
NASP-9214-06
NAS Enroute Stage A
Contract FA65WA-1395

NAS OPERATIONAL SUPPORT SYSTEM

USER'S MANUAL

IBM 9020 Data Processing System Basic
Assembly Language
(BALASM)

Model A3d2.0

1 S August 1973

The Basic Assembly Language is a symbolic programming
language that provides a convenient way to make full use
of the capabilities of the IBM 9020 Data Processing System.
The ass:embly language provides flexibility in program and
machine usage and assists the programmer in checking,
standardizing, and documenting programs. This revision
conforms with the C42 release of the BAL Assembler.

This document replaces NASP-9214-05 and is compatible
with the NOSS tapes which support the NAS Model A3d2,0
tape release.

NAS Programming
IBM Federal Systems Division
NAFEC, Atlantic City, New Jersey

I'
NOTICE: This document is stored on magnetic tape. In making
changes, please submit a copy of the document containing the marked
up changed pages. Use pages from the current level only. If necessary,
attach insert material on separate pages, but do not retype material that
has not changed. This will only slow down the update process and
increase the chance of error.

PREFACE

This document, prepared by the International Business Machines Corporation, is submitted to the Federal
Aviation Administration in accordance with the requirements of Contract FA65WA-1395.

These change pages update the NAS Operational Support System (NOSS) User's Manual for the IBM
9020 Data Processing System Basic Assembly Language (BALASM), dated 24 May 197 4, to make it
compatible with the NOSS tapes which support the NAS Model A3d2.l System.

In using this document, note that National Airspace System Configuration Management Document
(NAS-MD) should be substituted wherever System Program Office Configuration Management Directive
(SPO-MD) appears.

ii

SECTION 1. INTRODUCTION 1-1

Assembly Language Features · 1-1

Statement Fields
Name Field
Operation Field .
Operand Field ·.
Comments Field
Identification-Sequence Field

SECTION 2, WRITING ASSEMBLY LANGUAGE
STATEMENTS

Character Set

Symbols
Relocatable and Absolute Symbols
Defining Symbols
·Previously Defined Symbols
External and Entry-Point Symbols
General Restrictions on Symbols

Location Counter
Location Counter References

SeJf-Defining Values
Decimal SeJf-Defining Value
Hexadecimal Self-Defining Value
Character Self-Defining Value
Symbol Attribute Self-Defining Value
Using Self-Defining Values

Literals
Literal Format
Literal Pool

1-1
1-1
1-2
1-2
1-2
1-3

2-1

2-1

2-1
2-1
2-1
2-2
2-2
2-3

2-3
2-3

2-3
2-4
2-4
2-4
2-4
2-4

2-4
2-5
2-5

Expressions. 2-5

Relative Addressing
. Evaluation of Expressions
Types of Expressions . . •
External Symbols in Expressions

SECTION 3. MACHINE INSTRUCTION
STATEMENT

Instruction Alignment and Checking

Operand Format
Operand Fields and Subfields
Effective Addresses - Explicit and Implied
Lengths - Explicit and Implied

Machine Instruction Mnemonic Codes
Machine Instruction Examples
Extended Mnemonic Codes

2-6
2-6
2-6
2-7

3-1

3-1

3-1
3-1
3-1
3-1

3-5
3-5
3-10

CONTENTS

SECTION 4. ASSEMBLY INSTRUCTION
STATEMENTS 4-1

Symbol Definition Instructions ~
EQU - Equate Symbol
MAX and MIN - Equate Symbol
TEQU - Temporarily Equate a Symbol

Data Definition Instructions
DC - Define Constant
DS - Define Storage ·
CCW - Define Channel Command Word

Program Sectioning and Linking
First Control Section
Symbolic Linkages
START - Start Program
CSECT - Identify Control Section
DSECT - Identify Dummy Section
COM - Identify Common Control Section
ENTRY - Identify Entry-P9int Symbol
EXTRN - Identify External Symbol
QUAL - Qualify Names

Base Register Instructions
USING - Use Base Address Register
DROP -- Drop Base Address Register
Programming with the USING Instruction

Listing Control Instructions
TITLE - Identify Assembly Output
EJECT - Start New Page
SPACE - Space Listing
DO UBL - Double Space
PRINT - Print Optional Data
NLIST - Suppress Listing
LIST - Resume Listing ,

Program Control Instructions
ICTL - Input Format Control
ISEQ - Input Sequence Checking
SSEQ - Suppress Sequence Checking
ORG - Reset Location Counter
LTORG - Begin Literal Pool
CNOP - Conditional No Operation
END - End Program
SPEM - Suppress Possible Error Messages•..
RPEM - Resume Possible Error Messages•..
LIB - Library Update
Assembling With a Com pool
PSEG - Select Compool Segment
DEBUG Instructions

4-1
4-1
4-2
4-3

4-3
4-4
4-11
4-13

4-13
4-14
4-14
4-14
4-15
4-15
4-16
4-16
4-16
4-16

4-17
4-17
4-18
4-18

4-20
4-20
4-21
4-21
4-21
4-21
4-22
4-22

4-22
4-22
4-22
4-22
4-23
4-23
4-24
4-25
4-25
4-25
4-26
4-26
4-26
4-27

Appendix A. CHARACTER CODES A-1

Appendix B. HEXADECIMAL-DECIMAL NUMBER
CONVERSION B-1

iii

CONTENTS (Continued)

Appendix C. CONSTANT DEFINITION C-1

Appendix D. ASSEMBLY INSTRUCTION
REFERENCE D-1

Appendix E. ASSEMBLY DEFINITIONS OF
SYSTEM SYMBOLS E-1

ILLUSTRATIONS

Figure 4-1. Use of DS Instruction 4-12

Figure 4-2. Base Register Assignment 4-19

Figure 4-3. Base Register Assignment .. ' 4-19

Figure 4-4. Addressing Dummy Sections 4-20

Figure 4-5. Addressing External Programs 4-20

TABLES

Table 2-1. Type Attributes. 2-2

Table 3-1. Machine Instruction Format 3-2

Table 3-2. Details of Address Specification 3-4

Table 3-3. Details of Length Specification in SS
Instruction . 3-5

Table 3-4. Machine Instruction Mnemonic Codes 3-6

Table3-5. ExtendedMnemonics............... 3-10

Table 4-1. Assembly Instructions 4-1

Table 4-2. Type Subfield Codes 4-5

Table 4-3. Channel Command Word Formats. 4-13

TableA-1. Character Codes A-1

iv

Appendix F. BAL PROCEDURES F-1

Appendix G. SAMPLE PROGRAM LISTING G-1

Appendix H. 1/0 REQUIREMENTS H-1

Appendix I. STORAGE REQUIREMENTS 1-1

Figure 4-6. CNOP Position Specifications 4-24

Figure F-1. Utility Programming System for the IBM
9020 Data Processing System F-1

Figure F-2. Flow oflnput to the Assembler F-2

Figure F-3. Sample of BAL Source Deck Accepted
by the Assembler F-2

Table B-1. Hexadecimal-Decimal Number
Conversion . B-1

Table C-1 Summary Information for Defining
Constants . C-1

Table D-1. · Reference Summary for Assembly
Instructions . D-1

Table E-1. System Symbols Defined by Assembly E-1

Table H-1. 1/0 Requirements H-1

Table 1-1. Assembler SE's vs Variables
(.WORK2 Available) 1-1

Table I-2. Assembler SE's vs Variables
(.WORK2 Not Available) 1-1

The basic assembly language, which is referred to in
this publication as the assembly language, is a symbolic
programming language for the IBM 9020 Data Processing
Systt!m.

Programs written in the source language are processed
by an assembly program. The output consists of an object
program suitable for loading and execution, and a listing of
both the source program and the resulting object program.
As the program is assembled, it is carefully analyzed for
actual errors or potential errors in the use of the assembly
language.

ASSEMBLY LANGUAGE FEATURES

The assembly language provides mnemonic operation
codes for all machine instructions and extended mnemonic
codes for certain branch instructions. Because program
elements may be named, the programmer can employ
symbolic addresses to refer to main storage, general
registers, floating-point registers, etc. Data formats can be
expressed with maximum flexibility. Listing controls enable
·the user to head the listing pages, annotate and space the
listing, and control its content.

The programmer can shift the clerical burden of
calculating base addresses and displacements to the assem
bly program, and yet retain complete control of base
register usage. He decides which registers are to be used as
base registers and loads them with the proper values.

Finally, the language provides a simple means of
specifying and using a relocatable program that comprises
as many or as few control sections as the user requires. The
programmer may refer to data and/ or transfer control to
instruction sequences that are in other programs, i.e.,
programs that have been assembled separately from his
own.

STATEMENT FIELDS

An assembly language source program consists of a
sequence of statements punched into cards. An assembly
language statement is composed of from one to four fields;
starting from left to right, they are: name field, operation
field, operand field, and comments field. The identification
sequence field (columns 73-80) is not part of the
statement.

SECTION 1. INTRODUCTION

There are five general rules that must be observed when
writing assembly language statements:

1. Every statement requires an operation field; addi
tional fields are optional.

2. The fields in a statement must be in order, and
they must be separated from one another by at
least one blank, which acts as the field delimiter.

3. Because a blank is used as a delimiter, the name,
operation, and operand fields must not contain
embedded blanks. However, a blank may occur
within a character self-defining value, a character
constant, or a character literal.

4. Column 72 should always be blank.

S. If a card is completely blank (or if there is no
operation field), it will be ignored by the assembly
program.

In the various examples and statement formats
throughout this publication, characters and words that may
be written in assembly language statements are printed in
capital letters. Some of these characters and words have
special meaning to the assembly program (e.g., instruction
mnemonics); others are representative examples of what
might be written in statements.

Specifications for the various fields are presented in the
following text.

Name Field

The name field is used to assign a symbolic name to a
statement. Other statements can refer to a particular
statement by its symbolic name. If a name is used, it must
start in the begin column of the statement and it may
occupy up to eight columns. The begin column is normally
column 1, but it may be changed by the use of an ICTL
assembly instruction (see Section 4). A name is always a
symbol and must conform to the rules for symbols (see
Section 2). The following example shows the symbol
FIELD234 used as a name.

Name Operation Operand

FIELD234 DS CL200

Section 1. Introduction 1-1

If the begin column is blank, the assembly program
assumes that the statement has no name. The begin column
is also used to indicate that a card is a comments card (see
"Comments Field").

Operation Field

The operation field is used to specify a machine
instruction or assembly instruction. This field may start in
any column to the right of the begin column, provided that
at least one blank separates it from the last character of the
name. The operation field may contain any valid mnemonic
operation code. The valid machine-instruction mnemonics
are listed in Section 3, "Machine Instruction Statements";
the valid assembly-instruction mnemonics are listed in
Section 4, "Assembly Instructions." A valid machine
instruction or assembly-instruction mnemonic can not
exceed five characters.

The following example shows the mnemonic code for
the compare instruction (RR format) used in a statement
named COMPARES:

NAME Operation Operand

COMPARES CR S,6

Operand Field

The contents of the operand field provide the assembly
program with information about the instruction specified in
the operation field. If a machine instruction has been
specified, the operand field specifies such program elements
as registers, storage addresses, immediate data, masks, and

Name J Operation l Operand

storage-area lengths. For an assembly instruction, the
operand field conveys whatever information the assembly
program requires for the particular instruction.

The operand field may begin in any column to the right
of the operation field, provided that at least one blank
space separates it from the last character of the mnemonic
code.

Depending on the instruction, the operand field may be
composed of one or more subfields, called operands. Each
operand must be separated from another by a comma.
(Remember that a blank delimits the field; thus, blanks
may not intervene between operands and commas.) The
two operands in the following example specify general
registers 5 and 6.

Name Operation Operand J COMPARES CR 5,6

Comments Field

Comments are strictly for the convenience of the
programmer. They permit lines of descriptive information
about the program to be inserted into the program listing.
Comments appear only in the program listing; they have no
effect on the assembled object program. Any valid charac
ters (including blanks) may be used as comments.

The comments field must appear to the right of the
operand field; at least one blank must separate the
comments from the last operand. An entire card can be
used for comments by placing an asterisk in the begin
column. If multiple lines of comments are desired, they
must be written as separate comments cards with an
asterisk in the begin column. See the example below.

72

*THE ASTERISK IN COLUMN 1 MAKES THIS A COMMENTS CARD SHOULD
*THE ASTERISK IS REQUIRED IN EACH COMMENTS CARD BE
COMPARES CR 5,6 NO ASTERISK NEEDED BLANK

1-2

The programmer may use comments in instructions
that do not require the operand field to be specified. In
instructions where an optional operand field is omitted but
a comments field is to be provided, the absence of the
operand field must be indicated by a comma preceded and
followed by one or more blanks. The next example
illustrates this rule.

Name Operation Operand

END ,THESE ARE COMMENTS

Identificatjon-Sequence Field

The identification-sequence field is used for program
identification and statement sequence numbers. This field

occupies columns 73-80 of the input cards. If the field, or
a portion of it, is used for program identification, the
identification is punched in every statement card. The
assembly program, however, does not normally check this
field; it merely reproduces the information in the field on
the output listing of the program.

If the identification-sequence field, or a portion of it, is
used for statement sequence numbers, the numbers are
punched in ascending sequence in successive input cards. By
using the ISEQ assembly instruction, the programmer
requests the assembly program to verify the ascending order
of the numbers which he has punched. The ISEQ assembly
instruction is described in Section 4 under "Program
Control Instructions."

Section 1. Introduction 1-3

SECTION 2. WRITING ASSEMBLY LANGUAGE STATEMENTS

Assembly language statements are accepted by the
assembly program only if they conform to the established
grammatical rules and vocabulary restrictions that are
presenteq in this section. Subsequent sections of this
publication deal with the format and content of the specific
types of assembly statements (i.e., machine instructions and
assembly instructions). Both types of instructions are
formed by using the basic elements described here. Many of
the points introduced in this section will be amplified in
subsequent sections.

CHARACTER SET

Assembly language stemerits may be written using the
following characters:

Letters
Decimal Digits
Special Characters

A through Z (and $)
0 through 9
+-,==.*()'/

blank & #%<@

The above characters are identified by the punch
combinations listed in Appendix A.

Note: A blank is included in the set of permissible special
characters, and subsequent references to special characters
shall be understood to designate all of the specified special
characters. References to numerical characters shall be
understood to designate the decimal digits. References to
hexadecimal digits shall be understood to designate the
digits 0-9 and letters A-F. References to letters shall be
understood to include the $ (except for a $ as the first
character of a symbol).

SYMBOLS

Storage areas, instructions, registers, and other ele
ments may be given symbolic names for the purpose of
referring to them in the program. The symbolic name is
called a symbol and may contain a maximum of eight
characters. While the first character of a symbol must be a
letter, the remainder may be letters, decimal digits, or any
combination of the two. Special characters must not be
used in symbols. Any violation of these rules will be noted
with an error message in the program listing, and the
symbol will not be used.

The following are valid symbols:

READER
A23456
X4F2
AB$C

LOOP2
N
S4

The following symbols are invalid, for the reasons
noted:

256B
RECORDAREA2
BCD#34
INPUT AREA
$ABC

(First character is not alphabetic)
(!\fore than eight characters)
(Contains a special character)
(Contains a special character)
(The $may be used within a

symbol, but must not be the first
character)

Relocatableand Absolute Symbols

Most of the symbols in a program name a location (i.e.,
they represent the location of a specific data field or
program instruction). Some symbols name an arbitrary
value, one that may designate items such as a register, a
length, or a displacement.

Subsequent portions of this publication speak of
relocatable and absolute symbols. A relocatable symbol has
a value that is tentative; that is, the value of the symbol
may be subject to change if the program is loaded anywhere
but at its assembled location.

Symbols can also be assigned arbitrary values other
than relocatable addresses by use of the EQU, TEQU,
MAX, and MIN assembly instructions (see Section 4). The
arbitrary values can designate registers, input/output units,
immediate data, etc. They can also specify actual storage
addfesses such as permanently allocated interrupt locations.
Symbols so defined are absolute symbols that have a value
that is fixed (i.e., the value is not related to the program's
load location and is not subject to relocation). All other
symbols are relocatable.

Defini:p.g Symbols

Symbols are meaningful when used as the names of
statements or in statement operands. A symbol must he
defined somewhere in the program in order to be used as an
operand. It is defined when it is either used as the name of
a statement or identified as an external symbol. A group of

Section 2. Writing Assembly Language Statements 2-1

special symbols, system symbols, has an implied definition
and need not be defined in the program (see Table 7 in
Appendix E).

When the assembly program encounters a symbol that
names a statement, it analyzes the statement and develops a
set of characteristics, or attributes, which it associates with
the symbol. When the assembly program encounters the
symbol employed as an operand, it is able to obtain from
these attributes any required information about the state
ment that the symbol names. The attributes pertinent to
the subsequent discussion of the assembly language are
value, length, scale, and type.

VALUE ATTRIBUTE

Storage address of the leftmost byte of the field
allocated to the statement named by the symbol. The value
attribute of an absolute symbol is the value equated to the
symbol.

LENGTH ATTRIBUTE

The number of bytes allocated to the statement named
by the symbol. In the case of data definition statements,
the length is the number of bytes allocated to the first
element of the definition. The length is called the implied
length of the symbol. The convenience of having implied
length becomes apparent elsewhere in this publication,
particularly in the discussion of the symbolic format of SS
type machine instructions and in the discussion of the data
definition instructions.

SCALE ATTRIBUTE

Certain data statements allow for a scaling modifier
(see Section 4).

TYPE ATTRIBUTE

Each symbol receives a type code value which depends
on how the symbol was defined. Table 2-1 lists these
types.

Table 2-1. Type Attributes

0 - Hex(X)
1 EBCDIC (C)
2 Packed decimal (P)
3 Zoned decimal (Z)

2-2

Table 2-1. Type Attributes (Continued)

4 - Fixed point halfword (H)
5 - Fixed point fullword (F)
6 - Floating point single (E)
7 Floating point double (D)
8 Instruction label (I)
9 Address constant (A)

10 Base displacement (S)

Previously Defined Symbols

Sometimes the programmer will be required to use a
previously defined symbol in the operand field. Previously
defined means that the symbol has been defined in a prior
statement, i.e., earlier in the statement sequence. The
following example shows how the symbol TEST is defined
in the first statement and used in the second statement as a
previously defined symbol.

Name Operation Operand

TEST CR 5,6
LOOP EQU TEST

External and Entty-Point Symbols

Symbols are normally defined in the same program in
which they are referred to (i.e., used as operands).
Symbolic linkages between independently assembled pro
grams may be effected by defining symbols in one program
and using them as operands in another program. The
programs that define and use the symbolic linkages may be
assembled independently and then executed together.

The symbol that will serve as a linkage symbol must be
so designated, both in the program where it is defined and
in the program where it is used as an operand. It is termed
an external symbol in the program that uses it as an
operand and an entry-point symbol in the program that
defines it. For example, if one program contains an
instruction named STARTER, and another program uses
STARTER as an operand, the first program must designate
STARTER as an entry-point symbol, and the other
program must designate it as an external symbol.

External and entry-point symbols are always relo
catable. They are subject to certain usage restrictions that
are discussed at pertinent places elsewhere in this publica~
tion. The value attribute of each entry-point symbol will be
assigned by the loader to the corresponding external
symbol when both programs are loaded.

The programmer must indicate to the assembly pro
gram which of the symbols are external and which are entry
points. The EXTRN and ENTRY assembly instructions are
provided for this purpose and are described in Section 4.
There is one exception to the requirement that entry-point
symbols be specified as such to the assembly program. A
program name (defined in the name field of a START
statement) is considered an entry point and may be used as
one. However, the program name does not have to be
identified as an entry point by the ENTRY instruction.

General Restrictions On Symbols

A symbol may be defined only once in an assembly;
that is, each symbol used as the name of a statement must
be unique to that assembly. However, the symbols used as
names in TEQU assembly statements or as control section
names (i.e., defined in CSECT or DSECT assembly state
ments) are excepted from this restriction. Because a control
section may be terminated and then resumed at any
subsequent point, the CSECT or DSECT statement that
resumes the section must be named by the same symbol
that initially name the section. Therefore, the symbol that
names the section must be repeated. Such usage is not
considered to be duplication of a symbol definition.
Symbols in the name field of debug cards (DUMP, DUMPC,
DUMPR) are not considered definitions.

If a symbol is used as a name more than once (other
than the previously noted exceptions), only the first usage
will be recognized; each subsequent usage of the symbol as
a name will be ignored. Every usage of the name will be
flagged in the program listing.

LOCATION COUNTER

A location counter is used by the assembly program to
assign consecutive storage addresses to program statements.
As each machine instruction or data area is assembled, the
location counter is first adjusted to the proper boundary
for the item, if adjustment is necessary, and then incre
mented by the length of the assembled item. If the
statement is named by a symbol, the value attribute of the
symbol is the value of the location counter after boundary
adjustment, but before addition of the length. Such
symbols are always relocatable.

The assembly program maintains a location counter for
each control section of the program and manipulates each
as previously described. Program statements for each
section are assigned consecutively from the location count
er for that section. The location counter for each succes
sively declared control section assigns locations in consecu-

tively higher areas of storage. Thus, if a program has
multiple control sections, all statements identified as
belonging to the first control section will be assigned from
the location counter for section 1, the statements for the
second control section will be assigned from the location
counter for section 2, etc. This procedure is followed
whether the statements from different control sections are
interspersed or written in control section sequence.

The location counter setting can be controlled by using
the START and ORG assembly instructions, which are
described in Section 4. The counter affected by either of
these assembly instructions is the counter for the control
section in which the instruction is written. Certain other
assembly instructions also affect the value of the location
counter, and they are discussed in Section 4.

Location Counter References

The programmer may refer to the current value of the
location counter at any place in a program by using an
asterisk (*) in an operand. The asterisk represents the
location of the first byte currently available (i.e., after any
required boundary adjustment). Using an asterisk in a
machine-instruction statement is the same as placing a
symbol in the name field of the statement and then using
that symbol as an operand of the statement. Thus, a
reference to the location counter is considered relocatable.
Because a location counter is maintained for each control
section, a location counter reference designates the location
counter for the section in which the reference appears.

SELF-DEFINING VALUES

The ability to represent an absolute value symbolically
is an advantage in cases where the value will be referred to
repeatedly. However, it is equally necessary to have a
convenient means of specifying an actual machine value or
a bit configuration without having to go through the
procedure of equating it to a symbol and using the symbol.
The assembly language provides this facility through the
self-defining value, which can be a decimal, hexadecimal, or
character representation, or an attribute of a symbol.

Self-defining values may be used to specify such
program elements as immediate data, masks, registers,
addresses, and address increments. The type of representa
tion selected (decimal, hexadecimal, or character) will
depend on what is being specified. The use of a self-defining
value is quite distinct from the use of data constants
specified by the DC assembly instruction and by literal
operands. When a self-defining value is used in a machine
instruction statement, its value is assembled into the

Section 2. Writing Assembly Language Statements 2-3

instruction. When a data constant is specified in a machine
instruction as a literal, its address is assembled into the
instruction.

Decimal Self-Defming Values

A decimal value is an unsigned number of from one to
eight decimal digits. High-order zeros may be used (e.g.,
007). A decimal value is assembled as its binary equivalent.
However, a decimal self-defining value of more than eight
digits will not be used. Some examples of decimal self
defining values are: 8, 147, 4092, 00021, and 10201040.

Hexadecimal Self-Defming Value

A hexadecimal value is an unsigned number of from
one to six hexadecimal digits. The digits must be enclosed
by single quotation marks and preceded by the letter X.
The hexadecimal digits represent the 16 possible combina
tions of 4 bits. Each hexadecimal digit is assembled as its
four-bit value. Any hexadecimal self-defining value of more
than six digits will not be used.

The hexadecimal digits and their bit patterns are:

0
1
2
3

0000
0001
0010
0011

4
5
6
7

0100
0101
0110
0111

8 - 1000
9 - 1001
A - 1010
B - 1011

c
D
E
F

1100
1101
1110
1111

The following _are examples of hexadecimal self
defining values:

x'2s'
X'F4F I

X'B'
x 'OOCD I

x '12FA I

x 'OOEO I

A table for converting from decimal to hexadecimal is
provided in Appendix B.

Character Self-Defining Value

A character value is a sequence of from one to three
characters. The character sequence must be enclosed by
single quotation marks, and it may be preceded by the
letter C (this is not mandatory). All letters, decimal digits,
and special characters may be used in a character value. In
addition, any of the remaining 256 punch combinations
listed in Appendix A may be designated in a character
self-defining value. Examples of character self-defining
values are:

C '/ ' C ' ' (blank)

2-4

C 1ABC 1

c'x1'
c 113 I

'*+6 I

The representation of a quotation mark as a character
is a special consideration, because the quotation mark is
also the delimiter that indicates the beginning and end of
the character sequence. Therefore, for each single quotation
mark desired in a character value, two single quotation
marks must be written. For example, the character value A
'# would be written as 'A ' '# ', while a single quotation
mark followed by two blanks would be written as ' ' ' '.

Each character in the character sequence is assembled
as its eight-bit code equivalent. The two quotation marks
that must be used to represent a single quotation mark
within the character sequence are assembled as a single
quotation mark. Any decimal digits appearing in the
character sequence will be assembled into their internal
eight-bit representations.

Symbol Attribute Self-Defining Value

Every defined symbol has various attributes associated
with it. Three of these attributes (length, type, and scale)
may be used as a self-defining value by specifying the
symbol preceded by an attribute specification. Hence, if
BETA is defined as: BETA DC FL3S4' - 43

1
, then L'BETA

is 3, T 'BETA is 5, and S 'BETA is 4.

Using Self-Defining Values

The same value can be represented by any one of the
three types of self-defining values. The selection of a
particular type of representation is left to the user. Decimal
representation, for example, might be desired for specifying
register numbers; hexadecimal representations for specify
ing mask; and character representations for specifying
immediate data is SI machine instructions. An attribute
might be used as an increment.

LITERALS

Programs require a number of constants (actual data to
be operated on, data for calculations or indexing, addresses
of instructions, words and phrases for printed output, etc.).
The assembly language provides the mechanism for defining
data constants and address constants (and assigning symbols
to them) through the DC assembly instruction. To desig
nate the constant that he has defined, the user employs the
symbol which names that constant as an operand in a
machine instruction. However, this procedure of defining
the constant may prove cumbersome for constants that will

not be used repeatedly. The user has the option of
simultaneously defining and using a constant in the
machine instruction where it is required. This is accom
plished by using a literal as an operand in an instruction.
(No other symbols or operators may appear in the operand
field, other than a specified length, and only one literal is
allowed per statement.)

Literals may be used wherever a relocatable symbol is
pe1mitted as an operand in machine or data description
instructions only. Literals are considered relocatable, be
cause the address of the literal, rather than the literal itself,
will be assem~led in the statement that employs a literal.
The assembly program generates the literals, collects them,
and places them in a specific area of storage, as explained in
the subsection "Literal Pool." A literal is not to be confused
with the immediate data in an SI instruction. Immediate
data is assembled into the instruction.

Note: Throughout this publication, the term literal is used
interchangeably to designate the literal operand and the
constant that it provides. For example, the discussion of
the literal pool indicates that "literals generated by the
assembly program are collected ... ", meaning that the
constants generated from literal operands are collected. The
te1m literal is used customarily to indicate both the written
format and the constant being specified.

Literal F onna t

Whether a constant is provided by a DC assembly
instruction or as a literal, the assembly program requires a
description of the type of constant being specified as well
as the constant itself. This descriptive information assists
the assembly program in assembling the constant correctly.

The method of describing and specifying a constant as
a literal is identical to the method of providing it as the
operand of a DC assembly instruction; that is, the literal is
written as if it were the DC operand. The only difference is
that the literal must start with an equal sign (=), which
indicates to the assembly program that a literal follows.
Refer to the discussion of the DC assembly instruction
operand format (Section 4) for the means of specifying a
literal and for examples of literals.

WARNING ON THE USE OF LITERALS

1. An asterisk should not appear in an address
constant, because the location counter reference
will be an address in the literal pool, not the
address of the instruction containing the literal.

2. S-type address constants should not appear in
literals.

3. No literals may occur within literals, for example:

valid:
invalid:

Literal Pool

DC
DC

A(= 'ABC')
A[=A(= 'ABC ')]

The literals generated by the assembly program are
collected and placed in a special area called the literal pool.
As explained previously, the location of the literal in the
pool, rather than the literal itself, is assembled in the
statement employing a literal. The position of the literal
pool may be controlled by the programmer.

The programmer may also specify that multiple literal
pools be created. However, the sequence in which literals
are ordered within the pool is controlled by the assembly
program. Further information on positioning the literal
pool(s) is in Section 4 under "LTORG - Begin Literal
Pool."

If the programmer does not specify the location of the
literal pool, all collected literals will be assembled at the
end of the first control section.

EXPRESSIONS

Expressions are used to specify the various operands of
machine-instruction and assembly-instruction statements.
An expression consists of one term or some arithmetic
combination of terms. The terms that may be used alone or
in combination with each other are symbols, self-defining
values, and references to the location counter. The arithme
tic operators used to combine terms in an expression are:

+ addition
subtraction

* multiplication
/ division

A literal may be used as a term but may not be
combined with any other terms. Thus, an expression may
contain only one term when that term is a literal. An
expression may not contain two terms or two operators in
succession. Also, the maximum number of terms permitted
in an expression is five, and parentheses are not allowed.

Note: An expression is defined as consisting of one or
more terms. In some instances, it is necessary to differen
tiate between expressions containing one term and expres
sions containing more than one term. In such cases, the

Section 2. Writing Assembly Language Statements 2-5

expressions are designated as single term or multiterm,
respectively.

An expression may have all the attributes of a symbol
except qualification. The length, type, and scaling attri
butes are those of the leftmost symbol or integer in the
expression. The attributes length, type, and scale factor
associated with a symbol may be used in an expression by
preceding the symbol with L ', T ', or S '.For example, to
refer to the length attribute associated with ALPHA,
L 'ALPHA is written.

The following are examples of expressions:

*
AREAl+X 12D I

*+32
N-25

FIELD2
L

1
BETA*l0

EXIT-ENTRY+l
29

Note: The asterisk was used both as a multiplier
(L'BETA * 10), and as a reference to the location counter (*
and *+32). The expression *+32 is an example of relative
addressing, which is explained in this section.

The following examples whos violation of the rules that
expressions may not contain two terms or two operators in
succession; all are invalid:

ARE.!LX 'c'
FIELD+- 15RECORD/X

1

3

RELATIVE ADDRESSING

Relative addressing is the technique of addressing
instructions and data areas by designating their location in
relation to the location counter or to some symbolic
location. This type of addressing is always in bytes, never in
bits, words, or instructions. Thus, the expression *+4
specifies an address that is four bytes greater than the
current value of the location counter. In the sequence of
instructions shown in the following example, the location
of the CR machine instruction can be expressed in two
ways, Al.PHA+2 or BETA-4, because all of the mnemonics
in the example are for two-byte instructions in the RR
format.

Name Operation Operand

ALPHA LR 3,4
CR 4,6
BCR 1,14

BETA AR 2,3

2-6

Evaluation of Expressions

The assembly program evaluates each expression in an
operand field separately. The evaluation procedure is:

1. Each term is given its numerical value. The value of
an expression is calculated using unsigned integer
arithmetic modulo 23 2

•

2. The arithmetic operations are performed moving
from left to right. However, multiplication and/or
division are performed before addition and subtrac
tion. Thus A+B*C is evaluated as A+ (B*C), not
(A+B) *C. Division by zero is defined to be equal
to zero; remainders after division are dropped.

3. The computed result is considered the value of the
expression.

If the expression has been used to specify a value for a
symbol, the value of the expression is considered to be the
value attribute of the symbol. Thus, an EQU assembly
instruction may equate a symbol to an expression, in which
case the value of the expression becomes the value attribute
of the symbol. The length attribute of a single-term
expression is the implied length of the term. For a
multiterm expression, the length attribute is the implied
length of the leftmost term in the expression.

Types of Expressions

The assembly language permits the use of absolute and
relocatable expressions. Before the properties of these
expressions can be defined, it is necessary to define the
terms that may be used to form them. It has already been
established that symbols, references to the location count
er, and self-defining values are the terms used in expres
sions. These terms may be classified as:

Relocatable Terms

Relocatable symbols
Location counter

Absolute Terms

Absolute symbols
Self-defining values

Note: Literal terms are 'a special case and are discussed in
the subsection "Relocatable Expressions."

ABSOLUTE EXPRESSIONS

An absolute expression may contain any combination
of absolute terms. It may also contain relocatable terms:

alone or in combination with absolute terms, provided that
the relocatable terms are used as follows:

1. There must be an even number of relocatable
terms.

2. Each relocatable term must be paired with another
relocatable term (with the opposite sign) from the
same control section; that is, the effects of
relocation must be nullified. Because a reference to
the location counter is relocatable, it must be
paired with another relocatable term in order to be
used in an absolute expression.

3. No relocatable term may enter a multiply or divide
operation; that is, no relocatable term may be
preceded or followed by a multiplication or divi
sion sign.

4. Symbols that have a different relocation value
(e.g., symbol in common and an EXTRN) must not
appear in the same expression.

Although the address values of all relocatable terms are
subject to change, there is a constant (i.e., absolute)
difference between the values of each pair of terms from a
control section. This being true, the entire expression
consists of absolute terms and/ or pairs of terms that
represent absolute values.

The following examples illustrate absolute expressions,
where A is any absolute symbol, and X and Y are
relocatable symbols from the same control section.

Y+A-X
Y-X

2048
A*A

RELOCATABLE EXPRESSIONS

A relocatable expression is one whose value would
change by n if the program were loaded n bytes away from
its assembled location.

Relocatable expressions may contain relocatable terms
alone OI in combination with absolute terms. The relo
catable terms must be used as follows:

1. There must be an odd number (1,3, or 5) of
relocatable terms. The terms may be preceded by a
plus or minus sign (a plus sign is assumed if a term
is unsigned).

2. If there are three or five relocatable terms, each
relocatable term except one must be paired with
another relocatable term (with the opposite sign)
from the same control section. Note that a location
counter reference is a relocatable term.

3. The unpaired (odd) relocatable term may be
preceded by a plus or minus sign. If a minus sign
remains, the expression is negatively relocatable;
otherwise, it is simply relocatable. However, nega
tively relocatable expressions may appear only in
A-type address constants.

4. No relocatable term may enter into a multiply or
divide operation; that is, no relocatable term may
be preceded or followed by a multiply or divide
sign.

5. All relocatable terms in an expression must be in
the same control section or in the same DSECT.

6. An expression may not contain an external symbol
and any other relocatable term.

Because each pair of terms from a control section
represents an absolute value (i.e., there is a constant
difference between them, regardless of relocation possibil
ities), a relocatable expression represents only one relo
catable value. The rest of the values are absolute, being
represented by absolute terms and/ or pairs of relocatable
terms.

Note: A literal is always a single-term relocatable expres
sion; it must be used alone.

The following examples illustrate relocatable expres
sions, where A is an Absolute symbol, and X and Y are
relocatable symbols from the same control section.

X+2
X-8*A

-X
=X'4'

X-Y+X *+32

(Negatively relocatable)
(A literal containing the hexa

decimal digit 4)

External Symbols in Expressions

External symbols (i.e., those defined by the EXTRN
assembly instruction) may be used in expressions. An
expression containing an external symbol may not contain
any other relocatable symbols. This restriction applies to all
expressions.

External symbols may be used in USING statements,
A-type address constants, field 2 of a CCW, and machine
instruction statements in expressions of the form:

External symbol+ absolute terms

An external symbol may not appear in an expression
with other relocatable symbols even though the result may
be of the specified form.

Section 2. Writing Assembly Language Statements 2-7

SECTION 3. MACHINE INSTRUCTION STATEMENT

All machine instructions may be represented symboli
cally as assembly language statements. The symbolic format
of each statement varies according to the actual machine
instruction format, of which there are five: RR, RX, RS,
SI, and SS. Within each basic format, further variations are
possible.

The symbolic format of a machine instruction parallels,
but does not duplicate, its actual format. A mnemonic
operation code is written in the operation field, and one or
more operands are written in the operand field. Comments
may be appended to a machine-instruction statement as
previously explained in Section 1.

Any machine-instruction statement may be named by a
symbol, which other assembly statements can use as an
operand. The value attribute of the symbol is the address of
the leftmost byte assigned to the assembled instruction.
The length attribute of the symbol depends on the basic
instrnction format, as follows:

Basic Format

RR
RX
RS
SI
SS

Implied Length
in Bytes

2
4
4
4
6

INSTRUCTION ALIGNMENT AND CHECKING

All machine instructions are aligned automatically by
the assembly program on halfword boundaries. Bytes that
are skipped because of alignment are set to zero. All
expressions that specify storage addresses are checked to
ensure that they refer to the proper boundaries (halfword,
fullword, or doubleword) for the instructions in which they
are used. If a base register and displacement are explicit, the
displacement is checked. For statements with an implied
base register and displacement, the effective address is
checked. Register numbers are also checked to ensure that
they specify the proper registers, as follows:

1. Floating-point instructions must specify floating
point registers 0, 2, 4, or 6.

2. Double shift, fullword multiply, and fullword
divide instructions must specify an even-numbered
general register.

OPERAND FORMAT

Table 3-1 shows the symbolic operand formats for
each variation of the basic machine-instruction formats.
The table also shows the size, in bits, of each machine
instruction field (see the number at the top of each field)
and it designates the instructions that use each operand
format. All symbolic operand formats are indicated in the
table as a series of codes (e.g., Rl, S2, D2, and L). These
codes are explained in the notes for Table 3-1. The notes
provide other information pertinent to the use of symbolic

· operands and should be considered an integral part of the
table.

Note: More than one operand format is shown for each
variation of each machine-instruction format, except the
RR type. The selection of an operand pattern depends on
what is to be specified and whether it is to be specified
explicitly or implicitly. This is discussed in the subsections
on "Effective Addresses - - - Explicit and Implied" and
"Lengths - - - Explicit and Implied."

Operand Fields and Subfields

Table 3-1 shows that some symbolic operands are
written as a single field and other operands are written as a
field followed by one or two subfields. For example,
effective addresses consist of the contents of a base register
and a displacement. A symbolic operand that specifies a
base and displacement is written as· a displacement field
followed by a base register subfield. In the RX format, both
an index register subfield and a base register subfield are
written; in the SS format, both a length subfield and a base
register subfield are written.

A comma must be written to separate operands.
Parentheses must be written to enclose a subfield or
subfields, and a comma must be written to separate two
subfields within parentheses. When parentheses are used to
enclose one subfield, and the subfield is omitted, the
parentheses must be omitted. In the case of two subfields
that are separated by a comma and enclosed by paren
theses, the following rules apply:

1. If both subfields are omitted, the separating
comma and the parentheses must also be omitted.

2. If the first subfield in the sequence can be omitted,
the comma that separates it from the second
subfield is written. The parentheses must also be
written.

Section 3. Machine Instruction Statement 3-1

3. If the second subfield in the sequence is omitted,
the comma that separates it from the first subfield
must be omitted. The parentheses must be written.

All fields and subfields in a symbolic operand may be
represented either by absolute or relocatable expressions,
depending on what the field requires. (An expression

Table 3-1. Machine Instruction Format

Basic Machine Format

8 4 4
Operation

Code Rl R2

8 4

~ RR Operation
Code Rl

8 8
Operation

Code I

8 4 4 4 12
RX Operation

Code Rl X2 B2 D2

8 4 4 4 12
Operation

Code Rl R3 B2 D2

8 4

~
4 12

RS Operation
Code Rl B2 D2

8 8 4 12
Operation

Code I2 Bl Dl

8 CK 4 12
SI Operation

Code Bl D1

3-2

consists of one term or a series of arithmetically combined
terms.)

Note: Blanks may not appear in an operand unless
provided by a character self-defining value or a character
literal. Thus, blanks may not intervene between fields and
the comma separators, between parentheses and fields, etc.

Operand Applicable
Field Format Instructions

Rl,R2 All RR instructions except
DLY, LI, SPM, and SVC

Rl SPM, LI

I SVC,DLY

Rl, D2(X2,B2) All RX instructions
Rl, S2(X2)

Rl, R3, D2{B2) BXH, BXLE, LM, and STM
Rl, R3, S2

Rl, D2{B2) All shift instructions
Rl, S2
Rl, I2

All SI instructions except
Dl{Bl), I2 LPSW, SSM, SPCI, HIO, SIO,
Sl,I2 TIO, TCH, LPSB and SPSB

Dl, {Bl) LPSW, SSM, HIO, SIO, TIO,
Sl TCH, SPCI, LPSB, SPSB

Table 3-1. Machine Instruction Format (Continued)

Basic Machine Format

8 4 4 4 12 4 12
Operation

Code L1 L2 Bl Dl B2 D2

8 8 4 12 4 12
SS Operation

Code L Bl Dl B2 D2

Notes for Table 3-I

I. RI, R2, and R3 are absolute expressions that specify
general or floating-point regi.sters. The general regi.ster
numbers are 0 through I 5; floating-point register numbers
are 0, 2, 4, and 6.

2. DI and D2 are absolute expressions that specify displace
ments. A value of 0-4095 may be specified. See the

subsequent discussion on effective addresses and Table
3-2.

3. Bl and B2 are absolute expressions that specify base
registers. Register numbers are 0-15. See the subsequent

discussion on effective addresses and Table 3-2.

4. X2 is an absolute expression that specifies an index register.
Register numbers are 0-15. If B2 is specified, X2 should

not be omitted; and when indexing is not desired, X2 must

be specified as 0. See Table 3-2.

Effective Addresses - Explicit and Implied

. An effective address is composed of a displacement
plus the contents of a base register. (In the case of RX
instructions, the contents of an index register are also used
to derive the effective address.) The programmer writes an
explicit effective address by specifying the displacement
and the base register number. He may also write an implied
effective address by specifying an absolute or relocatable
address. The assembly program has the facility to select a
base register and compute a .displacement, thereby generat
ing an explicit address from an implied address, provided
that it has been informed (1) what base registers are .
available to it and (2) what each register contains. The
programmer conveys this information to the assembly
program through the USING and DROP assembly instruc
tions which are described in Section S under "Base Register

Operand
Field Format

Dl(Ll~ Bl), D2(L2, B2)
Sl(L), S2(L2)

Dl(L, Bl), D2(B2)
Sl(L), S2

Applicable
Instructions

PACK, UNPK, MVO, AP,
CP, DP, MP, SP, ZAP

NC, OC, XC, CLC, MVC,
MVN, MVZ, TR, TRT, ED,
EDMK

5. L, LI, and L2 are absolute expressions that specify field
lengths. An L expression can specify a value of 1-256. LI
and L2 expressions can specify a value of 1-16. In all cases,
the assembled value will be one less than the specified
value. See the subsequent discussion on explicit and implied
lengths and Table 3-3. An L, L1, or L2 field of 0 is
equivalent to 1.

6. I and I2 are absolute expressions that provide immediate
data. The value of the expression may be 0-255.

7. SJ and S2 are absolute or relocatable expressions that
specify an effective address. See the subsequent discussion

on effective addresses and Table 3-2.

8. RR, RS, and SI instruction fields that are crossed out in the

machine formats are not examined during instruction

execution. The fields are not written in the symbolic

operand, but are assembled as binary zeros.

Instructions." Additional addressing considerations pertain
when programs have more than one control section. These
considerations also are discussed in "Base Register Instruc
tions."

Table 3-1 shows two types of addressing formats for
RX, RS, SI, and SS instructions. In each case, the first type
shows the method of specifying an effective address
explicitly, as a base register and displacement. The second
type indicates how to specify an effective address impli
citly, as an expression. For example, the load multiple
instruction (RS format) may have either of the following
symbolic operands:

Rl, R3, D2(B2)
Rl, R3, S2

Explicit address
Implicit address

Section 3. Machine Instruction Statement 3-3

Whereas D2 and B2 must be represented by absolute
expressions, S2 may be represented either by a relocatable
or an absolute expression.

In order to use implicit addresses, the following rules
must be observed:

1. The base register assembly instructions (USING
and DROP) must be used as explained in Section 4.

2. An explicit base register must not accompany the
implicit address.

For example, assume that FIELD is a relocatable
symbol, which has been assigned a value of 7400. Assume
also that the assembly program has been notified (by a
USING instruction) that general register 12 currently
contains a relocatable value of 4096 and is available as a
base register. The following example shows a machine
instruction statement as it would be written in assembly
language and as it would be assembled. Note that the value
of D2 is the difference between 7400 and 4096 and that X2
L 1ssembled as zero, because it was omitted. The assembled
instruction is presented in decimal (op code is in hexa
decimal).

Assembly language statement:

ST 4,FIELD

Assembled instruction:

Op Code
so

D2
3304

To summarize, an effective address may be specified
explicitly as a base register and displacement (and index
register for RX instructions) by the formats shown in the
first column of Table 3-2. The address may be specified
implicitly by the formats shown in the second column.
Table 3-2 is an elaboration of the operand information
summarized in notes 2, 3, 4, 7, and 8 for Table 3-1. Note
that the two storage addresses required by the SS instruc
tions are presented separately; an implicit address may be
used for one while an explicit address is used for the other.

Table 3-2. Details of Address Specification

Explicit Implicit
Type Effective Address Effective Address

RX D2(X2,B2) S2(X2)
D2(0,B2)* S2

RS D2(B2) S2

3-4

Table 3-2. Details of Address Specification (Continued)

Explicit Implicit
Type Effective Address Effective Address

SI Dl(Bl) Sl
SS Dl(Ll,Bl) Sl(Ll)

Dl(L,Bl) Sl(L)
D2(L2,B2) S2(L2)
Dl(Bl) Sl
D2(B2) S2

*A zero must be supplied when it is desired to omit an
index register specification in an RX explicit address,
or the base register will be interpreted as the index
register. Note that this will not cause the instruction to
execute differently.

Lengths - Explicit and Implied

The length field in SS instructions can be explicit or
implied. To imply a length, the programmer omits a length
field from the operand. The omission indicates that the
length field is either of the following:

1. The length attribute of the expression specifying
the displacement, if an explicit base and displace
ment have been written.

2. The length attribute of the expression specifying
the effective address, if the base and displacement
have been implied.

In either case, the length attribute for a multiterm
expression is the length of the leftmost term in the
expression.

By contrast, an explicit length is written by the
programmer hi the operand as an absolute expression. The
explicit length overrides any implied length.

Whether the length is explicit or implied, it is always an
effective length. The value inserted into the length field of
the assembled instruction is one less than the effective
length in the machine-instruction statement.

Although length fields are usually in terms of bytes, the
MVW instruction is an exception to this, i.e., its length field
specifies words.

To summarize, the length required in an SS instruction
may be specified explicitly by the formats shown in the
first column of Table 3-3 or may be implied by the
formats shown in the second column. This table is an
elaboration of the operand information summarized in note
5 for Table 3-1. Note that the two lengths required in one
of the SS instruction formats are presented separately; an
implied length may be used for one while an explicit length
is used for the other.

Table 3-3. Details of Length Specification in SS
Instruction

Explicit Length Implicit Length

Dl(Ll,Bl) Dl(,Bl) (Implicit Length of 1)
Sl(Ll) Sl
Dl.(L,Bl) Dl(,Bl) (Implicit Length of 1)
Sl(L) Sl
D2(L2,B2) D2(,B2)
S2(L2) S2

MACHINE INSTRUCTION MNEMONIC CODES

This subsection contains an alphabetical listing of the
mnemonic operation codes of all the machine instructions
that can be represented in the assembly language. The
column headings in Table 3-4 and the information each
colurnri provides are:

Mnemonic Code: This column gives the mnemonic opera
tion code for the machine instruction.

Instruction: This column contains the name of the
instruction associated with the mne
monic.

Operation Code: This column contains the hexadecimal
equivalent of the actual machine opera
tion code.

Basic Machine This column gives the basic machine
Format: format of the instruction: RR, RX, RS,

SI, or SS.

Operand Field
Format:

This column shows th~ symbolic format
of the operand field for the particular
mnemonic.

The mnemonic operation codes are designed to be
easily remembered codes that indicate the functions of the
instructions. The normal format of the code is shown
below; the items in brackets are not necessarily present in
all codes:

Verb [Modifier] [Data Type] [Machine Format]

The verb, ·which is usually one or two characters,
specifies the function. For example, A represents Add. and
MV represents Move. The function may be further defined ·
by a modifier. For example, the modifier L indicates a
logical function, as an AL for Add Logical.

Mnemonic codes for functions involving data usually
indicate the data types by letters that correspond to those
for the data types in the DC assembly instruction (see
Section 4). Furthermore, letters U and W have been added
to indicate short and long, unnormalized floating-point
operations, respectively. For example, AE indicates Add
Normalized Short, whereas AU indicates Add Unnor
malized Short. Where applicable, fullword fixed-point data
is implied if the data type is omitted.

The letters R and I are added to the codes to indicate,
respectively, RR and SI machine-instruction formats. Thus,
AER indicates Add Normalized Short in the RR format.
Functions involving character and decimal data types imply
the SS format.

Machine Instruction Examples

The examples that follow are grouped according to
machine-instruction format. They illustrate the various
symbolic operand formats, which are summarized in Table
3-1 and detailed in Tables 3-2 and 3-3. All symbols
employed in the examples must be assumed to be defined
elsewhere in the same assembly. All symbols that specify
register numbers and lengths must be assumed to be
equated to absolute values elsewhere.

Implied addressing, control section addressh1g, and the
function of the USING assembly instruction are not
considered here. For discussion of these considerations and
for examples of coding sequences that illustrate them, refer
to Section 4, "Program Sectioning and Linking Instruc
tions" and "Base Register Instructions."

RR FORMAT

Name Operation Operand

ALPHA I LR 1,2
ALPHA2 LR REG1,REG2
BETA SPM 15
GAMMAl SVC 250
GAMMA2 SVC TEN

The operands of ALPHAl, BETA, and GAMMAl are
decimal self-defining values, which are categorized: as
absolute expressions. The operands of ALPHA2 and
GAMMA2 are symbols that are equated to absolute values
elsewhere.

Section 3. Machine Instruction Statement 3-5

Table 3-4. Machine Instruction Mnemonic Codes

Opera- Basic Operand
Mnemonic ti on Machine Field
Code Instruction Code Format Format

A Add SA RX Rl ,D2(X2,B2)
AD Add Normalized, Long 6A RX Rl ,D2(X2,B2)
ADR Add Normalized, Long 2A RR Rl,R2
AE Add Normalized, Short 7A RX Rl ,D2(X2,B2)
AER Add Normalized, Short 3A RR Rl,R2
AH Add Halfword 4A RX Rl ,D2(X2,B2)
AL Add Logical SE RX Rl ,D2(X2,B2)
ALR Add Logical 1E RR Rl,R2
AP Add Decimal FA SS Dl(Ll ,Bl),D2(L2,B2)
AR Add lA RR Rl,R2
AU Add Unnormalized, Short 7E RX Rl,D2(X2,B2)
AUR Add Unnormalized, Short 3E RR Rl,R2
AW Add Unnormalized, Long 6E RX Rl ,D2(X2,B2)
AWR Add Unnormalized, Long 2E RR Rl,R2
BAL Branch and Link 4S RX Rl ,D2(X2,B2)
BALR Branch and Link OS RR Rl,R2
BC Branch on Condition 47 RX Rl ,D2(X2,B2)
BCR Branch on Condition 07 RR Rl,R2
BCT Branch on Count 46 RX Rl ,D2(X2,B2)
BCTR Branch on Count 06 RR Rl,R2
BXH Branch on Index High 86 RS Rl ,R3,D2(B2)
BXLE Branch on Index Low or Equal 87 RS Rl ,R3 ,D2(B2)
c Compare Algebraic 59 RX Rl,D2(X2,B2)
CD Compare, Long 69 RX Rl ,D2(X2,B2)
CDR Compare, Long 29 RR Rl,R2
CE Compare, Short 79 RX Rl ,D2(X2,B2)
CER Compare, Short 39 RR Rl,R2
CH Compare Halfword 49 RX Rl,D2(X2,B2)
CL Compare Logical SS RX Rl ,D2(X2,B2)
CLC Compare Logical DS SS Dl(L,Bl),D2(B2)
CLI Compare Logical Immediate 9S SI Dl(Bl),12
CLR Compare Logical lS RR Rl,R2
CP Compare Decimal F9 SS D 1 (Ll ,B 1) ,D2(L2 ,B2)
CR Compare Algebraic 19 RR Rl,R2
css Convert and Sort Symbols 02 RR Rl,R2
CVB Convert to Binary 4F RX Rl,D2(X2,B2)
CVD Convert to Decimal 4E RX Rl,D2(X2,B2)
CVWL Convert Weather Lines 03 RR Rl,R2
D Divide SD RX Rl ,D2(X2,B2)
DD Divide, Long 6D RX Rl ,D2(X2,B2)
DDR Divide, Long 2D RR Rl,R2
DE Divide, Short 7D RX Rl ,D2(X2,B2)
DER Divide, Short 3D RR Rl,R2
DIAG Diagnose 83 SI DI(Bl),12
DLY Delay OB RR I
DP Divide Decimal FD SS Dl(Ll ,Bl),D2(L2,B2)
DR Divide 1D RR Rl,R2
ED Edit DE SS Dl(L,Bl),D2(B2)

3-6

Table 3-4. Machine Instruction Mnemonic Codes (Continued)

Opera- Basic Operand

Mnemonic ti on Machine Field

Code Instruction Code Format Format

EDMK Edit and Mark DF SS Dl{Ll,Bl),D2{B2)

EX Execute 44 RX Rl ,D2{X2,B2)

HDR Halve, Long 24 RR Rl,R2

HER Halve, Short 34 RR Rl,R2

HIO Halt Input/Output 9E SI Dl{Bl)

IATR Insert Address Translator OE RR Rl,R2

IC Insert Character 43 RX Rl ,D2{X2,B2)

ISK Insert Storage Key 09 RR Rl,R2

L Load 58 RX Rl ,D2{X2,B2)

LA Load Address 41 RX Rl ,D2{X2,B2)

LC Load Chain 52 RX Rl ,D2{X2,B2)

LCDR Load Complement, Long 23 RR Rl,R2

LCER Load Complement, Short 33 RR Rl,R2

LCR Load Complement 13 RR Rl,R2

LD Load, Long 68 RX Rl ,D2{X2,B2)

LDA Load Data Address 99 RS Rl,D2{B2)
LDR Load, Long 28 RR Rl,R2

LE Load, Short 78 RX Rl ,D2{X2,B2)

LER Load, Short 38 RR Rl,R2

LH Load Halfword 48 RX Rl ,D2{X2,B2)

LI Load Identity oc RR Rl

LM Load Multiple 98 RS Rl,R3,D2{B2)

LNDR Load Negative, Long 21 RR Rl,R2
LNER Load Negative, Short 31 RR Rl,R2

LNR Load Negative 11 RR Rl,R2

LPDR Load Positive, Long 20 RR Rl,R2

LPER Load Positive, Short 30 RR Rl,R2

LPR Load Positive 10 RR Rl,R2.

LPSB Load Preferential Storage Base Al SI Dl{Bl)

LPSW LoadPSW 82 SI Dl{Bl)

LR Load 18 RR Rl,R2

LTDR Load and Test, Long 22 RR Rl,R2

LTER Load and Test, Short 32 RR Rl,R2

LTR Load and Test 12 RR Rl,R2

M Multiply SC RX Rl ,D2(X2,B2)

MD Multiply, Long 6C RX Rl ,D2{X2,B2)

MDR Multiply, Long 2C RR Rl,R2

ME Multiply, Short 7C RX Rl ,D2{X2,B2)

MER Multiply, Short 3C RR Rl,R2

MH Multiply Halfword 4C RX Rl ,D2{X2,B2)

MP Multiply Decimal FC SS Dl{Ll,Bl),D2{L2,B2)

MR Multiply IC RR Rl,R2

MVC Move Characters D2 SS Dl{L,Bl),D2{B2)

MVI Move Immediate 92 SI Dl{Bl),12

MVN Move Numerics Dl SS Dl{L,Bl),D2{B2)

MVO Move with Offset Fl SS Dl{Ll ,Bl),D2{L2,B2)

MVW Move Word D8 SS Dl ,{L,Bl),D2{B2)

Section 3. Machine Instruction Statement 3-7

Table 3~4. Machine Instruction Mnemonic Codes (Continued)

Opera- Basic Operand
Mnemonic ti on Machine Field
Code Instruction Code Format Format

MVZ Move Zones D3 SS Dl(L,Bl),D2(B2)
N- AND Logical 54 RX Rl,D2(X2,B2)
NC AND Logical D4 SS Dl(L,Bl),D2(B2)
NI AND Logical Immediate 94 SI Dl(Bl),12
NR AND Logical 14 RR Rl,R2
0 OR Logical 56 RX Rl ,D2(X2,B2)

oc OR Logical D6 SS Dl(L,Bl),D2(B2)
OI OR Logical Immediate 96 SI Dl(L,Bl),12

OR OR Logical 16 RR Rl,R2
PACK Pack F2 SS D 1 (Ll ,B 1) ,D2(L2,B2)

RDD Read Direct 85 SI Dl(Bl),12

RPSB Repack Symbols OF RR Rl,R2
s Subtract SB RX Rl ,D2(X2,B2)
SATR Set Address Translator OD RR Rl,R2
SCON Set Configuration 01 RR Rl,R2

SD Subtract Normalized, Long 6B RX Rl ,D2(X2,B2)

SDR Subtract Normalized, Long 2B RR Rl,R2
SE Subtract Normalized, Short 7B RX Rl ,D2(X2,B2)
SER Subtract Normalized, Short 3B RR Rl,R2
SH Subtract Halfword 4B RX Rl ,D2(X2,B2)

SIO Start Input/Output 9C SI Dl(Bl)
SIOP Start 1/0 Processor 9A SI Dl(Bl),12
SL Subtract Logical SF RX Rl ,D2(X2,B2)
SLA Shift Left Short Algebraic 8B RS Rl,D2(B2)
SLDA Shift Left Long Algebraic 8F RS Rl,D2(B2)
SLDL Shift Left Double Logical 8D RS Rl,D2(B2)
SLL Shift Left Short Logical 89 RS Rl,D2(B2)

SLR Subtract Logical lF RR Rl,R2
SP Subtract Decimal FB SS Dl(Ll,Bl),D2(L2,B2)
SPCI Set PCI 9B SI Dl(Bl)
SPM Set Program Mask 04 RR Rl
SPSB Store Preferential Storage Base AO SI Dl(Bl)

SR Subtract 1B RR Rl,R2
SRA Shift Right Short Algebraic 8A RS Rl,D2(B2)

SRDA Shift Right Long Algebraic 8E RS Rl,D2(B2)

SRDL Shift Right Long Logical 8C RS Rl,D2(B2)

SRL Shift Right Short Logical 88 RS Rl,D2,(B2)

SSK Set Storage Key 08 RR Rl,R2

SSM Set System Mask 80 SI Dl{Bl)

ST Store 50 RX Rl ,D2(X2,B2)

STC Store Character 42 RX Rl ,D2(X2,B2)

STD Store Long 60 RX Rl ,D2(X2,B2)

STE Store Short 70 RX Rl ,D2(X2,B2)

STH Store Halfword 40 RX Rl,D2(X2,B2)

STM Store Multiple 90 RS Rl ,R3,D2(B2)

SU Subtract Unnormalized, Short 7F RX Rl ,D2(X2,B2)

SUR Subtract Unnormalized, Short 3F RR Rl,R2

SVC Supervisor Call OA RR I

3-8

Table 3-4. Machine Instruction Mnemonic Codes (Continued)

Mnemonic
Code Instruction

SW Subtract Unnormalized, Long
SWR Subtract Unnormalized, Long
TCH Test Channel
TIO Test Input/Output
TM Test Under Mask
TR Translate
TRT Translate and Test
TS· Test and Set
UNPK Unpack
WRD Write Direct
x Exclusive OR
xc Exclusive OR
XI Exclusive OR, Immediate
XR Exclusive OR
ZAP Zero and Add Decimal

RX FORMAT

Name Operation Operand

ALPHA1 L 1, 39(4,10)
ALPHA2 L REGl, 39(4,TEN)
BETAl L 2, ZETA(4)
BETA2 L REG2,ZETA(REG4)
GAMMAl L 2,ZETA
GAMMA2 L REG2,ZETA
GAMMA3 L 2, =F 11000 I

.Both ALPHA instructions specify explicit addresses;
REG 1 and TEN are absolute symbols. Both BETA instruc
tions specify implicit addresses, and both use index
registers. Indexing is omitted from the GAMMA instruc
tions. GAMMAl and GAMMA2 specify implicit addresses.
The second operand of GAMMA3 is a literal.

RS FORMAT

Name Operation Operand

ALPHAl BXH 1,2,20(14)
ALPHA2 BXH REG 1,REG2,20(REGD)
ALPHA3 BXH REG1,REG2,ZETA
BETAl SLL 1,20(9)
BETA2 SLL REGl,20
BETA3 SLL REGl,ZETA

Opera- Basic Operand
ti on Machine Field
Code Format Format

6F RX Rl ,D2(X2,B2)
2F RR Rl,R2
9F SI Dl(Bl)
9D SI Dl(Bl)
91 SI Dl(Bl),12
DC SS D l(L,B 1),D2(B2)
DD SS Dl(L,Bl),D2(B2)
93 SI Dl(Bl)
F3 SS D 1 (LI ,B 1) ,D2(L2 ,B2)
84 SI Dl(Bl),12
57 RX Rl ,D2(X2,B2)
D7 SS Dl(L,Bl),D2(B2)
97 SI Dl(Bl),12
17 RR Rl,R2
F8 SS D 1 (LI ,B 1),D2(L2,B2)

Whereas ALPHA! and ALPHA2 specify explicit
addresses, ALPHA3 specifies an implicit address. Similarly,
the BETA instructions illustrate both explicit and implicit
addresses.

SI FORMAT

Name Operation Operand

ALPHA! CLI 40(9),X' 40 I

' ALPHA2 CLI 40(REG9),TEN

BET Al CLI ZETA, TEN

BETA2 CLI ZETA,C 'A I

GAMMAl SIO 40(9)

GAMMA2 SIO 0(9)

GAMMA3 SIO 40(0)

GAMMA4 SIO ZETA

The ALPHA instructions and GAMMA1-GAMMA3
specify explicit addresses, whereas the BET A instructions
and GAMMA4 specify implicit addresses. GAMMA2" spe
cifies a displacement of zero. GAMMA3 does not specify a
base register.

Section 3. Machine Instruction Statement 3-9

SS FORMAT

Name Operation Operand

ALPHAl AP 40(9,8),30(6,7)
ALPHA2 AP 40(NINE,REG8),

30(REG6,7)
ALPHA3 AP FIELD2,FIELD 1
ALPHA4 AP FIELDl (6),FIELD2(9)
BETA AP FIELD2(9),FIELD 1
GAMMAl MVC 40(9 ,8),30(7)
GAMMA2 MVC 40(NINE,REG8),DEC(7)
GAMMA3 MVC FIELD2,FIELD 1
GAMMA4 MVC FIELD2(9),FIELD1

ALPHAl, ALPHA2, GAMMAl, and GAMMA2 specify
explicit lengths and addresses. ALPHA3 and GAMMA3
specify both implied length and implied addresses.
ALPHA4 and GAMMA4 specify explicit length and implied
addresses. BETA specifies an explicit length for FIELD2
and an implicit length for FIELD 1 ; both addresses are
implied.

Extended Mnemonic Codes

For the convenience of the programmer, the assembly
program provides extended mnemonic codes that allow
conditional branches to be specified mnemonically as well
as through the use of the BC machine instruction. These
extended mnemonic codes specify both the machine branch
instruction and the condition on which the branch is to
occur. The codes are not part of the Universal Set of
machine instructions, but are translated by the assembly
program into the corresponding operation and condition
combinations.

Table 3-5. Extended Mnemonics

Extended Code Meaning

The allowable extended mnemonic codes and their
operand formats are shown in the following list, together
with their machine instruction equivalents. Unless the
instruction ends with an 'R ', the extended mnemonics
shown are for instructions in the RX format. Note that the
only difference between the operand fields of the extended
mnemonics and those of their machine instruction equiva
lents is the absence of the Rl field and the comma that
separates it from the rest of the operand field. The
extended mnemonic list, like the machine instruction list
shows explicit address formats only. Each address can b~
specified as an implicit address, as explained previously
under "Effective Address - - - Explicit and Implied" and
as summarized in Tables 3-1 and 3-2. Examples that
illustrate instructions using extended mnemonic codes
follow the list of extended mnemonics in Table 3-5.

In the following example, which illustrates the use of
extended mnemonics, it is to be assumed that the symbol
GO is defined elsewhere in the program.

Name Operation Operand

B 40(3,6)
B 40(0,6)
BL G0(3)
BL GO
BR 4

The first two instructions specify an unconditional
branch to an 'explicit address. The address in the first case is
the sum of the contents of base register 6, the contents of
index register 3, and the displacement 40; the address in the
second instruction is not indexed. The third instruction
specifies a branch on low to the address implied by GO as
indexed by the contents of index register 3; the fourth
instruction ·does not specify an index register. The last
instruction is an unconditional branch to the address
contained in register 4.

Machine Instruction

B D2(X2,B2) Branch Unconditional BC 15,D2(X2,B2)
BR R2 Branch Unconditional (RR Format) BCR 15,R2
NOP D2(X2,B2) No Operation BC O,D2(X2,B2)
NOPR R2 No Operation (RR Format) BCR O,R2

3-10

Table 3-5. Extended Mnemonics (Continued)

Extended Code Meaning Machine Instruction

Used After Compare Instructions

BH D2(X2,B2) Branch on High BC 2,D2(X2,B2)
BHR R2 Branch on High (RR Format) BCR 2,R2
BHE D2(X2,B2) Branch on a High or Equal BC 1 O,D2(X2,B2)
BHER R2 Branch on a High or Equal (RR Format) BCR 10,R2
BL D2(X2,B2) Branch on Low BC 4,D2(X2,B2)
BLR R2 Branch on Low (RR Format) BCR 4,R2
BLE D2(X2,B2) Branch on Low or Equal BC 12,D2(X2,B2)
BLER R2 Branch on Low or Equal (RR Format) BCR 12,R2
BE D2(X2,B2) Branch on Equal BC 8,D2(X2,B2)
BER R2 Branch on Equal (RR Format) BCR 8,R2
BNH D2(X2,B2) Branch on Not High BC 13,D2(X2,B2)
BNHR R2 Branch on Not High (RR Format) BCR 13,R2
BNL D2(X2,B2) Branch on Not Low BC 11,D2(X2,B2)
BNLR R2 Branch on Not Low (RR Format) BCR ll,R2
BNE D2(X2,B2) Branch on Not Equal BC 7,D2{X2,B2)
BNER R2 Branch on Not Equal (RR Format) BCR 7,R2

Used After Arithmetic Instructions

BO D2(X2,B2) Branch on Overflow BC 1,D2(X2,B2)
BOR R2 Branch on Overflow (RR Format) BCR l,R2
BV D2(X2,B2) Branch on Overflow BC 1,D2(X2,B2)
BVR R2 Branch on Overflow (RR Format) BCR l,R2
BP D2(X2,B2) Branch on Plus BC 2,D2(X2,B2)
BPR R2 Branch on Plus (RR Format) BCR 2,R2
BM D2(X2,B2) Branch on Minus BC 4,D2(X2,B2)
BMR R2 Branch on Minus (RR Format) BCR 4,R2
BNM D2(X2,B2) Branch on Not Minus BC l l,D2(X2,B2)
BNMR R2 Branch on Not Minus (RR Format) BCR ll,R2
BNP D2(X2,B2) Branch on Not Plus BC 13,D2(X2,B2)
BNPR R2 Branch on Not Plus (RR Format) BCR 13,R2
BNZ D2(X2,B2) Branch on Not Zero BC 7 ,D2(X2,B2)
BNZR R2 Branch on Not Zero (RR Format) BCR 7,R2
BZ D2(X2,B2) Branch on Zero BC 8,D2(X2,B2)
BZR R2 Branch on Zero (RR Format) BCR 8,R2

Used After Test Under Mask Instruction

BALL D2(X2,B2) Branch if all Ones BC 1,D2(X2,B2)

; BALLR R2 Branch if all Ones (RR Format) BCR l,R2
BSOM D2(X2,B2) Branch if some Ones BC 4,D2(X2,B2)
BSOMR R2 Branch if some Ones (RR Format) BCR 4,R2
BNON D2(X2,B2) Branch if no Ones BC 8,D2(X2,B2)
BNONR R2 Branch if no Ones (RR Format) BCR 8,R2
BNO D2(X2,B2) Branch if not all Ones BC 14,D2(X2,B2)
BNOR R2 Branch if not all Ones (RR Format) BCR 14,R2

Section 3. Machine lnstmction Statement 3-11

SECTION 4. ASSEMBLY INSTRUCTION STATEMENTS

Table 4-1 contains all of the· assembly instructions,
listed according to mnemonic operation code and name.
They are fully described in this section and summarized in
Table P-1 in Appendix D.

Table 4-1. Assembly Instructions

Symbol Definition Instructions

EQU
MAX
MIN
TEQU

Equate Symbol
Equate Symbol (maximum value)
Equate Symbol (minimum value)
Temporarily Equate a Symbol

Data Definition Instructions

DC Define Constant
DS Define Storage
CCW Define Channel Command Word

Program Sectioning and Linking Instructions

START
CSECT
DSECT
COM
ENTRY
EXT RN
QUAL

Start Program
Identify Control Section
Identify Dummy Section
Identify Common Control Section
Identify Entry-Pofut Symbol
Identify External Symbol
Qualify Name

Base Register Instructions

USING
DROP

Use Base Address.Register
Drop Base Address Register

Listing Control Instructions

TITLE
EJECT
SPACE
PRINT
NLIST
LIST
DO UBL

Identify Assembly Output
Start New Page
Space Listing
Print Optional Data
Suppress Listing
Resume Listing
Double Space Listing

Table 4-1. Assembly Instructions (Continued)

Program Control Instructions

ICTL
ISEQ
ORG
LTORG
CNOP
END
SPEM
RPEM
LIB
SSEQ
PSEG

Input Control
Input Sequence Checking
Reset Location Counter
Begin Literal Pool
Conditional No Operation
End Program
Suppress Possible Error Messages
Restore Printing Error Messages
Library
Suppress Input Sequence Check
Get Compool Segment

Debug Instructions

DUMP
DUMPE
DUMPC
DUMPR
TDMPL
TDMPP
TRACB
TRACE

Dump Definition
Emergency Dump Definition
Conditional Dump Definition
Register Dump Definition
Logical Record Tape Dump Definition
Physical Record Tape Dump Definition
Branch Trace Definition
Trace Definition

SYMBOL DEFINITION INSTRUCTIONS

EQU - Equate Symbol

The EQU instruction defines a symbol by assigning to
it the attributes of an expression in the operand field. The
format of the EQU statement is:

Name Operation Operand

A symbol EQU An expression

The expression in the operand field can be absolute or
relocatable. Any symbols appearing in the expression must
be previously defined.

Section 4. Assembly Instruction Statements 4-1

The symbol in the name field is given the same
attributes as the expression in the operand field. The length
attribute (as well as the type and scale) of the symbol is
that of the leftmost (or only) term of the expression. If the
expression is an asterisk or a self-defining value, the implied
length of the expression is one. The value attribute of the
symbol is the value of the expression.

If the expression in the operand field or the symbol in
the name field, or both, are invalid or not present, a
warning message will appear in the listing and the EQU
statement will not be used.

The EQU instruction is the means of equating symbols
to register numbers, immediate data, and other arbitrary
values. The following examples illustrate how this might be
done:

Name Operation Operand

REGISTER EQU 2 (general register)

TEST EQU X' 3F' (immediate data)

To reduce programming time, the programmer can
equate symbols to frequently used expressions and then use
the symbols as operands in place of the expressions. Thus,
in the statement:

Name Operation Operand

FIELD EQU ALPHA-BETA+GAMMA

FIELD is defined as ALPHA-BETA+GAMMA and maybe
used in place of it. Note, however, that ALPHA, BETA, and
GAMMA must all be previously defined.

Symbols can also be equated to other symbols to give
the same attributes to different symbols used in different
parts of the program.

4-2

MAX and MIN - Equate Symbol

The assembly instructions MAX and MIN perform a
. function similar to that performed by the EQU instruction
but, in addition, they choose an expression from two or
more expressions in the operand field. (A MAX or MIN
statement with one expression in the operand field is
permissible and is treated as an EQU statement.) The choice .
of expressions is either the highest value or location (MAX)
or the lowest value or location (MIN). The format of a
MAX or MIN statement is:

Name Operation Operand

A symbol MAX or MIN Expression 1,
Expression 2, ... ,

. Expression n

The same checking that is performed for EQU state
ments is done for MAX and MIN statements and for each
expression in the operand fields of these statements. In
addition, all expressions must have the same relocatability
attribute. If any of these conditions is not met, a message is
printed; and the MAX or MIN statement is ignored.

If two or more expressions in the operand field of a
single MAX or MIN statement have the same location or
value attribute, then the leftmost, or first occurring,
expression is the one chosen to supply the length, type, and
scaling attributes for the defined symbol. The ordering of
expression values is such that zero (if absolute) or the first
byte of the control .section or of the external item (if
relocatable) is always a minimum value. The maximum
value of an absolute expression is 224 -1; the maximum
location for a relocatable expression is: beginning of
control section+ 224 -1. Thus, if A is the name of the first
byte in a control section, then:

MAX
MIN

A-50,A-1,A,A+SO
A-53,A-1,A,A+SO

isA-1
is A

These unexpected results occur because of the uncer
tainties of relocation and the modulo arithmetic used is the
fixed-point operations and in effective address calculation
by the CPU. Meaningful results can be obtained by
comparing absolute values or addresses within one control
section only. As soon as a value drops below the value of
the first byte of the control section, it is treated as a very
larg~ number.

TEQU - Temporarily Equate a Symbol

The assembly instruction TEQU is similar to an EQU
instruction except that in a TEQU statement the symbol in
the name field may be previously defined; whereas, in an
EQU statement, the symbol in the name field must not be
previously defined. The format of the TEQU statement is:

Name Operation Operand

ALPHA TEQU BETA

where ALPHA may or may not be previously defined and
BETA must be previously defined. The attributes of BETA
are assigned to ALPHA by the assembly program.

Any symbol may be temporarily equated. However,
only another TEQU statement may be used to redefine that
symbol. Therefore, to redefine ALPHA the following must
be used:

ALPHA TEQU GAMMA

If a symbol is defined via anything but an EQU or
TEQU and redefined by a TEQU, the assembled symbol
will be given the value assigned by the TEQU. Equated

1 symbols which are TEQUated will assume the value ot the

last TEQU in the assembly until redefinition by the EQU is
encountered. The following example illustrates the assembly
of TEQUated symbols:

Assembled

Value

0000 0014

0000 0001

0000 0002

0000 0014

SYMBOL

SYMBOL

SYMBOL

DC

EQU

DC

TEQU

DC

TEQU

DC

A(SYMBOL)

1

A(SYMBOL)

2

A(SYMBOL)

20

A(SYMBOL)

DATA DEFINITION INSTRUCTIONS

Comment

Symbol not pre-

viously defined.

Symbol receives

value from the

last TEQU in the

assembly.

Equate

re-evaluated.

There are three data definition statements: Define
Constant (DC), Define Storage (DS), and Define Channel
Command Word (CCW).

Section 4. Assembly Instruction Statements 4-3

These statements are used to enter data constants into
storage, to define and reserve areas of storage, and to
specify the contents of channel command words. The
statements may be named by symbols so that other
program statements can refer to the fields generated from
them.

DC - Define Constant

The DC instruction generates constant data in storage.
A variety of constants may be specified: fixed-point,
floating-point, decimal, hexadecimal, character, and storage
addresses. (Data constants are generally called constants
unless they are created from storage addresses, in which
case they are called address constants.) The format of the
DC statement is:

Name Operation Operand

A symbol DC A single operand describ-
01' blank ing the constant, written

in the format in the fol-
lowing text

An operand consists of four subfields; the first three
subfields describe the constant (some or all may be
omitted, depending on the constant), and the fourth
subfield provides the constant or constants. Note that more
than one constant may be specified in the fourth subfield
for most types of constants. Each constant so specified
must be of the same type; the descriptive subfields that
precede the constants apply to all of them. No blanks may
occur within any of the subfields (unless provided as
characters in a character constant), nor may they occur
between the subfields of an operand.

The subfields of the DC operand are written in the
following sequence:

1
Duplication

Factor

2
Type

3
Modifiers

4
Value List
(Constants)

The symbol that names the DC instruction is the name
of the constant (or first constant if the instruction specifies
more than one). Relative addressing (e.g., SYMBOL+2) may
be used to address the various constants if more than one
has been specified, because the number of bytes allocated
to each constant can be determined. This length considera
tion is discussed in various subsections of this publication
and summarized in Table C-1 in Appendix C.

The value attribute (address) of the symbol that names
the DC instruction is the address of the leftmost byte (after
alignment) of the first, or only, constant. The length

4-4

attribute depends on two things: the type of constant being
defined and the presence of a length specification. Implied
lengths are assumed for the various constant types in the
absence of a length specification. If more than one constant
is defined, the length attribute is the length (specified or
implied) of the first constant.

Boundary alignment also varies according to the type
of constant· that is specified and the presence of a length
specification. Some constant types are aligned only to a
byte boundary, but the DS instruction can be used to force
any type of word boundary alignment for them. This is
explained under " DS - Defined Storage." Other constants
are aligned at various word boundaries (half, full, or
double) in the absence of a length specification. If length is
specified, no boundary alignment occurs for such constants.

Bytes that must be skipped in order to align the field at
the proper boundary are not considered to be part of the
constant. In other words, the location counter is incre
mented to reflect the proper boundary (if any incrementing
is necessary) before the address value is established. Thus,
the symbol that nan1es the constant will not receive a value
attribute that is the location of a skipped byte.

LITERAL DEFINITIONS

Note that the discussion of literals as machine
instruction operands (in Section 2) refers to the description
of the DC operand for the method of writing a literal
operand. All subsequent operand specifications are applic
able to writing literals, the only difference being that the
literal is preceded by an equal sign. Examples of literals
appear throughout the balance of the DC instruction text.

OPERAND SUBFIELD 1: DUPLICATION FACTOR

The duplication factor (multiplicity) may be omitted.
If specified, it causes the constant(s) to be generated the
number of times indicated by the factor. The factor may be
specified either by an unsigned decimal value or by an
absolute expression that is enclosed by parentheses. The
value of the expression is interpreted as positive and
modulo 22 4 • All symbols in the expression must be
previously defined. The multiplicity value may range from
0 to any value that does not cause the location counter to
exceed 224 -1. If no multiplicity is specified, 1 is assumed.
Multiplicity must not .be greater than 1 for A-type or S-type
address constants.

Thus, specifying the constant 30 with a duplication
factor of 2 results in the generation of 3030. However,
specifying the constants 30, 60, and 90 with a duplication

of 2 results in the generation of 306090306090. The
duplication factor is always applied after the constant is
fully assembled, i.e., after it has been developed into its
proper format.

Note that a duplication factor of zero is permitted and
will achieve the same result as it would in a DS instruction.
See " Forcing Alignment " under " DS - Define Storage."

OPERAND SUBFIELD 2: TYPE

The type subfield defines the type of constant being
specified. From the type specification, the assembly pro
gram determines how it is to interpret the constant and
translate it into the appropriate machine format. The type
is specified by a single-letter code as shown in Table 4-2.

Table 4-2. Type Subfield Codes

Type of
Code Constant Machine Format

Arithmetic

F Fixed-point Signed, fixed-point binary
format; normally a full-
word.

H Fixed-point Signed, fixed-point binary
format; normally a half-
word.

E Floating-point Short floating-point for-
mat; normally a fullword.

D Floating-point Long floating-point for-
mat; normally a double-
word.

p Decimal Packed decimal format.

z Decimal Zoned decimal format.

Variable Field
Length

c Character Eight-bit code for each
character.

x Hexadecimal Four-bit code for each
hexadecimal digit.

Table 4-2. Type Subfield Codes (Continued)

Code
Type of
Constant Machine Format

Address

A Address

s Address

Value of address; normally
a fullword.

S-address (base and dis
placement) constant; a
halfword.

Note: The type subfield may be omitted where the
constant value list is delimited by quote marks. In this case,
type C is assumed. Further information about these
constants is provided under " Operand Subfield 4: Value
List."

OPERAND SUBFIELD 3: MODIFIERS

Modifiers are coded information about the explicit
length (in bytes) desired for a constant and the scaling for
the constant. If multiple modifiers are written, they must
appear in this sequence: length and scale. Each modifier is
written and used as described in the following text.

Length Modifier

The length modifier (L) specifies the amount of storage
into which each data item is to be assembled. When a length
modifier is given with a data component, no word
boundary . resolution is done. The length specification may
take one of three forms:

1. Le. or Le where e is an unsigned integer or an
expression contained within parentheses. (Any
symbols in these expressions must have been
defined by a previous statement in the source
program.) The value of e, which is interpreted as
positive and modulo 22 4

, denotes the number of
bytes of storage which will contain the assembled
constant. Limits on the maximum value of e for
each data type are shown in Table C-1 in
Appendix C.

2. L.e where e is of the same form as specified in item
1. Here, the value of e gives the number of bits of
storage which will contain the assembled constant.
The value of e may exceed 8 and it will be
understood to mean an integral number of bytes

Section 4. Assembly Instruction Statements 4-5

plus so many bits. Thus, L.16 is equivalent to L2
and means 16 bits or 2 bytes. If a length modifier
(other than type 1) is given, all succeeding items
will be assembled in the next available bit location.
If no bit length is given, proper boundary resolu
tion (at least to the byte level) will occur.

3. Lel.e2 where el and e2 are of the same form as e
·defined in item L The value of el denotes the
number of bytes, and e2 denotes the number of
bits. After e2 is converted to an integral number of
bytes plus so many bits as defined in item 2, the
value of el is added to the number of bytes. The
resulting value gives the amount of storage into
which the assembled constant is placed. Thus,
L1 .18 is equivalent to L3 .2 and means 3 bytes plus
2 bits.

When one or more bit lengths are given, which do not
leave the location counter on a byte boundary, the
remaining bits in the byte are set to zero; the location
counter is set to the next full-byte boundary before the
next statement is translated. This means that no name may
have a bit address. The implied length of a data item which
has a bit length is rounded up to the next integral byte.
Table C-1 in Appendix C shows the maximum length
values allowed for each data type. After a bit length has
been rounded upward to the next byte length, the result
must not exceed those values shown in Table C-1.

Scale Modifier

This modifier is written as Sn, where n is either a
decimal value or an absolute expression enclosed by
parentheses. Any symbol in the expression must be
previously defined. The decimal value or the parenthesized
expression may be preceded by a sign; if no sign is present,
a plus sign is assumed. The maximum values for scale
modifiers are summarized in Table C-1.

A scale modifier may be used only with fixed-point
(F ,H) and floating-point (E,D) constants. A scale modifier
is used to specify the amount of internal scaling that is
desired.

Fixed-Point Constant. The scale modifier specifies a
number (2n) by which the constant must be multiplied
after it has been converted to its binary representation.
Just as multiplication of a decimal number by 1 on
causes the decimal point to move, multiplication of a
binary number by 2n causes the binary point to move.
This multiplication has the effect of moving the binary
point away from its assumed position in the binary
field; the assumed position is to the right of the
rightmost position.

4-6

Thus, the scale modifier indicates either of the follow
ing: (1) the number of binary positions to be occupied
by the fractional portion of the binary number, or (2)
the number of binary positions to be deleted from the
integral portion of the binary number. A positive scale
of x shifts the integral portion of the number x binary
positions to the left, thereby reserving the rightmost x
binary positions for the fractional portion. A negative
scale shifts the integral portion of the number right,
thereby deleting rightmost integral positions.

Notes: If a scale modifier does not accompany a
fixed-point constant containing a fractional part, the
fractional part is lost.

fu all cases where positions are lost because of scaling
(or the lack of scaling), rounding occurs in the leftmost
bit of the lost portion. The rounding is reflected in the
rightmost position that is saved.

Fl.oating-Point Constant. Only a positive scale modifier
may be used with a floating-point constant. It indicates
the number of hexadecimal positions that the fraction
is to be shifted to the right. Note that this shift amount
is in terms of hexadecimal positions, each of which is
four binary positions. (A positive scaling actually
indicates that the point is to be moved to the left.
However, a floating-point constant is always converted
to a fraction, which is hexadecimally normalized. The
point is assumed to be at the left of the leftmost
position in the field. Because the point cannot be
moved left, the fraction is shifted right.)

Thus, scaling that is specified for a floating-point
constant provides an assembled fraction that is un
normalized, i.e., contains hexadecimal zeros in the
leftmost positions of the fraction. When the fraction is
shifted, the exponent is adjusted accordingly to retain
the correct magnitude. When hexadecimal positions are
lost, rounding occurs in the leftmost hexadecimal
position of the lost portion. The rounding is reflected
in the rightmost hexadecimal position that is saved.

OPERAND SUBFIELD 4: VALUE LIST

This subfield supplies the constant (or constants)
described by the subfields that precede it. A data constant
(all types except A and S) is enclosed by single quotation
marks. An address constant (types A and S) is enclosed by
parentheses; To specify two or more constants in the
subfield, the constants must be separated by commas and

the entire sequence of constants must be enclosed by the
appropriate delimiters (i.e., single quotation marks or
parentheses). Thus, the format for specifying the con
stant(s) is one of the following:

Single
Constant

'constant'
(constant)

Multiple
Constants*

'constant,constant, ... constant'
(constant,constant, ... constant)

All constant types except character (C) and hexadeci
mal (X) will be aligned on the proper word boundary, as
shown in Table C-1 unless a length modifier is specified. In
the the presence of a length modifier, no boundary
alignment is performed. If an operand specifies more than
one constant, any necessary alignment applies only to the
first constant. Thus, for an operand that provides five
fullword constants, the first constant would be aligned on a
fullword boundary, and the remaining constants would
automatically fall on fullword boundaries.

The total storage requirement of an operand is the
product of the length times the number of constants in the
operand times the duplication factor (if present) plus any
bytes skipped for boundary alignment of the first constant.

If an address constant contains a location counter
reference, the location counter value that is used is the
storage address of the first byte that the constant will
occupy. Thus, if several address constants in the same
instruction refer to the location counter, the value of the
counter varies from constant to constant. However, if a
single constant is specified (and it is a location counter
reference) with a duplication factor, the constant is
duplicated with the same location counter value.

·The following text describes e.ach of the constant types
and provides examples. The description concludes with
Table C-1, which summarizes the information on all
aspects of constant definition, e.g., maximum lengths,
exponent limits, boundary alignment, etc.

Character Constant- C

All letters, decimal digits, and special characters may be
used in character constants. In addition, any of the
remaining 256 punch combinations listed in Appendix A
may be designated in a character constant. Only one
character constant may be specified per operand. Since
multiple constants within an operand are separated by
commas, an attempt to specify two character constants

*Not permitted for character and hexadecimal constants.

would result in interpreting the comma that separates them
as a character.

Special consideration must be given to representing the
quotation mark as a character. Each single quotation mark
desired as a character in the constant must be represented
by a pair of single quotation marks. Only one single
quotation mark will be generated for each pair.

The maximum length of a character constant is 255
bytes. No word boundary alignment is performed. Each
character is translated into one byte. If no length modifier
is given, the size in bytes of the character constant is equal
to the number of characters in the constant. If a length
modifier is provided, the result varies as follows:

1. If the number of characters in the constant exceeds
the specified length, as many rightmost bytes as
necessary are dropped.

2. If the number of characters is less than the
specified length, the excess Iightmost bytes are
filled with blanks.

In the following example, the length attribute of
FIELD is 12:

Name Operation Operand

FIELD DC C'TOTAL IS $10'

However, in this next example, the length attribute is
15, and three blanks appear in storage to the right of the
zero:

Name Operation Operand

FIELD DC CL15
1
TOTAL IS $10'

Note that in the next example, a length of 4 has been
specified, but there are five characters in the constant:

Name Operation Operand

FIELD DC 3CL4' ABCDE'

The generated constant would be: ABCDABCDABCD. On
the other hand, if the length had been specified as 6 inJitead
of 4, the generated constant would have been:

ABCDEbABCDEbABCDEb

Note that the same constant could be specified as a
literal:

Section 4. Assembly Instruction Statements 4-7

Name Operation Operand

MVC CODEAREA,=3CL4' ABCDE'

Hexadecimal Constant - X

A hexadecimal constant is comprised of one or more of
the hexadecimal digits, which are 0-9 and A-F. Only one
hexadecimal constant may be specified per operand. The
maximum length of a hexadecimal constant is 25 5 bytes.
No word boundary alignment is performed.

Constants that contain an even number of hexadecimal
digits are translated as one byte per pair of digits. If an odd
number of digits is specified, the leftmost four bits of the
leftmost byte are filled with a hexadecimal zero, while the
rightmost four bits contain the odd (first) digit.

If no length modifier is given, the implied length of the
constant is half the number of hexadecimal digits in the
constant (assuming that a hexadecimal zero is added to an
odu number of digits). If a length modifier is given, the
constant is handled as follows:

1. If the number of hexadecimal digit pairs exceeds
the specified length, the necessary leftmost bits
(and/or bytes) are dropped.

2. If the number of hexadecimal digit pairs is less
than the specified length, the necessary bits (and/
or bytes) are added to the left and filled with
hexadecimal zeros.

An eight-digit hexadecimal constant provides a con
venient way to set the bit pattern of a full binary word. The
constant in the following example would set the first and
third bytes of a word to ones:

I-1Jame Operation Operand
.
TEST DC X'FFOOFFOO'

The next example uses the same constant as a literal
and sets the bit pattern of a register:

Name Operation Operand

L 5 ,=X'FFOOFFOO'

4-8

In the following example, the digit A would be
dropped, because five hexadecimal digits are specified for a
length of two bytes:

Name Operation Operand

ALPHA CON DC 3XL2' A6F4E'

The resulting constant would be 6F4E, which would
occupy the specified two bytes. It would then be dupli
cated three times, as requested by the duplication factor. If
it had merely been specified as X' A6F4E', the resulting
constant would have had a hexadecimal zero in the leftmost
position: OA6F4E.

Fixed-Point Constants - F and H

A fixed-point constant is written as a decimal number
(not exceeding 23 digits) which may be followed by a
decimal exponent. The number may be an integer, a
fraction, or a mixed number (i.e., one with integral and
fractional portions). The format of the constant is:

1. The number is written as a signed or unsigned
decimal value. The decimal point may be placed
before, within, or after the number, or it may be
omitted, in which case the number is assumed to
be an integer. A positive sign is assumed if an
unsigned number is specified. Unless a scale modi
fier accompanies a mixed number or fraction, the
fractional portion is lost, as explained under
"Subfield 3: Modifiers."

2. The exponent is optional. If specified, it is written
immediately after the number as En, where n is an
optionally signed decimal value that specifies the
exponent of 10 (lOn). The exponent may be in the
range -85 to +75. If an unsigned exponent is
specified, a plus sign is assumed. The exponent
causes the value of the constant to be multiplied
by 1 on before the constant is converted to its
binary form.

The number is converted to its binary equivalent and is
assembled as a fullword or halfword, depending on whether
the type is specified as F or H. It is aligned at the proper
fullword or halfword boundary if a length is not specified.
An implied length of four bytes is assumed for a fullword
(F) and two bytes is assumed for a halfword (H). However,
any length up to and including eight bytes may be specified
for either type of constant by a length modifier, in which
case no boundary alignment occurs.

The binary number occupies the rightmost portion of
the field in which it is placed. The unoccupied portion (i.e.,
the leftmost bits) is filled with the sign; that is, the setting
of the bit that designates the sign is the setting for the bits
in the unused portion of the field. If the value of the
number exceeds the length, the necessary leftmost bits are
dropped. A negative number is carried in the 2s comple
ment form.

If the iightmost portion of the number must be
dropped as a result of scale modifiers, rounding occurs. Any
duplication factor that is present is applied after the
constant is converted to its binary format and assembled
into the proper number of bytes.

A field of three fullwords is generated by the following
statement. The value attribute of CONWRD is the address
of the leftmost byte of the first word; and the length
attribute is 4, the implied length for a fullword fixed-point
constant. The expression CONWRD+4 could be used to
address the second constant (second word) in the field.

Name Operation Operand

CONWRD DC 3F'6S8474'

The next statement caused the generation of a two
byte field that contains a negative constant. Note that
scaling has been specified in order to reserve six bits for the
fractional portion of the constant.

Name Operation Operand

HALFCON DC HS6' -25 .93'

The next constant (3.50) is multiplied by 10-2 before
it is converted to binary format. The scale modifier reserves
eight bits for the fractional portion.

Name Operation Operand

FULLCON DC HS8'3.SOE-2'

The same constant could be specified as a literal:

Name Operation Operand

AH 7 ,=HS8'3.50E-2'

The final example specifies three constants. Note that
the scale modifier requests four bits for the fractional
portion of each constant. The four bits are provided
whether or not the fraction exists.

Name Operation Operand

THREECON DC FS4'10.25.3.100'

Floating-Point Constants - E and D

A floating-point constant is written as a decinrnl
number (not exceeding 23 digits), which may be followed
by a decimal exponent, if desired. The number may be an
integer, a fraction, or a mixed number (i.e., one with
integral and fractional portions). The fonnat of the
constant is:

1. The number is written as a signed or unsigned
decimal value. the decimal point may be placed
before, within, or after the number, or it may be
omitted, in which case, the number is assumed to
be an integer. A positive sign is assumed if an
unsigned number is specified.

2. The exponent is optional. If specified, it is written
immediately after the number as En, where n is an
optionally signed decimal value that specifies the
exponentof 10 (lOn). The exponent may be in the
range -85 to +75. If an unsigned exponent is
specified, a plus sign is assumed.

Machine format for a floating-point number is in two
parts: the portion containing the exponent, which is called
the characteristic, followed by the portion containing the
fraction, which is called the mantissa. Therefore, the
number specified as a floating-point constant must be
converted to a fraction before it can be translated into the
proper format. For example, the constant 27.35E2 repre
sents the number 27.35 times 102

• This constant repre
sented as a fraction would be .2735 times 104

, the
exponent having been modified to reflect the shifting of the
decimal point. Once the constant is converted into the
proper exponent and fraction, each is translated into its
binary equivalent and arranged in machine floating-point
format.

The translated constant is placed in a fullword or a
doubleword, depending on whether the type is specified as
E or D. It is aligned at the proper word or doubleword
boundary if a length is not specified. An in1plied length of
four bytes is assumed for a fullword (E) and eight bytes is
assumed for a doubleword (D). However, any length up to
and including eight bytes may be specified for either type
of constant by a length modifier, in which case no
boundary alignment occurs.

Section 4. Assembly Instruction Statements 4-9

Within the portion of the floating-point field allocated
to the fraction, the hexadecimal point is assumed to be to
the left of the leftmost hexadecimal digit; and the fraction
occupies the leftmost portion of the field. The fraction is
normalized (no leading hexadecimal zeros), unless scaling is
specified. If the rightmost portion of the fraction must be
dropped because of length or scale modifiers, rounding will
occur. Neg~tive fractions are carried in true representation,
not in the 2s complement form.

Any of the following statements could ·be used to
specity 46.415 as a positive, fullword, or floating-point
constant.

Name Operation Operand

DC E'46.415'
DC E'4641SE-3'
DC E' +464.lSE-1'
DC E'.46415E+2'

Decimal Constants - P and Z

A decimal constant is written as a signed or unsigned
.' Jcimal value. If the sign is omitted, a plus sign is assumed.
The decimal point may be written wherever desired or it
may be omitted. Scaling and exponent modifiers may not
be specified for decimal constants. The maximum length of
a decimal constant is 16 bytes. No word boundary
alignment is performed.

The placement of the decimal point in the definition
does not affect the assembly of the constant in any way,
because, unlike fixed-point and floating-point constants, a
decimal constant is not converted to its binary equivalent.
The fact that a decimal constant is an integer, a fraction, or
a mixed number is not pertinent to its generation.
Furthermore, the decimal point is not assembled into the
constant. The programmer may determine proper decimal
point alignment either by defining his data so that the point
is aligned or by selecting machine instructions that will
operate properly on the data (i.e., shift it for purposes of
alignment).

If zoned decimal format is specified (Z), each decimal
digit is translated into one byte. The translation is done
according to the character set shown in Appendix A. The
rightmost byte contains the sign as well as the rightmost
digit. For packed decimal format (P), each pair of decimal
digits is translated into one byte. The rightmost digit and
the sign are translated into the rightmost byte. The bit
configuration for the digits is identical to the configurations
for the hexadecimal digits 0-9 as shown in Section 2 under
"Hexadecimal Delf-Defining Value." for both packed and
zoned decimals, a plus sign is translated into the hexadeci
mal digit C, and a minus sign is translated into the
hexadecimal digit D.

4-10

If an even number of packed decimal digits is specified,
one digit will be left unpaired, because the rightmost digit is
paired with the sign. Therefore, the leftmost four bits of
the leftmost byte will be set to zeros; the rightmost four
bits will contain the odd (first) digit.

If no length modifier is given, the implied length for
either constant is the number of bytes the constant
occupies (taking into account the format, sign, and possible
addition of zero bits for packed decimals). If a length
modifier is given, the constant is handled as follows:

1. If the constant requires fewer bytes than the length
specifies, the necessary number of bytes is added
to the left. For zoned decimal format, the zoned
decimal digit zero is placed in each added byte. For
packed decimals, the bits of each added byte are
set to zero.

2. If the constant requires more bytes than the length
specifies, the necessary number of leftmost digits
or pairs of digits is dropped. The type of trunca
tion depends on which format is specified.

Examples of decimal constant definitions are:

Name Operation Operand

DC P'+l.25'
DC Z'-543'
DC Z

1
79.68

1

DC PL3'79.68'

The next example illustrates the use of a packed
decimal literal.

Name . Operation Operand

UNPK OUTAREA+30,=PL8'+25'

Address Constants - A and S

An address constant is a storage address that is
translated into a constant. Address constants are used for
initializing base registers to facilitate the addressing of
storage. However, storage addressing and control section
communication are also dependent on the use of the
USING assembly instruction and the loading of registers.
Coding examples that illustrate these considerations are
provided under "Base Register Instructions."

An address constant, unlike other types of constants, is
enclosed in parentheses. If two or more address constants
are specified in an operand, they are separated by commas,
and the entire sequence is enclosed by parentheses. There
are two types of address constants: A and S.

A-Type Address Constant

This constant is specified as an ab solute or relocatable
expression. The value of the expression is calculated as
explained in Section 2, and is assembled as the constant.
The implied length of an A-type constant is four bytes,
and the value is placed in the rightmost portion. Alignment
is to a fullword boundary, unless a length is specified. A
length modifier may be used, in which case no alignment
will occur. The length must be 14 bytes (without bit length
specification).

In the following example, the field generated from the
statement named ACON contains three constants, each of
which occupies four bytes. The second statement shows t~e
same set of constants specified as literals (i.e., address
constant literals).

Name Operation Operand

ACON DC A(108,WOP,END-START)
LM 3,S ,=A(l 08,LOOP ,END-START)

S-Type Address Constant

The S-type address constant is used to store an address
in base-displacement form. The 16-bit constant will be
aligned on a hlaf-word boundary and given an implied
length of 2 bytes. The S-type constants may be specified in
two ways:

1. A relocatable or absolute expression enclosed in
parenthesis; e.g., S(TABLE). The address value
represented by the expression will be converted
into the proper base register and displacement
value by the assumbler. A general register must be
available (through a USING statement) to permit
the S-type address constant to be mapped into a
base and displacement.

2. Two absolute expressions, the first of which
represents the displacement value and the second,
the base register, e.g., S[100(10)].

The leftmost four bits of the assembled constant is the
base register designation, the remaining twelve bits is the
displacement value.

Note: An explicit length or a duplication factor is not
allowed; however, a list ofconstants may be specified as:

SAD DR DC S(TABLE,SCON2,SCON3)

The S-type address constants should not be specified as
literals.

DS - Define Storage

The DS instruction reserves areas of storage and assigns
nanws to those areas. The use of this instruction is the
preferred way of symbolically defining storage for work
areas, input/output areas, etc. The size of a storage area
that can be reserved by using the DS instruction is limited
only by the maximum value of the location counter

(however, the length cannot exceed the maximum for the
type). The format of the DS statement is:

Name Operation Operand

A symbol DS One or more operands,

or blank separated by commas,
written in the format
described in the follow-
ing text

The format of the DS operand is identical to that of
the DC operand; exactly the same subfields are employed
and are written in exactly the same sequence as they are in
the DC operand. There is one difference, that is, the value
list (subfield 4) is optional in a DS operand, but ~t is
mandatory in a DC operand.

If a DS operand specifies a constant in subfield 4, the
assembly program determines the length of the data and
reserves the appropriate amount of storage. It does not
assemble the constant as it would for a DC operand. The
ability to specify data and have the assembly program
calculate the storage area that would be required for such
data is a convenience to the programmer. If he knows the
general format of the data that will be placed in the storage
area during program execution, all he needs to do is show it
as the fourth subfield in a DS operand. The assembly
program then determines the conect amount of storage to
be reserved, thus relieving the programmer of length
considerations.

If the DS instruction is named by a symbol, its value
attribute is the location of the leftmost byte of the reserved
area. The length attribute of the symbol is the length
(implied or explicit) of the type of d·ata specified. If the DS
has a series of operands, the length attribute for the symbol
is developed from the first item in the first operand. Any
positioning required for aligning the storage area to the
proper type of boundary is done before the address value is
determined.

Each field type (e.g., hexadecimal, character, and
floating-point) is associated with certain characteristics
(these are summarized in Table C-1). The associated
characteristics will determine which field-type code the
programmer selects for the DS operand and what other
information he adds, notably a length specification or a
duplication factor. For example, the E floating-point field
and the F fixed-point field both have an implied length of
four bytes. The leftmost byte is aligned to a fullword
boundary. Thus, either code could be specified if i(were
desired to reserve four bytes of storage aligned to a
fullword boundary. Thus, either code could be specified if
it were desired to reserve four bytes of storage aligned to a
fullword boundary. To obtain a length of eight bytes, one

Section 4. Assembly Instruction Statements 4-11

I could specify either the E or F field type with a length \
! modifier of 8. However, a duplication factor would have to \.

be used in order to obtain a larger field size, because the '
maximum length specification for either type is eight bytes.
Note also that specifying length would cancel any special
boundary alignment.

In contrast, packed and zoned decimal (P and Z),
character (<:), and hexadecimal (X) fields have an implied
length of one byte. Any of these codes, if used, would have
to be accompanied by a length modifier. unless just one
byte is to be reserved. Unless a field of one byte is desired
either the length must be specified for the C or X field
type, or else the data must be specified (as the fourth
subfield), so that the assembly program can calculate the
length. -

To define four 10-byte fields and one 100-byte field,
the respective DS statements might be:

Name Operation Operand

FIELD DS 4CL10
AREA DS CLlOO

Although FIELD might have been specified as one
c.J J-byte field, the preceding definition has the advantage of
providing FIELD with a length attribute of 10. This would
be pertinent when using FIELD as a machine instruction
operand governed by a length consideration.

Additional examples of DS statements are:

ONE DS CI.80 (one 80-byte field, length
attribute of 80)

TWO DS 80C (80 one-byte fields, length
attribute of 1)

IBREE DS 6F (six fullwords, length attri-
bute of 4)

FOUR DS D (one doubleword, length attri-
bute of 8)

FIVE DS 4H (four halfwords, length attri-
bute of 2)

SIX DS 20CL255 (20 areas of 255 bytes each
or one area of 5100, length
attrihlite of 25 5)

Note: A DS statement causes the storage area to be
reserved but not set to zeros. The programmer should not
assume that the area will contain zeros when the program is
loaded.

SPECIAL USES OF THE DUPLICATION FACTOR

Forcing Alignment

: The location counter can be forced to a doubleword
fullword, or halfword boundary by using the appropriat~
field type (e.g., D, F, or H) with a duplication factor of
zero. This method may be used to obtain boundary

\ 4-12

alignment that otherwise would not be provided. For
example, the following statements would set the location
counter to the next doubleword boundary and then reserve
storage space for a 128-byte field (whose leftmost byte
would be on a doubleword boundary).

Name Operation Operand

DS OD
AREA DS CL128

Defining Fields of an Area

A DS instruction with a duplication factor of zero can
also be used to assign a name to an area of storage without

· actually reserving the area. Additional DS and/ or DC
instructions may then be used to reserve the area and assign
names to fields within the area (and generate constants if
DC is used).

For example, assume that 80-character records are to
be read into an area for processing and that each record has
the following format: ·

Positions S-10 Payroll Number
Positions 11-30 Employee Name
Positions 31-36 Date
Positions 47-54 Gross Wages
Positions 55-62 Withholding Tax

Figure 4-1 illustrates how DS instructions might be
used to assign a name to the record area, then define the
fields of the area and allocate the storage for them. Note
that the first statement names the entire area by defining
the symbol RDAREA; the statement gives RDAREA a
length attribute of 80 bytes, but does not reserve any
storage. Similarly, the fifth statement names a six-byte area
by defining the symbol DATE; the three subsequent
statements actually define the fields of DATE and allocate
storage for them. The second, ninth, and last statements are
used for spacing purposes and, therefore, are not named.

Name Operation Operand

RDAREA DS OCL80
DS cu

I PAYNO DS CL6
; NAME DS CL20
I DATE DS OCL6

I DAY DS CL2
MONTH DS CL2
YEAR DS CL2

DS CLIO
GROSS DS CL8
FEDTAX DS CL8

DS CL18

Figure 4-1. Use of DS Instruction

CCW - Define Channel Command Word

The CCW instruction provides a convenient way to
define and generate an eight-byte channel conunand word
aligned at a doubleword boundary. The internal machine
format of a channel conunand word is shown in Table 4-3.

Table 4-3. Channel Command Word Format

Byte Bits Usage

1 0-7 Command code
2-4 8-31 Data address
s 32-36 Flags

37-39 Must be zero
6 40-47 Set to zero
7-8 48-63 Count

The format of the CCW statement is:

Name Operation Operand

A symbol ccw Four operands, separated
or blank by commas, specifying

the contents of the chan-
nel command word in the
format described in the
following text

The operands are written, from left to right, as follows:

1. An absolute expression that specifies the command
code. The value of this expression is right-:justified
in byte 1.

2. A relocatable or absolute expression that specifies
the data address. The value of this expression is
right-justified in bytes 2-4.

3. An absolute expression that specifies the flags for
bits 32-36 and zeros for bits 37-39. The value of
this expression is right-justified in byte S. (Byte 6
is set to zero.)

4. An absolute expression that specifies the count.
The value of this expression is right-justified in
bytes 7-8.

The following is an example of a CCW statement:

Name Operation Operand

ccw x I 02' ,READ IN ,X' 48' ,80

Note: The form of the third operand sets bits 37-39 tO
zero, as required. The bit pattern of this operand is:

32-35
0100

36-39
1000

An operand may be omitted to imply that the byte or
bytes it specifies are to be set to zero. If an operand is
omitted, the conuna following it may be omitted only if no
subsequent operands appear in the statement. For example:
the statement:

CCW X '07',INAREA,,160

will result in bytes S and 6 being assembled as zeros.

If there is a symbol in the name field of the CCW
instruction, it is assigned the address value of the leftmost
byte of the channel command word after any boundary
alignment. The length attribute of the symbol is 8. A byte
skipped because of alignment is set to zero.

PROGRAM SECTIONING AND LINKING

The START assembly instruction enables the program
mer to identify an unsectioned program or the first section
of a multisection program. It also may be used to specify a
tentative starting location. The CSECT and DSECT assem
bly instructions enable the programmer to identify sections
of a multisection program. The EXTRN and ENTRY
assembly instructions facilitate symbolic linkages between
independently assembled programs.

It is often convenient, or necessary, to write a large
program in sections. The sections may be assembled
separately, then combined subsequently into one object
program. The assembly program provides facilities for
creating multisectioned programs and symbolically linking
separately assembled programs or program sections. How
ever, sectioning a program is optional, and many programs
can best be written without sectioning them.

The progranuner who is writing an unsectioned pro
gram does not need to concern himself with the subsequent
discussion of program sections, which are called control
sections, nor does he have to employ the CSECT instruc
tion, which is used to identify the control sections of a
multisection program. Similarly, he does not need to
concern himself with the discussion of symbolic linkages if
his program neither requires a linkage to nor receives a
linkage from another program. He may, nowever, wish to
identify the program and/ or specify a tentative starting
location for it, both of which may be done by using the
START instruction. He may also want to employ the
dununy section feature obtained by using the DSECT
instruction.

Note: The problem of program sectioning and linking is
closely related to the specification of base registers for each
control section. This is discussed under " Base Register
Instructions " in the subsection " Progranuning with the
USING Instruction." Several sectioning and linking exam
ples are provided in the discussion.

Section 4. Assembly Instruction Statements 4-13

First Control Section

The first control section of a program has the following
special properties:

1. It can begin without a CSECT definition. If its
location counter has been incremented from 0
before the occurrence of a CSECT, it can be
resumed with 11 blank CSECT 11

• Otherwise, it
cannot be resumed.

2. Its tentative loading location may be specified as
an absolute value (using the START card).

3. It normally contains the literals requested in the
program, although their positioning can be altered.
This is further explained under the discussion of
the LTORG assembly instruction.

Symbolic Linkages

Symbols may be defined in one program and referred
to in another, thus effecting symbolic linkages between
independently assembled programs. The linkages can be
effected only if the assembly program is able to provide
information about the linkage symbols to the loader, which
resolves these linkage references at load time. The assembly
program places the necessary information in the control
dictionary on the basis of the linkage symbols identified by
the ENTRY and EXTRN instructions.

In the program where the linkage symbol is defined
(i.e., used as a name), it must also be identified to the
assembly program by .,.means of the ENTRY assembly
instruction. It is identified as a symbol that names an entry
point, which means that another program will use that
symbol in order to effect a branch operation or a data
reference. The assembly program places this information in
the BSD dictionary.

Similarly, the program that uses a symbol defined in
some other program must identify it by the EXTRN
assembly instruction. It is identified as an externally
defined symbol (i.e., defined in another program) that is
used to effect linkage to the point of definition. The
assembly program places this information in the BSD
dictionary.

START- START Program

The START instruction may be used to give a name to
the program and to indicate the beginning of an assembly.
It may be used to specify a tentative starting location for
the program. It may also be used to identify an overlay
program and to specify a compool to be used in the
assembly. The format of the START statement is:

4-14

Name Operation Operand

Symbol START (self-defining value)
or (,V)

blank (,POOL'poolname)

All or any combination of the fields shown under operand
may be used, but they must appear in the order shown.

The symboi in the name field becomes the name of the
program. The symbol is assigned the value of the self
defining value in the operand field. The symbol can be
specified as an external symbol (using the EXTRN instruc
tion) ih other programs, without using the ENTRY instruc
tion to identify it as an entry point in this program. If there
is no symbol in the name field, the assembly program will
assign a name of .NONAME. ·

The self-defining value in the operand field specifies the
initial setting of the location counter. If the value of the
operand is not a multiple of 8, the location counter will be
set at the next doubleword boundary. The self-defining
value must not exceed the maximum allowable setting of
the location counter. If the operand field is invalid or
blank, the location counter will be set to zero.

The initial setting of the location counter becomes the
starting location of the program. This location is the
tentative load location. The loader will only relocate the
program if separately assembled programs or Common have
conflicting load locations (or if directed to relocate). This
enables the programmer to match the locations ·shown in
the listing produced by the assembly program with the
locations in storage dump listings.

The field containing 11 ,V11
, if present, indicates that this

is to be an overlay deck.

The field containing 11
, POOL 'poolname 11

, if present,
indicates that a compool is to be used in the assembly. The
11 poolname 11

· must be a valid compool name, 2-8 alpha
numeric characters long with the 1st character alpha. The
terminator may be either a blank, or a quote matching that
following 11 POOL 11

• Further information on the use of this
option may be found in the section on 11 Assembling with a
Compool ".

A START statement may be preceded in the source
program only by the ICTL or TITLE statement. If it
appears anywhere else or does not appear in the program,
the assembly program will set the location counter to zero
and name the program .NONAME. Any invalid occurrences
of a ST ART statement will not be used.

Either of the following START statements could be
used to assign the name PROG2 to the program and to set
the location counter to a value of 2040:

PROG2
PROG2

START
START

2040
X'7F8'

CSECT - Identify Control Section

The CSECT instruction identifies the beginning or the
continuation of a control section. The fonnat of the
CSECT statement is:

Name Operation Operand

A·symbol CSECT Ignored; should be
or blank blank

If a symbol names the CSECT instruction, the symbol
is established as the name of the control section. All
statements following the CSECT are assembled as part of
that control section until a statement which identifies a
different control section is encountered (i.e., another
CSECT, COM or a DSECT instruction).

Several CSECT statements with the same name may
appear within a program. The first statement is considered
to identify the beginning of the control section; the
remaining statements identify the resumption of the sec
tion. Thus, statements from different control sections may
be interspersed. They are properly assembled (assigned
contiguous storage locations) as long as the statements from
the various control sections are identified by the appro
priate CSECT instructions.

A s,pecial case of the CSECT instruction is
11 .PREV

CSECT . This statement is valid only in a DSECT, and
restores the program to the last CSECT which was in use
(blank CSECT if no other was declared). Any number of
DSECT 's may have intervened. This instruction is gene
rated internally during compool processing, but is available
to the user. If it appears in a CSECT, it will be flagged as an
error.

Another special use of the CSECT instruction is in
producing a compool segment overlay deck. This is coded
11

.OVLY CSECT
11

, and its use is described under the section
11
Assembling With A Compool11

•

CONTROL SECTION LOCATION ASSIGNMENT

Control section contents can be intermixed because the
assembly program provides a location counter for each
control section, as explained in Section 2. Locations are
assigned to control sections in such a way that the sections
are placed in storage consecutively, in the same order as
they first occur in the program. Each control section
subsequent to the first begins at the next available
doubleword boundary.

The highest location in a control section is the
rightmost byte in the highest doubleword assigned during
assembly by the control section 's location counter. The
highest location need not be the last location assigned if
there are ORG statements within the control section. The
size of the control section is the difference between the

highest and initial locations plus one (rounded to a multiple
of eight).

DSECT - Identify Dummy Section

A DSECT assembly instruction provides complete
definition of a section of code and names associated with
that section, without reserving any storage. The format of
the DSECT statement is:

Name Operation Operand

A symbol DSECT Ignored; should be
blank

Program statements belonging to dummy sections may
be interspersed throughout the program or may be written
as a unit. In either case, the appropriate DSECT instruction
should precede each set of statements. When multiple
DSECT instructions with the same name are encountered,
regardless of qualification, the first instruction is considered
to initiate the dummy section and the remaining instruc
tions to continue it.

A name on a DSECT may not be repeated, with the
same qualification, as a name on any other statement type.
If it is so used, a message will appear in the listing and the
second usage is ignored. If the name is used first on a
statement other than a DSECT and then appears in the
name field of a DSECT, that DSECT will not have a name.
Once that dummy section is ended, it may not be resumed.
An exception to this is that a name which is an external
symbol may also be used to define a DSECT. The symbol
may also be used to define a DSECT provided that the
external symbol definition precedes the DSECT. In this
case the ANALYZ listing shows the· name on the DSECT
statement as undefined if the qualifiers are not the same, or
multi-defined if the qualifiers are identical. If the DSECT
preceded the external Symbol definition, a serious error is
generated for a multi-defined symbol.

Names of statements occurring in dummy sections may
appear in USING statements and may, therefore, be used in
the operand field of instructions as storage addresses. They
should not appear in A-type address constants. Two
dummy control sections are not considered to have a
constant relativity to one another; i.e.,

1. A USING statement which denotes a register
pointing to one dummy section does not make
another dummy section addressable.

2. An expression that contains two names, each from
a different dummy section, is invalid.

DUMMY SECTION LOCATION ASSIGNMENT

A location counter detennines the relative locations of
named program elements in ·a dummy section. The location

Section 4. Assembly Instruction Statements 4-15

counter is always set to zero at the beginning of the dummy
section, and the location values assigned to symbols that
name statements in the dummy section are relative to the
initial statement in the section.

COM - Identify Common Control Section

The COM assembly instruction defines a particular type
of control section known as Common. The format of the
COM statement is:

Name Operation Operand

Must be COM Ignored; should be
blank blank

The name field must be blank, and the operand field is
not used. The location counter is set to zero. If more than
one COM statement occurs in one assembly, second and
succeeding statements cause resumption of the same con
trol section. Names may be attached to statements within
Common, and these names may be qualified. The loader
will independently relocate the Common control section so
that Common of every separately assembled program,
loaded together, has the same starting location. In this way,
separately assembled programs may share variables and data
in Common.

ENTRY - Identify Entry-Point Symbol

The ENTRY instruction identifies linkage symbols that
are defined in this program but may be used by some other
program. The format of the Entry statement is:

Name Operation Operand

Must be ENTRY One or more relocatable
blank symbols, separated by

commas, that also appear
as statement names

The symbols in the ENTRY operand field may be used
as operands by other programs. An ENTRY statement
operand may not contain a symbol defined in a dummy
section. The following example identifies the statements
named SINE and Cosine as entry points to the program.

Name Operation Operand

ENTRY SINE, COSINE

EXTRN - Identify External Symbol

The EXTRN instruction identifies linkage symbols that
are used by this program but defined in some other

4-16

program. Each external symbol must be identified; this
includes symbols that name control sections.

The format of the EXTRN statement is:

Name Operation Operand

Ignored, EXTRN One or more relocat-
should be able symbols sepa-
blank rated by commas

I

The symbols in the operand field may not appear as
names of statements in this program (except to define a
DSECT; see section on DSECT). The following example
identifies three external symbols that have been used as
operands in this program but are defined in some other
program.

Name Operation Operand

EXTRN RATEBL, PAYCALC, WITHCALC

An example that employs the EXTRN instruction
appears subsequently under " Programming with the
USING Instruction."

QUAL- Qualify Names

The primary function of the QUAL assembly instruc
tion is to distinguish between two occurrences of the same
symbol in different sections of a program. ·Tue format of
the QUAL statement is:

Name Operation Operand

Blank QUAL c or blank

Operand c is an alphabetic character or decimal digit
which is to be used as the qualifier for the section of code
immediately following the QUAL statement. A qualified
section is begun by a QUAL statement and is terminated by
the next QUAL statement which has a different character
in the operand field. A blank operand field in a QUAL
statement causes the section following the QUAL to be
unqualified. The same character which appears in the
operand fields of two QUAL statements causes a resump
tion of the first section to use that qualifier.

Two facts about the function of QUAL should be
noted:

1. QUAL is an instruction to the assembly program.
It qualifies symbolic references for the assembly
process only, and no qualification will ever appear
on symbols which go to the loader via the ESD
(External Symbol Dictionary).

2. Every symbol in the coding, whether it appears in
the name field or the operand field, immediately
following a QUAL statement is qualified (except
for a CSECT name which remains unqualified).

Any symbol in a qualified section that is external in
nature is entered into the ESD in unqualified form. At the
same time, for internal use, the same symbol is entered into
the program,- symbol table with the current qualifier. When
such a symbol is referenced subsequently, it must be
qualified if the reference is strictly internal, and it must be
unqualified if the reference causes a search of the ESD.
References which appear in an EXTRN statement should be
unqualified, because such references are external in nature.
All other symbolic operands must refer to symbols in the
same qualified section, or they must be ·coded with the
correct qualifier by the programmer. A symbol is coded
with a qualifier by appending a period and the qualifier.
The following example illustrates internal cross references
between qualified sections:

QUAL x
FIRST LA 4,2(6)

QUAL 3
1. TRY BC 8,FIRST.X
2. BC 7,TRY

Statement 1 references a symbol which is defined in a
differently qualified section and, therefore, correctly in
cludes that qualifier. If FIRST had been written without
the qualifier, the assembly program would have added the
qualifier 3, creating an undefined symbol FIRST .3. State
ment 2 references a symbol within its own qualified
section, and, therefore, does not include the qualifier
character 3, which would otherwise be necessary to
reference TRY. An operand within a qualified.section may
refer to an unqualified name by writing the name followed
by a period and no qualifier.

QUALIFIERS ON SYSTEM SYMBOLS

If a system symbol is qualified and the system symbol
plus qualifier is not defined internally in the program, the
qualification will be ignored.

BASE REGISTER INSTRUCTIONS

The USING and DROP assembly instructions enable
programmers to use expressions that represent implicit
addresses as operands of machine-instruction statements,
leaving the assignment of base registers and the calculation
of displacements to the assembly program.

In order to use symbols in the operand field of
machine-instruction statements, the programmer must (1)
indicate to the assembly program, by means of a USING
statement, that one or more general registers, (2) specify
what value each base register contains, and (3) load each
base register with the value he has specified for it.

Having the assembly program determine base registers
and displacements, relieves the programmer of separating
each effective address into a displacement value and a base
address value. This feature of the assembly program will
eliminate a likely source of programming errors, thus
reducing the time required to ch~ck out programs. To take
advantage of this feature, the programmer uses the USING
and DROP instructions described in this subsection. The
principal discussion of this feature follows the description
of both instructions.

USING - Use Base Address Register

The USING instruction indicates that one or more
general registers are available for use as base registers. This
instruction also states the base address values that the
assembly program assumes will be in the register at object
time. Note that a USING instruction does not load the
specified registers. It is the programmer's responsibility to
see that the specified base address values are placed into the
registers. Suggested loading methods are described in the
subsection "Programming with the USING Instruction."
The format of the USING statement is:

Name Operation Operand

Ignored; USING From 2-17 expressions
should be of the form v, rl, r2,
blank r3, ... 'rl6

Operand v is an absolute or simply relocatable expres
sion. It specifies a value that the assembly program can use
as a base address. Other operands must be absolute
experssions. Operand r 1 specifies the general register that
can be assumed to contain the base address represented by
operand v. Operands r2, r3, r4, ... , specify registers that
can be assumed to contain v+4096, v+8192, v+12288, ... ,
respectively. The values of the operands r1, r2, r3, ... ,'rl 6
must be between 0 and 15. For example, the statement:

Name Operation Operand

USING *' 12, 13

Section 4. Assembly Instruction Statements 4-17

tells the assembly program it may assume that the current
value of the location counter will be in general register 12
at object time, and that the current value of the location
counter, incremented by 4096, will be in general register 13
at object time.

If the programmer changes the value in a base register
currently being used, the assembly program must be told
the new value by means of another USING statement. In
the following sequence, the assembly program first assumes
that the value of ALPHA is in register 9. The second
statement then causes the assembly program to assume that
ALPHA+lOOO is the value in register 9. This means that any
displacement between the two statements is calculated with
the assumption that ALPHA is in register 9. After the
second statement, any displacement is calculated assuming
that register 9 contains ALPHA+lOOO.

Name Operation Operand

USING ALPHA,9

USING ALPHA+ 1000,9

A USING statement may specify general register 0 as a
base register only if operand v has a value of 0. If general
register 0 is specified, it must be operand r 1. In this case,
the assembly program assumes that register 0 contains the
v3.Iue zero. Subsequent registers specified in the same
statement are assumed to have the values 4096, 8192, etc.
The assembly program, therefore, places all subsequent
effective addresses less than 4096 in the displacement field
and uses zero for the base register field.

Note: If register 0 is made available by a USING
instruction, the program is not relocatable, despite the fact
that the value specified by operand v must be simply
relocatable. However, the programmer is able to make the
program relocatable at some future time merely by replac
ing register 0 in the USING statement and then reas
sembling the program.

WARNING

If a USING specifies an absolute value less than
4096, the assembler may consider a constant
explicit displacement as covered by the base,
leading to a serious error.

DROP - Drop Base Address Register

The DROP instruction specifies a previously available
register that may no longer be used as a base register. The
format of the DROP statement is:

4-18

Name Operation Operand

Must be DROP Up to 16 absolute expres-
blank sions of the form r1, r2,

R3, ... , rl6; or ".ALL"

The expressions indicate general registers previously
named in a USING statement that are now unavailable for
base addressing. The following statement, for example,
prevents the assembly program from using registers 7 and
11:

Name Operation Operand

DROP 7, 11

Use of" .ALL" will make all registers unavailable. There
is no test to determine if a given register appeared
previously in a USING statement. ·

It is not necessary to use a DROP statement when the
base address in a register is changed by a USING statement;
nor are DROP statements needed at the end of the source
program. A register made unavailable by a DROP instruc
tion can be made available again by a subsequent USING
instruction.

Programming With the Using Instruction

The USING (and DROP) instructions may be used
anywhere in a program, as often as needed, to indicate the
general registers and the base address values the assembly
program may assume each contains at execution time. The
assembly program constructs a register table with the
information supplied by the USING and DROP statements.
Entries in the table are added, deleted, and changed by the
assembly program as each USING and DROP statement is
processed. Whenever an effective address is specified in a
machine-instruction statement, the assembly program deter
mines whether there is an available register that contains a
suitable base address. A register is considered available for a
relocatable effective address if it was loaded with a
relocatable value that is .in the same control section as the
effective address. A register with an absolute value is
available only for absolute effective addresses. In either
case, the base address is considered suitable only if it is less
than or equal to the effective address of the item to which
the reference is made. The difference between the two
addresses may not exceed 4095 bytes.

If an instruction has both implied and explicit base
registers, the assembler will use the implied base, and give a
diagnostic for a serious error.

The instruction sequence in Figures 4-2 and 4-3
illustrate the assignment of base registers and show several
methods for loading base registers. In Figure 4-2, the

BALR instruction loads register 2 with the address of the
first storage location immediately following the instruction;
in this case, it is the location named FIRST. The USING
instruction indicates to the assembly program that register
2 contains this location. When employing this method, the
USING instruction must immediately follow the BALR
instruction. No other USING or had instructions are
required if the location named LAST is within 4095 bytes
of FIRST (and there are no external symbols).

In Figure 4-3, the BALR and LM instructions load
registers 2-5. The USING instructions indicate to the
assembly program that these registers are available as base
registers for addressing a maximum of 16,384 consecutive
bytes of storage, beginning with the location named HERE.
The number of addressable bytes may be increased or
decreased by altering the number of registers designated by
the USING and LM instrnctions and the number of address
constants specified in the DC instruction.

ADDRESSING MULTIPLE CONTROL SECTIONS

Special care must be exercised in a program with
multiple Control Sections (CSECTs). Current imple
mentation of the BAL Assembler effectively concatenates
all CSECTs into one in the final object module. As a result,
a USING set for n(<4096) bytes from the end of a CSECT
will cover the first 4069-n bytes of the next CSECT. This
can result in program errors from unexpected register
assignments.

However, it is not safe to assume that a register may be
used to cover multiple CSECTs on a single USING.
Considerations of compatibility with other assemblers, and
possible implementation of "scatter-load" capability in the
future, may result in assembler changes which would
prohibit USINGs from crossing CSECT boundaries.

Programs should, therefore, be designed with separate
USINGs for each CSECT, and carefully checked to ensure
against overlap.

Name Operation

BEGIN BALR
USING

HERE LM
USING
B

BASEADDR DC
FIRST

LAST
END

Figure 4-3. Base Register Assignment

Name Operation Operand

BEGIN BALR 2,0

USING *,2

FIRST

LAST

END BEGIN

Figure 4-2. Base Register Assignment

ADDRESSING DUMMY SECTIONS

The programmer may wish to describe the format of an
area whose storage location will not be determined until the
program is executed. He can describe the format of the area
in a dummy section, and he can use symbols defined in the
dummy section as the operands of machine instrnctions. To
effect references to the storage area, he does the following:

1. Provides a USING statement which specifies both a
general register that the assembly program can
assign to the machine instructions as a base register
and a value for the dummy section that the
assembly program may assume the register
contains.

2. Loads the same register with the symbolic address
of the storage area.

The values assigned to symbols defined in a dummy
section are relative to the initial statement of the sections.
Thus, all machine instructions which refer to names defined
in the dummy section will, at execution time, refer to
storage locations relative to the address loaded into the
register.

Each DSECT is a totally separate entity, and is not
contiguous to any CSECT or other DSECT. Therefore a
USING on a symbol within a DSECT is good only for that
DSECT. Overlap into another control section cannot occur
in this case.

Operand

2,0
*,2
3 ,5 ,BASEADDR
HERE+4096,3,4,5
FIRST
A(HERE+4096,HERE+8192,HERE+ 12288)

BEGIN

Section 4. Assembly Instruction Statements 4-19

An example of this use is shown in Figure 4-4. An area
has been defined by the dummy section RECORD. The
second USING statement specifies that general register 3 is
available for use as a base register, and that it contains the
value Record. However, the program loads the value stored
at ADDR into register 3. This value is the initial address of
the area to which the programmer wishes to refer at
execution tj.me. Thus, all machine instructions that employ
symbols defined in the dummy section will refer to storage
locations relative to the address in register 3.

Name Operation Operand

MAINPROG CSECT
BEGIN BALR 2,0

USING *,2

L 3,ADDR
USING RECORD,3
cu RCDCODE,'A'
BE ATYPE

ATYPE MVC FIELD1 ,RCDFLD1
MVC FIELD2,RCDFLD2

ADDR DS F
FIELDl DS CL20
FIELD2 DS CL18

RECORD DSECT
RCDCODE DS CL1
RCDFLDl DS CL20
RCDFLD2 DS CL18

END BEGIN
i Figure 4-4. Addressing Dummy Sections

ADDRESSING EXTERNAL PROGRAMS

An external symbol that names data may be referred to
as follows:

1. Identify the external symbol with the EXTRN
instruction, and create an address constant from
the symbol.

2. Load the constant into a general register, and use
the register for base addressing.

For example, to use an area named RATETBL, which
is in another program, the coding in Figure 4-S might be
used.

LISTING CONTROL INSTRUCTIONS

The listing control instructions identify an assembly
listing and assembly output cards, provide blank lines in an

4-20

assembly listing, and designate how much detail is to be
included in an assembly listing. In no case are instructions
or constants generated in the object program.

Name Operation Operand

MAII\1PROG
BEGIN

RATEADDR

CSECT
BALR
USING

EXT RN

L
USING
A

DC
END

Figure 4-5. Addressing External Programs

TITLE - Identify Assembly Output

2,0
*,2

RATETBL

4,RATEADDR
RATETEL,4
3,RATETBL

A (RATETBL)
BEGIN.

The TITLE instruction enables the programmer to
identify the assembly listing and assembly output cards.
The format of the TITLE statement is:

Name Operation Operand

Symbol or TITLE A sequence of
blank characters

The name field may contain a symbol of from one to
four alphameric characters, the first of which must be
alphabetic. The contents of the name field are punched into
columns 73-76 of all the output cards for the program, if
the TITLE is before the ST ART card.

The operand field extends to column 71 {inclusive) of
the card. The contents of the operand field are printed at
the top of each page of the assembly listing.

A program may contain more than one TITLE state
ment. Each TITLE statement provides the heading for
pages in the assembly listing that follow it, until another
TITLE statement is encountered. Additionally, the first
TITLE statement in a program provides the heading for
pages of the assembly listing that precede it if it is put
before the START card. Each TITLE statement that is
encountered causes the listing to be advanced to a new page
(before the heading is printed).

For example, if the following statement is the first
TITLE statement to appear in a program (and is before the
START card):

Name Operation Operand

PG Ml TITLE THIS IS THE FIRST HEADING
PROG1 START 0

then PGMl is punched into all of the output cards
(columns 73-76) and this heading appears at the top of
each page: THIS IS THE FIRST HEADING.

If the following statement occurs later in the same
program:

Name Operation Operand

TITLE THIS IS A NEW HEADING

then PGMl is still punched into the output cards, but the
page is ejected and each following page begins with the
heading: TffiS IS A NEW HEADING.

If a new symbol was included in the name field, any
data remaining to be punched would be punched im
mediately with the old name in columns 73-76, and cards
that are punched after the appearance of the TITLE card
would have the new name punched.

EJECT - Start New Page

The EJECT instruction causes the next line of the
listing to appear at the top of a new page. This instruction
provides a convenient way to separate routines in the
program listing. The fonnat of the EJECT statement is:

Name Operation Operand

Must be EJECT Not used; should be
blank blank

If the next line of the listing normally appears at the
top of a new page, the EJECT statement has no effect. The
EJECT statement will not be printed.

SPACE - Space Listing

The SP ACE instruction inserts one or more blank lines
in the listing. The format of the SPACE statement is:

Name Operation Operand

Must be SPACE A decimal value or
blank blank

A decimal value specifies the number of blank lines to
be inserted in the assembly listing. If this value exceeds the
number of lines that remain on the listing page, the
statement will have the same effect as an EJECT statement.
The value will be ignored if it is greater than 56. A blank
operand field will cause one line to be skipped. If the
operand field is invalid, the statement will be ignored.
Anything in the name field will not be used. The statement
will not be printed.

DOUBL - Double Space

The DOUBL instruction is used to have a single space
between each line in the listing. It may appear anywhere in
the program. The output listing will be entirely double
spaced, regardless of where the DO UBL instruction appears.
The format of the DO UBL statement is:

Name Operation Operand

Must be DO UBL Ignored; should be
blank be blank

PRINT -Print Optional Data

.The PRINT instruction designates the amount of detail
that is to be included in an assembly listing. The format of
the PRINT statement is:

Name Operation Operand

Must be PRINT a,b or
blank ,b or

a

Where 11 a 11 can be NODATA or DATA, 11 b
11

in the
first format can be NOLIT or LIT, and " b " in the second
format can be NOLIT or LIT with DATA assumed. The
third format can be NODATA or DATA with LIT assumed.

Section 4. Assembly Instruction Statements 4-21

The operands have the following meanings to the
assembly program:

DATA lists all bytes assembled for each DC
statement.

NO DATA lists only the first line assembled for each DC
statement.

LIT lists the contents of the literal pool.

NOLIT does not list the contents of the literal pool.

A program may contain any number of PRINT
statements. A PRINT statement controls the printing of the
assembly listing until the occurrence of another PRINT
statement. If no PRINT statement appears in a program or
until the occurrence of the first PRINT statement, DATA
and LIT are assumed.

NLIST - Suppress Listing

This instruction will suppress the printing of the listing,

The format of the statement is:

Name Operation Operand

Must be NLIST Should be blank
blank

Note: If BAL errors are detected while an NLIST is in
effect, the statement plus errors will be printed. Warning
errors suppressed by SPEM statements will not force
printing of an NLISTed statement.

LIST - Resume Listing

This instruction resumes the printing of the listing once
!a NLIST has been given. The LIST is not itself printed iii
!the listing.

The format of the statement is:

Name Operation Operand

Must be LIST Should be blank
blank

PROGRAM CONTROL INSTRUCTIONS

The program control instructions specify the end of an
assembly, set the location counter to a value <;>r word

4-22

boundary, specify the placement of literals in storage,
check the sequence of input cards, and indicate the
statement format.

ICTL - Input Format Control

The ICTL instmction allows the programmer to alter
the normal format of his source program statements. The
format of the ICTL statement is:

Name Operation Operand

Must be ICTL d
blank

Operand d is a self-defining value that specifies the
begin column for the name field. The value must be
between 1 and 66. If the ICTL statement is not used, the
begin column is assumed to be column 1. When the ICTL is
used, it must be the first statement of the program.

ISEQ- Input Sequence Checking

The ISEQ instruction may be used to cause the
assembly program to check the sequence of input cards.
The columns checked will always be 73-80. The format of
the ISEQ statement is:

Name Operation Operand

Must be ISEQ Ignored; should be
blank blank

Sequence checking begins with the first card following
the ISEQ statement. Comparison of adjacent cards makes
use of the eight-bit internal collating sequence. If the
sequence number of a card is equal to or less than the
sequence number of the preceding card, a warning flag will
occur in the listing. This flag will not alter the processing of
the statement(s).

SSEQ - Suppress Sequence Checking

The SSEQ instruction causes the assembly program to
cease checking the sequence of input cards (in. columns
73-80). The format of the SSEQ statement is:

Name Operation Operand

Must be SSEQ Ignored; should be
blank blank

ORG - Reset Location Counter

The ORG instruction alters the setting of the location
counter for the current control section. An ORG statement
may be used anywhere in a program, as often as desired. An
ORG statement may appear in a CSECT, DSECT, or COM
control section. The format of the ORG statement is:

Name Operation Operand

Symbol or ORG A relocatable
blank expression

Any symbols in the expression must have been pre
viously defined in the same control section in which the
ORG statement appears. The value of the expression sets
the location counter of the current control section.

The statement:

ORG *+500

increases the location counter by 500 bytes above its
current setting. Nothing is assembled for the 500 bytes
skipped; i.e., the bytes are not cleared by the assembly
program.

An ORG instruction that resets the location counter
below its initial value in the control section or references
another control section will not be used; it will be printed
only in the listing. If the operand field is blank or invalid,
the ORG instruction will not be used. If a name is specified,
it will receive the value of the expression.

The ORG instruction provides an alternative way of
reserving storage areas; the preferred way is with the DS
(Define Storage) assembly instruction.

However, when a storage area cannot be conveniently
defined by the DS instruction, the ORG instruction can be
used. For example, to reserve two storage areas of equal
size, the following coding might be used:

TABLEl

TABLE2

DS
DS

EQU
ORG

SOF
lOOH

*
*+TABLE2-TABLE1

LTORG - Begin Literal Pool

The LTORG instruction may be used to specify the
place of the literal pool into which all literals thus far
encountered in a program are to be assembled. A LTORG
statement may appear at any point in a program. If the
LTORG appears in a DSECT, however, the programmer
must make certain that only the DSECT literals are present
in the literal pool. The format of the LTORG statement is:

Name Operation Operand

Symbol or LTORG Ignored; should be
blank blank

The effect of the LTORG statement is to position all
the literals encountered up to the LTORG statement (either
from the beginning of the program or from a previous
LTORG statement) at appropriate boundaries, starting at
the first doubleword boundary that follows the LTORG
statement.

Any literals used after the last LTORG statement in a
program are placed at the end of the first control section. If
there is no LTORG statement in a program, all literals used
in the program are placed at the end of the first control
section. It is the responsibility of the programmer to ensure
that a base register has been loaded and a proper USING
instruction has been given so that the literals can be
addressed.

The assembly program first stores those literals which
are 8 bytes, or a multiple of 8 bytes in length; then it stores
literals which are 4 bytes, or an odd multiple of 4 bytes in
length. Literals of 2 bytes or an odd multiple of 2 bytes are
stored next, and finally all literals which consist of an odd
number of bytes. Within each group the literals are stored
in the exact order in which they occur in the source
program (or since the last previous LTORG statement).

As each literal is handled, the contents and actual byte
construction of the source component that specifies it are
checked against the existing literal collection. If all bits of
the new specification match those of a literal previously
stored, the duplicate is not stored, and its reference points
to the literal it duplicates. However, if the specification
components differ in any respect, even though the resultant
literals may be identical, both literals are stored.

The following examples illustrate how the assembly
program stores pairs of literals, if the placement of each
pair is controlled by the same LTORG statement.

Section 4. Assembly Instruction Statements 4-23

X'FO'
c'o'

C'A'
'A'

X'FFFF'
X'FFFF'.

X'OO'
x'o'·

XL3'0'
HL3'0'

Both are stored

Both are stored

Identical; only the first is stored

Both are stored

Both are stored

It is the responsibility of the programmer to be certain
that he has specified a literal of the correct length so that if,
for example, the following code is encountered by the
assembly program:

L4,=X'4'

it assumes a length of 1 byte for the literal and the
instruction may be erroneously written. If the programmer
states:

L 4,=F'4'

the literal is considered a fullword and is stored on a word
boundary, making the instruction valid.

CNOP - Conditional No Operation

The CNOP instruction allows the programmer to align
an instruction at a specific word boundary. If any bytes
must be skipped in order to align the instruction properly,
the assembly program ensures an unbroken instruction flow
by generating no operation instructions. This facility is
useful in creating calling sequences consisting of a linkage

to a subroutine. followed by parameters such as channel
command words (CCW).

The CNOP instruction ensures the alignment of the
location counter setting to a halfword, word, or double
word boundary. If the location counter is already properly
aligned, the CNOP instruction has no effect. If the specified
alignment requires the location counter to be incremented,
one to three no operation instructions are generated, each
of which uses two bytes. If an odd number of bytes is
skipped, the first byte will be set to zero. The format of the
CNOP statement is:

Name Operation Operand

Symbol or CNOP Two decimal values of
blank the form: b, w

Operand b specifies at which byte in a word or
doubleword the location counter is to be set; b can be 0, 2,
4, or 6. Operand w specifies whether byte bis in a word
(w=4) or doubleword (w=8). If the operand field is blank or
invalid, the CNOP instruction will not be used. The
following pairs of b and w are valid:

b,w Specifies

0,4 Beginning of a word
2,4 Middle of a word
0,8 Beginning of a doubleword
2,8 Second halfword of a doubleword
4,8 Middle (third halfword) of a doubleword
6,8 Fourth halfword of a doubleword

Figure 4-6 shows the position in a doubleword that
each of these pairs specifies. Note that both 0,4 and 2,4
specify two locations in a doubleword.

Assume that the location counter is currently aligned at
a doubleword boundary. Then the CNOP instruction in this
sequence:

Name Operation Operand

CNOP 0,8
BALR 2,14

Doubleword

Word Word

Halfword Halfword Halfword Halfword

Byte l Byte Byte l Byte Byte l Byte Byte l Byte

0,4 2,4 0,4 2,4
0, 8 2,8 4,8 6,8

Figure 4-6. CNOP Position Specifications

4-24

has no effect; it is merely printed in the assembly listing.
However, this sequence:

Name Operation Operand

CNOP 6,8
BALR 2,14

causes the object code for two branch on condition zero
operations to be generated, thus aligning the BALR
instruction at the last halfword in a doubleword as:

Name Operation Operand

BC 0,0
BCR 0,0
BALR 2,14

After the BALR instructions is generated, the location
counter is at a doubleword boundary, thereby ensuring an
unbroken instruction flow if a constant definition for a
doubleword follows. Without the CNOP, doubleword align
ment would be necessary.

END - End Program

The END instruction terminates the assembly of a
program. It may also designate a point in the program to
which control may be transferred after the program is
loaded. The END instruction must always be the last
statement in the source program.

The format of the END statement is:

Name Operation Operand

Must be END A relocatable expres-
blank sion or blank

The expression, if present, specifies the point to which
control is transferred when loading is complete. The point
to which the programmer usually wants to transfer control
is the first machine instruction in the program, as shown in
the following sequence:

Name Operation Operand

AREA START 2000
BEGIN DS SOF

BALR 2,0
USING *,2

END BEGIN

SPEM - Suppress Possible Error Messages

If the programmer desires to have the assembly
program suppress the listing of certain or all possible error
messages, he must include a SPEM statement in his
program. The format of the statement is:

Name Operation Operand

Must be SPEM Blank or a
blank number

If the operand field is blank, all possible error messages
(PEM 's) are suppressed. If the operand field contains a
number from 1 to 7, the following applies:

Number

1
2
3

4

5
6
7

Suppresses

Privileged operation PEM
Void expression PEM ·
Privileged operation and void expression
PEM's
All PEM 's except privileged operation and
void expression
All PEM 's except void expression
All PEM 's except privileged operation
All PEM 's (same as blank)

The SPEM instruction does not cause the list suppres
sion of serious errors; nor does it negate the cumulative
count of possible error messages.

RPEM - Resume Possible Error Messages

The RPEM assembly instruction causes the assembly
program to resume the listing of possible errors. The format
of the statement is:

Section 4. Assembly Instruction Statements 4-25

Name Operation Operand

Must be RPEM Must be
blank blank

The SPEM and RPEM assembly instructions can be
used at more than one point in a program to cause alternate
suppr.e~sion and resumption of the listing of possible errors.

LIB -:-- Library Update

The LIB assembly instruction produces LIB cards for
updating the JOVIAL library. The operand field contains
information that is to appear in columns 19-42 of the LIB

1

cards used as input to the library update program. Further
information on the data required in columns 19-42 is
available in LIBEDT-02, p. 5. The assembly program does 1

not check the validity of the information in the operand
field. It merely produces a 12-2-9 LIB card with the
program name in columns 11-18 and columns 19-42
identical to the input operand field.

The format of the LIB statement is:

Name Operation Operand

Must be LIB Library Update
blank information

Assembling with a Compool

The BAL programmer can make use of a standard
JOVIAL-type Compool in his assembHes. The data obtained.
this way is essentially the same as that available to the
JOVIAL programmer using DIRECT· code. The data is
(generally) in segments, and each segment will appear in the
program as:

ZXsegnam
ZUsegnam
ZXdatal
ZXdata2
ZXdata3

.PREY

where

4-26

EXT RN
DSECT
DS
DS
EQU
EQU

CSECT

segnam
datal
data2
data3

ZXsegnam

OF
xF
ZXdatal+y
X'nnnnnn'

is Segment name
is a JOVIAL TABLE
is a JOVIAL ITEM
is a JOVIAL PARAMETER
ITEM

The programmer can selectively include desired seg
ments, or include the entire compool.

PSEG - Select Compool Segment

The PSEG Instruction is the means by which the
programmer can select compool segments. In order to use
this option, the POOL option on the start card must be
used. Otherwise all PSEG cards will be flagged as errors.

The format of the PSEG statement is:

Name Operation Operand

Ignored; PSEG Segment name
should Segment name, options
be blank Options

The use of /1 PSEG segnam /1 will cause a request for a
segment to be placed in a table for inclusion in the listing at
a later point. When "PSEG segnam,.USE11 or "PSEG ,.USE"
are specified, the table is referenced, and all requested
segments will appear in the listing following the PSEG
statement.

If " PSEG ALL ", /1 PSEG ", or " PSEG ,11 is specified,
the entire compool will appear in the Hsting. Unless some
segments have been previously included, all will im
mediately follow the PSEG statement:

If the pro gram has " POOL " specified on the Start
card, but has no PSEG statements, the entire compool will
appear just prior to the "END" statement.

If no PSEG statements have ".USE " or " ALL",
specified segments are placed just prior to the END
statement. This case is similar to the complete omission of
PSEG 's, but does allow selection of segments.

SEGMENT ASSEMBLIES

If assemblies of compool segments are required, either
for loading or as object decks, the user may specify
PUNCHC or LISTP on his $BAL card, or

PSEG
or
PSEG

in the program.

.PUNC

.PUNC, .LIST

Either will cause assemblies of all compool segments
appearing in _the program. Use of ",.LIST" or LISTP will
cause the assemblies to use the" LIST, ANALYZ" option.
11 PUNCH 11 will or will not be used, according to whetheI· it
was requested for the original program.

WARNING

This option requires the availability of the WORKl
tape. I(it is not available, the option will be
ignored, but assembly will continue.

COMPOOL TAPE

The Assembler will accept either a Compool or an MLC
tape. A Compool tape, if used, must be mounted on
.COMP. An MLC may be mounted on either .LIB or
. COMP.

LISTING OF SEGMENTS

Normally the Com pool DSECT' swill not appear on the
listing. If a listing of the DSECT' s is desired, the user may
specify "LISTD" on the $BAL card. If a selective listing of
certain segments is desired, it can be obtained by grouping
those segments to be listed with a "PSEG ,.USE ,.LIST"
card, and the other segments with a separate "PSEG ,.USE"
card.

COMPOOL SEGMENT OVERLAY ASSEMBLIES

A special technique may be used to obtain an overlay
deck for a compool segment. The technique involves the
use of the compool segment as a CSECT and thus permits
referencing the compool to obtain the relation displace
ments required to preset compool items. To excercise the
option, the program name on the START card for the
overlay deck must. be identical to the compool segment
being overlaid. Both the" ,V' and" ,POOL 'name" options
must also be furnished. A typical deck set-up is as follows:

ZXsegnam START 0, V, POOL' COMPOOL
.OVLY CSECT

PSEG segnam NOTE: No
ZX prefix

[

NOTE: Additional PSEGS for other re]
quired segments may follow and will
appear normally as DSECTS. Only one
segment may be overlaid.

PSEG
ORG
DC
ORG
DC

END

,.USE }
ZXnamel

Preset Data
ZXname2

The resulting assembly will be as follows:

ZXsegnam
.OVLY

START
CSECT
PSEG

0, V, POOL' COMPOOL

segnam

[
NOTE: Alternate other]
required segments.

PSEG ,.USE

Z$segnam CSECT

CNOTE: Compool segment 'segnamJ
equates and DS' s .

ORG
DC

END

ZXnamel

The ".OVLY CSECT" must precede the
"PSEG ,.USE". The segment to be overlaid will be listed in
this case, but normal rules apply to other segments (if any).
To suppress the listing of the segment, precede the
"PSEG ,.USE" with "NLIST" and follow it with "LIST".

ERRORS

In addition to errors detailed above, use of a PSEG card
with an invalid segment name or a segment name not on the
compool is a serious error. Duplication of segment names
will cause a warning to be issued.

RECOMMENDED PROCEDURES

For maximum efficiency of assembly, only one PSEG
statement with the " .USE " option should appear. Since it
is often desired to use Compool-defined Symbols in EQU
statements, the Compool PSECT' s should appear as early in
the .program as possible.

DEBUG Instructions

UNCONDITIONAL DUMP

The unconditional dump card is used to get a dump of
the specified portion of storage each time the specified
instruction address is reached during program execution.
The format of the unconditional dump card is:

Name Operation Operand

Symbol DUMP Mnemonic format,
identifying label,
"from II address,
II tO " address

Section 4. Assembly Instruction Statements 4-2 7

The following example of an unconditional dump card
will cause the area of storage from BEGIN to MOVE to be
dumped every time the location PACK is reached. The
dump will have the identifying label UCDUMP and a
hexadecimal with mnemonics format.

PACK DUMP HEXI,UCDUMP,BEGIN,MOVE

CONDITIONAL DUMP

The conditional dump card gets a dump of the
specified portion of storage each time the specified instruc
tion address is reached and the specified conditions are met.
The format of the conditional dump card is:

Name Operation Operand

Symbol DUMPC Mnemonic format,
identifying label,
" from " address, " to

II

address, after nnn
time instruction is
reached - start dump-
ing, after nnn time
instruction is reached -
halt dumping, dump
after every nnn time
instruction is reached

The following example of a conditional dump card will
cause the area of storage from START to TRANS to be
dumped the third time location ADD is reached and every
second time the location is reached thereafter, until the
fifteenth time. The dump will have the identifying label
CONDMP and a regular hexadecimal format.

ADD DUMPC HEX,CONDMP,START,TRANS,003,015,
002

REGISTER-STORAGE CONDITIONAL DUMP

The register-storage conditional dump card compares
the contents of a general register with the contents of a
location in storage each time the specified instruction
address is reached. The specified portion of storage is
dumped when the condition of comparison is met. The
format of the register-storage conditional dump card is:

4-28

Name Operation Operand

Symbol DUMPR Mnemonic format,
identifying label,
"from" address, "to"
address, condition of
comparison,, general
register number, storage
location (omitted if
condition Z is specified)

The condition of the fullword comparison between the
register and the storage location may be one of the
following:

Condition

E
N
L
G
z

Meaning

Equal
Not equal
Register is less than storage
Register is greater than storage
Register is zero

The register number must be in decimal format and
may not specify a floating-point register. The storage
location need not be on a fullword boundary.

The following example of a register-storage conditional
dump card will cause the storage area from FLIGHTNO to
ASSIGN to be dumped every time location SWITCH is
reached and there is an equal compare between general
register 8 and storage location LOOPBSY. The dump will
have the 'identifying label RSDUMP and a doubleword
floating-point format.

SWITCH DUMPR DPFL,RSDUMP,FLIGHTNO,ASSIGN,
E,8,LOOPBSY

UNCONDITIONAL TRACE

The unconditional trace card obtains trace information
after the execution of each instruction within the specified
area. The format of the unconditional trace card is:

Name Operation Operand

Blank TRACE Identifying label, "start"
address, "end" address

The following example of an unconditional trace card
will cause trace information to be issued after the execution
of each instruction from LOOP to END LOOP. The trace
will have the identifying label TRACEl.

TRACE TRACEl,LOOP,ENDLOOP

BRANCH CONDITIONAL TRACE

The branch conditional trace card obtains trace in
formation after the execution of each successful branch
within the specified area. The format of the branch
conditional trace card is:

Name Operation Operand

Blank TRACE Identifying label,
"start" address, "end"
address

The following example of a branch conditional trace
card will cause trace information to be issued after the
execution of each successful branch in the trace area from
COMPUTE to MOVEOUT. The trace will have the identify
ing label TRACE2.

TRACB TRACE2,COMPUTE,MOVEOUT

PHYSICAL RECORD TAPE DUMP

The physical record tape dump card gets a dump of the
physical tape records at successful or unsuccessful end of
job. The format of the physical record tape dump card is:

Name Operation Operand

Blank TDMPP Mnemonic format, identify-
ing label, logical tape drive
(0-99), "from" file number
(1-99), "from" record with-
in above file (1-99999),
"to" file number (1-99),
"to" record within above file

·(1-99999), number of bytes
to be dumped (1-999) for
each physical record

If the entire physical record is to be dumped, the
number of bytes may be left blank.

The following example of a physical record tape dump
card will cause all bytes of information from every physical
record, from file 2 record 129 to file 4 record 5 on logical
tape drive 17, to be dumped after program execution. The
dump will have the identifying label TD UMP 1 and an
alphameric format.

TDMPP ALPH,TDUMPl,17,2,129,4,5

LOGICAL RECORD TAPE DUMP

The logical record tape dump card gets a dump of the
logical tape records at successful or unsuccessful end of job.
The format of the logical record tape dump card is:

Name Operation Operand

Blank TDMPL Mnemonic format, identify-
ing label, logical tape drive
(0-99), "from" file number
(1-99), "from" record with-
in above file (1-99999),
"to" file number (1-99),
"to" record within above file
(1-99999), number of bytes
to be dumped (1-999) for
each physical record

If the entire logical record is to be dumped, the number
of bytes may be left blank.

The following example of a logical record tape dump
card will cause 100 bytes of information from each logical
record from file 1 record 1 to file 1 record 1200 on logical
tape drive 23 to be dumped after program execution. The
dump will have the identifying label TDUMP2 and a regular
hexadecimal format.

TDMPL HEX,TDUMP2,23,l,1,1,1200,100

EMERGENCY DUMP

The emergency dump card gets a dump of the specified
portion of storage if the program is unable to continue. The
format of the emergency dump card is:

Name Operation Operand

Blank DUMPE Mnemonic format, identify-
ing label, "from"
address_t "to" address

. The following example of an emergency dump card will
cause the storage area from BEGIN to END to be dumped
if the program cannot be completed. The dump will have
the identifying label EMERG 1 and a hexadecimal with
mnemonics format.

DUMPE HEXI,EMERGl,BEGIN,END

Section 4. Assembly Instruction Statements 4-29

Appendix A. CHARACTER CODES

Table A-1. Character Codes

8-BIT CHARACTER SET
BCD PUNCH · PRINTER HEXA-
CODE COMBINATION GRAPHICS DECIMAL DECIMAL

00000000 12,0,9,8;1 0 00
00000001 12,9,1 1 01
00000010 12,9,2 2 02
00000011 12,9,3 3 03
00000100 12,9,4 4 04

. 00000101 12,9,5 5 05
00000110 12,9,6 6 06
00000111 12,9,7 7 07
00001000 12,9,8 8 08
00001001 12,9,8,l 9 09-
00001010 12,9,8,2 10 OA
00001011 12,9,8,3 11 OB
00001100 12,9,8,4 12 oc
00001101 12,9,8,5 13 OD
00001110 12,9,8,6 14 OE
00001111 12,9,8,7 15 Of
00010000 12,11,9,8,1 16 10
00010001 11,9,1 17 11
00010010 11,9,2 18 12
00010011 11,9,3 19 13
00010100 11,9,4 20 14
00010101 11,9,5 21 15
00010110 11,9,6 22 16
00010111 11,9,7 23 17
00011000 11,~,8 24 18
00011001 11,9,8,l Zs 19
00011010 11,9,8,2 26 lA
00011011 11,9,8,3' 27 lB
00011100 11,9,8,4 28 lC
00011101 11,9,8,5 29 lD
00011110 11,9,8,6 30 lE
00011111 11,9,8,7 31 lf
00100000 11,0,9,8,l 32 20
00100001 0,9,1 33 21
00100010 0,9,2 34 22
00100011 0,9,3 35 23
00100100 0,9,4 36 24
00100101 0,9,5 37 25
00100110 0,9,6 38 26
00100111 · 0,9,7 39 27
00101000 o,9,8 40 28
00101001 0,9,8,l 41 29
00101010 0,9,8,2 42 2A
00101011 0,9,8,3 43 2B
00101100 0,9,8,4 44 2C
00101101 0,9,8,5 45 2D
00101110 o, 9, a·, 6 46 2E
00101111 0,9,8,7 47 2f
00110000 12,11,0,9,8,l 48 30
00110001 9,1 49 31
00110010 9,2 50 :32
00110011 9,3 51 33
00110100 9,4 52 34
00110101 9,5 53 35
00110110 9,6 54 36
00110111 9,7 55 37
0.0111000 9,8 56 3.8
00111001 .9, 8' 1 57 39
00111010 9,8,2 58 3A
00111011 9,8,3 59 3B
00111100 9,8,4 60 3C

Appendix A. Character Codes A-1

Table A-1. Character Codes (Continued)

8-BI'r CHARACTER SET
BCD PUNCH PRINTER HEXA-
CODE COMBINATI~ GRAPHICS DEC IMAI., DECIMAL ---·
00111101 9,8,5 61" 3D
00111110 9,8,6 62 3E
00111111 9,8,7 63 3f
01000000 blank 64 40
01000001 12,0,9,l 6S 41
01000010 12,0,9,2 66 42
01000011 12,0,9,3 67 43
01000100 12,0,9,4 68 44
01000101 12,0,9,5 69 45
01000110 12,0,9,6 70 46
01000111 12,0,~,7 71 47
01001000 12,0,9,8 72 48
01001001 12,8,1 73 49
01001010 12,8,2 74 4A
01001011 12,8,3 • (period) 7S 4B
01001100 12,8,4 <- 76 ·4c
01001101 12,8,5 (71 4D
01001110 12,8,6 + 78 4E
01001111 12,a,7 79 4F
01010000 12 & 80 so
01010001 12 t 11t9' l 81 Sl
01010010 12,11,9,2 82 52
01010011 12,11,9,3 83 S3
01010100 12,11,9,4 84 ti4
01010101 12,11,9,5 85 5S
01010110 12t11, 9' 6 86. 56
010101.1,1 12,11,9,7 87 57
01011000 12' 11, 9., 8 88 58
01011001 11,8,1 89 S9
01011010 11,a,2 90 SA
01011011 11,a,3 $ 91 SB
01011100 11,8,4 ... 92 SC
01011101 11,8,s 93 5D
01011110 11,8,6 94 SE
01011111 11, a, 1 95 SF
01100000 11 ·96 60
01100001 0,1 I 97 61
01100010 11,0,9,2 98 62
01100011 11,0,9,3 99 • 63
01100100 11,0,9,4 100 64
01100101 l'lt0,9,5 101 6S
01100110 11,0,9,6 102 66
01100111 11,0,9,7 10.3 67
CHlOlOOO 11,0,9,8 104 68
.01101001 o,a,1 105' 69
01101010 12,11 106 6A
01101011 o,8,3 ' 107 6B
01101100 o,8,4 i 108 6C
01101101 o,a,s 109 6D
01101110 o,8,6 110 6E
01101111 0,8,7 111 6F
01110000 12,11,0 112 70
01110001 12' 11, 0' 9' 1 .113 71
01110010 12,ll,0,9,2 114 72
01110011 12,11,0,9,3 115 73
01110100 12,11,0,9,4 116 74
01110101 12,11,0,9,5 117 7S
01110110 12,11,0,9,6 118 76
01110111 12,11,0,9,7 119 77
01111000 12,11,0,9,8 120 78
01111001 s,1 121 79
01111010 8,2 122 7A
01111011 8,3 ,, 123 78
01111100 8,4 @ 124 7C

A-2

Table A-1. Character Codes (Continued)

8-BIT CHARACTER SET
BCD PUNCH PRINTER HEXA-
CODE COMBINATION GRAPHICS DECIMAL DECIMAL

01111101 B,5 ' (quote) 125 7D
01111110 B,6 1•26 7E
01111111 B,7 127 7F
10000000 12,0,8,1 128 80
10000001 12,0,1 129 81
10000010 12,0,2 130 82
10000011 12,0,3. 131 83
10000'100 12,0,4 132 84
10000101 12,0,5 · 133 85
10000110 12,0,6 134 86
10000111 12,0,7 135 87
10001000 12,0,8 136 88-
10001001 12,0,9 137 89
10001010 12,0,8,2 138 8A .

10001011 12,0,a,3 139 BB
10001100 12,0,8,4 140 BC
10001101 12,0,8,5 141 an
10001110 ~2,0,8,6 142 BE
10001111 12,0,a,7 143 BF
10010000 12,11,a,1 1-44 90
10010001 12,11,l 145 91
10010010 12,11,2 146 92
10010011 12,11,3 147 93
10010100 12,11,4 148 94
10010101 12,11,s 149 95
10010110 12,11,ti 150 96
10010111 1,2,).1,7 151 97
10011000 12,11,a 152 98
10011001 12' 11, 9 153 99
10011010 12,11,a,2 154 9A
10011011 12,11,a,3 155 9B
10011100 12,11,a,4 156 9C
10011101 12,11,a,s 157 9D
10011110 12,11,a,6 158 9E
10011111 12,11,8,7 159 9F
10100000 11 9 0 7 8,1 160 AO
10100001 11,0,1 161 Al
lOlOO'JlO 11,0,2 162 A2
~0100011. 11,0;3 163 A3
10100100 11,0,4 164 A4
10100101 11,0,5 165 A5
10100110 11,0,6 1.66 A6
10100111 11,'o, 7 167 A7
10101000 11,0,8 168 AB
10101001 11,0,9 169 A9
10101010 11,0,a,2 170 AA
10101011 11,0,8,3 171 AB
10101100 11,0,8,4 172 AC
10101101 11,0;B,5 173 AD
lOlOH.10 11,0·,a,6 174 AE
10101111 11,0,a,7 175 AF
10110000 12,11,0,0,1 176 BO
10110001 12,11,0,1 177 Bl
10110010 12,11,0,2 178 B2
10110011 12,11,0,3. 179 B3
10110100 12,11,0,4 180 B4
10110101 12,11,0,5 181 B5
1011011.0 12,11,0,6 182 B6
10110111 12' 11, 0 '7 183 B7
10111000 : 12' 11, 0' 8 184 BB
10111001 12,11,0,9 185' B9
lOlliOlO 12,11,0,a,2 186 BA
10111011 12,11,0,a,3 187 BB
10111100 12,11,0,a,4 188 BC

Appendix A. Character Codes A-3

Table A~ 1. Character Codes (Continued)

8-:BIT CHAR~CTER SET
BCD PUNCH PRINTER HEXA-
CODE COMBINAT.JON GRAPHICS' DECIMAL· DECIMAL

10111101 1,2 ' 11 '0 '8' 5 189 BD
10111110 12,11,0,8,t: 190 rlE
10111111 12,11,0,a,1 191 BF
11000000 12,0 192 co
11000001 12,1 A 193 Cl
11000010 i2,2 B 194 C2
11000011 12,3 c 195 CJ
11000100 12,4 D 196 C4
11000101 12,5 E 197 C5
11000110 12,6 F 198 C6
11000111 12,7 G 199 C7
11001000 12,8 H 200 ca
11001001 12,9 I 201 C9
11001010 12,0,9,a,2 20~ CA
11001011 12,0,9,8,3 203 CB
11001100 12,0,9,8,4 204 cc
11001101 12,0,9,8,5 205. CD
11001110 12' 0 ':::J' 8' 6 206 CE
11001111 12,0,9,8~7 207 CF
11010000 11,0 208 DO
11010001 11, 1 J 209 Dl
11010010 11,2 K 210 D2
11010011 11,3 L 211 • D3

·11010100 11,4 M 212 D4
11010101 11,5 N 213 D5
11010110 11·,6 0 214 D6
11010111 11, 7 p 215. D7
11011000 11,8 Q 216 DB
11011001 11,9 R 217 D9
11011010 12,11,9,8,2 218 DA
11011011 12,11,9,8,3 219 DB
11011100 12,11,9,8,4 220 DC
.11011101 12,11,9,8,5 221 DD
11011110 12,11,9,6,6 222 DE
11011111 12,11,9,8,7 223· DF
11100000 o,8,2 224 EO
11100001 11,o,9,l 225 El
11100010 0,2 s 2.26 E2
11100011 o,3 T 227 E3
11100100 0,4 u 228 E4
11100101 o,s v 229 E5
11100110 0,6 w 230 E6
11100111 0,1 x 231 E7
11101000. o,8 y 232 EB
11101001 0,9 z 233 E9
11101010 11,0,9,8,2 234 EA
11101011 ll,0,9,8,3 235 EB
11101100 11,0,9,8,4 236 EC
11101101 11, 0 '9' 8 ;5 ;~37 ED
11101110 11 9 0 9 9 9 8 9 6 238 EE
11101111 11,0,~,a,1 239 EF
11110000 0 0 240 FO
11110001 1 1 241 Fl
11110010 2 2· 242 F2
11110011 ~ 3 243 F3
11110100 4 4 244 F4
11110101 5 5 245 F5
11110110 6 6 246 f6
11110111 7 7 247 F.7
11111000 8 8 :l48 Fa
11111001 9 9 249 F9
11111010 12,11,0,9,a,2 250 fA
11111011 12;11,0,9,8,3 251 FB

A-4

Table A-1. Character Codes (Continued)

8-BIT CHARACTER SET
BCD PUNCH PRINTER HEXA-
CODE COMBINATION GRAPHICS DECIMAL DECIMAL

11111100 12,11,0,9,8,4 252 FC
11111101 12,11,0,9,8,5 253 FD
11111110 12,11,0,9,8,6 254 FE
11111111 12,11,0,9,8,7 255 FF

Appendix A. Character Codes · A-5

Appendix B. HEXADECIMAL-DECIMAL NUMBER CONVERSION

Table B-1 provides for direct conversion of decimal and hexadecimal numbers in these ranges:

HEXADECIMAL DECIMAL

000 to FFF 0000 to 4095

For numbers outside the range of the table, add the following values to the tables figures:

HEXADECIMAL

1000
2000
3000
4000
5000
6000
7000
8000
9000
AOOO
BOOO
cooo
0000
EOOO
FOOO

DECIMAL

4096
8091

12288
16384
20480
24576
28672
32768
36864
40960
45056
49152
53248
57344
61440

Table B-1. Hexadecimal-Decimal Number Conversion

~ 0 1 2 3 " 5 6

000 0000 0001 0002 0003 0004 0005 0006
010 0016 0017 0018 0019 0020 0021 0022
020 0032 0033 0034 0035 0036 0037 0038 .
030 0048 0049 0050 0051 0052 0053 0054

040 0064 0065 0066 0067 0068 0069 0010
050 0080 0081 0082 0083 0084 0085 0006
060 0096 0097 0098 0099 0100 0101 0102
010 0112 0113 0114 0115 0116 0117 0118

080 0128 0129 0130 0131 0132 0133 0134
090 0144 0145 0146 0147 014!; 0149 0150
OAO 0160 0161 0162 0163 0164 0165· 0166
ODO 0176 017? 0178 0179 OltlO 0181 Cl82

oco 0192 0193 0194 0195 0196 0197 0198
ODO 0208 0209 0210 0211 0212 0213 0214
OEO 0224 0225 0226 0227 0228 0229 0230
OFO 0240 0241 0242 024.3 0244 0245 0246

100 0256 0257 0258 8259 0260 0261 0262
110 0272 0273 0274 ·0275 0276 0277 Q278
120 0286 0289 0290 0291 0292 0293 0294
130 0301 0305 0306 0307 0308 0309 0310

140 03~J 0321 0322 0323 0324 0325 0326
150 0336 0337 0338 0339 0340 0341 0342
160 0352 0353 0354 0355 0356 0357 0358
170 0368 0369 0370 O~?l 0372 0373 0374

. 180 0384 0385 0386 0387 0388 0389 0390
190 0400 0401 0402 0403 0404 0405 0406
lAO 0416 0417 0418 0419 0420 0421 0422
lBO 0432 . 0433 0434 0435 0436 0437 0438

lCO 0448 0449 0450 0451 0452 0453 0454
lDO 0464 0465 0466 0467 0468 0469 0470
lEO 04811 0481 0482 0483 0484 0485 04116
lfO 0496 0497 0498 0499 0500 0501 0502

1 8 9 . A B c

0001 0008 0009 0010 0011 0012
0023 0024 0025 0026 0027 0028
0039 0040 0041 0042 0043 0044
0055 0056 0057 0058 0059 0060

00?1 0012 · .OO'l3 0074 0075 0076
008? 0088 001!9 0090 0091 0092
0103 0104 0105 0106 0107 0101!
0·119 0120 0121 0122 0123 0124

0135 0136 0137 0138 0139 0140
0151 0152 0153 0154 0155 0156
0167 0168 0169 0170 0111 0172
0183 0184 01es 0186 0187 0188

01!.9 0200 0201 0202 0203 0204
0215 0216 0217 0218 0219 0220
0231 0232 0233 0234 0235 0236
0247 0248 0249 025·0 0251 0252

0263 0264 0265. 0266 0267 0268
0279 0280 OZ81 02A2 0283 0284
0295 02\16 0~37 02\l!l 0299 0300
0311 0312 0313 0314 0315 0316

0327 0328 0329 0330 0331 0332
0343 03,44 O:l45 0346 0347 0348
0359 0360 0361 0362 03'63 0364
0375 0376 0377 0378 0379 0380

0391 0392 0393 0394 0395 0396
0407 04011 0409 0410 0<\11 0412
0423 0424 0425 0426 04"27 0428
0439 0440 0441 0442 0443 0444

0455 0456 0457 0458 0459 0460
0471 0472 0473 0474 0475 0476
048? 0488 0489 0490 04:'11 0432
0503 0504 0505 0506 050? 0508

D

0013
0029
0045
0061

0011
0093
0109
012!>

01'11
0157
0173
0189

0205
0221
0237
0253

0269
0285
0301
0317

0333
0349
0365
0381

0397
0413
0429
0445 .

0461
0471
0493
0509

E .f"

0014 0015
0030 0031
0046 0047
0062 0063

0018 0079
·0094 0095
0110 0111
1)126 0127

0142 0143
0158 01:;9
0174 0175
0190 0191

0206 0207
0222 0223
0238 0239
0254 0255

0270 0271
0286 0287
0302 0303
0316 0319

0334 0335
0350 0351
0366 0367
0362 0383

0398 0399
0414 0415
0430 0431
0446 0447

046~ -0463
0478 OH9
0494 0495
0510 0511

Appendix B. Hexadecimal-Decimal Number Conversion B-1

Table B-1. Hexadecimal-Decimal Number Conversion (Continued)

~ 0 1 2 3 " 5 6 7 6 9 A B c D E f

200 0512 051°3 0514 0515 0516 0517 0516 0519 • 0520 0521 0522 0523 0524 0525 0526 0527
210 0528 0529 0530 0531 0532 0533 0534 0535 0536 0537 0538 0539 054 0 0541 0542 0543
220 054'\ 0545 0546 0547 0546 0549 0550 0551 0552 0553 u554 0555 0556 0557 0558 05ti9
230 0560 0561 0562 0563 0564 ObG5 0566 0567 0561l 0569 0570 0571 0572 0573 0574 0575

240 0576 05?? 0578 0579 056(1 0561 0582 0583 0564 0565 0566 0567 0&68 0589 0590 0591
250 0592 0593 0594 0595 0596 0597 0598 0599 0600 0601 0602 0603 0604 060fi 0606 0607
260 0608 0609 0610 0611 0612 0613 0614 0615 0616 0617 0618 0619 0620 0621 ll622 0623
270 0624 0625 0626 0627 0628 0629 0630 0631 0632 0633 0634 0635 0636 0637 0638 0639

280 0640 0641 0642 0643 0644 0645 Ou46 OC47 0646 0649 0650 0651 0652 0653 0654 0655
290 0656 0657 0658 0659 0660 0661 0662 0663 066'1 0665 0666 0667 0668 0669 0670 0671
2AO 06?2 0673 '0674 0675 0676 0677 0678 0679 0680 0681 0682 Oti83 0684 0685 0686 0687
280 0688 0689 0690 0691 OG92 0693 0694 0695 0696 0697 0698 Ot99 0700 0701 0702 0703

2CO 0704 0705 0706 0707 0708 0709 0710 0711 0712 0713 0714 0715 0716 0717 0718 0719
2DO 0720 0721 0722 0723 0724 0725 0726 0727 0728 0129 0730 0731 0732 0733 0734 0735
2EO 0736 0737 0738 0739 0740 0741 0742 0743 0744 0745 0746 0747 07413 0749 0750 0751
2f0 0752 0753 0754 0755 0756 0757 0758 0759 0760 076) 0762 0763 0764 0765 0766 0767

300 0768 0769 0770 0771 0772 0773 0774 0775 0776 0777' one 0779 071'0 0'181 0782 0783
310 0784 0785 0786 0787 0788 0789 0790 0791 0792 0793 0794 0795 0796 0797 0798 0799
320 0800 0801 0802 0803 0804 Otl05 0806 0807 08011 0809 0810 0011 Odl2 08l3 0814 0815
330 0816 0817 0818 0819 0820 0821 0822 0823 0624 0825 0826 0827 one 0629 0830 0831

340 0832 0833 0834 0835 0836 0637 0838 0839 0840 0841 OA42 06q:I oe44 084ti 0846 0847
350 0848 0849 0850 0851 08ti2 0853 U!l54 ll855 08b6 0857 0856 0659 0860 0861 0862 0863
360 0864 0865 0866 0867 0868 0869 0870 0871 0872 0873 0874 OA75 oe16 0877 0878 0879
370 0880 0881 0882 0883 0884 0885 01186 Ofl87 088/l 088!! 0890 0891 0892 0893 0894 0895

380 0896 0897 0898 0899 0900 0901 0902 0903 0904 0905 0906 0907 0908 0909 0910 0911
390 0912 0913 0914 0915 0916 0!117 0!118 0!119 0920 Onl 0922 0>;;23 0924 0925 .0926 0927
3AO 0928 0929 0930 0931 0932 0933 0934 0935 Q936 0937 0938 0j39 094 0 0941 0942 0943
380 0944 0945 0946 0947 0948 0!149 0950 09:>1 09:>2 o95J 0954 0:155 09fi6 0957 0958 0959

3CO 0960 0961 0962 0963 0964 0965 0966 0967 09b8 0!169 0970 0971 0972 0913 0974 0975
300 (}976 0977 0978 0979 0980 0!181 0982 0963 0!164. 098ti 0986 0987 0988 0989 0990 0991
3EO 0992 0993 0994 0995 0996 0!197 0!198 0999 1 ouo 1001 1002 1003 1004 1005 1006 1007
3f0 1008 1.009 1010 1011 1012 1013 1014 1015 1016 1017 1016 1019 1 O?.O 1021 1022 1023

"
0 1 2 3 4 5 6 7 d 9 A B c D E f

4 00 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
410 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
420 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071
430 1072 1073 10.74 1075 1076 1077 1078 1079 1080 1081 1082 101l3 1084 1085 1086 1087

440 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
450 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113· 1114 1115 1116 1117 1118 1119
460 1120 1121 1122 1123 1124 1125 1126 1127 1128 112'i; . 1130 1131 1132 1133 1134 1135
470 1136 11~7 1136 1139 1140 1141 11~2 1143 1144 1145 . 1146 1147 1148 1149 1150 1151

480 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167
490 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
4AO 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
480 1200 1201 1202 1203 1204 '1~05 1206 1207 1208 1209 1210 1211 1212 1213 Pl4 1215

4CO 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1G26 1227 1226 1229 1230 1231
400 1232 1233 1234 1235 1236 1237 1238 12119 1240 1241 1242 1211:1 1244 1245 1246 1247
4EO 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257' 1258 1259 1260 1261 1262 1263
4FO 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279

500 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
510 1296 1297 1298 1299 1300 130 l 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
520 1312 13'13 1314 1315 1316 1317 !316 1319 l320 1321 1322 11123 1324 1325 1326 1327
530 1328 1329 1330 1331 1332 1333 .'.334 1335 1336 1337 1338 1:'139 1340 1341 1342 1343

540 13-H 1345 1346 1347 1348 1349 13&0 1351 1352 1353 1354 13titi 1356 1357 1358 1359
550 1360 1361 1362 1363 1364 1365 136€. 1367 1368 1369 1370 1371 1372 1373 1374 1375
560 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 138? 1388 1389 1390 lJ91
570 1392 1393 1394 1395 1396 1397 1398 1399 .1400 1401 1'102 1403 1404 1405 1406 1407

580 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423
590 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
SAO 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 145() 1451 1452 1453 1454 145.5
580 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471

5CO 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
SDO 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503
SEO iso,; 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
5f0 1620 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

B-2

Table B-1. Hexadecimal-Decimal Number Conversion (Continued)

~ 0 1 2 3 4 5 6 7 8 9 A 8 c D E F

600 1536 1537 1538 1539 1540 lb<ll 154~ 1543 1544 1545 1546 1547 1548 1549 15SO 1551
610 1552 1553 1554 1555 1556 1557 1558 1559 1560 156) 1562 1563 1564 1565 1566 1567
620 1568 1569 1570 1571 1572 1673 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583
630 1584 1585 1566 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599

640 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615
650 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 16.!8 1629 1630 1631
660 1632 1633 1634 1635 1636 lti37 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647
670 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663

680 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 lti7~ 167'5 1677 1678 1679
690 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 16\12 1693 1694 1695
6AO 1696 1697 1698 16.99 1700 1701 1702 1703 17ll4 1705 1706 1707 1708 1709 1710 1711
6BO 1?12 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727

6CO 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1731) 1739 1740 1741 1742 1743
6DO 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759
6EO 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
6f'O 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 l 71l8 1789 1790 1791

~

700 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807
710 1808 1809 1810 1811 1812 1813 1fl14 1815 1816 1817 1018 11119 l!l20 1821 1622 1823
720 1824 1825 1826 1827 1628 1829 1630 1831 1832 1633' 1834 1835 . 1836 1637 1838 1839
730 1840 1841 1842 1843 1844 1845 1846 1847 1846 1849 1850. lll51 1852 1853 lll5<\ 1855

740 1856 1857 1858 1859 1060 1661 1862 1863 1664 1865 1866 1867 1868 1869 1870 1871
750 1672 1873 1874 1875 1676 1677 1878 1879 16d0 1681 1882 la83 1884 l8C5 1866 1887
760 1688 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903
770 1904 1905 1906 1907 1908 .1909 1910 1911 1912 1!113 1914 1915 1916 1917 1918 1919

780 1920 1921 1922 1923 1924 1925 1926 1927 1928 U129 1930 1931 h132 1&33 1934 bl35
790 1936 1937 1938 1939 1940 1!141 1942 1943 1944 1945 1946 194 7 1948 1949 1950 1951
?AO 1952 1953 1954 1955 1956 1957 HISS 1959 1960 1961 1962 1 :J63 1964 1965 1966 1967
7110 · 1968 1969 1970 1971 1972 1973 1!174 1975 1976 1 !}77 1978 1979 1980 1981 1962 1983

7CO 1!11'4 1985 1986 1987 1988 1989 1 !190 1991 1992 1993 1994 l-995 1•;95 1!197 1998 1999
?DO 2000 2001 2002 2003 2004 2005 2006 2007 20013 2009 2010 ·2011 2012 2013 2014 2015
7EO 2016 2017 2018 2019 2020 2021 2022 2023 20.!4 2025 2026 2027 2021j 202!1 2030 2031
?rO 2032 2033 203'\ 2035 2036 2037 2038 2039 2040 2041 2042 2043 20q4 2045 2046 2047

~ 0 1 2 3 • 4 5 6 7 8 9 A a c D E f

800 2048 2049 2050 2051 2052 2053 2054 2055 20!)6 2057 <l05t1 20!)9 .!UGO 2061 2062 2063
810 2064 2065 2066 2067 2068 2D69 2070 2071 2072 2073 2074 20?~ 207G 2077 2078 2079
820 2080 2081 2082 2063 2084 2085 2086 2087 2088 2069 2090 20Yl 2on 2093 2094 209b
830 2096 209? 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 21va .!109 2110· 2111

840 2112 2113 2114 2115 2116 21"17 2118 2119 2120 2121 2122 zi2:1 . 2124 2125 ~126 2J27
850 2128 2129 2130 213~ 2132 2133 2134 2135 2i36 213'1 213d 2139 214.i 2141 2142 2143
860 2144 2145 2146 214 7 2148 2149 2150 21s1 21S2 2153 . 2lb4 2155 2156 2157 2158 2159
870 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 . 2'173 2174 2175

880 2176 2177 "2178 2179 2160 2181 2182 2183 215·4 2185 2186 2ltl7 21118 21119 2190 2191
890 2192 2193 2194 2195 2196 2197 2198 2199 2200 220l 2202 2203 2204 2205 2206 2207
BAO 2208 2209 2210 2211 2212 2213 2214 . 2215 2216 2217 2218 2219 2220 2221 2222 2223
880 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 223'1 2238 2239

aco 2240 2 1 2242 2243 2244 2245 2246 2247 2241! 2249 2250 2251 2252 2253 2254 2255
8DO 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 22613 2269 2~70 2271 .
aEo 2272 2273 2274 2275 2276 2.!.77 2278 2279 22tl0 U81 2282 228:1 22134 22·85 2286 2287
BFO 2288 2289 2290 2291 2292 229J 2294 2295 2296 2297 2298 2299 ?.300 2301 2302 2303

900 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2315 2317 2318 2319-
910 ·2320 2321 2322 2323 2324 2325 2326 2327 2328 2J2ll 2330 23Jl 2J32 2333 2334 2335
920 2336 2337 2338 • 2339 2340 2341 2342 2343 2344 2J4S .!346 3;j47 2348 2349 2350 2351
930 2352 2353 2354 2355 2356 2357 2358 23fl9 2360 2361 2362 2363 2364 2365 2366 2367

940 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 23.80 2381 2382 2383
950 2384 231l5 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2:.196 2397 2398 239~
960 2400 2401 2402 24 03 2404 2405 2406 2407 2408 24 09 2410 2411 ?.412 2413 24H 241.5
970 2416 2417 2418 2419 2420 2421 2422 242~ 2424 242.'; 2426 2427 242!! 2429 2430 2431

980 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444, 2445 2446 2447
990 2448 2449 2450 2451 2452 2453 2454 2455 •2456 2457 2458 2459 2460 2461 .!462 2463
9AO 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 24 ·15 I 2476 2477 2478 2·479
980 2480 2481 2482 2483 2464 2485 2486 2487 2468 2489 2490 2491 2492 2493 2494 2495

9CO 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2.507 250!! 2509 2510 2511
9DO 2512 2513 2&14 2515 2516· 2517 2518 2519 2520 2b21 2522 2523 2524 2525 2526 2527
9EO 2528 2529 2530 2531 2532 2533 2534 2535 2536 25·•7 253tl 2539 2540 2541 2542 2543
9f'O 2544 2545 2546 2547 2548 2549 2550 2551 2552 25:.>3 2554 2555 2556 2557 2558 2559

Appendix B. Hexadecimal-Decimal Number Conversion B-3

Table B-1. Hexadecimal-Decimal Number Conversion (Continued)

~ 0 1 2 3 4 5 6 7 a 9 A tl c D E f

AOO 2560 256•1 2562 2563 2564 2565 2566 2567 • 2568 2569 2570 2571 2572 2573 25'/4 2575
AlO 2576 2577 2578 2579 2580 2581 2582 2583 2584 258ti 25116 2587 2588 2589 2590 2591
A20 2592 2593 2594 2595 2596 2ti97 2598 2.599 2600 2601 2602 2603 2604 2605 2606 2607

·A30 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2'519 2620 2621 2622 2623

A40 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639
A50 2640 2641 2642 2643 2644 2645 2646 2647 2648 264:1 2650 2651 2652 2653 2654 2655
A60 2656 2657 2658 2659 2660 2661 2662 2663 2664 26€5 2666 2667 2668 2669 2670 2671
A70 2672 2673 2674 2675 2616 2677 2'378 2679 2680 2681 2682 2683 2684 2685 2686 2687

ABO 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
A!:IO 2704 2705 2706 2707 2708. 2709 2710 2711 2712 2713 2714 2715 2716 2717 l718 2719
AAO 2720 2721. • 2722 2723 2724 2725 2726 2727 2n0 2729 2730 2/Jl 2732 2733 2734 2735
ABO 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751

ACO 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767
ADO 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783
AEO 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 t?.798 2799
Af 0 2800 2801 2802 2803 2804 2805 2806 2807 28'08 280J 2810 2811 2812 2813 2814 2815

BOO 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825. 2826 2827 282!i 2829 2830 2831
BIO 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 28~2 2843 2844 2845 2846 2847
B20 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863
BJO 2864 2865 2866 2867 2868 2869 2870 2d71 2872 287J 2874 . 2875 2876 2877 2878 2879

ff40 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 ·2890 .2891 2892 2893 2894 289-5
B50 2896. 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 29.07 2908 2909 2910 2911
B60 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927
B70 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943

880 2944 2945 2946 2947 29411 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959
ll90 2960 2961 2962 2963 2964 296.5 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975
BAO 2976 2977 2978 2979 2980 2981 2982 2983 29114 298:i 2986 2987 291Hl 2989 2990 2991
BBO 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 JOOJ 3004 3005 300t:i 3007

BCO 3006 3009 3010 3011 3012 3013 ;;) 14 3015 3016 3017 3018 3019 3020 3021 3022 3023
BDO 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039
BEO 3040 3041 3042 3043 3044 3045 3046 .3047 3048 3049 3050 3051 JO~i2 3053 3054 3055
BfO . 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 306A 3069 3070 3071 J

~ 0 1 2 3 4 5 6 7 8 9 A B c D E r

coo 30-72 3073 3074 3075 3076 3077 3078 JOH 3080 3081 3082 3083 30134 3085 3086 30137
ClO 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100- JlOl 3102 3103
C20 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3111; 3117 31111 3119
C30 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 Jl31 3132 3133 3134 3135

C40 3136 3137 3138 3139 3140 3141 3142 Jl43 3144 3145 3146 3147 3148 3149 3150 3151
cso 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 J 166 3167
C60 3168 3169 3170 3171 3172 3173 Jl74 3175 3176 3177 3173 317'1 3160 3181 3182 3183
C70 3184 3185 3186 3187 3188 3189 Jl90 3191 3192 3193 3194 3195 3196 3197 3198 3199

C80 3200 3201 3202 3203 3204 nos 3206 3207 . 3208 3209. 3210 3211 3212 3213 3214 3215
C90 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231
CAO 3232 3233 3234 3235. 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247
CBO 3248 3249 3250 3251 3252 3253 3254 1255 3256 3257 3258 3259 3260 3261 3262 3263

,
cco 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 . 3274 3275 3276 3277 3278 3279
CDO 3280 3281 3282 3283 3284 3285 3286 3287 :J288 3289 3290 3291 3292 3293 3294 3295
CEO 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311
cro 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327

000 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343
DlO 3344 33\5 3346 3347 3348 3349 3350 3351 3352 3J53 3354 3355 3356 3357 3358 3359
fl20 3360 3361 3362 3363 3,364 3365 3366 3367 . 3368 3369 3370 3371 3372 3373 3374 3375
830 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391

040 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
DSO 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423
D60 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439
D70 3440 3441 3442 3443 3444 3445 3446 3447 3448 ·3449 3450 3451 3452 3453 345'1 3455

080 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471
D90 34·12 3473 3474 3475 3476 3477 3478 3479 3460 3481 3482 3483 3484 3485 3486 3487
DAO 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503
DBO 3504 3505 3506 3507 3508 3509 3!Jl0 3511 3512 3513 3514 3515 3516 3517 3518 3519

DCO 3520 3521 3522 3523 3524 3525 3.526 3527 3528 3529 3530 3531 3532 3533 3534 3535
ODO 3536 3537 3536 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551
DEO 3552 3553 3554 3555 3556 3557 3558 3559 3560 35.61 3562. 3563 3564 3565 3566 :_,557
DfO 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583

B-4

Table B-1. Hexadecimal-Decimal Number Conversion (Continued)

~ 0 1 2 3 " 5 6 7 6 9 A B c D E F

EOO 3564 3565 3566 3567 3566 3589 3590 3591 3592 3593 3594 3595 3396 3597 3596 3~99
ElO 3600 3601 3602 3603 3604 3605 3606 3607 3608 3Gb9 3610 3611 3612 3613 3614 3615
E20 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
E30 3632 3633 3634 3635 3636 3637 3638 3639 36'\0 3641 J642 3643 3644 3645 3646 3647

E40 3646 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663
ESO 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3676 3679
E60 3680 3681 3682 3683 3684 3685 3686 3607 3688 3689 3690 :1691 31j92 3693 J694 3695
E70 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711

EBO 3712 371j 3714 3715 3716 3717 3716 3719 3720 3721 3722 3723 3724 3725 3726 3727
E90 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
EAO 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759
EBO 3760 3761 3762 3763 3764 3765 3766 3767 J768 3769 3770 3771 3772 3773 37711 3775

ECO 3776 3777 3778 3779 3780 3781 J782 3783 3784 3785 3786 :1787 3788 3789 3790 3791
EDO 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807
EEO 3808 3809 3810 3811 3812 3813 3814 3015 3816 3817 3810 3819 3820 3821 3822 3023
EFO 3824 3825 3826 3827 3828 3829 3830 3031 3832 3833 3834 3835 3836 3837 3838 3839

-
FOO 3840 3041 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855
Flo 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3066 J867 3868 3069 3870 3871
r20 3872 3873 3874 3875 3876 3877 3878 3879 3600 JOBI. 3882 3883 3884 3685 3886 3687
F30 3680 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 ::ia·n 3!100 3901 3902 3903

F40 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919
r5o 3920 3921 3922 3923 3924 3925 3926. 3927 3928 3929 3930 3!131 3!132 3933 3934 3935
F60 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
f'70 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967

rao 3966 3969 3970 3971 3972 3"73 3974 3975 3976 3977 3978 3979 3981) 3981 J9e2 3983
F90 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
fAO 4000 tiOOl 4002 4003 4004 4005 4006 4001 4 QOfl 4009 4010 4011 4012 4013 4014 4015
FllO 4016 4017 4018 '1019 '1020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031

fCO 4032 4033 4034 4035 4036 4037 4038 4039 'I 040 4041 4042 4043 4044 4045 4046 4047
roo 404) 4049 4050 4051 4052 4053 4 054 4055 4056 4057 4058 4059 4060 4061 4062 4063
fEO 4064 4065 4066 4067 4 068 4069 4 070 4071 4072 4073 4074 4075 4076 4077 4078 4079
rro 4080 408 l 4082 4083 4084 4085 4086 4087 4 088 4089 4090 4091 4092 4093 4094 4095

~

Appendix B. Hexadecimal-Decimal Number Conversion B-5

Appendix C. CONSTANT DEFINITION

Table C-1. Summary Information For Defining Constants

Implied L(l) Specification s Truncation/
Length Modifier of Exponent Modifier Padding

Type In Bytes Alignment Range Constant List Range Range Side Code

c as byte .1 characters No right 1
needed to

256.0

x as byte .1 hexadecimal No left 0
needed to digits

256.0
-

F 4 word .1 decimal Yes -85 -96 left 5
to value, to to

8.0 exponent +75 +159

H 2 half- .1 decimal Yes -85 -96 left 4
word to value, to to

8.0 exponent +75 +159

E 4 word .1 decimal Yes -85 0 to right 6
to value, to 2L-2

8.0 exponent +75 (2)

D 8 double- .1 decimal Yes -85 0 to right 7
word to value, to 2L-2

8.0 exponent +75 (2)

p as byte .1 decimal No left 2
needed to value

16.0
----·-

z as byte .1 decimal No left 3
needed to value

16.0

A word 1.0 an Yes left 9
to expression

4.0

s 2 half- not an Yes 10
word allowed expression

1. The fractional portion of the length modifier indicates the number of bits; the integral portion indicates the number of
bytes. Bit-length specification is not allowed for A-type constants.

2. Lis length of constant (implied or specified). Note that negative scaling is not permitted.

Appendix C. Constant Definition C-1

Appendix D. ASSEMBLY INSTRUCTION REFERENCE

Table D-1. Reference Summary For Assembly Instructions

Mnemonic Name Field
. .
Operand Field

ccw An optional symbol Four operands, separated by commas

CNOP An optional symbol Two decimal values, separated by a comma

COM Must be blank Ignored; should be blank

CSECT An optional symbol or Ignored; should be blank special code

DC An optional symbol One or more operands, separated by commas

DO UBL Must be blank Ignored; should be blank

DROP Must be blank One to 16 absolute expressions, separated by commas;
or ".ALL"

DS An optional symbol One or more operands, separated by commas

DUMP Symbol at which dump requested Four operands, separated by commas

DUMPC Symbol at which dump requested Seven operands, separated by commas

DUMPE Must be blank Four operands, separated by commas
--

DUMPR Symbol at which dump requested Six or seven operands, separated by commas
t- ------

EJECT Must be blank Not used; should be blank

END Must be blank A relocatable expression or blank

ENTRY Must be blank One or more relocatable symbols, separated by commas

EQU A required symbol An absolute or relocatable expression

EXTRN Must be blank One or more relocatable symbols, separated by commas

ICTL Must be blank A self-defining value of from 1-66, inclusive

ISEQ Must be blank Ignored; should be blank

LIB Must be blank Library update information

LIST Must be blank Should be blank

LTORG An optional symbol Ignored; should be blank

MAX A required symbol One or more absolute or relocatable expressions,
separated by commas

Appendix D. Assembly Instruction Reference D-1

Table D-1. Reference Summary For Assembly Instructions (Continued)

Mnemonic Name Field Operand Field

NLIST Must be blank ·Should be blank

ORG An optional symbol A relocatable expression

PRINT Must be blank One or two operands separated by a comma

PSEG Ignored; should be blank Segment name and/ or one or more special codes

QUAL Must be blank An alphabetic character, or decimal digit, or a blank

RPEM Must be blank Must be blank

SPACE Must be blank A decimal value or blank

SPEM Must be blank Must be blank

SSEQ Must be blank Should be blank

START An optional symbol A self-defining value

TDMPL Must be blank Seven or eight operands, separated by commas

TDMPP Must be blank Seven or eight operands, separated by commas

TEQU A required symbol An absolute or relocatable expression

TITLE An optional symbol A sequence of characters

TRACB Must be blank Three operands, separated by commas

TRACE Must be blank Three operands, separated by commas

USING Ignored; should be blank An absolute· or simply relocatable expression followed
by 1-16 absolute expressions separated by commas

D-2

Appendix E. ASSEMBLY DEFINITIONS OF SYSTEM SYMBOLS

Table E-1. System Symbols Defined By Assembly

Symbol Meaning Symbol Meaning

SY SP IR For system communication SYSTWR Write to the typewriter

SYS TIM Initiate timer and its interrupt SYSTRE Read from the typewriter

SYSIO For system communication SYSCOM Overlay loading and communication

SY SD MP Emergency dump after end of job SYSWRS General output (write)

SYSRET Return to instruction of last PSW in stack SYS RDS General input (read)

SY SR TA Return to specified instruction SY SP RS General print or punch

SYSRSL For system communication SY SPUN General punch

SYSEOJ End of job (normal) SYSBRA Monitor-assisted branch

SY SD EB For system communication SYSCTL Control Device

SYSTRC For system communication SY SS TR Set returns for devices

SYSWAT Type PROGRAM WAITING and SYSCLK Initiate timer and interrupts
read CONT

SYSDTH Terminate processing
SYSIOI For system communication and USERIO

SYSCDP Request emergency dump
SYSIOO For system communication and USERIO

SYS TIN Service console typewriter interrupt
SY SP KY Set protection key

SYSTCE Record I/O instruction
SYSSSK Set storage key request

SYSWRM Count abnormal condition
SYSKMC For system communication

SYSLGD I/O device logout
SYSDTF Define file format (system)

SYSLGC I/O channel logout
SYSRAS For system communication

SYS IPR Initialize IOCE processor interrupt
SY SM OP For system communication

SYSPIN User definition for program interrupts

Appendix E. Assembly Definitions of System Symbols E-1

The IBM 9020 Assembly Program (assembler) accepts
Basic Assembly Language (BAL) output of the JOVIAL
compiler or BAL programs originated by the programmer.
The assembler is called by the monitor (Figure F-1) when
the compiler has completed processing or when a BAL
program is detected on system input. The assembler then
translates the BAL input into a form acceptable to the
loader, assigns tentative storage addresses, provides for
program relocation, and furnishes linkages for interprogram
listing on an output unit. If execution is requested, the
assembler also places the object program on the auxiliary
tape for submission to the loader. When it has completed
processing the BAL source program, the assembler returns
control to the monitor.

Compiler
Program

Com pool
Edit Program

Assembly
Program

Loader
Program

Appendix F. BAL PROCEDURES

No programmer instructions are necessary at assembly
time for the translation of the JOVIAL compiler output.
For the assembly of original BAL programs, the pro
grammer must prepare appropriate control cards and must
include these in his input deck. The $BAL control card is
described in this appendix.

The symbolic analyzer, a portion of the assembler, can
be reqµested by the programmer. It prints a list of all
symbols in the processed program. The list is indexed to
show the line number (in the program listing) of each
symbol definition and the line numbers of all statements
referring to the symbol.

Monitor

Debugging
System

SPT
Edit Program

Library
Edit Progrum

System
Edit Program

Figure F -1. Utility Programming System for the IBM 9020 Data Processing System

Appendix F. BAL Procedures F-1

ASSEMBLER INPUT

Figure F-2 shows the flow of input to the assembler
and the types of output produced by the assembler. The
monitor, directed by control cards that accompany the
input, controls the processing of all input through the 9020
Utility Programming System. When a source program is
preceded by a $BAL control card, the monitor relinquishes
control to the assembler for processing. Similarly, if a
source program is preceded by a $JOY control card, the
monitor relinquishes control to the compiler to translate
the program into BAL; the program is then submitted to
the assemble~. Therefore, all input to the assembler is in
BAL.

MONITOR
$OBJ Control Card

$JOV

COMPILER
Control Card

$BAL
Control
Card

CROSS
REFERf'NCE

ASSEMBLER C.AR.D
DECK

PROGRAM OBJECT AUXILIARY

LISTING PROGRAM TAPE (for
CARD DECK LOADER)

Figure F-2. Flow of Input to the Assembler

INPUT DECK STRUCTURE

Figure F-3 shows a typical source program deck
accepted by the assembler. The first control card of a
source program deck must be a $BAL control card, which
directs the monitor to call in the assembler.

In Figure F-3, the Input Control (ICTL) card, used to
specify the card column in which the BAL statements
begin, is optional. If used, it must pre".ede the START card
of the BAL source program; if not used, the assembler
assumes that statements begin in column 1.

F-2

Each program must have a START card at the
beginning and an END card at the end. When the assembler
detects the END statement in a BAL source program, it
produces a loader END card. This card will contain the
address of the first executable instruction, if specified in
the END statement.

A TITLE card can be inserted immediately before the
START card to identify program listings and punched
cards.

In addition to the $BAL control card, four assembler
cards (ICTL, TITLE, START, and END) supply the
assembler with information about the BAL program. The
$BAL control card is described in the following text.

END

Source Program on System
Input

Figure F-3. Sample BAL Source Deck Accepted by the Assembler

$BAL Control Card

The $BAL control card directs the monitor to transfer
control to the assembler.

The format of the $BAL control card is:

Col.
1

$BAL

1
6

LIST ,PUNCH,ANALYZ,XREF ,PUNCHC,
LIS1P,LISTD,PUNCHS,INDEX,LOAD

Any or all of the options in the operand field may be
used; if more than one option is used, the options may be
listed in any sequence and must be separated by commas,
with the $BAL starting in column 1 and the first option
starting in column 16. LIST causes the assembler to
produce a program listing, PUNCH causes an object deck to
be punched, and ANALYZ causes a cross-reference listing
of all sy~bols to be produced by the assembler's Symbolic
Analyzer. If the ANALYZ option is requested, LIST is
assumed. The XREF option causes the assembler to punch
an XRF deck if no serious errors were encountered in the
assembly. If the XREF option is selected, the LIST and
ANAL YZ options are assumed. If listing of the program is
suppressed by· an NLIST card, XRF cards will not be
punched for any symbols referenced in the area that the
NLIST covers. LISTD, PUNCHC, and LISTP are valid only
for assemblies using a compool. LISTD forces the compool
DSECT's to be listed. If LISTD is requested, LIST is
assumed. PUNCHC causes referenced compool segments to
be assembled, one assembly per segment, but the assemblies
are not listed. PUNCHC does not cause compool segment
object decks to be punched. PUNCH must be specified, in
addition to PUNCHC, to obtain the punched object decks.
LISTP is the same as PUNCHC but the compool segment
assemblies are listed. PUNCHS and INDEX are JOVIAL
options which are recognized and ignored. The LOAD
option is utilized to force output of an object deck with
serious errors to AUXIL for input to the LOADER or
UNTE. If an unrecognizable field is encountered, LIST,
PUNCH, ANALYZ is assumed.

The following is an example of a $BAL control card:

Col.
1

$BAL

1
6

UST,ANALYZ

When the monitor encounters this card, it passes control to
the assembler which, after translating the source program
and assigning tentative storage locations, produces a pro
gram listing and a cross-reference list of symbols.

FUNCTION OF THE ASSEMBLER

The assembler translates BAL source programs and
BAL output of the JOVIAL compiler into a form accept
able to the loader, producing object programs. In accom
plishing this, the assembler also performs other functions,
such as: program linking, error checking, assigning ten
tative addresses in storage for the program, establishing
common storage, and producing, if requested, object decks,
program listings, and cross-reference listings of all symbols.

These operations are performed in three phases: Pass I,
Interlude, and Pass II. In Pass I, tentative storage addresses

are assigned to each control section (starting at location 0),
error checking is performed, and internal tables, such as the
symbol table and the table of literals, are built. The
Interlude phase adjusts the addresses by assigning consecu
tive storage locations to all control sections, adjusts the
address values of the symbols entered in the symbol table,
and produces External Symbol Dictionary (BSD) cards. In
Pass II, the translation of the source program is completed,
and an object deck and program listing are produced, if
required. If a cross-reference listing is requested, an
additional pass is required.

Program Linking

Separately assembled programs that are loaded and
executed together can refer to instructions and data within
one another. The assembler makes this possible by pro
ducing Relocation List Dictionary (RLD) cards and BSD
cards.

The BSD cards indicate external symbols, entry points,
program name, and common to the loader. (An external
symbol appears as an address constant in the present
program, but is defined in another program. The external
symbol is thus an entry point or the program name in the
program in which it is defined.) The RLD card supplies the
address of the address constant containing the external
symbol.

Program linkage is completed by the loader. The loader
assigns to the external symbol the absolute address of its
corresponding entry point or program name. The loader
then uses the RLD information to place the external
symbol address value in the proper address constant
location.

Error Checking

The assembler examines the BAL source programs for
possible errors resulting from the incorrect use of BAL. If
an error is detected, the assembler prints a diagnostic
message in the program listing. These messages are de
scribed in the subsection "Assembler Output."

The assembler recognizes two types of errors: possible
and serious. Possible errors are those which do not prevent
the assembled program from being loaded and executed. If
desired, error messages for possible errors can be suppressed
from the program listing. Serious error messages are always
printed in the listing and prevent execution of the program.

If the LIST option was not present on the $BAL card
and serious errors, or w:;i,ming errors which are not
suppressed, are detected, the statement plus all unsup~
pressed error messages will be printed. The NLISTed
statements with unsuppressed errors will also be printed
together with the diagnostics.

Storage Assignment

The assembler assigns tentative storage addresses to all
program instructions and data, and assigns a relocation

Appendix F. BAL Procedures F-3

identification number (ID) to each control section in a
program. (A control section may be an entire program or a
logical subdivision of a program, as designated by the
programmer.) The control section ID is also assigned to all
symbols within that control section. The program itself
receives an ID of 01. All control sections within the
program receive an ID between 02 and 254. In Pass I, each
control section has addresses assigned to it starting at
location· 0. During the Interlude, these addresses are
adjusted to give consecutive addresses to consective control
sections. To do this, the length (in bytes) of the first
control section (after being rounded to a multiple of eight)
is added to the address of each symbol defined in the
second control section. The sum of the len~hs of the first
and second control sections (after being rounded to a
multiple of eight) is then added to the address of each
symbol in the third control section, etc. This operation
continued until all control sections (except dummy control
sections) have been assigned consecutive storage addresses.
The assembler then assigns an ID of 01 to all control
sections and symbols whose addresses have been adjusted;
therefore, the control sections are not individually relo
catable. Dummy control sections retain their unique IDs,
between 02 and 254. Common storage, a unique section
defined to. the assembler by a COM statement, always
receives an ID of 255.

The assembler also assigns base registers to the pro
gram, and computes displacements for machine instructions
that require them. The assignment of base registers is
dependent upon the information contained in USING and
DROP instructions in the source program. These instruc
tions indicate the contents and numbers of the general
registers that are available for use as base registers.

The tenative addresses assigned by the assembler to an
object program may serve as actual storage addresses,
provided those addresses are available at load time. If not,
the loader can assign new addresses without altering the
arrangement or referencing of the program, because the
difference between the original assembler-assigned addr~sses
and the loader-assigned addresses will remain constant.

Common Storage

The BAL source program can request the use of
common storage with the COM statement. Common storage
is a special and independently relocatable type of section.
This enables programs in a job to define a common section
and manipulate data in it. (A job is a program or group of
programs that form an executable unit.) The loader assigns
these common sections to the same start location. There
fore, each program may share the same data area. At load
time, only one common storage area is alloted to the job.
The assembler assigns every common section to location
zero, and assigns an ID of 255 to each common section and
to the symbols defined within that section. The loader
determines the size of common storage by making it equal
to the largest area required by any common section in the
job.

F-4

Symbol Table Generation

The assembler generates a symbol table consisting of
entries for the program name, symbols defined in the
source program, and external symbols. When the assembler
encounters a symbol in the name field of a source program
statement, it enters the symbol in the symbol table and
assigns an address value and a length attribute; where
applicable, . a data-type code, a scale modifier, and a
qualification factor are assigned.

The address value is the tentative storage address of the
leftmost byte of the field allocated to the statement, and is
determined by the value of the location counter when the
symbol occurs.

The length attribute is the byte size of the field named
by the symbol. The data-type code is a single hexadecimal
character that describes the type of data in the field named
by the symbol:

Type of Data

Hexadecimal (X)
EBCDIC (C)
Packed decimal (P)
Zoned decimal (Z)
Fixed-point halfword (H)
Fixed-point fullword (F)
Floating-point fullword (E)
Floating-point doubleword (D)
Instruction (I)
Address constant (A)
Base displacement (S)

Code

0
1
2
3
4
5
6
7
8
9
A

The · scale modifier is used with fixed-point and
floating-point constants to specify the amount of internal
scaling that is desired.

The qualification factor is used to distinguish between
two occurrences of the same symbol with different
meanings.

As the assembler constructs the symbol table, it checks
that each symbol appears only once in the 'program as the
name. of a statement. If a symbol is used as a name more
than once, only the first usage will be recognized. Subse
quent usages are ignored; however, an error message is
printed in the program listing. An error message is also
printed if a symbol referred to by a program is not entered
in the symbol table.

As the assembler evaluates each expression in the
program, it replaces the symbols that occur in the operand
field with the tentative addresses given for them in the
symbol table.

ASSEMBLER OUTPUT

The ·assembler assembles the BAL source program and
produces diagnostic messages reflecting conditions occur
ring during assembly. In addition, the programmer may
request several optional forms of assembler output, by
specifying the desired options on the $BAL control card.
This control card may be used to request an object deck, a
program listing, and/ or a cross-reference listing of the
symbols used in the program.

All requested assembler output, including diagnostic
messages, is recorded on the system output unit (either tape
or printer/punch). If the system output unit is magnetic
tape, the tape may be processed as a peripheral operation.
If loading and execution of the program are to take place
immediately, the object program is recorded on the
auxiliary tape.

Auxiliary Tape

If a BAL program is to be loaded and executed
im1ncdiately after assembly, the assembler places the object
program on the auxilia1y tape. (The auxiliary tape is used as
input to the loader.) The object program is composed of
ESD, TXT, RLD, END, DBG, and LIB card images, which
are described in the subsection "Object Deck."

Assembler-Produced Cards

If the PUNCH option is used on the $BAL control
card, an object deck is produced by the assembler. The
object deck begins with a $OBJ control card and is
followed by the other cards described in the subsection
"Object Deck."

Object Deck

The assembler may produce seven types of cards in the
object deck from the BAL source program: Text (TXT),
External Symbol Dictionary (ESD), Relocation List Dic
tionary (RLD), End (END), Debug (DBG), Library (LIB),
and Object ($OBJ). The purpose of these cards is described
in the following text; the formats are described in the
publications IBM 9020 Data Processing System: Loader

Program (LOADER-OJ) and Debugging System
(DEBUGG-01) Manuals and IBM 9020 Data Processing
System: Library Edit Manual (LIBEDT-01).

TXTCARD

The TXT cards contain the text of the program in a
form acceptable to the loader. Each card may contain up to
56 bytes of information. The number of bytes of infor
mation on the card and the address at which the first byte
of information is to be loaded are also specified on the
card.

ESDCARD

The ESD cards contain the values assigned by the
assembler to the program name and to all symbols declared
by EXTRN and ENTRY statements in the BAL source
program. ESD cards indicate every entry point and external
symbol used, thereby making it possible for programs to
refer to one another. An ESD card is also produced for
Common storage (an area defined to the assembler by a
COM statement in the BAL source program).

RLDCARD

The RLD cards contain an entry for each address
constant that contains a relocatable expression. These cards
indicate to the loader those address constants that must be
changed if the program is loaded at a location other than
the one assigned by the assembler.

END CARD

The assembler produces the END card when it en
counters the END statement in the BAL source program.
This card signals the conclusion of the program to the
loader. It also specifies the address of the first executable
instruction in the program, if the symbolic name of the first
executable instruction was originally given in the END
statement. If an external symbol was used, the symbol will
appear on the END card produced by the assembler.

DBGCARD

The DBG card requests execution-time debugging, and
is produced from the programmer's symbolic (BAL) de
bugging request. As prepared for inclusion at assembly
time, the debugging requests are coded in BAL (described

Appendix F. BAL Procedures F-5

in the publicatiOn IBM 9020 Data Processing System~· De
bugging System Manual (DEBUGG-01) and are translated
by the assembler into loader language.

LIB CARD

LIB. cards are used to place compiled JOVIAL pro
grams and/ or routines on the library tape. If the compiler
output contains a statement which specifies that the
program or routine is to be placed on the library tape, the
assembler produces the LIB card. The LIB card is further
described in the publication IBM 9020 Data Processing
System: Library Edit Manual (LIBEDT-01).

$OBJ CONTROL CARD

The $OBJ control card is produced by the assembler
and placed at the beginning of the object deck. Any object
deck used as input to the loader must be preceded by this
card.

XREFDeck

Three types of cards may be produced by the assembler
in the XREF punched deck: an XRF header card (.XRF3),
an XRF symbol card (.XRF4), and an XRF trailer card
(.XRF7). The purpose of these cards is described in the
following text; the formats are described in the Subprogram
Design Specification for the Compool Reference Matrix
Subprogram (XREF).

.XRF3CARD

The XRF header card contains the name of the
program for which the XRF deck was punched. It informs
the XREF subprogram that an XRF deck follows.

.XRF4CARD

The XRF symbol card contains the program name and
up to eight Compool data names and/or library routine
names referenced by the assembled program.

.XRF7CARD

The XRF trailer card contains the program name and
the count of the number of Compool data names and
library routine names referenced by the assembled program.
This card informs the XREF Subprogram that the XRF
deck has been completed.

F-6

Program Listing

If the LIST option is specified on the $BAL control
card, a program listing is produced during Pass II of the
assembly:. Every statement in the program is printed as a
separate line, unless the programmer makes use of the
suppress option. The programmer may suppress the listing
by omitting the LIST option from the $BAL control card,
or part of the listing may be suppressed by using the
PRINT, SPEM (suppresses printing of possible error mes
sages), or NLIST instructions in the BAL source program.

Appendix G contains a sample of a program listing.
Page 01 of the listing contains the information given in the
TITLE card and any comment cards following the TITLE
card. Page 02 of the listing is an external symbol listing,
containing program name, type, ESD-ID number, location
in storage, length (in hexadecimal), and card identification.
The actual program listing begins on page 03. Each line of
the program listing contains the following fields:

F
LOC

;DI;
B-DI~j
ADDRl)
ADDR2

LINE
SYMBOL

OP

OPERAND-COMMENTS

IDE NT

Field

Flag

Location

Assembled output

Effective address of operands 1 and 2

Line number

Symbol (BAL)

Operation code .(BAL)

Operand (BAL) and comments

Identification sequence

The relocation dictionary follows the program listing,
and contains the ESD-ID of the section where the address
constant was defined (ID-LOC); the ESD-ID of the
defined address constant (ID-DEF); the number of bytes
of the address constant (LENGTH); the sign of the address
constant {SIGN): and card identification (CARD IDENT).
A cross-reference listing follows the relocation dictionary
listing, and is, in turn, followed by a list of undefined
symbols (if any) and a summary of errors.

The fields of the program listing are described in the
following text.

FF/ELD

The F field is usually blank, but may contain one of
the following alphabetic characters if the specified

condition exists (these flags apply to the program listing
and do not affect assembly of the program):

Flag

A

B

c

D

F

M

s

Conditions

Indicates an error in sequence numbers (se
quencing is checked only if an ISEQ request is
made in the BAL source program).

Indicates an excessively long operand field
(will not fit on the line).

Indicates that both a sequencing error and an
excessively long operand field occur in the
same statement.

Indicates a constant that has been generated
by a literal (printing of literals may be sup
pressed by the PRINT instruction in the BAL
source program).

Indicates that both an excessively long oper
and field and a constant generated by a literal
occur in the same statement.

Indicates that the analyzer found a multi
defined symbol.

Indicates that the analyzer found a system
symbol which was redefmed in the problem
program. This flag is for information only; it
does not signal an error.

R Indicates that the analyzer found a system
symbol which was multi-redefmed.

Whenever an entry appears in the flag field, the
assembler automatically prints a legend for the flags at the
end of the listing. See page 11 of the listing in Appendix G.

LOCFIELD

The LOC field contains a six-character hexadecimal
representation of the address assigned to the first byte of
the object code produced for the statement.

ASSEMBLED OUTPUT

The assembled output contains the object code pro
duced for the statement. This field is divided into four
subfields:

Subfield Contents

OP A two-character OP code in hexadecimal.

RR A two-character subfield containing register
and length information.

B-DIS The first base register and displacement (blank
if none).

B-DIS The second base register and displacement
(blank if none).

OPERAND 1 and 2 ADDRESSES

Subfield Contents

ADDRl Effective address of the first operand (blank if
none).

ADDR2 Effective address of the second operand (blank
if none).

For constants, 16 bytes are printed on each line. If the
constant requires more than 16 bytes, additional lines are
used to print it (unless a PRINT statement in the BAL
source program has suppressed the additional lines). Con
stants that have a multiplicity greater than one require
multiple lines for printing.

LINE FIELD

The LINE field contains a number assigned to each
input statement by the assembler. This line number is used
by the symbolic analyzer for identifying the location of
symbol definitions and references.

SYMBOL FIELD

The SYMBOL field contains the symbol appearing in
the name field of the BAL source statement. If there is
none, the field remains blank.

OP FIELD

The OP field contains the operation code appearing in
the operation field of the BAL source statement.

Appendix F. BAL Procedures F - 7

OPERAND-COMMENTS FIELD

The OPERAND-COMMENTS field contains the oper
and and contents of the comments field specified in the
BAL source statement.

!DENT FIELD

The IDENT field contains the contents of columns 73
- 80 of the BAL source statement, which are used by the
SPT edit program or for card identification and sequencing.

Cross-Reference Listing Of Symbols

When the ANALYZ option on the $BAL control card
is specified, the symbolic analyzer is called to produce a
cross-reference listing of all symbols used in a program. This
option is valid only when a program listing is also
requested. The NLISTed statements are not processed by
the BAL analyzer. Consequently, any multidefined sym
bols, system symbol redefinitions, etc. which occur in
NLISTed code will not be detected by the analyzer and the
appropriate flags will not appear in the listing. The
cross-reference listing, entitled "Symbolic References,"
appears after the relocation dictionary listing in Appendix
G.

The symbolic analyzer is a part of the assembler, and
the use of this option requires at least one additional pass
to produce the cross-reference listing. The listing gives the
line number of each symbol definition and the line numbers
of all statements that refer to the symbol. Multidefined
symbols and redefined system symbols ·are flagged. A
separate listing of any undefined symbols 1.s printed after
the symbol listing. The symbolic analyzer can handle any
number of references, but if more than ·255 undefined
symbols occur, only the first 25 5 are printed and a
diagnostic message, stating that there are unlisted and
undefined symbols, will be printed.

Diagnostics

The assembler prints a diagnostic message in the
program listing for errors discovered during processing of a
BAL source program. The diagnostic message(s) is printed
immediately after the erroneous statement. If no LIST
option was present on the $BAL card, or if an NLIST is in
effect for the erroneous statement, the assembler will force
printing of the statement and all unsuppressed diagnostics.
The asterisks that precede each message are for ease of
identification in the program listing.

Execution

Permitted

No

Message

*****FIELD n HAS INVALID PUNCTUATION

No ***** FIELD n HAS FOUND INVALID CHAR-
ACTER

\ F-8

Execution

Permitted Meaning

No ***** FIELD n HAS A SYMBOL OR NUMBER

WHICH IS TOO LONG

No ***** FIELD n HAS AN EXPRESSION WHICH IS

LONG OR COMPLEX

No *****(symbol) IS AN UNDEFINED SYMBOL

No ***** FIELD n HAS AN INVALID USE OF *

No ***** FIELD n IS INVALIDLY COMPLEX RELO-

CATABLE

Yes ***** FIELD n HAS A VOID EXPRESSION -

POSSIBLE ERROR

Yes ***** FIELD n HAS BEE~ TRUNCATED - POS-

SIBLE ERROR

No ***** FIELD n HAS A RELOCATABLE SYMBOL

WHICH IS MULTIPLIED OR DIVIDED

No ***** FIELD n HAS TOO MANY ELEMENTS IN AN
EXPRESSION

No *****(symbol) IS A MULTI-DEFINED SYMBOL

Yes ***** USE OF A PRIVILEGED OP CODE - POS-

SIBLE ERROR

No ***** FIELD n HAS AN EXPRESSION INVALIDLY

TERMINATED

Yes · ***** PSEUDO-OP IS MISPLACED - POSSIBLE

ERROR

Yes *****HALF WORD ALIGNMENT HAS OCCURRED

- POSSIBLE ERROR

No ***** FIELD n HAS A RELOCATABLE IN PLACE

OF ABSOLUTE

No ***** FIELD n HAS AN ERROR IN LITERAL

Yes

Yes

DEFINITION

***** DC SPECIFIED BUT NO VALUE LIST -

POSSIBLE ERROR

***** FIELD n HAS UNUSED REGISTER SPE

CIFIED FOR DROP - POSSIBLE ERROR

Execution

Permitted Message

No ***** FIELD n HAS A REGISTER EXPRESSION

RELOCATABLE OR GREATER THAN 15

No ***** ADDRESS ON END CARD IN ERROR

No ***** FIELD n HAS AN INVALID EXPRESSION
VALUE

Yes ***** NAME FIELD ON TITLE CARD INVALIDLY

SPECIFIED - POSSIBLE ERROR

No ***** ADDRESS IN USING IS INVALID

No *****FIELD n HAS AN INVALID REGISTER FOR

USING

No *****INVALID OP CODE - NOP GENERATED

Yes

Yes

No

Yes

No

No

No

No

***** FIELD n HAS A NON-FLOATING POINT

REGISTER SPECIFIED - POSSIBLE ERROR

***** FIELD n HAS A NON-EVEN REGISTER

SPECIFIED - POSSIBLE ERROR

**** FIELD n HAS ADDRESS WHICH IS NOT

COVERED BY A USING

***** FIELD n HAS ADDRESS WHICH MAY BE
ERRONEOUSLY ALIGNED - POSSIBLE

ERROR

*****FIELD n HAS ADDRESS FOR WHICH BOTII

AN IMPLIED AND SPECIFIED REGISTER
APPLY

***** FIELD n HAS SYMBOL WHOSE IMPLIED
LENGTH IS TOO LARGE

***** (symbol) SYMBOL CAUSED SYMBOL TABLE

TO OVERFLOW

***** FIELD n HAS DIVISION WHICH RESULTED

IN ZERO QUOTIENT

No ***** RLD TABLE OVERFLOWED

No ***** (symbol) HAS NOT BEEN PREVIOUSLY

DEFINED

No ***** ERROR IN MODIFIER (S)

Execution
Permitted Message

No ***** ERROR INV ALUE LIST

Yes *****FIELD n USING REGISTER 0 AS A BASE -

POSSIBLE ERROR

No ***** FIELD n ATIEMPT TO USE NON-ZERO

VALUE FOR REGISTER ZERO

No ***** FIELD n HAS A VALUE WHICH IS TOO

LARGE

Yes ***** TRUNCATION OF CONSTANT - POSSIBLE

ERROR

Yes ***** INCOMPATIBLE SCALING - POSSIBLE

Yes

Yes

Yes

ERROR

***** FRACTION HAS BEEN OMITTED IN FLOAT.

PT. NUMBER - POSSIBLE ERROR

***** FLOATING POINT CONSTANT IS TOO

LARGE - POSSIBLE ERROR

***** CONSTANT HAS BEEN ROUNDED AND

TRUNCATED - POSSIBLE ERROR

No ***** EXPONENT IS INVALID

No

No

No

Yes

Yes

***** FIELD n HAS ENTRY WHICH IS NOT IN

PROGRAM OR COMMON

***** FIELD n HAS EXPRESSION WITH INVALID

RELOCATABILITY

***** (symbol) SYMBOL SHOULD NOT APPEAR IN
NAME FIELD

***** (symbol) IS A DUPLICATE DEFINED ENTRY

POINT - POSSIBLE ERROR

***** (symbol) IS A DUPLICATE DEFINED EXTRN

- POSSIBLE ERROR

Yes ***** START CARD MISSING - POSSIBLE ERROR

Yes ***** DOUBLE WORD ALIGNMENT HAS

OCCURRED - POSSIBLE ERROR

No ***** CSECT TABLE HAS OVERFLOWED

Appendix F. BAL Procedures F-9

Execution

Permitted Message

No *****LITERAL TABLE HAS OVERFLOWED

No ***** ENTRY TABLE HAS OVERFLOWED

No

No

No

Yes

Yes

Yes

Yes

***** LOCATION COUNTER HAS EXCEEDED

MAXIMUM

***** (symbol) IS NOT DEFINED, PERHAPS BE

CAUSE OF SYMBOL TABLE OVERFLOW

***** LITERAL CANNOT BE REFERENCED BE

CAUSE OF SYMBOL TABLE OVERFLOW

***** FIELD n RESULTED IN A CONSTANT

WHICH WAS TOO LARGE - POSSIBLE ERROR

***** ATTEMPT TO DEFINE A NEW CONTROL

SECTION PREVIOUSLY DEFINED - POSSIBLE

ERROR

***** NO DBG CARD GENERATED - POSSIBLE

ERROR (This will follow one of the following 6

messages.)

***** FIELD n HAS INVALID FORMAT SPECI

FICATION - POSSIBLE ERROR

Yes ***** FIELD n HAS AN INVALID LABEL -

POSSIBLE ERROR

Yes ***** FIELD n HAS AN INVALID INTEGER -

POSSIBLE ERROR

Yes ***** FIELD n HAS AN INVALID ADDRESS -

POSSIBLE ERROR

Yes ***** FIELD n HAS AN INVALID CONDITION

SPECIFICATION - POSSIBLE ERROR

Yes ***** FIELD n HAS AN ERROR IN REGISTER

SPECIFICATION - POSSIBLE ERROR

Yes *****FRACTION PART LOST-POSSIBLE ERROR

Yes ***** VALUE SPECIFICATION MISSING -

POSSIBLE ERROR

F-10

Execution

Permitted Message

Yes ***** FLOATING POINT EXPONENT UNDER-

FLOW - POSSIBLE ERROR

Yes ***** (symbol) NOT USED

Yes ***** SYSTEM ERROR

Yes ERROR IN DATA ITEM

No FIELD n HAS TWO CONSECUTIVE QUOTES

AFTER SYMBOL X.

Yes FIELD n VALUE EXCEEDS 24 BITS. RESULT WILL

BE TRUNCATED - POSSIBLE ERROR.

Error Messages

The following messages are issued by the assembler:

CONTROL CARD INVALID OR MISSING.

ASSEMBLY SKIPPED.

END CARD SUPPLIED BY ASSEMBLER

**********.
SYMBOL TABLE OVERFLOW - ANALYZER
SKIPPED.

JOVIAL INPUT RECORDS MISSING - POSSIBLE
TAPE ERROR.

Due to a probable hardware error, all of the BAL
records output by JOVIAL were not received by BAL. A
message will be typed to the operator requesting the job be
rerun.

UNEXPECTED EOF OR ERROR READING COM
POOL.

Due to a hardware error, the compool tape or MLC has
been mispositioned prior to performing the PUNCHC for
compool segments. Rerun the job and the problem should
not reoccur.

Appendix G. SAMPLE PROGRAM LISTING

HAIN PROGRAM FOR JOB VERSION 08/0l /64 DATE 10/28/64 PAG~ 0 l

ASSEMBLY CONTROi: CARDS

MAIN TITLE HAIN PROGRAM FDR JOB SAMPLOl 0 .. FIRST PROGRAM BEGINS AT LDC AT I ON 65536 Sf\MPL020

HAIN PROGRAM FOR JOB EXTERNAL OICTIONARY VERSION 00/0l/6 1t DATE 10/28/64 PAGE 02

NAME TYPE ESD-IO LOCATION LENGTH CARD I DENT

~

HA INPR PROGRAM 01 010000 OOOlCO MAINOOOl
COMMON FF 000000 000348 HAIN0002

SRl EXTRN 02 000000 MA I N0003
SR2 EXTRN 03 000000 MA I N0003
ROUT EXTRN 05 000000 MA I NOOOlt
LINE ENTRY 01 010000 MA I N0005
CSCTl ENTRY 01 010000 MA I N0005
MAIN ENTRY 01 010198 HAIN0005

MAIN PROGRAM FCR JOB VERSION 08/01/64 DATE 10/28/ 64 PAGE 03

F LOC DP RR B-D IS B-DIS ADDRl ADDR2 LINE SYMOOL OP OPERAND-COMHEN T 5 IDENT

010000 00001 HAINPR START x110000 1 S/1MPL030
00002 ENTRY LINE,CSCTl ,HAIN.X SAMPL040

•••••CSCTl IS A MULTI-DEFINED SYMBOL

00003 EXTRN SR 1, SR2 SAMPL050
00004 • HAIN PROGRAM SAMPL060 .
00005 ISEQ SAMPL070

010000 05 EO 00006 CSCTl BALR 14 ,o SAMPLOllO
010002 00007 USING • 114 SAMPL090

010002 58 FO E l 76 010176 00008 L 15,=ACCDHBl SAHPUOO
010006 41 10 E OCE OlOODO 00009 LA l 1LINE SAMPLl 10 I OlOOOA D2 ll7 E OCE E 03E 010000 010040 00010 HVC LINE(136), BLANKS SAMPLl 20
010010 D2 oe E OD8 0 000 OlOODA 00011 HVC LINEHO(12l ,PMAME SAMPL140

•••••PHAME IS AN UN DEF I NED SYMBOL

010016 92 Fl E OCE 01 DODO 00012 HVI LINE,C 'l' SAMPLl 50
OlOOlA 5B AO E l7A Ol017C 00013 L 10,-=ACSRll SM\Pll 70
OIOOlE 05 DA 00014 BALR 13,10 SAMPL180
010020 98 AC E 17E 010180 000·15 LH 10 1 12, =A (5, COMB+L 1 TABLE•NENTRI ES 1 SR2 l SAMPL 190
010024 05 DC 00016 BALR 13, 12 SAMPL200
010026 02 87 E OCE E 03E OlOODO 010040 00017 HVC LINE(136) ,BLANKS SM1PL210
Ol002C D2 02 E ODB E l8E OlOODA 010190 00018 MVC . LINE+l0(3) ,=C 1END' SAl1PL220

A 010032 OA lB 00019 EOJ SVC S.YSEOJ SAHPLI 0/
A 010034 07 00 00020 RERET CNOP 2' 4
A 010036 50 EO E 03A Ol003C 00021 l 14 tSYSCT
A Ol003A 05 DE 00022 BALR 13, 14
A Ol003C 0001017C 00023 SYSCT DC A(=A(SRll l

010040 00024 CNOP 0' 4 SAHPL2&0
A 00025 PR INT NODA TA,

010040 4 04040404 04 04 04 04 0404 04 04 04 04040 00026 BLANKS DC 9CL16' ' SAMPL270
00027 PRINT DATA,

010000 00028 CNOP Do B SAf\PL280
OlOODO 00029 LINE OS 15DC SAMPL290
010166 D4C lC 9054OD70906C709C104 00030 PNAME DC C'MAIN PROGRAM' SAMPL300

A 00031 TITLE DEF I NE COMMON SAMP

"-"-

DEFINE COH~ON VERSION 08/01 /64 DATE 10/28/64 PAGE 04

F LDC OP RR B-DIS B-DIS ADDRl ADDR2 LINE SYMBOL OP OP ER AND-COMMENTS IDENT

000000 00032 COM SAMPL310
000000 00033 COMB EQU .. SAMPLJ20

A 00034 .. SAMPLE TABLE ENTRY CHANGES WITH EACH ASSEMBLY
000000 00035 TABLE OS CL12 SAMPL350

A 00036 • VARIABLE NUMBER OF ENTRIES SAMPL360
000014 00037 NENTRI ES EQU 20 SAMPL360

00038 TITLE SECOND CSECT SAMPL370
........ - - - ~ - ---<.

Appendix G. Sample Program Listing G-1

G-2

SECOND CSECT VERSION 08/01/64 DATE 10/28/64 PAGi: 05

F LOC OP RR B-OJS B-OIS ADORl ADDR2 LINE SYMBOL OP OPERAND-COMMENTS I DENT

00039 QUAL x SAMPL3RO
010198 00040 CSCT2 CSE CT SAMPL390

00041 ORG HAINPR.+X'200'o• SAMPL400
• ••••FI ELD l HAS EXPRESSION WITH INVALID RELOCATABILITY

010198 05 co 00042 MAIN BALR 12,0 SAMPL410
Ol019A 00043 USING • '12 SAMPL420

01019A 47 00 0 000 00044 SWITCH NOP EXIT SAMPL430
•••••EX! T IS AN UNDEFINEO SYMBOL

01019E 90 2B 0 000 00045 STM 2 111 1 TEMP SAHPL440
•••••TEMP JS AN UN DEF I NED SYMBOL

00046 EXTRN ROUT SAMPL450
0101A2 58 00 E l8A 01018C 00047 L 13, =A I ROUT l SAMPL460
Ol01A6 05 ED 00048 BALR 14113 SAMPL470
Ol01A8 0000 00049 DC AL21TABLE,) SAMPL480
ClOlAA 000008 00050 DC AL3CSR1.+BI SAMPL490
DlOlAD 0000002A 00051 DC FL4 142 1 SAMPLSOO
OlOltll 00

uu•HALF WORD ALIGNMENT HAS OCCURRED - POSSIBLE ERROR·
~

Ol01B2 58 DO 0 000 00052 L 13, = IROUTI SAMPL510
u•••FIELD 2 HAS AN ERROR IN LITERAL DEFINITION

Cl01B6 05 ED 00053 BALR 14' 13 SAHPL520
Ol01B8 OA 19 00054 EOPG SVC SY SR ET. SAMPL530

00055 SSEQ SAMP
00056 TITLE ADD TO COMMON OECLAf\A TION SAM PL

.ADD TO COMMON DECLARATION VERSION OB/01/64 DATE 10/28/64 PAGE 06

F LOC OP RR B-DIS B-DIS ADDRl ADDR2 LINE SYMBOL OP OPERAND-COMMENTS

cooooc
cooooc
00032C
000330 40
C00331 40
000332 40
000333 40
000334 40
C00335 40
000336 40
000337 40
000338 40
000339 40
00033A 40
000336 40
00033C 40

. 000330 40
00033E 40
00033F 40
000340 40
000341 40
000342 40
000343 40

00057 COM
00058 OS
00059 ENDTB OS
00060 RECORD DC

iooF
F
20C' I

00061 TITLE END OF FIRST CSECT

IOENT

SAMPL
SAHP
SAMPL
SAM PL

SAM PL

END OF FIRST CSECT VERSION 08/01/64 DATE 10/28/64 PAGE 07

F LOC OP RR B-DIS a-ors ADDRl ADDR2 LINE SYMBOL

010172
....... cscn IS A MULTI-DEFINED SYMBOL

010172
010172 ooocccoooooo

0 010178 00000000
o o 10 l 1c ooboocoo
0 010180 OOOOOOOSCOOOOOFOOOOOOOO"o
D OlOlBC 00000,COO
•n ... ROUT IS AN UNDEFINED SYMBOL

0 010190 C505C4

00062
00063 CSCTl

00064 ..
00065

OP OPERAND-COMMENTS

QUAL
CSECT

LTORG

DC
DC
DC

·DC •

DC

DEFINE CONSTANTS

Al COMB I
A (SRll

:1~~~~7B+L 1 TABLE•NENTR I ES, SR2 I

C'ENO'
0

ON CARD-ID HAIN0013 00066 EOJ DUMP ALPH 1 COMMON 1COMB 1TABLE+L'TABLE•NENTRIES
00067 SWITCH DUMPC HEX 1CONOMP 1X 1lOOOO,X 115000 115tlO'

••**•FIELD 3 HAS INVALID PUNCTUATION
H•HflELO 3 HAS AN INVALID ADDRESS - POSSIBLE ERROR
uonNO DBG CARD GENERATED - POSSIBLE ERROR

ON CARD-IO MA'IN0014

..... EQPG IS AN UNOEFlNi:,°D SYMBOL

00068
00069

••n•FIELD 4 HAS AN INVALID ADDRESS - POSSIBLE ERROR •
..... NO OBG CARD GENERATED - POSSIBLE ERROR

010193 010000 00070

TRACE LOOPTR,MAJN,X,EOPG.X
DUMPE HEXI ,EMERG,HAINPP 1EOPG

ENO MA INPR

!DENT

SAM PL
SAMP

SAMP
S~MP

SAMP
SAMP

SAHP
SAHP

SAMP

ENO OF flRST CSECT

LOCA Tl CN 10-LOC

0 I 003C 01
0101A8 01
OIOIAA 01
010170 01
:i1011c 01
Ol0184 01
010180 01

ENO OF FIRST CSECT

FLAG DEFINED SYMBOL

00026 BLANKS
00033 COMB
00006 CSCTl
OC040 CSCl2
00059 EN OTB
00019 EOJ
00054 EOPG
00029 LINE
00042 HAIN
00001 MAIN PR
00037 NENTR I ES
00030 PNAME
00060 RECORO
00020 RERET
00046 ROUT
00003 SRI
00003 SR2
00044 SWITCH
00023 SYSCT

SYSEOJ
SYSRET

00035 TABLE

ENO OF FIRST CSE CT

S~MBOL

EOPG
EXIT
PMAHE
ROUT
SWITCH
TEMP

ENO OF FIRST CSECT

10-0EF LENGTH· SIGN

01
FF
02
FF
02
FF
03

QUAL REFERENCES

00010
00008
00002

00066
00068
00002
00002
00041
00015

00047
00013
00015

00021
00019
00054.
00015

QUAL REFERENCES

00069
00044
OOOll

00067
00045

00017
00015
00063

00009
00068
00069
00066

00052
00023

00049

RELOCATION DICTIONARY VERSION 08/01/b4 DATE 10/28/04 PAGE 08

CARO IOENT,

llA IN0016
MAIN0016
MA IN0016
llAINOOl6
MAINOOL6
llAIN0016
llAINOOl7

SYMBOLIC REFFRENCES

00066

00010 00011 boo12

00070

00050

00066 00066

UNOEF INED SYMBOLS

VERSION 08/01/64 DATE 10/28/64 PAGE 09

00017 00018

VERSION 08/01/64 DATE 10/28/64 PAGE 10

VERSION 08/01/64 CATE 10/28/64 PAGE 11

LEGEND FOR FLAG FI ELD - F HEAN ING OF FLAG

SEQUENCE NO, OF STATEMENT IS EQUAL TO OR SMALLER THAN PREVIOUS AND ISEQ WAS REQUESTED.

STATEMENT TRUNCATEO ON LISTING BECAUSE THE ENTIRE OPERANO-COHMENT FIELD COULD NOT FIT ON A LINE.

BOTH A SEQUENCE NO. ERROR ANO STATEMENT TRUNCATION OCCURRED ON THE LINE,

A DATA CONSTANT WAS GENERATED AS , RESULT OF A LITERAL SPECIFICATION.

BOTH STATEMENT TRUNCATION AND GENERATED OC FOR LITERAL HAVE OCCURRED.

ANALYZER HAS FOUND SYMBOL TO BE MULTI-DEFINED

ANALYZER HAS FOUND A SYSTEM SYMBOL WHICH WAS RE-DEFINED IN THE PROGRAM

ANALYZER HAS FOUND A SYSTEM SYMBOL WHICH IS MULTI-REDEFINED

00005 POSSIBLE ERRORS

ASSEMBLY CGMPLETEO. - UNSUCCESSFUL

LOADING WILL BE SUPPRESSED.

00010 SERIOUS ERRORS

PROGRAM CANNOT BE EXECUTED

Appendix G. Sample Program Listing G-3

Appendix H. 1/0 REQUIREMENTS

Table H-1. 1/0 Requirements

Unit R/O* Type Notes

SYSTEM R T

AUXIL R T

SY SIN R T/C Tape or Card

SYSOUT R T/PP Tape or Printer/Punch

WORK2 0 T Requirement depends on core size vs program size

LIB 0 T
} If Compool tape/MLC used, oue of these is required

COMP 0 T

WORKl 0 T May be used as input from JOV, SYMCOR.
If Compool was used and .PUNC or PUNCHC requested,
WORK 1 is required.

* R =Required, 0 =Optional

Appendix H. 1/0 Requirements H-1

Appendix I. STORAGE REQUIREMENTS

Table 1-1. Assembler SE's vs Variables (.WORK2 Available)

Number of SE' s

Variables 1 2 3 4 5 6 7 8

Maximum number of 1024 4096 8192 8192 16384 16384 16384 20480
symbols

Maximum number of 512 2048 4096 4096 8192 8192 8192 8192
address constants

Maximum number of 128 1024 2048 2048 4096 4096 4096 4096
literals

Table 1-2. Assembler SE' vs Variables (.WORK2 Not Available)

Number of SE' s

Variables 1 2 3 4 5 6 7 8

Maximum number of 144 719 1296 1872 2248 3023 3600 4176
symbols

Maximum number of 72 359 646 934 1221 1509 1796 2048
address constants

Maximum number of 72 359 646 934 1221 1509 1796 2048
literals

Approximate number of 478 2778 5078 7378 9678 11978 14278 16578
cards

Appendix I. Storage Requirements I-1

DISTRIBUTION LIST
.._•I j

Enroute Support Documentation (Non SPO-MD Documents)

NAFEC

AAT-540
MITRE NAFEC
ANA 64 •A
ARD-14 0
AAF-360
ARD-14 0 (UK)

Regions

ACE--400
ACE--550
AEA-400
AEA-550
AGL-400
AGL-550
ANE-400
ANE-550
ANW-400
ANW s50
ARM-400
ARM-550

____ ASo-400
AS0-550

---· ASW-400
ASW-550
AWE 400

... - AWE-550

-~ Washington

AAT...,.300
... AAT-501
"'" MITRE
-·- AAF-40

ARD 160
ARD--160.A
AAF-350

DL-1

Copies

5
2

50
2
1
1

Copies

1
1·
1

.1
1
1
1
1
1
1
1
1
1
1
1
1

. 1
1

Copies

1
1
3
1·
1
1
1

--- OTHER _

AAC-940F
-U. K. London
u.· K. Middlesex
ARD-57

Copies

6
2 ... ··-· .,.~----· .. •' . -. .. 2

1

ARTCC Copies

Albuquerque 3
Atlanta 3
Boston 3
Chicago 3
Cleveland 3
Denver 3
Fort Worth 3
Houston 3
Indianapolis 3
Jacksonville 3

. Kansas City 3
Los Angeles 3
Memphis 3 ·
Miami 3

'.;Md:nneapolis 3
New York 3
oak land 3
Salt Lake City 3
Seattle 3
Washington 3

Attention: Automation Field Office

;'<

DX,-2

