
PROCEEDINGS OF

COMMON JOINT EASTERN

MIDWESTERN REGION

OCTOBER 6, 7, 8, 1965

AT AMERICANA HOTEL, NEW YORK, N~~ YORK

NORMAN GOLDMAN

REGIONAL SECRETARY

;d't'!l-!Il l''irI!l'?f!!'1 '·'1 'II' fPn\ttcMhffltt"I'.'p I'" ·1 '1 ""IiiirM' I tit 't!fllr" - I'll] .']1 I h'IW' ttt t bht dttt, - FE, riit w

0

0

•

PAGES

1

7

12

37

41

51

66

TABLE OF CONTENTS

NOTES FROM ADVANCED MONITOR WORKSHOP

ELECTRIC UTILITIES PROGRAMS TEAM

EDUCATIONAL APPLICATIONS OF MARK SENSING

FORT 5 - A MONITOR CONTROL RECORD

PREPARATION AND SCORING OF FORTRAN PROGRAMS BY COMPUTERS

THE STATISTICAL VALIDITY OF APPLYING NUMERICAL SURFACE
TECHNI;~UES AND CONTOUR MAP PLOTTING TO CORRELATION PROBLEMS.

1620 WORST-CASE CIRCUIT DESIGN PROBLEM

84- THE SOLUTION OF LAPLACE'S EQUATION IN TWO DIMENSIONS

92

108

114

136

1.42

15-5

165

172

183_

£9>
213

217

250

STRUCTURAL ANALYSIS USING THE 1620 COMPUTER

SIMULATION OF UPTAKE AN.o DISTRIBUTION OF ANESTHETIC AGENTS

A SELECTIVE DISS~{INATION OF INFORMATION SYSTEM FOR MEDICAL
LITERATURE

HISTORY OF THE DEVEL~R(ENT OF PART

A STUDENT SCHEDULING SYSTEM

TEST GENERATION PROGRAM

PORT-A- PUI'lCH FORTRAN SOURCE AND DATA CARDS

Nill{ERI-CAL INTEGRATION USING GAUSgt:g QUADRATURE FORMULA

SERIES- AND- THB 1620

A COi4PYTER SURVEY OF PROFESSTQNAL SALARIES

INTERACTION IN 2-WAY ANALYSIS OF VARIANCE WITH SINGLE
REPLICATION

DECTRAN - A DECISION TABLE LANGUAGE TRANSLATOR

AN OPEN SHOP FOR ENGINEERS

PAGES

253

266

272

TABLE OF CONTENTS

CONTINUED

SrvIOLDS - SYRACUSE HANAGERIAL ON-LINE DArrA SYSTEH

SORTING ALGORITHI1S AND I1HEIR USE \'lIrrH A 1620 WITH rrwo
DISK DRIVES

PDQ FORTRAN COMPIL~AND GO SYSTEM
~.~

275 GENERAL PURPOSE USE OF SORT/MERGE, 1620-SM-047

287 HONITOR I SYSTEI1 PROGRAlvI PACKER

295 THE RI'f PRE-COHPILER

301 AN OPERATING SYSTEl-1 FOR THE 1620/1443 CONFIGURATION

303 FORTRAN LABEL INDEXER

306 PLorr SUBROUTINE FOB P:O:~ FORTRAN

311 EDIT LIBRARY SUBROUTINE FOR SPS II-D

320 MODIFIED SP-035

324 SHORT CUT HETHODS IN PROGRAMMING USING SPS

328 PROGRAMMED INrrERRUPT USING 1J.1HE 1311

364 READF - A FREE FOR!1AT READ SUBROUTINE FO~\ FORTRAN II-D

374 HOTOR AND FLYWHEEL REQUIREl'1ENTS FROM COHPUI1ER ANALYSIS OF
MACHINE DYNAMICS

385 ACTIVE NETWORK ANALYSIS

391 SII1ULATION OF A RADIO-DISPATCHED 'llHUCK FLEErr

395 SIIvIULATION OF AUTOHOBILE TRAFFIC

405 DATA l:'ROCESSING AT INDIANA STATE UNIVERSITY

472 THE NORTH CAROLINA SUI'1MER TEACHERS DA'fA PROCESSING INSTITUTE

480 A CONFUTER-AIDED r·IECHANICAL LINKAGE DESIGN ANALYSIS SYSTEM

481 GRAPHIC DATA PROCESSING

o

o

o

o

()

•

TABLE OF CONTENTS

.CONTINUED

PAGES

490 GAIflv1AYI~RIC CODING

503 CO/STATS-COI~PUTER ORIENTED STATISTICAL TEACHING AND
rrESTING SERIES

519 BATCH LOAD AND GO STEPWISE J:vlULTIPLE LINEAR REGRESSION PROGRAM

533 A NEW APPROACH rro INVESTHE~T ANALYSIS

535 A RELOCATA.t3L~ SPS SUBROUTINE F OR EDITING AND ROUNDING OUTPUT
DATA BOR SCIENTIFIC TABLES AND SIN:ILAR APPLICATIONS

541 CLEARTRAN

.554 AN APPROACH Iro TIME SERIES ANALYSIS


~~~ _____________________ IioJ ... ___ "",""""'(II' _____ """'''=·""",,"··~-···="'-... =.-.-~" -=.-.==="=.-... ;. ..• ,;,,;;'"""' ... -. .:.=-... -= ..... --= .. "~~~=~ 

o 



o 

c 

• 

tu 't"!'!U Itt"'" U '""l¥l flHLW"fiillUiiM'W b t t"ft."."" "HtizrH " " -"" lli"'Wii5'itPMI 

l'JOTES FROH ADVANCED HONITOH \'10RKSHOP 

DIM & EQ.UIVALANCE 

Dim always starts at sector 4800. Equi immediately after. 

Dim entry 20 positions 
Disk address 
sector count 
loading address 
entry address 
record mark or group mark 

Load add = 99999-7non-core image, flag on units position-~loaded 
by subroutine supervisor. 

Last position may be rlagged to indicate file protection and perm. 
as signrnent. 

SEQUENTIAL PROGRAN LIS'r 

Cylinder 99, indicates availability of disk storage. Must corres
pond with Dim table~ System table editor may be used to check 
correspondance. 

WORK AREA 

1) Used for assemblies and compilations 

2) Used for FORTRAN disk I/O logical record 1 starts at sector 219. 

3) Sectors 0-199 used to store F I/O and arith for overlays. 

4) Sectors 200-218 used to store DK I/O. 

5) Going back from end of work area--local tables and locals for 
mainline if necessary. 

GENERAL USE OF DUP 

1) Whenever disk sector address required drive code must be 
specified. (1, 3, 5, or 7) 

2) First job card after multi-drive definition must contain 
module change codes. 

3) All packs used by system must have splist-dlabl--beware of 
4800 in Dim entry 3. 

Linkage 
BTH 
DSA 

FORTRAN SUBPROG.RAI~1S IN SPS 

Name,~-+ll 
A,B, ••• 

/ 



Indicator Record 

S DS 
DC 
DAC 
DVLC 

DSC 
DORG 

,·;H-IOl 
6,98789d,5-s 
6, NAHEbb, 7-S 
22-S,5LAST,2,ff 
2, kk, S, EN'f.i:1Y-6, 
5,0,30,0 

17,0,0 
3-100 

DC 5,0 
• 

ENTRY 

• 
• 
• 

LAST DC 

. 
• 

l,@ (even) 

DETEH1'1INATION OP DISK LOAD ADDB~SSES 

1) Check for break in address assignment. 

Page 2 

2) Look for series of constants to define disk control field. 

3) Look for rrRA--rrCD 

E.G~ #1 Page 7 super-iort mani tor I 

DSC 1,1 
DSA DSA04 
DC 3,20 
DC 6,402@ 

E.G. #2 Page 9 FII phase l-A 

K PHADDA,701 
WN PHADDA,702 
TRA 
TeD LDPHA 

SEGMENTS OF FORTillUf 

Phase I-A 

1) Move blocks of I-B to work area for fast access. 

2) Calculate memory size. 

3) Initialize symbol table starting at 16000 with *****00000. 

4) Store subroutine names in symbol table. 

S} Initialize input area. 

o 

o 

o 



o 

o 

o 

gl,tprj··· - "!"w .. ··· 

Page 3 

6) Read control records and set indicators. 

7) Read communications sector. 

8) Initialize POnTRAN communication area. 

Phase I-B 

1) Read statement into chi. 

2) Place record mark at end of statement. 

3) Create symbol and name tables. 

4) Create strings and store in work area. 

Ptlase 1-0 

Storage Allocation 

1) Store constants in work area (cyl zero) in system. output format. 

2) Replace pointer with address of constant. 

3) Bring statement numbers into sym table. 

4) Place * at end of entry as storage is allocated. 

.5) Check for undefined sta tement nU.mbers. 

6) Allocate non-constant storage. 

Phase II 

Gener~tion of object code 

1) In core (2218-10000),. strin,5 & symbol, manipulation routines, 
housekeeping, statement number routine. 

2) Secondary blocks (100000-14100), aritbmetic translator, goto, 
if, I/O, function intialization. 

3) rrertiary blocks (14100-16000), variable subscripting, li teral 
subscripting, do. 

EXA.IvIPLE 

A = -.t31~H"C123 

1) Symbol table initialization 

16000 
16010 

*****00000 
*****00000 

• 

19990 *****00000 
3 



Page 4 

Symbol table entries start at 19999 and are 10 digi ts. .f:lirst 
5 are address of variable in name table. Last 5 are codes 
indicating "tihat is in name table. 0 
Name table entries start at 16000 and are variable in length. 

2) Create symbol and name table entries and genera.te strin:s. 

16000 
16010 

• 
19970 
19980 
19990 

41 L+? '/1 43 71 
72 73 00 00 00 

16 01 32 00 00 
16 00 52 00 00 
16 00 12 00 00 

C123 Entry 
Bl Entry 
A Entry 

1999 0133 0129 1998 0115 1997 0132 

0133 = 
0129 unary -
0115 ~H~ 
0132 ; 

3) Storage allocation 

16000 41 42 71 43 71 
16010 72 73 00 00 00 

• 

19970 0002920000 
19980 0001920000 
19990 0000920000 

4) ;}enerate object code through forcing table 

oper 
= 
unary -
~~~} . , 
19990133

Scan
1
2
3

LV
60

5
5
0

0129

LV of
1999
0133
0115

RV
59
a
4

60

1998 0115

RV of'
Ul.29
1998

. 0132

1997 0132

RV1LV~ Generate and collapse string

LV of 0115 = 2 RV of 0132 = 60

u-enerate

BTiJl 110PAC, 19
B'TjYI £iILEXP, 29

o

o

o

o

•

*1HiSriB ooo_" -) UOO" r-"'o ["""J(.",-j --- t

Page 5

Collapse

A= -FAC

1999 0133 0129 0101 0132

LV of 0129 = 5 RV of 0132 = 60

Generate

BTH HSGN, 0

Collapse

A = FAC

LV of 0133 = 60 RV of 0132 = 60

Generate

B11"I- B'RFAC, 9

FORlrRAN LOADER
Six Blocks

1) Initialization, read local cards, and build local tables in
",jork area.

2) Save COlllluon (to 21 sec tors) and load mainline.

Load incore subroutines.

Load library routines and flipper if necessary.

Load locals if necessary.

Restore cornmon, check Nl & N2, move r/o and arith into work
area if necessary, and call in arith and I/O.

SEGHEN'llATION OF r/o

T-1oni tor I

9 overlays
1 arith 18 r/o

Vlonitor II

Variable length same as monitor I.
1 arith, 1 read, 1 write

SUPERVISOR

1) Handles all reading of supervisor phases sets up read, write,
or control function and executes it. Checks for error before
operation is executed. -

2) Error routine 0 brought in, If indicator 19 on. Updat~s error
counters on disk. In core with error routines.

3) Error routine 0 plus determines if error is dlSk or non-disk
error.

4) Error routine I disk error or cylinder overflow. If cylinder
overflow, DDA adjusted. Up to 9 retries if disk error.

5) Er~ror routine 2 determines other I/O errors and gi ves retry
if possible (card punch).

6) Error routine 4 trap to here if read caused input of ** control
card. Transfer made to monitor.

7) ciring in SPS supervisor or checks for loader.

8) Brings in reloc loader.

9) Brought in by loader and examined for return-indicates what
source brought loader in.

10) Check if loader called by dup or monitor reread caller if
necessary.

11) dandles reading and prolessing of all monitor control records.

12) Relocating loader. o

o

. "iH6wH'!i'7f 'l'I"~'I,\/J!Zl"') "1" , 1'. "P'''U'''Y "',, Il"ff "Ut'I'''''&f''r'W'1J¥II,sPWWftl!', t' ,ttbtrttrrl'Zrt 1"0 H t" '" 'dirt. __ ' •• i' 'U' ." i'j r@1'! t rth '.»'t" f"Mritttt -- j"'-'YlfZ'WttiriiflI'f"![j"¥'W'j'j

o

o

•

, Newsletter #26

Eleotric Utilities Programs Team
or

aOMMON
(nee IBM 1620 Users Group)

October 20, 196;

The following were present at our October 7 meeting at the Americana Hotel
in New York Clty.

Larry J. Dupre, Central Louisiana Electric Company
Barry J. De1iduka, Central Varmont Public Service Corporatiol'
L. E. Cox, Jr., Memphis Light, Gas and Water Division
Thomas H. Farrow, Jr., Tampa Electric Company
Paul D. Folse, Tampa Electric Company
RichardW. Page, New York State Electric and Gas Corporation
Alvin L. Lipson, Virginia Electric and Power
George S. Haralampu, New Erigland Electric System
Jene Y. Louis, Long Island Lighting Company
Stanley A. Clark, Public Service Company or New Hampshire
LeRoy Sluder, Jr., Long Island Lighting Compan7
Phillip R. Shire, Commonwealth AssOCiates, Inc.
David C., Hopper, East Kentucky BECC
Robert F. Steinhart, IBM, New York
W. H. Morrow, Jr., IBM, New- York
Carol Ziegler, Orange and Rockland Ut.ilities, Inc.
R. A. Smails, Stone and Webster Service Corporation
O. B. Anderson, Jr., SOuthern Services, Inc.
J. E~ Hernandez Betancourt, Puerto Rico Water Resources Authority
Herb Blaicher, Jersey Central Power and Light
LutzP • Mueller, Jersey Central Power and L=i;ght
D. D. Williams,Baltimore Gas and Electric Company
Frank J. Wells, Long Island Lighting Company
Henry Mahlmann, Long Island Lighting Company
E. J. Orth, Jr., Southern Services, Inc.

Frank Wells, our Chairman, opened the meeting with a short business session.
The FIRST ITEM OF BUSINESS discussed was organization or the Team. The 1620
Users Group now goes under the name or COMMON and includes users of the 1130,
1800, and System/360 Models 30 and 40. Those interested in utility applications
who have this hardware on order are automatically included in the membership of
our Team.

Atter considerable discussion, the group decided the best course would be
to keep one Team, and not rragment ourselves into groups interested in one
particu:l.ar cOtnplter. The main rea~on for this decision is that our Team is a
problem oriented group. Just as the wide range of 1620 models (from Bikini to
late Victorian) has not interfered with discussion of our various problems, so
also should the various computers not interrere with our information exchange.

The small computers will always be around. While many or our m~mbers will
have access to a large computer in the accounting department, a small machine
such as the 1130 will be most usefUl to give immediate answers on small to
medium size jobs, and on jobs which require an immediate answer. There are

cases where a smaller computer such as the lSOO would be used as a terminal
for a larger centralized on-line computer.

Dick Page of New York State Electric and Gas Corporation raised the ques
tion·, "What does belonging to COMMON do for us? ft • That is, why meet when
COMMON meets? Al Lipson of Virginia Electric and Power Company explained the
value of the hardware sessions at the general meetings. Other advantages of
the general meetings are the sessions on operations research and statistical
techniques, and the in-depth discussions of software.

We might mention at this point as an item of interest for newer members that
the Utilities Team will not always meet in conjunction with the East~rn Region
of COMMON. There have been instances where we did not meet with the Users Group
at all. For instance, it has been our practice to meet at the biennial PICA
Conference and skip that Users Group meetingo Since our membership is nation
wide, we try to hold meetings away from the Eastern Region on a regular basis
so that more folks from the West might attendo We meet twice a year.

While we are on the subject, our NEXT TEAM MEETING will be held at the Mid
Western Region meeting in st 0 Louis, February 9, 10, 11 at the Chase Park Plaza.
A quick consensus of our members gave a thumbs down on meeting in Toronto at
the joint Canadian-Eastern meeting on March 20 0 We hear via the grapevine that
tutorial sessions on the 1130 and lSOO are to be held at the Sto Louis meeting.

As a SECOND ITEM OF BUSINESS, Frank Wells informed the Team that due to
changing responsibilities he has left the sphere of computer applications and
is resigning Chainnanship of the Teamo Frank appointed Ed Orth to act as
interim Chairman. Ed Cox volunteered to act as interim. Secretary.

Frank appointed a three-man nominating committee consisting of Don Williams,
George Haralampu, and Al Lipson.

After the intermission, the nominating committee reported the nomination of
the temporary Chairman and Secretary as candidates for permanent Chairman and
Secretary. For your purposes, a ballot is attached to this Newslettero Please
mark your choice, fold it as indicated, add a stamp, and drop it in the mail by
November 5.

Bob Steinhart of IBM distributed the LIST OF MODIFICATIONS TO THE 1620
ELECTRIC LOAD 'FLOWo A copy of this list is attached for those who did not
attend the New York meetingo Bob also commented on the Electric Load Flow for
the 1130. This program is under test at the present time, and will be available
during the first or second quarter of 1966 0 Minimum configuration is BK core
with disk, card, and typewritero

C'oncerning his modifications for the 1620 load flow, Ed Cox of the Memphis
Light, Gas and Water Division would like to emphasize that they will prevent
erroneous generator table overflows only when the number of generators in the
~stem plus the number of generator changes made on one case do not exceed the
table limits.

In order to clear up some rampant confusion on expected speed of the m,Q.
LOAD FLOW, Bill Morrow of IBM contacted Arno Glimn for us 0 Arno estimates that

o

o

the program will operate at 60 buses per second per iterationo That will make ~

~ 2 -

'I

,,',I
.I

j(TT -- "

o

o

•

. IT ·J··!· .. ·[""·'ij"·wr···-w ·-W -'--1"'"75 .. - '7'T" '---[Jr 2""

it roughly thirty tiEs faster than the 1620 Model I load f1owo Please note
that this isstriet1y a.n index of the solution time. Output medium (oard,
typewriter, printer) should be taken into consideration in arriving at a final
ratio.

In answer to a request from George Haralampu of New England Eleotric Service
on IBM eOMMlTTMENTS FCR THE 1130, Bob Steinhart sends us the following informa
tion.

''With respeot to the ll30, the following are being prepared: MATHPAK,
CO GO , NuJnt,rioal. Surfaoe Techniques and Contour Map Plotting, and Statistical
Syst~m. MA'l'HPAK is a set of FORTRAN subprograms for function evaluation,
matrix maniPllation, etc 0 COGO is announced for availability during the
Third Quarter of' 1966, the others during the Second Quarter. We are aware
of the need for an 1130 oritical path scheduling program, but can say
nothing more on'this subject at presento Both the 1130 and 1800 are
supported with FeRTRAN, an assembly language, a monitor system for the disk
oriented oonfigurations, etc 0 The 1800, in addition, is supported with the
Time Sharing Executive Systemo

tlSystem/360 now consists of Models 20, 30, 40, 44, 50, 65, 67, and 750
All except Model 20 are exceptionally well suited for engineering and are
fully supported with FORTRAN and other programming systems 0 Announced
application program support includes the Scientific Subroutine Package
(like MATHPAK for the 1130, but more extensive) which will be available
this year, Project Management System (includes PERT), Mathematical Pro
gramming System (includes linear programming), and General Purpose Simula
tion SyStem. The availability dates for the last three items have not yet
been announoed."

Concerning the 1000 LOAD FLOW, we hear that the 1130 source deck may be
assembled on the 1800 0 The 1130 load flow under test is also apparently iden
tical to the 360 load flowo Specifications o;f the 1130 load now were summar
ized in Newsletter 123, dated June IS, 19650

Bill Morrow had some interesting comments to make concerning mM's EDUCATION
EFFORTS FOR THE 1130 AND lSOOo He indicated that a I1t~a.cher~s teacher" course
has been designed and distributed so that competence should now exist at the
District level for 1130 and 1000 courses 0 Concerning this matter of courses,
please carefully check background material assumed by the courseo If the course
is not as promised, or if you have suggestions r or improving the course of
material, please contact Bill Morrowo His full address follows:

Wo Ho Morrow, Jro
Program Administrator
Public Utilities-Engineering and Operations
112 East Post Road
White Plains, New York 10601

Bill will sinc erely appreciate your comments. It is only through our feedback
that IBM can design the best possible course for their customerso

Quite a bit of conflicting information has been going around concerning
COOE REQUIREMENTS FOR THE ENGINEER.ING OPERATING SYS'IEM. The latest 1«>rd is
that the EOS requires the full operating systemo Without communications capa
bility, minimum core requirements are 12SK. With cODlIIDlnications, core

<=> 3 ...

requirements are 256K. Bill Morrow is sending us some material concerning the
EOS. We will forward it to the membership when it comes in. You also may wish
to check back Newsletters.

Phil Shire of Commonwealth Associates discussed some experimentation they
have done to hasten CONVERGENCE OF THE 1620 LOAD FLOW. He has not had much
success with a technique for random choice of acceleration factor. However,
much better results were obtained by increasing alpha by 0.2 on the two buses
with the highest mismatch. Phil discussed three programs Which he hopes to
get in the Library before too long. They are: 1) A steam distribution program
for steam networks, programmed in FORTRAN and SPS; 2) A column design program
using the AlSC formulas, programmed in UTO FORTRAN; 3) A program for circuit
routing in power plants using dynamic programming techniques, coded in SPS.

Don Williams of Baltimore Gas and Electric Company gave a very interesting
discussion on MANAGEMENT INFORMATION SYSTEMS, telling us about the system being
worked up at his company. Of particular interest is their transformer load
management system. Don stressed the need for looking at the 'Whole picture
ahead of time. He who jumps in and starts work without considering how all the
details fit together runs a great risk of going in all directions at once.

Don mentioned that Detroit Edison has mechanized the ordering of materials
and feeder design. That is, input data of so many miles of such and such con
struction causes output of a complete bill of materials including costs.

There is a ver.y definite need for critical path techniques in a management
information system. When CPM plus the proper reporting techniques are built
in, management can tell almost on a day to day basis exactly what has been

o

done, what remains to be done, the items holding up the works, and money spent. 0
That is, management will not have to wait for this information to filter down
through the various channels. In its final form, such an infornation system
will place an inquiry station at the finger tips of top management.

Many believe that engineers are best suited to design such a total infor
mation system due to their experience with the electrical system, and due to
the nature of their education. However, as Herb Blaicher of Jersey Central
emphasized, "Such a system assumes a high degree of sophistication at top
management. It is up to us to sell them through a proper education program".

Thus, our meeting.

With the changes wrought by COMMON, our Team is now the largest and most
active in our industry. The fement generated by the various new generation
computers will produce many new ideas and methdds. We are fortunate in our
industr,y that competitive interests do not hinder information and program
exchange. If our past success in the limited area of the 1620 is to be magni
fied in our new and larger scope, we must continue in our efforts to comnunicate
with one another.

This is our last Newsletter. Ed Cox will be taking over the Newsletter
along with the other duties of Team Secretary. We have enjoyed serving you all.
Let us all continue in our support of the Newsletter through our new Secretary.

.., 4-
11J

o

_,,! j itiirhftbl"irt5f9b §

o

o

o

h# @*dhttdt# ibt±" hriitS m -""]"""-,.

In his moving from our ranks to fields of even greater achievement, Frank
Wells leaves us with a well-1mit organization.. The magnitude of his contribution
to our Team can be seen in the new applications we have discussed, attacked, and
conquered, and in the continuing cohesive spirit of the Team. Frank was one of
the original members of the Team, and has seen it grow from afiedgling group to
the present membership of 55 under his guidance 0 We wish Frank continued succe'ss
in his new responsibilities ..

Sincerely,

f1)()~J. \L

Ed Orth
Team Secretary
Southern Services, Inc.
PO Box 2641
Birmingham, Alabama 35202

/1

." ~-"~~~---------~~ .•• =." " .. ~ ~.=== ... ' ... -.. -= ... _ _ ,

o

o

o

f 'b'tChrift '$ () #

o

o

o

if ri·P··f·. "ft'\ t' Utt 'ji") +# . 'j". its ... ittttriHH m.ri9"Hi - -gp" ._._ ...

EDUCATIONAL APPLICATIONS OF MARK SENSING

by RICHARD D. ROSS AND TONY A. ROSS
UNIVERSITY OF MISSISSIPPI
COMPUTER CENTER

------------------.-------~~"'-"'='~~"""""'-"~= = = = = .. = =._._= _=...... __ - .. _._ ... __ ._ -

EDUCATIONAL APPLICATIONS OF MARK SENSING

by Richard D. Ross and Tony A. Ross
University of Mississippi
Computer Center

The mark sense attachment to the IBM 519 Reproducer
has rapidly changed many aspects of the function of the
Computer Center at the University of Mississippi. This
attachment allows data to be mark sensed on IBM cards with
a special graphite pencil and then in turn punched into the
cards via the 519 Reproducer mark sense attachment.

Presently the University of Mississippi uses mark
sense cards for:

(1) Scoring of objective exams
(2) Scoring all Student Counseling test given to incoming

freshmen
(3) Used for completely automating test scoring and final

grade output for Army R.O.T.e.
(4) Used for student attendance record keeping
(5) Used for Athletic Association ticket information

The first two items listed above will be discussed
in detail in this paper and a brief mention of the last
three will be given. .

University of Mississippi Test Scoring Program

The University of Mississippi Computer Center began
scoring objective tests on the computer in 1963. The test
scoring program that has been used was written by Robert M.
O'Brien of Northeastern University, Massachusetts. Mr.
O'Brien's program has been used extensively for the past
three years although it was found that his program has
certain limitations. These limitations are:

(1) Only 150 questions per test could be graded
(2) Only one correct answer per question was accepted
(3) Weighting of questions was not permissable
(4) Batch test grading was not permissable

All of these restrictions have been removed from the
University of Mississippi Test Scoring Program (UMTS), and
some additional features have been added.

Given here is the University of Mississippi's Test
Scoring Program abstract as it will be sent to the 1620
Program Library in the immediate future.

Page 2

o

o

o
/3

I,oll"· L j t It 11 h ht itM#ti ·*rlri.zHtW.C······ .. "] -m· +aftt,i!"_··'i'iS-r"""![X-·-**&t!r·· r-- W""[· - n'""· YT"F "[MWtl

Page 3

PROGRAM ABSTRACT

4C) TITLE: University of Mississippi Test Scoring Program (UMTS)

AUTHOR: Richard D. Ross

o

o

DIRECT INQUIRIES TO: Richard D. Ross, Director
Computer Center, Carrier 103
University of Mississippi
University, Mississippi
phone: ,area code 601-232-8368

/

DESCRIPTION: UMTS is a flexible means of scoring objective
exams taken on mark sense cards. It features a card output
patterned after the Northeastern University Test Scoring
Program by Robert M. O'Brien, Northeastern University, Mass.
A numerical grade for each student is published along with
a grade distribution (with mean and standard deviation)
and an exam analysis--indicating how many choices per
question were made and the percentage of correct answers
per question. UMTS has a maximum range of 500 5-choice
questions (10 cards) per exam with multiplicity of correct
answers permitted. In addition, each question may be
weighted with a weight value from 1 to 5.

UMTS allows for identification to be punched in columns
76-80 of each students grade card. This identification
is t~ken from columns 14-18 of the control card. One of the
most important features of UMTS is the speed of grading each
students exam. Given below is speed of grading different tests:

No. of Tests
100
100
100
100
100
100:
100

No. of Questions
50

100
150
200
300
400
500

Time in Seconds
93

120
155
190
260
330
400-

As you can see from the table, to grade 150- ques-tions-- takes
approximately 1 1/2 seconds.

RESTRICTIONS/RANGE: No special instructions are required,
although TNF and/or Direct Divide can be used on computers
that have these capabilities. The maximum number of ques
tions that may be graded is 150 questions for 20K computers.
and 500 questions for 40K computers.

11

1. Program Deck.

2. Co'ntrol Card.

Card Columns

1-2

3-5

6-8

9

10

11

12

14-18

INPUT

Data

Number of test cards per student

Number of questions on the exam.

Number of questions not to be
graded (this includes only those
questions properly left blank).

"1" if the grade distribution and
exam analysis by section is desired.
Otherwise, a "()'T or blank.

"1" if the grade distribution and
exam analysis by all sections
totaled together is desired.
Otherwise, a "0" or blank.

"1" if grade distribution is
desired on last card indicator.
Otherwise, a-rrQ"--orblank.

"1" if name is to be omitted from
output, otherwise a "0" or blank.

Any data in columns 14-18 of header
card will be punched in columns
76~80 of each student's output
card. This could be used to give
the percent of the final grade
that this test will be and the test
:Qumber or any other identification
that is needed.. Anotherposs ible
use for this output is to put the
instructor's initials or in some
four-letter cases, their last name.
If left blank, nothing will be
punched.

Page 4

o

o

o .'

/.5

ht' ¥#triftrt.,ttt $ * -tH"riit ""j tt"tH htt m'"TZfRtTf

Page 5

3. Keys For The Exam.

o The key cards for the exam are the same as the student

o

•

answer cards. They are of three types: major keys, secondary
keys, and weight cards.

A. MAJOR KEYS - Required
Contain the instructor's first choice of correct
answers. It must contain an answer for each question
to be graded.~estions not to be graded must be
left blank.
Columns 1-5 have a 99999.

B. SECONDARY KEYS - Optional
Contain alternate answers to those given on the
major keys. If a question on a secondary key card
is left blank, no altern~te answer is assumed.
There can be 4 or less secondary key cards for
each major key.
Columns 1-5 have a 99998 for first alternate key,
99997 for second, 99996 for third, and 99995 for
the fourth alternate key.

C. WEIGHT KEYS - Optional
If used, the weight key Y:ill have a weight for each
question answered on the aA!ior key. An answer A
on the weight key assigns that question a weight
of 1; a B, a weight of 2; a C, a weight of 3; a
D, a weight of 4; an E, a weight of 5. If a
question is left blank, the weight is assumed to be 1.
Columns 1-5 contain 99994.

Column 30 of ALL the key cards contains:
1, if the card pertains to the first 50 questions
2, if the card pertains to the second 50 questions
3, if the card pertains to the third 50 questions

and so on, until
9, if the card pertains to the ninth 50 questions
0, if the card pertains to the tenth 50 questions

Only one answer per question is allowed, but by using
the alternate key cards, if the student answers anyone of
the correct answers he will get credit for that question.
Let it be stressed that one and only one answer is to be
marked per question~ --- --- ---- --- -- -- --

If any of the alternate key cards or weight cards
are not marked, they do not have to be read in, but if
they are read in they are ignored.

The order by which the key cards are read in after
the control card is of no consequence .

Ib

4. Student Answer Cards.

Card Columns Data

1-5 Student number

6-23 Student name

24-25 Section number

26-29 Course number

30 Card number

31-80 Student's answers

The student's answer cards do not have to be in any
particular order. The only requirement is that all cards
for one student by read in together.

OUTPUT

1. Student s grade card

Card Column Data

2-3 Section number

6-9 Course number

15-32 Student's name

Student number

Page 6

39-43

49-51 Number of correct answers

57-59

65-67

72-74

76-80

Number of incorrect
answers

Number of questions
omitted

Score

Any data in columns
14~18 of the control
card

c)

o

o

Page 7

2. Grade distribution cards.

0 Card Columns Data

2-3 Section number

6-9 Course number

35-37 Score

48-50 Frequency

61-63 Cumulative frequency

74-76 Percentile

3. Exam Analysis Cards.

Card Columns Data

2-3 Section number

6-9 Course number

14-16 Question number

0
23-26 Number of A answers

32-35 Number of B answers

41-44 Number of C answers

50-53 Number of D answers

59-62 Number of E answers

68-71 Number of omissions

78-80 Percent of correct
answers to this question

o
/,p

STUDENT COUNSELING CENTER TEST GRADING

The Student Counseling Center has converted all of
their test grading to mark sense IBM cards. This has
saved them much time and effort in giving pre-college
entrance tests and getting the results as soon as possible
after the last test is given. There were three programs
written for the Student Counseling Center to produce the
desired results. These programs are named:

(1) ACT AND MASTER CARD PROGRAM
(2) TEST CARD PREPARATION PROGRAM
(3) TEST SCORING STUDENT COUNSELING PROGRAM

The Student Counseling Center gives a battery of tests
and they are:

(1) Diagnostic Reading Test, form A, F, or H.
(2) Nelson-Denny Reading Test
(3) Abstract Reasoning
(4) Edwards
(5) Math Test
(6) Strong Entrance Test

The above tests range from 50 question tests to 225 question
tests for the Edwards and to 400 question tests for the
Strong Entrance Test.

Given here is the outline of the procedure for pre
paring the tests to be given and a s~mple of the results.

Step 1. A master card should be made for every student
using the following format:

Col. 01-05 Alpha Number
Col. 06-23 Name
Col. 26 Sex
Col. 31-32 Age
Col. 34-35 Classification
Col. 38-50 Street Address
Col. 52-64 Home Town
Col. 66-78 State
Col. 80 Asterisk

Page 8

o

o

o

o

The two digit classification in Cols. 34-35 will be
as follows:

01 Pre-College
02 Freshman
03 Sophmore
04 Junior
05 Senior
06 Transfer (Year 1)
07 Transfer (Year 2)
08 Transfer (Year 3)
09 Transfer (Year 4)
10 Graduate (Year 1)
11 Graduate (Year 2)
12 Graduate (Year 3)
13 Graduate (Year 4)
14 Liberal Arts
15 Business and Government
16 Engineering
17 Pre-Medicine
18 Pre-Pharmacy
19 Education

If an ACT card is available for the students, a com
puter program labeled ACT AND MASTER CARD PROGRAM is avail
able to prepare the master card and the ACT card that will
be used in the test grading program later. The master card
will have all of the information in the correct Cols. with
the exception of age which is in Cols. 31-32 and this will
have to be punched in by hand. The classification is assumed
to be 01 for pre-college students. After the master cards
and the ACT cards are prepared from the original ACT cards,
the output is then sorted on Col. 80. The ACT cards will
fall in the first pocket of the sorter and the master cards
will fall in pocket eight of the sorter.

Step 2. After the master csrd has been prepared either
by the computer program or manually, the program labeled
TEST CARD PREPARATION is now loaded into the computer to
prepare the mark-sense cards for the DRT, Nelson-Denny,
Abstract, Edwards, and the Math Test. After the program
has been loaded into the computer, it will type the message
"READ IN MASTER CARDS" and at this time, read in the master
cards that have been prepared in Step 1. After the master
cards have been read in, the computer will then type out
the message "ENTER NO. 01 CARDS" and at this time you will
place in the punch hopper of the 1622 No. 1 mark-sense
cards. Press start on the 1620 Console and punch start
on the 1622. After it has punched all of the No. 01 cards
necessary, it will then type out· the message "ENTER NO. 02
CARDS" and at this time you will clear the punch hopper
and continue this procedure until you have completed punch1ng

Page 9

the No. 05 mark-sense cards. If an error occurs and you
want to begin again, press RESET-INSERT-RELEASE and START
on the 1620 and the computer will type "ENTER NO. 01 CARDS."

If an error occurs while punching a particular set
of cards and you only want to begin on this set again,
turn switch-4 on and press RESET-INSERT-RELEASE- and START,
then turn switch-4 off.

Step 3.
preter.

These cards are now interpreted on the 548 Inter-

Step 4. After all cards have been interpreted, they are
sorted on the Alpha Number, Cols. 5, 4, 3, 2, 1, and the
test number which is in Col. 25. In summary, you will sort
on Cols. 5, 4, 3, 2, 1, and 25.

Page 10

Step 5. The cards are now in order according to the tests
that are given and the number of the test will be interpreted
on the mark-sense card and will appear in the block labeled
Section Number. For the DRT test, there will be an alphabetic
letter A, F, or H for the form of test given. Be sure that
this letter agrees with the form of test that is being given.

Step 6. After all tests have been given, they will now
be mark sensed using the 519 Reproducer. After the cards
have been mark-sensed, take all of the DRT tests on which
the student should have marked the line number that he was
on during the reading part of the DRT test. This number
will now be punched manually as a three digit number in Cols.
27, 28, and 29 of the No.1 and No.2 cards of each person.
The same number should appear on both cards, if not, an
error message will be typed later. Some number has to appear
in these Cols. even if it is 0; hence, if the student did
not give the line number, then you should enter 000 in Cols.
27, 28, and 29.

Step 7. After the cards have been mark-sensed, the master
cards followed by the ACT cards that were previously punched
are placed in front of all of the tests that have been given.
All of these cards are now sorted on Cols. 30, 25, 5, 4, 3,
2, and 1. These cards are now ready for grading.

Step 8. Load in the program labeled TEST SCORING STUDENT
COUNSELING CENTER followed by all description~headers, key
cards, and weight decks. After all of these have been read
in, the message "READY TO GRADE TESTS" will be typed on the

02/

o

o

o

'*

o

•

typewriter. Place the sorted deck in the read hopper and
read in the tests and in turn, the correct answers will
be punched. If a check stop occurs, this may indicate
that a card has invalid characters punched on it or it
may mean that sorting was incorrect. If any error messages
are typed out, this will indicate that some of the test
cards were prepared incorrectly.

Step 9. The answers punched are now printed on the 407
using the standard board with switch-Ion. This board is
wired to skip to a new page if there is a nine (9) in
column "1" of a card providing switch-l is on. Two copies
of everything will be printed--one for the student and
one for the Student Counseling Center.

Step 10. The format for all cards is given on the suppli
mentary page. If there is a student who appeared at the
test late and there are no master cards or test cards
made for this student, the student will be given the correct
card numbers for each of his tests, and he will sign his
name across the top of the card under the line marked
signature. These cards will then have to have the correct
information punched in them according to the format on
the supplimentary sheet. Thts information is punched in
the card before the cards are mark-sensed. Also a master
card will have to be punched for each of these and an Alpha
Number given to them. This number can not be the same as
any other Alpha Number given for this test. The same
Alpha Number has to appear on the person's master card,
his ACT card, and all tests that he has taken.

To be able to grade all of these tests on the computer,
a set of answer cards and percentile cards have to be
read in for each test. In case of the Diagnostic Reading
Test asswer cards and percentile cards have to be read in
for the three different forms-A, H, and F. For some of
the tests the men and women have different percentiles
and these also have to be read in as tables. Shown on
the next five pages are the description headers, key cards,
weight cards, and percentile cards that are read in as

Page 11

part of the input data to the TEST SCORING STUDENT COUNSELING
PROGRAM. This data is now followed by the student's answer
cards and the results are produced.

Shown also is a sample input for the Strong Entrance
Test and a sample output .

DESCRIPTIONS HEADERS - MASTER KEY CARDS - PERCENTILES Page 12
01 PRE-COLLEGE
02 FRESHMAN
03 SOPHMORE C 04 JUNIOR
05 SENIOR
06 TRANSFER {YEAR 1 }
07 TRANSFER (YEAR 2)
08 TRANSFER (YEAR 3)
09 TRANSFER (YEAR 4)

r 10 GRADUATE (YEAR 1)
I 11 GRADUATE (YEAR 2)
I

12 GRADUATE (YEAR 3)
13 GRADUATE (YEAR 4)
14 LIBERAL ARTS
15 BUSINESS AND GOVERNMENT
16 ENGINEERING
17 PRE-MEDICINE
18 PRE-PHARMACY

-19 EDUCATION
01 NORMS ACT
02 U.S. ENGLISH
03 COLLEGE MATHEMATICS
04 BOUND SOCIAL STUDIES
05 NATURAL SCIENCE
06 COMPOSITE
07 R P
08 S R
09 UNIV OF DRT
10 MISS RATE
11 1959-1962 VOCABULARY 0 12 FORM () COrv1PREHENS ION
13
14 NATL 1960 NELSON-DENNY
15 FRESHMAN VOCABULARY
16
17
18 U.S. 12TH OAT
19 GRADE ABSTRACT R.
20 M-F
21
22
23 M-F EDWARDS
24 1
25 2
26 3
27 4
28 5
29 6
30 7
31 8
32 9
33 10
34 11
35 12
36 13
37 14

0
~3

0 38
39
40
41
42
43
44
45
46
47
48
49

-50
0135 0237
1146 1246
2149 2250
3'154 3253
4156 4256
5158 5258
6160 6260
7163 7263
8167 8267
9171 9271

01 01 02
01 02 03
01 03 04
01 04 05
01 05 06

()
02 01 10
02 02 11
02 03 12
03 01 15
04 01 19
05 01 24
05 02 25
05 03 26
05 04 27
05 05 28
05 06 29
05 07 30
05 08 31
05 09 32
05 10 33
05 11 34
05 12 35
05 13 36
05 14 37
05: 15 38
05 16 39

-06 01 42

o

It ww..w' '12" ... '8' 'ty"tl'lIl¥Uffl ¥'"N' 11"11 it' t

DESCRIPTIONS HEADERS -.MASTER KEY CARDS - PERCENTILES
15

Page 13

16

1959 UNIV. OF MISS.
MATH TEST

u.S. 12TH DAT
GRADE M-F SPACE RELATIONS

UNIV OF DRT
MISS RATE
1959-1962 VOCABULARY
FORM () COMPREHENSION
0339 0440 0541 0642 0743 0844 0944 1045 PERCENTILES
1346 1447 1547 1648 1748 1848 1949 2049 P E f.(C E N TIL E S
2350 .2451 2551 2652 2752 2852 2953 3(;53 PEi:';:CENT I LES
3354 3454 3554 3654 3755 3855 3955 4055 PEt-<CENT I LES
4356 4456 4556 4656 4757 4857 4957 5 u57 PEf--<CENT ILlS
5358 5458 5559 5659 5759 5859 596u 6u6U PEkCENTILE:S
6361 6461 6561 6661 6761 6861 6962 7062 PEkCENTILES
7363 7464 7564 7665 7765 7866 7966 8066 PEI-<CENTIlES
8367 8468 8568 8668 8769 8869 8970 9070 PERClNTIlES
9373 9474 9574 9675 9777 9879 9980 Ou35 PEf-<CENT I lES

dt

Ul
G2
\)3

U4
u5
U6
U7
08
09
10

DESCRIPTIONS HEADERS - MASTER KEY CARDS - PERCENTILES Page 14 0
99999DIAGNOSTIC KEY F-AA2 186896897678796869878889763104231224444021324322303 ..
99999DIAGNOSTIC KEY F-AA2 2856558597956788977669576~4400024141124343421241234
99999DIAGNOSTIC KEY F-FF2 187867876667886676778987873010321101101341331114444
99999DIAGNOSTIC KEY F-FF2 268887795569757685686875992040013131311442421223311
99999DIAGNOSTIC KEY F-HH2 178698867767786789799686883332130101414300412112024
99999DIAGNOSTIC KEY F-HH2 297767656585796895656756793213024141314132132443314
00004 00009 00013 00017 00022 00026 00030 00035 00039 00043 R2 01
00048 00052 00056 00061 00065 00069 00074 00078 00082 00087 R2 02
00091 00095 00100 00104 00108 00113 00117 00121 00126 00130 R2 03
00134 00139 00143 00147 00152 01156 01160 02165 02169 03173 R2 04
04178 05182 06186 07191 09195 11199 12204 14208 16212 20217 R2 05
22221 24225 26230 30234 33238 36243 39247 41251 44256 47260 k2 06
49264 51269 55273 57277 61282 63286 64290 67295 69299 72303 R2 07
74308 76312 77316 79321 81325 83329 85334 86338 87342 88347 R2 08
90351 90355 91360 92364 93368 93373 93377 94381 94386 95390 k2 09
95394 96399 96403 96407 97412 97416 97420 97425 98429 98433 R2 10
98438 98442 98446 98451 98455 99459 99464 99468 99472 ~9477 R2 11
99481 99485 99490 99494 99498 99503 99507 99511 99516 99520 k2 12
99524 99529 99533 99537 99542 99546 99550 99555 99559 99563 k2 13
00 00 00 0- 1 V2 01
01 02 02 02 03 03 04 06 07 09 11 13 15 18 21 24 27 30 34 38 V2 02
42 45 50 55 59 63 67 71 76 80 85 89 93 96 97 99 99 99 99 99 V2 03
00 00 00 0 1 02 02 03 03 05 07 09 11 C2 01
14 18 22 27 33 38 44 50 57 63 70 78 84 89 94 97 99 99 99 99 C2 02
99999NELSON-DENNY KEY 3 18768658857876555~965985594324100310442423111312102

99999NELSON-DENNY KEY 3 279886569785855796567655982314323242422413031421334
00 00 00 00 * 1 02 03 03 03 04 05 06 07 09 11 12 14 16 V3 01
18 20 22 24 26 28 31 34 37 39 42 44 47 50 52 55 57 59 61 63 V3 02
65 67 69 71 73 75 77 79 80 82 83 86 87 88 89 90 91 92 92 93 V3 03
94 94 95 95 96 96 97 97 97 98 98 98 99 99 99 99 99 99 99 99 V3 04 0
99 V3 05
99999ABSTRACT KEY 4 159868565987789767989876561023204211313414244310441
0103 0303 0305 0305 0305 0305 0305 0305 0510 0510 P4 01
0510 0510 0510 0510 1015 1015 1015 1015 1020 1520 P4 02
1520 1525 2025 2030 2530 2535 3035 3040 3545 3545 P4 03
4050 4555 5060 5560 6065 6570 7075 7580 8085 8585 P4 04
8590 9095 9095 9597 9799 9999 999~ 9999 9999 9999 P4 05
006A OllA 016A 02lA 026A 031A 036A 041A 046A 051A 056A 061A 066A 071A 05 01
002B 003B 004B 005B 151B 1528 153B 154B 155B 076B 077B 0788 079B 0808 05 02
002A 012A 017A 022A 027A 032A 037A 042A 047A 052A 0~7A 062A 067A 072A 05 03
006B 008B 009B 010B l56B 157B 1588 1598 160B 081B 082B 0838 0848 0858 05 04
003A 008A 018A 023A 028A 033A 038A 043A 048A 053A 058A 063A 06BA 073A 05 05
011B 012B 014B 015B 161B 162B 163B 1648 165B 086B 0878 088B 089B 0908 05 06
004A 009A 014A 024A 029A 034A 039A 044A 049A 054A 059A 064A 069A 074A 05 07
016B 017B 018B 020B 166B 167B 168B 169B 170B 091B 0928 0938 094B 095B 05 08
005A 010A 015A 020A 030A 035A 040A 045A 050A 055A 060A 065A 070A 075A 05 09
021B 022B 023B 024B 1718 1728 173B 174B 175B 096B 097B 098B 099B 100B 05 10
076A a81A 086A 091A 096A 106A lIlA 116A 121A 126A 131A 136A 141A 146A 05 11
026B 0278 028B 0298 0308 1768 1778 178B 179B 180R 1028 1038 1048 1058 05 12
077A 082A 087A 092A 097A 102A 112A 117A 122A 127A 132A 137A 142A 147A 05 13
031B 0328 033B 034B 0358 1818 182B 1838 184B 1858 106B 108B 109B 110B 05 14
078A 083A 088A 093A 098A 103A 108A 118A 123A 128A 133A 138A 143A 148A 05 15
0368 0378 0388 0398 0408 1868 1878 188B 189B 1908 111B 1128 1148 1158 05 16
079A 084A 089A 094A 099A 104A 109A 114A 124A 129A 134A 139A 144A 149A 05 17
0418 0428 0438 0448 0458 1918 1928 1938 194B 1958 116B 117P. 1178 1208 05 18

- W" , '_,'" F""'yr] - "Il .. (.... -W f' W· j ··W···-r• --e'Y· ... · W"VT'- ._. "f"m""'" JEr on ... -tT·t-··. n

0 DESCRIPTIONS HEADERS - MASTER KEY CARDS - PERCENTILES Page 15
080A 085A 090A 095A 100A 105A 110A 115A 120A 130A 135A 140A 145A 150A 05 19
046B 047B 0486 049B 0508 1968 1978 1988 1998 200B 1218 1228 1238 124B 05 20
I51A 156A 161A 166A 171A 176A 181A 186A 191A 196A 206A 211A 216A 221A 05 21
051B 0528 05·38 0548 0558 2028 2038 2048 2058 1268 1278 1288 1298 1308 05 22
152A 157A 162A 167A 172A 177A 182A 187A 192A 197A 202A 212A 217A 222A 05 23
056B 057B 0588 0598 0608 2068 2088 2098 2108 1318 1328 1338 1348 1358 05 24
153A 158A 163A 168A 173A 178A 183A 188A 193A 198A 203A 208A 218A 223A 05 25
0618 0628 0638 064B 0658 211B 212B 2148 2158 1368 1378 1388 1398 1408 05 26
154A 159A 164A l69A 174A l79A 184A 189A 194A 199A 204A 209A 214A 224A 05 27
0668 067B 0688 0698 0708 2166 217B 218B 2208 141B 1428 143B 144B 1458 05 28
155A l60A 165A 170A 175A l80A 185A 190A 195A 200A 205A 210A 215A 220A 05 29
0718 0728 0738 0748 0758 2218 2228 2238 224B 146B 147B 148B 1498 150B 05 30
1016 0268 1078 0328 1138 0388 119B 044B 125B 050B 051A 201A 057A 207A 063A 05 31
213A 069A 219A 075A 225A 001A 151A 007A 157A 013A 163A 019A 169A 025A 175A 05 32
00 00 00 0 M5 01
00 00 01 00 00 00 00 01 00 01 00 00 00 00 a M5 02
00 00 03 00 00 00 00 02 00 02 00 00 01 00 01 00 M5 03
00 01 06 00 00 00 00 05 00 03 01 00 03 00 02 00 M5 04
00 03 09 00 01 01 00 09 01 05 02 01 06 01 03 00 M5 05
00 06 14 00 02 02 01 13 02 09 03 02 10 02 06 00 M5 06
01 10 19 01 03 03 04 20 02 12 06 03 13 03 09 01 M5 07
02 16 27 03 06 04 05 27 04 18 10 05 18 05 13 03 tvl5 08
04 23 36 06 11 07 09 34 05 24 13 07 24 06 17 06 M5 09
07 34 46 09 1~ 11 13 42 08 31 18 10 29 09 24 15 M5 10
10 43 54 15 22 16 17 50 09 38 24 15 37 12 32 27 M5 11
16 52 63 21 28 21 19 58 13 45 31 20 44 14 40 46 M5 12
22 63 71 28 34 28 25 65 17 53 37 28 51 19 47 68 M5 13
30 73 78 37 43 36 32 72 21 61 46 33 57 23 57 86 M5 14

0
40 81 84 49 52 45 39 78 27 67 55 41 64 27 65 96 M5 15
50 88 88 62 61 54 45 83 32 75 63 50 69 32 72 99 M5 16
58 93 92 72 68 64 51 87 38 79 70 57 75 39 77 99 M5 17
66 96 95 81 76 72 57 90 45 84 75 64 79 45 84 99 M5 18
74 98 96 89 82 79 64 93 54 88 82 71 85 53 88 66 M5 19
83 99 97 93 86 84 72 95 63 92 86 78 89 59 92 99 M5 20
86 99 99 97 91 89 78 97 73 94 90 84 92 67 95 66 M5 21
91 99 99 98 94 93 84 99 79 97 94 89 94 73 98 99 M5 22
95 99 99 99 96 96 89 99 85 99 96 93 96 81 98 99 M5 23
98 99 99 99 98 98 <)3 99 91 99 98 97 98 89 99 99 M5 24
99 99 99 99 99 99 95 99 94 99 99 98 99 90 99 99 M5 25
99 99 99 99 99 99 97 99 98 99 99 99 99 93 99 99 M5 26
99 99 99 99 99 99 99 99 99 9<) 99 99 99 96 99 99 M5 27
99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 M5 28
99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 M5 29
00 00 00 0 F5 30
00 00 01 00 00 00 a 1 00 F5 31
00 00 03 00 00 00 0* 1 01 02 00 F5 32
01 01 05 00 01 00 00 01 01 00 00 00 03 02 05 00 F5 33
02 02 09 OC 03 00 00 03 02 01 00 00 05 03 09 00 F5 34
03 03 14 00 06 00 00 C6 03 02 01 01 09 05 14 00 F5 35
05 06 20 01 09 00 Ou 09 05 04 02 02 13 08 21 01 F5 36
08 09 28 03 13 01 01 13 09 07 02 03 18 11 27 02 F5 37
13 14 37 06 20 02 03 18 11 11 03 04 24 15 36 04 F5 38
19 21 46 10 28 03 05 25 17 14 06 07 3(' 19 44 44 F5 39

o

DESCRIPTIONS HEADERS - MASTER KEY CARDS - PERCENTILES Page 16
27 29 55 15 36 04 09 33 23· 19 09 10 36 24 51 24 F5 40 0 36 41 64 21 45 07 12 44 28 25 14 13 44 31 60 43 F5 41
47 50 72 30 53 12 16 51 36 31 20 17 50 38 66 63 F5 42
58 62 77 42 62 17 22 59 42 37 26 21 57 45 74 83 F5 43
64 73 83 52 70 24 28 67 51 45 32 28 63 52 79 96 F5 44
72 80 88 63 77 32 35 76 59 51 41 35 69 57 84 99 F5 45
79 85 91 73 82 41 43 81 67 58 50 42 76 63 89 99 F5 46
84 91 94 82 87 50 49 86 74 66 58 52 80 69 92 99 F5 47
90 95 96 88 92 58 58 90 83 74 66 59 85 76 9S 99 F5 48
93 98 97 92 96 68 66 93 87 81 74 68 90 81 97 9<) F5 49
96 99 98 96 97 77 73 96 92 86 82 73 93 87 98 99 F5 50
97 99 99 97 98 84 80 98 95 90 87 81 95 91 98 99 t=5 51
98 99 99 99 99 90 85 99 98 93 91 85 97 94 99 99 F5 52
99 99 99 99 99 94 90 99 99 96 95 90 99 96 99 99 F5 53
99 99 99 99 99 96 94 99 99 98 97 94 99 97 99 99 F5 54
99 99 99 99 99 98 97 99 99 99 99 96 99 98 99 99 t=5 55
99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 F5 56
99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 F5 57
99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 F5 58
00001MATH KEY 06 19999b88888957585666~96675G1242421u0~30034L01432G24

00001MATH KEY 06 29659668596
00 00 00 0 2 04 06 08 11 13 16 19 23 27 30 1/ eJl
34 37 41 44 49 52 56 60 63 66 68 71 73 76 78 8u 62 b3 ~5 66 IV·, 02
87 88 90 92 93 93 94 95 96 96 97 97 98 99 99 99 99 99 99 <)9 I'",; u3

o

o

f ·_·Z···7,.· ... ··•···· #(1·· - ... "tit CdM T'

o
NAME

ROSS TONY

I'

-W'" ,.3

UNIVERSITY OF MISSISSIPPI
STUDENT COUNSELING CENTER

CLASSIFICATION ISTATE

MISSISSIPPI PRE-COllEGE

PERCENTILES

S P VERY LOW J LOW I AVERAGE I

Page 18

HIGH 1 VERY HIGH
NORMS DESCRIPTION 5 R 5 1 20 25 bo 40 50 60 170 75 80 195 99 1 10 90

NbRM-S ACT
14 13~ __ --_:r---~.S-.- "ENG-crSH *

~~_~EGE MATHEMATICS 19 46------ --------------*
BOUND -~2~Q~h--S-!-g~l-~~r: 1~------ ---. _-- *

1- 22)----------- ----*
cO-MPOSlTE 16 19"--------------*

R P
! S R

~NIV OF ORT
~ISS RATE 386 94 -.- ... ----------------- ---- ------* 1-959-1962 VOCABULARY 12 1*
~ORM ,) COMPREHENSION 12 1*

NATl 1960 NELSON-DENNY
"-RESHMAN VOCABULARY 16 91-------1--*

~.S. 12TH OAT
~Rl\DE AB~IKALI R. 2 :31----*
~-f

() r-1-F EDWA~DS

1 17 661---------------I------1-----*
2 14 811-------1----~---1*0-I--L-I--c--F-1--1--fit-
3 14 841-------i----~---1----[.... -1 -i-I--1--1-*
4 15 62------- ,...---1*0-1-- -1--[-*
5 18 821------- 1--=t:-T-I-1--i--fit
6 7 41-----* I -, 1~ 3~------" ---- ------
8 12 65------- ---- --_ .. -.. -.L-r-r 9 16 38--------------- _J_~

10 13 61-------------_ .. -- -J- ----11 14 55------- ---- ------ - ____ 1_*
I 12 15 50------- --_ .. ------ _-! __ t

13 9 29------ ---- -----.. -~
14 16 39------· ---- ------ _J_*
15 16 71 ------- ---- -----. ---- -- ---'-- --*
16 11 46 ---------------------*

1959 UNIV. OF MISS.
MATH TEST 15 13 -_ -.-----*

~.S. 12TH OAT
~RADE M-F SPACE RELATIONS

UNIV OF ORT
MISS RATE
1959-1962 VOCABULARY
FORM () COMPREHENSION

--":-

• 0«(/

NAME

ROSS RICHARD

UNIVERSITY OF MISSISSIPPI
STUDENT COUNSELING CENTER

STATE CLASSIFICATION

MISSISSIPPI GRADUATE (YEAR 11

PERCENTILES

Page 19

~OR~:SR r.S
DESCRIPTION 5 P VERY LOW I LOW I AVERAGE I HIGH r VERY HIGH

5 R I 5 1 10 2025 130 40 50 60 170 75 80 90 195 99

ACT
~.S~--- E-NGLISH 17 27 ._-------------1--*
~OL-LEG-E-I-=MA T H E-M"A i rc-s 2=' 1-'8~5 ----------------------- ---~------* ~rOUND SOCIAL STUDIES 11 28 ------- ---- ------*

NATURAL SCIENCE 17 27 ----------------*
COMPOSITE 20 46 ----------------. 1---*

R P
S R

P""NIV OF DRT
Fnss RATE 334 85 1-------1----i---i-- - -1--1-*
1959-1962 VOCABULARY 11 1*
FORM () COMPREHENSION 10 1'*

NAlL 1960 NELSON-DENNY
FRESHMAN VOCABULARY 18 12 t--~--..... 1----1*

~.S. 12TH IDAT
i:lffADE ABSTRACT R. 3 31----*
~--r

~-F IEDWARDS
1 15 50 -------1---1----1------1-*
2 17 96 -------1----1----1------I------I----1----1----1*
3 16 92 -------1----1----1------I-------'----1----1*

-4 7 3----*
5 19 86 '-------1---------1----I--1--.... _-1--1----1-*
6 15 54 -------1----1----1---. 1--~-t 7 13 32" -------1----~---1---*
8 14 78 -------1-'_--1----1----I---- --I--1--1-*
9 15 32 --------...... ----I--~* -±~ 10 13 61 -------1----..... .-.-

11 15 63 1-------1----1----1----I-- fit.
12 16 57 1-------1----~ ... --1--1--1----1-*
13 11 44 '-------1----1------I--1--*
14 14 27 1------.-.-~---~--1--'*
15 10 32 1-0 - 1----i----1--,"",*

16 8 61-------1*

11959 IUNIV. OF MISS.
MAIH TEST ~~ 0 1--.----- f*

p-.-S • 121H PAl
~RADE ~F SPACE RELATIONS

trNIV OF PRT
~-S -RATE
11959-1962 vncARlJLARY
J:'"ORM -() COMPREHEN~lON

..... J....,
t;(7

o

I

o

o

tii"-

o

o

o

UNIVERSITY OF MISSISSIPPI
STUDENT COUNSELING CENTER Page 21

~IA'M --------~=~~==~~------~STA~T~E----------~CL~=SI=Fll=;A=TIO=N-----------------~

ROSS RICHARD D MISSISSIPPI GRADUATE (YEAR 1)

STRONG VOCATIONAL INTEREST TEST PERCENTILES

/ S G C B-- B B~ A "\
GROUP OCCUPATION

S R 0 5 10 15 20 25 30 35 40 45 50 55 60 65
~-E-NE-R-A-C-- "-Rt-rst 13 C C *****
~~OFESS- PSYCHOLOGI ST

----l
18, C q:*_~_~t**

ARCHI fE-C-" 1e C c **-*J~*.-*-t-
PHYSiCiAN 2] C+ **~*-!"!j~C+
psycHTATRIST 22 C+ * 'IC+*t~
OS:'(EOPATH 3-~~B- **t*** --8-
D-E-NT-I ST 2S C+ *****itc+
VEtt-R I NAR I AN 45 B+ ** **iI --- ~------ ---- --81-

'fECHNICAL EfCoCOG-i CAL SC 1 ENCE 12 C C
PROFESS Expt-R i MEN TAL PSCH 3S 8 8

CHE-MIST 2it C+ ~~*C+ 11-**
pHYSIC I ST 16 C ** C*iI*
MATHEMATICIAN 8 C- C- **iI ***
ENGINEER 31 B- *iI *** ~**8'-

~-PPL i ED FARMER 46 A- ** ~**- ---, ~-
TECHNICAL FORESTER 35 B- ** *** *----- 1------8 ~

MA-tH SCI TEACHER 31 B- 11-**13-

~ERVICE HS SOC SCI TEACHER 21 C+ C+ ~*** **
SOCIAL WORKER 17 C C
CLINICAL PSYCH 31 B- 8-
VOC COUNSELOR 23 C+ C+ 11'***1**
YMCA PHYS DIRECTOR 25 C+ **iI **c
PERSONNEL MANAGER 15 C . *1*** 11'***
IND RELATIONS 55 A " PUBLIC ADMN 2it C+ C+f*** **
YMCA SECR-ETARY 17 C ~_'~**f*
,-lTV SCHOOL SUPI 11 C IC** ** * J

DETAILED C P7\PART NE R 12 C C **Ji-**** I
BUSINESS SEN IOR-CPA 26 C+ **~+**

ACCOUNTAN I 18 C c***-f*-**
OFFrCE WORKER 27 C+ C+ ******
PURCHASING AGENT 41 B+ *****-*1*--+--81+
BANKER 33 B- 1t'*B-:;-~-*-*

IPHARMAC 1 ~ I 4ll B+ * " ~--B+

SALES S"ALES MANAGER 39 8 ****** --_. ~--B
LIFE INS SALESMAN 39 B ****f--~
REAT.-TOR 49 I-A_

***-~:** ~--. -A-
VER-SAL ADVER-rrS-l NG 2-1 I-c+ C+

LAWYER 25 C+ C 1-*" **""* IAUTHOK .JUUKNAL 1 ~ I Lll C+ c+ *' t*
MU~H,; MU~IC Pt:.KFOKMER 19 C C

MU~lC rt:.A("HI:.R "i L- (..-

~1~Lt:.LL PKOlJUC liON MlU~In.~~t.R 41 B+ ," - --6;+
AKMY Urr H .. t:.K 26 C+ " --- +
PRE~lDENI MFG CO 41 B+ * --6+
INIt:.Kt.~1 MAIUKIIY 4~ A- A-

NAMf

ROSS TONY A

UNIVERSITY OF MISSISSIPPI
STUDENT COUNSELING CENTER

I C/i-~-SI'lc-\fj(YN----
PRE-COllEGE

Page 22

/
STRONG VOCATIONAL INTEREST TE~S~T~p~ER_C~EN_TI~LE_S~~ __ ~ ____________ _

'\ 5 G c B- B B+

C- ***'***
IC **1******

C *****
C-*rIfo****

MATH SCI TEACHER 13 C C ****f*

~ERVICE HS SOC SCI TEACHER 38 B ****~*----B

A-
~ ________ F-~='O=C~I~Al WORKER 3~7~B~ __ ~ __ +_~ __ -+ __ 4---~~-=6~ __ ~--~~--~ __ ~
~ ________ ~rLINICAl PSYCH 47 A-
~ ______ -4W~'OC C~~~ELO~R~ __ -+~3~4~~6~-~~ __ ~ __ ~ __ ~_***_*+*~6~-~ __ +-~---r __ +-~~~
r-______ -4Y~M.CA PHYS DIRECTOR 28 C+ ******~~+-r--+---~-+---r--+---r-~

PERSONNEL MANAGER 28 C+ *****C+*
t--___ --+"-I-'--"N_""'-D_R:...::...E l A T IONS 45 6 + 6
~ _____ --IP=--U~f:3l I C ADMN 40 6+ *****~*- --6+
~ ______ --I~YM~C=A~S=E~C~R~~T~A~R~Y~ __ ~2=5~+-C~+~ __ ~~ __ ~_*_*_~*_*_C~+~* __ +-__ ~-+ __ ~ __ +---~-+ __ ~

CITY SCHOOL SUPT 27 C+ ********--+C+
~1-~---r--~--~~---r--~

F-D=E--,-T,"-,-A-=--I =l=E=--D--tC-=_P,--,A,-,--,P,---,A---=..:R~T-,-,--N E R 32 6 - ** ***~-B"--~--~---t---+-~---+---i
6US I NESS SEN I OR CPA 21-~~+ **C+**r
~ _____ ~A~~cC~D_~T~A~.N.~T~ ____ ~.~~~ __ -t-__ ~~~L~*~*_*4*~*_*_*+--4--~--~--r--4--~---1
~--__ ----tQFFICE-WORKER 30 B~i-+_~--~ __ 4-__ ~~ __ ~BI-** **

PUR CHAS I NG AGE NT 25 C -+ *C .. ***!-*-r--+--+------f----'+--~---l
I--___ -+""BANKER 29 C-+ C~***' **

PHARMACIST as C-+ **C+'~***

SALES SA L E S MA NA GE R 5<-.1"+--'-A..!........j-_~--+_~---+_*-*-I' .. -'-,*-*-*+-----_+-------_+_-----_t .. ~--_-_---!"'.A>--__ I .. __ -+-__ ---l

1------fU FE I riS SAlESMAN 59 A *****--_-I---... ------~--A
~--___ --tL.>...R.EAL TOR 56 A ***!---.~------··A
~~-.ERC1...!B~A~.L_-pAQ..YERT1SINil 44 B+ *** "*---B+

l.AWYER 57 A ****** ------ ------ -A
I--___ ~A~U~T~~~OR~J~U _~IA~.l~1~S~IT_r~3~9~B~--~--_+___+--___l_--r__+--*~*~*--~,B~__+_--~--~__+_--~
MUSIC MUSIC PERFORMER 29 C+ c+

,MUSLC tEACHER 27 C+ c+

MISCELl PRODUCTIONJ.1ANAGER 25C+ *CI-*****
IARMY OFF leER 26 C+ ******---- .+
IPR£S I DENT MFG _CO 32 B-
II NTERES T MATUR I TY '50 A

o

o

o

," r ttWlr"mer"' 'lIt

o

o

-- -- Wy

ARMY ROTC RECORD KEEPING

The Army R.O.T.C. is now keeping all class records
such as merits, demerits, absences, excused absences,
and essay scores on mark-sense cards. They also have a
unit card on which information about each person is mark
sensed. They have four mark sense cards and are labeled:

(1) Unit Card (U-Card)
(2) Essay Card (E-Card)
(3) Absentee Card (A-Card)
(4) Merit and Demerit Card (M-Card)

Shown on the preceeding page is a picture of the four cards
that are used. Careful examination of these cards will
show that one is able to keep all significant data on these
IBM cards and at the end of each semester these cards are
used to determine the final grade of each student. For
the four different levels of Military Science-I, 2, 3, and
4- the approximate time to furnish final grades is approxi
mately one hour.

Student Attendance Record Keeping And
Athletic Association Ticket Information

Also shown on the following page is a picture of the
attendance record keeping mark-sense card and the athletic
association ticket information card that is used at the
University of Mississippi for attendance record keeping
for high schools and for mailing ticket information to
football ticket buyers for the coming year. Due to the
lenght of the paper already and the time allotted for giving
the paper, these two items can not be discussed. Further
information about these topics will have to be directed
to the author.

Page 23

a;:

=>--<~UJ~-------------------------+----------~~--4-------~~--~--~--------~
:IE
=>--<ocj~-------------------------+----------~----4---------~--~--r---------~ z

.4

REBEL GUIDE @ s
POSTAGE AND INSURANCE

PER copy

TOTAL AMOUNT ENCLOSED

REBEL GUIDE @ S
POSTAGE.4ND INSURANCE

PER COPY

TOTAL AMOUNT ENCLOSED

• BOX SEATS i S

~_L-_____ --1 •• BOX SEATS'S

X - LIMIT OF FOUR UNTIL JULY 1

c3:)
[

c4:)

c5:)

c6:)

c7:)

c8:)

c9::>

I I I
SEX INSTR. SCHOOL CIII1l SlaTE

c

o

""fU -r" "lRT'-TJ -" "R"TTT'W-

:::>
ii:

Q !!: II:
f/) e

C
f/) u
iii
f/) ...
i z ...
.... 2
0 ~
>- ~ ... e
iii
II:

~ ...
> 0
Z II:
::I

:::>

w

o

«
0:
a.
iii
(f)

iii
(f) ... :E III ...
l!... Z
0 III

f/)

>- m
to- e

0
iii
0::
I.&J
>
Z
::>

TEST GRADE '* I
GRADE

co::>co::>c0=t:o::>co
I

cl:Jcl:Jcl::Jac:l:Jcl
I

cPcPC2::>k:Pc2
I

cPc3:Jc3:J/cPc3
I

cPcPc4:::>k:Pc4
I

CPC5:JC5*5:JC5

cPcPc6~PC6
I

cPcPc7:::>k:7:Jc7
I

cPcPcs:::>k:pcs
I

cPcPC9==>'!C;PC9

!

CARD CODE

00001ROSS RICHARD
OOOOlROSS RICHARD
00001ROSS RICHARD
00001ROSS RICHARD
00001ROSS RICHARD
00001ROSS RICHARD
OOOOlROSS RICHARD
00001ROSS RICHARD
00001ROSS RICHARD
00001ROSS RICHARD
00001ROSS RICHARD
00001ROSS RICHARD
OOOOlROSS RICHARD
00001ROSS RICHARD

00002ROSS TONY
00002ROSS TONY
00002ROSS TONY
00002ROSS TONY
00002ROSS TONY
00002ROSS TONY
00002ROSS TONY
00002ROSS TONY
00002ROSS TONY
00002ROSS TONY
00002ROSS TONY
00002ROSS TONY
00002ROSS TONY
00002ROSS TONY

SAMPLE INPUT FOR

01 ACT TEST
02 DRT TEST (FORM-F)
03 NELSON-DENNY READING TEST
04 ABSTRACT REASONING
05 EDWARDS TEST
06 MATH TEST

Page 17

M UNIVERSITY MISSISSIPPI *
OlM 117 27 27 85 17 28 17 27 20 46
F2M077196869897866789889677897793231424133241424211243314
F2M077266879879996897769879668794421331244113332441312144
03M 19668796568596775659877 984021434201133013422030423
03M 296758856787957799865566894124120344443022133300243
04M 157697876787959987968766852333001314411343011343234
05M 188989998888998989989999884443333434433443434443334
05M 289989998888998989998989894333434443343434443433343
05M 388989998899889988899999984444334343434343434333334
05M 489898989889899898899988883334344434333334434344433
05M 58899899888999988998999898
06M 18867589966787675998599877323 22 34 1103234433S1 34
06M 29887657899

M UNIVERSITY MISSISSIPPI *
OIM 114 13 19 46 16 22 16 22 16 19
F2M089198666977697876987896867693214123241214323342213341
F2M089299768968768796997768977861124341341242143423143421
03M 1777975688699598696877689500244202433223002334 1304
03M 2697568=9756788655989778694213112321412200224233012
04M 166786599978856897 86895751144221024444223121310044
05M 188899989899989989898998894344434433434443443333434
05M 289998889899998999899999893334334443444333334433334
05M 388998898989988989989898983344343434444433434333443
05M 488899999889989898898989894444444344344434434333434
05M 58989988899989898889989889
06M 18766788 659957756699898863122334444343221101123334
06M 29999786796

o
~

o

It· zrtt 'rr- rrr ... iiititRitHHttW .. ·· brtF± thtiitf'#rttrb£'''- . iHrtirttHi L**rtiFri' +.it±f ... --r'" y·r··§""·§····('[j"-tT·_· j · .. - -,,"'j

()- ' .. ' ,

o

Page 20

SAMPLE STRONG ENTRANCE TEST INPUT

00001ROSS RICHARD D
00001
00001
00001
00001
00001
00001
00001
00001
00001
00001
00002ROSS TONY A
00002
00002
00002
00002
000(;2
00002
00002
00002
00002
00002

M 26
01870
01871
01872
01873
01874
01875
01876
01877
01878
01879
M 20
01900
01901
01902
01903
01904
01905
01906
01907
01908
01909

10 BATESVILLE MISSISSIPPI *
788888b977879977~998 11332232111323213113
89779788879b7b~87898 21112131311311333121
8897799b887~77977789 33322323221133231133
8877979897898779~998 22133313111233322322
89898877779799cl88889 23323333133211232321
97899899879987899797 13131133123123231113
79988887997977897987 21231111111122222213
89989787877798889897 21331322121133123222
77797977997977799799 3312331113111112Z~21

97999999999999997997 13313333212122223223
KAPPA ALPHA H MISSISSIPPI *

98797799978979878777 12112333133122112113
97799899779977779777 13111111311322132221
77787997877997778777 11121121331232333331
77798999979778779998 23132313332122233333
87998787799987898989 23232131213312332331
98999999899799799777 33122333321133332133
79989988997989788997 22222311213231132123
78788798999897889877 11221333223221121233
79988997777798787998 32311311132123132211
87999798899778997977 21233333113332223223

FOR T 5

A Monitor Control Record

In response to the need for a method to handle a large volume of
FORTRAN programs from students with a limited number of key punches
available, a system was developed whereby the students could use MARK
SENSE cards to write their FORTRAN programs. This eliminated the need
of the key punch for a FORTRAN program. The developed program was made
available to 1620 USERS earlier this year through the library as the
FORTRAN DECODER PROGRAM. This program, written by H. B. Kerr was designed
for a 20K 1620, later being made adaptable to the 1311 MOll IT OR SYSTm4
FORTRAN COMPILER, so the additional statements available in Monitor
could be used with the MARK SENSE system.

The program, as designed, accepted as input the MARK S~~SE PROGRAM
and translated that coded program to regual FORTRAN SOURCE STATEMENTS
and gave an output of each statement on a card, allowing, as I said earlier,
The elimination of the key punch completely. These coded MARK SEl~SE
programs could be batch-processed through the translator, thus saving a
little more time in the processing of student programs.

Upon installation of the 1311 MONITOR SYSTEM at our computer. center,
it was felt that some means was needed to speed up this process and reduce
the work load of the operator. I felt that if the TRANSLATOR program
could be stored on disk and called when needed to translate a program, the
process could be partially accelerated. Upon consideration of this
idea, the thought that the incorporation of the translator with the
FORTRAN COMPILER, so as to eliminate the need ot forming a translated
source deck, would accomplish our purpose even more.

Two basic methods of doing this were considered. The idea of
translating the statements, and storing them on disk and then calling them
back one by one to be compiled by the FORTRAN COMPILER was first in mind.
This process however brought about complications in modifying the monitor
system, such as: reserving disk storage area for the translated statements,
not knowing what maxium size to save for programs. Then the compiler
would have to accept its input statements from disk rather than card. And
lastly, no means by which to bring in the FORTRAN COMPILER after the trans
lation and storage had been completed--still allowing stacked input process
ing~was available.

After weighing these complications, the preceding idea was abandoned
and the present method was developed. The Control Record Analyzer of the
Monitor System was studied along with the Supervisor and the FORTRAN C01!PILER?
.~other decision now had to be made: whether to expand the analyzer, or to
eliminate something already present and use the area made available.
Looking over available control records, it was found that the TYPE AND
PAUS statements were not used enough to be considered necessary, so work
was started with the area that checks for these control records.

o

o

o

•

(2)

By elimination of the TIPE and PAUS control records, an area about
100 digits in size was made available for any modification that was
necessary. First, the PAUS statement was changed t~ FORT allowing the
use of the +~FORT CONTROL RECORD.

Considerable effort was made to call the translator from disk and
have it, in turn, call the FORTRAN COMPILER, but that idea did not work
originally because of lack of knowledge of the overlay routine of the
MONITOR. other methods were considered by trial and error but none worked
satisfactorily.

Then it was back to tne idea of calling the translator first. To be
able to do this and eliminate an overlay, it was necessary first to change the
bottom limit of the symbol table area from 15999, as defined in the l10NITOR
SYST~f, to 25999 allowing an area for the translator to reside in core at
the same time the compiler was there. This was easily accomplished by
simply changing the compare position of the symbol table overlay routine.
For this reason alone, the program operates on a 40K or 60K system because
of the symbol table. .

Once this was done, work was begun on the instructions necessary to
call both the translator an~ the compiler into memory at the same time.
The only way to pennanently place the translator on disk was to store it
with a DIH Number and file-protect it. When this was done the 100 digits
of the TYPE and PAUS area were used to compare on the FORT control record
card and to seek and read the translator from disk into core at location
17000, which is the lowest area not used by FORTRAN IID. This worked and
things were going fine, but now the linkaE;e between the translator and the
compiler had to be worked out.

The non-disk I/O section had to be modified to eliminate the compiler
read statement. This could not be a permanent change because of the constant
use of this statement. But since both the translator and the compiler were
in memory, I felt that I could, by programing in the translator, chan~e the
instructions in the I/O causing a branch to the translator rather than the
reading of a card, then use the input area of the translator to bring in the
card. This created problems in the translator and a drastic modification of the
translator was begun. The origional translator used the BRANCH AND TRANSHIT
i.nstruction frequently which could no longer be used because of the HONITOR
SYSTEM'S use of it. Also the output of the t~anslator had been on card and
now' the information in the 011tput area of the translator had to be moved
to the in9ut area of the monitor system. The systemts input area has flags
in all even positions which were not affected by the normal Alpha reading
of a card. When transmitting fl10m the translator to the monitor input area
I w'as destroying these flags 'which are necessary to the operation of the
compiler. A routine for clearing and setting flags in the translator output
area had to be added so it would be compatible with the monitor. As these
changes were made new problems were created; These were worked out as they w'ere
encountered.

I then found it was necessary to bring in the translator and branch
to it, doing the necessary modifications to the I/O in the SUPERVISOR then
transferring control to the point in the Monitor where the FORTRAN COEPILER
is normally called from disk and the proper indicators are set •

(3)

This gave me the necessary set of instructions to fill the 100 digit
area reserved and I proceeded to give a trial run. 'rhe first statement
w'as translated and compiled with no problem, but the system then chec k
stopped. Back to work, where more checking revealed that ,the card i,'naGe
area in the NONITOR SYST&'1 changes to different locations when compiling
a program; I had to work this change into my translator so that the
output record would be placed at the correct location each time.

These corrections made, I once again made a run. It worked on the
simple program that I had provided for a test. I then tried a more
complicated program, with continuation cards in it, and developed
additional problems.

These changes were continued until the program worked for all
possible types of statements and then a sense switch setting was added
to allow for the normal source statement typing, as called for by
turning on switch 1 when compiling, or for punching of the source
statement when switch 1 was off. The output could then be listed on the
407 for return to the programmer. The card-output option is normally
used because of the speed increase realized.

After the completion of all programming, the system was loaded to
disk and an extensive test began, using this method to process our daily
work load of about 50 programs.

By using the control records for FORT, FOR, FORI, SPS, SPSX, we
could stack input, mixing the MARK SENSE programs with others as desired.
Our purpose was accomplished. We had cut drastically the time needed to
process student programs, eliminating the heavy work load of the operator
and by option, saving on the number of cards used in a normal program
output.

The largest factor was the saving of time. When the programs were being
translated, compiled, and executed as seperate steps using the standard
FORTY-lAN COI1PlIER, we spent an average of 20 minutes on each program.
After the disk method was perfected, the average program time was reduced
to about 4 minutes - without the necessity of an operators presence
constantly.

As I said, the program was given extensive tests by using daily for
about 8 months. No additional bugs have developed in the overall system
since it was placed in operation.

After I had submitted the abstract for this talk, I beGan work on
my ideas and started reviewing my previous work. I was no longer satisfied
with the system and the way the program worked and immediately started
modification, only this time with more ease becanse the basic work
had been completed.

The thought that when someone might wish to translate and compile
a program without execution, it would be difficult under the system. I
created another control record, this one being called FONT, for non
execution purposes. I was limited for space in which to make changes, so
found in the SUPERVISOR in lower memory, an overlay read routine which
I could use to call the translator from disk.

o

j'e. t t mitEr

()

o

•

h t e t* '# 'Hdsht& t 0j'Ow dhtttrt#

(4)

Using the additional space made available by this change, the
instructions for both FORT and FONT were incorporated. Since I was
now allowing for a non-execution run which could be used for program
checking, I felt that a sense switch setting to allow for a non-output
option would be convenient. Switch 4 was my choice since it is only used
when typing in source statements for a FORTRAN program.

All these changes were made and the system again tested. It is now
working, and up until now we have had no problems with it.

This complete program and procedure is being readied for the
Library now and will be submitted soon. The system will be easy to
incorporate by using the 5 change cards that will be provided and by
placing the systems output deck of the translator that will be furnished
at the back of the monitor system before initally loading.

0'

I

0 1

o

""'

o

()

PREPARATION AND SCORING OF

FORTRAN PROGRAMS BY COMPUTERS

By James H. Hayes, Jr. - Computer Center Director

Siena College - Loudonville, New York

INTRODUCTION

As a College of Liberal Arts, Siena is primarily committed to the

intellectual advancement of the student by the training of his mind through

the arts of critical thought and correct expression. While it provides

pre-professional training in many fields, its ideal is not to foster an

extreme, premature specialization, but rather to provide that liberal educa

tion which is the comprehensive, cultural background necessary for the pro

fessions. In fulfilLment of this aim, every student who enters the College

is required to follow a prescribed program of core courses in the Liberal

Arts. This requirement is composed of training in Languages and Literature,

History and Social Science, Mathematics and Natural Science, and Philosophy

and Theology, and includes an opportunity for concentrated study in special

areas of interest in the Arts, Science, or Business.

THE COMPUTER AND EDUCATION

The Computer Laboratory is used for teaching and faculty and student

research, as well as an administrative arm and part of the Office of the

Registrar. In line with the basic philosophy of computer operations, programs

are intergrated into the curriculum of different courses. These range from

course classes which come to the computer laboratory for class sessions in

addition, introductory courses in programing and systems analysis are taught

in conjunction with the laboratory. Started about two years ago, the

.~ laboratory contains an IBM 1620 computer with a 1622 card reader/punch, 026 card

(1)
If/

punch, 514 reproducer, 085 collator, 082 sorter, and a 407 accounting printer.

OBJECTIVES

At Siena we visualize the student using the computer in the same manner

as they would use the library. It should be a tool that is available for

their use in solving assigned class problems, with no delay or waiting time.

In this manner, several hundred students instead of only a selected few could

learn to use the computer as a management tool.

PROBLEM

The one unsolved problem we had in handling a large number of student

programs in an efficient manner was the time that it took to keypunch the

written instructions into cards for processing. This becomes more of a

problem as you attempt to serve more students. We solved this problem of

keypunching student programs by scoring of Fortran programs by the computer.

This now allows us to process many student programs in a short period of t~e

and eliminate this intermediate step.

MARK-SENSE CARD DESIGN

Computer scoring of Fortran programs involves the use of "mark-sense"

cards, specially designed punched cards on which students indicate their

program logic, by writing in the provided spaces with special pencils (Exhibit 1).

CARD PREPARATION

After the student has completed writing his program, the cards are

returned to the computer center where they are fed through a 514 mark-sense

reproducer and the marks that the student has made are read and put into the

cards as punched holes.

(2)

o

o

o

PROGRAM IANGUAGE

o This program is written in the IBM Symbolic Progranming System. It is

designed to be compatible with the l620-SP-020 version.

MACHINE CONFIGURATION

The published version of the program is dimensioned to fit into a basic

1620 with 20K memory with card input and output.

OPERATING PROCEDURES

1. Clear computer •••• press RESET, RELEASE and INSERT. Type 16 00010 00000

and press RELEASE-StART key. Next press INS~T STOP and RESET.

2. Fill punch hopper of 1622 wi.th blank Fortran cards.

3. Set object deck into read hopper of 1622 and press LOAD key.

4. After the object program has been loaded" set data cards in read hopper

of the 1622. Press S~T on the console; program identification will now

4C) be typed out.

•

5. When READER NO FEED light on the console goes on, press READER S~T key

on the 1622.

6. When PUNCH NO FEED light on the console goes on, press PUNCH START key on

the 1622.

7. When the output is completely punched, press READER S~T on the 1622 to

complete processing •

(3) '-13

student

Mark-Sense
Cards

Output
Punched Fortran
Program Cards

FLOW CHAR1Jr

Fortran
Prognm.

St,udent

(4)

Mark-Sense
Card

Cbmputer
Center

Punched
Mark-Sense
Cards

Input
Punched Mark
Sense Cards

o

o

o

o

•

. r······ -- ... f9i . - ... +±riWI"T"j""·T - - . t . ill"""1#tI!f9T - -[-_ ... _ - .. ··· .. ·_g-Ef_ ... _- -- . ¥ ..

('1:xhbi t 1)

MAR~-SENSE FORTRAN PROGRAM CARD

C::J
S Tl TEIU: IH PUNt"

NUll BE R I'---'l'--=....J

o ~CCEPT *

TEST **~l'

NTiNUE = ~2 5

(CLT
3::J C 3=>ICS."c 3-

) 0 My

"~~c4
• cO N" 5::Jc 5:::>ICSjc~c 5

6::Jc6~==*=~.F~W~~4~_

7::J C 7 ::JjC::5~:::::S

8::J C 8 ::>IC:::::,jc:::::::::>

9::::>c9=*=~::::::'

INPUT

(Exhbit 2» FOR1l'RAN PROORAM CARD PUNCHED

OUTPUT

.fOR T (F6.2,14,3HAMT)

C+-~"T ~ ~ -- ~ --- ---- - -
TAUM'NT ~ FORTRAN STATEMENT Ifr..,..,tCATloN

"WalK ~

o 0000080 0 ODD OB aOOG 0 8000008080000000 0000000000000000000000000000008080
1 It 3 4 $ & 1 • • 11 1t 12 13 14 ,~ \I nil 1111 It 22 23 24 25 2UJ 21 21313\ 32 33 J4 35 3& 31 311 3S • 41 42 a 44 ~ • 41 41 •• 51 52 53 54 55 !is 57 51 511 60 11 1213 14 10 • 11 61 • 10 71 12 13 'H lIi 1177 1t 1t •

1'.,1 111 11111" 111111 11 t 11
t

JPI2 2 Z2222222~' 22~222 22222~l£'

tf3333333333 3333 \ 33 333 333

4144444444 444 444444 4444 4 44

~1'555555555555555555'S555

~::::tl::::::ll::
J888888888888 88 • 88 888. aal888r8888888
I

91t'l I 9 '999999999 9999999999999999999919999999999999999999999999999999 1999999
III I 4 • • , • • • II 12 13 14 15 \I 11 It 11 21 21 22 23 24 25 21 21 a 2t 30 31 32 33 34 30 3131 31 311 CD 41 42 a 44 ~ • 41 •• " 51 12 II M • 5161 51 59 II II 12 II 14 •• ., •• II 71 1t U' J5 '/I n 11 ItiO

."M?)

(5)

(Exhibit 3) MARK-SENSE S. P. S. SOURCE PROGRAM 1620

1050SETFlGSF INPUT-1,,2
1060 AM *-6,2
1n70 eM *-18,INPUT+157

()
InRO AN? *-16
1010START RrTY
10?O WATyME5S'
1 O~O H
1089BEGIN RACDyNpUT
1040 TFM KONT1,OUTPUT
1090 TF nUTPUT+6,INPUT
1100 TF OUTPUT+A,INPUT~2

5001 TFM KONT2,INPUT"TO US~ INDIRECT AnDRFSSING
5002GOBI TFM KONT3,70,10
5102 CM KONT2,O,610
5202 B7 G03
5003GO C KONT2,~ONT3,6

50n4 B7 GO~
5n16 t ~ONr2,KnNT~,6

50'~ AN ~O~
~005GOI AM KONT~,l,10
5006 CM KONT1,AO,lO
5008 B7 G02
5007 B GO
5009G02 ReTY
5010 WATYMES14
5011G03 AM KONT2,2,lO
5012 CM KONT2,INPUT+4
501~ AN7 GOAl
1110 AM KONT1""q,COUNTFR ~TART~ AT "
3001 eM INPUT+4,O.10,NO PUNCH
~002 At GOGOl
3003 CM TNPUT+4,10.10,PlOT
3004 Bz MES02+9
3005 CM INPUT+4,20,10,PUNCH
3006 Bz MES03+11
3007 eM INPUT+4.70.10,ACCF.PT
3008 Bz MESOl+13
3009 CM INPUT+4,71,lO,TEST
3010 R7. MES04+9
3011 CM !NPUT+4,72,10,CONTTNUF
301~ 87 ME~05+'7
1013 eM INPUT+4,73,10,~AUSF
3014 B7 MES06+11
3015 eM INPUT+4,74,lO,FORMAT
3016 Bl ME~07+1~
3017 CM tNPUT+4,75,lo,READ
3018 Bt MES08+9
3019 CM INPUT+4,76,10,PRINT
3020 B~ MES09+11
3021 CM INPUT+4,77,10,DIMFNSTON

o
(6)

... ··""[... ·T··.. ········E·y .. · ·F· "'.'.'] ... IT··

3022 8Z MESIO+19
3023 CM yNPUT+4.78.10.STOP
3024 BZ MESll q

0 3025 CM INPUT+4,79,10,~Nn

3024 B7 MES12+7
~O26 eM tNPUT+4.n.1O.ERR 1
~n27 RNZ MFC;l~+l'

4031MEsol DA(7.AC(F'PTt
403~ TP KONT1.MF'SOl-1,6
40~~ AM KONT1,14.9
4()34 B GOlOOP
4036MES02 DAC C;.PLOTt
40~7 TR KONT1,MFS02-1,6
403A AM KONTl,10.9
4039 A GOlOOP
4041MESO; DAC 6,PUNCH'
4n4? TR KONT"MF'C;O~-1,6

4n43 AM I(ONT1.1?,Q
4044 B GOlOOP
4046MES04 DAC C;.TE5T·
4,.,47 TR KONT1,MF'S04-1,6
4048 AM KONT1.10,9
4049 B GOLOOP
4051MESOC; DAC q.CONTYNUEt
4052 TR KONT1,MES05-1,6
4053 AM KONTl.1A.9
4054 R r,OLOOP
4065MFS06 DAC 6.PAtJSFt
4"fi7 TR KONT1.M-=-S06-1.6

0 405A AM KONT1.1;?9
40C;q 8 GOlOOP
4onlMFsn7 DAC 7,FOQMATt
4002 TR KONTl.MF'S07-1.6
4003 AM KONT1,14.q
4004 B GOlOOP
4006MES08 DAC 5,REAOt
4007 TR KONTl.MES08-1,6
4008 AM KONTl.lO.9
4009 B r,OLOOP
4011MESOq DAC 6,PRTNT*
4012 TR KONTltM~S09"'1,6
4013 AM KONT1.l?,9
4()14 8 GOlOOP
4n16MFslO OAC 10,DTMF~'SIOf\"
4017 TR KONTl,Mf:'SlO-1,6
4nlA AM KONT1,2n,9
401q B GOlOOP
4021MESll DAC C;,STOPt
4022 TR KONT1.MF'S11-1,6
4023 AM KONT1.IO.9
4024 A GOlOOP
4026ME512 DAC 4.END·

..
(7) '/7

I·
I
!

4027 TR KONTl,MES12-1.6
4028 AM KONTl,R.9
4029 TFM KONTl.O.69
4030 R f:ND (~.

'I

4060MES'~ DAC 6,ERR l' oA
~ ,

4061 T~ I(ONT"M,:'sl~-1,6
4062 AM KONTl.12,9
4065 RCTY
406~ WATYMESl~
4064 B GOlOOP
2120MESSl DAC 37,ENTER MARK SENSE PROGRAM, PUSH START'
2130MESS2 DAC 20,PROCESSING COMPLETE'
2l40lNPUT DAS 80
21500UTPUTDAS 82
2170KONTl DC 5,0
2l71CLEAR DAS Al
2172RCMK DAC 1 , •
2113KONT2 DC ~,O

217~KONT3 DC 2,0
21AOKONT4 DC 2,0
2114MES14 DAC 6.ERR 2'
2177MES1C; DAC 6,GO TO-
2178MESl6 DAC 3.IF·
2179MESl'7 DAC 3,00'

55555GOlOOPTFM KONTl,O.69
5444GOGOl AM KONTl.l.10
5445 TF'M KONT4.0.10
5446c.;OG02 AM I(ONT2.2,lO
699QGOG03 CM KONT2.0.610

0 7000 BZ GO·{;04
7001 CM KO"T2.1n,610.PLU~ STr,N
7002 aN7 *+48

AM KONT1.2.10
7003 TFM KONTl.10,610

AM KONTl.2.10
7004 eM KONT2.20.610.MINUS SIGN
7005 8NZ * ... 48

AM KONT1,2.10
7006 TF'M KONTl.20.610

AM 'k O~ T 1 .2. 1 0
7007 eM KONT2.70.610.MULTTPLY
7""A eNt *+24
70(')8 TF'M t(OftTl.14.610
7010 eM KONT2.11.610.SQUAR~
7011 ANZ *+48
7012 TFM KONTl.14.610
7()13 AM K O'N T 1 • 2 • 1 0
7014- TrM K.ON T 1 ,14,610
7'l15 eM KONT2.72.610.EQUAL SIGN
7016 BNZ *+48

AM KONTl.2.10

(8)

f{tttWrrTIF,.----uf-llIlr--· .. r- -it·Mbt! -TTl -_. qpyw .

7017 TFM KONTI,33,610

()
A~ KONTI,Z.lO

7018 CM KONT2,73.610,OPEN PARENTHESIS
7()lq RNZ *+24
70?O TFM KONTl,24,610
7021 CM KONT2,74,610.CLOSE PARENTHEsIS
7022 BN7 *+24
7023 TFM KONTl,4,610
7024 C~ KONT2,75,6l0,COMMA
7025 BHZ *+24
7026 TFM KONTl,23,610
7027 CM KONT2,76,610.PERIOD
7028 BNZ *+24
1029 TFM KONTl,3,610
7030 CM KONT2.77,610,GO TO
7031 SNZ *+72

SM KONTl.l,IO
7032 TR KONTI.MFSl5-l,6.GO TO
1n3~ AM KONT',ll.lO
7(')34 lFM KONTl,O,6l0.CLFAR RFCORD MARK

SM KONTI.2.10
7035 CM KONT2.78,6l0.IF
7036 BHZ *+72

5M KONTl.I,lO
7(')37 TR KONTI.MESI6-1.6,IF
7038 A~ KONTI,S,IO
7039 TFM KONTI,O,610.CLEAR RF'CORf) MARK

0 SM KONTl.2,10
7040 eM KONT2,79,610.DO
1041 BNZ *+72

SM KONTI.l,IO
7042 TR KOHTl.~FSI7-1.6,DO

7043 AM KONTI.5,10
7044 TFM KONTl.O,610,CLEAR RECORD MARK

SM KONTI,2,l0
7045 AM KOHTI,2,lO
7050GOG04 AM KONT2.2,IO

eM KOHTI.OUTPUT+143
Bl WACD
CM KONT1.OUTPUT+l43
BP WACO

7()51 C~ KONT!.O,610
7052 AZ t;OG05
7053 TF' KONTI.KONT2,611
7053 AM KONTI.2.l0
7054GOG05 AM KONT4,l.l0

CM KONTl,OUTPUT+143
BZ WACO
CM KONTl.0UTPUT+143
BP WACO

7055 CM KONT4,12,IO
7056 BHZ GOG02

•
(9) ~9

1040WACD

1041
1042END
104~
1044
1045
1046
1047
1048
1000

WACDOUTPUT
TR OUTPUT,CLEAR
B BEGIN
WA~OOUTPUT

ReTY
WATY~ESS2
TR OUTPUT.CLEAR
BNLCBEGIN
H
B START
DENDSETFLG

o

o

o

(10)

o

o

•

THE STATISTICAL VALIDITY OF APPLYING NUMERICAL
SURFACE TECHNIQUES AND CONTOUR MAP PLO'M'ING TO

CORRELATION PROBLEMS

L. D. Y. Ong

Health and Safety Laboratory
U. S. Atomic Energy Commission

New York, New York

Presentation at 1620 Users Group Meeting
in New York, New York, October 7, 1965

INTRODUCTION

Correlation and regression analysis is concerned with

the study of relationships between variables. When three or

more variables are involved., it is standard practice to

initially try to apply the linear relationship y - a + bl Xl +

b2 x2 to describe the data, usually using logarithmic or other

transformations to deal with nonlinear cases. If the descrlp-

tion of a multidimensional curvilinear regression surface

cannot be reduced to this multiple linear regression form,

the applied statistician is faced with the formidable task of

determining joint causation quantitatively with the model

y - f (xl' x2). Those who have had this experience can fully

appreciate the difficulty that arises in selecting not only a

regression equation that fits the data within tolerance but

also one whose terms may be deduced logically.

This talk attempts to make the audience aware of a Simple

alternate method of analysis: plot the variables as three-

dimensional coordinate values and infer their regression

surface graphically in the form of a contour map. This visual

inference of the surface can be used as a model of the process,

and can also greatly simplify choosing an appropriate equation

for approximating the expected relation algebraically. If

very high correlation exists between the surface variablesj)

the analyst, given a sufficient number of points distributed

rather uniformly over the ranges of interest and using his

- 2 -

()

o

•

fundamental knowledge of the Subject, could probably freehand-

draw contour lines approximating the "true't surface reasonably

well. However, besides the fact that these optimum conditions

are seldom met, so-called "eyeball" curve fits introduce an

individual bias that, of course, will vary from analyst to

analyst.

Given data with not-so-high correlation, a marginally

sufficient sample size 9 and a far-from-uniform distribution of

pOints with large gaps representing unobserved areas~ the

uniqueness of the contours and consequently the validity of

their statistical inferences might be significantly affected

and therefore, the true pattern obscured.

In order to minimize this individual bias, a more exact

and standardized calculation procedure, perhaps necessitating

the use of a computer, for providing the first approximations

of the contour lines is desirable. This more formidable

statistical approach would provide the best detailed picture

of the sample distribution, including values interpolated

between the collected observationse It is the speaker 9 s opinion

that the best estimate of the "true" or rather population

distribution would be a final smoothing of the calculated

sample surface. These "ultimate" contour lines, based on

the calculated sample surface, should be freehand-drawn by the

analyst utilizing his important logical intuition acquired

from extensive experience with the subject field. His contri

bution would be especially valuable in areas sparsely sampled)!

such as the perimeters of the sampling areas •

- 3 -

i
I',

~

COMPUTER CONTOURING METHODS
~~x.: • -.. • ' __ ~ . .;r~

A convenient calculation scheme would be the application

of IBM 1620/1311 Numerical Surface Techniques and Contour Map

Plotting (1620-CS-05X)$ which is a set of programs that prim-

ari1y processes three-dimensional coordinate values into a

surface which may be expressed graphically in the form of a

contour map. This program package recently made availa.b1e and

now coming into general use for providing a visual description

of two-parameter distributions, was written by the IBM Corpora

tion in 1620 SPS II-D~ is stored on disk and is executed under

the control of IBM 1620 Monitor I or II with maps drawn by the

Calcomp 560 series (or IBM 1627) plotter. Its l19-page applica

tion program reference manual[l] competently describes the two

general surface fitting techniques employed by the package:

1. Numerical approximation over a uniform grid with

or without smoothing.

2. Orthogonal polynomial curve-fitting.

Besides providing a standard j general computational

method, this computer approach eliminates the tedium of calcu

lation and facilitates the handling of unwieldy amounts of datao

COMPARISON OF COMPUTER METHODS

From our experience~ the orthogonal polynomial approach

is recommended over the uniform grid technique for solving

multiple correlation problems where we are trying to predict

the value of a dependent variable y for any given values of

- 4 -
Sf

o

o

\

',1
ii,

'I

"1'

o

•

two or more independent variables xjO This is because the

polynomial method for fitting a surface emphasizes the

determination of general trends without possibly misleading

localized patterns. In addition, the resulting contours are

relatively unique since their computation is sensitive to

only two easy-to-converge-on assumptions: the order of the

polynomial and the number of significant terms in the equation.

The fit is always smoothed with the automatic elimination of

insignificant peaks and valleys. Results appear to be fairly

insenstive to a third required assumption - the grid interval

setting.

An example of such a fit is the isopleth diagram shown

in Figure 1[2] which relates strontium-gO/calcium ratios

(measured from samples of human vertebrae collected in New

York City) with age and time of deatoh. Here the dependent

variable in .this three-dimensional time series is highly

correlated to two independent variables and general trends

are made obvious. Very high correlation between the dependent

variable and age was evident with the contours forming a

definite family of curves.

In contrast, the uniform grid approach is recommended

primarily for engineering-type contouring where it is reason

able to assume that the local peaks and valleys have sig

nificant meaning, e.g. in the construction of elevation contour

maps. Here the analyst is trying to create a more detailed

picture of his sample and is essentially concerned with in

terpolatingvalues between the observed pOints rather than

trend determination •

- 5 -

However~ the technique can be useful to the correlation

analyst who is trying to gain a better insight as to how the

true surface is influenced by variables besides those repre-

sented by the graph's ordinate and abscissa scales. An

example of this is the isopleth diagram shown in Figure 2[3J

where strontium-90 fallout deposition is related to latitude

and time. It is evident that other variables in addition to

latitude and time are affecting the dependent variable. The

contour lines were actually sketched freehand with uniform

grid computer results employed as a guiding first approximation.

MANUAL CONTOURING METHODS

The disadvantage of the uniform grid method is that the

calculated surface contours are prone to variation~ being

highly sensitive to three assumptions~ grid interval setting9

number of points for smoothing and smoothing technique used.

The effect of the sensitive settings is underlined by

observing the results from processing data~ with both the

machine techniques discussed and the manual contouring methods

developed by Dr. Mordecai Ezekiel[4] in 1926 9 long before the

advent of the high-speed digital computer. These now-classical

correlation techniques were further developed in his book on

methods of correlation analysis first published in 1930(5),

including an extension by Dro Frederick Vo waugh[6]g By

first subgrouping his data,9 manually averaging the observa-

tions in each subclassifieation9 and then two-way smoothing

the averages by employing four successive sets of freehand·

fitted approximation curves p Dr. Ezekiel was able to determine

- 6 -

o

o

the contoured regression surface representing the joint func-

O! tional relation between th~cee variables. The specific example

in his book related expected individual haystack volume with

basal diameter and height. Application of the uniform grid

method to the haystack data with a grid interval setting of

8 and without smoothing resulted in Figure 3. Even with this

grid interval optimization, a great deal of statistical

ftnoise n was evident in the form of jagged curvesjl and scattered

peaks and valleys -- results far different from those inferred

by Drs. Ezekiel and Waugh. Only after improvising with the

smoothing routine were we able to converge to agreement with

the freehand-drawn contours. [7] The resulting family of

curves, shown in Figure 4, are practically the same as Ezekiel's,

where the standard deviation of the surface residuals is 0.03,

4C) significantly lower than its one-dimensional standard deviation

•

of 0013.

Application of the orthogonal polynomial computational

method using a grid interval of Ii a 4th order equation and 12

coefficient terms resulted in Figure 5, practically identical

to Ezekiel's inferences and those of Figure 4.

SUMMARY

Experience has thus indicated that the basic approaches

employed by the IBM contouring package provide the analyst

with an automatically calculated, more complete picture of his

sample data. All machine methods are based on the least squares

criterion and consider the data point by point~ instead of

- 7 -

first averaging the observations as manual .ethods do.

Especially in regard to the uniform grid technique, these

"statistically sophisticated" approaches are probably most

useful in interpolating between observed points~ e.g. a

civil engineering surveyor preparing a topographic map with

particular interest in local features.

However, in general correlation problems, where we are

more concerned with predicting the value of one variable

from specified values of two others, the orthogonal polynomial

approach is more valid because of its emphasis on general

rather than possibly misleading localized trends and because

its resulting contour lines are more unique, i.e. less prone

to variation caused by required model assumptions. Besides

exercising caution in the use of computer generated contour

surfaces because of their se'nsltivity to required assumptions,

the correlation analyst, unlike the topographer drawing a

detailed elevation map.? must be even more cautious that he

is not "overcalculating" the solution to his problem. He

should regard his machine fits primarily as conveniently

calculated. standardized, interpolated sample data tables

from which to infer joint functional relations, whose final

form may be improved with his logical ingenuity gained from

past experience .ith the processo

- 8 -

~
1.

I

o

o

o

REFERENCES

(1) IBM 1620 Numerical Surface Techniques and Contour Map

~ Plotting (1620-CX-05X) User's Manual, H20-0192-0.

0

•

(2) Rivera, J. and Harley, J., "The HASL Bone Program 1961-1964"

USAEC Report HASL-163, August 1965.

(3) Volchok, H. L., "World Wide Deposition of SR-90 through

1964" USAEC Report HASL-16l, July 1965.

(4) Ezekiel, Mordecai, "The Determination of Curvilinear

Regression Surfaces in the Presence of Other Variables",

(5)

(6)

Jour. Amer.Stat. Assoco,? Vol. XXI, pp. 310-320, Sept.

1926.

Ezekiel, M. , Methods of Correlation Ana1lsis, John Wiley

and Sons, 1930.

Waugh, F. V. , "The Use of Isotropic Lines in Determining

Regression Surfaces, Jour. Amer. Stat. Assoc., p. 144,

June, 1929.

(7) David Mo Schalk's assistance in machine-plotting the

contour maps is gratefully acknowledged. Whereas the

IBM application program's method of single smoothing,

based on a least squares-fitt~d surface, proved unsuitable

in our ftxamples, a continuous smoothing procedure based

on simple weighted arithemtic mean was developed by

Stephen Lo Samson and was utilized. Particularly appreci

ated were Dr. Ezekiel ll s personal interest and advice con

cerning the general applicability of computer-generated

surface contours o

- 9 -

Numerical Surface Techniques and Contour Map Plotting

Data Points

Surface
Representation

Contour
Mop

y t a + b1xl + b2 x 2

y - f(x1,x2)

66

o 1i

o

o

I

i''''WtVtiMf'H''ttrWH' !

C)

o

IT'

Ul
1-11 r-i

'"1 "'"1
Lv ()
(j ::1
r+ <+
1:_1. ~J.

(j f~
~:: i:j
o 'y
t-Il (_)

',.> C)
.rlq [2

([) .--'
,-1-

(I) (()

:~:1 ~:i
(.J. el-

1-) 0
tJ

• '-"J

~J <;
(])

o I-~
I-'J (-I-

(fJ
•.. _-) r)'

rG .-:: ,-,) rli
;1- 0)

f::;J ,,-""

'T;
o

i ##WB -N'" "IX 5-

Age at Dr-.:ath

-N

en -

II
...J

:L
FIGURE

MAtta bl$£$, ,au. ie A A P. 4-

~

~

--~"*-

Ly
Q

:'}

F
&;$I

I
~~{-:

r!(

N"

40 0

500

r ___ 0.2 ~

I L
J I --....l-M 'A M

F 1 9

c

Monthly Sr-90 Deposition as a Function of Time and Latitude
(Isopleths are mCi/mi2 of Sr-90 per month)

..J A S 0 N DI..J F M A M J ..J A SON D

6 3 1 9 6 4

FIGURE ~

o o

-:~---....

.,.; .. t l'¢t se I

o
2')0

200

150

o
1 0-0

50

o
o

o

'''W' t j t ttt 'tr

EZEKIEL HAYSTACK DATA, INDIV.

OBS., Gl 8, UNSMOOTHED

)$0 _____ --

50 J 00

FIGURE

9DC ____ _

...... _-__ UiC.

--~

i I~, 0

3

... - # .. ··8··.. wRWr- ·V"i*i5i¥7±"._

75C

200

zoo

lOG

~

i
50 ~ ;~1

f:l

o
o

EZEKIEL HAYS'rACK DATA, INDIV.

OBS., OJ 8, 10 SMOOTHINGS

't',',:

~~o

r

50 1 0 []

FIGURE

20(:

~, ,.,. ,
, ..

o

o

o

"W Mormer #Wtt'j't tt ttftt t 'ttwt#ht $

o

2'50

200

100

I) 0

o
o

o

...... - roo rW?··'U

EZEKIEL HAYSTACK DATA, INDIV.

OBS., ORTHOG. POLYS., 4 tb

ORDER, 12 COEF.

'5S0

~oc

.)(J(,

------------- :~I)::;

~~------------------
---:~~(i:':,,:------------------ ' ,.

1,., -

!'i 0 JOO j 1.; (J

FIGURE

roc

o

141 Utt'MFtttiWWi 'lh@"t'j\bWt"'

o

o

•

f!"'en $ $ $ H rt zig" §. 60t d"tid titri t# . "r - - .""' -W· nT
- T - . - '-f""" R"' ... - ... "5"5D

1620 Worst-Case Circuit Design Problem

by

S. S. Husson and H. C. Yang
International Business Machines Corporation

Systems Development Division, Poughkeepsie, New York

INTRODUCTION

In this paper, we present a computer method for solving the d-c circuit design

problem. All circuits are· designed by considering Kirchhoff's circuit law

together with the design constraints. Kirchhoff l s circuit equations are usually an

underdetermined system; there are more variables than equations.

We define a solution region as indicated in Fig. 1. The additional considerations

of the design constraints will form a feasible solution region. Any solution in this

region is a successful circuit. In eingineering practice, no attempt is being made to

solve this general design problem; instead, many assumptions are made to obtain a

design. The intention of these assumptions is to reduce the computational difficulty,

and the significance to the design problem is to consider more constraints than

are necessary. In other words, the feasible solution region will be narrowed

down further such that no design may be achieved at all. The method described

in this paper is originated from a realization of the basic design problem, and the

method is formulated in such a way that the circuit design can be obtained through

the computer without the unnecessary assumptions.

FORMULA TION OF THE D-C DESIGN PROBLEM

Using Kirchhofft s circu ir--law and considering the design requirements, we

formulate the d-c circuit design problem as follows:

N
e =

=
=

number of elements in the circuit

number of nodes in the circuit

number of voltage and current sources in the circuit

There are precisely Ne - NN + 1 independent linear loop voltage equations,

consisting of N voltage variables, in the circuit.
e

-1- 67

o

o

I,',

I

N
I

\S"
'~-i

•
x sX~X

MIN MAX

y s y s y

MIN MAX
Z

J(.=y

o ,0

y

I I
I I
I I --I -- ----,-

~eas-ible Solution 4egion

YMAX

I : -----------
I I

YMIN

I I
""" I I ·X

I I
I XMIN I XMAX

Solution Region

/

Figure 1. Graphical Interpretation of the Design Problem.

f. (V) = 0
1

;; = (V 1 ' • • • , V N e)

, i = 1, •.•• N
e

- N + 1
N

There are NN - 1 independent linear node current equations, consisting of Ne

current variables, in the circuit.

~
f. (I) = 0

1

1= (II' •••• I Ne) I , j = 1, ••• , NN .. 1

There are N e - NYl independent terminal equations, intaroducing N e - NVl

resistant variables, in the circuit.

k = 1, ••• , N e - NYl

The terminal equations for the source variables are simply V = V for voltage

source and I = I for current source; therefore, it is not necessary that they

appear in the terminal equations.

The general mathematical model for d-c circuit is as follows:

f. (Y) = 0
1

i = 1, • • • , N e - NN + 1

j = 1, ••• ,NN- 1 f. {I~ :: 0
J

Vk =~~ k= 1, •.• ,N e - NVl
-".J
Y = (V l' • • • , V Ne)

Total number of variables = Ne + Ne + Ne - NVI = 3 Ne - NYl

Total number of equations = N - N + 1 + N - 1 + N - N = 2 N - N
e NNe YI == .. ~ :". e VI

Consequently, this model is an underdete rmined system of equations.

Any circuit is designed to meet certain requirements, hence a set of

inequalities can be obtained as follows:

Y . ~V~V
mln max

I . ~I~l
mln max

R . ~R~R
mln max

.. 3-

0"1 "

o

o

UBitftft"TMib"ti t "t"" f" # it» "fhyn "' - PT"·puM -

o

o

•

Now the d-c design problem can be defined as finding the value s of V, I, and R

such that the required inequalities and Kirchhoffts equations are all satisfied.

METHODS USED TO SOLVE THE DESIGN PROBLEM

The Limited Case

By applying engineering judgment, an undertermined system can be

transformed to a determined system by assigning values to certain variables.

Hence, this circuit design problem is reduced to a problem of solving a

nonlinear system of equations. One method of solving this problem is the

successive-approximation procedure of Newton-Raphson. Essentially, this

procedure considers the first two terms of the Taylor's series expansion

of each equation at an assigned starting point and increments the values of

each variable :accordingly. The convergence of this procedure depends upon

the behavior of the function in the neighborhood of the solution and the near-

ne s s of the starting point to the solution.

The Newton-Raphson method is essentially a successive approximation

procedure. Mathematically, the system of nonlinear equations

i=l, ••• ,N

can be expanded in a Taylor's series at an assigned point as

f. (x) :: f. (x) + ~ - 0 (x
J
. - x.) + hlgher order term:: 0 ~. 0 N ofi I O.

1 1 j=l oXj xj J

Suppose xO is sufficiently close to the solution of this system; the higher

order term may be neglected. Then we have the following linear system

of equations:

f. (;0) + ~ ali I 0
1 j OXj xj

where (0 = x _ x O
j j j

-0
£

j

-4-

~o i=l, ••• ,N

······~F'
Let f~bethe solution of the above system of linear equations. Then

o
;; 1 = xo + '(will be an approximate solutiol'l. to the system of the nonlinear

equations.

--:+1 -:--i '+1
In general, let xl = Xl + (;then x 1 will be used as the assigned

point for the next iteration. The convergence of this technique is very

much dependent upon the behavior of the function f. in the neighborhood of
1

the solution and the nearness of the first assigned value x
0

to the solution.

The idea of this technique will be most easily understood by considering

the following one-dimensional example.

Let o df 0
f (x) 2:: f (x) + -I 0 (x - x) + dx x

o 2 o ex - x) +... :;. a
x

Suppose xO is sufficiently close to the solution; then we have the following

linear approximation:

o
f (x) +

o 0

df
dx

where E =x-x.

o
x

Thus,
o

(2::

o
x

The approximate solution to the nonlinear eq~tion is x I = x 0 _ f(x O~
di
dx

1
Assume f (x) as indicated in Figure 2. As we can see, x is closer to

the solution of f (x) = O.
i + 1 i i

In general, let x = x + f ; then the

i + 1
successive iterations could generate x that are even closer to the

solution.

This method has been very successfully applied to the system of four

nonlinear equations in one circuit" Unfortunately this method shows no

sign of convergence for the thirteen nonlinear equations of other circuitse

-5.,.

o

o
x

o

o

C z 0 0
:Coo
I-~
We:(
~Cf

Z zo
t!)1-
_3: o (J) W

w~
c'"

•

~-- o
~

x
II

o
'"

-o
\&I

~------r--)(-..........

-o~ -'4-4

-~ -'4-4

-6-

Consequently, this method can serve as a convergence test of the possible

convergence of other iterative methods.

The General Case

Let f. = 0 represent Kirchhoff's circuit equations and define
1

G = 1:;£.2. Hence, the circuit design problem is solved by finding the
1

component parameter values within their boundary conditions such that the

equation G = 0 is satisfied. The search techniques were used for this method.

The G function is minimized by these techniques along a path determined by

exploring the relations between the G function and all the circuit parameter

variables. Thi.s method is well adapted to the computer because of the

simplicity in programming. It also eliminates the unnecessary assumption in

the limited case method in order to obtain a determined system.

Two search techniques are employed in the program, direct search and

orthogonal search. In the method of direct search, the G function is first

reduced by exploring each individual variable in the function. A direction

is established after exploring all the variables. The G function is then

reduced by moving along this direction until it fails to reduce any further. The

proces s is then repeated by exploring each individual variable again in order

to find a new direction. This method is well adapted to consideration of

limits of each variable, and it is simple for computer programming. The

method will fail if the contour of the residual function has the form shown in

Figure 3, which shows that no direction can be found by exploring each individual

variable in order to reduce the G function.

The method of orthogonal search is based on the same principle as the

o

o

method of direct search. The only difference is that the search does not proceed

along directions parallel to each individual coordinate. The search is along all 0
the orthonormal coordinates defined by a feasible direction. The feasible

-7- ;7.5

i

I
j
I

""w'!"n"" #11'1 WI . 't'# tuft

o

()

, I o

y

I
-+---.---------- I

I
I
I
!

)
/

-- -7>
search direction
along x-axis

-----------------x

search direction
along y-axis

Figure 3.

-8-

au AU: ::lUU 1,;'11,. .;; --

II
I

direction can be obtained by the method of direct search or it can be arbitrarily

defined. The ortnonormal coordinates will be obtained by the Gram-Schmidt

orthogonalization process as follows.

Let Al represent the feasible direction:

The other N -1 vectors can be defined as follows:

~ = (0, ••• , 0, aN)

Let B I = Al and E' I = B I! lB 1 J

Then the orthonormal coordinate e E' can be obtained by
1.

i-I
B. = A. - :E (A.. E' J E' •

1 1 j=I 1 J J

~/. = B. I IB.1
1 1 1

This process can be easily understood by considering the following

two-dimensional example. See Figure 4.

Let Al = (DX, DY)

A2 = (0, DY)

BI = Al

E' I = B I I IB II

Then

B 2 = A2 - (A2• E' I) E' 1

(2 = B2/lB 21

Therefore,

~E' and 'IE' are the new orthonormal coordinates.
1 2

-9-

o

o

•
y

o

x

o
! ,

Figure 4.

-10-

The advantage of this method over the direct search method is that the

problem of interaction between variables is reduced. This means that all

variables are being changed simultaneously instead of one at a time during

the process of reducing the G function. The disadvantages are: how to

select suitable step sizes in exploring along the orthonormal directions and

how to handle the limits for the variables.

COMPUTER PROGRAM

The flow chart of this program is shown in ~igure 5. The available memory

size of computers b.. tdiff.er:entlt To avoid the difficulty of overflowing the machine,

the flow chart above the dotted line can be carried out by hand.

Example

A voltage mode switching circuit consists of four resistors, two power

supplies, one transistor, one diode, and two operating states. The circuit

diagram is shown in Figure 6. The design requirements are as follows:

1. The input impedance of this circuit has to be larger than a specified value.

z. The input voltage and its noise level are designed to satisfy a given

rang e 01 va ria tion.

3. The output voltage, current, and voltage noise level are designed to

satisfy a given range of variation.

4. Resistors are designed to meet the given tolerances.

5. The power supplies are designed to satisfy a given tolerance and range

of variation.

6. The power dissipation of the circuit is designed to be less than a specified

value.

7. The circuit uses the specified transistor and diode.

-11- jl-7

o

o

o

I-

I
I'
I
I

• o o
PROGRAM FLOW CHART

INPUT

K - EQUATIONS

G-FUNCTION

IN ITIALIZATION

..... ---------~- --- -------N
•

~
~

NO

F~gure 5.

~~

~

VJ

'.)
~

V 1NUP

IN

o

-
T

R}

Figure 6.

o

~,,~?a;-=~

+ POWER SUPPLY

RIL

R3 VOUTOP

R4
VOUTDOWN

I
POWER SUPPLY

--

o

it OffBN : tr t t tIIit ·!!'ir**±Yitstf'±#ti* tffl#iftitrl ¢iift·f ... ···) .. · · .. -.. pr T ._._m ---g'- . VI·m ._ .. - "$[---

The linear piecewise approximation of the characteristics of diode and transistor

was used in this program as shown in Figure 7.

Th e system of Ki rchhoff! s equation s consi sts of twenty-two va ria ble sand

o fourteen equations. The result obtained by this method was successful. The size

of the system can be reduced by considering either the independent loop or node

equations with additional constraints. The result of using independent loop

equations, which consist of sixteen variables and nine equations, is also obtained

by this method. Because of the dimension of this design problem, it is difficult to

give a graphical interpretation. However, if we consider the solution region

defined by input impedance, input noise level, and output noise level, then the

feasible solution region is the interception of the solution region defined by other

design constraints. The feasible design is obtained by locating a point in the

feasible solution region as indicated in Figure 8. The trade-off relations can be

demonstrated by repeatedly applying this method with the variation of the design

() constraints.

CONCLUSION

This method has been successfully applied to the current mode circuit as

well as the voltage mode circuit. The scope of this method is not limited to the

feasible design of a circuit. The continuous application of this method will lead

to an optimum design by simply modifying the G function as follows:

2
G = Wk fk + fM

wher.e fk is the system of the Kirchhofft s equations;

w
k

is the weight factor used to keep the solution in the feasible

design region;

fM is the desired function, under optimization.

• In view of the optimum design, the importance of the elimination of the unnecessary

assumptions is even more significant.

-14-

U -f
,CI) -
let:

W
,I-
,U !«
10::
«
:c

IU
I

w
'0
o

>
o

o

H.

o
-15-

CO'

Y

•
INPUT

A FEASIBLE
DESIGN

OUTPUT
NOISE LEVEL

o o
~SOLUTION REGION DEFINED BY OTHER

DESIGN CONSTRAINTS

t-- SOLUTION REGION
DEFINED BY INPUT
IMPEDANCE AND
NOISE

J ~ ~ , { , ~ INPUT
• I) ~ NOISE LEVEL

.----.
--- FEASIBLE SOLUTION REGION

Figure 8

ACKNOW LEDGMENT

The authors would like to acknowledge Mr. A. Brown and Mr. R. Silveri

for their many helpful suggestions.

BIBLIOGRAPHY

1, Rosenbrock, H., (1960) "An Automatic Method for Finding the Greatest or.

Least Value of a Function,lJ The Computer Journal, Vol. 3, p. 175.

2. Wilde, D., (1964) "Optimum Seeking Method, II Prentice Hall, Inc.

-17-

o

o

c,

I:

o.

o

•

The solution of Laplace's Equation in Two Dimensions
by

Oscar N. Garcia, Old Dominion College

Introduction: Partial differential equations of the second
order and first degree of the type:

Ja.V ;J"'V ;,aoV J dV ~v A - +8 ~ +- C -=r-;.= C~YJ ~ ~) "5U)
d X ~ d)(tJ'!/ d !I ~)(;I

are said to be of the type called elliptic if B2 - 4AC.(0
parabolic if B2 - 4AC = 0
hyperbolic if B2 - 4AC ~ O.

The equation that occupies our attention here is of the first
type (Poisson's equation):

LX + ;)'V:. f
d)! So <Joy'"

where f will be taken to be zero to yield Laplace's equation:
z.·V ~'V L -I- --",=0

~XJ,. d~
Analysis of the Problem. The numerical solution of this problem

for the case where no tractable solution exists is going to consist
of two main parts: 1) setting up the difference equations, and 2)
solving the set of linear equations originated in (1).

An analysis of the errors which occurr in 1) and 2) and those
due to round-off should also be included in the solution.

The program presented here was designed with such an error
study in mind, but the results are not part of this presentation and
are not complete at the time of this writing.

Setting up of the difference equations. A Taylor series
expansion of a function V (x,y) about a point Po(xo,yo) using a

11 x = h, .4 y = 0 is: ..). "J'VI I 3

J VJ .i + LV J 1. - 11..
V{%.+~)!Jo) = V (~0.l'1.) + ~ "_"y. I! J~" :,.t:~,. 2.!~){.S ~.J_3!

_ ;: (~)I .R;
V(%.+~)':Jo) - ""CO ~% "o.!:Io n.

(1)
or:

Similarly for ,1x = -h, ~y; 0 J"V I (_/,)n

V (~o+l)!lo):: r;; (-w) %.~':I. "j
(2)

Truncating (1) and (2) at n = m we can say that t
V(,!o+I.Jy.) = E (~~) I ~!n + ~;~ I -;

where ncO 'X.()J~O ~,9o
(3)

%. <.1<'%0+1..

t:I"eI: -2-

(4)

where Xo - h(~< xo.
If we add (3) and (4), the terms for odd values of n are eliminated

",-1 ;)NV. KN
V(%o+IJ!Jo) "'V(X.-~J'j.) = 2 L. (-y,) /.., -H'

N=O ~~ ~~~o •
(5)

where we assume only even values for N (0,2,4 •..) and a continuous
mth derivative about (xo, Yo) as before.

The usual approach is to truncate this series at the value m = 4.

~O

Further investigations, using the methods outlined here, are intended
for m = 6 and m = 8 to determine the effect of the truncation error
in the solution. There seems to be a prevalent opinion among
researchers in this area that the added complexity in the finite
difference approximation for m > 4 overshadows any gain in accuracy,
and use of a smaller value of h is usually preferred. ~

For m = 4, equation (5) becomes:

(6)

dl.VI. SolvinQ for -

'J "s. ~o,,!lo

.lV/ = ~f V(~t-A,9.)rV(~.-~Y·)_Vf~JY) (7)

J,.'&. ~o..!lo tl 2 _..L!...4(i!fL +£Y I)
where evidently the first
values of V at two points
the value of V at Po.

2. 4! dX4 ~JY. d%4 SlY.
two terms give the difference between the
symmetrical with respect to Po (Xo, Yo)' and

Simplifying (7) we obtain one of the two approximations for the
two dimensional case: 4

.i·v I = V(-,tot-J,y,.) I- V(Jc .• -A~~o) -2 V(~.~~o) + .r;f~::'l + :;;l)

.Jx~ x,0,l!ltJ ~ I. ,,\2. V 4. ~,,- ~l'. (8) ., I ~5 Similarly an expression for ~ ¥ could be found:
fltlJI ~.~!Jo

o

ItInrrbMfl"! tIl' J t

o

•

n *hf' '.' "¥Rhitf r"" "-')"fl'Urs"'W""-"" V'j]"

2
Neglecting the ~ terms in (8) and (9) and adding to obtain

Laplace's equation w&~find that:

V (%.+l~ y.) + V(1tD-J-IY_) + V(K.. • .Iy.+It)-I V(~o.ly.J,) (10)

Which is the

- 4- V(,tO.l'Jo) == 0
difference equation to be used.

Using the symbolism of
Figure 1, equation (10)
may be written as:

Figure 1.

More generally for a point not on the boundary of the k x £ grid
in Figure 2, we have:

which is called the 5 point approximation.
~ V, ~ ~~ " I! "

\121 \111,.
VJI "., ,.

~,

\1',.)

Figure 2.

il2.L

tJ,l,.

(11)

If we try to solve for all internal points on the rectangular
grid of Figure 2, we have a system of linear equations for each i =2,
3, ••• , (k - 1) when j = 2, 3, ... (t - 1). As an example Figure 3
shows the coefficients for the different values of Vi j corresponding
to k = 5, e = 5. If the values of Vi,j are specified at the
(rectangular) boundary, as they usually are, the terms whose
coefficients are circled in Figure 3 may be added to form a constant
and the matrix of coefficients of the system of equations now looks
like Figure 4. It sheuld be noticed that this is a symmetrical
matrix. If the four points about V(xo,Yo) were not at a distance
h from it, the symmetry of the matrix is not assured.J>b

-4-

fJ I ~ , , ~
"

, I , 'I ~ ~ ~ , ~,' .., I , ,

2 2 0 (i) -4 I / - 0

2 3 OJ I -4 I I - 0
o

2 4 @ I -4 @ I - a -

3 Z I @ -4 I I - 0

3 3 I I -4 [I - 0

3 4 I I -4 (j) I - 0

4 2- / @ -4 / 0) - 0

4- 3 I I -4 I 0 - 0 -
4 4 I I -4 OJ (j) - 0 -

Fig. 3 (Circles Indicate Boundary Points)

i j 2,2 2 3 2 4- 3,2 3,3 3~4 4~Z. 4.,3 ~4 I I

2 2. -4 I I - 1<1

·2 3 I -4 I / - K2

2 4 I - 4 I - K3

3 2- I -4 I I -= K04

3 3 I / -4 I I - ks

3 4 I I -4 (- K,
4 2. / -4 I - Kr

4- 3 I / -4 I - Ks

4 4- / / -4 - Kg

Fig. 4

o

o

•

-5-

solution of the System of Equations. The system of equations
set in Figure 4 may be solved by any of a number of methods. A
survey of the literature shows a wide variety of approaches with
their relative merits and drawbacks.

Figure 5 is a chart that demonstrates the diversity of approaches.
One of the most important features of any method, however, is its
simplicity and the availability of a good body of theory behind it
validating the approach.

Methods of
Solution
for the
Systems of
Equations

Point
Iterative

Line
Iterative {
Alternating- {
direction
Implicit

{ Iteration
Block

Gauss-Seidell (successive displacement)
Jacobi (simultaneous displacements)
Successive Overrelaxation (Liebmann's

when applied to Laplace's equation)
Richardson's Method
Sheldon's Method

Successive Row Iteration
Simultaneous Row Iteration
Successive Line Overrelaxation

Peaceman-Rachford Method

Douglas-Rachford Method

Simultaneous Block Iteration
Successive Block Iteration

Figure 5.

A very simple method of the relaxation type ("Introduction to
Engineering Analysis", IBM F20-8077-l, page 96) in a modified version,
has been used to solve Laplace's equation when the boundary conditions
are numerically specified at a number of regular points in a closed
polygonal perimeter. This modified program is shown in Appendix A.

A method which has the desired characteristics described above
is the Gauss-Seidel method. At the same time, convergence of the
iteration process used in this method is assured if the sum of the
absolute magnitude of the coefficients of the non-diagonal elements
is equal to, or less than, the magnitude of the corresponding
diagonal elements, with the ine~ality holding for at least one equa
tion. We see that this is the case in Figure 4). Furthermore, since
it is not necessary to store the "residuals" R(I,J), more storage is
now available for the solution of a larger :net. A net of somewhat
more than 400 points may be solved in the basic 1620. A program
using this approach has been written and is given in Appendix B. It
has been found that for the same net of 72 points this program runs
in better than two thirds of the time taken by the program in

(

-6-

Appendix A for the same accuracy. Higher gains are expected for
larger nets. (In the block relaxation program of Appendix A,
twenty iterations were necessary whil'e the Gauss-Seidel program
required only sixteen) •

Conclusions",., It has been shown that Laplace I s equation may be
approximately by finite differences leaving an error term of the
order c::>f h 2 • Furthermore this set of approximate difference
equations are usually solved using iterative techniques. TWo of
such tlechniques, chosen primarily because of their simplicity,
were Qonsidered. The estimation of how well the fini'te difference
equations approximate the Taylor series, is a complex one. On one
hand, although a maximum error bound maybe found, this involves an
estimate of the fourth order derivatives of the function which com
plicates the computations. The alternate possibility, on the other
hand, is to decrease the size ~f h by a factor (k] < 1 resulting in
the increment by a factor of rk~2 in the number of points of the
grid, and therefore, more usage of mach,ine time for the solution of
the larger systemo There seems to be some preference given to the
latter solution. This may be partially due, perhaps, to the scarcity
of literature in English and of examples of studies using the former
approach 0

APENDIX A

DIMENSION V(30,8),R(30,8),IX(30,2)
2 1 REA D 1 ,"'1 , DEL

D03 I =1 ,tvl
K tAU 2 , V (I , 1) ,v (I ,2.) , V (I ,:3) , v (I ,4) , V (I ,5) , V (I , b) , V (1 , '/) , V (1 , b) , J , K

IX(I,1)=J
3IX(I,2)=K

DO 20 I=1,M
DO 20 J=1,8

20 R(I,J)=O.
L=t"1-1
D013 I=2,L
L1=IX(I,1)+1
L2=IX(I,2)-1
DO 13 J=L1,L2

13 R (I ,J) =V (1 -1 , J) +V (1+1 ,J J +V (I , J-1) +V (I ,J+ 1) -4. -*V (I ,J)
. I T(T=O
4 IT(T=IT(T+1

K=2
DO 9 1=2, L
L1=IX(I,1)+1
L2=IX(I,2)-1

o

o

DO 9 J=Ll"L2 0
RAB=R(I,J)

(OVER)

I,~

"

II'

:1
I
I,

f#%ttt t a" I I tt rittitf "j rttiibfttt*« W··· r--' . (- m ",. - r- -Vir - R .. - --'w r" -

o
IF (RAB) 10,7,7

10 RAB=-R(I,J)
7 IF(RAB-DEL)9,9,8
8 K=l

RDEL=0.25*R(I,J)
V(I,J}=V(I,J)+RDEL
R(I,J)=O.
R(I-l,J)=R(I-l,J}+ROEL
R(I+l,J)=R(I+1,J)+RDEL
R(I,J-1)=R(I,J-l}+RDEL
R(I,J+l}=R{I,J+l)+RDEL

9 CONTINUE
GO TO{4,11) ,K

11 PUNCH 1,ITCT
DO 5 1=1, M

-7-

5 PUNCH2, V (1 ,1) , V (I ,2) ,v (I ,3) ,V (I ,4) ,V (I ,?) ,V (I ,b) ,V (1 ,7) ,V (I ,8)

0

•

GO TO 21
1 FORMAT(I5,F10.0}
2 FORMAT(BF8.4,212}

END

SAMPLE DATA

9 0.01
• • • • •
• • • • •
• • • • 4.
• • • 4. •
• • 4. • •
• • 4. • •
• 4. • • •

4. • • • •
4. 3.72 3 .4~ 3.16 2.84

RESULTS

20
.0000 .OUOO .OUOO .0uOO .0000
.0000 .0000 .0000 .0000 .0000
.0000 .0000 .0000 .0000 4.0000
.0000 .0000 .0000 4.0000 3.6425
.0000 .0000 4.0000 3.7475 3.3970
.0000 .0000 4.0000 3.5997 3.2302
.0000 4.0000 3.7460 3.4250 3.0852

4.0000 3.8203 3.5683 3.2765 2..9:;93
4.0000 3.7200 3.4400 3.1600 2.8400

4. 3. 2.
4. • 2.

• • 2.
• • 2.
• • 2.

• • 2.

• • 2.

• • 2.
2.56 2.28 2.

4.0000 3.0000 2.000U
4.0000 2.9363 2.0000
3.4820 2.7549 2.000U
3.1759 2.6074 2.0000
2.9777 2.5024 2.0000
2.8390 2.4248 2.0000
2.7303 2.3664 2.0000
2.6402 2.3197 2.0000
2.560.0 2.2800 2.0000

6 8
6 8
5 8
4 8
3 8
.3 8
2 8.
1 8
1 8

-9-

APENDIX B

0 DIMENSIONV(50,8),IX(SO,2)
21 READ I,M,DEL,ITEND

D03I=I,M
REA D 2 , V (I , 1) , V (I , 2) , V (I , 3) , V (I ,4) ,v (I , 5) , V (I ,6) , V (I , 7) , V (I ,8) , J , K
IX(I,I)=J

3 rX(I,2)=K
L=M-l
ITCT=O

14 K=O
DO 9 I=2,L
Ll=IX(I,I)+l
L2=IX(I,2)-1
DO 9 J=Ll,L2
Z=0.25*(V(I+l,J)+V(I-l,J)+V(I,J+l)+V(I,J-1»
DISC=Z-V(I,..J)
V (I , J) =l
IF(DISC) 10,7,7

10 DISC=-DISC
7 IF(DISC-DEL) 9,6,6
6 K=K+l
9 CONTINUE

ITCT=ITCT+l
IF(ITCT-ITEND) 17,17,11

17 IF(K)lS,11,14
11 PUNCH 1,ITCT

D05I=1,M 0 5 PUNCH2, V(l,l) ,V(I,2),V(I,3) ,V(I,4),V(I,5),V(I,6) ,V(I,7),V(I,8>
GO TO 21

15 STOP
1 FORMAT(I5,FIO.0,I5)
2 FORMAT(SF8.4,212)

END

SAMPLE DATA
9 0.01 1000

• • • • • 4. 3. 2. 6 8
• • • • • 4. • 2. 6 8
• • • • 4. • • 2. S 8

• • • 4. • • • 2. 4 8
• • 4. • • • • 2. 3 8

• • 4. • • • • 2. 3 8
• 4. • • • • • 2. 2 8

4. • • • • • • 2. 1 8
4. 3.72 3.44 3.16 2.84 2.56 2.28 2. 1 8

RESULTS
16
.0000 .0000 .0000 .0000 .0000 4.0000 3.0000 2.0000
.0000 .0000 .0000 .0000 .0000 4.0000 2.9381 2.000U
.0000 .0000 .0000 .0000 4.0000 3.4791 2.7547 2.0000 l' .0000 .0000 .0000 4.0000 3.6359 3.1697 2.6048 2.0000
.0000 .0000 4.0000 3.7414 3.3879 2.9698 2.4<)89 2.0000

0
~ :

.0000 .0000 4.0000 3.5923 3.2203 2.8340 2.4248 2.0000 1~ .0000 4.0000 3.7461 3.4216 3.0807 2.7303 2.3692 2.0000 ill
4.0000 3.8221 3.5705 3.2770 2.9595 2.6428 2.3230 2.0000 JI
4.0000 3.7200 3.4400 3.1600 2.8400 2.5600 2.2800 2.000U

f/

h~ "'::m

0'

•

STRUCTURAL ANALYSIS USING THE 1620 COMPUTER

Tony A. Ross
University of Mississippi

University, Mississippi

INTRODUCTION

Structural analysis, a familiar phrase to all civil

engineers, is often a dull and repetitious undertaking, and

much of this so-called analysis is simply "turning the crank."

With the assistance of an automatic computer, the engineer

is now able to devote more time to actual analysis, while

the computer, with the proper instructions turns the crank.

The purpose of this paper is to develop a program to

analyze various structures using the 'IBM 1620 computer. The

program developed can be used on any computer capable of com-

piling a Fortran program, and the method presented will

analyze most of the common structures encountered by the

present-day civil engineer. Example problems have been

worked to illustrate the versatility of the program, and a

generalized step by step procedure is presented in order to

simplify the preparation of the input data.

The slope deflection method o~ analysis is used in the

program presented in this paper. C. K. Wang (1) presents

a matrix formulation of the slope deflection equations, and

1. Wang, C. K.
Equations .

Matrix Formul~tions of Slope Deflection
ASCE Transactions, 1958, Vol. 84, p. 1819.

from his presentation, the following matrices need to be

completed:

Matrix

[FEMJ -

[pJ -

Description

The relative I of each member

The length of each member

A matrix whose elements are
the coefficients by which
the distributed end moments*
are multiplied to obtain the
balancing joint moments and
sidesway forces

A matrix expressing the fixed
end moments acting on each
member

A matrix expressing the
balancing sidesway forces
acting at each joint or on
each member

2

It now becomes our task to define each of these matrices.

The following section contains a step by step procedure,

and if followed closely, this will minimize the errors

likely to be encountered in preparing the input data.

*Distributed end moments are the balancing moments distributed
to the ends of the member such that the structure is held in
static equilibrium under the action of the unbalanced end
moments and sidesway forces.

o

o

o

II·,'
I

ii,

o

o

o

-- r- -r" "TW"· ...

General Solution

This section contains a brief description of how to pre-

pare the input data for the general bent shown below. This

step by step procedure, if followed closely, will minimize the

input errors that are likely to occur.

10k
PY?

2 ~ C -----------------r

2

I. Draw a sketch of the structure to be analyzed. On this

sketch, (1) number the members (1 through m), and deter

mine the number of unknown joint rotations (j) and unknown

sidesway displacements (s). (2) Draw the P forces and

name them consecutively from 1 to n = (j+s).

4

o

D

o
II. Draw a second sketch and on this sketch draw the dis-

tributed end moments and Humber them from 1: "to ,2m.

These moments do not include any fixed end moments due

to loads or settlements.

o
14

:~
I

Y'l"W@

o

•

III. Formulate the [A] matrix expressing the P forces in

terms of the distributed moments 0 This matrix is

formed by observing the freebody diagrams of steps

I and II.

\YDM
1

5

= law_ iii M AU $ $(tJ... .

II
I

I

6

o
DMI + DM2 + V (d) - H_ (h) = 0 BA 1 --BA 1

In similar manner,

DMS DM6 d2 GI 0 d 2
HCB = -h + h_ - -h -L (DM3) - -h

2 -"2 2 BC 2

o

Now the [A] matrix becomes

DMI DMr:
,t,

DM3 DM4 DMS DM6

PI a I I a a a

P? a a a I 1 a
P3

1 1 1 Cl d2) 1 Gl d:) 1 I
- hI - hI ~- -+- + LBC ~ + h2 -~ -~ LBC hI h2

o
97

---~-~----~-~---------------- ---,---

7

IV. Record moment of inert~a and the length of each member.

4t) V. Calculate the fixed end moments for eAch mamber and then

record these values along with the P values resulting from

these fixed end moments. (Note the P forces are the un-

balanced force and not the balancing forces.)

o
~ FMl = 0

~l = 0 FMl = 0

P2 = 0 FM2 = 0

P3 = +lOk FM3 = 0

FM4 = 0

FMS = 0

FM6 = 0

With the preceding steps in mind, four example problems

are shown in detail along with computer input and results obtained •

•

Example Problems

Example 1

~..--_""":;;JI

3
.1 in.
__ -"",'1)

m = 3 n :: 3

Member Rel. I's

1 2.0

2 1.0

3 6.0

A (matrix)

DM1 DM2 DM3

PI 0 1 1

P2 0 0 0

P3 0 0 0

Fixed end moments
including moments
due to settlement

of support

FM1 -166.5

FM2 166 05

FM3 -124 09

FM4 -124 .. 9

FMS 46 00

FM6 121 00

Length (ft.)

20.0

10,,0

30.0

DM4 DMS DM6

0 0 0

1 1 0

0 0 1

P (matrix)

P1 -41.6

P2 7809

P3 -12100

Input Data

0303
2.0
100
6 .. 0
20.0
1000
30.0
1 01 02 1.0
1 01 03 1.0
1 02 04 1.0
1 02 05 1.0
2 03 06 1.0
1 01 -166.5
1 02 166.5
1 03 -124.9
1 04 -124.9
1 05 46.0
2 06 121.0
1 01 -41.6
1 02 78.9
2 03 -121.0

8

Output Data
Total End Moment
M1 = -184.78421

M2 = 129.93158

M3 = -129.93158

M4 =. -80.11053

Ms = 80.11053

M6 = .00000

o

o

o
I~

:1,1

1

II
I

o

o

•

Example 2
24k

6'-0" 6'-0"

6'- TT

12k~-+-_ 10' 0"
1 3

m = 3 n = 3

Member Re1. Its Length (ft.)

1 1.0 15.0

2 .2.0 12.0

3 1.0 10.0

A (matrix)
DMl DM2 DM3 DM4 DMS

Pl 0.0 1.0 1.0 0.0 0.0

P2 0.0 0.0 0.0 1.0 1.0

P3 -0.0666 -0.0666 0.0 0.0 -0.1

Fixed End Moments P (matrix)

PMl -17.28 P1 10.08

FM2 25.92 P2 -36.0

FM3 -36.00 P3 7.777

FM4 36.00

FMS 0.0

FM6 0.0

DM6

0.0

0.0

-0.1

Input Data

0303
1.0
2.0
1.0
15.0
12.0
10.0
1 01 02 1.0
1 01 02 1.0
1 02 04 1 .. 0
1 02 05 1,0

9

1 03 01 -0.0666
1 03 02 -0.0666
1 03 05 -0.10
2 03 06 -0~10
1 01 -17.28
1 02 25.92
1 03 -36.0
2 04 36.0
1 01 10.08
1 02 -36 0 0
2 03 7.777

r----...,...-".-, --.--
Output Data

Total End Moment

M1 = -26,33809

M2 = 20.91634

M3 = -20.91634

M4 = 35.75900

MS = -35.75900

M6 = -32.64587

I {J(J

&&3:.4«3=;'£#04;: ,a... 4".44 .. ,4#Q¢.,4. .#4.4# #4 4 _ .. 4. ah1o ... , . I

Example 3

5'-0" 10'-0"
m = 3 n = 3

10'-0"

Member ReI. I's Length (ft.)

1 20.6 20.6

2 20.0 10.0

3 80.7 26.9

(Fixed end moments)

for i = 1, 2,

PM.
~

2m

= 0.0

A (matrix)

DMI DM2 DM3 DM4

Pl 0.0 1.0 1.0 0.0

P2 0.0 0.0 0.0 1.0

P3 -0.05 -0.05 0.065 0.065

P (matrix)

PI 0.0

P2 0.0

P3 10.0

DM5

0.0

1.0

-0.04

----.------.-.- --.--...• ~

25 -0"

DM6

0.0

0.0

-0.04

10

Input Data

0303
20.6
20.0
80.7
20.6
10.0
26.9
1 01 02 1.0
1 01 03 1.0
1 02 04 1.0
1 02 OS 1.0
1 03 01 -0.05
1 03 02 -0.05
1 03 03 0.065
1 03 04 0.065
1 03 OS -0.04
2 03 06 -0.04
2 01 0 .. 0
2 03 10.0

Output Data
Total End Moment

Ml = -22.66109

M2 = -27.59842

M3 = 27 .. 59842

M4 = 38.73907

MS = -38.73907

M6 == -40.63805

/O(

o

o

o

o

PI
P2
P3
P4
Ps
P6

•

3Sk

P Example 4 P
2r-" 3 ,3

m = 6 n = 6
Member ReI. I's Length eft)

1 3.0 15.133
2 3.0 15.133
3 9.0 12.000
4 3.0 15.133
5 3.0 15.133
6 4.0 16.000

P (matrix)

PI 0.0

P2 0.0

P3 0.0

P4 0.0

I
Ps 38.0

P6 0.0

Ml =
M -2 -
M = 3
M4 =

Ms =
M6 =

?FWrl - -- -T" .. ! "j ·"T O

11

Input Data

0606 1 04 09 1.0
3.0 1 04 12 1.0
3.0 1 05 03 -0.0667
9.0 1 05 04 -0.0667
3.0 1 05 05 0.0222
3.0 1 05 06 0.0222
4.0 1 05 07 -0.0667
15.133 1 05 08 -0.0667
15.133 1 06 01 -0.0667
12.0 1 06 02 -0.0667
15.133 1 06 03 0.0667
15.133 1 06 04 0.0667
16.0 1 06 07 0.0667
1 01 02 1.0 1 06 08 0.0667
1 01 03 1.0 1 06 09 -0.0667
1 01 11 1.0 1 06 10 -0.0667
1 02 04 1.0 1 06 11 0.01667
1 02 05 1.0 2 06 12 0.01667
1 03 06 1.0 2 01 0.0
1 03 07 1.0 2 05 35.0
1 04 08 1.0

Output Data
Total End Moment

-104.53591 M7 = -133.14998

-73.84198 M8 = -84.90203

-84.90202 M9 = -73.84198

-133.14998 MID = -104.53591

133.14998 MIl = 158.74401

133.14998 M12 = 158.74401

(Fixed End Moments) FMi = 0 for i = 1, 2, ••. , 2m

A (matrix)

DMI DM2 DM3 DM4 DMS DM6 DM7 DM8 DM 9 DM10 DMll

0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0

0.0 0.0 -.0667 -.0667 .0222 .0222 -.0667 -.0667 0.0 0.0 0.0

-.0667 -.0667 .0667 .0667 0.0 0.0 .0667 .0667 -.0667 -.0667 .01667

tttttttttdd

DM12

0.0

0.0

0.0

1.0

0.0

.01667

PROGRAM FOR IBM 1620-60K

C C MATRIX SOLUTION OF SLOPE DEFLECTION EQUATIONS
C BY TONY A ROSS - UNIVERSITY OF MISSISSIPPI

DIMENSION P(lS),FM(30),A(lS,30),S(30,30),UI(lS,lS)
DIMENSION BI(15),BL(lS),TR(30,IS),BM(30),AT(30,lS)

1 FORMAT(2I2)
2 FORMAT(F15.8)
3 FORMAT(I1,lX,I2,IX,I2,lX,F1S.8)
S FORMAT(4X,3HBM(,I2,3H) =,IX,F16.S)
6 FORMAT(4X,3H R(,I2,3H) =,lX,F16.5)
7 FORMAT(4X,3H X(,I2,3H) =,lX,FI6.S)
9 FORMAT(Il,lX,I2,IX,F10.2)

12

931 FORMAT(/48HFINAL JOINT ROTATIONS AND SIDESWAY DISPLACEMENTS)
933 FORMAT(/16HTQTAL END MOMENT)
C READ M (NUMBER OF MEMBERS) AND
C N (NUMBER OF JOINT ROTATIONS AND SIDESWAY FORCES)
4444 READ 1,M,N
C READ REL. MOMENT OF INERTIA

DO 100 J=l,M
100 READ 2,BICJ)
C READ MEMBER LENGTHS

DO 101 J=l,M
101 READ 2,BL(J)

M=2*M

o

DO 102 J=l,N o.
PCJ)=O.O
DO 102 K=l,M
FM(K)=O.O

102 AeJ,K)=O.O
C READ IN THE CAl MATRIX
104 READ 3,I,J,K,A(J,K)

GO TO (104,108),1
C READ THE VALUES FOR THE FIXED END MOMENTS
108 READ 9,I,J,FM(Jl

GO TO (108,109),1
C READ IN THE (P) MATRIX
109 READ 9,I,J,P(J)

GO TO (109,110),1
C CALCULATE THE STIFFNESS MATRIX (5)
110 DO lOS J=l,M

DO lOS K=I,M
105 S(J,K)=O.O

DO 106 J:2,Mt2
K=~/2
S(J,J)=4.0*BICK)/BL(K)
S(J-1,J-1)=S(J,J)
S(J,J-l)=2.0*BI(K)/BL(K)

106 S(J-1,J)=S(J,J-l)

o

o

0;

•

C
107

200
C

300

301
C

400

401

405

403

311
310
412

312
501
C
C

1111

500

TRANSPOSE MATRIX (A) INTO MATRIX (AT)
DO 200 J=ltN
DO 200 K=l,M
AT(KtJ)=A(J,K)
DETERMINE THE MULTPLIER MATRIX UI=A*S*AT
DO 300 1=1 ,M
DO 300 J=ltN
TRCItJ)=O.O
DO 300 K=ltM
TR (I t J) = TR (I ,J) +S (I ,K) *'A T (K ,J)
DO 301 1=1 ,N
DO 301 J=1,N
UI(I,J)=O.O
DO 301 K=l,M
UI(I,J)=UI(I,J)+A(I,K)*TR(K.J)
BEGIN MATRIX INVERSION
DO 400 J=1,N
DO 400 K=l,N
A(J,K)=UIeJ,K)
UI(J,K)=O.O
DO 401 J=1,N
UI(J,J)=1.0
DO 50 1 J K = 1 ,N
DO 501 J=JK,N
X=A(J,J)
DO 405 K=l,N
UI(J,K)=UI(J,K)/X
AeJ,K)=A(J,K)/X
LL=J+1
JL=J-l
IF(JL)403,310,403
DO 311 L = 1 ,.J L
X=ACLtJ)
DO 311 K=1,N
UI(L,K)=UI(L,K)-UI(J,K)*X
A(L,K)=A(L,K)-AeJ,K)*X
IF(LL-N)412,412,501
DO 312 L=LL,N
X=A(L,J)
DO 312 K=l,N
UI(L,K)=UI(L,K)-UI(J,K)*X
A(L,K)=A(L,K)-A(J,K)*X
CONTINUE
END MATRIX INVERSION
CALCULATE THE (X) MATRIX X=UI*P
DO 500 J=l,N
BL(J)=O.O
DO 500 K=l,N
BL(J)=BL(J)+UIeJ,K)*p(K)

13

C

600

601
C

100

916

DETERMINE THE CARRY OVER MOMENT CM=S*AT*X
DO 600 J=1,M
TR(,,J,l)=O.O
DO 6 00 - K = 1 ,N
TR(J,l)=TR(J,l)+ATCJ,K)*BL(K)
DO 601 J=1,M
BM(")=O.O
DO 601 K=1,M
BM(J)=BM(J)+SeJ,K)*TRCK,l)
CALCULATE THE FINAL MOMENT BM=CM+FM
DO 100 J=l,M
BM(J)=BM(J)+FMCJ)
PUNCH 933
DO 916 J=l,M
PUNCH 5,J,SM(J)
GO TO 4444
END

14

o

o
lOS-

Ult',' fd#UftW'i.··_ n

,. ·rlt"t"··tbt· ·yftit· ·rirt ·t •· .. ,·,·#'#tbrli ... ""ff - -r

o

/#t\~ ,,'

•

15

SUMMARY

The method of structural analysis presented in this

paper is a direct application of the already familiar slope-

deflection equations. This property of the program makes

it especially useful as a teaching aid in the third and

fourth years of engineering education.

Although the program could be used by anyone, small

engineering firms access to a 1620 computer would probably

find it more useful than would the larger firms. The larger

firms would probably have access to larger computers and

more sophisticated programs, but the smaller firms with

limited funds can now begin to make use of this modern

technique of structural analysis.

I 0 ~

o

o

o

o

•

"* " ["'I""' "." j"f" wp""-,Yar-

SIMULATION OF UPTAKE AND DISTRIBUTION OF ANESTHETIC AGENTS

Gerald A. Kien, Ph.D.
Northwestern Medical School
303 E. Chicago Avenue
Chicago, Illinois

and
Floyd N. Heller, M.D.
University of Illinois R & E Hospital
840 S. Wood Street
Chicago, Illinois

Among the many diversified uses of the digital computer, there

have been relatively few dealing with simulation of organ system

interactions and the influence of drugs on them. Computers are

being used routinely in the medical field for the conventional data

processing tasks of statistical analysis, data retrieval, pattern

recognition and patient monitoring. Perhaps the lag in the util-

ization of the engineering technique of system simulation has been

due both to the apparent complexity of biological systems and to

the lack of individuals spec;fically oriented toward the con-

struction of simulation models.

It is noteworthy that many of the physiologic responses known

may be described mathematically. Warne~recently stated that many

models with unrealistic properties have been proposed and justified

by their originators in order to obtain an analytical solution of

the model. Computer simulation has now invalidated this argument

since the analytical solution is no longer necessary or even sought

in most cases. Perhaps the most important contrdbution wlaich digital

computer simulation makes to the building of mathematical models is

that it no longer restricts the model builder to models for which

he can devise an analytical solution. Moreover, it is possible to

deviate from the rigorous mathematical model approach by the use of

f) ~

-------------------.---... ----~~~~--------. --~~~~~------.------.---"""""""~"""'.=-.. --=----=.--.-=-... --=.----=--=-'-'-

-2-

a transaction or process-oriented digital computer language. Sim

script and GPSS may be the best examples of this.

It is a frequent comment that in dealing with the simulation

of biological events, there are other drawbacks. First, there are

certainly areas for which data are essentially unavailable, or at

least unmeasurable at the present time. Second, when dealing with

the human organism certain intangibles arise, such as atypical

individual responses to specific stimuli, giving conflicting

responses in both the same individual and in different individuals,

as well as in different species. Third, the practical applications

may be obscure to the casual observer.

In regard to the unknown data, this is not as insurmountable

as it would seem at first. We know, for example, that the gross

response to a specific stimulus (e.g., the administration of an

o

anesthetic drug) reflects itself with an overall effect on the hody, .~

affecting many of its physiologic parameters. We can measure and

record these changes. Some of the specific modes of action are

unknown, but the effect has occurred nevertheless. All we can do

is simulate the response. If our theories as to how the response

occurred are eventually proved incorrect, it is of no major sig

nificance as long as the response that occurs is accurate. When

we do not know a minute detail, or when this detail is of minimum

consequence in the overall picture, it can be approximated or

neglected completely, depending on what responses we really need

for the general simulation. In the simulation of uptake and dis-

tribution of anesthetic agents, there can be no better example than

the realization that the exact mechanism by which an anesthetic

o
Joq

-3-

actually obtunds the function of a nerve cell is as yet unknown.

4£) Nevertheless, this does not hinder the anesthesiologist in knowing

that it does indeed induce an anesthetic state, nor does it hamper

him in the slightest in how he administers the drug. The overall

response is the important aspect.

The variability of response to specific stimuli is considered

by generating a probabilistic likelihood for a given occurrence

from a specific set of stimuli. This attempts to develop a more

complete simulation by allowing some of the variable factors that

do indeed exist in nature to become part of the model. That we are

unaware of a specific cause relating to these probabilistic events

is unfortunate. However, it occurs within the model with the same

uncertainty that it may occur unexpectedly in real life. Thus,

although a specific anesthetic agent almost always produces anes-

o thesia at a given blood level, it is possible for the simulation

model to allow the patient to require much more than the normal

dose level before initiation of a pharmacologic response pattern.

We feel finally that this computer simulation will have some

practical significance, as a tool for both investigation and teaching.

The simulation program has been designed for maximum interaction

between the executing simulation model and the "anesthesiologist".

Thus, he may change any of the variables in the program or the

status of the simulation during its execution. He may thereby

investigate the dynamics of drug and organ system inter-relationShips.

A number of mathematical models of the uptake and distribution

of anesthetic agents have been reported and some relevant predictions

• have been made from electrical analogs. Since these electrical

-4-

analogs do not provide for changes in organ system characteristics

seen during the course of clinical anesthesia, their usefulness 4()
and accuracy is limited solely to very low dose levels of the drug.

Similarly, because of the assumptions and simplifications necessary

for construction of a mathematical model, these also tend to suggest

conclusions which are not necessarily complete under the variety

of conditions that do indeed exist.

As an anesthetic gas enters the lungs, it undergoes a number

of changes. It is diluted by the gases already present. It is

heated and expands. Water vapor is added to it and increases its

volume, while decreasing the partial pressure of any other gas in

the system. A certain amount of anesthetic gas is lost to lung

tissue and circulating blood, thus decreasing the remaining total

gas volume and the volume of the anesthetic gas within the total

lung volume. If alveolar ventilation is to remain constant, then

the gas taken up must be replaced by gas drawn in. This increases

inflow volume by the amount taken up, but maintains the outflow

volume constant. Loss of the anesthetic from the blood to the

peripheral tissues then occurs and is dependent on such factors as

tissue solubility and blood flow per unit volume of tissue.

Immediately on administration of the anesthetic agent, and

throughout the duration of the anesthetic state, there occurs a

series of pharmacologic response patterns which cause alterations

of the physiologic mechanisms controlling the uptake and distribution

of the anesthetic agent. As the concentration of the anesthetic

agent increases in the myocardium there may be a decrease in cardiac

output resulting in a reduced presentation of the drug to all organ

J I J

o

o

1' .. It "fmhn tt
tt I til· trttt rtf." f±'t±Wt "ijUriritiiriii±ribsiritt . j _.... :-'I" .. j""T e .. - r" if'

o

o

o

-5-

systems. Increasing concentrations of the anesthetic in the central

nervous system may cause a reduction in the respiratory tidal volume

and, in the absence of respiratory assistance, will reduce the amount

of drug presented to the lungs.

The simulation of uptake and distribution of anesthetic agents

is a transaction or process-oriented computer simulation model. The

primary language used is Fortran II-D with SPS subroutines. In its

general organization, the simulation model resembles GPSS and SIM

SCRIPT.

The model consists of a mainline control program and a series

of subroutines representing the interrelated systems and interface

systems of the body. The pulmonary circulation, the heart and the

lungs are considered systems. The transport of gas from the lung

alveoli to the pulmonary capillary blood is considered an interface

system. These subroutines are under supervision of a main timing

routine and are called by the mainline control program.

The attributes of the system as a whole, or of its sub-systems,

defines the status of the simulation model. These are modified by

a series of intrinsic events which are caused to occur at fixed or

probabilistic intervals in simulated time depending upon the values

of one or more attributes of the system. Execution of a system or

interface system subroutine is under the control of a main timing

routine which keeps track of simulated time and calls events in

their proper sequence.

The ~ttributes of the system or its components may also be

changed during the simulation by a series of extrinsic events. The

extrinsic events may be generated at the start of the simulation

1 I ,:;l.,

-6-

run, in which case the event and the time it is scheduled to occur

will be stored in a future events list. Alternatively, the sim- c
ulation may be interrupted during its execution by the console

operator. The status of the system variables can be printed at

selected time intervals. Depending on the value of these variables,

the anesthesiologist may request additional data and then change

any of the system variables under his control (i.e., anesthetic gas

concentration, ventilation volume, etc.). The simulation can then

be restarted. On termination of the simulation, the history of the

anesthetic course is printed including multiple page plots and

tables.

1
Warner, H.R., Simulation as a Tool for Biological Research, Sim-
ulation, Vol. 3, Number 4, October, 1964. o

o
I J 3

o
A SELECTIVE DISSEMINATION OF INFORMATION SYSTEM FOR MEDICAL LITERATURE

by

James L. Grisell, Ph.D. and Roger Gudobba

The Lafayette Clinic Medical SOl system has been designed to keep

scientific investigators routinely informed of the world's literature

in any selected area of medicine. The system can provide either a current

awareness of new articles or a bibliographic search of an entire file of

articles for references relating to any topic in the area of specialization.

At the lafayette Clinic we use the system for the literature on the mental

illness of schizophrenia.

The current awareness portion of the system is designed to work on an

automatic basis. Each investigator serviced by the system has on file

in the Computing Laboratory a list of key terms, designated as a profile,

which define that segment of the schizophrenia literature of interest to

him. The key terms used in profiles are obtained from a dictionary of

all terms occurring in the entire file. Once a month, all profiles are

compared against all new articles entered into the system during the

preceding four weeks. If key terms in a profile match the terms in a new

entry, then the article should be of interest to that investigator.

If an investigator wants a bibliography derived from the complete file of

articles, he prepares a profile which defines his area of research interest.

This profile is then matched against all articles in the system. When the

key terms in the profile match the key terms in an article, this article

2.

will be included in the bibliography. The investigator receives a complete

list of all articles which matched his profile. If the investigator wants

to be kept informed of new articles in the area of interest defined by his

bibliographic search profile, then this profile can be added to the current

awareness file of profiles to be searched on a monthly basis.

This system has been designed to provide a maximum of flexibility in writing

profiles so that each investigator can define his area of interest with

optimum precision. Continuing feedback is also provided regarding profile

key terms which are matched with article key terms. If a key term keeps

finding articles which are not of interest to the investigator the profile

can be modified to eliminate those key terms. On the other hand, if a

given profile passes over articles of interest, then appropriate key terms

for finding these articles can be added. The ultimate goal of the system

is to bring to the attention of each investigator only those articles which

are of interest to him.

Description of Entries

The ultimate success or failure of any current awareness or bibliographic

search system is the adequacy of the bibliographic reference data which is

used. This data must meet two important criteria: (1) it must cover the

world's literature of the area of interest as thoroughly as possible and

(2) it must contain an adequate, but concise, description of the contents

of each entry.

o

o

o

tit::

o

o

.h tth - tes • ·urn
.•

A source of bibliographic information which adequately meets both of these

criteria is the MEDLARS system of the National Library of Medicine. The

National library is currently indexing 16,000 journal issues from allover

the world. These journals presently contain 160,000 articles of medical

interest. By 1969 the Library will index 25,000 journals containing

250,000 medical articles. As each journal is received at the National

library it is checked for articles of medical interest. For medical journals,

all articles are routinely indexed. For a journal such as Science, only

those articles pertaining to medical topics are indexed.

Each article is read by an indexer. The indexer then assigns a series of

tags, or index words, which define the subject content of the articleo

These tags are words which appear in Medical Subject Headings (MESH).

Currently, an average of 10 tags are assigned to each article. The tags

or index words are also the subject headings under which articles are

listed in the Index Medicus. Since cross-referencing an article on the

average of ten times would produce a voluminous Index Medicus, the indexing

is done on two levels. The first level consists of tags most representative

of the article1s contents. These are used for inclusion in Index Medicus

and are preceded by an • in a MEDLARS listing. The other tags are not used

for Index Medicus but are available for searches of the MEDLARS' master file.

Thus, a search of their file will yield more articles than you would get

by looking in Index Medicus under the same headings used for the search.

I (b

4.

The entries in the MEDlARS system are available from the National library

on the basis of either a demand search, or on the basis of a recurring

search. To receive a demand search they require a list of tags from

MESH and the dates within which the search is to be performed. A recurring

search is a routine search made of all new articles within a specified

time period. Thus, if one wishes this on a monthly basis, once a month

the list of tags defining an area of interest are routinely run against

the new entries for the month and the list provides all articles containing

one or more of the tags.

The Format of an Article in MEDLARS

Each article in the MEDlARS system contains certain basic information

descriptive of the articles. The following items are included:

1)

2)

3)

The author's name. If the article has mUltiple authorship
all are included in the listing, with the senior author
listed first. The last name is given first, followed by
the author's initials. No first names are given. If
there is no author (1.5%) it is listed as anonywous.

The title of the article.
If the paper is in English the title will be listed
exactly as it appears in the article. If the paper is
in a foreign language, the title will be in English
translation and in the Roman alphabet. The title
itself will be enclosed in parentheses. The language
in which the article was written is also indicated
by a standard abbreviation, also enclosed in parentheses.

The source in which the article was published.
The journals are given in standard abbreviated form.
The volume number, month and year of pUblication and
pagination are also given.

o

o

/1 7

o

o

· ·-wrw·ml"fna····j"§j"" .. ··

4} Index terms or tags.
The index terms which describe the subject contents
of the article are also included. An index term must
be in MESH. Index Terms which are used in Index Medicus
are preceded by an asterisk.

Preparation of MEDLARS entries for use in the SOl system.

5.

All articles received to date, and they now number 2300, have been prepared

for entry into our SOl system. One of the guiding principles of our system

is that it be as automatic as possible. Consequently, we do a minimum of

pre-editing of article listings as they are received. Some modifications

of the original listings are necessary, but these are limited to the assign-

ing of identification codes to the various parts of an entry so the computer

can more readily identify these parts. The order in which the entry parts

are listed is consistent, but the number of lines each may require is not.

Usually, the title will be on only one line, but may require two. The

number of lines of index terms may range from 1 to 4. Consequently, each

line of an entry must be labeled to indicate whether it is the author (A),

title (T), so"rce (S) or index terms, (designated key terms (K)). Each

line is also given a sequence number and each article is given a document

number.

Error checking procedures for all entries.

Every attempt is ~~de to see that the entries are keypunched as accurately

as possible and that the identifying information is correct. Also, the

--------~--- ,----~~~~~~~--~~--------------.. ---,-,----~

6.

contents of the entries are checked for proper spacing. This is necessi-

tated by the fact that the system programs which process the entries

assume that each entry is in the standard format.

I

After the entries have been keypunched, they are verified. When all

errors found in the verification process have been corrected, the entries

are then run through an error checking program. For each entry the program

checks the following:

1) all cards in the same entry must have the same document number

2) the alphabetic card designation must be in the sequence A, T, S, K.

3) the card sequence numbers must start with 1 and be consecutive

4) in the contents of the entry itself, each card is scanned to
see if anything has been punched after the program has detected
two consecutive blanks or has come to the end of the card.
This is important because the presence of two consecutive
blanks or the end of card is the only way subsequent programs
in the system know they have reached the end of valid informa
t ion on a card.

If any of the above error indications are found, an appropriate error

message is provided specifying the type of error and the document number

with which it occurred. No entries are used in the system until they go

through the error checking program with no error messages. Figure 1 is

a sample of article entries after they have been prepared for entry into

the system.

c

o

r"" "

o

o

I ' .'"

7.

FIGURE 1

Article Entries as They are Used in the SOl SYSTEM

1 A 1 AALL L
1 T 2 (SYMPOSIUM ON SCHIZOPHRENIA-lIKE PSYCHOSES AND ETIOLOGY OF
1 T 3 SCHIZOPHRENIA. EXPERIENCES REGARDING THE TOPIC IN TANGANYIKA) (GER)
1 S 4 SCHWEIZ ARCH NEUROl PSYCHIAT 93,377-9, 1964
1 K 5 *SCHIZOPHRENIA, TANGANYIKA (1)

2 A 1 AARONSON BS
2 T 2 AGING, PERSONALITY CHANGE, AND PSYCHIATRIC DIAGNOSIS.
2 S 3 J GERONT 19,144-8, APR 64
2 K 4 ADOLESCENCE, ADOLESCENT PSYCHOLOGY, *AGING, DIAGNOSIS, *MENTAL
2 K 5 DISORDERS, *MMPI, *PERSONAlITY, SCHIZOPHRENIC PSYCHOLOGY,
2 K 6 SOCIOPATHIC PERSONALITY

3 A 1 ABELY P, LAUZIER B
3 T 2 (THE FATE OF THE CONCEPTS OF PERIODICITY, ATYPISM AND INCURABILITY
3 T 3 IN PRACTICAL PSYCHIATRY) (FR)
3 S 4 ANN MEDICOPSYCHOL (PARIS) 122,729-46, MAY 64
3 K 5 CLASSIFICATION, *MENTAL DISORDERS, *HOMENCLATURE, PERIODICITY,
3 K 6 PROGNOSIS, *PSYCHIATRY, PSYCHOTHERAPY, SCHIZOPHRENIC PSYCHOLOGY

4 A 1 ABRAHAM G
4 T 2 (TH E PRO B L EM 0 F M I X EO P S Y CHO S E S) (F R)
4 S 3 ANN MEOICOPSYCHOL (PARIS) 122,481-90, NOV 64
4 K 4 CLASSIFICATION, ~EPRESSION, *EPILEPSY, ~EUROSES, *PSYCHOSES,
4 K 5 *PSYCHOSES, MANIC-DEPRESSIVE, *SCHIZOPHRa~IA

5 A 1 ABRAMS S
5 T 2 A VALIDATION OF PIOTROWSKI'S ALPHA FORMULA WITH SCHIZOPHRENICS
5 T 3 VARYING IN DURATION OF ILLNESS.
5 S 4 AMER J PSYCHIAT 121,45-7, JUL 64
5 K 5 DIAGNOSIS, DIFFERENTIAL, *RORSCHACH TEST, *SCHIZOPHRENIA

6 A 1 ABRAMSON HA
6 T 2 ANTISEROTONIN ACTION OF LSD-25 AND OTHER LYSERGIC ACID DERIVATIVES~
6 T 3 FACT AND FICTION.
6 S 4 J ASTHMA RES 1,207-11, MAR 64
6 K 5 *ALlERGY, ASTHMA, AUTISM, CHILD, *HALLUCINOGENS, *LYSERGIC
6 K 6 ACID DIETHYLAMIDE, METHYSERGIDE (3), MIGRAINE, PHARMACOLOGY,
6 K 7 SCHIZOPHRENIA, CHILDHOOD, *SEROTONIN INHIBITORS, TOXICOLOGIC
6 K 8 REPORT (4)

7 A 1 ACHILLES M
7 T 2 (ATTEMPT AT A STATISTICAL DIAGNOSIS OF THE DRIVE STRUCTURE IN
7 T 3 PROBLEM SnJDENTS) (GER)
7 S 4 PRAX KINDERPSYCHOL 13,177-81, JUL 64
7 K 5 ADOLESCENCE, AGGRESSION, AUTISM, CHILD, *CHILD BEHAVIOR
7 K 6 DISORDERS, EDUCATION OF MENTALLY DEFECTIVE, MOTIVATION,
7 K 7 PERSONALITY, PUBERTY,. SEX, STATISTICS, THEMATIC APPERCEPTION
7 K 8 TEST

8.

Preparation of the Dictionaries.

One of the most important aspects of our SOl system is the preparation

of the dictionary of terms contained in the MEDLARS references. This

dictionary provides information which is the basis for making interest

profiles. You can't know what to ask for until you know what's there.

This system uses three separate kinds of dictionaries: (1) a dictionary

of terms derived from both the title and index tags, (2) a dictionary of

authors and (3) a dictionary of sources.

The Dictionary of Key Terms.

This dictionary is generated by a computer program from both the title

of the article and from the index tagso The program rules for finding

terms in titles are different than the rules for finding terms from tags.

For titles, each is scanned by the program going from left to right.

The beginning and end of a word are identified by the presence of a blank.

If the first character of any word is a special character, such as a

parenthesis or a quotation mark, it is ignored. If the last character

of a word is a parenthesis, comma, period or quotation mark, it is also

ignored.

When a word has been found, it is compared against a trivial word list.

This list consists of such words as: the, it, and, but, etc. There is

provision in the program for 450 such terms, currently we use 100. If a

word is not in the trivial word list it is considered a valid term for

the dictionary and is written out on disk.

word file it is ignored.

If a word is in the trivial

o

o

o
~}

•• ""#tMbitftifBwt#b6"'·· j&btrib . t f 3'"'"""(u ."] .. "".......... P .. f" .. W"tl"RTT" ··FTI"", .. tr'··· _. --f·'

9.

o
Since the goal of the SOl system was to make it as automatic as possible,

only single terms are extracted from article titles. To get multiple

word terms would require the pre-editing of the titles and designating

which consecutive word groups should be treated as a single term by

manually inserting some special character before the first word and at

the end 0 f t he 1 as t • This is done in some SOl systems. For example, one

may wi sh to des i gnate Itsocial factors" as a two-word term. However, this

wi 11 appear in the dictionary as two terms; "soci a 1" and Itfactors".

While this may be regarded as a shortcoming of the system, provi s ion can

be made in the construction of profiles to treat these two words as a unit.

After all non-trivial words have been found in the title, the program

o then scans the K cards for the index terms assigned to the article by

the National Library. When dealing with these terms, multiple word terms

are treated as one. The purpose of this was to retain all of the terms

as they appear in MESH. The logic of the program is very simple. It

regards anything between commas as a term. Anything within parentheses

is ignored. As each term is found it is also written on disk.

When the program is run with a number of articles it searches alternately

title cards and key term cards. When all entries have been processed, all

key terms have been written on magnetic disk in the order found. The next

problem is to alphabetize them and count the frequency with which each

term appeared. It is also necessary to designate new terms which have never

appeared before. The alphabetizing is accomplished by sorting all key terms

.\

"

into alphabetical sequence. The IBM 1620 sort-merge program is used for

this purposeo

I

! II I,

10. o
The dictionary generator program has been written so that it can either

generate an original dictionary, or update an old one when new entries

are added to the system. A separate tabulating program has been written

to work in conjunction with Phase 4 of the IBM sort program. After the

terms have been sorted in alphabetical sequence, each term is made avail-

able to the tabulating program. If an original dictionary ;s being

generated the program merely tabulates the frequency with which each term

occurs. When a new term is found, the previous term, together with its

frequency of occurrence, is punched on a card. When all terms have been

tabulated the cards produced by the program are then listed to get a

readable copy of the dictionary.

When the Dictionary of Key Terms is being updated with the key terms from o
a new set of entries, the procedure is slightly different. After all the

terms have been identified and sorted the tabulation program requires the

cards from the old dictionary. The first of these is read in and then the

first word on disk is compared with it. If they are the same, the word

from disk is counted and the next word from disk is brought in and compared.

This procedure is repeated until the word from disk is not the same as

the word on the card. When this happens the frequency of the previous

word on disk is added to the cumulative total for that word on the diction-

ary card. Then the new cumulative total, the tabulation frequency for

the current run and the term itself are punched on a card.

o
Id.3

o

o

- T rfIT"'" - P y -ri¥r&d - T""JTv m]" ,n l-rr"7Ey-gP'--

11 •

When the program encounters a word on disk which was not previously in

the dictionary it is a new term. When the term ;s punched on a card an

asterisk is put in front of it. When a term on cards is found but which

is not in the current entries, the monthly total is set to zero and the

cumulative total is unchanged. Figure 2 is a sample page of the Dictionary

of Key Terms.

12.

FIGURE 2 0
Sample Page of the Dictionary of Key Terms

DICTIONARY OF KEY TERMS
LAFAYETTE CLINIC MEDICAL SOl SYSTEM

UPDA TED AS OF 8/24/65

CUMULATIVE TOTAL FOR
TOTALS MONTH

1 0 ••••• ABBREVIATION
1 0 ••••• ABERRATIONS
1 0 ••••• ABILI TIES
5 0 ••••• ABILITY
5 0 ••••• ABNORMAL
8 0 ••••• A BNO RMAL IT I ES
1 0 ••••• ABNO RMAL ITY
l 0 ••••• ABNO RMALTIES
1 0 ••••• ABO FACTORS
5 0 ••••• AOO RTION
1 1 ••••• X- ABREACTION
2 0 ••••• ABRUPT
1 0 ••••• ABSCESS
1 0 ••••• ABSOLUTE 0 1 0 ••••• ABSORPTION
2 0 ••••• ABSTRACT
1 0 ••••• ABSTRACTION
1 0 ••••• ABSURD ITY
1 0 ••••• ACANTHRO CYTOSIS
1 1 ••••• * ACCEPTABILITY
1 0 ••••• ACCEPTANCE
1 0 ••••• ACCEPTORS
1 0 ••••• ACCOMMODATION
1 0 ••••• ACCOMPANYING
1 0 •• 0 •• ACEP ROMAZIN E
4 0 ••••• ACETATES
1 0 ••••• ACETIC
5 0 ••••• ACETOPHENAZINE
7 0 ••••• ACETYLCHOLINE
4 0 ••••• ACHI EVEM ENT
1 0 ••••• ACHI EVEM EN TS
1 0 ••••• ACHILLES
3 0 ••••• ACHILLES TENDON

31 3 ••••• ACID
1 1 ••••• * ACIDOSIS
5 0 ••••• ACIDS

()
,--

,d..">

o

o

. '

After the dictionary has been updated, the next step is to prepare a

list of new entries. A program has been written for this purpose.

The cards comprising the dictionary are read into the computer. Each

card is examined for the presence of an asterisk denoting a new term.

If an asterisk is found the word on the card is punched out. When the

program has read through all of the dictionary cards and the output

listed, we have a readable copy of all new terms which have been added

to the dictionary. This listing is made available to all of the investi

gators being serviced by the SOl system. The list of new terms is submitted

to them prior to running their profiles against the new entries so the

investigator can include any of the new terms in his profile to get the

articles containing them. At some reasonable interval each USer will

be given a new dictionary.

Dictionary of Authors and Dictionary of Sources

In addition to the Dictionary of Key Terms, two other dictionaries are

prepared: one of all authors and the other of all of the sources in

which the literature has appeared. The entries in both of these diction

aries may be used in constructing profiles. Thus, an investigator interested

in getting all of the publications of a particular author may do so.

Also, he can ask for all of the articles appearing in a given journal •

~
I

14.

80th of these dictionaries are prepared in the same way as the dictionary

of key terms. The difference is that for the dictionary of authors, only

the author card is processed. The authors are listed separately even

though an article may have multiple authorship. For the dictionary of

sources only the source card is scanned. In the listing of sources only

the journal name is included. All information pertaining to volume, year

and pagination is ignored. Listings of new entries are prepared for both

of these dictionaries in the same way as with the Dictionary of Key Terms.

Profi 1 es

The ultimate success or failure of an SOl system is a function of the ease

and accuracy with which an investigator can define his area of interest

on the basis of the terms in the articles being searched. This is done by

constructing a profile of terms. The terms in the profile are then com-

parea with the terms in an article. If the computer finds a match in

these sets of words, then the article is designated as being of interest

to the investigatore If the profile is a good one it will maximize the

number of articles of interest it finds and minimize the number of articles

designated as interesting, but which are not. If the profile is not a good

one, the reverse will then be true.

The profiles used in this system are similar to the profiles used in the

IBM SOl system, but with modifications. In the Lafayette Clinic Medical

o

'0

o

o

•

15.

SOl system a profile has a hit level, which may range from -9 to +99.

Each term in the profile has a weight. This also has a range from -9 to +99.

Each term in the profile is compared with each term in the article. Each

time a match is found the weight of the term in the profile is summed.

After the last comparison is made, the sum of the terms on which a match

occurred is compared to the hit level of the profile. If the sum is equal

to or greater than the hit level, then the article is designated as being

of interest. If the sum is less than the hit level the article is ignored.

In addition to a total hit level for the profile and a weight for each term,

there are also two kinds of terms which may be used: complete terms and

root terms. A complete term is one which appears in the profile exactly

as it does in the dictionary of key terms. The term must appear in the

article exactly as it is in the profile to result in an equal compare-.

A root term, on the other hand, will result in comparing only as many letters

in the article word as are in the root term in the profile. For example

if "child" is designated as a root term in the profile then it will result

in an equal compare with children, childrents,childhood and, of course, child.

The USe of root terms is a convenient way of encompassing all variants of

a term which may have one of several different endings.

As one final feature, each term in a profile may also have one of two

modifiers: ~ and~. A must modifier simply indicates that any time

a must term is found the investigator will get that article whether the

16.

hit level has been reached or not. A not t,erm will do the opposite.

I

When a not term is found the article will ~e skipped even though the

hit level has been equaled or exceeded. The only exception occurs when

a must term and a not term are both found in the same article. Under

these circumstances the must term overrides the not term. E,ither a root

or a complete term can have either of the modifiers. Figure 3 is a sample

prof; 1 e.

IONO = 10001

MODI-
FIER

MUST
NOT

NOT

FIGURE 3

Sampl e Profi 1 e

LAFAYETTE CL IN I C MED I CAL S DI SYSTEM
BI BL IOGRAPHIC SEARCH

SEARCH MAD.E ON 9/29/65

KEY TERM PROFILE DESCRIPTION

NAME - SPECIAL LOCATION

\t.() RD
TYPE WT. KEY TERM

COMP 1 ABRAMS S
COMP 1 CHILD BEHAVIOR DISORDERS
COMP 1 CLASSIFICATION
COr-1p 2 DIAGNOSIS
COMP 1 NOMENCLATURE
ROOT 1 RORSCHACH

LC HIT LEVEL = 2

o

o

o

o

()

•

17.

Searches

This SOl system has been designed to perform two kinds of searches:

an SOl search and a bibliographic search. The SOl search is performed

on a monthly basis and essentially it compares each profile with each

of the monthly articles. The articles are read from cards.

The bibliographic search essentially matches one profile against all

articles in the system. For the bibliographic search, the master file

of articles is stored on disk.

In an SOl search, all profiles are first read in and then written out on

disk (on drive 0), in a packed format. After the profiles have been stored

the first articl e is read i'n from cards. The program then brings in each

profile from disk and compares the terms in the profile with the terms

in the article. If the sum of the weights of the terms on which a comparison

is made equals or exceeds the hit level of the profile, or if a "must"

term is found, the article ;s said to match the profile. When this occurs

certain identifying information is written on the second disk drive (drive 1).

This consists of

1) the profile number

2) document number of the article

3) the article sequence number (which indicates
if it is the first, second, etc. article on
which a match was found)

4) the words on which a comparison was made
between profile terms and article terms

The first time a match is found on an article, the article itself is

written on disk (drive 0). The following information is needed:

130

18.

1) the document number

2) the authors of the article

3) the title of the article

4) the source in which the article appears

The index terms are not recorded. An article is written on disk only once,

the first time a match is found between the article and some profile. If

no matches occur the article is not written out. After all profiles have

been compared against an article, the next article is read in and all

profiles are compared against it, etc. until all the articles have been

processed. After all of the articles have been processed, the contents

of the disk containing the data for the hits (drive 1) are sorted in

numerical sequence by profile number and by document number within the

profi 1 e number.

The program which punches out the results works in conjunction with Phase 4

of the sort program. The output consists of the profile, followed by the

articles on which a match was found. The articles appear in numerical

sequence by document number. Figure 4 shows a sample output. This out

put was the result of running the profile in Figure 3 against the articles

in Fi gure 1.

The bibliographic search is designed to compare one profile with the entire

file of literature references. At the beginning of the program the profile

is read in from cards but instead of being written out on disk it is retained

on core storage. In addition, it is punched out as the initial part of the

13/

o

o

o

o

•

19.

FIGURE 4

Articles from Figure 1 which Match Profile in Figure 3

THESE ARTICLES MATCH THE PRCFILE DESCRIBED ABOV~

2 A AARONSON BS
T AGING, PERSONALITY CHANGE, AND PSYCHIATRIC DIAGNOSIS.
S J GERONT 19,144-8, APR 64

MOD 1- WORD
FIER TYPE WT. KEY TERM

COMP 2 DIAGNOSIS

3 A ABELY P, LAUZIER B
T (THE FATE OF THE CONCEPTS OF PERIODICITY, ATYPISM AND INCURABILITY
T IN PRACTICAL PSYCHIATRY) (FR)
S ANN MEDICOPSYCHOL (PARIS) 122,729-46, MAY 64

MODI- WORD
FIER TYPE WT. KEY TERM

COMP 1 CLASSIFICATION
COMP 1 NOMENCLATURE

5 A ABRAMS S
T A VALIDATION OF PIOTROWSKI'S ALPHA FORMULA WITH SCHIZOPHRENICS
T VARYING IN DURATION OF ILLNESS.
S AMER J PSYCHIAT 121,45-7, JUL 64

MOD 1- WORD
FIER TYPE WT.

MUST COMP
COMP

NOT ROOT

1
2
1

KEY TERM

ABRAMS S
o IAGNOS IS
RO RS CHA CH TEST

20.

output. The articles against which the profile are compared are stored

on disk. The articles are read one at a time and compared against the

profile. When a match is found, the reference is punched out immediately.

The output of this section of the program has the same output format as

the SOl search.

Description of SOl Monitor Pack

The operation of this system is greatly facilitated by setting up a special

Monitor disk pack. Since several of the operations performed by the system

involve a series of linked programs, they can be executed sequentially

without changing packs. By putting on this pack only those parts of

Monitor which are necessary for the operation of the system under Monitor

control, and only those programs which pertain to the system, large areas

of disk are made available for storing data. Wbrk storage is defined as

being the entire second drive (drive 1).

The sections of Monitor I loaded are:

1. The supervisor routines

2. The OUP routines

3. The DIM table

4. The Equivalence table

5. The sequential program table

6. The disk pack label areas

c

o

--n

•

o

•

21 •

The system programs are stored in sectors adjacent to the DIM table and

in the upper part of the disk. Sectors 00000-04799 and sectors 05200-16999

are available for data storage. The first area is used for storing profiles

in an SOl search. The second area is used for storing articles on which

a profile match was found during an SOl search.

The DIM, equivalence and sequential program tables were read in without

modification from the Monitor deck. After loading, the DIM entries for

the SPS assembler and Fortran compiler were deleted using the Monitor

OUP routine. This made the storage space assigned to these packages

available for storing the SOl programs.

Before the SOl Monitor deck can be set up, all of the SOl programs must be

assembl ed with a standard Monitor pack. At the end of each assembty an

object deck is punched out. Before these can be loaded the SPS and Fortran

DIM entries crust be deleted. The object decks can then be loaded.

The SOl system described in this paper is currently in operation at the

Lafayette Clinic. The system, as described, was written to run on an

IBM 1620, Modell with 60,000 digits of internal core storage with two

1311 disk drives. In addition, the special instructions transmit numeric

strip, transmit numeric fill, and indirect addressing are required. With

very minimal modifications the program package will run on a 40K machine.

This can be accomplished by merely reducing the size of the trivial word

file used in the program for generating the dictionary of key terms •

II

As yet, this system has not been submitted to the Users Group but it is

available directly from the Lafayette Cli~ic to anyone who is interested

in using this system with some aspect of he medical literature which is

made available by the National Library of Medicine.

o

o

o

o

•

HISTORY OF THE DEVELOPMENT OF PART

AT TENNESSEE TECH, STUDENTS ARE TAUGHT MACHINE LANGUAGE
PROGRAMMING ON THE IBM 1620 COMPUTER, BEING REQUIRED TO WRITE COM
PUTER PROGRAMS FOR THE SOLVING OF CERTAIN SPECIFIED PROBLEMS. FOR
TH~ PAST TWO YEARS, WE HAVE BEEN lJSING A MODIFIED PROGRA~ CALLED
• •• MAR (AT. • ., I.~J R ITT F. N R Y PRO F E S S 0 R G t 'Y RIC K E R 0 F N E 1.,,1./ J E R S E Y S TAT ~
COL LEG E ~"H I C H F X F. (UTE DAN D C H E C KED THE R F S U L T S 0 F MAC H I N E LAN G U AGE
PROGRAMS FOR THE 1620. AFTER THE EXPERIENCE GAINED USING MARCAT,
AND DUE TO (ERTAIN FEATURES OF MARCAT THAT WERE UNDESIRABLE FOR OUR
APPLICATIONS, IT WAS DECIDED TO WRITE OUR OWN PROGRAM TO SATISFY
OUR NEED FOR A MEANS OF PROCESSING, EXFCUTING, AND CHECKING LARGE
VOLUMES OF STUDENT WRITTEN MACHINE lANGUAGE PROGRAMS. OUR USE OF
THE ••• PART ••• PRO~RAM PERMITS WIDE USE OF THE MARK SENSING CAPA
BILITIES OF OUR IBM 514 REPRODUCING PUNCH TO EXPEDITE THE PUNCHING
ANn PROCESSING OF THE PROGRAMS. HOWEVFR, THERE IS NO REASON WHY,
AS LONG AS PROPER CARD FOR~AT~ ARE FOLLOWED, THE PART PROGRAM COULD
NOT BE USED WITH ALL INFOR~ATION BEING HA~D PUNCHED AND THE USE OF
H /\ R K SEN SEE QUI P '1 E ~~ TEL I r-.1 I NAT ED.

THE PURPOSE OF PART

T~E PURPOSE OF PART IS TO GIVE THE COMPUTER CENTER A CONVENIENT
~EANS OF HANDLING STUDENT WRITTEN MACHINE LANGUAGE PROGRAMS AND, AT THE
SAME TIME, GIVE THE STUDENTS A DEFINITE ANSWER AS TO THE STATUS OF
THEIR PROGRA~S. IT YIELDS TO THE INSTRUCTOR A CONVENIENT MEANS OF
ANALYZING THE PROGRESS OF EACH OF THE STUDENTS. FURTHERMORE THE
c: T U f) EN T S ARE G I V F N PER TIN E ~I TIN FOR MAT ION R E L A TIN G TOT H E SOU R C E
OF THEIR ERRORS. THE MAJOR PURPOSE OF PART IS TO CHECK ASSIGNED
PRORLEMS FOR PREVIOUSLY DETERMINED ANSWERS.

BRIEF DESCRIPTION OF PART

PART OPERATES ON THE BASIS OF EXECUTING STUDENT WRITTEN
~ACHINE LANGUAGE PROGRAMS AND COMPARING THE DERIVED Ar~SWERS WITH
PREVIOUSLY STORED CORRECT ANSWERS. ALL COMPARISONS ARE MADE AS
FIELDS.

FIRST, THE ANSWERS ARE STORED FOR ALL OF THE PROBLEMS INVOLVED.
SECOND, THE STUDENT PROGRAM IS LOADED INTO CORE BY THE PART PRO
CESSOR. THEN THE STUDENT PROGRAM IS EXECUTED UNDER CONTROL WHILE CON
STANTLY BEING CHECKED FOR ERRORS. IF AN ERROR IS ENCOUNTERED, THE
STUDENT PROGRAM IS DISdoNTINUED AND THE APPROPRIATE ERROR MESSAGE IS
GIVEN OUT. PROVIDED NO OBVIOUS ERRORS EXIST, THE ANSWERS GIVEN BY THE
PROGRAM ARE CHECKED g~ REFE~ENCE TO THE PRE-ASSIGNED LOCATIONS. IN
FORMATION CORRFSPONDtNG TO THE STATUS OF THE ANSWERS IS GIVEN OUT
AND PART CONTINUES BY ACCEPTING ANOTHER STUDENT PROGRAM.

**********************~~**

THE PHASES OF PART

ANSWER LOADER - THIS SECTION IS USED TO STORE THE ANSWERS AND THE
CORRESPONDING TABLES FOR TABLE LOOK-UP. THIS SECTION OF
PAR TIS C LEA RED W HEN THE FIR S T STU DEN T PRO G RAM I S LOA D ED. /3 ~

THEREFORE, THE ANSWER LOADER CANNOT BE RE-ENTERED.

LOADER FOR STUDENt PROGRAMS - THIS PHASE LOADS THE STUDENT PROGRAM,
TRAPS THE FOLLOWING CARD (IF PRESENT) AND THEN GIVES CON
TROL TO THE MONITORING ROUTINE.

MONITORING ROUTINE - THIS PHASE BEGINS WITH THE FIRST INSTRUCTION
OF. THE PROGRAM. THE INSTRUCTION IS FULLY CHECKED AND THEN
EXECUTED UNDER CONTROL, IF PROVEN TO BE PERMISSIBLE. THE
NEXT ADDRESS IS DETERMINED AND THE INSTRUCTION THERE IS
USED TO REPEAT THE PROCESS. THIS IS CONTINUED UNTIL AN
ERROR IS ENCOUNTERED OR THE PROGRAM IS TERMINATED. INPUT
DATA IS ALSO HANDLED IN THIS PHASE BY TRAPP1NG ONE CARD
AHEAD OF THE STUDENT PROGRAM. NOTE THAT THE PROGRAM IS ALSO
TERMINATED WHEN THE DATA CARDS ARE EXHAUSTED.

ANSWER CHECK ROUTINE - THIS PHASE USES THE PROBLEM NUMBER TO FIND THE
STORED ANSWER INFORMATION AND TO DETERMINE THE NUMBER OF
PASSES FOR THE PROBLEM. THIS MAY BE ENTERED SEVERAL TIMES
FROM THE MONITORING ROUTINE. ENTRY POINTS ARE AT THE
OCCURANCE OF AN INPUT-OUTPUT INSTRUCTION AND WHEN THE
STUDENT TERMINATES HIS PROGRAM. THE PASSES OCCURING IN THE
PROBLEM ARE CHECKED UNTIL PROVEN TO BE CORRECT. TO BE
CORRECT, ALL PARTS OF THE PASS MUST BE CORRECT. ONCE A PASS
IS FOUND TO BE CORRECT, IT IS NOT CHECKED AGAIN. FOLLOWING
THE CHECK AFTER TERMINATION OF THE STUDENT PROGRAM, THIS
ROUT I NE GIVES OUT THE RES·:L T OF THE ANSWER CHECKS. CONTROL
IS THEN GIVEN BACK TO THE LOADER FOR STUDENT PROGRAMS.

ANSWER STORAGE

ANSWERS ARE STORED AS FIELDS WITH A MAXIMUM LENGTH OF 15 DIGITS.
ANSI,A/ERS MAy BE BROKEN UP INTO AS MANY AS THREE PASSES. EACH PASS
rvlAY BE BROKEN UP INTO AS MANY PARTS AS DESIRED, ALL OF WHICH MUST
BE VERIFIED BY THE STUDENT WRITTEN PROGRAM BEFORE RECEIVING AN OK
FOR THAT PASS. THE ANSWERS ARE ENTERED ON CARDS WITH FROM ONE TO
THREE ANSWERS PER CARD. EACH ANSWER MUST CONTRAIN \IJITH IT TWO DIGITS
SPECIFYING THE PROBLEM NUMBER, AND ONE DIGIT SPECIFYING THE PASS. A
DIGIT IS PROVIDED TO NUMBER THE PART OF THE PASS. THE HIGHEST PASS
~~US T APPEAR BEFORE THE OTHERS. ALL PARTS OF Or--IE PASS i'~UST BE TO
GETHER. THE ANSWER PARTS MAY BE CONTINUED ON AS ~ANY CARDS AS
NECFSSARY. I TIS NOT NECESSARY TO lJSE A NEV.! CARD TO BEG I N A D I FF
FRFNT PASS OR A DIFFERENT PROBLEM. FORMAT MUST BE FOLLOWED (SEE
LATER IN THIS PAPER FOR PROPER FORMAT). THE ANSWERS MUST BE FOLLOWED
BY A CARD CONTAINING SOMETHING OTHER THAN A RECORD ~ARK IN COLUMN 80.

SPECIAL PROVISIONS AND/OR LIMITATIONS OF THE PART PROCESSOR

ANY IBM 1620 MACHINE LANGUAGE PROGRAM THAT FALLS WITHIN THE
BOIJNDS DESCRIBED BELOW, THAT DOES NOT CALL FOR SPECIAL CHARACTERS AS
INPUT AND DOES NOT CALL FOR PROGRAM HALTS CAN BE PROCESSED BY THE
PART PROCESSOR WHEN THE PROPER FORMAT IS FOLLOWED.

ALL STUDENT WRITTEN PROGRAMS MUST BE WRITTEN
LOCATIONS 00401 THROUGH 07999. UNLESS OTHER\A/ISE
ADDRESS DEFINITION CARD, THE STUDENT PROGRAM WILL
LOCATION 00500 AND SUCCESSIVELY HIGHER LOCATIONS.

SO AS TO OCCUpy
SPECIFIED BY AN
BE LOADED INTO

ADDRESS DEFINITION

/37

o

o

CAQOS ~AY BE USED AT ANY POINT OF THE STUDENT DECK TO CAUSE A DIFF
ERENT LOADING SEQUENCE TO RE ESTABLISHED. STUDENT WRITTEN PROGRAM
CARDS MUST HAVE TWO INSTRUCTIONS PER CARD AND ADDRESS DEFINITION
v: A Y NOT B E fV1 A D F BET 'N E F NAN Y T 'tlO INS T R U C T ION SON THE SA ,V1 E CAR D

o PROGRAIv1S "'.'OT STORED I"J THE ANSI,NER T.ABLES 1 .• vILL BE CO'v1PLETELY

•

,~() 1\,1 ITO RED RUT THE AN S WE R S ltJ ILL 1\10 T 8 E C H F eKE D • THE ME S SAG E ••• PRO B NOT
I N TAR L E ••• I S G I V F N FOR THE S EPA R T I (I J L J\ R PRO G R A \1 S • T HIS ALL 0 ~N S THE
STlJDENT TO EXPERIMENT WITH PARTICULAR PROGRAMS OF INTEREST TO HIM OTHER
THAN THOSE ASSIG"'JED BY HIS INSTRUCTOR.

THE STUDENT IS FREE TO CHOOSE HIS FORM OF INPUT DATA. THIS
IS DUE TO THE FACT THAT PART CHECKS ANSWERS IRREGARDLESS OF THE ORDER
OF THEIR OCCURANCE.

PART ALLOWS FOR BOTH BATCH PROCESSING ANO SINGLE PROCESSING. IN
SIN G L E PRO C F S SIN G, THE REI S 1'J 0 ~\l E F [J Toe LEA f~ 0 U T THE PUN C H SID E 0 F
TH~ 1622 AS /\ ~LANK CARn IS PUNCHEDt\FTER FACH PROGI~A~~ IS CO\t1PLETED.

ERROR MESSAGES ARE EASILY UNDERSTOO~ BY THE STlJOENT~. THE ERRORS
THAT PART DETECTS ARE LARGELY OF THE TYPE THAT WOULD GIVE MACHINE CHECK
C; T n P s • S T 1. IDE \J T S A ~ E F l J R N ISH E D ! .• J I T H T H FLO CAT TON 0 F THE ERR 0 R, THE
I~lSTR!JCTION CA!LSING THE ERROR, AND THE CCRr~ESPONDING ERROR MESSAGE.

THERE IS AN ADVANTAGE IN THE POSSIBILITY OF CONSOLE DEBUGGING
AS THE STUDENT PROGRAM IS NOT ALTERED IN ANY WAY BY THE PROCESSOR.

THE STUDENT IS FREE TO USE THE LAST CARD INDICATOR, EVEN ON BATCH
C n ~A P I LIN G, ,,\ SIT ISS E T lJ P ,A S /\ C H E C I(f) I G IT.

ALL INPUT TO PART IS ALPHA~ERIC. PROGRAM CARDS ARE STRIPPED
INTO THE PROGRAM AREA AND THE FLAGS ARE REPLACED. DATA CARDS ARE
ALSO READ IN BY AN ALPHAMERIC READ. IF THE STUDENT CALLS FOR A
r-,,! U ~A E RIC R E .. '\ D, PAR T S T RIP S HIS D A. T A C l\ R DIN TOT HE P LAC E c.t'\ L LED FOR.
THE FLAGS AND RECORD MARKS ARE RETAINED. SPECIAL CHARACTERS ARE LOST
IN THE STRIPPING OPERATION. HO\t.JEVER, THE STUDENT MAY INPUT THE
SPECIAL CHARACTERS BY AN ALPHAMERIC READ. DUE TO THE NECESSITY FOR A
N U~'~FR I C BL.ANK, ONE HAS f3EEN PLACED AT LOCAT ION 08001 FOR STUDENT USE.
FOR CONVENIENCE, A RECORD ~ARK HAS ~EEN PLACED AT LOCATION 00400.

THE PRORLFM OF EARLY TERMINATION OF INFINITE LOOPS IS NOT COM
PLETELY TAKEN CARE OF. A COUNT IS M/I,INTAINED OF EACH US/\GE OF OUTPUT
FOR EACH PROGRAM. THAT IS, EACH TIME A 38 OR 39 INSTRUCTION IS USED
IN EACH PROGRAM. A MAXIMUM HAS BEEN SET AT 50. THERE IS NO PRO
VISION FOR EARLY TERMINATION OF LOOPS THAT DO NOT CONTAIN AN OUTPUT
INSTRUCTION.

AS THE HALT (48) IS CONSIDERED A TERMINATION, THE STUDENT IS NOT
FREE TO STOP HIS PROGRAM DURING AN EXECUTION TO EXERCISE ANY SWITCH
OPTIONS, ETC. ALL SWITCHES MUST BE SET BEFORE EXECUTION.

ONL Y A rv1AX I Murv1 OF THREE PASSES FOR ANSWER CHECKS HAVE BEEN
ALL O\f./ED.

PART DISCONTINUES PROCESSING A PROGRA~ ON ENCOUNTERING ONLY ONE
ERROR •

AS ANSWERS ARE CHECKED ON ENCOUNTERING INPUT-OUTPUT INSTRUCTIONS,
THERE IS THE RARE POSSIBILITY THAT A STUDENT MAY BE CHECKED OK AND
OUTPUT THE ANSWERS INCORRECTLY.

-------------------------------------.------._._---_ '""'- .. """---"."'~~~~,

NOTES ON TERMINATION OF STUDENT PROGRAMS

OCCURANCE OF A.NY OF THE ERRORS CAUSES IMMEDIATE TERMINATION WITH
THF ERROR I NFORrv1AT ION TYPED AND PUNCHFIJ. C:I

OCCURANCE OF THE HALT (48) INSTRUCTION CAUSES TERMINATION OF THE
PROGRAM AND INITIATES THE FINAL ANSWER CHECK.

THE PROGRAM BEING PROCESSED IS TERMINATED AND THE ANSWER CHECK IS
INITIATED WHEN A READ IS CALLED FOR AFTER THE LAST DATA CARD HAS
BEEN USED BY THE STUDENT PROGRAM. THIS ALLOWS THE STUDENT TO USE
AN OPEN-END METHOD OF PROGRAMMING WITHOUT LEGAL TERMINATION IF CARE
IS TAKEN TO FURNISH ALL THE DATA CALLED FOR.

ERROR MESSAGES

ARJTH OVERFLOW - FRO~ EITHER Q OPERAND LONGER THAN THE P OPERAND
OR CARRY BEYOND P OPERAND HIGH ORDER DIGIT

WRITE CHECK - WRONG INFORMATION ASSEMBLED IN A WRITE ALPHAMERIC ON
CARDS OR ON THE TYPEWRITER

NO FLAG IN 0 - NO FLAG ON 0 OPERAND OR 0 OPERAND LONGER THAN 99 DIGITS

INSl)FFICIENT DATA - PROGRAM CALLS FOR nATA WHEN NONE HAS BEEN SUPPLIED.

RECORD MARK IN FIELD - PROCESSOR HAS SENSED THE PRESENCE OF A RECORD 0
MARK IN AN ARITHMETIC FIELD

35 INSTRUCTION NOT ALLOWED - YOU HAVE ATTEMPTED TO USE A DUMP NUMERIC
(35) IN YOUR PROGRAM. THIS INSTRUCTION
WOULD BE NON -TERMINATING.

PARITY ERROR - ODD - YOlJ HAVE PROBABLY ATTEMPTED AN ALPHAMERIC INPUT
OR OUTPUT TO OR FROM AN EVEN NUMBERED LOCATION OR
ATTEMPTED TO EXECUTE AN INSTRUCTION ORIGINATING
IN AN ODD NUMBERED LOCATION.

ADDRESS OUT OF BOUNDS - ATTEMPTED USAGE OF LOCATION OTHER THAN 00401
THROUGH 08001 OR 80 THROUGH 90. THIS CAN OCCUR BY
EITHER END OF A FIELD OR RECORD BEING OF THE RANGES
SPECIFIED BEFORE OR AFTER EXECUTION.

FIELD OVER 99 DIGITS - EXPLANATION IS OBVIOUS

RECORD OVER 99 DIGITS - EXPLANATION IS OBVIOUS

THIS INDICATOR NOT ALLOWED - INVALID INDICATOR CODE NUMBER OR
INDICATOR CODE NUMBER OTHER THAN 1 THROUGH 4, 9, OR
11 THROUGH 13 •.

ILLEGAL INPUT-OUTPUT - 08 09 DOES NOT MATCH SPECIFIED INPUT OR
OUTPUT DEVICE

ILLEGAL EXPONENT IN P - THESE TWO MESSAGES APPLY TO FLOATING POINT
ILLEGAL EXPONENT IN 0 - CALCULATIONS. EXPONENT LONGER THAN 2 D1GIT5.

/39

o

o

o

•

P ADDRESS MlJST BE EVEN - P OPERAND ADDRESS OTHER THAN EVEN NUMBERED
ADDRESS FOR A BRANCH.

RECORD OF ONLY RECORD ~ARK - ALTHOUGH NOT A TRUE LOGIC ERROR, YOU ARE
PROBABLY ATTEMPTING A RECORD TRANSMISSION
FROM THE WRONG END OF RECORD

42 USED BEFORE 17 OR 27 - YOU HAVE ATTEMPTED A BRANCH BACK OPERATION
BEFORE USING A BRANCH AND TRANSMIT OR A
BRANCH AND TRANSMIT IMMEDIATE. (NO ADDRESS
STORED IN IR 2.)

ILLEGAL CONTROL STATE~ENT - SO~ETHING OTHER THAN 1 IN Q9, SOMETHING
OTHER THAN 1, 2, OR 8 IN Q11 OF A CONTROL
(34) STATEMENT.

REF ADDR HAS ILLEGAL OP CODE - EXECUTION ATTE~PTED OF AN INSTRUCTION
WITH AN INVALID OP CODE. YOU HAVE
PROBABLY BRANCHED TO A WRONG ADDRESS.

ILLEGAL OP CODE - EXPLANATION IS OBVIOUS. YOl) HAVE PROBABLY MISMARKED
YOUR CARD OR HAVE CALLED FOR AN INSTRUCTION IN YOUR
PROGRAM TO BE MODIFI~D OR CLOBBERED

PROG DOES NOT TERMINATE - THE STUDENT HAS ATTEMPTED TO CALL FOR
OUTPUT MORE THAN THE MAXIMUM OF 50 TIMES, OR PROGRAM
DOES NOT LEGALLY TERMINATE.

INVALID CARD CODE - AN INPUT CARD CONTAINS AN INVALID PU~CH.

OUTPUT TOO LONG - TYPEWRITER HAS BEEN CALLED lJPON TO OUTPUT MORE
THAN 80 CHARACTERS.

DESTROYED REC MARK IN 400 - THE INSTRUCTION JUST EXECUTED HAS
OVERRIDDEN THE RECORD MARK STORED IN LOCATION 00400.

PROB NOT IN TABLE - THE PROBLEM SPECIFIED BY THE IDENTIFICATION CARD
DOES NOT APPEAR IN THE ANSWER TABLES.

P ADDRESS MUST BE ODD - P ADDRESS FOR THIS INSTRUCTION MUST BE ODD.

THE FORM OF OUTPUT FOR ERRORS IS AS GIVEN BY THE FOLLOWING
EXAMPLE •••

52245 00800 491200000000 ADDR OUT OF BOUNDS

IDENTIFICATION ••• LOCATION ••• INSTRUCTION ••• MESSAGE

THIS EXAMPLE WOULD INDICATE THAT CLASS NUMBER 5, STUDENT NUMBER 22,
AND PROBLEM NUMBER 45 HAD AN ERROR IN THE INSTRUCTION ~EGINNING IN
LOCATION 00800. THE INSTRUCTION CALLS FOR A BRANCH TO 12000 WHICH
IS ILLEGAL IN THAT IT CALLS FOR AN ADDRESS OUT OF BOUNDS (BRANCHES
INTO THE PART PROGRAM ITSELF)

INSTRUCTIONS FOR THE MARKING (OR PUNCHING) OF
CARDS FOR USE WITH THE PART PROGRAM

THE STUDENT WILL BE GIVEN FOUR TYPES OF CARDS (EITHER MARK
SENSE OR STOCK CARDS). THESE CARDS ARF ••• IDENTIFICATION CARDS,
PROGRAM CARDS, DATA CARDS, AND ADDRESS DEFINITION CARDS.

THE CARDS ARE TO BE MARKED (OR PUNCHED) AS FOLLOWS

IDENTIFICATION CARDS •••

COLU"~N 1 ••• CLASS NUfVlBER (TO BE ASSIGNED BY THE INSTRUCTOR)
COLUMNS 2 AND 3 ••• STUDENT NUM8ER
COLUMNS 7 THROUGH 27 ••• AVAILABLE FOR STUDENT USE FOR

NAME IN ALPHA. IF USED, EXTREME CARE MUST BE TAKEN TO
USE VALID CARD CODES, OTHERlflJISE, THE C.ARDS WILL NOT
READ INTO THE COMPUTER.

PROGRAM CARDS ••• 2 INSTRUCTIONS PER CARD

COLUMNS 1 THROUGH 12 ••• FIRST INSTRUCTION
COLUMNS 13 THROUGH 24 ••• SECOND INSTRUCTION

DATA CARDS •••

BEGINNING IN COLUMN 1, T~E DESIRED DATA (UP TO A MAXIMUM OF
27 DIG ITS, I N THE CASE OF MARK SENSE CARDS) I S TO BE
MARKED. FLAGS MAY BE INDICATED BY MARKING THE 11 ZONE
PUNCH AS WELL AS THE NUMBER DESIRED.

ADDRESS DFFINITION CARD • • • •

o

TOE N A R L E .A STU DEN T TO BEG I N HIS PRO G R A~'" A TAL 0 CAT ION ,0
OTHER THAN 00500, HE MAY BE ALLOWED TO USE AS MANY OF
THESE CARDS AS NECESSARY.

COLUMNS 1 THROUGH 5 ••• BEGINNING LOCATION OF THE FIRST
INSTRUCTION ON THE prOGRAM CARD WHICH IMMEDIATELY
FOLLOlfJS.

THE AFOREMENTIONED CARDS WILL BE ARRANGED AS SHOWN BELOW.

NOTE ••• ADDRESS DEFINITION CARDS MUST IMMEDIATELY PRECEDE
THE FIRST PROGRAM CARD FOR WHICH THE ADDRESS IS INTENDED

o

o

o

A STUDENT SCHEDULING SYSTEM

Michael Kennedy
Western Carolina College

(User No. 1396)

If one reads only the newspapers he is aware that the use of computers
in assigning students to classes in colleges and high schools is not a
simple or trivial application. The problem is complex to a degree most
easily measured by the number of schools which have tried it and failed,
with results varying from annoying to catastrophic. The difficulty of the
problem turns on two main points: 1) The system re'Iuires the co-operation,
or at least compliance, of large numbers of students, faculty, and others,
most of whom, at best, don't care if the application is a success or not,
and 2) computer people often don't understand the problems related to
registration of students, and university officials seldom understand com
puters. What I will describe is one system which works for one particular
school, Western Carolina College, in hopes that some of the methods used
there will be useful to others.

Western Carolina College is a liberal arts college of about 2800
students which is buried deep in the Appalachian Mountains of North
Carolina. The college is 'Iuite isolated--located 50 miles south of
Asheville, N. C. The college obtained its first data processing e'Iuipment
in Fall of 1963. This equipment consisted of a 20K IBM 1620 card system
and a series 50 tab installation. The Computing Center was organized
primarily for instruction and research. In January of 1964 the Computing
Center was asked to automate the college's registration and scheduling
procedure which was getting out of hand due to rapidly increasing enroll
ment. The first application was conducted during November of the same
year at the winter 'Iuarter registration and has been used, with modifica
tion, each subse'Iuent 'Iuarter.

Prior to the undertaking of such a system it was necessary to
determine its general philosophy. First, we felt that the faculty's part
should be limited to advisement functions only. Further, we felt that as
large a part of the faculty as possible should be absent on registration
day. We felt that every student should get an even chance for the courses
he desired. He would not, however, be able to choose times, instructors,
or rooms. In fact, at the time the student made kno~his desires for the

-2-

coming quarter, the master schedule for that quarter would not even be
prepared. We would schedule students in an order dictated by the number
of quarters which remained until their graduation because we knew that
space problems would prevent some students fram getting the courses they
desired. Our objective was to ob~in for each student a conflict-free
schedule consistent with his needs as determined in conference with his
advisor. We further wished to balance the numbers of students in all
multisectioned courses. Finally, we wished to complete the registration
of any given quarter (Fall quarter excepted) prior to the end of f"inal
examinations for the preceeding quarter. Thus "registration" or registra
tion day for any quarter would consist only of processing new and transfer
students and modifying the schedules of those students who needed to make
changes.

The system which was developed will be discussed under four general
headings: 1) Pre-registration; 2) Master Schedule Development; 3) Scheduling;
and 4) Drop-Add Procedures.

PRE-REGISTRATION

At approximately the middle of each quarter each department chairman
submits a list of courses, without reference to times, instructors, etc.,
which his department intends to offer the succeeding quarter. He does not
even specify how many sections of each course he intends to offer. The
Computing Center assigns to each course a three digit call number starting
with 002 for the first one and continuing sequentially. At about the same
time the Computing Center prints a pressure-sensitive label for each
student giving his name and number and the name and number of his advisor.

Using the 407 tabulator, the data center then prepares offset masters
which, when printed, produce the course request forms. The pressure
sensitive labels are affixed to the printed forms and, at the beginning of
the eighth week of the quarter, they are made available to students at a
central location. (See Fi~ure 1.) The eighth week of the quarter is
designated as pre-registration week and it is during this time that the
student is to arrange a conference with his advisor to determine the courses
which he will take the following quarter. While the length of the advisory
conference will vary from student to student the marking of the course
request form consumes at most a minute. If the student must be absent
during certain periods of the day he may request "absence" courses which
appear at the back of the form with their call numbers just as do other
courses. If the student requests a free period for lunch the call number
001 is assumed. At the end of the advisory conference the advisor keeps
the form which is turned in, with others collected during the day, to the
departmental office. The forms are delivered daily to the Computing Center
for keypunching. The student is finished with registration until he picks
up his schedule shortly before the final exam period. The faculty member

o

o

o

o

o

•

-3-

is finished with registration until next quarter unless he is the depart
mental representative designated to assist with the registration of new
and transfer students on "registration day".

The rather orthodox technique of keypunching student requests was
used for several reasons after careful consideration of other methods. It
was felt that the printed form shown in the illustration would be simplest
for use by the advisor and student. The marks required were unacomplicated
and could be made by any sort of writing implement, the courses available
were clearly spelled out, and no cross reference of any kind was required.
In addition, we felt that the speed and verification methods available with
keypunching would result in very accurate data, a "mustll in a system such
as this, in a fairly short time. It turned out that one keypunch operator
could punch each day's request cards before the next day's requests arrived
so that we had the data on cards within 24 to 48 hours of the time it was
collected.

It should be pointed out that at no point did students have access to
IBM cards nor did they possess the Course Request Form after it had been
marked. Considering the ingenuity of students, we counted this an advan
tage.

The appropriate contents of the course request form for each student
were punched into a single card. The student and advisor numbers were
punched into the card and the student name was added later by a gangpunch
operation. (It should be noted that the student was not requested even to
write his name or number; these were supplied by the label on the form--a
feature which made the procedure just described safe enough to use). The
three digit call numbers were punched consecutively and as many as fourteen
requests were possible. If a course were requested as IIrepeatll, "graduate",
or "audit", the first, second, or third digit of the call number was
flagged, respectively.

MASTER SCHEDULE DEVELOPMENT

We were then ready to develop the master schedule. In an ideal system,
the computer would be presented with the student cou+Se request cards along
with a statement of school operating hours, a lisJ of rooms and their uses,
and the abilities of the faculty members together with any special consider
ations (Professor Jones has to pick up his child at kindergarten on Tuesdays
if it's raining), and the computer would then produce an optimum master
schedule. A great deal of work has been done on-such systems on large
computers by the producers of GASP, by Stanford and Purdue Universities,
and others. Such systems were, unfortunately, beyond the scope of our
project at weco

We could and did, however, use the course request data to provide each
department chairman with a planning packet to facilitate his formulation of
his part of master schedule.

-4-

(See Figure 2.) The first and most basic tool of our system is the
simple tally. The first column indicates the call number of the course;
the second indicates the number of students who requested that course.
Thus, the department chairman can plan the number of sections needed for
each course.

(See Figure 3.) A slightly more sophisticated tool which is given
to each department chairman for courses within his department is the
conflict matrix or cross-tally. The call numbers lie above the slanting
line while the tally lies below; the tally is used much as a triangular
mileage chart would be. In the example it can be seen that eight students
requested both course 002 ~nd 006. This aid is invaluable in determining
the time placment of single section courses. A department chairman can
also request a cross tally between any two course-offering areas in order
to avoid interdepartmental single section conflicts.

After the development of the master schedule by the department
chairman ·and the registrar, the computing center punches it onto cards.
The schedule designates sections, times, and number of seats allowed, roams,
and instructors.

(See Figure 4.) By comparison of the master-,schedule and the simple
tally a surplus seat report is produced. What is ., primary importance is
that careful study be given to those courses with negative surplus seats.
In the example it can be seen that four students will not get schedules, if
for no other reason, because they have requested Leather Design which will
close before their cards are processed. We felt that it was extremely
important to have these data available in a tabular form.

SCHEDULING

After the master schedule has been modifed as a result of the surplus
seat report, the Computing Center is ready to begin trial scheduling runs.
Usually between three and six of these are made with no output; the results
of these runs usually dictate modifications of the master schedule.

At this point I feel I should emphasize the importance of a fast
scheduling program. The program used by this system schedules about one
student a second or 3600 hour when run without output. Its speed makes
it possible to make a trial run on the entire student body in 'about forty
minutes with the punch inhibited. The final scheduling run with the output
of one card for each class for each student requires about an hour and forty
minutes. If the scheduling program is fast there is less chance that a
machine breakdown during the scheduling period will be catastrophic and it
is possible to make several runs with changes in the various parameters of
the system.

o

o

•

o

•

-5-

The first of the preliminary runs is usually made with the seat
allowances for each section increased by 500. After this run a look at
the numbers of seats remaining in the various sections gives important
information about the time conflicts inherent in the master schedule.
If the master schedule is perfect, with respect to time, then no student
will be rejected and the sections of all multisectioned courses will have
the same number of seats remaining within one seat. Deviations from this
perfect result indicate flaws in the master schedule and the most critical
or blatant deviations are investigated. Ususally a run is made with

'" absence and lu~h courses removed to see what part these requests play in
the overall reject rate. While no output is obtained for the scheduled
students, output is punched for rejected students. This output takes the
form of the input course request card which may then be treated just as
a new request card. These reject cards are spot checked to see if a pat
tern is observable and a simple tally is made of the courses requested.
If a cross tally is indicated it is also made. The absence and lunch
request are usually removed from the reject cards and they are resubmitted
to the computer.

A final scheduling run is usually made about three days before the
beginning of final exams. The result is usually about 80% scheduled,
10% rejected because of time conflicts, and 10% rejected because of lack
of classroom space.

(See Figure 5.) The output of the scheduling program for students
who were scheduled consists of class cards fram which are printed the student
schedules and the class rolls. The scheduling program actually supplies only
the student information and the call and section number plus repeat, grad
uate, and audit information. The rest is added by a gangpunching operation.
As can be seen, the card is also used in a mark sense g~de reporting
operation.

(See Figure 6.) Our operation was on a tenuous if not non-existant
financial basis which explains, in part, the reason for the use of stock
paper for the printing of the schedules. The scheduled student picks up
his schedule usually on the last day of classes before finals. He can
elect to pay his fees for the succeeding quarter during exam week thus
completimg his registration for the next quarter.

(See Figure 7.) About 20% of the students receive reject notices.
These students are supplied with a copy of the master schedule, a list of
closed sections, a fresh course request form, and access to the seats
remaining information. With these items the student drafts a new course
request form and resubmits it, together with proof that the requested
courses eattbe scheduled. About 90~ of these students will be scheduled
and pick up their schedules prior to leaving campus at the end of the

-6-

final exam period. The rejects from this second run are given the oppor
tunity to resubmit their course request forms but will have to wait until
the day of registration of new students to pick up their schedules. There
will normally be at most sixty students in this latter group.

At the end of the quarter, the Computing Center turns its attention to
grade reporting via the mark sense grade card which was the output of the
scheduling project of the preceeding quarter. It also prints class rolls
which will be ready for instructors on the first day of classes of the
quarter about to start.

At the beginning of the new quarter several different types of scheduling
data are arriving in the Computing Center. Various routing forms are used
to direct data flow. A routing form is used to tag the new course requests
of non-scheduled students.

New students must be ~.beduled and the same procedure is followed for
them as was used with students during pre-registration.

On some occasions, when a student needs to make extensive changes in
his schedule, it is necessary for him to submit a new course request form.

Errors are bound to occur with individual students--let's ho~there
are none in the master schedule. An error correction routing form is
little used but vital. In many cases a student will sayan error has
occurred when what has actually happene.d is that he has changed his mind
or has failed a course which is prerequisite to one he has requested. The
error correction card makes it possible to track these down quickly. "If
an error has indeed occurred, it is to the advantage of all concerned that
it be corrected quickly and efficiently.

These routing forms may seem to be simply an administrative nuisance,
but they are necessary if duplicate sets of class cards are to be avoided
for students. If a student has two sets of class cards he will be taking up
space which could be occupied by some other student. Further, it is possible
that a schedule will appear for such a student showing a load of forty hours
or so and some courses which meet at identical times. This is most embaras
sing to the system •

.DROP-ADD

We will now consider the automated drop-add operation.

The fact that a pre-registration has been used will increase the magni
tude of the drop-add problem. Since students will fail courses, change
majors, etc., the drop-add machinery needs to be ready. At least one
school using a computer scheduling system requires the student to risk his

o

o

o

o

o

-7-

entire schedule when he attempts to make a schedule change; this policy
c' reates general dissatisfaction with the system. The procedure used at
wee allows the student to request changes in his schedule, with his
advisor's consent, while retaining his original schedule. From his request
is punched a drop-add header card. Hig existing class cards are collated
behind this header and submitted to the computer which checks the master
schedule to see if seats are available. If so the computer punches out
a set of class cards which represenuthe student's fonmer schedule plus
and minus the requested changes. If one or more courses do not have seats
available the students former schedule is duplicated with an explantory
note. The input is then discarded. At any time during drop-add period, or
before a department chairman can increase the number of seats in any section.

At the end of the drop-add period final class rolls are printed and the
process is complete. Complete, that is, until three weeks hence when the
whole operation begins again.

It might be said that we feel there are four important ingredients in
a successful computer registration:L) A clear understanding of what is to
be accomplished; 2) a pre-registrati on which allows evaluation of students r
requests as opposed to a system which uses a computer just to take the
place of so-called "call pulling" in the gymnasium; 3) a fast and well
checked out scheduling program whiC!h will be used to make several runs on
the course request data; and 4) an aut amated drop-add procedure which dove
tails with the scheduling system and offsets the drop-add problems created
by the pre-regist~tion.

~~-~~---~-~----".-.-... -."--,, -.. - .. -......... -.--.-.-.-------... -

o

o

o

•

WESTERN CAROLINA COLLEGE FIGURE I

COURSe ~~UU~SI FORM

PRE-REGISTRATION FOR
FIRST SESSION SUMMER 1965

1. MARK..lS.. I N PARENTHESES TO I NDt CATE COURSES REQUESTED.
STUDENTS SHOULD INDICATE REQUESTS BY MARKING LIGHTLY WITH A
REGULAR PENCIL PRIOR TO THE ADVISORY CONFERENCE.
ADVISORS SHOULD MARK APPROVED COURSE REQUESTS DARKLX WITH A RED PENCIL.

2. CIRCLE-1L(FOR REPEAT) IF REQUESTED COURSE HAS BEEN TAKEN BEFORE.

3. CIRCLEjLIF REQUESTED COUKSE IS TO BE TAKEN FOR GRADUATE CREDIT.

4. CIRCLE~IF REQUESTED COURSE IS TO BE AUDITED.

5. IS A FREE PERIOD FOR LUNCH DESIRED! YES, __ NO __

6. NUMBER OF QUARTERS UNTIL GRADUATION (CIRCLE ONE) 2 3 4 5 6 7 B 9-0R-MORE

7. TO REQUEST A COURSE MARKED WITH AN ASTERISK THE STUDENT MUST OBTAIN
WRITTEN APPROVAL FROM THE DEPARTMENT OFFERING THAT COURSE. STUDENTS
WHO FAIL TO OBSERVE THIS REQUIREMENT WILL BE DROPPED FROM CLASS.

8. ADVISORS ARE ASKED TO ALLOW STUDENTS TO REQUEST ABSENCE COURSES ONLy IN
CASES OF NECESSITY.

STUDENT IS NOT TO WRITE IN THIS SPACE.

TOTAL NUMBER OF QUARTER HOURS REQUESTED

ADVISOR'S SIGNATURE

REQUEST HRS. COURSE
TITLE CR.

ACCOUNTING
002(R G A 4 2401 ACCOUNTING I
003(R G A 2 2411 ACCOUNTING I I A
004(R G A 4 2421 ACCOUNTING I I I
005(R G A 4 4411 AUOITING

ART
006(R G A 3 130 HIST ART SURVEY
007 (R G A 3 131 INTRO DR PT DESIGN
OOS(R G A 2 220A DESIGN LEATHER
009(R G A 2 220B DESIGN PLASTICS
OIO(R G A 2 224 CERAMICS

011 (
012(
013(
O14(
Ol5(
Ol6(
017(
01S(

019(
020(

REQUEST HRS.
CR.

R G A 3 235
R G A 3 331
R G A 3 333
R G A 3 433D
R G A 3 433E
R G A 3 437
R G A 3 438
R G A 3 439

BIOLOGY
R G A 5 150
R G A 5 151

COURSE
TITLE

ADVANCED CERAMICS
INTER DRAW PAINT
INTER COMPOSITION
ART IN EL SCHOOL
ARTS CRAFTS TEACH
ADV DR PT COMP DES
ADV DR PT COMP DES
ADV DR PT COMP DES

PRINS CELL SIOL
GEN ZOOL INVERT

(j
~

0'

CALL SEATS
NO. REQUESTED

002 0033
003 0024
004 0015
005 0014

006 0037
007 0020
008 0014
009 0013
010 0009
all 0009
012 0009
013 0005
014 0005
015 0005
016 0005
017 0000
018 0000

019 0025
020 0024

FIGURE 2

COURSE
DESCRIPTION

ACCOUNTING
2401 ACCOUNTING
2411 ACCOUNTJNG IIA
2421 ACCOU~'~T I NG I I I
4411 AUDITING

ART
130 HISTART SURVEY
131 INTRa DR PT DESIGN
220A DESiGN LEATHER
2208 DESIGN PLASTICS
224 CERAMICS
235 ADVANCED CERAMICS
331 I NTER DRAW P~. I NT
333 INTER CO~POSITION
433D ART IN EL SCHOOL
433E ARTS CRAFTS TEACH
437 ADV DR PT COMP DES
438 ADV DR PT COMP DES
439 ADV DR PT COMP DES

BIOLOGY
150 PRINS CELL SIOL
151 GEN ZaGL INVERT

o o

I," ¢ trirddi .. rps·"." . ¥ri"' '0'" H •• 5-- J'"

o

o

•

]""C .. , , .. ··t·mr·"

I
~

, -nmw}]

," J

FIGURE 4

CALL SEATS COURSE; S~ATS SEATS SEATS

NO. ASKED DESCRIPTION ALLCv.C:O ASKED SURPLUS

ACCOUNTING
002 0033 2401 ACCOU~TING C35 033 +002

003 0024 241 1 ACCOUNTING I I A 035 024 +011

004 0015 2421 ACCOUNTING I I I 035 015 +02C

005 0014 4411 AUDITING 035 014 +021

ART
006 0037 130 HIST ART SURVEY 044 037 +007

007 0020 131 INTRa DR PT DESIGN 024 020 +004

008 J014 220A DeSIGN L~ATHER 010 014 -004

009 0013 220B DESIGN PLASTICS 010 01.3 -003

010 0009 224 CE~AjVi I CS 010 OOS +001

011 0009 235 ADVANCED CERAMICS 010 009 +001

012 0009 331 INTER DRAW PAINT 006 009 -003

013 0005 333 INTER COMPOSITION 004 005 -001

014 0005 4330 A::(T IN cL SCHOOL 010 005 +005

015 0005 433E ARTS CRAFTS TEACH CI0 005 +005

016 0005 437 ADV DR PT COMP DES 005 005 +0.00

017 0000 438 ADV DR PT CaMP DES 005 000 +005

J18 0000 439 ADV DR PT COMP DES 005 000 +005

BIOLOGy
019 0025 150 pqINS CELL SIaL 028 025 +003

020 0024 151 GEN ZO~L INVERT 035 024 +011

-U)
0/

o o '0

$' ::'

,.\
'-I'

•

'" 0
<)

<!)
I.LI

7
g
0
~

¢'I't "i#ritHrlni'trt±'Wtlnirftbt tttt*tLtJ '''*rJ*# 'Kr'f'" 'tile t " r le!t "IIU'tLt W*ttw#t',&, j, ", tt • ttt »em. re. iri b f"#i#t±itrtt9ittt#"bid#

FIGURE· 5

~"~~id~' . -~=;,i~~!_-~~~ -=hl~:~D:!.~;i~t~~~~~~~~~_i~&=$!J-:OM-NrtiiF.-A--YS---1---1--1
WESTERN CAROLINA COLLEGE INDICATE ABSENCES I. PLEASE DO NOT BEND, FOLD, DO NOT MARK

CUL-LOWHEE. NORTH CAROLINA TH~~L \:0 MwOJ1EKs OR MUTILATE THIS CARD THESE COLUMNS
CLASS AND GRADE CARD r---------..,..----. --------I cO::.> c 0::::> cO=> cO=>c 0::.>

GRADE (MARK ONE' ONLY) ENGLISH CONDITIONS

EXCELLENT CA:J c:=:> c::::::;;:)

COMPOSITION GRAMMAR

GOOD CB:J FOR USE AT

AVERAGE r: C':J MID-TERM ONLY

POOR CO:J POOR ~

FAILURE CF:J FAILING ~

INCOMPLETE,. CX:: FOR USE WITH
I NON CREDIT COURSES

WITHDREW f>ASSING CNP:J ONLY

WITHDREW FAILING CWF::) PASSED c::::::>

AUDIT CII:J FAILED c::J

cl=>'cl::.>

c3::.>c3=>

~., c4::.>c4::)
'--'--

FOR ABSENCES c5:::>

c7:::>

2 MAKE A FIRM MARK LENGTHWISE

WITHIN THE MARKING OVAL.

.USE A MACHINE SC0RING

PENCIL.

EXAMPLE:

3. OVERLAPPING OR. UNNECESSARY

MARKS CAUSE ERRORS

4. SIGN OR STAMP SIGNATURE

cl::.>cl:;:>cl=>cl=>

c2:::>c:;2::J,c2::.>c2~,

c3=>c3;>C3=>c3::.>

c4:::>c4::::>c4=>c4=>

c5:::>cJ:Jc5=>cS::::>

c6:::>c6::>c6=>c6=>

c7:::>c7=>c7=>c7=>

FEWER THAN

10, USE 2M

COLUMN ONLY.

FOR 10 OR

MORE USE

BOTH COLUMNS. c8~ I~==~ I t:8~C8~c8~c8~
~ '-INSTRUCTOR'S S·.,.,IG""N:7AT=:U-:-::R:-=E--------.,--~ C~:::>c~::;c9=>c9=>

1 2 3 4 5 6 718 9' 10 II 121] \41:/;611 181920 21rn::1l114 25 lSi:!] .2HII'9··"'3~:t~,3·""1-:C32""3:::-3-::-34""1J3:C:;5-:-36:-3::1·-:-3;"":13:-::C9-:4O::T~16:-:-.1-:C42:'-:. 4
NUMBER '..AST r~AME IFIMI ADV. 1M-I M-2j DEPT. I COlJRSE I SECT. I CALL

ALPHA NO NAMe: COURSE SEC ROOM TIME DAy

808080 STUDENT J D ACCT 2421 01 S34 09 MT~"RF·

ART 134 01 S129 10 MWF
GEOG 437 01 5262 I I MTWRF
0 A 0308 01 58 01 MT\,IlRF
p E <lOA 01 R LN 10 TR

NOTICE TO NON-SCHEDULED STUDENT

90~090 LUCKLESS TB
COURSE NAME AND NUMBER
Li'JCt-f
B I OL 43lt3
SyOL 452

R G A CALL NUMBER
001
018
021

ED 533 X 047
PSY 535A X 160

FIGURE 6

CR INST CALL

4 052-003
3 318 007
3 836 077
3 871 133

269 137

FIGURE 7

SCHF:DULF~ I MPOS5 I t3LE BECAUSe:: OF CONFL T CT I NG SINGLE SECT ION COURSES

2 0

o

1

«"")pi" : ... uWC'PJ t - .j •• j ""J"" j •• r··n e -

o

•

ABSTRACT

Presented to Eastern
Midwestern Users Group
Conference, New York
City, October 7, 1965

TEST GENERATION PROGRAM
by

Val Tareski
and

Donald Peterson
North Dakota State University

Fargo, North Dakota

A significant percentage of the computer time used at North
Dakota State University is for undergraduate educational use. To
aid the instructors in preparing tests for a beginning computer
course and to obtain greater consistency between tests given to
the various sections, a Fortran Program was written to randomly
select questions from a master set of questions. Although the
examples shown are for a computer programming course, it is
obvious that the program is applicable for any course where
multiple choice and true-false question tests are suitable.
Some of the techniques utilized will find application in many
areas of programming.

Introduction

The original idea of a test generation program came from
several sources. North Dakota State University has successfully
used mark sense cards and computer evaluation of test resu1ts1
for about three years. Noting the success in this area, one of
the computer programming instructors tried using multiple-choice
tests with two sections of the class. He had considerable suc
cess using mark sense cards and computer evaluation, so more of
the instructors teaching this course decided to try it. They
expanded the idea to the point where each instructor would write
a given number of questions on index cards, all cards would be
filed together, and each person could draw out a given number of
questions from this file when writing a test. To eliminate
typing errors in the process of copying the questions from the
index cards to the test sheet, lit was decided to have the ques
tions punched on IBM cards and then a stencil or ditto could be
cut directly from the selected cards using a 407.

Concurrently another staff member at N.D.S.U. was experi
menting with this same type of approach with a course in tests

1 This evaluation has been accomplished by using a modified version
of the Northeastern University Mark Sense Testing Scoring Program
written by Robert M. O'Brian (Users Group Library classification
is 13.0.003).

and measurements. 2 His work also involved manually pulling a
set of questions'and cutting a stencil on a 407.

A short program was then written to generate a list of ran
dom numbers enabling non-professional personnel to pull the de
sired cards for the test. The logical culmination of the proce
dure was to let the computer generate the test directly from the
master test file. This is the program that is discussed on the
following pages.

Program Outline

As with any program one big problem is the selection of a
suitably versatile input data format. It was desired to have a
coding that would allow easy editing and changing of questions,
a maximum amount of space for the question material, and still
be simple. Allowing a maximum of 999 questions tied up three

2

c

card columns, so to minimize further excessive card usage one
column was allotted to each of the following: the answer, the
card number, and the figure numbers. Since the Northeastern
program only allows a single answer per question, using a single
column for the answer is not a restriction. USing the card number
as a supplemental code to the question number, it becomes possible
to have ten cards per question (thus allowing for a possible 740
character question). Those few questions that require more than
ten cards can be rewritten to make use of a figure. Using only
one card column to represent a figure would seem to be a seriou~ 0
limitation; however, if all symbols are used except a record mark,
a blank, and an asterisk, it is possible to code for a maximum of
47 figures.

Using this approach the following coding was decided upon.

Tests Questions:

CC 1:

CC 2-4:

CC 5:

Answer of that question, i.e. A to E or T, F.
This is usually found only on the last card of
the question.

Question number. This is punch~d on all the cards
of the question.

The card number of that question.

2 The results of his work was presented as a paper "Some Practical
Uses of Data Processing in Testing and Counseling" by Q. Stodola,
D. Peterson, and M. Holoien to the National Counsel on Measurement
in Education on February 11, 1965.

o

o

o

•

CC 6: Refers to a figure if applicable. If all symbols
except *, "k, and blank are used, a maximum of 47
figures could be accommodated.

CC 7-80: Actual questions (any information).

The figures are grouped together and placed after the ques
tion deck. They are coded as follows:

CC 1:

CC 2-3:

CC 4- 5:

CC 6:

Figure symbol (same symbol on all cards of the
set). This is the cross reference to the character
punched in CC 6 of the applicable cards in the
question deck.

On the first card in the set, the number of cards
in the se t.

Card number of the figure. The number on the last
card is the same as CC 2-3 of the first card.

Asterisk (*), identifies the card as part of a
figure.

When this program was used at N.D.S.U. in conjunction with
a programming class the figures ranged from flow charts to seg
ments of programs. By making the figures more complete than
necessary it was possible to ask several different questions
referencing the same figure. Using this technique, it has been
found that the maximum of ~7 figures is not a limitation.

The pilot cards which precede the actual question deck con
tain such information as:

a. The number of multiple-choice and/or true-false ques
tions desired.

b. The minimum and maximum question number from which the
selection is to be made.

c. The total quantity of the T-F questions in the master
file and their numbers.

The program itself (compiled in Fortran II on a 40K, 1620)
follows five basic steps to generate each different test:

a. Generation of a random number which will serve as the
base from which future random numbers are obtained.

b. Reading of pilot cards which list the range of test
question numbers to be considered and the size of test
to be generated •

c. Creation of table of random numbers within the group
specified.

3

rl . 4

d. Reading of master set of test questions and table search
to determine which questions should be reproduced.

e. Typed listing of the answers.

The random number subroutine used with this program is
Program No. 7.0.022 modified for Fortran II. The basic function
of the random subroutine is to generate a floating point number
between zero and one. The generated number is then multiplied
by 1000 (if there are more than 100 questions in the master deck).
If the resultant number is outside the range of the test question
range as specified on the pilot cards, it is rejected and a new
one is generated. This process is continued until the desired
quantity of question numbers is stored in the table.

Upon completion of the question number table, the question
deck is read in a card at a time, and those cards with question
numbers matching the numbers stored in the table are reproduced.
During this time the figure codes encountered in the reproduced
questions are stored in table form. This table is searched when
the master file of figures is read, and the appropriate figures
are reproduced at the end of the test.

o

If a program of this type is to fully accomplish its pur
pose, there should be minimum amount of manual intervention be
tween the time it is desired to write the test and the actual
time the test is passed out to the student. This is accomplished
by an editing feature in the program. Two cards precede the
pilot cards which specify the size of the test desired. The 4[)
first card is reproduced as the first card of the test giving
course number, date, etc. and the second card is reproduced as
the first line on succeeding pages of the test. The questions
are renumbered in sequence for the output and all the pages are
properly numbered so the output can be listed directly on con-
tinuous form stencil or ditto with a 407 Accounting Machine.
The panel used in the 407 is basically an 80-80 listing with
these modifications.

a. CC 1 is not listed.

b. One (1) in CC 1 extra space before printing card.

c. Two (2) in CC 1 skip to new sheet before printing card e

The test, which is now in'final form, can be run off directly
on a duplicating machine. While the computer is punching out the
selected test questions the console typewriter lists the original
test question number, the new test question number, and the answer.
The student normally records his answers directly on mark ,sense
cards which are graded and analyzed on the computer. This completes
the automated tes~ing and grading, procedure.

In this program the question deck coding is not fully utilized,
but provisions have been made within the coding structure to write ~
a second program to check for various sequencing and format errors

o

o

•

that might occur if the master ·deck was handled or modified
frequently. It was the original intent when writing this pro
gram to include this checking feature, but because of limited
memory space it had to be left out.

It was quickly realized that an instructor could not ade
quately cover the necessary topics in a test if he limited his
tests to multiple-choice and true-false selections. To broaden
the range of the tests, supplementary questions requiring the
writing of programs or segments of programs were added by the
instructor. These resulting tests have been used successfully
at N.D.S.U. for two years by as many as four different instructors
teaching up to seven sections of our introductory programming
course in one quarter.

Some obvious advantages of such a system is a greater con
sistency of subject matter covered in the tests and the ease in
creating the tests. In all fairness, one must point out the
disadvantages of this system. The type and the range of test
questions must be constantly reviewed and updated as the em-
phasis on different· topics is changed. A reasonable number of
questions should be added periodically to stay ahead of the
students who undoubtedly have a better file of test questions
than the instructor. Although care is taken to prevent old
copies of tests from getting into student's files, one would be
very naive in thinking that this did not occur to a limited degree.
The only way of minimizing this problem is to build up a substa~l
tial quantity of test questions for the master deck.

In summary, the major limitation of any multiple-choice
testing procedure is the construction of clear, concise ques
tions that can not be interpreted as having a dual meaning.
The choice of answers must also include logical responses for
the student that does not have a complete grasp of the subject
matter involved. This is necessary in any test construction.

This program offers a convenient tool for the instructor to
free him of some of the paper work involved in making up tests.
An important by-product of this procedure evolves when several
instructors are teaching the same course. By creating a pool of
questions the instructors will find that a better quality test
will result~ With several instructors drawing from the same
set of questions, the tests generated for different sections of
the same course are apt to be more consistent in both difficulty
and subject matter •

5

----.---.------... --.... -----.--"'--~~~~~-~~.

SAMPLE TEST

INPUT

NiOTE.,.;, •• THEC0MPLETE MASTER FILE -WOULD B:E READ AT THIS POINT. FORCONVENoIENCE
OfILYTHE· RANll>aMLY SELECTED QUESTIONS ARE REPRODUCED.

71'14AS5UPi4'tNG TRAT'THE PROGRAM IN THE FLOW CHART OF FIGURE 4 RUNS AND IF N=10".
772 A(,ll-1,A(Z).2...! •••••••• ,ACN).·N.
77'') WHEN T£1,E PROGRAM HAL 15. THE VALUE OF Sf 2) WILL BE

A0714 A.45 B. 55 C. 36 O. CANNOT BE DETERMINED

F08014REFER TO THE FLOW CHART OF FIGURE 4. N CARDS WILL BE PUNCHED.

108-91 THE MEMORY OF THE I'8M 1620 IS MADE UP OF AR'RAYS OF FERRITE CORES.

NOTE .'.-.. SAMPt.EFIGlJRES WHI;CHWOULD NORMALLY APPEAR AT THIS POINT HAVE B:EEN LEFT
Ot!1T TO COftSERVE SPACE • -......................... -.......... -...... -....... ' .. -. -..... ' •.... :-.... .

OUTPUT AS LISTED ON THE 4Q7

SAMPt..E T-EST OCTOBER Pi65

MULTIPLE-C:HOlC£. MARK ONLY ONEAHSWER -PER QUESTION.

1. ASSYM'l-NG THAT THE PROGRAM IN THE FL.OW CHART OF FIGURE '+ RUNS AND IF N-1G.
At 1 ',.,'1 ,..A:f2') -2, •••••••• , A (N) eN.
WHEN THE P'RCGRAM HAL TS~ THE VALUE OF S'121 WILL BE
A,. 45 B. 5-5 C. 36 D. CAN'NOT B'E DETER'lUtINE'fl)

TRUE-FALSE. MARK A FOR TRUE. BFOR FALSE.

2. R·E'Fe:R TO THE :FLOW CHART OF FIGURE 4. N CARDS WILL BE PUNCHED.

3. TH:E MEMORY OF THE laM 1620 IS MA:DE UP OF ARRAYS OF FERRITE CORES.

F1GWRE 4-.-.... ----.-..--... ~~ :-. . . .-----................... . .--..-.-.-..-....-.
I RE:AD II 5ET I I I I REA:O 1 I I
I N 1----1 $,'.1J=0 1---1 J=l 1-----·1 A(Jl 1--=1 J=J+l I
I I I 5t21=O 1 I I r I I 1 -... ~--. . --... ...-..-. -----------. . _._-_._-'-.

1
2
3

It.
t
I

START

.. '. ••• •••

A
I .,-_._,.-...-.. -........... ~ .. _ _-. --. ---..., _,..,.-..--- .'--- '.

f
I * •. ----'.--_..... ..----..... ---.-. * *

I S'(2-"=S'(2)1 t Sll)=Sll)1 .. IS J '*
I + IdJ-ll 1C-----1 + AfJl**2 K---.... YES-* LESS THAN
I I I I *N'" -_ .• -.-~--- • • -----_-....... • * *

* I
fU)

I
V

I
I
I
I
I
I
I

'* •. _--.

..... -*""'!i"".----.. • -.. ' __ •
I PUNCH I I 1
I $(1)9,·,s,r(2ll-,-,.r tML T I
I I I I

A 77
F 80
T ... 79

c

I

C

C

0 "

C

C

C

o

C
C
C
C
C
C

C
C

C

• C

1010
5000

1020
5010

1030

10:35
1038
5015

50

940

lOt:,
105

5025

1055
5030

1060

106,4
1066
1070
1080
1085

1100

TEST GENERATION
DIMENSION KFIG(35) ,NBR(999) ,QUES(19),NBTF(999) ,JTF(999) ,H(l7)
INITIAL GENERATION OF A RANDOM NUMBER
PRINT 5000
FORMAT(/22HSET SW 1 OFF TO START.)
PAUSE
IFrSENSE SWITCH 1)1010.1020
PRINT 5010
FORMATl/39HTO SELECT A RANOOM NUMBER, SET SW ION.)
~'NT=O

RN=RANO(0.51)
KNT=KNT+l
IFCKNT-500l1035,1020,1020
IFCSENSE SWITCH 1)1038.1030
PRINT 5015tRN
FORMAT(9HRANDOM = ,Flo.a/)
HEADER CARD FOR FIRST PAGE OF THt: TEST
REAO 50
FORMAT(80H1234S67891

1 60 70 8t
20 30

HEADER CARD FOR ALL FOLLOWING PAGES OF THE TEST
READ 940,(H(I),I=1,11)
FOR'MAT (12X, 11 A4)
PRINT 50
PUNCH 50
INITIALIZATION OF CONSTANTS
KOUNT :: 1
PR'OBN=l.
IPAGE=2
IFf SENSE SWITCH 9)105,105
NF=O
MFIGS=O
IP=O
NEWTF=O
ITOTF-O
ITOTM==O
LTF-O

40 50

NM IS THE NUMBER OF MULTIPLE-CHOICE QUESTIONS DESIRED ON THE TEST,
NTF IS THE NUMBER OF TRUE-FALSE QUESTIONS DESIRED OH THE TEST.
NS IS THE FIRST NUMBER IN THE MASTER QUESTION FILE FROM WHICH
QUESTIONS ARE TO BE SELECTED,
ITEMS IS THE LAST NUMBER FROM WHICH QUESTIONS ARE TO BE SELECTED,
N IS THE TOTAL NUMBER OF TRUE-FALSE QUESTIONS IN THE MASTER FILE
READ 5025,NM,NTF,NS,ITEMS.N
~ORMAT(2I5/215/15)

IF(N)9000,1080.1055
JTF<I(, ARE THE ACTUAL NUMBERS OF THE TRUE-FALSE QUESTIONS IN THE
MASTER FILE OF QUESTIONs
READ 5030.(JTF(K).K=l,N)
FOR'MAT (1615)
ERROR CHECKING
DO 1070 tl=l,N

IF(JTF(LL)-ITEMSlI064.1064,1070
IF(JTFCLL)-NS)1070,1066.1066
LTF=LTF+1
CONTINUE
IF(NTF-LTF)108~t9012.9010
IF (I TEMS-L TF NM ... NS+l) 9015 .9017,110'0
GENERATION OF TABLE OF RAN,DO'M QUESTION NUMBERS
SP=RANDCRN)
IF(ITEMS-99)1110,1110,1250

, lc I

1110
1120
1125
1130
1140
1145

1150
1160
1165

1170
1180
1'18'5

1190
1200
1205

1208
1210
1220
1225

1250

C
1

c

C

4010
108

106
924

30

3
90
31

32
3200

40
4100
4200

.. 4
4400

210
212
218

rSP=SP*100.
IF(ISP-ITEMS)11Z5,l125.1100

r 'F (IS P) 1100, 1100. 1130
IFCISP"'NS)1100.1140.1140
IF (I TOTM) 1160.1160.1145
DO 1150 II:l.ITOTM

IF(NBR(IIJ-ISP)1150.1100.1150
CO:NTINUE
IFlITOTF)1180.1L80,116~
00.1170 JJ=l,ITOTF
IFCNBTF(JJ)-ISP)1170.1100.1170
CONTINUE
JFCNl}ZOO.1200.1185
00 1190 NY=l.N
IF(ISP-JTF(NI)}1~90tlZ20.1190

CONTINUE
IF (I TO T M-NM l 1205 • 1210 .1210
ITOTM-ITOTM+l
NBRtlTOTM)=ISP

IF(ITOTM-NM)1100.1210,1210
IFCITOTF-NTF1IIOO.1,1
IFtITOTF-NTF)l225,120S.120a
ITOTF=ITOTF+l
NBTF(ITOTFl=ISP

GO TO 1208
rSP=SP*lOOO.

GO TO 1120
END OF TABLE GENERATION
101=0
ID2=0
RE~n)ING OF ~ASTER QUEST ION FILE
IF (SENSE SWITCH 9) 4010. 4010
IF (I<OUNT-4,4) 106,106,108
PUNCH 6,IPAGE,(H(Il,I-l.17)
IPAGE=IPAGE+l
KOUNT=l
PUNCH 924
FOR'MATC/IHl,12X16HMULTIPLE-CHOrC£.6XZ4HMAR'J(O:NLVO:NE ANSWER PER.

110 H QUE 5 T ION.)
KOUHT-KeYNT + 3
READ 3, I ANS, rDENT , IFIG t,(QUES(l) , I -I t 19)
IF(IDENT-O)90,91,90
FORMATCAl,13.1XAl,18A4,A2)
IF(IOl-IDENT)31,30,31
IF(r02-IOENT)32,3~,32

SEARCH TABLE TO SEE IF QUESTION NUMB'ER COMPARES
JF(NTF)4100,4100.3200
DO 40 K=l,NTF
IF(IOENT-NBTF(Kl14G,210,40
CONTINUE
IF (NM) 4400 t 4400,4,200
DO 44 I=l,NM
IF(IOENT~NBR(IJ)44,45.44
CONTINUE
IDlzIDENT
GO TO 30
IFCNEWTFSZ12,212.45
IF(KOUNT-44)214.214.218
PUNCH 6,IPAGE,(K(I),I=1.17)
IPAGE=lPAGE+l
~OUNT=1

o

o

o
I~

I,l"

I

214
9"30

0
45

C

48

46

918

110
C

120
122

125
130

38
922

33
34

C
36

0 920

C
135
910

142
140

C
141

150
152

91
C

160
175
6

162
9'l~

• 170

PUNCH 930
FORMATf IIHI t 16X IIHTRUE-FALSE. 7Xl'9HMARK A FOR TRUE ~ B FOR FALSE.)
KOUNT=KOUNT+3
NEWTF=1
102= IOENT
PUNCH QUESTION JUST READ
rFCKOUNT-46,46,46.48
PUNCH 6 ,IPAGE. (He I. , 1=1,17)
IPAGE-IPAGE'+1
KOUNT-l
PUNCH 918,P'·ROBN,(QUES(I) ,1-1,19)
P'ROB N =P'ROBN+ 1 •
FORMAT(lHl,F4.0.1X,18A4,A2)
KOUNT-KOUNT+2
IFCIFIG)110,3!,110
IF(IFIG~70000)120.33t120
PLACE FIGURE SYMBOL IN FIGURE TABLE
IF(NF)130.1~O.122
DO 125 NFN=l,NF
TF C IF IG-KF IG(NFN) 12'5.39,125
CONTINUE
NF=NF+l
KfIG(NF)=I'FIG
PUNCH 922~tQUES(I).I-l,19)
FOR'MA T(6X.18A4. A2)
KOUNTa:KOtJMT+I
IF(IANS~0)34,30~34

IF (I ANS-700'OO) 36 t 30,3:6
TYPING ANSWER ON CONS01..E TYPEWRITER
AN-PROBN-I.
P'RINT 920 ,AN t lANS·, I'DENT
FORMAT(F4.0.2H •• ,Al,2X1H-,2X·,Y3)
GO TO :30
READING OF F1GURES
READ 910,MFIG.JCC,{QUES(I).I=1,19)
FORMATtAl,I2,3X,18A4,AZ)
IF(MFIGS-MFIG)140.142,140
IF (1 P) 170 , 91 • 1 7 0
IFCNFl152,152.141
SEARCHF IGURE T A:BLE
DO 150 N'K-l.NF
IF fMFIG-KFIG (NK)) 150,160.150
CONTINUE
MFIGS=MFIG
IP-O
IFCSENSE 'SWITCH 9)200.135
PUNCH FIGURE JUST READ
IF (KOUN T +1 CC -55) 162 • 175 , t 7'5
PUNCH 6,IPA6E.tHfll,I-l.17)
FO'RMAT(1HZ ,4HPAGC, 13,4,1 ,17A4)
IPAGE-IPAGE+l
KOUNTcl
PUNCH 915, (QUE 5(I) , I == 1 , 1 CJ)
FORMATC/IHl,5X,18A4,A2)
KOUNT=KOtJNT+3
IP=l
MFIGS=MFIG
GO TO 91
P'UNCM 9:22 t··(QUESt I') ,I =1 t 19)
KOUNT-KOUNT+l
GO TO 91 J~3

200 PRINT 926
926 FORMATfl47HSW 2 OFF FOR NEW TEST, ON TO CONTINUE OLD TEST.)

PAUSE
IFCSENSE SWITCH 2)104,10'10

C ERROR MESSAGES
9000 PRINT 860'0 0
8600 FORMAT (/23HCAtt,.OT HAVE NEGAT I VE N.) .
9006 PAUSE

GO TO 1010
9012 PRINT 8680
8680 FORMATl/48HREQUESTEO NO. OF TRUE-FALSE QUESTIONS EQUALS NO.,

11lH AVA-t LABLE.)
GO TO lOBS

9010 P'R I NT 8660
8,660 FORMAT (/52HIMPOSS IBLE TO REQUEST M€l'RE TRUE-FALSE QUEST IO:"STHAN t

115H ARE AVAILASLE.)
GO TO 9006

9015 PRINT 8670
8670' FORMATf/5ZHIMPOSSIBLE TO REQUEST MORE MULTIPLE-CHOr'CE QUESTIONS,

I20H THAN ARE AVAILABLE.)
GO TO 900'6

9017 PRINT 8690
GO TO 1100

8690 FO\R'MATlI53HREQUESTED NO. OF MULTIPLE-CHOICE QUESTIONS EQUALS NO.,
11lH AVAILABLE.,

END

o

o

o

o

•

Co:mputer Center

RANDOLPH-MACON COLLEGE

Ashland, Virginia 23005

PORT-A-PUNCH FORTRAN SOURCE AND DATA CARDS

Richard E. Grove

A paper given before the 1620 Users Group Joint Eastern-Midwestern

Meeting, A:mericana Hotel, New York, October 6, 7, 8, 1965.

1

The Randolph-Macon Port-a-punch Syste:m (RAMPUS) allows students to

"punch" co:mputer progra:m source and data cards without having access to a

keypunch. The co:mplete RAMPUS includes the capability of generating source

cards for several progranl:ming languages and data cards of several types. This

paper is restricted to those features related to FORTRAN source and data cards.

RAMPUS uses specially forrnated, pre-perforated cards- -IBM port-~.

punch cards- -which :may be punched using a si:mple stylus. These cards are

accepted by the RAMPUS conversion co:mputer progra:m and source or data

cards are output in standard FORTRAN for:mat. The RAMPUS FORTRAN card

is shown in the figure below. It has been designed for use with NCE Load and

Go FORTRAN (2. o. 029), PDQ FORTRAN (2. O. 031) and other co:mpatible FOR

TRAN processors including 1620 FORTRAN/For:mat.

iiifIf- ISTIP .1 ~
IIIEIS-

IU • I.. • .. IElII
• Pile .•

EI. lUll
• TUCE •

C.T •• C.II.I
•

If(• Ell
Pi.C .•

IF(SIU. Ell
Slita. TIACE •
PAISE EXECITE

• 'IIC .•
PRIIT F.IIAT . , • •
,.ICI IUEIl
I, · " •
IU' sal(
I, • ct. •

.... ------------------------------------"~ / ,-,,,,
I P,-.I'

------." .. " .. ----"'"""'~-~~~-~------,

The numeric digits in the first two columns are used for statement num

bers. Note that the RAMPUS restricts statement number to at most two digits

but this has proved to be adequate for student prog rams. The entrie s C, P, T,

D and VI have special uses as follows:

2

C If a C is punched in the first column, the card is considered to be a FOR

TRAN comment card, a C appears in cc 1 of the output, and the message

contained in the body of the RAMPUS card starts in cc 7 of the output card.

T These are used only in NCE FORTRAN to take advantage of the limited

p capability for alphameric output. If punched, a P or T is placed in cc 1

of the output and the message contained in the body of the RAMPUS card

starts in cc 2 of the output card.

o This is used to indicate that the card contains data. The content of the

body of the RAMPUS card is placed in cc 1 and following card columns of

the output card.

VI Punching this entry will cause the number 1 (one) to be punched in cc 6

and the content of the body of the RAMPUS card will begin in cc 7 of the

output card. This is used for continuation cards in PDQ for input/ output

lists and format statements.

Consider now the two columns of rectangles which contain reserved FOR

TRAN words. Punching of the hole indicated by the small solid square symbol

in each of the several FORTRAN word rectangles has the following effect in the

output FORTRAN source card produced by the RAMPUS conversion program:

ACCEPT
a, •

CONTIN-
UE •

produces ACCEPT, which must be followed by the list of input

variables. The n is ignored in NCE FORTRAN. For PDQ, if

the next symbol 0 r the next two symbols are nume ric, they are

interpreted as format number and are placed to the left of the

comma.

produces CONTINUE This is a complete FORTRAN statement.

DIMENS- produces the word DIMENSION which must be followed by the

ION. list of subscripted variables with the array size indicated.

o

o

t aSH!

o

o

•

IF(seose
switch.

fffiNfl
.~

IpUNCH I
0, •

rmrl. D
~

produces the word DO which must be followed by the statement

number giving the range of the DO, a fixed point variable name,

an equal sign, and the indexing paramete rs.

3

produces the word END which is a complete FORTRAN statement.

produces the words GO TO which must be followed by the state

ment number of the next command to be executed. This may al

so be used for the computed GO TO.

produces the entry IF (which must be followed by an arithmetic

expression, a close parenthesis and three statement numbers

separated by commas.

produces the phrase IF (SENSE SWITCH and must be followed by

the switch number (1, 2, 3, 4 or 9)' a close parenthesis, and two

statement numbers separated by a comma.

produces the word PAUSE which is a complete FORTRAN state

ment.

produces the entry PRINT, which must be followed by the list of

output variables. The n is ignored in NCE FORTRAN. For PDQ,

if the next symbol 0 r the next two symbols are nume ric, they are

interpreted as format numbers and are placed to the left of the

comma.

produces the entry PUNCH, which must be followed by the list of

output variables. The n is ignored in NCE FORTRAN. For PDQ,

if the next symbol or the next two symbols are numeric, they are

interpreted as format numbers and are placed to the left of the

comma.

produces the entry READ, which must be followed by the list of

input variables. The n is ignored in NCE FORTRAN. For PDQ,

if the next symbol or the next two symbols are numeric, they are

interpreted as format numbers and are placed to the left of the

comma.

1&;7

BEGIN
PRDC .•

BEGIN
TRACE.

mol
ruL!J

f1Nif(
~

EXECUTE
PRDC .•

produces the word RETURN which is a complete statement in

NCE FORTRAN. In PDQ it must be followed by the number of

the procedure from which control is passed.

produces the word STOP which is a complete NCE FORTRAN

statement. In PDQ it may be followed by a fixed -point constant

for identification purposes.

produces the word USE which is used only in NCE FORTRAN.

This must be followed by the statement numbe r of the first com

mand of the subprogram.

produces the words BEGIN PROCEDURE which is used only in

PDQ FORTRAN and must be followed by a fixed-point constant

which identifies the subprogram.

produces the words BEGIN TRACE which is used only in PDQ

FORTRAN and is a complete command.

produces the word COMMON which is used in PDQ FORTRAN

and must be followed by the list of variables so declared.

produces the words END PROCEDURE which is used only in

PDQ FORTRAN and must be followed by a fixed-point constant

identifying the subprogram.

produces the words END TRACE which is used only in PDQ

FORTRAN and is a complete command.

produces the words EXECUTE PROCEDURE which is used only

in PDQ FORTRAN and must be followed by a fixed-point number

identifying the subprogram to which control is to be passed.

produces the entry FORMAT (which is used in PDQ FORTRAN.

This must be followed by the format specifications and a close

parenthesis.

4

o

o

C,'

I

tl
I

i

0 \~
t
I,iil

I

o

o

•

IRE:UD I n •
produces REREAD, which is used only in PDQ FORTRAN. The

first symbol or the first two symbols in the body of the RAMPUS

card must be nume ric. The se are conside red to be fo rmat num

bers and will be inserted to the left of the comma by the RAMPUS

conversion program.

5

mMTl
~

This punch produces no information on the output card. It is used

to allow the content of several RA1v1PUS cards to be punched on

the same FORTRAN source card. The standard format of the

FORTRAN source card requires that the statement begin in cc 7 and not extend

beyond cc 72. This is more information than can be contained on one RAMPUS

CARD. Information for a single FORT RAN statement may be continued onto a

second RAMPUS card if the SAME CD. box is punched on the second (and follow

ing) RAMPUS cards. In this case the content of the subsequent card{ s) is placed

ern /

I S 2 H

I T 3 =

(I (

I V 5
)

fI W6
,

tim X 7 •

IS Y I

fib 19

immediately to the right of the content of the preceeding RAM-

PUS card on the output FORTRAN source card. There is no re

striction on the number of successive SAME CD. cards except,

of course, the source statement may not extend beyond cc 72.

The RAMPUS conversion program does not check for violation of

this re striction.

It will be noted that the major portion of the RAMP US card

is made of alternating columns of two types as shown on the left.

The columns which have the oval boxe s will be known as alpha

meric columns and the othe r type will be known as special char

ac te r co lumns .

The alphameric columns may contain either one punch to

indicate numeric digits or two punches to indicate alphabetic

characters. To punch numeric digits, it is necessary only to

punch the box which contains the desired digit in the lower right

quadrant.

Two punches are required to indicate an alphabetic char

acter. A special quadrant coding scheme has been devised which

obviates the necessity of knowing the Hollerith card code. First,

find the box which contains the desired character and punch out

the perforated hole in this box. Next, note the quadrant {upper

'I I
I

I

!

right, upper left, or lower left) in whith the alphabetic character was found.

Go now to the top three boxes in the same column and punch the box for which

the quadrant noted above is solidly colored. Thus, an A would be indicated

by punche s in the top box and in the 4th box from the top. A Y would be indi

cated by punches in the 3rd box from the top and the box next to the bottom.

6

In the special character columns, a single-punch will cause the indicated

symbol to be produced in the FORTRAN source card by the RAMPUS conversion

program. The only exception to this statement is the bottom entry in the special

character column, b. A punch in this position will cause a blank card column

to be produced by the RAMPUS conversion program.

For both alphameric and special character columns, if no punch is made,

the RAMPUS conversion program ignores the column and no entry is made in

the output FORT RAN source or data card. To obtain a blank card column in

the final source card, the b symbol must be punched in the RAMPUS card.

No more than one punch may be made in any of the special character col

umns. In the alphameric colum.ns, a single punch is used to indicate a num.eric

o

digit and two punches, associated with the quadrant coding scheme, are used to 0
indicate alphabetic characters. Any other combination of punches in a given

column of the RAMPUS card will yield an erroneous code and may cause a READ

CHECK error condition.

The RAMPUS conversion program for FORTRAN source and data cards

has been designed to occupy that portion of core devoted to the pseudo-instruc

tions and symbol table in NCE FORTRAN. Because of this feature, the NCE

FORTRAN processor may exist unaltered in core before, during, and after the

RAMPUS conversion program is loaded and executed. Execution of the first

NeE FORTRAN program will overlay the RAMPUS conversion program ~nd it

must be loaded prior to each batch of RAMPUS conversions.

The IBM port-a-punch cards were printed so that the punched columns

correspond to the even card columns of a standard card. Since this FORTRAN

source and data card conversion is only part of a larger system, RAMP US FOR

TRAN source cards are pre-punched with an F in (true) card column 1. The

conversion program described here will convert any input card containing an F

in cc 1 into standard FORTRAN source card format. Any other punch in cc 1

I

ueWMM'!"tttt'"WWPlI'"llTwew*' i'rlt ·'rr t tut UL
• I t t ri eftt"h ·tfri···"fH{hrii"j ·w.·· iiifhi T . r··

7

will cause an image of the input card to be punched.

o Because of the experimental nature of this project when it was initiated,

the RAMPUS cards were designed at the Randolph-Macon College Computer

Center and printed locally on a Multilith 1250 offset duplicator. Few would

care to do this and suitable cards can be obtained from IBM for an initial cost of

$45.00 for the electroplate and a set-up charge of $35.00 on each order (no mat

ter what size) plus the cost of cards at $2. 52 per thousand. While card costs

are approximately three times the cost of standard cards, the only reasonable

alternative to port-a-punch cards is the use of mark- sense cards which require

a monthly rental of about $155.00 for an IBM 514 reproducing punch with the

mark- sense special feature.

For any who may be fearful, there has not yet been a single card read

failure on the 1622 while using port- a-punch cards at the Randolph-Macon College

Computer Center.

The standard IBM port-a-punch holder and stylus may be used with this

system. This is, however, slow, awkward, and expensive. A better arrange-o ment is to use a simple stylus and a small piece (approximately 4" x 8") of car

peting in the form of a burlap-like surface backed by 1/8" of foam rubber. This

is available in many department stores under the trade name "Tex-a-weave".

•

Best separation of the chip from the card is obtained if the cushion is used

cloth- side up. A convenient stylus is made by pushing a straight pin into the

eraser of an ordinary wood pencil and clipping the head to leave about 1/4" of

shank extending from the eraser. "Commerce" straight pins available from

stationery suppliers have larger shanks and are more suitable than those used

for sewing. The cost of stylus and foam pad is less than ten cents.

The RAMP US conversion program has been written in 1620/1710 SPS for a

model 1 1620 with 20 K and requires indirect addressing. A copy of the source

program and the condensed object deck may be obtained from the author .

17 ,

o

o

o

•

NUMERICAL INTEGRATION USING GAUSS'S QUADRATURE FORMULA

RICHARD D. ROSS
COMPUTER CENTER

UNIVERSITY OF MISSISSIPPI

The problem of numerical integration has always been an intriguing
one for mathematicians and scientists. Most numerical methods of inte
gration recognize that the base points have to be equally spaced. This
limitation is not imposed in the Gauss's quadrature formula.

A higher degree of accuracy of tabulation is now required as a
result of scientific advances and especially of the increasing use of
automatic computers.

Gauss's quadrature formula has been developed previously by the
author with much emphasis placed upon the calculation of the roots and
weight coefficients. The development of Gauss's quadrature formula is
not given in this paper but can be found in "Gauss's Quadrature Formula"
by Richard D. Ross as submitted to the faculty of the University of
Mississippi Mathematics Department as a Masters' thesis.

which is
All numerical integration formulas have the same general form

b 5 f(x)dx
a

n r Wi f(xi)
i=O

where n+l weight factors, wi' and the n+l sample values, f(x i), are to
be calculated.

By using Newton's Formula and the Interpolating Polynomial of
Lagrange and also using Legendre's Orthogonial Polynomial, we are able to
establish a bound for the error of Gauss's formula and are also able to
calculate the root, xi, and the weight coefficient, wi' of Gauss's formula.
The roots and weight coefficient for N = 1 to N = 18 are given in Appendix 1.

When calculating the roots and weight coefficients the limits
(a,b) of the above formula are taken to be (-1, +1).

Extreme care has been taken in the calculations of the values of
the roots and weight coefficients of Gauss's quadrature formula. To show
the accuracy obtained a few examples will be taken and these examples will
be compared to the trapezoidal rule, Simpson's rule, and Weddle's rule to
show the relative accuracy of the four quadrature formulas. First
consider

6
J (3x+l)dx
o

(1)

17~

using the six-point formula

Xo = 0 f(xO) =: 1

xI = 1 f(x l) ;::: 4

x, ;::: 2 f(x 2) ;::: 7
1-

x. ;::: 3 f (x3) ;::: 10
y

x"
;::: 4 f(x4) ;::: 13

x.
')

;::: 5 f (x5) ;::: 16

x{.. = 6 f(x6) ;::: 19

we obtain the following results, where N ;::: n,

Trapezoidal rule N =: 6 60.00000000000000000000000
Simpson rule N :::: 6 60.00000000000000000000000
Weddle rule N ;::: 6 60.00000000000000000000000
Gauss formula N :::. 6 60.00000000000000000000000

TRUE VALUE 60.00000000000000000000000

of which all four are completely accurate, which is to be expected.

In the above integration using Gauss's formula a transformation
of the values of xi,i=:O,l, ... ,6 using

z. (b-a) +a+b
1

2

where z. is the value of the roots of Gauss's formula for N ;::: 6, and
the in t~gra tion of Equa tion 1 was ca lcula ted using Equ,a tion 2 which
states that

1

f f(z)dz ::::
-1

n

L
i=O

w.f(Z.)
1 1

but for limits 0 to 6 the integral of Equation 2 will have the form

b b-a
.[f(x)dx;::: 2

n

E
i=O

(2)

(3)

-) .:>
I I -~'

o

o

o

I

•

Now consider the following integration with the same limits and the same
number of subdivisions as Equation 1.

and we

2
(x + 2x + l)dx

obtain the following results

Trapezoidal rule N ::;: 6
Simpson rule N 6
Weddle rule N ::; 6
Gauss formula N ::; 6

TRUE VALUE

115.0000000000000000000000
114.0000000000000000000000
114.0000000000000000000000
114.0000000000000000000000
114.0000000000000000000000

We see that the trapezoidal rule is not exactly accurate because the
trapezoidal rule will only integrate correctly a straight line formula.

For

we

For

we

For

Consider the following examples and their results:

6
J (x4 + 9.3x3 + 7.2x2 + 5.0x + 1.0)dx
o

obtain

get

Trapezoidal rule
Simpson rule
Weddle rule
Gauss formula

TRUE VALUE

6

!

Trapezoidal rule
Simpson rule
Weddle rule
Gauss formula

TRUE VALUE

6

N ::;

N
N ::::

N ==

N ::::

N ::::

N ==
N ::::

6
6
6
6

6
6
6
6

5345.500000000000000000000
5183.600000000000000000000
5182.800000000060000000000
5182.800000000000000000000
5182.800000000000000000000

85450.00000000000000000000
79114.00000000000000000000
78918.00000000000000000000
78912.85714285714285714286
78912.85714285714285714286

f 762
(x + 2x + 3x + l)dx

o

(4)

(5)

(6)

(7)

we get

Trapezoidal rule
Simpson rule
Weddle rule
Gauss formula

TRUE VALUE

N
N
N
N

=
:::

=

6
6
6
6

324704.0000000000000000000
291890.0000000000000000000
290274.0000000000000000000
290155.7142857142857142857
290155.7142857142857142857

From Equation 5 we see that any equation of degree greater than
3, Simpson or the trapezoidal rule will not obtain the correct results.
From Equation 6 we see that any equation of degree 6 or greater, Weddle's
rule will not integrate correctly. By taking some subdivisions Equation 6
may be integrated more accurately by Weddle's rule; and also Simpson's
rule and the trapezoidal rule are more accurate, which is to be expected.
Taking 12 subintervals and integrating, we get

Trapezoidal rule N = 12 80556.67187500000000000000
Simpson rule N = 12 78925.56250000000000000000
Weddle rule N = 12 78912.93750000000000000000
Gauss formula N = 12 78912.85714285714285714286

TRUE VALUE 78912.85714285714285714286

In all cases only Gauss's rule gave the exact result because for
n = 5, Gauss's formula will give the exact result if the integrand is an
equation of degree 2n+l=11 or less, which in all instances was true,
except in the example above where 2n+l=25.

Integrate Equation 5 using Gauss's formula for n=2 and we get

Gauss formula N = 2
TRUE VALUE

5182.800000000000000000000
5182.800000000000000000000

which is an exact result since 3.4.5 is indeed an equation of degree
2n+l=5 or less.

At this point there has been no restriction on the number of
points to be used or the number of subdivisions, nor is there a necessity
for equally spaced base points when using Gauss's formula.

Suppose that we wish to calculate the value of the integral
1

TT = ((_4_)dx
6 1+x2

(8)

we obtain the following results for six subintervals (n=6) ,

I)S-

o

o

o

'I

I fWwewerttt , .. ,ttt I!, Itt """",*'fw't**ft't t' t m t '! ! ':,a tst h tie I

o

•

Trapezoida 1 rule
Simpson rule
Weddle rule
Gauss formula

TRUE

N :::::

N :::::

N
N

VALUE

6
6
6
6

3.136963066471263192574668
3.141591780936043231125198
3.141598445860740942708156
3.141592656253749547166988
3.141592653589793238462643

We see that Weddle's rule is accurate to six decimal places and
Gauss's formula has nine place accuracy. Now suppose we integrate Equation 8
using twelve equal subintervals and the results are shown below.

Trapezoidal rule N ::::: 12 3.140435246846850651454428
Simpson rule N == 12 3.141592640305379804414347
Weddle rule N == 12 3.141592677446341591048605
Gauss formula N ::::: 12 3.141592653589793253511255

TRUE VALUE 3.141592653589793238462643

Weddle's rule now has eight place accuracy but Gauss's formula
has seventeen place accuracy. We are able at this time to see the real
power in using Gauss's rule. Although the algebraic operations performed
are very tedious and lengthy and are not recommended for tabulation by
hand calculators, the results are extremely accurate.

To see the accuracy of Gauss's formula, let us integrate Equation 9
for n:::::1 to n:::::18 using Gauss's formula. We can see from the results given
that as n increases the number of accurate decimal points is almost a
linear function of n. For n:::::18 Gauss's formula integrates 3.4.9 accurate1;
to twenty-five decimal places. The significance of the results shown is
that it will take a polynomial of degree 2n+1:::::37 to represent the integral
of a harmless looking equation as ~ between the limits of 0 to 1.

l+x~

1 4 1-0 n

I (1+x2)
dx

2 L Wi f(x i) for n:::::1,2, ... ,18,19. (9)

0 i=O

Gauss formula N == 1 3.147540983606557377049180
Gauss formula N == 2 3.141068139963167587476977
Gauss formula N ::::: 3 3.141611905245805388072172
Gauss formula N ::::: 4 3.141592639884752643813640
Gauss formula N ::::: 5 3.141592611187586584212313
Gauss formula N ::::: 6 3.141592656253749547166988
Gauss formula N ::::: 7 3.14159265351~118378361451

Gauss formula N 8 4.141592653588243839589258
Gauss formula N 9 3.141592653590046288835685
Gauss formula N == 10 3.141592653589781014051290
Gauss formula N ::::: 11 3.141592653589793433433810
Gauss formula N 12 3.141592653589793253511255
Gauss formula N ::::: 13 3.141592653589793237099615
Gauss formula N == 14 3.141592653589793238513590
Gauss formula N ::;:: 15 3.141592653589792328462513
Gauss formula N == 16 3.141592653589793238462539
Gauss formula N == 17 3.141592653589793238462650
Gauss formula N == 18 3.141592653589793238462643

TRUE VALUE 3.141592653589793238462643)7 rc

II

Now let us consider another simple looking function such as

3.2

! In(x)dx (10)

and get the following results for n=6 and n=12 for the trapezoidal rule,
Simpson's rule, Weddle's rule, and Gauss's formula and also the value of
Gauss's formula for n::::7,8,9,10,11.

Trapezoidal rule N = 6 1.827655138682033836296680
Simpson rule N ::: 6 1.827847257950485532558666
Weddle rule N = 6 1.827847407307964633602078
Gauss formula N ::: 6 1.827847408574822216653928

Gauss formula N = 7 1.827847408574822213199004
Gauss formula N ==: 8 1.827847408574822213185986
Gauss formula N ::: 9 1.827847408574822213185936
Gauss formula N :::: 10 1.827847108574822213185936
Gauss formula N ::: 11 1.827847408574822213185936

Trapezoidal rule N :::;; 12 1.827799334015909603078275
Simpson rule N ;:;: 12 1.827847399127201525338806
Weddle rule N :::;; 12 1.827847408554587696640577
Gauss formula N :::;; 12 1.827847408574822213185936

TRUE VALUE 1.827847408574822213185936

Again from the results shown above we are able to see that Gauss's formula
is superior to the other three in question. Using Gauss's formula for n::::9
we obtain an exact solution to Equation 10.

Consider the given equation

3.159 (cos(x)) _x_

f
(

2.7'

(sin(x)e) In 3.02) dx (11)
2.7 sinh(x2 -2.3x+l.73)(x3 . 97)

It can be seen that this is not a readily integrable equation. To integrate
Equation 11 to any degree of accuracy using Weddle's rule would require the
calculation of many base points. The results using Gauss's equation for
n=l to n::::13 is shown below.

Gauss formula
Gauss formula
Gauss formula

N:::: 1
N == 2
N =: 3

0.00008061831309528041608736748
0.00008153279517841137715773370
0.00008153803223426107836002512

/77

o

0

o

II'
)1

"I

w'tHW' t tf"!.' t \

0

o

, \) , t I t 'i 'bt •. t'rite #tart t - n IT}' ... !· ... It- If ,. __ n_ '" SI'""['W - ,_.mnyu

"'.

Gauss formula N = 4 0.00008153802146357601426297492
Gauss formula N 5 0.00008153802131849522323566839
Gauss formula N 6 0.00008153802131731542693985524
Gauss formula N 7 0.00008153802131730857215620960
Gauss formula N 8 0.00008153802131730856547759855
Gauss formula N 9 0.00008153802131730856543469721
Gauss formula N 10 0.00008153802131730856543465165
Gauss formula N 11 0.00008153802131730856543465460
Gauss formula N = 1,2 0.00008153802131730856543465459
Gauss formula N 13 0.00008153802131730856543465459

For n=12 an exact integral of 11 is shown accurate to the last
decimal place.

APPLICATION AND ILLUSTRATION OF GAUSS'S FORMULA

The following example will show how Gauss's formula may be used
other than obtaining the numerical result of integration.

Suppose that we are given a complicated function and an upper and
lower bound for the use of the function. But we wish to substitute for this
involved function a simpler function that would be much easier to handle
algebraically and will give the desired results to a specified degree of
accuracy. There are many methods of arriving at a simpler function, but by
using Gausszs formula and integrating "the function between the bounds given
using the value of n=i (where n is the number of base points minus one)
for i=1,2, ... m, m 18, we are able to determine by using Gauss's formula
the value of m that will give the desired results which will mean that we
will be able to replace the given function over the given range by a polynomial
of degree 2m+l. For example, if we take Equation 11 and the results given for
the integration of this equation, we are able to see that for n=3 we obtain
a result that is accurate to six decimal places. Therefore,. in this case,
m=3 and 2m+l = 7 which means that we should be able to replace the function
given by a 7th degree polynomial and obtain the same results accurate to six
decimal places. Suppose that we replace the integral 11 by the function

(12)

By taking seven subintervals between the limits 2.7 and 3.15~ and substituting
these values in Equation 11 and by using the form of Equation 12 we are able
to set up eight simultaneous equations with eight unknowns and are able to
solve for the values of aO,a l , ... a7 7 as given below. All results are shown
accurate to twenty-five places.

A(O) 5.706091615187186021600824
A(l) :::; -11.06393937472572817810977
A(2) 9.219865783892648185481282
A(3) :::; -4.278123364782411864935882
A(4) :::; 1.192980890731212353730572
A(5) -0.1997677036537830939234936
A(6) :::; 0.01858251732127630060092552
A(7) :::; -0.0007399431094868931737066830

Using these values calculated and integrating the function Equation 12
between the given limits we obtain for the value of the integral
0.00008153801358456494024586480. This result is accurate to six decimal
places as originally stated. Thus, the very complex integral 11 is now
reduced to a 7th degree equation and we are now able to manipulate
algebraically with ease the transformed equation.

0

,0 IIII
h

I

i

l

11

1

",'

I

APPENDIX I

Roots (x.)
l.

+ and - N = 1 Weight Coefficients (w.)
l.

0.57735 02691 89625 76450 91488 1.00000 00000 00000 00000 00000

N = 2
0.00000 00000 00000 00000 00000 0.88888 88888 88888 88888 88bb9
0.77459 66692 41483 37703 58530 0.55555 55555 55555 55555 55556

N = 3
0.33998 10435 84856 26480 26657 0.65214 51548 62546 14262 69360
0.86113 63115 94052 57522 39464 0.34785 48451 37453 85737 30639

N = 4
0.00000 00000 00000 00000 00000 0.56888 88888 88888 88888 88888
0.53846 93101 05683 09103 63144 0.47862 ~6704 99366 46804 12915
0.90617 98459 38663 99279 76268 0.23692 68850 56189 08751 42640

N = 5
0.23861 91860 83196 90863 05017 0.46791 39345 72691 04738 98703
0.66120 93864 66264 51366 13995 0.36076 15730 48138 60756 98335
0.93246 95142 03152 02781 23015 0.17132 44923 79170 34504 02961

N = 6
0.00000 00000 00000 00000 00000 0.41795 91836 73469 38775 51020
0.40584 51513 77397 16690 66064 0.38183 00505 05118 94495 03697
0.74153 11855 99394 43986 38647 0.27970 53914 89276 66790 14677

0
0.94910 79123- 42758 52452 61896 0.12948 49661 68869 69327 06114

N = 7
0.18343 46424 95649 80493 94761 0.36268 37833 78361 98296 51504
0.52553 24099 16328 98581 77390 0.31370 66458 77887 28733 79622
0.79666 64774 13626 73959 15539 0.22238 10344 53374 47054 43559
0.96028 98564 97536 23168 35608 0.10122 85362 90376 25915 25313

N = 8
0.00000 00000 00000 00000 00000 0.33023 93550 01259 76316 45250
0.32425 34234 03808 92903 85380 0.31234 70770 40002 84006 86304
0.61337 14327· 00590 39730 87020 0.26061 06964 02935 46231 87428
0.83603 11073 26635 79429 94297 0.18064 81606 94857 40405 84720
0.96816 02395 07626 08983 55762 0.08127 43883 61574 41197 18921

N = 9
0.14887 43389 81631 21088 48260 0.29552 42247 14752 87017 38929
0.43339 53941 29247 19079 92659 0.26926 67193 09996 35509 12269
0.67940 95682 99024 40623 43273 0.21908 63625 15982 04399 55349
0.86506 33666 88984 51073 20966 0.14945 13Lt91 50580 59314 57763
0.97390 65285 17171 72007 79640 0.06667 13443 08688 13759 35688

N = 10
0.00000 00000 00000 00000 00000 0.27292 50867 77900 63071 44835
0.26954 31559 52344 97233 15319 0.26280 45445 10246 66218 06888
0.51909 61292 06811 81592 57256 0.23319 37645 91990 47991 85237 • 0.73015 20055 74049 32409 34162 0.18629 02109 27734 25142 60976
0.88706 25997 68095 29907 51577 0.12558 03694 64904 62463 46943
0.97822 86581 4'6056 99280 39380 0.05566 85671 16173 66648 27537

J 80

0
N = 11

0.12523 34085 11468 91547 24413 0.24914 70458 13402 78500 05624
0.36783 14989 98180 19375 26915 0.23349 25365 38354 80876 08498
0.58731 79542 86617 44729 67024 0.20316 74267 23065 92174 90644
0.76990 26741 94304 68703 68938 0.16007 83285 43346 22633 46525
0.90411 72563 70474 85667 84658 0.10693 93259 95318 43096 02547
0.98156 06342 46719 25069 05490 0.04717 53363 86511 82719 46159

N = 12
0.00000 00000 00000 00000 00000 0.23255 15532 30873 91019 45896
0.23045 83159 55134 79406 55281 0.22628 31802 62897 23841 20900
0.44849 27510 36446 85287 79128 0.20781 60475 36888 50231 25233
0.64234 93394 '+0340 22064 39846 0.17814 59807 61945 73828 00466
0.80157 80907 33309 91279 42064 0.13887 35102 19787 23846 36018
0.91759 83992 22977 96520 65478 0.09212 14998 37728 44791 44217
0.98418 30547 18588 14947 28294 0.04048 40047 65315 87952 00215

N = 13
0.10805 49487 07343 66206 62446 0.21526 38534 63157 79019 58764
0.31911 23689 27889 76043 56718 0.20519 84637 21295 60396 59240
0.51524 86363 58154 09196 52907 0.1855·3 83974 77937 81374 17165
0.68729 29048 11685 47014 80198 0.15720 31671 58193 53456 96019
0.82720 13150 69764 99318 97947 0.12151 85706 87903 18468 94148
0.92843 48836 63573 51733 63911 0.08015 80871 59760 20980 56332
0.98628 38086 96812 33884 15972 0.03511 94603 31751 86303 18328 ()

N = 14
0.00000 00000 00000 00000 00000 0.20257 82419 25561 27288 06195
0.20119 40939 97434 52230 06283 0.19843 14853 27111 57645 61189
0.39415 13470 77563 36989 72073 0.18616 10000 15562 21102 68000
0.57097 21726 08538 84753 72267 0.16626 92058 16993 93355 32012
0.72441 77313 60170 04741 61860 0.13957 06779 26154 31444 78045
0.84820 65834 10427 21620 06483 0.10715 92204 67171 93501 18697
0.93727 33924 00705 90430 77589 0.07036 60474 88108 12470 92673
0.98799 25180 20485 42848 95657 0.03075 32419 96117 26835 46284

N = 15
0.09501 25098 37637 44018 53193 0.18945 06104 55068 49628 53967
0.28160 35507 79258 91323 04605 0.18260 34150 44923 58886 67636
0.45801 67776 57227 38634 24194 0.16915 65193 95002 53818 93120
0.61787 62444 02643 74844 66717 0.14959 59888 16576 73208 15017
0.75540 44083 55003 03389 51011 0.12462 89712 55533 87205 24762
0.86563 12023 87831 74388 04678 0.09515 85116 82492 78480 99251
0.94457 50230 73232 57607 79884 0.06225 35239 38647 89286 28438
0.98940 09349 91649 93259 61541 0.02715 24594 11754 ')9485 17805

I~I

- -- -- - vu m ·'·"r···- ·r.,..·-.,

()

N = 16
0.00000 00000 00000 OOCOO 00000 0.17944 64703 56206 5254~ 82608
0.17848 41814 9584'/ 85~85 06774 0.17656 27053 66992 64·632 52754
0.35123 17634 53876 31529 71855 0.16800 41021 56450 04450 79669
0.51269 05370 86476 96788 62465 0.15404 57610 76810 28808 14344

.0.65767 11592 16690 76585 03022 0.13513 63684 68525 47328 63179
0.78151 40038 96801 40692 52300 0.11188 38471 93403 97109 478'77
0.88023 91537 26985 90212 29556 0.08503 61483 17179 18088 35345
0.95067 55217 68767 76122 27169 0.05545 95293 '73987 20112 94405
0.99057 54753 14417 33567 54340 0.02414 83028 68547 93196 01099

N = 17
0.08477 50130 41735 30124 22618 0.16914 23829 63143 59184 06563
0.25188 62256 91505 50958 89728 0.16427 64837 45832 72298 60540
0.41175 11614 62842 64603 59317 0.15468 46751 26265 24492 54174
0.55977 08310 73947 53460 78715 0.14064 29146 70650 65120 47319
0.69168 70430 60353 20787 48910 0.12255 52067 11478 46018 45183
0.80370 49589 72523 11568 24174 0.10094 20441 06287 16556 28146
0.89260 24664 97555 73920 60605 0.07642 57302 54889 05652 91291
0.95582 39495 71397 75518 11959 0.04971 45488 94969 79645 33352
0.99156 51684 20930 946.73 00160 0~02161 60135 26483 31031 33426

G N = 18
0.00000 00000 00000 00000 00000 0.16105 44498 48783 69597 91721
0.16035 86456 40225 37586 80961 0.15896 88433 93954 34764 99483
0.31656 40999 63629 83199 01173 0.15276 60420 65859 66677 88624
0.46457 07413 75960 94571 72671 0.14260 67021 73606 61177 57403
0.60054 53046 61681 02346 96381 0.12875 39625 39336 22767 55203
0.72096 61773 35229 37861 70958 0.11156 66455 47333 99471 60204
0.82271 46565 3714L 82497 89224 0.09149 00216 22449 99946 44644
0.90315 59036 14817 90164 26609 0.06904 45427 37641 22658 07067
0.96020 81521 34830 03085 27788 0.04481 42267 65699 60033· 28389
0.99240 68438 43584 40318 90176 0.01946 17882 29726 47703 63118

•

o

\}

j

0
H

l~

!

•

SERIES A:ND TRE 1620

Written at Newark College of Engineering by:

Peter Byetf
Jerry Kle1nbaum

Mark Sciora

PREF'\CE

This pAper, Series and the 1620, w~s written during the

summer vTl"I ile the A.l.1thors, l-.igh sc""ool stadents, were 1!lorking

~t New~.rk College of Engineering on ~. grant from t~e N~tion~l

Science Found~.tion. .\t tt,is time, we wish to th~.nk the following,

without whom this project would h~ve been impossible: the

National Science Foundation, the stqff of New~rk College of

Engineering, Drs. Frederick Lehm,!!tn and Phylli s Fox, Victor

Miller A.nd Joel Shwimer.

Peter By-eff
Jerry Kleinb9.um
Mark Sciora

(>

o

· " riiiHMW' 'If

()

o

Series ~nd the 1(20

The ohject of onr \:,'ork \{~S to r',r09'1"~rn t"'e rBi'/" 1620

computer to ~n!11yze number sequnDces. ~fter com~qring the

eJer:ter ... t2, of '1 given sequence, t1--,e corrrp1:i.ter determines if there

is !1 relq tion s'" ip bet~'leen the numbers. If q rel~. tionsh ip

is detected, succeeding terms in the series qre cqlculqted,

printed, q.nd/or punched on c~rds, depending upon \·Thqt the

operqtor desires.

For our purposes, it WqS necess~ry to define cert~in terms.

itle defined q sequence of nUT1bers t""l~.t "'~ s ~. definite, logic~l

relqtions"'ip between the elements of the sequence to be q

series. ~ sequence, however, we defined qS qny collection of

numbers.

Becquse of the l~rfely qlgebrqic n~ture of our work,

our progrqm very quickly becq.!!1e quite 18.rge. T1:is necessi t~ ted

our use of the 1~20 model II computer coordin~ted with the

1311 disk stor'1ge unit. For this '!i'lrpose, \~e divided the progr!1.m

into thirteen subprogrqrns qnd one mqin progr~m; eqch of the

fourteen components WqS stored sep8rqtely on the 1311 disk

storqge unit. E8.C"" component is seD~ rq tely cqlled ~lP from

stor~ge on tt"'e disk to t~~e computer to qscert~in 't-Jhet'her the

sequence in question is the series w~ich t'he component 'h~s been

progrB.mmed to recognize. If it is, then the elements of t'h~t

series, if the oper~tor so desires, ~re cqlcul~ted up to the

cqp~city of the !!1~chine. If it is not, then, throug~ use of

the C8l1 Lin!'~ st~ tement, the next component is c~lled for

~ execution.

Prob~bly the most c~qllenging p~rt of our nroject

~v~s progrq.mming tl--e computer to recognLze ~ series in vr}-'ich

t~e increments form q repe~ting pAttern. Tl--is proved

difficult not ~nly in proEr~mmine t~e computer to recognize

this tYDe of series, but ~lso in c~lcul~ting its eleme~ts

indefinitely. The following is qn excerpt from the sub~rogrq~

in ~:lhich we solved this 0!'oblem:

44· 1=2
J=1

45 IF(X(J)-X(I))46~48~46
46IF(I-(1T-1))47"jO,::50
47 1=1+1

GO TO 45
48 1K=1-1
1+9 IF(X(J+1)-X(1+1))47,50,47
50IF(I+1-(IT-1))51 ,52,80
51 J=J+1

1=1+1
GO TO 49

52 NB=IT
53 JK=HB-IK

IF(JK-IK) 55,55,54
54 NB=JK

GO TO 53
55 QQ:::D~,T,\ (IT)+X(JK)

TYPE 901
901 FORHt\T(/12HSERIES NO.2)

DO 56 I~=1, IT
56 PRI~;'T 500, D,\ T '\ (ra.)
500 FORH~T(/E14.8)

PHINT 501 ,QQ
501 FORN ~T (/E14.8)

IF(SENSE S~ITcrr 3)800,59
800 c ~IJ, Ln~K (JvI ~ IN)
59 ~F~~K-!K)Z0161,80
70 CiQ-,<Q+X(Jr+l)

pm'JC!1 ~03 QQ
.303 FORN\T(E14.8)
62 JK=J~'~+1

GO TO 59
(-,1 JK=1

QQ = (!C~ + X (J K)
PUNCt:r 304 QQ

304 FORlv1~T(E14.8)
GO TO 59

80 CttLL ID'JK(E5)
END

o

o

o

" br"""j ---- -Tli - -,-- - 2 -r nr--

In this excerpt, X re,resents the differences of the

d~t~ which h~s been re~d in. D,,\T~ represents the elements

w}.icl, h~ve been fed in. IT is ~ subscript of Dt\T~ 8.nd represents

the rel~tive position of qll the d~tq w~ich ~qs been reqd in

tot'-l.l nu.lIlber of elements in the sequence. The progr~P1 works

in the follo,tling m~nner. First, it is necess~ry to determine

vThich, if qny, of the increments m~tches the first increment

indentic811y. This is ~ccomplished by steps 44-47. If one

is found which m~tches it, the program proceeds to determine

whether the corresponding differences which sacceed t'he first

two ~re ex~ctly qlike. This is qccomplished in steps 48-51.

If this is found to be the c~.se, qll th::lt rem~ins to be done

o is to c~lculA.te tl-,e ele"'1ents of the series indefinitely.

•

The rest of the subprogrqm is devoted to this.

When it is known which increment is the s~me ~s the first,

it is ~lso known "ow m~ny increments there ::lre in the p~.ttern.

This number is then subtr~cted from tl-,e tot!:ll nU?Jlber of ter~s

in the series until the difference (remainder) is equ~l or

less th~.n the nu:nber of increments in the p~.ttern. The

remainder represents the increment in the p~ttern which must

be !:ldded to the last element of the series to produce t'he

next term. This c~n be seen in steps 52-end.

In the following p~.ges is represent~tive output for t'he

v~rious kinds of series thq t our progr~rn c~.n solve for wi t'-1

~ s~ort expl~n~tion qccompqnying each one •

MAIN 07500 02714 LOADED

ENTER NUMBER OF TERMS IN SERIES, PUSH RS
05~

ENTER ALL TERMS BY CARD, 1 TO A CARD, FLOATING PT
Al 07500 01990 LOADED

T HIS I SAN A R I T H r'il E TIC PRO G RES S ION

INPUT DATA CHECK

.23573000E+05
Representative output for our

.2 ltG71000E+05
program Which determines whether

025769000E+05
the seqnence jn question is an

. 26867000E+05
arithmetic progression •

.27965000E+05

[.. J EXT T E R 1--1

.29063000[+05

S~J 3 ON TO ENTER ,"iEU DATA

SiJ 3 OFF FOR NEXT 10 TERI',1S ON CARDS

---S-E-T-S-\-:J-3-,-P-U-S-H-S-T-A-R-T--------------------------C'-

-------------,--------------------------0-)1,

1&&. I

[Bari .. I" [. - WI -"WIT .. · .. ,.. .. "~·"I":r>~., .
'-

. ---_. --- -- ... - - _ ... _- .. _-

.----- ... - ------ _._ .. _._------
r,U\1 ~ 07500 02714 LOADED

ENTER NUMBER o F"T ERI\1S IN SERIES, PUSH RS
04~

. .. -------------.--• ENTER ALL TERt·1S BY CARD, 1 TO A CAROl FLOATING PT
--------------- - -------------AI 07500 01990 LOADED

82 07500 01986 LOADED

THIS I S A GEOf'1ETR I C PROGRESSION .---

INPUT DATA CHECK Representative output ---

• 830000G~ -:+02 for our program which determines

.65570000E+04 whether the sequence in qnestion --_.-

.51800300E+06 is a geometric progression. ------_.-

.40922237E+08

NEXT TERt,-'l

.32328567E+10 -_._.-

SVJ 3 ON TO ENTER NE~~ DATA --

S\'J 3 OFF FOR NEXT 10 TERMS ON CARDS

SET Sv'J 3 l PUSH START --------o

--

•
I <6 ')

< !

[lAIN 07500 52714 LOADED

ENTER fJUI'1B ER 0 F T EfU1S INS ER I ES, PUSH RS

ENTER ALL TERMS BY CA~D, 1 TO A CARD, FLOATING PT
Al 07500 01990 LOADED
.-...-...----~~~~~~_____.__=__a_=o;;;,._;;;:__------------------------------------

82 07500 01986 LOADED
C3 07500 02150 LOADED

SERIES NO.1

INPUT DATA CHECK Thjs js representative output

.40723240E+07 from the part of our program

.40763610E+07 which is designed to recognize

.40804000E+07 a serjes in which the inorements

• 40844410E+07 are in an arithmetic progression •

.40884840E+07

NEXT TERM

.40925290E+07

SW 3 ON TO ENTER NEW DATA

--=-~~~~~~~--~--'------
S\:J 3 OFF FOR NEXT 10 TERMS ON CARDS 0-
SET SW 3,PUSH START

~--~--------------~---- I

I

--()- "

I

I

I;

I

-------.-- . ---_._- _. -_ ..
,;,1AI N 07500 02714 LOADED

--_ .. -.-. - --

ENTER NUHBER OF TERMS IN SERIES, PUSH RS
08~

. ---,.----... ---.~-.---.. -. -- _ _ . -.-' .

• ENTER ALL TERflS BY CArH2~_ 1 TO A CARD l F LOA T I r~G I)T
-.-.- _.- .. _------- - -- - - -

Al 07500 01990 LOADED
E12 07500 01986 LOADED

... _-_ .. _- .. _-. __ ._-_._--_.- -- ... _._--_ .. _----
C3 07500 02150 LOADED
04 57500 02926 LOADED

SERIES NO. 2 _ _-_ ...•.. - .- _ .. _----

INPUT DATA CHECK Series No. 2 is the type --_._. __ ._--.- .".---

.58720000E+04 of series in which the

• 60440000E+Ol~ increments form 9- repe9.ting

.86700000E+04 pattern

.86870000E+04

.88590000E+04

.11485000E+05
--

.11502000E+05

.11674000E+05 --

0 NEXT TERM --

.14300000E+05

3\'J 3 ON TO ENTER NE~-J DATA

SH 3 OFF FOR NEXT 10 TERf'.-1S ON CARDS

SET S~'J 3, PUSH START

•
Iq/ ----

I

------.--------.. -.---..... ------.---.--.-~~~~~~.

;'lAlfJ 0750002714 LOADED

ENTER NUMBER OF TERMS IN SERIES, PUSH RS
05~

ENTER ALL TERt,1S BY CARD, 1 TO A CARD, FLOATING PT
AJ. 07500 01990 QJADED
B2 07500 01986 LOADED
C3 07500 02150 LOADED
04 07500 02926 LOADED
E5 07500 02150 LOADED

SERIES NO.3

INPUT DATA CHECK

.87000000E+02
In tbi S type of SAri as ,_

.60900000E+03
the factors form an

• G0900000E+04
arithmetic progression .

---=-=-=--=--:=--=-==--=-:::::---:::--=------------------------_. __ ._-- -_._--
• 7 9 1 7 0 0 0 0 E +0 5

.12667200E+07

NEXT TERt!1
----------------------------_. __ .. -.. _. __ ._. __ ._ ... _---

• 2l~067680E+08

S~'J 3 ON TO ENTER NEH DATA --.-.-- --------0··-
SU 3 OFF FOR NEXT 10 TERrAS ON CARDS

SET SW 3,PUSH START
---------------------------------- ---.-.-------

- I

---_ .. __ ._ .. __ ..

--4CL I

II - '.---nMP'- - --

--

[':lAI N 07500 02714 LOADED

o --
ENTER NUr·1BER OF TERMS IN SERI ES , PUSH RS
08 ~

ENTER ALL TERt'lS BY CARD, 1 TO A CARD, FLOATING PT
Al 07500 01990 LOADED
B2 07500 01986 LOADED ---------
C3 07500 02150 LOADED
04 57500 02926 LOADED

-"----E5 07500 02150 LOADED
F6 07500 52584 LOADED

SERIES NO. 4 -------_._--

INPUT DATA CHECK This series is much-like --

.53000000E+02 Series No,2 except that

.31800000E+03 in this cas~ jt j s tne ----- .. -

.l}1340000E+04 factors that form a ._-_._--.-.

.28938000E+05 repeating pattern,

.17362800E+06 ----

() .22571640E+07 --

.15800148E+08

.94800888E+08 -----

NEXT TERM -_.- ._- "--_._--

.12324115E+10

S\:.J 3 ON TO ENTER NE\~ DATA ------

S\tJ 3 OFF FOR NEXT 10 TERfv1S ON CARDS -----------

SET SH 3, PUSH START

--_._------ -- ..• -- -

.. __ ._--•. _-_ .. _--- •..

------. __ .-._-------_

-------, --_ .. _----• --_ .. _-,

--_ .•. _- -". _._---_. __ ._--_._-_ ...•

I Cf 3
---.- .----------.

MAIN 07500 52714 LOADED

ENTER NUMBER OF TERMS IN SERIES, PUSH RS
-C1 07 ~

---=-E..-o-N T~E R:-' -A...-;L;--;L,..---,.;T E R,....t,1 S:-----=B-.-.Y ··~C=-=Ac-=Rc-=D-,-----=-I-=T=-O -A-~C"..-A:---:R==-=D::-,-----=F::-:-L-,::O~A--=T:-:-I--:-:N-=G---=P=-T------------·---
Al 07500 51990 LOADED
B2 07500 0198& LOADED
C3 07500 02150 LOADED
D4 07500 02926 LOADED
E5 07500 02150 LOADED
F6 07500 02584 LOADED
G7 07500 05130 LOADED
H8 07500 05050 LOADED

SERIES NO.5

INPUT DATA CHECK

.17830000E+04
Series No.5 1S a series

in WhiCh the jncrements
.19390000E+04

__ ----,=---=--o~~............-;;;-----...;:-.---_------~f~o.L..rml,...J..l..L.-cau..nL-Oal....J.r.....&.i-'"t!..!-lh..L.Um.w.e...l,Lt j cl.oL....-...:pt-L-r~o~g~r~e s.u.s :i...!o,;ou..JnL..........._ ___ . _____ .
• 18400000E+04

.20060000E+04

• 19070000E+04

.20830000E+04

.19840000E+04

NEXT TERM

.21700000E+04

SW 3 ON TO ENTER NEW DATA

which is separated by a

constant every other term •

Note: The programs which -----0
identify Series No.6-8 are

at present heing rewrjtten

and for that reason no representq.t-.L-i'-¥-'Te~

data for those programs is

ready for inclusion at this time.
SW 3 OFF FOR NEXT 10 TERMS ON CARDS

SET SW 3,PUSH START

o
------------------------:--------~-.--.---- ... _ .. _ .. _----_._ _ ... -

...... ___ 1_ t:t .. 't __ . ___ . i~

'

11,,1 I:

I'

•

o

•

A COMPUTER SURVEY OF PROFESSIONAL SALARIES

1620 USERS GROUP MEETING

OCTOBEH 7, 1965

AMERICANA HOTEL, N11N YORK CITY

William J. Abnett
Sun Oil Company

Rese~ch and Engineering Department
Philadelphia, Pennsylvania

A COMPUTER SURVEY OF PROFESSIONAL SALARIES

ABSTRACT

A Computer method of assembling, tabulating, and graphically
presenting salary data is discussed.

The salary data of professional employees within a single organ
ization or among several organizations is collected and assembled.

Within logical groupings of employees certain percentiles and
averages are calculated for each year starting with the oldest
employee and continuing until the most recento

A mathematical curve of the form y = A + Bx = Cx2 + Dx3 is
statistically fitted using the least squares technique for each per
centile for each group of employeeso

Letting the ttyU axis represent dollars and the "XU axis, the year
since the employee's first degree, the various percentiles are machine
plotted for each group.

The tabulated data consists of the following for each year since
the first degree:

1. Actual Salaries by percentiles
2. Least Squares Salaries by percentiles
3. Average Salary

o

o

o
:~

1

•

()

o

Introduction

A COMPUTER SURVEY OF PROFESSIONAL SALARIES
1620 USERS GROUP lVIEETING

OCTOBER 7, 1965

In this paper are discussed computer techniques of assembling,
calculating percentiles, tabulating and graphically presenting
professional employee salary data using an IBM 1620 Model II computer
and an IBM 1627 Model I Plotter. The techniques have resulted from
our experiences in executing both multi-company and our own internal
Research and Engineering Department salary surveys.

A salary survey is of general interest to management, employees,
economists, cost analysts, salary administrators, trade and professional
associations and others. Managers may use a salary survey, along with
other tools as a guide in hiring employees, compensating employees,
and determining whether or not base salaries are competitive.

The discussion which follows is generally limited to the treating,
handling, and obtaining of results. We will comment only briefly on the
analysis of the end product.

Professional Salaries

Although at this time we are interested in professional salaries
the techniques which follow may, with slight modifications, be used
for skilled labor, semi-professionals and management personnel.

A continuing discussion and disagreement exists as to the
definition of a professional employee. For our purposes we shall
assume that professional means an employee possessing a baccalaureate
degree, recognizing that some non-degreed people are professional in
the widest meaning of the word.

In any salary survey the population must be clearly defined. The
population, for the purpose of this paper includes Research and Engin
eering technical professional employees - engineers, chemists,
mathematicians, etc. - up to some predetermined level of supervision.

The Variables

There are at least two choices for the unit of compensation:

1. Yearly salary

2. Monthly salary

{C1 7

.----.- ... ------..• --.. --.....•. ".-.~~~-~~.

- 2 -

As a side note some professional salar,y surveys report both base
salary and total professional income. l

We have used the monthly salary and have limited this figure to
the nearest whole dollar. From a computer standpoint a yearly salary
base would. require larger fields to handle the correspondingly larger
data ranges. Monthly salary then is the dependent variable and,
ultimately, will be plotted along the Y-axis.

For our independent variable, which we will later plot along the
X-axis, we wish to show a time unit and we might choose:

1. Years of experience

2. Chronological age

3. Years since degree

If the third item is taken and modified slightly to Years Since
First Degrje the analyst will then be able to compare those wit-h-
Master and or Doctor degrees with those holding singular Bachelor
degrees.

Raw Data

Now having defined the variables, the raw data must be collected.
At this point, it may be well to emphasiz.e that the data are extremely
confidential and should be treated accordingly~ Individuals are known
only by year of graduation and type of final degree. The data may be
available directly from the company personnel records or, in the case
of a survey including other companies, it may be necessary to prepare
a questionnaire o For our purposes, all that is necessary for each
individual in addition to his organization2 identification is:

1. Year of first degree

1 See for example: Business Econornist's Salary Survey
(National Association of Business Economists, 1964)

2 The organization may be a company, division, department or any other
group.

'\
i C

->

o

o

i··· ·m .. ···n ... - ·_··r"

o

()

o

- 3 -

2. Salary, dollars per month

3. Highest degree attained3

It may be somewhat obvious by this time that the raw data may be
sorted for further processing using, but not limited to, any of the
following parameters:

1. C ompany and/or group

2. Effective year of data; that is, this year and last year.

3. Degree

4. Professional discipline

Different colors may be used for the internally punched cards
representing each group of raw data, making it easy to spot any cards
out of order.

Moving Averages

In developing various salary surveYffi it sometimes becomes
necessary to handle small quantities of data and/or data for which the
distribution - on a year by year basis - is something less than
desireable.

The familiar moving average statistical techniquel 1tJhich, as you
may recall is a statistical method generally used for smoothing
seasonal data, may be used in thes.e cases of limited data.

In applying the moving average technique a span of years or
increments must be determined. If the data set is sufficiently
large and all years represented, then the span of years may be set
equal to unity and the survey executed without resorting to this
technique. Before the computer was available hand calculations had
been made to determine an optimum span. These lengthly hand calculations
were abandoned after the trial reached a span of 5 years.

With the computer we were able, in a small fraction of the t~me

3 See Figure 2

4 See, for example, Chapter 11, Page 322, "The Analysis of Time Series,
Measurement of Seasonal Fluctuations, Hoving Averages. tt Introduction to
Statistics, Frederick C. :Mills, Henry Holt and Company, 19560

- 4. -

required manually to enter the increment as a variable and try
several sets of data each time increasing the increment from 2 to
8 years. From observations of the plotted data there appeared to
be no reason not to use the originally determined 5 year increment.

Percentile Finder

From the raw data the user selects the data cards according to
the group he desires and proceeds through a series of sub-programs,
(See Figure 1) the first of which l-Je term the Percentile Findero

This sub-program reads the raw data representing the salaries of
individuals, the starting year, the increment in years and the last
year.

The program begins at the starting year, adds to this year the
increment in years and selects from the raw data all data points
(records) that fal~ within this range of years and places these into
temporary storag8.5

Referring to Figure 4. the data are sorted into ascending order
of salaries starting with the first block in the temporary storage
area. This is compared with the data in the second block and if the
first is lower chan the second, the first is then compared with the
third, fourth~ etco until the entire used area of the temporary
storage matrix is exhausted.

If the second value is lower than the first, the first and
second values are interchanged so that the second value (being lower)
is now in the place of the first and the comparisons above are con
tinuedo 'When the first block has been compared with the entire used
matrix it has the lowest value in the used dimension area. The
program then advances to the second block and repeats the entire
process, switching higher and lower values as necessary. The
program continues with the remaining blocks until the used area
is completed. After the s orting the program then does one of the
following:

1. More than 14 observations:

a. Determines the 10, 25, 50, 75 and 90 percentile
salaries. This program is flexible so that the
5, 25, 50, 75 and 95 percentiles could be used.

b. Determines the average salary.

os See Figure 3.

o

o

o

o

o

•

to .. Hs£ec ... y. __ .m_ .. - q Wjf'

- 5 -

2. Less than 1, but more than 4 observations:

a. Determines the 25, 50, 75 salary percentiles.

b. Determines the average salary.

30 Less than five observations:

a. Determines the average salary.

The starting year is automatically increased by a single year, the
pertinent data internally sele~ted, sorted, and calculated. This entire
procedure is repeated until the upper year of the time interval to be
processed exceeds the last year to be processed.

Sorting Percentile Finder Output

It is desireable to maintain the percentile finder output data deck
intact inasmuch as it is used as input for later subprograms. To obtain
input for the cubic equation fitting program, which follows another
short program was written which reads the percentile finder output and
if the input is part of the la, 2" 50, 75, 90 percentile of the group
being run a new card is p~ched. These newly punched cards for each
group are then machine sorted into la, 25, 50, 75, 90 percentiies for
input to the cubic equation fitting program.

Cubic Equation Fitting

The cubic equation fitting subprogram reads the sorted individual
percentile output from the percentile finder and determines the cubic
equati9n of the form below which best fits the data using the Gauss
Jordanb reduction scheme.

Y = K + A + Bx2 + Cx3

For each rnoving average group of years, X, the program calculates

6 This is a matrix solving system discussed in several mathematics books;
for instance, on Page 16" Linear Algebra by G. Hadley of the Addison
Wesley Publishing Co., Reading, Masso, 1961. Perhaps one of the
clearest may be found as a complete example starting on Page 59 of
the book, Linear Programming and Theo~ of Games (paperback),
A. M. Glicksman, John Wiley & Sons, Inc., 1963 •

;;;"'0 I

- 6 -

Y and reports the calculated observed Y values. Finally, the sum of
squares of the deviations is given and the number of weighted
observations (N).

The user selects a minimum number of observation points for a
given year. If this minimum is not reached that year is disregardedo
Any year having more than the minimum number of observation points
is automatically weighted N times where: N = Number of observation points

Minimum number of points
and N is truncated to an integer.

Tabulated Data

Two tables may be printed from the calculated data, one of which
is a typical company survey shown on Table I.

This shows for each year since the Bachelor Degree, the number of
people in the ygar,7 the 10, 25, 50, 75, and 90 percentiles and the
avera.ge salary.

The second table, which we call the Survey List, is shown on Table II
and for each group and for each year compares the actual percentiles and
the least squares percentiles. This ~rovides the analyst with an
opportunity to note the deviations of the actual data from the least
squares data for each year o

The Plot

After the raw data have been sorted, merged, percentiles cal
culated, and equations developed to represent these percentiles,
the results may be presented graphically using the computer and plotter.

It may be helpful to refer to the attached Figure 5 as we go through
the following discussion.

Already the x-axis, years since the Bachelor Degree, has been
decided upon, as has the y-axis, monthly salary in dollars.

,
7 In a moving average survey and a span of one year this is: the actual

number of pe ople in the year. If the span is larger than one year,
the number of persons includes people who are in more than one
calendar year.

8 If the distribution is symmetrical, the 50th percentile will equal the
average salary. Most data sets (years) are skewed; consequently, the
50th percentile frequently differs from the average salar,y.

o

o

o ~I
I

I

d H - flnl"

o

o

- 7 -

The x-axis should extend from 0 years up to, say, 45 years. With
the salaries of today we could place lower and upper limits. Inasmuch
as new college technical recruits usually receive in excess of $600
a month, $500 seems a good lower limit. It is possible to have data
points below this arbitrarily selected limit. For instance, a lady
BS chemist returns to work in the technical library as a literature
searcher after an absence of several years and is hired at, say,
$400 a month.

For the upper limit $2000 a month will cover nearly all technical
salaries. However the bright middle-aged chemist who discovers a new
product that becomes the chief source of revenue for the chemical
company may be compensated beyond that level.

Sometimes individual data points are encountered which fall outside
the selected range of $500 to $2000. Obviously these points should
be bypassed and not plotted.

Before plotting the percentiles we should bear in mind that the
percentiles will be a pure mathematical fit. Typically, curves are
steep in the early years, ascend less steeply, reach a plateau, and,
in some cases, fall mr slightly in the higher years. We have found
that if the percentile curves start from year 0 the respective
percentiles may be switched; that is, at year 1 or 2 the 10th
percentile may be greater than the 90th percentile. This is
difficult to explain to the personnel TnaJl who usually is not mathe
matically inclined. For this reason we start plotting the data at
about the 5th or 6th year. Generally, we do not carry the data much
beyond the 25th year.

We have found that not all years will have sufficient data for the
10th and 90th percentiles. Further the true mathematical curve for
these percentiles, when plotted, frequently goes off the page. To
avoid this we stop the plots of the 10th and 90th percentiles far
short of the other percentiles.

Using this same background grid we have the option within the
program of superimposing another set of percentiles which might
represent another industr,r or as indicated on our title note a
previous year 0

The two sets of percentile curves may be used to compare salary
schedules between companies, industries, or the increase of salaries
from year to year 0 Another option wi thin this program is to plot on
the same grid the individual data points; that is, the individual
salaries.

This serves several useful purposes. First, industry percentile
curves may be plotted vs the individual company percentile curves
follow~d by- the individual salaries of all professionals wi thin that company

- 8 -

From this configuration the analyst may observe where there is close
agreement between industry and company schedules and additionally if
this agreement is consistent over the entire range of ageso

Second, this type of plot enables management to observe the age
distribution of employeeso

Third, the detailed plotting of points enables the analyst to
ascertain whether or not the percentile curves are unduly influenced
by a particular age group. For instance, perhaps the company under
vJent a maj or expansion 25 years ago and hired more than the usual
quota of starting young engineers. Without the individual plotted
points this aberration would go unnoticed.

The Future

Because of our computer configuration and core storage limitations
the past salary surveys have been run as individual sub-programs requiring
considerable manual card handling and machine sorting.

Each individual piece of data may be used several times, for instance,
a BS may be included in each of the following groups:

Company - BS
BS - NS
BS - MS - PH.D.

Industry - BS
BS - MS
BS - 1'18 - PH.D.

Total - BS
BS - MS
BS - MS - PH.D.

Now that our IBM 1620 Model II computer includes a disk drive we
hope that we can eliminate much of tl1e individual manual card handling,
beyond the raw data stage.

Probably we will collect the raw data much the same as we have in
the past, storing same on disks.

At the start of each group the group code number would be used to
select the appropriate raw data and transfer it from disk to core
storage.

For each group of data the five percentiles could be calculated in
a manner similar to the present sub-programs. The output could be

o

o

o

IL,'t'wt'rrrwtlt T- t

l'I'HdHr+r'rlie'.=.kfN*'b±'tt""I!"f"t' ttl' !I'll II"I"!, urt""t£ , , t Itt $ t t"t tthri"" t tbiri*rl - "biz*#"[·r _ .. .,..". ·""mllJ",,""; " Un -?

o

o

o

- 9 -

punched on cards primarily for checking purposes and also stored on
another part of the disk.

A precautionary measure is to collect output regularly and per
iodically so that the operator may know where he is and, in the
unfortunate happenstance of machine failure, all is not lost, but
may be resumed from the point of last output. The percentile output
could be retrieved from the disk storage to become input to the cubic
finder sub-program. Several independent counters would have to be
maintained as data are placed on or recovered from the disk. These
counters become partial input to following programs, for instance,
the weighting factor in cubic equation finder sub-program.

The Company List Program and the Survey List Program could be
executed using as input data from earlier programs that had been
stored on the disk. The plotting program may be run from data
previously stored on the disk and in series with the other sub
programs.

Lapses in time between successive runs on the plotter may be
sufficiently long to permit drying of the pen. In this case con
siderable time may be lost in priming the pen for each new chart.

As an ~ternative all the plotter sub-program input which is
already on the disk could be punched on cards and set aside. Some
time later all the charts could be plotted, one directly after the
other.

It is hoped that converting to a disk operation may reduce
operating time for a large job from a number of weeks to a number
of dayso

Finally, we hope to expand our raw data to include additional
parameters from which we may obtain more meaningful statistical
ini ormati on 0 ~

I

10

I

I

RETURN rOR
NEXT GROUP

I

2S 50

1

I

Dr DATA ~/ __ ---'
'"

START

COLLECT AND kEY PUNCH
RAW DATA

SORT RNO GROUP
RAW DATA

rIND PERCENTILES

I I

15 90 , I
rIND

'~-----"""""" ---~

o

CUSIC EQUATION

I J 0
CO"PANY LIST

SURVEY/ lIST

PLOT PERCENTILES

ft CO"PUTER SURVEYOr PRorESSIONAl SALARIES
WILLIA" J. ABNETT

rIGURE 1

o

I

!!I,,' ts r !, t r r

o

tl Ittt t

Card Column

«$$ H M tt ##1s6 #t±rtiWrhtitlttti# ** -]n'J _. r'" - "nr---

A COMPUTER SURVEY OF PROFESSIONAL SALARIES
1620 USERS GROUP MEETING

SEPTEMBER, 196,

Card Fonnat - Raw Data

1 to $ The group code number usually right justified. In these
columns, two columns may be used to identify the effective
date; that is, the year of the raw data. Two digits may
be used to identify the company or group. Obviously, the
code number may be used to sort and/or collate any combin
ation of groups for further processing.

6 to 8 Blank

9, 10 The last two years of the year in which the individual
records his first academic degree.

11 to 18 Blank

19 to 2$ The monthly salary of the individual. with the decimal point
in card column 23.

26 to 29 Blank

30 The degree code:

1. Bachelor
2. Master
3. Doctor

If the survey size is sufficien~ large and a finer stratification
or grouping of individuals is desired, card columns 28 and 29 mq be used
to note individual. disciplines.

F1.gure2

A COMPUTER SURVEY OF PROFESSIONAL SALARIES
1620 USERS GROUP MEETING

SEPl'EMBER, 1965

Dimensioned Areas

I. Read in Raw Data
Year SalarY

+++ :.+'.+ " + + + +
+ +:.+ + , + + + +

+ + + + + + + +

+ + + + + + + +
+ + + + + + + +
+ + + + + + + +

+ + + + + ... + +
+ + + + + + + + -0

Q)
(Il

+ + + + + + + + :::;,

+ + + + + + + +
+ + + + + + + +

+ + + + + + + +
+ + + +. + + + +
+ + + + + + + +

+ + + + + + + +

250

II. Temporary Storage Area

Year Salary

.r

1 + + + + + + + + . ~

+ +, + + + + + +

+ + + + . + + + +

+ + + + . + + + + -0
Q)
(Il

+ + + + + + + + ~

+ + + + + + + +

+ + + + , + + + + t

80

Figure 3

o

I

Q)
...-i
.g
...-i

1d
~

0

·t

~

Q)

...-i .g

...-i
o@

!i

I

W""j""" If!!!

o

o

o

- - lIT" -:: WITn:-- T

A CONPUrrER SURVEY OF PROFESSIONAL SALARIES
1620 USERS GROUP HEETING

SEPTEMBSE, 1965

Sorting Procedure
in

Temporary Jtorage Area

Step I II (Start) III IV
Blook;tJ.] 400 I ~---- r3Q()"1 WQ.U L. __ JQL~

21 50~ , 500 ~... l 400 I :----4QO---
3~____ f--§SlQ--; - §OO " .. --- r'oo 1
4~ 700__ r-----IOO _j ~QQ_--J _ 700 ; .. -
51 800; : 800; ! 800 j ; 800 ~ 61 300: r--Too--r 500! I 600 I

t I ~ .--.----- -... ... '--'-'--'-

71 1000 L l~ ; 1000 1 i lOOO.~

(Start)
Step V VI IV!'!

Block lEE ,300_---: . 300

7L!~ 1000 ! .. ~ •.• : .- - •

(Finish)

~I 'i~ i
) ,.JJ() :
~'-:---1 41 C<XI :1

Sr--;~;;~ (
t6~1::)
7~if!5}--J ~.-. __ --.J

Figure 4

U)
ex
a:
..J

2000

1900

1800

1700

1600

1500

1 .. 00

El1300
c
>ex
51200
a:
U)

>-
E 1100
z
c
z;

1000

900

800

700

600

CONrIDENTIAl

~

IS
1~ 65 SOLI

/
II
II
~
/'

CHRRT NO. 77
R COHPUTER SURVEyor PRorESSIONAL SALARIES

1620 USERS GROUP HEETING
....

BS- itS-PHD JEGREES
65 SRlA ~y PERC -HTIlE (URVES
D LINES 196 .. DASHED LINES

7~

/
",-

/' ./"
,so \

V :/ rD/ /

V/ V .-25 PE~ CENTIlES
~

/ /
~

'/
;10

\

,I !t 1) 1-» 2) 2!. au a. 'tIl ItS
SOD

YEARS SINCE BACHELORS DEGREE

nGUBB ~

~/D

o

o

o

o

•

" h "" " er"]["··r" 're

A COMPUTER SURVEY OF PROFESSIONAL SALARIES
1620 USERS GROUP MEETINGS

SEPTEMBER. 1965

TAB~E-COMPANY SURVEY

ACTUAL PERCENTILE AND AVERAGE SALARIES
A COMPUTER SURVEY OF PROFESSIONAL SALARIES

YEARS
SINCE NUMBER ACTUAL PERCENTILES
DEGREE PERSONS 10 25 50 7~ 90

AVERAGE
SALARY

3.5
4.5
5.5
6.5
7.5

25
30
46
54
58

8.5 59
9.5 69

to.5 78
11.5 75
12.5 75
13.5 77
14.5 76
15.5 70
16.5 59
17.5 50
18.5
19.5
20.5

44
37
33

21.5 27
22.5 29
23.5 27
24.5 24
25.5 25
26.5 22
27.5 22
28.5 18
29.5 19
30.5 21
31.5 21
32.5
33.5
34.5
35.5
36.5
37.5

22
20
19
19
18
14

700 710 775 842 855

1045 1125 1362 1666 1717

TABLE I

778

•
•
•

•
•
•

1384

·:'='~;"'.;;';';":i ~.

A COMPUTER SURVEY OF PROFESSIONAL SALARIES
1620 USERS GROUP MEETINGS

SEPTEMBER,· 1965

TABLE-SURVEY LIST ()
ACTUAL AND LEAST SQUARES PERCENTILE SALARIES

A COMPUTER SURVEY OF PROFESSIONAL SALARIES

I YEARS
I SINCE NUMBER ACTUAL PERCENTILES LEAST SQUARE PERCENTILES
! DEGR!:E PERSONS 10 25 eo 75 90 10 25 !SO 75 90
I

3.5 25 700 710 775 842 855 665 712 760 805 917
4.5 30 •
5.5 46 •
6.5 54 •
7.5 58
8.5 59
9.5 69

10.5 78
11.5 75
12.5 75
13.5 77
14.5 76
15.5 70
16.5 59
17.5 50
18.5 44

0 19.5 37
20.5 33
21.5 27
22.5 29
23.5 27
24.5 24
25.5 25
26.5 22
27.5 22
28.5 J8
29.5 19
30.5 21
31.5 21
32.5 22
33.5 20 •
34.5 19 •
35.5 19 •
36.5 18 953 1060 1425 1695 1705 917 1026 1344 1658 1697

TABLE I J

_I' ' t . t·· 'IlL"' ! t $ d HrtS "'W···y""·"j··Tfj"""(i·-T"F""··PlWlt .

INTERACTION IN 2-WAY ANALYSIS OF VARIANCE
WITH SINGLE REPLICATION

Carol, B. and DeLegall, W.
Computer Center
New York Medical College

The availability of standard statistical packages makes it

possible for the user, particularly the layman, to process data

with a seeming ability to extract desired statistical information

from the computer. This procedure commendable as it is in popularizing

the role of mathematics and probability in the evaluation of data is

frought with danger owing to the lack of sophistication on the part

of the user. It is not enough to ask for an analysis of variance

with as many factors as there are in the design. Other questions

must be asked such as, is the data nonorthogonal? Is it a fixed or

a random design? Is it mixed? Are factors nested in other ones?

Is it partially nested and crossed? What assumption can be made about

the data? Can interactions be assumed to be a certain function of main

effects? Answers to these questions distinguish the professional

statistician from the lay user.

In response to the needs of expert handling of such problems,

various supplementary programs are required to support the main body

of packaged procedures available to the user. An example of this is

a program that can test for interactions in a 2-way design with single

replication with the assumption that interactions can be expressed as

quadratic functions of main effects. This assumption is frequently

~ reasonable.

~/3

-2-

We feel a full complement of suen programs would round out the

professional use of computers for analysis of variance as well as

other branches of mathematical statistics.

Attached is a description of a Fortran program to make this

test. The documentation will be submitted to the 1620 Users Group

Library.

TITLE:

SUBJECT
CLASSIFICATION:

AUTHOR:

ORGANIZATION:

DATE:

USERS GROUP
MEMBERSHIP CODE:

Sum of Squares Due to Interactions
Restricted to Quadratic Functions
of 2 Main Effects, Single Replication.

statistical

Bernard Carol and Walter DeLegall

Computer Center, New York Medical College

April 19, 1965

1359

DIRECT INQUIRIES TO: walter DeLegall

DESCRIPTION/
PURPOSE:

MATHE. METHOD:

This program can be very useful in those cases
in a 2-way design with single replication where
one wishes to test for interactions assuming
that interactions can be expressed as quadratic
functions of main effects.

The test is:

F=(N-I-J) SSG

SSres

.'1

o

-3-

Where N=total no. of observations
I=no. of levels in first factor

4C) J=no. of levels in second factor

o

•

~ s>z? ("i.j ~ v. _ v. + y) l.
14 {£, /'J I' ·

/\ -:t = j~. - '!
G = y.~ -J
y. =mean of ith level of first factor
Y~;=mean of jth level of second factor
Y ij:=observation in cell ofi th level of first factor

and the jth of the second factor.

This statistic is compared to Fl,N-I-J.. SSG is calculated on the
computer ..

SSG is the sum of squares due to the hypothesis that interactions

are zero subject to the restriction of being quadratic functions of main

effects. The computer calculates SSG·

RESTRICTIONS/ N/A
RANGE:

SOURCE LANGUAGE: Fortran

MACHINE 1620 Mod. I 20K memory, no special features
CONFIGURATION:

EXECUTION TIME: Unavailable.

"~~-~----------............. ~---,.-.---.---.,-~ ... '''.~---,,~~~~~~~~~~---------

PROGRAM
OPERATION:

BIBLIOGRAPHY:

-4-

The program was written to utilize the punched"

output of means from the Harkins Analysis ,of Variance ~

Program 6.0.014. However, any program which produces

the corrected sums of squares for the first and second

factors, the grand mean, the mean of the ith level of

the first factor and of the jth level of the second

factor and the value of the observation in the cell

of the ith level of the first factor and the jth

level of the second factor for all i and j can be

used to supply the input data.

The computer center program requires that the

values for the grand mean, Y. j , and Yi. (after

sorting on subscript from right to left) be read

in from cards along with the corrected sums of

squares. The output is printed on typewriter

and is self-explanatory. The last printed line

is the sum of squares of interaction restricted

to be quadratic functions of main effects.

Scheffe, H. Analysis of Variance, Wiley, N.Y., 1958.
Ch. 4.

o

o

•

o

•

DECTRAN

A Decision Table Language Translator

Presented By

Robert P. Bair
Elliott Company
Division of Carrier Corporation
Jeannette, Pennsylvania

1620 Users Group

Eastern and Midwestern Joint Meeting

Americana Hotel

New York City

October 7, 1965

DECTRAN is an acronym for DECision table TRANs"lator. It
presents a new algorithm for decoding a decision table language
into FORTRAN and extends the instruction repertory of the table
oriented language. Writing a group of decisions as a decision
table is about as easy as creating a flow chart for the same prob
lem. Any similarities or differences between the operations for
different conditions can be easily seen due to the parallel

'structure of a table. Once it is formed, a decision table may be
understood by your boss, your wife, and the crowd at the lunch
table. A decision table program is also easier to revise, and
document.

However,tables are two-dimensional, and the FORTRAN output is
one-dimensional with all statements in a single line. Thus, the
main function of DECTRAN is reducing a table to a single list of
instructions.

The advantages of decision tables may be seen by considering
the example in Figure 1. Here, in table form. are the necessary
decisions for the difficult task of distinguishing between elephants,
giraffes, and women. Before I explain this tricky problem, let me
point out the form of the table. It is divided horizontally into
two sections - the conditions and the actions. Each of these are

01

divided into a stub and entries. The entries are subdivided into (i
rules, of which this table has three. The function of the
condition statements is to choose the first rule in which all of
the entries are satisfied. The action statements then perform only
those operations which are specified for that rule.

Any blank entries under a rule for some condition are considered
indifferent, or "don't care", and tle rule is determined without
testing that condition. Thus, rule 3 can be satisfied regardless
of the length of the nose.

Three different types of conditional statements are shown in
the example. In the second conditional statement, both quantities
to be considered and the relations between them are all given in
the stub. The entries indicate that for rule 1 the relation must be
true (T or Y) and that for rule 2 the relations must be false (F or N).
Rule 3 is indifferent. This type of statement is called limited -
entry because the entries are limited to the three possible values:
Yes or True, No or False, and Indifferent.

o

o

o

•

Page 2

The other two conditional statements in the example are in the
extended - entry form. The quantities or relations change from one
rule to the next and the values desired for each rule are simply
used as entries. In the first conditional statement, the relation
between the first quantity and the second is fixed, but the second
quantity changes from rule to rule. In the third conditional state
ment, the only thing in common between the rules is the first quantity,
which must always be in the stub. Its relation to some other quantity
is specified in each entry. In either case, if the relation is true,
the entry involved is satisfied.

All the entries in one rule must be satisfied for that rule to
be chosen. In case of a tie when two rules fit simultaneously, the
one closer to the stub wins. It is assumed that the rules are
written in decreasing frequency of occurance from rule 1 to the
right. The order of conditions is unimportant.

The example assumes that out of the entire kingdom, the only
remaining choices for the unknown animal species are giraffe,
elephant, and woman. A much larger table would be required to pick
these three out of all the possible animals. Each rule in the
entries of the conditional statements contains the criteria for one
animal. Following the first rule, if the animal has 4 legs, and a
nose over 36 inches long, and a neck not longer than 40 inches, it
must be an elephant. On the other hand, if it has the same number
of legs, but its nose is not longer than 36 inches and its neck is
over 40, it is labeled a giraffe. But if it has only 2 legs, it
must be a woman. This definition is very liberal, but it is
sufficient when one considers the opposition.

Once a rule has been chosen, all the actions specified for that
rule are executed in order. Only three actions are given here, but
that number could be increased and many other types of operations may
be performed.

Having satisfied ourselves that the decisions are sufficient,
the table must now be coded for DECTRA~. Several decisions must be
made about the form of the statement. Separation of the stub from
the entries may be done in two ways - either by starting the entries
in a special location on the card, such as card column 35, or by
putting a special character between the two parts. In order to make
the input format as flexible as possible, I have chosen to use the
latter method and insert a dollar sign ($) at the end of the stub.
The entries could be separated from each other by a specified number
of columns, but again, in the interest of flexibility, I have chosen
to use a comma to allow for different length entries •

Page 3

Condition statements can be distinguished from action statements by o.
specifying that they must start with the key work 11 IF" • Replacement
statement~could also be ident~fied by a starting key word, but this
is unnecessary since its unique equal sign serves this purpose.

The mathematical symbols for less than «) and greater than (»
will have to be replaced since they are not included in the FORTRAN
character set. The symbols to be used for these relational operators
are shown in Figure 2. The equal sign must also be replaced by a
symbol so that it may be reserved for replacement statements. After
variable names have been assigned to the quantities involved, our
original table appears as in Figure 3. Figure 4 is the DECTRAN
coding form on which the statements may be coded.

Once the conditional statements are all together in a block, they
must be examined and translated into the most efficient sequence of
FORTRAN IF statements. First, all decisions must be reduced to the
binary ~rue - False form of the limited entry statement, which
involves simplifying all of the extended-entry statements. Figure 5
shows how this is done by making a new statement out of the stub and
each different entry. The new entries are formed so that any Y
result determines a rule, and N results continue the testing.

In this statement, as in most decision tables, it is possible ~
for the quantities to take values for which none of the entries are
satisfied. If this happens, DECTRAN prints a message and branches to
MONITOR. To form a rule which is satisfied only when all the others
are not, an "elsen entry (which consists of an at sign (@) so as to
not be confused with variables) may be used. This rule must be the
last rule in the statement so that it follows the testing of all the
previous entries. Figure 6 shows that an "else" entry causes a rule
of all "Nil entries to be formed in the limited-entry equivalent.
Notice also that an indifferent entry is carried through the
equivalent. An else entry is only to be used with extended-entry
conditional statements. In limited-entry tables, it is just as easy
and more logical to write N instead.

The example, now converted to all limited-entry conditional
statements, appears in Figure 7. There are many different sequences
of instructions which would make these decisions, and some require
more branch points or compares than others. The problem then, is to
determine a sequence of instructions with the fewest number of branch
points, and develop some notation to express this sequence so that
it may be stored. The entries from the conditional statements are
considered by themselves, and Figure 8 shows how these entries are
stored in memory in a matrix. (>

o

o

•

Page 4

Two additional areas in memory are required. One is a mask
which has a number of digits equal to the number of conditions.
The second is a copy of the entry table which is modified by the
mask. Initially the mask is set to all zeros. It is compared
digit by digit with one of the rules in the original table, and the
copy entry table is formed. See Figure 9 for the digit that is
placed in the copy as a function of the digits in the mask and
original. If a conflict is encountered, the rule in process in the
copy is marked "non-existent" and it goes on to the next rule.

When the table is finished, the copied table is examined and
the "best" condition to be used in the next compare is found. This
condition is determined by using the following three steps:

Step 1.

Step 2.

Step 3.

Choose that condition with the least number of
indifferent entries.

If step 1 results. in a tie, substitute

o for I

-1 for N

1 for Y

and add each row. Choose the condition whose sum
has the highest absolute value.

If rule 2 results in a tie, choose the first
condition among those tied.

Looking at Figure 8, conditions land 4 are tied at 0 afte~
step 1. They are still tied at 1+11 and 1-11 after step 2, so
step 3 chooses condition 1.

The flow chart in Figure 10 shows the complete process of
generating the notation. The simplest notation is for one conditional
statement and is in the following form:

conditiO))) N

terminal/

terminal

,-"--,---,.--, .. ~~~-~-----~~---.--~~~~~~~-~~-----------

Page 5

The two terminal points indicate rule numbers or an error code
in the event that some combination of conditions is not given in the 4C)
rules. The first terminal is executed if the condition is Yes, the
second if it is No.

For two conditions, the notation may be in one of two possible
forms:

conditiOn)

conditiOn;))

terminal,/N

terminal

terminal

conditio)!,

terminal IN
COnditiOV)

terminal/ N

terminal

As the notation is built, the mask is changed, which produces
changes in the copied entry table. Whenever any rule ,of that table
becomes all zero, no further tests are needed and that rule is
chosen by entering its number into the notation. Then the notation
is scanned backwards to find the first condition which has not had
its No result investigated. When no rule fits some combination of
digits in the ma.sk the copied table is non-existent and an error
code is put into the table. If alternatives still exist, the three
steps for determining the next condition are applied, and with the
mask set to 1 in the digit opposite that condition, the copied entry
table is r~formed.

o

o

1
I

o

o

•

page 6

When the notation is finally complete, it may be easily con
verted to a flow chart. starting with the first condition in the
notation, every condition number is a test statement which must have
two different exi~s. Trace the Yes branches until a terminal (rule
number or error) is encountered, then back up, make that condition
negative, and start again. Figure 11 is the completed notation and
flow chart for the example problem. By starting at C. in the flow
chart and tracing all the Y paths, one may work backwards and get
the notation directly.

Dectran has previously stored each of the conditions on disk
so that it can read and punch them ~n the order of the notation.
When this is completed, the action statements for the table are
read.

Now that we know how to separate the women from the animals,
we may write actions suitable for each case. Action statements may
also be in either extended or limited entry form, and the three
actions given in the example are all extended-entry because part
of the replacement s·tatement is in the entries. In a limited-entry
action statement the -stub contains a complete sta~ement and the
entries indicate by an "X" those rules for which it is to be done.
The only possible entries are X or blank indicating do this action
or do not do this action for this rule, respectively.

Each action is read, converted to limited-entry form if
necessary, and stored on the disk. A table of entries is built as
it was for the conditional statements. When the first statement of
the next table is read, the present table must be complete and the
decoding of the action statements can begin. The statement number
of the first instruction produced for each rule is the table number
plus the rule number. In table 126, the statement number for rule
8 is 12608. Each rule of the entries table is scanned and wherever
an X appears, the corresponding action is read from the 'disk and
punched. Most actions require no further translation1 however, a
few are new to FORTRAN and must be converted.

All the FORTRAN statement numbers required for the output are
made up of the 3-digit table number and a 2-digit sequence number.
The first statement generated for table nnn will be numbered nnnoo.
A branch to any table, for example GO TO TABLE 34, may be translated
immediately into GO TO 03400. Table numbers 997 through 999 are
reserved for internal use to preceed FORMAT statement numbers and to
enable some statements to be coded out-of-line.

To make the la~guage as useful as possible, an iteration state
ment was desired that is compatible with the table structure. Since

Page 7

the DECTRAN-to-FORTRAN translation is one pass, it was necessary to
invent a statement which could be compiled as it was read. The
result is the following statement:

n is the table to be executed after the loop is satisfied. i is
the index which starts at a value of e1 and is incremented by .4.
el through e4 are arithmetic expressions such that i and e4' and e2
and e3 are of the same mode and .r. is a relational operator. The
loop will be continued until e2 .r. e3 is true. As long as this
terminating condition is false, the next statement is executed. The
range of the loop is defined by the following st'atement:

END LOOP m

o

where m is the table number in which the loop statement appears. If
we now specify that a loop statement must be the first statement in
a table, all locations a~e known as soon as any loop statement is
read. Figure 12 shows how a loop statement is coded into FORTRAN.
Notice that any number of end loop statements could be used, and
that they may appear anywhere· in the program in relation to the loop
statement. Since the terminating condition is tested before the
execution of the loop, it is possible to do the lo~~times, an
option not available in FORTRAN. Because a LOOP statement is not com- 4C)
piled into a FORTRAN DO loop, none of the DO's restrictions need be
enforced. A branch into the range of a loop may be made if the index
and all the parameters are defined. Nesting can become as complicated
as desired and one loop may even end within the range of another.

Subroutining is a powerful programming technique that enables
us to branch out of a sequence of statements, execute another set
of instructions, and return. A much more intimite relationship
between the two parts could be achieved if the subroutine where
included in the compilation of the mainline program which calls it.
Then the subroutine could on occasion branch to specific points in
the mainline program instead of returning to the next instruction.
Variables and working storage could be shared more easily, and short
sequences of instruct,ions with many parameters could make practical
subroutines.

Since DECTRAN allows the familiar FORTRAN subroutines and
functions, the word "subroutine" will be reserved for reference to
that FORTRAN statement. The type of internal subroutine described
above will be called an "internal procedure", referring to some set
of tables within the program itself.

o

o

•

Page 8

A procedure is called by the following statement.

DO TABLE n

where n is the number of the first table in the procedure and must
be ~ 99. The return statement has the following form:

RETURN n

where the number of the first table in the procedure is used again
to differentiate between different procedures. The number of a
procedure's first table is analogous to a subroutine's name. Since
the return statement is identified, two procedures may be merged to
share common statements, or one procedure may be entirely contained
within another, and both still return to the proper point. The
number of return statements is not limited.

A return from an internal procedure is an exception to the
table concept because it branches to a statement within a table
rather than to the.beginning of the table. This is necessary to
return to the next statement following the DO TABLE statement. This
next instruction is given a number and that number is stored on the
disk in a list for the table called. An internal variable of the
form LLLPn is set equal to the number of times this procedure has
been called so far. The return is accomplished by a computed GO TO
instruction using the variable LLLPn and the list of statement
numbers for procedure n that is stored on the disk. The actual
computed GO TO statement is saved for the end of the FORTRAN program
so that all of the references to the procedure will have been found
by the time that it is coded. It is ~ givenAstatement number 998n.
The RETURN n statement is then actually compiled into GO TO 998n.
The return could be greatly simplified if ~ FORTRAN compiler with an
ASSIGN statement, such as KINGSTON FORTRAN II were to be used, or
if DECTRAN were to compile directly into machine language.

If a branch is made to an internal procedure or to one of the
tables within it by a GO TO TABLE command, and a RETURN statement is
subsequently executed, it will return to the same point as it did
the last time it was executed, since the variable LLLPnn can be
changed onlybf a DO TABLE command. If this procedure has not yet
been referenced by a DO TABLE command the variable will be undefined
and trouble will result.

Another new statement, a reverse replacement statement with
the keyword MOVE, is allowed because it fits the table structure so
nicely. The statement

MOVE B * * 2 $ Z, Y


~~~~~--~------~----'----."."--.--~~~~~~---------------~, 

Page 9 

is equivalent to two ordinary arithmetic statements: 

Z = B * * 2 $ X 

Y = B * * 2 $ , X 

One other statement is different from its FORTRAN form. In the 
FORMAT statement, the format number has been moved so that it can 
not be confused with a table number. 

FORMAT n (sl' • • • Sn) 

n is the repositioned number, which must be 4 99. It is preceeded 
by the number 997 as the statement is rearranged for FORTRAN. 

Finally, our original example compiled into FORTRAN is shown in 
Figure 13. A block of IF statements, in the same order as that 
described by the finished notation, is first. There are some possible 
combinations of the conditions that ·the rules do not allow, so an 
error trap is provided. Next comes the three actions for each rule. 
Note the assignment of statement numbers which assumes that the 
example was table number 25. 

o 

The advantages of writing decisions in table form can not be 
refuted. It is easier to understand, learn, write, and modify 10 
decision tables than the normal sing1e-line-of-instructions program. 
As the number of decisions increases, and the flow chart becomes more 
unmanageable, the decision table is still clear and precise in its 
meaning. Many applications, especially in engineering, are so 
complicated as to make direct FORTRAN coding impractical. Now that 
a compiler is available to decode decision tables as well as a 
complete high-powered language to go with them, any program may take 
advantage of the use of decision tables. 

Appendix A, which follows, contains a formalization of the 
language specifications of DECTRAN. Appendix B contains a 
description written by Mr. John Moschetti, of a specific engineering 
applications problem where DECTRAN is being used. 

o 
I 

I: I, 



DEC TOR A NE X AMP L E 
o 

(/) STUB ENTRIES 
z 
a 

.- IF THE NO OF LEGS = 4 4 2 
Cl IF NOSE LENGTH > 36 Y N 
~ IF NECK LENGTH '" 40 > 40 
(.) 

~ ANIMAL IS A ELEPHANT GIRAFFE WOMAN 
a 
- FEED IT PE .. ANUTS HAY MARTINIS 
6 IT LIVES IN INDIA AFRICA APARTMENT 
<C 

0 (rule 1) (rule 2) (rule 3) 

Fig 1 

I. 



RELATIONAL OPERATORS ---------- -~~-~-~--

o 
.L. LESS THAN 

.LE. LESS THAN OR EQUAL TO 

.E. EQUAL TO 

.NE. NOT EQUAL TO 

.GE. GREATER THAN OR EQUAL TO 

.G. GREATER THAN 
o. 

Fig 2 

0\ 



, edrif 

o 

10 

•• 

IF NUMLEG 
IF LNOSE 
IF LNECK 

DECTRAN EXAMPLE 
COD I NG 

. E . $ 4 , 
• G· • 36 $ Y J 

4 
N 

$ .LE.40, • G • 

J 2 
, 

40, 
ANIMAL - $ ELEPHT, GIRAFF, WOMAN -
FOOD - $ PEANUT, HAY MART N.I - , 
HOME - $ INDIA, AFRICA, -

DECTRAN EXAMPLE 
LIMITED-ENTRY FORM OF CONDITIONS 

IF NUMLEG .E. 4 
. IF NUMLEG . E. 2 
IF LNOSE .G. 36 
IF LNECK .LE. 40 

$ Y, 
$ I , 
$ Y , 
$ Y, 

Y , N 
I , Y 
N, 
N, 

PAD 

Fig 3 

Fig 1 



U 
:.u 
~ 

(!)~.l!.!.!« CARRIER 
CORPORATION 

DECTRAN DECISION TABLE TRANSLATOR 

CODING FORM 

Program: ______________________ ~--------------------------------------------______ ___ Page No. ___ of 

Programmer: ___________ -------- Date: ____________________ __ 

v..E STATEMENT 
I a 45 10 15 to 2S 30 30 iO 46 50 55 (0 ~ 10 15 

. I . I I' L I I I --'- · . . 
I 1 I I I I I I ' I I 1 -1 I 1 I. 1 -.l I I I I I II 

j I I t J ' I I 11 1 1 i I I J I I J I i 1 .1 1 11 1 J .1 ..L ..L ..l 1 1 ..l ' .1 1 I t I I 1 I I I 1 1 1 .~ 11 1 i ~ I 11 

I I I 1 1 .1 1 1 I J I I 1 I I I I L I J 1 I I ..l1. 1 I 1 I I ' I I I I I I I ~I 
I 

1 I I I 1 1 I I I I .J I 
I 

I I 

1 I I I 1 I I I L 1 1 1 ...L ...1 1 1 I ..L I 11 I I I I li..J.. L ...l 

I I I I 1 1 • • J • .J I I I . I 

I I I I I , , I I I 1 1 J ' Il L ..L .1 I I I ..L .~ 11 1 ...l 

l 

J I 1 I I I I· I I I 1 1 I I 1 I , I I I J I I I I I I I I 1 I J I I I I 1. 

I I 1 1 ..L 1 I I ' I I I I I 1 1'1 I ' I 1 . I il. L I I J .. / I I 1 I / I 1 L 

-'- I I I I 1 L-I--L 1 1 ..L ...l ..L 1 . I .J I I I I I I 

1. ..l...-..L-L.. 1 1 I I . 1 J I 1 ..L_ C-. • i . . --'- .1 I I 

J . . . ._.-._._ .. ......:. . . .L...--.1 ... -1-' I I : I • J I I 

I I J I I I I I I I 1 I I 1 , I I I I I I 1 J I ' I 1 1 I I 1 1 I I l' 1 1 I 

I I I I J 1 I I I I ' I 1 ' I 1 I ' I I I 

I .~_.--L.I I I I I I I ..1---'--~ 1 1 J J L ..iL .1 1 1 • I I 

I I I . , I I I I ..i II .1 '~' J 1 J I , i .L .L I 1 I I 1 I I I I 1 1 i J 

i i 1 .1 I I I I L.1 i ; 1 J I' 'i J I J I I I I I I I 1 I I I J I I I I I I I I I I I I I 

I I I J I 1 ---'----'----.l I ' I I I I J I I 1 I I I I I I I J I I I I I I I I 1'1 I I II I I 1 I I I 1...l I I '..L 

I I 1 I I I I I I I I I J I 1 1 1 I I I • 1 ' I 1 1 I I I I 1 I .-. 

I 1 1 I i I I 
., , 

I I I I I I I J I I I I I I j I I J' .L I 1 • · ' 1 I I, ." 1-

I I J .J I I I I I J 1 1 I I J I I I I I I I I I J : ! II I I I t I I I I I I I I I I I I I I I 1 -. .i....-

t I I I I I I I I I I I J I j J 11 I J I I I I I I I I i I I I I t I I I I I I I I I I I I I I I I I I I I I I I I I I I d CO L 

I I I I I I I 1 I J I I I J I I I I 1 1 j I J 1 1 I I I 1 I L J I 1 I I I 1 I I 1 I I I ' J 1 I I 1....1 1 1 1 .,.. 'L-

I I I 1 I I ' I I I I I I I I I I I I I i I J ' I , 1 ' I I 1 I I I I I I I I I I I 1 I I I 1 j I L '-

I 1 J ; I ' I 
, ; I .1 J I I I I I I I J I I t I 1 • I t I I . I I I ! . 

-- - -
~ 



IF A - $ B , C , o , E -
0: 

May be written as 

IF A - B $ Y , N, N J N -
IF A - C $ I , Y J N, N -
IF A - 0 $ I , I , Y , N -
IF A - E $ I, I , I J Y -

! 
Fig 5 

I . 

IF A = $ B , , o , I 
I 0 

May be written as 

IF A - B $ Y J I , N J N -
IF A - D $ I , I J Y J N -

Fig 6 

• 
c131 



Cl 
C2 
C3 
C4 

DECTRAN 
ENTRY 

Rl R2 R3 

y y N 
I I Y 
y N I 
Y N I 

Entries of condi
tional statements 

EXAMPLE 
TABLE 

Rl R2 R3 
-1 1 1 

0 0 1 -1 1 0 -1 1 0 

Matrix stored in 
core 

-1=0, N=l, Y=l 

Fig 8 

-------

o 

o 

4'i 



GENERATION OF COPIED ENTRY TABLE 
0 

resulting 
digit in digit . digit In In 

mask entry table copy 

0 0 0 

0 1 1 
- -

0 1 1 
1 0 0 

1 1 0 
-

1 1 X 
- a 1 a 
-

0 1 1 X 
- - 0 1 1 

X indicates a conflict 

.0 



BUILDING NOTATION 

CHoOSE 

BEST 
t.ONDIT\O,,", 

PUT C.ONOI"l~ 

N'UMBER INTO 

NOTATION 

PUT, INTO 

Mf\&\( FoR T""S 

PUT R.ULE 

NUMB-R INTO 

NOTATION 

(i.e.,. ~tt1)JlESS 

Of PilE." IOU 5 
WoRD IN 

NOT"TlON 

PUT ERRoR 

CODE ,,,,"0 
NO'T" 'T, O~ 

C\..1t Ali f'l\A~ \( 

b\G.l' tto~ 
TJ.{\S 

C.oN~'TleN 

FLAG. 
eONI>IT10N 

~\JI\I\.Ea IN 

MOT/I\TIOH 

-, INTO 

Fe. 
Tt-\\S 

GON~'TI0N 

Fig 10 
;l. 3(/ 

o 

o 

o 



DECTRAN EXAMPLE 
o 

NOTATION FLOWCHART 

Cl Cl 
C3 / 
C4 C3 
Rl /\ 
E C4 C4 
C4 R( \1 \2 E C2 

I 
R2 /\ 

i . 

I C2 R3 E I 

R3 
Cj E yl\n 

E = error 

Fig 11 

o· 



DECTRAN COMPILATION o 

(mOO) = el 

GO TO m02----~ 

(mal) 

(m02) ~ ...... GO TO nOO 
o 

(m03) next 
statement 

END LOOP m 

I GO TO rnO 1\ 

Fig 12 0 I 



, t tiitfr- - U-PIIPr"T ""T""' - """ - -I" -g" --

o 

,Q 

• 

DECTRAN EXAMPLE 
FORTRAN OUTPUT 

025 0·0 I F ( N U M LEG - 4 ) 025 0 7, J 025 04 , 025 0 7 
02504 IF(LNOSE-36)02506,02506,02505 
02505 IF(LNECK-40)02501,02501,02599 
02506 IF{LNECK-40)02599,02599,02502 
02507 IF(NUMLEG-2)02599,02503,02599 
02599 LLLT=025 

GO TO 99999 
02501 ANIMAL=ELEPHT 

FOOO=PEANUT 
HOME=INDIA 
GO TO 026,00 

02502 ANIMAL=GIRAFF 
FOOO=HAY 
HOME=AFRICA 
GO TO 02600 

02503 ANIMAL~WOMAN 
F'OOO=MARTN I 
HOME=PAD 

(Table no. I s assumed to be 025) 

Fig 13 



o. 

,0 ' 

o 

I 



- t· .. 

o 

APPENDIX A 

o 

• 



o 

o 



o 
FORMAT OF DECTRAN STATEMENTS 

A DECTRAN coding form appears in Fig. 4. 

The first 3 columns contain the table number (unsigned 
integer from 0 through 996.) 

Column 4 is the card code 
* indicates a comment card 
any other character except blank, + , - , or zero 
indicates a continuation of the last statement. 

Columns 5 through 75 contain the statement 
Columns 76 through 80 are ignored and may be used for 

identification. 

The number of continuation cards is not limited, except for the 
fo11owi~g restriction: the length of the stub plus the longest 
entry of a statement must not exceed 71 columns. 

A single dollar sign separates the stub of a statement from its 
entries. It may appear anywhere, but it may be convenient to place 
it in column 35. 

4[) Each entry is separated from the next by a comma. A comma mayor 
may not follow the last entry. 

• 

Blanks are optional anywhere in the statement and may be inserted 
where desired for clarity in reading. 

The last card of the program must be an end card containing END in 
columns 1 through 3 and blanks in columns 4 through 75. 

TABLE 

A table is a group of related statements that may only be entered 
at one point and may not contain more than one block of conditional 
statements. 

All statements in a table share the same table number, which is 
written to the left of the table's first statement. This is the 
only possible entry point to the table • 



,--""'"'---..... --~--------~~~-~~---.---.. ""."""', .... "".-,.,~~~ 

Page 2 

A table may start with either action or condition statements. If 
action statements are first, they may not have any entries. If no 
condition statements follow, it is an "unconditional table". 

If a loop statement is used, it must be the first statement in the 
table, and no more than one such statement per tahte is allowed. 

All of the condition statements in a table must appear together in 
a block. 

All action statements which follow the last condition statemen~ will 
be done only for the rules indicated in their entries. 

No exit need be specified for an unconditional table. 
the next table in the order entered will be executed. 
tables must specify an exit for every rule. 

If omitted, 
All other 

The number of rules and conditions in a table are limited 'by the 
following restriction: The FORTRAN translation of one table may 
not require more than 99 statement numbers. The maximum numbe:r; of 
numbers required for a table ofR rules and c conditions is R(c+l) + 1. 
(Add 3 if the table starts with a LOOP statement.) The actual number 
required will depend on the amount of similarity in the decisions, 
and will generally be much less than the maximum. 

CONDITION STATEMENTS 

Three forms are permitted, depending on the division between stub 
and entries. 

2) IF el .r. 

where el and e2 are arithmetic expressions of the sarne mode, 
and .r. is a relational operator. 

In the first form, called limited entry, the condition is complete 
in the stub and is answered either yes or no by using the following 
entries. 

o 

o 

o 



o 

0 

• 

Page 3 

Y or T Yes 

N or F No 

I or blank indifferent 

The other two forms are called extended entry and use part of the 
condition for the entry. For those rules which do not require test
ing this condition, the entries are blank. Indifference can also 
be indicated by an I entry for type 3, but is not allowed in type 2 
where it would be taken as a variable. 

The relational operator may be any one of the following: 

.L. less than 

.LE. less than or equal to 

.E. equal to 

.NE. not equal to 

.GE. greater than or equal to 

.G. greater than 

The equal sign is not permitted as a relational operator. 

To test one of the four console switches, replace el with the words 
"CONSOLE SWITCH", use .E. or .NE. for the relational operator, and 
make e2 the switch number. Examples: 

IF CONSOLE SWITCH .E. 1 $ Y,N 

IF CONSOLE SWITCH $ .E. 1, .NE. 2, .E.4 

ACTION STATEMENTS 

If an action statement preceedes the conditions in a table, it is 
executed unconditionally, and may not specify any entries. A dollar 
sign following the statement is optional • 



Page 4 

Action statements which follow the conditions must specify with 
their entries the alternatives for each rule. This may be done in 
two ways: 

Limited entry - If the statement is complete in the stub, the 
entries need only indicate for which rules the action is 
to be performed. This is done by using an entry of x in 
those rules for which the action is desired, and leaving 
all other entries blank. Example: 

A=B$,X, ,X,X" 

(done only for rules 2, 4, and 5) 

Extended entry - If the statement changes slightly for dif
ferent rules, that part which changes can'be used as an 
entry. When no action is desired, the entry is blank. 
Example: 

A = $ B , , C , , , 2. *E , 3. 

(no action for rules 2, 4, and 5) 

A more detailed description of each type ot action statement follows. 

o 

The iteration statement is an exception and is under its own heading. (}I 

Arithmetic 

Replacement statement 

MOVE 

This is the only statement which does not start with a 
key word, since it is uniqUely determined by its equal 
sign. In the extended entry form, the entries must include 
everything to the right of the equal sign. Th'e equal sign 
itself must remain in the stub. No checking is done for 
mixed mode or any of the other possible faults in arithmetic. 
This error detection is left to the FORTRAN compiler. 

This is a reverse replacement statement. The expression 
following the keywork is moved to the variable name 
specified in the entry. It is not useful in the limited 
entry form since it could be replaced by an ordinary 
arithmetic statement. Example: 

o 



---00 

Page 5 

MOVE B * * 2 $ A, , X, , D, 

~ Input/Output 

() 

• 

If the format number is omitted in a READ statement, a free
format read subroutine is used. All other statements are copied 
directly. Permissahle statements: READ, ACCEPT, ACCEPT TAPE, 
PUNCH, PRINT, TYPE, PUNCH TAPE, FIND, FETCH, RECORD. Since 
commas are used in these statements, the extended entry form 
should not be used when a list is specified. Example: 

PRINT $3, ,4,3 

PUNCH 2,A,B,C $ X,X, , X 

Control 

GO TO TABLE n 

Unconditional transfer. Extended entry form has GO TO 
TABLE in stub 

PAUSE and STOP 

Extended entry form does not exist 

Internal Procedure 

DO TABLE n 

Calls an internal procedure which starts at table n. DO 
TABLE must be in the stub for extended entry. 

RETURN n 

Provides a return for the procedure which started at table 
n. 

Subprogram 

Functions and subroutines are handled the same way as in FORTRAN. 

SUBROUTINE and FUNCTION 

These statements are non-executable and so have no entries • 



Page 6 

CALL 

The extended entry form of this statement should not be 
used. 

ITERATION STATEMENT 

where n = the number of the table to be executed when the loop 
is satisfied. 

i = the index, a variable name 

el - e4 = arithmetic expressions 

.r. = a relational operator 

i and e4' and e2 and e3 must be of the same mode. The index is first 
set equal to the starting value e1. Tqe terminating condition, 
e2 .r. e3' is tested. If it is true, table n is executed. If it is 
false, the next statement is executed. 

When a loop statement appears, it must be the first executable state
ment in a table. Hence, only one loop statement per table is allowed. 

Shorter forms allowable 

If e2 is a single variable name which is the same as the index, 
it may be omitted. 

If e2 is omitted, and .r. is equal to .G., it may also be omitted. 

e4 may be omitted if it is equal to 1. 

Examples 

LOOP 3, I - A, B**2 .L. 4 ,-K 

This may be read as "LOOP and tllen go to table 3, for I 
starting at A, until B squared is equal to 4, in steps of 
-K. II 

LOOP 2, C = 1, 10, D 

o 

o 



o 

Page 7 

This may be read as "LOOP and then go to table 2, for C 
starting at 1 and continuing through 10, in steps of D.II 

A loop is ended by the following statement: 

END LOOP m 

Where m is the number of the table which contains the loop 
statement. m must be an unsigned integer constant. 

Any number of end loop statements may be given for one loop. 

The index or any of the parameters of a loop statement may be changed 
within the loop. 

A branch may be made to any table within a loop if the index and all 
parameters are defined. 

INTERNAL PROCEDURE 

An internal procedure is referenced by the number of its starting 
table. It may be extended over any number of tables, and return at 

4C) as many points as desired to the table which called it. 

• 

The procedure is called by the following statement: 

DO TABLE n 

where n is the number of the starting table. 

Once the procedure is started, it may branch to any table in the 
mainline program, another procedure, or a table within the procedure. 

The following statement causes a branch to the statement following 
the one which called the procedure: 

RETURN n 

where n is the number of the starting table. 

Any number of return statements may be used. 

There may be a maximum of 99 procedures in one program, with no more 
than 63 references to each one • 



Page 8 

An internal proceaure may be executed by a GO TO TABLE cOIBand, but 
a RETURN' n statement must not be attempted until a DO TABLE n state- 0 
ment baa been executed at least onee. 

SPECIFICATION STATEMENTS 

DIMENSION, EQUIVALENCE, COlUlu.eI, and DEFINE DISK 

No change from the form or position of these statements 
from that specified in FORTRAN. 

The format number, m, has been moved to the position shown 
so that it can not be confused with a table number. m 
must be ~ 99. A format statement may appear anywhere in 
the program. 

o 



! helnrra . - .. . ,.. wbrt#rit#&fWt #riM W Hi' g"!!!n'" - . ttlW"rrg*l¥Wt' . 

o 

APPENDIX B 

• 



~~-~~-~--------------------------.....,..--"""""",,,,",,,,",,,~~".~ .... ~=.--.... _._._._. __ .. 

John Moschetti 

October 5, ;L965 

Appendix B 

Elliott Company is a Division of Carrier Corporation and a manufacturer of 
engineered industrial products. We are specialists in industrial compression, 
industrial vacuum, and power recovery. Our major products are air and gas 
compressors, steam turbines and related equipment, power recovery equipment, 
steam jet ejectors, liquid strainers, marine equipment, and tube tools. 

I'm sure many of you recognize that these products requit;e desi-gn of a 
mechanical engineering nature. Since we have an IBM 1620 C~mputer as part of 
our Engineering Department, we felt that we should use the computer as a design 
tool and couple it with the engineer to achieve a higher level of understanding 
and to produce the best design possible as output. Today this process of using
the computer as an aid to design is commonly 'referred to as "Automated Design 
Engineering". However, this title is not entirely descriptive because if you 
check the possibilities you will find that manufacturing 'considerations should 
also be included. 

Our aim is to use the computer after the receipt of an order to perform four 
major functions. They are: design logic, equation~ and computations, design 
checking, and engineering paper work generation. Although we are using the 
computer to perform the first three of these functions, we are also interested 
in computerizing the paper work generation. Once a design has been established 
the engineering paperwork generation begins. The basic information must be 
listed, transcribed, sorted, and put in the form required for manufacturing. 
The checking and paper generation phases are usually routine repetitive tasks, 
and frequently take longer than the original design process • . 
Decision tables are a necessary tool to implement this automated system. The 
decision table prinCiple is neither particularly new nor revolutionary. As a 
concept it is very easy to understand. Its significance lies primarily in its 
power to capture design logic, and where practical, in its use as a source 
program that can be directly compiled into an object computer program. Our 
needs are for a decision table translator that can be used with our 1620 computer. 
That i$ why we are developing DECTRAN. 

The bibliography presented is just a small portion of the work that has been done 
in the area of Decision Tables. At present, a program for a 1401 computer 
equipped with magnetic tapes is available from the 1401 library. It is Decision 
Logic Translator - 146l-SE-05X. By using the DECTRAN program the advantages of 
decision tables will be available to 1620 Users. We believe we have also added 
some sophisticated decision table methodology. 

o 

o 

o 



* "If'J!tWeroo "w"n If"TTF"lfJ" r "fT""'] 'W j . 

BIBLIOGRAPHY 

1. Cantrell, H. C., King, J., and King, F. E. H., "Logic Structure 
Tables". Communications of the ACM, 4(June 1961), 
272-275. 

2. Dixon, Paul. "Decision Tables and Their Applications". Compu
ters and Automation, April 1964, pp 14-19. 

3. Egler, J. F. itA Procedure for Converting Logic Table Conditions 
into an Efficient Sequence of Test Instructions". 
Communications of the ACM, 6(September 1963), 510-514. 

4. Grad, Burton. "Tabular Form in Decision Logic". Datamation, 
July, 1961, pp 22-26. 

5. IBM 1401 Decision Logic Translator (1401-SE-05X) Program 
Reference Manual. White Plains, New York. IBM Technical 
Publications Department. 

6. Kavanagh, T. F. "TABSOL - The Language of Decision Making". 
4C) Computers and Automation. September 1961, pp 15-22. 

• 

7. Kirk, H. W. "Use of Decision Tables in Computer Programming". 
Communications of the ACM, 8(January 1965), 41-43. 

8. Monta1abano, Michael. Egler's Procedure Refuted. (Letter to the 
Editor). Communications of the ACM, 7 (January, 1964), 1 

9. Press, Laurence I. 
Programs". 
385-390 • 

"Conversion of Decision Tables To Computer 
Communications of the ACM, 8 (June, 1965), 



o 

o 



tUb 

o 

• 

h1 trw q "" !"l r" " II' "sue' 

An Open Shop for Engineers 

Lawrence E. Wright 
Sprague Electric Company 

North Adams, Mass. 

Two years ago the Electronic Engineering program team 
held its first meeting, with at most ten members present. 
At that time a seeming paradox was noted by all of the 
participants; namely, that electrical engineering is an 
extremely fertile field for computer applications, yet 
many engineers are passive or even resistant to computerizing 
their problems. In the intervening years, during which 
the engineering team has grown many-fold, techniques of 
circuit analysis, simulation, statistical programs and 
computer process control have become widely practiced, and 
young men who have had. computer exposure in school are 
alleviating the problem of Idck of use. There still 
remains, however, the question of convincing older men that 
the computer is a useful, even essential, tool of their 
trade, and that furthermore they can make use of the machine 
with a minimum of re-training. This paper is a progress 
report on one attempt to solve this problem, and at the 
same time an appeal for advice from those who may be further 
along. 

The job of converting men with years of experience in lab 
work and hand techniques into computer users is in many ways 
more difficult than that of training students in school; 
time is hard to find, classroom habits are lost and in many 
cases the audience is skeptical rather than eager. However, 
we can hardly wait for attrition to bring to the lab what 
are to us the manifest advantages of- computers, and it is 
impractical to teach prograrnmers engineering. Hence we must 
bring the computer to the engineer, and we are le.d to the 
concept of an open shop operation. To successfully re-train 
engineers three conditions are needed - motivation, involve
ment and education. The open shop provides the first two, 
as well as allowing a man, after he is trained, to experiment 
more freely with his problems. That leaves us with finding 
a suitable method of education. 

We began our open shop training in what might be called the 
classical manner - by holding classes for all interested 
people (or employees of interested bosses) and dispensing 
large doses of Fortran, coding forms and manuals. The result 
was a deafening silence! In retrospect I can spot many valid 
reasons for the failure of this program. First, it required 
time and patience in excess of that which was available. 
Secondly, the presentation of the full Fortran language can 
be a confusion of rules and exceptions to the beginner. 
Thirdly, people were looking at Fortran to find out how to 
solve their problems - and all they found were v.Jays to code 
the solution once it is known - too much education, too 
little motivation and involvement. 



-2-

The second go-round was considerably different in approdch, 
and far more successful in execution. We began with the 
premise that it is necessary and suffiqient to teach only 
a basic subset of Fortran, but to teach it thoroughly by 
means of example and actual supervised time on the machine 
for each student. The large classes were changed to small 
workshops, and the examples were chosen to corr~spond, as 
much as possible, to real problems faced by th~ particular 
group. stress was put 9n flow charting. 

Because I have not encountered a comparable class schedule 
in the literature, or a comparable text arrangement, it 
might be worth a few minutes to outline our lesson plan. 
We have tried to use four two-hour sessions, held every 
other day, as follows: 

Day 1: Arithmetic, expressions, library functions,=' ,GO TO, 

IF ( ). 

Day 2: Coding Form, Dimension, Subscripts, STOP, PAUSE END. 

Day 3: Machine time to run assigned exercise. 

READ, WRITE, PUNCH with I, }ll, E, H fQrmats. 

Day 4: Machine time for exercises, procedures and review. 

This Fortran subset is enough to solve any problem, and 
avoids the confusing parts of the language where possible. 
We have found that DO, computed GO TO, etc., can easily 
be learned by the student after the basics are well in hand, 
and when (and only when) they are motivated by need. After 
the class work, the men are urged to piOk a problem of their 
own choosing, discuss methods of solution with our staff, then 
write their own program. This must be done soon or the class 
work becomes useless. 

o 

o 

I wish we could report that this approach has led to total 
success, but such is not the case. Less than a third of our 
students have become programmers in any sens~; however, we 
have made gains in computerizing problems formerly done by 
hand- or more strongly, not done at all. Areas of engineering 
such as capacitor design, production specs and process 
controls have been shifted to the computer by the engineers 
involved. This gain 1s extremely important and is independent 
of whether the engineer has learned enough to do the actual 
programming. In fact, we insist as a matter of self
preservation that our staff program any job that is going to 
be a routine long-running 'project, for the engineer will 
undoubtedly take on new.problems while we are stuck with 
operating, updating and maintaining the program. All in all, 
however, the open shop seems to be the best answer to the 0 
question of getting, the jobs to the machine, even if it is 
not ideal for getting the solutions through the machine. 



() 

o 

• 

Recent advances in hardware and software are adding a 
new dimension to this discussion. Engineers who have 
never used a computer have nonetheless read, or been 
told by IBM salesmen of the development of scopes, remote 
consoles, time sharing, on-line programming systems and 
the other innovations designed to allow closer man-machine 
relations. These devices do make it easier to explore 
problems and search for solutions, and the engineers are 
justifiably excited at the prospect. There is a tendency, 
however, for the untrained to claim that all their 
difficulties will be mitigated if we can give them a 
remote console to play with, especially if it comes 
equipped with a Quicktran-type language. The problem, 
of course, is that you still have to know how to communicate 
your ideas in whatever language is chosen. This becomes 
less severe if a language is developed which contains 
enough macro instructions or subprograms so 'that the 
solution becomes just a question of calling macros. This 
should include complex arithm~tic, matrix operations, 
statistical formulae and numerical methods as basic, and 
flexible programs such as the 1620 ECAP as desirable. This 
will allow a neophyte to run any problems that fit into 
the .framework -without worrying about programming as we now 
think of it. The~e is still no subst~tute, however, for 
a logical approach to the problem. The main difficulties 
we have encountered have been in getting our men to assimilate 
the ideas behind program writing, and in problem analysis. 
In these areas, there is still much to be said for drawing 
block diagrams and in pre-scanning programs by hand; I have 
difficulting envisioning some of our beginners attempting 
on-line programming! Our open shop work is admittedly low 
in sophistication, but the short delays for punching and 
waiting for machine time have not yet impaired this effort. 
This is not to say that th~ new techniques are not going to 
be of tremendous value to the practicing engineer; but our 
experience would seem to indicate that they will not do away 
with the need for careful, well-motivated training of the 
beginner. 

In conclusion, for those who are faced with prodding engineers 
to get their problems on the machine, the open shop is a 
workable technique. For those who have such a program in 
good shape, the rest of us would appreciate your comments • 



o 

o 

o 



o 

() 

• 

SMOLDS 

SYRACUSE MANAGERIAL ON-LINE DATA SYSTEM 

SHARON M. STRATAKOS 
Syracuse University Research Corporation 
P. O. Box 26 
University Station 
Syracuse, New York 



~~~~~~-~-~-----------------------., ........ ,-.... "'." .. -

PURPOSE

The SMOLDS programming system is designed to provide the
User-manager with a large bank of data consisting of documents familiar
and useful to him and a language with which he ca:p. rapidly and easily
retrieve, process, and display information from the file while sitting
at the console of the computer.

DATA BASE

The data base consists of a set of documents which may be
identified by name or number and which consist of an arbitrary number of
blocks, each of which contains one item of information and may be identi
fied by name or number. An example might be the typical personnel form
conSisting of blocks of information such as name, address, telephone,
birth date, etc. The number of blocks in a document, the number of char
acters in a block, and the mode (alphabetic, chronological, integer, or
decimal) of the block contents are completely arbitrary.

The data base has a matrix-like organization in which each
row vector corresponds to a single form and each column vector to a set
of block values; thus each unit of information may be called from the
file according to its unique position within the array.

Rome Air-Development Center Form 77 is currently being used
as the data base for the SMOLDS system. Data are punched from the Form 77,
read in alphabetic format, sequence numbered, and loaded on the disk file.
The form is described to the system by a set of tables which contain block
numbers, lengths, and modes.

INTERNAL STRUCTURE

Since the purpose of SMOLDS is to provide the user with a
repertoire of independent but often related commands, certain qualities
are required of the system:

1. That the operations may be linked in any conceivable
order with any amount of repetition.

2. That the operations may be used independently only when
needed.

3. That the reeuUts from one operation may be retained and
made available for use by the others.

4. That a convenient method of adding, deleting, or revising
operations exist.

o

()

o

rid

o

o

•

MOLDS DATA BASE

___ -1.

~------------------~----~-------------------------------,----- --

Form 1
~'1
I~!

I

Form 96

-1---- --I ,..---....,.------- '- - - .--

1..---

Block
1

Block '!I Bl~:---l

_'----------,~""---~-2~ .~~7
" Contents of of

ITEM

Contents df
Block 1

ITEM:
RECORD:
FILE:
DATA BASE:

) Block-2

DEFINITIONS

the contents of a block of a form
the set of blocks constituting a form
a set of records of the same type
the set of all files for the system

STRUCTURE OF MOLDS DATA BASE

)
"

REQUEST FOB PREPARATION OF PURCHASE REQUEST

-------.-.---------.----'--.~-,------------,--.,..---------.-....,...--,--. ----------_._._- -----
.IGN TUR. 0,. D .. UI:CTOR T. CHIlEI'" .IClNATU"" 01'" LABORAT~RY CHIlEI'" II\ONATUR. 0 .. IENGIN.IUt

• _______ .~-- ... -.--.--__ -.... - .. ~-.- ------------------- -_·_·--·---1-----------------_·· __ ·_---,---------1
.... 0 .AMO OP O'ROCTORAT. C"'" TY"O .AMO O' L"O •• TORY CH... TY •• O N.M' O' .N.'N •• R _______ [L UT

It. COORDINATION ROR DYE. 0 NO ~Qt04PLI.HED 0 YES D~~ ---r;~ -~;;~-;.-;;;:;;; Dy,· 0 NO AVAILABLE 0 YE-·-·O--N-0--
1

0 000 0 AR~A 0 NASA 0 USER 0 OTHER I 0 G"~ 0 GL,. '0 FACILITIIES 0 OTHER (Specify)

•• NOMENCLATU •••• 'U .. TED I" ."U'R'MENT NO ,NO •••••••• H 8UP'0.UD Ie .•••• EOONCO 7. FO.M 77 0.... , ••• RC.O'Ta

•• COMMITTEE ACTIO" 10. FUND. AVAILABLa 0 YE. 0 NOt'~ F'Y F'UNDi-- ---- -,-- ----.--. --- ~-- CON-;~ACT DELIVERY

FY.
MINIMUM MAXIMUM

-I-a.-.-~fl---·--- .. _--- -------- --.----.... - --·I-~-------t

-------~···---·-----·-~-I---------.-:..--------I '4. AMOUNT ,e. UNSOLICITED PRO~O.AL

RCk

17. OPEN aiD

I
I •. 'N~~N~A~ -1-I-S-:-C-0-N·-"-~-T-E-X-T-~71-~-0-.-O-.-V-E-A.-t-R-U-N----71-·-I-.-T-V-p-a-O-F-B-U-Y----------~-----~

SJYES DNO DYES DNO DVES DNO DVEI! ONO DRADC DAMC Dol. DMIPR DC80

.... -------~:.-..----------'------- ------...-..,..--···:---'----~-:-----.,.--------------------I
..... TITLE

as IORITY I"
BADe 100". 7.,

.II. .. et

TA8K NO.

PltaVloue aDITION .• ARE O •• OL.,.. •

1t7. fROM (Lab) 28. PR ,,0. ZS. DIR. SER NO.

)(

r

o

o

o

o

o

•

In order to achieve the desired flexibility SMOLDS was
written as a set of independent subroutines sharing a common storage
area and linked by a monitor-type mainline program. Since each sub
routine corresponds to a particular command in the repertoire, the order
in which they are executed and the frequency with which they are called
is completely determined by the user. As the need for new or revised
commands arises, they may be added to the system without changing those
already in existence.

Appendix A shows the storage map for the SMOLDS system.

LANGAUGE

The SMOLDS language depends upon the assumption that the user
can make the necessary association between his query and the data base.
For example, consider the manager who is trying to evaluate the expenditure
on computer work during the year 1963. In particular he would like to know
which computer contracts in excess of $50,000 were initiated in 1963, ex
cluding the one entitled "Signals, Processing, and Noise." In order to
describe his query in terms of the data base he must consider:

A. Which form and which blocks contain the information of
interest.

B. Which criteria must be satisfied by the values in those
blocks.

C. Which combinations of block values must be satisfied.

Considering the present example, the user determines that the solution to
his query may be found in the file of Form 77's and that:

1. Computer contracts have a keyword equal to "COMPUTER" in
Block 1.

2. Contracts in excess of $50,000 have a value greater than
"50,000" in Block 14.

3. Contracts initiated in 1963 have a value between "01 JAN 63"
and "31 DEC 63" in Block 7.

4. The contract entitled "Signals, Processing, and Noise" contains
a value equal to that title in Block 22.

5. The contracts in question must have the properties 1, 2,
and 3 but not 4 •

~S7

-... _._-_._-"--_ •. __ ._._----_."" .. ~. -~~~~-~.~---------,

RETRIEVAL SUBSYSTEM

The object of the retrieval portion of SMOLDS is to extract
and place into some intermediate storage area a ~ubset of forms from the
data base which fulfill certain criteria, and to prov;i.de some convenient
notation by which this subset may be referenced for subsequent processing
or display.

The retrieval language consists of two types of statements
which specify the conditions, either basic or compound, under which a
given form is to be selected from the data base.

The basic condition defines an arithmetic relationship between
an input value and the contents of a block on some form. The SMOLDS command
"KNOWN" is used for specifying basic conditions such as those numbered 1-4
in the previous sample "problem.

r.~~;;~ -----
I

I KNOWN Label Form/Block/ReI at ion/Value/
! L-___ -_-___ -___ -=--=--=--=--=--=--=--=-____________ ~ __ .. _ . " - --.-.... -... -----------t
J
i EXAMPLES

KNOWN AMOUNT 77/l4/ G/50000./

KNOWN START 77/FOPJII 77 DATE/B/Ol JAN 63/31 DEC 63/

The labels are completely arbitrary although they are usually
selected for their mnemonic value; they may consist of from 1 to 10 alpha
numeric characters. The form name or number and block name or number must
be spelled 'exactly as they appear on the source document including spaces
and punctuation. The allowable relationships are equal (E), not equal (NE),
greater than (G), greater than or equal (GE), less than (L), and less than
or equal (LE). The slashes must follow each operand and the entire command
must fit on one typewritten line.

The KNOWN operator causes a search through the data base for
documents which possess the desired property. As such documents are found,
their sequence numbers are recorded in a list which may subsequently be
referenced by the name given it in the label operand. At the completion of
the scan, the list of sequence numbers are written on the disk and the label
and length of the list are recorded in a table whicb resides in the common
storage area of memory.

The compound condition defines a logical relationship between
two conditions, e1 ther basic or compound. The SMOLDS command "DEFINE" is

I~
I

o

C1
\

"

~l
~:!I

O~
I

t 1" - o no"")TOy!

o

()

•

used for specifying compound conditions similar to number 5 in the
sample problem.

--r--------------------------
GENERAL FORM

DEFINE Label

._-_._--_ .. ==.:.:====================================
EXAMPLE

DEFINE UNION AMOUNT/OR/STARr/

The label has the same properties and performs the same
function as in the KNOWN command. Ll and L2 refer to labels defined in
previous condition statements, either basic or compound. The allowable
relationships are AND, OR, and NOT. The slashes must follow each operand
and the entire command must fit on one typewritten line.

The DEFINE operator causes the lists Ll and L2 to be read
from the disk and a new list of document numbers to be generated. The
data base itself is not searched; the presence or absence of a particular
document number in one or both of the lists determines whether it is to
be included in the new list.

. Although only one logical operation may be performed for each
retrieval statement, by repeated use of the KNOWN and DEFINE connnands, con
ditions of any complexity may be constructed. Appendix B shows a program
for the solution of the sample problem.

PROCESSING SUBSYSTEM

The object of the processing portion of SMOLDS is to provide
the user with a basic set of operations with which to process the results
of previous retrieval operations in preparation for output. While the
retrieval subsystem produces lists of raw data, it is more frequently the
case that the user seeks some function of these raw data; i.e., totals,
averages, ordered lists. On-line processing capabilities enable the user
to achieve the desired result rapidly and accurately, and to by-pass the
time consuming task of outputting lengthy lists of unnecessary data.

The processing language, like the retrieval language, asswnes
that the user can make the necessary association between his query and the
data base. In the case of the processing subsystem, the data base consists
of lists of documents extracted by previous retrieval operations. Referring
to a particular list by the label assigned to it during retrieval, the user

may process any block of the document.

I_G=-;~~aIlle/Label/BlOCkl
EXAMPLE

ORDER/INT/FORM 77 DATE/
.....• _ ..•..• _----_.

The label refers to some list defined in a previous re
trieval command, either basic or compound. The block name or number may
refer to any block of the source document, not necessarily the block
which determined the retrieval, but must be spelled correctly. The
slashes are used to separate operands.

The processing operators are divided into two classes depend
ing upon whether they result in a Single value or a list of documents.
Class I operators, which produce a single value, are AVERAGE, TOTAL,
MEDIAN, VARIANCE, MAXIMUM, and MINIMUM. Class II operators are ORDER,
REVERSE ORDER, and PROFILE.

AVERAGE, TOTAL, and VARIANCE operate only on blocks which
contain numeric data. MAXIMUM, MINIMUM, ORDER, and REVERSE ORDER auto
matically determine the mode of the data to be processed and are capable
of performing alphabetic, numeric, and chronological calculations.

DISPLAY SUBSYSTEM

The object of the display portion of SMOLDS is to provide the
user with a set of connnands with which to specify and control the output
of previous retrieval or processing operations. While the display sub
system has not been implemented to date, both tabular and graphic displays
are anticipated.

For the present, the results of processing operations are dis
played automatically as a means of verifying their validity. Such results
are not retained in memory and may not be used in subsequent COImnands.

In order to verify the results of retrieval operations, the
user may select either of three output options, COUNT, PRINT, or DISPLAY.

o

o

o

o

o

•

guwe u .. TWIf' "'t rWl' "r , .. tytn'"(j"":"luWI!j"' "\ rTF' '--[VruT··· ... "-"J pr-'V · .. d¥ B# rrtHrl ttttbtttf###tt

r------·------------- ------------.. -.--.-----.----.-------.--- .. ---.. ---
j

!

--'\

I
GENERAL FORM

I r----
EXAMPLE

COUNT/Label/
-..... - .. ---.--.- --- . -- ---·-·----------------·i -----.. -... ---- .. -------.-----.. -... .- -- ------ i

I
I
I

COUNT/UNION/ I
I

The label refers to some list defined in a previous re
trieval command, either basic or compound, and the slashes separate
operands. The result of COUNT is a single number typed at the console.

,---
j GENERAL FORM

--f
I I

EXAMPLE

PRINT/Label/Block/
!
!
1

._---_._-----------_._---------_._-_._j

i

PRINT/UNION/PROJECT NO./

The block name or number may refer to any block of the
source document regardless of length or mode, but must be spelled correct
ly. The output medium is the on-line printer.

GENERAL FORM

DISPLAY/Label/

EXAMPLE

DISPLAY/UNION/

The output consists of reproductions in exact format of
each document in the referenced list. The output medium is the on-line
plotter.

UTILITY SUBSYSTEM

The object of the utility subsystem is to enable the user to
delete entries from the label table or to clear the common storage area,

'1 / f
0'\ to I

reinitialize the system, and begin again.

The DELETE operation provides the former capability.

r-
GENERAL FOnM

DELETE/Label/

EXAMPLE

DELETE/UNION/

"Label" is any label defined in some previous retrieval operation, either
basic or compound and the slashes separate operands. The label is removed
from the table and the entry made available for future use.

Reinitialization is accomplished with the CLEAR command.

GENERAL FORM

CLEAR
, r--------------·-·

EXAMPLE

CLEAR

Only the command name is used. The common storage ~ea is set to zeroes
and the system is reinitialized.

o

c

triMt

o

o

•

rl" 'C"l""T""]""]""JI" HtCff"' "' '"MM

It should be stressed that the present SMOLDS system,
although operable, is as yet incomplete. In addition to the im
plementation of displ~ capabilities, future versions of SMOLDS
will contain the following:

1. Multiple-fonn data bases and interfonn retrieval.

2. A STORE command for the manual entry of constant
data by the user.

3. Processing commands for the addition, subtraction,
multiplication, and division of corresponding elements
of two lists.

4. On-line definition by the user of new operators con
structed from a sequence of operators available in the
processing subsystem.

----------------------------------,.--"-~",~ .. ~'''"''"''' ... ~--.

APPENDIX A

SUPERVISOR ROUTINES

A11I'l'HMETIC AND I /0 ~UTI~S
....".---------------- -- -- 07800-

MAINLINE PBOGRAM

----- 10000 '--,--....,....,.----

IN .. CQRE SUBROUTINES

?-_._--,--_. ---, ---13800 ----~-

LOCAL SUBROUTJ:NE$

'50500 --~

COMMON STORAGE ~A

DISK I/O AREA

-60000------,--

S'JX)RAGE LkY-OUT FOR SMOLDS

o

o

o

0

o

•

KNOWN COMPUTERS

KNOWN DOLLARS

KNOWN START

KNOWN NAME

DEFINE INT 1

DEFINE INT 2

DEFINE RESULT

PROCESSING OPERATIONS

DISPLAY OPERATIONS

APPENDIX B

77/0BJECTIVE/E/COMPUTER/

77/AMOUNT/G/50000./

77/7/B/01 JAN 63/31 DEC 63/

77/22/E/SIGNALS,PROCESSING,AND NOISE/

COMPUTERS/AND/OOLLARS/

INT l/ANO/START/

INT 2/NOT/NAME/

SOLUTION TO SAMPLE PROBLEM

o

o

o

'wlf . r (it&H

o

o

•

t t 11'ttt#1 - _dr·" r"'- IT -

SORTING ALGORITHMS AND THEIR USE WITH A 1620 WITH TWO DISK DRIVES

by

Janet E. Allen
Pioneer Hi-Bred Corn Co

1206 Mulberry St.
Des Moines, Iowa 50308

1620 Users Group
Eastern & Midwestern Joint Meeting

October 6-8, 1965
New York, N. Y .

SORTING ALGORITHMS AND THEIR USE WITH A 1620 WITH TWO DISK DRIVES

This discussion represents a preliminary attempt to defin~ sorting pro~

cedures and programs making most efficient use of a 20K Model I 1620 with two

disk drives. It is hoped that this proposal will elicit responses from other

users experienced in such techniques.

A typical program involves reading cards, sorting, and editing, indicat

ing cards in error. Corrected cards will later be read, to be inserted in

the file in the correct sequence. The file is again sorted and processed,

and the output punched. This output may be again sorted, and further pro

cessing done. Input to a program such as this is from 4000 to 12,000 cards.

Presently, most of our sorting is done on the mechanical sorter. Some

of our programs use the 1620-1311 Sort/Merge Program, SM-047. We feel,

however,that a program not so general and written especially to use two

disk drives would pr~bably be more efficient. It may be that converting

the program SM-047 to use the two disks, thus allowing for longer strings

and merges, would be the best approach.

There are many articles describing various sort algorithms. The most

thorough and helpful I have found is the papers of the ACM Sort Symposium,

published in the May, 1963, issue of the "Communications of the ACMIt. These,

and others, are listed at the end of this discussion. The sort techniques

discussed below are described in the article in that issue nSorting on Com

puters", by C C. Gotlieb. In the same issue the article ttSome Character

istics of Sorting in Computing Systems Using Random Access Storage Devices tt
,

by George U. Hubbard, is very helpful. As he points out, the use of a random

access device presents considerations different from those using tapes.

o

o

o

•

2

Proposed Procedures'

The ideal sort program, of course, is an extremely efficient one, which

is relatively uncomplicated to write, but which runs very fast. It should

also be fairly easy to interrupt and recover. This paper is no attempt to

describe the ideal, but a start must be made somewhere.

The usual procedure is to form a key on which to sort, store the entire

record elsewhere, and sort the key only. Attached to each key is some in·

dication of where the record is stored. When the records are to be sorted

later, there are thus problems of reading the records from allover the disk.

Sorting the entire record initially, however, leads to storage problems, and

additional seek time on the disk. Since there may be times when the entire

record file need not be sorted, as at the beginning of our edit routine, we

"Til1 sort the keys only.

As each card is read, the key and tag are formed. If the key is 20

numeric digits and the address of the record 5, the complete tag is 25 digits,

800 tags per cylinder. The card is stored in a buffer in storage, which,

when full, is written on disk 2 The tags are stored in another buffer in

storage, which is written on disk 1. These blocks of data are stored in the

same order as read. This allows the seek time for the next cylin~er to be

overlapped with reading the next card. Another method might be to distribute

the cards on disk 2 according to the value of the most significant cOlumn(s)

in the key. This has the advantage of ordering the records and shortening

the key, but creates problems of specifying areas of the disk ann allowing

for overflow of these areas. Since these areas would probablY' be different

cylinders, more seek time would be necessary. Therefore, the cards will be

stored as read .

When all the cards have been read, sorting can begin. The general

method is to ferm strings--sequenced sets of tags--within each cyl~nder, merge

3

these to form entire sorted cylinders, then merge the cylinders. In general,

the larger the merge, and the length of the strings, the more efficient the

sort, taking into account the amount of storage both in core and in the cylin-

dero It seems feasible to form strings of a quarter cylinder, thus having a

four-way merge within the cylinder.

To sort each string, either of two methods, or a variation, seems appro

priate. Using the two-way merge (Fig. 1), pairs of keys are examined, with

the smaller placed first in the output buffer. This is repeated, with the

groups doubling, until the list is sorted. This method requires n passes,

where the size of the group is 2n, and an output buffer the size of the area

being sorted. The other method (Fig. 2) is called the pair exchange, in

which each key in the string is compared to the next one. The two are ex-

changed to put the smaller one first. This results in the· largest key always

being placed at the end, thus requiring one les~ compare each pass. The order

of the numbers may decrease the number of passes required. If an indicator is

set when an exchange is made, this can be tested. When no exchanges have been

made, the sort is complete. This method does not require an output area. These

methods have been selected because they are uncomplicated to program and because

they do not neea large amounts of core storage.

When the strings are formed on each cylinder, the most efficient approach

seems to be first to sort each cylindero Blocks of each string from the first

cylinder on di sk 1 are read and merged into an output area. As each input

block is exhausted, the next block is read, until the whole string has been

read. This is done for all strin~on that cylin~er. As the output area fills,

it is written on disk 2. This then results in a sequenced cylinder on disk 2.

This is done for all cylinders on disk 1. Now the problem is to merge the

cylinders, all on disk 2. The most obvious solution, and probably the most

efficient, is to merge from disk 2, and write the output on disk 1. The input

1
I

o

o

o

o

o

•

4

areas, into which blocks of data are read from disk 2, should be as large as

possible, minimizing the number of seek operations. Probably a two-way merge

would be the most efficient. One other possibility is to write one cylinder

of data from disk 2 to disk 1, merging this with another cylinder from disk 2

into as large an output area in core as possible, writing this output into

another area on disk 1. The transfer of data from disk 2 to disk 1 initially,

however, would probably use whatever time would be saved in the seek operations.

This ag$in would depend on the amount of core storage available.

Methods of obtaining the original. records are discussed in the article

mentioned above.

Conclusion

This paper is meant to stimulate discussion of programs and techniques

being employed by other users. It is by no means a thorough analysis of the

subject, but is our first thinking in the area. Sort programs are fairly

complicatedt and it is hoped that, through the Users' Group, we can benefit

from each others' experiences.

References

1. Got1ieb, C. C. "Sorting on Computers" Communications of the ACM 6(1963) ,
194-201.

2. Hubbard, George U. "Some Cha.racteristics of Sorting in Computing Systems
Using Random Access storage Devices" Communications of the ACM 6(1963) ,
248-255.

3. Flores, Ivan "Anal.ysis of Internal Computer .Sorting" Communications of
the ACM 1(1961), 41-80 •

· ... - -... ----.. -.- ... -.-.. _ .•. ________ ,.~_. _'_.M' ___ ~_w"."","'"''

TWO-WAr. MERGE ~
15 08 08 08 08

08 15 15 15 08

23 23 23 23 15 C1
35 35 35 30 20

89 70 30 35 23

70-- 89 37 37 30

30 70 70 35

37 37 89 . 89 37

08 08 08 38

56 20 20 53

20 20 56 38 56

65 65 65 53 65

53-- 53 38 56 68

68- 68 53 65 70

38 68 68 80 0 1

80 80 80 89

1st pass 2nd pass 3rd pass 4th pass

Figure 1
- ~ ~ - ~ ~ ~ - - - - - ~ - - - ~ ~ - - - - -

PAIR EXCHANGE

15 08 08 08 08 08 08 08
08 15 15 15 15 15 15 08
23 23 23 23 23 23 08 15
35 35 35 30 30 08 23 20
89 70 30 35 08 30 20 23
70 30 37 08 35 20 30 30
.30 37 08 37 20 35 35 35
37 08 56 20 37 37 37 37
08 56 20 56 53 53 . 38 38
56 20 65 53 56 38 53 53
20 65 53 65 38 56 56
65 53 68 .38 65 65
53 68 38 68 68
68 38 70 70-
38 80 80-
80 89- 0

Pass 1 Fass 2 Pass 3 Pass 4 Pass 5 Pass 6 Pass 7 Pass 8

Figure 2
~71

o

o

o

PDQ FORTRAN COMPILE AND GO SYSTEM

Karl Dunn, Jr.
Rensselaer Polytechnic Institute

PDQ Fortran has been us.edat'RPI since 1 twas

first available, on a completely open-shop basis.

With the arrival of a 1311, it became desirable to

store the prooessor, object programs, data and sub-

rout1nes on disk, at the same time maintaining as

rapid compilation and running as possible with

enough simplicity for open-shop operating.

The resulting system consists of a self loading

(to diek) deck of about 700 cards, plus five one

and two-card programs used to start a compile-execute

job, obtain a punched object deck, store the compiled

portion of an object pro~ram in core image on disk,

or rerun a recently compiled or core-image stored

program. Minimum machine requipements at present

are Model II with special 1nstruction package, ~OK

core, one 1311, and card I/O. No options for use

of a 1443 are available. Compile time is .about 10%

faster over 02 compile time due to no waiting for

the 1622 punch. Load time is about five sec'onde

per hundred cards of object program plus (very

roughly) 2 seconds for each relocatable subroutine

called (disk I/O statements call a special one.)

(1)

The compiler itself takes about 3 seconds to load.

Execution time is the same as for C2-compiled programs.

Disk FIND takes about 8ms if a physical seek is not

necessary; FETCH and RECORD each take about 35ms on

the average if no physical seek is necessary.

ACCEPT and CONTROL have been eliminated in the

interest of decreased run time. Switch options during

compile have been deleted so that switches may be

set for the execute phase; a source list including

addresses and symbol table is available with 9. control

card. PRINT will output to the typewriter only the

first 30 lines and will punch the rest. END, if

executed, instead -of stopping the machine, will

simulate the load key. FIND, FETCH, and RECORD are

used as Fortran lID with two except1ons: List elements

must conform to PDQ limitations and no DEFINE DISK

statement can be used, records always being 1 to 10

variables (and one sector) long.

Input to the system is a source deck p,receded by

a system call card, and if desired a list control card,

and followed by data cards 1t any. The compiler is

loaded to core in one piece (there is no diagnostic

phase) and as long as no errore are detected, the

object program is stored in the disk wQrking area

in card-image format, one card image to a sector.

(2)

o

o

o

; - - n·· .. ! f" - tbdH "Wr·"r·lfT

o

()

At comPlle end, the loading phase begins,

terminating by leaving the complIed program

fully loaded. Execution begins immediately at

address U70CO. If core-image or punched objects

are desired, a PAUSE must be the first executable

statement. At pause, one of the two-card programs

is used to effect the desired storage.

Rerun can start at the above load phase, or

can be started ei ther by u'sing a prepared rerun

card for core-image objects, or by loading a

punched object deck.

'The system occupies two complete cylinders

plus 25 sectors of disk space which can be reallo

cated by minor changes to the self-loading system

deck. This deck expects the Monitor I utility

routines to be on the disk.

Plans for the future (for a library version):

(1) Set up segment link statements for overlay.

(2) Detect undefined variables.

(3) New arithmetic routines for extended exponent
range and optional IO-dig1t fixed point numbers.

(4) Versions for 20 and 40K Model I's.

In summary:

statements added: FIND, FETCH, RECORD, REREAD.
Statements whose functions have changed: PRINT, END.
Compiler operating changes: no switch options, list card.
Sta tements deleted': CONTROL, ACCEPT.

(3)

o

o

w---

o

o

•

GENERAL PURPOSE USE OF SORT/MERGE, l620-SM-047

Presented at the

1620 Users Group Meeting

October 1965

Fred A. Hatfield
Systems Analyst

New York City

Line Material Industries
McGraw-Edison Company
Zanesville, Ohio

Sort/Merge (1620-SM-047) is an extremely versatile utility
program. It seems ideally suited to the needs of a 1620-
1311 system operating under Monitor 1 where handfulls of
cards are being processed instead of drawersfull. Our
desire was to use this program to simulate the operation
of an 083 Sorter to create a new deck of cards in the
desired sequence. Our approach was to develop a system
which would read a deck of cards, sort them as specified,
and punch out a new deck identical card for card but in
the desired sequence. It is the purpose of this paper
to pass along some of our findings so that others who
find themselves in the same quandary we were with a
manual in one hand and a deck of cards in the other can
benefit from our experience~

The first problem we recognized was that, as received,
there was no provision for getting the resequenced deck
out of the machine. It will read the cards, sort like·
crazy, then go on to the next job. Part of the versa
tility of Sort/Merge is that it gives the user complete
freedom after the sorting has occurred. If Phase 4 is
executed, data records are read into core in sorted
order, then placed in the disk output area. While the
record is in core, one has access to it if one wishes
by specifying a trPhase 4 Users Routine". It is by this
means that you can output the record if.you wish.

To reach 'our goal of a new deck, we provided a Phase 4
Users Routine (Appendix 1), punched the identi'fying
information in cc 21-33 of Control Card 1, provided
for an outp~t area by cc 15-21 of Control Card 3 and
ordered execution of Phase 4 by a 0 in cc 14 of
Control Card 1 and a 1 in cc 33 of Control Card 3.
The name given to the output program is SRTPCH, taken
from'Sort-Punch. Since the user's programs may not
extend below 18950, we arbitrarily chose 19000 as the
core location for our output routing. Appendix A of
the manual states that the field address of the address
of the record passing through core is 02690. Card 1020
of SRTPCH moves this address to a Punch statement, Card
1030 adds one to it to convert it to an alphameric
address, and Card 1040 punches the record in alphameric
mode. (Columns 3-8 of Control Card 1 identified the
input as being alphameric and an BO-column card long).

o

o

o

21' H U IT·h._b···. e $ tt#» hrttttrt'"t t· .. · .. '$\'itt' It*#»'1 tt&"·"· '.'#" "'hiirlirlttrifhiMft# . .··»"#ri6"»· 'W

.'P

o

1"\
~'

•

By branching to 02836, further processing of the record
is eliminated. Having punched the card, we have reached
our goal. By not returning the record to disk, we will
not be using the output area specified in Control Card 3.
We have chosen to use the address of the input area for
the address of the output area to fulfill what appeared
to be the needs of the system, but yet co prevent possible
damage to something permanent if we had guesfLd wrong
about the operation of the system. This turned out to
be a wise move, as we later found that even though we
prevented the movement of the sorted records to the
output area, the O-RM-RM end-or-file indicator was
moved. The first sector of our input area is destroyed.
To prevent this, a separate output area of at least one
sector would be needed.

Other general information concerning our approach (besides
the 80 cc alphameric records and punched output previously
described) is as follows:

1.

2.

3 ·

All input is from one deck of cards.

The output will be in ascending sequence.

Because of the colating sequence of
the 1620, numbers come after letters,
not before as they would on an 083
Sorter. We have accepted this even
though we do not care for it.

The three control cards are read in each time
Sort/Merge is used.

For single purpose, sorting the control
information could be kept on disk. Read
ing the information each time allows
flexibility plus standard procedure.

4. Input and output are not blocked.

Thls saves disk storage space and for
our purposes blocking offered no benefits
that we could see.

5. Hash totals were not used.

To keep the system simple and to include
nothing more than necessary, we ignored
hash totals .

-2-

6. Return to Monitor when done.

7. So far, straight numeric data is handled in
alphameric form for standard procedure
purposes.

The preceding discussion applies regardless of the disk
area used as specified in Control Card 1. To further
simplify use of the program, we determined that our
needs CQuld be met handily by using the 24-cylinder
Monitor work area for both the input area and the tag
file work area. The only disk storage space perma
nently required for the system, then, is the resident
space for the five phases of the program plus the
output routine. This philosophy has worked well for
us even though one pass through the Sorter is sometimes
required to "block sort" the file down into bite-size
chunks. For the sorting we do, we can generally handle
from 1500 to 2500 cards in the 24-cylinder work area.
Great care is taken to assure that the 24-cylinder
limit is not exceeded. If it were, the DIM table would
be damaged.

In calculating the space required, the following information
may be helpful: The input records are stored on disk in
the input area in the order in which they are read in.
From the control field information in Control Card 2, the
sorting information is extracted and a "tag" built up;
one field containing all of the sorting information
correctly positioned as to the relative significance
as specified in Control Card 2. To the low order end
of the tag is appended a sequence number which relates
the tag to the correct record in the input file. To
the tag for the first input reco~d would be attached
the sequence number 1, to the second a 2J to the third
a 3, and so on. 1tlhen input has been completed and the
tag file established, the tags are sorted using two
areas, each beginning with a new cylinder and each
large enough to contain the entire tag file. These
two areas are what is known as the tag file work area.
Upon completion of the sorting of the tags, Phase 4
may be entered wherein the records would be located
from the sequence number in the consecutive tags,
moved into core and, in our case, punched out. The

o

•

()

•

digit in cc 10 of Control Card 1 specifies the number of
digits in the sequence number which will be appended to
the tag. As a matter of practice, we use 4. We normally
expect more than 1000 cards as a maximum but never 10,000.
A larger number in cc 10 would increase the size the the
tag file work area and lower the limit on the number of
records which could be handled by the 24-cylinder work
area, just as more sorting information would.

The instructions for calculating the space requirements
of the input area and the tag file work area as given in
the manual are quite com~lete. We assume that one addi
tional record in the input file is taken up by the zero
record mark--record mark end-of-file indicator. Appendix
B gives examples of the' calculations" and the necessary
control cards for two of our applications of Sort/~erge.
Since, in most cases, the input area has been the limiting
factor, the number of data records comes out to be one
les.s than a whole multiple of 20 J 000/160 or 125 which is
the number of 80-column cards which when converted to
two-digit representation, will fit in one cylinder. The
one, of course, is for the zero-record mark-record mark
end-of-file indicator.

Anoth~r small point came up during the loading of the five
phases of the program. Care must be taken to insure that
the five phases are aSSigned consecutive DIM numbers.
Once these numbers are known, they should be specified
on the DELET and DLOAD cards (reloading is necessary as
new mod levels arrive) to insure that the programs stay
in Bequence and that you know where they are. We
assigned SORT, SORTI, SORT2, SORT3, and SORT4 to the
five phases. The name and DIM number may be used on
the DLOAD cards but only the DIM number may be used on
the DELET cards. While the name is not used except on
the XEQ SORT card, we like to have all programs identi
fied in the Equivalence table by name.

Whi'le SM-047 is not a cure-all, it has been a great time
saver for us. Future plans call fo~ using it to up-date
permanent disk files with data recorded by Fortran pro
grams and later used by Fortran programs. Hash totals,
blocking and input editing will be investigateq. To
really get a, feel for what is happening, sort a small
number of records by the simple means I have described,
then dump those portions of the disk and see what it
looks like •

-4-

~79

I know of no better way to learn how to make use of a
system as versatile as Sort/Merge. I hope that these
comments will be helpful and that it will put others
on the road to another worthwhile application of the
1620-1311 and Monitor 1. I would be interested in
hearing from others who use the program, so that we
can make better use of it.

-5-

o

o

o

o

•

APPENDIX A

Users Output Program Called by Phase 4

**JOB 5

**5 PS 5

*L 1ST TYPEy1R ITER
*STORE CORE U1AGE
*NAt1E SR TPCH

01010 DORG
01020 START TF
01030 AM
o 1 Ol~O PUNCH WACO
01050 B
01060 OENO

END OF ASSEt~BLY.

lc)OOO

Version I
(Punches Cards)

PUNCH+6,2690
PUNCH +6,1,10

2836
START

19048 C ORE pas I T IONS REQU IRED
00006 STATEHENTS PROCESSED

19000
19000 26 19030 02620
1 90 1 2 11 1 9030 0000 1
19024 39 00000 00400
19036 1~9 02836 00000
19000

OK LOADED SRTPCH 0175 1051770011900019000*

END OF JOB

A-I

APPENDIX A

Users Output Program Called by Phase 4

t:J:JOB 5

:t:f:S PS 5

"'-L f S T TYPE \'~IR I TEP
*STORE CORE IMAGE
-,'''NAME SR TPCH

01010 DOf'G
01020 START TF
01030 AM
01010 TF
01020 A~1
01030 TF
'01031 BNC 1
01032 RCTY
01033 WATY
01034 BNC2
01035 WAPT
01036 BNC3
01040 PUNCH WACO
01050 87
01040 RM DC
01060 DEND

END OF ASSEMBLY.

\\~:rs ion 2

19000
PUNC H+6 ,2690
PUNC H+6, 1
')\-+30 ,PUNCH+6
-,'(+ 1 8, 1 60
,RM
-,'~+36

PUNCH+6,,6
*+24
PUNCH+6, ,6
*+24

2836
2,@
START

19154 CORE pas I T IONS REr,U IRED
00016 STATEMENTS PROCESSED

19000
19000 26 1')138 026<)0
19012 1 1 1 ~H 3B OOO()l
19024 26 1905l~ 19138
190]6 1 1 19054 50160
1901}B 2(., 00000 19152
19060 l.~ 7 19096 001nQ
19072 34 00000 00102
19084 39 1913U 00100
19096 47 19120 00200
19108 39 1913R 00200
19120 47 19144 00300
19132 39 00000 00400
19144 49 028~6 ooooa
19152 00002 0*
190')0

OK LOADED SRTPCH 0175 1051770021900oT9000*

END OF JOB

Sense Switch Settings

1 On to Type
2 On to Punch Tape
3 On to Punch Cards

(At least one switch must be on to get any results.)

1\-2

o

OJ

o

'wtrerr .. nne'··

o

o

•

APPENDIX B

Example 1

Sort KvJ"IC Index Cards

These cards are to be sorted by 25 columns, cc 37-61.

DeterGine maximum number of cards and disk sector
a (1 j r F f: S C: S •

Tlai~ size (25 x 2) + 4 = 54 digits per tag

5000 - 54
X = 54

= 91 tags per quarter cylinder

No. of Records = N~ of Records
N = 4 x 91 364

Tag File Work Area = 2 x N
160 = (No. of

Input Area = (No. of Records + 1) x 20000
Records + 1) x .008

160 = digits per input record (80 cc x 2)

20000 = digits per cylinder

No. of
Records ra~ File/. N

Tag File
Work AreaJ, 2N

Input
Area Total

999
1499
1999

3 ~ 2. 75~ 5 4.12
6 5.5)

6
10
12

8
12
16

14
22
28

If the tag file work area of 10 cylinders were filled,~ the
input area required would be 5 x 364 x .008 = 14.6 or 15
cylinders. This exceeds the 24 cylinders available in
the work area. The number of records which can be sorted
is; therefore, what will fit into a .14-cylinder input
area .

Fourteen divided by .008 gives 1750 including the
O-RM-RM. The number of KWIC Index Cards which can
be sorted in the Monitor work area is, then, 1749.
To check our calculations,

Tag size = (25 x 2) + 4 = 54 digits per tag

5000 -54 = 91 tags per quarter cylinder
X = 54

1750 = 4.8 or 5 cylinders per tag file
N = 4 x 91

Tag file work area = 10 cylinders

Input area = 1750 x 160/20000 = 14 cylinders

Total space required = 10 + 14 = 24 cylinders

The disk sector address of the input area is
specified in Control Card 3 as 100000, the
beginning of the work area; the disk sector
address of the tag file work area is specified
as 102800, fourteen cylinders higher. The
complete control cards for the application is
as follows:

Control Card 1 Control Card 2 Control Card 3
cc Contents cc Contents cc Contents

1 J 1-4 0073 1~-6 100000
2 1 5-7 050 7 0
3 0 71, 72 01 15-20 100000
4 0 80 2 21 0

5-8 0160 22-27 102800
10 4 28 0
14 0 29 0
20 0 30 0
21-25 19000 31 0
30-33 0283* 32 0
34 0 33 1.
38 0 34 0
80 1 35 0

80 3

*Unique to our case. This is where Monitor loaded the
SRTPCH program.

B-2

o

c

o

•

APPENDIX B

Example 2

Sort Test Cards

This application consists of sorting by columns, 11, 12,
13, 7, 8, 9, 5, 6, 30, 31, 32 in descending order of
significance. Again we wish to determine the maximum
number of cards which can be accommodated by the Monitor
work area and the addresses involved.

In this example, we have four control fields to be
specified in Control Card 2. The most significant field
(last sort) is a three-column field consisting of
cc 11-13. The next to last field to be sorted on is
cc 7-9; the second field is cc 5-6, and the first sort
is to be on cc 30-32. The calculations are as follows,
assuming the maximum number of records to be 9999.

Tag size = (11 x 2) + 4 = 26 digits per tag

X =
5000 - 26 = 191 tags per quarter cylinder

26

No. of Records = No. of Records
N = 4 x 191 764

Tag File Work Area = 2 x N

Input Area = (No. of Records + 1) x
(No. of Records + 1) x .008

1.60
20000

160 = digits per input record (80 cc x 2)

20000 = digits per cylinder

Input

=

No. of Tag File
Records Ta~ File z N Work Areal. 2N Area Total

1499 2 4 12 16
1999 3 6 16 22
2499 4 8 20 28

B-3

If the tag file work area of 6 cyl~nders ~are filled, the
input area required would be 3 x 764 x .008 = lS.4 or
19 cylinders. This exceeds the 24 cylinders available.
The maximum number of records which can be sorted, then,
is the number which will fit into an IS-cylinder input
area. Eighteen divided by .008 gives 2250 which includes
the O-RM-RM. The number of test cards which can be sorted
in the Monitor work area is 2249. Now to double check.

Tag size = (11 x 2) + 4 = 26 digits per tag

5000 - 26 = 191 tags per quarter cylinder
X = 26

2250 - 1 N = 4 x 191 - 2.95 or 3 cy inders per tag file

Tag File Work Area = 6 cylinders

Input Area = 2250 x 160/20000 = 18 cylinders

Total Space Required = 6 + IS = 24 cylinders

Using a disk sector address of 100000 for the input. (and
output) area, the address of the tag file work area would
be 103600. The three control cards for this application
are as follows:

Control Card 1 Control Card 2 Control Card 3
cc contents cc contents cc Contents

1 J 1-4 0021 1-6 100000
2 1 5-7 006 7 0
3 0 S-ll 0013 15-20 100000
4 0 12-14 006 21 0

5-8 0160 15-1S 0009 22-27 103600
10 4 19-21 004 28 0
14 0 22-25 0059 29 0
20 0 26-28 006 30 0

21-25 19000 71-72 04 31 0
30-33 0283* 80 2 32 0

34 0 33 1
38 0 34 0
80 1 35 0

80 3

*Unique in our case J the DIM number of SRTPCH our output
program called by Phase 4.

B-4

-0

0

()

•
TITLE

AUTHOR

DESCRIPTION

METHOD

o
RESTRICTIONS

EQUIPMENT

PROGRAMS

TIME

•

ABSTRACT

MONITOR I SYSTEM PROGRAM PACKER

Jack B. Watson, Texas Gulf Sulphur Co. #3275

The MONITOR I PROGRAM PACKER is a Series
of six programs that are designed to pack the cylinders
under Monitor in which programs and/ or data is stored
for greater utilization of the available areas on the
disk pack. There is no reassignment of DIM numbers
or programs which are file protected and/or perma
nently assigned.

The DIM entries are sorted in descending order by
sector length, and then the programs are relocated on
disk beginning with cylinder 25 in the order in which
their DIM entries were sorted. A new Sequential
Program Table is then generated from another sort of
the DIM Table in cylinder order.

This set of programs was written for a 1620 Monitor I
System which had no modifications to the original
systern layout.

IBM l620-20K, 2 - 1311's, 1443, additional instr.uctions
and indirect addressing.

Six prograrns, source language SPS lID; the last program
is a special table dump on the 1443 for verification,
which is optional. All card decks are in system output
format and operate under Supervisor Control.

Process time for all. p:tograms is approximately one
half hour .

INTRODUCTION

The purpose of this report is to describe the function, logic, and opera

ting procedure of this set of programs.

The Monitor I System does not provide a simple or easy method for

maintaining the greatest possible available sectors for storing User- programs

or data. Over a period of time, program additions and deletions tend to leave

many gaps between the programs or data that Users store under Supervisor

Control. Depending on the User's applications and requirements, a real problem

can exist if it is necessary to maintain two Monitor disk packs or revert to

loading programs via cards. This becomes more evident if many of the pro

grams utilize Call- Links for jobs too large for one program and where available

machine time is already at a minimum.

The set of programs described in this report will not eliminate the pro

blem, but will provide Monitor packing ability until there is no significant space

left on the Monitor I 'disk pack for User storage.

o

o

o

)IM

o

A

B

C

o

D

E

•

PHASE I

PHASE II

PHASE III

PHASE IV

PHASE V

PROGRAM DESCRIPTION

A TRACK MODE DISK DUPLICATOR Program is used
to copy the Monitor I Disk Pack on Drive "0" to another
Disk Pack on Drive" 1".

This phase is a DIM TABLE SORT Program which first
will read the DIM Table into core and put the DIM
Number in positions 16-19 of its corresponding DIM
ENTRY and then output the Table to Drive "0" address
200. Next, it will sort the DIM ENTRIES in descending
order by sector count and output the resulting table to
Drive "0" address 00000.

This Program will utilize the modified and sorted DIM
Table Entries stored on Drive Ita" by Phase II and the
duplicated Monitor Pack on Drive" 1" to pack the pro
grams stored under Monitor. It first notes the sector
length and address of the program from the sorted DIM
ENTRIES stored on Drive "0", gets the program off
Drive "1", searches an In-Core Availability Table for
the first available space, up dates the original DIM
TABLE on Drive "0" sector address 4800, and then
relocates the program accordingly. No Monitor I
routine is relocated nor is any User program which is
perITlanently assigned or file protected. There is no
restriction on the length of a User's program.

This program sorts the DIM TABLE with its corre:
sponding DIM number into cylinder order and outputs
the resulting tq.ble on Drive "0" sector address 00000

as input to Phase V.

A new Sequential Program Table is generated utilizing
the DIM Table sort o~ Phase IV and is written over the
previous table from sector address 19801-19880 on
Drive "0". This program completes the packing of the
Monitor I Disk Pack on Drive "0" .

F PHASE VI

2

This program prints a special formated dump of the
DIM TABLE, EQUIVALENCE TABLE, and Sequential
Program Table on a 1443 on-line printer for verifica
tion. This is an optional part of the System and is not
required for Packing the Monitor Disk. It is the only
program utilizing the 1443 Printer. A card output pro
gram is optional.

~70 -

o

o

o

o

PHASE I

o
PHASE II

•

PROCEDURE

Use the Phase I program deck to duplicate the Monitor

pack on Drive ItO" to another pack on Drive" 1". It operates

under Monitor Supervisor, and a Cold Start Card should be used

to load the program. The program will run about seven ITlinutes.

When the program is loaded, the message "Turn On Write

Address Key" is typed out. After the Write Address Key has

been turned on, push Start on the 1620 for processing.. The

prograITl will end on a Halt instruction after typing the ITlessage

"Turn Off Write Address, Key. fI The Write Address Key must

be turned off before entering .Phase II.

The ,Phase II Sort Program should be loaded with a

Cold Start Card. Phase III, IV, V, and VI can be stacked, in

order., behind ,Phase II in the card reader hopper. A 11 JOB"

card and an "XEQ" card with a 5 punched in cc 27 are required

header cards preceeding each prograITl. An "END OF JOB"

card should follow each program.

Phase 1'1 execution tiITle is approxiITlately 8 minutes.

No operator or erro.r ITle ssages are required and the prograITl

ends on a Call EXIT .

I~
2

PHASE III The Phase III program is loaded under upervisor o
Control at the completion of Phase II. Execution time is

approximately five minutes.

Phase III begins execution with the message "SWl on

to Use DIM 1 70". If Switch 1 is turned on" all programs with

DIM numbers less than 1 70 will not be relocated. This en-

compasses all Monitor I System Programs since DIM 170 is

the first available to the User. If switch 1 is off, the message

II TYPE DIM NO, XXXX'i is typed out. You may enter a 4-

digit DIM Number greater than 1 70 where you wish program

packing to begin and press the R-S key for execution. No other

messages are required. The program ends with a CALL EXIT

to Monitor Supervisor for loading Phase IV.

PHASE IV The Phase IV sort program is loaded at the completion

of Phase III. Execution time is approximately eight minutes.

No operator messages are required; and, upon completion of

the DIM TABLE SORT, control is returned to Monitor Supervisor.

PHASE V The Phase V Sequential Program Table generator is

loaded under Monitor Supervisor at the cOTIlpletion of Phase IV.

A sequence check is performed on the sorted DIM Table Entries;

and, if the Message "DIM Table Out Of Sector Sequence" is

typed out, return to Phase IV and begin execution from that

()

r--

o 3

PHASE VI

•

point. Execution time is approximately one minute; and, upon

completion, control is returned to Monitor Supervisor.

The Phase VI program is loaded by Monitor Supervisor.

Execution begins with the program name being typed out and

then the message "Enter Beginning DIM No., 3 Digits, SW4 ON

IF ERROR" is typed. A three-digit DIM number must be en

tered and the program will begin processing from that point.

This is the only program which utilized a 1443 on-line printer.

If an error is made while typing the DIM number, turn switch

4 on and press R-S Key, and the program will start over.

Switch 4 must be turned off to continue. For four hundred DIM

ENTRIES, execution time is approximately five minutes .

ANOTHER DISK PACKER AVAILABLE

The Engineering Computing Laboratory of the University of Wisconsin,
(User 3155) announces that they have in the library a Disk Packet for
~onitor I which requires only one disk drive and which requires about
10 minutes to repack the entire disk.

Library number is 1.6.137.

o

o

c

ti -

o

o

•

THE RIT PRE-COMPILER

by

Frederick R. Henderson
Director, Computer Center

Rochester Institute of Technology
Rochester, New York 14608

(1620 User #. 1393)

Presented at
1620 Users Group Joint Meeting

Americana Hotel, New York, New York
October 8, 1965

THE RIT PRE-COMPILER
by Frederick R. Henderson (# 1393)

ABSTRACT

Most Fortran Compilers for the IBM 1620 lack adequate
diagnostics for beginning students, and the use of a Pre
Compiler is recommended. For installations with only 20K
storage, the IBM Pre-C0mpiler is the best that is available,
and it works well with the Fortran with Format Compiler.

Many schools with 20K, however, are now using PDQ
Fortran, or if they have a 1311 Disk, are using Fortran II-D.
Both of these compilers have added language facilities not
available in Fortran with Format, and the IBM Pre-Compiler
prints out too many spurious error messages when used with
PDQ or Fortran II-D. To help our new students in debugging
their programs, we have modified the IBM Pre-Compiler to
make it more useful with PDQ Fortran and Fortran II-D.

There are presently three card versions of the RIT
Pre-Compiler. The first is for use with PDQ Fortran; the
second is for Fortran II-D without a printer; the third is
for Fortran II-D with a 1443 Printer. These are not
completely compatible with their respective compi1ers t but
they are more useful than the IBM Pre-Compiler for
beginning students.

SUMMARY OF CHANGES INCORPORATED IN RIT PRE-COMPILER

Changes applicable to PDQ and II-D For~ran
1. One cont1nuat10n card allowed on 170 and FORMAT statements.
2. Undefined variables in statements like N = N + 1 detected.
3. (I A I!, type FORMAT accepted (also Ii D" for PDQ).
4. \IIF (SENSE SWITCH 9)') accepted.
5. All I(C I, Comment cards printed regardless of switch settings.

Additional Changes under Monitor I (PR-025)
6. I/O statements conta1n~ng impl1ed DO-loops accepted.
7. ·'CALL EXIT" recogn~zed as valid statement.
B. Program called by "tt PCOM If Control Card and on completion

of job, branches back to t*Moncal".
9. Program switch 1 only used (ON to print all state-ments).

10. ~, *' .. cards ahead of source deck and all cards after "END
ignored. .

Further changes under Monitor I with Printer (PR-033A)
11. All output on pr1nter except ~''t ~ " cards.
12. \' jI:.i Fortran Control Cards printed but not checked.

o

o

I .•.

I

o ~

I

o

o

•

THE RIT PRE-COMPILER
by Frederick R. Henderson (# 1393)

The IBM Pre-Compiler (FO-006) was designed for use with
Fortran with Format on an IBM 1620 with only 20K memory and no
special features. It works well, typing out all statements
in which errors are detected and giving an appropriate error
message. And it is oriented toward the beginning student.
In contrast, most compilers contain limited diagnostics,
and these are oriented toward the experienced programmer. For
example, Fortran II-D intentionally does not detect most
undefined variables; this is a very common error with begin
ning students. Also most compilers do not type out the
erroneous statements; they merely give a cryptic statement
reference which beginners find difficult to interpret.

Many installations with 20K memory are now using PDQ
Fortran, or if they have a 1311 Disk Storage Drive, they are
using Fortran II-D. Both of these compilers have added
language facilities not available in Fortran with Format.
Some of these are useful only to an advanced programmer, but
the provisions for continuation cards, fiA'I and "D' type
format statements, and input/output in matrix form (II-D only}
are of immediate use to beginners. If the IBM Pre-Compiler
is used with these compilers, it prints so many spurious
error messages that the results are of little value in
detecting real errors.

Also the IBM Pre-Compiler fails to detect one very common
beginning error; namely, an undefined variable in a statement
like N = N + 1. Since failure to initialize is a very
frequent beginning error, it would be helpful if the Pre
Compiler could detect this type of mistake.

While attending an NSF sponsored Summer r.omputer
Conference at Seton Hall University in June, 1965, the author
undertook the task of modifying the IBM Pre-Compiler and
succeeded in providing for one continuation card on FORMAT,
READ, PRINT, PUNCH, and TYPE statements. If Ad and \' D II
formats, and an dIF (SENSE SWITCH 9)1) instruction were also
included. SUQsequently additional work at the Rochester
Institute of Technology Computer Center resulted in further
improvements and modifications to adapt the program to a
1311 Disk and to a 1443 Printer.

There are, therefore three card versions of the RIT
Pre-Compiler: one for PDQ Fortran, one for Fortran II-D
with a Disk only, and one for Fortran II-Dwith a Disk and
a Printer. Details as to the changes incorporated in each
on~ are summarized below.

The principal difficulty encountered in modifying the
IBM Pre-Compiler for PDQ Fortran was the fact that the program
required almost 20K of core; there was, therefore, no place
to put the desired modifications. However, our experience
was that beginning students almost never used all of the
space allotted to the symbol table, and it was felt that we
could recapture perhaps 1,000 cares from the symbol table.
Also it turned out that the cores from 402 to 1207 were used
only to initialize the program the first time it was read
into core so that we could gain 805 cores here by overlaying
the original program. Also we gained 56 cores (enough to
take care of the I' A II format) by elimina ting the '(Clear Beta 11

routine at 14836 since this is not needed for card input.

The first major modification undertaken was to provide
for the processing of one continuation card. To do this it
is necessary to reserve an additional area in which to store
the next card before processing the first card; this storage
is located from 00900 to 01059 with a record mark in 01061.
If a digit in column 6 of the next card indicates that it is
a continuation card, the appropriate changes are then made
in both card images so that they appear to the Pre-Compiler
to be separate cards and are so processed. This was done
instead of trying to combine the two cards into one core
image in order to save core storage space and to avoid
having to re-write the entire Pre-Compiler. The first
card must end with a comma or slash as specified in PDQ
Fortran.

The other major modification for use with PDQ Fortran
was designed to detect an undefined variable in a statement
like A = A + 1. Our procedure here is to take the symbol A
(for example) on the left of the equal sign, out of the
symbol table temporarily while the Pre-Compiler is analyzing
the expression on the right of the equal sign and then to
put it back before reading the next card.

Three minor changes were made as follows. To render
the It A" and \\ D H type formats acceptable, these are simply
changed to "I" type in core image and then processed.
Similarly tC IF (SENSE SVfITCH 9)" is handled by changing the
9 toa 1 before it is processed. Finally, all IIC" Comment
cards are printed regardless of switch settings.

If a 1311 Disk is available, there is, of course, no
problem of finding storage space for changes; these can be
put on the disk and called as overlays when needed. This
should make it possible to provide for more than one continu
ation card if desired. This, however, has not been done;
instead the PDQ version was utilized simply to save pro
gramming time.

-2-

o

o

o
.~

j
! ,I

I

o

•

-

It is obviously desirable if possible to put the Pre
Compiler under Monitor I for Disk operation, and this is
done by substi tuting a Monitor Control Card, ,l'1"'* PCOM H, for
the '~t::r TYPE II card which we never used. The Pre-Compiler
is then stored on the disk and called when needed. vvhen
processing of a source program has been completed, instead
of halting, the Pre-Compiler branches back to II Moncal Ii and
\\END of JOB;1 is typed out.

Fortran II-D permits the use of Matrix Input/Output
statements, and if the Pre-Compiler is to process such a
statement containing an implied DO-loop, the DO-loop must
be deleted. This is done by first checking all Input/Output
statements for equal signs. If one is found, an overlay is
called in from the disk which converts the original core
image to one of standard form. For example: READ 7,
(A(N), N = 1,9) becomes in core image READ 7, A(l) and is
so processed. This procedure does not check the subscript
to see if it matches the DO index; perhaps this can be
included at a later date. Indirect addressing has been
used in this overlay, but not elsewhere.

Several other minor modifications \'1ere made as follows.
A check for t'CALL EXIT I) is made just before the regular
check for IlCONTINUE\' since both statements begin with "C,1
and have eight letters. In order to operate routinely under
Monitor I, all program switch options except 1 (to print
out all statements) have been eliminated, but these can be
very easily activated again if desired. The statement
'/ENTER SOURCE PROGRAM THEN PUSH START tJ has also been deleted.
Also any ~*ocontrol cards ahead of the source deck and any
cards after the \.1 END") card are simply ignored by the Pre
Compiler. Lastly, in the event of a check stop, it is
possible to branch manually to 17600, transfer control
back to '(Moncal"', and proceed with the next job.

For installations which have a 1443 Printer in addition
to a 1311 Disk, the program has been modified further to
transfer all output except the Monitor Control Cards from
the typewriter to the Printer. Fortran v. *" (-I Control Cards
ahead of the source program are also printed but not checked
for validity. This version1 of course, operates under the
Printer version of Monitor 1 (PR-033A) instead of the
standard version (PR-025).

One minor drawback has resulted from these modifications;
sometimes the error messages indicated do not seem to make
much sense. This is because in some instances the core image
has been changed before being processed by the Pre-Compiler.
However, it is the original source statement that is printed
out, and usually the error is fairly obvious even though it
isn t exactly the one designated.

-3-

- , "7iZ7"."'"

A preliminary version of this program was used success
fully this past summer in an NSF Summer Institute in Computer
Programming at the Rochester Institute of Technology. The
final version, however, has not yet been extensively tested,
and the author will greatly appreCiate learning of any (tbugs 'l

which develop in actual use.

-4-

o

o

o

()

o

•

ABSTRACT

AN OPERATING SYsrEM FOR THE
1620/1443 CONFIGURATION

Eo J 0 Orlh j Jro
W .. Ao Norton

Southern Services, Inco
Birmingham, Alabama

presented at the
1620 Users Group Meeting

October 5~Bj 1965
Americana Hotel

New York City

An operating system has been. designed incorporating c.ertain of the features
of the di3k~o:rientad monitor systemo The operating system permits processing of
a. stacked file consisting of many groups of program-data chained together and re
quiring no operator intervention between programs 0 A FORTRAN error message w.ill
abort a run and automatically load the next program.. The operator has complete
control over the operating system through console switches 2 and 3.. Switch 2 up
vrill terminate processing on a job and cause cards to be .passed through the 1622
until the next program is reached.. S'Witch 3 up bypasses the automatic abort
feature on FORTRAN errors.. The system has been implemented in FORTRAN II on a
60K 1620=II/1443~I system at no core cost 0 The FORTRAN II implementation on a
1620-1 ~~uld cost approximately 200 locationso SPS implementation costs are
variable but small.. Compilation/assembly procedures are not included at present 0

The operating system is but one aspect of Southern-Services' total approach to
automating routine ~ repetitive work"

ENVIRONMENT

The Southern Services Computer Center is a job shop operation for engineering
problem solving" The average problem runs in about 10 minutes on the 1620-11 ..
The ~rkload is heavy~ For instance, during September 1965 computer clock time
amounted to 203 hourso

In such an environment, an operating system has two advantages~
10 Lost machine time between jobs is minimized, and
20 Data handling errors are minimized since all data files

are prepared off-line j away from the pressure of on~line
-deck shuffling 0

SOUTHERN SERVICES OFERATING SYSTEM (SSOS)

Requirements for a basic operating system may be summarized as follows:
A. Programming, operation, hardware

10 The output device must provide a file of infinite
length" }

2 .. Programs must be console switch indep~ndento

:JOI

It is generally desirable to program certain error checking routines into
each programe If catastrophic data errors occur the programmer may initiate
search for an EOJ card at source program level!>

OBJECT-TIME TYPEWRITER MONTIOR

Each program will skip a line and type "GO NNNN~n before reading the BOJ
card. The monitor message is completed on normal exit by a repetition of the
program number. An abnormal exit due to any of the three abort procedures is
indicated either by the repeated program number with a flag over the low order
position, or the complete absence of the repeated program number.

MOD IFIC AT IONS TO FORTRAN II

The prime mover in the operating system is a relocatable
routine called NDJB.. NDJB has two functions~

10 Scan all input cards for an EOJ card, and
2. Allow termination of a run under program controlo

As sho'WIl in the flow chart, NDJB reads a card NDj i3 (I.)

into the FffiTRAN input buffer. If this _card
is an EOJ card the very next card is assumed
to begin a new programe If it is nqt an EOJ
card and if the argument is positive control
is returned to the mainline program. If the
next card is not an EOJ card and if the argu
ment is negative, cards are passed through
the reader until an EOJ card is encounterede

FCRTRAN II Library

-r-~==t----] T'lp e I-

I

rvv\CIiI E 6/J
S\mv\a."i€.

I ~z.c. LOR-I) h....e'l I

Once a card has been read into the FCRTRAN input buffer by NDJB the buffer
must be scanned under the appropriate format 0 The FORTRAN II ACCEPT TAPE routine
has been modified by killing that section which initializes the I/O buffer and
reads a tape record, so that the buffer may be reread by the statement AC'CEPT
TAPE n, Listo The buffer may be reread by as many ACCEPr TAPE statements with
differing formats as necessarye

Advantage may be taken of certain features of the 1620-11, thus allowing all
coding required by the operator abort and FORTRAN error message abort procedures
to be squeezed into the 11K subroutine decko The specific features are transmit
floating (FRFAC and TOFAC) and add hardware (no add tables).

IMPLEMENTATION USING SPS III

Certain macros were originally planned to simplity use ofSSas in SPS III.
This has been abandoned for the following- consideratio~s:

I. Relatively few programs are coded in 3PS 1110
2. SPS III assembly procedures would be complicated since all

assemblies would require loading the subroutine deck to
pullout the macros.

3. It is very simple to code the operating _system logic in-line.

AVAilABILrry

Those interested in a detailed description of the operating system may
obtain such by writingfE. J o Orth, Jro, Southern Services, InCa, PO Box 2641,

3

o

o

,". t Of :t we ."Ph. i: t,U

o

•

"fflff

PENNSYLVANIA TRANSFOmmR DIVISION
11 cGraw-Edis on Canpany

FORTRAN LABEL llJDEXER

by

Lawrence S. Powell

For presentation at the Fall, 1965, 1620 Users Group lJIeettng

October 6 - 8

New Yor~, New York

FORTRAN LA BEL INDEXER

General Description

A Fortran label in the FLI is a fixed point number, floating point
numbe.r, statement number, or variable. The FLI provides an ordered listing
(sequential and alphabetic) of each label used in a Fortran source program.
The fixed and floating point numbers have the card sequence number of the cards
on which each is used to the right of the label. The·statement numbers or
variables have the card sequence number of one definition to the left of the
label and any other definitions are listed on a separate line designated by
an asterisk (*). All references of a statement number or variable appear to
the right of the label. statement numbers or variables may appear without
eithe-r a definition or a reference.

Background and Uses

The three main reasons for the development of the FLI were (a) to
allow detection of inefficiences or non-critical errors in a Fortran program
not detected by a pre-compiler; (b) to serve as an aid in the debugging of
a program; (c) to serve as an aid for modifying or adding to a present program.

A program can be compiled and run without error even though it con
tains statements that are never referenced or variables that are developed
but not used. Both of these conditions waste core and j_ncrease compilation
time and the second increases execution time. The lack of a reference for a
statement number or a variable points out both conditions at a glance using
the FLI.

The identification of the card location of each statement number
makes following the flow of a program much easier. The identification of each
definition and reference of a variable lets a prograrr~er make sure that the
proper calculation is us~d in conjunction ~ith each use.

The FLI, in providing a list of all statement numbers and variables,
shows the programmer what cannot be used in any addit1.on to the program and by
using a listing of the sequenced deck, he can tell what each variable represents
and where it is used.

Some Specifics

The FLI is written for use with lB-I Fortran/Format, PDQ Fortran, and
,PI:Q C4D. It will not handle the six character variable of Fortran II. The
FLI can use the card sequence numbers already on the source deck or develop new
sequence numbers and output the new sequenced deck either on the typewriter or
on cards. A provision for large programs that overflow the allotted symbol
table space is provided to break the source deck and output two separate inde~es.
The FLI should handle any program that· can be compiled without overlay on the
users machine and in one case bas processed, on a. 40K machine, a program that
would use 89K if cOr.1piled v.tithout ov-erlay. The FLI takes about 8K of storage
itself with each label taking lO.SN digits where N = number of uses. Arrays are
treated the same as unsubscripted variables.

At present, output is either by cards or typewriter but a printer
version should be available soon after the present version. I hope to submit
the FLI to the libra~ in late October or early November.

o

()

-0

()

• ••• __ ._ __ • __ • ____ "o __ _

SAi'1PLE PROGRAr.1 FOR FORTRAN LABEL ItlDEXER
o I r '1.ErJ S ION.A(10) , B (5, 5)

1 READ 100,(A(J),J=1,10),AC
... .00.2,,_,1= ~L_5 __

B(l, I)=A(I)"kAC
2 n C21 J J=..SQRT (~. (I)~I, 1\ C)

I F(AC)3, L~,C
I\C:=AC~9 L_

DO 5 1= 1,5
.. JtC3.~J.J_=: A Lt:.±5 .. ,) ~1~.2 -'to 0 •. ,9) . .1., _ ..
8(4,1)=0.

5.3.(5,.1.J:::_0 ...
GO TO G

. 3.- PIU.tl I_-rl.DL-I-LI3_Cl.,J.l,_1 ~l.,. 5},.(B L2, I J L I. = I, 5)
GO TO 1

, ... _. __ " _____ h_ll ACT = J\ C -:-L ___ . _______ ", ... _._._ _____ ____ , _, ..
8(·1,1)=9.

__ .. _ ..Gll_ID._3 ____ ._._,._ .. ____ .. _. _,_._ __ __.,,___ .
100 FORr,1AT(11F6.0)

.... _1 Ql£OBL1ALlll21 _____________ . ___ . __ ___ . __ .. _
102 FORrAAT(10F8.2)

: ,_ " .. ~."_,, .. ,," __ E.l.L.N ",,-0 ____ .

.. _" EJX __ C_.OliSTADL_. __ ._._. ___ . _________ .. __ "
1 0016 0016 0013 0013 0013 0008 0004 0003 0002

__ .. __ .. __________ 2 __________ fLQ1.? ___ J!JLQ_?_ __ ._._
3 0009
4 0010

'---5~-- -6 0 i'36oI3-~5«Yi~f'~-(nf69··-- c)'o·os·'''·o a b 3
. 10 0002 .. 0----------------... ------.-.. ---.----.-----.---------.... ---.--. --- --

_______ £L9 AT J N G CON S T A NT . _____ . ________ . ____ . ___ _ .. ,,____
.00000000 E 00 0011 0010
t.l0000000 E 01 001~5 __
.90000000 E 01 0016 0007

_____ . __ .. 2.llQJJ6710 E 04_ 0 009 _______ . ___ . ____________________ . ____ .. __ _____ . _______ . __ .'_"

______ SIA T E r·1E t J T
0002

...... ,_~_OQ05
0013

... __ ._J1Ql_5
0011

r.1Uf'lBE RS
1
2

0014
0003

3 0017
4 0006
5 0008
6 0012

0018 100 0002

0006
---- ._------_. __ ._ ... - _-----... _--

0019 ________ 1~0~1= ________________________ _

0020 102 0013

VAf11ARLES
0002 __ ---=A-'---_ 0009 0005 0004

.~----

0007 AC o 0 15 0 00 7 0 0 06 0 0 as 0 00 4 0 002
0015 ACT

.........;...------~--------,-------------,-~.~--~ ... ~-.~ ~- ---

0016 R 001, 0013
___ ·---',..O::....::0~11 0010 0009 0005, 0004

0013 0013 'Q013 0011001000090009 00b5-ooCfS-'cfO-04"0004

__ '-.-0 0-:-2::-----·-J-----"iI.......:(~.......:~....:::.~. ~ 0008 0003

SQRT 0005

-----.. · .. ------3·O~-

0000
0001
[) 002
0003
0004
0005
0005
o G07
0003
D 009
0010
0011
;)011.
0013
00 1 L~
0015
Q 016
0017
0013
0019
0020
0021

Compute r Cente r

RANDOLPH-MACON COLLEGE

Ashland, Virginia 23005

PLOT SUBROUTINE FOR PDQ FORTRAN

Richard E. Grove

A paper given before the 1620 Users Group Joint Eastern-Midwestern

Meeting, Americana Hotel, New York, October 6,7,8, 1965.

A relocatable subroutine known as P LOT has been added to the Randolph

Macon Computer Center PDQ FORTRAN system. This subroutine allows the

programmer to put arbitrary single alphanumeric characters in any desired

card column for the purposes of generating graphs of one or more variables or

the plotting of "contour maps". The form of the statement is

DUM = PLOT (ARG)

where DUM is a dummy variable used only because this plot techniques utilizes

the relocatable subroutine device. The variable on the left of the = sign (DUM

in this case) should not be used in any arithmetic or logical operations since the

subroutine generates no numerical value for this dummy variable. Any vali-d

floating point variable name may be used instead of DUM. The argument, ARG,

in the above statement may be any valid floating point constant, floating point

variable, or floating point expression within the restrictions below:

1. When ARG is positive, it should take on numerical values of the form

XXXX. (four digits, the leftmost non-zero, followed by a decimal point).

2. When ARG is positive and of the form specified by (1), two pieces of in

formation are contained within this notation: (a) The two leftmost digits

specify the alphanumeric character which is to be used to plot the point

and the two rightmost digits specify the .card column into which this char

acter is to be placed. The character codes are shown in a table below.

Example 1. GARB = PLOT(4123.) will place the charact'er A (41 in
tw.o digit alphameric notation)
column 23 of the PLOT output card.

o

o

o

,t ---,ou'run w
- nT-·) #tbttrHtdt bri,' tthiltfi t*. ell! M' - --u n!f"wnfRtt

o

0

•

2

x = 7678.
Y ~ PLOT(X)

Example 2:
will place a numeric 6 in card column 78.

3. Perhaps the easiest way to use the subroutine is to develop, by appropriate

computation and scaling, the number of the card column as a floating point

integer between 1 and 80 (call this CC), and write

DUM = PLOT (CC + 4100.)

if an A is desired in the computed card column, CC. The codes below are

listed with this point of view in mind. That is, it is assumed the code below

will be added to the floating point variable expressing the desired card column.

Character Code Character Code

+ 1000. 0 5600.

$ 1300. P 5700.

* 1400. Q 5800.
2000. R 5900.

/ 2100. S 6200.
, 2300. T 6300.
(2400. U 6400.

= 3300. V 6500.
A 4100. W 6600.
B 4200. X 6700.
C 4300. Y 6800.
D 4400. Z 6900.
E 4500. 0 7000.
F 4600. 1 7100.

G 4700. 2 7200.
H 4800. 3 7300.

I 4900. 4 7400.

J 5100. 5 7500.
K 5200. 6 7600.
L 5300. 7 7700.

M 5400. 8 7800.

N 5500. 9 7900.

Note that several characters may not be used as plotting characters. In par
ticular the period and the right parenthesis are excluded because their two
digit alphanumeric codes begin with zero. The p:rime symbol (I) is excluded
because it plays a special role as described later.

4. Since there are eighty colum.ns in a card, numbered from 1 to 80, a request

to put a character in card column zero or in a card colwnn higl).er than 80 is

an error condition. A new error message

P ERR

has been provided (on the typewriter) to indicate the requested card column is

zero or greater than 80. This invalid request is indicated by the error mes

sage but is otherwise ignored and processing continues.

5. If the programmer should specify a character code which does not correspond

to a valid character, a WRITE CHECK condition will exist.

6. The programmer may use as many sequential requests for the PLOT subrou

tine as may be desired to place many characters in the card image. Of course,

if several requests reference the same card column, only the last character

requested will appear in that card column when the card is punched.

7. After the card image has been developed, the card may be punched using a

negative floating point argument for the PLOT subroutine. Thus

Z = PLOT(-l.)

will force the punching of the card image as it then ~xists in core and will

cause the output area to be cleared to alphameric blanks (zeros in all 160 core

locations) .

407 liSTING OF THE PLOT

A special 407 control board has been wired to allow the listing of 16 columns

of numeric information from one card and 80 columns of plotting characters (or

blanks) from a second card on the same printed line. Our 407 (Model E8) has only

96 print positions. It may be- desired that the actual numerical values of the plot

ted data be listed with the plot. This may be done by generating a card under the

usual PDQ FORMAT control such that a prime symbol (4,8 punch in the card) ap

pears in card column 1 of the output card and up to 16 positions of numerical in

formation appear in cc 2-17. For example, you may desire to list an X and Y

value to the left of the plot of the Y value by the following program fragment:

60[(

o

()

- T '" "- Bf!-

o

•

73

PUNCH 73, X, Y

FORMAT (lH 1
, F7. 2, 2X, F7. 2)

In this portion of the program, develop the value of CC,
the card column into which the plotted point associated
with Y is to be plotted.

DUM = PLOT (7600. +CC)

DUM = PLOT (-1.)

Two cards will be punched. The first contains a prime symbol (I) in cc 1

and two seven digit numeric fields separated by two blanks. The second card

will contain the plot symbol, numeric 6, in its appropriate card column. The

special 407 plotting control board will cause these two cards to be listed on the

same printed line, perhaps as follows:

6

Since 80 print positions are required for the card generated by the PLOT

subroutine, only 16 positions are available for printing of numeric information

and this must appear only in cc 2 -1 7 of the card in which the prime symbol (I)

appear in cc 1. The prime symbol in cc 1 is needed for control purposes on

the 407.

The card bearing numeric information should be punched immediately be

fore its as sociated plot card is punched. There is no requirement that the nu

meric card be punched; there is no requirement that a numeric card be punched

for every plot card. Thus, it would be possible to give the numeric value for,

say, eve ry tenth point plotted.

4

The listing of the 1620/1710 SPS uncondensed object deck for this sub

routine is shown on the next page. Full instructions for inco rporating the

condensed object deck into the PDQ processor are contained in the documentation

from the Users Group Library .

o

0500 DORG 5000
05000 M4 05110 19809 BNF PUT,19809,0
05012 L9 05259 004-0 B WACO OUT,,010
05024 JO 05054 -5417 TFM *+30,OUT+158,017
05036 J6 05023 000-0 TFM COUNT,0,010
05048 16 00000 -0000 AGAIN TFM ,,7
05060 J2 05054 000-5 SM *-6.5,010
05072 J1 05023 000--1 AM COUNT,I,OlO
05084 J4 05023 00012 CM COUNT,32,010
05096 M7 05048 01200 BNE AGAIN"O
05108 42 00000 00000 BB
0511 OORG *-9
05110 JO 05133 -5257 PUT TFM Loe,OUT-2,017
05122 32 19802 00000 A SF 19802
05134 32 19804 00000 SF 19804

0 05146 14 19805 OOOQO eM 19805,80,10
05158 M6 05232 01100 BP ERR'tO
05170 14 19805 000-1 CM 19805,1,10
05182 M7 05232 01300 BN ERR"O
05194 13 19805 000-2 MM 19805,2,10
05206 K1 05133 00099 A loe,99,0
05218 K6 0513l 19803 TF lOC,19803,06
05230 42 00000 00000 BB
05232 OORG *-9
05232 34 00000 00102 ERR RCTY
05244 L9 05419 00100 WATY ME.5S1"O
05256 42 00000 00000 Be
05258 DORG *-9
05259 00080 OUT OAS 80
05419 00006 MESS1 OAe 6,P ERR'
05133 00000 loe OS ,A+11
05023 00000 COUNT OS ,B+11

OEND

o

o

o

•

EDIT LIBRARY SUBROUTINE FOR SPS II-D

by

Robert P. Bair
Freas-Rooke Computing Center
Bucknell University
Lewisburg, Pennsylvania
October 4, 1965

1620 Users Group

Eastern-Midwestern Joint Conference

Americana Hotel

New York City, New York

October 8, 1965

31/

Editing numbers in preparation for output is necessarv in sps- ~
written programs to (1) convert numeric fields to alpha. -:, (2)
make the numbers meaningful by inserting decimal points, us signs
for negative numbers, and dollar signs, and (3) to make l_c 4uabers
easier to read by inserting commas, dashes, or other punctuation.
and eliminating unnecessary leading zeros. Any of these operations
may be done by a small routine within a program, but this EDIT sub-
routin.e performs a mixture of any of these features with the least
possible effort on the part of the programaer.

In programs where the cards have to be read alphamerically, the
data that does not enter into any calculations can be left alphaaeric,
while other fields such as prices or quantities must be striped to
numeric for processing. This subroutine accommodates both modes aad
is able to edit nUJllbers stored either numerically or alphamerically.

The desired options are specified by forming an alphameric mask
which contains all the punctuation that the result is to have, and i.
blank waere the digits from the input are to be fil14ld. An example
of a mask, with its input and output, appears in Pigure 1.

Dollar signs are handled differently taan the other characters
because they aave two special requirements. (1) They are desired
in the same numbers at dif,fereat times, such as at the top of a
page and in totals. (2) The position of a dollar sign is not
fixed since it depends on the length of the number. This edit reutine
will place a dollar sigB in the output only if the low-order digit
of the mask being used is flagged. This flag can be set when a new
page of output begins or totals are listed, and cleared after every
output inst'ruction. One, mask can then be used exclusively, and the
dollar sign does not need to be specified as a character in the mask.

It is assumed that a minus sigD would always be desir.d to
indicate a negative number, and so it is produced automatically,
independent of the mask, and placed to the right of the output.
This again makes the mask easier to construct and use. The minus
sign is suppressed for a negative zero.

Two new OP codes, EDTH and EDT~, ar.e defined to refer to tals
routine and indicate nUllleric or alphameric input, respectively. The
macro-instruction must have three operands which give the field
addresses of the mask, input, and output in that order. An example
is shown in Figure 2.

c

o

o

o

•

Page 2

The mask should be formed by a DSAC statement so that the label
is assigned to the low-order digit of the mask. A flag over the high
order zone digit defines its length. The edit routine fills the
digits from the input field into the output area whenever a blank is
in the corresponding digit of the mask, and copies punctuation in the
mask that it passes. If a zero is sUbstituted for a blank in the mask,
and if the left-most digit transferred to the output corresponds with
this zero, all consecutive non-blank characters, including other zeros,
in the mask to the left of that point will be included in the output.
When a blank is reached in the mask to the left, transmission of
characters stops. If the left-most digit in the number corresponds
with a blank in the mask, transmission stops immediately. No blanks
are inserted in the output. If the number of blanks and zeros in the
mask is greater than the number of digits used from the input field,
the unused blanks in the mask have no effect. If the number of
blanks and zeros in the mask are fewer than the number of digits to
be used from the input, the excess high-order digits of the input are
truncated and not included in the output.

The program was written for a subroutine number of 18 (first sub
routine added to SPS library), and an SPS subroutine set number of 02
(variable length). The listing shows how a subroutine with two entry
points maybe assembled into the Monitor system. To change the
subroutine to some other number n, in set s, do the following:

Define EDTN as OP CODE n.

Define EDTA as OP CODE n + 1.

Change the ID NUMBER to 130 - 30 s + n.

(130 - 30 s is the base number).

Change the operand in the DENDstatement to s n 2.

This subroutine can be used with dates, page numbers, inventory
numbers, quantities, and costs. It is no harder to get a good-look
ing report than a sloppy one, but it makes a difference to the man
who has to read it. Use EDTN in place ofa transmit numeric fill,
and EDTA instead of a transmit field for clear reading results •

313

~~FR E AS:"ROOK ECOMPUT I NGC ENTER--S-U C-KN-E-C L UN i-VE-RSIT-Y- ------t:.-EWI-~S-B-URG-;---P A. -----PA-GEOOl
1 ______ --------------------------------------- _________________________________ -------------______________ _____________________ _ _________ _

1_-11:o..=..Jo..=:;,.,:B:.--_____________________________ _
I ZZXEQ SPSL IB
III *D E FIN E . QP-~ gi~---i&.i- ------------------~ ------------- ------------------------------~--~-O

EDTA-191
I *L 1ST OP C oo"E----- -------------------- ------- ------------ ------ ---------,--------------- --- -------------------------- ---- - -----------------------
! *ENDLIB

ZZDUP
I *DELETEDTN l-zlSp S --------------

_!N A M ,E_ED_Lti ______ _
*10 NUMBER 0088
*LIBR
*ASSEMBLE RELOCATABLE
*STORf RELOADABLE
*LIST PRINTER

~QLQ ** * * * *** * * * ** * * * * * * * * * * * * * * * *-* ** * * * ~ ** * * ** * ** * * * * * * * * * * * * ** *."~ ** ~~*."*."-* * *
00020*
00030*
00040*

1 ___ J)Jll)~Q~ _____ _

00060*
-.JLQ-QI_Q~______________ __

00080*
00090*

AN EDIT SUBROUTINE FOR SPS II-D

ROBERT P. BAIR
BUCKNELL UNIVERSITY
LEWISBURG. PA. 17837
MAY 1, 1965

-.. '.'.. . ~~- .. ---.-----------------~-.--- .. -.-~--- .. --.. . .. -~.-.... -.-.-. - .. --.-.-.-.--.------
00100*******************-***
00110* ______________ ___ _ __ _____ ___________ _

I

00120* REQUIRED HEADER
001300RIG DSA EDTNtEDTA

'~oi4o------b6RGORi"G":4 ,--- ------- -- -------- ----
I 00150*
I 00160EDTN

00170
00180*

TFM DECR ,1 ,10, I NPUT I S N-UME"Ric-----
B_L ____ ~ET __ _

00190EDTA TFM DEC--"----'---R--'---_
00200*
00210GET AM ADDR ,4 "GET ADDR o.F 1ST DSA IN LINKAGE

MASK ,-ADDR , ,SET ADDRESS OF MASK

.--._.-

,0

00220
00230

TF
TF SMASK_~_AS ~ _______ , _____ ~SAY,l;c--~D DR E S~ __ QL~M.A--=S----'K~ ____ _,_____-----

ADDR ,10 , ,GETADDR OF 3RD DSA IN LINKA~E 00240
00250
00260
00270
00280*

AM
-IF
SM
TF

00290 AM
00300 5
00310 TFM
00320FIND AM
00330 S
00340 BNF
00350 A
00360 SM
00370BLANKSBD
00380 SM:
00390 . A
-00400 B7
00410*

OUT
ADDR
IN

IN
IN
D
D
IN
FIND
IN
IN
SIGN
D
IN
BLANKS

.-ADOR
,5
,-ADDR

,DECR
,1
,1
,-DEeR.
',-IN
,DEeR
'1-' , ,

,-IN
,1
,DEeR

• ,
,

,10

,

,
,
,

'.SFT ADDRESS~_~E~O~U~T~P~U~T_A~R~E~A~ ___ ~ __
,~ETADOR OF iND- DSA IN LINKAGE
,SET ADDRESS OF INPUT AREA

lSET IN TO. lo.NE DIGIT

,D = NO. o.FDIGI IS IN. INPUT
,COUNT. DIGITS
,FIND FLAG AT END OF F~ELD

t'END OF INPuT FIELD

,SUBT NO. dF~PRECEEOIN'G, ZEROS

,GOTa NEXT- IN:PUrDIGIT

00420SI~~ -, eM 0 ,0 - ,10 ,DONT CHEeK fOR: SIGN IF ZERO 3
r-----"'0L->,O'-=4r:....3 0'-'--_---'--'-'B'--'-E~.-Q __ "_+l T-~--------"-----_-~~--,-.;..-~..,.::..,__..___,_.___---'-.:..-------'-'-'-'-...c:~'-41~~p!o.J-__ -, -----_ _

00440 T FIN' ,-ADDR,: t R ESET- IN

-_.- ---_.,._-_._---.- ---_._-_.- " ---

FREAS-ROOKE COMPUTING CENTER BUCKNELL UNIVERSITY LEWISBURG, PA. PAGE 002

Q0450 CM DECR ,10 ,IS INPUI ALPHA OR N~RI~

_q---,--. -,=-04-"-4~--,--,,,-g __ ----,~:::c;:.~-,----_~---,-~--,---M_ . __ ._ .!J_. __________ .. '. , rEST _F08 NEG ALPHA _ INPUT
00480 TO FIELD ,-IN

__ 0=...c0::.-4-'----'9"-'O~ ___ C=.:..M-'-- F I. ~l-_P_._ _ _ _.,.17 .. ,10. -----_ .. __ ._._-----

00500 BE GETIN , ,B IF NUMBER IS POSITIVE
00510NEG AM OUT

,
,2
,20

, ,NEGATIVE INPUT~ SET -__ S~IG~N~ _________ _
00520 TFM -OUT . ,10

__ 00..::.....5=--3::;-0~· __ ----=SM q~I._____ ___ ' __ 2 ____ . __ ._------_____ . __ ._
00540 B7 GETIN

__ 0_0 ",-55,,-0_N_,U_M ___ B_N_F_9~L[~. __ . ____ '::-_ t"i _____ . __ . __ ,____ _
00560 B7 NEG , ,
005-70*

,SET MINUS SIGN

, TJ:_SJ FOR NEG _NUMER I C UN~_~_I __ . __ ._.
,8 IF NEG TO SET SIGN

i 00580GETIN TF IN ,-ADDR, ,RESET INPUT ADDRESS

~
_------=-O~O =.5 ~9 =..0 __ -----'T OM Z E_R Q ________ .!.Q ________ __ . ___ L._ . __ ,S_t;:_T ___ LNJ2J_~A _LQR __ .. __ ._._. ___ . ________________ . ___ ._._. ___ ._.

00600 TOM ENDM,O , ,CLEAR INDICATOR
__ 006 1 0 * . __ _. ____ 8 ~P..~A_ T ~ 0_01' ___ II ___ 1J M_ES . __ . ____ . __ . __________ . _____ .. ____ ... _____________ . __ . ___ . ____ ...

I

00620REPFT CM 0 ,0 ,10
. 00630 BNP QUIT

00660*

,1
~.~t':JDM t

gg~:gNODIG ~_~_gSI_GN
00670 . __ JJt F_I ELD+ l,:::.MA.SK

I

00680 CF FIELD+1 ,
00690 SM ~ASK _ . __ ,~l~ __

I 00700 TO FIELD ,-MASK

t'---d~~~ ---~~F~~-~;-~M
i 00730 TDM ENDM

,1
,FIELD

. ,1

--------------------_. __ ._--_.
,10
,

, ,IGNORE FLAGS

, ,PUT ALPHA CHAR INTO FIELD
'- .

, A Dv A ~ C _E __ LQ __ .N~ x T ___ ~ttAJ<_. __ Lri __ M_A S K
,TESTS FOR END OF MASK

. , ~S~I_JN.Q l~ATOR. __________ ._. ________ . __ :--------6-0-740- --------C F- ·--F iE LD
I 00750TESTM TDM ZERO,1 "CLEAR INDICATOR
I 00760 CM FIELD+1 ,700 ,9 ,TEST FOR BLANK IN MASK

00770 BE O.1_GIT ______ . ______ . ___ . _______ . ___ ._._ .. _. __ .. _. _______ . __ ._. ___ ._._ .. _ ._. __ ... ______ ._ ... _._. __ ._. _______ . __ . _ .. i--
00780 CM FIELD+1 ,770 ,9 ,TEST FOR ZERO IN MASK
00790 BP DIGIT -----=- -_._-_.---_ ... _---------_._-_._----_._---_ .. __ . --------- -._--_.- . --_._-. __ ._._---------------- ... _.-
00800 BN USE
00810 TDM ZERO ,0 , ,ZERO IN MASK. SET INDICATOR
00820 B7 DIGIT

l _ 00830USE SF FJ.f_LQ ______ .. ________ ._. _________________ . __ ._. __ . ___ .. _._. ___ . ________ _. __ .. _ .. ___ _
I 00840 IF -OUI ,FIELO+l, ,USE CHAR FROM MASK

00850 SM OUI __ . __ .t2-.
-~ -~....--------.~----~---.------.--- ...:........------------_.- -

00860 B7 NODIG
00870DIGIT BNR *+20 ,-IN , ,TEST FOR RECORD MARK IN -INPUT
00880 B 7 SIN , ,', I GNORE RECORD MAR KS
00890 I D F l£LD __ ~,_-___ I_'__"N'____ __ _Z., ___ _Z.,__""G~E'_.LT___""'_D_"_I_""G~I-'-T_ F R Orvi ~tiP~T __ AR E A_· ___ . __ . ____ _
00900 TF -'OUT ,FIELD " ,PUT FILLED NUM.BER· IN 'OUTPUT
00910 SM O~I__ ____ ~,~2 __________ ~ ___

-~-------.----.--

00920SIN S IN ,OECR
00930 B7 REPEl
00940*
00950QUIT BO DSIGN
00960*

980
00990
01000

CF
SM
TO·

F
FIELO+l
MASK
FIELD

CF ·FIELD . 1 ______ QJ"'-'0=-=1::....:0=----__ --"=--'---'--~
! 01020

01030
01040

CM
BE
SF

FIELD+l
DSIGN
FIELD

,ZERO

,
,1
,·-MASK.

,700

, ,RETURN IF LAST,. OJ-GIT, IN MASK IS
NOT- A ZERO

R M "
, I GN·ORE Fl;.AGS

,DETERMINE 'IF MASK fS BLANK
----------------------,3tS-----

_:;MMUMiSH, A!4" W,.; i. ;#.,.$ @4..

FREAS-ROOKE COMPUTING CENTER BUCKNELL UNI VERS f TY ,LEW rSBURG, PA'. PAGE OC

1 ___ QlQ5lL _________ iE ,:QUT ______ . ____ .. .'- FIE L 0 + 1_~, __ ' T Ru.<A N..LaS M I T'----"C H A R~A Cr-..IIT E""""'R""--'-F R Qu...M""'-'-'M A_S K ____ _

I ~i~~g. ~~F~~~O :~.MASK Lt.TEST. FOR END OF MASK 0
I 01080 B 7 D SIGN

I-gi ~~-g-------.-------~-~- -~Ci~+ 12 - _,1 --.. ,--... -.----- ... --------
_Q.llJ 0 * ___________ __
I 011200S IGN BNF END
i 01130SMASK DS
I 01 i4() - TFM -OUT

01150END AM AOQR
01160, 87 -ADDR
_QU1_Q~ __ .. ____________ ,, ________ ._.
01180*
Ol190ADDR ___ DS .. _

I 012000 DS 2
0121 OF I ELD_J2(_ 2,70
01220 OS 1

._QL2_~_Ql.E.RQ __ ._.Q..~ 1
01240ENOM DS 1
01250DECR_RS .. 2
01260MASK DS 5
0127 OJ N ______ D_S.. .5 __
012800UT DS 5

, , ,Q OPERAND FILLED IN
, *" --- _, --------.. --_ .. ,------,-".---
,1300 ,8 ,SET ~ AND BLANK

,. __ ,.8 ___ . _______ .. __ ~lO. __ ,(iE_T_B_EI_URN ADDRESS ___ ~ ____ _
, "RETURN

"PICK +10

-------'-'---'---------- ----

IQl29Jt .. _______ .~DQ2 18, ,~2'___---,c--_____________________ ---
I ZZZZ

.... _ _,,-----------_ ... _- -""---_ .. ----_ ... ,--",,.- --------------- o
--_ .. _--' --------------_ -----'''---- --.. -.---- .-- .. -----.-----".~---.---------------

---'-' -,--------'----_.

._.- - -------.----~--.:....--------

c- i,'1

1ft ... - .. !"'··f T"·TT···'·'···}

f 0 EDIT

o

where

MASK
INPUT
OUTPUT

MASK
INPUT
OUTPUT

b , b b b , b b b • b b· -1687234
16,872.34

b "bbb, bbb. 00 --01
.01-

LINKAGE

EDTN M, NUM, OUT

M - field address of mask -

Fig 1

.
NUM - field address of input - nurrlerlC
aU'T - field address of output -

Fig 2

•
3/7

-----_._.

FREAS-ROOKE COMPUTING CENTER BUCKNELL UNIVERSITY LEWISBURG, PA. PAG

* TEST PROGRAM FOR EDIT SlJBRQUJINE _______ . ________________ . __________________ . ___ 10
* MASK AND INPUT FIELDS ARE ENTERED FROM CARDS
START RCTY

RNCD CARD
i-.. . .. -..... ---..... --... --.-.---... -... -... -.. ~O'.IN. __ ~_8.R.Q_"t_l..2 ... '._. __ ~~BJ2.±~9 .. !. ____ (8B.Q. ±Q2-__ . ______ ... --------------
I TO CARD+73 ,RECMK

* . T Y P E MAS K,l N PUT_,_ ~N p_ 0 U T PUT N_U ~~R_ t~ [>.LL.Y __ .. __ . ______________________________ . __ _
WNTY CARD
TO CARD+21 ,REcM.K__ _ .. _ .. __ ____ .. __ . __ . _____________ . __________________ . __ _

* TYPE MASK AND OUTPUT ALPHAMERICALLY ON NEXT LINE
.' _ . __ . _______ .. ___ .. ___ ._ _. R ClY.._ _ __ .. ___ . ___ .. _._ .. __ . ______ . __ . __ _

WATY CARD+l
WAI VC AR P -+:.4.3 __ .. __ _ ._ .. _ .. __ _ _ __ .. ____ .. _. . __ . __ ._. ___ . __ . __ . ____ . _____ ._. __________ .. _____ ~--------------- .. ------... --.... -.. _.
RCTY

_ ____ e. S lART
CARD DSS 50

______ . __ . ___ . ___ D.S...L3. 0 ___ . _._-------
RECMK DSC 1,-

______ .. _____. __ . ____ . _________ . _____ .01; NJLS TART ... _. __ . _ ... _._. ______ . __ . ___________ . ________ . __ . __ __ . ___ . ________ ... _"
0023000000030000 000000

.. __________ . ______ O_O.2_~_QQO.QQ Q.Q~9O"Q_Q ___ . ___________ .. _________ .o.Q O_Q.Ql ___ ... ____ . ______ . _____ ._.__. __ .. _. ___________ ._._ ._. __ . ______ . ___ .. __ ~. __ ... _
0023000000030000 000021

[. _____ -=0.=0 =.2 ~3 -=...0 =-0 =-00=-0=-0=-0=-3~v=-""' 0~0~0~_. _____ ~O~O~0~3-=2:.._'!!!1 ______ ___'_ ___________ _
0023000000030000 054321

_ __ . _____________ QQ_~p_Q_O.9.Q() QQ __ ~.9_0_Q.9 ____ .. __ . ____ .. _____________ .. _____ .Q2_~_~~_L ______ ._ .. ____ . __ ... _____ . ____________ . ________ ._
0023000000031010 0'00000 0

____ . __ .. _ .. __ ._._ .. _. ______ . __ 9...Q2_~.QQ_Q_O 0 Q.Q_~.7 . .93_Q ___________ . ________ . ____ .QQQ_0._Q_l .. _______ . ___ ... _._. ______ . __ ._ _ ... _~ ______ . ___ .. ___ . _______ .. _
0023000000037070 000321

_____ ~O~O~2~3~000000031070 00002J
0023000070031070 000000

___ . ________ ..(10 Q..Q2_l.1QIQ_2._lIQ..7_0 ______ . ____ ._ .. ____ 0 5 Q~_6 5 _______ . ____ . __________ ~.-------------.---
M1541000002Q00000046 J23456

___ ---'-P-"-O 0-,--,3.7 9 7 QIQI0 7 07 0 0 d 1 002
00000000 J234567

00000000000000 _ J23256
00000023000000037070 0040B

PQ_IQO 3 OQ..QJL..______________OOO'-'-7-=B ___ _

-------.. ------

I

~------- -----. .._._._-----

o
~ ------.. -.--... -----.. -.----.--... ---.-------. -~----,.--.'------,......-----'-----'---.3·18'..

mttlt : mhrrT'fWTTrr:ra - ---- ~ - -

-- ---'------- ----

0000002100000003000

c 0000002300000003000000000000000000000001000000000000000000000000000071000
, • 1

0000002300000003000000000000000000000021000000000000000000000000007271000
z • 21

0000502300000003000000000000000000000321000000000000000000000073037271000
, • 3.21

OOOO~02300000003000000000000000000054321000000000000000000757473037271000
• • 543.'21

00000023.00000003000000000000000000b54321 00000000000000 7b23757473037271 000
, • 0,51+3.21

00000023000000037070037070000

· .00 .00

00000023.00000003707000000000000000000001000000000000000000000000037071POO
.01 , .00

0000002300000003707000000000000000000321000000000000000000000073037271000
· .. 00 3.21

__ OQ0000230000000~ 70700000000000000000002Tnnonnnnnnnnnnnnnnnnnnnnnn.37'71?nn o ' .00 .21-

000000230000700370700070037070000
· 0 .. 00 0.00

0000000021101021701000000000000000050165000000000QOOQOQ015211Q1·121767;000
/OQ/OO 5/01/65

~154700000200000004600000000000000123456000000000041547T727320747576q6000
AHO - F AM123-456F

000Q700370707070701000000000000000001002000000000000001003101011101012000
0.000000 0.001002

0000000000000000000000000000000001234567000000000000000000000074757677000
4567

0000000000000000000000000000000000123
12356

0000002300000003707000000000000000000408000000000000000000T3007403707S000

· .00 S 4.08

0000000000707003000000000000000000000018000000000000000000000000007778000
00. 78

SCI";:;.;' "."

PRINCETON UNIVERSITY
DEPARTMENT OF AEROSPACE AND MECHANICAL SCIENCES

GUGGENHEIM LABORATORIES FOR THE AEROSPACE PROPULSION SCIENCES

October 8, 1965

MODIFIED SP- 035

by

L. Hoffman

SP-035 is an IBM S.PoS. processor for S.P.S. III (very similar
to SP-029) for use on a 1620 equipped with a 1443 printer. This was
originally a twO"'pass processor and the listings of the assembled program
coae out with the flagged digits as letters. I was not satisfied with
this output, so I set out to make a separation of flags and digits on the
listings. There was a source deck for SP-029 and I had source listings
for SP-035. By changing a few cards, I was able to reproduce the source
SP-035 and then modify this to give an output format as shown on the at
tached listing. This worked out rather well so I next decided to try a
"one-pass" processor modification by reading S.P.S. statements into upper
core starting at the top and working down until there could be a overlap
with ~be symbol table which was working up in core. When, and if, this
occurs, a message is typed and the SoP.S. statements are then cleared to
make way for more symbol tab Ie and two- pass process ing must be done.
For one-pass processing~ there is one restriction: there can be no record
marks in the S.P.S. statement. This is usually dooe with the apostrophe
which is translated into a record mark.

The minimum useful machine configuration is a 40K 1620 Model I
with card I/O, 1443 printer, indirect addressing. and 8 carriage tape with
the overflow channel on line 60. The processor uses 19092 locations but
still has all 1620 Model II instructions implemented.

Several sense switch options have been changed. In the four
years that we have been doiog S.P.S., we have never ~yped a program at
the typewriter. So, switch 1 only controls list, Do-list during pass II
aDd switch 2 on stores card t.ages during pass I and fetches card images
during pass II. Switch 3 is au for "old" compressed listing outpu't and
off for the new, more readable, output format. Switch 4 still controls
deck option duriDg pass II. Notice that sense switches do not need to be
c:bauged between passes (except if there is a card image- symbol tab Ie overe
lap) J so that one now can batch cOlllpile small programs' of about 400 state-
1IIents for 40K core.

Our method of operatiOD is to set the origin of the S.p.S. pr~
graaa at 20000 so that the processor is not usually disturbed by loading
a~ executing the assembled progr_. When we ebeck-stGp sad, fim the er ..
ror. there is noaeed to re-load the processor,. we just transfer to Pass
I Initialization (OlgaS). Our priltter trace starts at 35000 80tbat we
oft,en have processor. 8S$emb led- program. aad· trace in the maeh1ne at one

---- .---.--~ ---~--.----

o

o

o

o

o

•

- 2 -

There is one disadvantage to this processor. It is slow, as
nearly all the IBM S.P.S. processors have been. The los~ of speed is in
the symbol table search. If we were to stay with 1620's for several years,
I feel certain a smell patch could increase the speed of this processor
·q~ite substantially. I kn~ there are faster S. p.S. processors written
by users J but I happened to have the source cards for SP- 029 II and documen
tation of SP-035.

ltls been a lot of~fun playing with this processor g I do not
plan to submit this to the library, but instead, I want to present an
output format that is extremely useful and readable for S.P.S. subroutines
for FN II, and a disk-less one-pass processor.

3d-/

-----------~------------ .----.... ---,.-... ~-¥.---'-,

P'AGE 1
{)u7"'Pur ,MeDlFlfD

00LI-02 15 01692 00000 4/8 STAR.T Tot"" STARTT,0,07

00Ll-l1i- 46 00426 00900 4/B BLC ,i!-+'12 , ,0

OOlt26 15 01693 00000 4/8 TOffj S\r.JSET,O,07
Cj

00438 17 00650 00000 il-l H PRC -8TH PBCHK,O,010,

DOLI-50 3 LI' 00000 00971 4/H K ,00971

00462 17 00786 00000 4/8 CSS BTlll1 S\~ICHK,0,010,

00 /+ 7 L:- Lt 7 00506 00300 4/8 8f\1C3 SI,''/1 , ,0

00L'o8'6 17 01058 00000 4/H BTf'li ,I\! U fVi , ° , 0 1 0 ,

00498 L~9 0061 Ll- OO{)Ou L:·/B B LAST, ,0

005()6 LI-/H DClRG .;;.-3

00:)06 1.1.7 00554 00100 Lt/H SH1 RI\!C 1 SI" 2 , ,0

00:)1':3 1 ~5 01693 (Jooe) 1 4/8 TDH S \;.1 SF T , 1 , 0 ,

() ():5 30 37 !") 1695 ClO 500 4/8 RACD 1;\1 P tJT , ,0

nO;:)L~2 17 01322 00000 4/8 B Tiij P R I j\1 T , 0 , 0 1 0 ,

() () :) ') l:. 11-7 () 061 f;. C)O 200 L;. I 8 51"'2 Bf\IC2 Lt..5T, ,0

0 I ,
(lO 5 ()6 /r3 006()2 Cl1693 4/B 80 .;;. + 3 6 , 5 \,,1 S F T , U 1

i
• I 0057F3 15 () 1693 00001 L,;/f3 TO/vl 5H5ET,1,O •
•

()O590 37 01695 00500 L~I R R/\C D H" PUT, ,0

00602 17 OJ.67n 00000 LI-/8 1.3 Ti'.!; RI~PRfJD,O,()10,

0061 LI- 1.,·6 (IO!.:·1 ii' 00900 ll-I g L/.\.ST HLC ST/\R.T+12, , C)

00626 15 01693 00000 LI-/B Tl)f'; 5 ; -.I SET , () , 0

00638 1,,9 00/f·62 00000 LI-/f:\ B CSS, ,,0

006 L}-6 4/B ODH.G .;;.-3

4/13 ~: ..

006L;·9 L;_ I F3 D(lRG ~;. +L,_

00650 39 007/ ,-1 00901 L~I H j)1-=)CHl< 1 .. ,J fl. PCHK,00901,O

00662 16 00739 () 1900 L,./ g T Fi':1 P 8([\)T ,1900,08

0067 Lt-. 12 00739 00001 Lj·1 H 511 PRCf\IT, 1,08 0
00686 1+ 7 0067 LI- 01200 L;·I H BI\iZ -;;.-12, ,0

~~~ 



o 

o 

• 

trAG E 1 

00402 00 
00414 J: 
00426 M6 
00438 J5 
00450 J7 
00462 34 
00474 J7 
00486 M7 
00498 J7 
00510 M9 
00518 
005.18 t'17 
00530 'J5 
00542 L7 
0055-4 J7 
00566 M? 
00578 ,ML 
00590 J5 
00602 L7 
00614 J7 
00626 M6 
0'06'38 J5 
00650 M9 
00658 

00661 
c00662 L 9 
0'0074 .J6 
00686 J,2 
006'98 ~17 
0'0710 [V1? 
00722 '34 
,00134 L9 
'00746 42 
00748 
OQ751 
00753 
00751 

00797 
06798 J5 
b0810 'tvl? 
00822 J5 
00834 M7 
00846J5 
00858 M7 
-00870 J5 
,OO~82 r'4L 
00894 34 
(}C9P6 L 9 
00918 M6 
b0'93C M6 
00'942 46' 
0095'4 .49 
,00962 
0'0'9'6.2 16 
0097.4 1'2 

00000 
01692 
00438 
01693 
00650 
00000 
00786 
00506 
01058 
00614 

00554 
01693 
01695 
01322 
00614 
00614 
01693 
01695 
01678 
00414 
01693 
00462 

00741 
00739 
00739 
00686 
00734 
00000 
00745 
00000 

ot)OO Lr 

00002 
00019 

00988 
00834 
00988 
00858 
00988 
0088'2 
00988 
00986 
00000 
06995 
00950 
OQ950 
00950 
00906 

00992 
00992 

e()OOo 
-00.00 
00<100 
-0'000 
000-0 
00971 
000-0 
00300 
000-0 
OOOOC 

00100 
00001 
0050C 
OOO-C 
002'00 
01693 
00001 
00500 
000-0 
00900 
00000 
00000 

00901 
OJ9.00 
0-001 
01200 
03500 
00102 
00100 
00000 

00000 
00100 
00001 
00200 
00001 
00300 
00001 
00988 
80102 
00100 
00100 
00200 
0'0 300 
0000.0 

OJ999 
G)-OOl 

!'tllit! 

f:) to ()UTPu-,-
418 
4/8 
4/8 
4/8 
4/8 
4/8 
4/8 
4/8 
Lt/8 
4/8. 
4/8 
4/8 
4/B 
4/8 
4/[1 
4/ f~ 
4/E 
4/B 
4/8 
4/E 
4/8 
4/8 
4/8 
4/8 
4/8 
4/8 
4/8 
4/8 
4/8 
L)-/8 
4/8 
4/H 
L;-/8 
4/H 
L;-/ a 
LI_/ n 
4-/8 
4/8 
4/8 
4/(3 
4/8 
4/B 
4/8 
LI-I B 
418 
4/8 
4]B 
4/8 
4/8 
4/8 
L'r/8 
4/B 
4/8 
6,-/8 
LI-/S 
4/8 
4/H 
Lf-I (3 

START 

PRC 

CSS 

SI,"'l 

SH2 

L/\ ST 

P E:i CHI( 

P f)C [\IT 

PCHI< 
PRcn;'] 

S i"C "!I< 

T f) t-'t S TAR T T ,.0 , 0 7 
RLC ~:-+12"O 
TDH SI:"SET, 0, (;7 
BTi'/: p r3CHI<,O,OlC)', 
1< ,00971 
E3Tf"1 SI,·'CHI<"O,OlO, 
B f\1 C 3 S \,,'1 , ,0 
B T [-;'1 1\1 \ J [,1 , 0 , 0 1 0 , 
B L~~ S T " (' 
DORG ~~-3 

[3 I\! C 1 S 1'/ 2 , , U 

T r)fl,) SUS E T , 1 , 0 , 
R 1\ C D I i\1 P l J T , , n 
8 T [,;; ~) r:~, I "" T , 0 , n 1 () , 
[)(IC2 L/\ST" C) 

B I) ~:- + 3 6 , S \.i SET , 0 1 
T D i\.'l S I,r SET , ). , () 
R .'\ C D I ; ... 1 P !. J T , , n 
BT:'! 
!3LC 
TDi"! 
P "J 

Dr]R(; 
,.! /\ 

n, .. i I 
RCTY 

RFPRfJD,O,C'!l(), 
5 T i\ R T + 1 ~ , , () 
51-.lSFT,0,0 
CSS"C) 

P C H 1< , 0 0 9 (') 1 7 0 
j:J r~~ C i\ IT, 1 9 0 n , () b 
p :~ C T,]., () [-~ 

~:·-12, ,0 
F) r.:'; i~ !'.! j") , 0 3 ~) () 0 , 0 

P:',"'C("l:i, ,0 

r') S I~. 

J) /\ C 2, ',~ 
D /\ C 1 0 , P ;:< I ; .. ! T F P f ... i (03 T R F. /\ [,J Y • I , , 

j')r)i«~ -;,+4 
Tn;: S l.! C , () , (') 
B 1\1 C J. -)~ + 2 Lt· , , n 
T n i'-!! S II C , 1 , n 
[:\\.1 C 2 ~~ + 2 LI·, , Cl 
T[)i': 5 I1 C,1,0 
F3 i\! C 3 -::- + 2 L~ , , n 
T [') !": S 1-' C , 1 , 0 

r<,CTY 
\,'} /~ T Y S II C Di;l , , () 
fj C 3. S 1;.11) r.:\ 1 , , 0 
HC2 SLl[3Bl"O 
3 C 3 S \,i ;:" r\ 1 
H S II 1-) C 1 
D () F~ (; -:~ - 3 
TF 
SI: 

S 1.'1 C [\1 T , 1 999 , i\' 
SI,.ICi\!T, 1, P 



o 

o 



o 

o 

• 

SHORT CUT METHODS IN PROGRAMMING USING SPS 

By Richard D. Ross 
University, Mississippi 



II 
SHORT CUT METHODS IN PROGRAMMING USING SPS 

BY RICHARD D. ROSS 
UNIVERSITY OF MISSISSIPPI 

PROGRAMMING THE 1620 COMPUTER USING SPS IS A VERY DIFFICULT TASK FOR 
THE BEGINNING PROGRAMMER~ AFTER MANY HOURS OF WORK AND TRIAL AND ERROR 
PROCEDURES A PROGRAM CAN BE WRITTEN THAT WILL DO A SPECIFIED JOB. THE 
MOST IMPORTANT CONCER~ ABOUT ANY PROGRAM IS THAT THE PROGRAM BE CORRECT. 
ALTHOUGH THE PROGRAM FUNCTIONS PROPERLY, IT MAY OR MAY NOT BE THE MOST 
EFFICIENT PROGRAM FOR THE JOB. ESPECIALLY FOR THE PAYING CUSTOMER, THE 
FASTER THE PROGRAM THE LESS MONEY IS SPENT PER JOB. IF SEVERAL INSTRUCTIONS 
COULD BE DELETED FROM A PROGRAM THAT WAS RUN ONCE A DAY FOR ONE YEAR THIS 
WOULD SAVE THE CUSTOMER SEVERAL MINUTES AND IN SOME CASES SEVERAL HOURS OF 
RUNNING TIME OVER AN EXTENDED PERIOD. THEREFORE, ONCE A PROGRAM IS WRITTEN 
AND PRODUCES CORRECT OUTPUT, THEN THE PROGRAM SHOULD BE MADE TO BE AS 
EFFICIENT AS POSSIBLE. 

PRESENTED IN THIS PAPER ARE PROBLEMS WITH SEVERAL DIFFERENT SOLUTIONS 
TO THE PROBLEM WRITTEN IN SPS. YOU WILL BE ABLE TO SEE HOW THE RUNNING 
TIME OF A PROGRAM CAN BE REDUCED TO LESS THAN HALf" THE RUNNING TIME OF THE 
OR'IGINAL PROGRAM AND IN SOME INSTANCES LESS THAN 1/10, 1/20, OR EVEN LESS. 
THE SOLUTIONS TO THE PROBLEMS GIVEN MAY GIVE NEW IDEAS TO THE BEGINNER AND 
TO THE ADVANCED PROGRAMMER WHEN USING SPS. 

PROBLEM NO. 1 TRANSFER MATRIX N(J) TO MATRIX M(J) WHERE J VARIES 
FROM 1 TO K. 

FORTRAN VERSION 
DIMENSION M(41),N(41) 
DO 103 J=l,K 

103 M(J)= HLJ) 

NO. OF INSTS. EXECUTED = APPROX. 15*K 

S P S VERSION-l 

* CONSTANTS USED 
M OSB 5,41 
N DSB 5,41 
J DC 2,0 
* 
* PROGRAM 
START TFM J,l,lO 

TFM T+6,M 
TFM T+ll,N 

T TF M,N 
AM T+6,5,10 
AM T+11,5,10 
AM J,1,10 
C J,K 
BNP T 

* 

S P S VERSION-2 

* CONSTANTS USED 
M OSB 5,41 
N DSB '5,41 
X OSA M,N 
Z DSC 2,0 
Y OS 12 
CON PC 8,50000501 

* * PROGRAM 
START CF X+1 

TFY,Z+1 
AM Y,lOO,9 
S Y,K 

T TF Y-7,Y-2,611 
A Y,CON 
SO T,Y-1 

NC OF INSTS. EXECUTED = 6*K + 3 NO. OF INSTS. EXECUTED = 3*K + 4 
3d. J"-~ 

o 

o 

o 



0 

o 

• 

I& .... · .. ···i#f' ... r ...... p 

I F THERE ARE NO RECORD MARKS IN MA TR'I X N 9 THEN ONE OF THE FOLLOW I NG 
VERSIONS- MAY BE USED. 

S P S VERSION-3 S P S VERSION-4 

* CONSTANTS USED * CONSTANTS USED 
M DSB 5,41 M DSB 5,41 
N DSB 5,41 DS 1 .. N DSB 5,41 
* PROGRAM DC 1,-
START MM K,5,9 * 

AM 99,N-4 * PROGRAM 
TO 90,99,11 START TR M-4,N-4 
TOM 99·, ,6 
DC 1,-,* NO. OFIN5TS. EXECUTED = 1 
TR M-4,N-4 
TO 99,90,6 
AM 99,M-4-N+4 
TO 99,90,6 

N·O. OF IN5T5. EXECUTED = 8 

PROBLEM "0. 2 READ A CARD ALPHABETICALLY AND IF THERE IS A 0, 1, 6, OR 9 
PUNCH IN COLUMN ·80, PUNCH THE CARD, IF NOT READ ANOTHER CARD. 

S P S VERSION-l S P S VERSION-2 

X 
K 

* 

DORG 500 
DAS 80 
DC 290 

CON 
X 

* 

DORG 500 
DC 10 9 0.0 1111 0 11 a 
DAS 80 

START RACO X START RACD X 
TO K,X+80*2-2 
CM 1<90,10 
BE W" 
CM 1<,1,10 
BE Wft 
eM K,6,lO 
BE WR 
eM K,9910 
SNE START 

WR WACO X 
B START 
DENO START 

NO. OF INSTS. EXECUTED = 12 

TO R+ll,X+80*2-2 
R BD RD,CON 

WACO X 
B START 
DEND START 

NO. OF INSTS. EXECUTED = 5 

PROBLEM NO. 3 GIVEN MATRIX ACJ), WHERE J=l,K AND K IS LESS THAN 900. 
EACH VALUE OF A(J) IS A lO-DIGIT CONSTANT OF THE FORM 
XXXXXXXXXX WITH A FLAG IN THE FIRST POSITION OF EACH VALUE. 
WPtITE A PROGRAM TO FIND TEN TOTALS B(1), B(2), - - -, B(10) 
WHERE B(l) IS THE SUM OF THE FIRST DIGITS OF THE VALUES 
OF A(J), 6(~) IS THE SUM OF THE SECOND DIGIT OF THE VALUES 
OF A(J), ETC. 



s p 

NO. 
S P 

s·: VERSION-'l 
A OSB 10.899 
B OS·B 4,10 
J DC 3.0 
,K DC 3,<0 
L DC 2,0 
.• PROGRAM 
S,TART TFM J,10:,10 

TA 
'tfM TA+6,8 
TFM 1A,0:,8 
AM TA+6,4"lO 
SM .J,l,lG 
8HZ lA 

BEGINTFM RA+ll,A-9 

ST 

RA 
RB 

TF J,K 
TFM'L.,lCl:t'lO 
TFM RB+6,8 
TD RB+ll,A-9 
AM B.,0,10 
AM RA+ll_l,·lO 
AM RB+6,4,lO 
SM Ltl,IO 
8NZ RA 
SM .J,l, 10 
8HZ ST 
CFB 

OF INSTS. EIE'curED = 64*K, + 4.5 
S VERS'IOH 3 

A DSS 10. ,899 
XA DC 8,0 
B OS ,XA+4 
X OS 4*10 

DAS 1 
DS 1 

CONA DC 21,0 
DS 1 

CONB DC 43,0 

T8 
K 
J 

DS 5 
DC e,C!) 
DC 3,0 
DC 3,0 

S: p' SYE:R5JON ';2 
A osa fO:. ••• 9 
8 OS8 4,10 
J DC 3,0 
K DC 3,·0 
X OSA 14,.-9,8+.1+40 

y 
(A 
START 

TA 

Sf 
RA 
RB 

NO OF 

DSC 2.0 
DC 1·.0 
DC 8',10000040·1 
TFM .Y-~,8.1 
SM; ~'·.··1 0" 10 
TFM Y-2 'iO,6I 
AM V,401.9 
80 TA·.V-l 
TF.. X+5.B+l+40 
CF X+l 
TFM X,A-9 
TF J,I{ 
SM X+S+2,4010 
TD RB+ll.X,ll 
AM X+5,O,610 
A X+5+2.XA 
BiD RA,X+5+1 
SM ~,l,lO 

8HZ ST 
CF 8 
I NSTS.EX·CUlEO = 

eN 
START 

DC 4'2,1011'1077101170771077101'7707110777077707710 
S CONB,CONS 

TA 

TR 

TF X,CONB+5· 
TF 99,X 
TFM T8-3,A+l 
5 Te,K 
TNF CONA,TS-3,ll 
TNF CONB,CONA 
A X,CONB 
AM TB,10·001 
SO TA,TS-2 
M CN9~K 
S X,9'9 
TFM T8-3.8..-3+1 
SM 18,10,10 
SF 18-3,.6 
AM T+,4001,8 
5D TR,TB-2. 

NO OF INSlS. EXCUTED-= 5*K +39 

o 

43*1( + 36 

o 

o 



o 

• 

EAST CAROLIHA COLLEGE 
Greenville, North Carolina 

October, 1965 

PROGRAI1f'1ED INTERRUPT USING THE 1311 

by 

F. Iv1ilam Johnson 

This system allows the interruption of any specially designed program. 
All interrupted programs are stored on the disk until they are retrieved and 
execution is continued. 

Interruption is accomplished through a subroutine named OUT. This routine 
examines console sHitch one (Cl) to determine if it is on and/or examines core 
position 98 for a record mark. Either condition will cause immediate inter
ruption and stora~e of the current program. 

Up to 30 programs may be in partial stages of execution. A special con
trol routine will automatically select the program of highest priority and 
bring it into core for execution when the machine is not needed for something 
else. 

The system is effected through the OUT subroutine. The form of the sub
routine is: 

6 
LABEL 

12 
OUT 

16 
A, B, C 

where A is the use code, B is the program number, and C is the address of the 
next instruction to execute when the program is retrieved. It is suggested 
that this subroutine be placed in the program only once and the appropriat~ 
return address be transmitted to it when necessary. The following example Hill 
illustrate the technique: 

e 12 
START OUT 
RETURN B 
BEGIN . 

16 
10, 23, RETURN 

ANY SECTION OF THE PROGRAi'1 

BNCI 
TFM 
B7 

DEND 

* + 32 
RETURN + 6, * + 20 
START 

START 



CI should be tested at appropriate intervals and at least once in every 
long loop. 

The system is most easily effected by changing the appropriate cards in 
the monitor deck to make" monitor think that 30 cyl~nders aI'eoccupied by 
stored programs. Monitor is then loaded in the usual fashion. The source 
decks are then compiled qnder monitor. They are self storing. The last phase 
is to compile and execute a program, that changes monitor to establish all the 
interfacing ,between the two systems. 

A brief explanation of the complex and its interaction with the monitor 
system follows. 

CONTROL CARD CHECKER 

Control Card Checker (CCCK) - After having read a monitor control card 
and determined whether it is a JOB card or .otherwise, monitor branches to the 
appropriate place in CCCK. If the card read was a JOB card, CCCK extracts the 
use code and sees if it is ,999, calls utility routine (see page 3) and trans
fers control to it. If the code is not 999, control is returned to monitor. 
If the card read was not a JOB card, control is transferred to meter control 
(METERC - see page 2). ,The use code numbers are in columns 36, 37, and 38. 

METERC - Meter Control 

METERC,- This routine checks to see if the new user is the same as the 
last user. If the use codes are the same, control is transferred back to the 
previously specified program. If the use codes are different, a meter reading 
is requested and time is credited to the last user. Control is then returned 
to Monitor. 

NEXTIN - Next Caller 

NEXTIN - At the time of call exit, NEXTIN is loaded into core position 
z'ero. This program copies the part of monitor located in core positions 16000 
through 20000 onto the disk to prevent damage. NEXTIN then cOI\ies I'JEXT into 
core and transfers to it. 

:~EXT - r1ain Control Program 

NEXT - This program types NEXT C2 ON FOR HONITOR and halts ~9 allow the 
operator to change console switch two. If C2 is turned on, control is trans
ferred to the Control Card Checker - CCCK. If C2 is turned off, NEXT sCans to 
see if there are any active programs stored. An active program has a priority 
greater than zero. If any active programs are found, NEXT' examines all active 
programs to delineate the one of highest priority and types PROGRAH XX 
CONTI.NUED. Control is transferred to Meter Control (t1ETERC) after indicating 
to:METERC that control is to be returned to NEXT. When control is returned to 
NEXT, program XX is loaded into core ,and execution is continued at the pr.oper 
instruction. If there are no active programs, 'the message NOPROGRAHS' STORED 
is typed and control is trans ferred to mbni tor. 

o 

o 

o 



t--

o 

o 

o 

3 

Utility Routine 

Utility Routine - This program "types UTILITY ROUTINE. A control card is 
read arid checked for validity. If the request is not correct, the message 
INVAI:,ID CONTROL CARD is typed and control is returned to the beginning of the 
Utility Routine. If the r,equest cq.rd is valid, the program listed on tlfecard 
is typed. The required progralll is located o~ the disk, read into core, and 
receives control. If the called program needs information, such is requested 
prior to the transfer of control. 

NIA - Execute Program 

NIA - This program allows for the immediate execution of any stored 'program 
regardless of its priority number. NIA is called down by Utility Routine (see 
page 3 ) with cont'rol card ~~Execute Program xx (where XX is the program number). 
---NIA first checks to see if the program number is valid. If it· is not, 
"Invalid Program Numb~r" is typed, and c0ntrol is transferred to Utility Routine. 
If the number is valid, .NIA checks to see if the program is stored. If it is 
not,"Not'$tored" is typed. If it is stored, the program is read into core and 
~ontrol is transferred into it~ 

NIB - Delete Program 

NIB. - This routine allows for the deletion of a stored program. NIB is 
called down by the Utility Routine (see page 3) using the control card, Delete 
Program XX (where XX is the number of the program to be deleted). NIB first 
checks to see if the program number i p valid. ~f it is not, INVALID PROGRAM 
NUMBER is typed and control is transferred to the· Utility Program. If the 
number is valid, NIB deletes the program from the Program Location Map and 
ma.kes the cylinders in which program XX have been stored available for other 
programs. 

NIC - Type Time and Initialize 

NIC - This routine types a list of all users that have accumulated time 
since the last time request. The user number, the amount of time used since the 
last time request, and the meter reading in hours for the last time that the 
use~ was on the computer. All time readings are set to zero after being typed. 
This routine is called by the Utility Routine using the control card *TYPE TIME 
AND INITIALIZE. 

NID - Type Open Programs 

NID -'This routine types· a list of all the program numbers that are not 
currently being used. NID is called by the Utility Routine using the control 
card i;TYPE OPEN PROGRAMS • 

NIE - Type Priority Table 

NIE - This routine types a list of the active programs, their Use Code, 
and their priority numbers., NIE is called by the Utility Routine using the 
control card *TYPE PRIORITY TABLE. 



---.. --~,----~---.----",-----, 

NIF - Change Priority 

NIF - This routine allows the operator to change the priority of any 
active program. NIF is called by the Utility Program using the control card 
*CHANGE PRIORITY. NIF reque$ts the program number by typing PROGRAM XX. The 
program number is checked for validity. Invalid program numbers cause one of 
the following messages to be typed: OVERTYPE or INVALID PROGRAM NUMBER. Con
trol is then returned to the beginning of NIF. 

If a record mark is typed for the program number, control is returned to 
the Utility Routine. If the program number is valid, NIF checks to see if the 
program is stored. The message NOT STORED is typed if the requested program 
cannot be found and control is transferred to the beginning of NIF. When the 
requested program is located, NIF asks for the desired priority number by 
typing PRIORITY XX. The priority number is also checked for a record mark and 
for validity. 'The results are the same as indicated above. If the priority 
request is valid, NIF changes the priority of the stated program and adjusts 
the priorities of as many programs as necessary to insure unique priority 
numbers for each program. 

NIG - Type Location. Table 

NIG - This routine types the n~mber of each currently stored program, ~ts 
users code, the address of the first sector of the first cylinder, the address 
of the first sector of the second cylinder used, and the location of the next 
instruction in the program that is to be executed. NIG is called by the 
Utility Routine when the control card *TYPE LOCATION TABLE is read. 

NIH - Add Program 

NIH - This routine puts the information concerning a newly stored program 
into the Program Location Map. NIH is called by the Utility Routine when the 
control card *ADD PROGRAM XX is read. The program number is xx. 

NIH first checks to see if the program number is valid. An invalid 
program number will produce the message INVALID PROGRAM NUMBER and control is 
returned to the Utility Routine. If the requested number is valid, a check is 
performed to see if any s,tored program is already using that number. The message 
IN USE is typed when redundancy .occurs and control is' transferre4 to the Utility 
Routine. 

When an acceptable number is requested the message USE CODE XX. is typed'. 
The operator must supply a use code wh;ch alsorece.ives a validity> check. If 
the use code is acceptable, it is stored in the appropriate place.in the program 
location map •. 

. NIH then types CYLINDER ONE StCTO~, XXXXX and follow:~ t~ same" procedure in 
checking and storing the use .code.' When· an ac'ceptable sector address has been 
received, an availability chec1<.isp~~;ormeC1. , If.~h~;·?Yli.A9.errequ~sted .isnot 
available the message IN USE is'typed::~nd: afiothe~,~dd~,$,;r:.\~> reque$~'ed .·A~cept
able addresses that are ~$O ava.ilabl.~·are· approprliltelv"'s*ored and·NIH goes on 
to the next phase. o 



@"iIf 

o 

o 

Wf'f nr .. ··fww"tTM"t"f j"ffP'; . ]''''..,--'''1", WI 'Wtt" 

5 

NIH then types the message ADDRESS OF NEXT INSTRUCTION and follows the same 
accepting and checking procedure as described above. The next·worst (numerically 
highest) priority number is then automatically assigned. This ·priority number 
is automatically entered in the Program Location Map. Control is returned to 
the Utility Routine. 

Output Card 

This routine dumps from the disk onto cards. Output Card reads a card con
taining the lower limit (columns 15-19) and upper limit (columns 22-26) and 
checks t9 see that the upper limit is not lower than the lower limit. When this 
condition occurs 'the message TRY AGAIN is typed and another request card is read. 

When the limits are in the proper sequence a card is punched which cont'ains 
the specified limits. The specified data area is then punched along with a 
card sequence number. 

When the data area dump is completed, a check ror more sector address re
quest cards is made. The message C3 ON FOR REPEATS is typed when the last re
quest has been consumated. Control is then transferred to the first of Output 
Card or returned through a call exit. 

Out Subroutine 

OUT - The out subroutine allows the interruption of a program at some stage 
prior to completion. The out subroutine is simply included in the main program 
at suitable i~tervals. The subroutine has three operands: Use code, Program 
number, and the next statement to be executed. An invalid out statement wiil 
produce the message INVALID OUT STATEMENT. 

When the out statement is valid, the subroutine will: 

1. Check to determine if the present program has been consumated. If so, 
control is transferred to OUTMAIN. 

2. Checks to see if Cl is on. If Cl is on, the program is st.ored in its 
present state of execution and controJ_ is transferred to OUTMAIN. 

3. Checks to see if there is a record mark in core position 98. This 
condition will cause the program to be stored but execution will be continued 
immediately thereafter. 

4. If none of the above conditions are found to exist, control is returned 
to the interrupted program. 

Out Main 

OUTMAIN - OUTHAIN is basically a continuation of the Out Subroutine. When 
control is received from the Out Subr-outine, the validity of the program number 
is checked. An invalid number will cause the message INVALID PROGRAH NUMBER or 
PROGRAM TAKEN to be typed, followed by NOT STORED. If the p~ogram has not been o consumated, control is returned to it, otherwise, control is transferred to NEXT. 



If tne program number is valid and there is no conflict of ownership, 
OUTMAIN then checks to see if the program has been completed. A completed 
program will cause the release of the specified cylinders and the priorities of 
all remaining programs are adj usted. The message PROGRAH CONSUfJIATED is typed. 
Control is transferred to NEXT. 

If the program in execution is not consumated and not previously stored, 
OUTMAINassigns the program the next available (worst) priority number and a 
check is made to see if cylinders are available. Should no cylinders be avail
able for storage, the message NO OPEN CYLINDERS, NOT STORED is typed and control 
is returned to the interrupted program. If cylinders. are available, the program 
is stored and the program's area on the Program Location Map is filled with the 
necessary information. 

If the present condition i8 just an interruption of a previously stored 
program, the message PROGRAM NN INTERRUPTED is typed and control is transferred 
to monitor. Under the previonsly stated conditions, however, the program may 
be stored in its present form and execution continued immediately thereafter. 

Tables 

AVCYL - Available Cylinder Table 

This table contains 31 two-digit numbers. The first is the cylinder 
number of the stored programs and areas. The other 30 are the numbers of the 
usable cylinders. A record mark indicates the end of the table. A flag on the 
units digit of any cylinder number indicates that the cylinder is in use. The 
table is constructed as: 26272829303132333435 ••• 55560# 

TIME 1 ~ This table (read time-one) contains the accumulated time and the hour 
of the last meter reading for each of the 200 users ~ince the lq.st initiali
zation. It is constructed as: XXXXXXHHHH ••• XXXXXX is the accumulated time in 
hours and hundredth and HHHH is the hour, of the last meter reading. The po
sition in the table is determined by the use code. The first position is for 
use code zero, the second f.or code one, 'and the last for code 199,. 

TIME 2 - This table contains the use code plus the opening. and closing meter 
readings fo~ the last ten users.. The table is constructed as follows with the 
rightmost user being the last user: VVVVV#OOOOOO#CCCCCC#VVVVV#OOOODO#CCCCCC# •••• 
Here VVVVV is the use code, 000000 the open meter reading, and CCCCCC the close 
meter reading. 

PLM - Place Location Map. The PLH,contains pertinent information on each inter
rupted 'program. The information. is coded in groups as 'indicated below and the 
location, of'each group is determined by ,its program- number. The~e are thirty 
£.roup~, each consisting of five, five-digit fields as follows: 
0000000000000000000000000. 

The fields are inte~preted as follows: 

1. The first is the beg~nning sect6r of the cylinder used to store inter
rupted programs. 

o 

o 



o 

() 

• 

7 

2. The second field is the beginning sector of the cylinder used to store 
the Fortran subroutines. 

3. The third field is the address of the next instruction to be executed 
whe·n the program is res umed. 

4. The. last is the priority of the programs. The programs are executed in 
order of ascending priority. A priority of zero indicates an inactive program. 



<et-
C) 

CJ 

C 
~ l~ 
cr:J ~ 0 

0 ct 

I ~ 
t~ t 
~() ~ • 
o e ~ 

Ct 
-~~ 

\JQj 

-1.' 
~ 

2\.11 
L 

0 
e,,~ ~ . ~ 
~ C9 ~ a: 

~ 
-z: 

, .-* -:-:: -
~ p 
(\ 

d v 
'-

.J! lJ: c-r 

"'2 
0 
~ 

0: cJ 

~, 
..J 
4 
CC 
f.M 
Z 

""'" c:....9 

1.J.' :c. .!>cr- :>-Z +l- ~8= I-~ -'+- c:.--J J:J 
U 

§~ c..) 

o 



" """ "Tel"" 

#ffxr /11/ 9 

o 

o 

,\, 

• 



Jf 

~t kOCo..~( 
\-0 ~~-+vQ\\)----~ 
\0 ~ 

~o... \J~ ~t ~O,,~\y 
D~ 

~t0'b :t 

tJeXI 

o 

o 

o 



tTT - .. · .. ·&b·tr#6\···· -t·· .. T··· .. ··Tr"THr··tT 1 W'· 

...i....l .. 

o 
~e+ '-'.oQQJp 

-to V'-e4 "'tN ........... _-'!ft 

To ~ 

() 

• 



$"er ~£rlE/( 
c! 7D ~eto4 

7D E 

12 

33, 

o 

o 

o 



,,'±' ..... 

o 

() 

• 

~c>~e: 
l Ct.st A..A'~ t 

'1\ ~t ',.., Jo.si l>~ 
C.O~I~4. __ ~" 6N 

" Tn" 'rn" 

~e.-\~~ .. 
Secl,o~ 

o~ t-\~'\db\~ 

13 



<:,~A M~t£~Q.. ~~": 
"0 "RttUew _ ?nc:~:~.t () M 

\ 0 f\ \\A e '\"t:~. t 

ccc~ 

Qc.~~~s ~C:\ b'd 
~~\-\b~ l.\,)~eYl,) 

e~~\-V()\ c:o...~ 

\r' e.G..l\ W ll.S a. ~ (:)~ c a.. '" c\ 

~~O~\): 

'(' e '4',C)e & 
'Me.~ ~ec\~o ~ 

fe'Q.h:, 
\Jt~\~Lv 

~O(;t\ tJ 

~~} <t \J'II(~ ,,l
\I ~e. C. cd -e 

-::.0 

o 

o 

o 



o 

\..O~ J\-'\ \ 0 'tJ 
..t.---' J f\/' ~ 

~Iq~ 

() 

I \ ~"::: ........ ~ 
('51D 

L, ~4\T I 0 l\J 
..--~, 'I~J -= 

lo<; D Co 

• 

ec:.c~O~ 
'te.~ \Cje.d 
\fV.. Q ... :\: ~ v-. 
<;e c. '\t)"" 

15 . 

~OCl\ '" \0 

'f\" ~ tb g I 



J () ~ 't»rc:qra-. 
llGJlk{l G"" 
~\) aA b-e '"" 

re~Ao r.r< 
yecord 

V\ko. ~ \~ a\ ~ (X) 

INi1;<2 \'~e 

C ~t) f\'(~ ~ 

UTIL tTY ROUTIAIE. 16 

o 

o 

o 



17 

o 

o 



\...0 At> 7v--oc. 
~'k£c. 

\~\o 0 

18· 

o 

o 



}l18 

o 

OJ N -= \ 

• 

MA~.\C\ 

CYLINb~Q 
N 

A.s "" ,,\v..~\.i 

19 



20 

o 
~ -" 

o 

J-;.j- I 

o 



o 

• 

J:' J t/ 

.Jea t/~'" () f' 
tun e t ;16i..e 

£::0 

set"= ~ 0 
.IIce;;»1 ui."'I t eel 
t/~e ClF V,se 
c.erle £ c;v 
t/ffl e t. A/'I. t: 



~ .... """"-."."" ............ ---~-~~~~~~~~-~-------

",,0 

tI o 

o 

I=f+/ 

o 



NI£ 

o 

o 

• 



~~~e.S.s""At 
~~ i/,JIV II P

//1/1 /J

NIF

o

o

o

o

o

•

;>.IUcAI t t (Jf'

;>~()f' £':; 0

i'AICA. I i"l II P

PAcf. f:;. ~

J ==-3+/

PAloAlti 11- ()
PAC 1 J':.::
1'~/oAltt dP
iJA(J,.f" J f/

25

P~/CJ~/t;1

P -s,;J- ve = 0 P
,K/Ao f' J

26

o

o

iti"Hritrt,.,r'IM\lt'L +±tb'dririw .. ittlt "til ••• +=1''*'.%' '*.b'wW+Ljjttt '#""1''1'' tti"'!,' 't t'$'t'ILMJ \ 11' N't'tW''fW'»HW*, ,," "WNI!t"i"h'N'IfiWWWt",'lp'; ,I: t""'swd., "i:! t t ![,j' u,tt t b Ht t t'tH' M ·,t··t'H .. ri"'riH±hririittm"trY*t*l!+tri,'

o

o

•

._--------_ -

tJ 1 G

c

(;

o

o

•

It 1$

~g'\" '\ ~ .8'" E ,0
\~"p(C.~'tce ~~
a.t>O~~$S tl~
Nor ~\f A.\J,.. A8t.£.

t "j nittbb btt

r-~"-"~
a.~o.:, \...o.~ ~t

c..y H ~dl!v-
-t(\~\-e

srt iti ttt'ttrt itt. 1.·'irin t . 1)f' "w' "tit t6 l

> -

Se~ "(1~\~
+0 ~i5t
s~.toV' add.
(}.. ~ t\,) p t

a.~o.... \Clhl~

DP[~ -=
'? ("' c>v ~ t y () ~

7 r b -:r

Q

o

o

OUT"PU'T Cf1RD

II
o

o

•

~OQd ?'f~.
ou,~

\'~io 0

~t o\.n
c; '\ A~ Y4cet .. n" '1'0

1 N 'S:>\~ 'tt
\) '5>~ OF N

SlD ~<t:
D0\ ~~'f~~~o=---.

,~

te~~~~ ~~f\

~-t OUT
'31 ~ '~UAce •• rt

'To '~}'(!J.'~
c..\ ON

<.;~ v 0 t
c:s i"c... te ~ e Ill,) t

C\
;'0 \ ~d\tc.-\e

S~T 00, S't~'\'eNtfJt
", X"N t>,~~~ Co.,)'~
Sho U \d be ,".e~","
-to '1>n. <><1"C).1I' ~"<0r
~cv\-: JO:t

I

o

o

o

o

o

CSft kCX:o\"\ 't ,0
lvb] TO A.

~t. ,e.,,~
().\jB.\ \~\r\'fl

Cy\, "l~t.~
t CA.\t l-Q,

I

I

I

I

~~~~~~~~~~~-------------------------~-"",""""",,,,,,,,,,,,,,,. _.-

t-t\~'{ ~ 

C'Y}....\J\) C. 
C\S ,f'.J \)S~ 

~e, \..CX'~\£ 

T () ~~lORWw;.---t 
TO 1) 

~~C.~~$~~)' 
Yo«.,1 eN C f 

~ROQ, \..c( (~A:f> 

~et kCCA,t ,0 
12.~ 't\J'2r,no () 

1-1 
(J -=. , 

L..-.-...
J ,-,_ .. }_+ '----tH r -=1 + \ 10 _0 

o 



r .. 

c 

Ff::1C\-J', 
To.bl-e c ~ 
('J.\}a.i \&.u\{ 
C't l-lW O~ «. 

~~)~ -r \rJ)C ,\,s 
\0 

• ~\0RI'\ \D f 

r -.: D 

r 

N\ f>. 9..", 

["\ h~ 'f" es~ ......,.;...-""-\'_\ 

0.. \l 0- \ \CI...\)\-e 

~~~~ 

~,l)ot?~Ss,

S@i \,,.<:>~ i'
G.\(Q~ ~

Thoq. "-ce. ~o.,,: 0

~(;t\\> ~oc:,

G \\J1V
o

o

o

o

d' ;; . It tzatttt7ttttt I !tIl HI!! . Itt ttl

o

o

•

11 11' I tttt .. "f&dtdri'l

READF - A Free Format Read subroutine
For FORTRAN II-D

Presented by
Robert P. Bair

I Elliott Company
Division of Carrier Corporation

Jeannette, Pennsylvania

1620 Users Group
Eastern-Midwestern Joint Conference

Americana Hotel
New York City, N. Y .

Free format in:9ut is the ability to read data without specify
ing its form or position in the input record. Free format may be
either order-dependent or order-independent. Order-independent in
put alloVJs a variable name and its value to be entered as data, so
that any number of variables, in any order, may be given. This is
the most flexible method of in?ut, but it cannot be implemented in
FORTRZ\N II beca'L1se it reql.:,iref", a s~t{Tnbol table in core with '\vhich to
identify the variable names. The .fv1AD language uses this technique
in its READ DA,TA statement. Order-de1;>endent inpu't req1J ires a list
of variables in the input statement, and the data then consists of
values for these variables in the same order. The advantage over
the standard fixed format input is that the amount of space between
the data is variable, and more freedom is permitted in the form of
the numbers. This type of freG format may be 1.J.sed with the FORGO
compiler by ornitting the format n1.J.wber in the input statement, but
it can be done in FORT1=t.Z\N II only by a subroutine li}\:.e this one.

READF is called like any other FORTRf"'\N subroutine, and the list
02 variables to be read is given as arguments. The number of
variables in the list must be odd, for reasons to be explained later.
The first time it is called, the first input card is read and suc-

o

cessive numbers are assigned to successive variables. ~men all the
variables in the s'tatement have been defined, the subroutine returns 0]
to the main-line program. The next time it is called, the scan of
the first card is continued, and each number that is found is assigned
to a variable. A new card is read only when the last one has been
completely scanned, and any number of cards may be read in order ,to
define all the variables listed.

Since there is no way to determine in a subroutine, the mode of
any of the ar9~ments in the CALL statement, the mode of all the argu
ments is assumed and only normalized floating point numbers are
returned. READF actually stands for JlRF.AD Floating ll

•

Numbers may be separated from each other by one or more non
numeric characters, except for a single decimal point. This is as
flexible as it could possibly be made, and results in the ability to
read and distinguish between any sequence of numbers that could be
interpreted by a human. If two decimal points are found together,
they will be used as a separating point between two numbers. Any
number which extends to column 80 is assumed to end there. All
alphabetic characters are ignored, except for E which may indicate
an exponent. The only special characters which have an effect on

o

o

o

•

'P' II I .. I

Page 2

the result are the decimal point, and the dash which indicates a
negative number.

~fuen a number is entered with an exponent, two separate numbers,
the mantissa and the exponent, must be evaluated as one. This is a
special case, and the following restriction is required to keep the
numbers from being treated separately. The mantissa must be followed
immediately by the letter E, which is followed by the exponent in
one of the following possible forms:

+nn, -nn, nn, +n, -n, n

No blanks are permitted anywhere within the complete mantissa-exponent
combination. If a number is followed by E, which in turn is not
follov-,ed by one of the forms above, no exponent results. If the
exponent form is correct, but more than two digits are given, an
error message will be printed~ and the third digit will start the
next number.

The problems of communicating with the subroutine can best be
explained by reviewing the linkage that is generated. The statement
CALL READF (A) is compiled into the following:

BTM -READF ,*+11

DSA A

DSC 1,0

where READF ,is a five digit field which contains the address of the
first executable instruction in the subroutine. The constant, an un
flagged zero, is required so that the next instruction starts in an
even address. If there are two arguments in the CALL statement, two
symbolic addresses of five digits each would be generated, and the
constant would not appear. Thus any time that an odd number of argu
ments is given in the CALL statement, an unflagged zero is produced
before the next instruction.

Since we would like to be able to give a variable number of argu
ments, we are faced with a decision between several alternate methods
of indicating the number of arguments, or the length of the linkage.
(1) The first argument may be an integer having a value equal to the
number of arguments to follow. (2) The first floating-point variable
in the list could be pre-set to the floating value equal to the num
ber of arguments. (3) If an odd number of arguments is given, the
unflagged zero which is automatically placed in the ct)mpiled l,inkage

Page 3

could be used to determine the number of arguments. (4) If the CALL
statement were always followed by a PAUSE statement, a single
instruction, halt, would be compiled at the end of the linkage to
READF and could be recognized like the unflagged zero to signal the 4[j
end of the arguments. The halt vlould then be by-passed.

Of these four methods for indic9ting the number of arguments,
I have chosen the third, requiring that the number be odd, because
it re~lires the least amount of extra effort on the part of the
programmer. In many instances, there will be only one argument when
READF is used in a DO loop to enter an array. The third method is
certainly the most convenient here. In those cases where many dif
ferent variables are to be read, any odd number can be specified in
one statement. If an even number is desired, it can be broken up
into two statements that both have an odd number of arguments.
Because READF does not read a new card every time it is called, no
information will be lost, and there is no difference whether one CALL
statement is used or ten.

If the argument of a CALL statement is a subscripted variable,
the 5-digit address generated after the BTM in the linkage is an
indirect address. This must be allowed for in the subroutine when it
determines the address of the argument. Another problem is that
there is no way to tell from the compiled linkage whether or not any
of the arguments are un-subscripted array names. If an array name is
used, the address generated is simply that of its first element. (i
The DIMENSION statement in a FORTRAN-written subroutine is necessary
because of this ambiguity.

The subroutine's task of deciphering data is not a trivial one
because of the many different forms a number may take. ~~en consider
ing a number like 002, one may form the rule that leading zeros are
always ignored. But if this rule is followed, there is no way to
enter a zero. Generally, the start of a number may be either a digit
or a decimal point.

As READF scans from left to right across a number, i,t must adjust
the exponent of the result, and transmit the digits, one at a time,
into the mantissa of the result. The amount by which the exponent
is adjusted for each digit depends on whether or not the digit is
significant, and on its position in relation to the decimal point.
The mantissa of the result is to be between I and 0, inclusive, so
if the decimal point is preceeded by n significant digits, the final
exponent vJil'1 be equal to n. If there are n zeros after the decimal
point before a significant digit, then the exponent equals -n.

o

"III"!!'::: t t!'i-'It

o

o

•

W t' 'f U 11 nY"IIt"!'t'M!!' fllll"lltuullUM' "diV· ttt
!!,! ·tMt "Jr'! "ri" I'f!!ttl"ML!!tIW'e'WWrty,:tMLH! limN''!' '!I'Wltlfwtwtw N it

Page 4

READF is programmed in two loops. The first scans for a minus
sign,digit or decimal point, which start a number, ignoring all other
characters. If a minus sign is found, an indicator is set, which is
cleared again unless a digit or decimal point follows immediately.
\~en a digit is found, the second loop is started to test for
significant digits, increment the exponent, build the mantissa, and
test for a decimal point.

As each digit is placed into the mantissa of the result, the
present value of K is added to the exponent which was initially zero.
K is changed by the following rule: start with K equal to zero. \Vhen
a decimal point is found, subtract 1 from K. Add I to K when the
first non-zero digit is encountered. Thus, in the example 00123.45,
the value of K and the exponent are both still zero until the I is
found. K is then incremented to +1. ~fhen the decimal point is
reached, the exponent will be +3, and then K is set back to 0, so
that the remaining digits have no effect on it. In the number
0.0000823, K is set equal to -1 when the decimal point- is reached,
and the exponent is -4 by the time the 8 is reached. This is the
first non-zero digit, so K is incremented to 0 and the exponent
remains unchanged.

In order to produce floating point numbers which are already
normalized, no leading zeros are transmitted into the mantissa.
Transmission starts with the first non-zero digit, and proceeds for
a number of digits equal to the mantissa length. If an exponent
follows the number, it is simply added on to the exponent produced
from the mantissa.

A routine within the subroutine advances the indirect address
that points to the character being tests, sets flags to divide the
input up into 2-digit fields, and tests for the record mark stored
after the input area. If READF were converted to read paper tape,
the routine would find the record mark made by the end-of-line.

READF is written as a variable-length subroutine, internally
adjusting for the mantissa length being used in order to return
floating-point results of the proper length. The value of the matissa
length, f, is stored in the communications area of MONITOR. When
READF is compiled, however, the header record must specify the value
of f and k for which the subroutine is to be used. These figures are
stored on the disk ahead of the program and are checked by the FORTRAN
loader, phase 3, before the subroutine is loaded. The header record
is all that restricts the subroutine to one value of f and k, and
is the only thing that has to be changed when a different length is
desired •

tttt

Page 5

READF will greatly reduce the number of cards required for a c:>
given amount of data by permitting the numbers to be placed close
together. It will also reduce the amount of time required to punch
the cards, since there are such few restrictions on the card punch
operator. Helpful comments, names of units, or instructions may be
inserted anywhere to explain the data. Most important, there is no
need to worry about an error resulting from something in the wrong
card columns. If you can read it, so can READF, and it is well
suited to every program from introductory FORTRAN to advanced
applications.

o

o

o

o

TrW" urW
"' 'N " '@n"" F6i:ILB" "tW "W" "

Page 4

READF is programmed in two loops. The first scans for a minus
sign,digit or decimal point, which start a number, ignoring all other
characters. If a minus sign is found, an indicator is set, which is
cleared again unless a digit or decimal point follows immediately.
vlhen a digit is found, the second loop is started to test for
significant digits, increment the exponent, build the mantissa, and
test for a decimal point.

As each digit is placed into the mantissa of the result, the
present value of K is added to the exponent which was initially zero.
K is changed by the following rule: start with K equal to zero. Vfuen
a decimal point is found, subtract I from K. Add I to K when the
first non-zero digit is encountered. Thus, in the example 00123.45,
the value of K and the exnonent are both still zero until the I is
found. K is then incremented to +1. 1{hen the decimal point is
reached, the exponent will be +3, and then K is set back to 0, so
that the remaining digits have no effect on it. In the number
0.0000823, K is set equal to -1 when the decimal point is reached,
and the exponent is -4 by the time the 8 is reached. This is the
first non-zero digit, so K is incremented to 0 and the exponent
remains unchanged.

In order to produce floating point numbers which are already
normalized, no leading zeros are transmitted into the mantissa.
Transmission starts with the first non-zero digit, and proceeds for
a number of digits equal to the mantissa length. If an exponent
follows the number, it is simply added on to the exponent produced
from the mantissa.

A routine within the subroutine advances the indirect address
that points to the character being tests, sets flags to divide the
input up into 2-digit fields, and tests for the record mark stored
after the input area. If READF were converted to read paper tape,
the routine would find the record mark made by the end-of-line.

READF is written as a variable-length subroutine, internally
adjusting for the mantissa length being used in order to return
floating-point results of the proper length. The value of the matissa
length, f, is stored in the communications area of MONITOR. When
READF is compiled, however, the header record must specify the value
of f and k for which the subroutine is to be used. These figures are
stored on the disk ahead of the program and are checked by the FORTRAN
loader, phase 3, before the subroutine is loaded. The header record
is all that restricts the subroutine to one value of f and k, and
is the only thing that has to be changed when a different length is
desired.

Page 5

READF will greatly reduce the number of cards required for a 4:)
given amount of data by permitting the numbers to be placed close
together. It will also reduce the amount of time required to punch
the cards, since there are such few restrictions on the card punch
operator. Helpful comments, names of units, or inEtructions may be
inserted anywhere to explain the data. Most important, there is no
need to worry about an error resulting from something in the wrong
card columns. If you can read it, so can READF, and it is well
suited to every program from introductory FORTRAN to advanced
applications.

o

o

d" t *it tith' j

1.

2.

o

! I j rt i"bMW' tit ¢ teriH t Itt t.' 'ittttt t t h tt t r't. itt#"#Ht "ibt#'"H±rttittf .! ±H'Hiw lI"jJ"l[j±rlte6b'f" . -f' . T"" H'" n t' ...

BIBLIOGRAPHY

Bailey, M. Jo, Barnett, M. P., and Futrell, R. P., "Format Free
Input in Fortran". Communications of the ACM, 6 (October,
1963), 605-608.

IBM 1620 Monitor I System Reference Manual. White Plains, New
York. International Business Machines Corporation. Form
No. C26-S739-3.

FREAS-ROOKE CO~PUTING CENTER BUCKNELL UNIVERSITY LEWISBURG, PA.

ZZJOB
ZZFORX

31177001SYSTEM DEVELOPMENT

DIMENSION A(3)
1=3

C READF MUST HAVE AN ODD NUMBER OF ARGUMENTS
2 CALL READF (A(1),A(2),e,A(I),C)

PUNCH 1, A(1),A{2),B9A{I),(
1 FORMAT (5E16.8)

GO TO :(
END

TEST DATA FOR READF
9/4/65
FOLLOWING ARE TWO BLANK RECORDS WHICH PRESENT NO DIFFICULTY

THE NEXT LINE INDICATES VARIOUS METHODS OF SEPARATING NUMBERS
1 2,3 4AND5 6+7-8/9+10 -11-12

ZERO CAN bE ENTtRED SEVERAL WAYS
o 0uGU 0.0 .000 o. a
NUMBERS CAN BE SURROUNDED BY LETTERS
INPUT13=.5UNLESS A .Go 6+3.65+0
NUMBERS MAY BE ANY LENGTH, BUT ONLY F SIGNIFICANT DIGITS ARE USED.
1234567890123456788.9012345 0.00000000012345678901234

1234.5678901
USE A MINUS SIGN FOR NEGATIVE NUMBERS
-0.00567 -9843.67 -0 -598 -1-2.230 -0000.7
MINUS SIGNS NOT FOLLOWED BY A DIGIT ARE IGNORED

- 1. -1. -.2
PLUS SIGNS ARE IGNORED
+1 1 +.8.8

-.2

+-9

- 0.3 -0.3

-+9 (THE SIGN CLOSER TO THE
NU~·1DER COUNT S)

TWO DECIMAL POINTS IN A ROW INDICATE THE END OF A NUMbER
1234 •• 5678 1234 •• 5678 .123 •••••• 56 .123. 56

READF CAN HANDLE NUMBERS WITH AN ExPONENT JUST AS WELL
THE EXPONENT MUST IMMEDIATELY FOLLOW THE NUMBER. 12.59E33

6.123 E66 'IS TWO SEPARATE NUMBERS. SO IS .9949E 2
NO BLANKS. PLEASE. 21.E-2 6E+30 829645E-45 .564A956E12 MANTISSA
CAN BE INTEGER. 21.45E9.1118E~6+3.E50-9 .000E25 O.OOE70 ZERO
ALWAYS COMES OUT THE SAME E23 1E23

A LEADING RECORD MARK CAUSES ARE-READ
Z 1111111
22222222

TWO RECORD ~ARKS CAUSE A CALL EXIT ••• SUT FIRST,
HERE IS AN EASY WAy TO ENTER AN ARRAY
A(4,5) = 4.23
ZZEND OF' TEST 1

PAGE

o

o

o~.-.

.-------------- -._- --_ .. _-_.------

FREAS-ROOKE COMPUTING CENTER BUCKNELL UNIVERSITY LEWISBURG, PA. PAGE 002
------------------- --- ----------- ._--- --- --_ .. -------------------------~----

-O--:-9-00000o'6E+o-i --'-"~4oo'oC-6oc5E+0 1 • 650UOOOOE +02 .' 1 OOOOOOOE +01 • 20000-o00E+0 1
~_:3()O 00000 E +01 .40000000 E +0 L ________ !.? 00 0 0 Q.QQ ~~QJ. _______ ~C>_Q90Q_Q_9Qf:_:!9~ ___ ~JJOOO 0 OQ.~_±.QJ._

-.80000000E+Ol .90000000E+01 .10000000E+02 -.11000000E+02 -.12000000E+02
___________________ O.Q9'00000E -99 .000000 OOE -99 .00000 OOOE-99 ______ f!.9_QQ.9Q~LQQf:-=99 .OOOOOOOOE-99

.OOOOOOOOE-99 .13 0000 06E+-o2-----~--506006oo-E-+O 0 .3 6500000E+0 1 .12345678 E+19
___ . _____ !..12~4.5Q.I.~_E::.Q_2. ______ .. _!..1.2 .. 3.42_ 678 E + 04 - • 56 700000 E - 02 - • 98 '±.26 7 0 () E + 04 -. 00000000 E - 9 9

-.59800000E+03 -.10000000E+01 -.22300000E+Ol -.70000000E+OO .10000000E+01
_____ ._.:-_~ __ lQ_Q.O..OQ_O () E '!_ Q l .. 2 0 0 0 0 O,QQ~_t Q 0 ___ =_~_z.Q_Q.9_.QOQD~.[±_Q _Q _________ • .lQ 00 0 9QJ1~_±.QQ -. 30000000 E ±_QQ __

.1000000GE+01 .10000000E+Ol .80000000E+00 .80000000E+00 -.90000000E+01
____ . ________ ~_2Q9_Q_Q _0. PQ E + 0 1 • 12 3 4.9 Q_Q.Q_~ _ _+._. OA ____ ~2J?_1_~_Q_QgQ~±Q.g ___ _____ ~_l?_l_lt.QQQQ!;±Q~ __ ~ 678_.00. 00 E + O_Q_

.12300000E+OU .56000000E+00 .12300000E+00 .56000000E+02 .12590000E+35
___ ._6.12 3 0 0 0 Q_~:! Q.1 ____ ~f:>_~9 00000 t + 0 2 • 99490000 E + 00 • 2 00000 C 0 E + 01 • 21000000 E + 0 0

.60000000E+31 .82964500E-39 .56489560E+12 21450000E+11 .11180000E-06
. ______________ ~~ __ Q_Q.9_QQ_ 9..0 E + ~ 1 - • 9 Q .QQ9JtQQ_I;j' 91 __ ~ __ O OQ_Q 0 00.0 E =-2.2 ______ !._Q_Q_Q.9_Q 0 0 0 E - 99 f! 2309.9_0 0 Q~ 0 f._

.10000000E+24 .2222222~E+08 .40000000E+Ol - .50000000E+01 .42300000E+01

---' ------------------------ ._---------

;0 _____________________ --.-----------------.-.--... ---.- ____ __ ______ .. _____________ .. ___ . __________ . ______ . ___ _

--------_._------------_._---------_._-----------------

~-----.---------~ .

•

FORTRAN Compilation
of CALL statement

CALL READF (A)

is compiled into

B-T~ -REIfOF *-11 ,- -

rrSA A
DSC 1 , 0

where READF is the address
of the subroutine

o

01
j

tl

() ~:I

()

o

3) Determine the maximum operating rate of a machine when the
flywheel size and motor size are specified.

4) Determine the maximum operating rate of a machine and the
required flywheel inertia when the motor size is specified.

5) Determine the dynamic behavior of a machine when the flywheel
inertia, motor size and operating rate are specified.

DYNAMI C ANAL YSI S

Analysis of the dynamic behavior of a machine involves determining motor
speed as a function of machine position in the cycle. The approach used
to determine speed versus position can be based on either solution of the
differential equation of motion or on conservation of energy through a
displacement interval. Because it is numerical and especially suitable
-for computer application, the procedure employing energy considerations
is used in this analysis. The required energy relationships can be
determi~ed, but it is first necessary to consider numerical representation
of the torque demand of a machine and of the speed-torque relationship of
a motor.

Torque Demand of a Machine

The torque requirement of a machine includes work loads, friction loads and
inertia loads. By inertia loads are meant those due to acceleration and
deceleration of machine components when the machine is operating at constant
speed. The total torque demand of a machine can be detennined at any position
by summing the torque requirements of the various machine components at their
respective phase angles.

For reciprocating machines the torque demand is not a linear function of
machine angle. However, in this analysis, the torque will be represented
by a series of straight-line functions. This approximation is made because,
in most applications, the torque demand curve will not be defined to sufficient
accuracy to warrant a more sophisticated method of representation. A typical
torque demand curve is shown in Figure 2.

The torque demand curve determines the energy- required by the machine when
the motor shaft rotates through an angular increment,Llg. By considering
small increments the ,energy requirement, We 9), will be very nearly equal
to the product of average torque and angular displacement. Thus,

w e 9) =

2

I.

CC-S29

Speed-Torque Curve of a Motor

The operating charaderistics of NEMA design B motors are such that with 0
increasing torque and decreasing speed, the motor will stall at breakdown
speed and continuous operation will be interrupted. Therefore, when
considering the continuous operation of a machine, the operatin~ ran~e
will include onl that ortion of the seed-tor ue curve above reak own
spee. typlca motor spee -torque curve 15 gIven In FIgure . ntIs
range the speed-torque curve can be represented by an exponential function,
y = Ax , between breakdown speed and rated speed and by a straight-line
between rated speed and synchronous speed. The energy supplied by the
motor, through same interval of rotation, can then be developed as follows:

The equation for motor torque in the exponential function speed range is:

TQ (9) S [TQ (R) - TQ (B)]
[NCS)

N (R)
- N (B)] E + TQ (B)
- N (B)

where,

E = In [TQ eB) - TQ (R) J- In [TQ (B) - TQ (I)J
In [N (R) - N (B)]40- In [N (I) - N (B)I

while motor torque in the linear speed range is given by:

1Q (9) = TQ (R) ~N ~(~9-",)~' _-_N~(R.:...) + TQ (R)
N (R) - N (8)

where:

TQ (8) = motor torque at angle 9
TQ (B) = motor torque at breakdown
TQ (I) = motor torque at intenmediate point
TQ (R) = rated torque of motor
N (9) = motor speed at angle a
N (B) = motor speed at breakdown
N (I) = motor speed at intennediate point
N (R) = rated speed of motor
N (S) = synchronous speed ,of motor

Either the exponential or linear equation is used to calculate motor torque
depending upon whether speed, N (9), is less or greater than rated speed·
res~ective~y • In either case, the energy supplied by the motor, M (8), '
dur1ng an mterval, L1 9, is:

M (9) = TQ (ai) + TQ (Of)
2

3

-L\8

o

o

II!II tr q !!!tt!rm'::!!HIt ' II IIIW!!"! It * t t $ ti.6-· t{ ei

o

0'

o

With the relationships developed for energy required and energy supplied
over an increment of displacement, the procedure used for the dynamic
analysis can be stated. Speed at successive increments in the cycle is
calculated on the basis that the change of kinetic energy equals the energy
supplied by the motor minus that required by the machine. Thus,

where,

and,

KE (9f) = KE (9i) + M (9) - W (9)

KE (9) = 1/2 J N (9) 2

J = total mass moment of inertia referred
to the motor shaft

CC-S29

By applying this basic equation at successive increments, the kinetic energy,
and consequently motor speed, can be determined at each point in the cycle.
To obtain a continuous solution, an iterative technique is used, whereby the
speed at the beginning of the cycle is replaced by that at the end of the cycle.
When the motor speed at the end of the cycle converges to that at the beginning,
the speed versus position data will describe the dynamic behavior of a machine.

EVALUATION OF DYNAMIC BEHAVIOR

Speed fluctuation and maximum slowdown can be calculated directly from the
results of the dynamic analysis. The dynamic behavior, for a particular
flywheel and motor (or machine operating rate), is evaluated by comparing
these calculated values to specified design limits. In addition to providing
acceptable dynamic behavior, a motor must be sized such that its temperature
rise during nonnal operation does not exceed the limits of its insulation.
Because the ability of a motor to dissipate heat at a given maximum
temperature is constant, the criterion of temperature rise is controlled
by the amount of heat produced in the electrical windings of the motor.
Thus, in order to meet this temperature rise condition, it is necessary that
the heat produced by the motor during a cycle of operation does not exceed
that which would be produced at rated output.

The heat energy produced in an electric circuit per increment of time j dt, is:

HEAT = 12 R dt

4

Since the resistance, R, in a motor circuit is essentially constant during
continuous operation, the heat created, and consequently temperature rise,
can be compared on the basis of root mean square current. The requirement
for no overheating is then:

where

Rated Current >

I = motor current
LJ. t = time increment

T = time per cycle

: N

II
= J n=l

N = number of increments per cycle

PR(x;I;Wv1 LOG I C

· LJ t) IT n

CC-S29

For a given motor and flywheel size and machine operating rate, the program
calculates motor speed for each displacement increment in the -cycle. Speed
fluctuation, maximum slowdown and rrns current are then calculated to describe
the dynamic behavior as given by the speed versus displacement calculations.
The dynamic behavior is evaluated by testing these values against specified

o

design limits. The sequence for testing these criteria is given in the G\
Simplified Logic Diagram of Figure 4. . "I

Necessary changes are first made to obtain acceptable dynamic behavior of
the machine. These changes are made after testing maximum slowdown and speed
fluctuation of the motor. When speed fluctuation is excessive, additional
flywheel inertia is required to'provide a more nearly constant speed. If the
program input specifies that the flywheel inertia cannot be changed, motor
size will be increased to reduce the speed fluctuation. Where maximum
slowdown from rated speed is excessive, but speed fluctuation is not,
additional horsepower is required. In this situation, motor size is
increased and flywheel inertia is reduced to a value such that maximum
allowable speed fluctuation exists.

It should be noted that the type of analysis required, as specified in the
program input, selects either motor horsepower or maximum machine operating
rate as a quantity to be determined. In an analysis to determine the
maximum operating rate of a machine, the motor size is fixed,and horsepower
changes, as previously specified, ar~ replaced by inverse changes in operating
rate. This in effect changes the power requirements of the machine in place
of changing the required power necessary from the motor. Mter each change
in component size or machine operating rate, the dynamic analysis and all
subsequent calculations and tests are repeated.

5

,J ~)7

o

E"- 'ibHr"a" 1ftt h1." Kttrt r \'15b1'& ". Ii 11"", f "C""""f "" "-\ , .. "[--"W"" \"Iamp"'U'"""

o

o

•

CC-529

After a flywheel and motor size (or machine operating rate)has been deter.mined
that will satisfy the dynamic requirements, the rms current effect on motor
heating is an additional requirement to be satisfied.

Flywheel inertia and machine speed, if a program variable, is changed by
increments as specified in the program input. The program also provides
that flywheel inertia can be lTInited to given minimum and maxTInUffi values.

When the computer has deter.mined the motor and flywheel requirements of a
given machine, it will list motor speed, percent speed variation fram rated
speed, torque demand, ~otor torque and motor current for each degree of
machine angle. This data is also given in 10 degree increments in an output
summary which includes motor size, flywheel inertia, machine speed and other
design infonnation.

Input necessary for use of the program analysis includes torque demand of
the machine, operating characteristics for the range of motors being
considered, machine inertia and program control data.

The program is written in Fortran II and requires a 1620 system with
40,000 units of memory and a 1311 disk drive.

BIBLICXiRAPHY

F. R. Crossley, v'Dynamics in Machine,u The Ronald Press Canpany, 1954.

C. C. Libby, 9Motor Selection and Application," McGraw Hill Book Canpany, 1960.

M. F. Spotts, "Flywheel Machine," Machine Design, March 28, 1963.

CONfINENfAL CAN CCMPANY, INC.

Corporate Equipment Engineering

o
~ -~

-;'<;.,'
-,,\lrnax ..

Ct1 :N
b! avg",

N .
r.l1ill.

:"l

~
I
I-~

T
i N N .
~ SPEED FL1JCTUATION ~, max. - !nlnft

Navg"
~

~

l
~

MA}GMtfM SL()W'DOWN ::: !:~~~!:~:~.§2.~~_~~ ~. Nrnin.
Rated Sp~;ed-~""~·~~·

.J ~ k ~.~.L~' f ";!.:.~ -. ,~-.. ~~~~lJJili&.~oI.~~T-'~~.li!!~"iit_·:·~:;~~7tt _

60 120 :180 240 300 360

JVIACHINE c:\NG (' f)'C;' ('~ t:) .::; ;1'1:.~ \ _ .L~ u ~ \.,L_ JL. , .•.• }

o o

W"Hr": ! .! WIII:I II!!! Itt 11''' t'WalU"! "!WitH!"'! ill"u'r'iI'1'W Ill'!" t t'wrn't"Ht"'¥t")' 't tl'm'wf*tw ! t IIW"'U" t 1 . , I' h. I'

CC-529

o

0
~
~

~
0 <
N

~
.....

CJ

~
0
~

•
FIGURE 2 - TYPICAL DRAWING PRESS TORQUE DEMAND CURVE

CC-529

r:.:l
t:> a
~
E-4

~
~
<
~
~
~

o
o ,...

.-..-.~===:::=J 'tS

~

0
CO

0
CO

0
~

0
N

0

0 0
0 0
N 'I""t

(a:![~ va ~N3::>H:t[d) 3nt)lIO~l:IO~OW

FIGURE 3 - TYPICAL NEMA-B SPEED TORQUE CURVE

.........
til
=::> g
g
= U

~
til

E-4
Z
~
u
p::
~

&
~
~
~
Pot
til
p::
0
E-4

~

3i3

o

0

0

-j"! - "p"r""., "/I"" '"- r""r-en'"".,""nr

o

'0

READ CALCULATE
INPUT t----.... TORQUE
DATA DEMAND

DYNAMIC ANALYSIS

INITIALIZE
CONTROL

VARIABLES

SPEED@ 00

EQUALS
SPEED@ 3600

CC-529

CALCULATE
SPEED

VS
POSITION

I~~--___ --------------
EVALUATION OF DYNAMIC BEHAVIOR

PRINT
OUTPUT

CALCULATE:
SPEED FLUCTUATION

----~ MOTORSLOWDOWN
AND RMS CURRENT

PRINT
OUTPUT

NO

INCREASE
FLYWHEEL

INCREASE
MOTOR OR
DECREASE

SPEED

DECREASE
LOW MOTOR OR

INCREASE
SPEED

DECREASE
FLYWHEEL

--AND-
INCREASE
MOTOR OR
DECREASE

SPEED

INCREASE
MOTOR OR
DECREASE

SPEED

FIGURE 4 SIMPLIFIED LOGIC DIAGRAM

YES

oj

1

o

o

'r ' 'I'"

o

o

•

HOT '"T" f)

ACTIVE NETWORK ANALYSIS

Alonzo F. Adkins and
R. H. Seacat
Electrical Engineering Department
Texas Technological College
Lubbock, Texas

At the present time, there are two topological methods that
are very useful in analyzing passive electrical networ1s. One of
these methods was developed by W. S. Perc~v~l in 1953. The other
method was developed by Feussner in 19038' Both methods have
been improved upon by ~nvestigators in circuit theory at Texas
Technological College. Recently, E. D. Merkl has extended both
Feussner's method and Percival's method to inc¢ude active net
works containing vacuum tubes and transistors. In this paper,
we shall use Merkl's extension of Percival's method to a program
for analyzing electrical networks containing dependent current
sources.

A BRIEF REVIEW OF PERCIVAL'S METHOD
APPLIED TO PASSIVE NETWORKS

The equilibrium equations for an electrical network being
solved on the nodal basis can pe put into the form

[I] = [Y] [V] , (1)

where [I] is a column matrix with n rows, each element being an
independent current source, [Y] is an n by n admittance matrix,
and [V] is a column matrix with n rows. The columa matrix [E]
contains the unknown node voltages that are to be calculated. If
aifi current sources are remove¥hexcept the one connected to the
i node, the voltage at the k node can be expressed as

(2)

lW. S. Percival, "Solution of Passive Electrical Networks by
Means of Mathematical Trees," Journal Institute of ~lectrical
Engineers, London, 1954, Volume 101, Part IV, pp. 258-264.

2 W. Feussner, HUber Stromverzweigung in Netzformigen Leitern,"
Annalen der Physik, 190~, Fourth Series, Volume 9, pp. 1305-1329.

3 R. H. Seacat, "A Method of Network Analysis Using Residual
Networks, If (Dissertation, Texas A & H University) •

4E• D. Merkl, "Topological Methods Applied td Active Net
works," (Dissertation, Texas Technological College):

2

Percival has shown that the principal determinant, 6, can be
found from the graph of the network. The expanded value of the
principal determinant is given as,

6 = E tree edge admittance products over all trees o (3)

Usually a network is so complicated that it is difficult to
enumerate all trees of the network. However, the following
relation can be used to expand a complicated network into less
complicated networks,

Il=Y6 +6,. x x x (4)

This relation states that the principal determinant of a network
containing an admittance Y is equal to Y multiplied by the
determinant of the networkXwith Y shorte~ plus the principal
determinant of the network with yX open.

x The numerator ~.k' or the numerator for the voltage between
any two nodes, may b~ found in the following manner: Let the
input terminals of the network be 1 and 1', and the output ter
minals be 2 and 2'. Find two non-touching paths, one from
terminals 1 to 2 and the other from terminals l' to 2'. All
edges used in the two paths are multiplied together and all nodes
used in the two paths are shorted together. The trees of the
remaining graph are found and the product of the ·tree edges and
the path edges is found. This process is repeated for all possible
paths and the products are formed into a sum. Finally, the whole
procedure is repeated with the paths going from terminals I to 2'
and l' to 2. The second results are subtracted from the first to
give the expanded value of

THE EXTENSION OF PERCIVAL'S METHOD

Percival's method may be applied to active networks using a
modified set of rules. For the principal determinant, the follow
ing rules apply:

Rule 1. A dot is placed over the element through which
the control current is flowing. A dot over an
element is just a shorthand way of writing,
"this element should be multiplied by (1 :l: a)."
Whether or not the dot signifies multiplication
by (1 + a) or (1 - a) depends on the direction
of the dependent s.ource.

Rule 2. Each element in parallel. with the dependent
current source, not dotted, will have an x
placed over it. The significance of the x is
to cancel the effect of the dot if a product
of an x and a dot is made. If a product

o

o

""T""W - hl"t"TY""' "IT" lUi 1"'"" ..

o

o

•

contains no dotted element the effect of the x
is ignored. If an undotted element is shorted
across the depend-ent current source during
graph reduction, this element is also "x"ed.
If the expansion of b is determined without
graph reduction, the dotted elements of any

3

tree having any combination of undotted elements
shorting the dependent current source are ignored.

Rule 3. The product of two or more dotted elements
produce the same results as if only one of the
product members were dotted.

Rule 4. If the principal determinant is expanded by
graph reduction, . no dotted or t'x"ed element can
be removed from the graph.

In order to calculate the numerator, the following rules are
applied to Percival's method:

Rule 1.

Rule 2.

Rule 3.

Rule 4.

Rule 5.

The value of the dependent current source is
replaced by an independent current source that
has a value equal to a times the independent
current source. The network is then treated as
a passive network with two source currents (II
and all).
A dot ~s placed over each element used to write
the control current in terms of the independent
current source. Again, the dot means "multiply
this element by (1 ;t a)."
When determining the terms for all' a dotted
element that is not in parallel w~th the
independent current source is treated as if the
element was not dotted. A dotted element that
is in parallel with the independent current
source gives a value of zero.
The product of an x element with a dotted
element cancels the effect of the dot as in
Rule 2 for the principal determinant.
All terms involving multiplication by a that
do not contain the element through which the
control current flows are dropped.

PROGRAM DESCRIPTION

A program which is based on Merkl's contribution to active
network topology has been written. The program is centered around
a straightforward tree finding algorithm. By definition, a tree
of a network is a combination of branches of the· network meeting
two restrictions:

1. All nodes of the network are connected by the branches
of a tree •

2. The branches of a tree cannot form a closed loop.

Using the definition of a tree, the trees of a network may
be enumerated as in the following example. Consider a complete
four node network (i.e., a four node network with branches
connecting every node). Let the nodes of the network be numbered
I, 2, 3, and 4. Then a particular branch of the network can be
referred to by the two node numbers that the branch is connected
to. For example, branch 3, 1+ refers to the branch connecting
nodes 3 and 4. Since a tree must connect all nodes of a network,
each tree of the network must contain at least one branch con
nected to node 1. Therefore, separate the trees of the network
into four groups, one group containing branch I, 2, one- group
con.tainiIlg branch 1, 3, and one group containing branch I, 4.- Now
find the trees for each group by "growing" branches to-the already
existing branches- until the tree is complete. The gr.oup of trees
containing branch I, 2, may be further divided into second.. groups
by "growing" a branch onto branch 1, 2. This results "in the
following second groups for the group I, 2.

12 13

12 14

12 23

12 24-

Now, the trees may be completed by "growingtt third branches on each
second_ group as follows:

12 13 14

12 13 2.4

12 13- 34

12 14 23

12 14- 43

12 23 24

12 23 34

12 24 43

In order to preventthedundancy, in enumerating the trees, the
branches for each n group start with a branch that has not been
previously used in the n-l group.

o

o

o

o

.~.

O·

o

I'"atl l n - "TP fltUrrKn· "J' " .. " w
u

• __

5

Now the procedure is repeated for each of the original groups
resulting in the listing of the trees of the network as follows:

12 13 14

12 13 Zit

12 13 3~

1Z 14 23-

12 l~ 43-

12 23- 24-

12- 2-3 3Jt-

12 2-- 43:

II IlJ U-

13 14 .. 2

13 32 34-

13 32 24

~; ... 13 31l 42

14 ..2 it3

14 1+2 . 23

14 43 32

For a network that does not have branches connecting all nodes,
only one additional restriction must be added to the algorithm.
The restriction is as follows: Before a branch can be "grown" in
order to form a tree, the branch must exist.

Notice that listing the trees in this manner allows th~
expressions for the summation of the tree edge products to be
easily factored. For example. the denominator for the complete
four node network can be written as:

A = 12(13(14 + 24 + 34) + 14(23 + 43) + 23(24 + 34t

+ 24(43» + 13(14(32 + 42) + 32(34 + 24) + 34(42»

+ 14(42(43 + 23) + 43(32»

!""("""It'"

6

A FORTRAN program has been written that will produce ~ in this
factored form for a passive network. This program was further
extended for use on active networks. The extension consisted of
several routines for checking each tree according to the pre
viously mentioned rulest,hat apply to the principal determinant
of an active network. The program inserts the (1 ± a) factor in
appropriate locations in the expression for ~.

A program that determines the numerator functions for
arbitrary node voltages .of a network has also been written. This
program uses a "path find1ng" routine which determines all paths
from the input terminals to the ~utput terminals. Each time a
set of paths are found, the path edge branches are inserted into
the numerator function, and a "short code" is stored for each
element in the P?th. A modified tree finding routine then deter
mines the additional terms for the particular set of paths. This
procedure is it~rated for all possible paths from the input
terminals to the~utput terminals. Then, the entire operation is
repeated with the active source as the input.

39(J

o

o

o

o

o

o

SIHULATION OF A RADIO-DISPATCHED TRUCK FLEErr
By

John W. Saw.fer
Wake Forest College

This paper describes a study made for the R. J.
:.;eynolds Tobacco Company., which arose in response to
8. seemingly simple question: ftHo H rrlany trucks should
i!.Te be operating?tt

An analysis ,of what was involved in such a question
brought out the folloHing information.

The Engineering and Construction Shops operate a
fleet of trucks which can be used to haul either materials
or) crews of worlanen. When a truck is needed, the responsible
?erson phones the dispatcher, giving the location and nature
of cargo. The dispatcher notes this information, as well as
the time, in his log, and ~ispatches a truck, by radio, as
soon as one is available. vlhen the truck completes the trip·
the driver radios the dispatcher and notifies him of avail
abiltty. The truck routes are variable, similar to the
operation of taxicabs.

If no truck is available to handle a request, in
general, no penalty is attached for handling materials
only; however, if a crew of Horkmen is waiting to be trans
~arted, their idle time at hourly wages imposes a definite
financial penalty on the company.

Hence, the problem boils down to balancing the number
of trucks against the cost of idle crews.

A simulation of the system was proposed to circ~~vent
v~{!?ious dif.ficulties connected with ~ctual physical change.
Pry!:") exam-ole, under physical variation of the number of trucks
it pould take considerable time to note the effect of various
fnctors; the present system would be in turmoil; the cost of
adding and deleting trucks for experimentation would be
prohibitive; and answers would not be valid at different
levels of demand other than that existing at the time of
physical variation.

Dn ta was obtained from the' dispatcher I s log, trucl~ trip
tickets, and by visual observation of the operation. From
these sources it was possible to obtain the following data:

1. The time required to service requests for transportation.
2. Frequency and distribution of trip times.
3. Magnitude or requests for truck service.
4. Freauency and distribp+.ion of requests.
5. Amount of delay in dispatching trucks (truck wait).

-2-

6. Amount of idle time (crei,v 1r-lait) rest'l.lting from
truck wait.

7. Cost of idle time resulting from truck and crew Hait.
B. Cost per man-hour of lost time.
9. Cost per hour of truck operation.

10. Present number of trucks being O~)E'~ra ted.

Analysis of considerable data led to several observations
concerning truck requests:

1.

2.

6.

There is a def~Lni. te patter'n, varyin[:: every half-hour
for the 19 half-hol.lP neriads of the dave
T~e number of requests~for trucks falls"into an
approximate nor~r}al distri bu ti on for ench pel"'i ode

Requests occur at random within each Deriod.
The pattern of requests by time period does not
vary significantly from one day of the week to
another day of the week; nor does one week vary
significantly from another week--that is, one
day is like any other day, free of cyclic patterns.

The length of trios is random and indsoendent of
the time of day.~ .

A truck wait resulted in a crew wait in 12.3% of
the cases in which the truck wait occurred.

After these preliminary studies, a compu:er prosrare
was designed (see flow chart) to simulate the actual
conditions encountered in providing truck servi~e. It
simula tes as many days as desired, Hi th any gi ven nu~nber
of trucks, building up normal variatIons in demand while
maintaining randomness. The number of trucks could be
varied at Hill to deterT'Jine the optimum fleet. The simulation
could be carried out at t~e rate of four ~inutes of computer
time for each full day of simulation.

The output included the number of trneks, the number
of days of simulation, a log of requests and trip times,
the minutes of truck wait, and the minutes of crew wait.
Crew Hait time plotted azainst the number of trucks resulted
in a nice expon~ntial cu;ve. This process was repeated for
various levels of demand for truck service.

Crew wait cost was calculated. and ',""as balanced against
the cost of adding additi8nal trucks. Finally, a simple
operating curve was given to the Engineering and Construction
shops, expressing the optimu .. rn number of trucks as a function
of the average number of requests for t~uck service per day.
This, in effect, gave a break-even point at which to buy
another truck.

o

o

o

o

o

•

I' It j t tt rtt ri dt t! t1t t ct. tthh t **" h t ¢

-~ .. ./

thttt *
:.

This simulati:>n VIas 1"rl.n first in 1959, and ha.s been
re-run twice since that time simply for verification and
c.ompa:.:-'ison purposes. It has been found that the predicted
crew wait time at various levels of request has been very
close to the actual crew wait, and, except for slight
:~0dification to reflect changing costs, the operating
01.l1"Ve is still the au.thori ty for adding trucks.

Eanagement has been extremely happy with the results,
and several addi tional· simulations have been r'equested as
a result of this satisfaction.

itt

Enter means.
sigmas l truc
availability
logsl etc.

Enter no. or trucks
and no. or days to

be simulated

Obtain random normal
____ --------------------__ ~deviatel multiply by

sigma, add to mean

slng random numbers,
determine when, within

~------------------------~ the period, -each reques
occurs

Have all requests been
assigned in this period?

Is a truck

FLOW CHART
TRUCK SIMULATION

No. or requests ror
trucks ror each
or the day

Print record of
requests, trip
time, truck wait
crew wait

available rOL~------~
this request.

l
IS this the last
period or the day?

total
truck wait
and crew
wait

tain random
number ror
length or tri

length
wait

Add to availabilit
time of first truck
which is available

~~Go to next~ ________ _
request

o

o

o

h'ityWh $) t?bl""""""".'it,,'rtw't\"fdbt tit trw ttMtjf'Ulttwttft'WfeWMbht'rlrliHMffl:JethWtttlt It 1'1 "Wilt' IlL' m Wlttii"WdWWII"t!'l11 'If ilL! t 'Itt'rwtt, j'iUlW'li'fpu 'Wltrt'rItt'r'tlL'tllH'W1$'(\

o

•

Simulation of Automobile Traffic

Dr. Phyllis Fox

Dr. Frederick Lehman

Newark College or Engineering

Presented to the 1620 Users Group Meeting, New York City, October 8, 1965

Introduction

We have been using our 1620 Model II computer at Newark College of

Engineering to sill\1la.te car following (no passing). In particular we are

studying the rear-end accident situation with the hope of being able to

suggest promising prevention devices and measures.

~th a mathematical - decision making type of model we can generate

accidents and near accidents at will. The cost of this method of study

is much less than a field investigation where reliable data is very

difficult to obtain. To have practical significance the model must

well represent the real situation and yield accident rates similar to

those found from motor vehicle accident records.

The principal computer work which has been done in the area of

automobile simulation falls either in the area of urban traffic network

simulation with emphasis on the intersection problem, or in the area of

the highway interchange problem. In our study,. on the other hand, we

are emphasizing the individual car + driver situation, hoping to

'I" 'W wu tt,t"" I

2.

understand the fine structure of driver behavior by concentrating on

the simple car-following, nopassing, single-lane driving situation, as

might be found for example in ~ tunnel. Traffic models of this particu-

lar situation have been postulated and studied by several investigators,

but the research has focussed on the steady-state aspect of throughput

of traffic flow. We are stressing the transient, accident-eausing,

exceptional situation.

We are devoting considerable care to structuring our model around

the human characteristics and behavior of the drivers. We have explored

the literature for results of current research in human reaction times,

perception activity, sensitivity, response, etc., so that we can use

appropriate distributions for our parameters, and see how our model

behaves under reasonable changes of these parameters.

Mathematical Model

In Fig. 1 are shown three cars from. a platoon of cars traveling in

the single-lane situation. The middle car, car n, is at position X and
n

has velocity Vn• The behaviour of car n is influenced primarily by the

relative velooity between itself and car n~l ahead of it. If car n is

closing in too fast on car n-1 the relative velocity gets negative and

car n then tends to slow down; if the relative velocity becomes positive

on the other hand, car n might be expected to acoelerate. Roughly

speaking then acceleratiqn (or deceleration) response is proportional

to relative veloc1 ty

o

o

o

o

o

•

3.

with some delay on the part of the response. The early models were based

on this simple equation" which can be made to fit relatively calm driving

situations.

Obviously however, there are a great many other factors contributing

to driver response. What he does" depends not only on relative velocity,

but relative spacing" on his own absolute velocity, on his individual

characteristics such as reaction time, perceptiveness, sensitivity of

response and ce~tainly many other factors. The model we are now using

inoorporates many of these features. It stems from the work of Herman

and others at General Motors, and in particular follows the model of

L. Edie ,at the Port Authority of New York. The equation for the model

is shown in Figure 2. It postUlates that the acceleration (or decelerat

ion) response is directly proportional to individual velocity and relative

velocity, and inversely proportional to the square of the spacing between

the cars. The faotor cJ::. , the sensi ti vi. ty factor, determines the degree

of the response, and T represents the response reaction delay time.

T includes perception time, decision time and response time. An equation

of this form has been shown to fit actual driving data very well.

Computer Implementation

We consider it likely that as our research progresses we may want

to program our simulation as a list .. processing program with property

lists representing the characteristics for each vehicle + driver.

However for the initial exploration of our model we have used Fortranl

3 CJ l

4.

in particular the Kingston Fortran for the disc. We consider it an

excellent Fortran system. We have used its plotting routine to consider

able advantage, because, having· no en-line printer, we plot data on our

407 from the punched output of the Kingstran plot. Though the process

is a bit time and card consuming, we find it more useful than even a

plotter would be for us, since we can get ten plots on the same graph.

In our computer representation certain characteristics such as car

position, velocity and acceleration are represented as two dimensional

vectors, the first subscript being the car number and the second the

time step. Other characteristics, such as individual preferred velocity,

desired headway, and reaction time are one-dimensional vectors. The

latter parameters, do not change every time step, but may change

asynchronously during a computer run; for instance reaction time is

made to depend on the driving situation the dri verhaa just experienced.

At a given time step each car of the platoon is considered in se

quence, its acceleration determined and then integrated to give velocity

and distance. The integration scheme is quite simple, of error (At 1.),

and for At -.1, it takes 4.4 seconds of computer time to compute the

behavior of one car for one second of real time. Thus, for a 5 car

platoon, for example, 22 seconds of 1620 time are required to compute

one second of actual time. This gives us a sort of slow-motion look

at what is happening. Of' course f'or simulation of large. urban traffic

networks this penalty ratio would be disastrous, but for our purposes it

is not too bad considering that accidents happen pretty fast. Each

case is run in a range . of 10-20 seconds of' real time.

o

v

e ' ·tt 1t It ttt tt"tit t rt thENe f'ttdll tt ¥"rt 't tttWtrl'6tt"MHitttt b \'f -) '"" - ,"crr'!! ,,'iTSU UTI 1"I!m,»,."} -)'1Hf"ft"H

s.
Our program fits into 40K of core storage allowing for 20-car

4t) platoons Which is larger than we wish to consider so far.

()

•

Results

Our program is set up to test out the effect ot various maneuvers

of the lead car on the cars following. In Fig 3 is shown a typical

maneuver we have used to experiment with. Initially all the cars of the

platoon are going along in this case at 68 ft. spacing and 48 .f't./sec.

velocity (about 32 m.p.h.). Then the lead car decelerates at 8 ft./

sec./sec. for 3 seconds to a new velocity of 24 ft/sec.

When we first tried out this model we were getting an unrealistic

number of rear-end collisions, and we realized that our lack of realiSlll

was due to not letting a car look two cars ahead. What we had was a

Itfoggytt model where the drivers could see only one car ahead and might

indeed have collisions at the rate we were experiencing.

We have now expanded the equation to include both the car ahead and

the car ahead of it, ahd the way the revised simulation is behaving seems

quite realistic. The rate at which accidents occur depends, as one might

expect, on the general reaction time of the driver population, and on

their degree of response, and of course on the presence of exceptional

drivers - either speed demons or vague old ladies. Fig 4 shows the

results of a run where the drivers all had a desired headway keeping

them too close to the car ahead. There was a collision between cars 7

&: 8. Fig. 4 which was plotted from oards on our 407 shows the velocitY'

prc).f11e of the various cars in the platoon before the collision took

6.

place. In general tor position plots we plot only relative car position,

but in Fig. 5 we have translated these data back into absolute positional

notation in order to show the propagation ot the lead car disturbance and

its culmination in a collision between cars 7 and 8.

Future Research

We plan to expand our model considerably- and incorporate m.any m.ore

factors, especially a more detailed portrayal ot human driving behavior.

We will explore the lIIllt1-dimensional parameter space to see which factors

seem most important in accident causation, in the hope that we may

contribute some useful knowledge to the field of accident prevention.

The important aspect of model validation is always in our minds,

and we will check our model against any real-world experiments we can

find. We are encouraged alreadY' to note that our model gives a stable

driving situation tor those values of parameters, e.g. reaction time,

obtained troll experimental sources, and that collisions occur as we

deviate from. such values.

Acknowledgements We would like to acknowledge our thanks to the Pnblic

Health Service of the U.S. Dept. ot Health, Education and Welfare for

their support of this work under Grant Humber ,AC 002)6-01, and to the

Research Foundation of Bewark College of ...Engineering. which supported

the research in its initial stages.

o

o

o

o

o

•

- --

CARn+l CAR CAR
n-l n

~ C;; 22 c;"'~
~ SPACING .. SPACING ~ --

[Xn - Xn+1J [X - X J n-l n

X X
n+l n

FIGURE 1. CAR FOLLOWING SITUATION

d
2
Xn+1) ACCELERATION :I

dt2

~_ .. 10,1. !II

• 0<
t+read,ion time

th
V n : VELOCITY OF n- CAR

Xn : POSITION OF ~ CAR

.

FIGURE 2. CAR FOLLOWING EQUATION

• ~.!I!I 'I!

... ..

X
n-l

-. _.~''''I! I ..

'-_________________ '_ .. 1_-_' .. ____ ---------...

~
Q..

}J

o

VELOCITY

48 £t./sec.

24 ft./sec.

TIME

[
DECELERATE A. T 2

8 rt./sec.

FIGURE 3. TYPICAL LEAD CAR MANEUVER

c
- --- - - - ------

I
~

o

CZ oj>
VElJJCITY ~

0 ·9 • 0 1 9
0 1 9
0 1 9
0 1 9 -0 I 9
0 I 9 .
0 I-i 1 9
0 H 1 9
0 ~

1 -29
0 t;! 1 2 9
0 til 1 2 9
0

t.xJ
1 2 9 n

0 0 I 2 9
0 _@ 1 2 39
0 1 2 3 9
0 1 2 3 9
0 12 3 9
0 21 3 9
0 2 1 3 9 t;j 0 2 1 3 49 t:-t 0 2 1 3 4 9 8
0 2 1 3 4 9 H

0 2 31 4 9 ~
0 32 1 4 9 ~

0 0 3 2 1 4- 9 ll>

~ 0 3 2 1 4 59
0 3 2 1 4 5 9
0 3 24 5 9
0 3 4 21 5 9
0 43 21 5 9
0 4 3 21 5 9
0 4 3 21 5 69
0 4 3 21 5 6 9
0 4 3 52 6 9
0 4 5 3 2 6 9
0 5 3 2 6 9

~ 0 5 4- 3 2 6 9
oq P 5 4 3 2 6 79
• 0 5 4 326 7 9
iF'O 5 4 6 2 7 9

0 5 6 32 7 9
0 5 6 4 32 7 9
0 65 4 32 7 9
0 6 5 4 32 7 89
0 6 5 4 327 8 9
0 6 5 47 32 8 9
0 6 5 7 4 32 8 9
0 6 75 4 32 8 9
0 6 7 5 4 3 8 9-
0 7 5 4 3 8 9 Oi 07 6 5 4 8 9
0 6 5 843 9
0 6 85 4 3 9
0 6 8 5 4 3 9

- - Q;;;4A4¢C 441#$\ ¢ 7"44444, #Z #4 #AZ 44 "$ qA 14., $,4 T T $" " .~, ; ,«. , h4 4$$('(.(a i. ; ; » ;44 ¢ $II =* 4 ;

...•. , _n_ ._. ~- _ ". ,'-__ ..:..1.,;_ .•••

o

o

V\

o

o

o

•

DATA PROCESSING

AT

INDIANA STATE UNIVERSITY

Presented Oct. 8, 1965

New York City, N. Y •

.. __ .. _ _lIJt,,,.

CONTENTS
Page

INTRODUCTION

ADMISSIONS C
A-Student Master Card 1
B-Student Address Card 1
C -Parent Address Card 1
D-Adrnissions Reports 1

TEST SCORE SERVICES 2
MASTER SCHEDULE 2
GRADE CARD/CLASS TICKET 2
MASTER/PERMIT/ID/ENCUMBRANCE 3
PACKET PREPARATION 3
SECTIONING 3
POST REGISTRATION 3
HOURLY EQUATED REPORT 4
INSTRUCTORS LOAD REPORT 4
CLASS LISTS 4
OFFICIAL ENROLLMENT REPOR T 4
RESIDENCE REPOR T 5
MAJOR/MINOR REPORT 5
MID-TERM GRADE REPORTS 5
HIGH SCHOOL PRINCIPAL'S REPORT 5
FINAL GRADE REPOR T 5

A-Grade Card 6 C\
B -Index Card 6·
C -Exception Card 6
D-Name and Address 7
E-CommentCard 7
F -Probation Report Card 7

REGIONAL CAMPUS 8
TECHNICAL SERVICES 12
EXHIBITS

l-Application for Admission 14
2-Encumbrance Card 15
3-Master Card 15
4-Address Card 15
5 -Permit to Register 16
6-1. D. Card 16
7 -Grade Card 16 ,
8-Registration Form 17
9 -Student Lists 18

lO-Course Request Card 19
ll-Temporary Class List 20
12-l0~Day Report 21
l3-Amnissions Flow-Chart 22

0 14-Packet Preparation Flow -Chart 23

'10 e:,

'II tb:#di,tttr j

•

o

•

tt" t $'M. r d"l! .. a».' tr ttf##Htthttbtr**bbt±tirrlttittM#tt#tr b· .. · ! . .,.. . (., ... , r·y

15 -Grade Card/ Clas s Ticket Flow -Chart
16 -1. D. /Permit Preparation Flow -Chart
17 -Post Registration Card Handling Flow-Chart
l8-Hourly Equated/lnstr. Load Flow-Chart
19 - Tally Sheet
20-H. S. Principal's Report Flow-Chart
2 I-Regional Campus -1 Flow-Chart
22-Regional Campus -2 Flow-Chart
23-Regional Campus -3 Flow-Chart
24-Hourly Equated Report
25 -SAT Listing
26 -H. S. Principal's Report
27 -Course Master Card
28-Schedule Listing
29-Class Ticket
30 -Official Enrollment Report
3 I-Packet
32-Drop/Add Form
33-Mid-Term Cards
34-H. S. Plot
35 -Grade Reporting Flow -Chart-l
36 -Grade Reporting Flow -Chart-2
37 -Scholastic Achievement Report
38 -Grade Report
39 -County /State /Country Report
40-Index List

w· .. ,fj" .. ··

4l-Class Lists/Residence/Official Enrollment Flow-Chart
42-Mid-Term Grade Reporting Flow-Chart
43 -List of Equipment

Page

24
25
26
27
28
29
30
31
32
33
34
35
36
37
36
38
39
40
41
42
43
44
45
55
56
58
59
60
61

DATA PROCESSING AT INDIANA STATE UNIVERSITY
by Noel T. Smith and John T. Kline

INTRODUCTION

Indiana State University is a multi-purpose, state supported, coeducational
institution located in Terre Haute, Indiana. The University occupies a campus
area of more than 50 acres in the heart of the city., and a lO-acre plot in the
suburban section, where the University Lodge is located. Campus facilities
include 14 academic and administrative buildings and twelve residence halls.
Two additional residence halls and one new general classroom building will
be in use in the spring of 1966.

Both undergraduate and graduate courses of study are offered. Degrees
are granted in the fields of teacher education, liberal arts, and professional
vocational curricula. Practical arts programs are available to students who de
sire specialization in fields that mayor may not lead to a degree.

The expanded enrollment in our University has brought greater complexity
of operation and planning to the machine record and Computer Center section.
Our University enrollment has increased by 90% since the machine record
section was installed in 1958.

Since July, 1963 a 1620 system has been in operation. Although still card/
disk oriented, the 1620 computer with a 1443 printer has added greatly to our
overall system. The system is to be expanded to include two disk drives in 0
1966 and further expanded to an IBM 360 Model 40-disk-tape-data cell system
in September, 1966. Also, scheduled for delivery in February, 1966 is a disk/
printer card IBM 1130.

This presentation is centered around our present 1620 system and shows
areas of use of the 1620. The areas covered include admissions, test score
reporting, pre and post registration rep~rts, mid-term high school principal's
report, grade reporting, and the Evansville extension campus system.

Although Indiana State University has a complete 1620 payroll system" in
cluding machine cor'rections, check writing, bank reconciliation, quarterly,
semi-annual and annual reporting of PERF -STRF, social security-, credit union,
foundation etc., the system is not discussed in this paper. The acquisitions
and order accounting system for the ISU library is also by-passed. Information
concerning these two systems may be obtained, by contacting the ISU Computer
Center.

Our since re thanks goes to Mr. Robert Wiseman, Assistant Director of
the Computer Center at ISU. With,out his cooperation this pa}?er would not
have been possible.

o

o

•

I

ADMISSIONS

After a student has been accepted for admission to Indiana State University
the Admissions office sends the student's master code sheet (Exhibit I), an
information page filled out by the student upon application, to the Computer
Center for keypunching. The cards punched are kept on file for use during the
students stay at ISU.

STUDENT MASTER

The student master (Exhibit 3) contains coded information pertinent to many
reports during a semester. For example: student number and name, current
classification, the curriculum, sex, birth date, permanent identification number,
church preference, home county and state (as well as high school county and
state), school enrolled, first major, second major, minor and area m~jor,
marital status, transfer status, and advanced standing status.

Using the student master, rnany statistical reports can be made about the
composition of a student body during any seme"ster.

STUDENT ADDRESS

This is a name and address card used for such reports as the grade report
which must be mailed to many students. The name and address card also has some
housing information pertaining to such things as non-resident housing, married
housing, on or off campus housing. The classification and sex is also kept on
the address card. (Exhibit 4)

PARENT ADDRESS

A parent address card is punched on entering freshman only. This card is
used to mail the parents certain information during the first semester.

ADMISSIONS REPORTS

Applications for admission to the comming fall semester usually begin
during the last half of the current fall semester. In order to help the admissions
office keep a better record of admissions and to formulate statistical reports
concerning admissions, the Computer Center keeps the freshman masters
separate from returning student masters until mid-term of the fall semester.
Each week applications processed for the last ;eek are punched and statistical
re"ports updated and a list of applicants provided. Once a month all applicant's
masters are sorted into alphabetical order and a list of applicants to date is
generated. Statistical reports are generated covering such topics as: State and
County frequency counts, frequency counts of the proposed majors and minors,
and a count of total adrnis sions to date .

----------~. ----._----"

2

TEST SCORE SERVICES

Along with each application for admission there is a test score sheet sent 0
to the Computer Center. These sheets are used to punch a test score card
for each entering freshman. The test score card consists of SAT math and
verbal scores, ACE scores, or ACT scores. High school rank in class and
a converted percentile based on the size of the high school are kept in the card.

The test score cards are used for predicted index. The predicted index is
based mainly on the SAT scores and converted high school rank in class. A
list of all test scores is then prepared for distribution to the counselors and
a list of predicted indexes and test scores sent to the Deans of the various schools
on campus. (Exhibit 25) The predicted index is then used to prepare a sta
tistical report on predicted indexes. The average predicted index and percen
tiles which a predicted index represent are made available to the counselors.
After the first semester a comparison is made between the students predicted
index and his actual first semester index. Presently the index of correlation
is .63. (Exhibit 13)

MASTER SCHEDULE

Approximately two months before the beginning of a semester the master
course schedule is prepared by the department chairmen and sent to the Computer
Center. The master course card is punched and listed. (Exhibit 27) A feasi-
bility study is run with the course master cards as data. The feasibility study is
a computer check to make sure that two classes are not scheduled at the same
time for the same 'room or the same instructor for two classes at the same hour.
The list is then sent back to the department chairmen for approval. Small

o
changes are often made, such as adding courses or switching times, etc. (Exhibit 15)

GRADE CARD/CLASS TICKET

After the master course card has been punched and the schedule approved,
the master course card is then used to generate grade cards (Exhibit 7) and
class tickets. Punched in the master course card is the number of students
that will be allowed to take this course. course instructor, room, time, bl:lild
ing, course number, department, and a master course number. The grade
card is generated by the computer which puts department, course number,
master course number, building, room, time, course description, and cre,dit
hours in the grade card. The number of grade cards generated for one clas s
is determined by the maximum number punched in the course master. Class
tickets are generated in much the same way except instructors name i,s used
instead of course description. (Exhibit 29) (Exhibit 15)

o

I

II Wttftt:h t t: t tt trimt"tnn nt" H4'"") .n .. "f[" . "jj"

3

MASTER CARDS/PERMITS/ID/ENCUMBRANCE

o In preparation for registration an ID card and a permit to register is made
for each student. The ID card and the permit to register are merged behind

•

the master card. An encumbrance list is circulated among the various depart
ments on campus and returned to the Computer Center. An encumbrance card
is punched (Exhibit 2) and the permit to register is replaced by the encumbrance
card. At registration time the student must pick up his master, permit, and
ID before he registers for any classes. If he has an encumbrance card it must
be cleared before he is issued his permit to register. A student is not allowed
to enter the registration area without a permit to register. (Exhibit 16)

PACKET PREPARATION

Presently at ISU, registration for classes is accomplished by filling in several
cards with the information requested. This group of cards is known as the packet.
(Exhibit 31) The packet consists of the following cards: Registrar's card form 2,
Registrar's card form 3, Business office fee, Academic Dean's Scholarship, IBM
Information, Student Personnel, Housing Information, School of Business (for
business majors only), School of Education (for education majors only), Automobile
registration, Church preference, Bluebook information (Student directory), and
Extended Services (evening or Saturday students only). These packets are made
available to the students before registration. They may fill them out before
re gis tration time. (Exhibit 14)

SECTIONING

Sectioning is the process of merging the cards with their appropriate class
ticket and separating the groups into the various departments which they represent.
These groups of cards are then taken to the registration area. At the registration
area a student proceeds to the department table to obtain a grade card and clas s
ticket according to his proposed class schedule. After the student has received
all of his clas s cards he goes through the fee line where all of the cards are checked
for mis sing information or mis sing cards) and pays his fees. After the fee line
all the cards are collected except class tickets and ID card.

POST REGISTRATION CARD HANDLING

After registration the cards' are collected and sent to the Computer Center to
be distributed. Using the 514 the student number is interspersed gang-punched
in all the student's cards. The cards are then sorted into alpha-order, separated,
and sent to the appropriate offices. (Exhibit 17) The master, IBM information,
and grade cards are kept by the Compute r Center .

'1/ J

4

HOURLY EQUATED REPORT

The Hourly Equated Report (Exhibit 24) is a report concerning classification,
sex, and the number of hours a student is taking this semester. The report has
subtotals by general classification (part-time and full-time) and is separated by
sex into the following catagories: freshman, sophomores, juniors, seniors,
graduates, advanced graduates, special students and auditors. The grand total
line provides the total number of freshman, sophomores, etc. attending ISU this
semester. (Exhibit 18)

INSTRUCT·OR LOAD REPORT

This report is a count of students in each clas s. Using this report we can
show how many students in any department are being taught by the same profes
sor. The report also provides room utilization information. It consists of
counts separated by instructor, department, subject, room, time, and building.
At the end of the semester it is this report, along with other information, that is
used to schedule final exams. (Exhibit 12) (Exhibit 18)

CLASS LISTS

After late registrations have been completed (approximately 10 days after
registration) the Computer Center generates a preliminary class list (Exhibit 11)
to be sent to the instructor. The class list is a three copy report. The instruc
tor uses the first copy as an attendance record, the second copy is sent back

o

to the Computer Cente r at mid-term grade reporting, the third copy is kept for 0
reference by the registrar's office. After mid-term and the deadline for all
drop and adds the Computer Center generates a similar single copy class list
for the instructor to use for final grade reporting. The class list report consists
of a heading containing such information as instructor,building, room, time, etc.
The main body of the report is a list of the. students attending that particular
clas s and their clas sification. The clas sifitation on this list is meant to be a help
to the instructor in his evaluation of the student during the course, and- a guide
to mid-term reporting. (Exhibit 41)

OFFICIAL ENROLLMENT REPOR T

The Official Enrollment Report (Exhibit 30) is similar to the hourly equated
report in that it pertains to the number of students in various catagories. It is
with the Official Enrollment Report that the official full time student equivalent
enrollment is figured. This is based on 15 hours as a full time load. A student
taking 10 hours would only be 2/3 of a student in this report. The report is
separated by sex, classification, and area major ~ If necessary this report can
be run as a state analysis or county analysis in respect to full time students. (Exhibit 41)

()

1

*"':'5t'tt"t'H'NWttt tNt 'nreV",wu!'h:l't'M W'tW*i,liul'y!t"ijjie\lh't# 'J'eW't'W' 'In
, I : 11 $ 't t rt rttrt#b&ri*rt± IT"' '-rUn"' ',g

o

5

RESIDENCE REPOR T

The Residence Report (Exhibit 39) is a report showing how many students
we have from each county within Indiana, each state, and country. Each count
is separated by sex and classification. A subtotal by residency in Indiana and
non-residency is provided by this report. (Exhibit 41)

MAJOR AND MINOR REPOR TS

The Major and Minor Reports are mainly for the benefit of the department
chairmen. They consist of a count separated by classification for each area
major and minor and each specific major and minor offered at ISU.

MID-TERM GRADE REPORTING

At mid-term a grade report is sent out for each entering freshman, and
deficiencies sent out for the upper classmen. One week prior to mid-term the
Computer Center generates a color coded card for each freshman and upperclassman
in each clas s. (Exhibit 33) These cards are sent to the appropriate instructors.
The instructor records the mid..;term grade on this card and ,returns it to the
Computer Center. The grades are then punched in all the freshmen cards and.
failing grades are punched in the upperclassmen cards. The mid-term grades
are sent out on the same form as final grades with a comment "mid-term"
printed on the form. The final grade re'port program is used and a mid-term OJ index card punched for freshmen. (Exhibit 42)

•

HIGH SCHOOL PRINCIBAL'S REPORT

After mid-terIn at ISU there is a meeting of high school' principals from
the various India,na high schools represented on caInpus. In order that the
principals Inay be inforIned of their former student" s acheivement, the
COInputer Center generates two reports for theIn. The first report is a list
of classes attended by each student from a particular high school. Punched
output form this program ,is a summary card to be used in the next program.
The second report is a statistical report showing the highschool principal how
his school is doing in comparison with other Indiana schools. (Exhibit 34) This
report is prepared by forming an ogive curve of indices of all the entering
freshmen from Indiana at mid-term and plotting a point along this curve to
represent the particular high school in question. With this report the high school
principal can tell the percentile rank of his .school in comparison with other
Indiana high schools. All plotting is done on the 1443. (Exhibit 20)

FINAL GRADE REPOR TING

Since final grade reporting is one of the most important functions of the
Computer Center with regard to student record processing, the process
will be explained in more detail than other reports in this paper. T he fol
lowing description closely follows the flow chart (Exb.4.bit 35-36) of the
grade repo rting s 1s te ,m and explains it in detail.

y..13

6

Explanation of the flow-chart:

A All card files are merged together in alphabetical sequence by student
number.

B Computer prints grade reports and updates student index file.
Probation cards for failing students. Store us ed cards.

C Grade reports to students and school officials.

D Output: New student index cards and probation report writing cards.

E New index cards to back in file for report use.

F Probation report cards are sorted by school.

G Probation reports are printed and sent to the Deans of th~ schools.

H Probation cards are stored.

Explanation of card files.

After completion of step A (shown by the flow chart), the input to the com
puter consists of multiple card groups; one per student.

o

There are five main card types involved in student grade processing, they are: 0
Student Grade Card-These are the cards the students picked up and turned in at
registration time. At grade. reporting time the returned class lists are used
as data to punch the grades into these cards. (Exhibit 7)

Student Index Card-The student index file is a continuous file maintained and up
dated each semester by the Computer Center. This file has the complete scho
lastic history and current status of each student. Such coded information as
housing, social organizations, transfer hours, major areas of study, sex, and
classification is kept on this card.

Student Required Index Exception Card .. The purpose of this card file is to auto
mate the detailed processing of students having scholastic problems. Because
the student's academic progres s is of utmost concern to the University, care
ful monitoring and guidance techniques are essential. The Required Index Card
allows the proper school authorities to carefully supervise the progress of a
student. By submitting a pr.obation form to the Computer Center, a school
official may stipulate exactly what scholastic level of achievement must be met.
This is done by stating what grade point ave rage the student must earn, either
on a cumulative or semester basis. This infor:ulation is then entered into the
student's card group and'allows the computer to analyze the student's work
accordingl y. o

I

·'U·

o

7

If the student fails to meet this requirement, the compute r will generate
a card from which a complete scholastic report can be written and sent to the
appropriate official. The card is labeled "exception" because in the absence of
this card the computer will use the standard catalog required index schedule
to analyze the student.

Student Name and Address Card-The name and address card allows for automatic
addressing of the student's grade report.

Comment card-The comment card allows a school official a maximum of two
lines of comment on the student grade report. Through the use of a comment
code, the comment may be printed if the student fails'to meet a specified grade
condition. It is also possible to print the comment under any conditions.

Output:

Two main cards are generated by the computer during grade reporting.
They are: the updated Index Card and an Action Card. ·The Index Card is held
and used for next semester's grades, the Action Card is used to generate re
ports to be distributed to counselor's, registrar'soffice and department chair
men.

After grade reporting the index cards are used to generate the Scholastic
Acheivement Report. (Exhibit 37)

o The Scholastic Acheivement Report gives information such as number of people

•

in a given group, total hours, total points, and average grade point ratio for this
group. The groups are by sex, area major, sorority pledges, sorority actives,
complete sororities, fraternity pledges, fraternity actives, complete fraternities,
residence halls and residence halls by floors.

8

Re gional Campus

The Computer Center's activities in admissions and registration at the
regional campus is a pilot study. It is hoped it will lead to a more completely
automated system than is presently used on the main campus.

The following is a detailed explanation of the regional campus flow-charts.

Flow-Chart#
Block#

I A-I

I A-2

I B-5

1 A-3

I A-4

1 A-5

I B-1
I C-l

I B-2

I B-3

I B-4

Exhibit
Number

I

2

3

4

5

6

Explana tion

The Application for Admis sion form
sent from the Admissions office
to the keypunch section with status
(accepted-rejected) and number
(perm-alpha) marked on it. This
becomes the start of a student
disk record.

The Applications are punc-hed as
received.

The Application for Admis sian is
returned to the Admissions office.

A "Permit Denied" card is punch
ed on all applications denied with
a code of reas on de nie d.

A "name and address" card is
punched on,admissions denied for
notification of student, H. S. and
others.

The "denied" name and address is
filed. (File # 8)

A "Student Mast'e r" card is punche d
on accepted admissions, then filed.

A "name and addres sIt card is
punched on accepted admissions for
future uSe and notification, then
filed.

A "permit to register" is punched
for each accepted admission.

An "t. D." card is prepared.

Lf.ICo

o

c

i,
I

I
1'1
I,I
I

I

o

OJ'

•

Flow -Chart#
Block#

1 C-4
1 C-5
1 D-5

Exhibit
Number

8

9

Explanation

Permits, ID's, and denied are all
put together in alpha order to
become file for registration. As
students arrive to begin registration,
they pick up permit, ID, and regis
tration form (Exhibit 8) and student
goes to advisor.

In this registration system responsibility for sectioning is left with the de
partments. Each course and each section of a course in the catalog is given
a code number. The descriptive information of the_ course is fed into the com
puter at point 2 D-2. This will be explained later. Each ,department, prior
to registration is given a tally sheet (Exhibit 19) to be used at registration time.
These sheets are marked as each gtudent enrolls and closing or opening sections
is the department's option, and nothing more than signing the registration form
is necessary. The department also assigns the code number to the registration
form. This eliminates some error conditions. After this form is completed by
the student, fees are paid, housing checked and the registration form is collected.

1 D-4

1 C-3

lD-3

1 D-3
1 D-l
1 E-l
1 D-2
1 E-2

2 A-2
2 A-3
2 A-4
2 B-2
2 B-1
2 B-3

10

Registration is completed by com
pletion of the registration fo,rm.
The courses are listed in the pro
posed class schedule area and de
partments or others in charge of
sectioning iJ;litial and put course
codes on the sheet. After the
schedule is completed. the regis
tr"ation form is returned to the
keypunch section.
A course request card is punched
with student number and the coq.rse
codes from the ,registration form,
then filed (File #3) The Tegis~
tration/is then filed-(FHe #9)

form

Course cards, address cards, and
master cards are sorted (alpha.)
and merged from file #i, ?, 3.
Unmatched are hand checked to
establish error and refiled (File #4)

'iI,

Flow ... Chart#
Block#

2 D-2
2 C-l
2 C-2
2 D-l
2 E-l
2 F ... l

2 D-3
2 E-2

2 C-4
2 D-3
2 C-3
2 C-5
2 D-5
2 D-4
2 E-4

3 A-3
3 B-3
3 B-4
3 B-2
3 B-1

3 C-2
3 C-3
3 D-3
3 E-2

Exhibit
Number

7
9

24

11

10

Explana tion

A compute r ptogram with maste r
catalog on disk is run with input
of master card and address card
followed by course card. The
course masters and program are
filed (File #5).

The computer punches a completed
grade card for each course a student
requested, and prints "student lists"
on multi-part paper. Lists are sent
to various offices and one to the
student.

A collating operation then puts master
card and grade card together and pulls
address and course request cards.
Masters and grade cards are filed
(File #7) and addres s / course requests
are filed (File #6).

Since all formate; are the same as
main campus, the program com
patability is 100%. Therefore, all
programs mentioned earlier in this
paper may be used for the Extension
Campus. From File #7, Student
Masters and grade cards are fed into
the 1620 and an Hourly Equated Report
generated. The summary cards gen
erated are a duplicate of the Master
card with hours carried by a student
punched. These cards are filed
(File #11) for later auditing of fees.
The Hou.rly Equated Report is sent
to the Registrar, President and
Busines s Office.

o

The Course Master Cards from
File #5 and Student Master/Grade
Cq.rds are sorted and pulled to make
a deck for the 10- Day Report. This
report is prepared by summarizing
the total students by classification
in each section. The 1620 program 0
at this point punches the 10-Day Report
Cards and as a by product, generates
temporary class lists to be sent tol../.ltf'

o

o

o

Flow -Chart#
Block#

3 E-4
3 E-5

3 F-3
3 F-4

3 F-5
3 G-4
3 G-3

Exhibit
Number

12

SUMMARY

11

Explanation

the Instructors and Registrar. One
list is kept by the instructor and
another returned at mid-term to the
Computer Center with mid-term
grades, additions and corrections
posted to it. Drop and add pro
cedures are not shown in the flow
chart but are processed by machine.
"Adds" go through the 1620 program
shown in flow-chart #2 block #D-2.
Drops are processed with the 088
collator by pulling equals on student
number and course code number.
After mid-term a final Hourly
Equated Report and 10-Day Report
is run. The difference in the two
reports becomes data on "Drop/
Add" studies.

Grade cards and course masters
used as input to program '3 E-3. are
filed (in class order) for future'
processing. (File #12)

The output cards are input for the
10-Day Report program. The report
generated goes to the President's
offic.e and to Deans. The 10 -Day
Report cards are then filed (File #13).

Although this system has been run through only one registration (Fall'65), it
did work and the processing time from 1 D-4 thru 3 G-3 for 402 students was less
than two hours. Many operations such as interpreting and forms handling have not
been shown here. Total cost for supplies used was less than $5.00.

12

Technical Services

During the course of a year the Computer Center at ISU performs services
to the University too numerous to mention in detail in this paper. Probably the 0
most popular is a gummed label service of name and addresses of students,
colleges and universities, elementary schools, high schools, junior high schools,
superintendents of school systems, and many others. The card files for these
listings a.re kept current and are coded for sorting purposes. Labels are also
made for several offices of transfer and new students for use in creating new
file folders. Labels are also used by the President's office for selected mailings
to faculty, staff and others.

Computer programs are written and on file to perform services such as:
sorority rush, contract notifications to faculty and staff, room utilization, final
exam scheduling, placement office reports, computer dance, degree audit for
graduation, fee audit, meal ticket, admissions "no-show" studies, cost studies,
te·st score analysis for instructors, salary distribution reports, scholarship
reports, and many standard institutional research reports.

A library of research programs is maintained at the Computer Center for
faculty and graduate research. During the past academic year, 78 research
projects were completed, 297 students received "hands -on" training and a complete
payroll system was developed. The metered time used on the 1620 main frame was
1887.67 hours. One caution that is observed at the ISU Computer Center is that
the major objectives of teaching and research are not submerged in purely service
activities.

All programs mentioned in this paper are documented with detailed card
layouts, procedures, and program listings. Each one is available by, writing the
ISU Computer Center, Terre Haute, Indiana.

o

o

o

EXHIBITS

o

o
Lfd.(

To Be Returned with Your Application lor Admission L'J~ J 70
A"" U 0,"$1 7

f' .. 3'~ -L P ~,.:.J
STUDENT MASTER CODE SHEET '\). ,J c~

v~t\ ;;rv

EXHIBIT i

ToBe Returned with Your Application lor Admission a'l3~~OI'
,.4- e7 "'0337

STUDENT MASTER CODE SHEET

Date of Enrollment
The following code sheet must be completed in every detail and reo
turned to the Registrar's "ffice, Indiana State University. Failure to
complete the form or any part of it will jeopardize the applicant's ad·
mission to the University.

PRINT OR TYPE ALL INFORMATION

NAME -:JAA IE P BlRb

STREET

1 st Semester:

2nd Semester:

1st Summer:

2nd Summer:

TEL.L
CITY

HOME ADDRESS d2 ::L

PARENT NAME SOE ADDRESS

CLASSIFICA TlON .~ SO. JR. SR.
'---I--"

SEX MALE

DEGREE A.B. B.S. ~ Other

Post GR.

FEMALE

CHECK (v') ONE ONLY ELEMENTARY TCHG. X. SECONDARY 'TCHG:

IF SECONDARY TCHG.
(MAJOR)

COMPREHENSIVE AREAS: 1..

(MINOR)
RESTRICTED AREAS: 1.

(MAJOR)
SPECIAL SUBJECT AREAS:

NON TCHG. CURRICULA LIBERAL ARTS: MAJOR

NON TCHG. CURRICULA OTHER: MAJOR AREA:

~~

19

19

19

V//Yl
COUNTY STATE

X

NON TCHG:

2.

2.

MINOR

G.1. BILL TERM AND YEAR ENTERING I.S.C. MARITAL STA·TUS .5t,(/(i, L ~

CHURCH PREFERENCE

HIGH SCHOOL 1I1-ff}
Name County 'State

D~A~T~E~OF~BI~RT~H~: __ LIL/_-~/~~~_-~tI-~~~ ______ ~N~EW~ST~UD~E~NT~: ____ Y~=E~S~)(~~N~O ______ ~R~A~C=E: ______ ~ ________ __

COlLEGES ATTENDED . 11. 2. 3.

Indicate clearly the course of study you select. If foreign language is one of your areas, list specific language or languages. If Business js selected,

indicate 'the specific Business field. Also list Science, Special Education, and other areas where a'selection i~ designated.
14

o

o

I'

I,

o
I:'I'·"!',

I'

I

i

. . , #!tWIt" ',""'"!

,:/' Q!t~75EAHLER f NG CARDL

I

01
ct
Z
ct , 0

t z

!i

AST

CLEARED BY

c=J REPORT c.Q... USI ESS OFF!: § _

~ REPORT TO REGISTRARS OFFICE

I I REP RT TO DEAN OF ST' DENTS

11 REPORT TO DEAN OF MEN

c=J REPORT TO DEAN OF 1)MEN

~ORT TO DIRECTOR PHY~ICAl PLAIT

I I E lRT TO DI' CTOR! UDEIT flNAICIAl AIDS

FEE OR STUDENT CONDUCT ENCUMBRANCE

YOUR RIGHT TO REGISTER IS B~ING WITHHELD UNTIL YOUR STATUS

"l""ARED. TAKE THIS CARD IMMEDIATELY TO THE OFFICE CHECKED

.. BJVE. RETURN THIS ,;ARD TO STUDENT ut~ION BALLROOM AFTER

ENCUMBR~'lCE IS CLEARED FOR PERMIT TO REGISTER.

. #'W"!

fiRST MIODLE OR MAIDEN

CLEARED BY

!Xl ADMISSION DENIED

r-l PROBATION

I~ REPORT TO DUM Of ARTS, SCIENCES

~ REPORT TO DEAN SCHOOL or EDUCATION

~ REPORT TO SCHOOL OF NURSING

~ REPORT TO DEAN SCHOOL or BUSINESS

~ OTHER

ACADEMIC ENCUMBRANCE

IS I. IF ADMISSION DENIED, YOU MAY CONTACT THE DEAN CHECKED

ABOVE, ~FTER REGISTRATION DAY, FOR APPOINTMENT.

2. IF PROBATION, CONTACT DEAN CHECKED ABOVE WITHIN 10 DAYS

TO MAKE APPOINTMENT TO DETERMINE PROBATIONARY CONDITIONS.

I

" \ &XHle>JT G
FAILURE TO MAKE AND KEEP YOUR APPOINTMENT WILL RESULT IN

IMMEDIATE TERMINATION OF ATTENDANCE AT INDIANA STATE COLLEGE.

3. NOTIFICATION OF ADMISSION DENIED AND PROBATIOt4 WILL APPEAR J
'-

1
1&.1 ...
4 ...

o (I)

4
Z
4
Q
!

IBM H77418 ON YOUR GRADE REPORT.
-- -- ---- /

I I I
001 r5EAHLE~tNG CA~OL I 1,3 f~5~ b51120T.35H21.jll

~I\ ------- ! l i
STUDENT

~TUDENT ~_-'F .i ,;: MAJOR MINOR
AREA ~lfl Ii Cllltil H.S. COUNTY

NUMBER ..J::) MAJOR ~ TU • STATE 8 uu 1110

EVA N SV ILL EO r·.fp U~
_

DO NOT .'UTE ABOVE THIS LINE

CLASSIFICATION: Fit ,/
SO .IR It GR • P.G. A.G.

I NO -CREDIT B"~J I JDIT

CURRICULUM: ELEMENTAR' SECONOI n NON TEACHING ,/ GR D.

MAJOR I. SUW/rl". S 2 MARRIED ~
MINOR I MATH 2. >INGLE

AREA MAJOR BUS. DEGRE~AM MS D.A

FIRSl • :RM ON CAMPUS., YES V NO 6. I. IILL THIS TfRM., YES NO l(MALE FEMALE ~

STUDENT MASTER CARD EXHleir 3
I ... HIIISI

,---~
AHLERING CAROL

III I I I II I II I I I
3~09 WA~HINGTON AV~

I I I I I III I
I I I III I II I II I I EXH'iJI r

EVANSVILLE CAMPUS 4
II 0 I 0 0 I 0 I 0 0 0 0 I 0 0 0 0 I 0 0 0 0 0 0 0 I 0 0 II 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0
123456 ;89101l~uw~~n~~wnnnM~anaH~~~nM~~~~D~~~~«a%~«~~~~~~~~~~~W~~~64~"~""ronnn~~~nn~"

1 1 1 1 1 111 1 1 1 1 1 1 1 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 111 1 1 1 1 1 1 1 111 1 1 1 1 1 1 1 111 1 1 1 1 1 1 1 1 11 11111 1 1 1 1 1 1 1 1 1 1

22222222222222222222222222222222221222222222222222222221222222222222222222222222

3 3 3 3 3 3 3 31 3 3 3 3 3 31 3 3 31 3 3 3 3 3 3 31 3 3 3 3 3 3 3 3 3 3 31 3 3 3 3 3"'3 3 3 3 3 3 3 3 3 3 3 3 311 3

4414444444J4444444

5555115551551555555555555555155555555155515511555551151~155515515551555555555555

66666666666666666616666666666666166666661666666666666666666666666666666666666661

771177777777717777777777777777777777.77177717777777777717777777777777777777777777 o 8 8 8 8 8 8 81 8 sl8 8 8 8. 8 8 8 8 8 8 8 8 8 8 8 a 8 8 8 8 8 8 8 8 8 8 8 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

9 99 9 9 9 9 9 9 911 9 9 9 9 91 9 9 9 9 9 99 9 9 9 9 91 9 9 9 9 91 9 5 5 9 9 9 9 9 9 9 9 ~ 9 9 9 9 9 9 9 91 9 9 9 91 9 91 9 9 9 9 9 9 9 9 9 9 9 9 9 9
I 2 3 45 6 7 8 9 1011 12 13 14 1516 1118 19 20 21 22232425262728293031 323334353637 JB 3~ 40 4: 424344 4546 47 48495051 525354.5565758596061626364 65 &66768697011 121314751677 78 19 80

IIBM sos}]

15

u U (f':)t.Rt1Lt.1< I Ma CAImL
NAME

* .. A.lOR

RESIDENT

* IU ••

GENERAL INSTRUCTIONS

.t-. PRESENT THIS CARD TO YOUR ADVISOR WHE .. PLANNI ... SCHEDULE.

~~~-------------... 
NOII-RESI DENT 

* ROO .. 

II. YOU WP_L REPORT AT THE "ORTHEAST ENTRA .. CE TO THE ARIE .. A, 5th AND CHESTNUT STREETS, AT THE EXACT TI .. E LISTED ON THE REPORTING 

I SCHEDb .. E. HAVE THE .. ONITOR STAMP YOUR ·PERMIT TO REGISTER- AS YOU PASS BY THE TIME CLOCK. 

- m. GO I .... EDIATELY TO THE COURSE CARD TABLES TO PICK UP 2 CARDS FOR EACH CLASS LISTED ON FOR .. I. IF YOU FIND A CLASS CLOSED, 

CHOOSE THE SAME CLASS AT ANOTHER HOUR. IF HELP IS NEEDED IN CASE OF CLASS CONFLICTS, .. ONITORS WILL BE AT THE CLASS CARD TABLES 
TO ASSIST "'llI . 

. ~ :m:. AFTER VOII HAVE COLLE" TED AL .. CLASS CARDS, GO TO THE WRITlN8 TABLES TO PUT YOUR NA .. E ON ALL CLASS CARDS AND THE HOUR OF YOUR 

~ CLASSES 0 .. ALL FOR .. S. CHECK EACH OF YOUR CARDS TO SEE THAT NI) INFOR"ATION HAS BEEN O"ITTED. 

lit X. PROCEED TO THE FEE TABLES TO PAY COLLEGE FEES. IF YOU HAVE A SCHOLARSHIP, 80 TO THE SCHOLAR SHIP TABLE BEFORE PAYING FEES AT THE = FEF -ABLES. 

~ JEt .... ltI "ARDS wiLL ISE CHECKED AT DEAN OF "EN'S AND DEAN OF WO .. EN'S TABLE ... EN AND WO .. EN WILL FOR .. SEPARATE LINES HERE. 

!: :m:. tEAVE ALL RE81STRATION FOr'llS, EXCEPT THE CARDS WHICH ARE LABELED ·CLASS AD .. ISSION CARD· ON THE RI8HT HAND .. ARGIN OF CARD, AT 

THE CARD COLLECTIN. TAILES. THE CARDS WHICH YOU KEEP ARE YOUR AD .. ISSION TICKETS TO CLASSES AND ARE TO BE HANDED TO YOUR 

't"TRUCTOR THE FI"~T CLASS D'AY. 

2m: SlOP AT THE CA"ER"I FOR PICTURE TAKI .... 

* APPLIES O .. LY TO .. IW nEI .... I. 

AND NEW TRANS'" ITUDENT! 

11M H77410 

PLANCK KENTON E 
264177,8 03 25 
HOURS ENROLLED THIS SE .. ESTER 

EVANSVILLE CAMPUS 

II ~'DlANA ITAT~ COLLUI 
. _ ERRI HAUTE_INDIANA 

41 

PERMIT TO REGISTER 

E 
4 

EVANSV'LLE CAMPUS 
I .. DIA .. A STATE COLLEtE 

TERRE HAUTE, INDIANA 

. ~-- --- ------ -- - ----

c 
z 
c 
Q 
!: 

I. FILL OUT ALL INFOR .. ATION IN INK. 

2. KEEP ALL SIGNATURES WITHIN BLOCKS. 

3. PRESENT THIS CARD TO PHOTOGRAPHER. 

11M H7741. 

a;xH'&IT- (0 

DO NOT DETACH THIS ITUI ~ 

THIS STUB .. UST BE PRESENTED TO RECEIVE 

YOUIt PER"ANENT IDENTIFICATION ,CARD. 

/ PH'YS 01 I INTRO PHVS SCI 1 1100 I GRADE 

.3 
ST. NAME DEP SECT. COUf~_ TIME CR.HRS. 

1 1855
1 

0.31 
IcJcukR, 

11 1 .1 T T I 

I I 
ST. NCl, CODE COL ISE DAYS PTS. ---

INDIANA STATE 

r.R~Arr CARD 
r COMMENTS- ----l 

r " r '" 

EXH,,,,r- 7 "- ./ 
GRADE CREDIT HOURS 

STUDEN·T PRINT FULL NA .. E BELOW. 
I 

,NAME: INSTRUCTOR'S SIGNATURE 

11M 646556 

16 

o 

I 
I 

I 

0 
I 

'I 

I 



te. 

o 

o 

o 

··f 

PLEASE PRINT 
IN INK 

CAMP~t-\ 

REGISTRATION FORM 
TODAY'S DATE 

NAME STUDENT NO. 

HOME ADDRESS 

STREET CITY COUNTY S,,!,ATE PHONE 

ST.REET CITY STATE PHONE 

U.S. CITIZEN CL.ASSIFICATION FR. SO. JR. SR. SP. GR. ADV. 

SEX AB. B.S. M.S. M.A. M.B.A. OTHER VETERAN YES NO 

HIGH SCHOOL. 

NAME COUNTY STATE YR. OF GRADUATION 

NEW STUDENT YES NO TRANSFER TERM AND YR. ENTERING I.S.U. 

DATE OF BIRTH MARITAL. STA·TUS 

CHURCH PREFERENCE 

CHEc,.K ONE ONL.Y EL.EMENTARY TCHG. SECONDARY TCHG. NON-TCHG. 

MAJOR MINOR 

ADVISORS SIGNATURE 

COURSE SCHEDULE 
COURSE SEM. DEPARTMENt 

HOUR DEPARTMENT MON. TUE. WED. THUR. FRio SAT ROOM 
AUTHORIZAtiON NO. HilS. 

FOil BUSINESS OFFICE TOTAL AMOUNT FOR REGISTRA~'S OFF"ICE 
USE ONLY HOURS USE ONLY 

!....---

SCHOLAIISHII' cONTINGENT FEE @(HIBI,-B 
LATE FEE 

OTHER OTHEII 

IIEC. NO. 
8Y ____ ._ 

TOTAL FEES 

17 

REGISTRAR 

POST GR. 

CODE 



46670 FALL 1965-66 

JOHN T. KLINE 201 OAKLAND DRIVE .TERRE HAUTE, IND lANA 

HIGH SCHOOL CODE. 44-52 CLASSIFICATION * JUNIOR SEX* MALE 

MAJOR • MATHEMATICS MARITAL STATUS * SINGLE BIRTH DATE * 08/21/44 

COUNTY. VIGO STATE * INDIANA PERMANENT NUMBER * 164-9987 

NON-TEACHING CURRICULUM SAT * VERBAL- 25 MATH- 99 CLASS RANK. 881 99 

ACT. ENGLISH -95 MATH-99 SOCIAL STUDIES-84 SCIENCE-98 COMPOSIT-94 

ACE * QUANTITATIVE-58 lANGUAGE-89 ENGLISH-17 TOTAL- 90 

--~ .. ---~ .. ---.----~ .. --.. ----------.---......... --~.---.-----------~--------~--.-- ... ---.---~-------

DEPT COURSE DAY+HOUR CREDIT DEPT COURSE DAY+HOUR CREDIT 

MATH 400 M W F 8.00 4 HRS LANG 

LANG 

112 MTWTF 6.15 3 HRS 

MATH 400 M W F 8.00 4 172 MTWTF 6.15 3 

MATH 400 M W F 8.00 4 LANG 172 MTWTF 6.15 3 

MATH 400 M W F 8.00 4 LANG 172 MTWTF 6.15 3 

MATH 400 M W F 8.00 4 LANG 172 MTWTF 6.15 3 

TOTAL HOURS THIS SEMESTER 

46670 FALL 1965-66 

JOHN T. KL IHE 201 OAKLAND DRIVE TERRE HAUTE,INOIANA 

HIGH SCHOOL CODE. 44-52 CLASSIFICATION. JUNIOR SEX. MALE 

MAJOR. MATHEMATICS MARITAL STATUS. SINGLE BIRTH DATE * 08/21/44 

r COUNTY • VIGO STATE * INDIANA PERMANENT NUMBER * 164-9981 

NON-TEACHING CURRICULUM 'SAT * VERBAL~ 25 MATH- 99 CLASS RANK* 88/ 99 

CUMULATIVE DATA** HOURS* 96.0 POINTS*258.0 RATIO. 2.68 

35 

DEPT COURSE DAY+HOUR CREDIT 

MATH 400 M W F 8.00 4 HRS 

MATH 400 M W F 8.00 4 

MATH 400 M W F' 8.00 4 

MATH 400 M W F 8.00 4 

MATH 400 M W F 8.00 4 

TOTAL HOURS THIS SEMESTER 

DEPT COURSE DAY+HOUR 

LANG 

LANG 

172 MTWTF 6.15 

112 MTWTF 6.15 

1 72 MTWTF 6.15 

CREDIT 

3 HRS 

3 

LANG 3 

LANG 112 MTWTF 6.15 3 

LANG 172 MTWTF 

18 EX~'Bt,-g 35 

o 

o 

o 
I 

I 

I 

,I 



o 

o 

• 

II I 

.0775E00280015 
1 

n t it 't j t tt 1$ tit th'trt d#ttu Httthbt t dHtt 'd &1"" " f'" 

c 

f;.K H .e,T -10 
11000011001100000000000000000000000000000000000000000000000000000000000000000800 
'2345678910"UnU~nDnH~~n~~~~nn~~~nn~~~n~H~~~~~~U~~~~~~~~~~~~~"~~~M~UvunNnnn~~nnnn. 

11111111111111111111111111111111111111 (,,1111111,1111111111111111111111111111111 

22222222122222222222222222222222222222222222222222222222222222222222222222222222 

3333333333333333333333333333333333333333333333333333333333333333333333333333333 

44444444444444444444444444444444444444444444444444444444444444444444444444444444 

55551155555551555555555555555555555555555555555555555555555555555555555555555555 

6666666666666&666666666666666666666666666666666666666666666666666666666666666666 

7711777777777777777777177717717771171777111117177777177717111117177777777177111t 

8 8 8 8 8 8 8 8 81 ~ 8 8 8 8 &- 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 B 8 8 8 8 8 8 8 8 8 8 8 8 B 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 a-

99999999999999999999999999999999999999999999999999999999999999999999999999999999 
, 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 30 31 n 33 34 3536 37 38 394041 42 43 ~ 4546 47 484950 51 52 53 54 5S 56 57 58 5960 61 62 63 M 65 66 67 68 69 70 n n 13 14 7S 16 n 1819 80 
~ 

19 

'UP 'j -



ISU TEMPORARY CLASS LIST 
To the Instructor: The students listed below registered for this course during the regular registration period. Changes in the roster should be made only upon receipt 

of official Notice of Registration or Add or Drop cords. Add the names of those who register late and indicate the date. Draw a line through the names of those who 
officially withdraw and indicate the date Please maintain this record accurately 

*1' 
DEPT. I COURSE NO. I SEC. I DESCRIPTIVE COURSE TITLE I HRS. I SEM. I DAYS CODE'~ 

I I I I I I 
INSTRUCTOR 

STUDENTS NO. Be NAME DATE DATE TEMPORARY ATTENDANCE RECORD MID·TERM 
CL. ENTERED WITHDRAWN GRADE 

£XHIB/T i1 

0 

.t-~ 

TOTAL 20 
STUDENTS 00_-

INSTRUCTORS SIGNATURE 1 



~ 
~~ 

~ 

~OMPUTER CENTER 

INDIANA 15ATE 

TEN DAY REPORT 
INSTRUCTOR DEPARTMENT 

____ .... _._ .IJA!3JJN ART 

__ ._. _____ Q fl._V LS._ 81U 

-4------.~ L~A LEY --..... --- .--. BIG 

] 

___ ..:. __ . tiE $~ _______ .... _ .. __ ..... 1 bUS 

__ . ___ .... _.K_~.k~~_'f_ ...... ___ ....... ________ .1. bUS 

___ .... _ ~.X.NCH ___ .. ___ . __ .... ____ .. +-. E/'JG 

HARDESTY ENG 
_ __tl- _... .- .• - . - _ .". ____ .... 

_~ __ . --4 tlQ~.~.~Y ___ _ eNG 

LYNCH 
-=---~--.-.---.. - ENG 

dCDONALD GEO 
.-- ----.---

COURSE 
NO. 

151 

112 

112 

140 

201 

101 

101 

101 

220 

111 

TIME AND DAYS 

230 T T 

700 H l·J 

530 I-j l"J 

400 t'l ~'J 

530 ['ij ~~ 

230 H ~~ 

530 r-.j ~~! 

400 T T 

400 h ~'J 

700 1", t·J 

KELL 
.-------~-,-------

... _____ .H._L~I ___ L _.' t;>l_J __ . ___ 5..3Q ;'i ~J 

v-iAHi'JSI EDLER HIST 261 230 T T .... _--_ .. -._--.- -.. - -' ---.. -

U L E-ARY __ .1. LSCI 206 530 T 
I 

(L J .. _ .. ___ ~AJ}tiABJ: _______ .. ____ .. _J+-lv'lA.TtI-.- 1. .194. .7.QO.. _ .. i".L ~'J 

Q9J~QL6~ 
ROOM & 
BUILDING 

~ 8E 

23E 

.22E 

25E 

25E 

7H 

6~·J 

7 1.' .. 
6 ~'J 

26E 

26E 

?6E 

5~J 

__ .. _ .Z3_t;_ 

e 
SEM. 1,T 19 tI5" 

SEM. 
HOURS 

ENROLLMENT • SECTION 

-

1 2 Q~5 ...•.. --- ... 

1 3 027 
.-~.- ..... _-- ... _-- -------~- _. 

.~. Q.?.2 __ .. -t--_ .... -_._._--.f. 

1 ~_ . 9_~~ _______ ..... _ .. _ .... _ .. 

1 3 038 

1 3 Q??.--.+. --_._-

5 3 .. Q.2-1---r 

6 3 9_27. ___ + ___ . ___ . ___ ... __ ._. 

. ___ 1_ .... .1.. 3 066 . -.... ---- _ .... _ .. __ ._._----

1 3 056 
. ·i-· 

2 3 051 -.. - ----

1 3 053 

3 . 0 Z 1_ .. ____ . ____ .. __ ' .. 

1. _ .. 1. ..... _ 4 ____ 1_1t46 ___ ~ ___________ _ 

7 I LABHART I HA.tH. 104 I 700 T T 2li-.- ___ --1-__ . 2 4 I 039 I 

6_~-----~-~-~Qli~.RJ ____________ ---L-J~I t\_ItL. --L----.1J-~ --J------~;?Q . ______ . .1_ J-----L .. - ___ ~:L~ . _______ -1- ______ J ____ ! ____ ~ ___ +-Q].-~---------------
ROBERTS 

:-r-----~~~~-~ ~~:l-~N N J ENG ---t_-.--l..Q.L ... J .... , 5.?.Q .. ___ _ . _:L _I. ... -·i- _._. J}kL. __ -----4 __ ... --~-.-.. -t-. 3 I 029 I 
___ ._P..~Cl __ L ___ . _110 .... L. ,!~-Q--.-:-- __ I __ J_ .. __ ~ .. _ ..... __ 2J'i ___ . .-.t. .... ---l--- t --- .. P--.---t--Q!tQ---------------

3_-+-______ ~JdJ_~!=_lS _____ .. _. ________ J ___ ~ .. ~~! ___ . __ . JJJ .. _ .. __ 

2--~ --- ---- .. _.- -- .--.- .- .. --

1 ~. __ . •. __ . __ .. , - . . --.... - .-•.... 

... ~.3 Q____ T .. 

.EX H J B J T ... :1.Z 
21 

~'" 
_ .. .7.~L . ~ .. 3 0 ~ J .. Q.9_~ __ .~_. ___ . ______ . 

._----- _ ... --.. _ .. - .. 

•. __ .• - ._" ... ~----.-- .1 



------.... ---."., .. --.---.. -.~~~~~-~-~~---~----~~~~-~----------~ 

SAT Test 

Scores 

Pu 

Permit 

Application 

Master 

Student 

Address 

rParent 
I---~»--t ~ddress 

Re 

EXHIBIT -13 

Predicted 
Index 
Card 

Predicted 
Index Repor 



III tt tt ... t . ed 'M "U jj"-

o 
Form 1 

Auto 

Church 

o 

''', • 

Form 2 Business 
Office 

Exhibit-14 23 

Academic 
(Dean 

School of 
Business 

Information 

Services 

Student 
Personnel 

IBM 

School of 
Education 



Course 

Offering K. P. 

Course 
Master 
Deck 

Read 

~ __________ l .... __ c_o_u_r __ s_e __ ~~~ __ ~ \;1 Master 

Course 

Offering 

Master 
Course 
List 

Grade 
Cards 

Exhibit-I5 

24 

Class TiCke.~ts 
Grade Card J 

o 

I, 

I 



,r It ti !Itt t t tlm'!t 

o 
Returning 
tudent's 
Master 

Encumbranc 

~ists 

Encumbranc 
Card 

• 

L 'f' t t t! 
r t tre t tttrt ttt t M &11 H t *mt.±tM ettf" ·,*±ittrlrlrlrinirMbtt'rttriiit Of"JJ rOT 1 11ft Off 

Exhibit-16 

25 



I 

Master & 

Packet 

Form 

arm 2 

,-----

Form 3 
Student 

Personnel 

E~hibit -11 

26 

------1( Master 

Book 

Academic 

Dean 

Grade Card EJj 

o 

o 

II. 
1,1 

II 

l~ 

1 



o 

o 

• 

Grade Card 

~_--JI-_-S:Y 

Course 
Master 

. Grade Card 

Course 
Master 

Exhibit-18 

27 

Course 
Master 

I 
~ 
V 



~DIL I bePr $8:. ....'TL.E. UI2. I ~y I 12b0lW\ '=;1 LIM,.,. 

09421 MATH445102PRIN DIGIT COMP 100 F~M 207 1 2 1 013 

0946 I MATH511 ~HEORY NUMBE.RS 3001 T T J-M 2171 2 1 015 

09491 MATH5161 ~HEORY MATRICES 9001 T T LM 208 ,. 2 I 015 

09501 MATH525 NON EUCLID GEOM 10001 T T ~M 208 I 2 I 015 

0951 1 MATH526 TOPOLOGY 1000M W FLM 208' 3 I 015 

0952 I MATH530 INTERM ANALYSIS 200~ w F~M2081 31015 

0953 1 MATH5331 O~DIFF EQUATIONS 900~ W RtH 2081 31015 

0954 I MATH533103DIFF EQUATIONS 1100~ W RLM 2171 31015 

0955 I MATH5341 IADV DIFF EQUAT 20a T T ILM 2081 21 015 

0956 I MATH535 INT VECTOR ANAL 120QM W RlM 20al 31 015 

0957 I MATH5361 INUH ANALYSIS 1 aoa T T IHE 2081 31 015 

09581 MATH5451 OJPRIN DIGIT COMP aoo RLM 2171 21 012 

09"70 I MATH2001 ICALCULUS 1 ARR ARR 4 

-----0972t-MATH2ool ICALCULUS 1 ARJ I I ARR 4 

2l:s 
LUV 
0' 

o 

28 

o 

."..LLV 

<' 
aH/~/1 

~ 

},..~ 

- - .. _._---_ .. -._ ... _-

o 



··:::t!!!I!'.!! 

Master 

o 

• 

H. S. Header Header 

Exhibit-~~O 

29 

tOur Btl" '" .. ?' 



Application 
for 

Admission 

Request 

EVANSVILLE -1 

S'-

Name & 

Address 

Registration 

Form 

EXHIBIT-21 

30 

A-4 

Name & 

Address 

4-23-65 

1/3 

~ 

~ 0 

Jr 

A pplica tion 
for 

o 

o " 

1 I, 



dt -urlln '-

o 

() 

,/ • 
','I '-

2 

Course Mas e r 

EVANSVILLE -2 

1620 

Student 
Lists 

'f%Y 

(3~--~---. 
Course Req. 

Address 

E3 

EXHIBIT-22 

31 

4-23-65 
2/3 

Grade Cards 



3 EVANSVILLE -3 

92. 

1620 

Grade Cards 

1620 

EXHIBIT-23 

32 

B4 
Hourly 
Equated 
Report 

C4 

Master 

.04 

Class 

4-23-65 
3/3 

Grade Cards 

1620 
10-Day 

1---.... -1 
Report 

o 

0' 

o 



.ft: !Ill 

o 

··11"· 

HOURL Y EQUATED REPORT 
HOURS FRESHMEN SOPHOMORES JUNIORS SENIORS GRADUATES AUDITORS/SPECIAL ALL STUDENTS 
TAKEN MEN WOMEN TOTAL MEN WOMEN TOTAL. MEN WOMEN tOTAL MEN WOMEN TOUL MEN WOMEN TOTAL MEN WOMEN TOTAL MEN WOMEN TOTAl 

STUDENTS 22 
HOURS 

STUDENTS 21 
HOURS 

STUDENTS 20 
HOURS 

STUDENTS 19 
_HOURS 

STUDENTS 18 
HOURS 

o 
o 

1 
21 

o 
o 

4 
76 

1 
22 

o 
o 

o 
o 

o 
o 

1 
22 

1 
21 

o 
o 

4 
76 

13 20 33 
234 360 594 

o 
o 

1 
21 

1 
20 

2 
38 

1 
22 

o 
o 

o 
o 

1 
19 

1 
2'2 

1 
21 

1 
20 

3 
57 

1 
22 

2 
42 

5 
100 

6 
114 

o 
o 

1 
21 

1 
22 

3 
63 

2 7 
100 1100 

4 10 
76 1'90 

35 31 66 60 105 105 
630 558 1188 1080 810 1890 

2 
44 

o 
O· 

o 
o 

o 
o 

2 
104 

o 
o 

6 3 9 
120 60 180 

10 8 12 
76 152 228 

31 19 50 
558 3102 900 

STUDENTS 17 104 109 213 83 102 185 97 66 163 48 27 75 
HOURS 1768 1853 3621 11011 17310 31105 1649 1122 2771 816 1059 l275 

STUDENTS 16 271 275 5106 167 132 299 133 1010 237 49 41 90 
HOURS 4336 101000 8736 2672 2112 107810 2128 16610 3792 7810 656 14100 

STUDENTS 15 362 227 589 196 137 333 107 85 192 155 186 3101 
HOURS 5430 3405 8835 2940 2055 4995 1605 1275 2880 2325 2790 5115 

STUDENTS 14 233 118 351 131 68 199 84 55 139 810 72 156 
HOURS 3262 1652 4914 1834 952 2786 1176 770 ·:19106 1176 1008 2184. 

STUDENTS 13 132 90 222 71 49 120 67 32 99 97 52 1"49 
HOURS 1716 1170 2886 923 637 1560 871 1016 1287 1261 676 1937 

STUDENTS 12 161 63 224 118 52 -170 74 32 106 36 '19 55 
HOURS 1932 756 2688 11016 624 2040 888 3810 1272 1032 228 660 

o 
o 

o 
o 

o 
o 

1 
19 

1 
18 

o 
o 
o 
o 

o 
o 

o 
o 

o 
o 

o 
o 
o 
o 

o 
o 

1 
19 

1 
18 

404 
68 0 68 

9 1 10 
144 16 160 

23 9 32 
3105 135 480 

8 
112 

22 
286 

3 11 
42 154 

j ··29 
91 377 

38 12 50 
456 1" 600 

SUBTOTAL 
STUDENTS 
HOURS 

1281 903 2184 805 573 1378 636 1026 1062 512 427 939 106 32 138 
18775 13618 32393 11905 8713- 20618 9675 6578 16253 7592 6371 13963. 1448 428 1876 

HOURS FRESHMEN 
TAKEN MEN WOMEN TOTAL 

STUDENTS 11 
HOURS 

STUDENTS, 10 
HOURS 

STUDENTS 9 
HOURS 

STUDENTS 
HOURS 

STUDENTS 7 
HOURS 

STUDENTS 6 
HOURS 

STUDENTS 
HOURS 

STUDENTS 4 
HOURS 

STUDENTS 
HOURS 

STUDENTS .2 
HO~RS 

STUDENTS 
HOURS 

SU8TOTAL 
STUDENTS 
HlilI,lRS 

GRANO TOTAL 

22 
2102 

15 
150 

9 31 
99 3101 

/ 
5 20 

50 200 

18 28 106 
162 ·252 10110 

11_ 
88 

10 
70 

18 
108 

15 
75 

5 
20 

6 17 
48 136 

6 16 
42 112 

12 .30 
72 180 

5 20 
25 100 

3 
12 

8 
32 

52 51 103 
156 153 - 309 

11 
22 

o 
o 

13 
26 

o 
o 

210 
108 

o 
o 

177 138 315 
1093 779 1872 

"OURL\' EQUATED REPORT 
SOPHOMORES JUNIORS SENIORS ~RADUATES 

ME.N WOMEN TOTAL. MEN WOMEN TOTAL MEN WOMEN TOTAL MEN WOMEN TOTAL 

18 10 28 
198 110 308 

11 10 21 
110 100 210 

10 
90 

10 
32 

3 
21 

1'6 
"6 

4 
20 

18 
54 

5 
10 

8 18 
72 162 

2 
16 

6 
48 

4 
28 

5 21 
30 126 

10 
50 

2 
8 

14 
70 

4 
16 

16 ·34 
48 102 

10 
8 

o 
o 

9 
18 

2. 
2 

93 68 161 
641 449 1090 

12 
132 

9 
90 

7 
63 

3 
24 

1 
7 

6 
36 

6 
30 

4 
16 

10 
30 

6 
12 

·0 
o 

7 19 
'77 209 

9 18 
90 180 

11 
99 

6 
108 

5 
30 

2 
Id 

3· 

12 

12 
36 

5 
10 

o 
o 

18 
162 

9 
7'2 

2 
110 

11 
66 

8 
40 

7 
28 

22 
66 

11. 
22 

o 
o 

610 61 125 
10100 1tl9 859 

19 
209 

9 
90 

8 
72 

9 
72 

12 
72 

5 
25 

2 
8 

14 
42 

3 
6 

o· 
o 

9 28 
99 308 

6 15 
60 150 

12 20 
108 180 

4 13 
32 1010 

6 
102 

6 18 
36 108 

2 
10 

o 
o 

19 
57 

5 
10 

o 
o 

7 
35 

2 
8 

33 
99 

8 
16 

o 
o 

19 6 25 
~09 66 275 

15 10 25 
150 100 250 

25 12 3? 
225 108 333 

14 
112 

5 
35 

10 210 
80 192 

1 
7 

6 
42 

89'" 104 133 
534 264 198 

23 
115. 

10 
40 

17 40 
85 200 

6 
24 

16 
64· 

258 235 493 
7710 705 1479 

107 
910 

47 910 
94 188 

o 
o 

1-
1 

82 -68 150 506 388 8910 
603 .10107·1050 2289 1533 3822 

STUDENTS 11058 10101 21099 898 6101 1539 700 48~ 1187 594 1095 1089 612 420 1032 
HOURS 19868 l't397 34265 12546 9162 21708 10115 6997 17112 8195 6818 15013 3737 19"61·: 5698 

EX l-\l)3/T - 24 

o 
o 

o 
o 

o 
o 
o 
o 
o 
o 
o 
o 

o 
o 

o 
o 

o 
o 

o 
o 

1 
12 

1 
l2 

o 
o 

o 
o 

o 
o 
o 
o 
o 
D-

O 
o 

G 
o 

o 
o 

o 
o 

o 
o 

o 
o 

o 
o 

o 
o 

o 
o 

o 
o 

o 
o 

3 
66 

4 
84 

2 
1010 11( 

1 ._-_ .• 

21 I 10! 

12 5 1~ 
240 100 3 It< 

17 13 -··3e 
323 247 57C 

o 140 115 25! 
o 2520 2070 459C 

o 336 30''- 640 
o 5712 5168 IG88C 

o 629 553 118~ 
o 10064 8B1t8 1891. 

o 8103 644 -iitS7 
o 126105 9660 2230~ 

o 540 316 856 
o 7560 itlo24 1198'0 

o 389 230 6i9 
o 5057 2990 8041 

1 428 178 606 
12 5136 2136 7272 

1 3341 2361 5702 
12· 49407 35708 85115 

AUOITORSis'PECIAL • ALL STUDENTS 
MEN WONEN TOTAL MEN WOMEN TOTAL 

o 
o 
6 
o 
o. 
o 
o 
o 

1 
7· 

o 
o 

1 
5 

o 
o 

o o 
o 
o 

o 
o 

o 
.0 

o 
o 

o 
o 

2 
10 

o 
o 
o 
o 
o 
o 

o 
o 
1 
7 

o 
o 

3 
15 

2 
8 

90 4t 131 
990 45.1 1441 

59 40 99 
590 400 990 

68 71 139 
612 639 1.251 

101 28 69 
328 224 552 

21 
147 

.14 35 
98 245 

1101 72 213 
846 432· 1278 

54 38 92 
270 190 460 

- 23 
92 

1,,' 39 
~4- 156 

13 9 22. 365 342 707 
39 .27. 66 1095 1026.2121 

1-1 
22 

o 
o 

Q 
o 

14 
28 

o 
.0 

.83 77 160 
166 154 320 

3 
3 

o 
o 

3 
3 

26 1.- 42 ,948 739 1687 
73· .51··124513936788817 

Z,7 
85 

16 43 4289 3100 7389 
51 136· 54546 3.9386 9l9J2 



SAT ACT H S RANK 
NAME V M ENG MA SS SCI COMP 
WOOD SUSAN KAY 66 55 086/0230 
WOOD VIRGINIA CAROL 36 78 46 46 57 003/0017 () WOODBURY RICHARD 46 12 272/0403 
WOODS PAMELA SUE 89 88 002/0026 
WOODS PENNY L 81 76 017/0075 
WOODWORTH MICHAEL B 50 46 109/0122 
WOOLS GERALD LEE 59 86 109/0122 
WOOSLEY ERN I E- G 29 74 9 23 28 049/0117 
WORTHINGTON JOHN WM 88 45 026/0115 
WOZNIAK THOMAS .S 74 60 069/0162 
WRAY PATRICIA A 46 08 082/016-3 
WRIGHT BilLY JOE 81 46 052/0218 
WRIGHT CAROL ANN 015/0130 
WRIGHT DEBORAH ANN 71 69 064/0161 
WRIGHT DON~LD LEE 01 02 054/0067 
WRIGHTDONN~ JEAN 43 07 240/0341 
WRIGHT GARY ALLEN 90 57 054/0109 
WRIGHT MARY JEAN 009/0127 
WRIGHT SHARON KAY 72 48 65 28 49 026/0053 
WUCHN£R ANN LOUISE 67 . 87 009/00-80 
WUTHRICH SUSAN LYNN 91 94 096/0496 
WYCOFF CAROLYN J 58 18 084/0122 
WYLIE ROWENA SUE 54 49 092/0140 
WYMAN LARRY EUGENE 088/0129 
WYNDHAM RITA LYNN 67 75 010/0140 
WYTHE WM FREDERICK 50 64 048/0108 
YACKISH ELIZABETH J 48 49 131/0174 0 YARNALL CAROL SUE 92 91 007/0064 
YEAGER DIANA LYNN 65 52 042/0130 
VOMTOUBIAN CYRUS / 
YORK JULIA ANN 044/0164 
YOUNG ~ARBARA JEAN 65 64 20 33 42 098/0222 
YOUNG DENNIS R 44 82 59 81 70 028/0040 
YURO SANDRA LfE 61 34 118/0182 
ZAITCHICK HOWARD W 44 78 71 ·46 64 / 
ZEHNER RICHARD M 209/0317 
ZENTKO EVELYN MARIE 023/0108 
ZERR ELAINE SUE 39 68 055./0218 

I ZIMMERMAN WIHELMENA 017/0131 
ZSOLDOS EVELYN MARIE 052/0178 I 

I 
I 

t!!. II~I 
~. 

EXHIBlr- Z5· 

II· .. '. 

I 
I 

34 



t "it . ·11"1 .... ,. ·:c···iWTT·" 

SAT ACT H S RANK 
NAME V M ENG MA SS SCI COMP 
WOOD SUSAN KAY 66 55 086/0230 

0 WOOD VIRGINIA CAROL 36 78 46 46 57 003/0017 
WOODBURY RICHARD 46 12 272/0403 
WOODS PAMELA SUE 89 88 002/0026 
WOODS PENNY L 81 76 017/0075 
WOODWORTH MICHAEL B 50 46 109/0122 
WOOLS GERALD LEE 59 86 109/0122 
WOOSLEY ERNIE G 29 74 9 23 28 049/0117 
WORTHINGTON JOHN WM 88 45 026/0115 
WOZNIAK THOMAS S l~ 60 069/0162 
WRAY PATRICIA A 08 082/0163 
WRIGHT BilLY JOE 81 46 052/0218 
WRIGHT CAROL ANN 015/0130 
WRIGHT DEBORAH ANN 71 69 064/0161 
WRIGHT DONALD LEE 01 02 054/0067 
WRIGHT DONN~ JEAN 43 07 240/0341 
WRIGHT GARY ALLEN 90 57 054/0109 
WRIGHT MARY JEAN 009/0127 
WRIGHT SHARON KAY 72 48 65 28 49 026/0053 
WUCHNER ANN LOUISE 67 87 009/0080 
WUTHRICH SUSAN LYNN 91 94 096/0496 
WYCOFF CAROLYN J 58 18 084/0122 
WYLIE ROWENA SUE 54 49 092/0140 
WYMAN LARRY EUGENE 088/0129 
WYNDHAM RITA LYNN 67 75 010/0140 
WYTHE WM FREDERICK 50 64 048/0108 

() YACKISH ELIZABETH J 48 49 131/0174 
YARNALL CAROL SUE 92 91 007/0064 
YEAGER DIANA LYNN 65 52 042/0130 
YOM-TOUBIAN CYRUS / 
YORK JULIA ANN 044/0164 
YOUNG BARBARA JEAN 65 64 20 33 42 098/0222 
YOUNG DENNIS R 44 82 59 81 70 028/0040 
YURO SANDRA LEE 61 34 118/0' 82 
ZAITCHICK HOWARD W 44 78 71 46 64 / 
ZEHNER RICHARD M 209/0317 
ZENTKO EVELYN MARIE 023/0108 
ZERR ELAINE SUE 39 68 055/0218 
ZIMMERMAN WIHELMENA 017/0131 
ZSOLDOS EVELYN MARIE 052/0178 

• EXHII3IT- z!5 

34 



VJ 
Ul 

.J:.. 

~ 

~~~~-

~
J:

~
~
J:

t\J
lS'

CJ

UNION DUGGER

STUOENT NA~E VERB

ALLEN DIANA KAY

COURSE GRADE HOURS POINTS

ENG 101 0+ 3 4.5
ART 151 D 2 2.0
P ED 151 C+ 3 7.5
P ED 015 C+ 1 2.5
P ED 001 B 1 3.0
SP 101 0+ 2 3.0
HIST 151 0 3 3.0

TOTAL 15 25.5

BEDWELL RONALD LEE 335

COURSE GRADE HOURS POINTS

I ED 161 F Z .0
I ED 132 C 2 4.0
soc 170 F 3 .0
8IOL 112 F 3 .0
ENG 101 C 3 6.0
I ED 050 0 1 1.0
P ED 051B 0 1 1.0

TOTAL 15 12.0

SLY GEORGE RUSSELL

COURse GRADE HOURS POINTS

ART 151 C 2 4.0
SIOL 115 A 3 12.0
P ED 0518 8+ 1 3.5

.-.EN (i __ l.QO A C 1 2 .0
CHEM 105 C 4 8.0
MATH 104 8 4 12.0

_IOTAL 15 41.5

SAT AtT ACE RAm< GPR
MATH ENG MATH SOC SC I COMP Q L T ENG IN CLASS ACT. PRED.

11 17 12 29 0012/0040 1.70 1.45

379 0015/0040 0.80 1.91

25 40 53 50 39 0007/0039 2.77 1.73

o ~

o

•

II It II t It t lit Sit 1$

STUDENT
NUMBER

STUDENT NAME

- .-._._-

I
iii .a:

...J::>
uu

.. .. . ' ., ."'-

\

'l
xci COMPo

"'''' AREA
ClIO

......... _-_ .
I \

!
RESTR.
AREA

.... - "- . -.... _._ .. :. __ •... __ ._ ..• - ---_._---:"
I

! EXH\13 IT 27 J\ SPEC. .,.: IV COUNTY
~ (HURCH H.S.

AREA ~ TEAll ;I STATE
0
U

1 ooooooooooooooooooooo08oooooooooolooo~oooolooooo~ooooo0000000008000800100000000000
~ 123456781~"~nU~~n~~~~»~~~ava~~~~n~~~,a~~~~~~~~~a~~~~~~~~~~~~~~aMM.o •• ~nnnH~~nn~.
~ 1 h 1 1 111 1 1 11'1 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1·' 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

~ 2222222222222222222222222 2222222 2:22 2212 222:2222222222222222222122 2222 22222222222 2 ~ ;
~ 333 3 3 3 3 3 3 3 3 33 3 3 3 3 3 3 3 3 3 3 3 3 33 3 33 33 3:33 33:333 3i3 3 3 33 33 333 3133 333333333 3 3 33 33 3 33333 3333,

_ 4 4 4 4 4 4 44 4 4 44444 4 4444 4 44 44.4 4 4 4 4 4 4 414 4 4 414 44 414 4 44 4 4 4 4 4 4 44 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 444 4 4 4 44 4 4 ~

I
II: (PARENT NAM! ANO AODRUI) I I I t 515
c I I I : 8 6 8 6 6 8 8 8 8 88 8 8 8 68 8 6 8 6 6 8 6 8 8 6 6 6 6 6 66 616 6 6 616 6 6 616 B B 6 66 6 6 & 6 6 & B B 6 6 B 6 & 6 6 6 & 6 6 & 6 6l 6 6 6 6 6 6 6 J't 6

i g 7777 77777 777 7 77777777777 7 77 7 7 7 77 7i7 77 + 7 7 7:77 7 7 7 7 7 77 7 7 77 7717 777777777 77 77777 7 77 777

11 8888888888888888888888888888 88 88 8i8.8 8 818 888\88 888 8 8 881881188888 88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 88 •.
,~ I GRAD! DISTRIBUTION I. INSTRUCTOR NAME :t ':~ I DEPT. 1 CGUlSE Ism.1 COURSE NAME I CLASS ME'ns I ROOM l' ~ t

, 999991999999999999999999999991991919919919 9!9 919 91991919119199919991999919999999999 9 9 9 9 9 9 9 9 9 9 999
\ I 2 3 4 III 7. • I 10 11 12 13 14 15 ,. 11 ,. 11 20 21 » ~ 24 21,2121 2112130131132 3313UII3I 37131 31140 41142 43144141 .. 1471 .. 41 .\11 52 allu5 51 571111 11110 81 ~ 83 M &5 6& 61 6& H 70 71 n n 74 71 ~ 71 71 71 ill

".. • .. ".'S2 _ .. _----" '"----

I ~US ,. NE VEU 015
12:7 PRIN r FULL NAME. ,DEPT. SECT. INSTRU('OR TIM'

o 1 t 5 fh~ U 580 M It; 1~~
CHECK CLASS A D CUR CULUM. couttS, DAY ROOM NUMBER

HAND TO YOUR INSTRUCTOR.

w NAME

" LoAIT 1 'III IT .IDDUj .AIIII
&AI

:I CLASS PIt. 10. ..ft. Sft. GR. P.Gft. I A."'. SPEC. i'AUO
·0

lOR.
Co)

&AI CURRICULUM ELIM. SEC. N.TCH •.
~

~ WK. .M T W 'TH F WI<. y. T W TH .- F WK. Y T W TH F WK.· M l' W TH~ ~
U) I . ~ t .. I 6 II 16

~
.'_~

! 2 7 12 17

3 8 13 .8

4 9 14

e 10 15 I

'-.. .1 .. H11411
,eXHlJ3J, Z9

~

P • en
en

• 0
S
~
0 z
n • :u
0

1.I

I

:I
1,1

•

Total K~nber Students
(on campus)

Total Se~ester hO~S

7389

93932

o 93932 = 6262.2 equated (full time) campus enrollment
15

OFF CAMPUS

Extension Classes

Corresponder. -:2 Courses

TOTAL - Off ~~:~us

No. Students

817

738
1555

43. 06 8 11 t .&> ,.. = 2 7.1 equated fu ime O~I campus

SUMMARY:

15

::Y~G;._ .::tuder.ts
(on c~"n:p·I.lS
(off ca.'np".ls
(special and auditors

Total Semester Hours
Equated full time enroJ.lment

- 9099

98238
6549.3

o SE~1ESTER HOUR ENROLJ1.lE:~T BY CL.t\SSIFICATION

CL.A.SS

Fresh-aen

Sophomores

Juniors

Seniors

Gradua"t .~;

Audi-'.:: ~~c S~ecial (non-credit)

TOTj..~:.

•

No. Students

2499

1539

ll87

38

J.089

J.032

EXJ-IIBIT .30

FALL '~4

Semester HOUl

2382

192Lr

4306

Semester HOll

21708

171~2

150J.3

5698

136

93932

I DO NOT WRITE IN THIS SPACE
AUTOMOBILE REGISTRATION CARD

101.
EXTENDED SERVICES - EVENING AND SATURDAY

LASl
MR

F~~:S~r--------------------~M~IO~~~.f~O.~M~A~'~~E~~------:~~----~S~~M=f=ST=f~R----_19-------

BLUEBOOK INFORMATION

CHURCH PREFERENCE CARD

SCHOOL OF EDUCATION'

"R.
~ ~"I~SS ____________________________________ ~~ ______________ ~~ ______________ _

19

NAME:
MR.
MISS

PLEASE PRINT ALL INFORMATION

SCHOOL OF BUSINESS

HOUSING INFORMATION SEMESTER _______ _

DATE
________ .19 __ _

INFORMATION SERVICES

NAME·--------LL~U"T------------------_nFMKTr_~------------_~~LE~~~M~AIMD£~.--------------:~S------------_______ 19 ___ .

STUDENT PERSONNEL CARD
DATE ________ .19 __

1 U

B

7

IBM INFORMA flON CARD Sem'-___ _ 19 __

6

ACADEMIC DEAN
MR.

------------~~----------------F~.~ST~----------------..~IDmOLuE~~~ .. &oAIOME~.----~!~ ----..~~-----

BUSINESS OFFICE

REGISTRAR'S CARD FORM 3

REGISTRAR'S CARD FORM 2

5
19 _____ _

4

3

2

------.~r-----------------~FI~R~Sl--------------------~MI~D~DL7f~O~R~M~AI~DE~.~------:~:----~'~£M~£~S~Tf~R-----19-------
STREET Oi R F 0 CITY COUATY

CLASSIFICATION FR. ___ SO. ___ JR. __ SR. __ GR. __ P. G. ___ A.GR ___ SPEC. NON CR. ______ ----AUDIT NON CR ___________ _

ELE M, _____ ..-....;SEC. ________ NON TCHG. ________ MAJOR I ___________________________ _ 2. __________________ _

w AREA MAJOR ___________________ MINOR 1.. _____________________________ 2~. ______________________ ~ ____ __

~

w VET. G ~ BILL WAR ORPHAN ..
..J
..J
O.
U

W
t-
~
fI)

C
Z
C

o
Z

HOUR DEPARTMENT COURSE
NO.

SEIIl
HRS.

DEGREE AB BS AM illS ED A

MON. TUES. WED. THUR. FRJ: SAT. GRADE INSTRUCTOR ROOM-

o

c

I
* CIRCLE COURSE NUMBERS FOR ALL COURSES YOU ARE REPEAT ING J
~--~~/

£XHIBIT-31

39
()

1

•

~
...0

PLEASE USE A
E-Z-OUT® HARD SURFACE TO

WRITE ON

CHANGE IN COURSE CARD
INDIANA STATE UNIVERSITY

o

PLEASE BEAR DOWN
YOU ARE MAKING

6 COPIES

02302
PRINT LEGIBLY

o

UARCO BUS/NUS 'OIlllS
CHiCMiO

BUSINESS OFFICE COpy

FIRST DATE
lAST NAME (PlfASf PR'Nt) * I IEGlSl'IAOS OffICE NAME (P1.EASE PRINT)

HOUR COURSE ADDED COURSE SEMESTER INSTRUCTOR'S SIGNATURE NUMBER HOURS

HOUR COURSE DROPPED COURSE SEMESTER INSTRUCTOR'S SIGNATURE NUMBER HOURS

APPROVED BY COUNSELOR

DATE
ENTERED CLASS

DATE OF LAST I
ATTENDANCE ,

I

I

I

i

•

STUDENTS DO NOT WllTE
IN THIS AREA

CHANGE
OF

COURSi FEE

ADDITIONAL
FEES

TOTAL FEES

$

$

$
BUSINESS OFFICE

DATE FEES PAID
OR ItEFUNDED

FEES

AMOUNT PAID $ ______ _

RECEIPT NO.

~T. REFUNDED "11'$ _____ _

PROCESSED BY
BUSINESS OFFICE

CHANGE OF COURSE FEE WAIVED-REASON ______________________________________ _

~------~~~~== APPROVED BY REGISTRAR

DETERMINATION OF FEE OR- ·REFUND WILL BE BASED UPON DATE COMPLETED
FORM IS PRESENTED TO BUSINESS OFFICE EX~IBIT-3~
DATE! COMPLETED __________ _

APPROVED BY REGISTRAR

40

o

/ f 1 t r f I I
STUDENT NAME I DEPT I COURSE T SEC. T I TIME a DAYS =

I
1&1
~
c(....

GRADE F'S ONLY CI)

c(
z
!!
0 INSTRUCTOR SIGNATURE

~

MID TERM REPORT ALL STUDENTS OTHER THAN BEGINNING FRESHMEN

\.. 11M H64410 ./

/ 1 1 I 1 II
STUDENT NAME I DEPT lCOURSEI SEc.T I TIME a DAYS = C"I

I"

I D 1&1
~
c(
~
CI)

c(
z
!!
0 INSTRUCTOR SIGNATURE
~

RECORD ONLY MID TERM FRESHMEN GRADES ON THIS CARD

_H64411 i/

EXHIBIT-33

o
41

•

~
~~

~

o
VERO BEACH H S

AVERAGE SCHOLARSHIP INDEX Of FRESHMEN FROM YOUR HIGH SCHOOL IN COMPARISON
WITH ALL COLLEGE FRESHMEN AT INDIANA STATE UNIVERSITY, FIRST SEMESTER

CUMULATIVE
FREQUENCY'
PERCENTILE

99

95

90

85

80

75

70

65

60

55

50

45

40

35

30

25

20

15

10

5

0

I *
I *
I *
I * I oJ. ...
I
J * I * I
I *
I *
I *
I *
I *
I
I ----X---- YOUR SCHOOL (2.13)
I * I
I * I
I * I *
I
I * I
I * I * I * I * I * I
I * I * I * I * EXf.4'B'T-3~
I * I *
I *
I * 1*

--~-----------------
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00

AVERAGE SCHOLARSHIP INDEX OF ALL COLLEGE FRESHMEN AT INDIANA STATE UNIVERSITY

42

o

o o
,r- . --... -- .---.-.---

,Student Grade
Card File

Student Index
Card File

Student Index j
Exception Card, 'I

Student Name

File

grade card

~EJ (St~~:·'i~; ;~~ur'k _____ -J

~

(To Students and c. c. to
conce rne d ·school authoriMDI~--I

n ex cardf.
index card
lndex card
index card

ew Student
index card file

t=)<H/BIT-35 43

~~~hT~~~~ort 

Index 
Cards' 

E 

port 

) updated i 
• I 
lndex card 

J:
1

\ 

ii',':, 

I' 



III '"n H·t niH 

o· 

o 
Business 

• EXt-\ I BJT-36 

44 

1620 
Computer 

u.b.ation 

l
iStudentl 

. 1";>-

Names. j 

~ 

o Dean of th 
chool of Lib. ·It 

To gear. of tn 
thuolof Bus 



FRESHr'~EN 

SOPHOMORES 
JUNIORS 
SENIORS 
O:THERS 

TOTAL 

FRESHMEN 
SOPHOtv10RE S 
JUNIORS 
SENIORS 
OTHERS 

TOTAL 

=RESHMEN 
SOPHOf~ORE S 
JUNIORS 
SENIORS 
OTHERS 

TOTAL 

BY CLASSIFICATION 
================= 

NUf~ BER 0 F 
STUDENTS 

754 
1,191 

699 
766 
223 

3,633 

jv} EN 

CREDIT HOURS GRADE POINTS 
ATTEMPTED EARNED 

7,959 12,H56.0 
16,063 33,315.0 
9,603 23,857.5 

10,096 26,256.5 
2,.472 1),930.5 

46,193 103,215.5 

GRADE- PO I NT 
RA TID 

1.615 
2.074 
2.48 L,-

2.601 
2-.80A-

2.234 
======================================================= 

NUt·H~ER OF 
S TUDEI\!T S 

W'Clivi E ht 

C RED I T HO LJR S G R AD E PO- I N T S 
ATTEMPTED EARNED 

GRADE-POINT 
RAT 10 

------------------~----------------------~-------------
383 3,445· 6.,167.0 1.790 
878 12,593 29,146.0 2.3l4 
581 8,181 21,498.5 2.628 
603 7,750 22,368.0 2.886 
215 2,122 6,585.5 3.103 

2,.659 3-4,091 85,765.(} 2.516 
======================================================= 

Nur~1 BE R OF 
STUDENTS 

TOTAL 

eRE D r T HU U R S G R AD E PO I NT S 
ATTEMPTED EARNED 

GRADF.-PO INT 
RATlJ 

----------------------~~--------~-~~-------------------
1,137 11,404 19,023.0 1.66 P 
2,069 28,656 62,461.0 2.180 
1,280 17,78 Lt 45,356~.O 2.550 
1,369 17,846 48,.624.5 2.725 

437 4,574 13,516.0 2.955 
-----------------------------~--~--------~---------~--

6,292 80,269 188,930.5 2.354 
======================================================= 

45 

o 

o 

o 



o 

~ 
....0 

PLEASE USE A 
l.z.oUT~HARD SURFACE TO 

WRITE ON 

CHANGE IN COURSE CARD 
INDIANA STATE UNIVERSITY 

o 

PLEASE BEAR DOWN 
YOU ARE MAKING 

6 COPIES -
02302 

PRINT LEGIBLY 

o 

UARCO .~ POMIS 
CHICMO 

BUSINESS OFFICE COPY 

FIRST DATE 
lAST NAME (PlfASE PRINT) * I REGlSTIAIS OFFICI! NAME (PlEASE PRINT) 

HOUR COURSE ADDED COURSE SEMESTER INSTRUCTOR'S SIGNATURE NUMBER HOURS 

HOUR COURSE DROPPED COURSE SEMESTER INSTRUCTOR'S SIGNATURE NUMBER HOURS 

APPROVED BY COUNSELOR 

DATE 
ENTERED CLASS 

DATE OF LAST 
ATTENDANCe 

STUDENTS DO NOT WRITE 
IN THIS AREA 

CHANGE 
OF 

COURSI FEE 

ADDITIONAL 
FEES 

TOTAL FEES 

$ 

$ 

$ 

BUSINESS OFFICE 
DATE FEES PAID 
OR REFUNDED 

FEES 

AMOUNT PAID $ _______ _ 

RECEIPT NO. 

~T. REFUNDED OM,$ _____ _ 

PROCESSED BY 
BUSINESS OFFICE 

CHANGE OF COURSE FEE WAIVED-REASON ___________________________________ _ 

=--------------======:::::::::::::::::::: APPROVED BY REGISTRAR 

DETERMINATION OF FEE OR ·REFUND WILL BE BASED UPON DATE COMPLETED 
FORM IS PRESENTED TO BUSINESS OfFICE E/( 1-\ I Bl T- 3~ 
DAte COMPI.£TED ________ --

APPROVED BY REGISTRAR 

40 



.......... "~~~.= .... -.=~ ..... -= ...... -'""'.-... -.= .. ~~~""-'-. 

o 

/ t ·1 1 I t I I 
STUDENT NAME I DEPT I COURSE I SEC. I I TIME a DAYS = 

I 
&IJ ... 
C .... GRADE F'S ONLY f/) 

c 
z 
C 
Q INSTRUCTOR SIGNATURE 

~ 

MID TERM REPOR.T ALL STUDENTS OTHER THAN BEGINNING FRESHMEN 

\. .... H64410 V 

/ t 1 1 1 .. II 
STUDENT NAME I DEPT I COURSE I SEC. I I TIME a DAYS = o 

I D &IJ .... 
C ... 
f/) 

c 
z 
~ 
Q INSTRUCTOR SIGNATURE 

~ 

RECORD ONLY MID TERM FRESHMEN GRADES ON THIS CARD 

"- _H64411 L.I 

EXHIBIT -.33 

o 
41 



o 

o 

.. ~ 

I~ 0 

-

PI LAjvj~DA 

THETA CHI 
ALPHA TAU 
TAU KAPPA 
S I G~1A PHI 
LAMBDA CHI 

NUMBER OF 
STUDENTS 

FRATERNITIES 
------------------------

PL EDGES 

CREDIT HOURS, GRADE POINTS 
ATTEMPTED EARNED 

GRAD F -PO INT 
RATIO 

-------------------------------------------------------
PHI 0 0 .0 .000 

0 0 .0 .000 
OMEGA 0 0 .0 .000 
EPSILON 0 0 .0 .000 
EPSILON 0 0 .0 .000 

ALPHA 0 0 .0 .000 

ALL FRATERNITY MEN o o .0 .000 
==========================================-============ 

I;.)(~ 18 J,- 37-", 



NUMBER OF 
STUDENTS 

PI LAMBDA PHI 34 
THETA CHI 52 
ALPHA TAU OMEGA 107 
TAU KAPPA EPSILON 96 
SIGMA PHI EPSILON 96 
LAr-1BDA CHI ALPHA III 

ALL FRATERNITv MEN 496 

NON FRATERN I TV 3,137 

FRATERNITIES 
------------------------

COMBINED 

CREDIT HOURS GRADE POINTS 
ATTEMPTED EARNED 

447 
676 

1,431 
1,303 
1,283 
1,526 

6,666 

39,528 

1,157.5 
1,661.5 
3,474.5 
3,159.0 
3,105.0 
3,487.5 

16,042.0 

87,179.5 

GRAD E -PO INT 
RAT 10 

2.589 
2.458 
2.42R 
2.424 
2.420 
2.285 

2.407 

2.206 
======================================~================ 

I=>tJilSlr- 37-5 

49 

o 

o~ 
I': 

1 



ri"?,'t 't '!!I!'tr,,' ' W'!!!ItMf'nil!nWlltW'!I8'wiwtltd"WNt"'f'bl"HMo'I'WI"I!WW'!Mt'tj'r' l,ttbrt=rH'trillt' Itt i"'ilWINw.,w,lVHMI!)I!JIlt"iNt'Wv.'tH'tt",*"'",,dwirIJ'W t ttt'\ "Me.n" ±H"tt!Hfre I' W' "I gUt. nt * H ##t#t¥#Hft1 tbrt 'tHe 't t' Ydrt#WbH,' In 'ttl! UtI '1'1\1 II ,. HO t! It! j II I' 

o 

.~ 

NUIVIB ER OF 
STUDENTS 

ZETA TAU ALPHA 
DEL TAG A 1"1 tvl A 
GAr-1fv1A PH I BE T A 
S IGrv1A KAPPA 
ALPHA PHI 
CHIOlvlEGA 
ALPHA OfV1ICRON PI 
ALPHA SIGMA ALPHA 

62 
62 
62 
61 
59 
68 
63 
51 

SO RO R I TIE S 
========== 

ACTIVES 

eRE D I T HO U R S 
ATTEMPTED 

887 
845 
902 
837 
829 
923 
860 
738 

G R A 0 E PD I N T S 
EARNED 

2,503.0 
2,384.0 
2,528.0 
2,3'07.0 
2,275.5 
2,516.5 
2,340.0 
1,987.5 

GRAD F -PO 11\1 T 
RAT 10 

2.R 22 
2.821 
2.803 
2.756 
2.745 
2.726 
2.721 
2.693 

---------------------------------------~---------------
ALL SORORITY WOMEN 488 6,821 18',841 .5 2.762 

======================================================= 

50 



ZETA TAU ALPHA 
GAMMt, PHI BETA 
DELTA GAMf'IIA 
CHI OloJiEGA 
ALPHA PHI 
S I Gf'il A KAPPA 

NUMBER OF 
STUDENT S" 

0 
0 
0 
0 
0 
0 

ALPHA SIGMA ALPHA 0 
ALPHA Ot'" ICRON PI 0 

SORO R I TIE S 
--------------------

PLEDGES 

CREDIT HOURS GRADE POINTS 
ATTEMPTED EARNED 

0 .0 
0 .0 
0 .0 
0 .0 
0 .0 
0 .0 
0 .0 
d .0 

GRAD E -PO IN T 
RATIO 

.000 
.000 
.000 
.000 
.000 
• 000 
.000 
.000 

-------------------------------------------------------
ALL SORORITY WOMEN o a .0 .000 

======================================================= 

EX 104 , " I T - "37- "7 

51 

o 

o 



ift ""ff":"""!" ted -*rid n"r"c"" 

o 

ZETA TAU ALPHA 
DELTA GAMMA 
GAM/vIA PHI BETA 
S lGtJl A KAPPA 
ALPHA PHI 
CHI OMEGA 

NUMBER OF 
STUDENTS 

ALPHA Of"1ICRON PI 
ALPHA SIGMA ALPHA 

62 
62 
62 
61 
59 
68 
63 
51 

ALL SORORITY WOMEN 488 

NON SORORITY 2,171 

SORORITIES 
--------------------

COM BI NED 

CREDIT HOURS GRADE POINTS 
ATTEMPTED EARNED 

887 
845 
902 
837 
829 
923 
860 
738 

6,821 

27,270 

2,503.0 
2,384.0 
2,528.0 
2,307.0 
2,275.5 
2,516.5 
2,340.0 
1,987.5 

18,841.5 

66,925.5 

GRAD E-PO INT 
RATIO 

2.822 
2.821 
2.803 
2.756 
2.745 
2.726 
2.721 
2.693 

2.762 

2.454 o ========================:============================== 

e.xH.&I'- 37- S 

52 

• 



1

1

"1 
'.' 

I 

ERICKSON 
BURFORD 
PICKERL 
REEVE 
8L lH-H3E kG 
SANDISON 
GILLUM 
HULrvi/\I\J 
CROMWELL 
PARSONS 

TOTAL 

OTHER 

,~~~ ___ ~ _______ ~=""-""~""'= ....... ;==:.c,"",,";." ..... :_ .... _ .• _ ....... 

RESIDENCE HALL SUMMARY 
====================== 

NUMBER OF 
STUDENTS 

CREDIT HOURS GRADE POINTS 

264 
252 
271 
282 
362 
286 
287 
257 
383 
247 

2,891 

3,401 

ATTEMPTED EARNED 

3,897 
3,629 
3,852 
4, 120 
5,351 
4,055 
4,035 
3,572 
5,313 
3,496 

41,320 

38,949 

9,766.5 
9,081.5 
9,561.0 
9,499.0 

12,188.5 
9,101.5 
8,990.5 
7,£319.0 

11,103.0 
7,282.5 

9,439.3 

94,537.5 

GRAD E -pn IN T 
RATII] 

2.506 
2.502 
2.482 
2.306 
2 .. 278 
2.245 
2.228 
2 • 1R 9 
2.090 
2. OR 3 

.. 22 P, 

2.427 

UTHER (EXCLUDING FRATERNITIES AND SORORITIES) 
2,417 25,462 59,654.0 2.343 

======================================================= 

EXH/BI T- ..57-9 

53 

o 

I 



! , t "r!"ttN"""Ut" tt rib> t tt 

o 

HOUSE 

t' t"terh'. t ., b#bt,fj "t"b ·ft t
.,. tdrtt i#tri t ,,'dttH#±t#:#dj'H"tisrt it j rit±*f .. "" rit ri#" r "t"· p'''' fHWfw .... w .. t 

NUfV1BER OF 
STUDENTS 

BY RESIDENCE HALL 
================= 

ERICKSON HALL 

CREDIT HOURS 
A TT Er~ PT ED 

G R A 0 E PO I NT S 
EARNED 

GRADE-PO INT 
RA T H) 

--------------------------------------------------------------------

:: . 

2 
3 
4 
5 
6 

TOTAL 

54 780 1,986.5 2.547 
47 692 1,715.0 2.478 
55 812 1,942.5 2.392 
54 806 2,030.0 2.519 
54 807 2,092.5 2.593 

-------------------------------------------------------
264 3,897 2.506 

===============================================c======= 

54 

, .. " "WH , .. 



COURSE CREDIT 
pEPT. NUMBER HOURS POINTS GRADE 

~ 

STATUS HOURS POINTS RATIO 

THIS SEMESTER 

CUMULATIVE 

COMMENTS: 

EXHJBIT- 38 

L 

55 

., 

GlADE IEPOIT 

INDIANA STATE UNIVERSITY 
TERRE HAUTE, INDIANA 

COMMENT 

Type By 
MA
JOR 

Date 

TRANSFER HOURS 

Attempted Accepted 

'I'~ I 

C\ 
,;' 

C,· 
.. 4'1 

/' 



• 
COUNTY 

NOT. IN IND 

AOAl-IS 

ALLEN 

BARTHOLOI·;E 

BENTON 

BLACKFORO 

800NE 

BROWN 

CARROLL. 

CASS 

CLARK 

CL ",V 

CUi LH 

CRA\'!FORD 

n/VIES 

, J .• 

DECArlJl-:. 

DEI<ALB 

D ELAI'U-\RE 

DUBOIS 

ELKHART 

FAYETTE 

F-LOYfI 

F()Ur,IT·'~ I I'! 

FRM~KL If\ 

t: 
'~. 

l 

ADV GRADUATE 
l,rHJ HG:'-lEi' 

o 

o 

o 

o 

o 

o 

o 

·0 

o 

o 

o 

o 

o 

o 

o 

o 

.(,) 

.0 

o 

o 

o 

,n 

o 

o 

o 

o 

c 

a 

a 

o 

o 

o 

o 

o 

o 

Q 

o 

o 

a 

o 

o 

o 

o 

I() 

o 
(1 

Q 

( ' .J 

o 

o 

FRESlil,A\1 
ri;F~ 1"O'IEI" 

97 

o 

5 

12 

3 

2 

12 

2 

5 

20 

7 

44 

4 

7 

7 

1 

4 

2 

<1 

12 

11 

7 

13 

c 

57 

o 

3 

10 

8 

o 

1.2 

o 

2 

8 

56 

7 

o 

7 

o 

o 

11 

3 

2 

~~ 

1 ~, 

S,) P ;-In j·:n R E 
hf!·1 "'n"iE"1 

o 

o 

c 

o 

o 

o 

.0 

a 

o. 

o 

o 

o 

o 

o 

o 

o 

o 

o 

o 

{) 

n 

:) 

c 

o 

o 

(1 

r: 

c 

o 

n 

(' 

o 

o 

a 

o 

o 

o 

o 

(\ 

(' 

() 

(1 

(\ 

r 

() 

o 

(1 

o 
(' 

('\ 

o 

nD I.1lI.! t\ S TIl. TF I.F'! I VE R S ITY EJ(H' B,T- 39 
:;Tl!f)r:~'T' r~p;:M:-~"ll,',' r.y CUlr·'TY 

".I'IJ,/6:5 

.Jlfi·iVIP 
f' Er,\ !·'U: r:1' 

n n 

(I () 

r. (\ 

n n 

(I (1 

n (\ 

" (1 

o " 
n o 

() o 

(' () 

o o 

G (I 

(1 (l 

(\ ~ 

(\ r· 

('I (' 

('0 n 

(' ('. 

r. " 
(i ,,, 

(\ 

n 

'I n 

(' (' 

56 

S 
ii F ~ . .1 

n 

(' 

r 

(1 

o 

(' 

(\ 

n 

(\ 

n 

r 

o 

n 

(, 

r-' 

(' 

(' 

(' 

n 

(i 

(' 

r! 

(', 

I! P 
.:;: ',;F' 

o 

o 

('I 

o 

() 

o 

(1 

o 

o 

a 

(l 

[) 

o 

o 

(1 

o 

r 

:) 

(' 

n 

p 

C' 

('I 

o 

Co 

r~R /) [Jil/i T r: 
fFh / !!n-"!=f' 

n o 

() o 

() o 

n o 

(I o 

n o 

o o 

o o 

o o 

o o 

o o 

o o 

r. o 

n o 

(' o 

o o 

n o 

o o 

(\ o 

n o 

n o 

I) o 
(-, n 

r: o 

(' () 

POST GR,~n 
i··E;·! I'OHE;,I 

o () 

o o 

o () 

o n 

o o 

o n 

o () 

o o 

o o 

o a 

:l () 

o o 

n () 

n I) 

o o 

o n 

o (l 

o () 

Q o 

o o 

('I n 

:) (l 

n 

:) () 

() n 

o 

SP. STIWEPTS !.\Uf)ITOn Tf')TlIL 
, .. I r:1'i urv EH t-'!E~·I \.In'lFf\' 

o o (j (j J "ii, 

() () o () o 

o o o o 8 

() o o o ?2 

o o o o H 
01 

o o o a ? 

() o o n 24 
~ 1 

() o o o 3 

() () o o 5 

o o o o ?2 

o () o o 15 

o o o o IOO 

() o o () 8 

o o o o [, 

o o (') () 16. ~ 

() n o () 8 ,. 

() () o () 2 

n o o o 6. 

() o o o 2 

() () o o 7.1) 

() n o o 1 S 

(\ o o o , -; 
() o o n 12 

n () o () 23 

(. n n () 



STATE 

ALAB.At1..4.· 

ARIZONA 

A~KANSAS 

... CM..L .. 

.. '~(JItAOO 

.. t.Qt4~ •.. 

m.AW~.RI; 

_W~SH •.. Q.!'-C .•... 

fLORIOA 

.4EORGIA·. 

IDAHO 
lLU,:;)JS 

1i~'D I ANA 

10~4.A 

K .. ~\r'. S.C. S '. 

;~Y: '::T.I·)~: i~.·"" 

'LOU 1.S I A(\' A 

',vjAINf 

. ~ t"AR-Y~·A~P_. 

._l'iASS·" 

t-tI.cH1GAN. 

. _t-1J:NNESQ't ~. 

·~rss .• 
t4ISS~RJ 

. MONTANA 

~ 
~ 

~ 

ADV GRADUATE 
MEN 'WONH' 

FRESHMA~ 

MEN WOMEN 

.0 _.0._ ... __ ... 1. o 

'0 

o 

o 

o 

o 

0. 

o 
.' 0 

..... _ .. Q ____ O __ .•... _.Q __ . ___ Q .. 

o Q o. o 

o .... 0 l' 2 

so P "(11.'·0 R E 
MHf WOM~": 

o 
o 

0, 

'0 

o· 

o 

o 

o. 

o 

o 

'0 

I~nIA~A ~T~TE U~IVE~SITY 
STUOENT llRl=;jI.I!-··'~H'\! BY CLASSIFIC,I.\T!(lf\1 

8/24/65 

JIJNIf'lR GRMUATE' 

EXHIBIT- 39 

POST GRtd) SP. STUDENTS AUDlTnR TOT I\L 
t'~EN ~m'·n:i" 

sr:1I0R 
l,tH·I. !'iQV EN t"EN "'m"H! I·lp! !·!Oi'·IEi'L.._J,tHL._.MQl1HL. __ .J.1H! .. _ ~-!m1EN... 

o ..... _ ... 0. 

o 

o 

o 

0. 

o 

o 

(l 

'0. .. _.~ .. _1L._·.. 0, 

0. o o 

0. o n 

0.. 

o 

0, 

o 

(I 

I) 

o 

o 

o 

... 0. 

o 

'0 

° 
o 
o 

.D_ 

o 

o 

Q ._._....!L.. .. ____ -ll.. .. __ .. __ .. !l...___ .--LQl--__ ~ ____ _ 

o 0.... .... 0.. . ___ ._Q _____ ...1L __ .---'-'o'---___ _ 

.Q .... __ ' _0_._ . ____ .O_. ____ .. Q __ .. ___ ..lL.. __ ---L'. _____ _ 

0...... . .. O_ .. _ .... Jl. 0 0 _0 0, 0 

o o . _.cL._ .. _~_._ .... O . _0 

I) o .fL_ .. Q.... .0 .0 
II 

02 ... , __ ..Q .... __ ._ .. ?-. ___ . P .. o 

o 
'0 .' Q_ ... __ . . £I. o o 

o 

. n· 

o 

o o .... Q..._ ........ --.!l.._ .... __ O __ . __ O_.... ° 2 ZI 

o 

o 

'0 

O. 

'0 

0" 

o 
4' 

o o 

o o 

'0. • 0. (\ 

o 0. o 

... ..<!. ._ .. ___ O_, ... ·._Q .. _~_ .... ~._..:O. ._._<t .Q_~._ .:.Q __ ._1t 

Q ... ~ .. , 0 . 0 .Q. ''0' 

. () ·0 '. 37 .. .'30. .' 0 

Q 

O· . 

0. 

'0. 

o 0. 
~: . (\ 

0, 

... iL: 

Q .. 

o 

o .. O:_.Q_q.u_ . ...D.. ___ .. __ ...... L....; __ D_. 0 0. 

o o . _0. ..... ,._ ... __ Q ... __ .JL...., __ ._..!L ___ .JL o 4 

(I • __ ~ .... O : .• --0.. 0 0 0 0 0 n 

o o .. __ ._:..Q ___ .•. Q 0. o 0 o 0 

o o . __ .JL_ ...... Q.· o o o o 67 

Q •...... ~._.:{L~3..~.:.· ~ .......... 0/.. '_" .. Q:'. __ .. . Q .. .. -.- . ~.o. ... _... .r. _.... .-<1.. (I .... .Q .. :~._ ... 0 .. o (I 0 0 0 2Lbb 

o· . 

o 

.q 
"0 

I) 

.0' 

0.· 

.0 

o 
o· 

"0 

{r 

n 

n 

o. (l 

n n 

o .' 0 Q "_..Q..~._ ·0._ .. ~ ... Q_.,... .. _ ... !L __ . ·.C .. _. 

.0 0·. '. Q 

0. . Q; 0 

~iL '·0 ;.1 

() u '1 

o o 2 

·P. 

~. 

'2 

,2 

1 

'(). ·_··.IL ,....:_ -.,._...;....0_ . ...: • ..:. __ . 9 .. 

o. 

o· 

0, 

"0 . 

;:0 

(t 

o o 

o '. 0 

9 .. .(} 

o 
o· 

.. __ 9 . 

o 

o· 

() 

. 0 

·0 . 

'u 

o . o· 0. (I 

0. n n 0. 

.. (E. ._8.. ___ .. :._.9_._ .... Jl. 

0.. o· 

o 0. 

:0. ,0· 

(I n 

0. o 

(I o 

(I 

(I 

(),. -
'0 

0, 

o 

57 

o 

c 

o 

C', 

(l 

o 

() 

o 

(I 

.0_. : 

(I 

o 

n o . .. 0_ .. _... 0 . Q . 0 .oiL. n () 

0. o . .0 ........ _ . ...9_ ..... __ . 0 o 0 _~ n 

. .(Lu.: .. u_Q_ .......... -D 6 0 0 n 0 

o 
·0 

o 

o 
o ...... ~-:-_O--._.-O--... Q_. __ . o· (! 

•... () .. _ ..... _. ___ Q.._._ .. :...._..9.. 0 ._ .. Q __ . __ .. 0 0 ___ _ 

Jr __ .. __ 2._ .. '''_ 0 0 . 0 (I 0 0 0 

o 0. '. 

o o 

o .0 

o .0 

0. .0. 

.0 ' .. 0 

Q 

o 

o 

(I 

... Q:...:.:._ .... _.,.Q .. __ ._.O ___ .JL_ .... _-"-O __ --=3~ ___ _ 

.. JL .fL ... -' ..... __ J>_. __ JL..-'-_o .. 3. ___ _ 

o .... Q .... ~ ....... JL __ Q._.... 0 0 0 0 

o 

o 

. 0 I .. '. 

o 

o 

.0. 

n o ..... __ J2. o o (l 

o _ .. _._._,Q. _____ .... -'2. ____ . _Q_ 0 0 

. fL__ 0 . 0 0 0 . (; 

-_.- ,-' .... _--- .... __ .. ---_ .. 

.... __ .---- ...... -.- ... -----.---~---....;...-"---

() 



U1 
00 

~ 
~ 
:t-
tl) 
""
"i 
J 

~ 
() 

~ 
~ 

• o o 
-STATE--- UN IVERS ITY 

~~--------------, 
INDIA --------' .. _-_ .... _ .. _-_._,. ---,---

8/30/65 
" ~-- -- -'" .... , ..... -.. _. - - .. - -' ---- --- -- ----~ 

... . .... -- _._. -- ----------------------------
COMPUTER -------_._---

STUDENT ~ .. P_~!_!i~ _____ _.l~.~~ __ . ______________ _ CENTER INDEX 

. _ ... _----_ .. - .. _-- - --- ,-----------_._-_._--- -,,---_._---_ .. -_._------ ----_ .. _- - ---

S TUDEN T NAM E SEMESTER INDEX CUMULATIVE INDEX TOTAL ____ HRS -PTS-'-----C-Plf-- - ------t.:fR·S--------p-f'S .. ---·--CPR·----·---HRS ---- ---
._----- --------------

-OlrlO' ALLEN JOHN PATR'ICK- -- --17 ·--6~-;S__--~68---- f24,~(r----363~2. 93-------124.0 SEM HNO ff 
._-- .. ---_ .. '._--,----_._--- -- -------------

01675 ANDERSON WM DAVID 15 38.5 2.57 9?9_!_Q. _. ___ 9?'!'_!_Q __ ~. 42_. ______ Q2 ~_~Q.... __ . _______ _ 

01760 ANDREWS RICHARD F 17 44.5 2.62 062.0 153.5 '~.48 092.0 
... . _-_.'--_ .. __ . --- ---------- --- -- -----'.--_ ...•. - ----_. __ ._----------------_ .. 

-~627(j5 AVE MARK ANTHONY 15 33.0 2.20 030.0 073.0 2.43 030.0 
-------- - --_._--------_ .. __ . __ ._--_. --------_ ... -

---04310 B'AUERME IS TER JOHf\f F------ --- -----... 18 42.0 2.33 117.0 277.5 2.37 107.0 
-------- - - -_ ... - ------------

04315 BAUERMEI STER STEPHEN 12 28.0 2.33 030.0 071.5 2.38 030.0 
--~----'-----------------.--.. --

04360 BAUSMAN GORDON PARKS 17' 52-~O-"-3~-06-- ---- - ·--o9-6-~o--·-·-265-~(f· 2.76 --------_.- ------.--.----
093.0 ------------_._-1_- . _________ . _____ ~_ . _____ . ________ __ 

.. --061~55-·--B·E-$T ROBERT WAYNE 
._- ------_._-- ._--_ .. __ ._.- ._.------ ------ --_._-- -- ---.---_._------_._------

032.0 112.5 3.52 032.0 CUM HNOR 16 53.0 3.31 
--------- - ---_. __ ._----_._-------------------------

06240 . BEV INGTON JOHN M --------------. --17-58.0 3.41 097.0 278.0 2.87 094.0 
--------_ .. _---------------------

-'-06'250 81ANCHETTA JAMESE' --- 0 1--' 22. 5 ·-3.-21- ,- ----·-11'9. (>"29 8 ~'(f 2.-5(y--·------r2-5-~-b .. ------------
--- - ---.----------.- ---------_._-

-'0f80U'BONNESS RICHARD R - --16 39~5' 2~7tf------ '0'61.0 . -150-~0 2-~-46 ------(l6r-~O 
--_ .. - ._--_._-------_._------- - --- -_ .• --------------

-'0Jf0 15 BDZE[[ TAOMAS R I CKY----·---- -----rS----29.Q'"---r;tJ3 o 2 (r~ 0--' 07 1 • 0 "'7-;ztS 029.0 

. U9ggu---SRDWDER, RICHARD ALLEN . -------r6---44-.0. Z~75 125.0 2'91 .'0 ----2 '~TI --- ----·----T2S--;O -"'-
... _---------_ .. _---_.- -_._-

'-10130 'B"RDWN DOUGLAS KAY .. 15 40~O---2--~67-·--' ---- 094-~O 223~-5--2--~-38-----r~O~0-
- ._------ _._-_. __ ._--------- -- --- - --- ------- - ----

10250 BROWN J"ERR--v-EAJ<L-·---·--'--'-----"-· --·--09--·-2-7-;~-3-~-06---- 115 ~·O----- 326~~2.84 121.0 
------------ _.- _.-

---10730-' B-RUGH···· JOSEPH R 16" 47.0' 2~'94" . 065'.0 175. o--'2·.·6 cr-----·--065 ~·(f--·--------
~--.--------------- ---. -_._--_. 

--1"1630 BURNS-- LARRY STEVEN' 14' -'45-~O '3~21-- 099.0 t54-~O·--2-~5( 09(r~O·--------

Il95V-SUSH FRANK-ANTHONY '""""JR' .. -_·· .. ··"ro 30. 5 ~.;rrs--.----.. 'rf7-.-o------·~O--2:"n___-IT4_:O_---

-
--13430 CARROLL RAYMOND LEE ·r5---3-9. 5' '--2'~-4 7- 090 ~O ... 208~5'-2~32- .-- ---·-087.0-------·--



~ v 

Class 
Lists 

Exhibit-41 

5.9 

Official 

Enrollment 
Report 

Residence 
Reports 

o 

() 

'I','," I 



'h'!? tttWttttm' tt·ttrt,{,!t#·t.**wW' 

o 

o 

:. 

Name 
and 

Address 

Mid-Term 

Up'per
cIassmen 

Exhibit ~ 42 

.• I 

.60 

Mid-term 
Freshman 

~---.ot Index Card 



I-Mod-l 

I-Mod-3 

I-Mod-2 

I~Mod-2 

&-026 

1 

1-082 

1-083 

1- 0-77 

1-088 

1.557 

1-403 

1.514 

1 

1 

10 

ISU COMPUTER CENTER EQUIPMENT 

1620, 20 K, IA, Auto-Divide, Edit Instructions 

1311 Disk Drive 

1443 Printer -144 Print Positions 

1622 Card Read/Punch 500/250 w /File Feed 

Keypunches 

Verifier 

Sorter with Counters 

Sorter 

Collator with Internal Counters 

Collator with Internal Counters 

Inte rpreter 

Accounting Machine 

Reproducer 

Decollator 

Burster with Slitters and Imprinter 

Disk Packs 

(Exhibit 43) 

61 

o 

o 

I;' 

I 

I'i 

'I 



"I tNt m tl\tt*ttwtt tetl' $1",&! I 'fl' ! it '!'III., HW' 1 • hf t,fb rdh. w"htrifri "±±#r#t±tt# rlritliittrl"j" -."] I Y "w!m lit .. ,.· 

o 

o 

o 
Binders courtesy of: H. M. Oshry Co. Inc. 

Crawfordsville, Indiana 
4-) ! . J 



o 

o 

o II 
I 

I 



itt 6Mrtf'qu 

o 

I 

'10 
I 

I 

rim tb&wt"t&t# cp .. ··,· 

WILKES-BARRE CITY SCHOOLS 

COMPUTER CENTER 

THE NORTH CAROLINA SUMMER TEACHERS 

DATA PROCESSING INSTITUTE 

Presented at 
1620 USERS GROUP MEETING 

NEW YORK, N. Y. 
October 8, 1965 

A. David Mayer 
Coordinator, Data Processing 

Wilkes-Barre City Schools 



THE NORTH CAROLINA SUMMER TEACHERS 

DATA PROCESSING INSTITUTE 

The Wall Street Journal for September 21, 1965 carried an article describing 

the shortage of computer programmers in this country. According to this article 

there are about 100,000 programmers employed at the present time and an 

additional 25,000 are currently needed b" ,;fficiently handle the nation's 23,000 

computers. In the past many programmers .lave been trained on the job, but the 

history of this country shows that the apprent~ceship system has disappeared in 

most work areas and schools take over" .Lth more efficient training methods. This 

challenge to the schools of the nation has been handicapped by a lack of teachers 

capable of Data Processing'instruction. To eleviate this shortage of trained teachers 

the Department of Health, Education, and Welfare of the United States Office of 

Education, together with various state Education Departments, in 1963 organized a 

series of Summer Teacher Institutes in Data Processing. These Institutes have 

been held in California, Wisconsin, Colorada, Florida, and North Carolina. 

The 1963 Institute in North Carolina was held at Charlotte. Ashville, fO'r the 

first year class, and Burlington, for the second year class, were the locations of 

the 1964 Institutes. During the summer of 1965 the first and second year classes 

were both held at Raleigh. Successful completion of the institute courses may 

entitle the participant to degree or non-degree credit depending upon the wishe~ and 

status of the participants. The course content is designed specifically to meet the 

needs of participants in the subject areas of Introduction to Business Data 

Processing, Electric Acc.ounting Machines, Data Processing Applications, Computer 

Programming I (first year courseR), and Computer Programming II, Proltramming 

Systems, Busmess Systems Design and Development, Advanced Programming 

Systems, Data Processing Field Project (second year course). A seminar in 

o 

o 

I 



$ q t tt It ct$ HW t 
\1'1 I 

II 

Philosophy and Principles of Technical Education was also included. The reader 

o who is interested can get an outline of these courses in the booklet ELECTRONIC 

DATA PROCESSING-I, U. S. Government Printing Office. The courses are of 

college level. 

The major purpose of the institute is to assist in the development of 

knowledge and skill essential for teaching specialized courses in preparatory 

curriculums in business electronic data processing under Federally-supported 

Vocational and Technical Education Acts. One of the purposes of this program 

is to determine if successful teachers in the field of Office or Business Education 

can be retrained through a series of specially designed summer courses to teach 

in a field having some relationship to their previous experience. There were 

33 participants in the Raleigh classes, from seven states~ 

o The criteria for selection of applicants included the following: 

1. Bachelor degree in Business Education, Mathematics, or equivalent, 

preferably with one year of study in accounting. 

2. At least three years of teaching experience or combination of teaching 

and work experience in the field of business or data processing, prefer-

ably in accounting, administration, mathematics, or business law. 

3. Currently employed as 'a teac her or department chairman with teaching 

responsibilities in the field of business or data processing. 

4. Available for a teaching assignment and capable of qualifying, at the 

completion of the institute, under the State plan as a teacher of business 

data processing in a curriculum designed to prepare c,.Omputer programmers 

;1 and application analysts. 
, ) 

1 • 5. Recommended for enrollment by State Director of Vocational Education in, 

sen<;ling State. 



m 

Computer programming comprised about one half of the time in the first-

year course at Raleigh. There were 2 20k IBM 1620 model 1's in the school C' 
,)t" 

available to the first-year class. They were available during and outside of 

class time from 8 a. m. to 10 p. m. Monday thru Friday and by request on Satur-

day. The 1620 is an excellent computer for instructional purposes. The first 

day of the institute the students were given hands-on instruction. By the third 

day members of the first-year class were writing and running simple programs 

themselves. The teacher-students made excellent progress in moving up the 

scale toward more complex problems and by the end of the fifth week each had 

written an involved payroll program with many deciSions, deductions, and compu-

tations in machine language. This good background in machine language made 

possible very rapid progress during the last three weeks of the institute in SPS. 

Again the students started with simple problems, but each day or two saw as much o 
progress as had been made in a week in machine language. In the three weeks of 

SP S programming the students wrote many of the same programs which they had 

done in machine language for a comparison of time and method, and in addition 

they wrote other programs including a complicated program for checking student 

test scores and selecting from all the scores certain ones fitting the requirements 

of the problem. 

The members of this class are teachers and machine language is taught first 

so that a thorough understanding is achieved of the way the computer works. Many 
I 

people hold to the philosophy that a problem -oriented language is quicker and 
I, 
!, 

easier for beginners to learn and we have no disagreement with this philosophy. I,' 
I,: 

But this writer holds that teachers must know machine language for a thoro under- o 
standing of the work that they will be called upon to teach. . They also need to 

II 



() 

() 

• 

IV 

thoroughly understand machine language for debugging purposes in assembler and 

compiler type languages. A teacher who understands machine language has a big 

advantage over one who does not. 

The 1620 is one of the most common computers in the nation's schools and 

the teachers from this class were returning to teach on the same computer in 

their home schools in most cases. Several teachers in the class were returning 

to different makes or models and so some time was spent in the class discussing 

and explaining variations in techniques needed for different computers. Field 

trips also helped in this area. 

The second year class was planned primarily for those who had completed 

the first year program. Fortran and SPS were the languages used in the second 

year class, with greater emphasis on Fortran. This class also used the two 

1620's in the building where classes were held and in addition had the use of a 

1620 disk pack off campus. This made possible a major part of the second year 

work in Fortran n D. 

William A. Gannon, writing in COMPUTER DESIGN for April, 1964, states 

"Perhaps another potential danger is the tendency to rush immediatly to the more 

glamorous lessons involving programming and machine operation and thereby 

allotting insufficient time to fundamentals. Reducing problems to the problem

solving framework of a specific computer 'and actually executing student-prep~red 

programs is an obvious goal of any computer course. However, this goal should 

be approached from the right direction i.il. a well-balanced curriculum. The 

successful development of modern computing and information processing systems 

is largely attributed to the extensive application of digital logic, Boolean algebra, 

and. binary arithmetic. Consequently~ these concepts and the techniques used in 



v 

applying them are recognized as vital areas of knowledge. While the design of 

computer equipment and programming techniques are in a constant state of 

evolution, these basic concepts remain essentially unchanged." This philosophy 

also seems pointed up by the previously mentioned publication of the United 

States Office of Education SUGGESTED 2-YEAR POST HIGH SCHOOL CURRICULUM 

FOR COMPUTER PROGRAMMERS AND BUSINESS APPLICATION ANALYSTS. We 

cannot train our students in a narrow field applicable to only one machine or one 

situation. We must train people in fundamentals which will apply in many situations. 

No one can predict accurately the course computer techniques will take in the future 

and so the courses must be flexibile. Instruction has been given on a 1620 becau~ 

it is available and because it is presently the most common computer in our 

schools. But this computer can be and is being used for simulation of other machines 

and as a device to teach basic programming techniques. An excellent simulation 

example is to be found in the book by Swallow and Price and in the 141 programming 

instruction. Our schools should develop other similar techniques to make the most 

of the available equipment and to help overcome the deficiency in trained manpower 

which now exists in so many data processing applications. 

Most of the teacher-students at Raleigh will return to teach in post...:high 

school situations, many of them in technical schools or community colleges. Several 

members of the class expected to be teaching in secondary schools. This is another 

problem which needs further expl9ration. How much data processing instruction 

can or should be given in high school? Certainly for those students who expect to 

enter engineering or similar schools we can easily give them a· good start in Fortran 

programming in high school. And the 1620 is an excellent toolfor this type of 

instruction. But those students who do not expect to go on to college already have 

c 



ibb#hi#¥fWitMMj! -- ---- 2 - - -mer 

VI 

enough to learn without omitting some studies to insert courses in programming. 

o Perhaps the future will see a pattern of unit record instruction in high school, 

leaving the major programming instruction to more mature post-high school minds. 

Business does not seem anxious to hire our younger graduates. Very few business-

men want to trust the programming of their business to a 17 or 18 year old. 

And too many colleges and universities seem to be adding computer program

ming only as a part of some other course in the curriculum. Certainly it is best 

for our students to take a 4-year degree, but many cannot or do not want to. There 

are very few colleges or universities where he can specialize in data processing. 

In too many cases he has to learn to be an engineer in order to learn to program. 

The writer feels that the best place to train programmers is in a 2-year post-high 

school course, preferably one offering an associate degree. The U. S. Office of 

o Education has given us a good guide for a 2-year course. Let's follow it. 

• 

The following is a list of text material used at Raleigh this summer. 

First year course: 

IBM Manuals 

85 and 87 Collator 

513-514 Reproducing punch 

82-83-84 Sorter 

24-26 Card Punch 

402 -403 -419 Accounting Machine 

Flow Charting Template x20 -8020 

Flow Charting Techniques C20 -8152 

IBM 1620 CPU, Model I 

BASIC PROGRAMMING CONCEPTS 

Leeson and Dimitry 

ELECTRONIC BUSINESS DATA PROCESSING 

Schmidt and Meyers 



vu 

Second year course: 

IBM 1620 Monitor I System Reference Manual 

INTRODUCTION TO BOOLEAN ALGEBRA AND LOGIC DESIGN 

Hoernes & HeilweJ.l 

LEANEAR PROGRAMMING 

Loomba 

Modern Business Statistics 

Freund and Williams 

In conclusion, this paper has tried to show the valuable place the 1620 holds 

in instructing business programmers in this country. Perhaps it seems a little 

strange that a machine originally built as a scientific type of computer is now being 

used so much in training business programmers. But our technical school and 

college graduates are finding, and will probably continue to find, the greatest number 

of positions in business rather than in other fields. The schools are wise in looking 

at where their graduates go, and preparing them to go there. Business teachers 

of the country are adapting to the age of automation and the new computers just as 

they did when Mr. Sholes invented that modern machine called the typewriter or 

when Mr. Burroughs started selling that fancy adding machine. They learned to 

replace the straight pen with a fountain pen, the fountain pen with a bookkeeping machine, 

and now they are learning to replace the ledger page with a punched card or a reel of 

tape. The bread we eat today is made of the same kind of wheat as the 5 loaves which 

were divided to feed the 5000 in that desert. place. Only now one farmer with his 

machines can raise more wheat than was ever thought possible when the ground was 

tilled with human or animal power. The principles of accounting are about the same 

today as they were in 1492 when Friar Luciola wrote the first known account of double 

entry bookkeeping. Only the tools have changed. Man always seems to better him-

self when he betters his tools. And he has found that the only thing more expensive 

'than ~ducation is ignorance. 

o 

o 

I 

I' 

o 'I 

I 



o 

• 

wt ,,' ww we, tt'_WHW,ttt .. " ' . : It t t t t! #* trl " " "Tt"'""U 

A COMPUTER-AIDED MECHANICAL LINKAGE DESIGN 

ANAL YSIS SYSTEM 

by 
D. N. Frayne and H. H. Hansen 

An Abstract only is presented here as the material. has already 
appeared in two publications listed below. 

A significant portion of mechanical engineering effort is spent in 
the kinematic analysis of mechanisms such as gears, cams, and 
linkages. Although linkages present a more complex problem of 
analysis than most other basic mechanisms, they are widely used 
because of their reliability, speed, and force-transmtssion pro
perties. Engineers continually seek improvements in existing 
linkages and devise linkages for new mechanical systems. Linkage 
analyses have traditionally been performed on the drafting board, 
but this is difficult and time consuming, and complete analyses 
are not feasible for the more involved linkage systems encountered 
in practice. 

This paper describes an experimental tool for the analysis of pro
posed two or three- dimensional linkages. Called KAM (Kinematic 
Analysis Method), the tool consists of a programmed system for the 
IBM 1620. Based on vector mathematics, the system can provide 
position, motion, and force analyses for a wide class of linkages. 
The user describes a proposed linkage to KAM in a problem oriented 
language. This language functions solely as a means of describing 
the connectivity of parts in a linkage; the action statements that re
quest calculations are specified by other means. From a linkage des
cription in KAM language, the KAM program builds a tree-organized 
model of the linkage within computer memory. 

The data required by KAM consist primarily of the coordinates of 
points in the linkage at design position and the magnitudes of input 
positions, motions, and forces. Position, motion, and force re
sults are displayed in standardized formats. To calculate special 
parameters of interest, or to exhibit the results in a special way, the 
user can provide supplementary programs that fUrther process the 
normal output. 

Further information may be obtained from the Society of Automotive 
Engineers publication SP-272 which is entitled "Kinematic Analysis 
Method". The IBM Systems Journal (October, 1965, Vol. 4, No.3) 
also contains a discussion of the System. 



o 

o 

o 



u Pi' wr I T !- r· :- II 

o 

o 

• 

GRAPHIC DATA PROCESSING 

by 

S. S. Husson 
International Business Machines Corporation 

System.s Developm.ent Division. Poughkeepsie, New York 

Those of you who attended the t65 IFIP Congress this Spring m.ust have 

been im.pressed with the em.phasis given to the time sharing system.s. The 

exhibit area had m.ore rem.ote term.inals than an airline ticket office. Tim.e 

sharing has paved the way for a new dim.ension in com.puter applications. 

Basically, the-re are three dim.ensions to hum.an com.m.unications; alpha-

num.eric, audio, and graphic. If we apply these three dim.ensions to m.an .. 

m.achine com.munication we will find that in the past decade we have concen-

trated on alpham.eric com.m.unications. Som.e achievem.ents have been realized 

in the field of audio comm.unication. but that m.ust still 1j>e considered in the 

research stage. Today I will discuss graphic data processing. which now 

m.akes it possible to take graphic inform.ation in graphic form., convert it to 

digital form. so that it can be operated upon by a com.puter, and bring it back 

out into graphic form. 

This new dim.ension in m.an-machine comm.unication is designed to help 

engineers, designers, m.anagem.ent, and businessmen to work directly with 

curves, graphs .. sketches, and engineering drawings at electronic speed. 

This instantaneous com.munication of inform.ation in graphic form. reduces the 

time between conceiving and testing or executing an idea • 

- I -



The circuit de signer, with the aid of this graphic input/output can per

fonn a dynamic simulation of circuit responses to the variations in component 

parameter value s . 

The mathematician can display c0mplex functiG>ns and study various func

tional behavior and surface response. 

Business management can graphically infonned of up-to-date developments 

in manpower I inventory, scheduling I profit grewth f and other important decision

making parameters. 

The Graphic Data Processing System is designed to be attached to any 

model ot: the IBM System/360. This makes the following three functions of 

graphic data processing avatilable: 

1. the ability to read graphics into the computer at high speed and high volume, 

2. the ability to get graphics aut of the computer in graphic form by u sing a 

high speed recorder, 

3. the ability to manipulate graphic informatien using a display console and 

a light pen, 

The main components of the IBM Graphic Data Proces sing system are: 

1. the System/360, 

2. the IBM 2250 Display Unit/Light Pen, 

3 I> the IBM 2280 Film Recorder, 

4. the IBM 2281 Film Scanner, 

5. the IBM 2840 Display Control. 

Through the use of a 2860 selector channel, one can operate eight 2840 Graphic 

Display Control Units, and each 2840 display control unit can service up to 

five 2250 display units and one 2281 film scanner. Theoretically, 64 different 

Graphic I/O units can share the same System/360 processor. 

-2-

o 

o 



"iii! If t tHP : WI "::rMHtlt! : I ! ttirt "it isMl rtft"' ••• _« tf b 
t· tOOt ··j"b··· - r··,-" 

o 
The 2250 Display Unit is organized around a 21-inch Cathode Ray Tube 

(CRT) having a 12" x 12" display area. All point, alphameric, and graphic 

information are displayed at very high speed to provide visual communication 

between the computer and the user. The alphameric keyboard, the light pen 

and the program function keyboard allow the user to communicate with the com

puter. The CRT display area consists of a grid format of 1024 x 1024 addressable 

points -- more than one million addressable points. The distance between any 

two points is called a raster unit. Thus, by proper combination of these raster 

units, the program-mer can display lines, curves, surfaces, or any complex 

geometric figure. 

Just as in TV tubes, the visable display on the face of the CRT is produced 

by the deflected electron beam hitting a phosphor coating, causing it to glow 

o briefly. Therefore, information displayed on the CRT fades within a fraction 

of a second. In order to maintain the image displayed, it is necessary to re

generate or repaint that image approximately 30 times per second. 

A vector of any length can be displayed between any two points on the dis

play area by giving the addresses of the two end points. Each vector requires 

four eight-bit characters of storage. Any alphameric character can be 

f?ynthronized by any number of vectors or strokes. 

A character generator feature is available on the system. This permits the 

display of anyone of 64 alphameric characters in one of two character sizes I 

B or L. In Size B each character is generated over an area of 28 x 28 raster 

units l thus providing 52 lines of 74 characters each. In Size L the area allocated 

• for any character is 56 x 56 units, thus reducing the display to a maximum of 

35 lines of 49 characters each. Consequently, the display can be performed in 

-3-



either a graphic mode or a character mode. In the graphic mode, a line is either 

blanked or unblanked to allow tracing with the light pen without painting un

neces sary lines. The width of a stroke can be either 1. 8 or O. 75 mils, with 

the beam density being specified as 0.6 or a density visibly less than this. 

Hence with the use of the line width and the beam density one can generate 

four combinations of lines with four different shades of gray. 

The 2250 display unit is available in two models.. Model 1 has the control 

circuitry and buffer memory, while model 2 has to be attached to a 2840 mul

tiple display control unit. The 2840 control unit contains the multiplexing cir

cuitry, the character generator, and an 8192- or 16384-byte core storage. In 

the case of multiple display, the 2280 provides each display unit with a local 

buffer for storing the image for generation. Thus it is pos sible to generate 

different images simultaneously on each display. 

Due to time delay considerations, the display console has to be located 

no further than 2000 feet from the control unit. Data is transferred between the 

2280 and the CPU under program control. 

There are three optional manual inputs. These allow the user to retrieve 

alphameric or graphic information from memory for display I to create new 

images, to add and delete, to rearrange, and to store in memory or record on 

film. 

The first and perhaps the most fascinating manual input is the light pen. 

It is a pen-like device, containing a photo cell that enables the user to delete 

or trace information on the face of the CRT. The light pen is a light detecting 

device. It must be held very close to and also perpendicular to the face of 

the CRT. Maximum tracking speed is about 15 inches per second. 

-4-

o 

o 



t\ boo IfW! "f"' "I ["'"r 'tt"' 

The second manual input option is the alphameric keyboard, which is a 

o standard IBM 1052 alphameric keyboard. It can be used to compose messages 

or revise alphameric information on the face of the CRT. When the entire 

message is composed, it is displayed on the screen for verifications and then 

transferred to the main storage. A special, arrow-like symbol called a curser 

is used to identify the position where the next character is to be displayed. 

The third input device is a Program Function Keyboard. It consists of 32 

pushbutton keys with indicator lights, and eight overlay selector switches. 

This overlay arrangement allows up to 256 distinct functional subroutines 

stored in memory to be called into action by the appropriate switch. For exam-

pIe, a subroutine might be written to shrink, enlarge, rotate, delete, record, 

or scan an image. 

C',' 
. . ~ 

The next major component of Graphic Data Processing equipment is the 

IBM 2282 Recorder/Scanner -- actually two totally independent units. The 

primary mode of graphic output from the system is the recorder. Graphic inf0f-

mationstored digitally in the computer is brought out onto 35-mm microfilm by 

using a high-precision cathode ray tube. In this way sketches, drawings, and 

graphs can be the output from a computer. The 35-mm film can then be developed 

and displayed on the enclosed display screen; it can be puf intCi> the familiar 

aperture cards; or it can be used to prepare hard-copy drawings. 

This recorder has the capability of printing alphameric infonnatien of Ul> 

to 40,000 characters per second or 20,000 pages per hour. The recerder is 

built around a high-precision# higb~resolution, 5-inch cathode ray tube with 

4096 x 4096 addressable points. Digital and analog control circuitry 1s used • 
-5-



to project a light beam onto the unexposed, silver-emulsion film used to record 

images. The exposed film is transported through developing, fixing, rinsing, 

and air drying stations, so that it is immediately available for projection on a 

large screen before it is stored. The following options are available: one of 

two different line densities, one of two different line widths, and one of four 

options of distance s between recorded frames. 

The third component is the IBM 2281 Scanner. It is ba sically a high- sp~ed, 

high-volume graphic-input device. It operates in the reverse sequence of the 

Recorder. Existing drawing s and sketches can be photographed onto 35-mm film. 

Each photograph is scanned, again using the same high-precision CRT in the 

Recorder. Thus, graphic information is converted to digital form and stored in 

the computer. 

The light beam from a CRT is directed along two paths: one path leads 

directly to a photomultiplier tube; the second path is directed through the film 

to be scanned before going to another photomultiplier tube. The intensity of 

the light passing through the second photomultiplier tube is compared to the light 

intensity passing through the first, and if the ratio exceeds a preselected threshold, 

the machine registers a hit. This hit, no-hit pattern is stored.Ln a matrix form 

in memory -- one fora hit and zero for a no-hit. A variety of program scanning 

techniques can be used to register the digitized image in a minimum storage 

space. 

A variety of scanning techniques have been devised and programmed; among 

them are edge following and vector scanning. This area in graphic data proces-

-6-

c 

o 

o 



sing is still very much in the research stage. More sophisticated scanning 

0 1 algorithm s are needed to handle the wide range of scanning applications one 

can encounter. 

o 

o 

A second topic of interest in graphic data processinq is the application area 

in research, engineering J manufacturing, finance, and management. The list of 

potential application areas for graphic data processing is extensive and impressive. 

It might be used in electrical, mechanical, structural, and civil engineering 

analysis deSign and engineering drawings, in ship and aircraft missiles and 

satellite course plotting, in kinematic analysis, in meteorological.studies, and 

in petroleum and chemical procesSes. In management, one can display and 

modify the PERT netword drawings. Business graphs, including sales analysis, 

cost analysis, production control, manpower forecasts, and sales forecasts may 

also be displayred. In the field of mathematics, Fourier analysis and functional 

analysis are possibilitie"s for application. One can go on and on listing applica

tion areas that can effiCiently utilize this new concept. 

I have selected two examples to examine: personnel records retrieval and 

analysis, and the electronic .circuit analysis and design field. In the first 

application, th~ problem is to asses a file of personnel data efficiently 'iri order·to: 

1. 'retrieve and display personnel file data, 

2. update a personnel fife, 

3. :have graphical statistics immediately available concerning personnel 

manpower, education, salaries, and benefits. 

We all recognize the limitations of the present . computing facilities in this field. 

We also recognize the time lag before these files are updated and before the 

proper statistical information is obtained .and. hanet plotted on .graph paper. 

-7-



Updating 1s a batch operation and is done periodically • This problem can be 

handled on the IBM 2250 by using the functional keyboard; the personnel 

specialist w(])uld select any ate a of an employees record file. The personnel 

files can be arrayed in frames pertaining to an over-all personnel summary of 

school training, special skills, past assignments, and any other pertinent data. 

T.he light pen can be used to uIDdate, add to, or delete from the records. This 

area is relatively simple; however, the concepts, problem s, and problem solu

tions derived can be aI!>plicable to a.ny similar alphameric information-retrieval 

and updating area. 

The next example is in the area of electrG>nic circuit analysis and de sign. In 

the area of nonlinear switching circuitry I which is the basic building block of any 

computer system, the present simulatie;>n techniques are inadequate and too ex

pensive. In designing a switching circuit, the engineer has to satisfy constraints, 

such as the logic ca,ability, maximum fan-in, fan-out, minimum turn-on and 

tw-n-off delays, minimam !Dower GiissilDation, and up and down d-c levels. From 

an analysis 0f these constraints, one will realize the conflicting specifications 

given to an engineer. A coincidental problem is that the system of equations of 

the d-c or transient behavior of the system is an underdetermined system. The 

present method of solving this problem is to apply" engineering intuition ll in 

assigning values to :some unknown parameters in order to have a determined 

system of equations, and then prcoceed to analyze the problem. While many 

circuit families have been designed this way, they were not necessarily the best 

circuits. 

o 



mt OJ" ai'! tttr"f¥ tt tNfttb"rtttir"j(b"Hb jJ""" j"lr" ! I'" 

o 

o 

o 

To obtain an optimum circuit design one must have a good understanding of 

the trade-offs between these circuit specifications and the effect of the change

in for every component parameter on each specification and on the total circuit 

response. Also, the designer must minimize his assumptions, and thus allow 

himself to deal with the whole region of feasible solutions before selecting any 

specific design. IBM Graphic Data Processing can be an excellent toel here. 

The engineer can retrieve the circuit configuration he is working with I study its 

transient response, display a three-dimensional plot of the time delay, power 

dissipation, and up or down d-c levels, and then proceed to optimize his circuit. 

The designer I by merely pushing the correct switch on the functional keyboard, 

could perform anyone of the many different computations on this configuration. 

When the circuit is designed, the circuit configuration component listing and 

specifications can be recorded on the Recorder, thus automatically producing a 

circuit flyer that can be transmitted to hundreds of personnel and locations 

throughout the corporation. 

The IBM ECAP program has been converted to a demonstration package for 

internal use. This application of Graphic Data Processing will result in: 

1. reduction of the prqblem-solution time from months to days or from 

da ys to hours; 

2. giving more position feedback and more insight to the circuit operation 

and parameter trade -offs; 

3. reducing the need for the design to work through· scientific centers and 

programmers (the designer will have complete control over hi s . problem) . 

-9-



o 

o 

o 



Ill' H!'t:ttt: 

o 

o 

• 

t UtI riz1ft(·t"rtdrb >1 re t tetH
• 

GAMMAMERIC COOING 

Presen~e~ at the 1620 Users Group 
JoInt Eastern-MIdwestern MeetIng 

October 8, 1965 

by 
Howard G t vner 

Brooklyn College of 
The CIty UnIversIty of New York 



Gammamertc Coding 

The purpose of thts paper Is to announce and describe 

the Invention, by the wrtter, of a new code, cal led the 

gam rna mer' c ~ • T h f s cod e rna k e s ,t po s s ,t b (e for the use r 0 fan 

IBM 1620 system to store, tn a g1ven storage area wIthin hts 

system, 60% more alphamerIc characters then he could have stored 

had he used only the alpha-merle code Incorporated tnto the 

hardware of hIs system. FIrst the need and value of new codes 

for storIng data are established. Then two possible new coding 

method~ are examined briefly. FInally, gammamerlc codtng~ whIch 

was an outOrowth of the other two, Is presented. Oeta i Is on the 

pro 9 r a mm t n g 

appendix. 

needed for Its ImplementatIon are Included tn an 

A storage problem exists If you must use your IBM 1620 

to store, for reference, a ftle nf 20000 names and addresses, on 

a disk pack with a storage capacity of 20000 laO-digit sectors 

when the source of data Is 20000 fully punch.d BO-column cards, 

that Is, 80 columns are requIred to contain the entire name and 

address. Restated, this Is the problem of putt Ing 3.2 mt Iiton 

dIgIts tnto 2 million loca tlons. By codIng the raw data as It 

enters the system, thIs problem of storIng In a Itmited on-lIne 

storage area a relatively large amount of raw data can be solved. 

SInce the codIng system offered automatfcalry by the 

hardware of the IBM 1620, alphameric codlng, although powerful 

for sortIng or comparing alphamerIc fields, Is Ineff Icfe.nt when 

only the storage of InformatIon for later retrieval Is the ta'sk, 

a look for alternatlve codes whIch make better utilIzation of 

o 

o 



ti!, ·'·n •• - -·Il·it .. . IHr".... [""' ...... 
'i"lIf! 

o -2-

• 

the available space began. If there is any fear that attemptIng 

better utilization of the available storage area by means of a new 

code might possibly lead to additional costs due to the encoding 

time used during the Initial loa ding of the Informatton tnto 

storage, or to the decodIng time used for each subsequent refer

ence to the stored tnformation, that fear may be t erased by 

knowIng that those transformation times can be absorbed by over-

lappIng the coding tImes wIth the buffered input and output 

operatton times. Provided no additional transformation time will 

be needed to process the stored Information internaf Iy, as ts the 

case with a reference ftle, a new code offers compactness at 

merely the cost of developing the software tn handle the new code. 

The selection of an alternative to the alphameric code 

depends to some~extent on the nature of the data to be stored, ~n 

one l s preference to flxed or variable length records, and on the 

ulttmate use of the stored Informatton. One thIng sacrIfIced by 

each of the data codIng methods discussed tn thIs paper Is the 

ability to cot late the stored data wTthout decoding, unless an 

uncoded key Is associated wIth ea ch Item of data to be stored. 
-The augmented character set codes to be discussed first 

save space In a manner stmllar to the method used by people when 

they use abbreviations and acron~mso Since only 48 of (00 

posstble 2-dTgft numbers are used In the alphamertc code, some 

or al I of the remaining 52 possible 2-digft numbers may be • 

a5stgned a meanIng by the user. For Instance, If the data to 

be stored t5 a Fortran source deck, then 15 could be used to 

replace each occurrence of l414 (exponent tat ion), and 07 could 



be used to repJace each occurrence of 62585963 (the square r~ot 

functton). The sa vtng from this method Is apprecIable only If 

a variable length record ftle Is being used and the raw data 

contains multiple occurrences of lengthy character sequences. 

Several augmented character sets, cnntatning as many 

as 400 2.-dlgit symbols eac-h, may be adopted, each set adapted 

for use wIth a spectf tc body of raw data to be stored. A 400-

character set may be created by utlltzlng the flag, whIch norm

ally carries no tnformatton in the alphameric code. F~r tnstance l 

01 might stand for B, oT for P, UI for V, ~and nT for F~ In one 

appl 'catton, that of student record keeping, we use an augmented 

character set In whtch a 2-digtt number represents a phrase Tn 

some cases; a glossary ts used for translation. To create an 

augmented character set, replace the notion of being Itmtted to 

48 valId alphameric code numbers where the flag bit contafns no 

informatton, with the not ton that there are 100 val fd code 

numbers where the f lag does contain informatton. 

The alpha-shift code, whIch wi I I be discussed next, 

does not require a glo~sary, or special conversion table, tn 

order to produce space saving. Let us assume that the normal 

48-cha raeter set is sufficient for representIng the data to be 

store~, but that the repetitton of groups of characters fA the 

raw data Is not one that would suggest usrng an augmented char

acter SQt. For eaample, nne might have to store a lIst of pa rt 

numbers, rt~ense plate numbers, or house addresses, aff of which 

contaIn many strings of consecutive numeraJs, but intermittently, 

tetters or other alphamertc characters. If onry numerals wer9 

o 

c II 
I 



-4-
~ used In the raw data, we would use TNS (Transmit Numeric Strip) 

hardware, or software, to yleld a 50% storage saving over pure 

alphameric coding. But the zone digits discarded wi II not always 

be sevens tf we used TNS on license plate numbers. Spac'savlng 

can stili be achIeved by a comprOmise of storIng the zone dlg't 

the first time it occurs and flagging It, followed by all the 

numerical dIgits havIng that same zone digit until the zone dIgIt 

changes. When the zone digit shifts, that 1s t changes, store the 

new zone digit and f lag It. Do not f lag the numerica I digits, and 

do not store success i ve occurrences of J den t I ca I zone d t g' t s. For 

example, the raw data "175-12ST" would be stored as '7175~0'712b2~. 

• 

The Idea of a shIft character Is not new; It appears 

In the 5-channel teletype code where 30 of the 32 possIble code 

characters may have one of two meanings depending on whIch of the 

remaining two (\shlft) characters occurred most recently. This 

space savlng technique requIres variable length data records, 

and has no guaranteed storage saving unless the da ta Is "suitable". 

We deduce from the dtscusslon so far that when d~velop

tng a spacing saving code, the motto Is DO NOT WASTE BITS. ThIs 

means use the f lag-bit, and use all digit combinatIons. 

The gammameric code, a code to handle a reduced 

character set was developed after we examined ·the names and 

addresses we wanted to store,and found that special characters 

such as asterisks, perentheses, at signs, and the Ilke,d'd not 

occur. In fact, except for numerals, letters of the alphabet. 

and the blank, the only special characters occurring were the 

p~rtod, the comma, and the hyphen. Thus we were really usIng 



-5-
a 40~character set. KnowIng that tn a stngle storage posItion 

In an IBM 1620 you can store any of 20 bit combInations of a 

posstbt I tty of 32"'comblnat tons, If you use a II 5 data bIts 

(F, ~, 4, 2, and 1), but restrict yourse,lf to combtnations on 

whIch arithmetic can be performed. WIth or without binary 

capabtl tties, the only bits that may legitimately be set or cleared 

Independently of each other In a sIngle memory position are the 

F, 4, 2, and I; the 8-bit cannot be set and cleared Independently. 

We assigned to each of the twenty selected bit combi

nations a paIr of characters from our 40-character set. In order 

to resolve any ambiguity, one of the four bits ts set on or off tn 

another memory posttion. ThIs other memory positIon is used to 

resolve four ambiguIties. Thl.s, we are able to pack 4 char,acters 

o 

from o,ut 40-character set Iflto 5 me'mory positions, a saving of 3 0 
memory positions for every S that would be used by the alphamerIc 

code. ThIs allows an SO-column card, containing 

only characters from some 40-character set, to be stored as 100 

digits tn a sector of dIsk storage. For example, the word "WALK" 
" would b-e stored as n61~1" using this codIng system, called 

gammameric codIng. It may be used with fixed or variable length 

r~cords since the space savIng rat10 is constant. 

Whether you chose an' augmented, norma I, or reduced 

character set code, by thlnktng of the flag~blt as more th~n a 

field mark or algebraIc sign indicator, but as a bit just as 

capable of storing the ktnd of Information normally stored by 

the 1-.2-,4-, and 8-bits, you to,o wllJ dIscover new w-ays of 

storIng data in fewer memory posItIons In your IBM i620 system. 

t 
I 

~ 
I 



o -6-
We were able, for Instance, to store tn less than 32000 memory 

positions In an IBM 1620 a 500 by 500 symmetric matrtx whose 

entries were either zero or one. Only through clever programmIng 

can we hope to exploit all features of the machine. 

The appendix contaIns listings of two macros-

TGS (Transmit Gamma StrIp) and TgI (Transmit Gamma FII f)-

wh Ich may be added to the SPS?D subrout fne set 01 and ca I Jed 

upon to perform the conversions. We have found It best to use 

a mixture of TNS and TGS. The gammamertc code, as it appears In 

a core du~p, can be read almost as easily as the alphamerIc code 

o by anyone faml I tar with the code. Although the gammamerlc code 

Is applIcable only to data written wIth characters chosen only 

from some 40-character set, this Is rarely a serious restriction 

to Its use • 

• 



-7-

APPEND 1 X 

What Is the Gammamerlc Code? 

Gammamertc coding facT I itates compact storage of large texts 
of alphameric data (such as a name and address ftle). The char
acter set that can be handled can have at most 40 characters. 
One version of the code uses the 26 letters of the alphabet, the 
10 numerals, a nd the blank~ period, comma, and hyphen. Any other 
character wIll be treated as blank by thIs versIon of the code. 

The code will allow one to store 4 alphamerIc characters 
Tn 5 memory pas i t ions, :3 t'n 4, 2 In 3 and I in 2. 

The alphameric text to be converted Into gammamertc code ts 
scanned from the left and divided tnto "words" of 4 characters 
each, and any remaining characters (from I to 3) form, 'a "wcrd". 
40 '5 then subtracted from ea ch alphameric code. 1f the result 
is negative, a substitution is performed. For thIs versIon of 
the code -l7 becomes 21, -37 becomes 10, -20 becomes 20 and 
anythIng else becomes nO. 

A gammameric "word" Is produced as follows. The numerIc parts 
of the alphameric "word" become the first digits of the gammamertc 
"word". A flag Is placed over the digit In the gammamerlc "word!' 
Tf the zone dIgit of the alphamerIc character from whIch It came 
had a I-bit. To complete the gammameric "word", a (ast dIgIt Is 
appended whose I-bit, 2-btt, 4-btt and flag-bIt respectively 
are used to Indtcate the presence of a 2-btt In the zone dIgit 
of the 1st, 2nd, 3rd, or 4th character of the alphamerfc"word tt 

being converted into gammamerlc code. See diagram ~n page 12. 

Examples: WALK becomes 61, ~l 

Hl3 becomes 83'2 

RUST becomes 9423b 

Gammamerfc Conversion Macros 

TGS A,G,N (to convert alphameriC tnto gammameric) 

TGF A,G,N (to convert gammamertc Into alphamerIc) 

N is the number of characters to be converted. 

A Is the even core storage address of the teft-most character 
In the alphamertc data. Flags In the alphameriC data do not 
affect the result produced by TGS. The flag status In the 
area to receive the alphamerlc result produced by TGF wlll 

be unaltered. 

G Is the address of the left~most digit 4n the gammamertc data. 
This may be tn an odd or even memory posit1en. 

o 

o 

In no case should the da ta 1n elth~r the gammameric or 
alphameric records "wrap-aroundtl the end of memory I or e I S8 the c'! 
macros wI I t "hang-up" with a MAR CHECK. 'See lIst tngs (pp8-ll). 



o 

() 

• 

7ZJOR '50 
ZZXFQ SPSllr", 
*DI='F I r--~r OP CODE 

-8 .. 

Tr,~ -181 
*r~·'DL I q 

Z17l 
77JOR '1 
77C;PS 
*".~C;I='\·RL!=' RFL0Cl\TflPtF 
*LJ'1,R 
* I f') 1\JU""IlFR n 118 
*STORE RELOADAGLf 
*OIJT PUT C :'R!,) 
* L I .s T P R I f\1 T E f~ 
** 
(! r (~ 1 () * TGC; 
Q0n2(,)* TF:/. 
00r,,,* 87 
0n0.4(Ht- DSA 
('''05'1* f)S( 

nnf'6() f)SA 

Or'r:70TG5 TR 
8nr'8() A.~·1 

Q(H"'90LQ (V 
'1~il"'n ~NP 

C~110 TFr"1 
00120 TF"ll 
f)0130 TF 
~('14n C~" 

nn150 RNH 
r:n]6n TF'·"" 
0n17() C; \~ 

00181'11( f)~; 

0n190lP TD 
()'"' 2:) () " ~ .. ~ 
("'(; 210 TD 
OO?2n AM 
0('730 CF 
O('~240 R I\! R 
00?5() TFM 

A,G,N (ASSUVFD CALLI~~ ~TATEME~T) 

2 '1 7 5 , * + 1 9 , , s p S 2 f) r: F U F R .\ T ,- J') l I ~\~ K !\ C F 
Tr,C; 
At G t~! 
1,-"FNJ') OF 0FNFRATFn LI~KA~F 
TG~ 

A-4,-2375"FETCH PARftvcTFRS 
2~75,17,1~,CAl(ULfT[ RFTURN AnrRFSS 
N , :.'~ tIt; 
- 2,75 , , ,~~ f T tF< f. .. ' T (' C i' L L I \!G P I~ or! ~ (\ :.;; 
C ," ~ , 1~) 
P,'"ll,lO 
K ,1\' 
K,4,lO 
*+24 
!( , II- , J 0 
~., t *-* 
5 , * , (0 U 1\' T II P T J 4 
T-l,-A"PICK uP zeNF. Dr(=IT 
,II,.I,!;) 
T.-A.,PICK UP ~U~FRICAl DIGIT 
!\,191~~ 

T • • , S ." F I: T Y O~: L Y 
*+24,T 
T"lC,.sUPPRFSS TROIJl~LE 



0?6n 
()?7n 
0?80 
'"'290 
r"c(, 

('!;1n 
r'32" 
("33n 
"i34n 
~;5()P 

r,6() 
n-:"70 
0,80 
n~9(' 

rt4"" 
"41" 
("42n 
n4'30C 
"440 
''''45(' 
f"I46"T 
~470* 

n48()TRL 
r-.490 
(' I) r. n 
0')1('1 

{1'520 
Qf.)3n 
054n 
()550 
r560 
0570 
nr;8n 
0590t', 
("600G 

,r:610N 
C62() 
'r.63~ 

'777. 

TF~~ 

A 
,I'!., 

*+47,TPl 
*+~'i,T 

*+2'3,T 
T.*-*"FN(O~F 

-9-

TF 
TD 
~\I! 

-(-", , ,PUT OI'T THE CODE 
G,l.lO 

~D -*+24, T-1 
(,P 

1\:".:1 *+11,*--*,ln,GFT Nf.XT POh'ER OF 2 
DS 2,*"PO~FR 0F ? 
S~/ K,l,lO 
l'1,P LP 
(V (,08,10 
!ll '~~+36 

~~J (,08,1f" 
.c:!=' ( 

T [) ~'1 - (1 • * -* , ,P U T 0 U T T H F S U F F I X 
f) S 2 , * , C 1\ ~" :'/ A ~'1 E RIC S U F F I X 
.I\H G,1.10 
8, l.Q 
f)C 3, C , , "-lOlD or'~F AL Pllf\;·TR I C (H!\RACT fR 

PER I 0 D ( () 3 = 5 ,. ) ,B l l\ ~! K,,( n r' = 4 r. ) ,C 0 i'} ~I A ( 23 = 6 1 ) ,H Y P H F N ( 2 r) =60 ) 

o 

DVLC,2, 10,2, }(,2, 1~,2,~1~.2, 10,2, 10,2. 10,2. 10,2, 10,2, 1/ 
nVlC,2, 10,2, '1~,2, 1~',2. 10,2, 1n,2, 1n~2, 10,2. 10,2, 10,2, 1~ 
f)VlC,2, t'~·,2., 1""1,?, 1(~/,?, "],7., In,2,10,2, lrY,2, !O.2, 10,2, 1:. 
nVLC,2, 1 1,\,2, 1(',2,1'),7.1('.2.10,2, In,? • .10,2. 10~2, 1(),2, 1;' 0 
~VLC,2, lJ.?, 11,2~ 17.7, ,~,?, 14.?, 15.2, JA,2. 17.2, 18,2, l' ' 
DV L C ,2. l~),?, -11 ,2 • -12. , ? • -1 1 , ? • -14, ? ,-1 5 , Z ,-'16 ,2 , -11 • 2, -18 ,? ,-1 ( 
DV L C , 2. l~), 2, 1". {'. '" 2 , 2 9 (' 3 , 2, n l~ , 2. 05. 2, '()6,2, 01, 2. 08.2, 0'. 
DC 2,-no 
D V l C , 2 , - f' 1 , 2 ,.,.., ~ 2-, 2 , - 0.3 , 2 ,'- r, 4 , 2 ,- 0 5 , 2, - 06 , 2 , - 0 7 • 2 , - 0 8 , 2 ,-0 . 
DV L C ,2, 1~;. 2, 1 ~ .. ,,2, 1 f', 2,- 1 (), 2 ,. 10,2, 1/),2, 10,2, '10,2, 10,2, lr 
DVL(,2. 'J',j,?, 1(',2. 1':',2~ l0!2, 10,2.10,7., ,10,2.10,2'-10,2, Ii 
DS 5"SENDING 0DDRFSS 
DS 5.,RECEIVING ADDRESS 
D 5 5 , l N U 'll'~ E R 0 Fe: V\ !~ tl C T .. R ~ 
D S 1 •• eft T ( H R F COR ["l 'A ;~ r~ K /\ T J:" \1 TRY T p.:' E 
DFr\lf) '01181 ",TG5' 



tt"t""1!" n. r,u,"!,'j r,,"'I''tt'''Stt"y 

o 

() 

• 

7ZJOR '50 
?7xrr: 5PSLYn. 
r-~FF I ~.It= OP ((',,"',F 

-10-0 

T(;F -191 
~~. E~' DL I R 
7777· 
7lJOR 1:)0 
'.7 Z SP ~ 
~~~~FMRLE RrLOCATARLF 
·:L J BR
~II"\ NuvnfR 0119
~,T()Pr. RELO!\f)t\PLF

:ntITPIIT (/\Rf)
. '- T .C;T PR r "!TFI~
'*
~01n* TGF
r.:-21')* TF\~

,(1(\~()~(- 87
n('lJ.()* n~.A

0050it· nsc
'0~"\60 f) S."
nC70TGF TR
'~:·()80 /\ 'I,

'~r9nL0 .(""

f"\lno Rl\lP
011n TF
('170 (\1

'f'l 3 f'l Rf\IH
. ''l4() TF" .. 1
,n150 5 M
'()16n~, DS
'C] 7'.1 TF
:,0180 A
'0}9(1 TD
)0200 TDM
"t(1210 P..\lF
l0?20 CF
1('\730 AV
.") f')?4r. 1\

""'750 A
i()260 TFf\·A
:n770 " '\1
'0280C DS
:'0290 TF

T R f\ r...' ~ r. ~ I T (i " ~ ~ ,~ .A. F ILL (T G F)
A,G,N (AS~U~En CALlI~~ ~T~TF~FNT)
2 3 7 ~ , ~f- + 1 q , , S p ~ 2 D G F t\! F I~ .1\. T F. i' L I f\.'!(/\ G E
TGS
I\,G, I
1 t - , , , r N D () FeE 1\' F R f'. T r D L I ;'.1 K.\ r) r
TGF
~-4.-2375"FtTCH PARA\[TFRS
2 :3 7 5 , 1 7 , 1 (, , C l\ Leu L ,'" T r R F T II ::< 1'\ A. r r. i~ r: s s
N ,0 r} , 1 ~:
- 2 3 7 5 , , , R F T U R ~,j T 1) CAL L T f\! G p~ .::-: c:; ,.</\ ;/
K ,""
!(, fl 4,10
*+24
f(, I. , 1 0
r,: , -:f-*
5,* ,COUNT UP TO 1+

*+35,G
*+23.K
C , * -*, ,P J C K UP 0 A V L-U\ ; .. , E r~ I C S U F F I X
(-l,CI ,11
*+36,(
C
C,()8,1(~

(t C t ,7 T I ~l F ~ C
e,C,,4 TPlFC; C
*+'35,rnLl
+2~t-*
2, *, HOLD 1 GA,'/;vlA:··TR I (SUF F I X
\~·.'-1 ,*-*

.''(~ 3 ~' () L P
)0310
"'0320
"'·0~~n

'('340
f'~'3n

'\"~6n

'('37n
(\'180
~"'19()

n400
nl~ 1 npA.~
,'"'420
"4·'30
' 4 l+n
01;.t=,n

"" l~ 6 ()
A.l.70
~lfR0

'~4 9')
"'5('()T
r'') 10
:"'520
,.~ ':S' 30
r'540
f"l'150
nl;60
() C) 7 ()"~
~5BOTqLl

'''..590
('16('0*
!-'61:'THL2
r162('.
':'63(;
'-'64()
(\6'50/'

',,6fJ) G
'':)6 7 () ~\j

'C'680
'r'690
'777

T F I\~ BAS, TH L 2
AD ~·+24, t'J-4
.,.,\~ R/\$-1.4,1f)
T'1 *+59,-G
81\IF *+36, * + If. 7

.CF *+35
AM Rl\~-l ,2,10
1\"-1 RI\$,*-*,}0
A 81\$,*-1
A"l G,l,lO
TF T ,-P/\S
DS 5,*
CF T-1
n ~F *+21. ,-A.

-II-

SF T-l",pr~ESFf~VC FLt,G STATUS
Tf) -A.T-I
/\· ... 1 A,] ,10
p,~.tF *+'4,-/\
C:F T
Tf)~,1; -A, J,~-*

f) S 2 , "* , H 0 L I) 1 ALP H ,A)l ~ RIC C H .~ R /\ C T F R
/\ '." .1\ , 1 , 1 0
T 1\ 1,\'-4,1,'- 3
S\-1 K,l,lU
!lP lP
A\~ G,l,lO
9 L~

DC 5,-"HOLD TAGlF 1 E~TRY
nv L (,4 , 1 1 1 1 ,4 , :" 1 1 1. , II , 1 :" 11 ,4, n '111. ,4, J 101 ,1+ , 01(''1 , 4 , 1 0 n 1 ,4. () 001
I') \J L C , '+ , 1 1 1 :": • 4, 11:~", 4 , 1 (. 1 {' , 4 , (: r', 1 ~"\ , I~ , 11 0. () , 4 , r) 1 I') f') , 4 , 1 a 0 0 , 4 , 0 0 0 0

P f. R I (' f1 (.. ' '1 = ') '::,) , (0 ~/"~.I\ (2 3 = 61) ,9 L A. N K CO 0 = 4 ()) , H Y PH F~!(2 (1 = 60)
DVL(,2, ,2,41,2,42,2.43,2t44,2,45,2,46,2,47,?,48,2~49
DVLC,2,'·3,2,51,2,52,2,53,2,54,2,55,2,56,2,57,2,58,2,59
DVL(,2,2',2,23,2,62,?~63,2,64,2,65,2,66,2,67,2,68,2,69

DVLC,2,7~,2,7192,72,2,73,2974,2,75,2,76,2,77,2,78,2,79

ns 5"RE(~IVI~G tO~RFSS

DS 5"SE~~ING ~DDRfSS
DS 5"NU v GER OF CHfRACTFRS
ns],,(ATCH RECORD MA~K AT ENTRY TIMF
Dr"-If) (''] 19 1 ",TGF

o

o

• N .-.
I

r\
fC)'

~'~A \n "'.... .,' ___ .. _w __ .Q Au' ().,.n '. 1\" ~=- .. -... f\ftN

A L / .. " c. w / '\.. / '" J S. 2. .(.. _ .. /tlJ1i_A f /\ 13 ~~~ . I ~ __ A~{"- ~
b '0 r---,' .

...-:-::"~~ ~~"''''I C _. ~1PIOO.O!t::J C/ ././/./ ItaAt/610
f9 ".~ ,\,. ~ ! .010'1 4' ~,I 0 'f'f II I / / / / rNT4~IfJ... .. ~..JjJ

I ~o • -" ~Ci <\ '- \. '- , /ie.tM$GN1A~:J#If'

o

j
~~ __ _______ .. G~A"-·C

'. WOf\b

This iHvst (tftiOll ~ltows h()c~. Jr~":K;.- to- 'f1h1l1'l MW'ic. U)"IV4rsiM

'I~ c.cCOf\1pLShul WI-ft.. the ;JO-ehtlracter 5~t coos;Ja~ o,f ;'l~
leiters (A tc. Z), 10 I'lv/IIIetols (0 to'i,1 'Mel if 5fe.c~~1 chQ(Ck:.+ers:
blQllk) hyP~.) IAAtrerSQnd) Q"d slqs~ .. \krticA' ~h-okes ;",dkote:
Me~i$! fost/on bl)Uf')ClQr;@s, ched: 6Js afee nut s!,o~,. ..

" •

o

c ~.

t t t f "to H 'be tttttitbt#f"t i'r! 'f . ·-n·t

LONG ISLAND UNIVERSITY • COMPUTER LABORATORY
rr:f.SIJ.:':~~l.~I".tI\.;'*.A "·:;~'·_!:i.~a~.~~""!8~~,,~ .. ~·.·" .. ~;'.~~.oiF.!.~~:,;:lJ!:\!:~·;U;·Dl!
I •• II.' •• 1.1.111

1!11'~1'1~$li!,ljl!1!~l Dr. Harold Joseph Highland, Director

CO/STATS - COMPUTER ORIENTED STATISTICAL

TEACHING AND TESTING SERIES

.••. Computer Program Package for Teaching Introductory Statistics .••.

by Dr. Harold Joseph Bjghland
Director, Computer Laboratory

The Brooklyn Center of
Long Island University

Computer's Role in Education

presented at the Eastern-Midwestern
Common Conference, October 8, 1965
at the Americana Hotel, New York City

At The Brooklyn Center of Long Island Universi ty we refer to our computer
complex as the "Computer Laboratory." This was done with prescience
since we view the computer and its concomitant equipment as an experimental
laboratory in science and business.

We have a 1620 Mark I unit with 20K memory and the basic peripheral equip-
ment' such as 026 key punches, 082 sorter and 407 printer. We operate in
an atmosphere similar to that found on the campus of many liberal arts col-
leges. There are some aficionados but there are many more inimical
faculty members clothed in the fig leaves of admiration of the past. We
operate a hybrid open=and=closed shop. Because of my other post, that of
Director of the Office of Instructional Services, our computer laboratory
performs some administrative work. The confidential nature of this work
requires a "closed shop," wherein students are not permitted in the com-
puter laboratory. On the other hand, during the remainder of the time,
we operate an "open shop, II wherein students have free access to all equip
ment, including the console of the 1620.

In addition to using the computer for faculty and student research, it is also
used for the teaching of two introductory cour ses i 0 comppter science, and
it is integrated into the teaching of operations research, which I teach at

• the graduate level, marketing, management and statistics. Furthermore,

CO/STATS 2

our computer laboratory is used for test scoring and analysis of classroom
tests, finals and comprehensive tests. It is because of our testing and
research programs that we started building an extensive statistical program
library.

Computer and the Teaching of Statistic$

Until this semester I presented the common stat ist ics lecture which all
students attended simultaneously. Since other teachers taught the quiz
sections in statistics, I used the lecture to coordinate the teaching of
statistical concepts and techniques. The use of the computer in the quiz
sections is viewed as an attempt to maximize the teaching process and
to increase its efficiency. Specifica'lly, CO/STATS - Computer Oriented
Statistical Teaching and Yesting Series - was prepared:

o in an effort to improve the teaching of. statistical principles
and basic concepts, and

o to reduce and possibly eliminate the tradi tional number pushing
as sociated with the conventional statJstical laboratory.

CO/STATS was prepared for s·tudents who will be using statistics in their
professional and bU,siness careers and not for the training of statisticians!
By using this computer program package, we hope:

o to acquaint the students with the applicati ons of Ii mitations .of
the computer in statistical analysis,

o to illustrate the sensitivity of. data to analysis, something that
is virtually overlooked in the conventional teaching of statisticS'
in most of the colleges,

o to train the students in the evluation of data printouts, a simula,tioll
of real-life activity which they wille:x;perience later ip. their work,

o to introduce students in the use of pro,gram libraries r at thi$ stage
our own and some of the U sar s Group programs.1 and to teach th'em
how to prepare data for use with these prograp:ls, and

o to make them aware of the 9-eed to consider the type and farm of
output so that they can request the data in the shape .best need·ed
by them in their work when they work with computer pe'rsonnel
on the job.

To a large extent, many of these objectives are achieved through the add it io. n
of a myriad of comment cards with the programs. Furthermore·, some of
the programs are 'loosely' written and could be tightened up for s,horte~

o

o

o

o

o

o

'1 " j["If" I"T"" '! #"1"1 I"f!

CO/STATS 3

running time and appear more professionally written, following the tech
niques of Iverson, for example. However, many have been left in this
"crude" form since they are easier for the student to understand and to
follow the individual statements.

Some of these point s can be illustrated best by the accompanying samples
from the CO/STATS programs.

• Illustration 1 I page 4 I is a sample of a basic stati stical
analysis program for use with frequency array data. Each
program contains a series of comment cards for "Identifica
tion of Variables." Every label used in the program is
identified to make it easier for the student to follow the
logic of the program. In this instance, there is also the
warning note about program input - the output cards from
LIU/26. 1. 01 - and the note limiting the analysis to no more
than 15 class intervals.

• Illustration 2 1 page 5 I is a sample of information flow con-
tained within the program. Since these students are not being
trained as statisticians, we spend only a short period of time
in both lecture and quiz classes on the anal ysis of skewness,
13 1 It and kurtosis, 13 2 , Classroom instroction is reinforced
by inclusion in the program of comment cards about both of
these statistical measures. Furthermore, I have included
for the students and some of the faculty too, the reference for
testing the significance of both 13 1 and 13 2 •

• Illustration 3 I page 61 is the printout of our basic statistics
program, LIU/26. O. 01 used for the analysis of raw data. It
is the companion program for LIU/26. O. 02 which is used to
provide almost identical analysis of frequency array data. You
will note that the output is in F -format, which is easily under
stood even by the beginning student, or for that matter, any
faculty member for whom the computer laboratory does research
analysis. However, along the bottom line of the printout are
four value s in E -format, namely, I: X, 'E X 2

, I: X 3 and 2:: X 4.

They were prepared in this format to produce a compact single
line printout and, at times, this one line is removed if, we feel
that the receipient will encounter difficult y in reading these data.
Furthermore, note that we have prepared variance, cr 2, the
standard deviation, (J', and coefficient of variation, V, for both
Nand N -1 since we have requested for analysis in both forms.

ILLUSTRATION 1 CO/STATS 4

C
(

C
(

C
(

C
C
C
C
(

C
C
C
C
(

C
C
C
C
C
C
(

C
C
C
(

C
C
C
C
C
C
C
(

C
C
C
C
C

BASIC STATISTICS FOR FREQUENCY ARRAY DATA

o CO/STATS 26.0.02 0

o COMPUTER-ORIENTED/
STATISTICAL TEACHING
AND TESTING SERIES c

DR. HAROLD JOSEPH HIGHLAND

DIRECTOR, COMPUTER CENTER
THE BROOKLYN CENTER OF
LONG ISLAND UNIVERSITY

oooUSE WITH OUTPUT OF LIU/26.1.01 AS INPUT FOR THIS PROGRAMooo
ocoLIMITED TO 15 CLASS INTERVALS MAXIMUM

IDENTIFICATION OF VARIABLES
BLCI LOWER LEVEL OF CLASS INTERVALS
(F CUMULATIVE FREQUENCY
D DIFFERENCE IN CLASS INTERVALS - FIRST CI IS BASE --ZERO--
D2 SQUARE OF D
DELI DIFFERENCE FOR MODE COMPUTATION
DEL2 DIFFERENCE FOR MODE COMPUTATION
F FREQUENCY OF CLASS INTERVAL
FD F * D
FD2 F * D2
I (ONTROL FOR COUNT
I CD,E I D CODE
ID CARD NUMBER OF EACH INPUT CARD
IDMX CLASS INTERVAL OF MAXIMUM FREQUENCY
IN CONTROL FOR COUNT
MFC MAXIMUM FREQUENCY COUNT
SAVE QUARTILE DEVIATION
SF SUM OF F OR N
SFD SUM OF FD
SFD2 SUM OF FD2
SIZE SIZE OF CLASS INTERVALS
SKP SKEWNESS COEFFICIENT --- PEARSON
SN NUMBER
ULCI UPPER LIMIT OF CLASS INTERVALS
V (OEFFICIENT OF VARIATION

2 FORMAT%I5o
4 FORMAT'28HSEQUENCE ERROR- REINITIALIZEc
6 FORMAT%36HBIMODAL DISTRIBUTION - NO MODAL DATAo

Il

o

o

4C) ILLUSTRATION 2 CO/STATS 5

o

•

c
c
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

BASIC STATISTICS FOR RAW DATA ANALYSIS

c CO/STATS 26.0.01 c DR. HAROLD JOSEPH HIGHLAND

c COMPUTER-ORIENTEDI
STATISTICAL TEACHING
AND TESTING SERIES 0

c NOTES ABOUT SKEWNESS c

DIRECTOR, COMPUTER CENTER
THE BROOKLYN CENTER OF
LONG ISLAND UNIVERSITY

MOST SKEWED CURVES IN SOCIAL SCIENCE, EDUCATION AND BUSINESS ARE
SKEWED TO THE RIGHT, OR POSITIVELY SKEWED.

c BETA 1 c VALUE IS ZERO FOR A NORMAL CURVE. THE RANGE IS
FROM MINUS 3 TO PLUS 3.

c BETA 2 c THE NORMAL CURVE, MESOKURTIC, HAS A VALUE OF PLUS 3.
EXCESSIVE PEAKEDNESS, A LEPTOKURTIC CURVE, HAS A BETA 2 VALUE OF
LESS THAN PLUS 3. ON THE OTHER HAND, A SPREAD CURVE, PLATYKURTIC,
HAS A BETA 2 VALUE OF LESS THAN PLUS 3.

TO TEST THE SIGNIFICANCE OF BOTH BETA 1 AND BETA 2 REFER TO
E. S. PEARSON AND H. O. HARTLEY BIOMETRIKA TABLES FOR STATISTICIAN!
VOLUME 1 CAMBRIDGE UNIVERSITY PRESS 1954 SEE PAGES 183-184
FOR TABLES OF
UPPER 0.10 AND 0.02 LIMITS OF BETA 1, AND
UPPER 0.05 AND 0.01 LIMITS OF BETA 2

10 FORMAT%42HTHIS IS PROGRAM/LIU 26.0.01/STAT-EATKS HJHc
16 FORMAT%14HENTER Z VALUESC
18 FORMAT%3F10.4C
40 FORMAT%5HRANGE,5X,F12.2/c

ILLUSTRATION 3

LIU COMPUTER CENTER

STATISTICAL AN~LYSIS LIU 26.0.01/HJH

NUMBER 11.
MEAN 14.4090
MAXIMUM X 20.00
RANGE 8.90

RELATIVE SKEWNESS * BETA
KURTOSIS *" BETA

VARIANCE
STANDARD DEVIATION
COEFFICIENT OF VARIATION

1
2

GAUSSIAN LIMITS OF DISTRIBUTION
68.72% *1 SIGMA*
95.45% *2 SIGMA*
99.73% *3 SIGMA*"

STANDARD ERROR OF MEAN eNo
eN-Ie

CRITICAL LIMITS OF MEAN
5%LEVEL
l%LEVEL

.1%LEVEL

12.6859
12.1408
11.5),66

MINIMUM X

.417558
2.003520

N

8.5022
2.9158

20.2362

11.4932
8.5773
5.6615

.8791

.9220

16.1322
16.6173
17.3015

CO/STATS 6

11.10

17.3249
20.2408
23.1566

N-l

9.3524
3.0581

21.2239

SUMX 15.8500E&01 X2, 23.7736E&02 X3, 37.1270E&03 X4, 60.2431E&04

o

o

,'nn.p,*"t,tH W"tVWMWkt"',II!'1it1w"".,'Wwlnhljj@j"" .. tttPlt'!! WHIrl' tufrer,"!'!!"'! un tt $' $''rtttit6trtH ±rtt -I" [", J IT'rr

o

o

I.

CO/STATS 7

The companion program, LIU/26. O. 02, about which we just spoke has
been used in our statistics classes to aid teachers in scoring the sta-
tistical laboratory projects of the students. We found, as undoubtedly
every teacher before us has, that a common laboratory project given
to a class often results in cooperative common effort. Either the
students divided the calculator work arrlong themselves or one student
does the job and the other ride on his coat tails.

In an attempt to make certain that each student benefits from working
with calculators in the statistics laboratory, we developed a series on
individual student projects. Each student is given a common worksheet
for layout of his work and indicating what statistical measures are ne-
cessary for the completion of the project. Although some duplication
of raw data is necessary because of the large number of students we
have taking statistics, we shuffle the cards before the printout if it is
necessary to prepare more than one copy of a printout of raw data.
Furthermore, the students are told the lowest level of the lowest
class interval and are instructed to use a specific class interval.

The teacher does not have to work each project out individually to check
the accuracy of the work of each student. Instead, LIU/26. O. 02 is used
and provides the teacher with a complete array and the common statis
tical measures required by the project. He uses t his printout, see
Illustration 4 I page 8 I to grade the studentts laboratory project and
gives the student a copy of the printout so that he has the worksheet
and answers.

Program Range of CO/STATS

Although CO/STATS was designed for use in statistics classes, it has
also been used in the introductory course in computer science. Likewise,
the same program, LIU/2b. 2. 01, Central Tendency - Mean, has been used
to acquaint statistics students with introductory FOR TRAN.

The program to compute a simple arithmetic mean is written in FOR TRAN
for card input and output. Each step is explained by using comment cards
so that the student knows what is being done. In practice, the program
has been processed with a trace so that computer science students can
follow the machine operation. Illustration 5 I page 9 I is a sample of
this FOR TRAN:teaching and statistical methods program.

ILLUSTRATION 4

LIU COMPUTER CENTER

LIU/26.0.02/HJH

CODE 13

CLASS INTERVAL
.000 - 3.999

4.000 - 7.999
8.000 - 11.999

12.000 - 15.999
16.000 - 19.999

SUMS OF DATA

oooOUTPUT ANALYSISooo

MEAN
MEDIAN
MODEoADJUSTEDo
STANDARD DEVIATION
QUARTILE DEVIATION

FREQ
10.
25.
40.
15.
10.

100.

9.600
9.500
9.500
4.363
3.200

D
•

1.
2.
3.
4.

CO/STATS 8

D2 FD
• •

1 • 25.
4. 80.
9. 45.

16. 40.

190.

COEFFICIENT OF VARIATION
SKEWNESS - PEARSON
SKEWNESS-QUARTILE
K-VALUE-CENTR
Ql 5.6000 Q3

FD2
•

25.
160.
135.
160.

480.

o
45.452
-.068
-.218
8.800

12.000

o I'll

111\

S-16 II

o

o

•

--tnT" "Sf

ILLUSTRATION 5 CO/STATS 9

C
C
C
(

C
C
(

(

(

(

(

C
C

c
c

C
C

(ENTRAL TENDENCY - MEAN

o CO/STATS 26.2.01 0

o COMPUTER-ORIENTEDI
STATISTICAl. TEACHING
AND TESTING SERIES c

DR. HAROLD JOSEPH HIGHLAND

DIRECTOR, COMPUTER CENTER
THE BROOKLYN CENTER OF
LONG ISLAND UNIVERSITY

INITIALIZATION OF PROGRAM 0 SET VALUES EQUAL TO ZERO
13 SUMXIIO.

(OUNT I/: O.
AVIIO.

FIRST CARD CHECK -- TELLS MACHINE TO CHECK FOR CARD TO READ
IF%SENSE SWITCH 90 1.1

INSTRUCTIONS ARE READ IN FORMAT -- 000.00 WITH CARD PUNCHED
WITH THE VALUES IN THE FIRST FIVE COLUMNS WITH NO DECIMAL POINT

1 READ 2,X
2 FORMAT%F5.20

START OF ACTUAL CALCULATIONS -- SUM OF THE X-VALUES, COUNTING
OF THE NUMBER OF (ARDS READ 0 EACH CARD HAS ONLY ONE VALUEc

SUMX 11 SUMX&X
(OUNT 11 COUNT & 1.

LAST CARD CHECK -- IF NO MORE CARDS, GO TO STATEMENT 11:3.
OTHERWISE, GO TO STATEMENT Ill', THAT IS READ THE NEXT CARD

IF%SENSE SWITCH 903,1
C AFTER LAST CARD IS READ -- THE COMPUTATION OF THE AVERAGE
C OR MEAN OF THE VALUES IS DONE

3 AV II SUMX/COUNT
C PUNCH AVERAGE IN FORMAT 00000.00 AND TOTAL NUMBER OF CARDS
C OR NUMBER OF VALUES READ IN FORMAT -- 000. AND TOTAL OF ALL
C VALUES OF SUM OF X IN FORMAT 00000000.00

PUNCH 4,AV. SUMX,COUNT
4 FORMAT%7HAVERAGE,F8.2,10X,6HTOTALX,Fll.2,10X,12HTOTAL NUMBER,F4.0ri.

PAUSE
C AFTER THE MACHINE READS A cPAUSEe STATE'MENT, IT HALTS AND WAIT
C I F YO U W I 5 H TOE NT ERN E W D A T A, YOU PRE S S 0 S TAR Te ON THE C O-N 50 L E
C AND THE PROGRAM FOLLOWS THE eGO TO 130 INSTRUCTION - BACK TO
C THE BEGINNING OF THE PROGRAM AND FOLLOWS THROUGH

GO TO 13
END

C AN oENDc STATEMENT IS REQUIRED IN EVERY FOR'TRAN PROGRAM

all
___________ -.J

CO/STATS 10

At the other extreme in introductory statistics are programs for testing
significance, both t and F tests, intracorrelation and rrllrltiple correlation
programs. In addition, special programs with applications for business
and economics majors, such as index number construction and linear
regression analysis, as well as programs for education and psychology
majors, complex analysis of variance and Spearrrlan rank order correla
tion' are included in the series.

CO/STATS is a dynamic series. We are adding about a program a week
to those already debugged and operating. Among the programs now in
"student use," that is usable by students without any additional help, are:

o Basic Statistics for Raw Data Analysis - LI U/26. 0.01

o Basic Statistics for Frequency Array Data - LIU /26. O. 02

o Sturges' Rule and Frequency Distribution - designed to indicate
the correct number of class intervals according to Sturges f rule
and the setting up of data in frequency array; these output cards
serve as input for a series of the 26. programs.

o Frequency Array Display - histogram presentation of frequency
array compiled in preceeding program.

o Data Conversion to O:rdered Array - transformati on of raw data
into an ordered array using "bubble sort" method developed by
Kenneth E. Iverson. 1

o Central Tendency Mean combination of FOR TRAN programing
and statistics for arithmetic average.

o Positional Measures - Median and Quarti les - for use with raw
data and includes standard deviation, coefficient of skewness based
on Pearson formula as well as quartile distribution, inter quartile
range, etc.

o Arithmetic, Geometric and Harmonic Means - for use with raw data
too illustrate characteristics of these measures.

1 For "bubble sort" method, see K. E. Iverson, "Programming Notation
in Systems Design," IBM Systems Journal, Volum,e Two, June 1963,
page 120; also see K. E. Iverson, A Programming Language, New
York: John Wiley & Sons, 1962.

o

o

o

o

fpllt' "ra

CO/STATS 11

o Dispersion and Variability - Standard Deviation - similar to
arithmetic mean program, combining FOR TRAN teaching with
basic statistics; requires two passes and verifies N.

o Hypothesis Testing: Tests of Significance - T -test - this permits
the use of the t-test with a series of arrays and obtains the
intra t-tests. See Illustration 6 I page 12 I for sample of output
of this program.

o Hypothesis Testing: Tests of Significance - F Irati 0 three
forms of input are possible under control of header card; this
was done with coordinate this program wi th others used for
research and teaching in our computer laboratory.

o Linear Regression and Correlation Coefficient - printout includes
correlation coefficient, test of significance, associated and un
associated variation, formula for forecast and permits the running
of projected estimates with the series.

o Spearman Rank Oeier Correlation conventional educational and
psychological correlation program.

o 0 Spearman Product Moment Correlation .. for use by education and
psychology teachers and students.

•

o Intracorrelation Analysis I Four variables intracorrelation of
all combinations pr-?duced by this program.

o Multiple Corrleation Analysis - simple multiple correlation program
for use with up to six variables.

o Least Squares Trend Line - for use by busi ness students in analysis,
and forecasts in times series analysis.

o Simple Index Numbers - for use with three items for a maximum
of 15 time periods, producing aggregate, geometriC, harmonic and
average of relatives indexes.

o Weighted Index Numbers - likewise for use with three items for a
maximum of 15 time periods, producing Paasche, Laspeyres, Fisher,
average cost and average of relatives indexes.

o Chi-Square X Test - for use with a 2x2 contingency table.

o Normal Curve Generation for Frequency Array Data - obtains
theoretical frequency by class interval for frequency array data .

ILLUSTRATION 6 CO/STATS 12 o

LIU COMPUTER CENTER

LIU/26.4.01/T-TEST - RATIO ANALYSIS/HJH

TEST DATA --MEAN-- VARIANCE NUMBER T
FOR SERIES cAe cBc cAe cBc cAe cBc

1 - 2 3.20 2.33 1.03 • 56 110. 115 • 7.307
1 - 3 3.20 2.33 1.03 • 56 110. 115 • 7.307
1 - 4 3.20 3.67 1.03 • 91 110. 113 • -3.548
1 - 5 3.20 4.10 1.03 ,,70 110. 112. -7.182
1 - 6 3.20 4.21 1.03 • 86 110. 114 • -7.745
1 - 7 3.20 3.45 1.03 .86 110. 111. -1.903

2 - 3 2.33 2.33 .56 .56 115. 115. .000
2 - 4 2.33 3.67 .56 .91 115. 113. -11.760
2 - 5 2.33 4.10 .56 .70 115. 112. -16.735
2 - 6 2.33 4.21 • 56 .86 115. 114 • -16.815 0 2 - 7 2.33 3.45 • 56 .86 115 • Ill. -9.963

3 - 4 2.33 3.67 .56 .91 115. 113. -11.760
3 - 5 2.33 4.10 .56 .70 115. 112. -16.735
3 - 6 2.33 4.21 • 56 .86 115. 114 • -16.815
3 - 7 2.33 3.45 .56 .86 115. Ill. -9.963

4 - 5 3.67 4.10 • 91 • 70 113 • 112 • -3.577
4 - 6 3.67 4.21 • 91 .86 113. 114 • -4.305
4 - 7 3.67 3.45 • 91 .86 113. Ill • 1.741

5 ,. 6 4.10 4.21 • 70 .86 112 • 114. -.931
5 - 7 4.10 3.45 .70 .86 112. Ill. 5.471

6 - 7 4.21 3.45 .86 .86 114. Ill. 6.118

o

lilt tS.ft». tit I ,"dt#1"t' 'tHNtdth t." il'll Itt ter
•• trw $ t t ttt if. #tfbrlt ""[0'"

o

o

•

CO/STATS 13

o Under construction at this time is a testi ng generator program
which will require that students write the necessary statistical
for-mulas, having been given the labels for basic statistics terms,
and which will produce numerical output. The student's printout
can be compared with the test printout to determine his accuracy
in statistical manipulation and his ability in FOR TRAN programing.

Several related programs, outside the 2b=series ,are usable in the teaching
of statistics. Two 'of these, for example, involve Gamma distributions as
well as Poisson distributions, the necessary elements in queueing theory
analysis. One of these, LIU/350. 21, "Basic Queueing Model," produces
an analysis of arrival and waiting time rates. Its format in printout is
easily understandable so that it can be used in business management
courses with students who have not had FOR TRAN. See Illustration 7
I page 141 for sample printout. The other program, LIU/350.20, "Queueing
Similation Model," is more in the realm of applied stati stics, but like
its companion, just mentioned, is usable in both statistics and management
courses. See Illustration 8 I page 15 1

Limitations of Computer in Teaching Statistics

Essentially the computer console and peripheral equipment should be part
of a classroom design or else there should be a remote console in the
classroom if the educational objectives of CO/STATS are to be achieved.
While considerable program can be made by using this method, there are
several constraints which are present on any campus.

o The available of computer time as well as its cost may require
only limited application of the CO/STATS programs.

o Time and ener gy of students are also limiting factors; this method
is somewhat slower than conventional teaching if we use standard
textbooks and lecture method; use of programed textbooks and visuals
in teaching may make it possible to proceed at a faster rate in the
classroom especially since we have high motivation on the part of
students since the computer is used.

o Finally, time and energy on the part of the teacher is also a con
straining factor. Until the teacher really organizes his materials
and integrates these with the computer programs and classroom
discussions, the use of CO/STATS puts a heavy drain upon the
teacher for the course .

ILLUSTRATION 7 CO/STATS 14

LIU COMPUTER CENTER

BASIC QUEUING MODEL/LIU/350.21/H.J.HIGHLAND

AVERAGE ARRIVAL RATE 2.00
AVERAGE SERVICE RATE 3.00

MEAN TIME BETWEEN ARRIVALS .50
MEAN NUMBER IN QUEUE 1.33

MEAN WAITING TIME .66

MEAN NUMBER IN SYSTEM 2.00
MEAN TIME IN SYSTEM 1.00

UTILIZATION PARAMETER .66 PERCENT
PERCENTAGE IDLE TIME .33 PERCENT

PROBABILITY OF N-UNITS IN THE SYSTEM CUMULATIVE
QUEUE LENGTH PROBABILITY

NONE .3333
1 .2222
2 .1481
3 .0987
4 .0658
5 .0438
6 .0292
7 .0195
8 .0130
9 .0086

10 .0057
11 .0038
12 .0025
13 .0017
14 .0011
15 .0007
16 .0005
17 .0003
18 .0002
19 .0001
20 .0001

.3333

.5555

.7037

.8024

.8683

.9122

.9414

.9609

.9739

.9826

.9884

.9922

.9948

.9965

.9977

.9984

.9989

.9993

.9995

.9996

.9997

o

o

o

I

leHwitftttMt tt' diur tdt_""r" "tT" PT""' "'"""11" !"If

o
ILLUSTRATION 8 CO/STATS 15

LIU COMPUTER CENTER

QUEUING SIMULATION MODEL/LIU/350.20/HJH

NO. ARRIVAL SERVICE
TIME -SERVICE- TIME IDLE WAITING QUEUE

BEGINS ENDS --TIME-- LENGTH

1 a 0 6 6 0 0 1
2 4 6 12 6 0 2 3
3 9 12 21 9 a 3 2
4 9 21 29 8 0 12 1
5 9 29 36 7 0 20 0

TOTAL 36 0 37

()
AVERAGE LENGTH OF QUEUE 1.40
AVERAGE WAITING TIME 7.40
AVERAGE SERVICE TIME 7.20

UTILIZATION OF SYSTEM 100.00 PERCENT
IDLE TIME FACTOR .00 PERCENT

•

~-.-.-.----~.".-~~-~---------------------~

CO/STATS 16

Availability of CO/STATS Programs

Integration of the computer and the teaching of statistics is progressing
on several campuses. Among those with which I am comparatively
familiar are the work done by E. E~ Remmenga and Wade Halvorson
and William Owen at Colorado State University, Thomas E. Kurtz at
Dartmouth and Nat Goldfarb at Hofstra Universit y.

I am beset by several decisions in making this series available to other
institutions. First, the series is not finalized, but this will no longer
by a problem by the end of the year.

Second, I am torn between making these available as part of a book,
which one of the publisher s would like to produce, or tur n them over
as a package to the 1620 Users Library. My interest in CO/STATS
is that of a teacher and not a programer. Although publishing another
book is looked upon with favor in the acedmic community, I feel that
these program$ are so fundamental that they would do more good if
they were available on cards immediately and be accompanied by special

o

manuals. Until that decision is made, however, I should be happy to 0
make CO /ST ATS available directly from the LIU Computer Laboratory
to any of you who wish to use these programs at your school. I am
preparing a brief bibliography on the series and shall forward this upon
request. Those wishing any specific program, or even the series, will
then be able to obtain the nece s sary cards from my office.

There is, however, one condition which I place upon my sending of the
program cards to any individual. I should like to hear from you and
learn about your experiences in teaching statisti cs with computers. True
maximization of teaching effort is a cooperative venture; maybe you'd like
to join with me in forming a group to advance this area.

Dr. Harold Joseph Highland
Director, Computer Laboratory
The Brooklyn Center
Long Island University
Brooklyn, New York 11201

User 1#1429

Sly

t i,~
I'
r:,

I

o

()

Introduction

Presented to Eastern
Midwestern Users Group
Conference, New York
City, October 7, 1965

BATCH LOAD AND GO STEPWISE
MULTIPLE LINEAR REGRESSION PROGRAM

by
Kenneth L. Daniels

Instructor in Mathematics
North Dakota State University

Fargo, North Dakota

It frequently happens in an experimental situation that one
is concerned with the problem of estimating or predicting the value
of one variable from a knowledge of other variables. It is desirable
to express the relationship in mathematical form by determining an
equation connecting the variables. This equation, called a regres-
sion equation, is of the form

where the variable Xl is called the dependent variable and the
variables X2, X3 ••••. Xn are called independent variables. In
addition to determining the equation that best fits the data sup
plied, it is advantageous to have some measure of the goodness of
fit of this equation. Some means is necessary to determine if the
best estimate of the dependent variable comes from a regression
equation containing one variable or several variables or even if
any estimate of the dependent variable is significant.

The purpose of this program is to provide enough information
to determine which variables, if any, add significantly to the total
regression and to provide the equation of best fit including those
variables.

Discussion of the Program

At N.D.S.U. a considerable amount of regression data is
processed. The program that was being used to process this data
had a rather complex header, transformation and input format. In
addition, the program would not a1iow batch running of data. There
fore, it took a considerable amount of' time to process data, becatise
time was wasted readin~ in the program for each run. Since N.D.S.U.
has an open-shop policy, people who had a need for the results of
the program were required to know how to run it. Much time was
wasted by these people in trying to figure out how to run the
program and prepare the input data. In order to minimize the
total running time by allowing batch compiling and to ,provide
a larger group of users with an easy-to-underst~and p:J;:-ogram, it

4It was decided to write a new version of this program.

2

The program was written in Fortran II in order to simplify
coding and to allow easy changing of the transformations available 4()
in the program. The program is written for 40K 1620 with card I/O
and makes extensive use of the Column Subroutine, No. 1.6.086 in
the Users Group library. The Column Subroutine provides the capa-
bility of examining any card column of an input card before deciding
on which format the input card should be read in. This allowed a
simplification of the amount of data required in the header card
by providing an easy method to differentiate a transformation card
from a data card without indicating in the header card that a trans
formation was to take place.

The solving of simultaneous equations was done by means of a
matrix inversion subroutine which was written in Fortran II and
compiled separately from the main program. This was done in order
to allow easy replacement of the matrix inversion subroutine if
desired. The changing of the transformation by the user, although
easy to do in the source program, would require recompiling of the
main program.

The program was written to allow only ten variables (one
dependen t and nine independen t) to be processed. This may be in
creased by increasing the numbers in the Dimension statement and
by changing an IF statement at the beginning of the program.
However, this program is using all but about 2000 locations in
memory and care should be taken so that overflow does not occur.
If a 60K memory is available the dimension statements may be in- 0
creased to take advantage of the additional memory. The only
restriction on this point would be the size of the matrix which
the matrix inversion subroutine is capable of handling accurately.

Input

The first input card (the header card) is written in the
following format:

Col. 1

Col. 2-3

Col. 4-80

(1) An asterisk if the program is to give full
output, or

(2) a dollar sign if the program is to inhibit
the stepwise ~egression output and only give
the standard statistic output.

The number of variables (right justi'fied) included
in the regression.

Any information desired to identify the data.
This information will be reproduced on the first
outpu t. -card.

Transformation cards

Transformation cards may be included if desired. If they are 0
included they are in the following format. One card is used for
each transformation desired.

o

o

•

Col. 1-2 The number of the variable to be transformed
(right justified)

Col. 3-4 The type of transformation (See paragraph on
Description of Transformation.)

Col. 5-10 Information included in these columns is ignored.

Col. 11-36 Transformation constants, if needed, written in
either E or F format. Must include decimal point
and must be right justified only in the case of
E or F format.

Col. 37-80 Not used.

Data Cards

Data is read in either E10.0 or F10.0 format, a maximum of 8
variables per card. The first variable is the dependent variable.
A second card may be used for each set of observations if more
than 8 variables are used. If more than one set of data is to be
processed, the header card for the next set of data serves as a
trailer card for the preceding set of data. If only one run is
included, data input is terminated by a last card indication.

Description of Transformations

1. EXCH, EX, EXCHANGE - to exchange any variable \vith the dependent
variable

Example #1: 02EXCH

Variable number 2 becones the dependent variable and variable
number 1 becomes the independent ¥ariable.

Exaelp1e #2: ~'~ 05 HE.-\D ER CARD

']SEXCH 10.

According to the header card, .J \-ariab1es are included in the
re~ression (1 dependent and ~ independent) however, the vari
able desired as the dependent ¥ariab1e is listed as variable
nunber 9 on the inpu t card. The or igina1 dependen t -var iab1e
~i11 be moved to position 9 and hence be ignored in the
regression. The 10. in the transfornation constant position
indicates that 10 variables are being read in although the
header card indicates that only 5 are being processed. The
transfornation constant nust be included Nhenever the number
of \"ariab1es included is s:reater than the number listed on the
header card and if the ad2itiona1 variables listed requires
another card of input data for e,ach set of observations. The

3

4

transformation constant indicates the total number of variables 0
that are being read in which may be larger than the number
actually processed.

2. LOG - The transformation will substitute the log of a given
variable for the actual variable.

Example: 04LOG

Each observation of variable number 4 is replaced by the log
of the observation.

3. LN - This transformation is the same as 2 except the number
is replaced by the natural log.

4. SQ, SQR, or SQRT - This transfo'rmation replaces the variable
with the square root of the variable.

Example: 04SQ or 04SQR or 04SQRT

Each observation of variable number four is replaced by its
square root.

5. ** - This transformation replaces the variable with the variable
to any power.

Example: 02** .5

Each observation of variable number 2 is replaced by the square
root of the observation.

01** 2.0

Each observation of variable number 1 (dependent variable) is
replaced by the observation squared.

6. * - This transformation replaces the variable with any number
times the variable.

Example: 04-/\ 3.25

Each observation of variable number 4 is multiplied by 3.25.

Q3* 4.7E-09

Each observation of variable number '3 is replaced by .000000004
times the observation.

o

c

o

C

300

C
C
C
C
C

7196
400
1

4112

595

730
731

132

()C

•

C
C
C

4
C
C
C
C
C
C
C
C

376

71

2018
2011
7017
3011

4647

4649
4648

STEPWISE REGRESSION K DANIELS NORTHDAK,OTA STATE UNIVERSITY
t. I MENS ION Xl 10) .SUMX(1 0) ."ROD~(10,10 ,.VALUE(10) .ER (10), lOENT'(10) t

1 R (10.11).,VAR ,(l 0) .ANS', 10 l. ALPHA (19) .Sf) (10 ') ,tc.:TYPE (10) ,C.ON5T'(10).SE (1
10)

COMMON VALU'E t ER ,R
NUMB=O
KOD23,.1
'KOUNT=O
N-NUMB
I F ('SE N 5 E SW I TC t1 9) 119'6 , 71 '9,6
READ IN THE TOTAL NUMB'ER OF VARIABLES 10 MAXl,.UM, THIS INCLUDES
THE DEP,~NDENT VARIABLE. THIS NUMBER SHOULD BE IN CO'LUMHS 2 AND 3
COLUMN 1 SHOULD CONTAIN AN * OR $ IF MORE THAN ONE
,SET OF D,AlA IS TO ·BE RUN. COLUMNS 5 THROUGH 80 SHOULD CONTAIN THE
DATE, PROBLEM NUMBER, NAME AND ANY OTHER PERTIMANT IKFORMATIO·N.
GO TO(400,4112),K0023
READ 1,KOL.N,(ALPHACI1.I=1,19)
FORMATCAl,I2.19A4)
KOL23=KOL

KOD23=1
NHaN
KOL·~OL23
NOTR::rl
PUNCH 59'S, (ALPHA(1) ,1=1,19)
fORMATt 3X"l'9A,4)
IF(N-11731,7~1.730

IFCN-I0)732.132.731
TYPE=.48,.459
GO TO 66
K="-l
XN-N
READ IN THE DATA C.ONSISTING OF THE DEPENDENT VARIABLE IN COLUMNS
1-10 AND THE REMAINING NUMBERS I'N SUCCESSivE COLUMNS IN GROUPS OF
10. GO TO A SECOND CARD IF NECESSARY BUT START E,ACH NEW DEPENDENT
VARIABLE IN COL 1-10 OF THE CARD.
00 4 1=1.1"4
SUMX1I)=O.O
DO 4 J::ltN
PRODX(I,J)=O.O
TRANSFORMATIONS. TRANSFORMATION CARDS FOLLOW THE HE·ADER CARD ONE
CARD FOR EACH TRANSFORMATION DESIRED. THE TRANSFORMATIONS Al,LOWED
ARE LOG, LN. SQRT,VARIABLE TIMES ANY CONSTANT.C*) VARIABLE TO ANY
POWER(**) AND EXCHANGE ANy VARIABLE WITH THE DEPENDENT VAR1ABLE
(EX). THE TRANSFORMAT I ON CARD CONT AIIMS VAR IABLE NUMBER IN COt.. 1
AND 2 THE TYPE OF TRANSF STARTING IN COL 3 AND THE TRANSFORMATION
CONSTANT IF ANY STARTING IN COL 10 WRI1TENWITH D£CIMALPOINT OR
IN E FORM.
DO 316 I=l,N
KTYPE(I)=l
DO 2015 1=1,10
KOL3=COlUMN(3)
IF(KOL3-3)2016.2016,2018
IF(KOL3-70)2017,2016.2016

IF(KOL3-10)1011.2Q16,7017
IfCKOL3-20)3017.2016.3017
READ 2099.!Dl,KIND,CONSTfJDI)
GO TO (4647,46,48) ,NOTR
PUNCH 4649
NOTR=2
FOR~AT(15HTRANSFORMATIONS/)
PUNCH 2099, IOl ,KIND,CONST:(}:91)

5

209'9

76
I 60

61
6·2
63
5356

62'S·8

1414

1400

4567

1019
lOIS
1020
1022
1025

2015
366

64
66
65
69

67
671

68
C
C
(

(

C

2016
I 7

402
444

I 9

(

C
C

8016

1012

1013

1014

FORMAT(I2.A2.7XE2S.0)
I'F (K I NO-53560) 76.5356,16
IFeKIND-53550)60,5355,60
IFCKIND-(2580)61,6258.61
IF(KIND-14140)62.1414,62
IFeKIND-14000)63.1400.63
IfeKIND-45670)64.4561.64
KTYPE'C l01) =2
GO TO 2015
KTYRE C, I'Dl}-'
GO TO 201'5
KTYPE(IDl) =4
GO TO 2015
K,TVPE (IDI) =-5
GO TO 2015
KTYPEtIDl)=6
GO TO 2015
KTVPE(I'Ol)-7
IF(IDI-N)1018.1018,1019
,,"=101
IFC(ONST(IDl)l64,2015,1020
IF «(ONST (101)-10.) 1022.1022.64
IF(CONST(IDl)-1.l2015.'4.1025
rit4=CONST (IDI)
IFCNN-N)2015,2015,64
CONTINUE
TYPE-.4-4416)41
GO TO 66
TYPE=.635955
PUNCH 65,TYPE
FORf'tAT(lOXA4.2X5H.ERROR. 58XIH-)
KOLI-COLUMftCl)
IF(KOll-14)67.30Q.67
IF(I(OLI-13)611.300,617
READ 68
FO'R'MAT (lH)
THE PROGRAM WILL STOP READING DATA WHEN A LAST CARD INDICATION IS
RECEIVED O·R WHEN IT READS A CARD WITH AN * OR $ IN COLUMN ONE
THE CONTENTS OF THIS CARD WILL BE STORED AND USED AS THE HEADER CARD
THE NEXT SET OF DATA. THE PROGRAM WILL NOT STOP BETWEEN SETS OF DATA
IF PROGRAM SWITCH 1 IS ON
IFeSENSE SWITCH 9)614,69
IF(SENSE SWITCH 9)8,7
KOL1=COLUMN(I)
IFCKOLl-14)402.114,402
IFCKOLl-13)444.114,444
READ 9,(X(I),I=l,NN)
FORMAT(SEIO.O)
KOUNTaKOUNT+l
COMPUTE THE SUMS OF EACH VARIABLE. THE SUM OF .THE CROSS PRODUCTS
OF EACH PAIR OF VARIABLES AND SUM OF SQUARES. PRODX(3,4) MEANS
SUM 0 F X (3) * X'(..)
CO TO(8015,8016),NOTR
DO 72 I=l,N
KTR=KTYPE(I)
GO TO (12,1012,1013,1014,1015,1016.1011).KTR
X(I)=.43429448*lOGeXtI)
GO TO 72
X(I 1 = LOG (X (I))
GO TO 12
X(I)=XtI)**.5

o

FOR

o

0

0

0,
"

1015

1016

1017

72
8015

10

C
114

8
2224

2222

2223

98

74-

C

7777

88'S8

C

2225

2226

2228

2227

2229

2230

2164

22'"31

2232

GO TO 72
X(1) = X (I) **(ON ST (I)
GO TO 72
X1I)=X(Il*CONST(11
GO TO 72
WORKmX (1')
X'(I)=xt1)
X(1) =WO'RK
CONTINUE
DO 10 I=I.N
SUMX(I)=SUMX(IJ+X(I)
DO 10 J=ltN
PROOX (I • J) -X(I) *X'(J)+P'RODX (I.J)
GO TO 2016
PUNCH OUT THE SQUARES AND CROSS PRODUCTS
READ 1.KOL23.NUMB.tALPHACIJ.I=I.19)
KOD23=2
PUNCH 2224tKOUNT
FOR'MAT (I4.13H OBSERVATIONS)
PUNCH 22,22
FORMATC/17HSUMS OF VARIABLES)
PUNCH 2223.(SUMX(IJ,I=1,N)
FORMAT(5E16.8)
PUNCH 98
FORMATt/26HSQUARES AND CROS.s P'IODUCTS)
DO 74 I=ltN
PUNCH 41, (?RODX(I • J) ,J- 1.1'4)
COUNT=I(OUNT
COMPUTE AVERAGES
DO 7777 I-l.N
SOCI)=SUMX(I1/COUAT
PUNCH 8'888
FORMAY't/8HAVERAGES)
?UNCH 2223." SO (.1'1 .• I -I, N)
COMPUTE VARIATIONS
00 2225 I=l.N
DO 2225 J=I,N
PROOX(I.J)=PRODX(I.J)-SUMXtI)*SlJMXtJ)/COUNT
DO 2226 I=l.N
VAR(I,=PROOX(l.I)
SO (I) =PROOX(I • t) *'*.5
PUNCH 2228
FORfIlATC/18HSTANDARD DEVIATION)
PUNCH 2227,(50(1).I=I,N)
FOR'MAT (5E16.8)
PUNCH 2229
FORMATt/35HRESIOUAL SQUARES AND CROSS PROOUCTS)
DO 2230 1=1,,.
PUNCH 41 "t PROD X (1 ,J) ,Js I ,N)
PUNCH 2764
FORMAT(112HCOR'R'ELAT IONS)
DO 2231 1=1.K
IX=I+l
DO 2231 J=IX,N
PRODX (r • J. -PROOlet I .J)I tso fl)'*5D (J;')
PRODX:(J,. I' =PR<()OX (I ,J)
DO 22'32 1= l,N
PROOxtI.I)=1.0
DO 2'233 I *1,N
PUNCH 41. (PRODX(I .J,) ,J=I tN)
STERR=SDtlll (COU'NT-l.) * •• 5

7

PUNCH 2234.STERR
2234 FORMAT1121HSTD ERR OF D'EP 'tAR:: .El4.B)

IF(KOL-13000)613,3131,613
C COM;PUTE THE COEFFICIENTS FOR THE SIMPLE EQUATIONS AND THEIR F
C VALUE THEN PUNCH our THE EQ WITH THE H:I'GFtEST F VALUE.
C THEN PROCEED BY BUILDING OMTO THE BEST.
613 IDENT(1) :: 1

DO 617 I=2,N
61 7 I' DiE NT (I .) :: 0

DO 136 KK=2,N
1(1 =K'K-l
EXPl-O.O
00 126 1-2,.
1t)'ENrCK.K "-I

C CH.ECK TO SEE IF VAR lABLE NUMBER I HAS ALREA,DYB~E:EN USED
I'F (K 1-1 ~61'5, 615 ,616

616 DO 81 JJ=2.Kl
IF (IDEHr(JJ) I) 87. 12-6,87

87 CONTINUE
61S DO 815M=2,KK

I:ON-18£11·(M)
ER(M-l) .PRODX::C 1.ION'J
00815 f'lM=M. ~'J(
lOKI: IDEM T(M.M)
R(M l.MM-l) =PRO£)X':(10K, lON)

8,1:1 R("'-1,14-1)-PR'ODXt leI(, lDN)
IF (Kl-l» 819,819,820

. 8 20 CAUL SOLU:T'N(R, ER.Kl.VAL.UE,KERR)
GO TO (3QS,300),KERR

819 VALUE(lt=ERC1)
305 DO 909 L-2.K'1{

11>11(1- I·,.ENT(L)
909 VALUE(L-l)=VALUECL-l)*SDfl)/SOtTDNl)
C COMPUTE TH:E EXPLAINED VARIATION AND COMPARE IT, WITH THE LARGEST SF
C TH:E PREVIOUS EXPLAINED VARIATION FOR THE SAME NtlMBEROF vARIABLES

XPL=O.O
DO 97 IZ=2,KK
IDN-IOEHT(IZ·:)

97 XPL-VALUE(IZ-l) *VAR (ION)+XP'L
I':F (EXPL-XPL) 101,126,1·26

101 EXPt-XPL
10-1
DO 77 1'2--1tKl
SE C 12) -R (12.12)

77 ANSl12)-VALWEl12 •
126 ,(QNTINtJE

UN EXs:\lA R (1 .,·EX P'L
lDENTf"K)=IO
COEF-G.O
XK:;K-KK
S,TERR- C·;'UNEXICCOUHT"'XI.K)) *'*.5
DO 8866 L-l.Kl
ION= lDENT(L+l;)
Sf!'(l) aSTERiR/SD (1.014)*SE·C L)·.*.5

8.866 COEF=SUMX"(IDN)*ANS(L l+:CO'EF
CO E:F:= tSt1JMX'{ 1)·-CO EF1/COtlNT

C COMPUTE F AND PUNCH OUT F AaO THE COEF'FICI:ERTSO·F TH.E.8ES.T
C EQUATI014 WITH Tff,E Gl VENNUMBER OF UNJt:NOWNS

F=EXPl*(COUNT-XKK) It(XKK-l •. J *fUNEX)'
IF(KK-2)201.201.200'

200 Fl-(EXPl-XPLN)*(COUNT-XKK)'UNEX

o

o

o

o

o

o

201

1802

203
1001
209

202
208
136
1002
17
3'1'1

249
2·830
614

41

XPL~'=EXPL
PUNCH 1802.1(1
FO:RMA Tt·:/lI011S:T'EP'fU) • I 2)
PUNCH 22'J:4, STe: RR
PUNCH 10,02. Co-EF
PUNCH 1001
Ptl'NCH 11.(lDENT:(L+'l),AMS(L) ,SE (L) ,L-l, K1 ~
IF (K:K-2) 202.202,203
PUNCH 209,F,Fl
FO~MAT'(;.l10XIIHVARIABLE NO.15.X4HCOE'Fl5X17HSTD ER'R8R' OF COE'F,
FOR,MAT'(3ft'F- tEl'S. 8, 5X15H'IMPROVEMENT Fe • E15.8)
GO TO 1"
PUNCH.208,F
FORMAT. 3HF= ElS.8.)
CONTINUE
FORMAT (8HCOftST AN T. 5XE lit.·a.)
FORMAT'(15 X 12,1.'3 X E14. 8 ,1;::1')(E 14'.8)
PUNC!H 249

FO"RMAT(79XIH-',
IF (:SENSESWITCH 1) 300,614-
PAU'SE
GO TO 300
FORMAT'15El·6.8)
END

9

10

C SUBROUT INE FOR SO'LVING SIMULTANEOUS EQUAl I C),NS BY MATRIX I NY·ERS lOft
C METHOD 10 UNK:MOWNS MAXIMUM

SUBROUT I HE SOLUTN (R, ER.'K.,VALUE·,KERR)
KERR=l
DIMENSION R(IO.l.l),ER(10).VALUEC10)
COMMO'N VALUE.ER.R
K'X=K+l
DO 33 t-1.K
DO 48 L-l.K

4:8 R (L • KX) =0.0
R(I.KX).l.O
IF (R· C I. 1·'):·,34,101 .• 34

34 T I-RtI .. ,l J
DO J5 ;-1.K·X
TRzRfr,J)ITl

35 R(I,J)-TR
IX=O
IF(I-I() 37 .38 ,1 0 1

38 MX=I-l
MY-I
GO TO 39

37 MY-I+l
~'X=K

39 DQ 40 L=MV.MX
IX=IX+l
TI--R fl.l)
DO 40 J-l,KX
TR=RCI.J)*T1

40 R(L.Jl-R(L.J)-TR
1Ft 1-1) 101.44.45

4'5 IF (:{ K-l »-'IX) 101,44.38
44 DO 46 L=ltl{

00 4,6 J*l.K
NU-J+l

4·' R (L,J) -R 4L;,NU)
3'3 CONTI HUE

0054 I =Itre
53 VALUE(lt-O.O

ll)O 54 J=l.K
Tl-RC!,Jl*ERCJ.

54 VALUE(I "-VALUE (11+T1
RETUFU4

101 KER:R-2
RETtJR:N
END

o

o

II,m II ! tttttl!Imgree WI : ! t t : il I I lIt" 11 ** bittt' tit [f"i#*

0

o

~ 3 SAMP'LE DATA
64. 57. 8.
71. 59. 10.
53. 49. 6.
67. 62. 11.
55. 51. 8.
58. 50. 7.
1i. 55. 10.
57. 4,8. 9.
56. 52. 10.
51. 42. 6.
76. 61. 12.
6,8. 57. 9.

SAMPLE DATA
12 OBSERVATIONS

SUMS OF VARIA;8LES
.7'5300000E+03 .64300000E+03

SQUARES AND CROSS PRODUCTS
.4813'900·OE+05 .40830:000E+05
.348ft:3000E+05 • 57790000E+04
.97600000E+03

AVERAGES
.62750:000E+02 .5358333:3E+02

STANDARD DEVIATION
.29803522E+02 .1~720977E+02

RES IDUAL SQUARES AND CROSS, PftODUCTS

.106000·00E+03

.67'96 OOO:OE+O 4

.629'8147'8 E + 01

.88825000E+03 .481150'OOE+03 .14450'O'OOE+03

.38891700E+03 .99166700£+02

.39666670E+02

Co"~RELATIONS

.10000000E+01

.10000000E+01

.10000000E+Ol

.8'196,4483 E + 00

.79840751£+00

STO ERR OF DEP VAR· • 898:610'05E+O 1

5TO ERR OF O'EP VAR 1& .539'91481E+Ol
CONSTANT -.3'6,23:47.6'6E+01

.76981'687E+OO

VARIABLE NO
2

.20470855E+02

COEF
.12386963E+01

F=

STEP NO. 2

STD ERR OF DEP VAR = • 53'6,32176E+O 1
• CO;NSTANT .36512741E+01

F=

VARIABLE NO
2
3

.10940248E+02

(OEF
.8:5460836E+OO
.15063353E+01

IMPROVEMENT F- .11344373E+Ol

11

STO ERROR OF COEF
• 2737'1690E+O

STO ER:R:OR OF COEF
• 4516,64,2:3 E+ 0
• 1414'2:6:65 E +0

Mathematical Discussion

The following is a list of the output available along with
some of the formulas used

K = number of observations

Sums of variables

Averages

Sums of squares and cross products

N = number of dependent
plus independent
variables

Residual sums of squares and cross products

Lx-x -= Lx-X _ - LXi • L X j
1 J 1 J K

Standard deviation

Coefficient of correlations

r· . 1J

Ix-x-1 J

Standard error of the dependent variable

The following calculations are repeated for each entering variable
at each step.

The partial regression coefficien ts bl i 'are computed by in
verting the ma~rix of the_ correlation coeff1cients included in the
regression and multiplying this by the matrix consisting of the
corre_ation coefficients of the dependent variable and each inde
pendent variable included in the regression.

thus

12

o

o

o

0

()

o

and b· b1 .
61 = . Q.i 1 ,1

i~2

Constant

b1 = Xl - L b-X-1 1 i = 2

The explained variation for step i is computed as follows
N

V' = b- ~ Xi
2

•
1 1. 2 1=

The unexplained variation for step i is given by

ui=Lx12_V

Standard error of the dependent variable at each step

13

M = the number of variables in the regression
at the given step.

Of the vaiiab1es remaining at each step only the variable providing
the largest explained variation is included in the regressiq,n.

The following calculations are made once for each step.

Standard error of the regression coefficients

sbi = ti jQii

Qii = the ith main diagonal element of the inverted matrix of
the correlation coefficients.

Fisher F test

F = Vi/(M-l)
Ui/(K-M)

Fi = improvement F for the entering v~riab1e

Vi+l - Vi
F1 = Ui+l/(K-M)

All output ftom the program is in_the for.m of cards. If an error
should appear in the header card any transformation card or in a
data card, a card will be punched out indicating the type of error
and then the remaining cards will be read in at full reader speed
until the header card fo.r the next batch of data is encountered.
The last output card for each run will contain a minus sign in
card column 80. This may be used to cause- the IBM 407 to start
a new page.

14

In order to save as much space in memory as possible the same 0
array was used in storing averages and standard deviation. Also
the same array was used to store the sums of squares and cross
products, residual sums of squares and cross products and corre-
lation coefficients. In addition, a common area was set up for
some of the arrays used in the subroutines and the main program.
The calculation time for the program is approximately 5 minutes
for five variables and about 20 minutes for 10 variables. This
does not include the time needed to read the input data.

Bibliography

Anthony Ralston and Herbert S. Wi1f, Mathematical Methods for
Digital Computers, Wiley Publishing Co., 1960.

Murray R. Spiegel, Theory and Problems of Statistics, Schaum
Publishing Co., 1961.

S3~

o

o

I bCM ruT? ijj'"! f" -- m·T!"·:.r.: W't! . ·mfljlT . 'W""VrdltT . rrr
"","Util

o

o

o

A NEW APPROACH TO INVESTMENT ANALYSIS

There are three commonly used approaches to investment analysis:

1) The Accounting Method

2) The Discounted Cash Flow Method

3) The Present Value Method

These three approaches meet most of the standards which can be set for a com
plete and logical approach to investment analysis. However, they are lacking
in t't'110 areas:

1) The treatment of the Cost of Money, which is unique for each
approach and causes the three methods to rank projects in
different relative orders.

2) The nature of the final result or index figure generated, which
causes the absolute values computed to differ sharply from method
to method.

The Equivalent Annual Amount (EAA) method offers the needed improvement. It
permits the user to 'select that Cost of Money which will correctly reflect
the financial setting of a project. EAA further expresses its answer in
terms of the Rate of Return which is the most commonly used and most widely
understood measure of economic performance.

The basis of the EAA approach is the "Equivalent Annual Amount", a value which
may be understood as the time adjusted average of a series of values. Mathe
matically the ~~ can be expressed as: .

It Jan
i Ct +i) '" R--' ~
CI+i)n-1 f.i J(I+ i)j fAA :

where n = life of the project
i = cost of capital

Rj = values in the time series to be averaged.

To calculate the EAA Rate of Retur~, it is first necessary to calculate the
EAA for the projected time series describing Net Income, Depreciation, and
Unrecovered Investment Balance. The EAAs are then related to each other as
if they were the values of an income statement to expre,ss the EAA Rate of
Return.

An analysis of the mathematical realtionships between the different methods
reveals that EAA ranks projects basically in agreement with the Present Value
method. The superiority of this ranking pattern has been discussed in several
publications.

- 2 -

The Rate of Return as computed by the EAA method is identical- to the Accounting
Rate of Return when the cost of money is selected to be 0%. The Rate of Return
as computed by the EAA method is identical to the Discounted Cash Flow answer
when the cost of money is selected to equal the Project Rate of Return. This
means EAA is not in disagreement with the methods now in use but simply adds a
new .dimension of flexibility by giving the user the choice of selecting the Cost
of Money.

EAA thus proves to be a concept on a level one step above the Accounting Method
and the Discounted Cash Flow Method, because EAA can describe the general
investment analysis model and can express the Accounting Method and the Dis
counted Cash Flow Method as special cases within the general framework. EAA
could well be the first step to a unified and comprehensive theory of invest
ment analysis.

For a more detailed description of the EAA system, refer to "The Equivalent
Annual Amount Method - A New Approach to Investment Analysis" by L. C. Raney,
K. A. Rist, and H. A. Wiebe, NAA Bulletin, April 1965, Section 1.

K. A. Rist

o

o

o

mn.N!!W*' Ittt"nt"Wt¥f"'mt"'W!!L'tt 'f Nt' j t t : j tt ¥)" ·ttr» fLtt t 't M. ft ... *, trl ""rrl !. il" roo I" r"'" 00

o

o

•

A RELOCATABLE SPS SUBROUTINE FOR EDITING AND ROUNDING OUTPUT DATA FOR
SCIENTIFIC TABLES AND SIMILAR APPLICATIONS

w. N. Tuttle, General Radio Company

ABSTRACT

The need is discussed for a general-purpose subroutine for
fitting an output quantity to an allocated space and rounding to the
required number of digits. An SPS subroutine is described which
gives unbiased rounding and shifts the decimal point to handle as wide
a range of values as possible without resorting to exponential format.
The subroutine is relocatable and is added to the regular fixed-length
subroutine deck.

A RELOCATABLE SPS SUBROUTINE FOR EDITING AND ROUNDING OUTPUT DATA FOR
SCIENTIFIC TABLES AND SIMILAR APPLICATIONS

W. N. Tuttle, General Radio Company

Introduction: The Need for a General-Purpose Subroutine for Editing OUtput
Data

It seems to me that it is no longer enough for a computer to gi ve
us the right answer. It should put the answer in the form we want it in,
either for transmittal to a non-programming reader, or for publication. The
form of the output should, without editing, meet the standards of the
scientists and of the professional journals. I think that by now we should
be able to publish a book of tables directly from the computer output and
avoid the danger of introducing errors in a separate editorial process.

Let's look at some of the problems we run into when we make a
table of computed quanti ties and don It want to resort to exponents. One
of the most bothersome is that we have to allow more space than we like,
either because of uncertainty about the range that will be required, or
because of the limitations of the available formats. If we use the Fortran

o

conversion specification 10F4 we would get, over the range of exponents ~}
that can be covered,

.0000

.0001

.0012

.0123

.1234
1.2345

12.3456
123.45b7

1234.5678

As a first improvement we can make it possible to maintain
precision with small values by shifting the decimal point to the left when
there are leading zeros. This keeps the same nrunber of significant figures
until the available width is used up,

.00001234
.0001234

.001234
.01234
.1234

1.2345
12.3456

123.4567
1234.5678

C'

I

II

i.

rI ''D't'!) t't'HtHxtrrNf tu't'tttttMtrtMtWti\eW' , 1't tt 1t1 t t 1. N ** 4ft t &#tC" ¥ It

o

o

•

SPS SUBROUTL1\fE Page 2

We can make a second improvement by reducing the number of
decimal places for large numbers to keep within the specified width.
This means shifting the decimal point to the right. This avoids excess
figures and greatly extends the range of values that can be covered •

• 000000000
.000000001
.000000012
.000000123
.000001235
.000012346
.00012346
.0012346
.012346
.12346

1.23457
12.34568

123.45678
1234.56780
12345.6780
123456.780
1234567.80
12345678.0
J.23456780.

ov

This shows the range of outputs when both left and right shifts are used
together. Here the nominal number of. decimal places is 5. For small
numbers the left shift keeps 5 significant figures until the width is used
up and then a constant number of decimal places until the field is all
zeros. For large numbers a constant number 01' decimal places is kept as
long as possible, and then the decimal point is shifted to the right until
the decimal point occupies the last position in the output area. Note
the enormous range of values that can be covered.

A particularly useful specification is available in the common
case where the left shift is not needed. If, for example, four places is
enough for small numbers and four significant figures for ~arge numbers,
we can use the right shift only and allow a width of only 5 positions.
This gives

.0000

.0001

.0012

.0123

.1234
1.234
12.34
123.4
1234 •

This specification is particularly useful. when many columns of data are
required on a page and fuli use must be made of the entire width.

SPS SUBROUTINE Page 3

This last example would require a width of 6 positions for
negative numbers. A minor feature of the program is that it checks for
the sign and allows an extra space for positive numbers. The Fortran
F specification does not do this.

For many applications in a~cineering, science and statistics
tables are needed with only 3 or 4 significant figures, but these. figures
must be accurate, and proper rounding rather than truncation is essential.
It is not satisfactory to give more figures than needed and let the user
do his own rounding. This wastes the user's time in addition to vlasting
space.

Many of you have used the rounding system in which 5 is added
in the first remaind.er column. This is not hard to do for a fixed number
of retained digits, but it becomes messy when the number of retained
digits may vary from 1 to 7 with an 8-digit mantissa, as in a g.eneral
purpose output data conversion program. For this reason truncation is
the rule in the IBM subroutines.

Since rounding is needed, let's do the job right. The I1half
addu rounding procedure tends to make the average of the rounded values
slightly greater than the average of the unrounded values. All changes
are upwards so the method has been called "up-rounding". Small differences
in averages are fre~uently important, particularly in statistics, and

o

rounding should be done in such a way that the rounded values are not 0'
biased, either up or down. Unbiased rounding is the same as tlup-rounding"
except when the remainder is exactly one half. In this case the rounding
is up when the next digit is even, but down. when the next digit is odd.

Original Number Biased Rounding Unbiased Rounding

0.5 1. o.
1.-5 2. 2.
2.5 3. 2.
3.5 4. 4.
4.5 5. 4.
5.5 6. 6.
6.5 7. 6.
7.5 8. 8.
8.5 9. 8.
9.5 10. ~

Total 50.0 55. 50.
Average 5.0 5.5 5.0

Here the average with biased rounding is 10 per cent greater
than the average of 'the originaJ. numbers·,. This is an extreme case because
the remainder is not usually exactly .5 and because more than one figure
is usually retained, but the difference is sometimes significant in
practice, and unbiased rounding is desirable both in scientific work
and.in statistics. In accounting it is a matter of convention, and
biased rounding is tradi tionaJ. • c

!

'I
I,

~I···.
I'",

o

()

•

SPS SUBROUTINE Page 4

One final capability would be desirable in an output data
conversion subroutine. This is a means for rounding to the nearest integer
and omitting the decimal point in t?e output.

Description of the Subroutine

A flexible general-purpose SPS II subroutine has been written
in which the features described above have been incorporated. The sub
routine performs, optionally, under control of a code operand, the
desired combination of the following operations:

a. Determining the number of significant figures that can be used
with the specified width of the output area. If the number is positive
or the decimaJ. point omitted, additional space is made available.

b. Rounding the mantissa to the required number 01: figures using
either conventional ttup-rounding lt or unbiased rounding.

c. Moving the decimal point to the right when the specified position
would cause an overflow.

d. Moving the decimal point to the left when the specified position
would result in loss of significant figures because of leading zeros.

e. Alternatively omitting the decimal point and rounding to the
nearest integer.

:f • Converting the edi ted vaJ..ue to aJ.phameric form and transmitting
to the specified output area.

g. Transmitting "OVIl to the output area wben the specified conversion
causes an overflow.

Use of the Subro~tine

The subroutine is added to the regular fixed-length subroutine
deck and a library card is added to the processor. The subroutine is
loaded automatically whenever the macro FLA (float-to-alphameric) is
used in the program. Five operands are used as follows:

where,

A is
B is
C is
D is
E is

FLA A,B,C,D,E '

the address of the aJ.phameric field,
the address of the floa.ting-point number,
the alphameric width of the",outp~t area,
the nominal or uncorrected number of decimal places, and
the code speci~ying the type of conversion.

If the code operand is zero, or omitted, then unbiased rounding
is used, and both right and left decimal point shifts occur if the specified
decimal. places cause overflow or loss of significant figures. Thus

SPS SUBROUTINE Page 5

FLA OUTl,NMBRl,10,5,0

specifies that the output area, OUTl, is of alphameric width 10, the
quantity NNBRI is to be converted and transmitted to OUTl, and that 5
decimal places will normally be used. The code operand is 0, so the
decimal point will be shifted as required to accommodate as wide a range
of numbers as possible.

The code operand handles other specifications by a figure 1
in the tens, hundreds, or thousands positions. Code 10 causes omission
of the left shift of the decimal point when there are leading zeros,
code 100 causes omission of the right shift on overflow, and code 1000
calls for conventional lIup-rounding" instead of unbiased rounding. Tbe
digits can be combined as desired, so that, for example, code 1010 calls
for up-rounding with right shift only. Note that the code digit in the
units position must always be zero.

The decimal point is omitted by making the decimal point
operand negative. (Zero calls for a decimal point with no figures
following.) Thus

FLA OUT5,NMBR5,10,-1,

calls for omission of the decimal point and rounding to the nearest
integer, In this example the code operand is omitted, so is taken as
0. Note that the fourth comma is always required.

Additional Information

The subroutine is for use with fixed-length 8-digit mantissas
only. Considerable rewrl ting would be n~cessary to adapt it to variable
length mantissas, because the PICK subroutine, which is used throughout
to save storage, is quite different in the variaole-length subroutine
set. For the same reason rewriting would be necessary for SPS II-D. Two
versions are available, one requiring no special features and the other
requiring only indirect addressing. The fonmer uses 2145 core positions
and the latter 1977. Several approaches were tried in the programming
in order to reduce the storage requirements to as low a value as possible
with the options provided.

WNT:mao

o

o

()

¢'f'r .. it t' t t·.... t'j t#trrttrt riM rett>

o

C
L

E

o

:" "":Ir ¥::drtlrlr±:! Itt - "I" {": ": -TNT' ---- ,,"'r

A
R

T
R

A
N

Francis W. Winn
COMPUTER LANGU-AGE RESEARCH
2501 Cedar Springs Road
Dallas, Texas
Area Code 214 RIverside 7-1621

© October, 1965

ABSTRACT

CLEARTRAN is a system for compiling FORTRAN statements to
yield an object program having maximum efficiency. The object program
generally occupies less than one-half the core space and usually executes
twice as fast as the MONITOR II system. Programs involving substantial
amounts of subscripted variables may execute in as little as one tenth the
usual time.

"Infinite" programs may be compiled by virtue of "instant" linkage
from disk and the use of optional advanced language concepts.

liMy 1620 can draw circles around your 1620" aptly describes the
Format capability. Equations can be "plotted" on the printer. Information
can be extracted from a card read or a card may be re-read by any Format
number. Complete printer control is available with FORMA T statements.
Printing of the results of one problem may be obtained while computing the
next set of answers.

Error analyses are exceedingly thorough afboth the compile and
execution stage. For example l unidentified variables l and out-of-range
subscripts are called out at both compile and execute time. The object
program seldom blows up during execution. A tract routine is available
for presentation of both the name of the variable and its value as calculated.

o

o

o

o

o

o

CLEARTRAN VERBS

ACCEPT
ASSIGN
BRANCH BACK
CALL

EXIT
INTERRUPT
LINK
PDUMP

COMMON
CONTINUE
DEFINE

ADDRESSES
DISK
DISK ADDRESS
FAST LOG
SIZE
START

DIMENSION
DO
DO BACK
END
EQUIVALENCE
FETCH
FIND
FORMAT
FUNCTION
GO TO
HOLD

CARD IMAGE
ERROR MESSA GE
PRINT SKIP
PRINT ROUNDING

IF
INTEGER
PAGE
PAUSE
PERFORM
PRINT
PUNCH
READ
REAL
RECORD
RELEASE

CARD IMAGE
ERROR MESSAGE
PRINT SKIP
PRINT ROUNDING

RETURN
ROUTINE
SET
STACK
STOP
STORE

ADDRESSES
CONSTANTS
NAMES

SUBROUTINE
TAG
TRACE

TYPE
ZIP

PRINT, TYPE, PUNCH
OFF

Page 1

IN -LINE ROUTINE

A group of FORTRAN statements prefaced by ROUTINE is defined
as an in-line routine. The routine is given a name with up to six alphanu
rneric characteristics, the first of which must be alphabetic. A routine
is normally entered by means of the PERFORM comrr..and and the normal
exit is by BRANCH BACK.

The PERFORM command generates a BTM (branch and transmit
immediate) type of instruction, with the return address b-eing carried to
the routine for use when a BRANCH BACK instruction is encountered. If
the PERFORM command includes a statement number, the BRANCH BACK
will be to the address of the statement number specified; otherwise, the
return address will be that of the statement following PERFORM.

The data and variables used in a routine are identical to those of a
mainline program. A routine may be located anywhere in the program ex
cept within the confines of another routine. The normal exit from a routine
is by the BRANCH BACK command, of which several may be used if desired.
A direct entry to any numbered statement of the routine rnay be used. In
this event, the BRANCH BACK exit address from the routine will be that

o

specified by the PERFORM command last used to enter the routine. 0
The address of a routine may be stored in a subscripted array by

the STORE ADDRESSES command. This makes it possible to PERFORM
a computed address, e. g., PERFORM RUTEN(J).

While within a routine, one may PERFORM other routines provided
the chain of addresses required to return to the mainline program is not
broken. If there is a need to break the chain, the address of the ROUTINE
whe re the break is to occur may be saved by including the. name of the
routine as the third operand of the PERFORM command.

By this means, one may perform a ROUTINE from within the routine
itself, if desired. Examples are illustrated in the sample programs.

Page 2

()
I

L

I

I

let t'NI' I q

o

o

t t # trt :t#'*ith bftfdh 'We."·" "fbtttt""fF fWtf'bilf" " 'j I'lt 1!""l .n"j" Te-"Wi r"" j "wn

DEFINITION OF VARIABLES AND ASSIGNMENT OF ADDRESSES

A variable is "defined" if it is encountered to the left of an equal
sign, in a REA.D, ACCEPT or FETCH statement, or in one of the
following: COMMON, DIMENSION, EQUIVALENCE, INTEGER, !tEAL,
STACK.

DIMENSION

The DIMENSION statement is used to define the size and the num
ber of words in an array. The number of subscripts which may be used is
not limited to three. The length of the fields in an array can be made
different from normal by placing an intergal number in front of each ele
ment of the list. The minimum length field is two. There is no m.aximum
limit to the length of the field; however, the practical limit for use in
conjunction with printer commands is 288.

COMMON

This command is identical to IBM's.

STACK

The STA.CK command is the opposite of COMMON; i. e., the vari
ables in the list are assigned sequentially ascending addresses .. while those
in COMMON have descending addresses. A. dimensioned variable can be
equivalenced to the first element of a list previously stacked making it
possible .. thereby, to refer to the list as an array. The STACK command
is especially convenient for use in conjunction with the deferred PRINT
command described later.

TAG

If it is desired to determine all the positions in a program where
reference to a particular variable is made .. the TA.G command may be
used. Up to five variables may be tagged at one time; e. g.

TA.G, V, VOICE, A20 .. I,YOU

REAL

This verb defines a variable as a floating point type even 'though
the initial letter might be I, J, K, L, M or N.

INTEGER

o This command defines a variable as a fixed point type even if the
initial letter is other tha~ I, J, K, L, M or N.

Page 3

FIELD LENGTH

A.s with the DIMENSION command" the length of a variable can be
changed from the normal length by placing a number immediately after the
STACK" REA.L or INTEGER commands.

ALTERNA.TE DIMENSIONING

The list in the COMMON" STACK" REAL or INTEGER commands
can be subscripted as in a DIMENSION statement if the variable is to be
dimensioned. (The variable must not then appear in a DIMENSION state
ment.)

STORE

The STORE command may be used to store at compile time three
types of data: addresses" fixed or floating constants with sign, or alpha
numeric data. The name of the field where the data are to be stored in
core is the first element of the list; the remaining elements are stored in
first and successively higher addresses.

ASSIGN

This command may be used to move addresses in core at object
time.

DEFINE

The DEFINE ADDRESSES command may be used to specify indirect
addresses where the actual address of a subroutine" routine, statement
number, constant,· etc., may be found. This command is very useful for
a communication link between two programs which may be in core simul
taneously.

TRACE

The commands TRACE PRINT" TRA.CE TYPR" TRACE PUNCH" and
TRACE OFF may be used to follow the path of a problem through a program.
The TRACE PRINT statement calls ina reloeatable subroutine which prints
the name of the variable on the lefthand side of the equal sign in each arith
metic statement, together with its numerical value. Three variables and
their values are printed on each line. Switch 4 activates the TRACE sub,...
routine at object time.

CALL INTERRUPT

The CALL INTERRUPT statement results in storage on disk of the
core immage of the program and data, together with the .address at which
the interrupt occurred. The CALL INTERRUPT command may be selected

Page 4

o

o

\,

o

o

o

by program calculations or by turning on a programmed sense switch. The
program may be restored and execution continued by loading a single
INTERRUPT RESTART card. If data remain to be read, the last card
read, together with cards not yet read, should be set aside for reloading.
Obviously, data stored by RECORD r.ommands may be lost unless the disk
pack is' set aside.

PRINTER DUMP

If it is desired to dump the contents of core on the printer dur,ing
the execution of a program, one may use the following command:

CALL PDUMP (N1, N2)
N1 and N2 may be absolute addresses or they may be the names of variables.
CALL PDUMP pulls in a disk utility program which prints core between the
limits specified, with 100 digits per line grouped by tens, with core addresses
conveniently shown. Control returns to the program after execution.

ZIP

The ZIP statement used immediately preceding a 00 will speed up
the evaluation of arithmetic expressions involving subscripted variables.
The conditions where ZIP may be used are:

1. Indexing must be under DO loop control only.
2. Each arithmetic statement must be complete without

having to use more than one continuation" card.
3. DO's may be nested not more thanthreedeep.
4. The number of subscripted words may not exceed 20.

(The above limits are tentative.)
Example:

ZIP
11 00 3 J=l, 10
12 00 3 K=3, 5
13 00 3 L=l, JIM,2

1 A(J) = A.(J) + B(J, K, L) +AB(I)
IF (C(J, K, L) -·50.)2, 3, 2

2 C(J "K, L) = D(J ,K+1, L-1) +F +A.(J)
3 CONTINUE

Note there are four subscripted "words" in the above, under ZIP
control. A(J) is one word, B(J,K"L), C(J"K,L) and D(J,K+1" L-1) are the
others. Each word must consist of not more than 12 characters including
the two parentheses. AB(I) is not a "word" because its index" I, is not
under 00 control.

• Another ZIP could be used after statement No.3. The OO's must
have numerical starts and numerical increments. The DO's may have variable
upper limits; i. e." JIM in statement 13.

Page 5

S/,Z)

I/O FEATURES

The input or output achieved by execution of conventional I/O FOR
TRAN statements is identical to that from IBM compilers. Certain addi
tional features are available, as follows:

1. B-TYPE, G-TYPE, and J-TYPE FORMAT
2. ALPHABETIC SUBSTITUTION IN E & F OUTPUT
3. AUTOMATIC' E & F ROUNDING
4. AUTOMATIC PAGE SKIP
5. CARD IMAGE REREAD
6. DEFERRED PRINTING
7 . FORMAT OVERRIDE
8. NON FORMAT READ
9. PLOTTER SIMULA,TION

10. PLUS SIGN (+) SPACE IGNORE
11. COMPLETE PRINTER CONTROL

B- TYPE FORMAT

B-type words (B for Beta) can be read or written with a non- standard
length designated by the FORMA,T statement. The length may be a single

o

characte r, B 1, or up to 80 characte rs for reading the entire card, B 80, or ~ 0
B144 for printing 144 characters. The variable where such a word is stored
normally is dimensioned so as to have its word length equivale'nt to that used
in the FORMAT. For example B1 words could be read into a·dimensioned
variable with a word length of at least 2. B80 words should be read into
fields which are at least 160 digits long.

A single B-type character is st.ored as two digits in core, the left
one of which is flagged. If stored in a standard fixed-point field of four digits,
only the two positions to the right side of the four are used. When printing or
punching such a word, by a B-type FORMAT which is identical in length to
that used to read the word, conventional output is obtained. However, iftbe
length designated by the FORMAT statement used to read the word is less
than the length used in output, the character will be positioned incorrectly
by the difference in the two lengths. This can be corrected by changing the
output FORMAT statement so that the two lengths are equal, using X-type
FORMAT to make up the differences where required for spacin.g purposes.

G-TYPE FORMAT

This is identical to F-type FORMAT except that the firet blank follow
ing the field is considered as a decimal. G-type FORMAT is,norIrially used,
for reading only.

Page 6

o

"t ttt Itt $'1' .tNt rirtti"Z± ."" hret .th."'.»#±" •• " Hrim& .. "'t_ '*$ t $Mhstt sW
eft #* rt± Mtbtr. tiM t tri" t±tr ttHrifvtMtt# #t ""&tnt tt ft rl ',* tt MM. t ft.# h it $ it">>> hrt t

o

o

•

J - TYPE FORMAT

This is identical to I -type FORMAT except that the first blank to
the right of the field terminates reading. This permits left-justified~
fixed-point fields.

ALPHA.BETIC SUBSTITUTION IN E & F OUTPUT

On occasions it may be desirable to substitute a short word or
blanks in place of an E or F output field. This can be done by setting the
floating-point variable to be listed equal to a special alphabetic field. The
two leftmost characters of the alphabetic field must be the decimal point
equivalent (03). The decimal point is not printed but the alphabetic chara
cters.'which represent the remaining portion of the word will be printed.
As an illustration~

IF (A) 2, 1, 2
1 A = WORD(l)
2 PRINT 100, A

100 FORMAT (Fla. 0)
STORE NAMES (WORD(l), . NONE,. , . ALL)

will cause the word NONE to be printed if A were zero at the IF statement.
Blanks would be printed if A were set equal to WORD(2) and the word ALL
would be printed if set ~qual to WORD(3).

A.UTOMA.TIC E & F ROUNDING

Rounding of E and F output is automatic. If automatic rounding is
not desired~ it can be bypassed by the command: HOLD ROUNDING; and
restored later if desired by: RELEASE ROUNDING.

AUTOMATIC PAGE SKIP

A. skip to a new page is automatic when the bottom line of the page
is sensed (printer indicator 34). This feature can be eliminated by the
command: HOLD SKIP (and restored by RELEASE SKIP). This might be
desirable when using plotter simulation, or when page skip is under program
control.

CA.RD IMA.GE REREA.D

The usual READ statement with a FORMAT number will cause a
new card to be read and data extracted therefrom in accordance with the
FORMAT specifications. It is possible to "read" the same card again~
using different FORMAT statements if desired, by two different methods:

Page 7

1. Place an X (for extra) after the FORMAT number
in the READ statement.

2. Use the command, HOLD CARD IMAGE, followed
by a conventional READ statement.

The latter causes a one-time skip of the normal procedure whereby a new
card is read for each READ statement, making it possible to reread the
last read card. The HOLD CA.RD IMAGE command can be nullified by the
command RELEASE CARD IMA.GE.

DEFERRED PRINTING

Some problems require that all or almost all of the calculations
be completed prior to doing any output. With CLEARTRA.N It is possible
to print the results of one set of calculations while calculating the following
set. By this means, printing and calculations can go on simultaneously
with a considerable savings in time. Deferred output can be obtained by
placing the letter "s" (for Save) after the FORMA.T number 'of an output
statement; e. g., PRINT 102S, List. This command will be ignored at object
time prior to execution of a. SAVE command.

The output commands utilizing this feature can be placed at selected
positions in the main1:ine of the program where recycling does not occur.

o

Alternately, all PRINT S commands can be placed in a ROUTINE using a com- 0
puted GO TO to execute successive statements. The ROUTINE could be
executed by randomly placed PERFORM statements. When used in a
ROUTINE, the "printer busy" indicator should be tested to save time (if the
printer is busy an immediate exit from the ROUTINE shoUld be made.)

The SAVE (V1, V2) commands result in a transfer of that portion of
core image lying between the address of variable V1 and variable V2 to a
safe place in memory. This includes Vl, but not V2, The variables to be
listed by S type output commands should be in contiguous memory locations
for the least space requirements. The STA.CK or COMMON commands are
used to achieve the desired order. All the variables to be listed should be
in either COMMON or STA.CK, but not part in one and part in the other.

The deferred output command can be made to list current values
if a zero is used in a SA.VE statement; i. e. I SA.VE (0). The original status
can be restored by using a negative number in a SA.VE statement; e. g. I

SAVE (-1).

FORMAT OVERRIDE

The list of an 110 statement is under control of the specifications
set up in the FORMAT statement. This normally require's that the number
of items in a subscripted list be identical to the "repeat" number of the 0
corresponding element in the FORMA.T statement.

Page' 8

It t$ tt{trt'trt t"fcirit"tFi:.·ti·fbtri.""{'d5*tt·TI-w u ·ITr:n·'Y'Iff·1!··'"f("·!!"IT [·r

o
With CLEARTRAN, an I/O list may involve subscripts using a

variable index. The corresponding "repeat" number of the FORMAT
specification should be greater than the maximum possible value of the
index(99 is tops). If the repeat number happens to be less than the index
variable, FORMA T control will pass to the next element of the FORMA T
statement.

NON FORM.A TREAD

The preparation of input data to be read under FORMAT control
requires extra care to insure proper positioning of data on the punched
card. This problem can be circumvented by using the REA D statement
without a FORMAT number. Data of the E, F, I and A type can be read
without a FORMAT number. One or several spaces are used to separate
data fields. All 80 columns of a card may be used. A relocatable library
subroutine examines the input data and discriminates between E~ F" I or
A data. The F-type conversion results from a decimal point in a numeric
data field. The E -type results if a decimal point and the letter E are found.
The I-type is generated when there is no decimal point in a numeric field.
The A -type is obtained if none of the above conditions are met.

An "input error" is called out if the variable being read is in the
wrong mode. The unread portion of the card is typed and a BRANCH TO o the program starting address occurs.

•

One card may contain information which is read by several REA D
statements. After all the fields on a card are readJ the next item on a
list will cause a new card to be read J even if the item is in the middle of
a list. A record mark in column one of a card calls· EXIT.

PLOTTER SIMULATION

The SET command is identical to the PRINT command with the
exception that printing does not occur. The SET command is normally used
to build an image which is to be held in position for additional m:::>difications.
1f an X follows the FORMA T number of a SET commandJ "extra" informa
tion can be placed in tHe image without destruction of information previously
placed (except that which is overlaid). By this means, it is 'Possibie to
build up a complex line of information which is to be printed after all the
information is in place.

The X specification in a FORMAT statement is used to position or
space adjacent fields. In CLEARTRAN one may uSe the X specification
followed by a fixed point variable in parenthesis; e. g. J X(Nt). This
specification will result in a number of spaces equal to the value of the
fixed point variable Nl .

Page 9

One may use the space supress character (+) in column one to
print one set of characters on top of another. This character should be
erased (1HO) prior to the final PRINT command.

After a line of data is in position, it is printed by a PRINT command,
the FORMAT number of which is followed by the letter X.

The first 80 characters of an image can be punched by placing the
letter X after the FORMAT number of punch statement.

A program to illustrate these. features is attached. This program
plots three equations, coordinate grids, and prints alphabetic information
simultaneously. Another program "draws" a picture of a heat exchanger
tubesheet.

PLUS SIGN (+) SPACE IGNORE

It is not necessary to provide space for the plus sign when printing
or punching. This makes it possible to put additional information on a card
when punching, or to pack E or F fields adjacent to other fields when print
ing. An error may occur if the E or F fields are negative, since space must
be provided for the minus sign.

COMPLETE PRINTER CONTROL

A complete set of printer controls is available with CLEARTRAN.
The following is a list of the printer controls which are achieved by placing
a Hollirith character in column one:

Before Printin!::, Afte r Printin~
+
J
K
L
1
2-
3
4
5
6
7
8
9
=
@

Space supress
one space S one space
two spaces T two spaces
three spaces
skip to channel 1 A skip to channel 1
skip to channel 2 B skip to channel 2
skip to channel 3 C skip to channel 3
skip to channel 4 D skip to channel 4
skip to channel 5 E skip to channel 5
skip to channel 6 F skip to channel 6
skip to channel 7 G skip to channel 7
skip to channel 8 H skip to channel 8
skip to channel 9 I skip to channel 9
skip to channel 11 skip to channel 11
skip to channel 12 skip to channel 12

(Any other character may result in a run
away carriage.)

Page 10

o

o

I

o

o

o

o

t d j.. t .. hi t "trW ri pm ft. Ht t . ! "t! ! ."" "t" "}" [""" - .. "'

FORMAT statements with multiple slashes which are executed
only by PRINT commands are automatically compiled so as to take advan
tage of fast printer spacing insofar as possible.

The "printer busy" indicator (35) can be sensed by use of the
statement: IF (SENSE SWITCH 35) N1, N2. A BRANCH TO statement N1
occurs if the indicator is on (buffer is unavailable for loading); N2 if off
(buffer can be loaded).

Similarly, 33, 34 and 25 can be used to sense respectively channel
9, channel 12, and printer check indicator on the 1443.

o

o

()

-8*+)'�����-___ 'iIIIIi'WiIIiiI·:Wiliiiililliliilllilliiolil ,',

o

o

•

AN APPROACH TOTJlm SERIES ANALYSIS

by R. Mennell and J. Turney
"Management Researc h Department

H. P. Hood & Sons
Boston, Mass.

One approach to time seri~s analysis is to state hypotheses
and test thelr validity. This is generally an undirected, sub
jective method. What is really needed is a method which tells
what relationships are significant, the method not to be dependent
on the analyst's ability to hypothesize. To a large degree
spectral analysis, when carefully constructed and int~rpreted,
provides a way of pointing out relationships within and between
time series. This paper discusses time series analysi.s in
general, describes the use of spectral analysis to develop .models,
describes a new computer program for spectral analysis, and presents
the first step in the analysis of an example series.

Introduction

It is a simple task to propose situations Wherein a researcher has avail
able a series of data and wishes to accurately estimate J or forecast, the value
of additional terms in the series. Within the firm there is a need to estimate
what demand for a product line will be in the coming month for profit planni.ng,
what demand for a product will be during the next day or week for production
scheduling, and what demand for a prodl~t on a route will be for the next c~y
for vehicle loading.

Hopefully, at the least, the available times series is the correct one
with which to work.l If analysis is confined to the series and a rore~asting
method is used, the result is a ftnaive" forecast in the sense that neither
causal factors nor even simply correlated factors are included in the model.

The fundamental premise of this paper is that the basic and first step in
developing a forecast for a series is to understand the serit='s itself.
AnalysiS should be performed which Will lead directly to a model of the series
that is "near best". By best is meant a model that removes relationships to
the extent thatt he residuals (differences between the series and estimates of
the series) contain no more systematic relationships which can be removed. The
'~Biduals are _ then "white noise" -- a random, series; in other word~, a time ?
series of uncorrelated random variables with zero means and common variance.-

lUnfortunately, one may often have only the system's response rather than the
prime seriesjfor example, sales or shipments rather than customer demand~
In this case the researcher mustei ther find some way to. c ollectthe prime
series, or establish that the response series is closely·enough related to
the prime series to bea solid foundation for analysis.

20£ course, a polynomial model can always be found whiCh fits the t.ime series
arbitrarily well. In time series analysis, we d.o not go that far. We '1£itn
only'those components of the series-that one has a right to; i.e. the
components that have relationship and will therefore be helpfUl in forecasting.

- 2 -

Near best gives expression to the fact that significance (not necessarily in
the statistical sense) must be established in a relati.onshtp before it is
included in the model. Therefore, the near best model gives residuals that
are nearly white noise.

Our tntention herein is to describe an approach to analyzing time series
and present some tools with which to work. Before doing so, we should explore
the environment within which time series analysis is useful.

A first thought is that a non-Itnaive" forBcast may be an improvement over
a "naive" forecast. By consid.ering other series for inclusion in a model of
the prime series, one may be able to achieve a white noise residual with 10we~
variance. For exa~ple, product sales in tre futi~e may be partially dependent
on population, income, and weather. The met-hod used here can 'be extended to
incorporate other series rather than simply the prime series. If the residuals
then have lower variance than those resulting from the analysis of the prime
series, the neW model will give better forecasts. The residuals of the prime
series are the standard for comparison.

The analysis of time series leads to a model to be used in developing a

o

f oree ast. The model is not a foree asting t ec hnique itself. Another way to
say this 1.s that the Model of a time series ean be applied very well to the
sample of the series already observed. However, when one forecasts, he wishes
to estimate terms in the se-ries that have not yet been observed. This fact
leads to interesting q'J.estions. Since thetenns have not been observed, bow
can one be assnred that the cansal system i tsel! will not be ditferent? For
instance, the product rri.ce may change with respect to the competitor's price, 0
or the product may enter a d1.fferent phase in its life--froJn a new prodUct to
a "mature" product.. The p~i.ce change, if temporary, results in a transient
series s~lperimposed on the prime series.

Mechanical methods of forecasting usually accept new terms in a time
series to improve the estimates of coefficients in the underly1ngmodel. This
device automa.t:l.cally includes some abil1.ty to respond to changes in the causal
system. ~v~;n a simple moving aY~rage :f'orect'-.tst grad1)ally tracks a change in
t"'e a\Te~ace level. The forecaster must make a compromise between obtaining
quick response to real changes and stability if there is no real change. How-'
ever, if the model of the time series employed in the forecasting method is
incor:rect, the forecast cannot be expected to give good results. Foreoasting
must start with time 'series analysis to ensure a sound. base.

o

- IT BltW'"t rllt! 'f! j""[' s",' nr

o

x
c

tv

.v

nV
met)'

1\(4J)

N

P

0 y(t)

e (V)

R(v)

Q

M

x(t)

•

"lftlt'

- 3 -

LIST OF TERMS

Average value of series

Constant

Frequency

Lag in number of terms of series

Lag window of the windowed spectrum - also referred to as a kernel

l-!ean value function

Norma.lized sample spectral density for frequency (or period~)

Number of values in series

Period measured in number of terms of the series

Residu.als

Sample Autocorrelation coefficient for lag v

Sample AutocovB.riance for lag v

SP'FC tral C omputa tion number - number of points in interval 0 to 'rr
ofw that spectral density is computed for

Truncation point number of sample autocorrelations used in
computing the spectrum

Value of series at time t

- 4 -

App~oach to Time Series Analysis:

1;Je have stated that we T'1ant to construct a model of the relationships
in a time sprie~~ to the extent they have meaningful existence. The absolute
l:i.rrd.t of relationship occurs ~J'h€n the residuals are white noise. PracticalJ.y,
the limit is Tt)oched IN'hen there are no additions to the model which can be
demonstrated as 8i~n:i.ricnnt in making the residuals more ,.vhite. A..t that,
point, all the instght the series itself can provide for our understanding will
htl.ve been obtatn.pd.

The st8.ndard rr.odp.l used for timE! series is

x(t) = met) + y(t)

l,Tlv:''''p the n:f:an V31.'A:? functicn (m(t)) is the observed relationship in the data,
and the ref ere

Y(t) • x(t) - m(t) •

(1)

(2)

(3)

\rtT~ pr(J<:'e~d staEm'rise to improve the model (m(t)) such that y(t) approaches white
n01ne. f::.. ~mi..t.e no~_se resi.dual is defined by

E [y(t~ = 0

:s [y2(t il =q-2

E [Y(t) y(t+v~ II: 0 for v = 0, 1 - - - N

That is, the residuals have 0 mean, varianceu2 and no autocovariance
(or 2utocorrelation).

The analysis is based on the assumption that the residuals are always
covariance stationary.

Cov [:(t) - m(t), y(t+v) - m(t+v?] • R(v) for all values of t and ~

That is, only v, and not t, determines t~e covariance. In practice the
series may not be covariance stationary. However, the time series analysis
will still provide insight into the series.

Knowing something about the system which generated the series and by
plotting and objserving the series a model can be proposed" albeit partial and
possibly faulty. One approach then is to state hypotheses after observation
and test their validity_ Our original statement of intent is a rejection of
this approach. We want to have a method of analysis which tells us what
relationships are significant. We should not need to depend on our ability to
hypothesize. To a large degree spectral analys"is, when carefully constructed
and interpreted, provides a method of digging out the significant relationships
for examina.tion.

SSJ

-------- - --~---- . -~---~~---

(4)

(5)

o

o

I

i

o

I

o

o

•

- 5 -

As a first step we ferm th.e sample autoco"J"nriance for la.g pp.riod v

1\l-v
R(v) = ~ ~ x(t) x (t+v)

t=l
v :: 0, 1, 2, - - - - M

and the sample autocorrelatj.on coefficient for lag v

N-v
:E.. x (t)x (t+v)

F(v) tal
• R (0) :: -N--v-'" ------

~ x2 (t)

(v) v • 1, 2, - - - - M

tlCl

The autocovariance and autocorrelation are analogous to the SUl'lS of squares
and correlation c~~r-rj.cient respectively_ Here, though, the calculations
are performed on a~l pairs of data 'trl th a time difference of v periods.
lA1hen either R(v) or e(v) are plotted, rela.t1vely high a.bso1ute values indicate
a relationship b·etween terms t and t+v.

Actually the contribution (po~r) of each lag (frequ~ncy) can be viewed
more readily by calculating the normalized lo.rindowed sample spectral density
(or simply spec tral ~nsi ty) ;

The s!,ectral den~i.t,y is obtained bjr representing the sample 8.utocorrelation
runcti~n as the Fourier transform. Then by inversion the spectral density is
expressed as a ~lnction of the sample autocorrelation. The autocorrelation
has been used rather than the autocovariance so that the results obtained

(6)

(7)

(8)

from different ~ime series can be portrayed in a standard form. 'The frequency
~is equal to 2Q Where k is denotes an interval for computation (k-l, 2, - -j Q).

M is the truncation poin~ 'of computation and ~v is the lag 'window; in
our case the Par zen ~iindow;

2 /v/3 {Vi' >tv • 1-6 (~) + 6 M ; H ~ 0.5

.. 2 (l-I~\~ ; o.s ~ JR) 5.1.0

All plots of spectral density are the!!atural logarithm of 1000 times ?T(W>.
For white noise the expected value of ~T(-W) is S.Or •

- 6 -

Development of Computer Programs

Early in our study of spectral analysis, a search was made for available
programs. We could only consider programs which could be run, or adapted to
run, on a 20K 1620 with one disk drive. The libraries of larger computer
systems were examined, but did not yield programs Which seemed analytically
correct or mechanically practical. The basis for developing tools had to be
adapted from the three spec tral. analysi.s programs available in the 1620 Users t
Group library. The programs are l:i.sted and described in Figure 1.

Only program 6.0.126 could be run without any modification, so it was
the first to be evaluated. The autocort:'clation. coefficient is unbiased and
in the traditional stat1clan l s form. However, there are several objections
to using it for time series analysis. The first objection is that it includes
automatic mean subtraction. In general, one would like to perform spectral
analysis on the raw data and/or the detrended data. Mean detrending is, of
course, only one form of dp.trending. One may want to subtract aqy mean value
function --- linear, Sinusoid, etc. Therefore, de.trending should be perfoIJned
separately; an operation on the data rather than a specific adjustment in the
analysis routine.

A second objection to this program is that the divisor N - v is used
rather than N. While the ob,ject of the uSe of N - v is to· give an unbiased
estimate of the true covariance, the more important fact is that the use of
N leads to non-nega.tive estimates of the spectral density function. ~n
addition, the use o.f· N gives a positive definite ·function to be used to
estiInate a positive definit.e function and thus allol-Ts one to interpret the
Fourier transform of the covariance flIDction as a spectral deDsity fllnction.
Fina.lly, the "biased" estimate (using the d.ivisor of N) seems' to give smaller
mean square error t. han the unbiased esti.mate.

Program 6.0.l.5l, like 6.0.126, uses the "unbiasedtt estimate of autoco
variance and does not calculate thp. autocorrelation coefficient. It was felt
that the autocorrelation gives important information by itself and shOlud be
imluded. At least it is easy to understand, even t hough it does not give an
altogether cllear idea of the frequencies present nor their .power. This'
program, like the other two, does not permit more than one trl.1ncation point
to be used. It does use a lag window (Blaclanan and Tukey).q

While program 6.0.147 suffers from deficiencies of the order of importance
of those in 6.0.151, it seemed easiAr to work with and modify. The first 'change'
remo~~d the mean detrending. The second step was to replace the autoc.ovariance
term in the spe~tral density function by the sampleautocorrelat.ion. This .
change normalized the spectral ~ensity so that results of' different time
.series analyses can be compared. The normalization is, of course, scaling
by d ~ viding all R (v) by R (0) --- the sample varie.nce.

'Reference 1, p. 940

if'Program 6.0.126 computes spectral density without any lag window. In addition
to other deficiencies, this resulted in the program being completely abandoned.

o

o

I

II

I'j "I

0 il
I~I

I i

o

o

o

- 7 -

It was also decided to w-ite general purpose routines for plotting to
graphically present results as a very useftu adjunct to the program.
Natural logarithms of the spectral density were plotted for two reasons.5
First, log plotting magnifies the result where values are small as an aid to
interpretation. Second, a confidence band about the log of spectral density
is linear. Before taking logarithms the spectral density was multiplied by
1000 so that the graph would have a standard range of 0 to 10.

The variance of esttmate of the spectral density function depends on
the lag window selected, the sample size, and the truncation point. For a
high truncation point the variance is high, but the bias is low, and conversely
for a low truncation point. One way to get more information for this situation
of conflict is to use several truncation points. In the revised program the
denSity functions for up to three truncation points are calculated and the
three functions are plotted together.

The .first analysis computed by the revised program was for a test series
composed of a pure constant plus a 12 period sine (N-148). The Bartlett Lag
Window O\v.l-~) from the original program was used. With the exception of the
lag window, tne formulae were those given for the new progran 6.0.166 in
Figure 1. Figure 2 is a plot of the density functions for this series. The
density is computed for each frequency in terms of K, where K is an interval
betweenW -0 'and lr', K-1, 2, ---,Q. Intervals can be converted into period,
P-2Q/K, or frequency, w =K/2Q. The abscissa or K is cumbersome, so it was
decided to convert to period. In Figure 2 there is indication of high po~~r
at 12 months (2 x 48/8 • 12). The constant shows up as high power at low
frequency, K-l and 2. Most surprising is the systematic oscillation at
higher frequencies. For the next analysis the Parzen lag window was used,
with the- result shown in Figure 3. Now the spurious power at the higher
frequeney is eliminated. Next the pure constant term was removed from the
sine test dat.a. Thu.s Figure 4 shows the spectral density for a pure si.ne
series with a period of 12. This reference will be belpful for comparison
with spectral densities of seasonal monthly data.

T~other standard spectral densities are included for reference.
Figure 5is an analysis ot random data, or white nOise, and Figure 6 depicts
a constant series. For the case ot random dati ~e expected value of the
spectral density (for .811 frequencies) is in (~) • 5.07, which is L.."
agreement with the test result. . lr

After perf.onning the test analyses just described, which indicated that
the.program.was workingproperlYJ attention was directed to improving the
computational efficiency. Before performing the summation
M Tr r:. Av0 0a ~ e(v), all 'J\v f (v) are computed .once and tabled to use
v-I
for all K -1, 2, ---, Q.

SReference 1, p. 941

- 8 -

In addition, before calculating any density points the values of cos (.11:.)
and sin (-It..) are determined, t hen all subsequent cosine terms are computed Q
recrl.r3ivel~. The recursion is ba.sed on the relations:

cos (A+B) = cos A cos B - sin A sin B, and

sin (A+3) = sin A cos B + cos A sin B,

~here A is the previous phase angle and B is the const~nt increment ~.
Since the values of A and B tenns are known at each inte~/al, the new term
A+B can be computed directly. This is much faster than a method iI.rhich must
redefine the cosine term for each interval.

These two features)along with other small~r improvements, resulted in
running times 1/3 as long as 'Were requi~d in the origi.nal version. Several
rlIDS have been made with 1Ll data points, 48 lag intervals, 48 density pOints,
and truncation points of 12, 24, and 48. For these dimensions, the auto
correlation calcu.lations take five minutes, and the spectral analysis takes
fifteen minutes, inc1uding plot output. On a model II 1620 with fioating
point hardware these times could be expected to be reduced again by 2/3, to a bout
two and five munutes respectively.

The separation of the plotting portion into a set of general routines,
each of which was designed for maximum efficiency, resulted in very rapid

o

plot output. Other parts of the program, such as computation of inner products, 0
could be slrrllal"ly separated and improved. Such additional refinements may be ..
implemented if use of the program b~c ome~ extensive. The program and plot
routj.nesare available from the IBH 1620 Users' Group library as 6.0.166 and
1.6.123 respectively.

o

o Example Series

•

A sample of 141 observations x(t) was used in testing of the described
approach. The data are monthly product sales, which may be exper.ted to
contain both trend and seasonal components. Figure 7 is a plot which includes
the raw data (plot character D), the linear trend (plot c harac ter T), and
the residual (plot character R). The residual is on an enlarged scale rela
tive to the data and trend. Examination of the residual indicates a definite
12 month seasonal component" as expected.

Figure 8 includes the autocovariance and autocorrelation of the data with
itself at each of 48 lag periods. Figure 9 lists spectral density for
truncations of 12, 24, and 48 at each lag interval. Frequency (F) for each
point is computed as F = 2M::/I (in this example F • 96/I), with F • 999. l.ndi
cati.ng the ~ero lag term. The frequency thus represents the number of time
units per cycle.

Figure 10 is a plot of the. spectral densities, with conversions as
described earlier. Truncation points of 12, ?h, and h8 are plotted as A, B,
and Crespeetive1y. Numbers. at the left are the frequencies with their
fractional part trunca.ted. This plot clearly indicates density peaks at
frequencies or 12 and 3, and lesser peaks at 6 and ~~. This suggests investi
gation of a model of the time series taking/into account 12 and 3 month prior
data. After several stages of model formulation, use of regression analysis
to derive coefficients for the model, and spectral analysis of residuals, a
satis:f'~'" ~.ory model with near-white noise residuals was achieved. This model
containeci sine and cos;.ne terms for a 12 month seasonal component with
increasing amplitude, plus weight.ing factors for 1,), and 6 month prior data
points.

The use of spectral analysis to develop time series models is still largely
empirical. For example, a 12 period denSity peak could lead to a simple weight
ing factor for 12 month prior data pOints, to a sine-coside model with a 12
month period, or ... to a double' sine-cosine model which includes changing
amplitude. This does at least narrow the search, and experience in analysis
should lead to good individual judgment in particular cases •

References:

1. E. Parz~n, "An Approach to Empirical Time Series Analysis", Radio Science
Journal of Research, Vol. 68D No. 9, September~ 1964.

2. R. G. Brown, "Smoothing, Forecasting, and Prediction", Prentice-Hall,
Englewood Cliffs, N. J., 1963.

3. T.

4. R.

5. S.

6. w.

7. J.

Yamane, "Statistics, An Introductory Analysis·, Harper and Rowe,
New York, 196L ..

M. Stephenson, "Autocorrelation and Spectral Analysis for a 20K 1620",
1620 General Program Library No. 6.0.126.

R. Kimbleton, tt1620 Spectral Analysis Programtt , 1620 General Program
Library No. 6.0.151.

Lawton and F. Puff, ttAutocorrelation and 'Power Spectrrumtt , 1620
General Program Library No. 6.0.147.

E. Turney, nAutocorrelat~ion - Spectral Analysis Program" .. 1620
General Program Library No. 6.0.166.

8. J. Wa.rshawsky, "Autocorrelation and PO\<1er Spectra.l Density", 1620 Users
Group Meeting, September, 1961.

o

o

o

•
Program No.

6.0.126

in Ralsti.'n :-.- Hi If

2Cr. 3tO!~age

6.0.1h7

Bartlett Lag ~-Jindotrl

hOK Storare

6.0.1t)1

Blackman & Tuckey
Lag Window

hot(Storage

6.0.166

Pa.r.zen LA~ Windml

(/\

~

A l.ltoc ovariance

N-v
If. (v) = ,,/v ~ [x (t) -,c*] lie (~) -x~ t.,

wit

,,~v

X*' ':. ._' I.. x it)
III-v 't":,

N-'I

R Lv):. * L [)(.It) - il [)(It+~)-~J t:.,

wI. ~,..e. " X::.1. ~)(it)
/II t::::,

Il-v

R('1) =. f:;, L x (t) X {t.,..,,)
r~1

~

R{"):=-k-~ xlt))«(t+'1)
"t"-::.I

o
Autocorrelation Coef fic lent

($ample Correlation Function)

N-'V
e(>f): ~" [jr(t)-)C.j &CNto/)-JC*]

€
V, J. ,.-v J,.

~[~Lt)-i1 L [x(r"''')-x11..1~
.... , 1-...

N-v

~here. X .. ::...L I. X l t)
/II-v r.,

R (,,)
eev).::. R(o)

_ ~-., [>c{t) -~J [1<l.t ... 'I)-;]
- -C;:I

w'h~ re

e tv) ;

=

Figure 1.

H-v ;1 z.
I: [Xlt) -XJ

t.",.

- III)(:.~~ '!ott)

R ('I)

R (0)
H-'I

eel

s: xlt)xlt,.,,) e.,
14-'(2-
~ [1<[t)]

"t=1

o
Spectral Density

FT(w)=e <0> +2. ~,t'(v)-(~1

comment; no lag window, no plot,
for one value of M

f (u»=.#rRlO)+2~" R,,,)~(~")l
T Lj .,=, Y' I'f 1

J\y=I-~ .:L
w= 2./lif

comment; for one value of M,
no plot

1 f
fT (W)= .2.3 Fr_, (w) +,S1F-r (c.JJ)

-+- ~:2..3 fT~1 (w)
1

f (w)' ·:;Rlo)+-)..:" ~(rr;.,I(") R.t.'I)
T ft,

comment; for one value of M,
no e (v) calculated, no pl=>t

F (uJ)=~f'(o) +-#~ Jav J.~V)p(V) r ¥c, "'1[.\

}',,= J-I.o(~)1."'J~J3.) J~J ~ ()~S'

:; 4 (/- J~J)3 J o,~~J~J~/,~

".1 _ JL.
\,V - '-Q

DENSITY PLOT

MIN II
MAX 11

001.
002.
003.
004.
005.
006.
007.
008.
009.
010.
011.
012.
013.
014.
015.
016.
017.
018.
019.
020.
021.
022.
023.
024.
025.
026.
027.
028.
029.
030.
031.
032.
033.
034. C
035.
036. C
037.
038. (
039.
040.(
041.
042.(
043.
044.(
045.
046.(
047.
048.(

C

.11498900E-02

.45255369E&01

C

(

•
•
•
•
•
•
•
•
•
•
•
•
• .c
•

C •
•
•
•
•

C

A(B

C B

• (B

ACB

(• BA

(

(

(

(

A(B
•

A(B
• B

(B.
•

CB •

• SA
ACB •

ACB

C B

CB

A(B

A(B

CB

CB

AC9

•
•
.B
•
•
•
BA
•
•
•

SA

•
•
•

BA
•
•

A

A
A

A

A
A

A
A

A

B

A

•
•
•
(

•
.(

•
•
•

(.

•
•

(B •
BA
•
•
•
•

A •
A •

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

(B

A

(

(B

A

•
•

CB •

•
• A
B

A. BC
A. B
A • C
B •

A •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Figure 2. 12 Period Sine, Bartlett Lag Window

A

A
AB

A

c

Be •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

o
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

o
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• I

I

• i'

• I

•
•

o I ~
I
I

DFNSIT"V PLOT

96. • • • A B c.
0 48. • • • C A B •

32. • • (• SA •
24. • (• B A •
.19. • (• B • A •
16. • • (B. A • 14. • • .1:3 C •
12. • • A.B (• 11. • • A b C • 10. • • (At3 • •
9. • (• RA • •
8. • (• B A • •
7. (B • A • •
7. (. B • A • •
6. (B • .A • •
6. (• A • • •
6. (• A • • •
5. CB • A • • •
5. (B .A • • •
5. (B A • • • •
5. C B A ~ • • •
4,. (B A • • • •
4. (A • • • • 4.(B A • • • • 4.(A • • • • 4.(A • • • •

0
4.(A • • • • 3.(A • • • • 3.(A • • • •
3.(A • • • • 3.(A • • • •
3.(A • • • • 3.(• • • • 3.(• • • •
3.(• • • •
3.(• • • •
3.(• • • •
3.(.. • • •
2.(• • • • 2.(• • • •
2.(• • • • 2.(• • • • 2.(• • • •
2.(• • • • 2.(• • • •
2.(• • • •
2.(• • • •
2.(• • • •

Figure 3. 12 Period Sine, Parzen Lag Window

•

~~---~~~~~~--------

DENSITY PLOT

PARZEN BETAS

096.
048.
032.
024.
019.
016.
013.
012.
010.
009.
008.
008.
007.
006.
006.
006.
005.
005.
005.(
004.(
004.(
004.(
004.(
004.(
003.(
003.(
003.(
003.(
003.(
003.(
003.(
003.(
002.(
002.(
002.(
002.(
002.(
002.(
002.(
002.(
002.(
002.(
002.(
002.(
002.(
002.(
002.(
002.(

A

A

C
C R

CB
(B

A
A

A

B
B

B A

•
•
•
•
•
•
•
•
•
•
•
•
• C
• C

B •
•
•
•
•
A

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

(B

c

B

A

C
C

•
B •

• B
(•

• C
•
•
•
•
•
.C
•
• B

•
•
•
• A

A •
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•

B

A
A

A •
A •

A
B .A

A

• t3
• CA B
• A
• A
• A
• CAB
• SA
.A

A.
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Figure 4. 12 Period Sine, Zero Mean, Parzen Lag Window

B
B
B C

C

•
•
•
•
•
•
• c.
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

o

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

o
/1

dENSITY

096.
048.-
032.
024.
019.
016.
013.
012.
UICJ.
009.
008.
008.
007.
006.
006.
006.
005.
005.
005.
004.
004.
004.
004.
004.

~03.
'ltlJ0 3.

003.
003.
003.
003.
003.
003.
002.
002.
002.
002.
002.
002.
002.
002.
002.
002.
002.
002.
002.
002.
002.
002.

.'

PLOT

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• ..
•
•
•
•
•
•
•
•
•
•
• ..
•
•
•
•
•
•
•

•
•
•
•
•
•
•

c
c

CB
B
B

AC
C B

SA
BA

• C

• R C
• AC
• CB
• AC
• AB
• AB
• BC
• CB
• C BA
• C BA
• BC
• BAC
• BC
• CB
• CB
• CA
• CA
• (BA
• C BA · (
• B C
• B(
• · (
• C
•
•
•
.C

C.
.C
•
•
•
•

•
•
• ..

(8
B
B
BAC
BAC
(A

B A
B A

8A
(B

A BC
AB (
AB (

(AB
CB
C8
CA
BC

•
C.

C •
•
•
•
It

•
•
•
•
•

C •
C •

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Figure 5. "White Noise" (Normally Distributed Random Numbers)'

• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •
• •

/1

DENSITY PLOT

096.
048.
032.
024.
019.
016.
013.
012.
010 •.
009.
008.
008.
007.
006.
006.
006.
005.
005.
005. C
004. C
004. (B
004. C
004.(
004.(
003.(
003.(
003.(A
003.(A
003.(
003.(
003.C
003.(
002.(
002 •. (
00_2. (
_002 ~ ~
002.(
002.(

-002:(
002.(
_~92.(
002.(
002.(
002.(

-cfoZ-;(
002.C
002.(
ooz.(

(

(

(SA
(A

(A
(A
(A

BA
8 A

A
A

A
A
A

A

(

•
•
•
•
•
•
• (S
.(B
(B

(.8

• 8
• B S.A
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•

A

(

(

A

•
•
•

(.
•

9.
•
•
•
•
•

•
•
•
•
•
•
• ..
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

(

B

A
A

A

•
•
•
• B
•
• A
A

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

A
A

A
(A
B

a
B. (

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

o
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

o
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

o

11
I
I

~UTOCC~P~LATION-POWE~ SP~CTRUM

T~ST DATA FOR SP~CTRAL ANALYSIS PROGRA~

0 002.
003.

T

OOL.. DT
·JC~. 1)T

006. D T
1')07.

aoe.
~09. D T

010.
'')11.
012.

TS
D T

D T
013. C'
01L!.. C'

r:'ol 5 •
016.
017.
018.
019.
020.
021 •
022.
023.
024.
02:::.
02~.

027.

002S.
029.
030.
031 •
032.
033.
03 4 •

03:::.
036.
037.
033.
(J:3 9.

OLe.
e L. 1 •

043.
04L!..

CL. ~ •

C'47.

QL!.9.

050.
051 •
052.

•
053.

'!'I' ,

05L!..

055.
056.

D

T

T

T
::T
DT

D

D

TD
T D

T

D T
DT

T

D

D

Figure 1.

T

T

D

D

T

T
T

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

T.
T.

T

.T
.T

•

•
•
•
.::

D.

•
•
•
.C'

.D
.G

•

•
•
•
•
•
•

t<

T
R

T R

R

T R
T

T R

DT
DT

DT

R

T R
TR

PT
T

T

D T P
T

D Q T
D

D

D

R

TR
T

D T
R

R

-r
I

p

Sample Series Data

•
•
•
•
•
•
•
•

•
R.

•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
.R

.q

•
•
•
•
•
•
•
•
•

R

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
.R

•

R

R

R

R

R

R

R

R

R

'R

R
R

"!ltr r df' ..• ' ~

12/1S/6A

• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •

R • • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •

R • • •
R • • •

R • • •
• • •

R • • •
• •
• • •
• • •
• • •
• • •
• • •
• • •
• • •

R • • •
R • • •

• • •
• • •
• • •
• • •

•
• • •
• •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •
• • •

058.
059.
060.
061.
062.
063.
064.
065.
066.
067.
068.
069.
070.
071.
072.
073.
074.
075.
076.
077.
07S.
079.
080.
OSl.
082.
,083.
084.
OS5.
086.
087.
OS8.
089.

I 090.
091.
092.
093.
096..
0 0 5.
0<?f-.

097.
098.
O~9.

100.

1 01 •
1 02.

1 03.
1 OLJ...

1 C5.
106.
107.
les.
109.
110.
1 1 1 •

112.
113.
114.

1 15.
116.

R

R

R

R

R

R

.R
R.

•
•
•
R

•
•
•
•
•
•

•
•
.R

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
'.
•
•
•
•
•
•

R

•
• .,
•
•
•
•
•

p •
•
•
•
•
•

•

D

o
D

D
R

R

R

R

R

D
D

D

R

R

R

R

c

T

D
R

T
T
T

R D
R

D

R

•
•
•
•

T.
T.
RT

T
DT

.T

• T

• T
• T

D.

•
•

c.
R.O

.D
.R

•
•
•
•

,. D

•
O.
O.

•
•
•

R •
.R

•
R

T

T
T

T

R

o
o

T

T

o T

R

TO R

D

D
D

D

T
T
TDR

T

T

T

T

D

T
T

T

D

D T
D T
R T

D T

•
•
•
•
•
•
•
•
•
• R

• R

•
•
•
•
•
•
•
.'
•
•
• R

•
•
•
•
•
•
•
•
•
•
•
•
•

• D T •
• D

• D

• D

• D

• D

• D

• D

R.

• R

•
•
•
• R

•
• D

• D

•
R •

.R

• R

•
•
•

R

T •
T.
T.

T
T
.T
.T

o .T
.DT
.RT

R. T

R. T

• D

D •
•
•
•

T
T

o
D

D

T
T

T D

• D T

•
•
•
•
•

D T
o T
RT
R T

RT

'Figure 7. Sample Series Data (continued)

D
D

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•

:0
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•

S7~

I' ,I
Ii'
I

I

---"!-"'!'""----------------____ ~',.1lI

117. • • R • T D • •
118. • • q • T • •
1 1 s: • • • R • D T • •

0 120. • R • • D T • •
121 • • R • • 0 T • •
122. • • R • TD • •
123. • R • • 0 T • •
124. • • R T D. •
125. • • • R T .D •
126. • • • R T • 0 •
127. • • • T • R D •
128. • • • TR D •
129. • R • D T. •
130. • • R • TD •
1 31 • • • R • TD •
132. ~ D -r • • • I •
133. • R • D .T •
134. • • R • • TD •
135. • • R • .DT •
136. • • • R • T D •
137. • • • R • T D •
138. • • • R • T I) •
139. • • • • T R !"'.

140. • • • • T q D.
IlL 1 • • • • .R T D •

Figure 7. Sample Series Data (continued) •

~I ... , ___ ------- .. --~.~--,,, ,~ .. ,~-.-,~-. '"

i

I'
AUTOCORRELATION-POWER SPECTRUM
TEST DATA FOR SPECTRAL ANALYSIS PROGRAM 12/18/64

SAMPLE SIZE if: 1 L~ 1
M Ii: 48 0 I< PHI%f(!1 RHO%Kt:!

0 .61918826ES-05 1.00000000
1 .49629587ES-05 .80152661
2 .39625253E&05 .63995484
3 .30105374ES-05 .48620711
4 .18852726ES-05 .30447'~86

5 .11471034ES-05 .18525922
6 .10399243ES-05 .16794961
7 .90171652ES-04 .14562881
8 .15269558ES-05 .24660606
9 .26045408E&05 .42063794

10 .34045049ES-05 .549f-33356
1 1 .41392950E&05 .66850346
12 .46054632ES-05 .74379045
13 .40432239E&05 .65298781
14 .31725964E&05 .51237993
15 .22425711 E&05 .36217920
16 .11780641E&05 .19025943
17 .59452975E&04 .09601760
18 .28123651ES-04 .04542019
19 .44975980E&04 .07263700
20 .10222909E&05 .16510178
21 .19470050E&05 .31444475
22 .26368626E&05 .42585797
23 .34144464E&05 .55143913

0 24 .38007251E&05 .61382383
25 .33412656E&05 -.53962030
26 .24516484ES-05 .39594555
27 .15777787E&05 .25481405
28 .6001497 5E&0 4 .09692524
29 .18969563E&04 .03063618
30 .12834516E&04 .02072797
31 .26921270E&04 .04347832
32 .6088 4212E&0 4 .09832908
33 .15170095E&05 .24lt·99971
34 .23122131E&05 .37342650
35 .29949677E&05 .48369258
36 .32601485E&05 .52651975
37 .28405066E&05 .45874684
38 .21030386E&05 .33964445
39 .13310755E&05 .21497104
40 .49601110E&04 .08010667
41 -.18197957ES-03 -.00293900
42 -.16281521E&04 -.02629494
Lt.3 -.25759475E&03 -.00416020
44 .42860210E&04 .06921999
45 .10374279E&05 .16754644
46 .172-0737 5ES-0 5 .27790215
47 .23 /l31276ES-05 .37841925
48 .25892057E&05 .41816130

0
Figure 8. Sample Series, Autocovariance and Autocorrelation

57~
-------- ---------------------_.------------ ------~----~-------

PARZEN BETAS

F BETA%l.NIl BETA%2.NIl BETA%3,NIl
999.000 .80011024E&OO .13340027E&01 .23465504E&01
96.000 .78929509EfrOO .12202052E&01 .17034202E&01
48.000 .75812768E&00 .93653168E&00 .67958946E&00
32.000 .71015539E&00 .61916708E&OO .20900758E&00
24.000 .65041706E&00 .39948586E&00 .97214880E-Ol
19.200 .58440389E&00 .33340729E&00 .88525320E-Ol
16.000 .51704732E&00 .38584086E&00 .23442209E&OO
13.714 .45199957E&00 .46911768E&OO .65136868E&00
12.000 .39135833E&OO .50167397E&00 .93366472E&PO
10.666 .33583873E&00 .44995445E&00 .63677465E&00

9.600 .28526015E&00 .33467733E&00 .19462367E&00
8.727 .23913551E&00 .205913.81 E&OO .35159730E-01
8.000 .19715263E&00 .10791720E&OO .22684310E-01
7.384 .15940835E&00 .56990 130E-0 1, .23143450E-Ol
6.857 .12636459E&00 .42773160E-0 1 .29081020E-Ol
6.400 .98600030E-01 .44901620E-Ol .53479060E-01
6.000 • 76493680E-0 1 .48369660E-0 1 .72477750E-01
5.647 .59980890E-01 .47891110E-01 .55966280E-Ol
5.333 .48474860E-O 1 .44032130E-01 .36976540E-01
5.052 .40971290E-01 • 387473 70E-0 1 .35184100E-Ol
4.800 .36282580E-0 1 .33713860 E-O 1 .29622420E-01
4.571 .33306580E-Ol .30005890E-01 .22685510E-Ol
4.363 .31234280E-01 .27654190E-01 .26523880E-Ol
4.173 • 29635800E-0 1 • 25683580E-O 1 .31906040E-Ol
4.000 .28415290E-Ol .23160020E-01 .29076180E-Ol
3.840 .27673250E-01 .20261370E-01 .18901550E-Ol
3.692 .27539780E-0 1 .18261970E-O 1 .96773900E-02
3.555 .28041400E-01 • 18647.5 80E-0 1 .10495150E-01
3.428 .2904 056·0E -01 .22253980E-01 .18848840E-Ol
3.310 .30254160E-01 • 2878 3770E-0 1 .24704920E-01
3.200 .31329000E-Ol .36620530E-0 1 .32181690E-Ol
3.096 .31937310E-01 .43126840E-Ol .51423100E-Ol
3.000 .31856520E-01 .45685250E-01 .65480820E-01
2.909 .310 11180E-0 1 .43080200E-01 .55028230E-01
2.823 .294 71850E-O 1 .36240840E-0 1 .34862590E-01
2.742 .27420720E-01 • 27,72 7820E-0 1 .21366200E-01
2.666 .25100700E-Ol .20 3 1 9860 E -0 1 .13447380E-Ol
2.594 .22764670E-01 .15661660E-Ol .96615800E-02
2.526 .20635200E-Ol .13759420E-01 .10297030E-01
2 .. 461 .18879240E-01 • 13476650E-01 .14642140E-Ol
2.400 .17596420E-0 1 .13569170E-Ol .17766000E--01
2.341 • 1 6 8 1 75.6 0 E - 0 1 .13519190E-Ol .14771150E-01
2.285 .16510480E-01 • 1 3632320 E -0 1 .10184480E-Ol
2.232 .165~0680E-01 • 14454840E-Ol .99279900E-02
2.181 .16936510E-01 .16105920E-O 1 .13757660E-01
2.133 .17407460E-Ol .18118480E-Ol .20514060E-Ol
2.086 .17864730E-Ol .19835710E-Ol .25282660E-Ol
2.042 .18191330E-01 .20876450E-Ol .21663380E-01
2.000 .18309310F-Ol .21207760~-0'1 .17402390E-01

Figure 9. Sample Series, Spectral Densities

DENSITY PLOT

PARZEN BETAS

096.
048.
032.
024.
019.
016.
013.
012.
010.
009.
008.
008.
007.
006.
006.
006.
005.
005.
005.
004.
004.
004.
o OL~.
004.
003.
003.
003.
003.
003.
003,.
003.
003.
002.
002.
002.
002.
002.
002.
002.
002.
002.
002.
002.
002.
002.
002.
002.
002.

•
•
•
•
•
•
•
•

•
•
•
•
•

C

C

C

C

•
•
•
•
•
•
•
•
•
•
•
•
B

B •

C

C

• 8 C A

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• C

• C B

8. C
SCA

CBA.
CA •

CRA •
C SA •

CSA
BAC

B C

•
•
•

C A •
8

S

A
A

CB A

C8

•
•
•
•

CB •
ABC.
A B.C
ABC

ACB
C B

•
•

B A •
A •

• C B A •
• BC A

• 8 C
• BCA
•
•
•
•
•
•
•

C B A
C BA

C 8
AC
AS C

AC
CAB

•
•
•
•
•
•
•
•
•
•

B
A

A

C

C

C A

8A

A

•
•
•
B

A
CA

BA
A

B. A

B A
.8 C
A '~

A.8 C
B.

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Figure 10., Sample Series, Spectral Density Plot

8 C
B

C

•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
• ,.
I

~
I

•
•
•
•

•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

•
•
•
•
•
•

•
•
•
•
•

•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

