PROCEEDINGS OF THE MEETING
OF THE EASTERN REGION OF THE

1620 USERS GROUP

The Carillon Hotel
Miami, Florida

May 9, 10, 11, 1965

TABLE OF CONTENTS

PAPERS TO BE PRESENTED AT

1620 USERS GROUP MEETING

MIAMI - CARILLON HOTEL
MAY 9, 10, 11, 1965

Session A = 1

Page

Unattended Operations of the 1620, C., S. Schrodel
(Sun 0il Company, U. G. Code 1298) (Intermediate).............................l

Time Sharing on the 1620, E. W, Channen
(University of Windsor, U. G. Code TOL2) Simulation of Program
Interrupt for Time Sharing Under Monitor I (Intermediate)icevececosescsenseasll

The Compleat FORTRAN, J. A, Haag
(Purdue University) Description and Discussion of a New 1620
Textbook on FORTRAN II (General Interest)...o..................-.............ll

Undefined Variable Detector for FORTRAN II, T, J, Scott

(Sun Oil Company, U. G. Code 1298) A Debugging Aid to Locate

Undefined Variables at Object Time in a FORTRAN II, V. 2 Program

(All FORTRAN users)..a.......o.....l9

Music Programs as an Aid to Debugging, P, J. Jutsum
(UniVQrSity of the West IndieS) (General Interest)...........................22

Session B = 1

Financial Evaluation by Discounted Cash Flow, Leslie Parker
(IBM =« Poughkeepsie) 20K 1620 Financial Analysis Program
(Intermediate)ooo000000000‘tal‘oc0000.00oooootooooonlouoctootooctooco.o.coooo26

CD 4 - PDQ, G. Lilly ' ‘
(Jones and Laughlin Steel Corp.) An Extended Disk Version of
PDQ FORTRAN (Intermediate; Systems Programmers).....................‘........38

UW - M 1620 WISAL, C. Mackenna
(Univ. of Wisconsin - Milwaukee) A Simple Instructional Programming
Language for Accounting (Intermediate)..o....................................h2

1620 Support for a Document Writing System, C. M. Thatcher
(Pratt Institute) A 1620 Program Insert Control Symbols Into the Input
for an 870 Document Writing System (Elementary - Intermediate)eceiecececeeseessSl

Session C = 1

Use of 1620 Model I for Simplification of Boolean Algebra Expressions,

Cs Plesums

(Union College, U, G, Code 1302) A Discussion of a Program for Boolean
Simplification with Emphasis on Programming "Tricks" Used

(Intermediate - agssumes knOWlEdge of M, Lu. SPS)..CCCOOOIQ.O‘.IOCC.Qalccll"062

L

TABLE OF CONTENTS, contd.

Plot a Block Diagram, Mrs. S, Young

(U, S. Dept. of Health, Education & Welfare, U. G. Code 1118)

Program to Use CalComp Plotter to Prepare Block Diagrams for

SPS Source Programs (General Interest).......................................65

Assembling SPS 1 Programs with Monitor 1, T. I. Markland
(IBM - PoughkeQPSie) (Intermediate).................................;........77

PROGRAM TEAM SESSIONS

1620 Back Panel Wiring Program, Peter Dunham

(Raytheon)..‘....0.‘..‘....l‘.C.Ql.‘.l...'...0.0.0..0..00.‘.l.........l......l

1620 Electronic Circuit Analysis Package, llerbert Wall

(IBM)COOOO.‘....0‘.‘....0‘.‘.0‘....ll........l.000...00..'.0'.0O......‘IQ...'86

Computer Aided Design of Integrated Circuits, A. Spitalny

(Norden).....................‘...;.......................-...................87

D. C, Automatic Electric Network Analysis, H. Pachon
(Automatic Electric Labs, Inc., U, G, Code 3182) A Program to
Perform Automatic D. C. Analyses of Electronic Circuits

(Advanced)..108

Traverse Adjustment by Weighted Least Squares, R. L. Kenngott

(Chas. H. Sells, Inc., U, G. Code 1377) Employs the Full Theoretical

Rigor of Least-squares in Traverse Adjustment Without Artifice or

Approximation (Intermediate)‘.........-.......o....................‘.--.....120

3~-Dimensional COGO, J. W. Madden
(Electronic Data Processing, Inc.) A 3-Dimensional Set of COGO
Routines for Use in Highway and Bridge Design (Intermediate).cecscececccecceesl?3

Design of Single, Double, Triple Cell Box Culverts, Leno Morris
(Iqew York Sta‘te Dept‘ of Public works).CO..Q.‘...COQ..0ll.....l...‘.'.l'.‘..l33

More-Less, CPM & PERT System for Disk and Printer, A, D. Johnson
(NASA U, G. Code 3306) (Intermedlate).................-....................lh7

Session A - 2

Fitting Straight Lines to X-Y Data When Both Variables are

Subject to Error, F. K. Durkam

(U, S. Atomic Energy Commission) Three Methods (Scarborough, Wald,

Bartlett) for Estimating Functional Relations of Two Variable Data

are Compared With the More Commonly Used Regression Relationships Fitted

With the Least Squares Criterlon..lBu

Use of Orthogonal Polynomials for Curve Fitting, S. S. Kuo

(Univ, of New Hampshire, U, G, Code 1198) The Application of

Orthogonal Polynomials is Extended for Fitting a Set of Unequally

Spaced Data Points (General Interest)scseecesececcesccscscccsssssssscsoscssselbli

ii

.

TABLE OF CONTENTS, contd.

Page g::>
Curve Fitting by Finite Sums of Exponentials, R. Meshelof |

(State University of New York, U. G. Code 1283) (Advanced)eesseesesssaseeesal?5

Session B - 2

TYGO -~ Load and Go SPS for Paper Tape, R. Cs Read & P. J. Jutsum
(UniverSity of the West IndieS)..........o........................-‘........187

SPAS - Load and Go SPS for L0-60K Card System, G. G, Billin
(Clarkson College) (Advanced - Intermedifte)sesescececessoccssseossccoscseseld8

Session C - 2, Session C - 3

Understanding FORTRAN II (Workshop), L. Hoffman

(Princeton University-Guggenheim Labs) A Presentation of FN II

Subprograms Written in SPS Will be Made With an Extensive

Coverage of the Internal Communication of FN II for the 1620..¢eceescecsssssl96

Session A - 3

Non~Linear Estimation Ly Modified Gauss-Newton Method, Jerry Kemp

(U. S. Naval Ammunition Depot, U. G. Code 3073) Program Uses

Gauss-Newton Method for the Fitting of Non-Linear Regression

Functions by Least SQUAreS.ssssesessssosssssessssssnsecsssossccessvsessasscnssllT

The Autolog~Digiklok System, E. F, Staiano, D. E. Atkins

(Bucknell University) A Digital Clock for the 1620 and Software

Modifications to Monitor I to Incorporate the Clock in an Automatic

Logging System (Intermediate)....--cn.......................................213

Disk Version of FORTRAN II Incremental Plotter Subroutine

(Plotter Users), P. Larrea

(Princeton-Pennsylvania Accelerator, U, G, Code 1177) A General

FORTRAN II Subroutine for a Complete Drawing With Only One Subroutine

and a Minimum Number of Statements (Intermediate).ececscsesesccsscsccecscesel3S

Session B - 3

Planning and Running a Short Term Workshop on Computer Orientation

and Programming, Mrs, Joyce Fodor

(University of Wisconsin, U. G. Code 3155) (General Interest =

particularly those responsible for education and training programs).eceeccsee256

A Ten-Year Budget Projection for Educaticnal Institutions, J. A. Ferling
(Claremont Men's College, U, G. Code 5033) The Use of the 1620 in

Planning for Educational Institutions (Elementary)o-‘...........-o.....o.¢..263
Junior College Instructional Testing Program, D. G. Owen

(Miami-Dade Junior College) Description of Test Scoring System

Used at Miami-Dade Junior College (General Interest; Educators)eececscececse268

#Not available at time of publication,

iii

6:00

8:00

11:30

T:30

8:00

c

&
]
o

10:00

10:30

12:00

1:30

‘:D 2:00

Pem.

p.m.

pem,

Q.MM

a.M,

noon

Pelle

PROGRAM
1620 USERS GROUP MEETING
CARILLON HOTEL

Miami Beach, Florida
May 9, 10, 11, 1965

SUNDAY = MAY 9

8:00 p.m, REGISTRATION

Medallion Room

Cafe Le Can Can

Burgundy Foyer

Sugar 'n Spice Room

Carillon Room

Upper Lobby

Carillon Room

Burgundy Room

Carillon Room

-~ 10:00 p.m. SOUND=-OFF SESSION
Chairman: Dr, James R. Oliver
SHOW
MONDAY - MAY 10
- 8:30 am. REGISTRATION
- 0:00 a.m, NEW USERS BREAKFAST
- 12 Noon OPENING SESSION
Chairman: Dr., Oliver
(1) Official opening and welcome
by President J. R, Oliver
(2) Users Group announcements
(3) IBM announcements
COFFEE BREAK
"1130 Computer"
D. N. Leeson
- 1:15 p.m, LUNCHEON : ,
Speaker: Mr, Rudolf Meyer
"Education and the 1620"
SESSION A - 1
- 2:00 pem. Paper "Unattended Operations of 1620"

C. S. Schrodel

- 2:20 p.m. Paper "Time Sharing on 1620"
E, W. Channen
(Inter.)

2:20 pem, =

2:50 Pells =

3:10 Pelly =

l:30 p.m. -

2:50 pem, =

3:10 peme =

1:30 Dells =
2:00 pem, -

2:)45 p-ma -

3:30 pem,

2350

3:10

3:30

2:20

2:50

3:10

3:30

2:00

2:30

3:15

4300

p.m.

P

P

Pelle

Pells

Pelle

P.l.

pem.

Penis

D.m,

PROGRAM TEAM MEETINGS:

4:00 Pelly =

5:30

P.m,

Paper "The Compleat FORTRAN"

N
J. A, Haag Q;j

(General Interest)

Paper "Undefined Variable Detector
for FORTRAN II"
T. Js Scott
(General Interest)

Paper '"Music Programs as an Aid to Debugging"
P, J. Jutsum
(General Interest)

SESSION B = 1 Dominion Room
Paper "Financial Evaluation by Discounted
Cash Flow"
Leslie Parker
(Inter,)

Paper "CDL-PDQ (Disk PDQ)"
Gs Lilly
(Inter., Systems Programmers)

Paper "1620 Support for a Document Writing Systenm"
‘ Cs M« Thatcher
(Inter.)
Paper "UW-M 1620 WISAL" (new language)
C. MacKenna .
{Inter,)
SESSION C = 1 Empire Room

Paper "Use of 1620 Mod I for Simplification
of Boolean Algebra Expressions"
C. Plesums

Paper "Plot a (SPS) Block Diagram"
Mrs. S. Young '
(General Interest)

Paper "Assembling SPS I Programs with
Monitor I"
T, I, Markland
(Inter.)
COFFEE BREAK ' Upper Lobby
(1) ELECTRONICS PGM TEAM Empire Room <(:;
A, Spitalny, Chairman <

4:00 pem, =

L:00 pem. -

)4:00 pcm. -

Paper

Paper

Paper

Paper

5:30 pem,

Paper

Paper

Paper

5:30 pem.

5:30 P.m,

Paper

5330 -p.m'.‘ - 6:30 P,

6:30 P,

"1620 Back Panel Wiring Program"
Peter Dunham : ‘

"1620 Electronic Circuit
Analysis Package"
Herbert wall

"Computer Aided Design of Integrated
Circuits"
A, Opitalny

"De C. Automatic Electric Network
Analysis"
H. Pachon
(1/2 hr, Adv,)

(2) STRUCTURAL & CIVIL ENGINEERING
PGM TEAM
Te Js Scott, Chairman

"Gimmik~free Adjustment of
Survey Traverse"
R. L. Kenngott
(20-30 min. Inter.)

"3=Dimensional COGO"
Jo WQ Madden
(,4% min,)

"Design of Single, Double, Triple
Cell Box Culverts"
Leno Morris
(30 min.)

(3) PROCESS & CUEMICAL ENGINEERING
PGM TEAM '
C. S. Schrodel, Chairman

(4) OPERATIONS RESEARCIH PGM TEAM
J«. R, Oliver, Chairman

"CPM & PERT System for Disk and
Printer"
A, D. Johnson
(20 min, Inter.)

COCKTAIL HOUR

(Compliments of The Carillon Hotel)

LUAU

vi

Dominion Room

Sales Board Room

Carillcn Room

~Sun Terrace

Sun Terrace

9:30

9:30

9:00

9:15

9:30

9:00

9:30

9:00

10:00

10:30

=% Me

.0

Q..

el

Qellle

el

.M.

a.m,.’

9:15‘

9:30

10:00

9:30

10:00-

10:00

10:30

11:00

e

8.0

.M,

a.,

a.._m.‘

Qe

QM

el

EXECUTIVE COUNCIL MEETING

RECLNT FILMS of. INTEREST to
1620 Users

TUESDAY = MAY 11

SESSION A = 2

Paper '"Fitting Straight Lines to
X~Y Data When Both Varisbles
are Subject to Error"

F, K. Durkam

Paper "Use of‘Orthogonal Polynomials

for Curve Fitting"
S¢ S+ Kuo
(Inter.)

Paper '"Curve Fitting by Finite OSums of

Exponentials"
R+ Meshelof
(Adv.) .

.SESSION B - 2

Paper "TYGO - Load & Go - SPS
for Paper Tape"

Re Co Read & P, J. Jutsum

Paper . "SPAS -~ Load & Go SPS -

for L0-60K Card System"

G, G, Billin.
(Adv, = Inter.)

:SESSION C - 2

WORKSHOP

"Understanaing FORTRAN II"

‘(FORTRAN II sub-programs
written in SPS)
L. Hoffman
(Adv,)

COFFEE BREAK

SESSION A - 3

Paper "Fitting of Non Linear Regress1on
: . Functions by Least Squares"

Jerry Kemp
(Inter.)

vii

Dr. Oliver's Suite [

No., 160k

Empire Room

Carillon Room

Dominion Room

'Emgire Room

UEEer Lobby

Cﬁrillon Room

10:30

10:50

10:30

11:00

11:30

11:20

12:00

1:30

3:00

3:30

.M,

a.m,

e,

a.,m,

a.M,

Aellle

noon

Pell,

PeMe

P,

10:50 a.m,

Paper

11:20 a.m.
Paper

12:00 noon

11:30 a.m.
Paper

12:00 noon
Paper

11:50 a.m.
Paper

1:15 p.m.

3:00 p.m,

3:¢30 p.m,

5:00 p.m,

SESSION B = 3

EDUCATION TEAM SESSION

"Planning & Running Short Term

Workshop on Comp. Orient. & Prog."

Mrs. Joyce Fodor
(General Interest)

"A Ten Year Budget Projection for

Educational Institutions"
Jo A, Ferling
(Elem.)

SESSION C - 3

WORKSHOP CONTINUATION
L. licffman

SESSICH & - 3

"Autolog Digiklok Mod for
1620 Monitor I System"
Eo Fc Sta-iano. Do Eu Atkins
(Inter.)

"Disk Version of FORTRAN Il

Incremental Plotter Subroutine"

P. Larrea
(Plotter users)

SESSION B = 3

"Test Scoring System"
Ds Go Owen

LUNCHEON

"lle. L‘ " -

(Multipurpose Programming Language)

D. N. leeson

COFFEE

ANSWER TO SOUND OFF

Dominion Room

Empire Room

Carillon Foom

Dominion Room

Burgundy Room

Carillcn Rocm

Upper Lobby

Carillon Room

SUN OIL COMPANY
RESEARCH AND ENGINEERING
ENGINEERING DIVISION

UNATTENDED OPERATION OF THE 1620 COMPUTER

by

C. S. Schrodel

~ For presentation at the EaStern.Region:lé?O Uéers Group Meeting

. May 10, 1965

Miami, Florida

' UNATTENDED OPER/TION OF THE 1620 COMPUTER

- SUMMARY

The unattended operatlon system was d631gned to gllow running of an
IBM 1€20 for long periods without need of an operator and without the
limitation of the card read and punch hoppers. The system can execute.
and compile Fertren II~Velolon 2 programs, using the 1311 Disk Drive as
the input-output device for data and programs Sepax ite programs used by
*he system ares : : :

1. A progranm to load the data'andfsoﬁrce decks onto the
' diske ‘

2. A programito ioad the object programs.
3. A.program‘tp control gompilation.i
L. A:program to controi executiph.
S 5. A prosram to dump the outpﬁt from the disk.
6. Modified combiler and subroutiies.
"~ Presant requlrementb‘Por use of tﬁe system. are a“gp K core, a 1311

Disk Drive, source programs in Fortran II, and programs which do not use
corve locations 59,000 to 59, 999.

USE OF THE SYSTEM

Tae normal use of the system is to load the data and programs onto
the disk durinz the late ofternoon, allow unattended operation during the
niht, aid dump the output from the disk tiie following morning. In order
to properly load the disk, it is necessary to know the following apout
the disk layout:

1. The data and source decks :re loaded tuo sectors per
cerd from tne sector speciiied upwiérd. The scctor
address is specified at load time and must be grecter
than 600 and also ar even number., :

2. The object progrems are loaded three cylinders per

' program from the sector specified upwerd. The sector
address of the first program is specified at load time
and must be a multiple of 200.

3. The program output followed by the symbol tabies of the
compiled programs are written two sectors per record
(card) starting at 00000.

L. The compiler (passes I, II and intermediate output) uses
sectors 18800 to 19999.

5. Compiled object decks are written on the disk one sector
per card starting at 18799 downward.

Sectors should be specified for the input and programs so that the
work can be fit on the disk in sectors 0 to 18799, and so that generated
output will not overlap data not yet used. Efficient usage is to load
first the programs with the highest ratio of input to output. The
starting address of the programs should be 18800 minus 600 times the -
number of programs. Data followed by source decks are loaded below the
object progrems. Operating in this manner, it is possible to have the
output overlap data already used, have the symbol tables overlap the source .
decks, and finally have the compiled object decks overlap the programs
which had been previously run.

Each data set and source program must be preceded by a card with a
record mark in column one. If it is desired that the same program be
reloaded for the next data set, any digit should be placed in column two
of the record mark card. For example, if the same program is. to be
used for three data sets, then the first two data sets must be preceded
with cards having a record merk in column one and a digit in colwmn two.
A card with a double record mark is placed after the last source deck
as an indication to stop. It should be obvious that data and cbject
programs must be loaded in the same order and that compilations are last.
The system cannot be used to compile and execute directly.

"LOAD DATA" PROGRAM

The “"Load Data" program is loaded into core, followed by the data
and source programs. The ADD tables must be in core. During loading,
the program types the message DATA START and reads from the typewriter
the sector address at which the data is to begin. This location is
recorded on the disk in sector 00598. The data is then read in and
written on the disk, two sectors per card, starting at the specifie
location. - :

"LOAD PROGRAM" PROGRAM

This program is used to load onto the disk those programs-which are
to be executed. After loading, the program types the message PROGRAM
START and reads from the typewriter the sector address from which the
programs are to be stored. This location is recorded in sector 00599,
and the program stops. The first program to be executed is then loaded
into core, together with its subprograms end subroutines. After loading,
a branch to 59000 causes the program to be written onto disk at the proper
location. The second program is then loaded into core, and the process
repeated.

To prevent the possibility of check stops due to undefined variables,
it is convenient to have the core cleared to flagged zeros. However, it
is necessary that the "load Program® routine in the 59,000's not be
cleared. The proposed means of doing this is to clear the core to

flagged zeros, restore the add tébles, and record this "clear core" in
sectors O to 00590 before the initial load. This "clear core" is then C:\
to be read into core between each loading for a fresh start.

WEXECUTIONY PROGRAM , -

This routine is essentially a monitor and controls the execution of
the object programs. The program is loaded into core when the unattended
operation is to be initiated and resides in 59000 to 59900. This routine
operates in conjunction with a modified subroutine deck to perform the
following functions: ‘

1. Load object programs from disk into core.

2. Read through data cards until a record mark card is
found, indicating a new data set.

3. Read or write a record on disk whenever a card would
have been read or written by an unmodified subroutines
set. :

L. Terminate execution and go to the next job whenever an
error F7 occurs, or 25 errors other than F7 and F8, or
a record mark card is read for a data card.

S. Type OLAP and stop if an input record is to be read from
a sector lower than the current output sector.

6. Write a record between jobs to control the dumping of the
output.

This routine reads a program into core locations 0 to 58999 whenever
a branch to 59000 occurs. After loading the program, it reads through
the input records until it finds a record mark card. If the record mark
card does not contain a digit in column two, it increments the program
counters by 600 so that the next program will be read into core on the
next branch to 59000. The counters are not incremented when column two
contains a digit. The routine then types START and executes a L900LO9.

"COMPILE" PROGRAM

This routine works in conjunction with a modified compiler to allow
compilation without use of the card reader or punch. Compiler, source
statements, intermediate output, symbol table, and object decks are all -
read from or written on the disk. This program is loaded on the disk by
the "Load Programs" routine following the last program to be executed.
hfter termination of the executions, this program is read into core and
takes control. The routine requires about 2000 core positions. Functions
of this routine are as follows:

1. Reag in Pass I or Pass II at the appropriate time.
2. Read or write source statements, intermediate output or @:/

object deck using disk instead of cards. Intermediate
output starts at sector 19171 for each job.

4

3. Write symbol tables statements on the disk'rather than
‘:ﬁ‘ the typewriter.

L. Type OLAP and stop if source statements are to be
read from a higher sector than object deck is to be
written.

5. Write a control record for use of "Dump Disk" routine
between symbol tables and object decks.

6. Between jobs, read through source statements until a
record mark card is found. Stop if it is a double record
mark.

"DUMP DISK" PROGRAM

This routine is used to dump the results of the unattended operation
from disk onto cards. One alphameric card is punched for each two
sectors starting at sector O and continuing through the number of sectors
written for output and symbol tables. The program then punches out all
compiled object decks one card per sector, strrting at 18799 and
continuing down through the number of records written for object decks.
The program stops after punching the output of each job to allow
separation of cards. Depressing start causes a continuation to the next
job. After punching the last record written, the program types the
message END.

MODIFIED COMPILER

Changes were made to both passes of the Fortran II-Version 2 compiler.
The changes are as follows:

1. &very card read or written has been converted to a branch
into the "Compile" program for the reading or writing of
diskse.

2. A1l halts have been removed. Those which had been terminal
now generate a branch to the next job.

3. The header card appears only in front of the symbol tables.

li. The use of sense switcues is eliminated. Symbol tables
and traces are standard. Customary batch compiling is
eliminated. Source listings are not availzble. Subroutines
are not punched.

5. PAUSE, STOP, and END statements generate a 275900059899
instruction instead of a 48. This is to prevent undesired
halts during unettended operation. If desired, a halt
and branch back can be placed at 59000 for attended
operation.

0) MODIFIED SUBROUTINES

A modified subroutine deck is used for unattended operation. The
subroutinés branch into the "Execution" program for input and output

5

and the listing of the error message other than F8. Error F8 messages
have been modified so that they appear only on the typewriter.

ot Msl

C. S. Schrodel

APPENDIX: OPERATING TECHNIQUE FOR UNATTENDED OPERATION

™
Cy Load Data

1. Load add tables if core has been cleared to zero,

2. Load "Load Data" Program,

3. Type sector address at which data is to start; must
be greater than 00600 and must be an even address.

L. Stack data followed by source programs, and read
into core.

5. Each data set and source program must be preceded
by a card with an 028 punch in column one. This
card must have a punch in column two if the same
program is to be reloaded for the next data set.
The last card must have an 028 in both columns one
and two.

Load Programs

1. Clear core with a 310000300002 command.
2. Load add tables.

3. Store this clear core on the disk with the "Loed 0
on Disk" routine.

L. Load "Load Programs" routine.
5. Type sector address at which programs are to begine
' Must be a multiple of 200. Normally, 18200-600 times

the number of programs to be executed.

6. Load 1lst program to be executed and branch to 59000,
The Version 2 unattended subroutiries must be included.

7. Clear core with the "Read O from Disk" routine.
8. Repeat 6 and 7 for each program.
9. Load "Compile" Program.
Execution
l. Load add tables if core has been cleared to zero.

2. Load "Execution" routine.

Dump Disk

1. Load "Dump Disk" routine.

2. _Remove cards from punch hopper.
3. Press START.
L. Repeat 2 and 3 until END is typed.

In case processing was interrupted because of error, proceed as
follows:

1. Read I8000 into 36825-36829 and 00000 into 37657-37661.
2. Execute steps.l-3 above,

3. Branch to 5982l after the last symbol table has been
punched to punch object decks.

When dumping the disk using this latter procedure, the operator
must use the typewriter sheet to know what output is being punched.
One job is punched each time the start button is pressed. Do not
count compilations which are Pass I only.

If the contents of 36825-36829 and 37657-37661 are recorded after
execution, the normal dump prccedure can occur anytime simply by
restoring the recorded values.

Set-Up Example

Five programs are to be executed and three programs compiled. The
second program is to be run four times.

Program 1 has 1000 cards input and 1500 output,

Program 2 has 50 cards input and 250 output for each data set,
Program 3 has 100 cards input and 500 output.,

Program L has 10 cards input and 100 output.

Program 5 has 10 cards input and 150 output.

Total output = 3250 cards.

Total input = 1320 cards.

Load programs in order of increasing ratio of output to input
(Lowest output/input first). Output of the last can safely overlap
input of the next to 1ast.(provided last output is greater than next
to last input).

= Data Start = 2(3250-1310) = 3880
Program Start = 18200-5(600) = 15200

8

Data should be stacked as follows:
Record mark card followed by Program 1 input.

Record mark card with a digit in column two followed by
first data set of Program 2.

Record mark card with a digit in column two followed by
second data set of Program 2.

Record mark card with a digit in column two followed by
third data set of Program 2.

Record mark card followed by fourth data set of Program 2.
Record mark card followed by Program 3 input.

Record mark card followed by Program L input.

Record mark card followed by Progr:m 5 input.

Record mark card followed by first source program..
Record mark card followed by second source progranm.
Record mark card followed by third scurce program.

Double record mark card to stope.

Note that compilations are last.

(a) Title and Author: . Time Sharing on the 1620
. by , ~

Eric W, Channen,
Department of Chemistry,
University of Windsor,

(b) Company and Users Code:
University of Wigdsg:,'User No, T0k2.
(c) Time Required for Presentation: - 20 minutes
(d) Special Equipment Required: Any 1620 using Monitor I
(e) Technical Level of Presentation: Medium
(£) Audience fo; whom it is intended: Computer Center Staff
(g) ABSTRACT

The Monitor I system has been adapted to permit foutine
computation to proceed automatically between jobs, thus utilizing
idle computer time. The routine or lengthy computation ¢an be
interrupted at any time, by the use of a console switch, to allow
a short job to be run, and will automatically be resumed when the
interrupting job is complete. The effect is accomplished by stor-
ing the contents of memory on disc, together with a restart address.
The system should be particularly valuable at installations where
routine data processing tends to conflict with an open-shog

operation,

10

O

COMPREHENSIVE FORTRAN PROGRAMMING-A NEW TEXT200X yd

James N. Haag
Purdue University
Indianapolis, Ind.

1620 Users Group Miami Meeting, May 9-11, 1965

I. Introduction

II. Historical Background

ITI. Computer Technology Curriculum

IV. Compiler Language Programming (FORTRAN)

V. Deslgn Criteria For The Textbook
ABSTRACT #

This talk will desl with the srrangement, contents, =and
underlying phllosophy of a new book on computer programming
in the FORTRAN language. The pertinent portion of the pre-
face from the book is given belows '

"This textbook is intended as an introduction to computer pro-
gramming for those interested in one of the so-called BEST-SiM
areas s Business, Engineering, Sclence, Technology, Socinl science,
Agriculture, 2nd Mot :ematlics. The mathematicasl level of this
materizl presupposes only the comnletion of one yesr of high
school algebra. After mnstering thls mnteri~l, 2 person shonld
be 2ble, independently, to solve m2ny problems by computer methods.

The book 1s desirmed to teuch the TORTRAN TI langusge. TIts
objective 1s to instruct 2 high school or college student en-
rolled in & progromming course how to progrem a computer in
this language. an adult msy utllize this book as a self-te~ching
device to attain the same objective. No previous experience
with 2 computer 1s assumed. For the mastery of the materi-l,
the avallability of a computer is desirable, although not necessary.

The FORTR:AN TI lengunge given here 1s that for a 20,000-digit
memory IRM 1620 comouter with an attached 1311 Disk Drive. This
is one of the most wildely available comnuter systems that cus-
tom#rily utilizes the FORTRAN I1I languszge. Since there are some
two thousand 1620 computers in use, and not 211 of them have =n
attached 1311 Disk Drive, this msterial has been written so that
it 1s applicable also to this situation. Portlons of the book
which are not &applicable to the latter system are denoted with
either an asterisk or a statement to this effect. Furthermore,
in order to make this book more wildely useful, the features of
the more comorehensive FORTRAN IV langusge for the IRM 7090 and
7094 computers are included in an appendix.

Tne educationnal philosophy underlying the presentation of the
material is to introduce the student to a sm2l1l portion of
FORTRAN II, tien h2ve him immediztely use this knowledge 1n
writing a2 comnlete progr-m before contlnuing on to sanother por-
tion of TORTRAN I1. A common fault, in this author's opinion,
has been avolded by this method. '

The entire book may be covered with more intensive work in a
two-hour per week one-semester course. A less intensive 2approach
for mastery of the material requires a three- or four-hour per
week one-semester course whlch includes, where feasible, labor-
atory work on tne computef. Many exercises and tested progroms
are glven throughout the book. The following festures have been
Included as an 21d to both the student and the instructor:

11

Graded exercises at the end of each chapnter.

Answers to 8ll even-numbered exercises.

Seven comdlete laboratory exercises witn sample

computer input snd output. : @:}
100 review questions =2nd answers.

Numerous completely solved FORTRAN II progr-ms.

Flowch2rting symbols which, unlike older texts, are

not lnconsistent with the stond-rds defined by the

Americzn Stonderds Association."

O~ Wi
e s e s

I. INTRODUCTION

Textbooks on FORTRAN progromming rise ~nd they f=211. Their
lifetimes vary from mounths to we=2rs. In 1961, Mclracken relessed
1ig btook, A Guide to Wortren Progremming. Tn 1943, Orennick re-
lewsed 1is book, A Tortr-n Primer. In 1965, numerous books on
TORTRAN, conciderlblv undated, fre reing rele’cod with deen, emo-
tion~1l, pernlexed, feorful expeotancies in the hope thnt ﬁnofher
book may Jjoin the long-lifetime ranks of these two hocks. COCne
should note thnt in history or in economics, 2 long lifetime may
me=sn 2%#4 yesrs, wnile in our discinline, = long lifetime m~y
meun only 2%%2 ye«rs.

I wish to tell you of tqe rise of ~notner texthook on TORTRAN
orogrzmnlng 28 of July 1, 1965. Besed on this talk, you should
be nble to »nredict when it will o211, 2nd how h~rd this =11 will be.
mie title of t-ie book 1s comowehensive Fortran Progr=m-lng. Tts
autor 1is myself, =ltacugh the contributors consist of sever-1l Purdue
freculty 2nd numerous men in industry, =211 of whose nomes ~re given
in the prefrce, ™he vpubligher, Hsyden Rook Compnnies, 1s optimistic
snd nlins to relea@se the book in two modelss ~n economy v-per-hound
edition 2nd 2 luxurious cloth-bound edition. The contents of the
hook "re tireefold:; FORTRIN with wORMAT™ for the 1A20, WORTRYN TT-N
for tne 1620, snd TORTRAN IV for the 7080/7794.

IT. HISTCORTCAL BACKGRO™TND

In 1962, Purdue University decided to take 7ction brsed on =
Feder:1l renort which stated th»t the then current 1,000,200 jobs
related directly to ®WDP would exnand exponenti~llv until 3,000,070
jobs would te avzlilable in 1970. Ry w2y of bockeround, T might
state thnt most of you, when =cting in tae c~terorv which we c~ll
"orogrammer", are of 2 specisl breed c7lled HKE Hrogrammers, where
JKE 1s an acronym for "h~rd knocks of exnerience". HKE progr-mmers
are widelv accepted as helng quite tolented and conohle. On the
other h2nd, the system which glves rise *to YKE DrogrImmers is one
of the lowest efficiency systems known to menkind. Veors of *tr-in-
ing, occusionzlly with random disnstrous occurences to mn “nd/or
micaine, el2pse vefore an HKE orogrommer urises from the tomb,
truly clad in the shining garments of his refined skills. mhﬂnk
heavens tnat our medicnl doctors are not forced, by default, to
obtuln their trsining in »n analagous manner! :

Purdue has alrendy develovned, thanks to men such as Sam Zonte
and S2ul Rosen, three degrees in Computer Sclences, 2 Combuter
Sciences ontion for a B.S. in Mathem=2tics, a M.S. in Comnuter Sciences
nnd 2 Ph.D. 1n Computer Sciences. However, gradu~tes of these M:;

12

programs are destined to be systems analysts, teachers, and re-
senrchers, not programmers. Thelr vrogramming 1s of a secondary
" nature in thelr careers. As a result, Purdue decided in 1962 to
immediately set up a 2-year non-college credit curriculum in
Computer Technology to efficlently train students in elther a
commercinal or a sclentific programming option. Three Model I
1620 computer centers with disks, card inonut/output, 2nd the full
gamut of unit record equipment were installed a2t Purdue's regional
campuses at Indisnapolis, Hammond, 2and Ft. Wayne, Indiana. T 2t
Indianapolis, John Manlotes atmgggmond and later, Maurilce Halsey
at ™. Wayne, and about 30 industrisl representatives snd faculty
were given the responsibility of developing the two options' course
sequence and content in the 2-year curriculum in Computer Technology.
In the 1962-63 academic year, 100 persons holding down 40-hour-
per-week positlons started the initial curriculum 2s part-time students.
The classes were all held in the evenings. 1In the 1963-64 academic
year, the revised curriculum was opened to full-time daytime stu-
dents as well as belng continued in the evenings for =another 100
part-time students. As of now, over 300 students have started the
2-year program. On the support of all concerned parties, in May,
1965, Purdue converted the entire Computer Technology progrsm into
a full college credit curriculum and thus our first graduntes this
June will receilve an Associzte Degree in Compbuter Technology. Also,
in M2y, 1965, Purdue npened up a Junior and a Senlor year in Tech-
nology to round out the education of those Associate Degree holders
who desired to take 2 B.S. in Technology. Current statistics indi--
cate that of e=ch 100 students who begin this progrsm, sbout 50 will
recelve the Asroclote Degree. It 1s too soon to s2y how meny of these
will go on for the B,S. It 1s 1lnteresting to note that of the entering
students in Computer Technology, over 15% already have a B.,S, degree.

ITII. COMPUTER TECHNOLOGY CERRICULUNM

The commercizl and sclentific options of the Associate Degree
in Computer Technology each consist of 20 one-semester courses, aver- -
aging sligntly'over 3 credit-hours per course. Tne objectives of this
curriculum and of these courses are listed in Apvendix A. The curri-
CETUIMARES liberal use of the course contents and seguences devel-
oped by other universities and the progr-mmer training programs of
a number of comouter manufacturers and commercilal and sclentific
installations. The course names convey the course contents.

The cormmon technical core of courses for both optlons 1s this
T-course sequence of titles: Unit Record Data Processing, Compiler
Longuzge Programming (FORTRAN), Machine Langu»ge Programming, As-
sembly Isngunge Programming, Utility Progroms, Systems Ansalyslis, and
Computer Project. Of the. 13 remsaining courses, these 5 are common
to both options: English Composition, Tecqnicnl Revort "riting,
Economics, Algebra, snd Statistics. The remaining & courses are
different for the two options. The commercial option includes two
semesters of accounting, computer msth, data processing applications,
COBOL programming, industrial organization, and two electives. The:
scilentific option includes two semesters of calculus, two semesters
of physics, two semesters of numerical analysis, and two electives.

The 1ist of required textbooks and materi2ls for the 13 computer-
oriented courses in thesé two options are listed in Apvendix B. This
book list changes every four months, that is, three times o year.

13

The reason for the frequent changes 1s straightforward: better
textbooks are newly published or are brought to our attention. Vou

will recognize among these authors many familiar names: McCracken,
Leeson, Germain, and Dodes. SRS

IV. COMPILER LANGUAGE PROGRAMMING (FORTRAN) -

Textbook selection 1s always a difflcult procedure. You know
from your own experience that no pverfect textbook on any subject
exists. One must always compromise. Each author, including myself,
has either a consclous or an unconsclous "Drum to beat", or at least
this 1is what the vsychologists claim. Our most difficult textbook
selectlion at Purdue was for the course in FORTRAN, Compiler L2ngu-ge
Programming.- We have used slx different texts and h=ve found them
guilty of one or both of these major faults as far as teaching be-

inning programmerss the "dot-dot-dot" apnroach and the "fractured
%Iickers" approach. I might add that I do not feel that these two
approaches are necessarily faults when instructing ilntermedi-te or
advanced programmers. :

The "dot-dot-dot" approach is one which explains a FORTRAN
statement which is directly related to one or more other FORTRAN
statements in a context where the related statements are separated
by one or more sets of 3 dots. An example of thls is the followling
representation showing the relationship of a DO statement to a
CONTINUE statement: :

DO 99 J=1,50

99 CONTINUE
Another example of this 1s the following representation showing
the redationship of a FORTRAN IV DIMENSION statement with adjustable
dimensions to 1its subprogrsms
SUBROUTINE DOT(..e,8,I,7,000)

.

DIMENSION «..,A(I,J),...

DO 22 K=1,I

DO 22 L=1,J v
In this latter example, one not only contends with two verticnl sets
of dots, but with four horizontal sets of dots. Granted, the "dot-
dot-dot" approach 1s excellent for conveying a logic2l relationship
to an intermedi2te or experienced programmer, but it is ridiculous
to enmesh a beginning programmer in a sea of 18 dots as 1n this latter
example. Can you plcture an occaslional sincere programmer punching
this, his first subprogram, into a source deck where the second, third,
fourth, sixth, seventh, and elghth cards contain only a period in
column 12°%

The "fractured flickers" approach is one which explains a WORTRAN
statement 28 an individual entity with little or no regard for the
logical relationship of this entity to the rest of the FORTRAN state-
ments in the program. This is by far the more serlious error of @;;

14

omlssion in textbooks on FORTRAN programming. The more trivinl
example of this approach 1s stating that "the PAUSE statement may
be placed anywhere in a FORTRAN program except 28 the last physi-
c2l statement" and saying no more about the PAUSE statement.,
Shouldn't one point out that if the PAUSE statement is the next-
to-1nst physical statement in the program, then pushing the START
button will not transfer control to any statement in the program?

As far as tralning beginning programmers, the ultimate ex-
emple of the "fractured flickers" approach 1is typified by those
textbooks and manufacturerd manuals which present the first
complete FORTRAN orogram, rignt down to the END st-stement, on
page N, where te text consists of a total of N pages or so. I
would hate to train a freshman engineer to design an automobile
by spending X hours studying wheels, Y hours studyving plstons,
and Z hours studying wlndshield wilvers, where the entire car was
not mentloned until the last day of the course. If the resulting
car didn't Just plain collapse at the end of the assembly line,
it would probably run sideways with its bumper in the air and
the windshleld wipers sticking out of the tailpipe.

On the positive side, I willl readily admit that there is an
important place and a need for clesr, precise language specification
texts. I might a2dd, and thls 1s a2 person2l opinion, thst my contacts
with other users' groups have convinced me that IBM does a relatively
commendable job in prepsring its manuals, both of the reference tyme
and of the programmed instruction type. On the other hand, no doub¥
many of you know of cases where manufacturer XXX's reference manual
stated "so-and-so" and when "so-and-se" wns compiled and executed, the
result wns X unhappy hours of down-time for unclobrering the clob-
bered configuration.

On the negative side, I will say that very, very, few, in fact,

a miniscule percentage of authors have not violated 2n educational
nrinciple which has several thousand yesrs of seniority. It is:
"One masters a discipline by learning about a small portion of it
and immediately ap»lying this bit of knowledge toward a full solution
of a limited problem before learning the next small portTon of the
discioline." A FORTRAN program is acknowledged by all to be grenter
than the sum of its component parts, the FORTRAN statements! Con-
sequently, shouldn't a beginning programmer apply each new bit of
knowledge to the full solution of a sm~ll and compnlete FORTRAN pro-
gram before proceeding on the route to the next ovortion of the lan-
guzge? In physics, and mathematics, and engineering, one always
follows this method of fully solving limited problems before pro-
ceeding onwards in the text. I think the problem in FORTRAN books,
as in all programming books, lies in the fact that our profession 1is
8o young and so rapidly changing that no textbook, including my

own, fully can capture this time-tested method used in msthematics,
englneering, and the physical scilences.

V. DESIGN CRITERIA FOR THE TEXTBOOK

Those of us associated with the Computer Technology ptrogram at
Purdue 'mniversity decided that another book on FORTRAN programming
should be written for the Compller langunge Programming course. We
were not primarily interested in money, fame, or advancement, but
Just in having a suitable textbook in order to make our Job easier.
The book, Comprehensive Fortran Programming, was written, and has

15

been used and rigorously "de-bugged" by several hundred students

over the past year and a half. The book was prepared with the

point of view that the following occurences should be held to a .
minimum or entirely eliminated 1f possible: v @;:

1) the "dot-dot-dot" approach;

2) the "fractured flickers" approach;

3) the failure to mention in which statements the rules of
FORTRAN commonly change when one writes progroms for the
computers of other manufacturers or other models of the
same manufacturer;

4) the failure to utilize flowcharting symbols which have
been deflned as standards by the American Standards
Association.

5) the fallure to include all of the more commonly used
input/output devices.

6) the faillure to include all of the more commonly used
versions of FORTRAN.

In order to avoid the "dot-dot-dot" approach, all of the

many FORTRAN programs are given in thelr entiretv as meaning-
ful exeamoles of some calculation often performed on a computer.
For example, when the DO statement 1s discussed, it is shown
in many different programs both with and without the CONTINUE
statement.

To avoid the "fractured flickers" approsch, the first entire,
complete, wiole FORTRAN program occurs on page 2 of the book. It
is; :

SUM=2 4= 2

PRINT 1, SUM

1 FORMAT (F10.0)

END
Note that in this program one has introduced an arithmetic state-
ment, an output statement, a specification statement, and a control
statement. Obviously, none of these classes of statements is cov-
ered in any great depth in Chapter 1, but immediately the emphasis
is on an integrated ap»oroach where everj FORTRAN stntement 1s treated
in the context of an entire program. Note that one m3sy rearrange
thls program above into 24 possiule sequences of the four FORTRAN
statements. Thus, Chapter 1 explores which of these 24 sequences
are valid and invalid and, inall cases, the reasons for this. The
student, for example, can clearly comprehend that this sequence is
invalid because the computer"can't output a value for a varisble
until it has found out what that value 1is"g:

PRINT 1, SUM

SUM= 2 4 2
1 FORMAT (F10.0)
END

A complete program is given and explained every few pages through-

out the book. Furthermore, each chapter 1is bullt around a parti-

cular program, with the level of complexlty gradually incre~sing

until, in Chapter 7, the program consists of over 100 statements,
comprising a mainline progrsm and several FUNCTION and SURSROUTINE
subprograms. This large number of programs has led to an uncommonly
lengthy book, as far as FORTRAN books go, of over 200 pages. 1In

the final chapter, Chapter 8, all of the emphases 1s on optimizing
FORTRAN programs with respect to size, execution time, and generalityq:;

16

As regards the third point ahove, I might make a brief com-
ment. At my latest count, there were 18 or so different comnuter

manufacturers 1in the U.S. who routinely could provide a FORTRAN TT
compiler with one or more of their computer models. Since the
FORTRAN II in Comprehensive Fortran Programming is written speci-
fically for the 1620, it wess necessary to select a design criterion
as to just how to iIndicate the changes in FORTRAN TI as utilized

by the 17 other manufnrcturers and by other IPM computers. Authors
such as Organick in the "good o0ld days", back in 1963, could snell
out exactly the changes 1in the language for each of the four or
five difTerent manuf cturers' comouters. Today, unless you wish

a book to have, say, 504 of its words enclosed in parentheses or
marked by asterisks, thls is not readily feasible. Thus, the de-
sign criterion was chosen to be thisi Wien & TORTRAN st-~tement's
form or usige was different for several computers, this w-es pointed
out snd the most common alternative form wss usuallv given. As =n
example, the hook points out that when output strtements utilize 2an
E-type specificition in 1620 FORTRAN, the velue of 4 in Ew.d must
always be less than or equal to w-6, but for the 7090/94 and several

- other computers, 4 in Ew.d must alweys be less thaen or equ~l to w-T7.

With re=vnect to the fourth point, certainly my comments con
shed no light. Many of you hnve privotely and publicly expresced
yourself strongly in favor of stand-rds in our rainbow-splattered
orofession. a4t one time, 1f RCA 4did their flowech~rfs this way,
then GE felt compélled to do thelr flowcharts thot way and so on.

AS you ¥now, the ASA has adonted and publicized a limited number

of flowcharting symbols as standards. The more enlightened mamu-
facturers, including fortunately our own, have included the ASA sym-
bnls along with their own more specific symbols in their latest plrms-
tic templntes. Certain manufacturers and authors are still going
their own way, using symbols from the Middle Ages (applied, not to
nistory, but to our profession, this means the 1950's and early
1060's). Comprehensive Fortron Programming uses only the 10 pro-
gram flowcharting symbols given by the latest I=™M templnte and none
of these symbols are currently inconsistent with the ASA standards.

In crder to meet the fifth criterion above, the book includes,
with exnlanations a2nd examvles, the FORTRAN inout/outout statements
corresponding to these devices: console tvpewriter, paper tape
reader, paper tape punch, card read punch, magnetic disk drive,
magnetic drum drive, and magnetic tape drive, and on- and off-line prin-

‘ters. The sixth and fin2l point 1is quite important in my opinionm.

4lthough .the three more common levels of FORTR'N 2re included in

the book, th2t is, FORTRAN with FORMAT, FORTRAN TII-D, 2nd WORTRAN IV,
it was felt necessary to choose one of these levels for the main-
stream of the text. The FORTRAN II-D level was chosen for these
reasons s

1) More compilers are avallable for this level th2n for the

other two levels.

2) This level 1s intermediate in complexitv between the other

two levels,

3) This level includes almost all of the WORTRAN langu-ge.

4) The 1620 with 1311 is a widely used configur~tion.

Once this mainstream level was chosen, we needed a desipg cri-
terion as regards the metihod to be used to indicate the TORTRAN with
FORMAT and FORTRAN IV changes to the language. One of the overall
aims in writing thls book was to make the materinl flow smoothly with

17

no footnotes and very few logical breaks. $6 it wos declded to
ise asterisks to denote which of the 49 FORTRAN II statements did
not apply to FORTRAN with FORMAT and also add a sentence. in, paren-
theses when they did apply but with changes. These chanﬁes*,ere
indicated, for examnle, by saying that only 4 general forms of
subscripts are vermitted in TORTRAN with FORMAT inste=d- of 7
general forms as in FPORTRAN II and FORTRAN IV. It wss decided
that the FORTRAN IV language insertions would damage the smooth
flow of the text. As a result, Appendix A is 2@ 20-or so-page
presentation of FORTRAN IV which is based in 1its exposition on
the 200-plus puges of ®ORTRAN II material. This method permits
one to learn the TORTRAN IV langusges in just a few hours after
the completion of tae body of the book. Recall that one only
need learn about tne DATA and logic2l IF statements, the Type
stotements, logical, double-vrecision, and complex conOfﬂnfs
ad "itional specificatlons, lzbeled common, adjustohle dime081ons,
and & few more penerQ1ized FORTRAN II statements. The FORTRIN TV
which is included is that for the IRM 7090/94 Tt was included
not only to widen tne merkey for the book to SHARE users, but
to facilitite the cncngeover of a number of 1620 users from tae
1620 to either the 1130 or the System 367N since thelr ®ORTR4N
compilers ure similare to the 7090/94 FORTR'N IV compilers in
certain respects, although not in all resnects.

In conelusion, T might remark that it is certainly easier
to make a switch to the New Programming Langusge by wey of FORT=:N IV
than directly from TORTRAN IT. Thus, thils Appendix A might heln
some programmers to bridge tihe gape between FORTRAN II and the
eventunl NEW Programming Languuge, which keevs changing its acronvm
from NPL to MPL to MPPL to PL/I and who knows what else. T henrd
a completely unconfirmed rumor that two more acronvms, or more
correctly, names are circulatiog in private converqﬁtions'"”AmSON"
and "9-EDGE".

N

—

18

SUN OIL COMPANY
RESEARCH AND ENGINEERING
ENGINEERING DIVISION

UNDEF INED VARIABLE DETECTOR

by

Thomas J. Scott

For presentation at the Spring, 1965 1620 Users Group Meeting
May 9 - 11

- Miami, Florida

19

UNDEFINED VARIABLE DETECTOR

INTRODUCTION

The Undefined Variable Detector program (UVD) is written in S.P.S.-II
to be an aid in debugging other programs that are written in Fortran Ii-
Version II. Basically, the "UVD" checks to see that the arithmetic
subroutines and the output portion of the I/0 subroutines of the Fortran
II-Version II package do not get an opportunity to manipulate improperly
defined fields. A total of nineteen of these subroutines are altered by
the "UVD", in order that this field definition check may be made in every
case where control is passed to é subroutine that might, in normal
operation, encounter an undefined variable. A list of these altered
subroutines may be found on page 2.

The "UVD® is loaded begind the Fortran II-Version II program at object
time, and in no way affects the results normally obtained from the program.

GENFERAL DISCUSSION

Undefined variables do not always indicate their presence in the
same manner. The most obvious means of detection is the sudden and
shocking appearance of the check-stop light on the conscle. The displaying
of the contents of IR-2 will indicate the return address from the
subroutine package, but this does not always define the pbrtion of the
program in which the undefined variable was encountered. Depending upon
the length of the field transferred, the program may have been terminated
abruptly, or it may have solved several problems before feeling the
effect of the undefined variable. The latter case may create a tedious
searching problem for the programmer.

The most potentially dangerous situation, however, is the one in | «:;

which the undefined variable remains undetected.

20

The “UVD" will identify an undefined variable the instant it is
encountered, and will type a message indicating its symbol table location.
the programmer may then define the variable via the typewriter, and return
control to the "UVD."

CORE REQUIREMENTS

The program requires 1200 core positions. It utilizes the indirect
a@dressing feature.. It may be re-assembled at any location in care
simply by changing the %“define origin®™ card at the very beginning of the
source deck.

TIMING

Sample runs have indicated an increase of approximately 50% in
run time. This is based on a Mod-1l, without the floating point hardware
feature.

SUBROUTINES ALTERED BY THE UVD

Subroutine Core
~ Abbreviation Location
TOFAC 01314
FLAD 02,66
FXAD 01506
FLSUB 03038
FXSUB 01538
FLMUL 03082
FXMUL 01632
FLDVD 03254
FXDVD 01676
RFLSUB 02372
RFXSUB 01562
FLRDVD 03470
FXRDVD 01762
RSNFL 02372
RSNFX 02372
FLEXP 0u586
FXEXP 03996
1/0 05938
FIXI 03574

21

Title: Music Zrograms as an Aid to Debugging
Authkors: Ronald C, Read and Peter J., Jutsum

Direct enquiries to: Ronald C. Kead
Computing Centre
Mathematice Department
University of the west lndiew
fona, ringston 7, Jamaica,.

The problem of debugseing a new program can at times be very
tedious and frustrating, and any aid to the operator to enable him
to “ollow what is going on in the computer when he is trying to
find a fault in a prcgram must be of some value. The constructicn
of the 1620 enables tre state of certain of the reristers to be
exanined with the aid of the indicator lights, but these are of very
lit+le value except in the static case with the machine halted.

Tris halt can be made manually, but frequently in the course of
debugeoing it is a check stop, and either way, the addresses of the
halt does not always lead very ranidly to the cause of the fault.

It is the purpoce of this paver to suggest that tre radiations from
the ccre storace of the computer, which can easily be made audible,
can—be-a-valuable tool to aid the programmer in the debugging stage.

A sm2ll radio set is all that is needed in the way of extra
ecquipment, and if this is nlaced on too of the machine immediately
abhove the vnrogram switches, and tuned away from a broadcast
transmission but as close to the clock frequency #s possible, this
is sufficient to hear all that is needed. (The clock frequency of
the Model i is 1 Me/s). The clock pulse is modulated by the
arithmetical ‘and other operations and thtis, when demndulated by the
radio receiver, gives a noise 1in thne auditle range.

Tre sounds picked up by this method vary cecnsiderably according
to the nature of the operation that is going on at the time, and 1t
requires a certain amount of practice to recognise the sounds and
interpret trem in a useful way. To gain a little experience, it is
quite a good iiea to "listen" to some programs with which cne is
familiar.

However some of the noises are very characteristic, particularly
fairly tizht loops, and if these occur in the program, either
intentionzlly or because of some fault of prozranminy, they are very
easily recognised. The dismal sound of clearing meunory is one of
ttnse that cannot be missed! B

22

Consider as an example a table look-up section of a program
that is fairly common, such as:-

((“
TFM *+18,START e
LOOK ¢ , SYMBOL 960
BE OUT 160
AM ILOOK+6,10,10 560
CM LOOK+6,LND 560
BNE LOOK 200

et cetera,

This has an execution time for the cycle, assuming that the entries

in the table are all of ten digits and positive, of 2,440 microseconds,
and this means that a note of frequency 1,000,000/2,440 c.p.s. will

be generated. (The timings are for the Kodel 1) i.e. about 410 c.p.s.
or about G above middle C.

Less pure notes, or perhaps they should be called noises, come
from loops whose execution times are not constant. Mor example, in
the loop above, if the stored entries in the table are nct all of the
same length, and not all positive, the instruction LOOK will not lave
a constant execution time, but it will vary between 2960 and 280
microseconds. The noise of this loop will have fundamental frequency
comnonents between 410 and 570 c.p.s., but also many harmonics, and
the result is not at all musicsal.

(Demonstration on tane recorder of these two sounds)

Parts of a program that are repetitive in ttise sort of way can
usually bhe fairly easily recognised, and evern if no more is done than
to listen to the new program on first running it, this can save a
considerable amount of searching if an exasperating check stop is
encountered. At the very least it can save the timednvclved in
running a trace routine from the very bheginning of the program when
in fact the fault does not occur until a good deal later.

The next demonstration is of a program that has several different
table searching routines in it. It is in fact an £.P.5. processor
that is the subject of a later paper. The loops that can be heard are,

first the clearing of the input area, secondly the looking up of the
OP code in a table, (this is sometimes very brief, and is apparently
missing) and then the looking up of the symbol or symbols that may be
in the operands or in the label. This last is an irregular lookup
routine, in that the stored symbols are of varying lengths.

(Demonstration of the sound of TYGO allowing it to run
on to the symbol table revision)

The final sounds which are not typical of the rest are those of
a routine which eliminates tre no longer needed parts of the symbol
table and then repacks it by a digit by digit transmission. This
hannens only rarely in the program, but points to another valuable use
of the listening technique. The repacking process just heard takes a
considerable time, and in an early version of the program that worked
without errors, it was being operated too often. On the evidence that
came from listening to the program, it was rewritten in this part, and

23

the result was a considerable saving of time. 1 do not contend that
trhe wasting of time would not have been discovered eventually anyway,
hut the impact of hearing the wasted seconds squeaking away made the
decisicn to zo through the agony of rewriting easier,

Another preogram in which the listening technigue has been useful
is a language translation orogram. This has a very characteristic
soundi, of a more than usually musical nature in parts.

(Demonstration of the sound of the German translation
program when working correctly)

The initial noise is the looking up of the words of the input
sentence in a dictionary whose eniries are of variable length. The
more musical part is the sound of lookirn. up in lists of two, three
and fonr word pgroups. Tiese lists are each of a constant length of
entry, but they differ between lists. (1 must eumphasise that the
huntings horn sound was not intentionall!). Thise process enables
matters of syntax and word order to be sorted out,

Juring the debusging stage in thus program, a chieck stop occurred
with some but not all invut sentences. Listening to the sound in this
case leads very guickly to the fault.

(Demonstration of the German translation program with
a record mark missing)

The word lookup is obviously furctioning properly, and the looking
up of the word groups starts well, but degenerates into the noise
associated with looking up in a list of irregular length entries. The
cause of the fault was found to he that the terminal record mark that
ends the search in one of the syntax lists if an entry is not found,
was missing,

All the examples that 1 have given so far »ave been of procrams
that have fairly tight loops as a prover nart of tnemselves, and this
i¢ by no means always the case. It is certainly trus that not much can
be gleaned from the sound of other parts of the uvrozram since the
capacity of the ear to sort out very irresular sounds 1is very limited,
but the listening technique is not defeated in these cases. 1t 1is
recomn=nded practice to introduce a number of unnecesssry halts into
a program, subsequently to be replaced by NOP instructions or to be left
out altogether on recompiling, and these serve to enable the operator
to isolate the section in which a fault occurs. 1t is suggested that
instead of the halt, the inserted instructions are BTMs to a subroutine
that generates a characteristic note, and that tliese are later replaced
by NCPs. While the BTW instructions remain however, the fact that the
program has got to certain points without mishap can be clearly
recognised by listening to it. The duration of the inserted notes can
be varied, and they serve a triple purpose. They furnish audible
progress reports, thay slow down the program to a speed that enables
the operator to keep track and they can be made of sufficient duration
in crucial ceses to enable the program to be halted at a cesired oncint.
A basic subroutine (using indirect addressing) of only 43 digits
follows., If indirect addressing is not availeble a slightly

24

longer subroutine is needed

SING TR SING=-1,3ING-1,611
SM *+9,4,710
BNE SING
BB

‘and the linkage to be introduced into the program in place of the
traditional halt

BTM SING,xxXxxXX

where xxxxx is an address somewhere in the arithmetical tables, If
the Q operand is 400, this will procduce the highest possible note of
a fairly short duration. Lower addresses will produce progressively
- lower notes of progressively longer duration. I1If an operator wishing
to try this would be offended by notes that are not in harmonic
relation to one another, I will gladly supply a list of suitable Q
operands together with their musical equivalents,

The next recording is of a vprogram that is searching for closed
circuits in an arbitrary network. In the first part of the recording
there is no modification made, and you can hear that it would be very
difficult to sort out the various operations th:t are going on. 1n
the later part of the recording, we have the same program, but it has
had some musical "telltales" introduced into it, and knowing the points
in the program wrere these have been introduced, and the pitch that
corresponds with each mark, one can follow the progress of the program,
#hen that recording comes to an end, it is because of a check stop
(deliberately rixed), and it is nossible to tell if we listen
attentively to the sounds, that it ocsurs after the first incidence of
Low D. This enables us to isolate the fault immediately.

(Demonstration as described above)

One can go further in this, and by writing a slightly longer
subroutine in place of SING, it would be easy to arrange that the note
played at a point in the program depended on the state of a switch
which is being set. HWor instance, it sometimes occurs that a program
fault is caused by the removal or setting of a flag or record mark
which is not intended by the programzer, and on those occasions where
this doesn't happen until the program has run for some time, chasing
the bug can be very tedious. It would be an idea to put in an audible
warning of this, long enough to wake up the operator.

There is one rather risky aspect of this technigue., In time, the
fascination of the noises made by a program becomes too great, and the
intervening calculations wane in their importance. The result could
well be

(Demonstration of a short excerpt from "The Flight of the Bumble
Bee" by N.Rimsky-Korsakov.)

25

O

FINANCIAL EVALUATION PROGRAM

Leslie Parker
Manufacturing Engineering
Poughkeepsie, New York

26

Management decision making should be an enlightened process. Lack of
time and useable information, however, often conspire against it. The decision
maker may be forced to rely more heavily on his own judgment than he would kk'/

like.

One factor which should enter into every business decision is the financial
justification for the change. The Financial Evaluation Program can provide this
information. Too often the process of financial evaluation involves:

Gathering cost data by someone technically aware of the situation.

Explanation of this data to someone with a financial background
(with a resultant loss due to differences in semantics, purposes,
and backgrounds). ‘ ‘ '

- Lengthy financial analysis, often by non-standard, manual
methods, and with a poor to cursory understanding of the
problem.

- Explanation of the results of the evaluation to the decision
maker, through the eyes of the person doing the calculations
(again with losses due to differences in semantics, purposes,
and backgrounds). ‘

- Decision made on lost premises, and an incomplete under-
standing of the meaning and methods of the financial
manipulations.

The shear length of time required for the analysis often prohibits its use,
and in those instances where the time is available, the evaluation suffers in
the translation from analyst to evaluator to decision maker.

This program by comparison is a standard tool which the analyst uses to
abstract and compress financial data. The evaluation is swiftly performed, and
placed in a form familiar and understandable to the decision maker.

Following are some of the reasons for having economic evaluation:
1) SUSTAIN AND [INCREASE PROFITS OF FIRM

2) PERMIT UNIFORM JUSTIFICATION OF ALL PROJECTS
3) ENCOURAGE CONSIDERATION OF ALTERNATIVES

4) REDUCE BIAS OR IRRATIONAL APPROACHES

5) CURTAIL FALSE STARTS

6) PERMIT PERIODIC FINANCIAL AUDITS

7) ENABLE MANAGEMENT TO MORE EQUITABLY EVALUATE
ALTERNATIVES

8) PROVIDE MEASUREMENT OF UNCERTAINTY

27

The following list details some of the specific attributes of the Financial
Evaluation Program.

C

)] FLEXIBLE

2) PRACTICAL

3) CONSISTENT

4) COMPLETE TREATMENT OF COSTS

5) COMPUTERIZED

6) DISCOUNTS MONEY

7) RECYCLES DEPRECIATION

8) RECOGNIZES CASH VS. ACCOUNTING COST

The Discounted Cash Flow technique is illustrated in Figure 1. First a Net
Cash Outlay is calculated for each alternative method of implementing the project,
for each year of the financial life (NCO-A and NCO-B). From these values for
each year, a net cash difference is calculated (CASH FLOW). OL stands for outlay,
analogous to Investment (INV) and FB stands for flowback, analogous to savings
(SAV). The INV or SAV column is an adjusted Cash Flow, in which the deferred
investment (OL which chronologically follows FB) have been removed through a
Cost of Capital adjustment. From the INV or SAV column, the compound interest
rate is calculated which would have to be acquired to realize equivalent return
from a bank, by depositing the investments. This interest rate is the Rate of
Savings for the evaluation. Finally each entry in the INV or SAV column is dis-
counted to the present date using Rate of Savings as the compound interest rate.

DISCOUNTED CASH FLOW TECHNIQUE

Year | NCO-A | NCO-B | CASH FLOW | INV OR sav (DISCOUNTED

VALUE

1964 5,000 10,000 oL 5,000 INV 5,000 5,000
1965 10,000 5,000 FB 5,000 0] 0o
1966 5,000 | 12,000 oL 7,000 INV 1,650 1,355
1967 10,000 5,000 FB 5,000 SAV 327 243
1968 5,000 10,000 oL 5,000 0] 0
1969 | 20,000 10,000 FB 10,000 SAV 10,000 6,111

Rcte of Savings
Cost of Capital is 7.0 % is 10.4 %

28

The following outline describes the Program Method, in a broad form.

COST COMPARISON

To compare two methods of accomplishing the same project,
assume both methods will derive the same income but incur
different costs; therefore, compare the costs involved.

INPUT PREPARATION
Analyst lists projected costs for each method in each year of
project life.

INPUT CATEGORIES
Complete check list of expense categories is provided.

NET CASH OUTLAY
Program calculates Net Cash Outlay for each method, in each
year of Financial Impact Life by calculating costs
depreciation, and tax credits. (See EXPENSE TREATMENT.)

DIFFERENTIAL CASH FLOW
The difference between the two Net Cash Outlays is found for
each year of the Financial Impact Life and printed in the Cash
Flow column of the output.

DEFERRED INVESTMENT
All deferred investments are reconciled and a new Cash Flow
is generated (INV or SAV column).

RATE OF SAVINGS
Compound interest formula is evaluated to find RATE OF
SAVINGS interest rate which would have to be applied INV
in order to realize equivalent savings.

PRESENT VALUE
The present value of each entry in the INV or SAV column
is calculated using the RATE OF SAVINGS.

C

EXPENSE TREATMENT

CURRENT INVESTMENT (CI) (Year End Value of Asset)
o Increases in (Cl) are added to Net Cash Outlay (NCO) in that year.
o Decrease in (Cl) yields an Income Tax credlt, subtracted from NCO in
that year.
o Carrying cost calculated on Inventory and added to NCO.,

FIXED INVESTMENT (FI)

o Each (Fl) is added to NCO in year it occurs.

o Each (FI) except land, is depreciated over appropriate tax life, and
recycled, if necessary. Income Tax credits are calculated on this
depreciation for each year; these are subtracted from NCO.

o Incentive tax credits are calculated for each (FI) except land, and
subtracted from NCO in the year of purchase.

INVESTMENT EXPENSE (IE)

o (IE) in manyears are converted to dollars and benefit rate applied.

o (IE) added to NCO.

o In non-recycle problem, Income Tax credits are calculated and subtracted
from NCO.

o Inrecycle problem, expenses are depreciated over tax life of product,
Income Tax credits calculated and subtracted from NCO in
appropriate years.

ANNUAL CASH OPERATING EXPENSE (ACOE)
o Convert all manyears to dollars plus benefit rate.
o Addall ACOE to NCO,
o (Material and Operating Supplies/Turnover Rate) times carrying cost,
added to NCO,

o Innon-recycle problem, Income Tax credits are calculated and subtracted
from NCO.

o Inrecycle problem, expenses are depreciated over tax life of product,

Income Tax credits calculated and subtracted from NCO in appropriate
years.

ANNUAL EXPENSES OR GAIN SUBJECT TO TAX
o DORA - Calculate Income Tax credit and subtract from NCO,

o SAS - Calculate Income Tax credit and subtract from NCO.,
o Compare SOFA to WOFA:

If SOFA is greater than WOFA, calculote capital gain tax on difference
and add to NCO,

If WOFA is greater than SOFA, calculate Income Tax credat on
difference and subtract from NCO,

o Subtract SOFA from NCO.,
o Subtract INCOME from NCO.
o Income Tax is calculated on INCOME and added to NCO,

O

The figure on the following page shows an input sheet. One of these \
is completed for each year of the project life. The input form comprises a list of
cost categories, bringing to the attention of the analyst the information pertinent
to the evaluation. A carbon copy of this sheet is used directly by keypunching
for preparing the card input to the program.

A facsimile listing of the information carried on control cards is shown
below. This includes the standard manpower, tax and turnover rates.

COMPANY CONFIDENTIAL

FIXED INVESTMENT CONSTANTS BY ASSET TYPE
L1 BLD TE TL PE PEA NPE SE Gl OTH
TAX LIFE 25,00 35,00 7,00 20,00 20,00 6.50 9,25 13,00 18,00 2,25
TAX CREDIT 7.00 7,00 l#;67 7.00 7,00 4,67 7.00 7,00 7.00 0,00

DOLLAR RATES PER MAN YEAR
DESIGN DE-BUG DIRECT INDIRECT IND-TECH MAINT
2665 1757 3150 2746 1575 3780

MISCELLANEOUS CONSTANTS
INVENTORY TURNOVER RATE A 2,00 B 1.00
INVENTORY CARRYING COST RATE 1,7 PERCENT
EMPLOYEE BENEFITS RATE 2 PERCENT
PRODUCT LIFE FOR RECYCLING 2,00 YEARS
FEDERAL TAX RATE 50.0 PERCENT
STATE TAX RATE 5.0 PERCENT
CAPITAL GAIN TAX RATE 25,0 PERCENT
COST OF CAPITAL 1,5 PERCENT

31

X <

'-'?M ORIGINAL
IS ECONOMIC EVALUATION ()
PROJECT NO. YEAR DESCRIPTION ECONOMIC LIFE DATE
SRR O O B |
0 COST COMPARISON OR COST REDUCTION RECYCLE
0 O W v
PREPAID PREPAID
INVENTORIES OTHER
CURRENT INVESTMENT INSURANCE RENTAL
LAND TEST PRODUCTION
LAND IMPROVEMENTS BUILDINGS EQUIPMENT TOOLING EQUIPMENT
FIXED INVESTMENT T ; o T
P
;&f’,ﬁﬁ?ﬁ# NON PRODUCTION SPECIAL GENERAL OTHER
A ACCESSORIES EQUIPMENT EQUIPMENT INSTALLATIONS
o REMOVAL
R i DESIGN PROTOTYPE DEBUGGING TRAINING REARRANGEMENT OTHER
INVESTMENT EXPENSE {MAN YRS) (MAN YRS) & INSTALLATION
O PU——— - S — — e
N 1]
P 1 RS T I I
R DIRECT LABOR | INDIRECT LABOR | ANDIRECT TECH. | A INTENANCE OPERATING
(MAN YRS) (MAN YRS) N S UPFORT (MAN YRS) MATERIALS SUPPLIES
E
T - T T TTYT TTTT R | o
S] t) '
[N SO — 1 1 IR
E
RENTAL FLOOR REBUILD/OR VENDOR EXPENSE
N ANNUAL CASH EQUIPMENT SPACE REWORK OVERHAUL SUBCONTRACT TOOLS
T OPERATING EXPENSE e R ks -
LEASES TAXES UTILITIES OTHER
WRITE OFF DEPRECIATION SPOILAGE SALE OF :
ANNUAL EXPENSE OR OF EEsED ON RETAIIED AND SCRAP FIXED ASSETS INCOME |
GAIN SUBJECT TO TAX || - - R S . O SO A -
PREPAID PR
INVENTORIES INSURANC.E RE?TAA'E OTHER
CURRENT INVESTMENT
LAND TEST PRODUCTION
LAND IMPROVEMENTS BUILDINGS EQUIPMENT TOOLING EQUIPMENT
. T T | .
X ¢ .
FIXED INVESTMENT - UCT: T I T
B :%%?PME}»%N NON PRODUCTION SPECIAL GENERAL OTHER i
ACCESSORIES EQUIPMENT EQUIPMENT INSTALLATIONS
o RN S — e R S
R REMOVAL
DESIGN PROTOTYPE DE?\UGG'NG TRAINING REARRANGEMENT OTHER
INVESTMENT EXPENSE (MAN YRS) (MAN YRS) & INSTALLATION
T T - - -
P ! !
1 1 e
R 5 <
R .
DIRECT LABOR | INDIRECT LABOR mg'ALEgEJ,fg:T MAINTENANCE MATERIALS OPERATING
o (MAN YRS) (MAN YRS) (MAN YRS) (MAN YRS) SUPPLIES
P T T T T T
' | t |
o 1 Il 1 1
s 9) RENTAL FLOOR REBUILD/OR VENDOR EXPENSE
. ANNUAL CASH EQUIPMENT SPACE REWORK OVERHAUL SUBCONTRACT TooLs
OPERATING EXPENSE
D
h
LEASES TAXES UTILITIES OTHER
WRITE OFF DEPRECIATION
F FIXED ON RETAINED SPOILAGE SALE OF
ANNUAL EXPENSE OR OfstEre ASSETS AND SCRAP FIXED ASSETS INCOME
GAIN SUBJECT TO TAX 32

PO

The fdlowing facsimile output contains:

1) Project designation
2) Cost summations for each alternative

3) Differential Cash Flow; INV or SAV, and DISCOUNTED VALUE

4) Calculated RATE OF SAVINGS, and
5) PAYBACK period

SAMPLE PROBLEM

PROJECT NO 0000373-03
RECYCLED COST REDUCTION
ALTERNATE A

CURRENT INVESTMENT 0
FIXED INVESTMENT 18000
INVESTMENT EXPENSE 114
OPERATING €XPENSE 99739

TOFAL PROJECT COST 118853
YEAR CASH FLOW INV OR SAV
1964 oL 11092 INV 11092
1965 FB 5680 SAV 5680
1966 FB 5333 SAV 4400
1967 oL o 9L7 0
1968 FB 7142 SAV 7142
1969 FB 5281 SAV 5281
1970 FB BYeY SAV 7975
1971 oL 1823 0
TOTAL FB 19345 SAV 19386

FINANCIAL IMPACT LIFE 8 YEARS

DATE 112763

ALTERNATE B
0

36675

2880

14'0&1 2

79967

DISCOUNTED VALUE
8169

3081

1758

0

1548

' 843

| 937

0

RATE OF SAVING IS 35,8 PERCENT AT A COST OF CAPITAL OF 1,5 PERCENT

PAYBACK IS 4,1 YEARS

33

®

o

Many advantages accrue from the use of the program; some are listed below:

EXPEDITES APPROPRIATION REQUESTS

PROVIDES RAPID RESULTS

COMPARES VARYING INPUT VALUES (Variable Planning)
COMPARES VARIOUS ECONOMIC LIVES

COMPARES VARIOUS CONTROL DATA RATES

INPUT FORM PROVIDES COMPREHENSIVE CHECK LIST
BROAD APPLICATION

REDUCES USER TRAINING

ACCURATE COMPUTATIONS

CONSISTENT TREATMENT

ANNUAL IDENTIFICATION OF COSTS

HELPS AVOID SURPRISES

INCREASES ECONOMIC AWARENESS IN USER
STRENGTHENS USER'S FINANCIAL ARM

SEPARATES COSTS (Relevant - Irrelevant)

SPOTLIGHTS IMPENDING FINANCIAL TROUBLE

34

As with every technique there are some cautions which must be observed,
in order to obtain valuable output. These are listed below:
APPLICATION
EMPHASIS
ILLUSORY SECURITY
INTERPRETATION OF RESULTS
NECESSITATES GOOD JUDGMENT

The program requires the following computer configuration:

1620 CPU/20 K MEMORY

1622 CARD READ PUNCH

1620 FEATURES
AUTO DIVIDE
ADDITIONAL INSTRUCTIONS
READ PUNCH ADAPTER
INDIRECT ADDRESSING

The prime financial objective of business is to increase wealth. This requires
effort in two directions; first, the minimization of cost; and secondly, the maximi-
zation of profit. This program is primarily a cost minimization model, using a
detailed listing of the project associated costs, however, it may also be used to
evaluate profits by entering project incomes as lumped yearly sums.

Using the newest financial evaluation techniques, and data processing
capabilities, this program gives better answers to old questions. It is not meant
to make management decisions, which must include many factors not considered
by the program, i.e. technical feasibility, certainty of estimated input data,
concurrent project experience and displacement. |t does provide the engineer
or analyst with a strong tool for evaluating the economics of projects under

consideration, and thus proves a valuable adjunct to the studies of technical
feasibility.

APPENDIX |

The following figure illustrates recycle depreciation, which the program can use.

This method of depreciation is used by some firms in the rental business. It serves to
defer tax credits into the future so they will parallel the income from the product.

35

®

9t

YEAR

Investment Tax Life
Depreciation for $100
Investment

40.00 30.00 20.00 10.00

Line 1

Recycle Depreciation
for $40 over 6 Years

11.43 9.52 7.62 5.72 3.81 1.90

Line 2

Recycle Depreciaticn
for $30 over 6 Years

8.57 7.14 5.71 4.29 2.86 1.43

Line 3

Recycle Depreciation
for $20 over 6 Yeurs

5.72 4,76 3.81 2.86 1.90 0.95

Line 4

Recycle Depreciation
for $10 over 6 Years

2.86 2.38 1.91 1.43 0.95 0.47

Line 5

Total Recycled
Depreciation Values

11.43 18.09 20.48 19.05 14,29 9.53 4.76 1.90 0.47

Line 6

NOTE:

The $100 investment was first depreciated over a four-year tax life of the
investment (Line 1); then each yearly amount from Line 1 was depreciated
over a six-year tax life of the product (Lines 2 through 5). These values
were accumulated in Line 6, which represents the total yearly recycle
depreciation values.

Recycle Depreciation (Dollars)

APPENDIX 1
GLOSSARY

®

CASH FLOW
" A chronology of the yearly total Outlays.and’ Flowbocks or
Investments and Savings of cash.

CONVENTIONAL CASH FLOW

Cash Flow with Deferred Investments reconciled.

COST COMPARISON
Evaluation method in which both projects are under tentative:
consideration.

COST OF CAPITAL
The interest rate at which the company can obtain the use of:
capital.

COST REDUCTION
Evaluation method in which the base project (A) is presently
in use.

DEFERRED INVESTMENT
Outlays which chronologically follow Flowbacks in.the Cash
Flow.

FLOWBACKS (FB)
Differential receipt of cash because of implementing project
(B) instead of project (A).

FULL DISCOUNTED CASH FLOW
Present values of all Cash Flow Investments.and Savings (Cash:
Flow discounted to present date at Rate of Savings).

INVESTMENT (INV)
Cash Flow Outlays with Deferred Investments reconciled..

NON-RECYCLE DEPRECIATION
Conventional,single depreciation, .i.e., sum of the year's:
digits, straight line, or double straight line declining balance..

OUTLAY (OL)
Differential payment of cash because of implementing pm;ecf
(B) instead of project (A).

RECYCLE DEPRECIATION ‘
A double depreciation method used by some fims in. the rental’

business. @;

SAVINGS (SAV)
Cash Flow Flowbacks with Deferred mvestments reconciled.

37

chp

An Operating System Built Around PDQ

by

J. Grant¥*, G. F. Lilly*¥*, F. H. Maskiell¥**¥, M. I.. McAteer¥*xx

ABSTRACT

CLD is a PDQ operating system for the IBM 1620. It -
provides for batch processing a mixed group of compilation and
execution runs. It .permits storage of programs and data on one
or more 1311 disk drives. Segmentation of programs is possible
under CUD. A superior set of diagnostics has been included as
part of the system.

¥ Junior Research Mathematician, Jones & Laughlin Steel Corporatio:
*¥ Research Supervisor, Jones & Laughlin Steel Corporation
¥*¥ Computer Supervisor, Pennsylvanlia Transformer Division of the
McGraw Edison Company
%¥*¥¥ Research Physicist, Jones & Laughlin Steel Corporation

THE CAD OPERATING SYSTEM

((™
.) h W

CAD is an operating system built around an extended
version of PDQ FORTRAN.! It 1s written for the IBM 1620 with a
1311 disk file, indirect addressing, and the speclal instructions
TNS, TNF, and MF. CA4D will also utilize a second disk drive and
the 1443 printer if these are available. It is self adapting for
any core slze, ,

CUD consists of the following programs:

The statement scan routine
. The dilagnostic routine

The compiler routine

The class A subroutines

. The relocatable subroutines
The executive routine.

(O =L UVR Ol o

The statement scan routine reads each source program
statement, removes the blanks, determines the type of statement
and stores this information on the disk for later use by the
diagnostic and compiler routines. After it has read the entire -
source program it calls the dlagnostic routine from the disk.

The diagnostic proutine is a modified version of the 40K
FORTRAN II Diagnostician.2 The modifications accommodate the
differences in language between FORTRAN II and PDQ FORTRAN, permit
the use of the 40K Diagnostician on a 20K machine, and incorporate
the Diagnostician as a routine within C4D. If the diagnostic
routine finds errors it punches or prints error messages, lists
the entire source program on the 1443 if available and calls the
executive routine from disk. If no errors are found in the program
the diagnostic routine calls the compiler.

The compller routine 1s a modified version of the original
C2 processor for PDQ.2 Error messages have been eliminated as these
are now handled by the diagnostician. ACCEPT and IF(SENSE SWITCH)
statements have been eliminated as they have no place in an opera-
ting. system designed for open shop programming and closed shop
operation. The ability to. segment programs has been added to avoid
core size limitation on program length. More symbols are permitted
since the compiler routine occupiles less core storage. The length
of integer variables is now ten digits. This allows integer arith-
metic 1n the comparison of alphameric fields. Finally no object
decks are produced, since C4D object programs are stored temporarily
or permanently on the disk. ’ '

The class A subroutines are little changed from their
PDQ ancestors. They do detect undefined symbols at run time and,
in this event, return control to the executive routine. The re-.
locatable subroutines have real or integer values according to
thelr initial letters. They include all the original PDQ @E:

39

relocatables, an absolute value routine for integers, a random
number generator, and the MOVE routine3 for disk seek, read, and
write operations. The LOG subroutine is now called ALOG since it
is a real function.

The executive routine determines the nature of each job
from a control card. It then loads the appropriate system routine
or object program from disk. It acts as librarian for programs on
disk, it loads and relocates the relocatable subroutines, it
controls dumps to disk or printer, and it prints headings and
dates for each job. Finally it permits automatic exit from the
system by loading another program not handled under the system.

Speed comparisons with other systems will only be possible
after extended experience with CA4D and will vary for different Jjobs
and for different machine configurations. Unlike the IBM MONITOR
system, C4D has no provision for assembly language programs and does
not permit separate compilation of subprograms with local variable
names and statement numbers. These limitations, however, must be
balanced by important advantages for the installation which runs
mainly FORTRAN programs. The system uses only 4% of the disk and
the rest of the disk may be divided into program storage and working
data storage, to sulit the needs of each particular installation.

The use of a second disk drive is readily enabled at system load
time. In a two drive system, one drive contains only working data
gstorage, and the other only systems and users programs. Other
advantages of CU4D are the efficiency of core utilization and the
speed of disk operations for program segmentation and for data
storage.

When C4D is submitted to the Users Group Library, the
documentation will consist of three manuals for three distinct
groups of readers. The Users Manual defines C4D as a programming
language for users with a basic knowledge of FORTRAN. It describes
those control cards of interest to the user and lists all error
messages. The Operators Manual describes the control cards needed
in running the system, the system sense switch options, loading
the system, and interrupting the system for dumps. The Systems
Manual is written for systems programmers who wish to correct,
&xtend, or generally modify CUD itself, or who are just curious
about how someone else constructs a system.

40

REFERENCES

1. F. H. Maskiell, "PDQ FORTRAN", U. G. Library Program : L

1620-02.0.031.

2, J. Snediker, C. T. Snyder, Jr., J. W. Burgeson, "FORTRAN II
- DIAGNOSTICIAN", U. G. Library Program 1620-01.6.019.

3. . Mary Lynn McAteer, "MOVE", 1620 Users Group Newsletter, Volume
2, No. .5, p. 4, October 1964.

ACKNOWLEDGMENTS

‘ The authors gratefully acknowledge the contributions of
many friends and colleagues.

John Burgeson of IBM whose FORTRAN IT DIAGNOSTICIAN pro-
vided the origlnal basis for the C4D diagnostic routine. ILawrence
Powell of Pennsylvania Transformer for the dump-to-disk routine.
George Moesta of Jones & Laughlin Steel Corporation for his printer-
dump routine. James Taylor of Data Corporation for a faster routine
for the compller symbol table scan. Dick Pratt of Data Corporation
for his preliminary version of 1443 AFIT SPS which was used ex-
clusively in assembling the system. Manfred Flelss of Jones &
Laughlin and Joseph Smith of the RAND Corporation for contributions
to “the sample procedures. John Holmes of Cooper-Bessemer, Stewart
Lee and James Field of the University of Toronto, and Donald Jardine
of-@uPont of Canada, for their suggestions built into the original
PDQ. Jack O'Keefe of American Bridge for the REREAD feature.

41

)

WISCONSIN ACCOUNTING LANGUAGE

Mr, Craig MacKenna .
Computing Center
University of Wisconsin-Milwaukee

(SLIDE) WISAL, W-I-S-A-L, stands for Wisconsin's Accounting
Language, WISAL is a key-word compiler, similar in this respect to
COBOL., The source language involved is similar to current account-
ing language.

WISAL is natively a 1400 series system, the language having
been devised and the first processor written at the University of
Wisconsin Commerce Data Processing Center, by Mr, Richard W. McCoy
and associates, for an IBM 1410, Potentialities are also inherent
in the WISAL language for its use as an applications system--useful
to business and industry as a system permitting their accountants
to handle every day accounting transactions by computer with an
absolute minimum of programming or computer familiarity. Emphasis
in this talk, however, is on use of WISAL as an educational account-
ing system.

WISAL was firsf used at the University of Wisconsin in intro-
ductory accounting courses in spring of 1963. The University of
Wisconsin-Milwaukee (hereafter referred to as UWM, while Madison
as UW) first used WISAL in the fall of 1964, The fall 1964 pro-
ject at UWM involved approximately 200 elementary accounting stu-
dents., The fall 1964 project at UW involved about 300 elementary
accounting students. (SLIDE) By fall of 1965, the UW Commerce

42

Data Processing Center intends to publish a book, dealing with
the use of WISAL as an educational accounting system. It will
deal mainly with the use of WISAL on the IBM 1410, but acknowl-
edgement will be made of the fact that there is a 1620 WISAL.,
Since the book should deal only wiﬁh source language considera-
tions, it should be completely compatible with 1620 WISAL. ’Avail-
able from UWM will be a supplement to the book diséussing thingé
about 1620 WISAL which are different ffom 1410,

As previously mentioned, WISAL is natively a 1400 series sys-
tem, Its very purpose and form of output are indicative of 1400
series influence; however, a joint University of Wisconsin-Madison

and University of Wisconsin-Milwaukee venture into producing gen-

‘eral 1620 WISAL compilers has been undertaken in the knowledge

that many schools who will be interested in using WISAL as an edu=-
cational accounting system have a 1620 at their disposal., This
talk deals with UWM WISAL-D, a disk-oriented version of WISAL,

We hope to have a non-disk version ready by fall of 1965, Nat-
urally, the specifics will chahge in the non-disk version, but
the source language should certainly remain the same, Either of
these two versions will work on a basic 20-K machinej; that is, no
automatic floating point or other special features., The versioh
with which we are specifically concerned tbday, that is the D
version, the 1311 version, should work on either a Model I or
Model II, under Monitor I or Monitor II; it can use a printer;

it does not use index registers,'but on a Model II they will be

43

AN

o

turned off, We hope to have the 1311 version in the library by
July of this year; the non-disk version in the library by Sep-
tember. 1620 source listings will be available from UWM, the li-
brary, and I believe I have some with me, Also there will be
source decks and object decks for the processor and one problem,
There will be a programmed solution for that one problem, the
only one which has been written to date-~The Wholesale Paper Com-
pany.

In a sense WISAL is a rigged system, Any problem to be run
under it by students has to be completely worked out in advance;
that is, it has to be handled by normal accounting means and the
correct answers derived, This must be done because in WISAL
there is the capability to produce for the accounting instructor
at a later date a log of the errors made by his students running
under the WISAL system., This error log is stored on disk in a
rermanently assigned area to be dumped by a separate program
called WISLOG at such time as the instructor should desire a
block of results or at suéh time that the permanently assigned
area is filled. The instructor can do with these error lists as
he sees fit; he can give them to his students as an aid in debug-
ging or correcting their programs, or he can withhold them from
the students and possibly use them as an aid in grading the stu-
dent in his project.

Once the accounting problem has been worked out and coded in

SPS in a format acceptable to the WISAL processor, it can be stored

44

on disk under Monitor like any other program or data block., At
execution time WISAL can call any of several problems; that is,ﬁ
1620 WISAL-D has multiple problem capabilities. It can handle up
to four disk-stored problems under it at any given time, Input
for the WISAL systems 18 via cards; output can be either card or
printer under the control of a control record,

(SLIDE) This is a full WISAL output, It can be divided
logically into five parts. Here, the first part, is a print-out
of the source program, (SLIDE) This particular output is a sim-
ulation of that produced by a 1620 having a 1443 printer attached
and printer output specified. With a card system, this phase of
output is eliminated; there being no purpose in Jjust duplicating
the source program, However, even under a card system, this phase
of output is represented by a punch-out of a copy of any card con-
taining a source language error, followed by a diagnostic error
message, (SLIDE) This second phase of output is a print-out of
the reference section, as it is called, To each of the source
language routines as written out above 1s attached a label, The
student then sets up these labels in an array; the first field of
the first line of this section being the label of that routine
which the student wants to have handle transaction one. The sec-
ond field on the first line is the label of that routine which the
student wants to have handle transaction two, and so on through
the complete set of transactions involved in the problem. Again,

the outputting of this section is eliminated under a card output

45

system, but is still represented by diagnostic messages and punch-
out of cards having errors--such errors having to do with the ap-

plication of source language to particular transactions--a routine
ineppropriate to the transaction,

(SLIDE) This third phase of the output is that of a general
ledger. This is output under either the card or printer system,
that is, after the source program has been run in and executed.
(SLIDE) Directly following this is the fourth phase, the accounts

receivable trial balance. The fifth phase of output is, below

here, an income statement: the figures here being derived from

the particular accounts in the preceding phase, (SLIDE) The

. format of output in all phases and the assignmment of particular

amounts so as to derive this income statement and the following
balance sheet is done completely under system control, (SLIDE)

The sixth section is the balance sheet for this theoretical com-

pany and month--a page of assets and a page of liabilities, All
the editing and formatting being done by the program in this

printer version, (SLIDE) Most of the editing is still being

‘done by the computer in the card version; however, with the card

version, for this neat appearing type of output, the print-up
should be subject to a U407 board split, the split being quite sim-
ple to set up. The last little line of the output --"BINGO"--
simply means that the student has "balanced the books".

You will notice that this comprises quite a few pages of out-

put, On a card system a program having no source language errors

46

will punch about 275 cards, of which about forty will be blank.
Thé ciiteria on cutting off the 275 card output is made variable,
- (SLIDE) Now let us turn to the specific form of the source
1anguage. As mentioned before, this source language is similar
to that used in current accounting practice, Here is one typical
WISAL instruction, or typical WISAL sentence as it has come to
be called: "DEBIT ACCOUNT 1111 BY AMT 1." This is the most basic
one can get in a WISAL instruction, and no other instruction is

really much more complex, All WISAL sentences start with a verb,

DEBIT or CREDIT; an object, such as 1111 here-~i.,e, an account num-

ber, the account numbers being in the booklet which each student
would have; and third, the AMT, The idea of using AMT 1 and AMT 2,
etc. (theyvgo up'to AMT 9 in the 1620 WISAL system) to represent
fixed fields in each transaction produced certain difficulties

in the running of student programs. It héd to be explained, either
through the write-up or through individual questioning and an-
swers, what each AMT represented in eaéh transaction., Thus, ceré
tain rules were set up for "amounting". If a transaction for

the month involved a cash amount, it was referred to as AMT 1; and
if it involved a discount, it was referred to as AMT 2. (SLIDE)
An alternate coding to solve some of this difficulty is now seen
hereﬁ "DEBIT ACCOUNT 2113 BY CASHAMT"’(CASHAMT referring to the
amount of the cash payment or disbursement which is involved in
the transaction). The three mnemonic AMT codings which have been

developed are this CASHAMT, DISCAMT, the amount of a discount,

47

and VOUCAMT, the amount of a voucher, If there are ever amounts
which cannot be classified strictly as cash, voucher, or discount
involved in the transaction, you have to go back to the numeric
system,

(SLIDE) This slide illustrates two flexibilities of the
WISAL language. First of all, as in this line, you have the ca-
pability of saying CREDIT (CUST), that is, credit the account of
a particular customer, The particular customer's account number,
if any, involved in each transaction is stored with the transac-
tion under the WISAL system, and thus the processor compiles in-
structions to pull this address, or account number, out of the
transaction and then operate upon that., The rest of the sentence
is the main illustration: (AMT 1 + AMT 2). This routine handles
transactions involving a discount where it is desired to credit
by the sum of the two amounts. Thus, we have the facility to do
this all in one instruction. (SLIDE) Plus and minusing of amounts
can also be done in words, as you see here: "DEBIT 1311 BY CASHAMT
PLUS DISCAMT," One could also have the word MINUS as an alterna-
tive to the minus sign.

(SLIDE) A further illustration of amount flexibility: "CREDIT
4111 BY AMT OF THE CASH PAYMENT MINUS AMT 2." Here the idea of

key-words comes into specific focus, aside from comments which
could be to the front or to the rear of the sentence; that is, the
idea of the key-words within the actual sentence., The key-words

here are CREDIT, the four numerics in a row, 4111, and the key-
words in the latter half, the amount portion: the word AMT, the

48

word CASH, (the words OF and PAYMENT being nonsignificant) and the
word AMT 2, One thing not permitted is 2 AMT; that becomes a bit
sticky.

You will notice here, and it has been brought to me as a crit-
icism of this type of coding, that one variable or quantity is re-
presented by a spread-out, noncontiguous group of symbols-—AMT OF
THE CASH PAYMENT, AMT and CASH going together to refer to one quan-
tity. The criticism 1s that no other language does this, and that
in an educational system you are trying to illustrate other lan-
guages., I think this type of coding is a nice feature, and if you
agree with this criticism, there are always the CASHAMT and DISCAMT
codings, which are handled the same way but which can be placed
contiguously.

(SLIDE) This is the present extent of the WISAL language.
Here is a general chart of the key structure of the WISAL sen-
tence, There is the verb DEBIT or CREDIT, the object, four numer-
ics representing a general account or the word (CUST) represen-
ting a particular customer account varying from transaction to
transaction, and the various codings for amount-=-plus or minus

" AMT' 1 through AMT 9, CASHAMT, DISCAMT, and VOUCAMT, or AMT,,CASH,
AMT, ,DISC, and AMT..VOUC. Possible future expansions include
amortization subroutines, multiplication, literals--any features
which could be of use in advanced accounting, But presently,
since it is being used in an elementary accounting course, this

is 811 that is needed.

49

‘:}

This then is one WISAL sentence, A group of these may be
put together to form a routine or subroutine, The key here is
columns 8 through 11 which comprise a label, In processing, any
card which does not have a label is assumed to be part of the pre-
vious routine: automatic continuation cards, so to speak, if you
are thinking of FORTRAN, Or if it has the same label as the card
or cards immediately preceding, it goes with the same routine,
Only a different set of characters in columns 8 through 11 than
those on the previous card having characters in columns 8 through
11 constitute a new routine, The routine may thus be as long as
desired.

(SLIDE) The first part of the card, columns 1-6, is a page-
and sequence number, These page and line number aid the computing
installation and the student in correcting the program and prove
invaluable in a project involving two to three hundred students.,

Column 7 has traditionally been treated as comments indica-
tor: if there is anything in that column, the card will be treated
as a comment, This procedure has been expanded by several features
which attempt to give the student a grasp of a flow of control
through his program. If this was a WISAL coding form, you would
see above the label columns, the words "if TRAN TYPE", and to the
right of that, above the instructions, the word "THEN". (SLIDE)
At the start of the student program, as you see here, there is a
line with the word "START" in columns 7 through 11 and words "READ
TRANSACTION" through the instruction section, followed by a card

50

"END (the letter E being in column 7) GO TO STATEMENT-PREPARATION",
This gives the student sense of control: after all transactions
have been processed, go to statement-preparation, go to preparing
the output., (SLIDE) Then, at the end of the source program, there
are two more lines., The first has the word "ERROR" starting in
column 73 if error, then go to "CODE-NOT-FOUND", which is simply

a diagnostic if you haven'!t matched the label appearing in the
reference section with one in the source program, After that, the
line "GO TO START", implying a loop and a flow of control through
the program. (SLIDE) The concept that the student can work under
is that execution starts at the top card--read a transaction, If
all transactions have been processed, go to statement-preparation;
if rfot, run through a sequence of "if tran type this then do that"
~-if tran type A5 do this, if tran type B7 do this, "if error go

to code-not-found", and "

go to start", This gives the student a
concept of basic programming not otherwise found in a WISAL system
without these features, However, since there is something in col-
umn 7 of each of these cards, they are actually treated as comments
and are only used to give the student a sense of function greater
than he would otherwise have,

The output can be produced upon having read the last card, the
TITLE card, This card gives the student's name, section, name of
instructor, and whatever else the student wishes to have punched

thereon, Actually, execution is done as the reference cards are

read in, Then, based on the number of source language errors and

51

s
W
g

reference section errors that were made by the student, a deci-
sion is made as tc whether to punch out the rest of these cards,
If a source program is particularly bad, there is no reason to
continue on and punch out the full output., But, if the number of
errors is less than that specified by the instructor, the compu-
ter continues to punch or print the full output.

(SLIDE) T have mentioned the possibility of instructor pre-
coding transactions. This 1s done by control records, The con-
trol records are in this slide, There is a control record *PRINTER
specifying that there is an on-line printer, A *PRECODE record
sets the beginning total debits and tctal credits of any general .
ledger account or receivable subledger account to two specified
values as to the right, vTo gb with this is a *PRECODED record
specifying that you are precoding particular transactions, as here
you are precoding transactions 1, 7, 18, 22, 87, 88, 101, 102, and
124, The number of transactibns in the Wholesale Paper Company
program is 125, There is also one other controlirecord, a *CRITERIA
card, the four fields to the right representing the numbér of
source language errors and reference section errors, of bad inclu-
sion and omission, to be judged as the cut-off point for a full
output.

(SLIDE) There is one more slide which we have here, This is
a shot of the aforementioned error-log dump which the instructor
can receive and do with as he pleases., You will notice in this

error-log a copy of the title card, the number of the four types

Ul
N

C
of errors, and the magnitudes of the errors in total debits and
total credits for each account which was 'dyiffé‘re'nt f.‘rofn‘ that in
the precoded problem, This then is the WISAL language and the
1620-WISAL-D processor. Thank you very‘n‘luch". | |

53

1620 SUPPORT FOR A DOCUMENT WRITING SYSTEM*

C. M. Thatcher

Pratt Institute,
Brooklyn, N. Y.

ABSTRACT .

A primary use of the IBM Document Writing System is to
prepare individually typed form letters from punched card input.
Special characters are used to initiate tabulation, carriage return,
shift to upper or lower case, etc. The insertion of these characters
into the punched input for the letter itself is not difficult, but the
punching of name-and-address cards requires concentration. A 1620
program which circumvents this problem is now in use. In addition
to inserting all necessary control characters, the program expands a
substantial number of abbreviations. As a consequence, name-and-
address cards can be key-punched faster than the full name and ad-
dress can be typed by hand, and can be used for both inside address
and enveiope address if desired.

The paper briefly describes the 870 System and its plugboard
wiring for this application, indicates particular control symbols
found to be most suitable, and considers the role of the 1620 in some
detail.

* Paper presented before the 1620 Users Group Meeting in Miami,
lorida, May 10, 1965.

54

C
The IBM 870 Document Writing System is essentially a data converter.
The fully complemented system provides 18 different input-output combina-
tions such as paper tape input to punch card output, punch card input to
typewriter output, etc. The latter combination is particularly useful when
a number of form letters must be individually typed: Punching the letter
into a deck of cards makes it possible to produce as many copies as may
be desired by the punch-card-to-typewriter combination--quickly, accu-
rately, and with only intermittent operator attention.

Control over such typewriter functions as tabulation, carriage return,
and case shift is exercised through control panel wiring. Each of the 12
special characters available via key punching (see Appendix 1) produces
a pulse at a particular point on the control panel when it appears as an
input character. This pulse may be routed by wiring to any desired type-
writer control function or typewriter special character key, to obtain al-
most any desired output format.

For example, the control panel might be wired to make the type-
writer carriage return whenever an "at" sign is encountered on an input
card, while an equals sign might be used to cause the first letter of the
following word to be capitalized. The need for an equals sign in the out-
put document creates a problem in the latter event, but the typewriter
keyboard and control symbols in use at Pratt Institute provide for a full
range of output special characters, including the record mark.

A brief consideration of pertinent keyboard and control symbols
should be of some interest and will be helpful when the part played by
the 1620 is discussed in due course. First, note that the left and right
parentheses appear twice in the keyboard listing in Appendix 2. This
duplication led to the decision to use the left parenthesis to shift the
typewriter to upper case and the right parenthesis to return it to lower
case. Thus punching (7), for example, yields a question mark on the
output document. Significantly, left and right parentheses can be typed
by punching (9) and (0), respectively, making output parentheses fully
available despite their input use as control symbols.

Similarly, the equals, at, and record mark signs can be typed by
punching (+), (=), and (*), respectively. The corresponding input
characters are thereby made available for control use, and the "at" sign
is used for typewriter carriage return. The equals sign is used to shift
the typewriter to upper case for the next input character only. This is a
matter of convenience only, it being simpler to punch =A than (A) for the

same result. The input record mark is used for various purposes which
will be explained later. C

55

The next step was to take advantage of four two-position latches on
the 870 control panel. Depending on latch position, a given input charac-
ter can be used to produce either of two different results. Latch position
can also be controlled by punched special characters, and the left and
right parentheses were selected for this purpose. This gives these symbols
a dual function, but the two consequences are not incompatible.

Through the use of latch wiring, a punched (-) causes typewriter tab-
ulation (whereas - alone causes - to be typed); (= halts the operation
pending operator intervention; and (/ ejects the card being read. A summary
of the function of all special characters appears in Appendix 3. Note the
use of the slash by itself for-a second "convenience" function, namely a
space followed by upper case for the next input character only.

A sample output letter is presented in Appendix 4, and the correspond-
ing input card listing in Appendix 5. It can be seen that the special control
symbols do not appear so frequently as to require extreme concentration
during punching. Furthermore, it is possible to have a model copy of the
letter typed at the same time that the input punch-card deck is being pre-
pared. Any punching errors thus become immediately obvious and can be
corrected on the spot.

The preparation of punch cards bearing name and address and a person-
alized salutation is something else again, as can be seen from the examples
in Appendices 6 and 7. With control symbols appearing so frequently, error-
free punching is difficult even with intense concentration, thereby making
the punching of name-and-address cards a slow process. It was therefore
decided to investigate the possibility of writing a 1620 program to take over
the burden of inserting pertinent control symbols into symbol-free input
cards. Initially, the program was intended to

(1) Replace any input double blank (used to signal the end of a type-
written line) with an "at" sign to return the typewriter carriage; and

(2) Insert an equals sign before any alphabetic character at the be-
ginning of a line and replace any blank preceding an alphabetic character
with a slash, thereby effecting capitalization.

Although these steps would greatly facilitate the punching of a "source
deck", it quickly became apparent that an even more extensive use of the
1620 would be extremely advantageous. The program as originally envi-
sioned was therefore successively expanded until it now provides for the
following in addition to the two basic purposes cited above:

(3) ‘An M, F, S, D, P, or R in column 1 followed by a blank in
column 2 is automatically converted to Mr., Mrs., Miss, Dr., Prof., or
Rev., respectively by the 1620.

(4) "\an.d Mrs." can be inserted after any of the foregoing titles if
desired, using program switch control .

56

(5) Source cards are punched with last name first, thereby facili-
tating proper alphabetic sorting and filing. The 1620 program reverses
the order to obtain the desired output form.

(6) The 1620 generates a personalized salutation from the input
last name and specified title, and adds this to the output object deck.
Thus it need not be punched into the source card.

(7) A period is automatically inserted after any alphabetic charac-
ter standing alone on the source card.

(8) A zero, 1, 2, etc., following the input name automatically
generates Sr., Jr., II, III, etc., following the last name with proper punc-
tuation.

(9) Cardinal numbers appearing as street names are converted to
ordinal form; i.e., 18 Street becomes 18th Street.

(10) The comma separating city and state is inserted automatically.
Zone numbers included on the source card are inserted ahead of the comma.

(11) Input cards in any single deck can contain up to 100 different
two-character abbreviations which are expanded by the 1620 program. For
example, ST can become STREET, PT can become PRATT INSTITUTE, BK5
can become BROOKLYN 5, NEW YORK, etc. The fact that the program per-
mits changing the list of recognizable abbreviations is significant, since
the most advantageous list may differ from letter to letter. Note that the
particular abbreviations selected should not be letter combinations which
might have to be used directly as such.

(12) Under program switch control, a common first line and/or com-
mon salutation can be inserted if desired. Thus DIRECTOR OF GUIDANCE
need only be punched once if a number of letters are to go to guidance
directors at several different high schools.

(13) One or more record marks are inserted into the output cards to
permit the same cards to be used for typing inside address and salutation,
for addressing envelopes, or for typing a proof list of names and addresses
without operator intervention. ‘

These features of the 1620 converter program greatly simplify the task
of punching input name-and-address data, as can readily be seen from the
sample input presented in Appendix 8. As a matter of fact, any reasonably
competent key-punch operator can now punch the input card considerably
faster than a good typist can type the full name and address by hand.

The use of the object deck produced by the 1620 program should be
fairly obvious: The body of the letter is punched up separately and is

57

headed by a card bearing the date and accompanying punctuation and con-
trol symbols only. The name-address-salutation cards prepared by the
1620 are then inserted behind the date-line card, and the complete letter
deck is ready to be run. ‘Preparing one or two duplicate copies of the
main letter deck makes it possible to change the name-address-salutation
cards in one deck while the 870 is typing from another, with minimum
loss of time.

One final feature of the entire program should be of interest. Since
it was anticipated that letter writing would often be supervised by secre-
taries having no experience in plugboard wiring, it became desirable to
use the same wiring for any of the three output uses envisioned--letter
writing, envelope addressing, or name-and-address listing. This has
been accomplished through the use of a single header card, into which a
single code letter is punched to denote the operation desired.

Punching a P, for example, immediately ejects the punched header
card and turns on the keyboard, card punch, and typewriter for succeed-
ing cards. Thus the machine is automatically set for punching a new
letter deck, with a model letter being typed at the same time. Punching
a T, on the other hand, turns on the card reader and the typewriter for
succeeding cards, yielding typewriter output from punch card input.

Punching an S or a * also yields typewritten output from punch card
input, but the former brings the operation to a halt when an input record
mark is encountered while the latter ejects a card upon a record mark
input. Study of the sample input card in Appendix 7 will show that the S
punch accordingly stops the program after each name and address is
typed, to permit changing envelopes in an addressing operation. The #
punch yields a proof list of names and addresses without pause, as can
also be seen from the sample input card.

In summary, the 1620 converter program has made it feasible to use
punch cards for typing inside addresses and salutations, addressing en-
velopes, and listing names and addresses. Without the program, the
necessary key punching would be almost prohibitively painstaking and
slow; with it, input punch cards can be prepared faster than the same
information can be typed by hand.

[}

It is likely that not very many Users will have an opportunity to put
the program described herein to direct use. If the foregoing description
encourages others to envision new uses for the 1620, however--uses not
directly related to calculation--it has served its purpose.

58

APPENDIX
1 ::'Special characters availablé via key punching:
ho-= % /() L, @ % %

2. Typewriter key combinations (in addition to usual upper and lower case
; '.-alphabetlc characters) .

% ., |

EEEIE A () = @ ?)
-y 2:3 4-5 6 7 8 90 + - -/ s . y)
3. Special character functions and type-outs :
- Punched Typewriter ‘ Punched | Typewritér
Character Response Character . Response
A Upper Case =] or (1) - Type ;
) Lower Case ‘ =2 or (2) | Type #
(=) Tabulate =3 or (3) Type
@ Return - =4or(4) Type "
e Carriage ‘ :
=5 or (5) Type ¢
ICRRE Ay Capital ~ ;
=P or (P) Letter P =6 or (6) Type _
' / : -~ Space and o ' =7 or (7) Type ?
S Capitalize . S
x o =8 or (8) Type '
(= Halt - ,
o B =9 or (9) Type (
Eject card - L
) ‘(’/ _ in process =0or (0) Type)
+ (Variable) - .Type -
(@ Type / S = - Type @
+ Type + . Type
=+ or (+) Type = ' Type .

59

OJ 4. Sample output letter (salutation name to be typed manually) :

Dear Mr. :

Thank you for your letter of May 5. Coin-
cidentally, I wrote you on the same date and you
presumably already have my views on the matter.

Sincerely yours,

Otto McCanick
Director

OM:ibm

5. Corresponding punch card input (double line at right indicates continua-
tion on same card to fill all 80 columns) :

=DEAR MR, (=

=3@@(-T)HANK YOU FCOR YOUR LATTER OF/MiY 5. /COIN-@CIDENTALLY,/
I “ROTE YCU ON THE

bSAME DATE AND YOUZPRESUMABLY ALREADY HAVE MY VIEJS ON THE MAT
TER .@€ (--S) INCEREL

Y YOURS,&@e@ (--0)TT0/1iC=CANICK® (--D)IRECTOR@E (OM3) IBM(=

60

6. Sample output name-and-address, including personal salutation;

Mr. and Mrs. John J. Jones, Jr.
113 E. 45th Street
Bronx 18, New York

- Dear Mr. and Mrs. Jones:

7. Corresponding punch card input:

@@=MR. AND/MRS./JOHN/J./JONES, /UR @113/E. 45TH/STREET@~BRONX 1
8, /NEW /YORK@@+=DE A

))#R/MR. AND/MRS./JONES(3/

8. Corresponding punch card input to 1620 converter program:

M JONES JOHN J 1 113 E 45 sT BX18

Use of the IBM Model I for the
SIMPLIFICATION OF BOOLEAN ALGEBRA EXPRESSIONS

Charles A, Plesums

ABSTRACT

This program is an extension of the method developed by Quine
and continued by Hoobert Huhta for the reduction to the simplest
second order equivalent of a Boolean Algebra function of the sum-
of-products form. In order to carry out the repeated comparisons
involved in the process with maximum efficiency, the table-look-
up hardware (addition hardware) of the 1620 Model I is used. As a
result, a literal ouput can be obtained approximately ten times as
fast as by previous 1620 computer methods.

This paper is concerned with a summary of both the definition of
the problem and method of solution as evolved from the Quine method by
Hoobert Huhta, and some of the unusual programming techniques used to
implement the method. A complete description of the method and tech-
niques can be obtained from the program of a similar name soon to be
submitted for distribution by the User's Group.

In the logical design of digital circuits, as used in computers,
control systems, and simulation, Boolean Algebra functions are derived
from truth tables by means of the simple basic theorem. This form of
the expression is usually not optimum for implementation; in other
words, a simpler Boolean function can usually be found which performs
the same job and is economically cheaper to construct.

In 1952 Quine developed a method of simplification that was quite
simple and toutine; so simple that it is quite error prone. Basical-
ly, it involves the repeated application of the Boolean Identity, AZ+
AZ=A. where A is any Boolean expressinn. In the interest of concise-
ness, a review ot the Quine method is omitted; such a description is
readily available in many texts, such as Phister, LOGICAL DESIGN OF
UIGITAL COMPUTERS, Wiley, 1958, p. 68.

It is not uncommon to represent Boolean minterms in a binary for-
mat. In the interest of conserving memory space in the decimally
oriented 1620, this binary is converted to octal. In the octal format,
the condition of three variables can be represented in a single memory
location, and the identity of each of the bariables is maintained.
However, in the binary or octal form a missing variable is not disting-
uishable. The Huhta method, therefore, generates a second number, cal-
led the set identification number, which represents, in octal form, the
eliminated variables, Therefore, a single term in the Huhta process
is represented by two octal numbers; the set identification number
stating which variables are missing, and the term representing which
variables are present in the true (upcomplemented) form.

Subsequent comparisons in the Quine process need only take place

62

among those terms that have the same variables. In the Huhta method
comparison is executed &nly within a set of terms with the same set
identification number.

In the use of the Quine method, the same term often evolves from
entirely different combination of terms. In the Huhta method the
duplicated terms are eliminated from processing by the following proce-
dure. In the comparison process the octal weight of the eliminated
variable is obtained. If this is greater than the value of the set
identification number (SIN) of the terms that were being compared, the
process continues like Quine. If the weight of the eliminated variables
is less than the SIN, the simplified term will be one of a duplicated
pair, and is not carried to the next level of simplificatinn.

In the comparison process, we say the terms combine if they differ
in the state of only one variable; in other words if they differ in one
binary place. To discover this condition, we must perform a digit-by-
digit table look-up. From this look-up, three conditions can evolve:

1) the digits are the same, so the variables are the same, and the look-
up may proceed. 2) the octal digits differ in more than one binary place,
and therefore the terms are not combinable. 3) the digits differ in only
on binary place, and the table must yield the octal weight of the place
that differs. Note that the terms are cominable only if condition three
exists in one and only one octal digit, and condition 2 never exists.

To perform this table look-up, the addition tables are replaced
with a combinability table and the terms ars added. Condition 1)
produces a zero as a result of the "addition," condition 2) produces
a record mark, and 3) produces the weight of the different variable.

The "sum" is scanned for record marks or more than one digit, which
indicate non-combinability. The table look-up and scan, including the
modification of the table area, is executed in 7 to 11 instructions,
depending on the data.

Another major progremming procedure is the use of the process that
has come to be known as the shift. There are several tables of numbers
of which only one element is dealt with at a time, and after it is used,
it is never referred to in that array again. Rather than deal with the
relatively major programming effort of address arithmetic and instruction
modification, as well as counters to indicate the extent of the array,
only the first element of the array is dealt with. After finishing with
the element, a Transmit Record is executed which removes the first
element and:shifts all the following elements one element closer to the
beginning of the array. In addition, the presence of the record mark
at the end of the array and repeated in each unused element by the process
is used as an indicator of the end of the array so that no count must be
maintained of the number of elements present.

The present form of the program requires a minimum 1620 model I with
card I/0, and can handle problems of 15 variables, 150 minterms, 650
or 800 intermediate terms, and redundant minterms. It produces a literal
output and a punched output for use by subsequent programs which have not
yet been developed in SPS. The write-up of the program soon to be dis- ‘
tributed by the User's Group contains about twenty pages describing the ‘:;
Huhta Method in detail; those interested should obtain a copy. s

Further development in the area of programming Boolean Algebra
can follow two paths...There is a need for a program to select the
essential terms and non-essential prime implicants to complete the
solution, and a whole new area of research would be the development
of a method of simplification to other criterion, such as the cheapest
combination of pre-packaged circuits; the fewest number of intercon-
nections, or some other criterion.

64

AN APPLICATION - PLOT A BLOCK DIAGRAM

by -

1/

Theodore M. Hartz and Susannah H. Young

1/
- ; Members of the Data Processing and Mathematics Section,

. ‘Radiat1on Surveillance Center, Division of Radiological
» uHea1th Bureau of State Services, Public Health Service,
Department of Health, Educatlon & Welfare, Rockv111e,

~ Maryland. .

" Presented at the Eastern Region 1620 Users Group Meeting
May 9-11, 1965, Miami Beach, Florida

65

INTRODUCTION

The function of a block diagram, as the term is used here, is
threefold:

(1) To provide the programmer with a means of visualizing, during
the developmental stages of programming, the sequence in which
logical and arithmetic operations should occur and the relationship-
of one portion of a program to another;

(2) To become a programmer's tool, serving as his guide and check-off
sheet; and finally

(3) To go into the volume marked "DOCUMENTATION" and there to serve
as the record used for future modifications and/or reference.

The block diagram used in stages (1) and (2) can be rough or smooth,
and it can have one or one hundred revisions squeezed in or added on
while the program is being developed, written and debugged. But for
stage (3), a fine, smooth, complete, and up-to-date block diagram
must be produced at documentation time; and this 18 always a tedious
job for the programmer.

The program here presented is an outgrowth of stage (3) requirements
because the redrafting of detailed block diagrams for an SPS program
of over 4,000 instructions had been a most time-consuming chore for
the impatient programmers., After this job had been completed,
thoughts turned to the possibility of having the plotter assist with
such labors in the future.

A short program was written to illustrate the various geometric
figures proposed, showing assorted sizes and proportions along with
suggested layouts for printing instructions. Execution on the plotter
was a great success; and, after selecting the sizes and scales to be
used, work on this program began.

Before proceeding further to describe this program, it would be well
to divert for a minute to explain that the geometric figures selected
are those in use in our office, and for the purposes stated. They are
described in a '"Reference Manual" which was distributed in May, 1963,
to personnel in the Data Processing and Computations Section of the
Division of Radiological Health.

Three geometric figures are used here and they are:

(1) Reétangle - to represent operation,

(2) Diamond - to represent decision, and

(3) Circle - to carry label and to represent branch.

66

PROGRAM

A description of each of these four parts now follows:

PART I -- ANALYZER:

(A) 1Initializes plotter, (sets up scales and moves pen to start),
sets up margins, and draws a horizontal line to mark the top of a

page.

'(B) Initializes library (OPCODE) and corresponding table of geometric

figures required (ROUTIN),

(C) Clears out input area, inputs card in alphameric format and sets
up OPCODE field.

(D) Searches through library for required OPCODE and branches to the
appropriate ROUTIN or to ERROR.

(E) Tests for amount of writing space still available on plotter paper
and goes to new line or new page if required.

When it is determined by the analyzer that a new line or new page is
needed, this routine will cause the plotter to:

(1) Draw a 0.8" diameter circle to show a branch from the mainline
program, '

(2) Write inéide the circle the word "NEXT LINE" or "NEXT PAGE" as
the case may be, and

(3) 1Initialize at either the new line values or at the new page values,

In the latter case, a horizontal line is drawn to mark the start of a
fresh page.

PART II -~ LOCATER

After the opcode has selected the proper geometric figure and after
the plotter has drawn that figure, the locater is called on to find
the operands required, If the locater finds the items required, it
will cause the plotter to draw them; otherwise, there will be a branch
to ERROR.

PART III -- ERROR

This routine outputs error messages'dn'the typewriter, if the other
routines have indicated there was an error.

68

\'\

A

PLANNING AND PREPARATIONS

Each of these geometric figures was laid out to scale, Provision was
made in the internal layout for sufficient printing to accommodate, in
its entirety, each instruction being plotted., Space was also provided
for a label, if present, in an appended label circle, Arrows needed
to link the figures and to show directions of flow were laid out to
scale, Subroutines were written to draw each one of them using the
CalComp Plotter., Subroutines were also written which would locate:

(1) P operand of up to 6 characters,

(2) P operand of up to 10 characters,

(3) Q operand of up to 10 characters, and
(4) Flag operand,

Margins and layouts were established, and it was decided to use an

8 1/2" x 11" paper format (as plotter paper is 11+" wide) with 1 1/2"
side margins. A subroutine was written to compute line and page
consumption, and to draw a horizontal line every 8 1/2" to show where
to cut the paper roll into separate sheets. The last preliminary task
was to list all the opcodes which an SPS program could contain and
alongside each opcode to write an English-language translation of an
instruction using that opcode.

These English-language translations contain the key prepositions which
differentiate the various operand functions and which, therefore, sort
the opcodes into natural groups., This is shown in the following examples
which concern flag operations. The first inclination in grouping opcodes
would be that SF, MF, and CF would probably be handled as one natural
group, but now consider their English-language translations and the key
prepositions contained in each.

CF INPUT means Clear Flag at INPUT

MF INPUT, B means Move Flag from B to INPUT
== ==

SF INPUT means Set Flag at INPUT

The odd one here is MF as it uses 2 prepositions and has 2 operands,
while CF and SF each use one operand and use the same preposition.

These natural groups of opcodes were further regrouped into a larger
category by geometric figures required: .

Operation, Branch with Decision, Special, and Branch without Decision. @[j
A program outline developed naturally and was in four principal parts,

as follows: Part I -= Analyzerj Part II -- Locater; Part III -- Error;
Part IV =-- Plotter.

67

PART IV -- PLOTTER

PLOTTER is the last major portion of this program and consists of seven
separate parts, It is in this portion where the figures are plotted
and the instructions are written,

A, Branch

Branch functions were the first to be defined and plotted. These were
done by first grouping together similar kinds of branch opcodes after
the pattern of their English-language translation. From this grouping
came two subdivisions!

Branch-without-a~-decision, and
Branch-with~a-decision
1. Branch-Without-a-Decision

To represent this kind of instruction in a block diagram required only
a circle, (the convention used by this office for "Branch'); and this
full circle, (0.8" diameter), had already been laid out and plotted
above as part of the ANALYZER. No connection to the next instruction
was needed for these opcodes, (such as BB), so the only task remaining
was to insert the instruction in the circle. 1In all but two cases,
this meant to write only the opcode. In these last two cases, (B and
B7), the P operand is important, while the OPCODE, Branch, can be
implied by the circle., Therefore, a 6-space area was provided across
the horizontal diameter of the circle in which to write a P operand.
No connection to the next instruction was needed in this case either.
For all these opcodes, the plotter was moved in the pen-up position

to the starting point of the next figure,

2, Branch-With-a-Decision

This is the second branch subdivision and includes four opcodes for
branch depending-on-conditions-in-the-Q-operand, plus the 26 opcodes
in the BRanch-on-INDicator list. By converting an instruction using
one of these opcodes into an English-language equivalent, their block

. diagram format was developed naturally, thus:

Opcode P_operand Q operand
BE ALPHA NONE means BRANCH, if Equal/Zero

Indicator is ON, to ALPHA

BNF ~ ALPHA BETA means BRANCH, if NO Flag in
BETA, to ALPHA

69

It became evident from these translations that all factors involving ﬁ/\~
the decision were self-contained in an OPCODE which has no more than A
four characters, yet can have a meaning as involved as "Branch if

Sense Switch 1 is NOT on." On the proposed block diagram, all these

factors would be represented by a diamond (decision) and a circle

(branch) with arrows as needed and a part-circle for the label, if

present,

A diamond was laid out with dimensions of 7 x 10 units which would
reduce to plotter scale 0.7" x 1.0", very close to template size and
proportions, To provide for the possible presence of a 6-digit label,
a second circle (a part-circle with an 0.8" diameter) was laid out to
attach to the diamond. The branch circle had already been laid out
and plotted above as part of the ANALYZER. Arrows were needed to link
the geometric figures and to show the direction of flow, and these
were laid out to have an overall léngth of 0.3". The smallest print
size available in the annotation routine (at the vertical angle) was
used throughout the entire program.

The last task remaining was to plot (to write in) the instructionm,
but because these instructions differ in format, their layouts in
this block diagram had to differ in the same way.

The 26 BRanch-on-INDicator opcodes were very direct and were no
problem to lay out. Across the inside length of the diamond, a
4~space area was provided in which to write a 4-character (maximum)
OPCODE., And similarly, across. the horizontal diameter of the circle,
a 6-~space area was provided in which to write a maximum 6-character
P operand.

The four BRanch-on-Q instructions were written out on 2 horizontal
lines inside the diamond with the opcode and the word "IN" on the
first line, and the Q operand on the second line -- the whole being
read as '"Branch NO Flag in Q" and, then, the entire P operand was
written across the horizontal diameter of the circle, showing the
Where of the Branch.

B. Operation

Operation functions were the next group to be defined and plotted.
Grouping similar kinds of opcodes together had provided the groups
of naturally similar branch instructions. The same system was
continued for operation functions, and provided, not two, but eleven
naturally-similar groups. Further study of these operation groups
showed that they would all utilize the same operation box, and the
same appended label-circle, and the same connecting arrow; but that
they would differ . in the English-language translation of the
instruction. '

It was possible, therefore, to have one common routine for all these
opcodes up to the annotation of the instructions, at which point each

of these groups would be handled according to its own unique
requirements. These eleven operation groups aret

70

O

Subroutine
Name

FQTP

ADCOM
SUBTR
MULDIV
STRIP

READ
WRITE
SUPER
FLAG

CALL

DRAW

of
Opcodes

12

16

2

1

1

List of Opcodes

TF, TFM, TR, TD, TDM, TNF, LD,
IDM, MF

A, AM, CM, C

RN, RNTY, RNPT, RNCD, RA, RATY,
RAPT, RACD

WN, WNTY WNPT, WNCD, DN, DNTY,
DNPT, DNCD, WA, WATY, WAPT, WACD

SK, RDGN, WDGN, CDGN, RTGN, WIGN,
CTGN, RDN, WDN, CDN, RTN, WIN,
CTN, SEEK, GET, PUT

SF, CF

CALL

DRAW

The operation box was laid out with dimensions of 8 x 11 which would
reduce to plotter scale 0.8 x 1.1 inch, very similar to template size

and proportions.

The length was sufficient to accommodate 1l0-characters

of writing, and the width sufficient for five lines of writing. To
provide for the possible presence of a 6-digit label, a third circle
(a part-circle with an 0.8" diameter) was laid out to attach to the
operations box at its upper left corner.

The instructions were laid out as follows:

FQTP

ADCOM

Line 1., OPCODE FROM
2. Q operand
3. TO

4, P operand
5. Flag operand

1. OPCODE
2. Q operand
3. To

4, P operand
5. Flag operand

SUBTR

MULDIV

STRIP

READ

WRITE

SUPER

FIAG

CALL

DRAW

72

Line

1.

Ul W
e ®

L~ WLWN =
. e o

Ve W
.

°

OPCODE

Q operand
FROM

P operand
Flag operand

OPCODE

P operand
BY

Q operand
Flag operand

OPCODE FROM
P operand

TO

Q operand

Flag operand

OPCODE INTO
P operand

Flag operand

OPCODE FROM
P operand

Flag.operand

OPCODE PER
P operand

Flag operand

OPCODE AT
P. operand

Flag operand

OPCODE
P operand

Q operand or Blanks w/MES3

OPCODE

- o
- - -

Fourth operand

-

b ’/\ "
N

C. Branch and Transmit (BRANT)

Another opcode represented by this same operation box and label circle

is the one for BT and BIM -- here called BRANT, Because of its threefold
function, it follows a unique format and has to be so treated. This
unique instruction format is due to a two-way flow between the operation
box and the branch circle, and this is shown by the use to IWO arrows,
(one down and the other up). The layout of the instruction further
conveys the threefold meaning of it -- as follows:

The Branch circle contains the P operand to which the program branches
and from which it later returns. The OPCODE is on line (1) of the
operation box and the Q operand, the address of the data transmitted
to P-1, is on line (2). Flag operands if present are on line (5),
while line (3) and (4) remain blank. .

D, Miscellaneous (MISC)

Another operation function which is somewhat similar to the previous
eleven is MISC, This routine concerns the control operations which
often appear in profusion in a program but which one may wish to omit
from a block diagram. Except for "K', these opcodes have a complete
meaning in themselves -- are self-contained, and require no operands.
To accomodate this kind of opcode, a switch setting is provided here,
and this routine will then perform the following:

Search for a label and, if one is present, draw it with its label circle,
proceeding right along to draw the operation box and then the opcode.
Then the opcode is tested and if it is "K', a further search is made

for operands and those present will be drawn, along with an arrow to

the next instruction. In case the OPCODE is not '"K", an arrow is

drawn to the next instruction.

If, however, the first search finds that this instruction does NOT
have a label, the program then branches to find how SS1 is set.

If SS1 is ON, the program returns to draw the operation box, the
opcode and the arrow, as usual; but. if SS1 is OFF (and there was NO
label) this causes the entire instruction to be omitted and the
program returns to START and the next instruction,

E, Plot

A separate treatment for the CalComp macro-instruction PLOT was
required because of the 2 sets of coordinates and their variations
in length, To accommodate the different lengths of the sets of
coordinates, two sizes of operation boxes were laid out, (0.80" x
1.10" and 0.80" x 2.20"), and made available to accommodate these
instructions. This routine decides which size to use after:

(1) searching out the first pair of coordinates and counting their
combined number of digits, (2) searching out the second pair of

73

coordinates and counting their combined number of digits, and (3)
.comparing each total to 10. If both are 10 or less, the small box
is used, otherwise, the large one is used. A label circle is also
provided, if needed, and the instruction is written out in the
_operation box in this format:

Line (1) OPCODE FROM

Line (2) Coordinates (1) and (2)

Line (3) TO

Line (4) Coordinates (3) and (4)

Line (5) ---

F, Declarative Operations (DECLOP)

The 1ast group to be described is a 21-item list of declaratives:

DS, DSS DAS, DC, DSC, DVLC, DAC, DSAC, DSA, DSB, DNB, DDA DGM, DTN,
DTA DCN, DCA DPTN DPTA and DDW

‘These are not a part of a block diagram, but still one may not wish
to omit them entirely. To accommodate this kind of situation, a
switch setting is prov1ded here, and this routine will perform as
follows:

If SS2 is ON, the program will punch a card for each item in this

list. But if SS2 is OFF, the program will omit the declarative
completely and return to START and the next instruction,

G. Special

In this last group, the opcodes DEND and DORG were considered as a
special class, The program will perform as follows:

DORGv-->Ignore this opeodé,énd proceed to the next instruction,

DEND -- Call EXIT, thus bringing an end to the plotting.

74 4

CONCLUSION

Machine requirements for this program are:

1620 with 40K memory, Monitor System (one disk drive), card reader/
punch, CALCOMP on-line plotter, and MF-TNF~-TNS-automatic divide,

The program here presented is operational and has already proved to

be extremely valuable. One of its hidden assets is its flexibility.
Changes can be very easily introduced, and several have already been
discussed. These include such additions as:

(1) A fourth geometric figure to contain comments and remarks,
(2) A page numbering feature, and

(3) Other alterations as may be required to meet a user's
individual requirements,

A representative assortment of SPS Source-Program instructions
together with their block diagram format, as produced by this
program, is attached (see Appendix A) to illustrate typical
plotter output.

75

10665T/RT

TR INPUTI -3

ROUTIN

ERROR!

sBLANK-1 -

L]

1070 TFM ATEST+18 -ROUTIN <711,
< 1086 TFM ATEST+11 -0PCGDE .
X 1090 RACDINPUT1 ’ .
e 1100 SE INPUT1t21- ..
a 1110ATEST C INPUTY + 28 - OPCUDFE .
&
START ATEST
- TR FROM TFM FROM TFM FROM RACO INTO SF AT c
\J: BLRNK- 1 . ROUTIN . DPCODE . INPUTI . INPUT1+2] . OPCODE NEXT
. INPUTL-1 . ATEST+18 . ATEST+11 .lNPuTl+eq
711) . .
o
. 120 BE POUTIN s 6 »
1120 C ATFST+11 SEND 6 9
— ... 1140 BE__ERROR) ’ ’ ’
1150 AM ATEST+11 +8 e
_116C AM ATEST+18 5 s71L>
1170 B7 ATEST ., T Ty,
o] AM AM
. END . 8 . S
TO > TO TO
. RATEST+11 . ATEST+11 . ATEST+18
. 8 . 711

ASSEMBLING SPS | WITH MONITOR |

T. |. Markland
IBM Systems Manufacturing Division
Poughkeepsie, New York

7

The floating point formats of SPSI and SPS Il or SPS 11-D (Monitor |)
pose the greatest problem to program conversion because of their
incompatibility. SPS | uses Excess 50 floating point notation while SPS II-D
does not. The most significant difference between the two systems of
notation is that SPS | uses only one field while SPS l1-D uses separate
fields for the mantissa and the characteristic. Conversion from SPS | to
SPS 11-D requires changing the format of each number defined in the
program, and every reference to these numbers; e.g., each Transmit Field
instruction, used to transmit a floating point number, must be changed to a
TFLS instruction. This problem becomes troublesome if the program
involved is one of a set of programs and the output from one is the input to

another; i.e., the AUTOSPOT System.

Because the operation codes for both floating point formats are the
same, it is not possible to write a separate set of subroutines for SPS 11-D
without modifying both the system op-code table and every floating point
op-code in the source deck. :

The IBM 1620 Monitor | System Reference Manual (Form C26-5739-3)
explains a method of adding user-written subroutines to the Monitor System.
The application of this method to the conversion of fhe standard subroutine '
set W||| be the main topic of this paper.

Since the SPS | subroutines did not have the advantage of variable
length mantissa, only the fixed length subroutine set in SPS Il needed
modification. Although the fixed length subroutine set is much simpler than
the variable length set, the task of thoroughly reviewing and understanding
these subroutines is not particularly pleasant. Besides, most programmers
do not care how the floating arctangent subroutine works as long as it works.

One of the requirements of placing a user-written subroutine on the
file is a knowledge of the PICK subroutine. The PICK subroutine is used by
every other subroutine, with the exception of fixed point divide, to set up
the addresses and data for the subroutine. The PICK routine can be
modified without much involvement in the logic of the other subroutines.
Only slight modifications are necessary in the other subroutines to make them
compatible with the new PICK subroutine.

Knowledge of the rules and methods of relocation for subroutines is
also important. First of all, each subroutine is a relocatable program.
Regardless of the main program location in storage, PICK and the other sub-
routines will follow. Therefore, certain addresses and data areas used in the
subroutines will be located in a different area depending on the last location
used by the main program. Also, each reference to these areas must address
,’rhe correct location; hence, many instructions in the subroutines must be
corrected during the loading of the subroutine. Furthermore, the arithmetic
and functional subroutines use areas that are defined in PICK. This requires
that the arithmetic and functional subroutines be modified for their own
location in core storage and the location of the PICK subroutine.

78

One area which requires consideration is PCK. This is defined in the
PICK subroutine at the actual address 02365. This area is used for
communication between the main-line program dnd all of the subroutines.
The address of the entry point to PICK is always located at PCK. The
addresses of the entry points to the other subroutines are located in five-digit
fields below PCK and all of these addresses are loaded into this area when
the subroutines are loaded into core storage. Addresses above PCK are used
by PICK and the other subroutines to communicate between themselves and
the main line program. A review of the method of communication shows
that:

The first instruction of the linkage is TFM PCK +10, * +19.
This instruction transmits the address of the high order digit of the address
of A operand to the common communication area. The second instruction is
B7 ~=(PCK = 5*X), This instruction causes the computer to execute the
first instruction at the entry point to the called subroutine (FA, FS, etc.).
The branch is indirect to the common communication area which was set to
the proper address when the subroutine was loaded. X represents the number
of the entry point in the subroutine entry point list, each entry point having
its own address area. After the branch, a DSA is effectively assembled with
the addresses of the two operands.

The subroutine now executes a TFM to set up a return to itself and
branches to PICK. PICK then executes a TR, with an indirect Q address of
PCK + 10. to bring the address of the operands to the common areq; adds 11
to the address at PCK + 10 to find the main line return address; places the B
operand in an area referred to as BETA; and, returns to the arithmetic or
functional subroutine. The subroutine calculates the result, places it in an
area labeled ALPHA, and returns control to PICK. Finally PICK handles all
the error codes and arithmetic indicators, places ALPHA in the A operand in
the main program,and branches back to the main program to complete the
cycle. This is the general logic but some subroutines do not take the
complete advantage of all the functions of PICK.

Since PICK uses the PCK addresses to obtain the operands, sends the
operands to the appropriate subroutine, and returns the result to the main
program, it may be possible to modify PICK, to convert a floating point
number which is in the Excess 50 notation, to SPS lI-D notation and then
reconvert the results before returning them to the main program. And if this
can be done without changing the results of assembling an SPS [I-D
program, it may be possible to assemble source decks for either SPS system.

One slight problem which may necessitate changes to the SPS | source
deck is created by the main program using address modification. Changing
the addresses of the operands in the linkage, or branching around linkage
will cause problems. SPS | and SPS II-D assemble linkages of different
lengths and with the addresses of the operands in different locations. A
short review of all references to addresses near-a macro instruction should
solve this problem.

79

- Some of the problems encountered during the moduflcoflon of the SPS 11-D

subroutine set 01 were:

a)’

b)

a)

'SPS | subroutines place a pro”duct or quotienr at location 99 rather than

in the A operand area.

The arithmetic subroutines set up the A operand and expect to find them

iin the SPS II-D format (this could require another SPS | to SPS II-D

conversion routine in each of the arithmetic subroutines).

* Some of the subroutines operate on the operands directly (rather than on

ALPHA and BETA) by indirectly addressing to those addresses in the
common PCK area.

An SPS:11-D generated result ' may not be ‘converted correctly back to
SPS | due to overflow or underflow.

SPS 1 and SPS 11-D error recognition techniques are different.

Certain constants and data areas are defined in PICK and referenced in

the other-subroutines.

‘The SPS I1-D floofmg shift opero’rlons do nof address low order digits of

floating point field.

A suggested solution for each of the above problems will follow as the

logic behind the general technique of conversion is reviewed. The following
steps will explain the operation of PICK and how the conversion is accomplished
in fhe PICK subroutine:

l.

2
3
4.
5

- Reset error digit 00401 .

Move addresses of ope rands from main program to PCK area.

Calculate main line return address.

" Calculate addresses of mantissa and characteristics of both operands.

Reset a switch used to determine the floating pOfnt format when convert-

" ing back (CBSW).

P,r_oceeol to the SPS 11-D set-up routine if either an FSLS or FSRS operation
has been called for, or the floating point operand is in SPS 11-D format.

-If none of these conditions exnst contmue to the SPS | to SPS 11-D

conversion routine.

E NOTE

'A switch must be set in the FSLS and FSRS subroufmes for

- this test because of problem (g) above. The switch may be

. _set upon entering either routine and reset upon returning

 from PICK. The format check is made by subtracting one
from the address of the B operand and checking for a flag

- on that digit. The following steps follow the logic of the
SPS I to SPS II-D conversion.: *

80

~d

10.

1.

12.
13.

14.
15.

16.

17.

Set CBSW and reset multiply-divide switch (MDSW),

NOTE
The MDSW is set in either the FM or FD subroutines. This
switch takes care of problem (a).

Move B operand to BETA-2.

Check for digit at BETA-9. If no digit is present, place 0000000099
in BETA and proceed to step (11).

Convert BETA to SPS |l format by subtracting 50 from BETA-10 and
moving the result to BETA.

Skip ALPHA set-up if not arithmetic subroutine.

NOTE
This test is accomplished by checking for the presence
of a flag in the PCK common area. The flag is always
placed by each subroutine and then is removed by each
non-arithmetic routine. This satisfies the requirement

of problem (b).
Convert ALPHA to SPS Il as per steps (9) and (10).

Return to correct subroutine.

NOTE
If the format was SPS lI-D, PICK places the B operand in
BETA and checks for an arithmetic subroutine. |F FA, FS,
FM, or FD has been called, ALPHA also will be

converted.

It will be assumed at this point that the functional or arithmetic sub-
routine has been executed, the result of the operation has been

placed in ALPHA, and control has been transferred back to PICK.

Any modifications required in the arithmetic and functional subroutines

will be covered later. The remaining steps complete the explanation
of the PICK subroutine.

Set error digit at location 00401 if required.

Return ALPHA to A operand and return to main program if CBSW is
reset. '

NOTE
If CBSW is set, the original operands were in SPS |
format.

Proceed to step (19) if there is a digit in the high order position of the
ALPHA mantissa.

Set ALPHA to all zeros and proceed to step (22) if the error digit at
location 00401 is not a record mark (overflow or underflow).

81

18. Set ALPHA TO 5000000000 cmd proceed fo step (22) if fhe error digit
is a record mark.

19. Add 50 to 'rhe characteristic of ALPHA.

20. Place all zeros or all nines in ALPHA if the result of the add is either
negative or overflows (problem d above).

NOTE
‘If 'an underflow oroverflow occurs as a result of the
operation or the conversion, an error routine places
the zeros or nines in ALPHA, types out the main
line return address and the addresses of the operands,
and halts (problem e); depressing START will cause
PICK to continue as if the error had not occurred.

21. Move ALPHA to ALPHA-IO (return to SPS | format).
22. Set HP and EZ indicators by adding zero to the result.

23. Place the result in elther the A operand or location 99 depending on the
MDSW.,

24. Return to main program.

This completes the part of the procedure which is handled by the PICK
subroutine. The remainder of this paper treats the conversion of the other
subroutines.

The first step is to visually scan the listings of each subroutine to find
all references to PCK'+ 15, PCK + 20, PCK + 25, and PCK +30. These are
the addresses of the characteristic and mantissa addresses for the A and B
operands. Since these operands may be in SPS | format, they should not be
worked on directly. However, the numbers in the PICK subroutine already
have been converted and placed in the correct format in ALPHA and BETA.

The subroutines may work on ALPHA and BETA directly by changing

PCK + 15 indirect to ALPHA direct;

PCK + 20 indirect to BETA direct;

PCK + 25 indirect to ALPHA - 2 direct; and,
PCK + 30 indirect to BETA - 2 direct.

- NOTE
These changes are not required in FSLS, FSRS, TFLS,
and BTFS because they are not included in the SPS |
subroutine set.

The last problem (f) is caused by certain data areas being defined in
PICK and referenced in the other subroutines (ALPHA, BETA, etc.). First, it
is necessary to determine which areas are referenced in the other subroutines.
One method of doing this is to assemble all of the subroutines with the
exception of PICK and list all errors indicating undefined symbols The
following labels are those requiring definition:

82

C

®;

ALPHA LCNT1 NOSDIG SIGN

AZERO LCN2 ONEZ STORE
BETA LCN3 OVFL UNFL
CZERO LCNS PCK ZRES
FAC LOGE SAVE

FLONE MD SW* SFTS*

The Monitor System symbol table provides an easy way of allowing
symbols defined in one program to be used in another program. Symbols may
be defined in this table by using the SPSLIB portion of Monitor; however, it
is necessary to determine the relocation address of each symbol. To do this,
it is necessary to assemble PICK (relocatable) and note the addresses of each
symbol listed above.

The control cards required to define the System Symbol Table are as
follows:

JOB 5
XEQ SPSLIB
* DEFINE SYSTEM SYMBOL TABLE

ALPHA -00066
AZERO -01134

etc.

* ENDLIB
FAEF

The symbol in each detail symbol card starts in column é while the
address starts in column 16. Addresses which are to be relocatable should be
preceded by a minus (=) sign. NOSDIG and PCK are the only addresses
which are not relocated. ~

Only half of the problem has been solved; it is necessary to identify
for the subroutine supervisor program, which loads all our subroutines, those
addresses which should be relocated according to the actual location of the
subroutine being loaded, and those to be relocated according to the actual
location of PICK. This is accomplished by defining a "pseudo constant (DC
statement)” in the source deck. An explanation of the use of the pseudo
constant is given in the Monitor Manual under the heading "Operands that
are a Function of Pick and/or Mantissa Length.” The only "modifiers" which
are required are 0 and 5, since the fixed length subroutines are not affected
by mantissa length. A check of each subroutine, after all other changes have
been made, will indicate what must be done to the pseudo constants to make
the subroutines function correctly.

NOTE
PCK is not relocated and does not depend on the
location of PICK.

*These were defined specifically for the modified subroutine set.

83

The other changes required in the arithmetic and functional subroutines
include:

1. Changing all direct returns to the main program (branches to PCK + 10
indirect), to branches to the second portion of PICK.

NOTE
This should not be done for the FSLS, FSRS, TFLS, and
BTFS subroutines. ‘
2. Set switch in functional subroutines and TFLS and BTFS to stop ALPHA
set-up (this may be done by clearing the flag which is always set on the

highest order digit of the address of the return to the functional sub-
routine (PCK + 1).

3. The last change requires setting and resetting a switch in the two-shift
subroutines (FSRS and FSLS). This switch (SFTS) also used to inhibit
ALPHA set-up is to be set immediately upon entry to the subroutine and
reset immediately upon returning from PICK.

Before loading any of the subroutines onto the file it is first necessary
to delete them in their existing form. This is done with the following control
cards:

JOB 5
DUP 5
* DELET 0100

A ###

The numerical portion of the *DELET card is the DIM Entry Number of
the PICK subroutine for subroutine set 01. The DIM Entry Number for the
proper subroutine is entered in columns 13-16. The DIM Entry Numbers for
each subroutine in set 01 are: '

PICK 0100
FA and FS 0102
FM 0104
FD 0105
FSQR 0106
FSIN and FCOS 0107
FATN 0109
FEX and FEXT 0110
FLOG and FLN 0112
FSRS 0114

- FSLS 0115
- TFLS 0116
BTFS 0117

84

-

Wy e TTwYww

T T —

NOTE
The double subroutines are really one subroutine with two
entry points. Since the fixed point divide routine simply
uses the automatic divide instruction in this subroutine
set, and there are no references to the PICK subroutine, it
is not necessary to change this routine at all.

The last thing to be done is assemble each subroutine and store it
permanently on the file. The SPS control cards required to do this are:

* ASSEMBLE RELOCATABLE
* SYSTEM SYMBOL TABLE
* LIBR

* ID NUMBER 0100

* STORE RELOADABLE

The *SYSTEM SYMBOL TABLE card should not be used when assembling
PICK because it will produce double definition errors. The number on the 1D
NUMBER card is the DIM Entry Number for the subroutine being assembled.

The appendix to this paper contains listings and other information which
may be useful when converting the users subroutine set.

85

Electronics

A McGraw-Hill Publication

330 West 42nd Street, New York, N.Y. 10036
Telephone: [212] 971-2645

Lewis H. Young, Editor

June 28, 1965

Dear Mrse. Hall:

Mr. Love of IBM has written us requesting permission
for you to reprint "Using a Computer for Circuit Analysis"
oy Herbert Wall from the November 2, 196l issue of Electronics.

You have our permission provided the reprint carries the
following legend: Reprinted from Electronics, November 2, 196L;
copyright 196L McGraw-Hill, Inc.

LHY : kf
ccs David J. Love

Mrs. Carol A, Hall

USL Computing Center

University of Southwestern Louisiana
Lafayette, Louisiana

86

e —— T T T T T —

COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS
by:
Arnold Spitalny
for presentation at
1620 Users Group Meeting
in
Miami Beach, Florida, May 10, 1965

The Norden Divisgion of United Alrcraft Corporation has
had an active and extensive design automation program for the past
2 1/2 years. We are trylng to apply the same thought and effort to
development of man-machine systems for performing our engineering
work more efficiently that we normally apply to development of radars,
display systems, navigation systems, and other complex electronic
equipment. Emphasis throughout our program has been placed on de-
velopment of user-oriented systems in which computer assistance is
made conveniently avallable to englneers in the context of their own
problems. These users do not have to become programmers to learn
and use the systems we develop.

Since most of our business 1s in development of electronic
equipment, a large part of our design automation effort has been
directed toward lmproved methods for synthesis, analysls, layout, and
packaging of electronlic circuits. Our early start, rapld progress,
and demonstrated capablllity attracted outside recognition and support
in two important areas.

In April 1963, Norden and IBM agreed to combine our separate
circult analysls program development efforts and work together on a

comprehensive user-oriented circult analysis program system. This
joint effort resulted in development of the ECAP system which was pre-
sented by Mr. Wall. The Norden version is called NORNAP (Norden Net-
work Analysis Program). It includes many features added by Norden
after IBM stopped further joint development to prepare ECAP for general
release.

Development of an electronic deslign that performs the proper
functlions is only one step in the serles of activities required for
design and production of integrated cilrcuits.

Once a satisfactory electronlic design 1s achleved, the next
problem is design of the diffusion and interconnection patterns re-
quired to fabricate this circult within a single silicon chip. This
can be a tedious and frustrating Job, which increases exponentially
in difficulty as we increase the number of components in each circuilt.
The designer must determine slze and shape of all elements, allow for
moats and clearance tolerances, arrange the elements into a minimum
area rectangle of satisfactory form factor, locate terminals, and route

87

all interconnections without metalization crossover.

This layout design task is much more difficult than de- q;;

gign of a conventional printed circuit board. Errors are not likely
to be discovered until after the first devices are made and are rarely
possible to correct without repeating the whole manufacturing cycle.
The repeated cycle of design, manufacture, test, and modification can
be broken by providing a computer-alded design system that helps the
device designer to obtailn better designs faster, automatically checks
the designs for conformance with all process tolerances and design
rules, automatlcally generates a complete set of mask designs cor-
responding to the checked and approved layout design, and predicts
functional performance of the ¢ircult before it 1s built.

Norden 1s now developing such a man-machine system under
Air Force sponsorship with the assistance of the United Alrcraft
Research Laboratories. The program is under the directlion of Captain
H.D. Colwick and Mr. M. Bialer of the Electronics Branch, Manufacturing
Technology Divisgion, Alr Force Materials Laboratory, Wright Patterson
Air Force Base, Ohilo.

This system for rapid design of microcircults 1s supplemented
by the series of Norden-IBM computer programs for analysis of electronic
clrcults.

These two developments reduce the time requlred for initial
design and manufacture of new microclrcults to less than that needed
for conventional circultry.

Since the basic clrcult analysis methods are fairly well
known and were discussed by Mr. Wall we will devote most of our time
to the newer materilal on design of circuit layout and interconnection
patterns. ‘

Design Cycle Outline and Clrcuit Analysis

Figure 1 indicates some of the major steps involved in
conventional design and development of integral circuits. The full
sequence from concept to delivery includes preliminary design, cir-
cult synthesls, circuit analysis, mask layout, mask artwork and cut-
ting, and the many steps of fabricatlion and test. All the steps
shown in ovals were originally performed manually.

Some of the problem areas of the conventional approach
are indicated by the feedback loops in Figure 2. The first is to
design a circult that performs the desired function and has parameter
values sultable for inclusion within an integral circuit. The con-
ventional experimental breadboard approach requires uses of conventional
components and pieces from other integral circuits. Distributed effects
and leakage paths within the chip must be estimated and simulated,
and other distributed effects caused by the experimental setup must

q:;

88

68

Requirement

DESIGN

PRELIMINARY

Test Data

Bosic
Circuit

Parameters

MASK

Mosk Design
LAYOUT

Waofers, Dopants,
Headers, efc.

FORM Masters
EQUIVALENT
CIRCUIT

p—

Delivered
FABRICATION] Circuit
a |
TEST

Topological
Rules #

CIRCUIT
ANALYSIS

COORDI~
NATOGRAPH

MONITORING

a
CONTROL

- Largely implicit,
KEY

-

Human action,
Monitoring,
Control

uncodified, incomplete

Computer
Progrom

Specialized
Equipment

Figure 1.

Conventional Design and Development of
Integral Circults

be minimized. Experimental modification of parametérs is often much
more difficult than in conventional circuits, due to the limited range
of integrated circult elements available for experimental hookup.

This problem 1s greatly eased by using computer analyses @:}
of prospective circuit designs and modifications to supplement the
experimental work. A very simple user-orlented language is used to
describe circults to the computer, which can then perform dc, ac,
or translent analyses and obtain more information in a few minutes
than could be learned in weeks of laboratory tests.

Figure 2 shows a simgle equlivalent clrcuit and the corre-
sponding input data that descrilibe the circult to the computer. Each

branch 1s described by a single IBM card contalining branch number,
nodes connected to, and values of all circult parameters. The computer
uses these data to set up and solve the matrix formulation of the
circuit nodal equations.

Once the circuit is defined to the computer, many analysis
routines are available to assist the engineer in analyslis and optimi-
zation of his circuit. The command instructions for directing the
computer to use some of these routines are indicated in Figure 3.

We will now look at the output that results from one of
these instructions.

Figure 4 1s a photograph of a computer printout. At the
top are all the node voltages of the circuit, which are the same
as would be measured on a cilrcuit breadboard. Next, we have the
sensitivity of every node voltage to variations 1in every circuit
parameter, This information, obtained in less than one second on
the IBM 7094 computer or one minute on the 1620 computer, provides
more insight into the effect of component variabtlion and tolerances
than could be obtained in weeks of experimentation. A very simple
circult has been used for this illustration. We routinely handle
circuits of up to 20 nodes and 50 branches on the 1620 or 50 nodes
and 100 branches on the 7094.

Flgure 5 shows how new microclrcuits are designed with the
system now under development at Norden. The steps shown in hexagons
represent computer operations. Functional performance of prospective
circuits 1s determined by computer analysis and optimized before lay-
out begins. Circult layout is actually performed by automatic com-
puter programs, subject to manual review and modification, and results
in automatic preparation of a set of mask artwork.

This system is planned for eventual on-line operation with
graphical display and manlpulation of circuilt layout patterns on a
CRT display with a light pen. The present prototype verslon uses a
Calcomp plotter on the 1620 for graphical display and an Orthomat
Drafting Machine for automatic preparation of mask artwork. Graphical
design manipulations are performed on a 7094 computer in Hartford and

90

DCNODE
a{{uhaﬂ
Moy e
ﬂ*"ﬁﬁf
f = 23

Ve
i} “" G4
N*é(A,O)r _ R < 1000.(.10)
N=(30 . R - 10000010
N= (),3)' v 39 £3:.10)
| 0364.0361 , 0367
Figure 2. Input Data Preparation

-

»

2
e
g

aN3
,‘,m.—.:uNKm

S

e - e B T R B e ot~ “ Doy, o g,

R ol i AT o R N T

-

Ui,w,,, .«Eﬁﬁﬁ.mn ¥ ,B_

:ii"ii?it e

B N

T e e Ry A o R
e S et

T siskIvNY g«a

Control Instructions

Figure 3,

te

MOe BRANCHES = 7
NOe NODES = 4

NOMINAL NODE TO DATUM VOLTAGES
2¢999E+01 2¢062E+01 5¢493E-00 4e764E-00

SENSITIVITIES
PERCENT CHANGE IN NODE VOLTAGES FOR A ONE PERCENT CHANGE IN PARAMETERS

" 11.77OE—04 -14683E-04 -1e747E-04 -1¢961E-04
" 24.6905-07 ~44530E-01 ~-2e385E-03 -2.677E-03
" 31.172E-~0? 34493E-00 -54962E-00 -64693E-00
" 43.623E~06 14050E-02 2¢809E-03 -2¢313E-02
" 51.3425-04 3¢891E-01 1.040E-01 le431E-01
" 61.192E—04 -34564E-01 6¢993E-01 74850E-01
" 71.572E—04 44076E-01 -7¢997E-01 -84978E~-01
G 4y 3

lel171E-03 -34491E-00 5¢958E-00 6e689E-00
- 19.999E-01 9.509E-01 9868E-01 l«107E-00
; 41.69OE~05 4.900E-02 1e310E-02 ~1.079E-01
! 32.502E-O9 ~Te456E-06 le272E-05 le428E-05

Figure 4, Computer Printout

V6

Requirement

PRELIMINARY
DESIGN

Basic
Circuit

wafers, Dopants,

Test Data

Headers, etc.

Mask Design

AUTOMATIC Mosters
MASK
CUTTING

Palamuu MASK

LAYOUT ¥

Delivered

FABRICATION| Circuit

FEST

PLOTTER

CIRCUIT

* Topological

ANALYSIS DISPLAY

rules built into program

LAYOUT
MODIFICATION

KEY
Human Action, Speciolized Computer
Monitoring, Equipment Program
Control

Figure 5. Computer-Aided Design and Development'!'

of Integral Circuits.

MONI‘l;)RING
CONTROL

C\.:i\

cards are transcelved 70 miles over the phone llines to Norwalk for
Calcomp plotting on the 1620 computer.

Circult Layout Design

Figure 6 i1s the schematic of a two-stage differential
amplifler designed with the prototype computer-aided design system.
We wlll assume that circult analysis and functional optimization
have been completed.

The schematic assigns an initial locatlion for all elements
relative to one another, as well as parameter values and interconnec-
tions. This informatlon 1s put into the computer along with the
following circuit fabrication requirements:

a) fabrication method

b) sheet resistivity of resistors

¢) transistor types

Based on these inputs and a set of deslgn rules developed

at Norden, the computer calculates the length and wldth of each
reslstor and the area of each capacitor. It also selects from a

- library of standard shaped transistors the dimenslons of the transistor

and diode types selected by the designer to meet the electrical require-
ments of the circult.

The computer l1s now ready to plot an initlal detalled layout
as shown in Figure 7.

This figure and the following figures are photographs of
actual computer plotted outputs at various stages in the design pro-
cess.

This initial layout, Figure 7, is the starting point for
a series of man-machine interactions to evolve the final design. The
designer looks at this plcture and decides to rearrange things a little.
He may say, "Let's rotate this transistor and move it up here, bring
the other one as close as possible below it, put R10 on top to join
it with R15, move Rpo up and put Rj2 alongside it, do the same to the
other side to maintain symmetry, and take a look at what that gives
us." (Figure 8)

These instructlions are coded in a simple user-oriented
language, punched on cards, and fed to the computer.

The complete vocabulary of 23 command instructilons pro-
vides a capability for assigning any desired orientation to any
circult element and locating it in any desired position relative to
the other elements. Provisions are included for routing inter-
connections, bending and joining resistors, shaping capacitors, adding
and deleting moats, and performing other routine design functions.

95

27K
R4 Q3
750
AN\ N —AAA—
RO R5
250 I

L.7K

Figure 6. Two-Stage Differential Amplifier

96

100 -

40

A 'D_lnnln

Pl A A A AT S A U AT AT S AT A Y

Figure 7. Initlal ILayout

100

- 80

40

hdiodind

:::::

Rt 2 EL[j [JHEI!

050 | 0E

0@&0

] £9

R1y4

Figure 8,

First Modification

98

Figure 9 and 10 show successive layout improvements illustrating
some of these capabllities.

A translator program interprets the instructions and calls
in manlpulative programs to change the layout in accordance with the
deisgner's instructions and the appropriate programmed or recorded
rules and tolerances. In the on-line system, the design modification
language will be converted from cards to light pen and pushbutton
operations.

Each succeeding transformation 1s graphically displayed
by the computer to ald the designer in planning his next design step.
The process of looking at a trial layout and instructing the computer
to make changes 1s repeated until a satisfactory layout 1s achleved
(Figure 10). On the circuit layout is accepted, the designer dir-
ects the computer to design diffusion masks from the flinal composite
two-dimensional deslign. The computer then punches control instructions
on paper tape to make each mask on an accurate, high resolution drafting
machine. Figures 11, 12, 13, 14 are photographs of computer-plotted
mask designs for the differential amplifier.

Interconnection Routing

Routing of interconnection metalization 1s an important
conslderation in planning location of diffused elements and is a
difficult job for large circults, even after a favorable layout 1s
obtained. It 1is even more difficult to take a circuit diffusion
pattern designed for one application and reconnect 1t to form a
completely different circuit.

Figure 15 is a computer-designed interconnection pattern
for an error amplifier. More than 50 different circults have been
desligned with this same dliffusion pattern by rearranging the inter-
connectlions.

A maze-solving computer program is used to route inter-
connectlions, automatically avoiding all contacts of other nodes and
all previously routed interconnectlons. The resulting pattern can
vary, depending on the routing sequence. When a connection 1s com-
pletely blocked by previously routed connections, the computer auto-
matically changes the sequence and tries again. The pattern shown
here was successfully routed on the third automatically sequenced
trial.

Computer System Design

Every effort is being made to modularize the computer system
design so that changes in integrated circuit technology and conversion
to an on-1line system will result in minimum additional programming
effort.

As the technology of integrated circult design changes, new
programs can be appended to the system and present programs modified

99

E3}

| e

EY |

0] [al Aig

e

o]

=]
=

& 0

Alz D

A2 AP

=l
-]

0 &0

@ | 0k

A4

=]

=1 (=T

[RlY

el | [OE&I

| =
O

6

Figure 9.

Final Arrangement

100

60]

. g s
' G =l 0[@0 2

S 0/[@0 0@ [0
B | DE0 | @ | OE0 | |

o] @@D

Figure 10, Final Detailed Layout - 2-Stage
Differential Amplifier

L

[

[

i

J

] [
O o O
]]

P

i

]] :

o Y oo f

] L

3

[

— — . . -
Figure 11, Emitter Mask

102

®

(@)

wsey osed

‘2T 9an3Td

— 11

— b

LI

C Ok

[09

103

%SeW 30N

*CT 9an3Tdg

Y

104

.‘\I

NSeW 30v3U0) ‘4T SanITd
1 PR (- AP | S 1 U | B S PN | - PO S S
O
a O
Oo 0 oo o

a .

O 0o [o o N of O
0 of 0o [
Oo 0 0 of

] m|

[mi m|

O o
__u_u

02

Oh

105

-

Bupgnoy TeUTd ST 2anITd

.,, -
| ‘ / .:D ; &
= — ﬂ//.? —
— __

O —
i En el =
D ,H
| = Eg =] _ 1] i
; §=! =l InE

8l , il
u - = | m
TT
|5 B 7/ [TB S| r

106

without the expense of disturbing the logic of the operating system
or user program links not requiring modification. Conversion to an
on-line graphic system will be realized by simply expanding the pro-
cessor function of I/0 control.

All programs are written in FORTRAN to the maximum extent
feasible in order to make this system machine-independent. It will
be able to run on any computer system that has the necessary capacity,
graphical display terminals, and baslc software. Changes in computer
technology can thus be readlly accommodated, as well as changes in
Integrated circult technology.

Status and Significance

The prototype computer-alded design system is now in final
development and initial experimental use. The design rules programmed
into this system have been thoroughly tested by manual application on
all integrated cilrcults designed by Norden in 1964. Manual operations
are gradually being replaced by computer operations as the programs
become avallable. Design layout time for a complex circult has already
been reduced from several weeks to a few days. Wlith the planned on-line
computer-aided system, it will be reduced to hours or minutes. We be-
lieve that this system and especially the on-line version to follow it
represent a significant breakthrough in the design bottleneck.

Since this system is being developed under Air Force funding,
1t is not considered proprietary to Norden. Computer programs and
Instructions will be made available to the industry by the Air Force
when system development is completed. If you want additional in-
formatlon, or are interested in the possibility of using this system
in your own facility, you should contact our Air Force Project officer;

Mr. Max Blaler

Electronics Branch

Manufacturing Technology Division
Alr Force Materlials Laboratory
Wright Patterson Alr Force Base, Ohlo

107

D. C. AENEAS

(DIRECT CURRENT AUTOMATIC ELECTRIC NETWORK ANALYSIS SYSTEM)
by

Heberto Pachon
Mathematical Analysis Sectior
Research Laboratory
Automatic Electric Laboratories, Inc.

’ Northlake, Illinois

Presented at the

1620 Users Group Meeting"
in Miami Beach »nn

May 10, 1965.

108

D. C. AENEAS

1. Introduction

This is a linear graph theory application paper describing in
general terms a computer program developed for use on the IBM 1620
Data Processing System, and capable of performing automatic D. C.
analysis of electronic circuits.

The program carries the name of D. C. AENEAS which stands for
Direct Current Automatic Electric NEtwork Analysis System, and it
incorporates the fallowing features:

la It reads and decodes the geometrical (topological)
configuration, the component characteristics, and the
component values of a D. C. network from easily coded
statements punched on tabulating cards.

1b It generates the network equations and solves for nominal
branch currents, nominal node voltages, and nominal
power dissipationms.

lc It computes branch curremts sensitivity factors, and
node voltages sensitivity factors.

1d It computes node voltage standard deviationms.

le It computes minimum and maximum worst case analysis for
branch currents and node voltages.

if It allows the user to modify the values of one or two
components in the network in order to generate tables
‘of branch currents or node voltages as functions of the
components being modified. These changes can be effected
without a complete recalculation of the problem from
start to finish.

Features 1b - 1f are optional, and under user's control.

To use this program, the engineer draws an equivalent circuit
representing the circuit he wishes to analyze. He then numbers the
nodes and the elements of the circuit, and at the same time he
assigns arbitrary current and voltage references to the circuit
elements. A special input language, whose statements are in one-
to-one correspondence with the circuit diagram so far developed, is
then used to describe to the program the topological configuration,
component characteristics, and the component values of the circuit.
The engineer also uses this input language in order to specify what
ie to be calculated and what 1s to be punched as output.

109

the (:;

All the information describing the network is punched on tabulating
cards, and these cards are used as an input to the D. C. AENEAS program.
(:) The program will go through all the calculations necessary, such as

generating the circuit equations and solving these equations, and will
prepare a report on punched cards. This report consists of a duplication
of the input cards followed by all numerical answers requested by the
engineer. These cards must be listed in order to obtain understandable
answers.

The program can operate on networks containing linear resistors,
constant voltage generators, constant current sources, and linearly
dependent current sources* only. Therefore, when the network for anaglysis
contains active devices (such as transistors, diodes and vacuum tubes)
equivalent circuits must be obtained before the engineer can make use of
the D. C. AENEAS program. Fortunately, adequate equivalent circuits
exist for these types of devices; hence, most electronic networks can be
analyzed, D. C. wise, by means of this program.

2. Subprograms

D. C. AENEAS consists of six programs which operate upon a common
area within the computer memory called the Network Memory Map, and which
are capable of performing features la - 1f mentioned under section 1.
These programs are as follows:

22 Input Program

All the necessary information pertaining to the network
under analysis is supplied by the user to the D. C. AENEAS
program by means of statements comprised in what is called
the input language. These statements are punched on
tabulating cards which are read and decoded by the input
program. In the process of decoding, the input program
also fills in the Network Memory Map and checks for
possible ccding errors.

2b Topolcgical Program

The topolcgical program makes use of part cf the informaticn
- contzined in the Network Memory Map; more exactly, it makes
use c¢f the information describing the connectivity (topology)
of the network in order to gemerate a network tree, a network
co-tree and finally a network circuit matrix. The program

¥ By linearly dependent current source we mean a current source
‘2) whose value dependz on the value of the current through one
resistor in the circuit; the dependence is linear.

110

2¢c

2d

22

2f

also checks for errors and gives the user the option to
type the different connectivity matrices associated with the
tree and co-tree, as well as the final circuit matrix.

Calculator Program

The circuit matrix, together with the network component

values contained in the Network Memory Map, are used by

the calculator program in order to generate the loop equaticns
for the network, and thereafter to solve for all the retwork
nomiral constraints requested by “the user.

Sensitivity Program

The szensitivity program computes the partial derivativesz of
all urknown variables (branch currents and node voltages)

with respesct to all of the network parameters, and stores
informatiocn for further use in connection with the calculation
of worst cases or standard deviations.

The program computes partial derivatives by means of closed
formulas, a method which seems to be faster than the cal-
culation by approximation method.

Commnon Program

The commen program is basically a duplicate of the calculater
program; that is, its main function is to set=-up loop
equations and solve for branch currents or node voltages.
However; this program contains twe subroutines that correszpond
tc the processing of the worst case and modify control
statements. ‘

(fJ

Using the signs of partial derivatives obtained by the
sensitivity program, the worst case subroutine rearranges
the values of the parameters within the Network Memory

Map and branches to the generation and soluticn of squations
subroutine to determine the tolerance extremes of branch
curzents and/cr node voltages.

)

Using the data corresponding to the modify control statement,
the mcdify subroutine modifies the value, or the values of
the corresponding parameters, axd branches to the generatieon
and solution cof equations subroutine tc evaluate branch
currents or ncde voltages.

Standard Deviations Program

Using the values of the partial derivatives, the standard

111

deviation program computes the standard deviations of
all unknown node voltages.

3. General Comments

The first three programs mentioned in section 2 accomplish the
true electrical analysis of the circuit problem.

The input language developed to communicate with the program is
oriented towards the electrical engineer's use and requires only a few
minutes to learn. Additional statements may be added to form an input
language useful, not only to D. C. analysis programs, but to A. C.
analysis and transient analysis programs as well.

The method of obtaining the circuit matrix was obtained from the
work done by Professors M. B. Reed and S. Seshu (1), but we extended
their work in the generation of the loop system of equations when current
dependent sources are present.

The simulation of the electrical network by means of the equivalent
circuit on the digital computer is a very important achievement (2)
because, if such a simulation is possible, a great saving is effected
in cost and time when certain solutions to vast problems are desired.

In addition, such simulation transforms the digital computer (IBM 1620
in this case) into a large analog computer having great flexibility
and high degree of accuracy.

The last three programs mentioned in section 2 give the enginecer
a way to predict possible troubles due tc changes in the components
within the networx under analysis. When properly used, these programs
can also lead the engineer to the most reliable selection of network
component tolerances.

The closed formulas developed for the evaluation of partiai
derivatives seem to be a considerable improvement over existing approx-
imation methods. We have made no attempt to determine exactly how
good our method is, but we have estimated that it will improve the
speed of calculation by about a factor of 8.

Finally, we would like to point out that since the program is a
rather complicated combiration of matrix operations, the use of the
PUC-R2 compiler (3) was extremely helpful and time-saving in obtaining
the final symbolic language source deck for the program.

112

4, Example |

The attached example, found in the SPARC (4) report illustrates
the use of the language developed for communication with the D. C.
AENEAS program, and it also demonstrates part of the calculations

that the program can perform.

L

eberto Pachon

113

(7v,4aV)

YT

CALCULATE:

1. NOMINAL NODE VOLTAGES AT
NODES 2, 3, & 5

2. PARTIAL DERIVATIVES OF NODE
VOLTAGES (2, 3, 5) WITH
RESPECT TO ALL OF THE NETWORK
ELEMENTS.

3. ALL ¥ODE VOLTAGES AS TSE hfe
PARAMETER CF THE TRANSISTOR
CEAMGES TRCM 55.44 TO 56.56 IN
STEPS OF .36. TUE VALUES SO
OBTAIIZD CAN 3% U3ZD TO CHECK THE
VALUES (OF TUE DARTIATL, DERTVATIVES

FIT RESPRAT TE WIm T
vAhall DOl LVl 4

g

[
&
(w3}
G

‘:‘_/\‘Tj’"’;":v AT RS (:Tr'; ﬂ*TIT

Pt 4 H N
A iR L i i

@-

NODE MNUMBER

ELEMENT NUMBER #

ELEMENT ORIENTATION

3.03 My (1.82 Mg, 9.09 M)

1685Q (670, 2700Q)

56 (19, 93)

+.388Y. (.28V., .6Y.) xl
| ,1\\&<

I
%

ZLELENT NO. & OBTAINED IN 2 ADQVE.

|

E10

D.C. AENEAS TEST - PROBLEM NO, 1 - SPARC PROGRAM EXAMPLE
AUTOMATIC ELECTRIC LABORATORIES -~ RESEARCH

DANIELLE DONNELLY - HEBERTO PACHON

APRIL 19, 1965

900., 1K, 1,.1K

R(1, 2) =

R(6, 3) = ,9K, 1000 , 1100,

R(5, 7) = .9E+03, 1K .
R(2, 3) = ,182E+07, .303E+07, .909E+07
R(3, 4) = 670, 1685, 2700

J(2, 5) , HFE(5) = 19, 56, 93
J(2, 3) = _1E-06, 2.E-06, 4.E-06
v(6, 7) = .7, 1., 4,

v(4, 5) = ,28, .388, .6

v(1, 7) =9, 10, 11

RV = 7

NODE VOLTAGES (2,3,5)
SENSITIVITY

MODIFY E6 = 55,44, ,56, 56,56
NODE VOLTAGES
FIN
NODE VOLTAGES

NODE NO, VOLTAGE

02 .94165220E 01
03 -99LLL570E 00

05 .58903298E 00
PARTIALS OF NODE VOLTAGES WITH RESPECT TO VOLTAGE ELEMENTS
NODE NO, PTL, WRT, ELEMENT NO, 08

02 -.93703124E 00

115

03
05

NODE NO,
02
03
05
NODE NO,
02

03
05

.98262250E 00
.95440879E 00

PTL. WRT, ELEMENT NO, 09
.93767029E 00
-17053371E-01

-.95472366E 00

PTL, WRT, ELEMENT NO, 10

-99936100E 00

.32L419085E~03
.31488247E-03

PARTIALS OF NODE VOLTAGES WITH RESPECT TO RESISTIVE ELEMENTS

NODE NO,

02
03
05

NODE NO,
02
03
05
NODE NO.,
02

03
05

116

PTL, WRT, ELEMENT NO, o4

. 17763444E~08
-.90110884E~-09
-.87523562E-09

PTL. WRT, ELEMENT NO. 05
.96898023E-05
. 17622804E-06
-.98660302E~05

PTL, WRT., ELEMENT NO, 01

-.58310575E-03
-, 18915843E-06
-.18372718E-06

NODE NO, PTL, WRT, ELEMENT NO, 02

02 . 52045994E-05
03 -.54578290E-05
05 -.53011204E-05
NODE NO, PTL, WRT, ELEMENT NO, 03
02 .55231873E-03
03 . 10044998E-0k
05 .26669260E-0k4

PARTIALS OF NODE VOLTAGES WITH RESPECT TO TR, CURR, ELEMENTS

NODE NO, PTL, WRT, ELEMENT NO, 06

02 -, 637507 00E-03
03 .17287788E-03
05 .46462900E-03

PARTIALS OF NODE VOLTAGES WITH RESPECT TO CN, CURR, ELEMENTS

NODE NO, PTL, WRT, ELEMENT NO, 07

02 -.19363921E Ok
03 .98229830E 03

05 .95409393E 03
PARAMETER VARIATION OUfPUT
ELEMENT NO; 06 = ,55440000E 02
NODE VOLTAGES

NODE NO, VOLTAGE

117

01 . 10000000E 02

02 .94168820E 01
03 .99434800E 00
oL .97677034E 00
05 .58877034E 00
06 . 10000000E 01

PARAMETER VARIATION OUTPUT

ELEMENT NO, 06 = _56000000E 02

NODE VOLTAGES

NODE NO.’ VOLTAGE
01 . 10000000E 02
02 .94165220EF 01
03 .994LL570E 00
ol .97703298E 00
05 .58903298E 00
06 . 10000000E 01

PARAMETER VARIATION OUTPUT
ELEMENT NO, 06 = ,56560000E 02
NODE VOLTAGES

NODE NO, VOLTAGE

01 .10000000E 02
02 .94161680E 01
03 .9945L4160E 00
Ok .97729076E 00
05 .58929076E 00
06 .10000000E 01

118

REFERENCES

Seshu, S. and Reed, M. B., "Linear Graphs and Electrical
Networks," Addison-Wesley Publishing Company, Inc., Reeding,
Massachusetts (1961), pages 117-144.

Bashkow, T. R. and Deser, C. A., '"Digital Computers and Network
Theory," Wescon Convention Record, Vol. 1, part 2, (1953), pages
133-6.

Domingo, C. and Rodriguez, F. G., '"Central University of
Venezuela Processor' (PUC-R2), translated from Spanish by
H. Pachon, Automatic Electric Laboratories Report.

Kleiner, C. T. and Johnson, E. D., "Spar¢-System of Programs
for Development and Analysis of Components and Subsystems by

" Recomp =~ II," Autonetics Report, pages 1=47.

TRAVERSE ADJUSTMENT BY WEIGHTED LEAST SQUARES

by

Robert L. Kenngott, Supervisor,Computer Center
Ches. H. Sells, Inc.,Civil Engineers + Surveyors
‘409 Manville M.,letvlllo, N.Y.,10570

In the author's belief, the entitled FORTRAN program represents the
first practical application of the unrestricted power of least-squares
to the adjustment of all elements of a survey traverse. To ease the
burden of manual computation, conventional methode of traverse ad justment
have either been purely artificial (compass and transit rulgs) or by 2
limited approximation of a least-squares solution (Crandall” end Belote).

Above all, any method of ad justment should satisfy at least one

-criterion; it should never introduce corrections which greatly exceed the

standard deviations in the corresponding observations of angles and
distances. Conventional methods fail this test and, not infrequently,
create artificial map distortions.

Traverse ad justment by weighted least-squares distributes corrections
which are in proportion to their effectivenese in reducing the error-of-
closure as well as in correct proportion to the individual standard
deviations in measurement.

The progrem ad justs both angles and distances taken directly from
field notes for a simple traverse between two known points with terminal
azimuthe. Angular input may be as deflections, included angles, or

‘azimuths. Terminal points may be co-incident. It is written as a

two-pass program for a minimum 1620 card system and will handle an
unlimited number of traverse lines. However, all quantities having the
dimensions of length are restricted to eight significant figures with
three decimal places.

The general method of solving for corrections is indicated in
highly abbreviated form by the diagram and equations next below.

Final
Foresight

Error-of-closure

w Initialj

Backsight i=1

120

Let-

CAZRD = correction to close azimuth (radians) , -
(OAlRD)i- correction to angle i for azimuth closure (radians) @;}
(GA2RD)1~ correction to ang}e i for_positiog closure (rqdi&ns)

(OATRD)i- total correction to angle i (radians) a

(SDARD)i- standard deviation in measurement of angle i (radians)

(CSFT)i- correction to distance 8, for position closure (feet)
(SDSFT)i- standard deviation in measurement of distance 3, (feet)

Then, corrections are computed as followss
(GARD), = (CAZRD)[(SDARD)Z/23(3DARD)?]
(CAZRD), = (SDARD)Z[U - V(RE,) + W(RN,)]

(CATRD), = (cnnn)i + (CA2RD),

,(QSFT)i' [(snsrw)f/si][V(SN,) + W(SE,)]

-where U, V, and W are constant co-efficients (Gaussian
correlatives) computed by conventional least-squares procedure subject to
~ the conditions for azimuth and position closure.

The quantities subject to least-squares minimization are the ratios
of adjuetments per the corresponding standard deviations,

CATRD CSFT
z [SDARD SDSFT i]

~from which it can be seen that weighting of the ad justmente 1s
controlled through input of the standard deviations (e.g.,zero standard
deviation results in a zero adjustment). It may be done individually by
direct input or by coded reference to stored subroutines according to the
method of observation (repeating transit, direction theodolite with
interchangeable target kit, steel tape, Geodimeter, etc.). Subroutine

parameters are read in at the start of the program and may be changed by
substituting new parameter cards.

Output begins with tabulation of errors-of-closure (azimuth closure,
raw position closure, and position closure after angle ad justment to close
in azimuth). At the esame time, confidence limits in the errors-of-closure
are predicted from the root-sum-of-squares of the partial effects due to
ingividual standard deviations. Should an error-of-closure exceed the
95 /° limit (odde against it are 20/1), the unbalanced traverse is computed
and “tabulated without further ad justment. This is to aid in locating
gross mistakes.

Normally, the output proceeds with tabulation of the ad justed traverse,
including a listing of individual corrections and their weights (standard M:;
deviations) as well as adjusted azimuths, distances, and co-ordinates.

121

C

Finally, because surveyors are most, likely to evaluate traverse

Aadjuatment by weighted least-squares from a comparison of results; sense

switch control will permit alternative adjuatment by compase rule, transit
rule, or Orandall's method (COGO least-squares).

This program will be submitted to and should be available from the
USERS library by the third quarter of 1965. Until then, inquiries
addressed to the author will be answered as promptly as possible.

References: ‘
1l ©C. L. Crandall,"The adjustment of a transit survey-*
Proceedings, ASCE, v.26, p.1164, Dec.,1900

2. E. S. Belote, "Adjustment of traverse",
Transactions, American Geophysical Union,
v«27, no.I1I, p.307, June, 1946

122

®

A 3-DIMENSIONAL COGO SYSTEM
For
HIGHWAY GEOMETRICS

By .
ELECTRONIC DATA PROCESSING, INC.
James W. Madden, P.E.
Elliott C. Friedwald

Our 3-D Cogo system came about from a heavy influx of interstate
highway design work by Florida consulting engineering firms.

It was developed initially to compute bridge deck elevations for
bridges on circular and vertical curves in various stages of
superelevation. We have since found it a useful tool in comput-
ing grade lines for pavements, medians and side ditches.

We were assisted by the consulting engineering firm of Beiswenger-
Hoch~Arnold and Associates of Akron, Jacksonville and Fort
Lauderdale in the preparation of the program logic contained in
the elevations routine. We believe we have a very workable and
practical Cogo system as it is currently in use by nine engineer-
ing firms in this area.

In essence, 3D Cogo is simply an SPS plug deck addition to the
standard IBM Cogo package.

The system as developed by us is for a 20K card 1620 with 1443
printer. It is also available on card output for possible 407
listing.

My portion of this presentation will be limited to an explanation
of the various commands available in the elevations plug deck
along with some typical running times.

Mr. Elliott Friedwald, our Chief Programmer, will discuss some
of the problems he encountered in revising Cogo for card or
printer output and will also discuss the operation of the Cogo
system in relation to programming problems.

The operating procedure for the elevations routines is identical
to the other Cogo plug decks. The attached five pages are
excerpts from our Cogo manual and explain the elevations plug
deck and its related commands.

The procedure generally used is to compute the X and Y coordinates
of each point for which a station-elevation-offset is required.
Next, the elevations plug deck is called into memory and the
horizontal curve, vertical curve and superelevation criterea are
specified. After this initial set up, the coordinate or
elevation of any point contained in the X,Y coordinate table may
be computed.

If you will turn your attention to the Cogo elevations manual,
we will discuss each command in the order presented.

123

PROGRAMMING COGO ELEVATIONS

The present version of Cogo elevations is the result of a great
deal of experimentation in programming.

When the problem was first presented, the method of attack chosen
was the straightforward way--the writing of a Cogo plug deck
according to the specifications in the Cogo manual. This was
attempted and much to our chagrin, we discovered that we had
memory capacity problems in a big way. We had an overflow of
several thousand digits.

We were then faced with the decision to revise the program speci-
fications radically, making the program less useful or harder to
handle, or to go to another system.

As the Cogo compiler is an adaptation of original IBM FORTRAN
without format, (F0-002), which compiles programs to bulkier
machine language than later processors, it was decided to attempt
a hand compilation of the FORTRAN, using the FORTRAN subroutines
for all arithmetic.

When this was accomplished, we found that we were still short of
core, but were within striking range of fitting if we gave up
parts of Cogo Basic, and rewrote other parts in machine language.

This created new problems, since the Cogo monitor was only de-
signed to read in plug decks which do not overlay Cogo Basic. A
simple modification to the Cogo Monitor allows the use of self-
loading programs as Cogo plug decks.

With this completed, our program fit into memory, and we were
able to proceed with debugging.

Since the elevations plug deck overlays part of Cogo Basic, it is
necessary to do something to restore Cogo Basic prior to the use

of any commands not in elevations. This is accomplished by the
command RESTORE/BASIC which initiates the loading of a small

deck of cards which puts back the part of Cogo Basic that elevations
overlays.

O

124

MODIFICATION OF COGO FOR 1443 AND CARD OUTPUT

Since the IBM version of Cogo for a card system has typewriter
output, making any short problem a long affair, we decided to
give Cogo other output capabilities.

The restrictions which we placed on ourselves were that we wanted
to use no more memory than was used for the typewriter-output Cogo,

.and that we did not want to have to recompile any of the plug

decks in the system.

This required two steps. The first of these was to change the
subroutines. This was accomplished by writing our own output
routines and replacing the routines called PRTFX and PRTFL in the
compiler with the new routines. This entails changes in only
Cogo Load, and not in any plug decks.

The second change required was a change in that which is compiled
for a PRINT statement. A program was written to seek out the
compiled print statements in a plug deck, and change from the old
sequence to our new sequence. The essential change is that on the
typewriter the instruction for a new line is given at the start

of the sequence, whereas for card or printer output, the print or
punch must be given after everything is put in the output area.

The search and modify program, as it was written contains provision
for fixed or floating point, unsubscripted or single-subscripted
variables. It will not handle double-subscripts, but this presented
no problems as none of the Cogo plug decks use double subscripting.

To modify a plug deck, the deck is loaded as if to use it in a
problem. After resetting, the modify program is loaded. This
program is set into operation, and continues until it runs out of
core. It then check stops. (As the program was designed for
limited use, and the stepping up core was done in many places, test-
ing for the top of memory was felt to be unnecessary.) After
pressing reset, the instructionson page 51 of the IBM Cogoc writeup
are to be followed, starting with step C.

This produces a system which will run any Cogo problem that will
run on the typewriter system, and run it more quickly.

125

COGO DUMP/ON/CARDS A W

Since we found that often it is required to use points calculated
in a Cogo problem run one day in a problem to be run at some
other time, it was decided that we would add to the system the
capability to punch the coordinate table in a form suitable for
future input to the system. :

This program was written in SPS and punches the points in the
coordinate table which are defined. The format of the cards is
that of a STORE command. The word STORE is in columns 1 through
5, the point number is in columns 21 and 22, etc. The problem
number is punched in columns 77-80 for identification purposes.
The procedure is simple. The call command says

CALL END/OF/PROGRAM/DUMP

The command itself is
DUMP/ON/CARDS N J iD

which says to dump from point N through point J with the number
ID in columns 77-80

126

COGO ELEVATIONS ROUTINE

This program is for the purpose of finding the elevations of
points with known coordinates. It is most useful for determin-
ing bridge deck elevations.

The program allows the user to specify a horizontal curve, if
there is one, a vertical curve, if one exists, and different
cross section slopes before transition, during superelevation
and after superelevation, with the transitions handled by 'inear
interpolation of slopes.

After calling the elevations plug deck, the first three commands
issued must be, in order:

DEF/HORIZONTAL/CURVE

DEF/VERTICAL/CURVE

DEF/SUPERE LEVATION

After these three setup commands have been issued, four other COGO
commands may be used. The POINT/ELEV command gives the station,
offset and elevation of the given point, while the KTH/PT/ELEV
command divides the line between I and J into K parts and computes
the station, offset and elevation of each point. The STA/OFFSET/ELEV
command computes the elevation of a point with given station and
offset. The RESTORE/BASIC command may be used to regain use of
commands in Cogo Basic and must be used prior to any CALL statement
after ELEVATIONS plug deck.

Note that while the elevations deck is in memory, the only Cogo
commands which may be used are the above mentioned seven commands
plus the STORE and PAUSE commands. Other commands may not be used
even though they are usually considered to be in all plug decks.
Comment cards may be used.

127

PLUG DECK

DEF/HORIZONTAL/CURVE NPC SPC NPT SPT NC Rl R2 R3 ELEVATIONS

NPC Point number of PC of horizontal curve
SPC Station of PC
NPT Point number of PT of horizontal curve
SPT Station of PT

NC Point number of center of circle

R1 Radius from center of circle to first cross section break

R2 Radius from center of circle to profile grade line

R3 Radius from center of circle to outside cross section break
PAINT NPC

UPSTATION spmaw sic

POINT NPT
STATION SPT

OUTER CRoSS
SECTION BREAK,

PROEILE SRADE LINE

{ |
PIRST CHOSS SECTAON BREAK

\I stoe.] : CcRrass
| i 1:34 4 SecTioN
« NC by

oyt
Note that cross-slopes are always specified starting with the side
closest to NC. Also, the sign convention for these slopes is as
follows: wup and away from NC is positive.
If no horizontal curve exists then set the PC and the PT at opposite
ends of the PGL. Set NC as some point on either side of PGL, not
on it, remembering that cross slopes are specified starting closest
to NC. Set Rl = 0. Set R2 equal to the distance from first cross-
slope break to PGL. Set R3 equal to the distance from first cross-
slope break to last cross-slope break. Note that R1 = R2 £ R3.
SPT must be greater than SPC.

DEF/VERTICAL/CURVE NPVI SPVI EPVI VCURL Gl G2 ELEVATIONS

NPVI Point number of point of vertical intersection (PVI) of
vertical curve

SPVI Station of PVI

EPVI Elevation of PVI

VCURL Vertical curve length

Gl Grade from PVC to PVI in ft per ft

G2 Grade from PVI to PVT in ft per ft

STATION SPVI
prL ELEVATION EPVI

&
vpsTATION GRADE Race G2

,[1 VCURL =—!
If there is no vertical curve, set the PVI as some point on the PGL
having station SPVI and elevation EPVI. Set VCURL = 0.0. Set Gl =
G2. Note that when this is done, an error message will be typed out

but answers will be correct. The error message indicates only that
VCURL = 0.0.

128

DEF/SUPERELEVATION

NBT1
SBT1
NET1
SET1
s1,s82,s83, s4

SE1l,SE2,SE3,SE4

NBT2
SBT?2
NET2
SET2
SF1l, SF2,SF3,SF4

PLUG DECK

Elevations

NBT1 SBT1 NET1l SET1 S1 S2 S3 S4 SEl1 SE2 SE3 SE4
NBT2 SBT2 NET2 SF1 SF2 SF3 SF4

Point number at start of first transition

Station at NBT1 ‘

Point number at end of first transition

Station at NET1

Cross slopes at SBT1, starting with side closest to
NC.

Cross slopes at SET1, starting with side closest to
NC. ‘

Point number at start of second transition

Station of NBT2.

Point number at end of second transition

Station of NET2.

Cross slopes at SET2, starting with side closest to
NC.

cross Slepes

‘551,-.-,355‘

3
TNgr
557.11 %
—=S2 .
b’///// +S Te— = T
PG At s8T | I

T NC‘————-—

AT SETZ) |

%’\\

If the cross section is constant, then set points for beginning and
end of transition apart from each other and set SE1 = SFl = S1,

SE2 = SF2 = S2, etc.

If there is a two-phase transition into superelevation, use Sl1,...,S54

as starting slopes,

SE1l,...,SE4 as slopes between transitions, and

SFl,...,S5f4 as slopes of full superelevatlon. Set NET1 = NBT2 and

SET1 = SBT2.

129

PLUG DECK

C

POINT/ ELEV N _ ELEVATION'S
N Number of point for which elevation is desired

Output: N STATION ELEVATION - OFFSET
KTH/PT/ELEV K I J ELEVATION'S
K Number of intervals between I and J A
I Initial point for which elevation is desired
J Final point for which elevation is desired

This command divides the line between I and J into K parts and
gives elevations at each point.

Output: DIST1 DIST2)
I STA(I) ELEV (I) OFFSET (1)
99 : ; :
J STA(J) ELEV(J) OFFSET(J)

Where DIST1 is the distance between any two consecutive points and
DIST2 is the total distance from I to J.

Note that the coordinates of intermediate points are neither stored
nor printed. If point number 99 is defined before eérntering the
routine, it will be destroyed by the routine.

STA/OFFSET/ELEV STA OFF . ELEVATIONS
STA STATION OF DESIRED POINT -
OFF OFFSET OF DESIRED POINT FROM PGL
OUTPUT:
99 STA ELEV OFFSET
RESTORE/BASIC _ : £ LEVATIONS

This command initiates loading of a small deck of cards which enable
one to use the commands of Cogo Basic again after using the elevations
routine. This should follow the last computation command used after
calling Elevations.

After this command is issued, any of thHe plug decks may be called. (:;

130

PLUG DECK

‘:% LOCATE
LOCATE/SAMEAZ J N D I K A

From J locate N at a distance D along an Azimuth the same as
the Azimuth from I to K adjusted by an angle A. +A is clockwise
Output: Coord. of N.

/

J

LOCATE/DISTANCE J N I K A LOCATE

From J locate N along an Azimuth A at a distance equal to the
distance from I to K.
Output: Cord. of N.

CARD DUMP
DUMP/ON/CARDS I J

Dump onto cards in format suitable for input, the point number
and coordinates of each non-cleared point starting with point

I and going up to point J

Output: STORE command for each point punched on cards

131

TWELVE DIGIT COGO

In order to answer the desire of some of our clients for,
more accuracy in geometry problems, we have written a pro-
gram which is similar in input and output to Cogo, but which
carries 12 digits instead of 8, as Cogo does.

The commands available in Twelve-=Digit Cogo are:

INTERSECTIONS ALIGNMENT

PLUG o PLUG
STORE YES YES
PAUSE YES YES
LOCATE/AZ IMUTH YES YES
INVERSE/AZ IMUTH YES YES
LOCATE/SAMEAZ YES YES
LOCATE/DISTANCE YES YES
ARC/LINE/AZIMUTH YES NO
ARC/LINE/POINTS YES NO
ARC/ARC/INTERSECT YES NO
POINTS/INTERSECT YES NO
AZ/INTERSECT YES NO
REDEFINE YES YES
DUMP/ON/CARDS YES YES
*DIVIDE/LINE YES YES
GIRDER/LENGTHS YES YES
CLEAR YES YES
CALL YES YES
COUNT YES YES
ALIGNMENT NO YES

*This command differs from the Divide/Line in Cogo in that it
references no stored curve, and gives no stationing or offsets.

The commands are written exactly as they would be for Cogo.
Note, however, that there are only two plug decks, with more
commands per plug deck, thus requiring fewer call statements.

By means of the Dump/on/Cards command, the coordinate table

can be output in a form acceptable to either regular or 1l2-digit
Cogo. This allows for the use of elevations, part of regular
Cogo, with points established by 12-Digit Cogo.

132

NEW YORK STATE
DEPARTMENT OF PUBLIC WORKS

> | HAROLD M. GOTTHEIM
ASSOCIATE CIVIL ENGR. (ELEC.)
BUREAU OF ELECTRONIC DATA PROCESSING
m 1220 WASHINGTON AVENUE Single Box Culvert
IG\ILB_AszYhsngW YORK 12226

Program Number 2830

General

Given the clear span, clear height, height of fill,
the thickness of the walls and slabs and the type of live
loading, the program outputs the maximum moments and maximum
required areas of steel at all the critical points on the
culvert together with the distance from the point of zero
moment to the outside face of the wall for the top and bottom
slab. The location of the live load for each maximum condition,
namely the distance from the centerline of the wall to the
first wheel load, is also outputted together with miscellaneous
information such as the required perimeter of steel in the
top and bottom slab, the maximum soil pressure and the
volume of concrete per foot of box. (3" is added to the top
of the bottom slab)

The program does a unit moment distribution by placing
a fixed end moment of 1 kip-ft. on the end of one member and
distributing the moments. This is done for each of the eight
member ends that can receive a fixed end moment. The 64
answers are saved for later use.

The impact coefficient, wheel loads and fixed end
moments are found.

The maximum soil pressure is computed by P/A + MC/I.
A two foot surcharge of soil is added,for all cases
containing live load. for Side [ogd

If the fill is greater than 8' and is also greater
than the span, the live load is not considered. In all
other cases, the live load is considered and is applied
for the six cases as shown in the following diagram.

The wheel load is distributed over a.distance of 1 3/4
times the fill longitudinally. When the fill is less than
2', the wheel load is distributed 6" ‘(this is used to
simplify computations) longitudinally. All wheel loads are
distributed 5' laterally.

Fill Impact
() 1° 1.3
1' 1"eceemn 2 1.2
2" 1Mo 2*11" 1.1
1.0

133

—X{q)

—X (1) —><—— [——>=

iy biy yiyy vy

]

X (1) = 0, then 0.1 span, 0.2 span, 0.3 span, 0.4
‘ span, 0.5 span

E = 14.0' for HS20-63T loading

E = 4,0' for military loading

X (1) = 200.' for the case of no live load

Now that all fixed end moments are known, the corner
moments are found by using the unit distribution, the un-
balanced shear is corrected, reactions are found and shear
is checked. If shear exceeds the allowable, the slab
is incremented until the shear is below the allowable. The
slab moments and wall moments are computed for each tenth
point and the largest positive and negative moments are
saved. This is done for every live load case (if applicable)
and the case of no live load and for each load type.

Cover = 2" except for bottom of top slab which is 13"
Bars of 1" diameter are assumed, therefor;

d for design = thickness -2" for bottom of top slab
and top of bottom slab.
d for design = thickness -23" for all other reinforcement.

The moments labelled corner are the computed moments at
the intersections of the wall and the slab centerlines, This
corner moment is called M in the following paragraphs.

CRRM1, CRRM4, CRRM3, CRRM?7 are moments which are fouhd
by using the following formula: (diagram on next page)

Moment = M - e'*SHEAR

The steel for these points is designed for combined
bending and axial stress using the following formula:

Ag = Moment (from above)+e*Thrust - Thrust
fsid fq

134

—— et e

Thrust

AL NN N NN W

(
\\%\ AN

»
Couputed corner moments

M=

e = Distance from the point of applications of the
thrust to the centerline of the tensile steel
being designed

e' = 1/3 the thickness of the adjoining member

TOP1P, BOT1P, WALlP, WALLIN are wmoments computed at the
centerline of the meuwber, (diagram on next page)

The steel for these points is designed for combined
bending and axlal stress using the following formula:

As = Computed woment (TOP1P,BOT1P,etc)+e*Thrust - Thrust
f_lJd £
s _ s

135

Thrust 5 | >

e
4 1777 7777 T 7T T T A7 77777 ZFF7T 7 772N

Z

CoMpuTED
Moment

The culverts are designed in accordance with the
procedures outlined in the A.A.S.H.O. Standard Speciflications
for Highway Bridges, Eighth Edition, 1961 and modified by
the Standard Practices for Design, Detalling and Notes,

State of New York, Department of Public Works, Division of
Construction, Bridge Subdivislon.

A FORTRAN listing of the program is attached to deflne

engineering formulae, parameters, methods and Sequence of
Operations.

136

C

M eeemen smestmm e amn .

L Aean M Mn A

VU Y YW O W SuasrTr'se

PNy Yy

Description of Typical Design Output

Items FS, FC, J, K, R, ERTH, etc. are constants of the
program. They are always the same unless the designer
chooses to have them changed. They can be changed for any
special run or runs by contacting the Bureau of Electronic
Data Processing or your EDP liason man.

The line starting with span, height, etc. are values
the designer furnished for this program.

The values labelled allowable moments in concrete are
the allowable moments at that section without exceeding the
allowable concrete compressive stress. (for a balanced beam)

The moments and areas of steel are shown as an outline
of the box. That is, the lines drawn on the typical output
sheet (next page) can be assumed to represent the box itself.
Values on the right half are moments and their mirror image
on the left half gives the corresponding areas of steel at
those points.

The controlling moments are printed out along with the
value of X(1) and the type of loading that caused that
maximum moment,

NOLL means no live load

MIL. means military loading

HS20 means HS20 loading

The next line gives manimum soil pressure; volume and

required perimeters of steel for bond. The weight of the
walls is included in the maximum soil pressure. A 1/2%
addition to top of bottom slab is also figured in the volume
and soil pressure.

Point of zero moment and maximum shear are shown
last and are self-explanatory.

137

INPUT IDENTIFICATION

Constant Card (Last card in object deck)

Symbol

FS
FC
CJ
CK
Ck
ERTH
CONC
UTOP

FFR
SAM

ALANE

BOTAD

Program Card

* SPAN
HT

T

F}LL
TIPE
WALL

Field

XXXXX o XX

XXXX XX
XX e XXX
XX o« XXX
XXX X
XXX XX
XXX XX
XXXX

XXX eX
XXX

X.X

XXXXX o XX
XXXX XX

XX e XXX

XX o XXX
XXX X
XXX XX

Explanation

Allowable tension steel stress - P.S.I.
Allowable stress in concrete - P.S.I.

J .
k

R or K

Weight of Earth - #/ft’

Weight of Concrete - #/ft3
Allowable bond stress in top

bars - P.S.I.

Allowable vertical shear - P.S.I.
Equiyvalent Fluid Earth Pressure
#)505

That part of wt. of walls to

be used in design (0.0 minimum
and 1.0 maximum)

That part of side load to be

used to reduce positive moment

in slabs (0.0 minimum and

1.0 maximum)

Number of lanes, (Either 1.0

or 2.0) 2.0 if lanes are to
overlap transversely.

The number of inches by which

the bottom slab exceeds the

top slab.

Clear span - ft.

Clear height - ft.

Top slab thickness - inches
Height of fill - ft.

Type of loading

Wall thickness - inches

Card No. 1, 2, 3, 4, 5 etc. are similar

One, program card for each design.

138

Double Box Culvert

Program Number 2831

General

Given the clear span, clear height, the thickness of
slabs and walls, the type of loading and the height of fill,
the program outputs the maximum moments and maximum required
areas of steel at all the critical points on the culvert
together with the distance from the point of zero moment to
the center of the wall for the top and bottom slab. The
location of the live load for each maximum condition, namely
the distance from the centerline of the wall to the first
wheel load, is also outputted together with miscellaneous
information such as the required perimeter of steel in the
top and bottom slab, the maximum soil pressure and the volume
of concrete per foot of box.

Typical Design OQutput

139

The program does a unit moment distribution by placing
a 1 kip-ft. fixed end moment on each of the 14 member-ends
that can receive a fixed end moment, and doing a moment
distribution for each case. The answers are stored for
future use.

The fixed end moments due to dead load, and side load
are computed and saved. (A 2 ft. live load surcharge is

added to the fill for the conditions which include live load).

The fixed end moments due to shrinkage, temperature fall

and temperature rise are computed and saved. (These can be

made zero by changing the value of the shrinkage coefficient
to zero on the constant card. The corner moments caused by

temperature change, shrinkage and side load are computed

and saved.

- The live load impact coefficient is found. If the fill
is greater than 8' and also greater than the sum of the two
spans, the live load is not considered. In all other cases,
the live load is applied as shown in the diagram below.

P(3)
< @) 7 >
- X (@)
| P(1) ,
< x(1) A N Ty ———W

T T

140

For HS20-63T loading A = 14', P(l) and P(2) = 3200 x
(Impact coeff.), P(3) = 800 (Impact coeff.).

For Military loading A = 4', P(1) and P(2) = 3200 x
(Impact coeff.), P(3) = O.

X(1) = 0, then 0.1 span, 0.2 Spalleececececeess.1.0 span.
The last condition is always X(1) = 200 for the case of no
live load.

The wheel load is distributed over a distance of 1 3/4
time the fill longitudinally. When the fill is less than
2!, the wheel load is distributed 6" longitudinally. (This
is done for ease of computations). All wheel loads are
distributed 5' laterally.

By use of the unit distribution, the balanced corner
moments for the combined effect of live and dead load are
computed for each case of live load. Shear is checked in
both top and bottom slabs and the thicknesses of the slabs
are incremented as needed to satisfy shear. If either top
or bottom slab is increnented, the program returns to the
beginning and starts over with the corrected slab thicknesses.
If shear does not exceed the allowable stress, the program
continues.

The program now computes the moment at each 1/10 point
to find the critical points, As the program goes through
each loading condition, the biggest positive or negative
moment is saved (whichever is applicable). The effects of
temperature, shrinkage and side load are now added if they
increase the moments at the sections we are interested in.

The moments labelled corner are the camputed moments at
the intersections of the wall and the slab centerlines. This
corner moment is called M in the following paragraphs.

CRRM1, CRRM2, CRRM3, CRRM4, CRRM7, CRRM8 are moments
which are found by using the following formula: (diagram on
next page)

Moment = M - e?'*SHEAR

The steel for these points is designed for combined
bending and axial stress using the following formula:

A = Moment (from above)+e*Thrust - Thrust
s .
£ id s

141

Thrust

A INARNITI NN

s

Computed correr moments
Distance from the point of applications of the
thrust to the centerline of the tensile stesl

‘being designed
= 1/3 the thickness of the adjoining member

o=

“TOPLP, BOT1P, WAL1P, WALIN are moments couputed at the
centerline of the meuwber, (diagram on next page) _

The steel for these points is designed for cotibined
‘bending and ax1a1 stress using the following forwula:

As = Computed woment TOP P'BOTlP eto +i*Thrust = Thrust
T fdd N . '?;‘“‘

142

Thrust ; S

e (
B O o 00 70 7 &7 17 3 & A 7 A 7 17 7 7 A A 7 5

CoMpuTED
MomenT
Fill Impact
| PR, 1.3
1' 1"cccaa 20 1.2
2' 1"eccua 2'11" 1.1
1.0

Cover = 23" except for bottom of top slab which is 13",
d for design = thickness - (cover +})

The culverts are designed in accordance with the
procedures outlined in the A.A.S.H.0. Standard Specifications
for Highway Bridges, Eighth Edition, 1961 and modified by
the Standard Practices for Design, Detalling and Notes,

State of New York, Department of Public Works, Division of
Construction, Bridge Subdivision.

A FORTRAN listing of the program 1s attached to define

engineering formulae, parameters, methods and Sequence of
Operat;;ons . 143

INPUT IDENTIFICATION

Constant Card No. 1

Symbol

FS
CR
UBOT
UTOP
SAM

FPR

\

AN

Cd
ANCOF
ALANE

Field

XXXXX X
XXXX o
XXX X
XXX X
XXX X

XXX o X
XXX o X
XXX X
« XXX
XX
XeX

Constant Card No. 2

FSC
FC
ERTH
CONC
SHCOF
BOTAD
TFALL
TRISE

CK
ASCOF

SAM1

XXXXX e X
XXXX..
XXXeX
XXX X
XXXeX

XXX oX

XXX.X

XXX X
« XXX

XeX

Program Card #1

OSPAN
TIPE
OT1
CEWAL
WALL
OHT
OFILL

XXXXX X

. XXXX o

XXX.eX
XXX X
XXX X
XXX e X
XXX X

Explanation

Allowable steel stress - p.s.i.

R or K

Allowable bond stress in bottom bars - p.s.i.
Allowable bond stress in top bars - p.s.i.
That part of wt., of walls to be used in
design (0.0 minimum to 1.0 maximum)
Equivalent fluid earth pressure - p.s. 1.
Allowable vertical shear - p.s.i.

n

J ,
1.0 if using (n-1), 2.0 if using (2n-1)
Number of lanes that can overlap
transversely (1.0 or 2.0)

Allowable stress, compr. steel - p.S.i.
Allowable stress in congrete - PeSe.i.
Weight of earth - #/ft.

Weight of concrete - #&/ft.3
Shrinkage cogfficient for concrete
In./In. x 10

The number of inches by which the
bottom slab exceeds the top slab
Temperature fall - °F

Temperature rise - °F

k

That part of positive slab steel which
is carried over center support and is
to be used as compressive steel.

(0.0 minimum to 1.0 maximum).

That part of side load to be used to
reduce positive moment in slab.
(minimum is 0., maximum is 1.)

Clear span in feet

Type of loading used

Top slab thickness in inches
Center wall thickness in inches
Outside wall thickness in inches
Clear Height in feet

Height of fill in feet

144

SYT

ED 5/65)
MADE BY . DATE
CHECKED BY ‘ DATE

BACK CHECKED DATE

CALCULATION FOR

N.Y.S.D.P.W.

DESIGN OF DOUBLE
CONCRETE BOX CULVERT
INPUT FORM

2831.02

SQUAD NO. g

JOB NO.

SHEET, OF

SWITCH SETTINGS: PARITY & 1/0- STOP

1,2,3&4- OFF

CONSTANT CARD NO. 1 - NEXT TO LAST CARD IN OBJECT DECK - DO NOT PUNCH

78 12[13 1718 22 |23 27 32 [33 37]38
F$S CR UBOT uToP SAM \ ANCOHALAN
P.S.L P.S.I. P.S.l. [0.t01.. P.S.1. Es/Ec
210101010(. 10101119171, 1310101, 101118101, 101010101, 10 01910].10101110].10

CONSTANT CARD NO. 2 - LAST CARD IN OBJECT DECK - DO NOT PUNCH

FSC
CR
uBOT
uToP
SAM
FPR

AN

ANCOF
ALANE

FC
ERTH
CONC
SHCOF

SAM1
BOTAD
TFALL
TRISE

CK
ASCOF

1 718 12]13 17]18 22[23 27 2[33 37|38
FSC FC ERTH CONC SHCOF TFALL | TRISE
P.S.1. P.S.1 P.C.F. P.C.F. °F
1161010101,10111210101.111210]1.101115101,10101010j. 10 010101,101010i0]. 10
1 718 1213 17{18 22123 27 33 37
OSPAN TIPE 0Tl CEWAL WALL OFILL |-
CLEAR TYPE TOoP CENTER | OUTER HEIGHT
OF SLAB WALL WALL OF
SPAN LOADING [THICKNESS|THICKNESY THICKNESS] FiLL
FT 4 INCHES | INCHES INCHES FT
Lol i del Pt e bl tat bt L.t L 1.t
Lottt b g paet t et bt aer bt el L
Lot dtel ot b tel b bdet by b det 111 1el L1 1.l
Re—
| FILL EARTH SURFACE
wry [omsT '.'r’-:}'."'-'-'-.."-z-f,."_ Ve e f,"._'.-;,f,;'_ = skew span for 0° to 20° skew.
Yo —i ¢ pe—CEWAL T " = right angle span for 20° and over.
a i -
‘o fe—OSPAN —a{4s]- oHT |~
p ¢ % * TIPE=1. HS20-63T
s /4 v. L WALL _
e . e L TIPE=2. 'HS20-63T or military loading, whichever is greater.
Lt X P AP ALTE AT T D SRy SR A

** Minimum dimension desired,

All. stress-tension steel

All. stress-compt, steel

Ror K

Allowable bond stress in bottom bars
Allowable bond stress in top bars
% of wt. of walls used in design
Equiv. fluid earth pressure
Allowable shear

n (ES/EC)

i

1. if using n-1, 2 if using 2n-1

2. if lanes overlap transversely,
otherwise 1.

Allowable stress in concrete

Wt. of earth

Wt. of concrete 6
Concrete shrinkage coeff. * 10
{usuatty 0.-or 200.)

% of side load to be used to reduce
positive moment in slab

The number of inches by which the
bottom slab t exceeds the top slab t
Temperature Fall

Temperature Rise

3
% of positive steel carried over
center support.

————— —GESTGN OF DOUBEE BOX CULVERT J
= =ilES = = = = i e
197.0 300.0 1800 46 38.0 90.0 10:0 .75 1.8 1.0 |

6 1200.0 120:0 150:0 .6 .0 b s0 371 10 8

COSPAN - -OMT - OTL ---TEWAL - WALL - TIPE - GFILLT - ot o oo

F0.0 —I830~ 12350 —18%0 250 330

X(1)= 17.1 X(1)= 12.2 4
ST ERRH2 FEPP——CRRFE

-2.04 -46.20 33.16 -23.451

()]

I
.
B
. Nrkﬁ

a3
AONL

-.96

ASH2 , , _ ‘ o _ . CRRi4
=393 — ‘ —= =25 T6

9vT

ASN3 ASP2 B o B WALIP WALIN

o - — - o B R N]
T e QI « UV N o UL . LTe U

ASN% ' - » : » CRR”?’
=1.09 v : o ~21.94

X(1)= 17.1 X(1)= 2.4 ~ X(1)= 17.1

ASNS ASP3 ASTHE €RRME BOTIP CRRWT CORWER—

<1410 1.56 -2.58 -58.52 36.48 -27.01 -29.71

.

MAXe SOIL PRESS.= 1.2 KiS.Fe. VOLy 7.2:CaYe

-

..... —_— .
- i

P i F P + - I W N S I R Y BNl s EX ol R S e T IR
UTSTe TRUM CENTE U wARLCLC 1O Te Ul ZCRU 1.UTTe LM SANF SMACZR L S SR TR ~CJe olootk TR

=
OUTER WALL CENTER WALL L OQUTER WALL CENTER WALL - SHEAR

TOP SL&B 3.9 FT. 6.3 FT. . - 3.7 IN. 4.3
—BCF Sttt T2z FTs 122 FT I+ 241

7 (o

—COMPUTEN T IHERSTOTS—

Q Tl= 18.0 T2= 13.0 FItL= 3.0 :

3

MORE/LESS - CPM AND PERT FOR DISK AND PRINTER

Authors: Melvin DeSpain and Alan D. Johnson
National Aeronautics and Space Administration

Plum Brook Station
Sandusky, Ohio

Introduction

PERT] and CPMZ, perhaps because of their origins and their first applications,
have generally been thought of as being limited to large, high-speed, computers;
although programs for smaller machines with lower through-put speeds have been
written. Core size limitations have generally made these small machine programs
less efficient than could be desired from the standpoints of the number of jobs
that can be handled for a given project and the number of data input and output
passes that must be made. The addition of random access disk files and the
medium-speed on-line printer now allow the formulation of better programs for
CPM and PERT. Throughout the following, PERT and CPM are used synonymously.

The two techniques, although similar in many ways, are not exactly the same.
The really basic differences are two in number; the first being that CPM pro-
vides as its major output the scheduled completion date for the project,
determined from the job input data, whereas PERT, with a fixed and arbitrarily
assigned project completion date, reports how far the project is ahead or behind
this date. The second major difference, now fast disappearing as various versions
of PERT are formulated, reports the status of the nodes of the arrow diagram,
whereas CPM reports upon the individual jobs and activities. This type of report
is also available under many PERT systems and, in fact,in our organization is
the one finding greater use. Since the first steps of both phases of PERT and
CPM are essentially the same, with the differences occurring in the output
format, they are treated synonymously.

The work described in this paper was done to provide CPM capability for NASA
Plum Brook Station, using the 1620 system. The requirement here is to follow
small to medium size construction and research equipment installation projects.
The very large projects are programmed for the high-speed computer installation
at our Cleveland headquarters.

The programs for this system have been written for the 1620 Mod. | with a 20K
core, a 1622 card-read punch, a 1311 disk file, and a 1443 printer. The Monitor |
system is used, as well as the special features (indirect addressing, TNS, TNF,
etc.). '

Note 1. Project Evaluation and Review Technique

Note 2. Critical Path Method

147

System Requirements

In order to develop a useful system, a review of the existing 1620. programs
was made. Their difficulties-and limitations' were.examined: in the: light of
the requirements given below. The first general requirement was that any
system developed must place the least strain possible upon the engineering ‘
manager. This, in turn, means that minimum limitations must be.placed upon '
the preparation of the original arrow diagram. |t also requires that the

preparation of input material must be easy and straight=forward. Another

- prime requirement is that the output shall be both current and easily

understood. |t has been adequately demonstrated by people working in the

field -of PERT and CPM that failure to meet the above requirements reduces

the work performed to a mere exercise.

Other ‘requirements perhaps peculiar to our open shop operation are that the

program systems shall require only a minimum understanding of console. procedures.

This involves making the system as nearly self-protecting and fail-safe as |
possible within the other restrictions imposed. Also, because:of the open

shop operation, through-put becomes important since it may be engineering

personnel standing by during the running of the: system rather than clerical.

In addition, there are the obvious machine costs to be considered.

Lastly, the requirement for system flexibility was imposed. This meant the
ability to produce either PERT or CPM outputs, the ability to handle input

durations either in working days or-actual calendar dates, and:a wide: -
selection of output formats as may be required by the.job being. rum.

System Organization

Using the Disk Utility Program of Monitor, the various' programs that. make up
the system can be stored with program: names listed in the Equivalence table.
Since there are a large number of programs involved, the use of this more-or-
less permanent storage may be limited and, for that reason, a system of
negative DIM numbers covering the program storage in the disk working cylinders
was developed. The presence of a special loader in core as the. object programs
are loaded by the card reader will cause loading in the working cylinders;
otherwise, normal *DLOAD action of the Monitor Disk Utility Program takes
place.

Once the programs have been loaded on' the disk, a starting program:is run that
builds a table of available programs: by executing a search of the:Egquivalence
table and the special negative DIM tables. |If a-given program is:found in both
places, a choice as to which one to use is allowed. This feature allows

modified versions of .a permanently loaded program to be used, which is
especially valuable during program development phases. In addition to the
construction of the program table, subprograms and error messages are. placed
for easy availability and the company organization name entered. This
program exits to a record analyzer (RCANYL) routine that is the tie between
the various programs of the system.

When a particular job is finished, a cleanup program is called to core to
clear the program prerequisite table and prepare for the next job. If the
last job has been finished, this program will destroy any reference to the
programs in working storage and exit to Monitor | Supervisor.

System Programs

As mentioned above, the system concept has been used for this work. This
means that the programs are called as required, by the use of a supervisor
type routine., Each program when called checks a table to see whether the
required prerequisite program(s) have been run. Listed below, under the
assigned Eguivalence name, are each of the programs developed thus far:

PHASEA - This. program stores the project name and reads in the

job cards. In the process, it looks for blank fields, checks for
more than one start or finish event, and looks for arrow diagram
foops. To make use of the following program, the input deck is
sorted so that all jobs having a common origin (I) are read in, one
after the other. 1In order to provide a semblance of order (not
required), they may be sub-ordered by the J number. With the input
cards so ordered and under switch option, a table of addresses is
built on the disk for use of follow-on programs. A J node frequency
table is also built and stored. The raw data from the job cards is
stored with one job per disk sector.

ORDRIJ - This is the key to rapid execution of the two programs
- following. Assuming properly assembled data from PHASEA, a table

of job addresses in order of calculation for a single data pass is
built and stored on the disk. Under switch option, an ordered list
of jobs may be outputted on the printer and an ordered deck outputted
from the card punch. Use is made of the J node frequency table in
preparing the ordered table.

149

.PHASEB - Using the general methods developed by Sauer in his MISS-LESS
program, a table of | values is built in core and upon completaon is
placed on the disk. This program, under option, uses the table devel-
oped under ORBR! , maklng only one pass through the data W|thout v
evaluatlon, as is done in the MISS-LESS program It can be shown for
the worst case that, without ordering, the number of passes through
the data is equal to the number of jobs plus one. Ordering, then,
'becomes more important the larger the job to Be done and the moré
random is the node number assignmént.

PHASEC - Similar to PHASEB above, except that the J values are
calculated and stored each to a data sector. Again, the optnon to use
the table developed by ORDRIJ is available with the same time savings.
In this case, the table of ordered addresses is run from rear to front.

CPCALC - Bringing in the | table produced under PHASEB and taking each
job in turn, this program calculates earliest and latest start, earliest
and latest finish, total float and free float and, in addition, marks
each job data sector as to whether the job is critical (total float
equal to zero) or not.

CRTPAT - Up to this point, the calculated data is not sngnnfucantly
different from that available upon the completion of MISS- LESS that is,
individual jobs have been marked as to whether thev fall on some éritical
path. This program searches out the critical path or paths and builds
and stores address strings for each. As an option when multiple paths
are discovered, the duration of the second critical event can be reduced
by one unit and the program call made to PHASEB. Through the muituple,
passes, a single critical path can be developed. The jobs with changed
durations are marked for future output uses.

BiLDAY - This is the first of the dating programs. This oné builds a

ten year calendar, complete with holidays, on disk storage. Two versions
of this program have been developed. The first is self-contained, in
that the starting date and holidays are part of the source program. The
second version, with a call to the card reader for data, will build any
ten year calendar with only the holidays requested thYough card input.

A unique holiday occurring only once can be entered if desired.

BILDAT - This program builds a table of working days in core, startung
with the project starting date. Work week length can be: selected and
the inclusion of holidays in the work week, if desired, is provided for
A four digit date representation is used. This program can also provude
a six digit representation. A table of working days for each month is
also built.

150"

LSTEVN - This, the first of three output programs, will, under two
options, either list all jobs, making note of those that are critical,
or list only the critical jobs. Output, of course, is on the printer.

LSTPAT - Two output formats are provided by this program. One gives
a parallel presentation of the jobs that make up each critical path.
The second lists the critical jobs with their data for each critical
path. Date or day presentation may be specified.

SEEPAT - This program represents the first attempt to visualize a
critical path on a real time basis. In addition to plotting the path
itself, the non-critical jobs leading to the successful attainment

of any event are also shown. The first half of the printer sheet is
given over to the display of the critical path, with the abscissa
being a uniform time scale in working days. The second half of the
sheet lists the data for those critical and non-critical events
referenced on the diagram above. There is little question that this
program will see many revisions resulting from feedback from the
field. '

Tentative Specifications

The input data card format is the same as that for MISS-LESS, except that
the allowable job name cannot exceed twenty-six (26) alphameric characters.
The only card output so far (ORDRiIJ) is the same as for data input except
for a sequence number appearing in columns 76 through 80.

Nodes may be numbered 1 through 3000, inclusive, and may be in any order
relative to their appearance on the arrow diagram. The total number of
jobs, then, is one less, or 2999.

Job durations are loaded to four digits and, for use with the dating pro-
grams, must be in days. Projects are thereby limited to slightly over

27 years, if dating is not used. With dating, the table in core covers
1499 working days or approximately 4 to 6 years, depending upon the
length of the work week.

Money is limited to five digits for each job and little use is made of this

data at the present time; however, some future programs now being planned
will make more extensive use of this data.

151

Status

®

All the programs. specifically mentioned in this paper have been written and
debugged, with the exception of SEEPAT which is seeing much minor modification
to improve upon the output format. ' As: of the present writing, several sets
of input cards: have been. used, but the largest project has involved little
over 200 jobs. In addition, the input data was clean. The '"idiot' tests

are just starting. Since the system is to be used on an'open shop. basis by-
non-computer-trained personnel, it must be assumed: that every: possible thing

that can be done wrong will be done wrong. The method of approach is for

experienced people to try all of the mistakes they can think of, modifying

the. program so as to be fail-safe for each mistake. Next, the system:is

released to the field, with untrained people doing the work. Experienced

personnel will be available to monitor the operation and make. note of any

other.program deficiencies. Plans are being made to release the system to

a few interested users so that the programs can be developed to be fully

operational at the earliest possible date. it is intended that the system

will be tendered to the Users Group Library if there is sufficient interest.

Future Plans

The system described provides for a total of 25 programs, leaving: considerable
room for expansion. A number of programs suggest themselves in the area of
visual output. Another area of interest is job progress input (per cent.
completion) to handle the situation of very long jobs on the critical path.

By far the most interesting is the problem of cost versus time, especially

when dealing with construction projects. The question to be answered in

this case is:. Where can | most effectively spend some extra: dollars to

shorten the over-all project length? The limit of 3000 events is strictly

one of core size and it is quite feasible to modify the program for larger
projects. It is also possible that certain of the outputs that go to the
printer could. be modified for the card punch, making listing on a 407 or

other similar equipment possible. Naturally, it is not the intention of the
authors to address themselves to the problems involving other machine configura=
tions.

Conclusion

By now, it is quite obvious that this paper is by nature a progress report

and that it is unlikely that this. system of programs will ever be fuliy complete
since new ideas, techniques, and requirements constantly appear. Work thus far
has, however, demonstrated that the addition of disk storage and line printer
as peripheral equipment to the 1620. CPU makes possible, and practical, CPM

and PERT programs for projects of medium:size. |t has also been shown that

the estabiishment of an order for calculation very significantly reduces the
time necessary for job time calculatians.

152

MINUTES OF THE CHEMICAL ENGINEERING TEAM MEETING

Miami, Florida

May 10, 1965

The Chemical Engineering Team met with the following in

attendances

A.
H.
JO
T.
B.
C.
J.

H.

L.

S.
E.

Best
Gelsi
Jones
Korelitz
MacMullin
Schrodel
Wages

There were no papers to be presented, and so the meeting centered
about a group discussion of aprlications and problems. Topics of
interest were process design, process control, equipment design,

and optimization.

The discussion of process control centered about

the need of an adequate process model and the difficulties of
obtaining such a model.

C3S:bah

153

Respectfully submitted,

C A fldll

C. 3. Schrodel, Chairman

FITTING STRAIGHT LINES TO X-Y DATA WHEN
BOTH VARIABLES ARE SUBJECT TO ERROR

L. D. Y. Ong and F. K. Durkan
Health and Safety Laboratory
U. S. Atomic Energy Commission

New York, New York

Application of the least squares criterion for fitting
a straight line to X-Y data is common knowledge and one of
the most extensively-used statistical techniques. However,
many analysts fail to fully appreciate the importance of an
assumption stipulated by the method - that the independent
variable, x, be either controlled or free from error.

It appears, surprisingly, that few analysts are familiar
with possible alternate methods that might be applied to cases
where both x and the dependent variable, y, are subject to
error. This discussion attempts to acquaint the audience with
this little-known and controversial area of statistics. We
shall first discuss the general statistical problem and then
consider in detail three methods of solution that are available.

In considering the relation between two physical quantities,
it is usual to think of one variable as being the causal
variable and to describe it as the independent variable, the
other variable being dependent on it. In the statistical
sense, there is no implication that the independent variable
is causal. The values of the independent variable may have
been fixed or selected in any manner. They need not be
randomly distributed. When sampling is random with respect
to both variables, either variable may be regarded as
independent for prediction purposes.

This leads us to distinguish between the linear regression
relation and the linear functional relation. The regression
relation expresses the "expected" value of the dependent
variable in terms of the "observed"” value of the independent
variable. The functional relation describes the "expected"
value of the dependent variable in terms of the "expected"
value of the independent variable. The essential distinction
between the two lines then, is that the regression line refers
to "observed" values of the independent variable, the
functional line to "true" values.

154

The functional relation is required for the statement of
laws in the empirical sciences which would hold if no errors @;}
existed. The functional relationship and the regression line

are the same if, and only if, the independent variable is not

in error. For example, the hypothesis of the existence of

density is that M = pV where p is the density and M and V

represent mass and volume respectively. By the functional
relationship we are solving for p. By the regression

relation we are predicting "true" masses from "observed"

volumes. This is possible since it is known that the mean of

the "true" masses is linearly related to the "observed"

volumes and the slope of this line is the regression

coefficient of mass on volume. Hence the regression relation
continues to have a meaning if both the variables are in

error: it describes the relationship between the mean value

of one variable and the othéer variable, and is thus a legitimate
technique to use in the problem of prediction. Using the
functional relation for purposes of prediction when both

variables are subject to error results in predicted values

that are biased.

Thus, not only do linear functional relations differ
from regression relations in general, but they also have
different applications. A theory may specify some relation
among the "underlying" or "expected" values of certain
variables. The functional relation would be of interest then,
to determine whether the data support the specified form of
relationship, as well as to estimate the parameters of the
relationship or to check the correspondence of given para-
metric values with the observations. '

The regression relations are based on the variation in
both the "true" values and the random errors to which the
observations are subject, while the functional relation is
based on the variation in the "true values" alone. The
functional relation is, therefore, relevant only to a study
of how the "true" values of both variables are affected by
some extraneous variable or variables, i.e., the relationship
shows what elements of the system are invariant under changes
in conditions. For example, in calibraticn experiments we
are concerned with the "underlying" or linear functional
relation existing between the results given by two instruments,

155

persisting through changes in conditions and regardless of the
random errors to which the results may be subject. Generally,
it is required that one instrument be capable of replacing

the other under a wide range of conditions. Clearly, the
greater the range of changes in conditions of the variables

to be measured, the less the relative contribution of
experimental error to the total variation of results, and:

the more closely the two regression equations (x on y, and y
on x) will approach the functional relation.

When the independent variable is free of error, or
"controlled" by experimental technique the variable may be
dealt with as though it were errorless, since its
"observed" and "expected" values coincide. For this case
then, the regression relation is the same as the functional
relation, and both may be estimated by the method of least
squares. However, when the independent variable is subject
to error or "uncontrolled", the coefficient of the regression
line obtained by least sguares is useless for examining the
correspondence of data with a theoretical relationship
since its value is affected by the magnitude of the error
in the independent variable. Thus its slope will, on the
average, be smaller than the true slope.

Consequently, if both variables are subject to errors,
the problem of finding the best values of the empirical
constants is more complicated. A common feature of most
solutions proposed is the reguirement that certain "a priori"
assumptions (independent of the observations) regarding the
standard deviations of the errors in X and in Y or at least,
the ratio of the two error variances, be known. It is the
investigation of three possible techniques for determining the
functional relation when none of these three guantities are
known accurately, that occupies the latter part of this talk.

Scarborough, Wald, and Bartlett, all propose a solution
to the common case where the observations have equal weight,
i.e., where both variables are subject to uncorrelated errors
of the same order of magnitude.

Historically, the two regression lines (X on y and y on

x) obtained by least squares have been termed the elementary
regression lines. These are taken by most investigators as

156

fixing limits between which the best line required must lie.

It is often maintained, further, that the best line is such
that the mean-square deviation of the observations, taken
perpendicularly to the line, is least. This line, which
passes through the point of intersection of and lies in the
acute angle between the elementary regressions is variously
called the orthogonal regression line or the mutual

regression line. Such a line is constructed by what we term
the "Scarborough method" because of his excellent presentation
of the method originated by Adcock, Pearson, and others. '

The "Scarborough method" (1958) considers the line which
best fits the observed points as that which minimizes the sum
of the squares of the perpendicular distances from the points
to the 1line.

The derivation of the method is as follows: The eguation
of any straight line may be written in the form

ax + by + 1 = 0. (1)

This symmetrical form being used because both x and y are
assumed equally subject to error. The sum of the squares of
the perpendicular distances from the points (x1, yj), (x3, y2),
etc. to the line is therefore

F (a,b) = d%? = —L— | (ax3 + by; + 1)2 + (axp + by + 1)?
a2 + b2
+ ...+ (axp + by, + 1)2] (2)
and since this is to be a minimum, its partial derivatives with
respect to a and b must each be zero.
Taking the partial derivative of Eguation (2) with respect
to a, multiplying by a, then taking the partial derivative of

Equation (2) with respect to b, multiplying by b, adding the
results and simplifying, yields

OF , , OF _ _ __2 |
a 3s + b — ;3—:—37 La Yy X+ b Y+ n] (3)

457

A

e e e e e A

But since OF _ 0 and oF _ 0 for a minimum, Equation (3) reduces
da db
to
aZx+bZy+n=o0
or

[
I

0,

a (%§> + b <§¥> +

which shows that Equation (1) is satisfied by the values

X=<§_>S>=>‘<,y=<§—1>=?

In other words, the best representative line always passes
through the centroid of the given points. The slope of the
line is given by <f E) where

b=. Zx)(a) +n
Ly

and a is found by substituting this value of b in the
following equation and solving:

a(a2 - b2)txy + (a2 - b2)Sy - 2ab £x - a2b(fx2 - y2) - bn = 0

The intercept of the line is given by (— % .

The following objections have been raised against the
"Scarborough method": first, there is no justification for
minimizing the sum of the squares of the perpendicular
deviations, and not the deviations in some other direction;
and second, a more serious objection, the straight line
obtained by this method is not invariant under change in the
units of either variable.

158

The other methods for determining the functional relation.
between two variables, described by Wald (1940) and Bartlett
(1949), respectively, use groupings of the variables. The
basis of both methods is that, if the values can be separated
into a few large distinct groups, the means of the variables
within each group will be little affected by random variation,
and the differences among the group means will be due to
systematic variation. Roughly speaking, the method leads to
consistent estimates if a gap in the distribution pattern of
values of one of the variables is sufficiently distinct in the
neighborhood of the group limits that a grouping based on
observed values is equivalent to a grouping based on true
values. Clearly, under these conditions, the differences

between groups may therefore be attributed to some extraneous
variates.

Wald's work involved the method of averages which assumes
that the best representative line is that for which the
algebraic sum of the residuals in each group is zero and
consequently, the algebraic sum of all the residuals will be
zero. It turns out that when x and y observations have
weights in constant ratio, the method of averages is unbiased,
and its statistical efficiency compares well with the method
of least squares, at a considerable saving in labor.

Wald divides the data into two groups of equal size
according to the magnitude of values of one of the variables,
and takes the line joining the points of means of the two ‘
groups as an estimate of the functional relation. Thus the
estimated slope (b) and intercept (a) are given by:

N

i
<!

)

and a=Y-bX

TR
N
1
5
—

Bartlett's method 1mproves on Wald in most instances by
‘incorporating ‘a suggestion made by Nair and Shrivastava and
also Nair ‘and Benerjee (1942), viz., the use of a sllghtly
modified method which they called the "method of group
averages" to give more efficient results than the method of
averages. The method of group averages assumes the best
representative line is that for which the algebraic sum of
the residuals in each extreme group will be zero but the
algebraic sum of all residuals will not be zero. For fitting’a

159

e e e

straight line, Nair and Shrivastava, found that by plotting
the points of mean values of x and y for the first one-third
and the last one-third of the whole set of observations,
arranged in order of magnitude of x, and by joining these
mean points we get a better estimate of the straight line
than any other two group means.

By model sampling, Nair and Banerjee, collected evidence
that the method of group averages gives better estimates of
a and b for the line y = a + bx, than the method of averages
- which Wald had put forward. However, they used the two
extreme groups for both the location and slope of the
functional line. Bartlett suggested using as one point the
mean coordinates of the observations, X and ¥, just as in
the least-squares method for the location of the fitted
straight line and to use the two extreme groups to calculate
the slope. Thus the slope (b) and the intercept (a) are
given by

and a=Y-Db X

Generally speaking, the subdivision of data into two
groups (Wald) or three groups (Bartlett) should be decided
on the basis of which system will result in less bias for your
particular set of observations.

Our Fortran Program is available upon request for
computation of the slope of a straight line by the methods
of Scarborough, Wald, and Bartlett. As numerical examples,
we have estimated the functional relation for two cases by
the three methods. The methods are applied first to a
special case where the least-sguares method is appropriate.
This numerical example is the same one that Bartlett used to
show the accuracy of his method.

The attached computer print-out sheet shows the resultant
equations for the straight lines computed and gives the
confidence intervals of the computed slopes, where appropriate.
The 95 per cent confidence interval for slope b of the least

160

‘squares’ line is given by the formula:

b % te/3, n-2 5p
where
S,/x
= X
Sp ST

For the "Scarborough method", the slopes of the two
elementary regression lines limit the location of the true
line. The slope of the line for the first case i.e. where
the least squares is appropriate calculated by the
"Scarborough method" is identical to that calculated by the
least squares method because there are no deviations in the
x variable of the test case. The smaller the x deviations
relative to the y deviations, the nearer the line calculated
by the "Scarborough method" to the elementary regression
line of vy on x, and in the converse case, the nearer the
calculated line will be to the elementary regression line of
X on y.

Wald's confidence interval method of assessing the

accuracy of the slope of his line is solving the following
formula for B:

£2
%o - %12 (b - p)2 = M2, D=2 ro o _ 2g 2
Xy - X1)¢ (b - B)* = S [sy 2,@sxy + B2s 2]

This felatiqn does not hold for a small number of observations.
Bartlett adapted Wald's confidence interval method to

assess the accuracy of the slope of his line which results
in an equation of the basic form:

G s 42 2 1 .2 o 2 2« 2
X3 - %1)° 0 @25k =1t, 5, [5° - 288xy +BSx"]
'to which a modification is made to handle a small number of

observations.

To summarize: when presented with a scatter of x - y
observations, the often ignored least sguares' specific q;:

161

assumption that the independent variable, x, be either controlled
or free from error - limits the applicability of the inferences
drawn to predicting values of y for changing values of x.

The three methods described in this paper enable us to
derive more information from the X and y observations even
though both are masked by errors and the error variances of
both x and y variables and the ratio of these error variances
are all "unknowns". These three methods enable us to find
a consistent estimate of the slope of the functional line
when the errors in x and y are random variables subject to
the following conditions: zero correlations with the true
values of x and y; and the error in both observed variables
are mutually uncorrelated.

Thus the primary purpose of this paper has been to place
emphasis on the ideas and assumptions involved in estimating
a functional relationship; the aim being to promote understanding of
the available solutions to fitting a straight line to x and
y data when both variables are subject to error.

162

CASE. T

}.00 15.87
2.+.00 17.78

2:88 19:38
5.00 23.13
6.00 2477
X

LEAST SQUARES ELEMENTARY REGRESSION Y ON
Y = 14,165 + (1.782) X
THE 95 PCT. CONFIDENCE INTERVAL FOR THE SLOPE : 1.782 +/- { .049)

LINE CALCULATED BY SCARBOROUGH METHOD
Y = 14.163 + | 1.782) X

LEAST SQUARES ELEMENTARY REGRESSION X-ON Y
Y = =T7.,943 + («560) X
‘THE 95 PCT. CONFIDENCE INTERVAL FOR THE SLOPE : «560 +/~- (+015)

€9T

LINE CALCULATED BY WALD METHOD
Y = 144150 + (1.786) X
THE 95 PCT. CONFIDENCE INTERVAL FOR THE SLOPE 3 1.812 +/- (.091)

LINE CALCULATED BY BARTLETT METHOD
¥ = 14.168 + (1.781) X
THE 95 PCT. CONFIDENCE INTERVAL FOR THE SLOPE : 1.778 +/- (.074)

9]
TN
N

USE OF ORTHOGONAL POLYNOMIALS FOR CURVE FITTING
By S. S. Kuo
Professor of Applied Mathematics and
Director of Computation Center

University of New Hampshire

INTRODUCTION

In a recent book!, the author has described a method for fitting
orthogonal polynomials to a set of equally spaced data points. It was
shown that the problems of ill-conditioning are eliminated. I11-
conditioning is usually associated with normal-equation approach when
the degree of polynomials to be fitted is large.

The purpose of the present paper is twofold. In the first place,
we shall show how the application of orthogonal polynomials can be

extended to a set of unequally spaced data points. In this paper the

orthogonal polynomials are represented by Chebyshev series. We shall
then describe the flowchart and a tested FORTRAN program together with
detailed illustrative examples. The sample input and output are

included.

NORMAL-EQUATION PROCEDURE

The principle of least square can be applied to the problem to fit
a given number of data by a polynomial in the form

Y= ko + kx + kox? + ...+ kx™ (1)
Basically a minimum value of S is required where
n :
= — 2
S i§1(Yl yi) A (2)

and n is the total number of given data. By setting the following m+l
first derivatives to zero:

S _ 3S _ ceey S _

B O R

164

we obtain a set of m+l simultaneous linear equations, or normal

equations:

where

2

m
X, IX,
i i

m+l m+2 2m

- el

IX. IX
1

(3)

The values of kg through km can then be obtained by solving Eq. (3).

Unfortunately, this normal equation approach fails where Eq. (3) is

ill-conditioned, often so when m is a large number.

165

O

USE OF ORTHOGONAL POLYNOMIALS

To overcome the difficulty of ill-conditioning mentioned above, a
method designed for digital computers using orthogonal polynomials will

be discussed.

Essentially, this method 2°3fits the given data in the form:

Ym(X) = CoPo(X) + Clpl(X) + ...+ Cum(X) (14)

Pm(x) is a polynomial of degree m having the following property:

iglPk(Xi)PR(Xi) =0 for k2 & (5)

The following recurrence relation is also useful:

Ppyp(¥) = Ak(x o)P () - B.P e l(X) (6)
where
Bo =0
n
. M 121 [Be(xy)) 2 ,
Kk
Mea 121 (Pl ()2

__rllﬁ(xﬂz s

Opt1 T

2 [Pxp)]?

and Ak are completely open to choice; thus no relationships exiét
between them. We chose Ak = 2., If Py(x) = 0.5 is specified, all
Pk(x) are completely defined for k = 0, 1, ..., m.

We now apply the least-square principle so that the expression

_.n mtl T
S = igl[i jfl J’I‘.(xi)]2

166

is minimized. The resulting system of mt+l simultaneous equations can
be written in the following matrix form:

- -y r oy
2
2Po2(x,) 0 ceee 0 (o] [5¥,Polxy)
0 ZPIZ(Xi)' cenn 0 Cy £Y,P1(xy)
2
L O 0 e ZPm (Xil me.. bFYiPm(xi)d (8)
n

where I implies iél'

Obviously there is no need to solve the simultaneous equations and

n

C 4 E YL P (x)) 1 ,
Cj L S S 0 s (3 =0,1, ..., m)(9)

n
2
2Py (%)
therefore, the problem of ill-conditioning is avoided.

CHEBYSHEV EXPANSION

-Chebyshev polynomials of degree n in x are defined by

T (x) = cos(n cos 1x) klO)

The first five Chebyshev polynomials are as follows:

To(x) =1

T (x) = x

T,(x) = 2x2-1
Ts(x) = Ux3-3x
Ty(x) = 8x"*-8x2+1

Other Chebyshev polynomials can be readily obtained by using the

167

TN
W

following recurrence relation:

T (X)) = 2T (x) + T (x) = 0 (11)

It is possible to represent a given function F(x) by the following

summation of Chebyshev series:

F(x) = %ag + ;T (x) + a,To(x) + ... + a T (x). (12)

Clenshaw has shown that

F(x) = %(bg=by) | (13)

where by and b, are obtained by using the following relations:

bm+2 =0
bm+1 =0
and
bj =a; + 2xbj+l —bj+2 (14)

(j =m, m-1, ..., 0)

REPRESENTATION OF PJ. (x) BY CHEBYSHEV EXPANSION
Equation (12) can now be used to represent the coefficients Pj(x),
(j=0, 1, ..., m) in Eq. (4), or,
P(x) = 1009 + 0, 1)+, D) 4 L+ péziTj_l(x) +T,0) (15)
where the coefficient of Tj(x) term 1s arbitrarily set to one for the
sake of normalization of Pj(x), and the superscript in parenthesis

denotes the degree of the polynomial to which the coefficient belongs.

Substituting Eq. (15) in Egq. (6), we have the following useful relations:
(kt1) - (k) (k) (k) (k-1)
pj - pj—l + pj—l - 2ﬂ+lpj, - kaj <16)

168

Finally the polynomials Yj(x) can be represented in the form of

Eq. (12), or,

YJ.(X) = l/ng(j) + Al(j)Tl(X) + Az(j)Tz(X) + ... F Aj(j)TJ.(X)

(17)
Comparing the coefficients of Tj(x) in the following equation:
Yk(x) = Yk—l(x) + CkPk(X) (18)
we have
Aj(k) = Aj(k—l) +-CkPJ.(k) (19)

where Ck is expressed in Eq. (9).
It should be mentioned that when Egq. (9) is used in a straight-
forward mamner, 4n storage locations are needed to store the following

four items, each of n locations:

1. data x.
i

2. data vy
3. P(x;)
L, Pk+l(xi)

(i=1,2, ..., n)
The representation of Pj(x) by Chebyshev expansion can generally

save a substantial storage location in a digital computer.

CHANGE OF INTERVALS

In our discussion above, we have tactily assumed that the X4 values
(1i=1, 2, ..., n) all lie in the interval (-1, 1). In practice, data

are not necessarily so given, and a simple transformation will be needed.

169

If x denotes the data given in the interval (a,b), and X denotes the

corresponding data in the interval (-1, 1), we have

<= 2X B Saa+ b) (20)
A more involved task is transform all results from the interval
(-1, 1) back to (a,b). This task requires a change of an entire
function
v =" (0 (21)
=137

In the first phase, the right hand side of Eq. (21) can be transformed

to its power series equivalence without changing the interval:

Y m;ID J (22)
= X
J=17J
by using Eq. (11), the coefficients pk(J) in the identity
4)k
Tj(x) = kiOpk X (23)

are found from the following equation:

(J)

0, () = 2p,_ 1) _ p GB) (o)

Py

and the coefficlent for each xk term is formed by successively adding
the quantities Ajpk' In other words, the coefficients Dj can be
evaluated as the double sum:

mt1 % (3) k

Y= SLAy Bopy X (25)

In the second and final phase, the power series expression in
Eq. (25) is transformed back to the original given interval (a,b).

This phase can be readily performed by setting

¥ =2k
g

170

where

- atb _ b-a
M= S and o=

In other words, the double sums in the following expression must be
calculated:

mEl. X-u mEl D, k Jj-k k
o, < T ?k_o() (¥ IRy (26)

The coefficients thus obtained are the final polyncmial coefficients

for the power series in the interval (a,b).

"BEST" FIT CRITERION

The polynomial of so called best fif may be determined by an exam-—
ination of the quantity 4 = S/(n-j) when each degree, j, is being tried.
In general, the A-value will increase first(és j=value increases) and
then’decreases. It is proposed that the program accommodates ﬁhe
A-value to increase and then decrease only once. A second increase of

A~value will cause the program to stop.

FLOWCHART AND FORTRAN PROGRAM

The procedure presented in the previous sections is well suitable
to electronic computation. A flowchart is shown in Fig. 1. The numbers
shown in brakets are the corresponding statement numbers for a tested
FORTRAN program which is listed in Fig. 2.

The input variables for the FORTRAN program are defined as follows:

IP = Degree of the polynomial Y desired. If no particular
degree is desired and a belt fit is required, IP = 99.

M = Number of original data points.

X(I) = Value of the original data X, -

Y(I) = Value of the original data Y, .

JJ = Program stopper, when JJ# 2.

171

I
.

‘ZD EXAMPLE

It is required to fit a two-term (IP = 1) polynomial to the following
four data points: |

xjo 1 2 3
y!77 12 11 16

In the same run, it is also required to fit a polynomial six-degree
to the following 20 data points:

x}{1 34 5 6 7 8 9 10 11 11.5 12
y1278101111109833 14

13.5 14 15 16 16.5 17.5 18 20
6 3 20 -4 -h 0 3 6

Applying the FORTRAN program to this specific example, the data would
be read in the format as shown in Fig. 3.
The output for the Chebyshev program gives the coeffcients Aj for
the polynomial Y in terms of the power series:
Y= J.glAj xJ
In addition, the given points farthest above and farthest below

the least squares curve are also printed out. They are listed in Fig. U4.

BIBLIOGRAPHY

1. Kuo, S. S., NUMERICAL METHODS AND COMPUTERS, Addison-Wesley
Publishing Co., Reading, Massachusetts, 1965. Chapter 11.

2. Lanczos, C., APPLIED ANALYSIS, Prentice-Hall Co., Englewocd
Cliff, New Jersey.

3. Clenshaw, C. W., "Curve Fitting With a Digital Computer,"
British Journal of Computer, January, 1960, pp. 170-173.

4, Clenshaw, C. W., "A Note on the Summation of Chebyshev Series,"
Mathematical Tables and Computations, Vol. 9, 1955, p. 118.

172

START

READ IN:

[590-508)

(1) INDEX TO COMPUTE EXTREME DATA, OR NOT, OR STOP(OPTIONAL)
(2) DEGREE DESIRED (OR 99 WILL STOP AUTOMATICALLY) |
(3) NUMBER OF DATA POINTS (M)
(1) DATA POINTS (X,, ¥,) i=1,m
[508-509] | INITIALIZE VARIOUS QUANTITIES
{509-510]| GO TO INTERVAL (-1, 1) l
R — ¥ '
E COMPUTE. COEFFICIENTS pii) FoR
A [526-510] | J
D' INTERVEDIATE PCLYNOMIALS P, (%)
- —X :
I g [522-524]| usinG pj(l) COMPUTE VARIOUS QUANTTITTIES
N _ ; ~
T USE THESE QUANTITIES TO COMPUTE
N Q [528) : () |
E . COEFFICIENIS A, OF FINAL CHEBYSHEV POLYNOMLAL
W N ; : — ,
¥| [524-539] |_COMPUTE EXTREME DATA POINIS IF ASKED
D =
A | v
T Bl [539-5u3] [TEST FOR:
A | (1) BEST FIT
3 G (2) DEGREE DESIRED REACHED
R (3) DEGREE EXCEEDING NUMBER OF DATA POINTS
[551-596] | co ¥roM crEBYSHEV TO POWER SERIES
[599-583) | Go BACK TO ORTGINAL INTERVAL
[583-554]

PUNCH COEFFICIENTS OF Z B(i)x

FLOWCHART FOR LEAST SQUARES CURVE FITTING USING

ORTHOGONAL POLYNOMIALS + CHEBYSHEV SERIES
(Program Statement in Brackets)

173

THE POINTS FARTHEST ABOVE AND FARTHEST
BELOW THE LEAST SQUARES CURVE ARE

‘ZﬁﬁGPEE_UW_v e ABOVE_BELOW _

1 (Oe10000001E+01¢ 0¢12000000E+02)(0¢20000000E+01l+s Oel 1000000E+02)

POLYNOMIAL. COEFFICIENTS - DEGREE |

A(0) = 0e76000010E+01
e Al 1) = 0e25999998E+0Q1

THE POINTS FARTHEST ABOVE AND FARTHEST
BELOW THE LEAST SQUARES CURVE ARE

DEGREE ABOVE eBELOW _

0e¢15000000E+02¢ 0¢20000000E+02)(0e16000000E+02¢~0e¢40000000E+01)
0e15000000E+02¢ 0e¢20000000E+02)(0e416000000E+02¢=0¢40000000E+01)
Oe 1S000000E+02s 0¢20000000E4+02)(0e16000000E4+02¢-=0e¢40000000E+01)
0e15000000E+02¢ 0e20000000E4+02)(0e16000000E+02¢~0¢40000000E+01)
0415000000E+02¢ 0¢20000000E+02) (Oe16000000E+02¢~0¢40000000E+01).
0e¢15000000E+02¢ 0620000000E+02)(0e16000000E4+02¢~0¢40000000E+01)

OV PWN~-
~om o o~ A

POLYNOMIAL COEFFICIENTS - DEGREE 6

A(O) = 0e54671820E+01
AC 1) = =0e¢73307400E+01
— - - Al 2) = 0e48346740E+01 -
At 3) = =010214046E+01
A(4) = 0¢97473200E-01
Al S5) = =043494959E~-02
Al 6) = 0e¢73559148E~04

S —_ e e e 174 . U E . R -

Curve Fitting by Finite Sum of Exponentials

Richard Mishelof ‘ : | (

Supervisor, Bio-Computing Section

Computing Center

State University of New York - Downstate Medical Center
Brooklyn, New York

Nallur Prasad

Computer Applications Inc.

Introduction
Data which usually arises from tracer experiments, stress fatigue in metals,
~ diffusion of gases, etc. and which is more often then not unequally spaced in time

(time considered the independent variable), is approximated by a function of the form:

N :
T
gLy = Z, Ce™ 4 Ce (1)
=1

We will restrict our analysis forx: positive, real and that all the «; are well
separated; Ci's are real and Coo is considered to be zero. The order N, the number of
exponential components, in the summation, is usually dictated by the mathematical model.
If no information is available on what the mathematical model should be, then the model canpe
evolved from the data(.7) This is the usual procedure in compartmental analysis.

Our approach is to get initial values' for «s by a semi-graphical proceduré known as
"peeling-off". These initial values are our starting point for an iterative scheme which we

hope will refine our initial values.

Discussion of Methods (Fitting Techniques)

l. Algebraic Method:

(1,2)

Prony's method can be applied. The values of 2N+1 points which are evenly q;

spaced in time t are input to a set of simultaneous linear equations of rank N+1
175

i.

which yields the Coo and the N+1 coefficients to a polynomial of order N. The roots
of polynomial are «; which are used as input to develop a further set of simultaneous

linear equations which yield the Ci values.

It has been the au_thors' experience that the answers one gets are erroneous (I'm being
very mild to say the least). The values for &; have been negative and complex. One
may interpolate to get evenly-spaced data, but the results are not worth the effort put
into it. This method is not recommended.

Derivative Peel-Off Procedure

(2) ~
This method is described by Perl. In essence it is very similar to the method | use,

and may be better for some applications to get the initial starting points for iterative
procedure. We consider Coo=o0; this can be done by having a previous knowledge of
Coo and subtracting it from g(tj) j=1; «..,Mpoints.

A B . | =4t
A portion of our curve can be represented by q,()=C,e (2)

. -ty t .
if we take the derivative, we have -q4(t)=Cyxy e - (3)

. (3)
We can then determine the slope q4(t) vs q,(t) which is calculated numerically under

the t considered. This gives us a value for &, and the ordinate - intercept gives C, %y
thus Co+. We then subtract q, from q for all tj j=1,....,M and repeat the procedure.
This procedure will give good estimates for Ci,*i i=!,..,N, if our data warrants a
derivative approximation calculation.

The Author's Approach

A. '"Peeling-off" type of procedure (semi-graphical)

1. Redefinition of probiem:
- We are given points t,, t,,..... ’tm ‘not necessarily evenly spaced with
corresponding q(ti)=q, , qQ, ,+«..,Am.
We wish to approximate our data to a finite sum of exponentials. Our approach

is as follows:

176

. The natural log of the data points qi is taken and the result is placed into

O

an array di. _ﬁTths,
di=In (gi) =100 M @)

We start with the M'th value of di and work backwards and abprdximate a

least square straight line

y=atj+b j=M, M-1,.....,1 (5)
\ . P
where a and b are the solutions to the set of normalized equations.
M-K =2 M=-X R T 3
St L Z LT
o T l") d.; A_.. 4
=K, J : I= K, ‘ y= %, R (6)
M=K ' : e o o
_k.-:‘—‘ + Z "L - M (® j.\
o. ;_ : Ny A - (R+K,-
J‘:Kl d'} /(f J:tQ‘ \:\J ~ \ }

which means we are working on the k, to k interval of points of the M points
of our set of observations. We take the measure of our error to be expressed

in the form:

M-K

N

RT

4 - - QG

E = g NSy (7)
=k,

«
-

which is a pseudo-least square residual. It should be noted that there are

many other error criteria which we could try to minimize for example:
M=K
) ! -\— // \ >2.
E = d." \ \(- dJ (8)
J

=K

[

\

which had a tendenby to produce a Jacobian of our iteration procedure which

~was of the order of ,10f4 and hence a nearly ill-conditioned system of equations.

'

177

M-X
S ; ‘

A ‘QMK""‘“‘_»\ : t] o (9)
)= - S C; e"’x‘ J‘

see reference Worsley for a comprehensive discussion of equation (9) as
well as a polynomial approximation to the data.

4, This marching backward procedure terminates when wé have: (1) and error,
as measured by equation (7), greater than a certain maximum error that we
arbitrarily chbse) in our case, .05; (2) run out of data points. It should
be noted that thisvarbitrary maximum alldwable error is a function of M and
dj j=1,...,Mand the true«:,Ci values.

5. We next form a new set of data dj j=1,...,M which is

I (10)

and our initial ektimates for Ci i are
A i=-a

Ci=eP ,
increment i+1->i

(11)

6. The above procedure is run continuously until we:

(1) ruh out of data points; (2) have gotten the number of exponentials we

expect: N

B. We now go into our iteration procedure with our initial guesses :,Ci and will

treat all the data poivnts.' In the p'revious section we treated data points where
we had a "slow « " (minimum of unknown set of »'s). As stated above we

chose our error E to be of the form

M ;
Vel
EBJ S Y iairen %

we wish to minimize E (v, oy, gty €y Caye O % tj)=E

178

The critical point p={(s.,%a)%, . Ca-+1¢n) where the maximum of minimum of E

4 VJ
lies is either in the boundary of D(o , C) or on the boundary, where N

VP QN

D,) ---gk (13)

0§ X{ L&

Appealing to the calculus,(5We know that the 2N part'ial derivative of E with res-

pect to «. and Ci i=1l,...,N will give the local critical point if equated to zero.

0B - 3E _ L. 2 3E 28 _2% 2RE 2o (14)

or the 2N system of simultaneous non-linear algebraic equations.

0\’1. [de«‘\) ao’j

o)
-

0]

"
pOO
"
[YRLY)
2 |m
h

I
.,u'._

J

D c L"_, ot N . (15)
0= 8,-35,=) = | Ge “N_g]
J=i . (_=| . A=1 R N
. . . . (3,6)
There are several iteration techniques for solving a system as the above. We

chose the Newton-Rapshon technique. Our experience with convergence patterns for
various sets of data showed the initial estimates need not be close to the solution for con-
vergence. The continuity of the solution vector, implicit in the Newton-Rapshon method,
is a criterion for convergence. For instance, if the first two or three data points do not
show sufficient drop, we found it impossible to make the iteration converge until the data

point which did not drop enough was deleted.

Conclusion
The algebraic method for finding the solution to equation (1) gives erratic results,

the polynomial approximation for the set data points does not give a satisfactory result. @,

179

Graphical techniques as described above give fairly good initial estimates and an im- ,
provement by a pseudo-least square procédure has proven successful in most cases
tried by the authors.

The data should be extended out in time such that each «: is represented by the
original curve or extrapolated curves. < that are very close together may be lumped
together and still give a satisfactory error.

Gardner(7)has ihvestigated the numerical inversion of the Laplace transform, which

appears to be a method for finding the true number of exponentials. This method has proven

- relatively successful with evenly-spaced generated data. There are a number of problems

to be overcome with experimental data.
The methods described in this péper will not solve all problems. ‘Some other approaches |
might prove more successful. These other solutions can be found in the references given if
only to look-up their references (indirect addressing).
We have had a certain amount of success with our problem and approaches and hope that
follow up work in field will do much to improve what may be termed by some as an art:

The art of knowing how to approximate your data to finite sewe of exponentials.

- 180

)

REFERENCES o

Hildebrand, Introduction to Numerical Analysis, McGraw-,HiH, page 378-382.

“Perl, International Journal of Applied Radiation and Isotipes, 1960 Vol. 8
pages 211-222.

'Zfra_l;b Iterative Methods for the Solution of Equatlons, Prentlce-Hall, pages 248~
5 ;- e ,

B. Worsley and L. Lax, Selection of Numerical Techmques for Analyzmg Experi-
mental Data of the Decay Type with Special Reference to the Use of Tracers in
Biological Systems, Biochimica et Brophysica Acta, Vol. 59, No. 1, pages 1-24.
Buck, Advanced Calculus, McGraw-Hill pages 285-298.

Wolfe, The Secant Method for Slmultaneous Non-Linear Equations, Comm. ACM Vol.2,
pages 12-13.

Gardner etal, Method for Analysis of l\/lul'ticompone.nt Exponential Decay Curves, Journal
Chemistry and Physics Vol. 31, No. 4, page 978.

181

o

APPENDIX

DERIVATION OF NORMALIZED EQUATION FOR ERROR

We chose our error E as defined by equation (7)

£ - Z -:;,(atﬁb -4 | (L)

tMek
?—E:'- = 2z ' PN g
oo ZJ_';,'-E‘Z (atj+b-d;3%; =0

M-k (2)
2E _ 7"’ 2 LN .
2b A C\'3 (o\tj + 5 %

if we carry through with the summation, we get the normalized form of equation (6)

M‘l(Py M

- g
O-Zl - + /h > 't

J=x, 9 ' = K\ ‘ "y
K AR (3)

M< -. Lo : \:T"7)

N -3 + s/ T e ey, - 1)

=K, o E

[

Newton-Rapshon Iteration Procedure and Application to our System of Equations

We are given a system of equations

FOC, X yeee M =0 i=1,...,n (1)
where X*...x*, is the solution to our system. ‘
We let

XO

? 1 X3 sessesees Xp be the initial estimate for our solution, such that

182

L x¥=x' + 4 x,

. AN
xX¥=x2 + 4 X, | L
. (2)
x* = xn + & xn
We approximate the system by a Taylor expansion and we get
N
>—‘ 28, p
o=fp (x*,...... X)) = fl(X , X 4e.., xn) + =7 (AX) + terms (A X)
. L-—-\ v
SO 5
N _\g
=fn (xk =it) x vt 0 o) 4 tems (a0P
0=1n \X AR 7 7 r1eee AN /'4 Q’X,L T lerm
LEt VARV SN 3
© We assume that all (4 X)P whereP>2 is approximately zero
If we put the system of equations (3) in to matrix form, we get
1T 1T
-Fl=u]ix] @
where f'fi (X, ..xn)| AX,
| |
[F] =1f, (x, ..xn) AX= |a x,
. * - . (5)
K | |
[fn (x, ...xn)] D xn)
and thedJacobian matrix
EE Y}
. Sv. > Xm
[J]-= Yok (6)
i X, D¥m
We solve system (4) fors X and set
X, =x) +ax,
X, =x° +ax, (7) ~

C

If the determinant of the Jacobian Matrix remains non-zero and

Do, [F1 =1

K &0

(8)

where k' is iteration count, then system is said to converge

Our system of equations are defined by equations (15) that is
™

_x: Y 'l
: 3 ,
LT LaGe T gl (9
whare L7 1,2,...,N
thus vector (F) is partitioned into two vectors
F = [Bp |
g (10)
B'e | |
Let us now develope the Jacobian Matrix where the terms are:
ey S SR, 3, . o
o ’—"—;K ! 25’3\4) i:j‘ ! -J:—EL\ A\)«ﬁ‘f‘ v ‘Q‘ K.-’ \)?-’) N_
rl:o‘l 2&“ \“"(NUVL' L:t K
" (11)
™ % %, SRV ¥ « ,
25 =7<’\315 g e B
x —_—
e §! .
Fow PRSYS uAARASL =K
2 ox
M .) ' N
) I t. — R -« \
28k _ -0t e " JK(Z_.C&»!." A"%‘D-\-QKQ ‘)] (12)
& - Y o ‘
J:\ %) o
If we borrow Kronecker's deita, then we can generalize the above results.
. 184

N . :
e D A | (13)
to iz
-~ 7. X L . A
RS -0 -«mK LY et
e E e £ (TS) ye ™t (14)
. y=\ s = . oo '
M Loo-xe
200 S b R
2Cy ‘) 3
J= ‘ l,K?i\"-s"-{N
Once again appealing to Kronecker delta we generalize Q_B__‘g
A DO‘&
™ « N
- \ N - v +
| . Y A X N - [N
3_6_-@- = Eﬁ:“‘""’"’ %J»\K(ZGC'O‘\’J—?’D;) *C—Ke’(K Jv}
oy i I) | : (15)
J=t
and M
\ S - ‘.:t.
28 = V -
o /[y % ~ " (16)
J=1 '

R, K =1,2,..4N

i | :
B,Q 9..5:5' ! 2 B.‘?»
ety | oY

= | : (17)
(7] |

\ N Qe P
By |25 1 38,

L ' o

185

O

R - W W ey W T W™

W

PROGRAM OUTLINE

A program for the method discussed in this paper was written in FORTRAN [I-D.
There was no attempt fo economize in core space, or in execution time. There are several
variables that could be made equivalent (i.e. EXP@N, ALPHA), (CQEFF, C)), and a D@
loop which could be incorporated into a following set of DO loops.

The program uses three subprograms one SUBROQUTINE and two FUNCTIQN programs.
SUBRQUTINE SONYA (N, A, B, X, DET)

Is a program for solving a system of simultaneous linear equation AX=B by pivotal con-

densation method. The technique is described by Faddeeva, Computational Methods in Linear

Algebra, a Dover publication, and was applied to a system of ill-conditioned simultaneous linear

equation in Wilkinson, Rounding Errors in Algebraic Processes, Prentice-Hall, page 118-120,

with a high degree of accuracy.

The program is designed to sofve a system of 20 x 20, but can be expanded or shortened
by changing the proper arrays in the DIMENSIQ N statements. The terms are:
N is the rank of the coefficient matrix A, A is the coefficient matrix, B constant vector, X solu-

tion vector, DET is the determinant of matrix A.

FUNCTION DELTA (i, J)

Is the Kronecker delta (see paper)

FUNCTION SUMEX (NEXP, TAU, C, ALPHA) N
-, ¢

lsa program to evaluate the sum of exponentials | C, C where NEXP is

the number of exponential components. | =

TAU‘ is dummy variable, C, ALPHA are respective coefficient and exponential multiplier.
It should be noted that:

e~19=5.60279 64375 x 10-9 and is considered to be zero, if

expanded accuracy is needed then the value 19 should be enlarged. This test prevents ex-
ponential underflow.

The entire system of programs was designed to handle a maximum of 5 exponential

components, but this restriction can be altered by expanding the proper arrays of all the system

programs. 186

TYGO - A lcad-and-go version of S.P.S.
(:; R.C. Read and P.J. Jutsum

Programmers who use S.P.S. a lot on a papertape machine,
must frequently get impatient at the amount of time that is
consumed in punching and handling tape, using the standard
two-pass processor, before a program can be compiled. TYGO
(TYPE~-and-GO symbolic programming system) has been devised
for the benefit of these programmers., 1t enables an S.P.S.
program to be typed in at the console and assembled directly
in storage without the punching and handling of any tape
being necessary apart from the loading of the processor tape.
However input of the source statements can be from tape if
desired, and an object tape can be prcduced (under operator
controls at any time after compiling, - before and/or after
running or debugging the program,

Thus in some ways TYGO is to S.P.S. as GOTRAN is to
FORTRAN; but whereas GOTRAN is a fairly restricted subset of
MORTRAN, TYGO is effectively as powerful as S.P.S., except
for some restriction on the possible length of the program,
since the processor occupies about 9000 locations at the top
of storage during compilation. The only other significant
restriction in TYGO is that multiplication is not admissible
in address arithmetic. All the standard £.P.S. subroutines
can be called, and also the floating part in ut/output
subroutines (Users Group Library No. 1.6.023).

Since in the source program symbols may be used before
they are defined, a more complicated symbol table is needed
than in regular £.P.5. Undefined symbols are stored together
with the addresses at which the equivalent (when it becomes
known) it to be put. During compilation a lisiting of the
program can be produced, in which undefined operands are left
blank; a listing of the symbol table can be produced when
compilation is finished.

The symbol table grows downwards from the beginning of

the processor (location 11000 or thereabouts). Impending

overlap with the program is signalled, and a new pseudoinstruction
DEL enables unwanted portions of the symbol table to be
removed to make room tor more program. After compilation the
processor area can be used for subroutines and/or data areas.
Programs of up to about 8000 locations will compile easily

?nd compilation is faster than with the usual S.P.5. processor

SP-008). ‘

TYGO is written for the basic 20K tape 1620 with no
special features.

O

187

o

SPAS
G.G. Billin

SPAS is a modification of 1620/1710 SPS1 designed for
LOAD-and-GO operation., It is best used for debugging programs
or running programs that will not be used frequently. Because
of its usage, several additions and deletions have been made
to the basic SPS language. Some features of SPAS are:

No cards except source statements are punched. This
means a large savings in cards while the program is
being debugged.

The object program is ready to be run at the end of
PASS II with no intermediate loading of an object deck.

The processor may be made one pass by turning on a
sense switch. The information on each card is stored
in upper memory during PASS I and is recalled as needed
during PASS IT. Thus, no time is lost while the reader
reads a card, and the cards are only read once,

The processing time, exclusive of the one pass feature,
has been reduced.

The machine requirements for SPAS are indirect addressing
and a 40K or 60K card 1620 system. Of these requirements, only
the indirect addressing feature may be modified.

SPAS was written because of time and card limitations at
the computer center where the author worked. It was decided
first of all to eliminate all punched card output; next, the
speed of the processor was increased, new operations were added,
and other miscellaneous modifications were made.

Since the author used a card 1620 rather than a 1710 and
hecause macro-instructions were seldom used, the following mne-
monic operation codes were deleted from the list of 1620/1710
operations:

All macro-instructions:

FA FSQR FEXT FSRS
FS FCOS FEX FSLS
FM FSIN FLOG TFLS
FD FATN FLN BTFS
DIV

Al11 1710 control operations:

~SLRN SAO MK UMK BO
SA SACO SAO0S SLTA BOLD
SLCB SLTC SLAD SLME SLAR

1 1620/1710 SPS, version 2, modification 15,

188

All paper tape operations{

RNPT

- WNPT

DNPT ~ RAPT WAPT

In addition, the fdliowing SPSvinstructions were‘modified:

DNB

TRA

SEND

lengths mayv be greater than 50 to a maximum of

1000.

assembles the instruction:

49 02468

00000

where 02468 is the address of the PASS I1 read

~instruction.

loads the following record into location 00000:

NOP

00000 41 00000 00000

B xxxxx : 00012 49 xXXXXX

where kxxxx is the address specified by the TCD

~instruction.

Next, control is transferred to

location G000O,

halts the processor,

cessing continues.

The following operations were added:

. BRC -
BNRC
BWC
BNWC
BEC
BNEC
BOC
BNOC

Branch if Read Check'(UG)

.Branch No Read Check

Branch if Write Check (07)
Branch No Write Check

Branch if Check in MBR-E (16)
Branch. No Check in MBR-E
Branch if Check in MBR-0 (17)
Branch No Check in MBR-0

The following operations generate no output in the object

program,
MESS

MES1
MES2

TYPE

TYF1
TYP2
KM

LOD1
LOD2

Return carriage and type message starting in column

16.

Same as MESS
Same as MESS
Type message
return).
Same as TYPE
Same as TYPE

except on PASS 1 only.
except on PASS II only.
starting in column 16 (no carriage

except on PASS I only.
except on PASS II only.

Perform carriage control (34 00000 0010X) opera-
tion with d1g1t in column 16 replacing X instru-

.ction.

Simulates LOAD during PASS I only.
Simulates LOAD during PASS 11 only.

189

When START is pushed, pro-

C

These instructions were designed to be used as follows:

MESS, MES1, MES2, TYPE, TYPl, TYP2 - To type headings at the
beginning of each pass, to type special messages to the opera-
tor, or to provide an indication of how far a program has pro-
gressed.

SEND - To stop so that switches may be changed.

L0p1, LOD2 - To allow loading of changes to the processor, the
program being assembled, or to transfer control directly to the
program.,

An example of the use of the new instructions is as follows:
SOURCE PROGRAM

MES2SPAS

MES2DATED

TYP2 3/

TYP218

TYP2/65

MES2TURN SWITCH 1 ON FOR LISTING, PLEASE
SEND

During PASS II the typewriter will type:

SPAS
DATED 3/18/65
TURN SWITCH 1 ON FOR LISTING, PLEASE

and the computer will stop. When START is pushed, the computer
will continue processing.

MODIFICATIONS TO THE SPS PROCESSOR

The following modifications have been made to the SPS
processor to make it compatible to one pass and LOAD-and-GO
operation: v

The initial address of the address counter is set at 20000
rather than at 00402. This was done on the assumption that the
first module of storage would be used for the processor and
symbol table. To change this address, make the first card of
the source program a DORG card. Be sure not to accidently DORG
over the processor. SPAS does not check for this--it is the
responsibility of the programmer.

All references to page and line number of statements have
been eliminated from the processor.

When listing a source program on the typewriter during
PASS 1I, the usual format included a carriage return and a tab
between the source statement line and the assembled instruction.
With SPAS this carriage return is not performed unless the source
statement goes past column 56 on the card. This may be changed

1390

back to the original way by putting a 0 (zero) at location
1787. To restore the feature later, put a 1 (one) at the same
location.

A subroutine to count the number of carriage returns and
to skip 5 lines at the top and bottom of each page has been
included. The proper initial setting of the typewriter car-
riage should leave a margin of 6 lines at the top of the page.

When assembling in one pass, the approximate number of
source statements possible is about 800, assuming that locations
40000 to 59999 are used for storing records.

If one pass mode and typewriter input have been selected,
there will be no punched output during PASS I. For two pass
mode, the punched output will be the same as for SPS with the
exception of the deletion of page and line numbers as noted
above,

The actual running of a program in SPAS is approximately
-the same as for SPS. One exception is the use of switch 3.
If it is on, one pass mode has been selected. If it is off,
processing is two pass. After this interrogation at the
beginning of PASS I, the setting of the switch is disregarded.
The only difference is one additional error--number 15. This
error message is typed out like any other one to indicate that
the records put in upper memory have overflowed the area assigned
to them. No more processing can be done after this message has
been tvped--the only thing to do is to return to PASS I (by push-
ing START) or to change the size of the area where records are
stored.

In PASS 11 several changes have been made. Switch 3 is
not interrogated any more--all output is automatically put in
memory., If one pass mode has been selected the only action
necessary is to push START.

Another modification can be found at the end of PASS II.
A listing of the svmbol table can be made as usual if switch 4
is on, however, if switch 3 is on aftes the halt after the
symbol table listing, control will go to location 00000 where
the record:

H 0000¢ 48 00000 00000
B XXXXX 00012 49 xxxxx 00000

was placed at the end of PASS II. xxxxx is the address speci-
fied by the DEND.

DESCRIPTION OF SPAS PROCESSOR
SPAS is a modification of the SPS processor, therefore
many of the changes are designed to cover up old instructions;
these changes will not be discussed. The new features of the

SPAS processor can be broken up into the following separate
routines: initialization for PASS I, one pass storage of re-

191

>

o

cords, return carriage subroutine, numerical blanks routine,
high and low positions used, output routine, spec1a1 operations
routine, and the end of PASS II routine.

Initialization for PASS I

The first instruction executed resets the carriage return
subroutine for the correct margin for the new page. Next switch
3 is checked. If it is on, one pass operation has been selected
and the following record is put at 02468 in place of

02468 31 00796 59999
02480° 12 02479 00005

These two instructions will cause the records stored in upper
memory during PASS 1 to be transmitted into the input area dur-
ing PASS II. If switch 3 is off, operations will be two pass
and the original instruction to read a card and a NOP are put
at 02468 and 02480.

This address'59999 can be changed by the user if desired--
it is usually as shown.

One Pass Storage of Records

After the symbol table has been cleared at the beginning
of PASS I, the first statement is read from the card reader or
the typewriter depending on the setting of switch 1 and is saved
in the INPUT2 area. Next, control returns to the original SPS
program and the op code, label, constant and symbol lengths are
checked to see that they are ok. When the SPS processor is done,
control passes back to SPAS at location 02116. If two pass mode
has been selected, switch 1 is interrogated and if it is off the
caved source statement is' punched. Next, control goes to the
read instruction. If one pass mode has been selected the card
is scanned for the third comma in it or a record mark. The comma
would indicate the end of information used by the processor--all
after it is comment. An except1on is a DAC or DSA statement
which is not scanned for commas 51nce any number of commas may
may be present.

When the address of the third comma or record mark has been
determined, the program checks to see if the statement will fit
in upper memory. Two pieces of data are stored for each record,
the record itself and a field that tells where its high order
digit is. The records are stored from the low address up and
are variable length, while the location fields are stored from
the high address down and are a fixed, five digit address. If
the length of the record about to be entered is greater than the
difference between the last used low address and the last used
high address, the ER 15 message is typed and the processor HALTS.
If there is enough room for the record, it is transmitted into
the lower address and that address is stored at the higher ad-
dress. The program then returns to the read instructions. If
the statement just read was a DEND statement, the DEND statement
is stored as usual but the processor goes to the end of PASS 1
instructions.

192

Return Carriage Subroutine

A return carriage subroutine, RCTYPE, has been included
so that long listings on the 1620 typewriter can be done con-
veniently.

Entry to the subroutine is by branching and transmitting
the return address to the address of the subroutine minus one.
In this way entry can be done with a BTM or by a TFM and branch
if the return carriage occurs while the processor is already
in a subroutine, '

Numerical Blanks Routine

SPS assembles numeric blanks by punching them alphamerically
on a card. Since no cards are punched in SPAS, this function
is simulated by transmitting numeric blanks one by one to the
address given or assigned by the processor minus the number of
blanks defined, up to the specified address. The routine to
do this starts at location 06736. The length of the output
(at location 00704) is subtracted from the address assigned
(at location 01122), Then blanks are transmitted until the
assigned address is reached.

High and Low Positions Used

Before each object instruction or constant is stored in
memory, a routine checks to see if its lowest and highest loca-
tions uvsed are the lowest and highest used so far. As the object
program is stored, the routine keeps track of these addresses
and at the end of PASS II they are typed out. This is to let
the programmer know how long his program is and to inform him
whether he has gone below 20000 or into some other area.

OQutput Routine

The output routine works almost the same as the SPS loader,
except that it uses indirect addressing to save space. It is
located at location 06018 (PCHCRD). First the digit that will
over with a record mark is saved. Then the record is trans-
mitted after finding out where in the INPUT2 area it starts, and
the saved digit is replaced.

Special Operations

- The special operations routine replaces the macro-instruc-
tions routines. The processing for special operations starts
at location 09672. DEach operation in SPS or SPAS is referred
to by an eleven digit field of which 8 digits represent the
alphanumeric coding of the mnemonic operation, 2 digits represent
the op code or indicator, and the last digit represents the
type. OSpecial operations are type -7. The digit preceding the
type digit defines the particular procedure while the second
digit represents whether it occurs during PASS I or PASS 1II in
the case of singular operations. The identifying digits are
as follows:

193

AN
SN/

w%,.ﬂ

T e U ey . W e - e

MESS
MES1,MES2

TYPE
TYP1,TYP2
LOD1,LOD2
KM

0
1
2
3
4
5

When a special operation is found, control goes to 09672,
There the type is determined and control passes to the proper
routine by means of a table look up using a DSA. A MESS oper-
ation causes the carriage to return and the operation:

WATY INPUT+20

to be executed. In a like manner, MES1l or MES2 first checks

to see if it is the proper pass and then either executes the

MESS routine or bypasses it. A similar procedure is followed

for the TYPx routines except that the carriage return is not
done. LODl1 and LOD2 cause a simulated load during the cor-
responding pass and when KM is encountered, the digit at INPUT+20
(the units digit of the alphameric code) is transmitted to the
Q11 position of a control instruction which is then performed.

If the digit transmitted is other than a 1, 2, or 8, some com-
bination of the functions will be performed.

End of PASS II Routine

At the end of PASS II, control is transferred to location
12060. There, the lowest and highest addresses used are trans-
mitted to an available area (INPUT2), a record mark is put after
them, and they are written out. Next, the record that originally
went on the last card of the SPS loader is transmitted to loca-
tion 00000. Control then passes to the SPS routines that write:

End of PASS I1

and the symbol table is listed if switch 4 is on. At the end
of this the computer HALTS. When START is pushed, control passes '
to either the start of PASS I or to location 00UGU depending on
the setting of switch 3.

As mentioned earlier, SPAS uses indirect addressing and
does not include macro-operations. Both of these problems may
be gotten around, the first by reprogramming, the second by a
special technique. '

To reprogram SPAS for a machine not equipped with indirect
addressing, it would be necessary to change several instructions
in SPAS. SPS uses no indirect addressing. To make matters
easier space has been provided between locations 05440 and 06016
for any additional instructions. By changing SPAS for a non-
indirect addressing machine, approximately 500 locations would
be used. Of course, new operations could be processed by routines
in this area.

To use macro-instructions with SPAS the best thing to do
would be to assemble them at some high address or in the space

194

used by the SPAS symbol table. Then to enter a macro-instruction
it would be necessary to simulate the instructions generated by
the SPS processor when macros are used with it.

This is at most a sketchy report on SPAS. The pro-
gram is to be submitted to the Users' Group in the near future
so that it will be easily available. For the moment, copies
of the decks and documentation are available on a trial basis
to groups who are willing to report to the author on the effec-
tiveness of the program. The author's address is:

Mr. Geoffrey G. Billin
Computer Center

Clarkson College

Potsdam, New York 13676

195

P
’k/"f

P

P . ™ " e

ABSTRACT FOR FN II WORKSHOP

Understanding Fortran II
(SPS Subroutines called from Fortran II)

by

L. Hoffman
Guggenheim Laboratories
Princeton University

To increase the unfullness of Fortran II for large, long prob-
lems, one must realize which aspects of FN II take the most time and storage.
A few examples are iterative procedures, subscripting, and special output
formats. Often, iterative procedures are done as subprograms, such as so-
lution of differential equations. These subprograms can be written in SPS
to give an object subprogram which will usually occupy one-half of the
equivalent FN II subprogram and usually will take about one~half the ex-
ecution time of the FN II version.

In order to present the technique of SPS subprograms, the stand-
ard linkage generated by FN II is described and a variation of the linkage
for many arguments is presented. A description of FN II non-relocatable
subroutines is given. A sample SPS printer-plot subprogram is given as an
example of linkage, communication, and relocatability of an SPS written
subroutine,

196

NON-LINEAR ESTIMATION
BY
MODIFIED GAUSS~-NEWTON METHOD

JERRY KEMP
RALPH CHIPMAN
CHARLES BRYANT

Presented to the IEBM 1620 USERS Group at Miami Beach, Florida on
May 11, 1965

197

I.
IT.

IIT.

TABLE OF CONTENTS

INTRODUCT ION

MATHEMATICAL DISCUSSION

A, Discussion of Linear Estimgtion

1. Simple
2. Multiple

B. Discussion of Non-Linear Estimation
C. Non-Linear Iteration Technique
D. Sample Problem & Solution

E. Other Examples

COMPUTER PROGRAM AND OPERATOR INSTRUCTIONS

A. General

B. Program Limitations

C. Source Statement Changes
. Dimension Statement
. Read Statement

. Procedure 1
. Procedure 2

1
2
3
N
D. IThput Data Preparation
E. Computer Operator Instruction

F. Example Problem

REFERENCES

198

PART

A
B
C
D

APPENDIX

General Flow Diagram
Fortran Source Statements
Partial Printout

Complete Printout

199

NON-LINEAR ESTIMATION BY MODIFIED GAUSS-NEWTON METHOD

I. INTRODUCTION

This paper presents the modified Gauss-Newton method for the fitting
of non-linear regression functions by least squares as described by Hartley
(1). In Section II, a mathematical discussion 1s presented and in Section
ITT the computer work is described.

Frequently, experimenters are faced with determining a functional
relation between a response (dependent variable) and a number of inputs
(independent variables) with the help of empirical data. Usually the
mathematical form is assumed to be known and the coefficients of the inputs
(unknown parameters) must be estimated.

IT. MATHEMATICAL DISCUSSION

Before discussing non-llinear regression, it 1s appropriate to make
a few comments on linear regression.

A. Linear Regression

If the parameters in the mathematical model are linearly related,
the least squares estimates are obtained by direct solution of simultaneous
equations.

1. Simple Linear Regression

An example is as follows:
(l) ‘ yi=a+bxi+ei
Where y4 is the measured response to a measured input, x;
a and b are parameters to be estimated
ey is the error or lack of fit

1 is the observation number

Ieast squares estimgtes are defined such that i:eig is a minimum. Fram

here on, let Q = z:ei . To find the least squares estimates, set &Q _ 0
da
and 9Q = This Maﬂlds the following equations which are solved
b :

simultaneously for a and b.

200

(2) | Ne +b). x Zy
o Tx FOPwZ T Ty

Where N is the number of observations and E:Ts are summations from
1 to N. (Note linearity in a and b).

2. Multiple ILinear Regression

. An example is as follows

(3) Y1 =a +tbxy +ox? +ey
Where a, b, and ¢ are parameters to be estimated
While this model is non-linear in Xj, it is still linear in the para-

meters (a, b, and c). Setting @Q -0 29 _ 0, and 89 =o,
‘ a ? 20 dc

yields the following set of simultaneous equations which are linear in a,
b, and c.

(1) C Nasb ¥
- Exl;bZXi § ’Hg
ale +bei +°in = x

B. Non-ILinear Regression

When the parameters are not linearly related, we are faced with
non-linear estimation for which we have no direct solution. Hartley's
article uses the following model as an example.

(5) y=f(x;L,B,K)=L+Ber
¥i =L+ Bexp (Kxg) + ey

Where yi 1is the measured response to the input (xj.) for the i th
observation

L, B, and K are parameters to be estimated
and €4 is the error or lack of fit for the i th observation
To illustrate the difficulty with this function, set @@ _ o sand
L

examine this result

(6) 949 _ _£) (-£.) =
-é—L—-QZ(yf)(fl)—o
Where y is the observed value, f is the function, and f; is the or

oL

201

Substitute L + B exp (Kx3) for f,and 1 for f; in (6). This yields

(7) | 22[3@ -"(L+Bexp(1<xi))][-1]=o
- 'which may be rewritten as
Yy, - N - B Yexo (kxy) = O
In gexp (kx;), K is "1ocked"iﬁside of the summation and even the
usual techniques for solution of simultaneous non-linear equations are not

applicable.

Since no direct solution is possible, we are forced to revert to the
approximation process which is described next.

* C. Non-Linear Tteration Technigue

- This non-~linear estimation technique uses the Newton-Raphson
method (Reference 2, Page 463) for defining a correction to apply to the
paremeter estimates from the previous iteration. The Newton-Raphson Method
use a Taylor Series approximation. Values for these corrections are solved
for in the Gauss Jiewton equations. Hartley's modification guarantees that
once the iterations begin to converge the process will not diverge at a
later time. Tor the process to converge, starting values for the parameters
must be "close" to the "true" values due to the Taylor Series approximation.

D. Sample Problem and Solution
'l. The Problem

From the data presented in the following table determine
least squares estimates of L, B, and K in equation (5 .

OBSERVATION
NUMBER X ¥
1 -5 127
2 -3 151
3 -1 379
i 1 Loa
5 3 L60
6 5 Lo6

Trial values

Io = 580
Bo = =180
KO = "'0160

202

O

C

2. The Solution

Values of corrections (D1, D2, D3) to these trial values
are obtained by solution of the following simultaneous equations.

(8) o L(1)2 + Dy Y(fifp)y + D3 L(f1f5)e = T(3-f)o (£1),
Dy L(fifa), + Do TA£)2 + D3 Y(faf3)y = L(v-1), (£2),
D L(fif3)o + DX (£2£3), + D3 L(£3)5 =L(3-1)o (£3),

where
7 = of =1
oL
f, = Df =X
oB
f2 = Ff _ Kx
3 5% Bxe

y-f = observed y minus predicted ¥y

()o refers to evaluation using L = Io

B = Bo and K = Ko
Z- Summation over all observations
Solve for v (min) in the following equation (parabolic fit)

(9) v (min) = 1/2 +1/4 (Q(0) - (1)) / (@ (1) - 2q (1/2) +Q (0))

where
Q= Y(-)f = Ye?

Q (0) =Q with L = o, B = Bo and K = Ko

Q (1/2) = Q with L = Io + 1/2 D
B =Bo + 1/2 D,
=Ko + 1/2 Dq

K
Q (1) =Qwith L=1Io+D
B=BO+D2
K

=Ko+D3

Then the inital values for the next iteration are

203

(10) In = Io + VD1 @
By =Bo + VDo
Ky = Ko + vD3
If the process is converging, the value of Q using In and Ky will

be less than the value of Q using Io, Bo, and Ko. If not} tr¥¥y v = 1/2 v(min.)
If the process still diverges, try new trial values of L, B, and K. If the
process converges, the iterations are continued until AQ is less than

some small arbitrary value (€)

(11) Where - A Q=Q - Qg+l (k denotes the iteration number)
Q
k+1

If € 1is too small, then Dy D, and D
cause divergence due to computer acclaracy.

3 approach zero which might

The computer print-out of the solution is shown in Parts C and D of the
Appendix. 1In this solution, € was set at .000l. The standard error (stder)
equals the square root of Q/(M-N).

The computer details are presented in the next section.

E. Other Examples

The following two equations are examples of our work with this

technique.
Interior Ballistics (leDue equation)
v = au$w+c zd
b+u
where v = Muzzle velocity
u = barrel length
w = propellant charge weight
and a, b, ¢, and 4 are unknown parameters
to be estimated
Solid State Burning Rate Equation
u =P (a+th In P)
cetd In P
where u = burning rate
P = Pressure
n, a, b, c, and d are chemical and physical O

parameters to be estimated.
204

C

III. DEFINITION OF COMPUTER PROGRAM AND OPERATIONAL INSTRUCTIONS

A. General

This is a one-pass program, written in PDQ Fortran with fixed format
subroutines. The program was compiled on an IBM 1620 (20K) computer with auto=-
matic divide. The input is on cards and the output is on the typewriter. The
general flow diagram, Fortran source statements, and sample printout are con-
tained in the Appendix.

B. Progrem ILimitations

1. The general form of the dimension statement is as follows:
Dimension A((N#2),(N+1)),PD(N),C(N),D(N),CNST(N),Q(5),¥(M),T1(M),~---TK(M)
The only limitation to this dimension statement is given by the eqnaﬁion ‘

N2 + 7N+ K(Mal) < 473

where N = number of parameters
M = number of observations
K = number of independent variables and
N M

C. Source Statement Changes: Once the problem is defined: make the folléow-
ing changes to the source statements when necessary:

1. Djmension statement: The dimension statement must be changed tn
reflect

(N) the number of parameters
(M) the number of observations and
(K) the number of independent variables

as dictated by the problem at hand.

2. Read statement: The changes made for reading the dependent and.
independent variables is a function of the number of independent variables. Thise
changes should be made so that Y(M) is the dependent variable and Tl (M)---Tk(M)
are labeled as the independent variables.

For example: Read 5, T1(I), ------ , TK(I), Y(I)

3. Procedure 1: The changes made here are used in solving for Q and
the partial derivatives in procedure 2. The last statement in procedure 1 should
be DIFF = Y(K)-U, where U is equal to Y(K) calculated. Make the changes so the
number of arithmetic operations are at a minimum,

k. Procedure 2: This procedure evaluates the partial derivatives,
PD(1) through PD(N) where N is the number of parameters.

D. Input Data Preparation

l. Punch source statement changes
2. Punch data as follows:

a. Header Card (punched in Floating Point)
205

AN

Tdentification Columns N
Nnmber‘bf observations : 1 -10
Number of parameters 1120
€ (small arbitrary value) which
determines termination of iteration 21:-30

b. Observations (punched with decimal)

Card 1 - M (where M is the number of observations) punch
the independent and dependent variables in columns 1-10, 11-20, 21-30, etc.,
depending on the number of independent variables. Make sure the dependent
variables is punched so that it will be labeled as Y(I), and the independent

variables are labeled as Tl(I), TK(I), etc. The order is defined in the Read
statement.

3., Parameters

The parameters (étarting values) are punched once per card. THey
can be in F format, Col. 1-10, with decimal, or in E format (f .xxxxxxxxE:xx)
in cols. 1-1k. ,

E. Computer Operator Instruction

1. Insert new source statements in program.
2. Compile program using PDQ Fortran Processor.
3. To execute object program:
a. Ciear'maehine
 b. 'Load‘prOgram and PDQ Fortran Fixed format subroutines
c. Wheh computer types Load data
d. Set Switch 1l for printout desired

1 off to print Q for each iteration.
1 on to get full printout

' e. Read in data in the following order: Header csrd, observations,
and parameters ; ; : :

f. When computer comes to manual light, push start key if error
check is desired, otherwise you're finished.

O

206

C

F. Example Problem

oU = PD(1) = 1
2C1

_2u =pn(2) = e C3T
aC>

3U = PD(3) = CoTeC3T
aC3

1 dependent and 1 independent variable
DIMENSION STATEMENT:

DIMENSION A(5,L), PD(3), C(3), D(3), CNST(3), Q(5), Y(6), T(6)

READ STATEMENT:
Read 5, T(I), Y(I)

PROCEDURE 1:
X1=C(3) % T(K)
X2=EXP(X1) ,
X3=C(1)+C(2) % x2
U = X3

PROCEDURE 2:

PD(1) = 1.

PD(2) = X2

PD(3) = C(2)%T(K)¥ X2

, 207

IV. REFERENCES

1. Hartley, H. O. '"Technometrics", Vol 3 No. 2, page 269, May 1961

2. Scarborough, J. B. ‘"Numerical Mathematical Analysis", 3rd Ed.,
The Johns Hopkins Press, Baltimore, Md., 1955

O

208

GENERAL TLOW DIAGRAM
APPENDIX-PART A

1

SOURCE
SJTATEMENT
CHANGES

KEY PUNCH
SOURCE STATE-
MENT CHANGES

3 4

(CHANGE

NEW
SOURCE DECK

.

COMPILE

PROGRAM
IN PDQ

8 §

NEW
OBJECT DECK

@

209

AT VAT ST T T 2 L TTITT TUETET UL e e S I I L D T T T e B e e

YES

[3 :""""'"""“ EVALUATE
PARTIALS

g

0BJECT DECK
SUBROUTINES (
HEADER CARD, OBSERVATIONS

10

CALCULATE

CALCULATE
Qmn @© » WHERE

13y

CALCULATE

CHANGES (D5, iz 1,9
TO PREVIOUS

ESTIMATE

14

1S imn=1

FIXED FORMAT)
AND ORIGINAL ESTIMATES

LMN IS T™HE

1

NO. OF ITERATIONS)

N

21

20

QLen

NOTE:

Q(0),Q(%),Q(1) should bve
subscripted as in boxes 12,
22 and 23.

PRINT

22 |

CALCULATE
Quun (X)

23

CALCULATE
QLM ~N(1)

24 4

CALCULATE

LMAN = LM N+
| CALCULATE

ESTIMATES

CALCULATE
QLMN ((»))
i 32§g AS NEwW

IMATES

26

V=144 14 (@6)- Q(D)/(Q(ﬂ-ZCQC’Q + Q@))

27

PRINT

Quanco)
‘—
USING Ci+ VD, g4, N As New

211

VD,

PRINT

31 l B

| 8ToP

N
s

NOT
CONVERGING

| caLcuLATE

AND PRINT |

BUCKNELL UNIVERSITY

LEWISBURG, PENNSYLVANIA

Freas-Rooke Computing Center

THE AUTOLOG-DIGIKLOK SYSTEM

by

Edward F. Staiano
Director, Freas-Rooke Computing Center
Daniel E, Atkins
Senior Assistant
May 1, 1965

213

An online digital clock, “although available for most large computers,
has not been readily available for the IBM 1620. Itis the belief of the
authors that a 1620 with extended memory and disk storage is large enough
to justify the development and use of an online digital clock in an automatic
logging and program timing system. This paper describes the AUTOLOG-
DIGIKLOK System currently in use at the Freas-Rooke Computing Center,
Bucknell University.

The paper is presented in two parts. The first deals with the design
and construction of the digital clock, the hardware of the system; while the
second describes the program modification to Monitor I, the software of the
system.

Part one reviews the possibilities considered by FRCC to obtain a
digital clock and the device eventually built at Bucknell. The two major
components of the clock,the timing section and the gating-interface section
are described at the block diagram level, together with a cursory descrip-
tion of their construction.

, Part two of the paper describes the software modifications and addi-
tions to the Monitor I system. The main software modification incorporates
the clock into a system which generates a complete chronological record of
computer use. The revised software as well as the actual operating systems
are treated in detail, '

The possibilities for using the AUTOLOG software without an online
clock are discussed.

214

I. INTRODUCTION

A digital clock is a device that counts time in the form of numerical
digits rather than as positions of hands on a dial. When these digits are
represented electronically, the clock can be connected to an ele(’::tronic digi-
tal computer as an online real time input device. A reading of the actual
time may then be obtained by the programmer by instructing the machine to
interrogate the I/O channel to which the clock is connected. Thifs data may
then be used to accomplish such tasks as automatic logging of jops run on
the computer, generation of random numbers, computing the elapsed time
for program segments or entire programs, etc.

This paper is concerned with the development of a digital clock and
the associated software for an IBM 1620 computer.

The body of the paper is divided into two sections. The first section
is primarily concerned with the design and construction of the digital clock.
It begins with a survey of commercially available clocks and continues with
a block diagram description of the design of a working device. The discus-
sion centers around the logic design of the timing circuits and the gating
interface necessary for connection to the 1620 computer. :

The second section of the paper describes the Autolog software devel-
oped for use with the digital clock. The software is discussed from the
standpoint of the user and as a program modification to the Monitor I System.
No attempt has been made to discuss secondary program additions such as
a random number generator subroutine although they are available. These
are standard SPS subroutines written for addition to the Fortran II-D library.

Since many users will not have a digital clock available for use with
the Autolog program a section has been included that discussed the use of
the Autolog Program without a digital clock. A short discussion of compat-
ability with FORGO-D is included for those persons using the FORGO-D
Monitor System.

215

II. THE DIGITAL CLOCK

®

Introduction

The hardware portion of the Autolog-Digiklok System is an online
digital clock. This device, nicknamed the Digiklok, will maintain real
time, and upon instruction from the IBM 1620 will transfer a clock reading
through the 1620 I/O channel to core memory. This section briefly de-
scribes action taken by the Freas-Rooke Computing Center (FRCC) in obtain-
ing a clock and the general operation of the Digiklok which was eventually
designed and built at Bucknell University,

Obtaining the Clock

Several options for obtaining a digital clock were considered. IBM
was first contacted and responded with an estimated cost of $15, 000 for a
complete custom built unit. A formal logic design was then prepared at the
FRCC and submitted to several companies with requests for quotations on a
complete unit, logic hardware necessary for construction of the clock at
Bucknell, or some combination of these two options. The responses to these
requests are presented in Table 1. ‘

Although formal quotations were requested only for a solid state device,
the possibility of constructing the clock with electro-mechanical switches was
considered. It was decided, however, that the noise and maintenance demands
of the electro-mechanical system coupled with the small price difference be-
tween switches and 100 Kcps solid-state logic justified the construction of a
completely solid-state device. For the purposes of logging and programtim-
ing, a resolution of 0.1 second and the average accuracy of the power line
frequency were considered sufficient, and thus the AC line was selected as
a time base.

After considering the possibilities outlined in Table 1, the EECo, Q-
Series modules were selected with the idea of completing detailed design and
construction of the clock at Bucknell. The Q - Series hardware consists of
a universal circuit card (Figure 1) and three different welded, encapsuled
digital modules (Figures 2, 3, 4) which may be soldered to cards to implement
standard digital circuits such as gates, squaring amplifiers, multivibrators,
etc.

s L

LTe

O

COMPANY

IBM

Tech Serv, Inc.

Engineered Electronics,
Co. (EECO)

NAVCOR
C.E. Snow

PARABAM

ITEMS INCLUDED IN QUOTATIONS PRICE

Complete Unit

Logic cards, card files,
1 spare each type card,

Without power supply.

5 options for the necessary logic
Without spares.

and card files,
With power supply.

T-Series
CT -Series
G-Series

Q-Series Clamped
Q-Series Unclamped

No definite price offered.
No definite price offered,

Constructed basic clock
without interface, gating, or

parity.

$1700.

$2991.
$2534.
$1817.

$1363.
$1295.

$2720.

00

70
55
75

30
10

00

TABLE 1 - Results of Requests for Quotations

ESTIMATED
TOTAL COST

$15, 000

$ 2,200

$3200
$2750
$2050

$1600
$1400

$3700

o

COMMENTS

Not NOR/NAND Logic
4 card files required

100 kc logic
Fully constructed
cards

100 kc or 25 kc
cards built from sub
modules

Estimated cost for

constructing gating at
Bucknell: $1000,

pIB) 4TNOIT) TESISATUN 00FE - T 0IndTd

R O g T oY v I P [T 7 T v eer s Aoy we

. - ‘ Sk
PP S Wy W R Ty s S

4)\\ 7

:.F? ;LC?E:

e o AR 4 e A SRR S 4

ey

R agiint e SR SR AP

[
——R

218

C

3-input NAND/NOR

: Q-414

e N L
Nt 1
2—- ' rR2
3 em——— l @ n' 3 ey
4— NAND @ | 4*
5—‘ . ' INPUTS "~ 5-
f — ' $l5 7 e——
8 8 enmm—
0!2V® Gw | —— ' é O cmm—
| = I " g

GENERAL

Q-411 and Q-414 are three input NAND/NOR circuits, based on resistor-tran-
sistor logic. Q-411 and Q-414 are identical circuits except Q-411 has a clamped
output to provide uniform output voltage levels and Q-414 does not. There is a
direct input provided in each unit for additional circuit versatility. These units
function as NAND or as NOR logic according to the assigned logic level voltages:

For NAND: "1 (true) = OV For NOR: 1" (true) =6V
"o'" (false)= ~6V 0" (false)= OV
NAND output = ABC=A+B+C NOR output = A + B + C = ABC.

‘ELECTRICAL SPECIFICATIONS (NAND LOGIC)

Input: Min, Max., ° Units
Frequency 0 25.0 KC
Rise Time Q-411 cwn- 2.0 wsec

Q-414 o= 2.0 psec

Fall Time Q-411 ce- 5,0 usec

Q-414 - —t0,0 ksec

True Level 0 -0.5 volts

False Level -6.0 -12.90 volts
Input Load com 1.0 load units

Output:

Rise Time Q-411 .- 2.0 Hsec

' Q-414* » ——— : 2.0 psec

Fall Time Q-411 : -——— 5.0 nsec

Q-414* —ee 10.0 nsec

True Level 0 -0.5 volts

False Level Q-411 -6.0 -6.5 volts

Q-414 -6.0 -12.0 volts

True Level Delay . .n- 2.0 paec

False Level Delay : - 3.5 nsec
Drive Capability -—- 4.0 load units

Power Requirements: . o
-12V, 5% - 3.0 ma
+12V, 5% - 0.1 ma
-6V, +5% (Q-411 only) ——— 1.3 ma

#*Measured between OVDC and -6VDC

Figure 2 - Three input NAND/NOR
219

 MultiCircuit

Q-4a=22 Ea
| PULSE GATE " -
L0GIC mPu'!@""\N\'—" 3 .
PULSE GATE o 4 —
PULSE mmt.—-g_—"ﬂ‘ 5 ommm—

DIRECT
il

RY
i O
O

12 -—f
B1AS (]

GENERAL

Q-422 is a multi-purpose digital circuit used to produce flip-flops, one shots,
multivibrator, squaring circuits, pulse amplifiers, etc.

Q-422 has a clamped output to provide uniform output voltage levels, When in-
puts to Q=422 come from unclamped circuits, care must be taken that the am-
plitude of the pulse gate pulse does not exceed the false level of the pulse gate
logic input, For example, with a DC logic input of -8V, the pulse input must
not exceed 8 volts in amplitude,

ELECTRICAL SPECIFICATIONS (NAND LOGIC)

Input: : Min, Max, Units
Frequency:
) NAND 0 100, 0 KC
Pulse Gate Logic 0 50. 0 ‘KC
Pulse Gate Pulse 0 100, 0 KC
Rise Time:
NAND ——- - 0.5 psec
Pulse Gate Pulse ——- . 0.5 nsec
Fall Time: ' :
NAND wee 1.0 psec
True Level
-NAND 0 «0.5 volts
Pulse Gate Logic 0 -0.5 volts
False Level: v .
"NAND . -6.0 -12,.0 volts
Pulse Gate Logic -6, 0 -12,0 volts
Amplitude, Pulse Gate Pulse 5.5 12,0 volts ‘
(Positive-going) ,
Enable Time, Pulse Gate 0.5 4.0 peec
Disable Time, Pulse Gate 0.5 4.0 peec

Figure 3 = Multicircuit

' bontiimed _ @

22D ‘ .

GENERAL

Q-413 is used to increase the loading capabilities of the NAND/NOR units, Q-413
can drive up to 25 NAND/NOR inputs.

ELECTRICAL SPECIFICATIONS

Input:

Frequency
True Level
False Level
Input Load

Output:
Drive Capability
DC Levels
Rise and Fall time
Power Requirements:

-12V, 5%

Min, Max, Units

0 25,0 KC

0 ~-0.5 volts
6.0 «12,0 volts

. 1 load units

—e 25,0 load units

essentially equal to input DC levels
essentially equal to input rise and fall
time

- 15.0 ma

Figure 4 - Power Driver

221

The major disadvantage of the Q - Series is that it requires more
soldering, but it offers the advantages of design flexibility and low cost.

General Specifications

The general specifications of the Digiklok are as follows:

1. The Digiklok shall keep real time to a digital reading accuracy
of 0.140.05 seconds and shall be capable of reading out tenths of
seconds (0-9), seconds (0-59) minutes (0-59), hours (0-23), and
day of the year (0-365/6).

2. The Digiklok shall be compatible with and shall communicate with

the 1620 through the 1622 Paper Tape Reader channels with mini-
mum alterations to the 1620 system.

3. The Digiklok shall not require high speed logic due to the fact that
it is based on a 60 cps time standard and that it will be read at

about a 7 kcps rate,

4. The Digiklok shall offer a BCD display.

General Description as Illustrated in Block Diagram, DKL-01

The general design and operation of the Digiklok is now explained with
reference to the FRCC Digiklok Block Diagram, DWG. No. DKL-0l. First
consideration will be given to the operation of the time counters and second
to the reading of the clock by the 1620. The logic flow for the counting cir-
cuits is indicated by the heavy lines, and that for the reading control and
special functions by the lighter lines.

Time Base. Beginning with the functional block labeled 60 CPS LINE
in the lower right side of DKL=-01, note that it serves as the time base for
the clock and that it drives the input of a Schmitt trigger which shapes the
sinusoidal AC into a square wave of the same frequency. Although the fre-
quency of the line will vary, it will be nearly constant when averaged over a
day.

Binary Coded Decimals (BCD). The ten digit time number is counted
and represented in the clock as a binary coded decimal in which each decimal
number (0-9) is represented by its equivalent binary number as shown.

222

C

€ce

CHECK |-
ar [——
GENERATOR——— 5
—~ SC —f» SC 1.5 —= SC —> SC —~ SC —{»= SC —+ SC —» 8¢ —» S¢C —— 8c
03 TO2 TOI THe THI T TMI TS ToL T8 “TEL
Y tEiY ORbid [REERRR! FTY FITT ttt PRt OPRYH
IND IND IND IND IND IND INO IND IND IND
it $Yte Pttt 3T rRtd t1t 13t} | EEEEIIRERIXE
8CD RCD BCD BCD BCD BCD BCD BCD BCD BCD
0-d =t— O0-Q=et— 0-9 jemmemmes O-2 <= 0-9 et O-%5 @— O0-Q |peeessmy (-5 <« 0-9 <« 0-9 Eﬁ-
03 D2 Dt He M M2 M 383 s -1
} } } [} f f f) } ¥
MS MS MS MS M3 MS MS MS MS VI
DAy (D) COUNTER HOUR (H) COUNTER MINUTE (M) COUNTER SECOND (8) COUNTE
(0-2656)) (o0-23) (0-59) ©-399)
IND TO MS INPUTS OF COUNTERY
’ :SE E
De POWER 1) TRANSFER] SROUENCE SCAN SCHMITT o
() PULSES TO ——JGEMERAT! et CPS
POWER FAILURE |—= . CONTROL TRHGSER
SUPPLY SENSER C\n?:ﬁ‘\‘% (Ec\ ::';a _D?m LINE
3ym SlGNN- £~ -S=TAPE TENSION, NOT ~NON-PROCESS , TAPE TENSION,
, GENERATOR SMULA P TN LRVEL T INTERLOCK
SC - SAMPLE CIRCUIT (AND'GATES) o= ; i
+8 = READER READY
IND- VISUAL INDICATOR | o — FREAS-ROOKE COMPUTING CENTER
BCD - BINARY CODED DECIMAL COUNTER 8 e DoV IoM 1620 b— BUCKNELL UNIVERSITY
MS - MANUAL SET INRUT \ el = = ¢
_ | iNPuT —ouTRLT E§ . | FRCC DIGIKLOK BLOCK DIAGRAM
S 2R DITh N (:n'ogM ~— o|-5+0 [DESIGNER: DE ATKINS | MAY 4, 064

MEMORY | 8Y: 8. BE®S JOWGNG. DKL-Ol

Decimal BCD

number equivalent P

W
0000

0001
0010
0011
0100
0101
0110
0111
1000
1001

VOO WO

Table 2. Decimal to BCD Conversion

Each bit of the BCD is represented by the affirmative (1) output of a
bistable multivibrator, commonly called a flip-flop. The group of flip~
flops necessary to form one decimal number compose a BCD counter; a
count of the maximum decimal number 9 requires four flip-flops. In the
Digiklok, however, some counter maximums are less than 9, for example,
the ten seconds counter counts to a maximum of 5 and the ten hours counter
to a maximum of 2. These BCD counters therefore require only three and
two flip-flops, respectively. In this report, unless otherwise defined, the

term counter will refer to a BCD counter consisting of two, three, or four
flip-flops.

Counters. With these terms in mind, continue following the counting
logic on DKL ~01l. When the clock is operating in the normal automatic mode,
the 60 pulse per second (pps) output of the Schmitt trigger drives through the
Manual Setting Control into the input of the first counter (Sy) which divides
the frequency of the signal by 6, i.e. the output triggers in the next counter
if and only if Sy has counted 6 input pulses representing 60/6 or 0.1 seconds.
On the 6th pulse, Sy resets to zero and begins recounting.

The output of counter Sy drives the input of the tenth of second counter
(S1) which immediately upon reaching a count of 10, resets to zero and trig=-
gers a count in the S2 counter. Likewise when the S2 counter reaches 9+1,
it resets and triggers a count in the ten second counter which counts to 5
before resetting and triggering the one minute counter (Ml) on the 5th pulse.

The S counters thus effectively divide the 60 pps time base into sixth, tenth,
unit and ten seconds.

Similarly the minute (M) counters count and register the output of the
S counters, reset to zero after reaching a decimal count of M2=5 and M=9,

C

224

®]

and transfer a count to the hour (H) counters. These counters reset to zero
on the 24th pulse and transfer a count to the day (D) counters which total a
maximum of 365 or 366 in a leap year,

Reading and Data Transfer. For the time to be read by the 1620, the
outputs of the BCD counters must be gated into the computer input section.
Data is read from the clock through the paper tape reader channels and thus
the Digiklok operation must simulate that of the paper tape reader. Data
transfer is by serial digits, parallel bits and is accomplished as now de-
scribed.

Beginning at the large functional block labeled IBM 1620 INPUT OUT -
PUT SECTION, note the line from it to the Scan Control.. When the 1620 is
instructed to read the Digiklok and no transition is occurring as signaled by
the connection from the Sy counter to Scan Control, the Scan Control will be
enabled by a level change. It in turn will enable the Sequence Generator
which will produce a series of 11 transfer (T) pulses on 11 different lines,
each connected to one of the Sample Circuits (SC) shown at the top of DKL~-01.

The input to the SC function blocks consist of the transfer lines and
the outputs of one BCD counter through a lamp indicator and appropriate
driving circuits. When the T level is present on the input to a particular SC,
the output of its counter is transferred to the data lines (parallel lines at top
of drawing), through the Check Bit Generator, and into the 1620 Data Input
Register. The Check Bit Generator maintains odd parity which is used for
error detection, i.e., it produces an extra bit on line 5 if the sum of the ''1"
bits on line 1 to 4 is an even number (0=0dd).

The output of the BCD counter selected by the Sequence Generator is
now in the 1620 Data Input Register but the data is not transferred into core
memory until a sync pulse is generated by the Digiklok Sync Pulse Generator
and detected by the 1620. As indicated on the Block Diagr’am,’ the Sync
Generator is driven by the Sequence Generator. The sync pulse, however,
lags the T pulse time enough to insure that the inputs to the 1620 are stable
before being read. Upon detecting the sync pulse, the 1620 transfers the
data to core memory within 20usec and is ready to read data from the next
SC enabled by the Sequence Generator.

Fach time the 1620 is instructed to read the Digiklok, this reading
sequence will be initiated at the D3 counter and continue serially throughthe
End of Line signal (E/L). When the 1620 senses the E/L bit on line 8, it
will negate the ''1" signal to the Scan Control, the Sequence Generator will
be inhibited, and data transfer will stop. The computer will proceed to
execute the next programmed instruction.

Other Function Blocks. The Signal Simulator above the IBM function
block must supply S levels to various inputs of the paper tape channels to

225

simulate control signals not used in the operation of the clock. 'S" levels
are IBM nomenclature and are defined as follows:

+3
-S

. -125 48V to "63 87V

The power supply provides the proper levels and necessary current
for the operation of the logic modules from a 115 VAC line. The Digiklok
includes a relay to detect power failures which turns ah indicdtor on, and
negates the +S Reader Ready level from the Signal Simulator. The =S on
this line will cause the computer to pause and indicate '"Reader No Feed"
on the console light display if the clock is addressed before being reset.
The Reader Ready line is set to +S when the clock is manually set to the
correct time,

Construction

Detailed designs were prepared during the summer of 1964 and con-
struction began ift September, 1964. The clock was essentially completed
in February, 1965, and since then has been in continuous operation at the
FRCC with no major failures or design errors detected.

The total cost for thé project is summarized in Table 2.

ITEM COST

* Ay

EECO Q-=-Series Logic including hardware to

construct 6 spare cards $1358.61
Other hardware including that necéssary for

=12VDC and -6VDC Supply $ 202.30
-12VDC Power Supply and Spare $ 60.00
Cabinet : $ 29.07
Postage $ 22.06
Telephone Expenses ' § 9.62
Labor $ 700 .00

TOTAL $2381.66

TABLE 2 - Summary of Expenses,
- Project Digiklok

226

AN
M

III. THE AUTOLOG SOFTWARE

Introduction

In this section of the paper the Autolog System is described first from
a users standpoint, secondly as a program modification to the Monitor I
System, and lastly as a system for use with or without a digital clock. Pro-
gram listings and the associated flow charts are included in the appendices.
The step by step procedure for adding the Autolog Program to the Monitor I
System can be found in Appendix B.

Before commencing with a discussion of the details of the Autolog
System it might be appropriate to describe the entire system in general
terms.

The Autolog System is used to generate a chronological table of jobs
run under the Monitor I System. FEach time a job is run a log record is
entered into a log table area that has been reserved on the Monitor I disk
pack. As presently operating, the table can handle as many as 400 entries
before it must be dumped. The information in the table can be retrieved in
either of two ways. The normal mode of retrieval is to run an edit and
punch program that edits each log table entry, punches the edited entry on
a card, and reinitializes the table so that it is ready to receive up to 400
new entries. An SPS listing of this edit and punch program is included as
Appendix C. The second mode of retrieval is one that is not normally used,
but rather is available so as to protect programs stored on disk by insuring
that only 400 entries are made in the table. This routine is part of the
Autolog program and with a minimum of operator attention will automatically
dump the table to cards and initialize the table for 400 new entries, The
system is designed in such a way as to prohibit running of a program if the
log table is full.

227

Figure 5.

An example of the output from the edit and punch routine is shown in

for each month.

Code No.

11176315
11177211
21109391
11177211
11177211
11177211
11177211
11171103
11171103
11177311
11174316
21109391
21109391
11177311
11176315
11112308
11174316
11177211
11177311
11177211
11177211
11107393
11107393
21109391
11177211
21176719
11177211
21109391
11177211
11174316
11176344
11107393
11177211
12177001
13177002
21109391

121109391
11177311
11176344
11177211
11176313
13177002

Machine Date

1620A

1620A

1620A
1620A
1620A
1620A
1620A
1620A
1620A
1620A
1620A
1620A
1620A
1620A
1620A
1620A
1620A
1620A
1620A
1620A
1620A
1620A
1620A
1620A
1620A
1620A
1620A
1620A
1620A
1620A
1620A
1620A
1620A
1620A
1620A
1620A
1620A
1620A
1620A
1620A
1620A
1620A

The output from the edit and punch routine can now be used for N
any type of analysis desired. Figure 6 shows the output from one analysis A
program. This particular program condenses the output into a daily listing"

Time On TimeOff Net Time Programmer
03 31 65 1350 279 1423 130 00 32 451 CONNERs T
03 31 65 1423 245 1425 265 00 02 020 DEFEOsBRENT
03 31 65 1425 406 1426 469 00 01 063 MORGAN
03 31 65 1426 573 1427 409 00 00 436 JANT
03 31 65 1427 552 1430 330 00 02 378 DEFEOsBRENT
03 31 65 1430 430 1431 266 00 00 436 HAUN
03 31 65 1431 412 1432 249 00 00 437 Z IMMERMAN
03 31 65 1432 393 1433 588 00 01 195 STOLL DAVID Re
03 31 65 1434 100 1436 282 00 02 182 STOLL DAVID R
03 31 65 1436 392 1436 558 00 00 166 FRANTZs Le Is
03 31 65 1437 069 1449 238 00 12 169 UHLERs ANDREW S
03 31 65 1449 348 1457 381 00 08 033 MORGAN
03 31 65 1457 485 1459 584 00 02 099 MORGAN
03 31 65 1500 098 1500 510 00 00 412 PRIESTERsPL
03 31 65 1501 027 1506 564 00 05 537 PANCZYSZYNsFRANK
03 31 65 1507 079 1513 287 00 06 208 RODNEY sPoF e
03 31 65 1513 407 1516 288 00 02 481 UHLERs ANDREW S
03 31 65 1517 107 1518 292 00 01 185 JANT
03 31 65 1519 564 1525 324 00 05 360 1FRANTZs Le Io
03 31 65 1525 331 1527 173 00 01 442 WARNER
03 31 65 1528 278 1530 412 00 02 134 DEFEOsBRENT
03 31 65 1530 522 1533 094 00 02 172 DEFEOsBRENT
03 31 65 1533 260 1535 160 00 01 500 DEFEOsBRENT
03 31 65 1536 278 1537 345 00 01 067 MORGAN
03 31 65 1537 449 1539 034 00 01 185 JANT
03 31 65 1539 180 1539 565 00 00 385 WEBER Ge Lo
03 31 65 1540 228 1542 140 00 01 512 GELLER
03 31 65 1542 246 1543 311 00 01 065 MORGAN
03 31 65 1543 422 1546 066 00 02 244 CANTONI»JIM
03 31 65 1548 029 1552 094 00 04 065 UHLERs ANDREW S
03 31 65 1552 206 1555 171 00 02 565 STIDFOLE sR
03 31 65 1555 284 1558 257 00 02 573 DEFEOsBRENT
03 31 65 1558 556 1559 431 00 00 475 WARNER
03 31 65 1601 303 1605 286 00 03 583 GATSKIsRel e
03 31 65 1605 450 1606 021 00 00 171 FRANTZs Le 1o
03 31 65 1606 281 1609 410 00 03 129 MORGAN
03 31 65 1609 516 1610 584 00 01 068 MORGAN
03 31 65 1611 110 1612 046 00 00 536 BERRIERJV 3-31-65
03 31 65 1616 064 1619 447 00 03 383 SMITHs DAVID Fo
03 31 65 1620 238 1622 312 00 02 074 CANTONI s JIM
03 31 65 1630 491 1635 119 00 04 228 JOHN COX
03 31 65 1641 576 1642 591 00 01 015 FRANTZy Lo 1o P
. lﬁ,«‘/
Figure 5

. 228

AUTOLOG DAILY TIME REPORT
03 MONTH 1965

NO OF

DAY ENTRIES
1 110
2 28
3 105
4 107
5 64
6 38
7 45
8 105
9 142
10 142
11 206
12 227
13 152
15 198
16 68
17 24
18 216
19 166
20 120
21 127
22 233
23 204
24 151
25 204
26 149
27 65
28 27
29 124
30 122
31 95
TOTAL ‘3,764

- FIGURE 6

229

TOTAL TIME

HRS MIN SEC
9 9 45
11 16 0
T 20 27
5 21 38
3 57 22
1 25 51
3 46 17
6 37 49
12 7 59
20 37 58
.16 42 25
17 30 27
4 59 22
12 56 24
12 39 18
6 41 32
12 37 58
14 58 55
7 26 21
11 24 16
16 58 25
9 50 31
11 52 44
13 59 34
12 37 5
6 58 37
1 38 57
8 6 21
9 43 48
10 30 58
16

301. 55

Autolog from a Users Standpoint

In writing the Autolog modifications for the Monitor I System an effort
was made to minimize the changes in the operating procedure of the Monitor
I System. It was assumed that fewer operating errors would result if the
deviation from normal Monitor operation was small. The only change made
in the operating procedure was one that will help avoid ¢onfusion when using.
the multi-processing feature of Monitor. This change i8 not ¢ritical to the
operation of the Autolog and could be easily deleted from the System.

To affect the use of the Autolog the user must simply fill in certain
columns of the Monitor Job Card with the proper information. The twenty -
eight columns of the JOB card normally used for comments, have been taken

+ 4 JOB 11177001E. F. STAIANO..... TEST
Eight Twenty Digit
Digit Programmers
Numeric Name Field
Job
Code |
COLUMN: . :
31 40 60

SAMPLE JOB CARD

over by the Autolog routine. These twenty eight columns are divided into

two fields. (See sample JOB card). The first of these fiélds, which must
contain only numeric information, is eight digits long. These eight digits are
stored as part of the log record and can be used for charge codes, job classi-
fication, student numbers, etc. The second field, which is twenty digits long,
long, can contain either alphabetic or numeric information; although the first
character in the field must be alphabetic. This field should ¢ontain the pro-
grammer's name plus any auxiliary information the progratrtner wishes to
record, ‘

230

Both of the two fields mentioned above must be filled in properly. If
either of these two fields is improperly coded or left blank the job is not
processed, the operator is informed of the error and the supervisor goes
into 2 JOB card search. The above information is all that is required for
the Autolog when used in conjunction with the digital clock.

The change made in the operating procedure of the Monitor I System
is designed to solve the problem of relating which answers belong to which
program. Anyone who has used the multi-processing feature of the Monitor
System has probably experienced the above program-answer puzzle.

This problem is easily solved by punching a header card and a trailer
card for each program. As soon as the Monitor types the JOB card, the
information that was punched in the programmer's name field is punched on
a card. After the job has been completed and before the END OF JOB mes-~
sage is typed, two more cards are punched behind the output from the job.
The first of these two cards will cause a page skip when the cards are listed
on the IBM 407. The second card is a blank that makes it unnecessary to
use the non-process run out button to get all of the output f{rom a program.

The above modification has greatly simplified the problem of multi-
processing with Monitor. The operator does not have to remove each job
as it is completed and is thus free to prepare jobs for stacking and to watch
for check stops caused by undefined variables in Fortran II programs.
Since the programmer's name appearing on the job card is typed by the
monitor system, the problem of associating error listings with the appro-
priate program is non-existant.

Incorporation of the Autolog Program into the Monitor I System

The Autolog Program is made up of three principal parts. The first
part of the program is executed through a set of interrupt instructions
placed in the JOB CARD PROCESSOR routine in the Monitor I Program. The
second part of the system is the log table dump routine which is automatically
called into action when the job table is full. The third part of the program is
executed through a set of interrupt instructions placed in the END OF JOB
PROCESSOR routine in the Monitor I program.

The entire Autolog program requires 32 sectors of storage on the
disk. Flow chart #1 in Appendix A shows the various sections of the Autolog
program and their locations in disk storage. The second block in the flow
chart indicates the location of the sector that contains the disk control field
for the current log table entry and the automatic table dump routine are
common program segments, i.e., they are in core with the JOB PROCESSOR
patch and the END OF JOB PROCESSOR patch.

231

The process of automatic logging is perhaps best explained by follow-
ing through the processing of a Monitor Job.

As soon as a JOB card is sensed by the Monitor Control Record
Analyzer routine control is passed to the JOB CARD PROCESSOR routine
in Monitor. This routine analyzes the information contained on the JOB
CARD and types this information with the aid of the TYPE A MONITOR
CONTROL CARD routine. After the JOB card has been typed and before
control is transferred from the JOB CARD PROCESSOR routine a set of
patch instructions, inserted in this routine, reads in the Autolog program
from disk storage and branches to the beginning of the program. This sec-
tion of the Autolog routine first checks the appropriate Autolog fields read
from the JOB card and then depending upon the validity of these fields either
continues the logging operation or informs the operator of the presence of
an error in the field or fields. Should either or both of the fields be im-
properly coded the Autoleg routine sends the Monitor into a JOB card search.
The program containing the improper card is not processed,

Assuming that the JOB card is properly filled out, the Autolog next
decides whether or not the previous job processed ended through the END
OF JOB routine. This checking feature was necessary to account for the
cases when Monitor is destroyed in core and a cold start is required. FEach
time a program ends in this disastrous fashion an identifying record is
placed in the table.

Using the information punched on the JOB card in columns 33 thru 60,
the Autolog program reads the digital clock and stores on disk a JOB begun
entry. This entry is made in the sector specified by the current log table
entry disk control field. Upon completion of this task the Autolog executes
the replaced Monitor instructions and transfers control back to the JOB
PROCESSOR routine in Monitor.

No further interrupts are encountered until the job has been com-
pleted and Monitor branches to the END OF JOB PROCESSOR. At this
point the second interrupt occurs and the second section of the Autolog pro-
gram is read into core. After checking several indicators, the log record
that was started back in the JOB PROCESSOR routine is read back into core.
At this point the clock is interrogated again and the reading is placed in the
log record which is in turn written back into the log table, . The current log
table entry disk control field sector address is then incremented by one and
tested for size. If the table is full, control is transferred to the table dump
routine. If the table is not full the replaced Monitor instructions are executed
and control is returned to Monitor.

The automatic table dump routine does not edit the log table entries

as they are punched on cards. This routine dumps the table exactly as it is
stored on the disk. A separate program must be used to edit this output. @

232

, ' Genverac
C : Fiow CHaer
/ Jos Cuo\

Enrse Twe

ZInvagRooy
|
Proces /
Y o . Jo8 Fesom
Lecorp +u
THE THASLE,
N/
M-/"
4

ﬁND (-7 .Tog\
] |

Tvrseever

Loe Ewrey p
L THIS Jo8 eocessor

Execvre

Bexgcep

AMomTo #

Twsrevemon

1
Figure 7

@)

233

Should the above job have ended abnormally, the log record would
have been completed by the JOB PROCESSOR interrupt program. N

For further details of the Autolog program the reader is referred to
Appendix A which contains flow charts and SPS listings of the program.

Special Features of the Autolog System

Operation without the digital clock. The Autolog Program can be used
without a digital clock in either of two ways. The first way requires that the
three Read Numeric Paper Tape instructions, used for reading the clock, be
changed to Read Numeric Typewriter. This would require the operator to
enter the time from the typewriter at the beginning and end of each job. This
has the obvious disadvantage of slowing down the processing of programs
while it has the advantage of forcing each user to log on and off the machine.

A second way to utilize the Autolog Program without a digital clock is
to NOP the Read Numeric Paper Tape instructions and log only the pro-
grammer's name and the job code, This would provide a record of who used
the machine and for what job but would not give any information concerning the
amount of time used. This change would not increase the time necessary for
logging and in addition would not require any operator intervention.

Compatability. The Autolog Program is compatible with FORGO-D.
Certain features of FORGO-D are undesirable for automatic logging, however,
and a further modification has been made to Monitor and FORGO which elimi-
nates these disadvantages. These changes put FORGO on the same level as
Fortran II, SPSII and the DUP routines. The double comment card has been
eliminated in favor of a %% FORG control card. This card can be processed
by existing Monitor Subroutines and results in a far simpler modification than
FORGO-D. All halts have been removed from FORGO to allow for multi-
processing without operator intervention. This modification for FORGO can
be used with or without the Autolog program.

O

234

PPAD 523 C
Rev. 2/65
Rev. 4/65

FORTRAN II INCREMENTAL PLOTTER SUBROUTINE
(DFIPS)

Pablo Larres

Princeton-Pennsylvania Accelerstor

Princeton University, Princeton, New Jersey

July 6, 1964

AEC Contract No. AT(30-1)-2137

235

PPAD 523 C

Rev. 2/65
Rev. 4/65
N
FORTRAN II INCREMENTAL PLOTTER SUBROUTINE . A4
(DFIPS)
Introduction

DFIPS is a general purpose routine for use in FORTRAN II pro-
grams for an IBM 1620 disk system with a Calcomp 565 Plotter. Its main
function is to provide with a single routine and as few FORTRAN state-

ments as possible a complete drawing.

Functions of Subroutine
The DFIPS subroutine will accept one pair of arrays at a time
several of which can be included in one drawing. The first set of arrays:
for a drawing will have scaling performed on it, or it will give the
scaling information; also the axes will be labelled as well as the draw-
ing title will be drawn. Other sets of arrays will be superimposed on

the same axes allowing 1/2" over the edges.

Subroutine Calls

There are 3 general types of calls to DFIPS, each of them ac-
complishes a specific task. The first type starts a new drawing with
its labeling and scaling and draws the first points or curve. The
second type superimposes on the axes drawn by the first call additiognal
points or curves. The third type is for any additional labeling necesgsary
beyond what is normally obtained by call type 1. Calls type 1 and 3
have &t several places optional arguments which should be included only
if they are necessary, since not all arguments have to be present at all
times.

General Call (Type 1)
CALL DFIPS (X,Y,N,M,SX,XMIN, DELTX, YMIN, DELTY,R1,R2,R3) is the
general call which starts a new drawing. The first two arguments are
the names of floating point FORTRAN arrays. The successive elements of

which contain the abscissas and ordinates respectively of the data points

236

L e e e e e

O

PPAD 523 C
Rev. 2/65
Rev. 4/65

to be plotted. The third argument (N) is a FORTRAN integer or integer
varieble which specifies the number of points to be plotted. The_fourth»
argument (M) is a FORTRAN integer or integer variable whose 2 low order

digits take the following meaning:

low order digit (units)
if -1 draw line connecting points without drawing
markers at the points
O draw line connectlng points ‘and also mark the p01nts

1 only draw marks without connecting the points

If the units position had an O or 1 then the tens position
will bve interrogated to determine which marker is to be used for the
point according to the following:

C = dot |
= octagon
= plus sign
= triangle _ ‘
= upside down triangle
square
= diamond
= asterisk

= four pointed star

VW ® N N FEW N
1

= gtar

The hlgh order digit (thousands p051t10n) will take a
meaning if the line is to be drawn (1ow order dlgit 0 or -1) and it w111
be: if 1 draw dashed lines connecting the points; if any other number
draw full line. o

Examples

If M = 30 the points will have triangles around them and be
connected by a solid line.

237

>

PPAD 523 CV

Rev. 2/65
Rev. 4/65

’ If M= —lOOl the p01nts will be connected by a dashed 11ne
and no marker drawn. '

~ If M= 1001 the points will be marked by a dot and no llne
will connect them. (NOTE: When a number is made negative the - 81gn

goes with the low order digit.)

The next argument (SX) refers to the length of the X axis in
inches. The Y axis is always fixed at 9 inches; and the.X axis at
whatever length is indicated by this argument which must be in floating
point formvahd canndt exceed 99. inches. If‘it is not an integer
number, of inches its value will be chopped to integer. If it is desired
to pre-select the scale, the next‘h arguments are entered; otherwise they
are not included. The first of them (xMIN) represents the lowestlvalue
that will be printed on the X axis; the next is (DELTX) the number of
units per inch along the X axis; the others are Y axis equivalents of
them. (NOTE: If XMIN is some odd number such as 5121.3562 and DELTX
200. The values on the scale will represent 5121.3, 5321.3, etc., so
care must be taken in selecting values of XMIN and YMIN, and not just

the lowest values in the arrays.)

The last 3 sets of arguments (Rl, R2 and R3) provide the

drawing title, X axis and Y axis labels respectively.

Each of them can have from 1 to 11 arguments. They constitute
essentially what would be found normally after a PRINT statement; that
is a reference to a FORMAT statement number followed by a list of elements
(if necessary) each of which is separated by a comma. In order to iden-
tify the FORMAT statement number it must be preceeded by a $ (dollar 51gn),
so the indicator character ($) can be thought of as representing an
imaginary WRITE ON PILOTTER type statement.

238

\‘\vv';y/

~ PPAD 523 C
Rev. 2/65
Rev. 4/65

There are some important restrictions imposed by the compiler
on this part ‘

a) Maximum length of 80 characters of output.

b) FORMAT statement must have preceeded in the program its
use. _

¢) No DO lbops implied or otherwise allowed; but if (A(I),
I=1,5) is desired it can be written as A(1), A(2), A(3),
A(4), A(5) without any problem.

d) No carriage returns(/) can be given in the FORMAT state-

ment; but the slash can be valid in a Hollerith string.

Note also that as written the program can handle only up to 11

arguments (a FORMAT statement number and 10 items on the list).

On writing a line all leading and trailing blanks are eliminated

for speed.

TYPE 2 CALL
CALL DFIPS (X, Y, N, M)

This call is used when it is desired to fit other sets of data
points in the same drawing. No.scaling will be performed for these; they
will only be fit on the same set of axes. .A general call must have pre-
ceded this statéﬁent. If a point falls more than 1/2 inch outside of
the limits of the drawing, a card will be punched containing the identi-
fication for the point, its coordinates and the message "out of range".
In this callkthe X and‘Y have the same meaning as on the previous case;
the N will cbntaiﬁ thé»number of points; and M has the same meaning as

before.

TYPE 3 CALL
CALL DFIPS (X, Y, N, R1)
This call is used when it is desired to add another line of

writing at a specific point. It must be preceded by a general call.

239

PPAD 523 C

Rev. 2/65
Rev. L4/65

The - X and Y are floating point representation of the location where this
title is to appear. If they are not given the data will be written where
the pen is (at the end of a line to identify it). This line of data
will normally be written in letters .18 inch high (size 3 since all sizes
are multiples of .06) and oriented parallel to the X axis. The element
N if present can modify both of these. Its value will indicate size
number (if 1 letters will be .06 inches high, if 5 then .3 inches etc.),
and its sign orientation; positive = parallel to X axis, negative =
parallel to Y axis. Note: Only the last digit of size number will be
used so maximum size possible is .54 inches. The last set of arguments
being the data to be written. For an explanation see Rl, R2 and R3 ex-

planation in the general call.

RESULTS

The results will be a drawing which will have the axes drawn
with tick marks of .l inches in length every inch in each of the axes.
At each tick mark will be the value on the scale at that point. If the
values are between 1.0000 and 999.9999 no factoring will be performed on
them; but otherwise they will have a multiplication factor associated
with them. The numbers will consist of up to 4 decimal places with the
trailing zeroes deleted for speed and neatness. These numbers indicating
scale will be .06 inches in heightand .O4 inches in width with .02 inch
separation between numbers. The units per inch used on the scale will
be an integer or an integer times an appropriate power of ten (only 1,
2,4,5, & 8 are used, example .02 units/inch or 5000 units/inch) such
that all the points in the first array are included in the drawing or as
given by XMIN, DELTX, YMIN, DELTY. In the scaling process both for the
X and Y axes their respective maximum and minimum values are obtained.
Because only 4 places are output after the decimal point on the scales,
the points should differ by at least 1 in their fourth most significant
place. (Example: if X max = .00324658 X min should be < .00324558 so
that the scales show correct values.) The labels for the axes are with
letters .18 inches high .12 inches wide with a space .06 inches wide

240

»

PPAD 523 C
Rev. 2/65
Rev. L4/65

between letters; They sﬁarf .6‘inches~éway from the interseétion of the
axes. The drawing title will be below the X axis label in letters .24
inches high .16 inches wide and .08 inches apart. These dimensions are
importent to know the number of characters that fit ih a particular size
axis (always 1" allowance should be made in case scaling is performed so

the scaling factor has space to go).

ERROR MESSAGES
Non Fatal:

If a point falls outside the normal drawing'area (allowing 1/2
inch overlap) a card will be punched containing all information on the
point T IR
Fatal: P : :
These are typed as ERROR DFIPS I meaning
I = 0 scaling is to be performed on a type 1 call and number
‘ 'of points on afray (N) is iess than 2
I=1 écaling is to be performed on a type 1 call and on one

of the axes its maximum and minimum values are equal
I = 2 line to be drawn with zero points on it
I = 3 wrong number of parameters in a call
I =1L on call type 1 the length specified for X axis is > 99

inches or < 1. inch

On all Qf these program will halt and if start is pressed
it will return tévmaih program. | { A

I=5 on call type 3 the size of character to be drawn has been
specified as O, Options available: a) Pressing start will neglect the
title or b) Press insert, type 42 R-S will draw it size 3 with

orientation parallel to X axis.

- 241

GENFRAL

DIMENSION X(100)sY(10C)sTITLE(I0)eXL(I0)oYLI2O)
O FORMAT (El4e7sF14e7911911415)

10 FORMAT (1
11 FORMAT (&
1 N=
"2 READ 94XP
ICALL=ICA
GO TO (3,
3 X(N+1)=XP
 Y(N+1)=YP
N=N+1
GO TO 2
4 READ 11,45
READ 10,7
IF (10P)

41 READ 11 +sXMINSDELTXsYMIN, DFITY

PLOT PROGRAWM

044)
El4.7)

sYP o ICALL »TOP oM

LL+1
4959697) 9 ICALL

X
ITLEsXLsYL
419424941

PPAD 523 C
Rev. 2/65
Rev. 4/65

CALL DFIPS(IXsYsNsMeSXaXMINGDELTX9YMINGDFELTY+sS10sTITLE(L1)TITLE(2),
ITITLE(3) o TITLE(A4) s TITLE(S) o TITLE(O) s TITLE(T)oTITLE(B) s TITLE(9)
2TITLECIO) 9810 XL U)o XL (2) o XL (3) o XL (&) o XL (5) o XL (6) s XLIT)eXL(8B)
'XL(Q),XL(IO)9$100YL‘l)oYL(Z)'YL(3)9YL(4)’YL(5)’YL(6)9YL(7)9YL(8)

49YL(9) YL
GO T0 1
42 CALL DFIP

(10))

S(XaYsNeMeSX

S10+TITLE(L)»TITLE(2),

.tITLF(B)’TITLE(Q)9TITLE(5).TITLE(6)oTlTLr(7)oY!TLC(8)oTITLE(9),
2TITLECIO0)Y 9310 XL (1) o XL (2) o XLU3) o XL L) XL (5) o XL (6)sXLIT)sXL(B)
3XL(9)9XL(1“)9$10’YL(1)oYL(?)oYL(B)oYL(“)’YL(51.YL(6)’YL(7)9YL(8)

GeYL(9) oYL
GO 10 1

5 CALL DFIP
GC T0 1

-6 RFAD 104X
IF (10P)

61 READ 114X

(1n))
S(XeYeNeM)
L

61462961
PsYP

CALL DFIPS(XPsYPsMoSIN o XL (1) aXL(2)eXLU3) oXL(&L)sXL(5)oXLIE)oXL(T),

IXL(8) o XL
GO TO 1

62 CALL DFIP
IXL(B) e XL

GO 170 1
T CALL EXIT
END

NeNCNNNNNE =90
2,00C0000F=01
4e0DCONOOE=D"
64 0NCONAAE~N]
84CLOCO00E=0]
14 0000NCOE+ND
1420C0000E+0N
1.40C000NF+00
1.6N0C000E+N0
1.8700000E+00
240000000E+20
242000NNAE+AN
2447C0DNOF4NA
2.630NNNAAE+NN
2.8700NAOF+00
3,00 0N0NE+ND

9)eXL(1N))

St o$109XL(1)9XL(2)'XL(3)9XL(4)oXL(5)0XL(6)9XL(7)9

9)sXL(10}))

04DOCNNNNE=-99
1.9866932E=01
348941834E-01
5e6464247F=01
7¢1735609E-01
8e4147N98E~01
9.3203908E-01
9.8544973E-01
949957360E-01
947384763E-01
940929742F=01
84084964 0E-01
647546318F=01
5.1550137F-01
343498815F=01
146112001E=-01

111
211
311
411
511
611
711

81
914
101

1111
1211
1311
1411
1511
1611

o PPAD 523 C

Rev. 2/65
: Rev. L4/65
2 2NNNNORFENNE (B3 T4140E=N2 ’ 1711
w R,4000NNNAT+0N=24,5554])10E=-01 \ 1811
B A UNANEHCN=4e4252044E-01 1911
2 LNONANNE+NA=-641185780E-01 . ' 2011
e NONONNF+NN=Te5680249E=01 2111
Lo 2 00 DNF+NN=847157577F =01 : 2211
4o bR ONONE+NN=Q,516N2NTE=-D1 2311
Le GNP ONNAFERN=0,923601NNE-0] - 2411
LR CANAATLNN=0,061646NF-"1 ‘ 2511
5eNNOANANF4NN=0,5892427F=01 2611
Be2NNONNNE+NN=R48345456F =01 2711
5e4NCNNANE4NN=T o T2T6LLKRE=01 2811
M e ENNANNAF4AN=64.2126663C=01 2011
R e RANAANANF+NA=L 4 64EN2T1TE=N] 3011
10-1001
Te
CRAWING NQOo 1
X
F(x)
an n
SINE .
NgNLUMNNANE -0] ,00NNNTLERON 112
2.00N0NNNNF =01 9,800565TE=-01 212
L 4ONCONNNF=N] Q,2106N5%0F=] 312
6eNNCONDONF=N] B42533561F=01 412
3,NNANCANE "] 6496TN6T1F=0] R 512
LeOONCOONF+0N 54403023050 : 612
1.27°00N0NF4AR 3,6235775F=01 712
1e4N00CONF+NR 146996714F=-01 812
1e670NAONF+7N0=2,9199520F=02 012
1.8000000F+00=242720200FE=01 : 1012
2 NNPNNARF4NN=4,1614682E-01 1112
2420000 0F+0N=-5,8850111F=01 1212
2 4N ONNANELL AT 4377037 F=N) 1312
2eENCONNNT+0N=8 56PB8RTEE=D] - 1412
2 ONONONAT+0N=044222224LF =01 1512
2, ONNNNANTE 4N ,8970240F =01 1612
3, 2) NNAAELAN=0, 082047 TF=N] - 1712
34N LANNANF+NA=D4,6670819FE=-01 1812
. ENTNANNF4NN=B 40675841 F-01 : 1912
AL BOOONANFLON=T 0726771 F~-0N1 , ‘ 2012
LoNONOANAE+0NCh ¢5264362F =01 2112
be NPNNNNAF4N0=4 4 ON26NR2E=N] ‘ , 2212
L4edlNRONOT+0NST,NT33287E-01 : 2312
LebNONANAE4RN=]1,1215252E=N] 2412
Le8OLAPANF+NN 8,T408980F-N2 . ' ‘ 2512
54NNOANARELAN 2 ,8366218F=0N1 ' 2612
52N ONANF+NN 4,685166TF=01 ‘ o272
De4NCONANEHENN £,346028T7F=01 _ ~ 2812 .
546N IANANELNN 7,755658T7F-01 : 2912
5e8NNONNCE+0N 848551951E=01 : 3012
_ L 20 1000 s
‘E@ | : | 30 -1
CUSINE - . :
NePLORINOF=09 N NOROAINCE-90 - 116
2eNANNNAAELAYL 1,72A3253F=N2 e 216
LN ORAAAE-NY 4,216L5T6F=02 ' ‘ 216
650 0TCACNNE=LY 6,1260042F=02 i o243 o ' ' 418
BeNNNNNONAE-NAY £,80245R0F=N2 T : : 516

LeTRCPANNF+NC, 6038412585E-02 o . 616

142000N00E+0N 4,9813959F~02
144000000F+N0 246712890E-02
146000000F+00~542156232E~03
1e80000CCF+N0=446118163E=02
2e0000000F+00=9,6133782E=02
2e2000N0ONF+00N=1,54504N8F=N1
2.4700NN0F+N0=241757276F=01
2o BOCO0ONF4+NN=2 , 742167 TF=0N1
2.,8000NANF+MrN=2,0525508F=N1
B NANNAANE +0N=2 ,NORTTIQE-D1
342000000F+00 1,1281171E=-01
3447000 0NFEAN 3 ,2034359F-N]
2, HNDCO00CF+10 3,8915125F=01
3,8000NANATLAN 3,7185877E-01
4oNGOOOONE+NN 3,1632622E-01
Le NOCNONF+NN 24,4094434F=01
4o 4ONNNANF AN 1,52379238F=01
Lo 6 NNNANNE+NN 5,7728242F =02
4e8N(DR0NF+NN=446950622F=02
54 NANONANF+NN=]1 67857 TS5F =01
5420N0NANF+NN=2,8394344F=0]
5¢4NONCNCF4+4N0=4,13201108F=01
B 6NNANNNE+N=542656497F =01
5¢8000NONE+00=642423665E-01

242619715F=03 1,9392431F~02

NO DRAWNING
X
FIX)
NeOBNNNNANFE=0" 7,85398]16F-M1
1¢9866932E=71 6.7528399E-01
348941824F~0N1 642384233E-01
5¢e646424TF=N1 5,6860125F=N1
7e¢1735600F=N1 542729599F=01
Bel414TNGRF=N] 4,0T748714F=0]
N¢3203008E-01 4o7761872E~01
9e8544973E-01 44665T4T0E-01
GeQ957360F=N1 4,6373290E~-01
0,7384763F-N1 446893333E-0)
940929742F~01 44.8246883E-01
840849640F-01 5,0510184E-01
6e7546318F~01 5,38100032F=01
5e1550137F-01 5,8326687F=01
34.34908815F=01 644290585F=01
ie4112MP01E-N1 7.1958391E-01
~5e8374140F=02 7,5704642F=01
-245554110FE~N1 6,7258438E=01
~44425204LF=N1 6.0616860F-01
~6611EDTROF=N1 5,5528613F=01
-7e5680249E~01 541747657F=01
-847157577F=01 "449071672E-01
~945160207F=N1 4,7351797E-01
~949U3609100F=N1 4,6491260E-01
~Ce0516460F=N] 44,6441587E-01
~045802427F="1 4,7199080F-01
-848345465F=01 4,8800158F=01
~747276448F=N1 5413597N4E=01
~643126663F=01 5,4993848F=01

s

PPAD 523 C’
Rev. 2/65
Rev. 4/65

716

816

916
1016
1116
1216
1316
14156
1516
1616
1716
1816
1916
2016
2116
2216
2316
2416
2516
2616
2716
2816
2916
3016

3099

124
224
324
424
524
624
724
824
924

1024

1124

1224

1324

1424

1524
1624

1724

1824

1924

2024
2124
2224
2324

2424

2524
2624

2724
2824
2924

®

O

~4e6460217E-01

742458
DRAWING NOo 2
X
FeX)

NeNLNNNOAE =00
1,9866032F=01
2,8041834F=N1
5. 646424 TF=01
7.1735609E=01
3e414T00RF-01
0,3203008F-N1
0,0544072F =01
©,0057360E-01
©,7384763F-N1
0.0C20742E-01
Be0B849640F-01
he7546318FE~01
561550137F=r1
342408815F-01
144112001F=21
-548374140F=12
~245504110E=N1
~4e4252044F =01
-641185780F-01
-7¢5680240F=01
~8.7157577F =01
—9,51602075=-01
~9.5369100F="1
~0,9616460F=01
-~945892427F=N1
~848345465F=01
~7.7276448F=-N1
-~643126663F=01
~44646021T7F=N1

1o NOCONNNE~QQ
1e0B66932F-01
3,89418345~01
5e 646424 TE-01
741735609E=-01
Be&147098F=~01
943203908F~01
0¢8544072F=N1
9,9957360F=-01
9,7384762F=01
QeN029742E=-"]
8eNRLOELOAF=N]
5¢7546218E-01
5¢1550137F=N1
2e3498815F-01
le4112001F=01
15e8374140F=02

-2¢5554110F=01

~ha4252044F=-01

~6o11857805-10]

-7 e 5680240E-11

~8e¢7157577F~N1

-045160207E=N1

549907470E-01

1.0000NNOE+NQ
$e¢3425845F-01
TelCT72565F=N]
£e2912367E=-01
5¢482290045F-C1
5e43N4415F=0N]
5¢1758759E-01
5e¢N366423F~-01
50N1N0662FE=C1
EeN662472E=C1
Ce23752R7E~-01
5e5294552F-01
5e7684990F=01
£e5G84TH6F-01
Te4ONT034E-C1
847633202E-01
Qe HLR4540F =01
7eQ64K034F=-01
6e9323109F=-01
66204Nn212E-C1
Ceb6921598F-01
53430913E-01
5¢1239955E~01
50158224F~01
5¢0096069E-01
5¢1048427FE-01
53093026E-01
5¢6409075E~-01
€¢1302058E~01
6e8277930F-01

Be8622692F-01
Te6160786E-01
67007113E-01
6.0287978E-01
5¢5411136E-01
501976675E-01
449720183E~-01
4,84T7648TE-01
448157646E-01
4¢8741482E~01
5.0268720E-C1
52848253E-01
56671416E-01
6,2037671E-01
6.9396087E~01
Te940°975E-01
Bel4574930E=01
7¢3191039E-01
6+4823985E~01
58694181E-C1
5.42730N0nT7E=-N1
561204923E-01
4e9257526E-01

fzgs

PPAD 523 C

Rev. 2/65

Rev, 4/65
3024

123

223

323

423

523

623

723

823

923
1023
1123
1223
1323
1423
1523
1623
1722
1822
1923
2023
2123
2223
2323
2423
2523
2623
2723
2823
2923
3023

125
225
325
425
525
625
725
825
025
1025
1125
1225
1325
1425
1525
1625
1725
1825
1925
2025
2125
2225
2325

-9eU369100F=~N1
~-049016460E-01
-945892427E-21
-848345465E-01
-~Te7276448E-C1
-643126663E-01
-%4e6460217E-01

e 0NONCANF 402
140002062E+02
340005907F+02
340009586F+02
3,0011682E+02
3,0011756E+02
3.0009624E+02
3,0005303F+07

4,8289947F=01
448234229E-01
449086502E~01
5¢0906480E-01
503825210E-01
58062345F=01
6¢3955906E-01

290 71
: ~ 20 1
2¢6179938E~03
2¢3645884E-03
2¢2572434E-C3
242960745E-03
25218203E~03
3,0679880E-03
443922117E-03
9¢1486751E=03

2e¢9998958F+N2-542940254E-02
2¢9)90B97F+02~648819154FE-03
2¢9981646F+02-3,8669381FE~03
2092720 58F+N2-24,8636181F~-C2
26996354 TE+0N2-264354003F=-03
2¢9958443F+02=2,27208N1E=03
20699605T71E+0N2-242774240E~03
2e99T76N51F+N2~244247955E-03
36001193QFE+N2=2,5267930E-03
- 3e0041350E+02-2e3157491E=-03
340056135E+02-2e2489761E-03
360059938E+02~2¢3354468E-03
3e0ON558T72F+N2-246340540F=03
3e0N45N94F+02=343314255E-03
360NINNI4E+N2=5,1306444F~03
3s0011500FE+02~143812568E~C2

2.90GNE28BF+N2
209068490F+02
2¢9946521FE+02
209926783E+02
2040012456E402
24799085785E+02

~7.2587
DRAWING NCe 3
X
F(Xx)
299,

FEXTRA LABEL UP
le '

IS TIGHT IN HERE

646
3,00GAN0NE+D2
3,0NN2N62F+07
3.0005997E+02
3,0009586E+02
3,0011682E+07
2,0011756F+N2
3, 0UN0624E+02
3,0005203F+02
2.0993058F+02

1¢7697768E=02
5¢5523331F=03
2.4788035E~-03
2¢7039513E~-03
2¢3705185€-~C3
2¢2619715E-03

11 320

025 "006
31 2

HERE
8¢5

l.

CeaOCNNONNE=-99
646662084E-04
1¢3330668E~03
1e¢9993611E~-03
2:6656286E-03
343320276E~03
349987172E~-03
4e6658419F=03
5¢3335185E~03

31 -3

246

PPAD 523 C
Rev. 2/65
Rev. 4/65

2425

L
2\

2725
2825
2925

3025

188

288

388

488

588

688

788

888

988
1088
1188
1288
1388
1488
1588
1688
1788
1888
1988
2088
2188
2288
2388
2488
2588
2688
2788
2888
2988
2088

«01

189,
2
38
489
589
689
789
889
989

O

2.0081646E+N2
240072058E+02
2,G663547F+02
2e00C8HL3F+N2
249060571F+02
24007605 1E+02
2,N011930F+N?
2,004L1250E+02
24NN56135F+02
A0 B5O02RF+N2
3,A0BHET2F4N2
340045004F+02
2, 0030N14F+02
2,0011509F+n2
2499C0628E+02
249968490E402
200465215402
2,0026783E+N2
249G12456F+02
7406088 TRE+N2

1¢8539816E-N1
0e0528290F~-0N1
602,84237%E-01
5¢6869125E-01
. He27290500FE-01
4e9748714E-01
4e7761872E-0".
4466574T70E-N1
Le6,T73290F-01
446893333E-01
4e824068872E-01

5,0510184E-01

5,28100N3F=N]
5483266875~-n1
6e4290585F=-N1
70¢1958391E-"1
Te57040642E-01
€e7258438E~-01
6e7616860FE=-N1
5¢5528613E-01
fel747657E-01
4¢9071672F=-01
447351797€E-n1
4eb6491260E-C1
4e64%41587E-01
4471¢9980E~-01
44,8800158E=N1
5e¢1759704E-01
5¢/993848F=N1
5eYGNTLTNE=-Q]

. 101
ARKOTHIR ERROP
prot!

FIX)
7.8539816F=01
640528209E-01
6e2384233E=-01

6.NN18211E-C3
6e6TNTLTRE~02
Te3401669F-C3
B8.0097326E-03
Be6T6886E~-C3
Re3456162E-03
la20NT708OE=-02
1eN662422F=-02
1¢1317732F=02
161977587F=02
162641409FE=-07
1e32N8680E=-02
13978987E-02
1e4652027E-02
1¢5327453E-02
1¢6004999E=-02
146634190E-02
le7364287E-02
le 8N4LORTE=-CZ
168721297E~-02
1692922431E-02

8e86722692E~01
Te6160786E~01
6.7007113E-01
5e0287978E~01
5¢54111326E-01
£e19765675E~-01
409720183E-01
4484T76487E-C]
448157646E-01
4e8741482E-01
567268720E-C1

5¢2848253E-01"

546671416F=-21
£e2027671E-N1
6e22GHNATE-01
7e2409975F~C1
8e4H574930E-N]
7¢3191039E-01
664823985E-0N1
548694181FE=01
5¢4273007E-01
5¢1204922E-01
409257826E-01
448289947E-01
4e8234229E-01
4e90865n2E-01
$40906480FE-01
5¢382521CE-N1
5.8062345E-01
6¢39559N6FE-01

J4COOONNCE=~9S
1e72Nn3253E-0N2
443164576E-02

PPAD 523 C
Rev. 2/65
Rev. 4/65

1089
1189
1289
1389
‘1489
1589
1689
1789
1889
l1¢8@
2089
21e9
2289
2389
2489
2589
2689
2789
2886
2989
2089

155

255

355

455

555

655

755

8¢5

as55
1055
1155
1255
1355
1455
1555
1655
1755
1855
1955
2055
2155
2255
2355
2455
2555
2655
2755
2855
2955
3055

156
256
356

PPAD 523 C

Rev., 2/65
; , ‘Rev, U4/65
5e6869125E=01 641269942E=02 ‘ 456
542729599E~0" 6¢8024589E=02 k 556
449T748714E-"1 643841255E=-02 : : 656
447761872F=01 449813959F-02 : S 756
4e665T4TOE=01 246712890E-02 856
446373290E~01=542156232E~03 , k 956
446893333E-01=446118163E-02 1056
44824H8BIE-N1=0,6133782E=02 ' 1156
5eN510184F="1~1454504N8E-01 ’ 1256
5¢3810MN3E=N1-241757276E=01 1356
5¢832668T7E=N1=2.7421677E=01 - 1456
6e429N585F=N1=24,9535508E-01 ' 1556
7¢1958391F=01~2sN0R7700F~0N] 1656
7e5704642E=01 141281171E=01 1756
6e7258438F=01 24293435%E=-0] 1856
£e0616860F=C1 3,8915125E-01 1956
5e55.8613FE=01 3,7185877E-C1 2056
5¢1747657M=01 341632622E-01 ' 2156
4490716775 =01 244094434E-01 2256
447351797F=N1 145370238E-01 2356
4ebULCI260F=N1 5,7T2B242F=02 _ . 2456
beblG158TF=N1-4,6950622F=-N2 : 2556
4eT190080F=N1~146N85775F=C] 2656
44RBNGIERE~N1=2682943440 =01 2756
5¢.356704F=-11-4,1301108F=-0N1 2856
564073848F-N1-54366649TFE-C1 ' 2956
56990 TAHTAE=N1=6,2423665E=01 ’ ' 3056
10 30
8

AND ANOTHFR ONE

X

FIX)

DeNONOONCE=0Q 3,000NN NE+N2 117
N ANTNGANE-QQ 1,0NARNNAE4DN . 113

10 40
104 :

THIS MAKES 3 IN A ROW

X

Fx)

CeUNNONOLE=-09 14N0N0NNNE+ND 122
149866932E=~0" 9,8006657E=-01 . 222
348941834FE~N1 9,2106099E~C1 : 322
5e646424TFE=01 Be2533561E=-01 . . 422
7e¢17256N9F=N1 649670671E=01 : 522
8¢4147098E-N1 5.4030230E-01 622
0632039N8E=N]1 3,6235775E=01 . 722
9¢8544973E=01 146996714FE=-01 , 822
Ye9957360E~01-2e9199520E-02 922
9e¢7384763FE=-01-242720209E-01 : 1022
9e0929742E~N1-4,1614683E-01 ' : 1122
BeNBLOGLUNE=N]1=5,8850111E-01 , 1222
6e7546318E=N1=743739371E-01 ' . 1322
5415501 37E=01-845588875E=01 : | 1622
3¢3458815E=-01-9.4222234E=01 : 1522
1e4112N01E=01-948999249E=01 1622

~2e8374140F=02-0,982947T7E=-01 . 1722
~2e5554110E="1-046679819E-01 ' : 1822
~4ob4252044E-N1=R49675841E=01 . ; 1922
~641.85789E=01-7,9006771E-01 L1248 : - | 2022

~7e56E0249E=01=645364362E-01 ' Do : 2122

O

-84 71L7577E-01-44,9026082E-C1
-04516N20T7E-C1~-3.0733287F~-01
~949365100E-01~-11215252E-01
~940616460E-01 BR47498980E-C2
~9458924276~-N1 2.8366218E-C1
-8e8345465E-01 446851667E-01
-7 7276448F-01 £42469287E~0]
~-ne3126663F~01 747556587E5=01
~4e646N21TE-N1 Be46551951E-01

7o
PRAWING NOo 4
X
FXx)
Ce0TNDNNAE =09 ,000N00"NF=G0
1eR066932E-01 147203252E-02
348941834F-"1 443164576E=02
56646424TE=-C1 641267942502
7Tel725500E=01 £48024580E-02
3641470CQ8F="] £4,2B4L41750HF=02
Ge32MN3ONBE~N1 4,281395CE=-N7
Ve 8544972 F =N1 246712820F=02
Ve PAHTR6NE-N1=-26e2156232F=-013
Ve 7384762 ~N1=Leb11R1K7E=-N2
VeMI29T42F-N1=C461337R2E=-02
BeMBHGEHEL4NF-N]1=1e54504N8E~-01
6e 7546318E~01-261757276E-01
5e150N1376-01-267421677E-01
20 3408815E-171-249525598E-01
1e64112701F=01=2.N98RT7T7S0E=-C1
~5e8374140E-02 141281171F-01
~2e5054110E-71 342934350E-01
—L4e42020445 -1 2,8915125E-01
-641185780F-N1 2,7185877E-C1
~Te5¢8N240F=-N] 2,1632622FE-01
—847157577F=-71 2.4094434E-01
-—9e016C207E-C1 165379238E-01
~Qe¢936910NF=N1 547728242E5E=02
—Re9616460FE-"1-446950622E=-N2
—9458C2427E-N1-146085775E~01
~8e8345465E-N1-2e8394344E-01
~T7e7276448E-N1-44130G1108E=-01
—5e2126663E-01-5e3666497E-01
~44646N21T7E~-N1-642423665E-01

TeNONNCONF+00 848622692E-01
Ve BNNEE5TE-N]1 Teb6160786E~-01
9¢2106090E-0] 647007113E-01
8e2L32561FE~01 640287978E-01
£FeQ6TNO6TIE=-C1 545411136F=-C1
5e¢4030230E-01 541976675E-01
346235775E-01 4.9720183E-01
1e6996T714E-0" 448476487E-01

17

2n

-249199520E=-N2 4e8157646E-01

~2e2720209E~N1 4e8T741482E-01
~441614683E-01 5.0268720E-01
-54£850111E-C1 542848253E-01
~7¢37303715=01 5.6671416E-01
-345688875E-"1 642037671E-01
~J7e4222234FE-N1 6£42396087E-01

61

249

PPAD 523 C
Rev. 2/65
Rev. 4/65

2222
2322
2422
2522
2622
2722
2822
2022
3022

126

226

326

426

526

626

726

826

926
1026
1126
1226
1326
1426
1526
1626
1726
1826
1926
2026
2126
2226
2326
2426
2526
2626
2726
2826
2926
3026

135
235
335
435
535
635
735
835
935
1035
1135
1235
1335
1435
1535

[RE—————

-N,8C0G240F=N1
~9eQRIVGTTE~0Y
~Ge66T70810E-01
~8+49675841E-01
~7e%0967T71E~01
-64¢5304262E-01
~449026082E-01
~3.,N733287E-01
~-147215252E-21
36 498980E-02
248366218E-01
446851667F=N1
o34l 928TFE=N1
7¢7556587FE-21
848551951E-01
leCOCCUNRQCE4DD
Q48006657F~01
N421056099F-01
e2532561E-"1
beQ6TNETIF~01
5e4(.30230F "]
362235775 F =11
1eAACETILF =N
~2e9190520% =12
~24272020GE=11
~4416146825-11
~5480501111-01
~7¢273G371E-01
-845683875€-01
~-5e4222224F-21
~7e89990249F-0"1
- 08294775’*01
~946679810E-01
~BeG675841F-N1
~T7e9096771E-01
-6e5364362E~-"1
—44G6026C82E-01
-340733287€E-01
~-161215252E-C1
Ce 740898CE~-02
24836€218E~21
446851667E-N1
6e32469287F~01
Te7526587E~01
868551951E~71

DRAWII.G
DRAWING
DRAWING
DRAWING
CRAWING
DR2w ING

NNNNNN

LINE
LINE
LINE
LINE
LINE
LINE

7.9400075E=01
Re."74930F=C1
7.3191039E=01
644823985E-01
548694181E-01
544273007E=01
541204923E-01
449257526F=01
44828994 7E=01
448234229E-01
449086502E~C1
540906480E=01
542825210E=01
5¢8062345E-01
643955006E=N1

20

1.00C00NCE+ON
8e3425845E-01
Tel972565E-01
6629123670-C1
S5e8220045E-0]
Set3Nt415F=0]
5¢175R729E-01
5eN265422E=-01
EeNP1INK62E-"1
5026624720 -01
5e2375287E-01
5e5294552E-0C1
5e9684C90E-01
6¢5984766E-C1
T76¢4907034E-01
Be7633202E-01
Celb484540E-0]
Te9646934E-01
6e53231N0F=-01
6e2040212E-01
5.6921598E-01
5¢3430913E-01
5¢1239955E-01
50158224E-01
5.0096069E-01
5¢1048427E-01
53093926E-C1
5¢56409075E=01
513Nn2058E-01
6e8277930E~-01

20
40

POINT 1
POINT 2
POINT 16
POINT 17
POINT 1
POINT 17

wwNNNN

80

50
00

RESULTS

X= 0,000CONOE~90
X= 149866932E-01

Xz 1644112001E~01"

X=2-5,8374140E-02
Xz D00CC0N0OE-99
=-5.8374140E-02

230

—
=

=

Y=

=

1.0000000E+00
843425845E-01
847633202E-01
94 4484549E-01
848622692E-01
844574930€-01

RHU;523 C 1
Rev, 2/65
Rev. 4/65

out
ouT
cuT
ouT
ouT
out

OoF
OF
OF
OF
OF
OF

1635
v
19835
1935
2035
2135
2235
2335
2435
2535
2635
2735
282¢
2935
3035

133
2332
333
433
533
633
733
833
Q313

1033

1133
1233
13323
1433
1533
1633
1732
1833
1933
2033
2133
2233
2333
2433
2533
2633
2733
2833
2933
3033

RANG™.
RANLY
RANGE
R ANGE
RANGE

RANGE

PPAD 523 C
Rev. 2/65
Rev. L4/65

++J0OB
$+DUP
*DELETDFIPS
END OF JOB
+$+J0B
$FSPS

*ASSEMBLE RELOCATABLE
*STORE RELOADABLE
*NAME DFIPS

END OF ASSEMBLY.
8460 CORE POSITIONS REQUIRED PLUS RELOCATION INCREMENT
pe784 STATEMENTS PROCESSED

DK LOADED DFIPS $171 1852007123995900000+
+3+FORX

*FANDK@S 0L

Lp6@ CORES USED
549¢ NEXT COMMON
END OF COMPILATION
EXECUTION

MAIN TLoog PLP6O LOADED
DFIPS T8p6p @6L58 LOADED
ERROR DFIPS
L4 285

ERROR DFIPS
ERROR DF IPS
ERROR DFIPS
ERROR DFIPS
ERROR DFIPS 1
END OF JOB

SEhoe U

1OMIN. 40 sEec.
251

2.4

2.0

1.6

!

-

2

j / \l \ /l
\ / \ »
‘f / % L /
! \ \ x !
/ .\ \ x /
! x X X \ x X /"/
' ¥, N \. x
\ x \ AN
§ X x /
\ \ ¢ x
— » /
\ S
| : .
| \ \\/
. \
] » / \
\/ \‘»_ /
T T T T T
c.c 1.0 2.0 3.0 4.0 5.0
X !
ORAWING NO. 1

252

PPAD 523 C
Rev. 2/65
Rev, L4/65

O

X
DRA

JING NO. 2

253"

PPAD 523 C
Rev. 2/65
Rev. 4/65

CF(X) (X1072)

-2.

-4.¢

~v.C

. EXTRA. LABEL UP HERE

PPAD 523 C
Rev. 2/65
Re”\-lhﬁ55

—d
i
|
-
e
|
|
i i l T ¥
280.28 - 288.5 209.75 a00.0

X
B

RAWING NO, 3

IN HERE

I TS TIGHT

AN

"

| K

Q

-1

N

L

PPAD 523 C
Rev. 2/65
Rev. h/65

-

i

|

! 1] |
-1.2 -.9 -4 0.0

X
D

RAWING NO. Y =

Mrs. Joyce Fodor
Engineering Comp Lab
University of Wisconsin
Madison, Wisconsin

Planning and Running a Short-Term Workshop
on Computer Orientation and Programming

Many groups find themselves wishing to conduct Short-Term Computer Institutes
or Workshops of from 2 to 5 days, to satisfy the needs of a variety of different audi-
ences, Typical situations are:

a) a College or University Computing Center running a special program for
interested faculty,

b) an industrial program running an in-house training program for engineers
and/or management,

c) sponsoring an advertised institute for outsiders, frequently with fees charged
for attendance,

Based on the experience gained from several such undertakings, this paper will
discuss the problems of determining the goal to be aimed at, the depth of pene-
tration that can be reasonably achieved in a given number of days, how to plan
the daily schedule, a typical graded set of problems, staffing considerations,
and above all the importance of hands-on experience by the participants,

There are many questions to consider before planning a workshop., First one
must consider what group the workshop is to be aimed at, and therefore what goals
should be reached. If the group is composed of prospective programmers the
institute should provide a start at programming competence, Supervisory per-
sonnel, on the other hand, though they may not become active programmers,
need to achieve a sufficient knowledge of FORTRAN to understand a complex
program written by a programmer, and also need to acquire an understanding
of situations where computers can be profitably used, Management people need
to know how and for what computers can be used in general company operations.
The program should also be aimed at either scientific or business oriented people,
The previous knowledge of the participants is an important consideration, If the
group has little or no background (no actual programming experience) they will
need a complete presentation of FORTRAN, If, however, they have written a
few programs they need only a review of the language, Size is also an important
consideration and is dependent upon the facilities available. With a 1620 Model I
and a 1620 Model II with 1 diskdrive, a 407, and 8 ke Xpunche; we have - found 25 /
is the maximum size that can be handled, The bottleneck is usually the keypunches.(M5

The duration of the workshop is of course a balance of many factors: the
amount of time the facilities and the instructional staff are available, the time
the participants can afford to spend, the time needed to achieve the competence -
level established as the goal for the attending group.

256

N
\ N

For the purpose of this paper a specific group, size, duration, and situation

will be assumed, Comments will be made where appropriate indicating how the

planning discussed here should be modified if certain other factors existed, It

will be assumed here that the group for which this workshop will be run consists

of supervisory _personnel with a scientiﬁc or engineering background, They are

mainly from out of town, and have very little previous knowledge of FORTRAN,

The facilities can be made available, and the group can make themselves available

for three days,

Now that the group has been selected, the content of the workshop will need
to be developed, Since the group knows little or no FORTRAN they will need to
have lectures on the following topics:

1. Introduction, general concepts, intelligence‘ of a computer, flow chart
formulation of a problem,

2. Vocabulary of FORTRAN (excluding FORMAT and SUBROUTINE)
3. Examples of simple programs written in FORTRAN,

4, FORMAT,
5

Subroutines and Monitor operation,

Some lectures should also be devoted to theory, Since iteration underlies
almost every useful computer application, a formal presentation of iterative
techniques has been found very valuable, Its application in gelected areas of
mathematics and engineering would follow and should be connected to one or
more problems, For the supervisory personnel a talk about some of the wider
areas of applications and the future of computers is very desirable.

The most valuable contribution of a workshop of this type is the experience
the participants get as they actually write and run their own programs, A group
such as this can be expected to finish probably three problems during the three
day period, The problems should be chosen so that the first is very simple and
can be successfully run the first afternoon, Our experience has shown that this
gives the participants a needed push onward. The next problems should be care-
fully selected so they increase in difficulty with no large jumps. One of the most
common mistakes in planning an operation of this type is to make these problems
too complex, The first problem in fact should be of such extreme simplicity,
that there is no question what should be done, only how to say it to the computer,
A set of problems suitable for this workshop is shown at the end., Each has
several parts, with optional parts starred, to allow the participants to progress
at individual speeds.

257

Developing the schedule is the next step to be taken, The first items to fill
in are standard and include lunch at 12 each day and regular coffee breaks.
Since this group is from out of town there should be a social hour and dinner,
early in the session. This helps the group know each other and produces a
closer knit group., If the participants were local and knew each other, at least
a little, this social hour and dinner could well be later in the session so they
have more knowledge and background and the guest speaker can pitch his re-
marks at a somewhat higher level,

Monday morning opens with registration, followed by an official welcome
to get things started., The rest of the morning should be devoted to the first
three topics in FORTRAN, This is in preparation for getting their first
problem running the first afternoon, Due to the use of FORGO (a FORTRAN
allowing free format and having very powerful diagnostic comments both at
complle time and run time) the lecture on FORMAT can be postponed until
a later day. The participants have enough to assimilate in the first day
go if FORGO cannot be used it would be best to give the participants some
standard FORMAT statements to use so the discussion of FORMAT can still
be postponed, The schedule is shown allowing 11/2 hours for the introduction
and vocabulary of FORTRAN before the break and about the same amount of
time for examples and answering any questions,

The first afternoon the participants will need a demonstration of the use of
the keypunches, lister and computers, If the facilities lend themselves to
open-shop operation, there is much advantage to letting the participants do
their own card handling and button pushing (under careful supervision) for
at least the first problem, so that they get a clear picture of all the steps
involved in the process. We prefer to maintain open-shop operation through-
out the workshop, but some installationa like to substitute in-out service later
on, Careful attention to procedural details during this demonstration can
anticipate and eliminate many questions that might arise when they start
using the facilities,

The remainder of the afternoon is devoted to their solution of problem 1.
Adjournment is Iisted ‘at 4:30, We have found through experience, however,
this usually i8 around 5:00 with some participants desiring to work even beyond
this, The problem is to shut them off/

The second morning the participants need first a discussion of the solution
of problem 1 with a period after for asking any questions that have arisen in
their minds, They should then feel a little confidence in their mastery of the
material already presented as they have successfully completed their first
problem and had their questions answered, They should be ready to accept
with understanding FORMAT, the single hardest statement in FORTRAN,
This presentation nééds close to 11/2 hours. After this a break is surely
needed.

258

If the participants are to do the second problem the second afternoon a little
background in theory and a presentation of the problem needs to follow the break.

- punching ,of the complete programs for those participants who wish to use them,
Several other keypunches should be available for participants who would rather
punch their own and for all participants to make corrections and modifications,

The last half hour of the afternoon the group should reassemble for a pre-
sentation of problem 3 An optional workshop is scheduled for Tuesday evening,
Many participants 1ike to work in the evening to gain the maximum amount of
knowledge during the three days. Presenting problem 3 at the end of the se® nd
afternoon and the optional workshop gives the participants three options: They
can come to the evening workshop and complete problem 2 if they need more
time for it. They can come to the evening workshop and try to write, punch,
and run problem 3 if they wish to get a head start, If, however, they wish to
stay in their room they can get program 3 written and it can be punched by
keypunch operators while they attend lectures the next morning,

morning, They again need a discussion of preceding day's problem and an
opportunity for questions and answers.

Since programmers and engineers are notorious for disliking to documentate
their work, the supervisory personnel should be made aware of the value--indeed,
the absolute necessity--of program documentation, This should take only 45 minutes.
The participants now need time to finish their work on problem 3, This should
only take 11/2 hours since they should all at least have their programs punched
and some may have had several tries at debugging it, To finish the morning
there is still one FORTRAN lecture remaining, to introduce them to subpro-
gram structure and Monitor operation, o

The last day's luncheon would profit from a guest speaker as the participants
now have sufficient knowledge to understand a wider set of concepts, The last
afternoon the participante will do problem 4, which is a modification of a pre-
ceding problem (number 3 in this case) to incorporate the use of a subroutine,
This gives them a feeling for the use of subroutines in a minimum amount of
time. After this workshop 30 minrutes is needed for a discussion of problem 3,
30 minutes for summary and recapitulation, and 15 minutes for closing so this
workshop session must end at 3:15 and the institute can finish at 4:30 to allow
travel time home, Certificates should be presented at the closing because of
the psychological effect on both the participants and the companies who spent
the money to enable them to attend.

259

)

Now that the schedule has been completed the text and notes, staff and many
other details must be decided on, Some of the texts we have used in the past

are:
Davidson, Charles H,, and Eldo C, Koenig, Computers, Wiley, N, Y., 1966,

Hamming, R. W,, Numerical Method for Scientists and Engineers, McGraw-
Hill, N, Y,, 1962,

McCracken, D, D,, A Guide to Fortran Programming, Wiley, N, Y,, 1961,

McCracken, D, D,, and W, S, Dorn, Numerical Methods and Fortran
Programming, Wiley, N, Y,, 1964,

Organick, E, I,, A Fortran Primer, Addison-Wesley, Reading, Mass,, 1963,

The lecturers and guest speakers must be chosen with care. They should know
a great deal about the material they are presenting and still be able to present it
at a beginner's level, During the workshop session there should be many labora-
tory assistants to help the participants with their problems, Care must be taken
when these assistants are selected, If the assistants are too young and condescend-
ing in nature the participants will feel hesitant and embarrased about asking for
help, The agsigtants must be mature acting and very willing to help, With a
group of 25 participants we have found it desirable t6 have 5 assistants and
2-3 lecturers constantly available for questions and assistance, The power-
ful diagnostics that FORGO supplies at run time as well as compile time allows
the participants to find many of their own errors. If it is not possible to use
FORGO the number of lab assistants should be doubled. The time allowed for
the completion of problems should also be increased,

Advance distribution of texts and notes to all registered participants is very
desirable, It allows the participants to do some advance preparation, and makes
clear the level of background and experience expected,

One thing we have learned from previous workshops is that it is important
to keep the mathematics level from becoming too high so the participants do
not have to worry about understanding the theory but can instead concentrate
on FORTRAN, In a recent workshop we tried a problem in Differential Equations
and found some of the participants were more confused by the mathematics than
the programming,

The workshop that has been planned in this paper has been aimed at a particular
group, If the workshop were being planned for business oriented personnel, an
alternate list of possible problems is shown at the end. The topics of the theory
lectures would also of course be changed, Since business oriented personnel
are not as accustomed to analytical thinking as engineers, the problems should
progress at a slower pace, Simulation of a traffic problem is a very good topic
for a guest speaker and demonstration on the machine but a Tittle deep for pro-
gramming,

260

If the workshop i planned as an in-house training program it is many times

desirable to use only part of each day as the lecture or workshop session as'
more time is available between sessions for additional thinking and study. .

Actually I have said nothing about running the workshop, If it is carefully
planned the workshop will run itself,

261

R

@)

MONDAY Morning

8:00 Registration

8:30 Welcome

8:45 FORTRAN
10315 Break
10:35 FORTRAN

12:00 Tanch

c9¢

MONDAY Afternoon

1130 Demonatration of use
of the facilities

2:00 Workshop Problem 1

L4:30 Adjourn

MONDAY Evening
6:00 Social Hour

7:00 Dinner
-~Guest Speaker--

SCHEDULE
3 Day FORTRAN Workshop

TUESDAY Morning

8:00 Discussion of Problem
8:25 Questions and Answers
8:45 Further FORTRAN: FORMAT
10:10 Break

10:30 Iterative Techniques
11:30 Problem 2 Presentation
12:00 ILanch

TUESDAY Afternoon

1:30 Workshop Problem 2

L,:00 Problem 3 Presentation

l:30 Adjourn

TUESDAY Evening (optional)

7:00 Workshop finish Problem
2 or start Problem 3

NOTE: Coffee served during workshop sessions

WEDNESDAY Morning

8:00 Discussion of Problem 2

8:25 Questions and Answers

8:45 Value of Documentation '
9:30 Workshop Problem 3

11:00 Further FORTRAN: SUBROUTINES
12:00 Lanch

-=0uest Speaker--

WEDNESDAY Afternoon

1345 Workshop Problem }

a preceding problem
modified to use subroutines

3:15 Discussion of Problem 3
3:45 Summary £ Recapitulation
L:15 Presentation of certificates

A TEN YEAR BUDGET PROJECTION

(A Role for the Computer in Long-Range
Planning for Educational Institutions)

w John A. Ferling

Preface

Since its founding in 1947, Claremont Men's College, an independent
four-year liberal arts college, has prepared several long-range plans for
its future. These plans, as well as recent applications for grants to the
Ford Foundation, have included ten-year budget projections. The computa-
tions necessary for the budget projections were carried out on a desk cal-
culator.

The author of this paper has prepared a program for the IBM 1620
which carries out these computations in minutes rather than days. This
program has enabled the college to study the budgetary effects of changes
in items ranging from the expected inflation to percentage of tuition in-
comes for scholarships. With the help of the computer Claremont Men's Col-
lege has explored the feasibility of several plans. Special consideration
was given to the question of optimal size. The program discussed in this
paper has been written for a specific college and hence changes will be
necessary before it can be used by another institution. S. Tickton! has
discussed projections of this kind in great detail without using computers.

Machine Requirements

The program is written in UTO Fortran for a 20K 1620 and uses card
input and typewriter output. Special features are not required.

Information Required and Discussion of Program

The information to be supplied by the administration includes:

A. Per vyear for the next ten years

Number of students

Tuition charge

Allocetions for scholarships as percentage of tuition income

Student-Faculty ratio

Percentage increase in sdministrative salaries

Percentage increese in average faculty salary

Total percentage increase in development office salaries

Total percentage increase plant maintenance salaries

Totel percentage incresse in business office and student
welfare expenditures

10. Total percentage increase in library expenditures

11. Expected inflation

12, Expected gifts to college

13. Rate of return on endowment

o

(o Re TN o RN N W (S I o

1 Sidney G. Tickton, Long-Range Planning: A Case Study, pp.138-161, in
m Financing Higher Education 1960-70, McGraw Hill, New York, 1959

263

B. For first or present year

Salary total and non-salary total for

14. Administration

15. Admission

16. Registrar

17. Instructional (excl. faculty salaries)
18. Dean of Students

19. Development

20. Plant Maintenance

and

21. Average Faculty Salsry

22. Physical Education non-salaries

23. Miscellaneous

24. Certsin Fringe Benefits (called "Insurance Fudge" in program)
25. Library (Total)

26. Business Office (Total)

27. Student Welfare (Total)

28. Initial Endowment

In addition to this information, estimates of the merginal cost per
additional student for certain salary and non-salary expenditures are needed.
These estimates are denoted by WGS (weight on growth salary) and WGNS (weight
on growth non-salary), respective.y, and are expressed in percent. The weight
on growth for salary items in the sample projection given below is 50 percent.
The salary total for the admissions office for a student body of 1000 is
$30,000.00, i.e.,$30.00 per student. The addition of 50 students for the
second year would then increase the salary total by $750.00 (50% of 50 times
$30.00). However, this amount is not allocated to the admissions office
since one would not employ a fraction of an admissions officer. These $750.00
are allocated to 8 fund called "General Administrative Growth Allowance". The
salary total of the admissions office is only increased by the percentage
increase in administrative salaries which is assumed to be 5% in this pro-
Jection. This yields the $31,500.00 entry for the second year. Several
other salary items (Registrar, Instr. Non-Fac., Stud. Dean) are treated in
the same fashion. The resulting amount in "General Administrative Growth
Allowance" is also increased by 5 percent (percentage increase in adminis-
trative salaries) and is equal to $4,077.22 in the second yesr. The item
"Administration Salaries" (president and assistants) is assumed not to be
effected by a larger student body, whereas "Administration Non-Sslaries"
is. The weight on growth, WGNS, for several non-salary items in this sample
is 75 percent. Many of these are also subject to the 1 percent inflation

264

increase. Most of these computations are carried out by means of a "Pro-
cedure" conteining a multiplier which makes it possible to increase, decrease
or remove the effect of the growth factors and inflation to suit the assump-
tions of the planner. A study of the source program, which will be supplied
by the author upon request, will indicate which changes effect the individual
. entries.

Auxiliary enterprises such as dining hall, dormitories, and bookstore
are assumed to be essentislly self-balancing items. A more intensive use
of existing classroom facilities will make the addition of extra buildings
not absolutely necessary. However, since it is relatively easy to find s
donor for & building which would be named after him, it is expected that a
classroom building will eventually be added.

The program computes per year for the next ten (or nine in certain cases)
years the following:

Tuition income, scholarship allocations and number of faculty; salary and
non-salary expenditures for administration, admission, registrar, faculty,
dean of students, development and plant maintenance; expenditures for physical
education, business office, library, student welfare, fringe benefits and
miscellaneous; gifts to current operations used to balence the budget and
endowment at end of year.

Since the output is under control of a sense SW1tch, the effects of
various changes in input data can be studied without having to wait for a
complete typeout. A complete output is given below. The data used are
fictitious.

264~a

C

WGS
50.90
NO. OF STUDENTS
e

2

1725,

TUITION INCOME

1500000.

1983750.

P.C.FOR SCHSS@
13.

18:00

SCHOLARSHIPS

195000. 00

317400 .00

TUITION

STUD.-FAC. RATIO

12.00
12.99
NO. OF FACULTY
83.33
89.1k4

-00
4.00
ADMINISTRATION
62000 .00
7629.
ADMISSION .
30000.00
37562.61
REGISTRAR
IZ¢g¢.¢¢
212065.
INSTR. NON-FAC.
25200.00

31552.59
STUD. DEAN

TR
O

INPUT AND OUTPUT

(FICTITIOUS DATA)

WGNS

1627500.
2012509.

14.00
16.50
227850 .00
332062.50

12.20

12.99

86.06
89.14

SALARIES
P.C. INCR., ADM.

L.99

65100.00
80734 .58

31500.00
39065.12

17850.00
22136.99

26460 .00
32814.7¢0

22179.15
27505.74

1720000 .
2130000 .

4. 09
17.00

24,0800 .00
362100.00

12.49
3.50

|

86.69
88.88

2.00
5.00
68355. 00
8L771.31

33075 .00
L1918.37

18742.50
23243.74

27783.00
34455.43

23288.10

. 28881.03

265

TEN-YEAR BUDGET PROJECTION FOR A COLLEGE

1100.
1200.

\8dg:

1815000 .
2160000.

15.00
18,00

272250.00
388800.00

54

87.30
88.88

2.

e s

71772.75
89009.87

34728.75
43069.29

19679.62
24405.93

29172.15
36178.20

24452 .51
30325.08

(INPUT DATA ARE UNDERLINED AND APPEAR AGAIN IN OUTPUT)

N

=

——t |
[S Y
U

S‘;U'l

f&ié

1912500.
2250000.

18:30

296437.50
L16250.00

24

89.28
92.59

74643 .66
93460. 36

36117.90
45222.75

20466.81
25626.22

30339.03
37987.11

25430. 61
31841.34

ADM.SAL .GR.ALLOW.

.09
14585.8L
P.C. INCR.,DEV.

-9
DEVELOSMENT 20
2235,
1T88%%Tiﬁ
P.C.INCR.P.M.
.00
I

PLANT MA INTENANCE

63500 .00

3.20
P.C.INCR.FAC.

.00

2.0
FACULTY-AVERAGE
12500 .00
1720L.19
FACULTY-TOTAL
1041 666.
1533707.

P.C. INFLATION

.00
1.00
ADMINISTRATION

%%%%%f%%
ADMISSION

11990.90
13035.33
REGISTRAR

2145.00
2541.
INSTR. NON-FAC.
54%57.17
STUD. DEAN
3245.00

P.E.
31123.00
3688T. 71

43!2;:99

MISC.

L@77 .22
15169.27

98682 .00

123558. 44

NON-SALARIES

1.09
1.00

10100.00
10710.97

11526.62
13165.68

2247 .69
2567.30

L8331.13
55203.74

34@@.35
3883.87

32613.01
37250.52

L3554 .23
L6185.04

1240693 .
1686011 .

266

8990.28
22298.83

£:30

108796.90
133640.80

L.

5.08
77702.66
97290.50

11687.37
29267.22

£

s

114236.74
140322.84

)

80810.77

102155.03

=

16384.94
21110.96

1462941 .
1954719.

P499. 04
1144.11

12668.73
14745.96

2470.40
2875.46

53120.01
61829.85

3737.27
4350.06

358L44.46
L1721.70

45275.82
48056.79

PLANT MAINTENANCE

49500 .00 49995.00
52489.96 53014.86
DEVELOPMENT
heggg.ﬁﬂ L3430.00
. L6@53.31
INSURANCE FUDGE
16666.66 17385.24
18906.41 19095.47
P.C.INCR.B.0.-ST.WELF.
.99 L.o@
L.89
BUS. OFFICE
2000. 54080 .00
: .3 67263.05
STUDENT WELFARE
8 62668 .32
77944 .94

P.C. INCR.,LIBRARY

L | BRARY .
86000 . 60 92020 .00
120619 .53 129062.79
ENDOWMENT
RATE OF RETU%g o0
5. g.
G'FT59¢¢¢¢¢ ¢é 950 éa.bo
- : i 15§uﬁnufua
" 8900090.
ENDOW. INC.
422500. 465279.
668L01 . 73318k,
GIFTS TO CUR. OP.
694@8. 26 99707 .30
154332.71 187181 .94
ENDOWMENT AT END OF YEAR
8839591 . 9689884 .
13913690. 15226289.

50644 .93
53545 .01

43994 .59
46513.84

17739.75
19230.52

.08

L.79
56243 .20
7042k . 41

65175.05
8160@8.35

14

98461 .40
138097.18

5089494 .
79881k4.

95862.79
158381.32

10594021 .
16567908.

267

51303.31
54348.18

L4566.51
L7211.55

18096.40
19518.98

L.20
L.99
58605 .41
73241.39

67912.40
84872.69

579489 .
868395.

953@2.19
211415.20

11598719.
17956493.

51978.26
55163.40

L5145.88
47919.72

18748.28
20637.26

%%g%

————

61242.65
76171.04

70968.46
88267.59

634333.
942824.

130697.38
315017.10

12668022.
19441476.

JUNIOR COLLEGE INSTRUCTIONAL TESTING PROGRAM

Prepared by the Computer Center Staff
Miami-Dade Junior College

With computers installed or on order for the vast majority of colleges
and universities, educators must decide on the usage of this powerful
instructional and administrative aid. The cost of a computer installation
represents a large item in the institution's budget, and in most junior
colleges sufficient funds are not available for two computer installations;
one for administrative work, and one to .support the instructional program.

By developing a computer concept of providing a computer center with
the responsibility of processing administrative work and scheduling classes
for instruction, a more extensive and modern computer can be made available.
The Miami-Dade Junior College has developed this centralized computer concept
and the results have been most encouraging.

As is indicated on the organizational chart, all instruction in the center
is the responsibility of the coordinator of computer science, which includes
a business and scientific option two-year occupational program. Administrative
service is the responsibility of the manager of data processing. Some
seventy=-four administrative programs provide a wide variety of services for
the college, and one that has made the greatest impact on the faculty as a
whole has been the program of test writing and test scoring.

The responsibility for working with the various departments within the
college is assigned to the systems analyst. He works with the personnel
within the departments to establish procedures that may be handled in the
computer center. After the precise input and output have been determined,
flowcharts are developed and the writing of the programs is assigned ‘to the
programmers. -

Miami-Dade Junior College began test scoring on the IBM 1620 in the
Winter Term of 1962, Professor Joseph Duerstock undertook a rewriting of
the program to overcome several cperational difficulties .and has developed
five versions of the test scoring program now in use. Our college enrolled
over 13,000 students this past fall, and over 40,000 tests were scored and
analyzed using our system.

An automated test scoring system provides a partial solution to the
ever-increasing demand on instructional staff by transferring test scoring
and test analysis to machines.

The application of modern computer systems to test scoring provides a
rapid method of grading large numbers of tests while accumulating statistical
data that heretofore could only be gathered through tedious error-pione
manual calculations. Not only will computers provide this information as
part of the normal processing, but mathematical formulas which were infre-
quently used because of their complexity now provide valuable data for use
in the analysis of tests. Thus, it is possible to reduce the work load of
the faculty and, at the same time, produce data that can be used to improve
the tests.

Miami-Dade Junior College's test scoring system had been designed to
accommodate true-false or multiple choice answer tests. “The main restriction
in the construction of the test -is that there.can.be..only one correct answer
to each test question. Thus, most objective test questions can be readily
adapted to the system while those with more than one answer can be rewritten.

268

MIAMI-DADE JUNIOR COLLEGE

11380 N.W. 27th AVENUE e« MIAMI, FLORIDA 33167 + PHONE 688-3541

ORGANIZATIONAL CHART

PRESIDENT

SYSTEMS & PROCEDURES | _ o0 o ..
ADVISORY COMMITTEE [

DIRECTOR, COMPUTER CENTER

SYSTEMS ANALYST

INSTRUCTION 3 RESEARCH

COORDINATOR
COMPUTER SCIENCE

INSTRUCTIONAL STAFF
FULL TIME & PART TIME

PROGRAMMER

ADMINISTRATIVE § SERVICE

MANAGER
DATA PROCESSING

PRODUCTION STAFF -
OPERATORS & KEY PUNCH
PERSONNEL

COMPUTER CENTER COMPLEX

* k k k ok khkkhkkhhkkk ok kA

COMPUTER DATA PREPARATION

SYSTEM EQUIPMENT

INSTRUCTION RESEARCH
HUMANITIES ADMINISTRATIVE
NATURAL SCIENCE STUDENT PERSONNEL
SOCIAL SCIENCE GUIDANCE
TECHNICAL TESTING -

BUSINESS REGISTRATION
SPECIAL PROJECTS SPECIAL ‘PROJECTS
COMMUNITY SERVICES

TESTING

269
TAK:DS | : .

ADMINISTRATIVE SERVICE

REGISTRATION
FINANCE

'CAMPUS SERVICES ((;

PLANNING - :
PAYROLL & PERSONNEL
INVENTORY

ALUMNI

MAINTENANCE

(See sample test question formats.)
Equipment requirements necessary to implement this test scoring system
are as follows:
1. 1IBM 1620 Computer Complex
2. 1IBM 407 Accounting Machine or IBM 1443 Printer
3. 1IBM 519 Document Originating Machine
4., 1IBM 026 Card Punch
5. IBM 082 Sorter
Because of the different machine capacities and features of the
1620 complex, several versions of the test scoring system were developed.
The test scoring system is comprised of two totally independent, wholly
compatible, units which are called (1) the test writing program and (2).the

test scori rogram.

“““"TEE”?%%EE;’programﬁwas designed to use the data processing equipment to
relieve thé typing Work of the secretary. The benefits of this procedure
became evident during the ever-occurring semester-end rush to prepare the
final examinations prior to the deadline of the duplicating department.
Once the questions to be used were determined, the entire job of machine
processing and preparation of the mats for duplicating was completed easily
within thirty minutes. This processing often included tests that contained
several hundred questions--a difficult task for any secretary or secretary
pool to perform on short notice.

An additional advantage of the system is accuracy. Once correctly typed,
the test questions are duplicated with no typing errors and the computer plans
all spacing to insure that no question would be split across pages. The
computer also causes every sheet to be identified by a heading and a page
number .

The test questions are converted into the proper card format for
processing, using an 026 card punch. This file is then reprocessed on the
IBM 1620 computer to create a master processing file that contains all
questions, each one of which has a unique question number. The instructor
selects the desired questions by number and records this information on a
sheet of paper. The operator enters the numbers into the computer, and the
computer compares each card to find the corresponding questions. The data
from the processing file is transferred in slightly altered form with all
of the identification deleted to another card. These output cards are
consecutively numbered to facilitate sorting in the event the cards get out
of order. -

The final step is the transfer of the test from the output cards to
some form for duplicating. The IBM 407 accounting machine or the IBM 1443
printer is used to produce the final printed test on continuous form offset
duplicating mats. Ditto mats may also be used if fewer copies are desired.
If necessary the regular single form mimeograph masters may be used in the
same manner as they are used on a typewriter. The ribbon must be removed
from the machine.

THE TEST SCORING PROGRAM
This portion of the system provides the method through which the tests
are graded and the analysis generated. Since one of the primary reasons for

the use of computers for scoring is speed, considerable programming effort
was devoted to reducing the processing time per test card. The following

270

-gcoring speeds were obtained using version five of the test scoring system,
‘with an IBM 1443 printer for direct output.

1l card test =-- 50 questions -- 236 students per minute a“j;
2 card test ~-- 100 questions -- 128 students per minute
3 card test -- 150 questions -- 88 students per minute
4 card test -- 200 questions =-- 62 students per minute
5 card test -- 250 questions -- 54 students per minute

Perhaps the most interesting thing that this chart -shows is the
relationship between the maximum speed of the computer input (250 cards
per minute) and the output (240 lines per minute) to the number of cards
per student. It can be seen that the process is output bound for one card
test and input bound for all other cases. Therefore additional improvement

in processing speed would Tequire faster input/output devices rather than

improved programming.

The most critical part of the test scoring program is the marking .of
cards by students; however experience has shown that the students readily
adapt the required techniques when properly instructed.

Though the principle of the mark sense card is the same as that of the
well-known 8% by 11 inch scoring sheet, there are two significant differences:

1. A student cannot mark two responses to the same question without

discovery. This is handled by either of two methods, depending

upon the equipment available for use:

a. If a fully equipped 519 document originating machine is
used, only one of the marks is accepted for scoring and
the second causes the punching of a digit in card
column 9 of the answer card. This digit is later used
by the computer to generate an error message associated
with the student's grade.

b. 'If the 519 does not have this feature, both marks will
be punched into the card. Double punching may form an
invalid character which will cause the computer -to
stop during the processing of that card. Though this
process will catch the error, it also causes the
computer to become inoperable to the extent that the
program must be reloaded and processing restarted from
the beginning. This is the most convincing reason for
using the full capacity 519.

2. The cards must be carefully handled so that they are not bent or
- frayed when processed.

MARK SENSE PUNCHING

Mark sense punching, though not a new innovation, provides a highly
accurate method of recording and scoring student answers and, at the same
time, provides two records of the student's response--the original pencil
mark and the punched hole generated from that mark. This system insures
that no student can change an answer (the mark) on the card and confront
the instructor with an error in his score because the computer failed to
function properly. The hole cannot be changed by the student.

The reliability of mark sense punching is excellent if the faculty and

~students are properly introduced to the correct manner of marking the cards.

Mark sensing is being used successfully in colleges, high schools, junior
high schools, and even in the lower grades. Favorable results can be achieved P

271

by insuring that:

1. Only special Electrographic pencils are used to mark the mark sense
positions.
All marks are dark and completely filled, but do not extend beyond,
the position outline.
Ink is used to write any other information on the card that is
required.
Only one response is marked for any one question.

2,

INSTRUCTOR HEADER CARD

0o NUMBER MONTH DAY YEAR OF QUESTIONS
: c02c0>2c02c0> c02c09c02ch c0> c02c0>c0>
% cl2cl>cl>cl? cl2clzel>cl cl> cl2cl>2cl?
° c22c22c22c?? c22x22c? c2> c22c22c2>
g c32c3Pc3Pcl3” c3oc32cl c3> c3Pc3P
F: c4Dc4DchdceD c4> c4r 2 c4oce>
g g c52c52ch2ch> ch> ch ch> ch2ch>
g cb62cbPcb62ch? c6> cb62c62c6> c62cb>
5 COMPUTER CENTER clPc]>ci?c1? ci1? cl”ei2ci? cl=2ci>
_:!‘; COMPUTER TEST SCORING SYSTEM 82828282 c8D 88D c8D c82c82
¢ c92c92cI2c92 c9> c92c92c9> c92c9>

- |
lu_l_g_ﬁc 70 910111213 1415 18 17
CONTRO!

L .
!+II32333‘3533733“4]4243“45“47‘*50!1nﬂ““ﬂs]ﬂl’ﬂ‘luﬂ“lﬂ“ﬂ'ﬁﬂﬂ71737475
DAY] YR JUESTION ; 2 pspies JAD 3-64

The instructor fills in one of these cards for each class tested. The
sequence number, date, and the total number of questions are recorded by the
instructor in the appropriate mark sense positions. The total number of
questions is the total of those questions to be scored, not the numerical
value of the highest question number. It -is used to check that the marks on
the key card(s) punch properly. For example: If a thirty question test were
given and it was desired to delete question number ten, the instructor would
simply not give number ten an answer on the key card and then enter the number
twenty-nine on the instructor header card for the total number of questions.
This feature does not insure that the proper responses have been marked, but
rather that there is a mark for each question to be scored. Having to reprocess
a test because the instructor failed to use the Electrographic pencil properly
is prevented by this checking procedure. The use of the instructor header card
is not mandatory, but if used, total number of questions must be entered in
first instructor header card following the key card(s).

272

STUDENT ANSWER CARD
(Front Side)

USING SPECIAL PENCIL, WA STUDENT ANSWER CARD .- N\
% APPROPRIATE a&gactt:s ‘fronl’r(wchTE» : 8858550050050 50555566885
e w ‘STUDENT NO. USE ONE COLUMN SEQUENCE) .
- '-E (Z)ﬁFOFR EACH DIGIT OF THE NUMBER. NUMBER 444444454434'5}({ CELL4L84444
W ggCODCODCUDCODCODCODCOD c02c02c02c0> v ‘
’_"9 S:z’ JITIIIIIFIIE23333333313
zxT nccl2@clocl?clPclPclPcelD clPclPcloclo
SES . ,) . S 222222272227 2t22122222222122
Hud c22c?Pc?Pc22CiPC2PC? C2PalPCPel? Py m ANSWERS 26-50
o , . IR R EERRERERERRRRRERRERE B
< ¢ c3Dc3DcIPE3PCIDCIDCeED c3DcIDCIDCEID BBV N SIWIII637 V4D € 426543 454547 428950
2.9 K PUNCH ANSWERS (-25 -)
£z . [c42ci2ciPciPcloctPcsD ci2cidchdcdD M'AM\I DADE JUN;_.;I»DR COLLEGE
L%»—J‘d’*: 'Tm' 3 . rxtutnnouezmmvwm.zzzmw. =
988 0B [55eEDCsOCEOEsICiDCED c5OciDeEOcsD
T3] I- z) 5595585555655655555558585555
2z* 7 8 cb6PcbPcbrcbPcb2cbP 62 cb2cb62cb2c62
:-535 [P 44444444444444444844844444
w3 o v CIPCI2C]PCIPClPC]Pel? 1P C]Pc]?
ws 33333333333333333353323333
ol c82¢c8Dc82c82 828D c8D 8282828 >
!jgr; 22222222322222222203200251%2
: ai% H c92c9I2cIDPcIPCIRCIDCID c92c99c92c9o COMPUTER CENTER
ST ‘ | STUDENT. s oaTE P1ITE11119110191197171(7 1 COMPUTER TEST SCORING SYSTEM
L;_j__{__ﬁjli 78 9101)12!31415!8‘713152021"‘2!242"26272828303!32333635363"38394004243“4546‘74849505!5.435455555’5!59&515 6264 65 56 67 66 58 76 7: 727274 757677 18 79 BC
kil : PIOEHLY JAL 3-64_
1
¢ The student enters his last name, first name, middle initial, student

number, and sequence number on the appropriate lines preferably using a pen.

_The special pencil could be used if the student is careful not to allow a stray
mark to cross into the area of mark sense positions where the student number !
~'is recorded.

-Using the special pencil, the student then marks his student number andiu(
class sequence number into the designated area making one mark in each of-the - -
appropriate vertical positions. All zeros, including leading ones, must be
entered. The program checks each position of the student number for a mark and,
if any of the seven positions are blank, an invalid student number is generated
and the processing of the card is terminated. Consequently, the student will
have missing answer cards if the test uses more than one answer card. This
procedure is necessary to prevent the accumulation of an incorrect total score
if two consecutive students completely omit their student numbers.

273

®

KEY CARD AND STUDENT ANSWER CARD

. g (Reverse Side)

\\Mw 4 nHUnHUnHunHUnHUAHUnHUnHunHUnHUnHUnHUnHUnHUnHunHunuunuunHunanHUnHUnNunHU

v.% nHUnHunHunHUnHUnHUnHUnHUnNunHUnHUnHUnHUnHUnnunHUnHunHunHUnnunHunHunHunHUnHu
(B¢
mu%%%%%%%ﬁ%%%ﬂ%%ﬂ%%ﬂ%%ﬂ%%%%m
m X Y S e e S S O S S e T T T T T T T T T T O T SO e
& m N o N ~ N N ~N o ~N ~N ~N o o~ NN N N N o N N [\ ~ N Y] “
G2 co e e e e e e TSy
EB < . . . o . . o . . o o o 3 » . T e 3 (]
bl 288 § 885 d 89 dndddd i dodog;
= .
ﬁ.ﬁ.M. 3 WRITE NAME AND . STUDENT NUMBER ON REVERSE SIDE IN INK-DO NOT USE PENCIL m
w . 2
I R R R R R R R S R R R R R TR
<?2o wnHUnHUnHunHUnHUAHunHUnHUnHUnHUnHUnHUnHUnHUnHunHunHUnuunHunanHUnHUnHUnHUnHum
c3o MnHUnHUnHUAHUnHUﬂHumuunuunHunannunﬂunuunHUnHUnHUnHUnHUnHUnHUOHunHUnHUAHUnHUo

4o nﬂbnﬁunHUnHUAHunHUAHUAHUAHUnHunHUnHunHUnHUnHUnHunHUnHUAHUnHUAHUnHUnHUnHUAHUs
<50 nHUnHUAHUAHUnHUnHUnHUnHUnHUnHUnHUnWUnwunWU nm.UAWUnHUnHUAHUnﬂunHUnHUnHUnHUA

= o4 M < 6 6 N o8 & 6 = o
B4 DSCY 1O - - =

13
14,
IS,
6.
7.

d ¢ 6 2 o 8 ¥ 4
- - N N N N N N

The responses are entered for the appropriate questions and a test
section number must bé marked. It is imperative that the students use the
same test section that is marked by the instructor, though it is not necessary
to start with test section number one.

The use of the test section number provides an instructor with the
capability of giving a 250 question examination. A practical and useful
variation is to give not more than five 50-question tests. By marking a
different test section number for each test, the cards from all exams can be
rerun at the end of the semester to provide cumulative scoring to facilitate
the assigning of the final grade.

274

KEY CARD
(Front Side)

-, STUDENT ANSWER CARD ‘ y $5P8SE55555555555555585589%

NAME, STUDENT NUMBER AND SEQUENCE NUMBER ARE TO BE WRITTEN IN

INK IN THE DESISNATED I:A.‘CE:.S;I thTA'Ngl::=KcEAD!& THE RESPECTIV SEQUENCE) FORMULA

" QUBMLE POSITIONS UOING THE SPECIAL MARKING PENCIL. INSURE THAT NUMBER L4444 4a444044444804004
ONE AND ONLY ONE BUBBLE IN EACH VERTICAL ROW IS MARKED. IN c0PciPciPc0> O RIGHT ONLY
:A!l'trlc.lz.l.‘l.l. BUBSBLES AT THE ZERO POSITION MUST BE MARKED ~ NOT 133333333333 33 33333333333

cl2clociPcl> =D RIGHT-WRONG
ST TOR HEADER CARD
zu.l!ufy& SEQUENCE NUMBER AND DATE ON THE CARD. 2222222222222222222222222
8. ANY NUMBER OF SEQUENCES MAY BE SCORED USING THE SAME KEY CARD(S). —) D22 22220 PUNCH ANSWERSZR-BSI1/2W
€. MARK, 1N THE APPROPRIATE PLACE, THE TOTAL NUMBER OF QUESTIONS
WHICH ARE TO BE SCORED. IRRR AR R REERARREERRRARERR R R
3 KEY CARD C3DC3DC3DC3D ATBNVNOVABINADLTDN-LBHEEN
A. MARK THE CORRECT ANSWERS ON THE CARD. ’ PUNCHM ANSWERS =25 ‘
L T RUbbLes CoRNCaPORpING 70 ARY GUEATION WMICH 15 NoT rope CA2cA2ciOcdo = R-1/4W
SCORED MUST BE LEFT BLANK, 1z3:58isnpnnuussonunaasanM|AMI-DADE JUN'DR COLLEGE

D. ALL KEY CARDS MUST WAVE THE DESIRED CORRECTION FOHHULA CSDCSDCSDCSD

MARKED.
. 555555555555555555555555§
4 A‘l'?:"t‘sugEv‘:aﬁz':'-rcooutA;l;E:‘rE::{A::t:so_{iu;:;;T:‘:o::ﬁt:zg:;s ':u cb62cb2cb>c6>
T LoORS AT TE FROWT OF TE CaMo, THE CARDS MuST BE Ty g F4444482444448444444 ‘

. rou.l.omu:‘o:tntn-u---c. C73(.'.7:3C79C7D 33113
- KEY CARDIS), 2333333333 333333331333

. :}r':::u’;!::::l:Ac::n‘:g::o:ru:A:::c::::buu'r: CLASS MEADER (:8:3<:83(:89<:83

CARD. jelieiiiiiiiiiriiizzziazidz —
c92cI2cI2c92 COMPUTER CENTER
seq. BEEREEREE R EREREREERE R R COMPUTER TEST SCORING SYSTEM

1 ¢ s ﬂﬂaﬂanuaﬂﬂa’nﬂ3233‘35"73‘3.“Q“““‘“.‘”S'an“aﬂn.a."nu“ﬁ.ﬂ..nn72737‘5”"’.7..

W& YT IT T Al gL,

The instructor marks the desired correction formula on the key card by
filling in the appropriate mark sense position. If no foumula is marked, the
computer assumes "right only." If the instructor wishes to use one of t:he
remaining formulas, all of the key cards should be marked as the computer
processes this mark only from the first key card entered for the test group.
All figures are calculated to give the benefit of the doubt to the student,
that is, percentages are half-adjusted upward; or, when a correction formula
is used, the fractional portion of the subtrahends used to correct for guessing
are dropped.

OUTPUT LISTING

Page one of the output listing shows one line of print for each student.
The student number, number right, number wrong, and the number of questioms
with no answer are listed. The last columm listed is the percentage and is
calculated by dividing the number right by the total number of questions. If
a correction formula is used, the percentage column is changed to reflect the
adjusted score. Statistics are based on the number right if no correction
formula is specified, or the adjusted number right when a correction formula
i8 used.

ERROR STATEMENTS
ER 4 - Student is missing one or more answer cards. All statistics for

the student are ignored and no grade is assigned.
ER 3 - The student has marked more than one answer on one or more

275

C

O

questions. The instructor should examine the student's card
to try to determine if the double marks were intentional or
a legitimate mistake.

ER 2 - The student has two or more answer cards with the same test
section number. ER 4 will normally be listed along with this
error.

Student Number Invalid - This statement appears with an asterisk to
the left of the student number i{f the student fails to fill
in one or more of the student number mark sense columns. The
computer will automatically substitute a zero for any digit
missing from the student number.

Student Number XXXXXXX has improperly marked test section number on

answer card -~ The student number of the person who made the error is
inserted in the X'd space by the program. It is possible for
the statement to be blank or to appear with a partially filled
number if the student number is also improperly marked. The
card is not scored. '

The item analysis provides a tabulation for the responses to each item
of the test. An asterisk marks the correct response and is determined by
the answers provided by the key card(s). The mean, median, standard
deviation, sum, and sum of the squares, as well as the number of test questions
and tests graded, are given at the bottom of the last item analysis sheet.
Individual scores which were deleted because of errors are not included in
the statistical analysis.

The last column (R) is a point biserial correlation between the response
to each item and the score made on the test. It is not the purpose of this
paper to debate the significance of R for various testing situations; however,
a number of interesting properties of R are immediately evident.

If a significantly high value of R is found for an item, it follows that
the students who answered the item correctly had the better scores on the test.
However, this is no assurance that the question measured that which was intended.

A zero value from one of the following conditions:

1. All students answered the item correctly.

2. All students missed the item completely.

3. The correlation was equal to zero or so near zero
that the only significant digits were values less
than three decimal places.

The distribution is presented in two forms. A numerical listing is given
showing the frequency for each score, omitting all scores with a zero frequency
value. The last column contains the cumulative frequency for the convenience
of those who assign grades based upon class standing.

A histogram is generated to provide a graphic illustration of the
distribution. The horizontal axis represents the score and the vertical
axis the number of students. The computer adjuste the scale of either
axes in the event that more than 50 questions are used, or in the event
there are more than 50 people that score a particular grade. Thus the
histogram, like the other portions of the output, always fits an 8% x 11
inch page.

AVAILABLE TEST SCORING PROGRAM VERSIONS

Version I - For 40K machine. Has item analysis, mean, median,
standard deviation, total number of questions and
tests”graded. Distribution has both frequency and

276

T T T S T

cumulative (equal to or greater than) frequency
distribution by score and a biserial coefficient of
correlation is calculated for each item of the
analysis. Program can be reinitialized by recalling
from the 1311 disk drives or by reloading from cards
o following the grading of each test group..

Version II - Similar to Version I except a histogram plot is
generated for visually representing the distribution.
Part of the program is overlaid automatically from
disk or manually from cards. The program is in two
parts--scoring and analysis.

Version III - For 60K machine without disk drive. Similar to
Version II except total program is contained in core.

Version IV - For 20K machine with disk drive. Program is limited

' to three cards (150 questions) and scoring speed is
somewhat reduced for tests that have more than one
card. Program is overlaid from disk to produce the
same analysis as Version II.

Version V - For use with the 1443 printer to permit direct

' printing of output, and the 1311 disk drives to

permit automatic overlay of the analysis routine and
reinitialization. In other respects, the system is
gimilar to Version II.

DETAILED MACHINE FEATURES REQUIRED FOR TEST SCORING PROGRAM ,

1620 Central Processing Unit with following special features:
1. Automatic divide
2. Transmit numeric f£ill (TNF)
3. Transmit numeric strip (TNS)
4. Indirect addressing
5. Move flag (MF)
1622 Card Read-Punch (either Model 1 or Model 2)
519 Document Originating Machine with:
1. Mark sensing -- 27 positions
2. Double punch-blank column detection device

3. The following features provide additional checking capabilities
and ease of operation. They are strongly recommended, but are
not absolutely required. If only one of the two can be secured

the selectors are preferable:

a. Four selectors -- allow the panel to be wired to eliminate

the possibility of punching a double-marked response.

b. Punch emitter -- provides ease in operating the machine
and in wiring the control panel for the punching of the
mark sense cards.

1443 Printer or 407 Accounting Machine -- If the accounting machine 1is.
~used, only an 80-80 list board with a carriage skip to. channel 1

from column 80 first read is needed.

026 Card Punch -- No special features required.

082 Sorter -- No special features required.

277

%
/

ACCEPTABLE TEST QUESTION FORMS

Multiple Choice:
How many characters comprise the alphabet.

1. 9
2. 10
- 3. 26
4, 39
5. 47
True-False

Florida is known as the Sunshine State.
- 1. True
2, False
Multiple-Multiple Choice
Testing procedures should include
A. Test writing
B. Grading
C. Evaluating
D. Giving A Grades to all students

1. Aand D
2, B,C, and D
3. B only
- 4, A, B, and C
5. All of the above

TEST WRITING PROGRAM STEPS

This is a detailed description of the steps used in the test writing
system, starting with the questions already written.

1.

Each test question is transcribed to IBM cards using the following

card format.

1-10 blank in all cards

Format for question cards:

11-80 contain the question. If it is necessary to have two or more
lines for the question, the succeeding lines also start in
column 11.

Format for response cards:

16-17 contain the response number and a period.

20-80 contain the response. Additional lines for responses start
in column 20.

An 11 (-) punch is placed in column 11 of the card that contains the

correct answer. This mark is later printed on the instructor's copy

of the test and greatly facilitates the marking of the key card. Of

course, the mark does not appear on the student's copy. The punching

of the cards can be done either by a card punch machine or by a Friden

flexowriter which produces a paper tape that can later be converted into
card form.

A card that contains an 11 punch in column 7 is placed between each

test question to signal to the computer the end of that question

group.

The cards from step 2 are then processed by the computer using option

zero (0) of the test writing program. This process creates a new file

of cards and, in addition to copying columns 11-80 of the input cards,

278

consecutively numbers the cards of each test question while punching

a unique number for each question. During this same processing, a

two digit code is punched into all cards, which is used to identify
the subject of the test questions. The end of the question card

(11 punch in 7) is deleted at this time and the identification punch

is transferred to column 1 of the last card of each question group.

The output from step 3 forms the master processing file and is now
used to do the actual test prepatation. A listing of this output is
prepared showing both the unique number for each question and the
subject code. The question and subject code for each desired question
is recorded by the instructor and turned ower to the machine operator.
After loading the program, and selecting the correct program option (3),
the operator merely enters the desired question numbers into the
computer by the typewriter and the computer then produces the selected
questions sequentially numbered and in a form which can be listed
easily on the IBM 1443 printer or IBM 407 accounting machine. The test
questions can be selected in different sequences in order to produce
multiple forms of the same test if the classes are large enough to
require this method of control.

THE TEST WRITING PROGRAM PROVIDES THE FOLLOWING OPTIONS

OPTION O (Zero) -- Construction of the Original File

This option converts the cards from the format as outlined in part 1
of the preceding section into the form for use in processing step 3.

OPTION 1 -~ Update the File Produced by Option O

Questions may be deleted or added to the processing file. Any questions
to be added must be in the same card format as the processing file.

OPTION 2 -- Convert File to Paper Tape

Option 2 allows the processing file to be punched on paper tape to
provide a duplicate record of the test question file as a protection
against loss or destruction.

OPTION 3 -- Test Writing Program

The computer selects from the processing file those questions that the
operator enters from the typewriter. This is the option that prepares
the test for use in the classroom.

OPTION 4 -- Goof Switch

Console switch 4 is used to allow the operator to correct any erroneous
information entered into the computer program through the typewriter.

TEST WRITING PROGRAM -- CARD FORMAT OF PROCESSING DECK
Question number

3
5 Subject code

-7 Sequence number within question
8

9

(- 00 o
§ .

Department code
This digit identifies all cards that belong to one part of the question.
All cards that comprise the question contain a zero. Those belonging
to response 1 contain a 1 punch, etc.

11-80 Contain an exact duplication of the input cards for Optiom O.

279

\ Y

O

MDJCTD 3/27/64 MIAMI-DADE JUNIOR COLLEGE PAGE
DAP101JAD COMPUTER LABORATORY
TECHNICAL DIVISION
1-1. WHICH OF THE FOLLOWING IS NOT A FUNCTION OF TOP MANAGEMENT IN A DATA
PROCESSING UNDERTAKING.
le APPROVAL
2. DIRECTION
3. CO-ORDINATION
- 4. OPERATION
2-le THE DATA PROCESSING MANAGER OF A LARGE EDP INSTALLATION WOULD MOST
LIKELY HAVE AS A JOB TITLE '
1l TAB SUPERVISOR
2. TAB OPERATOR
- 3. CO-ORDINATOR
4. TAPE JOCKEY
3-1. ANALYSIS OF SYSTEMS, PROGRAMMING, LIAISON, PROCEDURES AND

DOCUMENTATION, AND CONVERSION REPRESENT
- 1. PLANNING AND DEVELOPMENT FUNCTIONS
Z2e OPERATIONAL FUNCTIONS

ANY COMMENT CAN BE ENTERED AFTER A GIVEN QUESTION THRU THE TYPEWRITER

4"‘10

7-1.

O

WHICH OF THE FOLLOWING GROUPS SHOULD RECEIVE NO TRAINING OR INDOC-
TRINATION PRIOR TO THE INSTALLATION OF AN EDP SYSTEM.

l. MANAGEMENT

2« PROGRAMMERS AND SYSTEMS ANALYSTS

3. OTHER EMPLOYEES
- 4. NONE OF THE ABOVE

THE COMPANY INSTALLING AN EDP SYSTEM WOULD PROBABLY NOT KEEP
1. A GENERAL PRE-INSTALLATION SCHEDULE
2e AN APPLICATIONS DEVELOPMENT SCHEDULE

- 3. A COMPUTER MANUFACTURING PROGRESS SCHEDULE
4e A PROGRAM DEVELOPMENT SCHEDULE

AN ASPECT OF PREPARATION FOR AN EDP SYSTEM WHICH IS MOST FREQUENTLY
OR EASILY SLIGHTED IS

le PROGRAMMING

2. CONVERSION

3 TESTING
- 4« DOCUMENTATION

THE PUNCHED CARD METHOD OF ACCOUNTING WAS DEVELOPED ABOUT

- 1. 1886
2« 1765
3. 1916
4. 1936

280

1

WHICH OF THE FOLLOWING IS NOT A FUNCTION OF TOP MANAGEMENT IN A DATA
PROCESSING UNDERTAKING. ™
l. APPROVAL
2. DIRECTION
3., CO-ORDINATION
- 4. OPERATION

THE DATA PROCESSING MANAGER OF A LARGE EDP INSTALLATION WOULD MOST
LIKELY HAVE AS A JOB TITLE

le TAB SUPERVISOR

2. TAB OPERATOR
-1 3. CO-ORDINATOR

4. TAPE JOCKEY

ANALYSIS OF SYSTEMS, PROGRAMMING, LIAISON, PROCEDURES AND
DOCUMENTATION, AND CONVERSION REPRESENT
- 1l PLANNING AND DEVELOPMENT FUNCTIONS

2. OPERATIONAL FUNCTIONS

WHICH OF THE FOLLOWING GROUPS SHOULD RECEIVE NO TRAINING OR INDOC-
TRINATION PRIOR TO THE INSTALLATION OF AN EDP SYSTEM.

1. MANAGEMENT

2. PROGRAMMERS AND SYSTEMS ANALYSTS

3¢ OTHER EMPLOYEES
- 4. NONE OF THE ABOVE

THE COMPANY INSTALLING AN EDP SYSTEM WOULD PROBABLY NOT KEEP
1. A GENERAL PRE-INSTALLATION SCHEDULE
2. AN APPLICATIONS DEVELOPMENT SCHEDULE

- 3 A COMPUTER MANUFACTURING PROGRESS SCHEDULE
4s A PROGRAM DEVELOPMENT SCHEDULE

AN ASPECT OF PREPARATION FOR AN EDP SYSTEM WHICH IS MOST FREQUENTLY
‘OR EASILY SLIGHTED IS '

l« PROGRAMMING

2. CONVERSION

3. TESTING
- 4, DOCUMENTATION

.THE PUNCHED CARD METHOD OF ACCOUNTING WAS DEVELOPED ABOUT

1. 1886
2e 1765
3. 1916
4e 1936

THE FIRST PUNCHED CARD APPLICATION WAS
l. PAYROLL

- 2« STATISTICS
3. INVENTORY
4. ADDRESSING

281

O

0019901Xx0
0019902x0
0019903x1
0019904Xx2
0019905xX3
=019906X4

0029901X0
0029902X%0
0029903X1
0029904x2
0029905x3
-029906 X4

0039901x0
0039902x0
0039903x1
-039904x2

0049901x0
0049902X0
0049903x1
0049904x2
0049905x3
-049906 X4

0059901x0
0059902X1
0059903Xx2
0059904X3
-059905X4

0069901Xx0
0069902X0
0069903X1
0069904X2
0069905x3
-069906X4

0079901Xx0
0079902x1
0079903Xx2
0079904Xx3
~079905X4

0089901X0
0089902X1
0089903Xx2
0089904X3

| 0089905X4

WHICH OF THE FOLLOWING IS NOT A

FUNCT ION OF TOP‘MANAGEMENT IN A DATA
PROCESSING UNDERTAKING. '

le APPROVAL
2. DIRECTION
3. CO-ORDINATION
- 4+ OPERATION
THE DATA PROCESSING MANAGER OF A LARGE EDP INSTALLATION WOULD MOST

LIKELY HAVE AS A JOB TITLE

le TAB SUPERVISOR
2. TAB OPERATOR
- 3. CO-ORDINATOR
4 TAPE JOCKEY
ANALYSIS OF SYSTEMS, PROGRAMMING, LIAISON, PROCEDURES AND

DOCUMENTATION, AND CONVERSION REPRESENT
- l. PLANNING AND DEVELOPMENT FUNCTIONS
2. OPERATIONAL FUNCTIONS

WHICH OF THE FOLLOWING GROUPS SHOULD RECEIVE NO TRAINING OR INDOC=-
TRINATION PRIOR TO THE INSTALLATION OF AN EDP SYSTEM.

l« MANAGEMENT
2. PROGRAMMERS AND SYSTEMS ANALYSTS
3. OTHER EMPLOYEES

- 4« NONE OF THE ABOVE

THE COMPANY INSTALLING AN EDP SYSTEM WOULD PROBABLY NOT KEEP
» A GENERAL PRE-INSTALLATION SCHEDULE
2e AN APPLICATIONS DEVELOPMENT SCHEDULE
- 3« A COMPUTER MANUFACTURING PROGRESS SCHEDULE -
4« A PROGRAM DEVELOPMENT SCHEDULE

AN ASPECT OF PREPARATION FOR AN EDP SYSTEM WHICH IS MOST FREQUENTLY
OR EASILY SLIGHTED IS

1« PROGRAMMING
2+ CONVERSION
3. TESTING
- 4e DOCUMENTATION
THE PUNCHED CARD METHOD OF ACCOUNTING WAS DEVELOPED ABOUT
- . 1886‘ ‘
2. 1765
3. 1916
4e 1936
THE FIRST PUNCHED CARD APPLICATION WAS
le PAYROLL
- 2. STATISTICS
3¢ INVENTORY
4 ADDRESSING

282

DATE 04/16/64 MIAMI-DADE JUNIOR COLLEGE

SEQ 4172 COMPUTER LABORATORY
STUDENT NUMBER NUMBER NO _ PER-
NUMBER STUDENT NAME RIGHT WRONG ANS CENT
0298325 52 48 0 52
0760714 » 25 56 19 25
1019448 _ 48 49 3 48
1605231 | 29 67 4 29
1647911 39 61 0 39
1800106 » 65 34 1 65
2343836 ‘ 77 23 0 77
2417329 63 36 1 63
2618043 50 58 2 %0
2695433 51 48 1 51
2721826 68 32 0 68
3242714 53 43 4 53
3296833 79 21 0 79
3646443 ~' 56 44 0 56
ITTI731 - TT 738 I 7T
3715941 46 52 2 46
3726436 ' 34 62 & 34
3728531 57 42 1 57
4105026 44 55 1 44
4184543 54 45 1 54
4573521 37 62 1 37
4756026 40 60 0 40
5002821 67 31 2 67
0047206 53 45 2 53
0288421 51 48 1 51
0602041 58 40 2 58
1024806 33 66 1 33
1416711 58 42 0 58
1537641 37 60 3 37
1760831 43 56 1 43
1822026 75 22 3 75
2104443 58 40 2 58
2164121 i 65 35 0 65
2730223 43 55 2 43
2763631 50 46 4 50
2783706 | 55 44 1 55
3051010 37 54 9 37
3053426 45 55 0 &5
3278106 59 37 4 59
3807846 53 45 2 53
3578216 44 56 0 44
3604023 75 23 2 75
3771711 67 33 0 67
3791611 , 45 55 0 45
4370211 73 26 1 73
4383133 64 35 1 64
4834426 71 26 3 71
4856606 53 42 5 53
1 70

5103131 70 29

283

DATE 04/16/64 MIAMI-DADE JUNIOR COLLEGE

SEQ 4177 L COMPUTER LABORATORY

O e

NUMBER NUMBER NO PER-

~ NUMBER STUDENT NAME "RIGHT WRONG ANS CENT
ER 4 %¥0042407 STUDENT NUMBER INVALID 0 0 0 0
ER 4 *%0042407 STUDENT NUMBER INVALID 0 0 0 0
e L T 30T NU > 58 5 3
0265938 71 29 0 71
0488334 T T T &5 3% 1 65
0719341 55 43 2 55
1021817 T e T 2T T 69
1112831 66 32 2 66
ER e R . g 5 5
1210041 60 39 1 60
2748816 0 T 62 37 1 62
.. 3328636 53 47 0 53
ER 3 3365216 68 31 1 68
. _ ... 3108436 69 28 3 69
3899131 65 35 0 65
4037106 37 45 18 37
4267931 \ 55 45 0 55
4429911 . 68 32 0 68
4538431 47 52 1 47
ER 2 4 5054811 =~ .0 0 0 0
: 5134935 54 45 1 54
5156246 - 64 36 0 64

284

 DATE 04/16/64 MIAWI-DADE JUNIOR COLLEGE
‘COMBINED SEQUENCES 41XX '~ COMPUTER. LABORATORY

ITEM N/A 1 2 3 R 5 R w
1. 4 123 69 2% 76 457 14 0,155
2. 7 4T4% 359 305 217 4 0,209
3, 6 542 549% - 56 132 8l 0.130
4, 9 458% 212 130 T 322 235 0Oe33
5. 7 342 102 287 162 466% 04245
6e 5 332 152 26 841% 10 0,346
) Te 0 993x% 286 28 25 34 0.410
8o 5 197 44 7 10° 1103% 0.278
9. 3 338% 940 30 27 28 04159
10. 3 32 1049% 140 %8 34 0,347
11. 3 140 29 27 1141% 26 0.316
12. 5 57 68 86 21 1129% 0,331
13. 2 31 13 40 1070% 210 0.255
14, 7 655 478% 70 73 83 0.279
15, 7 117 205 68 885% 84 0.260
“16. 10 508% 225 272 113 238 0.276
17, 1 184 641% 55 20 465 0.266
18. 2 114 292 86 7% 78 13 0.311
19, 2 895% 249 130 77 13 0,314
20. 3 7120 814% 64 88 277 0.315
2le 4 lé4 . 934% 103 12 109 0,299
22. 5 565 174 222 T 315% 85 0.135
23, o 1 294 Q7 93 113% 102 0,282
24, 3 66 520% 417 98 262 0.154
254 10 34 48 21 120 1133% (0,224
26. 6 79 341 810% 57 73 0.250
27 24 377 376 , _450% 106 33 0,294
28, 8 88 60 471 597% T 42 0.162
o 29 10 97 45 44 1087*) 83 0,198
30. 5 90 155 42 1023% 51 0.229
31, 11 892% 40 161 245 17 0.339
32, 3 277 269 570% 39 208 0.233
33, 4 181 97 374 698% 12 0.290
34, 3 291% 57 27 617 371 0.333
35, 22 91 1102% 32 27 92 0.241
36, 2 270 57 257 598% 182 0.403
. 37. 8 1030% 153 71 26 78 0.424
38, 380 180 316 187 254% TT49 0.071
39, 29 334 452% 305 160 86 0,421
40, 15 175 391 91 116% 578 0.051
41, 23 92 1043% 78 30 100 0,269
42. 10 136 101 134 640 345% 0,330
43, 11 583 47 43 342 340% 0,349
44, 72 22 343 289 148 492% 0.379
45, 178 115 394 14 644% 21 0,105
%6, 26 445k 101 51 380 363 0.227
47, 11 267 690% 98 137 163 0.227
48, 1 191 51 567 547% 9 0.318
49, 1 18 22 96 7% 43 315 0,203 ‘:}

413 154 29 683*% 81 0.315

285

~ DATE 04/16/64 MIAMI-DADE JUNIOR COLLEGE

COMBINED SEQUENCES 41XX COMPUTER LABORATORY

,‘z»“”ATEMWA N/A 1 2 , 3 4 5 R
51e. 2 51 47 1202% 63 "1 0.188
52. 2 82 109 4% 73 47 68 0,355
53, 4 776 135 253% 104 94 0.239
54, 10 258 401%* 235 67 395 0.245
55, 4 68 179 162 765% 188 0.406
56 2 100 79 209 784% 192 0.317
,,,,, 57 2 229 136 117 196 686% 0,413
58. 3 354 70 88 109 742% 0.410
59, 11 176 338% 632 147 62 0.132
60. 8 202 276 166 663% 51 0.304
61. 7 395 133 709% 21 101 0.293
62. 4 61 56 548 585% 112 0.077
63. 5 234 171 73 7% 112 107 0.376
64, 1 409 250 67 628% 11 0.238
65. 7 864% 1237 143 108 7 0.401
66. I 17 35 1074% 41 198 0.281
67, 3 154 97 75 924% 113 0.379
68, 5 182 913% 176 88 2 0.267
B 69, 8 756% 158 206 92 146 0.196
70. 6 252 103 74 218% 713 0.077
71. 5 429 455% 113 24 340 0.329
T2« 1 89 118 953% 160 45 0.363
73. 4 29 150 844% 256 83 0,426
74. 4 141 173 29 10 1009% 0.259
75. 11 319% 114 311 551 60 0.352
76. 7 194 1001* 15 25 124 0.369
N 77 30 50 4% 260 75 97 400 04117
78, 11 200 70 2% 179 228 46 0.166
79, 11 588% 94 268 135 270 0.373
80. 5 14 55 6% 108 136 547 04321
B 8l. 21 187 832% 118 169 39 0.227
82. 5 347% 58 463 377 116 0.250
83. 5 66 1090% 45 81 79 0264
84. 3 438 128 643% 134 20 0.266
B 85, 13 881% 35 323 58 56 0353
86, 4 163 663 144 215 177* 0.018
87, 12 426% 393 233 295 .7 0232
88. 405 257% 143 184 211 166 0.309
89, 24 591% 432 28 251 40 0.301
90. 15 171 368 366 392% 54 0.166
91. 29 63 395 699% 158 22 0.339
92. 11 111 770% 110 310 54 0,275
93, 10 - 17 203 1034% S1 0.184
94, 41 918% 63 94 - 65 185 0.290
95, 128 27 159 998x% 37 17 0.304
96. 34 497% 127 305 180 223 0.198
97. 5 294% 250 186 299 332 0.267
98. 4 179 163 865% 102 53 0.274
99, 4 584 246 214 19 299% 0.265
100. 6 103 T 70 1033% 119 35 0.339

~ MEAN- 50.982 ,
~ MEDIAN- 51 , NUMBER OF QUESTIONS = 100
STANDARD DEVIATION- 12,544 NUMBER OF TESTS GRADED = 1366
 SUM 69642 SUM OF SQUARES 3765338)
286

h
> ~ &‘I
DATE 04/16/64 MIAMI-DADE JUNIOR COLLEGE - B -7
COMBINED SEQUENCES 41XX ~ COMPUTER LABORATORY - _ e AT
DISTRIBUTION -
SCORE FREQ CUM FREQ L
85, gy e g -
82 3 8
81. 3 11 e N -
80. 3 14
o 79. 3 11 B} e
78 7 24
77 7 31 R
76. 9 40
75 . 9 49 ' : ‘ e
T4, 12 61 SCORE FREQ CUM FREQ
13. . 15 16 »
72. 10 86
71. 17 103 34, “18 T 128 .
70. 18 121 33, 16 1280
69. 19 140 32, 21 1301 S
68 17 157 31. 12 1313
. 6T. 19 176 30. 12 1325 R
66 19 195 29. 9 1334
65. 28 223 28, 9 1343
64e 14 237 27, 5 1348
63, 17 254 26 2 - 1350 —
62 33 287 25, 6 1356
6le .21 308 24, 3 1359
60. 28 336 23, 2 1361
59. 35 37y . T T2, T 1362
58 35 406 21l. 1 1363
57 24 430 20. 1 1364 -
56. 40 470 19. 1 1365
55, 41 511 17. 1 1366 R
54. 46 557 ~
53, 40 597 . o
524 35 632
51 53 685 o
50 40 725
4%. 317 162 . - - e
48, 48 810
47. 29 839 o
46, 44 883
45, 33 916 -
44, 32 948
. 43. 49 9971 e
42, 38 1035
41. 32 1067 o S
40, 34 1101 -
39, 39 1140 - I;y;
38. 24 1164
37. 26 110 .
36. 27 1217
35. 29 1246 . - _ e

287

DATE 04/16/64

COMBINED SEQUENCES 41XX COMPUTER LABORATORY

<OoZmCcom»m

99~
97~
95~
93-
91~

89-

87—
85~
83~
81~
79~

o

75-

713~
L Tl-

69~
61=

e5-

63~
61-
59~
57~

.55-

53—
51-
49~
47-
45-

43-

41-

. 39~

37~
35~
33~
31~

29-

27-
25~
23~
21-
19-
17-
15-
13-
11-

Q-

7.4

g

3=
1-

100
98
96
94
92

56~

88
86
84
82
80

7g T

76
74
72
70

68

66
64
62
60
58
56
54
52
50
48
46
44

42
40
38
36
34
32

30

28
26
24
22
20

18

16
14
12
10

N o

MIAMI~-DADE JUNIOR COLLEGE

T
*¥K

* kkk
* ko

R RREEETT
L2 22233

Tk kokdeokdokk
ok EkRkkEck

ek ok Aok koK
e e e o e o e

Cekokdkok koo
fokkd ok R X

sedolokkokdokk K
e heateateit b b L

S ook e ok e A
R Lt dd i d b

% sokdokdkokiokkkkk
X REREEEREREERRE

e s i e 3k o 3 o e e o e o
C kdmksokdokdokkdokkk %

A AR KRR Kk K
o oWk kRKIK X

sk kR dkk X
kdekdkkkRRRRKE K

fdkokkkkk R RERKKK K K
Aok kR k kKR Kk k

R R KRR KR KRKREK KK XK
B R RRRE R RERRRF R KX

¢ 3 e i 3 3 e 3 o o o o 3k R o ok Aok X
e 3 3¢ 3 3 e v 3 e o e s ik e sfe e e e ol ek ok

sk s 33 3k o 3 3 3 o ofe e ok oK o Kok A KK
i s ok s s s o sl ik s sk ol ol s ol ol ok ok koo

sk e s skl ok o sl e ol ol ok ok ok Kok KRR
e 3k o e e s s s ol ksl o ke o e e ol el ke ook

ET 1 i i It IS IITIIIII
ke e ke ke sk ok ok o 3 3 o o o s o o sl ool e ok ok &K

sk 2k 3k 3k ok 3 3ol ok ok o e ok o ok ok ok ok KR KK
ke s s o e o o e e ke sk ol sk e o o ok ok Kok o o

sk ook ek o ok Kok ook ook ko sk ok ok
sk sk ke ko o 3 o ok e ok o ok ok ok 3k ok ok ok ok ok Sk ke ok

e sk o o ol s ok o 3 4k 3 3 o o o o e ok oK ok Aok o e 3k oK % K K
sk sk ok ok ok ok tokokok ok ko koo okok

i ¢ 3 4 e o 3 ik e ol ok o ok ek e ok o ok o ok 3k ke 3 3k ok ok ok ok
1

000001111122222333334444455555666667777788888999990
024680246802468024680246802468024680246802468024680

. SCORE
288

N
-

1.

2.

3.

4,

5.

6.

SUGGESTIONS FOR SPLAKERS

BE WELL PREPARED - Your entire paper should have been completed
well in advance of the meeting., This will allow sufficient time
for having the manuscript completely typed to be turned in to the
Program Chairman at the meeting. In addition, all supporting ~
materials such as slides and transparencies should be prepared
and checked before your presentation., Examples, if used, should
be chosen to best illustrate the points which you wish to make.

BE AS CONCISE AS POSSIGLE - Your purpose in presenting the talk

is to convey information to your listeners. Anything extra is
probably unnecessary., Your criterion should be viisther or not

the added material will contribute to this transfer of information.
In particular, long stories involving personal experiences and
long jokes should be kept for bull sessions.

SPEAK CLEARLY AND DISTINCTLY - In order to be understood, you must
be heard! To be heard, you must face the audience and speak
directly to them, Good eye contact is necessary. Your presentation

‘should be at a rate slow enough to be clearly understood, and

with sufficient volume to be heard throughout the room. If a
microphone is available, use it and speak directly into the mike.
Try to keep the distance between you and the mike constant.
Varying this distance will cause a variation in the volume as heard
by the listener.

USE THE BLACKBOARD AS LITTLE AS POSSIBLE - The blackboard is
generally unsatisfactory for conveying information to the listener.
If the blackboard is used at all, several pitfalls should be
avoided, The speaker should take care not to talk while facing

the blackboard. He should also take care to write large enough

and clearly enough so that the material can be read all over the
room. This is especially critical in large rooms. If much
material is to be illustrated, it should not be put on the black-
board at all. Slides and transparencies are much more satisfactory
for illustrating parts of your presentation.

SLIDES AND TRANSPARENCIES SHOULD BE (VELL PREPARED - A good presenta-
tion can be ruined by sloppy slides! The information on the slide
should be readable from the rear of a fairly large room. This is
particularly true with respect to slides used for presenting papers
at general sessions. Too many people make the mistake of including
too much material on a slide. Remember, visual aids are used to
explain or illustrate certain specific points in your talk--not

to give a visual display of the entire talk. Remember that a
criterion here is to have only those points on slides which will

be directly referred to and will be needed for clarifying your
presentation. It is very disconcerting to the listener to have
slides cluttered with information and only one or two references
made to the material contained thereon,

USE HANDOUTS LIBERALLY - In spite of our impressions as to how
good our presentations are, it is still very true that the spoken
word is soon forgotten. In particular, when light conditions are
low, it is difficult for listeners to take notes. Written material
in the form of handouts generally serves the purpose of making your
talk remembered and of allowing people to have reference to such
material at a later time. The handout can be as lengthy as you

289

7.

8.

wish it to be and can include the raft of material which should —~
be left out of your slides and your oral presentation. In fact,)
additional examples are often helpful in handouts. If such '
handouts are prepared, it wmight be wise to include the mailing
address where the author or authors can be contacted if additional
information is needed. '

STICK TO ALLOTTED TIME - Time is valuable and all papers must be
resented! By means of one or more rehearsals, you should be well
aware of the time required for your presentation. It should be

of such a length that you will complete it two or three minutes

ahead of the scheduled time., In that way, a few questions can

be asked by members of the audience. IN NO CASE SHOULD YOU TALK
LONGER THAN THE TIME ALLOTTED FOR YOUR PAPER. Remember, when

you exceed your time limit, you are depriving someone else of the

opportunity to make his presentation.

WRITTEN REPORT - For the purpose of reproducing your report in
the Proceedings, have your paper typed single spaced. We have a
limited amount of space; in order to present the papers and by
being careful, the space can be well used. Do not include long
program listings and long examples in your paper. It should, in
no case, be longer than the oral presentation which you made.

Carol A, Hall
Program Chairman

290

Atkins, Daniel E.
stin, George A,
ber, Gaye M.
Baron, Ray
Beaudreau, Miss Doreen
sest, A.H,
Billen, Geoffrey G,
Bleuel, Wm, H.
Bras, Rodney
Bridgeman, Keene A,
Brown, Leverett W.
Bryant, Charles W,
Bryan, Norman W,
Callahan, Elias R., Jr.
Cambris, Joseph T.
Carroll, Everette L.
Caslin, James

Caudill, Edward Charles
Champagne, Wiltt P,
Channen, E.W,
Chaverin, Carl L.
Chow, Dr. Wen M,
Chretien, Mas
Cicchinelli, Dr. A.L.
Clark, Henry T.
Clarke, Reverend Arthur
Closman, S.S.
Czyzewski, L.J.
Davidson, Charles
Diveneditto, Michael
Dole, Marilyn

Dunham, Peter C.

Dye, David R.
Eikeland, Marion D.
Linhorn, Beth

Ellis, Raymon D.L.
Elrod, J.C.

Ely, Arthur L.
Farrell, Edward G.
Ferling, John A,
Fodor, Mrs. Joyce
Folse, Paul D.
Freeman, Roy L.
Friedwald, Elliott C.
Fuchs, Carole
furlott, Sherry M.
Galle, Miss Janice
Garcia, Oscar N.
Gary, Patricia
Gelsi, Hector P.

Roster of Attendants

Bucknell University

C.W. Post College

Nat'l Education Assoc,
Raytheon Co.

Univ, Of Wisconsin

The Glidden Co.

Clarkson College

General Dynamics

I.B.M,

General Dynamics/Electronics
Southern Div. of Int'nl Paper
U.S. Navy

Computer Service, Inc.
Chattanooga St. Tech.
Murray On Corporation
Tennessee Highway Dept.
Aerospace Research Lab.

Inst,

Cincinnati Milling Mach. Co.
Southeastern La., College
University of Windsor

I.B.M.

Brandeis University

Clarkson College

Raytheon Co.

Fordham University

I.B.M,

De Leuw, Cather & Co.
University of Wisconsin

New Departure-liyott,Div, GMC
Colorado State University
Raytheon Co.

I.B.M,

Tampa Electric Co.

Leesona Meos Laboratories
Travelers Research Center
Georgia Experiment Station
Miami Dade Jr. College
Cooper Union Sch. of Eng.§Sci.
Claremont Men's College
University of Wisconsin
Tampa Electric Company

Jr. College of Broward College

Electronic Data Processing Inc.

Leesona, Moos Laboratories
Raytheon Co.

University of Texas Med. Br.
01d Dominican College
Electronic Data Processing Inc

291

Lewisburgh, Pa.
Greenvale, N.Y,.
Washington, D.C.
Bedford, Mass,
Milwaukee, Wisconsin
Jacksonville, Fla.

Rochester, N.Y.
White Plains, N.Y.
Rochester, N.Y.
Mobile, Ala.
Crane, Indiana
Jacksonville, Fla.
Chattanooga, Tenn.
Meraux, La.
Nashville, Tenn,
Wright Paterson A.F., Base,
Ohio
Cincinnati, Ohio
tfammond, La.
Windsor, Ontario, Canada
Chicago, Illinois
Princeton, New Jersey
Waltham, Mass.
Potsdam, N.Y.
Bedford, Mass.
Bronx, N.Y.
White Plains, N.Y.
Chicago, Illinois
Madison, Wisconsin
Waterbury, Connecticut
Fort Collins, Colorado
Wayland, Mass.
White Plains, N.Y.
Tampa, Fla.
Great Neck, L.I.
Hartford, Connecticut
Griffin, Georgia
Miami, Fla.
Cooper Sq., N.Y,.
Claremont, Calif.
Madison, Wisconsin
Tampa, Florida
Hcllywood, Fla.
Ft. Lauderdale, Fla.
Great Neck, L.I.
Wayland, Mass.
Galveston, Texas
0l1d bDominican College
Ft. Lauderdale. Fla.
New York, New York

George, Dr. Edward Y.

Goldberg, Marvin

Goldman, Norman

Gross, Donald S.

Grove, Richard E.

Guillermety, llerman L,

Haag, James N.

llaas, I. John

tlale, John S.

Hall, Mrs. Carol A,

Hamilton, E. Michael

- Hartz, Theodore M. and
Young, Susannah I.

ifatfield, Fred A,

tleckart, Lona

lioffman, Lanny

Housman, Arthur C.

Bently College

Boston Univ. Computing Center

University of Maryland
Randolph=-Macon College
Engineers and Architects
Purdue University
Christion Brothers College
State Univ. of N.Y.
Univ, of Southwestern La,

Human Resources Research Off.

Public Health Service

Line Material Industries
Aerospace Corporation
Princeton University
Royal Typewriter Co.

Hierring, Lt. Col. O.L.Jr.The Citadel

Hester, Richard L.
Humbrecht, Robert V,
Isbell, Robert G.
Ivester, Robert D,
Johnson, Alan D,
Johnson, Arthur
Jones, James L,
Jones, Robert L,
Jutsum, P.J.

Kemp, Jerry L.
Kenney, Peter J.
Kerr, H.B.

Kick, Russell C.,, Jr.
Kien, Dr. Gerald A,
Kindred, Alton R,
Knebel, Martin
Korelitz, Ted
Kubie, J.J.

Kuo, Dr. S. S. ‘
Kenngott, Robert L.
Lang, Andrew J.
Larrea, Pablo

Leno, Morris E.

Li, Yuling

Lilly, G.F.

Little, Frank S.
MacKenna, Mr. Craig
MacMullin, R.Bruce
Madden, James W,
Markland, Thomas 1I.
Marks, Maxwell
Maskiell, Frank H.
Maudlin, Charles
McGahey, Patricia E.

Electric Water Engineer Dept.

Schutte§Koerting Co.
Ingalls Iron Works

Southern Engin. Co. of Georgia

NASA

Royal Typewriter

Girdler Corporation
University of Maryland
U.W.IQ

U.S. Navy

Western New England College
Tennessee Tech

Stetson University
Northwestern Medical School
Manatee Jr, College

Burns § Roe, Inc.

The Badger Co., Inc.

I.B.M,

University of New Hampshire
Charles H. Sells, Inc.
Fairchild DuMont Labs
Princetor -University

NYS Dept. of Pub. Works
Harvard Medical School
Jones & Langhlin Steel Corp.
Orlando Utilities Commission
University of Wisconsin
Western Supply Co.
Electronic Data Processing
I.B.M.

I.B.M.

at Buffalo

Lexington, Mass. (:3
Boston,Mass.
College Pk.,
Ashland, Va,. :
San Juan, Puerto Rico
Indianapolis, Indiana

Md.

lloboken, New Jersey
Lafayette, La.

‘Ales, Va.

Rockville, Md.

Zanesville, Ohio
Merritt Island, Fla.
Highstown, New Jersey
Hartford, Connecticut
Charleston, S.C.
Jacksonville, Fla.
Levittown, Pa.
Birmingham, Ala.
Atlanta, Ga,
Sandusky, Ohio

Louisville, Kentucky
Baltimore, Maryland
Kingston, Jamaica
Loogootee, Indiana
Springfield, Mass.
Cookeville, Tennessee
Daytona Beach, Fla,
Chicago, Illinois
Bradenton, Fla.

New York, New York
Cambridge, Mass,
Gainesville, Fla.
Durham, New Hampshire
Pleasantville, New York
Clifton, New Jersey
Somerville, New Jersey
Albany, New York
Boston, Mass,
Pittsburgh, Pa.
Orlando, Fla.
Milwaukee, Wisconsin
Tulsa, Oklahoma

Ft. Lauderdale, Fla.

White Plains, N.Y.

Penna. Trans. Div. McGraw Edison Canonsburg, Pa.

University of Oklahoma

Pratt-Whitney Aircraft

292

West Palm Beach, Fla. a;)

McGehee, Lcdr Thomas L.

ister, Wm. R.
110, Leonard
eyer, R.H,

Meyer, Mr. Rudolf
Miller, Mrs. Ruth B.
Mishelof, Richard
Mowchan, Michael

U.S. Navy

Philip Morris Inc.
Geophysics Corp. of America
De Leuw, Cather § Company
St. Univ. of N.Y., at Buffalo
General Motors Corp.
Downstate Medical Center
Monsanto Research

Newton, Jr., Lawrence E. Univ. of Texas

Niceley, John B.
Oliver, James R.
Owen, David G.
Pachou, Heberto
Parker, J. Leslie
Parker, Robert H.

W.W. Holding Ind. Ed. Center
Univ., of Southwestern La.
Miami-Dade Jr., College
Automatic Electric Labs
I.B.M.

Parsons, G, Linwood,Jr. McGaughy, Marshall§McMillan

Peeples, Carl B.
Plesums, Charles A,
Prater, Merle
Ramsen, J.A.

Raver, Richard E.
Remilen, Charles H.
Richter, I. Kenneth
Rivet, Henry

Rock, Samuel

Ross, Richard D.
Ross, Tony A.
Rudolphe, Mrs. Jean
Russell, James l.
Salus, Larry
Scaletti, Henry M,
Scarpato, Marie
Scheeron, W.G.
Scheinok, Dr. P.
Schmalenberger, J.A.
Schrodel, C.S.
Scott, Edward E.
Scott, I.J.
Sekscienski, Wm.
Sinanian, Ed
Sisson, John S., Jr.
Smith, Bryan

Smith, John A.
Spitalny, Arnold
Stacke, Wanda B.
Staiano, Edward F.
Steele, Laura B,
Stone, Mrs. Eleanor D.
Stubbe, John
Sutton, Joseph T.

Electrical Engin., Dept.
Union College

I.B.M.

I.B.M. University Program
W.R. Grace § Company
Eastman Kodak Company
Delaware St. Highway Dept.
New York State

E.R. Squibb § Sons
University of Mississippi
University of Mississippi
U.S. Dept. of Agriculture
Gilbert Associates, Ings. .

Pensacola, Fla,
Richmond, Va.
Woburn, Mass.
Chicago, Illinois
Buffalo, N.Y.
Jasport, N.Y.
Brooklyn, New York
Dayton, Ohio
Houston, Texas
Raleigh, N.C.
Lafayette, La.
Miami, Fla.
Northlake, Illinois
Poughkeepsie, N.Y.
Ottawa, Ontario, Canada
Norfolk, Virginia
Jacksonville, Fla.
Schenectady, New York
Endicott, New York
Chicago, Illinois
Highland, Maryland
Rochester, New York
Dover, Delaware
Rensselaer, New York
Metuchen, New Jersey

Washington, D.C.

Reading, Pa.

Elecfronlc Data Processing, Inc Ft. Lauderdale, Fla.

United Shoe Machine Corp.
Stevens, Inst. of Teclmology
Bell Telephone Laboratories
Hahnemann Medical College
Pan American World Airways
Sun 0il Company

Lukens Steel Co.

Sun 0il Co.

University of Maryland
I1.B.M.

E.I. Dupont de Nemours § Co.

Stone § Webster Service Corp.

Norden Div., United Aircraft
American Tel § Tel Co.
Bucknell University

Beneral Motors Institute
Brandeis University

Clark University

Stetson University

293

Beverly, Mass.
Hoboken, New Jersey
North Andover, Mass.
Phila., Pennsylvania
Cape Kennedy, Fla.
Phila., Pennsylvania
Parkersburg, Pa.
Phila., Pa.

.College Park, Maryland

New York, New York
Chattanooga, Tenn.
Ottawa, Ontario

New York, New York
Norwalk, Connecticut

Lewisburg, Pa.
Waltham, Mass.

Worcester, Mass.
DeLand, Fia.

Sweatman, Arthur T,
Taranto, Fraak
Thatcher, Charles M,
Thayer, Raymond J.
Thomas, Raymond E.
Thwing, Henry W,
Trevino,Jose

Tuttle, Dr. W.N.
Voytovich, Miss Sharon
Wages, J.E.

Wall, H.M,

Watson, Jack B.
Wigdahl, Allen B.
Williams, C.R.
Wilson, Charles R.
Wingert, Joseph T,
Wright, Donald L.
Wright, Luwrence
Wuensch, Alfred
Young, Barbara F.
Young, John W,
Young, Mrs. Susannah H.

Lukens Steel Co.

EDO Corporation

Pratt Institute,
Line:Materjal:Industries
George Washington University
Stetson University

Monterrey Inst. of Technology
General Radio Co.

Syracuse Univ. Research Corp.
Imperial Tabacco Co.

I.B.M.

Texas Gulf Sulphur Co.
Allen-Bradley Co.

Dow Chemical Co.

Hamden Testing Services
Trenton Jr. College
Georgetown University
Sprague Electric Co.
Columbia University
Pan-American World Airways
Radiation, Inc.

Public Health Service

204

West Chester, Pa. L
College Point, N.Y.,‘le\
Brooklyn, New York g
Zanesville, Ohio S
Washington, D.C.

Deland Fla.

Monterrey, Mexico
Concord, Mass,

Syracuse, N.Y..

Saxonville, Mass,

New Gulf, Texas
Milwaukee, Wisconsin
Lake Jackson, Texas
Montclair, New Jersey
Langhorn, Pa.
Arlington, Va,

North Adams, Mass,

Patrick A.F. Base, Fla.
Melbourne, Fla.
Rockville, Maryland

