

Structured Query Language/400:
A Guide For Implementation

05/400 Release 3.0

Document Number GG24-3321-01

August 20, 1990

International Technical Support Center
Rochester,

Department 977, Building 663
Highway 52 and 37th Street NW

Rochester, Minnesota, USA

Take Note ----------------------------------,

Before using this information and the product it supports, be sure to read the general information
under "Special Notices" on page iii,

Second Edition (September 1990)

This edition applies to Release 3 Modification Level 0 of the IBM Operating System/400 Licensed
Program (Program 5728-SS1) and IBM Structured Query Language/400 (SQU400) Licensed Program
(Program 5728-ST1).

Order publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address given below. Requests for IBM publications should be
made to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this publication. If the form has been
removed, comments may be addressed to:

IBM Corporation, International Technical Support Center
Dept. 977, Building 663
Highway 52 and 37th Street NW
Rochester, Minnesota, USA 55904 USA

When you send information to IBM, you grant IBM a non-exclusive right to use or distribute the
information in any way it believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1990. All rights reserved.
Note to U.S. Government Users - Documentation related to restricted rights - Use, duplication or
disclosure is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

(;;

Special Notices

This publication is intended to compare and contrast the alternative query
interfaces available .on the AS/400 system, and give the reader an understanding
of SQL/400, providing guidelines and examples for implementation in an
application programming environment. It covers areas associated with
application development with SQLl400. The information in this publication is not
intended as the specification of the programming interfaces that are provided by
Structured Query Language/400 for use by customers in writing programs that
request or receive its services. See the PUBLICATIONS section of the IBM
PROGRAMMING ANNOUNCEMENT for Structured Query Language/400
(5728-ST1).

References in this publication to IBM products, programs or services do not
imply that IBM intends to make these available in all countries in which IBM
operates. Any reference to an IBM product, program, or service is not intended
to state or imply that only IBM's product, program, or service may be used. Any
functionally equivalent program that does not infringe any of IBM's intellectual
property rights may be used instead of the IBM product, program or service.

Information in this book was developed in conjunction with use of the equipment
specified, and is limited in application to those specific hardware and software
products and levels.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give you any license to
these patents. You can send license inquiries, in writing, to the IBM Director of
Commercial Relations, IBM Corporation, Purchase, NY 10577.

The information contained in this document has not been submitted to any
formal IBM test and is distributed AS IS. The use of this information or the
implementation of any of these techniques is a customer responsibility and
depends on the customer's ability to evaluate and integrate them into the
customer's operational environment. While each item may have been reviewed
by IBM for accuracy in a specific situation, there is no guarantee that the same
or similar results will be obtained elsewhere. Customers attempting to adapt
these techniques to their own environments do so at their own risk.

Any performance data contained in this document was determined in a
controlled environment, and therefore, the results that may be obtained in other
operating environments may vary significantly. Users of this document should
verify the applicable data for their specific environment.

The following document contains examples of data and reports used in daily
business operations. To illustrate them as completely as possible, the examples
contain the names of individuals, companies, brands, and products. All of these
names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

Reference to PTF numbers that have not been released through the normal
distribution process does not imply general availability. The purpose of
including these reference numbers is to alert IBM customers to specific

© Copyright IBM Corp. 1990 iii

iv Using SQU400

information relative to the implementation of the PTF when it becomes available
to each customer according to the normal IBM PTF distribution process.

The following terms, which are denoted by an asterisk (*) in this publication, are
trademarks of the International Business Machines Corporation in the United
States and/or other countries:

Application System/400
AS/400
C/400
COBOU400
DB2
FORTRAN/400
IBM
MVS/XA
Operating System/2
Operating System/400
OS/2
OS/400
Personal System/2
PS/2
RPG/400
SAA
SQU400
VM/XA

The following terms, which are denoted by a double asterisk (**) in this
publication, are trademarks of other companies.

Lotus is a trademark of the Lotus Development Corporation.
Microsoft is a trademark of Microsoft Corporation.

Abstract

This document is intended for experienced AS/400 programmers, analysts, and
implementers who are responsible for the creation and maintenance of
application programs on the AS/400 system. ,It assumes the reader has an
appreciation of programming in RPG/400, COBOU400, C/400, FORTRAN/400 or
PUI as available on the AS/400 system at Release 3 Modification Level 0, and
understands the AS/400 system database, the design and creation of physical
and logical files, and how to design, create and maintain high-level language
programs.

This document has two main purposes. First, it compares and contrasts the
alternative query interfaces available on the AS/400 system. Secondly, it intends
to give the reader an understanding of SQU400. and proy-ide guidelines and
examples for implementation in an application programming environment. It
covers areas associated with application development with SQU400.

RSYS (270 pages)

© Copyright IBM Corp, 1990 v

vi u· sing SQU400

Acknowledgments

The advisor for this project was:

Lamont Baker
International Technical Support Center, Rochester

The authors of this document are:

Craig Tamlin
IBM Australia

Alex Metzler
IBM Switzerland

Klaus Subtil
IBM Germany

Jim Jackson
IBM United Kingdom

This publication is the result of a residency conducted at the International
Technical Support Center, Rochester.

Thanks to the following people for the invaluable advice and guidance provided
in the production of this document:

Randy Egan
Application Business Systems Laboratory, Rochester

Mark Anderson
Application Business Systems Laboratory, Rochester

© Copyright IBM Corp. 1990 vii

viii Using SQU400

Preface

This document discusses implementation topics for users already familiar with
SQL and the AS/400 system. The guide covers SQL/400 and its relationship to
other query tools available on the AS/400 system, as well as how it relates to the
other AS/400 data definition facilities. It describes how to integrate SQL into
applications, the detailed aspects of SQL security and recovery, and SQL
performance considerations. Finally, SQLl400 with regard to SAA is discussed,
along with SQLl400 portability.

The information in this document is an update to the original publication,
published in May 1989, and is the result of a residency at the International
Technical Support Center, Rochester, Minnesota.

Purpose of This Document
The purpose of this document is to provide AS/400 implementers, system
analysts and programmers responsible for the creation and maintenance of
AS/400 application systems with guidelines on using SQL within their
environment.

How the Document is Organized
The first section of the document compares and contrasts the alternative query
interfaces available on the AS/400 system, and also the various data definition
options. The second section of the document develops the reader's
understanding of SQLl400, and provides guidelines and examples for application
development using SQLl400 and its implementation in the programming
environment.

Related Documents
For more information about using SQL statements, statement syntax and
parameters, see the following manuals:

• Programming: Structured Query Language Programmer's Guide - SC21-9609

• Programming: Structured Query Language Reference - SC21-9608

The following manuals are also related to the topics covered in this document.

• Systems Application Architecture Common Programming Interface Database
Reference - SC26-4348

• Programming: Control Language Programmer's Guide - SC21-80n

• Programming: Backup and Recovery - SC21-8079

• DDM User's Guide - SC21-9600

• PLII User's Guide and Reference - SC09-1156

• ANS Data Base Language - ANSI X3.135-1986

• ISO Standard Data Base Language SQL - ISO 9075-1987

© Copyright IBM Corp. 1990 ix

• Draft Federal Information Standards SQL (1986)

• Programming: Data Base Guide - SC21-9659

• Programming: DDS Reference - SC21-9620

• Common Programming Interface Query Reference - SC26-4349

Audience and Skills Level
The document assumes that the reader understands AS/400 system database
concepts, along with the design and creation of physical and logical files. It also
assumes a knowledge of how to design, create and maintain high-level language
programs and a familiarity with either RPG/400, COBOU400 '85, C/400,
FORTRAN/400, or PLII as available on the AS/400 system at Release 3.0.

Conventions Used in the Manual

X Using SQU400

SQU400 offers two naming conventions:

• SQL naming convention: This uses periods (.) between the collection name
and table name, as well as between the table name and column name.

collection.table.column

• System naming convention: This uses a slash (I) between the collection
name and table name and a period (.) between the table name and column
name.

collection/table.column

We have chosen to use the system naming convention in our examples. This is
the default naming convention in Interactive SQL, and is likely to be chosen by
most users for consistency with other AS/400 commands. It is also likely to be
the preferred convention for those familiar with the System/38, since it allows the
use of library lists. (See "Collection/Library Concept" on page 3-3 for further
information on the use of library lists.) For this reason, we have also omitted
library/collection names in most of our examples, assuming that the object
would be located through the use of the library list.

Several SQL objects are equivalent to AS/400 system objects; the SQL collection
is an AS/400 library (including a data dictionary, journal and journal receiver),
the table is a physical file, and views and indexes are a logical files. These
terms are used interchangeably throughout the text.

The example SQL statements shown in this document are based on sample
tables in "Sample Tables Used in Examples" on page F-1. When used in
reference to HLL programs, SQL statements have not been delimited by "EXEC
SQL" and "END-EXEC" statements, as is required for COBOU400 , RPG/400 and
"EXEC SQL" only required with ";" as the statement end delimiter, for C/400,
FORTRAN/400, and AS/400 PUI.

Compile commands for COBOL, RPG, C, FORTRAN and PUI programs using
SQL are as follows:

• CRTSQLCBL

• CRTSQLRPG

• CRTSQLC

• CRTSQLFTN

• CRTSQLPLI

However, in the text these commands are referred to generically as the
CRTSQLxxx commands.

Programming Examples
Most HLL references in this document are to RPG/400 and COBOU400 and
usually have equivalents in C, FORTRAN and PUI.

Changes From Previous Release
This publication is an update to the original publication published in May 1989.
The changes in this release of the manual include:

• OS/4oo Query Management in Chapter 1

• Section on subquery in Chapter 3

• OS/400 Release 2.0 changes including:

Database to Collection

Changes to Interactive SQL

• Totally new performance chapter.

Preface xi

xii u· sing SQU400

Contents

1. AS/400 Query Tools 1-1
SQLl400 (S728-ST1) · ... , 1-1

Operation
Where to Use SQU400

AS/400 Query (S728-QU1)
Operation
Where to Use AS/400 Query

· 1-1
1-1
1-2
1-2
1-3
1-3
1-4
1-4
1-5
1-5
1-6
1-6

Query/38 (5728-DB1)
Where to Use Query/38

Open Query File (OPNQRYF) Command ..
Where to Use OPNQRYF

AS/400 PC Support (5728-PC1) File Transfer
Menu-Based Natural Language Query (MBNLQ)
Where to Use AS/400 PC Support

OS/4oo Query Management
Operation
Where to Use OS/4oo Query Management

Summary of Functions

2. AS/400 Data Definition Facilities
Data Description Specifications - DDS

Physical and Logical Files
Physical Files
Logical Files
Summary

. 1-6

. 1-6
1-7
1-8

2-1
. 2-1

· 2-1

Interactive Data Definition Utility - IDDU

2-2
2-2
2-3
2-4
2-4 File Definitions

Record Format Definitions
Field Definitions

SQL Data Definition Language (DOL)
Summary of DOL Functions
Mixing DDLs When Using SQL
DOL Recommendations

3. Application Programming With SQL
SQL Program Design Considerations

Naming Conventions
SQL Naming Convention
System Naming Convention
Naming Conventions When Qualifying a Join
Naming Convention Recommendations

Collection/Library Concept
SQL Catalog

Catalog as an Aid to the Optimizer
Indexes

· 2-5
· ... , 2-5
· 2-6

2-8
2-8
2-9

Views

3-1
3-1
3-1
3-1
3-2
3-2
3-2
3-3
3-3
3-4
3-5
3-7

Inserting Data into Views using SQL or DFU 3-7
Join. Subquery and Union 3-8

Join .. 3-8
Subquery 3-13
Union 3-15

Cl Copyright IBM Corp. 1990 xiii

xiv Using SQU400

Union All
Compiling Applications

Precompiler Process
Precompiler Options

Binding an Application
Error Processing

WHENEVER
Using the SOLCA
Coding a Routine for Unexpected Errors
Indicator Variables

3-16
3-17
3-17
3-18
3-20
3-20
3-21
3-27
3-28
3-28

Program Design Guidelines 3-29
Wordiness 3-30

SOL Implementation Techniques 3-32
Defining Tables and Files 3-33

New Table Creation 3-33
Moving Existing Files/Tables into an SOL Collection 3-33
IDDU File Considerations 3-33
Database Creation Summary 3-34
Copying and Moving Files/Tables: Journaling Considerations 3-34
Indexes 3-35
Join Files 3-35
Changing File/Table Structure 3-36
SOL Objects and Override Data Base File (OVRDBF) 3-36

Using Tables and Files in High-Level Language Programs 3-37
Using SOL to Access DDS- and IDDU-Defined Files and SOL Tables 3-37
File and Table Field Names in COBOLl400 .. 3-38
Use of ALIAS in DDS Statements 3-38
SOL Field Names 3-39
RPG Host Variable Definition Considerations 3-39
SOL Table/File Access versus HLL Table/File Access 3-40
SOL INCLUDE 3-41
HLL (Non-SOL) Access of SOL Tables 3-42
Workstation Files
Declarative SQL Statements

When to Use SOL ..
SOL and SAA
Knowledge of SOL
Multiple AS/400's
DDM Files
SOL Commitment Control
Error Handling
Performance of SQL versus High-Level Language Accesses
Which DDL?

Considerations for Data Conversion of System/36 Files ..
System/36 File Library
System/36 File Types .
Conversion Methods
Data Conversion Steps
Conclusion

4. Static and Dynamic SQL
Static SOL

Processing Without Cursors
Retrieving
Updating

3-43
3-43
3-43
3-43
3-44
3-44
3-44
3-44
3-44
3-45
3-45
3-45
3-46
3-46
3-46
3-47
3-48

4-1
4-1
4-1
4-1
4-2

Deleting
Inserting

Processing With Cursors
Retrieval
Updating
Deleting

Dynamic SQL
Dynamic SELECT Statements

Fixed-List SELECT statements
Varying-List SELECT statements

Dynamic Non-SELECT Statements
Statements Containing No Parameter Markers
Statements Which Contain Parameter Markers

Dynamic SQL Performance .

5. SQL Performance
The Nature of Database I/O

Creating the Access Plan
Data Retrieval .

Design Guidelines
Introduction
General Considerations ..
Database Design

Normalization
Table Size
Indexes
Matching Attributes of Join Fields
Database File Management
Journal Management

Application Design
Reusable ODP's Across Invocations .

Program Design
Optimizing CPU Usage - Avoid Dynamic SQL
Optimizing Index Usage
Minimize the Number of SQL Statements ..
Updating via Cursor Operation
Partial Update Capable Join with Subqueries
Include Selection Columns in ORDER BY and GROUP BY
OR and IN Predicates
Index Usage with the LIKE Predicate
Specify a BETWEEN clause on keys whenever possible
Join Optimization
Avoid Numeric Conversion
Avoid String Truncation
Avoid Arithmetic Expressions
Index usage with UPDATE
Optimizing Concurrency
Use COMMIT HOLD
Optimizing I/O with Blocking
Reduce the Number of Rows Processed

Data Management Methods
Access Path
Row Selection Options
Reusability of ODP's

The Optimizer

4-3
4-3
4-4
4-4
4-4
4-7
4-7
4-7
4-7

4-10
4-10
4-10
4-11
4-13

5-1
5-2
5-2
5-5
5-8
5-8
5-8
5-9
5-9

5-11
5-11
5-13
5-14
5-14
5-15
5-15
5-17
5-17
5-18
5-18
5-19
5-20
5-21
5-22
5-23
5-23
5-23
5-26
5-26
5-27
5-27
5-29
5-29
5-29
5-30
5-31
5-31
5-32
5-38
5-44

Contents XV

xvi Using SQU400

Precompile Optimization
Cost Estimation
Access Plan and Validation
Optimizer Decision-Making Rules
Join Optimization
Subquery Optimization

Analyzing Performance Problems
Methodology

Determining Indexes
Identifying Problem Code

Job Log and Debug Mode .
Interactive SOL

Identifying a Temporary Index
Inefficient Indexes
Work With Jobs Displays

Job Trace
The Nature Of Trace
Running the Trace .
Module Names to Look for in Trace

Performance Tools
Positioning: SOL vs Native File Management

Environment
Disclaimer
Native File Management vs SOL
SOL in General
SQL vs Keyed Files
SQL vs Non-keyed Files
SQL vs OPNQRYF
Static vs Dynamic SQL
Table of Comparisons
Batch Processing
The Importance of Indexes in SQL

SQL Performance Enhancements in Release 3.0

6. Distributed Data Management (DDM) Considerations
Interactive Access to Remote Tables
CL Commands on a Remote SQL Table via DDM
Programming Considerations

Read-Only Remote File/Table Access
Remote File/Table Updating Required
Limitations and Recommendations

7. SQL Commitment Control
Default Values

Interactive Implications under Commitment Control
Batch Implications under Commitment Control

Cursor Stability and *CHG
Repeatable Read and *ALL
Row Locking Under the Various Commitment Control Options

COMMIT and ROLLBACK with HOLD Option
Rollback Considerations

HLL Use of Commitment Control
Non-SQL Table Processing within an HLL Program
SQL Table Processing within an HLL Program
HLL or SQL Table Processing Summary

5-44
5-45
5-47
5-48
5-48
5-50
5-52
5-52
5-53
5-54
5-54
5-54
5-56
5-58
5-59
5-59
5-60
5-60
5-60
5-65
5-66
5-66
5-67
5-67
5-68
5-68
5-68
5-69
5-69
5-70
5-70
5-70
5-71

6-1
6-1
6-3
6-3
6-3
6-3
6-4

7-1
7-1
7-2
7-2
7-2
7-2
7-3
7-6

7-10
7-10
7-10
7-11
7-11

SQL and Non-SQL Table Access in the Same HLL Program
Commitment Control on Tables/Journals in Different Collections

Ending Journaling
SQL Journaling in Different Collections
"Read Only" Access of Tables in Different Collections

Commitment Control Considerations for New Tables

8. SQL Security
Default Security Levels
Changing Authorities

Authority to the Collection
SELECT, INSERT, UPDATE and DELETE
Views
Granting/Revoking ALL Authority
Authority for Selecting on System Tables
Authority for Creating Objects in a Collection
Authority for Creating an Index

Security Recommendations
Using SQL GRANT and REVOKE
Using System Security for All Authorities
Interactive SQL and Security .
Program Adoption of Authority
Commitment Control

9. Interactive SQL ...
Starting Interactive SQL
Interactive SQL Session
HELP Support
Session Services
Prompting and List Functions

Prompting Within SEU
Where to Use Interactive SQL and SQL Prompting

10. SQL Standards
ISO 9075-1989 and ANS X3.135-1-1989
ANS X3.135-1-1989 Integrity Enhancement
ANS X3.168-1989 Embedded SQL
FIPS 127.1 Compliance
SAA Common Programming Interface Database Reference

11. SQLl400 Portability .
Data Definition Language

SAA Size Limits
SAA Functions Not Implemented in SQLl400
System Catalogs
SQLl400 Data Definition Extensions
Authorization Control Differences
Other Considerations
Data Migration

Data Conversion Considerations
Summary

Data Manipulation Language
Locking Rules
Isolation Levels

COBOLl400 and SQL Portability

7-12
7-12
7-13
7-13
7-14
7-14

8-1
8-1
8-2
8-2
8-2
8-3
8-4
8-5
8-6
8-6
8-6
8-7
8-7
8-7
8-8
8-8

9-1
9-1
9-1
9-2
9-2
9-3
9-3
9-3

10-1
10-1
10-3
10-4
10-4
10-5

11-1
11-1
11-1
11-1
11-2
11-2
11-2
11-3
11-3
11:..3
11-3
11-4
11-4
11-4
11-4

Contents xvii

xviii Using SQU400

Data Type Equivalence 11·4
Using COPY·DDS or SQL INCLUDE 11·5
GO BACK Statement 11·5
SQL Continuation Characters 11·5

12. SQLl400 and Relational Theory 12·1
Cod d's Relational Rules 12·1
Referential Integrity 12·3

AS/400 and Referential Integrity 12·5

Appendix A. Code Example For Use of SQL WHENEVER in RPG · A·1

Appendix B. Code Example For Use of SQL WHENEVER in COBOL · B·1

Appendix C. Code Example For Use of SQL WHENEVER in PLII

Appendix D. Code Example For Use of SQL in C/400

Appendix E. Code Example For Use of SQL in FORTRAN/400 . .

Appendix F. Sample Tables Used in Examples
Inventory Table
Supplier Table
Quotations Table
Employee Table
Employee Project Account Table
Department Table
Project Table

Index

· C·1

· 0·1

· E·1

· F·1
· F·1

F·2
· F·3

F·4
F·6
F·7
F-8

X-1

J

.. :.J

C Figures

© Copyright I BM Corp. 1990

1-1.
3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
4-1.
4-2.
4-3.
4-4.
5-1.
5-2.
5-3.
5-4.
5-5.

5-6.
5-7.
5-8.
5-9.

12-1.

Query/38 Table
WHENEVER SQLERROR
WHENEVER NOT FOUND
SQL File/Table Access in an RPG Program
SQL File/Table Access in a COBOL Program
Use of ALIAS Parameter in a COBOL Program
HLL and SQL Access of Files/Tables
Example Screen For a Dynamic SQL Program
Program to Illustrate the Use of Dynamic Fixed-List SELECT
Program to Illustrate the Use of EXECUTE IMMEDIATE
Program to Illustrate the Use of PREPARE and EXECUTE ..
Methods of Accessing AS/400 Data
Non-reusable Open Data Path Mode
Reusable Open Data Path using ISVs
Reusable Open Data Path Mode
Building the Query Definition Template and Creating the Access
Plan
Statement Entered by the User
Statement as Converted by the Optimizer
Statement Entered by the User
OS/400 Query Component Module Flow
Example of a Foreign Key

1-4
3-26
3-26
3-38
3-38
3-39
3-41
4-8
4-9

4-10
4-12

5-7
5-39
5-41
5-42

5-45
5-50
5-51
5-51
5-63
12-4

xix

xx u· sing SQU400

1. AS/400 Query Tools

With the introduction of SQL on the AS/400' system, the programmer and end
user find themselves faced with a vast array of data manipulation tools which.
have, to some extent, overlapping functions. For querying data, a user can now
use:

• SQLl400*

• AS/400 Query

• Query/38

• Open Query File command (with a high-level language program)

• AS/400 PC Support File Transfer

• OS/400' Query Management.

This chapter provides a short description of each of these tools, as well as an
indication as to where each tool is best suited and the type of user it is aimed at.
A summary table is also provided, cross-referencing each product and the
functions that it offers.

Note that all of these Query tools use the same underlying database query
support, known as the OS/400 Query component. Performance of each query
tool is similar, however not identical. Performance may vary depending on the
type of query being processed. For more information refer to "SQL
Performance" on page 5-1.

SQU400 (5728-ST1)

Operation

The SQLl400 support complies with the SQL defined in the Systems Application
Architecture* (SAA)*. SQL may be used to define tables (physical files) and
views (logical files) as well as perform a query on a table or view. Most SQL
functions may be performed either interactively or in application programs
written in one of the following high-level programming languages: RPG/400',
COBOLl400*, C/400*, FORTRAN/400* and AS/400 PLiI.

To execute the interactive functions of SQL, you must have the SQLl400 licensed
program. However, you can create a high-level language program which uses
SQL, compile it on an AS/400 system that has the SQLl400 licensed program and
execute the object code from the compilation on any AS/400 with the IBM*
Operating System/400* program installed.

Where to Use SQLl400
SQLl400 is a programmer facility which will allow the user to query and
manipulate data in a database. The query component may be used in a
high-level language program to read one or more records to be processed by
other HLL statements. SQL is often the easiest form of coding database 1/0
requests. It is most useful for development of applications which are or may be
ported to other SAA platforms and required relational database access.

© Copyright IBM Corp. 1990 1-1

Interactive SQL can also be used by programmers to test SQL statements which
will later be embedded in a program. Interactive SQL is very useful for. ~.
examining data stored in files. It has the same display and print facilities as ...,
AS/400 Query, however, it does not have the all of the formatting capabilities. It
has an advantage over the DSPPFM (Display Physical File Member) command in
that it can display packed data on the screen, whereas DSPPFM cannot. It is a
very flexible debugging tool, allowing you to patch records, query data, and
construct SQL statements.

It is important to understand that Interactive SQL is not intended for end user
use. Prompting facilities make it easy for users unfamiliar with SQL syntax.
However, there is no way of preventing users from deleting or updating data in
tables, if authority is set up for use only in a HLL program. In addition, there is
no easy way for retrieving and individually storing queries.

AS/400 Query (5728-QU1)

Operation

1-2 Using SQU400

AS/400 Query is a decision support utility to obtain information and format
reports from any database files that have been defined on the system.

The major features of AS/400 Query are:

• Accepts files described with DDS, IDDU or SQL

• Combines up to 32 files (physical or logical) in one query

• Selects records and fields

• Defines result fields

• Sorts using various collating sequences

• Formats columns

• Allows report break definitions and summary functions

• Outputs to screen, printer or file

• Allows detail or summary processing

• Has the ability to individually name and save queries for future use.

There are three commands for using AS/400 Query:

• The Start Query (STRQRY) command displays the Query menu. From this
menu, the user may select either the "Work With Queries" option or the "Run
an Existing Query" option.

• The Work with Queries (WRKQRY) command allows the user to create,
change, run, copy, delete, display and print queries in interactive mode,
supported by various productivity functions such as extensive help text, file
and query lists, default query, and the "show" option.

• The Run Query (RUNQRY) command may be called from the command
screen or from a CL program. This enables the programmer to imbed query
applications into batch jobs, and is particularly useful where qLlery output to
a file needs further processing.

Where to Use AS/400 Query
AS/400 Query is a tool for end users, to allow for easy generation of reports on
data which their environment allows them to access. It is most useful for
"ad-hoc" queries and provides flexibility to the end user in defining and
accomplishing his reporting requirements.

AS/400 Query may also be used by programmers to provide a reporting tool to
the end user in a controlled environment. Programmers can insert AS/400
Query RUNQRY commands into job streams without the need to write HLL
programs.

Since it is very similar to Query/36, the System/36 user will have little or no
difficulty using AS/400 Query. The very high level of "ease-of-use" within AS/400
Query will particularly attract first-time users.

AS/400 Query provides one function which is not available in any other AS/400
query product: the data/text merge option. This option allows merging of data
into Office/400 documents in several ways and is very likely to be used where
office integration on an end-user level is required.

Query/38 (5728-DB1)
Query/38, the System/38 Query tool, is provided for compatibility for System/38
users wishing to migrate existing System/38 queries, and is therefore most likely
to be used by those already using the System/38. System/38 queries can be run
on the AS/400 system without this product, but cannot be modified. In order to
be able to create and modify such queries using Query/38, the AS/400 System/38
Utilities program product (5728-081) must be installed.

Query/38 is an easy-to-use tool to produce reports rapidly on data stored in files.
These files can be ~OS, SQL or 100U-created files. Query/38 provides basic
headings and simple logic features. It allows selection of certain records, or
certain fields from a file, as well as field creation (such as result fields), and
automatic summing and averaging.

Query/38 provides three functions not available in SQU400 or AS/400 Query.
First, Query/38 will produce reports on OOM-files (that is, remote data). Second,
Query/38 accepts multiple format logical files (for example, a logical file which
views header and detail records from two different files). Finally, Query/38
provides the ability to create "tables" which summarize data rather than list it.1
See Figure 1-1 on page 1-4 for an example of a table created by Query/38.
Summary tables can indicate totals, averages, and cumulative values for "group
by" fields. They can also indicate rankings (for example, from smallest average
to largest) in separate columns, and "count" and "cumulative count" records in
each group. A similar result can be achieved using SQL "COUNT", "SUM" and
"AVERAGE" functions, with the exception of the "ranking" function, which is
unique to Query/38. In addition, tables can be created with a major grouping
field at the side, and a minor grouping field at the top. This function is not
available through SQL.

1 These 'tables', which are reports produced by Query/38, have nothing to do with SQL tables, which are physical files.

1. AS/400 Query Tools 1-3

STATE COUNT OF RANK BY AVG ORDER RANK BY
RECORDS COUNT OF At40UNT AVG OF

RECORDS ORDER
AMOUNT

'M! ' 10 2 $165.07 2
'MN' 5 3 $175.80 1
'NY' 15 1 $ 80.54 3

Figure 1-1. Query/38 Table

Where to Use Query/38
Query/38 is a tool for end users, allowing for easy generation of reports on data
which they are allowed to access. It is particularly useful for "ad-hoc" queries,
and "one-off" reports, since it generates the report-writing program itself.

Query/38 may also be the easiest tool to use when summary "tables" are
required, especially when major and minor classes are required. Also, it
provides the fastest method of producing a report on multiple-format logical files,
and on DDM files.

SQL, OPNQRYF and AS/400 Query are more powerful and flexible programmer
tools than System/38 Query, and therefore System/38 Query is less likely to be
used by programmers in the future.

Tests prove that the performance of Query/38 is notably slower than AS/400
Query, when performing the same function. So for AS/400 users not requiring
the unique functions of Query/38, it is recommended to move to AS/400 Query
purely for performance reasons.

Open Query File (OPNQRYF) Command

1-4 Using SQU400

The Open Query File (OPNQRYF) command enables a subset of records from a
file to be selected for use during a particular execution of a program. It acts as
a filter between the program and the database, so that the program only
retrieves records that meet the criteria specified in the OPNQRYF command.

The command must be used in conjunction with an HLL program. This
processing program may be run several times on different data sets, by
changing the OPNQRYF "select" criteria.

Record selection, field creation, calculations, grouping and sorting are functions
of OPNQRYF. OPNQRYF is the only facility on the AS/400 which can perform
advanced mathematical functions including sine, cosine, tangent, hyperbolic
tangent, variance, standard deviation, and so on. (See the Control Language
Programmer's Guide for a complete list of functions). Physical files and logical
files can both be joined, and the key selected from the primary or secondary file
(two features not available in DDS). Also, OPNQRYF will create an index if none
exists, or use an existing one if it can.

J

Where to Use OPNQRYF
OPNQRYF is a programmer tool that can be used to improve efficiency of
programs. It can be used where a subset of records from a file is to be used for
processing, and a logical file has not been created. It sometimes provides a
more efficient processing method than reading a whole file if only some records
are required. For example, instead of the program reading and locking every
record in a file, OPNQRYF can pass to the program only those records
requested. It is also a tool to be used when the same program is to be run
several times, each time using different sets of data from the same, or different,
file. By changing the select conditions of the OPNQRYF, a whole new set of data
can be processed.

OPNQRYF has more advanced select and calculation functions than SQLl400 and
AS/400 Query. It provides the ability to update selected fields, through the
associated HLL program, which AS/400 Query does not. It cannot be used in
conjunction with Interactive SQL nor Query/38, since each requires its own open
data path (ODP), and OPNQRYF requires all subsequent file accesses to share
the same path.

AS/400 PC Support (5728-PC1) File Transfer
AS/400 PC Support provides a utility to transfer data from an AS/400 system file
to a PC file using an SQL-style query interface. Complete files, portions of files,
data from two or more files joined at transfer time, and grouped records from
files can all be transferred from the system to a PC file, to a PC display, or to a
PC printer or virtual printer. Conversely, a PC file can be transferred to an
existing AS/400 file and member, or a new file or member can be created at
request time. The transfer from the PC to the AS/400 system does not use an
SQL-style query. Only transfers of the entire file are possible.

The transfer request prompting follows the standard SQL requests, that is:

SELECT
FROM
~~HERE

GROUP BY
HAVING
ORDER BY

When transferring data to a personal computer (RTOPC command) the result can
be simply displayed on the screen, providing an Interactive SOL-type function.
Since PC Support also accesses DDM files and SQU400 does not, this function
could be used in place of Interactive SQL for queries on remote files.

When transferring data to the system (RFROMPC command), a physical
database file will be created at execution time, referencing fields from a PC field
reference file if required, if it does not already exist. Again, the target file could
be a DDM file on a remote system. The transfer facility of PC Support/400
includes a high degree of "user-friendliness" featuring contextual help text, list
functions and the "show" option.

1. AS/400 Query Tools 1-5

Menu-Based Natural Language Query (MBNLQ)
The PRPQ Menu-Based Natural Language Query (MBNLQ), 5799-PGP, enhances
the potential use of PC Support/400 by occasional end users. MBNLQ is a
front-end to the transfer facility of PC Support and allows the user to easily and
automatically generate English interfaces to System/36, System/38, and AS/400
databases. The English interfaces may be customized to reflect personal
preferences and can be used to interactively construct and execute English
queries that retrieve information from the AS/400 databases. The query is
created by selecting the query phrases from a screen using the cursor, or a
mouse. An example of such a query, built by selecting from menus, follows:

Find part number and price and description of parts with price
greater than 5 and with color the same as Igreyl or lorange ' ,

MBNLQ can output data in WKS file format, useful for report formatting,
tabulation, and charting by popular spreadsheet packages, such as LOTUS**
1-2-3, or Microsoft*" EXCEL.

Where to Use AS/400 PC Support
AS/400 PC Support can be used by both programmers and end users. End users
may find it useful for extracting information from AS/400 files to be used with
PC-based applications such as spreadsheets. Programmers may create
PC-based applications using the interface offered by the transfer facility to
retrieve data from the host. This data can be processed further within the PC
application leading to greater distributed processing.

05/400 Query Management

Operation

1-6 Using SQU400

OS/400 Query Management is a combination of functions, allowing access to and
manipulation of data in a relational database, and the arrangement of the
information into a readable (and usable) form. Services are provided in two
areas, querying and report writing in order to achieve this. OS/400 Query
Management provides the SAA Query/CPI Interface Support for the AS/400, as
described in the manual Common Programming Interface Query Reference
SC26-4349.

Query Management is included within OS/400. Application programs use it
through a program-to-program call interface, or through Query Management
objects that contain the queries, procedures and forms. OS/4OO Query
Management uses SQL statements for its database access. Therefore, any file
on the system, defined by DDS, IDDU or SQL can be accessed from a Query
Management object. Objects can be created directly, or they can be created by
converting existing AS/400 Query definitions.

The source statements can be exported to other SAA platforms, in order to
create appropriate Query Management objects on that system.

Where to Use 05/400 Query Management
05/400 Query Management is a very powerful tool in a DP environment. It is not
directly aimed at being an end user tool. It does not provide the end user
interface necessary to input the query criteria, and then review the results. It is
powerful in the ability it has to be used by the DP department as a provider of
database services to the end user, and in its portability across the 5AA
platforms. Because 05/400 Query Management uses 5QL statements, the
performance implications for the access to the data, are the same as for using
5QL. However, because 05/400 Query Management does more than just access
the data, allowances must be made for the extra work being done.

Overhead occurs when the output is written to the printer or to a screen. As
these will be the most commonly used functions of 05/400 Query Management
then, the performance implications must be taken into account but generally,
05/400 Query Management will be slower. If data selected is output to a
database file, performance is similar to other query tools performing this
function.

However, if summary reports are required, 05/400 Query Management may be
quicker than A5/400 Query for large files.

There are several instances where the use of 05/400 Query Management is
useful.

• If queries or reports change on a regular basis, then because the queries
are stored external to the programs, they can be changed without having to
change or recompile the programs - only the Query Management objects
have to be modified.

• 05/400 Query Management objects can be used on other 5AA platforms.
Therefore in a multi-platform environment, objects can be created on one
machine type, transferred to another and processed on this other machine.

• Variable substitution is allowed in the query to allow runtime specification of
the selection criteria of data. This provides greater flexibility to the user.

• The application is provided with a reduced set of error codes. This simplifies
error checking.

• The database calls are handled by the Query Management objects.
Therefore, application programming is simplified.

1. AS/400 Query Tools 1-7

Summary of Functions ~
OS/400 Query Management and SQU400 are combined in the following table, as
Query Management relies upon SQU400 runtime support for its data access
function, hence the abilities of Query Management are bound by SQU400.

Table 1-1 (Page 1 of 2). Comparison of Query Tools on AS/400

SQU400 AS/400 Query/38 OPNQRYF AS/400 PC
and QM Query Support

SQL collections, DDS files, Y Y Y Y Y
IDDU files

DDM files N N Y (even Y (on same Y
non-S/38 target

DDM files) system;
with GROUP
processing,

both
systems

must be of
same type-
two AS/400s

or two
S/38s)

Program described files with Y(single Y N N Y
IDDU-linked definitions column for

record)

Can select order Y Y Y Y Y

Select fields (PROJECT) Y Y Y Y (create a Y
new format)

Select records (SELECT) Y Y Y Y Y

Create new fields (such as Y Y Y Y Y
results)

Able to join files Y (up to 32 Y (up to 32 Y (only 2, Y (up to 32 Y (up to 32
PFs in total) PFs in total) second PFs in total) PFs in total)

must be
keyed)

Able to join logical files Y (except if Y (except if Y (not Y (not with Y (not with
view uses query uses join-logical Group by) Group by)
Group by) subtotals) files)

Able to join file to itself Y Y Y Y Y

When joining, key can be from Y Y Y Y Y
any file (not allowed in
DDS-LF)

Equal/unequal join Both Both Equal --no Both Both
match-

message

Group processing Y limited limited Y Y

Selection after grouping Y N N Y Y

Total only processing Y Y sub-total Y Y

.~ with final
only

Built-in functions (like AVG, Y Y Limited Y Y
COUNT, MIN, MAX, SUM)

1-8 Using SQU400

Table 1-1 (Page 2 of 2). Comparison of Query Tools on ASI400

SQU400 AS/400 Query/38 OPNQRYF AS/400 PC
and QM Query Support

UNION (that is, append results Y N N N N
of 2-32 queries)

DISTINCT function Y N N Y N

Creates temporary or Both Creates Creates N Both
permanent file report to report to

file if file if
desired desired

Produces report Y (OM & Y Y N (unless in Y
Interactive conjunction
SOL only). with HLL

ISOL limited program)
function

Updating of selected records Y N N Y N

Random processing (like RPG Y N N Y (if not N
CHAIN) using group

or
unique-key
functions)

Insert result into another file Y Y N Y (in Y
conjunction

with HLL
program)

L Can create "tables" with User N Y N N
ranking, major/minor classes programmed

- Limited
(no minor
classes or
ranking)

HLL restrictions COBOL'8S N/A N/A not Basic HLL must use
RPG/400 register

C/400 (SOL handling
only: also techniques
FORTRAN
and PUI)

DB~S support Y Y Y Y N

Performance optimizing Y Y Y Y Y

Environment AS/400 AS/400, 5/38 AS/400, PC
5/36 5/38

Programmer or End user tool Programmer End user End user Programmer Both

1. AS/400 Ouery Tools 1-9

1-10 . USing SQU400

(" I 2. AS/400 Data Definition Facilities

This chapter introduces the various methods for definition of externally described
files on the system. With the addition of SQl, there are three main alternatives,
and the decision about which to use will depend on what functions are required,
and be mainly based on the nature of the applications themselves. These are:

• Data Description Specifications (DDS)

• Interactive Data Definition Utility (lDDU)

• SQl Data Definition language Statements (SQl DOL)

This topic does not intend to cover in full detail every aspect of all three data
definition facilities; rather it provides an outline of their function with relation to
creation of files, and the relationship between these and the query interfaces
available on the AS/400 system.

Data Description Specifications - DDS
DDS is a powerful facility for external'ly describing a file that is to be used by a
program or system utility (licensed program product). DDS can be used for the
definition of physical files (PFs), logical files (lFs), display files, printer files, and
ICF files. Our discussion of DDS here refers mainly to the definition of physical
and logical files.

DDS is designed for use by programmers for the complete definition of these file
types. As with RPG, the programmer uses the Source Entry Utility (SEU) to
create specifications which are based on positional entries in records in a
source file member.

When the required file is created, the programmer issues a command that
includes the name of the new file, as well as the name of the file where the DDS
source statements are stored along with some additional file attributes. The
creation process will take these source statements, validate them, then create
the file if no errors are found.

The main advantage of an externally described file as obtained from DDS is that
the programmer need not define a field (or format or file) more than once. A
new program, screen, or any other file simply uses the definition already
available. This reduces the chance of error in the definition of the fields, formats
and files.

Physical and Logical Files
A physical file is a description of how data is seen in a program and how data is
actually stored in the database. A physical file contains one record format with
one or more members. This can be contrasted to a logical file, which is just a
description of how data is seen in a program. The logical file contains no data,
but it defines different formats over one or more physical files.

It follows that a logical file can only be created once the physical file or files,
upon which the logical file is based, is created.

© Copyright IBM Corp. 1990 2-1

Physicat'Files

Logical Files

2-2 Using SQU400

DDS has a variety of functions that are available in the definition of a field,
record format, and file. To help illustrate the power of a DDS-defined file, it is
useful to discuss some of these functions.

There are two basic areas in the data description specifications for the definition
of the physical file attributes. The first area is for the definition of the file,
format, and field names. Field characteristics (such as data type, length, and
decimal places) can also be specified. In addition, one or more of the fields may
be chosen as the key upon which the file is sequenced.

The second area provides for more free-format keywords for each field, format
or file. These provide extra definition. Some of the main functions available are:

1. ALIAS - Allows the program to use a different name for a field

2. AlTSEQ - Specifies different collating sequence when sequencing data

3. COlHDG - Column headings as displayed when using Data File Utility (DFU),
AS/400 Query, Screen Design Aid (SDA), Interactive SQl, etc.

4. COMP - Specifies data validity checking for a later defined display file

5. DESCEND - Sequence for key field, descending

6. DFT - Sets the default value for a field when a physical file field name is not
referenced in an associated logical file, and an output operation occurs to
the logical file

7. EDTCDE and EDTWRD - Used in the formatting of a field when outputting it to
a display or printer file (for example, providing floating $ signs, date edit,
other numeric edit)

8. FlTPCN - Used for the defi nition of the precision of a floating point field

9. RANGE - Specifies data validity checking for a later defined display file

10. REF - Used in specifying a field reference file from which to obtain field
definitions

11. REFFlD - To change the field name when obtaining the definition from the
field reference file specified in the PFllE parameter, or to reference a field
from a file other than the one named in the REF parameter

12. REFSHIFT - Specifies data type validity checking for a later defined display
file

13. TEXT - Descriptive text associated with the field or record

14. UNIQUE - Prevents the physical file from containing records with duplicate
key values

15. VALUES - Specifies data validity checking for a later defined display.

A logical file is somewhat different from a physical file. It can provide a subset
or view of information that is contained in the primary physical file or a
combination of physical files. This is application-dependent, and as such the
need for creation of logical files will depend on the structure of the application : . '~
itself. ~

(,

Summary

In relational theory, there are five main operators that are available for definition
of a view of physical data:

• Sequence - ordering the records based on the value in a field or fields

• Project - choosing a subset of the fields contained in the physical file

• Select - choosing only records which match specified criteria

• Union - appending two physical files with the same record format to produce
one large new file

• Join - producing a new record format based on two or more physical files
with different formats and a common (join) field or fields.

Using DDS, a logical file can be built to handle all of these operators. Sequence,
project, select and join form the mainstay of relational function that you see in
many applications.

Like physical files, logical files also have some additional function keywords for
extra definition.

The following functions are extra for logical files:

1. CONCAT - concatenates two or more physical file fields into one

2. SST - identifies a substring of a physical file field as a logical file field

3. JOIN, JREF, JFLD, JFILE, JDFTVAL, JDUPSEQ - support the join relational
operator

4. RENAME - changes the name of a physical file field in your program when
using the logical file.

5. ALL, DYNSLT, CaMP - Select/omit keywords

6. REFACCPTH - Reference Access Path Definition

7. TRNTBL - Translation Table.

In summary, you have seen that DDS provides the following:

• Programmer's utility - entry of specifications via SEU

• Allows for the definition of physical files

• Allows for the definition of logical files and provides the five relational
operators: sequence, select, project, union, and join

• Has facilities for providing extended definition to the field characteristics

• Interfaces with SDA for panel definition

• Can be used in a field reference file environment where a particular field is
only required to be defined once.

For more information on Data Description Specifications, see the Programming:
DDS Reference (SC21-9620), and for further detail on Field Reference Files, see
Programming: Database Guide (SC21-9659-1).

2. AS/400 Data Definition Facilities 2-3

Interactive Data Definition Utility - IDDU

File Definitions

2-4 Using SQU400

The Interactive Data Definition Utility (IDDU) is an interactive tool which prompts
a user to define the characteristics and content of data files on a system. It is
primarily designed for compatibility with IDDU/36 so that users migrating from a
System/36 to the AS/400 System/36 Environment have the same facility as they
may have previously used.

IDDU is designed to be used by a knowledgeable end user or a programmer. As
the prompts for input are presented in an English-like manner, and the entry
screens have defined help text, an end user who has a requirement to build a
file can quite easily create the needed definition, usually without having to refer
to a manual.

IDDU is designed to create the external definition of fields, record formats, and
files. Its full list of facilities include some extra functions:

• Create and describe data dictionaries, file, record and field definitions

• Change existing dictionaries or definitions

• Copy definitions

• Delete definitions

• Print definitions

• Rename definitions

• Show the relationship between definitions and files.

In addition, IDDU allows for some extra function to assist the user in setting up
the initial content of the file:

• Create a database file

• Enter, update and delete data in this file.

The definitions created by IDDU are stored in data dictionary files. These objects
are identified by QIDCTxnn, where the xnn will vary for each object (x is a .~

character, and nn two digits). There are 17 of these. In addition. there is an"
object with the same name as the library, with an object type of *DTADCT (data
dictionary). This is a special object containing all the definitions in this library.
Entries in this object only get created once files are defined to the dictionary. All
SQL collections contain these same data dictionary objects as the basis for its
catalog.

The function for the creation of files is relatively straightforward. File definition
requires the selection of one or more record formats. and optional text and long
comment. IDDU follows the traditional data dictionary approach which states
that there is adequate facility for the full definition of every element in detail.
The long comment facility allows a description of up to 1360 characters. This is
also available for the record formats, fields, and data dictionary. The text facility
is for the traditional AS/400 system object text which is generally 50 characters
long. Again, this is also available for the format, field and data dictionary
definitions.

Record Format Definitions

Field Definitions

Creating a record format is quite similar to that for a file, with the exception that
generally only field definitions must be selected. All other facilities are
available. In this environment a user is likely to select a number of fields to
complete the record format.

As expected, fields require more information for the correct definition of the data.
The following are some of the main facilities available for field definition:

• General characteristics - name, type, size, decimals

• Column headings - for AS/400 Query output

• Long comment

• Keyboard shift - for controlling input values in SDA panels and DFU

• Alias - alternative name when definition is included into a high-level
language program.

For numeric fields:

• Data type: zoned, packed, binary, floating point

• Numeric editing choices:

Decimal point character
Thousand separator
Negative sign
Print zero value
Replace leading zeros
Show single leading zero
Date/time edit separator
Edit code or edit word.

IDDU is only concerned with the creation of physical files. It has no facility for
the creation of logical files with a different key sequence, or projection of fields,
or to join multiple files. IDDU was originally conceived on the System/36 for use
with Query/36, which was the tool that an end user has to produce
logical-file-like operations on the created file. These functions have now been
extended to the AS/400 system with the AS/400 Query product.

When working with an IDDU-defined file, it is important to understand that the
process of changing the structure of the file is more difficult than for a DDS- or
SQL DOL-externally defined file. Changing IDDU definitions for externally
described files can be a lengthy procedure, although IDDU does support the
creation of new versions. If a change is required, the original file must be
renamed, the definition changed (to add a new field, for example), a new file
must be created, then the original data copied back in. Any AS/400 Ouery
queries defined for that files must be also updated for the new file definition.
This is much more complex than for DDS or SOL-defined files.

2. AS/400 Data Definition Facilities 2-5

SQL Data Definition Language (DOL)

2-6 Using SQU400

The format of SQL data definition language for the description of data is
somewhat different from that of DDS and IDDU. It uses statements which contain
clauses that provide the definition information. It is generally easier to read and
code SQL DOL specifications than DDS.

There are eight basic statements which can be used in the definition of data.
These can be entered using Interactive SQL, or can be embedded in a program:

• CREATE COLLECTION - creates a library which can contain tables, views,
and indexes. This also sets up the catalog and data dictionary objects along
with a journal and journal receiver.

• CREATE TABLE - creates a table in the collection with column definitions
provided.

• CREATE VIEW - creates a view on one or more tables.

• CREATE INDEX - creates an index on a table.

• DROP - deletes a collection, table, view or index and updates the catalog.

• COMMENT ON - SQL catalog comment field for the description of tables,
views and columns.

• LABEL ON - SQL catalog text field for the description of tables, views and
column headings.

• GRANT/REVOKE - changes table and view security rights for users.

It is worthwhile discussing these statements in more detail.

CREATE COLLECTION: This statement will create all of the same database
objects that IDDU creates when building a data dictionary. These are physical
and logical files which contain the field, format and file definitions. SQL catalog
tables and views are created, the contents of which can be displayed by the user
to examine the structure of the data. A journal and journal receiver are also
created for data integrity in a commitment control environment.

CREATE TABLE: This requires the user to specify the name of the table
(physical file), along with each column (field) name. The user must specify other
att~ibutes such as field data type, length, and whether the column allows a
system default value. CREATE TABLE creates a non-keyed physical file and
updates the catalog.

CREATE VIEW: This creates a logical file over one or more tables or views and
updates the catalog. This will support the relational operators: select, project,
and join. Union and sequence are not supported in a view (or a table). If
required, these must be specified in the final SELECT statement for the data.

CREATE INDEX: This will create an index that can be used with a table or a
view and updates the catalog. An index can be created over one or more
columns. The database optimizer will decide whether the index is used based
on the column name (or names) in the index. An index will generally improve
the performance of a SELECT statement which requires data ordered by the field
on which the index was built, or a SELECT statement based on data in that field.
The index is a keyed logical file, however it cannot be queried by SQL.

L'
DROP: This statement allows the user to delete an index, view, table, or
collection. When an index, view or table is dropped, the related entry in the SQL
catalog is also removed.

COMMENT ON: Allows for a 254-character description to be added to the
catalog entry for a table, view, or column.

LABEL ON: Allows for a shorter descriptive text to be added to the catalog entry
for a table, view, or column. The label for a table or view can be 30 characters
and is the object text. The label for a column can be 20 characters and is used
as the column heading when using AS/400 Query and the field heading when
working with OFU or SOA on the table. For a table, this text is displayed when
performing a DSPLIB command or viewing the catalog.

GRANT/REVOKE: Changes the security for tables and views. See "SQL
Security" on page 8-1 for more information.

2. AS/400 Data Definition Facilities 2-7

Summary of DDL Functions

Function DDS IDDU SQL DOL

Target User Programmer Programmer or End Programmer
User in S/36
Environment

Entry Environment Source Member IDDU Programs & Interactive SOL or
Menus embedded in programs

User Assistance for SEU Syntax Check Interactive Msgs, Online Precompiler msgs, SEU or
creation of definitions Help ISOL syntax check

Documentation of created CRT command listing, IDDU Print utility, Select on the SOL catalog,
data structure DSPFD/DSPFFD DSPFD/DSPFFD DSPFD/DSPFFD

Creation of Physical Files Yes Yes Yes

Creation of Logical Files Yes N01 Yes

Multiple Record Format Yes - LF Yes - program described No
Support PF

Data File Utility capable Yes Yes Yes

Relational Operators All None All except sequence and
Supported union. Must be done with

SOL DML

External Definition Yes Yes (if externally Yes
Available to Program described and in S/36E)

Utility Functions None - use System Copy, Delete, Print, Drop
Utilities Rename

Definition of field output Yes (full) Yes No (column headings only)
attributes (for DSPF, DFU,
Printer File - eg: Numeric
Edit)

Communication File Yes No No
Definition

Table 2-1. Comparison of Data Definition Functions on ASI400

Mixing DDLs When Using SQL
Often when using SQL the need arises for some DOL functions available only
under the other DOL methods (for example, the numeric edit facilities). DDS can
be used to create a file, with an extended definition for the fields. These
extensions are functions that SQL cannot provide, such as formatting a date.
The file can be created directly into the SQL collection library allowing the user
to perform SQL table functions, but with the addition of DDS keywords to add
extra edit facilities. Also an existing file can be copied into an SQL collection
using the CPYF CL command with the CRTFILE(*YES) parameter. All editing
specified in the DDS will be copied with the new Physical File. MOVOBJ or
CRTDUPOBJ commands could also be used. In addition. the Physcial File can

1 With IDDU, many of the logical file functions which are provided by DDS and SQL but not available directly from IDDU, are
supported in a user environment with the AS/400 Query product. IDDU has the ability to create keyed physical files.

2-8 Using SOU400

,~

~

J

be created directly into an SQL collection, by specifying the collection name as
the library on the Create Physical File (CRTPF) command.

For example, if an edit code is used to format a date or a numeric, then that edit
control specification is copied to the SQL table. So, if rows are inserted into the
table, and then displayed with Interactive SQL, the data will be formatted
according to the edit codes specified. This gives you the ability to define
functions not available directly through SQL DOL statements.

Note: Not all of the DDS keywords are compatible when moving a file into an
SQL collectionllibrary. If Default Value (OFT) and Check Validity Checking
(CHECK) keywords are included on the file, when it is copied or moved an error
will result (CPF-2F74).

The file that is created with this method has all the characteristics of an SQL
table, once it is in an SQL collection, except for journaling. Journaling will need
to be changed. See "Defining Tables and Files" on page 3-33 for more
information on what changes are required.

DDL Recommendations
At this stage, it is clear that not all data description facilities provide all of the
functions that are required. DDS does not create data dictionary entries for files
outside an SQL collection like IDDU and SQL DOL. IDDU can be cumbersome in
the way changes are made to the file structure, and does not support the logical
file concept. SQL DOL does not allow for the extended column (field) definition
to provide items like edit codes, multi-line AS/400 Query column headings,
Screen Design Aid data validity checking, and so on.

The reader might be concerned that there is no clear-cut method that should be
used. The following list is an outline of likely decisions one might make for data
definition in an application environment:

1. Migrating from System/36

If a user is migrating from a System/36 to the System/36 Environment, then
the choice of data definition language will depend on whether the extra
function that is available outside the System/36 Environment is to be used.
The System/36 uses program-described files. If this is to continue under the
System/36 Environment, then there is no concern, as no additional data
definition is required. If the user wishes to make use of AS/400 Query (as
Query/36 may have been used on the System/36), then IDDU is the obvious
choice for further definition of data. If the user intends to convert from the
System/36 Environment, and use external definitions for files, then the user
may still choose IDDU (if he is already familiar with it) or DDS if other
facilities like logical files are required. If SQL statements are to be used in a
converted application, then either IDDU or SQL DOL can be used.

2. Applications which use only high-level language input/output (I/O)
statements

For applications which use only high-level language I/O statements, there is
no need for definition in any facility other than DDS. Many customers
migrating from System/38 will already be DDS users. All of the facilities that
were available on the System/38 are provided, and more. AS/400 Query will
work on DDS-defined files. If SQL is not being used, it is better that the
external definition be created using DDS. The only reason a developer may

2 AS/400 Data Definition Facilities 2-9

have for using SQL DOL statements in this environment is for a quicker (and
more straightforward) method of creating a simple data definition for a ;...J
physical file.

3. Applications which use both SQL data manipulation language and high-level
language 1/0 statements

In an environment where both forms of 1/0 statements are required, then
there are other choices to make. First, some form of SQL collection is
required for a full SQL application (that is if all the functions in SQL are
being used including commitment control for instance, the data must be
defined in an SQL collection).2 However, as discussed before, if the definition
is created with SQL DOL, it does not provide the extended definition
available under the other forms.

If the table (file) were to be used in Screen Design Aid, AS/400 Query or
DFU, then SQL would not always provide the column (field) definition as
required. In this instance, it is recommended to follow the directions in the
topic "Mixing DDLs When Using SQL" on page 2-8. This outlines how the
table (file) can be defined using both SQL DOL and DDS to provide both
forms of definition required in each environment.

When considering programs that use high-level language I/O statements as
well as SQL DML, then it is important to realize that DDS is not required for
the successful operation of the high-level language I/O component.
High-level language I/O statements will operate equally as well on
SQL-defined files. Not all programs in an application will necessarily use
SQL DML statements. These other programs which only contain high-level. .,. ,
language I/O statements can retrieve the SQL external definition as easily as ...",
retrieving the DDS definition.

4. Applications which use only SQL Data Manipulation Language I/O
statements

If applications are relatively simple, then often only SQL DOL is required.
The programmer can create the external definition using SQL. Every
reference to the file will retrieve this external definition. The programmer is
then responsible for providing the extra definition of the columns (fields) if
required, for instance in Screen Design Aid, printer files, and so on.

Recommendation --------------------------,

For most application development environments, it is recommended to create
Physical Files with DDS. The created files can optionally be moved into SQL
collections for full SQL usage with commitment control.

2 But, if a user creates his own journal, then SQL and commitment control can be used outside a collection.

2-10 Using SQU400

C' I 3. Application Programming With SQL

The use of SOL in an application environment can substantially change the
nature and efficiency of the programmer's tasks on the AS/400 system.
Programs with embedded SOL will look and operate differently from those which
use high-level language (HLL) inpuUoutput (I/O) statements. It should be noted
that to optimize performance, complex applications will probably have a mixture
of HLL and SOL I/O statements. For more detailed information on performance,
see "SOL Performance" on page 5-1.

This and the following chapters assume a basic knowledge of the SOL language.
This can be obtained from reading Programming: Structured Query Language
Reference (SC21-9608) and Programming: Structured Query Language
Programmer's Guide (SC21-9609). The following chapters build upon many of the
SOL concepts in these manuals.

SQL Program Design Considerations
This section covers the topics related to the creation of applications which use
SOL as the primary I/O mechanism. There are many points worth considering
before embarking on a major application development task using embedded
SOL. Most of these points are global to SOL in all applications, and as such
require a decision to be made on the standard to be adopted throughout the
application system.

Naming Conventions
The AS/400 system implementation of SOL has two types of naming conventions
for SOL objects. Examples of each naming convention are detailed below. The
AS/400 system naming convention provides compatibility with all other AS/400
commands. This is the default for Interactive SOL and CRTSOLxxx commands.
The other is the SOL naming convention, which provides SAA compatibility with
other versions of SOL (SOUOS, 082* and OS/2* Extended Edition).

The choice of naming convention is made with a parameter that can be used
when starting Interactive SOL or when precompiling. In Interactive SQL. the
naming convention cannot be changed while the session is active. Within an
application program, the naming convention is standard across the program. If a
program at one level calls a program at another level, then the second level
program may use a different naming convention.

SQL Naming Convention
The SOL naming convention appears as:

COLLECTION. TABLE

As a collection corresponds with a single library on the AS/400 system then the
COLLECTION part of the qualified name can be considered to be a library name.
If no collection name is provided, then for interactive and dynamic SOL the user
profile name (also called the authorization 10) of the job is used. In static
(embedded) SOL. the user profile of the program owner is used. With the SOL
naming convention, the library list is never searched to find the required table.

© Copyright IBM Corp. 1990 3-1

If you do not specify the collection name when referencing a table, and the table
is not in a collection with the same name as your user profile, then the SQL . .~

statement will get an error giving SQL code SQL0204. ...,

System Naming Convention
The system naming convention appears as:

LIBRARY/FILE

If no library name is supplied, then the library list is searched for the required
table. When using the system naming convention, the normal OS/400 rules for
object location apply. The library list will be searched both at precompile time
and at run time.

Naming Conventions When Qualifying a Join
In a SELECT statement which requires the qualification of a column (usually in a
join operation) the choice of naming convention can make the qualification
nomenclature confusing. In the following example. you will join two tables,
where each has two columns, and one of these columns (COLB) is common to
both tables. This example uses the system (*SYS) naming convention:

SELECT COLA, TABLEl.COLB, COLC
FROM COLLECTION/TABLEl, COLLECTION/TABLE2
WHERE TABLEl.COLB = TABLE2.COLB

Notice how you require a mixture of object separators - the slash (I) and the
period (.).

If you were to use the SQL (*SQL) naming convention the same example would
look like:

SELECT COLA, COLLECTION.TABLEl.COLB, COLC
FROM COLLECTION.TABLEl, COLLECTION.TABLE2
WHERE COLLECTION.TABLEl.COLB = COLLECTION.TABLE2.COLB

This time the object separators are all the same. but the SQL naming convention
requires the collection name to be included with the qualification of the columns.
As you can see, this gets complicated.

Naming Convention Recommendations

3-2 Using SQU400

It is worthwhile to consistently use one naming convention or the other. It is not
wise to mix these across applications. The decision about which convention to
use will most likely be based upon the need for compatibility with other SQL
products (SQUDS, DB2 or OSI2 Extended Edition).

It is likely that most users will choose the system naming convention. This is
because there is no effort (it is the default option) in using it. It offers the same
facilities as for other system commands in terms of library search list when
locating objects. It is most suited to users who are familiar with the AS/400
system object structure.

Collection/Li brary Concept

SQL Catalog

The AS/400 system library concept provides a structure quite different from other
implementations of SQL. An SQL collection equates to a library on the AS/400
system. The library or collection gives a user a place to store all objects related
to a particular application. This may include programs, source files, commands,
and SQL tables, views and indexes.

SQL will work well in an environment where all of the objects for an application
are stored together in the same library. Using the library list concept, an
application can have access to SQL objects which have been identified in a
program using the system naming convention (that is without a library
qualification). This provides some advantages for testing, as an application can
be executed against a test table just by changing the order of the libraries in the
library list (or using the OVRDBF command). However, the library list concept
can only be implemented when the system naming convention is used in an
application.

Therefore, it is recommended that all of the SQL objects for a single production
application be kept together in one collection/library. In this case, there will be
one collection/library for each application. An application that uses a table from
a different collection/library has three choices for the way the program can be
coded to locate it:

- Explicitly name the collection/library as a qualification to the table name

- Use the library list to locate the table, and do not qualify the table in the
application

- Use the Override Database File (OVRDBF) command.

Any of these forms is acceptable depending on the application requirements.

There are some important considerations with regard to commitment control in a
multi-library environment that should be noted before this is implemented.
These are detailed in "Commitment Control on Tables/Journals in Different
Collections" on page 7-12.

Collection vs Database: In SQLl400 release 2.0, the term Collection was
introduced to describe what was originally called a database, meaning an SQL
library. This new term is used in every instance where DATABASE was
previously used. The reason for this change is to reflect a change to the SAA
definition for database access. Both DATABASE and COLLECTION can be used
in SQLl400 today, but COLLECTION is the recommended term for new
applications.

The SQL catalog is a series of tables and views which contain information about
the content and structure of an SQL collection. Each collection has its own
catalog and there are also two database files in QSYS containing
cross-reference information on the relationships between files and dictionaries.1

1 These are called QADBFDEP and QADBXREF. They are maintained by the AS/400 system database, and as such, users need
not be concerned with their operation.

3. Application Programming With SQL 3-3

The main purpose of the SQL catalog (library component) is to provide
information to the users about the structure of the SQL objects in the collection.

There are six views which users may query to get information about the
collection. These are:

• SYSCOLUMNS

• SYSINDEXES

• SYSKEYS

• SYSTABLES

• SYSVIEWDEP

• SYSVIEWS.

A user can access these views by normal SQL SELECT statements. A
discussion and the layout of each view is contained in the Programming:
Structured Query Language Programmer's Guide (SC21-9609).

The information contained in the SQL catalogs is updated whenever a change is
made in the content or nature of the collection itself. This update is made
implicitly when a user executes another SQL statement or CL command. For
instance, a CREATE TABLE will be automatically reflected in the SYSTABLES and
SYSCOLUMNS catalog views.

As these catalog views are dynamically updated, they are good candidates for a
simple user application to produce a map of the collection. Such an application
would simply list in a structured format the definition of the tables, views,
indexes, columns, and keys so that a clear understanding of the whole collection
may be obtained quickly.

Updating the catalog every time a change is made in the structure of the
collection could cause some performance impact. There is an overhead
associated with each SQL DOL statement. However, the effect is negligible, and
the maintenance of the SQL catalog should never be a bottleneck. One very
good reason for this is that updates to the catalog are largely made with
changes to the structure of the collection itself. Even in very complex
applications, this is not something which happens with a high frequency.

Catalog as an Aid to the Optimizer

3-4 Using SQU400

Unlike other implementations of SQL, the SQU400 catalog is not used for
assisting the optimizer in obtaining the fastest result. Due to the inbuilt nature of
the AS/4oo database, all of the information required by the optimizer is already
held in the physical file objects themselves and other OS/4OO internal objects.
The SQU400 catalog is present for compatibility with other implementations of
SQL. It provides quick access to on-line documentation of the collection and
may serve as the base of printed documentation of the application being
supported by the collection.

I Indexes
Indexes may be created to improve performance in retrieving data from SQL
tables. The optimizer chooses whether a user-created index is used or not.
Users only have the facility to create indexes over data in a table. Indexes,
referred to by the term access path, created by DDS logical files can also be
used. Indexes cannot be created on views.

The system can access an index for table data access regardless of library
location or object authority for the index.

There are some techniques for deciding whether an index can be used when
performing a select. If the data is requested in a certain sequence, then it is
likely that SQL could use an index for retrieval. If a WHERE or GROUP BY
clause is included on a SELECT statement, the optimizer will usually use an
index to retrieve the required rows. When two or more tables are joined, the
to-file (second table) will have an index created over the join column. Users
then are likely to create indexes to improve the performance of these selections.
However, it is very important that users do not create too many indexes over a
table. The performance of future insert, update, or delete operations on rows in
the table could be poor due to the high overhead with each operation associated
with the maintenance of all the indexes.

In designing an application, it is worthwhile evaluating in detail the requirement
for an index. The following points should be considered:

• Size of table, with indexes

For selections upon a relatively small table, it is likely that the system effort
involved in maintaining the user-created index through changes in the data
over a period of time is greater than the system effort to scan the table to
retrieve the required data.

On the other hand, if the file is large, then the effort of the system in building
an index at select time can be a major task, and therefore should be
avoided. It is beUer in this instance to have a permanent index created by
the user that is kept up to date when the data in the table changes.

The definition of a small or large file is not exact. This will also vary
according to record length. You will have to determine what is appropriate
for your application.

The Programming: Structured Query Language Programmer's Guide
(SC21-9609) states that when the size of a table reaches 10,000 rows or
more, the user should start considering the performance implications of SQL
statements. At 100,000 rows or more this should be considered more
actively. If an SQL statement requires the ordering of 1000 rows or more,
then consider improving the performance of the ORDER BY clause. When
accessing more than one table in a SELECT statement (for example, a join),
then you should consider trying to improve the performance of the SELECT
statement. All these comments relate to the creation of indexes.

A user-created index can have a key length of up to 120 characters in length.
This can be made up from multiple columns in any sequence. The optimizer
will handle sequence requests (the WHERE clause, ORDER BY, or join to-file)
by building a temporary index for a key of up to 120 bytes. Generally the
optimizer will choose to scan the table, rather than build a temporary index.
Temporary indexes are built only for joins and selects which specify ORDER

3. Application Programming With SOL 3-5

3-6 Using SQU400

BY and FOR UPDATE OF. Once the user operation requires a key of greater
than 120 bytes, the sequence is handled with a sort facility. The major .\
implication of this to users is that when the sort is used, the result is ...,
read-only and will not be affected by changes. If an ORDER BY is specified
for a union request or the specified union operator returns only distinct
records (not UNION ALL), then a sort will be used.

For union all, a sort is not performed but a temporary file is used.

The distinct operator processing will either use a sort, or an index to help
exclude duplicate records.

If a unique index exists over the specified table in the FROM clause and this
request is not a join and all of the keys are being returned, then minimal
processing is done since the records returned will already be distinct.

If an index has been selected by the optimizer and at least the first key of
the index is returned, then a sort will not be necessary and the index will be
used to perform the distinct processing.

If the optmizer can not use an index for the distinct processing, then a sort of
the returned records will be performed.

• Percentage of times the number of the selection based on a sequence is
required

If an unusual sequence is desired on an infrequent basis, it is often better to
display a message to the user of the application with advice to wait for the
selection, than to keep an index which is mostly never used, but frequently
updated by other applications.

• Time application takes to perform select

The previous point can be contrasted with the time it actually takes to build
the index. If a selection is made over a very large file, the time to build the
index may be unreasonable for an interactive application and may degrade
performance for the entire system while the index is being built. In this
instance, a CREATE INDEX may be done before the SELECT statement (with
a DROP INDEX after the selection is complete). This means that the index
doesn't exist when the table is being used by other applications. It can be
created at a point in the application cycle where the delay is less noticeable
(like running in a background task while the user is doing something else),
thus minimizing the actual selection time.

• Messages displayed on screen message line while SELECT statement is
running

When executing a SELECT statement in Interactive SQL the select process
may display a message on the message line of the screen indicating that an
index is being created. "Query Running. Building Access Path for file
(fi 1 e-name) in (1 i brary) ." If this is the case, then it is clear that the
optimizer requires an index to process the select, and the user will
experience a delay while the index is being built.

If the access path message is displayed for an extended period of time, then,
depending on the other points listed here, this is a very obvious clue that a
permanent index should be created. This message does not appear when a
SELECT statement is embedded in an application program. The SELECT
statement must be run in Interactive SQL to determine if the optimizer
requires an index.

Views

• Using the LIKE comparison operator

Wherever possible, the use of certain matching patterns with LIKE should be
limited. It can perform a full scan of the column to be compared. The
optimizer will assist the LIKE function by adding an extra clause to the
SELECT statement when the leading comparison characters are not wildcard
(percent sign or underscore). For example, it is better to code:

than

SELECT PARTNO, OESCR, ONHAND
FROM INVENTRY
WHERE DESCR LIKE ':DESCR%'

SELECT PARTNO, OESCR, ONHAND
FRO~l INVENTRY
WHERE DESCR LIKE '%:OESCR%'

It is a good programming guideline to code alpha-search routines that are
right-end generic rather than left-and-right generic.

For more information on the use of indexes from a performance perspective,
refer to "SQL Performance" on page 5-1.

An SQL view provides a subset of the data in a particular table, or an
amalgamation of data from more than one table. It permits a user to see data in
the way he wants to, regardless of how and where it is stored. The SQL view is
the equivalent of a DDS logical file without a key field, and is of type LF.

To create a view, the SQL CREATE VIEW statement is used. In creating the view,
column redefinition is not required. That is, it is not necessary to give the
characteristics of each column in the view (like column-name CHAR(24) NOT
NULL WITH DEFAULT), but just to name the column and table from which it is
taken. The characteristics of the columns are retrieved from the table when the
view is created.

Inserting Data into Views using SQL or DFU
The SQL INSERT statement or a DFU program can both be used to insert rows
into a view in the same way that they can be used to insert rows into a table.
However, data can only be inserted into views that are based on a single table.
It is not possible to insert data into views that join more than one table, as it is
not possible to insert data into join-logical files either.

Views do not contain any data themselves, but look at the data in their
underlying tables. You may want to insert data into a view, which will in reality
be inserted into the table on which the view is based. However, since views
may not contain all the columns of a table (for example the view may contain
only CUSTNO and AMOUNT from a table containing CUSTNO, CUSTNAME,
ADDRESS, PHONE ... AMOUNT, and so on) you may only be inserting data into
some of the columns in the table. In such cases, it depends on how the table
was created as to how the system handles the insert request.

Nulls: When creating a table, columns can be defined with the NOT NULL WITH
DEFAULT clause. NOT NULL specifies that the column cannot contain null
values. WITH DEFAULT specifies that the column assumes default values when
a row is inserted, where no actual value is given for that column. Therefore,

3. Application Programming With SOL 3-7

when inserting data into the columns of a view, the system will insert zeros and
blanks into the corresponding numeric and character columns that are defined in '.. .. ~ ...
the table but not in the view. However, if you create the table using the NOT ..""
NULL clause, but omit WITH DEFAULT, then SQL and DFU do not know what
values to insert into the non-view columns, and therefore INSERT requests are
not allowed. The view in this situation is considered as read only (as it is not
insert-capable, however update and delete operations may be performed).

DDS-created physical files do not have a NOT NULL WITH DEFAULT clause when
creating them but they should be tr~ated as if they have been defined in this
way. They always have the possibility to use SQL or DFU to insert data into
them. The system will automatically insert default values (zeros and blanks) into
the fields which are not part of the logical file. The OFT (default values) keyword
in DDS allows default values other than zeros and blanks (for example, the
STATUS field may default to 'OK').

For more information on treating NULL values in an HLL program with
embedded SQL, see "Indicator Variables" on page 3-28.

Join, Subquery and Union

Join

3-8 Using SQU400

Union and join are two relational operators which both deal with the combining
of two or more tables or views into one logical processing set. Subquery is a
function that allows a result from a inner level select to influence the outer level
select results by being used as comparative data in a where clause. They all
are very powerful and provide functions which in a high-level language program
would be very difficult to write. The following section briefly looks at each
facility, and provides some examples of their uses. ~

The use of the join operator is the key to unlocking a correctly normalized
relational database. Normalization theory has a variety of rules including: data
should be atomic, without repeating groups, and have column values which are
functionally dependent on a primary key value.

A normalized relation is the most robust way of storing relational data.
However, if there were no techniques for easily combining the normalized data,. , "
then there would be no point in normalizing in the first place. Join provides this"
facility plus a lot more.

Equl-Joln: The normal join used in most applications is the simple equi-join.
This is where two tables are joined based on a condition that relates a column
that is usually common to both. The relationship is "equal", that is the value in a
column in one table is equal to the value in a column in the other table.

For instance, a customer monthly accounts table (MONTACCT) may have as
columns a customer number, payment details, outstanding balances, but no
"company personal" details. These might be held in another table, the customer
name and address table (NAMEADDR), as such:

Monthly Accounts Table
Customer Number
Amount Owing This ~Jeek

Amount Overdue
Purchases This Week
Purchases Month to Date
Previous Order Number
Month Number

Customer Name and Address Table
Customer Number
Customer Name

- etc -

Street Address
Shipping Address
Contact Person
Contact Phone Number
Discount Group
Customer Category

- etc -

A join on these two tables may be needed to produce a financial summary for
the month for the accounting staff. To do this, a join operation would be
included in the SELECT statement like the following:

SELECT MONTACCT .CUSTNO, CUSTNAt~E, AMTOt-JE,. AMTOVR, PURCHMTD
FROM MONTACCT, NAMEADDR
WHERE AMTOVR > 10000
AND MONTACCT.CUSTNO = NAMEADDR.CUSTNO

The result is a set which contains five columns cross-relating the data in the two
tables. Note the join actually happens by specifying columns from the two
tables, and providing an association between the two tables with the expression
(MONTACCT.CUSTNO = NAMEADDR.CUSTNO). We have qualified the columns
here as they have the same name in both tables. However, in a join the join
columns do not have to have the same name.

In understanding how a join actually works it is helpful to think of the following
conceptual example. Consider that when joining the two tables above, the result
is first determined based on a join between all rows in both tables. For instance,
assume that the tables only contain information for three customers. The data
might look like this:

CUSTNO
23
55
88

- MONTACCT Table -
AMTO~JE AMTOVR PURCHMTD
123000 20000 154000
99000 12000 120000
44000 16000 55000

- NAMEADDR Table -
CUSTNO CUSTNAME

23 B109gs and Co
55 Smith and Jones Co
88 Brown and Family

If all rows in one table were joined to all rows in the other table the result would
be nine rows.

3. Application Programming With SQL 3-9

3-10 Using SQU400

- MONTACCT Table - - NAMEADDR Table -
CUSTNO AMTOWE AMTOVR PURCHMTD CUSTNO CUSTNAME

23 123000 20000 154000 23 Bloggs and Co
23 123000 20000 154000 55 Smith and Jones Co
23 123000 20000 154000 88 Brown and Family
55 99000 12000 120000 23 Bloggs and Co
55 99000 12000 120000 55 Smith and Jones Co
55 99000 12000 120000 88 Brown and Family
88 44000 16000 55000 23 Bloggs and Co
88 44000 16000 55000 55 Smith and Jones Co
88 44000 16000 55000 88 Brown and Fami ly

The result at this stage is called the Cartesian Product. Now the selection
criteria is used to restrict which rows are returned.

\'iHERE AMTOVR > 10000
AND MONTACCT.CUSTNO = NAMEADDR.CUSTNO

In this example, all AMTOVR values exceed 10000. The resulting rows therefore
are those which have matching CUSTNO values. As you would expect, there are
only three rows which satisfy this criteria. Although this is a simplistic example,
it can be used in determining the result from a more complex join.

Greater-than, Less-than and Non-equi Joins: Not all join operations need to be
equi-joins, although this is the most common use. The greater-than, less-than
and non-equi joins also have a place in data processing, although their use is
considered to be somewhat statistical, like for the production of a variance
analysis report. These are based upon a join comp~rison which relates two
columns that are not equal or where one is greater-than or less-than the other.

For instance, consider an application which stores information in a
manufacturing environment. The information is broken down by product. The
(simplified) data definition may look like this:

Table MFGTAB in COLLECTN
Month Number MONTH
Product Number PROD
Quantity On Hand QTYONH
Quantity Manufactured QTYMFG
Quantity Sold QTYSOLD

Normally, if you add the quantity on hand at the beginning of the month to the
amount manufactured and subtract the quantity sold, then the result should be
the quantity on hand for the following month. But due to breakages and returns
this does not always happen. The following SELECT statement will demonstrate
how a nqn-equi join can be used to highlight the products which have an
inconsistency in their figures from one month to the next. This is an example of
joining a table to itself.

,.J

SELECT X.MONTH, X.PROD, (X.QTYONH + X.QTYMFG - X.QTYSOLD),
Y.QTYONH

FROM MFGTAB X, MFGTAB Y
WHERE (X.QTYONH + X.QTYMFG - X.QTYSOLD) ,= Y.QTYONH
AND X.MONTH = Y.MONTH - 1
AND X.PROD = Y.PROD
ORDER BY 2, 1

A detailed description of the steps involved follows:

1. The columns displayed are:

• Month number

• Product number

• The calculated quantity on hand for this month

• The actual quantity on hand for next month.

2. We join the table to itself, but give each a synonym (X and Y) so that you can
identify which version you are referencing (plus it is shorter). In this
instance, X and Yare known as correlation names.

3. We include some conditions so that the correct columns will be compared:

• We compare the calculated quantity on hand for this month with the
actual quantity on hand for next month. This is the condition you are
actually wanting to test. As you can see this is a non-equal condition.

• We make sure that X represents this month, and Y represents next
month. At first, this may be difficult to follow. Essentially it assigns
values to X and Y so that X = Y - 1.

• We ensure that we are only comparing the same products from month to
month.

4. We sequence the output by month within a product.

In Interactive SQL, the output would look something like this:

.... : ... 10 : ... 20 : ... 30 : ... 40
MONTH PROD Numeric Expression QTYONH

1 10 1,900 3,900
2 10 8,400 2,900
1 20 3,900 900
2 20 2,100- 3,900

******** End of data ********

You can see that using a non-equi join can be complicated, especially when
joining a table over itself. Even though difficult to understand, sometimes a
complex SQL SELECT statement is the most efficient method of coding such a
function. (Consider the code required to do this in a high-level language.)

3. Application Programming With SQL 3-11

Inner and Outer Join: What you have considered in the examples above is a
J'oin known as an inner join. An inner J'oin is a J'oin that occurs where rows from
say two tables are joined only when there is a match between the related . ..,j
columns. For every row in the first table, a row is added to the result set when a
match (or the stated relationship if not equal) exists between the compared
columns in each table.

Consider the customer monthly accounts and name-and-address master
example from before. It produces a joined result so that the financial summary
can be generated. It matches one row from the accounts table and one row
from the name-and-address table. If you wanted a similar report, but for all
customers (hence removing the AMTOVR > 10000 condition), the SELECT
statement may look like this:

SELECT MONTACCT. CUSTNO, CUSTNAt4E, AtHOvIE, AlHOVR, PURCHtHD
FRot4 t40NT ACCT, NAMEADDR
vlHERE t40NTACCT. CUS.TNO = NAMEADDR. CUSTNO

This would work as expected, with one joined row for each customer.

However, if you had a new customer who has no previous history or has not
made any purchases, then there may be no information for that customer stored
on the monthly accounts table, but the name and address details will be in the
name-and-address master. An inner join will produce a result which excludes
that customer from the final report. What you would really like to do is generate
a message saying that the customer has no transactions on record.

We might wish to accept null or default values for the monthly accounts table
columns - which could be intercepted by the HLL program, and display an
appropriate message. Thus what you want is a row returned even ifthere is not
a corresponding row in the other table. This is called an outer join.

Outer join is not supported on AS/400 SQL.2 With subquery support, there is a
technique for providing the result from an outer join, using a union operator with
the SELECT. An example of this is:

SELECT MONTACCT.CUSTNO, CUSTNAME, AMTOWE, AMTOVR, PURCHMTD
FROM MONTACCT, NAMEADDR
vJHERE MONTACCT .CUSTNO = NAMEADDR.CUSTNO
UNION ALL
SELECT NAMEADDR.CUSTNO, CUSTNAME, -1,0,0
FROM MONTACCT, NAMEAOOR
WHERE NAMEADDR.CUSTNO NOT IN (SELECT CUSTNO

FROM MONTACCT)

The subquery portion of this statement is the secondary SELECT statement
following the IN predicate. Basically a subquery implies that a query is run
within a query. This example gives the reader an idea of the nature of
complexity of performing the outer join. The idea of IN in the example above is

2 OPNQRYF will support a partial outer Join. Query/38 will also provide the function as given by the example, but this is not an
SQL-like query.

3-12 Using SQU400

Subquery

(;,

to select all the customer numbers from the MONTACCT table and then only
include the numbers of the customers who do not appear in the MONTACCT
table.

The statement could be read as follows:

1. Do the initial join selection for all customers who have a row in each table.

2. Do a union with the following SELECT statement.

3. Select all customers from NAMEADDR who do not have a matching row in
the MONT ACCT table.

4. In order for the union to work, the columns must match; therefore you return
"dummy" values for the MONTACCT columns. One of these dummy values
is a negative (as this could never be a real value). We do this so you can
differentiate this row (without a match) from another row (that has a match).

In Interactive SOL, the final result might be:

... : ... 10 : ... 20 : ... 30 : ... 40 : ... 50 : ... 60 ..
CUSTNO CUSTNAME AMTOWE AMTOVR PURCHMTD

23 B1099S and Co. 123,000 20,000 154,000
55 Smith and Jones Co 99,000 12,000 120,000
66 Gary's Used Cars 1- 0 0
88 Brown and Family 44,000 16,000 55,000

******** End of data ********

It would be relatively easy now for a program to identify which rows in the joined
table do not have a match in the MONTACCT table, and print a message in place
of the other fields.

Note: You may want to avoid the union because it will require temporary results
which impacts open/close performance. Running the queries separately will
give the same results and possibly better performance.

See the Programming: Structured Query Language Programmer's Guide
(SC21-9609) for more information on join.

Subqueries are discussed in the Programming: Structured Query Language
Programmer's Guide (SC21-9609) in detail. That is the reason why this book
contains only general information on this topic. The above mentioned manual
illustrates the use of subqueries with different variations and examples.

Subquery - or 'nested SELECT' expands the complexity of queries which can be
defined with a single SOL statement. The purpose is to supply information
needed to qualify a row or a group of rows. A subquery will typically be part of
the WHERE clause, but may also appear in the HAVING clause of SELECT,
UPDATE and DELETE statements. It is of the form operand operator (subquery).
The outer-level SELECT may be part of a DECLARE CURSOR, CREATE VIEW or
INSERT statement. Let's look at an example to illustrate the terminology of
inner- and outer select, where we are selecting all the female employees, who's
salary is higher than the average salary of all employees (both sexes):

3. Application Programming With SOL 3-13

3-14 Using SQU400

DECLARE C1 CURSOR FOR
SELECT lastname, firstnme, salary
FROM templ
~JHERE sal ary >

(SELECT avg(salary)
FROM templ)

This form of the SELECT statement is processed in two steps.

The inner-level SELECT will be evaluated and executed in the first step and
results in an aggregate value, in this example the average salary of all
employees. The aggregate value is the result table of the inner-level SELECT
statement.

In the second step, the outer-level SELECT is processed against the result table
of the inner-level SELECT.

In the above example, the subquery returned ONE value. Except subqueries
using the EXISTS operand, all other syntactically correct subqueries produce a
one-column result table. This means that all inner-level SELECT lists refer to a
single column or to an expression or function with a single result. The result
table can contain zero, one or more rows.

When the result table can contain more than one row, you must use one of the
keywords ALL, SOME, ANY or IN in the ope.rator of your WHERE clause. The
following examples show the syntax of these keywords:

11HERE operand < ALL (subquery)

- The operand must be lower than all values in the result table of the inner-level
SELECT.

IvHERE operand < ANY (or SOME) (subquery)

- The operand must be lower than at least one value in the result table of the
inner-level SELECT.

WHERE operand IN (subquery)

- The operand must be among the values returned by the inner-level SELECT.

As mentioned before, the EXISTS keyword can be used in a subquery to test for
the existence of a row or rows satisfying the search condition of the inner-level
SELECT. The inner-level SELECT, linked to the outer-level with the EXISTS
keyword, will not return a value. The search condition resolves to true, if the
subquery result table contains rows, the condition becomes false if the result
table is empty. The following example illustrates the effect of EXISTS and the
use of a correlated subquery. The query returns all employees who are not
manager (that is, the employee number should not be found in the department
table).

Union

DECLARE Cl CURSOR FOR
SELECT empno, lastname, workdept
FROM templ xxx
WHERE NOT EXISTS (SELECT *

FROM tdept inner
~JHERE mgrno = xxx.empno)

Other than the previously discussed subqueries, where the subqueries have
been executed once and the resulting value has been sUbstituted into the
WHERE clause, in some queries it is necessary to evaluate the subquery for
each row in the outer-level SELECT. As mentioned before, this type of query is
called a correlated subquery. A correlation name appears next to the table
name in the FROM clause of the outer-level SELECT, and is used to qualify a
column name in the subselect with the outer-level table name. The correlation
names are the words inner and xxx that appear beside the tables names in the
FROM clause in the example above. The following example shows the use of a
correlated subquery with the EXISTS keyword in a DELETE statement.

DELETE
FROM tdept x
WHERE mgrno = I I

AND NOT EXISTS (SELECT *
FROM templ
WHERE dept no = x.deptno)

This example deletes all departments from the department table with no
manager and employees.

SQLl400 allows nesting down to 32 levels, but keep in mind that every level
down has an performance impact. A maximum of 32 tables can be referred to in
an SQL statement. When designing your subquery, you should examine each
level for performance improvement by providing permanent indexes.

See the Programming: Structured Query Language Programmer's Guide
(SC21-9609) and the Programming: Structured Query Language Reference
(SC21-9608) for more details.

Union combines SELECT statements on two or more tables or views into a
processing set with the same layout. The original tables or views do not have to
have the same layout, and do not have to have all the same fields. The main
restrictions with a union are that the results from each SELECT statement must
have the same number of columns, and each of the corresponding columns must
be of compatible 3 data type. The following example shows a union which does
not have columns of compatible data type:

SELECT NAME, SALARY FROM TABLE!
UNION
SELECT SALARY, NAME FROM TABLE2

3 All character fields are compatible and all numeric fields are compatible, but character is not compatible with numeric.

3. Application Programming With SQL 3-15

Union All

3-16 Using SQU400

Assuming the salary column is a numeric, and the name column is character,
then this union will not work.

However, a union may be executed over two similar type fields that have a.
different length, either numeric or character:

SELECT BIGNAME FROM TABLE!
UNION
SELECT SMALLNAr~E FROM TABLE2

The resulting set would be a single column as large as the BIGNAME column.
Unions with numeric columns that have a size mismatch will also produce a
result column which is the greater of the two columns. There are some extra
considerations that should be noted with regard to numeric columns if they are
of a different numeric type (for example small integer versus large integer).
These are covered in the Programming: Structured Query Language
Programmer's Guide (SC21-9609).

UNION ALL is a variation of the UNION operator. UNION will produce a set
which has no duplicate rows. UNION ALL will not eliminate these duplicate
rows. Depending on the requirements for a union, this mayor may not be
important.

One instance where UNION ALL is often used is in merging two separate tables
that are date-related; for instance, merging this month's production results with
the production results of this time last year to produce a report on the average
result by product. Last year's results are no longer kept in the current
production table.

In this instance, a primary column would be the date (or month) of production,
and the other columns would contain information related to the type of
production. For example:

SELECT MONTH, PROD, QTYONH, QTYMFG, QTYSOLD,
(QTYONH+QTYMFG-QTYSOLD)

FROM MFGTAB
WHERE MONTH = :MONTHNUM
UNION ALL
SELECT MONTH, PROD, QTYONH, QTYMFG, QTYSOLD,

(QTYONH+QTYMFG-QTYSOLD)
FROM MFGHIST
WHERE MONTH = :MONTHNUM

An HLL program would then average the QTY
values based on the PROD field.

The UNION ALL is used instead of UNION here in case the values are the same
(from one year to the next).

The union operator works by doing the two (or more) selections separately, then :j
combining the results. A temporary interim table is built to contain the results of
the first select, and the results of successive selections are added to that.

The SELECT statement specified when performing a union cannot contain an
ORDER BY clause with specific column names specified. This is because the
column names may not be the same for both SELECT statements. When
requiring the result set for a union to be ordered, the ORDER BY clause must
give the number of the column in the SELECT statement list. In the above
example, adding:

ORDER BY 6

at the end of the statement would produce the result set sequenced by the
QTYONH + QTYMFG-QTYSOLD column. The ORDER BY clause must be placed
after the second SELECT. It applies to the entire result set, not just the interim
result of the second SELECT.

See the Programming: Structured Query Language Programmer's Guide
(SC21-9609) for more information on union.

Compiling Applications
This part discusses the tasks related to compiling HLL programs with embedded
SQL. The first section discusses what happens when a program is precompiled.
The second section discusses some of the more important precompiler options.
These are important to any programmer wanting to correctly understand the
nature of SQL and how it fits into a high-level language (HLL) environment.

Precompiler Process
To compile a program which has embedded SQL statements in it, the SQL
precompiler must be run, rather than the HLL compiler. The HLL compiler will
not recognize the embedded SQL statements that the programmer codes. The
precompilation step will take the embedded SQL statements and replace them
with HLL calls to QSQROUTE, an SQL run time module. The content of the SQL
statement as embedded by the programmer will determine the nature and
number of parameters passed to QSQROUTE.

To get a better appreciation of this process, compare a compiled listing of a
program with embedded SQL to the original source code.

The sequence of events that take place when creating an SQL program are as
follows:

1. Programmer enters source program with embedded SQL (using SEU).

2. Programmer calls the precompiler with the command CRTSQLxxx.4

3. Precompiler takes the source code, and comments out all of the embedded
SQL statements. These are validated, and if there are no errors, they are
replaced by calls to QSQROUTE. The precompiler places this in a temporary
source file in library QTEMP. If there are errors, an error report is
generated, and the compile process ends.

There are five precompilers available for the AS/400 system. xxx represents CBl for a COBOL compile, RPG for an RPG/400
compile, C for a Cl400 compile, FTN for a FORTRAN/400 compile and PLI for a PUI compile.

3. Application Programming With SQL 3-17

4. The HLL compiler is then called, and is run against the source code in the
temporary source file.5

5. The program object is created if there are no HLL errors.

Precompiler Options
Most of the precompiler options are relatively straightforward. But there are a
few that should be discussed in more detail.

1. COMMIT Parameter

The default compiler option for the COMMIT parameter is *CHG. This
implies that all rows in a table that are updated, deleted, or inserted are
locked until the transaction is committed or rolled back. Also, a program
that is compiled under 'CHG (or ·ALL) cannot contain SQL DOL statements
(for example CREATE, DROP, GRANT). These can only be executed under a
commitment control level of ·NONE.

This is a major source of frustration for programmers who do not require
commitment control. *NONE must be explicitly specified each time the
program is precompiled.

You will need to decide upon a commitment control strategy for the
application or program, and ensure that the correct parameter is included
when precompiling. This applies to all precompilers: RPG, COBOL, C,
FORTRAN and PUI. See "Rollback Considerations" on page 7-10 and "SQL
Commitment Control" on page 7-1 for more information on commitment
control.

2. SQL Precompile Listing

Be aware that if the precompile process is successful, no SQL precompile
listing will be generated by default. If this listing is required, then the *SRC
option must be specified in the OPTION parameter.

If errors do occur in the precompilation phase, then only the lines in error
will be listed on the error report. If a full program listing is required to assist
in debugging, then this option should be used.

3. SQL Precompile Only

If the language compile is not required and if only the precompile process is
to be executed, the OPTION(*NOGEN) parameter can be specified. This
could be useful when performing an early compile of skeleton code to ensure
that all fields are correctly defined, but no other logic should be checked. It
is also useful if anything other than the compiler defaults are desired. For
example, if you want to use OPTION(*SRC) on the compiler, you could first
pre-compile using OPTION(*NOGEN) and then, if all was correct, use
OPTION(*SRC) and the file QSQLTEMP in the QTEMP library on the
CRTxxxPGM commands.

If you are using SQL in embedded in C/400 the CRTSQLC command does not
allow the input of any optional parameters such as *DEBUG or *SRC. To use
the debug function in C/400-SQL programs, for instance, you can create your
own CRTCPGM command with *DEBUG as the default value and put it in a
library ahead of QCC in your library list. For interactive compilations you
can specify *NOGEN in the CRTSQLC command and then compile the SQL

5 Unless the precompile option *NOGEN is specified. See "Precompiler Options" on page 3-18 for more details.

3-18 Using SQU400

I..J

preprocessor output in source file QSQLTEMP in library QTEMP with the
CRTCPGM command. The member name remains the same. Once your
program runs successfully compile it with *NODEBUG option.

4. Naming Convention

The default naming convention for the processing of SQL statements is *SYS
- system naming convention. If your application uses the SQL naming
convention then the OPTION parameter must contain *SQL.

If you use an SQL INCLUDE to get some SQL source statements from a
member, then by default these should be placed in the same source file as
the program being compiled. However, often this is not the case, as one of
the main features of the INCLUDE is to copy standard SQL code held in one
central location. To change the place where the precompiler looks for the
INCLUDE statements, specify the source file name on the INCFILE parameter.
As this can be a qualified name, there is a facility for providing the name of
the library.

5. Use of Double Quote or Apostrophe in COBOL and C

There is one point of confusion that may appear for COBOL programmers.
In Interactive SQL and SQL embedded in RPG, FORTRAN or PL/I programs,
the default literal character delimiter is the apostrophe. For instance:

SELECT * FROM table-name
~JHERE SURNAME = 'SMITH'

In COBOL, normal program literals may be coded with either the apostrophe
or double quote.6 The embedded SQL statements can only use one or the
other. The default is the double quote - which as you have seen, is different
from that of Interactive SQL. A programmer may use interactive SQL to test
the SQL statements to be included in the COBOL application, and get
confused with the different literal delimiter between this and the COBOL
program.

To change this to an apostrophe, the precompiler parameter OPTION
(*APOSTSQL *APOST) must be specified. *APOSTSQL specifies the delimiter
for SQL literals as entered by the programmer. *APOST specifies the
delimiter for COBOL literals. To avoid confusion, it is better that the same
literal delimiter be used for SQL literals and COBOL literals.

It is important that in a COBOL environment, a standard be decided upon. It
is recommended that the default (double quotes) be used.

The cleaner solution is to adopt the default of double quotes, and be aware
that this is different when testing an SQL statement in Interactive SQL.

In C/400, the double quote must be used. Therefore, the programmer must
change any saved Interactive SQL sessions so that the single quote is
replace by a double quote.

The precompiler is discussed in more detail in "Creating the Access Plan" on
page 5-2.

6 By default, if the apostrophe is coded a warning message is given, but the specification is accepted. The double quote is the
COBOL standard.

3. Application Programming With SOL 3-19

Binding an Application

Error Processing

The binding of a program and any referenced tables and views contained within
an access plan can be modified automatically at program execution time.

The creation or deletion of an index is an example of a change which will affect
the program. Adding or deleting a column to a table is another example.

A column may be added or deleted without the binding process having to create
a new access plan.? When an SQL statement is bound (a SELECT statement for
example) the columns specified on the SELECT statement list are locked by
name. If a SELECT * is specified, the columns that are in the table at bind time
are locked also by name.8

An application program will only fail if a table, view, or referenced column in the
table does not exist at runtime.

Your program will not have to be recompiled after any of the following:

• Renaming a column, if not referenced

• Changing column attributes

- Provided the data type is not changed (alpha to numeric)

- Decimal places may be changed

- Column length may be changed, but an SQL warning code may be
given and an indicator variable may be set

The fact that the column names are locked at bind time may cause an anomaly
to occur. If a program that contains a SELECT * is compiled, the access plan is
created referencing all the columns in the table. If the table is then changed
(say adding a column) the program can still be run, as columns are retrieved by
name. The new column is not noticed by the program at this stage. Now
consider if the program is recompiled without being changed. A new access
plan is created, which contains all of the columns. The program will not
compile, as there are not enough host variables specified on the SELECT INTO
statement to store each column value.

For more information on binding, including late binding, see "Creating the
Access Plan" on page 5-2.

The use of the SQL communication area (SQLCA) is similar to a MONMSG in a
CL program, or checking the return code or indicator from a program 1/0
statement. Good programming practice includes a check of such return codes
after the execution of every I/O statement. For reasons of brevity, the examples
in this document have not included checks of the SQLCA after each I/O
statement.

7 For a column to be added or deleted, the table would have had to be renamed, and a new table created with the extra/deleted
field, then the data copied back in.

8 SELECT' should be avoided wherever possible. It has some performance implications when the number of columns in the
table is high. It is better to specify only the columns that are required.

3-20 Using SQU400

WHENEVER

In this section, you cover some of the key areas of the SQLCA, and cover coding
methods for the inclusion of these techniques in a program. This is intended as
a guideline of the different ways of handling both expected and unexpected
return codes.

There are a variety of ways to handle the processing of errors from SQL
operations. One major facility th_at is available for error processing is the
WHENEVER statement.

The WHENEVER statement specifies the host language label to which execution
will be transferred when an exception or warning condition occurs. There are
three types of the WHENEVER statement:

WHENEVER NOT FOUND
WHENEVER SQLWARNING
WHENEVER SQLERROR.

These can be considered as three levels of severity of return code.

The NOT FOUND type is used to identify an SQL return code of + 100. This is
likely to occur when executing a FETCH statement and the end of the SELECT
group is reached, or when selecting, and no records are found.

The SQLWARNING type identifies either a zero return code with a warning
condition, or a positive return code that is not + 100. This could occur when a
field value is truncated, for example.

The SQLERROR type identifies a negative SQL return code. This is likely to be a
severe error situation. In static SQL, many errors often that have a negative
return code will not allow the program to recompile. That is, the error is related
to a major change in the structure of the database which the program is using,
thus causing the error. In dynamic SQL, this may occur due to an error in the
syntax of the SQL statement that is being dynamically executed.

To correctly understand how the WHENEVER works, it is worth explaining what
happens when the precompiler generates the HLL calls to QSQROUTE. Included
in "Code Example For Use of SQL WHENEVER in RPG" on page A-1 is a source
listing of an RPG program and in "Code Example For Use of SQL WHENEVER in
COBOL" on page B-1 there is an equivalent COBOL program. These include
some SQL WHENEVER statements.

RPG Program Example: Examine the first group of C-specification statements in
the following example, from the first SQL WHENEVER to the SQL COMMIT (just
before the second SQL WHENEVER), all on the first page of the output.

The precompiler will take this code and comment out the programmer's SQL
statements, and replace them with calls. Unlike most other SQL statements, the
WHENEVER is not actually replaced by a call. The precompiler will include an
HLL statement which will check for errors of the specified severity9 on every SQL
statement after this point in the program, until the end of the program or another
WHENEVER is encountered for this severity.

I 9 The three severities being NOT FOUND, SQLERROR, and SQLWARNING.

3. Application Programming With SQL 3-21

3-22 Using SQU400

For instance, in the code described, the compiled output looks like this:

Z-ADD.06
I~OVEL 'MA%'

PERCNT
PROJID

C* Update the selected projects by the new percentage. If
C* errors occur during the update, ROLLBACK the changes.
C*

2500 C*
2600 C
2700 C
2800 C*
2900
3000
3100
3200
3300
3400
3500
3600
3700
3800
3900
3500
3500
3500
3500
3500
3500
4000
4100
4200
4300
4400
4300
4300
4300
4300
4500 C*

C*EXEC SQL WHENEVER SQLERROR GOTO UPDERR
C*END-EXEC
C*
C*EXEC SQL
C* UPDATE USERI/TEMPRACT
C* SET EMPTIME = EMPTIME * (l+:PERCNT)
C* WHERE PROJNO LIKE :PROJID
C*END-EXEC
C
C
C
C
C
C
C*

SQLCOD

C* Commit changes.
C*
C*EXEC SQL COMMIT
C*END-EXEC
C
C
C
C SQLCOD

Z-ADD00002 SQLER6
CALL 'QSQROUTE'
PARM SQLCA
PARM PERCNT
PARM PROJID
CABL T0 UPDERR 0

Z-ADD00003 SQLER6
CALL 'QSQROUTE'
PARM SQLCA
CABL T0 UPDERR fJ

Notice the last statements on lines 3500 0 and 4300 fJ. The function of the
WHENEVER is simply to place a compare-and-branch after every SOL statement
until the next WHENEVER of the same severity or the end of the program.

This highlights an important aspect of the usage of the WHENEVER statement.
The replacement is done on a simple code sequence basis, and is not based
upon program logic flow.

Assume that, between the UPDATE and COMMIT statements in the code
example above, there was a call to a subroutine. The error processing for SOL
calls in that subroutine would depend upon the location of the subroutine code in
the program and any WHENEVER statements that are in effect based on its
location. In this example, an error in an SOL statement in the subroutine may
not necessarily cause the program logic to continue at the label UPDERR.

The inclusion of more than one WHENEVER at one part of the program can be a
normal practice, provided they are of different levels of severity. Each :..J
WHENEVER will place a different test after the SOL calls that follow it. For
example, later on in the program listing (on the second page), a FETCH

(..1
statement is performed to retrieve into host variable RPT1. Two WHENEVER
statements are in effect, one for SQLERROR II and one for NOT FOUND II.

7000 C*EXEC SQL
7100 C* FETCH C1 INTO :RPTl
7200 C*END-EXEC
7000 C Z-ADD0000a SQLER6
7000 C CALL 'QSQROUTE'
7000 C PARM SQLCA
7888 C PARM EMPNO
7808 C PARt~ PROJNO
7888 C PARt~ ACT NO
7888 C PARI~ STARDT
7888 C PARI~ ENDDT
7808 C PARM EI4PT 114
7888 C SQLCOD CABLT8 RPTERR R 7000 C SQLCOD CABEQl00 DONEl
7300 C EXCPTRECB
7400 C END
7588 C DONEl TAG
7600 C*EXEC SQL
n00 C* CLOSE C1
7a00 C*END-EXEC
7608 C Z-ADD00009 SQLER6
7680 C CALL 'QSQROUTE'
7600 C PARM SQLCA
7608 C SQLCOD CABLT0 RPTERR R 7600 C SQLCOD CABEQ100 DONE1
7900 C*

As you can see, the result is relatively straightforward. If a NOT FOUND SQL
code is returned, the logic is transferred to the DONE1 tag. If an ERROR code is
returned, the logic is transferred to the RPTERR tag; otherwise the logic
continues on following the CAB statements.

To cancel the WHENEVER processing for a severity, the CONTINUE clause is
used. For instance,

WHENEVER NOT FOUND CONTINUE

will just stop the precompiler inserting the CABEQ100 statement after every SQL
call from that point on, until another WHENEVER is coded for "NOT FOUND".

COBOL Program Example: Like the RPG example above, similar processing
applies in COBOL. In the COBOL program listing in Appendix B, examine the
AOOO-MAIN paragraph, from the first SQL WHENEVER to the SQL COMMIT, just
before the second SQL WHENEVER statement.

The precompiler takes this code and comments out the programmer's
statements, replacing them with CALL statements. As we know for RPG, the
WHENEVER statement is not replaced by a CALL. Instead, a COBOL statement
will be placed after every SQL statement following this to check for errors of the
specified severity (NOT FOUND, SQLERROR and SQLWARNING). This will be

3. Application Programming With SQL 3-23

done until another WHENEVER statement of the same severity is encountered, or
the program ends. :.J
The compiled output for the code described is:

011800*****EXEC SQL
011900***** WHENEVER SQLERROR GO TO E010-UPDATE-ERROR
012000*****END-EXEC.
012100*****EXEC SQL
012200***** UPDATE USER1/TEMPRACT

SET EMPTIME = Et4PTIME * (1+: PERCENTAGE)
012400***** WHERE PROJNO LIKE :PROJID
012500*****END-EXEC.

111 012500 COMPUTE SQLERRD(fi) = 00002
112 012500 CALL "QSQROUTE" USING SQLCA PERCENTAGE PROJID
113 012500 IF SQLCODE < 0 GO TO E010-UPDATE-ERROR ELSE iii
115 012500 MOVE SQLCAID TO SQLCAID.

As you can see from statement 113 iii the function of the WHENEVER is to place
an IF - THEN statement after each SOL statement until the next WHENEVER of
the same severity is found, or the program ends.10

This highlights an important aspect of the WHENEVER statement. It is not based
on program logic, simply on a replacement of code basis. This means that if a
paragraph was performed from inside the piece of code above, and also
performed from various other parts of the program, and an SOL error occurred
during execution of that paragraph, the action taken by SOL would depend upon
the most recent WHENEVER statement found of the same severity, prior to the
location of the paragraph in the program.

The inclusion of more than one WHENEVER statement in a part of a program can
be normal practice provided that they are of different severity levels. Each
WHENEVER places a different IF statement after SOL statements. For example,
when execution of BOOO-GENERATE-REPORT1 begins, one WHENEVER statement
is already in effect (from immediately after the COMMIT statement in
AOOO-MAIN). A second WHENEVER condition is brought into effect at the start of
BOOO-GENERATE-REPORT1. The compiled code for BOOO-GENERATE-REPORT1 is
as follows:

10 The -ELSE MOVE SQLCAIO TO SQLCAIO- statement is generated purely to handle the nesting of IF statements that may be in
effect when the SQL statement is executed.

3-24 Using SQU400

(;1

153
154

011800 B000-GENERATE-REPORT1.
022900*****EXEC SQL
023000***** WHENEVER NOT FOUND GO TO A100-DONE1
023100*****END-EXEC.
023200*****EXEC SQL
023300***** FETCH Cl INTO :TEMPRACT
023400*****END-EXEC.
023400 COMPUTE SQLERRD(6) = 00012
023400 CALL "QSQROUTE" USING SQLCA EMPNO OF TEMPRACT

OF RPTl PROJ
NO OF TEI·IPRACT OF RPTl ACTNO OF TEMPRACT OF

RPTl STARTDATE
OF TEIWRACT OF RPTl ENDDATE OF TEl4PRACT OF

RPT 1 Et4PT I14E OF
m,IPRACT OF RPTl

155 023400
157 023400
159 023400

IF SQLCODE < 0 GO TO E020-REPORT-ERROR ELSE EI
IF SQLCODE = 100 GO TO A100-DONE1 ELSE D
MOVE SQLCAID TO SQLCAID.

Nested IF statements are generated to handle the two WHENEVER conditions. If
an error occurs, E020-REPORT-ERROR is performed EI, and if a NOT FOUND
condition occurs, A100-00NE1is performed D.

To cancel the WHENEVER action for a certain severity, a CONTINUE clause is
used. For instance

WHENEVER NOT FOUND CONTINUE

will stop the precompiler inserting the statement "IF SQLCODE = 100 ... " from
that point on.

PLII Programs with SQL WHENEVER: PUI programs follow a logic quite similar
to the examples described above. Statements are added after each SQL call to
check the return code at different levels of severity. See "Code Example For Use
of SQL WHENEVER in PL/I" on page C-1 for an example of SQL WHENEVER in a
PUI program.

WHENEVER Examples: Despite the GO TO logic of the WHENEVER statement, it
can still be used in a structured manner. The following examples show
pseudo-code for inclusion of the WHENEVER statement in an application for the
SQLERROR and NOT FOUND conditions.

• WHENEVER SQLERROR

This is very useful in a commitment control environment where a number of
statements are required to be processed together. If one statement fails,
then the logic can be transferred to an error routine which can display a
message to the user, before rolling back to the transaction boundary.

3. Application Programming With SOL 3-25

3-26 Using SQU400

Cot4MIT Sets transaction boundary

WHENEVER SQLERROR GOTO TAG

SQL statement ----SQL-erro~

SQL statement ----'SQL-erro~

SQL statement ----SQL-erro~

SQL statement ----SQL-error----+

Cot414 I T

TAG
If SQLCODE < 0

call error routine
(eg: display message and Roll Back)

Figure 3-1. WHENEVER SQLERROR

• WHENEVER NOT FOUND

This can be used when fetching from a selected set, providing a structured
way to exit from the processing loop. This is almost exactly the same as
reading t!:,om a file. If no records are found when the file is opened, then this
can be trapped before proceeding to retrieve data from the table.

WHENEVER NOT FOUND GOlO lAG

OPEN CURSOR -----------,

+do frre,er 1
FETCH data ----- SQL +100 -
I
process data
I

~o

TAG

remainder of program

Figure 3-2. WHENEVER NOT FOUND

No rows found

Using the SQLCA
Despite an attempt at a structured implementation, the WHENEVER statement
still basically performs a GO TO. This is not always appropriate, and in some
instances a specialized subroutine may be required for handling error
conditions. If you wish to do this in an application, then you will need to test the
SQL codes explicitly, and then execute the required subroutine.

The nature of this test can be relatively simple (one or two lines of code), or
could be more complex, depending on the requirement for the error condition.
There are a variety of fields that are available to the programmer in the SQLCA.
These can be tested after the SQL statement is executed, or displayed in an
error report for the program, or both.

The reporting of SQL exceptions lends itself to the additional fields in the
SQLCA. These are usually not displayed in an application when expected error
conditions occur. In coding an error reporting subroutine for unexpected errors
in a program, the following SQLCA fields are worth noting. The first-mentioned
field is the name for COBOL, C, FORTRAN and PUI applications, the second for
RPG:

SQLCA
Field Meaning

SQLCODE / SQLCOD
SQL return code. This is the main field to check for an error condition.

SQLERRML / SQLERL
Length of the SQL error message field data.

SQLERRMC / SQLERM
SQL error message field data. This is useful to display for an
unexpected error condition. You could use the CL command
SNDPGMMSG to do this. The message number would be SQLxxxx,
where xxxx is the absolute value of the SQL code. The message file is
QSQLMSG and the MSGDTA is in SQLERRMC.

SQLERRD / SQLERR (SQLER1-6)
An array in COBOL and PLII, six integer fields in RPG which can be
checked under a variety of conditions. SQLERRD(3) can be used to
obtain the number of rows affected after an INSERT, UPDATE or
DELETE. This can be used in an error situation or as a normal
condition, to return a message to the user' for a set-based operation.

SQLWARNO I SQLWNO
Contains a "W" if one of the following conditions has a warning.

SQLWARN1 I SQLWN1
Contains a "W" if a column (character or numeric) was truncated when
assigned to a host variable.

SQLWARN3 I SQLWN3
Contains a "W" if the number of columns and the number of host
variables is not the same for a fetch operation or SELECT INTO.

SQLWARN4 I SQLWN4
Contains a "W" if a prepared UPDATE or DELETE statement does not
contain a WHERE clause. This happens on the PREPARE statement so
that, before executing the statement, the program is aware that the
operation will affect a/l rows in the set (table or view).

3. Application Programming With SOL 3-27

Note: Due to the nature of RPG, the fields in the SQLCA have been renamed to
a name length of six characters. As the other languages do not have this . ..~
limitation, the full name is used. ..""

Inclusion of the SQLCA in the program: Before any processing can occur, the
SQLCA must be included in the program. This can be done with the SQL
INCLUDE statement. This must be done by the programmer for COBOL, C/400,
FORTRAN and PLIL These languages require an INCLUDE SQLCA or a HLL
variable with the name of SQLCODE (SQLCOD for FORTRAN). If the variable
SQLCODE is coded, the precompiler automatically adds the SQLCA. In RPG, the
SQLCA is included automatically. The user can code an INCLUDE SQLCA, but it
is accepted and ignored.

Coding a Routine for Unexpected Errors
Coding such a routine is relatively straightforward. We have discussed the
significant fields of the SQLCA that should be displayed or printed by the routine.
The form of output will depend on your installation standards (that is whether to
display a message to a user, or produce an entry in a special log file, or both).
There is a significant point regarding the handling of an error situation when
running under commitment control.

Take, for example, a transaction step which consists of one or more SQL
statements, followed by an SQL COMMIT statement. If an error occurs in the
processing, maybe not all of the statements will be executed. The program uses
the WHENEVER SQLERROR to go to an error r:outine. It is important that the
error routine reports the SQL error previously encountered before performing a
rollback. If the rollback is performed first, the SQLCA fields will be lost for the
error condition, and will contain values pertinent to the ROLLBACK statement.
The user must either report the previous error first, or save the contents of the
SQLCA, and later report the error.

Second Level Message Text: If an SQL message is encountered in an
application or interactively, and second level text is required, use the following
CL command:

DSPMSGD RANGE(msg-id) MSGF(QSYSjQSQLMSG)

to display the message, or to retrieve into a CL program variable use the
following commands

RTVMSG MSGID(msg-id) MSGF(QSYSjQSQLMSG) SECLVL(CL-variable) ...
SNDPGMMSG ... MSGDTA(CL-variable)

The message number will be something like SQL0109. This is equivalent to the
SQL return code of -109.

Indicator Variables

3-28 Using SQU400

Indicator variables are an extension to the SQLCA error processing facilities
when writing programs with embedded SQL. They allow the programmer to
check the validity of each host variable as it is given a value from a table in a
fetch operation. The use of indicator variables is optional. .

Indicator variables in SQLl400 are mainly for compatibility with other SQL '
products at this stage, as their primary purpose is to allow the .programmer to """'"
check for null values being returned to a host variable. At Release 3
Modification Level 0, ~S/400 SQL does not support null values, hence this test is
not likely to be often used. The secondary purpose of the indicator variable is to

check for field truncation, numeric conversion or arithmetic expression errors in
a fetch. These may not often occur in simple applications, but may more
commonly occur when using dynamic SQL when results are unexpected.

Field Truncation: If a column (character or numeric) is retrieved into a host
variable that is smaller in length than the column as defined in the table, then it
is likely that some of the data may be lost in the fetch operation. An indicator
variable associated with the host variable will return the original length of the
column. Note that this will return the length of the column, and not the length of
the data in the column. It is up to the programmer to check the indicator
variable. In addition, the SQLCA warning field-1 will contain a "w" after
truncation has occurred.

Numeric Conversion or Arithmetic Expression Errors: A numeric conversion
error will occur for instance when a numeric column is being retrieved into a
character field in a program. When this happens, the associated indicator
variable will contain -2.

Program Design Guidelines
In many ways, programming with an SQL table can be quite different from
working with a normal database file. Consider the three traditional file structure
types: sequential, indexed and relative.

Most applications use a form of indexed file organization, where there is one (or
more) key fields in a file. To get a record from a file, the programmer specifies
a key which uniquely identifies that record. For a relative file, the programmer
specifies a record number, which can be generated with a hashing algorithm
based on a pseudo key field. Sequential organization limits the programmer to
reading from the beginning to end of the file.

Working with an SQL table can be quite different from this. There is only one file
organization. In SQL, the programmer does not have all of the retrieval
functions that are available with the traditional file structures. Conversely, SQL
offers many extra functions that these other file organizations do not provide.
This is discussed later.

In SQL, the program can read sequentially through the entire table. This can be
achieved by the use of a DECLARE CURSOR statement followed by a FETCH
statement enclosed in a program loop. However, the program cannot then
perform a read prior (or read previous) operation. The FETCH statement works
only in one direction.11

Similarly, using SQL, a programmer cannot simply get record number 22345, as
a relative file organization allows. There is no equivalent function for processing
an SQL table.

The analyst and programmer must consider these points before designing an
application. Not all functions available with the older file organizations are
available with SQL statements on an SQL table. This is not to say that SQL does
not have a major place in most application requirements, just that the

11 See "SQL Implementation Techniques" on page 3-32 for more information regarding HLL read prior access of an SQL table.

3. Aoolication Proarammina With SOL 3-29

Wordiness

3-30 Using SQU400

application may look very different when designed around a relational database
structure.

The following table summarizes the normal types of functions required by a
programmer to maneuver around a file, and how such maneuvers can be
represented in SQL. This can be used as an aid to conversion - but for the best
use of SQL (from a performance and readability viewpoint), the entire program
may need to be rewritten and restructured, rather than simply replacing one HLL
1/0 statement with one SQL statement. SQL is optimized to operate with rows
a-set-at-a-time, and one-to-one code replacement largely defeats the advantages
that can be gained by a non-procedural language such as SQL.

Common HLL Programming 1/0
Techniques

Relative record read

Position the cursor, followed by
sequential reads

Read prior record

Random processing based on key
field

Equivalent Implementation in SQL

Not available directly. The application should be
changed so that data is retrieved based on content,
rather than physical location.

Use a DECLARE CURSOR with SELECT statement
and a WHERE clause that contains key> =
required value. The first FETCH statement
positions the cursor and returns the first record
that satisfies the WHERE clause. Subsequent
fetches will return consecutive rows.

Not available in SQL as such, but depending on
whether all processing is going to be in reverse
sequence, and there is only one key field, the
SELECT statement can specify an ORDER BY key
DESCEND clause to get the same effect.

Individual selections or updates specifying the
required key field on the WHERE clause.

Table 3-1. Summary of I/O Processing Equivalents Between HLL Programs and SQL
Programs

The remainder of this section discusses points related to the design of
applications using SQL and considerations for implementation.

Deciding when to use SQL and high-level language (HLL) 1/0 statements is and
will continue to be a debated point in application design. One area which is very
noticeable is the wordy nature of some embedded SQL statements. However,
this applies in both directions. In some instances, the HLL code may be less
concise.

The following example retrieves and updates rows from a table in a loop, and
writes the updated record to a printer file. This is accomplished with 24 lines in
the embedded SQL example, whereas in RPG example, the same function can
be done in nine.

L'
SQL

FRPT 0 E PRINTER
C/EXEC SQL DECLARE CURSOR C1

C+ FOR SELECT NBR, NAM, SAL
C+ FROM EMP ~JHERE NBR = : NBR
C+ FOR UPDATE OF SAL
C/END-EXEC
C*
C/EXEC SQL OPEN C1
C/END-EXEC
C*
C EXSR SFETCH

C SQLCOD DOWNE 1ElEl
C SQLCOD IFEQ El
C/EXEC SQL UPDATE Et1P
C+ SET SAL = SAL + :RAISE
C+ WHERE CURRENT OF C1
C/END-EXEC
C
C
C
C
C*

~JRITERPT

END
EXSR SFETCH
END

C* Subroutine to do FETCH
C*
C SFETCH BEGSR
C/EXEC SQL FETCH C1 INTO
C+ :NBR, :NAM, :SAL
C/END-EXEC
C SFETCH ENDSR

RPG/4ElEl

FEMP UP E K DISK
FRPT 0 E PRINTER

vs. C NBR CHAINEMP 99
C *IN99 DOWEQ 'El'
C ADD RAISE SAL
C UPDATEMP
C \·JRIT ERPT
C READ EMP 99
C END

On the other hand, for a more complex SELECT statement example using LIKE:

SQL

C/EXEC SQL DECLARE CURSOR C1
C+ FOR SELECT NBR, NAM, SAL
C+ FROM EMP ~/HERE NAM LIKE '%:SEARCH%'
C+ AND DPT BETWEEN (:STRDPT :ENDDPT)
C/END-EXEC
C*
C/EXEC SQL OPEN C1
C/END-EXEC
C*
C SQLCOD DOUNE*ZERO
C/EXEC SQL FETCH C1 INTO :NBR,
C+ :NAM, .:SAL
C/END-EXEC
C SQLCOD IFEQ ·ZERO
C WRITE SFLREC
C END
C END

-ANY HLL­
MUCH MORE
COMPLEX

But this is not always the case. The programmer's alternative in HLL is to use
OPNQRYF to provide the LIKE functions as there is no equivalent in DDS-created
logical files.

3. Aoolication Proaramminq With SQL 3-31

SOL is very well suited to "set at a time" operations that return or process many
records - for example mass updates, mass deletes, filling subfiles and report
programs with user selection; or it could be used with complex selection criteria.

In SOL, there is no need for the programmer to navigate the database as with
HLL I/O statements, but it does change the design methodology for database
structure and maintenance.

The nature of such a complex selection as in the example above is useful for
contrasting the performance implications of SQL versus HLL I/O. The database
manager which operates in the licensed internal code of the system performs
the selection as requested by SOL. Operations which take place at this level of
the operating system execute very fast. Hence, in comparing the LIKE function
of the SELECT statement in the example, the SOL implementation is much faster
than the code in an HLL program to do the same.

Performance is an issue discussed in detail in another topic (see "SOL
Performance" on page 5-1). There are some application design points that
relate to performance that are relevant for the discussion here. If an application
is performance sensitive, then it is better that HLL I/O statements be used for:

- Transaction processing

- File maintenance

- Simple inquiry.

For performance, SOL is better suited for "set at a time" operations like:

- Prompted reports

- Complex inquiry

- Dynamic SQL for front-end query

- Mass insert, update, delete.

- Statistical selects (Count, Minimum, Maximum, Average, Sum)

- Alpha-search selects using Like.

SQL Implementation Techniques

3-32 Using SQU400

SQL provides you with an option for performing file processing, and also offers
you an additional method of creating database files. As a result, you are now
faced with the decision of whether to move to an SOL implementation or not. If
SQL file/table accesses are to be used in applications, the AS/400 system
development environment must be used. However, the question of whether to
implement SQL collections and tables, or to continue to use externally described
files is less clear-cut, since SQL can even access existing DDS- or IDDU-created
files.

This section covers the implications of using SOL tables instead of, or as well as,
externally described files, and also covers considerations regarding SQL versus
high-level language (HLL) programming of file/table accesses. It is aimed
particularly at those who already know the System/36 or System/38 environment
well, and also those considering implementing SQL.

Defining Tables and Files
There are several ways of creating tables in an SQL collection. It is always
possible to use the CREATE TABLE statement. In addition, for existing files, you
can use the Copy File (CPYF), Move Object (MOVOBJ), Create Duplicate Object
(CRTDUPOBJ), Restore Object (RSTOBJ) and Create Physical File (CRTPF)
commands.

New Table Creation
When creating a new table, for which there is no data already on the system, the
SOL CREATE TABLE statement or any of the above CL commands may be used.
To put data into the table, the SOL INSERT INTO statement or CL CPYF
command may be used.

Moving Existing Files/Tables into an SQL Collection
The CREATE TABLE statement can be used followed by the INSERT command to
move data from an existing file into a new table in a collection. However, the
CREATE TABLE statement requires you to redefine the columns in the table,
although they have already been defined in the existing file definition. On the
other hand, the CPYF, MOVOBJ, CRTDUPOBJ and RSTOBJ commands can be
used to create/move a file or table into a collection, using the existing definition
to produce named columns matching those from the original file (DDS or IDDU,
or SOL table). They also copy/move the data in at the same time. 12

IDDU File Considerations
On the AS/400 system, IDDU can be used in two modes. The first mode is as it
works on a System/36. The definition is not only external to the program, but
also external to the data.

In the System/36 Environment, the original file has only one large field. The
external definition creates a logical template over this file so that it is like many
smaller fields. The process for creating such a definition may be like the
following:

• Create Physical File (CRTPF) with a record-length entry, that is, without DDS

• Create IDDU definitions for the fields in the file

• Link the file to the IDDU definition (LNKDTADFN)

• This creates a program described (not externally described) file which is
IDDU-linked.

The second mode is to provide a full external definition as available on the
AS/400 system. This is where the definition is stored with the data itself. The
steps to create the externally defined file with IDDU are:

• Create IDDU definitions (field, format, file)

• Create the file with IDDU

This creates an externally described file (instead of DDS-input, IDDU-input)
and links the file to the IDDU definitions. This may be verified with the
Display File Description command (DSPFD).

12 The CPYF command can create a new table (physical file) in the SQL collection, leaving the existing file as is if you use
CRTFILE(·YES}. The MOVOBJ command actually places the file/table into the SQL collection, with no copy left in the original
library/collection.

3. Application Programming With SQL 3-33

I

Database Creation Summary
The following summary shows the various options for putting data into a
collection, without explicitly using the CREATE TABLE command.

Type Command All SQL Object Notes
Entries Created

Created13

DDS-def. PF CPYF CRTFILE(*YES) Y Table (PF)

MOVOBJ, CRTDUPOBJ, Y Table (PF)
RSTOBJ

DDS-def. LF CPYF CRTFILE("YES) Y Table (PF)

DDS-def. LF MOVOBJ, CRTDUPOBJ, N None All logical files in an SOL
RSTOBJ collection must be

SOL-created. Thus these
commands are not allowed to
put a DDS-defined logical file
into an SOL collection.

SQL table CPYF CRTFILE(*YES) Y Table (PF)

SQL table MOVOBJ, CRTDUPOBJ, Y Table (PF)
RSTOBJ

SQLview CPYF CRTFILE(*YES) Y Table (PF)

SQLviewor MOVOBJ, CRTDUPOBJ, Y View or Since this view is a logical
index RSTOBJ Index (LF) file, created by SOL, it can be

moved into a new collection,
and remains a logical file.

IDDU file CPYF CRTFILE(*YES) Y Table (PF)

IDDU file MOVOBJ, CRTDUPOBJ, Y Table (PF) Only externally described
RSTOBJ files; not program described

and linked files.

Table 3-2. Copying and Moving Files into an SQL Collection

Copying and Moving Files/Tables: Joumaling Considerations
When a collection is created using the SQL CREATE COLLECTION command, a
journal is automatically created (QSQJRN) in the same collection. All activity on
tables created in that collection is recorded by journal entries made to that
journal, and SQL uses these entries to implement its commitment control
environment. When tables are created in a collection through the use of the
CRTPF, CPYF, MOVOBJ, CRTDUPOBJ or RSTOBJ commands, the journaling is
not implemented in the same way as on a CREATE TABLE statement.

The following table summarizes the journal status of a file/table once the CPYF
or MOVOBJ command has been used, as well as how to start journaling if it is
not active.

13 Entries made into the collection *DTAOCT, SYSTABLES, SYSCOLUMNS, and so on.

3-34 Using SOU400

;J

..J

e

(';' ..

Type Command .Journaling Status

SQL table CPYF CRTFILE(*YES), New table is not journaled. STRJRNPF should be issued,
. RSTOBJ, CRTDUPOBJ naming the QSQJRN in the new collection. Commitment

control will then be as normal.14

DDS·def. PF CPYF CRTFILE(*YES), Same as for SQL-table above.
RSTOBJ,CRTDUPOBJ

SQL table MOVOBJ Table will continue to be journaled to the journal in the
previous collection. 15 Use ENDJRNPF to end journaling to old
journal, and STRJRNPF to QSQJRN in the collection.

DDS·def. PF MOVOBJ Same as for SQL table and MOVOBJ above.

Table 3·3. Copy and Moving Fifes/Tables: Journaling Status

Indexes

Join Flies

An index should be created on a table whenever access to records in a certain
order is going to be requested frequently. SOL indexes have to be created in an
SOL collection. However, the base table can be any AS/400 physical file.
Without a user-created index, the database optimizer may create a temporary
index to handle certain requests. This is particularly important for large files.
Refer to "SOL Program Design Considerations" on page 3-1 for more details on
when and how the database optimizer uses indexes.

SOL Indexes cannot be created on DDS-created physical files or IDDU files if the
files are not stored in an SOL collection. If a file is frequently accessed by SOL
statements in a certain order, it can be moved into a collection, and then an
index may be created. Creating a DDS keyed logical file will not overcome this
since SOL will disregard the key when selecting data unless ORDER BY with the
same key is specified.

An index may be stored in a collection other than the one which contains the
table upon which the index is based. Furthermore, the database optimizer will
use this index when required, even if the library that contains the index is not in
the library list.

SOL tables can be "joined" by views, which are similar to DDS-defined
join-logical files. "Join" views cannot be updated, and have read-only access;
join-logical files have the same restriction. But note that DDS-defined
join-logical files support partial outer join through the JDFTVAL keyword.

A DDS-defined join-logical file cannot be stored in an SOL collection since it is a
logical file, and only SOL-defined logical files (views) can be stored in a
collection. However, a join-logical file can still be accessed by SQL.

14 Since the QSQJRN journal is not automatically attached to this new table, it is very easy to omit journaling unintentionally. In
the case where a program is run with commitment control intended through SQL but no journal attached, the program will still
execute, but a negative SQLCODE will be returned on each attempt to INSERT, UPDATE and DELETE rows in the unjournaled
tables. If the SQLCODE is not checked, the error may not be immediately visible.

15 Journaling to the previous collection's journal is not in itself a problem. However, journaling two tables under commitment
control to different journals in the same program is not allowed. Since two tables may be in the same collection following a
MOVOBJ but may unintentionally still be journaled to different journals, a negative SQLCODE will be returned.

3. Application Programming With SQL 3-35

Changing File/Table Structure
Sometimes it is necessary to change the original structure of a table or file, for -~

example, by adding or deleting a column. In such cases, the following steps can ""'"
be taken: 16

• To change the structure of a DDS-defined file:

CPYF - to move the data into a temporary file
STRSEU - to change the original source DDS
ENDJRNPF - to end journaling of physical files
DLTF - including the logical files based on the file
CRTPF - to create the new file
CPYF - to move the data back into the file*
CRTLF - for 1 ogi cal fi 1 es requi red
JRNPF - to recommence journaling

• To change the structure of an SQL table:

CPYF - to copy the data to a temporary file
DROP TABLE tablename (which drops dependent views and indexes)
CREATE TABLE tablename

(field! type(n) NOT NULL WITH DEFAULT,
field2 type(n) NOT NULL ...)

CPYF or SQL INSERT - to copy the data back into the table*
CREATE VIEWs and INDEXes

" The "MAP parameter in the CPYF command can be used when the order of the
fields/columns has changed, to ensure that the values are correctly matched
from the fields in the old file to the new one.

Note: In both cases, if a new column is added, blanks or zeros will be placed
into it.

The difference between the two methods is the way the file/table is changed.
While the DDS-created file structure can be changed by editing the source code,
and then recreating the file, the SQL CREATE TABLE statement requires
redefinition of all the columns in the table. For a large table with many columns
this can be error-prone and time-consuming. Therefore, it would be useful to
keep "table-creation" code in source files, which could be executed from within a
program, and edited and re-executed easily if necessary. This would be very
similar to coding a CL program to create device descriptions and user profiles,
instead of entering the commands one by one interactively, except that since
SQL statements cannot be executed from a CL program, they would have to be
placed into an HLL program.

SQL Objects and Override Data Base File (OVRDBF)
You know that the data in an SQL table is actually stored in a physical file. The
nature and structure of SQL provides for accessing only the first member of this
physical file by default. When designing applications, this is something that,
wherever possible, should be adhered to as a standard. If required, to change
the member being processed, the OVRDBF command can be used. However
this is not a recommended design practice, as SQL allows for only one member
to be used at once, and it is a cleaner solution to have members in unique
physical files (that is, one member per physical file). In the data definition for an

16 Changing the structure of a table or file could also be achieved by creating a new table/file, copying the data into that file,
deleting the old one, and then renaming the new one. However, since a new file will be created with the same DDS, one must
be careful not to lose track of the name under which the DDS is stored.

3-36 Using SQU400

application, the analyst must also keep in mind that SOL will not work with
multiple format logical files.

The OVRDBF command can be successfully used to run an SOL application
against another file with a similar data structure without the need for
recompilation. This is particularly useful when testing an application against a
variety of standard test data files.

OVRDBF can be used to override SQL data manipulation statements only.

Using Tables and Files in High-Level Language Programs
This section discusses several aspects of using tables and files in HLL
programs.

Using SQL to Access DDS- and IDDU-Defined Files and SQL Tables
SQL can be used on IDDU- or DDS-defined files or on SQL tables. Most file
accesses within an HLL program can therefore be performed using SQL
input/output statements instead of the HLL input/output statements.

Traditionally, an RPG program requires an F-specification to identify each file
which a program uses. Field definitions can be copied into the program
automatically. In the C-specifications, files are opened, read, processed and
closed.

In general, a COBOL program requires a "SELECT - ASSIGN" statement, and an
FD statement, for each file to be accessed within a program. A COpy DDS
statement can be used to retrieve externally defined field definitions and SQL
table descriptions. In the PROCEDURE-DIVISION statements the file will be
opened, read - generally into some working-storage variables - processed, and
closed.

When using only SQL to retrieve and process records from any table or file, the
file identification statements can be omitted. The SQL DECLARE CURSOR and
FETCH statements are used to define the data and read it. See Figure 3-3 on
page 3-38 for an RPG example of how to code a basic SOL file access in a
program and Figure 3-4 on page 3-38 for a COBOL exampleY

17 Each SQL statement must be preceded by an "EXEC SQL", and RPG and COBOL SQL statements must also be followed with
an "END-EXEC" statement.

3. Application Programming With SQL 3-37

For an RPG program

DECLARE cursorname cursor for
SELECT fieldl, field2, field3 •••
FROM library/(table name or DDS-file or IDDU-file)*

OPEN cursorname

FETCH cursorname into Host variables (1) (2) (3) •.•

CLOSE cursorname

Figure 3-3. SQL File/Table Access in an RPG Program

For a COBOL program

WORKING-STORAGE SECTION.
INCLUDE SQLCA

PROCEDURE DIVISION.

DECLARE cursorname cursor for
SELECT field!, field2, field3 •.•
FROM library/(table name or DDS-file or IDDU-file)*

OPEN cursorname

FETCH cursorname into Worki ng storage vari abl es (1) (2) (3) ..•

CLOSE cursorname

Figure 3-4. SQL File/Table Access in a COBOL Program

• To receive the records from the file in a certain order, the ORDER BY clause
can be used here. If not, the database optimizer will create or use an index
based on its requirement for best performance, and the order of the records will
be unpredictable and can change if reoptimized.

File and Table Field Names in COBOL/400
Both DDS and SQL allow field names to contain the underline character.
However, the COBOU400 COPY DDS-ALL-FORMATS statement does not allow
replacement of hyphens by underline characters through the REPLACING clause.
Therefore, underline characters should be used with care in field names of
tables and files, except when used in ALIAS fields.

Use of ALIAS in DDS Statements

3-38 Using SQU400

"ALIAS" is a DDS parameter which permits a field name to be known by another
name within a program (for example, PARTNUM alias "PART_NUMBER"). This
function can be used with SQL, when accessing DDS-defined files. In COBOL, ~ .
the "COPY DO" statement copies the aliases rather than the original field names ...,
into the program. This is not the same as the COPY DDS statement. These
aliases will generally be used for host variables in working storage. SQL then

SQL Field Names

uses the aliases for host variables within the program. Alias names cannot be
used in SQL statements to reference column names.

RPG does not support aliases, and renaming of fields must be done by the
programmer within the programs. See Figure 3-5 for an example of use of the
ALIAS parameter in a COBOU400 program.

WORKING-STORAGE SECTION.

01 GROUPNAME.
COPY DD-ALL-FORMATS of filename.

PROCEDURE DIVISION.

DECLARE cursorname CURSOR FOR
SELECT field1, field2, field3, .•.

FETCH cursorname INTO :fieldl-alias, :field2-alias, :field3-alias •••

Figure 3-5. Use of ALIAS Parameter in a COBOL Program

SQL permits the use of the underline character in its table definitions (table
name and column name - maximum of 10 characters for a column name). In this
case, in SQL statements, the field names must be written with the underline
character, rather than the hyphen ("-") as is used in COBOL.

RPG Host Variable Definition Considerations
In an application, a programmer usually gets the definition of database file
variables from the external definition of that file. But with SQL in RPG there is
often no need for an F-specification, as all 1/0 is done with SQL.

If RPG file processing statements are not required in the program, then the
preferred approach is to use an externally described data structure. This
provides the same automatic provision of columnlfield definitions to the
program, but avoids the overhead of opening the file and maintaining an open
data path during program execution if this is not required for other purposes. A
sample externally described data structure based on a table would look like this:

E DSTABLE

The precompile process will then retrieve the field definitions. However, in SQL
the size of a column name may be up to 10 characters. In RPG you are
restricted to six: therefore if required you can change the field name in the
program by specifying an I-spec for every field redefinition. The RPG maximum

3. Application Programming With SOL 3-39

of six characters for the data structure name could also be related to a longer
table name via the data structure specifications. This may look like this:

!TABLE
I

DSLONGTABLE
LONGFIELD SFIELD

In this case the data structure TABLE will contain the field names from the table
or file LONGT ABLE. The field SFIELD has been given the longer name
LONGFIELD.

For flexibility, it is often better to design the SQL table with column names that
are six characters or less in length. This will help overcome the problem of
having to rename fields in every program if RPG is used.

The programmer can use the OVRDBF command if F-specifications are used in
the RPG program to retrieve the definitions and the table name is longer than
the RPG-allowed eight characters.

SQL Table/File Access versus HLL Table/File Access

3-40 Using SQU400

Since it is now possible to use an SQL table or a database file within a program,
and to access the data through an HLL program with either SQL statements or
HLL statements, there are many coding possibilities. Figure 3-6 on page 3-41
summarizes the difference between coding using a table/file and HLL
processing, and a table/file processed by SQL.

SQL INCLUDE

COBOL

Table/file with no SQL
processing

SELECT file
FD fil e

COpy DDS-

I'JORKING STORAGE
(COPY DDS- optional)

OPEN fi le
READ file (INTO)
CLOSE file

Table/File with only SQL
processing

WORKING STORAGE

INCLUDE SQLCA

(COPY DDS- optional)

DECLARE cursor SELECT*
OPEN cursor
FETCH* (into fields named
in copy DDS statement -
optional)

CLOSE cursor

RPG

FFILENAME IF E

OPEN file
READ file
CLOSE file

(optional)

DISK

I E DSFILENAME

DECLARE cursor SELECT
OPEN cursor
FETCH (into fields copied

via external DS)

CLOSE cursor

* Optional: If access is random, then this could be omitted and a
single SQL statement executed; for example:

UPDATE table
SET fieldl = El
WHERE field2 = 'SMITH'.

Figure 3-6. HLL and SQL Access of Files/Tables

The text of an SQL statement can be created outside a program, and then copied
into the program at compile time, using the SQL "INCLUDE" statement, in the
same way as a COPY DDS command is used to copy DDS statements. The SQL
statement(s) are written into a separate file, for example, "FILEX", surrounded by
EXEC SQL and END-EXEC delimiters, and copied into a program thus:

EXEC SQL
INCLUDE FILEX
END-EXEC.

FILE X:
EXEC SQL
FETCH cursorname into :fieldl, :field2
END-EXEC.

This function is useful when a certain complex command or set of commands
are used in several programs, and can be copied in. If the commands are
changed, only the programs copying in the text need to be recompiled, as

3. Application Programming With SQL 3-41

opposed to changing each program separately if the commands were
"hard-coded" in.

HLL (Non-SQL) Access of SQL Tables

3:..42 Using SQU400

While the use of SQL statements within HLL programs to access SQL tables or
other files is definitely advantageous and easy to code, there are some functions
which are not available from SQL directly (such as the READP command in RPG,
or the READ PRIOR statement in COBOL). In these cases, it is possible to
access SQL tables like files, through HLL processing in the following ways:

• If the order of the records is important

If record order is important, a logical file can be created in a separate
library, using DDS to select some or all of the fields and also to specify an
order for the file. The HLL program will be coded to access the table
through the logical file in exactly the same way as it does a logical file based
on a DDS-created physical file. To create the logical file based on the SQL
table, the SQL table is named in the PFILE parameter of the DDS, in the
same way as a physical file usually is.

• If the order of the records is not important

If record order is unimportant, the HLL program can name the table in its file
definition statements in exactly the same way as for a DDS-created file. For
example, in RPG,

FFILENAME UF E DISK
F OLDREC KRENAME NEWREC

can be used, and in COBOL,

SELECT filename ASSIGN to DATABASE-tablename

can be used, followed by a

COPY DDS-ALL-FORMATS of tablename

statement, to declare the file. After that, regular READ and WRITE
statements can be used as for sequential files. Any indexes on the table are
ignored, so that records will be provided in their physically-stored order, and
the RECORD KEY IS EXTERNALLY-DESCRIBED-KEY clause is not allowed.

• Read Prior

There is no command in SQL to allow for fetching the previous record in a
file. However, it is possible to use the RPG READP or the COBOL READ
PRIOR statements when reading a table sequentially with HLL 1/0
statements. (To use a read prior function with random processing, see the
next section "Random Access" below.) In RPG, READP will read the
previous record from a full procedural file. The C-specifications are coded
as if the SQL table were just a sequential file. The F-specifications must
include the renamed record format. To uselhis function in COBOL, the
following statements should be used:

Workstation Files

SELECT filename ASSIGN to DATABASE-tablename
ORGANIZATION is INDEXED
ACCESS is DYNAMIC
RECORD KEY is fieldname.

In the Procedure Division, file reads are performed sequentially, starting with
a READ FIRST statement, and then a READ NEXT statement. A READ PRIOR
statement can be used at any time.

The above ORGANIZATION, ACCESS and RECORD KEY clauses must be
used, even though the statements imply that the table is an indexed file, and
it is not. In fact. if an index exists, it is ignored. Any field name can be used
in the RECORD-KEY parameter.

• Random Access

It is not possible to use an SQl table for Hll random access directly. A
keyed logical file created over the SQl table must be used in such cases.
This could be created either as an SQl index or a system logical file. It is
then possible to randomly access the table through an Hll, and also to use
the READ PRIOR statement on this logical view of the table.

The Screen Design Aid allows the user to select fields from a database file when
defining a screen format. This is useful as the required fields with definition
attributes (such as headings, keyboard shift) can be simply placed on the SDA
work screen without the need for redefinition. The definitions from an SQl table
can also be copied onto the SDA work screen in this manner.

Declarative SQL Statements
There are a certain number of embedded SQl statements which can be seen as
declarative. Generally. declarative statements are those which are not actually
executed as a part of the normal program logic, but are used when the program
is compiled. This is similar in concept to the declaration of new variables.

The common declarative statements in SQl include: DECLARE CURSOR,
DECLARE STATEMENT, INCLUDE, and WHENEVER. A noticeable difference
between a declarative and a procedural statement in SQl is that declarative
statements do not generate calls to QSQROUTE. Declarative statements are not
executed.

When to Use SQL

SQL and SAA

There are many other aspects to SQl which may cause the user to question
whether he should use SQl or not. The following summarizes some of the more
important aspects, and indicates where further information on each can be found
in this document.

If applications are to be run on other IBM systems, then using SQl and following
the SAA guidelines may facilitate this sharing of applications. Similarly.
applications from other systems which use SAA can be moved to the AS/400
system. See "SQl Standards" on page 10-1 for more details on this
consideration.

3. Application Programming With SQL 3-43

Knowledge of SQL

Multiple AS/400's

DDM Files

If the application developers have no knowledge of SOL, but are very - \
experienced in a high-level language (HLL), then initially SOL programming will """
be a slower process than progra'mming with the HLL. However, if the user is not
an experienced programmer, SOL may prove easier to learn. If knowledge of
SOL and an HLL is equal, SOL programming and debugging should be faster.

When an application is being developed for use on several AS/400s, only one
machine requires the SOLl400 licensed program (5728-ST1). A compiled
program (object) incorporating SOL statements can be installed on another
AS/400 without the SOLl400 licensed program, and will execute normally, since
run-time support of SOL is included in the OS/400, This is similar to what is
applicable to the HLL compilers,

SOL only supports access to files on the system on which it is run. For this
reason, it may be necessary to use HLL access to remote files. See "Distributed
Data Management (DDM) Considerations" on page 6-1 for more details,

SQL Commitment Control

Error Handling

3-44 Using SQU400

SOL supports COMMIT and ROLLBACK statements in addition to those already
found in the AS/400 system. When a high-level language program incorporating
SOL is compiled (using CRTSOLCBL, CRTSOLRPG, CRTSOLC, CRTSOLFTN and
CRTSOLPLI), SOL commitment control is automatically added to the created
program. The default commitment control level is *CHG, meaning that all
records updated in a program will be locked until commit or rollback occurs. If
the job completes without executing a "COMMIT" SOL statement or CL
command, the changes will be rolled back. The commitment control level may
be changed to lock all records read (*ALL) or to make changes to a file
immediately (*NONE).

If a job is interrupted (for example, due to a power failure) and is running under
commitment control *ALL or ·CHG, all changes made to the file since the last
"COMMIT", or start of job if no commit has been issued, will be rolled back, For
those users who are not familiar with AS/400 commitment control, this SOL
implementation offers a simple method of implementing an important recovery
function. Full details of the implications of this are found in "Rollback
Considerations" on page 7-10.

All SOL statements return values to the SQLCA (SQL communication area),
which indicate the success or failure of each command, with error/warning
codes and messages. Therefore, in the same way as it is possible to program in
a high-level language to check whether a file access was successful or not (for
example, the use of indicators or checking in INFDS after I/O statements in RPG,
or SELECT ... FILE STATUS is data-name in COBOL), an SOL code can be
checked for information regarding execution of a statement.

The SOL WHENEVER statement can be used to handle errors, not-found
conditions, and warnings. If an SOL "WHENEVER SOLERROR" statement is
placed at the start of a program, and an SQLCODE of less than zero is received,
the second half of the statement (CONTINUE/GO TO) will be executed. This is
similar to the MONMSG statement in CL, and is again a very simple way of

handling unexpected conditions. For further details see "WHENEVER" on
page 3-21.

Performance of SQL versus High-Level Language Accesses

Which DOL?

Generally speaking, SQL will perform more efficiently than HLL equivalent
coding for multiple record updates and deletes or complex selection. However,
performance will be slower if single record data manipulation statements are
compared with their HLL equivalents. You should only consider replacing all
HLL data manipulation statements with SQL code if SAA compatibility is
required.

Performance is a very important consideration. The use or misuse of SQL can
affect the way in which an application performs. It is important that this issue is
investigated thoroughly before embarking on a major development or conversion
project using SQL. Read "SQL Performance" on page 5-1 for more details.

When moving from a System/38 where all files are already defined with DDS, the
functions to be gained by moving the files into an SQL collection are those of the
SQL catalogs, which provide an easy method of summarizing table layouts, fields
and indexes.

SQL provides a very easy method of creating files, which is perhaps preferable
for those not familiar with DDS. IDDU is also easy-to-use, but does not provide
the facility to create logical files. It can also be used to create tables in an SQL
collection. For some applications, when SQL tables cannot be accessed as
desired, a DDS logical file can be created over an SQL table, to provide the
necessary function.

SQL I/O statements are easy to code, and can be used in conjunction with
high-level language code already used. Therefore future coding could use SQL,
while existing applications can remain as they are.

For further comparison, see the section on "DOL Recommendations" on
page 2-9.

Considerations for Data Conversion of System/36 Files
In order to be processed by SQL (or to reside in an SQL collection), database
files must be externally described. The System/36 does not provide this facility
but uses only program described database files, where the files mayor may not
be linked to a data dictionary. Regular data management, as invoked by HLL
programs, does not make use of the data dictionary links. However, in order to
use SQL, System/36 files must be converted to AS/400 externally described files.

Note: If the files are not converted, SQL access is limited to plain "one record
= one field" processing. Non-converted files cannot reside in an SQL collection.

3. Application Programming With SQL 3-45

System/36 File Library
Following System/36 to AS/400 migration. the System/36 files reside in a library
(usually QS36F) where they can be accessed by System/36 Environment
programs. This library is the equivalent of the System/36 VTOC. Within the
invocation of the System/36 Environment (STRS36). the System/36 Environment
programs have access to only one System/36 file library. The Change System/36
command (CHGS36) can be used to switch the System/36 file library between
System/36 Environment invocations.

System/36 File Types
In the System/36 file library, you find all the conventional System/36 file types:
sequential(S), indexed(I), direct(D) and alternate indexes(X). The "externally
described" tag of a file, shown by the CATALOG procedure, just means
"IDDU-linked" and not AS/400 externally described. Group file names (with a
period in the file name) have to be enclosed in double quotes when used in
AS/400 commands. The System/36 file library is a regular AS/400 library and
therefore conventional System/36 files may be intermixed with AS/400 files.

Conversion Methods

3-46 Using SQU400

When using SQL for System/36 files, you can consider two different conversion
methods. described below.

Assumptions

• Use of SQL is limited to application extensions only (that is. new programs).

• The existing System/36 application should continue to run as is in the
System/36 Environment.

• No changes, or very few. should be made to programs and procedures in the
existing System/36 application.

• No permanent data duplication is wanted, such as the same data in an SQL
library and in a System/36 file library.

Method 1: All files in the application are moved (and converted) into an SQL
collection. Before running the application. the System/36 Environment is
reconfigured (CHGS36) to have the System/36 file library being the SQL
collection.

Method 2: Only selected System/36 files are converted and put back to the
standard System/36 file library which is not an SQL collection (library).

The choice of either of the above methods depends on the nature of the
application and its context. The suggested approach is to start with method 2.
and then, if applicable and when ready, switch to method 1. Table 3-4 on
page 3-47 summarizes the major aspects of the two methods.

c

c

Table 3-4. Systeml36 File Conversion Methods

METHOD 1

Full SOL support - ie automatic catalog
(data dictionary) maintenance and
commitment control.

All application data is externally
described.

Large (once but all together) conversion
effort.

Data Conversion Steps

METHOD 2

Conversion may be done in steps by
converting only data which is involved in a
new application.

No implic~tions to the rest of the
application or to other applications.

Small step-by-step conversion effort.

No SOL support for data dictionary.

No SOL support for commitment control.

Only part of application data is externally
described.

The following steps should be used as a reference when converting data. The
general sequence that should be followed is: If the System/36 file in question
has alternate indexes,then convert the parent file first. Go through all the steps
for every parent file. Steps 2 - 6 and Step 8 apply only to parent files (S,I,D).

Step 1: Save the file you plan to convert.

Step 2: When you create an SQL collection (library), all the necessary entries
for a data dictionary are created automatically. In addition, the library is flagged
"SQL" in order to host only AS/400 externally described files.

Step 3: It is suggested that you create or move all the necessary IDDU
definitions into the above data dictionary. By doing so, you will not have
duplicate data dictionaries when switching to method 1.

Step 4: For non-IDDU defined files you will have to create the definitions.
Already existing IDDU definitions should be moved to the SQL data dictionary. To
find out which definition is used, you may use the Display File Description
command (DSPFD) or use the IDDU cross-reference information facility. Before
moving (copy and then delete from original data dictionary), unlink the files
(LNKDTADFN command or IDDULINK procedure).

Step 5: Either by menu options or by the command "WRKDBFIDD" go to "Work
with Data Base Files using IDDU". Select option "CREATE". When using method
1, create the file into the SQL collection; when using method 2, create the file
into the original System/36 file library using a new file name. The IDDU file
definition to be used is located in the SQL data dictionary (see step 4). This
"Create with IDDU operation" will result in an AS/400 externally described file.

Note that this procedure will only apply to single format and non-keyed files.
The procedure for multi-format and keyed files is more complex and not
described here.

Step 6: Using the Copy File command, copy the data from the original file to the
new file:

CPYF FROMFILE{lib/filename) TOFILE{lib/filename)
MBROPT{*ADD) CRTFILE{*NO) FMTOPT{*NOCHK)

3. Application Programming With SOL 3-47

Conclusion

3-48 Using SQU400

Step 7: If the original parent file had alternate indexes, then these indexes have
to be recreated in the converted version .. When using method 1, you have to
create an SQL index (or logical file if you need to substring fields) within the SQL
collection for every alternate index file, then delete the alternate indexes for the
original parent file. When using method 2, delete all the alternate indexes for
the original parent file; then recreate them in the same library by chaining them
to the new (renamed) parent file; for this purpose use the BLDINDEX procedure.

But be aware that where alternate indexes were allowed to be built over partial
fields, this is not possible with an externally described file.

Step 8: For both methods, delete the original file. When using method 2, rename
(RENAME procedure or RNMOBJ command) the new file to the old file name.

When converting System/36 files with the above methods, the existing programs

.
-'\.
~

in the System/36 Environment do not have to be changed. They can be run j'
against System/36 files (program described) and also against AS/400 files
(externally described).

If you plan to use SQL with HLL programs, consult the appropriate paragraphs in
this chapter. The programs have to be written in COBOL/400, RPG/400, C/400,
FORTRAN/400 or PUI. Existing System/36 programs must be migrated to one of
the above languages.

(. 4. Static and Dynamic SQL

Static SQL

SOL statements can be run in two environments - static and dynamic. A
complete list of the statements which are allowed in each environment appears
in the "Dynamic SOL Applications" chapter of the Programming: Structured
Query Language Programmer's Guide (SC21-9609). It is important to note that
programs which run under commitment control in either static or dynamic
environment cannot execute SOL data definition statements (for example
CREATE TABLE or CREATE or DROP INDEX).

The following diagram gives a clear representation of the methods available with
SOL, covering static and dynamic:

SQL Statements

I
I I

Static Dynamic

I
I

I
\-/ith ~/i thout Select Non-

Cursors Cursors

~
Select

I
Varying Fixed \1i th No
List List Parameter Parameter

Select Select Markers Markers

Static SOL statements are embedded within a program and are prepared during
the precompile process and executed later. Rows can be processed in static
SOL in one of two ways - either using cursors or without cursors.

Processing Without Cursors

Retrieving

SOL cursors allow the retrieval of more than one row from a single SELECT
statement (at one time). However, it is not always appropriate to process with
cursors. The following are some of the considerations when processing without
a cursor.

A single row SELECT statement can be used if it is known that there will be only
one row in the result set. For example, if a row is being accessed by a unique
index (employee number in this case):

SELECT EMPNO, LASTNAME, \10RKDEPT, SALARY
INTO :EMPNO, :LASTNAME, :WORKDEPT, :SALARY
FROM TEMPL
WHERE EMPNO = :host-variable

© Copyright IBM Corp. 1990 4-1

Updating

Another example of a selection that would return only one row is a SELECT
statement that does a built-in function, for example, find the minimum and
maximum salaries earned by all female employees in a particular department.

SELECT MIN(SALARY) , MAX (SALARY)
INTO :MINSAL, :MAXSAL
FROM TEMPL
WHERE SEX = 'F'
AND DEPT NO = :host-variable

A single row selection might also be a join. In the following example we find the
employee's first and last name and the name of the department in which the
employee works:

SELECT FIRSTNAME, LASTNAME, DEPTNAME
INTO :FIRSTNAME, :LASTNAME, :DEPTNAME
FRm,1 TEt4PL, TDEPT
~JHERE TEMPL.Et4PNO = :host-variable
AND TEMPL.DEPTNO = TDEPT.DEPTNO

If more than one row is returned from this type of select, the program will
receive a negative SQLCODE. However, data will be returned to the host
variables and the program will continue to execute.1

Without using a cursor you can do either a single row update if the value in the
WHERE clause is unique, or a mass update if more than one row matches the
value in the WHERE clause.

For example, to give all employees in department '001' a 10% salary increase:

UPDATE TEMPL
SET SALARY = SALARY + (.l*SALARY)
\~HERE DEPTNO = 'D01'

To give employee number 000020 a 20% salary increase:

UPDATE TEMPL
SET SALARY = SALARY + (.2*SALARY)
WHERE EMPNO = '000020'

Joined tables cannot be updated.

If you are using commitment control, remember that a maximum of 32767 rows
can be locked within one unit of recovery. If your mass update affects more than
32767 rows you will get a negative SQLCOOE returned to the program, and the
statement results are rolled back. In other words, the rows involved in the mass
update would be rolled back, but not the rest of the unit of recovery.

1 SAA SQL tells us that the variables are returned, but the row used is unpredictable.

4-2 Using SQU400

Deleting

Inserting

You can delete a single row from a table if the value in the WHERE clause is
unique (employee number is unique), again without using a cursor.

DELETE FROM TEMPL
WHERE EMPNO = :host-variable

A mass deletion can be done if the value in the WHERE clause is not unique. In
the following example, all projects for department 011 are deleted:

DELETE FROM TPROJ
WHERE DEPTNO = 10111

If no WHERE clause is specified at all. all the rows in the table will be deleted.
But the catalog description of the table is retained:

DELETE FROM TEMPL

If you are using commitment control, remember that a maximum of 32767 rows
can be locked within one unit of recovery. If your mass delete affects more than
32767 rows you will get a negative SQLCODE returned to the program. and the
statement results are rolled back. In other words. the rows involved in the mass
delete would be rolled back. but not the rest of the unit of recovery.

Single rows can be inserted into a table. The following example adds a new
department to the department table:

INSERT INTO TDEPT VALUES ('Fll l ,'EDUCATION ' ,'000110 1,'D01 1)

A mass insert can be done by using a subselect within the INSERT. The
following example makes a new copy of the department table:

INSERT INTO NEWDEPT (DEPTNO, DEPTNAME, MGRNO, ADMRDEPT)
SELECT * FROM TDEPT

A common use for mass insertions is to create a temporary table in a program.
and insert the resulting set from a complex join into it. for further processing
within that program. The next example will select all employees who are
working on projects, and look up their department name, and the names of all
the projects they are working on, and put all this information into a temporary
table.

The advantage of having this information in a table is that the joined information
can be worked on with UPDATE and DELETE. A normal cursor select for update
cannot do updating if the SELECT statement includes a join. However. note that
you are not updating the base table, only the copied version.

CREATE TABLE TEMP (FIRSTNAME, LASTNAME, DEPTNAME, PRNAME)

INSERT INTO TEMP (FIRSTNAME, LASTNAME, DEPTNAME, PRNAME)
SELECT FIRSTNAME, LASTNAME, DEPTNAME, PRNAME
FROM TEMPL, TDEPT, TPROJ, TEMPRACT
WHERE TEMPL.EMPNO = TEMPRACT.EMPNO
AND TEMPL.DEPTNO = TDEPT.DEPTNO
AND TEMPRACT.PROJNO = TPROJ.PROJNO

If you are using commitment control, remember that a maximum of 32767 rows
can be locked within one unit of recovery. If your mass insert attempts to add

4. Static and Dynamic SQL 4-3

more than 32767 rows, you will get a negative SQLCODE returned to the
program, and the statement results are rolled back. In other words, the rows
involved in the mass insert would be rolled back, but not the rest of the unit of
recovery.

Processing With Cursors

Retrieval

Updating

4-4 Using SQU400

SQL is better suited to "set-at-a-time" operations, rather than single row
operations, when compared to high-level languages. SQL "set-at-a-time"
operations in HLL programs require the use of cursors. Cursors are processed
sequentially and can be in ascending or descending sequence.

Up to a maximum of 32767 rows can be locked in one unit of recovery. When
this number is reached, and you are processing with a cursor, you will get a
negative SQLCODE and should then execute a commit with hold, which will allow
processing to re-commence from the point where the negative SQLCODE
occurred.

The following are examples of how cursors are used in applications.

If you are going to perform a selection that will result in more than one row in
the result set, you will need to use a cursor to process the rows. All the rows
that you want to process are selected with a DECLARE CURSOR and SELECT
statement. After that you fetch the rows sequentially, and process them one at a
time. The SELECT statement can specify a join across multiple tables.

DECLARE CURSORl CURSOR FOR
SELECT EMPNO, FIRSTNAME, LASTNAME, DEPTNAME
FROM TEMPL, TDEPT
~JHERE TEMPL. DEPT NO = TDEPT. DEPTNO
ORDER BY EMPNO

OPEN CURSORl

FETCH CURSORl
INTO :EMPNO, :FIRSTNAME, :LASTNAME, :DEPTNAME

An extension to SQLl400 allows cursors that are going to be updated to also
have an ORDER BY clause specified in the SELECT statement. Other
implementations of SQL and SAA do not allow this. The maximum size of the
fields that you are going to be ordering by cannot exceed 256 bytes. If the
ORDER BY field size is greater than 120 bytes, the cursor is considered to be
read only and you cannot also specify FOR UPDATE OF.

If ORDER BY is specified in a cursor SELECT statement for which you plan to
perform a subsequent cursor FETCH statement and a cursor UPDATE statement,
you must also code a FOR UPDATE OF clause in the SELECT statement,
otherwise you will get a negative SQL return code when you attempt the update.

In this example, note the ORDER BY III and FOR UPDATE OF II clauses.

DECLARE CURSORl CURSOR FOR
SELECT PARTNO, DESCRIPTION, ONHAND
FROM INVENTORY
WHERE PARTNO BETWEEN 209 AND 280
ORDER BY DESCRIPTION iii
FOR UPDATE OF ONHAND II

OPEN CURSORl

FETCH CURSORI INTO :WPARTNO, :WDESCR, :WONHAND

UPDATE INVENTORY
SET ONHAND = : \'JONHAND+ 100
WHERE CURRENT OF CURSORI

If an ORDER BY clause is not specified in the SELECT statement, you have the
option of coding the FOR UPDATE OF clause in the SELECT, or omitting it. Both
ways will allow subsequent updating of the cursor.

The FOR UPDATE OF clause limits the columns that can be updated to those
listed. If the clause is omitted, all columns can be updated including columns on
which there are indexes. The omission of the FOR UPDATE OF clause could
have performance implications because SQL/400 will not use an index when
selecting a row. SQL will not use an index over columns that are to be updated
because an update to that column could cause it to be processed again if the
update changes the column value to be different to the original value.

A cursor UPDATE statement can update columns omitted from the select list, but
the INTO clause of a FETCH statement can only reference columns in the select
list.

In this example the ONHAND column is updated without it being specified on the
selected column list:

DECLARE CURSORI CURSOR FOR
SELECT PARTNO, DESCRIPTION
FROM INVENTORY
WHERE PARTNO BETWEEN 209 AND 280
ORDER BY DESCRIPTION
FOR UPDATE OF ONHAND

OPEN CURSORI
FETCH CURSORI INTO : \~PARTNO, : \~DESCR

UPDATE INVENTORY
SET ONHAND = ONHAND+I00
WHERE CURRENT OF CURSORI

If the cursor is considered update capable, rows are locked as they are read. If
the program is executing under *CHG and a row is not updated, the lock is
released as the next row is read. If the program is executing under * ALL, all
rows are locked after they are read. In addition, under all commitment control
levels, including *NONE, if the cursor is considered update capable, the row that
the cursor is currently pointing to is locked against all other updates from the
same program except for UPDATE WHERE CURRENT of the cursor (that is, the
same one that did the fetch).

4. Static and Dynamic SQL 4-5

4-6 Using SQU400

A cursor is considered update capable if it has a FOR UPDATE OF clause, an
UPDATE WHERE CURRENT clause, a DELETE WHERE CURRENT clause, orthere ,..J
is an EXECUTE or EXECUTE IMMEDIATE statement in the program and the
SELECT statement has no JOIN, UNION or GROUP BY. A cursor is considered
read only if it has no FOR UPDATE OF clause and no EXECUTE or EXECUTE
IMMEDIATE statement in the program, or if it has a JOIN, UNION or GROUP BY.
In all cases, a cursor declared with an ORDER BY and omitting the FOR UPDATE
clause, is read only.

When a program is executing under ·CHG, the cursor is considered read only
and no locks are placed on any of the selected rows. However, if the program is
executing under ·ALL, the locks will prevent access of the rows from another
job.

Notes Regarding the FOR UPDATE OF Clause

• A cursor is considered update capable if it has either a FOR UPDATE OF .'
clause, or if there is an EXECUTE or EXECUTE IMMEDIATE statement in the ""'"
program, or an UPDATE WHERE CURRENT OF clause, or a DELETE WHERE
CURRENT OF clause, and the SELECT statement has no JOIN, UNION and
GROUP BY clauses.

• A cursor is considered to be read only if it has no FOR UPDATE OF clause
and no EXECUTE or EXECUTE IMMEDIATE statement in the program, or if it
has a join or a UNION or a GROUP BY clause.

• If the columns listed in the FOR UPDATE OF clause include the index, or if
both the FOR UPDATE OF and ORDER BY clauses are omitted, thereby
making all the fields potentially update capable, the index will not be used
when the selection is performed. This could result in performance
implications.

• Use the FOR UPDATE OF clause only when you are going to do the update
using UPDATE WHERE CURRENT OF CURSOR, and specify only the fields
that you want to update.

• If the update is going to be done using UPDATE WHERE = :host-variable,
rather than UPDATE WHERE CURRENT OF CURSOR, leave the FOR UPDATE .• >'\
OF clause out of the select. If this is not done you may get a record lockout ...",
(SQLCODE -913) when you try to do the update, because an update lock was
taken on the row at fetch time, and can only be updated by the same cursor.
This should be avoided if at all possible for data integrity and performance.

• You cannot use FOR UPDATE OF if the SELECT statement includes:

1. AVG, MAX, MIN, SUM or COUNT

2. GROUP BY or DISTINCT

3. Union

4. A join of two or more tables.

In these cases, the cursor is always read only.

Deleting

Dynamic SQL

You can delete the current row of a cursor by declaring the cursor with a FOR
UPDATE OF clause as in updating a cursor. After the row that you want to
delete has been fetched, you then specify DELETE WHERE CURRENT OF
CURSOR. The row that the cursor is pointing at will be deleted and the next
FETCH statement will then point at the next row to be fetched.

DECLARE CURSORl CURSOR FOR
SELECT PARTNO, DESCRIPTION
FROM INVENTORY
FOR UPDATE OF ONHAND

OPEN CURSORl
FETCH CURSORl
INTO :WPARTNO, :WDESCR

- display confirmation screen to user -

DELETE FROM INVENTORY
WHERE CURRENT OF CURSORl

Dynamic SQL statements are prepared and executed within a program while the
program is executing. Dynamic SQL can be used by more advanced application
programs, to build SQL statements that are not known at compile time, including
SQL statements that support host variables by the use of parameter markers.

Authorization to run dynamic statements is checked at execution time during the
processing of the OPEN CURSOR statement, during preparation time and during
the processing of the statements that reference the open cursor.

Interactive SQL is a good example of dynamic SQL. Neither the form of the SQL
statement, nor the identity of the tables that are going to be used is known until
execution time. The SQL statement is contained within host variables rather
than being coded into the program. Examples in this section show applications
which use the following SQL statements dynamically:

SELECT, DESCRIBE, DECLARE CURSOR,
EXECUTE IMMEDIATE, PREPARE and EXECUTE

Dynamic SELECT Statements
Dynamic SELECT statements are of two basic types: fixed-list selections and
varying-list selections.

Fixed-List SELECT statements
Dynamic fixed-list SELECT statements are supported by RPG, COBOL, C/400,
FORTRAN/400 and PUI. Fixed-list SELECT statements return data of a
predictable type and number, and you can therefore design host variables to
accommodate the data as you would for any static select. The columns that are
going to be selected must be fixed at compile time. However, the WHERE clause
may be specified at execution time.

A program that would be a good candidate for being written as a Dynamic
fixed-list selection would be one that had so many different options in the

4. Static and Dynamic SQL 4-7

4-8 Using SQU400

WHERE clause that it would not be feasible to code a different SQL SELECT
statement for each possibility. For example, if you did not want to give a user
access to the full power of Interactive SQL, but they did have a need to perform
a variety of queries on a specific table, you could design a program where all
the columns in the table would be accessible and the user could enter his own
WHERE clause on the screen. See Figure 4-1 for an example screen for such a
program.

The user would key in a column name from the choices displayed, an operator,
and a constant enclosed in quote marks, which together would form the WHERE
clause. This WHERE clause would then be combined with the constant 'SELECT
• FROM TEMPL WHERE' into one host variable (now holding an SQL statement)
that would then be prepared at execution time. After the statement has been
prepared, you then declare the cursor, open the cursor, fetch each row into your
predefined host variables, and continue processing as if it were a static program.

SCREENl EMPLOYEE SELECTION

EMPNO
FIRSTNME
LASTNAME

SELECT ALL EMPLOYEES WHERE DEPT NO

F3=EXIT

----- PHONENO
HIREDATE
SEX
BIRTHDATE

<
COMPARISON OPERATOR >

<=
>=

CONST ANT __,..-,,---:---:--_
(Enclose constant with single quotes)

Figure 4-'. Example Screen For a Dynamic SQL Program

Following is a sample RPG program showing the use of a dynamic fixed-list
select. To get a list of all employees whose surnames were from nMH to HZH, the
user would key LASTNAME in the first screen field, > = in the comparison
operator field, and "M" in the constant field. The SELECT statement would be

SELECT * FROM TEMPL WHERE LASTNAME >= 'M'.

To further sophisticate the program, an AND and OR line could be included on
the screen after the constant field.

**

H
FPROG06 CF E \'JORKSTN

E

I~!HERE

I
I
I
I
I

C
C
C
C
C
C
C/EXEC SQL
C+
C/END-EXEC
C/EXEC SQL
C+
C/END-EXEC
C/EXEC SQL
C+
C/END-EXEC

C/EXEC SQL
C+
C+
C+
c+
C/END-EXEC

DS

ARRAY 1 1 26

1 8 COLUMN
9 9 BLANKI

10 11 OPERAT
12 12 BLANK2
13 27 CONST

I·IOVE ' ,
I:IOVE ' ,
EXFtHSCREENI

BLANKI 1
BLANK2 1

*INKC DOWNE'I'
t·10VELARRAY
MOVE ~!HERE

PREPARE SI FROM :HOSTVR

DECLARE C1 CURSOR FOR S1

OPEN Cl

Dowhile not end of cursor

HOSTVR 53
HOSTVR

FETCH Cl INTO :EMPNO, :FIRST, :INIT,
:LAST, :DEPT, :PHONE, :HIRE,
:JOB, : EDUC, :SEX, :BIRTH,
: SALARY

.Print or display row then fetch next row

C/EXEC SQL
C+ CLOSE Cl
C/END-EXEC
C
C
C

EXFMTSCREENI
END
SETON

SELECT * FROM TEMPL WHERE

LR

Figure 4-2. Program to Illustrate the Use of Dynamic Fixed-List SELECT

4. Static and Dynamic SQL 4-9

Varying-List SELECT statements
Dynamic varying-list SELECT statements are only supported by PUI and C/400.
RPG. COBOL and FORTRAN may use varying-list SELECT statements. but they
must have PLII or C/400 set up the parameters in the SQL descriptor area
(SQLDA). Varying-list selections return data of an unpredictable format and an
unpredictable number of columns; therefore the SQLDA needs to be used in the
program to pass information about the database back to the application. so that
storage can be allocated for the retrieved data at execution time. Neither RPG.
COBOL nor FORTRAN have the capability of allocating storage at execution time.
However. all of these languages could call a PUI or C/400 subroutine to execute
the SELECT. Detailed steps using DESCRIBE and SQLDA can be found in the
Programming: Structured Query Language Programmer's Guide (SC21-9609).

Dynamic Non-SELECT Statements
Dynamic non-SELECT statements can be executed by RPG. COBOL. C/400.
FORTRAN and PL/I programs. The only data that is returned to the program by
these statements is a return code. Dynamic non-SELECT statements can be of ."
two types: those that contain parameter markers and those that do not. ..."

Statements Containing No Parameter Markers

4-10 Using SQU400

Statements containing no parameter markers can be run dynamically using
EXECUTE IMMEDIATE :host-variable. The host variable (named HOSTVC in this
example) would contain a complete SQL statement such as:

HOSTVC = ·CREATE INDEX PARTXl ON INVENTORY (PARTNO)"
or

HOSTVC = ·UPDATE INVENTORY SET ONHAND = S00 \'/HERE PARTNO = 207"

Authorization is checked at execution time. The run time authorization ID must
have the authority to run the SQL statement specified by the EXECUTE
IMMEDIATE statement.

Here is a sample RPG program using EXECUTE IMMEDIATE to dynamically
execute an SQL statement entered on the screen:

H
FPROG03 CF E WORKSTN

C
C
C/EXEC SQL
C+
C/END-EXEC
C
C
C

EXFMTSCREENI
*INKC DOWNE'l'

EXECUTE IMMEDIATE :HOSTVC

EXFMTSCREENI
END
SETON LR

Figure 4-3. Program to Illustrate the Use of EXECUTE IMMEDIATE

HOSTVC is externally described in the screen specifications as a 256 character
input field. into which the SQL statement is entered.

ENTER SQL STATEMENT

F3=Exi t

Restrictions for Use of EXECUTE IMMEDIATE: In the above example the
program would have to be running without commitment control in order to
execute Data Definition Language (DOL) statements like the CREATE INDEX
statement; however, it could be running under commitment control to execute
the UPDATE statement, for example.

Statements Which Contain Parameter Markers
Statements which contain parameter markers (indicated by a "?") can be run
using PREPARE and EXECUTE statements. The statement is prepared once, and
each time it is executed, different values can be put into the parameters.

Authorization is checked at execution time. The run time authorization 10 must
have the authority to run the SQL statement specified by the EXECUTE
statement.

An example is a program that is used to enter new inventory items into the
inventory table. We can set up a host variable named HOSTVG with the
following value:

HOSTVG = -INSERT INTO INVENTORY VALUES (?,?,?)"

Then prepare the statement as follows:

PREPARE I NSERTP FROt~ : HOSTVG

The PREPARE statement only needs to be done once during execution of the
program.

We then set up three more host variables, PARTNO, DESCR and ONHAND, and
move different values into these fields for each new inventory item that you want
to add to the inventory table.

PARTNO = 222
OESeR = IWASHERI
ONHANO = 250

Then execute the statement as fvllows:

EXECUTE INSERTP USING :PARTNO, :OESCR, :ONHANO

If the input to the host variables comes from the screen and the EXECUTE
statement is updating a table, it is advisable to commit with hold periodically
after the EXECUTE statement, in order to release locks. If HOLD is specified, the
prepared statement is preserved. If HOLD is not specified, the statement would
have to be prepared again before the next EXECUTE statement.

4. Static and Dynamic SOL 4-11

4-12 Using SQU400

This is a sample RPG program using PREPARE and EXECUTE to dynamically
execute SQL statements which insert new items into the inventory table.

H
FPROG04 CF E \~ORKSTN

E ARRAY 1 35

C t,IOVEAARRAY HOSTVG 35
C/EXEC SQL
C+
C/END-EXEC
C

PREPARE INSERTP FROM :HOSTVG

EXFlHSCREENl
C *INKC DOHNE'l '
C/EXEC SQL
C+
C/END-EXEC
C/EXEC SQL
C+

EXECUTE INSERTP USING :PARTNO, :DESCR, :ONHAND

**

C/EXEC SQL
C
C
C

COMMIT HOLD

EXFMTSCREENI
END
SETON

INSERT INTO INVENTORY VALUES(?,?,?)

LR

Figure 4-4. Program to Illustrate the Use of PREPARE and EXECUTE

The variables PARTNO, DESCR and ONHAND are externally described in the
screen specifications and contain the values that are substituted for the?
parameter markers.

Enter New Inventory Items

Enter part number

Qescription

Qty on hand

F3 = Exit

Note that the only statements that can be prepared are data manipulation
language statements. Data definition and data control statements, for example
CREATE or GRANT, cannot be dynamically prepared.

Dynamic SQL Performance
The execution time overhead for running dynamic SQL is equal to that of an SQL
precompile and run. It is therefore recommended to use dynamic SQL only in
cases where static SQL cannot be used. For a SELECT statement referencing 30
columns from one table with 3 WHERE conditions, the dynamic SQL overhead at
run time is 2 clock seconds on a 830 with nearly all of the 2 seconds being CPU
time. This measurement assumes the SQL dynamic system code is in memory.

Note: The SQL dynamic overhead could be greater for longer or more complex
SQL statements.

4. Static and Dynamic SOL 4-13

4-14 . USing SQU400

L 5. SQL Performance

Good application design includes the efficient use of machine resources. As
such, any programmer can write a program, but for the program to execute in a
manner that is acceptable to the end user, it must be elegant in operation, and
must execute with adequate response time.

This chapter discusses many topics related to programming for optimizing
performance of an application. These not only apply to SQL. but are also a good
guide for other products that use the AS/400 database techniques, including
OPNQRYF, and OS/4OO Query Management.

The following topics are discussed:

1. The Nature of Database I/O

An introduction to overall processes, functions, and terms used in processing
requests for data.

2. Design Guidelines

This topic covers techniques that can be used in SQL programs to achieve
better performance. There is also a section that discusses general AS/400
database design guidelines.

3. Data Management Methods

This covers the algorithms used to retrieve data from the disk and includes a
discussion of access paths, row selection techniques, and reuseability of
Open Data Paths (ODP).

4. Optimizer

The Optimizer is the facility that decides how to gather data which should be
returned to the program. This section covers the techniques and rules
employed by the Optimizer for performing this task including cost estimating,
access plan validation, join optimization and subquery optimization.

5. Analyzing Performance Problems

If you have already coded an SQL application and are interested in
improving its performance then you can use this topic to guide you through
the system modules called by each step. This discusses Job Logs,
Interactive SQL, Job Traces, and Performance Tools. This will help in
identifying when indexes are created or used, and what can be done to
improve the performance.

6. Positioning

The topic compares SQL performance at Release 3.0 with other approaches,
and offers performance advice for various application scenarios.

7. Release 3.0 Performance Enhancements

To correctly position some of the changes that have been made to the
database support in OS/400 Release 3.0, this section outlines those changes L. made that will improve performance of certain SQL functions.

tel rnnvrinht IRU rnrn. 1QQO 5-1

Special Note --,

This chapter contains a lot of information that may take some study. Please
allocate plenty of time for reading. It may be helpful to have access to an
AS/400 while studying so that you can experiment and verify some of the
information provided here.

The Nature of Database 110
This topic introduces the fundamental concepts for data access to the AS/400
database. Understanding database access techniques is an important
prerequisite to understanding the implications of database performance.

The first part of this topic deals with the processes involved in identifying the
structure of the data as it exists in the database, and its relationship with a
query request. This introduces the concepts of binding and the access plan.
The second part discusses the tools used for retrieval of the data itself.

Creating the Access Plan

5-2 Using SQU400

In creating a static SQL program, the precompilation phase creates an important
internal control structure called an access plan. The access plan contains two
main things:

• A list of objects used by the SQL statement required to create an open data
path (GOP)

• A list of tasks that need to be performed to create and open a temporary
"logical file" resulting in an ODP.

Essentially creating an ODP is like opening a file. Note that the ODP is not
actually created at precompile time. As access to the file is only required at
runtime, all that happens at precompile time is working out the steps the system
will take when the file is eventually opened (that is, the ODP is created).

This process is very similar to the process that would occur had a programmer
issued a CRTLF command and then had a program open this logical file. The
difference is that some internal objects, such as the format object and file
objects which are used by OS/400 to manage permanent files, are not created.

The access plan is actually stored with the compiled SQL program object. The
process of creating this access plan is called binding.

Other query facilities on the AS/400 which use similar techniques to SQL to
access data, have different methods of binding and storage of the access plans.

Dynamic SQL Programs: Dynamic SQL is a little different to static SQL, as there
is extra work done at runtime to cater for the added flexibility offered by the
dynamic functions. The binding process is done at runtime, when the program
must access the nominated table. It is only at execution time that the SQL
runtime support knows what the full SQL statement will be, so only then can
binding complete.

OPNQRYF: OPNQRYF binds and creates a temporary access plan when the
OPNQRYF CL command is issued. If an OPNQRYF statement is re·executed in
the same program, the access plan cannot be shared between jobs, as it is
temporary, and rebuilt every time the command is executed. This is different to
permanent access plans created by other facilities, like SQL. There is a
performance overhead associated with having to recreate the access plan every
time the OPNQRYF command is executed.

A51400 Query: AS/400 Query uses the same technique as OPNQRYF when the
user presses F5 = Report to show the current status of the query being
developed. In addition, binding occurs when the query is saved. A permanent
access plan is created and is stored in the *QRYDFN object.

PC Support File Transfer: The transfer request, when executed, is similar to
OPNQRYF. When it is saved, it remains as a PC source file, and therefore
cannot contain an access plan. When re-executing a stored transfer request, the
request is bound and the ODP is created.

051400 Query Management: OS/400 Query Management uses SQL runtime
support for binding and execution. Only the source statement is stored when the
*QMQRY object is created. To implement the flexibility of Query Management,
all binding occurs at runtime. This is quite similar to Dynamic SQL.

Physical and Logical Files: A program which uses a physical file or logical file
operates differently to the methods described above. There is a binding
process, but instead of creating an access plan, the object created is called a
prototype ODP. At runtime, this prototype ODP is copied into the actual ODP.
The prototype ODP can be considered as a limited function access plan, as it
locks the user into a particular data access method.

Rebinding: A prototype ODP is different to a static SQL program using an
access plan. With an access plan, the user is not locked into the data access
method chosen at bind time. If before execution there is a change to the
structure of the database, the access plan validation routine may cause the SQL
statement to be rebound. This means that the access plan can adapt to the
database environment, and take advantage of any new indexes that will help it to
improve statement execution performance. This is called rebinding. Rebinding
generally occurs when there is a change to the structure of the objects related to
the table, such as the creation or deletion of an index.

Not only are SQL programs able to take advantage of rebinding, but so can any
query tool that stores an access plan before execution, such as AS/400 Query
and Query/38.

AS/400 Query has the capability to run with a temporary plan should the original
permanent copy become out of date. However, the permanent copy of the
access plan will not be updated again until a programmer saves the *QRYDFN
object again.

Late Binding: Late binding is a process only available on SQU400. It allows the
bind process to complete after the program is precompiled. This means that the
precompile will successfully complete if a table is not available when the
precompile occurs (either not on the system or not in the library list). For a
normal HLL program, the file must be available at compile time so field names
can be used in the program. With Late Binding, the resolution of column names

5. SQL Performance 5-3

I
I

waits until the program is first executed. If the table is still unavailable, then the
program returns a negative SQLCOOE when executing the first SQL statement.

Late binding can only occur when the HLL program does not need to copy the
column definitions for its own use. If the host variables are defined in some
other way like: explicit definition, definition from the workstation file, or if there is
no need for the host variable definition, then late binding can occur.

SQL Views: An SQL view, while having the attributes of a logical file, when
created actually creates an ~ccess plan. The access plan is built to optimize
access to the underlying table. This provides greater flexibility than a logical
file.

This access plan will be used when a HLL program accesses the view. It
creates an OOP similar to that which would be created when the view is
referenced by SQL. At bind time an SQL program which references the view will
cause the view access plan to be merged with the SQL statement access plan.
This composite access plan will then be stored in the program object.

This capability to create access plans in a view logical files allows HLL programs
to benefit from the same rebinding capabilities available to SQL programs.

The following table summarizes the points just discussed.

Table 5-1. Summary of Access Plan Creation

Facility Permanent or When is the Access Plan Where is the Access Plan
Temporary Access Plan Created Stored

Static SQL Permanent Precompile Time With Program

Dynamic SQL Temporary When executed nla

OS/400 Query Temporary When executed nfa
Management

ASf400 Query Temporary and F5 = Report
Permanent When saved In "QRYDFN object

Query/38 Permanent When saved In "PGM (QRYEXC) object

OPNQRYF Temporary When executed nfa

PC Support File Transfer Temporary When executed nfa

SQL Views Permanent CREATE VIEW In "FILE (LF) object

Physical and Logical Files Creates a prototype CRTLF, CRTPF In "FILE object

5-4 Using SQU400

OOP

Multiple Access Plans: The discussion so far has been limited to one access
plan per SQL program. Often, a program will have multiple access plans. Each
access plan refers to a single OOP. If an SQL program contains, for example,
two SQL update statem~nts then two OOPs are required and two access plans
are created at precompile time. Generally speaking, an access plan is created
(thus OOP available at runtime) for each statement in the SQL program. For
instance, each of the following requires a separate OOP even if they are all
together in the same program:

• An OPEN statement

• A SELECT INTO statement

j

Data Retrieval

• An INSERT INTO statement with a VALUES clause

• An UPDATE statement with a WHERE condition

• An UPDATE statement with a WHERE CURRENT OF cursor1 and SET clauses
that refer to operators or functions

• A DELETE statement with a WHERE condition

• An INSERT statement with a subselect (requires two OOPs).

One objective of performance tuning of an application is to minimize the number
of opens. That is, to minimize the number of OOPs created.

At runtime, applications which have an access plan use a special optimization
routine to return data in the most efficient manner. The data returned is based
on a query request, such as an SQL SELECT, and may return none, one, or many
rows. A query is a general term that refers to any operation that uses an ~ccess
plan to access data.

Traditional HLL program I/O statements access data one record at a time. We
can use them in conjunction with logical files to provide relational operations
such as:

• Record selection

• Sequence

• Join

• Project.

This is often the most efficient manner for data retrieval.

Query products are best used when logical files are not available for our data
retrieval requests, or if there are functions we require that logical files cannot
support, are too difficult to write, or would perform poorly including:

• Distinct

• Group by

• Subquery

• Like.

The query products use something more sophisticated to perform these
functions. It is done with !he access plan in combination with a high-function
query routine. The advantage of this facility is that because the query requests
are created at runtime, there are often fewer permanent access paths than are
required for multiple logical files.

051400 Query Component: This specialized query routine is internal to OS/4oo,
and is referred to as the OS/400 Query component in this document (not to be
confused with the licensed program product, AS/4oo Query).

Cursor: A cursor in SQL is a named control structure used by an application program to position to a row of data within a
table or view.

5. SOL Performance 5-5

5-6 Using SQU400

There are nine common facilities on the AS/400 system that use this OS/400
Query component. These are:

• OPNQRYF

• SQU400 runtime support

• AS/400 Query runtime support

• Query/38 runtime support

• PC Support File Transfer

• OS/400 Query Management

• Office (for document searches)

• Performance Tools (for report generation)

• Q&A Database.

The difference between the terminology of SQU400, AS/400 Query, Query/38
versus SQU400 runtime support, AS/400 Query runtime support, Query/38
runtime support is that the former group refer to the names of the licensed
program products. What we are really interested in is the support which enables
programs in each of these environments to be executed. The licensed program
products are not required to execute each of these, as the runtime support
comes with OS/400 and not the licensed program product.

Figure 5-1 on page 5-7 helps to explain the relationship between the various
facilities that use the OS/400 Query component at runtime, and the way in which
traditional HLL program I/O requests are satisfied. Note that HLL program I/O
requests go directly to the data base support to retrieve the data. Query product
requests call upon the OS/400 Query component, which uses the Optimizer
before calling the data base support to create the ODP to the data. Once an
ODP has been created, there is no difference between HLL I/O requests, and I/O
requests of these query products. Both send requests for data to the Database
Support.

OS/400
Query

ManaI",ent

HLL programs OPNQRYF SQL/400 AS/400 Office Query/38 PC Support

Q&A '~:l~~~e 1 runtime File Tran::::ormance
COBOL, RPG, runtime
etc

Data Tools

Base I
I ~~ O~~:~~ ~: ------'
L-_______ ---+~ component .:---------~

Optimizer

Data Base Support

----IMachine Interface------ --------------­

. 1
Licensed Internal Code (LIC)

D A T A

Figure 5-1. Methods of Accessing ASI400 Data

The Optimizer: The Optimizer is a major part of the OS/400 Query component.
It makes decisions to improve performance of a query. In some queries, the
Optimizer may decide to build a temporary index over the data. When this
happens, the time required for the index build will delay the SELECT statement
processing. The database contains information such as which indexes are
already built on a table. If necessary the Optimizer uses these indexes to assist
performance. The main objective of SQL performance analysis is the correct
use of indexes. The programmer is responsible for creating indexes that the
Optimizer will use. See "Indexes" on page 5-11 for more information on correct
index usage.

When compiling, the SQL precompiler builds a Query Definition Template (QOT)
for embedded SQL programs. The QOT is comprised of two main parts: an
internal representation of the SQL statement, and the access plan. This QOT is
validated and optimized by the OS/400 Query component. The QOT is stored
with the program object and used at execution time.

A more detailed discussion on the Optimizer, Access Plans and the QOT appears
later in this chapter. See "The Optimizer" on page 5-44 for more information.

5. SQL Performance 5-7

Design Guidelines

Introduction

In order to achieve satisfactory system performance using SQl, it is important to
look carefully at:

• Database design

• Application design

• Program design.

These topics will be discussed in the following sections of this chapter. This
information will consider the performance aspects for SQl only and although
applicable to other database functions, will not go into general database,
application, and program design techniques.

Performance of SQl in application programs is important to All system users,
because inefficient usage of SQl can considerably waist system resources (CPU
and I/O). You will often need to decide whether, for database functions, SQl or
Hll I/O statements in a user program are more appropriate, which will depend
upon the nature of the application.

Note that the information provided here is in addition to that provided in Chapter
15 of the Programming: Structured Query Language Programmer's Guide
(SC21-9609). This provides several other important considerations for
performance with SQL, and should be referred to in conjunction with the
concepts provided here. In addition, you may refer to chapter 9 describing
Opening a Database File, and especially the section entitled Performance
Considerations of the AS/400 Database Guide (SC21-96S9) for more performance
hints on OPNQRYF. OPNQRYF uses the OS/400 Query component, and therefore
many of the hints in this chapter of the Database Guide can also be applied to
SQL.

In the following sections of this chapter, you will often read about the Optimizer.
This performance optimizing facility is discussed in detail in "The Optimizer" on
page 5-44.

General Considerations

5-8 Using SQU400

The main goal in using SQl is to get the correct result for your database request
and then, secondly, get that result in a reasonable time frame.

Before you start designing for performance you should think about the following
considerations, according to this checklist:

1. When to consider performance:

• Over 10,000 rows - Performance impact: "noticeable"

• Over 100,000 rows - Performance impact: "concern"

• With complex queries used repetitively

• Using multiple work stations with high transaction rates.

2. What resources to optimize:

• I/O Usage

Database Design

Normalization

• CPU usage

• Effective usage of indexes

• OPEN/CLOSE processing

• Concurrency (COMMIT)

3. How to design for performance:

• Database design

Table structure

Indexes

Table data management

Journal management

• Application design

- Structure of programs involved

• Program design

Coding practices

Performance monitoring.

These topics are addressed in this chapter. The relevant tips and techniques for
SQL performance improvements are underlined in the following sections for
better reference and summary.

One of the first things you want to look at is determining what tables you require
in your database and the relationship between those tables. This leads you to
the considerations discussed below.

One of the most critical design decisions that can affect performance is the
number of tables that may have to be "joined" in an SQL statement to satisfy
application requirements. The trade-off is between SQL performance and the
anomalies that result in tables which have not been designed to be in their fully
normalized form.

Numerous design methods are available that enable you to design "technically
correct" databases. Most of these can be used to design good relational
database structure. One important part of these techniques is to eliminate the
storing of redundant or duplicate data. The main objective is therefore, to avoid
problems of updating such redundant data.

If this design approach of normalization, for instance 3rd Normal Form (3NF). or
more is taken to its ultimate conclusion, the result is a large number of tables,
many of which will be involved in "join" operations. This can lead to poor
OS/400 database performance. You should take care to design tables that will
not create problems caused by redundant data, while at the same time not
causing significant performance problems. Therefore you have to find a good
balance between:

5. SQL Performance 5-9

5-10 Using SQU400

Redundant
Data

t
Performance

Number of
Tables

For instance, try to minimize the use of "code" tables where very little is gained
from their use. For example, suppose an employee table contains a JOBCODE
column, with data values 054, 057, and so on, which must be joined with another \
table to "translate" the codes to "Programmer", "Engineer", and so on. The cost ...",
of this join could be quite high compared to the savings in storage and potential
update anomalies resulting from redundant data.

For example:

• Normalized data form

EMPLOYEE Table JOBCODE Table

Employee No Jobcode Jobcode Job Title

000010 057 054 Programmer
000020 054 057 Engineer
000030 057

..

• Redundant data form

EMPLOYEE Tab 1 e

Employee No Job Title

000010 Engineer
000020 Programmer
000030 Engineer

... . ..

Note that the set level (or mass operation) nature of SQL greatly lessens the
"danger" of a certain redundant data form. For example, the ability to update a
set of rows with a single SQL statement greatly reduces this risk. In the
following example, the job title ENGINEER must be changed to TECHNICIAN for
aI/ rows which match this condition.

Table Size

Indexes

SQL can easily be used to update JOBTITLE:

UPDATE Et~PLOYEE

SET JOBTITLE = 'TECHNICIAN'
WHERE JOBTITLE = 'ENGINEER '

The size of the table(s) your application program is accessing can have a
significant impact on the performance of the application program. Consider the
following:

• Large Row Length

If a table accessed sequentially has a large row length because it has many
columns (say 100 columns), in some cases you could achieve better
performance by splitting it into two or more tables. This assumes that your
application is not accessing all columns. The main reason for the better
performance is that I/O may be reduced because you will get more rows per
page. Splitting the table will affect applications that access all columns
because they will incur the overhead of joining the tables back together
again. You must decide where to split the table, based on the nature of the
application and frequency of access to various columns.

• Large Number of Rows

If a table has a large number of rows, it is crucial for good performance that
your SQL statements are constructed in such a way that the Optimizer will
use an index in accessing the table. The use of indexes is very important for
achieving the best possible performance.

Indexes (or access paths) are probably the most important facility that you have
in controlling and tuning the performance of your applications, because the
Optimizer uses them for performance optimization. They are created in five
different ways:

1. CREATE INDEX (in SQL)

2. CRTPF, with key

3. CRTLF, with key

4. CRTLF, as join logical file

5. CRTLF, with select/omit specifications, without a key, and without dynamic
selection (DYNSLT). Before OS/400 Release 3 the Optimizer used to ignore
such an access path.

Indexes are used to enable row selection via an index versus table scanning,
which is usually slower. Table scanning sequentially processes all rows in a
table. Prior to Release 3, indexes were required for cursors to be left open on
repetitive execution of SQL statements. If a permanent index is available,
building a temporary index can be avoided. Indexes are required for:

• Join tables

• ORDER BY

• GROUP BY

5. SQL Performance 5-11

5-12 Using SOU400

and will be built, if no permanent index exists.

The number of indexes however has to be managed because of the extra system
cost of maintaining the indexes during update types of operations. Below are
index "rules of thumb" for particular types of tables:

1. Primarily read-only tables:

Create indexes over columns as needed.

Only consider creating an index if such a table is greater than approximately
1000 rows or is going to be used with ORDER BY, GROUP BY, or join
processing. Index maintenance could be more costly than occasionally
scanning the entire table.

2. Primarily read-only tables, with low update rate:

Create indexes over columns as needed.

Avoid building indexes over columns which are updated frequently. INSERT,
UPDATE, and DELETE will cause maintenance to all indexes related to the
table.

3. High update rate tables (INSERT, UPDATE or DELETE):

Avoid creating many indexes. An example of a table which has a high
update rate (INSERT) is a logging or a history table.

Implicit sharing of SQL indexes:

Implicit access path sharing is only important to users running OS/400 Releases
prior to Release 3. Since Release 3, access paths will only be shared if they are
identical.

OS/400 supports a feature called access path sharing. When the access path for
an SQL index is shared, then one or more SQL indexes may be sharing the
same actual "index object". OS/400 will attempt to reduce the number of
redundant access paths maintained over a data space. An access path is
redundant if there is an access path which has the same keys, in the same
order, with possible additional key fields where duplicate key ordering is not
specified.

An example:

CREATE INDEX INDABC ON TABLEXY (A ASC, B ASC, C ASC)

CREATE INDEX INDAB ON TABLEXY (A ASC, B ASC)

The access path for INDAB is redundant because of the access path of INDABC.
USing index INDABC for ordering will order the rows in A and B sequence just
like index INDAB. The only difference is the ordering of rows which have the
same values for A and B.

Since SQL indexes do not specify a duplicate key ordering the access paths for
SQL indexes could be shared (prior to Release 3). When an access path is
shared, then only one access path is created. It is shared by both indexes. The

owner of the access path is the logical file that originally created the access
path.

You can see if an access path is shared via the output of the Display File
Description (DSPFD) CL command. In the above example, a DSPFD of INDAB
will indicate that the access path is shared and the owner is INDABC.

Since Release 3, when you create an index like INDAB above, you can be certain
that the index contains only the fields A and B. This index would be chosen by
the Optimizer to process the following statement:

UPDATE TABLEXY
SET C = 'NE~JI
\'JHERE A = 12
AND B = 'CARO'

Prior to Release 3, an index would not have been used, because the only index
was INDABC, and this one was not eligible for use, because there is a column
(column C) included which is updated in this statement. Indexes cannot be used
for update if one of the key fields is updated. Index INDAB would not be used,
as data is really accessed via INDABC.

In order to see what indexes are available to you and what attributes are used,
run a query over SYSINDEXES and SYSKEYS catalog tables. For an example of
this, see "Determining Indexes" on page 5-53.

For a further discussion on indexes, see "Indexes" on page 3-5.

Matching Attributes of Join Fields
Columns in tables which are joined should have identical attributes, that is, the
same column length, same data type (character, numeric, and so on).
Non-identical attributes may result in temporary indexes being built, even though
indexes over corresponding columns may exist already.

In the following example,

"join" will build a temporary index, and ignore an existing one:

SELECT EMPNO, LASTNAME, DEPTNAME
FROM TEMPL, TDEPT
\oJHERE TEMPL. DEPTNO = TDEPT. DEPTNUM

TEMPL Table

... DEPT NO
CHAR (3)

t

. . DEPTNUM
CHAR(4)

t

TDEPT Table

5. SQL Performance 5-13

Database File Management
Use the following techniques to minimize the number of deleted rows in a table.
This will provide better query performance.

1. Use Reorganize Physical File Member (RGZPFM) for tables:

(but remember: RGZPFM can take hours if the table is large, and the table
must be available for exclusive use)

• This compresses rows which are marked for deletion. A table scan will
now be faster, because it will not have to process any rows marked for
deletion.

• This process can be used to change the physical sequence of rows in the
table to match the most frequently used index. When selecting based on
the index sequence, the Optimizer will recognize that the data is
physically in the sequence it requires. Therefore the pages will be
pre-fetched from auxiliary storage into single level storage. This
provides substantial performance enhancements, see "Data
Management Methods" on page 5-31.

2. Avoid multiple rows being marked as deleted by using the CL command:

CLRPFM Lib/Table

instead of the SOL statement:

DELETE FROM Lib/Table

The benefit of the CL command CLRPFM is that it will result in an empty file
where as the result of the SOL command DELETE will be a table with many
rows marked as deleted.

You have to decide about the following trade-ofts:

• With CLRPFM, commitment control is not possible. Moreover CLRPFM
command requires exclusive update right to the table. Note that
CLRPFM command is not an SAA database function.

• SOL DELETE only marks rows as deleted and the table later should be
reorganized, as mentioned above

• CLRPFM is faster than SOL DELETE.

Journal Management

5-14 Using SQU400

Place journal receivers in User Auxiliary Storage Pools (ASP) which are
separated and not checksummed. With the following restrictions, allocate a User
ASP:

• With only 1 disk unit (actuator)

• For journal receivers attached to the same journal

• So the journal receiver is the only active object contending for use of the
disk actuator, so journal entries can be sequentially written to disk.

For further considerations see Programming: Backup and Recovery Guide,
SC21-8079.

Application Design
What we have just discussed are general concepts that can be used for good
database design and management. This topic discusses an important
application structure technique that can be used to considerably improve SOL
performance.

There is one main improvement regarding SQL performance in Release 3 which
can be noticed if application design is done according to the following
guidelines. This improvement was available prior to Release 3 with PTF SF04173
(now superseded by PTF SF04941). This improvement allows an OOP to be ,
reused.

Reusable ODP's Across Invocations
In Release 1.2 and Release 2, without PTF. repetitive opens and closes could be
avoided for static SOL I/O statements if the program containing the SOL
statements remained active (on the invocation stack). When the program ended
(left the invocation stack), all open files were closed. For this reason, you were
advised to keep all SOL statements used by an application within one program.

Since Release 3, the files that are open for an SOL program, when that program
leaves the invocation stack, will not be closed. This happens if there is at least
one other program remaining on the invocation stack that has previously issued
an executable SQL statement. This will enable the user to separate SOL
statements into different programs and call them repetitively as long as the
above condition is true.

Even though an OOP remains open across multiple invocations of a program, the
declared cursor must be treated as if it is closed in each invocation. That is, the
program must issue an SOL OPEN statement for that cursor before using it again
and an SOL CLOSE before the program ends. Essentially, you code your
program as if the OOP is not reused.

Here is an example of an application flow. It shows an always-active HLL (High
Level Language) initialization- or dummy-program which executes an SOL
statement before the menu CL-program is called. Note that SOL statements
cannot be executed in CLP's. The initialization program, would not be necessary
if the menu program was written in a HLL, because the dummy SOL statement
could be embedded into that HLL program.

5. SOL Performance 5-15 .

5-16 Using SQU400

Ini t. Program

HLL

IEXEC SQL
DESCRIBE

lEND-EXEC

CALL --

Menu Program

CL

CALL

CALL

Inqui ry Program

HLL

SQL
Statements

Update Program

HLL

SQL
Statements

A good candidate for the SQL statement in the initialization program is
DESCRIBE, even in a static SQL environment. If the host variable used is invalid,
SQL runtime will set a negative SQL return code and complete in a very short
time, such that the impact is negligible. The statement could look like this:

DESCRIBE DUMMY INTO :DUMMY

Note 1: Host variable :DUMMY could be declared in the HLL program as a
one-byte character field.

Note 2: Ignore error message SQL0804 "SQLDA not valid" generated by this
dummy DESCRIBE.

Note 3: This approach of putting an SQL statement into an always-active
initialization program in front of the menu program would leave ODP's open in
case of disconnect job (DSCJOB). Commands which operate on files which are
issued from a different job could fail because the SQL job is keeping the files
open. Reclaim Resources (RCLRSC) can be used to close all files.

Note 4: If the initialization program is a CSP program, avoid using CSP XFER and
DXFER operations within the program.

The CSP XFER and DXFER operations will transfer control to the specified
program and will remove, from the invocation stack, the program that invoked
the transfer operations. If the program that is removed is the initialization
program, then all of the files will be closed.

Use the CSP CALL operation instead of XFER and DXFER in this case.

Program Design
In order to achieve the best performance with either programs containing
embedded SQl statements or with your Interactive SQl session, it is very
important that you code SQl with an understanding of methods explained in this
topic. It will go into some detailed SQl program design techniques and provide
you with some tips to improve SQl performance.

Optimizing CPU Usage - Avoid Dynamic SQL
You should use dynamic SQl only when necessary. Most often, when an
application program is being designed, you will know the functions it must
perform. Consequently, you will know how to construct your embedded SQl
statements. These will be static SQl statements. In other cases, you may want
to postpone the construction of SQl statements until the execution of the
application. This can be done by using dynamic SQl statements.

If you use dynamic SQl statements, you should be aware that tasks normally
done at precompile time will have to be done at execution time. This will have a
significant negative effect on the performance of your application. The tasks that
will have to be performed are:

1. Read the SQl statement constructed by the user

2. Verify that the statement can be executed dynamically

3. Validate syntax, tables, host variables

4. Prepare the statement for execution

5. Optimize access method

6. Check for proper authorization

7. Execute the statement.

If the same statement was coded as a static SQl statement, only authorization
checking and statement execution would be done at program execution time,
that is, only items six and seven of the above list would be performed. The other
tasks would be done at precompile time.

As a general guideline, you should avoid the use of dynamic SQl statements in
your application programs as much as possible. The main reason is the
overhead needed to prepare the statement.

In addition, more CPU and lID resources will be used because of the following:

• Programs containing EXECUTE statements will open all cursors with update
and delete intent, even though there are no UPDATE or DELETE statements
in the program. This would effect CPU and lID resources and do
unnecessary lecking.

• Re-PREPARE of a statement will cause any related ODP's which SQU400 has
kept open for possible reuse, to be closed.

5. SQL Performance 5-17

Optimizing Index Usage
You should use redundant predicates in a join, if possible, because this allows
the Optimizer to select the best join order, depending on the estimated number
of returned rows. Refer to "Key range estimates" in section "Cost Estimation"
on page 5-45. If you are using two tables and at the same time qualifying your
search condition with a specific value, you should provide redundant search
information to SQL. This will aid the Optimizer to choose the best way to do the
join. The following example selects names, phone numbers and department
name for all employees working in department 'E11':

SELECT LASTNAME, PHONENO, DEPTNAME
FROM TEMP, TDEPT
\oJHERE TEi~P /t'JORKDEPT = TDEPT /DEPTNO
AND TEi,1P /~JORKDEPT = 'E 11'

SELECT LASTNAME, PHONENO, DEPTNAME
FROM TEMP, TDEPT
toJHERE TEMP /\'JORKDEPT = TDEPT /DEPTNO
AND TEMP /\oJORKDEPT = 1 E 11'
AND TDEPT/DEPTNO = 'Ell' Redundant predicate

If you do not duplicate the search condition as shown, then you should put the
search condition on the table which will select the fewest rows for the predicate.

If the two tables being joined have a one to many relationship, put the search
conditions on the table with unique rows.

The example above assumes that TDEPT/DEPTNO is unique and therefore the
Optimizer will choose a join order as TDEPT primary and TEMP as secondary
join table. For such a case you should therefore build an index over the
secondary table (TEMP).

See also "Join Optimization" on page 5-48 for more details about this topic.

Minimize the Number of SQL Statements
• Do not do more than your program really needs. That is, try to keep the

number of SQL statements to a minimum. If you can loop on an SQL
statement, do this, rather than coding the statement several times. The loop
would be much faster because the ODP can be reused. Without looping,
each statement has a separate ODP. See "Reusability of ODP's" on
page 5-38.

• For read-only operations, and if the row to be retrieved is unique, use the
SELECT INTO operation.

• For updates or deletes where the row does not need to be inspected by the
program, use UPDATE or DELETE without a cursor.

I 2 This comment is shown UM4ijJ.l in order not to confuse a comment on a SQL statement line, which is not supported in
SQU400.

5-18 Using SQU400

• When rows must be inspected by the program, use UPDATE or DELETE with
CURRENT OF cursor, as in the next section.

• Use subqueries or joins instead of multiple cursors.

Updating via Cursor Operation
Though the previous section stated that you should keep the number of SQL
statements to a minimum (that is, use UPDATE or DELETE without a cursor).
there is a pitfall, because the cursor operation which has more statements may
still be faster.

In the following example we want to read a row and update that row with input
from the user. This example appears to use fewer SQL statements. However, it
requires two ODP's.

------ read SCRENNO from display screen

SELECT name, salary
INTO :SCRENNAM, :SCRENSAL

FROM SALARYTAB
WHERE EMPLOYNO = :SCRENNO

------ prompt user with name and salary and read new salary -----

UPDATE SALARYTAB
SET sa I ary = : NEl~SALARY

WHERE EMPLOYNO = :SCRENNO

Therefore, instead of this example, you should use a cursor operation. In the
code above there are two problems:

1. Poor performance, because when SQL and OS/400 database management
execute these two statements, they fetch the row from the table with read
only intent and when they process the update statement they have to go
back to the database and re-fetch with update intent and update the row.
That will take three operations to the database.

2. This coding exposes you to serious database integrity problems. That is,
when the row is selected, it will not be locked (unless you use COMMIT
*ALL) and you may not be updating data which may have been changed by
another job.

Instead of the previous example, you should DECLARE a cursor and OPEN,
FETCH along with UPDATE, WHERE CURRENT OF cursor. This requires only one
ODP.

5. SOL Performance 5-19

Therefore use the cursor operation:

DECLARE Cl CURSOR FOR
SELECT name, salary

FROM SALARYTAB
WHERE EMPLOYNO = :SCRENNO

------ read SCRENNO from display screen

OPEN CI

FETCH CI INTO :SCRENNAI·l, :SCRENSAL

------ prompt user with name and salary and read nel-' salary

UPDATE SAlARYTAB
SET salary = : NE~JSALARY
WHERE CURRENT OF CI

CLOSE CI

The UPDATE ... WHERE CURRENT OF cursor is much more efficient, because the
row is available and it can be directly updated. There is also the advantage that
the row is fetched with update intent, so the row will be locked.

Partial Update Capable Join with Subqueries

5-20 Using SQU400

Prior to Release 3 you may have coded a primary table update like this:

DECLARE CI CURSOR FOR
SELECT TABLEI.COLI

FROM TABLEI, TABLE2
WHERE TABLEI.COLI = TABLE2.COLI

OPEN CI

--- loop on --­
FETCH CI INTO :HCOLI

UPDATE TABLEI
SET COL2 = 'new value'
WHERE COLI = :HCOLI

--- end loop ---

CLOSE CI

Since Release 3 you can code this using subguery:

UPDATE TABlEI
SET COl2 = 'new value'
WHERE EXISTS (SELECT *

FROM TABLE2
WHERE TABLEl.COLl = TABLE2.COLl)

The subquery is the better choice not only because the number of statements
can be reduced, but also because it will require only one ODP instead of two.

This technique can be used any time you need to do updates on the primary
table of a join and you don't need column values from the secondary table.

Include Selection Columns in ORDER BY and GROUP BY
In some situations you can improve performance of a SELECT that uses an
ORDER BY or GROUP BY when selecting a specific column value or group.

In the following examples, note that the second SELECT in each case would be
better, because they have the selection column as the first key field. This will
allow Key Row Positioning to be done instead of just Key Row Selection. These
are data access methods and are explained in "Row Selection Options" on
page 5-32. Therefore instead of:

SELECT LAST NAME, EDUCLVL
FROM TEMPL
WHERE EDUCLVL = 16
ORDER BY LASTNAME

add first key field:

SELECT LASTNAME, EDUCLVL
FROM TEMPL
WHERE EDUCLVL = 16
ORDER BY EDUClVl, LASTNAME

or, instead of

SELECT LASTNAME, AVG(SALARY)
FROM TEMPL
\~HERE EDUCLVL = 16
GROUP BY LASTNAME

add first key field:

SELECT LASTNAME, AVG(SALARY)
FROM TEMPL
WHERE EDUCLVL = ·16
GROUP BY EDUClVl, LASTNAME

Assuming there is no permanent index available, a temporary index will be built,
and in the first example of each of the above two cases Key Row Selection will
occur. In the second example Key Row Positioning will be done, which is
usually much faster.

5. SQL Performance 5-21

OR and IN Predicates

5-22 Using SQU400

SQLl400 may not use an index if the key field is referenced by OR conditions or
IN parameters. Here are a number of examples using IN predicates. Remember
that IN is the same as multiple OR predicates with an equal condition for the
same column.

You can force the Optimizer to use an index, if you:

1. Specify ORDER BY, because OS/400 database can ·do Key Row Positioning
on multiple ranges. However the Optimizer is not always able to recognize
where this can be applied. In this example the ORDER BY clause forces the
Optimizer to choose an index, and once it has done so, it will choose the
multirange type Key Row Positioning. See "Key Row Positioning" on
page 5-33.

SELECT LASTNAf4E, HORKOEPT
FROt4 TEt,lPL
WHERE HORKOEPT IN ('011', '012')

SELECT LASTNAME, HORKOEPT
FROM TEMPL
WHERE WORKOEPT IN (IDlll,IDI2')
ORDER BY WORKDEPT

Index NOT used

·1ttlm:''H§.I

2. Change the predicate to use LIKE (if the values fit), because, if the leading
characters of the value that you select in the IN predicate match a pattern,
then the LIKE predicate is a good alternative to the IN predicate.

SELECT LASTNAME, WORKDEPT
FROM TEMPL
WHERE WORKOEPT IN

(1 D 11' , 1 D 12' , '013' , '014' , 1 D 15 ' , 1 D 16 ' , 1 D 17' , 1 D 18 ' , 1 D 1 9 ,)

SELECT LASTNAME, WORKOEPT
FROM TEMPL
\~HERE \'JORKDEPT LIKE 1 D1% 1

Index NOT used

• Itl!IJ"tJ4. ,

3. Change the predicate to use BETWEEN If the values in the IN clause define
all the values in a range, the BETWEEN predicate is a good alternative to the
IN predicate.

L SELECT LASTNAME, WORKDEPT
FROM TEMPL
WHERE l'IORKOEPT IN

('011','012','013', '014','015', '016', '017', '018','019')

SELECT LASTNAI·1E, l'IORKOEPT
FRO~1 TEl4PL

Index NOT used

WHERE WORKOEPT BETWEEN 'OIl' AND '019'
IIttH4i@H

Index Usage with the LIKE Predicate
An INDEX will not be used when the string is in the LIKE predicate:

• Is a host variable,

• Starts with a "wild card", that is:

Starts with a "%" character

Starts with a " H character.

Specify a BETWEEN clause on keys whenever possible

Join Optimization

Specifying a BETWEEN clause on key fields of a WHERE clause can significantly
reduce the amount of data read by the system and may reduce the execution
time.

SELECT WORKOEPT, LASTNAME
FROM TEMPL
WHERE WORKOEPT >= 'OIl'
ORDER BY WORKOEPT

If you know the desired high bound value, specifying a BETWEEN clause will be
more efficient.

SELECT \~ORKOEPT, LASTNAME
FROM TEMPL
l>JHERE \~ORKOEPT BETWEEN '011' AND '019'
ORDER BY WORKOEPT

The following is a list of join performance tips to help you specify more efficient
join operations.

1. Specify join predicates on the WHERE clause to avoid a cartesian product
operation.

SELECT
FROM
l>IHERE

TABLE1, TABLE2, TABLE3
TABLE1.FIELOX = TABLE2.FIELOX AND
TABLE2.FIELOX = TABLE3.FIELOX

In the above example there are two join predicates specified in the WHERE
clause.

Each secondary file should have at least one join predicate in the WHERE
clause that references one of its fields as a 'join-to' field.

5. SQL Performance 5-23

5-24 Using SOU400

In the above example the secondary files, TABlE2 and TABlE3, both have
join predicates that reference FIElDX as a 'join-to' field.

2. Create an index over each secondary file

An index is required over each 'join-to' field of the WHERE clause. If one
does not exist, then it will be built during the execution of the select
statement, which could take a considerable amount of time.

Since a join in SQl is always an inner join, the Optimizer may decide to
switch the order of the files specified on the join operation to a more
optimized join order.

To ensure that existing indexes will be used for the join operation, create an
index over the 'join-from' field and another index over the 'join-to' field of
each join predicate. This will cover the case where the Optimizer could
switch the join order.

SELECT
FRot4 TEI~P, TDEPT
t'iHERE TEMP. DEPT = TDEPT. DEPT NO

AND TEMP.WORKBLDG = '015'

The join predicate is TEMP.DEPT = TDEPT.DEPTNO.

In the above example, the Optimizer could perform the join in one of two
ways:

a. The Optimizer could perform the join from file TEMP to file TDEPT in
which case an index on TDEPT.DEPTNO, the 'join-to' field, is required.

b. The Optimizer could perform the join from file TDEPT to file TEMP in
which case an index on TEMP. DEPT, the 'join-to' field, is required.

Creating indexes on both possible 'join-to' fields, TEMP.DEPT and
TDEPT.DEPTNO, covers the case where the Optimizer could change the
order of joining the files.

3. On the WHERE clause, specify as many record selection conditions on each
file as possible.

4. Specify redundant WHERE predicates in a join, if possible.

SELECT
FROM TEMP, TDEPT
WHERE TEMP. t10RKDEPT = TDEPT. DEPT NO

AND TEMP.WORKDEPT = 'Ell'

TEMP, TDEPT
SELECT
FROM
WHERE TEMP. \'JORKDEPT = TDEPT. DEPT NO

AND TEMP. \10RKDEPT = 'Ell'
AND TDEPT.DEPTNO = 'Ell' Redundant predicate

5. Make the primary file of the join the file with the fewest number of selected
records.

If you specify an ORDER BY containing fields from one file only, that file
becomes the primary file.

If an ORDER BY references fields from one file and that file has a larger
number of selected records than its secondary file, consider performance tip
7 - 'Force a temporary result to get faster join performance', below.

J

You can also force the Optimizer to use a file containing the smallest
number of selected records as the primary file by specifying an ORDER BY
clause that references one of the file's fields.

6. Attempt to join the files from smallest to largest, depending on the estimated
number of records selected from each file.

The system will process a join of two files with different numbers of selected
records most efficiently when the smaller file is joined with the larger file.

For the following example, assume that all of the 4 files contain the same
common field named DEPT.

TAB1 has 100 selected records
TAB2 has 1000 selected records
TAB3 has 5000 selected records
TAB4 has 10000 selected records

This WHERE clause is more efficient:
WHERE TAB1.DEPT = TAB2.DEPT AND

TABl.DEPT = TAB3.DEPT AND
TAB1.DEPT = TAB4.DEPT

This WHERE clause is not as efficient:
WHERE TAB1.DEPT = TAB2.DEPT AND

TAB2.DEPT = TAB3.DEPT AND
TAB3.DEPT = TAB4.DEPT

The join predicates specified in the WHERE clause can affect the
performance of the join. Always specify the join from the file with the
smallest number of selected records to the file with the largest number of
selected records if possible.

7. Forcing a temporary result file to be used could result in faster join
performance.

If all of the following apply,

• Fields from only one file are specified on the ORDER BY and that file has
a larger number of selected records than the other files.

• A file with a larger number of selected records is being joined to a file
with a smaller number of selected records

• A small number of records are returned from the join operation.
then add a column from another file to the ORDER BY clause to force the use
of a temporary file.

This type of ORDER BY will cause a temporary result file to be used to hold
the join result, and more importantly will allow the Optimizer to join the files
in the most efficient join order.

For the following SELECT, the ORDER BY forces TAB2 as the primary file
which is joined to TAB1. If the> = condition on TAB2.COL2A results in a
larger number of records than the = condition on TAB1.COL 1A, then the join
will be done from the larger file (TAB2) to a smaller file (TAB1). This join
order is not as efficient as joining from TAB1 to TAB2.

SELECT TABl.COLlA, TAB2.COL2A
FROM TABl, TAB2
WHERE TABl.COLlX = TAB2.COL2X AND

TAB1.COL1A = 99 AND
TAB2.COL2A >= 10

ORDER BY TAB2.COL2A

5. SOL Performance 5-25

Adding a column from the the other file to the ORDER BY clause will force a
temporary result file to be used to process the join and will allow the
Optimizer to join the files in the most efficient join order, TAB1 to TAB2.

SELECT
FROM
~JHERE

TAB1.COLlA, TAB2.COL2A
TABl, TAB2
TABl.COLlX = TAB2.COL2X AND
TABl.COLlA = 99 AND
TAB2.COL2A >= 10

ORDER BY TAB2.COL2A, TABl.COLIA

Note: this technique should only be used when a few number of records are
returned.

Avoid Numeric Conversion
If the table your application program is accessing contains numeric columns, you
should avoid numeric conversions. As a general guideline, you should always
use the same data type for columns, literals, and host variables used in a
comparison. If the data type of the literal or the host variable has greater
precision than the data type of the column, the Optimizer will not use an index
created on that column. To avoid problems, for columns, literals, and variables
being compared, use the:

• Same data type

• Same scale, if applicable

• Same precision, if applicable.

In the following example the data type for the EDUCLVL column is INTEGER. If
we assume that an index has been created on that column, then the Optimizer
will not use this index in the first SELECT. This is because the precision of the
literal is greater then the precision of the column. In the second SELECT, the
Optimizer will consider using the index, because the precisions are equal.

Example where EDUCLVL is INTEGER:

SELECT LASTNAME, EDUCLVL
FROM TEMPL
WHERE EDUCLVL > 16.3

SELECT LASTNAt4E, EDUCLVL
FROM TEMPL
WHERE EDUCLVL >= 17

Index NOT used

Avoid String Truncation

5-26 Using SOU400

In general, when literals or host variables are compared to character columns,
you should use the same length for the literals or host variables as the one
specified for the column:

• If the literals or host variables are longer than the column length, the
Optimizer will not use an index created on that column.

• If the literals or host variables are shorter than the column length, the
Optimizer will pad the literals or host variables with blanks. In the latter
case, the Optimizer will try to use any available index on the column.

L

In the following example, the WORKDEPT column is defined as CHAR(3).
Assume that an index has been created on that column. The Optimizer will not
use this index in the first SELECT, because the literal compared to WORKDEPT is
four bytes long. In the second SELECT the literal is specified as three bytes, so
the Optimizer will consider using the index.

Example where WORKDEPT is CHAR(3):

SELECT LASTNAt~E, ~JORKDEPT

FRml TEMPL
WHERE WORKDEPT = 'Ell '

t

SELECT LASTNAt~E, WORKDEPT
FROM TEMPL
WHERE WORKDEPT = 'Ell'

Avoid Arithmetic Expressions

Index NOT used

note the blank!

You should never have an arithmetic expression as an operand to be compared
to a column in a WHERE clause. The Optimizer will not use an index on a
column that is being compared to an aritlimetic expression. If a host variable
must take part in a calculation. this calculation should be done outside the SQL
statement.

The following example assumes that an index has been created on the SALARY
column. The first SELECT will not use this index, because an expression is
being compared to SALARY. In the second SELECT, the Optimizer will consider
using the index.

Example of a host variable calculation:

SELECT LASTNAME, SALARY
FROM TEMPL
\'/HERE SALARY < : SAL + 700

TEMP = SAL + 780

SELECT LASTNAME, SALARY
FROM TEMPL
WHERE SALARY < :TEMP

Index usage with UPDATE

Index NOT used

/* Native language statement */

·m:iJ'@§·'

You should use care in updating fields which are (part of) an index.

The Optimizer will not use an index that has a key field which can potentially be
updated. The reason for this rule is that you do not want to build a query that
could end up being a never ending query. Therefore:

5. SQL Performance 5-27

5-28 Using SQU400

1. An index is not used when the index field appears in a SET clause or in the
FOR UPDATE OF clause.

2. An index is never used for cursor UPDATE if no FOR UPDATE clause is
specified on DECLARE CURSOR statement.

3. Be aware of implicitly shared indexes, which were created prior to Release
3. A simple index may actually be owned by a composite index which
includes a column being updated.

In the following three examples, an index is not used, because the statements
could be candidates for this problem:

1. If you update an indexed field:

CREATE INDEX Xl ON TEMPL (SALARY)

UPDATE TEt4PL
SET SALARY = SALARY + 1000
WHERE SALARY < 10000

2. If there is no FOR UPDATE OF clause:

CREATE INDEX Xl ON TEMPL (DEPT, NAME)

DECLARE C1 CURSOR FOR
SELECT NAME
FROM TEMPL
WHERE DEPT = 'B01'

OPEN C1

FETCH C1 INTO :HNAME

UPDATE TEMPL
SET SALARY = SALARY + 10
WHERE CURRENT OF C1

CLOSE C1

Index X1 is not used in this example, because there is an implied FOR
UPDATE OF clause, which names all of the columns in table TEMPL for
update.

3. If an update capable column is part of a composite index, an index is not
used:

CREATE INDEX Xl ON TEMPL (DEPT, NAME, SALARY)

UPDATE TEMPL
SET SALARY = SALARY + 10
WHERE DEPT = 'B01'

Optimizing Concurrency
In order to limit the number of record locks you should choose the lowest
commitment level applic3ble to your application. This will reduce commitment
control processing and lock wait times, and therefore will improve the
performance not only of your job but of all users. The lowest level is *NONE, the
highest is *ALl.

*ALL All rows which are updated, deleted or inserted are locked until
COMMIT or ROLLBACK. Rows you read, can still be read by other
users.

*CHG Rows currently positioned on, with an update capable cursor, and
rows updated, deleted or inserted are locked, until COMMIT or
ROLLBACK.

*NONE Rows currently positioned on, with an update capable cursor, are
locked.

You should limit the number of active record locks by running frequent COMMIT
HOLD or COMMIT statements.

For more information on concurrency see "SQL Commitment Control" on
page 7-1.

Use COMMIT HOLD
The HOLD parameter on the COMMIT statement is a very useful feature,
because it commits the transaction, but leaves all cursors open and leaves the
positions unchanged. This is very useful in a batch program where, after for
instance 3000 updates, you want to do a COMMIT, release the rows, but still
want to continue processing.

By using COMMIT HOLD you do not have to put any code in your program that
will reopen cursors and do any repositioning. See section "COMMIT and
ROLLBACK with HOLD Option" on page 7-6.

Note: Keep in mind that HOLD is not an SAA parameter, so it cannot be ported
to other systems.

Optimizing 1/0 with Blocking
1. Use the Override with Data Base File (OVRDBF) CL command to allow you to

control blocking that will be used by OS/400 database management to
implement your queries.

• For files referenced in INSERT with VALUES clause:

OVRDBF FILE(TEMPL) SEQONLY(*YES)

INSERT INTO TEMPL (NAt4E, SALARY, vJORKDEPT)
VALUES('MET', 100000, 'B01')

• To increase the number of rows per block:

5. SQL Performance 5-29

OVRDBF FILE(TEMPL) SEQONLY(*YES 1000)

INSERT INTO TFILE1 (NAME, SALARY, WORKDEPT)
SELECT NAt~E, SALARY, \oJORKDEPT

FROM TEMPL

2. Avoid using commitment control. if possible:

• Input enabled cursors are never blocked under commitment control
(unless a join or GROUP BY is specified) .

• Output only cursors can be blocked only if OVRDBF SEQONLY(*YES) is
specified:

OVRDBF FILE(TEMPL) SEQONLY(*YES 1000)

INSERT INTO TEMPL (NAME, SALARY, \oJORKDEPT)
VALUES('t~ET', 100000, 'B01')

3. Select only the columns being used.

This enables more rows in a smaller block. SELECT * (select all columns)
would be very easy and quick coding, but it selects and maps every column
out of the table, which is expensive in terms of CPU and 1/0. This is
extremely important for FETCH operations because they occur very
frequently.

Reduce the Number of Rows Processed

5-30 Using SQU400

1. Use column functions rather than providing logic in your program that would
require extensive HLL coding. Calculating the sum of a column is an
example.

2. Specify conditions in WHERE clause instead of in HAVING clause, where
possible.

This example will process all rows in TEMPL:

SELECT DEPTNO, MAX (SALARY)
FROM TEMPL
GROUP BY DEPTNO
HAVING DEPTNO = 'B01 '

This example will process only rows belonging to department B01:

SELECT DEPTNO, MAX (SALARY)
FROM TEMPL
WHERE DEPTNO = IB01 '
GROUP BY DEPTNO

Data Management Methods

Access Path

AS/400 Data Management provides various methods to retrieve data. This topic
introduces the fundamental techniques implemented in OS/400 and the Licensed
Internal Code. These methods or combinations of methods are used by SQLl400
runtime support to access the data.

For complex query tasks you can find different SQL solutions that satisfy your
requirements to retrieve the data from the database. This is not a cookbook that
helps to find the best performing variation of a SQL statement. You have to
understand enough about:

• Creation of the access plan

• Decisions of the Optimizer (discussed in "The Optimizer" on page 5-44)

to find it by yourself.

For this reason this chapter discusses the following topics which are
fundamental instruments for data retrieval from the AS/400 database:

• Access Path

• Row Selection Options

• Reusability of ODP's.

Definition: An access path is:

• The order in which rows in a table (or records in a database file) are
organized for processing.

• The path used to locate data specified in SQL statements. An access path
can be indexed, sequential, or a combination of both.

Arrival Sequence: An arrival sequence access path is the order of records as
they are stored in the file. Processing files using the arrival sequence access
path is similar to processing sequential or direct files on traditional systems.

Keyed Sequence: A keyed sequence access path provides access to a
database file which is arranged according to the contents of key fields (indexes).
The keyed sequence is the order in which rows are retrieved. The access path
is automatically maintained whenever records are added to or deleted from the
table, or whenever the contents of the index fields is changed. The best
example of a keyed sequence access path is an SQL index.

In SQL, columns which are good candidates good candidates for creating keyed
sequence access paths (SQL indexes) are:

• Those frequently referenced in predicates of SQL statements

• Those frequently referenced in GROUP BY or ORDER BY

• Those used to join tables (see "Join Optimization" on page 5-48).

For a further description of access paths, refer to the AS/400 Data Management
Guide, SC21-9658.

5. SQL Performance 5-31

Row Selection Options
The implementation of row selection methods is divided between the Licensed
Internal Code (LlC) and the SQU400 runtime support. LlC is code which sits
below the Machine Interface. The LlC does the low level processing for
example: selection, join functions, and access path creation. These low level
functions actually involve reading and checking the data. Records that meet the
selection criteria are passed back to the SQU400 runtime support. (See
Figure 5-1 on page 5-7 for an illustration).

The query optimization process chooses the most efficient row selection method
for each SQL statement and keeps this information in the access plan. The type
of access is dependent on the number of records, the number of page faults3
and other criteria (refer to "The Optimizer'· on page 5-44).

This topic discusses the possible methods the Optimizer can use to retrieve
data. The general approach is to either do a data scan (defined below) or use
an index. Selection can be implemented through:

• Dynamic Row Selection

• Key Row Selection

• Key Row Positioning

• Column Selection

• 'Index from Index' Selection

• File Management Row Selection.

Definition of terms used in the following section:

• The internal object that contains the data in a table is referred to as a Data
Space.

• The first field of an index over multiple columns is referred to as the primary
or left-most key.

Note: Literal values are shown in the following examples to keep them simple.
However, you could just as easily code host variables instead. Remember to
precede each host variable with a colon.

Dynamic Row Selection: The rows in the table are processed in no guaranteed
order. They will be in arrival sequence. If you want the result in a particular
sequence, you must specify an ORDER BY clause in the SQL statement. As
indexes are not used in arrival sequence processing, all rows in the table are
read. This operation is referred to as a data space scan. The selection criteria
is applied to each row, and only the rows that match the criteria are returned to
the application.

Dynamic Row Selection can be very efficient for the following reasons:

• It minimizes the number of page 110's because all records in a given page
are processed, and once the page has been retrieved, it will not be retrieved
again.

3 An interrupt that occurs when a program refers to a (512 byte) page that is not in main storage.

5-32 Using SQU400

• Because it is easy for the database manager to predict the sequence of
pages from the data space for retrieval, it can schedule asynchronous lID of
the pages into main storage from auxiliary storage (commonly referred to as
pre-fetching). The idea is that the page would be available in main storage
by the time the database manager needs to examine the data.

This selection method is very good when a large percentage of the rows are to
be selected (greater than approximately 20%).

Dynamic Row Selection can be adversely effected when selecting rows from a
table containing deleted records. As you may recall, the delete operation only
marks records as deleted. For Dynamic Row Selection, the database manager is
going to read all of the deleted rows, even though none will be selected. You
should use the Reorganize Physical File Member (RGZPFM) CL command to
eliminate deleted records.

Dynamic Row Selection is not very efficient when a small number of rows will be
selected. Using Dynamic Row Selection, all rows in the table are examined
leading to consumption of wasted 1/0 and CPU resources.

Key Row Selection: This row selection method requires keyed sequence access
paths. The entire index is read and all selection criteria are applied to the index.
The advantage of this method is that the data space is only accessed to retrieve
rows which match the selection criteria.

Key Row Selection can be very expensive if the search condition applies to a
large number of records, because the whole index will be processed, and for
every matched row, a random 1/0 to the data space occurs.

If you specify the ORDER BY clause and none of the order columns is the
left-most column in an index, the Optimizer is forced into Key Row Selection.
SQL queries that do not require an index for Grouping, Ordering, or Join
operations will allow the Optimizer to attempt to find an existing index for
selection. If no existing index can be found, it will abandon any attempt to use
keyed access to the data. The reason is that it would be faster to use Dynamic
Row Selection than to build an index and then perform Key Row Selection.

If the selection criteria contains a range predicate4 using the primary key of an
existing index some additional optimization is possible, and makes the following
data retrieval method more efficient than Key Row Selection.

Key Row Positioning: This access method requires a keyed sequence access
path. Unlike Key Row Selection where processing starts at the beginning of the
index and continues to the end, Key Row Positioning will use an index to
position directly to the range of rows which match the selection criteria.

The following SQL code illustrates an example of a query where the Optimizer
could choose the Key Positioning selection method:

4 Range predicates are: =, >, > =, <, < = and BETWEEN. For example:

coil· 'A' is a range from 'A' to 'A'
colI >= 'A' is a range from 'A' to infinity.

5. SOL Performance 5-33

5-34 Using SQU400

CREATE INDEX indexl ON sometable
(co 1 umn 1 ASC)

SELECT * FROM sometable
\oJHERE co 1 umn 1 = 'C'

In the above example, the database support will use Index1 to position to the
first index entry with column1 value equal to 'C'. Next, it will select all of the
rows matching column1 = 'C' by randomly accessing the data space. Finally it
will end the query when it moves beyond the key value of 'C'. Note that for this
query all index entries processed and rows retrieved met the selection criteria.

You may note that once the positioning is done, processing continues similar to
Key Row Selection in that random I/O is done to the data space. For that
reason, this selection method is most efficient when a small percentage of rows
is to be selected (less than approximately 20%).

Key Row Positioning has additional processing capabilities. One such capability
is to perform range selection across more than one value. For example:

SELECT * FROM sometable
WHERE column 1 BEH/EEN 'C' AND 'D'

In this example, the selection will be positioned to the first index entry equal to
value 'C' and then process rows until the last index entry for '0' is processed.

An further extension of this selection method is available. We will refer to this
as multi-range Key Row Positioning. It allows for selection of rows for multiple
ranges of values for a given primary key:

SELECT *
FROM sometable
\~HERE column 1 BETWEEN 'C' AND 'D'

OR columni BETWEEN 'F' AND 'H'

In the above example, the positioning and processing technique will be used
twice, once for each range of values.

Important: Key Row Positioning works only with the primary key field. The
efficiency of Key Row processing depends on how selective the left-most index
column is. For example:

.. ..J

CREATE INDEX yearidx
ON sometable
(year asc, month asc, day asc)

SELECT * FROM sometable
WHERE year = 90

month = 09
day = 15

While processing the above example, the database manager will position to the
first index entry for year = 90. It will then process the index entries using Key
Selection until all index entries for year = 90 have completed. If there are few
entries to year = 90 then this will be very efficient. However, if there are many
index entries for year = 90 a lot of processing will have to be done to read past
the entries which do not match the month and day selection criteria.

Column Selection: This selection method is very similar to Key Row Selection
except that the selection column is not a key field.

For this method, processing may start at the beginning of the index and
continues to the end. For each index entry, the database manager must
randomly retrieve the row from the data space and apply the selection criteria.

When this method is used alone, it is rarely more efficient then Dynamic Row
Selection. The Optimizer selects this method when an index is required for
other reasons, such as Ordering, Grouping or Join Processing.

Index (rom Index: This method is not actually a selection method, but rather a
preparation step which the Optimizer can put into an access plan. The database
manager can build an index from a table without having to read all of the rows in
the data space. The Optimizer will choose this step when:

• The query requires a keyed sequence access path because it uses Grouping,
Ordering, or Join processing.

• A permanent index does not exist to satisfy the Grouping, Ordering. or Join
processing requirements.

• A permanent index exists which has a selection column as the primary key
field, and the primary key is very selective.

To process this. the database manager firstly uses Key Row Positioning
selection on the permanent index. Secondly. selected row entries will be used
to build index entries in the new temporary index. The result is an index
containing entries in the required key sequence for rows which match the
selection criteria.

5. SQL Performance 5-35

5-36 Using SQU400

For example:

CREATE INDEX indxI ON sometable (columnI asc)

SELECT *
FROM sometable
WHERE columnI = 'C'
ORDER BY column2

For the above example, a temporary select/omit access path will be created,
containing index entries to rows which have column1 = 'C'. Once the
temporary index is created an OOP will be created using the keyed sequence
access path.

File Management Row Selection: SQL runtime support allows an additional
selection method exclusively for queries using host variables in the WHERE
c,lause: File Management Row Selection. The sale reason for the implementation
of this method is to allow queries to reuse OOP's (thus avoid redundant file
opens and closes).

Prior to OS/400 Release 3.0, an OOP could not be created which handled
variables. Instead, the current value of the variable was defined as a literal in
the definition of the OOP at open time. This restriction imposed a significant
penalty for queries which were executed in a loop specifying different values for
the host variables. (See Figure 5-2 on page 5-39).

Instead of storing the variable values in the OOP, SQL runtime support uses a
generalized OOP and resolve the selection using an approach similar to Key
Row Positioning. However, unlike Key Row Positioning, SQL runtime support
controls the positioning by making specific requests to the database manager for
records with a key value (See figure below).

Program

Data t Jopeo
Processing Processing

QSQFETCH SQL/400
runtime OS/400
support Query

Component

t
I~ QDBGETKY EQ :HV OS/400

data base
--MI support

Licensed Internal Code (LIC)

.j

,..)

L·

Since SQL runtime support needs to position to the records to be selected, an
index is required. The requirements upon this index are very specific. All
columns being compared to host variables must be include as key fields in the
access path. In fact these columns must be the left-most key fields.

In most transaction environments, the File Management Row Selection would be
a good performing variation. That is why you should construct your statement to
force the Optimizer to choose this mode. You have to follow some rules to
enable the Optimizer to choose File Management Row Selection. The rules
described below apply to OS/400 prior to Release 3.0. For Release 3.0
restrictions refer to "Reusable Open Data Path" on page 5-39.

• No column functions in SELECT statements or VIEW definitions

• An index must be available and all columns in the WHERE clause

have to be contiguous in the index

must be the left-most key fields

• Columns in the ORDER BY clause have to match the index columns

• No index columns targeted for update

• The predicates referenced to host variables have to be in the form
column-name operand :host variable. Each column referencing to host
variables can only be used once in the WHERE clause. All of the host
variable predicates (see form above) must be ANDed.

The following table represents a summary of the data management methods
discussed.

5. SOL Performance 5-37

Table 5-2. Summary of Data Management Methods

Method Process Watch out Good for Bad for Selected Why good
for when

Dynamic Reads all rows. Deleted > 20% < 20% No Minimizes
Row Seleclion criteria records rows of rows of ORDER page 110
Selection applied to data. table table BY, thru

processed processed GROUP pre-fetching
BY, join
and no
index
available

Key Row Selection criteria ORDER Large ORDER Data space
Selection applied ,to index. BY, number of BY only

Usually used with GROUP rows columns accessed
temporary index. BY and processed match when row

join left-most matches
operation index selection

fields. criteria.

Key Row Processes ranges of < 20% > 20% WHERE
Positioning index entries. rows of rows of clause

table table refers to
processed processed left-most

index fields

Column Index processed AND Operation Any Index
Selection additional criteria requires situation required.

applied to data index Usually
AND done in
criteria combination
don't with Key
match Row
index Selection

and Key
Row
Positioning.

Index from Key Row Positioning on Temporary Ad hoc Transaction Existing No
Index permanent index. index queries environment index maintenance

Builds temporary index and because does not for
over selected index infrequent of NRODP satisfy permanent
entries. transactions mode processing index

requirements.

File Index is used to position Transaction Index Only way in
Management to the row. processing available, OS/400 ReI.
Row candidate 2 for
Selection for reusable

reusable ODP mode.
ODP
mode.

Reusability of OOP's

5-38 Using SQU400

An open data path (ODP) is a path created when a table is opened. This path
contains information about the merged file attributes and information returned by
input or output operations. The ODP only exists when the table is open. For
HLL programs the OS/400 data management allows more than one program to
share the same path to the data. You can specify that if a table is opened more

than once and an ODP is active for it in the same job, the active ODP for the

.J

.J

.J

table can be used with the current open of the table. A new OOP does not have
to be created.

For SQLl400, the possibility of shared open data path is not available, as there is
a 1:1 relationship between an SQL statement and the OOP. In a job trace you
can see a program call to QOBOPEN when you first encounter an SQL
statement. At this time an OOP is created for the SQL statement. This happens
for each SQL statement in your program that requires an OOP. Refer to
"Multiple Access Plans" on page 5-4 for a list of SQL statements that require an
open. When the SQL statement in your program is executed, the information
stored in the access plan is used to create the open data path. Oepending on
the information the Optimizer provides at program compilation (or validation),
the open data path will be created as reusable or non-reusable. These are the
two forms of ~OP's that we distinguish. The reason for these two
implementations is that an SQL statement which has to create an OOP will take
about 10-20 times more CPU as an SQL statement which is going to reuse an
OOP.

Non-reusable Open Data Path: In the case of non-reusable OOP (NROOP) mode
the Licensed Internal Code layer directs the database access. The NROOP's are
created for each unique statement execution.

Program ~SQL~
I r- ----, I Specifi c

SELECTTIlICREATE OOP111-------. OOP
INTO I Host-Vars (Constants)
t1HERE

GET SEQ
GET MUL T ----••

. I

~,------- O~

TABLES 1 ... ----L_In_d_e_x---,

Figure 5-2. Non-reusable Open Data Path Mode

SQLl400 runtime support processes the selection criteria in the WHERE clause in
the creation process of the OOP. The host variable value is turned into constants
and stored in the OOP. The result is a very specific OOP. As you can see, this
form of an OOP is not reusable. If the value changes for the next execution the
constant in the OOP does not match it. A new OOP has to be created. The
SELECT statement is resolved to the database request GET MULTIPLE or GET
SEQUENTIAL. Depending on the Optimizer's decision, these instructions can
access through an index or perform data space scan.

Reusable Open Data Path: The reusable OOP (ROOP) is created on the first
case execution of the SQL statement and used for each subsequent execution.
Note that the reusability of the OOP is restricted to the same statement. SQL
only reuses OOP's opened by the same statement number, that is, even if you
have two identical statements in your program: each statement has it's own

5. SOL Performance 5-39

5-40 Using SQU400

ODP. Therefore it is better to loop around the same statement, than code it
multiple times in line.

In dynamic SQL the first usage of a prepared statement will require SQL runtime
support to create an ODP. Subsequent executions of an already prepared
statement can reuse the ODP within the same restdctions as those for static
SQL. Keep in mind that when a dynamic statement is re-prepared, all ODP's for
the old prepared statement are closed.

The reusability of ODP's is not limited to one invocation of a compilation unit. It
works also across invocations as long as the calling program encountered an
executable SQL statement. Be aware that ODP's can only be reused if the
status of the SQL cursor that created that ODP is closed. Make sure that you
explicitly close the cursor before ending the program (see "Reusable ODP's
Across Invocations" on page 5-15 for additional information).

There are two forms of reusable ODP's:

1. RODP using a generalized ODP
2. RODP implemented with Interface Supplied Values (available since release

3.0).

A comparison of these two methods will follow:

Starting with OS/400 Release 3.0 the database manager can now support
variable data as part of the ODP definition. Therefore it is now possible to reuse
an ODP for almost any SQL query that contains host variable references if the
statement is run again unless:

• The SQL statement requires a temporary r~sult table (for example the
DISTINCT clause)

• A host variable is used to build an temporary 'Index from Index' (See "Index
from Index" on page 5-35)

• A host variable is used as a LIKE pattern.

This Interface Supplied Value (ISV) method is initiated at the first running of an
SQL statement. At that time the OS/400 Query component will make a copy of
the host variable values. It will then define the ODP with pOinters which allow
LlC to address the copied host variable values. On subsequent reuse of the
ODP, the OS/400 Query component refreshes the copied host variable values
with the new values supplied by the application program. The ODP still has the
address of the area containing the copied values so it is now visible.

This method is very significant in that it releases the application programmer
from the entanglement of restrictions imposed with the reusable ODP method via
a generalized ODP. It is recommended that that release 3.0 be installed before
doing performance testing for new or ported applications. Otherwise, a great
deal of effort may be extended modifying the application which is unnecessary
under release 3.0 support.

Since the ODP with ISVs is a specific ODP, there are no restrictions on the types
of row selection options which can be used.

The clue that can be seen in a JOB TRACE which indicates that a reusable ODP
with ISVs is being used is by the evidence that module QQQISVSU is invoked.

This module is part of the OS/400 Query component which is responsible for
copying the current host variable into the ISV space. It will be invoked on the
first and all subsequent openings and reuses of the ODP. For more information
on Interface Supplied Values, see "Module Names to Look for in Trace" on
page 5-60.

SQL Runtime ODP defined
Program -. Create ODP with --* with Input -

ISVs Supplied
Variable

GET Sequential -

SELECT or
GET t·lultiple Poi nter

[rHO to :HV
value

\oJHERE
ISV space managed

A = :HV by OS/400 Query
component

Copied value
of :HV

Figure 5-3. Reusable Open Data Path using ISVs

Any ODP that is a generalized OOP for use of File Management Row Selection is
reusable (See "File Management Row Selection" on page 5-36 for more
information).

The reusable ODP which uses a generalized OOP is the second mode for
reusability. This method was the only reusable method available prior to
release 3. One must take great care in defining the ORDER BY and WHERE
clauses in addition to having the required indexes available in order to utilize
this method. Porting SQL interactive applications from another platform to
OS/4oo may require significant performance tuning in order to match the retrieve
nature of the generalized OOP method. However, once the restrictions have
been met, performance is very good.

A generalized open data path will be created at the first execution of the SELECT
statement. It is an ODP where any selection criteria which references a host
variable is omitted. In this situation the SELECT is resolved to the database
request GET BY KEY. The same type of request is used in the case of an RPG
chain operation or COBOL random read.

5. SQL Performance 5-41

SQL/400 runtime support hands the value of the host variable to the GET BY KEY
request using the OOP to do the data base access. That means SQL runtime
support directs the operations.

An index is necessary for this access through GET BY KEY. The generalized
OOP is not destroyed after the statement execution. It is kept for subsequent
executions of the same statement. The decision if the OOP is kept for possible
reuse is based on program statistics, which are described below.

Program
,SQLi

SELECT----(GET BY KEY)--~. General i zed

INTO I I ODP
WHERE • (Host-Vars)

1
TABLES 1 •• ---- L--_I n_d_e_x--,

Figure 5-4. Reusable Open Data Path Mode

Reusable versus Non-reusable ODP: Both forms of the open data path have
their place. In non-reusable mode, you have to pay the OPEN/CLOSE cost for
each SQL statement execution. On the other side, you have higher row
processing cost for reusable open data path. Therefore, if you work in the
Transaction Processing Environment with only few rows processed per open and
many opens, then reusable OOP mode is the recommendation. In a Query
Processing Environment, where you select many rows per open, the
non-reusable OOP mode would be better.

When the SQL query is a valid candidate for ROOP mode, SQL provides program
statistics to the Optimizer to enable it to determine the type of OOP to create.
The program statistic consist of two ratios:

• Number of Opens per Number of Application Invocations5 and

• Number of Rows retrieved per Number of Opens.

The Optimizer will weigh the cost of avoiding redundant average number of
opens versus the cost of retrieving the average number of rows in order to
determine the most efficient mode. The Rule of Thumb is if only retrieving a few
rows, and the average number of opens is greater than one then reusable OOP
mode will be selected.

In some cases the program statistics don't accurately reflect whether the
program iterates on an SQL statement:

5 The Number of Application Invocation shows how often a program is invoked by an application. That is, if you code in program
MAIN:

For 1 to 100 do
call PGHAj

The counter for PGMA is increased by 1.

5-42 Using SQU400

" ~I

WHILE condition DO
SELECT column list
FROM yourtable
WHERE selection criteria

Assume that in the above example the condition in the WHILE loop becomes true
very seldom (for example once a month). Since OS/400 Release 3, the SQL
runtime support keeps track of SQL statements which create and then destroy an
OOP during a given application. When SQL runtime support sees that a
statement being run a second time and the statement is a valid candidate for
RODP mode it will tell the Optimizer to ignore the program statistics and create
an reusable OOP. SQL never makes the wrong decision twice.

The following table summarizes the points just discussed.

Table 5-3. Summary of Reusabi/ty of ODP's

Mode

Created at
(for a given job)

OOP able to be used by

What Row Selection
Option

OOP closed in static SOL

OOP closed in dynamic
SOL

What happens at reopen

Suitable environments

Cost

Effect on PAG

Reusable ODP

1 st execution of the SOL
statement

Multiple executions of
the same statement in
the same program

All. except:
Temporary result
Index from Index
Host variable in LIKE

No SOL programs on
invocation stack. When
CL command RCLRSC is
issued.

Already 'prepared'
statements can reuse
OOP's. closed when
'reprepared' .

Cursor repositioned

Transaction Processing:
Few rows per open

Higher row processing
cost

OOP remains in the PAG
until OOP is closed or
SOL application ends

Non-reusable ODP

Each execution of the
SOL statement

Used only once.
destroyed after
statement execution

All

At the completion of the
SOL statement

At the completion of the
SOL statement

Full open

Ouery Processing:
Many rows per open

Higher open/close cost

The same as left. but
the OOP is closed
sooner

HLL 1/0

File open

any 1/0 statement in a
given application

Any HLL 110

Explicit CLOSE or
end-of-job

nfa

OOP is unchanged

Any

Lower functions used

5. SOL Performance 5-43

The Optimizer
The Optimizer is an important module of the OS/400 Query component as it
makes the key decisions for good database performance. Its main objective is to
find the cheapest access path to the data. This topic discusses how the
optimizer works in general. The exact algorithms are too complex to be
described in detail here, and are subject to change from release to release.

Query optimization is a trade off between the time spent to select a query
implementation and the time spent to execute it. Query optimization must
handle differing user needs:

• Quick interactive response

• Efficient use of total machine resources.

In deciding how to access data, the Optimizer:

• Determines possible implementations

• Picks the optimal implementation for the OS/400 Query component to
execute.

Precompile Optimization

5-44 Using SQLl400

Figure 5-5 on page 5-45 is an extension of Figure 5-1 on page 5-7 and shows
the relationship between the OS/400 Query component, the optimizer and the
processes and objects used at precompile time. The SQL precompiler builds the
Query Definition Template (QDT) for embedded SQL programs.

The HLL source code created by the SQL/400 precompiler also includes some
associated internal control structures. When the HLL compiler is called, it
invokes the OS/400 Query component to perform the SQL bind. The compiled
SQL program consists of executable code, SQL internal control structures, and
possibly multiple QDTs containing access plans.

As mentioned previously, an access plan is created for the processing of each
query in a program. Similarly, there is a QDT for each query.

Cost Estimation

SQL
Source

HLL •
HLL Source

Compiler

I ~ Compiled
SQL

Program

Execut- SQL QDTs
able

Code

Access
Plans

1
SQL/400

precompiler

!

OS/400
Query

4------\ component

Optimizer

Data Base Support

---iMachi ne Interface------l------------

_L_i_c_e_ns_e_d_In_t_e_r_na_l_C_Od_e_(_L_IC_) ____ ._. _._. ____________ __

D A T A

Figure 5-5. Building the Query Definition Template and Creating the Access Plan

At runtime, the Optimizer will choose an optimal implementation of the query by
calculating an implementation cost given the current state of the database. The
Optimizer models the access cost of each of the following:

• Reading records directly from the file (Dynamic Row Selection)

• Reading records via an access path (can use any row selection option)

• Creating an access path directly from the file (builds a temporary access
path, then can use any row selection option)

• Creating an access path from an access path (Index from Index).

The cost of a particular process is the sum of:

• The start-up cost

5. SOL Performance 5-45

• The optimize parameter (*AlLlO, *FIRSTIO or *MINWAIT)6

FIRSTIO

ALLIO

Minimize the time required to create the ODP and retrieve the
first buffer of records from the file. Biases the optimization
towards not creating an index. Either a data scan or an existing
index is preferred. This method is used by Interactive SQU400
and AS/400 Query when output is to the screen. Most
embedded SQl statements use FIRSTIO except those listed
below under AlLiO. FIRSTIO can be specified for the OPTIMIZE
parameter of OPQNRYF Cl command.

Minimize the time to process the whole query assuming that all
query records are read from the file. Does not bias the
optimizer to any particular access method. This method is
used by Interactive SQl and AS/400 Query when output is to a
Database file or a printer. This is the default option for
OPQNRYF OPTIMIZE parameter. Embedded SQl statements
that perform set operations, that is UPDATE, DELETE and
INSERT with subselect all use AlLiO.

MINWAIT Minimize delays when reading records from the file. Minimize
I/O time at the expense of open time. Biases optimization
towards creating an index. Either an index will be created or
an existing index used. Only used by OPNQRYF.

• The cost of any access path creations

• The expected number of page faults

• The expected number of records to process.

Page faults and number of records processed may be predicted by:

• Statistics it can obtain:

From the database objects themselves:

File size

Record size

Index size

Key size

and so on.

From the program object for each SQl statement (Refer to "Reusable versus
Non-reusable ODP" on page 5-42 for more information on program
statistics).

Number of open and close operations

Number of returned rows per open.

• A weighted measure of the expected number of records to process based on
what the relational operators are likely to retrieve:

These are called default filter factors

B See the AS/400 Database Guide, SC21-9659, OPNQRYF command for more information on these parameters.

5-46 Using SQU400

10% for equal

33% for less-than, greater-than, less-than-equal-to, or
g reater-than-equa I-to

90% for not equal

25% for RANGE

10% for each IN value

• Key Range Estimates

The Key Range Estimate is based on the primary (left-most) columns of the
existing indexes. About six to seven indexes are estimated during the
optimization process. The default filter factors may then be further refined
by the estimate based on the key range. If an index exists over a column
with a primary key, this can be used to estimate the number of keys in that
index within a certain range or equal to a given value. The estimate of the
number of keys is based on the number of pages and key density of the
machine index without actually accessing the keys. Full indexes over
columns used in predicates can significantly help optimization.

Page faults and number of records processed are dependent on the type of
access the optimizer chooses. Refer to "Data Management Methods" on
page 5-31 for more information on access methods. For queries that do not
require an index, access can be a Dynamic Row Selection or reading via an
existing index. For queries that require an index, for example ORDER BY or
GROUP BY is specified, the optimizer may decide to use an existing index,
create a new one or create an index from another index.

Access Plan and Validation
At precompile time, or whenever optimization occurs, an optimized plan of how
to access the requested data is developed or updated. The information from this
optimized plan is kept in what is called a miniplan. The miniplan, along with the
Query Definition Template (QDT) that is used to interface with the Optimizer,
make up an access plan. The access plan is saved away as part (in the
associated space) of the program containing SQL statements.

Access plans are not visible. There is no way to tell what they contain.

An access plan is created with

• CRTSQLxxx, for static SQL (dynamic SQL does not have a stored access
plan)

• WRKQRY and save, for AS/400 Query

and stored for future use.

Each time the SQL program is executed, the OS/400 Query component will
validate the access plan (for example verify that the tables and indexes used in
the plan still exist). If the plan is valid, SQLl400 will use it to access the data.
The Optimizer will re-optimize an access plan, if the file or its environment
changes considerably (new indexes created, greater than 10% change in
number of rows in underlying tables), and SQL will store the access plan with
the program.

5. SQL Performance 5-47

Re-optimization occurs "only as appropriate" for changes in the structural
elements of the tables. That is, an attempt is made to compromise between
optimization every time and never, with a simple and fast check to determine
when it might be suitable. The underlying idea is that most of the time the
stored access plan would be used.

Optimizer Decision-Making Rules
In performing its function, the optimizer works by a general set of guidelines in
choosing the best method for accessing data. The general strategies of this
process are:

• Determine (default) filter factor for each predicate in the WHERE clause.

• Materialize attributes of the table

• If an index is required, determine the cost of creating an index over the table

• If an index is not required, determine the cost of Dynamic Row Selection

• For each index while "haven't spent too much time"

Materialize index attributes

Determine if the index meets the selection criteria

If a selection predicate matches primary key of the index: Perform
estimate key range

Determine the cost of using the index: Use the estimated page faults
and the predicate filter factors to help determine the cost

Compare the index cost with 'Previous cost (current best)

Pick the cheaper one.

• Choose a reusable or non-reusable ODP based on the program statistics
(See "Reusable versus Non-reusable ODP" on page 5-42 for more
information on program statistics).

The "haven't spent too much time" factor controls how much time is spent
picking an implementation. It is based on how much time has been spent so far
versus the current best implementation found.

For small files the OS/400 Query component will spend little time in query
selection. It will arbitrarily pick one of the first 'good' implementations it finds.
For large files, the OS/400 query component will consider more of the indexes.
Generally, the optimizer will interrogate five or six indexes (for each file of a
join) before running out of optimization time.

Join Optimization

5-48 Using SQU400

Join is a complex function that requires special attention in order to get good
performance. For all join operations, the OS/400 database manager requires the
use of an access path over the secondary files in the join. If no usable access
path exists, the OS/400database manager will build it. A keyed access path
(index) is not required for the primary file unless there are sort fields selected
from this file. It is important to create indexes to match frequently used join " "~
selection criteria. The index should match the join-to fields selected from the .."
secondary file.

SELECT column list
FROM tableG1, tableG2
WHERE tableG1.fielda = tableG2.fieldx

For the above example, an access path would be required over table02.fieldx.
Note that for an inner join, the optimizer may decide to switch the join order of
the files. In this case, the previously created index may not be used.

Be as selective as possible on all files to be joined in order to narrow the
number of records that will result from the join operation. This can significantly
reduce the amount of I/O required to run the query.

Avoid joining files without a WHERE clause. The result would be the Cartesian
Product. All of the records in one file would be joined to every record in the
other files. This type of operation could result in a large amount of I/O and may
affect the overall system performance. The result table of non-equi joins could
also contain a large number of records (See chapter "Greater-than, Less-than
and Non-equi Joins" on page 3-10 for more information on joins).

OS/400 database manager will always attempt to order the files from smallest to
largest, depending on the estimated number of rows returned. The query will
run more efficiently when the files are ordered in this way.

The following join ordering algorithm is used to determine the order of the tables:

1. Determine an access mode for each table. Estimate the number of rows
returned for each table.

2. For each join combination, determine a cost based mainly on the expected
number of rows returned after the join.

The join order combinations estimated for a four table join would be:

1-2 2-1 1-3 3-1 1-4 4-1 2-3 3-2 2-4 4-2 3-4 4-3

3. The combination with the lowest cost determines the primary and first
secondary table (for example 2 3 x x).

4. For each remaining table, determine the cost of joining to the first secondary
table (for example 3-1 3-4).

5. The file with the lowest join cost when joined to the first secondary file, is the
next secondary file (for example 2 3 1 x).

6. Repeat the join cost calculation until the full join order has been determined
(for example 2 3 1 4).

Specifying ORDER BY for one of the files always makes this file the primary file
for the join operation. This can be useful when trying to determine which file will
be used as the primary. Note that if you use the ORDER BY on a column of the
larger file, this may result in less efficient processing than if the smallest file
were the primary.

On the other hand you should avoid sequencing on columns of more than one
file when a large number of records will be returned.

5. SQL Performance 5-49

I
I
I
I
I
I
I
I
I

If a few number of records is being returned, then this may result in a faster
response time for the join operation. See" Join Optimization" on page 5-23 for
more details on this join performance tip. This will result in sort criteria being
specified on at least one secondary file. All selected records from all files must
be copied into a temporary file and then an access path must be build over that
temporary file to sort the rows. No existing access path will be used during this
type of operation. This can be expensive in terms of CPU and lID, and it can
also be a lengthy process if many records are involved.

If there is a necessity for this type of join, the row selection and join criteria
become important. The fewer the number of rows selected, the fewer have to be
copied into the temporary file for the sort, thus saving CPU, lID, and response
time.

Subquery Optimization

5-50 Using SQU400

Like Join, Subquery is also a complex operation that requires special facilities to
provide good performance. SQL/400 did not support subquery prior to OS/4oo
Release 3. You could simulate the function of a subquery operation by using
multiple SQL statements in a program. You may want to consider using
subqueries in place of a current multiple SQL statement approach, because in
many cases an SQL subquery will perform better than current user
implementations.

Note that this does not mean that subqueries will outperform all current methods
of simulating these types of operations. You should evaluate the performance of
each subquery-type operation before making a decision on whether or not to
replace current methods with a subquery. Two different methods for the
implementation of subqueries are available. You should understand that the
subquery implementation is very complex and all scenarios cannot be shown
here. To find the best performing variation of a subquery, and of SQL
statements in general, you have to understand enough about the
implementation. The choice of which implementation to use will be based on
performance with priority given to those subqueries you will most likely run.

Join Implementation: There are two different types of implementing subqueries.
The first one, the join implementation will be illustrated with the following
example. Queries which contain subqueries can be reformulated into a single
outer-level SELECT with join conditions replacing the subquery function. The
result is the same. You could code the resolved join query in your source
program, but it may be more complex than the subquery. The performance
difference is minimal.

SELECT deptno, lastname, salary
FROM templ
WHERE salary IN

(SELECT salary
FROM templ
WHERE deptno 10111

AND hiredate > 1680101 1

Figure 5-6. Statement Entered by the User

. I
I
I
I
I
I
I
I

The join fields will be x.SALARY = y.SALARY and the additional search
conditions specified in the inner SELECT will be y.DEPTNO = 'D11' AND
y.HIREDATE > '680101'.

SELECT
FROM
vJHERE

AND
AND

x.deptno, x.lastname,
templ x, templ y
x.salary = y.salary
y.deptno '011'
y.hiredate > '680101'

x.salary

Figure 5-7. Statement as Converted by the Optimizer

The implementation of a subquery as a join requires an index with the join fields
as primary key on the secondary table (refer to "Join Optimization" on
page 5-48). Note: If you specify a GROUP BY clause, existing indexes may not
be used because a temporary result will be created. How can you find out that a
temporary result is created? Test your subqueries in Interactive SQL and use
the system request key to display your job. If the "Display open files" screen
contains in the File, Library and Member columns an entry '*SUBQUERY' a
temporary result for one of the inner SELECT statements is created .

Non-Join Implementation: Some types of queries cannot be reformulated into a
join query. For example when the subquery contains an aggregate function (that
is SUM, MAX, AVG, and so on.). Subqueries with aggregate functions can be
broken down into two outer-level SELECT statements, one of which references
the result of the first query. Since Release 3.0 variable data as part of the ODP
definition is supported. In general you can say, that for every nested level a
reusable ODP with this capability is necessary. As this implementation is very
complex, it is shown in the following example and not discussed in detail.

The subquery lists the departments whose payroll budget is smaller than the
SUM of it's employee's salaries:

SELECT deptno, deptname
FROM tdept x, templ y
WHERE budget < (SELECT SUM(salary)

FROM templ
WHERE x.deptno = y.deptno)

Figure 5-8. Statement Entered by the User

The subquery support of SQL/400 provides variables used to establish the
connection between inner- and outer-level SELECT.

A temporary table is created from the result of the following SELECT statement:

5. SQL Performance 5-51

Temporary Table W~P(T1, T2)

SELECT deptno, SUM(salary)
FROM templ
GROUP BY deptno.

The original query can then be reformulated as shown below:

SELECT deptno, deptname
FROM tdept, templ
WHERE TEMP.Tl = tdept.deptno
AND tdept.budget < TEMP.T2

The Optimizer could decompose the nested SELECT statement prior to the
general query optimization. This would allow for a higher level of optimization
and better performance by avoiding the nested execution of the subquery and
taking better advantage of query implementation optimization. That is, in order
to get an overall optimized subquery you have to find the best performing
variation for every inner-level select.

Analyzing Performance Problems

Methodology

5-52 Using SQU400

The preceding sections discuss the nature of the AS/400 database
implementation, including techniques that you can adopt when writing SQL to
attain better performance, and also fundamental constructs used in data
retrieval. This section builds on these principles by providing a methodology for
tracking down performance problems that you may have with an SQL
application. It offers examples and techniques for. examining system activity
related to your program, with the view to implementing some of the techniques
discussed in "Design Guidelines" on page 5-8 to assist in improving
performance.

Correct use of indexes is the key to improved performance of SQL applications.
For good performance, we want to ensure that a query will use the index we
create. This topic examines four techniques that help us to identify events that
occur when we execute our SQL program. In understanding which OS/400
modules are called, and how long they are active, you can determine whether an
existing index is being used or not, and if a temporary index is created.

As the programmer or analyst, you are responsible for the creation of indexes
that will help particular SQL statements to perform better. It is important to note
that merely creating an index without thought for the structure of the index will
not always improve, and sometimes may degrade performance of a particular
SELECT. The key tasks in determining correct index usage are:

• Is there an index?

• Does the index include all of the columns required by the optimizer?

• Are there many indexes?

• Are there too many indexes?

• Is the best index being used by the optimizer?

• Are there redundant indexes?

• Are redundant indexes impacting insert, update, delete performance?

Determining Indexes
There are a number of ways of determining the index structure for tables. There
are basically three approaches:

• ANZDBF and ANZDBFKEY CL Commands

• Select on SQL Catalogs

• DSPDBR CL Command.

ANZDBF and ANZDBKEY: These are two CL commands that produce reports
summarizing the relationships between physical and logical files. ANZDBFKEY
produces the report that we really need for identifying indexes, but ANZDBF
must be run first. Both commands are part of the Performance Tools (5728-PT1),
so will not be available on every AS/400 system.

The Analyze Database File (ANZDBF) command produces two reports that show
the physical and logical files in a set of libraries and the relationships between
the files. It saves the information in a database file for further analysis by the
Analyze Database File Keys (ANZDBFKEY) command. The data is saved in
member QAPT AZDR of the database file QPFRDAT A/QAPT AZDR.

The Analyze Database File Keys (ANZDBFKEY) command produces, from the
data generated by the Analyze Database File (ANZDBF) command, two reports
showing the key structure of the database files. Be aware that if you analyze a
library that is a collection, the report will contain extra details regarding the
catalog objects, as they are logical files built over the data dictionary objects in
the collection.

Select on SQL Catalogs: This method provides a way to determine what
indexes exist for a table, or group of tables. It makes use of the catalog tables
in an SQL collection. The catalog contains information about indexes and keys of
indexes in two main views:

• SYSINDEXES

• SYSKEYS.

If your table is not in an SQL collection, then for problem solving purposes it is
worthwhile to temporarily move or copy it into the collection containing the
indexes. You can then perform the following join to retrieve the structure of
these tables and the indexes built upon them:

SELECT TBNAME, DBNAME, NAME, COLNAME, COLSEQ, ORDERING
FROM collectionjSYSINDEXES, collectionjSYSKEYS
WHERE NAME = IXNAME
AND TBNAME = 'YOURTABLE' 1m

Note that the last WHERE condition 1m is optional, depending on whether you
wish to list indexes for just one table, or all tables in the collection. Your table
name should be in uppercase.

5. SQL Performance 5-53

Display Data Base Relations (DSPDBR) CL Command: The Display Data Base
Relations (DSPDBR) CL command can also be used, but this does not list index
column names and sequence. You can use the Display File Description (DSPFD)
CL command for each index to list this information.

Identifying Problem Code
One of the most significant steps that can be used when solving any
programming problem, is to isolate problem code into a smaller unit. This offers
many advantages, including being more manageable, and removing distracting
details that are not related to the problem itself.

For instance, if you decide that you have a problem with an SQL SELECT in a
program, then you should copy only the embedded SELECT statement and any
required host variable definitions into a new program, which is likely to be much
smaller. Re-execute this smaller program first, to see if you still have a
performance problem with the SQL statement. If you have established this, then
you can progress with the various problem analysis methods described here.

This isolation process is especially useful when performing a job trace, as trace
tends to produce copious quantities of output. Too much information in a trace
is misleading, and this isolation process helps to speed up problem analysis.

Job Log and Debug Mode

Interactive SQL

5-54 Using SQU400

Most SQL error messages and return codes are displayed in the joblog. This
offers the programmer a facility to interrogate status for most SQL statements.
Therefore you do not have to write any user code to extract this information from
the SQLCA, and display it on the screen or in a report when developing or
testing an application. In debug mode, more SQL information is externalized to
the user, that is, more information is displayed in the job log. In this mode,
completion messages are also displayed. They provide status of successful
execution of SQL statements.

You will find that all SQL statements except SELECT have information reflected
in the job log. This includes all DDL and DML statements. You can use the job
log after executing an SQL program using the DSPJOBLOG CL command, or
whilst testing statements in Interactive SQL, from the Display Current Job option
of the System Request menu. The messages in the job log can somewhat be
used as a trace facility, where you can see the completion message for the
statement being performed and get an idea of the time it took to execute. The
Job Log can be printed using the signoff CL Command with the *LlST option, that
is: SIGNOFF *LIST.

Interactive SQL is the key tool for identifying the source of any SQL performance
problem. Previously we discussed the advantage gained by isolating problem
code. You can go one step further in an SQL environment and test most Static
SQL statements in Interactive SQL. This will allow you to see the execution
characteristics of only your SQL statement. Unless you can simulate the
resulting dynamic SQL statement as a static statement, you will have to test
dynamic SQL statements in a program.

How to Determine if an Index is Being Used: If you are running a SELECT in
Interactive SQL, there is a method for finding out what index is being used. To
do this, you need to display the returned rows to the screen. The steps are as
follows:

• Enter your SELECT statement

When the results are displayed:

• Press System Request Key (and Enter)

• From the System Request menu: Option 3 - Display current job

• From the Display Job menu: Option 14 - Display open files, if active

You should now see the Display Open Files screen, which is a list of all files
opened at the current point in time. It will look something like this:

Display Open Files

Job .. : DSP0lf1002 User QPGMR Number 008122
Number of open data paths 8

Memberl Record File 110 ----Open--- Relative
File Library Device Format Type Count opt Shr-Nbr Record
QDUI132 QSYS DSP010202 USRRCD DSP 11 10 NO
QSQIMAIN QSQL DSP0H1202 DSP 1 10 NO
QSQISE QSQL DSP010202 BODY DSP 7 10 NO
LBRIDX2 DBITRK HJLBRIDX2 LGL 0 I NO
LBRSTATS DBITRK ; LBRSTATS FORMAT0ee1 PHY 2 I NO 32
QDUI132 QSYS Dspele2e2 USRRCD DSP 2 10 NO
QDDSPOF QSYS DSPGle2e2 DETAIL DSP 8 10 NO
QDQUWSRUN QSYS DSpeIe2G2 F36RPTLIVE DSP 2 10 YES 1

Press Enter to continue.

F3=Exit F5=Refresh F12~Cancel F16=Job menu

In the above example, the user is performing a select on the table LBRSTATS in
collection DBITRK. The information ,displayed Il!J shows the file name, library
(collection), record format, and an 1/0 count for the table. In processing this
SELECT, the optimizer makes use of an index, LBRIDX2. You can see that the
index name is actually displayed on this screen m. It is clear from its name,
that this is an Index. However another clue is the File Type column. This shows
the table as PHY (a physical file). and the index as LGL (a logical file). Another
clue is the I/O count column containing an entry of zero for the Index.

This technique applies to all permanent indexes, either created with CREATE
INDEX or as a Logical File with attributes similar to an SQL Index.

For best performance, a display as shown above is what we want. We want the
optimizer to make use of our index.

5. SQL Performance 5-55

Identifying a Temporary Index

5-56 Using SQU400

For large tables (or slower performing queries) your goal should be to avoid the
optimizer having to create its own temporary index. This can be done by
creating your own permanent index for the optimizer to use.

Unfortunately, there is no easy way of identifying if a temporary index is created
or used. There are two scenarios that we need to consider:

• Creating a new index for the query

• Creating an index from an index.

To determine if either of these take place, there is one method that requires
strict attention to the screen whilst the SELECT is being performed. You will
notice that on the screen message line (line 24), a program status message is
briefly displayed whilst the query is processing. This is not recorded anywhere
on the system for you to interrogate later. You may need to execute the query
multiple times, depending on the query itself, before you can fully read the
message.

Creating a New Index for the SELECT: When the optimizer decides that a new
index is required, you will see a message on line 24 of the screen as follows:

Enter SQL Statements

Type SQL statement, press Enter.
===> select * from DBITRK/LBRSTATS

order by lbruprod, lbritems

F3=Exit F4=Prompt F6=Insert line F9=Retrieve F19=Copy line
F12=Cancel F13=Services F24=More keys
Query running. Building access path for file LBRSTATS in DBITRK.

Bottom

In fact, what you will see when this query is processed, are three messages that
are displayed in turn:

Query running.
Query running.
Query running.

Building access path for file LBRSTATS in DBITRK.
12000 records selected. Selection complete.

Because this table contains 12000 rows, the second message is displayed for a
longer period than-for smaller tables, and hence is easier to read.

If we use the method previously described for displaying the name of the index
(using the Display Current Job menu), no index name will be displayed in this
instance, as the index created is an internal temporary object.

Your approach to optimizing SQL performance should be to reduce the time
taken to create this temporary index, or eliminate the need for it altogether by
creating a permanent index for later use.

Creating an Index From an Index: In some instances, a query may require data
in a particular sequence such that an index that exactly suits the query is not
available. However, there may be an index which offers one or more primary
keys of the index required. In this case, the optimizer may build a temporary
index over the permanent index. When this happens, you will see messages like
the following:

Enter SQl Statements

Type SQL statement, press Enter.
===> select * from DBITRK/LBRSTATS

where lbruprod = 5se
and lbrstati < 'B'
order by lbrstatc

F3=Exit F4=Prompt F6=Insert line F9=Retrieve FIO=Copy line
F12=Cancel F13=Services F24=More keys
Query running. Building access path from file lBRIDX6 in DBITRK.

Bottom

What you will notice here is that the message contains "Building access path
from" instead of "Building access path for" as before. Also the permanent index
name is named in the message instead of the table name.

In this example, LBRIDX6 includes columns LBRUPROD and LBRITEMS, both in
ascending sequence. There is no other index which includes LBRSTATI or
LBRSTATC. The ORDER BY clause can contain any columns to force the
optimizer to build a temporary index from a permanent index.

In fact, what you will see when this query is processed are three messages that
are displayed in turn:

Query running.
Query running. Building access path from file LBRIDX6 in DBITRK.
Query running. 209 records selected. Selection complete.

As mentioned before, if we use the method previously described for displaying
the name of the index (using the Display Current Job menu), no index name will

5. SQL Performance 5-57

be displayed in this instance, as the index created is an internal temporary
object, even though we are actually making use of a permanent index.

The conditions that cause the optimizer to use this technique are discussed in
detail in "Index from Index" on page 5-35.

Inefficient Indexes

5-58 Using SQU400

You can now identify when the optimizer is creating its own index and when it is
using one that you explicitly create. You need to consider how to identify a
user-provided index that is inefficient.

This process is like that of identifying optimizer-created indexes. You must issue
a SELECT in Interactive SQL and interpret the messages that are rapidly
displayed on the message line of the screen. For a SELECT that uses an
inefficient index, you will notice something like the following:

Enter SQL Statements

Type SQL statement, press Enter.
===> select ITLITEMN, ITLLOCAN, ITLWKCEN, ITLTENTR, ITLNALTW

from DBITRK{ITLOCATN
where ITLWKCEN >= 'WK288'
and ITLTENTR = '1234'
and ITLNALTW <= 'WK258'

F3=Exit F4=Prompt F6=Insert line F9=Retrieve F18=Copy line
F12=Cancel F13=Services F24=More keys
Query running. la records selected, laa processed.

Bottom

When the ratio of records selected to records processed is low and the table
contains a large number of rows, you will notice that the message slowly
increments the numbers on the message line as it processes the table. In this
instance, you might find that the optimizer is either not using an index or the
index being used is inefficient. You should create indexes such that the number
of rows processed is minimized, that is, try not to process all rows in a table.

In this environment, you will not often get a true indication of an inefficient index
if your interactive session displays output to the screen. This is because the first
screen of data will be displayed as soon as there are enough rows to fill the
screen. When SELECT output is displayed at the screen, it is optimized so that
the user sees a result as soon as possible, that is, a buffer full of rows.

To get a true indication of index efficiency, you should use F13 = Services, and
take the option to change the SELECT output device. Set the output device to
Printer or Database file (Printer is probably the easiest). Now re-issue the

SELECT statement and watch the message line. It will remain on the screen
much longer than before.

Be aware that the optimization techniques employed in Interactive SQL are
different between various SELECT output options. Output to the display is
processed like embedded SQL which both use the same optimization goal, that
is, return some output as soon as possible. Output to a Printer or Database file
is optimized based on returning al/ data. (See "Cost Estimation" on page 5-45
for more information on optimization bias). You therefore must ensure that when
producing output to the printer that the the SELECT employs the same
optimization techniques (that is uses an index or not) as when output is sent to
the display.

Work With Jobs Displays

Job Trace

You can use the Work with Active Jobs (WRKACT JOB) or Work with Submitted
Jobs (WRKSBMJOB) displays as another way of detecting if the Optimizer builds
a temporary index. For a query that creates a temporary index, the "Function"
column on either of these displays will contain an entry like the following:

Work with Active Jobs ROCHESTR
06/21/90 12:55:42

33 CPU %: 17.8 Elapsed time: 00:00:00 Active jobs:

Type options, press Ente r.
2=Change 3=Hold 4=End 5=Work with 6=Release S=Spoo 1 ed fil es
9=Exclude 10=Program stack l1=Locks 13=Disconnect

Opt Subsystem/Job User Type CPU % Function Status
PCLAN04 QPC EVK .0 * -PASSTHRU EVTW
RCHAS00S QUSER EVK .0 * -PASSTHRU EVTW

QCTL QSYS SBS .0 DEQW
QJSCCPY QPGMR BCH .0 PGM-QSCCPY DEQW
QOACLNUP QPGMR BCH .0 DLY-22:00:00 DLYW
QPFRCOL QPGMR ASJ .0 PGM-QPMLWAIT EVTW

QINTER QSYS SBS .0 DEQW
DSP010202 SQLTEST INT .0 IDX-ITLOCATN m RUN
DSP010203 QSYSOPR INT .0 CMD-WRKACTJOB RUN

More •••
Parameters or command
===> ---F3=Exit F5=Refresh F10=Restart statistics F11=Display elapsed data
F12=Cancel F24=Mo~e keys

In the example above m, IDX shows the create index process running. This is
also shown when you issue the statement CREATE INDEX. When a temporary
index is created, the name that appears with lOX refers to the table upon which
the index is built. When performing a CREATE INDEX, this name is that of the
created index.

There are a number of trace facilities available on the AS/400 system, including:

• Trace Job (TRCJOB) - a component of OS/400

• Start Job Trace (STRJOBTRC) - a component of Performance Tools

• Trace Internal (TRCINT) - for IBM Service

5. SOL Performance 5-59

The recommended trace facility to use is TRCJOB, as it is part of OS/400 and
therefore will be available on every AS/400 system. It provides enough \
information in most scenarios. The TRCJOB command controls traces of ...,
program calls and returns that occur in the current job. It can trace module flow,
operating system data acquisition, or both.

STRJOBTRC, being a component of the Performance Tools program product, will
not always be available on every AS/400 system, as not all systems have
Performance Tools. If the Performance Tools are available, then this could be
used instead of TRCJOB, as it is essentially the same, but provides some
additional information on I/O activity of modules called during the trace period.
A trace record is generated for every external (program) call and return,
exception, message, and workstation wait in the job.

TRCINT provides too much detail for most users. It is primarily designed for
problem analysis. It controls traces of internal events associated with the
current job that occur at a level below the machine interface. In addition to
OS/400 module names, it also contains names of VMC (Vertical MicroCode)
programs which are called from the OS/400 modules. The trace internal report
tends to produce 20 times more output for the same user process as the other
trace tools. The creation of this trace report takes some time to complete.

The Nature Of Trace

Running the Trace

All of these trace facilities involve extra activity to record events that occur
during the execution of a program or function. You should be aware that any
program executing whilst trace is active will execute slower than if it were run
without trace. Because of this, you cannot trust the execution times for a
program when run in trace mode. Different trace facilities have different impacts
on program execution time.

An additional note about TRCJOB and STRJOBTRC, is that even when the trace
is ended, there are still extra tasks executing that effect the performance of your
job. The only way to be sure the execution elapsed time is accurate, is to signoff
and signon again before re-executing your program.

When you make the decision to run a trace to more closely examine the
characteristics of your executing program, you will need to ensure that you don't
trace too much activity. Trace tends to produce large quantities of output. You
should minimize the output created by starting the trace, running your program,
then stopping the trace as soon as possible. The comments made before about
program isolation also apply. Try and minimize the amount of code in the
program being traced.

Once you have produced the trace output, it is best kept online, rather than
printing a copy. You can make use of the searching capabilities of the Display
Spooled File function to quickly locate those parts of the trace that are relevant.

Module Names to Look for in Trace

5-60 UsinQ SQU400

When reading a trace report, it is important to understand what is happening in

the flow of your application. The main modules you will see for database access ',. . "',,".
all begin with QQQ. ...,

There are fifteen modules comprising the OS/400 Query component. All fifteen
may require invocation for running a query. The order of their invocation is

L

L

apparent from Figure 5-9 on page 5-63. First validation processing (QQQVALlD,
QQQITEMP, QQQVWCMP, and QQQVWFLD). Secondly, optimization processing
(QQQOPTIM). Thirdly, implementation processing (QQQIMPLE). Potentially,
recovery of SQL Views may be necessary (QDBFIXIT and QQQVWRCY). Finally,
module QQQQEXIT is invoked at close time to clean up query created objects.

The Create Access Plan task firstly performs validation processing. QQQVALlD,
QQQITEMP, QQQVWCMP, and QQQVWFLD could be called by QQQQUERY to
check your query definition. Again, recovery of SQL Views (QDBFIXIT and
QQQVWRCY) and cleaning up the query environment (QQQQEXIT) are required
operations. Only after this, can the optimization processing necessary to run a
query occur.

QQQQUERY - Query Main Line: This is the initial module for Create Access
Plan and Run Query processing, and is known as the OS/400 Query component.
It subsequently invokes the validation, optimization, and implementation query
functions, as required. This module also handles the overall coordination of
multiple query definitions (for example UNION) and builds the access plan
returned on the Create Access Plan and possibly the Run Query requests.

QQQVALID - Query Validation: Validates the query definition templates
including the enforcement of concurrency restrictions and authorization
constraints. It builds the subset of Query Internal Structures specific to
validation processing. This includes almost all Query Internal Structures, except
for those built during optimization processing.

QQQVWCMP - Query SQL View Composition: Composes a single query
definition template from the two or more query definitions posed by your query
and any SQL Views taking part in your query. Each queried View has its own
query definition template that must be merged with the user's query of that View.

QQQVWFLD - Query SQL View Field Composition: Called by module
QQQVWCMP during query composition for processing of field references. This
processing is located in a module separate from QQQVWCMP because it may
need to recursively reinvoke itself.

QQQSETUP - Query Set Up Processing: Called by QQQQUERY and QQQVALlD,
this module creates the internal work spaces used by query processing.

QQQOPTIM - Query Optimization: This is the module knows as the Optimizer.
It optimizes access to the result defined by a single query definition template.
The optimization processing is primarily concerned with determining what, if
any, indexes should be used or built when running the query, and in what order
multiple files should be joined.

QQQSQCMP - Query Subquery Join Composition: This module is called if a
query contains one or more subqueries. It attempts to transform as much of the
subquery into join specifications as is possible. QQQOPTIM will then determine
the cost of implementation from the join composite. QQQQUERY will compare
the default (ISV) cost to the join cost and the less expensive implementation
method will be used.

QQQISVSU - Query Interface Supplied Values (ISV) Set Up Processing: When
called by QQQVALlD, this module creates ISV spaces, and sets the initial ISV
pointer values. These ISV spaces are used by QQQGET to retrieve records

5. SQL Performance 5-61

5-62 Using SQU400

when a subquery is being processed. This relationship is not shown in the
following diagram. When QQQISVSU is called by QQQQUERY, this module
updates or refreshes these ISV pointer values with the latest values of host
variables. ISVs are primarily used for processing subqueries and providing
reusable ODPs.

QQQIMPLE - Query Implementation: The optimized access to the query result
defined by the query definition template is implemented by creating a query MI
Cursor object. MI Data Space Index objects may also be created for selection,
joining, and ordering requirements. If this module is active for an extended
period of time (greater than 0.1 CPU seconds in most cases) then it is likely that
it is creating a temporary index.

QQQITEMP - Query Temporary Result: Creates temporary copies of files
participating in the query, or copies of data produced from intermediate versions
of the final query definition. This is most often used in processing a UNION.
Temporary files are created in library QTEMP.

QQQACTIV - Query Activation of Embedded SQL Statements: This module is
called by QQQQUERY to activate the query defined by the implementation
process. This function must be done from a separate module so that your
authority is propagated to the cursor (not QSYS authority).

QQQQEXIT - Query Exit: This is the invocation exit program for module
QQQQUERY. It may also be called directly for some errors detected by module
QQQQUERY. It cleans up the query environment by closing opened files and
destroying any temporary objects.

QDBFIXIT - Data Base Recovery Processing: Invoked by module QQQQUERY
when recovery is required for a queried SQL View or the open of a View. This
module is actually owned by the Data Base component.

QQQVWRCY - Query SQL View Recovery: Performs recovery of SQL Views that
are in an inconsistent state. Recovery becomes necessary when the structure of
the View was being modified when the job or system failed.

QQQGET - Query 110 Processing: This module provides an interface to the
Database GET modules for those queries that use Interface Supplied Values
(ISVs). This module is only invoked when subqueries are present, and acts as a
relay between SQL and Database. If QQQGET is called only once after the first
call to QSQFETCH, then the OS/400 query component is performing a basic
subquery. If it is not in the trace at all, but the program is doing a subquery,
then it is likely that the subquery has been converted to a join, and you should
see QQQSQCMP in the trace instead. If QQQGET is called repetitively, then the
OS/400 Query component is performing a correlated subquery. If your subquery
can be rewritten to use basic subquery or join composition, then you will often
achieve better performance.

Create Access .-------,

Pl an ----+: 1 QQQQUERY
Run Query ----+ ..

Subquery I
Get ----.. QQQGET

Request

QQQSETUP

QQQOPTIM

QQQSQCMP

QQQISVSU

QQQIMPLE 1-+1
QQQACTIV

QQQQEXIT 1-+1
QDBFIXIT 1-+

Figure 5-9. OS/400 Query Component Module Flow

QQQITEt4P

QQQSETUP

QQQITEMP

QTSQEXIT

Other Significant Modules: In addition to the QQQ modules described above.
there are some other modules that you will see in analyzing a trace of an SQL
program. Some of the more frequently used modules are:

5. SQL Performance 5-63

5-64 Using SQU400

Module

QDBGETM

QDBGETKY

QDBGETSQ

QMH?????

QSQROUTE

QSQXCUTE

QSQAUTH

QSQBIND

QSQBLQDT

QSQCLOSE

QSQCRTDB

QSQCRTI

QSQCRTT

QSQCRTV

QSQDELET

QSQDESC

QSQDROP

QSQFETCH

QSQINS

QSQLABEL

QSQLCCR

QSQOPEN

QSQPREP

QSQPSTAB

QSQRAPLY

QSQRCHK

QSQRLEX

QSQROUTE

QSQRPARS

QSQRPTAB

QSQRTBLS

QSQRTOKR

QSQRXLTR

Description

DataBase get multiple - uses blocking to retrieve data

DataBase get by key - uses File Management

DataBase get sequential

Message handling routines

The first called SQL routine - for embedded SQL. When
browsing a trace report on the screen, use the search facility to
locate this module first.

Interactive SQL execution runtime interpreter module. The first
called SQL routine.

Handle GRANT/REVOKE statements

SQL Bind

SQL Query Definition Template Builder

SQL Hard Close Pseudo Closed Cursors

SQL Create Data Base

SQL create index

Create Table

SQL CREATE VIEW

SQl DELETE

Describe Runtime Support (Dynamic SQL)

Handle DROP statement

SQL FETCH and Embedded SELECT

SQL INSERT

Handle COMMENT & LABEL statements

SQL LOCK, CLOSE, COMMIT, and ROLLBACK

SQL Open

Prepare Runtime Support (Dynamic SQL)

Dictionary Services - precompiler/parser

SOL Semantic routines

SOL Data Checker

SOL Lexical Scan Routines

SQL Router

SOL Parser Machine

SQL Parse Tables

Scan Tables for the SQL Grammar

SQL Tokenizer Routines

SOL parser translator module

QSQRXTRT

QSQUPDAT

QSQXIT

Extract field definitions for tables

SQL UPDATE

SQL Exit

Data Scope Message SQL7904 should appear only once if your objective is to
reuse ODPs. This should occur when your dummy SQL
statement (such as DESCRIBE) is executed. If there is more
than one occurrence of this scope message, then your ODPs are
not reusable. See "Reusability of ODP's" on page 5-38 for more
information on reusable ODPs.

Other Trace Events: If you have created an index, and SQL is using that index
for processing a query, then you will see the index name in the trace. It will
appear with the module QDMCOPEN. The same module will later appear with
the table name.

Performance Tools
The AS/400 Performance Tools licensed program product (5728-PT1) contains
some tools that you can use to help you to identify performance-related
problems with your application. You have seen some references to Performance
Tools already in this topic. Some of the facilities that you can use are as follows:

• ANZDBF and ANZDBFKEY CL commands

• STRJOBTRC CL command

• Timing and Paging Statistics Tool (TPST).

Previously discussed was the use of ANZDBF, ANZDBFKEY and STRJOBTRC CL
commands. This section mainly refers to use of TPST.

You will find that for most SQL performance tasks, the methods described
previously will assist in the majority of cases. You can use TPST for specific
performance measurement, rather than tracking down performance bottlenecks.

TPST: TPST is in fact not part of the Performance Tools program product. It is a
performance measurement tool, however, and is a PRPQ (5799-DCG). It has
multiple uses in any performance environment which deals with performance at
a program or module level. It also offers options to store measured
performance data into a database file for later extraction into a report.

Here are some points relevant to the use of TPST:

• TPST measures: Synchronous and Asynchronous, Cumulative and
Non-Cumulative:

CPU seconds, Database Reads, Database Writes, non-Database Reads,
non-Database Writes

• You can measure cumulative values for these totals also. This means that
you can measure the value for the stated program, and all programs and
modules it calls. This is ~specially useful when measuring at a program
level.

5. SOL Performance 5·65

• If you are looking at specific functions within an SQL program, you can
measure only the activity for the module you require. See "Module Names
to Look for in Trace" on page 5-60 for module names and the functions they
perform.

• TPST is best used in a standalone environment so that module activity of
other users is not recorded.

• TPST output can be written to a database file. You can then use the List
TPST(LSTTPST) command or your own program to extract measured figures.

Positioning: SQL vs Native File Management

Environment

5-66 Using SQU400

Many application developers who code in high level languages such as RPG and
COBOL may be looking at SQL!400 as an alternative for traditional database 1/0.
This topic gives guidance on common operations performed in applications from
a performance viewpoint. The objective of this is to assist you in deciding where
SQL can be used to provide better performance or more efficient coding.

Detailed measurements were taken to record the performance of the programs
used in specific tests across 28 different environments ranging from batch
processing tasks, to random processing and statistical processing, including
read, insert, update and delete variations, where applicable. The actual results
are too large to be published here. Instead, summary findings are described to
give you an indication of what you may achieve on your own system.

The guidelines here are based on testing done by the IBM Australia Field
Systems Centre. Comparisons are based on results obtained in these tests only,
and will not necessarily apply to every AS/400 system.

The tests were performed in the following environment:

9406-B45

OS/400 Release 3.0

48 MB Memory

3.3 GB DASD

Checksum Off

No User-ASP's

Active Subsystems:

QCTL

QINTER

QBATCH

Tests executed from a workstation under QINTER

Machine pool size 6700K

Base pool size 3850K

JOBD = QDFT JOBD

QINTER pool size 30MB, activity level 18

Disclaimer

All devices (screens and printers) varied off except the test display and the
console

DASD utilization = 48%

The information contained in this topic has not been submitted to any formal
review and is distributed on an "as-is" basis without warranty either expressed
or implied. The use of this information or the implementation of any of these
techniques is a customer responsibility and depends upon the customer's ability
to evaluate them and integrate them into the customer's operational
environment. While each item may have been reviewed by IBM for accuracy in
a specific situation, there is no guarantee that the same or similar results may
be obtained elsewhere. Customers attempting to adapt these techniques to their
own environments do so at their own risk.

The performance data contained in this document was obtained in a controlled
environment based on the use of specific data and is presented only to illustrate
techniques and procedures to assist readers in the understanding of
performance characteristics of SQL/400. The results obtained in other operating
environments may vary significantly. Users of this document should verify the
applicable data in their specific environment.

Native File Management vs SQL
SQL contains some constructs necessary for its flexibility which adversely can
affect its performance in some situations. These include:

• Field Mapping

Unlike native file management liD, SQL maps each column in a row
individually. File management maps the entire row as one unit Therefore
you will find that there is extra overhead for each column returned. This is
especially noticeable when doing FETCH operations, where there is more
than one row returned. If a large number of rows are fetched in a loop, then
this overhead is multiplied for each row.

• Error Handling

SQL handles error conditions by using the SQLCA. This is called return
code error handling, where a result is set if the statement completed in error
or successfully. File management liD uses exception based error
processing, where error processing only occurs if a statement does not
complete successfully. The additional work done by SQL in setting the
SQLCA values after the execution of each SQL statement again is multiplied
when many rows are processed.

• Fetch row at a time

When SQL performs a FETCH operation, each request calls the QSQFETCH
module to return the data to the specified host variables. This is different to
file management liD where a block of records are returned, and multiple
READ operations access the same block for the next record. File
management performance will be closer to SQL FETCH performance when
commitment control is used in this environment

5. SQL Performance 5-67

SQL in General
SQL is better suited to set at a time processing, especially in insert, update and
delete processing. For processing smaller tables, and smaller proportions of
large tables performance of SQL in read (select) tests is adequate, but not as
good as non-keyed files where every row is processed. This is because of the
points mentioned above regarding field mapping, error processing and FETCH
performance.

SQL performs particularly well in special function processing such as calculating
statistical information (max, min, avg, sum, count) and LIKE function processing
(for an alpha-search environment). A particular point of note about these two
scenarios, is the ease with which SQL can be implemented. Alternative
environments performing this same function are quite verbose and prone to
errors when coding.

SQL should not be used for single record processing (read, insert, update, or
delete) where the ODP is not reused. Without a reusable ODP, SQL requires a
full open of the table for every row processed in this scenario, and performs
much worse than most other environments.

SQL vs Keyed Files
Keyed Files are the best performing alternative in two areas. Firstly, they
provide superior performance when processing single record read, update, and
delete operations, when the record must be located by key, that is random
processing. No other alternative tested can match logical file performance in
this scenario. When processing with an index, SQL performance is second
behind keyed file performance. Non-keyed files and OPNQRYF environments
were particularly poor in this scenario.

Results for random processing showed that SQL with an index was on average
two to four times slower than processing from a keyed logical file when
randomly processing 100 rows. If no index was used, then SQL performance
was about 60 to 200 times slower than for a keyed logical file. This was in the
same order or magnitude as OPNQRYF.

Join Logical Files also perform well compared to SQL which does a dynamic join
in a SELECT statement. This is essentially because the access path is created
with the CRTLF command. SQL on the other hand creates the access path at
execution time (unless an SQL view is used). A join logical file is 2 to 2.3 times
faster than SQL in this environment. SQL offers an advantage over join logical
files. If the programmer has used the wrong join order in the join logical file,
then the application is forced to use that order, whereas SQL will correct for the
mistake to optimize performance.

SQL vs Non-keyed Files

5-68 Using SQU400

Most programmers would consider that keyed physical or logical files are the
correct approach for best performance in most application solutions. A
significant point of note is that non-keyed files perform well in many
environments. In most of the 28 performance tests, the non-keyed environment
performed acceptably, and for most of these, it was the best performer, including
processing tables of up to 500,000 rows.

L

L

In analyzing the details of these tests, the non-keyed environment while having
an acceptable elapsed execution time, had higher Total I/O's and CPU seconds
in some instances. This implies that in a non-dedicated environment, there
would be an adverse effect on other users of the system caused by the execution
of programs using non-keyed files.

SQL vs OPNQRYF
In tests that contained both SQL and OPNQRYF environments, results were split
into mainly three groups:

• Results where SQL was much faster than OPNQRYF (30 to 75 times faster)

• Results where SQL was up to 10% faster than OPNQRYF

• Results where SQL was significantly slower than OPNQRYF (1.5 to 4 times
slower).

SQL is much faster than OPNQRYF when performing dynamic access to a table,
when SQL uses an index. If no index is used in these environments, then SQL is
much worse.

The use of OPNQRYF is somewhat of a contentious point, as it is relatively
difficult to code (the programmer is required not only to code the OPNQRYF
statement, but must also code OVRDBF and DLTOVR statements in calls passed
via QCMDEXC). SQL on the other hand is much more straightforward, and has
the Interactive SQL facility to aid in debugging and testing. The point of
contention is the fact that OPNQRYF is a CL command, and is part of the
operating system. The SQL Licensed Program Product containing the
precompilers and Interactive support is a separate product, and must be
purchased before it can be used. SQL runtime support is part of OS/400.

Given the right environment (in about 70% of the tests, SQL performed better
than OPNQRYF), SQL is the better choice in terms of execution and coding
efficiency. However, programmers will have to be aware of those situations
where OPNQRYF surpasses SQL in processing efficiency (despite the fact that it
is more difficult to code). OPNQRYF would then be used if performance is a key
issue. The situations where OPNQRYF is better are those where the
performance advantage gained by the extra optimization techniques of SQL are
adversely affected by SQL field mapping and error processing overheads. Areas
where you will see OPNQRYF performs better than SQL are:

• "Batch" processing - where a larger percentage of the table is processed,
with either complex or simple select conditions

• Join processing - with either complex or simple join conditions.

Static vs Dynamic SQL
In comparing static with dynamic SQL, the overheads ~xpected with dynamic
SQL were measurable, with greater total 1/0, CPU time, and elapsed time.
Dynamic SQL is about 5-10% slower than static SQL in most environments.
Dynamic SQL should only be used where extra flexibility is required that is not
available by static SQL.

5. SQL Performance 5-69

Table of Comparisons
Table 5-4. Chart of Relative Database Techniques Based on Performance Results

Task Alternatives (best to worst)

Simple Select non-keyed, OPNORYF

Complex Select non-keyed, OPNORYF

Statistical Select SOL = OPNORYF, non-keyed (simple only)

Join Processing keyed, OPNORYF

Union keyed, SOL

Updates - all and sets non-keyed = SOL, OPNORYF

Updates - Random keyed, SOL

Deletes - all CLRPFM

Deletes - sets non-keyed = SOL, OPNORYF

Deletes - Random keyed, SOL

Static vs Dynamic Static SOL

Random Reads keyed, SOL

Insert - Summary File non-keyed, SOL, OPNORYF

Insert - Values non-keyed

Alpha-search SOL = OPNORYF

Batch Processing
When processing large files, you will find that the Optimizer will choose Dynamic
Row Selection to access the data. This does not always offer the best
performance when comparing to a non-keyed file with traditional HLL I/O
statements. A Keyed Logical File built over a non-keyed file will often have
extremely poor performance as records may not be in the physical sequence of
the logical file key. Therefore, when processing from the logical file, excessive
paging is done to retrieve required records.

The Importance of Indexes in SQL

5-70 Using SOU400

Correct index use in processing SQL queries cannot be underestimated. The
figures stated above regarding random processing give an indication. If no
index is available, you will find that the ODP cannot be reused. Therefore
statements executed in a loop will cause multiple opens, and performance will
be severely degraded.

L

L

L

SQL Performance Enhancements in Release 3.0
There have been a number of changes to improve functions that support
8QLl400 in Release 3.0 of 08/400. These will bring about some performance
improvements that will range from small to significant for various applications.

This topic provides a summary of some of these enhancements as a guide to
identifying what types of functions will now perform better. The "Improvement"
column doesn't represent an average overall improvement for an application, but
only for the operations described.

Table 5-5 (Page 1 of 2). Release 3 Performance Enhancements

Item

2

3

4

5

6

Description

Reusability Restrictions Reduced

In Release 2, columns that were compared to host variables in the WHERE clause
had to have an index built over them in order to avoid an open and close upon each
execution of the SQL statement. There were other restrictions placed upon the use
of host variables in order to avoid opens and closes. Also, each execution of an SQL
statement using either a GROUP BY function or a column function (SUM, AVG, and
so on) required a full open and close.

In Release 3 these restrictions have been removed. Columns without an existing
index over them can be compared to a host variable without causing an open and
close to be performed for each statement, and host variables may now be used
anywhere that is syntactically correct. In addition, SQL statements with GROUP BY
functions or column functions will not cause an open and close of the file each time
they are executed.

A"ow Reusable OOPs across Invocations

Database cursor is reused and not 'truly' closed until no SQL program is on the
invocation stack.

This performance improvement was also available under Release 2.0 with PTF 04173
(now superseded by SF04941).

Subquery performance enhancements

New subquery support offers a more efficient way of what used to require two or
more separate queries.

Faster subqueries result from using indexes more often and implementing the
subquery with a join.

New Fast Sort allowed for Interactive SQL

For COMMIT(*NONE) SELECTS going to printer or'outfile, a new fast sort process will
be considered for the ORDER BY for better performance.

Increased sharing of select/omit access paths

No longer will you have to specify the Select/Omit logical file as the one to query to
have the file's access path considered.

The OS/400 Query component wi" consider any Select/Omit logical file over the
queried file.

Reduce number of columns returned in buffer for a read only Declare Cursor

In Release 2, all cursors that were update capable returned all underlying columns
in the buffer in case you later wished to update a column.

Now, only the columns in the SELECT list will be returned resulting in less buffer
overhead.

Improvement

Significant

Significant

Significant

Significant

Significant

Moderate

5. SQL Performance 5-71

Table 5-5 (Page 2 of 2). Release 3 Performance Enhancements

Item

7

8

9

10

11

12

13

14

Description

Multiple records retrieved after index positioning

Blocking is now used for input only selection, for example:

DECLARE CI CURSOR FOR
SELECT * FROM Sor~ETABL
WHERE COLl = I A I (COLI has an index)

Previously used GETKEY EQUAL followed by GETKEY NEXT EQUAL. This always
required multiple single 110 operations. This now uses GET block in place of GETKEY
NEXT EQUAL, reducing the number of I/O operations.

Avoid extra record processing for SELECT INTO statements

Where only one row is expected, previously two 1/0 operations were required to
determine if the SQLCODE should be set if more than one row is returned. Two
methods are used to reduce this to one 1/0 operation:

• When blocking is used, the row is checked to see if it is part of a block
• When key retrieval is used, duplicate key feedback is checked

Avoid unnecessary code I streamline code (remove general inefficiencies)

Seize contention reduction

Database is able to lock MI objects at record level instead of at the file to improve
concurrency. Previously MI objects were required to be locked at the file level in
certain operations. This enhancement allows better concurrent access to objects
through reduced seize wait time.

Removed FEOD (Force End of Data) from INSERT with subselect

A different method is used to force insert data to disk without having to force the
entire data base object (including object header information).

Eliminate internal exception on set position

When re-positioning to beginning of file for a reusable ODP, end of file exception
(CPF5001) is no longer generated.

Use less storage when building access paths

When building (or creating) access paths, less impact on other system jobs will
result. Previously, up to 80% CPU was used. Now, CPU utilization of create access
path is based on a fair proportion of system activity.

Reduce number of journal entries for SQL update statements

To implement commit control for set-at-a-time operations such as Insert with
subselect, Update and Delete, a second level of journaling (transparent to the user)
was required.

COMMIT was stopping second level commitment control and then restarting.
Stopping and restarting of second level commit no longer occurs, therefore reducing
journal entries and associated overheads.

5-72 Using SQU400

Improvement

Moderate

Moderate

Moderate

Moderate

Small

Small

Small

Small

I 6. Distributed Data Management (DDM) Considerations

Distributed Data Management (DDM) allows a user or program on a local system
to access remote files via local file processing commands. The fact that the files
are really remote is transparent to the application or user. This means that an
HLL program can be written to process local and remote files at the same time,
with no extra commands necessary in the program to handle the
communications between systems to access the remote data.

SQL allows access to files either interactively or from within applications;
however SQL does not support DDM file access.1 This means that HLL programs
cannot implement SQL table/file access on remote data, nor can Interactive SQL
be used for fast query access to remote files, or for remote file maintenance. 2

DDM files can be built on SQL tables (that is, a DDM file can reference a remote
SQL table),and various CL commands and AS/400 products can use these DDM
files. This means that although SQL cannot be used to access DDM files, it can
still be used to create all tables on the remote system.

The following is a discussion of the compatibilities and incompatibilities of the
SQL and DDM products, and indicates how to circumvent the SQL limitations.
No attempt has been made to provide a method of sending SQL statements to a
remote system, having them executed and returning the results, like an APPC
environment, since this would require considerable extra programming effort at
each location. This is not in line with the concept of DDM, where file location is
transparent to the prograll1mer, who works as though all files are local to his
system. Therefore, emphasis is placed on the best method for replacing an SQL
feature with another readily available AS/400 solution.

Interactive Access to Remote Tables
SQL is a very useful tool for fast interactive access to tables and files, for
reviewing records, and for quick file maintenance (for example, adding, deleting
and updating records). The following tools are also available on the AS/400
system to perform the same functions.

1 It is an IBM statement of direction to support distributed relational data access through SQL, so that programmers will not
need to know where data resides. SQUDS already implements "remote unit-of-work" access to remote data, and "distributed
unit-of-work" support has also been announced. Since SQL is an SAA product, SQU400 will also implement these accesses.
For further details see IBM Announcement Letter 288-545 "Distributed Relational Data in Systems Application Architecture",
dated 881004.

2 Any attempt to access remote files via SQL on a DDM file will fail, with a message indicating that the local file is not a
database file. A DDM file is considered to be a device file.

© Copyright IBM Corp. 1990 6-1

Product or
Command

DDM Support

DFU/400 Supports inserting, updating and deleting records in SOL tables or
DDS files.

AS/400 Query No

SEU No

SDA No

DFU/38

Query/38

OPNQRYF

Can access remote keyed files. Build a logical keyed file on an SOL
table if required.

Supports queries for DDM files based on SOL tables and DDS files.

Supports DDM files (SOL or DDS); all remote files/tables must be on
the same system and either an AS/400 or a System/38; if systems
are not either two AS/400s or two System/38's then the "group by"
clause cannot be used.

AS/400 PC Supports DDM files on both SOL tables and DDS files on remote
Support AS/400 systems and System/38's.

Table 6-1. SOL and System Utilities/Products

From the above table, the following recommendations can be made regarding
alternatives to Interactive SQL (queries, updating, deleting, inserting):3

• For Quick File Maintenance

DFU/400 provides the file maintenance features that are available through
Interactive SQL, such as inserting data into tables, updating and deleting
rows and generally viewing particular records, and handles local and DDM
files with no limitations. This is a very fast tool which does everything but
creation of tables/files. DFU works with one record at a time, whereas SQL
allows a set of records to be updated or deleted with one statement.

• Report Generation

AS/400 PC Support uses SQL-like prompts to create a query that transfers
data to a personal computer from an AS/400, or vice-versa. Since you can
transfer data from the system to a PC, but direct the result to an AS/400 or
PC printer instead of a PC file, this is perhaps the easiest method of quickly
producing a report on a remote SQL table. Since AS/400 PC Support uses
the SQL style and criteria for row and column selection, as well as ordering
of rows, this will be an easy task for an SQL user.4

Query/38 can also be used to quickly generate reports based on remote SQL
tables, if the product is installed. OPNQRYF can also be used to select and
order rows/columns from a remote SQL table, prior to execution of an HLL
program, which does not use SQL statements.

• Display-Station Pass through

It is possible to use Interactive SQL on remote tables through the display
station passthrough (DSPT) function of OS/400. This enables you to sign on
to a remote system, and then work on it as though you are a local user.
Therefore, once you are signed on to the remote system, you can use all

3 Further details on other considerations, and restrictions regarding the type of remote system (for example, non-AS/400 and
non-System/38) can be found in Chapter 2 of the DDM User's Guide.

4 See discussion of AS/400 PC Support in "AS/400 Query Tools" on page 1-1 for more details.

6-2 Using SOU400

L

L

SQL statements to work on the remote tables. Since SQL provides the
functions of DFU and Query in one product this can provide a one-stop
solution for remote table activity.

CL Commands on a Remote SQL Table via DDM
A DDM file can be created to reference an SOL table on a remote system, or a
remote logical file built on an SOL table on the same remote system. A logical
file cannot be built locally on a remote SOL table. CL commands (for example,
CPYF, ALCOBJ, DLCOBJ and DSPFFD) can be used on these DDM files to
reference the remote table.

Programming Considerations
DDM files should only be used for occasional random remote file access, but not
for processing entire remote files, since performance may not be satisfactory.
Therefore, if a whole file must be processed, other options should be considered.

Read-Only Remote File/Table Access
If it is necessary to process the majority or all records of a remote file along with
some local files, but for read-only access, then the best solution is to copy the
data onto the local system prior to processing. This can be accomplished by
using a CPYF CRTFILE(*YES) command on a local DDM file pointing to the
remote table, and then deleting the created file at the end of processing. Since
no updating is taking place on that file, there is no need to lock, or work on, the
actual data on the remote system, nor send results back.

If several files are involved on a read-only basis from each system, then
consideration can be given as to which system should actually run the program,
that is, to which system files should be copied considering how many records
are involved.

Remote File/Table Updating Required
In cases where local files and remote files must be processed and updated
together, the following options are available:

• SQL Access

In order to use SQL processing, the remote files must be copied to the local
system for processing, and then copied back to the remote system at the end
of processing. To ensure that users cannot access the file at the remote
location in the meantime, the table should be locked to all users using an
ALCOBJ (*EXCL) command. The CPYF command can then be used to copy
the data from a DDM file based on the table to a local file, and then after
processing, from the local file back to the DDM file. The table can then be
deallocated DLCOBJ (*EXCL).

Locking a remote table may be suitable for after-hours batch processing, but
less so for daytime processing when other users may require access to a
table. In situations where the locking of a table for the length of time
necessary for it to be copied to another system, processed, and returned
makes this option an unsatisfactory solution, HLL processing of the files
should be considered.

6. Distributed Data Management (DDM) Considerations 6-3

• HLL Processing

Local and remote files/tables can be processed identically using HLL
statements and DDM files over the remote files/tables. No SQL statements
can be used to access the remote files. All HLL file declarations, read, write
and update statements can be used with no indication required as to the
location of any files within the programs. This method requires no changes
from the regular HLL processing that users have used up until now.

HLL processing of files is likely to be the most appropriat.e method for handling
remote file update. It does not require the locking of remote tables, nor any
special programming statements. However, if many accesses to remote files
must be made, performance may be improved considerably by copying the data
to the local system, whether or not SQL processing is used.

Limitations and Recommendations

6-4 Using SQU400

• Commitment Control

Commitment control cannot be implemented on a DDM file, whether the
file is built on an SQL table or a DDS-defined file.

DDM files cannot be based on remote files containing more than one
record format, or join-logical files.

• Migration Recommendation

Users moving from the System/38 and System/36 to the AS/400 system may
have implemented DDM file processing already, but will not have used SQL.
In such cases, they should keep their applications as is. They will not lose
any function.

7. SQL Commitment Control

Default Values

Commitment control applies to programs that execute SQL data manipulation
language statements. There are three levels of commitment control under which
SQU400 can run. These are *NONE, *CHG and *ALL. These values are
specified by the COMMIT keyword parameter on the STRTSQL command when
starting Interactive SQL, and on the CRTSQLxxx command used to compile
RPG, COBOL, C/400, FORTRAN and PL/I programs. These levels are a little
different from the isolation levels supported by SQUDS and DB2 and will be
compared later in this section.

1. *NONE specifies that commitment control is not being used. COMMIT and
ROLLBACK statements are not allowed in the application program. If SQL
data definition language statements are run by the application (or in the
Interactive SQL session), *NONE must be specified. Each SQL statement is
finalized as it is completed, and any changes to the database are
immediately executed with no option to rollback. There is no "unit of
recovery" concept with *NONE.

2. *CHG specifies that all rows that were updated, inserted or deleted since the
last unit of recovery are locked until the transaction is committed or rolled
back. A COMMIT statement must be issued to make the changes to the
database permanent and to release the locks. Rows that were read for
update, but were not updated, will only be locked while the cursor is
positioned on the row.

3. *ALL specifies that all rows that were read, updated, inserted or deleted
since the last unit of recovery are locked until the transaction is committed
or rolled back, or the job ends. A COMMIT statement must be issued to
make the changes to the database permanent. Even if no changes were
made, all the rows that were read will have locks on them and will require a
commit (or rollback) to release them.

An application program that was compiled under *ALL, or an Interactive SQL
statement running under *ALL, which reads an entire table or tables and
ends without doing a commit or rollback would effectively have that whole
table locked until signoff or until a commit or rollback was performed.

It is very important to note that the default for the COMMIT keyword used in
RPG, COBOL, C/400, FORTRAN and PUI compilations is *CHG, which means that
these programs are compiled for, and will automatically run under commitment
control. You must therefore code COMMIT or ROLLBACK statements in your
program. If you do not commit, your locks will not be released when the
application program ends, with performance implications for other users who
might be waiting for rows that you have locked. Also, when. your interactive
session or batch job ends, the database changes will be removed by an implicit
rollback.

© Copyright IBM Corp. 1990 7-1

Interactive Implications under Commitment Control
If your program ends without performing a commit or rollback, you can then
enter a COMMIT command from the CL command line and the transaction would
be ended and your changes would become permanent in the database.
However, if you do not either commit in the program or commit from the
command line and then you sign off, an implicit rollback will be done and all
your changes since the last commit will be lost.

Batch Implications under Commitment Control
Batch programs must have either a COMMIT statement in the program or a
COMMIT command in the CL program that calls the application program if the
changes are to be made to the database. If no commit is performed then at the
end of the batch job stream a rollback will automatically be done and the
changes will be removed. A COMMIT statement with HOLD is useful in batch
programs in order to provide greater concurrency to other users by releasing
locks as the program progresses through the tables.

Cursor Stability and *CHG
SQLl400 does not support isolation-level cursor stability (a level of commitment
control used in SQLlDS and DB2), but ·CHG provides a similar effect but with the
following difference. A user operating under level ·CHG, can read rows that
have been updated by other concurrent users but not yet committed, whereas a
DB2 or SQLlDS user with isolation-level cursor stability will not see updates to
rows that have been made by another concurrent user and not yet committed.

Neither ·CHG nor cursor stability allow another concurrent user to update rows
that have been updated by your current unit of recovery.

Repeatable Read and * ALL

7-2 Using SQU400

SQLl400 does not support isolation-level repeatable read (a level of commitment
control used in SQL/DS, DB2 and OS/2 Extended Edition). Specifying ·ALL on
the commitment control parameter is similar to isolation-level repeatable read
on DB2 or SQLlDS, but not exactly the same.

Both * ALL and repeatable read keep locks on rows (or pages in DB2) that have
been read, updated, inserted and deleted until the next commit, rollback or end
of job. Repeatable read also guarantees that the set of records that you have
selected, cannot be changed, either by an insert, update or delete by any other
application during your unit of recovery, and that if you re-issue the same
SELECT statement within the same unit of recovery, you will see the same result
set. This is achieved by access path locking and adjacent key locking on SQLlDS
and DB2. SQLl400 locks the individual rows within a set, but cannot prevent the
set from being added to by an insertion by another user. SQU400 will allow
another application to insert rows into the set that you have selected, with the
result that if you re-execute the SELECT statement you could see new records
included in the result.

If User A performs the following selection under ·ALL or ·CHG:

SELECT PARTNO, DESCRIPTION FROM INVENTORY
WHERE PARTNO BETWEEN 2B7 AND 231

Result set

207 GEAR
209 BOLT
221 BOLT
222 BOLT
231 NUT

User B can insert a new row into this set between two existing part numbers:

INSERT INTO INVENTORY VALUES (21B,'GEAR',25)

If user A re-executes the same selection the result set would be different:

Result set

2B7 GEAR
2B9 BOLT
218 GEAR
221 BOLT
222 BOLT
231 NUT

The only way to prevent another user from accessing the set you have selected
is to exclusively lock the table for the duration of your job, with the ALCOBJ
command and lock level *EXCL or SQL LOCK TABLE statement.

Row Locking Under the Various Commitment Control Options
Different levels of concurrency (that is users sharing the same data) can be
achieved through the use of the different commitment control parameters
(*NONE *CHG and *ALL). Table 7-1 on page 7-4 shows two users accessing
the same SQL table and the type of accesses each is allowed. User A either
reads or updates/deletes a set of rows, or inserts some rows into the table.
User B also tries to read, update/delete or insert into the same set of rows
before User A issues an explicit COMMIT statement.

It is important to distinguish between a table and a set within the table. While
whole tables may be locked at different levels (for example, AS/400 system
level lock "exclusive" (*EXCL), or "shared for update" (*SHRUP», commitment
control locking works on sets of records within the table.

7. SQL Commitment Control 7-3

Table 7-1. Lock Levels and Activities Permitted

USER A USER B

ACTION
LOCK

ACTION
LOCK

LEVEL LEVEL Select
Update,

Insert
Delete

"ALL Select row(s) from table "ALL U U M

"CHG Y U M

'NONE Y U Y

Delete/update row(s) in table 'ALL M2 M5 M4

'CHG yl M5 M4

"NONE yl M5 Y

Insert into table "ALL M3 M3 Y

'CHG yl M3 Y

'NONE yl M3 Y

'CHG Select row(s) from table 'ALL Y Y Y

'CHG Y Y Y

'NONE Y Y Y

Delete/update row(s) in table "ALL M2 M5 M4

'CHG yl M5 M4

'NONE yl M5 Y

Insert into table 'ALL M3 M3 Y

'CHG yl M3 Y

"NONE yl M3 Y

Table 7-1. Lock Levels and Activities Permitted. Activities allowed for User B on the
same set of records, given User A's lock level and actions. Y = Yes,
allowed; M = May result in negative return code - see notes; U = Unlikely,
probable conflict.

Examine this example where user A could use the following command:

UPDATE INVENTORY
SET ONHAND = 100
WHERE DESCRIPTION = 'NUT'

at the same time as user B was using this command:

UPDATE INVENTORY
SET ONHAND = 288
WHERE DESCRIPTION = 'BOLT'

and at the same time, user C could be using these commands:

1 User B will see uncommitted changes and insertions made by User A. If User A then did a rollback, User B may still see the
original changes unless he re-executes the select.

2 This is only a problem (depending upon timing and WAITRCD value) in the case of a delete, if user B reads a row first, then
user A tries to delete it.

3 Would only prevent the records inserted by User A from being available to User B if they met the SELECT statement criteria.

4 Would only prevent the records inserted by User B from being available to User A if they met the SELECT statement criteria.

5 Would only occur in case of delete if both users tried to delete the same row at the same time, which is unlikely.

7-4 Using SQU400

j

.)

INSERT INTO INVENTORY VALUES (251,'NUT',25)
INSERT INTO INVENTORY VALUES (252,'BOLT',50)

As can be seen from the table, *ALL provides less concurrency than *CHG. It is
generally recommended that application programs use the default value *CHG.

If the cursor is considered update capable (see section "Notes Regarding the
FOR UPDATE OF Clause" on page 4-6) rows are locked as they are read.
Under all levels of commitment control including *NONE, if the cursor is
considered update capable, the row to which the cursor is currently pointing is
locked against all other updates from the same program, except for an UPDATE
WHERE CURRENT OF CURSOR. If the program is executing under *NONE the
rows are always released after the next fetch. If the program is executing
under "CHG and and a row is not updated, its lock is released as the next row
is fetched. If the program is executing under' ALL, the rows that have been
read are kept locked against another job.

If the cursor is considered read only (see section defining "Notes Regarding the
FOR UPDATE OF Clause" on page 4-6) no Jocks are put on the rows as they are
read to prevent updates from the same program. However, if the program is
executing under commitment control level *ALL the rows will be locked against
updates from another job. If the program is executing under "CHG or *NONE no
locks will kept locked against updates from another job.

Another example is provided here to explain Table 7-1 on page 7-4. Assume
that both User A and User B are issuing the following DELETE statement at the
same time:

DELETE FROM INVENTORY WHERE DESCRIPTION = 'BOLT'

This is unlikely to return a negative SQL return code due to a conflict. For any
given row that is a bolt, either User A's DELETE statement will delete the row
before User B gets to it or vice versa. Even if they both attempt to delete the
same row at exactly the same time, only one will get the lock on the row and
delete it, then the other user will not find the row anymore so he will just go on
to see if he can find any more rows that have a description of 'BOLT'. There is
a slim possibility that a negative SQLCODE could be returned, but this would
only happen if one user locked the row, then timesliced out and did not get a
timeslice again until after another user timed out waiting for a lock on the same
row. This would only occur because the first user secured a lock on the row,
but before it could be deleted, he would be timesliced out.

Examine another example using update. Assume both users are running
exactly the same application as follows:

UPDATE inventory SET ONHAND = 200 vJHERE DESCR I PTI ON = 'BOLT'

COMMIT

Again, if you look at the Table 7-1, you see an M which indicates that User B
may get a negative SQLCODE. Timing becomes a major factor in determining
what will happen. Assume the sequence is as follows:

7. SQL Commitment Control 7-5

1. User A locks row Ie
2.

3. User A completes the
update of row Ie

4. User A issues the
COMMIT

5.

6.

User B attempts to lock row Ie and
since User A has a lock on it he waits

User B now gets the lock on row
Ie, and completes his update
User B now issues the COMMIT

Note that no error occurred. User B waited for a period of time, but because
User A completed his transaction before the record lock timeout occurred to
User B, every step completed satisfactorily. The record wait timeout default on
the system is 60 seconds so most of the time no timeout occurs. The user may
change this timeout value to another value for each file.

COMMIT and ROLLBACK with HOLD Option

7-6 Using SQU400

In SQU400, the COMMIT and ROLLBACK statements have an optional HOLD
parameter. If COMMIT is specified without the HOLD parameter, all changes
made during the current unit of recovery are made permanent in the database,
all open cursors are closed, all table and row locks obtained by this unit of
recovery are released and all prepared statements are discarded.

If COMMIT HOLD is specified, the changes to the database are made
permanent and all row locks are discarded but the cursors are not closed, nor
are table locks released, nor are prepared statements discarded. The cursor
remains pointing to the current row. ..)

If ROLLBACK is specified without the HOLD parameter, all open cursors are
closed, all the changes that were done in this unit of recovery are rolled back,
all table and row locks are released and all prepared statements are discarded.

If ROLLBACK HOLD is specified, the changes made to the database during this
unit of recovery are rolled back and row locks are discarded but the cursors
are not closed, nor are table locks discarded, nor are prepared statements
discarded. The cursor is moved back to point to the same row that it was
pointing to when the rolled back unit of recovery was started.

Note that the HOLD versions of these commands are not available for the CL or
HLL versions of this command.

Here is a sample RPG program showing the use of COMMIT HOLD and
ROLLBACK HOLD. This program is used after stocktaking to interactively
update the quantity on hand for each part in the inventory file. The parts that
are to be updated are selected in batches by description and are displayed on
the screen five at a time. After the quantities are altered on the screen, the
database is updated with the five new values and committed with HOLD so that
the five locks are released and the cursor paints to the next row.

This program would be compiled with commitment control level *ALL:

L

L

L

Screen 1 Stocktake Update Quantity on Hand

Enter description

F3=Exi t

Screen 2 Part Number Quantity on Hand

H
FPROG5 CF E

221
222
3ee
324
328

25
15

125
3ee
195

WORKSTN

Arrays for storing the parts as they are read five at a time and for displaying on
the screen:

E
E

ARP
ARH

5 3 fl
5 4 fl

PART NUMBER ARRAY
ON HAND QTY ARRAY

Screen 1 is displayed asking for the description of the group of parts that is to
be selected for update. For example. BOLTS or NUTS is keyed and this value
is moved into host variable :DESCR.

C
C
C
C

*INKC
EXFMTSCREEN1
Dm~NE'11

Z-ADDfl ARH
Z-ADDfl ARP

All the parts that match the description keyed on screen 1 are selected:

CjEXEC SQL
C+ DECLARE C1 CURSOR FOR
C+ SELECT PARTNO, DESCR, ONHAND
C+ FROM INVENTORY
C+ WHERE DESCR = :DESCR
C+ ORDER BY PART NO
CjEND-EXEC

You must not include a FOR UPDATE OF clause here because the updating of
the table will not be done using UPDATEwHERE CURRENT OF. which updates
each row after it has been read. Instead the program is going to read five rows
before displaying them and then they will all be updated together.

CjEXEC SQL
C+ OPEN C1
CjEND-EXEC

7. SQL Commitment Control 7-7

Five rows are read from the selected set and stored in the screen arrays. At
the end of the fetch loop, the cursor will be pointing to the fifth row unless the
end of the cursor has been reached first, in which case the program will go to
END1.

Because there is no FOR UPDATE OF clause, this is considered to be a read
only cursor and will allow an UPDATE WHERE = host-variable in the same
program.

If the program is compiled with *CHG, the locks that are acquired as each row
is fetched are immediately discarded and thus it will allow the rows to be
updated by another user (or another cursor within the same job) while they are
displayed. If the program is compiled with "ALL the read locks acquired at
each fetch will be retained and will not allow another user to update the
displayed rows before the changes are committed. 6

C READ TAG

C 1 DO 5 X 10
C/EXEC SQL WHENEVER NOT FOUND GO TO ENOl
C/END-EXEC
C/EXEC SQL WHENEVER SQLERROR GO TO END2
C/EXEC SQL
C+ FETCH Cl INTO :PARTNO, :ONHAND
C/END-EXEC
C MOVEAPARTNO ARP,X
C MOVEAONHAND ARH,X
C END

If the end of the cursor has been reached SQLCOD will be 100 and indicator 99
is set on.

C
C

ENOl
SQLCOD

TAG
COMP 100 99

The five rows are moved to the screen and screen 2 is displayed so that the
on-hand quantity for each part can be updated.

C EXFMTSCREEN2

If any SQL error, for example. ROW IN USE (SQLCODE -913) or NO RECORD
FOUND (SQLCODE 100) is encountered during the update, the program will go
to END2 where a rollback is done.

C/EXEC SQL ~JHENEVER NOT FOUND GOTO END2
C/END-EXEC

The updated fields are read from the screen and the program loops around five
times updating the previous four rows and the current row of the INVENTORY
table. This type of update does not affect the cursor position. nor does it use
the cursor to point to the rows to be updated. Instead the rows are located by
a direct read to the row using the part number as the key.

6 Or another cursor within the same job. If 'CHG the other cursor may read and update; if 'ALL the other cursor may read and
update all rows except the row currently in use by the first cursor and the cursor is update capable. This would be the case if
there were an UPDATE or DELETE WHERE CURRENT OF in the program, or a FOR UPDATE OF clause or a dynamic
statement in the program.

7-8 Using SQU400

L
C 1 DO 5 X 10
C t40VE ARP,X PARTNO
C t40VE ARH,X ONHAND
C PARTNO IFNE 0
C/EXEC SQL
C+ UPDATE INVENTORY
C+ SET ONHAND = :ONHAND
C+ WHERE PARTNO = :PARTNO
C/END-EXEC
C END
C END

If no SQLERROR occurred on the update then the changes are committed with
the HOLD option so that the cursor remains open and pointing to the next row
to be processed, and the previous five locks are released.

C/EXEC SQL
C+ COMI·1IT HOLD
C/END-EXEC

If there are more rows to be processed the program goes back to the point
where the next row is fetched from the cursor.

C N99
C

GOTO READ
SETOF 99

Otherwise the cursor is closed and the first screen is displayed again so that
another set of inventory items can be processed.

C/EXEC SQL
C+ CLOSE Cl
C/END-EXEC
C
C

EXFMTSCREENI
END

End of main "do loop" of program when F3 is pressed.

C
C

SETON
GO TO END

LR

Changes made during the last unit of recovery will be rolled back if any error
occurred, and the program will fetch the rows again and display them on the
screen.

C END2
C/EXEC SQL
C+ ROLLBACK HOLD
C/END-EXEC
C
C END

TAG

GOTO READ
TAG •

If the program had been displaying only one row at a time on the screen, the
SELECT statement would have been coded with a FOR UPDATE OF clause. An
update lock would have been taken at fetch time and the UPDATE WHERE
CURRENT OF statement would have been used. No other user would be able to
update the row while it was displayed on the screen. In this case the program
should do a COMMIT HOLD periodically after a certain number of updates in
order to release the locks.

7. SQL Commitment Control 7-9

Rollback Considerations
Many users up until now have never implemented journaling or commitment
control for execution of HLL programs, even without SQL table access. Since
some applications may implement SQL and HLL file access in the same
program, it is necessary to consider all the implications of this implicitly
invoked recovery feature. This section summarizes SQL and system
commitment control facilities and highlights how they should be used together.
It also explains some of the restrictions of SQL commitment control.

HLL Use of Commitment Control
This section discusses the HLL versus SQL accessing of files and tables and
the implications of each on commitment control. Since the system provides two
types of commitment control, it is often not clear as to which one should be
used, or whether it is necessary to invoke both. Operating with commitment
control is the default with SQL. SQL tables can be accessed from within H LL
programs, either by regular file processing commands (for example, reads and
writes) or through SQL statements. If the program uses SQL statements, SQL
commitment control will be implemented as indicated at program creation (that
is, as specified on the CRTSQLxxx command with "ALL, "CHG or "NONE).

For a non-SQL processing program, commitment control will be implemented
according to the STRCMTCTL command issued before program execution. In
both cases, in order to actually implement COMMIT "ALL or "CHG, COMMIT
and ROLLBACK commands must be used either in, or after, the HLL program.
There are three types of COMMIT and ROLLBACK statements: SQL COMMIT
and ROLLBACK, from either the Interactive SQL command line, or embedded in
an SQL HLL program; HLL commit and rollback (for example, RPG COMIT and
ROLBK, or COBOL COMMIT and ROLLBACK), entered from within the HLL
program; CL COMMIT and ROLLBACK, entered wherever a CL command can
be entered (for example, the Command Entry screen, or a CL program). There
is no difference between each of the three types; they all commit or rollback all
pending row changes. The SQL COMMIT with HOLD statement also has some
other considerations as discussed in "COMMIT and ROLLBACK with HOLD
Option" on page 7-6.

Non-SQL Table Processing within an HLL Program
COBOL programs must have an I-O-CONTROL paragraph in the Environment
Division, naming the tables upon which commitment control is required. RPG
programs must have F-continuation specifications with KCOMIT in columns 53
to 58 for every file which will use commitment control. A COMMIT/ROLLBACK
statement must be either in the program itself, or following the CALL statement
in the calling program; otherwise the changes will only be temporary.

Non-SQL processing programs do not specify commitment control on the
CRTXXXPGM command, but must specify a commitment control level on the
STRCMTCTL command.1 Commitment control must be started using the
STRCMTCTL command, prior to program execution; otherwise the program will
not execute if it contains commitment control statements. It can be entered
interactively, or through a calling CL program. All files on which commitment

7 The rules governing locks acquired on tables in these cases are consistent with the table in "SQL Commitment Control" on
page 7-1.

7-10 Using SQLl400

control is to be used m!-,st already be journaled to the same journal at this time.
At the end of the program, commitment control is still active, until the
ENDCMTCTL command is executed. This would cause a following STRCMTCTL
command to fail. If a STRCMTCTL command is issued once commitment
control is active, or an ENDCMTCTL command issued when commitment control
has already been terminated, an error will be received and a CL program will
fail if this has not been taken into account (MONMSG).

SQL Table Processing within an HLL Program
If only SQL access to a table is required in a program, then in RPG no F- or
I-specifications are required for the table, and in COBOL no FD statements are
necessary for table definition. Also, no commitment control statements of the
type I-O-CONTROL (COBOL) are necessary to name the files on which
commitment control is required. SQL will automatically invoke the commitment
control function when the first table access is made, provided the program was
compiled with commitment control level "CHG or "ALL. In this case there are
two options for implementing the actual commit or rollback:

• A COMMIT or ROLLBACK statement can be issued within the program, to
finalize all actions immediately.

• A COMMIT or ROLLBACK statement can be issued after program execution,
either interactively, or through a calling CL program.

Whether the COMMIT/ROLLBACK statement is in the program or following it,
commitment control is still active after termination of the program until
explicitly stopped using the ENDCMTCTL command. It should be noted that
since SQL commitment control is automatically invoked as soon as an SQL
statement on a table is received, a STRCMTCTL command is not necessary.
However, it will not cause an error if used prior to SQL table access. Since the
STRCMTCTL command is implicitly invoked and the ENDCMTCTL command is
not, the user must be careful not to leave records locked unintentionally, or to
cause a following STRCMTCTL command to fail, by omitting the ENDCMTCTL
command.

HLL or SQL Table Processing Summary
To summarize, for programs only implementing SQL table accesses, the
STRCMTCTL command is not required. But in both cases the
COMMIT/ROLLBACK command must be implemented either in the HLL
program or following it, and before an ENDCMTCTL command. If an
ENDCMTCTL command is processed and changes are pending COMMIT, they
will be rolled back.

The following CL program would implement commitment control on tables
accessed through HLL programs with or without SQL:

PGM
STRCMTCTL LCKLVL(*ALLI*CHGI*NONE)*
CALL program-name
COMMIT/ROLLBACK (if not included in program)
ENDCMTCTL
ENDPGM

* Optional when table access is through SQL. A MONMSG CL statement could
be used to ensure that if commitment control were already active, the program
would not end abnormally.

7. SQL Commitment Control 7-11

Note: Journaling must be active before the program is invoked.

SQL and Non-SQL Table Access in the Same HLL Program .j
It is possible to access an SQL table using SQL statements and HLL statements
(for example, reads and writes) in the same program. In such cases, it is very
important to consider the SQL commitment control implications, since SQL
commitment control is invoked implicitly while HLL commitment control must be
explicitly programmed (that is, through the I-O-CONTROL statement (COBOL) or
the KCOMIT statement (RPG)).

Consider the case of an HLL program which accesses an SQL table through
HLL file processing commands and SQL statements, and then ends abnormally.
Will all the changes made before the ending be rolled back, or committed? The
answer lies in the level of commitment control specified on the CRTSQLxxx
command, and whether the program explicitly invokes the system commitment
control function.

1. CRTSQLxxx "NONE and no HLL commitment control

All changes made to the table will be kept.

2. CRTSQLxxx "CHG or "ALL and no HLL commitment control

All changes made to the table through SQL statements will be rolled back,
while all HLL file changes will be permanent.

3. CRTSQLxxx "CHG or "ALL and HLL commitment control

All changes made to the table will be rolled back, regardless of how they
were made unless COMMIT was specified immediately after the program
ends.

4. CRTSQLxxx "NONE and HLL commitment control

All changes made to the table through HLL processing will be rolled back
unless COMMIT is specified immediately after the program ends, while all
SQL changes will be permanent.

Options 2 and 4 are not normally desirable, since they leave the table in a

". ..;,

corrupt state, with some changes having been rolled back, and others not. "
Options 1 and 3 are both satisfactory; but it is important to remember to specify ..""
"NONE on the CRTSQLxxx command if no commitment control is desired. Just
omitting commitment control from the HLL program will not provide for no
commitment control, and Option 2 will be the result.

Therefore, it is recommended that if SQL and HLL table accesses are to be
used concurrently in a program, HLL commitment control should be invoked
explicitly in the program through the I-O-CONTROL statement (COBOL) or
KCOMIT statement (RPG). This ensures that al/ changes made to a table are
committed or rolled back together.

Commitment Control on Tables/Journals in Different Collections

7-12 Using SQU400

In order to implement the three commitment control modes it offers, SQL
automatically creates a journal and journal receiver in each collection. All
activity on tables in each collection is by default automatically recorded here. '\
SQL statements from within an HLL program cause journal entries to be ..."
recorded, and if the program is created with commitment control ·CHG or • ALL,

L

L

L

Ending Journaling

the entries can be used to rollback or commit the changes during or after
program execution.

If you are using tables from different collections in the same HLL program, SQL
commitment control requires that the tables be journaled into the same journal.
However, with the journaling as set up by SQL, journal entries for each table
are written to the QSQJRN journal in its own collection. Imagine an accounts
receivable application, which on an occasional basis has to access a general
ledger table in a different collection, and which uses SQL processing. By
default, the application will be created with commitment control *CHG, and the
tables will be journaled to different collections. The application will now fail
because it does not meet the SQL requirement of having all tables accessed in
a program being journaled to the same collection.

This requirement is the same as that of the system commitment control
function, which also requires that all files under commitment control within a
job be journaled to the same journal. Therefore, it is not possible to use the
SQL automatic commitment control modes *CHG and *ALL in jobs which use
SQL statements but run on tables with journals in different collections, without
first making some changes to the journaling as set up by SQL. You must either
remove the commitment control feature by ending the journaling, or continue to
use it by moving from the default SQL journal to a user-created journal.

To end the SQL journaling, the ENDJRNPF command must be executed. This
will end journaling of the tables named in the FILE parameter.

ENDJRNPF FILE(tablel table2 •••) JRN(QSQJRN) LIB(collection)

SQL Journaling in Different Collections
Sometimes it is necessary to keep tables and journals for the same job in
different collections, such as in the previous example where an accounts
receivable application accesses a general ledger table stored in a different
collection. In such cases, steps must be taken prior to execution of the
application, to detach the tables from their SQL journals, and attach them to
another user-created journal. First you must find or create a journal and
journal receiver in a separate library. Journaling must then be ended
(ENDJRNPF as indicated in the previous section) on all affected tables, and
restarted using the STRJRNPF command.

STRJRNPF FILE(tablel table2 •••) JRN(journal) LIB(collection)

Once the STRJRNPF command has been issued, any accesses to the tables are
recorded. The SQL commitment control modes *ALL, *CHG and *NONE are
now available as usual, along with the automatic commit and rollback features.

To summarize, if a program accesses two tables, for example, table1 in
collection1 and table2 in collection2, and they are being journaled to different
collections (as is the SQL default) the following CL program could be used to
"rearrange" the journaling prior to, and after, execution of the program. Note
the use of object allocation to ensure integrity.

7. SOL Commitment Control 7-13

ENDJRNAP (tablel)
ALCOBJ OBJ((tablel *FILE *EXCL))
ENDJRNPF FILE(tablel) JRN(QSQJRN) LIB(collectionl)
STRJRNPF FILE(tablel) JRN(QSQJRN) LIB(collection2)
STRJRNAP (tablel)
DLCOBJ OBJ(tablel)
CALL program
ENDJRNAP (tablel)
ALCOBJ OBJ((tablel *FILE *EXCL))
ENDJRNPF FILE(tablel) JRN(QSQJRN) LIB(collection2)
STRJRNPF FILE(tablel) JRN(QSQJRN) LIB(collectionl)
STRJRNAP (tablel)
DLCOBJ OBJ(tablel)

"Read Only" Access of Tables in Different Collections
If the program is created with commitment control 'CHG or • ALL, the first table
access will be permitted, but all subsequent accesses to other tables will not be
accepted. A negative SQL code will be returned indicating that the cursor for
that table cannot be opened due to invalid journaling, since all tables/files
under commitment control in the same job must be journaled to the same
journal. As usual, the program will continue to execute, unless a check is
made of the SQLCODE.

Commitment Control Considerations for New Tables

7-14 Using SQU400

Since SQL only automatically journals tables created by the CREATE TABLE
statement, there are other journaling considerations when using the CPYF,
CRTDUPOBJ, RSTOBJ and MOVOBJ commands to create tables. See the
section on tables and files in "SQL Implementation Techniques" on page 3-32
for further details.

L I 8. SQL Security

L

SQL provides an application interface to AS/400 security for granting or
revoking access to SQL tables and views, and controls the creation of indexes.
The SQL security on the AS/400 system is a function that is mainly available for
compatibility with other SQL products, as the AS/400 system has built-in system
security facilities which provide a more extensive function. On the AS/400
system, the SQL GRANT and REVOKE statements use the GRTOBJAUT and
RVKOBJAUT system control language commands to actually effect the change
in security for an object. SQL GRANT and REVOKE only provide a subset of the
function available when using GRTOBJAUT and RVKOBJAUT. The underlying
changes in security for an object made with SQL GRANT and REVOKE may be
seen by the DSPOBJAUT or EDTOBJAUT commands.

As the GRANT and REVOKE statements are designed only to be used in an SQL
environment, only security for tables and views in a collection are able to be
updated. Objects in a non-collection library (and objects which are not tables,
views or physical files in a collection) cannot be secured via these statements.

Note that SQL system catalog tables are not able to be secured via SQL GRANT
and REVOKE. The system control language commands must be used for this.

In the literature discussing SQL naming conventions, "Authorization ID" is a
term commonly used. This is most relevant when discussing security, as this
refers to the user profile of the person to whom authority is given (or from
whom authority is revoked).

In standard AS/400 logical file design, a logical file may be created containing a
projection of the fields in a physical file. With this, a logical file may be created
with a subset of fields from the original physical file. Privileges may be granted
to the physical and logical file such that the user only has access to this subset
of fields (via the logical file) and no other access to the related physical file. In
order to grant a user authority to the subset of fields, object operational rights
must not be granted to the physical file and must be granted to the logical file.

The SQU400 GRANT and REVOKE statements do not return data. As such, they
can be easily executed dynamically in any programming language on the
AS/400 system that supports SQL.

Default Security Levels

© Copyright IBM Corp. 1990

Table 8-1 on page 8-2 contains a summary of the various SQL objects, and
their default security values after creation by a user. In all cases public
authority is "EXCLUDE and authorization list is "NONE. These should be
considered when granting or revoking other authorities.

8-1

Table 8-1. Default Security Values For SQL Created Objects

Object Object Authority for owner

Collection "ALL

Journal "ALL

Journal Receiver "ALL

Dictionary Objects (LFs) "OBJOPR, "OBJMGT, "OBJEXIST

Dictionary Objects (PFs) "ALL

Catalog LFs and Views "OBJOPR, "OBJMGT, "OBJEXIST

Data Dictionary "ALL

User Tables "ALL

User Views "OBJOPR, "OBJMGT, "OBJEXIST

User Indexes 'OBJOPR, 'OBJMGT, 'OBJEXIST

In the above table, note that the object operational authority is granted for
certain objects without any corresponding data rights for the object. Note that if
the user is a member of a group profile, then the owner of the object optionally
may be the group profile, and all other authorities specified above are given to
the group profile.

Changing Authorities
In this section, we will take as an example a user who did not create the
original collection and objects contained therein. Hence, on a level 30 secured
system, such a user would have no default authority to access any of the
objects in the collection. This is a likely situation in a production environment.
Without considering adopted authority, the following points outline items that
should be set into place in establishing the production environment.

Authority to the Collection
The user must have "USE authority ("OBJOPR authority with "READ rights) for
the library containing the tables, views and indexes. In addition to the following
points, this will provide access to all functions required except for the creation
of indexes (see "Authority for Creating Objects in a Collection" on page 8-6),
tables and views. Note that if the user is a member of a group profile, the
group profile can have the required "USE authority. Alternately, the default
"PUBLIC authority can be changed to "USE for the library (as long as the user
does not have "EXCLUDE rights granted to him), or an authorization list be
created for the library and associated users.

SELECT, INSERT, UPDATE and DELETE

8-2 Using SQU400

Granting specific authority for each of Ihese functions for a user will give the
user object operational rights and the individual data rights to a table, of
"READ, "ADD, ·UPD and "DL T, respectively. For example, if a user required
authority to perform a SELECT statement on a table, the command:

GRANT SELECT ON TABLE table-name TO user

would change the object authorities for the table for the user from:

Views

to

----Object----- ----------Data----------­
Opr Mgt Exist Read Add Update Delete

- none -

----Object----- ----------Data----------­
Opr Mgt Exist Read Add Update Delete
X X

Then adding authority to update the table with the statement:

GRANT UPDATE ON TABLE table-name TO user

would change the authorities for the user to:

----Object----- ----------Data----------­
Opr Mgt Exist Read Add Update Delete
X X X

and similarly for the other data rights and associated functions.

Data rights for select, insert, update and delete of a view are stored with the
table and not the view. If a user is given the data right to read from a table
then he will automatically have the same authorities for all of the defined views
if the views have object operational rights for that user. (Similarly, if all
privileges are revoked for a view, then a/l privileges are revoked for a base
table also).

For example, assume you have a table which has authorities granted for user
USER for performing selection and update; and also a view which the user is
not authorized to (does not have object operational rights) at this stage.

----Object----- ----------Data----------­
Opr Mgt Exist Read Add Update Delete

Table: X X X
View: - none -

Then if you grant authority for the user to select, update, and delete from that
view:

GRANT SELECT, UPDATE, DELETE ON view-name TO user

the authorities are now changed to

II. SOL Security 8-3

----Object----- ----------Data----------­
Opr Mgt Exist Read Add Update Delete

Table: X X X X
Vi ew: X

At first, this may be difficult to follow. Data rights for a view are assigned by
providing only the object operational right. Individual data rights are changed
on the base table itself.

If you now choose to revoke SELECT statement authority for the view only:

REVOKE SELECT ON view-name FROM user

the authorities are now changed to

Table:
View:

----Object----­
Opr r~gt Exi st
X
X

----------Data-----------
Read Add Update Delete

X X

The implication of this is that the user can now no longer perform a SELECT
statement on either the table or view, when all you wanted was to revoke the
authority for selection from the view.

The key message from this point is that authorities for a table and its defined
views cannot conflict.

Granting/Revoking ALL Authority

8-4 Using SQU400

Granting all privileges (or ALL) for a table will provide the following system
authorities:

----Object----- ----------Data----------­
Opr Mgt Exist Read Add Update Delete
X X X X X X

In this sense, the user has authority to perform SELECT, INSERT, UPDATE,
DELETE, and CREATE INDEX statements.

Note: the authorities are correct at the table level for the creation of indexes.
See U Authority for Creating Objects in a Collection" on page 8-6 for the other
two authorities required before this can be done.

This is different from giving a user 'ALL authority for an object (say a table) as
a system security function. The system control language command:

GRTOBJAUT library/table-name *FILE user *ALL

would give all of the above authorities as well as object existence rights.

Granting all rights for a view (assuming there is no authority to access the table
and the view and assuming the view is SELECT, INSERT, UPDATE and DELETE
capable) will provide the following system authorities:

----Object----- ----------Data----------­
Opr Mgt Exist Read Add Update Delete

Table: X X X X
Vi ew: X

Views that are read-only would only grant *READ to the table. Views that do
not allow inserts would not grant *ADD rights to the table. 1

Note that indexes cannot be created over a view.

Delegation of Authority: Another point of possible confusion occurs with
revoking ALL authorities. Consider three users, QSECOFR, ADMIN, and USER.
Suppose that originally, QSECOFR has all system authorities. He gives
authority to ADMIN to administer the security for other SQL users and ADMIN
always grants authority with SQL GRANT statements. ADMIN then grants
authority to USER to access certain tables and views, again using the SQL
GRANT statement.

Now, say ADMIN has changed jobs and no longer needs to use the SQL
databases, so QSECOFR revokes all privileges from ADMIN. Be aware that the
privileges assigned to USER by ADMIN will still be in existence. Revoking
authority from ADMIN will not cascade and revoke authorities that ADMIN has
assigned. This is a function of other SQL products but is not supported on the
AS/400 system due to the granularity of the security functions.

Authority for Selecting on System Tables
As briefly mentioned before, GRANT and REVOKE statements cannot be used
for changing authority for a user to perform SELECT statements on system
catalog tables such as SYSCOLUMNS, SYSTABLES, SYSINDEXES, and
SYSVIEWS.

If an end user (or a programmer otherwise authorized like an end user)
requires extra authority to perform these functions, then this will need to be
done outside SQL withlhe GRTOBJAUT and RVKOBJAUT system control
language commands. However, this is a little more complex than it at first
seems. Not only does the user need object operational access to the logical
file named SYSCOLUMNS (for example), authority will also have to be granted
to the underlying physical files that reside in the collection library that are part
of the catalog facility.2 Each of these files will require at least *READ authority.

As this is so complex, you should consider securing these objects via an
authorization list for each collection. Any additional users can be simply added
to the authorization list rather than changing the authority for each object.

I 1 To insert into a view, at least all of the columns that are in the original table, but not in the view must be defined as NOT
NULL WITH DEFAULT, so that data not inserted will default to a value based on the data type (blanks for character columns
and zeros for numeric columns).

2 These files can be seen when displaying the objects in the library. There are two groups. Some are identified by QIDCTxnn,
where the xnn will vary for each of the different objects, x is a character, and nn two digits. There are 17 of these. Two other
files are QSQCOLUMNS and QSQTABLES. Authority for all 19 files will need to be changed.

8. SOL Security 8-5

Authority for Creating Objects in a Collection
In granting authority for a user to create an index, table or view, some objects
need to have privileges over and above those mentioned previously. The
following items should be changed, so that the user has at least:

• "OBJOPR and "ADD authority to the "DTADCT object. This has the same
name as the library.

• "OBJOPR and "ADD authority on the collection library.

Note: this only needs to be ·USE for all other operations.

Authority for Creating an Index
To create an index. a user must have object operational and object
management rights to the table upon which the index will be created.

This statement would then allow a user to create an index on the table:

GRANT INDEX ON table-name TO user

This would change the authority for the table only, by adding the ·OBJMGT
authority. For example, a user which has previously been granted SELECT
statement privileges would have the following authorities:

----Object----- ----------Data----------­
Opr Mgt Exist Read Add Update Delete
X X

Now, adding the authority to create indexes, it would look like this:

----Object----- ----------Data----------­
Opr Mgt Exist Read Add Update Delete
X X X

Security Recommendations

8-6 Using SQU400

In order to simplify the granting and revoking of authorities to the many SQL
objects discussed in the preceding section, the use of authorization lists is
recommended. A user can be given access to many objects quickly by his
addition to an authorization list.

The number of authorization lists required will depend upon the way in which
security will be implemented on the system. Assuming a level 30 secured
system, there are two cases: using SQL GRANT and REVOKE for access to
tables and views; or using the system control language commands for changing
the authority to the tables and views. Each of the cases is discussed below.

Using SQL GRANT and REVOKE
SQL GRANT and REVOKE may be used in an environment where an application
has been migrated from another system which supports SQL (for instance DB2).
This can also be used where security requirements are very dynamic and an
end user program is required to perform the authorization functions easily.

In either of these cases, only a small number of authorization lists would be
required to allow quick changes to the objects which cannot be authorized with
GRANT and REVOKE. These would include an authorization for:

• Each collection library, where users are given 'USE authority:

One for each library, or

One for groups of libraries, or

One for all libraries.

• Each of the 19 system catalog objects as well as the catalog tables:
SYSCOLUMNS, SYSINDEXES, SYSKEYS, SYSTABLES, SYSVIEWDEP,
SYSVIEWS for each collection. Users should be given 'USE authority.

• Collection libraries where tables, views and indexes might be created or
dropped. Users should be given 'CHANGE authority. This may be used in
place of the first authorization list for libraries (or in conjunction with it for
selected users only). Also, this list could be combined with authorization for
the data dictionary (*DT ADCT) object (which has the same name as the
library). This requires a minimum authority of 'USE, but if combined with
the other functions needed for object creation and deletion, this could
automatically be 'CHANGE due to the structure of the authorization list
mechanism.

Using System Security for All Authorities
This would be most likely in the majority of sites where security is relatively
static or intersystem compatibility of SQL security is not as important. In this
instance, all of the above listed authorization lists would be required in addition
to further authorization lists to replace in part the SQL GRANT and REVOKE
statements. These extra authorization lists may include authorizing all tables,
views and indexes at the same level, one list for each application.

You may consider separate authorization lists for different complexities of user,
or department of user. These users would need to be members of group
profiles where only the group is assigned to the list. Note that an object may
be authorized by only one authorization list.

Authorization lists should not be used in any further detail than this as
maintenance of the list would tend to be the same or more effort than granting
or revoking individual object authorities.

Interactive SQL and Security
Care should be taken in granting authority to use SQL in the interactive
environment for reasons of performance, security or data integrity. Interactive
SQL is designed as a programmer tool. If an end-user is authorized to use
Interactive SQL, then he is able to execute any SQL DML statement against a
table to which he is authorized. For instance, in a normal application
environment, an end-user will be given authority to read, insert, update and

R SOL Security 8-7

delete records in the order master file in an on-line transaction processing
environment. However, the on-line order entry program, limits the extent to
which the user perform these read, insert, update, and delete operations
through the controlling logic of the order entry program itself. Using Interactive
SQL, there is no controlling logic, and the user is free to perform any of these
functions that he wishes.

Interactive SQL will allow a user to enter a complex select statement which
may tie up large quantities of system resource. The user may do this
inadvertently or intentionally, but the end result is degraded response times for
other users of the system.

Use the Edit Object Authority (EDTOBJAUT) command (or appropriate
GRTOBJAUT and RVKOBJAUT command parameters) to change the default
authority for the STRSQL command.

Program Adoption of Authority
In many application environments, using program adoption of authority is the
simplest and most straightforward method for the control of access to data. In
this environment, production applications could be set up once, and any new
users given access to the initial program they require. All other rights would
automatically be available provided the environment had been set up for this.
This is a suitable approach in implementing application security with or without
SQL.

Another aspect which is worth considering is in a large development
environment where different levels of programmers require certain levels of
access to the resources. In this case, then the authorization list approach
offers the most nexibility.

Commitment Control

8-8 Using SQU400

Be aware that no SQL data definition statements can be executed when
commitment control is active (-CHG or -ALL). Two of these statements are SQL
GRANT and REVOKE. It is important that COMMIT(-NONE) is specified for an
interactive session, or COMMIT(-NONE) is specified for program compilation
when SQL GRANT or REVOKE statements are to be executed. When
performing SQL precompilation, the COMMIT parameter defaults to ·CHG.

9. Interactive SQL

SQL consists of three main parts:

1. SQL parser, prompter (and SEU syntax checker) and run-time support

2. SQL precompilers

3. SQL interactive interface.

Parser, prompter and run-time support are included in the base OS/400. The
precompilers and interactive interface are included in the SQLl400 product.
This section will discuss the major aspects of Interactive SQL. Detailed
information may be obtained from chapter 10 of the Programming: Structured
Query Language Programmer's Guide (SC21-9609).

Starting Interactive SQL
Interactive SQL can be started by a menu option or by the Start SQL Session
command (STRSQL). There are two parameters of STRSQL which influence the
SQL session .

• The first is the NAMING parameter, which decides whether the system or
SQL naming convention will be used in the session. The SQL naming
convention (*SQL) uses the "collection.table" concept. The system naming
convention (*SYS) uses the "library/file" concept. This is the default. This
cannot be modified from within the session.

• The REFRESH parameter tells the system when to refresh the data shown;
either, only when forward paging, or always: • ALWAYS is the default. This
can be modified from within the session.

Interactive SQL Session

© Copyright IBM Corp. 1990

After starting Interactive SQL, the statement entry screen is presented. Since
the command entry screen was changed in release 3.0, STRSQL no longer
resembles the command screen. Rather it resembles the command entry
screen as it was prior to release 3.0. Most of the techniques for working with
the release 2.0 command entry screen also apply to the SQL statement entry
screen, for example, retrieve (F9), editing statements, scrolling through the
session log, and so on. The SQL statements which can be entered in an
Interactive SQL session are listed in Chapter 10 of the Programming: Structured
Query Language Programmer's Guide (SC21-9609). These statements can be
processed in three ways:

• Check for correct syntax only

• Syntax check, and perform a validity check on used objects

• Syntax check, validity check and run the statement

Statements can be entered directly if the syntax, and the clauses are known.
Otherwise, the statements can be prompted for, by using F4. and then keying in
the appropriate information required.

9-1

HELP Support

All statements entered during a session can be saved into a source file, where
they may be further edited for inclusion into a program. Statements may be
saved at any time during the session by using F13, and choosing the
appropriate option.

However, be aware that these saved statements cannot be recalled from the
source file, to be used in an Interactive session.

On leaving the Interactive session, if Option 1 is taken, then the session work
will be saved. If STRSQL is used again, then this saved session can be
restored, and work can be continued in the session, in interactive mode.

Contextual HELP is available throughout the Interactive SQL session. The HELP
text displayed depends on the screen content and cursor position. More
information can be obtained about an error message by positioning the cursor
on the message and pressing the HELP key. Prompting is available for SQL
statements (use F4), but to obtain more background information (about
Interactive SQL and SQL in application programs) use the following procedure:

• Press the HELP key on any screen of Interactive SQL

• Press F2 for extended HELP if required.

• Press F11 for search index

• Press F5 for all topics.

Session Services

9-2 Using SQU400

The session service function can be called by pressing F13 on the statement
entry screen. The following functions are available:

• Change commitment control

• Change statement processing control

• Change SELECT statement output device

• Change list of libraries

• Change list type (system- or SQL-created objects)

• Print current session

• Remove all entries from current session

• Save session in source file

• Change Data Refresh Options.

The device which will receive the results of a SELECT statement can be a
display, printer or database file. The file created by this function can then be
used as a normal database file, and can be input to the SQL session, if
required. This can be very useful for creating and manipulating test data.

Prompting and List Functions
Prompting can be used to help enter data into the SQL statements (F4). The
type of SQL statement to be used can be chosen in this way. When this has
been done, prompting can be continued to indicate which information is
required by SQL in order to process the statement.

Use of the Function keys on the statement entry screen will also present
information to help fill in what is required. Library list (F16) allows you to list
the libraries/SQL collections from which SQL can access objects. File list (F17)
shows you all the files (tables) that the current SQL session has access to.
Field list (F18) presents all the fields (columns) of the selected files. One or
more entries from the file list and the field list may be selected to be copied to
the statement entry screen at the current cursor position.

Prompting Within SEU
When editing a program that contains embedded SQL statements, you may
prompt for the SQL statements. For a new SQL statement, you need to create
the SQL statement environment before prompting. To do this, use the SEU
editor to insert the following (for an RPG/400 program):

C/EXEC SQL
C+
C/END-EXEC

You can then press the F4 key or type P over the sequence number to prompt
for the statement. If you are prompting for an SOL statement that has already
been entered, simply press the F4 key or type P over the sequence number
against any line of the statement.

Where to Use Interactive SQL and SQL Prompting
Interactive SOL is very powerful and if not properly controlled it can easily lead
to unwanted data manipulation. It is not aimed directly at the End User,
although statement prompting is available. Even so, Interactive SOL is a very
useful tool for programmers and database administrators. The following lists
its recommended uses:

• Data base administrators may use Interactive SOL to maintain access
privileges to collections, tables or views.

• Data base administrators can use Interactive SOL to select information from
system catalog tables.

• Programmers may use Interactive SQL to create and maintain test data.

• The main purpose of Interactive SQL is to test SQL statements before
including them into an HLL program.

• Prompt in SEU for proper syntax of SQL statements. Full list support is also
available.

9. Interactive SQL 9-3

9-4 U' sing SQU400

L

10. SQL Standards

SQLl400 complies with the following proposed standards. Deviations and
omissions are documented in the following paragraphs.

• ISO Standard Database Language SOL (ISO 9075-1987)

• ISO Standard Database Language SOL (ISO 9075-1989)

This is a replacement standard for ISO 9075-1987. This standard contains
all the features of the previous standard plus the integrity enhancement
features.

• ANS Database Language SOL (ANSI X3.135-1986)

• ANS Database Language SOL (ANSI X3.135-1-1989)

This is a replacement standard for ANSI X3.135-1986. This standard
contains all the features of the previous standard plus the integrity
enhancement features.

• ANS Database Language SOL (ANSI X3.168-1989)

This includes the embedded languages from the appendixes of the previous
standards and defines C and Ada support.

• ISO and ANS Working Draft Database Language SOL2

This is a draft of the next version of the ANS and ISO standards. It is now
out for public review.

• Federal Information Standards SOL (FIPS 127)

• Federal Information Standards SOL (FIPS 127.1)

This is a replacement of the previous FIPS standard that includes the ANS
X3.135-1-1989 and ANS X3.168-1989 standards and sets minimum limits for
various items.

• SAA Common Programming Interface Database Reference (SC26-4348-1).

ISO 9075-1989 and ANS X3.135-1-1989

© Copyright IBM Corp. 1990

SQLl400 claims SQL-DML conformance to level 1 of the ANS/ISO SQL standard.
The following facilities sUbstantiate that claim:

• Direct processing of SQL data manipulation language statements

• Embedded SQL COBOL

• Embedded SQL PL/1

• Embedded SQL C

• Embedded SQL FORTRAN.

SQU400 differences from Level 1

1. The set of reserved words specified in the standard are not all reserved.

This is not required for compliance except in FIPS. FIPS requires flagging
support that would flag all the reserved words in the standard.

10-1

10-2 Using SQU400

2. PUBLIC

PUBLIC is supported, but if private rights have been granted to a user, the
PUBLIC rights do not apply to that user.

SQLl400 omissions of Level 1

1. DISTINCT (that is AVG(DISTINCT column-name)) is not supported for
COUNT, AVG, SUM, MIN, or MAX functions.

2. Ada style comments (for example -- comment) are not supported.

3. UPDATE privileges on a column are not supported.

4. A module processor is not provided.

This is not required for compliance since SQLl400 supports embedded SQL.

5. Indicator variables of a type other than small integer.

The standards allow the implementation to choose its data type for indicator,
variables as long as it is an exact numeric type with zero scale. Since the,
data types supported are restricted, this means that in:

• COBOL, DISPLAY SIGN LEADING SEPARATE must be used

• FORTRAN, INTEGER must be used

• PL/I, DECIMAL must be used

Note that SQL2 (this is the next version of the standards) is relaxing this so
that in COBOL and PUI, SQU400 will comply without any change. The
same is not yet true in FORTRAN, but should be before the standard is
published.

6. View composition restrictions.

• The select list must not include column functions if R is derived from a
view whose outer subselect includes DISTINCT. Furthermore, if R is
derived from a view whose outer subselect includes DISTINCT, the
select list must identify all columns of the view (possibly by SELECT *)

and must not include DISTINCT or expressions

• The select list must not include column functions if R is derived from a
view whose outer subselect includes GROUP BY or HAVING clauses.

• If more than one table or view name is specified in a FROM clause, a
view whose outer subselect includes DISTINCT must not be identified.

• If more than one table or view name is specified in a FROM clause, a
view whose outer subselect includes GROUP BY or HAVING must not
be identified.

SQLl400 differences from Level 2

1. None.

SQU400 omissions of Level 2

1. A SCHEMA processor is not provided.

This support is not required for compliance to the ANS or ISO standards. It
is required for FIPS.

2. Escape character in the LIKE predicate is not supported.

L

L

3. UNIQUE support on a column definition is not supported.

4. NULL and full null value support is not provided.

5. USER is not allowed in the subselect of a CREATE VIEW statement.

6. The optional INDICATOR specification for host variables is not supported.

7. The WITH CHECK OPTION is not supported.

8. The WITH GRANT OPTION is not supported.

9. Repeatable read is not supported.

The standard in 4.16 requires that "all read operations are reproducible
within a transaction". This can not quite be achieved by the COMMIT(*ALL)
option. Reproducible implies that the result of a SELECT statement must be
the same (except for changes the transaction itself makes) every time it is
executed in the transaction. COMMIT(* ALL) prevents any other jobs from
deleting or updating rows that have been read by a transaction, but it does
not prevent inserts or updates to other rows from occurring that could now
show up if the SELECT statement was executed again. For example, User A
executes a SELECT statement with a WHERE col1 = 1. User B inserts a
row where col1 = 1. If User A executes the same SELECT statement in the
same transaction again, he will now get a result that contains the original
row and the new inserted row. In order to comply with the reproducible
requirement, User B would have to be prevented from inserting his record
until User A issued a commit or rollback.

This omission should not affect compliance. Note that the standard never
mentions the term "repeatable read". SQLl400 can meet the
"reproducibility" requirement by having the user request that all the tables
in the SELECT statement be locked *EXCLRD or *SHRNUP (depending on
whether the cursor is read only or not).

ANS X3.135-1-1989 Integrity Enhancement
SQLl400 differences

1. None.

SQLl400 omissions

1. CHECK clause is not supported.

2. User specified defaults are not supported.

3. Referential integrity is not supported.

4. NOT NULL can be repeated and not order dependent.

For example, CREATE TABLE x.x (col1 CHAR(10) NOT NULL NOT NULL) is
allowed in ANS.

10. SQL Standards 10-3

ANS X3.168-1989 Embedded SQL
SQLl400 differences

1. Integer is CaMP instead ofCOMP-4.

This should not affect compliance. Note that it is also inconsistent with the
ANS COBOL standard. The ANS COBOL standard says that CaMP is
implementation-defined (on OS/400, CaMP is packed decimal and COMP-4
is integer). Note that in SQL2, this has been fixed, and BINARY is used for
integer instead of CaMP. Since SQU400 already supports BINARY, no
change is necessary.

SQL/400 omissions

1. COBOL DISPLAY SIGN LEADING SEPARATE is not supported.

2. COBOL host variable names starting with a digit are not supported.

This is really a restriction in the COBOL/400 compiler.

3. C host variables with const and volatile attributes are not supported.

4. Embedded SQL in Pascal is not supported.

This should not affect compliance. Note that only one language is
necessary to comply. SQU400 supports both COBOL, C, FORTRAN and
PL/I.

5. Embedded SQL in Ada is not supported.

This should not affect compliance. Note that only one language is
necessary to comply. SQL/400 supports both COBOL, C, FORTRAN and
PL/I.

FIPS 127.1 Compliance

10-4 Using SQU400

FIPS SQL is based on ANSI X3.135-1-1989 and on ANSI X3.168-1989 so all above
omissions and differences apply. FIPS requires full SQL conformance to level 2
DDL and DML and requires support of either the Module Language or
Embedded SQL interface to one or more FIPS programming languages (PLII is
not a FIPS Programming Language). The integrity option is not required. In
addition, the following omission applies:

• Flagging of language levels is not supported.

FIPS 127.1 specifies a default set of minimum limits that a product must meet
unless the procurement specifies different limits. The following default limits
can not be satisfied by SQL/400:

• Identifiers must support up to 18 characters.

SQLl400 supports 18 character identifiers for cursors and statements, but
not for columns, tables, views, index names, and correlation names.

L

SAA Common Programming Interface Database Reference
The SAA CPI Database Reference (SC26-4348-1) defines the standard SQL
language for IBM. The following lists the major omissions SQU400 has with
SAA. For detailed information on how SQU400 conforms to this definition, see
the SAA CPI Database Reference. Differences and omissions are printed in
green inkin the reference.

The major omissions are:

1. Null value support

2. Variable length field support

Variable length host variables are supported, but SQL/400 does not support
creating a table with a variable length column.

3. Date/Time Support

4. Commit/Rollback of Data Definition Statements

You can not commit or rollback data definition statements such as CREATE
TABLE. If a data definition statement is embedded in a program or issued
interactively, COMMIT(*NONE) must have been specified.

5. DISTINCT in a column function

DISTINCT in the SELECT clause is supported (that is, SELECT DISTINCT x).
DISTINCT is not supported in a column function (for example,
MAX(DISTINCT x) is not supported).

6. ALTER TABLE

7. GRAPHIC and VARGRAPHIC

8. COMP-2 in COBOL

Note that this is actually a restriction of COBOU400.

9. Lower case characters are not allowed in delimited column names.

10. SQL Standards 10-5

10-6 U· sing SQU400

11. SQL/400 Portability

In this section you will be considering various aspects concerning the portability
of SQL/400 between the AS/400 system and the other SAA environments that
support the SQL language, namely DB2 under MVS*, SQLlDS under VM* and
OS/2 EE Database Manager. SAA is IBM's announced set of standards for
consistency between these four environments. For complete details refer to
SAA Common Programming Interface Database Reference. However, SAA SQL
is not yet fully implemented in all the environments.

Data Definition Language portability and Data Manipulation Language
portability are examined separately below.

Data Definition Language

SAA Size Limits

Detailed below are the differences in SQL data definition language functions
between SQL/400 and SAA.

SAA has specified maximum sizes for certain named items which may be less
than those allowed in specific environments. In order to be portable,
applications should not exceed the SAA maximum sizes.

The major differences are highlighted below. The full list of limits appears in
the SAA CPI Database Reference.

SAA SQL/400

Longest AUTHID 8 10

Row length (bytes) 4005 32766

Number of rows per table 16777215 16777215

Most columns in a table 255 8000

Most columns in a view 140 8000

Largest decimal value 15 digits 31 digits

Table 11-1. Size Differences in Commonly Used SQL Items

SAA Functions Not Implemented in SQLl400

© Copyright IBM Corp. 1990

Certain SAA SQL functions are not implemented in release 3.0 of SQLl400.
They are:

1. TABLE CREATE functions:

• NULL Values - you can only specify NOT NULL or NOT NULL WITH
DEFAULT

• VARCHAR

• GRAPHIC and VARGRAPHIC

• DATE, TIME and TIMESTAMP

• Delimited column names do not allow lower case characters.

2. ALTER TABLE

11-1

System Catalogs

3. The set of reserved words specified in the standard are not all reserved in
SQU400. New words may be added to the SQLl400 list as future releases
add new functions to the product.

Data definition language statements cannot be run under commitment control.
In other words if your application was compiled with ·CHG or • ALL or has
COMMIT and ROLLBACK statements in it, it cannot also contain CREATE,
COMMENT ON, DROP, GRANT, LABEL ON, or REVOKE statements.

The names of the SQLl400 catalogs are:

• SYSCOLUMNS

• SYSINDEXES

• SYSKEYS

• SYSTABLES

• SYSVIEWDEP

• SYSVIEWS.

This is similar to a subset of the DB2 implementation but other implementations
of SQL have different and additional catalogs.

SQL/400 Data Definition Extensions
SQLl400 supports an additional data type of NUMERIC on the CREATE TABLE
statement.

SQU400 supports collections through the CREATE COLLECTION and DROP
COLLECTION statements. Tables, views, and indexes must be created in
collections. Any tables or views referenced in SQL data definition language
statements must exist in a collection.

Authorization Control Differences

11-2 Using SQU400

There are several items to be considered:

1. The ·SYS option on the CRTSQLxxx makes programs run under OS/400
security ·USER instead of SQL security with the ·OWNER attribute (as well
as enabling system naming convention instead of SQL naming convention).
If portability is required, this should be avoided.

2. View privileges are different. Data rights (INSERT, UPDATE, DELETE and
SELECT statement privileges) are stored with the table, not the view. If a
user loses his data rights to the table, he also loses his rights to the view.

3. SQU400 does not remember dependent privilege descriptors. (For
example, if User A grants User B a privilege, and then User A loses the
privilege, User B does not lose the privilege automatically on SQLl400.)

4. Public privileges are supported but if private rights are granted to a user,
the public rights do not apply.

5. Update privileges on a column are not supported. A user who has update
privileges on a particular table cannot be excluded from updating individual
columns of that table.

L

L

Other Considerations

Data Migration

Other authorization considerations that have to be made include:

1. Do not rely on the use of library lists as this is not supported in the other
environments.

2. Consider the establishment of a database creation program to use DOL
data streams that may be ported from other systems. Such a program
could also be used to re-execute SQL data streams stored in source
physical files during Interactive SQL sessions.

Data can be moved from one system to another via sequential files. Each
system (DB2, SQLlDS, SQLl400 and OSI2 Database Manager) has its own utility
program with which to unload its database files into sequential files on tape.
Once it is in sequential format, it can be transported to the other system and
loaded into the predefined database files. To unload data from DB2, use the
DB2 utilities or DXT (Data Extract) program. Use the Data Bases Service Utility
(DBSU) to unload from SQLlDS. From the system, use the copy file (CPYF) or
copy-to-diskette/copy-to-tape (CPYTODKT/CPYTOTAP) commands to copy the
files to tape or diskette, and CPYF or CPYFRMT AP/CPYFRMDKT to unload the
data.

Data Conversion Considerations

Summary

The collating sequence is different between ASCII and EBCDIC, therefore you
will get different results from an ORDER BY clause run on the PS/2" and the
same ORDER BY clause run on the AS/400 system.

The internal formats for numeric data differ in the various environments. The
following areas could cause difficulties when migrating data between databases
in different environments:

• Delimited ASCII leading zero

• Decimal errors handled differently

• Floating point arithmetic has different format in different environments.

• NULL value data cannot be stored in an SQLl400 table.

If you wish to migrate table definitions and data, you need to keep things
simple. Follow the SAA guidelines for name and item sizes, and use data types
CHAR, INTEGER, SMALLINT and DECIMAL (odd precision) and NOT NULLs.

11. SQU400 Portability 11-3

Data Manipulation Language

Locking Rules

Isolation Levels

See the section "SQL Standards" on page 10-1 for details of SQU400
extensions and limitations that should be avoided if portability is important.

The automatic row locking rules are different in SQL/400 from the other
products. For example, DB2 locks by TABLESPACE and PAGE with escalation
to TABLESPACE if ANY is specified. SQL/DS locks by DBSPACE, PAGE or ROW
with escalation to DBSPACE if too many rows are locked. SQU400 locks by
ROW up to a maximum of 32768 rows.

There are three levels of commitment control under which SQLl400 can run.
They are 'NONE, 'CHG and 'ALL. These levels are a little different from the
isolation levels CURSOR STABILITY and REPEATABLE READ supported by
SQLlDS and DB2. See the section "SQL Commitment Control" on page 7-1 for
further details.

COBOL/400 and SQL Portability
Although COBOL and SQL are SAA-standard products, COBOL/400 with SQL
does not yet completely match SAA COBOL or the other COBOLlSQL products.
Batch programs are already quite portable, but interactive programs with data
presentation (AS/400 workstation files) are less so. Each environment has its
own mapping methods, and these cannot be transported to other systems.
However, in the future, the situation will become easier, with full
implementation of the Presentation Manager and Dialog Manager in all the SAA
environments. The following are some of the points to remember if you want to
make your applications portable among other SAA-standard systems with
different architectures.

Data Type Equivalence
Only the following data types are supported in SQLl400. Their COBOLl400
equivalent, with restrictions are indicated:

SQL Data Type COBOL/400 Equivalent

CHAR 01 field PIC X(n)

NUMERIC 01 field PIC S9(n)2

INTEGER 01 field PIC S9(9) COMP-4

SMALLINT 01 field PIC S9(4) COMP-4

DECIMAL 01 field PIC S9(n)V9(d) COMP-33

FLOAT 01 filler PIC 9(10) COMP-21

Table 11-2. Data Type Equivalences

1 COBOU400 does not support COMP-2.

2 This is not supported in SAA SQL.

11-4 Using SQU400

l,.. Using COPY-DDS or SQL INCLUDe

l,..

COBOL/400 SOL allows file/table definitions to be copied into programs in file
declaration statements, or working storage sections. The statement
COPY-DDS-ALL-FORMATS of filename or tablename will retrieve the field
descriptions, and create them into a host data structure within the program.
However, this feature is not available in other COBOL SQL products.

The SQL INCLUDE statement retrieves SQL statements from separate source
files, so that file descriptions, for example, could be stored separately from
programs and copied in. However, whereas the COPY-DDS statement retrieves
the original file description and requires no extra work, the SQL INCLUDE
statement requires code to be physically placed into these separate source
files.

COBOL using SQLlDS or DB2 accepts the SQL INCLUDE statement. Therefore,
if portability is important to you, COPY-DDS statements should be replaced by
SQL INCLUDE statements, and separate source modules with file/table
descriptions created. Other COBOL products may also require table definition
in addition to the creation of a host data structure as previously mentioned. For
example, COBOL using SOLIDS, DB2 or OS/2 EE also requires an SQL
DECLARE statement to describe each table and view that the program
accesses.

GO BACK Statement
The GOBACK statement is an optional COBOLl400 statement which performs
the same functions as the COBOLl400 STOP RUN and EXIT commands.
However, in COBOL using SQLlDS and DB2, the GOBACK statement must be
coded to end a program. Therefore, for all applications likely to be ported to
other systems, the GOBACK statement should be used.

SQL Continuation Characters
With COBOLl400 SQL statements, when continuing a string constant from one
line to the next, the first non-blank character on the next line must be a "string
delimiter". This can be an apostrophe (') or quotation marks ("). For COBOL
using SQLlDS, the character must be an apostrophe n. If the delimiter
identifier is continued from one line to the next, the first non-blank character on
the next line must be the SOL escape character. This SQL escape character is
either a quotation mark (") or an apostrophe n as specified on the COBOLl400
precompiler option. In COBOL using SQLlDS this must be a quotation mark (").

For further information on SAA SQL standards see "SQL Standards" on
page 10-1 and also the SAA CPI Database Reference. For further information
on SAA COBOL standards see the SAA CPI COBOL Reference.

3 For COBOU400 n +d must be maximum 18 but with the 5/370, n + d must be maximum 15, and Odd.

11. SQU400 Portability 11-5

11-6 U· sing SQU400

12. SQL/400 and Relational Theory

SQLl400 was introduced into OS/400 at Release 1 Modification Level 2. Since
then, changes have been made and some new functions have been added to
the SQL product on the AS/400 system. Currently, there is only partial
compliance with the full SAA definition of SQL. Some of the advanced functions
are not yet implemented.

This chapter discusses the traditional relational theory and attempts to contrast
SQLl400 with the theory as originally defined by Dr E.F. Codd, which has been
refined by other relational database exponents.

Codd's Relational Rules

© Copyright IBM Corp. 1990

Codd defined a set of rules by which a relational database product could be
evaluated. These rules were first introduced in the magazine CompuferWorld, in
the October 14, 1985 issue. The rules outlined function that was determined to
be important in a relational database management system. The rules are
briefly described below.

Rule 0 - Foundation Rule: For any system that is advertised as a relational
database management system, that system must be able to manage databases
entirely through its relational capabilities. If a system does not pass rule 0 it is
not worth rating.

This rule does not disallow any non-relational capabilities to exist. It does mean
that the system must support insert, update, and delete relational
(multiple-records-at-a-time processing) operations and must provide support for
rule 1 and at least partial support for rule 2.

Rule 1 -Information Rule: All information in the database including the
catalogs should be viewed in a tabular form.

Rule 2 - Guaranteed Access Rule: All data can be accessed by its values, not
its physical address or physical placement in the row or table. A primary key is
required.

Rule 3 - Systematic Treatment of Nulls: A null value is an unknown value and
therefore should not participate in any built-in functions such as sums,
averages and counts. This also implies support for testing for NULL (IS NULL
predicate).

Rule 4 - Active On-line Catalog: There must be a set of descriptions of the data
in the system which is active all the time.

Rule 5 - Comprehensive Data Sublanguage: A relational database may support
several interfaces and languages, but one language with well defined syntax
must support the following functions: data definition, view definition, data
manipulation, integrity constraints, authorization, and transaction boundaries.

12-1

12-2 Using SQLl400

Rule 6 - View Updating Rule: SQL views should be able to be updated with full
transparency. This poses the implication of updating a join view, which is likely
to include some complex ambiguities.

Rule 7 - High-level Insert, Update, and Delete: Data Manipulation functions
should operate on sets. This is relatively straightforward for the select
operator, but less often considered for UPDATE and DELETE. and INSERT.

Rule 8 - Physical Data Independence: There should be no visible association
between the logical data and the physical construct. Changes in physical
characteristics or even implementations such as indexes should not be visible
to either an application program or an interactive terminal user. Without this
independence new technology will result in either changes to the application
program or failure to benefit from the new function.

Rule 9 - Logical Independence: There should be no impact on existing
applications when changes are made to logical views rather than physical
tables.

Rule 10 - Integrity Independence: Primary and foreign keys should conform to
the rules of referential integrity. Without this capability. additions of new
dependent relationship types may result in reprogramming applications that
create or delete participants in this relationship.

Rule 11 - Distribution Independence: The data must be capable of distribution
transparent to any user. Functions like join and union must be able to be
performed across tables which are physically located on different systems.
This also implies that a view containing a join can be created over two
physically separate tables. Codd's rule implies that a data base management
system (DBMS) does not necessarily have to have the function to support
distributed database. However, the DBMS must be designed whereby future
distributed database support can be added without any effect on the data itself.

Rule 12 - Non-Subversion: If access to database data is allowed through a
non-relational interface, the integrity of the database must not be able to be
subverted. For example, a UNIQUE index over a table prevents unique values
from existing in the table. This constraint must be enforced even thorough
non-relational interfaces.

Now that the relational rules have been defined, it is worthwhile to compare
how some of the database products conform. The products compared in the
following charts are:

• IBM Database 2. Version 2 Release 2

• IBM SQLlDS, Version 3 Release 1

• IBM SQLl400, Release 3 Modification level 0

• IBM OS/2 Database Manager, Release 1.2

Rule DB2 SQLlDS SQLl400 OS12 SAA Standard

1 Yes Yes Yes Yes Yes

2 Yes Yes Partial Yes Partial

3 Partial Partial No Partial Partial

4 Yes Yes Yes Yes Yes

5 Yes Yes Yes Yes. Yes

61 Partial Partial Partial Partial Partial

7 Yes Yes Yes Yes Yes

8 Yes Yes Yes Yes Yes

9 Partial Partial Partial Partial Partial

10 Yes Yes No Yes No

11 Yes Yes Yes Yes Yes2

12 Yes Yes Yes Yes Yes

Table 12-1. Comparison of Codd's Relational Rules to IBM SQL products

Although DB2 and SQL/DS do not comply with all of Codd's rules, you can see
there are many facilities that are implemented on these systems. Both score
nine yeses and three partials. AS/400 SQL scores seven yeses and three
partials. SAA standards achieve seven yeses and four partials. DB2 and
SQUDS comply with almost all of the relational database requirements when
using Codd's rules as a measure.

The AS/400 system is a full participant in the SAA guidelines. We can therefore
reasonably expect that the AS/400 database and SQU400 will be developed in
line with these documented standards over a period of time.

Referential Integrity
Referential integrity is the second of the two relational database integrity rules
that are defined in the relational model.3 Referential integrity introduces the
database concepts of primary and foreign keys. A primary key is a column
which uniquely identifies a row. A foreign key is a column in one table that is
used to reference a row in an associated table. It does this by matching the
foreign key with the primary key of the associated table.

For instance, in a personnel database, the employee table may contain a
department number column. This department number is a foreign key, and can
be used to associate the employee with the department name held in the
department table. For example:

1 Update capable views is a debated point. IBM versions of SQL are able to update views under certain circumstances. See
"Views" on page 3-7 for more information on updating views.

2 An SAA announcement was made on 4th October 1988 to include the full support of Distributed Relational Data. The details of
this announcement are available in IBM Announcement Letter 288-545 entitled: Distributed Relation Data In Systems
Application Architecture. A subsequent SAA announcement was made on 26th June 1990 on the availability of the
architectures for Distributed Database. The details of mis announcement are available in IBM Announcement Letter 290-363.

3 The first rule is entity integrity and states that a primary key in a base table cannot have null values. The AS/400 system
implementation of SQL does not support nulls, thus partially complying with this rule, but does not provide primary key syntax.

12. SQU400 and Relational Theory 12-3

Employee Table

primary
key

Empl.
Num.

forei gn
key

Dept.
Num.

I

Department Table

primary
key

Dept. Department
Num. Name

J

Figure 12-1. Example of a Foreign Key. A Personnel Data Base

Referential integrity therefore is concerned with ensuring that the foreign key in
the first table (department number in the employee table) matches a primary
key in the related table (department number in department table); or that the
foreign key (Dept Num in Employee) contains a null value (hence there is no
relationship for that row). In the example above, the department table is known
as the parent table and the employee table is known as the dependent table.

This is a relatively straightforward concept in theory, but is often difficult to
enforce. Consider, in the example above, when an update is required in both
tables. Assume that the department number must change, and all the
employees that work in that department must have their department number
changed in the employee table. The problem that arises is that normally only
one table can be updated in a single SQL statement. We can make the update
to the employee table in one SQL statement,4 being:

UPDATE PERSONNEL/EMPLOYEE
SET DEPT NO = 344
WHERE DEPTNO = 333

However, as soon as this update is performed, you have violated the referential
integrity rule, as the department table still knows that department as 344.

The next SQL statement would bring that into line:

UPDATE PERSONNEL/DEPARTMENT
SET DEPTNO = 344
WHERE DEPTNO = 333

and the tables would now conform to the referential integrity rule. But in this
process, for a short period of time, the rule was violated.

4 Although you only use one SQL statement, this is actually implemented in the call to the SQL routine as an update performed
many times. We would notice this more if there were a failure while performing this one SQL statement. Some rows would be
updated, and others not.

12-4 Using SQU400

The rule is likely to be violated only when UPDATE, INSERT, or DELETE
operations are made. As SELECT only retrieves data, there is no need to
concern ourselves with referential integrity when reading from a table.

The use of COMMIT and ROLLBACK statements can help overcome the breach
of referential integrity. We can start a new transaction before any update is
made. We then perform the updates, and if they complete successfully, you
COMMIT the changes. If there is a failure during the process, you can
ROLLBACK and retry, thus ensuring that the rule is breached only for a very
short time.

AS/400 and Referential Integrity
On the AS/400 system there are no facilities to support referential integrity.
From the discussion of "Codd's Relational Rules" on page 12-1, you can also
see that this is not yet a documented component of SAA.

12. SQU400 and Relational Theory 12-5

12-6 U· smg SQU400

Appendix A. Code Example For Use of SQL WHENEVER in
RPG

© Copyright IBM Corp. 1990

F* File declaration for QPRINT
F*
FQPRINT 0 F 132 PRINTER
1*
1* Structure for report 1.
1*
IRPT1 E DSTEMPRACT

1*

STARTDATE
ENDDATE
Et4PTH·1E

1* Structure for report 2.
1*
IRPT2 DS
I
I
I
I
I
1*
I
I
I
C*
C
C
C*

DS

Z-ADD.06
MOVEL'MA%'

STARDT
ENDDT
EHPTIt-1

1 6 PRJNUM
7 42 PNAME

B 43 440Er~PCNT

P 45 4920LDTIM
P 50 542NE\'!T H4

1 3 PROJID
P 4 62PERCNT

PERCNT
PROJID

C* Update the selected projects by the new percentage. If
C* errors occur during the update, rollback the changes.
C*
C/EXEC SQL WHENEVER SQLERROR GOTO UPDERR
C/END-EXEC
C*
C/EXEC SQL
C+ UPDATE USER1/TEMPRACT
C+ SET EMPTIME = EMPTIME * (l+:PERCNT)
C+ WHERE PROJNO LIKE :PROJID
C/END-EXEC
C*
C* Commit changes.
C*
C/EXEC SQL COM~lI T
C/END-EXEC
C*
C/EXEC SQL WHENEVER SQLERROR GO TO RPTERR
C/END-EXEC
C*
C* Report the updated statistics for each employee assigned to
C* selected projects.
C* Write out the header for report 1.
C*
C EXCPTRECA

A-1

A-2 Using SQU400

C/EXEC SQL declare cl cursor for
C+ select * from userl/tempract
C+ where tempract.projno like :projid
C+ order by empno
C/END-EXEC
C*
C/EXEC SQL
C+ OPEN Cl
C/END-EXEC
C*
C* Fetch and write the rows to QPRINT.
C*
C/EXEC SQL WHENEVER NOT FOUND GO TO DONE 1
C/END-EXEC
C
C/EXEC SQL

SQLCOD DOUNEO

C+ FETCH CI INTO :RPTI
C/END-EXEC
C
C
C
C/EXEC SQL
C+ CLOSE CI
C/END-EXEC
C*

DONE!

EXCPTRECB
END
TAG

C* For each project selected, generate a report containing the
C* project number, project name, the old total of employee hours,
C* and the new total of employee hours.
C*
C* Write out the header for report 2.
C*
C EXCPTRECC
C/EXEC SQL
C+ DECLARE C2 CURSOR FOR
C+ SELECT TEMPRACT.PROJNO, PRNAME, COUNT(*),
C+ SUM(EMPTIME/(I.0+:PERCNT)),SUM(EMPTIME)
C+ FROM USERI/TEMPRACT, USERI/TPROJ
C+ ~JHERE TEMPRACT. PROJNO = TPROJ. PROJNO
C+ GROUP BY TEMPRACT.PROJNO, PRNAME
C+ HAVING TEMPRACT.PROJNO LIKE :PROJID
C+ ORDER BY 1
C/END-EXEC
C*
C/EXEC SQL OPEN C2
C/END-EXEC
C*
C* Fetch and write the rows to QPRINT.
C*
C/EXEC SQL WHENEVER NOT FOUND GO TO DONE2
C/END-EXEC
C SQLCOD DOUNE0
C/EXEC SQL
C+ FETCH C2 INTO :RPT2
C/END-EXEC

L

C
C
C DONE2
C/EXEC SQL CLOSE C2
C/END-EXEC
C
C*

EXCPTRECD
END
TAG

GO TO FINISH

C* Error occurred while updating table. Inform user and rollback
C* changes.
C*
C UPDERR TAG
C EXCPTRECE
C/EXEC SQL WHENEVER SQLERROR CONTINUE
C/END-EXEC
C*
C/EXEC SQL
C+ ROLLBACK
C/END-EXEC
C GOTO FINISH
C*
C* Error occurred while generating reports. Inform user and exit.
C*
C RPTERR TAG
C EXCPTRECF
C*
C* All done.
C*
C FINISH TAG
C SETON LR
OQPRINT E 0201 RECA
0 21 'UPDATED EMPLOYEE PROJ'
0 37 'ECT ACCOUNT DATA'
0 E 01 RECA
0 8 'EMPLOYEE'
0 17 'PROJECT'
0 26 'ACCOUNT'
0 36 'EMPLOYEE'
0 E 02 RECA
0 7 'NUMBER'
0 16 'NUMBER'
0 25 'NUMBER'
0 34 'HOURS'
0 E 01 RECB
0 EMPNO 7
0 PROJNO 16
0 ACTNO L 26
0 EMPTIML 37
0 E 22 RECC
0 42 'ACCUMULATED STATISTIC'
0 54 'S BY PROJECT'

Appendix A. Code Example For Use of SOL WHENEVER in RPG A-3

0 E 01 RECC
0 7 'PROJECT' ~ 0 56 'NUMBER OF'
0 66 'PREVIOUS'
0 76 'CURRENT'
0 E 02 RECC
0 6 'NU~1BER '
0 21 ' PROJECT NAI1E'
0 56 'EI·1PLOYEES'
0 64 'HOURS'
0 75 'HOURS'
0 E 01 RECD
0 PRJNUH 6
0 PNAr,1E 45
0 EI'lPCNTL 55
0 OLDT I11L 67
0 IJ ElH II,1 L 77
0 E 01 RECE

..J 0 28 '*** ERROR Occurred while'
0 52 ' updating table. SQLCODE'
0 53 1::::1

0 SQLCODL 62
0 E 01 RECF
0 28 '*** ERROR Occurred while'
0 52 ' generating reports. SQL'
0 57 'CODE='
0 SQLCODL 67

A-4 Using SQU400

App~ndix B. Code Example For Use of SQL WHENEVER in
COBOL

© Copyright IBM Corp. 1990

IDENTIFICATION DIVISION.

PROGRAM-ID. CBLEX.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBN-AS400.
OBJECT-COMPUTER. IBM-AS400.
INPUT-OUTPUT SECTION.

FILE-CONTROL.
SELECT PRINTFILE ASSIGN TO PRINTER-QPRINT

ORGANIZATION IS SEQUENTIAL.

DATA DIVISION.

FILE SECTION.

FD PRINTFILE
BLOCK CONTAINS 1 RECORDS
LABEL RECORDS ARE OMITTED.

01 PRINT-RECORD PIC X(132).

WORKING-STORAGE SECTION.
77 PROJID PIC X(3).
77 PERCENTAGE PIC S999V99 COMP-3.

* Structure for report 1. *

01 RPTl.
COPY DDS-TEMPRACT OF USER1-TEMPRACT.

* Structure for report 2. *

01 RPT2.
15 PROJNO PIC X(6).
15 PROJECT-NAME PIC X(36).
15 EMPLOYEE-COUNT PIC S9(4) COMP-4.
15 OLD-TOTAL-TIME PIC S9(6)V99 COMP-3.
15 NEW-TOTAL-TIME PIC S9(6)V99 COMP-3.

EXEC SQL
INCLUDE SQLCA

END-EXEC.
77 CODE-EDIT PIC ---99.

B-1

* Headers for reports. *

01 RPTl-HEADERS.
05 RPTI-HEADERI PIC X(132)

VALUE "UPDATED EMPLOYEE PROJECT ACCOUNT DATA".
05 RPTl-HEADER2.

10 FILLER PIC X(10) VALUE "EMPLOYEE".
10 FILLER PIC X(9) VALUE "PROJECT".
10 FILLER PIC X(9) VALUE "ACCOUNT".
10 FILLER PIC X(104) ·VALUE "E~WLOYEE".

05 RPTI-HEADER3.
10 FILLER PIC X(10) VALUE" NUMBER".
10 FILLER PIC X(9) VALUE "NUMBER".
10 FILLER PIC X(9) VALUE "NUMBER".
10 FILLER PIC X(104) VALUE" HOURS".

01 RPT2-HEADERS.
05 RPT2-HEADERl.

10 FILLER PIC X(21) VALUE SPACES.
10 FILLER PIC X(III)

VALUE "ACCUMULATED STATISTICS BY PROJECT".
05 RPT2-HEADER2.

10 FILLER PIC X(9) VALUE "PROJECT".
10 FILLER PIC X(38) VALUE SPACES.
10 FILLER PIC X(II) VALUE "NUMBER OF".
10 FILLER PIC X(10) VALUE "PREVIOUS".
10 FILLER PIC X(65) VALUE" CURRENT".

05 RPT2-HEADER3.
10 FILLER PIC X(9) VALUE "NUMBER".
10 FILLER PIC X(38) VALUE "PROJECT NAME".
10 FILLER PIC X(ll) VALUE "EMPLOYEES".
10 FILLER PIC X(10) VALUE" HOURS".
10 FILLER PIC X(65) VALUE " HOURS" .

01 RPTl-DATA.
05 FILLER PIC X VALUE SPACE.
05 EMPNO PIC X(6).
05 FILLER PIC XXX VALUE SPACES.
05 PROJNO PIC X(6).
05 FILLER PIC X(4) VALUE SPACES.
05 ACTNO PIC ZZZ99. J
05 FILLER PIC X(3) VALUE SPACES.
05 EMPTIME PIC ZZZZ9.99.
05 FILLER PIC X(96) VALUE SPACES.

01 RPT2-DATA.
05 PROJNO PIC X(6).
05 FILLER PIC XXX VALUE SPACES.
05 PROJECT-NAME PIC X(36).
05 FILLER PIC X(4) VALUE SPACES.
05 EMPLOYEE-COUNT PIC ZZZ9.
05 FILLER PIC X(5) VALUE SPACES.
05 OLD-TOTAL-TIME PIC ZZZZ9.99.
05 FILLER PIC XX VALUE SPACES.
05 NEW-TOTAL-TIME PIC ZZZZ9.99.
05 FILLER PIC X(56) VALUE SPACES.

8-2 Using SQU400

L

L

PROCEDURE DIVISION.
A000-14A IN.

MOVE 0.06 TO PERCENTAGE.
MOVE "MA%" TO PROJID.
OPEN OUTPUT PRINTFILE.

* Update the selected projects by the new percentage. If an
* error occurs during the update, ROLLBACK the changes,

*
*

EXEC SQL
WHENEVER SQLERROR GO TO E010-UPDATE-ERROR

END-EXEC.
EXEC SQL

UPDATE USERI/TEMPRACT
SET EMPTIME = EMPTIME * (1+:PERCENTAGE)
WHERE PROJNO LIKE :PROJID

END-EXEC.

* Commit changes. *

EXEC SQL
Cot~MIT

END-EXEC.

EXEC SQL
WHENEVER SQLERROR GO TO E020-REPORT-ERROR

END-EXEC.

*
*

Report the updated statistics for each employee assigned to*
the selected projects. *

* Write out the header for Report 1. *

write print-record from rptl-headerl
before advancing 2 lines.

write print-record from rptl-header2
before advancing 1 line.

write print-record from rptl-header3
before advancing 2 lines.

exec sql
declare c1 cursor for

select *
from userl/tempract
where tempract.projno like :projid
order by empno

end-exec.

Appendix B. Code Example For Use of SQL WHENEVER in COBOL B-3

8-4 Using SQU400

EXEC SQL
OPEN C1

END-EXEC.

PERFORM B000-GENERATE-REPORT1
THRU B010-GENERATE-REPORT1-EXIT
UNTIL SQLCODE NOT EQUAL TO ZERO.

AHl8-DONEl.
EXEC SQL

CLOSE C1
END-EXEC.

* For each project selected, generate a report containing
* project number, project name, the old total of employee
* hours, and the new total of employee hours for each
* project.

the*
*
*
*

* Write out the header for Report 2. *

MOVE SPACES TO PRINT-RECORD.
WRITE PRINT-RECORD BEFORE ADVANCING 2 LINES.
WRITE PRINT-RECORD FROM RPT2-HEADER1

BEFORE ADVANCING 2 LINES.
WRITE PRINT-RECORD FROM RPT2-HEADER2

BEFORE ADVANCING 1 LINE.
WRITE PRINT-RECORD FROM RPT2-HEADER3

BEFORE ADVANCING 2 LINES.

EXEC SQL
DECLARE C2 CURSOR FOR

SELECT TEMPRACT.PROJNO, PRNAME, COUNT(*),
SUM(EMPTIME/(1.8+:PERCENTAGE)) ,
sur~ (EMPT IME)

FROM USER1/TEMPRACT, USER1/TPROJ
WHERE TEMPRACT.PROJNO=TPROJ.PROJNO
GROUP BY TEMPRACT.PROJNO, PRNAME
HAVING TEMPRACT.PROJNO LIKE :PROJID
ORDER BY 1

END-EXEC.
EXEC SQL

OPEN C2
END-EXEC.

PERFORM C000-GENERATE-REPORT2
THRU C010-GENERATE-REPORT2-EXIT
UNTIL SQLCODE NOT EQUAL TO ZERO.

A200-DONE2.
EXEC SQL

CLOSE C2
END-EXEC.

L

* All done. *

A900-MAI N-EXIT.
CLOSE PRINTFILE.
STOP RUN.

* Fetch and write the rows to PRINTFILE. *

B000-GENERATE-REPORT1.
EXEC SQL

WHENEVER NOT FOUND GO TO A188-DONE1
END-EXEC.
EXEC SQL

FETCH C1 INTO :TEMPRACT
END-EXEC.
MOVE CORRESPONDING TEMPRACT TO RPT1-DATA.
WRITE PRINT-RECORD FROM RPT1-DATA

BEFORE ADVANCING 1 LINE.

B010-GENERATE-REPORT1-EXIT.
EXIT .

* Fetch and write the rows to PRINTFILE. *

C000-GENERATE-REPORT2.
EXEC SQL

WHENEVER NOT FOUND GO TO A200-DONE2
END-EXEC.
EXEC SQL

FETCH C2 INTO :RPT2
END-EXEC.
MOVE CORRESPONDING RPT2 TO RPT2-DATA.
WRITE PRINT-RECORD FROM RPT2-DATA

BEFORE ADVANCING 1 LINE.

C010-GENERATE-REPORT2-EXIT.
EXIT .

*
*

Error occurred while updating table.
rollback changes.

Inform user and *
*

E010-UPDATE-ERROR.
EXEC SQL

WHENEVER SQLERROR CONTINUE
END-EXEC.
MOVE SQLCODE TO CODE-EDIT.

Appendix B. Code Example For Use of SQL WHENEVER in COBOL 8-5

8-6 Using SQU400

STRING .*** ERROR Occurred while updating table. SQLCODE="
CODE-EDIT DELIMITED BY SIZE INTO PRINT-RECORD.

WRITE PRINT-RECORD.
EXEC SQL

ROLLBACK
END-EXEC.
STOP RUN.

* Error occurred while generating reports. Inform user and *
* exit. *

E020-REPORT-ERROR.
MOVE SQLCODE TO CODE-EDIT.
STRING .*** ERROR Occurred while generating reports. SQLCODE

"=" CODE-EDIT DELIMITED BY SIZE INTO PRINT-RECORD.
WRITE PRINT-RECORD.
STOP RUN.

L Appendix C. Code Example For Use of SQL WHENEVER in
PL/I

PLI EX: PROC;

© Copyright IBM Corp. 1990

DCl PROJID CHAR(3);
DCl PERCENTAGE FIXED DECIMAl(5,2);

/* File declaration for sysprint */
DCl SYSPRINT FILE EXTERNAL OUTPUT STREAM PRINT;

/* Structure for report 1 */
DCl 1 RPTl,

%INClUDE TEMPRACT(TEMPRACT,RECORD);

/* Structure for report 2 */
DCl 1 RPT2,

15 PROJNO CHAR(6),
15 PROJECT_NAME CHAR(36) ,
15 EMPLOYEE_COUNT FIXED BIN(15),
15 OLD_TOTAL_TIME FIXED DECrr~AL(B,2),
15 NEvl_TOTAL_TIME FIXED DECIMAl(B,2);

EXEC SQl INCLUDE SQLCAj

PERCENTAGE = 0.06j
PROJID = 'MA%' j

OPEN FILE(SYSPRINT)j

/* Update the selected projects by the new percentage.
/* occurs during the update, ROLLBACK the changes.
EXEC SQL \'JHENEVER SQLERROR GO TO UPDATE_ERROR;
EXEC SQl

UPDATE USER1/TEMPRACT
SET EMPTIME = EMPTIME * (l+:PERCENTAGE)
WHERE PROJNO lIKE :PROJIDj

/* Commit changes */
EXEC SQl

COMMIT ;
EXEC SQL WHENEVER SQlERROR GO TO REPORT_ERRORj

If an error * /
*/

/* Report the updated statistics for each employee assigned to the */
/* selected projects. */

/* Write out the header for Report 1 */
put file(sysprint) edit('UPDATED EMPLOYEE PROJECT ACCOUNT DATAl)

(col (1) ,a);
put file(sysprint)

edit('EMPlOYEE','PROJECT','ACCOUNT','EMPLOYEE')
(skip(2) ,col (1) ,a,col (11) ,a,col (20) ,a,col (29) ,a);

put file(sysprint)
edit('NUMBER','NUMBER','NUMBER','HOURS ')

(skip,col (2) ,a,col (11) ,a,col (20) ,a,col (30) ,a,skip);

C-1

C-2 Using SQU400

exec sql
declare c1 cursor for

select *
from user1jtempract
where tempract.projno like :projid
order by empno;

EXEC SQL
OPEN C1;

j* Fetch and write the rows to SYSPRINT *j
EXEC SQL WHENEVER NOT FOUND GO TO DONEl;

DO UNTIL (SQLCODE ~= 0);
EXEC SQL

FETCH Cl INTO :RPTl;
PUT FILE(SYSPRINT)

EDIT(RPTl.EMPNO,RPTl.PROJNO,RPTl.ACTNO,RPTl.EMPTIME)
(SKIP,COL(2),A,COL(11),A,COL(21),F(5),COL(29),F(8,2));

END;

DONE1:
EXEC SQL

CLOSE C1;

j* For each project selected, generate a report containing the *j
j* project number, project name, the old total of employee hours, *j
j* and the new total of employee hours for each project. *j

j* Write out the header for Report 2 *j
PUT FILE(SYSPRINT) EDIT('ACCUMULATED STATISTICS BY PROJECT')

(SKIP(3) ,COL(22) ,A);
PUT FILE(SYSPRINT)

EDIT('PROJECT','NUMBER OF','PREVIOUS', 'CURRENT')
(SKIP(2),COL(1),A,COL(48),A,COL(59),A,COL(70),A);

PUT FILE(SYSPRINT)
EDIT('NUMBER', 'PROJECT NAME', 'EMPLOYEES', 'HOURS','HOURS')

(SKIP,COL(I),A,COL(10),A,COL(48),A,COL(60),A,COL(71),
A,SKIP) ;

EXEC SQL
DECLARE C2 CURSOR FOR

SELECT TEMPRACT.PROJNO, PRNAME, COUNT(*),
SUM(EMPTIMEj(I.0+:PERCENTAGE)),SUM(EMPTIME)

FROM USERljTEMPRACT, USERljTPROJ
WHERE TEMPRACT.PROJNO=TPROJ.PROJNO
GROUP BY TEMPRACT.PROJNO, PRNAME
HAVING TEMPRACT.PROJNO LIKE :PROJID
ORDER BY 1;

EXEC SQL
OPEN C2;

j* Fetch and write the rows to SYSPRINT *j
EXEC SQL WHENEVER NOT FOUND GO TO DONE2;

L

L

DO UNTIL (SQLCODE ~= 0);
EXEC SQL

FETCH C2 INTO :RPT2;
PUT FILE(SYSPRINT)

EDIT (RPT2. PROJNO, RPT2. PROJECT _ NAt4E, EMPLOYEE_COUNT,
OLD_TOTAL _ TIME, NEI'i_ TOTAL_TIME)

(SKIP,COL(1),A,COL(10),A,COL(50),F(4),COL(59),F(8,2),
COL(69),F(8,2));

END;

DONE2:
EXEC SQL

CLOSE C2;
GO TO FINISHED;

/* Error occurred while updating table. Inform user and rollback */
/* changes. * /

UPDATE ERROR:
EXEC SQL WHENEVER SQLERROR CONTINUE;
PUT FILE(SYSPRINT) EDIT('*** ERROR Occurred while updating table. ' "

I SQLCODE=',SQLCODE) (A,F(5));
EXEC SQL

ROLLBACK;
GO TO FINISHED;

/* Error occurred while generating reports. Inform user and exit. */
REPORT ERROR:

PUT FILE(SYSPRINT) EDIT('*** ERROR Occurred while generating'"
'reports. SQLCODE=',SQLCODE) (A,F(5));
GO TO FINISHED;

/* All done * /
FINISHED:

CLOSE FILE(SYSPRINT);
RETURN;

END PLIEX;

Appendix C. Code Example For Use of SQL WHENEVER in PUI C-3

C-4 U· sing SQLl400

L Appendix D. Code Example For Use of SQL in C/400

I 1
I 2
I 3
I 4
I 5
I 6
I 7
I 8
I 9
I 10

I 11

I 12

L
I 13
I 14
I 15
I 16
I 17

I 18
I 19
I 20
I 21
I 22

L
I 23
I 24
I 25
I 26

27
28
29
30
31
32
33

L 34
35
36
37
38
39
40
41
42
43

44
45
46
47
48
49
50
51
52
53
54

© Copyright IBM Corp. 1990

#include "string.h"
#include "stdlib.h"
#include "stdio.h"

rna in ()
{

char projid??(3??);
double percentage;

j* File declaration for qprint *j
FILE *qprint;

j* Structure for report 1 *j
struct {

char empno??(7??);
char projno??(7??);
short actno;
char startdate??(7??);
char enddate??(7??);
fl oat empt i me;
} rptl;

j* Structure for report 2 *j
struct {

char projno??(7??);
char project_name??(37??);
short employee_count;
double old_total_time,new_total time;

} rpt2;

EXEC SQL INCLUDE SQLCA;

percentage = 0.06;
strcpy(projid,"MA%");
qprint=fopen("QPRINT","w");

j* Update the selected projects by the new percentage.
j* occurs during the update, ROLLBACK the changes.
EXEC SQL WHENEVER SQLERROR GO TO update_error;
EXEC SQL

UPDATE USER1jTEMPRACT
SET EMPTIME = EMPTIt4E * (1+:percentage)
WHERE PROJNO LIKE :projid;

j* Commit changes *j
EXEC SQL

COMMIT;
EXEC SQL WHENEVER SQLERROR GO TO report_error;

If an error * j
*j

j* Report the updated statistics for each employee assigned to the *j
j* selected projects. *j

j* Write out the header for Report 1 *j
fprintf(qprint, "UPDATED EMPLOYEE PROJECT ACCOUNT DATA");

0-1

0-2 Using SQU400

55 fprintf(qprint,"\n\nEMPLOYEE PROJECT ACCOUNT EMPLOYEE");
56 fprintf(qprint, "\n NUMBER NUMBER NUMBER HOURS\n");
57
58 exec sql
59 declare c1 cursor for
68 select *
61 from user1/tempract
62 where tempract.projno like :projid
63 order by empno;
64 EXEC SQL
65 OPEN C1;
66
67 /* Fetch and write the rows to QPRINT */
68 EXEC SQL WHENEVER NOT FOUND GO TO done1;
69
78 do {
71 EXEC SQL
72 FETCH C1 INTO :rpt1;
73 fprintf(qprint,"\n %6s %6s %6d %8.2f",
74 rpt1.empno,rpt1.projno,rpt1.actno,rpt1.emptime);
75
76 while (SQLCODE==8);
77
78 done1:
79 EXEC SQL
80 CLOSE C1;
81

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113

/* For each project selected, generate a report containing the */
/* project number, project name, the old total of employee hours, */
/* and the new total of employee hours for each project. */

/* Write out the header for Report 2 */
fprintf(qprint,"\n\n\n ACCUMULATED STATISTICS\

BY PROJECT");
fprintf(qprint, "\n\nPROJECT \

NUMBER OF PREVIOUS CURRENT");
fprintf(qprint, "\nNUMBER PROJECT NAME \

EMPLOYEES HOURS HOURS\n");

EXEC SQL
DECLARE C2 CURSOR FOR

SELECT TEMPRACT.PROJNO, PRNAME, COUNT(*),
SUM(EMPTIME/(1.0+:percentage)),SUM(EMPTIME)

FROM USERI/TEMPRACT, USERI/TPROJ
WHERE TEMPRACT.PROJNO=TPROJ.PROJNO
GROUP BY TEMPRACT.PROJNO, PRNAME
HAVING TEMPRACT.PROJNO LIKE :projid
ORDER BY 1;

EXEC SQL
OPEN C2;

/* Fetch and write the rows to QPRINT */
EXEC SQL WHENEVER NOT FOUND GO TO done2;

do {
EXEC SQL

FETCH C2 INTO :rpt2;
fprintf(qprint,"\n%6s %36s %6d %8.2f %8.2f",

rpt2.projno,rpt2.project_name,rpt2.employee_count,

114 rpt2.old_total_time,rpt2.new_total_time)i
115 }
116 while (SQLCODE==O)i
117
118 done2:
119 EXEC SQL
120 CLOSE C2;
121 goto finished;
122

123 /* Error occured while updating table. Inform user and rollback */
124 /* changes. */
125 update_error:
126 EXEC SQL WHENEVER SQLERROR CONTINUE;
127 fprintf(qprint,"*** ERROR Occurred while updating table. SQLCODE="
128 "%5d\n",SQLCODE);
129 EXEC SQL
130 ROLLBACK;
131 goto finished;
132
133 /* Error occured while generating reports. Inform user and exit. */
134 report_error:
135 fprintf(qprint,"*** ERROR Occurred while generating reports.
136 "SQLCODE=%5d\n",SQLCODE);
137 goto finished;
138
139 /* All done */
140 finished:
141 fclose(qprint);
142 exit(O);
143
144

Appendix D. Code Example For Use of SOL in C/400 0-3

J

0-4 U' sing SQU400

L

Appendix E. Code Example For Use of SQL in FORTRAN/400

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

© Copyright IBM Corp. 1990

PROGRAt4 FTNEX

CHARACTER*3 PROJID
REAL*4 PERCENTAGE

* Variables for report 1. *

CHARACTER*6 EMPNO, PROJNOl, ENDDATE, STARTDATE
INTEGER*2 ACTNO
REAL*8 EHPTHIE

* Variables for report 2. *

CHARACTER
INTEGER*4
REAL *8

EXEC SQL

PROJN02*6, PROJECT_NAME*36
Et~PLOYEE COUNT
OLD_TOTAL _ T I14E, NE~J_ TOTAL_TIME

INCLUDE SQLCA

PERCENTAGE = 0.06
PROJ ID = 't~A%'

OPEN(7,FILE='QPRINT')

* Update the selected projects by the new percentage. If an
* error occurs during the update, ROLLBACK the changes.

*
*

EXEC SQL
WHENEVER SQLERROR GO TO 99900

EXEC SQL
UPDATE USERI/TEMPRACT

SET EMPTIME = EMPTIME * (1+:PERCENTAGE)
WHERE PROJNO LIKE :PROJID

* Commit changes. *

EXEC SQL
COMMIT

EXEC SQL
WHENEVER SQLERROR GO TO 99910

E-1

E-2 Using SQU400

52 ***

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

*
*

Report the updated statistics for each employee assigned to*
the selected projects. *

* Write out the header for Report 1. *

\·jRIT E(7 , 10000)
\·jRITE(7,1001O)
vlRITE(7,10020)
exec sql

declare c1 cursor for
select *

from user1/tempract
where tempract.projno like :projid
order by empno

EXEC SQL
OPEN C1

* Fetch and write the rows to QPRINT. *

EXEC SOL
WHENEVER NOT FOUND GO TO 110

100 CONTI NUE
EXEC SOL

FETCH C1 INTO :EMPNO, :PROJN01, :ACTNO,
:STARTDATE, :ENDDATE, :EMPTIME

\'lRITE(7,10040) EMPNO, PROJN01 ,ACTNO, EMPTIME
GO TO 100

110 CONTI NUE
EXEC SOL

CLOSE C1

*
*
*
*

For each project selected, generate a report containing
project number, project name, the old total of employee
hours, and the new total of employee hours for each
proj ect.

the*
*
*
*

94 ***

95

96
97 ***

98
99

100
101
102
103
104
105
106
107
108
109
110

* Write out the header for Report 2. *

~JRITE(7, 10050)
~JRITE(7, 10060)
~JRITE(7, 10070)

EXEC SOL
DECLARE C2 CURSOR FOR

SELECT TEMPRACT.PROJNO, PRNAME, COUNT(*),
SUM (EMPTIMEj (1.0+: PERCENTAGE)) , SUM (EI~PTIME)

FROM USER1/TEMPRACT, USER1/TPROJ
WHERE TEMPRACT.PROJNO=TPROJ.PROJNO
GROUP BY TEMPRACT. PROJNO, PRNAt4E

111

~ 112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

HAV I NG TEr4PRACT. PROJ NO LI KE : PROJ I D
ORDER BY 1

EXEC SQL
OPEN C2

* Fetch and write the rows to QPRINT. *

EXEC SQL
WHENEVER NOT FOUND GO TO 210

200 EXEC SQL
-FETCH C2 INTO :PROJN02, : PROJECT_NAME,
-:EMPLOYEE_COUNT,:OLD_TOTAL_TIME,:NEW_TOTAL_TIME

WRITE(7,10080)PROJN02,PROJECT_NAME,EMPLOYEE_COUNT,
OLD_TOTAL _ T H1E, NE~J_ TOTAL _ T It4E

GO TO 200
210 CONTINUE

EXEC SQL
CLOSE C2

* All done. *

CLOSE (7)
STOP

99900 CONTI NUE

*
*

Error occured while updating table.
rollback changes.

Inform user and *
*

EXEC SQL
WHENEVER SQLERROR CONTINUE

WRITE(7,10090) SQLCODE
EXEC SQL

ROLLBACK
STOP

* Error occured while generating reports. Inform user and
* exi t.

*
*

99910 CONTI NUE
WRITE(7,10100) SQLCODE
STOP

10000 FORMAT('UPDATED EMPLOYEE PROJECT ACCOUNT DATA')
10010 FORMAT(//'EMPLOYEE',T11,'PROJECT',T20,'ACCOUNT',T29,'EMPLOYEE')
10020 FORMAT(/' NUMBER',Tl1,'NUMBER',T20,'NUMBER',T30,'HOURS'/)
10040 FORMAT(T2,A,T11,A,T21,I5,T29,F8.2)
10050 FORMAT (//T22, 'ACCUMULATED STATISTICS BY PROJECT')
10060 FORMAT(/'PROJECT',T48,'NUMBER OF',T59,'PREVIOUS',T70,'CURRENT')
10070 FORMAT('NUMBER',T10,'PROJECT NAME',T48,'EMPLOYEES',T60,'HOURS',

T71, 'HOURS')
10080 FORMAT(A,T10,A,T50,I4,T59,F8.2,T69,F8.2)
10090 FORMAT('*** ERROR Occurred while updating table. SQLCODE=',

Appendix E. Code Example For Use of SQL in FORTRAN/400 E-3

170 16)
171 10100 FORMAT('*** ERROR Occurred while generating reports. SQLCODE=',
172 15)
173 END

E-4 Using SQU400

l.. I Appendix F. Sample Tables Used in Examples

Inventory Table
CREATE TABLE INVENTORY
(PARTNO SMALLINT NOT NULL,
OESCR CHAR(24) NOT NULL,
ONHANO INTEGER NOT NULL)

PARTNO

207

209

221

222

231

232

241

285

295

GEAR

CAM

BOLT

BOLT

NUT

NUT

WASHER

WHEEL

BELT

Table F-1. Sample Inventory Table

© Copyright I BM Corp. 1990

OEseR ONHANO

600

50

650

1250

700

1100

6000

350

85

F-1

Supplier Table

F-2 Using SQU400

CREATE TABLE SUPPLIER
(SUPPNO SMALLINT NOT NULL,
NAME CHAR(15) NOT NULL,
ADDRESS CHAR(35) NOT NULL)

SUPPNO NAME

51 DEFECTO PARTS

52 VESUVIUS INC

53 ATLANTIS CO

54 TITANIC PARTS

57 EAGLE HARDWARE

61 SKY PARTS

64 KNIGHT LTD

Table F-2. Sample Supplier Table

ADDRESS

6 BUM ST. BROKEN HAND. WY

512 ANCIENT BLVD, POMPEII

8 OCEAN AVE, WASHINGTON DC

32 LARGE ST, BIGTOWN TX

64 TRANQUILITY PLACE, MN .
128 ORBIT BLVD. SYDNEY AUSTRALIA

256 ARTHUR COURT. CAMELOT ENGLAND

Quotations Table
CREATE TABLE QUOTATIONS
(SUPPNO SMALLINT NOT NULL,
PARTNO SMALLINT NOT NULL,
PRICE DECIMAL NOT NULL,
DELTIME SMALLINT NOT NULL,
ONORDER INTEGER NOT NULL)

SUPPNO PARTNO PRICE DElTIME ONORDER

51 221 .30 10 50

51 231 .10 10 0

53 222 .25 15 200

53 232 .10 15 0

53 241 .08 15 0

54 209 18.00 21 0

54 221 .10 30 150

54 231 .04 30 200

54 241 .02 30 200

57 285 21.00 15 0

57 295 8.50 21 24

61 221 .20 21 200

61 222 .20 21 200

61 241 .05 21 0

64 207 29.00 14 20

64 209 19.50 7 7

Table F-3. Sample Quotations Table

L

L

Appendix F. Sample Tables Used in Examples F-3

Employee Table

F-4 Using SQU400

CREATE TABLE TEMPL
(EMPNO CHAR(6) NOT NULL I-lITH DEFAULT,
FIRSTNME CHAR(12) NOT NULL WITH DEFAULT,
MIDI NIT CHAR(!) NOT NULL WITH DEFAULT,
LAST NAME CHAR(!S) NOT NULL WITH DEFAULT,
DEPTNO CHAR(3) NOT NULL WITH DEFAULT,
PHONENO CHAR(4) NOT NULL WITH DEFAULT,
HIREDATE CHAR(6) NOT NULL WITH DEFAULT,
JOBCODE DECIMAL(3) NOT NULL WITH DEFAULT,
EDUCLVL SMALLINT NOT NULL WITH DEFAULT,
SEX CHAR(!) NOT NULL WITH DEFAULT,
BRTHDATE CHAR(6) NOT NULL WITH DEFAULT,
SALARY DECIMAL(B,2) NOT NULL WITH DEFAULT)

»
"C
"C
CD
::J
9:
)(

:n
C/l
III
3

"C
iD
-l
III
C"
iD
en
c
en
CD
a.
::J

m
)(

III
3

"C
iD
en

."
I

U'I

r

EMP·
NO

FIRSTNME

000010 Christine

000020 Michael

000030 Sally

000050 John

000060 Irving

000070 Eva

000090 Eileen

000100 Theodore

000110 Vicenzo

000120 Sean

000130 Delores

000140 Heather

000150 Bruce

000160 Elizabeth

000170 Masatoshi

000180 Marilyn

000190 James

000200 David

000210 William

000220 Jennifer

000230 James

000240 Salvatore

000250 Daniel

000260 Sybil

000270 Maria

000281) Ethel

L

MID·
INIT

A

B

F

D

w
Q

G

M

A

R

J

S

H

T

K

J

M

S

P

L

R

r

LASTNAME

Haas

Thompson

Kwan

Geyer

Stern

Pulaski

Henderson

Spenser

Lucchesi

O'Connell

Quintana

Nicholls

Adamson

Pianka

Yoshimura

Scoutten

Walker

Brown

Jones

Lutz

Jefferson

Marino

Smith

Johnson

Perez

Schneider

r
DEPT·

NO

ADO

B01

C01

EOl

011

D21

E11

E21

AOO

AOO

C01

COl

Dll

Dll

D11

D11

Dll

Dll

Dl1

D11

D21

D21

D21

D21

D21

E11

PHONE
·NO

3978

3476

4738

6789

6423

7831

5498

0972

3490

2167

4578

1793

4510

3782

2890

1682

2986

4501

0942

0672

2094

3780

0961

8953

9001

8997

HIRE·
DATE

750101

731010

750405

690817

730914

800930

700815

800619

680516

731205

710728

761215

720212

771011

780915

730707

740726

760303

790411

780829

761121

791205

791030

750911

800930

770324

r
JOB·
CODE

66

61

60

58

55

56

55

54

58

58

55

55

55

54

54

53

53

55

52

55

53

55

52

52

55

54

EDUC·
LVL

18

18

20

16

16

16

16

14

19

14

16

18

16

17

16

17

16

16

17

18

14

17

15

16

15

17

SEX

F

M

F

M

M

F

F

M

M

M

F

F

M

F

M

F

M

M

M

F

M

M

M

F

F

F

BRTH·
DATE

330814

480202

410511

450915

450707

530526

410515

561218

491105

421018

350915

460119

470517

550412

510105

490221

520625

410529

530223

480319

350530

540331

391112

361005

530526

360328

r
SAL·
ARY

52750

41250

38250

40175

32250

36170

29750

26150

46500

29250

23800

28420

25280

22250

24680

21340

20450

27740

18270

29840

22180

28760

19180

17250

27380

26250

Employee Project Account Table

J CREATE TABLE TEMPRACT
(EMPLNO CHAR(6) NOT NULL WITH DEFAULT,
PROJNO CHAR(6) NOT NULL WITH. DEFAULT,
ACTNO SMALLINT NOT NULL WITH DEFAULT,
STARTDATE CHAR(6) NOT NULL WITH DEFAULT,
ENDDATE CHAR(6) NOT NULL WITH DEFAULT,
EMPTIME DECIMAL(5,2) NOT NULL HITH DEFAULT)

EMPLNO PROJNO AeTNO STARTDATE ENDDATE EMPTIME

000160 MA2100 20 860501 860829 500

000170 MA2100 20 860901 861231 500

000180 MA2100 20 870105 870430 650

000060 MA2100 10 870101 881101 500

000110 MA2100 20 880101 880301 400

j 000220 MA2112 50 871001 880615 900

000170 MA2112 70 870601 880102 100

000190 MA2112 70 880201 880601 100

000180 MA2113 70 870401 871215 400

000210 MA2113 80 870401 871215 500

000230 MA2113 70 870401 871215 300

000010 AD3100 10 880101 880701 500

000070 AD3110 10 880101 880201 100

000230 AD3111 60 880101 880315 100

000240 AD3111 70 880215 880915 500

000250 AD3112 60 880101 880201 100

000270 AD3113 60 880301 880401 100

000260 AD3113 70 880615 880701 80

Table F-4. Sample Employee Project Account Table

F-6 Using SQU400

L

L

Department Table
CREATE TABLE TDEPT
(DEPTNO CHAR(3) NOT NULL WITH DEFAULT,
DEPTNAME CHAR(36) NOT NULL WITH DEFAULT,
MGRNO CHAR(6) NOT NULL WITH DEFAULT,
ADMRDEPT CHAR(3) NOT NULL WITH DEFAULT)

OEPTNO OEPTNAME

AOO Computer Service Oiv.

B01 Planning

C01 Information Center

001 Development Center

E01 Support Services

011 Manufacturing Systems

021 Administration Systems

E11 Operations

E21 Software Support

Table F-S. Sample Department Table

MGRNO AOMROEPT

000010

000020 AOO

000030 AOO

AOO

000050 AOO

000060 DOl

000070 001

000090 EOl

000100 EOl

Appendix F. Sample Tables Used in Examples F-7

Project Table

F-8 Using SOLl400

CREATE TABLE TPROJ
(PROJNO CHAR(6) NOT NULL ~JITH DEFAULT,
PRNAME CHAR(36) NOT NULL WITH DEFAULT,
DEPTNO CHAR(3) NOT NULL WITH DEFAULT,
DEPTMGR CHAR(6) NOT NULL WITH DEFAULT,
PRSTAFF DECIMAL(5,2) NOT NULL WITH DEFAULT,
PRSTDATE CHAR(6) NOT NULL WITH DEFAULT,
PRENDATE CHAR(6) NOT NULL ~JITH DEFAULT,
MAJPROJ CHAR(6) NOT NULL WITH DEFAULT)

»
"0

~
::J a.
x
:-n
(J)
III
3
~
ro
-l
III
e­
n;-

'" a.

;Tl
X
III

"0
en
VI

'TI

"'

r

PROJNO

AD3100

AD3110

AD3111

AD3112

AD3113

MA2100

MA2110

MA2112

MA2113

r
PRNAME DEPTNO

ADMINISTRATION SERVICES 001

GENERAL ADMIN SYSTEMS 021

PAYROLL PROGRAMMING 021

PERSONNEL PROGRAMMING 021

ACCOUNT PROGRAMMING D21

MFG AUTOMATION 011

MFG PROGRAMMING E21

ROBOT DESIGN E01

PROD CONTROL PROG 011

r r r
DEPTMGR PRSTAFF PRSTDATE PRENDATE MAJPROJ

000010 6.5 860101 830201

000070 6 871001 880215 AD3100

000230 2 880101 880401 AD3110

000250 870320 870601 AD3110

000270 2 870901 880315 AD3110

000060 12 860324

000100 3 870928 880219 MA2100

000050 3 860106 881111 MA2110

000060 3 MA2100

F-10 Using SQU400

Index

A
access path 5-31
access plan 5-2, 5-47
ALCOBJ 6-3
ALIAS 3-38
ALL authority 8-4
always-active HLL 5-15
analyzing performance problems 5-52
ANZDBF and ANZDBKEY 5-53
apostrophe, in COBOL and C programs 3-19
application design 5-15
application development with SQL 3-32
arrival sequence 5-31
associated space, of program object 5-47
AS/400 PC Support 6-2
AS/400 Query 1-2, 2-5, 6-2
authorization

B

control differences 11-2
ID 3-1, 8-1
in dynamic SQL 4-10
list 8-5, 8-6

binding 3-20, 5-2, 5-3
AS/400 Query 5-3
dynamic SQL programs 5-2
OPNQRYF 5-3
OS/400 Query Management 5-3
PC Support file Transfer 5-3
physical and logical files 5-3
summary 5-4

building access path message, when performing
SELECT 3-6

C
cartesian product 3-10, 5-49
catalog 3-3

LFs and views 8-2
maintenance, performance implications 3-4
tables 8-5, 8-7

change System/36 Environment (CHGS36) 3-46
changing file/table structure 3-36
CLRPFM 5-14
COBOL GOBACK statement 11-5
COBOL programming 3-37
Codd, Dr E.F. 12-1
collection 8-2
column selection 5-35
COMIT (RPG) 7-10
COMMENT 2-6
commit 3-28, 7-10

© Copyright IBM Corp. 1990

COMMIT and ROLLBACK with HOLD 7-6
COMMIT parameter, precompile option 3-18
commitment control 3-44, 8-8

after CPYF/MOVOBJ 3-35
and batch applications 7-2
and interactive applications 7-1
and row locking 7-3
DDM files 6-4
in different collections 7-12, 7-13
maximum row lock 4-2

concurrency 7-3
optimizing 5-29

COPY DD 3-39
COPY DDS 3-35, 3-37, 3-42
copying data 3-33
correl ated subquery 3-15
correlation names 3-11
cost estimation 5-45
CPYF 3-34

commitment control 7-14
'MAP (changing table/file structure) 3-36

CREATE 2-6
CREATE TABLE 3-33
creating a temporary table, in a program 4-3
CRTDUPOBJ 3-34
CRTSQLxxx commitment control levels 7-10
CSP implications 5-16
cursor stability and 'CHG 7-2
cursors

definition of 4-1
processing with 4-4
processing without 4-1

C/400 debug 3-18

D
data conversion considerations 11-3
data definition language - portability 11-1
data description specifications 2-1
data dictionary 8-2
data manipulation language and portability 11-4
data migration 11-3
data space 5-32

scan 5-32
database design 5-9
database, name change 3-3
data/text merge option (AS/400 Query) 1-3
DDL 2-6
DDM files 1-3,3-44,6-1

PC Support 1-5
DDS 2-1

files 1-2, 1-3, 3-33, 3-45
debug

C/400 3-18

X-1

debug, output in job log 5-54
decision-making rules, of optimizer 5-48
declarative SOL statements 3-43
declare cursor 3-43
declare statement 3-43
default filter factors 5-47
default values 7-1
definition

access path 5-31
access plan 5-2
arrival sequence 5-31
binding 5-2
column selection 5-35
cursor 5-5
data space 5-32
default filter factors 5-47
file management row selection 5-36
index from index 5-35
key row positioning 5-33
key Row selection 5-33
keyed sequence 5-31
late binding 5-3
left-most key 5-32
miniplan 5-47
open data path (OOP) 5-2
optimizer 5-7
OS/400 query component 5-5
primary key 5-32
prototype OOP 5-3
query 5-5
query definition template (OOT) 5-7
rebinding 5-3
Nhaven't spent too much timeN condition 5-48

deleting 4-3, 4-7
using CLRPFM 5-14

design (performance)
application 5-15
database 5-9
guidelines 5-8
progr am 5-17

device file (OOM) 6-1
OFU 2-2,2-5

OFU/38 6-2
OFU/400 6-2
to insert into views 3-7

dictionary objects (LF's) 8-2
dictionary objects (PFs) 8-2
display data base relations (DSPDBR) 5-54
display-station passthrough 6-2
distributed unit-of-work 6-1
DROP 2-6
DSPFFD 3-4
OSPMSGD CL command 3-28
DSPOBJAUT 8-1
dynamic

non-SELECT statements 4-10
row selection 5-32
SELECT statements 4-7

X-2 Using SOU400

dynamic (continued)
SOL 4-7
SOL performance 4-13
SOL, GRANT and REVOKE 8-1

E
EDTOBJAUT 8-1
ending journaling 7-13
entity integrity 12-3
equi-join 3-8
error handling 3-44
error message text 3-27
EXECUTE IMMEDIATE 4-10
externally described files 3-32

F
FEOD (Force End of Data) - INSERT with

subselect 5-72
field definitions, in IDDU 2-5
file

conversion (System/36) 3-45
definitions, in IDDU 2-4
size, when creating index 3-5

file management row selection 5-36
filter factors, default 5-47
FOR UPDATE OF clause 4-6
foreign key 12-3

G
GRANT 8-1
greater-than, less-than and non-equi joins 3-10
GRTOBJAUT 8-1

H
high-level language programs 3-37

I-O-CONTROL (COBOL) 7-10
IDDU 2-4

files 1-2, 1-3, 3-33, 3-45
implementation cost 5-45
INCLUDE 3-41, 3-43

file, precompiler option 3-19
indexed file organization 3-29
indexes 3-5, 5-31

correct usage 5-52
creating 3-35, 5-11

from another index 5-35
how to determine if they are being used 5-55
identifying a new index created for SELECT 5-56
identifying an index created from an index 5-57
identifying temporary index usage 5-56, 5-59
implicit sharing 5-12
inefficient, how to identify 5-58

L

L

indexes (continued)
optimizing usage 5-18

indicator variables 3-28
inner join 3-12
inserting 4-3

data into views 3-7
Interactive Data Definition Utility 2-4
interactive implications under commitment

control 7-2
interactive SQL 8-7, 9-1

for debugging performance problems 5-54
new sort 5-71

invocations 5-15
isolation levels 11-4

J
job log 5-54
job trace 5-59

STRJOBTRC 5-60
TRCINT 5-60
TRCJOB 5-59

join 2-3, 3-8
and index creation 3-5
fields, matching attributes 5-13
files 3-35
logical files in DDS 3-35
on OPNQRYF 1-4
optimization 5-48
ordering algorithm 5-49
update capable, partial 5-20
using PC Support 1-5

join optimization 5-23
forcing temporary result file 5-25
index over secondary file 5-24
join from smallest to largest 5-25
many record selection conditions 5-24
predicates on WHERE clause 5-23
primary join file has fewest number of selected

rows 5-24
redundant WHERE predicates 5-24

journal 8-2
entries for SQL update statements 5-72
receiver 8-2

journaling 7-10,7-12

K

to different journals in same application 7-13
with copy/move commands 3-34
with different collections 3-35

KCOMIT (RPG) 7-10
key range estimates 5-47
key row positioning 5-33
key row selection 5-33
keyed sequence 5-31

L
LABEL 2-6
late binding 5-3
left-most key 5-32
LIKE comparison operator, and indexes 3-7
literals, use of in COBOL and C programs 3-19
locking rules 11-4
logical file 2-1, 8-1

M
mass insertions 4-3
Menu-Based Natural Language Query (MBNLQ) 1-6
message text, for SQL messages 3-28
module names to look for in trace 5-60

QDBFIXIT 5-62
QDBGETKY 5-64
QDBGETM 5-64
QDBGETSQ 5-64
QMH????? 5-64
QQQACTIV 5-62
QQQGET 5-62
QQQIMPLE 5-62
QQQISVSU 5-40, 5-61
QQQITEMP 5-62
QQQOPTIM 5-61
QQQQEXIT 5-62
QQQQUERY 5-61
QQQS ETU P 5-61
QQQSQCMP 5-61
QQQVALID 5-61
QQQVM RCY 5-62
QQQVWCMP 5-61
QQQVWFLD 5-61
QSQAUTH 5-64
QSQBIND 5-64
QSQBLQDT 5-64
QSQCLOSE 5-64
QSQCRTDB 5-64
QSQCRTI 5-64
QSQCRTI 5-64
QSQCRTV 5-64
QSQDELET 5-64
QSQDESC 5-64
QSQDROP 5-64
QSQFETCH 5-64
QSQINS 5-64
QSQLABEL 5-64
QSQLCCR 5-64
QSQOPEN 5-64
QSQPREP 5-64
QSQPSTAB 5-64
QSQRAPL Y 5-64
QSQRCH K 5-64
QSQRLEX 5-64
QSQROUTE 5-64
QSQRPARS 5-64
QSQRPTAB 5-64

Index X-3

module names to look for in trace (continued)
OSORTBLS 5-64
OSORTOKR 5-64
OSORXL TR 5-64
OSORXTRT 5-65
OSOUPDAT 5-65
OSOXCUTE 5-64
OSOXIT 5-65

moving data 3-33
MOVOBJ 3-34

commitment control 7-14
multiple access plans 5-4
multiple format logical files 1-3
multiple systems with SOLl400 3-44

N
naming conventions 3-1, 3-2
naming convention, SOL 3-19
nested SELECT 3-13
non-reusable ODP 5-39
non-SOL table access 3-42
normalization 3-8, 5-9
nulls 3-7

NOT NULL 3-36

o
ODP
office 5-6
open data path

definition 5-2
generalized 5-41
non-reusable 5-39
reusability 5-38
reusable 5-39
reusable ODP

across invr':ations 5-15, 5-71
OPNORYF 1-4, b-2
optimizer 5-7, 5-44, 5-48

catalog use of 3-4
decision-making rules 5-48

optimizer weightings 5-46
ALLIO 5-46
FIRSTIO 5-46
MINWAIT 5-46

optimizing
concurrency 5-29
CPU usage 5-17
index usage 5-18
I/O with blocking 5-29

ORDER BY 3-38
with UNION 3-17

OS/400 query component 5-5, 5-44
outer join 3-12
OVRDBF 3-37

X-4 Using SOLl400

p
page faults 5-32
parameter markers 4-11
PC Support (AS/400) 1-5
performance

arithmetic expressions 5-27
ASP 5-14
BElWEEN clause on keys 5-23
checklist 5-8
cursor operation 5-19
database file management 5-14
dynamic SOL 5-17
journal management 5-14
LIKE predicate 3-32, 5-23
native file management vs SOL 5-67
numeric conversion 5-26
SOL in general 5-68
SOL versus HLL I/O 3-32
SOL vs keyed files 5-68
SOL vs non-keyed files 5-68
SOL vs OPNORYF 5-69
static vs dynamic SOL 5-69
string truncation 5-26
updating via cursor operation 5-19
user ASP 5-14

performance enhancements in release 3.0 5-71
performance tools 5-6, 5-65
physical file 8-1
physical files 2-1
PLII program, WHENEVER clause 3-25
portability 11-1
pre-fetching 5-33
precompile

listing 3-18
optimization 5-44

precompilers 9-1
precompiling 5-2, 5-44
primary key 5-32, 12-3
program adoption of authority 8-8
program design 5-17
project 2-3
prompting of SOL statement in SEU 9-3
prototype ODP 5-3

Q
OSOJRN 3-35
Ouery 1-3
query definition template (ODT) 5-7, 5-44, 5-47
Ouery/38 6-2

licensed program product (5728-DB1) 1-3
tables 1-3

quotes, in COBOL and C programs 3-19
O&A database 5-6

R
random access of tables 3-43
re-opti mization 5-47
read only declare cursor, columns in 5-71
READ PRIOR 3-42
read prior in SQL 3-29
read-only remote file/table access 6-3
rebinding 5-3
recommendation

DDL methodology 2-9
for use of Interactive SQL 9-3
naming convention 3-2
security implementation 8-6

record format definitions, in IDDU 2-5
record order 3-42
records retrieved after index positioning 5-72
redundant data 5-9
referential integrity 12-3
relational operators 2-3
relative file organization 3-29
remote fi Ie access 6-1
remote file/table updating 6-3
remote unit-of-work 6-1
renaming fields, RPG 3-40
repeatable read and 'ALL 7-2
retrieval 4-4
retrieving 4-1
reusability 5-38

of ODP's 5-38
restrictions 5-71

reusable ODP 5-39
across invocations 5-15,5-71

REVOKE 8-1
ROLBK (RPG) 7-10
rollback 3-28,7-10
row locking and commitment control 7-3
row selection methods

column selection 5-35
dynamic row selection 5-32
file management row selection 5-36
index from index 5-35
key row positioning 5-33
key row selection 5-33

rows
length 5-11
number 5-11
number inserted, updated or deleted 3-27

RPG Host Variable Definition 3-39
RPG programming 3-38
RSTOBJ 3-34
RlVMSG CL command 3-28
RUNQRY 1-2
RVKOBJAUT 8-1

S
SAA

and SQL 3-43

SAA (continued)
functions not implemented in SQU400 11-1
size limits 11-1

screen design aid, use with SQL tables 3-43
SDA 2-2,6-2

with SQL tables 3-43
second level message 3-28
seize contention 5-72
SELECT 2-3, 3-35

SELECT statements, with varying-list
selection 4-10

statements, with fixed-list selection 4-7
SELECT INTO processing 5-72
sequence 2-3
sequential file organization 3-29
set position exception 5-72
SEU 6-2

prompting of SQL statement 9-3
sharing select/omit access paths 5-71
SQL

data definition language 2-6
INCLUDE 3-41,11-5
naming convention 3-1

SQLCA 3-27
SQLCA, use of in a program 3-20
SQU400 1-1

data definition extensions 11-2
standards 10-1
statement entry screen 9-1
static and dynamic SQL 4-1
static SQL 4-1
storage when building access paths 5-72
STRCMTCTL 7-10
STRJRNPF 3-35
STRQRY 1-2
STRSQL 9-1
structure - changing tables or files 3-36
subquery 3-13

correlated 3-15
join implementation 5-50
non-join implementation 5-51
optimization 5-50

subquery performance 5-71
subroutines in WHENEVER processing 3-22
system catalogs 11-2
system naming convention 3-2
System/36

Environment 3-46
file conversion 3-45
file library (QS36F) 3-46

System/38
Query 1-3
Utilities (5728-DB1) 1-3

T
table size 5-11
tables (System/38) 1-3

Index X-S

test data files 3-37
timing and paging statistics tool (TPST) 5-65
transferring data (PC Support) 1-5
truncation 3-29

U
underline character L) 3-38
union 2-3, 3-15
update capable join, partial 5-20
updating 4-2

with ORDER BY on SELECT 4-4
user ASP 5-14
user tables 8-2
user views 8-2

V
validation 5-47
view authority 8-3
views 3-7

W
WHENEVER 3-21, 3-43, 3-45

with continue 3-23
wordiness 3-30
work with commands, identifying index creation 5-59
workstation files 3-43
WRKQRY 1-2

X-6 Using SQU400

J

L

L

READER'S COMMENTS

Title: SQU400: A Guide for Implementation
GG24-3321-01
International Technical Support Center, Rochester

You may use this form to communicate your comments about this publication, its organization or subject matter
with the understanding that IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

Comments:

Reply requested Name: ______________ _

Yes / No Job Title: _____________ _

Address: _____________ __

Reader's Comment Form

FOld and tape Please Do Nol Siaple

I II
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 40 ARMONK. N Y

POSTAGE WILL BE PAID BY ADDRESSEE

IB:\1 International Technical Support Center
Department 977, Building 663-3
Highway 52 and l'iW 37th Street
Rochester, :\1innesota 55901 U.S.A.

Fold and tape

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

(')

5.

I
t
t
I
I
I
t
I ... •••• • .. • .. •• .. • .. •• .. ••••• .. • •• .. •• .. ••• .. • .. • .. ••••••• 1

I
FOld and tape Please Do Nol Siaple Fold and tape I

t

--..- -~ ----- - --------. ---- - - --------
-~-.-

L READER'S COMMENTS

Title: SQLl400: A Guide for Implementation
GG24-3321-01
International Technical Support Center, Rochester

You may use this form to communicate your comments about this publication, its organization or subject matter
with the understanding that IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

Comments:

Reply requested Name: ______________ _

Yes I No Job Title: ____________ _

Address: ___________________ __

Reader's Comment Form

FOld and tape Please Do Not Staple Fold and lape

..

II
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO 40 ARMONK. NY

POSTAGE WILL BE PAID BY ADDRESSEE

IB:\l International Technical Support Center
Department 977, Building 663-3
Highway 52 and i\""\V 37th Street
Rochester, :\linnesota 55901 U.S.A.

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

I
I
I
I
I
I
I
I .. • .. ·1

FOld and lape Please Do Not Staple FOld and lape

---- -(~ ----- - -------. ---- - - --------
-~-.-

J

lffiil lilil lffi lil ilIil lil lffi lill lil lffi llilil ffi ll[il I

I E_ i EEE-FE5g

'.,r{

, ..&

:l;*" Li

iffil
i+H
ffi ffiffi

ffi 'l{f:'r

tt"l'

.':i].t
+lt;: ,rili{

;'iJ
::,ft!
$i3
ffi :r&:&

ffi
ffi
re

ffi
ffi

o
rB

c)

c)

L

C)

t
o
ct ct

bc

Fl

c,)

a)

I

a

