parts of the system must
be left capable of being changed (i.e. the system tables), the un-
changing parts could be file-protected by the loader--perhaps sig-
naled to do so by a punch in a certain column in the heading con-
trol card of the decks to be loaded. Not file-protecting the sys-
tem routines is a serious error on the part of the creators of the
system, and as it stands, any SPS program could, through use of disk-
write instructions, destroy the system routines on disk and neces-
sitate reloading the entire system from cards.

2/

J

~

REERREHRTRRFERRERE XL RERE I AT E R ARETRERTELEREE XX FLRERRRRT LR ALK SRR 00002
I I I T T T L T T I
P S L L L L L e T R S e s 1o e
* ooocs

THESE ARE THE PATCHES TO THE 18M MONITOR 1 SYSTEM TO iHAKE 00010

*

* 1T RECOGNIZE FORGO CONTROL CARDS AND TO CALL THE 00012
* FOR-TO-GO A COMPILER FRG» DISKe FORGO OPERATION wILL BE 00014
* EXACTLY AS ON A COMPUTER .ITHOUT MONITORs BUT COMPLETE 00016
* MONITOR OPERATION IS MAINTAINED. 00018
* 00020
* * * ¥ 0002/
* 00024
* ALAN V. PURCELL 00026
* ENGINEERING COMPUTING LABORATORY 00028
* THE UNIVERSITY OF WISCONSIN 00030
* MADISON, WISCOMNSIN 53705 0061312

* V0U3s

f/ ‘

N

\O WA LR KA R R KR R AR TR R R AR R IR AR TR IR AR IR R RR U AR R KRR RF IR R R N0 00036
B HUHEHFEEER KT ERTRRLHFRRERRRNERAXRERL UL RH AR R XA ARR AR H AR XX RAXAX 00038
ERRRA KRR R HHH AR R IR E AR IAR IR I RN LR A I LRI RAIAL AR AR X R R R AL R LR AR AR 00040
02914 DORG 291431 IN SECTOR 19664 00042
02914 49 02938 00000 8 *+24 000C44
02926 48 00000 00000 HALT H 00046
02938 34 04088 00701 K DPTH,701 00048
02950 36 04088 00702 RN DPTH»702ss READ IN PATCH AREA FROM DISK 00050
02962 46 02926 01500 BA HALT 00052
02974 49 13162 00000 8 PATCH 00054
04080 DORG 4080345 IN SECTOR 19675 00056
04080 49 13242 00000 B FORCD) . 00054
04088 DORG *-3 0006s
04088 1 DPTH DC 1s1ss THIS IS DDA FOR MONITOR PATCH AREA 00C62
04093 5 DC 555387 00065
04096 3 DC 355 00068
04101 5 J3162 DSA PATCH 00071
04340 DORG 43401 3» IN SECTOR 19678 00073
04340 45 13310 13001 BNR CARD»13001 00075
13162 DORG 13162 00077
13162 25 09794 02878 PATCH TD 97941+28781» REPLACE INSTRUCTIONS 00679
13174 31 02110 04046 TR 211054046 00081
13186 26 02103 02857 TF 2103,2857 00083
%;;?g 25 00140 02857 TD 440,2857 00085
3 456 C SF ’y S
13222 15 01967 00009 TDM ?gg;,9 REPLACE [NSTRUCTION gggg;
13234 49 02986 00000 B 2986 00091
13335 25 13265 028 o xes 50002
2855 FORCD TD #+23,2855s5 REP !
13254 26 04941 10700 TF 4941,10700 EPLACE THSTRUCTIONS 88833
}g;gg g; g;ég; égégg BNF 4104513160s» CHECK IF CARD READ BY FORGO 00099
TOM 9828115
13290 33 13160 00000 CF 13%601 ' PNHBLT READING A CONTROL caRD ggig;
13302 49 04104 00000 B 4104 00105
13310 . DORG -3 00107
. 00109
CHECK FOR FORGO CONTROL CARDS 00111
. 1
13310 33 13001 00000 CARD CF INAR 20115
13322 32 13000 00000 SF INAR-1 o011
13334 14 13001 000M3 CM INAR»43,10 %0119
13346 47 04056 01200 BNE BACK ggi;:
@&gggg gg {gggg ggggg SF INAR+1sss PUT FLAGS ON EVEN NUMBERED 00123
] CF INAR+29vs s
L2370 33 13003 00000 ¢k INAR+§;0,10 POSITIONS FOR FIRST FOUR COLUMNS 00125
1224 47 06556 01200 BNE BACK 99127
15406 32 13004 00000 SF INAR+3 20131
13418 33 13005 00000 CF INAR+4 001323
13430 14 13005 00000 CM INAR+430s1y 88133
13442 47 04056 01200 BNE BACK 137
13454 32 13006 00000 SF ° INAR+5 00139
13466 33 13007 00000 CF INAR+6 o01a1
13478 14 13007 000M3 CM INAR+6+43510 00143
13490 47 04056 01200 BNE BACK ggi::
13502 34 13602 00701 K * FOR
12502 3¢ 13602 00701 K o ;NA:,701.- A FORGO CONTROL CARD HAS BEEN FOUND 00147
13526 46 13538 00900 BLC *+12 oo151
13538 31 18600 13558 TR 18600s%+20 00153
13550 49 18612 00000] 18612 oo1ss
13558 DORG *-3 co157
13558 48 00000 00000 HT H 88}23
13570 36 13602 00702 RN R -70-
13582 46 13558 01900 BA S? Ariozes READ IN FOR-TO-60 A 88}2§

00165

13594
13601
13602
13001
04056
13602
13607
13610
13615
13162

L6

00904
00908
01070
01070
01234
01234
02144
02144
09404
09404
09416
09668
09668
09680
09692
18080
18080
18092
18100
18100

49 01342 00C00

47

49

49

34
49

39
43
46

45
49

45

09404
18080
18328

18440
18490

09491
18420
01114

18100
18140

18120

1

W W -

> G

]

J8540
00300
00000
00000

00701
00000

001l00
18195
00400

00423
00000

00425

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

)

* NUTE---BEFORE DUMPING FOR-TO-GO A FOR DISKs AT LEAST ONE
* CARD MUST HAVE BEEN READ SO THAT THLRE AKE FLAGS IN THE
* CORRECT POSITIONS IN THE 1/0 AREASS
*
8 1342
DC 13@s %4
DORG *-3
INAR DS +13001
BACK DS 34056
FORA 0C Tslss THIS 1S DDA FOR FOR-TU-GO A
bC 595200
DC 31186
oC 510
DEND 13162
I I I s R R R R R R R S RS R SRS R RSS2 22222 LR RE R SRS
I I I e e R R R e R R RS SRS S R X RS L SRS SRS R R R 2
!ll*ilifliiilliﬁﬁilill&il&illil&li!ll&lliiilfiillllii{lll&!lll!ilfﬁl
*
* THESE ARE THE PATCHES TO THE 3-62 FOR-T0-GO A DECK
* TO OPERATE UNDER CONTROL OFf THE 1BM MCNITOR
* OPERATING >YSTEM. TO. ALL APPEARANCESs OPERATION 1S
* JUST LIKE KEGULAK FORGU ON A NCN-MONITOR SYSTEM.
*
* * ® %
*
* ALAN V. PURCELL
* ENGINEERING COMPUTING LABORATORY
* THE UNIVERSITY OF WISCONSIN
* MADISON 6s WISCONSIN
* NOVEHMBERs 1963

*
HRERERE AR
(XX 2T E 2%
EREARER SRR

DORG
DSA
DORG
BNC3
DORG
B .
DORG
B
DORG
K
8
DORG
WATY
BOD
BC4
DORG
RECA BNR
-]
DORG
BNR

P R A R R R e e]
R T e X
P Y e e Y]
904

FIRDIG

1070

9404

1236

RECA

2144

NSCAN

9404

FORB» 701 READ B DECK IN FROM DISK

READB

9668

9491

LC3+PNA, TEST IF LC-3 ERROR

1114

18080

#420+423 9 CHECK FOR RM ON C (C CARD

RECMK-48

*-3

*#4+201425

00167
00169
00171
00173
00175
00177
00180
Qo182
00184
00186
00189
00192
0019%
00198

18112
18120
18120
18132
18140
18140
18152
18164
18176
18188
18195
18200
18212
18224
18236
18248
18260
18272

018284

\$18295
18296
18308
18320
18328
18328
18340
18352
18360
18360
18372
18384
18396
18408
18420
18432
18440
18440
18445
18448
18453
18458

18463
00595
18464
18469
18472
18477
18478
18490
18502
18514
18526
18534
18540
18540
01070

oo/

48
36
46
46
49

49

24
49

16
16
49
48
34

16
15
36
46
25
11
11
14

47
49

16
45
49

45
16
16
15
17
15
49

00000
18440
18478
15918
15918

18140

01257
01246

18295
18463
18188
00000
18464

18458
00031
18464
18176
1845Q
18458
18463
18463

0

18248
13160
02402

02162
18360
18372

02156
18463
18295
18195
09892
18195
18188

AN W AN e

MWW= O W

00000

00423
00000

-0581
-0422
00000
00000
00701

J3000
00005
00702
01900
1846L
000-1
G00-1
-0581

01300
00000
00000

00P37
00595
00000

00597
-0595
-0653
00001
N343K
00000
00000

00000
00702
01900
01400
00000

lal
142
143
144
145
l46
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

182
183
184
185
186
187
188
189
190
191
192
193
194
195
196

HALT
RECMK
PNA

T0

INEND

NSCAN

LC3

FORB

INMON

INAR
INPUT2
MON

HT
READB

FIRDIG

B8 RECMK~48
DORG *-3
C 1257942399
B 1246
DORG *-3
TFM INEND»581
TFM INAR»422
B8 *+24
H
K MONs701
DS 2 ¥l
TFM INMON»1300097>
TOM 3155
RN MONs702
BA HALT
D ~INMONs~INAR
AM INMONs 1410
AM INARs» 1510
M INARs 581
DS » ¥
BN T
SF 1316099
B 2402
DORG *-3
TFM 2162573749
BNR *+20s INPUT2
B *#+20
DORG *-3
BNR 21565 INPUT 242
TFM INARs INPUT2
TFM INEND»653
TDM PNAy1
BTM 9892+-5343217>
TOM PNAsOss
B RECMK
DORG *-3
bC 1sles
bC 5395400
DC 39175
DC 59958
DS 5

DS 5

DS 1595

oC 191y

DC 5919636

DC 35113

DC 59102

H

RN FORB»7029

BA KT

BV 1591855

B 1591899

DORG #-3

MORG 10

DS 1

DEND 1070

REPLACE INSTRUCTION

CALL IN MONITOR AND

PUT CARD IN INPUT AREA

INDICATE CARD ALREADY READ

REPLACE INSTRUCTION

ERROR LC-2 IF MON C CARD
TURN OFF INDICATOR

THIS IS A DDA TO CALL B DECK

THIS 1S A DDA TO CALL MONITOR

READ IN 8 DECK FROM DISK

TURN OFF OVERFLOW INDICATOR
AND GO»GO»GO

Rt
J

o [

R

8

01082
01082
17648
17648
24276
04276
18080
18080
18092
18104
18112
18112
18124
18136
18148
18160
18172
18184
18196
18208

18220
18232
18244
18252
18252
18264
18276
18288
18300
18312
18320
18320
18332
13344
18356
18364
18368
18373
18374
18379
18382
18387
01070

]

49
49
49

16
45
49

45
16
16
16

11
11
14
47

32
17
49

48
34
15
36
46
49

39
46
48
49

18264
18320
18080

03708
18112
18124

04288
18368
18368
18373
1837L
18368
18373
18368
18160

13160
17104
18264

00000
18374
00031
18374
18252
02402

Q0595
18356
00000
18264

W N e

00000
00000
00000

-0423
00423
00000

00425
00M22
-0422
J3000
18360
000-1
000-1
-0583
01300

00000
N3432
00000

00000
00701
00005
00702
01900
00000

00400
00400
00000
00000

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163

BR

0

HAL
REA

END

INA
INM
MON

L2 222222222 LR R RS R XS AR E RSS2 XSRS SRS RSS2SR SRS SRS
‘**il******i*i****i*ii*’iii****}**i**i*l*ilii*il&li*i&iii****l**
AWM R N HRERR TR E TR RN RHE R RRERRE R EETRETRERRRREFRER L ERRRL K

* % ok ok ok ok Kk gk ok K Kk Kk K Xk

THESE ARE THE PATCHES TO THE 3-62 FOR-TO-GO B DECK
TO OPERATE UNDER CONTROUL OF THE 1M MONITOR

OPERATING >YSTEM.

TO ALL APPEARANCESs OPERATIUN IS

IDENITAL TO REGULAR FORGO ON A NON-MUNITOR SYSTEM.

ALAN V. PURCELL

* ¥ #

ENGINEERING COMPUTING LABORATORY
THE UNIVERSITY OF WISCONSIN
MADISOMNs WISCONSIN 53706

NOVEMBER

1963

HERFKIFHFAAL R R T HK AR IRA R R R LRI X R RE R E KRR RN R R LN RERER R
WX R R H TR TR R R I X IR R AR LR R AL AR RE AR AR REE LR ERH LR AR R RE R KK
E2 2SR SRS RS RS SR LRSS R LSS RS SEEESS I EEE L SRS L SR 2

DORG
8
DORG
B
DORG
B
DORG
EC TFM
BNR
B
DORG
BNR
TFM
TFM
TFM
D
AM
AM
(@]
BN

SF
BTM

DORG
T H
DM K
TDOM
RN
BA

DORG
WACD
BC4

DORG
R DS
ON DS
DC
DC
- bC
DC
DEND

1082
READMy s o
17648
END-12

4276
BRECss»
18080
37085423+ 7>
*+2094239
*+20

*=3
42883425
INARY4 2249
INAR»422
INMON» 13000
- INMONs~INAR
INARs 1910
INMONs 1910
INAR» 583

11

1316099
1710445343257
*+20 .
*-3

MON, 701
3195
MON+7029 s
HALT

2402

*-3
59559
*+24

READM
*-3

5

5

19l
5919636
3+113
5+102
1070

READ IN MONITOR

CHECK FOR RECORD iMARKS IN DATA

REPLACE INSTRUCTION)
TEST FOR MONITOR CONTROL CARD

PUT CARD IN MONITOR INPUT AREA

INDICATE MONe Ce RECURD ALREADY
REACe ERROR LC-2

READ IN MONITOR

REPLACE INSTRUCTION

THIS IS A DDA TO CALL MONITOR

19000
19000
19012

319024

N19036
19048
19060
19072
19084
19096
19108
19120
19132
19144
19156
19168
19180
19192
19204
19216
19228
19240
19247
19247

19248
19253
19256
19261
19263
19321
19397
19487
19000

70l

34
39
34
36
34
39
34
36
31
34
34
38
36
47
39
48
49
39
48
41
49

00000
19263
00000
19254
00000
19321
00000
19257
00000
80000
19248
19248
19248
19204
19397
00000
19108
19487
00000
00000
01070

Ut U

29

45
26

00102
00100
00102
00100
00102
00100
00102
00100
19228
00102
00701
00702
00703
Q1900
00100
00000
00000
00100
00000
00100
00000

PR KRR R TR RN K TN L KRR RN REERFEREEE T AR R AR R A RRRRERNNR AR LR RN T 2R
AR AR AR RS R R R e R Y 2 A R I

* k ok ok K Kk ok Kk N Kk %

*

THIS 1S A PROGRAM TO WRITE A PROGRAM I[N CORE ONTO THE
DISK WORK CYLINDERS. CHECKING IS DONE FOR CORRECT TRANSFER
OF DATA,.

ALAN V. PURCELL

ENGINEERING COMPUTING LABORATORY
THE UNIVERSITY OF WISCONSIN
MADISONy WISCONSIN 53706

LSS SRS SRS AR R SRR RS R T RS EXER TR T T T PR PR AR R R AR g g
LERE A AR EE R AR R R R R R e S Y I R A T T

START

DISK

'FORGO

WK

IN
BEGIN
MES1
MES2
MES3
MES4

DORG
RCTY
WATY
RCTY
RNTY
RCTY
WATY
RCTY
RNTY
TR
RCTY
K

WN
RN
BNA
WATY
H

B
WATY
H
NOP
B
DORG
DC

DC
0C
DC
DC
DAC
DAC
DAC
DAC

19000
MES1
IN-2
MES2

BEGIN-4
»FORGO s+ TO PUT CORRECT FORGO INSTRUCTIONS

WKs701
WKs 702
WKs703
*+48
MES3

DISK
MES4

2100
1070
¥y
1s@

lolss THIS IS THE DISK CONTROL FIELD
524000

340

540

29»TYPE A 3 DIGIT SECTOR COUNT @»

38+TYPE A 5 DIGIT CORE STARTING ADDRESS @

459 INCORRECT DATA TRANSFERs PUSH START TO RETRY@»s
26>D15K OPERATION SUCCESSFUL®@»

DEND START

00002
00004
00006
00008
00010
00012
00014
00016
00018
00020
00022
00024
00026
00028
00030
00032
00U 34
00036
00038
00040
00042
00044
00046
00048
00050
00042
00054
00056
000s¢
00060
00062
00064
00066
00068
00070
000672
00074
00076
00078
00080

00083
00086
00089
00092
00095
00099
00103
00107
00111

s

. 160000800000RS
EQUTAB_LOADED
DIMFOR LOADED
SEQ PL LOADED
DUP A LOADED
DUP B LOADED
DUP T LOADED
SUBSUP LOADED

FROM {5000
FROM 10:':500
FROM 0312801
FROM 118139
FROM . 179300
FROM "1717084
FROM 017024

ALLSUB LOADED -FROM 016400

SPSI1D LBADED
SUPER| LOADED
PH 1-A LOADED
PH 1+2 LOADED
LOAD 1 LOADED
LOAD 2 LOADED
SET .1 - LOADED
. SET 2 LOADED
DIM FS LOADED
FLN FS LOADED
FEXPFS LOADED

FROM 018600
FROM 179600

FROM 017200 °

FROM 017400
FROM 076000
FROM 076940
FROM 079400
FROM 0715800
FROM 04802
FROM 036200

FROM 076212

SUB FS LOADED FROM D16228

DKIOFS LOADED
S+C FS 1 O0ADED
FATNFS LOADED
SQRTFS LOADED
ABS FS LOADED

‘#4408 5
+HOUP §
*DF INE

$3PAUS
END OF JOB

FROM 015235
FROM 016268
FROM 016281
FROM 016299
FROM 076307

70 105079
70 104999
70 019380
70 116599
70 1793
70 117127
70 017074
70 076799
T0 019231
70 119799
T0 017333
70 018138
70 076199
70 076964
70 019599
T0 016339
70 004807
TO 016211
10 016227
T0 016234
70 016267
T0 016280
T0 076298
T0 016306
70 076308
105

®

3-62A FOR-TO-GO

TYPE A 3 DIGIT SECTOR CCUNT

18688

TYPE A 5 DIGIT CORE STARTING ADDRESS
00O000RS

DISK OPERATION SUCCESSFUL

$$J0B 5 VWRITE FROM WORK CYLINDERS

+30UP
*DLOADFORGOA 0200104000 104185005200000000107001P026027

DUP* TURN ON WRITE ADDRESS KEY, START
DUP* TURN OFF WRITE ADDRESS KEY, START
DK LOADED FORGOA 0200 0052001860240201070%

END OF JOB

3-62B. FOR-T0-GO

TYPE A 3 DIGIT SECTOR COUNT

1758

TYPE A 5 DIGIT CORE STARTING ADDRESS
009588S

DISK OPERATION SUCCESSFUL

+$J0B 5 WR1TE FROM WORK CYLINDERS

+30UP
*DLOADFORGOB 9201105000104 174005.00009580107001P027028

DUP* TURN ON WRITE ADDRESS KEY, START
DUP* TURN OFF WRITE ADDRESS KEY, START

DK LOADED FORGOB 0201 0054001750095801070%
END OF JOB

TYPE A 3 DIGIT SECTOR COUNT

0058

TYPE A 5 DIGIT CORE STARTING. ADDRESS
131628

D1SK OPERATION SUCCESSFUL

$$40B 5 WRITE FROM WORK CYLINDERS

+$0UP
*DLOADMONPAT 02021040001040040053871316202402D1P026027

DUP* TURN ON WRITE ADDRESS KEY, START
DUP* TURN OFF WRITE ADI:ESS KEY, START
DK LOADED MONPAT 0202 0(:53870051316202402%

IND OF JOB
106

$+$J0B 5 ALTER MONITOR SECTORS

$30UP
*DALTR

SECTOR
119664LRS

1ST.HALF 3400000001 0225097940 2878310211 0040462602 1030285725 ORIGINAL . : _
2ND.HALF 0044002857 3200456000 0015019670 0009430316 2004781509 ORIGINAL 2N HALE BaO0sE 130 a3 1803T0 M
SECTION ‘ , oL
gg@%og 940)TYPE CHANGE 055 o
XX1590 2255050004 8000000000034040850070136040880070246029260 1900491316285 ?§3§8é300‘ TYPE CHANGE
IST.HALF 3400000001 0225097940 2678310211 0040452602, 1030285725 ORIGINAL P3O < ii053260 5127340000
IST.HALF 3400000001 0243028380 0G004B0000 0000003404 0880070136 CORRECTED T B0 Li013580 11127340000
2ND.HALF 0044002857 3200456000 0Ci5019670 0009430316 2004781509 ORIGINAL ' M E L o
IND_HALF 0408800702 4602926019 0043131620 0009430316 2004781509 CORRECTED ST A IS LA
§§C‘4°N . sngrou ‘
k4

QUEKERECTOR 119664 CORRECTED %Wsmman%WCmmmw
11967585 inroa
IST.HALF 5660403322 0401841796 5300102802 $2209732%0 000+070707 ORIGINAL
28D HALF 0130150982 8000002504 1276285525 0410302855 2604941107 ORIGINAL
SECTION . , Lo
og#s o v
1270285525 = TYPE CHANGE (—— Wole Typing errer
XXXXXXXXJ U JIRS <= T T
1ST_HALF 5660503322 04018¢1796 6300102802 $2209732$0 0003010701 ORIGINAL
IST.HALF 5660403322 04018#1796 6300102802 $2209732%0 000%0T0707 CORRECTED
2ND.HALF 0140150982 8000002504 1270285525 0410302855 2604941107 ORIGINAL

CORRECTED

2ND_HALF 0740150882 8000002504 1270285513 5691902855 2604941107

SECTION
0888

1270285573 TYPE CHANGE

XXXXXXXX4913242010538700513
1
1

6288 f COrrec?L: on o
9

1
1ST.HALF 5660403322 0401841196 6500102802 $2209732%0 0004010101
1

1ST.HALF 5660403322 0401841796 6300102802 $220973240 0003070701

28D HALF 61:0150982 8000002504 1270285573 L597902855 2604941107
2ND_HALF 0740150982 8000002504 1270285549 1324201053 8700513162

SECTION
BN .
DiSK SECTOR 119675 CORRECTED

SECTOR
119678

107

RS

1ST.HALF 6044043280 4127340000
2ND.HALF 4504056130 0316097040

" SECTION
0555613001 -TYPE CHANGE

uoows -
1ST HALF 6044043280 4127340000
1ST.HALF 604043280 4127340000

ORIGINAL

CORRECTEDR

ORICINAL
CORRECTED

»

< Ty p

aorrccf'an

5001021509 8280000145
5004170803 8130054504

11y errer
6001021509 8280000145
0001021509 8280000145

0004170803 8730054504
0004170803 £730054504

o{ crror

0001021509 8280000145
(001021509 8280000145

5004170803 8130054504
0004170803 8730054504

108

0405613001
4440973045

0405613001
LBBL613001

L440973045
440973045

LE5L513001
1331013001

4440973045
4440973045

ORIGINAL
ORIGINAL

OR1GINAL
CORRECTED

ORIGINAL
CORRECTED

ORIGINAL
CORRECTED

ORIGINAL
CORRECTED

)

$30UP
*DDUMP
END OF JOB
$3J0B 5
$+$DUP
*DDUMP
END OF JOB
$3J08 5
$30UP
*DDUMP
END OF JOB
$3J0B 5
$$DUP
*DDUMP
END OF JOB
$$J0OB 5
$3DUP
*DDUMP
END OF JOB
$3J08 5
$$DUP
*DDUMP
- END OF JOB

Cso

Cl

CE

cL 105200105385

CL 105387105391

CL 105400105574

109

2.

2ibliosra-hy

International Business ilachines Corporation, IEii 2090/7094
Programming Systers llanval, FORTRAHN IV Language, Form
C 28-62 74-1, White Plains, New York, 1963.

, IBi 1670 Data Processing System, Form A 26-4500-2,

White Plains, New York, 1961.

, IB 1620/1710 Symbolic Programming System, Form

C 26-5600-1, Whitc Plains, New York, 1962.

» IBi 1670 “onitor I Svsters Reference lManual, Form

C 26-5739-1, vhite Plains, New York, 1963.

IS 1620 Lonitor I (Suvervisor Listings), Form

1620-PR-026, White Plains, New York, 1963.

IBM 1311 Disk Storage Drive Model 3, Form A 26-
5650-1, White Plains, New York, 1963.
Leeds, Herbert D., and ‘feinberg, Gerald M., Computer Programming

Fundamentals, New York, lcGraw-Hill Book Company, Inc., 1961.

HeClure, Charles W., FORGO and FOR-TO=GO Manual, Vhite Plains,

New York, 1620 General Program Library, IBH Corporation, 1961.

e

A New Course

in

Computer Appreciation

Charles H. Davidson
Engineering Computing Laboratory
University of Wisconsin

Carputer Education is becoming a recognized necessity for the tech-
nical student in coliege. At Aisconsin it has been incorporatea in the
required experience of all engineers for some time, and is being made
increasingly available vo interesteu students with various bacxgrounds
and degrees of preraration, as is indicaved in Figure I, which lists the
courses available in the Numerical Anaiysis Department.

The first entry in this table, however, r1epresents an innovation in
the teaching philosophy. Here for the first time is a course deliberately
aimed at the non-technically tra ned student. As is pointed out in Figure
I1, the catalog description of the course, the only prerequisite is inter=-
mediate level high school algebra, ejuivalent to about two and one half
units of high school mathematics; it 1s estimated that about 3/L of our
University freshmen are eligible to take this course.

"Introduction to Computing Machines" is intended to be more of a
cultural than a professional course. Many of the students who take it
may indeed never use a camputer again, but they will all hear about cam-
puters every week of their lives. Whenever they receive a paycheck, re-
gister for a class, vay an insurance premium, make an airline reservation,
or watch a rocket launching or an election return, it is almost certainly
an IR card or a computer-produced document they will be dealing with.

As the course is taught, the first two weeks are devoted to acquiring
enough of a rudimentary knowledge of FORTHAN to be able to present simple
problems to the computer. The rest of the course consists of examining
some of the areas of significant application of the computer, classified
as far as possible according to the particular advantages or capabilities
of the computer. In each case, the students actually do simplified,

* watered down example problems illustrating its use, and extrapolations
hopefully point out and make mearingful the true role of the camputer

- in these areas. During the first semester it was offered, the students
each did about twelve problems on the computer, including problems in:

1) (finding roots of polynomials
2) class scheduling

3) sorting and tahle leok-up

L) 1inventory control

5) missle tracking

6) 1library information retrieval

and several others.

All of this laboratory work has been done in the Engineering Com-
puting Laboratory using the FORGO system, which is ideally suited for
this type of teaching, with the exception of one problem near the end
of the semester in which the use of the CDC 160k and monitor system
operation were demonstrated,

Figure III presents a condensed outline of the course, indicating
some of the topics discussed and their sequence. Perhaps, however, one
of the best pictures of the scope of the course can be obtained from the
1ist of Review Questions shown in Figure IV, which was distributed shortly
before final exam time, and represents material which they might be ex-
pected to have learned.

Since there 1s obviously no text-book existing which treats such a
range of material in this fashion, we are preparing all of our own notes
for the course, which will be published as a textbook. 4 preliminary
version of the notes will be printed for use with the third offering of
the course in the fall of 196l, and the official published version of
the book is expected to be out in the late spring of 1965,

Some people are referring to the course in a colloquial fashion as
"Computer Appreciation". This we accept as an apt description, provided
it is modified to read "Introduction to Computing Machines--a do~it-your-
self course in computer appreciation®.

/12

THE UNIVERSITY OF WISCONSIN
COLLEGE OF EZNGINEERING

MADISON 6
ODEPAATMENY OF
UNIVERSITY OF WISCONSIN ELECTRICAL ENGINEERING
Courses in Computer Programming '
NUMBER TITLE OF COURSE PREREQUISITE CREDITS Mumerical Analysis 132

SINTRODUCTION TO CQMPUTING kACHINES®
NA 132 Introduction to Computing Machines Intermediate high 3

school mathematics
How computers work; communicating with computers; areas of application

and significance; simple FORTRAN programming; elementary data processing

NA 301 Co: ter Pro ing in the i
Phym"si" al Soto e ming D‘“Eere“t?‘l 2 and problem solving. Prerequisite, intermediate level of high school
Quations mathematics, Offered each semester, 3 credits.
NA 315 Introduction to Data Processing One gemester 3 An opportunity for the ron-technically trained person to acquire an
Methods college math understanding of the uses, method of operation, and significance of
the electronic computer in the world around him. Students will both
NA 413 Introduction to Numerical Analysis Differential equations 3 hear about and actually use the computer in solving problems in
mathematics, business, game playing,and many other fields,
NA 415 i
Intermediate Programming Methods leifexl'entlalyggx;::x;: 3 Thae course will be taught jointly by the Mumerical Analysis Department
and elem, and the Electrical Engineering Department, with two lectures and a
laborato riod each week. It will be first offered in the fall
NA 814 a,b Advanced Numerical Analysis (year) NA 413 3,3 of 1.963.ry r
Plus seminars and short courses -',-;3 ure o
Fiqure I
/13 H4

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

© o w1 > G 0 o

Numerical Analysis 132

I "INTRODUCTION TO COMPUTING MACHINES"

The Information Machine
The FORTRAN Language

Things Worth Computing: (A) Routine Repetition
The Second Industrial Revolution

Things Worth Computing: (B) Try and Try Again
Further FORTRAN

Things Worth Computing: (C) When Mistakes are Costly
What Goes on Inside Computers

Things Worth Computing: (D) Hurry, Hurry, Hurry
The Language of the Machine

Things Worth Computing: (E) Simulating the Real Thing
Other Kinds of Computers

Things Worth Computing: (F) Memory Like and Elephant

Things Worth Computing: (G) Just Plain Curiosity

Computers and the Future

Fiqure 1L

/15

1.
2.

L.

S.

18.
19.
20.

NA 132
REVIEN JUESTIONS

Actual FORGO operating procedure on the 1620.

Distinguish between: a) machine language b) symbolic language
¢) algebraic language

What is the difference between "compile® time and "execute® time?
How does FORGO mark the transition?

Name two (data handling) processes at which the human is more
efficient than the computer,

Below are listed five characteristics of computers. List three
important areas of application that take advantage of each (not
necessarily mutually exclusive).

a) high speed

b) accuracy (freedom from mistakes)
c) repetetive ability

d) large non-forgetting memory

e) logical ability

What are "pseudo-random" mumbers? What good are they?
How are computers used in inventory control?
What trends are observed in business uses of computers?

How are computers used in product design? How does this compare
and contrast with automation?

What is a "critical path"?

When is a computer operating in “real® time? Illustrate.
Elementary binary arithmetic.

Why is binary arithmetic used?

What are the five main functional units in a general purpose digital
computer? Diagram then, showing the principal paths of data flow
and control.

What is meant by a single address computer? two address? one-plus-
one address? three address? Give an example of each type of in-
struction,

Compare analog and digital computers.

Name the three main logical components of an analog computer. Which
i8 used to get distance from velocity? How?

How do you program an analog computer?
Why are libraries concerned with "Information Retrieval®?

What are some of the problems in attempting to upgrade the intelli~
gence of a computer?

Figure I

/16

COMPUTER CENTER

Western Michigan University

The Computer'benter was established in Room 372 of
Wood Hall in August 1962, Professor Jack R, Meagher
was appointed Director.

The Computer Center is organized as a University-wide
service, like the University Library, to provide research,
training and service facilities for faculty, staff and
students, A basic policy of the Center is to encourage
widespread interest and use of all its equipment., High-
ly technical knowledge is not required, Information
concerning the use of the Tenter's equipment is being
prepared and will soon be distributed,

An Advisory Committee, consisting of the Director of the
Computer Center, the Dean of the School of Graduate Stud-
ies, and nine other faculty member's have been appointed
by the Vice President for Academic Affairs. This
committee will (1) be representative of the whole Univer-
sity, (2) present the Computer Center's operations to

the University, and (3) establish broad, general policy
for the Center.

The follewing diagram portrays the Computer Center
organization: .

Vice President for
Academic Affairs

I Advisory Committee]

Director

(Machine Room Supervisor I

i 1

Secretary-Key Punch Operator 3 Graduate Assistants

117

FORTRAN WORKSHOP
Jack R. Meagher

MARCR, 196k

The follewing squipment has been installed in the Computer
Center at Western Michigan University:

IM 1620 Central Processing Unit - (20,000 positions
of core storage, a console panel, and an
input-output typewriter.)

Automatic Divide
Indirect Addressing
Table Protection
Additional Instructions
Floating Point Arithmetic

1622 Card-Read Punch

1623 Storsge Unit (additional 20,000 positiens of
core atorage)

In addition to the IBM 1620 Data Processing System, which is
an electronic computer system for scientific and technclogical
application, the Computer Center has the follewing auxiliary
machines:

2 Key Punchr (026) A besic machine for transferring data
G punched cards. It also can print the punched data
on othsr cards, .

Sorter: (082)= with Counting Unit) This machine sorts
cards into a number of pre-selected categories. The
counting device tabulates the number of cards in each
category.

Collators (077) The basic function of the collator is

““¥F[IIng". It is capeble of making comparisons batween
decks of cards; and then merging, selecting, or check-
ing the sequsnces of the cards,

Reproduocers (51k) This machine can produce cards that
have been previously punched. It can duplicate the
original pattern or select and/or rearrange the punched
pattern.

Interpreterr (552) This machine prints on the face of
cards the data that is punched in them. It facilitates
reading and editing the cards.

Accounting Machine: (LO7) The Camputer Center will use
8 MAC primarily to print the input and output
data of the computer. This machine has many other cap-
abilities.

118

A. Mathematics Departmsnt:

Fortran Workshop

A shert, intensive, no-credit course for 20 clock hours.
The workshop is non-technical in nature, and has no pre-requisite.
The purpose of the workshop is to teach the fundamentals of
Fortran programming, This workshop is offered each semester and
each suamer session.

Programming for Camputers - 506

Organisation of, problem preparation for, and general
use of, high-epeed computing machines from the peimt of view of
scientific and enginmeering computations. Flow charts and pre-
grams will be prepared for problems such as: social security,
square root, quadratic equation exponential, multiplication of
matrices, solution of polynomials and correlation. Problem
will be dens in machine language followed by the use of a com~
piler (Fortran), Boolean algebra, Integration of one ordinary
differential equation numerically. Pre-requisite: Calculus,
This is offered every semester.

Nwmerical Analysis - 507

Numerical methods as applied to matrix inversion, sets
of linear equations, linsar programming problems, eigen-values
and eigen vectors. Integration of ordinary differential equa-
tions and integration of partial differential equations will be
presented, Pre-requisite: Math 530 (Vectors and Matrices)

Be Business Adeimistration:

Integrated Data Preocessing - 359

A survey of mechanical and electronic data processing
methods with partiocular emphasis on the application of the
electronic system and wiith special reference to administrative
problems experisenced in introducing computer systems,.

Introdustion to Management Science - 55k

Medern sclentific techniques uwsed in business and
industry for controlling operations, maximising profits and minim-
ising costs. Allocation of men, memey and machines among altermat-
ive uses. Other strategies and control methods applicable to
management, marimting and finance. Preq,--a course in Statistics,
ing Seminar - 555

Electronic Data Pr

Examination of current literature in electironic data
processing with special emphasis on systems analysis, applications
of computers to business problems, and feasibility studies.
Pre-Requisite: A Computer Course or Consent.

/19

- O

13,

14,

15,

Exercises Assigned in Math 506 Programming for Computers

Volume of Right Circular Cylinder Machine Language
Social Security Problem Machine Language
Square Root by Newton's Method Machine Language

Nuadiatic Equation Machine Language

Volume of Right Circular Cyvlinder, Use Fortran
Sense Switch to Compute
=Trrhy

V=T rdy

VER
Nuadfatic Equation (Use Hollerith Statement) Fortran
Given the coordinates of two line segments, Fortran
find coordinates of the points of inter-
section,
Evalcate eX Fortran
Multiply two matrices Fortran
Find the Inverse of Matrix Fortran
Solve a cubic equation Fortran
Correlation Coefficient of X,Y,X Fortran
Solve a system of simultaneous equations Fortran
Correlation Coefficient up to and Fortran
including 20 variables.
a. Calculate an integral by Trapezoidal Fortran

Rule;

Calculate an integral by Simpson Rule
Solve a differential equation by the
Runge Kutta Method.

b,

/120

o

The following is a resume of my talk presented to the joint meeting of the
Canadian and Midwestern Regions of the 1620 Users Group in Chicago,
February 21, 1964: :

Miami Universify, having no engineering school, has concentrated its
computer education courses in the new Department of Systems Analysis.
This department functions as both a degree granting department and a
service department for other University departments,

In its role of a service department, a course in 1620 FORTRAN
(2 credit hours) is offered each semester and during the summer term,
In addition, students from other departments are free to take any Systems
Analysis courses offered provided they have the necessary prerequisites
(proper mathematics background in most cases).

For majors in Systems Analysis, two alternatives are offered, business
or scientific. In either case, the first two years are devoted to program-
ming, computer analysis, and an introduction to systems analysis. The
programming progresses from machine language, to assemblers, and then
to the various compilers. The third and fourth years are devoted to the
tools of analysis where all examples are worked on the computer.

The Systems Analysis courses offered are:

Introduction to Systems Analysis I and Il
Computer Analysis I and II

Systems Design and Selection

Linear Programming

Analog and Hybrid Systems

Operations Research I and II

Simulation and Model Building

Dynamic Programming

Advanced Data Processing Applications I and II
Management Science

Commercial majors are required to take some business and accounting
courses as well as 20 or more credit hours of mathematics. Scientific

majors are required to take some physics as well as 30 or more credit
hours of mathematics.)

LAWRENCE J, PRINCE

12/

KANSAS STATE UNIVERSITY

MANHATTAN, KANSAS
6650k

Department of Mathematics
February 27, 1964
Physical Science Building

The following is a brief outline of my talk at the 1620 Users®
Group (Panel on Education), February 21, 196k, at Chicago.

Kansas State University, a land Grant school, has approximately
9000 students in a wide variety of curricula. Our basic computer
course, 2 hours credit, offered every semester, has an enrollment
of 100 to 14O every time. Enrollment will be larger since the
Engineering School is making the course mandatory. We teach peri-
pheral equipment, then 1620 and 1L401-1L10 series. We stress flow
charting, then some machine language, some S.P,S., and then
Fortran, We use McCracken's book as text, with IBM manuals, and
we recommend Germain's book as well, - :

The Business College uses Schmidt and Meyers as a text.

We teach Scientific Computing Techniques, requiring differential
equations and the basic course as prerequisites. Our text is Ralston
and Wilf, In addition we have a mumber of computer-oriented courses
such as our Numerical Analysis I, II and IIT and certain courses in
Network Logic, Components, etc., taught in Engineering.

Our staff consists of four regular faculty members, with half-
time computing center appointments, a mmmber of graduate assistants
each one-quarter time, 2 1/2 key-punch operators, and a machine

operator,

Yours very truly,

Se Thomas Parker, Director
STPinv Camputing Center

122

Resume of talk delivered at 1620 Users Group February 19-20, 1964

by Roy F. Keller, University of Missouri

The Computer Research Center of the University of Missouri is responsible for

both educational and research computing. The computing facilities utilized

are three (3) 1620 computers with one disk drive each and a 1410 system. The

1410 is used primarily for business and hospital administrative activities and
assembling of medical records. One 1620 is set up to serve most of the educational
activities.

At present the Wisconsin FORGO system is primarily being used for student problems.
We hope to put FORGO into the monitor system. I understand Wisconsin is doing so,
if possible, we will use their system.

Courses presently being taught are:
in Mathematics Department

Math 104 - Fundamentals of Programming Digital Computers

Math 323 - Numerical Analysis

Math 423 - Advanced Numerical Analysis in engineering
Fortran Programming

Eng. 304 - Engineering Problems

and in the Business School

Accounting 101 - Commercial Programming (COBOL) (1410 is used). .

In addition to the above formal courses we have a series of lectures and workshops

to acquaint faculty and graduate students with computing techniques. Both programming
and use of library routines are discussed in these lectures and workshops. One of the
most important requirements for a good educational program is to acquaint the faculty

with computing.

/123

O

A SURVEY OF THE BEGINNING PROGRAMMING COURSE

Clarence B. Germain
College of St. Thouas
February 20, 1964

Last Fall, a questionaire was sent to the 280 schools which are members of the

USERS Group. 175 schools responded. The results are tabuleted on the following pages.

10.

11.

12.

13.

1k,

No allowance has been made for unon-respondents. This does bias the results.

Since the survey covers only schools having 1620°s, the figures for the end of
1964 do not reflect the influence of schools which will acquire their first 162y
during the year.

A suprising number of respondents gave incoaistent answers; e.g., they indicated
floating-point hardware, but not divie hardware, or they indicated that 35% of
their students run their own SPS programs, while they taught SPS only to 2%

of their students.

Figures for index registers, binary capabilities, and the 1627 plotter may not
be indicative since the gquestionaire was circulated too soon after announcenment
of these features,

Average enrollment in the beginning programming courses in 170 students per
school per year.

Many of the Model II 1620’s will supplement existing Mcdel I’s, not replace them.
Relatively few schools indicated any plans to obtain the 1443 printer.

The disk units will more than double in popularity during 1964 with 1/3 of all
schools having at least one disk unit by the end of the year.

While 3% of the schools offered no course involving Fortran, 35% of the students
were taught more than one version of Fortran. .

At the end of 1963, 51% of the schools had the hardware necessary to run Fortran
II; by the end of 1964, this figure will rise to 59%.

85¢% of the students get "hands on" experience in running their own programs on
the computer. This percentage is about the same regardless of what progremming
systems (SPS, GOTRAN, etc.) are taught.

Jim Moore’s Multi-Trace, 1.4,C03, was the most commonly mentionzd trace program
taught to students. However, 85% of the schools indicated that they used no
trace program in their courses.

The figures for textbooks are for use in at least one course. Many schools use
more than one text in a course. 31% of the schools use only IBM publications

as texts. While a wide variety of texts, many uarelated to either Fortran or
toe 1620, are in use, only four comsercial texts and a half-dozen IBM publica-
tions are used with any frequency. Of the non-programming type texts, numerical
analysis books, particulerly Stanton’s, were most often mentioned.

The textbook percentages i no way indicate sales of books; these figures are
quite different from the percentages shown here and were not a part of this study.

124

o

RESPONSES OF 175 SCHOOLS TO A SEPTEMBER 1563 QUESTICNAIRE

Results are given as a percentage of the number of schuols replying to the ques-
tionaire. Probable errors do not exceed 3% except for items marked with an asterisk

(#*) vhere the probable error is less than :8%.
and for the end of 1964. Changes for 1964 are only for equipment.now on order.

Results are given for the end of 1963
Slight

discrepancies in the porcentages are due to rounding.

1620 Model: ‘ 1963
1 96%
11 2

Special Features, Model I

AFP, Div, IDA, Edit
AFP, Div, IDA
AFP, Div, Edit
AFP, Div

Div, IDA, Edit

w

W
WHWHWE £ OWR

IDA
Div, Edit

IDA, Edit
IDA
Edit
No special features

b

Summary :

Automatic Floating-Point
Automatic Divide
Indirect Addressing
Additional (Edit) Instructions €l

BT

Storage:

20K core, no disk L8
LOK core, no disk 21
60K core, no disk 17
20K core, disk 5
MK core, disk 4
60K core, disk 5
Taput-Output ;

Paper Tape only L
Peper Tape &nd Cards 10
Cards only 86
HMegnetic Tepe . 4
Paper Tape 13
Cards 1622-1 : 83
Cards, 1622-2 13
Cards, RPQ to read 80v com 3
1443 Printer .

Disk, one or more 1
1(27 Plotter : It
1710 2

1964

89%
11

w

L
QW W W e e Cw

f

G

38

13
12

125

Number of 1620’s in the school:

One 95%
Two 5

Special Features, 4odel II (19754}

Automatic Floating-Point Oo*
Index Registers c*
Binary Cepebilities 5%

Installations with Printer (19C4)

No disk 23
1 disk 15%
2 disks Sl
3 disks o
4 disks u*

Type of Courses Offered:

Both credit and non-credit 5
Non-credit courses only 36
Credit courses only 13
No answer or no courses L7

Departments which off2r courses:

Engineering e}
Education 1
Mathematics © 45
Business 31
Other 4o

Sub jects Taught:

Machine Language 32
Operation of the Computer €3]
SPS 24
GOTRAN 17
FORTRAN with FORIAT L7
FORTRAN II or II-D 33
FORGO, etc. 35
Use of some library trace 13
Block Diagraming 53
Monitor T 5

sisks: Students are expestad to write and

No disk 6 68 run the.r own programs using:

1 disk 8 20 SPs 1I 25

2 disks 5 11 GOTRAN 15

3 disks 0 [¢] FORTRAN with FORMAT L3

4 disks 1 1 FORTRAN Pre-Compiler 28
FORTRAN II 27

Hardware recessary to run:

Fortran IZ only 37 29

Fortran II and II-D 2 19

Fortran I1I-D only c 11

Required or recommended texts:

IBM Publications

1620 Reference Manual
1710 Reference Manual
SPE Reference Manual

GOTRAN Reference Manual

16520 FORTRAN Reference Manual

1620 FORTRAM II Bulletin

PFORTRAN General Information Manual

1620 Program Writing and Testing Bulletin
Introduction to IBM Data Processing Systems
Programming and Block Diazramming Techniques

Commercial Publications

Germain—Programming the IBM 1620
leeson-Dimitry—Basic Programming Concepts and the IBM 1620 Computer
Grucnberger-McCrackenr—Introduction to Electronic Computers

McCracken—A Guide to FORTRAN Programming
Organick-—A FORTRAN Primer
Cnlman-Smallwood—Computer Language
Smith-Johnson—FORTRAN Autotester

126

7

LD
22
38
23

12
15
12

DATA PROCESSING TECHNICIAN TRAINING
The Need; The Attempts;
The Renaining Void

Computers: Are the nucleus of an extremely large field of operations
called Electronic Data Processing. All handling of information within present
day large organizations must be done witn the electronic can;;uter in mind. The
rate of growth of that organization, coupled with the rate of develomment of
compact, fast, efficient, economical computers demands that any and all internal
operations be designed with the camputer as a possible, if not central, theme,
Many more smaller otqaniéations enter the field of computer operations each week,
to say nothing of the acquisition of elect;onic data processing equipment on the
part of larger corporations. Soue of these companies decide to make use of
camputers because of profit motives. Others nake the switch to computers
defenisvely becau;e their ;:mpetiti<>n dcwn the block has installed a computer,
These basic reasons and rany more subtle factors are at work in forcing businesses
toward the world of Electronic Data Processing.

Agility, ability, capability and speed of the electronic computers
cause copplete revamping cf intemal operating systems, Even the word "Systens”
takes on a different significance when usad in conjunction with “Electronic
Canputers,” Infommation processing n.w has to be looked upon on the "Total Systems
Concept,” that is, the processing, handling, generation, and analysis of data
through a single neans; the electroniec computer, Swuall centers of activity in the
line of infomation travel, and for that matter entire lines of travel have been
eliminated by the computer. The Total Systems Concept dictates a conplete review
and analysis of information requirauents, methods cf handling data, necessity for
various repcrting modes, lincs of data movement and necessity for generation of
information, The cmméers capability of retention of data in its original
format in many cases completely eliminat2s the need for rugencration centers along
the lines of information travel. Th2 speed of operation and nathematical as well
as storage ability oftentimes promoted an entirely new system of operation. What
before had tc be done because of pure necessity could now be accaaplished “on

line,” Even "Empire Building” took a serious setback. These things were

127

o

* /
\’\

Page 2,

accauplished only if a cuncerted effort was made to get them accomplished., Only
the foolish attempted to incorporate a conputer as a single item part of an overall
system now operating for the single purpose of getting a single job done. Foolish
or not, this has often been donc,

Integrated computer operations demanded integrated personnel operations.
People, or groups of people within an organization, that before never had any
interrclationships now found themselves stuubling over one another wondering what
next to be done. The Tabulating Departrent people on the one hand found that the
Systems Department people on the other hand seened to be working at odd ends with
them., The coaputers pramise of the sc far intangible brought about a ccordinated
effort on the part of these two groups., In fact, some data processing people were

even caught taking ccurses in Systems Analysis and vice versa, Most major canputer

installaticns today are nide up of two categories of personnel, Data Processing

and Systens Analysis, working together quite harmoniously. Their acconplishments
have been fantastic to say the least., But something is definit‘ely lacking; a
scnething which could and would provide so nuch more; a souwething which could and
would reduce computer cperaticnal cost quite significantly, That scsthing is a
single brain thinking and werking an integrated Data Processing, Systems Analysis
approach,

Sinple eccnomnics demands that we now find persannel with beth the Data
Processing and Systems Analysis training and experience, The shortcomings of
single field training when considering cverall camputer managcuint are becoming
nore and more significant every day. Thexe are several recsons for this, first,
single field training limits an individual’s approach, definition, and solution
selection to a preblem. Secondly, reduced cost of actual equipnent negates the
advisability of employing two to du the job of ovne. Thirdly, because of cust of
operaticns, vision as well as practicality is required in the seclection of fields
of camputer applications. Fourth, the sualler urganizations cannot maintain high
computer overhead cost. Fifth, from a profit standpvint, efficiency must be

naintained in direct proportion tc capability of the equipment involved,

128

@)

Page 3,

The denand for proper, effective training, therafore, is fantastically
greater today than it has ever been in the past and it continues to grow more and
more with each computer installation. Far too often we in industry find that our
present staff is not adequately caprble to provide our m.magéments with the
desired level of results fram a computer operation, All too soon, we realize that
the answer lies in integrated traininy, formally applied, and practical experience,
All too soon, we realize that there is no source of supply for this category of
individual. Training, therefore, becomes a major problem to us.

Proper adequate training is the focal point of the single major problem
of industry in the field of Electronic Data Processing. Training in the practiecal
way of doing something has always been accomplished by a given organization within
its own environment. Dif.ferent coppanies within the same industry had much
different ways of accomplishing the same thing, and, therefore, each crganization
trained its own personnel in its own way. -Naturally, industry relied, and still
does rely, upon formal educaticn tc provide the basic general concepts as well as
related principles, Industry solved its training problem for the most part by
setting up In~house, On-the-._lcb training programs designed to‘get the most fcr the
least cost. Many tines these programs were extrem;ely limited in scope simply
because of the fact that industry chose to use personnel with extremely lix;xited
backgrounds, Much of the reason for this was a lack of willingness to pay higher
wages for lesser scale jcbs.

Profit motive restricted training to a MUST level and added none of the
frills of peripheral, or related zreas of training. The cbjective of “Adequate
Button Pushers” seemed to be the most efficient level of in-house training., In
reality, this is all that industry should be responsible for providing, In all
categories of jobs, this in-house training was enough to allow profitable operation.
Most jobs did not require a great deal of knowledge, if any, about the last opera-
tion or the next operation in the line of process, It was only necessary for the
individual to krow his or her own special function,

Until the computer came along this was a fairly satisfactory nethod of

129

e

Page 4.

training. The 0-J-T approach was profitable fram tw.: standpoints,
first, few dollars invested, second, appreciably high production after training.
Without having to be cognizant of the previous cperation or the next operation to
come, an operator could attain maximunm production efficiently and quickly. This
was true also in the Data Processing field. For the mest part, training of
personnel was accomplished in relation to operation cf a specific machine or group
of machines. Key punch operators learned to simply key punch and verify. Tab
operators learned the operation of a series of machines, and in sume cases also
learned to wire control panels for tiiese machines., From a training standpoint,
these data processing jcbs were just as any other job in any cumpany, i.e., learn
a specific process for a specific operation without consideration of any related
areass

Camputers brought about the necessity fer training e ven more categcries
of personnel. Systems analysts, prograrmers, couders, program librarians, .infurma-
tion librarians, console cperators, became new and :'uupusin§ personnel categories.
New, because they came in the front door just ahead of the computers Imposing,
because for the first time a job category cime along that demanded an acute
interest in what has happened bef. re *this operation® and what will happen after
“this operation.” No longer cuuld &n “operatcr” be trained to simply accamplish
a single operation, Some system of training had to be developed which would allow
these new categories to be trained in a reasonable pericd of time and at reason-
able coust. The on-the-job training approaéh again was utilized by industi& in
conjunction with short temm courses put on by the manuifacturers., Initially these
two media proved to be just adequate. The only reason that they were adequate was
that the personnel originally selected tou enter the training prcgrams, and then to
handle the computers, were personnel with long experience with the conpany involved,
The fact that they did have the company experience, and, therefore, knew the
internal aspects of the urganizatiocn quite intimately, allowed them tu sclve most
all major problems without too much loss ef time or rmoney,

At the sane tine, these personnel were garnering the necessary hands-on

30

Page S.
experience on the camputer invclzeds, This pericd of tine has been a subsfantial
one, Sane of the early cumputers Jdelivared tco the industries camne along in the
early 1950’s, The personnel selected for the cacputer c;;en‘ti;‘\.ns did through
trial and error, and QJT rethous, finally attain 2 Jegree of pn\'ficiency in the
handling of buth the computers and the infomation invcelved. However, this took
several years of hard werk and a severe calprucise of criginal geals and target
dates,

Noma) attrition for varicus reasons dictatei that an adequate attenpt
be nmade in-house tu train roplacements, The maj.r problem here was one of tine,
Industry could not afford to invest tirze to five years of training for each of
the replacenents. Job attriticn rate was far beyond this replacument rate. Some
fast means of training wes abs.lutely essential., Here the question was raised,
“Do we do this in-hcuse again, cr d> we go outside for cur supply of people?”
Qbviocusly, the in-house traininy cust male ancther source of supply more desirable.
What then was the source to be? Would ths apparent returns .f cuployment drew
very many capable people into private training cperatiens? Wculd, in turn, the
private training operations provile adequate levels of relicble training for
reasonable costs? Did any t rrining facility, ,rivote or public have the necessary
instructcrs availcoble? What pregran woull! the industries hnvé ts undertake to
attain guod levels of educaticn in the jublic schuol systens? Most major
industries gathoered together for the purpeose of Jdetermining suce of the answers
to nost of the guestions.

Many answers were found, and, as a result, many projxsals by industry
were made to education., All of them were rebuffed fur varicus reasuns. In sune
cases, education aduinistration personnel were willing to take on the respensi-
bilities of these new ruquiraments but cculd not find faculty to staff such an
endeavor. More often than not, a negative attitude on the part of administraticn
perscnnel in public education resulted in industry going back to costly in-house
pethods, People in universities and colleges considered the field tu be a

vocational one and not an academic cne, anl, therefcre, it cculd not be touched

137

Page 6.
with a “ten foot pole,” The povple in vocaticnal schocls were all tawilling to
accept the challenye, but cumpletely negated the requirements cf industry by
telling industry that their desires for anything beyond the uperator status were
ridiculous, and, thereby, vocational education -fell down cn the jcb. Industry
then racted in the negative quite violently. All projxsals to education were
withdrawn and in-house, expensive, tine-consuning training was put into effect.

In some of the more comprehensive of these programs, it was not at all uncoumon
tu find the cost of training at the $30,000.00 tc $40,000,00 mark. Time stretched
out fram the nomal one or twn nenth period to sowewhere in the area of three to
five years, with all its built-in ramifications,

Public education finally entered the field of Data Processing cn a late,
neager, but welcome basis., First of 2ll, the educators had to be educated. Those
adninistrators and faculty perscnnel of various public school systems who desired
entry into the field of Data Processing had to leave their posts full time or at
least part time tc get a bit cf education themselves, The problens involved here
were nany and varied, The cricinal estimites on the part ¢f beth manufacturers
and users that at least a colleye degrec in mathenatics was an essential pre-

requisite to computer operctions was inmpressive and nany university and college

personnel took this to heart. Leaves of absence werce granted to scre very few

PHD Matheuatics type pecple willing to expose themselves tu the rigors of the
industrial world, Others went to the manufacturers’ shcrt courses in specific
operations tc acquaint thewnselves with sone of the conputer requireents, This
training scon becane pretty much of a bf.andwagc.n effort. 1f the education people
were at all interested, which they prubcbly weren’t, they tried to get on the
bandwagon. Scrichow they got thewselves exposed to a course or two, and to a lot
of conversaction so that they at least knew the terminology of the field., Because
of the influence of the manufacturers initially, almost all first casers from
education to the field of Data Prucessing were in the mithematics area, To
converse with these people on their own level, an attempt was made to train them

in the finer arts of computer utility by means of mathenatical problem soluticn.

132

TN
_/

O

Page 7,
This, indeed, served its purpose, but it also hai some very undesirable results. ’
The first and mest important of these was to indefinitely postpone industry’s
desire of Data Processing training., The reascn was quite cbvious, of course,
Mathematicians would naturally set up matheamatics type courses .first, and perhaps
other courses later. ‘

Educators frum other fields gradually cane to either industry or the
manufacturers tc gain som: insight into> the world of cumputers, Some went to the
manufacturers for their short courses in specific operaticns and specific machines,
Others left the field of education ccx.mletelf and entered inlustry bent on learn-
ing all they could about the entire fiel:l of Date Processing, and then returned
after several years to education to set up courses of their own in their own
professional fields.‘ Those .that did return to ed\;cation found themselves beset
with obstacles sanetimes insurmiountable. Of these, nmany becaue Jisillusioned
quickly and again left education. Of the few that were left, only a hancful
persisted in the effcrts to establish the desired courses. The remaininy yroup
soon diverted their attentions from setting up ccurses desired by industry to
setting up the ccurses which their particular aministraticn 'ha,.'pene.i te think fit
well into the scheme cf every iay living. For the nost part, these turned out to .
be personal research project type courses, unproductive and invaluable to the
students that made the mistike of taking them. Educaticn became quite wrapped up
in the business cf trying tc ¢et swme decent coursas established. Intermmingled
with this was the perscncl esire of the particular indivilual instructer, and an
unendiny avalanche of prcpagan.la fram any ard all sources,

Gradually, industry has lessened its requirenents in the selection of
personnel, This is Jue 1r‘\ nost part initinlly to the fact that people with traine
ing were simply non-existent. As industry accepted lower scale personnel, it
became apparent that perhips a Dectorate Degree in mathematics wasn’t quite the
nost essentinl single pre-requisite. This fecling has swie how pemeated into the
education field until today sae of us feel that maybe even - lowly college freshe

man just night hove a chance of unierstanding camputers, providing, of course, that

Page 8,
he first attain 20 years of exjerience an! four college degrees.

There is still a basic cuntraliction in the approach to the problem by
educational personnel. The zeal on the part of many educators to accomplish
personal geals, as concerns cxputers, has caused many of these people to lose
sight of their original purpose., Inlustry requests w:ll-defined, practically
oriente! courses of training. Educaticn has come up with & hodge-podge of one-
quarter courses which are, fur the most part, unrelated and unguided. Some
universities_ offer only one section of one course each year, and that course is
usually nothing more than an introuuctory type of course, FORTRIN is often taught
as the means of solving business problens, Syatens courses can usually be defined
as courses in machine capability raticr than in their true light,

This has been due in great part tc the shortcomings of computer educa-
tion of the educatcrs. For purposes of quick exposure, each learned about camputers
in his or her own field. The mathematician learned how té‘solve math ‘.xobléu and
never talked to the business department. ‘The business people learned how to solve
the accounting type problems anld never talked to the enginwering department. The
engineering department pecple learned to solve the stan:lord strees prublem and
never talked to the science departuents The science department people learned to
do some of their wcrk on the computers and forgot about the rest of the campus
crowd completely, Many and variel requests for equijment came to the adminise
trators fram all of these yroups. Noun of these were coordinated nor even exposed
to the scrutiny of any oth:r departments. People on the administrative staffs were
rather prone to allowing 2ach and every departwent to function independently as in
every other facet of their operations. In many cases, it was a ﬁut-em; first-
served type of opuration in the acquisition of a computer. The results were, of
course, chaos in the selection, ordering and installation of both the “hunk of
junk®” involved, and also the courses decided upon by the powers to be to be offered.
As is usual, a tremendous amount was left to be desired in setting up Data Process-
ing education in vur public school systaus,

The evolution of computer and Jata processing courses followed an almost

134

Page 9.
identical path in every case, First come the “hunk of junk.” After same semblance
of study within a particular department, a computer was ordered and installeds In
general, there was very, very little ccordinatiocn between the various university
departnents relative to how the comjuter couli be used, In gef\eral, there was
alwgys the stijulation on ti;e part of the administration that it was to be used
also for aduinistration purposes. I am tempted to wonder if this is also true of
the microscopies of the biology departuent, and the typewriters of the secretarial
departuent and the football shoes of the athletic department.

Next came the exoiting question, "What am I going to do with this crazy
adding wachine?” The individuals involved in the overwhelming task of convincing
the adninistration to acquire a computer had spent all their time in just that,
and no tinme at all in the pr;actical development of courses to be installed after
the camputer had been installed, The short space of time left in between finai
order Jdate and installation date of the computer was not at all adequate for
developing a goud ccurse of instruction on the machine. Result: an unrealistic
approach of "Getting sowething toyether before the ;.(h.linistration finds out,.”

For the must part, this turned cut to be a hurredly put together FORTRAN course
built on the notes frum the instructors own attendance at a manufacturer’s short
course, In sunc cases, these even .roved to be encugh to get through a full
semester course. The main problem with this was the fact that this method was
actually beiny used. Under the pretext of being toc busy with other aspects of
educational life, usually because the individual hinself wes still quite in the
dark ab;mt what actually & camputer was all about, the students were thrown the
bone of sample problems from the manufacturer’s course, while the Prof, went on
his merry way trying to fi'nd out for sure just what Jdid hapgpen when a nmultiply
command was given, Generally, beiny unfanmiliar with a computer language, led to
the development of many courses being put together on nothing more then machine
language, Machine languae and FCRTRAN became the ever present by-laws and by~

words. HMany, in fact most, courses began and ended on this level,

/135

Page 10.

Of particularly significant interest to industry was the method in which
the computer itself was handlel within the school operation. There seemed to exist
therein a fervent desire to restrain the stu.cnt from ever havinyg any contact whgxt-
soever, except by reference Juring a lecture, with the comgouter. Perhaps the
administration was fearful of possible repair costs; perhaps the Profs., involved
were afraid that the stuucnts would find out which were the right buttons to push
before the Profs. did; at any rate, the actual operation of the computer center was
built arcund ~ selected staff of graduate students who cid 21l the actual opera-
tions, brocessed any an'l all studeat prcurams, andd laughed rather hideously when a
logic error appeared in a student’s work. The said part of all this was that the
students never did get to find cut what the camjputer really did look like, nor what
it did while in operaticn. On~line diacnostics and debugying techniques werc never
even nentioned to the students for fear t}_mt same questic;ns night be asked. Sadly
enough, sunie of this was justificd simply because of timt-::.v, It would be impc;ssible
to cram intu a single quarter course any more than an -exposure to a language such
as FORTRAN and expect the student to get as far as writing -2 single program. In a
senester course, he might be expected to write two short prixraws, punch them into
cards or tape and just maybe ¢et them int> the caaputing center. after all, this
was more than the Prof. hcod accuonilished at the nanufacturer’s short course in
slightly less time., It is possible to acecamplish only so nwucih in a 60-hour
quarter or 90-hour senéster, and this was the only interest oricinallye-the one
quarter or one seuester course, . .

Unfortunately, this is still true of almest every college and university
cauputer center in the country, Tuday’s cfferings in ccurses actually amount to
nothing more than a conglameraticn of o!is and ends which, for the nost part,
reflect only the lack of knowledye con the pvirt of those setting the course up.
The lack of truly diligent effort is a thorn in the side of E.ucation,

Just as in industry, the computer on campus became a status symbol.
Many schools began to wear it as a badye of same sort. Other schools without a

computer svon found thenselves in a race to tne wire in acquiring a "hunk of junk”

/36

o

Page 11,
and getting it into operation. It becane very fashionable to be setting up
“Camputing” centers; computing centers, not computer centers. The terminology
was indeed indicative of understanding on tle part of both faculty and adminis=
tration people as regards the camputers place in industry, It was just another
machine for the solution o} a particular problem, preferably a mathematical
problem, The true implication of the coputer in the iodern business and scienti-
fic world was realized by only a very few across the country. These fee compre-
hended the computers ramifications, but they made the significant mistake of
placing the “hunk of junk” on the "qraduate‘ school level only,” and, thercby,
effectively eliminated almost all students. The result could only be that of
ineffective applicaticn insofar as the general situation was concerned, Those
most in need of exposure to computer education could not be expused simply
because they never got into graduate school.

Again, we have the situation of a Machine languege or a FORTRAN course
for under-graduates, wherain a program was limited to being writton, passed
through the keyhole to the graduate student and the garbage results received back
through the keyhole with a note telling the pror freshman to dé. it over again, In
most cases, even the graduate studcnt on the inside never got to run eny diagnosf
tics of debugging un the progran simply because he had never been taught to,
However, they did get to h.:.)lp t!xé Prof. while the bProf. was guing about getting
his own computer education, so they were able t. garner s:me extra tidbits of
knowledge regarding canputers..

This is where we stand in academic educati~n today. The requests of
industry have been forgotten or relegated to the area of unimportance, and nost
on=canpus camputers havé been gubbled up by Profs, deing persvnal research for
doctorate degrees while the cnly effective courses are on the graduate school

level. In other words, almost t.tal ineffectiveness.

137

O

Page 12,

The attempts of vocaticnal schools and area technical schools have also
been ineffective, The traditicnal approach of the vocational school in training
for a specific skill has resulted in just another series of *cperator” type courses
which industry has been able to supply for many years. Voicaticnal schools have
been successful to scme degree in supplying industry with adequate input trainee
personnel for specific job categ:.ries in the operater jobs. These personnel still
had to complete in-house, on-the-jcb training after being hired by a companye.
True, because of their training in school, the in-hcuse OJT training proyrams
could be si'gnihcantly reduced in length.

Again a failure toc ccuprehend the -true ramifications of computers within
a business caused the vocational people t» continue on their merry way setting up
operator type courses in the various job cateugories of a cumputer center. All of
these were specific in nature, that is, the Key Punch operator was concerned only
with punching cards; the Tabulatcr operator was concerned only with prucessing the
cards in a tabulator or sorter; the Compgter Conscle :)pﬂa"i:u't was taught to push
buttons and mount tape reels; and the Programer was just ancther individual job
concerned with writing instructions for the cumputer,)Lm\.; of these categories
received any additional training ..r even ex,sure to adjacent operational areas.
Even the previous cr next uperations were left out of the training courses,

The stress cn individual jub categuries by the vocational school people
has relegated the pregrarmer’s job to that of just another operator in the cycle
of business events, Again, this was due to almost the same factors as those aris-
ing 'in the academic world., Tou little education on the part of faculty and
administration led to impractical courses being set up. An unwillin;wness to adnit
that there just night be a need for education beyond just the “operatur” level
left all related course training out. In thuse most advanced schocls, there scae-
tines appeared a course in mathematics t-. about the level of beginning algebra.
Never did we find the arca of systems being covered, for this was felt to be

unrealistiq and, therefure, academic in scipe,

138

Page 13,

Those courses in “C.uputer Prograrming® which were set up followed
almost exactly the efforts within the aczdemic world in doing the same thing.
Short courses in the us2 of a computer languzge such as 'Abso].ute and FORTRAN made
their appearance, and weré handled in virtually the same way. After an expusure
to a language, the student was expected to write a prcgram and subject it to the
processor by way of either the Prof, of his assistant, Almost invariably, what
little hands-on experience that was provided was channeled only into the area of
what buttons to push "to get the darned thing to run.” All of these courses were
set up on the “lab” basis, with little or no solid lecture centent. For the most
part, the instructor was a converted Business Education type lerscn with a
specialty of office machines or typing who had been exposed to a short course at
a nanufacturer’s school somewhere. The results again were very similar to that in
the colleges and universities, The principal problem here was a reluctance to
a&mit that any job could have implications or ramifications beyond its own seem-
ingly immediate scope, The administration and faculty peuple refused to even
attenpt to deviate from their s:t ways of educatiun and set up sume semblance of
an adequate course in computers,

This satisfied the requironents for "cperator” type people but left t};e
original problem canpletely unsatisfied, The sc-called computer prograrmer was
nothing more than a language coding clerk, lacking any and all knuwledge of how
to really put a camputer to effective use within an organization. The Systens
Analyst dealt only with the abstract it seemed, and, therefore, had no place in
vocational education., Because of this, so-called programner courses could give
the student nothing moré than a language backgrcund, The corij.anies hiring these
graduates found thewselves right bock where they started with their own in-house
OJT prograns. The vocational schocls did effectively provide input trainees for
operator jobs, but left much to be desired when it came tc effective us2 of equip-
nent within a Data Processing center.

7 Caonputers and their effective use demand an integrated training progran.

In general, every business computer installation depends upcen a staff of perscnnel

/39

Page 14,
which has had a good academic background in a particular field such as Accounting,
Engineering, Mathematics, Science, etc., and also a vocational skill training in
machine use and operation. Industry has found that it wasn’t enough to just be
an accountant or engineer, a scientist or mathematician, just a systems analyst
or programmer. It wasn’t enouwgh tc have just a high school education followed by
quicky type operator courses, It wasn’t enough to have an exposure to a quarter
course in a couwputer languaye, It wasn’t encugh to approach a computer with simply
problem solution in mind. Scmehow the benefits of college or university academic
training had to be molded toyether with hands-on vocaticnal training into a useful
level of competency and judgment, The far-reaching aspects of every camputer
application made it very desirable tc provide the type of training which would
allow the individual to make the utmost use of a particular “hunk of junk.”

During the last two to three years, it has become more and more apparent
that more than one academic field had to be included as well as more than one type
of camputer treining in any effective cumputer ccurse, In addition to accounting,
saue mathenatics, English, and statistics were very neces'sary. In addition to an
exposure to computer prograrming via learning a cajuter language, a background in
problen analysis and solution, in Symb:lic lancuage as well as FORTRAN, in hands-
on debugging nmethcds as well as desk checking were all vitally necessary.

Cuaputer operations trcining was the iawediate concern, and primary
courses had to be directed toword this ends However, the larger easpects of
camputer ability had to be made the g.al of all training, Somehow the Methods
Analyst, Systems Engineer, Comjuter Programier, Data Processiny Hanager,
Controller, Accountant, Sales Manzyer, Production Superintendent, Factory Foreman,
Inventory Clerk, Grounds Keeper, and Gorbage Collector had tc be relled up into a
single individual via an effective traininy progran,.

From a practical standpoint, this conglumeration of far apart fields
had to be rolled into one, but this isn’t quite possible within the short periods
of tinme available fcr training., Still it is apparent that quite a different

enphasis in traininy is required, Rather than beinrg just ancther tool or method,
140

~
N

J

Page 15.
the computer has become the center of operations affecting all cther departments
of an organization. Nu sincle operation eScaped the inevitable scrutiny of the
computer, Training, therefore, hald tob inclul!e all jussible fields cof endeavor,

30 as to provide the computer personnel with as broad a scope as possible to enable
them to make sound Jdecisions, Exjosures to cther fields had to be realistic and
sound as well as effective, but these exjcsures had to be made within realistic
tiue allocations.

The pressure of telescoped time has not allowed industry the luxury of
retraining older staff members, Though these perscnnel had extremely good know-
ledge of the orgamizatiun, it cften required more time than we had available to
briny them to a point of cumjetency in cumputer utility, Additional personnel
with "Wide angle” cuaaputer backgrounls had to be discovered and acquired. Most
of these cane frua the fields of either Data Processing or Systens Analysis, but
even these did not have the proper backgrounds of mutliple field, The ¢reatest
deterent to these in aclimatizing themselves to canputer cperations was pro-
fessional prejulice. Until cemputers, these two fields -stocd at olds with one
another., This factcr became a serious restrictisn to further development within
the computer field,

The two year Data Processiny Technician Course seuns to offer sone
indication of an adequate answer to the preblems The integration of all the
required facets intu a single applied course can, of ccurse, be the only true
solution to the prcblem of acquisition of trained, capable persunnel., This is not
going to take place very scon because of some of the reasons already mentioned.

In the neantime, scuwe adequate substitute must be found, To ask industry to
coentinue their cwn extremely expensive training programs is not realistic. In the
first place, this is far too exjensive a mcde of treining. Secundly, it is
unrealistic in the consumpticon of time,

Developments in the field of coumputer utility arrive sc fast and in such
quantities ac to render ineffective any long range in-house, cnethe-job training

presram, Industry training pregrams are usually based on a set way of deing

141

O

Page 16.
thinys which is expected to.continue as the way of doiny things for many years to
conee In computer operations, this is nct at all true, Yesterday’s method: was
ancient history as scon as it was used, Today’s methxd will be outmoded before
the job is done tonight. Tomorrow’s method is already ¢athering pale, ¢reen mold
of disuse,

As an intermediate soluticn to the problem of providing industry with
adequate input personnel, the two-year technician program has. been suggested and
put into use. These, too, have fallen into the same traps for the same reasons
as the acadenic courses and the vocationel courses, The reason for this is
obvious, The very same faculty and aduinistrative people are making the very same
unintelligent decisions about this course curriculum and setup.

During the last two to three years, there has taken place a yreat rush
to "get on the Data Processing bandwagon.” Unfortunately, the depth of sincerity
here seems to go only that far, *yain we find unacquainted administrative
personnel and untrained instructor personnel attempting to set up and teach a
totally unfamiliar curriculum. For the nost part, these attempts have been made
in junior colleges and vocational schieols on a post high school basis. In almost
every instance a basic two year curriculum, sugoested by several of the manu-
facturers and approved by the U. 5. Department of Health, Education and Velfare,
has been the sum and substance of these attempts., These sugyested curriculums had
been set up on a purely theoretical basis, and had not been put into practical
operation before being foisted upon an unsuspecting education group. Perhaps in
awe of the suggesting body, perhaps for lack of personal knowledge, perhaps for
desire to be "one of the bunch,” education accepted thdse curriculums and attempted
to do their best at training people in Data Processing, without first doing any
extensive exploration of the curriculum.

This is the point at which the most significant of failures occurs,
Scrutiny of the suggested curriculums by those in Data Processing management
positions in industry would perhaps have pointed out some of the most glaring

inadequacies, Soume of these are: first, a purely theoretical approach to subject

142

Page 17,
matter without adequate experience emphasis; second, basic courses being taught
last in sequence, with advanced courses caming first; third, emphasis on language
communications with the machine rather than a solid foundation in machine operation
characteristics; fourth, relagation of the Data Processing courses to a status of
just another course rather than a status of core course,

As an example of this, let us examine the most conmorly found curriculum,
It is set up as follows:

Secend Senester
Credit Hours

First Year First sSenester
Credit Hours

Data Processing hMathematics I and II
Accounting I and II

Cormmunications I and 11

Basic Camputing hachines

Unit Record Hachines

Data Processing Applications 3
Introduction to Prograrming Systens 4

4
4
3

0w

Fourth Semester
Credit Hours

Second Year Third Semester
- Credit Hcurs

Computer Programming I and II S
Social Science ’
Statistics
Business Organizaticn
Cost Accounting
Systens Develomment and Design 3
Advanced Computing & Programing Systons. 3
Data Processing Field Project 6

W oW W W

An examinaticn of the ¢ .ntent of each of these Data Processing courses generally
re‘;eals the fellowing course descriptions:

BASIC OQPUTING rACHINES. This is a survey course of caxon fundanental concepts
of data processing systems. It describes the evilution of caiputer systeus--frum
manual to stcred progr.m methods, '

UNIT RECORD IACHINES. This course is a survey of unit record equiment., It illus-
trates the need fox‘mchine-pncessable sclutions to accounting and recordkeeping
problens. Laberatory preblens include wiring of coentrel panels,

DATA PROCESSING APPLICATIONS. This course is designed to 2cquaint the student with
actual bus:néss data pr.cessing applications. The student learns through lecture

and case studies to apply the data processing equimment previcusly studied to

43

Page 18,
various applications, Through this study, the student gains an understanding of
how machines and systems are cabined, and the advantages of mechanizatica.
INTRODUCTIOKN TO PROGRULIING SYSTEIS. The basic concepts of program:ing systems
are taught in this course, During this class, tle student becores aware that
programming systems are as inportant as the machine hardwire. This course famili-

arizes the student with the purpose and function of tne various types of program-

~ ming systems or languages.

CQIPUTER PROGRULSING, The Bisic Canputing Machines course in the first senester
provides the theoretical basis for detailed study of data processing machines in
this course., Programming drills, case studies and exercises serve to bridge the
gap from the theoretical to the practical use of data pricessing, The two hour
per week laboratory sessions provide further reinforcewent of basic principles by
provading "hands-on” training., The FORTRIN language is the rain media of train-
ing, while the student is intrcduced to liachine Language and Symb_.lic Programming
Systens,
SYSTENMS DEVELOFLENT /ND DESIGN. .1 survey course discussing the effective use of
data processing equipment in neeting the infcrmation needs «f business, The course
is designed to guide the student through the vorious stages of systen develomuent.
ADVINCED CQUPUTING ..ND PROSR IING SYSTEIS. The objective uf this course is to
provide the student with sufficiert kncwledge of pr(x;rai.n.xing language concepts so
that he may easily master any specific system with a nininum of instructicn,
Actual programning languages are not taught. However, indivxdual phases of certain
selected language systenms are treated in detail in order that tﬁe student may leamrn
advanced progronming language techniques contaimed in scphisticated systes,

Let’s exanine these courses a little more minutely fron the standpoint
of "what 1s being taught when.” In the first semester we have two parallel courses,
Basic Computing lhachines and Unit Record Machines. The Busic €Computing Machines
course is almost alwéys a pure theory course examining the .varicus styles and
types of machines., Little or no c¢ff .rt is made to acquaint the student with the

methods of problem sclution required by each of these types of machinea.b Sinece

144

Page 19,
this is usually a three hour per week course, there is really no time to go
beyond a term definitien stage of learning, The Unit Record Machines course is
a little nore definitive in that the student dees get some "hands-on” experience
in control panel wiring. This, too, is very limited since th: five hours per week
during one semester must be spread over several types of machines and all the
punched card processing philosophy involvad in each of them, The student receives
a total of about 20 hours per machine type, Certainly not enough even to complete
the acquaintanceship status of knowledges

The simple fact that these two courses are so drastically limited in
scope negates their desirability as foundaticns for further data processing courses.
The Basic Cuaputing Machines course should have as its prine objective teaching
the student the various methods of priblem solution used in the various types of
conputers, Since problem soluticn is really the prime censideration of all sube
sequent courses, and all activities involving cuuputers, it would be far more
desirable to teach this tupic rather than mechanical configuration and operation
in the initidl course,

During the sccond senester, the student is expcsed to sumething called
Data Processing Applications. During this course, he “"learns thrcugh lecture and
case study to apply the data processing equipment previously studied” to business
applications. This is all well and good, but since the Basic Computing Machines
course did nothing more than acquaint him with mechanical eonfiguration, this course
will still leave him asking “huw, what, where?” This course would be infinitely
more appropriate were it taught following some exposure to practical programming
experience., At least, then the student would have some means by which he could
relate the machines to the applications., Far too many students and graduates came
to industry knowing all about computers or language systems, but are unable to
put this knowledge to work on a practical application.

ilso, during this econd semester, the student is subjected to a course
called "Introduction to Programming Systems.” This is basically a course which

exanines the various types of prograrming languages. It is an exploration of the

145

=

Page 20,
“goftware” wherein the student *becomes aware that prooramming systems are as
important as hardware.” Again, this course is pretty much a theoretical one with
little or no practical prwuranming experience. For the most part, the languages
generally discussed are not a part of the software package of the computer which
is installed. Here again, the student is left wondering *what to do with it®
as concerns all of these languages.

So far, two full senesters have gene by and the studunt still hasn‘t
#soloed” on the computer.” He has still to write his first practical problem and
run it on the computer. It would seen to be an awful waste of time,

Finally, in the third semwester, a course called Computer Programming I
shows up., Welcome at long last, even though it falls far short of its rightful
goal. During this course, "procraming drills, case studies and exercimes serve
to bridge the gap from the theorctical to the practical.” This objective is
perhaps a sound one, but since the FORTRAN language is generally used, with only
an exposure to Symbolic and lachine Language, it is doubtful that it can ever be
reached, The FORTRIN language still gives the student no insight into data
manipulations within the machine. FORTRAN does not allow un-line debwyying and
diagnostics, FORTRAN dues nut even allow the student to develop his own program-
ming logic techniques. FORTR'.N limits him entirely tu a rigid set of rules
evolved from scmeone else’s logic. In th:se c.urses where licchine language is
taught as the basic media, the student is severely linited by the clerical
activity involved, and also by the fact that cnly relatively simple prcblems can
be attempted. We find, therefore, that in the third seuester when the student
should be at an advanced level, he is in reality just beginning. /n examination
of the nurmber of cuauputers installed and in use reveals that apprcxinmately 95+%
are used in business type operations. Why then use a mathematical language such
as FORTRAN, with all its inherent restrictions and limitations, as a training
media? Why not give the student the type of training which is going to equip him
for 95% of the job market?

In the fourth semester, another course is given in Programming Systems,

146

Page 21,
This usually is a survey type course designed as an extension c¢f the introduction
course given in the second semester. These twc courses could well have beep
combined into a sincle course Jduring this senester, By the tiie the fourth
semester has begun, the stulent is just barely capable of making effective use
of the high-powered languages usually discussed in this course, The philusophy
of operation involved in COBAL, »LGO and scrie of the other more scphisticated
languages are beyond practical cumprehension until the stulent has had an adequate
exposure to manipulation of data throuwsh the use of some lessor languaye system.
The third senester cuurse in computer proyramming will accamplish this to a certain
deyree, but places the second semester course, "Introduction to Prorasing
Systens,” in a wasted status.

The “Systers Develomment and Design” course in the fcurth senester is
a practical one, though it comes a little late., Far more emphasis needs to be
placed on "the effective use of Data Prucessing equipment in business needs,”

This theme must effectively be built into cach and every seguent of each and every
data processing course beginning with the very FIRST day of instruction. Without
this, the student in his theoretical surroundings loses sight of the practical
application cf what he is studying,

Because of the inadequacies of sugyested and adopted courses, a new
approach to course setup and content had to be taken. At Hibbing, we first tried
to determine what type of individual was really in demand by industry. It was all
well and good for us to listen to the claims of almost everyone that the field
of Data Processing was cne of unlimited opportunity and a never-endiny sponge
which would gather up any and all graduates of any and all types of courses,
Having spent a few years in the business world, I found this quite hard to believe,
We spent a great deal of time and effort finding out what we believed in frum the
first--that not just any cld vne-quarter course approach would suffice; that some-
how, we woculd have to bagin at the level of a yood workable computer language from
both the practical and esucational point of view and gou un from there.

Realiziny that we had opened the door to a vast areca of extremely hard
147

Page 22,
work, we went about the task cf developing our core ccurses. After much serious
investiyation as to where the computers were being used, we decided to place the
emphasis of our core courses un business applications. We, therefore, asked our
college instructors in Accountiny, Mathenatics, Economics and English to put
tot,‘ether' a group of inteyrated courses sufficient to support an intensive level
of training in Data Processing.

All courses developed were to be integrated with the Data Processing
courses., The problens Jdiscussed in the Accounting and lathematics courses were
to be discussed from an integrated cauputer operations point of view. The
Cormunicotions English courses were to emphasize public speakiny and technical
report writiny, with Data Pr.cessing applicaticns as topics. These courses were
accelerated versions of the same basic courses taught in our Junior College, by
the sane instructurs, but with a much different objective in sight. The level of
training, therefore, was intensive, but it was also very well J‘irected along the
Data Processing lines,

The Data Processinyg courses, built arounl the Iﬁl’. 1620 computer and
IBM 407 accounting machine emphasized a totel integration of Cemputer Programming
and Systems Analysis, No prebler: was to be discussed in the Data Processing
course grouping without a thorcugh investigation of 211 the systems reamifications
of the problems In this nanner, we huped to be able to acquaint the stwdent tou a
good degree with all factors involved with a particular type of problem, and not
just with ”a typical programming”approach. The significance of the several means
and methods of problem solution was also brought to the student in 'the discussicn
of each problem.

Early examination of the field of data processing showed that a parti-
cular type of person was in great Jemand, This was a person with more than just

an exposure to machines and computer prograrming. This was a perscn with sound

-fundamental training in Business courses and more than just an acquaintance with

Systens Analysis and Pr.celures. This was a person capable f evaluating the

relative costs of several metholds of problem solution and :data handling and able

148

.)

P T g o -

&

Page 23.
to make a sound, profitable judyment and Jecision, This was a person capable of
more than just conscle operation, cr debugying through a list of error codes,
This was a person who locked at every data processing problem through two sets of
eyes, those of the Systems analyst and thouse of the Data Processing Technician

To achieve satisfactorily the guel of training this person, we put
together the following curriculum,
Hours per week Semester Total Semester

Course Title lecture Lab, Credits Class Hours
First Semester:

Principles of Accounting I 4 4 4 144
Data Prucessing Mathematics 2 2 2 72
Introduction to Camputers 3 2 3 90
Unit Record Equiment 4 4 4 144
Cormunications English I 3 2 4 80
16 14 17 540
Second Semester:
Principles of iccounting II 4 4 4 144
Data Processing Mathematics II 4 3 72
Camunications English II 3 2 4 30
Coazputer Prugramming 8 S 8 234
19 11 19 540
Third Semester:
Cost Accounting 4 1 3 90
Human Relations 4 1 3 90
Business Organization 4 1 3 90
Data Processing Applications 4 4 4 144
Introducticn to Jystems 4 3 4 126
20 10 17 540
Fourth Semester:
Systens Develojment 5 S 5 180
Advanced Programaing 5 5 S 180
Data Processing Field Project - 10 S 180
10 20 15 540
Totals 1170 990 68 2160

Beginning in the first semester, our individual Data Prucessing coutse
content is as follows,
UNIT RECORD EQUIPMENT. This course examines the use of most unit record punched
card machines including the key punch, verifier, scrter, reporlucer, collator and
accounting machines. Heavy emphasis is placed on proficiency cn the IBM key punch
and verifier, and on complex board wiring for both the 085 collator and the 407
accounting machine. Fomis design for both card fomats and printed output is also
thorouwchly coverels This course forms the basis for all future laboratory probl-

lems in that the stulent must wire all ;\ecessary control panels for each machine
42

.

Page 24.
usedd in any laboratory problem solution.
INTRODUCTION TO CQMPUTERS, This course is the key to success or failure in
computer programming, This course is divilel into three major segments each of
which covers a single basic type of computer, These are Disk-Drum type machine,
the Core-card processing machine and the Coreliagnetic Tape machine, The logical
approach to problem solution for ecach of these basic machine types is stressed in
this course. Flow charting and detail block diayramming of problem solution
becunes the stuldent’s central concern. The laboratory porticn of this ccurse
consists of setting up the IBM 1620 camputer for problem processing and of console
operations using 1620 user-group library programs and problems for these programs,
CQMPUTER PROGRMIING. This second scmester course in IBM 1620 computer program-
ning foms the solid foundation on which all future proyramning courses are built.
This course has the two-fold cbjective of teaching the student computer proyram-
ming techniques, and of acquainting the stucent with how a computer is used in
business throuwyh carefully developed laboratury problems. The first three weeks
of this ccurse are devoted to the ,bsclute Machine Language of the 1620 computer,
Basic techniques of on-line debuyging are also stressed Juring this period. The
remaining 15 weeks of this course are given over to the usec of the 1620 Symbolic
Programing System Lanyuage, Business problems of increasing cauplexity are
haniled as the course projresses. With each problem, the significance of the
computer relative to overall systems and procedures is stressed to the students,
The laboratury precblems are designed to extend and reinforce the basic camputer
loygic ideas covered in the first semester as well as to develop prcficiency in
1620 computer programming.
DAT/\ PROCESSING SPPLICATIONS AND INTRODUCTION TO SYSTEMS., These two parallel
third semester courses bring to a practical working level all the principles of
Computer Programming and Systems and Procedures learned in the second semester,
The student countinues his Synbolic Programming with each laboratoery problem, but
he now expands his operations by developing the source and handling of all data

for a particular problem, For each laboratory prcblem, the student develops a
150

Page 25,
camplete system of information handling culminated by a complex computer program
necessary to arrive at desired results. Complex applications such as incentive
payrolls, complete accounts receivable processing including aging, inventory
processing and item use and scrap analysis, general ledger and other integrated
systems of information handling. The student also designs and develops any and
all necessary documentation of the system including both manual and machine
operations, The stress in these two courses is on polishing computer programming
techniques and acquiring practical system and procedures knowledge.

SYSTEMS DEVELOPMENT given as a fourth semester course continues the third semester
Introduction to Systems course with heavy emphasis on the total systems concept
and the development of systems and procedures throughout an organization which
will support the nocessary profitable ovperation of a computer, Discussions and
laboratory problems include practical exposure to PERT and Critcal Path techniques
both on and off the computer, in addition tc standard systems of Infommation
Retreival,

ADVANCED PROGRAMMING in the fourth semester consists of IBM 140l computer Symbolic
Programing training. Most basic laboratory priblems from the second and third
semester Programming and Applications courses are reviewed and 1401 progroms are
written and tested solving these problems. FORTRAN is also taught during this
course.

DATA PROCESSING FIELD PROJECT during the fcurth semester consists of the student
actively engaging in shop operation of a local arca data processing department of
local industry. During this period, the student selects an information system whiclh
he completely dicuments and programs for the computer. His solution must be one
which is better than the system in operation which he sclects to study,

The objective cf training Data Frocessing technicians dictated the
attainment of a thorough knowledge of computer operaticns, To achisve our’desired
ond, we decided ecarly in our investigations that we would utilize the Symbolic
Programing Language as our major computer instructional tool. Our foundation was

to be thorough understanding cf internal data handling by use c¢f Absolute Machine
/51

n
%

Page 26,
Language, The relative advantages and disadvantages were thoroughly explored and
the decision for Symbulic Language was based upon the primary requirement of solid
understanding of the internal capabilities of the equipment involved. All labora-
tory problems were designed with hands-on assenbly, testing, debugging, and pro-
cessing as a significant part of the problem. A requirement for thirty clock
hours of sclo time on the 1620 camputer by the end uf the second semester became
a mandatory objective, “Console Cenfidence” could be attained only through
personal contact with the machines. Mastery of the FORTRAN Language was also
included in the curriculum, but as a secondary rather than primary language.
FORTRAN programming, as well as 1401 Symbolic prograrming was included in the
fourth semester area of the course. A course in Systems Analysis was designed
which emphasized methods of data handling outside of, but orientated to computers.
The how to do it approach of integrated data flow operations was tied in directly
to a computer program to sclve a given prcblem. In all c;sos, the discussions of
various problems included and revolved around the ramific«;tions of a camputer in
the systems area. Topics in the Data Processing group of courses ranged fram
simple payroll type problems to integrated general ledgers; from production control
to sales analysis; from historical records to vperational research; from informa-
tion retrieval to business sirmulation. 711l of these tupics were arranged with two
things in mind; first, the how and why of cumputer solution; and, second, the
method of programing the problem within the computer,

In all camputer applications, each student was required tu do his own
on-line debugging and diagncstics, Each laburatory problem required the sub-
mission of a written report on the problems which the student had encountered while
solving the problem, This technical report had to include a complete explanation
of the programniing method used, the asseibly and processing technigues, and the
Diagnostic and Debugging procedures utilized by the student. The original
objective of the overall outlook and integrated problem solution techniques were
repeatedly brought to bear in each of the courses, Various systems and procedures

of apprvach were explored with each laboratory problem, and students were each

152

-
Y
£
(S
po

J

@)

Page 27,
encouraged to attenmpt different ncthods of arriving at a solution to the parti-
cular problem, No two like solutions were to be accepted in the camputer programe
ming phases and systews phases of the course, Individual thinking and exploration
was thus encouraged to the utmost throughout the course strx;\cture. Failure on the
part of the faculty to foster and nurture this aspect of student development
would in reality be a failure of the entire course structure, The two year pro-
gram is not the answer to the problem, and will probably soon be outmoded, The
two year program came about as a stop-gap measure necessitated by the inadequate
fumblings of colleges, universities and vocational schools. To date, only meager
attenpts have been made to provide integrated training. Most of these have been
of the too little, too late variety. Most courses of any value are on the gradu-
ate school level, where most stwlents never appear for training, Courses on the
undergraduate level are ineffective because of too narrow scope and FORTRAN type
approaches, Much hard work remains to be done in course develoment before unie
versity, college and vocational schcol programs offer the type of training
necessary to provide industry with adequate input persornel, Without this course
develomment work, all such programs will be ncthing more than a waste of time and
money. Universities, culleges and vocational schools must bring themselves to
recognize the fact that computers have becume a factual way of life for both
organizations gg personnel, Without this, Education can never hupe to catch up

to the world of reality. Where does your program stand?

/153

INTRODUCTION TO MATRICES

Charles E. Maudlin, jr.
University of Oklahoma

Intended for users with no knowledge of matrices and littie background in
mathematics. What a matrix is, matrix operations, singular matrices, how
errors arise in matrix operations. Example of matrix inversion by
Gaussian elimination.

In working with simultaneous linear algebraic equations, it seems reasonable
to work with the coefficients only. For example, in the system

We would expect to find the solution values by some set of operations on the
numbers

1 3 4
2 -9 -7
Indeed we would expect to find the same solution values.if the equations were

a -

3b = 4
2a - 9 7

It now seems reasonable to make the following definition:
A rectangular array of numbers is called a matrix.

Ex.: 1 3 4
2 -9 -7

The size of a matrix is characterized by the number of rows and the number of
columns,

2 x3

A matrix consisting of exactly one row or exactly one column is called a vector.
4
-7

154

a; denotes the element in the i-th row and j-th column of a matrix.
J
=2
221

a; denotes the i-th element of a vector.
a, =-7

R T |

equivalent symbols to denote a matrix.

Definition: Two matrices are equal if and only if they have the same size and
correspondingly placed elements are egual.

We will define a multiplication process by introducing the concept of linear sub-
stitutions to matrices. Suppose we are given the set of equations:

3x + 2y + 72 = a

2x - y - 32 =D

x+ y+ & =c
In matrix form this looks like:

3 2 7 x a

2 -1 -7 y|=|b

1 1 z c

For the present, this means:

E:oe{ficientg x [x's, y's, a‘s] = fa’s, b's, c's]

Later we will show that the form used is consistant with our definition of
multiplication.

Now suppose further that:

u+ v =x 11
2u - v =y or in matrix form 2 -1 u =]y (2)
u - 3v =2z 1 -3 v z

/55

It would not be very helpful to use this thing called a matrix unless we could
substitute from equation (2) into equation {1) and obtain

32 7M1 1 a
2z -1 -3f 42 -1 [“] = b (3)
oo -3 L c

We would also like to believe that this represents the same relationships that

would be obtained if we had performed the actual substitutions and written the
results in matrix form, The steps in making the substitutions are:

3{utv) + 2(2u-v) + 7(u-3v) = a
2{utv) - 1{2u-v) - 3(u-3v) = b
I{utv) + 1(2u-v) + l{u-3v) = ¢

(3*142:2 + 7-Du+ (3-1+2: (-1)+7-(-3))v=a
(4)
(221-1°2 - 3+ 1)u+ (2 1-1-(-1)-3-(-3)) v= b
(114124 1-1)u+ (1- 1+ 1 (-1)+ 1-{-3))v = ¢
l4u - 20v = a
~3u + 12v = b
4u - 3v =c
14 -20 a
312 [‘j = {b| -
4 -3 c (5)

We want (3) and {5) to say the same thing, Multiplication will defined so that

32 7 1 1 14 -20
-1 -3 2 -11=1}-3 12
1 1 1 1 -3 4 -3

By examining (4), we can see the manner in which the product matrix should be
formed.

(a) Each element of the product matrix is the sum of three products.

(b} Each product contains one factor from the left matrix and one from
the right.

(c) Elements of the i-th row of the product matrix are formed from
elements of the i-th row of the left matrix.

(d) Elements of the j-th column of the product matrix are formed
from elements of the j-th column of the right matrix.

/56

|
i
|
!
|

If ay. , b;; and cj; are typical elements of the matrices A, B, and C where A is
the griginal coe[f’icient matrix, B is the substitution matrix and C is the product
matrix then

3
c‘lj :k§1 A bkj i=1,2,3 j=12

In general: IF A, g and By, are multiplied, the result is given by

S
Arxs Bext ~ Crx[, Cij=k2jl 2y, bkj , i=1,2, ---,r , j=1,2,00, ¢t

Notice that matrix multiplication is not defined unless the number of columns of the

left matrix equals the number of rows of the right matrix. Even when such multi-
plications are defined, it is not true in general that AB=BA, Examples:

BIE)] [en-gd
B0 1€ oall - pg

L ZJE? [-3
B _—ﬂ L a is not defined

A (BC) = (AB)C

i

i

When the multiplication is def‘ned

The proof is omitted here but it can be shown to be true by applying the definition
of multiplication twice to each side to determine the typical element.

We can see that our original matrix equations are consistant with this definition.
A square matrix with 1's on the diagonal and zeros elsewhere is called the
identitz matrix., If there are n rows and columns, it is denoted by In, When no

confusion is apt to arise about size, the subscript is dropped.

Thm For every matrix A, Al= A andIA= A (The size of I may have to be
adjusted if A is not square),

Proof Let (aij):A . (bij)=I then bij = 0 unless i=j and bii‘= 1.
consider a typical element in the product Al:

%1 aj bkj = aij The only term in the summation that survives is the

k= one for k=j (otherwise by, =0).
This leaves aij bjj = aij Sl= ajj
—4-
/57

The other half of the theorem is proved in an analagous manner.

For some matrices A, there exist corresponding matrices B having the property
that AB = I. When this occurs B is said to be a right inverse of A (Ais a left
inverse of B). If A is s_qi.\are then AB=BA=I. B is the inverse of A and is
usually denoted by B=A". Just statement - no proof here.

1 2l}5 -21_ (1 of _|5 -2]]1 2
2 511-2 1 01 2 112 5
A diagonal matrix is a square matrix with all non-diagonal elements equal to zero.

The identity matrix I is a special case.

is a diagonal matrix

S O =
o O Qo
-~ o o

The multiplication of a matrix by a number is called scalar multiplication. The
multiplier is called a scalar and the product matrix is obtained by multiplying each
element of the original matrix by the scalar.

123 7 14 21
IF A=16514 then 7TA = A7 = |42 35 2
Incidentally, the elements of a matrix are scalars too.
A scalar matrix is a diagonal matrix with all diagonal elements equal.

The identity matrix is a special case.

-3 00
0-30 is a scalar matrix
0 0-3

For every square matrix A and every scalar matrix S of the same size

AS = SA.

-1 -1 -1
When the terms are defined (AB) =B A

(8 'a Y yaB) :EB-IA-I)QB=E'I(A'IA]B - (B lB)=1
so (B 'Al) is the inverse of (AB)

Addition of matrices is accomplished by adding correspondingly placed elements.
It is obvious then that the matrices must be of the same size.

/58

3

if c. =a;y, tb
' Y
- e o2 2
2l |18 6 6

Properties of addition: When the operations are defined:

(1) A + (B+C) = (A+B)+ C

(2) A + B = B+A
(3) A+ Z = Z+tA = A (where Z is of proper size and all elements are zero)
(4) For every matrix A there is a matrix B = (-1} A such that

At+B = B+A = 0. B is usually denoted by -A,
When the operations are defined A(B+C) = AB+AC

and (A+B)C = AC+BC.
Suppose we are presented with matrices A3 x5’ By 7 G5 .7 and we wish to
determine D= A(B+C). The following computer program will accomplish this.

The matrix B will be lost in the process.

¢ SAMPLE PROGRAM
c
c DIMENSION A(3,5),B(5,7),€(5,7),D(3,7)
c FORTRAN 11 1/0 BECAUSE ITS SHORTER
c

READ 1,((A(1,4),J=1,5),1=1,3

READ 1,((B(1,J),J=1,7),1=1,5

READ 1,{(C(1,J),J=1,7),1=1,5
. 1 FORMAT (5E15.8)
c NOW TO ADD B AND C
c

DO 2 I=1,5

DO 2 Jwi1,7
c 2 B(1,3)=B(1,J)+C(1,J)
c NOW TO MULTIPLY A TIMES THE SUM
c

00 3 I=1,3

DO 3 J=1,7

D(1,J)=0

DO 3 K=1,5
c 3 0(1,9)=D(1,J)+A(1,K)*B(K,J)
2 NOW TO PRINT THE RESULTS

PRINT 4, ((D(1,J),J=1,7),I=1,3)

4 FORMAT (5€15,872£15.8777)
sToP
END
659

-1
Now let's start looking for this nebulous thing A . Remember - it doesn't
always exist. Suppose we are presented with

2 3 4 o1 by} blz b3
A=(3 12 and we wish to determ‘mev A =B = b21 bz2 by
243 b3) b3z b33

This is equivalent to solving three sets of simultaneous equations

234 bt 11

; 12 bZl =1{0

4 5 b31 0

—_— 2 3 4 b12 0

23‘4 b11 blz b]3- 10 - 31 2 bZZZI

312 b21b22b23—01 2 4 5] |bs,l (O
2 45 b31b3zb33 001

23 4 bys 0

312 b23: 0

2 45 b33 1

If we choose the elimination technique, we can solve the three sets simultaneously
since the operations depend only on the coefficients. Writing the constants in a
rectangular array:

w N
—
[AVIRY'N
o -
-
o o

2 4 5 0 01
Dividing the first equation in each set by the leading 3/2 2 1/2 0
coefficient (2) we get 1 2 0 1
4 5 0 0

3/2 2 1/2 o
-7/2 4 -3/2 1
1 1 -1

Copying the first equations: then subtracting 3 times
the first from the second: and then 2 times the first
from the third. :

So\ oA

3/2 2 1/2
-1
-7/2 4 3/2

Interchange 2nd and 3rd equations in each set.

[}

—

‘OO'—“
—

Subtract 3/2 of 2nd from lst 1 0 1/2 2 0-3/2
Subtract -7/2 of 2nd from 3rd o 1 1 -1 01
0 6 -1/2 -5 1 7/2

/60

O

J

»

1360%. That is not acceptable. What constitutes an accept-

able criterion? It depends upon why the problem is being solved but some

Make the residuals small. (the first test applied)
Make the solution nearly exact. (the second test applied)
Determine numbers such that only a small change in the

coefficients is necessary to make the solution exact.

b) is usually the test which must be satisfied.

What have we accomplished thus far? 1.0 0} byt |- 3)
Let's interpret that portion which represents the 0 1 0} [byy}={-11 The worst error is
first set of equations, 0 0 Lj byl | 10
L possibilities are:
By looking at the second and third sets of equations we can see that
- - (a)
-3 1 2 234/]-3 1 2f 1oo (&)
B={-11 2 8 This Means 312)|-11 2 8[=lo1 0 (e}
10 -2 -7 2 45 10 -2 -7] {0 0 1]
How did we do it? We wrote the given matrix and appended the identity on the
right, We transformed the given matrix into the identity using only the following Unfortunately
operations,

1. Multiplication of a row by a constant,
2, Interchange of two rows.
3, Addition of a multiple of a row to a different row.

By carrying out these same operations on the identity, it was transformed into the
identity,

While no special order is necessary, only these operations are valid,

ILL-Conditioned Sets of Simultaneous Linear Algebraic Equations

Suppose we are presented with the system:

Ly = 10x;+ Tx, + 8x3 + 7J|c4 i 3§
Ly = 7xt 5%, + 6x3+ 5x4 = 2
L3 = 8x+ bx, 10+ 9%, = 33

L4= 7x1+ 5x2+9x3 +10x4= 31

Suppose further that we have by some means arrived at an approximation to the
solution: x; = 9.2, x, =-12,6, Xy = 4.5, X, =-1,1

How good is it? Is it acceptable? We can substitute these values into the leit
members above and see if the equations are satisfied. This gives:

Ly =321 1

L2 =22.9 worst relative error 230 X ., 43%

L.3 =33.1

L~ =30.9

4
This looks like it might be acceptable. The worst error is less than 1/2%, But is
it? The true solutionis: x, =1, x, =1, x_ =1, x =1,
1 2 3 4
-8-

/e/

162

A FAMILY OF TEST MATRICES

A, C. R, Newbery
University of Alberta, Calgary, Alberta, Canada

A family of test matrices with the following properties
is here described: (a) An explicit inverse is given, (b) The
characteristic polynomial is easily obtained, (c) A large measure
of control over the eigenvalues is possible, (d) In special cases
the eigenvalues and eigenvectors can be given explicitly, and the
P-condition number can be arbitrarily assigned.

Consider a matrix of the form Q = [2 g], where S is a
scalar, R is a row-matrix {r,sP seeewr)y C is a column-matrix
{cz,ca,..‘,cn)T and D is a diagonal matrix with elements dz'd3‘°°°‘dn‘
By use of the bordering method [1] the inverse is found to be
Q‘1 H [E: ;:], where each submatrix of Q’l has the same form as
the corresponding submatrix of Q, except that M is geﬁérally not
diagonal, Letting the subscripts of rR', ¢', M' run from 2 to n,
we find that

’

n] 1 ’ 9
s = 1/[S-grici/di], ¢; = -S'e;/dy, vy = =S r./d;,

L} t
Mig o= [855mcyril/ay,

where 6ij is the Kronecker delta. The inversion can be performed
in 2(n-1)(n+2)+1 long operations; it might be possible to improve
this figure with some ingenuity.

The eigenvalue problem., Let A be an eigenvalue of Q,

- T . . .
and let x = {l,xz,....xn) be the associated eigenvector. This

leads to the following set of n equations:
n

S +} Pixg = Ay ©g b dixy = AXg for i > 2.

O

On eliminating the x; we obtain

(1) S + g rie;/(A=dg) = A = 0,

n
If we write nm(A) = H(A—di), ni(x) = H(A)/(A-di), then on clearing
2
the fractions in (1) we obtain
n
(2) v (A=S)TH(A) - g riey M (3) = 0.

This is the characteristic equation. The following statements can

be made concerning the eigenvalues:.

(A) If all r;c; > 0 and all d; are distinct, then all the eigenvalues
are real and are separated by the di'

(B) If all di are equal to d, then there are n-2 eigenvalues equal

to d; the remaining two are zeros of the quadratic function

n

AZ-(S+d)x + 8d -] r;c These zeros are real if, and only if,
2

ie
(S-d)2 + ufr;c; > 0,
(C) If all d; are equal to d, then the eigenvectors associated
with the multiple eigenvalue d have zero as their first component,
and they are orthogonal to the vector (0,r2,..,,rn}. Eigenvectors
corresponding to the other two eigenvalues are (Ap-d,cz,....cn}.
where Ap is a zero of the quadratic given in (B),

Proof of (A), Let H(A) denote the left side of (1),.§nd

let {di) denote a reordering of the {d;} so that d; < 4, We

i+1°
note that H(A) is continuous in any interval which does not enclose
any of the d;, and that for sufficiently small ¢ H(dio;) >0 and

'
H(d,;

141'5) <0, Hence there is a zero of H(A) between each consecutive

pair of the (di); moreover since H(-«) >0 and H(e) < 0, there are two

more real zeros of H(A) outside the interval (d;,d;).

lad

ff\%\‘
N

J

Proof of (B). If all the di are equal to d, then
1) = (- ang n,(a) = (A=d)™ 2, The characteristic equation (2)
The discriminant

n
then reduces to (x-d)"‘zt(x-snx-d) - rici] = 0,

of the quadratic factor is (S-d)2 + u{rici. Statement (C) may be
directly verified.

The P-condition number, i.e, the largest absolute ratio
to two eigenvalues [2], can most conveniently be assigned by letting
d; = d; then, using statement (B), we can choose S and Zrici in
such a way as to assign any desired zeros to the quadratic; hence

any desired maximum ratio of eigenvalue magnitudes may be procured.

Remarks. If the inverse matrices are included along with
the original family, then we have freedom within the family to
specify sparse, non-sparse, symmetric, non-symmetric, well- or ill-
conditioned matrices; furthermore we can require that the eigenvalues
shall be all real or mixed real and complex. This should provide

sufficient versatility for most test purposes,

REFERENCES

1. FADEEVA, V, N., Computational Methods of Linear Algebra., Dover

New York, 1959,

2. MARCUS, M., Basic Theorems of Matrix Theory, N.B.S. Appl. Math,
Ser, 57, 1960,

/65

THE _TBM 1620 AS ARALYTICAL AND PRE-COMPOSITIOMAL AID IN 12-TONE MUSIC
By Albert Tepper, Asscoiate Prefessor of Musie

Hofstra University
Computer Center

1620 Users Group No, 1320

EEEERRS
Time required for presentation: 20 minutee
Special projection equipment required:

ERERRREN

Taps recorder, overhead projector

In the early 1920's ths Austrian musiciam Arnold Schoenberg evolved a eompositional
technique, projeoted from sn analysis of his own works, which he called A METHOD OF
COMPOSING WITH THE TWELVE TONES REIATED ONLY TO BACR OTHER. In this method all twelve

pitch classes in the chromatic scale are arranged in zome specific erder called a
“"tone row?, "row” or "series". The total number of rows possidle, bty the way, is
12Y; i.e., 479,001,600,

The row is a constant group of relationships for a particular composition and all
aspects eof pitch oarganization derive froam it: two or more sequential pitches played
successively ereate melody; two or more sequential pitches played simsltansously creste

harmony.

When reed forward (from lsft to right), the row is said to bs in its “original® or
“prime® form. Read backwards the row is in its "retrograde” form—a mirror imsge.
Another mirrer imege--the inversion--is ereated by altering the direction ef each
ouccessively adjacent pair of tones. Fsr example: if pitch #2 lies three smmi-tones
200ve piteh f1, 1ts inversion will lie three semi-tenes below; if pitch #3 1lies one

10
/6o

The IBM 1620 As cal And Pre. itional Afd in 12-Tone Music (Cont'd.)

semi-tone below pitch #2, ite inversion will 1ie one semi-tone above, A backward
reading of the inversion gives us the retrograde inversion, Thess four forms of the
sams row—prime, retrograde, inwersion and retrogrede inversion--constitute the "basic
set". Each basic set is capable of being moved--that is, transposed--from its own
pitch level to every other pitch level of the chromatic scale, twelve pitch levels in
all, Thws forty-eight specific pitch orderings are spamed by ons row. The composer
chooses from among the forty-eight in any order he sees fit.

Milton BabMtt of Princeton University has shewn that the four original forms of the
rov plus all transpositions have the properties of a set and may be stated as a matrix,
Rather than label the first pitch in the prime form f1, the second pitch #2, and so on,
let us desigmete each pitch by its semi-tonal distance from pitch f1, which s set at
sero. Jince ocur interest is in pitch classes rather than specific pitches (all C's
have the same valus, all F sharps have the ssse value, all B flats have tho smms
valus, etc.), let us also arbitrarily sssume C to be pitch #1 with the value of sero.
hwmﬂtmwmm,cmdnmtmtbu-pﬁch
and 1ie ons semi-tons above C, thereby having the value of 1, D has the value of 2,

D sharp and K flat the value of 3, E the value of k4, etc. B, one semi-tone below C,

iz 2also eleven smmi-tones above, md therafore has the value of 11,

As the distance between any two pitches cam mever be less than szero, and as any posi-
tive value greater then 11 dupliocates a pitch clsss in the sero to 11 range, it follows
that we are limited to whole numbers with base 12,

A 12 X 12 pitch matrix can thus be stated in purely aritimetical terms, Bach rank is
both prime and retrograde forms at one of the twelwve pitch levels, each colmm is both
inversion and retregrads inversion forms at ome of the twelve piteh levels, Since the
matrix shews al) row possibilities in compsct form and at a glance, its value to both

2,
/67

The IBM 1620 As Analytical And Pre-Compositional Aid in 12-Tone Music (Cont'd.)

the 12-tone composer and musical analyst is obvious, But while the 1Ll cells of the

matrix may be filled in by "hand", the job is a tedious one, taking 20 mimmtes,

with 132 initial possitilities for error., It seemed worthwhile, therefore, to pro-

gram the computer to produce a matrix from a given row. ;

Mr. Loury L. McKee, Asaistant Director of the Hofstra University Computer Cenmter,
guided, instructed, helped and sustained me while I struggled with the preblem. Cer-
tain refinements were added as we went along, as follows:

1. Since sach pitch class already had an assigned value, it was no longer neces-
sary to start each row with zero. The twelve cards of the data deck, each with a
numbsr from sero to 11, may be placed in the Read Hopper in any order.

2. The matrix is stated in three forms: as a set of numbers; as a set of pitch
classes designmated by the letters of the mmsical alphabet from A to G, in their natural

and sharp variants (the plus sign substitutes for the sharp); and as a set of pitoh
classes from A to G in their matural and flat variants (the mitus sign subetitutes
for the flat).

3. An interesting phenomenon, which can be usefal to the 12-tone cowposer, is
the ability of certain row forms to combine and creats permutations. Ceorge Rochbery
of the University of Pennsylvania has devised an arithmetical test for this. An odd
munber frew 1 to 11 12 added as a constant to sach of the first six values in the
prime form whieh begins with serc. The same constant is then added to every pair of
the same six values, If the sum in each instamce is neither 12 nor 2, the first six
values (that is, the first half) of the prime form and the first half of the inver-
sion will combine and create a 12-tone permutation at the semi-tone distance of the
constant, The secand halves of both prime and inversion will alse combine in the
same marmer. The result is of courss transposable to all pitch levels, The progras
devised by Mr, McKee and myself performs this operstion and supplies the result in
those instances where the resull 1s positive.

168

/
N

a ~

Delivered to the 1620 Users Group Meeting, 1964, in Chicago.

Logic Theorem Detection Program

The program is designed to take conventionally written (l.e., not in a
bracket-free notation) well formed formulae {WFF) of the propositional
calculus as input, test them for theoremhood, and state the result as output.
There are several subsidiary output results possible. Input and output are
via the typewriter. The program is written in SPS for the I1BM 1620 computer.
It uses about 5500 cores and consists in about 400 commands plus storagee

Conditions of uses The original WFF may contain only three primitive
variables (P, Q, & R) and four operators (those for conjunction, disjunction,
implication & negation). The WFF may be up to 49 symbols in 1§ngth and may
contain up to seven pairs of bracketss Thus the WFF which may be processed
conform to the requirements of a fully developed propositional calculus and
there is, in any case, no theoretical difficulty in extending the range of
WFF which may be processed. The computer does not take all the conventional
logical symbols and the following symbolisation has therefore been used:
disjunction '+', conjunction '.', implication */', negation '=',

The rules for WFF are formulated in different ways for the propositional
calculus. The following formulation is used heres Any primitive variable
is well formede If anything which is a WFF is designated by X, Y, etcs,
thens =X is well formed; (X.Y) is well formed; (X + Y) is well formeds
(X/Y) is well formed. The brackets round the whole of a WFF to be tested
for theoremhood need not be included, €.ge, P/(P + Q) may be tested for
theoremhood as it stands. It should be noticed that (P.Q.R), (P + Q + R),
etce would not be well formed in this formulation but would have to be
written (Pe(QR)), ((P + Q) + R), etcs These rules are entirely typical

for a propositional calculuse

69

)

-2 -

The program operates as follows (see attached sheet for sample)s It
announces itself and invites typein of a WFF. It then types the result.
The followlng subsidiary results may be obtained on the Consul switchess
(1) By well known theorems of the propositional calculus, any number of
negatives greater than one ('stacked negatives') before a WFF may be reduced
to one or none. On switch 1, the original WFF is typed without stacked
negativess (2) The method of processing employed is to break the original
WFF down into a two variable form, the computer supplying new variables
where required. These new variables themselves stand for WFF which are
broken down in the same way. The effect is to produce a two variable list
in which no brackets are required (they are not reguired for the same reason:
that brackets are not needed round the whole of a WFF to be tested); the
first item in the list is the original WFF in two variable form and the
subsequent items define the new variable or variables introduced by the
computer. This process continues until all the introduced variables are
defined. On switch 2, the list is typed, with each introduced variable
explicitly defined. (3) The method employed in the logic section of the
program is to build a truth-table, with a set of values for each variable,
primitive or defined. On switch 3 this table, or a desired portion of it,
can be obtainede The operator types in a variable and the computer gives
the associated set of values; by typing in all the variables used or
introduced by the computer, plus 'F' for the original WFF, a complete
table is obtaineds The table is biniary, containing either Ol (true) or
00 (false) in each of its eight columns; if the WFF being tested is a
theorem, the table will contain eight entries of Ol for the original

WFF, Typing in 'N' returns the computer to the main programe

Jon Wheatley, Philosophy,
Queen's University at Kingston,

170 Ontario, Canadae

LOGIC THEOREM DETECTION PROGRAM - WHEATLEY, FHILOSOFHY, QUEELS, MOV 1563

TYPE IN WFF
(P/-Q)/(Q/-P)
THEOREM

TYPE IN WFF
((P.=P).—Q)/(((Q+P)+(R.=Q)) +——-P)
TEST ON C] ~ WFF WITHOUT STACKED NEGATIVES
((..-P) Q)/{({Q+-P)+(R.~Q))+=P)

ON C2 - WFF AS TWO VARIABLE LIST

wrr S/U

S= T.Q

T= P,-P

U= V+-P

V= WX

V= Q+-P

Y= R.=Q
THEOREM
TEST ON €3 — TRUTH TABLE ON DEMAND
P0101010100000000
QR30101000001010000
/2SO 100010001000100
$rs0000000000003000
TRSD000000000000000

ws01010100010101T

Vis0101010081010101
¥30101000001010101
*%:0000010000000100
ggammmmmmm

TYPE IN VIFF

(=Q+—(R+(~0Q+P))) /-—(-R.(Q.P

TEST ON C1 — WFF WITHOUT cTACKED NEGATIVES
(=Q+-(R+(=Q+P))) /(-R. (Q.P})

TEST ON C2 ~ WFF AS TWO VARIABLE LiST

WFF S/V

S= -Q+-T

T= R+U

U= -Q+P

V= —-R.W

W= Q,.P
NO THEOREM

17/

An Additive Pseudo-random Number Generator °

H.T. Wheeler , J.K. Lewis, E.A. Cherniak

Department of Chemistry
Carieton University

Ottawa, Canada

INTRODUCTION - This generator was developed for use in a machine language pro-
gramme (1 requiring random digits and short random fields. The method of
generation exploits the variable field length feature of the 1620 by adding
fields of several hundred digits in length. A small table of random digits
is generated and stored in memory. From this table are selected random
digits and/or fields as required. When any table is used up a new table is
generated using the old table as input data.

The original programme has been modified and rewritten in SPS for use as
a Fortian subrouatine. Sincyre thé method of generation involves addition only,
this generator is faster than the usual mul tiplic'ative generator.

The tests for randomness which have been performed on the output of the

generator have given quite satisfactory results.

METHOD - The generator requires an initial random number of 501 digits.
This initial number may be conveniently obtained from a table of random
numbers such as the Rand Corporation, "1,000,000 Random Digits with 100,000
Normal Deviates". .

The initial number, which will be denoted Nl’ is divided into two comporent

fields, Al and Bl’ of 311 and 190 digits respectively. Thus:

- 190y
(&) (10°7) + B,
A second number, Cl’ is formed by reversing the order of the two com—

ponent fields. Thus:
*Speaker (to whom enquiries concerning this program should be sent)

-2-

- 311
Y (Bl) (10°+%) + A

¢

The second random number, N, is formed by adding €y to Ni and discarding

the high order carry, if any:

= (¢, + M) (modulo 10°%%)

N
L1l

1

The number Ni is generated from Ni—l by the same procedure.

The choice of the values 501, 311, and 190 for the field lengths was
largely arbitrary although it was intuitively felt that better performance
would be obtained if each of the values had few prime factors and no common
factors existed among the three values. 311 is a prime mmber; 501 and 190

factor into (167) (3) and (19) (5) (2) respectively.‘

RATE OF GENERATION - The 501 digit number js generated in 61,5 millisecords
(for a Model 1). The average time taken to obtain an 8 digit field, normalize,
and store in FAC, when the generator is used as a Fortran fioating point
subroutine, is about 4.5 milliseconds. The time taken by the Fortran 2
variable precision subroutine is roughly given by (3.5 + £/8) milliseconds,

where f 1is the mantissa length.

TESTS FOR RANDOMNESS - The major tests which have been performed on the
generator were for the freouency distributions of single digits, of ordered
pairs of digits, and of runs of repeated like digits. These tests were
performed on the 501 digit numbers without any division into smaller fields.
Some of the test results are shown in the followingAtables.

In Table 1 the results o a digit frequency test on one million digits
are shown. Except for the somewhat large chi-square values for blocks 9

and 10 the results are very satisfactory.

/173

-3-

Table 2 shows a typical result of the ordered pair analysis. The
expected value for each entry in the matrix is 501. The frequency of the
ordered pair xy is the yth term in the xth row. '

In Table 3 the repeated like digit analysis results are shown.

The results of these tests are sufficiently good to indicate a usable
degree of randomness. If a greater degree of randomness is required the
output of two separate generators could be added to produce an improved 501
digit table.

We are grateful to the National Research Council of Canada for the
financial assistance which made this work possible and the Computer Policy

Committee of Carleton University for granting us the necessary machine time.

1. Lozwis, Wheeler, Cherniak - A Model Diffusion-reaction programme for the
1620 - 1620 Users Group Joint Meeting (Canadian and Mid-Western Regions)
Chicago, February, 1964.

174

TABLE I

DIGIT FREQUENCY TEST
ONZ MILLION DIGITS

Block

=
°

0 1 2 3 4 5 6 7 8 9 CHI

4956 5014 5025 5077 4960 5050 4909 5009 4996 5004 4.24
5038 4927 5054 4934 4943 5056 5008 4965 4967 5108 6.85
- 5039 4954 4994 4978 5006 5061 4923 4926 5035 5084 5
4979 5002 5073 5041 5056 LO47 4980 4967 5027 4928 4
5005 4907 4906 5117 5025 5094 4909 5079 4976 4982 1l1.
4973 5108 4983 4996 4914 5010 . 5079 4877 5079 4981 9.63
4938 5028 4995 4902 5096 5063 5087 4999 4974 4918 8
5011 5047 4938 5064 5006 4871 5036 4957 5064 5006 6
4995 4806 4966 5040 5011 4884 4960 5026 5163 5149 20.78

5125 5063 5000 5062 4832 5117 5060 4924 4992 4825 21.08

4974 5032 4908 5062 5021 5019 4961 4908 5109 5006 7.34

4964, 4934 5111 4930 5096 5018 4862 5004 5121 4960 13.54 .
4965 5004 5027 5021 5076 5044 5021 4995 4931 4916 4.48

5056 5077 4898 5081 5053 4972 4897 5000 4856 5110 14.61

4960 5094 5037 4876 4990 4995 5108 4963 5006 4970 8.24

4981 4930 5046 . 4982 5077 4970 5035 5083 4970 4926 5.80

4977 5071 5096 4955 4982 4863 4972 4962 5077 5045 9.22

NREREEER e e
VRLOVE LN OO®I OV wWN -

5116 4996 4990 5009 4981 4972 4848 4987 4943 5157 13.19
5008 4880 5042 4943 5008 5093 5024 4968 5014 5020 6.08
1015 4998 4989 4950 5106 4968 5012 4963 4970 5029 3.67
100075 100078 100239 99691 100270
Total 99872 105020 100067 99562 100125
cHI? (totals) = 4.660 Probability () CHIZ) =0.86

Of the 200 frequencies 64 deviate by more than sigma (=67.08)

(expected number = 63.4) and 9 frequencies deviate by more than
two sigma . .
(expected number = 8.2).

Tests on column totals CHI2 Probability

0dd versus even digits 0.498 0.49

Within odd digits 2.372 0.68

Within even digits 2.287 0.69
175

24/

Ll

TABLE II

ORDERED PAIR ANALYSIS ON 100 NUMBERS
OF 501 DIGITS.

0 1 2 3 4 5 b

0 472 504 S4h 477 509 490 496

1 519 494 511 516 487 527 503

2 502 490 497 514 A7 502 530

3 514 520 499 49 451 517 4M

4 4P 480 489 493 472 496 508

5 511 502 520 529 482 492 505

6 <495 542 498 476 521 495 517

7 48 507 507 506 489 513 486

8 476 - 562 492 496 508 469 544

9 500 483 493 509 469 498 540
CHI® 7,32 13.46 5.31 5.20 1259 4.73 10.51

Probability (GHIZ > 16.92) = 0.05
TABLE III
REPEATED LIKE DIGIT
RUN ANALYSIS RESULTS - TESTS ON
50,100 DIGITS
LENGTH OF RUN

TEST NO. 1 2 3 4
1 40723 3987 L1 40
2 40592 4079 404 49
3 40639 4036 406 34
4 404,88 4122 391 45
5 40570 4068 397 W2
AVERAGE 40590 4058 402 42
EXPECTED 40581 4058 406 4

7 8
496 493
516 503
505 519
505 507
456 462
514 472
530 527
483 498
475 W79
479 530
9.58 9.58

5
F3
1
7
3
7
4.0
4.1

9 cHI?
454 11.54
506 3.64
511 4.62
518 8.31
530 12.84
W75 6.76
513 9.38
509 4.18
487 17.42
199 8.65

9.07
6
0
0
0
o
0
0.0
P
0.4

4 MODEL, DIFFUSION-REACTION PROGRAMME FOR THE 1620,

J.K. Lewis, H.T. Wheeler, E.A. Cherniak*
Department of Chemistry
Carleton University

Ottawa, Canada

Diffusion, particularly neutron-diffusion, has been studied by Monte
Carlo on digital computers since the introduction of the ENIAC. However,
as far as we know, no extensive applications of this method, to diffusion-
reaction problems of a chemical nature, have yet been given. This paper
describes one approach to such a problem.

In the radiolysis of liquid benzene, it is well known that a high
energy particle leaves behind it a cylindrical track of excited molecules
and ions. The track is of varying demsity, depending on the energy of the
incident particle. It was believed that certain phenomena, notably the
varistion of hydrogen yields with stopping power, could be explsined, in a
way, suggested by Burns(1l), by assuming that these activated molecular

entities were of one form, B¥, which could react in the following way:

B A~ — B*
B+ —IB 55 +p(2)

B* + B —L—)Zﬂ

The main feature then to be explained was the variation of Ii2 yields with
stopping power. This is shown in figure 1 where the experimental average
values of the H, ylelds, campiled by Burns and Barker(2), from the results
of the investigations of a mmber of workers, are given as a logarithmic

function of the Ganguly and Magee(3) averdge stopping power Z.

* Speaker (to whom engquiries concerning this programme should be sent.)

/78

“f

N

o)

2=

In the programme which we eventually used, a particle was represented by
i%s coordinates, each coordinate having four digits and the total comprising a
field of twelve digits with a single flag on the high-order digit. Reacted
particles were denoted by a flag on the low-order digit. The quenching reaction
(UR) was treated as an unimolecular process and for the bimolecular process (BR)
the coordinates of each particle had to be compared.

The "tracks" (see flow chart 1) were set up in the most elementary fashion.
A few cards were read in, each with the coordinates of a particle and the number
of particles with those coordinates to be set. When all the cards were read,
the track could be stored elvsewhere in memory. The numbers controlling the
rates of reaction and the width of the initiai distribution were then read in.

The initial particle distribution was then generated by allowing the
particles to be moved the specified number of times without reaéting. The
distribution generated in this manner by, say, six pre-reaction moves is quite
close to Gaussian.

The particles were then moved and reacted, alternately, (see flow chart 2)
until all the particles were gone, after which the numbers of particles
reacted was typed and the programme repeated.

Each particle was moved by adding to it a 10 digit field with a random
digit in the first, fifth and the ninth positions from the right. Thus the
centre of gravity of the particles "drifted" steadily through model space.

It was found that random digits with a rectangular distribution, i.e. equal
probabilities for all the digits, caused the particles to diffuse off at an
inconveniently high rate. We were thus taced with the problem of generating
large numbers of digits rapidly with a skewed distribution. The cbvious method,
playing a game of chance, proved cumbersome. However, a simple modification

of the random number generator, described by Wheeler(4), proved successful.

179

O

-3-

To produce a distribution of digits the programme replaced the add tables
with special add tables having digits in the desired frequency. Thus these
digits could be produced in an average time < 250/¢¢sec./digit. Further-
more, the frequencies of the digits could be controlled to 1 part in 100,
although as our particles had a moving centre of gravity, the frequency
distribution haé to be symmetrical about the mean move length, restricting
our control to 1 part in 50. This was far more than sufficient.

Ti'xe "react" routine (flow chart 2) contained a scanner which scanned the
appropriate section of memory until it found either a record mark, indicating
the end of the particles, or an unreacted particle. Then, depending upon the
state of a simple flip-flop operating on bd's and tdm's, the barticle would be
"reacted" first unimolecularly....and then bimolecularly, or vice versa. This
altergration on unimolecular and bimolecular from one particle to the next was
found necessary at high concentrations of particles.

To ascertain whether a particle was to have reacted unimolecularly or
not, a four digit field was taken from the random number generator and compared
with a control number. If the random number chosen was less than the
control number, the particle was assumed to have reacted, a flag was placed
on its units position, & counter was incremented, and control returned to the
scanner to find another particle. The four digit length was actually found
to be necessary to give adequate control over the unimolecular rate. If
the random number was greateﬁmn the control number, the program would proceed
to the next particle or would consider the particle for bimolecular reaction,
depending on the status of the flip-flop.

For the bimolecular reaction, the particles above the particle under
consideration were examined for whether or not they were reacted. When an
unreacted one was found, its coordinates were compared, by a single c
instruction, with the particle under consideration. Analysis showed that it would

probably be faster to compare all twelve digits of each sets of coordirmates
/80

iy
at once than divide them into 3, of which only the first four would be

compared for two non-coincident particles. When two particles were found

to coincide, the usual chance game was played to aetermine if reaction had taken
place. Unlike the unimolecular reaction, however, only a three digit contrcl
number was used and two digits would have sufficed.

The programme described above, which was written in about 1000 machine
language commands on a 40K 1620 with automatic divide, will "react ~—~- 150
particles to completion in 5-15 mimutes, depending on conditions, but typi-
cally 7 mimutes, with a standard deviation of ~~15% in the results. A
comparison of our results with the experimental data is shown in figure 1.

By varying the control numbers it was found that the experimental data could
be fitted quite closely and that the values this fitting procedure gave for
the rate constants were in fact plausible.

We are now engaged in refining our interpretation to get improved values
for rate constants. Actually, this problem of interpretation is the main
disadvantage of our approach vis 3 vis a numerical integration method. Our
programme is probably‘ as fast or faster than a numerical programme for the
same mechanism, and the —~15% deviation is not excessive for experimental
values accurate to better than 10% are rare in this field. However, the
process of getting from our model to the physical situation is rather involved.
First we work out a one dimensional distribution of particles which have moved
several times with the move distribution we use. We then fit a Gaussian curve
to this and from this obtain a model diffusion coefficient. A good value for
the real self-diffusion coefficient is available, so this gives us a value
for "model length)z/ model time" in real units. If a good model length is
found, then the model time drops out. From the diffusion coefficient and

the control numberé the two rate constants are readily obtained. However,

8/

I:JD’
.

—5-
the "model length" poses the problem. After some thought we decided it
should be twice the "collision diameter" of the molecule, but, in liquids
this is a rather ill—defiﬁed quantity, and reasonable values based on
various definitions tend to differ somewhat.

The main virtue of ‘our program was its flexibility. It can handle
regions of intermediate étopping power, where the track resembles billiard
balls strung together on & cord, which are psrticﬁlarly difficult for
standard mumerical integration procedures. It can also handle varying
amounts of particles corresponding to different input power, and with modi-
fications could treat other probléms? such as effects of small amounts of
reactive solutes. These last two features were never used, 'paxv‘tly because
of a paucity of ex}::erimental data, because the effects are notable chiefly
through their apsence, but principally becausé cruae_ hand calculations upon
the "plausible" rﬁte constant values were sui‘ficient'.b ﬁ) show that these

effects should in fact be small.

We are grateful to the Nz‘atipnal Research Gouncil of Canada for the
financial assistance which made¢ this work possible and the Computer Policy
Committee of Carleton Univeréity for granting us the necessary machine

time.

1. Burns, Trans. Faraday Soc. jé iOl (1963).)

2. Burns and Barker, United Kingdom A.E.R.E. Repbrt 4240 (1963).

3. Ganguly and Magee, J. Chem. Phys. 25 129 (1956).

4. Wheeler, Lewis, Cherniak - A new random number generator -
1520 Users Group Joint Meeting

(Canadian and Mid-Western Regions)
Chnicago, February, 1964.

182

-

C

ce/

G (Hy)

30

20

o

~y

FIG

radiolysis of liquid CgqHg,

o
~
-

L0G,, Z

10

Variation of experimental G(Hp;) (@) with average L E.T in the

obtained by diffusion reaction

programme, = =~==-" predicted by diffusion reaction programme.

00K AT HAVE ALL
PARTICLES BEEN

CONSIDERED

L

READ IN
TRACK LENGTH

READ

NO PARTICLE SPUR
AND
COORD OF SPUR
CENTRES

DISTRIBUTE
SPURS ALONG
TRACK

IS THERE
A OI8IT
IN FLIP FLOP

SET DiGIT
F.F

IS THERE
A DIGIT
F_F_IN

LOOK AT NEXT
I

AvE ALC
ASSIGN . PARTICLES BEEN
81 AND UNI CONSIDERED
FILTER NOS 2
AND
NO OF INITIAL 2
MOVES/PARTIC 'S
PARTICLE
FLAGOED
+
INITIAL d
MOVE NO
CYCLE
COoRD.

NO_EQuaL TO TH
OF PARTICLES UNOE|

ARE CONSIOER.
INITIAL ?
NOVES
vES
comp
LETE GET 3 DIGIT
RANDOM _NO.
JF R>=-ZanooM NO
AUGMENT P AUGMENT
o s CONTROL NO UNI COUNTER

AND AND
FLAG PARTICLE
FLOW CHART 1: Diffusion-reaction programme: trock and rLad n‘"m“ AC ";):5 | \—__/

initial particie distribution generator.

/18Y FLOW CHART 2 Diffusion-reaction routine

/85

AUTOSPOTLESS NUMERICAL CONTROL
WITH THE 1620

by
E. R. Austin
Engineering Computer Facility

Combustion Engineering, Inc.
Chattanooga, Tennessee

Presented February 21, 1964

/86

AUTOSPOTLESS NUMERICAL CONTROL
WITH THE 1620

A great deal of emphasis is being given to the 1620 and its role
in the numerical control of machine tools, This is certainly as
it should be. However, the resulting emphasis on the APT (Auto-
matically Programmed Tools) language and the Autospot subset of
this language is unjustified.
The use of Autospot assumes:
1. The only output desired is a paper tape and a listing
of 1ts contents.
2. Sufficlent 1620 time to use a four deck processor
(including post processor) for each workplece.
3. The existence of a post precessing program.
4. The existence of trained "parts programmers".
Due to the specialized nature of our numerically controlled ma-
chines, operator's instructions must accompany the tape as it
enters the shop. Furthermore, Industrial Engineering must prepare
standard hours for entry on the shop routing or traveler. Thus,
it has been decided that all these documents should be computer

created. Autospot does not lend itself to this effort.

187

- O

-2-

Over 175 workpieces are processed monthly on our Ingersoll header
drill, This represents drilling and chamfering some 70,000 holes
each month. For the Autospot processor, this represents over 70
hours of computer time. This would mean second shift operation
for almost any 1620 facility.

The creation of a post processor involves understanding of Autospot,
the tool to be controlled, the 1620 and the controlling mechanism
itself. This, coupled with the fact that Autospot is really more
comprehensive than 18 necessary for our applications, makes the
creation of a fixed format input processor most advisable.

With such fixed format input programs, no "parts programmers” are
required. Industrial Englneering members can readily interpret
englineering drawings and compactly represent this information on
input sheets.

The total time from the interpretatlion of the drawing to the
creation of pertinent documents is greatly reduced by use of

this concept. To 1llustrate, the Ingersoll header drill with

1ts accompanying functions and required documents can be citéd.
The N/C Ingersoll header drill is used for drilling and counter-
boring cylinders on the order of 60 feet long, 1 ft. outside
diameter and two inch (2") thick walls, The holes in thils cylinder
normally align themselves into six (6) or less rows down the

header. The hole spacings are highly irregular and are a function

188

&

-3-

of the boller system of which the header is a part. The work
which preceeds the actual drilling of a header 1s best described
by fig. 1. The three (3)’documents entering the shop serve the
following functions:
1. Routing slip
a. Provides operational sequence
b. Shows standard hours allogated for each operation
c. The approximate date on which each operation should
occur is also shown
2. Tape contains
a., Positions for drilling
b. Drilling feeds and speeds
c¢. Counterboring feeds and speeds
d. Spindle starts and stops
e. Gear changes
3. Cperators instructions
a. Shows angularity of each row from a given point
b. Tells the operator when to use what tools

¢. Provides settings for 1limit switches

189

.

Proper representation of input data permits the creation of all
these documents. Autospot does not lend itself to such a repre-
sentation. For example, Autospot must be told which tool to use.
Our feeling 1s that the program should select the tool. The
computer selection of a fool eliminates a gfeat de;i of human
thought and potential error since tool cholce 1is a function of
material type, nipple o0.d4., nipple wall thickness, thickness of
header, etc. This selection then fixes the counterboring diameter,
counterboring depth, drilling feed and speed, counterboring feed
and speed, gear range, etc.
The input sheet used by our program is shown in fig. 2. The
manner in wh;eh the completion of this,sheet fits into the
overall picture of fig. 1 is shown by fig. 3.
Several points are worth noting about this system:

1. No parts programmers are required. Technliclans complete

the input sheets.

2., No post processor 1s required

3. Two SPS programs can create all the described documents.

4, A typlcal header can be prbcéSsed through the 1620 in

less than .1 hour to produce all documents.

/190

Freume =1
-5-

t. Autospot would require no less than .4 hours to create (gﬁ";fmgg ’
: HeEno,

tape information alone.

When the total systems approach 1s applied to N/C problems, the
h DES/GN
fixed format input exemplified by this system and other systems
P P ¥ 4 v Caccin iions
like the IBM 1401 Autoprops seems to have definite advantages over
APT processors.)
CEJANED
[ENGAEE RING
LENIING

ZoousTRINL. .
TENGINEELIMNG

EovTivG StrP
AND STANDARD
HOUR CAtcy-
lAT/IONS

Key PoNcH
DPTA CoUECTION
CARLS

19/ /122

FIGUKE 2.

SUSTOMER. S.0. No, DRAWING NO, . DATE
PART NAME N), OF FINISHED PIECES PROGRAMMED BY
MATER JAL* MATERIAL SIZE & / “oD X &/ VAW X ' & /"
, I
NIPPLE WALL | KHAM INITIAL F INAL }
ROW ANGL] 0D THK FER - X SPACE X
i
|
}
| |
t i
il ;
N L e ! L]
T B | l NN] T
) L] i ; | | [b
R RN P11 |

193

rel

s

2K DA

A STy
- B TNOILIFTIES g
- T viod O iLady

oz

HS™S LAFNT

2LFVINOD
W/ yIINOVZ
RA 2836074

Spvsmvyd |
Srvigaaneng
TINeLIO

| svonvmmorvo
NOISAT

k MVS\N\ 7
x-‘NQ..\.n.iQR\QI&‘ W
T LvIwFONGIIY i

" Ew 22T

[: - | Technical Publication

AUTOSPOT II
PREPROCESSOR PROGRAM
By D.F. McManigal

PRG 26.0006

Poughkeepsie Manufacturing Engineering
Data Systems Division

C

/95

ABSTRACT

The Autospot Il Preprocessor is an 1BM computer program
used to help the parts programmer prepare correct input
data for Autospot Il.

January 2, 1964

1.0 INTRODUCTION

Autospot If (AUTOmatic System for POsitioning Tools, Mod.el H)isa
computer program for the 1BM 1620 Data Processing System (see Figure 1).
It was designed to aid the parts programmer in preparing instructions for
numerically controlled point-to-point machine tools. Autospot permits the
use of easily remembered codes, such os DRILL, TAP, and MILL, instead of
the more complicated numeric codes used by numerical control machine_ tools.
Autospot performs many computations for the parts programmer, ond refieves
him of much redundant coding.

AUTOSPOT 11

(125491

(or squivdlent }

Figurz 1. Autospot 1l Program Flow

/96

Avutospot 11 consists of a General Processor which is common to all
machine tools and a'Post Processor for each machine tool. The General
Processor performs such operations as translation to numeric codes and
machining pattern manipulation. The Post Processor taitors the output of
the General Processor to suit the individual machine tool requirements.
The input to the General Processor is a source statement card deck and the
output from the Post Processor is a punched tape containing machine tool
commands in the proper code.

2.0 THE NEED FOR A PREPROCESSOR

To reduce the number of passes required in the General Processor,
error detection and diagnosis were limited to 6 minimum. Most source
statement errors result in general error messages; however, many errors
cause a computer check stop or hang-up condition, without-an error
message.

The lack of extensive diagnostic information is not a serious problem
when the parts programmer has adequate experience with Autospot. Much
time is lost, however, in identifying errors and the assistance of a 1620
programmer is frequently required. An inexperienced parts progremmer
often encounters so much difficulty with source program errors that much of
the advantage of Autospot is lost. For-example: If a parts programmer
inadvertently substitutes a decimal point for a comma at the end of a
coordinate dimension, the 1620 will hang-up in on-infinite loop when-the
General Processor reads the statement. The parts programmer may then
need the assistance of a 1620 progrommer to locate the error.

3.0 PREPROCESSOR DESCRIPTION

The Autospot Preprocessor (see Figure 2) is a one pass program for the
1620 system. Its purpose is to detect and diagnose most of the errors which
occur in Autospot |l source statements. Error detection is sufficiently
detailed to permit immediate recognition of most common errors, ‘and-to
significantly reduce the time required to diagnose unusual errors. On-line
editing permits immediate correction of most errors during preprocessing.

The Preprocessor is capable of detecting two types of error: format
errors, such as typographical mistakes; and, violations of Autospot rules,
such as illegal pattern manipuiation. Most of the 35 possible error messages
refer to rule violations because these errors are usually more difficult to
diagnose than are errors of form.

/197

source SOURCE
pocument canos
T
v
OFF-LINE
(i) -emm

ON-LINE
CORRECTIONS

AUTOSPOT
PREPROCESSOR

(12550}

Figure 2. Autospot Preprocessor

EXAMPLE |
The use of 100 many machining patterns will result in the error message:
E COUNT PAT PAT 1.
where PAT | is the symbolic label assigned to the pottern by the parts

programmer. This error message is specific because the nature of the
error is not readily evident.

EXAMPLE 11

The use of the letters DQ instead of DP for specifying a depth will
result in the error message:

C FORM AUX DQ.

This indicotes a format error in the ouxiliary section of the statement.
The specific nature of the error is reodily evident.

When on error is encountered, the preprocessor will type:
one of the 35 different error messages,
the entire erroneous line,
the content s of the data field in question, and
the punctuation terminating that field.

The data field or statement section is not necessarily in error, but this indicates
that the error was recognized at that point. The actual error may appear
onywhere up to thot point.

/98

3.1 PREPROCESSOR ERROR MESSAGES

The error messages are in abbreviated form ond contain error type codes
which indicate the corrective action to be token. A blank code indicotes
that the typeout is for information only ond requires no action. A "P" code
indicates that the field in question is occeptable but unusual ond is a possible
error. An "E" code indicates that there is a definite error which cannot be
corrected on-line, but which will result in an erroneous edited deck. A “C"
code indicates that the error is definite but can be corrected on-line.

The computer takes no action on a bionk or "P* coded error. The
erroneous statement is deleted on on "E" type error but no halt occurs.
Progrom switch settings determine the action on @ "C" type error. If the
editing feature is disobled, the error is treated as on "E" type error. If
editing is required, o progrom halt occurs to pemmit correction or omission of
the erroneous statement (at the discretion of the operator).

The non-stop mode of operation permits operators who are not foemiliar
with Autospot to run the Preprocessor. The Preprocessor will also calculate
effective drill lengths, o feature which reduces the number of calculations
the parts progrommer is required to make.

3.2 PREPROCESSOR ADVANTAGES

The effectiveness of the Preprocessor is illustrated by a test problem
which was run at IBM Poughkeepsie. The part being programmed wos an
actal production piece, requiring ooproximately 3,000 lines of numericol
controls for the Kearney and Trecker Mitwaukeé-Matic machine tool. The
Autospot source deck required 126 lines, including 107 lines of machining
statements, Using the Preprocessor, this large progrom was debugged in less
than 30 minutes, of which only 14 minutes was 1620 computer time. This
time included the initial run and two reruns after corrections (corrections
being made off-line due to type"E" errors). The same source program was
partially debugged,by the parts progrommer who wrote ityin four hours. The
experiment was then terminated and the job completed using the Preprocessor.

Little time is lost in running good source statements through the
Preprocessor. Error free source cards are processed at the average rate of
one line per second, assuming nearly full lines. If no errors are found, most
source decks may be checked in less than one minute (including Progrom lood
time).

199

4.0 SUMMARY

The Autospot || General Processor provides limited error diagnosis.
Because of this,many advantages are obtained by using the Autospot
Preprocessor. The Preprocessor pinpoints most common errors and provides
sufficient diagnostic information to significantly reduce the diagnosis time
for unusual errors.

5.0 PREPROCESSOR DEBUGGING (SAMPLE)

Figure 3 shows the General Processor listing of o sample problem.
Note error messages.

Figure 4 shows the output of the Autospot Preprocessor for the same
progrom. Note error messages.

Figure 5 shows the rerun of the edited program deck.

200

-

N

15
16

ERROR MINOR SECTION 16 DRILL,1301/PAT2/DQ(2.0)DH(1)DNS

17
18
19
20
21

22
23
2h

REMARK/ GENERAL PROCESSOR ERROR MESSAGES §

DASHA(3.5,2,75)$

DASHB=DASHA(0.0,5.25,-1.0)$ X,Y,Z ENTRIES SHOULD AGREE WITH DASHA
DASHC(9,0,7.5)% SHOULD HAVE TABLE POSITION

cL(0.3)$

0H(1,0,1,0,1,0)$

0H(0.5,0,3,0.3)$

DH(1.0,0.5,0.5)$

0%(0,5,0,5)% LIMIT IS THREE DEEP HOLE SEQUENCES
TOOL/DRILL 1301 0,25 7.5 2000 10,0 O7$NO EFF LENGTH
TOOL/SPDRL 1302 0,5 120,0 7.0 2000 8.0 07%

TOOL/DRILL 1303 0.4 119,0 6.5 8.0 O7$NO SPINDLE SPEED
STARTS

PAT1=/DAA, $X(0.0)SY(0.0)EX(9.0)NH(5)$ INCREMENTAL SEQUENCE
rArz-sruRL,laoz/PArl/ol(o.z)rn:n,PArv(o.b,1.o)rucu,rnrl(1.75.2.0)47(90.0)3
ORILL, 1301 /PAT2/D0(2.0)DH(1)0W$ DQ SHOULD BE DP

DO SHOULD BE DP
PATJ-/PATI(s.o.o.O)THEN;rArv(6,o,o.o)thN,PAr|(7.o,o.0)s
onlLL,l303/R:v,rAr;/or(z.o)un(h)rueu,nAu,rnT;,rH:u,OAc,pArzs DH b WRONG
REMARK/ REVERSAL OF SECOND GENERATION §

REMARK/ PATTERN 1S NOT PERMISSIBLE $
REMARK/ ERROR DETECTED IN PHASE 2 $
REMARK/ THE FOLLOWING STATEMENT CAUSES §
REMARK/ A HANG - UP IN THE GP, $

DRILL, 1303/DAC(~1.0,0,0)(-10.0.0,3,-0.5)/0P(0,7)DH(3)$

NOTE - INDICATED ERRORS ‘VHIVCH CAUSED NO ERROR
MESSAGE ARE DETECTED IN PHASE 2, OR IN
THE POST PROCESSOR, OR NOT AT AlL.

Figure 3. General Processor Listing of Semple Processing

20/

AN
‘V_’ /

AUTOSPOT PREPROCESSOR DATED 12/18/63

1 REMARK/ PREPROCESSOR ERROR MESSAGES $

2 DASHA(3.5,2,75)%
P NO TP

3 DASHB=DASHA(0,0,5.25,-1.0)% X,Y,Z ENTRIES SHOULD AGREE WITH DASHA
4 goonr POINT -1.0

, o g:snn-msm(o.o.s.u)s ON-LINE CORRECTION 7S
& DASHC(9.0,7.5)% SHOULD HAVE TABLE POSITION
P NO TP ?
5 ¢€L(0.3)$
& on(1.,0,1.0,1.0
7 0#{0.5,0.3,0.3
6 oH{1.0,0.5,0.5
9 DH 0.5,0.5’% LIMIT IS THREE DEEP HOLE SEQUENCES
€ COUNT DH
10 TOOL/DRILL 1301 © 2000 10.0 O7$NO EFF LENGTH

25 7.5

TOOL 1301 TIPANG SET 118.0 EFFLENG SET 07,4249
11 TOOL/SPDRL 1302 0.5 120.0 7.0 2000 8.0 072

12 TOOL/DRILL 1303 0,h 119.0 6.5 8.0 075NO SPINDLE SPEED
TOOL 1303 EFFLENG SET 06.3822
TOOL 1303 NO SS

13 STARTS

1b PATI=/DAA, $X(0,0)SY(0.0)EX
15 paT2-sporl, 1303/PATI/DI (O
16 DRILL, 1301/PAT2/D0(2,0)DH1
C FORIL AUX DO (

16 DRILL, 1301/PAT2/DP(2.0)DH(1)DWS ON-LINE CORRECTION 1

}7 PAT3=/PAT1(5.0,0.0)THEN PAT1(6,0,0,0) THEN PAT1(7.0,0,0)$

13 DRILL, 1303/REV.PAT3/DP(%.0)0H(/} THEN, DAB, PAT3, THEN, DAC,PAT3 Git b WROHG

¢ PAT HARIP TPAT3 7

18 DRILL,leSIPATJ/DP(Z.O)DH(k)THEN,nAB,PAT],TNEN,DAC,PAT}S ON-LINE CORR, RS

C UNDEF DH

18 DRILL,1303/PAT3/0P(2,0)DH(3)THEN, DAB, PAT3, THEN, DAC,PAT3$?ND CORRECTION RS
10 REMARK/ REVERSAL OF SECOND GENERATION

20 REMARK/ PATTERN 1S NOT PERMISSIBLE

21 REMARK/ ERROR DETECTED IN PHASE 2

22 PREMARK/ THE FOLLOWING STATEMENT CAUSES

23 REMARK/ A HANG - UP IN THE GP,

24 DRILL, 1303/DAC(-1,0,0,0)(~10,0.0.3,-0,5)/0P{0.7)0H(3)$
€ FORM MINOR™ -10,0 .

24 DRILL, 1303/BAC(-i.0,0.0)(-10.0,0.3,-0,5)/DP(0.7)DH(3)$ ON-LINE CORRECTIOMRS

25 FINI
END PREPROCESSOR

(9.0)NH(5)% INCREMENTAL SEQUENCE
z;mm,nn(o.o 1.0)THEN, PAT1{2.75, 2.0)AT(90.0)$
1) ow$ bq“sHouLn’ o op

Figure 4. Autospot Preprocessor Output

202

AUTOSPOT PREPROCESSOR DATED 12/18/63

REMARK/ RE-RUN OF EDITED SOURCE DECK $
DASHA(3.5,2.75)%

TP
DASHB=DASHA(0,0,5.25)$ - ON-LINE CORRECTION
T

o

ZEZWIEN—-
o

P
DASHC(9,0,7.5)% SHOULD HAVE TAGLE POSITION
TP]

o

7.5 07.42452000 10
.0 2000 8
(.5 06,3822 8

07$HO EFF LENGTH
07
O7SNO SPINDLE “PEED

TOOL/DRILL 1301 0,2

TOOL/SPORL 1302 0.5

TOOL/DRILL 1303 0.k
L 1303 NO SS

STARTS

PAT12/DAA, $X{0,0)SY(0.0)EX(9.0)NH(5)$ INGREMENTAL SETUENCE

PAT2=SPDRL, 1302/PAT1/D1(0,2) THEN, PAT1(0,0, 1,0)THEN PAT1(2.75,2,0)AT(50.0)$

DRILL, 1301/PAT2/DP(2,0)0H 1)0W$ BNZLINE CORRECTION

PAT3=/PAT1(5,0,0,0)THEN, PAT1(6.0,0.0) THEN, PAT1(7.0,0.0)$

oR|LLkl303/PATJ/D'(z.o)bﬂ(s)thN,OAl,'ArﬁirH[N,oAc.PAtas 2ND CORRECTIOM

o=

Som

ocoo
~

REMARK/ REVERSAL OF SECOND GENERATION
REMARK/ PATTERN 1S NOT PERMISSIBLE
REMARK/ ERROR DETECTED IN PHASE 2 g

0O I ot ot ot et et ot Ot ot e
- OV E~ TN F WO N = O (O~ O

~
~

REMARK/ THE FOLLOWING STATEMENT CAUSES
REMARK/ A HANG - UP IN THE GP. b3
DRILL,|303/DAC(-|.0,0.0)(—\0.0,0.3,—0.5)/9?(0.7)DH(])$ ON-L INE CORRECTION

NN
i

5 FiINI$
END PREPROCESSOR

Figure 5. Edited Program Deck (Rerun)

203

MANAGEMENT INFORMATION

BY
ALBERT C. MAAS
DIRECTOR, OPERATIONS RESEARCH AND STATISTICAL ANALYSIS
) GREEN GIANT COMPANY
LE SUEUR, MINNESOTA

PAPER PRESENTED AT THE
MID-WESTERN REGION - IBM 1620 USERS' GROUP
CHICAGO, ILLINOIS
FEBRUARY 21, 1964

1964
GREEN GIANT COMPANY
LE SUEUR, MINNESOTA

204

MANAGEMENT INFORMATION

There are different reasons why one may address himself to and accept
the challenge of discussing, presenting, or reviewing a given topic. He
may be an authority on the subject and discuss it in that capacity, or he
may hold a position of responsibility in which the method may be applied
and so discuss it from that point of view. When I was invited to present
this paper, I was aware that my qualifications are not those of an
authority but rather those of a practitioner in the field of Management
Information. An interest in the subject and a recognition that there is
applicability in present day business management provides motivation for
preparing and presenting these remarks.

One way of organizing material for a presentation such as this
would have been to search the literature and quote the anthorities. I did
not do this but rather elected to speak on the susject as I see it in
general and somewhat specifically in my company. If a bibliography of
writings on this topic were to be assembled, I am sure it would be impressive.
I am also sure that the list.of articles on the subject will grow at an
increasing rate in the years before us and that our present state of
knowledge and level of practice will ﬁe dwarfed by future developments.

My comments will be organized around the following paints:

1. A review of what constitutes information.

2, A definition of terms that are associated with the subject.

3. A brief discussion of the functions that constitute the totality

of company activity.

4, iThe state of the business world with special concern about the

need for scientifically developed Management Information.

205

O

5. Relationships among Management Information, the compute%, and
personnel.
Information

In discussing this topic one must soon come to grips with what is
meant by the word "information", and what the connotation must be when
used in discussing business problems. A dictionary or academic definition
may add a note of scientific precision to this presentation but, in keeping
with the intent of the paper, it seems more appropriate to define the word
by using it in context for a few paragraphs. It is the intent here to
define its meaning as used in the language of business decision making.

Let us first agree that usage of the word suggests the addition of
something new to the hearer's store of knowledge. Let us also agree that
this information may be used as the basis for making decisions, either in
the business world or in private lives; that it will be used as the basis
for setting in motion coursés of action. We must agree, if the preceding
has been accepted, that information must have some value; that is, it must
be appropriate, accurate, and it certainly must be timely.

We can quite likely agree that information, in part, may consist of
reports, lists, graphs, comparisons, counts, or any other statements that
something is or is not. In a moment we will be considering that information
might be classified as available before an act takes place or after an act
takes place, thereby giving it a form of time dimension.

A common example of information that is available after an act has
taken place is found in performance measurements. These would include data
on production to date, sales to date, costs incurred, capacity utilized,
asset position, and liability position. Position records such as earning
statements and the balance sheet could be looked to as other examples of

information made available after an act has taken place. In all of these

206

cases, the information is an accounting for something that has happened or
a position that has been reached.

Information that is made available before an act takes place is of
considerably greater interest, in this paper, than after-the-act
information. Examples of this are found in a broad category of planning
statements. The document or report that describes plans for expanding
production capacity, for entering a new market, for assigning facilities,
and others of this type constitute information before an act takes place.

It is the intent in this paper to consider an important and necessary
element in the information that is generated in the before-an-act-takes-
place category. This is the element that changes information from a
recitation of facts to true decision-making support. We might think of
this element as that property in the totality of information that answers
the question azbout what the consequences would be to taking alternate
courses of action. It is, therefore, to some extent, a plan and a
prediction.

In past years and currently, the element has to a greater or lesser
degree been supplied by management; that is, the decision maker. The
advances made in methodology and equipment have given support to the
organization of information-generating groups who, as technically trained
management science practitioners, are able to provide this element; The
change that this implies, within the area of Information Genperation, may
either be advocated or predicted. In either case it is taking its place
on the scene of business operations.

The relative effort spent on developing information by the before and
after categories is an indication of company vitality. Information after
the act might be compared to the rear view mirror in an automobile. By

looking into the mirror the driver is able to see where he has been. It

207

-3 -

follows that the more strategically located and the larger that mirror
the better the view will be of where the driver has been.

Information before the act is then likened to the windshield of the
automobile. If this is large and clear, the driver is able to see where
he is going and can take steps necessary to get him there fast and safely.
The relative size of the windshield in comparison to the rear view mirror
is important in an automobile and it certainly is important in the
operation of a business enterprise.

It must be recognized at this point that these remarks are concerned
with degree rather than absolute lack of conformity to the concept being
discussed. Historical information has and always will be used for
preparing predictions, and anelysts have always contributed toward producing
that element within the totality of information upon which decisions can
be based. It is argued, however, that considerably more effort should
be directed toward using the analytical techniques known to management
science personnel, and that this be used to generate decision-making
information before it is given to management. The aecision maker; that is,
the manager, should be in a position to ask the question, "What will
happen if I take this or if I take that course of action?" The management
scientist,‘using the analytical tools available t6 him and working with
historical data, is able tc add that element which will make it a more
reliable basis for planning courses of action within the business enter-
prise.

Definition of Terms

It will be convenient, for expository purposes, to define some terms
and expressions that are used in discussing the activities in the business
world. The definitiors =»e not intended to be precise in the academic
sense but rather as czlusilications for the purpose4of presenting views in

this paper.

208

-5

Business Problems

The activities of a business enterprise constitute a process
in which the resources under the control of the business firm
are used, in a production phase, to create added value and then
to bring into a realization that added value through a distribution
and marketing phase. Business problems exist because the total
process does not operate without disturbances. Resources,
including materials, supplies, facilities, and the skills of
employees are limited and imperfect. There is resistance in
the market to paying more than necessary for thé products of the
business enterprise and there is a constant need for attention
to the mechanism of the production phase. The existence of these
disturbances, as well as the need to plan for the growth of the
enterprise, constitute business problems.
Courses of Action

These relate to the steps that are and must be taken by
management to correct a business problem. The course of action
is therefore simply the doing of something, the execution of the
plan that resuited from a management dicision.
Dynamic

A moment's reflection on the business problem and its
resolution in a business enterprise suggests that many problems
occur repeatedly. In fact, it will soon be observed that the
majority of the operating problems are recurring. The frequency
with which they occur and especially the speed with which they
can be resolved play an imﬁortant role in the competitive position
of a business enterprise. These observations partially provide
the basis for describing a business, especially as measured by its

problems, as dynamic.

209

O O

\
-6 - -7 -
D. Information Retrieval obviously considerably more that could be said about this and about the
This term relates to a fairly well-defined process of operstions function, but since it is the objective in this paper to discuss
cataloging the content of articles, abstracts, hooks, and Information Generation, further elaboration on these other functions will
the like and for providing a means for locating the document, be omitted.
or a brief statement of its content, in response to the user's Decision making is a function that is executed at all levels of
need. Management Information, the title of this paper, is not company operations. As & first impression it appears that this might be
related to Information Retrieval except as the latter may be a a function reserved for the top executives. This is not true, however,
part in the process of generating decision-making information since the worker on the line must, and does, make decisions, or at least
for management. An issue is made of this comparison since apply a measure of judgment, in oﬁerating a piece of equipment or using
there is a possibility for confusion, the belief that the ability a resource. Top executives make decisions about such matters as finance,
to rapidly extract date from files will serve the need of manage- plant or production expansion, personnel assignments and the like. The
ment for information. vast majority of‘the decisions in any business enterprise, however, are
Functions of a Company) made by the operating and management personnel between the line worker and
The totality of éctivity associated with the operation of a company the top executive. In any case, the decisions at all levels must be
can be categorized in various ways. To focus attention on a specifie ' appropriate and they must be timely. The skill with which this function
function, the generastion of information, four categories are formed, which, is executed will be reflected in the effectiveness of the operations
by dgfinition should include all the activities that can and do take place ~ function and also in the effectiveness of recording and control.
in a business enterprise. These categories include: 1. Production- ' If it is agreed that setting in ﬁotion the appropriate courses of
Marketing-Distribution. 2. Recording and Control. 3. Decision Making. action at the different levels in a coﬁpany is dependent on the quality
4. 1Information Generation. and timeliness of deéisions, the foregoing statement is obviously supported.
Production, marketing and distribution, ‘the operations function in The function to be discussed in greater detail in this paper is that
a company, include the obvious activities of utilizing facilities and of Information Generation. The importance of this is underscored by
resources to produce something, to market it, and to move it through the recognizing that‘the function of Decision Making is not executéd in a
distribution channels into the consumer's hands. In a processing industry vacuum, it is not independent of the other functions. A course of action
such as the canning‘industry, this will appear as, and in fact is, the » within the operations function is not put into motion unless there has been
dominant function of the enterprise. a decision to do this and unless there has been a decision to commit certain
The activities of maintaining company operations records, company of the company's resources.
operating plans, and providing a measure of performance against plans The basis upon which a decision is made, however, is that of the
constitute, in part, the function of recording and cont?ol. There is information available to the decision maker. Information about the process
210 211

and information developed in the planning sense must be offered to the
manager, the person who will translate it into a decision., It is at this
point that the function of Information Generation achieves its significance.

State of the Business World

Business decisions are not made in a vacuum and business enterprises
are not operated independently of the business world environment. One of
the characteristics of the business world, it is contended, is that changes
are taking place rapidly and that the function of decision making, as a
result, is becoming increasingly complex.

If we accept aé true that there is, in fact, a rapidly changing climate
in the business world, then we must also accept that the advanced techniques
for coping with these changes must be developed and applied. It is
especially required that support for decision making be made available
accurately, adequately, and timely. This constitutes the heart of the
total Management Information idea.

Technology in problem solving has changed and has imprbved very
rapidly during recent years. The mathematical methods of linear programming,
critical path analysis, inventory control, estimating, forecasting, and
many others have been developed, improved, and made available to manage-
ment. Books, articles, courses, and seminars have been employed during
the years since World War II to disseminate the information.

It is of special interest to observe that the mathematical technigues,
if considered by themselves, are of limited value. These techniques must
be a part of the total jroblem solving system if they are to be of service
to a business enterprise. The process of information generation is built
around this concept. It is one of the objectives in this paper to demonstrate
that information, in addition to being a record or recitation of events that
have taken place, also includes those elements of information that will point

up the most ideal steps that can be taken in the decision-making process.

212

-9 -

Another characteristic of the business world today, in comparison to
past years, is the intensification of competition and its attendant
problems. New products are coming on the market at a faster pace and the
costs of developing them are higher than was true several years ago. The
advantage to the company developing a new product, it is contended, is
either short lived or the margin of profit is narrow. This is the result
of bompetition not only among manufacturers of the same product, but among
all manufaﬁturers competing for the consumer's dollar., This underscores
the necessity for having pertinent information available to management,
information that can be used as a basis for rapidiy formulating decisions
and effecting courses of action. The significance of these observations
is in the necessity for much faster action than in previous years, and for
fewer mistakes in commitiing coﬁpanies' resources to an operations course
of actioﬁ.

A single development that has been instrumental in stepping up the
pace of business activity, and has also been providing a means for
servicing the stepped-up pace, is that of the computer and the technology
for programming and operating it. This combination of equipment and
technology has made possible the rapid processing of voluminous data, as
well as ana}yzing data complexes such as are common to the management
science field, The reduction of voluminous records and the evaluation
of complex sets of data provides a source of information that has not been
available in the past.

In addition to the data processing equipment, there has been develop-
ment in communications which makes possible real time or near real time
data analysis for decision making. All of this clearly dictates the need
to develop a system through which the tools of information generation can
be eﬁployed most effectively. It must be possible to develop clear and

concise elements of information that can be used in the decision-making

2/3

-

- 10

process with a minimum of further analysis or data reduction by the ﬁser;
that is, by the decision maker,

A logical consequence of the foregoing is that menagement by exception
will be and must be practiced. It is not possible and certainly not
necessary for a manager to weigh all the facts that can be developed by
an information generation system. Rather, he must be given those elements
of information to which he can add his skills and thereby reach the
decisions that are most beneficial to the company.

It is also necegsary that the Information-Generating process produce
facts that can be translated directly into routine courses of action. A
certein percentage, perhaps quite high, of this type of tasks in a company
can be reduced to decision rules that can be operated upon by an electronic
computer or, at most, require clerical attention. The net result is that
this will leave additional time to the manager to deal with the more
complicated decision problems, problems that cannot, of at least not very
readily, be reduced to a decision rule.

The intent of these comments has been to demonstrate that the role
of the manager, decision maker, is changing rapidly as a result of the
technological advances. The business climate within which the decision
maker works.is being changed by him and in turn requires that he change
with it. He is, in a sense, a victim of his profession.

Relationships Among Management Information, The Computer, and Personnel

The remarks to this point have been intended primarily to set the
stage for a detailed review of the Information Generating function, its
place in the company, and the impact it may have upon the Decision-Making
process. Its impact upon the personnel involved and a review of the
current state of the art will be considered briefly. As a point of
departure, it will be well to take a look at what is meant by "Information

Generation."

214

J

-

@)

- 11

It certainly is a function and it has a place among those that define
the totality of company activity. Information generation is not new. Rather
it has been practiced as long as businesses have been operated. The method
for doing it, especially its organization within the company, have changed
over the years and the importance it has played and plays now is certainly
changing. It shall be the objective in the following sections of this

paper to present views as to what constitutes Information Generation, how

it has chariged over time, and what might be expected in the future.

We may think of this function as an operating process with inputs,
service, and output stages. This analogy with the operations functions of
a company will provide a convenient medium for presenting some of the
basic ideas.

The inputs to the process initiate at various sources. Company
accounting records provide data on costs such as those fo; personnel,
power, raw materials, supplies, and others. Operating stan&ards, capacities,
and facilities availability data can generally be obtained from company
engineering records. Prices of merchandise offered for sale become
aveilable from the company's marketing department.

Institutional data constitute another input to the process. These
would include such items as taxes, insurance, interest rates, freight rates,
economic indicators, and the like. Agency data, such as facts about
industry stock position, and industry prices provide a third source of
input. A fourth source would need be recognized to include estimates by
knowledgeable persons. There are many blanks in the data requirements
associated with a given analysis, blanks that must be filled before the
analysis can be made. In many cases the best estimates of knowledgeable
persons will constitute the total availability of this type of input
information.

The input information is directed into the service phase of the

information-generating function, an area designed for and increasingly

215

- 12 -
.13 -

delegated to the management science personnel. By way of contrast it
product at a number of origin points, the demand for the product

might be observed that the service phase could be limited to the .
at a number of destination points, and the shipping cost per unit

organization of data into reports, tabulations, graphs, ratio tables, .)) L.
for moving a unit of the product from a point of origin to a

and the like. This service could be and likely would be pfcvided by the X X
point of destination. The objective in the solution is to find

general accounting or by the cost accounting groups of the company. The .
that combination of routes which, if followed, will transfer the

management science personnel, however, are, or at least should be, X
merchandise from the points of origin to the destinations at the

qualified to add that element to the information flow which changes it
lowest possible total freight cost. In working with problems of

from a presentation of history to a basis for deciding upon a course of
this type, it is soon found that interaction frequently necessitates

action.
the use of the rates, other than the lowest because, if this were

The management science contribution at this point should therefore
not done, another rate of even greater disadvantage would be

be to work with operating personnel, decision makers, and upon recognition
forced into use. This is all brought about by the complex

of a business problem, define and formulate it for the analysis phase. X .
inter-relationships of the factors in the problem. Solution to a

After the problem has been defined, it is obviously required that the
problem of this type is brought about readily with the analytical

actual solution be effected and the results prepared in a form that will
tool known as the Transportation Model.

be most useful to the decision maker. .
. , 2. In these problems there is either a meximum or a minimum that

There is an impressive array of analysis tools available to the
. must be found and that serves as a criterion in evaluating the

management scientist with which he is able to cope with the complexities
solution. In the Transportation Model, the minimum freight bili

of the problems to which reference was just made.
is found, whereas in another type of analytical tool a maximum

It is not the intent in this paper to discuss in detail the analysis
profit might be found.

tools that are available. It is rather the intent to describe some of
3. The solutions to problems may lead directly to the application

the characteristics of the analysis methods and to support a claim that
of results in a routine type course of action or they may lead to

many and powerful tools of this type are available, Some of the
alternative courses of action in a planning type analysis. In the

characteristics, with which these analysis techniques can copg are: .
latter case various conditions might be evaluated through a

1. There are involved, inter-relationships among the factors of
simulation of the process.

the problem. These are inter-relationships that cannot be
In direct solutions there must have been a prior implementation of

dealt with readily by means other than an appropriate mathematical
the procedure so that the results of a given analysis can be fed directly

formula and the necessary computing facilities. An example of such
to it. This is a form of automated decision making.

a problem is the one in which shipping schedules are formulated. . :
In another case, the output of the information-generation process,

The factors of this problem are the supply of the homogeneous
frequently involving simulation, takes the form of a report to management.

2/6 217

© C

>,

- 14 -

The manager or decision meker receives this information and adds to it
his knowledge of the process. This, then, is the basis upon which decisions
about a course of action can be made.

In the discussion of the service phase of this function it was
pointed out that direct eolytions might be used in implementing courses of
action where a procedure has been implemented and where the course of
action is routine. In those cases where that is not done, there is
management by exception; that is, the manager is concerned with those
steps in the operation of a business that cannot be processed or put into
force through decision rules programmed into an electronic data processing
system,

The output from the service phase of the information-generating
process may therefore take two forms. It may be a decision rule that can
put into effect routine courses of action through the medium of the data
processing system or the intesrvention of a clerk.. In the other case, and
in a more important sense, the output will be guides for personnel in the
decision-making function who will act to initiate those courses of action
that are associated with planning and the operations function of the
company .

A system does not function without people, and therefore, consideration
must be given to the personnel involved in the Information-Generating
function. Just as thgre is no clear distinction between persons involved
in the decisi&n making and in the operating functions, there is also no
clear distinction among persons involved in information generation and the
other functions in the company. It is rather to be found that the persons
in the company are or should be aware of this function and become associated
with it in whatever position they may held. They may be involved directly,
as. suppliers of data, as a user of the output, or in a capacity that is a

combination of these.

2/8

O

- 15 -

A logical way to establish who is part of the information-senerating
function and what the relationship between those persons and others outside
that function is, is to consider this in the light of information flow. A
look at the input-service-output analogy discussed in the preceding section
will provide some guidance.

The output of the Information-Generating function is the input to the
Decision-Making function and takes the form of reports that have been
developed from prime data. The prime data is the input to the Information-
Generating system. The personnel involved, therefore, include those
responsible for supplying data from prime records, those who analyze the
data, and those who deliver the ocutput to the decision-iaking personnel.

A question that can and must now be considered is concerned with the
relationship between accounting and management science personnel. If an
integrated and consistent flow of information is to be generated it is
not reasonable to expect that some reports into the decisioﬁ-making process
shall originate in the accounting group and others in the management science

group. There can be no guarantee that such an arrangement will assure

‘consistent and noncontradictory information. It creates the possibility

of sending still picture type of information into the Decision-Making
process when the dynamics of the business call for information of the motion
picture type. The conclusion that follows from these comments is that the
Information-Generating function must be organized and managed in such a
way that it will assure the generation of the most valuable information
possible and that it will be sent in its most appropriate form into the
Decision-Making function.

The comments made in the preceding paragraphs suggest that there might
need be a change in the concept of information generation today as compared
with that applying in past years. The idea of information generation is

not new, but some concepts associated with the total management information

219

- 16 -

methods has in it aspects to which there must be adjustment by the personnel

involved in that function. Some observations about the difference of

concept may be itemized as follows:

1.

Reports based on individual studies could be, and many times
should be, replaced by information logs derived from a series

of simulation analyses. This replaces the static snapshot report
with the dynamic motion picture type report.

Reports of individual projects will be, and certainly can in
many places, be replaced by the results of team effort. Team
effort has in its favor, many attributes even though it does
carry with it the problem of rivalries, and other problems
associated with having persons work as a team.

A greater reliance will be placed on decision rules programmed
into the data processing system. This will be true partly
because of the much greater magnitude of data that needs be
reviewed and also because of the analytical and data processing
techniques that are available for aécomplishing this. This will
lead to greater emphasis on management by exception.

The environment or climate within the company must be created in
which the Information-Generating function can be executed
effectively., Managers must realize that the working paper study
or report cannot and does not give them all the information they
need for decision-making responsibilities.. The manager must also
learn to accept that a large part of the routine decisions for
which he may be responsible can be processed on electronic equip-
ment. The reluctance to relinquish detailed control over the
activities for which he is responsible can prove to be one of the
greatest hindrances in establishing a management information

system.

220

£

N

- 17 -

5. It must be recognized that the electronic data rrocessirg equip-

ment can serve a purrose much greater than that served in billing,

processing aczounts receivable and accounts payable, recording

inventory and the like. The electronic equipment properly

managed by technically trained management science personnel can

rroduce that element in the Information-Generating function that

could tip the scale from mediocre to high level and effective

decision making.

In summary, let us conclude that management information is the
rroduct of our efforts which, when coupled with a well-executed
Decision-Making function, puts into effect the correct courses of action
with respect to business problems, end which in turn find exrression

in profit generation.

227

KINGSTON FORTRAN II

FOR THE IBM 1620 DATA PROCESSING SYSTEM

by:

J.A.A. Field,* D.A. Jardine,®, E.S. Lee,’

J.A.N. Lee,® and D.G. Robinson®

Presented at the Joint Canadian-Midwest Region
Meeting of the 1620 Users Group, Chicago,
February 19-21, 1964

1, Dept. of Electrical Engineering, University of Toronto,
Toronto, Ontario.

2. Research Centre, Du Pont of Canada Limited, Kingston,
Ontario

3. Computing Centre, Queents University, Kingston, Ontario

ACKNOWLEDGEMENTS

During the early stages of developing this system,
many people in the 1620 Users Group were canvassed for
useful ideas on compiler and systems constructlion. To all
those who, in any way, contributed to this venture, the
authors extend their heartfelt thanks.

We would like to recognize the following people
who made particularly useful contributions to the project:

J.W. Holmes* -

F.H. Maskiell®-

C.H. Davidson®-

for his extremely well written arithmetic
and function subroutines which appear, with
some modification, in this system,

for many helpful suggestions, particularly
in the coding and testing of the arithmetic
and funection subroutines.

1620 Users Group representative on the
A.S.A, Fortran 1I subcommittee, for
explaining to us the structure of American
Standard Fortran II, and for pointing us
in the right direction for extending the
language.

1. Cooper-Bessemer Corp., Mount Vernon, Ohilo.

McGraw-Edison Corp., Penn. Trans. Div., Canonsburg, Pa.

University of Wisconsin, Madison, Wis.

HISTORY

The writing of compilers seems to be one of the
more popular pursuits of the members of the 1620 Users
Group. At least six different FORTRAN compilers for the
1620 have been written by non-IBM personnel, which
testifies to the enthusiasm and ability of 1620 users and
to their very real desire to bulld the best possible
mousetrap.

All previous user-written compilers have accepted
variations of the FORTRAN I language, with the exception
of the University of Wisconsin FORGO, a load-and-go
compiler for student problems, which accepted a somewhat
restricted FORTRAN II. To our knowledge, KINGSTON
FORTRAN II is the first user-written FORTRAN II for the
1620. We hope that this initial effort will encourage
others to tackle the problem and improve on our system in
the same way that lmprovement followed improvement in the
user-written FORTRAN I compilers.

The initial impetus for KINGSTON FORTRAN II came
in about August 1963, from those of us living in Kingston,
Ontario, when we started to find out how UTO FORTRAN
operated, with the intention of providing a suitable
FORTRAN for a 40K 1620. It soon became apparent that
many useful features of FORTRAN II could be incorporated
at little extra work. Messrs. Lee and Field, authors of
UTO FORTRAN, were approached for ideas and suggestions, the
outcome of which was a decision to Jjoin forces. After some
preliminary discussion, it was found that it would be no
more work to write a whole new system than to make the
desired alterations in UTO FORTRAN.

The basic concepts were conceived in three
rather long evening sessions during the October 1963,
1620 Users Group Meeting in Pittsburgh, Pa. By the end
of this meeting the source language structure and the
organization and general logic of the compiler were
developed and agreed upon. The various sections were
then allocated to the individuals best qualified to
handle them. By the first week 1in January, the main
sections of the compller had been written and tested
and it remained to tie the pleces together in a operating
system. Thls was done in Kingston, Ontario, during late
January, when all 5 authors worked for five days on two
identical 40K 1620's (Du Pont of Canada and Queen's
University).

We hope that Users with 40K 1620's will find the
system useful and easy to operate. We have tried to
include every useful idea from other people's efforts so
that the system would be as speedy and compact as possible.

The work was divided as follows:
J.A. Fleld - Input/Output statements, DO statements,
input/output subroutines, FORMAT ‘
statement.

D.A. Jardine - Arithmetic and function subroutines,

write-ups and operating manuals.
E.S. Lee - Compilation of arithmetic expressions.
J.A.N. Lee - Compilation of everything not handled

by the other authors.

D.G. Robinson - Symbol table organization, including
COMMON, DIMENSION, EQUIVALENCE, TYPE.

SN

N

-3 -

KINGSTON FORTRAN IT

This write-up describes a FORTRAN system for the
IBM 1620 equipped with automatic division, indirect
addressing, additional instructions (TNS, TNF, MF),
card input-output and minimum 40K memory. It is assumed
that a Model E-8 or larger 407 is available for listing.

The language 1s that of IBM's FORTRAN II with a
few modifications and a number of additions. For the
purposes of this write-up it is expected that the reader
is at least on speaking terms with the FORTRAN II
language.

The compliler for this system batch complles a
source program in one pass, at approximately twice the
speed of existing compilers for the 1620. The execution
speed of the object program 1s also approximately twice
that of IBM's FORTRAN II. Considerable effort has been
made to speed up all important parts of the system; in
addition, more core storage is available for the object
program than existing FORTRAN II compilers allow.

SOURCE PROGRAM CARDS

These are as required for IBM FORTRAN II. Any
number of continuation cards are possible, but the
statement may not contain more than 300 characters
(blanks not included except in Format statements).

ARITHMETIC PRECISION

Real numbers: 8 digit mantissa, 2 digit exponent.
- Notation is excess 50; (i.e. 1.0 = 5110000000)

Integer numbers: 4 digits, modulo 10000
VARTABLES

These are as in IBM FORTRAN II. 1 to 6
alphabetic or numeric characters, starting with a letter,
which, for integer variables, must be one of I, J, K, L,
M, N, unless otherwise specified in a TYPE declaration.

SUBSCRIPTS

A variable with, at the most, two subscripts
appended to it can refer to an element of a one- or two-
dimensional array. Three dimensional subscripting is not
permitted. A subscript may be an expression of any B

desired complexity, provided only that the result of the S
evaluatlon ol the expression be an integer quantity.
This should be positive if you want to avold trouble.
However, a zero or a negative subscript can be used. To
use this effectively, the programmer must know how data
areas are laid out in memory. See the operating
instructions:
Examples of Subscripts:

I

3

2+MU

MU+2

J*5+M

5*J

6*J -K+2-10/L+M

4*J (K+2-1+M)+K (M (N+2)) /3

FIXF (A*B+3.0**SIN(X))+L/2
The variable in a subscript may itself be subscripted, and
this process of subscripting may be carried on to any
desired depth of subscripting. It can, in fact, be carried
far beyond the point where the average programmer understands
what he 1s doing. -

SUBSCRIPTED VARIABLES

Only singly or doubly subscripted arrays may be
defined. The size of these must be specified in a DIMENSION
statement.

EXPRESSIONS

These are defilned and organlzed exactly as in IBM
FORTRAN II.

LIBRARY FUNCTIONS

Ten library (closed) functlons are included in the
KINGSTON FORTRAN II System. These are listed in Table I.

£

TABLE 1

Closed Subroutines

Function Function No. of Type Of
Definition . Name(s) Arguments Function Argument
Sine of the argument SIN 1 Real - Real
Cosine of theyargument COoS 1 Real Real
Exponential (eX) of the EXP 1 Real Real

argument
Natural logarithm of .

the argument ‘ : LOG 1 Real Real
Arctangent of the ATAN 1 Real Real

argument

Arctangent of argl/
arge) ‘ ARCTAN 2 Real Real

Signum of the argument; ,
=—l.f01‘ X<O-’=_O. for .
X,0.,=t1, for X>0. SIGNUM 1 Real Real

Absolute value of Arg 1 . .
with the sign of Arg 2 SIGN e Real Real

Choosing the larger value ,
of the two arguments AMAX1 2 , Real Real

Choosing the smaller
value of the two v
arguments AMIN1 e Real Real

Teble 2 lists the open or bullt-in functions. These are
compliled in-line every time the function is referred to.

TABLE 2
Funetion Function No, of Type of
Definltion Name Arguments Function Argument
Absolute value of ' ; '
the argument ABS 1 Real Real
ABS 1 Integer Integer

Table 3 lists closed functions which are permanently
stored in the machine, whether or not they are mentloned by
name in a FORTRAN source program.

-6 - .

TABLE 3
Function Funétion No. of Type Of iﬁ?
Definition Name Arguments Function Argument
Floating an integer FLOAT 1 Real Integer

Truncation, sign of

argument times value FIX 1 Integer Real
of the largest

integer in the argument

THE ARITHMETIC STATEMENT

The arithmetic statement 1s the same as in IBM
FORTRAN II except for the extensions in complexity of
evaluation of subscripts.

CONTROL STATEMENTS

The control statement flexibility in standard
FORTRAN's leaves something to be desired, particularly
where the program is complex and core storage is at a
premium. These conditions, 1t might be noted, are the
normal ones for almost all problems. KINGSTON FORTRAN II
attempts to improve this situation by expanding the
capabilities of the ASSIGN and assigned GO TO statement
and by extending the ASSIGN concept to the other control
statements.

ASSIGN STATEMENT

ASSIGN 1 to n

In IBM FORTRAN II, the ASSIGN statement is used
only in conjunction with an assigned GO TO statement.
For instance,

ASSIGN 3 TO J
Go T0 J, (3,5,9,243)

will cause a branch to the statement numbered 3.

The effect of the ASSIGN statement is to "equate"
the non-subscripted integer variable J to statement number
3. The subsequent GO TO J, (3,5,9,243) is then interpreted
as GO TO 3.

£
-

-7 -

In KINGSTON FORTRAN II, this concept has been
modified and expanded considerably. To describe these
changes, the following definitions are used:

Statement Label - A statement label 1is the name attached
to the memory location containing the first instruction
compiled from the statement identified by the label. There
are two kinds of statement labels:

Numeric Statement Label - usually known as a

- e o e e - S p— T o ———— - ——

from one to four digits long.

Alphabetic Statement Label - A variable which may
be subscripfted to any deSired complexity and which
by one or more ASSIGN statements has been equated
to a numeric statement label (statement number).

It is most important to realize the difference between a
statement label and an arithmetic variable. ASSIGN 3 TO J
will place in J the address of the first instruction compiled
from statement number 3. J = 3 will cause the number 0003

to be placed in J. The sequence of statements

ASSIGN 3 TO J

GO TO J
will cause a branch to statement numbered 3. However,

Jd =3
GO TO J
will result in disaster. Moreover,

ASSIGN 3 TO J
d=Jd+1
GO TO J

will not transfer control to the statement numbered 4.
ArithmeTic on assigned variables is not permitted; assigned
variables are not in any way the samé as arithmetic variables,
except that they may be subscripted and stored in an array.
They may also appear in COMMON, DIMENSION, and EQUIVALENCE
statements.

It 1s possible in KINGSTON FORTRAN II, to equate:two
alphabetic statement labels by an ASSIGN statement If the
first statement label in the ASSIGN statemer habetic,
it must be enclosed in parentheses. s IR

"The following examples illustrate the ASSIGN statement: Q:j
ASSIGN 3 TO N (St. label N is equated to St. label 3)
ASSIGN (N) TO J (St. label J is equated to St. label N)
ASSIGN 3 TO I(K) (same as the line above. J must have been
defined before this statement and I must be
dimensioned).
ASSIGN (I(K)) TO L(3+M/4-M**3)
(same as above., The alphabetic statement
| labels can be subscripted as desired).
Since the primary definition of a statement identifier i1s its
occurrence as a statement number, it 1s necessary that any
given statement ldentifier must ultimately be defined (through
a seriles of ASSIGN statements if necessary) in terms of a
statement number., Failure to observe thils rule will cause
trouble. For example,
3 A =B
ASSIGN (J) TO K(L)
is not correct, because J has not been assoclated with any
statement identifier when the ASSIGN statement 1s executed, o~
However, uk/f
3 A =B
ASSIGN 3 T0 J
ASSIGN (J) TO K(L)
is correct.
Alphabetic statement labels may be used in the
following control statements: ‘
| G0 TO (both unconditional and assigned)
IF (SENSE SWITCH 1)
IF (arithmetic expression)
Computed GO TO '
Alphabetic statement labels may not be used ln a DO statement.
GO TO STATEMENT
G0 TO n unconditional GO TO —
G0 TO n, (n,,ne,---np) assigned GO TO O

-9 -

where n 1s a statement label. If n is alphabetic, then it
must previously have been defined in an ASSIGN statement.
The assigned GO TO statement is treated exactly like the
GO TO statement. The comma and parenthesized list are
optional and will be accepted but ignored by the compiler.

Computed GO TO Statement

GO TO (ni,nz,ns---np),i

where n;,nz---ny are statement labels. If alphabetic they
must have been previously defined by ASSIGN statements.

1 is a fixed point (integer) variable or expression. 1 may
be subscripted as desired.

ARITHMETIC IF STATEMENT

IF(a)n;,nz,na

where a 1s an integer or real (floating point) expression
of any complexity, and n;,nz,ns are statement labels. If
alphabetic, n;,nz,ns must have been previously defined in
ASSIGN statements.

IF (SENSE SWITCH) STATEMENT

IF (SENSE SWITCH i)nj,ns

where 1 is a one or two diglt unsigned integer number or an
integer expression, and n; ,nz are statement labels. If 1 is
an integer expression, the low order two digits of the value
of the expression are used as the value of i. The two digit
numbers resulting from this are the numbers of machine
indicators, not Jjust console switches.,

THE DO STATEMENT

DO n i =m,me,ms

where n 18 a statement number, 1 is an unsigned integer
variable which may be subscripted and m;,mgz,ms are

integer variables or integer expressions of any desired
complexity, positive or negative. n may not be an
alphabetic statement label, and i may not’B"'an expression.
There are no particular restriotions on m;,Mz,ms. In
particular they may be positive or negative quantities.

If my=mz, the DO will be executed once only. m;,mz,ms
should be chosen so that the DO loop terminates. See below
for an example of a never-ending DO-loop.

Example:

DO 5J = K+L-5, M-I(JOB(KK)),-L

- 10 -

If m,;,me,ms are expressions, their values are the values of
the expressions when the DO statement is encountered at
object time, and these values are unaffected by alteration
inside the DO of the values of the variables in the
expresslions m;,mz,ns.

As a result of allowing pésitive or negative values
for m; ,mg,ma, it is legal to have DO loops which count
down. For example,

DO 3 I =10, 1,-1

will cause I to run from 10 to 1 in steps of (-1). The
following is also permitted.

- DO 10 J = -10,5,2

which will cause J to assume successively the values -10, -8,
-6, -4, -2, 0, 2, 4., If the DO variable assumes zero or
negative values, it may be used, with caution, as a subscript.
Intelligent use of negative or zero subscripts demands
knowledge of the layout of data areas in memory, as described
in the operating instructions.

Care should be taken to see that the DO index
terminates. properly. For instance,

‘DO 20 K = -10, -1, -2

will increment nearly 5000 times before termination. The
same 1s true of .

DO 40 K = 10, 1, 2

Termination in both cases occurs because integer arithmetic
is performed modulo 10000.

'All the restrictions on DO statements currently
imposed by IBM FORTRAN II are also in force in KINGSTON
FORTRAN, except as already mentiloned.

CONTINUE STATEMENT

Same as IBM FORTRAN II.
PAUSE STATEMENT
| PAUSE .

PAUSE n, where n is a fixed poilnt constant, varlable
or expression.

o

- 11 -

The typewrlter types PAUSE n, together with error
messages (see operating instructions) and the machine halts.
If n is a variable or expression, its current value is typed.
PAUSE (without n) generates an in-line halt command; there
is no typing. In elther case, depression START will cause
resumption of program. :

STOP STATEMENT

STOP

STOP n, where n is a fixed point constant, variable
or expression. :

The typewriter will type STOP, followed by the
current value of n. If n is not specified, STOP 0000 will
be typed. CALL EXIT is then executed (see operating
instructions).

END STATEMENT

END is an instruction to the compller that the
program is complete. An END statement must be physically
the last card of the main line program and of each sub-
program which is associlated with the job. The END statement
results in CALL EXIT except in a sub-program, where it is
interpreted as a RETURN statement.

FUNCTION AND SUBPROGRAM STATEMENTS

FUNCTION and SUBPROGRAM statements are the same in
KINGSTON FORTRAN as in IBM 1620 FORTRAN II, and the same
restrictions apply.

Because the compller 1is one-pass, the subprograms

are not compiled separately from the main program. See the
operating instructions for further details.

INPUT/OUTPUT STATEMENTS

The INPUT/OUTPUT statements in KINGSTON FORTRAN II
are similar to those of IBM FORTRAN II, except that
expressions are permitted, as well as simple variables,
in certain places in INPUT/OUTPUT lists. Indexed lists,
array names (to handle a whole array) and all other standard
FORTRAN I1I features are allowed. It is not necessary to
specify a FORMAT statement number in an I/0 statement. If
no FORMAT statement number is given, the system will supply
FORMAT (5N). See the description of FORMAT for an
explanation of FORMAT (5N).

- 12 -

The permitted INPUT/OUTPUT statements are: -

READ (card input), ACCEPT TAPE, ACCEPT (input on console
typewriter), REREAD (re-reads last input record), PUNCH,
PUNCH TAPE, TYPE (console typewriter), PRINT (on-line
printer).

Indexed I/0 Lists

As in IBM FORTRAN 1I, the statement
READ 10, ((A(I,Jd), I=1,10), J=1,10)

will cause 100 numbers (A(1l,1) to A(10,10) to be read into
array A, Similarly,

READ 10, ((A(I,J), I=K,L), J=M,N)

wlll cause various elements of A to be read in under the
control of the indices I and J.

In KINGSTON FORTRAN II, the limits on the implied
DO's (I=K,L; J=M,N) may be expressions. Furthermore, the
names of the input variables may be subscripted to any
desired depth (not exceeding 40). For example:
!/‘\
READ 10, ((A(I(Kl), J(M1), K1=K-JOB*2,I+5-J6),M1=M*8-MM9,N-3*N18) ' _

wlll be executed as

DO 100 M1 = M*8-MM9, N-3*N18

DO 100 K1

It

K-JOB*2,1+5-J6
100 READ 10, A(I(K1), J(M1))

where I and J are names of one-dimenslonal arrays which must
previously have been defined.

KINGSTON FORTRAN II permits the same kinds of
expressions in indexing as are permitted in standard DO state-
ments., The implied DO in and I/0 list may run forward or
backward, and may have integer expressions of any desired
complexity.

INPUT LISTS

In an input list, the variables may be only simple
variables or indexed variables. Input of expressions is
meaningless, and not permitted. For example:

C

- 13 -

READ 10, M, Q, A(I(K+4*L), M(N-5*L+4)),B
is permitted, provided I, K, L, N and M are previously defined.
READ 10, A+B-C(K) 1s not permitted.

OUTPUT LISTS

Output lists may be fully indexed lists, as
described above. In addition, expressions may appear 1in the
list as output quantities. For example:

PUNCH 20, C*D/(LOGF(X-Y*Z)+10.3, Y, D
will cause
C*D/LOGF(X—Y*Z)+10.3

to be calculated at the time the punch statement is encountered
and its value to be punched, together with the values of Y and
D, on a card, according to Format statement 20. The value

of the expression in an output list is lost when it is

output, and is not available for further calculation. The
expression in an 1/0 list may be of any desired complexity,
and may be indexed as required, either by DO statements, or
by implied DO statements in the list itself. For example:

PUNCH 20, (((C*SQRTF (A (I,J))-M(I)),I=1,L+4,3),J=I+1,K-10,5)
will cause values of C*SQRTF (A (I,J))-M(I)

to be punched out for values of J from I+l to K-10 in steps
of 5 and values of I from 1 to L+4 in steps of 3.

ASSIGNED FORMAT NUMBERS

Format statement numbers may be assigned by ASSIGN
statements in the same way any other statement number can.
Hence, input/output statements may use alphabetic statement
labels in place of Format statement numbers. For example,
the following program is permitted:

3 FORMAT

) FORMAT
5 FORMAT

10 READ K(L

Ay -

Note that the first statement will be executed according to L
Format statement 3, while the second READ statement will be -
executed according to Format Statement 4 when L=1, and

according to Format Statement 5 when L=2,

The subscripted variables in all the above examples
must previously have been mentioned in a DIMENSION statement.

ARRAY NAMES IN I/O LIST

As in IBM FORTRAN II, array names without subscripts
may appear in I/0 lists. Mention of an array name will
cause the entire array, as specified in the DIMENSION
statement to be input or output. Two dimensional arrays
are handled column-wise -

DIMENSION A (10,10)
READ, A

will cause the entire 100 elements of A to be read in, in 5N
notation. The elements of A must be in order A(1l,1), A(2,1),
A(3,1), A(4,1), A(5,1), A(6,1), etec.

FORMAT STATEMENTS : AN

Format statements are, in general, equivalent to
Format statements allowed in 7090/94 FORTRAN II. E, F, I
and A conversion are permitted. Repetition of field format
is allowed before E, F,I or A. Thus FORMAT (I2,3E12.4) is
equivalent to

FORMAT (I2,E12.4,E12.4,E12.4)

Parenthetical expression is permitted in order to
enable repetition of data fields according to certain Format
specifications within a longer FORMAT statement. The number
of repetitions is limited to 99. Thus,

FORMAT (2(F10.6,E10.2),I4)

The level of parenthesizing can be extended to a second level,

- thus:

FORMAT (2(I4,2(F6.2,F8.3))) is equivalent to
FORMAT (Ik,F6.2,F8.3,F6.2,F8.3,14,76.2,F8.3,F6.2,F8.3)

The depth of such nesting of parentheses must not exceed 5,
which appears to be more than would ever be necessary.

J(\W
g

- 15 -

N-Format

Rigid format on input data is not always desirable,
and in many cases makes key-punching more difficult.
KINGSTON FORTRAN allows so-called "free form" input, as well
as the more familiar fixed or rigid format. If the FORMAT
statement specifies I, E or F format on input, then the
input data record must conform to the normal rules for such
format as specified in IBM manuals. However, if N format
(denoting "free form") is used, the data numbers may appear
anywhere on the card, and input is controlled by the input
list.

N format 1is used like E, F or I format except that
no width or decimal point location digits are required or
permitted. For example,

READ 10, I, J, A, C, Z

10 FORMAT (5N)
will cause the program to read in a record of 2 integer
numbers followed by 3 floating-point numbers. In N format,
a number is defined as: any number of leading blanks,
followed by a meaningful collection of digits, followed by
1l trailing blank. Note that the blank column immediately
following the right-most digit or character of the number

is considered part of the number, and serves to delineate
the right-hand end of the number.

In the case of E numbers handled with N-format,
blanks after the letter E are ignored, and the machine
uses the next set of digits as the exponent. For example:
b1,23h5678E-05b
will be interpreted as .000012345678,
The number bl.2345678Ebbbbb-05b
will be‘interpfeted in the same way.
bl.2345678Ebbbb103
willl result in an error condition (see operating instructions).

b1.2345678E bb 00005

will be interpreted as 123456.78. Leading zeros before
either the mantissa or exponent are ignored.

- 16 -

An E- type number handled by N-format ends with the -0
blank after the exponent digits. —

A FORMAT statement may specify N, E, F, I or A format
as required, thus allowing both free and rigid format on the
same card. Note that, in N format, if a floating point
number does not have a decimal point, it 1s assumed to be
after the low-order digit of the number.

Some examples may help:

READ 10, I, J, A, C, Z

10 FORMAT (5N)

The card might look like:

bb123bbbbbb1l2bbbl6 . 3bbbbbl .2E6b123000bbb etec.

N Format requires only that at least 1 blank column
follow the number. In this case, I, J, A, C, Z would be
stored as 123, 12, 16.3, 1.2E06, 123000. resp.

READ 11, I, J, A, C, Z
11 FORMAT (I3, 16, N, F10.3, N) o o

The Format requires that I, J, C follow rigid format.
The card might look like:

¥
b12bbb12bbbbbb120.b bbb1234567bbb16.8bbb etc.

This would give the following results:

Variable Value
I 12
J 120
A 120,
C 1234 ,567
7 16.8

Note that the F-specification for C starts on the
first column after the blank following 120., (see the position
of the arrow) since this blank is considered part of the
value of an N-Format number.

An output, N format is equivalent to 1PE14.7,1X
for floating point numbers, and I5,1X for integer numbers.

- 17 -

N Format allows repeated format and parenthesizing,
and follcws the usual rules for them.

If a number is positive, the output under E, F, I
or N Format will not contaln a leading plus sign. On I
Format, no space is left for it, so that it is possible to
construct a fully packed output record provided all numbers
are positive. N Format generates a space for a + sign and a
space following the number.

If a floating point number is output under Iw Format,
the integer part of the floating point number is convered to
Iw Format. Thus 128342.56 output with I10 Format would
appear as bbbbl28342,

SCALE FACTORS

To permit more general use of E and F conversion, a
scale factor followed by the letter P may precede the
specification. The scale factor is defined such that

internal number x loscale factor

Internal number = input number x 1o-Scale factor

Output number

li

This operates exactly the same as in IBM FORTRAN II for the
larger machines. For example

FORMAT (2PF10.%4)

used on output will multiply the number by 100 before output.
On input, it will divide the external number by 100 before
storing it in the machine.

On E-Format output, the effect of P-scaling is to
shift the decimal point in the mantissa and to adjust the
exponent by the amount of the shift.

Thus, if FORMAT(E15.8), used for output, produced
the number .12345678E-04, then FORMAT (3PEl15.5) would produce
123 .45678E-07 for the same number. Note that for E-Format
output, P-scaling does not change the magnitude of the number.
It shifts the decimal point, and makes a compensating change
in the exponent. For F-Format, P-scaling alters the magnitude
of the number on input/output.

VARIABLE FORMAT

KINGSTON FORTRAN II allows variable Format. That is,
Format specifications may be read in at object time. In this
way, data may be read in under control of a Format Statement
which itself has been read in. Variable Format statements
must be read under A-Format into an array by means of a
normal Read statement.

- 18 -

For example:
DIMENSION FMT (15)
READ 10, (FMT(I), I=1,14)
10 FORMAT (15A5)

will cause 70 characters of input record (i.e. the Format
Statement being read in) to be stored in array FMT. It is
then possible to write:

READ FMT, A, B, X, Z, (A(J),J=1,10)

where the input variables will be read in according to the
Format Statement stored in array FMT.

It is also possible to alter array FMT by programming.
This should be done with some care, otherwise the Format
Statement stored in array FMT may become completely
unintelligible.

The name of thé variable Format specification must
appear in a DIMENSION Statement, even if the Array size is
only 1.

The Format read in at object time must take the same
form as a source program Format Statement except that the
word Format is omitted, 1.e. the variable Format begins
with a left parenthesis.

SPECIFICATION STATEMENTS
COMMON '

Variables, including array names, appearing in
COMMON statements wilill be assigned core storage locations
beginning at the high end of memory, and will be stored at
object time in descending sequence, 10 digits per variable,
or per item of a dimensioned variable, as they are o
encountered in the COMMON statement. If a variable is a
dimensioned variable, the size of the dimensioned array must
appear in the COMMON statement, and the variable must not
again be dimensioned in a DIMENSION statement. The COMMON
statement must precede EQUIVALENCE or DIMENSION statements
(1f any) and must precede the first statement of the source
program. For example:

COMMON A,B,I,J,X(10,3),Y(5)

(Inclusion of dimensioning information in COMMON statements
is allowed in FORTRAN IV).

E e ot e

- 19 -

DIMENSION
The DIMENSION statement is the same as IBM FORTRAN II

except that variables already mentioned in COMMON may not
again be dimensioned and that only 2 subscripts are allowed.

DIMENSION Z(10,5),V(400) is permitted
DIMENSION X(10,5,10) is not permitted

EQUIVALENCE

EQUIVALENCE (a,b,c,---), (d,e,f,--),---

where a,b,c,d,e,f, are variable names. KINGSTON FORTRAN
imposes some restrictions on EQUIVALENCE statements which are
not pesent in IBM FORTRAN II. These are noted below:

1.
2.

3.

b,

Single variables may be equivalenced only to single
variables.

Arrays may be equivalenced to other arrays, of the same
size only.

Single variables may not be equivalenced to individual
items of arrays, nor may single items of two arrays be
equivalenced. In general, no subscripts may appear in
an Equivalence statement.

Because the compiler is single pass, it 1s crucial that
the order in the source deck be:

COMMON (if any), DIMENSION(if any), EQUIVALENCE (if any).

They must precede the first executable statement of the
program. v

If arrays are to be equivalenced, the first item only

in the 1list must have been defined previously in a
COMMON, or DIMENSION declaration, and the remaining items
in the list must not have been so defined. The
Equivalence statement itself defines these remaining
items. If single variables are to be equivalenced, and
any item in the Equivalence 1list has been defined in a
previous COMMON or TYPE statement, it must be first in
the Equivalence list, and the other items must not have
been defined in a COMMON or TYPE statement. For example,

COMMON A ,B(10,3),C
DIMENSION D(50)
EQUIVALENCE (A,F,G), (D,X)

This puts A, array B, and C in common storage; defines
array D; defines F and G as single variables in the same

memory location as A; and defines X as a 50-item vector in the

same location as D. The following are errors: (in the
example above).

- 20 -

EQUIVALENCE (D,A) (para.l,2)
EQUIVALENCE (B(1,1),G) (para. 3)
EQUIVALENCE (X,D) (para.5, X not defined)
EQUIVALENCE (G,A,F) (para.5, G not defined,

A defined)
EQUIVALENCE (D(50),X(50)) (para.3)

6. To preserve compatibility with other FORTRAN systems,

which require DIMENSION statements for all array variables
in an Equivalence list, KINGSTON FORTRAN allows extra
DIMENSION statements after the Equivalence statements.
Such DIMENSION statements may be used to mention the
equivalenced variables, but since they have already been
defined in the Equivalence Statement, the compiler will
ignore them, It will not, however, call them errors. For
example:

DIMENSION X (10
EQUIVALENCE (X
DIMENSION A (10

)
2
)
is permitted. The variables A,B,C,G in the second

DIMENSION statement are ignored by the compiler, because

they have already been defined in the preceding EQUIVALENCE
Statement.

, Y(20)
A,B), (¥,C,G)
» B(10), C(20), G(20)

T. It is possible to equivalence items not of the same type
or mode: e.g. EQUIVALENCE (A,I) - where A 1s real and
I is integer.

TYPE

—————

Two TYPE declarations are permitted. These statements
determine the type of variable associated with each varilable
name appearing in the statement. Thils TYPE declaration is in
effect throughout the program. The two declarations are

INTEGER a,b,C,....
REAL a,b,c,....

where a,b,c, are variable names appearing within the program.
Function names may not appear in TYPE declarations.

Rules: -

(1) A variable defined to be of a gilven type remains of
that type throughout the program.

(2) INTEGER indicates that the variables listed are integer,
and over-rides the alphabetic naming convention.

(3) REAL indicates that the variables listed are floating
point, and over-rides the alphabetic naming convention.

O

21 -

The TYPE declaration must occur before the first
executable statement of the program. If any of the variables
mentioned in a TYPE declaration are mentioned in a COMMON or
DIMENSION statement, the TYPE declaration must follow such
mention.

If a TYPE declaration precedes an EQUIVALENCE
statement, then 1t defines a variable in the sense required
by the EQUIVALENCE statement, and all variables equivalenced
to the one declared in the TYPE statement will be of the same

type.

If a TYPE declaration follows an EQUIVALENCE statement ,
then only the specific variable names mentioned in the
declaration will be affected.

Examples,

1. INTEGER A
EQUIVALENCE (A,B,C)

2. FEQUIVALENCE (A,B,C)
INTEGER A

3. EQUIVALENCE (A,B,C)
INTEGER A,B,C

4, INTEGER A,B,C
EQUIVALENCE (A,B,C)

Examples 1 and 3 cause A,B,C, to be integer variables and
occupy the same memory location.

Example 2 causes A to be integer, B,C to be real, and
A,B,C to occupy the same memory location.

Example 4 is an error in KINGSTON FORTRAN (see para. 5 under
EQUIVALENCE).

R R I EE—————————————— e e e bt et Pty e o et L e oL ket £ e AL ALt ARt et Lok e) et e e e e b g4 bt £ et et R g e L b LR L B T

