=== IBM CAMBRIDGE SCIENTIFIC CENTER
T G320-2128, August 1979

A COMPARISON OF LANGUAGE C AND PASCAL

A. SPRINGER

X#ZN
N/ 2
U COA

1976 1BM CAMBRIDGE SCIENTIFIC CENTER REPORTS

G320-2110 April 1976
J. RUBIN, A Resource Allocation and Job Scheduling
Model (22 p.)

G320-2111 April 1976
Y. BARD, A Characterization of VM/370 Workload
(40 p.)

G320-2112 May 1976
T. MORE, JR., Types and Prototypes in a Theory of
Arrays (65 p.)

G320-2113 May 1976
T. MORE, JR., On The Composition of Array-
Theoretic Operations (62 p.)

G320-2114 May 1976
R. I. FRANK, Design Considerations in an Experi-
mental Interactive APL Quadratic/Linear Pro-
gramming Workspace (28 p.)

G320-2115 May 1976
S. G. GREENBERG, High Level Data Management
for the Problem Solver (14 p.)

G320-2116 December 1976
W. P. FISCHER, The Heating Oil Consumption of
One-Family Houses in Eastern Massachusetts (66 p.)

G320-2117 December 1976
W. P. FISCHER, A Note on Residential Heating Oil
Inventory Policies (31 p.)

G320-2118 December 1976
W. P. FISCHER, Short Term Changes in the Resi-
dential Consumption of Heating Oil (25 p.)

G320-2119 December 1976
W. P. FISCHER, Short Term Residential Demand for
Heating Energy in New England (45 p.)

G320-2120 December 1976
M. SCHATZOFF, System Performance, Measurement
and Tuning (37 p.)

1977 IBM CAMBRIDGE SCIENTIFIC CENTER REPORTS

G320-2121 June 1977
Y. BARD, An Analytic Model of the VM/370 System
(43 p.)

1978 IBM CAMBRIDGE SCIENTIFIC CENTER REPORTS

G320-2122 July 1978
P. BERKE, Tables, Files and Relations in Array
Theory (27 p.)

G320-2123 July 1978
P. BERKE, Data Design with Array Theory (33 p.)

G320-2124 November 1978
Y. BARD, Some Extensions to Multiclass Queueing
(27 p.)

G320-2125 December 1978
R. E. FRANK, Sparsity and APL (12 p.)

G320-2126 December 1978
R. I. FRANK, The Differential Geometry of the C?
Unconstrained Optimization Surface (21 p.)

1979 1BM CAMBRIDGE SCIENTIFIC CENTER REPORTS

G320-2127 July 1979
G. McQUILKEN, Remote Management and Control
of Distributed Interactive Computer Systems: A
Preliminary Overview (19 p.)

G320-2128 August 1979
A. SPRINGER, A Comparison of Language C and
PASCAL (20 p.)

G320-2275 December 1976
Compiled by LILES SMITH, Abstracts of Cambridge
Scientific Center Reports (113 p.)

The availability of reports is correct as of the printing date of this report.

+ Appeared in an outside publication. Not available in Scientific Center report form. Please refer to the list of outside publications on

the inside back cover for availability of reprints.

e Copies of report are no longer available from the Scientific Center.

IBM CAMBRIDGE SCIENTIFIC CENTER

TECHNICAL REPORT NO. G320-2128

August 1979

A COMPARISON OF LANGUAGE C AND PASCAL

ALLEN SPRINGER

IBM CAMBRIDGE SCIENTIFIC CENTER
545 TECHNOLOGY SQUARE
CAMBRIDGE, MA 02139

Abstract

This report is i1 comparison of Language C and Pascal from several
aspects, includiug histcry, language features, suitability for systenm
programming, suitability for structured programming, and implementa-
bility.

IABLE OF CONTENTS

Introductioo.
1. The Backgtound of Paccal. .
2. The Background of C
3. An Overview of Pascal . . .
u.
D

An Overview of C. . . « . .
etailed laaguage Comparisons .

The Overail Lanquage Structure.
. The Data Structures .
«1. Basic Types « o o o o o o &
«2. Complex Types . . .

Storage ClasSSeS « o o o «
Initialization of Variables
he Control Structures. . . .
. Loop Statements
. Alternate Selection Statemen
« The OperatorS « o« o o o o o o
. Data Conversions. . . .« .
Functions and Procedures. .
Input/Output. « « « ¢ « o« &
E

e & & o o o

.
e o

L]
N —2

e o 8 & & o o s & o s s s o o s o &

. Evaluation >f the languages . .
.1. Language 3ize and Ease of Compi
e2. LibTaries .« « o« o o o o o o @
«3. Structurel Programming. . . .
4. Ease of L2arning. « « « o o o«
.5. System Programming. « « « . .
5.6. Application Programming . . .
6. Lanquade ChinNgeS. « o o« o o o «
7. Conclusions « « « o « « o o o« &
8. Biblicgraphy. « « « ¢« ¢« o « o« o &
8.1. C Languagz References
8.2. Pascal RELi€reNCeS ¢« « « o o o o
B8.3. Other Ref2TencesS. « « « « o« o «

S

e o e o L] . . L]] o o o o

e © o o 8 o o g o 2 6 & s o

¢ o & & a3 & o 0 0 s 8 ¢ o

[L[] .]

e 0 o o

e o & 8 & & o o ¢ &6 o o & ¢ o

e @& & & o & o o s s s o

. L) . L] . . L] L] L[] L] . . L] e L] . . . L . L] L] L] L] . L] L] .

L] . L] . L[] . L[] . . L] . L]] [] . L] . L] . L] L] [} . L] [] . L] .

. L] L] L] . . L) L] . o . . . L] L) L] * '] L] L] L] L] ° . L] L L] L]

. . [L]

L[] . . L] Y] L] .

@ o o ® o o ° o e & g o * g * g o ° o * 3 g & o & o ¢ O ¢ s g o

¢ o o o

@ & ¢ o o * 4 0 4 s bt 4 8 o 4, o, 8 s 4 s 4 & s 4, & 4,

® 8 o o

DOWOWONVNEWWN -

e & o &
-— e - e D
whHNDOOo

1. INIFKODUCTION

Pascal and - are in the same class of languages as PL/I, FORTRAN,
ALGOL 60, ALGOL 68, and COBOL. That 1is, they are intended to be
procedural and :zompilable 1languages. This contrasts with the more
specialized langiages such as APL (for arrays), SNOBOL (for strings),
and LISP (for 1lists), which are extremely difficult or impossible to
compile. This also contrasts with non-procedural 1languages such as
RPG, CSMP or GPS5. It is assumed that the reader of this paper knows
cne or more of the languages in the first group, and has some under-
standing of data structures, pointers, and recursion. This paper will
primarily discuss the aspects of the two lanquages that make them
unique, especiaiLy the things that make them easy or troublesome to
use.

1.17. THE BACKGRGIJND OF EASCAL

Pascal was developed 1in a European programming language "tradi-
tion"®, and shows its ALGOL heritage. Niklaus Wirth developed it
primarily as a teaching tool (4) . It has become a popular language in
universities on pany machines. It also has influenced the design of
many subsequent Languages, including the final four candidates for the
proposed Departaent of Defense "Ironman" standard programming
language.

When miniconputers were the smallest computers around, the most
popular languags on them was BASIC. If another 1language besides
assembler was us2d, FORTRAN was the usual candidate. With microproces-
sors BASIC is still the beginner's language, but now PASCAL is often
considered the b:st candidate for a larger language.

The American National Standards Committee X3 has subcommittee
X3J9 to prepare a proposal for a standard Pascal. So far, the
proposed standara (6) is only a slight change from the Jensen and
Wirth book (4) waich has been the de facto standard. Standardization
of needed extensions to Pascal seems to be further off in time.

1.2. THE BACKGROUND OF C

C also comes originally from European influences, and was origi-
nally based on a typeless language <called BCPL, which was intended to
be a simple and 1ighly rortable system programming language. BCPL was
distributed wideiy when it first came out. At Bell Labs, a variant of
BCPL was createi, <called B, which was still a typeless langquage, and
some experimental minicomputer code, the beginnings of the UNIX

2 A COMPARISON OF LANGUAGE C AND PASCAL

operating system, w2re done in B (UNIX is a trademark of Bell Labora-
tories). C was designed as a typed language based on B. UNIX was
subsequently written almost completely in C. Since UNIX has become
popular, especially in wuniversities, the C language has become known
in that fashion. C was intended primarily to be a system programming
language, but aas become a language wusable for general purpose
programming. It has been ported to several machines, mostly by Bell
Labs efforts. Some ncn-Bell compilers are available for various
machines. It is not nearly as well known as Pascal. There is no user
group specifically for language C, although there is a UNIX user group
that may have sone of that function.

1.3. AN OVERVIEW OF PASCAIL

Pascal 1is a relatively small 1language which has some block
structure, recursiva functions and procedures, arrays, pointers, and
data structures, and the ability to do simple input/output. Unusual
features, comparzd with PI1/I or older languages, are the ability to
define new data types, and to specify variables that have 1limited
subranges of scalar or integer values. An unusual data type is the
power set of a tinite range of scalar values; it turns out to be a
very useful equiralent cf bit strings.

All declaritions must appear before any executable statements
that refer to the declared items. The form of the language is such
that the compiler can be a one pass compiler without much difficulty.
The lanqgquage has some block structure in +the ALGOL or PL/I sense, and
only has the equivalent of PL/I automatic storage and a kind of based
storage, called ‘'"heap" storage. All items are required to be
completely decla:ed. Tkis implies that if a pointer is declared, then
the type of the value it points to must also be declared. There are no
defaults in the language. Like ALGOL, the standard 1language implies
that separate coapilations are not easy to provide, although there are
extensions to sone Pascal compilers that allow this.

Basic data types include characters, integers, "reals" (float-
ing), Boolean, sszalars, and subranges. Structured data types include
arrays, records (similar to PL/I structures), pointers, sets, variant
records (a sort of primitive ALGOL 68 union), and files.

Pascal has poth assignment and procedure call for simple control
structures., Comdosite <control structures include BEGIN...END (which
does not denote a block), FOR, WHILE and REPEAT loop statements, and
IfF...THEN...ELSE and CASE for alteration statements. There 1is a
primitive GOTO statement.

Pascal has t he expected relational and arithmetic operators, and
some built in arithmetic functions. Except for conversion from integer
to floating, all conversions must be explicitly written. Pointer
generation and iereferencing is explicitly done, similarly to PL/I.
There are no arraiy or structure operations except component selection
and assignment.

Input/output is domne with built-in functions and procedures.

A COMPARISON OF .ANGUAGE C AND PASCAL 3

1.4. AN OVERVIEW OF C

C allows s2parate compilation, and so interconnection of func-
tions is related to whether they are in the same file when compiled,
and whether fun>tion names are declared external or not. Functions
cannot be nestei within functions (C has no procedures), although
block structure ioes exist. Thus C has an overall program structure
rather like that of FCRTRAN with named common. Unlike FORTRAN, C
allows recursion, and has the equivalent of automatic, static, and
based storage.

Basic data types include character, two sizes of integer, two
sizes of float, unsigned integer, and bit field. Composite types
include array, structure, union, and pointer. C recently has had a
type definition facility added to the 1language, although for a long
time it did not have it. Boolean 1is not separate from integer data
types in principle.

The basic control structure of the language is the expression;
assignment is an expression. If a function is called without using its
returned value, the value is simply discarded or ignored and is not
considered an erctor. Thus functions can be used as procedures.

Composite control structures include a grouping statement equiva-
lent to the PL/L BEGIN;...END; and 1loop statements such as a rather
general FOR, ani a WHILE. There is a conventional IF statement, and a
primitive SWITCH statement that is a kind of computed GOTO which looks
rather like a CASE statement. There is a simple GOTO statement, and
statements for repeating or ending a loop from within the middle of
the locp.

There are abore orerators in C than in Pascal, and automatic
conversion betwa2n all basic data types is done, except for pointer.
Automatic generation of pointers or dereferencing of pointers is done
in many circumstinces, unlike Pascal. There are no structure or array
operators other than component selection.

Input/output is not part of the langquage, and is done typically
with library routines.

C has a sianple preprocessor style macro language that provides
file inclusion capabilities, abbreviations, and alternative selection
of code based upon programmer defined parameters.

2. DETAILED LANGJUAGE COFPARISONS

In this section we will examine in some detail the significant
features of C ind Pascal, stressing where the two languages are
significantly dictferent frcm each other or from more familiar program-
ming lanquages. Note that both 1languages were influenced by avail-
ability to their designers of 96 character ASCII terminals. Both use
square brackets ind curly brackets, for example.

4 A COMPARISON OF LANGUAGE C AND PASCAL

2.1. THE OVERALL LANGUAGE STRUCTURE

Unextended Pascal effectively insists on the complete program
being compiled 111 at once, whereas C can have groups of functions
compiled separately. The order of writing program parts is much
stricter in Pascil than in C. The Pascal program order is as follows:

PROGRAM name (files used by progranm)
LABEL list >f labels;
CONST constant declarations such as PI = 3.141592
TYPE type daclarations such as
FLOAT = REAL;

COoLOs = (RED, BlUE, GREEN, YELLOW);
VAR all variable declarations except those 1local

to proc=2dures or functions declared below
All procedure and function declarations
BEGIN

the boiy of the main program
END.

The LABEL, -ONST, TYPE and VAR sections are omitted 1if there is
nothing tc declire in them. Built-in functions and procedures of
Pascal do not bave to be declared in order to be used. A function or
procedure has the same form as that shown by the program, except that
the END has a s2micolon instead of a period, and instead of PROGRAMNM,
the keywords FUN:TION or PROCEDURE are used, along with declaration of
the types of arjuments, and the value returned if it is a function.
Within any function or fgrocedure, further functions or procedures can
be declared.

The CONST declaration provides a way of naming constants. LABELs
must be declared before they appear in the text. TYPE declarations can
be vieved as an sxtension mechanism, or more simply as an abbreviation
mechanism for declarations.

The structure of a C program is much freer than that of Pascal.
It is loosely of the following form:

declarations
function
declarations
function
etc.

Essentially, deciarations outside of functions are normally equivalent
to PL/I EXTERNAL declaraticns. Also all functions are externally known
when the program is loaded with other separately compiled programs. It
is not ©rpossible to nest functions within functions, unlike Pascal.
This means there can be a name conflict problem. On the other hand,
the grouping statement (denoted by curly brackets), can be a block
anywhere, with its own declarations of automatic variables, just as in
PL/I, and unlike Pascal. Essentially all variables must be declared
before they are referenced.
A C function has the following form:

A COMPARISON OF . ANGUAGE C AND PASCAL 5

name(argumeat list, if any)
arqgqument deczlarations, if any
{

declarations and statements, if any

}

Note that tie looser structure of C allows the easy inclusion of
routines frcm other sources, such as libraries of functions. This is
not so easy for Pascal, where it may be necessary to split apart the
global declarations from the functiomns. Combination of C programs is
also aided by th> ability to compile them separately, unlike Pascal.

2.2. THE DATA SIRUCTURES

Under the heading of data structures, we will briefly discuss
basic types, such as float and integer, and structures, which are
combined from basic types. Then storage classes will be discussed.
Operations that zan be performed on specific types will be discussed
in following sections.

2.2.1. BASIC TYPES

In Pascal some attempt was made to define the language indepen-
dently of specitic machine word sizes. The approach was not that of
PL/I, where th2 arithmetic precision rules are machine independent.
Instead, the projrammer has available a standard constant MAXINT that
tells him the i1nteger precision, so that he can write programs in
terms of that, ind achieve machine independence if it is important.
There is only onz precision of integer, although the declaration of a
variable as beiag in a subrange will allow the compiler to compile
shorter precision, where the compiler writer sees fit. There is no
comparable precision information about real arithmetic.

In Pascal, characters are recognized as being machine dependent.
There is a function ORD(C) that returns an integer indicating the
relative order o the character arqument in the character set. CHE(I)
accepts an inteyzr, and returns the character that is the Ith charac-
ter of the chara-ter set. With care, it is possible to write programs
that are indepandent of the character collating sequence of the
specific implementation of Pascal. Pascal apparently does not promise
to implement any particular minimum character set as values of charac-
ter variables. Note that both in C and Pascal, a character variable
only hclds one caiaracter at a time, and to have strings of characters,
character arrays must be used.

In contrast to Pascal, C is more machine dependent, since its
types are derivel from the natural operand sizes and types available
on the PDP-11. They also happen to correspond well to those on the IBM
370 or the Seri2s/1. They include two sizes of integer, SHORT and
LONG, and INT is the usual declaration if the choice between the sizes

6 A COMPARISON OF LANGUAGE C AND PASCAL

is left up to tae compiler. All that is promised is that size (SHORT)
<= size (INT) <= s5ize (LONG). The size of 1INT must be at lsast the size
of an address. lhere is also an unsigned integer which is the sanme
size as INT. Cairacters are variables that hold one character, and
otherwise can be treated as integers. Note that Pascal allows compar-
ison of arravs ot characters (if of the same size) in a single opera-
tion, whereas C does not. There are"two sizes of floating point,
FLOAT and TCUBIE.

C has no Boolean data type, and uses the distinction between zero
and non-zero for this, for all basic data types except floating point.
Pascal has Boolesin predefined as a scalar data type of two elements,
TYPE BOOLEAN=(FAL SE, TRUF) and all operators for scalar data types are
usable on type Boolean.

Pascal has two data types which are not in C. Any scalar type can
be defined by enumeration of its elements. For example, we could
declare a new Jdita type called COLOR as follows: TYPE COLOR=(YELLOW,
RED, ORANGE, GREEN, BLUE, PURPLE), and then declare variables of that
data type. The identifiers in the parentheses are then used as
constants of that data type. The order of these constants is known to
the relaticnal operators, so that REDKORANGE is true. A variable of
type COLOR would hold orly one color at a time.

Pascal allows the definition of subranges of any data type (that
is, integer or scalar) that has successor and predecessor functions.
Thus we could declare

VAR I, Jd, K: 0 .. 99;

ROOM, WALL: RED .. BLUE;
I, J and K takz on only subranges of integer values, and could in
principle be stored in a byte in the IBM 370. Since the data type
COLOR has only six possible values, it could be represented by integer
values 0 to 5 or 1 to € in the implementation of the data type. The
variables ROOM and WALL would take on only four of the six possible
colors, and in principle their values could be stored in 2 bits.

In C there is a data type called a bit field, which has limited
usage. Basicaliy it 1is unaligned unsigned integer data which is not
allowed to overliaip integer sizes or boundaries. They are subparts of
integers, and uwave few cther operations than assignment or value
accessing definel for them. They allow machine dependent accessing of
bits.

2.2.2. COMELEX ZiPES

Both languajes have arrays, and use square brackets to designate
subscripts. In both cases, strictly speaking, arrays are one dimen-
sional, but any data type, simple or complex, may be components,
including arrays. Thus an array of arrays is equivalent to a single
two dimensional array. Thus in an array of arrays of integers, the
expression A(2] 3] will access the element at row 2 and column 3, if
it 1is viewed in the conventional manner. In Pascal, this may be
abbreviated as A[2,3].

C may not pass arrays or structures as function arguments, or
return them as values, whereas Pascal can. On the other hand, both

A COMPARISCN OF LANGUAGE C AND PASCAL 7

languages can pass or return pointers to arrays or structures. It is
possible tc leavz undefined the size of arrays in C, where it must be
declared in Pascail. This is a severe restriction in Pascal, because it
makes it impossible to define an array handling routine that is
independent of the actual size of the array to be manipulated. Thus
the same routin: could not invert both a 10x10 array and a 11x11
array, unlike in PL/I or FCRTRAN. This also causes problems in string
manipulation, siuce strings are arrays of characters. Thus there are
strong interests among Pascal users to extend the language to allow at
least a dope vector style of handling arrays, as is done for PL/I.

Both ¢ and Pascal have data structures, of a power similar to
PL/I's, although not using level numbers. For example, in Pascal we
could define:

TYPE COMPLEL = RECCRD REALPART, IMPART: REAL END
where the data type (the structure) has two components of the same
data type REAL. Accessing cf components is as for PL/I; if we declare

VAR X COMPLEX;
then we may acc:ss the imaginary part of the variable with X.IMPART.
Although we show COMPLEX as a new data type, the variable X could have
been declared inztead as

X: RECORD RLALPART, IMFART: REAL END;

The equivalent declaraticn in C is:

struct { float realpart; float impart} x;

As can be seen, the order of types and names in C is reversed from
that of Fascal. ,

It is possible in both languages to defins variables that can
have one data type at one point, and a different data type at another
point. In Pascal this is called a variant record, and in C, a union.
In both languages, they are declared very similar to structures, and
the "component" names are used to designate what the possible value
types are, and access of a component implies that that type is what is
currently storel in the variable. 1In C an example is declared as:

union { int p; float r} y;

The variable y can hold either an 1integer, or a floating poirnt value,
but only one at 1 time. To access it for the int value we say y.p, and
y.r accesses the value as if it were floating. Neither language checks
that ycu are in tact using the correct accessing method for the value.
The storage siz: and alignment is the maximum necessary to hold the
largest and most strictly aligned value declared.

Pascal has i1 complex data type, called SET, which is very useful,
and is not found in language C. A set may be declared to be built out
of items of a finite set of data, typically a scalar data type, or a
subrange. The nuaber of items cannot be more than the maximum set size
allowed by the compiler, which often is about 60 bits or so, for
historical reasons. An example will be helpful:

TYPE FRUIT = (APPLE, ORANGE, BANANA, GRAPE);

VAR FRUITBASKET: SET CF FRUIT;

Subsequently we might set the variable FRUITBASKET to a particular set
of the scalar vaiLues declared above:

FRUITEASKET := [ORANGE, GRAPE J;

After the assignient, the set will contain the two values, ORANGE and
GRAPE, but not tae other two possible values. 1In practice, a set is
represented by one bit for each possible type of thing that can be
stored in 1it. Tae value of scalar type FRUIT can be stored in two

8 A COMPARISON OF LANGUAGE C AND PASCAL

bits, if we declared variables of that type. It has four possible
values. A set of that type would require four bits, one for each
possible type ot fruit that might be stored in the set variable.
Again, although th2 space savings is possible in principle, Twost
Pascal compilers implement only cone size of set.

Pointers in both 1languages must have declared the type of value
to which ttey point. Thus a pointer to an integer is not the same data
type as a pointzr to an array of characters. The checking of the
pointer tyre is auch stricter in Pascal than in C, but both are much
stricter than wnat can be checked in PL/I. 1In Pascal, a pointer may
be created only 2y calling a built-in function NEW, which does roughly
the equivalent ot PL/I ALLOC. That is, it calls a routine like GETMAIN
to supply the storage to be pointed to. This type of storage is
called "heap" storage. In C, this is possible, but it is also possi-
ble tc ccmpute a pointer to a variable (or component of a variable) of
any storage class. This corresponds to the ADDR function of PL/I.
Thus C is much a>re flexible than Pascal in this respect. In effect,
in Pascal pointer variables can only refer to based storage (in FPL/I
terms), whereas in C, pcinters can be to any class of storage.

In Pascal, tunctiors and procedures may have any type of argument
value or varianle passed to them, and may return any type except
function or proc:dure names, whereas in C only simple types or poin-
ters to any typ: can be passed or returned as values. Pointers to
functions may also be passed or returned in C.

2.2.3. STORRGE CLASSES

Pascal has only one =storage class, which 1is thes equivalent of
PL/I automatic storage, for non-pointer variables. For pointer varia-
bles, there is only one class, which 1is roughly like based storage of
PL/I, gotten and freed under program control.

By contrast, C has several more storages classes. It has the
equivalent of automatic storage, which as usual is acquired at block
entry and freed at block exit. In both languages, a stack is a natural
place for such storage. C also has static storage, in the PL/I sense,
which may be either known outside +the compilation, or within the
compilaticn only, or just within a single function. If known outside
the compilation, it is of course 1like PL/I EXTERNAL variables. Basic
data +*type variables <can also be declared storage class REGISTER,
although there 1s no promise that the compiler will in fact keep the
variable in a michine register. Such a declaration can be taken as
advice to the compiler code optimizer. C also can provide the equiva-
lent of based storage via its pointers, but is not restricted in what
kind of storage a2 pointer variable can point to.

A COMPARISCN OF LANGUAGE C AND PASCAL 9

2.2.4. INITIALIZA4ATION OF VARIABLES

Pascal has 20 means of designating initial values of variables.
This means that Jinitialization must be done by assignment statements
in the program body or a separate function for that purpose. By
contrast, C alloss initialization specifiers for static, external and
local (automatici:= variakles. For local variables, this means that the
variable declaraition is not split apart from the setting of its
initial value, even though the code generation may be the same as for
Pascal. This 1s an aid to documentation. For globally accessed
variables, which can be static in C, the advantage is that no assign-
ment statements are generated to be executed at run time; in Pascal
run-time code nece ssary for initialization.

2.3. THE CCNTROL STRUCTURES

Both langquajes can group sequences of statements together, so
that they can bz used as 1if they are a single statement. This is
important becaus: most of the complex control structures are in terms
of single statemznts as components, e.g. IF expression THFN statement
ELSE statement. The grouping statement of Pascal is BEGIN ... END.
That of C is {...}. The semicolon is used as a statement separator in
Pascal (like ALGJDL and wunlike PL/I). The semicolon is used to end a
statement in C, unless the "statement" is really a statement group.
This is almost but not quite the PL/I convention.

2.3.17. LCOF STATEMENTS

The lcop stitements are re=latively similar in the two languages.
The FOR statements are intended for initialization and iteration of a
variable that can be wused within the body of the FOR. Pascal cnly
allows stepping ap or dcwn by a value of 1, and does not consider the
iteration value after the end of the 1loop to be defined, which is a
limitation on the user. C allows any initializer, any stepping
statement, and any test fcr completion of the loop, and thus provides
more generality.

Bcth lanquajes have means for looping, with a test either at the
beginning or at the ending of the loop, using WHILE or UNTIL keywords.

C has a meaas of ending the execution of the body of a loop from
ipn its middle. 'he BREAK statement causes control to go after the
loop. CONTINUE (aot a well chosen keyword) causes the next iteration
of the statement to begin, without executing the rest of the body of
the loop. Pascil nmust get these effects by GOTO, or else by having
the remainder ot the locp in an IF statement.

10 A COMPARISON OF LANGUAGE C AND PASCAL
2.3.2. ALTERNATE SELECTION STATEMENTS

Both statem2nts have alternate selection statements of the 1IF
form, with an optional ELSE. Both have a form of CASE statement,
although Pascal's presents less difficulties to the user. An example
of the Pascal form is:

CASF expression OF

L1: statement;
12: statement;
L3, L4, L5: statement;
16: statement;

END
The "labels" L1, L2, etc., are really any constant of the data type of
the exrression. Unfortunately, there is no means for specifying what
to do for values of the expression that do not have a label with that
value. This meaas that all possible values that can occur must be
enumerated explicitly.

The form of case statement in C is:

switch(expression)

{

casel: statements

break;
case2: statements
break;

default: stitements
}
The expression must be integer valued, and only integer constants must
be individual cases. If Lreak is not used to jump out of the loop at
the end of the statements handling a case, then execution will contin-
ue in the statements for the next case! However, at least C provides a
way (the defauit case) of not having to mention all possible cases
that can occur.

2.4. THE OPERATO:S

Bcth larquajes have the expected collection of arithmetic and
compariscn operators. Both have the ability to build complex "Boolean"
expressions wita AND, C®, and NOT style operators, although their
notations differ. Beycnd this, Pascal has some set operators, and
some standard arithmetic functions, such as for cosines or logarithms.

The ©Pascal set orerators include union, intersection and set
difference, and comparison (Boolean valued) operators to test set
inclusion, and s2t membership. For example, if there were two varia-
bles SA and SB ot type SET OF FRUIT, defined earlier, we could write:

IF APFIE IN (SA + SB) THEN statement
to test if APPLE is in either or both sets. :

Lanquage C was designed to generate code without having to
compile subroutine calls to implement operations. Thus it does not

A COMPARISCN OF LANGUAGE C AND PASCAL ' 11

provide trigonomsztric and similar functions as a part of the language,
although obviously they can be made easily available in libraries. The
roint is that such functions are not standardized as a part of the
language. Aside from the compilability restriction, and the lack of
sets and operators on them, C has considerably more operators than
Pascal. For aritametic cperators, there are 1left and right shift, and
the Bcclean operitors really do bitwise "“and, "or", "not", and "exclu-
sive or" orerations. Additionally, there are two more Boolean opera-
tions, which return only 0 or 1 instead of doing bitwise "and" and
"or" operations. They prcmise to test their first operand, and if the
final cperator r:sult is known, the second operand is not computed. By
contrast, in Pascal (and many other languages) it is undefined whether
the second operamd is computed or not, and therefore it is sometimes
not safe to write some arparently natural expressions. For examfple,
given that m is in array with subscripts ranging from 0 to 10:

if ((0<=i) && (i<=10) && (m(i]>20)) statement
is a safe statement to write, since the access of array m would only
be done if the sabscript i is wvalid. The equivalent in Pascal cculd
only be done sarely with nested IF statements:

IF (0<=I) AND (I<=10) THEN

IF M[I]>20 THEN statement
If the C programier used & (bitwise and) instead of &&, it would be an
unsafe statement to execute, for the same reason it is in Pascal.

C has many increment and decrement operators. For example, the
unary operators ++x and --x increment the value of x before presenting
the value to tme rest of the expression they are in. x++ and x--
increment or deccem=2nt the value in x after delivering the value.

C has many assignrent operations, and they all can be used as
expressions. A simple assignment is of the form variable = expres-
sion.

variakle =+ expressicn
is equivalent to:

variable = yariable + (expression)

This abbreviated form is available for most binary operators.

C has available what was called a conditional expression in ALGOL
60. It is effectively an IF statement that returns one of two values:

x = (a>>d» ?2 a : b)

In the example, the larger of the values of a or b is stored in x.
That particular :onditicnal expression is equivalent to PL/I MAX(2A,B).

Another important difference between Pascal and C is that C
allows arithmeti: to be performed on pointers in a limited way. I.e.
additicn and suatraction can be done with the forms p+i, p-i, p-p,
++p, --p, p++, p--, p=+ i, and p=- i, where p represents any pointer,
and i any integer value. Normally the pointer is declared to point to
an array of some data type. When the pointer is stepped by one, it is
really made to po>int to the next item in the array. If it is an array
of integers, waich might be four bytes in size, the real operation
might be incrementing an address by four. When taking the difference
of twc pointers, they must point to the same data type. If the
inteqger differenz: 1is added to the second pointer, then the first
pointer would be the result. Note that there is no check that you run
off the end of the array in either direction, although in principle
that check might be possible with dope vector style information.

12 ' A COMPARISON OF LANGUAGE C AND PASCAL
2.5. DATA CONVER5IONS

Essentially all ccnversions from one type to another in Pascal
are done with explicit functions, except for conversion from integer
to real. This contrasts dramatically with C, where all non-complex
data types are freely converted from one to another, except for
pointers. C is rather 1like PL/I in its freedom of conversions,
although the basic types are all essentially arithmetic in nature.
Aside frcm such conversiocns, which tend to go from smaller to larger,
and from integer to floating, when mixed, C also does referencing and
dereferencing in a manner rather like ALGOL 68. This may be illus-
trated by two examples. If an array is written as an argument to a
functicn, since arrays are not passed as arquments, C assumes you
meant to pass a pointer to the array (which is legal) and generates
the pointer for you. Similarly if a pointer B is declared to point to
an array, since sabscripting of pointers is meaningless, you may write
B[{5], and the compiler assumes that you wanted to follow the pointer
to the array ani access its 5th component. Both of these constructs
would be illegai in Pascal.

3. FUNCTICNS AND PROCEDURES

The distinction between functions and procedures is that the
latter does not cteturn a value. Pascal has both forms of subroutines,
and C only has functicns. Since C allows statements to be simply
function calls, ind then ignores any value returned since the call is
not part of a 1lirger exgression, there is no important 1loss of capa-
bility in C by having nc procedures.

C only alloss basic types and pointers to be passed as arguments
(no arrays or structures). Pointers may be passed which point to
anything. There is a similar restriction on values returned. The
arquments are always passed by value, i.e. their value is always
copied to the stack, as if the parameter variables are simply local
variables cf the called program. In fact, the values may be changed in
these parameter variables without affecting the original variable. 1In
order for a function tc be able to modify something that the caller
passes to it, th2 pointer to that thing must be passed as an argqument,
and of course the function should declare the parameter as a pointer
to the arpropriate type.

In Pascal, :he conventions are more like that of PL/I, i.e. there
is a distinction between functions and procedures, and there is a
distinction between arguments passed by reference or by value. Parame-
ters explicitly declared VAR must be variables on the «calling side,
and can have their value modified by the function or procedure called.
Parameters not daclared VAR can be any any expression, whose value is
copied when passzd to the function or procedure. Pascal can pass any
data type to a <function or procedure, and can return any type except

A COMPARISCN OF LANGUAGEF C AND PASCAL 13

functicn and proz:dure names.

Pascal and C differ considerably in the strictness of their type
checking fcr fun-tions and procedures. In essence, Pascal will strict-
ly check at compile time the correspondence of argument and parameter,
and the value returned with the declared type to be returned.
Although ycu deciare pararmeter types in C, since it 1is necessary for
the use of thos2 parameter values within the function, no check is
made against those lefinitions when compiling calls. There is no check
to see that the tunction is returning the correct type either. Thus it
is both easy to make mistakes, and easy to "cheat" deliberately, to
get machine dependent effects (treating a pointer as an integer, for
example) . In tae UNIX system, although the C compiler does not do
these sorts of checks, there is a program called LINT which will do
so, when given 1 series of files of C programs that are intended to
run together.

C functions are rnmuch more flexible than Pascal functions or
procedures in one sense. It is possible to define any variable as
having a data type with one of its dimensions (of array) as unknown in
size. An examples is a character array of indefinite length. It is the
program's responsibility +o not go beyond the actual lenqgth of +the
array, and since there is no dope vector information, the program must
have scme way oir determining the actual length. For character strings,
the usuval convention in UNIX is to end the string with a null charac-
ter (hex C). Aunother <ccnvention might be to pass the length as a
separate arqument. Pascal has a much stricter control over its
arquments and r2turned values, as mentioned above. In effect, it is
not possible to pass twc different size arrays to a routine, and have
it adjust to tn2 size. As a result of this strictness, there are
efforts to exteud Pascal to allow this. One possibility is to add
appropriate dope vector information for arrays, as is done for PL/I.

4. INPUT,OUTPUT

Input/output is not specified as a part of the C language, since
the designers ielt that it was not appropriate. As a result,
input/output is done bty 1libraries of subroutines. In UNIX these
routines are written in C, which is coded in machine dependent ways if
necessary.

Files are a data type in Pascal, but many of the usual operations
valid for any otier data type are not valid for files. Instead, file
operations are done Lty tuilt-in functions (whose argument vrtules
violate the type <checking restrictions imposed on user written rout-
ines). Any partacular file can be viewed as a sequential file, a kind
of array which cin be processed only from front toc back, with a window
locking at corly ocrne corpcrent of the erray et a time. The wirdow is
essentially a pointer tc a buffer for the file. Llthough there are
manry cases of 1aput/output where this suffices, it 1is not general
enough for all types ot files, e.g. variable lengtt record files or

14 A COMPARISON OF LANGUAGE C AND PASCAL

random access files.

5. EVATIUATION OF THE LANGUAGES

The two iingqguages are evaluated from several viewpoints in
following subsections, and the conclusion section has a brief summary
of significant differences or tradeoffs taken by the two languages.

5.1. LANGUAGE SizE AND EASE CF CCMPILATION

It is clear that C is a 1larger language, mostly because it has
more simple data types, and more operators on them, and more automatic
conversions between them. Both lanqguages were desigred to be simple to
conmpile. FPascal compilers often are based upon methods of compilaticn
designed tc make the ccmpiler easily portable. Many compile to an
intermediate lanjuage usually called P-code, which may then be inter-
preted, compilei into machine code, or perhaps processed a macro
assembler. P-cole is not necessarily the best intermediate language
for all machines. C cormpilers normally generate machine code. Some C
compilers have b2en designed to be portable.

5.2. LIBRARIES

Since it is easy tc combine programs from several sources into a
single file in 2, and 1in Pascal it may be necessary to split arpart
such programs to combine them with others, C is clearly supericr to
Pascal on this point. However, since C has no nesting of functions,
and insists that all function names are external, there can be some
name clashes, waich can cause difficulties. An extension of Pascal
could be made tnit retains its type checking, but allows both nesting
of functicns and a C-like freedom of ordering of items. Such an
extension would probably require giving up the ability to compile
Pascal in cre pass.

The C prepr>cessor has the ability to include source files within
a program teing compiled. Pascal does not have this capability. The
preprocesscr also supplies a simple macro and abbreviation facility.

A COMPARISCN OF LANGUAGE C ANL PASCAL 15
S.3. STRUCTURED kR OGRAMFING

For structured prcgramming, the languages can be compared on
several roints. One is the library issue already mentioned.

In comparison of statement types, Pascal is ahead of C for the
case statement, since it allows a cleaner way of stating alternate
cases. However, Pascal reeds a default statement in its CASE.

It is «cleac that the lack of nesting of functions in C 1is a
problem, and that Pascal is superior in this area. However, Pascal
does not have any blocks other than whole functions or procedures,
whereas C allows any grouping statement to be a block with its cwn
local variables. Thus variables used only within a limited area could
be declared in that area, and would exist (on the stack) only when
that area is being executed.

It is clear that the type definition facility of Pascal and C are
very useful features fcr hiding details (encapsulation) of new data
types as needed. With the C define facility, it is also possible to
define macros to encafpsulate sequences of code that are generated
in-line. In Pascil this can only be done by subroutine calls. 1In C,
for example, we may define an in-line MAX operation by:

#define max(a, B) ((2) > (B) ? (A) : (B))

Then tle line:
qg = max(m-1,20) * 7J;
would expand as:
g = ((m=1 > (20) 2 (m-1) : (20)) * j;

Although th2 macro facility is useful, it is not a substitute for
the ability to iefine new operators, such as 1is available 1in more
recent lanquages like C1lU.

S5.4. EASE CF LEANING

It seems clear that on many counts, Pascal is much easier tc
learn. C has many more tricky points, and as in APL or PL/I, almost
any expression ias a meaning. Pascal will catch you on “strange"
combinations of operaticns. Also the order of declarations is obscure
in C, compared with Pascal, as the following illustration shows.

INT * * (% QQSV()) [] s

€ 514 2 1 3

QQ0SV is the variable, and the numbers shown below the C declaration
illustrate the order of declaration. QQSV is a (1) function returning
a (2) pointer that points to (3) an array of indefinite size whose
compcnents are (4+) pointers to (5) pointers to (6) integers. In Pascal
the order is 1liie that c¢f FL/I, from variable name to type, from
structure to component cf structure, from pointer to thing pointed to,
all from left to right. The only thing that can be said for C is that
the declaration order tends to be written in the same pattern as when
writing exrressions to access the variable. E.g. ¥ (¥%QQ0SV(X))[390)]
would end up witu an integer. This ability to build up many operators
in a <single statement, which can have several assignments, has the
same lack of clarity as APL "one-liners™".

16 A COMPARISON OF LANGUAGE C AND PASCAL

The Pascal equivalent of the above function declaration would be:

FUNCTION QQ3V (P: INT): @ ARRAY[O0..40] OF @ @ INTEGER;

BEGIN

function body

END;
The Pascal expression equivalent to the C expression is:
QOSV(X)a[30J@d (Note we have used "@" instead of the Pascal up-arrow.)
The order of acs:ss is left to right, which is also the order of
declaration. The conclusion is that Pascal is clearer both for
declaration and asage ir this language area.

5.5. SYISTEM FROGKAMMING

It is clear that C was designed for system programming, and its
data types reflect the machine it matured on, the PDP-11. With a few
hardware dependencies, gotten mostly by what Pascal would consider
type violations, C can be used for almost all system programming
situations. It his no provisions for execution of privileged instruc-
tions, which must be written in another language.

Pascal was not designed for system programming, but it has been
extended or modiiied tc fprovide such languages as Concurrent Pascal,
and MODUILA, which are more suitable for system programming. They do
not allow you to get as close to the machine as C, and are extensions
in the direction of parallel processes, multitasking, etc.

C was explicitly designed to not address the problem of multi-
tasking, parallei progranmming, fprocess synchronization, etc. These
things are carrizd out by functions called by the programs. This makes
the C programs simpler, although some overall assumptions about the
nature of tasks in UNIX, and also about how stacks are implemented,
have combined to make this a reasonable choice. This approach has
allowed all except about 10C0 lines of code of UNIX to be written in
C.

Pascal is often translated +to an intermediate language <called
P-code, which is the rather limited instruction set of a hypothetical
stack oriented wmachine, which is +then interpreted, or compiled into
some real machin2 instruction set. There is no reason in principle why
Pascal cannot bz <compiled efficiently, which is one necessity for
system programmuag. For example, a set should not take up more room
than needed, but uswally most compilers do not try to optimize such a
thing.

The main rastricticns on Pascal, compared with C, for system
programming, are the lack of external and static variables. Also it
would help to be able to pcint to other than "based" (heap) storage.
Pascal can pass function and procedure names as parameters, but cannot
store pointers t> functions in variables. C (and PL/I, for example)
can do this. Tnis facility allcws one program to dynamically 1load
anothexr, or stote which function is associated with some resource
without having to compile those functions together. The ability to
have dynamically specified dimensions for arrays is also necessary. It
would te very us2ful for structured programnming to relax the order of
declarations of items, e.g. intermixing constants, variables, and

A COMPARISCN OF LANGUAGE C AND PASCAL 17

types. It would still be reasonable to insist that an item must be
declared before ise.

It is not czartain that Pascal can reasonably take advantage cf a
machine that has several precisicns of arithmetic. There is some hope
for integers, since one can declare an integer to have a subrange, and
if it can be declared tc have a value in the range -127..127, the
compiler conceivably cculd allocate the integer in an 8-bit byte.
However, there does not <seem to be a way of wusing two floating pcint
hardware precisions in the current language, and it may pay to extend
it to allow declaration of two precisions of floating point. It is
very useful to anave separate compilations of Pascal, which do not
require later 1inking that make the modules appear as if they were
compiled tcgether. It is clear that the pointer arithmetic of C is
useful and powerful. It is a potential <candidate for Pascal exten-
sions.

5.6. APPLICATION PROGRAMMING

The fact thit C has been used for many applications in the UNIX
system shows that it can be a good language for this purpose. Part of
this facility for programming comes from the UNIX system itself, and
perhaps much more from the fact that libraries can be separately
developed (such as for input/output), and then shared among users.
Pascal does not provide this in most implementations.

By contrast, Pascal is probably easier to use due to its cleaner
lanquage design, as long as its restrictions (lack of dynamic arrays,
for example) do 20t get in the way. It certainly seems to be a more
readable lanquag> and therefore is a better candidate for application
programming, wita some rinor extensions.

6. LANGUAGE CHANGES

In this section will be summarized the language changes that are
recommended for 2ascal. It 1is felt that in the long run Pascal has a
wider audience, and a bigger potential for wuse in a wide range of
areas. This is pecause C has several liabilities that indicate it has
already grcwn about as far as it can go. The C 1liabilities are: (1)
expression syntaix that is too complex, when taking into account
implicit referensing and dereferencing and conversions, (2) a defec-
- tive case (SWITCh) statement, and (3) many ways of escaping the type
checking mechanisms such that unsuspected mismatches might not be
easily detected. (4) It 1is all too easy to make mistakes in writing
operators, and 2nd up with a different operator. For example, a
common bug in C is writing IF (A = 1) ... when it is intended to
compare A with 1. But "=" is assignment, and "==" is comparison for

18 A COMPARISON OF LANGUAGE C AND PASCAL

equality. This aistake is not caught by the compiler since assignment
is an expression and the statement is therefore legal. The value of A
in the example would ke tested for O value, and since it would be
non-zero, it would be ccnsidered true. This sort of deficiency cannot
be corrected without making drastic incompatible changes to C. By
contrast, extensions tc Fascal could be upwards compatible with the
standard Pascal.

The extensions recommended for Rascal include (1) external
variables and s:zparate ccmpilation of functions and procedures, (2)
the additicns of blocks with their own static or local variables, (3)
STATIC storage types, (4) the ability to point to more types of
storage, (S) the ability +to store function and procedure names in
variables, (6) "dynamic arrays" in the sense that their size need not
be known by a fuuction cr procedure until the array is passed to it as
an argument, (71 = declaration of initialization of variables, (8) a
default case for the CASE statement, and grouping of <cases by
subrange, (9) a method cf specifying precision of floating and integer
variables such taat various precisions of real hardware can be easily
taken advantage of, (10) the ability to declare things in a more
flexible «crder, so that functions written elsewhere or on 1library
files can be 1i1cluded more easily, (11) the means of ending the
current loop itecration cr leaving the loop without having to reach the
bottom of the statement, (12) making the order of evaluation of
operands for AND and OR explicit, and (13) possibly some pointer
arithmetic somewaat along the lines of C, although with the ability to
check range violations at run tinme.

Besides the above langquage extensions, I would want the compiler
to generate reasonably efficient code, and with the option of omitting
run time cltecking for certain things, in order to do a minor amount of
system or machine dependent operating system coding. It would be
necessary to genzrate code that would be reentrant, if that is possi-
ble for the target machine, and to have the ability to have multiple
modules and multiple prcgram stacks (one per task) in handling multi-
ple tasks. Unfortunately scme Pascal run time support facilities grab
all of free storige for their stack and heap storage.

Several extansions and modifications to Pascal exist such and
MODULA and Concurrent Pascal. Some data abstraction languages such as
CLU or EUCLID nave been influenced by Pascal. ADA (7), the newly
proposed DOD stapdard, was influenced by Pascal and its descendants,
and contains aiiL of the improvements to Pascal that were suggested
above. ADA is a 1larger lanquage than C or Pascal, to Jjudicious
extensions to Pascal seem still worthwhile. It is perhaps too soon in
the develogment of ADA to consider a subset of that language instead
of an extension to Pascal.

A COMPARISCN OF LANGUAGE C ANL PASCAL 19

7. CONCLUSIONS

We can sumaarize the differences between the two lanquages as
follows: Pascal has fewer basic data types, and checks them more
strictly. Fascai sets are better than C bit fields. Pascal does better
type checking, aud as a result in C you can "cheat" nmore easily, or
make inadvertent and undetected mistakes. For overall program struc-
ture, C is more convenient and flexible, except that it does not allow
nesting of functions, and insists on making them all external. C is
superior in pointer arithmetic, has more conversions, but because it
does it implicitiy in many circumstances, subtle mistakes can remain
undetected for a long time. Pascal 1is safer in this regard. Pascal's
structured statements are less general, but also safer. C has more
storage types, some of which are necessary for certain types of
programming.

In summary, Pascal is cleaner and easier to use without making
subtle mistakes, but is smaller and more restrictive. For the languag-
es as they currently exist, C has more power and is better for system
programming and possibly fcr general purpose programming. But with
extension of relatively simple sorts, Pascal would be better and
cleaner for most purposes. I would recommend that Pascal extensions be
made rather than using a standard C, mostly for subsequent maintaina-
bility and readasility cf programs.

8. BIBLICGRAPHY

Scme information fcr this report was derived from an ACM Profes-
sional Developmesat Seminar, "C vs. Pascal", taught by P. J. Plauger,
Washinqton, L. C., Decembker 8, 1978.

8.1. C LANGUAGE & EFERENCES

(1) Brian W. Kernighan and Dennis M. Ritchie, "The C Programming
Lanquage", Prentice-Hall, 1978.

(2) D. M. Ritchie, et al., "The C Programming Language", Bell Systenm
Technical Journal, Vol. 57, No. 6, Part 2, July-August 1978.

(3) S. C. Johnson and L. M. Ritchie, "Portability of C Programs and
the UNIX System", PBell System Technical Journal, Vol. 57, No. 6,
Part 2, July-Rugust 1978.

20 A COMPARISON OF LANGUAGE C AND PARSCAL
8.2. PASCAL REFERENCES

(4) Kathleen Jensen and Niklaus Wirth, "Pascal User Manual and
Report", 2nd Editior, Sgringer-Verlag, 1974.

(5) Kenneth Bowles, "Microcomputer Problem Solving Using Pascal",
Springer-Verliag, 1977.

(6) "The BSI/IS) Working Draft of Standard Pascal", Pascal News,
January 1979. Also “"Toward a Pascal Standard", Bruce W. Ravenel,
Computer, April 197¢.

8.3. OTHER REFERENCES

(7) "Preliminary ADA Reference Manual", SIGPLAN Notices, Vol. 14, No.
6, June 1979, Part A. '"Rationale for the Design of the ADA
Programming Language", J. D. Ichbiah, et al., SIGPLAN Notices,
Vol. 14, No. 6, June 1979, Part B.

SCIENTIFIC CENTER REPORT INDEXING INFORMATION

1. AUTHOR(S) : 9. SUBJECT INDEX TERMS
Springer, Allen
pringer, Language C
2. TITLE : Pascal

A Comparison of Language C and Pascal Programming Languages

3. ORIGINATING DEPARTMENT

Cambridge Scientific Center 21 - Programming

4. REPORT NUMBER

G320-2128

5a. NUMBER OF PAGES 5b. NUMBER OF REFERENCES
20 7

6a. DATE COMPLETED 6b. DATE OF INITIAL PRINTING | 6c. DATE OF LAST PRINTING
06/28/79 August 1979

7. ABSTRACT :

This report is a comparison of Language C and Pascal from several aspects,
including history, language features, suitability for system programming,
suitability for structured programming, and implementability.

8. REMARKS :

1977 1BM CAMBRIDGE SCIENTIFIC CENTER
OUTSIDE PUBLICATIONS

A. P. DEMPSTER, M. SCHATZOFF, N. WERMUTH,
Simulation Study of Alternatives to Ordinary Least
Squares, Journal of the American Statistical Association,
March 1977, Vol. 72, No. 357, 77-106

Y. BARD, The Modelling of Some Scheduling Strategies
for an Interactive Computer System, in: Computer
Performance, North Holland Publishing Co., 1977,
113-137

1978 I1BM CAMBRIDGE SCIENTIFIC CENTER
OUTSIDE PUBLICATIONS

Y. BARD, M. SCHATZOFF, Statistical Methods in
Computer Performance Analysis, in: Current Trends in
Programming Methodology, Vol. [ll, Software
Modelling, Prentice-Hall, Inc., 1978, 1-51

Y. BARD, The VM/370 Performance Predictor in
Computing Surveys, Vol. 10, No. 3, September 1978,
333-342

Y. BARD, An Analytic Model of the VM/370 System in
IBM Journal of Research and Development, Vol. 22, No.
5, September 1978, 498-508

Y. BARD, Design of an Integrated Measurement
Facility, SEAS Proceedings, Spring Technical Meeting,
Berne, Switzerland, April 3-7, 1978, 243-252

N. ROCHESTER, F. C. BEQUAERT, E. M. SHARP, The
Chord Keyboard, Computer, Vol. 11, No. 12, 1978,
57-63

A SPRINGER, L. LAZZERI, L. LENZINI, The Imple-
mentation of RPCNET on a Minicomputer, Computer
Communication Review, Association for Computing
Machinery, Vol. 8, No. 1, 1978

1979 IBM CAMBRIDGE SCIENTIFIC CENTER
OUTSIDE PUBLICATIONS

L. SEAWRIGHT, A Perspective on Virtual Machines,
Virtual Machine Workshop Proceedings, Gesellschaft fiir
Informatik e.v., Munich, West Germany, March 15-16,
1979

L. H. SEAWRIGHT, R. A. MacKINNON, VM/370 — A
Study of Multiplicity and Usefulness, IBM Systems
Journal, Vol. 18, No. 1, 1979, 4-17

1979 IBM CAMBRIDGE SCIENTIFIC CENTER
OUTSIDE PUBLICATIONS

R. A. MacKINNON, The Changing Virtual Machine
Environment: Interfaces to Real Hardware, Virtual
Hardware, and Other Virtual Machines, IBM Systems
Journal, Vol. 18, No. 1, 1979, 18-46

L. H. HOLLEY, R. P. PARMELEE, C. A. SALISBURY,
D. N. SAUL, VM/370 Asymetric Multiprocessing, |1BM
Systems Journal, Vol. 18, No. 1, 1979, 47-70

LT

S

