

AS/400
C Language
Introduction

Document Number GG24-3434

NOV 1989

International Technical Support Center
Rochester Minnesota

First Edition (Nov 1989)

This edition applies to Release 2.0 of the 572S-CX1 C - Language Compiler for use with the OS/400.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM program
product in this document is not intended to state or imply that only IBM's program product may be
used. Any functionally equivalent program may be used instead.

The information contained in this document has not been submitted to any formal rBM test and
is distributed on an 'As Is' basis without any warranty either express or implied. The use of
this information or the implementrltion of any of these techniques is a customer responsibility
and depends on the customer's ability to evaluate and integrate them into the customer's
operational environment. While each item may have been reviewed by IBM for accuracy in i::l

specific situation, there is no guarantee that the same or similar results wifl be obtained
elsewhere. Customers attempting to adapt these techniques to their own environments do so
at their own risk.

Publications are not stocked at the address given below. Requests for IBM pubiications should be
made to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If the form has been
removed, comments may be addressed to:

IBM Corporation, International Technical Support Center
Dept. 977, Building 003
Rochester, MN 55901 USA

IBM may use or distribute whatever information you supply in any way it believes appropriate without
incurring any obligation to you.

Application System/400, AS/400, Operating System/2, Operating System/400, OSI2, OS/400 RPG/400,
COBOU400, C/400, SQU400, SAA, and S-A-A are trademarks of the International Business Machines

·Corporation.

IBM, Personal Systeml2, and PS/2 are registered trademarks of the International Business Machines
Corporation.

© Copyright 19S9

Abstract

This document describes some functions of the AS/4001

IBM C Language Compiler 5728-CX1. It provides information on the product
announced in late 1989 which will have controlled availability in early 1990. The
information for this book has been obtained by working with the pre-release
product in the Toronto Lab. In addition much of the information was obtained by
talking with the planning and development group for this product. Because of
the timing of the research for this book it mayor may not be a true indication of
the final product when it is released at general availability time. Some
information will become obsolete as later releases of the product become
available.

This document is intended to provide introductory planning information for
persons considering the IBM C Compiler on the AS/400. It is intended to help in
the evaluation of the use of the AS/400 C Compiler and run time environment.
There are many cases where a comparison is made to a similar function on the
AS/400 done with another language such as RPG III or COBOL. There are many
coding examples to show how some functions are done in C. If the reader is
knowledgeable with another language then he can compare the coding effort in
C with the other language.

A detailed knowledge of C is NOT necessary to understand this document.
However introductory knowledge of both C and the AS/400 will help with some
of the terminology and concepts.

All of the coding examples have been compiled and run on an AS/400.
However since the testing was performed on a pre-release system there is no
guarantee that the final compiler available to the user will perform tlxactly as
our test system did.

C/400 (128 pages)

1 Application System/400 and AS/400 are trademarks of International Business Machines Corporation.

Abstract iii

Iv AS/400 C

Acknowledgments

The advisor for this project was:

Lamont Baker
International Technical Support Center, Rochester

This publication is the result of a residency conducted at the Toronto
Languages Lab in June-July of 1989. Thanks are due to the three residents who
worked on this project:

Klaus Subtil - IBM Germany
David Choi - IBM Hong Kong
Sandria Rosin - IBM Canada

Thanks to the following groups for the invaluable advice and guidance provided
in the production of this document:

• The Toronto Languages C Development group for time and patience in
explaining many of the concepts that are new to an AS/400 person. Thanks
are also due to this group for providing a working environment which
allowed the residents to write and test programs in C/400 in addition to
facilities to document this book.

• The writers who are working on the C/400 reference manuals for providing
early copies of reference guides.

• The Application Testing group for assistance in some of the earlier coding
exercises.

• The Performance Group for ideas in areas that need further investigation
and explanation.

• The Business Partners group for early feedback and expected acceptance
of the C/400 product in specific application areas.

Acknowledgments V

vi AS/400 C

Preface

This document is intended for persons requiring an introductory understanding
of the C language as used on the AS/400. This docul"':lent explains the various
levels of C available on the AS/400 and the implications of using basic ANSII C,
SAA2 Level 2 or other AS/400 extensions to C.

The purpose of this document is to show how functions are performed with
AS/400 C. It explains why the AS/400 needs a special environment to run C
language programs. It explains how C language functions are combined to
create an application environment. This document gives examples of standard
ANSII C functions or AS/400 extensions. For example, there are coding
examples of data base access using standard C function calls and further
examples using the AS/400 SQL extensions. Similarly there are examples using
standard C screen sessions and further extensions that use AS/400 DDS
described display files.

Through the use of examples the reader is able to compare the coding required
and output available with AS/400 C to the coding required and output available
·Nith other AS/400 languages.

If the reader is familiar with C on other platforms, then this document should
serve to show how some of the SAA and AS/400 extensions are used.

The document is organized as follows:

• "Introduction"

This chapter explains some of the strengths of the C language and the
various levels of use for C on the AS/400.

• "Application Development Considerations"

This chapter gives some application development considerations when
using C on the AS/400. It explains the character set differences that C will
require and some of the different environment considerations when using C.

• "AS/400 C Environment"

This chapter expands on the special environment required for the use of C.
It explains why this environment is needed and how it differs from that
needed for other programming languages.

• "Data Manipulation"

This chapter describes the differences between the data handling with C
and other high-level languages on the AS/400. It shows how to have a C
program interface to the standard DDS screen files and database files on
the AS/400 as well as the use of SQL from C.

• "Display File Processing"

This chapter shows how the AS/400 program interfaces with a display file
and explains the requirement for a generic data stream handler program.

2 Systems Application Architecfilre and SAA are trademarks of International Business Machines Corporation

Preface vii

viii AS/400 C

• "Performance Conclusions and Considerations"

This chapter gives the results of preliminary testing comparing the C
language to some other AS/400 languages. It shows the difference in
performance to be expected in database operations and in simple numeric
situations. Also included are the source programs that were used to reach
these conclusions. Included in this chapter is a section which summarizes
the results from a construct analysis group in the language development
laboratory.

• "Sample C Programs"

This chapter has sample programs to show the use of AS/400 C for simple
functions or to explain the use of other standard AS/400 extensions.

Related Publications

The following publications are considered particularly suitable for a more
detailed discussion of some of the topics covered in this document.

Order
Number Title

SC09-1303 Languages: C/400 User's Guide
GC09-1304 IBM AS/400 Licensed Program Specifications: C/400
SC09-1308 SAA CPI C Reference - Level 2
SC09-1316 Application Performance Tuning Aid: User's Guide and Reference
SC21-9608 Structured Query Language/400 Reference
SC21-9609 AS/400 SQLl400 Programmer's Guide
SC21-9620 Programming: DDS Reference
SC21-9659 Programming: Data Base Guide
SC21-8079 Programming: Backup and Recovery Guide
GG24-3321 SQLl400 A Guide to Implementation
GG24-3354 ITSC Redbook: SAA Portability Guidelines
SC26-4348 SAA CPI Database Reference
SX09-1139 Languages: C/400 Reference Summary
GC09-1312 C/400 Runtime Library PRPQ Licensed Program Specifications

Related Publications ix

X AS/400 C

Contents

1. Introduction 1
1.1 What is C? 1
1.2 Strength of the C Language 2
1.3 Levels of C Language on AS/400 and Portability 3

2. Application Development Considerations 5
2.1 Character Set Required 5
2.2 How to Set Up PC 5250 Emulation for C Characters 5
2.3 Trigraphs 6
2.4 Source Conversion from Other Systems 6
2.5 Distinct Upper and Lower Case Names 7
2.6 Character vs Record Processing 7
2.7 Secured Pointer Usage .. 7
2.8 User-Defined Data Stream 7
2.9 Floating Point Implementation 8
2.10 Return Codes in C/400 Programs 8

3. AS/400 C Environment 11
3.1 Environment Introduction 11

External Variables 12
Multiple Entry Points 12

3.2 Extended Program Model 13
3.3 EPM Environment .. 13
3.4 Debug 16
3.5 Exception Handler 17
3.6 Session Manager 19
3.7 EPM Application Library 20
3.8 SETPGMINF 22
3.9 EXTPGMINF 22
3.10 Application Performance Tuning Aid 23
3.11 Location of C/400 Runtime Routines 24

4. Data Manipulation 25
4.1 Alignment of Data 25

A Method to Determine Record Length 25
Referencing Numeric Elements in Structures 26
Processing an AS/400 Externally Described File with C/400 27
Use of a Logical File to Map Fields 27

4.2 Stream Mode Data 30
4.3 Text Stream Mapping on AS/400 to Source File 30

Example of Writing Characters to a Text File 31
Specifying Record Length in a Text File
Text File and Binary File are the Same from AS/400 Viewpoint
Major Differences in Processing Text File and Binary File

4.4 Accessing an Externally Described File in a C/400 Program

33
33
33
33

Character String 33
Numeric Data 35
C/400 Program and Record Format of Externally D6scribed File 35
C/400 Files or AS/400 Externally Described File? 36

4.5 How to Use AS/400 Database Files in C 36
Using Existing AS/400 Data 41

Contents xi

xii AS/400 C

Usage of Logical Files for Data Type Overrides
4.6 Open Query File Usage
4.7 Commitment Control•......
4.8 Coding SQL - Considerations of Usage

C Host Variables for SQL
4.9 Using EXisting Data in SQU400 Tables

Static SQL in a C/400 Program
Using Dynamic SQL in C/400

42
43
44
46
46
47
49
50

5. Display File Processing 57
5.1 Usage of Indicators 57

Using Indicators with the INDARA Keyword in Display Files 58
Using Indicators as Data in a Display File Input/Output Buffer 59

5.2 Use of Conversion Routines 60
5.3 Print Key 61
5.4 Display File Handling in a C/400 Program 61

Display File and QXXFORMAT 61
Display File Without Using Indicator " 61
Display File Using Separate Indicator Area (INDARA) 61
Display File with Indicator as Data in Input/out Buffer 61

6. Performance Conclusions and Considerations 63
6.1 General Observations from Performance Comparison Programs 63
6.2 Performance Observations from Coding Analysis Tests 64
6.3 Test programs 66

List of Test Programs 66
6.4 Main Program 67

Display File of Main Program - TSCREEN 67
Database File Used by Main Program - FSCREEN 67
COBOL Main Program :.......... 67

6.5 TEST01 - C/400 Program to Write Record to File with fwrite 69
6.6 TEST02 - COBOL Program to Write Record to File 70

DDS for Database File FSAM11A 72
6.7 TEST03 - C/400 Program to Write Record to File with QXXFORMAT .. ·72

DDS for Database File FSAM11B 73
6.8 TEST04 - C/400 Program to Write Record to File with fwrite and Move

Fields .. 73
6.9 TEST05 - COBOL Program to Write Record to File and Move Fields 75
6.10 TEST06 - C/400 Program on Arithmetic Operation with Binary (Integer) 76
6.11 TEST07 - COBOL Program on Arithmetic Operation with Zone Decimal 77
6.12 TEST08 - C/400 Program on Arithmetic Operation with Floating Point . 78
6.13 TEST09 - COBOL Program on Arithmetic Operation with Bina'i 79
6.14 TEST10 - COBOL Program on Arithmetic Operation with Pack Decimal 80
6.15 TEST11 - C/400 Program call COBOL for Random Record Read 81

COBOL Program Called to Read File 83
6.16 TEST12 - C/400 Program with SQL for Random Record Read . 84
6.17 TEST13 - COBOL Program with Random Record Read 86

Database File Used in Program BIGF1L 88
6.18 TEST14 - COBOL Program with SQL for Random Record Read 88

TEST15 - C/400 Program with strncpy 90
6.19 TEST16 - C/400 Program with memcpy 91

Appendix A. Sample C Programs 93
A.1 Sample Programs 93
A.2 Example 1 - PGM01 (String Substitution) 93

A.3 Example 2 - PGM02 (Unsigned Packed Field to Signed Packed Field
Conversion) 97

A.4 Example 3 - PGM03 (Writing Records to Program-Described File with
C) ... 101

A.S Example 4 - PGM04 (Reading Records from a File by C) 104
A.6 Example S - PGMOS (Read Record from AS/400 Database File) 10S
A.7 Example 6 - PGM06 (Working with Database and Display File) 107
A.a Example 7 - PGM07 (Working with Printer File) 110
A.9 Example a - PGMOa (Working with Display File with INDARA) 113
A.10 Example 9 - PGM09 (Writing Records to a Database File with C) 116
A.11 Example 10 - PGM10 (Dynamic SQL under Commitment Control) .. 120

Index .. 129

Contents xiii

xiv AS/400 C

,r
\.."

1. Introduction

1.1 What is C?
The C language was developed in 1972 by Dennis Ritchie of Bell Labs to
function with the UNIX operating system. It was based on the earlier B
language written by Ken Thompson, also from Bell Labs. In the early 1980s
commercial implementations of C for personal computers became available. As
a result C became the most popular PC implementation language.

In 1983 the American National Standards Institute (ANSI) committee (X3J11) for
C was formed to standardize the language. This ANSI C Standard was finalized
in 1989. Coding according to the ANSI Standard will allow your C code to be
more easily portable across competitive vendor platforms. Aside from the ANSI
C standard, there is also a Systems Application Architecture (SAA) definition for
the C programming language. This SAA definition is based on the draft ANSI
Programming Language C (CX3J11/88-090), dated December 7, 1988.

The SAA definition includes a set of software interfaces, conventions and
protocols, and provides a framework for designing and developing applications
with cross-system consistency. SAA provides a framework across the following
IBM computing environments:

• TSO/E in the Enterprise Systems Architecture/370

• CMS in the VM/System Product or VM/Extended Architecture

• Operating System/400 (OS/4ooP

• Operating System/2 (OS/2)4
Extended Edition

• IMSIVS Data Communications in the Enterprise Systems Architecture/370

• CICS/MVS in the Enterprise Systems Architecture/370

Further information on the SAA standards can be foul1d in System Application
'Architecture, Common Programming Interface, C Reference - Level 2.

The C/400 programming language implements SAA Level 2 language on the
AS/400 system. It is ANSI C with SAA extensions. Options in the AS/400 C
compiler allow you to identify non-ANSI or non-SAA functions in a program.
This should facilitate the generation of code which is portable over multiple
environments. In addition, there are AS/400 extensions to C which would be
appropriate in environments where portability to other platforms is not a
consideration.

3 Operating System/400 and OS/400 are trademarks of International Business Machines Corporation

4 Operating System/2 and OS/2are trademarks of International Business Machines Corporation

1. Introduction 1

1.2 Strength of the C Language

2 AS/400 C

C is a low-level language which offers great flexibility. One of its greatest
strengths has been its portability. This is achieved in part by the way C
applications are generally written. A C program is usually composed of many
short C routines or functions combined together. Functions that depend on
hardware or operating system implementations are normally coded separately
and stored in a library to be called by the application programs. This isolates
the machine-dependent code from the application code. Standard routines for
110, string manipulation, calculations, etc. are normally included with a C
compiler and have standard function names. So the application merely calls
the appropriate function from the standard system library when needed.

Although C offers low-level control such as bit manipulation, as you would
expect from an assembler language, it also supports modern program
structures. These include statements such as If (then), While, For, Do, as well
as data structures and arrays. The data types supported are character, integer,
floating point (real) and pointers. C/400 will allow programmers to take
advantage of C's high-level control and data structures while still affording
some of the capabilities of assembler language programming.

Although C provides great flexibility and control, it should be noted that this
environment has few run time checks compared to the traditional RPG or
COBOL environment. For instance, the programmer is responsible for verifying
that data types are appropriate for a specified operation, and that end-of-string
characters are inserted and checked for in string processing. There are no
level checks when accessing database files, so the programmer must insur:e
that the structure defined within a C program maps correctly to the current
version of the database file. Precision in these areas is required or
programmer productivity and maintainability of code could be adversely
affected. In short, the C language is a powerful tool but is geared more for the
professional developer rather than the casual programmer.

The C/400 library includes many functions for input and output, mathematics,
exception handling, string and character manipulation, dynamic memory
management, and date and time manipulation. The library helps to maintain
program portability, since the machine-dependent detail" for the various
operations need not concern the programmer.

In addition, C programs can call high-level language (HLL) programs such as
RPG, COBOL and PUI; this is not usually supported on other systems. C
programs can be called from HLL programs as well. This allows you to code a
routine in the language most appropriate and call it from your application
program. Routines that might have been written in assembler language on
other machines, can be written in C on the AS/400.

C/400 should be of significant interest to customers \hIlO wish to convert
existing C language applications to the AS/400 system. Also, as mentioned
earlier, C can be used for routines that would have been written in assembler
language on other machines. Finally, the C/400 programming language should
be considered for accounts that have a requirement for portable application
development or a requirement to support IBM SAA environments and
AS/400-architected solutions.

1.3 Levels of C Language on AS/400 and Portability
The C/400 programming language is SAA Level 2; this is ANSI C with SAA
extensions. An example of an SAA extension is SQL support. Normal ANSI C
would use stream I/O and not be concerned with SQL. If you are developing an
application which will run on IBM and non-IBM platforms, you would want to
restrict your code to ANSI C in order to make it more easily portable. If,
however, you will be developing code for various IBM platforms, you could use
the SAA extensions and not limit your portability. Options in the AS/400 C
compiler allow you to identify non-ANSI or non-SAA functions in a program.

AS/400 EXTENDED C

SAA C

ANSI C

Figure 1-1: Levels of C on AS/400

The most current definition of SAA is level-2 and this is the level of
implementation of C on the AS/400. The SAA definitions are still evolving, and
some of the functions that we would like to see available in C/400 are not yet
defined in SAA (for example, keyed I/O and relative record number (RRN) data
base access). However, these functions are planned for a future release of
C/400.

In addition to the ANSI and SAA functions, there are AS/400 extensions to C
that can be used to take advantage of some of the capabilities unique to the
AS/400. For example an AS/400 C application may use the commit/rollback
functions of the AS/400. Using these extensions would enhance your
application on the AS/400, but naturally, inhibit the portability of the code.
There are also native AS/400 functions that are not available in the C/400
extensions such as support for zoned decimal and pa~ked data without
conversion to floating point or integer and using externally defined data and
display files without redefining the layout within the C program. However,
packed structures and externally defined display and data files are planned for
a future release. There is more information on accessing database files and
using display files in subsequent chapters of this document.

1. Introduction 3

4 AS/400 C

(
~.

2. Application Development Considerations

2.1 Character Set Required
The C language uses an extensive character set. In program development
mode the user may require access to characters which are either not on his
keyboard or are not displayable on his terminal.

These will include the 52 uppercase and lowercase letters of the
English alphabet:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
the 10 digits:
0123456789
and the following graphics:
!"#%&'{)*+,-./:;< = >?[\]-{}-

In addition, the bitwise exclusive OR in ASCII as 1\ or EBCDIC as -.
and the: or I
on some systems it may be desirable to have the Horizontal Tac
Vertical Tab, Form Feed, and End of String as keyable characters.

2.2 How to Set Up PC 5250 Emulation for C Characters
Neither the older 5250 Emulation Program nor its older 5250 Emulation Card
may be used for C since neither the keyboard nor the display can be modified
with this program.

If the IBM Personal Computer Enhanced Display Station Emulation Adapter
Card is used with the Enhanced 5250 Emulation Program then the keyboard
profile will have to be modified to include statements which allow keying the
hexadecimal values for the square brackets.

A real 5250 keyboard does not have square brackets 'lnd when using 5250
emulation a PC will have to emulate the use of the hex key followed by the hex
values for open and closed brackets. The following example shows the two
statements which must be added to the profile which is referred to by the
emulation program. For example they may be located in the KBPC.PRO file. In
the sample profile statements shown below the alternate key followed by the
square brackets on a PC keyboard are treated as the hex key followed by either
hex'ad' or hex'bd'.

def a-[= [hex]'ad'
def a-] = [hex]'bd'

In order to have the PC display square brackets the ASCII to EBCDIC
conversion table which is called by the de5250 program will have to be modified
in order to have the hex values 'ad' and 'bd' displayed as square brackets.
(Normal 5250 emulation would modify these values to some other displayable
characters.)

2. Application Development Considerations 5

2.3 Trigraphs

To modify this table us~ the config program and take the "select display
emulation options" from the advanced options menu. Then customize the
EBCDIC to ASCII table by keying 'ad' in the EBCDIC value and pressing Enter
then changing the ASCII value to '5b' and pressing Enter. Similarly map the
EBCDIC 'bd' to ASCII '5d'.

If Workstation Support is used with either a PC or PS/2 then similar changes
are required to allow the use of square brackets.

With Workstation Support the user must update the keyboard profile to map the
PC's square bracket keys to valid EBCDIC values and the user must update the
Session Profile to allow the EBCDIC to ASCII conversion to display these
characters. This can be done either directly with the CFGWSF program or under
menu control of the PC Organizer. The keyboard mapping with Workstation
Support allows the direct mapping of the PC square bracket keys to the
hexadecimal values required for square brackets.

There is an SAA extension available on the AS/400 which allows the C
Compiler to accept a combination of characters instead of some of the special
graphics. This will allow the C programmer to enter and create C programs
with a more standard character set. This may cause the source program to
become awkward to read but does allow any keyboard to be used to enter and
display a source C program.

An example of the coding required is to place ??(in any location that requires a
[and ??) to represent]. For a complete list of trigraphs see the SAA CPI C
Reference manual.

An example of a C statement coded with trigraphs on a terminal which does not
display square brackets and then on a terminal with the complete C character
set is:

printf("%s", *cp??(-1 ??»;
printf("%s", *cp[-1]);

2.4 Source Conversion from Other Systems

6 AS/400 C

When transferring a document from an ASCII-based system to either VM or the
AS/400 which uses EDCBIC it is very likely tliat the translation will not convert
all the graphics as required for the C Language. The user should check the
conversion table for these special characters.

Many displays including 5250s, and some 3270s do not display the C graphics
as they are required for use in source program coding. In some cases if the file
is viewed in update mode on these devices the special characters may be lost.

2.5 Distinct Upper and Lower Case Names
The C language treats uppercase and lowercase letters as distinct characters
when used for any names except external program names.

For example a C function call to "Squeeze" will NOT use the function "squeeze",
and a program reference to a variable "cnt36" will not interfere with the
variable "cnT36", but a call to the program "Vbar" will call the program "VBAR".

2.6 Character vs Record Processing
In many C implementations the I/O operations are character by character. The
AS/400 works on a record-by-record basis. This difference is sometimes
characterized as the amount of buffered data between the terminal display and
the program. Some of the symptoms of this difference may be in the lack of a
capability of program verification of data entry as each keystroke is entered.
The AS/400 will interact with the program on a full-screen or record-by-record
basis. In addition to terminal differences the treatment of stream mode data is
different. More is written about this difference under the stream mode data
heading in this book.

2.7 Secured Pointer Usage

2.8

The use of a pointer variable on the AS/400 is controlled by the hardware and
is slightly different from other C platforms. C/400 uses the 16-byte pointer that is
implemented by the AS/400 hardware. Pointer arithmetic with this
larger-than-normal variable works the same in C/400 as in any other C as long
as the system is aware that this variable is an address pointer. Normal
arithmetic on this pointer gives correct results. This includes pre- and
post-incrementing or shifting by factors of other variables. However if a
program attempts to do a direct move of some value into a pointer variable the
flag bits which indicate that this is a pointer variable are lost and the system
will not allow this variable to be used as a pointer. In other words if the
application had been set up to move a pointer's value to another variable for
some type of manipulation and then back to the pointer variable the hardware
will detect this and not allow its use as a pointer.

User-Defined Data Stream
The terminal I/O generated by an AS/400 program may come from the regular
ANSI C I/O routines, from an externally described display file, or from a
user-defined data stream. The first two are explained in more detail later in this
book. The following section explains where the user-defined data stream may
be required.

The AS/400 normally works with 5250 type devices and thus uses a 5250 data
stream. When writing any AS/400 program the expected data to be fed to the
workstation handler is this data stream. C/400 is no exception to this and will
generate 5250 data from the C output routines. For example printf will generate
a 5250 data stream. This will be true on an AS/400 for any type of device
actually connected to the system whether it is a 5250 device (local or remote), a
PC running emulation or APPC communications, or an ASCII device on the

2. Application Development Considerations 7

ASCII workstation controller. Some C applications on systems other than the
AS/400 have been set up to generate a "generic" data stream and then pass
this through a device-dependant routine before actual I/O. This technique
allows the development of a common application that may be ported across
different platforms. If an application written with this approach is to be ported to
an AS/400 the user would have to write the routines to take this "generic" data
stream and create a user-defined 5250 data stream.

2.9 Floating Point Implementation
The floating point implementation on the AS/400 and the PC uses the IEEE-488
format which is not the same as the C/370 implementation. The difference is in
the definition of the length of the exponent and mantissa and the method of
normalization of the value. It is possible to have different results on the AS/400
from those obtained from a S/370 C program.

2.10 Return Codes in C/400 Programs

8 AS/400 C

Almost all functions defined in C/400 libraries will return a code to the caller
after execution of the function. When a user defines a function in the program,
a return code can also be specified. The return code can be used to control the
flow of the program.

There can be many values returned from a function, and they can generally be
grouped into the following categories:

• Return code to indicate true or false condition

We can use a function to test whether a condition is true or false. For
example, we can test whether a character c is a number (0 to 9) by using
isdigit(c) function. If c is a number between 0 to 9, a positive number will be
returned; otherwise, a zero will be returned.

• Return code to indicate result of an operation

We can call a function to perform a certain operation. If the function
request is successful, one kind of value will be returned, if not, another kind
of value will be returned. For example, when fopen(} is used to open a file
for read, if the file open is successful, a file pointer will be returned to the
caller, but if the file open fails, a NULL pointer will be returned.

• Return data

A function call may return valid data. For example: We can use toupperO to
convert a character from lowercase to uppercase. The value returned from
toupperO is the uppercase of the original character.

• Where to find return code information?

A description of the return codes from C functions can be found in the SAA
publication Common Program Interface C Reference In the description of
the each function, there is a short paragraph describing the return code.

The following example uses the three type of return codes and values
previously discussed.

#include < signal.h >
#include < stdio.h >
#i ncl ude < errno.h >
#include < string.h >
#include < xxasio.h >
#include < xxfdbk.h >
#include < stdlib.h >

mainO
{
FILE *file1;
FILE *file2;
int i;
int j;
char c;
char s[10J;

1* ----- test true or false condition ------------- */

printf("Enter any character\n");
c = getcharO;
i = isdigit(c);
printf("Value of isdigit(c) is %d\n",i);

/* program to control flow based on return value */

if(isdiglt(c))
{
printf("Yes, c represent a number\n");
}
else
printf("No, c does not represent a number\n");

/* ----- use fopen for testing. file ZZZZ does not exist in system */
/* AAAA does exist in system */

printf("\n");
file1 = fopen("AAAA":w + H);
fclose(file1);
printf("Now open both file AAAA and ZZZZ for read.\nH

);

printf("Note that AAAA exist while ZZZZ does not exist.\n");
printf("\n");
file1 = fopen(" AAAA":r");
file2 = fopen("ZZZZ":r");
printf("Value of file1 on AAAA is %d\n",file1);
printf("Value of file2 on ZZZZ is %d\n",file2);
pri ntf("\n H);
fclose(fi le1);
fclose(fi le2);

J* ----- convert character ----------- */

printf("Now will use toupperO to covert z to upper case\n");

printf("Upper case of character z is %c\n",toupper('z'));
}

2. Application Development Considerations 9

10 AS/400 C

~
.J

3. AS/400 C Environment

3.1 Environment Introduction

I

All HLL programs run in some environment. The AS/400 environment you are
accustomed to with high level languages such as RPG and COBOL is defined
below the machine interface and includes the Process Access Group (PAG).
The PAG is a collection of storage areas containing information required for
your job to execute. The PAG can be paged in and out of memory with one
disk access rather than being written a page at a time. The PAG has separate
areas for control information, program variables, and open data paths for
database and display files. The actual executable code is stored outside of the
PAG. Everything that your program needs in order to execute is defined in the
PAG.

With languages such as C and Pascal, support is required for multiple entry
points as well as external variables. In RPG and COBOL programs there is
only one entry point; the name of the program is the name of the entry point.
However, with languages such as C and Pascal, the system needs to know the
name of the entry point and in what program the entry point can be found. In
addition to this, external data needs to be supported, and a debug facility that
can handle external as well as internal variables is required. This necessitates
a different type of program model and environment. The new program model
for multiple-entry-point languages like C and Pascal is called the Extended
Program Model (EPM) and is defined above the machine interface standard
program model. The EPM includes a run time environment which supports the
unique requirements of EPM languages like C and Pascal.

AS/400 C Run Time
Environment

~!-----I
OS/400

~---!-----------------------v--------------~
Machine Interface

Figure 3-1: AS/400 EPM Environment

3. AS/400 C Environment 11

External Variables
External variables are not supported in the standard AS'400 program model.
An external variable is one accessible to multiple programs. In contrast, a
local variable is visible only within a program and exists only as long as the
program is active. Variables in RPG and COBOL are local; each program
invocation causes a new set of the variables to be initialized. If you wish to
allow a second program to use your variables, they must be passed as
parameters on the program call or written to a data area of some type and read
by the called program.

External variables are available to multiple programs and exist from one
program invocation to another. In C you specify a variable as being external by
where it is defined. For example, in the following program, the integer (int)
variable "value1" would be external since it is specified outside of the body of
the C program or before the "main()" statement.

/* this is a C program example of external data *'
int value1;
mainO
{

/* program statements would be coded here *'
}

If the variable "value1" were specified after the statement "mainO" it would be a
local variable. It would only be visible within this program and only exist as
long as this program is active.

/* this is a C program example of internal data *'
mainO
{

int value1;
/* program statements would be coded here *J

}

External variables are defined and need to be supported across compilation
units (programs, subprograms or functions). Local variables are those which
exist only within a compilation unit. They m~st be scoptd (restricted) to a
compilation unit so that variables of the same name in different compilation
units can't destroy each other. For example, you could have two programs or
subprograms that both have a variable called x defined as a local variable.
These would be two distinct variables, each only visible within its own program.

Multiple Entry Points

12 AS/400 C

As mentioned earlier, C programs can have multiple entry points. If you call a
C program, the default entry point is the routine or function called main. To call
any other entry point, you must specify the name of the entry point you wish.
The following is an example of a C program with multiple entry points.

/* this is a C program with multiple entry points */
mainO
{

/* program statements for main function */
}
verifyO
{

/* program statements for verify function */
}
errorO
{

/* program statements for error function */
}

The entry points in the previous program are "main", "verify" and "error".
Another program could call anyone of these entry points or functions. When
you call the program by name you default to the entry point "main". You will
note that the program name is not in the actual code; this works the same as
RPG or COBOL where the compiled program name defaults to the name of the
source file member which is being compiled. The program name and library
name can, of course, be overridden on the CRTCPGM command. To display
which source file and member name was used to create a program, you can
use the DSPOBJD (Display Object Description) command and specify "display
service attributes".

3.2 Extended Program Model

3.3

The AS/400 program model for multiple entry point languages like C and Pascal
is the Extended Program Model (EPM). The EPM contains the following
component.;;:

• The environment

• The debugger

• The exception handler

• The session manager.

Each of these sections will be addressed separately, starting with the EPM
environment or the C run time environment.

EPM Environment
There are four major components of the EPM environment:

• Environment control block

• Automatic storage

• System heap

• User heap.

Each of these areas are separate allocations of memory. The environment
control block has pointers to the three other areas. The automatic storage, also
known as the user stack, contains the user variables. This is similar to the
PASA (program automatic storage area) in the standard program model. The

3. AS/400 C Environment 13

14 AS/400 C

system heap contains linkage information and run time storage as well as user
static and static external variables. The user heap is storage controlled by the
C program by using functions such as malloc (allocate memory), free, new, and
dispose. The following is a schematic of how these areas tie together.

WCB (work control block)

~-------------V-------------,
Environment Anchor

I
~--------------V-------------,

Environment Control Block

~------v--------~ V r-------v-------.
Automatic Storage

(User Stack)

User variables
(dynamic storage)

System Heap

Linkage info.
System run time

storage
COpy of liD

feedback area

User static
storage

Static external
storage

Figure 3-2: AS/400 EPM Environment Contents

User Heap

malloc
free
new
dispose

By default these areas are not included in the PAG, since the PAG has a size
limitation of 4 megabytes. The automatic storage and heap storage areas can
each approach 16 megabytes in size, and this would not be possible if they
were forced to be in the PAG. If the size restriction is not a problem, you can
choose to put these areas in the PAG via the PFROPT parameter of the
SETPGMINF command. You can also set the sizes of these areas via
SETPGMINF. The approximate minimum sizes for these areas are 16K for the
automatic storage and 32K each for the system and user heap. Once the size
of these areas is set either by default or SETPGMINF, they are not trimmed like
the PAG. If you do not put the EPM environment contents in the PAG, they will
be unaffected by the PURGE-*YES or PURGE-*NO setting; they will be demand
paged like any application code.

When you open database files in C, space is allocated in the system heap. This
is similar to the open data path created in the PAG for the standard program
model. The fopen routine allocates space in the system heap as well as a
pointer to the PAG. When you pass a file pointer in C, it points to the space in
the system heap. An interesting point to note here is that when you want
multiple C programs to share a file which has previously been opened, there is
no additional overhead. This is because you are passing a pointer rather than
doing an open. In the standard program model, a second shared file open
causes an abbreviated open which is less overhead than a full open, but still
requires cpu.

Figure 3-3:

System Working
Storage

OS/400, Cl, Pl/I
Variables

(PASA)

RPG, COBOL,
BASIC, PllI,

Program Variables

(PSSA)

Open

Data

Paths

Extensions
I
V

32K

32K

32K

Database files

Display files

Printer files

32K

Process Access Group (PAG) for Standard Program Model

Even if you do not include the C areas in the PAG, there will still be a PAG.
The PASA will contain some internal control routines, but the size of the PSSA
(program static storage area) will be zero. By using the Display Program
(DSPPGM) command you can see what the size of Yo..Jr C executable code is
(program size in bytes) as well as the size of the automatic storage in the PAG.
Note that this is not the same as the automatic storage area in the EPM model.
The automatic storage, system heap and user heap of the EPM are in addition
to the PAG and C executable code. Also, if your program has a terminal
session, there will be a separate area allocated in memory for the session
manager as well.

3. AS/400 C Environment 15

3.4 Debug

16 AS/400 C

PAG

System Working
Storage

I Work Control I I Block (WCB)

PASA
V

I
Internal Control

Environme nt Anchor Variables

I PSSA
V

I
Not Used

ontrol Block Size = 0 Environment C

I ~ -----------V--~------------~I
r--------V----------, r-------V------, V

Automatic Storage User Heap System Heap
(User Stack)

User variables
(dynamic storage)

linkage info.
System run time

storage
Copy of 110

feedback area

User static
storage

Static external
storage

Figure 3-4: PAG for Extended Program Model

malloc
free
new
dispose

EPM debug is a special debug facility for EPM programs. It sits on top of the
OS/400 debug. So if you issue the STRDBG command and call a C program,
EPM debug intercepts your request and automatically puts you into EPM debug
mode. The EPM debug functions quite differently from the OS/400 debug. In
OS/400 debug, you would enter debug mode, set your b,'eak points and then
call the program. For EPM debug you issue the STRDBG command and then
call your program. Then EPM debug stops to allow you to set the break points,
and you enter "go" to start or resume execution. You can key in "help" while in
EPM debug to see the list of commands available to you. Aside from that, there
is no other online EPM debug help available. However, Appendix A of the
CI400 User's Guide does explain each command in detail as well as any error
messages you might receive. When you have finished debugging your
program, you can exit the program or enter the EPM command "end" or "quit"
to end the EPM debug session. This will not end the OS/400 debug session,
however, so you must issue the ENDDBG command to back all the way out of
debug mode.

In order for the EPM debug to function, your program must be compiled with the
OPTION parameter *OEBUG. The default option is *NODEBUG on the
CRTCPGM command. If your program calls other programs, and you want to
debug each program, all of the program objects must be compiled with the
*DEBUG parameter specified. The SETPGMINF command also has a parameter

to set debug off or on; the default here is *ON. If you specify debug *OFF on the
5ETPGMINF command you will still be able to use 05/400 debug but oot EPM
debug. EPM language variable names and statement numbers are not
available under 05/400 debug alone.

Program
Source

Compile: CRTCPGM OPTION(*DEBUG)

V

Program
Object

Define th e environment: SETPGMINF DEBUG(*VES)
Start OS/ 400 Debug: STRDBG
Call your application: CAll program-name

V
EPM

Interactive
Debug Mode

Figure 3-5: Debugging a C/400 Application

If you are using SQl in your C program the CRTSQLC command is issued to dv

the SQL prp.-processing. This procedure in turn calls CRTCPGM, but does not
allow the input of any optional parameters such as *DEBUG. If you wish to use
debug in a C SQL 'program, you can either create your own CRTCPGM
command with *DEBUG as the default and put it in a library ahead of the QCC
library, or you can create your own CRTSQLC command. If you create your
own CRTSQLC command you must specify *NOGEN for the CRTSQLC and then
issue the CRTCPGM command using input from the physical file QSQLTEMP in
the library QTEMP witn a member name the Same as your program name.

Once you have successfully tested and debugged your C programs, it would be
a good idea to recompile them with the *NODEBUG option. This will result in
smaller program sizes which may be critical in tight performance situations. If
you can keep your program within a 64K segment size, branching within the
program will be much faster than if multiple segments are involved.

3.5 Exception Handler
The EPM environment issues exceptions if something is wrong. The way your
application would process these exceptions is dependent on the EPM
language(s) that are involved. In Pascal you use the ONERROR procedure. In
C you use the ANSI-defined signal handling mechanism. Both types of
exception handling work in the EPM environment.

Handling EPM exceptions with a signal handler is comparable to monitoring for
a message (MONMSG) in the standard program model. With MONMSG you

3. AS/400 C Environment 17

18 AS/400 C

specify the message number you want to check for and intercept. With
signal-handling you specify the name of the signal-handling routine or exception
handler you wish to get control for various types of exceptions.

If you do not code an exception handler, then the EPM default actions will be
taken when an exception occurs. The exception handling is based on the type
of message issued by the operating system: ESCAPE, NOTIFY, or STATUS.
ESCAPE will halt the program and issue an EPM diagnostic message, NOTIFY
will send the default reply to the sender of the message, and STATUS will issue
an EPM diagnostic message.

To handle the signals in your C program you would include the signal function
by coding the following statements:

#include < signal.h >

void(·signal (int sig, voidnunct) (int))) (int);

This function determines how an exception received in the sig argument is
treated. The value of sig can be one of the following:

• SIGABRT - Abnormal termination

• SIGFPE - Arithmetic error

• SIGILL - Illegal operation

• SIGINT - System interrupt

• SIGSEGV - Invalid storage address

• SIGTERM - Program termination request

• SIGUSR1· Reserved for user signal handler

• SIGUSR2 - Reserved for user signal handler.

You can specify a user-defined handler routine or a predefined handler on the
funct parameter. Initially all signal handlers are set to SIG_DFT which is the
default signal handler. If you set the signal handler to SIGJGN, that type of
signal will be ignored. Another handler, SIG_ERR is defined in < signal.h > and
it indicates that an error was returned from the signal function.

All C/400 routines in an environment share the same signal handlers. This
means that signals are scoped to the EPM environment boundary, and an
exception is externally visible at the environment boundary. However, the
signal handler does not have to be in the same environment; you can pass a
pointer to a signal handler which is in another EPM environment. Keep in mind
that when a signal handler is called, its corresponding signal action is set to
SIG_DFL. You must reset the signal action if you want to handle the same
signal again. If you don't do this, the default action will be taken on subsequent
exceptions. You can reset the signal action in the signal handler routine or
back in your application code.

When you are coding a user-defined signal handling routine, you can get more
information from the EPM exception handler by coding the sigdata function in
your routine. This function returns a pointer to a structure of type sigdataJ
This structure contains pointers to three other structures: exmsg_t (for
information about the exceptions), usrmsg (for issuing a diagnostic message to

the caller of the program), and sigact (for the default actions on entry to the
signal handler).

For those who have used the technique of removing observability of programs
to conserve disk space on the AS/400, be aware that you cannot remove
observability of C or Pascal programs. Observability is one of the three tables
required for exception handling at execution time in the EPM environment. If
you attempt to remove observability of a C program via the CHGPGM command
you will receive a message saying "cannot remove observable information".

Aside from EPM environment exceptions, you will need to handle errors that
occur when you are using EPM and C library functions. EPM library routines
issue exceptions, where C library functions only set a return code and
sometimes a value in the global Herrno". Consult the CI400 User's Guide for
information on what the error handling method should be for a specific library
routine or function. If "errno" is set, you can check to see if it is equal to
"EIOERROR" or "EIORECERR". If it is equal to one of these, a CPF exception
has occurred and you can check the global"_EXCPDATA" for more information.
There are only two values of "errno" that are defined in ANSI C. C/400 will
issue more than these two values, which is helpful, but since this is an AS/400
extension to C, it can be a factor in the portability of the code you generate.

3.6 Session Manager
Terminal input and output is managed by the terminal session manager. The
EPM languages share the session manager, and there is only one session
manager regardless of how many environments are active. The terminal
session manager supports the following:

• Scrolling backwards and forwards

• Command retrieval using F9

• EOF signaling using F13

• Extension of the input line with F21

• Output of characters below the hexadecimal character X'40'.

If you output characters below X' 40', they will be treated as 5250 terminal
control characters.

Input and output operations performed on a stream result in I/O operations to
the terminal when the standard C/400 files stdin, stdout and stderr are used. If
the job is not interactive and stdout and stderr are specified, the C/400 compiler
overrides the printer file to QSYSPRT and the information that would normally
be displayed is printed or spooled for printing. If stdin is specified and the job
is not interactive, the file QINLINE is used to retrieve the input data.

If the following program were run:

/* program to display on terminal */
#include < stdio.h >
mainO
{
printf("This will be displayed on the Terminal Session\n");
}

3. AS/400 C Environment 19

this is what would appear on the screen:

Start of Terminal Session.
This will be displayed on the Terminal Session
Press ENTER to End Terminal Session.

F3=End of File F9=Retrieve F21=Extend line

When our program finished, the session manager sent an implicit read to the
terminal. This was to ensure that the data we sent to the terminal remains on
the display rather than Hashing briefly and then disappearing. From this display
you can scroll through the terminal session. If this program had put out ten
screens of data, you could roll back and forth and view the ten screens of
information on the terminal. This information is stored in a separate area in
memory for the terminal session. The size allocated for this terminal session
can be specified on the SETPGMINF command by using the SSNA TTR (session
attributes) parameter. You can specify a session size between 8K and 16
megabytes; the default size is 32,000. Care should be taken to keep this size
reasonable so that performance is not adversely affected. You can also specify
a buffer size for the session between 80 and 255 bytes, with the default being
160. The session manager does hot clear the display buffers until your job
ends or you issue the command RCLRSC (Reclaim Resource).

3.7 EPM Application Library

20 AS/400 C

The EPM application library is a set of programs and routines which are
included with the AS/400 C compiler. They can be categorized as:

• ,nterface programs

• Conversion routines

• Data area access routines

• File interface routines.

The interface programs are provided for inter-language calls. You use the
QPXXCALL function to call an EPM language program from another program.
You can also use QPXXCALL to create a user- controlled environment between
EPM language programs. The QPXDLTE program is used to delete the user
controlled environment.

When a C program is called, the environment for the program is created. When
the C program finishes and returns to the calling program, the environment is
torn. down. This requires a certain amount of system resource. When you
would be calling the same C program or set of routines many times it may be
to your advantage to have these programs or routines in an environment that
would not be destroyed on every return. The way to do this is to create your
own user-controlled environment. A user-controlled environment exists until
you delete it or you sign off. One word of caution here is that the second time

you call a program in the user-controlled environment the variables are NOT
re-initialized; they are as you left them after the previous call.

Be aware that all the parameters used for the QPXXCALL program are fixed
length. The program name is 100 characters long and is case sensitive. So if
you want to call a C program from an RPG or COBOL program you would have
to declare a variable of 100 characters and move the program name or entry
point name into this variable. Since there are other parameters after the
program name, the QPXXCALL routine will be looking in position 101 for the
second parameter. All parameters will have to be defined for their full length
and initialized appropriately.

You would use the EPM conversion routines to convert packed or zoned
decimal numbers to other data types, or to convert other data types to zoned or
packed decimal numbers. The conversion routines include the following:

QXXDTOP - Floating point to packed decimal

QXXDTOZ - Double to zoned decimal

QXXITOP - Integer to packed decimal

QXXITOZ - Integer to zoned decimal

QXXPTOI - Packed decimal to integer

QXXPTOD - Packed decimal to double

QXXZTOD - Zoned decimal to double

QXXZTOI - Zoned decimal to integer.

The data area access routines are used to pass information to or from your
program. The two routines are QXXRTVDTAA (retrieve data area) and
QXXCHGDTAA (change data area). These routines are well documented in the
C/400 User's Guide.

The file interface routines provide a way to use some of the system functions.
Among these functions are the following:

• Commitment control

QXXCOMMIT - start commitment control

QXXROLLBCK - roll back changes

• Set record format name

QXXFORMAT

• Work with device files

QXXACQUIRE - acquire program device

QXXRELEASE - release program device

QXXPGMDEV - set default program device

• Set separate indicator area

QXXSINDARA

• Obtain feedback information

QXXIOFBK - obtain I/O feedback information

3. AS/400 C Environment 21

QXXOPNFBK - obtain open feedback information

QXXDEVATR - obtain device attributes feedback information.

The commitment control functions are self-explanatory. The set record format
name allows you to specify the record format name to be used for subsequent
I/O operations. The device file functions allow dynamic allocation and
de-allocation of devices. The set separate indicator area allows you to specify
that the indicators not be part of the I/O buffer, but be contained in a separate
area. The feedback information functions allow you to access feedback
information; the structure of the feedback areas is documented in the C/400
User's Guide.

3.8 SETPGMINF
The SETPGMINF command defines what is to be included in the application
environment, the memory sizes of the various components, whether the EPM
should be in the PAG, what the error threshold is, and if debug should be on or
off based on the parameters you supply.

On the ROOTPGM, SUBPGM, and LlBFILE parameters you identify the
programs, subprograms and linkage information required. ROOTPGM is an
EPM program that contains the information required to establish the application
environment. SUBPGM specifies a list of program objects that should be
included in the environment. LlBFILE is a library information file that is used to
resolve any outstanding external references, after all of the linkage information
supplied by the ROOTPGM and SUBPGM parameters has been processed.
PFROPT indicates whether the EPM environment should be included in the
PAG. Using the HEAPSIZE, STACKSIZE, AND SSNATTR parameters you can
specify an initial size for the system and user heap, automatic storage, and the
terminal session. With the parameter RUNATTR you can limit the number of
non-fatal errors that will be allowed before processing will be ended. Finally,
you can indicate whether you want EPM debug to be on or off when OS/400
debug is active. If you turn EPM debug off, you can still use OS/400 debug to
debug your programs, but EPM language variable names and statement
numbers are not available under OS/400 debug.

3.9 EXTPGMINF

22 AS/400 C

The Extract Program Information (EXTPGMINF) command extracts external
linkage information from the EPM programs identified on the PGM parameter.
External linkage information includes external variables and entry points that
are used by the SETPGMINF command at run time. External linkage
information can only be extracted from EPM programs. This linkage information
is stored in a library information file. This command allows you to create a file
to store names of affected entry points, instead of specifying each program
name on the SUBPGM parameter of the SETPGMINF command. This will be
especially useful with large complex applications.

When EXTPGMINF is used, a date/time stamp is included with the data that is
written to the library information file. When this library file information is
subsequently used, the date/time stamp is compared to the date/time stamp of
the program containing the entry point(s). If the date/time stamps are different,

the program has been changed since the EXTPGMINF was done, and the
extract needs be re-done to update the library information file.

3.10 Application Performance Tuning Aid
The Application Performance Tuning Aid (APTA) is a system utility that allows
you to take multiple EPM programs and subprograms and bind them together
into one single program object. This utility is not included with the C compiler,
but is available separately as a PRPQ (Program Request Price Quotation). Any
EPM programs can be bound; this includes Pascal as well as C. Binding on the
AS/400 is the process of combining two or more program objects that make
frequent external calls to each other. This may improve the performance of
your application, depending on what you choose to bind together and in what
sequence.

In order to bind a C program, it must have been compiled with the option
GENOPT("ALWBIND) specified on the CRTCPGM command. When combining a
number of programs, you cannot bind more than one that has a default entry
point. In C this would be a program with a procedure called HmainH You
cannot bind programs which contain SQL statements, and you cannot bind C
library functions into your programs.

Normally, the programs that will perform better when bound are the ones that
are used together frequently. At program run time, each call to a separately
compiled program causes an external call sequence to be generated. External
calls are expensive because they require a great deal of system overhead.
When a set of programs is bound together, any external references that are
made between those programs are resolved, and any external calls between
them become internal calls in the bound program.

To help you determine which programs are candidates to be bound together,
you can use the Trace Job (TRCJOB) function of the AS/400. Since TRCJOB
can produce a listing of the calls your application makes, you can use this to
determine which programs call each other repeatedly. Once you have made a
selection of candidates to be bound, it would be a good idea to check the size
of the programs using the DSPPGM command to determine if your bound
program will exceed the 64K segment size. If you exceed this size your
program will be stored as multiple segments, and branching between segments
is more costly than branching within a segment. A bound program that is too
large may not perform any better than the unbound individual program objects.

At this time there is no system aid that recommends what to bind together or in
what sequence the programs should be bound. Keep in mind that if two
programs call each other frequently they should be bound next to each other,
not with a third program intervening. Also, it may be more advantageous to
have multiple smaller bound programs being called from an application than to
have all of these called programs bound together into one large program.
Since no changes are required to your source files when binding programs
together, you can take a "trial and errorH approach. You can bind the best
candidates together and see if this improves performance. If it does not, then
you can try another combination.

Create Bound Program (CRTBNDPGM) is the command used to bind programs
together. If you wish to bind multiple programs together it is not necessary to

3. AS/400 C Environment 23

bind them all in one step. You can bind two together and specify
GENOPT(*ALWBIND) on the CRTBNDPGM command. This will allow you to
later bind this composite program with other bindable programs. If you bind
programs in multiple steps like this, you can test at each step to see if your last
combination of bound programs truly did improve performance. When you have
reached a final stage and have bound together what appears to be the ultimate
combination of programs, you should specify GENOPT(*NOALWBIND) on the
CRTBNDPGM command. This does not undo the original binding, but merely
removes the information necessary for binding the composite program again.
Since this information would be stored with the final program object,
GENOPT(*NOALWBIND) reduces the amount of storage required.

3.11 Location of C/400 Runtime Routines

24 AS/400 C

The OS/400 routines required to run C/400 programs are not included in the
same library as the C compiler(QCc). For version 1 release 2.0 these routines
are ordered and installed as program product S799-XAY. The restore licensed
program (RSTLlCPGM) procedure will load a separate library QCSYS with the
required runtime routines. During the install process the system library list will
be modified by adding the QCSYS library ahead of the QSYS library. In later
releases this process will not be necessary since the routines in QCSYS will be
included in the QSYS library.

4. Data Manipulation

4.1 Alignment of Data
Fields in an AS/400 database file do not have special rules for data alignment.
That is, subsequent fields in a record follow immediately behind the preceding
fields. The length of an AS/400 data base record can easily be calculated by
adding the length of individual fields together. Furthermore, the length of
numeric fields can be specified at the time when the file is created. For
example, we can define a field in a record to be seven-digit zoned decimal and
we can define another field of three-digit zoned decimal in the same record
when we create the file. Fields of same numeric data type, can be defined with
'different length.

In C/400, the user cannot specify the length of a numeric field. The user can
only specify the type of numeric field and there is a fixed length of storage
space required by each numeric data type. Currently there are seven types of
numeric data that can be defined. They are: integer, double, float, long integer,
signed integer, short integer and unsigned integer. Numeric data under C/400
has an alignment requirement. Because of this property, calculating the length
of a C database record is not so straightforward, specially where there is a
combination of alphanumeric fields and numeric fields.

The fOllowing examples use integer and alphanumeric fields to illustrate the
effect due to data alignment requirement of C/400. Integers always align at a
word boundary (multiple of 4 bytes).

Let FLD1 be an alphanumeric field of 5 bytes, FLD2 be an alphanumenc field of
30 bytes and FLDNUM be an integer which will occupy 4 bytes.

The length of a record made up of FLD1 ,FLD2 will be 35 bytes (5 + 30 = 35).

The length of a record made up of FLD1,FLD2,FLDNUM will be 40 bytes. FLD1
and FLD2 together take 35 bytes, but since it does nu~ end at a word boundary
(multiple of 4 byte), the FLDNUM can onry start at position 37. Therefore the
record length is (5 + 30 + 1 +4) = 40.

A Method to Determine Record Length
Usually the greatest need to know the length of a record is when we want to
create a new file, otherwise, we can use the function sizeofO to store the length
of the record in a variable inside the program. An easy way to find out the
record length of a record is to use a short program to do the calculation.

The usual way to define a record buffer in a C program is to define a structure.
The following is an example of a simple program to find the record length:

4. Data Manipulation 25

Sample Program to Find the Record Length of a Structure

struct record {
char fld 1 [5];
char fld2 [30];
int fldnum;
float fldnum1;

} record;

main{)
{
printf{"length of record is %d\n",sizeof(record»;

}

The length of this structure is found by using the sizeofO function. Once the
record length is known, this value can be used to create a physical file on
AS/400 with CRTPF command.

Referencing Numeric Elements in Structures

Sample Structures

struct a {
char fld1a[7];
char fld2a[15];
int fldn1 a;
float fldn2a;

} a;

struct b {
char fld1b[10]
int fldn2b;
char fld2b[40];

} b;

26 AS/400 C

There can be various type of numeric data elements in a structure. As long as
the correct elements are referenced, C/400 will automatically do the data
alignment to ensure data is placed in the correct position. For example, if we
have two structures'

If we need to set fldn1a in structure a equal to fldn2b in structure b, we would
code:

a.fldn1a = b.fldn2b ;

~

,/

\.....

Processing an AS/400 Externally Described File with C/400
Since AS/400 externally described data files do not have special data alignment
requirements, when a C/400 program accesses an AS/400 database file, the
database layout and the file buffer defined in the C program (usually in the form
of a structure) may not match. However, since the most common numeric data
types used in AS/400 database are packed and zoned fields, and under C/400
there is no data type of packed or zoned, such a connict does not appear.

In order to use a zoned or packed field from an AS/400 database file, the field
must first be read into the C/400 program as an alphanumeric field. The field
will then be converted to an integer or Hoating number by functions like
QXXZTOI,QXXPTOI. Similarly, when writing to an AS/400 database file, the
integer or Hoating number must first be converted to a character string by using
functions like QXXITOZ, QXXITOP. A detailed description of QXXITOZ etc. can
be found in "Appendix B - The EPM Application Library" of the C/400 User's
Guide.

Use of a Logical File to Map Fields
AS/400 logical files support field mapping, that is, the attribute of a field can be
overridden by a logical file. For a more detailed description, please refer to the
AS/400 DDS Reference Manual. The following is an example of a logical file
with field mapping and the physical file it is based on.

Example of Physical File and Logical File with Field Mapping

Physical File - PHYSAM

R FORMAT1 TEXT{'FILE PHVSAM')
FLD1 8
FLD2 8S 2 TEXT{'ZONED DECIMAL')
FLD3 8
FLD4 7 2 TEXT{'PACKED DECIMAL')
FLD5 8
FLD6 4B 0 TEXT{'BINARY NUMBER')
FLD7 8
FLD8 8F 2 TEXT{'FLOATING NUMBER')

Logical File - LOGSAM

R FORMAT1 PFI LE{ PHYSAM)
FLD1
FLD2 F
FLD3
FLD4 F
FLD5
FLD6 F
FLD7
FLD8

K FLD1

4. Data Manipulation 27

A C/400 program can use this logical file definition by defining a structure.
Numeric fields in physical file will be read or written as floating point numbers
through the logical file:

A C/400 Structure that can Read Records from LOGSAM

struct record {
char fld1[8];
float fld2;
char fld3[8];
float fld4;
char fld5[8];
float fld6;
char fld7[8];
float fld8;
} record; /* size of logical record is 48 bytes *1

28 AS/400 C

This is a particular case where by mapping fields through logical file, numeric
data can be read directly into a C/400 structure for processing. The most
important thing about this sample PHYSAM is that all numeric fields are already
at word-boundary level (multiple of 4 bytes), so when a C/400 structure is
declared, there is no additional space between alphanumeric field (such as fld1,
fld3 ...) and numeric field (such as fld2, fld4 ...) due to data alignment effect.

If the alphanurneric fields in physical file do not end on a word boundary
(multiple of 4 bytes), the C/400 structure will not match the physical file. For
example:

Example of Physical File, Alpha Fields not End at Word Boundary

Physical File - PHYSAM1

R FORMATl TEXT('FILE PHYSAMl')
FLD! 5
FLD2 8S 2
FLD3 5
FLD4 8 2
FLD5 5
FLD6 8B e
FLD7 5
FLD8 8F e

Logical File - LOGSAMI

R FORMATI
FLD!
FLD2
FLD3
FLD4
FLD5
FLD6
FLD7
FLD8

K FLDI

F

F

F

TEXT('ZONED DECIMAL')

TEXT('PACKED DECIMAL')

TEXT('BINARY NUMBER')

TEXT('FLOATING NUMBER')

PFILE(PHYSAM')

The structure defined in C/400 program to read LOGSAM1:

A C/400 Structure that can Read Records from LOGSAM1

struct record1 {
char fld1[5];
float fld2;
char fld3[5];
float fld4;
char fld5[5];
float fld6;
char fld7[5];
float fldS;
} record1; /* size of record1 is also 48 byte */

In record1, due to word-boundary alignment requirement, three spaces will be
left after each alphanumeric field, making a total length of the record of 48.
When the C/400 program reads the logical file LOGSAM1 with the structure
record1, data in the record buffer will be incorrect.

4. Data Manipulation 29

Therefore, field mapping through logical files may help to avoid using data
conversion routines, but it depends on the layout of the physical file.

4.2 Stream Mode Data
Referring to Chapter 4 of C/400 User Guide, ANSI C defines a stream as a
sequence of data that is conceptually read and written a character at a time
and it has a close relationship with file. File is a source of data and stream is a
medium that channels data from file to application. So file is similar to a
reservoir and stream is similar to a hose through which we can get water.

One characteristic that can be derived from this definition is that stream is
device independent. It can be mapped to different kinds of devices. The
standard input/output device which will be mapped to the stream is the display
terminal, but we can also map the stream to disk files, printers, tapes etc. Such
a concept is not new to AS/400 developer. In AS/400, when we use OVRTAPF,
we can override a device file (in this case the tape file) to a database file, then
we use the CPYF command to copy data to or from another database. In this
case, we are redirecting the input/output, originally destined to a database file,
to a device file.

One significant difference between C/400 and other C platforms (for example
under UNIX) is that in C/400, all input/output is fully buffered. That is, logically
inside a C/400 program, data can be handled character by character (or byte by
byte), but physical 110 is always done at a record basis. AS/400 will always
present a record to the C/400 program and write a record to the file instead of
character by character, regardless of whether the C/400 program is working or
a text file or a binary file. Because of these AS/400 and C/400 characteristics,
there can be a significant difference in some operations between C/400 and
other C platforms. For example, under PC C or UNIX C, by using unbuffered
stream, the application can respond immediately to a keystroke pressed by the
operator from a display (and without pressing the Enter key), but with C/400,
since all input/output is fully buffered, after pressing that particular key from the
display terminal, the data is still in the buffer and the operator must press Enter
key in order to send the data to the application.

Therefore, for users who plan to convert C applications to C/400, they should
keep in mind that there could be a difference in some operation steps,
especially relating to the effect of fully buffered I/O.

4.3 Text Stream Mapping on AS/400 to Source File

30 AS/400 C

C/400 handles two kinds of streams - text stream and binary stream. A detailed
description of text stream and binary stream can be found in Chapter 4 of C/400
Users Guide.

It is important to be aware of the difference between C/400 text stream on
AS/400 with text stream on other C. For simplicity of discussion, we will use text
file as an example. The text file created by C/400 is a physical file with fixed
record length. The default record length of the text file is 266 byte and record
length can be specified through Ireel keyword in the fopen statement. The text
file can be dynamically created and it is equivalent to an AS/400 Source file.
The first 12 bytes are not used and wi" be left blank. When the file is opened as

a text file, data written will always start at the 13th byte of the record. One
record is read or written at a time, although logically in the C/400 programs,
data is handled in a character mode.

Example of Writing Characters to a Text File

Writing to a Text File:

mainO
{
FI LE *file1;
char c;

The following is an example of writing characters to a text file. Note that no
record length is specified and therefore the record length will take the default
value of 266 byte. Also note that a special character is added at end of the file.
This is to ensure when reading the text file character by character, the read
program knows when it reaches the end of the text file (note that in reading a
text file, data will be read through fgetcO and is character by character,
therefore feofO function will not work in this case).

file1 = fopen("TEXTFILE","w + ");

while((c = getchar()}! = '@') r '@' represent end entry *J
{

}

if(c l ='@')
{
fputc(c,file1);

}
}

fputc('\0',file1); /* HEX 00 ('\0') means end of text in file *J

fclose(file1);

This program will create a text file in library QTEMP since no library has been
specified in the program. When DSPFD is used to display the description of the
file, TEXTFILE is a physical file with record length of 266. When use DSPPFM to
display content, we can see that the first 12 bytes of the record are left blank
(filled with HEX 40). The fields starting from 91th byte are filled with spaces
(HEX 40). Only 78 characters are entered per line because only 78 characters
can be entered from the screen each time (assuming that F-21 is not used to
extend the line).

The maximum data that can be stored in a CJ400 text file record is (266- 12) =
254 bytes. C/400 will write a record to the text file whenever a carriage return
character ('\n') is encountered. When data is entered from screen, since a
maximum of 160 characters can be entered each time from the input line of the
screen (by pressing F-21 to extend line). only 160 bytes out of 266 bytes in the

4. Data Manipulation 31

text file record is used to store data. The new line character '\n' wi" not be
written to the text file.

In reading the text file, CJ400 wi" truncate a" the trailing spaces in the record
and automatically insert a new line character '\n' to the input. A" leading
spaces in the record wi" also be ignored.

The following example illustrates how the CJ400 wi" write records to a text file.
In this example, the input file is from TEXTFILE and the output file is TEXTFILY.
Characters are read from TEXTFILE and then written to TEXTFILY. But instead of
writing exactly every character read from input file, a new line character '\n' is
written to TEXTFILY after every 10 characters from TEXTFILE is written. The
result is that instead of having an output file exactly the same as TEXTFILE, the
TEXTFILY contains many more records and each record contains 10 characters
only. This shows that whenever CJ400 encounters a new line character '\n', it
wi" write a record to the text file.

Writing to a Text File with New Line Character '\n'

mainO
{
FILE *file1;
FI LE *file2;

char c;
i nt j;

file1 =fopen("TEXTFILE","n;
file2 = fopen("TEXTFILY","w+ H);

while«c = fgetc(file1»! = '\0') /* last character in file is '\0' *J
{

if(c! = '\n') r to bypass new line character automatically
inserted by CJ400 when reading a line *J

{
fputc(c,file2);
j=j+1;
if(j = = 10)
{
fputc('\n' ,file2); r write '\n' for every 10 characters * J
j=O;

}
}

}

fputc('\O' ,file2);

fclose(file1);
fclose(file2);

}

32 AS/400 C

Specifying Record Length in a Text File
To specify record length for a text file, the fopen statement should be coded as:

file1 = fopen("TEXTFILE",ww + Irecl = ?7");

where ?? is the length of record.

Text File and Binary File are the Same from AS/400 Viewpoint
From the AS/400 viewpoint, a text file and a binary file are the same. Both are
physical or logical files on AS/400. They are different only when files are
opened in C/400 programs in different formats. Therefore, a text file when
opened as a binary file can be processed like any C/400 binary file. A binary
file, when opened as a text file, can be processed like any text file.

Major Differences in Processing Text File and Binary File
In a text file, no record buffer needs to be defined in the C/400 program, as
usually the reason for using a text file is because the user wants to process
data character by character. The fgetcO function will pass character by
character to the program. In writing to a text file, data always starts at the 13th
byte of the record. If data is a line read from the screen, a record will be written
to the text file when the Enter key is pressed and the maximum number of
characters that can be entered each time is 160. Therefore, if a text file is
opened for capturing data entered from a screen and taking the default record
length, only 160 bytes out of 266 bytes in a record can be used. When reading
data from a text file, C/400 will ignore all the preceding and trailing spaces and
a new line character '\n' will automatically be added to the end of the input
data. A text file can be dynamically created.

When processing a binary file, a record buffer must be defined in the C/400
program (usually in form of a structure). I/O is performed on a record basis. If
the binary file is an output file, it must exist before the fopen statement is
executed. All leading and trailing spaces in the record will be retained and no
new line character '\n' will be added at end of input data.

4.4 Accessing an Externally Described File in a Cl400 Program

Character String

C/400 does not provide the option to copy a field definition from an AS/400
externally described file into a program. A separate record buffer area must be
defined to serve a read/write operation. It is important to be aware that C/400
handles data differently as compared with AS/400 data management and some
additional work will have to be done in readin.g writing records from an AS/400
database file.

In C/400, a string is represented by an array and is defined in the form of sEn]
where n is the length of the character string. The first element of s contains an
address pointing to a space in the memory, and that space in memory contains
the real content of the string that will be used in the application. Each character
in a character string can be referred by specifying the element in the string. For
example, s[O] refers to the first element (or first character) in the character
string and s[1] refers to the second element (or second character) of the
character string.

4. Data Manipulation 33

All C/400 string are terminated by NUll character (HEX 00). When C/400 reads
a string, it ends when a NUll character is detected. For example, if string 's is
pointing to a memory space that contains the following data:

ABCDEFGH12345\0 where \0 is the NUll character

pri ntf{"%s" ,s);

will display "ABCDEFGH12345".

If the data is "ABCDEFGH\012345\0"

printf{"%s",s);

will display" ABCDEFGH" since '\0' is detected after H.

Similarly, if t is a string of 10 characters and

scanf("%s",t);

is used to read the string from screen. If the operator entered" AAAABBBB"
then pressed Enter, the contents of it will be "AAAABBBB\O".

By now, we can anticipate that records read from AS/400 database into C/400
program may not be used directly. Records written by C/400 programs to an
AS/400 database file may have different format as compare with a record
written by other languages such as COBOL or RPG. For example:

Sample AS/400 database file and CI400 structure

AS/400 Database File C/400 Structure

R FORr4ATl
CNUM
CNAME
CADD
CTEL

34 AS/400 C

5
30
30
10

struct frecord {
char cnum[5];
char cname[30];
char cadd[30];
char ctel[10];

} frecord;

If a C/400 program using the structure frecord to read the database file, and
printfO statement is used to display the contents of cnum, then the contents of
cnum, together with whatever data immediately follows will be displayed until a
NUll character (HEX 00) is encountered. If ctel in frecord contains the same
information as t (that is it contains" AAAABBBB\O") and is written to a database
file, when a COBOL or RPG program attempts to read this record and display it
on a display file, a data error will occur since a 5250 terminal cannot display a
NUll character.

As a reminder to the developer, when attempting to manipulate a field read
from AS/400 database in a C/400 program, make sure the string is terminated
with NUll character and this can be done by explicitly assigning a NUll

Numeric Data

character to the last element in the string. When writing records to an AS/400
database file, the developer should ensure that all NULL characters have been
replaced by spaces.

In AS/400, the most common numeric data types used are packed decimal and
zoned decimal. When defining database file, the user can specify the length of
the numeric field.

In C/400. length of numeric data cannot be specified. There are many numeric
data type the user can define, but there are no data type such as packed or
zoned decimal.

Since the numeric data type of AS/400 database and C/400 are not compatible
(except floating point numbers), numeric fields read from AS/400 database
cannot be processed directly in C/400 programs and numeric fields generated
by C/400 programs cannot be written to database file directly. Some data
conversion routine must be. used to do the data conversion. Such functions are
available as library functions grouped under the EPM Application Library.

The immediate result of this is that numeric data will be converted, formatted
and then passed between AS/400 database file and C/400 program as
alphanumeric files. As an example, a C/400 program will define such a
structure to read/write record from an AS/400 database:

Example of AS/400 Database and Corresponding C/400 Structure:

AS/400 Database C/400 Structure

R FORMATl
CNUM
CNAME
CAMT

5
30
8 0

struct frecord {
char cnum[5];
char cname[30];
char camt[5];

} frecord;

When the database record is read into the record buffer frecord, content stored
in frecord.camt must go through a conversion routine QXXPTOI to convert camt
into integer for calculation.

Further detailed information on the C/400 Data conversion routines can be
found in this book Section 3 "EPM Application Library" or in this section
"Alignment of data" or Appendix B of the C/400 Users Guide.

C/400 Program and Record Format of Externally D6scribed Fil"
If the C/400 program works on an AS/400 externally described file with only one
record format (for example a physical file), there is no concern about which
format should be used to read or write records. However, when working on
printer files or display files where several record formats can be selected, the
C/400 program must explicitly specify which format to use in each read/write.
This is accomplished by using the QXXFORMAT statement in the program.

4. Data Manipulation 35

. Further information on QXXFORMAT can be founded in Appendix B of CI400
Users Guide. Examples on how to access printer file, display file and database
file with QXXFORMAT can be found in the Sample Programs in the Appendix of
this manual.

C/400 Files or AS/400 Externally Described File?
The reader probably will agree by now that additional work is required if a
C/400 program is to interface with AS/400 database files. The same will be true
when a program written in COBOL or RPG needs to access a file with records
generated by C/400 program. Data conversion and formatting is almost a
"must" in such a situation. But if a file will only be used by C/400 programs,
then there is no need to do all the data conversion discussed here. Just let the
C/400 program handle the data in its own convention and development effort is
reduced.

4.5 How to Use AS/400 Database Files in C

36 AS/400 C

This chapter discusses how to describe AS/400 database files in C/400
language and how to manipulate data in existing database files.

Database Files on the AS/400 can be described at a record level or on a field
level. This chapter discusses only how to use files described at a field level
using DDS (data definition specifications) or using SQU400. SQL is the SAA CPI
database interface implementation for the AS/400.

Database files created with a field level description are referred to as externally
described files. The main advantage of an externally described file is that the
field descriptions are not stored in the HLL program. The AS/400 data .."
management separates the data description from the program. However, in
C/400 you must describe a structure to define how the record will appear. C/400
does not provide a function to reference to external data descriptions.

There are different methods to describe an external file.

• Data Definition Specifications (DDS)

Can be used for the definition of physical files (PF), ~')gical files (LF), display
files, printer files and ICF files. Use the Source Entry Utility (SEU) to create
the DDS source code. To create the file object issue a CRTxxx CL command
and specify the name of the new file and the name of the DDS source
member.

• Interactive Data Definition Specifications (IDDU)

Is primarily designed for compatibility with IDDU/36 so that AS/400 users
can easily port their applications from a System/36 to the S/36 environment
and that these users have available the same facility as they may have
used before. IDDU is an interactive application which prompts the user to
define the characteristics of data files and fields on AS/400.

• Data Definition Language statements of SQU400.

There are two basic types of SQL statements: data definition statement
(DDL) and data manipulation statements (DML). The following statements
are part of the SQL DDL:

- CREATE COLLECTION (former CREATE DATABASE)

/

/'

CREA TE TAB LE

CREATE VIEW

CREATE INDEX.

SQL DDL statements can only operate on objects created by SQL in an SQL
collection (database). However you can mix DDS and SQL DDL. Refer to
SQLl400: A Guide to Implementation and to SQLl400 Programmer's Guide.

The following two examples show a field level record definition. The first is an
example of the Display File Field Description (DSPFFD) Command for file
MAT ABLE described with DDS. The field attributes for this file are defined in a
field refer~nce file. The second is an example of the SQL Statement CREATE
TABLE to create the same file with SQL. SQU400 does not support the data
type NULL. For this reason we have specified 'NOT NULL WITH DEFAULT'.

4. Data Manipulation 37

File . . . · · . MATABLE
Li brary • . . SQLDEMO

File Information .."

Record Format Information

Field Level Information
Data Field Buffer Buffer Field

Field Type Length Length Position Usage Column Heading
KZDST CHAR 1 1 1 Both Dienstellen-

Kennzeichen
Fi e 1 d text · Dienstellen- Kennzeichen
Referenced information

Referenced file. REFTABLE
Li brary • . . . DBDEMO

Referenced record format REFTABF
Referenced field KZDST
Attributes changed . None

Data Fi el d Buffer Buffer Field
Field Type Length Length Position Usage Column Heading
EART CHAR 1 1 2 Both Empfinger-

Art
Field text : Empfinger- Art

Data Field Buffer Buffer Field
Field Type Length Length Positi on Usage Column Heading
HK CHAR 2 2 3 Both Hauptkasse

Field text . : Hauptkasse
Data Field Buffer Buffer Field

ENR CHAR 6 6 5 Both Empfanger- ""' ..
Nummer ...,

Field text · . Empfanger- Nummer
Referenced information

Data Field Buffer Buffer Field
Field Type Length Length Position Usage Column Heading
NAME CHAR 413 413 11 Both Name

Fi el d text · · . : Name
Data Field Buffer Buffer Field

Field Type Length Length Position Usage Column Heading
VNAME CHAR 213 213 51 Both Vorname -,~-

Field text · . · . Vorname ...,.,
Data Field Buffer Buffer Field

Fi el d Type Length Length Position Usage Column Heading
GEBDAT ZONED 8 13 8 71 Both Geburts-

Field text · · . · . Geburts- Datum
Data Field Buffer Buffer Field

Field Type Length Length Position Usage Column Heading
KIZAHL ZONED 2 13 2 79 Both Kinderzahl

Field text · · . . . : Kinderzahl

38 AS/400 C

Table Creation of MATABlE in SQl
CREATE TABLE MATABlE

(KZDST CHAR(l)
EART CHAR (1)
HK CHAR (2)
ENR CHAR(6)
NAME CHAR(40)
VNAME CHAR(20)
GEBDAT DEC (8,2)
KIZAHL DEC (2,0)
STAATA CHAR(3)
PLZ CHAR(8)
ORT CHAR (30)
STR CHAR(30)
TEL CHAR(15)
EBERUf CHAR(40)

NOT NULL WITH DEFAULT,
NOT NULL \1ITH DEFAULT,
NOT NULL WITH DEFAULT,
NOT NULL WITH DEFAULT,
NOT NULL ~JITH DEFAULT,
NOT NULL WITH DEFAULT,
NOT NULL WITH DEFAULT,
NOT NULL \-IITH DEFAULT ,
NOT NULL \oJ! TH DEFAULT,
NOT NULL WITH DEFAULT,
NOT NULL WITH DEFAULT,
NOT NULL WITH DEFAULT,
NOT NULL tHTH DEFAULT,
NOT NULL \'JITH DEFAULT

The next example shows the definition of a C structure for the database file
defined above. Note that:

• Strings in C/400 are terminated with the null character \0. Field (column)
'name' has type character with a length of 30. The corresponding C/400
variable 'name' is defined as character with a length of 31.

• C/400 does not support decimal numbers. Column (Field) 'kizahl' is defined
as

ZONED 2,0 in DDS

DEC (2,0) in SQL

DOUBLE in C/400

Record Format Description in C/400
struct marec {char kzdst [2];

char eart [2];
char hk [3];
char enr [7];
char name [41];
char vname [21];
double gebdat;
double kizahl;
char staata [4];
char plz [9];
char ort [31];
char str [31J;
char tel [16];
char eberuf [41];

} marec;

4. Data Manipulation 39

Reading a Record from an Externally Described File

mainO
{

Before you can read records from a database file you have to open the file
using the 'fopen' or 'freopen' function with an valid open mode. Open mode
'rb' performs the data management operation 'Open for Input'. For processing
a record at a time use the keyword 'type' with parameter 'record'. Opening the
file with mode 'rb' causes a lock condition shared for read (*SHRRD) on the
data.

The QXXFORMAT routine is a AS/400 extension to the C language. Using files
where more than one record format can be selected, such as logical, printer or
display files, it is necessary to set the record format name by using
QXXFORMAT. The record format name must have a length of 10 characters.

Use the 'fread' function to read records sequentially. If the file is described as a
keyed file you read in the keyed order; otherwise read in arrival sequence.

The functions fopen, freopen, fread are provided in the standard input/output
include file < stdio.h >. Refer to the C/400 User's Gl,Jide for valid open modes
and more information.

MATABlE = fopen("SQLDEMO/MATABlE", "rb type = record");
QXXFORMAT(MATABlE,"MATABF ");
fread(&satz,sizeof(satz),1,MATABlE);

fclose(MAT AB lE);
}

Writing a Record to an Externally Described File

40 AS/400 C

The open mode 'ab+' specified in the 'fopen' function j.:erforms an 'Open for
Input and Output' for the specified file. Opening the database file with mode
'ab +' causes a lock condition shared for update (*SHRUPD) on the data. The
QXXFORMAT routine is an AS/400 ~xtension to the C language. Using files
where more than one record format can be selected, such as logical, printer or
display files, makes it necessary to set the record format name by using
QXXFORMAT. The record format name must have a length of 10 characters.

The 'fwrite' function appends the record at the end of the file. Refer to the
C/400 User's Guide for more information.

mainO
{

}

struct satz satz;
MATABLE = fopen("SQLDEMO/MATABLE", "ab+ type=record");
QXXFORMAT(MATABLE,HMATABF ");

fwrite(&satz,sizeof(satz),1,MAT ABLE);
fclose(MAT ABLE);

Using Existing AS/400 Data
The matrix shown in the following figure must be considered carefully when
using a C program with existing externally described data.

Table 1. DDS-to-C/400 Data Type Mapping

DDS Length Decimal Buffer C/400 Declare
Data Position Length
Type

Indicator 1 0 1 char

A 1 none 1 char xxx (where xxx is field
name)

A 2-32766 none 2-32766 char xxx [n] (where n = 2 to
32766)

B 1-4 0 2 short int

B 1-4 0 2 unsigned int xxx: 16 (need
alignment)

B 5-9 0 4 int

B 5-9 0 4 unsigned int xxx:32 (need
alignment at a word
boundary)

B 1-4 1-4 2 char xxx[2]

B 5-9 1-9 4 char xxx[4]

p 1-31 0-31 1-16 char xxx[n] (where n =
length/2 + 1)

S 1-31 0-31 1-31 char xxx[n] (where n = 1 to
31)

F 1-7 0-7 4 float (need alignment at a
word boundary)

F 8-15 0-15 8 double (need alignment at a
word boundary)

4. Data Manipulation 41

Character Data

Numeric Data

In the C language a string is not a separate data type; instead it is an array of
the type 'char'. The last character of a string is the character '\0'. This special
character, the 'nUll character', occupies one byte of memory and has the value
hex(OO). (The null character in C has a different meaning as the data type NULL
in SQL.) A character array not terminated with a "null character" is not
recognized as a string. It is the only way string functions provided in the include
file < string.h > can know where the end of the string is.

Whenever you read data from an existing file and you want to use string
functions provided by C, make sure that the character array is terminated by
the "null character". As the null character is included in the length, specify a
string whose length is n + 1.

To avoid the problem with the terminating \0 you can use the memxxx functions
instead of string functions (for example, memcpy).

For example:
Field NAME in file MATABLE has data type CHAR and field length 40.
The corresponding C variable is defined as a name with a length of 41.

Zoned and packed data types are not supported in C/400. Use the data
conversion routines provided in the EPM Application Library. You can use
logical files for an override from packed and decimal data to floating point.
Refer to the following section for this method. C/400 expects that floating point
numbers are aligned to a word boundary.

Usage of Logical Files for Data Type Overrides

42 AS/400 C

You can override the data type specified in the physical file definition using a
logical file. For every logical record format you must specify a record format
name and the PFILE or JFILE keyword. The file names specified on these
keywords are the physical files that the logical file is based on. When a record
is read from the logical file, the fields from the physical file are changed to
match the logical file description. If the program updates or adds a record, the
fields are changed back. The following table shows the possible conversions
between physical and logical files. You can use the logical file also to override
the data type of an table created with the SQL statement CREATE TABLE, but
the object created by the CRTLF command can not exist in an SQL collection.
That means the logical file must exist in an non-SQL library.

Table 2. Data Conversion between Physical and Logical Files

Logical File Data Type

Physical File Character Zoned Packed Binary Floating
Data Type Point

Character Valid Note 1 Not valid Not valid Not valid

Zoned Note 1 Valid Valid Note 2 Valid

Packed Not valid Valid Valid Note 2 Valid

Binary Not valid Note 2 Note 2 Note 3 Note 2

Floating point Not valid Valid Valid Note 2 Valid

Note:

1. Valid only if number of characters equal to number of digits
2. Valid only if the binary field has a decimal precision of zero
3. Valid only if both fields have the same decimal precision

Mapping between floating point fields and other numeric fields may result in
rounding or a loss of precision.

Refer to Data Definition Specifications Reference for more information on data
type conversion.

4.6 Open Query File Usage
The AS/400 Command Language provides a command that allows you to
process data base functions similar to DDS and the Create File CL commands
(CRTPF, CRTLF). The Open Query File command (OPNQRYF) enables a subset
of records from a file to be selected for use during program execution.
OPNQRYF must be used in a HLL program.

Functions of OPNQRYF are:

• Record selection

• Grouping and sorting

• Calculations

• Dynamic join

• and more.

Refer to the ASI400 CL Reference Vol. 1 - 5 for a complete list of functions.

OPNQRYF is useful as a programmer's tool to improve efficiency of programs. It
has more functions to select data and to calculate with the data than AS/400
Query and SQU400. However, it is not part of System Application Architecture
(SAA) and if your goal is to write a portable application you should not use the
OPNQRYF command.

The following example shows how to code the OPNQRYF command using the
C/400 interface to the AS/400 command processor:

4. Data Manipulation 43

mainO
{

}

/* Override Data Base File with share Open Data Path = YES *1
system("OVRDBF MATABLE SHARE(*YES),,);
system("OPNQRYF FILE(MATABLE)");

MATABLE = fopen("SQLDEMO/MATABLE", "rb type = record");
fread(&satz,sizeof(satz),1,MATABLE);
while (!feof(MATABLE))
{

fread(&satz,sizeof(satz), 1 ,MAT ABLE);
}

/* Close Opend File MATABLE
system("CLOF OPNID(MATABLE)");
/* Delete Override
system("DLTOVR FILE(MATABLE)");

*f

"f

Refer to Chapter 9 in the ASf400 Data Base Guide for an intensive discussion of
the OPNQRYF command.

4.7 Commitment Control

44 AS/400 C

The ASf400 has an integrated transaction recovery function called commitment
control. This means that you can group database operations as a single
transaction. You can ensure that complex data base operations, if the job ends
abnormally, are synchronized and the database integrity is correct. There are
three levels of commitment control. These are "NONE, *CHG, * ALL. For more
information on journal management and transaction recovery see the ASI400
Backup and Recovery Guide.

There are three different ways of using commitment control on the ASf40Q with
the C language. After setting up your commitment control environment use the
Start Commitment Control command (STRCMTCTL) before calling your C
application.

For the Cf400 Commitment Control Functions there are two routines provided in
the EPM Application Library: QXXCOMMIT and QXXROLLBCK. The file must be
opened with the 'commit=y' keyword parameter on the fopen function. Refer
to Chapter 5 in the CI400 User's Guide for how to use these C/400 extensions in
your program.

The OS/4oo provides the two commands COMMIT and ROLLBACK. You can use
these CL commands through the C system function.

main 0
{

system("COMMIT CMTID(*NONE)");

system("ROLLBACK");
}

The third way to use commitment control is SAA-conforming. If COMMIT(*CHG)
or COMMIT(*ALL) is specified when the program is compiled, SQL
automatically sets up the commitment control environment by implicitly
invoking the Start Commitment Control command. You can use the functions
provided by SQU400 as in Example 10 in Appendix B.

main 0
{

EXEC SQL COMMIT;

EXEC SQL ROLLBACK;
}

4. Data Manipulation 45

4.8 Coding SQL - Considerations of Usage
The System Application Architecture Common Programming Interface (SAA
CPI) defines the SQU400 with the OS/4OO relational data base as the interface
to define and access. The usage of SQU400 is essential when it is required to
write a portable application. Since C/400 provides no keyed access to the
AS/400 database SQL is one way to retrieve data from the database.

Before executing a C program with embedded SQL statements there are two
steps to create the program object:

• Use the CRTSQLC command to create a C/SQL program. This command
calls the SQL pre-compiler to compile the SQL statements embedded in
your C program. If you are using the Programming Development Manager
(PDM) the source member type is SQLe. This type is recognized and
provides several functions by PDM such as the correct choice of compiler.

Create SQL C Program (CRTSQLC)
Type choices, press Enter.
Program ••

Library ••
Source file ••.

Library •••.
Source member • .
Commitment control
Text 'description'

Precompiler options

• :> EXAHPLE
*CURUB

QCSRC
*UBL

*PGH
*CHG
*SRCHBRTXT

Additional Parameters
*NDSRC

+ for more values
INCLUDE file, , *SRCF I LE

*UBL
10

Library , . ,
Severity I eve I .
Source margins:

Left margin •
Right f'largin .

Print file,
Library , ••

*SRCFILE

QSYSPRT
*UBL

Name
Name, *CURUB
Name, QCSRC
Name, *LIBL, *CURLIB
Name, *PGM
*CHG, *ALL, *NONE

*SRC, *SOURCE, *NDSRC",

Name, *SRCF I LE
Name, *LIBL, *CURLIB
0-40

1-80, *SRCFILE
1-80
Name
Name, *LIBL, *CURLIB

Refer to the SQL Programmer's Guide for further explanations of the
command parameters.

• After a successful pre-compile a temporary source file member with the
same name as the program is created in source file QSQLTEMP in QTEMP.
By default the C compiler is called after the pre-compile process to compile
the temporary source member. Refer to Chapter 3 for information on how to
use the debug for a C/SQL program.

C Host Variables for SQL

46 AS/400 C

Host variables are necessary to receive the retrieved data from a SELECT
statement or to specify a condition in the WHERE clause. C/400 and SQU400
allow the user to declare host variables that are pointers: Pointers are a
mechanism to access a data object without referring to the data object (or
function) directly. The pointer holds the address of a variable or a function. For
restrictions refer to the SQL Programmer's Guide Chapter 8.

The following example is a C structure used as a host variable. The description
matches the record format of the SQL table referred to earlier. The structure
marec is specified in the INTO clause of the FETCH statement in the program
example for static SQL on the next pages.

struct marec {
char kzdst [2];
char eart [2];
char hk [3];
char enr [7];
char name [41];
char vname [21];
double gebdat;
double kizahl;
char staata [4];
char plz [9];
char ort [31];
char str [31];
char tel [16];
char eberuf [41];

} marec;

The following SQL statement shows how you code host variables in an
embedded SELECT statement. The preceding colon declares that structure
marec is a host variable. The unique index 'enr' specifies the condition in the
WHERE clause.

EXEC SQL
SELECT *

INTO :marec
FROM MATABLE

/* retrieve all columns */

WHERE ENR = :marec.enr; /*unique index */

4.9 Using Existing Data in SQU400 Tables

Table 3 (Page 1 of 2). Data Types SQL and C/400

SQL Data Type Buffer Length C Equivalent Comment

CHAR (1) 1 char A single character.
identifier

No equivalent (char string n char char array to hold NUL
1- 19th n) identifier Em] terminated strings (m = n + 1)

f-
Varying-length char string struct { short structure to emulate

len; char varying-length string.
sEn] }
identifier;

-
SMALLINT 2 short int 16 bit. signed integer

INTEGER 4 long int 32 bit. signed integer

4. Data Manipulation 47

Table 3 (Page 2 of 2). Data Types SOL and C/400

SQL Data Type Buffer Length C Equivalent Comment

DECIMAL 1-16 No C does not support decimal
equivalent numbers. Code a decimal

column as float. double or
integer. See comment.

REAL (single precision floating 4 float floating point (needs
point) identifier alignment)

FLOAT (double precision 8 double floating point (needs
floating point) identifier alignment)

NUMERIC (zoned decimal) 1-31 No C does not support zoned

48 AS/400 C

equivalent numbers. Code a numeric
column as float. double or
integer. See comment.

FLOATING POINT NUMBERS

There is a difference between the floating point formats used by C/400 and
SQU400. Floating point numbers in C/400 need alignment. This fact is
usually not required in a data base. Use views (or logical files) where the
floating point numbers are aligned to a word (4 byte) boundary in the record
buffer .

•. PACKED DECIMAL and ZONED DATA TYPE

As zoned and packed decimal formats are not supported in this version of
C/400. use the EPM Application Library Conversion Routines as described
in Appendix B of the C/400 User's Guide. The following conversion routines
are provided:

QXXDTOP floating point to packed decimal

QXXDTOZ double to zoned decimal

QXXITOP integer to packed decimal

QXXITOZ integer to zoned decimal

QXXPTOI packed decimal to integer

QXXPTOD packed decimal to double

QXXZTOD zoned decimal to double

QXXDTOI zoned decimal to integer.

• CHAR TYPE

A string in C is not a separate data type. Instead it is an array of type char
terminated by the null character (\0). The null character is included in the
length. Whenever you read data from an existing table and you want to use
string functions provided by C, make sure that the character array is
terminated by the null character and add one byte to the length of the host
variable. Instead of string functions memxxx functions can be used (for
example, memcpy) to avoid the problem with the terminating '\0' character.

For example if an SQL column has a data type char and field length 40,
define the corresponding host variable with a length of 41.

..

""-
..J

The user may also use the override possibility of a DDS logical file as
described earlier. However note that a logical file cannot exist in an SQL
collection (database). The logical file for data type conversion must be in a
non-SQL library. However it is possible to create a logical file based on a SQL
table. See section 'Using Logical Files for Data Type Overrides' in this
document.

Static SQL in a C/400 Program
There are two different ways to process static SQL statements in an C program:
Either with a CURSOR or not.

If the result of the processed statement is a single row you don't have to
declare a CURSOR. (for example, if your SQL table is accessed by a unique
index).

If the result table of a SELECT statement can contain multiple rows matching
the select criteria of the WHERE clause, then a CURSOR must be used to make
single rows of the result table available to your program. The C language, as
well as other HLLs, is not able to process a set of rows (records) at a time.

The SELECT statement in the following figure retrieves all columns from table
MATABLE into the CURSOR C1. The C variable "matchcodew specifies the
value for retrieving rows in the LIKE clause of the SELECT statement. The
result table contains the rows which match the select criteria and the cursor
points to the current row (in this example the first row). The FETCH statements
retrieves the rows sequentially into the C structure "marecw until end-of-data.

Note that the "EXEC SQL" expression must be all on one line. The rest of the
SQL statement may be on more than one line.

4. Data Manipulation 49

char matchcode 8;

EXEC SQL INCLUDE SQLCA;
main 0 {

EXEC SQL WHENEVER SQLERROR GO TO error_cursor;
EXEC SQL DECLARE C1 CURSOR FOR

SELECT·
FROM MATABLE
WHERE NAME LIKE :matchcode

EXEC SQL WHENEVER SQLERROR GO TO error_open;
EXEC SQL OPEN C1;

while (SQLCODE = = 0) {

EXEC SQL WHENEVER SQLERROR GO TO error_fetch;
EXEC SQL
FETCH C1 INTO :marec;

}
goto ende;

error cursor:
printf("Error at DECLARE CURSOR %d??/n",sqlca.sqlcode);
goto en de;

error_open:
printf("Error at OPEN CURSOR %d??/n",sqlca.sqlcode);
goto ende;

error fetch:
printf("Error at FETCH %d??/n",sqlca.sqlcode);

ende:
EXEC SQL CLOSE C1;

Using Dynamic SQL in C/400

50 AS/400 C

This section discusses the sample C program using the dynamic SQL
programming technique as shown on the next pages and in Appendix B. For
additional information on this technique the reader should refer to AS/400
publications and newsletters.

Other than using SQL in a static environment, in dynamic SQL the embedded
statements are prepared and executed at program run time. At compile time
the SQL pre-compiler does not need to know what kind of SQLstatement will
run while executing the program. When using static SQL the SQL optimizer
creates an access plan during precompile time that tells the system how to run
the embedded SQL statements in the most effective way. In dynamic SQL the
optimizer cannot build this access plan, because references to tables and views
do not exist. The access plan has to be built at run time. This affects the
performance of the application.

We differentiate between two basic types of embedded SQL statements:
SELECT and non SELECT statements. The data that a non SELECT statement
returns to the program is a return code in the SQL communication area. The

example program uses non SELECT statements, DELETE and UPDATE, in a
dynamic programming technique. It allows you to run these two statements
similar to an interactive SQL session. The functions are restricted to the tables,
columns and operators shown in the display file below.

Use the DSPFFD command to look at the input and output buffer of your display
file. You have to code a structure in your C program that matches the input and
output records. If you are using indicators you have to decide if they exist in the
input and output records or in a separate indicator area (INDARA keyword in
your DDS definitions).

The following figure shows one of the screens used in the example program:

(

Dynamic SQl in an C/400 Program

Prepare - Hode

DELETE FRDM WHERE
~lATABLE VNAI·1E

NAHE :>
STMTA <
PLZ :>=
ORT <=
STR

KITABlE KNAltE
KKIGEl

Status of the prepared SQL statement
DELETE FROM 1234567B HHERE 123456 12 ?

Function keys: 3=Exit 8=Prepare Update 9=Prepare Delete 10=Execute
11=Rollback 12=Commit

?

The display file allows you to specify tables, columns and operators to prepare
the SQL statements UPDATE or DELETE. You can switch between the
statements via function keys. Pressing function keys you can explicitly process
COMMIT or ROLLBACK. This is not the usual way commitment control is
designed in an application but shows the coding required for these functions.
The line under "Status ... " shows how the the statement looks in the C variable.
The "?" is the parameter marker for the actual value for executing the
statement using Function key 10. The digits (123 ..) are replaced by the values
you type in for table and column names.

Following is the pointer definition for the externally described display file.
Processing of display files is discussed in Chapter 5. For the definition of the
input and output buffers see the DDS source for the display file and the
complete program in Appendix B.

4. Data Manipulation 51

'include <stdlib.h>
'include <stdio.h>
'include <string.h>

/****************************/

j* Global Data declarations *j
j****************************j

FILE *dspf1; j* Pointer to locate display file*j

Every C/400 program using embedded SQL statements must have an SQL
communication area (SQLCA). The SQLCA must be embedded before any SQL
or C statement can be run. In this example the INCLUDE SQLCA statement is
used. For information how to code a C variable refer to Chapter 8 of the SQL
Programmer's Guide. The SQLCA provides information for error handling in
your program.

EXEC SQL INCLUDE SQLCA;

52 AS/400 C

The following C structures are used to build that SQL statement that are
required. In the program sample SQL statements are used which contain
parameter markers indicated by a "?". The user may set up the PREPARE
section first and then run it using the EXECUTE statement with different vCllues
every time the statement is executed. Statements with no parameter markers
can be run by the EXECUTE IMMEDIATE statement.

tor

r* This is the structure for preparing the UPDATE statement **1

struct xupd
{
char upd [7];
char tbl [8];
char set [7];
char col1 [6];
char eql [8];
char usg1 [2];
char wher [6];
char col2 [6];
char opc [2];
char usg2 [2];
};

/** This is the structure for preparing the DELETE statement **1
struct xdel
{
char del [12];
char tbl [8];
char wher [24];
char col1 [6];
char opc [2];
char usg1 [2];
};

C/400 host variables cannot be elements of vectors,structures or arrays except
for character arrays representing a string. So you must use a string variable as
the parameter of-the PREPARE statement. That is the reason why the structures
are redefined. The string variable "updat" ("delet") is the update (delete)
statement that copied into "obild.s" the PREPARE statement is naming STMT.
The element "'obild.s" is used in the display file, so that you can follow
interactively the steps of the PREPARE process.

/* redefine the structure for update as string used by the
SQL PREPARE statement *'
union uupd {
struct xupd supd;
char updstr [56];} updat;

/* redefine the structure for delete as string used by the
SQL PREPARE statement *'
union udel {
struct xdel sdel;
char delstr [56];} delet;

4. Data Manipulation 53

54 AS/400 C

The program flow of the sample program is:
Open the display file SQL2D. See Appendix B example 16.
Initialize indicators
While not function key 3 do

write display file
read display file

if function key 8
if function key 9
if function key 16

if SQLCODE == 6
if function key 10
if function key 10

End of while loop

prepupd () ;
prepde 1 ();
EXEC SQL PREPARE;

execs tmt () ;
EXEC SQL ROLLBACK;
EXEC SQL COMMIT;

mainO
{

r carryon if F3 is not hit by user
while (ibild.in03 ! = OXF1)

{
/' Display sql2d

OXXFORMAT(dspf1, wFMT1 W);
fwrite(&obild,sizeof(obild),1,dspf1);
fread(&ibild,sizeof(ibild),1,dspf1);

if (ibild.in10 = = OXF1)
{
EXEC SOL

*'

*'

PREPARE STMT FROM :obild.s; /* PREPARE *'
if (sqlca.sqlcode = = 0)

}

{
obild.in63 = OXF1;

} /' sqlcode = = 0 *'
else/' SOL Error? *'

{
obild.in88 = OXF1;
obild.sqldec = sqlca.sqlcode;
} r end SOL Error *'

} r in10 = = 1 *'
else

{
if (ibild.in11 = ... OXF1)

{
EXEC SOL
ROLLBACK; r ROLLBACK *'
obild.in63 = = OXFO;

} r in11 = -= 1 *'
else /*in11!=1 "'

{
if (ibild.in12 = = OXF1)

{
EXEC SOL
COMMIT; /* COMMIT *'
obild.in63 = = OXFO;

} r in12 = = 1 *'
else { /* in12!= 1 "'

if (obild.in63 = = OXF1)
execstmt();

else { /' in63!= 1 "'
if (obild.in61 = = OXF1)

prepupdO;
else /* in61 != 1 "'
{

if (obild.in62 = = OXF1)
prepdelO;

/* main "'

As the statement is prepared completely the function "execstmt" is called to
execute the UPDATE or the DELETE. The parameter markers will be replaced by
the host variables "ibild.frm" and "ibild.whe". If you want to update with
different values in the SET clause the statement has to be prepared only once.

4. Data Manipulation 55

If you want to switch between the UPDATE and the DELETE function, the
statement has to be prepared again.

/******. Execute Statement **********************************1

void execstmtO
{

if (obild.in61 = = OXF1)
{
EXEC SQL
EXECUTE STMT USING :ibildJrm, :ibild.whe;

if (sqlca.sqlcode ! = 0)
{

} /* sqlcode ! = 0 */
}

else
{
EXEC SQL
EXECUTE STMT USING :ibild.whe;
if (sqlca.sqlcode ! = 0)

{

} /* sqlcode ! = 0 */
}

} /* execute statement function */

C/400 and SQU400are SAA-standard products. SQU400 does not yet
completely match the SAA database reference definitions, but it will be
consistently implemented across the SAA environments. C/400 supports the
SAA C-Level 2 and the ANSI standard with AS/400 extensions. Portable
applications among other SAA environments can be one reason to use
embedded SQL. Another reason may be the incompatibility of data types
between C language and eXisting data on the AS/400.

56 AS/400 C

5. Display File Processing

In C/400 the default input/output device for the program is the display terminal.
Functions like printfO, scanfO, getcharO accept input or display output on the
terminal in a line mode and the device need not be -opened" for such
operation. When the application requires full-screen processing, display files
are required.

Display files under C/400 are handled similar to disk files. An fopen statement
is required to associate the display file to the program. Statements on freadO,
fwriteO will be used to read from display files and write to display files. If the
display file contains multiple record format, QXXFORMAT will be used to specify
which format the fread and fwrite will use. C/400 provides support for message
subfile but there is no support on other functions of subfile.

It is important to remember that display files and indicators apply to C/400 on
AS/400 only. C programs developed using display files and indicators are not
portable to other systems.

5.1 Usage of Indicators
There are two ways to use indicators in a display file. Indicators can be handled
in a different area by using INDARA keyword. Indicators can also be treated as
part of data in the input and output buffer. Indicators can have only two values
- '0' or '1'. In C/400, indicators can be set to value OXFO or OXF1 or simply '0' or
'1'. For example:

Setting indicators in C/400

mainO
{
char in01;
char in02;
char in03;
char in04;

in01 = OXFO ; /* set indicator in01 to '0' */
in02 = OXF1 ; /* set indicator in02 to '1' */
in03 = '0'; /* set indicator in03 to '0' */
in04 = '1'; /* set indicator in04 to '1' */

}

In C/400, indicators can be defined as a character variable and they can be set
to specific values as shown in above example.

- 5. Display File Processing 57

Using Indicators with the INDARA Keyword in Display Files
When handling indicators in a separate area with INDARA keyword, the display
file automatically sets aside 99 bytes to store information about the 99
indicators. This information will be passed to and from the C/400 program. In
the C/400 program, an area of 99 bytes must be declared and associated it with
the indicator area of the display file. The following illustrates how to define the
DDS for a display file and C/400 program:

Defining INDARA in DDS of Display File

R FORMATl

DSPSIZ(24 80 *DS3)
INDARA
CA01(01 'End of Job')
CA02(02 'Refresh')
CA03(03 'Scroll Forward')
CA04(04 'Scroll Backward')
CA05(05 'Previous')

CNUMBER 5A B 2 6COLHDG('Customer' 'Number')
•

•

58 AS/400 C

Defining indicators in C/400 program

mainO
{
union /* meaning to share two or more structure with the

{
same memory location *1

struct
{
char in01;
char in02;
char in03;
char in04;
char inOS; /* indicator 01 to 05 are defined separately */
char in06[94]; /* indicator 06 to 99 are defined in an

array if the program does not use
any of them *1

} str;
char array[99]; /* array is defined here for east of

initialization */
} indic;

FILE *file1;

file1 = fopen(NDSPFILEN ,Nab + type = record indicators = yN);
/* indicator = y means display file will use

a separate area to store indicator information.
*1

QXXSINDARA(file1,indic.array);
/* QXXSINDARA relates the display file and

its indicator information to structure
indic.array in the C program together */

indic.str.in01 = OXFO;
indic.str.in02 = '0'; /* set indicator 01 and 02 to '1' 0/

Using Indicators as Data in a Display File Input/Output Buffer
Using this approach indicators are ordinary indicator fields in an input/output
buffer. The following are examples on how to define indicators using this
approach:

5. Display File Processing 59

DDS of display file with indicators in input/output buffer

DSPSIZ(24 80 *OS3)
R FORMATl

CA03(03 'End of Job')
CNUMBER SA B 4 6COLHDG('Customer Number')

99 ERRMSG('Error: Invalid number')
" • • •
• • •

Defining indicators as data in input/output buffer

mainO
{
struct fscrout {

char in99; r variable for indicator 99 */
char coption;
} fscrout;

struct fscrin {
char in03; r variable for indicator 03 */
char coption;
} fscrin;

FILE *file1;

fi/e1 = fopen("DSPFILEH,"ab + type = record");

fscroutin99 = OXF1 ; r set indicator 99 to '1' */

5.2 Use of Conversion Routines

60 AS/400 C

As discussed before, since C/400 does not have numeric data type zoned or
packed, any numeric data read from AS/400 database must first be read as
character string into the program. The character string will then be converted to
one of C/400's numeric data type before the program can use the number for
calculation. When a number in a C/400 program needs to be written to a
database file or display file, the number must first be converted to character
string.

A commonly used conversion routine will be to convert an AS/400 database
numeric field to/from C/400 numeric data field. These conversion routines are

..."

5.3 Print Key

available from the C/400 library. Detailed information can be found in Chapter 3
of this manual and Appendix B of the CI400 User's Guide.

When the Print key on a terminal is pressed the screen image will be sent to
the default printer file for printing.

5.4 Display File Handling in a C/400 Program

Display File and QXXFORMAT
A C/400 program may write various screen formats from a display file to the
terminal. QXXFORMAT is used to specify which record format will be used.
Example of a QXXFORMAT statement is as follows:

QXXFORMAT(file1,"FORMAT1 "');

Display File Without Using Indicator
For an example of a C program using display file without an indicator, please
refer to Example 6 of the sample programs in the Appendix of this manual.

Display File Using Separate Indicator Area (lNDARA)
For examples of using display files with a separate indicator area (INDARA),
please refer to Example 8 of the sample programs in the Appendix of this
manual.

Display File with Indicator as Data in Input/out Buffer

DDS for display file

R FORMATl

COPTION
99

The following is an example illustrating how the C/400 program works with
display files using an indicator as data in an input/output buffer:

DSPSIZ(24 80 *DS3)

BLINK
CA03(03 'End of Job')

4 35'Testing Screen'
DSPATR(HI)
DSPATR (UL)

11 10'Enter <E> to End .,
1 B 11 50

ERRMSG('You have just entered X')
15 20'Enter X will show Error Message'
17 10'F-3 = End of Job'

The following C/400 program writes a screen to the display and accepts input. If
an operator enters an "X", indicator 99 will be turned on and an error message

5. Display File Processing 61

will appear at the bottom of the screen. This function will repeat until the
operator enters an "E" or presses FUAction key 3.

C'400 program working with display file

#include < signal.h >
#include < stdio.h >
#include < errno.h >
#include < string.h >
#include < xxasio.h >
#include < xxfdbk.h >
#include < stdlib.h >

main()
{
struct scrout {

char in99;
char coption;
} scrout;

struct scrin {
char in03;
char coption;
} scrin;

FILE -file1;
int i;
int j;

file1 = fopen("DSPFILE":ab+ type=record");

}

QXXFORMAT(file1:FORMAT1 0); 1* indicate that FORMAT1 will
be used as the format -,

cl rout(&scrout,sizeof(scrout));
scroutin99 = OXFO;
while(scrin.coption ! = 'E')

1* fill output buffer with spaces *'
r set indicator 99 to '0' -,

}

{
fwrite(&scrout,sizeof(scrout), 1 ,file1); 1* write screen -,
clrout(&scrout,sizeof(scrout)); 1* clear output buffer *'
scroutin99 = OXFO; 1* set indicator 99 to '0' *'
fread(&scrin,sizeof(scrin),1 ,file1); 1* read screen -,
if(scrin.in03 = = '1')

scrin.coption = 'E'; ,. F-3 means end of job *'
if(scrin.coption = = 'X')

scroutin99 = OXF1; 1* if X is entered, set indicator 99 on .,
scrout.coption = scrin.coption;

fclose(file1);

cl rout(buffer ,I)
char ·buffer;
int I;

1* fill output buffer with zero *'
{
int i;

}

for(i =O;i < I;i + +)
{
·buffer = ' '.
·buffer+ +; ,

62 AS/400 C

6. Performance Conclusions and Considerations

6.1 General Observations from Performance Comparison Programs
The following comparisons were derived by using the test programs later in this
chapter. For an exact comparison it is suggested that the user could use these
programs as a sample. The exact times have not been included because the
timing will vary depending on the configuration.

Note: The results of these pre-release tests will not necessarily be those of the
generally available C/400 product.

1. COBOL WRITE is somewhat faster than C/400 fwriteO to a physical file
(without logical files attaching to it).

Since no logical files are defined on the physical file, the speed will depend
solely on how fast the COBOL WRITE and C/400 fwriteO can write a record
to AS/400. In COBOU400, WRITE is a statement of the language while in
C/400, fwrite{) is a function that will be called to write the record. COBOL or
RPG write should be faster than C/400's fwrite{).

2. As more logical files are defined across the physical file the COBOL WRITE
and C/400 fwriteO are about the same speed.

The test started with a physical file without a logical file attaching to it. In
second run, one logical file was defined to a physical file to repeat the test.
Finally, a second logical file was added and the test was repeated.

With a stand alone physical file, COBOL WRITE is much faster than C/400

fwriteO, but as more logical files are added, the time required to write the
same number of records to file is almost the same. We believe this is due
to the time required to maintain the logical files. As the number of logical
files increase, eventually this becomes the major portion of the time in the
write process.

3. When writing to an AS/400 database file, using QXXFORMAT with fwriteO is
slightly slower than a straightforward fwriteO.

QXXFORMAT is a function call and will require overhead. The test indicates
that a fwriteO with QXXFORMAT requires about 20% more time than a
straightforward fwriteO.

4. For random record read and without OPNDBF, C/400 with SQL is faster than
C/400 calling COBOL to read a record. C/400 with SQL is about 50% to 70%
of the time required by C/400 calling COBOL to read a record.

There are two kinds of overhead associated with C/400 calling a COBOL to
read a record. The first one is loading the COBOL program, the second is
file opening (in this test OPNDBF was not used). Therefore C/400 calling a
COBOL program to read a record is slower than C/400 with SQL. Since the
COBOL program is called repeatedly, the program probably stayed in
memory most of the time and the time difference was probably due to the
overhead of opening the file.

6. Performance Conclusions and Considerations 63

5. For random record read and with OPNDBF, C/400 with SQL is slower than
C/400 calling COBOL to read a record. C/400 with SQL is considerably
slower than C/400 calling a COBOL to read record.

In this test, OPNDBF was entered before the programs are executed.
Overhead due to opening the file in COBOL was reduced to minimum. Since
COBOL read is faster than SQL read and not much overhead involved in
opening the file in COBOL, C/400 calling COBOL to read record is faster
than C/400 with SQL.

S. If a COBOL program is called repeatedly to read records, OPNDBF can
significantly improve the speed. C/400 calling COBOL with OPNDBF is faster
than C/400 calling COBOL without OPNDBF.

7. COBOL READ is the fastest way to read a record when compared with
C/400 calling COBOL, C/400 with embedded SQL or COBOL with SQL.

The test shows that COBOL read is faster than C/400 calling COBOL to read
and considerably faster than C with SQL. COBOL with embedded SQL read
was in between the first two times.

8. C/400 binary calculation is considerably faster than COBOL with zoned
decimal.

In all the tests that compare arithmetic operation under C/400 versus
COBOL it was found that as the number of calculations increased the
arithmetic operation under C/400 out-performed COBOL more and more.
One reason to explain this is that starting a C/400 environment when a
C/400 is called takes time. When there is only limited calculation, the C/400
start up time may be a dominant part of the total time. As the number of
calculations increases, the C/400 start up time becomes a small portion of
the total time.

9. C/400 binary calculation is also considerably faster than COBOL with
packed decimal.

10. C/400 binary calculation is many factors faster than COBOL with binary
numbers.

11. C/400 binary calculation is slightly faster than C/400 floating point.

12. COBOL calculation with packed field is slightly faster than zoned decimal.

The AS/400 performs its internal calculations in packed data and thus the
zoned-to-packed conversion will slow the program.

13. COBOL character string move is faster than C/400 strncpy.

14. C/400 memcpy was considerably faster than strncpy.

6.2 Performance Observations from Coding Analysis Tests

64 AS/400 C

As in most other languages C/400 offers a flexible approach to coding. There
are often many ways to code a program to obtain the same results. When
coding a program, if there are two choices available to a programmer it would
be to our advantage to use the most efficient coding techniques. The following
observations were made from a Construct Analysis performed at the Toronto
Laboratory. They may be used to help in the development of a more efficient
C/400 program.

Note: The results of these pre-release tests will not necessarily be those of the
generally available C/400 product.

The following provides a high level summary of the analysis that this testing
has shown. More details from this Construct Analysis will be available in a
HONE item later. The topic will be titled C/400 Tips and Techniques.

1. It was observed that the performance of an application improves if the array
or vector declarations are kept together and at the end of the data
declarations. This is especially true if the size of the array or vector is
large.

2. The use of prototyping is encouraged as good programming technique.
However, it h~as also been found to improve performance.

3. For improved compile time include only the header files for the C library
routines used. For example if a program uses the strcmp function then
include the header file string.h. However, only include the necessary
header files. For example if the math functions are not used, then do not
include the math.h header file.

4. When compiling or executing a C program ensure that the pool size of the
subsystem is not too low. For example it was found that by changing the
pool size from 500K to 1000K the execution and compile time improved
quite significantly. Adequacy of the pool size varies for the program.

5. When using library routines/functions avoid the use of excess parenthesis.
For example the performance of a statement with "strcmp (.....)" will be
better than one with "(strcmp (..... »".

6. Use of casting impacts the performance negatively. Try to avoid mixed
arithmetic so that casting can be avoided. For example avoid the use of
double precision variables and single precision variables in a single
statement.

7. If convenient avoid the use of the DATA CONVERSION routines, for handling
zoned and packed data types. Try to use C/400 supported data types ie.
float, character, double, integer and short.

8. It was observed that the performance of

integer = integer +(or-orjor*) float
was better than

integer = float + (or-orjor*) integer.

Or in other words, in the case of mixed arithmetic, it is advisable to make
the first variable on the right hand side of an equation of the same type as
the left hand side.

9. Use of pointers for accessing vectors does not help in performance.
However, arrays should be accessed through pointers, if possible, to
improve performance.

10. If you need to pass data to a C/400 program from COBOL then use
parameters instead of calling the C program from the COBOL program.

11. During the pre-release testing the use of memory string handling routines
were found to be the most efficient string handling routines. For example
memcpy out performed strcpy.

12. Use of SETPGMINF command improves performance, particularly if program
requires a large data area. In this command there are options to place data

6. Performance Conclusions and Considerations 65

areas within PAG or out of PAG. If program variables can be
accommodated within PAG, execution of the program improves.

13. Use the Application Performance Tuning Aid when appropriate. It will
provide better performance in the case of most call intensive applications.
This is not a global recommendation for all applications since the size may
become too large and cause excessive chaining and paging. Thus it is
advisable to read the Application Performance Tuning Aid manual before
using the product.

14. Stream I/O does not perform well on AS/400. Record I/O for sequential read
and write performs very well. Therefore, for I/O operations use of Record
I/O is recommended.

15. If COBOL is required to perform keyed/relative I/O then have an initial
COBOL program to set up the environment and then call the C main
program from this dummy COBOL program.

16. Use record I/O with a block parameter and follow the alignment rules for
the definition of structures.

17. Use of fprintf or sprintf is expensive. This means that the cost of developing
report producing application will be high if using C/400. Therefore, if this is
the purpose of the application it will likely be most efficient to use COBOL
or RPG.

6.3 Test programs
Test programs are used to compare the speed of performing a function using
C/400 versus doing the same thing with COBOL and SQL.

All test programs were called from the main program. The main program shows
a screen requesting the operator to type in descriptive text. The start time will
be written to a file and the test program is called. When the test program
completes its execution, the control is returned to the main program which
recorded the end-time in the file.

List of Test Programs

66 AS/400 C

TEST01 - C/400 program to write record to file with fwrite
TEST02 - COBOL program to write record to file
TEST03 - C/400 program to write record to file with QXXFORMAT
TEST04 - C/400 program to write record to file with fwrite and move fields
TEST05 - COBOL program to write record to file and move fields

TESTOS - C/400 program on arithmetic operation with binary (integer)
TEST07 - COBOL program on arithmetic operation with zone decimal
TEST08 - C/400 program on arithmetic operation with floating point
TEST09 - COBOL program on arithmetic operation with binary
TEST10 - COBOL program on arithmetic operation with pack decimal

TEST11 - C/400 program call COBOL for random record read
TEST12 - C/400 program with SQL for random record read
TEST13 - COBOL program with random record read
TEST14 - COBOL program with SQL for random record read

TEST15 - C/400 program with strncpy
TEST16 - C/400 program with memcpy

6.4 Main Program
The main program will display a screen to the operator requesting the text
description. Once the operator presses the Enter key, the start time will be
recorded in a record in a file. The corresponding test program will be called.
After the test program completes execution, control is passed back to the main
program which records the end time to a record in the file. '

In this test, the main program was altered for an individual test program by
changing one statement in the program.

Display File of Main Program - TSCREEN
A* 89/05/14 13:05:50
A
A R FORMATI
A* 89/05/14 13:05:50
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

PGMNAt~E

PGMNUM

REt~ARK

COPTION
ERRORt~SG

DAVID REL-R02M00 5728-PWl
DSPSIZ(24 80 *DS3)

DAVID REL-R02M00 5728-P\oJ1
CA03(01 'End of job')
BLINK

3 27'Test program running'
DSPATR(HI)
DSPATR(UL)

5-10'Program Name·'
10 B 5 27

9 10'Number .'
5 0B 9 21

12 9'Remark·'
50 B 12 20

18 5'Enter <E> or F-3 to End =>'
1 B IB 35

50 0 21 7DSPATR(HI)
DSPATR(BL)

Database File Used by Main Program - FSCREEN
A R FSCREENF
A PGMNAME
A PGMNUM
A TSTART
A TSTOP
A REMARK

COBOL Main Program
PROCESS APOST.
IDENTIFICATION DIVISION.
PROGRAt4- ID. SAM00.

10
5 0
8
8

50

COLHDG('PGM NAME')
COLHDG('NUMBER')
COLHDG(' START')
COLHDG ('STOP')
COLHDG('REMARK')

* ---- CHANGE PROGRAM 10. ACCORDINGLY TO INDIVIDUAL TEST
* PROGRAM
*

*

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-AS400.
OBJECT-COMPUTER. IBM-AS400.

INPUT-OUTPUT SECTION.

6. Performance Conclusions and Considerations 67

*

*

*

*

*

*

*
*

68 AS/400 C

FILE-CONTROL.
SELECT MFILE ASSIGN TO DATABASE-FSCREEN

ORGANIZATION IS SEQUENTIAL
ACCESS MODE IS SEQUENTIAL.

SELECT DSPFILE ASSIGN TO WORKSTATION-TSCREEN
ORGANIZATION IS TRANSACTION.

DATA DIVISION.
FI LE SECT! ON ..
FD MFILE LABEL RECORDS ARE STANDARD.
01 MFILE-RECORD.

COpy DDS-ALL-FORMAT OF FSCREEN.

FD DSPFILE LABEL RECORDS ARE OMITTED.
01 DSPREC PIC X(200).

WORKING-STORAGE SECTION.
01 SCREEN-IN.

COPY DDS-FORMAT1-1 OF TSCREEN.

01 SCREEN-OUT.
COPY DDS-FORMAT1-0 OF TSCREEN.

01 INDICATOR-AREA.
OS IN01 PIC 1.

88 YES-END-OF-JOB VALUE Bill.
88 NOT-END-OF-JOB VALUE BIOI.

77 ERROR-MESSAGE PIC X(60) VALUE
IERROR : INVALID CUSTOMER NUMBER ENTEREDI.

77 PROGRAM-NAME PIC X(10).
77 OLD-REMARK PIC X(70).
77 OLD-NUMBER PIC 9(6).
01 PARAMETER-ITEM.

OS THE-NUMBER PIC X(6).
OS P1NULL PIC 9 COMP-4 VALUE 0.

PROCEDURE DIVISION.
BEGIN.

OPEN EXTEND MFILE 1-0 DSPFILE.
MOVE ALL SPACES TO FORMAT1-0.
MOVE ZERO TO PGMNUM OF FORMAT1-0.
WRITE DSPREC FROM SCREEN-OUT FORMAT IFORMATII.
PERFORM LOOP UNTIL COPTION OF FORMATI-I = lEI.
CLOSE MFILE DSPFILE.
STOP RUN.

LOOP.
MOVE SPACES TO ERRORMSG.
READ DSPFILE INTO SCREEN-IN FORMAT IFORMATII.
MOVE CORR FORMAT1-I-INDIC TO INDICATOR-AREA.
IF YES-END-OF-JOB

MOVE lEI TO COPTION OF FORMAT1-I.
IF COPT ION OF FORMAT1-I NOT = lEI THEN

PERFORM READ-LOOP THRU READ-LOOP-EXIT.
READ-LOOP.

MOVE CORR FORMATI-I TO FORMAT1-0.
IF PGMNUM OF FORMATI-I = SPACES THEN

MOVE IERROR : PROGRAM NAME CANNOT BE BLANK'

*
*
*
*
*
*
*
*
*
*
*

*
*

TO ERRORMSG OF FORMATI-O
GO TO READ-LOOP-I.

MOVE CORR FORMATI-I TO FSCREENF.
MOVE SPACES TO TSTOP OF FSCREENF.
MOVE PGMNAME OF FORMATI-I TO PROGRAM-NAME.
MOVE REMARK OF FORMAT1-I TO OLD-REMARK.
MOVE PGMNUM OF FORMAT1-I TO OLD-NUMBER.
ACCEPT TSTART OF FSCREENF FROM TIME.
WRITE MFILE-RECORD.

Note that OLD-NUMER is number of times the Test Program
wi 11 loop.

The Test Program name is specified in the CALL statement
and will be changed for individual Test Program

MOVE OLD-NUMBER TO THE-NUMBER.
CALL "S22CPGA" USING OLD-NUMBER.

MOVE SPACES TO TSTART OF FSCREENF.
MOVE OLD-REMARK TO REMARK OF FSCREENF.
MOVE OLD-NUMBER TO PGMNUM OF FSCREENF.
MOVE PROGRAM-NAME TO PGMNAME OF FSCREENF.
ACCEPT TSTOP OF FSCREENF FROM TIME.
WRITE MFILE-RECORD.

READ-LOOP-I.
I'JRITE DSPREC FROM SCREEN-OUT FORMAT I FORMATl'.

READ-LOOP-EXIT •
EXIT .

6.5 TEST01 - C/400 Program to Write Record to File with fwrite
/* Program Name : TEST01

This program writes records to file with fwrite statement */

#include <signal.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <xxasio.h>
#include <xxfdbk.h>
#include <stdlib.h>

#define SIZENUM 5
#define SIZENAME 30
#define SrZEADD 30
#define SIZETEL 10
#define CNUM "0001\0"
#define CNAME "This is your name\S"
#define CADD "This is your address\S"
#define CTEL "Phone\0"
#define FLD1 "This is field 1\O"
#define FLD2 "This is field 2\S"

6. Performance Conclusions and Considerations 69

#define FL03 -This is field 3\0-
#define CAMT 1234

main(int argc,char *argv[])
{
FILE *file1;
char Cj
int i;
i nt j j

struct frecordl {
char cnum[5]j
char cname[30];
char cadd [30] j
char cte 1 [10] ;
char fldl[30];
char fld2[30];
char fld3[30]j
int camtj
int num;
} frecord;

j=atoi(argv[l]); /* j will be number of times to loop */

filel=fopen(NFSAMll-,Awb type=record M);

strcpy(frecord.cnum, CNUM);
strcpy(frecord.cname, CNAME);
strcpy(frecord.cadd, CADO);
strcpy(frecord.ctel, CTEL);
strcpy(frecord.fldl, FLDl);
strcPJ(frecord.fldZ, FLDZ);
strcpy(frecord.fld3, FLD3);
frecord.camt = CAMT; /* copy constants into record

buffer once * /

for(i=e; i<j; i + +)
{
frecord.num=i;
fwrite(&frecord,sizeof(frecord),l,filel); /* write record */
}

fclose(fi leI);

exit;

6.6· TEST02 - COBOL Progr~m to Write Record to File

70 AS/400 C

Program TEST0Z is a standard COBOL/4e0 program to write a record to the
database file.

*
*

PROCESS APOST.
IDENTIFICATION DIVISION.
PROGRAM-ID. TEST0Z.

*

*
*

*
*

*

*
*

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-AS400.
OBJECT-COMPUTER. IBM-AS400.

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT MFILE ASSIGN TO DATABASE-FSAMIIA
ORGANIZATION IS SEQUENTIAL
ACCESS MODE IS SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD MFILE LABEL RECORDS ARE STANDARD.
01 MFILE-RECORD.

COpy DDS-ALL-FORMAT OF FSAMIIA.

WORKING-STORAGE SECTION.
77 COUNT-NUMBER PIC 9(6).
77 ITEM PIC 9(6).
01 MRECORD.

05 CNUM PIC X(5).
05 CNAME PIC X(30).
05 CADD PIC X(30).
05 CTEL PIC X(10).
05 FLD1 PIC X(30).
05 FLD2 PIC X(30).
05 FLD3 PIC X(30).
05 CAMT PIC S9(8) COMP-3.
05 NUM PIC S9(6) COMP-3.

LINKAGE SECTION.
01 PARAMETER-ITEM PIC X(6).

PROCEDURE DIVISION USING PARAMETER-ITEM.
BEGIN.

OPEN OUTPUT MFILE.
MOVE PARAMETER-ITEM TO ITEM.
MOVE '00001' TO CNUM OF MRECORD.
MOVE 'THIS IS YOUR NAME' TO CNAME OF MRECORD.
MOVE 'THIS IS YOUR ADDRESS' TO CADD OF MRECORD.
MOVE 'PHONE' TO CTEL OF MRECORD.
MOVE 'THIS IS FIELD I' TO FLDI OF MRECORD.
MOVE 'THIS IS FIELD 2' TO FLD2 OF MRECORD.
MOVE 'THIS IS FIELD 3' TO FLD3 OF MRECORD.
MOVE 1234 TO CAMT OF MRECORD.
MOVE 1 TO COUNT-NUMBER.
PERFORM LOOP UNTIL COUNT-NUMBER = ITEM.
CLOSE MFILE.
EXIT PROGRAM.

LOOP.
MOVE COUNT-NUMBER TO NUM OF MRECORD.
~IRITE MFILE-RECORD FROM MRECORD.
COMPUTE COUNT-NUMBER = COUNT-NUMBER + 1.

6. Performance Conclusions and Considerations 71

DDS for Database File FSAM11A
A R FSAMllAF
A CNUM 5 COLHOG (' NUMBER')
A CNAME 30 COLHOG ('NAME')
A CAOD 30 COLHOG('ADORESS')
A CTEL 10 COLHOG ('PHONE')
A FL01 30 COLHOG (' FL01')
A FL02 30 COLHDG (, FL02 ')
A FL03 30 COLHOG (' FL03')
A. CAMT 8 0 COLHOG('AMOUNT')
A NUM 6 0 COLHOG (I NUM ')

6.7 TEST03 - C/400 Program to Write Record to File with
QXXFORMAT

72 AS/400 C

/* Program Name : TEST03

This program writes records to a file. Before fwrite() is executed,
QXXFORMAT is used to specify the record format. */

'include <signal.h>
'include <stdio.h>
'include <errno.h>
'include <string.h>
'include <xxasio.h>
'include <xxfdbk.h>
'include <stdlib.h>

'define SIZENUM 5
'define SIZENAME 30
'define SIZEAOO 30
'define SIZETEL 10
'define CNUM "0001\0"
'define CNAME "This is your name\0"
'define CAOD "This is your address\0"
'define CTEL "Phone\0"
'define FL01 "This is field 1\0·
'define FLD2 "This is field 2\0"
'define FL03 "This is field 3\0"
'define CAMT "1234"
'define NUM "5678"

main(int argc,char *argv[])
{
FILE *fi leI;
char c;
int i;
int j;

struct frecord1 {
char cnum[5];
char cname[30];
char cadd[30];
char ctel [10];
char fl d 1 [30] ;
char fld2[30];
char fl d3 [30] ;

char camt[6];
char num[6];
} frecord

j=atoi(argv[l]);

filel=fopen("FSAMllB","wb type=record");

strcpy(frecord.cnum, CNUM);
strcpy(frecord.cname, CNAME);
strcpy(frecord.cadd, CADD);
strcpy(frecord.ctel, CTEL);
strcpy(frecord.fldl, FLD1);
strcpy(frecord.fld2, FLD2);
strcpy(frecord.fld3, FlD3);
strcpy(frecord.camt, CAMT);
\strcpy(frecord.num, NUM);

for(i=0;i<j;i++)
{
QXXFORMAT(filel,"FSAMllBF H);
fwrite(&frecord,sizeof(frecord),l,filel);
}

fclose(fi lel);

exit;

DDS for Database File FSAM11B
A R FSAMllBF
A CNUM 5 COLHDG (' NU~1BER')
A CNAME 30 COLHDG (, NAME')
A CADD 30 COLHDG('ADDRESS')
A CTEL 10 COLHDG (, PHONE')
A FLD1 30 COLHDG (' FLD1')
A FLD2 30 COLHDG ('FLD2 ')
A FLD3 30 COLHDG (' FlD3')
A CAMT 6 COLHDG('AMOUNT')
A NUM 6 COLHDG('NUMBER')

6.8 TEST04 - C/400 Program to Write Record to File with fwrite and
Move Fields

/* Program Name : TEST04

This program is similar to TESTe1 except each time the fwrite()
loop is performed, a series of strncpy is used to copy fields
into output buffer at the same time.

#include <signal.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <xxasio.h>
#include <xxfdbk.h>

*/

6. Performance Conclusions and Considerations 73

74 AS/400 C

#include <stdlib.h>

#define SIZENUM 5
#define SIZENAME 30
#define SIZEADD 30
#define SIZETEL 10
#define CNUM "0001\0"
#define CNAME "This is your name\O"
#define CADD "This is your address\O"
#define CTEL "Phone\O"
#define FLDI "This is field 1\0"
#define FLD2 "This is field 2\0"
#define FLD3 "This is field 3\0"
#define CAMT 1234

main(int argc,char *argv[])
{
FILE *file1;
char c;
i nt i;
i nt j;

struct frecordl {
char cnum[5];
char cname[30];
char cadd[30];
char ctel [10];
char fl d 1 [30] ;
char fl d2 [30] ;
char fld3[30];
int camt;
int num;

frecord

j=atoi(argv[l]); j* j will be number of times to loop *j

filel=fopen(·FSAMll","wb type=record");

for (i =0; i <j ; i + +)
{
strcpy(frecord.cnum, CNUM);
strcpy(frecord.cname, CNAME);
strcpy(frecord.cadd, CADD);
strcpy(frecord.ctel, CTEL);
strcpy(frecord.fldl, FLDl);
strcpy(frecord.fld2, FLD2);
strcpy(frecord.fld3, FLD3);
frecord.camt = CAMT; j* copy constants into record *j

frecord.num=i;
fwrite(&frecord,sizeof(frecord),l,filel); j* write record *j
}

. fcl ose (fi 1 el);

exit;

6.9 TEST05 - COBOL Program to Write Record to File and Move
Fields

Program Name : TEST05

This program is similar to TEST02 except that in each loop of
WRITE, constants are moved into the output record buffer at the
same time.

PROCESS APOST.
IDENTIFICATION DIVISION.
PROGRAM-ID. TEST05.

*
*

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-AS400.
OBJECT-COMPUTER. IBM-AS400.

*

*
*

*
*

*

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT MFILE ~SSIGN TO DATABASE-FSAM11A
ORGANIZATION IS SEQUENTIAL
ACCESS MODE IS SEQUENTIAL.

DATA DIVISION.
FILE SECTION.
FD MFILE LABEL RECORDS ARE STANDARD.
01 MFILE-RECORD.

COpy DDS-ALL-FORt4AT OF FSAMllA.

WORKING-STORAGE SECTION.
77 COUNT-NUMBER PIC 9(6).
77 ITEM PIC 9(6).
01 MRECORD.

05 CNUM PIC X(5).
05 CNAME PIC X(30).
05 CADD PIC X(30).
05 CTEL PIC X(10).
05 FLD1 PIC X(30).
05 FLD2 PIC X(30).
05 FLD3 PIC X(30).
05 CAMT PIC S9(8) COMP-~.
05 NUM PIC S9(6) COMP-3.

LINKAGE SECTION.
01 PARAMETER-ITEM PIC X(6).

*
*

PROCEDURE DIVISION USING PARAMETER-ITEM.
BEGIN.

OPEN OUTPUT MFILE.
MOVE PARAMETER-ITEM TO ITEM.
MOVE 1 TO COUNT-NUMBER.
PERFORM LOOP UNTIL COUNT-NUMBER = ITEM.
CLOSE MFILE.

6. Performance Conclusions and Considerations 75

EXIT PROGRAM.
LOOP.

MOVE COUNT-NUMBER TO NUM OF MRECORD.
MOVE 1000011 TO CNUM OF MRECORD.
MOVE ITHIS IS YOUR NAME I TO CNAME OF MRECORD.
MOVE ITHIS IS YOUR ADDRESSI TO CADD OF MRECORD
MOVE IPHONEI TO CTEL OF MRECORD.
MOVE ITHIS IS FIELD 11 TO FLD1 OF MRECORD.
MOVE ITHIS IS FIELD 21 TO FLD2 OF MRECORD.
MOVE ITHIS IS FIELD 31 TO FLD3 OF MRECORD.
MOVE 1234 TO CAMT OF MRECORD.
WRITE MFILE-RECORD FROM MRECORD.
COMPUTE COUNT-NUMBER = COUNT-NUMBER + 1.

6.10 TEST06 - C/400 Program on Arithmetic Operation with Binary
(Integer) ~

76 AS/400 C

/* Program Name : TE5T06

Each loop performs 4 arithmetic operations
- one addition
- one subtraction
- one multiplication
- one division

Note that C/400 use binary for data type integer */

#include <signal.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <xxnsio.h>
#include <xxfdbk.h>
#include <stdlib.h>

main(int argc,char *argv[])
{
char c;
i nt i;
i nt j;
int a;
i nt b;
i nt c 1;
int d;
int e;
i nt f;
int 9;
int h;

a=3;
b=4;
cl=5;
d=6;

j=atoi(argv[I]);

for (i =8; i <j ; i + +)
{
e=a+b;

f=b-a;
g=cl*d;
h=d/c1;
}

exit;

6.11 TEST07 - COBOL Program on Arithmetic Operation with Zone
Decimal

Program Name : TEST87

Each loop performs 4 arithmetic operations
- one addition
- one subtraction
- one multiplication
- one division

PROCESS APOST.
IDENTIFICATION DIVISION.
PROGRAM-ID. TEST87.

*
*

*

*
*

*
*

*

*
*

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-AS488.
OBJECT-COMPUTER. IBM-AS480.

INPUT-OUTPUT SECTION.
FILE-CONTROL.

DATA DIVISION.
FILE SECTION.

WORKING-STORAGE SECTION.
77 COUNT-NUMBER PIC 9(6).
77 ITEM PIC 9(6).
77 A PIC 999.
77 B PIC 999.
77 C PIC 999.
77 D PIC 999.
77 EPIC 999.
77 F PIC 999.
77 G PIC 999.
77 H PIC 999.

LINKAGE SECTION.
01 PARAMETER- ITEM PIC X(6).

PROCEDURE DIVISION USING PARAMETER-ITEM.
BEGIN.

MOVE PARAMETER-ITEM TO ITEM.
MOVE 3 TO A.
MOVE 4 TO B.
MOVE 5 TO C.

6. Performance Conclusions and Considerations 77

MOVE 6 TO D.
MOVE 1 TO COUNT-NUMBER.
PERFORM LOOP UNTIL COUNT-NUMBER = ITEM.
EXIT PROGRAM.

LOOP.
COMPUTE E = A + B.
COMPUTE F = B - A.
COMPUTE G = C * D.
COMPUTE H ROUNDED = D / C.
COMPUTE COUNT-NUMBER = COUNT-NUMBER + 1.

6.12 TEST08 - C/400 Program on Arithmetic Operation with Floating
Point

78 AS/400 C

/* Program Name : TEST0S

Each loop performs 4 arithmetic operations
- one addition
- one subtraction
- one multiplication
- one division

Note: that floating point is defined in the program

#include <signal.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <xxasio.h>
#include <xxfdbk.h>
#include <stdlib.h>

main(int argc,char *argv[])
{
char c;
float i;
float j;
fl oat a;
float b;
float c1;
float d;
fl oat e;
float f;
float g;
float h;

a=3.3;
b=4.4;
c1=5.5;
d=5.5;

j=atoi(argv[l]);

for(i=0;i<j;i++)
{
e=a+b;
f=b-a;
g=c1*d;
h=d/cl;

*/

exit;
}

6.13 TEST09 - COBOL Program on Arithmetic Operation with Binary
Program Name : TEST09

Each loop performs 4 arithmetic operations
- one addition
- one subtraction
- one multiplication
- one division

Note that binary field is defined in the program

PROCESS APOST.
IDENTIFICATION DIVISION.
PROGRAM-ID. TEST09.

*
*

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-AS400.
OBJECT-COMPUTER. IBM-AS4aa.

*
INPUT-OUTPUT SECTION.
FILE-CONTROL.

*
*

DATA DIVISION.
FILE SECTION.

*
*

WORKING-STORAGE SECTION.
77 COUNT-NUMBER PIC 9(6).
77 ITEM PIC 9(6).
77 A PIC gggggg9Vggg COMP-4.
77 B PIC gggggg9Vggg COMP-4.
77 C PIC gggggg9Vggg COMP-4.
77 D PIC gggggg9Vggg COMP-4.
77 EPIC gggggg9Vggg COMP-4.
77 F PIC gggggg9Vggg COMP-4.
77 G PIC gggggg9Vggg COMP-4.
77 H PIC gggggg9Vggg COMP-4.

*
LINKAGE SECTION.
a1 PARAMETER-ITEM PIC X(6).

*
*

PROCEDURE DIVISION USING PARAMETER-ITEM.
BEGIN.

MOVE PARAMETER-ITEM TO ITEM.
MOVE 3.3 TO A.
MOVE 4.4 TO B.
MOVE 5.5 TO C.
MOVE 6.6 TO D.
MOVE 1 TO COUNT-NUMBER.
PERFORM LOOP UNTIL COUNT-NUMBER = ITEM.

6. Performance Conclusions and Considerations 79

EXIT PROGRAM.
LOOP.

COMPUTE E = A + B.
COMPUTE F = B - A.
COMPUTE G = C * D.
COMPUTE H ROUNDED = D / C.
COMPUTE COUNT-NUMBER = COUNT-NUMBER + 1.

6.14 TEST10 - COBOL Program on Arithmetic Operation with Pack
Decimal

80 AS/400 C

Program Name : TESTle

Each loop performs 4 arithmetic operations
- one addition
- one subtraction
- one multiplication
- one division

Note: that packed numeric fields are used in program

PROCESS APOST.
IDENTIFICATION DIVISION.
PROGRAM-ID. TESTIS.

*
*

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-AS400.
OBJECT-COMPUTER. IBM-AS400.

*
INPUT-OUTPUT SECTION.
FILE-CONTROL.

*
*

*
*

*

DATA DIVISION.
FILE SECTION.

WORKING-STORAGE SECTION.
77 COUNT-NUMBER PIC 9(6).
77 ITEM PIC 9(6).
77 A PIC 999 COMP-3.
77 B PIC 999 COMP-3.
77 ePIC 999 COMP-3.
77 0 PIC 999 COMP-3.
77 EPIC 999 COMP-3.
77 F PIC 999 COMP-3.
77 G PIC 999 COMP-3.
77 H PIC 999 COMP-3.

LINKAGE SECTION.
01 PARAMETER-ITEM PIC X(6).

*
*

PROCEDURE DIVISION USING PARAMETER-ITEM.
BEGIN.

MOVE PARAMETER-ITEM TO ITEM.
MOVE 3 TO A.

" ...,

MOVE 4 TO B.
MOVE 5 TO C.
MOVE 6 TO D.
MOVE 1 TO COUNT-NUMBER.
PERFORM LOOP UNTIL COUNT-NUMBER = ITEM.
EXIT PROGRAM.

LOOP.
COMPUTE E = A + B.
COMPUTE F = B - A.
COMPUTE G = C * D.
COMPUTE H ROUNDED = D / C.
COMPUTE COUNT-NUMBER = COUNT-NUMBER + 1.

6.15 TEST11 - C/400 Program call COBOL for Random Record Read
This sample contains one C/400 program and one COBOL program. Function of
program is to retrieve a database record based on the key passed from the
C/400 program.

'include <signal.h>
'include <stdio.h>
'include <errno.h>
#include <string.h>
'include <xxasio.h>
#include <xxfdbk.h>
#include <stdlib.h>

'define MAX 50000
.define SIZEKEY 6

#pragma linkage(S22CBl,OS) /* S22CBl is cbl pgm to read record */
extern void S22CBl(char *);

main(int argc,char *argv[])
{

struct frecord
{
char ckey [6];
char cnum[6];
char fl dl [30] ;
char fld2[30];
char fld3[30];
char fl d4 [30] ;
} frecord;

i nt i;
i nt j;
int k;
char s [6] ;
char c;
char xnum[8];
char xnuml[6];
char xnum2[7];

strcpy(s,argv[l]);

i=0;
j=atoi(argv[l]);

6. Performance Conclusions and Considerations 81

82 AS/400 C

for (i=0;i<j;i++)
{

k=(rand() % MAX); /* generate random number */

strncpy(xnum,"
sprintf(xnum,"%d",k);

strncpy(xnuml,xnum,6);
xnuml[6J='\0';

padnum(&xnuml,6);

" ,8) ;
/* convert integer to alpha */

/* right justify field and fill
leading space with 0 */

strncpy(frecord.ckey,xnuml,6); /* move field to key */

clrbuf(&frecord.fldl,30);
clrbuf(&frecord.fld2,30);
clrbuf(&frecord.fld3,30);
clrbuf(&frecord.fld4,30);
frecord.fld4[30]='\0'; /* clear record buffer */

S22CBl(frecord.ckey); /* call cbl program to read record */

exit;

padnum(buffer,l) /* make field right justify and fill leading

char *buffer;
i nt 1;

in t i;
i nt j;
int k;
char s[6];

i=atoi (buffer);

sprintf(s,"%dH,i);

k=0;

spaces with 0 */

for(J:0;j<s i zeaf(s);j + +)
{
i f(!isdi git(s[j]))
{
k=k+l;
}

}
for(j=0 ;j<k;j + +)
{
buffer[j]='0' ;
}

for(j=k;j<si zeof(s) ;j+ +)
{
buffer[jJ=s[j-kJ;

}

c1rbuf(buffer,1)

char *buffer;
i nt 1;

i nt i;

for (i =8; i <1; i + +)
{
buffer[i]=' ';
}

fi1space(buffer,1)

char *buffer;
int 1;

i nt i;
for(i=8;i<1;i ++)
{
if(!(isprint(buffer[i])))
buffer[i]=' ';
}

COBOL Program Called to Read File
PROCESS APOST.
IDENTIFICAT(ON DIVISION.
PROGRAM-ID. S22CB1.

*
*

*

*
*

*
*

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-AS488.
OBJECT-COMPUTER. IBM-AS488.

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT MFILE ASSIGN TO DATABA~E-BIGF11
ORGANIZATION IS INDEXED
ACCESS MODE IS RANDOM
RECORD KEY IS EXTERNALLY-DESCRIBED-KEY.

DATA DIVISION.
FILE SECTION.
FD MFILE LABEL RECORDS ARE STANDARD.
81 MFILE-RECORD.

COPY DOS-ALL-FORMAT OF BIGFIL.

WORKING-STORAGE SECTION.

6. Performance Conclusions and Considerations 83

*

*
*

77 DUMMY-FIELD PIC XXX VALUE SPACES.

LINKAGE SECTION.
01 PARAMETER-LIST.

05 CKEY PIC X(6).
05 CNUM PIC X(6).
05 FLDl PIC X(30).
05 FLD2 PIC X(30).
05 FLD3 PIC X(30).
05 FLD4 PIC X(30).

PROCEDURE DIVISION USING PARAMETER-LIST.
BEGIN.

OPEN INPUT MFILE.
MOVE CKEY TO CNUM OF PARAMETER-LIST.
MOVE CORR PARAMETER-LIST TO FORMAT1.
READ MFILE INVALID KEY STOP RUN.
MOVE CORR FORMATl TO PARAMETER-LIST.
EXIT PROGRAM.

6.16 TEST12 - C/400 Program with SQL for Random Record Read

84 AS/400 C

This Cj400 program includes SQL statement to read file by random key.

#include <signal.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <xxasio.h>
#include <xxfdbk.h>
#include <st~lib.h>

#define MAX 50000
#define SIZEKEY 6

j***j
EXEC SQL INCLUDE SQLCA;

j***/

main(int argc,char *argv[])
{

struct frecord
{
char ckey[6];
char cnum[6];
char fl d 1 [30]; ,
char fld2[30];
char fld3[30];
char fl d4 [30] ;
} frecord;

int i;
int j;
int k;
char s[6];
char c;
char xnum[8];
char xnuml [6] ;

(

char xnurn2[7];

strcpy(s,argv[l]);

1=9;

j=atoi(argv[l]);
for (i =9; 1 <j; 1 + +)

k=(rand() % MAX);

strncpy(xnum," ",8);
spr1ntf(xnum,"%d",k);

strncpy(xnuml,xnum,6);
xnuml[6]='\0 1 ;

padnum(&xnuml,6);
strncpy(frecord.ckey,xnuml,6);

clrbuf(&frecord.fldl,39);
clrbuf(&frecord.fld2,39);
clrbuf(&frecord.fld3,39);
clrbuf(&frecord.fld4,39);
frecord.fld4[30]='\0 1 ;

EXEC SQL
SELECT *
INTO :frecord.cnum, :frecord.fldl, :frecord.fld2,

:frecord.fld3, :frecord.fld4
FROM BIGFIL
WHERE CNUM = :frecord.ckey;

exit;
}

padnum(buffer,l)

char *buffer;
i nt 1;

1 nt 1;
1 nt j;
1nt k;
char s[6];

i=ato1 (buffer);

sprintf(s,"%d",i);

k=0;
for(j=0;j<s i zeof (s) ;j + +)
{
H(! i sdi git (s [j]»
- {

k=k+l;
}

6. Performance Conclusions and Considerations 85

}
for(j=9;j<k;j + +)
{
buffer[j]='9 I;
}

for (j=k ;j<s i zeof(s);j + +)
{
buffer[j]=s [j -k];
}

clrbuf(buffer,l)

char *buffer;
i nt 1;

int i;

for(i=0;i<1 ;i++
{
buffer[i]=' I;
}

}

filspace(buffer,l)

char *buffer;
int 1;

i nt i;
for(i=0;i<1;i++)
{
if(!(isprint(buffer[i]»)
buffer[i]=' I;
}

6.17 TEST13 - COBOL Program with Random Record Read

86 AS/400 C

This is a standard COBOL program to read file.

*
*

PROCESS APOST.
IDENTIFICATION DIVISION.
PROGRAM-ID. TEST13.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-AS400.
OBJECT-COMPUTER. IBM-AS40e.

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT MFILE ASSIGN TO DATABASE-BIGFll
ORGANIZATION IS INDEXED
ACCESS MODE IS RANDOM

*
*

*
*

*

*
*

RECORD KEY IS EXTERNALLY-DESCRIBED-KEY.

DATA DIVISION.
FILE SECTION.
FD MFILE LABEL RECORDS ARE STANDARD.
01 MFILE-RECORD.

COPY DDS-ALL-FORMAT OF BIGFlL.

WORKING-STORAGE SECTION.
77 DUMMY-FIELD PIC XXX VALUE SPACES.
al NOW-TIME.

es NOW-HOUR PIC XX.
es NOW-MINUTE PIC XX.
es NOW-SECOND PIC XX.

77 WORK-SECOND PIC 99.
77 NEW-KEYI PIC 999999.
77 BASE-KEY PIC 999999 VALUE a.
77 INCREMENT PIC 9999 VALUE Ieee.
77 TOP-NUM PIC 99999 VALUE 4gee0.
77 NEW-KEY2 PIC 999999.
77 LOOP-COUNTER PIC 999999.
77 LOOP-TOTAL PIC 999999.
al INDICATOR-AREA.

0S TEST-CODE PIC 1.
88 YES-TEST-ONE VALUE Bill.
88 YES-TEST-TWO VALUE B101 •

LINKAGE SECTION.
al PARAMETER-LIST.

0S CKEY PIC X(6).

PROCEDURE DIVISION USING PARAMETER-LIST.
BEGIN.

OPEN INPUT MFILE.
* --------------- SET INITIAL VALUE --------------­

SET YES-TEST-ONE TO TRUE.
MOVE CKEY TO LOOP-TOTAL.
MOVE BASE-KEY TO NEW-KEY2.
MOVE ZERO TO LOOP-COUNTER.
PERFORM LOOP THRU LOOP-EXIT UNTIL

LOOP-TOTAL = LOOP-COUNTER.
CLOSE MFI LE.
GOBACK.

LOOP.
IF YES-TEST-ONE PERFORM GET-KEY-ONE.
IF YES-TEST-TWO PERFORM GET-KEY-TWO.
IF YES-TEST-ONE THEN

SET YES-TEST-TWO TO TRUE
ELSE
SET YES-TEST-ONE TO TRUE.

* --------------- READ FILE --------------­
READ MFILE INVALID KEY STOP RUN.

*

COMPUTE LOOP-COUNTER = LOOP-COUNTER + 1.
LOOP-EXIT •

EXIT.

6. Performance Conclusions and Considerations 87

*

GET -KEY -ONE.
ACCEPT NOW-TIME FROM TIME.
MOVE NOW-SECOND TO WORK-SECOND.
COMPUTE NEW-KEYl = WORK-SECOND * WORK-SECOND.
MOVE NEW-KEYl TO CNUM OF FORMATl.

GET-KEY-TWO.
I F NE\~-KEY2 >= TOP-NUM

MOVE ZERO TO NEW-KEY2.
COMPUTE NEW-KEY2 = NEt1-KEY2 + INCREMENT.
MOVE NEW-KEY2 TO CNUM OF FORMAT1.

Database File Used in Program BIGF1 L
Logical file BIGF1L is based on physical file BIGF1 with CNUM as key:

A R FORMATl
A CNUM
A FLD1
A FLD2
A FLD3
A FLD4

6
30
30
30
30

COLHDG('NUMBER')
COLHDG (I FLD11)
COLHDG (I FLD2 I)

COLHDG(I FLD3 1)
COLHDG (I FLD4 I)

6.18 TEST14 - COBOL Program with SQL for Random Record Read

88 AS/400 C

This is a COBOL program with SQL to read file.

PROCESS APOST.
IDENTIFICATION DIVISION.
PROGRAM-ID. TEST14.

*
*

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-AS400.
OBJECT-COMPUTER. IBM-AS400.

*

*
*

*
*

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT MFILE ASSIGN TO DATABASE-BIGFll
ORGANIZATION IS INDEXED
ACCESS MODE IS RANDOM
RECORD KEY IS EXTERNALLY-DESCRIBED-KEY.

DATA DIVISION.
FILE SECTION.
FD MFILE LABEL RECORDS ARE STANDARD.
01 MFILE-RECORD.

COPY DDS-ALL-FORMAT OF BIGF1L.

WORKING-STORAGE SECTION.
EXEC SQL

INCLUDE SQLCA
END-EXEC.

77 DUMMY-FIELD PIC XXX VALUE SPACES.
01 NOW-TIME.

*

*
*

es NOW-HOUR PIC XX.
0S NOW-MINUTE PIC XX.
0S NOW-SECOND PIC XX.

77 WORK-SECOND PIC 99.
77 NEW-KEY1 PIC 999999.
77 BASE-KEY PIC 999999 VALUE e.
77 INCREMENT PIC 9999 VALUE 100e.
77 TOP-NUM PIC 99999 VALUE 49000.
77 NEW-KEY2 PIC 999999.
77 LOOP-COUNTER PIC 999999.
77 LOOP-TOTAL PIC 999999.
01 INDICATOR-AREA.

0S TEST-CODE PIC 1.
BB YES-TEST-ONE VALUE B'l'.
88 YES-TEST-TWO VALUE B'0'.

LINKAGE SECTION.
01 PARAMETER-LIST.

0S CKEY PIC X(6).

PROCEDURE DIVISION USING PARAMETER-LIST.
BEGIN.

OPEN INPUT MFILE.
* --------------- SET INITIAL VALUE --------------­

SET YES-TEST-ONE TO TRUE.
MOVE CKEY TO LOOP-TOTAL.
MOVE BASE-KEY TO NEW-KEY2.
MOVE ZERO TO LOOP-COUNTER.
PERFORM LOOP THRU LOOP-EXIT UNTIL

LOOP-TOTAL = LOOP-COUNTER.
CLOSE MFILE.
GOBACK.

LOOP.
IF YES-TEST-ONE PERFORM GET-KEY-ONE.
IF YES-TEST -HJO PERFORM GET -KEY -TWO.
IF YES-TEST-ONE THEN

SET YES-TEST-TWO TO TRUE
ELSE
SET YES-TEST-ONE TO TRUE.

* --------------- READ FILE WITH SQL --------------­
EXEC SQL

*

*

SELECT *
INTO :FORMATl
FROM BIGF1L
WHERE CNUM = :CNUM
END-EXEC.

COMPUTE LOOP-COUNTER = LOOP-COUNTER + 1.
LOOP-EXIT .

EXIT •

GET -KEY-ONE.
ACCEPT NOW-TIME FROM TIME.
MOVE NOW-SECOND TO WORK-SECOND.
COMPUTE NEW-KEYl ; ~IORK-SECOND * \~ORK-SECOND.
MOVE NEW-KEY1 TO CNUM OF FORMAT1.

GET-KEY-TWO.
IF NEW-KEY2 >= TOP-NUM

6. Performance Conclusions and Considerations 89

MOVE ZERO TO NEW-KEY2.
COMPUTE NHJ-KEY2 = NE\~-KEY2 + INCREMENT.
MOVE NE\~-KEY2 TO CNUM OF FORMATl.

TEST15 - C/400 Program with strncpy

90 AS/400 C

This program copy string with strncpy

#include <signal.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <xxasio.h>
#include <xxfdbk.h>
#include <stdlib.h>

main(int argc,char *argv[])
{

{

i nt i;
i nt j;
char sl[30];
char s2[30];
char s3[30];
char s4[30];
char t1 [30] ;
char t2 [30] ;
char t3[30];
char t4[30];

strcpy(s,argv[l]);

i=0;

j=atoi(argv[l]);

strncpy(sl,"this is for string1",30);
strncpy(s2,"this is for string2",30);
strncpy(s3,"this is for string3",30);
strncpy(s4,"this is for string4",30);

for (i=0;i<j; i ++)

}

strncpy(t1,sl,30);
strncpy(t2,s2,30);
strncpy(t3,s3,30);
strncpy(t4,s4,30);

exit;

6.19 TEST16 - C/400 Program with memcpy
This program copy string with strncpy

#include <signal.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <xxasio.h>
#include <xxfdbk.h>
#include <stdlib.h>

main(int argc,char *argv[])
{

int i;
i nt j;
char sl[30];
char s2[30];
char s3[30];
char s4[30];
char t1[30];
char t2[30];
char t3[30];
char t4[30];

strcpy(s,argv[l]);

i=0;

j=atoi (argv[l]);

strncpy(sl,"this is for stringl",30);
strncpy(s2,"this is for string2",30);
strncpy(s3,"this is for string3",30);
strncpy(s4,"this is for string4",30);

{
for (i=0;i<j;i++)

}

memcpy(tl,sl,30);
memcpy(t2,s2,30);
memcpy(t3,s3,30);
memcpy(t4,s4,30);

exit;

6. Performance Conclusions and Considerations 91

92 AS/400 C

Appendix A. Sample C Programs

A.1 Sample Programs
C is a new programming language to the AS/400 developer. In many aspects,
this programming language does not work the same way as other programming
languages (for example COBOL or RPG). C/400 has its own way of handling
characters, strings, numeric data, pointers etc. C/400 also has its own way of
storing the data on AS/400 and the format is often different from the
conventional AS/400 approach.

The purpose of attaching the sample programs is to help the user more easily
identify some key characteristics of the C/400 language.

All the sample programs shown here are simple, short programs coded in
C/400. The programs are not coded in any advanced technique and they should
not be considered model programs but they will serve to explain some of the
C/400 characteristics.

Note: that 1\0 1 means HEX 00, I\nl is the new
line character and both are one byte long.

A.2 Example 1 - PGM01 (String Substitution)
Some of the sample programs were developed on a PC and uploaded to the
AS/400 using PC Support. In the upload process, the left square bracket [and
the right square bracket] were lost and were replaced by HEX 00. To correct
the source manu,ally with SEU would be very time-consuming since every string
defined in a C program will require square brackets.

PGM01 is used to scan the source program and replace the HEX 00 characters
with appropriate square brackets.

A modification of this program cuuld be used to translate any characters in a C
file.

/* ---

Program Name : PGMOI

This program illustrates how to use C/400 to convert a source
program which was originally developed on a PC. The original source
program is uploaded from PC to AS/400 through PC Support. In this
process, the left square bracket [and the right square bracket]
were lost and were replaced by HEX 00.

The program reads the member in the source file as a binary file.
It checks every character in the record to see whether it is a
HEX 00 character. If it is the first HEX 00, it will then be
replaced by character [(value of D as defined in Hdefine
statement). If it is the second HEX 00 in the record, it will be
replaced by character] (value of E as defined in #define

Appendix A. Sample C Programs 93

94 AS/400 C

statement). If the character is not HEX 00, it will remain
unchanged in the output file.

This program will be called by an AS/400 CL program. The CL
program will have two OVRDBF statements. Each OVRDBF will define
explicitly which member in which source file will be used as
input file file1 and which one will be used as output file file2.

--- */

#include <signal.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <xxasio.h>
#include <xxfdbk.h>
#include <stdlib.h>

#define D 173 /* decimal value of character [*/
#define E 189 /* decimal value of character] */

#define RECLEN 92 /* length of record in source file. If length of
record in source file change, only value of
RECLEN need to be changed as all length
definition in the program is based on this value.

*/

mai n ()

FILE *filel; /* Input source file from which the source will
be converted. This file can be defined by
OVRDBF to specify which member will be used */

FILE *file2; 1* Output source fil e to hold the output of the
converted source. This file can be defined by
OVRDBF to specify which member will be used */

struct record
{
char s [RECLEN] ;
} record; /* The structure record contains s as its only

element and it has length of 92, as defined by
RECLEN. This structure will serve as input
record buffer in the program */

struct record1
{
char sl[RECLEN];
} record1; /* The structure record1 contains sl as its only

element and its length is 92. This record will
serve as output record buffer in the program */

int swit; /* swit will be used as a switch in the program */

filel=fopen(HFILElH,"rb type=record");
/* FILEl is the input file for processing.

file! is the file pointer pointing to FILEl

*/

on AS/4Se. FILE! can be redirected by using
OVRDBF in which the source file, library and
the source member can be redefined.
FILE1 is defined as a binary file and it will
be processed in record mode.

fi1e2=fopen("FILE2",·wb+ type=record")i
/* FILE2 is the output file for processing.

file2 is the file pointer pointing to FILE2
on AS/400. FILE2 can be redirected by using
OVRDBF in which the source file, library and
the source member can be redefined.

*/

FILE2 is defined as a binary file and it wil
be processed in record mode.
In this particular example, the source file
already exists. Therefore even lrecl (record
length) value is not specified and FILE2 will
be a new member to the file. The record length
of this new member is automatically set to
92.

whi1e(!feof(fi1e1)) /* When not end of file1 */
{
fread(&record,sizeof(record),1,fi1e1);

/* read the record from file1 into record
buffer. The record buffer is the
structure defined by record.

*/

Note that only the address (pointer) of
input buffer can be specified in the
fread statement and length of buffer
must be explicitly specified.

swit=0; /* swit is initialized to 0 before processing
each record */

for(i=0ii<RECLENii++) /* scan through the whole string */
{
if((record.s[i]=='\0') && (swit==l))

{

/* if character found to be HEX 00 and
another HEX 00 has been encountered
before in the same record, then

*/

replace this character with the value of
E (189 as defined in #define statement)

recordl.s1[i]=E;
} .

if((record.s[i]=='\0') && (swit==0))
/* if a character found to be HEX 00 and

it is the first time encountered in the
string (swit == 0), then replace this
character with the value of D (173 as
defined in the #define statement)

*/

record1.s1[i]=D;

Appendix A. Sample C Programs 95

96 AS/400 C

}

swi t=l; /* swit is set to 1 to denote that first
HEX aa has been detected */

if(record.s[i]!='\9 1)

}

{

/* if character is not HEX ee, the output
character will be same as input character

*/

recordl.sl[i]=record.s[i];
}

if(!feof(filel» /* this is to avoid duplicating the last
statement in the source file twice

{
*/

fwrite(&recordl,sizeof(recordl),1,file2);
/* write the output record to disk. the

output buffer is stored in structure
record!.

*/

fclose(filel) ;
fclose(file2);

A.3 Example 2 - PGM02 (Unsigned Packed Field to Signed Packed
Field Conversion)

A byte in a packed field contains 2 digits. In AS/400, the last half byte of the
packed field contains the sign and a hex value of D to represent a negative
number and any other value represent a positive number. In some computers,
the positive number can be stored as unsigned pack field in order to save
storage space. The characteristics is that these unsigned pack field does not
use the last half byte to represent the sign, but these fields cannot be
processed by AS/400.

As an example, the number + 1234 will be represented on AS/400 in Hex as:

024
13F

but with unsigned packed field, this will be represented as

13
24

The difference we can see here is that:
(1). Field lengths in terms of bytes can be different, depending upon

whether the field contains odd-number or even-number of digit.
(2). As compared with unsigned pack field, the digits are shifted

half-byte higher.

PGM02 illustrates step by step how the half-byte shift is performed under C. It
make use of C Language's ability to treat a character as an integer for
arithmetic uperation.

The same differences will be noticed when using data from other computers
where formats are not compatible with AS/400 (for example, the first half-byte
represents a sign instead of the last half-byte, Hex D does not represent
negative etc).

j* -- ._---------------

Program Name : PGM02

This program is a step-by-step illustration of how to convert an
unsigned packed field to a signed packed field that can be processed by
ASj400.

In some computer, in order to save storage space, packed fields are
stored without a sign (i.e. they always represent positive numbers).
ASj400 process packed fields with a sign and conversion is required in
such a situation.

This program uses C Language's ability to treat a character
as an integer. The obj ect i ve of the program is to
make a "half-byte shift" to the left so that a sign can be
inserted into the lower half byte after the last digit.

This program is a very straight-forward step-by-step illustration
of the process. For a practical application, such function will be

Appendix A. Sample C Programs 97

98 AS/400 C

processed in the form of a function.

--- */

'include <signal.h>
'include <stdio.h>
'include <errno.h>
'include <string.h>
'include <xxasio.h>
'include <xxfdbk.h>
'include <stdlib.h>
'include <math.h>

mai n ()
(
char s [2];
char sl[2];
char t[3];

char t1[3];

int du;
int dl;

s[0]=1;
s[1]=35;

sl[0]=18;
sl[1]=52;

t[0]='\0 1 ;

t[1]='\0 1 ;

t[2]='\0 1 ;

t1[0]='\0 1 ;

t1[1]='\0 1 ;

t1[2]='\0 1 ;

/* First string of unsigned pack field */
/* Second string of unsigned pack field */
/* Signed pack field to contain value of s.

Note that length is 3 byte instead of 2 byte */
/* Signed pack field to contain value of sl.

Note that length is 3 byte instead of 2 byte */

j* To store upper half byte of data *j
j* To store lower half byte of data */

/* These two statements assign HEX 01 23 to s
so as to simulate an unsigned pack field of
value +123 */

/* These two statements assign HEX 12 34 to sl
so as to simulate an unsigned pack field of
value +1234 */

/* Initial values of t and t1 are all set to
value HEX 00 *j

printfC"value of s[0] is %d\n",s[0]);
printfC-value of s[l] is %d\n",s[l]);

j* Print the original value of s. In HEX
the string s should be 01 23

*/

du=upperCs[0J); /* Store the higher half-byte of s[0] to
du by calling function upper */

dl=10werCs[0]); /* Store lower half-byte of s[0] to dl
by calling function lower *j

t[0]=du; /* Store du to lower half-byte of t[0], note that
t[0] .is the first of the 3 byte and the first
digit of s has been shifted in t in this process */

t[l]= 16 * dl; /* Move the original lower half-byte to higher
half-byte by multiplying the number by 16 */

du=upper(s [1]);
d 1 = lower (s [1]) ;
t[I]=t[l] + du;
t[2]= 16 * dl; j* Repeat the process with other digits in the

string s *j

t[2]=t[2] + 15; j* Put a HEX F into last half-byte of the string
t to represent a positive number *j

printf("value of t[0] is %d\n",t[0]);
printf("value of t[l] is %d\n",t[I])j
printf("value of t[2] is %d\n",t[2]);
printf("\n")j 1* Display the converted string.

be HEX B0 12 3F
Its value should

*j

j* ---
The following repeat the previous step on sl
--- *j

printf("value of sl[0] is %d\n",sl[0])j
printf("value of sl[l] is %d\n",sl[I])j

j* The HEX value should be 12 34 *j

du=upper(sl[0])j
dl=lower(sl[0])j
t1 [0] =du;
t1[I]= 16 * dl j

du=upper(sl[I]);
dl=lower(sI[I])j
tI[I]=tI[I] + du;
t1[2]= 16 * dl j

tI[2]=tl[2] + 15;

printf("value of tI[B] is %d\n",tl[B])j
printf("value of tl[l] is %d\n",tl[l]);
printf("value of tI[2] is %d\n",tl[2]);

j* The converted value should be HEX ?1 23 4F *j

lower(i) j* function to obtain lower half-byte of a byte *j

i nt i j

char aj

a=fmod(i,16)j j* a keep the remainder of i divided by 16 *j

return(a); j* return the remainder to main function *j
}

upper(i) j* function to obtain higher half-byte of the byte *j

i nt i;

Appendix A. Sample C Programs 99

}

100 AS/400 C

char a;

a=(i - fmod(i,16))/16; /* a now contain upper half-byte of i */

return(a); /* return a to main function */

A.4 Example 3 - PGM03 (Writing Records to Program-Described File
with C)

This is a simple example of writing records to a program-described file on
AS/400. Note that the file is defined as a binary file and it must exist before the
program is executed.

It is interesting to note that camt is defined as an integer field in the program,
but when DSPPFM command is used to browse the physical file, we can see
that camt is actually stored in binary form.

If we analyze the record layout in greater detail, we can also see the record
length difference due to data alignment. The first field in the record is CNUM
and is 5 character, second field is CNAME and is 30 characters, third field is
CADD and is 30 characters, fourth field is CTEL and is 10 characters. Integer
under C occupies 4 bytes, so by adding length of individual fields together, the
record length should be 79 byte. But when sizeofO function is used to retrieve
the length of the record, it shows the length should be 80. This is because
integers always starts at a word boundary (multiple of 4 byte). When the first 4
fields in the records are added together, its length is 75, rounding to a word
boundary, it is 76 byte, and adding 4 more bytes for integer, the record length is
therefore 80.

If in this particular example, the physical file TFILEB is created with a field
length of 79, errors will occur.

/* --

Program Name: PGM03 (writing records with C to program
described file)

This is a simpl~ program illustrating how to write records
to a program-described file. It includes the typical
statements that will be used in writing records with
C/400.

--- */

#include <signal.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <xxasio.h>
#include <xxfdbk.h>
#include <stdlib.h>

#define SIZENUM 5
#define SIZENAME 30
#define SIZEADD 30
#define SIZETEL 10 /* Length of fields are defined here as

constants. The advantage of doing so
is that in case the field length has
to be changed, only these part of codes
needed to be changed and no need to touch
the other program codes */

Appendix A. Sample C Programs 101

102 AS/400 C

mai n ()
{
FILE *filel; /* filel is the output file */
char c;
char amount[19];

struct frecordl {
char cnum[SIZENUM];
char cname[SIZENAME];
char cadd[SIZEADD];
char ctel[SIZETEL];
int camt;
} frecord ; /* This structure will be defined as the

output record buffer */

filel=fopen("TFILEB",·wb+ type=record");

c=' ';

/* The file pointer file! is pointing
to TFILEB in AS/490. It will be
processed in record mode as type=
record is specified. The file is
opened for write output (wb).
This file must exist before the
program runs. It can be created by
CRTPF command with record length
specified and without DDS.*/

while(c!='S') /* Wi·ll loop until '$' is entered
from screen */

printf("Enter Number :\n"); /* prompting message */
readfld(&frecord.cnum,SIZENUM); /* read from screen

printf("Enter Name :\n-);
readfld(&frecord.cname,SIZENAME);

printf("Enter Address :\n");
readfld(&frecord.cadd,SIZEADD);

printf("Enter Phone :\nN);
readfld(&frecord.ctel,SIZETEL);

printf(-Enter Amount :\n");
readfld(&amount,sizeof(amount));

by calling function
readfld */

frecord.camt = atoi (amount); /* amount is first
read as string then converted to numeric
by function atoi. The reason for doing so is
because no getnum() function is available
under C/400, ANSI C or SAA C.
Note that an element in a structure is referred
to its qualified name frecord.camt*/

printfC"Enter $ to end :\n");
c=getcharO;

if (c!='$')
{

}

fwrite(&frecord,sizeof(frecord),l,filel)j
/* write to file from record buffer. Note

that the address (pointer) is used */

fclose(fi leI);

readfld(buffer,size) /* read field with getchar.
The reason for defining readfld function
instead of using scanf or gets function
is because these functions will consider
a space as a terminator. If the program
consecutively contains 3 scant statements
for 3 fields and the user enters
"David Choi & Co." from the screen, the
program interprets as 4 fields have been
entered ("David","Choi","&","Co.") and
only the first scanf will be executed

*/

char *buffer;
int size;

i nt i;
char c;

i=0;
while((c=getchar(»!='\n') /* read character until

enter key is pressed */

*bufftr+ + = C;

i=i+l;
}

buffer&supplus,+='\0 1 ; / A string must end with NULL character
(Hex 00), therefore a NULL character is

*/

added as last character of the string,
otherwise when C try to read the field
again, it will not know where the string
is terminated.

Appendix A. Sample C Programs 103

A.S Example 4 - PGM04 (Reading Records from a File by C)

104 AS/400 C

This program reads the records created by the program in Example 3. Each
record is displayed on the screen after a read until the end of the file is
reached.

j* --

Program Name : PGM94

This program read and display the records written by
program in Example 3.

----~-- */

'include <signal.h>
'include <stdio.h>
'include <errno.h>
*include <string.h>
*include <xxasio.h>
'include <xxfdbk.h>
*include <stdlib.h>

mai n 0
{

FILE *filel;
char c;

struct frecordl {
char cnum[5];
char cname[39];
char cadd[39];
char' cte 1 [19];
int camt;
} frecord;

filel=fopen(HTFILEBU,Mrb type=record");

while(!feof(filel)) /* feof is used to test for

}

end of file condition *j

fread(&frecord,sizeof(frecord),l,filel);

if(! feof(fil el))
{

printf("Number = %-5s\n",frecord.cnum);
printf("Name =. %-3~s\n",frecord.cname);
printf(MAddress = %-39s\n",frecord.cadd);
printf("Phone = %-19s\n",frecord.ctel)j
printf("Amount = %d\n",frecord.camt);
printf(M??/n") ;
c=getcharO;
}

fclose(filel) ;

A.6 Example 5 - PGM05 (Read Record from AS/400 Database File)
This program reads records in an AS/400 Database FRPG and displays them.
QXXFORMAT routine is used here as an illustration. It is important to note that
QXXFORMAT is applicable to AS/400 only. Therefore this code is not portable to
other system.

It is also important to note that since C/400 does not have data type packed or
zoned. if the database file contain any such field. they should first be defined as
alphanumeric field and then later use QXX data conversion routine to convert
them to C/400 numeric data.

Layout of the AS/400 database file FRPG is as follows:

Format name : LABF
Fields CNUM

CNAME
CADD
CTEL

length = 5
length = 30
length = 30
length = 10

type = alphanumeric
type = alphanumeric
type = alphanumeric
type = alphanumeric

IMPORTANT: This example also illustrates the difference between a C/400
character string and a AS/400 string. In C/400. all strings are ended with NULL
character (HEX 00). In AS/400. the NULL character may be just one of the
possible characters in a string. When running this program. all the field
alignments are correct, but the strings are terminated incorrectly because no
NULL characters were detected. Therefore, when CNUM is displayed. it starts
from the first position of CNUM. then all the way to the end of the record. For
CNAME. it starts from first position of CNAME (which is the 6th position from the
beginning of the record) and so on.

Therefore. in order to process a string read from an AS/400 database file
(especially when record of the file is created by other languages such as
COBOL and RPG). the C program should add a NULL character to end of it in
order to display the fields correctly.

/* --

Program Name : PGM05

This program reads records from an AS/400 database file
FRPG sequentially and displays the record on screen.

QXXFORMAT is used to specify the record format this
C/400 program will work on. However, QXXFORMAT is an
C/400 extension and can be used only on AS/400.

In this example, since the physical database contains
only one record format, usage of QXXFORMAT is optional.
That is, the same result can be achieved by using a standard
fread.

-- */

#include <signal.h>
'include <stdio.h>
'include <errno.h>
#include <string.h>
#include <xxasio.h>

Appendix A. Sample C Programs 105

106 AS/400 C

#include <xxfdbk.h>
#include <stdlib.h>

mai n ()
{
FILE *filel;
char c;

struct frecordl {
char cnum[5];
char cname[30];
char cadd[30];
char ctel[10];
} frecord; j* This structure is the same as the

layout defined in database file FRPG.
Note that only alphanumeric fields are
used in this example.

*j

If there are numeric fields (packed or
zoned) they should be defined as
alphanumeric fields in this structure.
After the field is read into this
structure, the program should then use
QXX ..•. conversion routines from
EPM application library to do the
data conversion before the C program
can use it for numeric processing.

filel=fopen("FRPG","rb type=record");

QXXFORMAT(filel,"LABF ");
j* QXXFORMAT is a File Routine to specify

record format to the Cj400 program.
This is a Cj400 extension. It is not
available in ANSI C or SAA C.

*j

while(!feof(filel))
{

fread(&frecord,sizeof(frecord),l,filel);
if(!feof(filel))
{

printf("Number = %5s\n",frecord.cnum);
printf(NName = %30s\n",frecord.cname);
printf("Address = %30s\n",frecord.cadd);
printf("Phone = %10s\n",frecord.ctel);
printf("\n");
c=getchar(); j* After the user pressed enter key

the program will continue *j

fclose(filel) ;

A.7 Example 6 - PGM06 (Working with Database and Display File)
This is an example of how C/400 reads a record from AS/400 database file and
writes it to a display file.

Layout of display file SRPGS is as follows:

A* 89/84/25 15:22:29 IBM REL-R81M82 5728-PW1
REL-R85M88 5714-UT1
DSPSIZ(24 88 *DS3)
PRINT

A* 15:11:85 DAVID
A
A
A R SCRF
A* 89/84/25 15:22:29
A* 15:11:85
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

CNUM

CNAME

CADD

CTEL
COPT

IBM
DAVID

REL-R81M82 5728-PW1
REL-R85M88 5714-UT1

BLINK
3 19 1Demonstration Screen for Inquiry'

DSPATR(HI)
DSPATR(UL)

5 55 1By David Choi '
9 11 1Customer Number :1

5A B 9 32DSPATR(HI)
DSPATR(CS)
DSPATR(UL)
DSPATR(PC)

11 22 I Name : I

38A 0 11 32DSPATR(HI)
13 19 1Address :1

38A 0 13 32DSPATR(HI)
15 171Telephone .1

18A 0 15 32DSPATR(HI)
1A B 19 42DSPATR(HI)

DSPATR(CS)
DSPATR(UL)

19 13 1Enter <E> to End =>1

/* --

Program Name : PGM86

This program reads a record from database file s~quentially.
The contents of the record is then moved to a display file and then
displayed on the screen.

-- */

#include <signal.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <xxasio.h>
#include <xxfdbk.h>
#include <stdlib.h>

mai n ()
{

FILE *fi 1 elj
FILE *file2j
char Cj

Appendix A. Sample C Programs 107

108 AS/400 C

struct frecordl {
char cnum[5];
char cname[30];
char cadd[30];
char ctel[10];
} frecord; /* structure for database file buffer */

struct fscroutl {
char cnum[5];
char cname[30];
char cadd [30] ;
char ctel [10];
char copt;
} fscrout; /* structure for screen output buffer */

struct fscrinl {
char cnum[5];
char copt;
} fscrin; j* structure for screen input buffer *j

filel=fopen("FRPG","rb type=record");

file2=fopen("SRPGS","rb+ type=record");
/* SRPGS is a display file *j

QXXFORMAT(filel,"LABF

while(!feof(filel))
{

"); /* database record will be
read

fread(&frecord,sizeof(frecord),l,filel);
/* read one database record *j

. if(!feof(filel))
{
clrout(&fscrout,sizeof(fscrout));
clrout(&fscrin,sizeof(fscrin));

j* both input and output screen buffer are
initialized with spaces. This is to ensure
not data from the last screen write will
remain in the output buffer *j

strcpy(fscrout.cnum,frecord.cnum);
strcpy(fscrout.cname,frecord.cname);
strcpy(fscrout.cadd,frecord.cadd);
strcpy(fscrout.ctel,frecord.ctel);

/* content of database records are copied into

*j

the output screen buffer using strcpy *j

fscrout.copt = , ';

QXXFORMAT(file2,"SCRF ");
/* prepare to write to display file with

format SCRF *j

fwrite(&fscrout,sizeof(fscrout),1,file2);
j* write to display file

fread(&fscrin,sizeof(fscrin),1,file2);

*/

/* read the display file

}
fClose(fi leI);
fclose(file2) ;

clrout(buffer,j) /* fill output buffer with space */
char *bufferj
int j;

int ij
for(i=0; i<j ji + +)

{
*buffer+ + I I. ,

*/

Appendix A. Sample C Programs 109

A.a Example 7 - PGM07 (Working with Printer File)

110 AS/400 C

This program writes heading line to printer file, read database record and print
each detail line to printer file. At the end ending line will be printed.

DDS of the printer file SAM17P is as follows:

A*
A
A
A
A
A
A
A
A
A
A*
A
A
A
A
A
A
A
A
A
A
A
A
A*
A
A
A
A
A
A
A*
A*
A*
A
A
A
A
A
A

R HEADLINEl

R DETAIL!
CNUMBER
CNAME
CAD DRESS
CTELEPHONE

R ENDINGI

5 0
30 0
30 0
10 0

TEXT('FIRST HEADING LINE')
SKIPB(4)

30'CUSTOMER ORDER REPORT'
+10'DATE :'

+IDATE
EDTCDE(Y)

+10'PAGE :'
+lPAGNBR

SPACEA(3)

I'CUST NO.'
11 'NAME'
41'ADDRESS'
71'ORDER NUM'
81'ORDER DESCRIPTION'

101'AMOUNT'
SPACEA(1)

1'------------------------------,
31'------------------------------,
61'------------------------------,
91'---------------------'

I
11
41
71

SPACEA(3)

TEXT('FORMAT FOR DETAIL LINE')

SPACEA(I)

TEXT('FORMAT FOR ENDING')
SPACEB(2)

40'******************'
+2'END OF REPORT'
~2'******************'

SKIPA(l)

/* --

Program Name : PGM07

This program writes a heading "line to the printer file, then
starts reading the database record, prints a detail line to the printer
file. At the end Of database file read, an ending line will be
printed.

-- */

#include <signal.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <xxasio.h>
#include <xxfdbk.h>
#include <stdlib.h>

mainO
{

FILE *filel;
FILE *file2;
char c;

struct frecordl {
char cnum[5];
char cname [30] ;
char cadd [30] ;
char ctel[10];
} frecord; /* structure for database record buffer */

struct fscroutl {
char cnum[5];
char cname [30] ;
char cadd [30] ;
char ctel[10];
} fscrout; /* structure for printer output detail

line buffer */

struct fdunmy {
char al;
} fdummy; /* define a dummy output buffer field */

filel=fopen(HLABMASTERH,"rb type=record");

fil e2=fopen ("SAM17P", "wb type=record"); 1* SAMl7P is pri nter fil e * /

QXXFORMAT(file2,"HEADLINEl H);
fwrite(&fdummy,sizeof(fdummy),I,file2);

/* these two lines write heading to printer file.
Another way to code the statement is :
fwrite("·,0,0,file2); meaning not output data
send, but write the heading.
Same apply to ending line.*/

QXXFORMAT(filel,"LABMASTERF");
/* prepare to read database file */

while(!feof(filel))
{

fread(&frecord,sizeof(frecord),l,filel);
/* read database file record */

if(!feof(filel))
(
clrout(&fscrout,sizeof(fscrout));

/* output buffer is cleared
data from previous write

first to ensure no
*/

Appendix A. Sample C Programs 111

112 AS/400 C

strncpy(fscrout.cnum,frecord.cnum,sizeof(frecord.cnum));
strncpy(fscrout.cname,frecord.cname,sizeof(frecord.cname));
strncpy(fscrout.cadd,frecord.cadd,sizeof(frecord.cadd));
strncpy(fscrout.ctel,frecord.ctel,sizeof(frecord.ctel));

/* content of database record is moved into
output buffer */

QXXFORMAT(file2,"DETAILl ");
fwrite(&fscrout,sizeof(fscrout), 1, fi le2);

/* write detail line from buffer to printer
fil e * /

QXXFORMAT(file2,"EDNINGl H);
fwrite(&fdummy,sizeof(fdummy),1,file2);

/* write ending line to printer file */

fclose(filel) ;
fclose(file2) ;

clrout(buffer,j) /* fill output buffer with space */
char *buffer;
i nt j;

int i;
for (i =0; i <j ; i + +)

{
*buffer+ + I I. ,

A.9 Example 8 - PGM08 (Working with Display File with INDARA)
This program illustrate how to use INDARA to control indicators in a display file.
By defining INDARA in a display file, a separate buffer of 99 bytes is reserved
for the indicators. In the program, an area of 99 bytes is also defined to
interface with the indicator buffer defined in the display file.

Display files with indicators are unique in AS/400 and the functions are not
portable to another system under SAA.

Layout of display file used in program is as fo 11 ow:

A* 89/06/19 12:45:07 LAMONT REL-REl2M00 5728-P\·Jl
A OSPSIZ(24 80 *OS3)
A I NOARA
A CA03(03 'END OF JOB')
A R FORMATl
A* 89/06/19 12:45:07 LAMONT REL-R02M00 5728-PIH
A BLINK
A 4 20'Testing Screen with Indicators'
A OSPATR(HI)
A OSPATR(UL)
A 11 II'Enter your option or <E> to
A COPTION 1 B 11 490SPATR(HI)
A ERRORMSG 50 o 15 150SPATR(HI)
A OSPATR(BL)
A 17 12'F-3 = End of Job'

**

/* ---

Program Name : PGM08

This program illustrates how to work with a display file using
an indicator area (INOARA).

Note that a separate indicator area for 99 indicators is
defined in the program. The display file automatically passes the
indicators to this area and vice versa.

The routine QXXSINOARA is used to define the indicator area
that will be used together with the display file.

-- */
'include <signal.h>
'include <stdio.h>
'include <errno.h>
'include <str;ng.h>
'include <xxasio.h>
'include <xxfdbk.h>
'include <stdlib.h>

mainO
{
union /* The union defines that two structures will share

the same memory space */

struct

End =>'

Appendix A. Sample C Programs 113

114 AS/400 C

char in01;
char in02;
char in03;
char in04[96];
} str; j* structure str contains 99 bytes representing

99 indicators as a result of defining
INDARA in display file.*j

char array[99];
} indic; j* india is an array of 99 bytes. This is for the

convenience of initializing the indicator area *j

struct fscroutl {
char coption;
char errormsg[50];
} fscrout; j* screen output buffer *j

struct fscrinl {
char coption;
} fscrin; j* screen input buffer *j

FILE *filel,

fil el=fopen (·S16SCRl", "ab+ type=record i ndi cators=y") ;
j* indicators=y indicates both the C

program and display file will
assign a separate area to store
indicator value (99 altogether).
Therefore no space defined for
indicator appears in both screen
input and output buffer. *j

QXXSINDARA(filel,indic.array); j* prepare to work on indicators *j

indic.str.in03 = 0XF0;
j* indicator value can either be HEX 00

or HEX 01. Here, indicator 3 is
initialized to HEX 00 by 0XF0. *j

clrout(&fscrout,sizeof(fscrout)); j* fill output buffer with
space

QXXFORMAT (fil e 1, "FORMA T1 .) ; j* will work on screen with

*j

format FORMAT!. * j

fwrite(&fscrout,sizeof(fscrout),l,filel); j* write screen *j

fread(&fscrin,sizeof(fscrin),I,filel); j* read screen *j

fscrout.coption = fscrin.coption; j* move data from input
buffer to output buffer *j

if(indic.str.in03 == 0XFl) j* if operator does not press F-3 *j
{
s trcpy (fscrout. errormsg, ·You have pressed F -3") ;

j* move this message to output *j

else

{
strcpy(fscrout.errormsg, ·You did not press F-3");

/* otherwise move this message */
}

setmsg(&fscrout.errormsg,sizeof(fscrout.errormsg));
/* setmsg is called to fill empty space with space.

In C, empty space left are padded with HEX 00
and cannot be displayed on screen. This function
is to replace all HEX 00 with space. */

fwrite(&fscrout,sizeof(fscrout),l,filel); /* write screen */

fread(&fscrin,sizeof(fscrin),l,filel); /* read screen */
}

clrout(buffer,j) /* fill output buffer with space */
char *buffer;
i nt j;

}

i nt i;
for(i=0;i<j;i++)

{
*buffer+ +
}

I I. ,

setmsg(buffer,j) /* fill output buffer with space */
char *buffer;
i nt ji

i nt i;
for (i =0; i <j ; i + +)

{
if(*buffer=='\0') /* replace all HEX 00 with space */
{
*buffer = I ';

}
*buffer+ +;
}

Appendix A. Sample C Programs 115

A.10 Example 9 - PGM09 (Writing Records to a Database File with C)

116 AS/400 C

This program reads data from the screen and writes the record to a database
file.

This is a good example to highlight the difference between a field generated by
C and fields generated by other languages such as COBOL and RPG.

A C string always ends with a null character. When a string is read from the
screen into the record buffer, all spaces after the last character entered from
screen the will be null characters. If this string is directly written to the record,
it cannot be used in the display. So before writing to record, all NULL
characters are replaced with spaces. If the string's NULL characters are not
replaced by spaces, then this field can only be displayed by C program since
only C knows how to display it.

Another comment on this program is about the numeric field. The database has
defined a zoned field. Since C/400 (also in SAA C and ANZI C) does not provide
getnumO function, the number can only be read as a string and data in the ~

string is left-justified. In order to make this field compatible with an AS/400
zoned decimal format, the user can use QXXITOZ data conversion routine as
described in the CI400 User's Guide, or use the method described in this
example. But regardless of which method you use, the converted number will
always be written to the record as a character field, since C/400 does not have
a data type zoned. The same is true for packed decimal.

Layout of Database file FSAMI9 used in program is:

A
A
A
A

R FORMATl
FIELDI
FIELD2
FIELD3

5
30
8S 0

COLHDG('FIELD 1')
COLHDG('FIELD 2')
COLHDG('FIELD 3')

j* --

Program Name : PGM09

This program reads data from the screen, reformats the data by
replacing all NULL characters (HEX (0) with spaces ;n a
string, fills with leading zero and right-justifies the numeric
string.

-- *j

#include <signal.h>
#include <stdio.h>
'include <errno.h>
'include <string.h>
#include <xxasio.h>
#include <xxfdbk.h>
'include <stdlib.h>

main ()
{
struct frecord
{
char cnum[5];
char cname[30];

char camt[8];
}
frecord; /* structure for record buffer */

char X;
char xamt[8];

FILE *fil el;

filel=fopen("FSAM19","wb+ tvpe=record");

x=' '. ,

while(tolower(x)!='e')
{
/* ---- clear buffer first -------- */

clrbuf(&frecord,sizeof(frecord));

printf(-Enter cnum :\n"); /* prompting message */
readstr(&frecord.cnum,sizeof(frecord.cnum));

/* read string into frecord.cnum by calling
function readstr */

printf(NEnter cname :\n");
readstr(&frecord.cname,sizeof(frecord.cname));

printf("Enter camt :\n");
readstr(frecord.camt,sizeof(frecord.camt));

printf("Enter <e> to end :\n u);

x=getchar () ;

if (tolower(x)!='e')
{
pad(&frecord.cnum,sizeof(frecord.cnum));

/* fill all NULL characters in string with spaces */

pad(&frecord.cname,sizeof(frecord.cname));

padnum(&frecord.camt,sizeof(frecord.camt));
/* This is a manual method of converting an

integer read from screen into a zoned decimal
that can be written to file.

*/

frecord.camt is first read from screen, but
at this time the number in this character string
is left-justified.
This string is then converted to a string filled
with leading zeros and a right-justified string
by calling padnum.

Another way of doing the same function is through
QXXITOZ. The string will first be read from
screen, then it will be converted to an integer
by atoi() function. The integer will then be
converted to zone decimal by call the QXXITOZ
function.

Appendix A. Sample C Programs 117

118 AS/400 C

fwrite(&frecord,sizeof(frecord),l,filel);

/* --- end of if */

} /* ---- end of while */

} /* ---- end of main */

pad(buffer,l) /* replace all NULL characters with spaces */

char *buffer;
int 1;

i nt i;

for(i=S;i<l;i ++)
{
if(buffer[i]=='\S')
buffer[i]=' I;
}

padnum(buffer,l) /* re-arrange digits in string with leading

char *buffer;
i nt 1;

i nt i;
i nt j;
int k;
char s [8];

i=atoi(buffer);

sprintf(s,-%d-,i);

k=S;

zero and make it right-justified */

for(j=Sij<sizeof(s) ;j++)
{
if(!isdigit(s[j]» /* if digit is not a printable character */
{
k=k+l;
}

}
7c:-(j=S;j<k;j+ +)
{
buffer[j]='S';
}

for(j=k;j<sizeof(s) ;j++)
{
buffer[j]=s[j-k];
}

readstr(buffer,l) /* read data from screen */

char *buffer;
i nt 1;
{
char c;

while((c=getchar())!=I\nl)
{
*buffer=c;
*buffer+ +;
}

clrbuf(buffer,l) /* clear buffer with spaces */

char *buffer;
int 1;

int i;

for(i=B;i<l;i ++)
{
buffer[i]=1 I;
}

}

Appendix A. Sample C Programs 119

A.11 Example 10 - PGM10 (Dynamic SQL under Commitment Control)

120 AS/400 C

See the section on Dynamic SQL in Chapter 4 for a discussion of this sample
program. The following is the CL-Program as well as the C program and the
display file.

Display file used in example 10
A DSPSIZ(24 80 *DS3)
A MSGLOC(24)
A PRINT
A CA03(03 'Exit')
A CA08(08 'Prepare Update')
A CA09(09 'Prepare Delete')
A CAW (10 'Execute')
A CAll (11 'Rollback')
A CA12(12 'Commit')
A R FMTI
A SETOF (88)
A OVERLAY
A 61N63 9 2'UPDATE'
A COLOR(toIHT)
A 62N63 9 16'Table
A DSPATR(RI)
A 61N63 9 19'5ET'
A COLOR (~JHT)
A 61N63 9 24'Column ,
A DSPATR(RI)
A 61N63 9 33'='

-A COLOR(\'IHT)
A 61N63 9 37' ? '
A DSPATR(RI)
A 62N63
AO 61N63 9 44'\oJHERE'
A COLOR(~IHT)
A 62N63
AO 61N63 950'Column ,
A DSPATR (RI)
A 62N63
AD 61N63 9 63'Op'
A DSPATR(RI)
A 62N63
AO 61N63 9 72' ? '
A DSPATR(RI)
A 61N63 10 9'MATABLE'
A 61N63 17 9'KITABLE'
A 61N63 10 24'VNAME'
A 61N63 11 24'NAME'
A 61N63 12 24'STAATA'
A 61N63 13 24'PLZ'
A 61N63 14 24'ORT'
A 61N63 15 24'STR'
A 61N63 17 24'KNAME'
A 61N63 18 24'KKIGEL'
A 1 20'Dynamic SQL in an C/400 Program'
A COLOR (~IHT)
A 61N63 TAB LEU 8A I 8 9DSPATR (PC)
A VALUES('MATABLE ' 'KIT ABLE')
A CHANGE (50)
A 62N63 TABLED 8A I 8 16DSPATR(PC)

" -."

A VALUES ('MAT ABLE ' 'KITABlE')
A CHANGE(50)
A 61N63 COlMNU 6A I 8 24VAlUES('VNAME ' 'NAME ' 'STAATA' ,
A PLZ ' 'ORT ' 'STR ' 'KNAME ' -
A 'KKIGEL')
A CHANGE(51)
A 62N63
AO 61N63 COLMN\~ 6A I 8 50VALUES('VNAME ' 'NAME ' 'STAATA' ,-
A PLZ ' 'ORT ' 'STR ' 'KNAME ' -
A 'KKIGEL')
A CHANGE(52)
A 62N63
AO 61N63 OPC 2A I 8 63VALUES(' =' '= I I >1 I> I I <I 1< _

A I 1>=1 1<=1)

A CHANGE(53)
A 62N63
AO 61N63 10 63' ='
A 62N63
AO 61N63 11 63' >'
A 62N63
AO 61N63 12 63' <'
A 62N63
AO 61N63 13 63'>='
A 62N63
AO 61N63 14 63'<='
A 61 63 FRM 20A I 15 27CHECK(LC)
A 61 63 16 41' I'
A COLOR(RED)
A 61 63 17 41' I'
A COLOR(RED)
A 61 63 18 41' I'
A COLOR(RED)
A 61 Cl3 1941'v'
A COLOR(RED)
A 61 63
AO 62 63 WHE 20A I 15 51CHECK(LC)
A 61 63
AO 62 63 16 60' I'
A COLOR(RED)
A 61 63
AO 62 63 17 60' I'
A COLOR(RED)
A 61 63
AO 62 63 18 60'1'
A COLOR(RED)
A 61 63
AO 62 63 19 60'v'
A COLOR(RED)
A S 70A o 21 6COLOR(BLU)
A 20 6'Statu5 of the prepared SQL stateme-
A nt'
A COLOR(BLU)
A DSPATR(RI)
A 88 20 61'Error-Code:'
A COLOR(WHT)
A 88 SQLDEC 5Y 00 20 74EDTCDE(M)
A COLOR(\,oJHT)

~ A 62N63
AO 61N63 10 50'VNAME'

Appendix A. Sample C Programs 121

122 AS/400 C

A 62N63
AO 61N63
A 62N63
AO 61N63
A 62N63
AD 61N63
A 62N63
AO 61N63
A 62N63
AO 61N63
A 62N63
AO 61N63
A 62N63
AO 61N63
A
A
A
A
A 61N63
A
A 62N63
A
A 62N63
A
A 62N63
A 62N63
A 61N63
AO 62N63
A
A
A·
A 63
A
A
A

11 50 1 NAMfI

12 50 I STAATA '

13 50 I PLZ'

14 50 I ORT'

15 50 I STR'

17 50 I KNAME'

18 50 I KKIGEL '
23 21Function keys: I

23 17 13=Exit 8=Prepare Update 9=Prepar­
e Delete 10=Execute '

24 17 111=Rollback 12=Commit '
9 91Table

DSPATR(RI)
9 10 I FROM '

COLOR (~!HT)
9 21DELETfI

COLOR (~JHT)
10 16 'MATABLE I

17 161 KITABLE I

4 21 Prepare
Mode

DSPATR(RI)
4 21 Execute

Mode

DSPATR(RI'

CL program for Start and End Commitment Control
PGM
STRCMTCTL LCKLVL(*CHG)
CALL PGM(DYSQL)
ENDCMTCTL
ENDPGM

C/4e0 programm using dynamic SQL programming technique

/***/

/* */
/* PROGRAM I.D. exampl e 10 * /
/* AUTHOR * /
/* DATE june 1989 * /
/* */
/***/

'include <stdlib.h>
'include <signal.h>
'include <stdio.h>
'include <string.h>

/****************************/
/* Global Data declarations */

/****************************/

FILE *dspfl; /* Pointer to locate display fi1e*/
/** SQL Communication Area ***************************************/

EXEC SQL INCLUDE SQLCA;
/****DSPF Input buffer ***/

struct ibild
{ char i n03;

char i n08;
char in09;
char in10;
char in11;
char in12;
char in88;
char in50;
char in51;
char in52;
char in53;
char tableu
char tabled
char colmnu
char colmnw
char opc
char frm
char whe

i bi 1 d;

/* exit key * /
/* prepare update */
/* prepare delete */
/* execute */
/* rollback */
/* commit */
/* commi t * /

[8] ;
[8] ;
[6] ;
[6] ;
[2] ; .
[20] ;
[20] ;

/** Display file output buffer***************************************/
struct obild {

char in61;
char in63;
char i n62;
.:har in88;
char s [70];

double sq1dec;
} obi 1d;

/** UPDATE Statement that the PREPARE is naming STMT**************** i
struct xupd
{
char upd [7];
char tb1 [8];
char set [7];
char colI [6];
char eq1 [8];
char usg 1 [2];
char wher [6];
char co12 [6];
char opc
char usg2
};

[2] ;
[2];

/** DELETE Statement that the PREPARE statement is naming STMT ******/
struct xde1
{
char del [12];
char tb 1 [8];
char wher [24];
char co11 [6];

Appendix A. Sample C Programs 123

124 AS/400 C

char opc [2];
char usg 1 [2];
};

/** Redefine the structures, because a character string is needed ***/
/** for the PREPARE statement ************************************/

union uupd {
struct xupd supdj
char updstr [56];} updat;
union udel {
struct xdel sdel;
char delstr [56];} delet;
/*******************************/

/* End Globla Data Declaration */
/*******************************/

rnai n ()
{

/*******************************/

/* Function Prototyping */
/*******************************/

voi d prepupd () ;
voi d prepde 1 () ;
void .execstmt();
i nt c 1 rout () ;

/******************************/
/* open display file */
/******************************/

dspf1= fopen ("SQL2D", "ab+ type=record");

/**/

/* set indicators, fill buffer with blank */
/**/

clrout(&obild,sizeof(obild»;
clrout(&ibild,sizeof(ibild»j

obild.in61
ibild. in03

0XFl;
0XF0j

strcpy(updat.updstr,
·UPDATE 12345678 SET 123456

strcpy(delet.delstr,
? WHERE 12345612 ?");

"DELETE FROM 12345678
strcpy(obild.s,updat.updstr);

/*************************************/
/* carryon if F3 is not hit by user */
/*************************************/

while (ibild.in03 != 0XF1)
{

WHERE 12345612 ?");

/**/
/* Display sq12d */
/**/

QXXFORMAT(dspf1,"FMT1 H);
fwrite(&obild,sizeof(obild),l,dspfl);
fread(&ibild,sizeof(ibild),1,dspfl)j

--

if (ibild.;n83 != 8XFl)
{
if (ibild. in0S == 0XFl)

{

}
else

obild.in61 = 0XF0;
obild.in62 = 0XF0;
obild.in63 = 0XF0;
obild.in6l = 0XFl;
strcpy(obild.s,updat.updstr);

if (ibild.in09 == 0XFl)
{

}

obild.in6l = 0XF0;
obild.in62 = 0XF0;
obild.in63 = 0XF0;
obild.in62 = 0XFl;
strcpy(obild.s,delet.delstr);

else
if (ibild.inl0 == 0XFl)

{
EXEC SQL
PREPARE STMT FROM :obild.s;
if (sqlca.sqlcode == 0)

{
obild.in63 = 0XFl;

} j* sqlcode == 0 *j
else

{
obild.in8S = 0XFl;

j* in0S == 1 *j
j* in08!= 1 *j

/* in09 == 1 *j
j* in09!= 1 *j

/* PREPARE * j
/* SQL Fehler? *j

j* obild.sqldec = sqlca.~qlcode; *j
printf(-SQLCODE ist %d??jn ·,sqlca.sqlcode);

l
else

{

1 j* end SQL Fehler *j
/* inW == 1 *j

if (ibild.inll == 0XFl)
{

}

EXEC SQL
ROLLBACK;
obild.in63 == 0XF0;

else
{
if (ibild.in12 == 0XFl)

{

}

EXEC SQL
COMMIT ;
obild.in63 == 0XF0;

else
{
if (obild.in63 == 0XFl)

{
execs tmt () ;

else
{

j* ROLLBACK *j

/* inll == 1 *j
/* inll != 1 *j

/* COMMIT *j

/* in12 == 1 *j
/* in12 != 1 *j

/* in63 == 1 *j
/* in63 != 1 *j

Appendix A. Sample C Programs 125

126 AS/400 C

}
fclose(dspfl);

}
}

if (obild.in61 == eXF1)
{

prepupdO;

else
1* in61 == 1 */
1* in61 != 1 */

{
if (obild.in62 == 8XF1)

{
prepdel ();

1* in62 == 1 */
1* in61 != 1 */
1* in63 != 1 */
1* in12 != 1 */
1* inll == 1 */
1* in18 != 1 */
1* ine3 != 1 */
1* whi 1 e * /

/* main */

/******* Execute Statement
void execstmt()

**********************************/

{
if (obild.in61 == eXF1)

{
EXEC SQL
EXECUTE STMT USING :ibild.frm, :ibild.whe;

if (sqlca.sqlcode != e)
{
obild.in88 = 8XF1;

/* obild.sqldec = sqlca.sqlcode; */
printf("SQLCODE ist %d??/n ",sqlca.sqlcode);

} /* sqlcode != e */
}

else
{

EXEC SQL
EXECUTE STMT USING :ibild.whe;
if (sqlca.sqlcode != 8)

{
obild.in88 = eXF1;

/* obild.sqldec= sqlca.sqlcode; */
printf("SQLCODE ist %d??/n ",sqlca.sqlcode);

} /* sqlcode != e */

/* execute statement function */

/**/

/******* Prepare Update **********************************/
voi d prepupd ()
{

strcpy(updat.supd.tbl,ibild.tableu);
strcpy(updat.supd.set,· SET H);
strcpy(updat.supd.coll,ibild.colmnu);
strcpy(updat.supd.eql,· = H);
strcpy(updat.supd.usgl,"? H);
strcpy(updat.supd.wher, "\'IHERE ");
strcpy(updat.supd.co12,ibild.colmnw);
strcpy(updat.supd.opc,ibild.opc);

strcpy(updat.supd.usg2,·? .);
strcpy(obild.s,updat.updstr);
/* end function Prepare Update */

/**/
/******* Prepare Delete **********************************/
void prepdelO
{

strcpy(delet.sdel.del,"DELETE FROM .);
strcpy(delet.sdel.tbl,ibild.tabled);
strcpy(delet.sdel.wher,·
strcpy(delet.sdel.coll,ibild.colmnw);
strcpy(delet.sdel.opc,ibild.opc);
strcpy(del et.sdel. usgl,·? .);
strcpy(obild.s,delet.delstr);
/* end function Prepare Delete */

WHERE M);

/*************************************~**************************/

/****** Clears input and output buffer **********************/
clrout(buffer,j) /* fill output buffer with space */
char *buffer;
i nt j;

i nt i;
for(i=0;i<j;i++)

{
*buffer+ + I I. ,

/* end function clrout */
/*********** End of Example 10 *****************************/

Appendix A. Sample C Programs 127

128 AS/400 C

Index

A
Abstract iii
Alignment of Data 25
Application Performance Tuning Aid 23

B
Bibliography ix
Binary File 33
Binary Stream 30
Buffered Data Stream 30
Buffered Input 7

C
Case Sensitivity 7
Character Set Required 5
Cha~acter String 33
Commit 44
Commitment control 21
Conversion Routines 21
CRTBNDPGM 23
CRTCPGM 16
CRTSOLC 17, 46

o
Data Mapping 41
Debug 16
Display File 57
Dynamic SOL 50

E
EPM 11
EPM Application Library 20
EPM Environment 13
Exception Handler 17
Extended Program Model 13
External Variables 12
Externally Described File 27
EXTPGMINF 22

F
Floating Point 8, 48

G
Graphics 5

H
History of C
Host Variables 46

IEEE-488 8
Indicators 57

L
Level Checks 2
Levels of C Language 3
Location of C/400 Runtime Routines 24
Logical File 27, 42

M
Multiple Entry Points 12

o
Observability 19
OPNORYF 4~

P
PAG 1 ...
PC Emulation 5
Performance 63
Pointer Usage 7
Portability of C 3
Preface. vii·
Print Key 61
Publications ix
PURGE 14

R
Record length 25, 33
Return Codes 8

S
SAA 1,3,46
Session Manager 19
SETPGMINF 14, 16, 20, 22
Signal Handler 17
SOL 36,46
SSNATTR 20
Static SOL 49
Stream Mode 30
Strength of C Language 2
Structure 25

Index 129

T
Table Of Contents xiii
Text File 33
Text Stream 30
Trigraphs 6

130 AS/400 C

READER'S CO~MENTS

Title: AS/400 C Language Introduction

Document Number: GG24-3434-00

You may use this fonn to communicate your comments about this publication, its organization
or subject matter with the understanding that IJ3M amy use or distribute whatever infonnation you
supply in any way it believes appropriate without incurring any obligation to you.

Comments:

Reply Requested: Yes No

Name:

Job Title:

Address:

Reader's Comment Form

FOld and tape Please Do Not Staple FOld and lape

n
5.
~

I
j
I

.. 1

I II

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 40 ARMONK. NY

POSTAGE WILL BE PAID BY ADDRESSEE

IBM International Technical Support Center
Department 977, Building 003-1
3605 Highway 52N
Rochester, Minnesota 55901

NO POSTAGE
NECESSARY

IF MAILED
INTHE

UNITED STATES

I
I

..
FOld and lape Please Do Not Staple FOld and lape

---- _I!) ----- - ------- ~ ---- - - --------
-~-.-

I
I
I

READER'S CO:\1:\1EI'TS

Title: AS/400 C Language Introduction

Document Number: GG24-3434-00

You may use this form to communicate your comments about this publication, its organization
or subject matter with the understanding that IBM amy use or distribute whatever information you
supply in any way it believes appropriate without incurring any obligation to you.

Comments:

Reply Requested: Yes No

Name:

Job Title:

Address:

Reader's Comment Form

FOld and tape Please Do Nol Slaple FOld aM lape

I
.. 1

111111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 40 ARMONK. NY

POSTAGE WILL BE PAID BY ADDRESSEE:

IBM International Technical Support Center
Department 977, Building 003-1 I
3605 Highway 52N I
Rochester, Minnesota 55901

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

I
I
I

I

.. •• .. • .. ••• • • •• .. • •• .. •• .. 1

I
Fold and tape Pie ••• Do Nol Staple Fold and tape I

--.- -<I> ----- -------.- -. ---- -- ---------~-,-

I
I
I
I
I
I
I
I
I
I

