h %

Converting System/36 Environment Applications to Native AS/400

Document Number GG24-3304-01

September 1990

International Technical Support Center
Rochester, Minnesota

Take Note

Before using this information and the product it supports, be sure to read the general information
under “Special Notices” on page iii.

Second Edition (September 1990)

This edition applies to Release 2.0 of the 0S/400 licensed program and related licensed programs, and
the IBM AS/400 Programmer Tools PRPQ 5799-DAG Release 2, and to all subsequent releases until
otherwise indicated in new editions or technical bulletins.

Order publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address given below.

A form for reader’s comments appears at the back of this publication. If the form has been removed,
address your comments to:

IBM Corporation, International Technical Support Center
Department 977, Building 003-1
Rochester, MN 55901 USA

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1988,1990. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

Special Notices

This publication is intended to help the customer to convert AS/400 applications
that run in the System/36 Environment so that they do not require the System/36
Environment. It primarily contains discussions of the characteristics of
System/36 Environment applications and their native counterparts, and details
many of the steps required to accomplish conversion.

The information in this document is not intended as the specification of the
interfaces that are provided by the AS/400 system for use by customers in writing
programs to request or receive its services. See the Publications section of the
IBM Programming Announcements for the AS/400 system.

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM’s product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM’s intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Commercial Relations, IBM Corporation, Purchase, NY 10577.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer’s ability to evaluate and integrate them into the
customer’s operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same
or similar results will be obtained elsewhere. Customers attempting to adapt
these techniques to their own environments do so at their own risk.

AS/400, 0S/400, RPG/400, COBOL/400, System/370, 0OS/2, Systems Application
Architecture, and SAA are trademarks of the International Business Machines
Corporation.

© Copyright IBM Corp. 1988,1990

iv Converting System/36 Environment Applications to Native AS/400

Abstract

This document is intended for the AS/400 user, planner, or manager who plans
to convert a System/36 Environment application to native AS/400. It is assumed
that the reader is familiar with the application being converted, with RPG or
COBOL, OCL, and SFGR. It is also assumed that the reader is familiar with the
System/36 Environment, AS/400 database concepts, the design and creation of
physical and logical files, CL, and, to a lesser degree, work management.

This document describes the steps needed to convert applications running in the
System/36 Environment to native AS/400. It also discusses the tools and
approaches that can be used in the conversior® process.

ASYS (210 pages)

© Copyright IBM Corp. 1988,1990 v

Vi Converting System/36 Environment Applications to Native AS/400

Acknowledgments

This document has been revised by:

Errol Baird
IBM New Zealand

Klaus Pretsch
IBM Germany

The advisor for this project was:

Mike Anderson
International Technical Support Center, Rochester

This publication is the result of a residency conducted at the International
Technical Support Center, Rochester.

© Copyright IBM Corp. 1988,1990 vii

viil Converting System/36 Environment Applications to Native AS/400

\ %

Preface

This document is intended to give the reader an understanding of the steps
needed to convert System/36 Environment applications to native AS/400. It
discusses the choices to be made when converting, and includes performance
considerations. It also discusses tools and techniques that can simplify
conversion and lead to a more satisfying result.

This document is intended for the AS/400 user, planner, or manager who plans
to convert a System/36 Environment application to native AS/400.

This document begins with a discussion of the choices one must make when
considering conversion, such as whether to convert and the approaches that can
be taken. Then it includes a list of actions that can improve the performance of
applications without requiring conversion. It then discusses initial steps that will
help make the conversion process manageable. Next is a discussion of the
conversion of program-described files into externally described database files
using the Programmer Tools PRPQ. Then the document discusses conversion
for display files, menus, and printer files, followed by decimal data error
handling, special considerations for RPG and COBOL, general high-level
language and utility considerations, OCL to CL conversion, national language
considerations, and Systems Application Architecture (SAA).

Related Publications

Following is a list of publications that contain additional information about the
topics covered in this document.

ITSO Publications

AS/400 Manuals

System/36 to AS/400 Application Migration, GG24-3250
System/36 to AS/400 System Migration, GG24-3249
Writing SAA Applications for AS/400, GG24-3438

IBM AS/400 Information Directory, GC21-9678

IBM System/36 and System/38 Application Design Considerations, G580-0912
IBM System/36 to IBM System/38 Conversion Aid, SC09-1067

Control Language Reference, SBOF-0481

Programming: Control Language Programmer’s Guide, SC21-8077
Programming: Database Guide, SS21-9659

Programming: Data Description Specifications Reference, SC21-9620
Programming: Data Management Guide, SC21-9658

Programming: Work Management Guide, SC21-8078

Programming: System Reference for the System/36 Environment, SC21-9663

© Copyright IBM Corp. 1988,1990 ix

Programming: Concepts and Programmer’s Guide for the System/36
Environment, SC21-9663

Migrating from System/36 Planning Guide, GC21-9623

Systemn/36 to AS/400 Migration Aid User’'s Guide and Reference, SC09-1166
Languages: COBOL/400 Reference, SC09-1240

Languages: COBOL/400 User’s Guide, SC09-1158

Languages: System/36-Compatible COBOL User’s Guide and Reference,
SC09-1160

Languages: System/38-Compatible COBOL User’'s Guide and Reference,
SC09-1159

Languages: RPG/400 Reference, SC09-1089
Languages: RPG/400 User's Guide, SC09-1161

Languages: System/36-Compatible RPG Il User's Guide and Reference,
SC09-1162

System Operations: Operator's Guide, SC21-8082

Systems Application Architecture (SAA) Publications

Other Publications

SAA: An Overview, GC26-4341

SAA Common Programming Interface: Application Generator Reference,
SC26-4355

SAA Common Programming Interface: C Reference, SC26-4353

SAA Common Programming Interface: Communications Reference, SC26-4399
SAA Common Programming Interface: FORTRAN Reference, SC26-4357

SAA Common Programming Interface: COBOL Reference, SC26-4354

SAA Common Programming Interface: Database Reference, SC26-4348

SAA Common Programming Interface: Dialog Reference, SC26-4356

SAA Common Programming Interface: Presentation Reference, SC26-4359

SAA Common Programming Interface: Procedures Language Reference,
SC26-4358

SAA Common Programming Interface: Query Reference, SC26-4349
SAA Common User Access Basic Interface Design Guide, SC26-4583
SAA Writing Applications: A Design Guide, SC26-4362

American National Standard Programming Language COBOL, ANSI X3.23 -
1985

X Converting System/36 Environment Applications to Native AS/400

Contents

10Introduction 1
1.1 Migration, Restructuring, Conversion, and Redesigning 1
1.2 Migration L e 1
1.3 Restructuring e 2
1.4 Conversion e 2
1.5 Redesigning e 2
1.6 Full Conversion Versus Redesigning 3
1.7 Recommendations 4
2.0 Restructuring for Better Performance 5
2.1 Relative Performance 5
2.2 Recommendations 6
2.2.1 Making MRT Programs Never-Ending, Specifying Long MRT Delay
Time. . e e e e e 6
2.2.2 Reducing File Create and Delete Activity 7
2.2.3 Using Shared Database File Opens Where Possible 7
2.2.4 Increasing DBLOCK Parameter Value for Sequentially Accessed Files 8
2.2.5 Using Correct Data Types 9
2.2.6 Reducing Unnecessary Use of EVOKE and JOBQ 9
2.2.7 Avoiding Unnecessary Nesting of Operator Commands 10
228 Sort Performance 10
2.2.9 Careful Use of 27x132 Display Support 10
2.2.10 Eliminating Read Under Format 10
2.2.11 Limiting Sign-on and Sign-off Activity 11
2:2.12 Changing MRT Security 11
2.2.13 Work Management Considerations 1
2.2.14 Using Utilities 12
3.0 Getting Started with the Conversion 13
3.1 Attend AS/400 Education 13
3.2 Starting Point for Conversion 13
3.3 Conversion Steps 14
3.4 AS/400 Programmer Tools PRPQ 5793-DAG 14
3.5 Choosing Programs and Files to be Converted 15
3.6 Analyzing the Database 15
3.7 Moving Selected System/36 Source to New Library 16
3.71 Member Types 17
4.0 Analyzing Filesand Fields 19
4.1 General File Considerations 19
4.2 File Conversion Functions 20
4.2.1 Input to the First Function 20
4.2.2 Input to the Second Function, 21
423 Rerun Options 21
4.3 Creating DDS from System/36 Environment File Descriptions 21
4.4 Retrieving the Descriptions of Program Described Files 24
4.4.1 Identifyingthe Files 26
4.4.2 Matching Internal and External Names 27
4.5 Field naming considerations 33
4.6 Resolving Field Names 34
4.7 How to get the information without the PTK a1

© Copyright IBM Corp. 1988,1990 Xi

4.7.1 Implications e 42

5.0 Convert System/36 Environment Formats to Native Formats 43
5.1 Finding All Programs That Use the Same Display File 43
5.2 Changes Required to Use Externally Described Display Files 46
6.0Converting Menus 47
6.1 Menu Considerations e 47
6.2 Creating a Native Menu with PTK 47
6.3 Creating Native Menus Without PTK 51
7.0 Converting System/36 Environment Printer Files 57
7.1 PRTF Considerations 57
8.0 Building the Field Reference File 59
8.1.1 Creation Steps 59
8.1.2 Programming Examples, 60
9.0 Modifying DDS and Creating Database Files 63
9.1 Adding Documentation 63
9.2 Shortening Record Lengths 63
9.3 Changing Record Names 63
9.4 Adding Keys 64
9.5 Checking Data Type @ 66
9.6 Alternate Index Files 66
9.7 Creating Files 67
9.8 Format Selection 67
9.8.1 Why Format Selection? 68
9.8.2 How is the Format Selector Written? 69
9.8.3 Recommendations 70
9.9 Copying Dataintothe Files 71
9.9.1 System/36 File with a Single Record Format 71
9.9.2 System/36 File with Multiple Formats 72
100 Decimal DataErrors 75
10.1 Some Rules for Non-DecimalData 75
10.2 Finding and Correcting Errorsin Files 76
10.2.1 Single Format File 76
10.2.2 Multiple Format File 77
10.2.3 Compiler Options for Decimal Data Errors 77
11.0 RPG Considerations 79
111 RPG and Database Files, 79
11.1.1 AutoReport Changes 79
11.1.2 Resolvingthe Useof Names 81
1113 RPGChanges i 81
11.1.4 Changes for Externally Described Files 83
11.1.5 Changing File Specifications 83
11.1.6 Compiling the Program 86
11.1.7 Adjusting Internal Field Names to Match Database Names 89
11.1.8 RPG and a Single Memory Area 91
11.2 RPG and Display Files 92
11.2.1 Old Programs with Display Files that will not Convert 92
11.2.2 Minimum Changes for Program-Described Display File 93
11.2.3 Additional Changes for Externally Described Display Files 99

xil Converting System/36 Environment Applications to Native AS/400

11.2.4 Adjusting Internal Field Names to Correspond with Display File
Names e e e e e e
11.25 ANoteon UDATE
11.2.6 Removing Internal Field Descriptions
11.3 Additional RPG Considerations
11.3.1 General

11.3.2 Changing an RPG Il MRT Program to an RPG/400 SRT Program
11.3.3 A Note on the LO Indicator

12.0 COBOL Considerations
12.1.1 Special Cases for COBOL
12.2 Miscellaneous e
1221 COPY BOOks e
12.2.2 PROCESS Statement
12.2.3 MEMORY SIZE Clause and Source/Object Computer
1224 Literals e e
12.2.5 USAGE IS COMPUTATIONAL,
12.2.6 Signed Clauses
12.2.7 Workstation Control Area
12.2.8 Cursor position
12.2.9 Initial Value of Fields
12.2.10 CALLand CANCEL i
12.2.11 COBOL MAIN Stub Priorto CL Driver
12.2.12 Segmentation
12.2.13 CALL variable-name,
12.2.14 Use of Subprograms
12.2.15 Debugging
12.3 Externally Described Database Files
12.3.1 Converting to External
12.3.2 Group ltems
12.3.3 Key Fields e
12.3.4 Record Area e e
12.4 Minimal Display File Changes
12.4.1 INVITE Keyword e
12.4.2 INDARA Keyword e
1243 ASSIGN Clause e
12.4.4 Changes for Externally Described Display Files
12.5 COBOL Examples ittt e
12.5.1 Additional COBOL Considerations

13.0 Additional Program and Utility Considerations
13.1 Program Communication and Program Structure
13.1.1 Calling One Program from Another
13.1.2 Passing Data to Another Program
13.1.3 Evoking a Program
13.1.4 Using the AttentionKey
13.2 Multiple Requester Terminal Programs
13.2.1 MRT Considerations in the System/36 Environment
13.2.2 MRT Considerations for Native AS/400
13.2.3 MRT Programs and Shared Files
13.3 Never-Ending Programs
13.4 Sort Programs
13.41 Sort and FormatData
13.4.2 The #GSORT Utility
13.4.3 Sort and Logical Files

Contents

13.5 DFU Programs

14.0 Finding Programs that Cause Decimal DataErrors 135
15.0 Converting from OCLtoCL 137
15.1 Different Approaches 137
15.2 Tools Available 137
15.3 Summary of Later Topics 138
15.4 System/34 OCL Considerations 138
15.5 Cleaning Up Your Procedures 139
15.6 Operation Control Language Statements 139
15.7 Procedure Control Expressions 148
15.8 Testing For Active Procedures 149
15.9 Evaluation 149
15.10 Job Attributes and Job Control 150
15.11 Group Files e 150
15.12 Using the Local Data Area (LDA) 151
15.13 System/36 System-Supplied Procedures 151
15.14 System/36 OCL Programming and CL Programming 151

15.14.1 Structure of a CL Program 152

15.14.2 Passing Parameters 154

15.143 IF and ELSE Commands 155

15.14.4 *AND, *OR, and *NOT Operators 156

15.14.5 DO and ENDDO Commands 156

15.14.6 Mixing OCL and CL Programs 156
15.15 Prompting and Read Under Format 157

15.15.1 Prompting for Parameters 158

15.15.2 PromptingforData 159

15.15.3 Read Under Format (RUF) 160
15.16 A Note about Auto Response 160
15.17 Utilities e 160
15.18 Recommendations 161
16.0 National Language Support Considerations 163
16.1 Installing the PTK 163
16.2 DBCS Considerations 163
17.0 Systems Application Architecture (SAA) Considerations 165
Appendix A. UCS/Procedure RelationTable 167
Appendix B. Procedure/CL Relation Table 171
Appendix C. OCL/CL RelationTable 181
Appendix D. OCC and CLCommand Table 185
Appendix E. Table of System/36 Substitution Expressions 189
Appendix F. If Conditions and Their Equivalents 193
Appendix G. Procedure Control Statements and Their Equivalents 197
Appendix H. List of Abbreviations 199

XiV Converting System/36 Environment Applications to Native AS/400

Contents

Xv

XVi Converting System/36 Environment Applications to Native AS/400

Figures

NGO A WD

H DB WWWWWWWWWWNRNNMNMNNMNMNMNONDNMNDNDNDNS @A @QQQQQQaaa
PO O PN TRORN A OO PNONADN SOOI NDORWN 2D ®

© Copyright IBM Corp. 1988,1990

PTK File Resolution Screen 29
DDS for Native Menu 53
DDS Source Not Using Field Reference File 60
DDS Source Field Reference File 60
Compiled Field Reference File 60
DDS Source After Changing to Field Reference File 61
Modifying DDS - PTK Analyze File Description 64
Modifying DDS - A Multiple Record File 64
Modifying DDS - Adding a Key to a Physical File 65
Modifying DDS - Adding a Key to a Logical File 66
Modifying DDS - An Alternate Index 67
Format Selection - A Multiple Record Format 69
Format Selector Program«, 70
Format Selection - Diagram of Logical File and Three Physical Files .. 72
Format Selection - a General Build Program 73
RPG and Database - A Program-Described File 81
RPG and Database - DDS for File MASTER 82
RPG and Database - Partially Converted Program 86
RPG and Database - Program after Partial Conversion - Page 1. 87
RPG and Database - Program after Partial Conversion - Page 2. 88
RPG and Database - Converted Program 91
Displays - System/36 Program with no First Cycle Calculations g5
Displays - AS/400 program with No First Cycle Calculations 95
Displays - System/36 Program with First Cycle Calculations 96
Displays - AS/400 Program with First Cycle Calculations 97
Displays - System/36 Program with First Cycle Calculations 98
Displays - AS/400 program with First Cycle Calculations 99
Displays - Setting Record Indicator in Calculations 102
Displays - Compiler Output for External File 104
Displays - Program Modified for External File 107
COBOL - Partly Program-Described File 124
COBOL - Fully Program-Described File 124
COBOL - DDS for File MASTER 125
COBOL - Externally Described File 126
Example of Converting #GSORT to FMTDTA 133
Example of Converting System/36 DFUs 134
Running a System/36 Environment Procedure from a CL Program .. 157
CL - DDS for SNDRCVF Prompting 158
CL - Sample Program (Shortened) 158
CL - Sample Display File DDS Expanded for RUF 159
CL - Sample Program (Shortened) Expanded for RUF 160

xvii

xviii Converting System/36 Environment Applications to Native AS/400

1.0 Introduction

This chapter discusses possible ways of running System/36 applications on the
AS/400' system. It discusses (very generally) migration, restructuring,
conversion, and redesigning. It might not be reasonable, in some cases, to fully
convert an application. In other cases, fully redesigning might be the best way.

1.1 Migration, Restructuring, Conversion, and Redesigning

There are four main approaches to running System/36 applications on the
AS/400. These are migration, restructuring, conversion, and redesigning:

¢ Migration involves using the migration aid programs to move System/36
applications into the System/36 Environment on the AS/400.

e Restructuring involves changing some characteristics of an application while
keeping it as a System/36 Environment application.

« Conversion involves selectively changing parts of the application to replace
some of the System/36 functions with native AS/400 functions.

* Redesigning involves completely reworking the application to use all AS/400
functions to the fullest extent.

You must consider many factors when you are deciding whether to leave an
application running in the System/36 Environment, or to convert or redesign it.
These factors could include expected lifetime of the application, stability of the
application, cost of maintenance, growth in business volumes, training needs,
system capacity and performance targets, and availability of new or simplified
functions.

1.2 Migration

The migration process is straightforward, does not take much time, and protects
the user’s investment in existing applications. Migration allows the user to move
away from the System/36 hardware while continuing to maintain applications
with existing skills. In addition, migrated applications can use some of the
advanced functions of the AS/400, such as journaling and debugging.

On the other hand, migrated applications do not have access to many of the
AS/400 functions which, in the long run, can reduce the cost of application
maintenance and enhancement. The performance of applications that are simply
migrated might not be as good as it could be if the applications were
restructured or redesigned to take advantage of the AS/400 architecture and
functions. Also, if new applications are written in native AS/400, the costs and
problems of maintaining two sets of programming skills might be unattractive
over the long term.

1 AS/400 is a trademark of the International Business Machines Corporation.

© Copyright IBM Corp. 1988,1990 1

1.3 Restructuring

While migration moves your System/36 application to AS/400 with relative ease,
there are some disadvantages of running the application unchanged in the
System/36 Environment. The performance of some applications might not be
satisfactory. This is because many of the characteristics of System/36
applications, such as multiple requester terminal (MRT) and read under format
(RUF) take advantage of the architecture of System/36 and the design of its
operating system. Some of the characteristics were necessary to ensure
adequate performance on System/36. AS/400 has a very different architecture,
so some System/36 characteristics are not only unnecessary, they can even
degrade performance. Because of this, restructuring the application while
keeping it in the System/36 Environment can be helpful, and some relatively
simple structural changes can improve performance significantly.

On the other hand, this approach is more expensive than migration. It does not
tap the additional function of the AS/400, nor does it improve your ability to
maintain and enhance your applications.

1.4 Conversion

If your application needs access to functions that are not available in the
System/36 Environment, or if you expect significant maintenance or
enhancements, conversion might be the best solution. Only those parts of the
application needing to move away from the System/36 Environment need be
touched. Thus conversion could allow you to meet your objectives without the
expense and time required to fully redesign the application.

Partly converted applications might also form a satisfactory basis for further
enhancements through use of more AS/400 functions, or for development of new
applications based on existing data files.

On the other hand, a bit-by-bit approach towards moving to the AS/400 native
functions, while still keeping the underlying design of the System/36 application,
may involve as much effort as redesigning without providing the corresponding
advantages. Even extensive conversion may fail to remove restrictions inherent
in the original design.

Also remember that conversion alone will not necessarily improve the
performance of your application.

1.5 Redesigning

Redesigning can produce significant benefits in several areas. (These benefits
also apply, generally to a lesser extent, to the conversion process.)

Consider redesigning for applications that have high visibility, are heavily used,
need optimum response times, or lend themselves to significant functional
enhancement.

Redesigned applications might be able to use some of the code already written
and redesigning could use fewer resources than conversion.

2 Converting System/36 Environment Applications to Native AS/400

Here are some of the benefits of redesigning applications:

Improved throughput and response times.

Simplified program logic through the use of system-supported relational data
handling methods (for example, improved selective record processing,
simpler handling of multiple record files through record-name operations,
and better data sequencing functions).

More productive design and development of new applications
Replacement of batch applications by (simpler) interactive ones
Access to new functions in the languages you already use

Availability of new languages and utilities such as Structured Query
Language (SQL) and Query.

Reduction of the need to maintain System/36 skills
Compliance with IBM Systems Application Architecture (SAA)? standards
Future growth as IBM delivers new AS/400 functions

Better and faster tools for recovery and restart.

In general, redesigned applications provide the best basis for design and
implementation of both modifications and extensions.

On the other hand, fully redesigning may involve more work than is justifiable for
a stable application having few planned modifications or enhancements and
which has no critical performance requirements.

1.6 Full Conversion Versus Redesigning

The degree to which you rework each System/36 application to run on the
AS/400 is up to you. Many different combinations are possible.

For example, you could:

Use the migration aid, making only those changes needed to recompile and
run an application on AS/400, then leave the application alone.

Keep the applications in the System/36 Environment, but make some
structural changes to improve performance of critical programs as discussed
in 2.0, “Restructuring for Better Performance” on page 5.

Convert some or all parts of each application:

— Convert database files to externally described files, but leave screen files
as program-described. This would allow new applications to be
developed using the existing data.

— Convert some Operation Control Language (OCL) statements and
procedures to Control Language (CL) to gain access to desirable CL
functions.

2 Systems Application Architecture and SAA are trademarks of the International Business Machines Corporation.

Introduction 3

— Convert programs and files to native AS/400 but run the programs from
System/36 Environment OCL procedures. This could provide
performance benefits without OCL conversion in some cases.

— Fully convert procedures, programs, and files for your application.

* Redesign key applications or parts of applications. For example, you might
wish to redesign the interactive part of an application but leave the batch
part unchanged as far as possible.

1.7 Recommendations

Remember that a decision to convert or redesign your application should be
made with long-term goals in mind. Performance improvements alone are not
always sufficient reason to convert. In fact, significant performance gains can be
made merely by restructuring your application or making some operational
changes. With this in mind, 2.0, “Restructuring for Better Performance” on
page 5 describes ways you can improve performance without converting your
applications to native AS/400. The rest of this document discusses conversion
and redesigning.

As a general rule, the more thoroughly the conversion or redesigning is done,
the more the benefits will be realized in the long term. Although there might
seem to be lots of steps in the conversion process, many of the steps are
needed to handle worst-case situations. Any particular application is not likely
to need all the steps.

We suggest that you try a pilot conversion of a small application so that you
understand the steps. Then you can estimate the conversion effort and balance
it against the benefits to be gained in your computer system.

We strongly recommend that the database should be described externally in all
cases. The process is straightforward and will give the application access to the
relational database.

Program conversion for batch programs involves few changes. Program
conversion for interactive programs requires extra changes to make display file
processing consistent with AS/400 methods. In many cases the program
changes are made as part of the file changes. Conversion of procedures and
OCL can be more complex. The use of the programs discussed in this document
can accurately convert many of the System/36 statements. But because of the
new functions available on AS/400 and because of the different approaches of
OCL and CL, it might be better to understand the intent of the OCL procedures
and completely rewrite them.

Display files also need careful consideration. Unless a display file is shared
among several programs, there may be little advantage in making it external. In
addition, because we already had a kind of “external file” for displays on
System/36 (the S and D specifications), more work might be needed to reconcile
the field names.

4 Converting System/36 Environment Applications to Native AS/400

2.0 Restructuring for Better Performance

This chapter summarizes and briefly describes ways of significantly improving
the performance of System/36 Environment applications without converting them
to native AS/400 applications. Additional information is available through your
IBM representative or business partner. The information contained in this
chapter is covered in more detail in the IBM AS/400 S/36 Environment
Performance Tuning Guide, HONE number 155NC. The Tuning Guide is worth
reading because it will contain the latest detailed performance information.

Application design on a particular machine is influenced by the functions
available in that machine’s architecture. Applications that are designed to run
well on one machine might use functions that are supported differently on
another machine, and might thus perform poorly on the other machine.

For example, System/36 users, partly because of the 64K limit, often use
multi-step programs alternated with OCL, which passes data using the local data
area (LDA) or read under format (RUF). Low memory sizes in the early life of
the System/36 led to extensive use of multiple requester terminal (MRT)
programs. Relatively small disk capacity and simple file-management systems
required user control over disk allocation and the use of sorts and work files.
These features will be particularly present if the application had originated from
earlier System/3X environments.

On the other hand the AS/400, while removing many of the System/36 design
constraints, operates in an environment where file creates, file opens, and job
initiations take longer to complete, and where save/restore methods can be
more complex.

This suggests that the causes of difference in performance are likely to be found
in the above areas.

2.1 Relative Performance

Measurements of interactive transactions in an unstressed environment indicate
that a migrated System/36 interactive application can handle 50 to 85 percent of
the throughput of a similar native application given that each application is
optimized to the System/36 or AS/400 environment respectively.

In a stressed environment with a shortage of disk space, the interactive
performance can be significantly worse.

The following sections describe application changes that might significantly
improve the performance of applications running in the System/36 Environment.
They might permit you to use a smaller AS/400 configuration than would be
required if the changes were not made.

In the material that follows, those changes which solve the most
commonly-occurring performance problems are listed first. Next are changes
that solve problems that occur less frequently, but have more dramatic effect
when they do. Last are assorted other recommendations. Of course, your
results might vary, depending on the structure of your applications.

© Copyright.IBM Corp. 1988,1990 5

2.2 Recommendations

You can make all these changes without converting your application from the
System/36 Environment. Some are merely operational changes. Some are
discussed in more detail in the following paragraphs.

Make MRT programs never-ending, or specify a long MRT delay time.
Reduce file create and delete activity.

Use shared database file opens.

Increase the DBLOCK parameter value for sequentially accessed files.
Use packed decimal data, particularly in compute-intensive programs.
Reduce unnecessary use of EVOKE and JOBQ.

Avoid unnecessary nesting of operator commands.

Use alternative index or logical files instead of sorts under certain
circumstances.

Remove unused and unnecessary OCL.
Increase storage pool size.

Use of 27x132 display support carefully.
Eliminate or simplify read under format.
Avoid batch-type work in an interactive pool.
Turn off procedure logging.

Delete unused spool files.

Clean up history logs.

Remove RPG F-specifications that are used only by the DEBUG operation
code.

Limit sign-on and sign-off activity.

Change MRT security.

2.2.1 Making MRT Programs Never-Ending, Specifying Long MRT Delay Time.

First, note that MRTs perform well if they are used correctly.

AS/400 is relatively slow when initiating MRTs because starting a new job for the
MRT requires a great amount of system resources. So, avoid ending MRTs
when the last user exits. You can do one of the following to facilitate this:

Compile individual MRT programs as never-ending programs (MRT-NEP).
This can be done via a parameter or keyword on either the RPGC procedure
or the CRTS36RPG CL command. You can also use the EDTS36PGMA
command to change the attribute for a program that already exists. Finally,
you can specify NEP-Y on the ATTR OCL statement.

Change the MRT delay time to at least 300 seconds (5 minutes) or up to an
hour or more for those MRT programs that you do not want defined as
never-ending. This delay does not affect system performance. The delay
value determines how long a non-NEP MRT remains active after the last user
has exited it. To enable MRT delay, use the CHGS36 command to modify the
time-out value to a non-zero value. Once MRT delay has been enabled, you

6 Converting System/36 Environment Applications to Native AS/400

can activate and deactivate it on a procedure basis using the EDTS36PRCA
command.

A MRT-NEP, or a MRT with a long delay will generally perform better than the
same program as an SRT. The MRT saves memory (It uses only one PAG) and
file opens. Converting MRTs to SRTs is recommended only if the application is
redesigned for the AS/400 native environment or if queuing of multiple users is
causing response time problems.

2.2.2 Reducing File Create and Delete Activity

Creating and deleting scratch or work files is common in System/36 applications.
This activity uses many more AS/400 system resources and can be key to
program load performance. Reducing work file creation and deletion where
possible will help improve performance.

Consider creating file members that remain permanently on disk and removing
data from the members with the CLRPFM command (This approach replaces the
use of DELETE, BLDFILE or // FILE RETAIN-S or -J OCL). The system will handle
space allocation automatically.

2.2.3 Using Shared Database File Opens Where Possible

File opens are key to program load performance and take longer on AS/400. If
the application closes and re-opens files many times then performance can be
improved by making the first file open a “full” open and the subsequent opens of
the same file “shared” opens that use fewer system resources.

The System/36 Environment automatically shares open data paths if the file is
used in the next job step, and if all the open options and access methods are the
same as in the previous job step or if the JOB-YES keyword is used.

The example below shows how the System/36 Environment analyzes the job
stream FILE statements and tries to use automated shared file opens to
decrease the system overhead. Note that the key to the analysis is not the
program file name (in this case 'FILE1’) but the LABEL name.

Restructuring for Better Performance 7

// FILE NAME-FILE3,LABEL-JOBFILE,JOB-YES

// LOAD PROGA

// FILE NAME-FILE1,LABEL-MASTFILE

// FILE NAME-FILE1,LABEL-TRANFILE

// RUN
Program opens FILEl <---- Full open of MASTFILE
Program opens FILE2 <---- Full open of TRANFILE
Program opens FILE3 <---- Full open of JOBFILE

Program closes FILEl <---- File is held open
Program closes FILE2 <---- File is held open
Program closes FILE3 <---- File is held open

// LOAD PROGB
// FILE NAME-FILE1,LABEL-MASTFILE

// RUN
<---- TRANFILE is closed
Program opens FILE1 <---- Shared open of MASTFILE
Program closes FILEl] <---- File is held open
// LOAD PROGC
// FILE NAME-FILE1,LABEL-JOBFILE

// RUN
<---- MASTFILE is closed

Program opens FILE1 <---- Shared open of JOBFILE
Program closes FILEl] <---- File is held open
// RETURN
<---- JOBFILE is closed

To implement shared opens, consider doing the following:

* Add the JOB-YES keyword where applicable. However, be aware of the effect
of any DISP keywords associated with the file.

* Change programs using the same files to always open the files the same
way. For example if the first program opens the file for input and the next
program opens it for update, change the first program so it also opens the
file for update.

* Add a CL program to pre-open the files, thereby forcing shared opens for the
entire session. Create your CL program with the statements

OVRDBF FILE(file-name-on-disk) SHARE(*YES)
OPNDBF FILE(QS36F/file-name-on-disk) OPTION(*ALL)

Call the CL program as an initial program for each user or as part of the
application startup.

Note: The OPTION(*ALL) parameter overrides any blocking and only allows
handling of single records from disk for each 1/0 operation.
Depending on the application, this may not be the best thing to do.

2.2.4 Increasing DBLOCK Parameter Value for Sequentially Accessed Files

You can improve performance for sequentially accessed files {input or output) by
increasing the DBLOCK value or by adding an OVRDBF command with a
SEQONLY(*YES) parameter.

The recommended DBLOCK value is
For B10 - B45: DBLOCK approximately

(16384) / (record-length +1)

For B50 - B70: DBLOCK approximately

(24576) / (record-length +1)

8 Converting System/36 Environment Applications to Native AS/400

To make the change, do the following:

// LOAD PROGA
// FILE NAME-FILE1,LABEL-BLOCKUP,DBLOCK-nn

// RUN
*xkKk OR *k*

OVRDBF FILE(BLOCKUP) SEQONLY(*YES nn)

Note: The System/36 always provides the latest version of each record. Making
the blocking larger on the AS/400, where the file is being shared between
programs, may not always provide the latest version, since there could be
a number of changed records in the block waiting to be written to disk.

2.2.5 Using Correct Data Types

System/36 batch programs are usually designed to handle large volumes of data
and hence have a lot of calculation steps, so this section applies mainly to batch
jobs. The System/36 uses zoned decimal fields in its instruction steps, while the
AS/400 uses packed decimal fields. Thus there are considerable performance
gains to be had by changing programs that have many arithmetic instructions.

In these cases, you should consider:

* Changing to packed decimal data in your files wherever possible. This
saves many unnecessary instructions for conversion to packed decimal fields
when running the program. The more incompatible the data is with packed

. decimal, the greater is the overhead. For example, binary fields take even
more overhead than zoned decimal fields.

* Replacing even-length numeric fields with odd-length fields. This saves many
unnecessary instructions that deal with the high-order 4 bits when the
even-length field is used in the packed decimal instruction set (which always
uses odd-length).

* Removing result field truncation (such as a result field too small or
shortened or decimal places dropped) wherever possible, as this has a high
system instruction overhead.

* Analyzing your files for invalid decimal data (that is, non-decimal data, such
as blanks, in decimal fields). While the System/36 Environment allows invalid
decimal data (the same as for the System/36) many additional instructions
must be performed to resolve the data. Also, if AS/400 RPG Ill programs are
subsequently used to process that data; program failure through data
exception will occur.

2.2.6 Reducing Unnecessary Use of EVOKE and JOBQ

The use of EVOKE or JOBQ to do tasks in an application system (which can be
common in systems generated with an application generator) can have a
dramatic impact on performance.

If your application uses EVOKE or JOBQ to do trivial tasks (tasks that take less
than 10 to 20 seconds), perform them inline.

If you do not want to perform the function inline (perhaps because the response
time is too great for the interactive user), use a data queue. Change the evoked
program into a continually running batch job that waits to receive requests via a
data queue.

Restructuring for Better Performance 9

2.2.7 Avoiding Unnecessary Nesting of Operator Commands

This is an operational change. Simply tell your operators that they should not
run a command while the display from a previous command is still active. They
should exit the previous display by pressing Enter or F3 before running the next
command.

Stacking commands by entering successive commands on the command input
line of the display of the previous command significantly increases the
operator’s requirement for main memory (the PAG) and can impact other users
by increasing paging requirements.

2.2.8 Sort Performance
A general guideline is to replace sorts with logical views (using CRTLF
command) if:

e The file has a low update activity where less than 30% of the record keys
are changed between sorts.

* A small percentage of the total records are selected by the sort, and the
selection criteria does not vary.

* Elapsed time for the batch job is critical, and there is extra interactive
capacity (to maintain the logical view).

Sort performance is sensitive to pool size, so you should:
¢ Increase *BASE size if possible when running large sorts in batch.

* Collapse the interactive pool into *BASE for batch processing when the
interactive load is light.

¢ Use 500K per sort minimum, or better, use 2 to 3MB for optimum
performance.

2.2.9 Careful Use of 27x132 Display Support
Mapping the 27x132 display size to 24x80 can have a very dramatic effect.

Avoid writing screen formats to 24X80 displays if they are defined for 27x132
displays. Much more processing time is required to map the data stream
defined for a large screen to a display with a smaller screen. This should be
done only if a large majority of the displays used by the applications have the
larger screen.

If this is a must, then create a new display file suitable for the 24x80 screens
along with a modified program for those screens.

2.2.10 Eliminating Read Under Format

Read under format (RUF) occurs when one program (or PROMPT OCL) writes a
display and another reads it. RUF in the System/36 Environment performs well
when the same file is used in both steps of a single requester terminal (SRT)
program.

Other cases incur significant overhead because of the need to transfer data

between display files in different jobs (in the case of MRTs) or between different
file open data paths in the case of:

10 Converting System/36 Environment Applications to Native AS/400

« Different file, SRT to MRT or MRT to SRT (worst case)
* Same file, SRT to MRT or MRT to SRT
* Different file, SRT step to SRT step.

If few transactions are made between occurrences of RUF, consider removing or
simplifying the RUF by:

* Making the same program that writes the display, read it (combine programs
and files or change logic).

e Combine the display files used in the two steps, when in an SRT.

2.2.11 Limiting Sign-on and Sign-off Activity

You could also make another operational change. Simply tell your operators
that they should remain signed on the system between transactions. If security
is a concern, it might be necessary to add a routine to the application that
requests and verifies a password.

2.212 Changing MRT Security

System/36 Environment support for MRT programs ensures that each user who
attaches to MRTs is authorized to the programs and all the files they are using.
This is expensive. Your security requirements might be satisfied merely by
checking that each user is authorized to the programs. If this is true you can
specify, using the CHGS36 CL command, that only the first user (or the owner) of
each MRT needs to be authorized to all the files. Subsequent users need to be
authorized only to the program.

2.2.13 Work Management Considerations

You should be familiar with the work management practices given in the AS/400
Work Management Guide, particularly those sections that describe balancing the
activity levels and pool sizes in your system. Set your system pools and and
activity levels within those guidelines once your system has reached a steady
work load condition.

Other good work management practices, such as:

* avoiding batch work in interactive pools

¢ avoiding interactive compiles (do these in batch)

* avoiding large interactive queries

* avoiding interactive sorts (unless these are very small)
¢ deleting unused spool files

* cleaning up history logs

* ensuring adequate *BASE pool size

can improve the overall system performance, whether you use the System/36
Environment or AS/400 native mode.

You should control the use and definition of logical files and the maintenance of
the access paths, because large numbers of logical views with use of immediate
maintenance will degrade performance.

Restructuring for Better Performance 11

2.2.14 Using Utilities
Replace the use of system procedures, such as BLDFILE, COPYDATA, and
DELETE, with direct OCL (for example, // LOAD $FBLD, // FILE.., // RUN, ...). This
will generally result in better utility load performance since there are fewer OCL
statements to interpret.

While this is not a significant item, it could be beneficial in a system that uses
many System/36 utilities.

12 Converting System/36 Environment Applications to Native AS/400

3.0 Getting Started with the Conversion

This chapter discusses some steps you can take to simplify the conversion
process, regardless of whether you are converting your entire application or just
some of it.

Note: Many of the directions in later chapters assume you have followed the
steps described in this chapter.

IBM provides a product that helps with many of the conversion steps. This
product is called the IBM AS/400 Programmer Tools PRPQ 5799-DAG. The
functions of this tool, which are discussed in more detail later, will help you to
move your application from the System/36 Environment to AS/400 “native mode”.
The product will generally be referred as PTK.

3.1 Attend AS/400 Education

Whether you choose to migrate, restructure, convert or redesign, you need a
strong working knowledge of the AS/400 and its functions. We recommend that
you use AS/400 education, starting with the AS/400 Online Education. Contact
your IBM representative or business partner for course details, and work with
them to develop appropriate schedules for your computer system.

3.2 Starting Point for Conversion

We assume that you have installed OS/400° Release 2.0, with all necessary PTFs.
We also assume that the System/36 applications to be converted have already
been migrated from the System/36 to the AS/400 System/36 Environment, and
that you have decided to convert rather than redesign your applications. You
should be familiar with:

e Migrating from System/36 Planning Guide
e System/36 to AS/400 Migration Aid User’s Guide and Reference
* System/36 to AS/400 Application Migration (ITSC publication).

If you have not already migrated your System/36 applications to the AS/400
System/36 Environment, we recommend that you do so before starting to
convert. The migration process helps ensure that all applications meet
consistent standards, and converts System/36 Screen Format Generator Routine
(SFGR) S- and D-specifications to AS/400 data description specifications (DDS).
Also, some of the tools that help in the conversion operate on System/36
Environment files and programs.

3 0S/400 is a trademark of International Business Machines Corporation.

© Copyright IBM Corp. 1988,1990 13

3.3 Conversion Steps

A complete conversion could involve the following steps:

1.

-_ e = = -
A w N -~ O

© ® N @ oA ® N

Choose the programs, files and procedures to be converted.
Analyze the database files.

Analyze fields within data files and create DDS.

Change the DDS to take care of special situations.

Create external physical and logical files.

Create native screen definitions.

Create native menu definitions.

Crgate external printer file definitions.

Copy data into the external database files.

Detect and remove sources of decimal data errors.

. Change high-level language (HLL) programs to use external database files.
. Change HLL programs to use external display files.

. Change System/36 OCL to AS/400 CL programs.

. Test programs.

15.

Build a field reference file.

This is a fairly natural sequence of steps for converting program-described files
to AS/400 external files which, if followed, will cut down the amount of work to be
done. Some of these steps can be overlapped. You can start OCL conversion
early since is not dependent on most of the other activities, even though you will
not be able to finish the CL until file names have been resolved. You can start
data transfer and cleanup as soon as external files have been created.

Screen files are best left until the database files have been resolved, since
screen files may use database fields, and it is only at this point that you know
the database field names to put into the screen files. The same is true for printer
files.

3.4 AS/400 Programmer Tools PRPQ 5799-DAG

The PTK has functions and utilities to help a user convert an application to
AS/400 native mode in a short time. The PTK assists by:

1.
2.
3.

Generating DDS from your application
Verifying decimal data error within data files

Using journal commands to analyze changed data and identify programs
causing decimal data error

Converting System/36 Environment OCL to AS/400 CL
Converting RPG Il to RPG Il

Converting System/36 Environment screen format source to AS/400 DDS
source code

14 Converting System/36 Environment Applications to Native AS/400

7. Converting System/36 Environment menu objects to AS/400 menu objects
8. Retrieving DDS from existing files on the AS/400
9. Creating programs on remote systems

10. Tracking the application development process

PTK documentation is available online.

3.5 Choosing Programs and Files to be Converted

You do not have to convert all your System/36 applications at one time. You do
not even have to convert all of a single application. However:

1. If you plan to convert a program, try to convert all files used by that program.
This avoids rework of the program later.

2. If you plan to convert a file, try to convert all programs using that file. This
helps to ensure that the resulting AS/400 file definitions are accurate.

3.6 Analyzing the Database

The AS/400 database operates on files that contain a single record type, and that
contain no repeating groups of fields. Also, the AS/400 requires that records
containing related information (for example, about a customer order) have a
common field (the order number), so that the order information can be collected
for presentation to the user program. Files that are structured in this way are
referred to as normalized files.

The more multiple record files, repeating groups, and missing common fields
there are in your application, the less normalized the files are, and the more
work that will be needed to convert them to the AS/400 database.

We recommend that before starting the conversion, you take the time to
understand the idea of normalization, and reduce your files to at least second
(and preferably third) normal form.

Refer to IBM System/36 and System/38 Application Design Considerations for a
discussion of normalization.

Although in most cases we expect that there will be no changes in the logic of
the programs, it might happen that changes are needed. It is worth making the
changes during the conversion process, so that you can fully use the AS/400
relational database functions.

When you migrated from System/36 to AS/400, your files were copied into a "files
library” on AS/400. The default files library is called QS36F, although you might
have specified a different library name when you migrated. Throughout this
document, references to your System/36 Environment files assume that they are
in QS36F; this is reflected in the examples. If you specified a different files
library name when you migrated, use that library name instead of QS36F.

Getting Started with the Conversion 15

3.7 Moving Selected System/36 Source to New Library

During the migration process, you set up one or more AS/400 libraries to hold
the migrated applications. Perhaps you used just one library to hold all
applications, or perhaps there were several libraries - one for payroll, one for
order processing, and so on.

However, in each library some physical files were already created by the the
migration aid:

¢ High-level language source was put into QS36SRC.
* Copy members were put into QS36SRC.
* OCL and procedures were put into QS36PRC.

e Display format (SFGR) source members were put into QS36SRC, and DDS
members generated from that SFGR source were put into QS36DDSSRC.

In addition, each library contains object programs, and display files (created
from the DDS). These are used to run your System/36 Environment applications.

At this stage, move copies of the source and procedures to be converted into a
separate library so that you can convert them without disturbing the System/36
Environment,

Create a new conversion library. Your library should contain the following
source files QS36SRC, QS36PRC, and QS36DDSSRC at the beginning of the
conversion. If you are working in the System/36 Environment and you use the
BLDLIBR Procedure, the source files QS36SRC and QS36PRC are created for
you. Do the following:

¢ Create a source file QS36SRC containing all RPG (or COBOL) source
programs and /COPY modules to be converted. Use the CRTDUPOBJ
command if all your source files are in a single migration library, and all of
that library is to be converted. Otherwise use the Programming
Development Manager (PDM) copy option to copy those source programs to
be converted. (The source programs to be converted will come from the
QS36SRC file in the migration library or libraries.)

¢ Create a source file QS36PRC. Copy into this file all of the procedures to be
converted.

* Create a source file QS36DDSSRC. Copy into this file all of the display file
source formats. These were created by the Migration Aid.

The next source files are all optional, because the PTK creates them if they are
not in your conversion library.

¢ Create a QRPGSRC source file to hold RPG programs while they are being
prepared for compilation on AS/400.

¢ Create a QLBLSRC source file to hold COBOL programs while they are being
prepared for compilation on AS/400.

¢ Create a QCLSRC file to hold the procedures (OCL) that have been
converted to CL programs.

¢ Create a QDDSSRC file to hold all of the DDS for your files, formats and
menus.

16 Converting System/36 Environment Applications to Native AS/400

3.7.1 Member Types

You will probably want to use PDM to work with the various source programs.
For some options, PDM uses the member type of the source program to decide
how to operate on the source member. For example, when you use PDM option
14 (Compile), the PDM looks at the type to decide which compiler to use.

Eventually you will want to change the types of the high-level language programs
in your new library from RPG36, CBL36, or RPT36 to RPG, CBL, or RPT
respectively, so that PDM will use only AS/400 options from then on. However,
while using the IBM AS/400 Programmer Tools PRPQ, the member type must
continue to be of the form "xxx36” or "xxx38” so that the PRPQ can correctly
analyze the members.

You are now ready to start the conversion process. All further work will be done
in the new library. You will not need the migration library again, unless you
need to recopy the source for some reason. Remove the migration library from
your library list.

Getting Started with the Conversion 17

18 Converting System/36 Environment Applications to Native AS/400

4.0 Analyzing Files and Fields

In this chapter we describe how to convert System/36 Environment files into
AS/400 externally described database files. We also describe some problems
you could encounter and solutions to these problems.

Read this entire chapter before starting your conversion on AS/400.

We recommend that you use the PTK to create AS/400 DDS. It provides a high
level of assistance and automates many of the key functions. With PTK, you can
efficiently analyze and process your OCL and HLL source files to get file
descriptions. The PTK produces working DDS significantly faster than can be
done by hand. Of course you can also create the DDS without the PTK using
normal AS/400 functions.

This chapter includes some PTK output as examples. Use these examples for
general guidance only. Refer to the PTK documentation for detailed operational
instructions and formats. You can print the documentation by selecting option 10
on the Programmer Tools Main Menu. To print the documentation you must be
enrolled in the distribution directory. Use the WRKDIR command to be enrolled.

4.1 General File Considerations

One of the biggest problems of a conversion is defining the files and fields used
in different programs. On System/36 you have only program described files.
Therefore, different programs can have different descriptions of the same file.
Also, System/36 programs can process alphabetic data as numeric. Neither of
these is allowed with externally described database files on the AS/400.

Here are some other considerations:

e File naming must also be considered. On System/36 and in the System/36
Environment, you can name a disk file, for example, “Z.FILE”. On the AS/400
you cannot use this file in a native COBOL program, because the “.” (period)
is treated by the COBOL compiler as “end of statement”. If you code the

following, the compile will fail:
COPY DDS-ALL-FORMATS OF Z.FILE.

In this case, consider changing names of the form “Z.FILE” to “ZPFILE",
substituting a valid character for the period.

e On System/36 and System/36 Environment, you can name a disk file, for
example, “#FILE”. Again, on AS/400 you cannot use this file within a native
COBOL program because COBOL doesn’t support the “#” (pound sign). If
you must use these kinds of names, use the OVRDBF command to access
this file within a COBOL program.

* [n System/36 Environment you can name a disk file, for example,
“"DATAFILE1”. On the AS/400 you cannot use this file in a native RPG
program because of the length of the file name. RPG/400 only supports 8
characters in a name.

* In a System/36 program you can have an internal name (on the file
specification) that differs from the external name of the file (on the disk).

© Copyright IBM Corp. 1988,1990 19

This is not allowed with externally described files; the names must be the
same at compile time or the program will not include the correct description
of the record formats from the previously created file.

Therefore, the name given to the file when it was created must be put into
the F-specification of the RPG program. This is not a problem unless you
have made it common practice to make external file names user- or
workstation-dependent:

7WS?FNAME or FNAME?USER?

These names are not valid for an external file. Use a valid external name,
for example "WSFILE”, for such a file. Then use the same name, "WS FILE”",
as the internal name in the program. At run time you can link the name
"WSFILE” with the name of the disk file with an override statement like

OVRDBF FILE(WSFILE) TOFILE(AS400LIB/VW3FNAME) MBR(W3)

Refer to the discussion of ?WS? in Appendix E, “Table of System/36
Substitution Expressions” for ways to define a variable whose value is the
workstation ID.

4.2 File Conversion Functions

The second release of the PTK has two function for getting DDS from System/36
Environment files:

1. Creating DDS for System/36 Environment files as they are currently known to
the system (new PTK function).

2. Creating DDS for System/36 Environment files as they are known by
programs and procedures.

How to work with the PTK is shown step-by-step in 4.3, “Creating DDS from
System/36 Environment File Descriptions” on page 21 and 4.4, “Retrieving the
Descriptions of Program Described Files” on page 24. These sections show
most of the screens used by PTK.

4.2.1 Input to the First Function

For this function, PTK creates DDS based on the current descriptions of your
files. As an alternative, you can use the DSPFD and DSPFFD commands on the
AS/400 and then create the DDS from this information.

The resulting DDS can be compiled and the data can be copied into the
externally described database files. This is a very simple way to create native
AS/400 files, but it does not result in files that are useful to your native
programs. While the files are externally described, the descriptions probably do
not include any useful field names.

In spite of it’s limitations, this function can be helpful if you have lost your DDS
Source from any externally described files. You can use this function to recreate
the DDS source.

There are some things that are not handled correctly. For example, the function
always gives you a source file member type DSPF. (Simply change the source
type of the resulting source file to PF or LF, whichever is appropriate.) The
function does not handle logical files very well, because it recognizes only the

20 Converting System/36 Environment Applications to Native AS/400

first record format name. But it does give all the names and the lengths of your
fields.

Input to this function is the files for which you want DDS generated.

4.2.2 Input to the Second Function
For this function, PTK uses your HLL source statements along with procedures to
create DDS. First, it retrieves the necessary information. Then, with your input, it
analyzes the files and fields, and finally creates the DDS statements.

Each retrieval is identified by the PTK work file member name. The run member
name is a run identification which you will have to remember afterward. Input to
the retrieval step is from up to two files:

* A (mandatory) file containing RPG or COBOL source programs. This will be
QS36SRC if you have followed the instructions in 3.0, “Getting Started with
the Conversion” on page 13.

¢ A file containing the procedures that load and run the HLL programs. This
file is optional, but its inclusion will help the later steps to match names on
the file specifications with external names on the FILE OCL statements. This
file will be QS36PRC in your conversion library.

The PTK will accept input from any file in any library. The default is to look for
HLL source modules in QS36SRC and all OCL in QS36PRC. Since our source
and procedures were moved to these files during 3.0, “Getting Started with the
Conversion,” all you need to do is fill in the appropriate library names.

4.2.3 Rerun Options
Note that all output from the retrieval step is placed in the QPTK library - not the
library where the source files are.

Also note that once you have run a retrieval step and created the work files, you
cannot run another retrieval step with the same "RUN MEMBER” name. This run
member name is a run identification. However you can run a retrieval with a
new run member name over the same set of files as a previous run and run a
new retrieval over a new set of files.

4.3 Creating DDS from System/36 Environment File Descriptions

This section shows you how to use the PTK to get the S/36 file descriptions as
they are known by the system. This step is optional because it does not effect
the conversion at all, but it does give you some useful information.

Analyzing Files and Fields 21

-
MAIN AS/408 Main Menu
System: RCHASG08
Select one of the following:

1. User tasks

2. 0ffice tasks

3. General system tasks

Files, libraries, and folders
Programming

Communications

Define or change the system
Problem handling

Display a menu

User support and education

CWONOO, S
e o e e e e @

90. Sign off

Selection or command
===> strptk

TF3=Exit F4=Prompt F9=Retrieve F12=Cancel F13=User support
F23=Set initial menu

\.

Enter STRPTK. STRPTK sets QPTK as the product library and displays the
Programmer Tools Main Menu.

PTMENU Programmer Tools Main Menu
Select one of the following:

Generate DDS from user applications
Verify decimal data

Journal commands

Analyze changed data

Convert applications

Create remote object

Track application development process

NO S WN =
e o e o e e e

10. Print Programmer Tools documentation

Selection or command (C) COPYRIGHT IBM CORP. 1990

===> é

"F3=Exit F4=Prompt F9=Retrieve F12=Cancel
F13=User support F16=System main menu

..

Select option 5 (Convert applications). This displays the Convert Applications
menu, which is new in the second release of PTK.

22 Converting System/36 Environment Applications to Native AS/400

(V QCVMNU1 Convert Applications
Select one of the following:

Convert S/36 OCL to AS/400 CL

Convert S/36 RPG II to AS/400 RPG III
Convert S/36 screen formats to AS/400 DDS
Convert 5/36 menu files to AS/400 menus
Create DDS from data file descriptions

oy AW
e s e s

Selection or command

===> §
TF3=Exit F4=Prompt F9=Retrieve F12=Cancel
F13=User support F16=System main menu
- 4

Select option 5 (Create DDS from data file description).

- ~
Create DDS (CRTDDS)

Type choices, press Enter.

File . « ¢ ¢ v v v ¢ v v v Z.DRD30 Name, generic*, *ALL
Library CONLIB Name, *LIBL, *CURLIB
Source File QS36DDSSRC Name
Library « s e e CONLIB Name, *CURLIB
Submit to batch *NO *NO, *YES
Bottom

F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys

- J

Type the file name and it’s library for which you want DDS created. Also type
the names of the source file and library where you want the resulting DDS
stored. We recommend that you use the QS36DDSSRC source file, not the
QDDSSRC. Do not mix System/36 descriptions with native descriptions.

After you press Enter, PTK collects all of the information about the file and
creates the DDS for you. After this step, it returns to the menu QCVMNU1.

Next you can use the Programming Development Manager (PDM) or Source

Entry Utility to examine the DDS source member that was created. The next
screen shows a simple example.

Analyzing Files and Fields 23

/ \
Columns . 1 71 Browse CONLIB/QS36DDSSRC
Find Z.STD15
FMT A* A . 1 coateen 2 ceiteee 3 aiitaea 4 Lutlal D Llbll 6 Latlll T
AKAKkAkRKkKAkKKRkKAkAkKkXkXk Beginninq of data AKKKKKAKKKKKKARKKKAKRKKKKRKRKKKARKRKKARKRAkKkAKRKX
0001.00 A* Z.STD15 CONLIB 900307
0002.00 A R Z@STD15
0003.00 A Fo0001 128A B
E2 22 2528 2. 2.5.2.2.%.2.%.%.%.1 End Of data AKKAKKKKKARKKAKRKRKAAKRKKRKAKRKKKAKRKKRKRKRKKARKAAX
F3=Exit F5=Refresh F10=Top F11=Bottom
F12=Cancel F13=Change defaults F24=More keys
(C) COPYRIGHT IBM CORP. 1981, 1989.
i\ W,
This screen shows you a migrated System/36 file as the file is known in
System/36 Environment. This file has no index, so it has only one field. This
field represents the entire record length.
The next example is a little more complicated:
e N
Columns: 1 71 Browse CONLIB/QS36DDSSRC
Find . . . Z.DRD30O
FMT A* A%, 1 ooteee 2 tieteee 3 aiiteac b Libill D Liibel B Lt T
AKAAKKAKAKKKAAKXk Beg-inn-inq Of data AKEAKKKKKKKKKAKKAAKKARKKKRARKRKKRKRAKRKAKRKRKRKRKX
0001.00 A* Z.DRD30 CONLIB 900307
0002.00 A UNIQUE
0003.00 A R Z@DRD30
0004.00 A Foo001 1A B
0005.00 A K0oo01 BA B
0006.00 A Fo0002 247A B
0007.00 A K Kooeol
KRKKKKAKKAKRARKKAKAKkX End Of data AKEAAKKKKKKAKKAKRKKKRKKKRAKKAKRKAKRKAKRKAKRKAKA.RX
F3=Exit F5=Refresh F10=Top F11=Bottom
F12=Cancel F13=Change defaults F24=More keys
L (C) COPYRIGHT IBM CORP. 1981, 1989. y

This screen shows you a System/36 Environment file as the file is defined to the
system. This file has an index, so it has three fields. These fields represents the
entire record length. The DDS also indicates that the file has a UNIQUE Index
and that KOOO1 is the key field.

Print this information to have it ready in the next conversion step.

4.4 Retrieving the Descriptions of Program Described Files

This section shows how to get descriptions of program-described files using the
PTK.

You can run the commands either interactively or in batch, and there are
considerations for both. If you run in batch mode, auto report members will be
expanded to capture the interim source, and then analyzed. If you run
interactively, the auto report members will not be expanded, but will be analyzed
just like a normal RPG member. The program will then send a completion
message to the requester indicating that auto report members were found but
not expanded. Also, source members with subtypes not containing the

24 Converting System/36 Environment Applications to Native AS/400

characters 36 or 38 will be analyzed, but their copy book statements will not be
processed, because PTK cannot determine what syntax to use.

Toru

1. Type STRPTK on the command line. The command sets QPTK as the

n the retrieval step interactively, do the following:

product library and displays the PTK main menu.

-

PTMENU Programmer Tools Main Menu
Select one of the following:

Generate DDS from user applications
Verify decimal data

Journal commands

Analyze changed data

Convert applications

Create remote ohject

Track application development process

~NOoOYL s W N~

10. Print Programmer Tools documentation

Selection or command (C) COPYRIGHT IBM CORP. 1990

===> l

TF3=Exit F4=Prompt F9=Retrieve fl2=Cancel
F13=User support F16=System main menu

2. Take option 1 (Generate DDS from user applications).

PTMENU2 Generate DDS from User Applications
Select one of the following:
1. Retrieve S/36 file description
2. Analyze $/36 file description
3. Analyze S/36 field description

10. Remove Programmer Tools member

Selection or command

===> l
TF3=Exit F4=Prompt F9=Retrieve Fl2=Cancel
F13=User support F16=System main menu
o

3. Take option 1 (Retrieve System/36 file description).

’

Retrieve $/36 File Description (RTVS36FD)

Type choices, press Enter.

Run Member KMPO30101
Source member file QS36SRC Name

Library . . . ¢« v v v o CONLIB Name, *LIBL, *CURLIB
Procedure member file . . . QS36PRC Name, *NONE

Library .+« v v v v v v CONLIB Name, *LIBL, *CURLIB

Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel Fl3=How to use this display

F24=More keys

e

Analyzing Files and Fields

25

441

4. Enter a meaningful “Run member” name. Remember this name; you will use
it later.

5. Enter the names of the source file and the library containing your RPG,
COBOL and Copy members.

6. Enter the names of the source file and the library containing your OCL
procedures.

Note that you also can get to this screen by typing the command RTVS36FD and
pressing function key F4. Or you can start the command directly by typing:

RTVS36FD KMPO30101 CONLIB/QS36SRC CONLIB/QS36PRC

PTK will collect file-related information from your procedures and programs and
match it together. If you only need the information about how your files are
described within your program, then you only have to type in your source file
that contains the programs.

During this step PTK creates some objects that will be used in the next
conversion step.

To run the retrieval step in batch, do the following:
1. Type STRPTK. (The command sets QPTK as the product library.)
2. Type SBMJOB and press F4.
3. Type RTVS36FD and press F4.
4

. Enter a meaningful “Run member” name. Remember this name; you will use
it later.

5. Enter the names of the source file and the library containing your RPG,
COBOL and Copy members.

6. Enter the names of the source file and the library containing your OCL
procedures.

If you have very large application, you can get an error message.
CPA5305. Record not added. Member “run member" is full.

Note the file named in the second-level message text is QATKIIL2. This is a
logical file related to the physical file QATKIFP. The message occurs because
the file QATKIFP was defined with SIZE(10000 1000 3). That is, the initial size of
the file is 10000 records, and it can be extended by 1000 records three times. To
eliminate the problem use the following command.

CHGPF FILE(QPTK/QATKIFP) SIZE(*NOMAX)

Identifying the Files :

The file identification step matches the file names as known in the programs
(internal names) with the file names on disk (external names).

The internal names are collected from the HLL file specifications and the NAME
parameter of the FILE OCL statement. The external names are found in the
LABEL parameter of the FILE OCL statement, and in the System/36 Environment
files library.

26 _ Converting System/36 Environment Applications to Native AS/400

4.4.2 Matching Internal and External Names

The next screens show you how to use PTK to associate the internal and
external file names.

After entering STRPTK to display the PTK Main Menu, select option 1 to display
the menu shown below.

N
PTMENU2 Generate DDS from User Applications
Select one of the following:
1. Retrieve S/36 file description
2. Analyze S/36 file description
3. Analyze S/36 field description
10. Remove Programmer Tools member
Selection or command
===> 2
"F3=Exit F4=Prompt F9=Retrieve F12=Cancel
F13=User support F16=System main menu
\. J
Select option 2 (Analyze S/36 file description) to display the next display.
Alternatively, you could type the ANZS36FD command on a command line and
press F4.
4 ™\
Analyze S/36 File Description (ANZS36FD)
Type choices, press Enter.
Run Member KMP030101
Bottom
F3=Exit F4=Prompt F5=Refresh F12=Cancel F13=How to use this display
F24=More keys
. J

Type in the run member name you want to analyze. If you cannot remember the
run member name, press function key F4. PTK shows you a list of the created
run members.

When you press Enter, the PTK performs two steps. First, the information
gathered in the retrieval step is used by the PTK to match, where possible, the
internal and external names.

Second, the result of the matching is displayed as in the following screen so that
you can type the external names for those files which the system could not
match, that is, for those files for which the system could not deduce any external
name.

Analyzing Files and Fields 27

EXTINT Work with External/Internal Files
Run member . . KMP030301 Position to _
File 1ibrary . QS36F
Type options, press Enter.
2=File resolution 3=Format resolution
Opt External Internal Procedure Program Rcdin M KS KL Status
2 Z.DRD30 DRD30 STP965 STP965 256 1 2 16
Z.DRD30 DRD30 TSP60 TSP6O 256 1 2 16
_ Z.STD15 STD15 STP965 STP965 128 1 2
_ 1.STD25 STD25 STP965 STP965 128 1 3 20
_Z.STD3T8 STD30O TSP60 TSP60O 256 1 2
Z.STD30 STD30 STP965 STP965 2561 2 6
_ 1.STD50 STD50 STP965 STP965 256 1 2 14
Z.STD50 STD5O TSP60O TSP60 256 1 2 14
_Z.STD55 STDS5 STP365 STP965 128 1 2)
Z.STD55 STD55 TSP60 TSP60 128 1 2 6
F3=Exit F5=Refresh F7=Ro11down F8=Ro1lup
F10=Top F11=Bottom Fl4=Sort(program) F15=Set external
o J

Enter an external file name for those files for which PTK could not deduce the
external name. Do not type over a name in the external file name if the PTK has
shown this name. If you do so, you can not run the next conversion step of the
PTK successfully.

External names cannot be deduced when substitution OCL is used, either for the
NAME and LABEL parameters of the FILE OCL statement, or for LOAD OCL
statements. For example:

// FILE NAME-DRD30, LABEL-DRD307WS?

This next example shows some of the situations that can occur when resolving
file names.

28 Converting System/36 Environment Applications to Native AS/400

e N
EXTINT Work with External/Internal Files
Run member . . KMP03010 1 Position to _
File library . QS36F
Type options, press Enter.
2=File resolution 3=Format resolution
Opt External Internal Procedure Program Rcdln M KS KL Status
Note INTF4 PROCA PROGO1 132 0
Note ? INTF5 PROCA PROGO1 132 0
Note ACCOUNG ACCOUNG TRANSACT 88 © 3 14
ALTMAST ALTMAST CBLBNK43 CBNK43 226 © 43 30 Resolved
Note ALTONE ALTONE PROCJ PROG10 132 0 2 2
A.FIRST INTF1 PROCH PROGO8 132 0
A.SECOND INTF2 PROCH PROGO8 132 0
A.THIRD INTF3 PROCH PROGO8 132 0
L Note FIVE INTF2 PROCN PROG66 132 0)

Figure 1. PTK File Resolution Screen

The entries without notes are good - the HLL, the external and internal names,
and the record length (Rcdin) were found properly. The program field will never

be blank.

member.

Note 1

Note 2

Entries will be shown only if they can be tied directly to an HLL source

The external file name was not set by PTK. This means that either the
analyze OCL phase was not done or that PTK did not find a FILE OCL
statement containing the name of that file. In the example, the
procedure name is listed, so the OCL analysis was done, but a FILE
OCL statement could not be found with NAME-INTF4. One common
reason that the PTK cannot find a FILE OCL statement is that the
statement is not between the LOAD OCL and the RUN OCL statement.
Procedures must be of the following form to ensure the the PTK will
find the external file name.

/* PROC1

// LOAD PROG

// FILE NAME-FNAME, LABEL-FLABEL
// RUN

In some cases it might be worth the additional time to check your
procedures for this format, because it will save time during the file
name resolution step.

The external file name was indicated by a “?” (question mark). This
means that PTK found a FILE OCL statement, but the external file name
could not be determined due to substitution expressions.

Note: Do not try to resolve an external file name containing a "?”
(question mark). A file name containing a ”"?” is an invalid file
name. When the resolution is attempted, the PTK will cancel.
To solve the problem, change your procedure and begin again
with Option 1 (Retrieve S/36 file description) of menu PTMENU2
(Generates DDS from User Applications).

Analyzing Files and Fields 29

01d OCL Statement = // FILE NAME-DRD30, LABEL-DRD30?WS?
New OCL Statement = // FILE NAME-DRD30, LABEL-DRD3OWS

Note 3 The procedure name was not set by PTK. This means that either the
analyze OCL phase was not done, or no procedure was found that
loaded the HLL program. In the example, the external file name is
shown. It was entered manually, since it could not be determined
without a procedure.

Note 4 File ALTONE is an example of an alternate index. Later during field
resolution (see -- Heading "PTKRES’ unknown --) you cannot resolve the
field names because there are none for an alternate index, but the PTK
will create the DDS for a logical file for it.

Note 5 PROGbB6 has had the internal name INTF2 matched against the disk
label FIVE. File INTF2 is also listed within the file group A. But in fact
different files were intended. Be especially careful when resolving file
names if multiple programs use the same internal name for different
files.

At this time you should consider naming conventions for both the (internal)
names used by the programs and the (external) names in the LABEL parameters
of the FILE OCL statements.

Additional considerations for external names include:

1. The names you choose for the external files should be the names you use
when creating the files on disk. At this stage it should be a name of an
existing file so PTK can pick up information from the external file. For group
file naming recommendations, refer to 15.11, “Group Files” on page 150.

2. It is particularly important to type in the external names for those internal
files whose external names are blank, like INTF4 alongside note 1 in Figure 1
on page 29. |If you do not, the following steps will not bring the field
descriptions for INTF4 in PROGO1 forward for later comparison with the
other, possibly different field descriptions held in other programs. This will
make the task of selecting the correct fields for the DDS harder.

In other words, if you suspect that there are different descriptions of the
same file (field names, field length and attributes) in several programs,
assign new external names to those files for each program. Then you can
resolve those differences later on during the “Analyze S/36 Field Description”
step (refer to 4.6, "Resolving Field Names” on page 34). One way to do this
is to change your procedures, specifying different names for the LABEL
parameter in the FILE OCL statements. (Refer to the note at the end of this
list.)

3. A given external file may appear several times on the list, once for each
program in which it appears. Files with external names are grouped
together in alphabetical order at the bottom of the list.

4. As you enter each external name, the line with that name is placed at the
bottom of the list in alphabetical order, while the files with no external
names remain at the top of the list.

5. To attach an external name to a single internal name, type the external
name in the left-hand column and press F5 to rebuild the screen. Note that
just pressing the Enter key does not gather all occurrences of the same
external file name together.

30 Converting System/36 Environment Applications to Native AS/400

6. Do not try to resolve a file with an external name that is not valid, for
example, one containing question marks.

Note: If PTK finds an external name for the file, do not change that name,
because it is directly pointed to in the next conversion step.

Once the files you want to resolve have external file names, type in 2 for all files
you want to resolve. PTK will display the following screen:

(™\
FILRSLV Work with File Resolution
External file Z.DRD30
Enter/Update resolved definitions, press Enter.
Program Resolved System
Specification Definition Information
File type K K K
Record length 256 256 256
Multiple formats Yes
Unique keys
Key start-1 2 2 2
Key length-1 16 8 8
F6=Accept F12=Cancel
§ Y,

This screen is shown when you work with file resolution.

For this step, you might find it useful to refer to file descriptions that were
produced in section 4.3, “Creating DDS from System/36 Environment File
Descriptions” on page 21.

If a file is used in more than one program, it will have more than one internal
description. The resolution step asks you to ensure that the record length and
key position information for the file is correct.

The system compares the different descriptions and presents a “majority rule”
under the heading Program Specification. If the file exists on the system,
information is shown under System Information, while your choice is entered
under Resolved Definition. You do not have to resolve all the files in one step.
You can leave some and come back to them at a later, re-running this step.

Verify or correct all the information and press function key F6 to resolve the file.
If multiple formats are defined for the file, PTK automatically displays the Work
with Format Resolution screen. Otherwise the Work with External/Internal Files
screen is displayed.

Analyzing Files and Fields 31

FMTRSLV Work with Format Resolution
External file Z.DRD30
Enter format designators, press Enter.
Psl Cdl Ps2 Cd2 Ps3 Cd3 Format Status
DRD30-CONTROL-REC CR
DRD30-DET-REC DR
F6=Accept F7=Ro11down F8=Ro11up F10=Top
F11=Bottom Fl2=Cancel
\. J

This screen is shown when you work with format resolution. After a multiple
record file has been resolved, you need to resolve the formats in that file. This
step simply involves choosing a 2-character identifier that will be added to the
end of the file name to give a name to the DDS source that will be created for
each physical file. (One physical file is created for each record type in the
multiple record System/36 file.) Note that the external names have been
restricted to eight characters to allow for this to happen. If you have multiple
record formats in your file and are using RPG, you should not use a file name
longer than six characters. This is because the file name in an RPG/400
program may be no longer than eight characters.

Sometimes only one format is shown on this screen, even when the previous
screens have told you that the file is a multiple-record file. This can happen
because the I-specifications for the file may contain a record ID (with no fields or
indicators) that is included in the program to catch previously undefined record
types, and thus avoid a run-time error.

Type in a two-character identifier to distinguish your record formats. Then press
command key F6 to resolve the formats. When finished, PTK displays the Work
with External/Internal Files screen.

32 Converting System/36 Environment Applications to Native AS/400

-
EXTINT Work with External/Internal Files w
Run member . . KMP03010 1 Position to _

File Tibrary . QS36F
Type options, press Enter.
2=File resolution 3=Format resolution
Opt External Internal Procedure Program Rcdin M KS KL Status
_Z.DRD30 _ DRD30 STP965 STP965 256 1 2 16 Resolved
Z.DRD30_ DRD30 TSP60 TSP60O 2561 2 16
_ 1.STD15 STD15 STP965 STP965 1281 2
_ Z.STD25 STD25 STP965 STP965 128 1 3 20
_ 2.STD3T8 STD30 TSP60 TSP60O 256 1 2
_ 1.STD30_ STD30 STP965 STP965 2561 2 6
_ Z1.STD50_ STD50 STP965 STP965 256 1 2 14
Z.STD50 STD50 TSP60 TSP60 256 1 2 14
_ L.STD55 STD55 STP965 STP365 128 1 2 6
Z.5TD55 STD55 TSP60 TSP60 1281 2 6
F3=Exit F5=Refresh F7=Ro11down F8=Ro11up
F10=Top F11=Bottom Fl4=Sort(program) F15=Set external
- J

You can see that file Z.DRD30 is now resolved.

Type in 2 for all other files you want to resolve.

4.5 Field naming considerations

Before you resolve field names, you need to be aware of the kinds of problems
that can occur when different programs have different definitions of fields.

On S/36 you can have non-numeric data within a numeric field. This situation
(decimal data error) is not allowed on AS/400. Therefore you must know
whether a field is or is not numeric. Here is an example that shows how
multiple file definitions can lead to decimal data errors. More information about
finding and correcting decimal data errors can be found in section 10.0, “Decimal
Data Errors” on page 75.

On S/36 you can have the following field definitions in program PROG1 and
PROG2.

PROG1
FD FILEL.
01 FILE1-RECORD.
05 FIELD-1 PIC 9(5). (numeric field) HEX(FOFOFOFOFO)
05 FIELD-2 PIC X(5). (alpha-numeric) HEX(4040404040)
PROG2
FD FILEL.
01 FILE1-RECORD.
05 FIELD-1 PIC 9(3). HEX(FOFOFO)
05 FIELD-2 PIC X(7). HEX(40404040404040)

Analyzing Files and Fields 33

Both files have the same record length, but each file has different field lengths
and types. So if PROG2 adds or updates a record, and PROG1 reads that record,
PROG1 would find non-numeric characters in the last two characters of FIELD-1.
To solve this problem you need to decide which field definition is correct.

In the next example, two programs have defined fields that have the same data
type, but different lengths.

PROG1
FD FILEL.
01 FILE1-RECORD.
05 FIELD-1 PIC X(5).
05 FIELD-2 PIC X(5).
PROG2
FD FILEL.
01 FILE1-RECORD.
05 FIELD-1 PIC X(3).
05 FIELD-2 PIC X(7).

We recommend that the file description for the externally described physical file
look like this:

FD FILEL.

01 FILE1-RECORD.
05 FIELD-1 PIC X(3).
05 FIELD-2A PIC X(2).
05 FIELD-2B PIC X(5).

If necessary, you can create logical files that can be used by PROG1 and PROG2
to preserve their different views of the record. But, if the data types are different,
you will have to decide which data type is correct.

Also you should review your field naming conventions. Follow these rules to

help ensure consistent, meaningful field names:
* Use only supported characters.

* Limit field names to eight characters. RPG/400 is restricted to
eight-character field names. For COBOL you can use the DDS Keyword
ALIAS to define field names longer than eight characters.

* Use names that are self-explaining.

* Use the DDS Keyword TEXT to explain the field. PTK does not permit this,
but it can be done in a later step.

4.6 Resolving

Field Names

This is the next PTK step. Now the PTK has enough information to gather
together all the internal field descriptions for each record in a file. During the
field name resolution step you will identify the fields needed to generate data
descriptions for each AS/400 file.

The following screens show you how to resolve field names using the PTK. Enter
STRPTK to display the Programmer Tools Main Menu. Then select option 1
(Generate DDS from user applications) to display the following screen:

34 Converting System/36 Environment Applications to Native AS/400

PTMENU2 Generate the DDS from User Applications
Select one of the following:

1. Retrieve S/36 file description

2. Analyze S/36 file description

3. Analyze S/36 field description

10. Remove Programmer Tools member

Selection or conmand

===> 3
TF3=Exit F4=Prompt FO9=Retrieve F12=Cancel
F13=User support F16=System main menu
- 4/

Select option 3 (Analyze S/36 field description). The following screen is
displayed.

4 ™
Analyze S/36 Field Description (ANZS36FFD)
Type choices, press Enter.

Run Member KMP030301

Bottom
F3=Exit F4=Prompt F5=Refresh Fl12=Cancel F13=How to use this display
F24=More keys

o S/

Type in the run member name. If you can not remember the run member name,
press function key F4. PTK shows you a list of run members.

The next screen allows you to select the file whose fields you want to resolve.
You can also display this screen using the ANZS36FFD command. For example:

ANZS36FFD KMP030101

Analyzing Files and Fields 35

FILSEL Select External File KMP07032

External file . . .

Enter name or select item from the 1ist.

S File name Status

Z.DRD30

in

F3=Exit F7=Ro11down F8=Ro1lup F12=Cancel F21=Select all

(. J

The "Analyze S/36 Field Description” display first shows a list of resolved file
names. In our example, we only resolved one file in the previous step.
Therefore there is only one file in the list.

Select the file you want to convert.

If multiple formats are defined for the file you selected, the next screen allows
you to select one of the formats to work with.

/ ™\
FMTSEL Select Format Name KMPO30101

External file . . . Z.DRD30O
Format name

Enter name or select item from the list.

S Fmt name Status

_ CR
S DR
F3=Exit F7=Ro11down F8=Ro1lup F12=Cancel F21=Select all
. J

PTK shows you all of the formats within this file. Select the format of the file you
want to work with.

PTK now gathers together, from every program associated with the file, the field
descriptions for the format you selected. The fields are sorted by start and end
positions and presented on the main field resolution screen. You will use this
screen to build the DDS for the format. In the best case, every program defines
the same fields in the same positions. This could happen, for example, if /COPY
modules had been used for all files. If there are overlapping fields, different

36 Converting System/36 Environment Applications to Native AS/400

definitions for the same record positions, empty record positions, or alternative
spellings of the same field, they are shown on the next screen.

4 N\
FLDSEL Work with Fields KMP07032
External file . . . Z.DRD30 Key str/len . . 2/ 8 #
Reds 44
Format name DR Record length . . . 256
Select fields for DDS or enter new items.
K S Beg End T DP DDS fldnam Internal field name Error msq Occur
_ 1 1 00 DRD3ORECOR DRD30-RECORD-CODE 2
K _ 2 4 00 DRD3OCUSTA DRD30-CUST-AREA 2
K _ 2 9 00 DRD3OCUSTO DRD3O-CUSTOMER Overlap 2
K _ 5 9 00 DRD3OCUSTO DRD30-CUST-OTHER Subfield 2
_ 10 17 00 DRD3OCHARG DRD30-CHARGE-TO 2
_ 18 41 DRD3ONAME DRD30-NAME 2
_ 42 42 DRD3GALPHA DRD30-ALPHA-CODE 2
_ 43 52 DRD3OALPHA DRD30-ALPHA-SEARCH Duplicate 2
_ 53 76 DRD30OADDR1 DRD30-ADDR-1 2
_ 53 124 DRD3OGADDR DRD30-ADDR Overlap 2
77 100 DRD3OADDR2 DRD30-ADDR-2 Subfield 2
101 124 DRD3OGADDR3 DRD3G-ADDR-3 Subfield 2 o+
F3=Exit F5=Refresh F7=Ro11down F8=Ro1lup F9=Add item
L F10=Top F11=Bottom F12=Cancel F13=Fast)

Refer to Chapter 2 in the Programmer Tool Users Guide for a description of the
fields and function keys available on this display.

First, fix the field names for the file. As you do this, remember the rules given in
section 4.5, “Field naming considerations” on page 33. Change field names so
that there are no error messages except Overlap and Subfield.

4 ™
FLDSEL Work with Fields KMPQ7032
External file . . . Z.DRD30 Key str/len . . 2/ 8 #
Rcds 44
Format name DR Record length . . . 256
Select fields for DDS or enter new items.
K S Beg End T DP DDS fldnam Internal field name Error msg Occur
1 1 1 00 RECOR DRD30-RECORD-CODE 2
K1 2 4 00 CUSTA DRD30-CUST-AREA 2
2 9 00 DRD3OCUSTO DRD30-CUSTOMER 2
K1 5 9 00 CUSTO DRD30-CUST-OTHER 2 ,
1 10 17 00 CHARG DRD30-CHARGE-TO 2
1 18 41 NAME DRD30-NAME 2
1 42 42 ALPHAC DRD30-ALPHA-CODE 2
1 43 52 ALPHAS DRD30-ALPHA-SEARCH 2
1 53 76 ADDR1 DRD30-ADDR-1 2
_ 53 124 ADDR DRD30-ADDR Overlap 2
1 77 100 ADDR2 DRD30-ADDR-2 Subfield 2
1 101 124 ADDR3 DRD30-ADDR-3 Subfield 2 +
F3=Exit F5=Refresh F7=Ro11down F8=Ro11up F9=Add item
L F10=Top F11=Bottom F12=Cancel F13=Fast D

Analyzing Files and Fields 37

After correcting all error conditions except “Subfield” and "Overlap”, select those

field names which give a true description of the record format.

For overlapping fields, we recommend that you always select the smallest, or
lowest level fields. Generally, this means you should not select a field with the
Overlap error message. You can define the other fields with a logical file later in
the conversion. When you have finished selecting the fields, exit from the

screen.

If no errors are found, and the file definition matches the external file (That is,
the record length and key definitions match.), the next screen allows you to

generate the DDS for the format.

e N
FLDSEL Work with Fields KMPB7632
External file . . . Z.DRD30 Key str/len . . 2/ 8 #
Rcds 44
Format name DR Record length . . . 256
Select fields for DDS or enter new items.
K S Beg End T DP DDS fldnam Internal field name Error msg Occur
Data is approved for DDS
1 0. Do not generate DDS
1. Generate DDS source member
F3=Exit F5=Refresh F7=Ro11down F8=Ro11up F9=Add item
F10=Top F11=Bottom F12=Cancel F13=Fast)

Note that only the DDS will be generated, not the file itself. You can find the
DDS in a source physical file in the QPTK library with the "run member” name

you have chosen for this run.

The next screen shows that the DDS has been created for format DR, and allows

you to select another format.

(FMTSEL Select Format Name KMP07032 A
External file . . . Z.DRD30
Format name
Enter name or select item from the list.
S Fmt name Status
s CR
_ DR Generated
F3=Exit F7=Ro11down F8=Ro11up F12=Cancel F21=Select all
N\ _J

38 Converting System/36 Environment.Applications to Native AS/400

Select record format CR.

4 N\
FLDSEL Work with Fields KMPO7032
External file . . . Z.DRD30O Key str/len . . 2/ 8 #
Rcds 10
Format name CR Record length . . . 256

Select fields for DDS or enter new items.

K S Beg End T DP DDS fldnam Internal field name Error msq Occur

1 9 FILLER FILLER 2
_ 10 12 P 00 RECOR DRD30-RECORDS 2
_ 13 16 P 00 DATEU DRD30-DATE-UPDATED 2
_ 17 22 PROGU DRD30-PROG-UPDATING 2
_ 23 256 FILLER FILLER Duplicate 2
F3=Exit F5=Refresh F7=Ro11down F8=Ro11up F9=Add item
9 F10=Top F11=Bottom F12=Cancel F13=Fast ,

Note that this format has no key field definition, yet PTK shows a key start and
length at the top of the screen. This format is part of a muitiple record format. It
will result in a logical file over multiple (two in this case) physical files. All the
physical files must have key definitions.

Again, correct the fields to remove errors other than Overlap and Subfield
errors. The next screen shows the resulit.

4 N\
FLDSEL Work with Fields KMP07032
External file . . . Z.DRD30O Key str/len . . 2/ 8 #
Rcds 10
Format name CR Record length . . . 256

Select fields for DDS or enter new items.

K S Beg End T DP DDS fldnam Internal field name Error msq Occur

1 9 F1 FILLER 2
_ 10 12 P 00 RECOR DRD30-RECORDS 2
_ 13 16 P 00 DATEU DRD30-DATE-UPDATED 2
_ 17 22 PROGU DRD30-PROG-UPDATING 2
_ 23 256 F4 FILLER 2
F3=Exit F5=Refresh F7=Ro11down F8=Ro1lup F9=Add item
9 F10=Top F11=Bottom F12=Cancel F13=Fast)

If you have a file with multiple formats where one of the formats has key fields
and the other format does not, you cannot create DDS for this format. PTK
displays the error message "Key Area not discrete”, which means that you have
not defined a key area in this in this format. You will get this message when you
try to resolve a format with the wrong Index description.

PTK allows you to add a new field. Press function key F9 to add a new field.

Analyzing Files and Fields 39

4 ™\
FLDSEL Work with Fields KMPO7032
External file . . . Z.DRD30O Key str/len . . 2/ 8 #
Rcds 10
Format name CR Record length . . . 256
Select fields for DDS or enter new items.
K S Beq End T DP DDS fldnam Internal field name Error msq Occur
_ 1 9 Fl FILLER 2
_ 1o 12 P 00 RECOR DRD30-RECORDS 2
13 16 P 00 DATEU DRD30-DATE-UPDATED 2
_ 17 22 PROGU DRD30-PROG-UPDATING 2
_ 23 256 F4 FILLER 2
Beg End T DP DDS fldnam
2 9 KEYFIL Fl12=Cancel
. J

Fill in the correct starting and ending position and the name of the field, then
press enter. PTK will allow you to enter more fields. Press F12 to finish.

4 ™
FLDSEL Work with Fields KMP07032
External file . . . Z.DRD30O Key str/len . . 2/ 8 #
Rcds 10
Format name CR Record length . . . 256
Select fields for DDS or enter new items.
K S Begq End T DP DDS fldnam Internal field name Error msqg Occur
1- 9 F1 FILLER 2
1 1 1 Unassigned
K1 2 9 KEYFIL KEYFIL
1 10 12 P 00 RECOR DRD30-RECORDS 2
1 13 16 P 00 DATEU DRD30-DATE-UPDATED 2
1 17 22 PROGU DRD30-PROG-UPDATING 2
1 23 256 F4 FILLER 2
F3=Exit F5=Refresh F7=Ro11down F8=Ro11lup F9=Add item
L F10=Top F11=Bottom F12=Cancel F13=Fast P

PTK now shows that an unassigned field has been added. That field is added
automatically to resolve the record length once the key field was added.

In our example, we select the unnamed field instead of field F1, so that we do
not have overlapping fields. Enter a name for the unassigned field, select the
other fields that represent the record, and press enter. The screen that follows
shows the selected fields and their names.

40 Converting System/36 Environment Applications to Native AS/400

e A
FLDSEL Work with Fields KMPB7032
External file . . . Z.DRD30 Key str/len . . 2/ 8 #
Rcds 10
Format name CR Record length . . . 256
Select fields for DDS or enter new items.
K S Beq End T DP DDS fldnam Internal field name Error msq Occur
1 1 1 F1 F1
1 9 F1 FILLER 2
K1 2 9 KEYFIL KEYFIL
1 10 12 P 00 RECOR DRD30-RECORDS 2
1 13 16 P 00 DATEU DRD30-DATE-UPDATED 2
1 17 22 PROGU DRD30-PROG-UPDATING 2
1 23 256 F4 FILLER 2
F3=Exit F5=Refresh F7=Ro11down F8=Ro1lup F9=Add item
L F10=Top F11=Bottom F12=Cancel F13=Fast)

Now press function key F3 to leave this screen and create the DDS. The
resulting screen confirms that the DDS was generated.

4 ~N
FMTSEL Select Format Name KMPO7032

External file . . . Z.DRD30O
Format name

Enter name or select item from the list.

S Fmt name Status

CR Generated
_ DR Generated
F3=Exit F7=Ro11down F8=Ro1Tup F12=Cancel F21=Select all
. J

PTK shows you that the DDS was generated for both formats.

Resolution can now be repeated for other files and formats. While this example
showed resolution of only one file, you can resolve more than one file at a time.

Now copy the DDS source file from library QPTK to your conversion library,
renaming your “run member” source file to QDDSSRC.

4.7 How to get the information without the PTK

If you want to convert your System/36 Environment files without the PTK, you can
use Query functions to collect information about all your program source. You
can also use the PDM search function to find the information. Or you can write a
program that gives you the information.

Analyzing Files and Fields 41

The following example shows how to get your internal file names from a COBOL
program with QUERY:

* Use the STRQRY to start AS/400 Query.

» Select the query option “Specify file selection”.

* Select the source file (for example, QS36SRC).

* Select the source file member (for example, STP965).
» Select the query option “Select records”.

* Type the following definition for COBOL.:

AND/OR Field Test Value (Field, Number, or 'Characters'
SRCDTA LIKE_ '%SELECT%'

* Press F5 to get the report.

* Type the following definition for RPG:

AND/OR Field Test Value (Field, Number, or 'Characters'
SRCDTA LIKE_ '%DISK%'

* Then press F5 to get the report.

The report lists all the internal file names used in this program. You also can put
the report into a Database file for later use, or you can print the report. Do this
with every source member. If you search in the procedures you can use the
“LABEL” as search word. This give you all the external file names.

However, you must collect the information from your procedures and source
code and match them together.

4.7.1 Implications
Smaller fields, such as day, month, and year, can be concatenated together
through a logical file definition to give larger fields such as DATE. Refer to the
Data Description Specifications Reference manual for details. Note, however,
that there are restrictions on the use of concatenated fields in COBOL/400
programs. For more detail refer to 12.0, “COBOL Considerations” on page 111.

42 Converting System/36 Environment Applications to Native AS/400

5.0 Convert System/36 Environment Formats to Native
Formats

Display format conversion is one of the easier parts of application conversion.
You can get the DDS for the native display file in several ways:

e Using the System/36 to AS/400 migration aid

¢ Using the PTK (Selecting option 5 from the PTK Main Menu)
e Using Screen Design Aid (SDA)

e Creating display files with the CRTS36DSPF command.

You always will find the created DDS in either the QS36DDSSRC or QDDSSRC
source file.

Producing DDS is not a problem on AS/400. But there are some differences
between System/36 Environment and AS/400 native mode:

e System/36 Environment display files use display services which behave like
those of System/36.

e AS/400 native display files use display services which behave like those of
System/38.

You might see some differences when you are using a display format in both a
System/36 Environment program and a native program. For detailed information
about the differences refer to the Appendix F of the Data Management Guide.

The next problem is that you have different programming techniques between
S/36 and AS/400. Normally nobody uses the “variable start line number”
technique to display a list in AS/400 native mode. Instead, use a subfile. If you
want to convert a program using such techniques you must redesign the
application.

The main problem of screen conversion is that you can have two or more
programs in the System/36 Environment using the same DSPF. These programs
might have different DSPF field names, but when you are using externally
defined display files, you can only have one field name defined. This means that
you have to look very carefully through your programs and make the necessary
changes in the programs and DDS of the display file.

5.1 Finding All Programs That Use the Same Display File

Programming Development Manager (PDM) provides you a search function.
Using this function it is possible to find strings within source mem bers. The
next screens show how to find out which of your programs use the same display
files.

If you followed the recommendations in Chapter 3.0, “Getting Started with the
Conversion” on page 13 you will find your program source in the QS36SRC

source file in your conversion library (CONLIB in this example).

Use the PDM functions or the WRKOBJPDM command, for example:

© Copyright IBM Corp. 1988,1990 43

WRKOBJPDM CONLIB QS36SRC
to get the following display:

e ™
Work with Objects Using PDM

Library CONLIB Position to
Position to type _

Type options, press Enter.

2=Change 3=Copy 4=Delete 5=Display 7=Rename

8=Display description 9=Save 10=Restore 11=Move ...
Opt Object Type Attribute Text
25 QS36SRC *FILE PF-SRC

Bottom

Parameters or command

===>

F3=Exit F4=Prompt F5=Refresh F6=Create
F9=Retrieve F10=Command entry F23=More options F24=More keys
This is a subsetted list.
+
\- J

Type option number 25 (Find string) in front of the source file and press Enter.

4 A
Find String
Type choices, press Enter.
Find e e e e STP965FM
From column number 1 1 - *RCDLEN
To column number *RCDLEN 1 - *RCDLEN
Kind of match 2 1=Same case, 2=Ignore case
Option e « « « « *NONE *NONE, Valid option
Prompt N Y=Yes, N=No
Print Tist Y Y=Yes, N=No
Find string in batch N Y=Yes, N=No
Parameters
F3=Exit F5=Refresh F12=Cancel F16=User options
F18=Change defaults
\. J

Type in the name of the display format for which you are searching, specify
*NONE for the Option prompt and Y for the Print list prompt, and press Enter to
start the search.

The list of members containing the string is printed and can be found in your
job’s output queue (output queue CONLIB in library CONLIB in this example).
Use the WRKOUTQ command to display your output queue. The resulting display
is shown next:

44 Converting System/36 Environment Applications to Native AS/400

(N\
Work with Output Queue
Queue: CONLIB Library: CONLIB Status: RLS
Type options, press Enter.
2=Change 3=Hold 4=Delete 5=Display 6=Release 8=Attributes
Opt File User User Data Sts Pages Copies Form Type Pty
5 QPUOPRTF ITSCID13 RDY 1 1 *STD 5
Bottom
Parameters for option 2 or command
===>
F3=Exit Fll=View 2 Fl2=Cancel F22=Printers F24=More keys
- J

Type option 5 (Display) next to the entry containing the list of members and

press Enter to display it.

4 I
Display Spooled File
File : QPUOPRTF Page/Line 1/2
Control Columns
1-178
Find
LTS S PR T SN TUTTT: TRTTE SN P AR DI SN P SOy F
...
Q5728PW1 RO2 MOO 891006 Programming Development Manager - Membe
File . .« oo v o : QS36SRC
Library ¢ CONLIB
Membert *ALL
Type « « ¢« « « « « o« ¢ *ALL
Find STP965FM
From column : 1
To column ¢ *RCDLEN
Kind of match ¢« 2 1=Same case, 2=Ignore case
Number of matches . . : 1
Creation Last Changed Deleted
Member Type Date Date Time Records Records Text
STP965 CBL36 03/06/90 03/12/90 11:31:08 02677 00000 Mainp
*xx %% END OF LISTING
Bottom
F3=Exit Fl12=Cancel F19=Left F20=Right F24=More keys
- /
Within this list you find all of the programs that use your defined display file. In

our example, we only have one program using the DSPF. This is only one of the
ways to get the information. But it is a fast way to find the display file name in a

potentially large number of source programs.

Convert System/36 Environment Formats to Native Formats

45

5.2 Changes Required to Use Externally Described Display Files

At this stage we have DDS for the display files and we know which programs are
using these files. But the programs still contain the internal description of the
display file. These descriptions may still contain different names for the fields or
different field attributes.

The next step is to check the internal display file definitions against the external
file definition. To get the external description use the DSPFFD command or look
into the DDS source. To get the internal definition you must look through each
program listed in the search list obtained in the previous step. You can do this
by browsing through each program. If you find differences between the internal
and the external display fields you, should note them. You should also note
whether there are differences between the programs. If there are differences,
you must chang