
--- ------ ----- ---- - ---- - - -----------·-
IBM CAMBRIDGE SCIENTIFIC CENTER

G320-2128, August 1979

A COMPARISON OF LANGUAGE C AND PASCAL

A. SPRINGER

1976 IBM CAMBRIDGE SCIENTIFIC CENTER REPORTS

G320-2110 April 1976
J. RUBIN, A Resource Allocation and Job Scheduling
Model (22 p.)

G320-2111April1976
Y_ BARD, A Characterization of VM/370 Workload
(40 p.)

G320-2112 May 1976
T. MORE, JR., Types and Prototypes in a Theory of
Arrays (65 p.)

G320-2113 May 1976
T. MORE, JR., On The Composition of Array
Theoretic Operations (62 p.}

G320-2114 May 1976
R. I. FRANK, Design Considerations in an Experi
mental Interactive APL Quadratic/Linear Pro
gramming Workspace (28 p.)

G320-2115 May 1976
S. G. GREENBERG, High Level Data Management
for the Problem Solver (14 p.)

G320-2116December1976
W. P. FISCHER, The Heating Oil Consumption of
One-Family Houses in Eastern Massachusetts (66 p.)

G320-2117 December 1976
W. P. FISCHER, A Note on Residential Heating Oil
Inventory Policies (31 p.)

G320-2118 December 1976
W. P. FISCHER, Short Term Changes in the Resi
dential Consumption of Heating Oil (25 p.}

G320-2119 December 1976
W. P. FISCHER, Short Term Residential Demand for
Heating Energy in New England (45 p.)

G320-2120 December 1976
M. SCHATZOFF, System Performance, Measurement
and Tuning (37 p.)

1977 IBM CAMBRIDGE SCIENTIFIC CENTER REPORTS

G320-2121 June 1977
Y. BARD, An Analytic Model of the VM/370 System
(43 p.)

1978 IBM CAMBRIDGE SCIENTIFIC CENTER REPORTS

G320-2122 July 1978
P. BERKE, Tables, Files and Relations in Array
Theory (27 p.)

G320-2123 July 1978
P. BERKE, Data Design with Array Theory (33 p.}

G320-2124 November 1978
Y. BARD, Some Extensions to Multiclass Queueing
(27 p.)

G320-2125 December 1978
R. E. FRANK, Sparsity and APL (12 p.)

G320-2126 December 1978
R. I. FRANK, The Differential Geometry of the C2

Unconstrained Optimization Surface (21 p.)

1979 IBM CAMBRIDGE SCIENTIFIC CENTER REPORTS

G320-2127 July 1979
G. McQUI LKEN, Remote Management and Control
of Distributed Interactive Computer Systems: A
Preliminary Overview (19 p.)

G320-2128 August 1979
A. SPRINGER, A Comparison of Language C and
PASCAL (20 p.)

G320-2275 December 1976
Compiled by LI LES SMITH, Abstracts of Cambridge
Scientific Center Reports (113 p.)

The availability of reports is correct as of the printing date of this report.

+ Appeared in an outside publication. Not available in Scientific Center report form. Please refer to the list of outside publications on
the inside back cover for availability of reprints.

• Copies of report are no longer available from the Scientific Center.

IBM CAMBRIDGE SCIENTIFIC CENTER

TECHNICAL REPORT NO. G320-2128

August 1979

1 COMPARISON OF LANGUAGE C AND PASCAL

ALLEN SPRINGER

IBM CAMBRIDGE SCIENTIFIC CENTER
545 TECHNOLOGY SQUARE

CAMBRIDGE, MA 02139

Abstract

This report is 1 comparison of Language c and Pascal from several
aspects, including history, language features, suitability for system
programming, suitability for structured programming, and implementa
bility.

lll1] .Qf ~Q!!Ili!!I.§

1 • Int rod uc tion • • • • • 1
1. 1. The BackgL ound of Pascal. • • 1
1.2. ThP Backgr: ound of c • • • • • • • • • • 1
1.3. An Overvisw of Pascal . • • 2
1. 4. An Overview of c. • • • • 3
2. Detailed Laciguage Comparisons • • 3
2.1. The Overa.L.l Language Structure. • 4
2. 2. The Data structures • • • 5
2.2.1. Basic 'Xf pes • • 5
2.2.2. Complex Types • • • • 6
2.2.3. Storage Classes • • • 8
2.2.4. Initialization of Variables . 9
2. 3. The Con tr::> 1 Structures. • • • 9
2.3.1. Loop Sti tements • • 9
2.3.2. Alternate Selection statements. • • .10
2.4. The Ope rat ors • • • • • • • • .10
2.5. Data Conv a rsions. • • • • .12
3. Functions au d Procedures. • • • • • 12
4. Input/Output. • .13
5. Evaluation :>f the Languages • • .14
5.1. Language :i ize and Ease of Compilation • • .14
5.2. Libraries • • • .14
5.3. Structur~l Programming. • • .15
5.4. Ease of L.=arning. • • • • 15
5.5. System Pr:>gramming. • • • • • .16
5.6. A pplica ti.:>n Programming • • • 17
6. Language Ctu nges. • • .17
7. Conclusions • • .19
8. Bib licgra ph v. . • 19
8.1. c Langu aga References . • • .19
8.2. Pascal ReLerences • .20
8.3. Other Ret~ rences. • • • • 20

1. IN'IEODUCTION

Pascal and ; are in the same class of languages as PL/I, FORTRAN,
ALGOL 60, ALGO~ 68, and COBOL. That is, they are intended to be
procedural and :ompilable languages. This contrasts with the more
specialized lanq1ages such as APL (for arrays), SNOBOL (for strings),
and LISP (for lLsts), which are extremely difficult or impossible to
compile. This also contrasts with non-procedural languages such as
RPG, CSMP or GPS5. It is assumed that the reader of this paper knows
one or more of the languages in the first group, and has some under
standing of data structures, pointers, and recursion. This paper will
primarily discuss the aspects of the two languages that make them
unique, especiaLLY the things that make them easy or troublesome to
use.

1 .1. THE BACKGRO-U ND OF EASCAl

Pascal was developed in a European programming language "tradi
tion", and shows its ALGOL heritage. Niklaus Wirth developed it
primarily as a teaching tool (4). It has become a popular language in
universities on aany machines. It also has influenced the design of
many subsequent ianguages, including the final four candidates for the
proposed Departnent of Defense "Ironman" standard programming
lanquaqe.

When miniconputers were the smallest computers around, the most
popular languag: on them was BASIC. If another language besides
assembler was us~d, FORTRAN was the usual candidate. With microproces
sors BASIC is still the beginner's language, but now PASCAL is often
considered the b~st candidate for a larger language.

The American National Standards Committee X3 has subcommittee
X3J9 to prepare a proposal for a standard Pascal. So far, the
proposed standara (6) is only a slight change from the Jensen and
Wirth book (4) w~ich has been the de facto standari. Standardization
of needed extensLons to Pascal seems to be further off in time.

1 .2. THE BACKG ROIJ ND OF C

c also comes originally from European influences, and was origi
nally based on a typeless language called BCPL, which was intended to
be a simple and iighly ~ortable system programming language. BCPL was
distributed widely when it first came out. At Bell Labs, a variant of
BCPL was createi, called B, which was still a typeless language, and
some experimental minicomputer code, the beginnings of the UNIX

2 A COMPARISON OF LANGUAGE C AND PASCAL

operating system, were done in B (UNIX is a trademark of Bell Labora
tories). c was designed as a typed language based on B. UNIX was
subsequently written almost completely in c. SinGe UNIX has become
popular, especially in universities, the C language has become known
in that fashion. c was intended primarily to be a system programming
languaqe, but ias become a language usable for general purpose
programming. It has been ported to several machines, mostly by Bell
Labs efforts. Some ncn-Bell compilers are available for various
machines. It is not nearly as well known as Pascal. There is no user
group specifically for language c, although there is a UNIX user group
that may have sone of that function.

1.3. AN OVERVIEW OF PASCAI

Pascal is a relatively small language which has some block
structure, recur>ive functions and procedures, arrays, pointers, and
data structures, and the ability to do simple input/output. Unusual
features, compar;d with Pl/I or older languages, are the ability to
define new data types, and to specify variables that have limited
subranqes of scalar or integer values. An unusual data type is the
power set of a tinite range of scalar values; it turns out to be a
very useful equiralent cf bit strings.

All declar1tions must appear before any executable statements
that refer to tue declared items. The form of the language is such
that the compila[can be a one pass compiler without much difficulty.
The language has some block structure in the ALGOL or PL/I sense, and
only has the equLvalent of PL/I automatic storage and a kind of based
storage, called "heap" storage. All items are required to be
completely decla:ed. This implies that if a pointer is declared, then
the type of the walue it points to must also be declared. There are no
defaults in the language. Like ALGOL, the standard language implies
that separate conpilations are not easy to provide, although there are
extensions to sone Pascal compilers that allow this.

Basic data types include characters, integers, "reals" (float
inq), Boolean, s;alars, and subranges. Structured data types include
arrays, records (similar to PL/I structures) , pointers, sets, variant
records (a sort Jf primitive ALGOL 68 union), and files.

Pascal has ooth assignment and procedure call for simple control
structures. Comlosite control structures include BEGIN ••• END (which
does not denote a block) , FOR, WHILE and REPEAT loop statements, and
IF ••• THEN ••• ELSE and CASE for alteration statements. There is a
primitive GOTO statement.

Pascal has the expected relational and arithmetic operators, and
some built in arithmetic functions. Except for conversion from integer
to floating, all conversions must be explicitly written. Pointer
generation and iereferencing is explicitly done, similarly to PL/I.
There are no arr1y or structure operations except component selection
and assignment.

Input/output is done with built-in functions and procedures.

A COMPARISON OF ~ANGUAGI C AND PASCAL 3

1.4. AN OVERVIEW OF C

c allows s~parate compilation, and so interconnection of func
tions is related to whether they are in the same file when compiled,
and whether f un=tion names are declared external or not. Functions
cannot be nestei within functions (C has no procedures), although
block structure ioes exist. Thus c has an overall program structure
rather like that of FCRTRAN with named common. Unlike FORTRAN, c
allows recursion, and has the equivalent of automatic, static, and
based storage.

Basic data types include character, two sizes of integer, two
sizes of float, unsigned integer, and bit field. Composite types
include array, ~tructure, union, and pointer. c recently has had a
type definition facility added to the language, although for a long
time it did not have it. Boolean is not separate from integer data
types in principle.

The basic :ontrol structure of the language is the expression;
assignment is an expression. If a function is called without using its
returned value, the value is simply discarded or ignored and is not
considered an ercor. Thus functions can be used as procedures.

Composite c~ntrol structures include a grouping statement equiva
lent to the PL/L BEGIN; ••• END; and loop statements such as a rather
general FOR, and a WHILE. There is a conventional IF statement, and a
primitive SWITCH statement that is a kind of computed GOTO which looks
rather like a C~SE statement. There is a simple GOTO statement, and
statements for tepeating or ending a loop from within the middle of
the locp.

There are ~ore OFerators in c than in Pascal, and automatic
conversion betwa:n all basic data types is done, except for pointer.
Automatic generation of FOinters or dereferencing of pointers is done
in many circumst1nces, unlike Pascal. There are no structure or array
operators other chan component selection.

Input/output is not part of the language, and is done typically
with library routines.

C has a si1ple preprocessor style macro language that provides
file inclusion capabilities, abbreviations, and alternative selection
of code based upon programmer defined parameters.

2. DETAilED LANGaAGE COP.PABISONS

In this se:tion we will examine in some detail the significant
features of c ind Pascal, stressing where the two languages are
significantly ditferent frcm each other or from more familiar program
~inq lanquag~s. Not~ that both languag€s wer~ influenced by avail
ability to their designers of 96 character ASCII terminals. Both use
square brackets 1nd curly brackets, for example.

4 A COMPARISON OF LANGUAGE C AND PASCAL

2.1. THE OVERALL LANGUAGE STRUCTURE

Un~xtended Pascal effectively insists on the complete progcam
beinq compiled 111 at once, whereas c can have groups of functions
compiled separately. ~he order of writing program parts is much
stricter in Pasc1l than in c. The Pascal program order is as follows:

PBOGRAM name (files used by prograaj
LABEL list ~f labels;
CONST constant declarations such as PI = 3.1~1592
TYPE type daclarations such as

FLO AT = R EAL ;
COLOtl = (RED, ElUE, GREEN, YELLOW);

VAR all viriable declarations except those local
to pro:2dures or functions declared below

All proceduce and function declarations
BEGIN

the bojy of the main program
END.

The LABEL, :oNST, TYPE and VAR sections are omitted if there is
nothinq tc decl1re in them. Built-in functions and procedures of
Pascal do not bive to be declared in order to b€ used. A function or
procedure has the same form as that shown by the program, except that
the END has a samicolon instead of a period, and instead of PROGRAM,
the keywords FUN:TION or PROCEDURE are used, along with declaration of
the types of ariuments, and the value returned if it is a function.
Within any funct~on or frocedure, further functions or procedures can
be dee la red.

The CONST d~claration provides a way of naming constants. LABELs
must be declared before they appear in the text. TYPE declarations can
be viewed as an axtension mechanism, or more simply as an abbreviation
mechanism for de:larations.

The structuce of a c program is much freer than that of Pascal.
It is loosely of the following form:

declaratious
function
declarations
function
etc.

Essentially, declarations outside of functions are normally equivalent
to PL/I EXTERNAL declarations. Also all functions are externally known
when the program is loaded with other separately compiled programs. It
is not ~ossibla to nest functions within functions, unlike Pascal.
This means there can be a name conflict problem. On the other hand,
the grouping st1tement (denoted by curly brackets), can be a block
anywhere, with its own declarations of automatic variables, just as in
PL/I, and unlike Pascal. Essentially all variables must be declared
before they are referenced.

A c function has the following form:

A COMPARISON OF ~ANGUAG! C AND PASCAL

name(atgument list, if any)
argument de:larations, if any
{
declarati~ns and statements, if any

l

5

Note that tie looser structure of c allows the easy inclusion of
routines frcm other sources, such as libraries of functions. This is
not so easy for Pascal, where it may be necessary to split apart the
qlobal declarati~ns from the functions. Combination of c programs is
also aided by th~ ability to compile them separately, unlike Pascal.

2.2. THE DATA SIRUCTURES

Under the heading of data structures, we will briefly discuss
basic types, su;h as float and integer, and structures, which are
combined from b~sic types. Then storage classes will be discussed.
Operations that :an be performed on specific types will be discussed
in following sections.

2. 2. 1 • BA SIC TYPE. S

In Pascal s~me attempt was made to define the language indepen
dently of specitic machine word si~es. The approach was not that of
PL/I, where tha arithmetic precision rules are machine independent.
Instead, the pro~rammer has available a standard constant MAXINT that
tells him the integer precision, so that he can write programs in
terms of that', 1 nd achieve machine independence if it is important.
There is only on: precision of integer, although the declaration of a
variable as bei~g in a subrange will allow the compiler to compile
shorter precisiou, where the compiler writer sees fit. There is no
comparable preci5ion information about real arithmetic.

In Pascal, :haracters are recognized as being machine dependent.
There is a function ORD(C) that returns an integer indicating the
relative order ot the character argument in the character set. CHE(I)
accepts an intey:r, and returns the character that is the Ith charac
ter of the chara;ter set. With care, it is possible to write programs
that are indep:ndent of the character collating sequence of the
specific iupleme~tation of Pascal. Pascal apparently does not promise
to implement any particular minimum character set as values of charac
ter variables. Note that both in C and Pascal, a character variable
only hclds one =1aracter at a time, and to have strings of characters,
character arrays must be used.

In contrast to Pascal, c is more machine iependent, since its
types are derivei from the natural operand sizes and types available
on the PDP-11. ~~ey also happen to correspond well to those on the IBM
370 or the Seri~s/1. They include two sizes of integer, SHORT and
LONG, and INT is the usual declaration if the choice between the sizes

6 A COMPARISON OF LANGUAGE C AND PASCAL

is left up to tie compiler. All that is promised is that size(SHORT)
<= size(INT) <=size (LONG). The size of INT must be at least the size
of an address. lhere is also an unsigned integer which is the same
size as INT. Cu1ra:ters are variables that hold one character, and
otherwise can be treated as integers. Note that Pascal allows compar
ison of arrays ot characters (if of the same size) in a single opera
tion, whereas c does not. There are·two sizes of floating point,
FLOAT and £CUBIE.

C has no Bo)lean data type, and uses the distinction between zero
and non-zero for this, for all basic data types except floating point.
Pascal has Boola1n predefined as a scalar data type of two elements,
TYPE BOOLEAN=(FA~SE,TRUE) and all operators for scalar data types are
usable on type Boolean.

Pascal has two data types which are not in c. Any scalar type can
be defined by enumeration of its elements. For example, we could
declare a new j1ta type called COLOR as follows: TYPE CDLOR=(YELLOW,
RED, ORANGE, GRE~N, BLUE, PURPLE), and then declare variables of that
data type. The ia.entifiers in the parentheses are then used as
constants of that data type. The order of these :onstants is known to
the relational open.tors, so that RED<ORANGE is true. A variable of
type COLOR would hold orly one color at a ti me.

Pascal allows the definition of subranges of any data type (that
is, integer or scalar) that has successor and predecessor functions.
Thus we could declare

VAR I, J, K: 0 • • 99;
ROOM, wALL: RED •• BLUE;

I, J and K taka on only subranges of integer values, and could in
principle be st~ced in a byte in the IBM 370. Since the data type
COLOR has only slx possible values, it could be represented by integer
values 0 to 5 oc 1 to E in the implementation of the data type. The
variables ROOM and WALl would take on only four of the six possible
colors, and in prin:iple their values could be stored in 2 bits.

In C there is a data type called a bit field, which has limited
usage. Basical~f it is unaligned unsigned integer data which is not
allowed to overlip integer sizes or boundaries. They are subparts of
integers, and uive few ether operations than assignment or value
accessing definel for them. They allow machine dependent accessing of
bits.

2.2.2. COMFLEX trPES

use square brackets to designate
speaking, arrays are one dimen
or complex, may be components,

Both langu~~es have arrays, and
subscripts. In both cases, strictly
sional, but any data type, simple
including arrays. Thus an array of
two dimensional array. Thus in an
expression A[2][3] will access the
it is viewed in the conventional
abbreviated as A[2 ,3].

arrays is equivalent to a single
array of arrays of integers, the

element at row 2 and column 3, if
manner. In Pascal, this may be

c may not ?ass arrays or structures as function arguments, or
return them as values, whereas Pascal can. On the other hand, both

A COMPARISCN OF LANGUAGE C AND PASCAL 7

languages can pass or return pointers to arrays or structures. It is
possible tc leav~ undefined the size of arrays in c, where it must be
declared in Pascil. This is a severe restriction in Pascal, because it
makes it irepossible to define an array handling routine that is
independent of the actual size of the array to be manipulated. !hus
the same routin~ could not invert both a 10x10 array and a 11x11
array, unlike in PL/I dr FCRTRAN. This also causes problems in string
manipulation, siuce strings are arrays of characters. Thus there are
stronq interests among Pascal users to extend the language to allow at
least a dope vector style of handling arrays, as is done for PL/I.

Both c ana Pascal have data structures, of a power similar to
PL/I's, althougn not using level numbers. For example, in Pascal we
could define:

TYPE COMPLEL = RECORD REALPART, IMPART: REAL END
where the data type (the structure) has two components of the same
data type P.EAL. lccessing cf components is as for PL/I; if we declare

VAR X COMPLE.X;
then we may acc:ss the imaginary part of the variable with X.IMPART.
Althouqh we show COMPLEX as a new data type, the variable X could have
been declared instead as

X: RECORD RtALPART, IMFAP.T: REAL END;
The equivalent d~claration in c is:

struct { flJat realpart; float impart} x;
As can be seen, the order of types and names in C is reversed from
that of Fascal.

It is possible in both languages to define variables that can
have one data type at one point, and a different data type at another
point. In Pascal this is called a variant record, and in c, a union.
In both languages, they are declared very similar to structures, and
the "comi:onent" names are used to designate what the possible value
types are, and a~cess of a component implies that that type is what is
currently storel in the variable. In C an example is declared as:

union { int p; float r} y;
The variable y cin hold either an integer, or a floating point value,
but only one at 1 time. To access it for the int value we say y.p, and
v.r accesses the value as if it were floating. Neither language checks
that ycu are in tact using the correct accessing method for the value.
The storage siz: and alignment is the maximum necessary to hold the
largest and most strictly aligned value declared.

Pascal has 1 complex data type, called SET, which is very useful,
and is not found in language c. A set may be declared to be built out
of items of a finite set of data, typically a scalar data type, or a
subrange. The nu~ber of items cannot be more than the maximum set size
alloved by the :ompiler, which often is about 60 bits or so, for
historical reasons. An example will be helpful:

TYPE FPUIT = (APPLE, ORANGE, BANANA, GRAPE);
VAR FRUITEA~KET: SET CF FRUIT;

Subsequently we ~ight set the variable FRUITBASKET to a particular set
of the scalar va1ues declared above:

FRUIT.EASKET := [OP.ANGE, GRAPE];
After the assignient, the set will contain the
GRAPE, but not tle other two possible values.
represented by one bit for each possible type
stored in it. Tle value of scalar type FRUIT

two values, ORANGE and
In practice, a set is
of thing that can be

can be stored in two

8 A COMPARISON OF LANGUAGE C AND PASCAL

bits, if we declared variables of that type. It has four possible
values. A set of that type would require four bits, one for each
possible type ot fruit that might be stored in the set variable.
Again, although the space savings is possible in principle, most
Pascal compilers implement only one size of set.

Pointers in both languages must have declared the type of value
to which they point. Thus a pointer to an integer is not the same data
type as a pointar to an array of characters. The checking of the
pointer ty~e is nuch stricter in Pascal than in c, but both are much
stricter than wnit can be checked in PL/I. In Pascal, a pointer may
be created only lY calling a built-in function NEW, which does roughly
the equivalent ot PL/I ALLOC. That is, it calls a routine like GETMAIN
to sup~ly the storage to be pointed to. This type of storage is
call ea "heap" st:>r age. In c, th is is possible, but it is al so possi
ble tc ccmpute a pointer to a variable (or component of a variable) of
any storage class. This corresponds to the ADDR function of PL/I.
Thus c is much i)re flexible than Pascal in this respect. In effect,
in Pascal pointac variables can only refer to based storage (in PL/I
terms), whereas in c, pcinters can be to any class of storage.

In Pascal, tunctiors and procedures may have any type of argument
value or variaole passed to them, and may return any type except
function or procidure names, whereas in c only simple types or poin
ters to any typ~ can be passed or returned as values. Pointers to
functions may al50 be passed or returned in c.

2.2.3. STOFAGE Cl.ASSES

Pascal has only one storage class, which is tha equivalent of
PL/I automatic scorage, for non-pointer variables. For pointer varia
bles, there is ouly one class, which is roughly like based storage of
PL/I, gotten and freed under program control.

By contrasL, C has several more storages classes. It has the
equivalent of automatic storage, which as usual is acquired at block
entry and freed at block exit. In both languages, a stack is a natural
place for such 5torage. C also has static storage, in the PL/I sense,
which may be either known outside the compilation, or within the
compilaticn only, or just within a single function. If known outside
the compilation, it is of course like PL/I EXTERNAL variables. Basic
data type variaoles can also be declared storage class REGISTER,
although there is no promise that the compiler will in fact keep the
variable in a m1chine register. Such a declaration can be taken as
advice to the co~piler code optimizer. C also can provide the equiva
lent of based st)rage via its pointers, but is not restricted in what
kind of storage i pointer variable can point to.

A COMPARISCN OF ~ANGUAGE C AND PASCAL 9

2.2.4. INITIALIZ~TION OF VARIABLES

Pascal has ao means of designating initial values of variables.
This means that initialization must be done by assignment statements
in the program body or a separate function for that purpose. By
contrast, C allo•s initialization specifiers for static, external and
local (a utomaticl r variables. For local variables, this means that the
variable declar1tion is not split apart from the setting of its
initial value, even though the code genera ti on may be the same as for
Pascal. This is an aid to documentation. For globally accessed
variables, which can be static inc, the advantage is that no assign
ment statements are generated to be executed at run time; in Pascal
run-time code na~Essary for initialization.

2. 3. THE CCNTROL STRUCTURES

Both lanqua~es can group sequences of statements together, so
that they can bs used as if they are a single statement. This is
important becaus~ most of the complex control structures are in terms
of sinqle statemants as components, e.g. IF expression THEN statement
ELSE statement. The grouping statement of Pascal is BEGIN ••• END.
That of C is { ••• }. The semicolon is used as a statement separator in
Pascal (like ALG)L and unlike PL/I}. The semicolon is used to end a
statement in c, unless the "statement" is re ally a stat em en t group.
This is almost but not quite the PL/I convention.

2.3.1. LCOF STATEMENTS

The lcop stitementE are relatively similar in the two languages.
The FOR statemeuts are intended for initialization and iteration of a
variable that cin he used within the body of the FOR. Pascal cnly
allows stepping ip or dcwn by a value of 1, and does not consider the
iteration value ifter the end of the loop to be defined, which is a
limitation on the user. c allows any initializer, any stepping
statement, and auy test f cr completion of the loop, and thus provides
more qenerality.

Beth langUd.1es have means for looping, with a test either at the
beqinning or at the ending of the loop, using WHILE or UNTIL keywords.

C has a meais of ending the execution of the body of a loop from
in its middle. rhe BREAK statement causes control to go after the
loop. CONTINUE (aot a well chosen keyword) causes the next iteration
of the statement to begin, without executing the rest of the body of
the loop. Pascal must get these effects by GOTO, or else by having
the remainder of the locp in an IP statement.

10 A COMPARISON OF LANGUAGE C AND PASCAL

2.3.2. ALTERNATE SELECTION STATEMENTS

Both statem.~nts have alternate selection statements
form, with an optional ELSE. Both have a form of CASE
althouqh Pascal's presents less difficulties to the user.
of the Pascal foe m is:

CASE expres5ion OF
L 1: statement;
12: st:i. temen t ;

END

13, L4, L5: statement;
16: st:i. temen t;

of the IF
statement,
An example

The "labels" L1, L2, etc., are really any constant of the data type of
the ex~resEion. Unfortunately, there is no means for specifying what
to do for values of the exFression that do not h2 ve a label with that
value. This meais that all possible values that can occur must be
enumerated explicitly.

The form ot case statement in c is:
switch (expression)
{
cas e1: st at~ men ts

b re:i.k;
case2: stat~ments

bre:i. k;

default: stitementE
}

The expression must be integer valued, and only integer constants must
be individual cases. If treak is not used to jump out of the loop at
the end of the statements handling a case, then execution will contin
ue in the statements for the next case! However, at least C provides a
way (the defau~t case) of not having to mention all possible cases
that can occur.

2.4. THE OPERATJ~S

Beth langucqes have the expected collection of arithmetic and
compariscn operators. Both have the ability to build complex "Boolean"
expressions wit1 AND, c~, and NOT style operators, although their
notations differ. Beycnd this, Pascal has some set operators, and
some standard arithmetic functions, such as for cosines or logarithms.

The Pascal set o~erators include union, intersection and set
difference, and compariEon (Boolean valued) operators to test set
inclusion, and s~t membership. For example, if there were two varia
bles SA and SB ot type SET OF FRUIT, defined earlier, we could write:

IF APP1E IN (SA + SE) THEN statement
to test if APPLE is in either or both sets.

Language c was designed to generate code without having to
compile subroutine calls to implement operations. Thus it does not

A COMPARJSCN OF LANGUAGE C AND PASCAL ,,
provide trigonometric and similar functions as a part of the language,
although obviously they can be made easily available in libraries. The
point is that sJch functions are not standardized as a part of the
language. Aside from the compilability restriction, and the lack of
sets and operatJrs on them, C has considerably more operators than
Pascal. For aritumetic cperators, there are left and right shift, and
the Bcolean operitors really do bitwise "and, "or", "not", and "exclu
sive or" operatiJns. Additionally, there are two more Boolean opera
tions, which return only 0 or 1 instead of doing bitwise "and" and
"or" operations. They premise to test their first operand, and if the
final cperator r~sult is known, the second operand is not computed. By
contrast, in Pascal (and many other languages) it is undefined whether
the second operaad is computed or not, and therefore it is sometimes
not safe to write some apparently natural expressions. For example,
given that mis 1n array with subscripts ranging from 0 to 10:

if ((O<=i) && (i<=10) && (m[i]>20)) statement
is a safe statem~nt to write, since the access of array m would only
be done if the 5abscript i is valid. The equivalent in Pascal could
only be done saLcly with nested IF statements:

IF (O<=I) AND (I<= 10) THEN
JF M(IJ>20 THEN statement

If the C program1er used & (bitwise and) instead of &&, it would be an
unsafe statement to execute, for the same reason it is in Pascal.

C has many incremEnt and decrement operators. For example, the
unary operators ~+x and --x increment the value of x before presenting
the value to tn~ rest of the expression they are in. x++ and x-
increment or deccement the value in x after delivering the value.

C has many assignaent operations, and they all can be used as
expressions. A simple assignment is of the form variable = expres
sion.

variatle =+ expressicn
is equivalent to:

variable = rariablE + (expression)
!his abbreviatej form is available for most binary operators.

c has availible what was called a conditional expression in ALGOL
60. It is effectively an IF statement that returns one of two values:

x = (a>b ? a : b)
In the example, the largEr of the values of a or b is stored in x.
That particular ;oniiticnal expression is equivalent to PL/I MAX(A,B).

Another iwportant difference between Pascal and C is that C
allows arithmeti; to be performed on pointers in a limited way. I.e.
addition and suJtraction can be done with the forms p+i, p-i, p-p,
++p, --p, p++, p--, p=+ i, and p=- i, where p represents any pointer,
and i any inteqar value. Normally the pointer is declared to point to
an array of some data type. When the pointer is stepped by one, it is
really made to pJint to the next item in the array. If it is an array
of integers, wnich might be four bytes in size, the real operation
might be incrementing an address by four. When taking the difference
of two pointers. they must point to the same data type. If the
integer differen;3 is added to the second pointer, then the first
pointer would be the result. Note that there is no check that you run
off the end of the array in either direction, although in principle
that check might be possible with dope vector style information.

12 A COMPARISON OF LANGUAGE C AND PASCAL

2.5. DATA CONVER~IONS

Essentially all ccnversions from one type to another in Pascal
are done with explicit functions, except for conversion from integer
to real. This ~ontrasts dramatically with C, where all non-complex
data types are freely converted from one to another, except for
pointers. c is rather like PL/I in its freedom of conversions,
althouqh the basic types are all essentially arithmetic in nature.
Aside from such conversions, which tend to go from smaller to larger,
and from integer to floating, when mixed, c also does referencing and
dereferencing in a manner rather like ALGOL 68. This may be illus
trated by two elamples. If an array is written as an argument to a
function, since arrays are not passed as arguments, c assumes you
meant to pass a pointer to the array (which is legal) and generates
the pointer for you. Similarly if a pointer B is declared to point to
an array, since sJbscri~ting of pointers is meaningless, you may write
B[5], and the cJmpiler assumes that you wanted to follow the pointer
to the array ani access its 5th component. Both of these constructs
would be illega~ in Pascal.

3. FUNCTICNS AND PROCEDUEES

The distin::tion between functions and procedures is that the
latter does not ceturn a value. Pascal has both forms of subroutines,
and c only has functicns. Since C allows statements to be simply
function calls, 1nd then ignores any value returned since the call is
not part of a 12rger exFression, there is no important loss of capa
bility in c by hiving nc procedures.

c only allo1s basic types and pointers to be passed as arguments
(no airays or structures). Pointers may be passed which point to
anything. There is a similar restriction on values returned. The
arguments are always passed by value, i.e. their value is always
copied to the stack, aE if the parameter variables are simply local
variables of the called program. In fact. the values may be changed in
these parameter variables without affecting the original variable. In
order for a fun::tion tc be able to modify something that the caller
passes to it, th~ pointer to that thing must be passed as an argument,
and of course the function should declare the parameter as a pointer
to the a~propriate type.

In Pascal, the conventions are more like that of PL/I, i.e. there
is a distinctio~ between functions and procedures, and there is a
distinction between arguments passed by reference or by value. Parame
ters explicitly declared VAR must be variables on the calling side,
and can have their value modified by the function or procedure called.
Parameters not daclared VAR can be any any expression, whose value is
copied when passad to the function or procedure. Pascal can pass any
data type to a tun=tion or procedure, and can return any type except

A COMPARISCN OF LANGUAG! C AND PASCAL 13

functicn and pro:~dure names.
Pascal and : differ considerably in the strictness of their type

checking fer f un:tions and procedures. In essence, Pascal will strict
ly check at compile time the correspondence of argument and parameter,
and the value returned with the declared type to be returned.
Although ycu declare parameter types in c, since it is necessary for
the use of thosa parameter values within the fun=tion, no check is
made against those iefinitions when compiling calls. There is no check
to see that the tunction is returning the correct type either. Thus it
is both easy to make mistakes, and easy to "cheat" deliberately, to
qet machine dependent Effects (treating a pointer as an integer, for
example). In t11e UNIX system, although the C compiler does not do
these sorts of ~hecks, there is a program called LINT which will do
so, when given 1 series of files of c programs that are intended to
run together.

c function5 are 1uch more flexible than Pascal functions or
procedures in o~e sense. It is possible to define any variable as
having a data type with one of its dimensions (of array) as unknown in
size. An exampla is a character array of indefinite length. It is the
program's resp1Jn:.ibility to not go beyond the actual lenqth of -t:he
array, and since there is no dope vector information, the program must
have scme way oi determining the actual length. For character strings,
the usual convention in UNIX is to ena the string with a null charac
ter (hex 0). Auother convention might be to pass the length as a
separate argumeut. Pascal has a much stricter control over its
arquments and r;turned values, as mentioned above. In effect, it is
not possible to 1-iass tvc different size arrays to a routine, and have
it adjust to tn; size. As a result of this strictness, there are
efforts to exteud Pascal to allow this. one possibility is to add
appropriate dope vector information for arrays, as is done for PL/I.

4. INP('l/Ot'IPUT

Input/output is not E~ecified as a
the designers telt that it was not
input/output is done by libraries of
routines are written in c, which is coded
necessary.

part of the c language, since
appropriate. As a result,
subroutines. In UNIX these
in machine dependent ways if

Files are a data type in Pascal, but many of the usual operations
valid for any ot1er data type are not valid for files. Instead, file
operations are done ty ~uilt-in functions (whose argument rules
violate the type checking restrictions imposed on user written rout
ines). Any parti:ular file can be viewed as a sequential file, a kind
of arrav which :an be processed only from front to back, with a window
lookinq ~t only one courc~cnt of the ?rray ?t a tjmp. ThP ~i~d0w is
essentially a p~inter to a buffer for the file. tlthough ~here are
many cases of iGrut/output where this suffices, it is not general
enouqh for all types ot files, e.g. variable lengtt record fil~~ or

14 A COMPARISON OF LANGUAGE C AND PASCAL

random access files.

5. EVAIUA!ION OF THE LAEGUAGES

!he two L1nguages are evaluated from several viewpoints in
following subsections, and th~ conclusion section has a brief summary
of significant differences or tradeoffs taken by the two languages.

5.1. LANGUAGE Sl~E AND EASE CF COMPILATION

It is cleac that c is a larger language, mostly because it has
more simple data types, and more operators on them, and more automatic
conversions between them. Both languages were designed to be simple to
compile. Pascal compilers often are based upon methods of compilation
designed tc mak& the ccmpiler easily portable. Many compile to an
intermediate lan~uage usually called P-code, which may then be inter
preted, compilei into machine code, or perhaps processed a macro
assembler. P-cole is not necessarily the best intermediate language
for all machines. c co1pilers normally generate machine code. Some c
compilers have baen designed to be portable.

5.2. LIBRARIES

Since it is easy tc combine programs from several sources into a
single file in:, and in Pascal it may be necessary to split afart
such programs t~ combine them with others, c is clearly superior to
Pascal on this point. However~ since c has no nesting of functions,
and insists that all function names are external, there can be some
name clashes, w~ich can cause difficulties. An extension of Pascal
could be made tn1t retains its type checking, but allows both nesting
of functicns ana a C-like freedom of ordering of items. Such an
extension wouli probably require giving up the ability to compile
Pascal in cr.e pass.

The C preprlcessor has the ability to include source files within
a proqram teinq compiled. Pascal does not have this capability. The
preprocessor als~ supplies a simple macro and ~bbreviation facility.

A COMPARISCN OF LANGUAGE C AND PASCAL 15

5.3. S'IRUC'IURED l-R OGRAMlING

For struct~red prcgramming, the languages can be compared on
several points. One is the library issue already mentioned.

In comparisJn of statement types, Pascal is ahead of c for the
case statement, since it allows a cleaner way of stating alternate
cases. However, eascal r.eeds a default statement in its CASE.

It is cleac that the lack of nesting of functions in C is a
problem, and tnat Pascal is superior in this area. However, Pascal
does not have any blocks other than whole functions or procedures,
whereas c allows any grouping statement to be a block with its cwn
local variables. Thus variables used only within a limited area could
be declared in that area, and would exist (on the stack) only when
that area is being executed.

It is clear that the type definition facility of Pascal and c are
very useful features fer hiding details (encapsulation) of new data
types as needed. With the C define facility, it is also possible to
define macros tJ encaf sulate sequences of code that are generated
in-line. In Pascil this can only be done by subroutine calls. In c,
for example, we may define an in-line MAX operation by:

#define max(A, B) ((A) > (E) ? (A) : (B))
Then t le 1 ine:

q = max (m- 1 , 2 0) * j ;
would expand as:

q = ((m-1~ > (20)? (m-1): (20)) * j;
Although th: macro facility is useful, it is not a substitute for

the ability to iefine new operators, such as is available in more
recent languages like ClU.

5.4. EASE CF LEA~NING

It seems clear that on many counts, Pascal is much easier to
learn. c has many more tricky points, and as in APL or PL/I, almost
any expression las a meaning. Pascal will catch you on "strange"
combinations of ~peraticns. Also the order of declarations is obscure
in c, compared w~th Pascal, as the following illustration shows.

I NT * * (* Q QS V ()) (] ;
E 5 4 ,i. 1 3

QQSV is the variable, and the numbers shown below the C declaration
illustrate the ocder of declaration. QQSV is a (1) function returning
a (2) pointer tnat points to (3) an array of indefinite size whose
components are (~) pointers to (5) pointers to (6) integers. In Pascal
the order is li~e that cf PL/I, from variable name to type, from
structure to component cf structure, from pointer to thing pointed to,
all from left to ri~ht. The only thing that can be said for c is that
the declaration order tends to be written in the same pattern as when
writing ex~ressLons to access the variable. E.g. * C**QQSV(X))(30]
would end up wita an integer. This ability to build up many operators
in a single statement, which can have several assignments, has the
same lack of clatity as API "one-liners".

16 A COMPARISON OF LANGUAGE C AND PASCAL
;

The Pascal equivalent of the above function declaration would be:
FONCTION QQ~V(P: INT):@ ARRAY[0 •• 40] OF@@ INTEGER;
BEGIN

functi:>n body
END;

The Pascal expcession equivalent to the C expression is:
QQSV(X)@[30•@ (~ote we have used"@" instead of the Pascal up-arrow.)
The order of ac=?ss is left to right, which is also the order of
declaration. T~e conclusion is that Pascal is clearer both for
declaration and asage it this language area.

5.5. SJSTE~ FROGRAMMING

It is clea~ that C was designed for system programming, and its
data types reflect the machine it matured on, the PDP-11. With a few
hardware dependancies, gotten mostly by what Pascal would consider
type violations, C can be used for almost all system programming
situations. It h1s no provisions for execution of privileged instruc
tions, which must be written in another language.

Pascal was not designed for system programming, but it has been
extended or moditied tc frovide such languages as Concurrent Pascal,
and MODUIA, whi:h are more suitable for system programming. They do
not allow you to get as close to the machine as c, and are extensions
in the direction of parallel processes, multitasking, etc.

C was explicitly designed to not address the problem of multi
tasking, parallel programming, frocess synchronization, etc. These
things a re carriad out by functions called by the programs. This makes
thE c programs 5impler, although some overall assumptions about the
nature of tasks in UNIX, and also about how sta=ks are implementedr
have combined t:> make this a reasonable choice. This approach bas
allowed all except about 1000 lines of code of UNIX to be written in
c.

Pascal is often translated to an intermediate language called
P-code, which is the rather limited instruction set of a hypothetical
stack oriented ~achine, which is then interpreted, or compiled into
some real machina instruction set. There is no reason in principle why
Pascal cannot bE compiled efficiently, which is one necessity for
system programmi~g. For example, a set should not take up more room
than needed, but usually most compilers do not try to optimize such a
thing.

The main rastrictions on Pascal, compared with c, for system
programming, are the lack of external and static variables. Also it
would help to be able to point to other than "based" (heap} storage.
Pascal can pass Eunction and procedure names as parameters, but cannot
store pointers tl functions in variables. C (and PL/Ir for example)
can do this. Tni.s facility allows one program to dynamically load
another, or stote which function is associated with some resource
without having to compile those functions together. The ability to
have dynamically specified dimensions for arrays is also necessary. It
would te very us:ful for structured programming to relax the order of
declarations of items, e.g. intermixing constants, variables, and

A COMPABISCN OF LANGUAGE C AND PASCAL 17

types. It would still be reasonable to insist that an item must be
declared before l se.

It is not =artain that Pascal can reasonably take advantage cf a
machine that has several precisicns of arithmetic. There is some hope
for integers, since one can declare an integer to have a subrange, and
if it can be acclared to have a value in the range -127 •• 127, the
compiler conceivably cculd allocate the integer in an 8-bit byte.
However, there does not seem to be a way of using two floating pcint
hardware precisions in the current language, and it may pay to extend
it to allow declaration of two precisions of floating point. It is
very useful to ~ave separate compilations of Pascal, which do not
require later linking that make the modules appear as if they were
compiled tcgether. It is clear that the pointer arithmetic of c is
useful and powarful. It is a potential candidate for Pascal exten
sions.

5.6. APPLICATION PROGRAMMING

The fact th1t C has been used for many applications in the UNIX
system shows that it can be a good language for this purpose. Part of
this facility foL programming comes from the UNIX system itself, and
perhaps much moLe from the fact that libraries can be separately
developed {such as for input/output), and then shared among users.
Pascal does not provide this in most implementations.

By contrast, Pascal is probably easier to use due to its cleaner
lanquaqe design, as long as its restrictions (lack of dynamic arrays,
for example) do lot get in the way. It certainly seems to be a more
readable langua~; and therefore is a better candidate for application
programmin9, wita some 1inor extensions.

6. LANGUAGE CHANGES

In this se~tion will be summarized the language changes that are
recommended for ?ascal. It is felt that in the long run Pascal has a
wider audience, and a bigger potential for use in a wide range of
areas. This is DEcause C has several liabilities that indicate it has
already qrcwn ab:lut as far as it can go. The C liabilities are: (1)
expression synt2x that is too complex, when taking into account
implicit referen;ing and dereferencing and conversions, (2) a defec
tive case (SWITCb) statement, and (3) many ways of escaping the type
checking mechanisms such that unsuspected mismatches might not be
easily detected. (4) It is all too easy to make mistakes in writing
operators, and and up with a different operator. For example, a
common bug in C is writing IF (A = 1) ••• when it is intended to
compare A with 1. But"=" is assignment, and"==" is comparison for

18 A COMPARISON OF LANGUAGE C AND PASCAL

equality. This aistake is not caught by the compiler since assignment
is an expression and the statement is therefore legal. The value of A
in the example would ce tested for 0 value, and since it would be
non-zero, it wouid be ccnsidered true. This sort of deficiency cannot
be corrected without making drastic incompatible changes to c. By
contra~t, extensLo.ns to fascal could be upwards compatible with the
standard Pascal.

The extensions recommended for Rascal include (1) external
variables and sa parate ccmi;ilation of functions and procedures, (2)
the additicns ot blocks with their own static or local variables, (3)
STATIC storage types, (4) the ability to point to more types of
storaq e, (5) tha ability to store function and procedure names in
variables, (6) 11 a ynam ic arrays" in the sense that their size need not
be known by a fu~ction er i;rocedure until the array is passed to it as
an a rq um en t, (71 ~ de cl a ration of initialization of variables, (8) a
default case fJc the CASE statement, and grouping of cases by
subrange, (9) a illethod cf specifying precision of floating and integer
variables such t~at various precisions of real hardware can be easily
taken advantage of, (10) the ability to declare things in a more
flexible crder, so that functions written elsewhere or on library
files can be i.1cluded more easily, (11) the means of ending the
current loop itelation er leaving the loop without having to reach the
bottom of the statement, (12) making the order of evaluation of
operands for AND and OR explicit, and (13) possibly some pointer
arithmetic somew2at along the lines of c, although with the ability to
check range violations at run time.

Besides the above language extensions, I would want the compiler
to qenerate reasJnably efficient code, and with the option of omitting
run time cteckin~ for c€rtain things, in order to do a min~r amount of
system or machi~e dependent operating system coding. It would be
necessary to genarate code that would be reentrant, if that is possi
ble for the target machine, and to have the ability to have multiple
modules and multiple prcgram stacks (one per task) in handling multi
ple tasks. Unfoctunately some Pascal run time support facilities grab
all of free storige for their stack and heap storage.

Several extansions and modifications to Pascal exist such and
MODULA and Concucrent Pascal. Some data abstraction languages such as
CLU or EUCLID aave beEn influenced by Pascal. ADA (7), the newly
proposed DOD staudard, was influenced by Pascal and its descendants,
and contains aLL of the improvements to Pascal that were suggested
above. ADA is a larger language than C or Pascal, to judicious
extensions to Pascal seem still worthwhile. It is perhaps too soon in
the develo~ment Jf ADA to consider a subset of that language instead
of an extension to Pascal.

A COMPABISCN OF ~ANGUAGE C ANt PASCAL 19

7. CONCLUSIONS

We can sum11arize the differences between the two languages as
follows: Pasca~ has fewer basic data types, and checks them more
strictly. FascaL sets are better than C bit fields. Pascal does better
type checking, a~d as a result in C you can "cheat" more easily, or
make inadvertent and undetected mistakes. For overall program struc
ture, c is more convenient and flexible, except that it does not allow
nesting of functt~ns, and insists on making them all external. C is
superior in pointer arithmetic, has more conversions, but because it
does it im~licitly in many circumstances, subtle mistakes can remain
undetected for a long time. Pascal is safer in this regard. Pascal's
structured statements are less general, but also safer. C has more
storaqe types, some of which are necessary for certain types of
proqramming.

In summary, Pascal is cleaner and easier to use without making
subtle mistakes, but is smaller and more restrictive. For the languag
es as they curr=atly exist, C has more power and is better for system
proqramminq and possibly fer general purpose programming. But with
extension of relatively simple sorts, Pascal would be better and
cleaner for most purposEs. I would recommend that Pascal extensions be
made rather than using a standard c, mostly for subsequent maintaina
bility and readaJility cf programs.

8. BIBIICGRAPHY

Scme information fer this report was derivea from an ACM Profes
sional Developm~~t Seminar, "C vs. Pascal", taught by P. J. Plauger,
Washinqton, D. c., December 8, 1978.

8.1. C LANGUAGE t.. EFERENCES

(1) Brian W. Kee nig han and Dennis M. Ritchie, "The c Program ming
Language", Ptentice-Hall, 1978.

(2) D. M. Ritchie, et al., "The C Programming Language", Bell system
Technical Journal, Vol. 57, No. 6, Part 2, July-August 1978.

(3) s. c. Johnson and t. ~. Ritchie, "Portability of C Programs and
the UNIX System", Eell System Technical Journal, Vol. 57, No. 6,
Part 2, July ... Auqust 1978.

20 A COMPARISON OF LANGUAGE C AND PASCAL

8.2. PASCAL REFERENCES

(4) Kathleen Jeilsen and Niklaus Wirth, "Pascal
Report", 2nd Editior, Sfringer-Verlag, 1974.

(5) Kenneth Bowles, "Microcomputer Problem Solving
Springer-Verlag, 1977.

User Manual and

Using Pascal",

(6) "The BSI/IS) Working Draft
January 1979. Also "Toward a
Computer, April 197S.

of Standard Pascal", Pascal News,
Pascal Standard", Bruce w. Ravenel,

8.3. O~HER REFER~NCES

(7) "Preliminary ADA Reference Manual", SIGPLAN Notices, Vol. 14, No.
6, June 1979, Part A. "Rationale for the Design of the ADA
Programming ~anguage", J. D. Ichbiah, et al., SIGPLAN Notices,
Vol. 14, No. 6, June 1979, Part B.

SCIENTIFIC CENTER REPORT INDEXING INFORMATION

I" AUTHOR(S) :

Springer, Allen

2. TITLE :

A Comparison of Language C and Pascal

3. ORIGINATING DEPARTMENT

Cambridge Scientific Center

4. REPORT NUMBER

G320-2128

Sa. NUMBER OF PAGES

20
Sb. NUMBER OF REFERENCES

7

9. SUBJECT INDEX TERMS

Language C
Pascal
Programming Languages

21 - Programming

6a. DA TE COMPLETED 6b. DATE OF INITIAL PRINTING 6c. DATE OF LAST PRINTING

06/28/79 August 1979

7. ABSTRACT :

This report is a comparison of Language C and Pascal from several aspects,
including history, language features, suitability for system programming,
suitability for structured programming, and implementability.

8. REMARKS:

1977 IBM CAMBRIDGE SCIENTIFIC CENTER
OUTSIDE PUBLICATIONS

A. P. DEMPSTER, M. SCHATZOFF, N. WERMUTH,
Simulation Study of Alternatives to Ordinary Least
Squares, Journal of the American Statistical Association,
March 1977, Vol. 72, No. 357, 77-106

Y. BARD, The Modelling of Some Scheduling Strategies
for an Interactive Computer System, in: Computer
Performance, North Holland Publishing Co., 1977,
113-137

1978 IBM CAMBRIDGE SCIENTIFIC CENTER
OUTSIDE PUBLICATIONS

Y. BARD, M. SCHATZOFF, Statistical Methods in
Computer Performance Analysis, in: Current Trends in
Programming Methodology, Vol. 111, Software
Modelling, Prentice-Hall, Inc., 1978, 1·51

Y. BARD, The VM/370 Performance Predictor in
Computing Surveys, Vol. 10, No. 3, September 1978,
333-342

Y. BARD, An Analytic Model of the VM/370 System in
IBM Journal of Research and Development, Vol. 22, No.
5, September 1978, 498-508

Y. BARD, Design of an Integrated Measurement
Facility, SEAS Proceedings, Spring Technical Meeting,
Berne, Switzerland, April 3-7, 1978, 243-252

N. ROCHESTER,F.C.BEOUAERT,E.M.SHARP,The
Chord Keyboard, Computer, Vol. 11, No. 12, 1978,
57-63

A SPRINGER, L. LAZZERI, L. LENZINI, The Imple
mentation of RPCNET on a Minicomputer, Computer
Communication Review, Association for Computing
Machinery, Vol. 8, No. 1, 1978

1979 IBM CAMBRIDGE SCIENTIFIC CENTER
OUTSIDE PUBLICATIONS

L. SEAWRIGHT, A Perspective on Virtual Machines,
Virtual Machine Workshop Proceedings, Gesellschaft fi.ir
lnformatik e.v., Munich, West Germany, March 15-16,
1979

L. H. SEAWRIGHT, R. A. MacKINNON, VM/370 - A
Study of Multiplicity and Usefulness, I BM Systems
Journal, Vol. 18, No. 1, 1979, 4-17

1979 IBM CAMBRIDGE SCIENTIFIC CENTER
OUTSIDE PUBLICATIONS

R. A. MacKINNON, The Changing Virtual Machine
Environment: Interfaces to Real Hardware, Virtual
Hardware, and Other Virtual Machines, IBM Systems
Journal, Vol. 18, No. 1, 1979, 18-46

L. H. HOLLEY, R. P. PARMELEE, C. A. SALISBURY,
D. N. SAUL, VM/370 Asymetric Multiprocessing, IBM
Systems Journal, Vol. 18, No. 1, 1979, 47-70

