

IBM Application Systeml400™
Technology Journal

/liN'~ti~~i;1
Quality

Award

~ •• IBM Rochester
,~ 1990Winner

The 1990 Malcolm Baldrige
National Quality Award was
received by the IBM Rochester team,
who develops and produces the AS/400
system. This award was established
in 1987 by Congress and is presented
annually to companies that exhibit
excellence in all aspects of quality.

G=== ~
~ §i-~
~

iiii&I -..-
~
~
~
~

.... -----

Version 2

------tl ~

~
--

Take Note! --~

Before using this information and the product it supports, be sure to read the general information under "Notices" on
page iv.

First Edition (January 1992)

International Business Machines Corporation provides this publication "as is", without warranty of any kind, either express or
implied, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. The articles
will not be updated to incorporate design changes or new developments.

Order publications through your IBM representative or the IBM branch serving your locality. Publications are not stocked at the address
given below.

Address comments concerning the content of this publication to:

Attn Department 245
IBM Corporation
3605 Highway 52 N
Rochester, MN 55901-7899 USA

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the information in any way it believes appro
priate without incurring any obligation to you or restricting your use of it.

© Copyright International Business Machines Corporation 1992. All rights reserved.
Note to U.S. Government Users - Documentation related to restricted rights - Use, duplication or disclosure is subject to restrictions set
forth in GSA ADP Schedule Contract with IBM Corp.

Foreword

Version 1 of the AS/400 system was intro
duced in June of 1988 and has been accepted
enthusiastically by customers worldwide.
Since then it has been enhanced with a
number of releases, which added new levels of
performance, usability, and function.

Version 2, which was announced in April 1991,
marks a new milestone in AS/400 response to
continuing customer requirements. It repre
sents a significant enhancement on Version 1
and concentrates on a number of focus areas.

Version 2 provides extensive new functions
and enhancements, particularly in the area of
communications and network connectivity.
These complement the software advances
made in cooperative processing, distributed
relational database, and usability.

The design team extended the advanced
architecture of the AS/400 system with the
implementation of the first n-way processors
for the system, which is the approach used to
achieve the high levels of performance now
offered at the top of the range. At the low
end, the introduction of new models makes the
advanced functions of the AS/400 system
available to an ever-widening spectrum of
users. The effect is to make the more
advanced applications, such as telephony, fac-

simile, image, and knowledge-based solutions,
far more affordable and bring them within the
reach of more and more customers .

It is the implementation of leading edge tech
nology, such as IBM's latest CMOS chips con
taining up to 75,000 logic circuits on each
12.7-mm chip and the new 64-megabyte intelli
gent main storage card on Models 050 to
080, that makes these advances possible. On
these models new laser-driven fiber-optic
buses increase the speed at which data can
be transferred to input/output devices and
permit them to be located away from the
processor.

Throughout the manufacturing process, teams
have made changes to manufacturing, pack
aging , and testing processes to reduce the
production cycle time while improving product
quality. These and other innovative technolo
gies introduced through the new AS/400
models enable us to deliver improved
price/performance.

IBM is committing to market-driven openness
by making the integrated system functions
available through architected application pro
gramming interfaces while preserving AS/400
traditional strengths. The implementation of

open systems interconnection and IBM's
stated intention to embrace components of the
industry standards of POSIX and OSF/DCE
form key parts of the AS/400 openness
strategy.

The delivery of a completely new series of
compatible systems in April of 1991 was not a
trivial task. It involved the work of many dedi
cated professionals in resolving the program
ming, engineering, and manufacturing
challenges throughout the development cycle.
This publication is a collection of articles on
the design and development of some of the
functions and licensed programs that are part
of Version 2.

These articles describe some of the inno
vation, technology, and design that continue to
make the AS/400 system a leading platform in
providing advanced business solutions and
improving our customers' competitive edge.

David L. Schleicher
ABS Director of Development
IBM Application Business Systems
Rochester, Minnesota

Foreword iii

Notices

References in this publication to IBM products,
programs, or services do not imply that IBM
intends to make these available in all countries
in which IBM operates. Any reference to an
IBM product, program, or service is not
intended to state or imply that only IBM's
product, program, or service may be used .
Any functionally equivalent product, program,
or service that does not infringe any of IBM's
intellectual property rights may be used
instead of the IBM product, program, or
service. Evaluation and verification of opera
tion in conjunction with other products, except
those expressly designated by IBM, is the
user's responsibility.

IBM may have patents or pending patent appli
cations covering subject matter in this docu
ment. The furnishing of this document does
not give you any license to these patents. You
can send license inquiries, in writing, to the
IBM Director of Commercial Relations , IBM
Corporation, Purchase, NY 10577.

This publication could contain technical inaccu
racies or typographical errors.

This publication may refer to products that are
announced but not currently available in your
country. This publication may also refer

iv Technology Version 2

to products that have not been announced in
your country . IBM makes no commitment to
make available any unannounced products
referred to herein. The final decision to
announce any product is based on IBM's busi
ness and technical judgment.

This publication contains examples of data and
reports used in daily business operations. To
illustrate them as completely as possible, the
examples include the names of individuals,
companies, brands, and products. All of these
names are fictitious and any similarity to the
names and addresses used by an actual busi
ness enterprise is entirely coincidental.

This publication contains small programs that
are furnished by IBM as simple examples to
provide an illustration . These examples have
not been thoroughly tested under all condi
tions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of
these programs. All programs contained
herein are provided to you "AS IS". THE
IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE EXPRESSLY
DISCLAIMED.

Trademarks and Service Marks

The following terms, denoted by an asterisk
(*), used in this publication, are trademarks of
the IBM Corporation in the United States
and/or other countries:

Application System/400
AS/400
CaliPath
Common User Access
CUA
Distributed Relational Database Architecture
DRDA
IBM
NetView
OfficeVision
Operating System/2
Operating System/400
Operational Assistant
OS/2
OS/400
Personal System/2
Presentation Manager
PS/2
QMF
RISC System/6000
SAA
SQL/400
Structured Query Language/400
System/370
System/390
Systems Application Architecture
SystemView
400

Preface owledgments

The articles in this publication, about new and
different methods used in designing and devel
oping Version 2 of the AS/400 system, were
written by and for technical professionals. The
articles are not intended to describe product
features or use, nor is the book intended to
replace IBM manuals or user guides.

All the authors
nificant time
busy schedules,

and their sig
of already very

appreciated.

That this Version 2 edition of Application
Systeml400 Technology even came about is
due to the vision of Dick Odell, who
championed it and won its "commission"; and
to the leadership of Darrell Horn, who recruited
an enthusiastic team blending technical, edito-
rial, and administrative then "owned" and
supported the book its development
process.

The technical
were Frank Programming, Merle
Houdek for Engineering, and Joe Rommel for
Manufacturing. They ably identified prospec
tive authors, ensured balanced coverage of
topics, coordinated and communicated process
details-and still maintained a sense of humor
throughout!

Trying to maintain
formance to
89 authors
the

ccnsistency and con
project involving

small task, and
richly deserves

the editor, who

vi Technology Version 2

worked diligently and skillfully to maintain the
book's integrity across many different writing
styles and levels of detail; Michelle Meyers,
the editorial assistant, who cheerfully and
deftly coped with new coders, new process,
new format, and new challenges; Bob Harms

the artists, who
developed (and revised,

the illustrations for the
cover and section divider

Thanks to all of you for making this another
high-quality Rochester product, and for making
my job such a delight. And thanks to my man
agement, Mike Ransom and Kevin Moritz, for
allowing me to take this very exciting and chal
lenging assignment.

readers enjoy reading this
enjoyed producing it.

Sylvie Nickel
Managing Editor

VJck

Contents

AS/400 Version 2 Overview ... F.G. Soltis, M.E. Houdek, J.T. Rommel 2

Programming... 9

User Interface
Operational Assistant User Interface J.A. Ransom, D.J . Schmidt, T.J. Massaro 10
Graphical User InterfacesD.M. Duffield, K.S. Eikenhorst, P.H. Richards 18
User Interface Manager Help P.V. Allen 24
Windows Using Data Description Specifications J.R. Ulwelling 28

Application Software
CaIIPath/400 L.J . Bruner 36
Distributed Relational Database J.M. Broich, R.L. Egan, J.W. Tenner, C.L. Ramler, M.G. Wulf, T.C. Kan 40

Cooperative Processing Support
Cooperative Processing D.A. Wall, P.C. Schloss, J.H. Krueger, C.A. Scholten, P.T. Priniski, 52

K.D. Cook
Advancements in PC Supportl400 D.A. Wall, M.G. Wenzel, T.L. Kramer, J.R. Glowacki, 58

J.H. Krueger, A.M. Bukowski

Communications Support
Advanced Peer-to-Peer Networking Enhancements DA Christenson, M.A. Cossack, D.J. Frett, 66

J.E. McGinn
Open Systems Interconnection J.C. Kramer, C.C. Shih, K.A. Cook 78
Network Openness through User-Defined Communications S.R. Jones 88
Integrated Services Digital Network D.G. Carlson, J.J. Herring, B.E. Jongekryg 92
Transmission Control Protocol/Internet Protocol R.L. Dick, J.P. Beierle, M.L. Bauman 102

System Support
Systems Management E. W. Emerick, J. R. Morcomb 110
Availability Enhancements T.R . Crowley, K.A. Kelle, D.R. Martin, M.J. McDermott 122

Contents vii

Engineering ... 131

Processors and Main Storage
Architecture , Design, and Performance of Multiprocessors J.E. Bahr, S.B. Levenstein, 132

L.A. McMahon, T.J. Mullins, A.H. Wottreng
System Main Storage R.G. Eikill, R.S. Jensen 142
System Processor Technology D.T. Cox, C.L. Johnson, B.G. Rudolph, R.R. Williams 148
System Processor Self-Test.. S.M. Douskey, K.T. Kaliszewski 156
Design Methodology Q.G. Schmierer, A.H. Wottreng 160
VLSI Design Automation R.F. Lembach , J.M. Borkenhagen, J.R. Elliott, RA Schmidt 166

Input/Output
Input/Output Bus Using Fiber Optics B.L. Beukema, T.R. Block, D.L. Karst, R.L. Soderstrom, 172

D.W. Siljenberg
Designing Twinaxial Work Station Controllers for Performance H.G. Kiel , R.M. Peterson 178
Thin-Film Magnetic Disks K.E. Johnson 186

Power and Packaging
System Power Control Network N.C. Berglund 192
Electromagnetic Compatibility Design K.J. Przybylski, S.M. Thorvilson 198
9406 System Mechanical Packaging M.D. Seyfert, Z.D. Squillace, M.M. Thornton 204
Compliant-Pin Technology JA Collett 210

Manufacturing 213

Early Manufacturing Involvement.. T.N. Paske, S.E. Wheeler, J.T. Rommel 214
Manufacturing the System C. Guibert, G.L Stowe 218
Manufacturing Card and System Tests G.L. Kearns, K.R. Halphide 224
Data Management System of the Circuit Package Production Center R.A. Saltness, SA Horejsi 230

Authors 234

viii Technology Version 2

the AS/400 system. The article written by
Christenson, Cossack, Frett, and McGinn
describes the details of these enhancements.

Kramer, Shih, and Cook's article explains the
OSI reference model and describes the incor
poration of this technology into the AS/400
system. The programming interface used by
customer application programs is also dis
cussed.

The AS/400 user-defined communications
support, which provides an interface to the
system communications functions, is presented
in the article by Jones. An example showing
how the application interface can be used to
include the AS/400 system in a heterogeneous
environment is also given and discussed.

The digital highway known as ISDN is the
subject of the article by Carlson, Herring, and
Jongekryg. The article describes the
Version 2 support that provides for the direct
attachment to an ISDN through an integrated
adapter.

The collection of vendor-independent commu
nications protocols that support peer-to-peer
connectivity functions, known as TCP/IP, is
explained in the article by Dick, Beierle, and
Bauman. The three common application pro
tocols used by most TCP/IP implementations
are also described.

System Support

The topic of system support covers a wide
range of subjects from online education to
security, from automated problem reporting to
support for multiple national languages. The
two specific subjects selected for this section
deal with topics of great interest to AS/400
customers today: systems management and
system availability.

Systems management functions help a cus
tomer manage AS/400 systems in either stand
alone or network environments. As more and
more AS/400 systems are installed in complex
networks, the need for central enterprise man
agement is increasingly important. Version 1
built the strategic architectural foundation for
systems management functions on the AS/400
system. With that foundation, Version 2
expands the functions and capabilities. The
article by Emerick and Morcomb describes the
base established in Version 1 and the
enhancements offered by Version 2.

The second article deals with availability and
recovery functions on the AS/400 system.
These topics take on increased interest as
customer applications and systems become
more mission critical. Crowley, Kelle , Martin ,
and McDermott describe the variety of avail
ability offerings now offered on the AS/400
system. This article provides a detailed
description of the theory and operation of
these availability offerings.

Engineering Overview

The Version 2 hardware architecture of the
AS/400 system continues to complement the
OS/400 software, efficiently supporting the
high-level machine interface and system con
cepts. The engineering design employs the
latest technologies, achieving dramatic perfor
mance and capacity improvements over prior
IBM systems.

Typically, processors from the high and middle
part of a product line of older versions are
used in the middle and low part of the product
line of newer versions. Thus, reuse of the
older designs make up the low to middle part
of the product line while new technological
advances are used in the high-end of the
product line. For this reason most of the engi
neering articles are about technology in the
high-end of the AS/400 product line.

Processors and Main Storage

Figure 2 on page 6 depicts the hardware
structure for the Version 2 050-080 models.
These models use the latest technology
improvements including a two-way processor
in the 080 model. The processor architecture
provides a single design that supports a single
processor and a two-way processor with
minimal changes to the software. This
increases the computing power to two and
one-half times the power of the Version 1

AS/400 Version 2 Overview 5

AS/400 system while keeping the software
interface consistent between a single
processor and the two-way processor. The
article by Bahr, Levenstein, McMahon, Mullins,
and Wottreng describes the multiprocessor
architecture and design.

Main storage uses 4Mb (Mb equals 1,024 bits)
main storage chips. Moving functions normally
done in the system processor to the main
storage cards is a critical component to n-way
multiprocessing architecture. Eikill and Jensen
describe the design and technology of the
main storage. Two other articles covering the
processor technology are authored by Cox,
Johnson, Rudolph, and Williams and by
Douskey and Kaliszewski.

Sophisticated development tools are used to
design and test the logic and performance of
the system processor chips and cards. Two
articles, one by Schmierer and Wottreng and
the other by Lembach, Borkenhagen, Elliott,
and Schmidt, describe the development tools
and processes used in developing the
Version 2 processors.

6 Technology Version 2

AS/400 Models
050 through 080

BSC
Mbps
SDLC

ISDN, SDLC, BSC ,
Asynchronous, X.25 ,
Electronic
Custom er Support

AQGQIt ;".c ." ~tlnlcation. -.~----'
Tranetatl . .' I/O' Adapter

Service and
1/0 Processor ,--___ __ ---, _____ _

'---- -----""'---- I/O Bus 1

I Z4ifI !j#f~1 I/O Bus 2
, !@'.6!\-..JlI I~"'_ I/O Bus 3

I r.~1 I/O Bus 4
1iiJifi:----- I/O Bus 5

;1 I/O Bus 6

I/O Bus 7
/
Fiber-Optic Buses

Printers,
Display
Stations

. '. ~£,':!i{-;" ~ ~
$- ,I." .(, _'I -,,~

,'.' "~#'<'>t.I. . ..• i
4Mbps or 16Mbps Ethernet

Binary Synchronous Communications
Megabits per Second
Synchronous Data Link Control

~i..'I· ~ 1': ~ 1."t ,,",, •. .. - ..:;,' , .
.~..,.- .

Token -Ring
Network

I ISDN, SDLC, BSC, Y Asynchronous , X.25,
Electronic Customer Support

TECH1 2S·4

Figure 2. ASI400 Models 050-080

Input/Output

Version 2 hardware uses fiber optics to attach
input/output (I/O) buses to increase I/O band
width and distance. I/O processors can be
placed a greater distance from the system
processor providing a greater flexibility in con
figuring systems. Fiber optics also improves
the noise immunity in these systems, thus
improving the availability of the system to the
customer. Beukema, Block, Karst,
Soderstrom , and Siljenberg describe the tech
nology in the fiber-optic I/O bus.

The integrated disk unit provides for greater
availability . In the event of a long utility power
outage, the operating system saves the con
tents of main storage to a space on the inte
grated disk unit. Batteries keep the necessary
components active to allow this to happen.
This capability provides for quicker recovery
time when utility power is restored . The direct
attachment of the integrated disk unit to the
service processor allows an initial program
load of the service processor and the system
processor. Failures can now be isolated to the
I/O bus, I/O processors, or the system's I/O
devices. The capability to provide better error
isolation improves the ability to identify failed
units, which improves the availability.

New I/O processors are included in Version 2
and provide better communications capabilit:
and performance. An article by Kiel and
Peterson describes one of these. New thin
film magnetic disks represent a major advance
in the design and production of rigid-disk

recording technology. An article by Johnson
describes this new technology.

Power and Packaging

The system power control network (SPCN)
provides an independent serial network that
connects the operating system with the power
components of the Version 2 system. It pro
vides additional capabilities for hardware man
agement , power control, power status, and
service support. Through the SPCN, the oper
ating system is connected to the power com
ponents of various units of the system to
provide for total system power control, oper
ating system notification of power faults, and
integrated battery backup control. This pro
vides improved power control and the ability to
isolate problems in the power supplies. The
article by Berglund describes how distributed
power, battery backup, and a network of dis
tributed intelligent power controllers improve
system availability and serviceability.

The mechanical packaging of the Version 2
system provides for the physical , thermal, and
electromagnetic protection of the logic, power,
battery backup, save and restore device, and
the integrated disk unit. Compliant-pin tech
nology allows the use of a double-sided back
plane in which cards are plugged from both
sides. This technology increases the pack
aging density, reduces the need for connecting
cables , and provides for a solderless assembly
process. The mechanical packaging is
described in three articles: Przybylski and

Thorvilson 's; Seyfert, Squillace, and
Thornton's; and Collett's.

Manufacturing Overview

IBM* Rochester has worldwide development
responsibility for the AS/400 system and
advanced storage devices. Rochester manu
factures the AS/400 system for the United
States, Canada, and Japan marketplaces.
The AS/400 products are also manufactured in
Europe and Mexico and remarketed through
IBM business partners in Mexico, Brazil , and
Japan.

The processes used to manufacture the
AS/400 system are developed with the partic
ipation of multidisciplined teams from all
locations.

The AS/400 system is built to a customer
order. Rochester's manufacturing plant is
capable of producing any configuration of any
AS/400 model, depending on the customer's
order. The manufacturing process emphasizes
simplicity and provides flexibility through the
use of primarily manual final assembly oper
ations. The system assembly, test, code load ,
and packaging processes produce high quality
products and have a total elapsed cycle time
(start of build to packaged machine) of less
than one day. Four articles have been chosen
to describe key portions of the manufacturing
process (see Figure 3 on page 8) that con
tribute to the overall process quality and effi
ciency.

AS/400 Version 2 Overview 7

Early Manufacturing Involvement

Informat ion Systems

Customer
Order and
Feedback

TECH022·2

Figure 3. Manufacturing Process Flow

8 Technology Version 2

Paske, Wheeler, and Rommel describe how
development and manufacturing teams interact
to produce product designs that emphasize
quality and manufacturability.

Guibert and Stowe detail the processes used
to assemble the AS/400 system and preload
software into an integrated package at the
plant. Included is a discussion of the process
development laboratory that describes how
processes are developed and tested before
being used for volume production.

Halphide and Kearns describe how early
involvement and enhanced test equipment and
processes enable the manufacturing group to
deliver high quality products at a lower cost.

Saltness and Horejsi discuss the flow of infor
mation in the card assembly area and how the

manufacturing floor control system has
changed to match the flexibility required in
today's manufacturing environment.

Conclusion

The AS/400 system continues to provide new
technologies in hardware, software, and manu
facturing while preserving customer investment
in education and application programs. The
proven architecture of the AS/400 system not
only allows the incorporation of new technolo
gies to meet today's customer needs, but
enables the incorporation of future technolo
gies as they become available.

The articles that follow address some of the
technologies that have been incorporated
since the AS/400 system was first introduced.

Operational Assistant User Interface

Describes a new OS1400* user interface,
which simplifies common system tasks yet pro
vides access to the full power of the system.

Julie A. Ransom, Dennis J. Schmidt, and
Timothy J. Massaro

Introduction

Back around the turn of the century, a new
machine, the automobile, was just beginning to
attract the attention of a few interested
onlookers. Operating one of these vehicles
was beyond the abilities and desires of most
people. "Who would ever want, or even need,
to drive one?" Automobiles were hard to start,
hard to keep running, and, furthermore, every
vehicle was different from the next one, so that
learning to drive one vehicle was no guarantee
of knowing how to drive a second one.
Oftentimes, a mechanic would ride along with
the driver to handle any of the numerous
mechanical failures.

We have come a long way since those days.
So far , in fact, that most people today can
drive and do so without giving the process a
second thought. We are able to drive as we
talk, read maps, or eat a sandwich. Perhaps
you can remember completing a trip by car,

10 Technology Version 2

but you can 't specifically remember stopping at
certain red lights, making all the turns, or
reading individual road signs. Yet you are rea
sonably confident that you did everything cor
rectly. What made it possible to go from the
days of hand-cranking, mechanic-aided,
manual-controlled driving to the modern era of
driving as a nearly instinctual reflex? The
answer is standard and simple user interfaces.
Many of the difficult and complex tasks, such
as starting the car or controlling the choke,
have been automated or greatly simplified.
Power steering , automatic transmission, and
power brakes have made driving less phys
ically demanding . And , standard controls allow
people to drive nearly any car after learning to
drive a single automobile.

People drive automobiles to quickly get from
one place to another, so they can take part in
some activity at the new location. Thus, the
car is a transportation tool or aid, and driving
is not an end in itself, but a means to an end.
Likewise, computer users want their computers
to be a tool , like a telephone or a copier, that
helps them do their job. Many users typically
want the benefits of using a computer to assist
them, but they often do not have the technical
background of the traditional computer user.
This type of user should not need to give the
interface a second thought. Just like the auto
mobile driver who merely wants to run an

errand across town , unaware of the workings
of an internal combustion engine, computer
users want to accomplish useful work, without
understanding the intricate language of their
computer.

The Operational Assistant user interface pro
vides more ease of use and less complexity
than the interfaces of most computers. This
interface is designed to be simple by elimi
nating complex and technical concepts, to be
automatic by providing the capability to do
certain tasks for the user, and to be minimized
by including only the most highly used func
tions (those system tasks done 80% of the
time). User's actions are anticipated and
users are guided to correct solutions. Those
tasks that can be automated are no longer a
user's responsibility. There is also a means to
access the full capability of the system for
users who become more comfortable and
more familiar with the interface and want to
take advantage of more advanced functions.

The resulting Operational Assistant user inter
face makes the end user more productive,
frees up the technical support personnel, and
minimizes the training needed to successfully
use the AS/400 system. This user interface
(see Figure 4 on page 11) provides an easy
interface to system tasks, just as today's cars
simplify the complexity of internal combustion
engine automobiles.

•
~

Operational
Assistant
User
Interface

Figure 4. An Easy Interface to System Tasks

The Operational Assistant user interface
focuses on system tasks commonly done by
end users and system operators , such as:

• Working with printer output
• Working with batch jobs
• Sending and receiving messages
• Saving information about a problem
• Working with device status
• Backup tasks
• Enrolling and removing users
• Cleaning up the system
• Powering on and off
• Changing system options

Let's take a look at some of the key aspects of
the Operational Assistant user interface.

TECH1 04·2

Simplifying the User Interface

One of the first objectives in the design of the
Operational Assistant user interface, is making
the user interface simple. Making it simple
means getting back to the essentials and
making it more understandable. This was
accomplished by focusing on concepts and ter
minology.

concepts

One way to keep things simple is to keep the
concepts the user deals with simple. For
example, if a user understands what a printer
is, that printer output prints on a printer, and
that the output must wait its turn to print, then
only show those ideas. Do not expose the

internals of the system like output queues,
spooled files, or writers . Only show the things
the user can see and touch, such as printers
and printer output.

Figure 5 is an example of organizing informa
tion that corresponds to a user's concept of
how things work. The printer output is organ
ized by the printer it will print on.

TECH129·0

Figure 5. Work with Printer Output Display

Terminology

The words used in a user interface can also
make a big difference to users. Choosing
words that users already understand makes
learning to use the interface easier.

Figure 5 contains some examples of termi
nology changes for printer output. The AS/400
system uses the term spooled files to
describe things that are printed; these are
stored in output queues. These terms are
understood by programmers; however, testing
and comments from users indicate that many

Operational Assistant User Interface 11

users who are unfamiliar with computers do
not understand these terms. The Operational
Assistant user interface uses the term printer
output instead of spooled file. The term output
queue is not used because it is equivalent to a
user's concept of a printer. In the Operational
Assistant user interface a piece of output is
associated with a printer, not an output queue.

Minimizing the User Interface

Hand in hand with the concept of keeping
things simple is keeping them to a minimum.
The fewer things users must choose from, the
more likely they are to succeed in completing
their task. This is accomplished by focusing
on the number of tasks, prompts, displays,
options, and steps presented to users.

Fewer Tasks

Limiting the number of tasks a user must
choose is one way to effectively minimize the
interface. For example, the Operational
Assistant menu, accessed by pressing the
Attention key (Attn) or typing GO ASSIST, pro
vides only the system options the user typically
uses, not all the functions of the system avail
able to the user.

Fewer Prompts and Displays

Using fewer prompts reduces the amount of
information users have to remember and
understand. In the example in Figure 6, only
the most commonly used prompts are shown
(only seven). Compare this with the command

12 Technology Version 2

to change printer output that has 28 parame
ters, some of which require multiple values.

By using as few prompts as possible, all those
necessary may fit on one display. When the
number of prompts to work with is relatively
small, users do not have as many choices to
make. Another benefit of limiting the number
of prompts is that users are less likely to forget
to specify a value.

The fields are organized so that information
that cannot be changed is at the top. The
prompts that can be changed are organized
from the most often changed at the top to the
least often changed at the bottom.

TECH13Q·Q

Figure 6. Change Printer Output Display

Fewer Options

Using fewer options limits the number of
choices available to the user. This helps
prevent errors caused by uncertainty about
which option to choose (if options are similar)

and also reduces the time needed to choose
the correct option. For example, when working
with printers, users have options such as start,
stop, hold, release, and change. The options
to change, hold, and release are not included
in the Operational Assistant user interface
because they are not typically needed. This
makes choosing an option from the remaining
options easier.

Fewer Steps

Reducing the number of steps helps the user
to successfully complete the task. Each step
of a task introduces the possibility of an error
by the user. The greater the number of steps,
the greater the chance for error. Also, a large
number of steps can introduce impatience,
frustration, and a lack of confidence in the
user, which in turn may lead to errors of omis
sion and oversight, or to the decision not to
use the system. Following is an example of
reducing the number of steps required to suc
cessfully complete a task. In the example, an
Operational Assistant user chooses only one
option instead of a series of steps to success
fully complete the task.

To get printer output to print on a printer, a
user may need to do each of the following :

1. Make sure the spooling subsystem is
started

2. Make sure the spooling job queues are
released

3. Make sure the output queue is released
4. Make sure the spooled files are released
5. Start a writer from the output queue to the

printer or release the writer

Option 10 (Start printing) on the Work with
Printer Output display (see Figure 5 on
page 11) performs all of these steps.

Anticipating and Guiding Users

Anticipating a user's next move and guiding a
user to the successful completion of a task is
another important principle used in designing
the Operational Assistant user interface. By
anticipating a user's actions, the interface can
more likely provide the users with the correct
information and choices needed to continue to
the next phase of activity. The more the inter
face guides users, the less they have to
search for correct choices. The result is less
frustrated users and a higher rate of suc
cessful tasks.

Some of the tangible ways to anticipate and
guide users is to provide highlighting, recom
mend actions, confirm actions, and provide
available choices.

Providing Highlighting

Highlighting is a means of emphasizing some
thing important. This can be accomplished by
using bold or reverse image characters. The
Operational Assistant user interface uses bold
characters on monochrome displays and white
characters on color displays to highlight impor
tant information.

For example, Figure 5 on page 11 shows an
example of highlighting statuses that require

actions, such as Message waiting (use
Opt 7). Highlighting of statuses helps the
user locate entries in a list for which they need
to take an action . However, not all statuses
need to be highlighted . Statuses intentionally
caused by users, such as Held (use Opt 6)

are not highlighted.

Recommending Actions

Once a user identifies that an action is
required to correct a situation, the next step is
to determine what needs to be done. The
correct action to take may not be straightfor
ward or obvious. Figure 5 on page 11 shows
an example of a recommended action. The
action is placed in parentheses and added to
the end of the status, for example, (use
Opt 10).

Confirming an Action

Some actions result in unpleasant conse
quences for users, such as deleting an inven
tory file that was just updated. For actions that
may have unwanted or unexpected results, a
confirmation display is shown that allows a
user to confirm that the action requested is
truly the correct action.

Examples of actions that require user confir
mation are deleting things and starting an
activity that may take a long time, that does
more than users expect, or that may be diffi
cult to recover from , such as powering off the
system.

Providing Positive Feedback

With any action a user takes, feedback is pro
vided about what happened. Errors provide a
message, window, or display that explains
what happened and what to do next. Just as
important as providing information about errors
is providing information that the action com
pleted successfully. Providing positive feed
back leaves no doubt in a user's mind about
what happened. For example, Attempting to
Startis shown for the status after the start
printing option is used on a piece of printer
output.

Sometimes an action may take a long time to
complete, such as building a long list of infor
mation. When these situations occur, users
need feedback, while the action is running ,
that everything is okay and making progress.
Providing periodic status messages is the best
way to accomplish this. Another method is to
display a window with the message that the
action is in progress and to please wait. If an
action may take a significant amount of time to
complete, the action is confirmed before
starting it.

Guiding Users through a Task

Whenever many steps are necessary to com
plete a task, the possibility of not successfully
completing the task increases. Making a
mistake in anyone step can lead a user down
the wrong path . Just needing to know what
the correct steps are and in what order they
need to be performed can be too difficult for
many users.

Operational Assistant User Interface 13

If multiple steps are necessary for a user to
successfully complete a task, the interface
should guide the user through the steps.

An example of guiding a user through such a
task is using option 10 to start printing in
Figure 5 on page 11 . Using this option
causes another display to appear that shows
the list of printer output that will print and the
type of forms the printer will use. This guides
the user through starting the printer.

Providing Available Choices

Showing the allowed choices is important for
any prompt where a user must specify a value.
Typically, the possible choices are to the right
of the prompt. However, sometimes the list of
possible choices is dynamic, such as when
specifying a library, printer, or tape device. In
these cases, it is helpful to provide a means to
present a list of possible choices that are cur
rently available, so the user does not have to
exit the display to find needed information.
The User prompt in Figure 5 on page 11 and
the Printer to use prompt in Figure 6 on
page 12 are examples of providing a function
key (F4) to list the possible choices.

Also, if there is only one possible choice for a
prompt that can have dynamic values, the
Operational Assistant user interface provides
that value. For example, if only one tape
device is on the system, the prompt defaults to
that name rather than forcing the user to enter
the name.

14 Technology Version 2

Providing Helpful Information

When helping users do any task, the Opera
tional Assistant user interface provides the
information needed to successfully complete
the task. For example, the list of possible
printers also shows the status, type of form
being used, and description for each printer.
Because more than just the printer name is
provided, the user has a better chance of
choosing the correct printer.

The Operational Assistant user interface pro
vides help information for each area of each
display. But this interface is also the first
portion of the OS/400 operating system to
provide hypertext help. Hypertext help is
used to provide a weblike structure of informa
tion nodes linked together by associations that
allow users to freely select nodes of interest.
Using hypertext, this interface can both mask
off technical information in help, and allow
links to related information for those who want
more information but are not sure where to
start looking.

Automation

Automation suggests the system do as many
functions as possible without requiring any
action from the user. This keeps the user from
having to perform certain tasks, especially
those that can require a lot of effort, that need
to be done often and are repetitive, and that,
when done manually, are very conducive to
errors. In many cases, the users do not need
to be aware of these tasks unless they have a
specific need or desire to know.

Examples in the Operational Assistant user
interface include the power on and off sched
uler and system cleanup. Once the scheduler
and cleanup are set up by the user, they auto
matically power on and off the system, and,
after a specific number of days, they delete old
job logs, messages, and so forth.

Access to More Advanced
Functions

Increased knowledge and improvement in job
skills are natural progressions of doing almost
any task. The Operational Assistant user
interface accounts for that improvement and
allows a smooth transition to more advanced
user interfaces for users who become experts
in parts, or all, of their systems.

The Operational Assistant user interface, in
general, covers those system tasks done 80%
of the time by 80% of the users. Users need
to have access to interfaces that provide all
the functions of the system for those instances
when they need to do something out of the
ordinary.

Assistance Levels

The primary method for allowing access to
more technical functions is the assistance level
support. This allows users to select the inter
face they want to use in their interaction with
the AS/400 system. The various interfaces are
referred to as assistance levels (basic, inter
mediate, or advanced). At the basic level is
the Operational Assistant interface. The inter
mediate level provides access to the full func-

tion of the system. And, the advanced level is
similar to the intermediate level except that the
text for options and function keys is removed
to provide as much information as possible on
a display.

From the user's point of view, the system pro
vides multiple user interfaces or levels of
assistance from which to choose. Each user
can select a different user interface for each of
several commands that support multiple user
interfaces. The system retains which user
interface the user wants to use for each of
those commands.

For each command, users can control which
interface they want in one of two ways:

• On the command that accesses the func
tion

• While using a function

Specifying an Assistance Level When
Accessing a Function

Each command that has multiple user inter
faces has an additional parameter called
assistance level (ASTLVL). The assistance
level parameter allows the user to specify a
user interface when using the command. The
default is to use *PRV (previous), the level that
is retained by the system for this user and
command (see "Controlling Multiple User
Interfaces"). The other possible value is
*USRPRF, to use what is specified in the user
profile, that is, *BASIC, *INTERMED, or
*ADVANCED.

Changing the Assistance Level While
Using a Function

Users can change user interfaces while using
a function by pressing F21 (Select assistance
level). Pressing F21 causes the window in
Figure 7 to appear.

TECH131 ·Q

Figure 7. Assistance Level Window

When changing the level, the system retains
what the user selected. The next time this
function is accessed, the user interface for the
assistance level previously selected is dis
played. This level is kept specifically for this
function and user.

In fact , the system only retains the new assist
ance level when it is selected by the user in
this manner. That is, when the assistance
level parameter is used, the system does not
retain the new assistance level. This avoids
the problem of an application coding a value
and changing the value retained by the system
without the user consciously making the

change. Another feature is that the application
provider does not need to decide which inter
face a user should see. An application simply
runs the system command and uses the
default for the assistance level parameter.

Controlling Multiple User Interfaces

The system retains and controls what user
interface users see with several pieces of
information:

• A system value specifies the user interface
for the entire system.

• The user profile specifies the user inter
face for a specific user.

• The interactive profile specifies the user
interface for a specific command for a spe
cific user.

Refer to Figure 8 on page 16 for a view of
how the system determines what interface the
user wants .

When a user enters a command or runs a
command using a menu option and *PRV (pre
vious) is specified for the assistance level
parameter, the system:

1. Checks the interactive user profile. This
is an area of storage unique for each user
profile on the system. If the user ever
pressed F21 for this command, an entry is
stored here indicating, for this command,
what level the user should see. If there is
no entry here, the system continues to
step 2.

Operational Assistant User Interface 15

Figure 8. Assistance Level Control. This
diagram shows an overview of how one
command can access multiple user inter
faces.

2. Checks the user profile itself. There is a
value stored that indicates the default
assistance level for this user. If this value
is *SYSVAL, the system continues to
step 3.

3. Checks the system value. The system
value QASTLVL assistance level indicates
the default for all users on the system.
This value is shipped with *BASIC,
meaning that the simplest interface is
shown until a user requests a more
complex interface.

16 Technology Version 2

*BASIC

*INTERMED

*ADVANCED

TECH1 03-3

Conclusion

User interfaces should be simple and only
include the most common tasks and items
users need to see or change. They should
provide menus and displays that are task
oriented and should avoid using data pro
cessing terminology, while at the same time
provide better and clearer messages and
online help information . The interface needs
to minimize the number of steps required to
complete a task, the number of decisions the

user must make, and the number of possibil
ities the user must remember. It should antic
ipate users' actions and guide away from
mistakes, failures, and frustrations. It should
lead users to satisfaction by providing positive
feedback and by giving them all the informa
tion they need to successfully complete a task.
The interface needs to be automated yet allow
users control over the automation so they feel
in control. And it should allow for the growth
in the skill level of its users, and provide a way
to take advantage of the full capability of the
system.

Acknowledgments

The authors would like to thank the entire
cross-functional team that researched ,
designed, and developed the Operational
Assistant user interface. We would also like to
thank Gary O. Larson for helping us find the
words to express the ideas.

Reference
1. Larson , G.O. and Schmidt, D.J.,

"Designing User Interfaces: AS/400 Oper
ational Assistant Case Study," IBM Tech
nical Report TR 07. 1567. October, 1991.

Graph nterfaces

Describes techniques used to create graphical
user interfaces for ASI400 applications.

Dana M. Duffield, Karen S. Eikenhorst, and
Paula H. Richards

Introduction

provide a sig
for the end

users of a system. GUI platforms, many
applications can share the same workspace,
giving end users the ability to view and work
on several tasks concurrently. The consist
ency of GUls gives applications an integrated
appearance and decreases the learning time
for new applications.

Cooperative
the strengths
grammable
today.
enables users

which combine
system and a pro

can be built
GUI application

tr18ir current hard-
ware and software investments and provide
enhanced coexistence between the AS/400
system and a PWS.

The main elements from which a GUI is con
structed are windows, icons, menus, and
pointers (see 9 on page 19). These
elements work to provide users with a
consistent Intuitive. easy-to-use interface to
their tasks.

18 Technology Version 2

The Common User Access* (CUA*) advanced
interface guidelines define the appearance and
functions of these elements in a set of user
interface models. (See the Systems Applica
tion Architecture*: Common User Access
Advanced Interface Design Guide, SC26-4582,

Graphical User

From an application developer's perspective,
there are three models for implementing GUls
to AS/400 systems:

• Distributed data
• Distributed display

(server).

function

represent cooperative
this context, means

the application is split
and an AS/400 system

The PWS provides the capabilities for a state
of-the-art graphical user interface. The AS/400
system provides the database, backup and
recovery, security, and connectivity facilities.

provide a flexible,
for mission-critical

The most common PWS platforms are Micro
soft* Windows 3.0 for DOS and Presentation
Manager* for Operating System/2* Extended
Edition (OS/2* EE), although GUls can be
developed in DOS alone. Both the OS/2 and
Windows 3.0 platforms use dynamic link
libraries (DLLs) to facilitate sharing common
code modules. DLLs provide support for fre
quently used functions, such as memory allo
cation, window management, communications

and other system APls. (For additional
information on AS/400 cooperative processing
tools, see the article "Cooperative Processing"
on page 52.)

Distributed Data Model

In this model, the data resides on the AS/400
system, but all of tile application development

done on the PWS. The data is copied to
PWS to be displayed and manipulated

spreadsheet, graph, or personal computer
database application.

This model is a good choice for database deci
sion support or executive information applica
tions in which easy access to a variety of
status information is required. Examples
include accumulation of billed time, number of
orders, and number of customer orders. This
data can be retrieved from a multitude of
bases, including the AS/400 system, to inte-
grate data into a workplace for the

File View Edit ~elp

Address

Street

City :=1 ;;R=al;=e=i g:;::h======1I--=s::-ta~ter.~:='=c;;:El=
Z,p I 27606

Telephon e

Home ~ L=::::J Work ~ L=::::J

Figure 9. Example of a Graphical User Inter
face to a Database Application

This model can be implemented in a number
of ways (see Figure 10). One way is to
develop a PWS interface that directly issues
database requests to the AS/400 system using
a variety of PC SupporU400 or OS/2 applica
tion programming interfaces (APls). The appli
cation can also be created using a third-party
application development tool or environment,
which handles communications between the

Beta.exe
Config.sys
Dowadidi.exe
Elephant.pic
Figure.dif

1Il E!a
Charts and Graphs In· Basket

TECH065·4

PWS and the AS/400 system and facilitates
the submission of requests to the AS/400 data
base. Depending on the product used, the
user can create macros for frequently used
queries and represent them by icons, can
create a structure to facilitate interactive
queries, or can develop a complete graphical
interface with dialog boxes, pushbuttons, and
other CUA constructs .

AS/400 System

PWS with OS/2 EE or DOS Windows 3.0

TECH032·2

Figure 10. Components of the Distributed Data
Model

Distributed Display Model

In this model, a GUI application is created for
a specific AS/400 application that was
designed for a nonprogrammable work station
(NWS). The GUI application interacts with an
NWS-emulated display on the PWS that is
running the AS/400 application. The GUI
application translates requests from the user
(such as pressing a pushbutton) into keystroke
instructions that have meaning to the AS/400
application. The keystroke instructions are

Graphical User Interfaces 19

This allows the application to be optimized for
performance and provides the greatest flexi
bility. This model is the best choice for most
GUI implementations.

There are many different client implementation
options, which vary in their skill requirements,
performance characteristics, and complexity
(see Figure 12). These range from fairly low
level third-generation languages (3GLs) , such
as the C language, to higher-level object
oriented programming languages (OOPLs).
The 3GLs often require the application to
handle all of the window functions itself, while
OOPLs may hide many of the window handling
details. For many 3GLs and OOPLs, Com
puter Aided Software Engineering (CASE)
tools are available that can assist in defining
the various elements of a GUI and generating
3GL or OOPL code. In some cases these
tools check for compliance with CUA stand
ards.

Cooperative processing application generators,
which may provide support for all aspects of
cooperative application creation from user
interface definition to host code generation and
communications management, are expected to
appear in the future. These products may
provide a higher level of interface that will
reduce the skills requirement and provide an
easy-to-use platform.

AS/400 System

PWS with OS/2 EE or DOS Windows 3.0

~ •. >:" --~-,-,(,~-. ~"'6~~"""':;""-

~.

~ .
r' ,I

I~,- ~ .. ;~ _~ :-"~>I'~~""~~'

Figure 12. Components of the Distributed
Function Model

TECH030·2

Considerations for Developing
GUI Application Programs

Developing graphical interfaces often requires
a paradigm shift from standard software devel
opment. The application is usually developed

on more than one platform, that is , the PWS
and the AS/400 system. Many developers are
familiar with one platform, but fewer are
familiar with both. Depending on the imple
mentation method chosen, both sets of skills
may be required . Since all of the implementa
tions are cooperative processing in nature,
some understanding of cooperative processing
techniques may be necessary.

Some understanding of object-oriented pro
gramming concepts may also be required.
The design of most application software is pro
cedural , with a set number of choices available
to a user at a given time. GUls usually
provide a broader range of choices to the user
at a given time and are implemented using
one of the concepts of object-oriented pro
gramming known as message-based program
ming. With this technique, the software
basically loops, responding to messages from
objects such as pushbuttons and windows.
When a specific message is received (such as
the press of a pushbutton) , the software
receives the message, performs some action
based on the message and data, and returns
to an idle state. The user is directing the
program instead of the program directing the
user. This results in a software design that is
different from traditional programming design.

Graphical User Interfaces 21

Programming languages and tools are an
important consideration in developing GUI
applications. Tools can greatly increase pro
grammer productivity , facilitate prototyping ,
and reduce the paradigm shift from procedural
to message-based programming. However,
development requirements must be fully under
stood to choose the correct tool. Available
programming and design skills should be con
sidered. These skills might determine the
implementation model chosen or the capabil i
ties of required tools.

PWS platforms must also be considered, and
both business and technical factors affect the
selection of a platform. The two most common
PWS platforms are the OS/2 and Microsoft
Windows 3.0. Factors that should be consid-

22 Technology Version 2

ered are how versatile and efficient the plat
form is , the availability of required functions on
the platform, marketplace direction , and the
hardware and software plans of a company.

The platforms for which tools are available
should be considered if more than one PWS
platform is targeted. If a tool or programming
language is available on only one platform, but
multiple PWS platforms are required, then that
tool or language is not a good choice for that
project. Some products require a run-time
license for every PWS that the GUI application
runs on. This may be an important cost con
sideration . Some products may also require
additional resources , such as main storage or
disk space to perform acceptably.

Conclusion

Cooperative GUI applications, using the com
bined strengths of the AS/400 system and a
PWS, can be built today. Cooperative GUI
applications can be implemented with several
models. The model a user selects for devel
opment is based on the application require
ments. Likewise, the performance and
functionality of the resulting application are
dependent on the model selected and the
implementation decisions that are made.
While it is possible to build a GUI application
using only the languages available on the
PWS and the AS/400 system, there are a
variety of tools available to automate and sim
plify much of the implementation process.

M
C'\I

(f)
(])
U
til
1:
(]) -c
"-
(])
(f)

::J

co
.~
..c
Q.

~
(')

User Interface Manager Help

Describes the concepts of how application
developers can use the 051400 user interface
manager to provide online help and index
search support for application displays.

Paul V. Allen

Introduction

Since the introduction of the AS/400 system,
the Operating System/400* (OS/400*) licensed
program has defined and displayed its online
help information using an internal component
of the operating system. The internal compo
nent is called the user interface manager
(UIM) . The UIM was created to easily develop
consistent, easy-to-use online help for the
OS/400 program. The help functions provided
by the UIM are included in the OS/400
Version 2 Release 1 announcement.

Using the UIM, an application programmer can
provide help information from application
panels and from command prompting panels.
The programmer defines the help modules
independently from the application panels and
commands. A help module is a named unit
of help information that exists in a panel group
object. A help module can be a single sen
tence or several paragraphs including lists of
information.

24 Technology Version 2

Highlights of UIM Help

Among the key elements of the UIM are:

• Contextual help
• Help in windows
• Hypertext

Contextual Help

Contextual help provides help information for
specific areas of a panel. When a user
requests help using a Help key, the UIM dis
plays the help module associated with the area
where the cursor is positioned. When the
cursor is in an area for which no specific help
has been defined, the UIM displays extended
help for the panel. When contextual help is
displayed, a function key is provided to display
the extended help for the panel.

Extended help typically consists of an intro
ductory help module to describe the panel or
command and how to use it, followed by each
of the contextual help modules. In effect, the
extended help is a concatenation of all the
contextual help for a panel or command and is
preceded by introductory help.

Help in Windows

The UIM displays help in a window. The UIM
dynamically sizes and positions the window to
show a user the underlying context from which
help was requested. The intent is to position
the help window as closely as possible to the

contextual area for which help is being dis
played without overlaying that area. In some
cases, where the contextual area is large, it is
necessary for the window to overlay some or
all of that area.

The UIM uses an initial , or minimum, window
size to determine the best location for the
window. After positioning the window, the UIM
may increase the size, if necessary, to take
advantage of the remaining space on the
screen . The UIM provides a function key, if
needed, to enlarge the window so a user can
see more of the help information at one time.
This is useful when there is an extensive defi
nition of a particular field , list column , or menu
option.

Although the default presentation of help infor
mation is in a window, this can be overridden
by an application programmer or by a user
profile option.

Hypertext

The traditional approach to providing informa
tion to users is through linear definition where
a reader is expected to start at the beginning
and read to the end. In recent years, the
concept of hypertext has gained much popu
larity for providing online information .

Although hypertext has only recently become
popular, it is not a new idea. Vannevar Bush
is usually credited with originally describing the
concept of what is now known as hypertext in

the article "As We May Think," first published
in the July 1945 issue of The Atlantic Monthly.
Ted Nelson is credited with coining the term
hypertext in the 1960s.

The term hypertext can be defined many ways.
For the purposes of this article, hypertext is
defined to be nonlinear information. This
means that the information being provided is
organized as a network of information nodes.
A user reading the information controls the
path through the information. This allows a
user to choose the information that is needed
at the time.

The UIM provides a programmer with the
ability to define static hypertext links from a
word or phrase in one help module to another
help module. When a user selects a hypertext
phrase, the UIM displays the help module
identified by the hypertext link. The UIM
keeps a list of the hypertext links that have
been taken. When F12 (Cancel) is selected
from one hypertext module, the UIM displays
the most previous module from which the last
link was taken .

Two navigational aids are available to a user
who is "traveling" through the hypertext
network. The first aid is a visual marker indi
cating whether or not the user has already
seen the target help module. Because the
information modules can be linked together in
a large network, the marker helps keep the
user from reading in circles.

For the second aid, F6 (Viewed topics) is
available to display the hypertext path that has
been taken. When a user selects this function
key, a window is displayed containing a list of

the help modules that have been displayed in
the network. The list is displayed with the
starting point help module at the top and the
most recent help module at the bottom. The
user may position the cursor to one of the help
modules in the list and press Enter to return
directly back to a specific help module.

UIM Tag Language

The help information displayed by the UIM is
defined using a markup language. The
markup language consists of a set of tags,
attribute labels and values, and text. A tag is
a name for a type of online information
element. For example, :help. is the tag used
to identify the beginning of a help module and
:p. is the tag used to identify the beginning of
a paragraph of text.

An application programmer provides markup
for help modules in a source file member. The
programmer specifies the source file member
as input to the Create Panel Group
(CRTPNLGRP) command. As a result of this
process, a panel group (*PNLGRP) object is
created in a library. The source file member is
only used for creating the panel group object
and is not needed at the time when the help is
displayed.

An example of the UIM tag language follows
with a description of the markup language ele
ments used. This example is a portion of the
extended help for the AS/400 Operational
Assistant menu (ASSIST menu) in Version 2
Release 1 of the OS/400 program.

:HELP name='assist/help'.
Operational Assistant - Help

:P.The AS/400 Operational Assistant (ASSIST)
menu simplifies some of the common user
tasks. such as working with printer output.
jobs. messages. and changing your password.

:P.ln addition. users with proper authority are
given options to help manage the system. such
as cleanup. power on and off. and system
enrollment.

:P.From this menu. you can select
the task you want to do.
.* The rest of the source is not shown

:EHELP.

In the above example:

:HELP. is the name of the tag used to
identify the beginning of a help module.
The ending period for all tags actually
appears after the last tag attribute speci
fied.

name= is the label for the attribute to iden
tify the name of the help module being
defined.

'assist/help' is the name (enclosed in
apostrophes) of the help module being
defined.

Operational Assistant - Help is the text
for the :HELP tag. This is the title text for
the help module.

:P. is the tag used to identify a paragraph
of text followed by its ending period.

The AS/400 Operational... is the begin
ning of the text of the paragraph .

.* in columns 1 and 2 identifies a comment
line in the source file member. The

User Interface Manager Help 25

Windows Using Data Description Specifications

Describes how windows can be created on the
Version 2 ASI400 system using data
description specifications (DDS). Support has
been added in Version 2 to make creating and
using windows much easier.

James R. Ulwelling

Introduction

Since the days of the System/38, application
programmers have been using windows to
improve their application programs. A window
is a secondary display that can be displayed
over the top of currently displayed records. A
window is smaller than the actual work station
screen, and can be positioned anywhere within
the screen. Windows can make an application
more appealing and easier to use. Help infor
mation, for example, is usually easier to use
when it is displayed within a window. The
user can then see both the help information
and the field for which they requested help.

Although many application programs now
contain windows, creating these windows has
not been easy. Until now there have been two
ways to add windows to AS/400 application
programs: using data description specifica
tions (DDS) for user-created windows or

28 Technology Version 2

using user-defined data streams (UDDS).
UDDS involves writing and interpreting the
5250 data stream that is sent to the work
station controller. UDDS is beyond the scope
of this article and, therefore, will not be dis
cussed. Suffice it to say that UDDS is a pow
erful tool, but with that power comes great
complexity. An application that uses UDDS
controls all input and output to the screen,
which means any DDS functions used must be
reinvented by the application.

Note: Other products are available to create
windows within applications. However, these
products use either DDS or UDDS to create
windows.

DDS Windows before Version 2

Creating windows with DDS before Version 2
was not an easy task. It was labor intensive
and allowed only a limited amount of window
capability. The steps involved in creating such
windows were:

1. Code the window's border characters,
locations, color, display attributes, and the
window's data or fields in the DDS source.
The entire area occupied by the window
must either be filled with blanks or have
data written to it so that all overlaid data
disappears.

The source for windows is usually sepa
rate from the rest of the application's DDS
source so the windows can be stored in a
separate file. This is done for several
reasons:

• With the use of the ASSUME keyword,
a window can be placed over the top
of currently displayed data without
losing the rest of the lines that the
window overlays.

• When the window is removed, the
system automatically restores the
overlaid data to the display. If the
DDS for the window were to be stored
in the same file as the DDS for the
overlaid data, the application would
have to rewrite the underlying data to
remove the window.

• The same window can be used within
more than one application, or in more
than one part of a single application.

2. Write the window borders and window data
to the display.

3. Remove a window from the display by
either closing the window file or rewriting a
record from the previous display file.

Limitations to Pre-Version 2 DDS
Windows

Limitations to these windows include:

• The inability to dynamically position a
window horizontally on the screen. An
application can dynamically change the
vertical location of the window by using the
SLNO keyword, but horizontal positioning
of these windows is impossible.

• The inability to use a subfile within a
window. A subfile is a group of records of
the same record format that can be dis
played at the same time at a display
station. The system sends the entire
group of records to the display in a single
operation and receives the group from the
display in another operation. The system
allows the group of records to be scrolled
through if they do not all fit on the screen .

A true subfile cannot be used within the
window. An application program can simu
late a subfile within a window by using
arrays, but the application itself must
perform all of the subfile functions, such as
scrolling and relative record selection .

• The loss of attribute information for par
tially overlaid fields. When a window over
lays part of a field that has active color or
display attributes, any part of that field that

extends beyond the right side of the
window is displayed using the default field
attributes. For example, if the first char
acter of a red, reverse image field is over
laid by a window, the nonoverlaid part of
the field appears as the default, green
field. All DDS attributes are lost.

A Better Way to Create
Windows

In Version 2 Release 1 the AS/400 system
supports four new DDS keywords that allow
windows to be created more easily. The use
of these keywords simplifies window creation
while providing additional window capabilities.
The four DDS keywords are:

• Window (WINDOW)
• Window Border (WDWBORDER)
• Remove Windows (RMVWDW)
• User Restore Display (USRRSTDSP)

With these four keywords an application
program can:

• Dynamically position a window anywhere
on the screen, vertically or horizontally.

• Use DDS subfiles within a window.

• Change the characters, color, or display
attributes of a window's border at run time.

• Remove one or more windows from the
display and the system will restore the
underlying data.

• Request the system to remove all windows
from the display and to display another
window, using only one output operation.

• Inform the system not to save or restore
the underlying data. Windows are only
removed when the application writes over
them. This allows an application to be
written so that it performs better. If the
application rewrites the underlying display,
there is no need for the system to rewrite
it.

• Overlay the beginning attribute of a field
with a window without affecting that field's
attributes. The system moves the field's
attribute to a location just after the window
so that the remainder of the field is dis
played correctly.

By using these keywords the task of creating
windows is nearly effortless. The user codes
the WINDOW keyword and its parameters on
a record format, and the system displays that
record in a window when the application writes
it to the screen.

Windows Using Data Description Specifications 29

No special programming techniques are
needed. Any AS/400 language can display a
window simply by displaying a record format
that has a WINDOW keyword on it.

To remove a window from the screen, an
application program must either read or write
to a record format that is displayed before the
window, or write a nonwindow record to the
screen.

The system fills the window background with
blanks when a window is displayed. If the
USRRSTDSP keyword is not in effect, the
system restores the overlaid records when the
window is removed.

No special hardware is required. DDS
windows work on both programmable and non
programmable work stations.

The WINDOW Keyword

The WINDOW keyword is a record-level
keyword that instructs the OS/400 program to
display a record format within a window. The
WINDOW keyword must be specified with
either four parameters or with one parameter.
When four parameters are specified, they
inform the system where the window appears
on the screen and what its size will be. This

30 Technology Version 2

is called a window definition. When one
parameter is specified, it informs the system of
the name of the record format that defines the
location and size of the window that this record
will be displayed within . This is called a
window reference. Window references allow
more than one record format to be displayed
within one window.

The parameters that describe the window
location can be either constants or field
names. Using field names allows an applica
tion to specify where the window appears at
run time. This allows a window to be dynam
ically positioned vertically as well as horizon
tally on the display.

Fields in a window record are located relative
to the first usable window location in the
upper-left corner of the window. When a
display file containing a window record is
created, the system verifies that all fields
within each window record fit within the speci
fied window dimensions. A window can be
thought of as a small display, and its size is
determined by the parameters on the
WINDOW keyword .

When the USRRSTDSP keyword is not in
effect, the system saves the screen image
before displaying each window. This allows

the system to restore the display when a
window is removed. Unless USRRSTDSP is
used, the system allows a maximum of 12
windows to be displayed at anyone time.
DDS can define more than 12 windows, but
only 12 can be displayed at the same time.
When USRRSTDSP is in effect, there is no
limit to the number of windows that can be dis
played.

When the USRRSTDSP keyword is not in
effect, windows can be removed by either
reading or writing to a previous record, or by
writing a nonwindow record to the screen. The
system automatically restores the overlaid
information.

The last line in a window is reserved as the
message line, and cannot contain any fields.
For example, if a WINDOW keyword is coded
that specifies 10 window lines for the window,
only nine of those lines can contain fields; the
10th line is the message line.

To use a subfile within a window, the
WINDOW keyword must be coded on the
subfile control record format. A subfile control
record format is one of two record formats
required to define a subfile in DDS.

The WDWBORDER Keyword

The WDWBORDER keyword is a file- or
record-level keyword that allows the window
border color, display attributes, and border
characters to be customized. If no
WDWBORDER keywords are active when a
window is displayed, the window border is
made up of blue dots. All colors are ignored
when a window is displayed on a noncolor
display station.

The WDWBORDER keyword can be specified
with the color parameter, the display attributes
parameter, the border characters parameter, or
any combination of the three.

Option indicators can be used on the
WDWBORDER keyword to allow a window
border to be customized at run time. More
than one WDWBORDER keyword can be
active at the same time. When more than one
WDWBORDER keyword is active on the same
level (file or record level), the system com
bines the individual parameters on the
keywords. When the same parameter is used
on more than one WDWBORDER keyword at
the same level , the parameter from the
WDWBORDER keyword specified first in the
DDS is used.

The WDWBORDER keyword can also be
active at the file and record level at the same
time. When this occurs, the WDWBORDER
parameters are combined, with parameters at
the record level having precedence.

The RMVWDW Keyword

The RMVWDW keyword is a record-level
keyword that is used to remove all existing
windows from the display before an individual
window record is displayed. Only one output
operation is used to perform the RMVWDW
function. There are no parameters for this
keyword. Option indicators can be used to
control when the system should perform this
function .

The USRRSTDSP Keyword

The USRRSTDSP keyword is a record-level
keyword that is used on a window record to
inform the system not to save and restore the
underlying display for this and any following
windows. When USRRSTDSP is in effect, the
application is responsible for restoring the
underlying display when a window record is
removed from the display. This keyword
allows an application to perform better by
choosing when the system should and should
not save and restore the contents of the
display. It also allows an application to make
it appear as though two different windows are
active at the same time because both windows
stay on the screen as control moves from one
window to the other.

Option indicators can be used on the
USRRSTDSP keyword to control when the
system should and should not save the display
contents.

Using Windows to Display
Help

The WINDOW keyword can be specified on a
record format that is used as a help record.
The HLPRCD keyword is used to identify the
record format that is displayed when the Help
key is pressed . If that record format is a
window definition record, the help information
is displayed in a window.

If the location of the help window is specified
using field names as parameters on the
WINDOW keyword, the system positions the
help window automatically based on the cursor
location . If the Help key is pressed while the
HLPRCD keyword is in effect, the application
program does not receive control. Therefore,
the fields used to locate the window cannot be
set by the application . The system positions
the help window using the following sequence
of rules :

1. If the window fits on the screen below the
cursor location, it is placed there. The top
window border is positioned one line below
the cursor location. The left window
border is positioned in the same column as
the cursor location if it fits. If it does not
fit, the window is moved to the left until it
fits on the screen.

2. If the window fits on the screen above the
cursor location, it is placed there. The
bottom window border is positioned one
line above the cursor location. The left
window border is positioned in the same
column as the cursor location if it fits. If it
does not fit, the window is moved to the
left until it fits on the screen .

Windows Using Data Description Specifications 31

3. If the window fits on the screen on the
right side of the cursor location, it is placed
there. The right window border is posi
tioned in the next-to-Iast column of the
screen. The top window border is posi
tioned on the same line as the cursor
location if it fits. If it does not fit, the
window is moved up until it fits on the
screen.

4. If the window fits on the screen on the left
side of the cursor location, it is placed
there. The right window border is posi
tioned two columns to the left of the cursor
location. The top window border is posi
tioned on the same line as the cursor
location if it fits. If it does not fit, the
window is moved up until it fits on the
screen.

5. If the window cannot be positioned in any
of the previous ways, it is placed in the
lower-right corner of the screen.

If the WINDOW keyword on the help record
specifies a field name on only the line or only
the position parameter, the help window is dis
played using these rules. However, the
parameter specified as a constant on the
WINDOW keyword is not changed.

If the WINDOW keyword on the help record
does not specify field names for the line and
position parameters, the help window is dis
played using the line and position values spec
ified on the WINDOW keyword.

32 Technology Version 2

Examples of DDS Windows

The following are examples of how to use
DDS windows.

Simple Windows

The following DDS uses the WINDOW
keyword to define two simple DDS windows.
The window locations are constant, and the
border character and color defaults are used.

A*
A R 8AS£
A Cf9)(OO)

CfQ4,Q4)
Cf!l6(!l6)
CfEl7(07)

A CAwm
A 2 Z8 'a. ... Dhphy ror Appl1c.tton'
A 1lI.TA! lIlA B 5 Ie
A 1lI.TAl lIlA B 8 2
A 2l %'f1.o1.ll.'l.ll. U-IJt.llJOfJC..U.
A F6-1XJUOt l.u.u. n-l.u.I
A fl2-l.uluu< '
A*
A R WUOOWI wu~u Z9 9 39)
A 002(12)
A 211'''''-1'
A F1ELDI SA S Ie
A F1ELD2 lilA 6 Ie
A 8 2'Fll-lu.u.x.'
A*
A R Vlltnt2. WI.OOW(l8 35 9 39)
A OO2m)
A 211'''''- Z'
A fIEUYo SA S 18
A F1EUlt 1"" 6 Ie
A 8 ,'FlZ-1JLUJUli'
A*

Figure 14. DDS Source Code for a Simple
Window

Using this DDS, record format BASE is written
to the screen followed by writing record
WINDOW1. Record WINDOW1 is displayed
within a window as follows.

TECH1 32·0

Figure 15. Example of a Simple Window

In this example, when the WINDOW1 record is
displayed, the upper-left corner of the window
border is on line 4 position 20 of the screen.
The lower-right corner of the border is located
10 lines lower than the upper border and 33
positions to the right of the left border. The
lower-right corner is calculated as follows :

• Lower border line = upper border line +
window lines + 1

• Right border position = left border position
+ window positions + 3

Fields in a window record are located relative
to the first usable window location in the
upper-left corner of the window. In the above
DDS source, FIELD1 has a location of row 5

column 10. When displayed, FIELD1 starts 5
lines lower than the upper border and 11 posi
tions (the ending attribute byte for the border
character has been taken into account) to the
right of the left border character.

FIELD2 starts 6 lines lower than the upper
border and 11 positions to the right of the left
border.

When record WINDOW2 is written to the
screen, it overlays the first window, and the
display now looks like this.

TECH1 33-0

Figure 16. Example of Simple DOS Windows

Multiple Records within One Window

The following DDS uses the WINDOW
keyword to define a DDS window. The
WINDOW keyword is also used to associate

one more record format with the window defi
nition. This allows both record formats to be
displayed within one window at the same time.
The position of the window is determined by
the values of fields LINE and POS when the
WINDOW1 record is written to the screen .

A*
A R Io'.5E
A CfIl3(03)
A CfOO(OO)
A Cf06(Il6)
A Cf97(97)
A CAWU)
A 2. ZB'~ ... Ohph1 For AppllCllttc.'
A DATAl lIlA a 5 19
A DATAl lIlA a 9 2
A U 2.'~1.u.r. n-...............
A r6-lluw lluw n-lJuul
A rl2-l.u.wl·
A*
A R Wlloo.n. WUIO/(lLlII(lPOS 9 38)
A USEJUD 9A 2 18
A tIlE 2S
A POS lS
A*
A R R£COI<I)I WIIOOW('iIIOCW1)
A CAl2(12)

A OfEJUI
A nElla SA 2
A nElJl2 28A 5
A 2· n 2-b.JuuuI·
A*

Figure 17. ODS Source for Multiple Records
within One Window

Using this DDS, record format BASE is written
to the screen followed by writing record
WINDOW1. When record WINDOW1 is
written, the application program must set fields
LINE and POS to the line and position on the
screen where the upper-left corner of the
window should be located. For this example,
assume that these values are 8 and 12,
respectively. This is what the screen would
look like.

TECH134-0

Figure 18. Example of First Record within a
Window

Next, record RECORD1 is written to the
display. Because the OVERLAY keyword is
used, both records WINDOW1 and RECORD1
appear within the window defined on
WINDOW1 . The screen now looks like this.

TECH1 35-0

Figure 19. Example of More Than One Record
in a Window

Windows Using Data Description Specifications 33

CaliPath/400

Describes the CallPathl400 licensed program,
which provides an application programming
interface to integrate functions and information
from specific telephone switches into ASI400
applications.

Laura J. Bruner

Introduction

The CailPath/400 licensed program provides
an application programming interface (API)
that allows applications to integrate functions
and information from a variety of telephone
systems. Through the API, an AS/400 applica
tion can monitor and influence the actions of
an attached telephone switch. The telephone
switch can be a private branch exchange
(PBX) residing on a customer's premises, or
other specialized telecommunications equip
ment. The CaliPath/400 program is based on
the IBM Call Path Services Architecture, which
means that the API implementation is func
tionally consistent with implementations to be
developed for other IBM computer systems.
The Call Path Services Architecture provides a
framework for integrating voice technology into
new and existing data processing applications.
The result is a highly functional set of host
based telephony services. Telephony refers
to the transmission of voice or data commu
nications between separate points. The
AS/400 system processes messages and
requests as shown in Figure 22.

36 Technology Version 2

I ~

Me"age, t ~

PBX

Figure 22. Call Processing

For example, with the CaliPath/400 program, a
computer application can do the following:

• Dial outbound calls
• Perform coordinated voice and data

transfer
• Show customer information on the display

with incoming calls
• Redirect incoming telephone calls
• Control telephone functions through the

display

AS/400 Host
with the
CailPath/400
Program

TECH02H

Application Capabilities

The following application examples illustrate
the capabilities of the CaliPath/400 program.

Intelligent Answering. The calling number or
the dialed number information passed from the
telephone switch to the CailPath/400 program
can be provided in one of the available switch
messages. Switch messages describe the
progress of a telephone call as it is handled by
the telephone switch. In addition, when pro
vided by the network and supported by the

telephone switch attached to the AS/400
system, the messages may contain various
types of information from public telephone net
works. By passing this information from the
switch to the AS/400 system, the application
can show an appropriate display of informa
tion. For example, a mail order company
might assign a different 800 number to each of
its product lines. When a customer calls, the
application would use the dialed number
identification service (ON IS) information from
the switch to show the appropriate order
display for that particular item. The public
network provides the ONIS, which identifies a
logically called party. For example, two 800
numbers might both be translated to a single
real number. Using ON IS, the application can
identify which of the two 800 numbers was
dialed.

An application such as a customer support
center might use calling line identification
(CLIO) or automatic number identification
(ANI) information from the switch to identify
customers calling for support. CLIO and ANI
are also numbers supplied by the public tele
phone network, and they identify the calling
party. By receiving the switch message con
taining this data, the AS/400 application can
attempt to match the calling telephone number
to a corresponding customer database record .
If a match is made, a display of information for
that particular customer can be shown while
the support representative answers the tele
phone.

Coordinated Voice and Data Transfer. An
application can transfer information relating to
a customer at the same time the user transfers
the telephone call. For example, a customer

calling the bank to order new checks may also
have a question about home loans. By
building this capability into the application, the
telephone call can be transferred along with
the customer information to a loan officer.

Personal Services. Using the API, the appli
cation program makes requests, such as trans
ferring of calls, establishing a conference call,
placing a party on hold, or retrieving a held
call. Users generally initiate these requests by
pressing a function key or selecting an option
on their display. The application can then use
switch messages to get information regarding
the status of these requests.

Intelligent Dialing. If the status of outbound
calls is monitored and no one answers, the
application can request, using the API, that the
switch disconnect the call. In the event that no
one answers, the application developer can
design the application to automatically initiate
another call or to allow the agent to provide
input before attempting another call. In addi
tion, the user application can reschedule the
calls that were not completed to be retried at a
later time.

Application Programming
Interface

As already discussed, the CailPath/400
program provides an application program inter
face (API) that allows application programs on
the AS/400 system to access the services of
an attached switch. The application program
can make requests through the API to control
telephone functions, and it can also use the
API to receive switch message information.

This information may be related to the status
of a previous request that the application made
for switch services, or it may be information
about an incoming telephone call. While a
large set of functions are available through the
API, each switch may only offer support for a
subset of these functions.

Some of the requests that an application can
issue using the API include:

• Add_Party adds a new party to an
existing telephone call.

• Answer_Call answers an incoming tele
phone call.

• Conference_Call joins two or more tele
phone calls in a conference.

• Disconnect disconnects a party from an
existing call.

• Hold_Cali places a party on hold.
• Make_Call establishes a two-party tele

phone call.
• Redirect_Call redirects an incoming call

from one party to another party.
• Retrieve Call reconnects a held call.
• Transfer_Call transfers a call from one

party to another party.

Some of the switch messages that an applica
tion can receive include:

• Call_Alerting indicates that a telephone
call is assigned to a telephone and the
telephone is being alerted (ringing).

• Call_Conferenced indicates that two tele
phone calls are joined in a conference.

• Call_Connected indicates that a party has
become an active participant in a tele
phone call.

• Call_Held indicates that a call was placed
on hold by one of the parties in the call.

CaliPath/400 37

• Call_Rejected indicates that a telephone
call was not completed.

• Call_Routed indicates that an incoming
call was routed to the called party.

• Call_Transferred indicates that a tele
phone call was transferred from one party
to another party.

• Disconnected indicates that a party is dis
connected from a telephone call.

The function of requesting services of an
attached telephone switch using the API is
also referred to as call control. An example
of a call control request is to establish a two
party telephone call. The user may make this
request by pressing a predefined function key
(or command key) or by entering an option in
a field. In some applications, the application
automatically starts the request based on
where the user is within the application rather
than requiring the user to enter input or press
a key.

The application makes the call control request
by simply issuing a program call to the
required API program for that function. The
user application must pass the parameters for
the particular program call as defined by
CallPath Services Architecture. The API per
forms validation on the parameters and indi
cates the results to the user program in the
form of a return code parameter. If no prob
lems are encountered, the request passes to
the telephony subsystem where additional pro
cessing of the request takes place.

38 Technology Version 2

The API permits access to advanced network
services, such as those offered by an inte
grated services digital network (ISDN), when
they are supported by the telephone switch.
The application program receives available
switch messages through one of the API
program calls. Messages can be generated as
a result of a previous request, or they may
contain information about an incoming tele
phone call.

CaliPath Services Subsystem

The Call Path Services subsystem supports
requests issued by the user application and
messages received from the switch . The
CailPath/400 program implements the Call Path
Services subsystem and processes call control
requests received from the user application
and messages received from the switch by
means of the connection manager. The con
nection manager is started using the Start
Telephony Connection Manager
(STRTELCNNM) command (provided with the
CaliPath/400 program) and establishes com
munications between the connection manager
and the attached telephone switch. The type
of communications support required depends
on the type of telephone switch the connection
manager is communicating with.

In effect, the connection manager shields the
user application program from the specific
communications support required and the
switch-specific protocol mapping that is
required. The connection manager translates
API requests issued by the user application
into a format that the particular target switch

can interpret. In addition, the connection
manager converts any messages the switch
sends into a common format used by the API
that the application can interpret. This struc
ture is shown in Figure 23 on page 39.

Standards Activity

The telecommunications industry is moving
toward a common, standardized protocol that
is supported by many computer and switch
manufacturers. IBM supports this effort and is
actively participating in the following national
and international organizations:

• American National Standards Institute
(ANSI)

• European Computer Manufacturer's Asso
ciation (ECMA)

When standards are approved and imple
mented, IBM intends to provide mapping
between the Call Path Services Architecture
API and the standard-defined formats and pro
tocols. Mapping to the evolving standards will
be provided in the Call Path Services sub
system, and it is expected that this will have
little, if any, effect on the CallPath Services
API or the applications written to the API.

Collection of Call Detail
Records

A call detail record (CDR) is a unit of infor
mation containing data about a completed tele
phone call , such as the time the call began,
the date and duration of the call, the orig-

Distributed Relational Database

Describes the ASI400 distributed relational
database support, which allows users to
access data on remote systems.

John M. Broich, Randy L. Egan,
Jeffrey W. Tenner, Carol L. Ramler,
Mark G. Wulf , and Teresa C. Kan

Introduction

Timely access to remote data is imperative in
many businesses to manage for growth and
global operations. Traditionally, access to
remote data has been difficult due to complex
coding for communications interfaces and
transaction management. When the data is
spread among a variety of computer systems,
programming for data conversion makes
access to remote data even more complex .
The AS/400 system makes it easier to access
distributed relational data by removing the
necessity for complex coding of communica
tions interfaces, transaction management, and
data conversion .

The implementation of distributed relational
database on the Operating System/400
(OS/400) database manager was designed to
provide the same Structured Ouery Language
(SOL) relational functions to remote systems
as provided by local access to the database
manager. The AS/400 database is an inte-

40 Technology Version 2

grated database [1]. All database files on the
system are managed by a single database
manager and can be accessed by both rela
tional and file model interfaces. This design
allows for easier management of the database,
less redundant data, and improved data integ
rity and usability. The database manager must
coordinate distributed access with the file
model interfaces, the traditional record
oriented access to database files. Distributed
access through the SOL interface can be done
concurrently with file access through distrib
uted file support. For example, using SOL and
distributed relational database, data from one
system can be retrieved while data from
another system is updated by distributed file
support. However, the database manager
ensures that distributed file support and distrib
uted relational database run under the same
unit of work (transaction) .

Unique functions of OS/400 and SAA* Struc
tured Ouery Language/400* (SOU400*)
licensed programs are supported when
accessing remote systems. Some of these
functions are:

• Interactive SOL support with statement
prompting, validity checking , and column
list aids

• HOLD clause on SOL COMMIT and
ROLLBACK statements

• Single command for SOL program prepa
ration

• Commit or rollback initiated by the host
language or command language

• Commitment control lock level of *NONE

• Debugging and performance message
support

By maintaining these functions, the application
programmer does not have to relearn how to
develop and test distributed applications.

A complexity that a distributed database
manager must handle for an application is the
transparency of data representations. A com
puter network consisting of unlike computer
systems presents data in various representa
tions. A programmable work station quite
likely uses ASCII encoding for character data
whereas an AS/400 system uses EBCDIC.
Some computer systems store integer data in
2-byte words with the high-order byte last. Still
others use different formats for floating point
values. An application program should not be
responsible for the various data representa
tions and the rules for conversion . This func
tion is included as part of the OS/400
database manager.

Maintenance of application code is expensive.
Few organizations can afford to convert their
applications to make use of a new function.
With the SOL!400 implementation, SOL appli
cations can become distributed applications
merely by precompiling and compiling the
program again.

Remote access requires additional processor
resources and increases response time for
database requests and data communications.
The following design points minimize the effect
on performance:

• Use bound queries created during program
preparation

• Reduce the number of requests trans
mitted

• Minimize the amount of data transmitted
• Convert data representations only once

These are the design objectives of the OS/400
implementation of distributed relational data
base. This article discusses the architectures,
components, and flows of this implementation.

Architectural Overview

The ability for the AS/400 system to access
distributed data and for other remote systems
to access AS/400 data is an integral part of
the AS/400 system. Access between

AS/400 systems (like system environments)
and between AS/400 systems and other
systems (unlike system environments) is
achieved by implementing key architectures in
the OS/400 program. These architectures
include Distributed Relational Database Archi
tecture* (DRDA*) , Distributed Data Manage
ment (DDM) Architecture, Formatted Data
Object Content Architecture (FD:OCA), and
Character Data Representation Architecture
(CORA).

• Distributed Relational Database Architec
ture (DRDA)

DRDA interchange flows and rules used
for communicating between an application
requester and an application server. The
system where the application resides is
known as the application requester. The
relational database manager where the
data resides is known as the application
server. These flows and rules describe
how the system performs the following
functions :

- Connect an application with a remote
relational database. This entails allo
cation of a conversation between the
systems using LU 6.2 and exchanging
information between the systems, such
as release levels, process coded char
acter set identifier (CCSID) values,
product type, and remote relational
database name.

- Bind an application with a remote rela
tional database. A bind is the process
where SOL statements and host vari
able information are sent to a remote
relational database and converted to a
control structure called a package.

- Run bound SOL statements or dynam
ically prepared SOL statements on a
remote relational database on behalf
of an application and return any data
and completion information to the
application .

- Maintain unit-of-work boundaries
between the application and the
remote relational database.

- End the connection between the appli
cation and the remote relational data
base by deallocating the conversations
between the application and the
remote relational database.

The AS/400 system has implemented the
first DRDA stage, called remote unit of
work (RUOW). With RUOW, an applica
tion program running on one system can
access data at a remote system within a
unit of work. All SOL statements within
the unit of work must be processed by the
same database manager. However, an
application can have a sequence of units
of work where each unit of work is pro
cessed by a different database manager.

Distributed Relational Database 41

• Distributed Data Management (DDM)
Architecture

DDM architecture defines common inter
faces for data interchange between
systems. It is independent of a machine's
operating system . A set of DDM data
streams, constructed using architected
commands, parameters, objects, and
replies, defines the data interchange
between like or unlike systems.

The basic functions of DDM are:

- Accepts requests, replies, and data
from an application or a database
manager, and constructs them into
architected commands and objects.

- Sends and receives DDM requests
and replies from the communications
facilities of the system.

- Detects and processes normal and
abnormal ending of communications.

• Formatted Data Object Content Architec
ture (FD:OCA)

FD:OCA defines constructs that allow
modeling of data or collections of data.
The DRDA definition includes a special
use of FD:OCA. A predefined descriptor
object describes the mapping between
DRDA data types 1 and FD:OCA represen
tations. The mappings vary depending

1 DRDA data types map closely to SOL data types.

42 Technology Version 2

on the use of the data and system environ
ment. Predefined descriptors also define
common constructs that are composed of
the DRDA data types. For example, a rep
resentation of the SOL communications
area (SOLCA) has a predefined descriptor.
A final descriptor, constructed when
needed, describes data using the repres
entations of the DRDA data types and
common constructs. DDM defines an
object for carrying FD:OCA descriptors and
the data described by the descriptors.

• Coded Data Representative Architecture
(CDRA)

CDRA defines a set of CCSID values that
uniquely identify the coded character rep
resentation used for character data.
These CCSID values are used in FD:OCA
defined constructs to tag data flowing
between systems. When conversion of the
data is necessary to preserve the value of
the data, the system receiving the data
performs the conversion.

Figure 24 on page 43 shows how the func
tional layers of the OS/400 operating system
interact to perform distributed database pro
cessing described in this article. The main
functional components are:

• The application containing embedded SOL
statements, which access data at a remote
relational database.

• SOL run-time support on the application
requester, which interacts with the applica
tion program and interprets the SOL
requests for the distributed database func
tion of DDM.

• The distributed database function of DDM
on the application requester, which con
verts the SOL operation into DDM com
mands.

• The DDM communications manager, which
interfaces with the LU 6.2 implementation
on the AS/400 system to send and receive
DDM data streams. The DDM commu
nications manager on the application
requester is also responsible for managing
the use of DDM conversations.

• The distributed database function of DDM
on the application server, which converts
DDM commands into SOL requests.

• SOL run-time support on the application
server, which interacts with the local data
base manager to implement the database
requests.

The following topics include a more detailed
discussion of the creation of a distributed
program, the connection to a remote relational
database, and the processing that occurs
when running a distributed application
program.

errors, and the access plans must be gener
ated before the statement can be run. When
running bound SOL statements, the overhead
of syntax checking and generating access
plans occurs only once, when the SOL
package is created. With the AS/400 imple
mentation of distributed database, bound state
ments can be run in a distributed environment,
which improves run-time performance.

Because the information about each SOL
statement is stored in the program, the
package creation step may be repeated to dis
tribute the SOL package to as many different
application servers as necessary, using the
program for input.

The following are advantages to using SOL
packages to implement distributed database:

• There is only one object to manage at
each system. Each application requester
has a copy of the program, and each
application server has a copy of the SOL
package.

• Because the SOL package is created from
the program and not the source, the
program and the SOL package are syn
chronized.

• SOL packages may be created as needed
and none of the application servers need
to be in the network at program creation
time. Figure 25 illustrates how SOL pack
ages may be created on different relational
databases in a network.

44 Technology Version 2

(1)

London

(2)

Chicago New York

(3)

Paris
Note:

(1) CRTSOLCBL PGM(PAYROLL) RDB(LONDON)

(2) CRTSOLPKG PGM(PAYROLL) RDB(NEWYORK)

(3) CRTSQLPKG PGM(PAYROLL) RDB(PARIS)

TECH124·2

Figure 25. Example of a Distributed SOL Appli
cation

• The OS/400 save and restore commands
can be used to save and restore SOL
packages. An SOL package can be
restored onto a different system than it
was created on, and the first running of an
SOL statement results in the access plan
being rebuilt or an error if the appropriate
files could not be found. This allows for
the ease of distributing SOL packages in a
like system environment.

• The OS/400 save and restore commands
can be used to distribute a program to
many application requesters that use the
same SOL package on the application
server.

• Because the SOL package is created from
the program and not the source, the
source no longer needs to exist on the
system. This is beneficial to software
vendors that do not want to distribute
source. Also, the function to create SOL
packages is shipped as part of the oper
ating system, and the SOL!400 licensed
program does not need to be installed on
the system.

• Application development and testing may
be done on a development system, and
then the program may be distributed to the
production systems without requiring that
the source be distributed. The program
can be installed and as many SOL pack
ages can be created as necessary at the
application servers.

Figure 26. Creating SOL Packages

Connecting to a Remote
Relational Database

The connection phase of a distributed data
base occurs when the application is starting its
access to a remote relational database. This
process involves starting a conversation with
the remote system and then exchanging infor
mation to allow the application to communicate
with the remote relational database. The infor
mation exchanged identifies the system type,
architectural levels, default CCSIDs, and

CHICAGO

ROME

TECH1 23·1

other characteristics of each system.

In designing and implementing distributed
database connection processing, two goals
were used in the decision-making process.
The first goal was to minimize any changes to
applications when converting from a local
program to a distributed program, and the
second goal was to share resources with the
existing distributed file support (known as DDM
on the AS/400 system). Sharing resources
with DDM allows an application to use both

DDM and distributed relational database within
the same unit of work.

There are two types of connections that take
place, implicit and explicit. Implicit connections
occur when the first SOL statement in the dis
tributed application program is run. The
system connects the application to the rela
tional database specified when the application
was created through the SOL precompiler
commands. An explicit connection takes place
as a result of the SOL CONNECT statement.
The SOL CONNECT statement identifies the
relational database that the application wants
to use as an application server. The SOL
CONNECT statement can take the form
CONNECT TO RDB1. This statement causes
the application requester to disconnect from
the current application server and connect to
RDB1 . Disconnection processing is discussed
later.

For a connection to succeed, the application
must not have a unit of work in progress. This
is referred to as the connectable state. This
state is defined to be either at the start of the
application or at the end of a unit of work. A
unit of work ends after a successful commit,
which applies all of the operations in the unit
of work to the database, or after a rollback,
which removes the operations in the unit of
work from the database. If the application is
also using distributed files opened under com
mitment control, these files must be closed if
the application is attempting to connect to a
different remote system. When an SOL state
ment other then COMMIT, ROLLBACK, or
CONNECT is run, the application is no longer
in a connectable state and a connection
cannot take place. If the application is not

Distributed Relational Database 45

running under commitment control, an Sal
CONNECT statement can be issued anytime
because the application is always in a
connectable state.

The application specifies where the data to be
accessed is located by using the name of the
relational database where the data is stored.
This name is either specified on the RDB
parameter of the Sal precompiler command
or on the Sal CONNECT statement. Sal
run-time support is able to use this name to
retrieve the appropriate entry from the rela
tional database directory. During a connection
to a remote relational database, Sal run-time
support determines if the application is in a
connectable state and then gets the informa
tion necessary to complete the connection to
the other system from the relational database
directory. An entry in this directory contains a
relational database name and the communica
tions information needed to determine which
communications device to use to communicate
with the remote system.

The relational database directory entry is
passed to the distributed database function of
DDM. The distributed database function of
DDM works with the DDM communications
manager to start a conversation to the remote
system and do the "handshaking" necessary to
access the remote relational database. This
handshaking includes sending two DDM com
mands, one built by each functional layer.
These commands contain information, such as
system type, default CCSIDs, and architectural
levels supported. The system type and default
CCSIDs help enable the automatic conversion
of data between the two systems.

46 Technology Version 2

The distributed database function of DDM
passes the relational database directory entry
to the DDM communications manager, which
controls the conversations used to communi
cate with other systems. The communications
manager determines if a conversation already
exists, which can be used to connect to the
remote database. This determination is done
by matching the communications information in
the directory entry to the communications infor
mation of the existing conversations. If an
existing conversation is not found, a new con
versation is started using the communications
information in the directory entry.

The DDM communications manager at the
application server receives the commands sent
by the application requester and, working with
the distributed database function of DDM,
builds replies that contain the same hand
shaking information sent by the application
requester.

To get the information needed to build the
replies to send to the application requester, the
distributed database function of DDM passes
the default CCSIDs sent from the application
requester to Sal run-time support for vali
dation. Sal run-time support starts commit
ment control at the application server and
returns the CCSIDs of the application server to
the distributed database function of DDM . The
distributed database function of DDM returns
these CCSIDs to the application requester.
Sal run-time support at the application
requester validates the CCSIDs from the appli
cation server, and the connection phase is
completed.

The disconnection processing used in a like
system environment is different than that used
in an unlike system environment. Discon
nection processing in an unlike system envi
ronment requires that the conversation to the
remote system be ended to cause the discon
nection. Because establishing the conversa
tion is the most expensive part of connection
processing, the AS/400 system does not end
the conversation to the remote system to dis
connect the application in the like system envi
ronment. The AS/400 system simply sends a
disconnect command to the application server,
which allows the application server to reset
itself as if it were no longer connected. Reset
ting involves closing all cursors and destroying
any prepared statements. The user can end
the conversation at disconnection through an
attribute of the application requester job.

Processing Sal Statements in
a Distributed Application
Program

Run-time processing of Sal statements
includes processing of statements that are
bound at the time the distributed application
program is created. These include data defi
nition language statements, data manipulation
statements, and other miscellaneous Sal
statements.

Dynamic statements are not bound when the
distributed application program is created.

Instead, they are defined and run when the
distributed application program is active.
Some SOL statements use a cursor to read
and manipulate data in the database. A cursor
typically is used when multiple rows are to be
read by the application program.

A more detailed discussion of the run-time pro
cessing of bound, dynamic, and mUltiple-row
queries follows.

Processing Bound Statements in a
Distributed Application Program

As stated earlier, the DRDA protocol minimizes
the volume of data transmitted over the com
munications line while processing a distributed
request. In the simplest case of processing a
bound SOL statement without host variables, a
64-byte control structure is the only data sent
from the application requester to the applica
tion server. This control structure identifies the
SOL package and the section number in the
SOL package that corresponds to the state
ment being run.

The SOU400 licensed program supports the
passing of data to and from the application
program in host variables. Host variables are
defined by statements in the host language
(COBOL, RPG, C, FORTRAN, or PUI) and are
referenced in the SOL statements of the appli
cation program. In a distributed application
program, input host variables from the applica
tion must be passed to the application server
in addition to the control structure that identi
fies the statement to be processed.

When running a distributed application
program in which the application requester is

an AS/400 system and the application server
is not, some host variable data types must be
converted to those supported by the applica
tion server. An example of this is the binary
with-scale data type supported by the OS/400
database manager. This data type allows a
number to be stored internally in a binary rep
resentation yet still have both a precision and
scale associated with it. Because this data
type is not supported by other database man
agers, it is converted to a decimal represen
tation prior to being sent to the application
server. Although this is not a DRDA-defined
conversion, it is performed transparently in
SOL run-time support to keep the program
ming interface for distributed application pro
grams the same as that for nondistributed
application programs.

Character string conversion is performed when
necessary by the application server when
character data is sent from the application
requester. This conversion is performed
based on the CCSID of the data being sent
and how the data will be used on the applica
tion server. This conversion is done in accord
ance with CDRA guidelines.

It should be noted that the statements being
processed in a distributed application program
need not be recognized as valid statements on
the application requester. The application
requester sends the 64-byte control structure
identifying the statement and any host vari
ables for the statement to the application
server. The application server, where the
statement is valid, then processes it. This part
of the DRDA protocol allows a distributed
application program to use all of the SOL

functionality available in the database manager
at the application server.

ProceSSing Dynamic Sal in a
Distributed Application Program

Dynamic SOL allows an application program to
define and run SOL statements while the appli
cation program is active. An example of an
application using dynamic SOL is interactive
SOL, an OS/400 application development tool
that allows the user to enter an SOL statement
on a command line and then run it. When pro
cessing dynamic SOL in a distributed applica
tion program, the SOL statement text and the
CCSID of the statement text must be sent from
the application requester to the application
server. The application server converts the
statement text to a different CCSID, if needed,
prior to processing it. Using dynamic SOL, the
CCSID of the statement text is set by SOL
run-time support to the CCSID defined for the
job unless specifically overridden by the appli
cation . In the case where the default is used,
the application programmer need not be con
cerned with the CCSID for the statement text
and need not be aware that conversion of the
statement text may be taking place at the
application server.

Processing Multiple-Row Queries

Some database queries return more than one
row of data to the application. Application pro
grams must use the following SOL cursor
operations to process these queries:

• OPEN: The application program requests
that the database query be started.

Distributed Relational Database 47

• FETCH: The application program requests
that the values from the query's result
table be placed in the host variables. The
application program may change values or
delete the row previously retrieved using a
positioned UPDATE or DELETE.

• CLOSE: The application program indi
cates that no more rows are retrieved for
this query.

Ouery processing is more complex than pro
cessing a single bound SOL statement
because of the amount of application control of
the process and the amount of data that needs
to be returned. A discussion of the processing
of each cursor operation follows .

Open Processing: Both the application
server and the application requester have to
prepare for the query. When an SOL OPEN
statement is run , the following steps are
performed:

1. The application requester determines if the
cursor is already open. If so, an error is
returned .

2. The DRDA open query request is trans
mitted to the application server including
the values of any host variables used in
the definition of the query.

3. The application server initiates the query.
Two segments of information may be
returned to the application requester:

First, the description of the columns in the
result table is returned. This is either a
record format descriptor or an FD:OCA
descriptor. A record format descriptor is
always used when the application server
and application requester are both AS/400

48 Technology Version 2

systems because it is the control structure
used by the OS/400 database manager.
The FD:OCA descriptor is a control struc
ture that is understood by all DRDA partic
ipating systems.

Second, the first block of result rows are
returned to the application requester when
the cursor is read-only and
ALWCPYDTA(*OPTIMIZE) is specified as
the precompile option.

4. The application requester receives the
description and row data, and stores them
so that they are available for fetch pro
cessing.

5. An SOLCA is returned to the application
program indicating the completion of the
OPEN request.

Fetch Processing: The application
requester controls whether it has already
received and stored a block of result rows, the
position within the block, and the request for
another block of result rows when needed.

The application server maintains the position in
the database manager of where the next row
or block of rows should be retrieved. When
requested , it formats the data to be returned
into either a query data block or an internal
blocking structure.

The query data block is the DRDA control
structure that contains the result row values of
a query. If any value in the result row is the
null value, only the null indicator is returned.
Data of varying length character data types is
returned with only the current length of the
data. The rows of data in the query data block
are of varying length. The alternative control

structure is the internal blocking structure.
This control structure consists of fixed length
elements containing the result rows.

Each control structure has its own perfor
mance characteristics. The query data block
allows the minimum number of bytes to be
used to transmit null values and varying length
character data. The internal blocking structure
takes less processing time because it is the
format used by the OS/400 database manager,
so the application requester does not need to
convert the query data block into the internal
blocking structure format when running in a
like system environment. In addition, the fixed
length nature makes for easier addressability
of the control structure.

For a like system environment, the internal
blocking structure format is used unless a
majority of the data of the result row is varying
length character data.

For a like system environment where the
program is created using the
ALWCPYDTA(*OPTIMIZE) precompile option
and for unlike system environments, the appli
cation server closes the query when it receives
an end-of-data exception.

All conversions of data representations and
data types for the result rows are performed by
the OS/400 database manager on the applica
tion requester. The distributed application
program need not be sensitive to the type of
application server to which it is connected.

The application requester converts the values
from either the internal blocking structure or
the query data block into the host variable

specified on the SOL FETCH statement.
Because the application server has put the
data into the control structure in the data rep
resentation of its choosing, the application
requester must do the conversion of data
representations as needed (for example, ASCII
to EBCDIC). The CCSID of the result table
columns, as identified in the FD:OCA or record
format descriptor, is used to identify the char
acter conversion necessary to the CCSID of
the receiving host variables. The data type of
the result data and the host variable may also
be different (for example, the result might be
an integer data type and the host variable a
decimal data type) . The application requester
maps the value to the data type of the host
variable . For values returned as null values,
the host variable indicator variables are set
appropriately.

Updating or deleting the current row is pro
cessed similar to any request to run an SOL
statement except that the application requester
checks that the cursor is open before sending
the request to the application server.

Close Processing: If the query is closed
by the application server during fetch pro
cessing, then all the application requester must
do is return an SOLCA that indicates that the
close request completed. If the application
server does not close the query, the applica
tion requester must request that the application
server close the query.

Oueries that generate one block of result data
are processed with only one request to the
application server. During open processing,
the first block of data may be retrieved and the
query can be closed. The application

requester receives this block of data with an
indication that the query is closed on the appli
cation server. The application requester pro
cesses each row from the block without further
communications to the application server.

The application server closes its access to the
files of the queries similar to local processing.

Application Program Interface
Considerations

An application program with embedded SOL
statements calls SOL run-time support when
running an SOL statement. The calling inter
face from the application program to SOL run
time support is the same for both distributed
and nondistributed applications. This interface
passes as parameters a structure (the SOLCA)
used by SOL run-time support to return status
information about the running of the statement
to the application and any host variables that
pertain to the statement. The SOLCA is
updated by SOL run-time support after each
SOL statement is processed to indicate
whether the statement completed successfully.
The SOLCA contains a field named
SOLST ATE, which is set to a consistent value
by all SOL application managers for a partic
ular error condition . SOLST ATE gives the
application programmer a single field to check
for status without concern about whether the
application is distributed or nondistributed.

SOL places messages in the job log whenever
an error is encountered while running an SOL
statement. These messages are based on
information contained in the SOLCA. In an
unlike system environment where the applica
tion server is not an AS/400 system, SOL run-

time support attempts to map the SOLCA
returned from the application server to an
existing SOL message. In this way, the
message help and message variables are
available to the distributed application devel
oper regardless of the environment in which
the distributed application program is running .

Commitment Control in a
Distributed Application
Program

Commitment control is a means of grouping
database file operations that allow the pro
cessing or removal of a group of database
changes as a single unit. Commitment control
support under RUOW requires that all SOL
statements within a unit of work be processed
at a single relational database. The database
manager on an AS!400 system ensures that
every request is processed at one and only
one system within a unit of work.

The lock levels supported for distributed and
nondistributed database processes are the
same. Four lock levels-*NONE, *CHG, *CS,
and * ALL-are supported by the OS/400 data
base manager. In a distributed environment,
the lock level *NONE is only supported
between AS!400 systems. Although the
repeatable-read lock level is not supported on
the AS!400 system, an exclusive lock level is
acquired on the AS!400 application server
when a lock level of repeatable read is
requested in an unlike system environment.

Commitment control support on an AS/400
system allows both file (using DDM file) and
database (using SOL) accesses to run concur-

Distributed Relational Database 49

rently on the same remote system. Managing
a unit of work that contains both distributed file
access and distributed database access is
more complicated than managing a single
access within an application. All remote data
base objects and files within an application
must be closed and committed or rolled back
before an application connects to another
system. However, the connection restrictions
do not apply to files and database applications
that are not running under commitment control.

While compiling or running an SOL program,
commitment control is implicitly started by
SOL. The lock level used when running an
SOL program is determined by the level speci
fied on an SOL precompiler option . When a
distributed DDM file is placed under commit
ment control, the commitment control require
ment is the same as that for a local file
running under commitment control. For DDM,
the user must explicitly start commitment
control by issuing a Start Commitment Control
(STRCMTCTL) command with the specific lock
level. Then, the distributed DDM file can be
opened under commitment control.

Changes to resources (for example, file
requests and database requests) running
under commitment control on the OS/400
program are tracked under an internal object
called a commitment definition. When the first
request is performed against a remote
resource, the resource is added to the commit
ment definition during the connection process.
Communications information and the resource
name, which is either a relational database
name or a DDM file name, are stored in the
commitment definition . All subsequent
requests performed against remote resources

50 Technology Version 2

must have the same communications informa
tion because only one conversation is allowed
to be established at any time. Only one
remote relational database can be added to
the commitment definition since only one rela
tional database is allowed per system. On the
other hand , multiple DDM files with the same
communications information can be added to
the commitment definition. The remote
resources may be removed from the commit
ment definition at a unit-of-work boundary.

When a commit or rollback of a unit of work is
performed, the database manager extracts the
communications information from the commit
resource directory. The database manager
uses this information to identify the application
server and then sends the request to perform
the appropriate function. The commit and
rollback functions apply to all resources within
the conversation on an AS/400 system. All
SOL cursors are closed unless the HOLD
clause is specified on the SOL COMMIT or
SOL ROLLBACK statement. In an unlike
system environment, the cursors are closed
whenever the commit function fails. DDM files
are not closed after a commit or rollback
request is performed. An explicit close request
of the DDM file must be issued to bring an
application into a connectable state. The con
versation is deallocated when a DRDA process
is ended or when a ROLLBACK function fails.

Commitment control ends when a job ends
(either normally or abnormally), or the user
issues the End Commitment Control
(ENDCMTCTL) command. An INOUIRY
message is issued if end commitment control
is requested and changes are pending. The
user has a choice to commit or rollback the

changes before ending commitment control or
to cancel the request. The conversation is
deallocated when commitment control is ended
on the remote system.

Conclusion

Transaction management, communications,
and other complicated aspects of a distributed
application are performed by OS/400 compo
nents to make developing and maintaining dis
tributed applications easier than in the past.
Because the SOL interface is essentially the
same for distributed and nondistributed appli
cations, programmers familiar with SOL are
able to develop distributed applications without
a prolonged learning period. Distributed data
base support coupled with the OS/400 data
base provides customers with the tools to
develop and put into production distributed
applications without sacrificing relational
fu nctionality.

Reference
1. Anderson, M.J. and Cole, R.L. , "An Inte

grated Data Base," IBM Application
Systeml400 Technology, SA21-9540,
20-24. June, 1988.

Cooperative Processing

Describes how personal computers and
ASI400 systems work together to process
data.

David A. Wall, Phillip C. Schloss,
Janet H. Krueger, Clark A. Scholten ,
Patrick T. Priniski, and Kathryn D. Cook

Introduction

Cooperative processing is the handling of
data where two processors are involved: a
programmable work station (PWS) and a host.
The application developer splits the function
into two pieces to run on the PWS and the
host. This article describes how PC Support
participates in cooperative processing. The
article describes:

• How PC Support application programming
interfaces (APls) are used to create coop
erative processing applications

• How the PC Support router ties the
AS/400 system to the personal computer

52 Technology Version 2

• The PC Support data queue function,
which provides direct access to AS/400
data queues

• The PC Support remote structured query
language (SOL) function, which provides
direct access to AS/400 database files

Cooperative Processing with
PC Support APls

Cooperative processing combines the personal
computer and AS/400 system environments to
support advanced functions and applications.
PC Support offers functions to support cooper
ative processing and has an organizer function
that provides an integrated end-user view of
PWS and host applications. Using the func
tions of PC Support, customers and business
partners can write applications that run both on
the host and the personal computer.
Figure 27 shows how the function of a
program can be divided between the personal
computer and the host. PC Support has func
tions to support all of these environments.

Distributed Data and Print

- Shared Folders
- Check In/Out
- Remote Structured Query Language
- File Transfer
- Virtual Print
- Printer Emulation

Distributed Display

- 5250 Work Station Function

Distributed Function

- APPC Communications using CPI Communications
- Data Queues (Operating System/2 only)
- Submit Remote Command
- Run PC Command
- Message Handling

CPI = Common Programming Interface
TECH064·3

Figure 27. Distributed Processing

PC Support provides APls to help integrate PC
Support functions with the user's application.
The user can code directly to the API because
a description of the APls is in the PC Support
publications. PC Support also provides a high
level interface to the API calls in the form of
function libraries. These libraries are available
for many of the personal computer program
ming languages. The user can link the library
function directly into their application. This lets
the user make a simple call to the PC Support
library instead of making the complex API call
to perform the function .

The APls are available so the user can inte
grate PC Support function directly into their
application. The user can use PC Support
functions to access the data and write their
own application to use the data. The applica
tion can be on the personal computer or on
the AS/400 system. For example, the user
can use the router API to move data between
the personal computer and the AS!400 system.
Using the router API gives the user an easy
way to transport the data. This lets the user
concentrate on the details of processing the
data instead of writing complicated commu
nications code.

PC Support also provides tools and examples
to help the user write cooperative processing
applications. This information is provided in an
AS!400 system folder that is optionally
installed when PC Support is installed on the
AS!400 system. Example programs and

include and .H files are in the tools folder. The
include and .H files are the library functions
provided for each PC Support API. The
example programs show API use. Some of
the programs show what is needed to use the
basic function. Others are small applications
that show possible uses for an entire group of
API calls. The examples are not intended to
be used as provided but to help users under
stand how to incorporate the APls into their
applications.

The tools folder also contains programs that
can run on personal computers and batch files.
These programs and files are provided to help
users create hypertext files and help informa
tion for their applications.

PC Supportl400 Router

The foundation for cooperative processing is
the PC Support!400 router, which provides
connection services between the personal
computer and the AS!400 system. The ser
vices provided follow the advanced program
to-program communications (APPC) or logical
unit 6.2 (LU 6.2) communications architecture.
Numerous connectivity options are available as
shown in Figure 28 on page 54.

PC Support provides a wide range of con
nection services for both local and remote
users. Local area network (LAN) users can

attach to the AS!400 system through the IBM
token-ring LAN or Ethernet LAN. The LAN
connection uses integrated adapters on the
AS/400 system. Personal computers can also
be attached to the AS!400 system through a
twinaxial or asynchronous connection . Coaxial
devices are supported through a protocol con
verter or device controller. Remote locations
are supported over public networks, switched
and leased. Remote concentrators, such as
the IBM 5394 Remote Control Unit, allow work
groups of personal computer users at a remote
site.

The structure of the PC Support!400 router
allows the application to be independent of the
connectivity. Cooperative processing applica
tions that use the router become LU 6.2 appli
cations. This allows each work station user to
access resources anywhere in an APPN
network, no matter how the work station is
attached.

For environments where performance is crit
ical , the 16Mbps token-ring attachment is
recommended. The maximum frame size
allowed for data transfer in the token-ring
router increased from 8KB (KB equals 1,024
bytes) to 16KB. The larger frame size
improves the performance of the token-ring
router and reduces the processing overhead
needed to transmit and receive large amounts
of data between a personal computer and the
AS!400 system on a 16Mbps token-ring
network.

Cooperative Processi ng 53

Data Queues

A personal computer user now has the ability
AS/400 or to interact with AS/400 data queues through a

programming interface. A data queue is an
AS/400 object that provides a method of inter
process communications. That is, one process
sends data to another process through a data
queue. Present on the system since Version 1
Release 1, data queues allowed fast, efficient
communications between AS/400 programs.
Beginning with Version 2 Release 1, this func
tion is available to the personal computer. PC
Support added support for data queues in the
form of an application programming interface
(API). All data queue functions available to
the AS/400 programmer are extended to the
personal computer programmer.

Data queues can be accessed by multiple
requesters and servers. The requester or
server may be located on the personal com
puter or the AS/400 system. The requester

Operating System/2 / \ places free-form data on the data queue. This
Program data is retrieved and processed by the server.

APPN = Advanced Peer-to-Peer Networking
SDLC = Synchronous Data Link Control TECH060·4

Figure 28. PC Support Connectivity

54 Technology Version 2

In turn, the server places its response on a
data queue that any of its requesters can later
retrieve. Either the requester or the server can
be a PC program. Figure 29 on page 55
shows how data queues can be used.

application program interface (API) that allows
personal computer applications to access SOL
database files and other database files on the
AS/400 system.

For both the disk operating system (DOS) and
OS/2 environments, the API is accessed with a
small library that is linked with the application
program. The user's program communicates
with the remote SOL program that also resides
on the personal computer. The remote SOL
program communicates with an AS/400
program to run the SOL functions .

Remote SOL provides the following APls to
perform SOL functions on the AS/400 system.

• SELECT rows
• FETCH rows that satisfy a given SELECT
• UPDATE the row at the current cursor

position
• DELETE the row at the current cursor

position
• Other SOL functions by calling the Execute

Remote SOL API

Additionally, a PC application can use the
remote SOL function to provide basic program
to-program communications with an AS/400
application. Remote SOL provides the fol
lowing functions through an API:

• A PC application can call an AS/400 appli
cation

• An AS/400 application can call an OS/2
application

• Cooperative processing applications
running on an AS/400 system and on a
personal computer can exchange char
acter data

56 Technology Version 2

Conclusion

Achieving cooperative processing between
personal computers and the AS/400 system is
possible using the cooperative processing
functions of PC Support/400. PC Support pro
vides the functions users need to write cooper
ative processing programs. Users can write
programs using the PC Support APls so per
sonal computers can share data with the
AS/400 system, which expands the power of
both the personal computer and the AS/400
system.

OJ
C

"Uj
(f)
Q)
(.J
o

0....
Q)

>
"~
....
Q)
Q.
o
o
()

Advancements in PC Supportl400

Describes the changes made to PC Support
since Version 1 Release 1.

David A. Wall, Mark G. Wenzel,
Timothy L. Kramer, Janice R. Glowacki,
Janet H. Krueger, and Ann M. Bukowski

Introduction

Functions have been added to PC Support/400
(known as AS/400 PC Support at Version 1)
since its initial release in Version 1 Release 1.
The existing functions of PC Support have also
improved in this time. These changes improve
the usability, performance, and function of per
sonal computers attached to the AS/400
system. This article describes the following
enhancements to PC Support:

• The IBM disk operating system (DOS)
version of PC Support takes advantage of
new technology to increase the amount of
conventional memory available to personal
computer (PC) applications.

• PC Support/400 installation and configura
tion is now easier to use and provides
support for a central administrator.

• The performance of PC Support/400
shared folders, the PC Support function
providing transparent file serving , is
improved.

58 Technology Version 2

• The AS/400 system can participate in a
network with PC servers. PC Support/400
can coexist with both Novell** and OS/2
servers.

• Information on PC Support is available
online, with all topics interconnected by
hypertext links.

Memory Reduction

The original IBM Personal Computers used the
Intel** Corporation 8088 processor, which had
maximum addressable space of 1 MB (MB
equals 1,048,576 bytes). The DOS operating
system, developed for the IBM Personal Com
puters, was designed to operate within this
1 MB addressable space. The upper 384KB
(KB equals 1,024 bytes) of this space, which
was reserved for personal computer adapters
and basic input/output services (BIOS),
became known as the reserved adapter area.
The remaining 640KB of the addressable 1 MB
area was intended for the DOS operating
system and its applications and is known as
conventional memory. See Figure 30 for an
illustration of DOS memory.

As applications become more sophisticated
their memory requirements grow. New tech
niques have been developed to simulate multi
tasking under DOS that further stress the

1MB

640KB

Extended
Memory

Reserved

Adapter Area

Conventional
Memo~

OKB b~----------~

Up to 32MB of
expanded memory.

Logically viewed
as up to 2048 pages ,
each 16KB in size.

EMS = Expanded Memory Specification
TECH062·3

Figure 30. DOS Memory Map

memory requirements. This memory growth
results in problems where users cannot run all
of the functions they want in the personal com
puter at the same time. Thus, conventional
memory has become a limited resource in the
personal computer and has to be managed
carefully by both the user and the applications.

Enhancements have been made in PC
Support since Version 1 Release 1 to minimize
the amount of conventional memory PC
Support functions use. This minimizing of con
ventional memory is accomplished by:

• Using the Expanded Memory Specification
(EMS)

• Providing a function to remove PC Support
functions

• Using extended memory

Expanded Memory Specification

The Expanded Memory Specification (EMS)
was developed by the Lotus Development Cor
poration , Intel Corporation , and Microsoft Cor
poration. This specification describes a way in
which an application can address more than
640KB of memory by using expanded
memory. The personal computer can address
more memory by defining an area known as
an EMS page frame. The EMS page frame
acts like a window where memory is moved in
and out of the personal computer's address
able area. This is illustrated in Figure 30 on
page 58. The EMS page frame is normally
defined to be a 64KB area within the reserved
adapter area. The EMS page frame is further
divided into 16KB regions known as physical
pages.

The EMS programs allocate logical pages of
expanded memory of 16KB, which are moved
in and out of the EMS-page-frame area as
needed. Thus, applications can be developed
to use EMS, which page the proper area of
memory in and out of the EMS page frame as
needed. Because the pages are mapped in
and out of the page area as needed by the

application, instead of all the pages being
defined in the 1 MB addressable space, the
amount of conventional memory used by these
applications is reduced.

PC Support uses EMS through the PC
SupporV400 memory manager program
EIMPCS.SYS. EIMPCS.SYS is a DOS device
driver. It provides a generic interface for the
PC Support functions that make memory
requests. EIMPCS.SYS handles the memory
requests by performing the appropriate EMS or
DOS memory request on behalf of the applica
tion. Because EIMPCS.SYS makes all
memory requests, it can make requests to
EMS, if available, before using conventional
memory.

The centralization of memory functions in
EIMPCS.SYS frees the PC Support applica
tions from handling the details of the EMS or
DOS memory environments. EIMPCS.SYS
does the appropriate conversions and
requests. This design requires that only
EIMPCS.SYS change if some techniques or
enhancements concerning EMS or DOS
memory occur in the future.

Removal of PC Support Functions

The remove PC Support functions program
(RMVPCS.EXE) was developed for Version 1
Release 2. This PC Support program allows
users to remove resident PC Support functions
from memory. When PC Support functions are
removed, more conventional memory is made
available for other applications.

RMVPCS.EXE stops a PC Support function
before the function is removed. The memory

used by the PC Support function that was
removed is now available for use by other per
sonal computer applications. The PC Support
function can be reloaded into memory if it is
needed at a later time.

Extended Memory

As technology improves in the computer
industry, personal computers are using the
more advanced Intel Corporation processors.
These processors include the 80286, 80386,
and 80486. These advanced processors all
have a mode that emulates the earlier Intel
Corporation 8088 and 8086 processors. This
mode is known as real mode. In this mode
these processors retain the limitation of the
1 MB addressable space. These processors
also have a more advanced mode known as
protected mode. This mode allows these
processors to address more than 1 MB of
memory. The memory addressed from 1 MB
and above is known as extended memory.

Even though the advanced processors are
capable of addressing more than 1 MB in pro
tected mode, the DOS operating system was
intended to run in real mode. Thus, extended
memory is not normally available to DOS
applications.

DOS extenders are programs that allow DOS
applications to run in protected mode. Appli
cations that use DOS extenders to run in pro
tected mode are then able to use extended
memory. The DOS extender handles
switching the processor between real and pro
tected modes at the appropriate times for such
things as hardware services, DOS requests,
and BIOS requests. The DOS extender also is

Advancements in PC Support/400 59

responsible for the
memory.

of extended

The PC extender interface
program (PCSXI.EXE) provides PC
programs with general interface to
DOS extender functions, much like
EIMPCS.SYS provides a general interface for
expanded memory management.

all the PC Support functions make
requests to PCSXI.EXE eliminates the problem

having duplicate DOS extender code in
memory. This in turn conserves even more
conventional memory. Also, the flexibility for
enhancements or the use of multiple DOS
extenders is in cne central component.

Administration Prog

As the number of personal computers using
PC Support/400 to access the resources of the
AS/400 system increases, the need for central
control of those personal computers also
increases. In the configuration control of
a large number of personal computers was dif-

because the configuration files actually
reside on the personal computer. Administra
tors who wanted common configurations
across a group of users or who made changes
to individual user configurations had to make
the change user's personal computer or
send each diskette. The PC
administration program addresses this
problem.

PC Support administration program lets a
user update the confiauration files of PC

users from a
administrator creates or

60 Version 2

uration files for the PC Support users in folders
on the AS/400 system. When PC Support is
started by the user, the update
function copies the new and changed files
from the AS/400 system to the end user's per
sonal computer.

Administrators easily create and
configuration for many different
without leaving their own personal computers.
Even remote users located in a different city or
state can receive configuration changes from
the administrator.

The administrator can customized
installation diskettes for new PC Support
users. After the administrator supplies all the
information necessary to install PC
the user's computer, the
simply inserts diskettes and types
INSTALL.

Configuration Folders
Administration

The administration program manages config
uration information on the AS/400 system in
folders. Each set of configuration
the administrator manages is in its
The PC Installation program
the folder OIWSADM and its subdirectories
MODEL and USER. Then, depending on the
type of configuration being administered, the
administration program creates the subdirec-

I:\QIWSADM\MODEL
:\QIWSADM\USER.

PC Support administrators have *ALL authority
to various folders maintained by the admin
istration program (QIWSADM and its subdirec-

tories). Therefore, not all users have
administration authority. A user an adminis-

when defined such on the

Model User Configurations

The PC Support administration program
used by the administrator to control
urations of each PC Support The admin-
istrator can work with model configurations.

configurations store configuration
that are common for certain group of

users. For example, model con
may be created for different depart-

ments or different of users (such as
secretaries, managers, or programmers).
Model configurations contain information
resources that common to the group.
example, common printers or common
could be included in a model configuration.

necessary model configurations are
the administrator creates user config
for each individual PC Support user.

model configurations. user configuration
is stored in an AS/400 folder. configura-
tions are often created by copying an
model or user configuration. When this
done, all the files that exist in the
figuration are cooied to the new user
uration folder.

Each user configuration contains various con
files for the individual PC Support

For example, these include the PC
Support command file and the PC Support
configuration file. In addition, if user con-
figuration was set up for the work station func
tion, the work station function master profile,

the associated session and keyboard profiles,
printer function tables, and the session
manager profile might be included as config
uration files .

The user configuration must be complete.
That is, the configuration must contain the
needed router information to establish a con
nection to an AS/400 system. For example,
the configuration must contain the name of the
personal computer and the specifics about the
way the personal computer is connected to the
AS/400 system. Administrators supply the
required router information when they create a
user configuration.

Configuration Updates from the
Administrator

PC Support users do not need to take any
special action to receive updated configuration
files from the administrator. Configuration files
that have been added or changed by the
administrator are automatically copied to the
user's personal computer when the user starts
PC Support.

PC Support users who receive updates from
the administrator have an identifier in their PC
Support configuration file. This identifier
defines the source and destination of the con
figuration files controlled by the administrator.
The source is the user configuration on the
AS/400 system where the master copy of the
user's configuration files are stored (for
example, I:\QIWSADM\USER\JOE). The
target is the directory on the user's personal
computer where the files are copied (for

example, C:\PCS). The PC Support/400
update function , which is called each time a
user starts PC Support, copies any new or
changed files from the source location on the
AS/400 system to the target location on the
user's personal computer.

Customized Installation Diskettes

The administrator can also create customized
installation diskettes. At Version 1 of PC
Support, users who installed PC Support on
their personal computer, using the standard
installation diskettes, needed to understand
various configuration options and hardware
connectivity information. This caused frus
tration for the user who did not have this
knowledge. The administration program
solves this problem because it lets a PC
Support administrator create customized instal
lation diskettes, which require no interaction
from the end user.

When the administrator creates user configura
tions , the information in the PC Support
working set files have complete connectivity
and selected functional configurations. Then,
when creating a customized installation
diskette, the working set files, along with the
necessary installation, router, and shared
folder programs are copied to the customized
installation diskette. In this way, the user can
start the installation program from the custom
ized diskette and simply wait for the installation
to complete .

Shared Folder Function

The PC Support/400 shared folder function
provides transparent PC file serving. That is,
PC files stored on an AS/400 system are
accessed by the personal computer as if they
were stored locally on the personal computer.
The shared folder function has been enhanced
since Version 1 Release 1 to perform better
and to run with the Operating System/2 (OS/2)
licensed program. Performance is improved
through better use of the data cache. These
enhancements are discussed in the following
subtopics.

Cache Enhancements

The shared folder function uses a data cache
to reduce network traffic communicating to the
AS/400 system. This improves the overall
capacity of the AS/400 system and improves
the PC user's response time by processing
data locally (on the personal computer) rather
than remotely (on the AS/400 system).

Every AS/400 system access takes a signif
icant amount of time. The use of a data cache
helps performance because the shared folder
function does not have to access the AS/400
system as often to send or get data. That is,
fewer large data requests are more efficient
and faster than more small requests.

The shared folder function used a data cache
in Version 1 Release 1, but the algorithms to
use the cache have improved. The following
paragraphs describe these improvements.

Advancements in PC Supportl400 61

A cache is temporarily holds
user data. shared folder function uses the
data cache by getting
more data from the AS/400 system than the
application requests. Performance improves if
the application is reading data from the file in
approximately the same place in the file. On
the first read request, a large amount of data
is retrieved from the AS/400 system and
placed in the cache. On subsequent read
requests, the cache is used instead
of going to the to get the data.

The shared function uses the data
cache during write by storing the data
in the cache until the cache is full or the data
needs to be sent (for example, the data is sent
to the AS/400 system when the file is closed).
Performance improves if either of the following
happen.

• If the write requests overlap (that is, if
some written to the same
place in the data in the
cache is the updated cache
is sent to AS/400 system so that the
AS/400 handles only one request.

• If the write are sequential (that is,
if they are to consecutive places in the
file), then the write requests are combined
in the cache. One large request is sent to
the AS/400 system instead of several
small ones.

62 Technology Version 2

also helps per
writing data that
folder function
not changed and
AS/400 system.

cache for read and write
achieved through a paging

memory used for the
divided into pages. A page is an independent
unit of the cache that can hold 1 KB, 2KB, or
4KB of user data. Each file that has data in
the cache has the data in pages. The data is
kept in these pages for a limited period of
time. The duration of the data in the cache is

a least-recently-used
cache page is needed

pages, then the page
is made available.
cache means better

there are more cache
to hold data. For DOS, conventional memory
from the 640KB area, expanded memory, or
extended memory may be used for the cache.

Knowing what personal computer applications
often do helps the shared folder function
reduce the number of pages sent to the

Personal computer
read some amount of

the data, then write the
Some or all of the

changed as it is written
Pvluch of the data has not

therefore, sending the data to the AS/400
system creates unnecessary network traffic.
The shared folder function does not send
unchanged pages of the cache, resulting in
less data being sent to the AS/400 system.

practice used by
read data from it or

file, then reopen the
data. The shared folder

data cache to improve
of application by

pages for a closed file. When a file is closed,
information about that file and its cache pages

kept in the cache, They are kept in the
cache until the file is reopened or until cache
pages are needed (the pages of a closed file
are the first pages made available if cache
pages are needed). When the file is reo
pened, the shared folder function checks the
cache to determine if pages for that file are still
in the cache. If pages exist for that file and

file has not changed since it was closed,
then the pages contain valid data for the file,
The shared folder function discards data in
cache if the file has changed.

When an application reads or writes data, the
cache is successful if the shared folder func
tion does not have to access the AS/400
system to complete the operation. For
example, if the data for a read request is
already in the cache, the data in the cache is
used for the request. The cache was success-

accessed. Tile shared folder function
keeps track of the number of times the cache

successfully used, An application in the
Support tools folder retrieves this information.
The user can use information to tune the
cache. Statistics can be retrieved on a larger
or smaller cache to determine how the size of
the cache affects the performance of the
cache.

OS/2 Support

The shared folder function is available under
both DOS and OS/2 personal computer oper-

systems. The shared folder function
vides support on the OS/2 operating system
through an OS/2 file system driver (FSD) that
follows the OS/2 installable file system (IFS)

interface. The shared folder function receives
requests from the OS/2 operating system
through its FSD. The shared folder function
FSD runs at OS/2 privilege level O. It passes
the request to the part of the shared folder
function that runs as an OS/2 application at
OS/2 privilege level 3. The request is for
matted into a distributed data management
(DDM) data stream and is sent to the AS/400
system by the OS/2 communications manager.
This flow is shown in Figure 31.

OS/2
Privilege
Level 3

OS/2
Privilege
Level 0

To OS/2
Communications

Manager

TECH063·3

Figure 31. OS/2 Shared Folders Flow

The shared folder function FSD is an OS/2
dynamic link library (DLL). This program is
called EHNSFLO.DLL. The OS/2 operating
system calls EHNSFLO.DLL to perform a
request for a shared folder function drive. The
OS/2 operating system is a multitasking oper-

ating system, but only one request for a drive
can be handled at a time. EHNSFLO.DLL
queues the request until it can be processed.
The OS/2 operating system is also a protected
operating system (the resources of one
program are private to that program) .
EHNSFLO.DLL runs at privilege level 0 and
has access to the application's data areas.
While it has access to these data areas, it
makes a copy of all data and necessary
control information for a request. It gives this
data to the part of the shared folder function
that communicates with the AS/400 system
when the request is processed.

The part of the shared folder function that
communicates with the AS/400 system is the
EHNSFL3.EXE program. This program is an
OS/2 application that runs as a background
process. (An OS/2 process is a running
program plus the resources it uses.) This
program receives a request from
EHNSFLO.DLL, formats the request into the
proper DDM data stream, and sends the data
to the AS/400 system by calling the commu
nications manager. EHNSFL3.EXE has two
threads per drive. A thread is a running unit
contained in a process. Threads can run con
currently and independently, and they share
resources of a process. The send thread
builds a DDM request and sends it through the
communications manager. The receive thread
gets the reply from the communications
manager and returns the reply to
EHNSFLO.DLL. Two threads allow concurrent
processing. While the receive thread is
waiting for the reply from the AS/400 system,
the send thread builds the next request.

The OS/2 DOSFsCtl API ties the two pieces of
the shared folder function together.
EHNSFL3.EXE makes a DOSFsCtl call to get
a unit of work to do. EHNSFLO.DLL receives
the call, makes any necessary data available
to EHNSFL3.EXE, then returns control to
EHNSFL3.EXE. At that point, the DDM
request is built and sent to the AS/400 system.
When EHNSFL3.EXE receives a reply to the
request, it gives the reply back to
EHNSFLO.DLL through another DOSFsCtl call.

Network Coexistence

While it is simplest to discuss the AS/400
system and the work station as an integrated
pair of systems, in reality, both systems have
to be recognized as players in a larger
network. The most competitive solutions often
combine PC servers with the AS/400 system.
A PC server is a personal computer whose
resources can be used by other personal com
puters (or other non-PC requesters) . For
example, a PC server can allow other personal
computers to use its printer or fixed disk.
There are functions that a PC server does
better than an AS/400 system, just as there
are functions that an AS/400 system does
better than a PC server.

For Version 2, PC Support has been enhanced
to coexist with both Novell Netware and the
OS/2 local area network (LAN) server. On
both token-ring and Ethernet connections, a
personal computer can concurrently:

• Use PC Support to access resources and
applications on an AS/400 system

Advancements in PC Support/400 63

• Use either Netware or DOS LAN
requesters to access resources on a PC
server (see Figure 32)

PC Server

System

Personal Work Station

TECH061-2

Figure 32. PC Support Network Coexistence

Additionally, users can load PC Support pro
grams on an OS/2 LAN server, transparently
redirecting requests for either file or printer
resources to the AS!400 system.

PC Support Hypertext

In the past, the PC Support help only provided
the user with information that was necessary
to complete the task on the display. By
pressing F1 (Help), the user could get help for
the prompt where the cursor was positioned.
For more information on the entire display, the

64 Technology Version 2

user could get general display help by
pressing F2 (Extended help).

Now the user can choose hypertext links to get
even more information about topics of interest.
A hypertext link is a method for moving
between help modules. These hypertext links
are easy to detect when a user looks at a help
display. The words that are hypertext links are
highlighted in a color different from the rest of
the text. Through hypertext links the user can
access general information on PC Support,
information on a PC Support function , or spe
cific information on a PC Support command.

To use a hypertext link, the user simply moves
the cursor to a highlighted word and presses
Enter. Another help display immediately
replaces the previous display. From this help
display, the user may take more links, press
Esc to return to the previous help display, or
press F3 (Exit) to return to the original display
from which F1 was pressed.

Retrievability aids provide users with a means
to see where they have been and to avoid
moving in a circular fashion . The user can
press F6 (List) to see a list of the help displays
already viewed using hypertext links. The user
can go back to any of those displays by
moving the cursor to the display title (a
hypertext link) on the list and pressing Enter,
or the user can exit from the hypertext search
by pressing F3 (Exit).

Hypertext links are flexible in the way informa
tion can be chained together. The user can
easily move from one type of information to
another. For example, the user can move

from a syntax diagram to a word definition to a
help description.

The hypertext links, in combination with the
help information, allow users to determine the
amount of detail they want. A user may navi
gate through a display, fill in the necessary
prompts, and never take a hypertext link.
However, the more curious user may learn
about many PC Support topics. These addi
tional topics describe application integration,
communications concepts, and information
about many of the PC Support functions.

Conclusion

PC Support!400 provides a wide range of func
tions to integrate personal computers with the
AS!400 system. The enhancements to PC
Support since Version 1 Release 1 make the
personal computers easier to attach to the
AS!400 system and , once attached, the PC
Support functions are easier to use. The func
tions of PC Support also leave more DOS
memory for user applications.

LO
CD

o
o

~
a
Q.
Q.
:::J

if)

()
Cl...
c
(f)

C
Q)

E
Q)
Q
C
co
>
"0 «

Advanced Peer-to-Peer Netwo

Describes the changes made to the advanced
peer-to-peer networking (APPN) support since
its initial release on the ASI400 system.

David A. Christenson, Mark A. Cossack,
Dennis J. Frett, and John E. McGinn

Introd

There have
to the APPN

enrlancements made
on the AS/400

system since its initial release. Refer to the
article, "Advanced Peer-to-Peer Networking" in
IBM Application Systeml400 Technology,
SA21-9540, for background information on the
function provided in the initial release of APPN
on the AS/400 system. These enhancements
provide in usability, availability,
connectivity, in many envi-
ronments. enhancements discussed in
this article

• Automatic support of APPC
controller descriptions on local area net
works (LANs)

This support allows the AS/400 system to
automatically create or vary on controller
descriptions when unknown systems
connect to the AS/400 system.

• Connection

A connection takes the automatic

66 Technology Version 2

step further; it
determine

about other

ancements

systems on the LAN so that configurations
for outgOing connections (as well as for
incoming connections) can be made.

• Dynamic switching of network node
servers

have the ability to establish
nc"~"r,,, with an alternative

without operator interventicn
to existing connecticns.

network connectivity

Multiple network connectivity allows any
nodes in adjacent APPN networks (with
different network identifiers) to communi
cate with each other.

• Interactive versus batch line sharing

versus batch line
enhancements prevent response

of interactive jobs that
small amounts of data

shared with a batch
amounts of data.

Automatic Configuration of
APPC Controllers on LAN

The AS/400 system now has the capability of
creating APPC controller

dynamically when an
is received from

directly connected
on a LAN. On a LAN
initiates a connection to

another system, information about the local
system is provided in the initial connection
request and the subsequent exchange identifi
cation (XID) exchange. This is key to auto
matic creation of an APPC controller
description. The controller description is a
configuration object that contains informaticn
about a remote system (that is, remote
system address, APPN control point name,
and any other specific parameters required

link station basis).

On an AS/400 system with automatic creation
of APPC controller descriptions on LANs, an
APPC controller description is created for any
system that initiates a connection to the
AS/400 system on the LAN. This is only
allowed if automatic configuration has been
activated for the LAN line on which the con
nection request is received.

visualize the environment suitable for ena
bling the AS/400 system's automatic configura-
ticn support on refer to Figure 33 on
page 67. This figure illustrates the physical
configuration of a LAN.

When a remote system initiates a connection
request, the AS/400 system first determines if
there already is an existing controller
description that can be used for the con
nection. If no controller description currently
exists that can be used, the system automat
ically creates a new object. After the contrcller
description is created, the system automat
ically varies it on for the connection.

NNA

ENS

EN = End Node

NN = Network Node TECH016-3

Figure 33. Example Physical Configuration of a
LAN

Because a varied on controller description is
normally needed to supply the required infor
mation to the system, connection establish
ment cannot be delayed while a new controller
description is being created. Normal
responses must be returned to the remote
system to continue with the connection estab
lishment to avoid time-outs by the adjacent
system. Supplying this initial configuration
information is accomplished by allowing the
user to manually create a controller description
that is used as a model for all controller
descriptions created for a particular resource

(LAN line). This model also supplies the
values the system needs to bring up the con
nection. If the user does not supply a model ,
then system defaults are used.

The user can request that controller
descriptions be automatically varied off and
deleted after a certain period of inactivity. On
an AS/400 system, a user can activate this
function by specifying a certain time interval on
the automatic delete controller (AUTOOL TCTL)
parameter of the LAN line description with
which these controller descriptions are associ
ated.

Connection Networks

Building on the concept of automatic creation
of APPC controller descriptions on LANs is the
establishment of direct APPN sessions using
dynamic address resolution. This allows for
the dynamic determination of configuration
information (for both incoming and outgoing
connections) so that direct connections can be

. established between systems on the same
shared-access transportation medium (such as
a token-ring or Ethernet LAN). To accomplish
this, the concept of a connection network is
used. A connection network (an APPN
architectural term defining the use of a shared
access transportation medium for route calcu
lation) attempts to reduce manual configuration
and reduce the size of the APPN topology
database.

Refer to Figure 34 on page 68 to see the rep
resentation of a connection network. The idea
behind a connection network is that a shared
access transportation medium is considered a

virtual node by all the systems that are part of
the connection network. Because the virtual
node is considered to be a node in the
network, APPN route selection services can
calculate routes that go "through" this virtual
node. Each node has a transmission group
(TG) entry in its topology database that
describes its connection to the virtual node.
This TG entry contains data link control (OLC)
signaling information about itself (that is, for a
token-ring network there would be an entry
that contains a node's local medium access
control (MAC) and service access point (SAP)
address).

At the time a route needs to be calculated ,
APPN route selection services determines that
two nodes requesting a route each have con
nections to the same virtual node. The routing
information that is returned to the originator of
the route request contains the OLC signaling
information of the destination . The originator
can then establish a direct outgoing connection
to the destination (because the originator now
has the address of the destination). In order
for the node to provide this information to the
network node, it must have an APPN control
point-to-control-point (CP-CP) session estab
lished with the network node. This is a
requirement for a node to participate in a con
nection network.

It is also important to mention that a con
nection network may also be used for interme
diate routing purposes between two APPN
network nodes that do not have prior config
uration information about each other.

The following is a discussion that emphasizes
the key concepts in connection networks.

Advanced Peer-to-Peer Networking Enhancements 67

Figure 33 on page 67 shows an environment
suitable for the use of a connection network.
Assume there are five systems on the token
ring . Prior to having connection network
support, if any system on the ring wanted to
have direct communications with any other
system on the ring (that is , without having the
APPN network node, NNA, performing inter
mediate routing) , each system would be
required to have one token-ring line and four
configuration objects describing each of the
remote systems. As more systems are added
to the network, this becomes a configuration
burden.

Refer to Figure 34 for a logical view of a LAN
using a connection network. In this case, each
system only needs one token-ring line and one
APPC controller description manually config
ured. The APPC controller description needed
is called a model controller description. A
model controller is indicated by specifying the
model controller (MDLCTL) parameter on the
Create APPC Controller (CRTCTLAPPC)
command. In this object, the line, the name of
the virtual node, the control pOint name, and
the network identifier of the system that a
CP-CP session needs to be established with
(that is, the end nodes would specify NNA) is
configured.

Assume ENB wants to establish a logical unit
(LU 6.2) session with ENE. ENB requests a
route to ENE from its network node server
(NNA) . ENB reports to NNA that it has a

68 Technology Version 2

NNA

ENB ENE

OS = OLe Signaling Information

VN = Virtual Node

System

Figure 34. Logical Configuration of a LAN
Using a Connection Network

TECH018-3

transmission group (TG) to VN1 , and the DLC
signaling information associated with its con
nection is 2. NNA determines that the location
name being searched for resides on ENE
(using base APPN search logic) , so it sends a
search request to ENE. On the search reply,
ENE reports its TG information (one of which
is the TG from ENE to VN1, which has DLC
signaling information of 5). During the route
calculation phase, NNA determines that both
ENB and ENE have TGs to the same con
nection network. Assuming that the con
nection through the virtual node is the most
optimal route based on class of service, NNA

returns a route to ENB indicating that the
optimal route is ENB to VN1 to ENE. Because
the route traverses a virtual node, the DLC sig
naling information from VN1 to ENE is sup
plied. ENB can now automatically create an
APPC controller description and make the out
going connection to ENE. ENE can accept the
incoming call and automatically create its con
troller description . Because these connections
are brought up through a virtual node, ENB
and ENE do not include the direct link just
established into their topology databases. The
TG representing the direct link is not required
for future session initiation requests because
the route through the virtual node can be used
at that time instead.

As the example illustrates, ENB and ENE
establish direct connections without having any
configuration information about each other.
The number of node and TG entries in the
topology database of a system that supports
connection networks and the number of
topology updates that are broadcast
throughout the network is significantly reduced
with connection networks.

Dynamic Switching of Network
Node Servers

An APPN end node requires a CP-CP session
established with a network node server to par
ticipate in directory searches, to establish
APPC sessions that use the most optimal
routes, and to send alert data to its network
node server.

When an end node loses its CP-CP session
with its network node server, the end node is
logically disconnected from the network. The
loss of a CP-CP session between an end node
and its network node server can be caused by
communications line failures, varying off of
configuration objects, or a hardware failure on
the network node server.

The only way for the end node to logically
reconnect to the network is by reestablishing
its CP-CP session with the original network
node server or with an alternative network
node server that is directly attached. Prior to
Version 2 of the AS/400 system, an operator
at an end node was required to force a link
level exchange (XID exchange) between itself
and a network node server to reestablish its
CP-CP session. All active user sessions on
the link needed to end for this XID exchange
to occur. This approach for changing network
node servers is undesirable because it
requires operator intervention and it is disrup
tive if user sessions are active on the affected
connection.

Functional Description

The enhancement of dynamically switching
network node servers is provided in Version 2
of the AS/400 system. This enhancement pro
vides CP-CP session recovery with an alterna
tive network node server following a CP-CP
session outage with the original network node
server. This CP-CP session recovery is pro
vided without operator intervention, and it elim
inates the disruption of active user sessions to
carry out the task. In the past, establishment
of CP-CP sessions was tied directly to the XID
exchange. The primary change required to

support end node dynamic switching of
network node servers is to remove the
dependency of these XID exchanges for
CP-CP session establishment.

Nodes that support dynamic switching of
network node servers are considered up-level
nodes. Nodes that do not support dynamic
switching of network node servers are consid
ered down-level nodes. An up-level end
node indicates during its XID exchanges that it
is requesting services from every adjacent
node (assuming the adjacent node is in the
end node's network node server list). The first
network node in the server list that the end
node connects to and that offers services to
the end node is the system that the end node
establishes its CP-CP session with. As the
end node completes XID exchanges with other
network nodes, it determines that it already
has a server established, and the end node
does not initiate CP-CP sessions with the
other network nodes.

A network node that supports this function
does not automatically establish its CP-CP
session following an XID exchange with an
end node. The network node waits until the
end node starts its CP-CP session with the
network node before the network node starts
its CP-CP session to the end node. The end
node is in control of which system it estab
lishes its CP-CP session with and when it
establishes it.

When an end node loses its CP-CP session
with a network node, the end node attempts to
reestablish the CP-CP session with the same
network node (if a parallel TG exists to that
network node). If this is unsuccessful, the end

node chooses the first network node in the
network node server list that meets the fol
lowing criteria:

• The end node has an active TG to the
network node.

• The network node is up level.

Example of Switching Network Node
Servers

To illustrate the functional description, refer to
Figure 35 on page 70. Assume that Portland,
Houston, and Seattle are all up-level systems,
and that Chicago is down level. Also assume
that Houston, Seattle, and Chicago are listed
in Portland's network node server list. The fol
lowing steps describe bringing up the APPN
network from Portland's perspective, and
describes the outage of a CP-CP session.

1. Portland establishes a connection with
Seattle. Because Seattle is in the server
list and Portland has no server, Portland
establishes its CP-CP session with Seattle.
After Portland establishes its CP-CP
session, Seattle then establishes its
CP-CP session with Portland.

2. Portland establishes a connection with
Houston. Because Portland already has a
server established, it does not establish a
CP-CP session with Houston at this time.
Since Houston is an up-level system, it
does not attempt to establish its CP-CP
session with Portland.

3. Portland establishes a connection with
Chicago. Since Portland already has a
server established, it does not establish a
CP-CP session with Chicago at this time.

Advanced Peer-to-Peer Networking Enhancements 69

Network Node
Houston

Network Node
Chicago

End Node
Portland

TECH023~1

Figure 35. APPN End Node with Multiple
Network Node Servers

Because Chicago is a down-level system,
it attempts to establish its CP-CP session
with Portland. Upon receiving this request
from Chicago, Portland rejects the request
with a sense code indicating the end node
is already being served.

4. A link outage occurs between Portland and
Seattle. The link outage causes the
CP-CP sessions to be lost.

70 Technology Version 2

5. Because Portland does not have an alter
native link to Seattle, Portland searches
through its network node server list to find
a system that matches the search criteria.
Chicago is a down-level system; therefore,
the only eligible choice is Houston. Since
the APPC controller description on
Portland is already active for Houston,
Portland establishes its half of the logical
CP-CP session. Upon receiving this
request, Houston then establishes its
CP-CP session with Portland. At this
point, Portland is once again in contact
with the APPN network.

APPN Multiple Network
Connectivity

Different APPN networks are represented by
having each network maintain a unique
8-character network identifier (NETID) . These
different APPN networks may represent sepa
rate enterprises. There are times when APPC
applications in one network need to access
logical units that reside in a different APPN
network. This could be common if one enter
prise takes over another, or if a service pro
vider, such as a third-party vendor, needs to
provide services to many different enterprises
(each with different network identifiers).

Before APPN Multiple Network
Connectivity

Prior to APPN multiple network connectivity,
there was limited connectivity between APPN
networks with different NETIDs. This limitation
was imposed by not allowing two APPN

network nodes with different NETIDs to estab
lish a link-level connection and subsequently a
CP session (which carries APPN control
traffic). This limitation was necessary because
there was no method that allowed these net
works to interconnect and allow complete
access to all logical units without sharing the
complete topology of both networks.

After APPN Multiple Network
Connectivity

With Version 2 Release 1 of the AS/400
system, APPN network nodes have been
enhanced to support full connectivity between
APPN networks that are directly connected
(adjacent) to each other and that have different
NETIDs.

The connectivity without topology overhead is
accomplished by having the Version 2 AS/400
network node portray the image of an end
node to the network nodes it is attached to in
adjacent APPN networks (nonnative networks).
The network node still functions as a normal
network node in its native network. Because a
Version 2 AS/400 network node portrays itself
as an end node to the nonnative networks, the
topology isolation requirement is automatically
taken care of. Topology exchanges do not
occur between an end node and a network
node.

Figure 36 on page 71 illustrates some of the
connectivity options available with APPN.
Notice that there are three APPN networks
each with a unique NETID. There is complete
connectivity between all logical units (LUs) on
every system in the diagram without the need
to manually define any nonnative LUs, and at

NETID = NORTH
ENS

NNA
NETID = SOUTHWST

Figure 36. Multiple APPN NETIO Networks
Fully Interconnected

ENS

the same time the topology of each network
stays independent. In other words, there is no
exchange of topology between the NORTH
NETID network and the EAST NETID network,
and yet LU 6.2 (APpe) sessions can be estab-

NETID = EAST

IDLC/BRI = ISDN Data Link Control /Basic
Rate Interface

ISDN = Integrated Services Digital
Network

SDLC = Synchronous Data Link
Control

TRLAN = Token-Ring LAN

TECH024-6

lished from NORTH.ENA to EAST.ENB while
devices are automatically created for the new
session.

All of the links interconnecting the three APPN
NETID networks are needed because

Version 2 APPN multiple network connectivity
supports connectivity between adjacent net
works only.

APPN Multiple Network Connectivity
Logic

The additional functionality added by APPN
multiple network connectivity involves changes
to link establishment, directory search, and
bind processing.

Link Establishment: During link establish
ment, if a network node determines the system
it is attaching to is in its own (native) network,
then it tells the adjacent system it is a network
node during its exchange identification flows
(XI D). If a network node attaches to a system
in a nonnative network, it:

• Negotiates the role of end node or network
node if the other system is also an AS/400
network node at Version 2

• Assumes the end node role if the other
system does not support APPN multiple
network connectivity

• Assumes the network node role if the other
system is an end node

The general idea is that when a network node
connects to a node in a nonnative APPN
network, one system takes the end node role
and the other system takes the network node
role.

Advanced Peer-to-Peer Networking Enhancements 71

Directory Search Processing: Before
describing changes to search processing for
APPN network it is nec~
essary to describe what role an end node per
forms depending on whether it is the source or
target of a session initiation request. When an
end node is the source of a request, it for
wards the request to its network node server,
supplies links that it has
expects the network node to search
the owning control point of the location and
return to the end node a complete end-to-end
route. When an end node is the target of a
session initiation request, the end node
receives request from its network node
server to that a location resides on the
end node, and the end node also supplies link
information so that the network node server of
the source node can calculate a complete end
to-end route.

When searches originate in the native network
and are destined for a nonnative network,
Version 2 AS/400 system that is connected to
a network node in the destination nonnative
network transforms the search to appear as
though it were being sent an end node
is, it supplies link information, among other
things). the Version ASi400 system
receives a search response from the nonnative
network node, it stores the routing information
and responds to the search in the native
network as though the location were found in
an attached end node (that entire non~

is portrayed end node
nodes in the network)

When the search originates in the nonnative
network and is received by the native

72 Technology Version 2

Version 2 AS/400 system, the system acts like
the network node server attached end
node and attempts to find location in the
native network. If the location is found, the
native Version 2 AS/400 system calculates a
route from itself to the target, and stores the
routing information for later use in BIND pro
cessing. sending the search response
back to the nonnative network node, the native
Version AS/4QO system indicates that the
location was found and modifies the search
response as though it were being returned by
an end node. The nonnative network node
forwards its response to the source node,
which causes route to be calculated from

the nonnative network to the
native Version 2 AS/400

Bind Processing: Once search processing
is complete, the bind request needs to be sent
from the system to target system
As described earlier, the route actu-
ally consists two separate routes (one for
routing through the native network and one for
routing through the nonnative network). When
the Version 2 AS/400 system receives a bind
request from a nonnative network node or the
received bind is destined
network the local network node removes
the routing information it and
replaces it with the stored routing information.
In the event that the stored routing information
is no longer stored when the bind request is
received, the Version 2 AS/400 system takes
the necessary steps to forward the bind to
destination.

Interactive versus
Shari

Line

Integration of interactive and batch (mixed)
traffic on the same communications line is
often necessary. For example, a user at an
interactive work station may concurrently share
the same with a job that is transmitting
large file. I nteractive traffic consists
small, sporadic two-way transmissions, versus
the large continuous one-way transmissions of
batch traffic. An interactive response time
ranging from 0 to 3 seconds is preferable, but
it cannot de achieved if batch traffic is allowed
to consume too much of the line bandwidth.
Some methods to effectively integrate mixed
traffic are discussed, but first some back
ground information is provided.

It is important to understand the flow of
session traffic through the layer of
the Systems Network Arctlitecture (SNA).
transport consists of two vertical compo-
nents. The first component is either a trans
mission control (end point session) or
session connector (intermediate session),
and its function is session~level pacing.
Some of transmission controls and session
connectors transmit interaotive traffic and
others batch traffic. The second component is
path control, and one of its major functions is
to prioritize the transmission order when mul
tiple transmission controls and session con
nectors share the same path control. Session
traffic is into request units as it
enters the transport layer and then into frames
prior to passing through data link control
(which manages the transmission of data over

the physical communications line) . As session
traffic passes through the transport layer, its
transmission may be temporarily blocked while
it is waiting in a pacing queue or transmission
priority queue. Increasing the queuing time of
batch traffic relative to interactive traffic is the
key to effective integration of mixed traffic.
Figure 37 shows the flow of session traffic
through the transport layer.

SNA Session-Level Pacing

SNA session-level pacing is a flow control
technique that permits a receiving session to
control the data transfer rate (the rate at which
it receives request units) on the normal flow.
Its primary use is to prevent overloading a
receiver with unprocessed requests when the
sender can generate requests faster than the
receiver can process them. If fixed pacing is
used, the window size is fixed for the duration
of the session. APPN supports adaptive
pacing, which allows a variable window size.

Fixed pacing can be used to slow the flow of
batch traffic and provide good interactive
response time. Batch traffic is assigned a
small window size of 1 or 2 and interactive
traffic is assigned a larger window size of 7 or
more. Fixed pacing has the following disad
vantages:

• The flow of batch traffic is restricted even
when interactive traffic is not present,
reducing throughput.

• Multiple batch sessions can collectively
consume the bandwidth, causing poor
interactive response time. For example, 7
batch sessions with a window size of 1

Transmission Controls
and Session Connectors

Path
Control 1

I Not

Transmission Controls
and Session Connectors

Path
Control 2

Communications Line

Transmission Controls
and Session Connectors

TECH074·2

Figure 37. Transmission of a Request Unit

Advanced Peer-to-Peer Networking Enhancements 73

would allow up to 7 request units to be
concurrently in transit.

Adaptive pacing provides a more dynamic and
responsive means of controlling congestion
problems in a large network. The goal of
adaptive pacing is to control congestion and
fairly allocate available buffer resources to
each session. As long as there is minimal
congestion, a session is granted a pacing
window based on the supply and demand of
buffers. Because the demand for buffers by
the interactive sessions is low, the batch ses
sions are granted large window sizes and are
able to easily consume the bandwidth of a
slow-speed line, degrading interactive
response time. Therefore, adaptive pacing
does not provide a mechanism to effectively
integrate mixed traffic.

Internal Session-Level Pacing

The APPN support now provides internal
session-level pacing to pace the flow of
request units sent to path control for adaptively
paced sessions. It is not part of SNA because
it does not cause any external line flows. The
sender is allowed to send a limited number of
request units to path control and is not allowed
to send any more until a request unit is suc
cessfully delivered to the adjacent system.

Batch traffic is assigned a small request unit
limit of 1 or 2, and interactive traffic is
assigned a larger request unit limit of 7 or
more. The request unit limit is configured in
the INPACING and OUTPACING parameters
of the mode description.

74 Technology Version 2

Inte nal pacing regulates mixed traffic in a
manner similar to SNA fixed pacing, but it
does not have the overhead of additional
external line flows (for example, fixed pacing
sends a pacing response) . It does have the
same disadvantages as stated previously for
SNA fixed pacing.

Transmission Priority

Transmission priority allows different priority
levels to be assigned to session traffic that
determines the precedence for being selected
by path control for transmission to the adjacent
system. Path control provides three user
defined priority levels: high, medium, and low.
Interactive traffic is typically assigned high pri
ority and batch traffic, medium or low priority.

The transmission priority algorithm used since
Version 1 determines the servicing order
based on priority level and arrival order. Each
priority level is assigned a different priority
number:

High = 0
Medium = 50
Low = 200

An arrival number (one greater than the pre
vious) is assigned to each request unit as it
arrives in path control, and then it is enqueued
to the proper priority queue in first-in first-out
order. The selection of the next request unit
sent to data link control is determined as
follows:

1. A service number is calculated for the first
request unit in each priority queue:

service number = priority number +
arrival number

2. The request unit with the smallest service
number is selected.

Prior to Version 2, transmission priority was
ineffective in a mixed traffic environment. In
Version 2, an enhancement provides sensitivity
to the response time of high priority frames.

Frame response time is a measurement of
the time it takes to send a frame to the adja
cent system. The time interval starts when a
frame is sent by path control to data link
control and ends when path control is notified
that the frame has been successfully delivered
to the adjacent system. Frame response time
is categorized into the following ranges :

Very poor
Poor
Acceptable

Good

Greater than 2 seconds
Between 1 and 2 seconds
Between 1/2 and 1 second,
inclusive
Less than 1/2 second

The goal is to keep the frame response time in
the acceptable range. This is achieved by lim
iting the maximum number of outstanding
frames (a frame that has been sent to data
link control and has not yet been delivered to
the adjacent system) of medium and low pri
ority. The medium/low maxout (the
maximum number of outstanding frames of
medium and low priority) is dynamically
adjusted based on the frame response time of
each high priority frame.

The scope of the enhanced transmission pri
ority algorithm spans all path controls sharing
the same data link control. Separate priority
queues are still maintained by each path
control , but the same medium/low maxout is
adjusted by each path control. For example, if

a path control transmitting only interactive
session traffic detects poor response time, it
reduces the medium/low maxout to slow the
flow of batch session traffic for the other path
controls sharing the same data link control.
Therefore, the medium/low maxout is collec
tively determined by all path controls sharing
the same data link control.

The maximum number of outstanding frames
associated with a single data link control
cannot exceed P * M, where:

P = the number of path controls sharing
data link control

M = the medium/low maxout

Figure 38 shows how the medium/low maxout
is adjusted by path control due to changes in
the response time of high priority frames.
Figure 39 on page 76 shows how the unre
stricted flow of medium and low priority frames
is restored by path control after more than 5
minutes without any high priority frame trans
missions. A detailed description of the flow
chart steps in both figures follows .

Step 1. Data link control notifies path control
when an outstanding high priority
frame is successfully delivered to the
adjacent system.

Step 2. Poor response time is quickly reme
died by limiting the number of out
standing medium and low priority
frames to one. If the frame response
time improves, the medium/low
maxout is allowed to gradually
increase again.

Step 3. Because poor response time is just
above the acceptable range, only a
slight decrease in the medium/low

maxout is necessary to push frame
response time back into the accept
able range. If the medium/low
maxout (maximum number of out
standing frames of all priorities) is
currently greater than or equal to the
overall maxout, the medium/low
maxout is set to one-half of the
overall maxout. Otherwise, the
medium/low maxout is only
decreased by one.

Step 4. Acceptable response time is within
the targeted range ; therefore, the
medium/low maxout is not changed.

Step 5. Good response time may mean that
medium and low priority trans
missions are being unnecessarily
limited ; therefore, the medium/low
maxout is gradually increased by
one.

Step 6. The time of delivery of the most
recent high priority frame is saved
and used in step 8.

Step 7. Data link control notifies path control
when an outstanding medium or low
priority frame is successfully deliv
ered to the adjacent system.

Step 8. The difference between the current
time and the time of delivery of the
most recent high priority frame (step
6) is calculated to give the high pri
ority inactivity time used in step 9.

Step 9. If the high priority inactivity time is
less than or equal to 5 minutes, the
value of the medium/low maxout is
not changed.

MI L Maxout = The maximum number of medium
and low priority frames

TECH075-3

Figure 38. Restricting Flow of Medium and Low
Priority Frames

Advanced Peer-to-Peer Networking Enhancements 75

Yes

9

TECH076-4

Figure 39. Restoring Unrestricted Flow of
Medium and Low Priority Frames

76 Technology Version 2

Step 10. If the high priority inactivity time is
greater than 5 minutes, the
medium/low maxout is set to 65535
to allow unrestricted transmission of
medium and low priority frames.
Medium and low priority frames can
now be freely transmitted until the
response time of a high priority frame
transmission falls below the accept
able range.

Transmission priority has the following advan
tages over fixed session-level pacing and
internal session-level pacing:

• The flow of batch traffic is not restricted
after interactive traffic is inactive for more
than 5 minutes.

• In most environments, multiple batch ses
sions are not allowed to collectively
consume the bandwidth.

• The flow of batch traffic is dynamically
adjusted, allowing batch traffic to use as
much of the bandwidth as possible without
causing poor interactive response time.

Request Unit Size

The request unit size selected for batch
session traffic has an effect on interactive
response time. If fixed session-level pacing ,

internal session-level pacing , or transmission
priority does not provide an acceptable interac
tive response time, the request unit size for the
batch sessions may need to be reduced. All
three methods limit the number of blocks
(request units or frames) that can be trans
mitted by batch sessions. The total amount of
data allowed to be transmitted by batch ses
sions is equal to N * B, where :

N = the number of blocks allowed
B = the block size

Decreasing the number of blocks or the block
size lowers the bandwidth consumption.
Therefore, decreasing the request unit size
(block size) of the batch sessions can improve
interactive response time. However, a smaller
request unit size can cause additional pro
cessing overhead and reduced throughput.

Conclusion

Advanced peer-to-peer networking support has
had several enhancements since its initial
release. These enhancements provide
improvements in some of the key areas of the
operating system. These key areas are usa
bility, availability, connectivity, and perfor
mance.

Automatic configuration support of APPC con
trollers on local area networks and connection
networks provides usability enhancements
because a significant amount of manual con
figuration is eliminated. The end node
dynamic switching of network node servers
provides an availability enhancement. This
enhancement provides automatic recovery of
control point session outages so that end
nodes do not lose access to the APPN
network.

Multiple network connectivity is an enhance
ment that expands the connectivity of the
AS/400 system in APPN networks. This
allows systems in one network to access
systems in other APPN networks with little or
no configuration changes. The interactive
versus batch line sharing enhancements
provide a performance improvement by not
allowing applications that send large volumes
of data to take control of the communications
link. This interactive versus batch line sharing
allows interactive jobs to keep acceptable
response times.

The AS/400 continues to improve its peer-to
peer networking support. With the release of
the APPN architecture and the announcement
of APPN support on the Personal System/2*
system and the 3174 Subsystem Control Unit,
the AS/400 system can provide networking
support for many different customer environ
ments.

Advanced Peer-to-Peer Networking Enhancements 77

Open Systems Interconnection

. Describes the open systems interconnection
(051) reference model and the 051 Commu
nications Subsysteml400 licensed program,
which provides 051 support on the ASI400
system.

Jeffrey C. Kramer, Charles C. Shih , and
Kenneth A. Cook

Introduction

During the past 10 years, technological
advances have dramatically reduced the cost
of computing power, related display stations,
peripherals, and automated industrial equip
ment. This has contributed to the explosive
growth of the number of display stations, com
puters, and related equipment in use. At the
same time, many new vendors have entered
the marketplace, often with new technologies
that are not compatible with existing equip
ment.

Over the years , manufacturers have
responded to their customers ' needs to com
municate among departments, offices,
branches, corporate divisions, cities , countries,
and, indeed, continents. For many computer
and display station vendors, this effort started
in the early 1970s, years before multiple
vendor communications standardization had
been considered. Consequently, vendors
developed their own proprietary network

78 Technology Version 2

architectures and sets of system protocols.
These proprietary networks were tuned and
optimized for specific operating environments.

Through various information processing
requirements and acquisition practices, many
organizations found themselves with computer
equipment from different vendors, equipment
that could not communicate . As the number of
different display stations, computers, and net
works increases worldwide , the need for
multiple-vendor, international communications
standards also increases. International com
munications standards are a key factor in the
advancement of the information technology
industry.

OSI Standards

Central to the standardization effort is the
International Organization for Standardization
(ISO). The data communications standards
evolving from this organization are known as
the open systems interconnection (OSI) stand
ards.

In 1977, ISO Technical Committee 97 started
to define a framework and structure for a set
of rules , called protocols, that would enable
systems supplied by different vendors to
connect and communicate . A protocol is a

set of rules that govern data communications;
for example, a protocol might allow only one
program at a time to send data.

Open systems interconnection (OSI) defines
standards by which computers that are bas
ically incompatible can work together. OSI
describes the architecture, protocols, and ser
vices needed to achieve this goal. Many of
these standards are complete, while others are
evolving.

In OSI , an open system is a computer system
that can communicate with another computer
system using these OSI protocols. Open
systems interconnection is based on a layered
architecture called the OSI reference model.
Each layer in the OSI reference model has a
name, a number, protocols that provide spe
cific functions, and defined services for each
protocol. Because the intended range and
scope of OSI is broad-from display stations
and personal computers to large
mainframes-numerous options are available
at each layer.

The OSI Reference Model

The OSI reference model consists of seven
layers as shown in Figure 40 on page 79.
Each layer is responsible for a specific set of
functions.

Layer 7

Layer 6

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

TECH054-1

Figure 40. The OSI Reference Model

Application Layer

The application layer manages communica
tions between end users on connected open
systems and is the OSI layer that directly sup
ports the end user. There are multiple applica
tion layer standards, each oriented to its own
application processing requirements. Some
layer standards have already been defined,
while others are still evolving. Among the
standards in place are those for:

• File transfer, access, and management
(FTAM)

• Message handling systems (X.400)

Presentation Layer

The presentation layer provides services so
applications that communicate over different
open systems can correctly interpret the data
exchanged . This is necessary because dif
ferent vendors' systems use various methods
for internal representation of data, and
because different programming languages may
be used.

Session Layer

The session layer coordinates the dialogue
between users on open systems. This
includes functions for negotiating, establishing,
and releasing sessions between users.

Transport Layer

The transport layer provides the end-to-end
control of data exchanged between users on
open systems. It provides the required level of
reliability, based on user needs and network
and transmission-error-recovery capabilities.

Network Layer

The network layer provides the addressing,
routing, and relaying of information required to
provide the data flow between open systems.
Data flow may involve establishing, main
taining , and ending connections between open
systems. This layer provides services that
keep the transport layer independent of the
data transmission technology and provides for
both connection-oriented (connection setup

required) and connection less (no connection
setup required) network protocols.

Data Link Layer

The data link layer provides services for the
error control and synchronization of data as it
is transmitted over the physical medium
between adjacent nodes in the network.

Physical Layer

The physical layer describes the
electromechanical characteristics for attach
ment of open systems to the physical medium.
These attachment standards include plugs,
sockets, and the encoding of data into suitable
electronic signals.

Management and Directory Service
Standards

OSI management standards provide for both
onsite (local) and centralized (remote) network
management. The standards define the man
agement services required to report events
and issue commands, and define the protocols
to use when the service user is on a remote
node. Management information is sent from
multiple remote open systems to a centralized
management node.

OSI directory standards define the protocols
to set up and maintain directory information in
an OSI directory. An OSI directory contains
information to locate entities-application pro
grams, for example-within an OSI network.

Open Systems Intarconnection 79

Application Layer
(ACSE)

Presentation Layer

Session Layer

Transport Layer

Network Layer

Abstract
Syntax Checker

X.SOO
Directory

Other Open Systems

Figure 42. OSI Communications
Subsysteml400 Licensed Program
Structure

Network
Management

Configuration

OSI Communications
Subsystem/400 Licensed Program

OS/400 Communications Support

TECH057·3

Programming Interface for Customers

Information obtained through the OSI layers
must be processible by customer application
programs. This processing is either through
OSI-defined application layer (layer 7) pro
grams (for example, FTAM, XAOO , and other
interfaces) or user-written application pro
grams. A high-level programming-language
interface is provided that can be used with
either COBOL or C programs. Through this
interface, customers' programs can access
services provided by:

• Association control service element
(ACSE)

• Presentation layer
• Session layer

The programming interface consists of a set of
callable services, procedures that can be
called from application programs, and is con
sistent across the SAA environments. The
interface allows implementation of simple com
munications programs with relatively little
system-specific programmer education while
still providing full-function capability. Through
the use of a predefined set of processing
options, most procedures have only a few
parameters that must be specified.

Abstract Syntax Checker

To simplify high-level-language OSI application
programming, an Abstract Syntax Checker
(ASC) is provided. The ASC is implemented
as a control language (Cl) command, and it is
intended for customer programs that use the
programming interface to the presentation

Open Systems Interconnection 81

layer. The ASC translates data types defined
using Abstract Syntax Notation One (ASN.1)
into COBOL or C data structures that are
included in an application program. This gives
application programmers the capability of con
centrating on application processing instead of
on a particular system's internal data represen
tation.

OSI Layer Protocols Supported

The OSI Communications Subsystem/400
licensed program supports layers 3 through 6
of the OSI reference model , as well as the
layer 7 ACSE standard. The OSI layer proto
cols supported are shown in Figure 43. The
Operating System/400 (OS/400) licensed
program provides layers 1 and 2 (physical and
data link). The OS/400 communications
support is structured so these layers can be
shared by multiple protocols concurrently (OSI,
Transmission Control Protocol/Internet Protocol
[TCP/IP], and Systems Network Architecture
[SNA]).

The application layer (layer 7) manages com
munications among user application programs
and OSI applications. Fundamental to applica
tion program control and management are ser
vices of the association control service
element (ACSE). Support for ACSE is pro
vided as defined in ISO 8650. This support
enables two OSI programs in different open
systems to:

• Establish or reject an association
• Release such an association in either:

- Normal mode
- Abnormal mode

82 Technology Version 2

Association Control
Service Element (ACSE)

Kernel and Abstract
Syntax Notation One (ASN .1)

Session Versions 1 and 2
- All Functional Units

Transport Classes 0, 2 , and 4

Connectionless Network Service

Connection-Oriented Network Service

Figure 43. 051 Layer Protocols Supported

The presentation layer (layer 6) handles the
data formats of different vendor's systems. It
converts the data from one system into a
format independent of any vendor's system
and reconverts it at the other end to match the
receiving system's format.

OSI Communications Subsystem/400 supports
the kernel functional unit as defined in ISO
8823, along with support for encoding to and
decoding from :

• The abstract syntax used for data defi
nition on open systems as defined in
ASN .1

The licensed program supports the basic
encoding rules for ASN.1 as defined in
ISO 8825 and ISO 8824 (except for
recursion, macro definitions, external refer
ences, and value assignments).

• The data structures specified in COBOL or
C customer programs

ISO 8650 (CCITT X.227)

ISO 8823, 8824, 8825
(CCITT X.226 , X.208, X.209)

ISO 8327 (CCITT X.225)

ISO 8073 (CCITT X.224)

ISO 8473

ISO 8208, 8878

TECH056·6

The encoding and decoding support lets the
COBOL or C language program be transparent
to the actual OSI data transfer syntax .

The session layer (layer 5) structures the
dialogue between two nodes. It defines such
concepts as major and minor synchronization
points so that communications can be effec
tively resumed after a connection or line
outage.

OSI Communications Subsystem/400 supports
all functional units defined in ISO 8327 DAD
(Draft Addendum) 2, Versions 1 and 2.
Session Version 2 is based on Stable Imple
mentation Agreements for 051 Protocols,
Version 2, Edition 1 (December 1988) as
described by the National Institute of Stand
ards and Technology (formerly known as the
National Bureau of Standards).

The transport layer (layer 4) is for end-to-end
communications. It provides a data channel
between open systems and controls the com-

munications session when the data path is
established. OSI Communications
Subsystem/400 supports transport classes 0,
2, and 4 as defined in ISO 8073. This
includes transport layer splitting and multi
plexing. Splitting lets a single transport con
nection run over multiple network connections.
The transport connection stays active as long
as one or more of the network connections is
active. Multiplexing lets multiple transport
connections share a single network con
nection, providing for optimal communications
resource use.

The network layer (layer 3) establishes, main
tains, and ends communications between two
nodes in the network. The network layer entity
of the OSI Communications Subsystem/400
provides connectivity over X.25 subnetworks
using connection-oriented (connection setup
required) or connection less (no connection
setup required) network protocols.

Configuration

OSI Communications Subsystem/400 main
tains a database where all of the information
necessary to perform communications is kept.
This information consists of a description of
the network, specific values used by the OSI
layers, and information about applications,
directory services, and management services.

The ISO standards provide a great deal of
flexibility. The amount of configuration data
required to perform meaningful work can be

2 The OSI objects are stored in database files.

large. This is further complicated by the fact
that the data is quite complex, containing
many interdependences. This makes config
uration difficult because the user must provide
most of the data.

The user configures OSI on the AS/400
system using an object-based model that is
command driven. With this model, the config
uration data consists of 21 configuration object
classes. The term objecF describes a specific
instance of a particular object class. An
object is simply a grouping of data items
called attributes. Objects of the same class
have the same attributes. The object classes
provide a logical, modular view of the config
uration data. Figure 44 on page 84 shows
the object class hierarchy for OSI Communica
tions Subsystem/400.

The object classes are:

• Abstract Syntax (ABSN): Used to identify
abstract syntaxes that the presentation
layer encodes and decodes, to or from
transfer syntax from or to local syntax.

• Adjacent Node (ADJN) : Used to define
nodes that are connected to the same sub
networks (adjacent nodes) as the node
being configured.

• Agent Registration (AGTR): Used to iden
tify remote nodes (agents) that are
managed using the network management
commands.

• Application Entity (APPE) : Used to define
local (at this node) and remote (at other

nodes) application entities. An applica
tion entity is the part of an OSI applica
tion that handles communications.

• Application Context (APPX): Used to
define application contexts required by
applications.

• Application Mode (APPM): Used to define
presentation and session layer services to
be used on application associations.

• Authority Nickname (AUNN) : Used to
identify the superior parts (relative distin
guished names) of a multiple-part distin
guished name. Allows the superior part,
which may be shared by many OSI
objects, to be specified only once.

• Connectionless Mode Path Set (CLPS):
Used to define a set of paths for reaching
an adjacent node using connectionless
network service.

• Connection Mode Path Set (CMPS): Used
to define a set of paths for reaching an
adjacent node using connection-oriented
network service.

• Directory User Registration (DUAR): Used
to identify the directory user agents
(DUAs) that are allowed to use the ser
vices of the local directory system agent
(DSA).

• Inbound X.25 Attributes (IX25): Used to
define characteristics of inbound X.25
communications.

Open Systems Interconnection 83

• local Attributes (lelA): Used to define
attributes of the local node.

• Line (LINE): Used to define X.25 lines at
the local node.

• Line Set (LlNS): Used to identify groups
of lines. Lines are grouped together for
the purposes of starting, stopping, and
controlling operations.

• Manager Registration (MGRR): Used to
identify remote nodes that can manage the
local node.

• Network Service Access Point Address
(NSAP): Used to specify local and remote
network addresses and their attributes.

• Outbound X.25 Attributes (OX25) : Used to
define characteristics of outbound X.25
communications.

• X.25 Quality of Service (QOSM): Used to
define end-to-end quality-of-service param
eters for X.25 communications.

• OSI Route (RTE): Used to define routes
for reaching destination nodes.

• local SAP Selector (SSEl): Used to
define service access points (SAPs) and
their selector addresses at the local node.

• Subnetwork (SUBN): Used to define sub
networks to which the local node is
attached.

• Transport Mode (TPTM): Used to define
transport layer services to be used on
transport connections.

The interdependences between the object
classes follow a hierarchical model. Objects
higher in the hierarchy refer to objects lower in

84 Technology Version 2

Session Layer
-----------------_.

Transport Layer

Network Layer

X.2S Line Description

File Member
f----------I-- -.. in OS/400

Library

------1--------------------------------

r------f---------------------------------

TECH073-2

Figure 44. OSI Configuration Object Classes

the hierarchy. This means that the higher
level object classes have attributes that are
names of specific lower-level objects. In this
way the object classes serve as building
blocks for configuring the system. The hierar
chical model facilitates the sharing of config
uration data by allowing more than one
higher-level object to point to the same lower
level object.

The user configures OSI with a set of CL com
mands that correspond to the object classes.
There are five types of commands: add,
change, display, remove, and work with
Generally, a separate add, change, display,
remove, and work with ... command exists for
each object class. The command parameters
correspond to the object class attributes.

When the commands are processed, validation
is done based on the object dependencies.
For example, a lower-level object must have
already been defined in the configuration data
base before a higher-level object can refer to
it. Additionally, a lower-level object cannot be
removed if one or more higher-level objects
refer to it. The commands enforce these rules
so that the user cannot introduce inconsisten
cies between the objects.

Network Management

OSI Communications Subsystem/400 allows
open systems to report errors and other infor
mation so that a network operator can respond
accordingly. The management support is
based on the Manufacturing Automation Pro
tocol (MAP) 3.0 specification dated 1 August
1988.

The management protocols are derived from:

• ISO Management Framework, Draft Inter
national Standard (DIS) 7498-4

• The draft proposal (DP) as defined by
MAP 3.0 for :
- Common management information ser

vices (CMIS), DP 9595-2
Common management information
protocol (CMIP), DP 9596-2

These standards define the concepts of a
managing process (or manager) and an agent
process (or agent). An agent reports errors
and information, and processes commands so
that its OSI resources can be controlled by a
manager. A manager sends commands to the
agent and receives event reports from the
agent. The manager can be local or remote
from the agent. The manager and agent are
OSI applications known as systems manage
ment application entities (SMAEs) . A
manager communicates with its agent through
the common management information protocol
(CMIP). The AS/400 system can function as a
manager, an agent, or both a manager and
agent. Figure 45 on page 86 illustrates the
relationship between a manager, its agents,
and the use of CMIP.

OSI Communications Subsystem/400 supports
the following management services:

• Get: Get information about layer attri
butes, operational parameters, or statistics

• Set: Change layer attributes or operational
parameters

• Action: Request that a specific action be
performed by the local resource manager
of the layer

• Event Report: Notify a manager that a sig
nificant event, such as an error or
threshold condition , has occurred

Examples of attributes for a specific object
class include :

• Threshold events
- Rejects received
- Rejects sent
- Aborts received
- Protocol data units received and

refused
• Protocol violations
• Error counters
• Individual connections

- Octet (byte) count
- Message counts
- Start and stop time
- Connection-end reason
- Connection-end events

The AS/400 system in a manager role sends
commands to and receives event reports from
agents. CL commands can be issued either
locally or remotely to perform the required
management functions. OSI event reports
received from remote OSI agents are con
verted into SNA alerts, logged in the alerts log,
and forwarded to the SNA focal point. The
SNA focal point monitors activity on both SNA
and OSI networks concurrently.

x.soo Directory

OSI Communication Subsystem/400 provides
directory services through an implementation
of a subset of the X.500 standards (ISO 9594).
This subset is based on MAP 3.0 and partially
on the National Institute of Standards and

Open Systems Interconnection 85

c
o ·u
Q)
c
c
o
~
Q)

c
(f)

E
Q)

Ul
>

(f)

C
Q)
0..
o

Network Openness through User-Defined Communications

Describes the functions of the ASI400 user
defined communications support, which pro
vides an interface to system communications
functions.

Sarah R. Jones

Introduction

The expanding AS/400 communications envi
ronment requires the capability to connect to a
diverse range of systems and devices by
means of existing and emerging telecommuni
cations protocols. The user-defined commu
nications support of the AS/400 system
facilitates the implementation of virtually any
telecommunications protocol. To accomplish
this, the support provides an interface to the
data link control layer, as defined by the Inter
national Organization for Standardization (ISO)
in the open systems interconnection (OSI) ref
erence model. In effect, this support provides
a level of flexibility for an AS/400 customer or
business partner to develop communications
protocols, especially those not provided by
IBM, through AS/400 product offerings.

User-defined communications support pro
vides an interface to common communications
protocols used at the data link control

88 Technology Version 2

layer. This interface is designed to satisfy
objectives, such as openness to data link
control functions, protocol flexibility , and coex
istence among communications protocols
sharing the AS/400 system and the physical
network.

Additionally, the communications support is
integrated within the communications functions
of the Operating System/400 (OS/400)
licensed program.

Overview of Function

To clearly illustrate the capabilities provided by
user-defined communications support, a com
parison is made to the OSI reference model.
Figure 46 describes the relationship of the
user-defined communications application within
the framework of this model.

In Figure 46, the user-defined communications
support is the OS/400 program interface
between the user-defined communications
application program and the data link layer.
The layers that exist above the data link layer
are implemented by the user-defined commu
nications application program. The functions
provided by layers above the data link layer
are defined in the user-defined communica
tions application.

OSI Reference Model
User-Defined
Communications

TECH033-5

Figure 46. User-Defined Communications Com
parison to the 051 Reference Model

The data link control functions to which the
user-defined communications support provides
access consist of protocols used in wide area
networks (WANs) and local area networks
(LANs). The WAN support provides applica
tion access to the packet-switching protocols
at the International Telegraph and Telephone
Consultative Committee (CCITT) X.25 layer 3.
The LAN support provides access to protocols
that use the Institute of Electrical and Elec
tronics Engineers (IEEE) 802.2 logical link
control (LLC) interface or Ethernet Version 2.

Examples of functions allowed through the
user-defined communications interface are
establishing and ending connectivity to the
network, and sending and receiving various
types of data frames across the network to
and from any number of systems. Additional
functions include routing data, obtaining line
status information, and using system timers.

User-defined communications support is inte
grated into the OS/400 licensed program and
directly accesses the licensed internal code for
the communications support. Figure 47 shows
the user-defined communications support,
which resides above the machine interface.
Below the machine interface is the licensed
internal code, which interfaces with the com
munications input/output processor.

Figure 47 is based on the AS/400 communica
tions structure that is described in the article
"Communications and Networking Structure" in
IBM Application Systeml400 Technology,
SA21-9540. The components of the figure that
are not described in the article are Ethernet
communications support and the open station
input/output (I/O) manager. Ethernet commu
nications is provided by the input/output
processor and the line input/output manager in
the same way that other data link protocols are
supported.

Like other AS/400 station I/O managers, the
open station I/O manager is responsible for
managing connections and requests from the
machine interface to the data link control layer.
The open station I/O manager is also respon
sible for routing data and incoming connection
indications to the correct protocol based on
routing information from the application
program that resides above the machine inter
face. Routing information is based on stand
ards definitions. Examples of routing
information include destination service access
point (DSAP) and source service access point
(SSAP) for IEEE 802.2 protocols, and protocol
identifier and data terminal equipment (DTE)
address for X.25. Specifying unique routing
information allows multiple user-defined com
munications application programs to communi
cate simultaneously to the network.

AS/400 Communications Structure

Machine Interface

HDLC = High-Level Data Link Control
IEEE = Institute of Electrical and Electronics

Engineers
LAP-B = Link Access Protocol-Balanced

LLC = Logical Link Control
MAC = Medium Access Control

PSDN = Packet-Switching Data Network
TECH035·5

Figure 47. User-Defined Communications
within ASI400 Communications
Structure

Network Openness through User-Defined Communications 89

Application Interface

A user-defined communications application
gains access to the communications support
by use of routines called by a program. The
routines provide a pipeline into the network for
the application, which can be a simple
program or a complex protocol containing
many well-defined layers involving many pro
grams. The use of the routines is consistent
across both LAN and WAN networks, where
only the data passed through the buffers is tai
lored for transportation across the network
type.

The constructs for communicating between the
application and the communications support
are the queue, the data buffer and descriptor
spaces, and the parameter list.

Figure 48 shows the relationship of input and
output buffers, the queue, user-defined com
munications support, and licensed internal
code to the user-defined communications
application program. On the left of the figure,
pseudocode represents a program flow of
routine calls . The user-defined communica
tions routines shown, QOLSEND and
QOLRECV, represent the output and input
functions. The remaining routines represent
functions that are performed by the application.
The constructs in the center of the figure are
the common interface objects used for intra
process communications between the applica
tion program, which is depicted on the left side
of the figure, and the user-defined communica
tions support, which is depicted on the right
side of the figure. The constructs to which
both the application and the user-defined

90 Technology Version 2

Figure 48. Application Interfaces and Con
structs

communications support have direct access
are the data buffers, the queue, and the
parameter list.

The input and output data buffers contain infor
mation for data frames and call control frames,
which are transmitted across the network.
These buffers have defined formats, which cor
respond to the different types of frames being
transmitted and received.

o
o

..- Physical Medium
to the Network

TECH034·3

The queue provides a mechanism for the user
defined communications support to notify the
application of asynchronous events. Examples
of these events include notification of inbound
data and connection failures.

The parameter list is used to indicate the oper
ation or request and any additional information
the user-defined communications support
needs to perform the function. The success or
failure of requested functions is reported
through the parameter list.

Network Scenario

The data link layer interface enables system
programmers to provide communications pro
tocols and network options that are otherwise
not provided. To provide new protocols and
network services, the communications applica
tion is responsible for providing the functions
and services required by the protocols above
the data link layer.

In a simple network scenario, the user-defined
communications application implements a pro
tocol over a single network, connecting the
AS/400 system with the other systems on the
network. A more complex scenario includes
multiple networks and multiple network types.
In the more complex scenario , the application
has simultaneous connectivity with multiple
networks, thus expanding the internetworking
possibility of the protocol implemented by the
application and the AS/400 system.

Figure 49 shows multiple, independent net
works interconnected through the user-defined
communications application implemented on
both AS/400 systems. The figure shows how
the user-defined communications support
enables an application program to provide a
variety of connectivity options and services.
The application can communicate with one or
many of the remote systems simultaneously
and can provide routing services between the
three networks (token ring, X.25, and
Ethernet) .

AS/400 System

User-Defined
Communications
Application

X.25-3
LLC

X.25-2

MAC X.25-1

Figure 49. User-Defined Communications
Application in a Complex Network

Conclusion

Increased focus on interoperability and
openness encourages the offering of applica
tion enablers that facilitate the capability to
connect dissimilar systems across dissimilar
networks. User-defined communications
support provides the customer and IBM busi
ness partners with the opportunity to include
the AS/400 system in heterogeneous environ
ments where it was previously not possible.

AS/400 System

User-Defi ned
Communications
Application

X.25-3
LtC

X.25-2

X.25-1
MAC

Ethernet Network

TECH037·3

Network Openness through User-Defined Communications 91

Realizing that a dedicated channel for call
control may result in wasted bandwidth in
some environments, the CCITT architected an
interface to an integrated packet handler
(X.25) over the D-channel as well. This X.25
interface allows the same ISDN interface to
support not only the telephone network type of
functions, but also integrated access to a
packet-switching data network (PSDN) simul
taneously.

User information is carried to the ISDN on
bearer channels, or B-channels, each pro
viding a 64,000-bps duplex, digital connection
to the adjacent party. For B-channels, the
CCITT architected only the physical transport
or layer 1. The format of the higher layer
information on the B-channels is not defined
by the CCITT. For example, two users can
exchange voice, FAX, video, or user informa
tion encapsulated in data communications pro
tocol frames. The CCITT defines two types of
ISDN interfaces, differentiated by the number
of B-channels supported:

• Basic rate interface (BRI)

Two B-channels plus one 16,000-bps
D-channel are supported with this inter
face. A unique function of the BRI is the
ability to attach up to eight different
devices to the same interface, forming
what the CCITT refers to as a passive
bus. The architecture includes a collision
detection mechanism, which ensures that
contention for the D-channel by the
devices is arbitrated properly. The
network assigns the B-channel to a device
according to the D-channel setup proce
dures and dedicates its use to that device
until it is disconnected.

Thus, on a single SRI, a user can attach
multiple devices, such as telephones, FAX
machines, or computers in any combina
tion.

• Primary rate interface (PRI)

This interface supports 23 (or 30 in Asia
and Europe) B-channels plus one
64,000-bps D-channel. A unique function
of the PRI is the ability to bundle
B-channels into higher bandwidth
H-channels. For example, an HO-channel
is made up of six B-channels, resulting in
a 384,000-bps connection.

See Figure 50 on page 94 for an illustration of
a conceptual ISDN configuration. Notice that
D-channels end in the ISDN switching equip
ment adjacent to the attached terminal equip
ment. Only B-channels have end-to-end
connectivity through an ISDN.

ISDN is an evolving standard, which supports
multiple information types on a single interface,
and can be implemented over existing tele
phone networks. The key point above is
evolving. The set of standards were defined
over several years and many vendors began
their implementation without a firm architec
ture. The result is that some ISDN switch
equipment, which is claimed to be CCITT
compliant, may actually deviate greatly from
the standard. However, now that a majority of
the architecture is complete, standardized
equipment is becoming more readily available,
resulting in more ISDN connectivity options.

Design Objectives

Several factors were considered when
designing the software to support ISDN on the
AS/400 system. Characteristics, such as ease
of use, network compatibility, and operating
system principles, were refined into a set of
design objectives. These were used to guide
the design and later the implementation and
testing of the software.

Integration

The AS/400 system has consistently integrated
new technology into its machine architecture
and operating system. A key design objective
was to ensure that existing customer applica
tions take advantage of the ISDN functions
with minimal effect on configuration. This
required that the support be embedded in the
base object structure and task model.

Flexibility

One of the key attributes in any successful
design is the ability to adapt to new require
ments or changes in technology. Because
network implementations of the ISDN stand
ards are still evolving, flexibility becomes one
of the overriding factors in the system's ISDN
implementation. For example, one of the
many different network provider offerings
includes a 1 B+D subscription. That is, instead
of providing a true BRI, networks are providing
clients having data-only requirements, an
option where they use only one 64,000-bps
B-channel at a reduced cost. Although a
simple example, it illustrates the level of flexi
bility required in the design to accommodate

Integrated Services Digital Network 93

AS/400
System

ISDN Interface

Figure 50. ISDN Connectivity

the differences between network service offer
ings. The system's flexible ISDN design
allows a user to easily take advantage of the
diversity in offerings.

Simplifying Complexity

Complexity traditionally accompanies flexibility.
Every option in connectivity and configuration

94 Technology Version 2

PS/2
System

Switched B-Channel

ISDN Interface (Passive Bus)

TECH066-3

challenges users to make the right choice.
One of the central issues in designing the
system's ISDN support was reducing com
plexity by supplying inexperienced users with
the right choice using global defaults while still
providing more knowledgeable users with con
figuration parameters that could be tailored to
fit their unique network and connectivity
requirements.

Future Considerations

Finally, with ISDN still in its infancy, it is diffi
cult to predict what services customers will
require and when networks will provide those
services. A requirement for any ISDN imple
mentation is that it can be extended to support
new connectivity functions, such as X.25, addi
tional services, such as network management,
and higher bandwidths, such as primary rate
and broadband ISDN.

Object Structure

One of the key elements of the AS/400 ISDN
implementation is its integration into and
extension of the AS/400 communications
object model.

Object-Based Data Communications
Model

Most data communications implementations
require that the user configure elements that
describe the physical hardware and protocols
required for connectivity. AS/400 communica
tions configurations are described by a set of
objects, organized by the type and scope of
protocol or interface being used. In the
Version 1 AS/400 system, the key objects in
the structure were the line description, con
troller description, and device description.

• Line description

The line description describes both the
physical interface to the network, or trans-

port medium, and the associated lower
layer protocol stac/(> required for commu
nications with the adjacent network or
communications equipment, such as syn
chronous data link control (SDLC), X.25, or
token ring.

• Controller description

The controller description describes the
adjacent system, controller, or work
station, that is, the communications
partner. It further defines the higher layer
protocol stack, such as advanced program
to-program communications (APPC), to
use when communicating with the remote
equipment. The SNA type of controller
descriptions include APPC and APPN
(LU 6.2), host (LU 2) and work station
(LU 7 for example). Non-SNA controller
descriptions include the network type used
by open systems interconnection (OSI),
Transmission Control Protocol/Internet Pro
tocol (TCP/IP), and user-defined protocol
stacks, as well as asynchronous and
bisynchronous types.

• Device description

The device description describes much of
the addressing and session characteristics
required by the particular higher layer pro
tocol stack used, such as SNA logical unit
addressing and request unit sizes.

These objects are arranged in a hierarchy.
Device descriptions are attached to controller
descriptions, which , in turn , can be attached to
line descriptions as illustrated in the darker

shaded portion of Figure 51 . Notice that con
troller descriptions representing switched con
nections, such as switched lines or X.25
switched virtual circuits , may refer to several
line descriptions on which to accept or initiate
calls . Controller descriptions that represent
nonswitched connections, such as leased lines
or X.25 permanent virtual circuits, only refer to
one line description representing the non
switched transmission medium.

Network Interface

D-Channel

TECH067·3

Figure 51. ASI400 Communications Object
Hierarchy

See the Communications: Operating
Systeml400* Communications Configuration
Reference, SC41-0001, for a more detailed
description of these objects.

Extending the Hierarchy

Several types of line descriptions represent
lower layer protocol stacks that support the
multiplexing of logical connections on a single
physical medium, such as X.25 (logical chan
nels) or token ring (service access points).
For example, each of the several virtual cir
cuits supported by X.25 lines may support dif
ferent higher layer protocol stacks, each
represented by a unique controller description.
However, in the case of ISDN, each of the
B-channels may actually support unique lower
layer protocol stacks concurrently, for example,
X.25 on one channel and IDLC on another.
The pre-Version 2 object model did not include
the ability to multiplex several lower layer pro
tocols over one physical interface.

To support this type of multiplexing, a new
object called the network interface description
was introduced. This object allows the one
physical interface to support multiple lower
layer protocol stacks (line descriptions) simul
taneously. The result is that the object hier
archy has grown by one object, the network
interface description, to which line descriptions
may attach. Figure 51 illustrates how the
ISDN network interface descriptions fit into the
existing communications object hierarchy.
Notice that the figure illustrates how more than

5 The term protocol stack refers to the layers of software that support the transmission of information between adjacent communicating equipment.

Integrated Services Digital Network 95

one switched line can reference the switched
B1 -channel , allowing them to contend for the
switched resource. The nonswitched line is
dedicated for use on the B2-channel.

Network Interface Description

The network interface description integrates
ISDN's multiple, heterogeneous data links into
a new communications object. The object
describes the various data and voice bearer
channels that are controlled by one signaling
channel. Version 1 objects effectively handle
only one level of complexity. The network
interface description combines the dynamic
and multiplexing nature of ISDN into one
system object and becomes the central repre
sentation of an ISDN interface on the system.
This network interface description is:

• A configuration object that simplifies the
complex world of ISDNs by providing
defaults for all but two parameters, the
object and resource names. The network
type parameter allows the user to specify
the network or type of ISDN switch to
which the ISDN interface is attached. This
allows the system to provide values for
many of the parameters affected by
network differences. The network type
may be defined in the system's network
attributes with the ISDN configuration
objects referring to that network attribute.
Because a user typically works with only
one network provider, this allows the user
to set the value once and only once.

• A complete representation of the physical
resources and channels associated with a
customer's ISDN subscription. A single

96 Technology Version 2

network interface description describes all
the interfaces that are controlled by a
single D-channel. Each interface's chan
nels are described by a channel map
within the network interface description .
This allows for the multiplexing of physical
resources with potentially different proper
ties.

• A new level in the existing communications
object hierarchy. This provides the multi
plexing of logical resources within an inter
face. A channel (or group of channels) is
associated with a line description, thus
allowing the lines to remain conceptually
the same by separating the physical ISDN
interface from the lower layer B-channel
protocol. The other objects in the commu
nications object hierarchy are unaffected.

• The basis for supporting network-directed
resource allocation dynamically. Each
entry in the channel map may be dynam
ically assigned a line description. The
system assigns a line to a channel (or
group of channels if the network or user
specifies an H-channel) dynamically upon
notification by the network that a con
nection has been initiated by remote
equipment. Furthermore, based on infor
mation supplied by the network, the line
with the proper bandwidth capabilities and
requested lower layer protocol stack is
selected and activated upon receipt of the
notification . This allows the system to
implement the X.31 and X.32 identification
procedures necessary to fully support
switched access to X.25 networks through
an ISDN interface.

Answer Management

As discussed in the topic "ISDN: The Digital
Highway" on page 92, ISDN provides a mech
anism for passing data in information elements
(such as calling or called party numbers,
calling or called party subaddresses, and user
to-user information) from the call ing user to the
called user. The intent of the architecture is to
allow the called party to use the received data
when determining whether the incoming call
should be accepted or rejected . An analogy
could be made to a database query where the
information elements passed by the ISDN are
like search keys, and the returned result indi
cates whether the call should be rejected or
accepted and the pertinent routing information.

The receipt of call information is similar to that
defined in CCITT Recommendation X.25.
ISDNs, however, allow only seconds to
process incoming calls while X.25 networks
allow minutes. The algorithm used by the
AS/400 system must have the flexibility to
make use of the provided information but still
ensure that the call is processed within the
network time limits.

A new function exists in the AS/400 system,
called answer management, which is respon
sible for determining if an incoming ISDN call
should be accepted by the system. If so,
answer management determines which line
description should accept the call.

This function uses a new communications con
figuration object, the connection list, during call
processing. The connection list object, the
actual algorithm, and significant implementa-

tion details are covered in the following sub
topics.

Connection List Objects

The connection list object consists of one or
more entries, which can be configured by the
user to contain ISDN information. The local
system passes this information on outgoing
calls and also uses this information for
screening incoming calls, the latter case being
discussed here. The entries contain several
different fields, each corresponding to an infor
mation element, which may accompany the
call. The user can provide information that
matches the corresponding received informa
tion element data. Other special values can
be configured, such as * ANY (any information
element data value including none is accept
able) and *NONE (the corresponding informa
tion element is not accepted).

For a particular incoming ISDN call, a con
nection list object that contains an entry with
all of its fields matching the received informa
tion takes precedence over a connection list
object that has even one generic match, that
is, a value of *ANY.

The AS/400 system considers line descriptions
to be targets for incoming ISDN calls. There
fore, when configuring a line description to be
used for answering ISDN calls, one must
specify a connection list object to be used for
call screening. The system provides a default
connection list to generically match the infor
mation received with any call, thus allowing
any line descriptions referring to this con
nection list the opportunity to accept any
incoming ISDN call.

Figure 52 illustrates the contents of a con
nection list object and how the other commu
nications objects reference it. Notice that the
line description references the entire con
nection list for answering calls, while the con
troller description names the single entry to
use when placing outgoing calls.

Connection List

Entry Name TECH069-4

Figure 52. Connection List Configuration

ISDN Call Processing Algorithm

The answer management support begins by fil
tering out calls that request functions not cur
rently supported by the system, such as voice
or video. The next phase of call processing
parses the received information into key fields,
that is, those fields that can be screened by
connection list objects.

Next, a count of the greatest number of field
matches for a given entry is calculated for
each connection list object. A negative count
means that no entries match the call, and zero
indicates the connection list matches only
generically, that is, * ANY is configured for all

fields. As these counts are calculated, the
system orders the connection list objects by
their counts from the most matches to the
least.

Finally, for each connection list object on the
ordered list, the system trys to isolate a line
description that references the object and is
able to accept the call. Notice that because
the list is ordered, the system gives preference
to those connection list objects having the
highest number of exact matches. However, if
no line descriptions are available for the call,
processing continues with lower priority con
nection list objects and their associated line
descriptions.

Implementation

To implement the call processing algorithm
directly would likely result in the ISDN call pro
cessing time limit being exceeded. For
example, all of the required object references
would result in excessive page faulting, and
linear searches would further degrade perfor
mance. To enhance the performance of the
algorithm, data from the connection list object
entry information is mapped into machine
indexes (binary radix search trees supported
by the AS/400 system). One index exists for
each field category supported by the system,
such as calling party number or calling party
subaddress. The indexes provide the ability to
perform searches in logarithmic time. To
ensure that the information maintained in the
indexes exactly matches the connection list
object information, the answer management
support is notified whenever changes are
made to the objects. To further reduce search
time, only entries from active connection lists

Integrated Services Digital Network 97

(at least one line description that references
the list must be varied on) are inserted into the
indexes.

The search procedure begins by searching the
calling party number index, which is the index
with the highest likelihood of having unique
entries. If a match is found, the resulting index
key data identifies the connection list object
and entry to which it corresponds. Searches
are performed for the remaining fields of that
connection list entry. The first field that fails
both an exact and a generic search results in
the entry being bypassed. The procedure con
tinues with the next matching entry in the
calling party number index, if any.

As matching entries are found, an exact match
count is calculated and maintained in data
structures that represent the connection list
objects called connection list source/sink active
device lists (SSADL). The SSADL structures
are linked together in decreasing magnitude
order of their match counts . During pro
cessing, many of the SSADL structures must
be referenced. To help make page faults
more productive, these structures are packed
into contiguous storage so that several of them
may be retrieved in a single access. Notice
that with the algorithm, there is no need to
actually reference the connection list object
directly, thereby limiting unnecessary page
faults.

When no more exact, or finally, generic
matches are located in the first index, the
answer management support attempts to iden
tify the line descriptions that actually reference

98 Technology Version 2

the ordered connection list objects. This is
done by searching yet another machine index
that maps connection list objects to the line
descriptions that reference them. Additional
information is located in this index, such as
line state and protocol type. This information
enables line descriptions that are not call can
didates to be screened without referencing the
line description directly. The address of each
eligible line description, located during con
nection list object processing, is stored in an
array, which is dynamically increased to
accommodate the line description candidates.
To help speed up the actual processing of the
line description candidates, a fixed number is
asynchronously paged into main storage.

In the final part of the algorithm, each of the
line descriptions is interrogated to see if it can
accept the incoming call. As a line description
is checked and bypassed, a reason code is
saved in the array, and another one is asyn
chronously paged. This ensures that a fixed
number of line descriptions remains in main
storage during the selection process. Pro
cessing stops with the first line description that
is able to accept the incoming call.

If no line descriptions are eligible to accept the
incoming call, a portion of the dynamic array,
containing the names of the line descriptions
and reason codes, is saved in the error log
and a message is sent to the system operator
message queue. If problem analysis is run
from the message, it makes use of the infor
mation logged by the answer management
support to determine why each line description
was considered ineligible to receive the call.

The problem analysis procedure also analyzes
any user-selected line descriptions to deter
mine why they were not considered. This last
function is helpful in the case where the
intended line description was not varied on by
the user, which means its corresponding con
nection list object entry information was not
even available to the answer management
support.

Communications Structure

ISDN support on the AS/400 system takes
advantage of the system's existing commu
nications structure (see the article "The Com
munications and Networking Structure" in IBM
Application Systeml400 Technology,
SA21-9540). The management services
control point maps the existing communica
tions structure to the new ISDN environment
and also adds a new function for ISDN, that of
answer management. In addition to the man
agement services changes, two new I/O man
agers were added to the OS/400 task
structure. One manages the ISDN network
interface and the other manages line
descriptions representing the IDLC protocol.
Figure 53 on page 99 depicts the integration
of those new functions into the system.

Figure 53. ASI400 Data Communications Com
ponents

Remote Peer System

E1Jm
Remote
System

Remote
System

BSC = Binary Synchronous Communications
HDLC = High-Level Data Link Control

IEEE = Institute of Electrical and Electronic
Engineers

ITF = Interactive Terminal Facility
LAPB = Link Access Procedures-Balanced
LAPD = Link Access Procedures-D-Channel
MAC = Medium Access Control
VUC = Vertical Licensed Internal Code

TECH070·7

Integrated Services Digital Network 99

Management Services Control Point

The management services control point
(MSCP) is not a new task for ISDN; however,
it provides several new functions in support of
ISDN network interfaces and ISDN call pro
cessing. Although the job of processing
incoming ISDN connections resides in the
answer manager, the processing of outgoing
connections is handled by the MSCP. The
selection of a line for switched controller
descriptions, the selection of a network inter
face description for switched lines, call-out pro
cessing , and error processing or notification for
network interface description failures are all
responsibilities of the MSCP.

Answer Manager

The answer manager is the "clearinghouse" for
all ·incoming connections over ISDN, and the
answer manager implements the answer man
agement function described earlier. The ISDN
informs the system of incoming calls by
sending a SETUP message on the D-channel ,
which contains information such as the number
called , the number calling , and the type of
information and protocol that will be used for
the connection. This SETUP message is sent
to the answer manager by the ISDN I/O
manager to determine if the call should be
accepted by the system. Based on the infor
mation in the SETUP message, the answer
manager must find a line description that is in
the proper state and properly configured to
accept the call. If a suitable match is found, it
instructs the ISDN I/O manager to accept the
call.

100 Technology Version 2

The answer manager is a separate, high pri
ority function to help ensure that the system
can respond rapidly to incoming calls. Most
ISDN networks allow only limited time for a call
to be accepted, so the answer manager must
be able to process incoming calls rapidly,
something that it might not be able to do if it
were not a dedicated function on the system.

ISDN 1/0 Manager

The ISDN I/O manager provides the system
with a single interface to the call control func
tions on the D-channel of an ISDN interface.
The management services control point starts
the ISDN I/O manager when the ISDN network
interface description is varied on . The ISDN
I/O manager controls the activation of the
ISDN interface and the startup of the
D-channel protocol stack so that the system
can begin to make and receive ISDN calls.
The ISDN I/O manager also manages all
incoming and outgoing calls over the ISDN
interface.

The management services control point
requests outgoing connections over the ISDN
interface by sending a message to the ISDN
I/O manager. The ISDN I/O manager then
instructs the ISDN call control layer (0.931) in
the I/O processor to make the call, and it
informs the MSCP when the ISDN connection
is established.

Incoming connections from the ISDN network
are received by the ISDN call control layer,
which then signals the ISDN I/O manager.
The ISDN I/O manager then informs the
answer manager, which determines if the call
can be accepted. If the call is accepted by the

answer manager, the ISDN I/O manager
instructs the ISDN call control layer to accept
the call, and informs the MSCP when the
ISDN connection is established.

IDLC Line 1/0 Manager

The ISDN data link control (IDLC) line I/O
manager supports the new ISDN data link
control over an ISDN B-channel. IDLC is a
duplex protocol similar to SDLC but tailored to
take advantage of the performance benefits of
ISDN. The IDLC line I/O manager provides a
transparent interface to the ISDN network for
the existing SNA station I/O managers.

The management services control point starts
the IDLC line I/O manager when an IDLC line
description attached to a permanent ISDN
B-channel is varied on, or when a switched
connection over an ISDN B-channel is con
nected to an IDLC line description. The line
I/O manager manages the activation of the
data link control and the data interface pro
vided to the station I/O managers through its
interface to the I/O processor ISDN data link
control (0.922) .

Conclusion

The AS/400 system's Version 2 implementa
tion of ISDN meets each of its design objec
tives.

Integration is achieved by incorporating the
advanced functions of ISDN into the system's
object and communications task structure.
This integration provides for maximum perfor-

mance and results in a more intuitive view of
ISDN for the user.

Flexibility is provided with communications
objects that are easily configured. They
describe the call-related information and the
user's ISDN subscription. By providing
defaults for many network specific parameters,
the user may tailor his configuration to the
network's requirements.

ISDN's complexity is simplified by reducing
most parameters into a set of system-provided
defaults, chosen by the type of network, and
by allowing the user to avoid most of the call
related information with the system default
connection list.

Future enhancements and refinements are
possible due to an object-based task structure
that can expand to represent and employ
many of the connectivities and advanced func
tions of ISDN.

Integrated Services Digital Network 101

Transmission Control Protocol/Internet Protocol

Describes TCPI IP protocol and the ASI400
implementation of TCPI IP.

Robert L. Dick, Jonathan P. Beierle, and
Mark L. Bauman

Introduction

The growing telecommunications industry has
created a requirement for interoperability
between dissimilar vendor equipment. One of
the ways this requirement can be fulfilled is
through the use of Transmission Control
Protocol/internet Protocol (TCP/IP). TCP/IP is
a collection of vendor-independent commu
nications protocols that support peer-to-peer
connectivity functions for both local and wide
area networks. TCP/IP is used to organize
computers and communications equipment into
a network. This network can be a single local
area network or a set of networks.

The use of TCP/IP is pervasive in the current
telecommunications marketplace. An example
of this marketplace dominance is the interna
tional collection of networks known as the
Internet. The number of networks in the
Internet is currently in the thousands. TCP/IP
ties all of the Internet's individual networks
together so that any individual user can reach
systems anywhere else in the Internet.
TCP/IP allows all nodes in the Internet to

102 Technology Version 2

communicate as if they were on the same
physical network, regardless of their specific
hardware or software architecture, and in this
way TCP/IP provides interoperability.

TCP/IP is an international standardized pro
tocol. TCP/IP and its constituent protocols are
standardized by the Internet Activities Board.
The document that provides the standard for a
particular protocol is called a Request For
Comment (RFC). There are over 1,000 RFCs
available today. RFCs are available from the
Data Defense Network (DDN) Information
Center at Government Systems, Inc. (Network
Information Center) in Chantilly, Virginia.

TCP/IP Structure

TCP/IP consists of a four-layered structure of
protocols (see Figure 54 on page 103)
ranging from low-level, hardware-dependent
programs to high-level applications. Each
TCP/IP layer provides services to the layer
above it and uses the services provided by the
layer below it.

Data Flow

In the computer networks that use TCP/IP pro
tocols , information is transmitted between

nodes in the form of packets. A packet
includes an Internet Protocol (IP) header and
data. A packet can be a complete IP
datagram or a fragment of an IP datagram. (A
datagram is the basic unit of information in the
TCP/IP protocol, consisting of a source
address, destination address, and data.) After
packets are received by the network interface
or data link layer, they are passed to the
internet layer. The internet layer is imple
mented as the IP. Datagrams are reassem
bled if necessary, and stripped of the IP
header before being passed to the next higher
protocol layer called the transport layer. The
transport layer is usually implemented as
Transmission Control Protocol (TCP) or User
Datagram Protocol (UDP). The transport layer
takes the datagrams (now called segments),
strips off the transport layer's header, reas
sembles the data stream, and passes this data
to the application layer. The application layer
then processes the data.

Hardware Layer

The hardware layer consists of the hardware
specific network protocols. These protocols
include token ring, Ethernet, X.25, and others.
The network protocols are not really a part of
the TCP/IP protocol. However, the IP must
directly interface to these network protocols to
operate across a network.

API = Application Program Interface
FTP = File Transfer Protocol

ICMP = Internet Control Message Protocol
IEEE = The Institute of Electrical and

Electronics Engineers

Figure 54. Relationship of ASI400 TCPIIP
Implementation to TCPIIP Layers

Application

Transport t

I
I

I
I

I
f

Internet

Network Interface
or Data Link

Hardware

J

L _____________ _________ _ __ _ ________ _ _

LLC = Logical Link Control
PING = Packet InterNet Groper

SMTP = Simple Mail Transfer Protocol
SNADS = Systems Network Architecture

Distribution Services
TECH11 9-3

Network Interface or Data Link Layer

The network interface or data link layer pro
vides the bridge between the I P and the data
link and hardware layer. These are commonly
referred to as drivers.

Internet Layer

The IP provides the basic transportation rules
for communications between hosts (unique
internet addresses with associated system
names) on the different networks that make up
an internet (an individual network that mayor
may not be part of the Internet) . IP is respon
sible for implementing the internet concept,
which is accomplished by routing datagrams
from a host on one network through a series of
gateways to a host on another network. IP
communicates directly with the network inter
face or data link layer. IP makes the con
nected networks appear to the layers above as
a single, virtual network. At the internet level,
all addressing is host to host, using fixed
length addresses to identify source and desti
nation hosts. The protocol layers above only
need to know each host's internet address to
make a connection. Because IP does not
acknowledge receiving a datagram and is not
responsible for retransmitting or providing flow
and error control, reliable delivery must be
ensured by a higher level protocol, such as
TCP, or an application.

Internet Control Message Protocol (ICMP) is
an integral part of the IP's implementation.
The ICMP provides for error and control mes
sages between host systems (peer com-

Transmission Control Protocol/Internet Protocol 103

puters in a network) and gateways. Gateways
and host systems use ICMP to send reports of
problems. ICMP also includes an echo
request or reply to test whether a destination
can be reached and is responding . This is
commonly referred to as PING (Packet
InterNet Groper).

Transport Layer

The Transmission Control Protocol (TCP) pro
vides a reliable delivery of a stream of bytes in
sequence. It is a connection-oriented transport
mechanism. TCP takes a stream of data,
breaks it into segments (a TCP header and
application data) , sends each one individually
(using IP) , and then reassembles the seg
ments back into the original stream on the
receiving node. If any segments are lost or
damaged during transmission , TCP detects
this fact and resends the missing segments.
TCP communicates without a regular or pre
dictable pattern (asynchronously) with applica
tions and assumes that IP is the underlying
protocol.

The User Datagram Protocol (UDP) provides
an application-to-application delivery service
with a minimum of protocol overhead. Unlike
TCP, UDP is connectionless and does not
offer guaranteed delivery of data. An applica
tion should use UDP to avoid the TCP over
head of connecting and disconnecting ; the
application takes responsibility for acknowledg
ment and retransmission to ensure reliable
data transfer.

104 Technology Version 2

Application Layer

The application layer consists of several inde
pendent protocols that implement commonly
used applications. Most TCP/IP implementa
tions offer these three common application
protocols:

• TELNET Protocol (TELNET) allows
remote logon to hosts within a TCP/IP
network.

• File Transfer Protocol (FTP) allows
copies of files to be exchanged between
hosts running TCP/IP.

• Simple Mail Transfer Protocol (SMTP)
allows electronic mail to be exchanged and
manipulated between hosts running
TCP/IP.

Almost all TCP/IP applications incorporate the
idea of a server and a client. A server is a
designated computer or application on the
network that makes specialized services avail
able to other computers on the network (the
clients) and handles requests from programs
on those computers. For example, a TELNET
server provides TELNET application services
to any TELNET client that requests them. The
client can be any program that communicates
with or uses the services of TCP/IP. Different
computers provide specialized services for the
benefit of the entire network.

Host Identification

Each node on a network is known as a host
and has a unique address called an internet
address. This address is a 32-bit integer. An
internet address is expressed in the form
www.xxx.yyy.zzz, where each field is the
decimal representation of 1 byte of the
address. For example, the address whose
hexadecimal representation is · X' 82638001' is
expressed as 130.99.128.1.

Within private networks, administrators can
assign addresses according to their prefer
ence. However, if the network connects to the
Internet (the collection of government, military,
research, and university networks), then the
internet addresses must be assigned by Gov
ernment Systems, Inc. (Network Information
Center) in Chantilly, Virginia. This prevents
any two hosts on the Internet from using a
common internet address.

TCP/IP uses internet addresses to route
datagrams between systems in a network.
Because internet addresses can sometimes be
difficult to remember, another naming conven
tion (the domain name) provides an easier way
to identify systems in a network.

A domain name identifies the system within a
hierarchy of systems and can be used by
remote servers to associate an internet
address with the domain name of the system.
Domain names consist of labels that are sep-

arated by periods (for example, ABC. DEF. XYZ).
A shortened version of a domain name (a host
name) can also be used to identify a system
and the associated internet address. Host
names are a sequence of characters.

It is a common practice to use hierarchical
names that allow predictable extensions of a
network for change and growth . Domain
names normally reflect the delegation of
authority or a hierarchy used to assign them.
For example, the name SYS1.MFG.ABC.COM
can be broken down into the following:

COM: All commercial networks.

ABC.COM: All systems in the ABC Company's
commercial network.

MFG.ABC.COM: All manufacturing systems in
the ABC Company's commercial network.

SYS1.MFG.ABC.COM: A host named SYS1 in
the manufacturing area of the ABC Company's
commercial network.

The COM designation is one of several
domain names used when connecting to the
Internet. Some of the domain names follow :

COM
EDU
GOV
MIL
NET
ORG

ARPA
Country code

Commercial organizations
Educational institutions
Government institutions
Military groups
Major network support centers
Organizations other than
those listed above
Temporary ARPANET domain
Countries other than USA

TCP/IP on the AS/400 System

The AS/400 system implements TCP/IP as a
licensed program called TCP/IP Connectivity
Utilities/400. This licensed program provides
another way for the AS/400 system to operate
in telecommunications networks.

TCP/IP has been available as a product on the
AS/400 system since Version 1 Release 2.
Currently, it supports IP, ICMP, Address Reso
lution Protocol (ARP), TCP, UDP, FTP, SMTP,
TELNET, Network Status (NETSTAT), TCP
and UDP programming interface, and exten
sive configuration support.

The AS/400 TCP/IP product runs in a sub
system called QTCP. The QTCP subsystem
must be started before any TCP/IP application,
such as TELNET, FTP, SMTP, PING, or
NETSTAT, can be used.

A number of CL commands, such as
NETSTAT, TELNET, FTP, Add TCP Link
(ADDTCPLNK), Work with Names for SMTP
(WRKNAMSMTP) and others, are part of the
TCP/IP product on the AS/400 system. The
CL commands are used to perform TCP/IP
functions and configuration.

The following topics detail the major applica
tion protocols and interfaces implemented in
the TCP/IP Connectivity Utilities/400 licensed
program as of Version 2 Release 1.

TELNET Protocol

The TELNET protocol allows a system (the
TELNET client) to access and use the
resources of a remote system (the TELNET
server) as if the TELNET client's work station
were locally connected to the remote system.

TELNET is implemented in two parts on the
AS/400 system: the TELNET client and the
TELNET server.

The TELNET protocol provides a mechanism
for the client and server to negotiate options
that control the operating characteristics of a
TELNET connection. Part of these negoti
ations involve determining the optimal terminal
type that is supported by both the client and
server. Depending on the terminal type nego
tiated, the TELNET server or TELNET client
operates in one of three possible operating
modes on the AS/400 system: ASCII line
mode, 5250 full-screen mode, or 3270 full
screen mode. The functions available in a
TELNET session depend on the operating
mode.

TELNET Server

The TELNET server is automatically set up to
support TELNET connections when the QTCP
subsystem is brought up.

When a TELNET session is initiated, a virtual
device is allocated by the TELNET server. A
virtual device description is associated with
each TELNET session on the TELNET server

Transmission Control Protocol/internet Protocol 105

• Creating libraries, files, and members with
AS/400 FTP server subcommands.

• Submitting and accepting remote CL com
mands.

• Running FTP unattended (in batch). FTP
can be run unattended using either a
REstructured eXtended eXecutor (REXX)
language procedure or a CL program. An
example REXX procedure and an example
physical file member are shipped as part
of the TCP/IP product.

• Using ASCII and EBCDIC mapping tables
for AS/400 FTP servers and FTP clients to
map incoming and outgoing data.

AS/400 FTP currently does not support the fol
lowing:

• Sending or receiving save files
• Transferring individual records within files
• Transferring files greater than 16 million

bytes
• Automatically sequencing a source phys

ical file member after its transfer to the
AS/400 system

Like TELNET, FTP supports both client and
server functions. To start an FTP client
session with another TCP/IP host, the FTP or
the Start TCP FTP (STRTCPFTP) CL
command may be used. When the FTP con
nection is established to the remote TCP/IP
host, the FTP client session is prompted for a
user 10 and a password. This maintains the
security in the file transfers between hosts.

The FTP server function is enabled when the
QTCP subsystem is started.

Within the FTP connection, commands are
used to transfer files or change the FTP con-

nection characteristics . These commands are
called FTP subcommands. Some of the FTP
subcommands accept a file name as a param
eter. The file naming conventions of the
system on which the file will reside must be
used. The format used to name a file is
dependent on the system. Some systems limit
the length of a file name, and some systems
are uppercase and lowercase sensitive. For
example, the AS/400 system uses the format:

Libraryname/Fi 1 ename.Membername

and UNIX**-based systems allow specifications
such as :

/etc/hosts
/usr/jack/test.c
/usr/*

Files may be transferred individually or in mul
tiples . Also, multiple files that include a
common subpart in their names can be trans
ferred by using wildcard characters.

The MODE subcommand specifies how the
bits of data are transmitted, and the TYPE
subcommand defines the way in which the
data is represented .

The appropriate transmission attributes must
be used to transfer files between two systems
to preserve the content and structure of the
files. Table 1 shows how to set these attri
butes for different systems. An EBCDIC text
file normally contains standard, displayable
characters . An ASCII text file normally con
tains standard, displayable characters and
end-of-record characters. A binary file can
contain any character and is transferred
"as is. "

Table 1. Recommended Methods for Data Transfer

Transfer between System Data Transfer
Types Type Type, Mode

AS/400-to-AS/400 Text EBCDIC,
Stream

AS/400-to-ASCII Text ASCII ,
Stream

ASCII-to-AS/400 Text ASCII,
Stream

ASCII-to-AS/400-to-ASCII All data Binary,
Stream

When a connection is established with the
remote system, FTP subcommands can be
entered. Each subcommand has a unique
purpose. The AS/400 FTP client supports the
following subcommands (the purpose is
apparent by the name of the command in most
cases) :

ACCT APPEND ASCII BINARY
CD CLOSE DELETE DIR
EBCDIC GET HELP LOCSTAT
LS MDELETE MGET MODE
MPUT NOOP OPEN PASS
PUT PWD QUIT QUOTE
RENAME SENDPORT SENDSITE SITE
STATUS STRUCT SUNIQUE SYSCMD
SYSTEM TYPE USER

The AS/400 FTP server supports the following
subcommands :

ABOR ADDM ADDV APPE CRTL CRTP
CRTS CWO DBUG DELE DL TF DL TL
HELP LIST MODE NLST NOOP PASS
PASV PORT PWD QUIT RCMD RETR
RNFR RNTO SITE STAT STOR STOU
STRU SYST TIME TYPE

Transmission Control Protocol/internet Protocol 107

FTP architecture limits FTP server subcom
mand names to 4 characters or less. Thus,
the specialized AS/400 FTP server subcom
mands of ADDM, ADDV, CRTL, CRTP, CRTS,
and DL TL are really abbreviated names of
equivalent (but longer) AS/400 CL commands.
When the AS/400 remote server receives
these subcommands, it passes them to the
AS/400 subcommand interpreter as follows :

• ADDM = ADDPFM (Add Physical File
Member)

• ADDV = ADDPVLM (Add Physical File
Variable Length Member)

• CRTL = CRTLIB (Create Library)
• CRTP = CRTPF (Create Physical File)
• CRTS = CRTSRCPF (Create Source

Physical File)
• DL TF = DL TF (Delete File)
• DL TL = DL TLiB (Delete Library)

A unique FTP server subcommand supported
by the AS/400 system is the remote command
(RCMD) subcommand. It runs CL commands
on the FTP server system. The length of the
RCMD subcommand string is limited to 94
characters. Because no prompting is available
for the RCMD subcommand, the RCMD sub
command string must include all necessary
parameters to run the CL command.

The following is an example of submitting a job
from a remote system using the FTP server
subcommand of RCMD:

(JJOTE RCI() S8i'\J<lI J<lI{ FTPS) J<lIO(QTCP IQTCPFTPS) RTGDTA(*J080)
RQSOTA{ *J080)

108 Technology Version 2

Simple Mail Transfer Protocol

The Simple Mail Transfer Protocol (SMTP) is
used to send or receive electronic mail. For
consistency with other AS/400 mail functions,
SMTP is coupled with Systems Network Archi
tecture (SNA) distribution services (SNADS).
SNADS is part of the Operating System/400
licensed program, and it contains extensions to
support SMTP. Because SMTP is coupled to
SNADS, users can send mail to various types
of users (not just SMTP users) with one con
sistent user interface. The distribution services
(receive, forward , and send electronic mail) for
SAA OfficeVision/400' functions are provided
by SNADS.

SMTP supports the following functions :

• OfficeVision/400 notes and messages

• AS/400 documents in final-form text (FFT)
format

• Documents and messages through
SNADS using IBM Displaywriter or Per
sonal Services/PC

• Documents and messages using AS/400
commands

Note: If the SAA OfficeVision/400 product
is not installed, users can still send and
receive SMTP messages without using
OfficeVision/400.

• SMTP notes as an intermediate TCP/IP
hop on an SMTP distribution

• Transporting binary files across TCP/IP
links

SMTP does not support the following :

• Distributing objects

• Transferring revisable-form text (RFT) doc
uments

Note: If a document is saved on the
AS/400 system in RFT format, it must
have its format changed to FFT before
sending the document.

• Sending information using the Send
Network Message (SNDNETMSG), Send
Network Spooled File (SNDNETSPLF), or
Send Network File (SNDNETF) command

• Transferring documents exceeding
16 million bytes

Like TELNET and FTP, SMTP supports both
client and server functions on the AS/400
system.

One major advantage of the AS/400 SMTP
implementation is that a network that uses
SNADS and an office application to send and
receive mail can connect to another network
that uses TCP/IP and SMTP for mail distribu
tion . This can be accomplished by using an
AS/400 system that is configured with TCP/IP
and SNADS. This connection is called a
gateway. See Figure 55 on page 109.

TECHl18-3

Figure 55. Gateway between a SNADS and an
SMTP Network

When a distribution is sent from a SNADS
network to an SMTP network, the systems in
the SNADS network use SNADS to send mail
to the gateway. At the gateway, the SNADS
distribution is converted to an SMTP distribu
tion, which is then sent to the final destination
using the SMTP function. Similarly, when a
distribution is sent from an SMTP network to a
SNADS network, the SMTP function is used to
send mail to the gateway. At the gateway, the
SMTP distribution is converted to a SNADS
distribution, which is then sent to the final des
tination .

When an AS/400 system is used as a
gateway, it must be configured with TCP/IP
and SNADS; however, other systems in the
SNADS network need not have TCP/IP
installed and need no special configuration.

TCP/UDP Programming
Interface

An enterprise often has unique interoperability
requirements for its private networks. This
means that the enterprise must provide its own
applications to fulfill these unique require
ments. One way this is accomplished is with
the AS/400 TCP/UDP programming interface.
The TCP/UDP programming interface provides
a system programmer with a programming
interface to TCP or UDP as a set of procedure
calls from an AS/400 Pascal program.

Network Management

When an AS/400 system is running TCP/IP
and users are using FTP, TELNET, and
SMTP, a system administrator needs to
monitor and control the network status of the
AS/400 system. The network status
(NETSTAT) function on the AS/400 system
provides the information about the status of
TCP/IP network routes , links, and connections
on a local system. This function also allows
the administrator to end TCP/IP connections
and to start and end TCP/IP links.

There are three options available for the
NETSTAT function on the AS/400 system :

• Work with TCP/IP Link Status

The link status display provides the most
current summary of link activity. This
display provides options to start and end
TCP/IP links.

• Display TCP/IP route information

The route information function allows the
system administrator to view information
about TCP/IP routes that are currently con
figured on the system.

• Work with TCP/IP Connection Status

The connection status display provides
options to display and end TCP/IP con
nections between local systems and
remote systems.

Conclusion

Customers often have equipment from more
than one vendor to solve their particular data
processing needs. TCP/IP is a suite of proto
cols that allow equipment from many vendors
to interoperate all the way from the low-level
physical interfaces up through the actual data
exchange at the application level. TCP/IP
Connectivity Utilities/400 is a licensed program
that services customer needs through the
implementation of the TCP/IP suite of proto
cols.

Acknowledg ments

The authors would like to acknowledge the
contributions of Paula K. Muth ,
Rob V. Downer, and Paul R. Chmielewski in
supplying information used in the creation of
this article.

Transmission Control Protocol/internet Protocol 109

Systems Management

Describes the many advancements in systems
management functions of the ASI400 system.

Earl W. Emerick and James R. Morcomb

Introduction

Systems management and the electronic cus
tomer support functions of the AS/400 system
bring customers a set of capabilities that allow
them to be more productive in both a stand
alone system and in a network environment.
The combination of these two key areas are
cumulatively referred to as systems manage
ment.

Systems management functions are ever
growing in breadth and depth with a focus on
increased productivity across a broad range of
users, network types, and systems. This
article discusses the background and founda
tion provided in Version 1 and the subsequent
enhancements in Version 2 of the AS/400
system and systems management solutions
targeted at helping users manage their
systems.

Background

The AS/400 system is being installed in envi
ronments of ever-increasing complexity. Just

110 Technology Version 2

a few years ago, mid-range computers were
primarily installed as small stand-alone
systems in small peer networks and as nodes
on System/370* host networks. However, the
AS/400 system is now being installed in larger
numbers in complex networks since its initial
availability. In many cases a System/370 or a
System/390* host manages these networks
using NetView* and INFO licensed programs.
In addition, more and more complex networks
are now hosted and managed through the
AS/400 system. In both cases the system is
expected to manage the attached networks
(wide area network [WAN] or local area
network [LAN)) and downstream systems, such
as Personal System/2 (PS/2*) and RISC
System/6000* (RS/6000) systems.

In Version 1 Release 1, the AS/400 system
established a new benchmark of excellence in
service support and systems management
through its electronic customer support capa
bility. In Releases 2 and 3 of Version 1, the
electronic customer support and systems man
agement capability were enhanced with new
operating system functions and licensed pro
grams, such as the AS/400 Systems Manage
ment Utilities.

The focus of Version 1 was to build a founda
tion for systems management function on the
AS/400 system and to establish an initial

capability for central enterprise management
using the system. Much of the foundation has
been built and the introduction of Systems
Management Utilities provided a major step
ping stone into the central enterprise manage
ment environment.

The introduction of SystemView* technology in
September 1990 and the announcement of
Version 2 Release 1 in April 1991 also estab
lish new directions for systems management
on the AS/400 system.

To better understand the technical and func
tional growth in systems management, a
summary of the Version 1 major capabilities
follows.

Version 1 Foundation

In Version 1, the architectural foundation and
functional building blocks for AS/400 systems
management were established. Figure 56 on
page 111 provides an overview of the key
functional building blocks.

For more information about these building
blocks, refer to the article "Electronic Customer
Support" in the IBM Application Systeml400
Technology, SA21-9540.

ACT = Alert Code Table
Arch = Architecture

HW = Hardware
IPL = Initial Program Load

PTF = Program Temporary Fix
Q & A = Question and Answer

RCT = Reference Code Table
SRC = System Reference Code

SW = Software

•

--.-
-- -

~ t

I
!
. '

i Send PTF

II Send Answer to Question

Access IBMLink

Figure 56. Building Blocks

t

t~-~/. .
;.l.: L· ~,. ;.:...._ ~.. :-;;- ...

Customer

~-

Dispatch Service

Route Problem to Product

Support Center
TECH040-7

Fundamental to the systems management
solutions are the architectures and design con
cepts, which are integrated into all levels of the
AS/400 system.

AS/400 systems management is built on stra
tegic architectural foundations. Key architec
tures are:

• Common input/output (I /O): This architec
ture provides the basis for system man
agement communications between
bus-attached I/O devices and the Oper
ating System/400 (OS/400) licensed
program.

• Vital product data (VPD): VPD provides
the common definition of the product infor
mation embedded in all levels of hardware
and software on the AS/400 system.

• Systems Network Architecture (SNA) alert:
The OS/400 alert manager provides a
complete implementation of the IBM SNA
alert architecture.

• System reference codes (SRC) : SRCs
provide a standardized approach for com
municating local system problems to
OS/400 programs.

• Advanced peer-to-peer networking
(APPN): The APPN architecture is imple
mented in the operating system and pro
vides the basis for network connectivity,
local and remote transparency for central
ized system management solutions, and
network management for the AS/400
system.

Systems Management 111

Two basic design concepts are essential to
enable the integrated and automated systems
management capability of the system. They
are:

• Self-identification: The hardware and soft
ware components of the AS/400 system
contain self-identifying information called
VPD. VPD is essential to the automated
processes for automatic configuration,
resource management, problem manage
ment, change management, system
upgrade, and systems management solu
tions.

• First failure data capture (FFDC) : Problem
management on the AS/400 system is
based on the FFDC capability. FFDC is
built into all levels and components of the
system. Problems are detected at the
point of origin, and the necessary data to
resolve the problem is captured. The data
is automatically analyzed to identify the
recommended corrective action. The oper
ating system is notified of the problem, and
supporting data is logged to enable follow
up if the recommended corrective action
does not resolve the problem. One major
design point in this process is to minimize
problem re-creation.

Three additional design concepts provide a
strategic advantage for the implementation of
systems management on the AS/400 system.
system . They are:

• Integration: AS/400 systems management
solutions are highly integrated. Function

112 Technology Version 2

and data are shared between OS/400
systems management components and
systems management applications. In
addition, the systems management func
tions use other integrated system func
tions, such as the user interface manager,
storage and data management, security
management, and communications
support.

• Automation: A basic concept of AS/400
systems management is to simplify or
eliminate user tasks through automation .
This was accomplished with integrated
process managers for functions such as
software installation, automatic configura
tion, PTF management, scheduled perfor
mance data collection , first failure data
capture, remote unattended operations,
and transparent connectivity to support
systems using electronic customer support
functions.

• Electronic customer support: This pro
vides the components, integrated in the
OS/400 licensed program, that help auto
mate service and support for all levels of
hardware and software on the AS/400
system.

Version 1 Solutions

In Version 1, solutions were provided in all dis
ciplines of systems management. The essen-

tial functions to the overall systems manage
ment capability on the AS/400 system
included:

• Alert manager and alert log
• Problem manager and log
• Problem analysis utilities and error or

event logs
- Problem analysis and resolution
- User-identified problem resolution

• Electronic customer support
- Hardware and software service

request
- PTF ordering and delivery
- Question-and-answer function
- Access to IBM Link
- IBMLink file transfer

• Automatic configuration
• Resource manager and database
• Copy screen image
• Display station pass-through
• Performance monitor and data logging
• Change management and PTF distribution

and installation
• Remote unattended operations support

- Remote power control
- Remote IPL

In addition, two licensed programs provided
significant additional function for managing the
AS/400 system in Version 1.

• IBM AS/400 Performance Tools: This
program provides a set of tools to help the
AS/400 customer monitor, track, diagnose,
and model system performance. The tools
provide interactive graphs and text-based
views of the performance data collected by
the OS/400 performance monitor. Func
tions in AS/400 Performance Tools include
the ability to:

- Produce reports depicting resource
and system wide use

- Select groups of users and resources
to report on

- Display graphical and character
reports of collected data

- Display real-time system activity
- Do capacity planning based on col-

lected data and modeled growth sce
narios

• IBM AS!400 Systems Management Utili
ties: This program provides the capability
for an AS!400 system to become a
manager for all of the AS!400 agent
systems in a network (see Figure 57).
Using Systems Management Utilities, the
managing system can:

- Receive and process PTF orders from
any AS!400 agent system

- Answer problems from AS!400 agent
systems

- Perform remote problem analysis
- Track all problems centrally and main-

tain a central problem log
- Provide centralized electronic cus

tomer support for all AS!400 systems
in the network

AS/400 Manager

i;-

Agent

PS/2
System

AS/400
Agent

IBM Support
Systems Accessed
by Electronic
Customer Support

AS/400
Agent

RS/6000
System

TEC H039-2

Figure 57. ASI400 Manager and Agent
Systems in a Network

The agent systems can:

- Send PTF orders to a managing
system

- Request service from the AS!400
manager system

- Have problems remotely analyzed by
the manager system

- Track all problems relative to their
problem domain

Version 1 of the AS!400 system successfully
met three key goals:

• Support initial customer needs for man
aging the AS!400 system in a single
system environment.

• Provide initial functions for centrally man
aging multiple AS!400 systems and the
network that connects them.

• Build a strategic state-of-the-art foundation
for a full systems management solution on
the system.

Refer to Figure 58 on page 114 for an over
view of the systems management structure
and each layer's design objectives. Inte
gration, automation and well-defined compo
nent responsibilities are key to all levels of the
structure.

Systems Management 113

- Self-Defining

- Integrated
Management

- Electronic
Customer Support

- Automation

- Self-Defining

- Integrated
Management

- Automation

- Self-Diagnosing

- Self-Reporting

- Resolution-Oriented

CUA = Com mon User Access

Figure 58. Structure Overview

114 Technology Version 2

TECH038-2

Version 2

Since Version 1, many new additions have
been made to the systems management direc
tion and functions. One significant area is the
System View additions and direction. The
remainder of this article discusses functional
additions and a portion of System View tech
nology. For more information on SystemView
technology, refer to the following publications:

• System View Concepts, SC23-0578

• System View End-Use Dimension Consist
ency Guide, SC33-6472

• System View and the Application
Systeml400 System, GA21-9607

SystemView Technology
I ntrod uction

System View technology was introduced in
September 1990 as the IBM structure for
systems management. The SystemView struc
ture provides a model , which the AS/400
system will implement over time, for building
consistent, heterogeneous systems manage
ment solutions across all Systems Application
Architecture (SAA) platforms. The structure is
made up of three dimensions (refer to
Figure 59 on page 115). Note the similarity
between these dimensions and the Common
User Access (CUA) interface, shared data, and
central system structure in Figure 58.

The end-use dimension provides the inte
grated work place for SystemView applica
tions. The SystemView work place is iconic,
object oriented, task related, and CUA
compliant.

The data dimension provides a framework for
common data definition and data sharing
between System View applications. The data
model is object-oriented with an SAA SOL
interface.

The SystemView application dimension is
divided into six disciplines (business, change,
configuration , operations, performance, and
problem management). The application func
tion is integrated within and across disciplines
to provide overall sharing of a function. Exam
ples of function sharing in the AS/400 system
would be problem management's use of the
change management function to resolve a soft
ware problem or change management's use of
resource data (VPO) to determine the product
level.

The AS/400 system is positioned as a strategic
SystemView managing system. The arch itec
ture, design concepts , and functional compo
nents of its systems management solutions
place the system in a good position for imple
menting the new SystemView structure. The
following topics discuss key technologies in
terms of each of the three dimensions of
SystemView technology.

End-Use
Dimension

Figure 59. SystemView Dimensions

End-Use Aspects of Systems
Management

The AS/400 system spans a large range of
users from a single-user environment, a
departmental node in a System/390 network,
and as the host of a large network of complex

Data
Dimension

TECH042-2

systems (both personal computers and AS/400
systems) .

The user interface is consistent across the
range of user environments on the AS/400
system. It provides guided access for new
users as well as fast path access for experi-

enced users to a set of systems management
functions.

All of the AS/400 systems management appli
cations supplied by IBM use the same user
interface. This provides a common "look and
feel" to the systems management functions
and should ease users' learning of new func
tions as new functions are provided.

The systems management user interface is
supported by integrated process managers
that provide automated processing of under
lying functions, greatly simplifying the overall
user task that is to be performed. In Version 2
Release 1 of the AS/400 system, the new
licensed program IBM SAA SystemView
System Manager/400 was announced.
System Manager/400 replaced Systems Man
agement Utilities as one of the strategic
licensed programs selected to bring
SystemView technologies to the AS/400
system and its users. The System
Manager/400 and the OS/400 licensed pro
grams work together through an integrated
process manager to allow the user to receive
notification of a problem, analyze the problem,
request service (for the failing resource in the
network), and provide solutions to the problem
from a single point of reference.

The set of systems management programs
(OS/400, System Manager/400, and Perfor
mance Tools/400) present information and
provide functions in a consistent way using the
Common User Access (CUA) definitions. The
CUA interface is an SAA specification that
describes the way information should be dis
played on a screen and the interaction tech
niques between users and computers. This

Systems Management 115

consistent approach and the extensive auto
mation provided by the internal process man
agers enhance a user's productivity in
operating a single system or a network.

For example, remote AS/400 errors cause
problem log information on both the agent and
managing systems to be automatically
updated. An alert flows the error to the man
aging system, notifying the central user or
operator of the condition. The central operator
may then select the problem reported from the
alert. This provides a view of the information
about the problem and enables the central
operator to remotely analyze the problem on
the agent system to determine the cause of
the error. Both the agent system and man
aging system problem logs keep up to date as
to the actions taken to resolve the problem.

In this example, the internal process manager
manages the functional flow by receiving the
problem notification, notifying the user, pro
viding the user with resolution alternatives,
managing the system interconnection, updating
the problem logs, and analyzing the problem
as a single user task. The state of the
problem can be found using the Work with
Problems command. Additional problem infor
mation associated with the reported problem
can also be viewed through this same inter
face on either the agent or managing system .
This improves the productivity of both the
agent and managing system personnel and
helps to keep the user's customer satisfaction
high.

This example demonstrates how many dif
ferent applications and internal software com
ponents interact to provide the user with

116 Technology Version 2

problem management control that is integrated
and smooth flowing.

The AS/400 system provides functions in each
of the disciplines of the SystemView tech
nology. Examples of the components that
provide functions for each discipline follow:

• Problem management
- Problem manager
- Alert manager
- Message handling
- Electronic customer support compo-

nents
- Configuration manager
- Analyze problem (user defined and

system detected) component
- System Manager/400 problem and

change manager components
• Change management

- Distributed systems node executive
(DSNX)

- PTF manager
- System Manager/400 PTF manager
- Software inventory components

• Operations management
- PC Support
- Distributed host command facility

(DHCF)
- Display station pass-through
- System Manager/400 remote problem

analysis
• Performance management

- Performance monitor
- Performance Tools/400 capacity

planner
- Performance Tools/400 advisor

including graphical support
• Business management

- IBMLink (accessed through work with
product information)

- IBM Link file transfer
- Order process component
- Question-and-answer (Q & A) compo-

nent
• Configuration management

- APPN topology components
- Hardware and software inventory com-

ponents
- Automatic resource configuration com

ponents

Each of these components depends upon up
to-date access to the data described in the fol
lowing topic.

Data Aspects of Systems
Management

AS/400 systems management data is com
prised of electronic customer support contact
information, routing information, alert and user
notification information, configuration informa
tion about hardware and software resources,
as well as performance, operations, business,
change, and problem data elements.

Conceptually, the design objectives for
systems management provide for automatic
collection of data, allow access from many
applications, cross-correlate the data where
possible, and store it once. Refer to Figure 60
on page 117.

Applying this concept to the data used for
systems management on the AS/400 system
yields the implementation shown in Figure 61
on page 118. This data is accessible to
numerous systems management functions and
applications. Key data can be accessed from

TECH094· '

Figure 60. Systems Management Oata Con
cepts

other customer-written applications as well. It
is stored in a way so as to minimize replication
of the data and automatically update data
when a systems management task is per
formed . This increases user productivity
through automation and reduced duplication of
information. It also increases the accuracy of
the electronic customer support and systems
management information so that the decisions
can be made from a consistent, integrated,
single view of the information.

Data is automatically collected when feasible
and in some instances entered or changed by
the customer. Examples of key systems man
agement data include:

• Q & A database
• PTF repositories
• Problem logs
• Contact data including service requester

and provider routing information
• Alert code table (ACT) and reference code

table (RCT)
• Performance data
• Hardware and software VPD and config-

uration data
• Message files
• Alert log and sphere of control (SOC)
• Advanced peer-to-peer networking (APPN)

information

User access to systems management data
extends into the IBM support systems (IBM
service support and market support systems)
through electronic customer support functions.
This additional data is accessible from remote
systems and provides users with information
about publications, order information, and
more. Examples of additional data provided
by IBM support systems include:

• Product information
- Publication order listings
- Order Information
- Announcement letters
- Marketing information
- Sales literature
- Education information

• IBM service support systems
- Problem management information
- PTFs

• IBM market support systems
- Q & A database

One of the key aspects of the data dimension
of systems management is the integration and
correlation of the data between data elements.
The problem log, alert log, PTF repository,
message files , and contact data correlate
using key data to allow a total system or
network view of information. Refer to
Figure 61 on page 118 for some of the key
data used to correlate systems management
information. These data correlations along
with the applications provide solutions to the
user and are key to the functional flow
managed by the internal process manager dis
cussed in the topic "End-Use Aspects of
Systems Management" on page 115.

Automation of data collection, multiple uses of
the same data by multiple applications, corre
lation of data, and integrating the data across
disciplines are critical factors in providing a
complete systems management solution.
These factors increase data accuracy, reduce
redundant data management on the part of
both the system and the user, and increase
efficiencies and productivity of both the user
and the user's customers.

Systems Management 117

MSGID = Message Identifier

Service
Support Data

PMR ID and
Contact Data

!

Service
Requester

l

PMR = Problem Management Record

Figure 61. Systems Management Data Corre
lation

118 Technology Version 2

Al ert ID and Problem ID

VPD

IBM Support Systems

AS/400
System

TECH041 ·5

Application Aspects of
Systems Management

In addition to the many changes to the data
and end-use dimensions of AS/400 systems
management functions, the application dimen
sion has also been enhanced. Systems man
agement functions are provided in the
operating system.

The newest and most significant addition to
the set of systems management applications is
the System Manager/400. It provides exten
sions to the internal process manager into the
centralized problem management and change
distribution process.

System Manager/400, along with the operating
system, no longer requires the customer to
directly report problems from the system expe
riencing the failure to the IBM service support
systems. An intermediate AS/400 system can
now be configured to act as a managing
system to provide service to other AS/400
systems in the enterprise network. All prob
lems maintained in the agent system (service
requester) can also be automatically tracked at
the managing system (service provider)
through the use of network alerts and service
requests. The managing system can now
create an online PTF database for its network
of users as well. By creating this central
repository, the service requesters can report a
software problem occurring on an agent
system through the functions provided by
System Manager/400. The solutions (PTFs)
required to solve recurring software problems
are automatically sent to the reporting agent

system. An alternative is to order a specified
PTF from the agent system or to have the
service provider on the managing system dis
tribute a defined solution (set of PTFs) to a set
of agent systems.

The systems management applications
increase interoperability, ease of use, and
accuracy through the use of the data and
end-use dimensions previously discussed.
The applications are focused on integration of
the user interface, data sources, and interoper
ation to provide the user with new functions for
resolving system and network problems and
managing changes. Key functional enhance
ments to the applications of the AS/400
system include the following areas:

• System Manager/400

- Ordering PTFs from a central site

- Single action ordering of PTFs from
IBM service support systems

- Central PTF distribution to agent
systems

- Automatic PTF delivery for reported
problems from an agent system

- Problem reporting to a central site

- Problem reporting to multiple man-
aging systems

- Central site service for hardware or
software

- Remote problem tracking and analysis
from a central site

- Centralized problem resolution from a
central site

• Performance Tools/400

- Performance data analysis through an
advisor option

- Communications reporting and graph
ical display

• OS/400 licensed program

- PTF management and ease of use

- Electronic customer support
connectivity

- Software resource tracking

- Application program interfaces (APls)
to alert, resource , and problem data

- First failure data capture

- Operational Assistant correlation of
spooled file information with problem
data

- User-defined alerts

- Scheduled performance data collection

Each of these functional enhancements are
described in the topic "Systems Management
Technological Enhancements."

Systems Management
Technological Enhancements

The original and current systems management
products are built on key advancements, which
are characteristic of the operating system.
These include electronic customer support,
first failure data capture, self-identification, and
other items as described in the topic "Version
1 Foundation" on page 110. Since the initial

release of the OS/400 product, several key
advancements to the systems management
functions have been made.

The initial internal process manager has been
enhanced for the network environment through
the System Manager/400 licensed program.
The user is guided to the new functions dis
cussed in the topic "Application Aspects of
Systems Management" on page 118 from the
previously existing base functions by using the
problem log and logically extending this key
concept into tracking not only local system
problems but to tracking problems reported
from the network.

PTF management has been enhanced ,
reducing the time required to install PTFs. It
provides centralized PTF management through
the System Manager/400 and simplifies the
PTF order capabilities first seen in the initial
release of the system to allow group ordering
of PTFs from the IBM service support systems.
Simplification of PTF installation through mini
mizing the user involvement in the IPL mode
selection and notification of high-impact and
defective PTFs through the electronic cus
tomer support functions also added to the rep
ertoire of OS/400 PTF enhancements. In
addition, many changes have been made to
improve the fail-safe operation of working with
PTFs. Examples are preventing the loading of
PTFs intended for a 9406 System Unit on a
9402 System Unit, cleanup of PTF objects,
changes that allow the bypass of the applica
tion of PTFs that refer to options or libraries
that have been deleted, preventing test PTFs
from being permanently applied, and automat
ically re-creating the cover letter files.

Systems Management 119

Electronic customer support connectivity with
the IBM support systems has been improved
through faster modems in the switched line
environment and by providing a single leased
line through the IBM Information Network.

OS/400 software resource tracking is
enhanced to better allow user application
access. For example, the Display Software
Resource command and extensions to the
output file support now allow additional user
application access. The Display Software
Resource command and the underlying soft
ware management structures have been modi
fied to better position the AS/400 system as a
key software management support system.

A key enhancement is the addition of APls into
systems management data, such as the alert
log , resource data (both hardware and soft
ware), and problem log data. Additional func
tions also help the user to create subsets of
the problem log through selection criteria,
allowing the user to change the selection of
problem data through the Change Problem
command and through the remote problem
handling provided in System Manager/400,
which was discussed in the topic "Application
Aspects of Systems Management" on
page 118.

Time-of-failure error detection has been built
into AS/400 hardware since Version 1
Release 1 (see the description of first failure
data capture in the topic "Background" on
page 110). In Version 2 Release 1 first
failure-data-capture (FFDC) capability is
extended to AS/400 software. Using defensive
programming techniques, FFDC probes are
inserted into the software. The probes, using

120 Technology Version 2

proactive error detection techniques, provide
immediate notification of errors and initiate
selective capture and logging of associated
problem data. The data supplies information
to automatically build a symptom string for the
problem, create customized dumps, and build
authorized program analysis reports (APARs)
where necessary. The symptom string sup
plies the key used to do an automated search
of the AS/400 PTF repository. The symptom
string can also be forwarded to another
AS/400 system or to the IBM service support
system using electronic customer support.
There, the PTF repository is automatically
searched based on the symptom data, and
PTFs that are found are automatically
returned. This new technology reduces the
need to re-create problems and shortens the
problem resolution time.

The OS/400 Operational Assistant user inter
face provides additional first-failure-data
capture functions as well. Operational
Assistant creates an entry in the problem log
when the user selects the option for problem
handling. Information for the current job is
automatically collected and placed in spooled
files. This creates a problem log entry that
identifies the newly created spooled files and
associates them with the problem log entry for
future reference .

Alert capabilities now support user-defined
alerts, allowing the user to create and send
alerts defined for user-identified situations and
user-provided applications. These new APls
allow user-written applications or programs to
generate and send alerts to the alert focal
point. There have also been enhancements in
printing alert information .

A performance advisor function is now
included as part of the Version 2 Release 1
Performance Tools/400 licensed program. The
advisor simplifies performance analysis, directs
users to specific performance problem areas,
provides directed procedures for resolving
identified problems, and provides users with
their own knowledge-base performance expert.

The order process improvement enables users
to electronically transmit their current system
configurations to ensure more accurate
ordering of additional hardware features and
upgrades.

The OS/400 distributed systems node execu
tive (DSNX) provides direct support. This
support keeps the session with the IBM
NetView Distribution Manager active until the
requested operation is complete. This allows
a function to be completed in a single tele
phone call, which has obvious benefits in a
switched line environment.

These and additional new functions increase
automation and provide highly layered struc
tures, self-defining and self-diagnosing compo
nents (from hardware through applications),
fail-safe exception handlers, built-in trace
capabilities, programmable problem determi
nation procedures (PDPs), and the integrated
internal process managers.

Conclusion

The AS/400 system made significant advances
in providing state-of-the-art solutions man-

computer systems. Version 1 the
strategic architectural foundations were built,
the fundamental design concepts were estab
lished. and application solutions were pro
vided. Architectures (such as vital
data), design concepts (such as first failure
data capture and self-identifying system com

and new application functions (such
as electronic customer support, automatic con
figuration, and integrated resource manage
ment) have established the system as an

leader system management as
measured by the customer.

The introduction of System View technology
new industry focus on system manage

ment The System View focus on common
user interfaces, shared use of data, and inte-

and automated application program
functions is consistent with the AS/400 imple
mentation and future goals. The Rochester
laboratory is committed to providing a com
plete set of heterogeneous management solu
tions on the AS/400 system. The laboratory is
further committed to achieve this goal, over
time, through the implementation of the
System View structures and architecture.

Version 2 of the AS/400 system introduced
significant new System View technology in
response to growing customer needs. In the

additional new system management
solutions built on AS/400 and SystemView
technology will continue to position the system
as an industry leader.

Management 21

Availability Enhancements

Describes software functions that improve the
ASI400 system 's ability to remain available to
users during and after a disk-related hardware
failure.

Thomas R. Crowley, Kevin A. Kelle ,
Dennis R. Martin , and Michael J. McDermott

Introduction

Availability and recovery have become topics
of high interest among both AS/400 customers
and the IBM field force. Customer applications
and systems are becoming more mission crit
ical, and the AS/400 system is moving into
markets where any system downtime is intoler
able. Yet, as systems become larger, hard
ware failure becomes more frequent simply
because there is more hardware to fail, and
recovery time becomes longer. And the
AS/400 implementation of single-level storage,
which is a performance boon with its spreading
of objects across many disk units, can some
times become the bane of recovery.

A number of new AS/400 software functions
specifically meet these rising availability
requirements. Functions, such as disk mir
roring, checksum protection, and disk device
failure handling, improve the system's capa
bility of surviving a hardware failure and
reduce the amount of time the system is not
available to process user requests. More-

122 Technology Version 2

over , these functions provide a variety of avail
ability offerings to fit a wide range of customer
needs and budgets.

Disk Device Failure Handling

A software program monitors the disk devices
for failures and improves the availability and
serviceability of the AS/400 system. The goal
of this monitor is to prevent the abnormal end
of system processing and the lengthy recovery
associated with the abnormal end.

Failure Detection

The vertical licensed internal code controls all
input/output (I /O) to the disk devices.

When a hardware error occurs on a disk
device, the following actions are performed:

1. The I/O commands that are currently
scheduled to be issued to the disk device
are instead placed on a set-aside queue.

2. The layers of software above the machine
interface (MI) continue normal paging
activity to the disk unit, unaware of the
hardware failure. Any I/O commands sent
to the failed disk device are placed on the
set-aside queue. The I/O commands to
the other (nonfailing) disk units continue
without any interruption.

Only I/O commands to the failing unit are
deferred, by placing them on the set-aside
queue. Thus, those system functions that
do not require information from the failing
disk unit can continue to operate.

3. The licensed internal code displays a
system reference code (SRC) on the
AS/400 control panel to notify the system
operator of the disk hardware failure. This
SRC indicates which component in the
disk device encountered the failure by dis
playing the following information:

• Type
• Model
• Unit reference code
• Location
• Serial number

4. The licensed internal code automatically
performs a series of tests on the failing
disk device. The tests run periodically on
the disk device without operator inter
vention . The system determines the oper
ational status of the disk device based on
the results of these tests. The licensed
internal code that controls these tests is
resident in main storage. That software is
always resident to avoid a deadlock condi
tion of trying to read that software from the
disk unit that actually encountered the
hardware failure.

The system remains in this condition until the
recovery actions are performed.

Recovery

The service representative uses the informa
tion contained in the system reference code,
which is displayed on the control panel, to
repair the failing hardware component within
the disk unit. The service representative per
forms test and verification procedures on the
disk device to ensure the repair procedure is
complete.

As soon as the disk unit becomes operational,
the test programs being issued by the monitor
program indicate that normal activity on the
disk unit can resume. The licensed internal
code automatically reissues the I/O commands
that are held on the set-aside queue. The
user tasks , which are waiting for I/O com
mands to complete, resume operation as the
I/O operations are performed.

This availability function, performed by the
licensed internal code, detects disk device fail
ures, directs the service representative to the
repair action, and automatically resumes
normal operation of the system when the
repair action is completed.

Checksum Protection

In the range of storage protection options,
system checksum protection has the advan
tage of using a minimum number of units for
redundant data. When a disk unit fails, the
system is unavailable, but no data is lost and
no data has to be restored or entered. After
the service representative replaces the broken
disk unit, the data is rebuilt automatically
during the next initial program load (IPL).

This provides a significant reduction in
recovery time, compared to recovery on an
unprotected system.

Checksum Theory

Checksum protection constructs sets of up to
eight disk units each . An amount of storage
equal to one disk unit is required for redundant
data in each checksum set. This redundancy
arises by the logical exclusive-OR (XOR) oper
ation on all the disk units in a set (see
Figure 62) . The exclusive-OR of all the data
units is called the checksum.

Checksum Set

Member 1
Byte n

XOR

Member 2
Byte n

XOR

Member 3 Member 4
Byte n Byte n

TECH077·3

Figure 62. A Logical View of the Checksum
Concept

If any single disk unit in a checksum set fails,
the broken unit may be replaced by the service
representative and the data that was on the
old unit can be automatically reconstructed by
the system. Because the contents of any unit
of the set are actually the XOR of all the other
units of the set, the data on a lost unit can be
reconstructed by XORing together all of the
remaining units of the set. The same principle

is used to reconstruct data from an unreadable
sector.

Checksum Run-Time Considerations

The update of a page of data with checksum
protection in effect proceeds as follows.

1. The old data page is read .

2. The new data page in main storage is
XORed with the old data page to generate
a change map.

3. The page of redundant data from the unit
containing the checksum is read.

4. After the old data is read , the new data
can be written .

5. The change map is XORed with the old
checksum page resulting in the new
checksum page.

6. The new checksum page is written.

Although the read and write operations are
partially overlapped, there is clearly some
overhead in every checksum update (see
Figure 63 on page 124).

Two mechanisms to help offset the slower per
formance of checksum updates are striping
and the use of unprotected storage for tempo
rary data. Striping is the partitioning of the
disk into segments of equal size. If the
checksum of a set of disk units were stored on
a single unit of the set, that unit would receive
more I/O requests than any other unit because
the checksum has to be read and written with
each update to any of the other units in the
set. The distribution of the redundant data
(the checksum) on different members of the

Availability Enhancements 123

Member 1

Unprotected
Data

Data

Old
Data

• Checksum

Member 2

Figure 63. Checksum Run-Time Support
Showing a Checksum Write Opera
tion

set for different stripes eliminates this bottle
neck of checksum 1/0 (see Figure 63).

The system requires temporary storage for use
by the operating system. This storage does
not have to be recovered because temporary
data is re-created every time an IPL is

124 Technology Version 2

Member 3

Unprotected
Data

Change
Map

Member 4

Unprotected
Data

Old
Checksum

TECH078·2

performed. However, a significant portion of
the update operations in the system are to
temporary storage. The checksum update
overhead is further reduced by reserving an
area of temporary storage that is not
checksum-protected on each unit.

Recovering from Failures

When a checksummed disk unit fails, the
system ends with a system reference code,
which indicates the failing unit and the type of
failure . When the unit is repaired or replaced,
the data is reconstructed by reading and
XORing the data from all the other units in the
checksum set, and writing it to the replace
ment unit. This checksum recovery takes
place during the IPL following a disk replace
ment.

Single-sector read errors can be corrected
dynamically without ending the system if the
checksum is valid in the stripe of the disk unit
with the unreadable sector.

1. The other disk units in the checksum set
are read and XORed together.

2. The result is written back to the disk.

3. The result is returned to the requester of
the read operation.

The sector then contains the reconstructed
data, and the potentially damaged object is
intact.

Mirrored Protection

Disk mirroring is a software function that sig
nificantly increases the availability of the
AS/400 system after a failure of a disk or disk
related hardware. The mirroring support is a
standard part of the Operating System/400
(OS/400) operating system, licensed program
and the function can be used on any AS/400
system that contains sufficient auxiliary storage

Disk-Unit-Level Protection

Bus 0

If either actuator fails, the system continues to run .

If the controller, lOP, or bus fails, the
system becomes unusable.

lOP-Level Protection

If an actuator, controller, or lOP fails, the
system continues to run.

If the bus fails, the system becomes unusable.

This level of protection is required for best
concurrent maintenance .

Figure 64. Levels of Mirrored Protection

126 Technology Version 2

Controller-Level Protection

Bus 0

If an actuator or controller fails, the system
continues to run .

If the lOP or bus fails, the system becomes
unusable.

Bus-Level Protection

Bus 0

If an actuator, controller, lOP, or Bus 1
fails, the system continues to run.

TECH080-2

Magnitude of such a solution is O(n!) , where n
is the number of disk units being paired. The
current algorithms result in an Order of Magni
tude of O(n), a significant improvement in
performance, while still producing a maximum
protection value.

In pairing, the system sorts the disk units by
logical bus address, number of actuators per
disk enclosure, and device type. Then, the
system pairs devices, one device type at a
time, and by actuators-per-enclosure group
within a device type. A look-ahead function
adjusts the starting point of pairing to optimize
enclosure-to-enclosure pairing . Units that
cannot be paired during the first pass become
spares. If, after various manipulations of the
list, the spares cannot be paired with each
other, a backtracking function unpairs the
existing pair with the lowest pairing value,
incorporates it into the list of spares, and
attempts to pair the spares again, repeating
the process until all units are paired. After all
units are paired, the system runs a final opti
mizer, which attempts to improve the pairing
value of pairs by swapping their mates in
various combinations. Pairing of devices is
illustrated in Figure 65 on page 127 and
Figure 66 on page 128.

In Figure 65 on page 127, the disk units
(actuators) are represented by cylinders, and
the enclosures containing the disk units are
represented by boxes around the disk units.
All disk units are of the same device type, all
have the same number of actuators per disk
enclosure, and there is an even number of
disk enclosures; therefore , backtracking is not
required, the look-ahead produces no

changes, and further optimization after the
initial pairing is unnecessary. The load source
(unit 1) is omitted to simplify the example. In
actual practice the disk units are sorted by
device type and number of actuators per disk
enclosure, as well as by logical bus address.

In Figure 65 and Figure 66 on page 128, the
numbers beneath the disk units are logical I/O
addresses as displayed by dedicated service
tools (DST) and system service tools (SST).
The labels, U3, U4, and so forth, indicate
logical unit numbers and pairings.

In Figure 66 on page 128, all disk units are of
the same device type, and there are an even
number of actuators; however, there are an
uneven number of disk enclosures in the group
of devices with two actuators per enclosure.
The units are paired in groups, according to
the number of actuators per enclosure and
beginning with the group that contains the
most actuators per enclosure. In the first
group, a look-ahead results in adjusting the
starting point of the pairing so that devices can
be paired enclosure to enclosure. Two spare
units, attached to Bus 0 lOP 2, are left over
when the first group of disk devices is paired,
and the spares eventually result in back
tracking before they are paired. When pro
ceeding to the second group, the two single
actuators of that group are paired together and
then broken up to pair with the two spares
during the backtracking phase. The optimiza
tion pass does not change any pairings.

Bus 0

001 0- 001 0-
0000 0001
FFFF FFFF

U3 I U4

2

o 0 1 0- 0 0 1 0- 0 0 2 0- 0 0 2 0-
01000101 0000 0001
FFFF FFFF FFFF FFFF

I U5 I U6 I U7 I U8

Bus 1

01 1 0- 01 10-
0000 0001
FFFF FFFF

01 10- 01 10-
0100 0101
FFFF FFFF

----j~~ U8

___ ,jU6

Sort disk units by I/O addresses
and divide list in half.

....... -----~

Work from middle out in both directions , and pair the
units with the best pairing value .

Figure 65. Pairing Disk Devices for
Mirroring-Simple Example

01 20- 01 20-
0000 0001
FFFF FFFF

U3 I U4

TECH081 ·3

Availability Enhancements 127

Bus 0

00 1 0- 00 1 0-
0000 0001
FFFF FFFF

U3 I U4

00 1 0- 00 1 0-
0100 0101
FFFF FFFF

tl'-
0020- 0020-
0000 0001
FFFF FFFF

U7 U8

Bus 1

o 1 1 0- 0 1 1 0-
0000 0001
FFFF FFFF

Sort by I/O addresses and number of actuators per enclosure
within a disk device type. First, pair the group with the most
actuators per enclosure.

....... -----~

Figure 66. Pairing Disk Devices for
Mirroring-Look-Ahead and Back
tracking Required

128 Technology Version 2

o 1 1 0- 0 1 1 0-
0100 0101
FFFF F F F F o 1 20- 01 20-

0000 0001
FFFF FFFF

U7 I U8

Second, pair
this group.

TECH082·2

The algorithm is guaranteed to pair any group
of devices that satisfy the minimum mirror
pairing restrictions because, in a worst-case
scenario, the backtracking function of the algo
rithm approaches the brute force method of
attempting all possible pairing combinations.
Manual pairing may produce a different pairing
result but not one with a greater value of
pairing or level of protection.

Mirror Read Optimization

The performance of read operations is opti
mized by selecting the unit of the mirrored pair
with the faster expected response. The
system performance lost by the dual write
operations is offset by the improved perfor
mance of read operations. Because the ratio
of read-to-write operations is typically 7:3, in
some environments overall system perfor
mance is better with mirrored protection than
without protection .

Selection of the disk unit with the faster
expected response is complicated by the
system's I/O control structure. There are
several layers of software in the path from the
I/O request from the operating system to the
signals that drive the device. To some degree,
each layer has control of the scheduling of its
work. The level of control described here is
somewhere in the middle, in the licensed
internal code that issues the commands to the
I/O subsystem. The criteria for selecting the
unit of a pair from which to read does not
interfere with the scheduling algorithm used by
the I/O subsystem.

At the licensed internal code layer, the position
of each disk actuator is maintained by saving
the disk address whenever a read or write
command is issued to the I/O subsystem.
When a read request is received from the
operating system, the read operation is issued
to the unit of the mirrored pair with the fewer
number of outstanding I/O commands. If both
units have the same number of outstanding I/O
commands, the unit whose actuator position is
closer to the disk address to read is selected.

An estimated actuator position is saved on
receipt of a read or write request. This is only
an estimate of the true actuator position
because other I/O commands may be out
standing. When an I/O command is com
pleted, the actuator position is still unknown
unless no more I/O commands are out
standing. On the completion of an I/O
command with no outstanding commands, the
actuator position is again saved.

Recovery from Failures

AS/400 mirroring keeps the system available
when a disk-related failure occurs. Mirroring
provides protection for the following failures:

• Disk device failures

• Disk controller, lOP, and bus failures if the
system has the additional hardware con
nected such that all disk units attached to
the failing hardware component have a
mirrored unit attached to a different hard
ware component

AS/400 mirroring handles several types of
disk-related failures :

• For an irrecoverable device error (for
example, equipment check), the recovery
processing follows:

1. The system suspends the failing unit;
mirrored protection is suspended for
this mirrored pair. If the other unit of
the mirrored pair is already sus
pended, then the system fails.

2. The system continues operation using
the other unit of the mirrored pair.

3. The system displays a message that
identifies the failing unit and informs
the operator that mirrored protection is
lost for this mirrored pair.

4. The service representative repairs or
replaces the failing unit using concur
rent disk maintenance.

5. The service representative resumes
the operation of the repaired or
replaced unit when the maintenance is
complete.

6. The system synchronizes the repaired
or replaced unit with its mirrored unit.

7. The system displays a message when
synchronization is complete . Mirrored
protection is active again.

• For a permanent read error (media failure) ,
the recovery processing follows:

1. The system reads from the corre
sponding sector of the other unit of the
mirrored pair. If a permanent read
error also occurs on the other unit of
the mirrored pair, the permanent read
error is not recovered ; the original read
request is completed with a permanent
read error.

2. If the read operation from the other
unit is successful, the system writes
the data back to the first unit of the
mirrored pair; an alternate sector is
assigned. If the write operation back
to the first unit of the mirrored pair
fails, the first unit now has an
irrecoverable device error that is pro
cessed as previously described.

3. If the write operation back to the first
unit of the mirrored pair is successful,
the system reissues the original read
request to the first unit. The perma
nent read error is recovered and both
units of the mirrored pair contain the
correct data.

• For a temporary error (not operational,
power failure, not ready, device time-out),
the recovery processing follows:

1. The system attempts to recover from
the temporary error for a limited time
(disk attention failure status or con
nection recovery). Any job with I/O to
that unit waits during the temporary
recovery attempt. If the temporary
recovery is successful, normal system
operation continues with mirrored pro
tection and without suspending or syn
chronizing this unit.

2. If temporary recovery is not successful
within the time limit, the unit has an
irrecoverable device error that is pro
cessed as previously described.

• For an lOP or bus failure, the recovery
processing follows:

1. The system determines if all disk units
attached to the failing lOP or bus have

Availability Enhancements 129

an active mirrored unit on a different
lOP or bus. If not, the system fails.

2. The system suspends each disk unit
attached to the failing lOP or bus.
Suspending the unit is done as for an
irrecoverable error.

3. The system dumps the failing lOP so
the problem can be diagnosed. The
system continues without the failing
lOP.

Conclusion

The AS/400 system today offers a wide variety
of software functions that enhance the
system's availability. Some functions, like disk
device failure handling, are automatic and
require no explicit user action or extra hard
ware investment. Other functions, such as
system checksum protection, require some
additional hardware and protect against data
loss after a disk failure, but the failure leaves
the system unavailable for a time.

Mirrored protection requires twice the number
of disk units as an unprotected system, plus
additional lOPs and controllers, but it both pro
tects against data loss and keeps the system
running after a disk failure. With the proper
hardware and configuration, broken disk units
can be repaired and brought back up to date
while users remain active on the system; the
system can survive controller and lOP failures
and continue to run.

130 Technology Version 2

Engineering

The AS/400 Version 2 hardware was designed using IBM's most advanced
engineering processes and implemented in IBM's latest very large scale
integration (VLSI), processor, main storage, disk, power, and
packaging technology.

Architecture, ign, and Performance of Multiprocessors

was
system.

this multitasking system,
as a single processor

a symmetric multiprocessor

James E. Bahr, Sheldon B.
A. McMahon,

Andrew H. Wottreng6

Introduction

Among AS/400 system's unique software
and hardware characteristics is the layered
machine architecture [1). The provided
with a high-level machine interface I).
Below this, vertical licensed internal code
(VLle) implements the operating system func
tions. vLle uses internal microprogrammed
interface (IMPI) instructions. Horizontal
licensed internal code (HLle) performs the
operations specified by the IMPI instructions.

of the high-level functions performed by
software in other systems are provided below
the IMPI in the AS/400 system Below the
IMP!, hardware and HLie support complex
functions, such as dispatching tasks to
the system processor, queuing, and

input/output (I/O) operations. These are some
of the same functions that an operating system
often has to significantly alter when multi

Introduced in an
assumptions about

task at a time and its altering data
structures that are shared by other tasks have
been violated with multiprocessors.

The unique architecture
makes it an ideal
processors. The structure,
the high-level MI, and the HLie structure all
make for transition from the
multitasking one processor to
multiprocessing. The layered architecture
makes it to introduce
without applications because
processor changes can below the MI.
n addition, the AS/400

multitasking system.
tions and most other
controlled by built-in instructions supported by
HLiG. For example, the task dispatcher is
written in H This type of high-Ieve
at the r,,1PI makes it possible
rate architecture with
changes hardware and HLiG
without significantly affecting the vLle.

6 This article has been submitted for publication in the IBM Journal of Research Development.

132 Version 2

Relatively Atomic Instructions

The AS/400 multiprocessor uses relatively
atomic instructions to minimize the
multiprocessors to the vLle and MI.
tively atomic instruction is an instruction that
guarantees that while it is running, main
storage locations that it uses not changed

processors relatively atomic
instructions from the same class. Instructions

trle same class (including instructions
that are not atomic) are allowed to run simul
taneously on other processors even if they
access the same data. These relatively atomic
instructions are divided into classes
the type of data, called IMPI objects,
instructions access. Instructions that are not in
the same class do not access the same

data objects, permitting instructions in
class to be atomic relative only to

instructions within the same class.

In AS/400 systems, a single instruc-
tion can update a shared data object. For
example, a single instruction can search
message queue, enqueue a new message
the appropriate position, and move
task from queue's wait list to the task dis-
patching queue. VLlG uses these complex

instructions instead of general purpose
instructions to access these shared data
objects. VLlC used these complex instructions
to support multitasking in AS/400 systems prior
to the introduction of multiprocessors. Defining
these instructions to be relatively atomic mini
mized the need for VLlC to add software locks.

Hardware and HLiC incorporate a lock mech
anism into the relatively atomic instructions
that only locks out instructions from the same
class. HLiC uses a set of independent hard
ware locks to serialize the relatively atomic
IMPI instructions and also to serialize updates
to shared data areas used to communicate
with HLiC on other processors. HLiC uses a
different hardware lock for each class.

After one processor sets a lock, no other
processor in the system can set the same lock
until the first processor releases the lock.
Hardware simply delays a processor's request
for a lock already set by another processor
until the other processor's relatively atomic
instruction completes and releases the lock.

Instructions in other classes and nonatomic
instructions are not affected by the lock and
can operate concurrently.

The object classes follow:

• Compare and swap includes instructions
such as COMPARE AND SWAP BYTE,
COMPARE AND SWAP HALFWORD, and
COMPARE AND SWAP WORD.

• Hold record includes instructions that
provide software symbolic locks.

• I/O is used for I/O instructions and by the
HLiC when handling I/O interrupts.

• System timers is used by instructions that
provide time-of-day, time interval, and
clock comparator support.

• SRC is used by instructions that provide
semaphores.

• SRQ is used by instructions that pass
messages between tasks.

• TDQ serializes updates to the task dis
patching queue and serializes accesses by
the HLiC task dispatcher.

• Primary directory serializes accesses to
address translation tables by the trans
lation hardware and by IMPI instructions.

Task Dispatching

The task dispatcher on the AS/400 multi
processor provides automatic work-load bal
ancing among processors and avoids the need
for significant software changes. Similar to a
single processor, all ready-to-run tasks are
enqueued in priority order to a single task dis
patching queue. IMPI instructions, such as
those supporting semaphores and message
passing that move tasks between the task dis
patching queue and wait lists, still call the task
dispatcher. The HLiC still performs task dis
patching between IMPI instructions, but task
selection is not based solely on priority. Other
than initializing new task-state fields for
processor eligibility, cache affinity, and the
current processor, no VLlC changes are
required for multiprocessor task dispatching.

The task dispatcher checks the task dis
patching queue for changes since the last task

dispatcher call on any processor. If the task
dispatcher finds changes, it searches the
queue to determine the task that should be
running on each processor. If it is determined
that other processors need to perform task
switches, a list of pending task switches is
stored in an HLiC object in main storage, and
the other processors are signaled to run the
task dispatcher. When the task dispatcher is
called and the task dispatching queue has not
changed, the HLiC performs the task switch
using the information stored in the HLiC object
rather than repeating the queue search. A
task switch consists of storing the state of the
current task and loading the state of the new
task.

Selecting tasks is done by a combination of
priority, eligibility, and cache affinity. Unless
prevented by eligibility or cache affinity, the
task dispatcher selects the highest-priority
tasks. Eligibility can be used to restrict a task
to a subset of processors and is never over
ridden by the task dispatcher. If all processors
for which a task is eligible are assigned to
higher-priority tasks, the task is not dispatched.

Cache affinity is used to dispatch tasks to the
processor on which they are most likely to
have residual data in cache and, therefore, the
processor on which they are likely to experi
ence the best performance.

A task is dispatched only if a processor for
which it has cache affinity is available unless
doing so would result in a processor remaining
idle or an excessive number of higher-priority
tasks being skipped. The skip threshold is
specified by the VLlC. If the number of
skipped tasks reaches the threshold, affinity is

Architecture, Design, and Performance of Multiprocessors 133

ignored and the task is assigned to any
processor for which it is eligible. If tasks are
skipped and the end of the task dispatching
queue is reached before assigning a task to
each processor, the skip threshold is reduced
retroactively until there are either no unas
signed processors or no skipped tasks.

A task initially has equal affinity for all
processors. When it is initially dispatched,
processor selection is based only on priority
and eligibility. HLiC assigns affinity for a spe
cific processor when the task is switched in.
Certain IMPI instructions that can result in a
task being removed from the task dispatching
queue for a long wait can specify that the
task's affinity be reset to the initial state.

Multiprocessor Hardware
Support

The goals for the hardware design of the
AS/400 multiprocessor system follow :

• To provide a shared main storage multi
processor system

• To provide a bus structure to connect two
processors, extendable in the future

• To incorporate a high performance pro
tocol for main storage bus arbitration

• To provide simple serialization mech
anisms to HLlC, called locks

134 Technology Version 2

• To handle all cache coherency problems
(keeping the cache copies of a main
storage location consistent)

• To provide mechanisms to handle look
aside buffer and primary directory
coherency

• To have a minimal cost and design over
head in converting from one processor to
multiprocessors

Two objectives identified early in the design of
the AS/400 multiprocessor were :

• A single design for one processor and
n-way multiprocessors

The goal was to create a single processor
design that would require minor enhance
ments to produce a two-way processor.
To help debug the system and further test
the design , a four-way multiprocessor was
the actual design point even though only a
two-way processor would be the actual
product. Building a four-way system in the
laboratory helped expose multiprocessor
bugs in the system more quickly.

• Bus snooping for cache coherency

Because all processors are on the same
system address bus and all processors do
system bus arbitration in parallel , it was
fairly straightforward to implement main
storage bus snooping. Cache is imple
mented as store-through, which means
that all write operations are propagated to
main storage through the common main

storage bus. Write operations result in
other processors invalidating the cache
line corresponding to the main storage
location being accessed. All write oper
ations from outside a processor are
checked against a second copy of the
cache directory to see if a cache line inval
idation is required. Whenever an invali
dation is actually required, the cache is
"stolen" for one cycle to invalidate the
cache directories. Invalidations are
expected to have only a small effect on
system performance.

In any multiprocessor, some scheme must be
invented to interconnect the various processing
units. The interconnection scheme affects
system performance. Refer to Figure 67 on
page 135 for the processor and main storage
components of the AS/400 system. The
AS/400 multiprocessor implementation does
not have a central hub. Information that would
normally be passed to a central hub is passed
between processors. Multiprocessor fields
(MpFields) are buses that are transmitted
between processors. Each processor trans
mits on its own output bus and receives input
from its peers. Logic that is based on the bus
must be duplicated and kept consistent in all
processors. All processors track pending write
operations, fetch requests , all locks, and some
other information. All arbitration boundary con
ditions are resolved in parallel in all of the
processors.

write adjacent bytes in main storage at the
same time. A main storage card can start a
read-modify-write operation every five cycles; a
direct 32-byte store operation requires four
cycles. To lessen the effect of store operation
latency, both the processors and main storage
cards have a command stack. There are sep
arate busy, card select, and data ready signals
per main storage card . All processors monitor
the main storage interface to allow higher utili
zation. In addition, if four or more cards are
installed, addresses are interleaved among the
first four main storage cards. (Up to six main
storage cards can be installed.) Multiple main
storage cards independently process different
commands at the same time. As a result , con
tention effects on main storage latency are
reduced.

Hardware Locks

A highly sophisticated locking structure is
incorporated into the design. In systems with
multiprocessor hardware, an extension is pro
vided to every HLiC word. This extension pro
vides commands used to serialize HLiC code
sequences and to implement relatively atomic
IMPI instructions. The hardware implements
ten different locks to serialize operations on
different types of system objects. High-speed
arbitration allows most locks to be granted with
no delay. All processors are allowed to run
unless they seek to hold the same lock at the
same time.

The serialization mechanism in the AS/400
multiprocessors is known as hardware locks.
The hardware locks allow HLiC to serialize
updates to shared main storage areas. HLiC

136 Technology Version 2

normally uses locks to cover whole classes of
capabilities like task dispatching, sending mes
sages, compare and swap, and so forth . The
hardware locks provide a way of serializing dif
ferent HLiC instruction streams against one
another.

Hardware locks are preferable to other serial
ization mechanisms because hardware locks
do not involve additional main storage
accesses, and hardware locks run in parallel
with no cross-interference. One alternative is
a test-and-set scheme, which uses main
storage and operates substantially slower. A
test-and-set scheme can fail, and the HLiC
must handle more boundary conditions with
such a scheme. Also, shared test-and-set var
iables increase the cache-miss ratio in many
cache designs.

The ten hardware locks are independent; each
can be owned by only one processor at a time.
Multiple processors can own multiple locks at
the same time. A given processor acquires
hardware locks in a prescribed order to
prevent any possibility of deadlock. The
underlying hardware supports granting multiple
hardware locks in a single cycle unless they
conflict. Most hardware locks are granted in a
single cycle . The HLiC control word following
a hardware lock request can initiate a fetch
request into a shared area. Releasing a hard
ware lock is also normally a single-cycle oper
ation, even if there are pending write
operations. All write operations that are issued
while a hardware lock is owned are checked
against all cache directories before another
processor can obtain the same hardware lock.

The lock field is a 6-bit extension available in
every HLiC control word and can be coded in
parallel with any other HLiC functions.

An HLiC sequence for obtaining a lock,
fetching shared data, optionally operating on
the data with other HLiC words, storing data to
the shared location, and releasing the lock is
shown in Figure 68.

.- HUC read-modify-write operations -.
are protected by the hardware lock.

Add
Lock

Read lo-n
Shared HUC

Write I Release
Shared Lock

Data I Control I Data
: Words

TECH084·2

Figure 68. HLIG Sequence for Using Hardware
Locks

Hardware locks can be added and released
every cycle by all processors as long as no
collisions are detected. Collisions cause the
losing processor to wait until the hardware lock
is released .

Simultaneous lock requests are rare but must
be handled. The priority bits are kept in a
pseudorandom tiebreaker register along with
comparators and are used to detect and
handle collisions. More often, a lock wait
results when another processor is in the
middle of a locked sequence.

The Processor Intercommunications
Register

All multiprocessor systems require a message
handling scheme to send messages between
processors. The AS/400 mUltiprocessor
design uses a register called the processor
intercommunications register (PI R), including
an efficient set of controls to solve the problem
of sending messages between processors. A
message handling scheme must be capable of
causing an interrupt. In the AS/400 design,
that interrupt is handled by the HLiC.

The PIR is a hardware register that is dupli
cated in all processors. The PIR allows mes
sages to be passed between processors,
avoiding the cache miss that would result from
passing messages in shared main storage.

Refer to Figure 69 for the PIR part of the
name format. The design provides an HLiC
interrupt. Some of the PIR bits are the 10
(processor identification) mask; each bit corre
sponds to one of the possible processors. An
additional bit is used to generate exceptions.
When a main storage command is sent to the
PI R with the exception bit on, a PIR interrupt is
caused on each processor whose 10 bit is set.
To acknowledge a command, a processor
need only reset its 10 bit. Resetting an 10 bit
is accomplished by sending a main storage
command to the PIR with the exception bit off.

The PIR acts like a main storage location and
can be protected with hardware locks. Data
written to the PIR of one processor is also
written to the PIR of each of the other

o 1516 3132 4748 555657585960616263

Oata: 40 bits, enough for a virtual address
segment identifier (SIO) and page
identifier (PIO)

CMO : 2-bit command

EXC: 0 = Reset acknowledgment bits only
1 = Write command , data , and 10 bits

to all processors' PIR and raise
multiprocessor exception on
processors with 10 bit = 1

100-101 = 10 bits for processors 0-1 , respectively

TECH085·3

Figure 69. PIR Format

processors. No lock is required to reset an 10
bit because the hardware can reset the bit
atomically. The PIR 10 bits also serve as busy
indicators. Busy indicators and hardware han
dling of them allow a processor to process
other IMPI instructions after sending a
message.

The data field in the PIR is large enough to
send a virtual address segment identifier
(39 bits) in bits 16 through 55. This field width
allows the PIR to send the virtual address of a
page to be purged from the look-aside buffers
of all processors. The data field is also used
as a command extender; the CMD field is only
2 bits.

Hardware Primary Directory Lock

The AS/400 system uses virtual addresses.
Such addresses must be translated to real
addresses before accessing main storage.
High-speed look-aside buffers contain the most
recently translated addresses in the processor
itself. Special hardware allows maintenance of
the primary directory and look-aside buffers.

The primary directory is the main table used in
translating virtual addresses. The primary
directory resides in main storage and is shared
by all processors and all tasks. Look-aside
buffer misses result in a search of the primary
directory by the hardware. The primary direc
tory lock, used by the HLiC to serialize
updates to the primary directory, also waits for
the completion of any hardware primary direc
tory searches and blocks the start of new
searches, making the hardware searches
atomic relative to HLiC updates.

HLiC follows special rules in turning off the
valid bit associated with a virtual address in
the primary directory. If the valid bit is reset,
mapping of the virtual address to the main
storage page is ended, and any subsequent
translation of the address causes a page fault.
The reference bit must be off to safely turn off
the valid bit. If the primary directory lock is
held and the reference bit is off, the valid bit
may be turned off. If the reference bit is on, a
PIR message is required to purge the page
from all of the look-aside buffers before the
valid bit is reset.

Architecture, Design, and Performance of Multiprocessors 137

~ 2.00
(j)
Q)
()

~
0...

.S!? 1.50
OJ
C

(fJ

.8
o 1.00
iii
a:
Q)
()

~ 0.50
E

.g
Q)

0... 0.00
20%

Main Storage Utilization Effect

1IIIl

30% 40% 50%

% Main Storage Card Utilization

TECH1 2Q·1

Figure 70. Processor Sensitivity to Main
Storage Card Utilization

vides a means of limiting the search of ready
to-run tasks. Preference is given to tasks with
affinity for an available processor. However,
no more than the skip threshold number of
tasks can be bypassed when evaluating the
ready list.

Modeling portrays the sensitivity of the cache
affinity of tasks to different skip threshold
values as shown in Figure 71. Increasing the
skip threshold provides a greater probability of
finding a task with affinity for an available
processor. As can be seen in the figure, a
skip value of 1 provides the majority of benefit.

Little additional probability of finding a task
with affinity is gained for increased searches.
The performance price paid for a larger skip
threshold also becomes a poor trade-off.

Modeling results show a multiprocessor degra
dation of 2.2% due to all software effects. The
total hardware and software degradation is
9.7%. Starting with an ideal multiprocessor
ratio of two times a single processor, the
modeled degradation yields a multiprocessor
performance factor of 1.81 for the two-way
multiprocessor machine.

100

90

~ 80
c - 70 ~

..c:

.~ 60
(j)
Q) 50 ..c:
.8
.~

40
(fJ

.Y.
(j) 30
~
"if. 20

10

AS/400 Multiprocessor
Skip Threshold Sensitivity

2 3 4 5
Skip Threshold

TECH 121·Q

Figure 71. Skip Threshold Summary

Performance Measurement

To measure multiprocessor performance, two
sets of internal performance counters are
employed in the hardware. The first set of
counters accumulates instructions, cycles, and
frequencies for 21 unique states of the multi
processor. These states include run-time
instructions, wait states, exception states, and
multiprocessor hold-off states. The counters
are accumulated in a reserved section of main
storage. A second set of internal counters
monitors cache hits and misses, main storage
bus use, and multiprocessor lock conflicts .
Measurements undertaken on systems running
the RAMP-C benchmark show a combined
degradation of 10.7% from the ideal multi
processor. This yields a degradation in the
multiprocessor performance factor from an
ideal value of 2, down to 1.79 times a single
processor. Table 2 summarizes the perfor
mance model results and system measure
ments for the AS/400 multiprocessor .

Results Realized Ideal
Performance Performance

Model 1.81

Measurements 1.79

2

2

Table 2. AS/400 Multiprocessor Performance
Summary

Architecture, Design, and Performance of Multiprocessors 139

Conclusion

The AS/400 multiprocessor effort represents a
significant step forward for the AS/400 system.
The goals of the multiprocessor architecture
were to provide a single design pOint that sup
ports a single processor and a two-way multi
processor, and to minimize the software
changes required. The operating system was
not significantly changed to handle shared
data objects in a multiprocessor environment
because the code already used either the rela
tively atomic instructions or other serializing
mechanisms based on the relatively atomic
instructions to handle shared data in a multi
tasking environment. Providing high-level rela
tively atomic instructions had much less effect
on the software than if the conventional
approach to interlocking instructions were
used.

In addition, the design supports a four-way
processor used in the development laboratory
so that multiprocessor problems surfaced more
quickly during development. Another design
goal was to provide HLiC with the necessary
mechanisms to efficiently implement AS/400
multiprocessors. The design maintains both
simplicity and performance with minimal over
head.

Performance modeling of the AS/400 multi
processor yields a better understanding of the
task dispatching characteristics of the system
and hardware effects, enabling HLiC to modify
the task dispatching algorithm and to ensure
that the multiprocessor met its performance
objectives. The performance models produce
a performance factor of 1.81 times a single
processor. System performance measure-

140 Technology Version 2

ments yield a factor of 1.79. Thus, there is
only a 2% difference between model results
and measurements.

References
1. Funk, M.R., Schmierer, Q.G., and Thom

forde, D.J., "System Processor Architec
ture," IBM Application Systeml400
Technology, SA21-9540, 100-103.
June, 1988.

2. Clark, B.E. and Corrigan, M.J., "Application
System/400 Performance Characteristics,"
IBM Systems Journal, Volume 28, Number
3, 407-423. 1989.

Architecture, Design, and Performance of Multiprocessors 141

System Mai n Storage

Describes the function and implementation of
the ASI400 intelligent main storage cards.

Richard G. Eikill and Randall S. Jensen

I ntrod uction

The AS/400 intelligent main storage is a critical
component of the n-way multiprocessing archi
tecture (for a complete description of the
n-way architecture see the article "Architecture,
Design, and Performance of Multiprocessors"
on page 132). To optimize system efficiency,
this new main storage architecture performs
many tasks that were previously done by the
system processor. Moving these tasks to the
main storage cards allows the system pro
cessor more time to spend processing data
and eliminates a system bottleneck when mul
tiple processors use common system main
storage.

The main storage cards communicate with the
system processor over a synchronous high
level command-driven interface. This com
mand-driven interface allows the system
processor to quickly notify the main storage
that a task must be performed and to pass any
required data. This type of interface increases
the usable bandwidth of the main storage bus
and allows for multiprocessor growth.

The term intelligent main storage refers to
the processing power that exists on the main
storage cards . This processing power includes

142 Technology Version 2

system processor communications, data
manipulation, data buffering for multiple com
mands, dynamic random-access-memory
(DRAM) control and maintenance, and main
storage diagnostic tasks. The advantage of
intelligent main storage cards processing data
is magnified by the fact that all main storage
cards installed in a system can actively
process data in parallel. This is a significant
performance advantage.

The processing capability of the Version 2
main storage is the key distinguishing factor
between this and previously released main
storage architectures.

Architecture

The architecture is best described by looking
at the main storage interface first, followed by
an overview of the processing capability of the
cards. A more detailed description of the
actual hardware implementation is also
included after the interface and processing
capability are described.

Main Storage Interface

The main storage interface is described briefly
in the topic "Main Storage Interface" on
page 135 in the article "Architecture, Design,
and Performance of Multiprocessors" on
page 132. Some additional information is pro
vided here.

The interface from the system processor to the
main storage cards consists of a 37-bit
command bus, an 8-byte data bus, and some
miscellaneous control lines. This is a synchro
nous interface, which is designed as part of
the system processor. The control of this
interface is distributed among all system pro
cessors and main storage cards present on
the main storage bus. The multiprocessor
communications scheme used by the system
processors allows the same decisions related
to main storage access to be made by all
system processors every cycle. This parallel
processing of access requests is an efficient
means of controlling the main storage inter
face.

See the topic "The AS/400 Interconnection
Scheme" on page 135 in the article "Architec
ture, Design, and Performance of
Multiprocessors" on page 132 for more infor
mation about this multiprocessor communica
tions scheme.

While the system processor controls this inter
face under most circumstances, the main
storage cards control it after they have been
selected by the system processor to return
data. When the data transfer is complete,
control returns to the system processor. This
interface is designed to optimize the data
transfer rate to all system processors and to
allow for 100% use of the main storage bus.

The internal input/output (I /O) bus is also
attached to this interface. The system pro-

cessor controls the interface during transfers
between the main storage cards and the
internal I/O bus. Data is passed directly
between the two devices during these trans
fers, allowing for improved performance as
pages of data are moved between auxi liary
storage and main storage.

This interface is shown in Figure 72.

System Processors

Internal I/O Bus Main Storage

Figure 72. Shared Main Storage Interface

Processing Power of Main Storage
Cards

TECH095-1

The system processors take advantage of all
main storage cards installed in the system by
keeping multiple cards active in parallel. Each
main storage card acts as a separate pro
cessing unit. The cards respond to commands
from the system processors and release

control of the interface while processing these
commands. This allows anyone of the system
processors to issue another command across
the interface or receive previously requested
data from anyone of the main storage cards .
The main storage cards can also accept mul
tiple commands and overlap processing of
these commands to take full advantage of the
performance functions of the DRAM devices.

The system processor implements an
addressing scheme that allocates address
space across four main storage cards of the
same size installed in the proper physical
locations. The address space on these four
cards increments on a 512-byte page basis
from one card to the next, rather than from the
beginning of a card to the end of it. This card
interleaving is intended for a multiprocessor
environment to reduce the contention that
results from multiple accesses to the operating
system that is resident in the lower address
range of main storage.

Hardware Implementation

The main storage cards handle system pro
cessor communications by responding to com
mands from the system processor. These
commands include requests to return main
storage data to the system processor, store
new data in main storage, change existing
main storage data, and return internal register
information. The main storage cards also
have the capability of informing the processor
of various error conditions that may have
occurred either within the hardware on the
card or with the data stored on the card.

These functions are implemented in hardware
by using two main storage processor chips.
Each chip has a 4-byte data path to the pro
cessor and an 8-byte data path to the DRAM
devices. These two chips are actually the
same design while one acts as a primary and
the other as a secondary processor. All func
tions are performed in parallel on these two
chips although only the primary chip reports
error conditions back to the system processor.

Each main storage card is capable of
accepting up to two commands from the
system processor and overlaps processing of
these commands. This overlap is designed to
take advantage of some of the fast access
functions of the DRAM devices.

The main storage architecture is optimized for
a multiprocessor system with cache support,
which implies that most data transfers from
main storage to the processor are of a length
equal to the cache line size. This main
storage card does, however, support a system
with no cache. The system processor can
request data in 8-byte multiples up to a total
transfer length of 64 bytes. When data is
moved from main storage to the processor,
main storage accesses 16 bytes of data at a
minimum. The DRAMs are architected in a
four-bank configuration (a bank is a partition of
main storage) that allows bank interleaving for
maximum performance (see Figure 73 on
page 144). Each main storage processor chip
maintains the control lines of two banks and
accesses the data in all four banks.

System Main Storage 143

AS/400 Main Storage

8 Bytes 8 Bytes

8 Bytes

Figure 73. Main Storage DRAM Bank Structure

144 Technology Version 2

8 Bytes 8 Bytes

TECH096-3

Main storage can be written in bytes to allow
two processors to write adjacent bytes in main
storage at the same time. The main storage
implementation turns these write operations
into read-modify-write sequences on the main
storage card so that new error correction code
(EGG) data can be generated. When data is
stored in multiples of 4 bytes, a new EGG
pattern is generated, and a direct store
sequence is performed, which is a faster oper
ation than the read-modify-write.

The main storage cards can change main
storage data, eliminating costly data transfer
operations between the system processors
and the main storage cards. The system pro
cessor can set or reset specific bits in a data
field in a single read-modify-write sequence on
the main storage cards by issuing a single
command . In addition to this, the AS/400
architected tag bits for any page of data can
be inserted or extracted by the main storage
cards. This read-modify-write operation is
used by storage management to handle the
AS/400 architected tag bits associated with
data as it is moved between auxiliary storage
and main storage.

The internal register information that may be
passed from the main storage processor chips
to the processor consists of information related
to any data errors that may have been
encountered. The main storage processor
chips maintain all EGG data and correct any
user data errors found when an access is per
formed. The main storage processor chips
then save information related to which bits
were corrected at which main storage location
and notify the processor that an error has

been corrected. The system processor may
then request this data at a later time so that it
can take appropriate storage management
actions.

The main storage processor chips also save
information relative to the state of internal
hardware sequences and pass this information
back to the system processor when requested.

In addition to the above tasks, the main
storage processor chips generate all DRAM
address and control signals. The main storage
processor chips interpret the location of the
data sent from the processor and generate the
proper control signals to access this data.
Also, the main storage processor chips handle
the DRAM refresh operations with no inter
action from the system processors.

One other function of the main storage pro
cessor chips that is not specifically related to
improving system performance, is built-in diag
nostic routines that verify the integrity of all
DRAM devices present on the card. This func
tion is used to help reduce initial program load
(IPL) time.

Technology

Up to six main storage cards can be attached
to the main storage bus, providing up to
384MB (MB equals 1,048,576 bytes) of
storage in the Model 080 system (see
Figure 74). The cards are enclosed in a book

package, which is latched into a card enclo
sure. The cards are 229 by 279 mm and
contain eight layers for power distribution and
signal wires. Two connectors provide a
246-pin interface to the main storage bus for
power and signal pins.

Figure 74. 64MB Main Storage Card

High density packaging is achieved by using
4Mb (Mb equals 1,048,576 bits) memory chips
(see Figure 75) in a surface-mount module.
The memory modules are 17.8-by-8.9 mm
with J-shaped leads. These modules are
placed on both sides of the 64MB card, 80 on
each side. The 4Mb memory chips are organ
ized as 1 Mb deep by 4 bits wide. Data access
time of the memory chips is 80 ns.

Figure 75.4Mb Memory Chip

Advanced complementary metal-oxide semi
conductor (CMOS) technology is used for the
two main storage processor modules. State
of-the-art 0.5-~, triple-level metal ,
12.7-by-12.7-mm chips provide up to 75,000
equivalent two-way, logical AND with inverted
output (NAND) circuits. The nominal circuit
delay of a two-input NAND driving two loads is
0.4 ns. A self-test function uses random pat
terns to test the chips each time the system is
started. Delay compensation circuitry controls
the transition time of the signals from the
modules to minimize delay variations caused
by variations in temperature , voltage, and chip
process parameters. The chip is placed on a
multiple-layer, ceramic substrate using a solder

System Main Storage 145

ball attachment process. Oecoupling capaci
tors on the substrate provide more efficient
noise protection by being closer to the chip.
The chip-to-module pin wires are customized
using eight layers within the substrate. This
44-mm module has 545 pins on a 2.54-mm
grid with an interstitial grid pattern.

The main storage bus and the main storage
cards operate at a 45-ns clock cycle. A
primary clock is sent to a clock generation
module on each card, which then generates
the clock signals used by the control logic.
This clock generation module uses a digital
tuning circuit for precise control of the clock
signals.

Future enhancements to this main storage
card include the use of 16Mb memory chips in
a surface-mount module. This expands the
storage capacity to 128MB using 80 of these
modules placed on one side of the card (see
Figure 76).

146 Technology Version 2

Figure 76. 128MB Main Storage Card

Conclusion

The AS/400 main storage has advanced the
state of the art through architecture and tech
nology improvements. This is the most techni
cally advanced main storage card ever
designed for the AS/400 system. It now plays
a key role in system processing.

Q)
OJ co
o

Ci5
c

"iii

~

E
Q)

Ui
>

C/)

System Processor Technology

Describes the chip technology, the design of
multichip interface drivers, and the clock gen
eration and distribution of the Version 2 pro
cessors.

Dennis T. Cox, Charles L. Johnson,
Bruce G. Rudolph , and Robert R. Williams?

Introduction

One of the requirements for a new processor
design is to increase performance over prede
cessor designs. The increased performance is
achieved by using faster logic circuits, wider
data paths, larger arrays, and by using multiple
processors. The wider data paths require that
more signals be switched simultaneously. The
variations in the manufacturing process,
voltage applied to the circuits, and operating
temperature greatly affect the switching time of
the off-chip drivers. It is the switching time
and the number of signals switching simultane
ously that can cause noise to be generated.
To limit the noise, circuits control the slope of
the off-chip drivers under all of the variations
that are expected to be encountered.

To get predictable results with the faster logic
circuits, it is necessary to keep all of the clocks
of all the chips synchronized. The system
clock skews are minimized through a distrib
uted phase-locked loop and an automated pro
cedure to balance clocks on the logic chips.

This article describes the semiconductor and
packaging technology and the design of the
off-chip drivers, clock generation, and distribu
tion used in the Version 2 processor and main
storage cards .

Semiconductor Technology

The logic technology used for the AS/400 pro
cessor design was an 0.8-l1m complementary
metal-oxide semiconductor (CMOS) standard
cell. It best fit the requirements of perfor
mance, density, power, and design closure.
To keep the design cycle as short as possible,
the chip designs had to be predictable from
the high-level language down to the chip's
physical design. This predictability allowed the
overlapping of many of the design steps since
each step was not strongly dependent on the
preceding one.

The 12.7 -mm chips are configured as a chan
neled array of 94 rows by 608 columns with 35
wiring tracks between each back-to-back row
pair. The horizontal metal wiring is on a
3.2-l1m pitch while the vertical has a 4.4-l1m
pitch. The third level metal is used exclusively
for power busing and pad transfer for the per
imeter input/output (I /O) circuits. Typically,
51 K (K equals 1,000) of the 57K cells can be
wired producing a density of 75K equivalent
two-way Als. The number of transistors per
chip ranges from 200K through 440K,
depending on the amount of array macros.

The nominal performance of 0.4 ns for a
two-way AI driving a fanout of two and O.2-pf
wire is achieved with a 0.5-l1m channel length
device. The 3.6-V power supply coupled with
15 to 25% switch factors produces power dis
sipations of 1 to 2 watts. The power dissi
pation also varies depending on how many of
the 328 I/O are used as outputs and the type
and loading of those outputs.

There was an extensive list of logic library ele
ments from which to choose. The base
AI/OI/A/O logic books were available with up to
nine inputs. A variety of AO/ONAOI/OAls with
up to eight sets of two inputs could also be

? © 1991 IEEE. Reprinted, with permission, from Proceedings of IEEE International Conference on Computer Design; "IBM AS/400 Processor Technology"; Boston , MA, October 14 through
16, 1991 ; 448-452.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the IEEE copyright notice and the
title of the publication and its date appear, and notice is given that copying is by permission of the Institute of Electrical and Electronics Engineers. To copy otherwise, or to republish,
requires a fee and specific permission.

148 Technology Ve~"Sion 2

selected. There was an assortment of
complex books, such as latches, registers,
compares, decodes, parities, and multiplexors.
Single-port arrays could be built in various
configurations up to 18Kb (Kb equals 1,024
bits), with access times from 6 to 9 ns being
worst case. Two-port arrays, up to 9Kb, could
also be built with the same access times. Two
4-port general purpose registers (GPRs) were
made available in 8-by-18 or 16-by-18 formats
with performance in the range of 5 to 7 ns
being worst case.

Design closure is the ability to reasonably
predict the results in each step of the design
process to facilitate overlap and result in
shorter overall design cycles. This was
designed into the technology in several ways.
Each book had a number of output drive levels
that could be automatically selected with
output load-driven crossover points. This
allowed the delay to be held fairly constant
across a range of capacitance values and
helped compensate for variations in the capa
citive loading estimates due to placement and
wiring of the chip (see Figure 77). Each drive
level of the book fit in the same amount of cell
area, which meant that powering up books
could be done without disturbing the wiring of
the books on the chip . The fixed cell area
kept the powering up from being an iterative
step.

The macros on the chip were also designed to
facilitate design closure. They were designed
to be porous to the wiring planes instead of
totally blocked. Thus, their placement has little

1.60

1.40

1.20

UJ
"0 1.00 c
0
u
Q)
CfJ
0

0.80 c
ctl
c

>-
ctl
Q) 0.60

0

0.40

0.20

0.00
0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40

Output Load (picofarads)

Figure 77. Load-Driven Crossover Point

effect on the overall capability of chip wiring
and can be done automatically along with all
the other books on the chip. Another design
closure aspect was the gate-array backfill in
whatever spaces were not used by the stan
dard cell books. Because of the wire density
limitations on the chip, there were quite a few
of these spaces. These gate-array backfill
books allowed many logic updates at the metal
level, thus prevented having to reprocess the
whole chip from the beginning.

TECH048.1

A variety of I/O circuits were available to inter
face with other chips in the system. Included
were receivers, push-pull drivers, common I/O
three-state drivers, and common I/O open
drain. Both TTL and CMOS drive levels could
be selected. Drivers could be selected with
different output impedances to match trans
mission line characteristics .

System Processor Technology 149

AS/400 Digital Slope Control of
Off-Chip Drivers

The AS/400 architecture places a high demand
on the chip 110 system. The system is charac
terized by wide data paths to cache, main
storage, and control storage. These buses are
not only wide, but they are heavily loaded and
must be fast to support the high performance
of the system. More than 100 drivers must
switch at once per chip on a multichip module,
with over 100 nets that leave the module
switching at once.

Drivers with a totally uncontrolled turn-on rate
typically have an 8:1 range in current turn on
rate. That is, if at slow process, voltage, and
temperature (PVT) conditions, the driver turns
on at 10 mNns, it will turn on at 80 mAins
under fast PVT. For a given package, the
number of drivers allowed to switch at once is
determined by the noise generated at the fast
PVT. Performance is determined by the
turn-on rate and current at slow PVT. In an
ideal case, there would be no variation in
turn-on rate. In actuality, however, there is
variation, and driver performance always
degrades from the noise-limited fast PVT case.

To reduce driver variation with PVT, a family of
drivers was designed that dynamically adjusts
themselves as temperature and voltage
change, as well as for process variations.

Each AS/400 logic chip receives a reference
22-MHz signal from a crystal oscillator. Circu
itry on the chip dynamically compares this fre-

150 Technology Version 2

CCLK

e--~
S5 S5N

Chip
Speed

AI sici
I

3·Bit
Gray Code
Counter

Control Line States

S5 S4 S3 S2 S1

I r~ Y. ¥
~I

~

LI~-. 1 1 1 1 1
1 0 1 1 1

Slowest

0 0 1 1 1
0 0 0 1 1
0 0 0 0 1 S1

Fastest 0 0 0 0 0

Figure 78. Performance Sense Element

quency against driver performance (see
Figure 78). If driver performance is deter
mined to be lagging, additional devices are
gated on , increasing current drive and turn-on
speed of the driver (see Figure 79 on
page 151). Driver performance needs contin
uous monitoring to guard against temperature
changes during operation and low-frequency
supply variations.

S1N

Tap1

1
93

Tap2

~115

Tap3 I Inverter
145 Chain

Tap4
f 181

Tap5
1227

TECH049·3

The drivers have a finite number of devices
that can be gated in. The number of devices
imposes a limit to the degree of control the
drivers can maintain. In the AS/400 implemen
tation, the current turn-on rate can be con
trolled to a 2:1 maximum-to-minimum range.
A controlled current turn-on rate provides sub
stantial system performance advantages over
uncontrolled drivers.

VDD
I

DO I~ - EO

VDD l

VDD

EO ~ EOC

GND

GND l

GND

Figure 79. Driver Schematic

Most data buses in the AS/400 system are
implemented as three-state dotted nodes.
One driver receives control of the bus at the
same time a different driver relinquishes
control. As clock skews are considered, this
introduces the problem of contention (both

VDD

GND

DO = Data In
EO = Enable In

GND = Ground

VDD = Voltage

OUT

TECH050·1

drivers momentarily active and driving in dif
ferent directions for a brief period). The
AS/400 drivers have been designed to go into
tri-state quickly while turning on at a controlled
rate , greatly reducing or eliminating the con
tention problem.

AS/400 Packaging Technology

The AS/400 system is designed for great flexi
bility in range, allowing use of from one to six
main storage cards and one or two processor
cards.

The processor consists of two multichip multi
layer ceramic modules (MCMs) . Each module
is 44-mm square and supports 545 total pins
of which 385 are available for signals. The
modules have 12 wiring planes interspersed
with power planes, which provide power to the
chips and maintain signal line impedance.
Electrical characteristics of module wiring are
similar to those used on IBM mainframes. The
processor card holds two MCMs. This module
technology is used to package the chips close
together for high performance. The package
also provides a high pin count, controlled
impedance, and low effective inductance.

One MCM is a processing unit containing three
12.7-mm CMOS logic chips that perform the
fixed point, floating point, and logical oper
ations of the processor. The other MCM is a
storage control unit containing two 12.7-mm
CMOS logic ch ips and up to two static ran
dom-access-memory (SRAM) chips depending
on the AS/400 model. This MCM handles data
storage to main storage and cache.

The main storage cards contain two logic
modules that queue main storage requests
and interface between the main storage chips
on the card and the processor. These
modules are the same as those used on the
processor card (44-mm square, 545 total pins).

System Processor Technology 151

Although these modules contain only one
12.7 -mm CMOS chip, they were required to
support the high 1/0 count of 320 signals from
the chip that must leave the module.

AS/400 Clock Generation and
Distribution

There is a single oscillator and primary clock
module in the system. Up to nine cards in the
system run synchronously with the main pro
cessor; each has its own secondary clock gen
eration module. Both the primary and
secondary modules are bipolar analog chips .
Each secondary module receives a clock syn
chronization signal from the primary clock
module. Each secondary module generates
four copies of four clocks (each 900 phase
shifted) that are distributed to the required
logic chips at the system cycle time (refer to
Figure 80).

Clock skew at the card and board level was
minimized by balancing the wire lengths and
loading of all distributed clock signals. Iso
lating clock signals from other logic signals
also helped reduce clock skew caused by
coupled noise. The clock synchronization
signals were low-voltage level differential pairs,
which helped reduce electromagnetic interfer
ence and improve common-mode noise
rejection . Much time and effort were spent to
ensure proper power supply noise isolation to
reduce clock jitter in the phase-locked-loop
(PLL) clock distribution.

152 Technology Version 2

+/- 0 .5 ns

Figure 80. Clock Generation and Distribution

The requirement for four-phase clocks at the
chip level is a result of a design philosophy
that requires mid-cycle array clocks, L 1 IL2
clock gating, and staggered driver gating for
simultaneous switch control.

+/ - 1.0 ns

+/- 0.5 ns

+/ - 0 .5 ns

Board
Level

Processor Card

+/- 0.5 ns

Main Storage Card

Card Level

3.6 V Current Switch
Low-Level
Differential
Clock Pairs TECH051·3

Due to the application-specific-integrated
circuit (ASIC) design environment, the method
ology used to control clock skew is a
combined circuit and physical design solution .
A key attribute is that this methodology does
not affect the chip design turnaround time. It

was used on each of the nine logic chips in
the system in a turnkey ASIC environment.
Chip designers did not have to worry about
clock generation and repowering trees. Syn
thesis programs were developed to automat
ically insert a circuit-specific version of the
clock tree (clock distribution network) into a
chip design that had been synthesized from a
hardware description language. Software was
also developed to automatically balance the
clock trees to predefined loading limits. This
effectively controlled both the on-chip and
chip-chip clock skew.

The circuit portion of the solution consisted of
a variable terminator (capacitor) and a variable
delay circuit. Use of these circuit concepts
within the clocking methodology reduced the
stress on the placement and wiring (physical
design) tools. Clock nets (interconnections)
did not need to be wired to a fixed capaci
tance; however, there was a range of capaci
tance within which they had to be wired. This
decreased the physical design turnaround time
and had less effect on the wiring of remaining
critical nets.

The terminator circuit had 20 programmable
values of capacitance ranging from 0.05 pf to
1.0 pf in 0.05-pf increments. The terminator
circuits were used primarily on the first two
levels of the clock tree to help achieve the bal
anced loading required to reduce clock skew.
One or more terminators were used to balance
the total net capacitance (sum of the gate and
wiring capacitance) to a fixed value. Net ter
minators were not added to every net in sub
sequent levels of the clock tree. (This would
have required an excessive number of termi-

.
•

:t

I H
~ -. ••

I I I

, .
I

, ----t-t-r---t~i-i-r_r_--
I i I ! I I I I .

1.00

0.90
1.50 1.60 1.70 1.80 1.90 2 .00 2.10 2.20 2 .30 2.40 2.50

:

I

Output Load (picofarads)
TECH052-0

Figure 81. Variable Delay Circuit

nator circuits.) For these levels of the clock
tree, terminators were only needed when the
circuits were not fully loaded (final branches of
the tree). The terminators brought the total
capacitive load to within the specified range for
the given level.

Special variable delay clock circuits were then
used to provide a tightly controlled delay over

the specified range of capacitance. The circuit
delay characteristics shown in Figure 81 dem
onstrate a 70-ps delay variation for a 1-pf
loading variation. The number of delay levels
can be determined by the capacitance range
and the desired delay variation associated with
it. The more delay levels a circuit has, the
more tightly its delay can be controlled.
Because every delay level for a particular
circuit occupies the same area on the chip and
changing delay levels does not alter the chip

System Processor Technology 153

Ln
Ln
T""

>
OJ
o
"0
c
..c
()
Q)

I-
.....
o
C/)
C/)
Q)
()

e
a...
E
Q)

iiJ
>

(/)

System Processor Self-Test

Describes self-test and its contributions to
testing the ASI400 system processor during
the initial program load.

Steven M. Douskey and Kerry T. Kaliszewski

Introduction

Self-test can describe anything from a general
total test package included in a system to spe
cific algorithms created by a random pattern
generator. This article describes the use of
built-in self-test techniques to verify internal
combinatorial logic and describes deterministic
patterns to validate chip-to-chip intercon
nections in the AS/400 system processor.
The processor function is not used directly but
rather is tested through a scan interface by
separate service processor code and hard
ware.

Overview

Self-test procedures have been added to the
functional test strategy in the Version 2 AS/400
processor. These procedures use the service
processor to perform various operations on
each system processor card during every initial
program load (IPL). In a fully configured
system with multiple processor and main
storage cards and a bus adapter card, over
1,000,000 circuits and almost 3,000 chip inter
connections are self-tested.

156 Technology Version 2

The service processor provides IPL func
tions, the interface to the control panel, and
assistance with failure isolation in the system
processor. Self-test code and data are loaded
into the service processor random access
memory (RAM) during the IPL (see Figure 83).
This code runs the service processor hardware
through a series of operations, including test
data generation, scanning, clocking , com
pression of resultant data, comparison with
expected values, and failure isolation.

Service Processor

TECH1 12-2

Figure 83. ASI400 Self-Test Hardware

During I PL, self-test runs after the service pro
cessor basic assurance tests (BATs) verify the
self-test control logic on the service processor
and after the scan interface BATs verify the
self-test interface to the system processor.

However, self-test runs on each system pro
cessor before that processor performs even
the simplest function. In this manner, the
tester hardware (which is actually part of the
system) is already verified before using it in
subsequent tests. Using logic only after it is
tested is key to full failure isolation .

Shortly after self-test, diagnostic horizontal
licensed internal code runs . It now can add
self-test to its base of previously successful
tests and adjust its fault diagnostics accord
ingly. This preserves the IPL test strategy of
building a tester from a set of previously veri
fied logic and adding logic only after it too has
been tested. This proves to be an effective
way to maintain efficient error detection , while
maximizing field-replaceable-unit (FRU),
module, and even net isolation .

Boundary scan is a necessary part of the tech
nology for self-test. Boundary scan isolates
the internal logic on each chip from external
interfaces. This is accomplished by placing a
shift register latch (SRL) on most of the chip
input/output (I/O) ports. The notable
exceptions to this are clock and scan control
I/O. Because the internal logic of each chip
can be tested individually without interacting
with other chips on the card, precise chip iso
lation can be accomplished. Furthermore,
boundary scan latches surround each I/O pin,
simplifying the control of an interconnection
test.

The two parts of the Version 2 AS/400 self-test
are chip test (or pseudorandom pattern self
test) and wire test (or chip interconnection
test). These are described individually in the
next two topics.

Chip Test

Chip test uses built-in self-test techniques to
check internal logic on a chip (see Figure 84).
A pseudorandom pattern generator (PRPG)
creates the input test data dynamically. The
chip's scan rings are loaded with the PRPG
data through scans controlled by the service
processor hardware. The data enters the chip
at the scan-data-in (SOl) port. Clock control
logic then cycles the system clocks (which are
used as test clocks during self-test) . After the
clocks are run , the resultant data is scanned
out through the scan-data-out (SOO) port and
compressed into a multiple input signature reg
ister (MISR).

In the AS/400 implementation of self-test, all of
the chips on a card are tested in parallel.
After a specified number of test cycles are run,
the MISR contains the compressed test results
for the card. This result , called a signature, is
checked against an expected value stored in
the service processor RAM. If the signatures
match, the next set of test cycles is run. If
they do not match, individual chip signatures
are gathered and compared against expected
values. This is how individual failing chips can
be isolated while still maintaining efficiency,
parallelism, and speed.

SOl

Chip under Test

.~·~~f"·,;::',. '. ~ ':.~
~~,,:,\, .. ,~, l" :. ~
r .. < ~ " r • .. • '- ;:..

SOO

TECH11 3·2

Figure 84. Chip Test Hardware and a Chip
under Test

Most built-in self-test implementations are
purely stuck fault tests. A single test clock
pulses after the test data has been set up in
the logic for a relatively long time. This clock
captures the resultant data into SRLs. The
Version 2 AS/400 system processor is
designed to include an additional clock, called
a release clock, which is pulsed before the
capture clock. Pulsing this new clock allows
the test data to propagate through the logic
before encountering the capture clock. Addi
tionally, both of these clocks are system clocks
with the same timing requirements as those
run during the functional operation of the

machine. This sequence creates a test that
directly relates to the timings required within
the system. This enhancement has proven to
be valuable. It has successfully detected tran
sition faults that would have been missed by
other built-in self-test implementations.

Because the hardware generates the input
data and compresses the resultant data during
chip test, a comprehensive test can be per
formed without the need to store large
amounts of test data. Over 1 billion bytes (one
billion equals 109) of test data are run through
the processor complex every I PL, but only
3,600 bytes must be stored for chip test.

Wire Test

Wire test (or chip interconnection test) is used
to verify boundary-scan-to-boundary-scan
paths on the Version 2 AS/400 system pro
cessor and bus adapter cards. Boundary scan
is used extensively to facilitate the application
of deterministic test patterns for diagnosing
interconnection (net) faults. Stuck drivers,
open interconnections, stuck receivers, faulty
driver enable circuits, shorts to power, shorts
to ground, and shorts between functional nets
are all detected by wire test.

Wire test consists of two parts: stuck driver
test and shorted net test. The deterministic
data (test vectors) used for these tests is gen
erated by a program using simulation models
of the chips. This program generates the
vectors for the stuck driver test so that every
enabled driver in a particular test drives to the
same level. This assures that shorted nets do
not affect the results of this test. Vectors are

System Processor Self-Test 157

also generated so that every driver in each
chip is at some point enabled for both a test to
a logic level of zero and a test to a logic level
of one. Similarly, a program selects shorted
net test vectors using the fact that the stuck
driver test completed successfully, and focuses
on detecting bridging faults. This data is
stored in the system for all the release levels
of the system processor.

The stuck driver test uses the scan interface to
load the test vectors into the boundary scan
latches of each chip (see Figure 85). During
scanning , the outputs of the chips are disabled
by a chip driver inhibit (not by individual driver
enable latches). When the scan-in is com
plete, the outputs are enabled. The receiver
clocks for all chips are then pulsed, capturing
the data on all the nets into the corresponding
receiver latches. The outputs are again disa
bled, and the data from each ring is scanned
out. The output data is then compared against
expected results. If a mismatch is found , a
system reference code is generated that points
to the failing net.

Once the stuck driver test has completed suc
cessfully, the shorted net test is run. In the
shorted net test, a series of vectors drives
each net to a different value than each other
net in at least one test. When two nets are
shorted and their drivers have opposite values ,
some of the receivers latch unexpected
results. Failing nets are calculated using the
expected results and the combinations of fail
ures in the various tests.

Both parts of wire test not only verify the hard
ware during every IPL in the customer's office
but are helpful in problem isolation in manufac-

158 Technology Version 2

Functional SRLs

SOl SOO

Figure 85. Boundary-Scan-to-Boundary-Scan
Paths Tested by Wire Test

turing and early system build. They point
directly to the defective net or pair of nets.

Conclusion

The self-test procedures are a strong addition
to the Version 2 AS/400 test strategy. Chip
test not only points directly to the failing chip
but is also effective in detecting transition
faults. Similarly , wire test significantly
improves card defect location, reduces repair
time, and reduces cost through accurate and
quick net isolation. Additionally, this manufac
turing quality test is part of the IPL, making it
available in every customer's office.

Functional SRLs

SOl SOO

TECH11 4·1

Acknowledg ments

This project was made possible through the
support of many individuals. The self-test
team would like to recognize the contributions
of Mike Weed for wire test definition and
implementation, Patricia Graham for early
kickoff and organization, and Brian Kozitza and
John Elliott for tools interface and support.
Thank you all.

References
1. Wagner, P., "Interconnect Testing with

Boundary Scan," IEEE 1987 International
Test Conference.

2. Peterson, W.W. and Weldon, E.J ., Jr.,
"Error-Correcting Codes," The MIT Press,
Second Edition, Cambridge, MA and
London. 1972.

System Processor Self-Test 159

Design Methodology

Describes the architecture and design method
ology used in the ASI400 system processor.

Quentin G. Schmierer and
Andrew H. Wottreng8

Introduction

The processor architecture design was key to
improving the performance of the second gen
eration AS/400 system. Before the design
began, it was clear that technology improve
ments alone would not be enough to achieve
the performance objectives. The processor
architecture had to be greatly enhanced. The
major architectural additions were a store
through cache, expanded main storage
addressability, improved floating-point perfor
mance, and the ability to operate in a multiple
processor environment. The multiprocessor
capability had to be implemented with minimal
effect on the operating system. To make the
design project successful required design tool
enhancements and increased reliance on logic

synthesis. The remainder of this article briefly
describes the processor architecture and the
design methodology used to create the pro
cessor.

Architecture

The AS/400 processor is fabricated from an
IBM low-power, standard cell complementary
metal-oxide semiconductor (CMOS) tech
nology. There are five 12.7-mm logic chips
and two 8,192 x 18 static random-access-me
mory (SRAM) chips packaged on two 44-mm
multichip multilayer ceramic modules (MCMs).
The cache and control storage are individually
packaged SRAMs. The processor clock cycle
is 45 ns, worst case. This was the same clock
cycle as the first generation processor, using a
less dense bipolar technology.

The processor fetches and processes internal
microprogrammed interface (IMPI) instructions.

As the name implies, each IMPI instruction is
actually processed as a microprogram. An
IMPI instruction may be 2 to 6 bytes in length,
aligned on byte boundaries. The IMPI instruc
tion is processed as a sequence of one or
more horizontal licensed internal code (HLlC)
words. Each HLiC word is 56 bits in width.
This long width allows several operations to be
processed independently during the same pro
cessor cycle. The control storage array con
tains the most commonly processed HLiC
words. Additional HLiC is loaded from main
storage in an overlay area as required during
operation. Figure 86 on page 161 shows the
basic components of the AS/400 processor
architecture. The main storage interface is
shared with the I/O subsystem.

The fixed-point unit operates under the direc
tion of control words that use fixed-point arith
metic and other logical operations. It contains
an array of general purpose registers (GPRs)
accessible only to HLiC. A 32-bit arithmetic
logic unit (ALU), a halfword decimal ALU, and

8 © 1991 IEEE. Reprinted , with permission, from Proceedings of IEEE International Conference on Computer Design; "IBM AS/400 Processor Design Methodology"; Boston, MA,
October 14 through 16, 1991; 440-443.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the IEEE copyright notice and the
title of the publication and its date appear, and notice is given that copying is by permission of the Institute of Electrical and Electronics Engineers. To copy otherwise, or to republish,
requires a fee and specific permission.

160 Technology Version 2

8K Resident
16K Overlay

Main Storage Interface

TECH046-2

Figure 86 . ASI400 Processor

a halfword multiplier are also implemented.
The logic required to fetch the next HLiC word,
based on the current processor state, is in this
unit. The first HLiC word for each IMPI
instruction is based on the IMPI operation
code. A floating-point unit, adhering to the
Institute of Electrical and Electronics Engineers
(IEEE) floating-point standard [1] is included.
It contains eight floating-point registers (FPRs)
capable of single- and double-precision arith
metic on addition, subtraction, multiplication,
division, comparison, and square root.

All references to storage in an IMPI instruction
are through virtual addresses. The virtual
address translation (VAT) unit converts virtual
addresses into real main storage addresses.
The operating system works with 16-byte poin
ters , which support 8-byte virtual addresses,
although only 6-byte addresses are directly
manipulated in the hardware. The most
recently used virtual addresses are kept in a
translation look-aside buffer. Fetch and store
operations to main storage are initiated, as
required, by the HLiC words. The IMPI
instructions directly manipulate sixteen 48-bit
registers. They may contain addresses or
program data. A set of HLiC accessible regis
ters called resolved address registers (RARs)
store translated virtual addresses for reuse
during IMPI instruction processing . Hardware
in the fixed-point unit handles IMPI instruction
fetching and buffering.

The storage control unit (SCU) manages
accesses to main storage. Data may be
retrieved from either the 128KB (KB equals
1,024 bytes) cache or directly from main
storage. The cache contains both IMPI
instructions and data used by the IMPI
instructions. For both instruction and data
accesses, the SCU detects cache misses.
Cache misses occur when accesses of main
storage locations do not find a copy of the
main storage data in the cache. When a
cache miss occurs during a fetch, the SCU
fetches a 32-byte integrally aligned block of
data from main storage and stores this data in

the cache. This 32-byte block is called a
cache line. The SCU also handles store oper
ations. Because the cache is store-through, all
store operations are done to both the cache
and main storage. The SCU 's secondary func
tions are resolving translation look-aside buffer
misses and arbitrating the use of the main
storage interface with the input/output (I/O)
subsystem. Multiprocessor contention for the
main storage interface is also arbitrated here.

The main storage interface consists of a
command bus and a 64-bit wide data bus.
The I/O subsystem can store and fetch data
directly from main storage. Up to eight main
storage cards, each containing as much as
64MB (MB equals 1,048,576 bytes), may be
attached to the interface. Other processors
may also be connected. When a multi
processor configuration is implemented , the
processors share a single copy of main
storage. All interface buses are synchronous
with the processor clock using sophisticated
clock synchronization logic. Error correction,
diagnostics, and dynamic random-access-me
mory (DRAM) refresh are implemented on the
main storage cards in two 12.7-mm CMOS
logic chips. Multiple I/O buses are connected
to the processor. The first bus is wired
directly, while the remainder are connected
using fiber optic cables. Redundancy paths
are implemented to provide an alternative
means for data transfer in case one of the
fiber optic channels fails. Each I/O bus is
32 bits in width and asynchronous. (For more
information, see the article "Input/Output Bus
Using Fiber Optics" on page 172.)

Design Methodology 161

Logic Entry

The chip logic designs were described in
VHDL. To allow reuse of existing synthesis
and simulation tools, some compromises were
required. The major compromise was to use a
subset of the language. VHDL allows both
sequential and concurrent statements to
describe logic function. Only the concurrent
set of VHDL statements, excluding process
statements, was used. The subset correlated
closely in function to previously used design
languages. This shortened the designers'
learning curve of the language as well. VHDL
attribute information was heavily used to
provide synthesis directives. The designer
was able to influence the decisions made
during synthesis by this means. The attributes
consisted of hints and commands. Hints were
simply suggested solutions that should be
attempted first. Commands were explicit
directions that forced a particular solution.
These attributes made up for weaknesses in
the synthesis algorithms and gave the
designer pinpoint control of results. Control of
results was important in achieving a high per
formance design. Synthesis produces accept
able implementations in 95% of the design, but
the last 5% requires precise designer control.

Standard text editors were used to enter the
VHDL. Textual comments and data flow dia
grams were freely mixed with the VHDL
description. This was valuable later when the
VHDL was modified. Invariably, modifications
made the VHDL less readable. Partition sizes
varied from 200 to 5,000 lines of VHDL. The
relationship between lines of VHDL and actual
logic cell count were inverse. Control and
sequential logic required many lines of VHDL,

but synthesized into small amounts of logic.
Data flow could be compactly described with
vectored signals and simple operators in a few
lines of VHDL but synthesized into large
amounts of logic.

Because designers depended on text entry for
the VHDL descriptions, anything that simplified
the task was welcomed. There were many
logic constructs where the VHDL description
consisted of declarations, attributes, and con
current assignments. The information was
scattered throughout the model to meet the
requirements of the language syntax. It was
time-consuming and difficult to maintain such
constructs in a large model.

To ease the entry task, a VHDL macro pre
processor was developed. The preprocessor
keyed on VHDL macrostatements within a
description. The macrostatements were
expanded into normal VHDL statements and
placed in the proper areas of the VHDL model.
Attributes were entered as meaningful key
words on the macrostatements. All of the
information for a particular construct was con
tained on the macro statement. Many of the
more cumbersome structural attributes were
generated automatically along with tedious
logic connections. For example, test gener
ation scan rings were connected automatically
by the preprocessor. As a result of this tech
nique, the designer entered only about one
half the actual VHDL code required to describe
the design; the remainder was generated by
the macro preprocessor.

The VHDL attributes were important in custom
izing the VHDL description to the technology.
The selection of receivers, drivers, and I/O

books was very critical to the processor
design. It was difficult to write synthesis algo
rithms that selected the proper 110 books.
Attributes that specified exact book types and
power characteristics were a better solution .
VHDL component instantiations described
each I/O book. Attributes attached to the com
ponent specified characteristics that could vary
from one instance to the next. Some drivers
had multiple output pins, each of which was
designed to drive a specific output impedance.
The choice of driver pins was done with an
attribute. The physical location of the I/O
books and the power levels were also speci
fied this way.

Logic Synthesis

Logic synthesis is an algorithmic process for
taking a logic description written in a high-level
form and transforming it into a gate-level
description that can be manufactured. The
VHDL description for each chip was synthe
sized into logic using the logic transformation
system (L TS) . L TS is an internally developed
logic synthesis system designers have used
since 1985. The VHDL was synthesized for
both simulation and fabrication; however, the
synthesis differed for each. For simulation
purposes, a path that translated the VHDL into
technology-independent logic gates was used.
Care was taken to correlate the logic
description with the VHDL. The technology-in
dependent logic gates were optimized for an
existing event driven simulator. Little logic
optimization was performed. VHDL hierarchy
was maintained. The desired result was a
gate-level description that closely matched the
original VHDL description. It could be easily

Design Methodology 163

correlated
well. This
verify a VHDL
VHDL simulator.
accomplished.

model statements as
the designer to

the benefit of a
VHDL allowed this to be

The synthesis path for fabrication was much
more complex. Designers chose to synthesize
the chip logic with the internal VHDL hierarchy
removed. This was a case of expediency
winning over The synthesis
system had handled chip
descriptions up to this and it was a lower
resource cost to continue this way. Capacity
projections indicated still possible with
the target Designers accom-
plished the task in this manner, but it cost in
long synthesis times and loss of synthesis
control. Future projects will use hierarchical
synthesis. The synthesis system has been
enhanced to support hierarchy. Early results
with the new methodology have produced
better svnthesis results and quicker iterations.

double-edged
frees a designer

error-prone task of
manually description into a
hardware implementation. On the other hand,
it hides the implementation from the designer
and makes it difficult to see where an imple
mentation is not satisfying requirements. A
logic analysis tool that displays logic paths and
timing information is essential for analyzing
problems. The annotated as
much as from original VHDL
model to throuah it. We had
several suoh valuable.

164 Technology Version 2

experimented with numerous
influencing the synthesis

were useful for this.
Designers used them at the chip boundary to
define input arrival times and expected output
times. The times were converted by synthesis
into implementation goals. They also used
attributes internally to control special logic
paths. A common situation was a path that
appeared to be critical to synthesis but really

path was marked as
would ignore suoh

on more critical ones.

often required rewriting
DL description. Commonly this meant

writing low-level expressions for the logic.
Because much care was taken in writing the
description, it was important to preserve the
work. Designers used the no-modification and
map attributes to control this.

attribute attached
mocontort that logical point

attribute prevented
forward or backward

map attribute was even
forced synthesis to convert

expression attached to it into a technology
gate implementation early in the process. This
preserved the implementation through to the
final logic. Both of these attributes were
extensively used to achieve final timing
closure.

good choice for logic
designer to describe
or detailed levels. Trle
reached were VHDL
instantiations; both

written so that they mapped exactly into a
technology book. Designers used this tech
nique extensively for arrays and complex
books that were present in the technology. It
was easier to write this type of description for
complex books than produce them through
special synthesis algorithms.

Simulation

Simulation of the AS1400 processor was suo
cessful, but involved several limitations. The
first limitation was the simulator itself. As
users of VHDL, the designers did not have
working VHDL simulator available. As a result,
they were forced to reuse an existing gate
level, event-driven logic simulator. It went
through three revisions before the project
ended.

The simulator the designers used accepted
gate-level descriptions as input. It also had
own behavioral language and test case control
language. They had to convert the VHDL
models into a form oalled basic design lan
guage for structure (BDLlS). It is basically
logic net list. They developed a set of technol
ogy-independent BDLIS blocks, simulation
behaviors, and synthesis algorithms as part of
the methodology. All VHDL simulation models
were synthesized into BDLIS.

To make this strategy work well, they had to
make it easy for designer to correlate
VHDL model to the BDLIS description.
had to extract as much information as possib'r.
from the VHDL and attach it to the BDLIS
blocks and signals. This was done by again
making extensive of VHDL attributes.

VHDL signal names were used to generate
BOllS signal names. The primary means of
debugging a test case was with a program
called scope. It displays waveforms for nets
specified by the designer. The names chosen
for nets matched the names used in the
VHDL. The hierarchy present in the VHDL
was maintained in the simulation models. The
logical function that existed in the BDLIS
closely matched the VHDL model. With this
strong correlation , it was never necessary to
look at the BOllS format explicitly.

The method worked well and is still in use. No
designer has ever looked at a technology-inde
pendent BDLIS schematic. The ability to
annotate the synthesized description from the
VHDL allowed designers to reuse an existing
simulator with minimum investment. They also
found that the same annotation was useful in
analyzing timing problems when synthesizing
to a technology.

The design was simulated in several distinct
environments. These included a single chip
environment, multiple chip groups, and, finally,
a whole system. Each environment consisted
of VHDL hardware models and simulation
behaviors that emulated interfaces and arrays,
such as main storage, cache, and control
storage. Test cases consisted of HLiG instruc
tion streams. These had first been run on a
behavioral-level HLiG simulation model. The
results of the HLiG model simulation and the
hardware model simulation were compared.
Discrepancies were either fixed or explained.
Some self-checking manual test cases were
also used . The system-level simulation was
done with a hardware simulation accelerator.
A model that encompassed most of the system

was used along with system-level HLiG. A
portion of the initial power-on sequence and
many of the diagnostic functions required later
in debugging hardware were simulated here.

Each design group had to generate chip-level
test patterns for chip manufacturing. They
also were responsible for fixing timing prob
lems. These tasks were done outside of simu
lation with level sensitive scan design (LSSD)
test generation programs and static timing pro
grams. The results were analyzed, and, if
changes were required, the changes were
made at the VHDL level and resynthesized.
VHDL attributes were used to supply the
proper test and timing flags required by the
programs.

Conclusion

The chip design methodology used on the sec
ond-generation AS/400 processor was a
mixture of new and old. It was the first pro
cessor design to successfully use logic syn
thesis and the VHDL design language.
Designers were able to use the functions of
VHDL to mesh nicely with existing design
tools. Every new tool required extensive
debugging and enhancement before it was
productive. Old tools usually required modifi
cations, but they became operational much
quicker. VHDL was a more difficult design lan
guage to use, but the leverage it provided was
worth the extra effort.

Logic synthesis gave designers improved pro
ductivity by getting the design into working
logic easier. They were able to get into simu
lation faster and implement design changes

more easily. This was especially true in the
area of finite-state machine logic. Synthesis
could not do the job completely. It is important
to be able to guide synthesis toward an
acceptable solution . VHDL helped do this pro
ductively. Using a combination of synthesis
and designer directives, designers achieved an
implementation as good as a manual design.
Furthermore, because the design is not locked
into a specific technology, the same, or a
slightly modified design, can be redone in a
new technology.

Logic synthesis and VHDL gave the AS/400
design methodology the flexibility it needed to
make the project successful. Further enhance
ments to the process will allow IBM to bring
products to market faster and with fewer errors
than before.

Reference
1. IEEE Standard for Binary Floating-Point

Arithmetic, ANSIII EEE Standard 754-1985,
IEEE, Inc., New York. August, 1985.

Design Methodology 165

VLSI Design Automation

Describes advancements to the design auto
mation process for the ASI400 system.

Robert F. Lembach, John M. Borkenhagen,
John R. Elliott, and Randall A. Schmidt9

Introduction

The design automation process for the AS/400
system is driven by the most advanced very
large scale integration (VLSI) technologies
available. An automated design process is
essential to obtain functional hardware on the
first attempt. Recent process advancements
described in this article cover the areas of
high-level language and synthesis, timing ver
ification, chip physical design , and system test.
The process continues to evolve to meet the
dual challenges of shorter design time and
improved solution quality.

Logic Synthesis

The system processor chip set is described in
a hardware-description language (HDL), a spe
cially adapted computer language that
describes the workings of digital computers.
The particular language used is the very high
speed integrated circuits (VHSIC) HDL, VHDL.
Logic synthesis is the process of converting
VHDL to a lower-level language that describes
logic structures on an integrated circuit chip for
one technology. The output from logic syn
thesis is a net list, which describes the lower
level logic structures.

VHDL is synthesized to net lists using an IBM
logic synthesis tool called the logic transforma
tion system (LTS) [1]. VHDL and LTS
enhance designer productivity by allowing a
high-level technology-independent description ,
which is subject to many functional changes
during the design cycle , to be quickly con
verted and optimized to accurate net lists.
Two synthesis scenarios are used . The tech
nology-independent simulation path builds
hierarchical simulation models, maintains the
logic structure as it is described in the VHDL,
and has fast running time. The technology-de-

pendent path optimizes the area and perfor
mance.

The IBM VHDL design system [2] is used to
develop the design description. Macrostate
ments help reduce the complexity of coding
VHDL. A simple macro may expand into many
lines of VHDL and is used to simplify design
entry by automatically generating logic, such
as internal scan path and boundary-scan con
nections. Additional design information is pro
vided to synthesis by using VHDL attributes
that can be attached to objects in the model,
such as pins, nets, gates, or the model itself
[3]. These attributes include flag data, tech
nology data, synthesis directives, and perfor
mance criteria for synthesis optimization. The
designer may choose to add technology-de
pendent information to the VHDL description to
help synthesis produce the desired implemen
tation at critical points in the logic.

The design system can synthesize hierarchical
VHDL models that are collapsed and flattened,
or it can stitch together partitions that are syn
thesized individually. Technology-dependent
synthesis is performed on flattened VHDL
models to permit logic optimization transforms
to work freely across the original partition

9 © 1991 IEEE. Reprinted, with permission, from Proceedings of IEEE International Conference on Computer Oesign; "VLSI Design Automation for the AS/400"; Boston , MA, October 14
through 16, 1991; 444-447.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the IEEE copyright notice and the
title of the publication and its date appear, and notice is given that copying is by permission of the Institute of Electrical and Electronics Engineers. To copy otherwise, or to republish ,
requires a fee and specific permission.

166 Technology Version 2

boundaries, and to eliminate the requirement
of providing VHDL timing attributes at partition
inputs and outputs. L TS expression pro
cessing converts the flattened VHDL model
into latches and primitive logic blocks. This
logic is optimized by technology-independent
transforms to remove redundancies and
combine common logic. The logic is then
assigned to the target technology, and further
optimizations are made to minimize the area
and to create a net list that is valid for the
technology.

One goal of L TS is to achieve the performance
targets specified by the deSigner as VHDL
attributes. L TS has a built-in delay calculator
and path analyzer for doing both global and
incremental static timing analyses that support
multiple clocks , multicycle clocks, and over
lapped clocking strategies. L TS uses worst
case delay calculations during performance
optimization to improve logic paths that do not
meet specified timing requirements. L TS uses
best-case delay calculations to pad short
paths, which prevents problems caused by
overlapped clocks. A comprehensive report,
prepared at the conclusion of the synthesis
run, assists the designer in understanding the
performance of the synthesized logic. Finally,
L TS creates a file containing information
needed by the statistical timing tool and
needed by the timing-driven placement and
wiring programs.

Timing Verification

After completion of the logic description, the
next step is chip- and system-level timing ver
ification. This process involves performance
verification of the system processor and main
storage. As shown in Figure 88, chip-level
timing verification is performed after com
pleting VHDL definition and synthesis. Sys
tem-level timing verification is performed after
completing chip-level timing and definition of
the card logic structure. After completion of
chip-level placement and wiring , final system
level timing results are obtained. As changes
are made to the design, timing verification is
run again to ensure timing requirements are
still satisfied. Chip-level timing verification is
based on the IBM early timing estimator (ETE)
[4]. Statistical support was added to ETE to
account for the on-chip process variation of
large complementary metal-oxide semicon
ductor (CMOS) chips in the system design. To
pass timing information to ETE, timing attri
butes are inserted in the chip-level VHDL
description and used by logic synthesis. In
this manner, logic signals can be ignored or
have their timing requirements adjusted as
needed. Comprehensive timing reports allow
designers to implement logic changes in
VHDL. These same timing reports are used to
create constraints during chip physical design.

System-level timing verification is based on the
IBM arrival time program (ATP). The scope of
ATP uses chip-level timing information and
system-level delays to generate input arrival

Figure 88. ASI400 Timing Process

times for each chip. ATP accounts for con
tention on bidirectional buses, performs timing
tests at logic arrays, supports statistical timing ,
and creates a report to analyze the simul
taneous switching of off-chip drivers. Delay
from the driver input of one chip to the receiver
input of another chip is calculated using transi
stor-level models to calculate driver delay.
Included are the loading and transmission line
effects at chip , module, card, and board

VLSI Design Automation 167

Logic changes affecting the physical design
are processed incrementally. The goal is to
minimize perturbation of the existing placement
and routing results. A placement program,
based on simulated annealing [5], is used for
both initial circuit placement and subsequent
incremental placements. To place new cir
cuits, a modified annealing schedule and dif
ferent quality metrics are used. New circuits
are usually placed in open areas while holding
existing circuits fixed. Clock logic or scan
string changes are also processed incre
mentally.

System Test

The system incorporates various self-tests that
run at initial program load (IPL) to diagnose
failures down to individual modules and nets.
Using this method eliminates the need for a
stuck fault test of the cards. To achieve a high
level of confidence that self-testing could
replace the traditional stuck fault testing, the
tools supporting the generation of the self-tests
are exercised to their fullest. Patterns are
generated from several software models using
generation models. Programs compare pat
terns created from each model for agreement.
All patterns had to be the same for all test
cases.

The hardware contains built-in checkers, such
as parity checkers, to detect failures. IPL tests
exercise the hardware functionality and the
checkers to ensure they can be both set and
cleared. This is commonly referred to as func
tional testing. This was extended to include a
class of testing known as boundary-scan
testing and pseudorandom pattern testing. For

boundary-scan testing, the I/O circuits of the
chip technology incorporate level sensitive
scan design (LSSD) latches. A diagram of the
boundary latches within the chip is shown in
Figure 90.

Scan~

Data
In

Functional SRLs

SRL = Shift Register Latch

Primary
Outputs

.1. Scan
Data
Out

TECH045-1

Figure 90. Boundary-Scan Configuration

Boundary-scan latches are part of the LSSD
scan rings, which are connected serially into
scan paths within the chip. All primary input
and output pins can be isolated from the
internal logic of the chip using the scan
latches. A boundary-scan latch on a chip
primary input provides observation when
testing the connection from other chips, and
provides control when testing the internal chip
logic. A boundary-scan latch on a chip
primary output provides control when testing

the connection to other chips, and provides
observation when testing internal chip logic.

Pseudorandom pattern testing replaces the tra
ditional LSSD testing, which relies on stuck
fault patterns applied and measured by a
tester. To accomplish this, the source pattern
generation logic, response data compression
hardware, and diagnostic hardware and soft
ware are built into the system. Source pattern
generation uses a pseudorandom pattern gen
erator (PRPG); the data compressor is a mul
tiple input shift register (MISR). The design
system supports random pattern self-testing by
generating the patterns with software models,
applying these patterns to the hardware
models, then collecting the signatures. The
patterns can be generated for various clock
cycling techniques to achieve maximum cov
erage of the logic. The signatures are then
stored in the code of the machine, where the
PRPG is run , using the same cycles and clock
sequences as simulated previously to produce
signatures collected in MISRs. The signatures
are compared during IPL time. If a Signature
does not match, the PRPG and MISR can be
reconfigured to run additional tests to further
isolate the failure.

Another class of self-testing is to test the inter
connections between modules and chips to
ensure continuity of nets. Extending the LSSD
design rules so that boundary scan is incorpo
rated on all the chips within the system, the
design system assisted in producing a soft
ware model to simulate the stimuli and
responses of running tests between chips.
The sequences of stimuli and responses are
stored in the IPL code and run on the hard
ware to test the chip-to-chip connections for

VLSI Design Automation 169

shorts and opens. The greatest benefit of
these tests and the previous random pattern
test is that they run close machine speeds.

The AS/400 test process combines random
pattern testing, functional speed testing, boun
dary scan, and failure diagnosis to produce an
effective system-driven test. Without the
design tools for simulation and test generation
of the these tests be less effec
tive.

Conclusion

The VLSI automation process for the
AS/400 driven by latest technolo-
gies available, continues to evolve to meet the
overall system requirements for performance
and product quality. Recent enhancements to
the process include high-level language and
synthesis, and system analysis
verification, physical and system
test. Future efforts will focus on continued
reductions in design time while absorbing the
new technology offerings.

170 Technology Version 2

References
1. Bendas, "Design Transforma-

tion. Proceedings of 20th Design
Automation Conference, 253-256.
June, 1983.

2, Saunders. L.F., "The IBM VHDL Design
System, Proceedings of the 24th Design
Automation Conference. 484~490.
June,

3. Dillinger, T.E., "A Logic Synthesis System
for VHDL Design Descriptions," Pro
ceedings 1989 IEEE International Confer

Computer-Aided Design, 66-69,
989.

4. Elder, W.H., "An Interactive System for
VLSI Chip Physical Design," IBM Journal
of Research and Development,
Volume 28. Number 5. 524-536. Sep
tember, 984.

5. Kirkpatrick, S., "Optimization by Simulated
Annealing," Science, Volume 220,
671-680. 1983.

,...

" ,...

c
o
~
E
o -::l «
c
0>

"en
Q)

o
CJ)
....J
>

Input/Output Bus Using Fiber Optics

Describes the implementation of an attached
input/output (I/O) bus using fiber-optic tech
nology.

Bruce L. Beukema, Timothy R. Block,
Dennis L. Karst, Ronald L. Soderstrom, and
David W. Siljenberg

Introduction

Version 2 of the AS/400 system introduces the
technology of fiber optics as an integral part of
this product. The Version 2 system uses
fiber-optic technology to attach inpuUoutput
(I/O) buses on the 9406 System Units to
increase I/O bandwidth and distance. This
results in important customer benefits of
increased I/O throughput, higher storage
capacity, and longer distances between the
processor and I/O devices.

A laser-based optical link card (OLe), oper
ating at a 222M bps (Mbps equals megabits
per second) data rate , was designed at IBM
Rochester to provide a cost effective, high
data-rate link for the system I/O bus attach
ment [1 ,2]. Figure 92 on page 173 shows
three of these optical link cards mounted on a
local optical bus attachment card. Each OLe
provides two completely independent optical
links; therefore, the three OLes provide six
optical links for I/O bus attachment.

172 Technology Version 2

System 1/0 Bus Overview

Figure 91 on page 173 illustrates the structure
of the 9406 I/O bus hardware. The system
processor attaches to the I/O buses by means
of a local bus attachment card, fiber-optic
cables, and a remote bus attachment card.
I/O controllers attach to the I/O bus and
provide disk, tape, work station, communica
tions, and local area network (LAN) I/O func
tions for the system.

The 9406 models provide the capability to
attach up to seven I/O buses for increased
throughput and capacity. The first I/O bus on
the 9406 models resides within the same
enclosure as the system processor. The
remaining six I/O buses on 9406 models are
attached with a fiber-optic connection to sepa
rate card enclosures.

9406 1/0 Bus Hardware

Figure 92 on page 173 shows the details of
the hardware content used in the connection of
the attached I/O buses with fiber optics. The
field-replaceable hardware components of the
I/O bus subsystem include a local bus attach
ment card, fiber-optic cables, and a remote
bus attachment card.

Local Bus Attachment Card

The local bus attachment card contains the
logic used to attach the first I/O bus and
optionally up to three bus interface units and
three OLes. The bus interface unit contains
the logic used to buffer I/O data between main
storage and the remote bus attachment card.
The bus interface unit connects to an OLe.
Each bus interface unit, together with an OLe,
provides two I/O bus ports into the system pro
cessor. The OLe provides the interface to two
dual fiber-optic cables and performs parallel-to
serial and digital-to-optical conversions.

Remote Bus Attachment Card

The remote bus attachment card contains two
bus control units and one OLe. The bus
control unit performs the direct attachment of
one I/O bus to the OLe. Each bus control unit
also attaches to the OLe to enable the transfer
of I/O data between the remote bus attach
ment card and the local bus attachment card .
The two bus control units are also intercon
nected on the card with printed circuit wiring to
provide an alternative path between the bus
interface unit and either of the bus control
units. This alternative path provides redun
dancy in the fiber-optic I/O buses.

Processing
Unit

I/O Expansion Unit

(6 Slots) (6 Slots)

Figure 91 . 9406 Model 080 with Seven liD
Buses

110
Bus
1

(6 Card Slots)

Dual Fiber Cables

1/0 1/0
Bus Bus
4

1/0
6

1/0
Bus Bus
5 7

(6 Slots) (6 Slots) I I (6 Slots) (6 Slots)

1/0 Expansion Unit I/O Expansion Unit

TECH102·2

Figure 92. Hardware Components in liD Buses
Attached Using Fiber Optics

1/0 Bus Enhancements

Numerous enhancements were made in the
I/O bus design to provide customers with
increased performance, more flexible config
uration alternatives, and improved reliability.

Performance increases of the individual I/O
buses combined with the additional bus attach
ment capability result in an increase of over
300% in 110 data throughput. Configuration
alternatives are more flexible than previously
possible with the use of fiber optics to connect
additional I/O buses. Reliability improvements
occur because fewer components are used to
attach a greater number of I/O buses.

Input/Output Bus Using Fiber Optics 173

Fault Tolerance

Fault tolerance is built into the hardware that
attaches the I/O buses. An alternative path
between bus control units allows communica
tions between a bus control unit and the bus
interface unit on an alternative fiber-optic cable
should a single failure occur in any OLe or
fiber-optic cable component. Hardware mech
anisms automatically retry data packets that
incur errors. Software recovery procedures
are called only when hardware retry proce
dures fail.

Optical Link Card
Technologies

Key technology contributions leading to devel
opment of the OLe were made in the areas of
packaging, optical components, optical con
nectors, optical fiber, electronics, and laser
safety.

Package

The OLe package, including the optical duplex
connectors, the cable, and the optical wrap
plug feature, is shown in Figure 93.

174 Technology Version 2

Figure 93. OLe Package

Surface-mount components on both sides of
the circuit card allow the OLe to maintain a
small form factor for high density packaging in
comparison with industry equivalent function.

As shown in Figure 93, there are two identical,
but electrically isolated, transmit and receive
pairs on each card. Two 48-pin connectors
are placed on the top side of the card such
that the pins protrude through the card to the
bottom side where they attach to the system
card. This allows for a minimal 7-mm card-to
card spacing and a total card height of only
13 mm for low profile requirements. Four
optical connectors are located at the edge of
the card and extend into customer access
areas when the OLe is placed on a system
card.

Optical Components

For computer data links, the optical compo
nents (laser and detector) must be low cost
and still provide high performance attributes,
such as high data rate, low bit error rates, and
reasonable transmission distances to include
multiple building installations. The low cost
requirement for components is the highest pri
ority because a typical computer application
has many transmitter and receiver ports. This
is in contrast to telecommunications applica
tions that employ few transmitter and receiver
ports but many kilometers of optical fiber.

The semiconductor laser used for the OLe is a
780-nm device similar in structure to those
devices that are currently in high volume pro
duction (that is, greater than 2 million per
month) in the compact disc industry.

Semiconductor laser diodes offer many advan
tages over other types of transmitters in fiber
optic systems. One of these advantages is
high data-rate capability. Another is the ability
to launch high levels of optical power into the
fiber. In addition, a laser transmitter requires
low modulation current (on the order of 10 mAl
due to high external efficiency.

The laser chip and a monitor photodetector,
used to measure the laser output power, are
packaged in a hermetically sealed can with a

5.6-mm diameter base. This small size allows
for a compact laser receptacle. The laser
receptacle is of a high coupling efficiency
design (typically 50% into 50/125 11m fiber)
using a single graded-index (GRIN) lens
element and a precision fiber connector.

The receptacle housing and precision compo
nents are made of brass or stainless steel,
which provide the precision and thermal sta
bility required to maintain high optical coupling
efficiency. The laser receptacle assembly is
actively aligned during the assembly process
to optimize the power coupled to the optical
fiber with the laser package and GRIN lens
being soldered or welded in place for good
temperature stability.

The receiver photodetector is a 600-l1m diam
eter silicon PIN photodetector. A PIN device
consists of positive (P) and negative (N)
regions separated by an intrinsic (I) region .
Simple coupling techniques without the use of
any additional lens result in a coupling effi
ciency of greater than 95%. Silicon PIN photo
detectors are also low cost and, as an
established technology, have a proven reli
ability record.

Example laser and detector receptacle pack
ages are shown in Figure 94.

Figure 94. Laser (Left) and Detector (Right)
Receptacles

Optical Connector

The optical connector of choice is a simple
push-pull snap-in connector, commonly known
in the industry as the SC type. This feature
has many advantages over the standard
twist-on connectors that are presently avail
able. The simplicity of the connection is an
important advantage for data communications
applications because the connectors are
accessible to the user. The SC connector
snaps into place with an audible click that lets
the installer know that the connector is prop
erly in place. Similar to most of the twist-on
connectors, the SC is keyed so that it can only

be inserted the same way each time, ensuring
consistent repeatability. The push-pull style of
connector also increases the packaging
density of the connector because there is no
need to allow extra room for accessibility.

One of the most important features of the SC
connector is the design of the ferrule (preci
sion alignment tube). This design is referred
to as a physical contact connection, which has
become a standard in the connector industry.
The SC ferrule is composed of a partially sta
bilized zirconia ceramic material. The end
face of the ferrule has a convex polish with an
optimum radius of curvature of 20 mm. The
use of this material and radius ensures good
physical contact between two ferrules, which
results in a low insertion loss and a high return
loss by eliminating back reflections [3].

Optical Fiber

The preferred fiber is 50/125-l1m multi mode
fiber because of its superior modal bandwidth
compared to other types of multimode fibers
and because of the large number of installa
tions of this fiber, especially in Europe and
Japan. An optional fiber is 62.5/125 11m multi
mode fiber , which provides similar perfor
mance at reduced distances. The fiber is
cabled into a duplex construction using a ple
num-rated jacket for flexibility at the installation
location. The jacket material choice is critical
to achieve the plenum rating while minimizing
the allowable bend radius.

Input/Output Bus Using Fiber Optics 175

Electronics

The design approach of the electronics is to
reduce cost using established technologies in
plastic packages. The electrical schematic for
a single port of a dual-port card is shown in
Figure 95.

The parallel transmit data is received by a seri
alizer module and serialized at 222Mbps. The
serializer modulates the semiconductor laser
with this data and controls the laser operating
point. A phase-locked loop (PLL) generates a
222-MHz clock, needed for generating the
serial data, from the 22.2-MHz transmit clock.
There are also safety circuits in the laser drive
function to turn the laser off if an on-card fault
occurs, which could produce an unsafe power
level.

The incoming light is received by the photo
diode and the signal is amplified by the tran
simpedance preamplifier. The deserializer
module uses a PLL to generate a 222-MHz
clock from the serial data. The deserializer
then clocks the data out in 10-bit words at
22.2 MHz. The shift register has a byte syn
chronization detector that recognizes a unique
character so that the complete bytes can be
unloaded from the shift register without being
fragmented. The transition detector and the dc
detector detect a minimum ac and dc level of
light entering the photodiode. This is used by
the open fiber control (OFC) module to detect
when the fiber path is open.

The transimpedance preamplifier is imple
mented in a 6-GHz bipolar process. It is pack
aged in a 14-pin plastic small outline

176 Technology Version 2

Fiber

Laser Drive

Fiber
Power Monitor

Figure 95. Electrical Schematic Block Diagram

integrated circuit (SOl C) package. The serial
izer and deserializer are implemented in a
4-GHz trench-isolated bipolar process. They
have SOO and 1 ,200 transistors, respectively,
and are packaged in 44-pin plastic-leaded chip
carriers (PLCC).

The OFC is a safety interlock to shut down the
link if both fiber paths are not closed. The
OFC module pulses the laser at a low duty
cycle while a fiber is open . This produces

AC Light
Detection

Laser DC
Drive

Data Out (10)

Byte Sync

4-Phase Clock

Lock to Crystal

Link Inactive

Power On Reset

Laser Off

Transmit Clock

Data In (10)

Transmit Clock

Laser Fault

TECH10l ·3

Class 1 optical power in the open port. When
the fibers are reconnected, the OFC returns
the laser to continuous power. The OFC is
implemented in 2,200 complementary metal
oxide semiconductor (CMOS) circuits. It is
packaged in a 2S-pin PLCC.

The bus interface unit is implemented in an
O.S-l1m semicustom CMOS chip using 40,000
circuits. It is packaged in a ceramic-pin-grid
array.

Laser Safety

When designing an optical link with a laser
transmitter, laser safety standards and legal
regulations need to be understood and incor
porated into the development process. This
ensures a final laser product that is both safe
and in conformance with legal regulations
throughout the world.

The OLC uses the OFC function in conjunction
with redundant circuitry and laser safety fea
tures incorporated in the laser drive circuits.
The OLC laser product has been certified to
be in conformance with worldwide laser safety
regulations as a Class 1 laser product.
Class 1 is the least restrictive classification for
laser products and requires minimal labeling
and documentation.

Conclusion

The use of fiber-optic technology has enabled
the development of 9406 models with
enhanced I/O attachment throughput and flexi
bility. I/O attachment devices may now be
located remotely from the processing unit with
performance nearly equal to those attached
locally. An affordable cost for the feature is
achieved through the use of low-cost compo
nents and packaging, namely, short-wavel
ength laser-based sources and surface-mount
assembly. Overall system reliability is
improved through fault tolerance and through a
reduction in the number of components .

References
1. Soderstrom, R.L., Block, T.R., Karst, D.L.,

and LU, T., "An Optical Data Link Using a
CD Laser," Proceedings of SPIE: High
Speed Fiber Networks and Channels, to
be published in Winter 1991, Boston, MA.
September, 1991.

2. Soderstrom, R.L., Block, T.R., Karst, D.L.,
and Lu, T., "CD Laser as a Fiber Optic
Source for Computer Data Links," Pro
ceedings of SPIE: Fiber Optic Datacom
and Computer Networks, Volume 991,
Boston, MA, 179-182. September, 1988.

3. Sugita, E., Iwasa, K., and Shintaku, T.,
"Design for Push-Pull Coupling Single
Mode Connectors Featuring Zirconia
Ceramic Ferrules," ECOC '86, 141. 1986.

Input/Output Bus Using Fiber Optics 177

Designing Twinaxial Work Station Controllers for Performance

Discusses the performance-oriented design of
the ASI400 twinaxial work station controller.

Harvey G. Kiel and Ricky M. Peterson

Introduction

Local work station controllers (WSCs) handle
the exchange of information between host
applications and local work stations. Data
stream commands and data flow to and from
the host, and input/output (1/0) commands and
data flow to and from the user's work station
(typically a nonprogrammable work station
(NWS), personal computer, or printer).

WSC design is especially important to a user;
it handles the information with which the user
interacts. Because performance problems,
such as sluggish response time for a keystroke
or inconsistent printer speed, are causes for
customer dissatisfaction, special consideration
should be given to the WSC and its related
interfaces.

The twinaxial work station subsystem (specif
ically, the WSC) consists of several processes,
such as host interface communications, 5250
display data stream processing, and device
communications. Figure 96 shows the major
WSC software components. Throughout the
WSC design, performance implications are
given a high priority. This article discusses
specific performance enhancements relative to
each of the components.

178 Technology Version 2

System Bus

Twinaxial Connection to Work Stations

PWS = Programmable Work Station

RAS = Reliab i lity, Availability, Serviceability
SNA = Systems Network Architecture

TECH071·2

Figure 96. Twinaxial Work Station Controller
Structure

Host Interface
Communications

For the WSC to offer functions external to the
system processor, the WSC must receive com
mands and data from the host, and information
must flow back to the host from the WSC.
The content of the data flowing to or from the
WSC depends on the type of work station
attached. For an attached NWS, the host
sends a 5250 display data stream that
describes the type of screen to present to the

user. After the user enters data at the key
board, information that describes the user's
input is sent back to the host. For printers, the
host sends a printer data stream that is
required for the printer to produce the neces
sary print image, and little information flows
back to the host. Personal computers can
function as emulated NWSs or as program
mable work stations (PWSs). The former acts
the same as an NWS. The latter can act as
the WSC for that personal computer or as a
separate computer system, thus receiving data
from the host (passed through the WSC).
PWSs that act as a separate computer system
may request the WSC to transfer data
between the AS/400 system and the PWS.
The rate that data flows to or from the WSC
also depends on the work station being used.
NWSs may receive data infrequently. Printers
and PWSs may require data to flow for long
periods of time.

AS/400 WSCs communicate with the host
using large frame sizes: 4,608 bytes for
NWSs and PWSs and 2,048 bytes for printers.
This design significantly reduces host, WSC
processor, and system bus utilization during
host and WSC communications. AS/400
WSCs are able to support large frame sizes
through the use of dynamic memory allocation.
NWSs require an entry-field definition table
(2,048 bytes) but require communications
buffers only for brief periods of time and
usually only one buffer at a time. PWSs and
printers do not require an entry-field definition

SNA change direction indicator (COl) can be
managed properly by the host and WSC SNA
components. In the PWS case, the LU 7 COl
is difficult to manage because of
multiple-PWS-session capability. This results
in many SNA SIGNAL commands to request
the COl and null frames to pass the COl. Ori
ginally, the AS/400 system used the standard
half-duplex LU 7 to support PWSs. Problems
were identified including delays on send oper
ations in both the host and WSC SNA compo
nents (when the COl was at the wrong side)
and extra host and WSC processor work load
as a result of COl management. To address
these problems, the WSC designers developed
a duplex version of SNA session type 7 specif
ically for PWS attachment (this design does
not function for NWSs or printers). The new
design allows the host and WSC SNA compo
nents to send frames as necessary. It uses no
COl, no SIGNAL commands to request COl,
and no null frames to pass COl. The new
design significantly improves performance.

Reliability, Availability, and
Serviceability Manager

The reliability, availability, and serviceability
(RAS) manager handles logging of errors,
monitoring work station detection, and col
lecting and reporting performance data.

AS/400 WSCs report temporary twinaxial pro
tocol errors to the host for logging. Logging all
temporary twinaxial protocol errors on a
system with a substandard twinaxial cable or
substandard work stations seriously degrades
WSC and host performance. The WSC allows
a maximum of five temporary errors per work

180 Technology Version 2

station per 30-minute interval. This results in
enough information about the problem without
further degrading performance with excessive
error logging.

AS/400 local WSCs support automatic config
uration. The WSC polls all twinaxial
addresses and informs the host of any work
station powered on or powered off. Unsatis
factory performance to users of powered-on
work stations is minimized by polling a single,
unused twinaxial address at a very slow polling
rate. Also, WSC changes unused twinaxial
addresses at a rate determined by the number
of powered-on work stations, resulting in fewer
changes between addresses for a WSC with
many work stations attached.

AS/400 WSCs generally have good perfor
mance characteristics; however, there may be
some cases of an overloaded WSC. Also,
customers studying system performance may
want to analyze WSC performance when
attempting to predict future system perfor
mance. The AS/400 system provides perfor
mance tools that allow customers to analyze
and improve system performance. AS/400
WSCs have a built-in performance monitor that
captures and reports performance data to the
host. Each WSC reports estimated processor
and twinaxial utilizations, and individual system
response times for each NWS.

5250 Display Data Stream
Processing

NWS response time for keystrokes requiring
host processing is the sum of WSC GET time,
host time, and WSC PUT time. GET time is
the time required to process a keystroke
requiring host processing, read the NWS
screen, and send an inbound 5250 display
data stream with processed entry-field data to
the host processor. PUT time is the time
required to process an outbound 5250 display
data stream, update the entry-field definition
table, update the NWS screen, and unlock the
keyboard. The data stream processing time
for NWSs can be considerable. Information in
the outbound data stream must be converted
to NWS commands in a format that the NWS
can understand. When the NWS sends infor
mation requiring host processing to the WSC,
that information must be converted to an
inbound data stream that the AS/400 display
handling programs can understand.

WSC GET and PUT processing can be a sig
nificant portion of overall system response
time. David Andrews of ADM, Inc. stated the
following : "One of the important design fea
tures of the AS/400 is a newly designed work
station controller significantly faster and more
sophisticated than those offered with the S/36
or S/38. This new controller is a major contrib
utor to the faster response times "[1].

There are basically two types of PUT
operations: full screen, which creates a new
screen format, and partial screen, which
updates an existing NWS screen. Average
PUT operations contain between 50 and 100
data stream elements, with some containing

many more elements. Prior to AS/400
systems, WSCs processed each element indi
vidually, whereas most elements map into one
or two NWS commands. NWS commands
usually require between 2 and 5 ms of NWS
service time. In some cases, AS/400 WSCs
create temporary screen buffers in WSC
storage, process PUT elements into the screen
buffer, and finally update the NWS screen with
only two to four NWS commands.

The WSC has three methods of processing
PUT operations:

• Full-screen PUT processing
• Large partial-screen PUT processing
• Small partial-screen PUT processing

Full-screen PUT processing is done for a
data stream that begins with a Clear Unit 5250
data stream command. The WSC creates a
temporary screen buffer and clears the buffer
as part of Clear Unit processing. All subse
quent data stream commands and orders are
processed into the screen buffer. When the
end of the PUT data stream is found , the WSC
rewrites the entire NWS screen. This method
of PUT processing is probably the most visible
WSC performance improvement over other
WSCs. Prior to AS/400 systems, WSCs
required several hundred milliseconds to
process typical full-screen PUT operations
whereas NWS commands are sent throughout
PUT processing. WSCs now process most
full-screen PUT operations in less than 100
ms. The screen is updated at the end of PUT
processing (appearing to be an instantaneous
screen update) . Large frame sizes between
the host and WSC are beneficial because
most PUT operations fit into a single frame.

Large partial-screen PUT processing is
done for a large data stream that does not
contain a Clear Unit data stream command.
The WSC reads the entire NWS screen into a
temporary screen buffer and processes all
subsequent data stream commands and
orders into the screen buffer. The NWS
screen is written from the first byte changed to
the last byte changed when the end of the
PUT data stream is found . This method of
PUT processing provides significantly better
performance than processing each data
stream element individually.

Small partial-screen PUT processing is done
for a small data stream that does not contain a
Clear Unit data stream command. The WSC
processes each data stream element individ
ually by sending NWS commands. Prior to
AS/400 systems, WSCs essentially operated in
this mode all the time. This method of PUT
processing offers better performance than
large partial-screen PUT processing for small
data streams because the number of NWS
commands is limited. Because reading the
entire NWS screen requires about 40 ms, data
streams with less than 10 to 15 typical NWS
commands can be processed faster than with
the large partial-screen PUT processing
method.

When a user presses a keystroke requiring
host processing, the WSC performs GET pro
cessing, which includes reading data from
NWS screen entry fields. Prior to AS/400
systems, WSCs always read each individual
entry field separately, requiring two NWS com
mands. The time required for the NWS com
mands becomes significant when an NWS
screen contains many entry fields (up to 256

entry fields are allowed). AS/400 WSC
licensed internal code uses the trade-off
between multiple read operations and reading
extra data between entry fields to optimize per
formance .

There are two types of read operations, unfor
matted (the NWS returns screen data) and for
matted (the NWS performs processing on the
screen data before returning the read data to
the WSC). The NWS time for unformatted
read operations is small . For an unformatted
read operation, the WSC reads the NWS
screen into a temporary screen buffer from the
first entry field to the end of the last entry field.
This results in fewer NWS commands and
improved performance in nearly all cases. The
NWS time for formatted read operations is
related to the size of the read data, which can
be significant. The WSC may group read
operations together when a formatted read
operation is going to be used (word processing
mode in certain cases). The WSC groups two
or more read operations into one when the
extra NWS and twinaxial transmission times
are less than the overhead of an extra read
operation.

5250 Keystroke Processi ng

NWS users interact with AS/400 applications
with keystrokes. The keystroke entered may
or may not show up on the NWS screen and
mayor may not be sent to the host. Key
stroke processing is performance-sensitive.
For keystrokes processed completely by the
WSC, users expect the keystroke to be pro
cessed immediately. A visible delay is unac
ceptable. If the keystroke response time

Designing Twinaxial Work Station Controllers for Performance 181

appears to customer dissatisfac-
tion is imminent.

The WSC has added support for type-ahead.
Type-ahead involves buffering keystrokes in
the WSC when the keyboard is locked, and
processing them when the keyboard unlocks.
Type-ahead can significantly improve an
expert user's productivity because "think time"
can be significantly reduced on displays well
known to the time" is from the
time the after an NWS

(keystrokes can be
the user has completed

entering Type-ahead is useful
when a user is working with documents in
word processing mode (WP mode). If a docu
ment is too wide for the NWS screen, type-a
head can be used to make it easier for the
user to see the parts of the document to the
right or left of the NWS screen. The WSC
sends a request to the system for more data
when the cursor reaches left or right edge
of the NWS and more data exists
beyond it.
rupted while

user is not inter
wide documents.

Printer Pass-Through

In general, the WSC simply passes printer
data streams through to the specified printer.

Two critical areas of printer performance are
printer printers printing at
rated speed) minimal degradation to other
users on the WSC printers. Perfor-
mance testing that AS/400 WSCs
can support
throughput

182 Technology Version 2

minute (Ipm) with minimal
other users on the WSC.

AS/400 WSCs support two modes, normal
WSC mode and dedicated printer WSC mode.
Each time a work station is powered on or off,
the WSC checks all attached work stations
that are powered on. If only printers are
attached, the WSC is considered a dedicated
printer WSC. Printers are then polled at fast

maximum single-printer
higher than 3,500
printers from degrading

other users on the WSC
throughput on a

PWS Pass-Through

PWSs (running PC Support/400) have several
critical areas of performance including

file transfer operations,
for keystrokes requiring

running AS/400 apolicat
degradation caused by

the WSC. Prior to AS/400
personal computers were attached to

the system using existing 5250 interfaces.
Each 5250 emulation and file transfer session
uses a dedicated twinaxial address and
appears as a separate 5250 NWS to the WSC.
There are several performance inefficiencies
with this design. For example, because file

fit within the context
(limited to a maximum

before an end-to-end
and pseudokeystrokes

read or write operation
screen, file transfer

limited. Also, a personal computer can
several twinaxial addresses, increasing

both WSC twinaxial and processor utilization
due to polling each of these addresses.

A new 5250 data stream protocol between the
host and WSC was designed for PWS users.
The protocol essentially turns the WSC into a
pipe, simply passing data between the host
and PWS. The WSC is transparent to the

data, and handshaking between the host
and the WSC is to a minimum.

Prior to AS/400 systems, PWSs would com
monly use more than one twinaxial address
have more sessions active. If more than one
twinaxial address is used, the number of
devices attached to the WSC is reduced. To
make the connection between the WSC and
the PWS more efficient, AS/400 WSCs require
only a single twinaxial address independent of
the number of sessions running on the PWS.

minimize handshaking between the WSC
and the PWS, a new protocol between the
WSC and PWS is used. The first two bytes
download data contain the length of the down
load data. The PWS requests that data be
sent to the host by passing a scan code to the
WSC on a poll. A scan code indicates a key
stroke for an NWS. A scan code from the
PWS approximates the length of the data to be
sent from the PWS to the host (a scan code of
1 is equivalent to 2 through 64 bytes; a scan
code of 2 is equivalent to 65 through 128

a scan code of 3 is equivalent to 129
through 192 bytes: and so on). The WSC
reads the data from the PWS. If the data
length is less than ,024 bytes, the WSC
reads the data in single read operation.

first 2 bytes of data contain the exact length of
data to be sent to the host. The new design
also emphasizes overlapped processing.
WSC processor and twinaxial utilizations are
also reduced by the new design.

Device Communications

The actual communications activity between
the WSC and work stations takes place over a
1 Mbps (Mbps equals megabits per second)
twinaxial communications line. While this may
seem fast, there may be a considerable delay
if a lot of data flows for a given transaction or
if there is significant queuing on a single set of
hardware twinaxial drivers and receivers .
Also, twinaxial protocol requires 16 bits per
byte of data sent or received. This overhead
reduces the maximum throughput to 62.SKBps
(KBps equals kilobytes per second). Hardware
logic in the WSC and the WSC licensed
internal code are optimized for performance.

AS/400 WSC twinaxial hardware supports the
concept of an automatic-poll chain. Prior to
AS/400 systems, WSCs issued a request to
the twinaxial hardware adapter for each poll.
The WSC microprocessor was then interrupted
when a poll response was received. The
AS/400 WSC automatic-poll chain controls
polling for keystrokes from NWSs for new
status information from PWSs or printers and
for command completion for a previously sent
command . Each request on the chain has its

own polling rate (using a skip count) , allowing
the WSC to set individual work station polling
rates. AS/400 twinaxial hardware interrupts
the WSC microprocessor only when a key- _
stroke or new status is received , a previously
sent command has been completed, or an
error has been detected. There are two signif
icant advantages to hardware support for an
automatic-poll chain: WSC processor utiliza
tion is significantly reduced and the twinaxial
interface to work stations is used more effi
ciently. These occur because the hardware is
able to proceed from request to request on the
automatic-poll chain faster than if the licensed
internal code issued each individual poll
request. Automatic-poll support in WSC hard
ware allows the WSC processor to handle
requests for work stations while the WSC
hardware concurrently polls work stations.

Polling rates directly affect performance. Twi
naxial communications generally have a higher
capacity than the WSC processor. The WSC
adjusts polling rates to trade off twinaxial
latency times against twinaxial and processor
utilizations. Twinaxial latency is the time
from when a work station is ready to inform
the WSC of an event (or change in status)
until the WSC actually polls the work station
and detects the event. Fast polling rates opti
mize performance by minimizing twinaxial
latency times on a lightly loaded WSC.
However, faster polling rates increase twinaxial
utilization as well as processor utilization,
degrading performance on a heavily loaded

WSC. Processor utilization is affected
because hardware access to automatic-poll
requests kept in WSC storage briefly prevent
the WSC processor from accessing storage.
Therefore, polling rates are adjusted using a
closed feedback loop based on the WSC pro
cessor utilization range described previously.
The result is a WSC that has optimal perfor
mance across light, medium, and heavy work
loads because processor and twinaxial utiliza
tion is balanced.

WSC developers measured WSC performance
characteristics at various polling rates. A per
formance model was then tuned, and response
time versus work load was plotted. Figure 97
on page 184 shows a sample of the response
time curves for a heavy WSC work load. The
curves show three polling rates: 1 ms with a
skip count of 10, 3 ms with a skip count of 6,
and 6 ms with a skip count of 4. As expected,
fast polling optimizes performance on a lightly
loaded WSC but degrades performance on a
heavily loaded WSC. The goal is optimized
performance across varying work loads; there
fore, the lowest response times and cross-over
points are of the most interest. The cross-over
points are marked with arrows and show
where polling rates would be adjusted .
Although only three are shown in Figure 97 on
page 184, the WSC actually uses six different
polling rates based on the processor utilization
range (see Table 3 on page 184).

Designing Twinaxial Work Station Controllers for Performance 183

Thinrn I Mag Disks

Describes the thin-film disk technology used in
IBM disk units.

Kenneth E. Johnson

Introduction

IBM thin-film magnetic disks represent a major
advance in the design and production of rigid-
disk recording media. In for higher
recording densities on rigid thin-film
media major over the
existing particulate disk technology [11.
Uniform films can be easily deposited with
thicknesses of only several hundred angstroms
(A), hence origin of the thin film.
Thicknesses this range are essential for
high density magnetic

Thin-film disks appeared in the marketplace in
the early 1980s, and their magnetic benefits
were immediately obvious. However, because
of the challenges surrounding disk
durability. reluctance emerged regarding
incorporating thin-film media disk unit
designs. Implementing thin-film media into
IBM products required significant advances in
thin-film disk tribology and thin-film disk corro
sion resistance. Thin-film disk wear mech-
anisms understood combined
with the susceptibility to corrosive degradation
disk life can be sharply curtailed. The pres
ence of a high fraction of chromium (Cr) in the
sputtered magnetic film produces acceptable

186 Technology Version 2

corrosion resistance. The addition of a thin
sputtered carbon overcoat on top of the mag
netic film, followed by the application of
approximately one monolayer of lubricant,
extends disk media The thin-film

IBM 0671. . and 0681
disk units are the first such disks from IBM
development laboratories to fulfill the stringent
requirements for inclusion in an IBM disk unit.

Enhancements to the thin-film
its manufacturing process,
mance and mectlanical

structure.
magnetic perfor

and its cor-
rosion resistance have been made. (For more
technical detail on thin-film magnetic disks, see
the excellent review entitled "Thin-Film
Recording
[21·)

written Arnoldussen

Disk Structure and
Manufacturing Process

IBM thin-film magnetic disks ccnsist of several
layers of metallic and nonmetallic films. Well
known techniques are used to achieve the
desired depositions. First, the aluminum subs
trate is chemically plated with a relatively thick
layer of nickel that is brought to a desired
finish usinc abrasive finishing precesses. TIle

and the associated underlayer
and overcoat are then applied a vacuum
process known as magnetron sputtering.
Chemical plating can also be used for mag
netic film deposition, but sputtering was

chosen because of the ease in sputtering
ternary magnetic alloys of different compos
itions. This versatility in choosing magnetic
alloys is for the thin-film disk used in
current

As a general example of a thin-film disk struc
ture, Figure 98 on page 187 shows a cross
section view of an IBM 0671 thin-film disk. As
in the majority of rigid-disk products, the disk's
magnetic overcoat structure placed on
an aluminum alloy substrate. IBM has
shipped thin-film disks in three sizes: the 0671
130-mm disk with an inside diameter of 40 mm
and a thickness of 1.9 mm, the 0681 130-mm
disk with an inside diameter of 40 mm and a
thickness of 1 mm, and the 0661 disk with
an inside
of 0.8 mm. The aluminum is layered with a
14-1l deposit of hard nickel-phosphorous (Ni P)
using a process known as electroless plating,
which is a chemical plating process that does
not require external batteries or power sup-
plies. This surface is equivalent hardness
carbon steel kg/mm2) serves as a
firm base thin magnetic layer. In addi-
tion, the NiP surface allows for a smooth and
controlled surface finish after abrasive pro
cessing, which a soft aluminum surface alone
could never provide. The morphology
of the and textured NiP is replicated
in the next layers of disk structure.
The top surface must be free of asperities to
allow recording heads to fly closely and to min-

A

Lubricant

Carbon Overcoat
T =275 Angstroms

T=10 Angstroms

NiP Layer
T=14 Microns

Section A-A

AI Alloy
Substrate

A

T =0.075 Inches

TECH025-2

Figure 98. Cross-Section View of an IBM 0671
Thin-Film Disk

imize head-to-disk interactions that can accel
erate disk wear.

Next, the thin-film NiP surface is polished to a
high degree of smoothness (25 A) and then
given a circumferential texture (75 A measured
radially) . This texture is readily identified by
the eye and serves to reduce stiction (the
static friction force reSisting initial disk motion)
and friction, while at the same time improving
magnetic properties because of preferential
magnetic-grain alignment along the circumfer
ential grooves. Although a surface texture is
purposely added, the resultant disk surface still
allows a recording head to fly at 175 nm at its
inner diameter without encountering any inter
ference or interactions.

The essence of the IBM thin-film disk is built
into the next four layers. After the hard NiP
surface is polished and textured, a Cr under
layer followed by the cobalt-platinum-chromium
(CoPtCr) magnetic layer is sputter-deposited in
a vacuum chamber. A sputtered carbon (C)
overcoat is subsequently deposited in a
second vacuum chamber of the same sput
tering apparatus. This entire process is
accomplished using a moving vertical pallet
containing twenty-three 130-mm disks or forty
five 95-mm disks, which are sputtered over the
course of several minutes. This process can
produce a large quantity of disks at low cost
with uniform film thicknesses and magnetic
properties. After emerging from the sputtering
step, a lubricant layer is deposited by dipping
the disks into dilute solutions containing hydro
carbon or fluorocarbon .

Disk Magnetics

Producing a high quality magnetic disk
involves more than sputtering a uniformly thin
metallic layer. Magnetic anisotropy (the tend
ency for a material to magnetize in a specific
direction) must be rigidly controlled to prevent
degrading effects, such as modulation in the
read-back signal [3]. One of the keys to pro
ducing a suitable magnetic film for longitudinal
recording (the recording of bits parallel to the
direction of recording) is to ensure that the
magnetic anisotropy is in the plane of the disk.
This preferential horizontal alignment is neces
sary to produce high squareness hysteresis
loops that, in turn, lead to high-density
recording capabilities.

This alignment can be controlled by several
factors, but a major contributor is the identity,
orientation, and thickness of the underlayer as
described by J.K. Howard and others [4,5].
Depositing the thin (100 to 300 A) Cr under
layer at a high rate (2,000 A per minute)
results in a crystallographic-preferred (110) ori
entation that allows the CoPtCr film to grow
epitaxially, with its easy axis of magnetization
in plane. Figure 99 on page 188 shows a
magnetization (M) versus magnetic field (H)
hysteresis loop of a CoPtCr thin-film disk com
pared to a particulate disk. The thin-film disk's
curve exhibits a high degree of squareness
compared to the particulate film. This is a
result of the preferred growth characteristics
influenced by the underlayer and the general
properties of magnetic-metallic thin films.

Thin-Film Magnetic Disks 187

with this alloy, and any coercivity changes nec
essary for future disk designs can be attained
by making slight composition changes. Sec
ondly, the Mr value in CoPtCr is sufficiently
high to produce a strong signal at low thick
nesses. Third, the CoPtCr formulation gives a
magnetic film with a high signal-to-noise ratio.
Finally, the Cr, in addition to aiding in the
control of Mr and He values, also serves as a
corrosion inhibitor, allowing the disk to with
stand extremes in temperature and humidity
and to withstand the presence of foreign corro
sive gases.

Each IBM thin-film disk undergoes a dynamic
magnetic test of parameters, such as signal
strength, resolution, signal-to-noise, and miss
ing-bit and extra-bit defect counts. Disk drive
design criteria defines the disk signal require
ments, which are related to the fundamental
magnetic description of the CoPtCr film . The
magnetic defects are typically about one in
1,000,000 bytes and are maintained at this low
level as a result of high-quality disk substrates,
sputtering conditions with minimal contam
ination, and a series of cleaning steps per
formed during manufacturing that eliminate
environmental and process debris.

Mechanical Durability

Thin films, even though they rest on an
extremely hard surface, cannot withstand the
sliding of a recording head during normal oper
ations of the disk unit. Because IBM imposes
strict standards on the durability of its
recording components to ensure long disk life,
deSigns to meet these standards were imple
mented on IBM thin-film disks. The sputtered

amorphous carbon overcoat of 27S-A thick
ness protects the magnetic layer by providing
a sufficiently hard surface to eliminate wear of
the magnetic layer. A thin lubricant film
applied to the carbon overcoat minimizes wear
of the carbon film.

OJ

OJ

~
o
LL
c
o
C3 .;::
LL

This lubricant minimizes long-term wear by
minimizing both static and dynamic friction.
Overcoming high static friction requires exces
sive starting torque, and high dynamic friction
wears the surfaces excessively. Figure 100
shows friction traces of a thin-film disk with

Number of Cycles at 100 rpm

-- With Lubricant

.----- Without Lubricant

Figure 100. Friction Force versus Number of
Cycles on a Thin-Film Disk with
and without Applied Lubricant

TECH027·1

Thin-Film Magnetic Disks 189

and without an applied lubricant overcoat. The
carbon surface with no lubricant has initial fric
tion values that are low. However, after some
time passes in this accelerated test, friction
increases to a dangerously high value. The
trace with the organic lubricant applied is
extremely flat and low in value [7].

The amount of lubricant applied to the carbon
surface is critical. Too little can lead to exces
sive wear, while too much can lead to large
static friction coefficients (stiction). The
optimal value is about one monolayer.

Multiple mechanical durability tests to simulate
disk drive conditions were conducted. Start
and stop tests mimic the take off and landing
of the head on the disk surface. Flyability
tests investigate the effects of intermittent
contact of a flying head with disk asperities.
Friction and stiction testing ensures that the
head-to-disk interface is not prone to exces
sive drag forces. IBM thin-film disks perform
these mechanical tests exceptionally well.

Resistance to Corrosion

Thin films can react chemically with a variety
of materials in the environment. A major engi-

190 Technology Version 2

neering effort was applied to stabilize the thin
film disks from environmental degradation. By
greatly restricting air flolJlv and using filters, the
IBM disk drive design minimizes contact by air
borne corrosive elements, such as chlorine
and sulfur compounds, that can occur in
minute quantities in disk unit operating envi
ronments. High humidity, particularly at high
temperatures, then becomes the more severe
corrosive exposure [8]. To alleviate surface
degradation from water condensation and tem
perature and humidity extremes, the use of Cr
in the magnetic layer is crucial. Cr readily
forms a thin, nonmagnetic oxide layer, which
protects the rest of the disk structure.

Film disks of other cobalt alloys, especially the
cobalt-phosphorous- (CoP) plated alloys, are
more reactive under stressed humidity and
temperature conditions and are not acceptable
for the ranges of temperature and humidity
that IBM thin-film disks will experience.
Figure 101 shows a corrosion-rate comparison
among a plated CoP thin-film disk with a
carbon overcoat (Curve 1) and IBM CoPtCr
thin-film disks with (Curve 3) and without
(Curve 2) a carbon overcoat. Corrosion

occurs at a much greater rate on the CoP with
the carbon film. Furthermore, the presence of
carbon on top of the sputtered CoPtCr dimin
ishes the corrosion rate even further. The
carbon layer, although somewhat porous,
serves as a protective barrier between the
environment and the thin film [9].

10.4

N
E 10.5

()

~
(j)

~ 10.6

c
o
(j)

g
<3 10.7

i I : -H+-~ , , I

_ffilW+ :-tW-1 I I

10.8

o

I I I I ; i I -
I I i

2 4 6 8 10 12 14 16

Time (minutes)

Figure 101. Rate of Disk Corrosion in a

Deionized Water Droplet

TECH028·2

Conclusion

The benefits of recording on thin-film disks are
realized from two innovations in thin-film disk
technology: improved mechanical durability
from innovations in surface lubrication and
improved resistance to corrosion because of
the high-chromium-content magnetic alloy.
The versatility in modifying thin-film magnetic
properties, specifically the CoPtCr film system,
makes the design of a film disk for higher den
sities practical. Developmental work in
improved magnetic alloys will continue, with an
increased emphasis on low-noise film compos
itions. Overcoat and lubricant technology for
film disks is still in its infancy, and new discov
eries are expected that will prolong disk dura
bility over today's thin-film disks.
Developments are expected that will minimize
corrosion and extend mechanical life beyond
today's goals. The advent of thin-film disks
within IBM and the magnetic-media industry in
the 1980s, coupled with other advances in
storage device technology, ensure the contin
uation of exponential increases of storage den
sities in the 1990s.

Acknowledg ments

IBM thin-film disks were developed at the
Rochester, MN, site and are the result of a col
laboration of many talented people in the disk
manufacturing and development group. These
disks are now manufactured at IBM sites in
San Jose, CA, and Mainz, Germany, as well
as in Rochester, MN. Important support work
has also been done in IBM San Jose, CA, and
the IBM Research Division located in Yorktown
Heights, NY, and Almaden, CA.

References
1. Bate, G., Ferromagnetic Materials, edited

by E.P. Wohlfarth, Volume 2, Amsterdam ,
N. Holland Publ. , 381-507. 1980.

2. Arnoldussen, T.C., "Thin Film Recording
Media," Proceedings of the IEEE,
Volume 74, 1526-1591.1986.

3. Haines, W.G., "Anisotropy in Thin-Film
Media-Origins and Applications," Journal
of Applied Physics, Volume 61 ,
3497-3502. 1987.

4. Howard, J.K. , Ahlert, R., and Lim, G., "The
Effect of Polycrystalline Sublayer Films on
the Magnetic and Structural Properties of
CoCr Films," Journal of Applied Physics,
Volume 61 , 3834-3839 . 1987.

5. Ishikawa, M., Tani, N. , Yamada, T., Ota,
Y., Nakamura, K., and Itoh, A., "Film Struc
ture and Magnetic Properties of CoNiCr/Cr
Sputtered Thin Films," IEEE Transactions
on Magnetics, Volume MAG-22, 573-576.
1986.

6. Howard, J. K., Ahlert, R. , Lim, G., and
Wang , R.H., "The Magnetic and Structure
Properties of CoPtCr Film Media," IBM
Research Report, Volume RJ 5198
(53818). June, 1986.

7. Lecander, R.G., IBM Rochester, MN,
Private Communication.

8. Dubin, R.R., Winn, K.D., Davis, L.P., and
Cutler, R.A., "Degradation of Co-Based
Thin-Film Materials in Selected Corrosive
Environments, " Journal of Applied
Physics, Volume 53, 2579-2581. 1982.

9. Brusic, V. , IBM Research, Yorktown
Heights, NY, Private Communication.

Thin-Film Magnetic Disks 191

System Power Control Network

Describes how distributed power, battery
backup, and a network of distributed intelligent
power controllers improve system availability
and serviceability.

Neil C. Berglund

Introduction

Version 2 of the AS/400 9406 system contains
significant improvements in the power system
to increase system availability and servicea
bility. These improvements are achieved using
a distributed power system, integrated battery
backup, and intelligent power control. Distrib
uted power and battery backup were first intro
duced in the AS/400 9404 system. In the
9406, these concepts are enhanced with the
addition of intelligent power control.

Intelligent power control is included in the 9406
System Unit and in each System Unit Expan
sion, Bus Extension Unit, and 9309 Rack
Enclosure. An intelligent power control
network, the system power control network
(SPCN), connects the operating system with
the power controllers in these system
resources to provide improved fault reporting,
error recovery, and fault tolerance for utility
interruptions and hardware failures .

192 Technology Version 2

Distributed Power

Distributed power uses a structure that sepa
rates power supplies into two stages. The first
stage converts utility power to 28 V dc, which
is distributed to the second stage and directly
to loads requiring 28 V. The second stage
consists of one or more regulators to convert
28 V dc to the unique voltages required by
each load, that is, the various electronics and
devices in the unit.

Distributed power was introduced into the 9406
to achieve and expand the advantages real
ized in the 9404 [1]. One advantage is the
ability to use multiple, identical 28-V power
supplies , operating in parallel , to provide and
distribute a single voltage, nominally 28 V dc.
The unique voltages and currents required by
logic and devices are provided by regulators,
which are packaged with , or close to , the loads
they power to provide simpler distribution and
tighter regulation . Supplying the 28 V dc with
multiple, smaller 28-V supplies sharing the
load allows power supplies with different power
capacities to be built by using different
numbers of the basic 28-V supply. This also
allows extra capacity to be added to the total
to provide n+ 1 capability (the ability to tolerate
the failure of one supply if the remaining sup
plies are able to provide sufficient current).

Battery Backup

To provide the ability to tolerate most utility
interruptions and selected hardware failures, a
Battery Power Unit is standard in all critical
system resources. The battery is turned on to
power the processor and other critical
resources when normal power fails . This sig
nificantly reduces the recovery time that would
otherwise be necessary after the failure is cor
rected or power is restored .

This concept, first used on the 9404 and
improved for the 9406, makes effective use of
the distributed power structure. A 24-V battery
backup unit is connected to the 28-V power
bus in parallel with the 28-V power supplies.
The batteries are turned on to provide power
to the regulators if the 28-V bulk supplies fail
to provide sufficient power. The batteries are
turned on when utility power is interrupted and
also when a hardware failure causes the 28-V
power to fail. If the power failure persists, the
battery provides sufficient power until the con
tents of main storage can be saved to a file in
the system unit.

Intelligent Power Control

Microprocessor-based power controllers have
been added to critical system components to
make optimal use of the capabilities provided
by the distributed power structure and inte
grated battery backup. Microprocessor-cont
rolled power exists in the system unit and in

each system unit expansion, bus extension
unit, and rack enclosure.

Figure 102 shows an exploded view of signif
icant features of the power system of the
system unit. The power systems of the
system unit expansion and the bus extension
units are identical except they contain a simpli
fied display panel. Utility power enters the ac
module and is distributed to the three 28-V
power supplies (dc bulk modules) shown
across the back. The 28 V de power is distrib
uted from the dc bulk modules to the card
enclosure where book regulators generate the
voltages for the system processor, main
storage, and I/O controller cards. The inte
grated load source file, which is packaged
within a book and located in the card enclo
sure, receives 28 V directly. The load source
file regulator is contained within the file book
package. Also connected to the 28-V bus is
the Battery Power Unit, located above the card
enclosure. The power controller is located in
the ac module. Status and control signals
connect the 28-V power supplies, the battery,
and each regulator to the power controller,
which is also connected to the control panel
shown directly in front of the battery.

The power controller turns power on and off in
the unit and can individually control each regu
lator. When power is turned on, the controller
constantly monitors the battery, each 28-V
supply, each regulator, and the cooling blower.
The power controller exists to detect and
report power system malfunctions and to keep
the unit operating, if possible, in spite of the
malfunctions. When a utility interruption
occurs, the 28-V power supplies cease to

System
Control
Panel

Battery
Power
Unit

Book
Regulator

Figure 102. 9406 System Unit Power Control

provide sufficient power. The battery is turned
on to keep the unit operating and the power
controller notifies the operating system that
battery power is active. The power controller
also notifies the operating system when utility
power is restored . If utility power is not
restored within a sufficient time, the operating
system saves main storage to a file in the
system unit and powers the system off. When

DC Bulk Modules

AC Module

Card Enclosure

TECH086·2

utility power is restored, the system automat
ically powers on, reloads main storage from
the file, and performs the necessary recovery.

To provide additional fault tolerance, the mul
tiple 28-V power supplies and the battery work
together to back up hardware failures. If one
28-V supply fails to provide sufficient power,
the others attempt to share the increased load.
The system continues to operate normally

System Power Control Network 193

while the power controller reports the failing
component to the operating system. If the
system load exceeds what can be provided by
the power supplies that remain operating, the
battery is turned on to power the unit. The
power controller warns the operating system
that battery power is active; the operating
system saves main storage to the file and
powers off the system for repair.

To ensure that the backup power systems are
working, the power controller detects the pres
ence of the battery unit and provides contin
uous monitoring and various test capabilities .
Battery failure and end of life are among those
conditions that are detected and reported to
the operating system to warn the user of the
loss of backup capability.

System Power Control Network

To make optimal use of the intelligent power
functions in the critical system components,
the power controllers in each component are
interconnected with a serial communications
network. The system power control network is
a hierarchical intelligent communications path
that connects the operating system and the
power system in components containing intelli
gent power control. SPCN provides the ability
to report power status, power supply and
battery failures, utility interruptions, and config
uration changes from any element in the
network directly to the operating system.

The SPCN network consists of a path from the
operating system to the system unit power
supply, from the system unit power supply to
the racks containing additional system

194 Technology Version 2

resources, and from the racks to the individual
system components (units) within each rack.
The system unit, system unit expansion, and
bus extension unit are connected to the SPCN
power controller in the rack using short copper
cables. The racks are serially interconnected
using copper cables or optical fiber to achieve
noise immunity and physical installation flexi
bility previously unavailable. Figure 103
shows the interconnection of the power con
trollers in the system units and racks.

Rack Power
Control
Compartment

Unit-to-Rack
SPCN Cable

Rack-to-Rack
SPCN Cable

Figure 103. System Power Control Network

The interface between the operating system
and the serial power network is provided by
the power controller in the system unit power
supply. In addition to monitoring and control
ling system unit power supplies and the
battery, the power controller constantly moni
tors the status from all SPCN controllers in the
network and reports critical changes and faults
to the operating system. The system unit
power controller also receives commands from

•

the operating system and either processes
them directly or forwards them to the
addressed controller in the network.

The rack power controller provides control of
utility power for system components in the rack
and serves as the router of serial network
traffic. Commands from the system unit con
troller are received by the rack and forwarded
to a unit in the rack or to another rack as
directed by the command address.
Responses are returned to the system unit
power controller and then to the operating
system.

Each power controller in the network monitors
and controls the power supplies and the
battery within its respective unit and reports
critical state changes and faults to the system
unit controller in response to periodic network
polling commands. Faults and battery status
are also displayed on the local display panel
attached to each controller.

Impending Power Failure

An interconnection between intelligent power
controllers and the operating system is essen
tial to system availability because the oper
ating system must prepare for a safe shutdown
when power interruptions or failures threaten
the system unit or any unit containing disk I/O
processors. Because utility interruptions or
power supply failures may only affect a part of
the system, SPCN alerts the operating system
when any unit in the network warns of
impending power failure. If normal power is
not restored, the operating system saves main

storage on a file before battery power is
exhausted.

Customers may choose to provide an uninter
ruptible power supply (UPS) to provide addi
tional backup capacity or to back up those
parts of the system not protected by the
AS/400 internal batteries. To provide oper
ating system notification of utility failures
reported by a UPS, each rack contains an
interface to receive UPS status. UPS status
may be connected to any rack, and, if multiple
backup sources are used for a multiple rack
system, status from each UPS may be con
nected to a different rack. UPS status from
each rack is collected and reported to the
operating system, using the network, in the
same manner that internal battery status is
reported. The internal battery is not used to
back up utility failures that are handled by an
attached UPS. However, the internal battery
remains enabled to back up hardware failures
and to provide backup if the UPS is offline,
insufficiently charged, or failing.

Power Fault Reporting

In addition to warning the operating system of
impending power failures, SPCN also serves
as the means to identify and report the root
cause of problems that would otherwise be
unknown or indistinguishable at the operating
system interface. The set of faults that cause
power to be removed from the critical system
resources, such as the system processor, I/O
processors , or device clusters, usually disables
the functional reporting paths between the
failing unit and the operating system. Conse
quently, power problems appear to be prob-

lems in other components. SPCN
distinguishes power failures and user-caused
problems from functional problems, and
reports the problems to the operating system
so that IBM service can be dispatched with the
correct parts.

The addition of integrated backup capability for
hardware and utility failures creates an addi
tional need for automatic fault reporting. For
example, the failure of one of the 28-V power
supplies or of the battery does not impair
system operation until the failed component is
needed. SPCN provides the means to report
this failure; the user is warned that backup
capability is disabled, and service can be dis
patched while the system continues to operate.

Conclusion

A distributed power structure, battery backup,
and intelligent power control are introduced to
the 9406 to improve system availability and
serviceability. Availability is improved with
fault tolerance for hardware and environmental
problems. Availability and serviceability are
improved through the discrimination and
reporting of problems caused by power fail
ures. These capabilities are integrated
through a power control network that provides
uniform access to power control functions from
the operating system.

System Power Control Network 195

"2 c
o
()
'-
Q)

3:
o

0...

E
Q)

Ul
>

(j)

Electro Compatibility

Describes the electromagnetic compatibility
(EMC) design of the Version 2 ASI400 system
and its importance in increasing system reli
ability and availability through increased noise
immunity.

Kevin J. M. Thorvilson

Introduction

Electromagnetic (EMC) is a
central design goal of the Version 2 Release
AS/400 system. The major objectives of the
EMC design are to:

• Prevent external electrical noise from
causing operational problems and malfunc
tions

of electromag-
netic

The overriding design is to
ensure proper in any cus-
tomer environment. This required that the
AS/400 9406 System Unit be impervious to all
forms of conducted and radiated noise that
may be found in a system installation. To
accomplish this, the 9406 is designed for and
tested to the highest standards of noise immu
nity in four

• Electrostatic discharge (ESD): The system
is designed to be impervious to the high
voltage, high-current discharges that result
from contact between the system and
charged furniture or personnel.

• Radiated electromagnetic susceptibility:
will operate properly

radio frequency interference
television, radio,

installations.

susceptibility and power
turbances: The system will maintain
proper operation during lightning and pow
er-line disturbances, including lightning
strikes near power lines or external cables,
surges and sags due to power company
switching, brownouts, and even complete

interference: The

equipment in the

The high level of EMC performance required
by the system is achieved by an integrated
design approach. Proven EMC designs are
incorporated into every major system compo
nent including licensed internal code, elec
tronics, power systems, and mechanical

EMC Design

The EMC design of the 9406 consists of three
major elements: the electronics design, the
power systems design, and the overall
mechanical packaging design. The objectives

the EMC design to harden the internal
electronics against ncise, to provide power-line
ncise immunity through power filtering and
battery backup, and to provide high perfor
mance shielding protection against all external
noise threats by a new mechanical
design based on the advanced packaging
introduced in the AS/400 9404 System Unit.

Electronics Design

The advanced electronic function and the
speed of the 9406 require that EMC guidelines

techniques be basic part of all the card
designs. Special attention is devoted to
ensuring that all of the circuit boards are
designed and laid for optimal noise immu-
nity, and that each board incorporates noise
suppression components into critical circuitry.

All electronic circuit boards within the system
use advanced multilayer card designs for
maximum operational and EMC performance.
These designs combine four to six signal

11 The 9406 exceeds current Amencan National Standards Institute and Inslitute of Electrical and Electronics Engineers (IEEE) immunity specifications.

198 Technology Version 2

planes with two to four internal power planes
to provide a high performance design capable
of supporting the advanced function provided
by the dual processor, 384MB (MB equals
1,048,576 bytes) design of the 9406. The full
internal power planes of these designs provide
a low-impedance return path for all signal and
power currents, eliminating noise transients
due to return path discontinuities. The spacing
between the internal power planes is also con
trolled to provide an optimal level of high fre
quency filtering, which reduces the amount of
high frequency noise on the cards and on the
system backplane.

Decoupling

In addition to internal power planes, decou
piing (power filter) capacitors are used on all
of the system circuit cards to reduce the
amount of high frequency noise at the circuit
level. On some critical cards, customized
decoupling is used to reduce a specific fre
quency. In these cases, a capacitor, whose
resonant frequency matches the frequency of
concern, is used to eliminate the on-card
switching noise.

Circuit Layout

All cards are laid out with EMC design guide
lines as an integral part of the process. This
includes controlling component placement and
orientation to minimize clock and bus lengths,
and routing critical signals away from connec
tors and a card's edges. Other noise
reduction methods include the placement of
ground return lines on each side of clock and
critical signal distributions, isolation of noisy

signals from sensitive ones, and the use of
balanced differential circuits .

Circuit Design

All cards in the system are specifically
designed to improve noise immunity. Filter
networks are added to the critical signal lines
(such as the system reset line) on all the cards
to increase their noise immunity. Other sensi
tive circuits, such as the phase-locked-loop
system clock circuitry, have increased noise
immunity by embedding critical frequency-det
ermining components within modules and by
careful use of filtered power. Special error
recovery hardware and software is also
included in all of the logic designs to retry
operations and to detect and correct data that
may have been affected by noise. These
techniques, along with the advanced pack
aging design, provide improved system avail
ability and ensure data integrity.

Packaging Design

In conjunction with the advanced design tech
niques used for noise reduction and immunity
on all the electronics, a new packaging stra
tegy is used to give the system the best pos
sible shielding protection available. This new
mechanical system design is composed of the
book package and the card enclosure, the
backplane and docking assembly, and the
power support box. The system is structured
such that electronic cards are packaged within
the book, the books are installed within the
card enclosure, which in turn is docked with
the power support box. The combination of all
of the above elements is known as the pro-

cessing unit and is shown in Figure 104. The
processing unit is 0.80 m high, and mounts in
the current 1.6 m 9309 Rack Enclosure.

Processing Unit

The heart of the system resides in the pro
cessing unit. The EMC strategy for this design
is to package all of the critical processing unit
components at the unit level. These elements
include the system backplane, the system pro
cessor, main storage and input/output cards,
and the power regulators.

The basic building block used to provide all of
the unit level protection is the mechanical book

Enclosure
Books

TECH108·2

Figure 104. Processing Unit. The card enclosure
and the power support box are docked
together to form the processing unit.

EMC Design 199

package. The book packaging concept is
used to create a modular system that allows
the customer the freedom to create a custom
system configuration . This allows the number
of main storage cards, work stations, commu
nications lines, and disk I/O capacity to be
controlled by the simple addition of the proper
card and book assemblies.

The book itself consists of two die-cast magne
sium-alloy covers and a tailstock, which are
used to completely shield each electronic
assembly, as shown in Figure 105. The book
is grounded to the castings of the card enclo
sure by spring fingers attached to the tailstock.
The tailstock is custom designed for each type
of card to provide proper grounding of the
book and the attached cables, and to provide
shielding for each card. This is most apparent
in the book that houses the optical interface
card, which uses a tailstock that extends well
beyond the book to protect the sensitive
optical transmitter and receiver as shown in
Figure 105. All tailstocks use a special cop
per-nickel alloy for its high conductivity and
optimal grounding capabilities. A book can be
inserted into any slot in the card enclosure
with this package. In the absence of a card, a
filler book is used to help provide proper air
flow and EMC protection for the exposed back
plane and connectors.

Another important benefit that the book
package provides is handling protection. The
book in combination with circuitry on the card
provides unsurpassed static charge dissipation
thus protecting the sensitive electronic compo
nents on the card from damage due to ESD.
The book delivers this protection by fully
enclosing all of a card's components in the

200 Technology Version 2

Standard Book

'-

'-

,

Normal
Tailstock

'-

Latch

Alloy
Covers

Figure 105. Book Package. Generic books are
shown with both a normal tailstock and
a specially modified optical card
tailstock.

highly conductive book package. The book
also provides a resistive logic ground con
nection to safely dissipate static charge before
the card is plugged into its backplane con
nector. The rigidity of the book package also
protects the card from physical damage.

All modular books plug into the card enclosure
as shown in Figure 106 on page 201. When
inserted, the cards are connected together by

Optical Interface Book

~.

"

~

Alloy
Covers

Customized
Tailstock

Spring Fingers
(on both books) TECH111·2

the backplane. The backplane is protected by
shields in the front and back as shown in
Figure 107 on page 201 . The backplane
shields are bolted to the castings and the side
plates of the card enclosure to complete the
shielding of the sides and bottom of the back
plane. The backplane shield covers all parts
of the backplane except the card connectors.
Complete shielding of the backplane is accom
plished when all the books are inserted into

Docking Connectors

Shield and

Book Package

Blower

Figure 106. Card Enclosure. This enclosure pro
vides shielding and grounding for all
the books , the backplane, and the
docking interface.

the card enclosure, each making contact to the
backplane shield through spring contacts on
the shield shown in Figure 107. With all
books in place, a complete shield is formed
around the cards and the backplane.

Book Package

Side Plate

Card Enclosure

TECH109-3

Docking

Because of manufacturing and service needs
for quick assembly and disassembly, a plug-in
style of docking is implemented for connecting
the power support box to the card enclosure.

As shown in Figure 106, shields and ground
springs are used to shield the exposed back
plane, power distribution, and control panel
connectors at this interface. This shielding is
designed to bridge the gap between the power
support box and card enclosure, completely
sealing off exposed areas and providing a
solid ground structure between the card enclo
sure and the power support box.

Figure 107.

Stiffener

\
Double-Sided

Front Multilayer
Backplane Backplane
Shield Plastic

Stiffener

Spring Fingers for
Book Grounding TECH110-1

Backplane Shield. This shield uses
spring fingers to make contact with
books , providing a continuous shield
on both sides of the backplane.

EMC Design 201

Card Enclosure

The card enclosure (see Figure 110) is an
assembly that provides support and intercon
nection of the book packages to the main
backpanel. Several types of book packages
are used to support cards needed in the
system. Also, a special book was designed to
integrate the 3-1/2 inch disk units within the
processing unit as a base item.

The heart of the card enclosure is the unique
double-sided backpanel. The backpanel uses
compliant-pin connectors. A compliant-pin
connector has a pin design that makes a
press-fit connection to the backpanel. The
advantage of compliant pin connectors is that
it allows logic cards to be plugged into the
backpanel from both sides. The average card
to-card wiring length decreases by a factor of
two, which provides increased performance
and function. Another benefit with the
reduction of internal cabling is improved reli
ability. The backpanels for the various card
enclosures are different. There are four back
panel designs, one for Models 035 and 045,
Models 050 through 080, the system unit
expansion, and the bus extension unit. While
the backpanel designs vary among the card
enclosures, the surrounding mechanical hard
ware is common. Common hardware reduces
tooling costs, and decreases parts costs
through increased part volumes.

The backpanel is sandwiched between molded
stiffeners and stainless steel shields (see
Figure 111 on page 206) . The stiffeners mini
mize backpanel movement during insertion
and withdrawal of the book-packaged ele
ments.

Double-Sided

Side Plate

Blower

Figure 110. Card Enclosure

The shields provide radio frequency interfer
ence (RFI) shielding of the backpanel while
providing book-to-book grounding.

The stiffeners were extensively analyzed using
a computer simulation technique called finite
element modeling. This modeling allowed the
design to achieve the desired stiffness with a

Book Package

Side Plate

Blower Housing

TECH091 -4

low-cost, commonly available plastic material.
With four double-sided backpanel designs, nor
mally eight stiffeners would be required. Using
this model, the number of stiffeners was
reduced to three. Finite element modeling was
also used to evaluate molding characteristics
of various materials to further improve stiff
ness.

9406 System Mechanical Packaging 205

/

~ Stainless
Steel
Shield

Molded
Stiffener

Stainless Double-Sided
Steel Molded Backpanel
Shield Stiffener

TECH090-3

Figure 111 . 8ackpanel Subassembly

The stainless steel shield is designed to
provide the required RFI protection while
taking advantage of symmetry so that one tool
and one part can be used on the front and
back of each of the four backpanel layouts.

The backpanel, stiffeners, and shields
assembly is surrounded by the card enclosure
assembly. The double-sided card enclosure
assembly is a larger version of the single-sided
card enclosure assembly used in both the
AS/400 9404 System Unit and the mid-range
models of the System/390 computer. The
book guides provide initial connector guidance
during card plugging, and provide additional

206 Technology Version 2

RFI protection to the logic cards within the
card enclosure.

Large, one-piece, side plates are designed to
avoid damage from typical shock and vibration
loads. These loads can come from a variety
of sources, for example, shipping and relo
cation . With simple flanges on the side-plates,
a direct attachment is made to the rack enclo
sure, further adding to the system rigidity.

Below the card enclosure assembly, a sepa
rate housing supports a blower and contains
the airflow path. From a cooling point of view,
the blower is embedded between the front and
rear parts of the card enclosure. Physically,
the cooling air is drawn down through the front
part of the card enclosure, through the blower,
then up through the rear part of the card
enclosure. With the blower embedded in the
cooling path, acoustic levels have been
improved from the Version 1 Release 1 9406
processing unit.

The logic cards in the card enclosure are
mounted within subassemblies called book
packages. The book package primarily offers
additional RFI protection to the logic cards,
which is necessary as a result of the increased
system performance. The book package has
several advantages, such as providing physical
protection for the cards while handling and dis
sipating electrostatic charges, which can cause
latent card failures. When the card enclosure
is not fully configured with book assemblies, a
filler book is placed in the unused slots to
ensure protection from RFI and proper cooling
characteristics within the card enclosure.

The book package has been extended to hold
3-1 /2 inch disk units (see Figure 112 on
page 207). The Disk Drive/Adapter Assembly
contains two 320MB (MB equals 1,048,576
bytes) disk units, along with the power cabling
and voltage regulator assembly. The first disk
assembly contains the code for the initial
program load (IPL) while retaining the capacity
for a main storage dump in the battery backup
mode. Unused capacity is available for cus
tomer use like any other disk unit. The second
disk assembly provides additional capacity for
customer use or mirroring for improved avail
ability. For customer security , the integrated
disk assembly contains a latch, which allows
for locking capability.

Power Support Box

The power support box (see Figure 113 on
page 208) is an assembly that contains an ac
power module, three dc power modules, a 1/4
inch save and restore tape device, a dc battery
backup unit, a docking tray, a control panel , a
fan box, and interconnecting cables. Power is
supplied to the card enclosure from the power
support box. The dc power modules convert
220 V ac into 28 V dc, which is distributed
throughout the system. To improve the
system's availability to the customer, the dc
power modules are designed for continuous
system operation should one unit fail. In this
design, modules share output current and are
sized to provide sufficient power with only two
of the three modules running . The ac module
package houses a stage of the line filter, the

Compliant-Pin Technology

Describes the high performance backplane
technology.

Jeffrey A. Collett

I ntrod uction

The AS/400 development team designed the
9406 System Unit around the High Density
Plus" connector system and compliant-pin
backplane technology. The solderless, high
performance backplane developed for this
system allows the system to achieve enhanced
packaging density with the capability for
growth in performance and function .

Compliant-pin technology has been used in
military products for many years and has been
used in commercial products for a number of
years. The compliant pin is press-fitted into a
plated-through hole in the printed circuit board.
Electrical contact is made and retained through
a specially designed section of the pin that
deforms elastically (partially) inside the plated
through hole. The large radial pressures pro
duced in this process make a reliable gas-tight
seal. Measured contact resistance in com
pliant pins is less than one milliohm and is
stable throughout the product life. Three dif
ferent types of compliant-pin designs are used
in this product. One of the common design
types is the eye of the needle. Figure 115
shows an eye of the needle before pin
insertion . Figure 116 shows a cross-section of

210 Technology Version 2

a plated-through hole with the pin inserted,
showing the contact in the hole.

Figure 115. Eye of Needle-Compliant Pin

Figure 116. Cross-Section of PIa ted- Through
Hole with Compliant Pin Inserted

The principal advantage of the technology is
the solderless assembly process. Solder
machines and washing processes are no
longer necessary. Connectors are inserted

into the board by a specially tooled press. By
designing the appropriate supporting hardware,
it is easy to produce assemblies with connec
tors inserted from both sides of the board. It is
this feature of the assembly technology that
generated interest. Most connectors are avail
able or can be tooled in compliant-pin form so
that mixed process backplanes are not neces
sary.

The main disadvantage to the use of the tech
nology is the requirement for thick (>3.18 mm)
backplanes to contain the stresses developed
in the assembly process. Another problem is
that every connector vendor tends to have
unique designs for the compliant section of the
pin, resulting in the need for extensive product
evaluation . The design multiplicity problem
was handled and the additional board thick
ness was used to produce an enhanced back
plane wiring structure .

Implementation

The new 9406 backplane and card enclosure
are extensions of the 9404 System Unit
design. The 9404 backplane contains eight
card slots on a 30.48-mm pitch populated with
three-row connectors. This is a single-sided
assembly and is held in a card enclosure that
fits in a custom set of frames and covers . The
9406 is packaged in a standard 495.3-mm
rack and contains more cards than could be
handled by the Version 1 enclosure. For this
program, the packaging concept was

expanded to a double-sided backplane with
front and back side connectors interleaved.
This type of backplane is nearly impossible to
manufacture without the use of compliant-pin
technology. The enclosure width is expanded
to fit the rack and now contains 13 potential
card slots per side. The backplane is sand
wiched between two enclosures in the pro
cessing unit. An extension above the
enclosures contains compliant-pin connectors
that are used for bulk power and system
backup connections. The backplane has no
soldered components . Although compliant-pin
technology is used in other commercial pro
ducts , those products have not exploited the
full potential of the technology to enhance
system density by introducing card enclosures
on both sides of the backplane.

High Performance Connectors

The higher levels of performance needed for
Version 2 of the AS/400 system could not be
supported with connectors used in previous
releases because of their pin count limitations.
This problem is solved by the addition of the
High Density Plus connector for selective use
on high performance functions. This connector
is a modular, four-row, shielded connector.
Individual modules are 38.1-mm or 50.8-mm
long and are held together by an aluminum
extrusion. Optional metal shield contacts can
be placed outside of one or both sides of the
socket part of the connector.

Figure 117 shows the shield contacts on High
Density Plus One connector modules used in
Version 2 of the AS/400 system. These
shields are connected to separate rows of pins

that solder into the card. The shield contacts
couple with a set of contacts placed in the
walls of the backplane connector. The shield
contacts provide a ground reference adjacent
to the short and long rows of the connector.
These contacts improve power distribution to
the card and reduce electrical noise generated
within the connector. The shield contacts
outside the row of long pins are especially
effective in reducing the effective inductance
and coupling of the long pins in the connector.
These characteristics allow the designer to
devote fewer pins in the signal field to power
and ground for shielding and power distribution
and, thus, increase the number of pins avail
able for signal connections. The processors
shipped with Version 2 use the High Density
Plus One version of the connector system.

Figure 117. High Density Plus One Connector
Modules

These performance characteristics were vali
dated by laboratory measurements of con
nector inductance, capacitance, and time
delay.

These measurements were used in the mod
eling process to guarantee signal integrity in
the system. The High Density Plus connector
was measured and compared with other stan
dard four-row, right-angle connectors . When
measured using a 3:1 signal-to-power ratio , it
was found to have about 20% less capaci
tance and about 20% less coupled noise. At
higher ratios used in some regions of the con
nector, the improvement is even more dra
matic.

Optimized Backplane
Cross-Section

Compliant-pin technology requires the use of a
thick backplane to support the connectors .
The 3.18-mm thickness is double the thickness
typically used. Initially, this additional thick
ness was a cost detractor to the project.
However, the additional thickness provides a
performance enhancement to the product.
Typically, four signal plane cross-sections have
two orthogonal pairs of wiring planes outside
of the power cores . In backplanes, wiring runs
from slot to slot (horizontal); therefore, there is
much less demand for vertical wiring.
Although four wiring planes may contain
enough wiring channels to support the product
application, the orthogonal restrictions force
the horizontal wiring layers to be dense and
the vertical wiring layers to be sparsely popu
lated. The density in the horizontal wiring
layers makes it difficult to isolate sensitive
signals and, also, may force wrong-way wiring
on the vertical wiring layers to handle lines that
do not fit on the horizontal wiring layers.

Compliant-Pin Technology 211

A new cross-section was developed using the
additional backplane thickness. One orthog
onal pair of wiring was moved to a central
position in the backplane between two pairs of
power planes containing only power or ground.
This left one signal wiring plane on the outer
two surfaces with no directional designation.
The four wiring planes now better support the
product wiring needs. In addition, if the sepa
ration between the horizontal and vertical
planes in the center of the card is greater than
the separation of those planes from their
nearest power or ground plane, wrong-way
wiring can also be done within this pair with
much less penalty than in the usual case. In
this cross-section, the total coupling between
all lines in the adjacent layer and a test line is
only about 30% of the near-neighbor coupling
in the same layer. Thus, the orthogonal
restriction on the central pair is not always
necessary.

This cross-section has an additional advan
tage. Clocks and other sensitive signals are
placed between power planes rather than on
the surface, resulting in much better electrical
characteristics.

Compliant-Pin Reliability

Demonstration of the reliability of compliant
pins is a key achievement in this product intro
duction. Multiple compliant-pin designs are
available on the market today. Some are pro
prietary; other designs are open. Extensive
environmental testing was performed on the
selected designs. Some tests simulated actual
field conditions and others intentionally over
stressed the contacts to induce failures so that

212 Technology Version 2

compliant-pin failure modes could be under
stood. No contact failures could be attributed
to the compliant pins, although backplane
damage occurs when the defined backplane
manufacturing specifications are not met. The
final reliability assessment finds separable con
tacts to be the most vulnerable section of the
connector system. The compliant-pin con
nections are as reliable as solder and have no
measurable effect on system reliability. In fact,
the elimination of all fluxing, soldering, and cle
aning processes in the backplane assembly
yields a higher quality product because of the
process simplification.

Conclusion

Version 2 of the AS/400 system contains three
backplane enhancements, two of which are
directly related to the use of compliant pins.
First, compliant-pin technology facilitates the
manufacture of the double-sided backplane.
This technology greatly increases the functions
that can be placed in the processing unit and
reduces the need for cabling to other expan
sion card enclosures. This is the core of the
Version 2 system package that enables future
system growth.

The second enhancement is the new back
plane cross-section. This cross-section allows
directional bias in backplane wiring to be easily
accommodated. In addition, placing some
signal layers between power planes rather
than on the surface improves the electrical
characteristics of the backplane.

The third enhancement to the package is the
addition of the High Density Plus connector to

critical locations in the backplane. This con
nector allows more usable signal pins than
standard four-row connectors on the market
because of the significant reduction of coupling
and the reduced need for shielding in the pin
field.

All of these functional enhancements have
been made while enhancing the quality and
reliability of this product through process sim
plification.

Early Manufacturing Involvement

Describes the roles that multidisciplined teams
and early entry in the program cycle have in
improving the quality and delivery schedules of
product and process designs.

Thomas N. Paske, Stephen E. Wheeler, and
Joseph T. Rommel

Introduction

IBM Rochester has worldwide development
responsibility for the AS/400 system and
advanced storage devices. It has manufac
turing responsibility for those products in
Rochester. The AS/400 products are also
manufactured in Europe and Mexico and
remarketed through IBM business partners in
Brazil and Japan.

The processes used to manufacture the
AS/400 products are developed with the partic
ipation of multidisciplined teams from all
locations. This ensures the ability to manufac
ture worldwide with consistent quality, using
like processes at all manufacturing plants.

Figure 118 depicts the overall manufacturing
process flow of information, subassemblies,
and completed systems.

The customer order drives the system
assembly and test process. Subassemblies

214 Technology Version 2

~ :~

Customer
Order and
Feedback

TECH022·2

Figure 118. Manufacturing Process Flow

from the card and disk production lines are
staged at the final assembly area in limited
kanban quantities (kanban is a term used to
describe a fixed quantity of inventory before
and after a manufacturing process step). As
the cards and files are consumed, pull signals
are sent to the subassembly production areas
for replenishment. This pull signal then drives
the subassembly production.

Rochester's manufacturing plant is capable of
producing any configuration of any AS/400
model to a customized order on the same pro
duction line. There is no need to change
setups between different system types (for
example, 9404 System Unit to 9406 System
Unit) or models of the same system type (for
example, 9404 Model 010 to Model 020) .

The manufacturing process emphasizes sim
plicity and provides expansion capability prima
rily through the use of manual operations. The
process is driven by a local area network
(LAN) controlled by an AS/400 system with
attached IBM Personal System/2 (PS/2) com
puters. This low cost combination provides
maximum flexibility for the scheduling, manu
facturing, and tracking of all models of the
AS/400 system as they move through the pro
duction facility .

To achieve these attributes, manufacturing
places a concentrated effort on strategic

design, early manufacturing involvement (EM I),
continuous flow manufacturing, and computer
integrated control at an early stage in the
product development cycle. Factors critical to
the reduction in product and process com
plexity receive heavy emphasis:

• Design for modularity in product assembly.
This includes the use of relatively large
subassemblies that can be built and fully
tested as major units before they reach the
final assembly area. (A subassembly is a
collection of parts that can be put together
to form a stand-alone unit representing a
major part of the final assembly or system.
The card enclosures in the 9406 D models
are examples of subassemblies.) Modu
larity yields easier assembly and part
number reduction at the final build station .

• Reduction in part number count. Part
numbers, in general, are reduced through
the use of common parts in many designs;
reduction of part numbers at the final
assembly and test area is a direct result of
both commonality and the modularity
described above. Stocking, material
movement, and tracking are simplified as a
direct result of part number reduction.

• Reduction of part storage on the pro
duction line. Pull logistics is a method
that replenishes stock in the production
facility based on demand, not long-term
plan) is the primary process used to
reduce stock at suppliers, in transportation
pipelines, and on the manufacturing floor.
Parts inventory reduction increases flexi
bility, frees floor space, and provides effi
ciency in terms of cost and resource
utilization.

Strategic Design and Early
Manufacturing Inv~lvement

The manufacturing team for each release of
the AS/400 system is organized early in the
development stage of the product design. The
team mission is to assist in developing the
design of the product family from the perspec
tive of:

• Increasing overall ease of manufacture
• Improving the logistics (the procurement

and transportation of material) flow of all
materials in the product, from first-level
suppliers to finished goods

• Reducing product manufacturing cost
• Enhancing shipped product quality in all

design and manufacturing areas over pre
vious releases

Design modularity is a critical success factor in
achieving total manufacturing quality with high
flexibility and low cost. Early involvement
manufacturing and development teams build
the product concept around pluggable subas
semblies, or modules, testable at the unit level.
This approach yields a major increase in the
ability to customize the product set and yields
a corresponding decrease in product com
plexity because a wide range of models can
be produced using a set of common modules
in different combinations.

The modular design concept also permits a
reduction in part number count over products
designed with more traditional approaches.
Part commonality, part number reduction, uni
formity of subassembly design, and modularity
simplify part storage by reducing floor space

needs. If the need of the customer set for
specific models changes over time, the floor
layout can remain relatively unchanged.

Modular design techniques also eliminate the
need for setup between production of different
models because all models use the same
basic assembly approach. Because the part
number count is reduced and the subassem
blies are designed to be fully testable at a
major unit level, supplier selection and material
flow logistics are optimized and continuous
flow manufacturing is realized.

The team builds integral aids for assembly into
the design of the systems, modular subassem
blies, and detail components . These aids
include snap together parts, hand operable
fasteners, and self-locating features that
reduce assembly time and cost, and virtually
eliminate the need for expensive assembly
tooling at suppliers and at the product manu
facturing plants worldwide. When the product
complexity is reduced in this way, the skills
necessary for manufacture decrease and the
base of suppliers available for production of
components increases in proportion.

Manufacturing's continuing emphasis on
system design and the removal and prevention
of defects early in the cycle creates continuous
quality improvement. Early manufacturing
involvement is approached with a multifunc
tional team philosophy and involves manufac
turing engineers, process engineers,
development engineers, procurement engi
neers, quality engineers, suppliers, personnel
from non-US locations, and other groups as
necessary. These teams apply concurrent
engineering principles to the design of both the

Early Manufacturing Involvement 215

product hardware and the manufacturing pro
cesses, achieving a high degree of optimiza
tion (the point at which individual design and
process elements mutually present the best
combination of function , quality, cost, and
delivery potential possible) . Concurrent engi
neering allows the team to identify design and
process defects and deficiencies that normally
do not appear until the product is in pro
duction. Among the techniques are :

• Establishment of early manufacturing
involvement teams during the product defi
nition stage

• Simultaneous product and process concept
evolution and design

• Continual multifunction reviews and infor
mation sharing

• Testing of designs and processes at many
stages, beginning early in the cycle

As the team identifies areas needing change,
plans are put in place to correct the deficien
cies at their source. Because the team begins
this activity early and continues it throughout
the entire development cycle, corrections and
changes are made when the product and
process designs are still flexible . This process
allows the optimal solution to a problem and
creates minimal pressure on product sched
ules.

The team effort and simultaneous design and
process evolution allow the optimization of
both material and information movement in
manufacturing. US and non-US suppliers and
manufacturing functions are asked to provide
their specific requirements of product and
manufacturing process design regarding logis
tics optimization. The resulting input is built
into the overall product strategy and imple-

216 Technology Version 2

mented in the product and process designs.
US and non-US suppliers are carefully
selected to provide the highest possible
degree of material and information movement
efficiency. The early manufacturing involve
ment team evaluates suppliers using the fol
lowing criteria:

• Full service manufacturing capability
including the ability to design and test as
well as manufacture

• Ability to produce fully tested major unit
subassemblies in a wide range of com
modities

• Ability to ship their product using a pull
logistics system and to procure parts from
their subcontractors using similar pull logis
tics techniques

• Capability in data collection and commu
nications areas, particularly regarding
quality systems and quality feedback

• Physical location and the complexity of the
transportation network

Design modularity, the use of full service sup
pliers, and supplier input to product and
process design are critical success factors in
logistics optimization to meet the team's ulti
mate goal of continuous flow manufacturing.

The team approach enables true design and
process matching for all aspects of the project
to occur. Manufacturing involvement in the
product design and development involvement
in the process design create the feedback
mechanisms so important in the mutual opti
mization of designs and processes. Manufac
turing and development regularly schedule
design reviews where product design change

recommendations are communicated to devel
opment and process change recommendations
are communicated to the manufacturing
process groups. Emphasis is placed on the
transfer of information , ideas, and requests
from manufacturing, suppliers, and develop
ment to all those concerned in product and
process design. Every part, assembly, and
subassembly is examined for design function
ality, manufacturability, delivery lead time,
tooling requirements, shipping efficiency and
expense, and quality considerations. The
methodology of design and process matching :

• Establishes product and process designs
with quality built in at the definition stage
and continually verified as the design point
evolves

• Provides protection of manufacturing
investment by reuse of existing product
and process design points and physical
assets (change is, however, applied where
needed to meet specific objectives and to
protect our strategic future)

• Keeps customization potential high through
modularity and reuse of subassemblies
and customer orderable features while pro
moting manufacturing efficiency through
part number reduction and logistics opti
mization

• Eliminates surprises and, therefore, allows
the team to manage change in product
and process design instead of reacting to it

• Improves communications between manu
facturing and development at the earliest
point in the design cycle and brings good
ideas to the surface early

Conclusion

Both product and process design are signif
icantly enhanced by the careful application of
early manufacturing involvement. Early defect
removal processes substantially improve
quality and allow the management of, rather
than the reaction to, change. Design and
process matching and the resulting design
modularity increase flexibility on the plant floor,
shorten logistics pipelines, and reduce
assembly time and complexity thus yielding
improved manufacturing cost and shorter cycle
times.

Early Manufacturing Involvement 217

Throughout the assembly and test process, the
manufacturing floor-control system continually
validates part numbers, serial numbers, and
engineering-change levels to coincide with the
customer order. Order validation ensures that
customers get exactly what they want when
they want it.

Each work station on the manufacturing line is
an inspection station. A dynamic inspection
program, run at the first step of each opera
tion, randomly asks questions of the manufac
turing operators. These questions are
changed as necessary, and feedback is given
to the operators immediately.

Intelligent rework programs greatly aid in the
rework process. If a failure occurs, the rework
programs freeze the failure , analyze it against
the error history, and recommend repair
actions to the rework operator. As the rework
operator makes the corrective action, the
rework program is updated to reflect the latest
repair actions. Components that fail in system
test are immediately taken to a failure verifica
tion station. Here, failures are analyzed, veri
fied, and communicated to the appropriate
design team. This timely response provides
an efficient and effective rework process.

However, the people are at the heart of manu
facturing process quality. With a common goal
of ten times improvement, manufacturing
teams of operators and manufacturing engi
neers study the process to find opportunities
for improvement. Each error is identified, ana
lyzed, and acted upon for improvement.
Process improvement teams, headed by the
manufacturing employees, have shown signif
icant results in process quality.

222 Technology Version 2

System Shipment

After the system is assembled, tested, and
preloaded, it is ready for shipment. However,
the AS/400 shipping process goes beyond tra
ditional shipping processes by providing a
Total System Package.

Total System Package

Here, the customer is provided almost all com
ponents of the system order: printers, dis
plays, modems, cables, publications, blank
tapes, and printer paper. This Total System
Package, in one consolidated shipment, pro
vides customers with all the parts necessary to
set up and use their AS/400 system the same
day it is received.

Shipping Process

A Total System Package demands system
flexibility. Using diverse manufacturing
resources, the shipping process handles many
unique customer requirements to customize
the system shipments (see Figure 123).

Within the shipping process, certain features
ensure the highest shipping quality. One key
element is that the shipping department is
located next to the manufacturing department.
As such, communication is enhanced, and
expensive material handling is minimized.

Figure 123. Hydraulic Lift Used for Product
Movement

Another key element is that components in the
Total System Package contain bar code iden
tification . Bar coding is a standard require
ment placed on all IBM suppliers. When the
system is ready for packaging, an operator
scans the bar code of each part against the
content of the customer order. The use of bar
coding eliminates the human error element
and improves quality (see Figure 124 on
page 223).

iii!!

~

..
D

~

., /' - :~ I~I "_<~. ~
~_A_ ~~ 4 ~~ ,- " ~. ... ""~ '. -, -.. . - -

, ~ "t:'''' ·t'.·-~ _ ~._ '1

~
.,-. ., J. .. --

. - _. - Ir.-

-S; .'.<> ~: . ~)~
~~~> ~<.~ 

~~ ,~~~ - .. . ~.==---
Figure 124. Bar Code Equipment in Use in the 

Packaging Process 

Once the components have been assembled 
to match the customer order, they are pack
aged with highly tested packaging material. 
Early in the development cycle, system pack
aging is stressed until it passes rigid environ
mental, drop-and-shake tests. 

While all components of the system are pack
aged, shipping labels are applied, and the 
components are consolidated for shipment. 
Total cycle time for the process from start to 
finish is less than 24 hours. 

Conclusion 

A manufacturing process designed for cus
tomer solutions must adapt to a rapidly 
changing marketplace with a high quality 
product. Early process development maxi
mizes manufacturing quality. While simplicity 
produces flexibility, inherent quality-checking 
tools enable the AS/400 manufacturing 
process to achieve its Six-Sigma quality goals. 

Manufacturing the System 223 



Manufacturing Card and System Tests 

Describes how early involvement and 
enhanced test equipment and processes 
enable the manufacturing group to deliver 
high-quality products at a lower cost. 

Gary L. Kearns and Keith R. Halphide 

Introduction 

The manufacturing test objectives for 
Version 2 of the AS/400 system are to imple
ment enhancements to the Version 1 process 
that support continuous progress toward 
improvement objectives. 

The breakthrough process techniques intro
duced with Version 1 of the AS/400 system 
continue as the working platform for Version 2 
enhancements. These include early manufac
turing involvement and delivering stable, 
manufacturable designs to production by the 
following activities: 

• Early stress testing using guardband func
tional assessment at card and system 
levels during the product development 
cycle 

• Addition of optical and in-circuit card test 
capability 

• Continued improvement of functional card 
testing capability established for Version 1 

• Guardband product audit of ongoing pro
duction 

224 Technology Version 2 

• Ongoing system performance monitor 
benchmarking 

Card and system manufacturing engineers par
ticipate in the development stage of the 
product to help ensure that a stable design is 
delivered to manufacturing. Manufacturing 
engineers work with development to stress test 
logic cards during early engineering tests. 
Functional card test, introduced at Version 1, 
continues to be used to reduce the number of 
test steps and to enhance the effectiveness of 
the test. 

Early Manufacturing Test 
during Product Development 

Early in the product development cycle, manu
facturing engineers from Rochester and from 
other AS/400 manufacturing sites worldwide 
work with development engineers to select test 
methods and architectural requirements for 
product cards and testers. Product cards and 
testers are designed concurrently to support 
shortened product development cycles. Proto
types of production functional testers test 
many of the development engineering cards. 
Manufacturing and development engineers 
have joined together on some subsystems to 
such a degree that the initial subsystem opera
tion and card characterization is done on man
ufacturing tester prototypes located within the 
development laboratory. 

Early stress tests are performed on logic card 
assemblies from early engineering prototypes 
through the final design. Manufacturing engi
neers work with suppliers and developers to 
correct deficiencies and define custom pro
duction stress profiles for each logic card. An 
extra margin of safety, or guardband, is veri
fied in this testing , ensuring that later manufac
tured parts obtained from multiple worldwide 
sources will operate properly through the full 
system specification range. Data from early 
production provides a baseline for process 
control and initial knowledge for the system 
that aids in defect diagnosis at functional test. 

Guardband testing demonstrates performance 
capability beyond normal system specifica
tions. It involves subjecting hardware to 
extreme operating voltages, temperatures, and 
oscillator frequencies to determine the actual 
functional limits of a given design. By doing 
early guardband testing while development 
engineers are still heavily involved, key tech
nical people are available to diagnose and 
solve potential problems found during the 
tests . The early detection of problems allows 
time to modify designs, change supplier 
choices, and improve manufacturing quality 
before volume production begins. This 
approach can eliminate the need to depend on 
additional specialized stress testing as a 
screen to fine tune or selectively assemble 
systems to meet operating requirements. 



Card Test during Production 

Card level test begins after placement and 
soldering of parts to the raw card. Figure 125 
illustrates the addition of in-circuit and optical 
test capabilities and the consolidation of func
tional test equipment by migration from dedi
cated to multipurpose functional testers. 

In-Circuit Test 

Enhancement of short circuit and open circuit 
test equipment allows in-circuit testing on 
selected logic cards. In-circuit testing supplies 
power to the device under test (DUT) and tests 
selected parts using signals supplied and mon
itored by the tester electronics. In-circuit diag
nostic resolution is high because of the 
location of probe points throughout the DUT. 
Figure 126 on page 226 shows a bed of 
spring-loaded probes in contact with various 
points on the DUT for an in-circuit test. These 
tests complement functional testing by pro
viding direct parametric measurements and by 
providing coverage for functional test configu
ration-dependent defects. 

Optical Test 

The use of optics in the AS/400 system brings 
new challenging technology to the card test 
arena. Figure 127 on page 226 shows the 
optical card tester. The tester provides laser 
testing to meet strict safety standards, as well 
as high-speed performance testing of the 
optical subassembly. This testing takes place 
prior to integration into the book package for 
functional testing. 

Version 1 

Figure 125. ASI400 Logic Card Test. Each 
block represents a unique piece of test 
equipment. Test processes are shown 
within the block. 

Version 2 

~ . -

.' .. . .. --~--

f0fij~j~~; '~~:\, ~_ :~.~~ 
\' .... T"~- ,.~lo't-:.r(.'E."" 
M..~.~.5:'~~"'" 

TECH029-3 

Manufacturing Card and System Tests 225 



Figure 126. Test Probes in Contact with a 
Logic Card 

Figure 127. Optical Safety and Performance 
Tester 

226 Technology Version 2 

Functional Test 

The efficiency and effectiveness of functional 
test continue in Version 2. During a functional 
test, the card receives the same signals, 
timings, and instructions it would in an actual 
system running in a customer environment. 
Functional test utilizes the microprocessors on 
various AS/400 logic cards. The micro
processor tests itself, the logic contained on 
the card, and then the external buses and 
ports on the card. Wrap connectors, actual 
system devices, or tester logic cards attach to 
external buses and ports. The tester logic 
cards often make use of the same parts used 
in the system. Reuse of system parts provides 
real-life functional testing, as well as a savings 
in the design time and the cost of test equip
ment. 

Main storage subsystem cards have no 
internal microprocessors to perform self-test. 
The tester logic card emulates the system 
main storage bus by providing and monitoring 
signals at system speeds. The tester logic 
card is capable of varying the timing parame
ters to perform further stress tests on the main 
storage bus as well as to record main storage 
addressing information of failures for supplier 
use in analysis and process improvement. 

Version 2 brings boundary scan to selected 
AS/400 cards. This technology allows testing 
at full system speed, with the ability to stop the 
system clocks to observe and modify the oper
ating states of latches controlling I/O signals. 
System diagnostics and functional card test 
both use boundary scan to control and monitor 
logic that is inaccessible to conventional circuit 
probes. Additionally, with the appropriate 
tester logic card, boundary scan provides extra 
information about the nature of a failure, which 
aids in card repair diagnostics and provides 
feedback to suppliers. 

Figure 125 on page 225 illustrates that the 
four types of functional testers in Version 1 
were reduced to a single functional tester in 
Version 2. Through migration of Version 1 
card test software to new tester logic cards 
and the Personal System/2 (PS/2) computer, 
the Version 1 9404 and 9402 functional card 
tester has been upgraded to mUltipurpose 
functional testers at significant cost savings 
over building and supporting additional equip
ment. This consolidation and reuse of test 
equipment is key to meeting shortened product 
development cycle goals. Additionally, pro
duction flow is smoother because mUltipurpose 
testers accommodate variance in product mix 
better than dedicated testers. Figure 128 on 
page 227 shows an operator changing the 
functional tester to perform a test on a different 
model product. 



Figure 128. Multipurpose Functional Tester 
Setup 

System Test during Production 

System test of the assembled AS!400 system 
is the final safeguard to prevent shipping a 
defective system to a customer. The inte
gration process includes verifying that the 
assembled system configuration matches what 
the customer ordered. This includes all speci
fied software loaded on the system at the 
latest change levels. Any customized code for 
special bid customers is also loaded. The 
variety of possible software packages is 
growing constantly. 

Final test for Version 2 AS!400 systems 
includes several system performance assess
ment methods that provide an indication of 
system performance capability . System perfor
mance limits, determined jointly by develop
ment and manufacturing engineers during 
product development testing, are used as a 

benchmark for comparing current production 
system capability. 

Guardbanding 

Selected final test cells are configured to 
perform voltage-margin guardband testing as 
part of the production final test process. The 
test initially operates the system at previously 
established benchmark voltage levels (for 
example, ±10%). If it passes, the test is com
plete. If it fails, one of several lower levels 
(±7% or ±5%) is attempted to determine where 
the operation transition point occurs. 

There are two benefits from this methodology. 
First, specific exception systems can receive 
extra test and analysis to improve their perfor
mance capability. Repairs are performed to 
bring the performance up to benchmark stand
ards, which reduces the likelihood of a cus
tomer experiencing an intermittent problem 
with the system. Second, analysis of unique 
situations that are detected leads to improve
ments in design and manufacturing processes 
that benefit future systems. 

Guardband failures are closely analyzed by the 
cross-functional failure analysis teams through 
root cause analysis to determine causes for 
marginal failure situations. This information is 
then used to further evaluate the design and 
process capability as appropriate. Further vali
dation of the guardband assessment process 
is performed by correlating subsequent actual 
field performance against the guardband 
margin capability exhibited during system pro
duction test. 

Performance Benchmarking 

Running performance monitor programs pro
vides another benchmarking technique. These 
programs are a series of different customer 
data processing applications that benchmark 
processing time per system. The applications 
include commercial end-of-day closing trans
actions, RPG compilation jobs, and database 
query transactions. Performance bench
marking provides a method of quantifying the 
degree of similarity in performance capability 
between systems. 

The various performance analysis applications 
described expand the traditional system test 
pass or fail assessment. More specific infor
mation is available for making system ship
ment decisions. 

Partnerships 

Rochester system test and card test share a 
common database, simplifying the correlation 
of information. Rapid card retest is provided 
within Rochester to support failure analysis. 
Improvement teams cross organizational boun
daries to analyze failures and work with sup
pliers to prevent defects at their source. 

Data collected from the system and card test 
and repair processes are analyzed for clues to 
potential process improvements. Suppliers 
and designers receive feedback from this data
base, along with reports from failure analysis 
teams, to assist in isolation and correction of 
problems. 

Manufacturing Card and System Tests 227 



Conclusion 

Manufacturing and system test empha-
size proactive quality for the following reasons: 

• To avert potential problems by active par
ticipation early in the design cycle of the 
product. 

• To aid suppliers in isolating problems and 
correcting the the defect instead 
of simply the good from the 
bad. 

• To 

AS/400 logic cards receive functional test to 
assure the delivery of the highest quality 
assemblies. Teamwork between development 
and manufacturing engineers early in the 
product cycle assures the product is designed 
for manufacturabilitv. Functional stress test of 

the detection of 
of designs, pro

high-volume pro-

System testing of custom configurations to 
each customer order assures customers 
receive the complete hardware and software 
solution ordered. Various performance bench
mark or guardband audits provide assurance 
that expected system functional capabilities 
are delivered. 

Supplier and customer partnerships with con
stant communications and feedback are 
essential to customer satisfaction 
and quality 

228 Technology Version 2 



-- -~- - -

rJl 

iii 
OJ 
r-
E 
OJ -rJl 
>.. 

CJ) 

"0 
C 
ell 

"0 
Co 
() 

OJ 
c 
".: 
::J 
t) 
ell -::J 
C 
ell 
:z: 



Data Management System of the Circuit Package Production Center 

Describes the quality data management 
system, which gives complete defect tracea
bility on ASI400 circuit cards. 

Richard A. Saltness and Steven A. Horejsi 

Introduction 

The information systems in manufacturing are 
changing to match the flexibility needed in 
today's manufacturing environment. This 
article discusses how they are changing and 
an instance of that change in the data man
agement system of the circuit package pro
duction center (CPPC) . CPPC assembles and 
tests many of the circuit cards that go into the 
AS/400 line of products. 

The information systems in Rochester manu
facturing are the product of the 30 years that 
Rochester has been a manufacturing site. 
Today, floor control consists of a large variety 
of systems ranging from old to state of the art. 

Clearly, as cycle time is further reduced on the 
manufacturing floor to the 1-day timeframe, 
nonintegrated batch systems become a bottle
neck to the manufacturing floor. The way 
CPPC stores and delivers data must be flex
ible and responsive to a rapidly changing envi
ronment. 

CPPC in Rochester manufacturing has made a 
sizable investment to move to the flexible, 
responsive information system needed to 

230 Technology Version 2 

deliver the product to the customer quickly and 
with high quality. 

CPPC Data Management 

The card manufacturing process is a complex 
series of operations spanning a wide variety of 
specialties. The card process technologies 
supported by CPPC span the entire spectrum 
of card production, from custom raw card fabri
cation and test through the assembly, solder, 
and test of pin-through-hole (PTH) and sur
face-mount-technology (SMT) card assemblies. 
The specialized fields practiced within CPPC 
include chemical , electrical, and mechanical 
engineering, metallurgy, and process control to 
mention a few. The cards produced in 
Rochester are destined for both US and 
non-US locations for use in a wide variety of 
products. It is vital to Rochester's continued 
profitability that the quality, reliability , and 
availability of these card assemblies be main
tained. 

Former Data Collection System 

With this broad mix of technologies, it is pos
sible for specific process parameters to go 
beyond specified control limits. Inspections, 
test operations, and other safeguards are 
designed into the process flow to avoid the 
delivery of a defective product to customers. 
In the former data collection system, process 
and defect data was recorded on a so-called 
travel sheet, which indeed traveled through the 

process with a job lot of cards. While the pre
vious method had the advantage of minimal 
cost, the penalties were many. First, the oper
ator wrote the information on the sheet, which 
is both time-consuming and error prone. 
Second, a nonmanufacturing person entered 
the data into a batch system for overnight pro
cessing into the CPPC database; this intro
duced additional errors and labor costs. Also, 
the travel sheets were subject to destruction or 
misplacement, in which case, all data for a 
particular job lot was lost. 

But perhaps the largest disadvantage of this 
batch environment was the inherent delay in 
the availability of information . Because the 
travel sheets followed the job, this data could 
not be entered into the database until the job 
was complete; the database did not contain 
any information about jobs in process. At the 
time, the average job cycle time was in the 
range of 3 to 4 days, meaning that processes 
gone awry went undetected for days because 
the information that could expose them was 
traveling about the manufacturing floor on a 
sheet of paper. The costs of these delays 
were in the form of wasted material, added 
labor, and lost time. 

Finally , the collected information was stored in 
a database in nonstandardized format. This 
method made access to information almost as 
difficult as its collection . The people that 
needed the information to improve the pro
cesses had difficulty getting it. 





The second major part of the system is a small 
group of Personal System/2 (PS/2) systems 
that provide an area controller function on the 
token-ring network. The area controller distrib
utes network services and shared files as well 
as provides a local relational database, which 
was implemented in the Operating System/2 
(OS/2) database manager. This provides for 
continuous system availability, even when the 
host database system is down or stopped for 
maintenance. 

The third major part of the system is the host 
database, which is implemented in a DATA
BASE 2* (DB2*) relational database on a Mul
tiple Virtual Storage (MVS) platform. The host 
provides a powerful data storage and access 
environment and supports a variety of access 
tools, such as Statistical Analysis System 
(SAS) and Query Management Facility 
(QMF*) . 

Figure 129 shows the system architecture of 
the CPPC data management system. 

Basic Operation 

Each operator claims the work performed on 
each job of cards; this is called a process 

232 Technology Version 2 

CATIA** 
Work Station 

t 

DAE 

DAE 

DAE 
I ~'~' , ..... -;:-r-:-- ',-] . Wolk$tat1dn ' . 

. . . 

DAE 

j. 
f 

-.,,,,;;; 

tl. . • 

- .. ~ 

Image Display 

DAE = Distributed Automation Edition 
CATIA = Computer-Graphics Aided Three

Dimensional Interactive Application 

TECH1 27·Q 

Figure 129. System Architecture 

claim. If an operator finds a defect of any 
kind, the operator enters the defect claim into 
the system through a graphical interface that 
serializes the transaction and updates the DB2 
data management system to minimize errors in 
the data. 

Figure 130 on page 233 shows the steps nec
essary for an operator to enter a claim in the 
system. 

The graphical interface consists of a Presenta
tion Manager image of the circuit card with its 
electrical components on it. Each electrical 
component is a unique bit map, and the image 
of the assembled circuit card is a collection of 
all of the component bit maps overlaid to 
become one assembled image. The compo
nent bit maps are stored in a component 
image library. When the development labora
tory releases a new card to manufacturing, a 
series of programs analyzes the data and, 
based on component types, size, and location 
information, automatically generates the 
image. The image is then copied to our area 
controller to allow for better performance in 
delivering this data to the operator. 



Defect 
Claims 

Card Part Number, 
Serial Number, and Job 
Number Bar Code Entry 

Process 
Claims 

Claim Complete •• ,.. .. ----~ 

ESD = Electrostatic Discharge 
10 = Identification 

Figure 130. Operator Data Entry 

TECH019A 

Figure 131 shows the graphical image of a 
circuit card used to make defect claims. 

Figure 131. Graphical Card Image 

Traceability 

Each defect type is recorded against the oper
ation that most likely caused it. Defect reports 
run four times per day and are delivered to the 
two lead floor technicians in the manufacturing 
area. These reports provide notification of 
process, maintenance, and operator education 
problems that cause multiple defects. 

To decrease electrical component failures, 
CPPC now has traceability of failing compo
nents to the failure it caused on the assembled 
cards. This information is essential to failure 
analysis engineers and component suppliers . 

Conclusion 

The CPPC data management system is just 
one example of the ultimate goal of a totally 
integrated manufacturing environment across 
multiple manufacturing lines in Rochester. 
Similar development is under way in many 
hard-file manufacturing lines and the systems 
manufacturing line. 

CPPC programmers consistently followed 
hardware architectures, communications proto
cols, and database practices, which makes 
linking information across manufacturing lines 
a straightforward process. 

Data Management System of the Circuit Package Production Center 233 



Authors 

Paul V. Allen 
Mr. Allen is a staff programmer in AS/400 pro
gramming development. He is the team leader 
for the user interface manager (UIM) compo
nent of the OS/400 operating system. Past 
assignments include programming on the UIM 
and the System/36 SSP. Mr. Allen has one 
US patent pending and two inventions pub
lished. Prior to joining IBM, Rochester, MN, in 
1984, he received a BS degree in Computer 
Science from Western Washington University, 
Bellingham, WA, and worked at Dealer Infor
mation Systems, Inc. 

James E. Bahr 
Mr. Bahr is a senior planner responsible for 
system price/performance on the AS/400 
system. Prior to this assignment he was a 
performance analyst in the Rochester Pro
gramming Laboratory, focusing on multi
processor performance. Past assignments 
include technical and managerial positions in 
the Rochester Engineering Laboratory on pro
cessor development. Mr. Bahr is credited with 
one patent and has published two papers on 
multiprocessor performance. He joined IBM in 
1973 after receiving a BSEE degree from the 
University of Minnesota. 

Mark L. Bauman 
Mr. Bauman is a staff programmer in AS/400 
communications development working in the 
heterogeneous connectivity area. He is a 
member of the TCP/IP programming team. 
Mr. Bauman previously held various program
ming assignments on the System/38 and tools 

234 Technology Version 2 

development group. He graduated from 
Mankato State University of Minnesota with a 
BS degree in Computer Science and Business 
with a minor in Mathematics. 

Jonathan P. Beierle 
Mr. Beierle is an advisory programmer in 
AS/400 communications development. Before 
joining the communications area in 1990, he 
worked on research projects in the advanced 
technology area involving programming devel
opment environments, programming lan
guages, and communications. Prior to this, he 
was responsible for System/38 control lan
guage compiler development. He joined IBM 
in 1980 after receiving a BS in Computer 
Science and Statistics from the University of 
Wisconsin-LaCrosse. 

Neil C. Berglund 
Mr. Berglund is a senior engineer in power 
systems. In his most recent assignment he 
was responsible for the design and definition 
of the AS/400 intelligent power control 
network. Mr. Berglund joined IBM in 1965 and 
holds a Bachelor of Electrical Engineering 
degree from the University of Minnesota. He 
is credited with 12 patents and numerous dis
closures for work on processor and I/O devel
opment in System/3, System/38, and the 
AS/400 system. 

Bruce L. Beukema 
Mr. Beukema is an advisory engineer in 
AS/400 processor development working on 
processor I/O bus development. Past assign
ments include various I/O related development 
in System/34, System/36, and AS/400 engi
neering. He holds two US patents and has 11 
inventions published. He joined IBM, 
Rochester, MN, in 1977 after receiving his 
BSEE degree from South Dakota School of 
Mines and Technology, Rapid City, SO. 

Timothy R. Block 
Mr. Block is an advisory engineer in intercon
nect technology working on fiber optic data link 
development. Past assignments include com
ponent reliability testing and optical storage 
development. He holds five US patents and 
has nine inventions published. Mr. Block 
joined IBM, Rochester, MN, in 1974 after 
receiving a BS in Physics and Mathematics 
from Carroll College, Waukesha, WI , and an 
MSEE from Northwestern University, Evan
ston, IL. 

John M. Borkenhagen 
Mr. Borkenhagen is a staff engineer in auto
mation technology. He is a team leader 
working on design automation of timing anal
ysis and verification. Before joining auto
mation technology in 1989, he had a variety of 
assignments in AS/400 processor design. He 
has filed two patents and has published eight 
disclosures. Mr. Borkenhagen joined IBM, 
Rochester, MN, in 1984 after he received 



BSEE and MSEE degrees from the University 
of Wisconsin, Madison, WI. 

John M. Broich 
Mr. Broich is a staff programmer in the 
SQL/400 development group. He is currently 
working on SQL/400 run-time development. 
Mr. Broich joined IBM, Rochester, MN, in 1989 
after working as a programmer for UNISYS 
Corporation. He has a Computer Science and 
Business BS degree from Mankato State Uni
versity, Mankato, MN. 

Laura J. Bruner 
Ms. Bruner is a senior associate programmer 
in the application technology group. She 
joined IBM in 1988 after working as a 
programmer/analyst for State Farm Insurance. 
She provides education , application develop
ment support, and technical support for the 
CaliPath/400 product. She previously worked 
with the Telephony Application Services 
product and the IBM 9270 Voice Response 
Unit. She received a BS degree from the Uni
versity of Wisconsin at Stevens Point in 1984. 

Ann M. Bukowski 
Ms. Bukowski is currently an associate infor
mation developer in the application enabling 
interface group. She previously wrote PC 
Support/400 documentation. She joined IBM 
in Rochester, MN, in 1988. Ms. Bukowski has 
a BS degree in English and an MA degree in 
Business and Technical Communications from 
Iowa State University, Ames, IA. 

David G. Carlson 
Mr. Carlson is a staff programmer in commu
nications protocol development whose current 
responsibilities include AS/400 X.31 and ISDN 

communications development. Past IBM 
assignments include AS/400 X.25 communica
tions and I/O processor initialization develop
ment. Mr. Carlson joined IBM, Rochester, MN, 
in 1984 after receiving his BS in Computer 
Science from Southern Illinois University, Car
bondale, IL. 

David A. Christenson 
Mr. Christenson is a staff programmer in 
AS/400 communications development. His 
previous assignments include design and code 
development for System/36 APPC, System/36 
APPN, System/36 MLU, PC Support/36, 
AS/400 APPN, and AS/400 SNA. He joined 
IBM, Rochester, MN, in 1980 after receiving 
his BS degree in Computer Science from 
Moorhead State University, Moorhead, MN. 

Jeffrey A. Collett 
Dr. Collett is an advisory engineer in pack
aging technology responsible for the definition 
of packaging technology for future systems. 
Assignments since joining IBM Rochester in 
1984 have been in connector and solder inter
connect reliability evaluation. He joined IBM at 
the Thomas J. Watson Research Center in 
Yorktown Heights, NY, in 1983. Dr. Collett 
received a BA degree in Physics and Math
ematics from St. Olaf College and holds AM 
and PhD degrees in Physics from Harvard Uni
versity. 

Kathryn D. Cook 
Ms. Cook is a senior associate programmer in 
the database area of AS/400 development in 
Rochester, MN. She is currently working on 
the remote SQL function, the shared folders 
function, and the transfer function of PC 
Support/400. She joined IBM in 1986 after 

graduating from Case Western Reserve Uni
versity, Cleveland, OH, with a BS degree in 
Computer Engineering. 

Kenneth A. Cook 
Mr. Cook is a senior engineer on the commu
nications programming development team 
working in the area of heterogeneous connec
tivity. He was responsible for the software 
structure design and implementation strategy 
for the integration of the OSI product on the 
AS/400 system. His latest responsibilities 
included design responsibilities in TCP/IP com
munications, ISDN, telephony, OSI, and X.400. 
He joined IBM in Endicott, NY, in 1957. He 
managed the development of the remote com
munications subsystem for the System/38 and 
has held numerous engineering and program
ming responsibilities for the Rochester 
systems. He received the IBM invention 
award for two US patents and seven published 
disclosures. 

Mark A. Cossack 
Mr. Cossack is a senior associate programmer 
on the APPN development team. He joined 
IBM in 1989 after working on OSI and SNA 
networking products development at Control 
Data Corporation. Since joining IBM, he has 
worked on AS/400 APPN development in addi
tion to other AS/400 communications projects. 
Mr. Cossack holds one US patent and has a 
technical disclosure published . He received a 
BA in Quantitative Methods and Computer 
Science in 1984 from the University of St. 
Thomas, St. Paul, MN. 

Dennis T. Cox 
Mr. Cox is a senior engineer working in circuit 
technology on various ASIC design systems. 

Authors 235 



Past IBM assignments include SRAM designs, 
programmable logic array (PLA) design 
systems, growable array macros, and CMOS 
and BICMOS design systems. Mr. Cox joined 
IBM, Kingston, NY, in 1970 after receiving his 
BSEE degree from the University of Wis
consin, Madison, WI. He received his MSEE 
from Syracuse University, Syracuse, NY, in 
1975. Mr. Cox transferred to Rochester, MN, 
in 1976. 

Thomas R. Crowley 
Mr. Crowley is an advisory programmer 
responsible for the maintenance of the storage 
management portion of the system licensed 
internal code. Past IBM assignments include 
the development of various System/38 diag
nostic programs (including the hardware 
system test and the pack utility maintenance 
program), and design and development 
responsibilities for the AS/400 disk mainte
nance and recovery procedures, the AS/400 
save storage function, and the AS/400 disk 
failure status notification function. Mr. Crowley 
has numerous technical disclosures. Mr. 
Crowley joined IBM, Rochester, MN, in 1979. 
He received a BS degree from the University 
of Wisconsin at LaCrosse. 

Robert L. Dick 
Mr. Dick is an advisory programmer in the 
advanced systems 1/0 and communications 
group. He has been involved with various 
communications implementations on both the 
System/38 and AS/400 systems including both 
SNA and TCP/IP protocols. Mr. Dick joined 
IBM in 1981 after he received his BS in Com
puter Science from California Polytechnic State 
University, San Luis Obispo, CA. 

236 Technology Version 2 

Steven M. Douskey 
Mr. Douskey is a staff engineer in advanced 
systems engineering. He is the lead designer 
for the AS/400 system processor self-test. 
Past IBM assignments include AS/400 system 
processor problem analysis and resolution 
(PAR), AS/400 processor bus adapter interface 
hardware, and System/38 processor channel 
interface hardware. He holds two US patents 
and has published 12 disclosures. He joined 
the advanced systems development group in 
IBM, Rochester, MN, in 1982 after receiving a 
BSEE degree from the University of Nebraska, 
Lincoln, NE. 

Dana M. Duffield 
Mr. Duffield is an advisory programmer in 
OS/400 programming development. Mr. Duf
field joined IBM in 1982 after receiving a BS 
degree in Computer Science from the Univer
sity of Illinois, Champain/Urbana, IL. Mr. Duf
field is currently working on graphical user 
interface enabling for the OS/400 operating 
system. Past IBM assignments include devel
opment of nonprogrammable work stations and 
various development and lead design respon
sibilities on AS/400 PC Support. His work 
experiences prior to joining IBM include Bell 
Laboratories in Naperville, IL. 

Randy L. Egan 
Mr. Egan is an advisory programmer in the 
SOU400 development group. He is the team 
leader for the SOL run-time support team. Mr. 
Egan joined IBM, Rochester, MN, in 1984 after 
working as a programmer for Deere & Co. He 
has a BS in Comprehensive Mathematics and 
Computer Science from the University of Wis
consin at Platteville. 

Karen S. Eikenhorst 
Ms. Eikenhorst is an advisory programmer in 
OS/400 programming development. Past IBM 
assignments include testing and programming 
for the System/34, programming for the 
System/36 control storage processor, user 
interface design for the System/36 and the 
AS/400 system, and development manager. 
Ms. Eikenhorst is currently working on graph
ical user interface enabling for the OS/400 
operating system. She joined IBM in 1977 
after receiving a BS degree from Iowa State 
University, Ames, IA. 

Richard G. Eikill 
Mr. Eikill is the manager of the system simu
lation group in advanced systems manage
ment. Past IBM assignments include the 
development of processors and main storage 
for both the System/36 and the AS/400 
system. He holds seven US patents and 11 
invention disclosures. Mr. Eikill joined IBM in 
1984 after receiving a BSEE from the Univer
sity of North Dakota. 

John R. Elliott 
Mr. Elliott is a staff engineer in design systems 
responsible for test generation tools and 
support. Past IBM assignments include logic 
designer on 3480 Tape Subsystem, test equip
ment designer for functional self-test tester, 
engineering design system center of compe
tence, department manager of card test engi
neering, and technician. Mr. Elliott joined IBM 
in 1966 at Boulder, CO. He graduated from 
the University of Colorado at Boulder with a 
BSEE. He holds one patent and has pub
lished two articles in the IBM Technical Bul
letin. 



Earl W. Emerick 
Mr. Emerick is an advisory programmer and 
manager of a group of AS/400 systems man
agement and System View solutions. He 
joined IBM in 1977 after receiving his BS 
degree in Computer Science from the Indiana 
Institute of Technology, Ft. Wayne, IN. He 
held various assignments in software develop
ment on System/38, System/36, and the 
AS/400 system, where he also managed the 
development of AS/400 change management 
functions. His career has been focused on 
advancing availability, reliability , serviceability, 
and systems management technologies 
through software development, architecture, 
design, and management positions at many 
different levels of the system. 

Dennis J. Frett 
Mr. Frett is currently a senior associate pro
grammer with the AS/400 APPN development 
team in Rochester, MN. Since joining IBM in 
1987 he has also worked with AS/400 APPC 
development. Dennis received a BS degree in 
Computer Science from Iowa State University 
in 1987. 

Janice R. Glowacki 
Ms. Glowacki is a senior associate pro
grammer working on the PC Support/400 and 
RUMBN400** products. Prior to her current 
assignment, Ms. Glowacki was a developer 
working on the OS/2 communications 
manager. Ms. Glowacki joined IBM, 
Rochester, MN, in 1988. She earned both her 
BS and MS degrees in Computer Science at 
Florida International University, Miami, FL. 

Christopher Guibert 
Mr. Guibert is staff engineer responsible for 
AS/400 manufacturing process development 
and engineering. He joined IBM, Rochester, 
MN, in 1984 and has worked in automation 
and assembly engineering. He received a BS 
in Mechanical Engineering in 1984 from UCLA 
and an MS in Manufacturing Systems Engi
neering from Lehigh University in 1987. 

Keith R. Halphide 
Mr. Halphide is a staff engineer in the circuit 
package production center responsible for 
functional tester development and application 
verification. Previous assignments include 
stuck fault logic tester design, self-test pro
gramming, and disk burnish/test. He joined 
IBM Rochester in 1983 after graduating with a 
BSEE from the University of Washington , 
Seattle. 

James J. Herring 
Mr. Herring joined IBM, Rochester, MN, in 
1981 from Bemidji State University where he 
graduated with a BS in Mathematics and Com
puter Science. His previous assignments 
include System/38 performance, implementing 
AS/400 token-ring LAN support, and leading 
the design and development of the software 
support of AS/400 ISDN. He is currently a 
development programmer and manager for 
software installation development on the 
AS/400 system. 

Steven A. Horejsi 
Mr. Horejsi is a senior associate engineer in 
the CPPC area. He is the database adminis
trator for the CPPC data management system. 
Past IBM assignments include the develop-

ment of logic card testers and card tests. He 
joined IBM, Rochester, MN, in 1978. 

Merle E. Houdek 
Mr. Houdek is currently a senior engineer 
engaged in performance analysis and mod
eling of processor and I/O hardware. He 
joined IBM in 1964 and holds a BSEE degree 
from Tri-State University in Angola, IN . He is 
credited with seven patents and numerous dis
closures for work on processor and I/O devel
opment in the System/38 and AS/400 systems. 

Randall S. Jensen 
Mr. Jensen is a staff engineer in the main 
storage card development group. Before 
joining IBM, Rochester, MN, in 1988, he was a 
member of the technology applications group 
in Poughkeepsie, NY. Past IBM assignments 
include concurrent maintenance development 
for the System/370 channel cards and on-chip 
temperature sensing. He joined IBM in 1982 
after receiving a BSEE degree from Michigan 
State University, East Lansing, MI. 

Charles L. Johnson 
Mr. Johnson is a senior engineer for circuit 
technology in AS/400 systems logic. In his 
current assignment he is responsible for 
setting the direction and development of the 
technical design methodology, analysis, and 
application of VLSI technologies used in future 
AS/400 processor products. Past assignments 
include analog and digital circuit design, chip 
logic design, future packaging technology con
cepts, system clocking methodology, and tech
nology applications and delivery. He is 
credited with five US patents, 18 published 
inventions, 12 conference presentations, and 
four technical reports. He joined IBM in 1974 

Authors 237 



after he received a BSEE degree from the Uni
versity of Minnesota, Minneapolis, MN. 

Kenneth E. Johnson 
Dr. Johnson is a senior engineer in recording 
media technology with interests in magnetic 
and physical properties of thin films . His 
career has been involved with rigid disk tech
nology since its inception in Rochester. He 
plays a significant role in all of IBM 
Rochester's disk products with particular 
emphasis on the thin-film disk first shipped by 
IBM in 1988. He received a PhD in Physical 
Chemistry from the University of Minnesota in 
1977. After a postdoctoral appointment at the 
University of Chicago, he joined IBM 
Rochester in 1988. 

Sarah R. Jones 
Ms. Jones is a senior associate programmer in 
the heterogeneous connectivity development 
organization. Since joining IBM in 1987 she 
has had various assignments involving AS/400 
communications, and, most recently, design 
and development for user-defined communica
tions. Ms. Jones received her BA degrees in 
Mathematics and Computer Science from 
Luther College, Decorah , IA. 

Brian E. Jongekryg 
Mr. Jongekryg is a staff programmer in com
munications protocol development whose 
current responsibilities include AS/400 SDLC 
and ISDN development. Past IBM assign
ments include System/36 SDLC and X.21 
communications development. Mr. Jongekryg 
joined IBM, Rochester, MN, in 1984 after 
receiving his BS in Computer Science from 
Michigan State University, East Lansing, MI. 

238 Technology Version 2 

Kerry T. Kaliszewski 
Mr. Kaliszewski is a senior associate engineer 
in processor self-test. His previous assign
ments include writing diagnostic licensed 
internal code for the AS/400 system as well as 
for IBM PC video test equipment. He joined 
IBM, Rochester, MN, in 1988 after receiving a 
BSEE with a Computer Engineering option 
from Michigan State University. 

Teresa C. Kan 
Ms. Kan is a staff programmer of the database 
quality and performance team in Rochester 
current systems. She joined IBM, Rochester, 
MN, in 1984 and was responsible for DDM 
development and support for System/36 . In 
1986, she joined the AS/400 DDM team and 
was responsible for the byte stream model 
development. In the past two years, Ms. Kan 
was the design focal point for the Distributed 
Relational Database Architecture protocol on 
the AS/400 system. She was the AS/400 rep
resentative on the DRDA 1 Control Board. She 
received an MS degree in Computer Science 
from Utah State University, Logan, UT. 

Dennis L. Karst 
Mr. Karst is an advisory engineer in intercon
nect technology working on fiber-optic data link 
development. Past assignments include elec
tromagnetic compatibility and optical disk 
storage development. He holds three US 
patents and has 10 inventions published. 
Mr. Karst joined IBM, Rochester, MN, in 1980 
and received a BSEE from South Dakota State 
University, Brookings, SO, in 1979 and an 
MSEE from the University of Minnesota, Min
neapolis, MN, in 1986. 

Gary L. Kearns 
Mr. Kearns is an advisory engineer in systems 
manufacturing test support. His current activ
ities include development and implementation 
of stress testing and guardband performance 
analysis techniques. He also supports process 
data collection and information analysis for 
process improvement initiatives. He supported 
new product early entry activities with quality 
planning and test requirements definition for 
System/3 card handling machines, optical 
character readers, and the 5100 computer. He 
supported VLSI component evaluation and 
failure rate forecasting while working in the 
component quality and reliability lab. He facili
tated the introduction of low cost system stress 
screen processes for the 5360, 5362, 5363, 
5364, and System/38 computers. Mr. Kearns 
joined IBM, Rochester, MN, after receiving a 
BSME from the University of Minnesota. 

Kevin A. Kelle 
Mr. Kelle is a staff programmer in the system 
supervisor area of VLlC programming. Prior to 
this, he was a member of the AS/400 screen 
team. Past assignments have been in disk 
storage management. On the AS/400 system, 
he worked on the mirroring and checksum pro
jects and also contributed to the design of the 
110 subsystem. On the System/36, he devel
oped disk microcode. Mr. Kelle joined IBM, 
Rochester, MN, in 1984 after he received a BS 
degree in Computer Science from the Univer
sity of Nebraska, College of Engineering and 
Technology, Lincoln, NE. 

Harvey G. Kiel 
Mr. Kiel is an advisory engineer in work station 
controller development. He is responsible for 
work station controller architecture. Previous 



assignments include work station controller 
team leader and development on the 5294 
Remote Work Station Controller and 5260 
Retail System. He filed 15 patents and pub
lished 38 disclosures. Mr. Kiel joined IBM in 
1978 after receiving a BSEE from South 
Dakota State University, Brookings, SO. 

Jeffrey C. Kramer 
Mr. Kramer is an advisory programmer in the 
system management design control group. He 
joined IBM in Rochester, MN, in 1983 and has 
held various assignments on System/38 and 
the AS/400 system. His past AS/400 assign
ments include design and development of 
service processor licensed internal code, 
APPN , communications 1/0 interfaces for het
erogeneous protocols, and OSI. Mr. Kramer 
holds a BS in Computer Science and Math
ematics from North Dakota State University, 
Fargo, NO. 

Timothy L. Kramer 
Mr. Kramer is an advisory programmer working 
in PC Support/400 installation and configura
tion. Prior to working in the PC Support area, 
he developed System/36 and AS/400 office 
products. Mr. Kramer joined IBM, Rochester, 
MN, in 1979 after teaching at the secondary 
school level. He graduated from St. Olaf 
College, Northfield, MN, with a BA in Math
ematics. 

Janet H. Krueger 
Ms. Krueger is the lead designer for the PC 
Supportl400 product. She is a strategist for 
future cooperative processing support on the 
AS/400 system and the Rochester represen
tative on the SAA ClientiServer council. She 
joined IBM, Rochester, MN, in 1976, working 

in programming language development for the 
System/34. Later, she transferred to the pro
gramming support area, designing and coding 
both MVS and VM application development 
tools for internal IBM use. Ms. Krueger has a 
BA in German and Business from Central 
College, Pella, lA, and an MS in Computer 
Science from the University of Iowa, Iowa City, 
IA. 

Robert F. Lembach 
Dr. Lembach is an advisory engineer in design 
systems. His current interests include opti
mization strategies for VLSI systems design 
encompassing timing , placement, and routing. 
Dr. Lembach received a BSEE from Marquette 
University, Milwaukee, WI, and an MSEE and 
PhD from Carnegie-Mellon University, Pitts
burgh, PA. He joined IBM, Rochester, MN, in 
1979. 

Sheldon B. Levenstein 
Mr. Levenstein is a staff engineer in AS/400 
9406 processor development. He joined IBM 
in 1980 as a junior engineer. Mr. Levenstein 
is involved in the development of the AS/400 
processor chips. He had several assignments 
dealing with the processor, storage control , 
and multiprocessor design. He applied for four 
patents and was awarded the outstanding 
technical achievement award for his contrib
utions to the AS/400 multiprocessor effort. Mr. 
Levenstein received a BSEE from the Univer
sity of Illinois in 1980. 

Dennis R. Martin 
Dr. Martin is a staff programmer in VLlC 
storage management, with both architectural 
and development responsibilities in AS/400 
availability and auxiliary storage management. 

He came to IBM in 1987, after 11 years of 
college and university teaching, to become a 
member of the team that designed and devel
oped disk mirroring for the AS/400 system. 
Dr. Martin continues as a member of the 
adjunct faculty in computer science at Winona 
State University, MN, and has two US patents 
and several disclosures published since 
coming to IBM. He holds a PhD in Musicology 
from the University of Iowa. 

Timothy J. Massaro 
Mr. Massaro is an advisory programmer 
working as team leader of the Operational 
Assistant programming team. He joined IBM 
in Rochester, MN, in 1980. He has a BS 
degree in Computer Science with a minor in 
Mathematics from the University of North 
Dakota, Grand Forks, NO. He held numerous 
programming responsibilities including the 
System/38 work management team and 
moving the message handler and menu com
ponents to the AS/400 system. He received 
the IBM invention award for two US patents. 

Michael J. McDermott 
Mr. McDermott is an advisory programmer in 
storage management for the AS/400 system. 
He is responsible for the technical leadership 
of the storage management component and 
the system availability concerns relating to 
disk. Past IBM assignments include design 
and development of supervisor microcode on 
the System/36 and system software for 
System/34, System/32, and System/3. He has 
11 invention disclosures published and three 
patents filed. He graduated from Iowa State 
University with a BS in Mathematics. 

Authors 239 



John E. McGinn 
Mr. McGinn is programmer in AS/400 
communications He has been 
the team leader of the APPN project for the 
past two years. His previous assignments 
include design and code development for the 
topology and routing services (TRS) compo
nent and the machine services control point 
(MSCP) component on the AS/400 system. 
He also was involved in the System/36 APPN 
project. He patents and has two 
technical He joined 
IBM, Rochester, MN 1984 after receiving 
his BS degree Science from the 
University 

Lynn A. McMahon 
Mr. McMahon is an advisory programmer in 
AS/400 HLiC development. He joined IBM in 
1977 as an associate programmer and worked 
on various emulation and device control micro
code projects before becoming involved in hor-
izontal licensed development for 
the System/38 AS/400 processors. Mr. 
McMahon two applied for 

outstanding tech
his work on the 
definition. He 

received a BS degree in Computer Science 
from Iowa State University in 1975 and an MS 
degree in Computer Science from Iowa State 
University in 1977. 

James R. Morcomb 

manager of 
ture. He 
development 
positions with 
ability, service, 

programmer and 
strategy and architec

and held various 
management 

reliability, avail
and system 

240 Technology Version 2 

He managed the 
department on the 

primary responsibility 
oping the advanced service support capability 
of the system. From 1982 to 1985 he worked 
on strategy and architecture for future 
systems. That work became the foundation for 
electronic customer support and much of the 
system management on the AS/400 system. 
His current responsibilities include System View 

architecture for the AS/400 
ABS on corporate 

councils and activities, and 
cross-line-of-business team with 

IBrv1-wide implementation of 
customer 

Timothy J. Mullins 
Mr. Mullins is an advisory engineer in the hard
ware design center and is involved in AS/400 
system design and performance analysis. He 
worked in the design and development of I/O 

System/38 user display 
stations and the operator 
Mullins later became 

unit development 
design and timing 
the Rochester Engineering 

oratory after receiving his BSEE degree from 
the University of California at Berkeley in 1977. 
In 1982, he received his MSEE degree from 
the University of Minnesota. 

Thomas N. Paske 
senior engineer. 

for development 
manufacturing strategies 

plant. Previous 
the introduction of new 

including card I/O 

machines, System/36, System/38, and the 
AS/400 system. joined IBM, Rochester. 

in 1961. 

Ricky M. Peterson 
Mr. Peterson is a staff engineer in the AS/400 
performance group. He previously worked on 
System/36 and AS/400 work station controller 
performance analysis and was team leader for 
9404 performance analysis. He has one 
patent, six technical disclosures, and three 
technical papers published. Mr. Peterson 
joined IBM, Rochester, MN, in 1984 after 
receiving a BS in Computer Engineering from 
Iowa State University. 

Patrick T. Priniski 
Mr. Priniski is a staff programmer with design 
and development responsibilities in the remote 
SOL function of PC Support. He joined IBM in 
Poughkeepsie, NY, in 1982 after earning a 
Bachelor of Music Education degree and a BS 
degree in Data Processing from Northern 
Michigan University, Marquette, MI. Since 
transferring to Rochester in 1988, he has 
team leader for several PC Support functions. 

Kevin J. Przybylski 
Mr. Przybylski is a staff engineer working on 
product EMC design and evaluation. His 
current assignment is to develop and imple
ment new EMC strategies and designs for use 
in future IBM systems. Past assignments 
include EMC design for the AS/400 system 
and System/38. Mr. Przybylski joined IBM, 
Rochester, MN, in 981 after receiving his 
BSEE from the Milwaukee School of Engi
neering, Milwaukee, WI. 



Carol L. Ramler 
Ms. Ramler is a senior associate programmer 
in the SOL!400 development group. She is 
the team leader for the SOL precompilers and 
parsers. Ms. Ramler joined IBM, Rochester, 
MN, in 1987 after working as a programmer for 
Control Data Corporation. She has a BS 
degree in Computer Science from Saint Cloud 
State University, St. Cloud, MN. 

Julie A. Ransom 
Ms. Ransom is a senior product planner in the 
advanced systems planning area. She joined 
IBM in Rochester, MN, in 1978. She held 
numerous programming responsibilities 
including writing applications to support the 
Rochester site, programming of robotics for the 
manufacturing of disk products, and working 
with business partners and customers that 
migrated applications to the AS/400 system 
prior to its announcement in 1988. Since then, 
she has worked in the product planning area 
focusing on user interfaces. She has a BS 
degree in Computer Science and Mathematics 
from Mankato State University, Mankato, MN. 

Paula H. Richards 
Ms. Richards is a staff information developer in 
OS/400 programming development. Ms. Rich
ards is currently working on graphical user 
interface enabling for the OS/400 operating 
system. Past IBM assignments include tech
nical design and leadership roles for the 
AS/400 hypertext and CD-ROM softcopy pro
jects. Her work experiences prior to joining 
IBM in 1987 include working for a small 
systems integration company designing data
base applications for personal computers . She 
received her BS and MA in education from 
Western Carolina University, NC. 

Joseph T. Rommel 
Mr. Rommel is a staff industrial engineer. He 
currently supports manufacturing and distribu
tion operations as part of the business plan
ning department. He worked on the planning 
and implementation stages of the AS/400 pro
duction facility. He joined IBM at Rochester, 
MN, in 1984 after receiving a BSIE from Iowa 
State University. 

Bruce G. Rudolph 
Mr. Rudolph is a staff engineer for circuit tech
nology in AS/400 systems logic. He is respon
sible for system clock generation for the 
AS/400 processor, main storage controller, and 
110 interface and control units. Past assign
ments include bipolar and CMOS circuit 
design, chip logic design, technology applica
tion support for the processor development 
area, and the design of clock trees and 
clocking methodologies for use on ASIC chips. 
He is credited with two US patents and four 
invention disclosures in the field of clock gen
eration for ASIC designs. He joined 18M, 
Rochester, MN, in 1983 after he received a 
BSEE degree from the University of Wis
consin, Milwaukee, WI. 

Richard A. Saltness 
Mr. Saltness is a staff engineer and is a 
member of the CPPC data management team . 
Past IBM assignments include the develop
ment of software for the AS/400 functional 
testers and logic card tester development. He 
joined IBM, Rochester, MN, in 1984 after he 
received a BSEE degree from the University of 
Wisconsin, Madison, WI. 

Phillip C. Schloss 
Mr. Schloss is an advisory engineer working 
on the PC Support tools folder and tools for 
PC Support programming. He joined IBM in 
1965 as a system engineer. In 1969, he trans
ferred to Rochester, MN, to design hardware 
and microcode for work stations. Later, he 
transferred to the Rochester Programming 
Laboratory to design and code for the AS/400 
PC Support product. Mr. Schloss has a BS 
degree in Electrical Engineering from North 
Dakota State University, Fargo, NO. 

Dennis J. Schmidt 
Mr. Schmidt is an advisory programmer 
working on user interface design and develop
ment for AS/400 and future systems. He held 
numerous programming responsibilities 
including the System/36 main storage super
visor, System/36 security, AS/400 System/36 
Migration Aid, AS/400 System/38 Migration 
Aid, AS/400 work management, and AS/400 
Operational Assistant interface. He received 
the IBM invention award for two US patents. 
He joined IBM in Rochester, MN, in 1980. 
Mr. Schmidt has a BS degree in Applied Math
ematics from the University of Wisconsin
Stout, Menominee, WI. 

Randall A. Schmidt 
Mr. Schmidt is an engineer in design systems. 
He works with the development and support of 
automated logic synthesis of VHDL chip 
designs for the AS/400 system. He joined 
IBM, Rochester, MN, in 1988 upon receiving a 
BSEE degree from St. Cloud State University, 
St. Cloud, MN. 

Authors 241 



Quentin G. Schmierer 
Mr. Schmierer is a senior engineer responsible 
for VHDL language and logic synthesis tools 
development for the AS/400 processor group. 
He is credited with five patents and numerous 
disclosures for work on the original AS/400 
processor and System/38 I/O adapters. He 
received two outstanding technical achieve
ment awards for work on the VHDL macro pro
cessor program and work on the AS/400 
storage control unit hardware. He joined IBM 
in 1976 and holds a BSEE degree from North 
Dakota State University in Fargo, NO. 

Clark A. Scholten 
Mr. Scholten is a senior associate programmer 
in client API development. Currently, he is the 
team leader of the data queues function of PC 
Support. Mr. Scholten also worked on the PC 
Support message function and the PC Support 
configuration process. He joined IBM in 1987. 
Mr. Scholten has a BA degree in Computer 
Science and Mathematics from Northwestern 
College, Orange City, IA. 

Michael D. Seyfert 
Mr. Seyfert is a staff engineer responsible for 
the mechanical hardware design of card enclo
sures and frames for future high-end systems. 
Past IBM assignments include manufacturing 
support of flexible circuits for disk drives, 
process development for surface-mount card 
assemblies, and product development of both 
low- and high-end AS/400 systems. He joined 
advanced systems development in 1987. He 
holds a patent for a card enclosure con
struction method, and has published five tech
nical disclosures. Mr. Seyfert joined IBM, 
Rochester, MN, in 1983 shortly after receiving 

242 Technology Version 2 

his BSME degree from the University of Wis
consin at Madison. 

Charles C. Shih 
Mr. Shih is the development manager for the 
OSI Communications Subsystem/400 licensed 
program in Palo Alto, CA. He worked for 
6 years in Rochester, MN, on 3270 emulation 
and X.25 support for the System/38, and 
APPN and common I/O support on the AS/400 
system. He holds a BS in Computer Engi
neering from the University of Illinois. 

David W. Siljenberg 
Mr. Siljenberg is an advisory engineer in the 
circuit technology group. He is the lead engi
neer for the fiber-optic link card electronics. 
Past IBM assignments include the design of 
analog integrated circuits for disk drives. Mr. 
Siljenberg joined IBM, Rochester, MN, in 1979 
after working for Motorola, Schaumburg, IL. 
He received his BSEE from the Illinois Institute 
of Technology, Chicago, IL, and his MSEE 
from the University of Illinois, Champaign , IL. 

Ronald L. Soderstrom 
Dr. Soderstrom is a senior engineer in inter
connect technology working on fiber-optic data 
link development. Past development assign
ments were on optical character recognition 
(OCR) scanners, thermal printing systems, 
laser supermarket scanners, and optical disk 
storage systems. He holds 11 US patents and 
has 21 inventions published. Dr. Soderstrom 
joined IBM, Rochester, MN, in 1966. He 
received a BSEE in 1964, an MSEE in 1966, 
and a PhD (EE) in 1972, all from the Univer
sity of Minnesota, Minneapolis, MN . 

Frank G. Soltis 
Dr. Soltis is a senior engineer in AS/400 
system architecture. He joined IBM in 1963 
and has held numerous development and 
development management positions. In 1968 
he received his PhD from Iowa State Univer
sity in Ames, IA. He was an original architect 
of the System/38 and AS/400 architectures 
and is currently leading the effort to define the 
AS/400 architecture for the late 1990s. He 
holds 12 patents, 18 disclosures and is an 
adjunct professor of Electrical Engineering at 
the University of Minnesota. 

Zanti D. Squillace 
Mr. Squillace is an advisory engineer in 
system mechanical development. He joined 
IBM in 1962 and has had many technical 
assignments in optical character recognition 
and systems development. He received a 
BSME from the University of Minnesota at Min
neapolis and is a registered professional engi
neer in Minnesota. 

Gary L. Stowe 
Mr. Stowe is a staff engineer responsible for 
the assembly/test process of the high-end 
AS/400 systems. He supports all aspects of 
manufacturing the AS/400 systems. He joined 
IBM, Rochester, MN, in 1984 and held posi
tions in release, process, and packaging engi
neering. He received a BS in Mechanical 
Engineering in 1984. 

Jeffrey W. Tenner 
Mr. Tenner is an advisory programmer in the 
database management area. He is the team 
leader for the distributed database function. 
Before joining the database management area 
in 1987, he developed program development 



applications for MVS and VM environments 
and tested a variety of System/38 functions. 
He has two disclosures published. Mr. Tenner 
joined IBM, Rochester, MN, in 1981 after he 
received a BS degree in Computer Science 
from the University of Wisconsin , LaCrosse, 
WI. 

Mark M. Thornton 
Mr. Thornton is a staff engineer in mechanical 
development; he is currently involved in 
mechanical design of the AS/400 line of IBM 
computers . He joined IBM in 1982 at 
Manassas, VA, in the Federal Systems Divi
sion. From 1982 until 1988, he worked in the 
area of thermal analysis and test and partic
ipated in government sponsored Industrial 
Research and Development (lRAD). From 
1988 until 1991 , he worked on developing the 
mechanical hardware for the Version 2 AS/400 
system. Mr. Thornton received a BSME from 
Iowa State University, Ames, lA, in 1981 and 
an MSME from the University of Maryland, 
College Park, MD, in 1986. 

Scott M. Thorvilson 
Mr. Thorvilson is a senior associate engineer 
in systems packaging, working in EMC design 
and evaluation. His current assignment is 
EMC ownership for all models of the 9406 and 
research into conductive plastics for EMC 
applications. Mr. Thorvilson joined IBM, 
Rochester, MN, in 1988 after receiving his 
BSEE degree from Marquette University, Mil
waukee, WI. 

James R. Ulwelling 
Mr. Ulwelling is a senior associate programmer 
in the programming enabling interfaces area. 
He is currently the team leader of DDS com-

piler development. He has been a member of 
the DDS compiler team since 1986. He has 
three disclosures published. Mr. Ulwelling 
joined IBM, Rochester, MN, in 1984 as a 
drafting technician after receiving his mechan
ical drafter diploma from Rochester Area Voca
tional Technical Institute, Rochester, MN. He 
moved into programming in 1986 and has 
since been actively pursuing a BS degree in 
Computer Science at Winona State University, 
Winona, MN. 

David A. Wall 
Mr. Wall is a staff programmer in the client 
development area at IBM, Rochester, MN. He 
currently is the team leader of the shared 
folders function group. He has also worked in 
the client development area of systems assur
ance. He joined I BM in 1984 after graduating 
from the University of Nebraska, Lincoln, NE, 
with a BS degree in Computer Science. 

Mark G. Wenzel 
Mr. Wenzel is a senior associate programmer 
in the client environments area. He is cur
rently working with memory management 
issues for PC Support. Previously, he worked 
on the virtual print, work station function, and 
text assist functions of PC Support. Mr. 
Wenzel joined IBM, Rochester, MN, in 1988 
after graduating from Augustana College, 
Sioux Falls, SO, with a BA in Business Admin
istration and Computer Science. 

Stephen E. Wheeler 
Mr. Wheeler is an advisory engineer in the 
systems manufacturing process and strategy 
development group. He is currently engaged 
in early manufacturing involvement on future 
systems development. He holds eight patents 

and has 50 published inventions. He joined 
IBM in 1967 after receiving a BSME degree 
from the University of Wisconsin at Madison. 
Mr. Wheeler has worked in many development 
and manufacturing projects . 

Robert R. Williams 
Mr. Williams is a senior engineer responsible 
for interchip communications. Past IBM 
assignments include the development of chip 
images, delay calculation, power assignment, 
and circuit design. He has seven patents and 
10 published disclosures. Mr. Williams joined 
IBM, Rochester, MN, in 1968 and holds BSEE 
and MSEE degrees from North Dakota State 
University, Fargo, NO. 

Andrew H. Wottreng 
Mr. Wottreng is a senior engineer in the area 
of AS/400 high-end processor architecture and 
definition. He joined IBM in 1974 as a junior 
engineer. Mr. Wottreng has been involved in 
the development of System/34, System/36 , 
and AS/400 processing units. He has had 
several assignments dealing with chip designs, 
performance modeling, maintenance proce
dures, and architecture. He has received one 
patent, applied for one other, and received an 
outstanding technical achievement award for 
his work on the AS/400 multiprocessor archi
tecture. Mr. Wottreng received a BSEE from 
Marquette University in 1971 and an MSEE 
from the University of Minnesota in 1980. 

Mark G. Wulf 
Mr. Wulf is a senior associate programmer 
working on the development of distributed rela
tional database. He joined IBM in 1988 and 
worked on distributed data management 
before moving to distributed relational data-

Authors 243 



base in 1990. Mr. Wulf received a BS in Com
puter Science in 1988 from the University of 
Kansas. 

244 Technology Version 2 






