
--- ------ -------- ----- - ------~.---- .. - - AS/400™ SC21-960B-O

Programming:
Structured Query Language/400 Reference

PRE RELEASE INFORMATION

I

I

!
. ! ,

.~

--- --_._-- -------- - ---
SC21-9608-0 ASI400™ - - ------_.---_.-

Programming:
Structured Query Language/400 Reference

First Edition (October 1988)

This edition applies to Release 1 Modification Level 2 of IBM Structured Query Language/400 (SQU400)
Licensed Program (Program 5728-ST1), and to all subsequent releases and modifications until otherwise
indicated in new editions or technical newsletters.

Changes are periodically made to the information herein; any such changes will be reported in subsequent
revisions or technical newsletters.

This publication contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands. and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

References in this publication to IBM products, programs, or services do not imply that IBM intends to
make these available in all countries in which IBM operates. Any reference to an IBM licensed program in
this publication is not intended to state or imply that only IBM's licensed program may be used. Any
functionally equivalent program may be used instead,

Publications are not stocked atthe address given below, Requests for IBM publications should be made to
your IBM representative or to your IBM-approved remarketer,

This publication could contain technical inaccuracies or typographical errors.

A form for readers' comments is provided at the back of this publication. If the form has been removed.
comments may be addressed to IBM Corporation, Information Development, Department 245, Rochester,
Minnesota, U.S.A 55901, IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obi igation to you.

AS/400 is a trademark of the International Business Machines Corporation.

© Copyright International Business Machines Corporation 1988

About this Manual

This manual contains reference information for the tasks of system administration.
data base administration, appNcation programming, and operation. It presents
detailed information on Structured Query language/400 (SQU400), including
syntax, usage notes, keywords, and examples for each of the SQl statements
implemented on the AS/400 system.

Who Should Use This Manual
This book is intended for programmers who want to write applications that will use
SQl to access an AS/400 system data base.

What You Should Know
It is assumed that you possess an understanding of system administration, data
base administration, or application programming in the AS/400 system
environment, as provided by the SQL Programmer's Guide. and that you have
some knowledge of the following:

• A programming language (RPGIII, COBOl8S. and/or PUI)

• Structured Query language (SQl)

This book is a reference rather than a tutorial. It assumes you are already fami liar
with SQL programming. This book also assumes that you will be writing
applications solely for the AS/400 system environment and therefore presents the
full functions of the AS/400 system. Should you be planning applications which will
be ported to other Systems Applications Architecture (SAA) environments, it will be
necessary for you to reference the appropriate SAA books in addition to this one.
(See "Systems Application Architecture·' on page 1.)

How This Manual Is Organized
This book has the following sections:

• Chapter 1 is an overview to SAA and SQl Concepts.

• Chapter 2 describes the basic syntax of SQL and language elements that are
common to many SQl statements.

• Chapter 3 describes the column and scalar functions.

• Chapter 4 describes the three forms of query that are used to specify a result
table.

• Chapter 5 contains syntax diagrams. semantic descriptions, rules, and usage
examples of SQL statements written in RPG. COBOL or PUI.

• The Appendixes contain information about the SQL limits and the SQlCA and
SQlDA

This manual also contains a glossary of terms and abbreviations and an index.

About this Manual iii

Related Online Information

Help for Displays

Index Search

The following online information is available on the AS/400 system. You can press
the Help key a second time to see an explanation of how the online information
works, including the index search function.

You can press the Help key on any display to see information about the displ3y.
There are two types of help available:

General
Specific

General help explains the purpose of the display. General help appears If you
press the Help key when the cursor is outside the areas for which specific help is
available.

Specific help explains the field on which the cursor is positioned when you press
the Help key. For example, it describes the choices available for a prompt. If a
system message appears at the bottom of the display, position the cursor on the
message and press the Help key to see information about the cause of the
message and the appropriate action to take.

To exit the online information. press F3 (Exit). You return to the display on which
you pressed the Help key.

Index search allows you to specify the words or phrases you want to see
information about. To use index search, press the Help key. then press F11
(Search index).

Help for Control Language Commands

Online Education

To see prompts for parameters for a control language command. type the
command, then press the Help key or F4 (Prompt) instead of the Enter key.

AS/400 system online education provides tutorials on a wide variety of topics To
use the online education. press F13 (User support) on any system menu to show
the User Support menu. Then select the option to use online education.

Question-and-Answer Function

iv SQU400 Reference

The question-and-answer (Q & A) function provides answers to questions you may
have about using an AS/4QO system. To use the Q & A function. press F13 (User
support) on any system menu to show the User Support menu Then select the
option to use the question-and-answer function.

Related Printed Information
If you need more information about using SQL statements statement syntax and
parameters, see Programming: Structured Query Language Programmer's Guide,
SC21-9609

If you need more information about the interactive data definition utility, see
Utilities: Interactive Data Definition Utility User's Guide, SC21-96S7.

For more information about AS/400 system security. see Programming: Security
Guide, SC21-8083.

For more information about entering source and syntax checking of host language
and SQL statements. see the Utilities: Source Entry Utility User's Guide and
Reference, SC09-1172.

For more information about AS/400 system control language commands and
AS/400 system programming, see the following:

• Languages: ANSI '85 COBOL User's Guide and Reference, SC09-11S8

• Languages: PLiI Reference Summary, SX09-10S1

• Languages: PL/I User's Guide and Reference. SC09-11S6

• Languages: RPG III User's Guide and Reference. SC09-1161

• Programming: Command Reference Summary, SC21-8076

• Programming: Control Language Programmer's Guide, SC21-8077

• Programming: Control Language Reference, SC21-8103

For more information about data bases, see the following:

• Programming: Backup and Recovery Guide, SC21-8079

• Programming: Data Base Guide, SC21-96S9

• Programming: Data Description Specifications Reference, SC21-9620

About this Manual V

vi SQU400 Reference

Contents

Chapter 1. Introduction
Systems Appl ication Architecture
How to Read the Syntax Diagrams
Some SQL Concepts

Static SQL ..
Dynamic SQL
Tables ..
Indexes
Catalog ...
Views
Application Processes, Concurrency, and Recovery

Chapter 2. Language Elements
Characters
Tokens
Identifiers
Naming Conventions

SQL Names and System Names: Special Considerations
Authorization IDs
Data Types

Character Stri ngs
Numbers

Basic Operations
Numeric Assignments
String Assignments .. .
Numeri-c Comparisons .. .
String Comparisons

Constants
Integer Constants
Floating-Paint Constants
Decimal Constants
Character String Constants
Alternative Syntax .

Special Registers
USER

Column Names
Qualified Col umn Names

Host Variables
Host Structures in COBOL, PUI. and RPG

Expressions
Without Operators
With the Concatenation Operator
With Arithmetic Operators
Two Integer Operands
Integer and Decimal or Numeric Operands
Two Decimal or Numeric Operands
Decimal Arithmetic in SQL
Floating-Point Operands
Precedence of Operations
Host Variables

1
2
3
3
4
4
4
4
4
5

7
7
7
8
9

10
11
12
12
13
14
14
15
16
16
17
17
17
17
17
18
18
19
19
19
21
22
23
23
24
24
24
24
25
25
25
26
26

Predicates 26
Basic Predicate 27

Contents vii

BETWEEN Predicate 27
LIKE Predicate .. 28
IN Predicate .. 29

Search Conditions ... 29

Chapter 3. Functions 31
Column Functions .. 31

AVG ... 31
COUNT 32
MAX ... 32
MIN ... 33
SUM ... 33

Scalar Functions ... 34
DECIMAL .. 34
DIGITS ... 35
FLOAT .. 35
INTEGER .. 36
LENGTH .. 36
SUBSTR .. 37

Chapter 4. Queries 39
subselect .. 39
fullselect .. 45
select-statement ... 47

Chapter 5. Statements 49
BEGIN DECLARE SECTION 52
CLOSE ... 53
COMME NT ON 55
COMMIT .. 57
CREATE DATABASE .. 59
CREATE INDEX ... 60
CREATE TABLE ... 62
CREATE VIEW 66
DECLARE CURSOR ... 68
DECLARE STATEMENT 71
DELETE .. 72
DESCRIBE ... 75
DROP .. 77
END DECLARE SECTION 79
EXECUTE ... 80
EXECUTE IMMEDIATE 82
FETCH ... 84
GRANT ... 86
INCLUDE .. 89
INSERT ... 90
LABEL ON ... 94
LOCK TABLE ... 96
OPEN .. 98
PREPARE .. 101
REVOKE ... 105
ROLLBACK ... 107
SE LECT INTO .. 109
UPDATE .. 111
WHENEVER ... 114 '~

viii SQU400 Reference

Appendix A. SQL Limits 117

Appendix B. SQLCA and SQLDA Control Blocks 119
SQL Communication Area (SQLCA) 119
The SQL Descriptor Area (SQLDA) 123

Glossary 127

Index 131

Contents ix

x SQU400 Reference

Chapter 1. Introduction

Systems Application Architecture
The AS/400 system is a part of IBM's Systems Application Architecture (SAA). SAA
is a definition - a set of software interfaces, conventions, and protocols that
provide a framework for programmers who want to write applications with
cross-system consistency.

Systems Appl ication Architecture:

• Defines a common programming interface that you can use to develop
applications that can be integrated with each other and transported to run in
multiple SAA environments.

• Defines common communications support that you can use to connect
applications, systems, networks, and devices.

• Defines a common user access that you can employ to achieve consistency in
panel layout and user interaction techniques.

• Offers some common applications written by IBM using the above.

The following publications may prove useful in preparing applications which
adhere to the SAA definitions:

-Systems Application Architecture.· An Overview (GC26-4341)

Introduces SAA concepts, and identifies the environments and elements that
partici pate.

Common User Access: Panel Design and User Interaction (SC26-4351)

Defines the common user access for Personal Computers and System/370 and
AS/400 system terminals, including panel layout and user interaction
techniques.

Systems Application Architecture Writing Applications: A Design Guide
(SC26-4362)

Provides guidance on developing application programs that are consistent and
portable across the SAA environments. These applications will use the
common programming interfaces and implement the common user access
specification.

Systems Application Architecture Common Programming Interface Database
Reference (SC26-4348)

The information presented in this manual is a subset In the libraries of the SAA
implementing products. As such, this book gives limits and rules which assist
you in preparing portable programs. Since SAA is a definition and not a
product, rules and limits may not be enforced by all products.

Chapter 1. Introduction 1

How to Read the Syntax Diagrams

2 SQU400 Reference

• Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

The ~ symbol indicates the beginning of a statement.

The - symbol indicates that the statement syntax is continued.

The ~ symbol indicates that a line is continued from
the previous line.

The ~ symbol indicates the end of a statement.

Diagrams of syntactical units other than complete statements start
~Iith the ~ symbol and end with the - symbol.

• Required items appear on the horizontal line (the main path).

~STATEMENT----required-itemr------------------------+.~

• Optional items appear below the main path.

~STATEMENT----~I-------------'I ---------------------+~~.

L-optional-ite~

• If you can choose from two or more items, they appear vertically stacked.

If you must choose one of the items, one item of the stack appears on the mai n
path.

~STATEMENT--'L-reqUi red-choi cel~
required-choice2

....

If choice of an item is optional, the entire stack appears below the main path.

~ST ATEt·1ENT---'I------------------.1 -----------------~~.
L==0ptional-choicel=:j

optional-choice2

• An arrow returning to the left, above the main line, indicates an item that can
be repeated.

I • -5 T ATEMENT----repea tab 1 e-i t emm---'L........-------------------· ~.

A repeat arrow above a stack indicates that you can make more than one
choice from the stacked items, or repeat a single item.

• Keywords appear in uppercase (for example, CREME TABLE). They must be
spelled exactly as shown. Variables appear in all lowercase letters (for
example, column-name). They represent user-supplied names.

• If punctuation marks, parentheses, arithmetic operators, or such symbols are
shown, you must enter them as part of the syntax.

Sometimes a single variable represents a set of several parameters. For example,
in the following diagram, the variable parameter-block can be replaced by any of
the interpretations of the diagram that is headed parameter-block:

HO o-----STATEMENT---" -CLAUSEl-------,--.. - ..
L.parameter-b 1 ock---....J

parameter-block

, PARm-----------,------..
L--PARM2--~r--PAR~13~

L-pARN4----.J

Example: STATEMENT CLAUSEI
or STATEMENT PARMI
or STATEMENT PARM2 PAR~14

Some SQL Concepts

Static SQL

The Structured Query Language (SQL) is the language used to access data in a
relational data base. SQL is unlike many programming and data languages
because you do not have to code a sequence of instructions explaining how to get
to the data. SQL lets you select data using a single statement directed toward the
data base manager. It is the function of the data base manager to access and to
maintain the data.

SQL provides full data definition and data manipulation capabilities. You can use it
to define objects such as indexes, tables, and views. You can also retrieve, insert,
update, and delete data and control access authorization to data.

The SQL statements can be:

• Embedded inside application programs written in other languages, such as
RPG, COBOL, and PUI.

This is called static SQL. The SQL statements are present in the program at
the time it is precompiled.

• Typed in from a terminal or built by a program. This is called dynamic SQL.
The SQL statements are not provided to the data base manager until the
program ru ns.

SQL programmers can write source programs containing static SQL statements.
Before a RPG, COBOL, or PUI program containing static SQL statements is
compiled, the appropriate SQL precompiler flags the SQL statements as comments
and includes the code necessary to call the data base manager. Then the compiler
can process the program. The precompiler also checks the syntax of the SQL
statements.

Chapter 1. Introduction 3

Dynamic SQL

Tables

Indexes

Catalog

Views

4 SQU400 Reference

A capability to enter SQL statements from a terminal is part of the architecture of
SQL. You can write programs that read SQL statements from terminals. Programs
that you write use dynamic SQL to process SQL statements and present the results
to users. Dynamic SQL allows you to create your own query programs, tailored to
your users and designed for your specific needs.

A relational data base is perceived as a collection of tables. Tables are logical
structures maintained by the data base manager. Tables are made up of columns
and rows. There is no inherent order of the rows within a table. At the intersection
of every column and row is a specific data item called a value. A column is a set of
values of the same type. A row is a sequence of values such that the nth value is a
value of the nth column of the table.

A base table is created with the CREATE TABLE statement and is used to hold
pertinent user data. A result table is a set of rows that the data base manager
selects or generates from one or more base tables.

An index is an ordered set of pointers to rows of a base table. Each index is based
on the values of data in one or more table columns. An index is an object that is
separate from the data in the table. When you request an index, the data base
manager builds this structure and maintains it automatically.

Indexes are used by the data base manager to:

• Improve performance. In most cases, access to data is faster than without an
index.

• Ensure uniqueness. A table with a unique index cannot have rows with
identical keys. (A key is a column, or an ordered collection of columns, on
which the index is created.)

The data base manager maintains a set of tables and views contai ning information
about data in the data base. The catalog tables contain information about tables,
views, and indexes.

Tables and views in the catalog are like any other data base tables and views. If
you have authorization, you can use SQL statements to look at data in the catalog
views the same way you retrieve data from any other table in the AS/400 system.
The data base manager ensures that the catalog contains accurate descriptions of
the data base at all times.

Views provide an alternative way of looking at the data in one or more tables.

Like tables, views have rows and columns with no inherent order of rows. You
specify view names in the FROM clause of the SELECT statement just as you
specify table names. You can create views and authorize their use by users who
use them like tables. Certain operations are not valid on views; otherwise. users
never need know they are working with a view and not with a table.

A table has a storage representation, but a view does not. When a view is created,
its definition is stored in the catalog. No data is stored, and, therefore, no index
can be created for a view. However, an index created for a table on which a view
is based may improve the performance of operations on the view.

Application Processes, Concurrency, and Recovery
All SQL programs execute as part of an application process (job). An application
process involves the execution of one or more programs, and is the unit to which
the data base manager allocates resources and locks.

More than one application process may request access to the same data at the
same time. Locking is the mechanism used to maintain data integrity under such
conditions, preventing, for example, two application processes from updating the
same row of data simultaneously.

The data base manager acquires locks in order to prevent uncommitted changes
made by one application process from being changed by any other application
process. The data base manager will release all locks it has acquired on behalfof
an application process when that process terminates, but an application process
itself can also explicitly request that locks be released sooner. This operation is
called commit.

The recovery facilities of the data base manager provide a means of "backing out"
uncommitted changes made by an application process. This might be necessary in
the event of a failure on the part of an application process. An application process
itself, however, can explicitly request that its data base changes be backed out.
This operation is called rollback.

A unit of recovery (al so known as a logica/ unit of work), is a recoverable sequence
of operations withi n an application process. An application process represents a
single unit of recovery, but may be broken down into many shorter units of
recovery by means of commit or roll back operations. Thus, a unit of recovery is
effectively begun by the initiation of an application process, or by the termination of
a previous unit of recovery It is effectively terminated by a commit operation. a
rollback operation, or the termination of an application process. A commit or
rollback operation affects only the data base changes made within the unit of
recovery it terminates. While these changes remain uncommitted, other
application processes are unable to change them, and they can be backed out.
Once committed, these data base changes are accessible by other application
processes, and can no longer be backed out by means of a rollback. Locks
acquired by the data base manager on behalf of an application process are held
until the termination of a unit of recovery A lock explicitly acquired by a LOCK
TABLE statement may be held past the termination of a unit of recovery if COMMIT
HOLD or ROLLBACK HOLD is used to terminate the unit of recovery. A cursor may
implicitly lock the row at which it is positioned This lock will prevent another
cursor in the same application process (ora DELETE or UPDATE statement not
associah'd with that cursor) from acquiring a lock on the same row.

The initiation and termination of a unit of recovery define points of consistency
within an application process. For example, a banking transaction might involve
the transfer of funds from one account to another. Such a transaction would
require that these funds be subtracted from the first account, and added to the
second. Following the subtraction step, the data is inconsistent. Only after the
funds have been added to the second account is consistency reestablished. When
both steps are complete, the commit operation can be used to terminate the unit of

Chapter 1. Introduction 5

6 SQU400 Reference

recovery, thereby making the changes available to other application processes. If
an application process failure occurs before the unit of recovery terminates, the
data base manager will back out uncommitted changes in order to restore the
consistency of the data that it assumes existed when the unit of recovery was
initiated.

c· Chapter 2. Language Elements

Characters

Tokens

This chapter describes the basic syntax of SQL and language elements that are
common to many SQL statements. Although examples are shown and most terms
are defined before they are used. this chapter is not a tutorial. It is intended for
those who require a definitive description of the following language elements

• "Characters"
• "Tokens"
• "Identifiers" on page 8
• "Naming Conventions" on page 9

• "Authorization IDs" on page 11
• "Data Types" on page 12
• "Basic Operations·· on page 14
• "Constants" on page 17
• "Special Registers" on page 18

• "Column Names" on page 19
• "Host Variables" on page 21
• "Expressions" on page 23
• "Predicates" on page 26
• '·Search Conditions" on page 29.

The basic symbols of the language are characters from the EBCDIC collating
sequence and code pOints. Characters are classified as letters, digits, or special
characters. A letter is anyone of the uppercase or lowercase characters A through
Z plus the three characters reserved as alphabetic extenders for national
languages (#, @, and $ in the United States). A digit is anyone of the characters 0
through 9. A special character is any character other than a letter or a di gi1.

The basic syntactical units of the language are called tokens. A token consists of
one or more characters, excluding blanks and characters within a string constant
or delimited identifier. (These terms are defined later.)

Tokens are classified as ordinary or delimtter tokens:

• An ordinary token is a numeric constant, an ordinary identifier, a host
identifier, or a keyword.

• A delimiter token is a string constant. a delimited identifier, an operator
symbol, or any of the special characters shown in the syntax diagrams A
question mark is also a delimiter token when it serves as a parameter marker,
as explained under "PREPARE" on page 101.

Chapter 2. Language Elements 7

Spaces
A space is a sequence of one or more blank characters. Tokens, other than stri ng
constants must not include a space. Any token may be followed by a space. Every
ordinary token must be followed by a delimiter token or a space. If the syntax does
not allow an ordinary token to be followed by a delimiter token. that ordinary token
must be followed by a space.

Uppercase and lowercase

Identifiers

8 SQU400 Reference

Ordinary tokens are folded to uppercase. Delimiter tokens are never folded to
uppercase. Thus. the statement:

select * from CORPDATA.TEMPL where lastname = 'Smith';

is equival ent, after foldi ng, to:

SELECT * FROM CORPDATA.TEMPL WHERE LASTNAME 'Smi th ' ;

An identifier is a token that is used to form a name.

An identifier used to form the name of a host variable or structure is called a host
identifier. The rules for forming a host identifier depend on the host language. For
example, the rules for forming a host identifier in a COBOL program are the same
as the rules for forming a user-defined word in COBOL. except that host identifiers
must begin with a letter. Double byte character set (DBCS) identifiers are not
supported. There are two types of SQL identifiers: ordinary identifiers and
delimited identifiers.

• An ordinary identifier is a letter followed by zero or more characters, each of
which is a letter. a digit, or the underscore character. An ordinary identifier
must not be identical to a reserved word. (See Programming: Structured
Query Language Programmer's Guide for a list of reserved words.)

• A delimited identifier is a sequence of one or more characters of the standard
characters set enclosed within SQL escape characters. The escape character
is the quotation mark (") except for:

Dynamic SQL when the SQL string delimiter is set to the quotation mark.
Here the SQL escape character is the apostrophe (').

COBOL application programs. A COBOL precompiler option specifies
whether the escape character is the quotation mark (00) or the apostrophe

(').

The following characters are not allowed within delimited identifiers:

A blank (X'40')
An asterisk (X'SC')
An apostrophe (X '70')
A question mark(X'6F')
A quotation mark(X'7F')
X'OQ' through X'3F' and X'FF'

Here are examples of SQL identifiers:

\~EEKLYSAL loJEEKLY SAL "WEEKLY.SAL" ssee

An identifier has a maximum length of 10 bytes. This limit includes the escape
characters of a delimited identifier, unless all characters within the delimiters
would form an ordinary identifier. For example, "ABCDEFGHIJ" is valid, but
"abcdefghij" is not valid.

An identifier that begins with a number (0-9), or contains a period (.) must be a
delimited identifier. Delimited identifiers with lowercase characters are not folded
to uppercase.

Naming Conventions
The rules for forming a name depend on the type of the object designated by the
name. The syntax diagrams use different terms for different types of names. The
following list defines these terms.

auth-id

column-name

correlation-name

cursor-name

database-name

descriptor-name

host-variable

An identifier that designates a user. An auth-id is a user
profile name on the AS!400 system. An auth-id containing a
period (.) cannot be used as a qualifier unless it is enclosed
in delimiters. SQL will use ten characters of the name, but
only eight are allowed for the special register USER. If more
than eight characters are found for USER, a negative value
is returned in the SQLCODE field of the SQLCA.

A qualified or unqualified name that designates a column of
a table or a view. The unqualified form of a column-name is
an identifier. The qualified form is a qualifier followed by a
period and an identifier. The qualifier is a table-name, a
view-name, or a correlation-name.

Column names cannot be qualified with system names in the
form database-nameltable-name.column-name, except in
the COMMENi ON and LABEL ON statements. If column
names need to be qualified, and correlation names are
allowed in the statement, a correlation must be used to
qualify the column. Column names can be SQL delimited
identifiers, but the characters within the delimiters must not
include special characters.

An identifier that designates a table. a view, or individual
rows of a table or view.

An identifier that designates an SQL cursor.

An identifier that designates a database.

A host identifier that designates an SQL descriptor area
(SQLDA) See ,. Host Variables" on page 21 for a
description of a host identifier. A host variable that
designates an SQL descriptor area must be of the form
:hast-variable. Theform
: has t-vari ab 1 e: i nd i cator-vari ab 1 e is not allowed.

A sequence of tokens that designates a host variable. A
host variable incl udes at least one host identifier as
explained in "Host Variables" on page 21.

Chapter 2. Language Elements 9

index-name

statement-name

table-name

view-name

A qualified or unqualified name that designates an index.
The unqualified form of an index-name is an identifier. The
qualified form of an index-name depends on whether the
naming option ("SOL or "SYS) was specified on the STRSQL
or CRTSOLxxx command (where xxx is RPG, CBL, or PU).

For SQL names, the unqualified index-name in an SQL
statement is implicitly qualified by the authorization-IO of the
statement. The qualified form is the database-name
followed by a period (.) and an identifier.

For system names, the unqualified index-name in an SQL
statement is implicitly qualified by *UBL (user library list).
The qualified form is a database-name followed by a slash
(/) and an identifier.

An identifier that designates a prepared SQL statement.

A qualified or unqualified name that designates a table. The
unqualified form of a table-name is an identifier. The
qualified form of a table-name depends on whether the
naming option ("SOL or "SYS) was specified on the STRSQL
or CRTSQLxxx command (where xxx is RPG, CBL, or PU).

For SQL names, the unqualified table-name in an SQL
statement is implicitly qualified by the authorization-IO of the
statement. The qualified form is the database-name
followed by a period (.) and an identifier.

For system names, the unqualified table-name in an SQL
statement is implicitly qualified by *LlBL (user library list).
The qualified form is a database-name followed by a slash
(I) and an identifier.

A qualified or unqualified name that designates a view. The
unqualified form of a view-name is an identifier. The
qualified form of a view-name depends on whether the
naming option ("SOL or *SYS) was specified on the STRSQL
or CRTSQLxxx command (where xxx is RPG, CBL, or PU).

For SQL names, the unqualified view-name in an SQL
statement is implicitly qualified by the authorization-IO of the
statement. The qualified form is the database-name
followed by a period (.) and an identifier.

For system names, the unqualified view-name in an SQL
statement is implicitly qualified by *LlBL (user library list).
The qualified form is a database-name followed by a slash
(I) and an identifier.

SQL Names and System Names: Special Considerations

10 SOU400 Reference

An override CL command (OVRDBF) may be specified that overrides an SQL or
system name to another object name for data manipulation SQL statements.
Overrides are ignored for data definition SQL statements. See Programming: Data
Management Guide for more information about the override function.

You can access tables or views using either SQL names or system names. If you
choose to use SQL names:

• If a qualified name is specified, SQL/400 attempts to find the object in the
specified data base.

• If an object is unqualified, it is implicitly qualified by the authorization ID of the
statement. Because the authorization ID can change based on user, most SQL
syntax names should be qualified.

If you choose to use system names, the following rules apply:

• If a qualified name is specified, SQU400 attempts to find the object in the
specified library.

• If an unqualified object name is specified, SQU400 searches the library list
(*LlBL)

Authorization IDs
An authorization ID is a user profile. It is a character string of not more than 10
characters that designates a set of privileges.

The data base manager uses authorization IDs to provide:

1. Authorization checking of SQL statements, and

2. Implicit qualifiers for the names of tables, views, and indexes.

An authorization ID applies to every SQL statement. The authorization 10 that
applies to a static SQL statement is the authorization I D of the owner of the
program. The authorization ID that applies to a dynamic SQL statement is the
authorization ID of the user running the program. This is called the run-time
authorization ID.

An auth-id specified in an SQL statement should not be confused with the
authorization ID of the statement. For example, assume that SMITH is your user
profile and you execute the following statement interactively:

GRANT SELECT ON TDEPT TO KEENE

SMITH is the run-time authorization 10, and the data base manager therefore
checks to ensure that SMITH is authorized to issue the statement. KEENE is the
auth-id specified in the statement. A group user profile may also be used when
checking authority for an SQL statement. For information on group user profiles,
see Programming: Security Guide.

Here are two examples of a table-name, view-name, or index-name

NAt~El sr·1ITH. NA~1E1

If SMITH is the authorization ID of the statement that conta i ns NAME 1, NAME1
identifies the same object as SMITH.NAME1. Otherwise, NAME1 and
SMITH.NAME1 identify different objects.

Chapter 2. Language Elements 11

Data Types
The smallest unit of data that can be manipulated in SQL is called a value. How
values are interpreted depends on the data type of their source. The sources of
values are constants, columns, host variables, functions, expressions, and special
registers.

The basic data types are character string, integer, floating-point, numeric, and
decimal. Floating-point values are further classified as single precision and double
precision, while integers are further classified as small integer and large integer.
Integers may be specified in some host variables as having precision and scale.

All data types include the null value. The null value is a special value that is
distinct from all nonnull values and thereby denotes the absence of a (nonnull)
value. In SQU400, a column of a table cannot contain a null value.

Character Strings
A character string is a sequence of bytes. The length of the string is the number of
bytes in the sequence. If the length is zero, the value is called the empty string.
This value should not be confused with the null value.

Fixed-Length Strings

String Variables

All values of a fixed-length string column have the same length, which is
determined by the length attribute of the column. The length attribute must be
between 1 and 3276·6 inclusive.

Fixed-length string variables can be defined in all host languages. Varying-length
string variables can be directly defined in all host languages except RPG.

Mixed Data in Character Strings

12 SQU400 Reference

Character strings may contain sequences of double-byte characters, each
preceded by a "shift-out" character and followed by a "shift-in" character. A string
containing one or more such sequences is called "mixed." The principal use of
mixed data is to represent national language texts.

SQL does not recognize subclasses of double-byte characters, and does not assign
any specific meaning to particular double-byte codes. However, if you choose to
use mixed data, then two single-byte EBCDIC codes are given special meanings:

• X'OE', the "shift-out" character, is used to mark the beginning of a sequence of
double-byte codes.

• X'OF', the "shift-in" character, is used to mark the end of a sequence of
double-byte codes.

In order for SQU400 to recognize double-byte characters in a mixed string. the
following condition must be met:

• Within the string, the double-byte characters must be enclosed between paired
shift-out and shift-in characters.

The pairing is detected as the string is read from left to right. The code X' OE '
is interpreted as a shift-out character if X 'OF' occurs later; otherwise, it is
invalid. The first X'OF' following the X'QE' is the paired shift-in character.

Numbers

Small Integer

Large Integer

There must be an even number of bytes between tne paired characters, and
each pair of bytes is considered to be a double-byte character. There may be
more than o~e set of paired shift-out and shift-in characters in the string.

The length of a mixed string is its total number of bytes, counting two bytes for
each double-byte character and one byte for each shift-out or shift-in character.

When the system value QIGC indicates that DBCS is allowed, CREATE TABLE will
create character columns as OPEN fields, unless FOR BIT DATA or FOR SBCS is
specified. The SQL user will see these as character fields, but the system data
base support will see them as DBCS-Open fields. For a definition of the
DBCS-Open field, see Programming: Data Description Specifications Reference.

The numeric data types are described below. You can define small integer, large
integer, decimal and numeric variables in all host languages. Floating-point
variables can be defined only in PUI.

All numbers have a sign and a precision. The precision is the total number of
binary or decimal digits excluding the sign. The sign is positive if the value is zero.

A small integer is a binary integer with a precision of 15 bits. The range of small
integers is -32768 to 32767.

AS/400 system host variables in languages and AS/400 system physical and logical
files support precision and scale.

A large integer is a binary integer with a precision of 31 bits. The range of large
integers is -2147483648 to +2147483647.

AS/400 system host variables in languages and AS/400 system physical and logical
files support precision and scale.

Single Precision Floating-Point
A single precision floating-point number is a IEEE short (32 bits) floating-point
number. The range of magnitudes is approximately 1.17549436 • 10··-38 to
3.40282356 " 10""38.

Double Precision Floating-Point

Decimal

A double precision floating-point number is 64 bits long. The range of magnitudes
is approximately 2.2250738585072014 " 10"-308 to 1.7976931348623158 " 10""308.

A decimal value is a packed decimal number with an implicit decimal paint. The
position of the decimal point is determined by the precision and the scale of the
number. The scale, which is the number of digits in the fractional part of the
number, cannot be negative or greater than the precision. The maximum precision
is 31 digits.

All values of a decimal column have the same precision and scale. The range of a
decimal variable orthe numbers in a decimal column is -n to +n, where the

Chapter 2. Language Elements 13

Numeric

absolute value of n is the largest number that can be represented with the
applicable precision and scale. The maximum range is -10"31 +1 to 10""31-1.

A numeric number is a zoned decimal number with an implicit decimal point. The
position of the decimal point is determined by the precision and the scale of the
number. The scale, which is the number of digits in the fractional part of the
number, cannot be negative or greater than the precision. The maximum precision
is 31 digits.

All values of a numeric column have the same precision and scale. The range of a
numeric variable or the numbers in a numeric column is -n to +n, where the
absolute value of n is the largest number that can be represented with the
applicable precision and scale. The maximum range is -10"31 +1 to 10'°31-1.

Basic Operations
The basic operations of SQL are assignment and comparison. Assignment
operations are performed during the execution of INSERT, UPDATE, FETCH, and
SELECT INTO statements. Comparison operations are performed during the
execution of statements that include predicates and other language elements such
as MAX, MIN, DISTINCT, GROUP BY, and ORDER BY.

The basic rule for both operations is that numbers and strings are not compatible.
Thus, numbers and strings cannot be compared. numbers cannot be assigned to
string columns or variables, and strings cannot be assigned to numeric columns or
variables.

For assignment operations, a null value cannot be assigned to a column, nor to a
host variable that does not have an associated indicator variable. (See "Host
Variables" on page 21 for a discussion of indicator variables)

Numeric Assignments
The basic rule for numeric assignments is that the whole part of a number is never
truncated. If the whole part is truncated, a negative value is returned in the
SQLCODE field of the SQLCA. If necessary, the fractional part of a number is
truncated.

Decimal, Numeric, or Integer to Floating-Point

14 SQU400 Reference

Floating-point numbers are approximations of real numbers. Hence, when a
decimal, numeric, or integer number is assigned to a floating-paint column or
variable, the result may not be identical to the original number.

Because of the added length of double precision floating-point numbers (64 bits
rather than the 32 bits of a single precision value). the approximation will be more
accurate if the receiving column or variable is defined as double precision rather
than single precision.

(~

Decimal, Numeric, or Floating-Point to Integer
When a decimal, numeric, or floating-point number is assigned to a binary integer
column or variable, the number is converted, if necessary, to the precision and the
scale of the target. If the scale of the target is zero, the fractional part of the
number is lost. The necessary number of leading zeros is appended or eliminated,
and, in the fractional part of the number, the necessary number of trailing zeros is
appended, or the necessary number of trailing digits is eliminated.

Decimal or Numeric to Decimal or Numeric
When a decimal or numeric number is assigned to a decimal or numeric column or
variable, the number is converted, if necessary, to the precision and the scale of
the target. The necessary number of leading zeros is appended or eliminated, and,
in the fractional part of the number, the necessary number of trailing zeros is
appended, or the necessary number of trailing digits is eliminated.

Integer to Decimal or Numeric
When an integer is assigned to a decimal or numeric column or variable, the
number is converted first to a temporary decimal number and then, if necessary, to
the precision and scale of the target. If the scale of the integer is zero, the
precision of the temporary decimal n umber is 5,0 for a small integer, or 11,0 for a
large integer.

Floating-Point to Decimal or Numeric
When a single or double precision noating-point number is converted to decimal or
numeric, the number is first converted to a temporary decimal or numeric number
of precision 31 a'nd then, if necessary, truncated to the precision and scale of the
target. In this conversion, the number is rounded (using floating-point arithmetic)
to a precision of 31 decimal digits. As a result, a number less than 0.5*10.31 is
reduced to O. The scale is given the largest possible value that allows the whole
part of the number to be represented without loss of significance.

To COBOL or RPG Integers
Assignment to integer variables takes into account any scale specified for the host
variable. However, assignment to integer variables uses the full size of the
integer. Thus, the value placed in the data item may be larger than the maximum
precision specified for the host variable.

For example, given the following COBOL statement:

81 A PIC S99V99 COMP-4.
ASSIGN 123.45 TO A.

The value placed in A will be 123.45, even though A has been defined with only 2
digits to the left of the decimal point.

String Assignments
The basic rule for string aSSignments is that the length of a string assigned to a
column must not be greater than the length attribute of the column. (Trailing
blanks are included in the length of the string.)

When a string is assigned to a fixed-length string column or variable and the length
of the string is less than the length attribute of the target, the string is padded on
the right with the necessary number of EBCDIC or double-byte blanks.

Chapter 2, Language Elements 15

When a string of length n is assigned to a varying length string variable with a
maximum length greater than n, the characters after the nth character of the
variable are undefined.

When a string is assigned to a variable and the string is longer than the length
attribute of the variable, the string is truncated on the right by the necessary
number of characters. When this occurs, the value 'W' is assigned to the
SQLWARN1 field of the SQLCA. When a string is assigned to a column and the
string is longer than the length attribute of that column, an error occurs. See
Appendix B, "SQLCA and SQLDA Control Blocks" on page 119, for a description
of the SQLCA.

If the string contains mixed data, the assignment rules may require truncation
within a sequence of double-byte codes. In that case, truncation loses the shift-in
character that ends the double-byte sequence. To prevent that loss, one additional
character may be cut from the end of the string; then a shift-in character is
appended before the assignment is made. In the truncated result, there is always
an even number of bytes each shift-out character and its matching shift-in
character.

Numeric Comparisons
Numbers are compared according to their algebraic value. Conversion for the
comparison is handled internally, and packed decimal is used if the numbers are
any combination of decimal and numeric numbers.

If one number is an integer and the other is decimal, the comparison is made with
a temporary copy of the integer, which has been converted to decimal.

When decimal numbers with different scales are compared, the comparison is
made with a temporary copy of one of the numbers that has been extended with
trailing zeros so that its fractional part has the same number of digits as the other
number.

If one number is floating-point and the other is integer, decimal, or numeric, the
comparison is made with a temporary copy of the other number, which has been
converted to double precision floating-point.

Two floating-point numbers are equal only if the bit configurations of their
normalized forms are identical.

String Comparisons

16 SQU400 Reference

The comparison of two strings is determined by the comparison of the
corresponding bytes of each string. The strings must not be longer than 32,766
bytes. If the strings do not have the same length, the comparison is made with a
temporary copy of the shorter string that has been padded on the right with blanks
so that it has the same length as the other string.

Two strings are equal if they are both empty or if all corresponding bytes are
equal. Varying-length strings that differ only in the number of trailing blanks are
considered equal. If two strings are not equal, their relation is determined by the
comparison of the first pair of unequal bytes from the left end of the strings. This
comparison is made according to the EBCDIC collating sequence.

Constants
A constant (sometimes called a literal) specifies a value. Constants are classified
as string constants or numeric constants. Numeric constants are further classified
as integer, floati ng-point, or deci mal.

All constants have the attribute NOT NULL. A negative sign in a numeric constant
with a value of zero is ignored.

Integer Constants
An integer constant specifies an integer as a signed or unsigned number, of at
most 10 digits, that does not include a decimal point. The data type of an integer
constant is large integer, and its value must be within the range of a large integer.

Here are some examples of integer constants:

64 -15 +100 32767 720175

In syntax diagrams. the term "integer" is used for an integer constant that must not
include a sign.

Floating-Point Constants
Anoating-point constant specifies a floating-point number as two numbers
separated by an E. The first number may Include a sign and a decimal point; the
second number may include a sign, but not a decimal point. The value of the
constant is the product of the first number and the power of 10 specified by the
second number; it must be within the range of floating-point numbers. The number
of characters in the constant must not exceed 24. Excluding leading zeros, the
number of digits in the first number must not exceed 17 and the number of digits in
the second must not exceed 3. The data type of a floating-point constant is double
precision floati ng-poi nt.

Here are some examples of floating-point constants:

15E1 2.E5 2.2E-l +5.E+2

Decimal Constants
A decimal constant specifies a decimal number as a signed or unsigned number
that includes a decimal point, and at most 31 digits. The precision is the total
number of digits (including leading and trailing zeros) rounded to the next highest
odd number; the scale is the number of digits to the right of the decimal point
(including trailing zeros).

Here are some examples of decimal constants:

25.5 1000. -15. +37589.3333333333

Character String Constants
There are two forms of character string constant:

• A sequence of characters that starts and ends with a string delimiter ('). This
form of string constant specifies the character string contained between the
string delimiters. The length of the character string must not be greater than
32765. Two consecutive string deli miters are used to represent one string
delimiter within the character string.

Chapter 2. Language Elements 17

• An X followed by a sequence of characters that starts and ends with a string
delimiter. The characters between the string delimiters must be an even
number of hexadecimal digits. The number of hexadecimal digits must not
exceed 32764. A hexadecimal digit is a digit or any of the letters A through F
(upper or lower case). Under the conventions of hexadecimal notation, each
pair of hexadecimal digits represents a character. This form of string constant
allows you to specify characters that do not have a keyboard representation.

Here are some examples of character string constants:

'12/14/1985' '32' 'DON"T CHANGE' " X'FFFF'

Alternative Syntax

Data Separator

Delimiters

You have the option of specifying whether the decimal point in a numeric constant
is represented by a period or a comma. The default value for Interactive SQL is
indicated by the system value QDECFMT. This value can be set through the CL
command CHGSYSVAL. For information on this command, see Programming:
Control Language Reference.

"PERIOD, "COMMA, and "SYSVAL are mutually exclusive COBOL and RPG
precompiler options that specify the character that represents the decimal point in
SQL statements embedded in the program. If "PERIOD is specified, the decimal
point is the period; if "COMMA is specified, the decimal point is the comma; if
"SYSVAL is specified, the decimal point is determined by the system value
QDECFMT.

In PUI, the usage is fixed. The decimal point is the data separator.

"APOST and "QUOTE are mutually exclusive COBOL precompiler options that
name the string delimiter within COBOL statements. "APOST names the
apostrophe (') as the string delimiter, "QUOTE names the quotation mark (").
"APOSTSQL and "QUOTESQL are mutually exclusive COBOL precompiler options
that playa similar role for SQL statements embedded in COBOL programs.
"APOSTSQL names the apostrophe (') as the SQL string delimiter; with this option,
the quotation mark (") is the SQL escape character. *QUOTESQL names the
quotation mark as the SQL string delimiter; then the apostrophe is the SQL escape
character. The values of "APOSTSQL and "QUOTESQL are, respectively, the same
as the values of "APOST and 'QUOTE.

In host languages other than COBOL, the usages are fixed. The string delimiter for
the host language and for static SQL statements is the apostrophe ('); the SQL
escape character is the quotation mark (").

Special Registers

18 SQU400 Reference

A special register is a storage area whose primary use is to store information
produced with the use of specific features of the data base manager. The following
special register is implemented on the AS/400 system:

o

USER
The USER special register is 8 characters in length; it specifies the run-time
authorization ID. Thus, if you execute SQL statements interactively, USER
specifies your user profile name. USER is padded on the right with blanks, if
necessary, so that the value of USER is always a fixed-length character string of
length 8. The value in USER cannot be changed.

Here is an example of the use of USER:

SELECT * FROM SYSIBM.SYSTABLES
WHERE CREATOR = USER

Column Names
The meaning of a column name depends on its context. A column name can be
used to:

• Declare the name of a column, as in a CREATE TABLE statement.

• Identify a column, as in a CREATE INDEX statement.

• Specify values of the column, as in the following contexts:

In column functions, a column name specifies all values of the column in
the group or intermediate result table to which the function is applied.
(Groups and intermediate result tables are explained under "SELECT
INTO" on page 109.) For example, MAX(SALARY) applies the function
MAX to all values of the column SALARY in a group.

In GROUP BY or ORDER BY clauses, a column name specifies all values in
the intermediate result table to which the clause is applied. For example,
ORDER BY DEPT orders an intermediate result table by the values of the
column DE PT.

In expressions, search conditions, or scalar functions, a column name
specifies a value for each row or group to which the expression or search
condition is applied. For example, when the search condition CODE = 20
is applied to some row, the value specified by the column name CODE is
the value of the column CODE in that row.

Qualifit;d Column Names
Whether a column name may be qualified depends, like its meaning, on its context:

• In some forms of the COMMENT ON and LABEL ON statements, a column
name must be qualified. This is shown in the syntax diagrams.

• Where the column name specifies values of the column, it may be qualified at
the user's option.

• I n all other contexts, a col umn name must not be qual ified.

Where a qualifier is optional, it can serve as a correlation, as described under
"Column Name Qualifiers to Avoid Ambiguity" on page 20.

Chapter 2. Language Elements 19

Correlation Names
A correlation name can be defined in the FROM clause of a query and in the first
clause of an UPDATE or DELETE statement. For example, the clause FROM
X.MYTABLE Z establishes Z as a correlation name for X.MYTABLE.

With Z defined as a correlation name for X.MYTABLE, only Z can be used to qualify
a reference to a column of X.MYTABLE in that statement.

A correlation name is associated with a table or view only within the context in
which it is defined. Hence, the same correlation name can be defined for different
purposes in different statements.

If a correlation name is not specified, a name that is the same as the table or view
name is implicitly assigned. If SQL naming is specified, the implicit correlation
name is the qualified table name after any implicit qualification. If system naming
is specified and the table name is qualified, the implicit correlation name is the
table name portion of the qualified name. No two correlation names, whether
implicitly or explicitly assigned, may be the same. Thus, while a correlation name
may be the same as the name of another table, the other table cannot be
referenced in the same statement unless a different correlation name has been
assigned to it.

As a qualifier, a correlation name can be used to avoid ambiguity or to establish a
correlated reference. It can also be used merely as a shorter name for a table or
view. In the example, "z" might have been used merely to avoid having to enter
X.MYTABLE more than once.

Column Name Qualifiers to Avoid Ambiguity

20 SQU400 Reference

In the context of a function, a GROUP BY or ORDER BY clause, an expression, or a
search condition, a column name refers to values of a column in some table or
view. The tables and views that might contain the column are called the object
tables of the context. Two or more object tables might contain columns with the
same name; one reason for qualifying a column name is to designate from which
table the column comes.

Table Designators: A qualifier that designates a specific object table is called a
table designator. The clause that identifies the object tables also establishes the
table designators for them. For example, the object tables of an expression in a
SELECT clause are named in the FROM clause that follows it, as in this partial
statement:

SELECT Z.CODE, MYTABLE.CODE
FROM MYTABLE Z, MYTABLE
l~HERE '"

This example illustrates how to establish table designators in the FROM clause:

1. A name that follows a table or view name is a correlation name and a table
designator. So Z is a table designator, and qualifies the first column name
after SELECT.

2. A table name or view name that is not followed by a correlation name is a
table designator. So MYTABLE is a designator, and qualifies the second
column name after SELECT.

Host Variables

Avoiding undefined or ambiguous references: When a column name refers to
values of a column, exactly one object table must include a column with that name.
The following situations are considered errors:

• No object table contains a column with the specified name. The reference is
undefined.

• The column name is qualified by a table designator, but the table designated
does not i ncl ude a col umn with the specified name. Ag ai n the reference is
undefined.

• The name is unqualified, and more than one object table includes a column
with that name. The reference is ambiguous.

Avoid ambiguous references by qualifying a column name with a uniquely defined
table designator. If the column is contained in several object tables with different
names, the table names can be used as designators.

Two or more object tables can be instances of the same table. In this case, distinct
correlation names must be used to unambiguously designate the particular
instances of the table. In the following FROM clause, for example, X and Yare
defined to refer, respectively, to the first and second instances of table
CORPOATA.TEMPL.

FROM CORPDATA. W-1PL X, CORPDATA. TH1PL Y

A host variable is a PUI or RPG variable, or a COBOL group data item, that is
referenced in an SOL statement. Host variables can only be referenced in static
SOL statements. Host variables should not begin with the characters I SOL I or
I ROil. Host variables are defined by statements of the host language.

The term host-variable, as used in the syntax diagrams, shows a reference to a
host variable. A host-variable in the INTO clause of a FETCH or SE LECT INTO
statement identifies a host-variable to which a value from a column of a row is
assigned. In all other contexts, a host variable specifies a value.

The general form of a host variable reference is:

:host-identifier:host-identifier

The variable designated by the second host-identifier must have a data type of
small integer with zero scale.

The first host identifier designates the main variable; the second host identifier
designates its indicator variable. One purpose of the indicator variable is to
specify the null value. A negative value in the indicator variable specifies the null
value.

For example, if :V1:V2 is specified in a FETCH or SELECT INTO statement, and if
the value returned is nUll, V1 is not changed, and V2 is set to a negative value,
either to -1, if the value selected was the null value, or to -2, if the null value was
returned because of numeric conversion errors or arithmetic expression errors
met in the SELECT list of an outer SELECT statement. If the value returned is not
nUll, that value is assigned to V1, and V2 is set to zero (unless the assignment to V1
requires string truncation, in which case V2 is set to the original length of the
string). If an indicator variable used in other than a FETCH statement or an INTO

Chapter 2. Language Elements 21

clause contains a negative value, a negative value is returned in the SQLCODE
field of the SQLCA.

Another form of host variable reference is:

:host-identifier

If this form is used, the host variable does not have an indicator variable. The
value specified by the host variable reference :V1 is always the value of V1, and
null values cannot be assigned to the variable. Thus, this form should not be used
in an INTO clause unless the corresponding column cannot contain null values.

If a null value is returned, and you have not provided an indicator variable, a
negative value is returned in the SQLCODE field of the SQLCA. If your data is
truncated and there is no indicator variable, no error condition results.

A host variable must always be preceded by a colon when it is used in an SQL
statement.

In PUI, an SQL statement that references host variables must be within the scope
of the declaration of those host variabl es. For host variables referenced in the
SELECT statement of a cursor, this rule applies to the OPEN statement rather than
to the DECLARE CURSOR statement.

Host Structures in COBOL, PLlI, and RPG

22 SQU400 Reference

A host structure is a COBOL group, PUI structure, or RPG data structure that is
referenced in an SQL statement. Host structu res are defined by statements of the
host language, as explained in the Programming: Structured Query Language
Programmer's Guide. As used here, the term "host structure" does not include an
SQLCA or SQLDA.

The form of a host structure reference is identical to the form of a host variable
reference. The reference :S1:S2 is a host structure reference if S1 designates a
host structure. If S2 designates a host structure, it must be defined as a vector of
small integer variables. S1 is the main structure and S2 is its indicator structure.

A host structure may be referenced in any context where a list of host variables
may be referenced. A host structure reference is equivalent to a reference to each
of the host variables contained within the structure in the order which they are
defined in the host language structure declaration. The nth variable of the
indicator structure is the indicator variable for the nth variable of the main
structure.

In COBOL, for example, ifV1. V2, and V3 are declared as variables within the
structu re S1, the statement:

EXEC SQL FETCH CURSORI INTO :Sl END-EXEC.

is equivalent to:

EXEC SQL FETCH CURSORl INTO :Vl, :V2, :V3 END-EXEC.

If the main structure has m more variables than the indicator structure, the last m
variables of the main structure do not have indicator variables. If the main
structure has m less variables than the indicator structure, the last m variables of
the indicator structure are ignored. These rules also apply if a reference to a host
structure includes an indicator variable or if a reference to a host variable incl udes

an indicator structure. If an indicator structure or variable is not specified, no
variable of the main structure has an indicator variable.

In addition to structure references, individual host variables or indicator variables
in PUI and COBOL may be referenced by qualified names. The qualified form is a
host identifier followed by a period and another host identifier. The first host
identifier must designate a structure, and the second host identifier must designate
a host variable within that structure. The qualified form of host variable names is
not allowed in RPG.

The following diagram specifies the syntax of references to host variables and host
structu res:

~:-------rl ----------------,Ir-host-identifier---------------------------------+.

•

L--host-identifier.~

~.--'I ----------------'I--host-identifier~
~host-identifier.~

Expressions

I

1
•

An expression specifies a value. The form of an expression is as follows:

,function
r-(expression)----------------------------~
f--constant
f--column-name------------------------------~
Chost-variable

special-register------------------------~

Without Operators
If no operators are used, the result of the expression is the specified value. Here
are four examples of such expressions:

SALARY :SALARY 'SALARY' MAX (SALARY)

Chapter 2. Language Elements 23

•

With the Concatenation Operator
If the concatenation operator (II) is used, the result of the expression is a stri ng.
The operands of concatenation must both be the result of an expression, and both
must be character strings. The sum of their lengths must not exceed 32,766. The
concatenation operator cannot be used in dynamic SQL.

If either operand can be nUll, the result can be nUll, and if either is null, the result
is the null value. Otherwise, the result consists of the first operand string followed
by the second. With mixed data this result will not have redundant shift codes "at
the seam." Thus. if the first operand is a string ending with a "shift-in" character
(X'OF'), while the second operand is a character string beginning with a "shift-out"
character (X'DE'), these two bytes are eliminated from the result.

Here is an example of an expression containing this operator:

FI RSTNNE II' 'II LASTNAME

With Arithmetic Operators
If arithmetic operators are used, the result of the expression is a number derived
from the application of the operators to the values of the operands. If any operand
can be null, orthe expression is used in an outer SELECT list, the result can be the
null value. If any operand has the null value, the result of the expression is the null
value. Arithmetic operators must not be applied to character strings. Thus, for
example, USER +2 is invalid.

The prefix operator + (unary plus) does not change its operand. The prefix
operator - (unary minus) reverses the sign of a non-zero operand; and if the data
type of A is "small integer," then the data type of -A is "large integer." The first
character of the token following a prefix operator must not be a plus or minus sign.

The infix operators +, -, " and / specify addition, subtraction, multiplication, and
division, respectively. The value of the second operand of division must not be
zero.

Two Integer Operands
If both operands of an arithmetic operator are integers with zero scale, the
operation is performed in binary, and the result is a large integer. Any remainder
of division is lost. The result of a binary arithmetic operation (including unary
minus) must be within the range of large integers. If either integer operand has
non-zero scale, it is converted to a decimal operand with the same precision and
scale.

Integer and Decimal or Numeric Operands

24 SQU400 Reference

If one operand is an integer with zero scale and the other is decimal or numeric,
the operation is performed in decimal using a temporary copy of the integer which
has been converted to a decimal numBer with zero scale and precision as defined
in the following table:

Operand Precision of decimal copy

Column or variable: large integer 11

Column or variable: small integer 5

Constant (includi ng leading zeros) same as the number of
digits in the constant

If one operand is an integer with non-zero scale, it is first converted to a decimal
operand with the same precision and scale.

Two Decimal or Numeric Operands
If both operands are decimal or numeric, the operation is performed in decimal.
The result of any decimal arithmetic operation is a decimal number with a
precision and scale that are dependent on the operation and the precision and
scale of the operands. If the operation is addition or subtraction and the operands
do not have the same scale, the operation is performed with a temporary copy of
one of the operands that has been extended with trailing zeros so that its fractional
part has the same number of digits as the other operand.

The result of a decimal operation must not have a precision greater than 31. The
result of decimal addition, subtraction, and multiplication is derived from a
temporary result, which may have a precision greater than 31. If the precision of
the temporary result is not greater than 31, the final result is the same as the
temporary result. If the precision of the temporary result is greater than 31, the
final result is derived from the temporary result by the elimination of leading zeros
so the final result has a precision of 31.

Decimal Arithmetic in SQL
The following formulas define the precision and scale of the result of decimal
operations in SQL. The symbols p and 5 denote the precision and scale of the first
operand and the symbols p I and 5 I denote the precision and scale of the second
operand.

The precision of the result of addition and subtraction is
min(31, max(p-s, p'-S') + max(s, Sl) +1) and the scale is max(s, s').

The precision of the result of multipl ication is mi n(31, p +p') and the scale is
min(31, s +s').

The precision of the result of division is 31 and the scale is 31-p + 5-S I. If the scale
is negative, a negative value is returned in the SQLCODE field of the SQLCA.

Floating-Point Operands
If either operand of an arithmetic operator is floating-point, the operation is

. performed in floating-point, the operands having first been converted to double
precision floating-point numbers, if necessary. Thus, if any element of an
expression is a floating-point number, the result of the expression is a double
precision floating-point number.

An operation involving a floating-point number and an integer is performed with a
temporary copy of the integer, which has been converted to double precision
floating-point. An operation involving a floating-point number and a decimal or

Chapter 2. Language Elements 25

numeric number is performed with a temporary copy of the decimal or numeric
number, which has been converted to double precision floating-point. The result of \,.J
a floating-point operation must be within the range of floating-point numbers.

Precedence of Operations

Host Variables

Predicates

Expressions within parentheses are evaluated first, and, when the order of
evaluation is not specified by parentheses, prefix operators are applied before
multiplication and division; multiplication and division are applied before addition
and subtraction, and operators at the same precedence level are applied from left
to right.

Here are three examples of expressions:

PRSTAFF + 1 (SALARY + BONUS) * 1.10 SALARY/:VAR3

A host variable in an expression must identify a host variable (not a structure)
described in the program according to the rules for declaring host variables. For
further information about declaring host variables, see Programming: Structured
Query Language Programmer's Guide.

A predicate specifies a condition that is "true," "false," or "unknown" about a
given row or group.

The general form of a predicate is as follows:

~~§
,express i on---t== ~: -~-+----express i on

t=::~
~ express ion L NOT ~ BEHIEEN express i on AND express i on~

column-name·---,----,----LIKE host-variable i ~ -EUSER

L~WT ~ s t ri ng-constant----.J
~express i on--,,-----.--1 N-,j----express i on I

LNOT~ I , I

26 SQU400 Reference

~(~host-variable~)~
r-constant=-===r-
L--USER I

All values specified in a predicate must be compatible. The value of a host
variable must not be a string longer than 32766 bytes. The value of a host variable
must not be null (that is, the variable may not have a negative indicator variable).

~\

Basic Predicate

A view column referenced in a predicate must not be derived from a column
function unless it is used in a HAVING clause.

A basic predicate is used to compare two values. The format of a basic predicate
is an expression followed by a comparison operator and another expression.

If the value of either operand is null, the result of the predicate is unknown.
Otherwise, the result is either true or false.

For values x and y:

Predicate Is True If and Only If...
x ~ y x is equal to y
x~~ y x is not equal to y
x<> y x is not equal to y
x < y x is less than y
x > y x is greater than y
x<~ y x is less than or equal to y
x>~ y x is greater than or equal to y
x~< y x is not less than y
x~> y x is not greater than y

Examples:

D·1PNO ~ '528671'
SALARY < 28888
PRSTAFF<>:VARI

BETWEEN Predicate
The BETWEEN predicate is used to compare a value with a range of values. The
format of a BETWEEN predicate is as follows:

-express i on-,----,---BETWEEN-express i on-AND-express i on----------
LNOT~

The BETWEEN predicate:

value-l BETWEEN value-2 AND value-3

is equivalent to the search condition:

value-l >~ value-2 AND value-l <~ value-3

The BETWEEN predicate:

value-l NOT BETWEEN value-2 AND value-3

is equivalent to the search condition:

NOT(value-l BETWEEN value-2 AND value-3)

Example: SALARY BEHJEEN 28888 AND 48888

Chapter 2. Language Elements 27

LIKE Predicate
The LIKE predicate is used to search for strings that have a certain pattern. The
pattern is specified by a string in which the underscore and percent sign have
special meanings. The format of the LIKE predicate is as follows:

,USER
-co 1 umn-name---,.I-------rl -LlKE-j--host-vari ab 1 e-~--t------------

~NOT~ L---string-Constant~

28 SQU400 Reference

The column-name must identify a string column. If a host variable is specified,it
must identify a character variable (not a structure) that is described in the program
under the rules for declaring string host variables; it cannot have an indicator
variable.

This predicate is best explained by examples. The following description is
intended for those who require a rigorous definition. The description uses x to
denote a value of the column and y to denote the string specified by the second
operand. The terms "character," "percent sign," and" underscore ,. in the
following discussion refer to EBCDIC characters.

The string y is interpreted as a sequence of the minimum number of substring
specifiers so each character of y is part of exactly one substring specifier. A
substring specifier is an underscore, a percent sign, or any nonempty sequence of
characters other than an underscore or a percent sign.

The result of the predicate is either true or false. The result is true if there exists a
partitioning of x into substrings such that:

• A substring of x is a sequence of zero or more conti guous characters and each
character of x is part of exactly one substring.

• If the nth substring specifier is an underscore, the nth substring of x is any
single character.

• If the nth substring specifier is a percent sig n, the nth substri ng of x is any
sequence of zero or more characters.

• If the nth substring specifier is neither an underscore nor a percent sign, the
nth substring of x is equal to that substring specifier and has the same length
as that substring specifier.

• The number of substrings of x is the same as the number of substl'ing
specifiers.

The predicate ~ NOT LIKE 1 is equivalent to the search condition NOT (~ LI KE 1).

If a host variable is specified, it must be of the form : host-vari abl e. The form
:host-variable:host-indicator is not allowed.

With Mixed Data: If the column identified by column-name allows mixed data, the
column may contain double-byte characters, as may the host variable or string
constant. In that case, the special characters in yare interpreted as follows:

• An EBCDIC underscore refers to one EBCDIC character; a double-byte
underscore refers to one double-byte character.

IN Predicate

• A percent sign, either EBCDIC or double-byte, refers to any number of
characters of any type, either EBCDIC or double-byte.

Examples:

NAME LIKE '%SMITH%'
STATUS LIKE 'N '

The first example is true if 'SMITH' appears anywhere within NAME. The second
example is true if the value of STATUS has a length of two and the first character is

'N'.

The IN predicate is used to compare a value with a collection of values. The format
of the IN predicate is as follows:

~express i on---rL---~-'--I N-'I----,express i on I
NOT --.-J I , i

~(~host-variable~.)~
r-cons tant-----<
L--USER i

Each host variable specified must identify a structure or variable that is described
in the program under the rules for declaring host structures and variables. An
indicator variable must not be included.

If a host variable is specified, it must be of the form :host-variable. The form

:host-variable:host-identifier is not allowed.

An IN predicate of the form:

expression IN expression

is equivalent to a basic predicate of the form:

expression = expression

In the other form of the IN predicate, the second operand is a collection of one or
more values specified by any combination of host variables, constants, or the
keyword USER.

Example:
DEPTNO IN ('081', 'B81', 'C81')

Search Conditions
A search condition specifies a condition that is ··true," "false," or "unknown" about
a given row or group. The form of a search condition is as follows:

Chapter 2. Language Elements 29 I

~ ~ LPredicate I
L--NOT ----1 (search-conditi on)---1

30 SQU400 Reference

The result of a search condition is derived by the appl ication of the specified
Boolean operators to the result of each specified predicate. If Boolean operators
are not specifi ed, the result of the search condition is the resu It of the specified
predicate.

Examples:

SALARY > 20000
NM,lE LIKE :VAR4
AVG(SALARY) < 30000

NOT(true) is false, NOT(false) is true, and NOT(unknown) is unknown. AND and OR
are defined in Figure 1, in which P and Q are any predicates:

P Q PANDQ PORQ

True True True True

True

I True

False

I Unknown

False

I Unknown

True

I True

False True False True

False False False False

False Unknown False Unknown

Unknown True Unknown True

I Unknown I Unknown

I False

I Unknown

I False I Unknown I Unknown

I Unknown

Figure 1. Truth Tables for AND and OR

Boolean expressions within parentheses are evaluated first and, when the order of
evaluation is not specified by parentheses, NOT is applied before AND, and AND is
applied before OR. The order in which operators at the same precedence level are
evaluated is undefined to allow for optimization of search conditions.

Example:
MAJPROJ 'MA2100' AND (DEPTNO = '011' OR DEPTNO = 'B03')

.~

Chapter 3. Functions

A function is an operation denoted by a function name followed by a pair of
parentheses enclosing the specification of one or more operands. The operands of
functions are called arguments. Most functions have a single argument that is
specified by an expression. The result of a function is a single value derived by the
application of the function to the result of the expression.

Functions are classified as scalar functions or column functions. The argument of
a column function is a collection of values. An argument of a scalar function is a
single value.

In the syntax of SQL, the only use of the term "function" is in the definition of an
expression. Thus, a function can be used only where an expression can be used.
Additional restrictions apply to the use of column functions as specified below and
under Chapter 4, "Queries" on page 39.

Column Functions

AVG

The argument of COUNT(*) is a group or an intermediate result table as explained
in the description of the SELECT statement. The following applies to all column
functions other than COUNT(*).

The argument of a column function is a collection of values derived from one or
more columns. The scope of the collection is a group or an intermediate result
table as explained in the description of the SELECT statement. For example. the
result of the following SELECT statement is the number of employees in
department 001:

SELECT COUNT (*)
FROM CORPDATA.TEMPL
loJHERE l'JORKDEPT = '001'

The values of the argument are specified by an expression. This expression must
not include a column function, and must include at least one column-name, a
requirement that is not satisfied by a reference to a view column derived from a
constant or expression without a column name.

Following, in alphabetical order, is a definition of each of the column functions.

The AVG function is used to obtain the average of a collection of numbers. The
form of the function is:

-----AVG (--'L--i---.--express i on----- ---------------­
ALL --.J

The argument values must be numbers and their sum must be within the range of
the data type of the result.

Chapter 3. Functions 31

COUNT

The data type of the result is the same as the data type of the argument values,
except that the result is double precision floating-point if the argument values are
single precision !loating-point, and the result is decimal if the argument values are
non-zero scale binary. If the data type of the argument values is decimal or
non-zero scale binary with precision p and scale s, the precision of the result is 31
and the scale is 31-p +s. The result can be nUll.

The function is applied to the collection of values derived from the argument
values. If this collection is empty, the result of the function is the null value.
Otherwise, the result is the average value in the collection.

Example: AVG (SALARY)

The COUNT function is used to obtain the ordinality of a collection of rows or
values. The form of the function is:

i ---COUNT-(*)------------------------.

MAX

The argument of COUNT(*) is a collection of rows, and the result is the number of
rows in the collection.

The MAX function is used to obtain the maximum value in a collection of values.
The form of the function is:

-----rIAx (--'L---i-.--express i on-) --------------------+
ALL --.-J

32 SQU400 Reference

The argument values can be any values other than character strings whose
maximum length is greater than 256.

The data type a nd length attribute of the result are the same as the data type and
length attribute of the argument val ues. The result can be null.

The function is applied to the collection of values derived from the argument
values. If this collection is empty, the result of the function is the null value.
Otherwise, the result is the maximum value in the collection.

Example: MAX (SALARY)

MIN
The MIN function is used to obtain the minimum value in a collection of values.
The form of the function is:

-----,/·11 N (-,-------,,-'express i on-) ----------------------
LALL -.---J

SUM

The argument values can be any values other than character strings whose
maximum length is greater than 256.

The data type and length attribute of the result are the same as the data type and
length attribute of the argument values. The result can be null.

The function is applied to the collection of values derived from the argument
values. If this collection is empty, the result of the function is the null value.
Otherwise, the result is the minimum value in the collection.

Example: m N (SALARY)

The SUM function is used to obtain the sum of a collection of numbers. The form of
the function is:

-----SU~, (-L'---i---,--express i on-) -------------------­
ALL ---1

The argument values must be numbers and their sum must be within the range of
the data type of the result.

The data type of the result is the same as the data type of the argument values
except that the result is double precision floating-point if the argument values are
single precision floating-point, large integers if the argument values are small
integers, and decimal if the argument values are non-zero scale binary. If the data
type of the argument values is numeric, decimal, or non-zero scale binary, the
precision of the result is 31 and the scale is the same as the scale of the argument
values. The result can be null.

The function is applied to the collection of values derived from the argument
values. If this collection is empty, the result of the function is the null value.
Otherwise, the result is the sum of the values in the collection.

Example: SU~'(SALARY)

Chapter 3. Functions 33

Scalar Functions

DECIMAL

A scalar function can be used wherever an expression can be used. The
restrictions on the use of column functions do not apply to scalar functions. For
example, the argument of a scalar function can be a function. However, the
restrictions that apply to the use of expressions and column functions also apply
when an expression or column function is used within a scalar function. For
example, the argument of a scalar function can be a col umn function on Iy if a
column function is allowed in the context in which the scalar function is used.

The restrictions on the use of column functions do not apply to scalar functions
because a scalar function is applied to a single value rather than a collection of
values. For example, the result of the following SELECT statement has as many
rows as there are employees in department 001:

SELECT EMPNO, LASTNAME, SUBSTR(FIRSTNME,l,l)
FROM CORPDATA.EMP
l-IHERE \~ORKDEPT = 'D01'

Following in alphabetical order is the definition of each of the scalar functions.

The DECIMAL function is used to obtain a packed decimal representation of a
numeric value. The form of the function is:

~--DECH1AL (expressi on-Ir----------~--,- ---------------.....
L--,integer

L,intege

34 SQU400 Reference

The first argument must be a number. The second argument, if specified, must be
in the range of 1 to 31. The third argument, if specified, must be in the range of 0
to p, where p is the second argument. Omission of the third argument is an implicit
specification of zero.

The default for the second argument depends on the data type of the first
argument:

• 15 for floating-point, decimal, numeric, or non-zero scale binary
• 11 for large integer
• 5 for small integer

The result of the function is a decimal number with precision of p and scale of s,
where p and s are the second and third argur:nents.

The result is the same number that would occur if the first argument were assigned
to a decimal column or variable with a precision of p and a scale of s. An error
occurs if the number of significant decimal digits required to represent the whole
part of the number is greaterthanp-s.

Example: DECIMAL(AVG(SALARY) ,8,2)

DIGITS
The DIGITS function is used to obtain a character string representation of a
number. The form of the function is:

I ~~ ----DIG ITS (express i on)~-~---~~~--~---~-----~--

FLOAT

The argument must be an integer, decimal, or numeric value.

The result of the function is a fixed-length character string.

The result is a string of digits that represents the absolute value of the argument
without regard to its scale. Thus, the result does not include a sign or a decimal
poi nt. The result i ncl udes any necessary leading zeros so that the length of the
string is:

• 5 if the argument is a small zero scale integer
• 10 if the argument is a large zero scale integer
• p if the argument is a decimal, numeric, or non-zero scale integer with a

precision of p.

Example: DIGITS(JOBCODE) '6'

The FLOAT function is used to obtain a floating-point representation of a number.
The form of the function is:

I ~·~-----FLOAT (expression)--~

The argument must be a number.

The result of the function is a double precision floating-point number.

The result is the same number that would occur if the argument were assigned to a
double precision floating-point column or variable.

Example: FLOAT (ACSTAFF)j2

Chapter 3. Functions 35

INTEGER
The INTEGER function is used to obtain an integer representation of a number.
The form of the function is:

' • ..-----1 NTEGER (expressi on)-------------------------..

LENGTH

The argument must be a number.

The result of the function is a large integer with zero scale.

The result is the same number that would occur if the argument were assigned to a
large integer column or variable. If the whole part of the argument is not within the
range of integers, a negative value is returned in the SQLCODE field of the SQLCA.

Example: I NTEGER (SUn (Et·1PTmE) +.5)

The LENGTH function is used to obtain the length of a value. The form of the
function is:

' • ..-----LENGTH (expression)-------------------------..

36 SQU400 Reference

The argument can be any value.

The result of the function is a large integer with zero scale.

The result is the length of the argument. The length is the number of bytes used to
represent the value:

• the length of the stri ng, for character strings
• 2 for small integer
• 4 for large integer
• 4 for single precision floating-point
• 8 for double precision floating-point
• INTEGER{p/2) + 1 for decimal numbers with precision p

• p for numeric numbers with precision p

Example: LENGTH(STR1NG)-:N

SUBSTR
The SUBSTR function obtains a substring of a string. The form of the function is:

-SUBSTR (express; on, ; nteger~rL----J'-)------------------.
, ; nteger

In the following description of the SUBSTR function, string start, and length are
used to denote its first, second, and third arguments.

string must be a string, and start must be an integer between 1 to the length of
string. start specifi es the fi rst character of the resu It and length specifies the
length of the result.

A substring of string is one or more contiguous characters of string The SUBSTR
function does not recognize mixed data, so if string contains mixed data, the result
may not be a well-formed mixed data string.

length, if specified, must be an integer from 1 to n, where n equals the length of
string - start + 1. Omission of length is an implicit specification of
LE NGTH{string)-start+ 1. The default for length is the n umber of characters from
the character specified by start to the last character of string.

Example: SUBSTR(FIRSTNAt~E, 1, 1)

Chapter 3. Functions 37

38 SOU400 Reference

\.:)

Chapter 4. Queries

Authorization

subselect

A query specifies a result table or intermediate result table.

In a program, a query is a component of other SQL statements. The three forms of
the query described here are:

• The subselect,
• The fullselect, and
• The select-statement

Note that there is another form of select, as described under "SE LECT INTO" on
page 109.

Note: Where the syntax outlined in these descriptions is specifically limited to a
column-name, (rather than to an expression), the column you identify must not be a
column of a view derived from an expression, function, or constant.

For any form of the query, the privileges held by the authorization 10 of the
statement must include the SELECT privilege on every table and view identified in
the statement.

You have the SELECT privilege on a table if any of the following apply:

• You are the owner of the table.
• You have been granted the SELECT privilege on the table.
• You have been granted the system authorities "OBJOPR and "READ on the

table.

You have the SELECT privilege on a view if any of the following apply:

• You have been granted the SELECT privilege on the view.
• You created the view, you had the SELECT privilege on its base table when the

view was created, and you still have that SELECT privilege.
• You have been granted the system authority "OBJOPR on the view and the

system authority "READ on the base table.

-s e 1 ec t- c 1 ause-from-c 1 ause--.r----------.,--.--------.---.L------r-j ••
Lwhere-clause~ LgroUP-bY-ClaUSe~ having-clause~

The subselect is a component of the fullselect, the CREATE VIEW statement, and
the INSERT statement. It is also a component of certain predicates which, in turn,
are components of a subselect.

A subselect specifies a result table derived from the tables or views identified in
the FROM clause. The derivation can be described as a sequence of operations in
which the result of each operation is input for the next. (This is only a way of

Chapter 4. Queries 39

select-clause

40 SQU400 Reference

describing the subselect. The method used to perform the derivation may be quite
different from this description.)

The sequence of the (hypothetical) operations is:

1. FROM clause
2. WHERE clause
3. GROU P BY clause
4. HAVING clause
5. SELECT clause

.-------------*------------,

~SELECT--.,--L-A1l-l-----J--;----j
LDISTINCT~

l -express i on-n -'----}lJf-------... ~
table-name ~

-view-name *
-correlation-name

Produces a final result table by selecting only the columns indicated by the select
list from R, where R is the result of the previous cI ause.

Retains all rows of the final result table, and does not eliminate redundant
duplicates. This is the default.

DISTINCT
Eliminates all but one of each set of duplicate rows of the final result table.
DISTINCT must not be used more than once in a subselect.

Two rows are duplicates of one another only if each value in the first is equal
to the corresponding value of the second.

Select List Notation

Represents a list of names that identify the columns of table R. The first name
in the list identifies the first column of R, the second name identifies the
second column of R, and so forth. The list is established when the program is
prepared and does not represent any columns that have been added to the
table later.

name,*
Represents a list of names that identify the columns of name. name may be a
table name, view name, or correlation name. and must designate a table or
view named in the FROM clause, but must not be of the form
data-base/tab/e-name. The first name in the list identifies the first column of
name, the second name identifies the second column, and so forth. The list is
established when the program is prepared and does not represent any
columns that have been added to the table later.

expression
May be any expression of the type described in Chapter 2, but commonly the
expressions used include column names. Each column name used in the
select list must unambiguously identify a column of R.

The number of columns in the result of SE LECT is the same as the number of
expressions in the operational form of the select list (that is, the list established at
prepare time), and may not exceed 8000.

Other Limitations: The select list must not include column functions if R is derived
from a view whose subselect includes DISTINCT, GROUP BY, or HAVING.
Furthermore, if R is derived from a view whose subselect includes DISTINCT, the
select list must identify all columns of the view (possibly by SELECT') and must
not include DISTINCT or arithmetic expressions.

Applying the Select List: Some of the results of applying the select list to R depend
on whether or not GROUP BY or HAVING is used. We describe those results
separately.

If neither GROUP BY nor HAVING is used:

• The select list must not include any column functions, or it must be entirely a
list of col u mn functions.

• If the select does not include column functions, then the select list is applied to
each row of R, and the result contains as many rows as there are rows in R.

• If the select list is a list of column functions, then R is the source of the
arguments of the functions, and the result of applying the select list is one row.

If GROUP BY or HAVING is used:

• Each column-name in the select list must either identify a grouping column or
be specified within a column function.

• The select list is applied to each group of R, and the result contains as many
rows as there are groups in R. When the select list is applied to a group of R,
that group is the source of the arguments of the column functions in the select
list.

In either case, the nth column of the result contains the values specified by
applying the nth expression in the operational form of the select list.

Null attributes of result columns: Result columns do not allow null values if they
are derived from:

• p.. column
• A constant
• The COUNT function
• A host variable
• A scalar function or expression that does not allow null values.

Result col umns do allow null values if they are derived from:

• Any column function but COUNT
• An arithmetic expression
• A scalar function that allows null values.

Names of result columns: A result column derived from a column name acquires
the unqualified name of that column. All other result columns have no names.

Data types of result columns: Each column of the result of SELECT acquires a data
type from the expression from which it is derived.

Chapter 4. Queries 41

from-clause

42 SQU400 Reference

When the The data type
expression is ... of the result column is ...

the name of any the sam.e as the data type of the col umn, with the same
numeric column precision and scale for decimal, numeric, or binary

columns.

an integer INTEGER
constant

a decimal or the same as the data type of the constant, with the same
floati ng-poi nt precision and scale for decimal constants. For
constant floating-point constants, the data type is double

precision.

the name of any the same as the data type of the variable, with the same
numeric variable precision and scale for decimal, numeric, or binary

variables.

an arithmetic the same as the data type of the resu It, with the same
expression precision and scale for numeric results as described

under "Expressions" on page 23.

any function See Chapter 3 to determine the data type of the result.

the name of any the same as the data type of the col umn, with the same
string column length attribute.

the name of any the same as the data type of the variable, with a length
string variable attri bute equal to the length of the variable.

a character string variable length of length n.
constant of length
n

~correlation-name~

Names a single table or view, or produces an intermediate result table. The
intermediate result table contains all possible combinations of the rows of the
named tables or views. Each row of the result is a row from the first table or view
concatenated with a row from the second table or view, concatenated in turn with a
row from the third, and so on. The number of rows in the result is the product of
the number of rows in all the named tables or views.

The list of names in the FROM clause must conform to these rules:

• Each table-name and view-name must name a table or view described in the
data base.

where-clause

grou p-by-ci ause

• If the FROM clause specifies a view that contains a GROUP BY, HAVING, or
DISTINCT clause, no other tables or views can be specified in that FROM
clause.

The FROM clause also defines the meaning of correlation names. A
correlation-name applies to the table or view named by the immediately preceding
table-name or view-name. If a correlation name is specified, then that correlation
name must be used elsewhere in the subselect statement to designate that table or
view. For rules governing the use of correlation names, see "Qualified Column
Names" on page 19.

Each correlation name specified in the same FROM clause must be unique and
must not be the same as a table name or view name specified in the clause. When
the same table name or view name is specified more than once in a FROM clause,
a correlation name must be specified after each occurrence of the replicated name.
If a correlation name is specified for a table or view, any qualified reference to a
column of that table or view in the subselect must use that correlation name.

-WHERE search-condi t i onn---------------------~

Produces an intermediate result table by applying search-condition to each row of
R, where R is the result of the FROM clause. The result table contains the rows of
R for which the search condition is true.

search-condition describes a search condition that conforms to these rules:

• The condition is formed as described in Chapter 2.

• Each column-name in the search condition unambiguously identifies a column
of R.

• A column-name in the search condition does not identify a column that is
derived from a column function. (A column of a view can be derived from a
column function.)

~
-GROUP BY--co 1 umn-name--''-------------------~

Produces an intermediate result table by grouping the rows of R, where R is the
result of the previous clause.

column-name unambiguously names a column of R. Each column named is called
a grouping column.

Chapter 4. Queries 43

having-clause

The result of GROUP BY is a set of groups of rows. In each group of more than one
row, all values of each grouping column are equal; and all rows with the same set
of values of the grouping columns are in the same group.

Because every row of a group contains the same value of any grouping column,
the name of a grouping column can be used in a search condition in a HAVING
clause or an expression in a SE LECT clause: in each case, the reference specifies
only one value for each group.

-HAVING search-condition------------------~

Produces an intermediate result table by applying search-{;ondition to each group
of R, where R is the result of the previous clause. If that clause is not GROU P BY,
all rows of R are considered as one group. The result table contains those groups
of R for which the search condition is true.

search-condition describes a search condition that conforms to these rules:

• The condition is formed as described in Chapter 2.

• Each column-name in the search-condition must:

Unambiguously identify a grouping column of R, or
Be specified within a column function.1

A group of R to which the search condition is applied supplies the argument for
each function in the search condition.

Examples of a subselect

44 SQU400 Reference

Example 1: Show all rows ofCORPDATA.EMP.

SELECT * FROM CORPDATA.EMP

Example 2: Show the job code, maximum salary, and minimum salary for each
group of rows of CORPDAT A.EMP with the same job code, but only for groups with
more than one row and with a maximum salary greater than $50,000.

SELECT JOBCODE, MAX (SALARY) , MIN(SALARY)
FRar·, CORPDATA. EMP
GROUP BY JOBCODE
HAVING COUNT(*) > 1 AND MAX (SALARY) > 58BBB

1 See Chapter 3, "Functions" on page 31 for restrictions that apply to the use of column
functions.

fullselect

I UNION

t UNION ALL

I subselect I •
~(fullselect)~

A fullselect specifies a result table. If UNION is not used, the result of the fullselect
is the result of the specified subselect.

UNION or UNION ALL
Derives a result table by combining two other result tables (R1 and R2.) If
UNION ALL is specified, the result consists of all rows in R1 and R2. If UNION
is specified without the ALL option, the result is the set of all rows in either R1
or R2, with duplicate rows eliminated. In either case, however, each row of the
UNION table is either a row from R1 or a row from R2. The columns of the
result are not named.

Two rows are duplicates of one another only if each value in the first is equal to the
corresponding value of the second.

Note that the UNION ALL operation is associative, and that

(SELECT PROJNO FROM CORPDATA.PROJ
UNION ALL
SELECT PROJNO FROM CORPDATA.TPROJEC)
UNION ALL
SELECT PROJNO FROM CORPDATA.EMPPROJA

wi II return the same resu Its as

SELECT PROJNO FROM CORPDATA.PROJ
UNION ALL
(SELECT PROJNO FROM CORPDATA.TPROJEC
UIIION ALL
SEL~CT PROJNO FROM CORPDATA.EMPPROJA)

When you include the UNION ALL operator in the same SQL statement as a UNION
operator. however, the result of the operation depends on the order of evaluation.
Where there are no parentheses, evaluation is from left to right. Where
parentheses are included, the parenthesized subselect is evaluated first, followed.
from left to right, by the other components of the statement.

Rules for columns:

R1 and R2 must have the same number of columns. The description of the first
column of R1 must be compatible with the description of the first column of R2, the
description of the second column of R1 must be compatible with the description of
the second column of R2, and so on.

In the following explanations, let Column 1 denote the nth column of R1, Column2
the nth column of R2, and Column3 the nth column of the result of a UNION or
UNION ALL.

Chapter 4. Queries 45

• String Columns: Column3 will be a character string. If both Column1 and
Column2 are fixed-length, Column3 will be fixed-length. Otherwise, Column3
wi II be varying-length. In either case, the length attribute of Column3 wi 1\ be
the greater of the length attributes of Columnl and Column2.

• Numeric Columns: Columnl and Column2 must both be numeric. The
following rules govern the data type of Column3:

If Columnl or Column2 is floating-point, Column3 is floating-point.
If Column 1 or Column2 is double precision, Column3 is double precision.
If Column 1 and Column2 are single precision, Column3 is single precision.
If Columnl or Column2 is single precision, and the other is integer or
decimal, Column3 is double precision.
If Column 1 and Column2 are decimal, Column3 is decimal. If p and s are
the precision and scale of Column 1 , and p' and s' are the precision and
scale of Column2, the precision of Column3 is MAX(s,s ')+MAX(p-s,p '-s')
and the scale of Column3 is MAX(ss'). The precision of Column3 must not
be greater than 31.
If Column 1 and Column2 are numeric, Column3 is numeric. The precision
and scale of Column3 can be calculated using the formulas above.
If Column1 or Column2 is decimal, and the other is integer or numeric,
Column3 is decimal. The precision and scale of Column3 can be
calculated using the formulas above.
If Column 1 or Column2 is numeric, and the other is integer, Column3 is
numeric. The precision and scale of Column3 can be calculated using the
formulas above.
If Column 1 and Column2 are large integer, Column3 is large integer.
If Column 1 or Column2 is large integer, and the other is small integer,
Column3 is large integer.
If Column1 and Column2 are small integer, Column3 is small integer.
If Column 1 or Column2 is non-zero scale binary, both Column 1 and
Column2 must be binary with the same scale.

In all cases, if Column1 and Column2 do not allow null values, Column3 will not
allow null values. Otherwise, Column3 will permit null values. If the values of
Column 1 or Column2 must be converted to conform to Column3, the conversion
operation is exactly the same as if the values were assigned to Column3. For
example, if Column1 is CHAR(10) and Column2 is CHAR(5), Column3 is CHAR(10)
and values of Column3 derived from Column2 are padded on the right with five
blanks.

Examples of a fullselect

46 SQU400 Reference

Example 1: Show all the rows from CORPDATA.EMP.

SELECT * FROM CORPDATA.EMP

Example 2: List the employee numbers of all employees whose department
number begins with D (as determined from the employee table) OR who are
assigned to projects whose project number begins with AD (as determined from
the Employee-to-Project-Activity table).

SELECT Et4PNO FROM CORPDATA. HW
HHERE WORKDEPT LI KE 'D%'
UNION
SELECT EMPNO FRm~ CORPDATA. HWPROJA
WHERE PROJNO LIKE 'AD%'

v

select-statement

~fullselect--r--------------r---.-------------r----------------------------~·~~

~Order-bY-ClaUSe~ C=UPdate-claUSe~

order-by-clause

The select-statement is the form of a query that can be prepared and subsequently
executed by the use of an OPEN statement. It can also be issued interactively,
using the interactive facility (STRSQL command), causing a result table to be
displayed at your terminal. In either case, the table specified by a select-statement
is the result of the fullselect.

-ORDER Bv----r-L-co 1 umn- nal!1ej
lnteger--l

Puts the rows of the result table in order by the val ues of the columns you identify.
If you identify more than one column, the rows are initially ordered by the values of
the column you identify first, then by the values of the column you identify second,
and so on.

column-name
Must unambiguously identify a column of the result table.

integer
Must be greater than 0 and not greater than the number of columns in the
result table. The integer n identifies the nth column of the result table.

ASC
Uses the values of the column in ascending order. This is the default.

DESC
Uses the values of the column in descending order.

A named column may be identified by an integer or a column-name. An unnamed
column must be identified by an integer. A column is unnamed if it is derived from
~onstant. an arithmetic expression or a functiQQ. If the fullsel ect Includes a
UNION operator, every column of the result table is unnamed.

Ordering is performed in accordance with the comparison rules described in
Chapter 2. If your ordering specification does not determine a complete ordering,
rows with duplicate values of the last identified column have an arbitrary order.

With dynamic SQL, the ORDER BY clause, like the FOR UPDATE OF clause, must
be specified when the SELECT statement is prepared, rather than on the DECLARE
CURSOR statement.

Chapter 4. Oueries 47

update-clause

The ORDER BY clause can contain up to 256 columns or 256 bytes. If the ORDER
BY clause contains floating-point columns, only 120 columns or 120 bytes are
allowed.

~
~FOR UPDATE OF--column-name----'----------------.

The UPDATE statement can update only columns in the column-name list. Those
columns must belong to the table or view named in the FROM cl ause of the
SELECT statement. The column names must not be qualified.

If the FOR UPDATE OF clause is not specified and the ORDER BY clause is not
specified, all columns can be updated.

With dynamic SQL, the FOR UPDATE OF clause, like the ORDER BY clause, must
be specified when the SELECT statement is prepared, rather than on the DECLARE
CURSOR statement.

The FOR UPDATE OF clause cannot be used if the result table is read-only.

Examples of a select-statement

48 SQU400 Reference

Example 1: Select all the rows from CORPDATA.EMP.

SELECT * FROM CORPDATA.EMP

Example 2: Select all the rows from CORPDATA.EMP in order by date of hiring.

SELECT * FROM CORPDATA.EMP ORDER BY HIREDATE

Chapter 5. Statements

This chapter contains syntax diagrams, semantic descriptions, rules, and usage
examples of SQL statements, organized alphabetically by statement name.

The table below lists statements, summarizes their functions, and indicates the
page on which a complete description begins.

Refer
SQL Statement Function to

BEGIN DECLARE SECTION Marks the beginning of a host p. 52
variable declaration section.

CLOSE Closes a cursor. p. 53

COMMENTON Replaces or adds a comment to the p. 55
description of a table, view, or
column.

COMMIT Terminates a unit of recovery and p. 57
commits the data base changes

I
made by that unit of recovery. i

CREATE DATABASE Defines a data base. p.59

CREATE INDEX Defines an index on a table. p.60

CREATE TABLE Defines a table. p. 62

CREATE VIEW Defines a view of one or more p. 66
tables or views.

DECLARE CURSOR Defines an SOL cursor. p. 68

DECLARE STATEMENT Declares names used to identify p.71
prepared SOL statements.

DELETE Deletes one or more rows from a p. 72
table.

DESCRIBE Provides a descri pti on of the result p. 75
columns of a prepared statement.

DROP Deletes a data base, table, index, p.77
or view.

END DECLARE SECTION Marks the end of a host variable p. 79
ded aration section.

EXECUTE Executes a prepared SOL p. 80
statement.

EXECUTE IMMEDIATE Prepares and executes an SOL p.82
statement.

FETCH Assigns values of a row into host p.84
variables.

GRANT Grants privileges on a table or p. 86
view.

Figure 2 (P art 1 of 3). SOL Statements

Chapter 5. Statements 49

Invocation

50 SQU400 Reference

Refer
SQL Statement Function to

INCLUDE Inserts declarations into a source p. 89
program.

INSERT Inserts one or more rows into a p. 90
table.

LABELON Replaces or adds a label on the p. 94
description of a table, view, or
column.

LOCK TABLE Locks a table in shared or p. 96
exclusive mode.

OPEN Opens a cursor. p. 98

PREPARE Prepares an SOL statement for p. 101
execution.

REVOKE Revokes privileges on a table or p.l05
view.

ROLLBACK Terminates a unit of recovery and p.l07
backs out the data base changes
made by that unit of recovery.

SELECT INTO Specifies a result table of no more p. 109
than one row and assigns values to
host variables

UPDATE Updates the values of one or more p. 111
columns in one or more rows of a
table.

WHENEVER Defines actions to be taken on the p. 114
basis of SOL return codes.

Figure 2 (Part 2 of 3). SQL Statements

All SQL statements can be embedded in an application program, and most can be
issued interactively. Some statements, however, can only be embedded in an
application program.

The phrase 'embedded in an application program' means that you can specify the
statement in a source program that will be submitted to an SQL precompiler
(CRTSQLRPG, CRTSQLCBL, or CRTSQLPLI commands). You must begin such
statements with EXEC SQL.

The phrase 'issued interactively' means that you can specify the statement using
the interactive facility (STRSQL command). It also means that any SQL program
can dynamically prepare and execute the statement. Thus, you can also issue
these statements interactively using a dynamic SQL facility other than the
interactive facility (STRSQL command).

Some statements that can only be embedded in application programs are not
executable statements. The precompiler processes these statements and reports
any errors it encounters. You should not, therefore, follow such statements by a
test of the SQLCODE field of the SQLCA. You should, however, follow all
executable statements embedded in an application program by a test of SQLCODE.

You can use the WHENEVER statement (which is not an executable statement) to
supplement or replace SQLCODE tests.

Chapter 5. Statements 51

BEGIN DECLARE SECTION

Invocation

Authorization

The BEGIN DECLARE SECTION statement marks the beginning of a host variable
declaration section.

This statement can only be embedded in an application program. It is not an
executable statement.

None required.

-BEG I N DECLARE SECTI ON,--------------------------..... ~

Description

Usage Notes

Example

52 SQU400 Reference

The BEGIN DECLARE SECTION statement may be coded in the application
program wherever variable declarations can appear in accordance with the rules
of the host language. It is used to indicate the beginning of a host variable
declaration section. A host variable section ends with an END DECLARE SECTION
statement descri bed on page 79.

Host variables do not need to be declared within a declare section, but should be
declared within a declare section.

Host variable declaration sections may be specified for host languages so that the
source program conforms to the SAA oefinition of SOL.

The BEGIN DECLARE SECTION and the END DECLARE SECTION statements must
be paired and may not be nested.

No other SOL statements should be included within a declare section.

Variables referenced in SOL statements should be declared in a declare section
and the section should appear before the first reference to the variable.

Variables declared outside a declare section should not have the same name as
variables declared within a declare section.

EXEC SOL BEGIN DECLARE SECTION END-EXEC.
•
•

(host variable declarations)
•
•

EXEC SOL END DECLARE SECTION END-EXEC.

CLOSE

Invocation

Authorization

The CLOSE statement closes a cursor.

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

None is required. See the description of DECLARE CURSOR" on page 68 for an
explanation of the authorization required to use a cursor.

r:-- CLOSE C"c"r-"'m'--~·~·

Description

Usage Notes

Example

cursor-name
Identifies the cursor to be closed. The cursor-name must identify a declared
cursor as explained in the Usage Notes for the DECLARE CURSOR statement.
When the CLOSE statement is executed. the cursor must be in the open state.

If cursors are not explicitly closed. the open cursors of an application process are
implicitly closed:

• At the end of a unit of recovery unless HOLD is specified on the COMMIT or
ROLLBACK statement.

• At the end of the first SQL program in the program stack. For example. if SQL
program A calls SQL program B. any cursors opened by program B will be
closed when program A ends.

• At the end of the job.

Expl:citly closing cursors as soon as possible can impro'/e performance. CLOSE is
not a COMMIT or ROLLBACK operation.

A cursor is used to fetch one row at a time into the program variables DNUM,
DNAME. and MNUM. Finally, the cursor is closed. If the cursor is reopened, it is
agai n located at the begin ni ng of the rows to be fetched.

Chapter 5. Statements 53

CLOSE

54 SQU400 Reference

EXEC SQL DECLARE C1 CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO
FROM CORPDATA.DEPT
WHERE ADMRDEPT = 'ABB'
END-EXEC.

EXEC SQl OPEN C1 END-EXEC.

EXEC SOL FETCH C1 INTO :DNUI,1, :DNAr1E, :IINUil !;:f;D-EXEC.

IF SCLCODE = 18B
PERFORM DATA-NOT-FOUND

ELSE
PERFORM GET-REST-OF-DEPT
UilTil SQlCODE IS NOT EQUAL TO ZERO.

EXEC SQL CLOSE C1 END-EXEC.

GET-REST-OF-DEPT.
EXEC SOL FETCH C1 INTO :DIJUH, :DNAI·1E, :In·HJ'l ::':::;-~XEC.

J

j . ~ ~.~'

~

COMMENT ON

Invocation

Authorization

The COMMENT ON statement adds or replaces comments in the catalog
descriptions of tables, views, or columns.

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

The privileges held by the authorization I D of the statement must i ncl ude:

• The system authority ·READ on the library containing the table or view, and
• Ownership of the table or view, or the system authorities of both ·OBJOPR and

·OBJMGT on the referenced table or view.

-CCIIf·IEIH ON--------------------------------.....

------r-TABLE ----ctab 1 e-nam~--,------I,--I Sst ri ng-cons tan t-,-----------<·-.·
I Vl ev/-name
~COLU11:j----r-t~bl e-name. co 1 umn-name-,--J
I ~vlew-name.column-name~

~ I

L,-~aJ~ e-r,a~e--,--1-(Col umn-r.al7le IS stri ng-cc~s :a"~l)--.
LVl e"/-name~

Description
TABLE

Indicates that you want to comment on a table or view.

table-name or view-name
Identifies the table or view to which the comment applies. The table or
view must be described in the catalog.

COLUMN
Indicates that you want to comment on a column.

table-name.column-name or view-name.co/umn-name
Is the name of the column. qualified by the name of the table or. ,eN In
which it appears.

To comment on more than one column in a table or view, do not use T ~.BLE or
COLUMN. Give the table or view name and then, in parentheses, a :st of this
form:

column-name IS string-constant,
column-name IS string-constant,

The column named must be described in the catalog. and in the refere~::ed
table or view.

Chapter 5. Statements 55

COMMENT ON

Usage Notes

Examples

56 SQU400 Reference

IS
Introduces the comment you want to make.

string-constant
Can be any SQL character string constant of up to 254 characters. The
constant may contain double-byte characters as well as EBCDIC
characters.

The library that contains the object must be an SQL data base.

Example 1: Enter a comment on table CORPDATAErv1P.

COMMENT ON TABLE CORPOATA.EMP
IS 'REFLECTS 1ST QTR 81 REORG'

Example 2: Enter a comment on view CORPDATA.VDEPT.

COMMENT ON TABLE CORPDATA.VDEPT
IS 'VIEW OF TABLE CORPDATA.TDEPT'

Example 3. Enter a comment on the DEPTNO column aftable CORPDATATDEPT.

COfIrENT Oii COLU~IN CO.~PDATA. TOEPT. CEPT IW
IS '~EPARTMENT TO - ~NIQUE'

Example 4: Enter comments on two columns in table CORPDATA.TDEPT.

COMMENT eN CORPJATA.TDEPT
(l1;;~i<O IS 'EIPLOfEE ~.UrI8ER OF OEPA'm:::lf, ~·~:t';;;C:~',

AC~·1RCEPT IS 'DE"ARTI'ENT NUI·1BER OF AC:1I ::!S-ER:',;; JEP;'~~:'::'IT')

:..J

COMMIT

Invocation

Authorization

The COMMIT statement terminates a unit of recovery and commits the data base
changes that were made by that unit of recovery. The moment in the sequence of
operations at which that is done is called a commit point.

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

None required.

---CGr:ifilIT----r-------r-,-------r-------------------<·-..
Ll'JORK-.-J LHOLD~

Description

Usage Notes

The unit of recovery in which the COMMIT statement is executed is terminated and
a new unit of recovery is initiated. All changes made by DELETE, INSERT. and
UPDATE statements executed during the unit of recovery are committed.

All locks acquired by the unit of recovery are released. All cursors that were
opened during the unit of recovery are closed. All statements that were prepared
during the unit of recovery are destroyed, and any cursors associated with the
prepared statements are i nvali dated.

WORK
COMMIT WORK has the same effect as COMMIT. SQU400 accepts the
keyword WORK for compatibility with other data base products.

HOLD
Indicates a hold on resources. If specified, currently open cursors are not
closed, prepared SQL statements are preserved. and all resources acquired
during the unit of recovery are held. Locks on specific rows acquired during
the transaction, however, are released. If HOLD is omitted, open cursors are
closed, prepared SQL statements discarded, and held resources released.

The termination of an application process IS an implicit rollback. Thus, an e\;:;llcit
COMMIT or ROLLBACK should be issued before termination.

A unit of recovery (see "Application Processes, Concurrency. and Reco'/er;i' on
page 5 for descri ption) may incl ude the processi ng of up to 4096 rows, i ncl ud I "g
rows retrieved during a SELECT or FETCH statemen!2, and rows inserted. de~eted,

2 Unless you specified COMMIT("CHG), in which case these rows are not included in this
total.

Chapter 5. Statements 57

COMMIT

Example

58 SQU400 Reference

or updated as part of INSERT, DELETE, and UPDATE operations. 3 A unit of
recovery is initiated by the initiation of a unit of work or by the termination of a
previous unit of recovery; it is terminated by a commit operation, a rollback
operation, or the termination of a unit of work. The commit and rollback operations
do not affect any data definition statements, and these statements are not,
therefore, allowed in an application program that also specifies COMMIT(*CHG) or
COMMIT(*ALL). The data definition statements are:

• COMMENT
• CREATE DATABASE
• CREATE INDEX
• CREATE TABLE
• CREATE VIEW
• DROP DATABASE
• DROP INDEX
• DROP TABLE
• DROP VIEW
• GRANT
• LABEL
• REVOKE

Commitment control is implicitly started by SQL. if necessary. USI ng the system CL
command STRCMTCTL. The lock level used is based on the CO~'MIT option
specified on either the CRTSQLxxx (where xxx is RPG. CBL, or PLI). or the STRSQL
command.

A COMMIT is not automatically performed when an application terminates or when
interactive SQL terminates. In order to commit work performed by an application,
you must issue a COMMIT from within the appl ication, or from outside the
application with the CL command COMMIT. When a job terminates, an implicit
ROLLBACK is issued.

Commit alterations to the data base made since the last commit point.

COf·1t4IT ~jORK

3 This limit also includes any records accessed or changed through files opened under
commitment control through high-level language file processing.

CREATE DATABASE

Invocation

Authorization

The CREATE DATABASE statement defines a data base in which tables, views, and
indexes may later be created.

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

The privileges held by the authorization ID of the statement must include:

• Authority to the CL command CRTLlB, and
• Authority to the CL command CRTDTADCT (create data dictionary).

-CREATE DATABASE database-name-------------------------l·-·

Description

Usage Notes

Example

DATABASE database-name
Names the data base. The name you supply must not be the name of an
existing SQL data base or a library.

A data base is created as:

• A library: a libary groups related objects, and allows you to find objects by
name.

• A catalog: a catalog contains descriptions of the tables, views, and indexes in
the data base. A catalog consists of a data dictionary and a set of views and
logical files. For more information, see SQL Programmer's Guide.

• A journal and journal receiver: a journal QSQJRN and journal receiver
QSQJRNOO01 is created in the data base, and is used to record changes to all
tables subsequently created in the data base. For more information, see
Backup and Recovery Guide.

When it is created, the system authority 'EXCLUDE is initially given to 'PUBLIC.
The owner is the only user having any authority to the data base. If other users
require authority to the data base, the owner can grant authority to the objects
created. using the CL command GRTOBJAUT (grant object authority). For more
information on AS/400 system security, see Programming. Security Guide and
Programming: Control Language Reference.

Create data base DBTEMP.

CREATE DATABASE DBTEMP

Chapter 5. Statements 59

CREATE INDEX

Invocation

Authorizati on

The CREATE INDEX statement creates an index on a table.

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

The privileges held by the authorization ID of the statement must include:

• Authority to the CL command CRTLF, and
• Authorities of "OBJOPR and "ADD on the library and data dictionary containing

the referenced table, and
• The INDEX privilege, and one of the following privileges on the referenced

table:
DELETE
INSERT
SELECT
UPDATE

If SQL names are specified and the authorization ID is expl iCitly specified and is
different from the authorization ID of the statement. you must have' ADD system
authority to the user profile named by the authorization ID qualifier.

---CREATE----,-----.---INoEX index-name-ON table-name------------~
LUNIQUE~

I I

___ (-tCOl umn-name----..----------,---....LI)---------------+-<1 ...

Description

60 SQU400Reference

UNIQUE

f----ASC-------J
'----0 ESC----'

Prevents the table from containing two or more rows with the same value of
the index key. The constraint is enforced when rows of the table are updated
or new rows are inserted.

The constraint is also checked during the execution of the CREATE INDEX
statement. If the table already contains rows with duplicate key values, the
index is not created.

INDEX index-name
Names the index. If the index-name is qualified, the index will be created in
the specified data base. Otherwise, the index will be created in the data base
specified by the implicit or explicit qualifier of the specified table. The name
you give must not be the name of an index, table, view, or file that already
exists in the data base.

Usage Notes

Example

CREATE INDEX

If SQL naming is specified and the implicit or explicit qualifier also identifies a
user profile, the "owner" of the index is that user profile. Otherwise, the
"owner" is the user profile or group user profile of the job invoking the
statement.

ON table-name
Names the table on which you want the index to be created. The table-name
must name a table (not a view) described in the catalog.

(column-name)
Names a column that is to be part of the index key.

Each column-name must name a column of the table. Do not name more than
120 columns. The same column may be specified more than once. Do not
qualify the column-name.

ASC
Puts the index entries in ascending order by the column. This is the
default.

oesc
Puts the index entries in descending order by the column.

An index is created as a keyed logical file. Indexes are created with the system
authority of 'EXCLUDE on 'PUBLIC. The maximum length of an index entry is 120
bytes.

If the named table already contains data, CREATE INDEX creates the index entries
for it. If the table does not yet contain data, CREATE INDEX creates a description
of the index; the index entries are created when data is inserted into the table. The
index always reflects the current condition of the table.

Create a unique index, named XDEPT1, on table CORPDATA.TDEPT. Index entries
are to be in ascending order by the single column DEPTNO.

CREATE UNIQUE INDEX CORPDATA.XDEPTl
ON CORPDATA.TDEPT

(DEPT NO ASC)

Chapter 5. Statements 61

CREATE TABLE

Invocation

Authorization

The CREATE TABLE statement defines a table. You provide the name of the table
and the names and attributes of its columns.

This statement can be embedded in an application program or issued interactively
It is an executable statement that can be dynamically prepared.

The privileges held by the authorization 10 of the statement must include:

• The system authorities of*OBJOPR and "ADD on the library and data
dictionary, and

• Authority to the CL command CRTPF.

If SQL names are specified and the authorization ID is explicitly specified and is
different from the authorization ID of the statement, you must have "ADD system
authority to the user profile named by the authorization ID qualifier.

---CREATE TABLE tab1 e-name---------------------------

~(~COl umn-name-data-type-rNOT NULL------'I---,I-------,-I -,-I)------.~.

Description

62 SQU400 Reference

L~WT NULL \!ITH DEFAUU-.J f-FOR BIT DATA---j
f-FO R SBCS DATA----1
LFOR r,lIXED DATA-.J

table-name
Is the name of the table. The name you supply, including the implicit or explicit
qualifier, must not identify an index, table, view, or file that already exists in
the data base.

If SQL names have been specified, the table will be created in the data base
specified by the implicit or explicit qualifier The qualifier is the "owner" of the
table if a user profile with that name exists. Otherwise, the "owner" of the
table is the user profile or group user profile of the job invoking the statement.

If system names have been specified, the table name must be qualified. The
table will be created in the data base specified by the qualifier. The "owner" of
the table is the user profile or group user profile of the job invoking the
statement.

column-name
Is the name of a column of the table. Do not qualify column-name and do not
use the same name for more than one column of the table.

You may define up to 8000 columns. The sum of the byte counts of the columns
must not be greater than 32766.

CREATE TABLE

For information on the byte counts of columns according to data type, see
"Usage Notes" on page 64.

data-type
Is one of the types in the list that follows. Use:

INTEGER or INT
For a large integer.

SMALLINT
For a small integer

FLOAT(integer)
For a floating-point number. If the integer is between 1 and 24 inclusive.
the format is that of si ngle precision fioati ng-poi nt. If the integer is
between 25 and 53 inclusive, the format is that of double precision
floating-point. If the integer is omitted from the specification. a value of 53
is assumed, and the number is double precision.

You may also specify:

REAL
DOUBLE PRECISION

NUMERIC(integer,integer)

for single precision floating-point
for double precision floating-point

For a zoned decimal number. The fi rst integer is the precision of the
number, that is, the total number of digits; it may range from 1 to 31. The
second integer is the scale of the number, that is. the number of digits to
the right of the decimal point: it may range from 0 to the precision.

You may use NUMERIC(p) for NUMERIC(p,O), and NUMERIC for
NUMERIC(5.0).

DECIMAL(integer,integer)
For a decimal number. The first integer is the precision of the number: that
is, the total number of digits: it may range from 1 to 31. The second integer
is the scale of the number: that is, the number of digits to the right of the
decimal point; it may range from 0 to the precision.

You may use DECIMAL(p) for DECIMAL(p,O), and DECIMAL for
DECIMAL(5,O). You may also specify DEC for decimal.

CHAR(integer) or CHARACTER(integer)
For a fixed-length character string of length integer, which may range from
1 to 32766. If FOR MIXED DATA is specified, the range is 4 to 32766. If the
length specification is omitted, a length of 1 character is assumed.

NOT NULL
Prevents the column from containing null values.

NOT NULL WITH DEFAULT
Prevents the column from containing null values, and allows a default value
other than the null value. The default value used depends on the data type of
the col umn, as follows:

Data type
Numeric
Character

Default value
o
blanks

Chapter 5. Statements 63

CREATE TABLE

Usage Notes

64 SQU400 Reference

FOR BIT DATA
Specifies that the character column contains hex data (that is, data that is not
text of a particular code page). A zero is returned for the character set and
code page in the SQL Descriptor Area (SQLDA) on a DESCRIBE or PREPARE
statement for a character column defined with FOR BIT DATA.

FOR SBes DATA
Specifies that the character column contains SBCS (single byte character set)
data. The system value QCHRID specifies the character set and code page of
all SBCS data on the system. The character set and code page of a character
column is returned in the SQL Descriptor Area (SQLDA) on DESCRIBE and
PREPARE statements. FOR SBCS DATA is the default for CHAR columns if the
system is not DBCS-capable or if the length of the column is less than 4. This
is determined using the QIGC system value.

FOR MIXED DATA
Specifies that the character column contains both SBCS (single byte character
set) data, and DBCS (double byte character set) data. The system value
QCHRID specifies the character set and code page of the SBCS data. The
character set and code page of a character column is returned in the SQL
Descriptor Area (SQLDA) on DESCRIBE and PREPARE statements. FOR
MIXED DATA is the default for CHAR columns if the system is DBCS-capable
and the length of the column is greater than 3. This is determined using the
QIGC system value. If the system is not DBCS-capable, and FOR MIXED DATA
is specified, an error occurs. A FOR MIXED DATA column is used as a
DBCS-Open data base field.

Tables are created as physical files with the system authority of 'EXCLUDE to
'PUBLIC. When a table is created, journaling is automatically started on the
journal named QSQJRN in the data base.

Maximum record size: The "maximum record size" referred to in the description
of column-name is 32766. To determine the length of a record, add the length of
each column of that record based on the byte count of the data type.

The list that follows gives the byte counts of columns by data type.

Data type

INTEGER

INT

SMALLINT

FLOAT(n)

Byte count

4

4

2

If n is between 1 and 24, the byte count is 4. If n is between
25 and 53, the byte count is 8.

DOUBLE PRECISION 8

REAL

DECIMAL(p, s)

NUMERIC(p, s)

CHAR(n)

4

the integral part of (p/2) + 1

p

n

Examples

o

CREATE TABLE

Precision as described to the data base:

• Floating point fields are defined in the AS/400 system data base with a decimal
precision, not a bit precision. The algorithm used to convert the number of bits
to decimal is decimal precision = x(n/3.31), where x is the smallest integer
greater than or equal to the argument, and n is the number of bits to convert.
The decimal precision is used to determine how many digits to display using
interactive SOL.

• SMALLINT fields are stored with a decimal precision of 4.0.

• INTEGER fields are stored with a decimal precision of 9.0.

Example 1: Create CORPDATA's table, TDEPT. DEPTNO. DEPTNAME, MGRNO.
and ADMRDEPT are column names. CHAR means the column will contain
character data. NOT NULL means that the column cannot contain a null value.

CREATE TABLE CORPDATA.TDEPT
(DEPT NO CHAR(3) NOT NULL WITH DEFAULT,
DEPTNAME CHAR(36) NOT NULL WITH DEFAULT,
MGRNO CHAR(6) NOT NULL WITH DEFAULT,
ADMRDEPT CHAR(3) NOT NULL WITH DEFAULT)

Example 2: Create CORPDATA's table, PROJ. PROJNO, PROJNAME, DE PTNO,
RESPEMP, PRSTAFF, PRSTDATE, PRENDATE, and MAJPROJ are column names.
CHAR means the column will contain character data. DECIMAL means the column
will contain packed decimal data. 5,2 means the following: 5 indicates the number
of decimal digits, and 2 indicates the number of digits to the right of the decimal
point. NOT NULL means that the column cannot contain a null value.

CREATE TABLE CORPDATA.PROJ
(PROJNO CHAR(6) NOT NULL WITH DEFAULT,
PROJNAME CHAR(24) NOT NULL WITH DEFAULT,
DEPTNO CHAR(3) NOT NULL WITH DEFAULT,
RESPEMP CHAR(6) NOT NULL WITH DEFAULT,
PRSTAFF DECH1AL(5,2) NOT NULL I'!ITH DEFAULT,
PRSTDATE DECIMAL(6) NOT NULL WITH DEFAULT,
PRENDATE DECIMAL(6) NOT NULL WITH DEFAULT,
MAJPROJ CHAR(6) NOT NULL WITH DEFAULT)

Chapter 5. Statements 65

CREATE VIEW

Invocation

Authorization

The CREATE VIEW statement creates a view on one or more tables or views.

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

The privileges held by the authorization ID of the statement must incl ude:

• Authority to the CL command CRTLF (create logical files), and
• The system authorities 'OBJOPR and 'ADD on the library and data dictionary

containing the referenced tables, and
• The SELECT, UPDATE, DELETE, or INSERT privilege on all the tables

referenced either directly through the subselect, or indirectly through views
referenced in the subselect.

If SOL names are specified and the authorization ID that is explicitly specified is
different from the authorization ID of the statement. you must have' ADD authority
on the user profile named by the authorization 10 qualifier.

--CREATE VI El'i vi el'l-name---,-------------,---------------

I r---,----,

L (. co 1 umn-namJ) -----'

~AS subselect-------------------------------~--.

Description

66 SQU400 Reference

view-name
Is the unqualified or qualified name of the view. The unqualified name must
not be the same as any table, view, index. or file that already exists in the data
base.

For SOL naming, the view goes into the implicitly or explicitly specified data
base. The owner in SOL naming is the authorization ID of the statement if a
user profile of that name exists; otherwise. the owner is the user profile or
group user profile of the job invoking the statement.

For system naming, the view goes into the specified data base if the view name
is explicitly qualified. If the view name is not explicitly qualified, the view goes
into the data base that contains the first table referenced in the subselect.

column-name
Is a list of one or more names for columns in the view. If you specify the list, it
must consist of as many names as there are columns in the result table of the
subselect. Each name must be unique and unqualified. If you do not specify a
list of column names, the columns of the view inherit the names of the columns
of the result table of the subseled.

Usage Notes

Example

CREATE VIEW

You must specify a list of column names if the result table of the subselect has
duplicate column names or an unnamed column (a column derived from a
constant, function, or expression).

AS subs elect
Defines the view. At any time, the view consists of the rows that would result if
the subselect were executed.

subs elect must not reference host variables. See Chapter 4, "Queries" on
page 39 for an explanation of subselect.

Views are created as non-keyed logical files with system authority of "EXCLUDE to
·PUBLIC.

Read-only views: A view is read-only if its definition involves any of the following:

• The first FROM clause identifies more than one table or view

• The keyword DISTINCT
• A GROUP BY clause
• A HAVING clause
• A column function
• The first FROM clause identifies a read-only view.

A read-only view cannot be the object of an INSERT, UPDATE, or DELETE
statement.

A view cannot reference more than 32 real tables, including real tables referenced
by underlying views.

A view cannot address more than 8000 columns. The number of referenced tables,
the column name lengths. and the length of the WHERE clause further reduce this
number.

Limitations

• FOR UPDATE OF, ORDER BY, and UNION cannot be used in the definition of a
view.

• Host variables are not allowed in the definition of a view.
• uSER or LENGTH cannot be used in the definition of a view.

Testing a view definition: You can test the semantics of your view definition by
executing SELECT' FROM view-name.

Create the view CORPDATAVPROJRE1. PROJNO, PROJNAME. PROJDEP.
RESPEMP, EMPNO. FIRSTNME, MIDI NIT, and LASTNAME are column names. The
view is a join of tables CORPDATA.PROJ and CORPDATA.EMP. where a value in
the RESPEMP column is equal to a value in the EMPNO column.

CREATE VIEW CORPDATA.VPROJREI
(PROJNO,PROJNAME,PROJDEP,RESPEMP,
FIRSTNME,MIDINIT,LASTNAME)

AS SELECT ALL
PROJ NO, PROJ rMIIE, DEPT NO, Ef·1PNO,
FIRSTNME,MIDI~IT,LAST~AME

FROM CORPDATA.PROJ, CCRPDATA.EMP
WHERE RESPEMP = EMPNO

Chapter 5. Statements 67

DECLARE CURSOR

Invocation

Authorization

The DECLARE CURSOR statement defines a cursor.

This statement can only be embedded in an application program. It is not an
executable statement.

No authorization is required to use this statement. However, to use OPEN or
FETCH for the cursor, the privileges held by the authorization ID of the statement
must include the SELECT privilege on every table and view identified in the
SELECT statement of the cursor. Authority is checked at execution time during
OPEN and during the processing of the statements that reference the open cursor.

The SE LECT statement of the cursor is either:

1. The SELECT statement identified by select-statement, in which case "the
authorization I D is the owner of the program.

2. The prepared SE LECT statement identified by a statement-name clause, in
which case the authorization ID is the run-time authorization ID.

-DECLARE curscr-name----CURSOR FOR--------------------

~~ ----r-I -se 1 ect-statement--,I,--------------------------.. ~

~statement-name~

Description

68 SQU400 Reference

A cursor with the specified name is created when your source program is run. The
name must not be the same as the name of another cursor declared in your source
.,grogra~.

A cursor in the open state designates a result table and a position relative to the
rows of that table. The table is the result table specified by the SELECT statement
of the cursor.

The result table is read-only if:

• The SE LECT statement includes:

The keyword DISTINCT

A UNION operator

A column function

A GROUP BY or HAVING clause.

Usage Notes

DECLARE CURSOR

• The first FROM clause of the SELECT statement identifies:

More than one table or view

A read-only view.

Specifying the SELECT Statement: If select-statement is specified, it identifies the
SELECT statement of the cursor.

The select-statement must not include parameter markers, but may include
references to host variables. The declarations of the host variables must precede
the DECLARE CURSOR statement in the source program. See "select-statement"
on page 47 for an explanation of fullselect.

If the ORDER BY clause is not specified, the rows of the result table have an
arbitrary order.

Naming the SELECT Statement: If a statement-name is specified, the SELECT
statement of the cursor is the prepared SELECT statement identified by the
statement-name when the cursor is opened. The statement-name must not be
identical to a statement-name specified in another DECLARE CURSOR statement of
your source program.

See "PREPARE" on page 101 for an explanation of prepared SELECT statements.

A SELECT statement is evaluated at the time the cursor is opened. If the same
cursor is opened, closed. and then opened again, the results may be different.
Multiple cursors using the same SE LECT statement may be opened concurrently.
They are each considered independent activities.

A cursor is automatically closed when the job terminates. A cursor is also closed
whenever a COMMIT (no HOLD) or ROLLBACK (no HOLD) statement is issued, or
when the last SQL program in the program stack ends.

If ORDER BY is specified and FOR UPDATE OF is not specified, the cursor is
read-only. If ORDER BY is specified and FOR UPDATE OF is specified, the
columns in the FOR UPDATE OF clause can not be the same as any columns
specified in the ORDER BY clause.

The ORDER BY clause can contain up to 256 columns or 256 bytes. If the ORDER
BY clause contains floating-point columns, only 120 columns or 120 bytes are
allowed. If more than 120 bytes are used, the cursor is read-only.

If the FOR UPDATE OF clause is omitted, only the columns in the SELECT clause of
the subselect that can be updated can be changed.

The DECLARE CURSOR statement must precede all statements that explicitly
refereiice the cursor by name.

The scope of cursor-name is the source program in which it is defined; that is, the
program submitted to the precompiler. Thus, you can only reference a cursor by
statements that are precompiled with the cursor declaration. For example, a
program called from another separately compiled program cannot use a cursor
that was opened by the calling program.

Chapter 5. Statements 69

DECLARE CURSOR

Examples

70 SQU400 Reference

Example 1: The DECLARE CURSOR statement associates the cursor name C1 with
the results of the SELECT.

EXEC SQL DECLARE C1 CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO
FROM CORPDATA.TDEPT
l'iHERE ADMRDEPT = I A00 I

END-EXEC.

Example 2: The DECLARE CURSOR statement associates the cursor name C1 with
the results of the SELECT. MGRNO and MGRNAME may be updated. FOR
UPDATE OF can specify a column that is not in the select list.

EXEC SQL DECLARE C1 CURSOR FOR
SELECT DEPTNO, DEPTNAME, 1·1GRNO
FROM CORPDATA.TDEPT
HHERE ADMRDEPT = I A00 I

FOR UPDATE OF MGRNO, MGRNAME
END-EXEC.

DECLARE STATEMENT

Invocation

Authorization

The DECLARE STATEMENT statement is used for program documentation. It
declares names that are used to identify prepared SQL statements.

This statement can only be embedded in an application program. It is not an
executable statement.

None required.

I , I

---DECLARE---t s tatement-nameLST ATH1ENT------------------I

Description

Example

statement-name STATEMENT
Lists one or more names that are used in your program to identify prepared
SQL statements.

This example shows the use of the DECLARE STATEMENT statement in a PUI
program.

EXEC SQL DECLARE OBJ_Snn STAW1ENT;

(SOURCE_STATEMENT is "SELECT DEPHlO, DEPTNAME,
MGRNO FROM CORPDATA.TDEPT WHERE ADMRDEPT = 'ABB'·

EXEC SQL INCLUDE SQLDA;
EXEC SQL DECLARE C1 CURSOR FOR OBJ_STMT;

EXEC SQL PREPARE OBJ_SHn FRm·1 :SRCE_SmT;
EXEC SQL DESCRIBE OBJ_STMT INTO :SQLDA;

(Exami ne SQLDA)

EXEC SQL OPEN C1j

DO WHILE (SQLCODE = Bl;
EXEC SQL FETCH C1 USING DESCRIPTOR :SQLDA;

(Pri nt results)

END;

EXEC SQL CLOSE C1;

Chapter 5. Statements 71

DELETE

Invocation

Authorization

Searched Delete

The DE LETE statement deletes rows from a table or view. Deleting a row from a
view deletes the row from the table on which the view is based.

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

The privileges held by the authorization ID of the statement must i ncl ude the
DE LETE privilege on the specified table or view ..

You have the DELETE privilege on a table if any of the following apply:

• You are the owner of the table.
• You have been granted the DELETE privilege on the table.
• You have been granted the system authorities *OBJOPR and *DLT on the table.

You have the DELETE privilege on a view if any of the following apply:

• You have been granted the DELETE privilege on the view.
• You created the view, you had the DE LETE privilege on its base table when the

view was created, and you still have that DELETE privilege.

• You have been granted the system authority 'OBJOPR on the view and the
system authority *DLT on the base table.

-DELETE FRon---rL-t~b 1 e-nam=---=:J
Vlew-name Lcorrelation-name~

L\'JHERE search-conditi on:J
• if

Positioned Delete

-DELETE FROI'l--Ct~b 1 e-nam:J
Vlew-name

-WHERE CURRENT OF cursor-name------------------------......

Description

72 SQU400 Reference

FROM table-name or view-name
Names the table or view from which you want to delete. It must have been
created previously, but must not be a catalog table, a view of a catalog table,
or a read-only view. (See "CREATE VIEW" on page 66 for an explanation of
read-only views.)

correlation-name
May be used within the search-condition to designate the table or view. (See
Chapter 2 for an explanation of correlation-name.)

Usage Notes

Examples

DELETE

WHERE
Specifies a condition that selects the rows to be deleted. You can omit the
clause, give a search condition, or name a cursor. If you omit the clause, all
rows of the table or view are deleted.

search-condition
Is any search condition as described in Chapter 2. Each column-name in
the search condition must name a column of the table or view.

The search-condition is applied to each row of the table or view and the
deleted rows are those for which the result of the search-condition is true.

CURRENT OF cursor-name
Identifies the cursor to be used in the delete operation. The cursor-name
must identify a declared cursor as explained in the Usage Notes for the
DECLARE CURSOR statement.

The table or view named must also be named in the FROM clause of the
SE LECT statement of the cursor, and the result table of the cursor must not
be read-only. (For an explanation of read-only result tables. see
"DECLARE CURSOR" on page 68.)

When the DE LETE statement is executed, the cursor must be positioned on
a row: that row is the one that is deleted. After the deletion. the cursor is
positioned before the next row of its result table. If there is no next row,
the cursor is positioned after the last row.

Note that the deletion of a row WHERE CURRENT OF a specified cursor
may leave other cursors pointing to the deleted record.

A maximum of 4096 rows may be deleted in any single DELETE operation when
COMMIT(*ALL) or COMMIT(*CHG) has been specified.

If an error occurs during the execution of a DELETE statement and COMMIT(*ALL)
or COMMIT(*CHG) was specified. all changes made during the execution of the
statement are backed out. However. other changes in the unit of recovery made
prior to the error are not backed out. If COMMIT(*NONE) is specified changes are
not backed out. a multiple row DELETE,

When a DELETE statement completes, the number of rows deleted is returned in
SQLERRD(3) in the SQLCA. (For a description of the SQLCA, see
Appendix B, "SQLCA and SQLDA Control Blocks" on page 119.)

One or more exclusive locks are acquired by the execution of a successful DELETE
statement. Until the locks are released, they may prevent other application
processes from performing operations on the table. For further information about
locking, see the description of the COMMIT, ROLLBACK, and LOCK TABLE
statements. Refer also to Data Base Guide.

Example 1: Delete one row from table CORPDAT A.TDE PT.

DELETE FROM CORPDATA.TDEPT
WHERE DEPT NO = '011'

Chapter 5. Statements 73

DELETE

74 SQU400 Reference

Example 2: Delete several rows from table CORPDATA.EMP: those for all
employees in Department E11 or 021.

DELETE FRm~ CORPDATA.E~lP
WHERE WORKDEPT = 'Ell'
OR WORKDEPT = 'D21'

(j

DESCRIBE

Invocation

Authorization

The DESCRIBE statement obtains information about a prepared statement. See the
description of "PRE PARE" on page 101 for an explanation of prepared statements.

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

None required. See "PREPARE" on page 101 for information on the authorization
required to create a prepared statement.

---DESCRIBE statement-name-INTO descri Ptor-name--,L-------~---r---------..· •

US I NG-+~~~~~S~

Description

f-AN y------.j
LBOTH--.J

statement-name
Names the statement about which you want to obtain information. When the
DESCRIBE statement is executed, the name must identify a prepared
statement.

INTO descriptor-name
Names an SQL descriptor area (SQLDA). When the DESCRIBE statement is
executed, values are assigned to the variables of the SQLDA. For information
about the format of an SQLDA. see Appendix B, "SQLCA and SQLDA Control
Blocks" on page 119.

USING
Indicates what value to assign to each SQLNAME variable in the SQLDA. If the
requested value does not exist, SQLNAME is set to a length of O.

NAMES
Assigns the name of the column. The default is USING NAMES.

LABELS
Assigns the label of the column. (Column labels are defined by the LABEL
ON statement.)

ANY
Assigns the column label. and if the column has no label, the column
name.

BOTH
Assigns both the label and name of the column. In this case, two
occurrences of SQLVAR per column will be needed to accommodate the
additional information. To specify this expansion of the SQLVAR array, set
SQLN to 2*n on the PRE PARE statement (where n is the number of
columns in the result table). Then, on any later FETCH statement, set
SQLN to n. The first n occurrences of SQLVAR for each of the columns in

Chapter 5. Statements 75

DESCRIBE

Usage Notes

Example

76 SQU400 Reference

the result table contain the column names. The second n occurrences
contain the column labels.

Information about a prepared statement can also be obtained by using the INTO
clause of the PREPARE statement.

Before the DESCRIBE or PREPARE INTO statement is executed, the val ue of SQLN
must be set to indicate how many occurrences of SQLVAR are provided in the
SQLDA. To obtain the description of the columns of the result table of a prepared
SE LECT statement, the number of occurrences of SQLVAR must not be less than
the number of columns.

If USING BOTH is specified and SQLN is less than 2*SQLD, then SQLD is set to 2 *
(number of columns). If USING BOTH is specified and SQLN is greater than or
equal to 2*SQLD, then SQLD is set to the number of columns.

Because the maximum number of columns is 8000, a simple technique is to
provide an SQLDA with 8000 occurrences of SQLVAR. However, such an SQLDA
will occupy a good deal of space, and most of this space will not be needed for
most prepared statements. Thus, you might want to consider another technique,
such as the following:

Execute a DESCRIBE or PREPARE INTO statement with an SQLDA that has no
occurrences of SQLVAR. If SQLN is greater than zero, use the value to allocate
an SQLDA with the necessary number of occurrences of SQLVAR and then
execute a DESCRIBE statement using that SQLDA.

This PU1 example uses the technique described above. SOURCE is a
varying-length string variable and SHORTDA is an SQLDA with no occurrences of
SQLVAR.

EXEC SQL INCLUDE SQLDA;

(Read an SQL statement into SOURCE)

EXEC SQL PREPARE OBJSTATE INTO :SHORTDA
FROM :SOURCE;

(Check for successful execution. If the value of SQLN is greater than 0, the source
statement was SELECT; use the value of SQLN to allocate and initialize SQLDA.)

EXEC SQL DESCRIBE OBJSTATE INTO :SQLDA;

DROP

Invocation

The DROP statement deletes an object. Any objects that are directly or indirectly
dependent on that object are also deleted. Whenever an object is deleted. its
description is deleted from the catalog.

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

Authorizati on
To drop a table, view, or index, the privileges held by the authorization ID of the
statement must include:

• The system authorities 'OBJOPR and 'DLT on the referenced library, and
• The system authority 'OBJEXIST on the object to be dropped. For tables, you

will also need the 'OBJEXIST authority on all views, indexes. and logical files
that reference the table.

To drop a data base, the privi leges held by the authorization I D of the statement
must include:

• The system authority ·OB.JEXIST on the data base to be dropped. and
• The system authority 'OBJEXIST on all objects in the data base, and to any

views, indexes. and logical files that reference those objects.

i=TABLE table-name
-DROP VI Et·j view-name'-------------t-------------..........

INDEX i ndex-name------------i
LOAT ABASE database-name-----------'

Description
TABLE table-name

Identifies the table you want to drop. The table specified must be described in
the catalog and cannot be a catalog table. The specified table is deleted from
the data base. All indexes, views, and logical files defined on the table are
dropped. Any access plans that exist in programs that have dependencies on
the table will be recreated when the program that contains the access plan is
next run. If the referenced table does not exist at that time. a negative value
wi II be returned in the SQLCODE field of the SQLCA.

VIEW view-name
Identifies an existing view other than a catalog view. The definition of the view
is deleted from the catalog. The definition of any view that is directly or
indirectly dependent on that view is also deleted. Any access plans that exist
in programs that have dependencies on the view will be recreated when the
program that contains the access plan is next run. If the referenced view does
not exist at that time, a negative value will be returned in the SQLCODE field of
the SQLCA.

Chapter 5. Statements 77

DROP

Examples

78 SQU400 Reference

INDEX index-name
Identifies an index described in the catalog, Indexes can be dropped at any
time except when they are in use, Any access plans that exist in programs that
have dependencies on the index will be recreated when the program that
contains the access plan is next run, If the referenced index does not exist at
that time, a negative value will be returned in the SQLCODE field of the
SQLCA.

DATABASE database-name
Identifies the data base you want to drop, All objects in the data base and the
library are dropped, Any access plans that exist in programs that have
dependencies on any object in the data base will be recreated when the
program that contains the access plan is next invoked, If the referenced data
base does not exist at that time, a negative value will be returned in the
SQLCODE field of the SQLCA,

Example 1: Drop table CORPDATA.TDEPT.

DROP TABLE CORPDATA.TDEPT

Example 2: Drop the view VDEPT,

DROP VmJ VDEPT

END DECLARE SECTION

Invocation

Authorizati on

The END DECLARE SECTION statement marks the end of a host variable
declaration section.

This statement can only be embedded in an application program. It is not an
executable statement.

None required.

---END DECLARE SECTION----------------------------<· ~

Description

Usage Notes

Example

The END DECLARE SECTION statement may be coded in the application program
wherever declarations can appear in accordance with the rules of the host
language. It is used to indicate the end of a host variable declaration section. A
host variable section starts with a BEGIN DECLARE SECTION statement described
on page 52.

Host variables do not need to be declared within a declare section, but should be
declared within a declare section.

Host variable declaration sections may be specified for host languages so that the
source program conforms to the SAA definition of SOL.

The BEGIN DECLARE SECTION and the END DECLARE SECTION statements must
be paired and may not be nested.

No other SOL statements should be included in the declare section.

Variables referenced in SOL statements should be declared in a declare section
and the section should appear before the first reference to the variable.

Variables declared outside a declare section should not have the same name as
variables declared within a declare section.

EXEC SQL BEGIN DECLARE SECTION END-EXEC.
•
•

(host variable declarations)
•
•

EXEC SQL END DECLARE SECTION END-EXEC.

Chapter 5. Statements 79

EXECUTE

Invocation

Authorizati on

The EXECUTE statement executes a prepared SQL statement.

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

The authorization rules are those defined for the dynamic preparation of the SQL
statement specified by EXECUTE. For example. see the description of INSERT for
the authorization rules that apply when an INSERT statement is executed using
EXECUTE.

---EXECUTE statement-namee----------------------------·

I I, I

.. -

~USING~ost-variablP-e-IL...----------~
USING DESCRIPTOR descriptor-name-e---------'

Description

80 SQl.J400 Refen!nce

statement-name
Identifies the prepared statement to be executed. statement-name must
identify a statement that was previously prepared within the unit of recovery
and the prepared statement must not be a SELECT statement. The prepared
statement may have been prepared in a previous unit of recovery if COMMIT
HOLD or ROLLBACK HOLD have been used to preserve the prepared
statement.

USItG
Introduces a list of host variables whose values are substituted for the
parameter maRers (question marks) in the prepared statement. (See
"PREPARE" on page 101 for an explanation of parameter markers.) If the
prepared statement indudes parameter markers, you must use USING. USING
is ignored if there are no parameter markers.

host-variable
Identifies a variable that is described in the program in accordance with
the rules for declaring host variables The number of variables must be
the same as the number of parameter markers in the prepared statement
The nth variable corresponds to the nth parameter marker in the prepared
statement.

DESCRIPTOR descriptor-name
Identifies an SQLDA that must contain a valid description of host variables.
The number of variables, as indicated by SQtD, must be the same as the
number of parameter markers in the prepared statemen1 and the length of
the SQLDA. as indicated by SQLDABC. must be sufficient to describe that f..,J
number of variables. The nth variable described by the SQLDA
corresponds to the nih parameter marker in the prepared statement. Note

Usage Notes

Example

EXECUTE

that because RPG and COBOL do not provide the facility for setting
pointers, and the SQLDA uses pointers to locate the appropriate host
variables, you will have to set these pointers outside your RPG or COBOL
application. (For a description of an SQLDA, see Appendix B, "SQLCA
and SQLDA Control Blocks" on page 119.)

Before the prepared statement is executed, each parameter marker is effectively
replaced by the value of its corresponding host variable. Each value that replaces
a parameter marker must be compatible with operations applied to it during the
execution of the prepared statement, as follows:

• If a parameter marker appears as the operand of an arithmetic operator, its
value is converted to conform to the description of the other operand, if
necessary, according to the rules described in Chapter 2. In the case of unary
minus, the value is converted to double precision floating-point.

• If a parameter marker appears in place of a numeric value to be inserted in a
column, its value is the number that would result if the host variable were
assigned to the column, and the val ue must conform to the rules for
assignments.

• If a parameter value is used as the operand of a comparison operator, it must
be compatible with the other operand of that operator. and its length must not
be greater than that of the other operand.

In this example, an INSERT statement with parameter markers is prepared and
executed.

MOVE 'INSERT INTO CORPDATA.QUOTATIONS VALUES(?,?,?,?)' TO HOLDER.

EXEC SQL PREPARE QUOTES FROM :HOLDER END-EXEC.

IF SQLCODE = 0
PERFORM EXECUTE-INSERT

ELSE
PERFORM ERROR-CONDITION.

EXECUTE-INSERT.
MOVE 51 TO SUPPNO.
MOVE 221 TO PARTNO.
MOVE 0.30 TO PRICE.
MOVE 50 TO QONORDER.

EXEC SQL EXECUTE QUOTES USING :SUPPNO,
:PARTNO, :PRICE, :QONORDER

END-EXEC.

Chapter 5. Statements 81

EXECUTE IMMEDIATE

Invocation

Authorization

The EXECUTE IMMEDIATE statement:

• Prepares an executable form of an SOL statement from a character string form
of the statement.

• Executes the SQL statement.

• Destroys the executable form.

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

The authorization rules required are those defined for the dynamic preparation of
the SOL statement specified by EXECUTE IMMEDIATE. For example, see the
description of the INSE RT statement for the authorization rules that apply when an
INSERT statement is executed using EXECUTE IMMEDIATE.

The run-time authorization 10 must have the authorization required to execute the
statement specified by the EXECUTE IMMEDIATE statement.

-EXECUTE H1'1EDIATE~ring-eXpressi~
host-variable

Description

Usage Notes

82 SQU400 Reference

string-expression
A string-expression is any expression that yields a character string.

host-variable
In COBOL and RPG a host variable must be specified. If a host variable is
specified, it must identify a host variable that is described in the program in
accordance with the rules for declaring character string variables.

The host variable must be of the form: host-vari abl e. The form
:host-variable:indicator-variable is not allowed.

The character string form of the statement is called a statement string. The
statement string is the value of the specified string-expression or the identified
host variable.

The statement string must be one of the following SQL statements: COMMENT ON,
COMMIT, CREATE DATABASE, CREATE INDEX, CREATE TABLE, CREATE VIEW,
DELETE, DROP, GRANT, INSERT. LABEL ON, LOCK TABLE, REVOKE, ROLLBACK,
OR UPDATE.

The statement string must not include parameter markers or references to host
variables, must not begin with EXEC SOL, and must not terminate with END-EXEC
or a semicolon.

Example

EXECUTE IMMEDIATE

When an EXECUTE IMMEDIATE statement is executed. the specified statement
string is parsed and checked for errors. If the SQL statement is invalid, it is not
executed and the error condition that prevents its execution is reported in the
SQLCA. If the SQL statement is valid, but an error occurs during its execution, that
error condition is reported in the SQLCA.

If the same SQL statement is to be executed more than once. it is more efficient to
use the PREPARE and EXECUTE statements, rather than the EXECUTE IMMEDIATE
statement.

In this COBOL example, the EXECUTE IMMEDIATE statement is used to execute a
DE LETE statement.

MOVE 'DELETE FROM QUOTATIONS WHERE
PRICE> 1.00' TO HOLDER.

EXEC SQL EXECUTE IMMEDIATE :HOLDER END-EXEC.

Chapter 5. Statements 83

FETCH

Invocation

Authorizati on

The FETCH statement positions a cursor on the next row of its result tabl e and
assigns the values of that row to host variables.

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

The privileges held by the authorization ID of the statement must include the
SELECT privilege on every table or view identified in the SE LECT statement of the
cursor.

r-'
--FETCH cursor-name I I NTO-hos t-vari ab 1 e--1...---------.I-----------... • ~

Description

84 SQU400 Reference

~USING DESCRIPTOR descriptor-name~

cursor-name

Identifies the cursor to be used in the fetch operation. The cursor-name must
identify a declared cursor as explained in the Usage Notes for the DECLARE
CURSOR statement. When the FETCH statement is executed. the cursor must
be in the open state.

If the cursor is currently positioned on or after the last row of its result table,
the SQLCODE field of the SQLCA is set to + 100, the cursor is positioned "after
the last row," and values are not assigned to host variables.

If the cursor is currently positioned before a row, the cursor is positioned on
that row, and values are assigned to host variables as specified by INTO or
USING.

If the cursor is currently positioned on a row other than the last row, the cursor
is positioned on the next row, and values of that row are assigned to host
variables as specified by INTO or USING.

INTO host-variable
If INTO is used, each host variable must identify a variable that is described in
your program in accordance with the rules for declaring host variables. The
first value of a row corresponds to the first variable, the second value
corresponds to the second variable, and so on.

USING DESCRIPTOR descriptor-name
If USING DESCRIPTOR is used, the descriptor-name must identify an SQLDA
that contains a valid description of zero or more host variables. The length of
the SQLDA, as indicated by SOLDABC, must be sufficient to describe the
number of variables indicated by SOLD. The first value of a row corresponds
to the first variable described by the SOLDA, the second value corresponds to
the second variable, etc.

Usage Notes

Example

FETCH

Note that because RPG and COBOL do not provide the facility for setting
pointers, and the SQLDA uses pointers to locate the appropriate host
variables, you will have to set these pointers outside your RPG or COBOL
application.

The data type of a host variable must be compatible with its corresponding value.
If the value is numeric. the variable must have the capacity to represent the whole
part of the value. If the value is nUll, an indicator variable must be specified.

Assignments are made in sequence through the list. Each assignment to a
variable is made according to the rules described in Chapter 2, "Language
Elements." If the number of variables is less than the number of values in the row,
the SQLWARN3 field of the SQLDA is set to 'W'.

If an error occurs as the result of an arithmetic expression in the SELECT list
(division by zero, overflow etc.) or a numeric conversion error occurs, the result is
the null value. As in any other case of a null value, an indicator variable must be
provided and the main variable is unchanged. In this case, however, the indicator
variable is set to -2. Processing of the statement continues as if the error had not
occurred. If you do not provide an indicator variable. a negative value is returned
in the SQLCODE field of the SQLCA. Processing of the statement terminates when
the error is encountered. No value is assigned to the host variable or to later
variables, though any values that have already been assigned to variables remain
assigned.

If the specified host variable is character and is not large enough to contain the
result, 'W' is assigned to SQLWARN1 in the SQLCA. The actual length is returned
in the indicator variable, if provided.

The FETCH statement fetches the results of the SE LECT statement into the
program variables DNUM, DNAME, and MNUM.

EXEC SQL DECLARE C1 CURSOR FOR
SELECT DEPTNO, DEPHlAI-IE, t·1GRNO FRot,l CORPDATA. TDEPT
WHERE ADMRDEPT = 'AOO'
END-EXEC.

EXEC SQL OPEN C1 END-EXEC.

EXEC SQL FETCH C1 INTO :DNUM, :DNAME, :MNUM END-EXEC.

IF SQLCODE = 100
PERFORM DATA-NOT-FOUND

ELSE
PERFORM GET-REST-OF-DEPT
UNTIL SQLCODE IS NOT EQUAL TO ZERO.

EXEC SQL CLOSE C1 END-EXEC.

GET-REST-OF-DEPT.
EXEC SQL FETCH C1 INTO :DNUM, :DNAME, :MNUM END-EXEC.

Chapter 5. Statements 85

GRANT

Invocation

Authorizati on

The GRANT statement grants table and view privileges to users.

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

The privileges held by the authorization ID of the statement must include:

• Every privilege specified, and ownership of the object, or
• Every privilege specified, and the system authorities 'OBJMGT and 'OBJOPR

on the table or view.

To have every privilege you specify, you must:

• Be the owner of the object. or
• Have been granted the privi leges.

~ALL-----------------------------.

---GRANT~ALL PRIVILEGES

I ~ I I I DELETE II
r--I NO EX--------------------i·

t= INSERT I
SELECT-----------i·
UPDATE-----------'

I , I

---ON-----,L---~--.--·,-I-tcab 1 e-name-i-,-J-I-----------------­
TABLE~ ~vlew-name~

I

• ---TO------'I-auth-id I

LpUBLIC~

• fI

Description

86 SQU400 Reference

ALL or ALL PRIVILEGES
Grants all table privileges which you have for all tables or views named in the
ON clause. Note that granting ALL PRIVILEGES on a table or view is not the
same as granting the system authority of' ALL.

If you do not use ALL, you must use one or more of the keywords in the
following list.

Each keyword grants the privilege described, but only to the table or view
named in the ON clause.

Usage Notes

GRANT

Keyword Grants the privilege to ...

DE LETE Use the DE LETE statement.

INDEX Use the CREATE INDEX statement. Views may not be specified
when granting INDEX authority.

INSERT Use the INSERT statement.

SE LECT Use the SE LECT statement.

UPDATE Use the UPDATE statement.

ON or ON TABLE

TO

table-name and view-name name the table or view on which you are granti ng
the privileges.

Indicates to whom the privileges are granted.

auth-id
Lists one or more authorization IDs.

PUBLIC
Grants the privileges to all users that have no privately granted privilege.

Because the GRANT and REVOKE statements assign and remove AS!400 system
security authorities for SQL objects, each SQL privilege can be said to correspond
to specific ASi400 system rights. The tables that follow outline this
correspondence; the left column lists all grantable SQL privileges, and the right
columns list the equivalent AS/400 system object and data rights for views and for
tables. System data rights are assigned to and removed from either the table
specified or, if a view is specified, to the base table or tables on which the view is
specified and on which the view is dependent.

Corresponding AS/400 System Rights
SQL Privilege When Granting to a Table

ALL (GRANT
of ALL only
g rants those
privileges
you currently
have)

IOCLETE

INDEX

INSERT

SELECT

UPDATE

"OBJMGT
"OBJOPR
"ADD
"DLT
"READ
"UPD

I

"OBJOPR

. "DELETE

"OBJMGT

"OBJOPR
"ADD

"OBJOPR
"READ

"OBJOPR
"UPD

Figure 3. Privileges Granted to Tables

I
i

I

Chapter 5. Statements 87

GRANT

Examples

88 SQU400 Reference

Corresponding AS/400 System Corresponding AS/400 System
SQL Privilege Rights Granted to View Rights Granted to Base Table

ALL (GRANT *OBJOPR *ADD
of ALL only *DLT
grants those 'READ
privileges *UPD
you currently
have)

DELETE *OBJOPR 'DLT

INDEX N/A N/A

ilNSERT l'oBJOPR I 'ADD

SELECT *OBJOPR 'READ

UPDATE *OBJOPR 'UPD

Figure 4. Privileges Granted to Views

If a view is read-only, only the SQL authority of SELECT can be granted on it. If
inserts are not allowed on a view, the SQL authority of INSERT cannot be granted
on it.

Example 1: Grant SELECT privileges on table CORPDATA.EMP to user PULASKI.

GRANT SELECT
ON CORPDATA.Et,1P
TO PULASKI

INCLUDE

Invocation

Authorization

The INCLUDE statement inserts declarations into a source program.

This statement can only be embedded in an application program. It is not an
executable statement.

None required.

r====SQLCA I
~INCLUDE-----rr------SQLDA-------+·---+·~

Description

Usage Notes

Example

~member-name~

SQLCA
Indicates the description of an SQL Communication Area (SQLCA) is to be
included. INCLUDE SQLCA must not be specified more than once in the same
program.

SQLCA must be specified for COBOL and PLiI. It cannot be specified for RPG.
See Appendix B,'SQLCA and SQLDA Control Blocks" on page 119. for a
description of the SQLCA.

SQLDA
Indicates the description of an SQL Descriptor Area (SQLDA) is to be included.
It must not be specified in a COBOL or RPG program.

See Appendix B, "SQLCA and SQLDA Control Blocks" on page 119, for a
descri ption of the SQLDA.

rr. ember-name
Names a member to be included from the file specified on the INCFILE
keyword of the CRTSQLxxx (where xxx is RPG, CBL or PLI) command.

The member may contain any host language source statements and any SQL
statements other than an INCLUDE statement.

When your program is precompiled, the INCLUDE statement is replaced by source
statements. Thus, the INCLUDE statement should be specified at a point in your
program such that the resulting source statements are acceptable to the compiler.

Include an SQLCA in a program.

EXEC SQL INCLUDE SQLCA END-EXEC.

Chapter 5. Statements 89

INSERT

Invocation

Authorization

The INSERT statement inserts rows into a table or view. Inserti ng a row into a
view inserts the row into the table on which the view is based.

This statement can be embedded in an application program or issued interactively
It is an executable statement that can be dynamically prepared.

The privileges held by the authorization 10 of the statement must include the
INSERT privilege on the specified table or view.

You have the INSERT privilege on a table if any of the following apply:

• You are the owner of the table.
• You have been granted the INSERT privilege on the table.
• You have been granted the system authorities 'OBJOPR and' ADD on the

table.

You have the INSERT privilege on a view if any of the following apply:

• You have been granted the INSERT privilege on the view.
• You created the view, you had the INSERT privilege on its base table at that

time, and you still have that INSERT privilege.
• You have been granted the system authorities 'OBJOPR and 'ADD on the base

table.

If a subselect is specified, the privileges held by the authorization 10 of the
statement must also include the SELECT privilege on every table or view identified
in the subselect. Refer to SELECT to determine when you have the SELECT
privilege.

~INSERT INTO ~t~ble-nam~
Vlew-name

I , I

------rl--VALUES-(~cons tant~)--.------------------.......
r-host-vari~~;~

L L--special-register~
subselect--------------------~

Note: Refer to Chapter 4, "Queries" on page 39 for syntax of subselect.

90 SQU400 Reference

Description

INSERT

INTO table-name or view-name
Names the table or view into which you want to insert. It must be described in
the catalog. but must not be a catalog table or any of the following types of
view:

• A read-only view (for a description, see "CREATE VIEW" on page 66)

• A view of a catalog table

The following types of views are not allowed unless a column name has been
specified:

• A view with a column that is derived from a constant or an arithmetic
expression

• A view with two columns derived from the same column of the underlying
table.

column-name
Lists the names of one or more columns for which you provide insert values.
You may name the columns in any order. Each must belong to the table or
view named. and you may not name the same column more than once. The
column names must not be qualified.

If you omit the column list, you are implicitly using a list of all the columns, in
the order they exist in the table or view.

The implicit column list is established at create program time if the referenced
table or view exists at create program time. Otherwise. the implicit column list
is established at the first successful run of the INSERT statement. Hence an
INSERT statement embedded in an application program does not use any
columns that might have been added to the table or view after create program
time.

VALUES
Introduces one row of values to be inserted. The values of the row are the
values of the keywords, constants, or host variables specified in the clause.

Each host variable you name must be described in your program in
accordance with the rules for declaring host variables.

The number of values in the VALUES clause must equal the number of names
in the column list. The first value is inserted in the first column in the list. the
second value in the second column, and so on.

See Chapter 2, "Language Elements" on page 7 for an explanation of
constant and host-variable. See "Special Registers" on page 18 for a
descri ption of special-register.

subs elect
Inserts the rows of the result table of a subselect. There may be one. more
than one, or none. If there are none, SQLCODE is set to + 100.

The base object of the INSERT, and the base object of the subselect, must not
be the same table.

The number of columns in the result table must equal the number of names in
the column list. The value of the first column of the result is inserted in the first
column in the list, the second value in the second column, and so on.

Chapter 5. Statements 91

INSERT

Insert Rules

Usage Notes

Examples

92 SQU400 Reference

A maximum of 4096 rows may be inserted in any single INSERT operation when
COMMIT(*ALL) or COMMIT(*CHG) has been specified.

Insert values must satisfy the following rules. If they do not, or if any other errors
occur during the execution of the INSERT statement, no rows are inserted.

Default values: The value inserted in any column, not in the column list, is the
default value of the column. Columns without a default value must be included in
the column list. Similarly, if you insert into a view, the default value is inserted into
any column of the base table that is not included in the view. Hence all columns of
the base table that are not in the view must have default values.

Data Types. The data type of the values to be inserted must be compatible with the
data type defined for the corresponding columns.

Length: If the insert value of a column is a number, the column must be a numeric
column with the capacity to represent the integral part of the number. If the insert
value of a column is a string, the column must be a string column with a length
attribute at least as great as the length of the string.

Assignment: Insert values are assigned to columns in accordance with the
assignment rules described in Chapter 2.

Validity: If the table named, or the base table of the view named, has one or more
unique indexes, each row inserted into the table must conform tothe constraints
imposed by those indexes.

An INSERT statement may be used to insert rows that do not conform to the
definition of the view. These rows will not appear in the view, but are inserted into
the base table of the view.

If an error occurs during the execution of an INSERT statement and COMMIT(* ALL)
or COMMIT(*CHG) was specified, all changes made during the execution of the
statement are backed out. However, other changes in the unit of recovery made
prior to the error are not backed out. If COMMIT(*NONE) is specified, changes are
not backed out.

One or more exclusive locks are acquired at the execution of a successful INSERT
statement. Until the locks are released, an inserted row can only be accessed by
the application process that performed the insert. For further information about
locking, see the description of the COMMIT, ROLLBACK, and LOCK TABLE
statements.

Example 1: Insert values into table CORPDATA.EMP.

INSERT INTO CORPDATA.EMP
VALUES (' 000205' , 'r·1ARY , , , T ' , 'sr·1 ITH ' , 'D 11' , , 2866 ' ,

810810,42,16, 'F' ,550522,16345)

Example 2: Load the temporary table SMITH.TEMPEMPL with data from table
CORPDATA.EMP.

u

INSERT INTO $rUTH. TEt·1PEt·1PL
SELECT *
FROt~ CORPDATA.Et4P

Example 3: Load the temporary table SMITH.TEMPEMPL with data from
Department D11 from CORPDATA.EMP.

INSERT INTO SMITH.TEMPEMPL
SELECT *
FROM CORPDATA.EMP
WHERE WORKDEPT='Dll'

INSERT

Chapter 5. Statements 93

LABEL ON

Invocation

Authorization

The LABE L ON statement adds or replaces labels in the catalog descriptions of
tables, views, or columns.

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

The privileges held by the authorization 10 of the statement must include:

• The system authority 'READ on the library containing the table or view, and

• Ownersh i p of the tabl e or vi ew, or the system authoriti es of both 'OBJOPR and
'OBJMGT on the referenced table or view.

~LABEL ON--~·

I TABLE-----ct~ble-nam.:.::J I IS string-constant I
Vlew-name

II ..

f--COLW.HJ---r-tab 1 e-name. co 1 umn-name--,-----J I
I ~vlew-name.column-name~

~t'bl'-"'m' I (~'Ol"m"-"'m' IS :t'i"g-'O",t,"tl)~
~v i ew-name----.J

Description

94 SQU400 Reference

TABLE
Indicates that the label is for a table or a view. Labels on tables or views are
implemented as AS/400 system object text.

table-name or view-name
Must identify a table or view described in the catalog.

COLUMN

15

Indicates that the label is for a column. Labels on columns are implemented
as AS/400 system column headings, and can therefore be used when
displaying or printing query results.

table-name. column-name or view-name.column-name
Is the name of the column, qualified by the name of the table or view in
which it appears. The column named must be described in the catalog.

Introduces the label you want to provide.

string-constant
Can be any SQL character string constant of up to 30 bytes in length for
tables and views, or 20 bytes in length for columns. The constant may
contain double-byte characters as well as EBCDIC characters.

Example
Enter a label on the DEPTNO column aftable CORPDATA.TDEPT.

LABEL ON COLUMN CORPDATA.TDEPT.DEPTNO
IS 'DEPARTMENT NUMBER'

LABEL ON

Chapter 5. Statements 95

LOCK TABLE

Invocation

Authorization

The LOCK TABLE statement acquires a shared or exclusive lockon the named
table.

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

The privileges held by the authorization 10 of the statement must include:

• Ownership of the table, or

• Any SQL privilege for the table, or
• The system authority *OBJOPR on the table.

--LOCK TABLE table-name---IN I SHARE I t,lODE--------------i~-~

Description

96 SQU400 Reference

~EXCLUSIVE~

table-name
Names the table to be locked. The table must be a base table described in the
catalog, but not a catalog table.

IN SHARE MODE
Acquires a shared lock (*SHRNUP) for the application process in which the
statement is executed. The lock prevents concurrent appl ication processes
from executing any but read-only operations on the named table.

IN EXCLUSIVE MODE
Acquires an exclusive lock (*EXCL) for the application process in which the
statement is executed. The lock prevents concurrent application processes
from executing any operations at all on the identified table.

The lock is acquired when the LOCK TABLE statement is executed.

It is released by the termination of the unit of recovery unless the unit of recovery
is terminated by a COMMIT HOLD or ROLLBACK HOLD. It is also released when
the first SQL program in the program stack ends. You may also issue the CL
command OLCOBJ to unlock the table.

Because the statement is synchronous, confl icting locks al ready held by other
application processes will cause your application to wait up to the default wait
time.

Example

LOCK TABLE

Obtai n a lock on the tabl e CORPDAT A. EMP. Do not allow other programs either to
read or update the table.

LOCK TABLE CORPDATA.EMP IN EXCLUSIVE MODE

Chapter 5. Statements 97

OPEN

Invocation

Authorization

The OPEN statement opens a cursor so that it can be used to fetch rows from its
result table.

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

See "DECLARE CURSOR" on page 68 for an explanation of the authorization
required to use a cursor.

-OPEN cursor-name--rl----r----,---,------'I------------l·~ ..

Description

98 SQU400 Reference

LUSING-host-variable I =J
USING DESCRIPTOR descriptor-name

cursor-name
Identifies the cursor to be opened. The cursor-name must identify a declared
cursor as explained in the Usage Notes for the DECLARE CURSOR statement.
When the OPEN statement is executed. the cursor must be in the closed state.

The SE LECT statement associated with the cursor is either:

• the SELECT statement specified in the DECLARE CURSOR statement, or

• the prepared select-statement identified by the statement-name specified
in the DECLARE CURSOR statement. If the identified SE LECT statement
has not been successfully prepared, the cursor cannot be successfully
opened.

The result table of the cursor is derived by evaluating the SELECT statement.
The evaluation uses the current values of any special registers specified in the
SELECT statement and the current values of any host variables specified in the
SE LECT statement or the USING clause of the OPEN statement. The rows of
the result table may be derived during the execution of the OPEN statement,
and a temporary table created to hold them; or they may be derived during the
execution of subsequent FETCH statements. In either case, the cursor is
placed in the open state and positioned before the first row of its result table.
If the table is empty, the state of the cursor is effectively "after the last row."

USING
Introduces a list of host variables whose values are substituted for the
parameter markers (question marks) of a prepared statement. (See
"PREPARE" on page 101 for an explanation of parameter markers.) If the
DECLARE CURSOR statement names a prepared statement that includes
parameter markers, you must use USING. If the prepared statement does not
include parameter markers, USING is ignored. (J

\.,1

Usage Notes

OPEN

host-variable
Identifies a variable described in the program in accordance with the rules
for declaring host variables. The number of variables must be the same as
the number of parameter markers in the prepared statement. The nth
variable corresponds to the nth parameter marker in the prepared
statement.

USING DESCRIPTOR descriptor-name
Identifies an SQLDA that must contain a valid description of host variables.
The number of variables, as indicated by SQLD, must be the same as the
number of parameter markers in the prepared statement and the length of
the SQLDA, as indicated by SQLDABC, must be sufficient to describe that
number of variables. The nth variable described by the SQLDA
corresponds to the nth parameter marker in the prepared statement. Note
that because RPG and COBOL do not provide the facility for setting
pointers, and the SQLDA uses pointers to locate the appropriate host
variables, you will have to set these pointers outside your RPG or COBOL
application. (Fora description of an SQLDA, see Appendix B,·SQLCA
and SQLDA Control Blocks" on page 119.)

When the SE LECT statement of the cursor is evaluated, each parameter marker is
effectively replaced by the value of its corresponding host variable. Each value
that replaces a parameter marker must be compatible with operations applied to it
during the execution of the prepared statement. For example,

• If a parameter marker appears as the operand of an arithmetic operator, its
value is converted to conform to the description of the other operand, if
necessary, according to the rules described in Chapter 2.

• If the other operand is a column, the value of the parameter is the number that
would result if the host variable were assigned to the column, and the value
must conform to the rules for assignments described in Chapter 2.

• If a parameter value is used as the operand of a comparison operator. it must
be compatible with the other operand of that operator, and its length must not
be greater than that of the other operand. In the case of the BETWEEN and IN
predicates, this ·'other operand" is the first operand that is not specified with a
parameter marker.

Closed state of cursors: All cursors in a program are in the closed state when:

• The program is initiated
• A program initiates a new unit of recovery by executing a COMMIT or

ROLLBACK statement without a HOLD option.

A cursor can also be in the closed state because a CLOSE statement was
executed.

To retrieve rows from the result table of a cursor, you must execute a FETCH
statement when the cursor is open. The only way to change the state of a cursor
from closed to open is to execute an OPEN statement.

Effect of temporary tables: If the result table of a cursor is not read-only, its rows
are derived during the execution of subsequent FETCH statements. The same
method may be used for a read-only result table. However, if a result table is
read-only, the data base manager may choose to use the temporary table method
instead. With this method, the entire result table is materialized in a temporary

Chapter 5. Statements 99

OPEN

Example

100 SQU400 Reference

table during the execution of the OPEN statement. When a temporary table is
used, the results of a program can differ in these two ways:

• An error can occur during OPEN that would otherwise not occur until some
later FETCH statement.

• The INSERT, UPDATE, and DELETE statements are not allowed while the
cursor is open.

Conversely, if a temporary table is not used, INSERT, UPDATE. and DELETE
statements executed while the cursor is open can affect the result table if issued
from the same program. Your result table can also be affected by operations
executed by your own unit of recovery, and the effect of such operations is not
always predictable. For example, if cursor C is positioned on a row of its result
table defined as SELECT· FROM T, and you insert a row into T. the effect of that
insert on the result table is not predictable because its rows are not ordered.
Thus. a subsequent FETCH C mayor may not retrieve the new row of T.

The OPEN statement places the cursor at the beginning of the rows to be fetched.

EXEC SQL DECLARE C1 CURSOR FOR
SELECT DEPTNO, DEPTNAME, MGRNO FROM CORPDATA.TDEPT
I'JHERE ADr.1RDEPT = I ADO I

END-EXEC.

EXEC SQL OPEN C1 END-EXEC.

PREPARE

Invocation

Authorization

The PREPARE statement is used by application programs to dynamically prepare
an SQL statement for execution. The PREPARE statement creates an executable
SQL statement, called a prepared statement, from a character string form of the
statement, called a statement string. The life of a prepared statement extends to
one of the followi ng

• The end of the application program, or
• Until another PREPARE statement with the same statement name has been

issued by the same instance of the program in the program stack (in the case
of recursive program calls), or

• Until a COMMIT (no HOLD), or ROLLBACK (no HOLD) is issued.

This statement can only be embedded in an application program. It is an
executable statement that cannot be dynamically prepared.

The authorization rules are those defined for the dynamic preparation of the SQL
statement specified by the PREPARE statement. For example, see
Chapter 4, "Queries" on page 39 for the authorization rules that apply when a
SELECT statement is prepared.

Authorization is not completely checked when DROP DATABASE, DROP TABLE or
DROP VIEW statements are prepared. The system authority 'OBJEXIST on all
objects in the data base is not required to prepare a DROP DATABASE statement.
The system authority 'OBJEXIST is not required on all views, indexes, and logical
files that reference the table in a DROP TABLE statement. The system authority of
'OBJEXIST is not required on all views that reference the view in a DROP VIEW
statement. The 'OBJEXIST authority will be checked when the statement is
executed via the EXECUTE statement.

----PREPARE s tatement-name-,--, ------------------r--------..
L INTO descri ptor-name-,--------..--'

,NAMES
USING-t-LABELS

tANY~ BOTH~

~FRor4Lstri ng-expres~
host-variable

• II

Description
statement-name

Names the prepared statement. If the name identifies an eXisting prepared
statement, that prepared statement is destroyed, unless the statement is
prepared in another instance of the same program or another program. The
name must not identify a prepared statement that is the SELECT statement of
an open cursor of this instance of the program.

Chapter 5. Statements 101

PREPARE

102 SQU400 Reference

INTO
If you use INTO and the PRE PARE statement is successfully executed,
information about the prepared statement is placed in the SQLDA specified by
the descriptor-name. Thus, the PREPARE statement:

EXEC 5QL PREPARE 51 INTO 5QLDA FROM VI;

is equivalent to:

EXEC SQL PREPARE S 1 FRm1 VI;
EXEC SQL DESCRIBE SI INTO SQLDA;

See "DESCRIBE" on page 75 for an explanation of the information that is
placed in the SQLDA.

descriptor-name
Is SQLDA or the name of an SQLDA.

USING

FROM

Indicates what value to assign to each SQLNAME variable in the SQLDA
when INTO is used. If the requested value does not exist, SQLNAME is set
to length O.

NAMES
Assigns the name of the column. The default is USING NAMES.

LABELS
Assigns the label of the column. (Column labels are defined by the
LABE L ON statement.)

ANY
Assigns the column label, and, if the column has no label, the column
name.

BOTH
Assigns both the label and name of the column. In this case, two
occurrences of SQLVAR per column will be needed to accommodate
the additional information. To specify this expansion of the SQLVAR
array, set SQLN to 2*n on the PRE PARE statement (where n is the
number of columns in the result table). Then, on any later FETCH
statement, set SQLN to n. The first n occurrences of SQLVAR for each
of the columns in the result table contain the column names. The
second n occurrences contain the column labels.

Introduces the statement string. The statement string is the value of the
specified string-expression or the identified host variable.

string-expression
Is any expression that yields a character string. String expressions are not
allowed in RPG or COBOL.

host-variable
Must identify a host variable that is described in the program in
accordance with the rules for declaring character string variables.

The host variable must be of the form: host-vari abl e. The form
:host-variable:indicator-variable is not allowed.

Usage Notes

PREPARE

Rules for statement strings: The statement string must be one of the following SQL
statements: COMMENT ON, COMMIT, CREATE DATABASE, CREATE INDEX,
CREATE TABLE, CREATE VIEW, DELETE, DROP, GRANT, INSERT, LABEL ON,
LOCK TABLE, REVOKE, ROLLBACK, or UPDATE.

The statement string may also be a select-statement. For information on the
select-statement, see "select-statement" on page 47.

Furthermore, the statement string must not:

• Begin with EXEC SQL and end with a statement terminator
• Include references to host variables
• Include comments.

Parameter markers: Although a statement string cannot include references to host
variables, it may include parameter markers; those can be replaced by the values
of host variables when the prepared statement is executed. A parameter marker is
a question mark (?) that appears where a host variable could appear if the
statement string were a static SQL statement. For an explanation of how
parameter markers are replaced by values. see "OPEN" on page 98 and
"EXECUTE" on page 80.

Rules for parameter markers

• Parameter markers must not appear:

In a select list (SELECT? is invalid)

As an operand of the concatenation or substring operator

As both operands of a single arithmetic or comparison operator (WHERE?
= ? is invalid)

As an operand of a unary minus

• At least one of the operands of the BETWEEN or IN predicates must not be a
parameter marker.

.. If a scalar function is used in other than a SE LECT list, and it has an argument
that can be specified as an arithmetic expression, a parameter marker can be
included in that expression, provided that it is the operand of an arithmetic
operator and that the other operand is a number.

When a PREPARE statement is executed, the statement string is parsed and
checked for errors. If the statement string is invalid, a prepared statement is not
created and a negative value is returned in the SQLCODE field of the SQLCA.

Prepared statements can be referred to in the following kinds of statements, with
the restrictions shown:

In ...
DESCRIBE
DECLARE CURSOR
EXECUTE

The prepared statement ...
has no restrictions
must be SELECT
must not be SELECT

A prepared statement can be executed many times. Indeed, if a prepared
statement is not executed more than once and does not contain parameter
markers, it is more efficient to use the EXE CUTE IMME DIA TE statement, rather
than the PRE PARE and EXECUTE statements.

Chapter 5. Statements 103

PREPARE

Example

104 SQU400 Reference

All prepared statements created by a unit of recovery are destroyed when the unit
of recovery is terminated. unless COMMIT HOLD or ROLLBACK HOLD was used.

A prepared statement can only be referenced in the same instance of the program
in the program stack.

In this example, an INSERT statement with parameter markers is prepared.

MOVE 'INSERT INTO CORPDATA.QUOTATIONS VALUES(?,?,?,?)' TO HOLDER.

EXEC SQL PREPARE QUOTES FROM :HOLDER END-EXEC.

(.'

REVOKE

Invocation

Authorization

The REVOKE statement removes privileges on tables and views from users.

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared.

The privileges held by the authorization ID of the statement must include 'OBJMGT
authority and the privileges you are revoking.

r---ALL-----------------------------.
~REVOKE~ALL PRIVILEGES

1 ~ 1

, I DELETE I'
r---I NDEX------------------1· t= INSERT I

SELECT--------j·
UPDATE----------------....J

I , I

~ON----'L-------~-----.--T-' ,,-t cab 1 e-n ame---.-' ,1--------------------------------------.....
TABLE---1 L-vi ew-name---1

r---,~

~FROr.1 ~a~th-id---'-1.-----------------------__ 0 __

L--PU8LIC~

Description
ALL or ALL PRIVILEGES

Revokes all table privileges (listed below) for the specified tables or views.

If you do not use ALL, you must use one or more of the keywords in the
following list. Each keyword revokes the privilege described, but only as it
applies to the tables or views named in the ON clause. For information on how
these privileges relate to the AS/400 system object and data rights. see 'Usage
Notes" on page 87.

Keyword Revokes the privilege to ...

DE LETE Use the DE LETE statement

INDEX Use the CREATE INDEX statement

INSERT Use the INSERT statement.

SELECT Use the SELECT statement

UPDATE Use the UPDATE statement

Chapter 5. Statements 105

REVOKE

Usage Notes

Examples

106 SQU400 Reference

ON or ON TABLE
Introduces a Ii st of table and view names.

The table-name and view-name name one or more tables or views on which
you are revoking the privileges. The list may be a list of table names, view
names, or a combination of the two.

FROM
Identifies from whom the privileges are revoked.

auth-id
Lists one or more auth-ids. Do not use the same auth-id more than once.

PUBLIC
Revokes a grant of privileges to PUBLIC.

System Object and Data Rights: When revoking authorities to a table, the
'OBJOPR object rights are revoked only when all system data rights to that table
have been revoked. For a view, these system object rights will only be revoked
when all system data rights to the table or tables on which the view is dependent
have been revoked.

When revoking authorities to a view, the system data rights will only be revoked
from a base table if the specified user does not have the system authority of
'OBJOPR to the base table or to any other view dependent on the base table.

Read-only Views: If inserts. updates, or deletes are not allowed on a view, then the
respective SQL authority of INSERT, UPDATE, or DELETE cannot be revoked from
the view.

Multiple grants: If you granted the same privilege to the same user more than
once, revoking that privilege from that user nullifies all those grants.

Example 1: Revoke SELECT privileges on table CORPDATA.EMP from user
PULASKI.

REVOKE SELECT
ON TABLE CORPDATA.TEMPL
FROM PULASKI

Example 2: Revoke update privileges on table CORPDAT A.EMP, previously
granted to all users. Note that grants to specific users are not affected.

REVOKE UPDATE ON TABLE CORPDATA.TEMPL
FRDr·l PUBLI C

Example 3: Revoke all privileges on table CORPDATA.EMP. from users KWAN and
THOMPSON.

REVOKE ALL
ON TABLE CORPDATA.TEMPL
FROM KWAN,THO~PSON

ROLLBACK

Invocation

Authorization

The ROLLBACK statement is used to terminate a unit of recovery and back out the
data base changes that were made by that unit of recovery.

This statement can be embedded in an application program or it can be issued
interactively. It is an executable statement that can be dynamically prepared.

None required.

--ROLLBACK-----,--I ------,1,---,-1 -------,1---------------... • •
L-I.'JORK--.J '---HOLD---.l

Description

Usage Notes

The unit of recovery in which the ROLLBACK statement is executed is terminated
and a new unit of recovery IS initiated. All changes made by INSERT. UPDATE, and
DE LETE statements executed during the unit of recovery are backed out.

All locks acquired by the unit of recovery are released. All cursors that were
opened during the unit of recovery are closed. All statements that were prepared
during the unit of recovery are destroyed, and any cursors associated with the
prepared statements are invalidated.

WORK
ROLLBACK WORK has the same effect as ROLLBACK. SQU400 accepts the
keyword WORK for compatibility with other data base products.

HOLD
Indicates a hold on resources. If specified, currently open cursors are not
closed, prepared SQL statements are preserved, and all resources acquired
during the unit of recovery, except locks on the rows of tables, are held. Locks
0:1 specific rows acquired during the transaction, however, are released. If
HOLD is omitted, open cursors are closed, prepared SQL statements
discarded, and held resources released. At the end of a ROLLBACK, the
cursor position is the same as it was at the start of the un it of recovery

A unit of recovery (see "Application Processes, Concurrency, and Recovery" on
page 5 for description) may include the processing of up to 4096 rows, including
rows retrieved during a SELECT or FETCH statement·, and rows inserted, deleted,
or updated as part of INSERT, DELETE, and UPDATE operations S The commit and
rollback operations do not affect any data definition statements. and these

4 Unless you specified COMMIT("CHG), in which case these rows are not included in this
total.

5 This limit also includes any records accessed or changed through files opened under
commitment control through high-level language file processing.

Chapter 5. Statements 107

ROLLBACK

Example

108 SQU400 Reference

statements are not, therefore, allowed in an application program that also specifies
COMMIT(*CHG) or COMMIT(*ALL). The data definition statements are:

• COMMENT
• CREATE DATABASE
• CREATE INDEX

• CREATE TABLE
• CREATE VIEW
• DROP DATABASE

• DROP INDEX
• DROP TABLE

• DROP VIEW

• GRANT

• LABEL
• REVOKE

Commitment control is implicitly started by SQL, if necessary, using the system CL
command STRCMTCTL. The lock level used is based on the COMMIT option
specified on either the CRTSQLxxx (where xxx is RPG, CBL or PLI) or the STRSQL
command.

A ROLLBACK is automatically performed when:

1. An application process ends without a final COMMIT being issued.

2. A failure occurs that prevents the application from completing its work (such as
a power failure).

If a CLOSE was issued within a unit of work. and a ROLLBACK is subsequently
issued, ali other changes are backed out but the CLOSE itself is not backed out:
the file is not reopened.

Delete the alterations made since the last commit point or rollback.

ROLLBACK loJORK

(..)

SELECT INTO

Invocation

Authorizati on

The SELECT INTO statement produces a result table consisting of at most one row,
and assigns the values in that row to host variables. If the table is empty, the
statement assigns + 100 to SQLCODE and does not assign values to the host
variables.

The SELECT INTO statement can only be embedded in an application program. It
is an executable statement that cannot be dynamically prepared.

To use SE LECT, the privileges held by the authorization ID of the statement must
include the SELECT privilege on every table and view identified in the statement.

You have the SE LECT privi lege on a table if any of the following apply:

• You are the owner of the table
• You have been granted the SELECT privilege on the table
• You have been granted the system authorities 'OBJOPR and 'READ on the

table.

You have the SELECT privilege on a view if any of the following apply:

• You have been granted the SELECT privilege on the view
• You created the view you had the SELECT privilege on its base table when the

view was created, and you still have that SELECT privilege
• You have been granted the system authority 'OBJOPR on the view and the

system authority 'READ on the base table.

~ , I

-select-clause-INTO--host-variable~from-clause I I •
Ll'lhere-clause---1

•
C==group-bY-ClaUSe-' C==haVing-ClaUSe~

....

Description
See Chapter 4, ;·Queries" on page 39 for information on the select-clause,
from-clause, where-clause, grouping-clause, and having-clause. Note that the
from-clause must not identify a view that includes a grouping-clause or a
having-clause. Note too that the grouping, as specified by the grouping-clause,
strongly implies a result table of more than one row, and that a having-clause is
probably needed to reduce the table to at most one row.

INTO
Introduces a list of host variables.

Chapter 5. Statements 109

SELECT INTO

Examples

110 SOU400 Reference

host variable
Names a structure or variable that is described in the program under the
rules for declaring host structures and variables. A reference to a
structure is replaced by a reference to each of its variables before the
statement is executed.

The first value in the result row is assigned to the first variable in the list,
the second value to the second variable, and so on. If the number of host
variables is less than the number of column values, the value 'W' is
assigned to the SQLWARN3 field of the SQLCA.

The data type of a variable must be compatible with the value assigned to
it. If the value is numeric, the variable must have the capacity to represent
the integral part of the value. If the value is nUll, an indicator variable must
be specified.

Each assignment to a variable is made according to the rules described in
Chapter 2, "Language Elements." Assignments are made in sequence
throu gh the list.

If an error occurs as the result of an arithmetic expression in the SELECT
list of a SE LECT statement (division by zero, or overflow) or a numeric
conversion error occurs, the result is the null value. As in any other case
of a null value, an indicator variable must be provided and the main
variable is unchanged. Now, however, the indicator variable is set to -2.
Processing of the statement continues as if the error had not occurred. If
you provide no indicator variable, or some other type of error occurs,
processing of the statement terminates when the error is met.

If an error occurs. no value is assigned to the host variable or to later
variables, though any values that have already been assigned to variables
remain assigned.

If an error occurs because the result table has more than one row, values
are assigned to all host variables, but the row that is the source of the
values is undefined and not predictable.

Example 1: Put the maximum salary in CORPDATA.EMP into the host variable
MAXSALRY.

EXEC SQL SELECT t'lAX (SALARY)
INTO :MAXSALRY
FROM CORPDATA.EMP;

Example 2: Put the row for employee 528671, from CORPDATA.EMP, into the host
structure EMPREC.

EXEC SQL SELECT * INTO :EMPREC
FROt4 CORPDAT A. HlP
WHERE EMPNO = '528671'

END-EXEC.

UPDATE

Inlfocation

Authorization

Searched Update

The UPDATE statement updates the values of specified columns in rows of a table
or view. Updating a row of a view updates a row of its base table.

This statement can be embedded in an application program or issued interactively.
It is an executable statement that can be dynamically prepared

The privileges held by the authorization ID of the statement must include the
UPDATE privilege on the specified table or view.

You have the UPDATE privi lege on a table if any of the following apply:

• You are the owner of the table.
• You have been granted the UPDATE privilege on the table.
• You have been granted the system authorities 'OBJOPR and 'U PO on the

table.

You have the UPDATE privilege on a view if any of the following apply:

• You have been granted the UPDATE privilege on the ')Iew.
• You created the view, you had the UPDATE privilege on its base table at that

time. and you stili have that UPDATE privilege.
• You have been granted the system authorities 'OBJOPR and 'UPD on the base

table.

~UPDATE------r-tab 1 e-nane ~I-'I----------'-I --------------+

L--view-name~ L--correlation-name~

~
--SET-col umn-name=----expression--..L-------------------..

LI:JHERE search-condition----'

• if

Positioned Update

-UPDATE -----,-1 -table-na~~e-'I --------------------------..
L--vie\'l-name~

~
--SET -co 1 umn-name ----express i on--..L------------ -------. ..

-',']HERE CURRENT OF cursor-name'-------------------------" ..

Chapter 5. Statements 111

UPDATE

Description

112 SQU400 Reference

table-name or view-name
Is the name of the table or view you Viant to update. It must name a table or
view described in the catalog, but not a catalog table, a view of a catalog table,
or a read-only view. (See "CREATE VIEW" on page 66 for an explanation of
read-only views.)

correlation-name
May be used within search-condition to designate the table or view. (See
"Correlation Names" on page 20 for an explanation of correlation-name.)

SET
Introduces a list of column names and values.

The column names must not be qualified and the same column name must not
be specified more than once. In a cursor-controlled update, each column name
in the list must also appear in the FOR UPDATE OF clause of the SELECT
statement of the identified cursor, unless FOR UPDATE OF and ORDER BY
were not specified.

column-name
Identifies a column to be updated, The column-name must identify a
column of the specified table or view, but must not identify a view column
derived from a scalar function, constant. or expression.

expression

WHERE

Indicates the new value of the column, The expression is any expression
of the type described in Chapter 2 It must not include a column function.
NULL specifies the null value.

A column-name in an expression must name a column of the named table
or view. For each row that is updated. the value of the column in the
expression is the value of the colLmn in the row before the row is updated,

Introduces a condition that indicates what rows are updated. You can omit the
clause, give a search condition, or name a cursor, If you omit the clause, all
rows of the table or view are updated,

search-condition
Is any search condition as described in Chapter 2, Each column-name in
the search condition must name a column of the table or view.

The search-condition is applied to each row of the table or view and the
updated rows are those for which the result of the search-condition is true.

CURRENT OF cursor-name
Identifies the cursor to be used in the update operation, The cursor-name
must identify a declared cursor, as explained in the Usage Notes for
"DECLARE CURSOR" on page 68

The table or view named must also be named in the FROM clause of the
SE LE CT statement of the cursor, and the result table of the cursor must not
be read-only. (For an explanation of read-only result tables. see
"DECLARE CURSOR" on page 68)

When the UPDATE statement is executed, the cursor must be positioned on
a row: that row is updated,

(.J

f:..J

Usage Notes

Examples

UPDATE

A maximum of 4096 rows may be updated in any single UPDATE operation when
COMMIT(* ALL) or COMMIT(*CHG) has been specified.

Update values are assigned to columns under the assignment rules described in
Chapter 2.

If the update
value is ...

A number

A character string

Then the column must ...

Be a numeric column, with the capacity to represent
the integral part of the nu mber.

Be a character string column with a length attribute
that is not less than the length of the string.

If an update value violates any constraints, or if any other error occurs during the
execution of the U PDA TE statement, and COMMIT(* A LL) or COMMIT(*CHG) was
specified, all changes made during the execution of the statement are backed out.
However, other changes in the unit of recovery made prior to the error are not
backed out. If COMMIT(*NONE) is specified, changes are not backed out.

A view column derived from the same column as another column of the view can
be updated, but both columns cannot be updated in the same UPDATE statement.

When an embedded UPDATE statement completes execution, the value of
SQLERRD(3) in the SQLCA is the number of rows updated. (For a description of
the SQLCA, see Appendix B, '·SQLCA and SQLDA Control Blocks" on page 119.)

Unless appropriate locks already exist, one or more exclusive locks are acquired
by the execution of a successful UPDATE statement. Until the locks are released,
the updated row can only be accessed by the application process that performed
the update. For further information on locking, see the descriptions of the
COMMIT, ROLLBACK, and LOCK TABLE statements.

Example 1: Change employee 000190's telephone number in CORPDATAEMP.

UPJATE CORPDATA.EMP
SET PHONENO='3565'
WHE~E EMPNO='B0B19B'

Example 2: Increase the job code by 10 of members of Department 011.

UPDATE CORPDATA.EMP
SET JOBCODE = JOBCODE + 10
WHERE WORKDEPT='Dll'

Example 3: Change the project end date for project number AD3111 to 13 July
1984.

UPDATE CORPDATA.PROJ
SET PRENDATE = '1984-B7-13'
WHERE PROJNO = 'AD3111'

Chapter 5. Statements 113

WHENEVER

Invocation

Authorizati on

The WHENEVER statement specifies the host language label to which execution
will be transferred when a specified exception condition occurs.

This statement can only be embedded in an application program. It is not an
executable statement.

None required.

r--NOT FOUND~
-1·JHENEVER----t-SQLERROR-~-+---,-1 -CONTI NUE---------r-I ---------......

Description

Usage Notes

LSQLI'JARNING---.J ~GOTO-~--.-----host-l abel~
LGO TO----.J

The SQLERROR, SQLWARNING, or NOT FOUND clause is used to identify the type
of exception condition.

SQLERROR
Identifies any condition that results in a negative SQL return code.

SQLWARNING
Identifies any condition that results in a warning condition (SQLWARNO is "W")
or that results in a positive SQL return code other than + 100.

NOT FOUND
Identifies any condition that results in an SQL return code of +100.

The CONTINUE or GO TO clause is used to specify what is to happen when the
identified type of exception condition exists.

CONTINUE
Specifies the next sequential statement of the source program.

GOTO or GO TO host-label
Specifies the statement identified by host-label. For host-label, substitute a
si ngle token, optionally preceded by a colon. The form of the token depends
on the host language. In COBOL, for example, it can be a section-name or an
unqualified paragraph-name.

There are three types of WHENEVER statements:

WHENEVER NOT FOUND
WHENEVER SQLERROR
WHENEVER SQLWARNING

Every executable SQL statement in a program is within the scope of one implicit or
explicit WHENEVER statement of each type. The scope of a WHENEVER statement
is related to the listing sequence of the statements in the program, not their
execution sequence.

114 SQU400 Reference

Example

'-.:'.

WHENEVER

An SQL statement is within the scope of the last WHENEVER statement of each
type specified before that SQL statement in the source program. If a WHENEVER
statement of some type is not specified before an SQL statement, that SQL
statement is within the scope of an implicit WHENEVER statement of that type in
which CONTINUE is specified.

If an error is produced, go to HANDLERR. If a warning code is produced, continue
with the normal flow of the program. If no results are found, goto ENDDATA.

EXEC SQL WHENEVER SQLERROR GO TO HANDLERR END-EXEC.
EXEC SQL WHENEVER SQLWARNING CONTINUE END-EXEC.
EXEC SQL WHENEVER NOT FOUND GO TO ENDDATA END-EXEC.

Chapter 5. Statements 115

116 SQU400 Reference

Appendix A. SQL Limits

The table below describes certain limits imposed by SQLl400. The limits
presented here are minimal values that. if used, will assist in making application
programs readily portable from one system to another.

ITEM

Longest SQL identifier

Longest authorization ID

Most columns in a table

1 Most columns in a view

Maximum length of a row, in bytes.
including all overhead

Maximum byte count of a row

Maximum byte count of CHAR

Largest INTEGER value

Smallest INTEGER value

Lar est SMALLINT value g

1 Smallest SMALLINT value

Largest FLOAT value

Smallest FLOAT value

Smallest positive FLOAT value

Lar est ne ative FLOAT value g g

Largest REAL value

Smallest REAL value
r-

Smallest positive REAL value

Lar£est negative REAL value

Lar est DECIMAL value g

1 Smallest DECIMAL value

Most table names in an SQL statement
(In a complex SE LECT, the number of
tables that can be joined may be
significantly less.)

Maximum length of a host variable
name

Figure 5 (Part1 of2). SQLUmits

SQlllMIT

10

10

8000

18000

32766

32766

32766

2147483647

-2147483648

32767

I -32768

I
Approximately 1. 79E +308

Approximately -1. 79E + 308

Approximately 2.22E-308

A roximatel I pp y -2.22E-308

: Approximately 3 40E +38 ,

Approximately -3.40E +38

Approximately 1.17E-38

Approximately -1.17E-38

9999999999999999999999999999999

i -9999999999999999999999999999999

I 32

j

! 64
I

I

Appendix A. SQL Umits 117

ITEM SQL LIMIT

Most host variables in a precompiled less than 400()6
program

Most host variables in an SQL less than 400()6
statement

Maximum total length of host and storage
indicator variables pointed to in an
SQLDA

Longest host variable used for insert or 32766 bytes
update

Longest SQL statement 32767 bytes

Most elements in a select list

I Most functions in a select list

less than 8000:

I less than 8000:

Most predicates in a WHERE or less than 8000:
HAVING clause

Maximum total length of columns in a 120
GROUP BY clause

Maximum total length of columns in an 256
ORDER BY clause

Maximum number of columns in an 120
ORDER BY clause

Most columns in an index key 120

Longest index key 120

Figure 5 (Part 2 of2). SOL Umits

6 The limit is based on the number of pointers allowed in a program. Each host language
allows a different number of pointers. At a minimum, each host language uses one
pointer for each use of a host variable. The AS/400 system allows a limit of 4040
pointers in any program.

7 The limit is based on the size of internal structures generated for the parsed SQL
statements.

118 SQU400 Reference

Appendix B. SQLCA and SQLDA Control Blocks

This appendix describes the SQL communication area (SQLCA) and the SQL
descriptor area (SQLDA).

SQL Communication Area (SQLCA)
An SQLCA is a collection of variables that is updated repeatedly during a program
with information about the SQL statement most recently run. The SQL INCLUDE
statement must be used to provide the declaration of the SQLCA in COBOL and
PUI. The SQLCA is provided for RPG by the SQL precompiler.

In COBOL, the name of the storage area must be SQLCA. In PUI, the name of the
structure must be SQLCA. Every SQL statement must be within the scope of its
declaration.

Description of Fields
The names in the following table are those provided by the SQL INCLUDE
statement. For the most part, COBOL and PLII use the same names. RPG names
are different, because they are limited to 6 characters. Note one instance where
PUI names differ from COBOL

Appendi x B. SQLCA and SQLDA 119

COBOL, or
PUI Name

SQLDAID

SQLCABC

SQLCODE

SQLERRML
(See Note)

SQLERRMC

SQLERRP

SQLERRD

SQLWARN

SQLWARNO

SQLWARN1

SQLWARN2

SQLWARN3

SQLWARN4

SQLWARNS

SQLWARN6

SQLWARN7

SQLEXT

RPG
Name

SQLAID

SQLABC

SQLCOD

SQLERL

SQLERM

SQLERP

SQLERR
Defined as 24
characters (not an
array) that are
redefined by the fields
SQLER1 through
SQLER6. The fields
are full-word binary.

SQLWRN
Defined as 8
characters (not an
array).

SQLWNO

SQLWN1

SQLWN2

SQLWN3

SQLWN4

SQLWN5

SQLWN6

SQLWN7

SQLEXT

Data
Type

CHAR(8)

INTEGER
(4-bytes)

INTEGER
(4-bytes)

SMALLINT
(2-bytes)

CHAR (70)

CHAR(8)

Array

CHAR(8)

CHAR(1)

CHAR(1)

CHAR(1)

CHAR(1)

CHAR(1)

CHAR(1)

CHAR(1)

CHAR(1)

CHAR(8)

Description

An "eye catcher" for storage dumps, containing

'SQLCA '.

Contains the length of the SQLCA, 136.

Contal ns the SQL return code.

Code
o

positive
negative

Means
Successful execution (though there may have been
warnll1g messages).
Successful execution. but with an exception condition.
Error condition.

Length indicator for SQLERRMC, in the range Othrough 70. 0 means
that the value of SQLERRMC IS not pertinent.

Contains message replacement text associated With the SQLCODE.

Provides diagnostic information, such as the name of a module.

6 INTEGER variables that provide diagnostic information.

SQLERRD(11 may contain the last four characters of the CPF
escape message If SQLCODE is less than O. For example, If the
message is CPF5715, X' F5F7F1F5' IS placed In SQLERRD(1).

SQLERRD(2) may contain the last four characters of a CPD
diagnostic message if the SQL code is less than O.

SQLERRD(31 shows the number of rows affected after I r-;SERT,';
UPDATE. and DELETE.

Nole: SQLERRD(1) and (2) are set only If appropriate.

A set of 8 warning Indicators, each contalrllng blank or ·'W.·'

Blank if all other indicators are blank; contains "W' If at least one
other Indicator contains "W."

Contains "w" If the value of a string column was truncated when
assigned to a hOst vanable.

Reserved

Contains "Woo If the number of columns and the number of host
variables are not the same.

Contains "W' If a prepared UPDATE or DELETE statement does not
include a WHERE clause.

Reserved

Reserved

Reserved

Reserved

Note: In COBOL, SQLERRM includes SQLERRML and SQLERRMC. In PLlI, the
varying-length string SQLERRM is equivalent to SQLERRML prefixed to
SQLERRMC.

120 SQU400 Reference

The Included SQLCA
The following is a description of the SQLCA that is given by INCLUDE SQLCA

In COBOL:

01 SQLCA.
05 SQLCAID
05 SQLCABC
05 SQLCODE
05 SQLERRt,l.

49 SQLERRt,lL
49 SQLERRr.JC

05 SQLERRP
05 SQLERRD

05 SQUJARN.
10 SQU'JARN0
10 SQLI'!ARN1
10 SQU-JARN2
10 SQU-JARN3
10 SQU-!ARrI4
10 SQLI-JARN5
10 SQU-!ARN6
10 SQU!ARN7

05 SQLEXT

PIC X(8).
PIC S9 (9) Cor'lP-4.
PIC S9(9) COMP-4.

PIC S9(4) CorlP-4.
PIC X(70).
PIC X(8).
OCCURS 6 T H·1ES
PIC S9(9) COMP-4.

PIC X(l).
PIC X(l).
PIC X(l).
PIC X(l).
PIC X(1).
PIC X(l).
PIC X(l).
PIC X(l).
PIC X(8).

INCLUDE SQLCA must not be specified in other than the working storage section.

In PLiI

DCl 1 SQlCA,
2 SQLCAID
2 SQlCABC
2 SQlCODE
2 SQLERR~l
2 SQlERRP
2 SQLERRD(6)
2 SQU-JARN,

3 SQU!ARNO
3 SQU-!ARN 1
3 SQlI.!ARN2
3 SQU'JARN3
3 SQLl-JARN4
3 SQU-!ARN5
3 SQU-JARN6
3 SQUJARN7

2 SQlEXT

CHAR(8),
BIN FIXED(31),
BIN FIXEO(31),
CHAR(70) VAR,
CHAR(8) ,
BIN FIXEO(31),

CHAR(l),
CHAR(ll,
CHAR(l),
CHAR(l) ,
CHAR(ll,
CHAR(ll,
CHAR(l),
CHAR (1) ,
CHAR(8)j

Appendix B. SQLCA and SQLDA 121

122 SQU400 Reference

In RPG: The SQLCA data structure is generated by the SQL precompiler and is not
specified by the user.

ISQLCA OS
I 8 SQLAIO SOL

B 9 120S0LABC SQL
B 13 160S0LCOO SOL
B 17 180S0LERL SOL

19 88 SOLERI! SOL
89 9(; SOLERP SOL
97 120 SOLERR SOL

B 97 IGOOSQLER1 SOL
B 101 1040S0LER2 SOL
B 105 1080S0LER3 SOL
B 109 1120SQLER4 SOL
B 113 1160SQLER5 SOL
B 117 12CCSOLER6 SOL

121 127 SOU'JRN SOL
121 121 SOU'iNO SOL
122 122 SQU,UH SQL
123 123 SQLt'HJ2 SQL
124 124 SOUnD SQL
125 125 SQU'Jrl4 SQL
126 126 SOUJrl5 SQL
127 127 SQUJrlS SQL
128 128 SQU!N7 SQL
129 136 SQLEXT SQL

The SQL Descriptor Area (SQLDA)
An SQLDA is a collection of variables that is required for execution of the SQL
DESCRIBE statement, and may optionally be used by the PREPARE, OPEN, FETCH,
and EXECUTE statements. An SQLDA communicates with dynamic SQL; it can be
used in a DESCRIBE statement, modified with the addresses of host variables, and
then reused in a FETCH statement.

The meaning of the information in an SQLDA depends on its use. In PREPARE and
DESCRIBE, an SQLDA provides information to an application program about a
prepared statement. In OPEN, EXECUTE, and FETCH, an SQLDA provides
information about host variables.

Description of Fields

PUI Data
Name Type

SQLDA!D CHAR(8)

SQL~ASC Ir-iTEGER

SQLN SMALLiNT

SQLD SMALLINT

SQLVAR ARRAY

The following description is based on the PUI structure provided by the SQL
INCLUDE statement.

An SQLDA consists of four variables followed by an arbitrary number of
occurrences of a sequence of five variables collectively named SQLVAR. In OPEN,
FETCH, and EXECUTE, each occurrence of SQLVAR describes a host variable. In
DESCRIBE and PREPARE, they describe columns of a result table.

Used in Used in FETCH,
DESCRIBE and PREPARE OPEN. or EXECUTE

An "eye catcher" for storage dumps, Not used.
containing 'SQLDA

Length of the SQLDA, equal to SQLDABC m'_st ~ave a value equal to or
SQLWLENGTH(SQLVAR)+16. greater than SQl..WLENGTHISQLVAR) prior to

use by FETCH, OPEN. or EXECUTE.

Total number of occurrences of SQLVAR. Same as usage In DESCRIBE and PREPARE.

The number of columns described by The number of host variables desCribed by
occurrences of SQLVAR. occurrences of SQLVAR.

Set of five fields. Not used.

Appendix B. SQLCA and SQLDA 123

Fields in an Occurrence of SQLVAR

PUI
Name

SQLTYPE

SQLLEN

SQLRES

SQLDATA

Data
Type

SMALLINT

SMALLINT

reserved area
112-bytel

pointer
116-bytel

124 SQU400 Reference

Usage in
DESCRIBE and PREPARE

Tells the data type of the column and whether
or not it has an associated I ndicator variable.
"Values of SQL TYPE" on page 126 lists the
allowable values and their meanl ngs.

Gives the length attribute of the column, as
follows. Also, see note in "Usage In FETCH,
OPEN, and EXECUTE column.

Data Type Content

Character Length attri bute In bytes.

Decimal, Numeric, or Integer

Float

Integer

Note:

Byte 1 = precision;
byte 2 = scale.

4 for Sl ngle precision:
8 for double precIsion.

2 for SMALLI NT;
4 for INTEGER.

Binary numbers may be represented In the
SQLDA as either length of 2 or 4 or with
precIsion and scale. If the first byte IS greater
than X'OO', It Indicates precIsion and scale.

Usage in FETCH,
OPEN, and EXECUTE

Same as usage in DESCRIBE and PREPARE.

Same as usage In DESCRIBE and PREPARE.

Provides boundary alignment. POinters must Same as usage in DESCRIBE and PREPARE.
be on a quad-word boundary.

The first 4 bytes contain two small Integers Specifies the address of the host variables.
and Indicate the SBCS character set and code
page for a character COl umn. The character
set and code page are determined by the
system val ue QCHRI D, which IS set by the
user and contal ns both the SBCS character
set and code page Identification. If the
integer IS zero, either the col umn IS not
character type, or the character IS bit data
(FOR BIT DATA).

The remaining 12 bytes are reserved.

(contln'Jed)

PUI
Name

SQLlND

Data
Type

pointer
(16-byte)

Va ryl ng length
c~,aracter stnng;
maximum length
IS 30 characters.

Usage in
DESCRIBE and PREPARE

First 4 bytes are an Integer. If the column is
not a character column that contains both
SBCS and DOCS data (FOR MIXED DATA), the
value of IS 0. OtherWise, the Integer is not
equal to O.

The remaining ~2 Dytes are reserved.

Contains the racc'e:)r labe! of the column.

Usage in FETCH,
OPEN, and EXECUTE

Specifies the address of an indicator variable.
A negative value indicates null and a
non-negative values Indicates not null. The
following cases mlgrlt result In a null value,
even though null values cannot be stored In

tables:

If a column function (MIN, MAX, COUNT,
etc.) are specified In the SELECT liSt,
and the GROUP BY clause was not
speclfled. and the result of COUNT IS 0,
then a n~1I value (-1) is returned In the
indicator van able for the column
functions other than COUNT.

If a dec I mal data error occurred when
evaluating an expression in tr·e SELECT
list. but a successful determination could
stili be made as to whether tr',e resulting
row ShOl;ld be selected. as many valid
results w:11 be returned as posslt!e, and
Items that enco.Jntered errors Will be
returned as a null value (-21.

Not used.

Appendix B. SQLCA and SQLDA 125

Values of SQLTYPE
The table below lists allowable values of the SQLTYPE field of an SQLDA, and their
meanings, There are two values for each data type:

• For DESCRIBE and PRE PARE statements, the first value does not allow null
values, but the second value does allow null values .

• For FETCH, OPEN. and EXECUTE statements. the first value does not have an
indicator variable. but the second value does have an indicator variable.

Values Data Type

448/449 varying-length character
string

452/453 fixed-length character
string

4561457 long varYlng·1 ergth
character stnng igreater
than 254 bytes)

480/481 floating pOint

484/485 decimal

488/489 numeric (zoned)

496/497 large Integer

500/501 small Integer

DESCRIBE and
PREPARE -
Null Indicator?

nolyes

nolyes

no/yes

no/yes

no:,yes

no,yes

no. yes

nOlyes

FETCH. OPEN. and
EXECUTE -
Indicator Variable?

no/yes

no/yes

nolyes

nolyes

nolyes

nolyes

no/yes

no/yes

The Included SQLDA

126 SQU400 Reference

The description of the SQLDA that is given by INCLUDE SQLDA is shown for PL!I

DCL 1 SQLDA BASED (SQLDADTR),
2 SQLDAID CHA~(3),
2 SQLDABC 3I~ FIXED(3l),
2 SQLN BUI FIXES,
2 SQLD SIN FIXEJ,
2 SQLVAR :99) ,

3 SQLTYPE BIN FIXED,
3 SQLLEN BIN FIXED,
3 SQLRES CHA~(12),

3 SQLDATA PTR,
3 SQUND PTR,
3 SQLNAME CHAR(3B) VAR;

DCL SQLDAPTR PTR;

':j

Glossary

access path. The path used to locate data specified in
SOL statements. An access path can be either indexed
or sequential. or a combination of both.

access plan. The control stf"ucture produced during
compile ti me that is used to process SOL statements
encountered when the program is run.

ANSI. American National Standards Institute

application. A program or set of programs that perform
a task; for example, a payroll application.

attribute. In data base design, a characteristic of an
entity; for example, the telephone number of an
employee is one of that employee's attributes.

authorization 10. A user profile. A name identifying a
user to whom privileges can be granted.

automatic bind. When an application program is being
run and the access plan is not valid, binding takes
place automatically; that is, without a user issuing
another precompile command.

binary. An SOL data type indicating that the data is a
binary number with a precision of 15 (halfword) or 31
(fullword) bits.

bind. The process by which the output from the SOL
precompiler is converted to a usable structure called
an access plan. This process is the one during which
access paths to the data are selected and some
authorization checking is performed. There are two
types of bind used by SOU400: automatic and dynamic
(see automatic bind and dynamic bind).

catalog. Tables and views, maintained by the data
base manager that contain descr iptions of objects, such
as tables, views, and indexes.

catalog table. AS!400 system data dictionary physical
files.

catalog views. A set of views containing information
about the objects in a data base, such as tables. views,
indexes. and column definitions.

character string. A sequence of bytes or characters
associated with a single-byte character set.

clause. A distinct part of a statement in the language
structure, such as a SELECT clause or a WHERE
clause.

column. The vertical part of a table. A column has a
name and a particul ar data type (for example,
character, decimal. or integer).

column function. A process that calculates a value
from a set of values and expresses it as a function
name followed by an argument enclosed in
parentheses.

commit The process that data changed by one
application or user to be used by other applications or
users. When a commit operation occurs, the locks are
released to allow other applications to use the changed
data.

commit point. The point in time when data is
considered to be consistent.

comparison operator. A symbol (such as =, >, <)
used to specify a relationship between two values.

concurrency. The shared use of resources by multiple
interactive users or application programs at the same
time.

correlation name. An identifier that designates a table,
a view, or an individual row of a table or view within a
single SOL statement. The name can be defined in any
FROM clause or in the first clause of an UPDATE or
DE LETE statement

cursor. A named control structure used by an
appl ication program to poi nt to a row of data. The
position of the row is within a table or view. and the
cursor is used to interactively select rows from the
columns.

data base. A set of objects created by SOU400 that
contains tables, views. indexes, and other system
objects (such as a program) created by the user. An
SOL data base consists of a library; a data dictionary
that contains descriptions and information for all tables,
views, indexes, and files created into the library; an
SOL catalog; and a journal zmd journal receiver that
are used to journal changes to all tables created into
the data base.

data type. An attribute of col umns, constants. and host
variables.

DBCS. See double-byte character set lOBeS).

default value. A predetermined value, attribute, or
option that is assumed when no other value is explicitly
specified. For example. the value of a column is a
nonnull value determined by the data type of the
column.

Glossary 127

delimited identifier. A sequence of one or more
characters of the standard character set enclosed
within SOL escape characters used to form a name.

delimiter token. A string constant, a delimited
identifier, a symbol (for example, I L t, " +, or -), or
other special characters (for example, period, comma,
parentheses).

double byte character set (DBCS). A set of characters
used by national languages, such as Japanese and
Chi nese. that have more symbols than can be
represented by the 256 single-byte EBCDIC positions.
Each character is 2 bytes in length, and therefore
requires special hardware to be displayed or printed.
Contrast with single-byte character set.

dynamic bind. When SOL statements are entered
interactively, binding is done dynamically (that is, as
the SOL statements are entered).

dynamic SQL. SOL statements that are prepared and
processed within a program while the program is
running. The SOL source statements are contained in
host-language vari abies rather than being coded
directly into the application program. The SOL
statement might change several times while the
program is running.

EBCDIC. See extended binary coded decimal
interchange code (EBCDIC).

embedded SQL. See static SQL.

escape character. The symbol used to enclose a
delimited identifier. This symbol is the quotation mark
n, except in COBOL programs where the symbol can
be assigned by the user as either a quotation mark or
an apostrophe.

expression. An operand, or a collection of operators
and operands, that yields a single value.

extended binary coded decimal interchange code
(EBCDIC). A coded character set of 256 8-bit
characters.

fixed-length string. A character string whose length is
specified and cannot be changed. Contrast with
varying-length string.

fullword binary. A binary number with a precision of 31
bits. See also integer.

full select. That form of the SELECT statement that
includes ORDER BYor UNION operators.

function. A column function or a scalar function.

halfword binary. A binary number with a precision of
15 bits.

128 SOU400 Reference

host language. Any programming language, such as
COBOL, PUI, and RPG, in which you can embed SOL
statements.

host structure. In an application program, a structure
referred to by embedded SOL statements. In RPG, this
is called a data structure; in PUI, this is known as a
structure; in COBOL, this is called a group item.

host variable. In an application program. a variable
referred to by embedded SOL statements. In RPG, this
is called a field name: in PUI, this is known as a
variable; in COBOL, this is called a data item.

identifier. See delimited identifier and ordinary
identifier.

index. A set of pointers that are logically arranged by
the val ues of a key. Indexes provide quick access to
data and can enforce uniqueness on the rows ina
table.

index key. The set of columns in a table used to
determine the order of indexed entries.

indicator variable. A variable used to represent the
null value in an application program. For example, if
the value for the results column is nUll, SOL puts a
negative value in the indicator variable.

integer. An SOL data type indicating that the data is a
binary number with a precision of 31 bits.

join. A rei alional operation thaI allows retrieval of data
from two or more tables based on matching column
values.

key. A column or an ordered collection of columns
identified in the description of an index.

keyword. A name that identifies a parameter used in
an SOL statement or SOL precompiler command. See
also parameter.

lock. The process by which integrity of data is ensured.
The prevention of concurrent users from accessing
inconsistent data.

long string., A string whose actual length. or a
varying-length string whose maximum length, is
greater than 254 bytes or 127 double-byte characters.

menu. A displayed list of available, logically grouped
functions for selection by the operator.

mixed data string. A character string that can contain
both single-byte and double-byte characters.

null. A special value that indicates the absence of
information.

I..J

object. Anythi ng that can be created or manipulated
with SOL statements, such as data bases, tables,
views, or indexes.

ordinary identifier. A letter followed by zero or more

characters, each of which is a letter ($, @, #' a-z, and
A-Z), a number, or the underscore character used to
forrn a name. An ordinary identifier must not be
identical to a reserved word.

ordinary token. A numeric constant, and ordinary
identifier, a host variable, or a keyword.

page. A unit of storage equal to 512 bytes.

parameter. The keywords and values that further
define SOL precompiler commands and SOL
statements

parameter marker. A question mark (?) that appears in
a statement string of a dynamic SOL statement. The
questi on mark can appear where a host vari able could
appear if the statement string was an embedded SOL
statement.

plan, See access plan.

precompile. A processing of programs containing SOL
statements that takes place before a compile. SOL
statements are replaced wi th statements that will be
recognized by the host language compiler. The output
from this precompile includes source code that can be
submitted to the compiler and used in the bind process.

predicate. An element of a search value that
expresses or implies a comparison operation.

prepared SQL statement A named control structure
that is the form of an SOL statement that was
processed by the PREPARE statement.

privilege. A capabi Ii ty gi ven te a user by the
processing of a GRANT stateme."1t

rebind. The creation a new access pi an for a program
that was previously bound. If, for example, you add an
index for a table that is used by your application
program. SOL'400 may automatically bind the
appl icatlon again to take advantage of that index.

real table. A physical file or a table created by SOL.

recovery. The process of rebuilding data bases after a
system fail ure

relational data base. A data structure perceived by its
users as a collection of tables.

result column. The set of column values that SOL
selects for an application program.

result table. The set of rows that SOL selects for an
application program. The program uses a cursor to
retrieve the rows one by one into a host structure or a
set of host variables.

rollback. The process of restoring data changed by an
application to the state at its last commit point.

row. The horizontal part of a table. A row consists of a
sequence of values, one for each column of the table.

runtime authorization 10. The user profile of the job
invoking an SOL statement.

SBCS. See single-byte character set (SBCS).

scalar function. An operation that produces a single
value from another value and expresses it in the form
of a function name followed by a Ii st of arguments
enclosed in parentheses.

search condition. A criterion for selecting rows from a
table. A search condition consists of one or more
predicates.

short string. A string whose actual length, or a
varying-length string whose maximum length. is 254
bytes.

single-byte character set (SaCS). A character set in
which each character is represented by a one-byte
code.

small integer. An SOL data type indicating that the
data is a binary number with a precision of 15 bits.

special register. A storage area whose primary use is
to store information produced in conjunction with the
use of specific SOL functions. The SOU400 spec!al
register is (named) USER.

SQL. See Structured Ouery Language.

SQLCA. See SOL communication area (SQLCA).

SQLDA. See SQL descriptor area (SQLOA).

SQL communication area (SQLCA). A collection of
vari abies that are used by SOL to provide an
appl ication program with information about the
processing of SOL statements within the program.

SQL descriptor area (SQLDA). A collection of variables
that are used in the processing of certain SOL
statements. The SOLDA is intended for dynamic SOL
programs.

static SQL. SOL statements that are embedded within a
program, and are prepared duri ng the program
preparation process before the program is run. After
being prepared, the statement itself does not change

Glossary 129

(although values of host variables specified by the
statement might change).

string. A character string.

string delimiter. A symbol used to enclose an SOL
string constant. This symbol is the apostrophe n,
except in COBOL applications, in which case the
symbol (either an apostrophe or a quotation mark) may
be assigned by the user.

Structured Query Language (SQl). A language that can
be used within host programming languages or
interactively to access data and to control access to
resources.

subselect. That form of the SE lECT statement that
does not include ORDER BY or UNION operators.

table. A named data object consisting of a specific
number of columns and some number of unordered
rows.

token. See delimited token and ordinary token.

union. An SOL operation that combines the results of
two subselects. Union is often used to merge lists of
val ues obtai ned from several tables.

130 SOU400 Reference

unique index. An index that assures that no identical
key values are stored in a table.

unit of recovery. A sequence of operations within a
unit of work between two commit points.

unlock. To release an object or system resource that
was previously locked and return it to general
avai I abi I i ty.

user profile. An object with a unique name that
contains the user's password. the list of special
authorities assigned to a user, and the objects the user
owns. See also authorization 10.

value. Smallest unit of data manipulated in SOL.

varying-length string. A character string whose length
is not fixed, but variable within limits Contrast with
fixed-length string.

view, An alternative representation of data from one or
more tables. A view can include all or some of the
columns contained in the table or tables on which it is
defined.

Index

Special Characters

See asterisk
"APOST precompiler option 18
"APOSTSQL precompiler option 18
"COMMA precompiler option 18
'PERIOD precompiler option 18
"QUOTE precompiler option 18
"QUOTESQL precompiler option 18
"SYSVAL precompiler option 18
?

See parameter marker

A
ALL

clause of SELECT statement 40
ALL PRIVILEGES

clause of GRANT statement 86
clause of REVOKE statement 105

AN D truth table 30
ANY

clause of DESCRIBE statement 75
clause of PREPARE statement 102

appl ication process 5
application program

INSERT statement in 91
arithmetic operator 24
AS cl ause of C REATE VIEW statement 67
AS/400 system precompiler

·COMMA. -PERIOD. and "SYSVAL options 18
escape character option for COBOL 8
string delimiter options for COBOL 18
use of INCLUDE statements 89

ASC
clause of CREATE INDEX statement 61
clause of SELECT statement 47

asterisk
in SQL SELECT clause 40

authorization 10
description 11

AVG function 31

B
basic opcr~ltlons ,11 SOL 14
basic predlclte 27
BEGIN DECU-Re SeCTION statement 52
BETWEEN SOL predicate 27
BOTH

clCluse of DESCRIBE statement 75
clause of PREPARE statement 102

built-i n function 31
for columns 31

built-in function (continued)
for scalars 34
nesting of 34

C
catalog 4
CHAR

data type for CREATE TABLE 63
character string

assignment 15
comparison 16
description 12
empty 12

characters in SQL 7
CLOSE statement 53-54
closed state of cursor 99
COBOL application program

See also application program
escape character in 8
host structures in 22
host variable in 21,82
varying-length string variables in 12
varying-length string variables not allowed in 12

COLUMN
cI ause of COMMENT ON statement 55
cl ause of LAB EL ON statement 94
in a result 41
rules for. with UNION 45

column function
See function

column name 9, 19
commands

help for CL commands iv
comment in catalog table 55
COMMENT ON statement

column name qualification 19
SQL statement 55-56

commit 5
commit point 57

HOLD clause of COMMIT statement 57
COMMIT statement 57-58
comparison of numbers 16

compatibility rules 14
comparison of strings 16

compatibility rules 14
compatibility of data types 14
concatenation oper;Jtor 24
concurrency

in application processes 5
with LOCK TABLE statement 96

constant In SOL
character string 17
deCimal 17

Index 131

constant in SOL (continued)
floating-point 17
integer 17

CONTINUE
clause of WHENEVER statement 114

conversion of numbers 15
errors 110

correl ation-name
defining 20
description 9
in FROM clause of SELECT 43
qualifying a column name by 20

COUNT function 32
CREATE DATABASE statement 59
CREATE IN DEX statement 6D---£ 1
CREATE TABLE statement 62---£5
CREATE VIEW statement 66-67
cursor

acti ve set 98
closed by error during UPDATE 113
closing 53
COMMIT statement 57
defining 68
in closed state 99
moving position of 84
pre pari ng 98

cursor-name 9

o
data base

creating 59
dropping 78

data type
character string 12
for CREATE TABLE 63
in SOL 12
numeric 13
result col umns 41

DATABASE
cI ause of C REA TE DATABASE statement 59
cI ause of DROP statement 78

database-name 9
decimal arithmetic 25
decimal constants 17
DECIMAL data type

for CREATE TABLE 63
DECIMAL function 34
decimal numbers 13
declaration. inserting into a program 89
DECLARE CURSOR statement 68-70
DECLARE STATEMENT statement 71
DELETE

clause of GRANT statement 87
clause of REVOKE statement 105
SOL statement

effect of temporary table 99

132 SOU400 Reference

DELETE statement 72-74
deleting

SOL objects 77
delimited identifier in SOL 8
DESC

clause of CREATE INDEX statement 61
clause of SELECT statement 47

DESCRIBE statement 75-76
DESCRIPTOR

clause of EXECUTE statement 80
c! ause of OP EN statement 99

descri ptor-name 9
01 G ITS functi on 35
DISTINCT

clause of SELECT statement 40
double precision floating-point 13
double-byte character

in character strings 12
in CO~HilENT ON 56
in LI K E predi cates 29
truncated during assignment 16

DROP statement 77-78
dupl icate rows wi th UN ION 45
dynamic SOL

DESCRIBE 75
EXECUTE IMMEDIATE 82
executing by EXECUTE 80
prepared by PREPARE 101

E ~
empty char acter stri ng 12
EN D DECLARE SECTION statement 79
error

closes cursor 99
in arithmetic expression 110
in numeric conversion 110

escape character in SOL
delimited Identifier 8

eval uatlon. order of 26
EXCLUSIVE clause of LOCK TABLE statement 95
EXECUTE IMMEDIATE statement 82-83
EXECUTE statement 80-81
executing

prepared SOL statements 80-81
SOL by EXECUTE IMMEDIATE 82

expression
description 24
order of evaluation 26
result 24

F
FETCH statement 84-85
field procedure

with LIKE predicates 29
FLOAT data type

for CREATE TABLE 63
FLOAT function 35
floating-point constants 17
floating-point numbers 13
FOR BIT DATA

clause of CREATE TABLE statement 64
FOR UPDATE OF

clause of DECLARE CURSOR statement 48
clause of SELECT statement 48
prohibited in views 67

FROM
clause of PREPARE statement 102
clause of REVOKE statement 106
clause of SELECT statement 42

from-clause 42
fullselect 44,45
function

G

column
AVG 31
COUNT 32
MAX 32
MIN 33
SUM 33

description 31
nesting 34
scalar

DECIMAL 34
DIGITS 35
FLOAT 35
INTEGER 36
LENGTH 36
SUBSTR 37

GOTO
clause of WHENEVER statement 114

GRANT statement 86-88
GROUP BY

cannot join view using 67
cI ause of SELECT statement 43
results with SELECT 41

group-by-clause 43
groupi ng col umn 43

H
HAVING

clause of SELECT statement 44
results with SELECT 41

having-clause 44
help

for CLcommands, online iv
for displays iv
for SOL precompiler commands. online iv

host structure
description 22

host variable 9. 21
in EXECUTE IMMEDIATE 82
in FETCH 84
in SELECT INTO 110
substitution for parameter markers 80
with PREPARE 102

identifiers in SOL 8
IN

SOL predicate 29
IN EXCLUSIVE MODE clause of LOCK TABLE

statement 96
IN SHARE MODE clause of LOCK TABLE statement 96
INCLUDE statement 89
INDEX 4

clause of CREATE INDEX statement 60
clause of DROP statement 78
cI ause of GRANT statement 87
cI ause of REVOKE statement 105
dropping 78

index search iv
index-name 10
indicator structure 23
indicator variable 82
INSERT

clause of GRANT statement 87
clause of REVOKE statement 105
SOL statement 90, 93

effect of temporary table 99
inserting

declarations in a program 89
integer constants 17
INTEGER data type 13

for CREATE TABLE 63
INTEGER function 36
interactive select 47
INTO clause

IS

of DESCRIBE statement 75
of FETCH statement 84
of INSERT statement 91
of PREPARE statement 102
of SELECT statement 109

clause of COMM ENT ON statement 56
cl ause of LAB E L ON statement 94

Index 133

L
LABEL

in catalog tables 94
LABEL ON

column name qualification 19
SOL statement 94-95

LABELS
clause of DESCRIBE statement 75
clause of PREPARE statement 102

large integers 13
length attribute of column 12
LE N GTH function 36
LIKE SOL predicate 28
limit

SOL 117
literals 17
LOCK TABLE statement 96-97
locking

COMMIT statement 57
description 5
dUring UPDATE 113
table spaces 96
with LOCK TABLE 96

M
marker. parameter

See parameter marker
MAX function 32
MIN function 33
mixed data

in LIKE predicates 29
in string assignments 16
whenitisineffect 12

MODE
clause of LOCK TABLE statement 96

N
NAMES

clause of DESCRIBE statement 75
clause of PREPARE statement 102

naming
SOL statements 71

naming conventions in SOL 9
NOT FOUND clause of WHENEVER statement 114
NOT NULL clause of CREATE TABLE statement 63
NOT NULL WITH DEFAULT

clause of CREATE TABLE statement 63
NULL

in CREATE TABLE 63
null value in SOL

assigned to host variable 110
assignment of 14
defined 12
in duplicate rows 45
in grouping columns 44
in result columns 41

134 SOU400 Reference

null value in SOL (continued)
resulting from errors 110

numbers in SOL 13
numeric

assignments in SOL 14
comparisons 16

numeric conversion errors 110
numeric data types 13
numeric numbers 14

o
object table 20
ON clause of CREATE I~JDEX statement 61
online

index iv
OPEN statement 98-100
operation in SOL

assignment 14
comparison 14

operator
arithmetic 24
concatenation 24

OR truth table 30
ORDER BY

clause of SELECT statement 47
prohibited in views 67

order-by-cl ause 47
ordinary identifier in SOL 8

p
parameter marker

in EXEClJTE 80
in PREPARE 103
with OPEN 99

parameter markers, rules 103
parentheses

with UNION 45
PUI application program

See also application program
host structures in 22
host variable in 21

precedence level 26
precedence of operation 26
precision of a number 13
precision of data

in CREATE TABLE 63
predicates in SOL

basic 27
BEnNEEN 27
description 26
IN 29
LIKE 28
result 27

PREPARE statement 101-104
prepared SOL statement

dynamically prepared by PREPARE 101-104
executing 80-81

prepared SQL statement (continued)
identifying by DECLARE 71
obtaining information by DESCRIBE 75
obtaining information by INTO with PREPARE 76

PUBLIC
clause of GRANT statement 87
cl ause of REVOKE statement 106

Q
qual ification of column names 20

queries 37
question mark

See parameter marker

R
read-only table 68
read-only view 67
recovery

unit of
See unit of recovery

result columns of SELECT 41

REVOKE statement 105.106
rollback 5
ROLLBACK statement 107-108
row

deleting 72
inserting 90

RPG application program
See al so appl ication program
host vari able in 21. 82

rules for names in SOL 9

s
scale of data

in comparisons in SOL 16
in conversion of numbers in SOL 15
In CREATE TABLE 63
in results of arithmetic operations 25
in SOL 13, 14

search condition
description 30
order of evaluation 30
result 30
with DELETE 73
with HAVING 44
with UPDATE 112
With WHERE ';3

SELECT
clause in SQL 40
clause of GRANT statement 87
clause of REVOKE statement 105
result columns of 41

SOL statement 109,110
full 45
interactive 47
subselect 39

select list
application 41

maximum number of elements and functions 118
notation 40

select-clause 40
select-statement 46
SET clause of UPDATE statement 112
SHARE clause of LOCK TABLE statement 96
shift-in character

in SOL character strings 12

not truncated by assignments 16
shift-out character

in SOL character strings 12

single precision floating-point 13
small integers 13

SMALLINT data type
for CREATE TABLE 63

special register 18
USER 19

SOL (Structured Ouery Language)
assignment operation 14
basic operations 14
character strings 12

characters 7
comparison operation 14
concepts 3
constants 17
data types 12
dynamiC 4
embedded 3
escape character 8
identifiers 8
limits 117
naming con'jentions 9
nullvalue 12

numbers 13
shift-out and shift-in characters 12
sta~ic 3
Structured Ouery Language (SQL)

See SOL I,Structured Ouery Language,
tokens 7
value 12
variable names used 9

SOL statement 81
BEGIN DECLARE SECTION 52
CLOSE 53-54
COMl.IENT ON 55-56
COMr.1IT 57-58
CREATE DATABASE 59
CRE.ATE INDEX 60-61
CREATE TABLE 62-65
CREATE VIEW 66-67
DECL..l,RE CURSOR 68-70
DECLARE STATEMENT 71
DELETE 72-74
DESCRIBE 75-76
DROP 77-78
END DECLARE SECTION 79

Index 135

SQL statement (continued)
EXECUTE 80
EXECUTE IMMEDIATE 82-83
FETCH 84-85
getting information about 75
GRANT 86-88
INCLUDE 89
INCLUDE statement 89
INSERT 90-93
LABEL ON 94-95
LOCK TABLE 96-97
names for 71
OPEN 98-100
PREPARE 101-104
REVOKE 105-106
ROLLBACK 107-108
SELECT 109.110

full 45
interactive 47
subselect 39

UPDATE 111-113
WHENEVER 114-115

SQL statement option
ALL 105

in SELECT 40
ALL PRIVILEGES 86
ANY

after DESCRIBE .. USING 75
after PREPARE .. USING 102

AS 67
ASC 47.61
BOTH 75. 102
COLUMN 55.94
CONTINUE 114
DATABASE 59.78
DELETE

effect of temporary table 99
in GRANT 87
in REVOKE 105

DESC
with CREATE INDEX 61
with SELECT 47

DESCRIPTOR 80,99
DISTINCT 40
FOR BIT DATA

after CREATE TABLE 64
FOR UPDATE OF :48
FROM

after PREPARE. 102
after REVOKE ,106
after SELECT 42

GO TO 114
GROUP BY 43
HAVING 44
HOLD 57
IN EXCLUSIVE MODE 96
IN SHARE MODE 96
INDEX

afterCREATE 60

136 SQU400 Reference

SQL statement option (continued)
IN DEX (continued)

after DROP 78
after GRANT 87
after REVOKE 105

INSERT 87, 105
effect of temporary table 99

INTO 75
after embedded SELECT 109
after FETCH 84
after INSERT 91
after PREPARE 102

IS 56,94
LABELS 75,102
NAMES 75.102
NOT FOUND 114
NOT NULL 63
NOT NULL WITH DEFAULT

after CREATE TABLE 63
ON 61
ON TABLE 87, 106
ORDER BY 47
PUBLIC 87. 106
SELECT 87. 105
SET 112
SOLERROR 114
SOLvVARNING 114
STATEMENT 71
TABLE

after CREATE 62
with COfM,,1ENT ON 55
with DROP 77
with LABELON 94

TO 87
UNION 45
UNIQUE 60
UPDATE 105

effect of temporary table 99
USING

with DESCRIBE 75
with EXECUTE 80
with OPEN 98
with PREPARE 102

USING DESCRIPTOR 84
VALUES 91
VIEW 66.77
WHERE

after DELETE 73
after SELECT 43
after UPDATE 112

WHERE CURRENT OF
after DELETE 73
after UPDATE 112

WORK 57.107
SOlCA (SOL communication area)

clause of INCLUDE statement 89
description 119
entry changed by UPDATE 113

SOLDA (SOL descriptor area)
clause of INCLUDE statement 89
description 123

SOLERROR
clause of WHENEVER statement 114

SOLWARNING
clause of WHENEVER statement 114

STATEMENT clause of DECLARE STATEMENT 71
stopping

See terminating
string columns 12
string comparison 16
string constant

character 17
string variable

fixed-length 12
varying-length 12

string, character
See character string

Structured Ouery Language (SOL) 30
subselect 39

specifies a result table 39
SUBSTR function 37
SUM function 33
synonym

qualifying a column name by 20
syntax components

from-clause 42
full select 44
group-by-clause 43
having-clause 44
order-by-clause 47
select-clause 40
select-statement 46
update-clause 48
where-clause 43

syntax diagrams 2
Systems Application Architecture

T
table

clause of COMMENT ON statement 55
clause of CREATE TABLE statement 62
clause of DROP statement 77
clause of GRANT statement 87
clause of LABEL ON 94
clause of REVOKE statement 106
creating 62
description 4
dropping 78
temporary 99

table designator 20
table space

dropping 78
table-name

description 10
qualifying a column name by 20

temporary tables in OPEN 99
terminating

units of recovery 57, 107
TO

clause of GRANT statement 87
tokens

effect on folding to uppercase 8
truncation of numbers 14
truth table 30

U
UNION

clause of SELECT statement 45
prohibited in views 67
with duplicate rows 45

UNIOUE clause of CREATE INDEX statement 60
unit of recovery

COMMIT statement 57
description 5
initiating closes cursors 99
prepared statement referenced only in 101
ROLLBACK 107
terminating 57.107
terminating destroys prepared statements 104

unit of work 5
UPDATE

clause of REVOKE statement 105
SOL statement 111. 113

effect of temporary table 99
update-clause 48
uppercase. folding to 8
USER special register 19
USING

clause of DESCRIBE statement 75
clause of EXECUTE statement 80
clause of OPEN statement 98
clause of PREPARE statement 102

USING DESCRIPTOR
clause of FETCH statement 84

V
value

clause of INSERT statement 91
in SOL 12

VIEW 4
clause of CREATE VIEW statement 66
clause c f DROP statement 77
creating 66
dropping 77
read-ani! 67

view-name
description 10
qualifying a column name by 20

Index 137

W
WHENEVER statement 114-115
WHERE

clause of DELETE statement 73
clause of SELECT statement 43
clause of UPDATE statement 112

WHERE CURRENT OF
clause of DELETE statement 73
clause of UPDATE statement 112

where-clause 43
WORK

clause of COMMIT statement 57
clause of ROLLBACK statement 107

138 SQU400 Reference

----- - ---- ---- - ---- --------------

Printed in U.S.A.

Program Number
5728-ST1

SC21-961J8-IJ

lin

