NASP-9114-02
NAS Enroute Stage A o
Contract FA65WA—1395 4{(5; e

NAS OPERATIONAL SUPPORT SYSTEM
SUBPROGRAM DESIGN DOCUMENT

IBM 9020 Data Processing System
Basic Assembler Language Program (BALASM)

Model A3d2.1

1< P
24-May 1974

This document provides detailed design information
to aid the programmer in the maintenance of the
Basic Assembler Program.

These change pages update this document to make
it compatible with the NOSS tapes which support
the NAS Model A3d2.1 tape release.

NAS Programming
IBM Federal Systems Division
NAFEC, Atlantic City, New Jersey

CHANGE HISTORY

This (03 level) publication of the BALASM SDD is current
with the NOSS composite tape labsled N3D21x,

Change Proposal

Level Date Number Comment
01 15 August 1973 Original Publication
02 24 May 1974 A A3d2,1 Update
03 15 August 1974 A3d2.1 Update

X = latest tape lsvel

PREFACE

This document, prepared by the International Business Machines
Corporation, is submitted to the Federal Aviation Administration
in accordance with the requirements of Contract FA65WA-1395,

These change pages update the NAS Operational Support
System (NOSS) Subprogram Design Document (SDD) for the IBM
9020 Data Processing System Basic Assembler Language Program
(BALASM) , dated 24 May 1974, to make it compatible with the
NOSS tapes which support the NAS Model A3d2.1 System,

ii

Section

1.0
1.1
1.2
1.3
1.4
1.5
2.0
2.1

CONTENTS

PREFACE

CONTENTS

ABBREVIATIONS
INTRODUCTION

Purpose and Scope
Relationship to Other Documents
Reference Docments
Document Summary
Subprogram Description
PASS 1 DESCRIPTION
BAL Routine

2.1.1 PASS1 Initialization Subroutine
(INIT1)

2:1.2 PASS2 Initialization Subroutine
(INIT3)

2.1.3 PASS2 Initialization Subroutine
(INIT4) ’

2,14 End-of-Job Subroutine (NOAN)

BLPAS1 Routine

2.2,1 PASS1 Mainline
2.2.1.1 Initialization Routine (PASS1)
2.2.1.2 New Statement Routine (BEGIN)
2.,2.1.3 Machine Operation Routine
2,2,1.4 Pseudo-Operation Routine

(PSEUDO)

iii

Page
ii
iii

xxiv

2=10

Section

2. 202

CONTENTS (Continued)

2.2.1.5
2,2.1.6
2.2,1.7
2.2.1.8
2.2.1.9
2,2.1.10
2.2.1.11
2,2,1.12
2,2,1.13
2.2.1.14
2,2.1.15
2.2.1.16
2.2,1.17
2.2.1.18
2.2.1.19
2,2,1.20

2,2.2.1
2,2,2,2
2,2.2.3
2,2.2.4
2:2,2.5
2.2.2.6

DCL Subroutine

CCW Subroutine

LIB Subroutine

QUAL Subroutine

START Subroutine

CNOP Subroutine

CSECT, DSECT Subroutine
COM Subroutine

DCDS Subroutine

ENTRY Subroutine
EQMAMI, TEQU Subroutine
EXTRN Subroutine

LTORG Subroutine

ORG Subroutine

PSEG Subroutine

END Subroutine

PASS1 Interlude

CSECT Table Updating Subroutine
Symbol Table Updating Subroutine
Program ESD Subroutine

Common ESD Subroutine

EXTRN ESD Subroutine

ENTRY ESD Subroutine

iv

Page
2=10
2=10
2-11
2=11
2=11
2=12
2=13
2=15
2-15
2=-16
2=16
2-18
2-18
2=19
2=20
2=20
2=-21
2=22
2=22
2=22
2-23
2=-23
2-23

Section

2,2.3

2,2,5

CONTENTS (Continued)

2.2.3.1
2,2.3,2
2.2.3.3
2.2.3.4
2.2.3.5
2.2.3.6
2.2,3.7
2.2.3.8
2,2.3.9
2.2,3.10
2.2.3.11
2,2,3.12
2.2.3.13
2.2.3.14

2.2.4 Get

'BLPAS1 Common Subroutines

MPUTS Subroutine

MPUTD Subroutine

HFWRD Subroutine

DBLWRD Subroutine
STFULL Subroutine
CTFULL Subroutine
LITRTN Subroutine
SYMVAL Subroutine
STNTRY Subroutine
MEVAL Subroutine

HEX2CM Subroutine
MBRKUP Subroutine
'PUTESD Subroutine
PRTESb Subroutine

A Statement Dufing PASS1 Routine

(IOGET1)

Read And Merge Source Statement

Routine (RDMRG)

2.2.5.1
2.2.5.2

2,2,5.3
2.2.5.4

2:2.6 Put

RDMRG (Main) Subroutine
ENTER (First Pass) Subroutine

Compool Read Subroutine (PREAD)

READ Subroutine
Out A Statement During PASS1

Routine (IOPUT1)

Page
2=-24
2=24
2=25
2=25
2=25
2=25
2=26
2-26
2=27
2=27
2-28
2-28
2-=29
2-29
2-=30

2=30

2-31
2=-32
2=32
2=33
2=33

2=35

Section
2.3
2.4
2,5

2.6

CONTENTS (Continued)

Operation Code Lookup Routine (BLOPLRUP)

Symbol Table Search Routine (BLSLKUP)

Constant Modifier (BLCONMOD)

2.5.1
2.5,2
2.5.3
2.5.4
2.5.5
2.5.6
2.5.7
2.5.8
2.5.9
2.5.10
2.5.11
2.5.12
2.5.13
2.5.14
2.5.15

BLCONMOD Mainline
MMULTY Routine
MHOLD Routine
INTGER Subroutine‘
TTYPE Routine
THOLD Routine
LLNGTH Routine
LHOID Routine
SSCALE Routine
CCI Routine

HHI Routine

VVI Routine

2ZI Routine
DSUBRT Subroutine

CERR Routine

Evaluate Expression Routine (BLEXVAL)

2.6.1
206.2
2.6.3

BLEXVAL Routine
SCANX Subroutine

SGET Subroutine

vi

Page
2-34
2=35
2=35
2=37
2-38
2=38
2=38
2=39
2=39
2-39
2-40
2-41
2=42
2-43
2-44
2=45
2=46
2=46
2=47
2=-47
2=50

2=51

Section

2,7

2.8

CONTENTS (Continued)

Break Up Expression Routine (BLBRKUP)

2.7.1 STORE Subroutine

2.7.2 SKIP Subroutine

BLPUNC2 Routine

2.8.1 PAKTAP Subroutine

2.8,.2 PAKTXT Subroutine

BLLIST (Listing Generator) Routine

PASS 2 DESCRIPTION

BLPAS2

3.1.1 BLPAS2 Mainline

3.1.1.1
3.1.1.2
3.1.1.3
3.1.1.4
3.1.1.5
3.1.1.6
3.1.1.7
3.1.1.8
3.1.1.9
3.1.1.10
3.1.1. 11
3.1.1.12
3.1.1.13

New Statement Routine (PASS2)

Machine Operation Routine
Pseudo=Operation Routine
EJECT Subroutine

SPACE Subroutine

ISEQ and SSEQ Subroutines
NLIST and LIST Subroutines
SPEM and RPEM Subroutines
IGNORE Subroutine

MISPL Subroutine

CCW Subroutine

EXBC and EXBCR Subroutines

CNOP Subroutine

vii

Page
2=52
2=54
2=-54
2=-54
2=55
2=-56
2=56

Section

3'1.2

CONTENTS (Continued)

3.1.1.14
3.1.1.15
3.1.1.16
3.1.1.17
3.1.1.18
3.1.1.19
3.1.1.20
3.1.1.21
3.1.1.22
3.1.1.23
3.1.1.24
3.1.1.25
3.1.1.26
3.1.1.27
3.1.1.28
3.1.1.29
3.1.1.30
3.1.1.31

3.1.2.1

3.1.2.2

3.1.2.3

COM Subroutine
CSECT and DSECT Subroutines
DCODS Subroutine
DROP Subroutine
DUMPT Subroutine
DUMP Subroutine
END Subroutine
ENTRY Subroutine
PRNT Subroutine
TITLE Subroutine
TRACE Subroutine
USING Subroutine

LTORG Subroutine

" ORG Subroutine

ILLOP Subroutine
QUAIL Subroutine
TEQU Subroutine

EQMXMN Subroutine

BLPAS2 Common Subroutines

Print A Comment Record
Subroutine (COMMEN)

Evaluate An'Integer
Subroutine (INROUT)

Evaluate Absolute Expression
Subroutine (ABS8)

viid

Page .

3-9

3-10
3-10
3-11
3-12
3-13
3-14
3-15
3-15
3-16
3-16
3=17
3-18
3-18
3-18
3-18
3-19
3-19
3-19

3=-20
3=21

3=21

Section

CONTENTS (Continued)

3.1.2.4
3.1.2.5
3.102.6

3.1.2.7
3.1.2.8

3.1.2.9
3.1.2.10
3.1.2.11
3.1.2.12
3.1.2.13
3.1.2,14
3.1.2.15

3.1.2.16

3.1.2.17
3.1.2.18

3.1.2.19

Evaluate Expression
Routine (EXVR)

Process Location Counter
Overflow Subroutine (LOCOVF)

Align To Doubleword
Subroutine (DOUB)

HALF Subroutine

Convert Fullword To
EBCDIC Subroutine (COVX)

Compute Base and Displacement
Subroutine (USBASE)

Evaluate Register Operand
Subroutine (REGST)

Evaluate Register Operand,
No R2 Subroutine (LITYP)

Evaluate 8-Bit Immediate
Operand Subroutine (INT8)

_Evaluate Shift Operand

Subroutine (SHFT)

Evaluate Storage Address
Operand Subroutine (SA)

Evaluate Indexable Storage
Address Subroutine (XA)

Evaluate Storage Address with
4-Bit Length Subroutine (SLA4Q)

Evaluate Storage Address with
8-Bit Length Subroutine (SLA)

Evaluate Storage Address with
8-Bit Length = 0 (SI8Z)

Evaluate Storage Address with
4-Bit Length = 0 Subroutine
(5242)

ix

Page

3=-21

3=23

3-23

3=24

3=24

3=-24

3-25

3=25

3=26

3=27

3=-29

3-29

Section

3.2

CONTENTS (Continued)

3.1.2,20 Stack A Diagnostic Routine

(DIAG)

Get A Statement During BLPAS2 Routine
(BLIOGET2)

Evaluate Constant (BLCONVAL)

3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
Convert
Convert
BLPRINT
3.6.1
3.6.2
3.6.3
3.6.4
3.6.5
3.6.6
3.6.7
3.6.8
3.6.9
3.6.,10
3.6.11

BLCONVAL Mainline

BSUBRT Routine

ASUBRT Routine

USBAS Subroutine

QRLD Subroutine

To Fixed Point Routine (FROMF)
To Floating Point Routine (FROMD)
Routine

BLPRINT Mainline

DSECT Subroutine

DIAGX Subroutine

SEQ Subroutine

INCSTA Subroutine

PRTIT Subroutine

STA2PR Subroutine

ASMLOC Subroutine

ASMCON Subroutine

ROUT Subroutine

PUN Subroutine

Page
3=29

3=30
3=30
3=31
3=32
3=35
3-=36
3=37
3-38
3=40
3=42
3-43
3=45
3=46
3=47
3-48
3-48
3-48
3-49
3=-49
3=50
3—56

Section

4.0
4.1
4.2
4.3
4.4

4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

4.15
4.16
4.17

CONTENTS (Continued)

3.6,12 PUCD Subroutine
3.6,13 NUCD Subroutine
3.6.14 DS1 Subroutine

3.6.15 DS Subroutine
SYMBOLIC ANALYZER DESCRIPTION

Condense and Sort Routine (ANALY)

Iocate Acceptable Statements Routine (SXXX)

Two-Character Operation Code Routine (LOC3)

Three-Character Operation Code Routine
(LOC1F)

Five-Character Operation Code Routine (LOC2)

Dump=-Trace Routine (LOC1B)
CSECT=DSECT=TEQU Routine (LOC4A)
DCDS Routine

EXTRN Routine (ExfE)

Locate Symbols Routine (LOC10)
Search Routine (SCH2)

ABKSET Routine

OVERFL Routine

Reference-Table-Code Translate Routine
(MASTXX)

Prepare For Sort Routine (SRTRT)
Print Routine (PR)

Convert to EBCDIC Subroutine (INCSTA)

xi

Page
3-51
3=-52
3=52
3=53

4-=5
4=7

4-8

4-10
4-10
4-11
4-13
4-13
4=14
4=15
4-17
4-19

4-19
4=20
4-21
4-23

Section
. 4.18
4.19
4.20

5.0
5.1
5.2
6.0
6.1

CONTENTS (Continued)

Double=0Overflow Routine (MAST3)
Reference Table Overflow Routine (MASTO)
Punch XRF Cards Routine (XREF)
4.20.1 XRFINIT Subroutine
4.20.2 XRFBEG Subroutine
4.20.3 XRFPCH Subroutine
4.20.4 XRFTRL Subroutine
STORAGE AND TIMING

Storage Requirements

Timing

DATA SPECIFICATIONS

Table Formats

6.1.1 Symbol Table

6.1.2 System Symbol Table
6.1.3 CSECT-EXTRN Table
6.1.4 ENTRY Table

6.1.5 Literal Table

6.1.6 RLD Table

6.1.7 USING Table

6.1.8 Operation Code Table
6.1.9 Definition Table
6.1.10 Reference Tables'
6.1.11 Undefined Table

xii

Page
4-23
4=25
4-26
4-26
4-27
4-=27
4-27
5=1

5=1

5=1

6-1
6-1

6-1
6-1

6-1
6-=5

6=5

6-7
6-7

Section

6.3

6.6

CONTENTS (Continued)

6.1.12 Segment Table

Internal Data Formats

6.2.1 Statement Record

6.2.2 Ignore Statement Record
6.2.3 Diagnostic Record

6.2.4 Literal Reference Records
Routine Input/Output Formats
6.3.1 BLCONMOD Routine Format
6.3.2 BLCONVAL Routine Format
6.3.3 FROMD Routine Format
6.3.4 FROMF Routine Format
6.3.5 BLEXVAL Routine
Diagnostic Messages

Input Format

6.5.1 Name Field

6.5.2 Operation Field

6.5.3 Operand Field

6.5.4 Comments Field

6.5.5 Identification=-Sequence Field
Output Listing Format

6.6,1 F Field

6.6,2 10C Field

6.6.3 Assembled Output

xiii

Page
6=-9
6-10
6=10
6=10
6=10
6=10
6-13
6-14
6-15
6-16
6=16
6=16
6-19
6-23
6=23
6-24
6=24
6-25
6=26
6=-26
6=31
6=31
6=32

CONTENTS (Continued)

Section
6.6.4 OPERAND 1 and 2 Addresses
6.6.5 LINE Field
6.6.6 SYMBOL Field
6.6.7 OP Field
6.6.8 OPERAND=-COMMENTS Field
6.6,9 IDENT Field
6.6.,10 Cross-Reference Listing of Symbols
6.6.11 Diagnostics
6.7 Output Card Format
6.7.1 $OBJ Control Card
6.7.2 ESD Card
6.7.3 TXT Card
6.7.4 RLD Card
6.7.5 END Card
6.7.6 DBG Card
6.7.7 LIB Card
6.7.8 XREF Deck
6.8 Compool Format
7.0 RESTRICTIONS, LIMITATIONS, AND ASSUMPTIONS

xiv

Page
6-32
6=32
6-32
6-33
6-33
6-33
6-33
6-33
6-34
6-34
6-34
6-38
6-39
6-43
6-45
6—45
6-45
6-45
7-1

6--17

ILLUSTRATIONS

IBM 9020 Assembler Input/Output Flow

Assembler Logic Flow

PASS1 Logic Flow (2 Sheets)
PASS1 Interlude

PASS2 (2 Sheets)

Symbolic Analyzer (2 Sheets)
BAL Program Storage Requirements
BAL Buffers and Tables

Symbol Table Entry Format
CSECT=-EXTRN Table Entry Format
Entry Table Entry Format
Literal Table Entry Format

RLD Table Entry Format

Using Table Entry Format
Machine OperationAEntry Format
Pseudo-Operation Entry Format
Definition Table Entry Format
Reference Table Entry Format
Undefined Table Entry Format
Segment Table Entry Format
Statement Record Format
Comment Record Format
Diagnostic Record Format
Literal Reference Record Format

FROMD Input Table Entry Format

Xv

Page.

ILLUSTRATIONS (Continued)

Figure i Page
. 6-18 FROMD Output Table Entry Format 6=17
6=-19 FROMF Ihput Table Entry Format 6-18
6-20 FROMF Output Table Enfry Format - 6-18
6-21 Sample Program Listing (3 Sheets) 6-28
CHARTS
Chart Page

AA1 BAL, BAL Initiatization and Sequence Control
(Sheet 1 of 3) 2=58
AA2 " BAL, BAL Initiatization and Sequence Control
(Sheet 2 of 3) 2-=59
AA3 BAL, BAL Initializatiorn and Sequence Control
(Sheet 3 of 3) 2=60
AA4 BLPAS1 Initialization . 2=61
AAS5 BLPAS1, Begin Routines, PNTCT Subroutine 2=62
AB Machine Operation Routine (Sheet 1 of 2) 2-63
AC Machine Operation Routine (Sheet 2 of 2) 2-64
AD PSEUDO Routine; LIB, QUAL Subroutines 2-65
AE1 START Subroutine (Sheet 1 of 2) 2=66
AE2 START Subroutine (Sheet 2 of 2) 2=67
AF CNOP Subroutine 2-68
AG1 CSECT, DSECT Subroutines‘(Sheet 1 of 3) 2=69

AG2 CSECT, DSECT Subroutines (Sheet 2 of 3) 2=70

&

£

DB

CHARTS (Continued)

CSECT, DSECT Subroutines (Sheet 3 of 3)
CSECT, DSECT, COM Subroutines

DCDS Subroutine |

ENTRY Subroutine

EQMAMI, TEQU Subroutines

EXTRN Subroutine

LTORG Subroutine (Sheet 1 of 2)

LTORG Subroutine (Sheet 2 of 2)

ORG, END Subroutines (Sheet 1 of 3)
ORG, END Subroutines (Sheet 2 of 3)
ORG, END Subroutines (Sheet 3 of 3)
Interlude-Tables Update

Interlude~ESD Generator (Sheet 1 of 2)
Interlude=ESD Generator (Sheet 2 of 2)
MPUTS, CTFULL Subroutines

LITRTN Subroutine

SYMVAL, STNTRY Subroutines

MEVAL Subroutine

MBRKUP Subroutine

PUTESD, PRTESD Subroutines

IOGET1 Routine

RDMRG, ENTER Subroutines

PREAD Subroutine (Sheet 1 of 2)

xvii

Page
2=-71
2=72
2=73
2=-74
2=75
2=76
2=77
2-78
2=79
2-80
2-81

2-82
2-83
2-84
2-=85
2-86
2=87
2-88

2-89
2=90
2=91

2=92

2-93

Chart

DD
NA
EA

FA

&

8

2

GJ

GK

HB

HC

HE

JA

CHARTS (Continued)

PREAD Subroutine (Sheet 2 of 2)
READ Subroutine

IOPUT1 Routine

BLOPLKUP Routine

BLSLKUP Routine

BLCONMOD Mainline

MMULTY, MHOLD Routines, INTGER Subroutine
TTYPE, THOLD Routines

LLNGTH Routine

LHOLD Routine

SSCALE Routine

CCI Routine

HHI Routine

VVI Routine

221 Routine

DSUBRT Subroutine, CERR Routine
EXVAL Mainline (Sheet 1 of 3)
EXVAL Mainline (Sheet 2 of 3)
EXVAL Mainline (Sheet 3 of 3)
SCANX Subroutine (Sheet 1 of 2)
SCANX Subroutine (Sheet 2 of 2)
SGET Subroutine

BLBRKUP Routine

xviii

Page

2-94

2-95

2-96

2-97

2-98

2-99

2-100
2-101
2-102
2-103
2-104
2-105
2-106
2-107
2-108
2-109
2-110
2-111
2-112
2-113
2-114
2-115
2-116

CHARTS (Continued)

Chart : Page
. JB STORE, SKIP Subroutines 2=117
UA PUNC2 Routine 2-118
UB PAKTAP Subroutine | ’ 2-119
ucC PAKTXT Subroutine 2=-120
VA BLLIST Routine 2=121
_OA PASS2 Routine 3-54
OB Machine Operation Routine ~ 3=55
ocC PSEUDO Routine 3-=56
oD CCW, EXBC, EXBCR Subroutines 3=57
OE CNOP, COM Subroutines 3-58
OF " CSECT, DSECT Subroutines 3=59
oG DCODS Subroutine (Sheet 1 of 2) 3=-60
OH DCODS Subroutine (Sheet 2 of 2) 3=-61
oI DROP, ENTRY Subroutines , 3=62
08 DUMPT Subroutine (Sheet 1 of 2) 3-63
OT DUMPT Subroutine (Sheet 2 of 2) 3-64
oJ DUMP Subroutine (Sheet 1 of 3) 3=65
OK DUMP Subrbutine (Sheet~2 of 3) 3=66
oL DUMP Subroutine (Sheet 3 of 3) 3=67
oM END Subroutine (Sheet 1 of 2) 3-68
ON END Subroutine (Sheet 2 of 2) 3-69
0o PRNT, TITLE Subroutines _ 3-704
oP TRACE Subroutine (Sheet 1 of 2) 3=-71

xix

Chart

OR

ov
oW
OX
10) 4
0z
PA
PB
PC
PD

PE

KD

KE

KG

KH

CHARTS (Continued)

TRACE Subroutine (Sheet 2 of 2)

USING Subroutine

ILLOP, TEQU, EQMXMN Subroutines

COMMEN, INROUT Subroutines

ABS8, EXVR, LOCOVF Subroutines

DOUB, HALF, XONVX Subroutines

USBASE Subroutine

REGST, LITYP, INT8, SHFT Subroutines

SA Subroutine
XA Subroutine
SLLA4Q Subroutine

SLA Subroutine

SIB8Z, SA4Z Subroutines

DIAG Routine
BLIOGET2 Routine
BLCONVAL Mainline
BLCONVAL Mainline
BLCONVAL Mainline

BLCONVAL Mainline

(Sheet 1
(Sheet 2
{Sheet 3

{Sheet 4

BSUBRT Routine (Sheet 1 of

BSUBRT Routine {(Sheet 2 of

BSURBRRT Routine (Sheet 3 of

BSUBRT Routine (Sheet 4 of

XX

of 4)
;f 4)
of 4)
of 4)
5)
5)
5)
5)

Page
3=72
3-73
3=74
3=75
3=76
3=77
3=78
3=79
3-80
3-81
3-82
3-83
3-84
3-85
3=86
3-87
3-88
3-89
3=90
3-91
3=92
3=93
3-94

CHARTS (Continued)

Chart

KI BSUBRT Routine (Sheet 5 of 5)
KJ ASUBRT Routine (Sheet 1 of 2)
KK ASUBRT Routine (Sheet 2 of 2)
KL USBAS Subroutine

KM QRLD Subroutine

LA FROMF Routine (Sheet 1 of 5)

LB FROMF Routine (Sheet 2 of 5)

LC FROMF Routine (Sheet 3 of 5)

LD FROMF Routine (Sheet 4 of 5)

LE FROMF Routine (Sheet 5 of 5) .
MA FROMD Routine (Shéet 1 of 2)
MB FROMD Routine (Sheet 2 of 2)

TA BLPRINT Mainline (Sheet 1 of 3)
TB BLPRINT Mainline (Sheet 2 of 3)
TC BLPRINT Mainline (Sheet 3 of 3)
™D DSECT Subroutine

TE DIAGX Subroutine

TF SEQ, INCSTA, PRTIT Subroutines
TG STA2PR Subroutine

TH ASMLOC, ASMCON, ROUT Subroutine
TI PUN Subroutine

TJ PUCD, NUCD Subroutines

TK DS, DS1 Subroutines

xxi

Page

3-95

3-96

3-97

3-98

3-99

3-100
3=-101
3-102
3-103
3-104
3-105
3-106
3-107
3-108
3-109
3=110
3-111
3=-112
3-113
3-114
3-115
3-116
3-117

Chart
SA
SB
SC
SD
SE
'SF
SG
SH
SI
SJ
SK
SL
SM
SN
SO
sP
sQ
SR
8S
ST

su

SY

Sz

CHARTS (Continued)

BLANALYZ Routine

SXXX Routine

LOC3 Routine

LOC1F Routine

LOC2 Routine

LOC1B Routine

LOC4A Routine

DCDS Routine

EXTE Routine

LOC10 Routine (Sheet 1 of 2)
1OC10 Routine (Sheet 2 of 2)
SCH2 Routine (Sheet 1 of 2)
SCH2 Routine (Sheet 2 of 2)
ABKSET Routine

OVERFL Routine

MASTXX Routine

SRTRT Routine

PR Routine (Sheet 1 of 3)
PR Routine (Sheet 2 of»3)
PR Routine (Sheet 3 of 3)
INCSTA Subroutine

MAST3 Routine

MASTO Routine

XREF Routine

xxidi

Page
4-28
4-29
4-30
4-31

4-32
4-33
4-34
4=35
4-36
437
4-38
4-39
4-40
4-41

4-42
4-43
4-44

4-45

4-46
4-47
4-48

4-49
4-50
4-51

Table
" 51

6-1
6-2

TABLES

Assembler SEs vs Variables (.WORK2
Available)

Assembler SE vs Variabies (. WORK2 Not
Available) '

RLD-Flag Field-Same Header

RLD-Flag Field-New Header

xxdiii

Page

5=3
6-42
6-42

ABKSET
ABSS8
ANALY

ASMCON
ASMLOC

ASUBRT

BAL

BALASM
BEGIN
BLBRKUP

BLCONMOD

BLCONVAL
BLEXVAL
BLIOGET2
BLIST

BLPAS1
BLPAS2
BLPUNC2

BLOPLKUP

BLSLKUP

ABBREVIATIONS

This routine developes the reference table,
Evaluate Absolute Expression Subroutine
Condense and Sort Routine

This subroutine sets up a constant generated
for alignment and places it in the print area.

This subroutine sets up the current location
counter value and places it in the printer area.

This routine evaluates A and S constants,

Basic Assembly Language; Master Control and
Communications Route

Basic Assembler Language Program
New Statement Routine
Break Up Expression Routine

Constant Modifier. This mainline routine
controls BLCONMOD processing.

Evaluate Constant Routine

Evaluate Expression Routine

Get a Statement During BLPAS2 Routine
Listing Generator Routine

This routine is the main body of the assembler
first pass.

This routine is the main body of the assembler
second pass.

This routine punches TXT, ESD, RLD, DBG, and END
cards, and links to the PAKTAP subroutine.

Operation Code Lookup Routine

Symbol Table Search Routine

xxiv

BSUBRT

CCI

CCW

CERR
CMPLST

CNOP

CcoM

COMMEN

COVX

CSECT

CTFULL

DBLWRD

DCDS

DCL

- DCODS

DEBUGG

This routine evaluates F, H, E and D constants.,

This routine counts the number of EBCDIC
characters specified in the value list of a
C-type constant.

Channel Command Word. In BLPAS1 this subroutine
saves an aligned doubleword space for the channel
command word. In BLPAS2 this subroutine
validates and assembles a channel command word.,

This routine generates a diagnostic code,

Compool Documentation Program

Conditional No Operation. In BLPAS1 this
subroutine validates the operands of a Conditional
No Operation pseudo-operation. In BLPAS2

this subroutine assembles one or more NOP
instructions to align the location counter,

This subroutine initiates or resumes the common
section.

Print a Comment Record Subroutine

Convert Fullword to EBCDIC Subroutine

Control Section. This subroutine initiates or
resumes the control section names in the CSECT

statement.

This subroutine processes CSECT-EXTRN table
overflow,

This subroutine aligns - current location counter
to a doubleword boundary.

This subroutine evaluates the operand of a DC
or DS statement,

This subroutine issues diagnostic 35 when a
DCL source statement is encountered.

This subroutine reserves storage space for its
operand and sets up object code for the constant
value,

Debugging System Program

XXV

DIAG

DIAGX

DOUB

DROP

DS

DS1

- DSECT

DSUBRT

DUMP

DUMPT

EBCDIC

EJECT

END

ENTER

ENTRY

EOF

EQMAMI

EQMXMN

Stack A Diagnostic Subroutine

This subroutine prints any diagnostic messages
for the input statement.

Align To Doubleword Subroutine

This subroutine validates the register operands
of a DROP statement.

This subroutine prints DS statements.

This subroutine handles DS statements when
there is no listing,

This subroutine initiates or resumes the control
gection names in the DSECT statement.

This subroutine calls EXVAL to evaluate an
expression and checks for errors.

This subroutine validates a storage and/or
register dump request.,

This subroutine validates a tape dump request.
Extended Binary-Coded Decimal Interchange Code

This subroutine causes the listing to skip to a
new page.

In BLPAS1 this subroutine recognizes the end of
the source program and exits to the interlude.
In BLPAS2 this subroutine validates the ‘begin®
location, puts out entries, and exits, ending
BLPASZ2,

The first pass subroutine uses control card
information to select the source for statements,

This subroutine evaluates and enters symbols in
the ENTRY table.

End=-of-File

This subroutine enters the statement name and
location in the symbol table.

This subroutine assembles the location specified
by the statement START, EQU, MAX, or MIN,

xxvi

ESD External Symbol Dictionary

EXBC/EXBCR These subroutines assemble extended mnemonic
branch instructions,

EXTE EXTRN Routine

EXTRN This subroutine validates the operands of an
EXTRN statement. -

EXVR | Evaluate Expression Subroutine

FROMD Convert to Floating Point Routine

FROMF Convert to Fixed Point Routine

HALF This subroutine aligns location counter to

halfword boundary.,
HEX Hexadecimal

HEX2CM This subroutine converts hexadecimal numbers
into EBCDIC characters.

HFWRD This subroutine aligns current location counter
: to a halfword boundary.

HHI This routine counts the number of hexadecimal
characters specified in the value list of an
X-type constant.

IGNORE This subroutine handles statements that are
ignored by BLPAS2,

ILLOP This subroutine is called for an invalid operation
code.,

INCSTA Convert to EBCDIC Subroutine.

INIT1 PASSi Initialization Subroutine

INIT3 PASS2 Initialization Subroutine

INIT4 PASS3 Initialization Subroutine

INTS Evaluate 8-Bit Immediate Operand Subroutine

INROUT Evaluate An Integer Subroutine

INTGER This subroutine sets up an expression for

evaluation by the DSUBRT subroutine and checks
for errors.

xxvii

I/0
IOGET1
IOPUT1

ISEQ

JOVIAL

LHOLD

LIB

LIBEDT

LIST

LITYP

LLNGTH

LOADER
LOCOVF
LOC1B
LOC1F
LOC2
LOC3
LOC4A
LOC10

LTORG

LTRTN

Input/Output
Get A Statement During PASS1 Routine
Put Out A Statement During PASS1 Routine

This subroutine initiates or suppresses sequence
number checking.

Jules® Own Version of International Algorithmic
Language

This routine develops . the length, according to
type, for a constant in which length is implied.

This subroutine moves characters from operand of
LIB statement into a card image and punches a
LIB card.

Library Edit Program

This subroutine temporarily suppresses or resumes
listing.

Evaluate Register Operand No. R2 Subroutine
This routine determines the byte and bit 1engtﬁ
of a constant using the explicit length given
in the input statement.

Loader Program

Process Location Counter Overflow Subroutine
Dump-Trace Routine

Three-Character Operation Code Routine
Five-Character Operation Code Routine
Two=Character Operation Code Routine
CSECT=-DSECT=TEQU Routine

Locate Symbols Routine

This subroutine puts out all literals in the
literal table as DCL statements and aligns the

location counter and prints the LTORG statement.

This subroutine processes literals,

xxviii

MASTXX

MASTO

MAST3

MEVAL

MHOLD

MISPL

MLC

MMULTY

MPUTD
MPUTS
NAS

NLIST

NOAN

NOSS

NUCD

ORG

OVERFL

PAKTAP

PAKTXT

Reference=-Table=-Code Translate Routine
Reference Table Overflow Routine
Double=Overflow Routine

This subroutine calls BRKUP and evaluates
expressions,

This subroutine calls EXVAL and processes
diagnostics.

This routine assigns a multiplicity of 1 when no
explicit value is specified.

This subroutine handles statements that are
disallowed by the system or that should not
have reached BLPAS2.

Merged Library/Compool

This routine determines multiplicity when it is
specified by the input statement.

This subroutine puts in a diagnostic record.
This subroutine puts in a statement record.
National Airspace System

This subroutine temporarily suppresses or resumes
listing,

End=-0f=-Job Subroutine

NAS Operational Support System

This subroutine is used to £fill out and punch a
card during DC, DCL, and alignment statement
processing.

This subroutine evaluates the ORG statement
operand and prints the ORG statement.

This routine checks for a reference table
overflow,

This subroutine writes a card image or packed
TXT record on ,AUXIL,

This subroutine packs TXT cards into a buffer,

xxix

PASS1
PASSZ’
PR
PREAD
PRINT

PRNT

PRTESD

PRTIT
PSEG

PSEUDO

PUN
PUCD

PUTESD

QUAL
QRLD

RDMRG

Initialization Subroutine

New Statement Routine

Print Routine

Compool Read Subroutine

This mainline routine identifies the input
statement and calls subroutines to prepare

a print line.

This subroutine validates the operands of a
PRINT statement.

This subroutine prints ESD line.

"This subroutine prints a line in the assembly

listing.

This subroutine validates the operands of
PSEG cards.

Pseudo=Operation Routine

This subroutine handles the punching of TXT
cards.

This subroutine punches the information stored
in the card area.,

This subroutine puts the ESD cards.

This subroutine validates a new qualifier and
puts it in the communications region,

This routine requires an entry for a
relocatable address constant.

Read and Merge Source Statements Routine

This subroutine selects source on first pass
and reads a statement,

Evaluate Register Operand Subroutine
Relocation List Dictionary
This subroutine sets up a print line for a

constant requiring two or more lines and moves
it to the print area.

XXX

RPEM This subroutine suppresses or resumes the
printing of possible error messages.,

SA Evaluate Storage Address Operand Subroutine

SA47Z Evaluate Storage Address With 4-Bit Length
= 0 Subroutine

SCANX This subroutine evaluates an element of an
expression.

SCH2 Search Routine

SDD Subprogram Design Document

SE Storage Element

SEQ This subroutine checks the sequence number of

a statement when necessary and sets a flag in
the listing if an error is found.

SGET This subroutine finds the location of an entry
in the symbol table that matches a specified
symbol.

SHFT Evaluate Shift Operand Subroutine

S182 Evaluate Storage Address With 8-Bit Length =

0 Subroutine

SKIP This subroutine steps to the next word in the
output listing and sets up for a new element.

SLA Evaluate Storage Address With 8-Bit Length
Subroutine

SLA4Q Evaluate Storage Address With 4-Bit Length
Subroutine ~

SPACE This subroutine causes the listing to space a

specified number of lines.

SPEM This subroutine suppresses or resumes the printing
‘ of possible error messages.

SSCALE This routine evaluates scaling and initiates
value list handling.

SSEQ This subroutine initiates or suppresses sequence
number checking.

Xxxi

SRTRT

START

STA2PR

STFULL
STNTRY

STORE

SXXX
SYMVAL
SYSEDT
TEQU
THOLD
TITLE
TRACE
TTYPE

USBAS

USBASE

USING

UTILITY

A2

Prepare for SORT Routine.

This subroutine evaluates and saves the starting
location to be assigned for the object program,

This subroutine sets up a statement for printing
and moves it to the print area.

This subroutine processes symbol table overflow,
This subroutine creates a symbol table entry.
This subroutine moves a character to the output
list and increases counters to prepare for the
next character.

Locate Acceptable Statements Routine

This subroutine validates a statement symbol,
System Edit Program

This subroutine changes the location attribute
of the symbol naméd in the TEQU statement and
prints the TEQU statement.,

This routine sets up for a C type constant when
no explicit type is given.

This subroutine validates the punch ID and causes
the title page of the listing to be printed.

This subroutine validates and assembles the
trace label.

This routine determines the type of constant
specified by the input statement.

This subroutine develops base and displacement
for an S-type address constant.

Compute Base and Displacement Subroutine

This subroutine validates the value and
registers specified in the USING statement,

Utility NOSS Monitor Program
This routine checks the number of constants in

the value list of an A, S, F, H, E, or D type
constant.,

xxxii

XA

XREF

XRFBEG

XRFINIT

XRFPCH

XRFTRL

221

Evaluate Indexable Storage Address Subroutine

Compool Reference Matrix Program; Punch XRF
Cards Routine

This subroutine processes each symbol reference
and builds the XRF symbol card image,

This subroutine initializes for the XREF function,

This subroutine punches cards for the XREF
function.

This subroutine provides termination of the
XREF function.

This routine finds the total number of characters
in the value list of P and Z type constants.

xxxiii

1.0 INTRODUCTION

1.1 PURPOSE AND SCOPE

This manual provides detailed information on the internal
logic of the assembler program., This program converts source
programs in Basic Assembly Language (BAL) into object language.

This publication is intended for technical personnel who
are responsible for analyzing program operations, diagnosing
them, or adapting them to special uses.,

1.2 RELATIONSHIP TO OTHER DOCUMENTS

This document assumes that the reader is familiar with
the IBM 9020 Data Processing System Basic Assembly Language
User®s Manual,

1.3 REFERENCE DOCUMENTS

Effective use of this manual requires an understanding
of IBM 9020 System operation, of the IBM 9020 Utility
Programming System Basic Assembly Language, and of the
functions of the 9020 Utility Programming System, This
information is available in the following publications:

a. IBM System Reference Library, IBM 9020 System
Principles of Operation, Form A22-6852, Order
Number ZA22-6852-latest revision, Contract FA64WA-
5223, IBM Corporation, Federal Systems Division,
18100 Frederick Pike, Gaithersburg, Maryland 20760,

b. IBM 9020 Data Processing System: User®s Manual,
Basic Assembly Language (BALASM), NASP=92T4-]atest
revision, Contract FA65WA=1395, IBM Corporation,
Federal Systems Division, NAFEC, Atlantic City,

Ne J.

Co NAS Operational Support System User’s Manual,
Debugging System (DEBUGG), NASP-9216-latest
revision, Contract FA65WA=-1395, IBM Corporation,
Federal Systems Division, NAFEC, Atlantic City,
N. J.

d. NAS Operational Support System User’s Manual,
, Library Edit Program (LIBEDT), NASP=9220-~latest
revision, Contract FA65WA-1395, IBM Corporation,
Federal Systems Division, NAFEC, Atlantic City,
t N. J.

€. NAS Operational Support System Subprogram Design

" Document, Compool Documentation Program (CMPLST),

NASP-9105-latest revision, Contract FA65WA=1395,

IBM Corporation, Federal Systems Division, NAFEC,
Atlantic City, N. J.

f. NAS Operational Support System User®s Manual, Utility
NOSS Monitor (UTILITY), NASP-9229-latest revision,
Contract FA65WA-1395, IBM Corporation, Federal Systems
Division, NAFEC, Atlantic City, N. J.

ge NAS Operational Support System Subprogram Design
Document, Compool Reference Matrix (XREF), NASP-
9112-latest revision, Contract FA65WA=1395, IBM
Corporation, Federal Systems Division, NAFEC,
Atlantic City, N. J.

h, NAS Operational Support System User®s Manual, System
Edit Program (SYSEDT), NASP-=9222-latest revision,
Contract FA65WA=1395, IBM Corporation, Federal
Systems Division, NAFEC, Atlantic City, N. J.

i. NAS Operational Support System User®s Manual,
Loader Program (LOADER), NASP-=-92719-latest revision,
ontract FA65WA=1395, IBM Corporation, Federal
Systems Division, NAFEC, Atlantic City, N. J.

This manual is a comprehensive guide to the logical
structure and functions of the 9020 Data Processing System
Assembler Program, It is designed to be used with the ,
assembly listing and, consequently, does not discuss program
structure at the machine instruction level. Symbols used in
this manual correlate with those in the listing.

1.4 DOCUMENT SUMMARY

This manual is organized into several major sections.
Excluding the introductory section, the remaining sections
cover the following portions of the assembler.

Section 2,0, Pass 1 Description, presents BLPAS1 and.
other routines that comprise the first pass of the assembler..

Section 3.0, Pass 2 Description, presents BLPAS2 and
the routines used in pass 2 of the assembler.

Section 4.0, Symbolic Analyzer Description, presents a
description of the symbolic analyzer, BLANALYZ,

Section 5.0, Storage and Timing, lists the storage
requirements and timing estimates.

1=2

data

Section 6.0, Data Specifications, presents the following

specifications.

a. Subsection 6.1 contains the formats of entries in each
major table used or built by the assembler. These
tables include the symbol table, the CSECT-EXTRN
table, the ENTRY table, the literal table, the RLD
table, the USING table, the operation code table,
the symbolic analyzer tables, and the segment table.

b. Subsection 6.2 contains descriptions of data and
record formats.

c. Subsection 6.3 describes the input and output formats
for certain key routines: BLEXVAL, BLCONMOD,
BLCONVAL, FROMD, and FROMF.

d. Subsection 6.4 gives the code and test of all
diagnostic messages issued by the assembler.

SUBPROGRAM DESCRIPTION
a. Purpose
The IBM 9020 Assembler converts a source program in
BALYX into object language suitable for loading and
execution. The source program may be one of the following:
1. A compiled JOVIAL program.
2. A program deck written in assembly language.

3. Compool reserves for one Compool segment.

At the user’s option, the assembler produces one or
more of the following:

1. Object text for immediate loading and execution.

2. A listing of the assembled program, with or

‘ without a cross-reference symbol listing
(produced by the symbolic analyzer).

3. An object-language punched card deck.

b, Operating Characteristics

The assembler is executed in two passes (or three if
the symbolic analyzer is requested, see Figure 1-1).

1=3

COMPOOL or MLC BAL program on .INPUT

5

BAL program from 4
JOVIAL compilation
or PUNCHC request

. COMP JINPUT (if
.WORK? or .INPUT card reader)
\MLC

Pass | read in from system tape :
SYSTM PASS 1

ESD and L1B cards

Pass 2 read in from system tape Used if Pass 1 out
put
LSYSTM PASS 2 “WORK2 |, verflows buffer and

/ 7 .WORK2 is ovailable

|
:
|
|
|
|
|

Obiject text

Object text
and source
program
Analyzer read in from system tape R
.SYSTM Symbolic

If PUNCHC requested,
return to Pass1

Analyzer

Analyzer
listing

Note: ,OUTPT is generally processed off=line to produce printed listings ond punched card decks. If the card-reader/punch
and printer are on=-line, taking the place of the .OUTPT tape. .orintinn and rinching are performed directly.

FIGURE 1=1., IBM 9020 ASSEMBLER INPUT/OUTPUT FLOW

Pass 1 examines each source statement in turn to assign
it a tentative location and to build control section,
symbol, and literal tables. Possible and serious
errors are noted for issuance of diagnostic messages
during pass 2. Pass ‘1 concludes by assembling the
control sections in order of their definition,
updating the symbol table, and putting out the
External Symbol Dictionary (ESD). If a compiled
JOVIAL program being assembled contains procedures
designated for addition to the program library, LIB
cards are produced by pass 1 for submission of the
procedure (s) to the library edit program,

Pass 2 converts each source statement into object
language, using the operation code table and the
tables created by pass 1 as well as the USING table
it develops to perform base-displacement address
calculations. After the last source statement has
been processed, pass 2 puts out the Relocation List
Dictionary (RLD) and a count of serious and possible
errors (even if no listing was requested). Assembly
is complete at this point, unless a cross-reference
symbol dictionary was requested; if so, the assembler
proceeds to pass 3,

Pass 3 (symbolic analyzer) uses the tables built in
pass 1 to develop a cross-reference listing of symbol
definitions and references, as well as a list of
undefined symbols,

Assembler Program Organization

The assembler is organized physically on the system
tape (.SYSTM) into three records named BAL, BALPT2,
and BALPT3. The first record, BAL, contains the
PASS1 routine plus nine separately assembled
routines. These nine routines each perform a unique
function (e.g., symbol-table lookup, expression
evaluation, etc.). The BALPT2 record, which
contains the PASS 2 routine plus three separately
assembled routines, is brought into storage at the
end of the first pass, overlaying those parts of the
BAL record that are no longer needed. If the symbolic
analyzer (BALPT3) is requested, it is brought into
storage after the second pass is completed,
overlaying part of BALPT2.

The three assembler records and the routines they
contain are described briefly below. Refer to

Figure 1-2 for an overview of the assembler logic
flow. -

CNTED _
AALASTLE -

ENIELR
- ALt
ALY 7T

Sl
AGTIRE LA~

Y g TS
VAR P43/

L
s ! ELEL LA B UKL
‘ VAL ALL 7 SEAH
| ; N O STAIEL
U) TALLE TALLE
) T i
SLAHTE g AL AT
‘ i ——
ZEVELOF FET AR ECL
OETET | AKLE
s A ANA L)
lfzvp
ZLANA Y co - |
TG : !
X7 2 - - X
AR A :
el -

B

e

e

|
|
1
i

4

GL AL A A, A Ay
() ML VAL A TE AazearE |,
CASTAN T = WESRIUN CEASLTHA S
AADEAELS APTESE ’
|
. . , [27 LK FREATE
? ; ST CATE FLAL Lo
' ! ———.fz,fﬂ/f/v/te SN
i o= AN T
(\ ' U FE NN CENSTTAN T
e 4 ' i + //(2/)7/‘/;—
!
: ! ' ELAL 17
f ! k A 7oA T
! Ny .
| . CENSITAN
U |
I
o [N

SN
Rt
VG v A

¥
BLAINT

RN &N
DIAT A A
ST AN
AL

9
[A’/?cn(;'/ -
L 2

(‘Z /:‘V, 43(/
P AR P

FIGURE 1-=2,

ASSEMBLER LOGIC

FLOW

Record Program or Routine

BAL BLPAS1 = This is the mainline routine of pass
1, which examines each source card and assigns
it a tentative location within its control
section in the program being assembled. A
symbol table, a controlesection/EXTRN table,
an ENTRY table and a literal table are built,
After all source cards have been examined,
the control-section/EXTRN table is updated,
making each control section start just after
the end of the preceding one. Symbol locations
in the symbol table are similarly increased
by the amount their control-section start
address has been increased. Finally, ESD
cards are prepared for use in relocating the
assembled program when it is loaded.

This routine also contains all the code
concerned with reading input from SYSIN or

the compool, and code to write the intermediate
work file on WORK2,

BAL - This routine contains the overall
coordination for the assembler. It handles
initialization as well as sequencing the
various passes.

BLPUNC2 = This routine punches an object deck
when requested., If the job is to be executed
immediately, TXT cards, in condensed form, are
also placed on .AUXIL,

BLOPLKUP - This routine uses a binary search
to find the statement operation code in the
operation code table in MASTER,

BLLIST = This routine prints the listing for
all portions of the assembler. It includes
page overflow and numbering logic and handles
spacing,

BLSLKUP - This routine uses a ‘hashing® algorithm
to select an entry point in the symbol table,
then searches until the symbol or an unused

entry location is found.

BLBRKUP - This routine separates elements of
an expression and performs a syntactical check
on these elements.

Record

BALPT2

BALPT3

Program or Routine

BLEXVAL - This routine examines an expression
for errors, then evaluates it.

BLCONMOD = This routine checks modifiers
(multiplicity, type, length, scaling) of a
constant or literal,

ZXMASTER - This is the communications region
of the whole assembler.

BLPAS2 -~ This is the mainline routine of pass
2. It is brought into storage after BLPAS1

is completed, overlaying BLPAS1. This routine
converts each source statement into object
language, computes base-displacement addresses,
and issues diagnostic messages for errors found
in the source program.

BLCONVAL - This routine evaluates a constant

and checks it for consistency. A subroutine

builds the RLD table for relocatable address
constants, It contains FROMP which converts

a constant in EBCDIC to fixed-point doubleword form,
and FROMD which converts a constant in EBCDIC to
floating-point long form.

IOGET2 - This routine gets one record from the
intermediate buffer (or .WORK2) for the second
pass or for the symbolic analyzer, '

PRINT -~ This routine arranges a statement and/or
object code for printing., It then arranges

the object code into TXT cards. Finally, it
uses the diagnostic code(s), if any, to get

a message to be printed on the listing following
the statement.

BLANALYZ - If a cross-reference symbol listing
is requested, this routine is brought into
storage after BLPAS2 is completed, overlaying
BLPAS2. It produces the listing of symbol
definitions and references and a listing of
undefined symbols,

1-8

2.0 PASS 1 DESCRIPTION

a, . Function

Pass 1 of the IBM 9020 Assembler builds tables for
use by pass 2 (and pass 3 if requested) and
., determines the lenqth -of the object program in the
‘course of examining all source program statements.
Fach source statement is read, put into canonical
form, assigned a tentative locahian within its
i Control Section (CSECT), and then put into the
"lntermedlate buffer, When that buffer is filled,
succeedlng statements are put on WORK2 unless it
is not available,

As pass 1 proceeds, it builds up a control-section/
EXTRN (CSECT-EXTRN) table, a symbol table, an ENTRY
table, and a table of literals. After all source
statements have been read, pass 1 updating the
CSECT-EXTRN table by assigning the location following
the end of the first control section as the starting
address of the second control section, and so on.
The locations assigned to the symbols defined in
each control section are similarly increased by the
, startlng address of that control section. Finally,
- ESD cards, and a listing of them, are prepared from
the CSECT-EXTRN table and from the ENTRY table,
concludlng pass 1.

 General logic flow and detailed flowcharts of the
programs that comprise PASS 1 have been included
at the end of this section.

b. Organization

The initialization code and resident coordinator
are contained in Routine BAL, This is contained in
System Record BAL along with the Pass {1 Mainline
Code (BPAS1), the communications area (ZXMASTER),
and seven common routines. The latter remain
resident throughout the assembly. The BPAS1 code
is overlaid by later passes,

2.1 BAL ROUTINE

The BAL (master control and communications) routine
contains the communications region used by all assembler
routines, the tables used by other routines (see Subsection
6.1), and four subroutines., Of the four subroutines,

2=1

three are for initialization, and one is the end-of-job
subroutine., The names and functions of these subroutines
are as follows:

1. INIT1 - This subroutine initializes for PASS1
and processes program options, It goes on
completion to BLPAS1.

2. INIT3 = This subroutine initializes for BLPAS2 and
brings it in.

3. INIT4 - This subroutine initializes for the BLANALYZ
program and brings it in if the symbolic analyzer
was requested, If not, this subroutine exits
immediately to the NOAN subroutine.

4, NOAN = This subroutine processes PUNCHC requests
or terminates the assembler operation,

2.1.1 PASS1 Initialization Subroutine (INIT1)
FUNCTION: This subroutine (Chart AA1) initializes for PASST.
ENTRY: This subroutine is entered at INIT1 from the lMonitor.
OPERATION: This subroutine loads the communications region
base register and loads the system Input/Output (I/0) routine
addresses in that area. It next uses machine memory size to
look up table sizes and define the tables to be built up by
the assembly operation. If .WORKZ2 is not available, the
table sizes are made larger because the entire program must
be contained in core storage,

The S$BAL control card information is processed
and End-of-File (EOF) returns for tapes are set. 1Initialization
is performed for punching and listing.
EXIT: This subroutine exits to BLPASIT,

CRRORS: Errors found by this subroutine produce diagnostic
messages without stopping execution.

2.1.2 PASS2 Initialization Subroutine (INIT3)

FUNCTION: This subroutine (Chart AA2) initializes for BLPAS2,
brings in that program, and turns over control to it.

LCNTRY: This subroutine is entered at INIT3 from the end of
BLPAS1T.

EXIT: This subroutine exits to the beginning of BLPAS2.

2=2

2.71.3 PASS3 Initialigzation Subroutine (INIT4)

FUNCTION: This subroutine (Chart AA2) initializes for the
BLANALYZ routine and brings it in i1f the symbolic analyzer
was requested. If not, this subroutine exits immediately
to the end-of-job subroutine (NOAN) .

ENTRY: This subroutine is entered at INIT4 from the end
of BLPASZ2,

EXITS: This subroutine exits to the NOAN subroutine for
end-of-job or to the BLANALYZ program.

2.1.4 End-of=-Job Subroutine (NOAN)

FUNCTION: This subroutine {(Chart AA3) checks for successful
assembly to allow or disallow execution of the object program,
then prints out any final error messages along with the flag
legends. It also processes the compool for PUNCHC requests,
writing it onto WK1,

ENTRY: This subroutine is entered at EOJ from the end of
BLANALYZ or, if no symbolic analyzer request was made, at
NOAN from the INIT4,

EXIT: This subroutine exits to SYSEOJ, or, if PUNCHC was
requested, brings in a fresh copy of the BAL system record
and returns to INIT1,

2.2 BLPAS1 ROUTINE

The BLPAS1 routine, the main body of the assembler
first pass, consists of two sections: a mainline section
and an interlude that terminates the first pass. The
mainline section in turn divides into three routines: new
statement, machine operation, and pseudo-operation., (See
Figure 2<1.)

After initialization, the main section of BLPAS1 processes
one source statement during each iteration. In the new
statement routine, the statement is obtained in canonical
form and its operation code is looked up to determine whether
it is a pseudo-operation or a machine operation, thereby
selecting which of two alternate routines is to be followed
for its processing by BLPAS1.

2=3

o~ A) ¢ { N ¢ _ R AP i
; N TE ! ; t
. ! A ;)
1 ASTNYTERKZ . |
. li ! | N ’ ‘
b ~ oI ' BN —‘t”f b4
i I i oo
! ! ! j T2 E ' T :
| ' . . i
!) I AR UGS | ; :
Lo - ! (Y’ V7> A . . . B U e g oo
NEA STTHTER AT
CU- fe ooy N _ .- .
[; : ! & '
! | ! ? STTATFALAT| i i
| i ! | CHNONZAL ‘) ‘-
I | |
U L) FRANT L I
LI R Loy - TR T I R
I : : I ook 2 | | 5
; E ! ! laremas] 3 ! :
| . ' 1 i
Lo oy) Il, - -, 4: v f B ll . !
MACHINE 0,8 PSLUPO O
: R 4 P e ey (FEE A
ENTEL i
NALKE A Y Eaeansy. .) 3
SURAS L i
il & ' g
T
i .] e
HOETS 0/7 P
ERANE | H2AA >
. R
et AP AT S ; : , [
;e i (LALTS ' | | | —>>>
; ! 2 o mon : : : : Comeiiy
! ! R ! i g ! g
Vo g LEAE T . | 5 Lol
4 .
N R :
Lo A e N . Do - . R
o . e : ') (e
, i |
. ST A f ; ;
Y PFZ ! E
t +- ’]
[(: - r '
] + .
¢ Rl 1
| \ ’ | ; i
| 1 ! ! | 1 ,

FIGURE 2-1, PASS1 LOGIC FLOW (SHEET 1 OF 2)

SIHR7 2 25 PEUED 37

2=5

il A ATE R R
gz |G e | |
e 777 i | !
200 AND z/fff@t///vg i
RO NAE LENETH o
l : | Ey fé’p’?://{////f//i/
B £ IR - - s -
' S NAAELD R L LT sz P 7
ROEET ‘ g
, L T N DEUIV 2T T
@A/Fdﬂé //-‘ {/V/Z_PW = é—l//" “A [, /WA’F/KO 1//2—7?415’
| THELLE ; L ! Ceriz 7z A zmzwz
R R & S — i, P [T | ERIIEL - - s2EZ7
cen | : [——
- B /fﬂp ey R P ST S
,{[/ﬁ/i/ V2 ‘1 AN 9L ,p 7
, : < TN
(L= AD E | %ﬁ : AN SELELY 5[/74154/
e s ey G 7 x| e 2 i
(nezy || |smar I, Salsvaat
—01- -7 02— A - i 05 — - —-
; ’%j || [r :
t 1 ﬂ@fﬁ;f! ; T E AT _'(/&'A///" 2 5'
i | z//z;e44 | LNALSET)
L [S Wf/fwg LH._ |
5% 4
,f;//w/x;ré‘ | S +=—m
gALN 7 | f :
.da//v.w,@/j 1 H
 \emeerse Lot
rf'l- — [mE2 e = —FZ -t —Fa - - -5 — 4 ——
! o TN T, e ! ,éa B | |
i + W Enzey ! L5292y | i + i 1
! | ZrevE | | e i’ | ? !
S | | IO TR | L_.__,‘.ﬁ,,_,l | L -
Lo ST LT '
SAVE LN, roee - 63 ~
aF e | | | !
1 I R
: ! | I
SR S)
X7 4
cEEATE EVALL 72 SR [
G| e o | |G
EXTEN prg=2 AMASLE e
ALZE] o I N URDL.
7 - T
i”\}'{?‘ - i {"\J&' - ': [' \!’1 7 - ': :‘ \)5’ 4= - '—_:
i
; N A |
| ! | | ! | ! {
i i | i i | | i
' [S S | S | e o e d
ST PR DR (KA et [T
e TN ,ﬁﬁjisg ~; '. |] ? ', |
XD AN TR, oz) |) ‘ i
77” : ; ! : '~ ‘ '
) - ') S 1 i ML ! ! -t H
FIGURE 2-=1., PASS1 LOGIC FLOW (SHEET 2 OF 2)

If the statement is a machine operation, the machine
operation routine enteres the statement name (if any) in the
symbol table and processes the operand, if present. The
instruction length is then added to the accumulated program
length and the statement is put out for pass 2. Return is
then made to the new statement routine for the next source
statement.

If the statement is a pseudo-operation, the appropriate
processing subroutine is selected in the pseudo-operation
routine and performed before the statement is put out for
pass 2, The program then returns to the new statement
routine for the next statement.

The pseudo-operation subroutines (shown in Figure 2-1)
each process one type or several related types of pseduo=
operation statements., Of particular note is the LCND
statement, signaling the end of the source program. When
encountered, the END statement causes any literals still in
the literal table to be put out, followed by the END
statement itself. The program then exits to the interlude
section to terminate pass 1.

The interlude section of BLPAS1 (shown in Figure 2-2)
divides into two routines: tables updating and ESD
generation, 1In the tables updating routine, the control
sections defined in the source program are assembled in the
order of their definition into the first control section to
produce a single relocatable block. The symbol locations
in the symbol table are then updated, increasing each
location by the new starting address of the control section
in which the symbol was defined.

The ESD generation routine prepares LESD cards for the
program, its common section, and for LXTRN and ENTRY symbols,
If a listing was requested, the ESD deck is also listed.
Similarly, if immediate execution was requested, ESD text
is set up for loading after assembly is complete. Pass 1
is now completed, with BLPAS1 exiting to BAL to prepare
for and call in BLPAS2Z.

Also included in BLPAS1 is a set of independent
subroutines. These subroutines are described separately,
following the description of the interlude.

: ; ,luluul.m _l|.|41|J_ TR M.,ll.wi:_“ “cll4:1J
T S O A O
- + 4 +o- . 0+ +4 +- +
. | , ! ! i [N ! | _ | “ i
Z , = m 8. " & ! e | 2 ! R |
.l e L [[T||+||L e
., ; mal-rwsl'.._, mlll1le . ”Ill.f||l" m|!||1|ll_ _,lll+|ll~_ "1||+||1_
i . : i H i {
[\ o | | i ! ! | _ i I :
fM/E - o+ + - T + + 4 + -
RO w B -} L o o
RIS 0 S R A T S S
S
Loy D ¢
- m%mm m
NANRED 3 My 3 oAy (v B
, D I N o RN
- MN : ANANN RY Yy A . R N IR
S el CRERR] - RERE] XAy RERY) RASS
X
........ A R
L
L Lg 1A s R _,
USRS H N SR (RSN N (S NS SO SR S PN A
T T T ST Wt|t:«J .ﬂit4||J T ﬂ:|4||J
m o [o S |
- - T s T + T T -+ T + T
i S ! ! : i ! : | | i |
= o= fG bz r3 v i3 |
- ! ! _J [i o e [

2

N

Ly o
[,
1 '
¢ 1
i 1
+ +
{ i
= !
| S |

(X717 7D 4L
2 LL A

!
I
|
l

N p—
I

]

PASS1 INTERLUDE

FIGURE 2-2,.

2.2.1 PASS1 Mainline
2.2.1.1 Initialization Routine (PASS1)

FUIICTION: This routine (Chart AR4) initializes, on first
entry only, for PASS1 and obtains the first source statement.
If this statement is a comment, ICTL, JOV, or TITLE, it is
processed and printed out and another statement is obtained.
This process is repeated until a statement other than one of
the above types is obtained.

ENTRY: This routine is entered at the first location of the
PASS1 routine when control is turned over by the monitor.

EXIT: This routine exits to XIFST in the new statement
routine,

2.2.1.2 llew Statement Routine (BLGIN)

FUNCTION: This routine (Chart AAS) obtains a source statement
and determines whether it is a machine operation or a pseudo-
operation,

ENTRY: The normal entry for this routine is at BLGIN. On
the first time through, it is entered at XXFST from the
initialization routine of PASS1. It may be re-entered at
MAHEAD from the START subroutine if the START statement is
missing on the first time through. It is also entered at
OPERR if an incorrect operation code is encountered by the
pseudo-operation routine.

OPERATION: This routine begins by calling IOGET?1 to get a
statement in canonical form. If the statement is a comment,
it is put out by I0PUT1 and the routine restarts on the
next statement,

On the first time through, the routine tests for a START
statement. On all other iterations, the operation code is
checked for valid length, then submitted for a search of the
operation code table (see Subsection 4.1) by BLOPLKUP,

LXIT: If the operation code is a pseudo-operation, this
routine exits to PSEUDO in the pseudoeoperation routine, If
the operation code is a machine operation, this routine exits
to the machine operation routine,

ERRORS: If the first statement is not a START statement,
diagnostic 71 is put out (see Subsection 6.4), the START
subroutine is entered to force a START, and return is made
to AHEAD to process the non=START first statement.

If a statement contains no operation code or one of
excessive length, exit is made to OPERR in the machine
operation routine, thereby ignoring the operand field,

2,.2.1,.3 Machine Operation Routine

FUNCTION: This routine (Charts AB, AC) reserves the object
code length required for a statement, enteres the statement
name (if present) in the symbol table, and validates the
statement operand(s) (if present), then puts out the
statement for pass 2.

ENTRY: This routine is normally entered by fall=-through

from the new statement routine for processing of a machine
operation statement. It is also entered at OPL2 or OPL{4

- from some pseudo~-operation subroutines to reserve space in
the object program. It may be entered at OPERR if an invalid
operation code is found by the new statement or pseudoe-
operation routine, Return from pseudo~operation subroutines
is to SYMCK to pick up the statement name or to FINISH to put
out the statement for pass 2.

OPERATION: On fallethrough from the new statemente-rgutine,
this routine determines the instruction length and saves it
for determination of program length. This routine next
checks for a statement name, validates the symbol, calls
BLSLKUP to search the symbol table (see Subsection 6.1) for
that symbol and, if not found, enters the symbol in the
symbol table,

If operand scan is not blocked (by an invalid operation
code) , the statement operand field is scanned, If a literal
is found, the LITRTN subroutine is called to validate it
and enter it in the literal table (see Subsection 6.1); since
only one literal is allowed in a statement, return is to
WINDUP to terminate the routine.

If the operand is not a literal, BLBRKUP is called to
scan the expression and check its syntax. The expression
terminator is then checked to determine further action (e.g.,
look for included literal, scan next operand); usually a
partial or complete repetition of the operand scan.

The routine terminates by adding the saved instruction
length to the current location counter, then putting out the
source statement for pass 2.

EXIT: This routine returns to BEGIN in the new statement
routine,

ERRORS: An invalid symbol in the statement name field is
ignored. An invalid operand expression is similarly ignored,
as is the rest of the operand field,

2,2.1.4 Pseudo-Operation Routine (PSEUDO)

FUNCTION: This routine (Chart AD) selects and uses the
proper subroutine to process a pseudo-operation statement.

ENTRY: This routine is entered at PSEUDO from the new
statement routine,

OPERATION: This routine uses a pointer in the operation
code table to select the proper pseudo-operation subroutine.
These subroutines are described separately later.

EXIT: This routine exits to the selected subroutine.

ERRORS: An invalid operation code mnemonic causes a return
to OPERR in the machine operation routine.

COMMENTS: Certain statements are ignored by BLPAS2 (e.g., JOVIAL
diagnostic, USING, and PRINT), For an EXBC or EXBCR (Extended
Branch) statement, BLPAS1 simply saves the proper instruction
length, then treats the statement as a machine operation,

leaving interpretation of the extended mnemonic to BLPAS2.

2.2.,1.5 DCL Subroutine

FUNCTION: This subroutine issues diagnostic 35 (see Subsection
6.4) when a DCL source statement is encountered.

ENTRY: This subroutine is entered at DCL from the pseudo-
operation routine.

EXIT: This subroutine exits to DGCSEC in the CSECT
subroutine to mark the statement to be ignored by pass 2.

COMMENTS: The fictitious operation code DCL is used by
BLPAS1 to issue a literal. As such it is handled differently
than an illegal operation, which it would be if encountered
as a source statement,

2,2,1,6 CCW Subroutine

FUNCTION: This subroutine saves an aligned doubleword
space for the Channel Command Word (CCW).

ENTRY: This subroutine is entered at CCW from the pseudo-
operation routine,

EXIT: This subroutine returns to SYMCK in the machine
operation routine to treat the statement as a machine
operation,

2.2.,1.7 LIB Subroutine

FUNCTION: This sequence (Chart AD) moves 24 characters or
less from the operand of a LIB statement (arguments) into
columns 19-42 of a card image and punches a LIB card.

ENTRY: This subroutine is entered at LIB from the pseudo-
operation routine, :

EXIT: This subroutine exits to FINISH in the machine
operation routine,

2.2,1.8 QUAL Subroutine

FUNCTION: This sequence (Chart AD) validates a new qualifier
and puts it in the communications region.

ENTRY: This subroutine is entered at QUAL from the pseudo-
operation routine.

EXIT: This subroutine exits to FINISH in the machine
operation routine,

ERRORS: TIf the qualifier is invalid, diagnostic 2 is issued,
and the CNOP subroutine is entered at IGCNOP to mark the
source statement to be ignored by pass 2,

2.2.1.9 START Subroutine

FUNCTION: This subroutine (Charts AE1, AE2) evaluates and
saves the starting location to be assigned for the object
program, then validates the program name and enters it in
the symbol table, the punch area for the LIB cards, and the
ENTRY table., It also checks for a compool request,

ENTRY: This subroutine is normally entered at START from
the pseudo-operation routine., It is entered at BLANKS when
the new statement routine finds that the first statement is
not a START statement.

OPERATION: This subroutine begins by checking for a starting
location. If present, the address is evaluated and saved.
The name field is then checked for a symbol to be used as

the program name. If present, the symbol is validated,
BLSLKUP is called to search the symbol table, and the symbol
is entered in the symbol table. (See Subsection 6.1,) 1If

no program name appears in the statement, the subroutine is

2=-11

entered at BLANKS and the forced program name .NONAME is

used, The supplied or forced program name is stored in the
communications region and in the punch area for LIB cards,

and is entered in the ENTRY table. The start card is also
checked for a compool request. If one is present, it is
validated., The routine then checks .LIB and/or .CMP for an

MLC (Merged Library/Compool) or compool tape containing the
desired compool, requests a new tape if necessary and positions
the tape to the start of the requested compool.

EXIT: This subroutine exits to FINISH in the machine operation
routine after it processes a START first statement or after

it disposes of a non-first START statement. After entry at
BLANKS to take care of a non-first START statement, the
subroutine exits to AHEAD in the new statement routine to
_process the first statement.,

ERRORS: A START statement after the first source statement
causes diagnostic 15 to be issued; the statement is ignored.

If the START statement beginning the source program
carries no starting location, diagnostic 8 is issued.

If the MEVAL subroutine finds an error in the expression
for the starting location, it is ignored. Other faults in
the starting location assignment cause it to be ignored and
a diagnostic issued as follows.,

Fault Diagnostic
Not absolute 17
Not address type 31
Bad terminator 14

In addition, if the starting location assignment is not
aligned to a doubleword boundary, it is adjusted and saved,
and diagnostic 72 is issued.

If an invalid compool is requésted, or the compool
cannot be located, assembly is terminated.

COMMENTS: The MEVAL subroutine calls the BLEXVAL routine,
making the output of BLEXVAL (Subsection 6.3) available to
this subroutine,

2.2.1.10 CNOP Subroutine
FUNCTION: This subroutine (Chart AF) validates the operands
of a Conditional No-Op (CNOP) pseudo-operation and,

if valid, aligns the current location counter to the
designated boundary.

2=12

ENTRY: This subroutine is entered at CNOP from the pseudo-
operation routine, Some other pseudo subroutines use the
error handling and return provisions of this subroutine,
entering it at IGCNOP or at CNOPEX.,

OPERATION: This subroutine evaluates the first operand and
validates its value and terminator. The subroutine then
evaluates the second operand and validates its wvalue and
terminator. The current location counter is then aligned

to the boundary specified. Finally, the operand scan switch
is turned off (because the operands have already been
processed) and an instruction length of 0 is saved (because
the location counter has already been incremented if required),

EXIT: This subroutine returns to SYMCK in the machine
operation routine to process the statement name, if any.

ERRORS: For any operand error, the statement is marked to
be ignored by pass 2 and no change is made to the location
counter.

If either operand value is incorrect, diagnostic 31 is
also issued.

If either terminator is incorrect, diagnostic 14 is also
issued,

2.2.1.11 CSECT, DSECT Subroutine

FUNCTION: This subroutine (Charts AG1, AG2, AG3, All) examines
a CSECT or DSECT statement and either creates a new control
section (by making an entry in the CSECT-EXTRN table) or
resumes the already created control section renamed by this
statement.

ENTRY: This subroutine is entered at CSECT or at DSECT from
the pseudo-operation routine., Some other pseudo=-subroutines
use the error handling and return provisions of this subroutine,
entering it at SMDIAG or at IGCSEC,

OPERATION: This subroutine begins, for either a CSECT or a
DSECT statement, by checking for a symbol in the name field.
An unnamed CSECT is rejected if the first control section

is named; otherwise, it resumes the first control section,
With the name validated (or its absence allowed), the current
controlesection data (e.g., current location) is moved to

its CSECT-EXTRN table entry from the communications region in
preparation for a change to a different current control
section. Special (.PREV, ,ONLY) CSECTs are also processed,

2-13

- The first CSECT statement encountered causes a test for
an implied unnamed-first control section; i.e., have statements
already been assembled into a control section (the first and
unnamed) that precedes the control section defined by the
first CSECT statement? If not, this first CSECT statement
defines the first control section.

Any succeeding CSECT or DSECT statement causes a
search of the CSECT=-EXTRN table, If a match is found, the
control section named by the statement is resumed (e.g.,
CSECT location counter is loaded as the currect location
counter). If no match is found, a new control section is
created., A .PREV CSECT builds a CSECT card for the last
previous CSECT and re-enters CSECT processing with it.

Creation of a new control section begins by entering
the name in the symbol table. Then, the name, ID, and type
are entered in the CSECT-EXTRN table. Finally, this data
describing the newly created or resumed control section is
transferred to the communications region to identify it as
the current control section.

EXIT: This subroutine returns to FINISH in the machine
operation routine.

ERRORS: If a DSECT statement is unnamed, or CSECT statement
is unnamed and the first control section is named, diagnostic
8 is issued and the statement is marked to be ignored by

pass 2,

If a match is found between a CSECT or DSECT statement
name and a non=-EXTRN entry in the CSECT table (CSECT statement
naming a dummy control section or DSECT statement naming a
control section), diagnostic 68 is issued and the named
control section is resumed.

If a new CSECT statement name has already been defined
(i.e., multi-defined symbol), the name is blanked and the
CSECT=-EXTRN table searched again. The CSECT statement will
thus resume the first control section if that is unnamed
or will create a new unnamed control section; this control
section can be resumed but two such multi-defined control
sections will be assembled together.

If the name of the first DSECT statement is multi-
defined, and it was not defined by an EXTRN, its name is
changed to . (period) and entered in the CSECT-EXTRN table.
All succeeding DSECT statements with multi-defined names are
ignored. The DSECT names defined by an EXTRN are allowed
and taken as a DSECT definition (or resumption).

2=14

The ,OVLY CSECT without both ¢¢V®® and ¢¢‘POOL®’°® on the
Start card, and .PREV CSECT not in a DSECT, are both treated
as errors.

2.2.1,12 COM Subroutine

FUNCTION: This subroutine (Chart All) initiates or resumes
assembly in the common section of the program in response to
a COM statement,

ENTRY: This subroutine is entered at COM from the pseudo-=
operation routine,

OPERATION: This subroutine begins by checking for the
absence of a name in the COM statement. The current
location counter is stored in the current CSECT-EXTRN table
entry and the common entry in that table is initialized if
not already done. The subroutine then enters the CSECT,
DSECT subroutine to set up the common section as the current
assembly section.

EXIT: This subroutine returns to FINISH in the machine
operation routine to put out the statement.

ERRORS: If the COM statement is named, diagnostic 67 is
issued, the rest of the subroutine is bypassed, and entry

is made at IGCSEC in the CSECT, DSECT subroutine to mark the
statement to be ignored by pass2.

2.2,1.13 DCDS Subroutine

FUNCTION: This subroutine (Chart AI) evaluates the operand
of a DC or DS statement and adds its length to the current

location counter, enters the statement name, if any, in the
symbol table, and processes a literal, if present.

ENTRY: This subroutine is entered at DCDS from the pseudo-
operation routine.

OPERATION: This subroutine calls BLCONMOD to evaluate any
modifiers the operand may carry, aligns the location counter
to the proper boundary for the operand, then checks for a
statement name. If present, the symbol is entered in the
symbol table, using the attributes developed by BLCONMOD,
The location counter is incremented by the length of the
constant. If the operand contains an address literal, it

is processed by Subroutine LITRTN.

EXIT: This subroutine returns to FINISH in the machine
operation routine.

2=15

ERRORS. If the modifiers contain errors, diagnostics provided
by BLCONMOD are issued, the statement processing is bypassed,
and entry is made at IGCNOP in the CNOP subroutine., As a
result, the statement is marked to be ignored by pass 2, the
operand scan is suppressed, and return is made to SYMCK in

the machine operatlon routine (for symbol check) with a

saved instruction length of 0.

2.2.,1.14 ENTRY Subroutine

FUNCTION: This subroutine (Chart AJ) enters the symbol(s)
in the ENTRY statement operand field in the ENTRY table,
first searching the table to prevent duplication.

ENTRY: This subroutine is entered at ENTRY from the pseudo-
operation routine,

OPERATION: This subroutine validates the first operand
expression and, if valid, searches the ENTRY table for a
duplicate. If none is found and the expression terminator
is valid, the symbol is entered in the ENTRY table. The
process is repeated for the next expression, and so on.

EXIT: This subroutine returns to FINISH in the machine
operation routine to put out the statement.

ERRORS: If an expression is invalid, that symbol is ignored.
If an expression is invalid and its terminator is missing
(invalid) , the subroutine exits without entering any
following symbols from that statement into the ENTRY table,

If an ENTRY symbol duplicates one already entered,
diagnostic 69 is issued and the next expression, if any,
is processed.

If the ENTRY table is filled, diagnostic 76 is issued
and the symbol that would have caused overflow is not
entered,

2:2.1.,15 EQMAMI, TEQU Subroutine

FUNCTION: This subroutine (Chart AK) enters the statement
name in the symbol table with its location derived from the
expression in the operand field, first validating the symbol
and the operand expression(s).

ENTRY: This subroutine is entered, from the pseudo=operation
routine, at TEQU for a TEQU statement or at EQMAMI for an EQU,
MAX, or MIN statement.

OPERATION: This subroutine, if entered at TEQU, treats the
TEQU operation code as an EQU by ignoring the first character.
Presence of the statement name is then verified and the symbol
is validated. The first operand (or only one) is then
evaluated.

For EQU or TEQU, the statement name is entered in the
symbol table (this may simply change the location attribute
if a TEQU statement names an already defined symbol),

For !MAX or MIN, a second operand is checked for and
evaluated, then compared with the location attribute of the
first operand. The better attribute is saved and, if there
is another operand, the process is repeated before an entry
is made in the symbol table,

EXIT: This subroutine returnts to FINISH in the machine
operation routine to put out the statement unless an error
is found.

ERRORS: If the statement is unnamed, processing is bypassed
and exit is made to SMDIAG in the CSECT, DSECT subroutine to
issue diagnostic 8 and mark the statement to be ignored by
pass 2.

1f the statement name or the first operand is invalid,
processing is bypassed and exit is made to IGCSEC in the CSECT,
DSECT subroutine to mark the statement to be ignored by pass
2.

If the first operand is mispunctuated or too long,
diagnostic 4 is issued, processing is bypassed, and the
statement is marked to be ignored by pass 2 before the
normal exit is taken.

If the last operand terminator is not a blank, diagnostic
14 is issued, no symbol table entry is made, and the statement

is marked to be ignored by pass 2 before the normal exit is
taken,

For MAX or MIN, an invalid operand expression prevents
entry in the symbol table and causes the statement to be
marked to be ignored by pass 2 before the normal exit is
taken.

For MAX or MIN, reference to operand symbols defined
in different control sections causes diagnostic 66 to be
issued; no entry is made in the symbol table and the
statement is marked to be ignored by pass 2 before the
normal exit is taken,

2.2.1.16 EXTRN Subroutine

FUNCTION: This subroutine (Chart AL) validates the operand(s)
of an EXTRN statement and, if they have not been previously ;
defined and do not dupllcate other EXTRN entries in the
CSECT=-EXTRN table, enters these symbols in the symbol table
and the CSECT-EXTRN table.

ENTRY: This subroutine is entered at EXTRN from the pseudoe
operation routine,

OPERATION: This subroutine first validates an operand, then
searches the CSECT-EXTRN table for possible duplication. If
no duplicate is found and the operand terminator is valid, o
the operand symbol is entered in the symbol table with a new,
ID to identify it as an EXTRN. This attempt at entry in the:
symbol table may return with an indication that the symbol &
has already been defined in the BAL program. If the symbol
has not already been defined, it is entered in the CSECT=-
EXTRN table. The process repeats for any additional
operand (s) .

EXIT: This subroutine returns to FINISH in the machine
operation routine to put out the statement,

ERRORS: An invalid expression is ignored; if its termlnat@r!ﬂh
is missing, any following operands are ignored also.

A duplicate EXTRN causes diagnostic 70 to be issued;
any following operands are processed.

A bad expression terminator causes diagnostic 14 to be
issued; any following operand is ignored.

An already defined symbol in an EXTRN statement is
ignored.

2.2.1.17 LTORG Subroutine

FUNCTION: This subroutine (Charts AM, AN) (called either by

an LTORG statement or indirectly by an END statement) puts

out all literals in the literal table as DCL statements,

first putting out doubleword multiples, then fullword multiples,
then halfword multiples, and finally odd-byte length multiples.

ENTRY: This subroutine is entered at LTORG from the pseudo-

operation routine. It is also entered at LITPUT from the
END subroutine.

2-18

OPERATION: If the LTORG statement is named, the symbol is
entered in the symbol table and the LTORG statement is put
out. A check for literals in the literal table now either
causes return to the new statement routine for the next
source statement or the putting out of the literals in the
table.

If there are literals in the table, the subroutine
sets up to search the table for literals of doubleword
multiple length. When one is found, its dummy name is
entered in the symbol table, its length is added to the
current location counter, and it is put out in a DCL
statement, After the literal table has been searched for
doubleword multiples, the process is repeated for fullword
multiples, then for halfword multiples, and finally for all
other literals (odd-byte length).

After all literals have been put out, the subroutine
initializes for buildup of a new literal table.

EXIT: This subroutine either returns to BEGIN in the new
statement routine or, if entered from the END subroutine,
returns to that subroutine.

ERRORS: If a dummy name cannot be entered in the symbol
table because of table overflow, diagnostic 79 is issued.

2.2,1,18 ORG Subroutine

FUNCTION: This subroutine (Charts AO1, A02, A03) validates
the operand of the ORG statement and, if valid, sets the
current location counter to its value.

ENTRY: This subroutine is entered at ORG from the pseudo-
operation routine.

OPERATION: This subroutine begins by evaluating the ORG
expression. A sequence of tests then validates the
expression before its value is placed in the current
location counter.,

EXIT: This subroutine returns to CNOPEX in the CNOP
subroutine to block operand scan and save an instruction
length of 0 before going to SYMCK in the machine operation
routine to process the statement name, if any.

ERRORS: For any of the following errors, the current
location counter is unchanged and the ORG statement is
marked to be ignored by pass 2. (Where diagnostics are
issued, they are noted.)

a. Errors in expression.

2=19

b, . Symbol in expression is defined in another control
section - diagnostic 66.

Ce Expression is not an address constant - diagnostic
31. '

d. Expression terminator invalid - diagnostic 14.

e. Expression too long or mispunctuated = diagnostic
4.

2.2.1.19 PSEG Subroutine

FUNCTION: This subroutine validates the operands of PSEG
- cards, and initiates reading of the compool when requested.

ENTRY: This subroutine is entered at PSEG from the pseudo-
operation routine, or at PSOUT10 when the END card requires
a compool read.

OPERATION: This subroutine first checks the operand field for
segment names and/or special codes. Segment names are placed
in the segment table. The .LIST and .PUNC options cause
appropriate switches to be set. The .ALL option causes the

. entire compool to be read in, while ,USE searches the segment
table to assure at least one valid request, and the reads in
all those segments in the table with a status of ¢*‘WAITING.®®
The read is accomplished by setting switch GPOOL to cause the
RDMRG routine to read from compool, and then returning to
BEGIN to get another input record. Unless LISTD or .LIST
have been specified, an NLIST card is generated for BLPAS2
immediately before exiting, ‘

EXIT: This routine exits to BEGIN in the new statement
routine,

ERRORS: This routine will issue a serious diagnostic on an
invalid PSEG or segment table overflow, and a warning on a
duplicate PSEG request., Diagnostics may appear with the
PSEG ,.USE card rather than the. actual PSEG name card which
caused the error.

2:.2,1.20 END Subroutine

FUNCTION: This subroutine (Charts AO1, A0O2, AO3) or recognizing
the end of the source program, brings in any outstanding

compool segments requested, puts out literals at the end
of the first control section, and exits to the interlude,

2=20

ENTRY: This subroutine is entered at END from the pseudo-
operation routine, and is re-entered from the LTORG subroutine
after it has called that subroutine. It is re-entered if
compool segments have been brought in at this point.

OPERATION: When the subroutine is first entered, it checks
for any outstanding compool requests. If found, it stacks
the END card and goes to read the compool. It then checks
whether there are literals in the literal table. If so, the
subroutine sets up a control setting with a start address
immediately following the high location of the first control
section. After aligning the current location counter to a
doubleword boundary, it enters the LTORG subroutine at LITPUT,
The LTORG subroutine returns, after all literals have been
put out, to END., The current location counter, incremented
by the length of the literals, is stored in the first CSECT-
EXTRN table entry and the END statement is then put out.

EXIT: This subroutine exits to INTRL in the interlude
section of PASS1.

ERORRS: Compool errors are given under the PSEG routine,

2.2.2 PASS1 Interlude

The interlude section of PASS1 is entered after the FND
statement signals the end of the source program. As a
preliminary, the interlude rewinds .WORK2, thereby making
the overflow of the intermediate buffer available to BLPAS2
by the time it finishes the contents of the intermediate
buffer. The interlude then proceeds (as shown in Figure 2-2)
through table updating and ESD generation, concluding
BLPAS1. Exit is made to INIT3 in RAL to initialize for and
bring in BLPAS2,

Table updating is performed by two subroutines: CSECT
table update and symbol table update.

The ESD generation is performed by four subroutines:
Te Program ESD

2, Common ESD

3. EXTRN ESD

4, ENTRY ESD

2,2.2.1 CSECT Table Updating Subroutine

FUNCTION: This subroutine (Chart AP) assembles all control
sections into a single control section and determines the
object program length,

ENTRY: The subroutine is entered at INTRL from PUTEND in the
END subroutine of BLPAST,

OPERATION: This subroutine uses the currente-locatione-counter
field as the program location counter, loading it with the
location specified by the source program START statement,

The subroutine then scans the CSECT table for a control
section., If a DSECT, EXTRN, or COM entry is found, its
location counter is zeroed.

When the first control section is found, the program
location counter is set as its starting address and its
length is added to the counter, rounded up to the next
doubleword boundary. The process is repeated for the
second control section, assigning it an aligned starting
address following the end of the first control section. 1In
addition, the control section ID is changed to that of the
first control section. This process continues until all
control sections have been assembled into the first. The
program length is then computed and the subroutine ended.

EXIT: This subroutine exits to the symbol table updating
subroutine.

2.2.2.2 Symbol Table Updating Subroutine

FUNCTION: This subroutine (Chart AP) increases each symbol
location by the starting address of the control section in
which it was defined and changes the symbol ID to that of
the first control section.

ENTRY: This subroutine is entered from the CSECT table
updating subroutine,

EXIT: This subroutine exits to the Program ESD Subroutine
in the ESD generation routine.,

2,2.2.3 Program ESD Subroutine
FUNCTION: This subroutine (Chart AQ) initializes for ESD

generation and puts out the program ESD card; the program
ESD is listed if listing is requested.

2=22

ENTRY: This subroutine is entered from the symbol table
update subroutine,

EXIT: This subroutine exits to the common ESD subroutine,
2:2.2.4 Common ESD Subroutine

FUNCTION: This subroutine (Chart AQ) determines the length
of the common section, if any, and puts out a common ESD
card; the common ESD is listed, if listing is requested.

ENTRY: This subroutine is entered from the program ESD
subroutine.,

EXIT: This subroutine exits to I3EXT in the EXTRN ESD
Subroutine,

2:2,2.5 EXTRN ESD Subroutine

FUNCTION: This subroutine (Chart AQ) scans the CSECT=-EXTRN
table for EXTRN entries, putting up to three consecutive
EXTRN symbols on one ESD card; each EXTRN is also listed if
listing is requested.

ENTRY: This subroutine is entered at I3EXT from the common
ESD subroutine,

EXIT: This subroutine exits to I3ENT in the ENTRY ESD
subroutine,

2062,2,6 ENTRY ESD Subroutine

FUNCTION: This subroutine (Chart AR) puts out ENTRY ESD cards

with up to three symbols on each card; if listing is requested,
the ENTRY ESDs are also printed, .

ENTRY: The subroutine is entered at I3ENT from the EXTRN ESD
Subroutine.

OPERATION: This subroutine scans the ENTRY table and checks
that the ENTRY symbol has been entered in the symbol table. It
then checks that the symbol was defined in a control section or
in the. common section, then moves the symbol with its ESD-ID to
the card image. An ESD line is printed if listing is requested.
When the card image is filled (three ENTRYs), the card is put
ocut,

When the end of the ENTRY table is reached, the last ESD
line is printed (if listing is requested) and the card image
is punched even if not full. Upon completion of this
subroutine, BLPAS1 program terminates,

2=23

EXIT: This subroutine exits to INIT3 in BAL,
2.2,3 BLPAS1 Common Subroutines

Included within the BLPAS1 program are 14 subroutines
that are called to perform various operations for the main
body of the program. These subroutines, listed below, are
each described separately.

1. ‘MPUTS = Put a statement record

2. MPUTD - Put a diagnostic record

3. HFWRD - Align current location counter to a
halfword boundary

4, DBLWRD - Align current location counter to a
doubleword boundary

5 STFULL - Process symbol table overflow

6, CTFULL = Process CSECT-EXTRN table overflow
7o L1ITRTN = Process literal

8. SYMVAL = Validate a statement symbol

9, STNTRY = Create a symbol table entry

10, MEVAL - Call BLEXVAL and process diagnostics

11, HEX2CM = Convert hexadecimal number into EBCDIC
characters

12. MBRKUP = Call BLBRKUP and evaluate expression
13. PUTESD - Put an ESD card
14. PRTESD = Print ESD line

2.2,3.1 MPUTS Subroutine

FUNCTION: This subroutine (Chart AS) puts out a source
statement for pass 2.

ENTRY: This subroutine is entered at MPUTS from the machine

operation routine or from the END or LTORG subroutine, with
the address of the source statement in a general register.

2=24

OPERATION: This subroutine calls IOPUT1 to put out the source
statement., If the ignore switch is on, the statement is
prefixed with an ignore code so. that pass 2 will ignore it,
(See Subsection 6.2 for format.,)

EXIT: This subroutine exits to the calling point,

2.2.3.2 MPUTD Subroutine

FUNCTION: This subroutine puts out a diagnostic record for
pass 2.

ENTRY: This subroutine is entered at MPUTD from the new
statement routine or from those pseudo-operation or BLPAS1
subroutines that issue diagnostics.

OPERATION: This subroutine calls IOPUT1 to put out the
diagnostic record., Subsection 6.2 gives the format of the
diagnostic record built at DIAG.

EXIT: This subroutine exits to the calling point.,

2:2.3.3 HFWRD Subroutine

FUNCTION: This subroutine aligns the current location
counter to a halfword boundary if it is not so aligned,

ENTRY: This subroutine is entered at HFWRD from the machine
operation routine,

EXIT: This routine exits to the calling point.
2.,2.3.4 DBLWRD Subroutine

FUNCTION: This subroutine aligns the current location
counter to a doubleword boundary if it is not so aligned.

ENTRY: This subroutine is entered at DBLWRD from the CCW,
END, LTORG, START, CSECT table update, or common ESI
subroutine.

EXIT: This subroutine exits to the calling point.

2.2.3.5 STFULL Subroutine

FUNCTION: This subroutine processes an overflow of the
symbol table,

2-=-25

ENTRY: This subroutine is entered at STFULL from the machine
operation routine or from the DCDS, EQMAMI, EXTRN, LTORG,
START, or CSECT, DSECT subroutines,

OPERATION: This subroutine puts out diagnostic 43 each time
a symbol table overflow condition is encountered,

EXIT: This subroutine exits to the calling point.
2,2.3.6 CTFULL Subroutine

FUNCTION: This subroutine (Chart AS) processes an overflow
of the CSECT-EXTRN table.

ENTRY: This subroutine is entered at CTFULL from the CSECT,
DSECT or EXTRN subroutine,

OPERATION: This subroutine puts out diagnostic 74 and
deletes the CSECT name from the symbol table whenever that
entry will overflow the CSECT=EXTRN table,

EXIT: This subroutine exits to the calling point.
2.2.3.7 LITRTN Subroutine

FUNCTION: This subroutine (Chart AT) wvalidates the literal
and its modifiers, searches the literal table for a
duplicate, and enters it if no duplicate is found. Finally,
the subroutine puts out a literal reference record for pass
2.

ENTRY: This subroutine is entered at LITRTN from the
machine operation routine or the DCDS subroutine, with the
address of the literal in a general register,

OPERATION: This subroutine calls BLCONMOD to evaluate

the literal modifiers, then validates the literal terminator,
type, and length., Next, the literal table is searched for
an identical literal., If found, the dummy tag of the table
entry and the literal source length are set up in a literal
reference record at LIT (see Subsection 6.2) and IOPUT1 is
called to put out the record.

If no duplicate of the literal is found in the literal
table, the literal is entered in the table and the literal
reference record put out as before.

EXIT: This subroutine returns to the calling point,

ERRORS: An invalidity in the literal bypasses the issuance
of a literal reference record or entry in the literal table,

If the literal table is filled, a new literal is put
out in a literal reference record with a zero dummy tab,
preceded by diagnostic 75.

2.2.3.8 SYMVAL Subroutine

FUNCTION: This subroutine (Chart AU) validates the symbol
submitted to it and appends the current qualifier,

ENTRY: This subroutine is entered at SYMVAL from the machine
operation routine or from the DCDS, EQMAMI, LTORG, START, or
CSECT, DSECT subroutine,

OPERATION: This subroutine checks the symbol for length,
valid first character, and valid succeeding characters, If
validated, the current qualifier is added to the symbol.

EXIT: This subroutine returns to the calling point if the
symbol is not valid. It returns to the second instruction
at the calling point if the symbol is valid.

ERRORS: If the symbol length is excessive, diagnostic 3 is
issued and return is made to the error return point in the
calling routine.

If the first or succeeding characters are not valid,
diagnostic 2 is issued and return is made to the error return
point in the calling routine,

2.2,3.9 STNTRY Subroutine

FUNCTION: This subroutine (Chart AU) enters a symbol in
the symbol table at the entry point found for it by the SLKUP
routine.

ENTRY: This subroutine is entered at STNTRY from the
machine operation routine or from the DCDS, EQMAMI, LEXTRN,
LTORG, START, or CSECT, DSECT subroutine.

OPERATION: This subroutine begins by checking whether the
symbol has already been defined. If not, the symbol table
entry is created and entered in the table.

EXIT: This subroutine always exits to the calling point.
ERRORS: If the symbol has already been defined, the table-
entry control byte is changed to ‘multi-defined® and

diagnostic 12 is issued before return is made to the
calling routine.

2=27

2:2,3.10 MEVAL Subroutine

FUNCTION: This subroutine (Chart AV) evaluates an expression
and issues any diagnostics required.

ENTRY: This subroutine is entered at MEVAL from the CNOP,
EQMAMI, ORG, or START subroutine, with the address of the
expression in a general register.

OPERATION: This subroutine calls the BLEXVAL routine to
evaluate the expression, then issues diagnostics for any
errors found by BLEXVAL. If no fatal error (i.e., multi-
defined symbol) is found, the subroutine checks the
relocatability of the expression. If the expression is in
the operand of a CNOP statement, the expression is checked
to determine that it is absolute and within a maximum value,

EXIT: This subroutine returns to the calling point if the
expression is not valid. It returns to the second instruction
at the calling point if the expression is valid.

ERRORS: Errors found by BLEXVAL are issued as diagnostics
and, if the errors are fatal, exit is made to the error
return point in the calling routine.

If the expression is invalidly relocatable, diagnostic
7 is issued before return is made to the error return point.

For the operand of a CNOP statement, if the expression
is not absolute, diagnostic 17 is issued and return is made
to IGCHNOP in the CNOP subroutine to mark the source statement
to be ignored by pass 2.

For the operand of a CNOP statement, if the expression
value is not less than 256, return is made to BADVAL in the
CNOP subroutine to issue diagnostic 31 and mark the source
statement to be ignored by pass 2.

2.2.3,11 HEX2CM Subroutine

FUNCTION: This subroutine (Chart AV) converts a hexadecimal
number into EBCDIC characters for printing or punching in
source program language.

ENTRY: This subroutine is entered at HEX3CM from the END
or PUTESD subroutine, with the number to be converted in
a general register, and the address of the output area in
another,

2-28

EXIT: This subroutine exits to the calling point,

2.2.3.12 MBRKUP Subroutine

FUNCTION: This subroutine (Chart AW) isolates an expression
within an operand, then validates the expression.

ENTRY: This subroutine is entered at MBRKUP from the ENTRY
or EXTRN subroutine, with the address of the expression in a
general register,

OPERATION: This subroutine calls the BLBRKUP routine and
checks for any error that the routine may find in the
expression. The expression is then validated and set up

. for delivery to the calling routine with the current qualifier
appended or with the qualifier designated in the expression.

EXIT: This subroutine exits tc the calling point if the
expression is invalid. It returns to the second instruction
at the calling point if the expression is valid.

ERRORS: If BLBRKUP finds an error in an EXTRN expression,
the BLBRKUP diagnostic is issued before the subroutine returns
to the error return point,

If BLBRKUP finds an error in an ENTRY expression,
return is made to the error return point,

If the expression is too long, diagnostic 4 is issued
before return is made to the error return point.

If the first character of the expression is invalid,
or the qualifier element begins with other than a period, or
there is a third element, diagnostic 31 is issued before
return is made to the error return point.

2.2.3.13 PUTESD Subroutine

FUNCTION: This subroutine (Chart AX) punches an ESD card
and initializes the card image for the next card.

ENTRY: This subroutine is entered at PUTESD from the EXTRN
ESD or ENTRY ESD subroutine.

EXIT: This subroutine exits to the calling point.

2=29

2.2.3.14 PRTESD Subroutine

FUNCTION: This subroutine (Chart AX) prints an ESD line
and sets up the next one for printing if a listing is
requested.,

ENTRY: This subroutine is normally entered at PRTESD from
the common ESD, EXTRN ESD, or ENTRY ESD subroutine., On the
first time through only, it is entered at EJECT from the
Program ESD Subroutine if a listing is requested.

OPERATION: This subroutine is entered the first time to
eject the listing page, print the ESD header, then set up
the Program ESD line before returning to the calling routine.

On subsequent entries, this subroutine first checks
whether a listing is requested. 1If so, it prints the line
set up on its previous call and forces a page eject if
the page is full before it sets up the next ESD line,

EXIT: This subroutine exits to the calling point, immediately
if no listing is requested, or after setting up the next

line on all but its last call. On its last call, exit is taken
after printing the previously set-up line.

2,2.4 Get A Statement During PASS1 Routine (IOGET1)

FUNCTION: This routine (Chart CA) gets a statement during
pass 1 and puts it into canonical form.

ENTRY: This routine is entered at IOGET1. It is called by
BLPAS1,

OPERATION: This routine calls RDMRG to get a source statement,
then determines whether the statement is a comment or not. A
comment card is immediately moved to the output area with the
comment field left-adjusted and the sequence field right-
adjusted in the 80-column field.

If the statement is not a comment card, the symbol (if
found) is moved to the output area, its length is computed
and moved to the output, and a search is bequn for the
operation code. If no operation code is found, the statement
is printed and ignored, and the routine calls RDMRG to get
a new statement.

If an operation code is found, it is moved to the output

area, its length is computed and moved to the output, and a
search is begun for the operand.

2=30

If an operand is found, its length is determined by finding
its rightmost none=blank character. The operand is then moved
to the output area, followed by a single blank, and its length
(with the blank) is also moved to the output. If no operand
is found, only the blank is moved to the output area. Finally,
the sequence field is moved to the output area and the total
statement length is computed and moved to the output.

EXIT: This routine exits to the calling point.

ERRORS: If a BAL program on .INPUT lacks an END statement,
the EOF return from the call of RDMRG forces the delivery of
an END statement by IOGET1. A message in this statement’s
comment field describes the action taken.

2.2.5 Read And Merge Source Statement Routine (RDMRG)

The Read And Merge Source Statement Routine (RDMRG) is
called by IOGET1 during pass 1 to read in a new statement
in BAL language. These source statements may come from one
of three sources:

1. .WORK1 if a compiled JOVIAL program is submitted,
or if compool PUNCHC processing is being done.

2, - INPUT if a BAL program is submitted.
3. .LIB or .CMP if a compool is requested.

The first pass through RDMRG selects WORK1 or INPUT for
all succeeding passes.

The RDMRG routine divides functionally into three
subroutines and one subordinate subroutine as follows:

a, Subroutines

1. Main Subroutine:; This subroutine obtains a
statement from the selected source and delivers
it, then exits to IOGITI1.

2. First Pass Subroutine: This subroutine selects
the source in accordance with control card
information, then enteres the appropriate
subroutine to deliver the first program
statement,

3. Compool Read Subroutine: This subroutine reads
input from the compool. :

2=-31

b. 4 Subordinate Subroutine

READ - Selects source on first pass and reads a
statement.

2.2.5.1 RDMRG (Main) Subroutine

FUNCTION: This subroutine (Chart DA) obtains a statement
from the source selected during the first pass and moves
it to the delivery area before returning control to IOGET1.

ENTRY: The entry point for this subroutine is RDMRG. It
is always entered from IOGET1 which provides the delivery
address and .INPUT EOF return address out-ofe-line from the
calling point.

OPERATION: On each pass, this subroutine begins by picking
up the two parameters supplied by IOGET1. On the first
pass, the main subroutine branches to the first pass
subroutine for source selection. On all succeeding passes,
it goes to the return point set on the preceding pass. If
+WORK1 or .INPUT is the sole source, the main subroutine
obtains a statement on each pass, moves it to the delivery
area, and returns control to IOGET1., If the GPOOL switch
is set, the main subroutine branches to PREAD to read from
conpool.

EXIT: This subroutine exits to the calling point in IOGETI1.
2.2.5.2 ENTER (First Pass) Subroutine

FUNCTION: This subroutine {(Chart DA) uses control card
information to select the source for statements, then exits
to the appropriate processing subroutine for the selected
BOUrce.

ENTRY: This subroutine is entered at ENTER on the first
pass through the main subroutine,

OPERATION: Upon entry into the first pass subroutine, the
READ subroutine selects either .WORK1 (for JOVIAL compiler
output) or .INPUT and reads the first statement from that
source.,

EXIT: This subroutine returns to the main subroutine to
move the statement to the delivery area.

COMMENTS: The READ subroutine latches to its first selection

and reads only from the selected source (.,WORK1 or .INPUT)
on subsequent calls.,

2=32

2.2.5.3 Compool Read Subroutine (PREAD)

FUNCTION: This subroutine (Charts DB, DC) reads card images
from the compool, either returning the card read to the caller,
or selecting some other special card to be returned.

ENTRY: This routine is entered at PREAD from RDMRG if switch
GPOOL is set to 1, or at UNSTND if switch GPOOL is set to 2.

OPERATION: If switches SENDS or SENDNX are set, a DSECT or

a saved card are returned to the caller, On entry at UNSTND,
a saved END card is returned to the caller. Otherwise a card
is read from the compool and examined.

An END card terminates processing of the current segment,
and returns to read another card,

An EXTRN terminates all compool reading. Diagnostics
may be issued., If there is a stacked END card, GPOOL is
set to 2. A .PREV CSECT is returned to the caller unless
an overlay assembly is in process, in which case a comment
is returned.

If a START card is read, the segment name is examined to
see if it is wanted. If it is not, switch THISG is turned
off, and cards are read to skip to the end of the segment.

If the segment is needed, another card is read. 1If it is
ENTRY Poolname, it is ignored, while anything else is saved.
Switches are set to return a DSECT and the saved card if any,
to the caller, on subsegment calls., An EXTRN is then returned
to the caller,

EXIT: This subroutine returns to the calling point,
ERRORS: If there are any unsatisfied requests in the table
at the end of the compool, diagnostics are issued,

2:2.5.4 READ Subroutine

FUNCTION: This subroutine (Chart DD), on the first pass,
selects the source for statements for RDMRG and reads the
first statement from that source. On each subsequent pass,

this routine reads a statement from that source.

ENTRY: This subroutine is entered at READ from all three of:
the RDMRG subroutines,

OPERATION: On the first pass, this subroutine checks whether
input is on .WORK1., If so, it latches to that source, rewinds
it, and reads the first statement. If not, it latches to
.INPUT and reads the first statement from there., On each
subsequent pass, this subroutine reads one statement from the
selected source.

EXIT: This subroutine normally exits after each pass to
the calling point in RDMRG. An EOF causes return to the
NOMORE subroutine in IOGET1.

2.2.6 Put Out A Statement During PASS1 Routine (IOPUT1)

FUNCTION: This routine (Chart NA) is used by BLPAS1 to put
a statement into the intermediate buffer until it is filled,
afterward onto .WORK2 if it is available.

ENTRY: This routine is entered at IOPUT1 from BLPAS1.

OPERATION: This routine first determines the record length
from its type, then checks whether the intermediate buffer ‘
is filled. 1If not, the buffer is tested to see whether entry
of this record will make the buffer overflow. If not, the
record is entered in the buffer and its new entry point is
saved. If entry would cause overflow, the buffer is marked
as filled and the record is written insteand on ,WORK2 if it
is available. If .WORK2 is not available and a new entry
will cause overflow, the assembly is terminated and a message
‘indicating which card caused overflow is printed. If .WORK2
is avaiable all succeeding records are similarly written on
«WORK2 .,

EXIT: This routine exits to the calling point in BLPAS1.
2.3 OPERATION CODE LOOKUP ROUTINE (BLOPLKUP)

FUNCTION: This routine (Chart EA) searches the operation

code table to find the entry that matches the statement
operation code., The table, resident in BLOPLKUP, is described
in Subsection 6.1.

ENTRY: This routine is entered at location BLOPLKUP from the
new statement routine of BLPAS1 or BLPAS2. The address of the
requested operation code is an ine-line parameter in the
calling sequence,

OPERATION: This routine performs a binary search of the
operation code table. If no matching entry is found, the
address of a dummy entry is returned to indicate that the
search was unsuccessful,

EXIT: This routine exits to the calling program., The
address of the matching table entry (or of a dummy entry) is
returned in a general register.,

2,4 SYMBOL TABLE SEARCH ROUTINE (BLSLKUP)

FUNCTION: This routine (Chart FA) searches the symbol table
to find an unused location or the location of a specified
symbol, The format of the symbol table is described in
Subsection 6.1,

ENTRY: This routine is entered at BLSLKUP from a number
of routines, each of which provides the address of the symbol
sought and an error exit address.

OPERATION: This routine uses a ‘hashing® algorithm to develop
the search start address from the 8e-character symbol and its
1echaracter qualifier, The search then proceeds sequentially
until the first unused entry or a matching entry is found.

If the end of the table is reached, the search restarts at

the beginning of the table and moves through to the end, If
the table is full and no match is found, the routine loads

the address of a dummy entry into the output register to
indicate that the symbol table is full,

EXIT: This routine has two exits, both in the calling
routine, The normal exit is taken when the routine finds
an unused location or a matching entry, If the search was
fruitless, the routine places the address of a dummy entry
in the output register and takes the error exit,

2.5 CONSTANT MODIFILR (BLCONMOD)

Modifier BLCONNOD validates the multiplicity
(duplication factor), type, length, scaling, and value
list of a literal or DC statement. Correctly defined
elements are evaluated and then stored as binary wvalues
in an output table. (See Subsection 6.3 for the BLCONMOD
output format.) Errors in any element result in a diagnostic
code, the zeroing of all element fields in the output table,
and a return to the calling program.

Modifier BLCONMOD consists of the BLCONMOD mainline
and 14 logically distinct routines and subroutines, each
clearly marked in the assembly listing. They are identified
by their primary entry point. The names and functions of
these routines and subroutines are as follows:

1. BLCONMOD Mainline: This controls BLCONMOD processing,

using internal tables to verify modifiers and to call
appropriate routines in correct sequence.

2=35

10.

11.

12.

13,

14,

15,

MMULTY Routine: This routine determines multiplicity
when it is specified by the input statement.

MHOLD Routine: This routine assigns a multiplicity
of 1 when no explicit value is specified.

TTYPE Routine: This routine determines the type of
constant specified by the input statement.,

THOLD Routine: This routine sets up for a C-type
constant when no explicit type is given. '

LLNGTH Routine: This routine determines the byte
and bit length of a constant, using the explicit
length given in the input statement.

LHOLD Routine: This routine develops the length,
according to type, for a constant in which length
is implied.

SSCALE Routine: This routine evaluates scaling and
initiates value list handling.

CCI Routine: This routine counts the number of
EBCDIC characters specified in the wvalue list of
a C-type constant.

HHI Routine: This routine counts the number of
hexadecimal charactexs specified in the value list
of an X-type constant.

VVI Routine: This routine checks the number of
constants (i.e., commas) in the value list of an
A=, S=, Fe, H=, E=, or D-type constant.

Z2I Routine: This routine finds the total number
of characters in the value list of P- and Z-type
constants.

CERR Routine: This routine generates a diagnostic
code, moves it to the output table, and sets up for
program exit.

DSUBRT Subroutine: This subroutine calls BLEXVAL to
evaluate an expression and then checks for errors..

INTGER Subroutine: This subroutine sets up an
expression for evaluation by the DSUBRT subroutine
and checks for errors.

2-36

2.5.1. BLCONMOD Mainline

FUNCTION: This part of BLCONMOD (Chart GA) controls processing
by calling the proper routine to handle each element of a
literal or DC statement. The mainline also performs
initialization and termination functions for the entire
program,

ENTRY: The mainline has one primary entry point, location
BLCONMOD, which may be entered from the BLPAS1 and BLPAS2
programs. A secondary entry point, location FEXIT2, is entered
by routines within BLCONMOD to terminate processing. (The
input format is described in Subsection 6.3.)

OPERATION: Starting with the first character of the input
statement, the mainline uses a combination of table lookups

to decide which routine to call., A general internal table

is used to translate a character from the input statement

into a code number. This number is then translated into a
routine address by one of four secondary tables. Each
secondary table corresponds to a kind of element: multiplicity,
type, length, or scaling factor. The multiplicity table is
called first; the others are used in order as returns are

made to the mainline.

If any element is feund invalid during table lookups,
mainline transfers control to the CERR routine to generate
a diagnostic and prepare for exit.

EXIT: Final exit from mainline, and thus final exit from
BLCONMOD, is to the address specified by the calling program,

Initially, based on its table lookup, the mainline can
exit to any nine routines within BLCONMOND.

1. MMULTY routlne, taken when multiplicity is sp601f1ed
in the input statement.

2, MHOLD routine, used when multiplicity is implicit,

3. TTYPE routine, taken when type is specified by the
input statement,

4, THOLD routine, used for an implicit type.

5. LLNGTH routine, used when length is specified in
the input statement.

6. LHOLD routine, used for an implicit length.

2-37

7. SSCALE routine, used when scaling is specified in
- the input statement.

8. SHOLD routine, used when scaling is implicit.

9. CERR routine, taken whenever an error is detected
during table lookup.

2.5.2 MMULTY Routine

FUNCTION: This routine (Chart GB) determines the multiplicity
(duplication factor) of a constant.

ENTRY: The routine is entered at location MMULTY from the
BLCONMOD mainline when an input statement begins with a left
parenthesis or a numeric character.

OPERATION: The routine calls the INTGER subroutine to evaluate
the initial expression of the input statement. Upon return,
which is made only if the expression is a valid multiplicity
specification, the routine moves the multiplicity value to

the BLCONMOD output table.

EXIT: Return ig8 to the BLCONMOD mainline.
2.5.3 MHOLD Routine

FUNCTION: This routine (Chart GB) moves a multiplicity value
of 1 to the BLCONMOD output table.

ENTRY: The routine is entered at location MHOLD from the
BLCONMOD mainline when multiplicity is implicit.

EXIT: Return is to the BLCONMOD mainline.

2.5.4 INTGER Subroutine i
FUNCTION: This subroutine (Chart GB) sets up an expression
for evaluation and checks that the resulting value is valid.

ENTRY: There is one entry point, location INTGER., It may
be entered from either the MMULTY or LLNGTH routine.

OPERATION: If the initial character of the expression is

a left parenthesis, the subroutine immediately transfers to
the DSUBRT subroutine for expression evaluation. Otherwise,
it first isolates the expression by temporarily replacing
the first none-numeric character with a blank, and then
transfers to DSUBRT.

2-38

Upon return from DSUBRT, tests are made to ensure that
the expression is valid before returning to the calling
routine., If an error is detected, control passes to the
CERR routine,

EXIT: This subroutine may exit to either of two locations.

1. To the calling routine. This is the normal exit.

2. To the CERR routine if an error is found, This,

in effect, marks the end of BLCONMOD processing
for the current statement.

COMMENT: 1In a normal exit, this subroutine sets up the next
character for examination by the BLCONMOD mainline.

2,5,5 TTYPE Routine

FUNCTION: This routine (Chart GC) establishes the type code
for an input statement by comparing the current input
character with an internal table. The code is then moved to
the BLCONMOD output table.

ENTRY: This routine is entered at location TTYPE from the
BLCONMOD mainline when type is specified by the input
statement,

EXIT: This routine returns to the BLCONMOD mainline,

2.5.6 THOLD Routine

FUNCTION: This routine (Chart GC) moves the type code for
a C=-type constant to the BLCONMOD output table,

ENTRY: The routine is entered at location THOLD from the
BLCONMOD mainline when the input statement type is implicit.

EXIT: Return is to the BLCONMOD mainline.
2.5.7 ' LLNGTH Routine

FUNCTION: This routine (Chart GD) defines and checks the
explicit length given in an input statement.

2-39

ENTRY: There is one entry point, location LLNGTH. It is
entered from the BLCONMOD mainline when the input statement
specified a length (signaled by the character L).

OPERATION: The routine begins by locating .the start of the
length expression, which must be either a number or a left
parenthesis, If a decimal point is first met, meaning the
expression refers to bits, the branch to location LBITI

is taken. Otherwise the expression is assumed to indicate
bytes, and the branch is to location LBYTE. There, after
return from the INTGER subroutine, a second check is made to
see if a bit expression has also been included in the length.,
If so, the routine looks back to evaluate the bit expression
before proceeding,

After expression evaluation, the routine calculates and
"moves to the BLCONMOD output table the total number of bits

and the total number of bytes (rounded, if needed, to the

next higher byte boundary). Tests are then made to ensure

that the length value agrees with the statement type. If

the length proves valid, LLNGTH stores the °¢*TRUE®® length
(byte length less 1) and an alignment code (1) before returning
control to the BLCONMOD mainline,

EXIT: This routine may exit to either of two locations,

1. If the length is walid, return is to the BLCONMOD
mainline,

2. If an error is detected, control passes to the CERR
routine,

2.5.8 LHOLD Routine

FUNCTION: This routine (Chart GE) finds the bit and byte
lengths and the alignment code for an input statement with
implicit length.

ENTRY: The routine is entered at location LHOLD from the
BLCONMOD mainline when an input statement does not specify
length. :

OPERATION: This routine uses internal tables and the
statement®s type code to develop the total byte and bit
lengths and the alignment code for the constant. These
values are moved to the BLCONMOD output table.

EXIT: Exit is to the calling point in the BLCONMOD
mainline,

2=40

2,5.9 SSCALE Routine

FUNCTION: This routine (Chart GF) determines the internal
scaling requested in a D=, E-, F=, or H-type constant. For
all types of constants, it initiates value list processing.

ENTRY: This routine has two entry points,

1o Location SSCALE, entered from the BLCONMOD mainline
when scaling is specified (indicated by an S) in
the input statement.,

2, Location SHOLD, entered from the BLCONMOD mainline
when scaling is not specified.,

OPERATION: When scaling is requested, the routine validates
the scaling expression and sets up for evaluation by the
DSUBRT Subroutine. Upon return, tests are made to ensure
that the scaling value is valid before it is moved to the
BLCONMOD output table., Any error results in an immediate
exit to the CERR routine,

After the scaling process is finished or when scaling
is not specified, the routine sets up for value list
operations., The value list for an A= or Setype constant
must start with a left parenthesis; the list for all other
types must begin with a single quote. Any error found here
results in a branch to an error sequence in the CCI routine
to set up a diagnostic before passing control on to the
CERR routine., For a proper value list, the routine exits
according to the constant type.

EXIT: This routine may exit to any of seven locations.

1. Location CERR, in the CERR routine, taken when
an error is discovered during scaling operations.

2. Location FEXIT2, in the BLCONMOD mainline, taken
when there is no value list or when the value list
indicates a literal. This leads to the normal
exit from the BLCONMOD program.

3. Location CCBRN1, in the CCI routine, used when an
error is detected during wvalue list handling.

4. Location VVI, in the VVI routine, taken for an
A= or S-type (address constant), a D= or Ee-type
(floating-point constant), or an F- or He-type
(fixed-point constant) value list.

2-41

5. Location CCI, in the CCI routine, used for a C-type
" (character constant) value list.

6. Location HHI, in the HHI routine, taken for an X-type
(hexadecimal constant) value list.

7. Location %Z%2I, in the Z2I routine, taken for a P~
or Z-type (decimal constant) value list,

ERRORS: Any error is communicated to the CERR routine which
causes the following message to be printed.,

ERROR IN VALUE LIST
2:.5.10 CCI Routine

FUNCTION: This routine (Chart GG) counts the number of
characters in the value list of a C-type (character) constant.

ENTRY: This routine has three entry points.

1. Location CCI, the primary entry point, entered
from the SSCALE routine,

2, Location CCBRN1, entered from the SSCALE, HHI,
VVI, and Z2I routines when an error is detected
in the value list.

3. Location CCMPD, entered from the HHI routine when
that routine has finished processing.

OPERATION: The routine counts all characters in the value
list until it finds the quote that marks the end of the list.
If the end of the statement is reached without finding the
quote, an error exit is taken,

After the quote is found, the next operation depends
on whether a length was specified. 1If so, the routine
returns control directly to the BLCONMOD mainline to conclude
BLCONMOD operations, For an implicit length, the character
count is used to develop the byte and bit lengths for the
constant. These values are stored in the BLCONMOD output
table before exit.

EXIT: This routine may exit to either of two locations,
1. Location FEXIT2, in the BLCONMOD mainline, taken

at the end of normal processing., This leads to
the exit from the BLCONMOD program.

2-42

2, Location ISDIX, in the CERR routine, used if an
error was detected,

ERRORS: This routine sets up a diagnostic code for the CERR
routine when an error is discovered in the value list. As

a result, the following message will appear in the assembly
listing.

ERROR IN VALUE LIST

2.5,11 HHI Routine

FUNCTION: This routine (Chart GH) counts the number of
characters in the value list of an X-type (hexadecimal)
constant.

ENTRY: The routine has one entry point, location HHT,
which is entered from the SSCALE routine.

OPERATION: The routine counts all characters until it finds
the quote ending the wvalue list. If this quote is not
found before the statement end, an error exit is taken.

If the constant has a specified length, the routine
then transfers control to set up a normal exit from the
BLCONMOD program. For a constant with implicit length, it |
uses the character count to generate byte and bit lengths '
for the output table before relinquishing control.

EXIT: This routine may exit to either of two locations.

Te Location CCMPD, the CCI routine, taken at the
end of normal processing. This saves the address
of the end of the value list before passing
control to the BLCONMOD mainline for program
exit.,

2, Location CCBRN1, in the CCI routine, used if an

error is found. This sets up a specific diagnostic
code before transferring control the CERR routine.

ERRORS: If an error is discovered, a diagnostic code is
set up for the following message.

ERROR IN VALUE LIST

2=-43

2.5,12 ‘YVI Routine

FUNCTION: This routine (Chart GI) counts the number of
constants in the value list of A- and S-type (address), D-
and E-type (floatinge-point), and F- and Hetype (fixed-point)
constants.

ENTRY: There is one entry point, location VVI, which is
entered from the SSCALE routine.

OPERATION: To start, this routine loads the current bit
length value (available in the BLCONMOD output table) into

a counter and sets the value list terminator to agree with
the type of constant. A character-bye-character scan is then
made until the terminator appears; expressions are bypassed.
As each comma is detected, marking the end of a constant,
the initial bit length value is added to the counter value,

When the terminator occurs, the routine rounds the bit
value in the counter to the next higher byte and converts
it to bytes. This new byte length is then moved to the
BLCONMOD output table,

1f a left parenthesis is encountered during the scan
loop, the routine calls BLEXVAL to find the expression
terminator, and processing then continues with the next
character after the expression terminator. In this way,
VVI skips any parentheses or quotes within a constant. An
error here, or encountering the end of the value list before
the terminator, results in a branch to the CCI routine to
set up a diagnostic.

EXIT: This routine can exit to either of two locations.

1. Location FEXIT2, in the BLCONMOD mainline, taken
at the end of normal processing.

2. Location CCBRN1, in the CCI routine, used when an
error is detected.

ERRORS: The following diagnostic message is initiated when
an error is found.,

ERROR IN VALUE LIST

2-44

2.5.13 ZZI Routine

FUNCTION: This routine (Chart GJ) counts the number of
characters in the value list of a P- or Z-type (decimal)
constant. For a constant with implicit length, it uses
count to develop a length value.

ENTRY: Location Z%2I, the only entry point to this routine,
is entered from the SSCALE routine.

OPERATION: If a length was specified for the constant,
the routine merely locates the value-list terminator (a
quote followed by a blank) and exits.

For an implicit-length constant, the routine scans the
value list charactere-bye-character until a decimal point or
terminator appears. The number of characters before the
decimal point, not including the sign, is saved in one
counter, When the decimal point is found, the routine
switches to the loop at location ZMOD2 and continues the
scan for the terminator. A second counter now records
the number of characters to the right of the decimal point.

Once the terminator appears, the routine calculates
the constant length by adding together the two counter values,
shifting accordingly if the value list is packed, and getting
the total byte and bit counts. The total counts and the
length are then moved to the BLCONMOD output table before

exit.
EXIT: This routine can exit to either of two locations.

1. Location FEXIT2, in the BLCONMOD mainline, taken
at the end of normal processing.

2. Location CCBRNY, in the CCI routine, used if the

value list terminator is not found before the
end of input.

ERRORS: The routine initiates the following diagnostic
message when an error is detected.

ERROR IN VALUE LIST

2=-45

2.5.14 DSUBRT Subroutine

FUNCTION: This subroutine (Chart GK) calls the BLEXVAL
program to evaluate an expression and, upon return, checks
the BLEXVAL output for errors.

ENTRY: There is one entry point, location DSUBRT; it is
entered from the INTGER subroutine and the SSCALE routine,

EXIT: The subroutine exits to either of two locations.

1. If no error is found, exit is to the calling
routine,

2, If BLEXVAL has indicated an error or if the
expression proves relocatable, the subroutine
transfers control to the CERR routine.

2.5.15 CERR Routine

FUNCTION: This routine (Chart GK) controls error handling
for the BLCONMOD program,

ENTRY: The routine has two entry points.

1. Location CERR is entered from many places in
BLCONMOD when any error, except one in a value
list, is discovered.

2. Location ISDIX is entered from the CCI routine
when a value list error is found., All routines
involved with the value list (SSCALE, CCI, VVI,
HHI, and Z2I) make use of this entry via the CCI
routine,

OPERATION: When entered at CERR, the routine generates an
appropriate diagnostic code by checking which routine-finding
table was last used by the BLCONMOD mainline. Any entry at
ISDIX provides a value list error code in the call.

The routine next moves the diagnostic code to the BLCONMOD
output table along with an error count, then zeros all other
fields in the table before passing control to the mainline.

EXIT: Exit is to location FEXIT2 in the BLCONMOD mainline,

which results in a return to the calling program. In effect,
BLCONMOD terminates operations as soon as an error appears.

2=46

ERRORS: This routine, and therefore the BLCONMOD program, can
initiate two error messages. They are:

ERROR IN MODIFIER(S)
ERROR IN VALUE LIST

2.6 EVALUATE EXPRESSION ROUTINE (BLEXVAL)

The BLEXVAL routine consists of three logical sections:
the BLEXVAL mainline itself and two subroutines contained
within the BLEXVAL coding. These sections, clearly marked
on the assembly listing, are described separately on the
following pages. Their names and functions are as follows.

1. BLEXVAL Routine. The mainline of BLEXVAL, this
routine evaluates an expression, making calls to
the SCANX subroutine as necessary.

2, SCANX Subroutine: This section of BLEXVAL
evaluates an element of an expression, calling
the SGET subroutine for symbol information and
returning control to the BLEXVAL routine.

3. SGET Subroutine. This subroutine finds the location
of an entry in the symbol table or system symbol
table that matches a specified symbol. It normally
returns control to the SCANX subroutine,

2,6,1 BLEXVAL Routine

FUNCTION: This routine (Charts HA, HB, HC) examines an
expregsion to determine its value (i.e., storage location),
length, scale factor, relocation ID, and type. It also
validates the expression and issues an appropriate diagnostic
code if an error is found. The results of the evaluation are
stored in an output table for the use of the calling routine,

ENTRY: This routine is entered at location BLEXVAL from
the BLPAS1, BLCONMOD, BLCONVAL, and BLPAS2 programs. The
calling program provides, in a general register, the
address of the expression to be evaluated.

OPERATION: The routine begins by calling the BLBRRUP routine
to divide an expression into elements, each of which is
returned lefte-adjusted in a word or words. Routine BLBRKUP
also returns a count list that indicates the number of
nonblank characters in each element.

2-47

The routine next calls SCANX to evaluate the first
element. The results of that evaluation define the attributes
of that entire expression, and are stored in the BLEXVAL
output table. (See Subsection 6.3 for a detailed description
of the output format.) Additional calls are made to the SCANX
. subroutine for each remaining element in order to collect data
to compute the value and relocation ID of the expression. The
results of these elements are stored temporarily in two
internal tables, '

The loop beginning at location RLOOP checks for an
invalid complexly-relocatable expression and develops the
relocation ID for the expression. If the relocation ID of
an element is nonzero, the loop checks whether the ID is
-involved in a multiplication or division (an error). The
current ID is then compared with the relocation ID of the
preceding element and, if they are the same, a counter is
either increased or decreased by 1 depending on whether the
sign of the ID is positive or negative., When all location
IDs in the expression have been tested, this counter value
indicates whether the expression is absolute, simply relocatable,
or negatively relocatable. Any other value in the counter
indicates an invalid complex expression,

The two loops (starting at locations VALOOP and VS2LP)
develop the value of the expression, according to the
expression operators. In the first loop, element values
are multiplied and divided. 1In the second, additions and
subtractions are performed to develop the final value of
the expression. :

The remainder of this routine is concerned with issuing
diagnostic codes, indicating error type, and developing the
error count. The diagnostic code and the corresponding
invalid element are repeated in the BLEXVAL output table for
every error encountered,

EXIT: This routine exits to the calling program., The
address of the BLEXVAL output table and of the expression
terminator are returned in general registers,

ERRORS: This routine sets up four pieces of error information
in its output table: error type, error count, diagnostic

code, and error symbol., The table also includes any diagnostic
information generated by the SCANX or SGET subroutines.

2-48

Error type is shown by the following bit settings of
an otherwise-unused whole word:

Bit Set

31
30

29

28

27

Error Type

Expression cannot be evaluated; it is
complexly=-relocatable

Expression may be in error (for an
expression containing no elements)

Rest of statement cannot be evaulated;
improper symbol usage in current
expression

Expression is only partially evaluated
because of truncation

Multi-defined symbol appeared

Error count is the number of diagnostics issued for the
current expression.

The following diagnostic codes are issued by the BLEXVAL
routine itself (see descriptions of the SCANX and SGET
subroutines for other codes that may appear in the BLEXVAL

output table):

Code
1

2

10

11

44

48

Efssaqe
FIELD n HAS INVALID PUNCTUATION*
FIELD n HAS AN INVALID CHARACTER?*
FIELD n HAS A SYMBOL OR NUMBER¥

FIELD n HAS AN EXPRESSION WHICH IS TOO
LONG OR COMPLEX*

FIELD n IS INVALIDLY COMPLEX
FIELD n HAS A VOID FIELD

FIELD n HAS A RELOCATABLE SYMBOL WHICH
IS MULTIPLIED OR DIVIDED

FIELD n HAS TOO MANY ELEMENTS IN AN EXPRESSION

FIELD n HAS DIVISION WHICH RESULTED IN
ZERO QUOTIENT

FIELD n HAS TWO CONSFECUTIVE QUOTES
AFTER SYMBOL X

*These codes are taken directly from the BLBRKUP return.,

2-49

The error symbol, set up by the SGET subroutine, is
issued immediately after a diagnostic for an undefined or
multi=-defined symbol and will later be printed in the
assembly listing along with the diagnostic message. If
no such symbol exists, the twoe-word area is set to the
current operand number. This was initialized before entry
into BLEXVAL.,

2,6,2 SCANX Subroutine

FUNCTION: This subroutine (Charts HD, HE) examines an
element of an expression. Depending on the individual
element, SCANX converts a decimal number to binary; identifies
an operator or a special element such as a self-defining
value; sets up value and relocation-ID information; and,

from the first element of an expression, establishes
expression attributes,

ENTRY: The subroutine is entered at location RSCAN1 or
RSCAN2 from the BLEXVAL routine. The RSCAN1 entry is used
for the first element of an expression; all other elements
enter at RSCAN2, The only difference between the two entries
is in the setting of a switch to handle expression attributes.

OPERATION: The subroutine begins with a test of the count
generated by the BLBRKUP routine for the element. If only
one character appears, a check is made for an operator (an

¥, /s +, =, or *); the relocation sign or operator is set
accordingly; and the next element field is examined. An
extra. check is made if an asterisk is found in order to
distinguish between its use as a multiplier and as a location
counter reference. A quote is handled by part of the two-
character checking sequence.

The subroutine examines a twoe-character element for a
hexadecimal or character self-defining value (X° or C°) or
for a symbolic definition of length, type, or scale factor
(L*, T*, or S*, followed by a symbol)., For the latter,
information is fetched from the symbol table through a call
to the SGET subroutine. A character self-defining value is
stored exactly as received. The hexadecimal, however,
requires conversion to binary, which is done by dropping the
zone portion of each character and adding 9 for hexadecimal
digits A through F,

All nonspecial characters and all elements with three
or more characters are processed either as numbers or as
a symbol. The subroutine multiplies an integer by powers of
10 to convert it to binary (e.g., 264 = 2x10046x10+4x1),
then stores the result for BLEXVAL, The SGET subroutine is
called to handle symbols, and the information it returns

2=50

is used to collect length, type, scale factor, relocation,

value, and control information for the first element of an

expression. Only relocation and value information is saved
for symbols found in the remaining elements,

EXIT: This subroutine has four exits, all to the BLEXVAL
routine: a normal return; an expression terminator return;
and two error returns. One error is taken for an invalid
two=-character element ending with a quote; the other is
taken if SGET has found a multi-defined symbol.

ERRORS: The only diagnostic code set up by this subroutine
is:s

6 FIELD n HAS INVALID USE OF*

This code appears in the BLEXVAL output table,

2.6.3 SGET Subroutine

FUNCTION: This subroutine (Chart HF) looks up a symbol in
the symbol table or system symbol table and saves the
corresponding entry address. It also generates diagnostic
information for undefined and multi-defined symbols.

ENTRY: This subroutine is entered at location SGET from the
SCANX subroutine.

OPERATION: After establishing the qualifier for the symbol,
the subroutine calls the BLSLKUP (symbol lookup) routine to
find the address of the symbol’s entry in the symbol table,
If a matching entry is not found, SGET then searches the
system symbol table. Diagnostic messages are initiated if
the symbol remains undefined or if BLSLKUP finds it to be
multi-defined.,

EXIT: Depending on the results of the search, SGET returns
either to the SCANX subroutine or to the BLEXVAL routine.
The subroutine returns to SCANX when the symbol entry is
found or when the symbol is multi-defined. 1In the latter
case, SGET sets an indicator within SCANX so that diagnostic
information is passed on to BLEXVAL. When the symbol is
undefined, the subroutine exits directly to the BLEXVAL
routine,

ERORRS: The subroutine moves an undefined or multi-defined
symbol to an error list for subsequent printing along with
the diagnostic message, and sets up these diagnostic codes .
for BLEXVAL.,

2=51

Code Meanin

5 Undefined symbol.
12 Multi-defined symbol,
46 Symbol has not been previously defined;

i.e., an undefined symbol has been
detected during pass 1.

78 Symbol not defined, perhaps because of
symbol table overflow. This is issued
if a symbol table overflow has occurred
and the symbol cannot be found.

2.7 BREAK UP EXPRESSION ROUTINE (BLBRKUP)

FUNCTION: This routine (Chart JA) separates an expression
into its logical elements and makes a syntactic check of
each element. If an error is detected, the routine sets
up a diagnostic code to inform the calling routine.

ENTRY: The routine is entered at location BLBRKUP from
BLPAS1, BLPAS2, and BLEXVAL and from the symbolic analyzer.
The calling routine supplies in a general register the
address of the expression to be processed.

OPERATION: The routine forms a general loop to process

an expression character-by-character, using two intermnal
tables to decide the specific path taken for each character,
The tables also designate the character®s syntactic type so
that the two BLBRKUP subroutines (STORE and SKIP) can check
. for syntax errors. These subroutines are described on

the following pages.

The routine builds two output tables: the output list
and the count table. The output list contains each element or
operator left-adjusted in a word or, for an element with more
than four characters, in two words. For example, the expression
L°BOX+AB,3 would appear in the following form:

{L°bb | BOXb | +bbb | ABbb | .3bb |
(b = blank)

The count table presents the number of characters in each
element, righte-justified in a word. The first word of the
table includes any diagnostic code that applies to the
expression. For the sample above, the count table would
appear as follows,

2-52

| bbb0 | bbb2 | bbb3 | bbbl | bbb2

bbb2 | bbb0

The zero in the last word indicates the expression terminator,
which, in this case, is a blank. The zero in the first word
means no error was detected.,

Since the operation of some BILBRKUP coding segments is
not easily seen because of the internal table lookup, these
segments are described below.

The segment beginning at OP6 is called only when a
double quote has been found. One of these is saved and used;
the other is skipped by means of this segment.

The OP7 segment is called when table lookup finds an
expression with invalid punctuation; a diagnostic code is
set and the routine exits,

The OP8 segment is used for a character self-defined
value, indicated by C® or C@. The segment sets up an internal
table so that it accepts only the type of quote (°® or @) that
appeared at the start of the value, In this way, BLBRKUP can
distinguish the terminating quote, The OPY9 segment is called
when the terminating quote is found, and reinitializes the
internal table to accept either type of quote.

EXIT: This routine returns to the calling routine. The
routine loads into three general registers the address of
the output list, the count table, and the expression
terminator as described in Subsection 6.3,
ERRORS: Four diagnostic codes can be set,

1. Invalid or missing punctuation

2, Invalid character |

3. Symbol or number too long or too short

4, Expression too long or complex
The code is returned to the calling routine in the first

word of the count table. The calling routine will then

use the code to set up the actual error message in the
assembly listing.

2=53

2.7.1 STORE Subroutine

FUNCTION: This subroutine (Chart JB), operating within the
BLBRKUP routine, moves a character to the output list and
increases counters to prepare for the next character. Using
information given by the syntax table, the subroutine also
checks for a number of symbols longer than 8 characters.

ENTRY: Entry is a location STORE from the BLBRKUP routine.

EXIT: The subroutine returns to the calling point in the
BLBRKUP routine. If a length error is found, the subroutine
exits to location OP3.

ERRORS: 1If the subroutine detects an invalid length, it
sets up diagnostic 3 (symbol or number too long) for BLBRKUP
before exiting to location OP3,

27,2 SKIP Subroutine

FUNCTION: This subroutine (Chart JB), operating within the
BLBRKUP routine, steps to the next word in the output list
and sets up for a new element. It also inserts blanks, if
necessary, to fill out the preceding word and checks for
an invalid expression,

ENTRY: Entry is at location SKIP from the BLBRKUP routine,

EXIT: The subroutine always returns to the calling point

in the BLBRKUP routine, normally to the address given in a
general register. If an error is found, the subroutine exits
to location OP3,

ERRORS: 1If the subroutine finds the expression too long or
complex, it sets up diagnostic code 4 for BLBRKUP before
exiting to location OP3.

2.8 BLPUNC2 ROUTINE

FUNCTION: This routine (Chart UA) punches TXT, ESD, RLD,
DBG, LIB, and END cards, and links to the PAKTAP (or PAKTXT)
subroutine to block the object code on the AUXIL tape.

ENTRY: The entry point for this routine is location BLPUNC2,
It is entered from the PASS1 for ESD and LIB cards; from the
PRINT routine for TXT cards, and from PASS2 for RLD, DBG,

and END cards,

OPERATION: This routine processes one card each time it is
called.

If punching was requested by the programmer, the routine
punches a card through a call to the SYSPUN system I/O
routine, including on it the identification number indicated
by a counter. In the initial call, it also issues a $OBJ
card. The punch operation ends when the counter value has
been incremented, converted to decimal, and packed for use
as the next card identification number.

If the current job is to be executed, the routine links
to the PAKTAP subroutine (and through it to the PAKTXT
subroutine) to put a card image or packed TXT record on
-AUXIL. Return from PAKTAP or PAKTXT is to the instruction
following the call., When return is from PAKTXT, the next
PUNC2 call is to the alternate entry within PAKTXT,

EXIT: This routine exits to the calling point,

2:8.1 PAKTAP Subroutine

FUNCTION: Each time it is called, this subroutine (Chart
UB) links to the PAKTXT subroutine and, when PAKTXT returns
control, writes a card image or packed TXT record on ,AUXIL,

ENTRY: This subroutine is entered at PAKTAP from the BLPUNC2
routine,

OPERATION: The subroutine begins by setting an indicator
if the input is an END card; it then calls PAKTXT. No
other operation is performed unless PAKTXT returns to this
subroutine with a record ready for .AUXIL.

Upon return from PAKTXT, the subroutine uses a call
to SYSWRS to place a record on .AUXIL. If this record was
an END card, the subroutine returns to BLPUNC2 without
selecting PAKTXT for the next pass through BLPUNC2, since
no further writing is expected. If an END card is read
as input but has not yet been placed on .AUXIL, the
subroutine turns off the ENDSW indicator and recalls PAKTXT
to write the record before final return to BLPUNC2,

EXIT: This subroutine exits to the calling point in the
BLPUNC2 routine.

2=55

2.8.2 PAKTXT Subroutine

FUNCTION: This subroutine (Chart UC) packs TXT cards into

a buffer until it finds a non-TXT card, a noncountiguous TXT
card, or a buffer overflow. It then returns to the PAKTAP
subroutine to place the packed TXT card record on ,AUXIL.
All other types of cards, including TXT cards for common
storage, are presented to PAKTAP without packing.

ENTRY: This routine is entered at location PAKTXT from
PAKTAP or from BLPUNC2.

OPERATION: When first entered, the subroutine examines the
card image to determine if it is a non-common TXT card, the
only type of card that is packed. If so, the subroutine
turns on a TXT-started indicator, moves the card to the
buffer, and establishes PAKTXT as the next entry (for
BLPUNC2) before exiting to BLPUNC2, As subsequent TXT cards
are read, their text portion is also moved to the buffer,
This continues until a non-TXT card, a non-contiguous TXT
card, or a buffer overflow appears.

When the current buffer load is terminated, the
subroutine (OUTBUF) sets up address and length parameters
and transfers to PAKTAP to put the buffer contents on ,AUXIL,
The card that terminates filling of the buffer is retained
in a storage area. Since the next entry is through PAKTXT,
with the TXT-started indicator on, the retained card is
then moved into the buffer either as the start of a new TXT
record or as the next output to PAKTAP if it is a common=TXT
or non=TXT card.

Any card found before the first nonecommon TXT card
is moved directly to the buffer (at EXITA) and immediately
presented to PAKTAP. This operation handles the BLPAST
output of ESD and LIB cards.

EXIT: The subroutine has two exits. One is to the PAKTAP
subroutine for all writing operations; the other is to the
PUN2 routine when writing is not desired.
2.9 BLLIST (LISTING GENERATOR) ROUTINE
FUNCTION: This routine (Chart VA) handles all printing to

SYSOUT. It includes all logic to handle spacing and
page ejection, either requested or due to linee-count overflow.

2=56

ENTRY: The entry point for this routine is location BLLIST,
It is entered from all portlons of the assembler which
produce printed output,

EXIT: This routine returns to the calling point.
Figures 2-=1 and 2-=2 illustrate the general logic

flow of pass 1 and are followed by detailed flowcharts of
the programs that comprise pass 1.

2=57

|
i
l
{
‘- _
(i ey
| |
! |
{ 4
i |
! |
L. .)
- o)
! |
! t
1 T
1 !
. |
[I
’[" LR
| !
4 1
i |
| |
L RS
ot fom -)
i |
| I
1 1
| !
| |
I e el
[i
I ’ !
| !
9 4
| i
| |
i g
¢ - -
1
i 4
1 !
\
L) - -
[Ji + -7
i 1
1 !
4 -
\ ‘ N
v
|
1
i
|
' l
1 i ¢
CHART AA1.

BAL, BAL INITIALIZATION AND

(SHEET 1 OF 3)

2=58

ENTEL
f\//‘; 75@ — —— TN NOTST
' Aonrae
NP7
&7
‘ AERATCY
; SZE Ao
i AT ;
! (o7 72
! ZALLE 2~
; 2L AUEN
[w2 L7
! A LA LA
i NT 7O ALl
! B LEMETAS s AL
[QT U2
! e el
! B AT
AL Lo
Lot 0L
weLkd
LU
ra /M
o
! 1
1 i
1 1
1 |
1 L PR
; roil- -
i ANE 7B |
| OF T VYETEANT '
4 | nrsaonls” 70 §
‘ LEANEL i
! TAEGLE !
]
i
I
! A
] i !
| ! !
1 1

, v f
' I
. - -
(TRt -
i
R
| i
1
)
—_ b= e
ol - b=
! !
' i
PR |
[t L
i :
| |
1 Bl
4 !
! |
. g
I [- '
. |
i 1
1 i
|
L
T -
.
AL
GIETLTF
o neenveE
AL

|
I

i
|
|
{

e

&

SEQUENCE CONTROL

STEIN

\ i .) Nee e . AN
! ' : : . TS ' : '
T i | VG &2 L l G
X : Do ,S’z:’f,(’é‘ZS" - . |
: : : APCUIE D ’ i
1 Ty : 8% ALUTL i S
—— ey cad IR . R G oem -] o —~
AEXE *
bl T ez [- 1!
! SEZIN ELAL .
(| 79,8 Ao |
1 . i . TN ;
l ' [' &= =7 | !
i ! | f ST : ~ & :
I Sy _ L o
rC!- t : e -—~]| = r f"l—+-~ T ‘f—uf-— - - :
{ | [1 /(’6'724@\/ ’ : | \
+ 4 4 4 /ﬂ//l/f : 4 A
i I | | AT . | '
! ! l | AT L ; ! ‘
S _d [i] I o
BN 2 78 B AT
ol - l-(‘ oy YN £t - [(&8 -
{ | @ . ! |
! 1 { | : | f : ;
b 1 il t + . - 1 1 1 N
| o o o o
R Lo o N 1 J— 1 | SR | S, a
¢ bl [//‘///—:5')4 PRI //‘//7‘4{, [' ________
i ! ANTEE : ‘ : NTER
* Lz b G L
) : LA) NV
! ! CHAZET7N 2 E 7N
=l . s [, - ey
| | | i AT LT s :
' J j~ } D U2 A, ;
i | | | CELNL
: H | I waey 7 .
L. RS Loy | . dme ek
P R (6P 4 — -y i - ah -
H | | | Yis< 2 N TRALZE ;
! ; ! ! NS ACAALY AR !
| i X | 2 LOAL | RErno :
{ . | [} | BALPTZ P 4 5
Hl-- - - I RN & PR
r ! r | o @ ez : ,
i i ;] ; - Newens :
| , . ! 70 LOAL
: I ‘ LTS
[V- e R ey - — R !
'[- Y- »f]l [-‘J:"~ oo ey cdre 4 — = f—wa . R B
. ; . i I
| { | {l . ! ' . i 4
-? ' 4 4 - “ ‘ - i)
i : { . ! : '
voe—] ! ! ! ’ - b -

CHART AA2, BAL, BAL INITIALIZATION AND SEQUENCE CONTROL
(SHEET 2 OF 3)

2=59

EoT

/mwaa}
i B
A [e Lo - Ad i AR -
‘ . <z : i ' :
NTEE “r ‘
(éujaa/%——~—4€ex’ : o :
AL) T ' o k
- : - S o ﬁ%ﬁﬂ‘%

|sxe 72 SEFoIN f‘;fﬁzzmwmv
G G . | PsTe
: Ry 74
i o s 7
s <)fﬂ;ar/
Vo) LSTSHE
Wy <s7274
RGNS~
L Wz s
. Vv 77
BLL/ST 23%"“' T |
(4 i '
oy R Goz2)
5 . V7
AZfV <4 VAW ING ; i .
I ZAPE Lo J
(7 < ” c ,
Ve ATEL
e | R SN D CEToAON TP Gt
C ol AN 7 INAIOL- RO ASTSE A LY
Zo A7 | . oF ol
MEZ SEUAEN TS
-)/ O S |
_ NCHLD
; - - Fe
SLLET | [: e TE
; ! gyt 4 i
e ar] GEERE) GEAL| :
awoe L | o - N FIRET 1 5
; | BN | i
A A oo ! o5
o ; ‘ | | |
w3l 7 i ’ 1 H
A IAE S f | i 1 1
o N ! |) : i
i - !
//4A [ﬁfz Con \) Eyr /Vﬂ/g{//
£ ‘ K AT
2L A \ %
. VA2 77>
* AL . PETLT
4 QZA;(E//L 157 } C;‘j{;j[;,//'

S TION

oNFOOL ' ! ST, A2 '
7AFE 7O) : @/;9/)///'{2((2 5//6‘/
LeKERVES ; | :

— ! o { .

P i
| i
I i

:

|

CHART AA3, BAL, BAL INITIALIZATION AND SEQUENCE CONTROL
(SHEET 3 OF 3)

2=60

‘r]
! I
+ [
| i
] |
| S I
= - —
| |
] |
1 1
| t
] |
A |
r—G]—+—'—-r1|
| |
+ 1
| !
| 1
I |
rHl— A=y
b I
| |
+ 4
. I
| |
(I
fmdl = -
] I
| |
-: a
! |
e m

ARGE]L CHAL
GET

| s7eicZE
ST 7EA AT

78 BECH

N
IAIENT
2277

NI AASES
LN TV
N T AL

GALL
| |
| | |
1 +
| 1
| 1
L__._.-‘_____J
. r'H?-—! ''''' 3
|
]
I
|
|
[-Je-— M|
i i
i
3
1
§
| S
CHART AA4,

.y

s

LEFT
42T/ T
o oLE

2
Vs

25N v

———

AT KAAL

STHCK”
TN
Ao FZ

[

2N
AT AL
LN AL
L2

VAL AA

TIA LA TE
VoEVAA— o
L USTSTON

AL

SET e
KEZTT O
TLE F

HEA L

T A4S

ST i

SFTACK
L
A AR

yoent

EX VAL

o AN A 447
AR
AL A . av. 530 |
=
ZELou! . R
= r» Ha -— -
FORCE _//4) ;f ;-
ETEZT “ !
SALLLE |
1
Yoo Zv74 i]]
S s A es
QB@(/‘@A/ ;’oa SNT :
AU A4S JL //./;/ff[;
L '

BLPAS1 INITIALIZATION

2-61

—— e e —— -

|

r- YRR -y - L7 + sy [A - Ad .« i A Bl s .
| M i ’ 1 i . | : | :
J ! ! f (@R e b i
, i ; ~ EXTSTATEGANT : - ;
. | - i {
O | - U [P | [|
o L ! 3 sEW NEW STHTERYN T e -
B 1 ot t At = i Bl t EY F j
| H i i ORETL CAqL ,) k i !
J | ! . ‘ i .
+ ! + i i " : ;
| i | | 2 PEAEAN T . . ' | |
; 44 | ; i e | i i !
L n f o e il N RN Lol
xRS o e A N
N THALIZE o B | 72,72 WAL _ B
S =T ! A i i
| ey & ‘ : MASEN T , i
2/ AGEA e i Yo gar)72, i J
e e e e] : [——
L (08 A== L (05 -+~ -
! ! ! | SWE : ! | !
' |
+ + 1 " SHTERNT| : ' T +
P : oo Lneess ! ! ! !
I . L _ R —|

P77
A7 D NV
V27w
. 7
eFl=
1
Gz
NSEL A2
Loy
Gl — - 1 (. 7 —
| i
| ' | i ! WY 2
1 1 1 i g T, i e
| | , 7o
l t i |
b] U e St Lo e AGE
r—Hl— m [M S HA - 4 g
{ | | | BLOAY RGP EqdS | A7 ONTROL
| i | ! SEALLH ' YL VI
4 v ' 4 20 - BCOLEAR
! | ' ! THELE e : 5 iy IS -
IL_ ' ! A4 T ' | TN T WAE
- 4 - - - 4 7 e - - - b
Ct T P b r e gy ad
| | H
N)) X 4?4334{ RNT
: ! i !) EP77AL a4
|
Ly _J t = L. 4
— Kl - [I 4 - -y [oA q [-
i t T ! ' I 1 ;
! ! ! ' ! : ' (7R N
4 - i 1 t H i +
: : g | , ; ; ! \& X
i I X !
| | ! 2 | . |

CHART AA5. BLPAS1, BEGIN ROUTINES, PNTCT SUBROUTINE

2=62

! A w" 4 : Al
‘ : ENTE
!) oLz
: f seE
LT - \worE
: Z
22
i 4 - . .
! SAE
; 5 NS T
; i LENZTH
. , af 2
- v d
r Cl— =~ - {-~(‘,2~ -
! | . i
5 i 1 ! N7 v !
| | !) LENGTH !
\ | | v o~ g
| U | S J _ __,:
AT
[it ~De-- - Vi - = —
‘ ' E { ' A IV NONE] |
! ! CEFLACA AL L7 !
1 1 —!ﬁ%ﬁvdﬁ’” 7 A7 K
! : NGRS ALALE LD .
e "_H) B N2A4e Y o
B e [[E2- e
t | i |
| I ! ¢
1 ! 1 ;
l i | i
' 0 | i
JE O S T 2, S .
rh 1 prfees . A AT e
| i
: |] ! WﬂMMET‘—__{Zj)
! ! | | SINSEL .
I) I IO | el
STTESLO
Gl — - e B
! R ST NONE GrsiAdD AL !)
; j Ll AL o | SEHACY ' ;
H | 2 TS [Eopy| SIMBOL : :
| } 2N MO 4T TAELE : {
i e
A A v UZETE SR
t N 1
(O | : TR 7E : '
+ ! 4 : ;;u&z ' -
| ! 0 BLE
.]
L i S ¥ VTR L
L [rd@em oo P Pt
] 1 |] 1. \
| | | : } | !
1 + + 1 - I
; . \ |

ANOTE £ en%QYfzﬂ/A%a¢v4&9

NOTE 2 <9W%VA&%/M&V§A&%¢W7A%g«z
NOTE 7. ENTY FARAMS NEW STANT (445 A4
: o PSELL0 (42

CHART AB,

MACHINE OPERATION ROUTINE

2=63

o

(SHEET 1

-
|

|

+

i

! e
r Gh -~ 4= -

|

|

1

|

Ly

(MY - -

OF 2)

AN A e e

: !
TP R ; '
DERANDL : “
SZZIN .)
. - ‘_+ - —:
o ./vc/a/-v? .
e UWAELIGE Lo ;
+ = DPERANLD el a‘; - |
@ [z |
\SER [Nk AEXT | R L7 '
; | ST EASEN - '1 e __}
Ve o5 6&(///\/9&/ ~Ca—4-——7
A7 A AP SHVED lr 1
p’d N 1]
STATEAAT [LENEZX i |
B Lo T ! !
. . e
. LTENL
I - 2077 A L
! ! _ ADAETE?
i i) v LITERAL
N | -
L O
| e sy s -
2 MY oo [LER P Tl b
6) SN ‘ 1
I
H i |
TP
e o’
CFZEIND
Swiez &2
EW2ASK?
G4 — 4— ——
!
I
+
]
-
SO |
R4 — 4 ———
i
i
J &, !
SRR |
L '
o R
\ 0P AL L |
2 WD, fire j
AT 5L E !
VAN J
[o ——
¥l @ S K? 1 rr3- - Kad— 4+ — -
] :
+ + +
| | !

- !

| 1 |

| | f
+ + ’Ir
i |

i | |

1 i ..

t

CHART AC. MACHINE OPERATION ROUTINE (SHEET 2 OF 2)

2=64

A= - A e oy L AX) : PEE - [Au A T
! ! ! ! f ! | ' | :
i | ! ! ' | | X !]
1 i i 1 ! ! ! | , !
! | I | i ' i {
ooy — S VO | | U Lo o (S |
-8l — - i , Sex sy
r TABLE LOOKUP PSEUDO-OP ROUTINE |
| - OP -COD GO-TO OP -CODE GO-TO |
4 : .
I ONG MNEM. OPERR -ABAS END END AOA3 i
L GNORE, PASS1 ACB1 ENTRY : ENTRY AJA2 B
- == EXTENDED BC . ABJY4 EQU,MAX,OR MI EQMANL AKB1 '
XTENDED BSR ABJ3 EXTRN EXTRN ALAY
—cl— pCL DCL LIB LIB ADE1 e e —
o] ccw LTORG LTORG AMA2 ;
{ cNoP CNoP AFA1 ORG ORG AOA2 |
H coM com AHA4 QUAL QUAL ADE3 +
i | CSECT-|._ CSECT AGA3 START START AEA1 !
I DC OR DS DCDS AIA2 TEQU .. TEQU AKA1 :
L DSECT DSECT AGA?2 A s -
=
!—uz—-—r———l Fus—+ ——n oo ' r‘05—4———"]|
| | | ! ! |
] [| | ! | !
t + t t + t +
. | | | !) ! '
| !
| S | i____;._.._ll !_____;_____J l_,___+___._J
- £} —+ ——— e —E§— 4 — —
ey = ’ [evrey : R
o’ ! ‘ N a1 ' !
FTEL 2 | ez . X
o (42 oP () o
JBSH T .
1 |
QERAND i i i
fELL o : ! I
|
W AREA] 1_-_+,~J
AU s 65 1 — -
mw | T
: i
27 T AUNCH, - { {
o T vARIABL & i | 1
AN ARE AAELLD ! L ;
A o T
LIGEND o o SIGAL
LAz AL r] I AP VOXE e
a7 : ! GAL N V2228 s
+ + -
L5 ; 1 COMAIN. agenase %
CARL ! N AEA
- ey — e
R B P2 = R C A Fed =1] Ir'\")" — =
I i ! i | ' | ' M)
[i i) N : (70 FINLSH
72. N 4 78 FINISYS
KM%%%&ULAQY ! ﬂ;«%mféﬁAQﬂ ; ! Q%ﬂmtﬁgémq
| 1 | : \] i .
(I 4,,___} Uy [b = [R
CHART AD. PSEUDO ROUTINE: LIB, QUAL SUBROUTINES

2=65

: Y il A BLANKS
j;i?pA”“f Y5 NOAAYE
fEA A
- e o
A, j NArSE ,
T AL AL A) i !
(2 il HALILAZE] ; |
VZALLL STYALST . - ERLOL . :
H 1
. L PR | =~ | |
igaaid - oA - ro7EL . - 05 - A — — -
: ST ST 472/ 70 AONE ‘ ‘ ENTRY FROAM F
y B 22 27 . X ASEULO OF (A2
o7z : ; : T
o Al 5 : ’ ! i |
. N — e . -
o ‘ Do 4 - =y SD5 — 4
' sUSLKP YL 2SS, { j
: g SEART : | i
: H SIRIEL. ‘ H T *
| | TAGLE : Lo \ |
e i : IS I [
I N S2F2257 .
LA e Ve ! ST, NP rr&‘+"_“]
1 a7 @ ; ! ! g : !
. \sTAT . ' ! ! TASLSLE ! '
Lo ! . ; ! ! oLz on 1 !
o T - e - RN _—— — | ST
- F1— - ﬁ/V/(- L. = Cg
b ' 7D (N E STAVTRY ALY o - T
AL UL 7. ' ‘ | !
/ ~ UGN ! + H 1
Q5 7E Ao 7 ‘ i ? |
I - S |
BELVAF
S :—51~f7-*, - 65 ==+ ~~j'
a7 . 1 | |
HNESTE - + { i
weo. T | : ! |
[G
74
12 722 NONE yﬁ'gﬂip r Ho 4“,
T S~ TIAAE : |
\Zahasz? ez .
/f/ﬂ. /{l 7& /I/a . :
L
sys7ReT) .:
e ST A oS
%f’xlﬂé "@,ww ? !
52 S AE‘W;’” 42 ’ ! 4
| 757 ¢ St i AT = |
ATE LA, !
— AU =) -
LKL NonE e e Lot rre
V4L 5N AT AAUSTEL 27 : : i
i~ s DAL f I T
Bt N PARY Loz 7N e 72 : x : |
i

CHART AE1. START SUBROUTINE (SHEET 1 OF 2)

2=-66

£ - ,
i
e
(3 4
[
|
!
e
B
|
=7 o5
ATENY 72
g
(—'.L'S—* ——
- |
I
R
}
— U |
ASK Foe
e/
TAAE
r*GI - - -1 r Ge
] ! |
| ’ !
+ + +
| ! |
| ! i
[UN Lo
- — -
! ! N 2T
‘ H ol AN
! ! oN THAE 4
T
(Al m -y o i
! | OSSN
4 . T 7o ExsT T
| J TS Q;£§;§>
I‘. 4’ J ' !
CHART AE2., START

. A [An
; ' i
B ! |
. . |
1 . o
|
e} - JA S,
P I rae -
; : |
. K 4
i i
" |
U | [
[Ca— - E r‘C5——1*
1A | !
: I |
. . H
H i |
! | |
O S [
o DQ__. * - .? f_Db e A=
i l
i 1
| !
4o [N
P ES— 4~
i | |
|
! |
! + +
i |
! !
Lo .| L. 0o
A p g
. L AL OR ot
. s ALREALY
RIS TIONEL
j 7 OHARTOL
No7E 2
Gam o - LB OR AP
| HAVE FREER
7 (2l
! t
H |
e 3 (- -
B) rHY oA
: t
! |
i i
| |
JUR—— L R
SR B s '

SUBROUTINE (SHEET 2 OF 2)

2=67

. [: , . g .- A
' ENTY i . ; ;
A ENTES N W = 74 , . o . !
(cWOP)' AL , ‘ : |
: (AL ‘ ‘ ! : S .
| S i A— - . . e - R -
7 : .
P ‘ T — gt . R [T
ez A2\ 205 ATy o !
EVAL LA 75 N et R] "
e SADIAL === =logz g - : . :
GAEXRZANGD V2 PR ' . i
v o | SO
€5~
!
|
+
i
|
ey
[05 4=
l
|
'
1
|
Loy
ES— 4o~
i
i
+ -
{ P
i 1
[
x R s — o [- W R, T SRR i :
AAVAL 82 = i :] N : 7Ry
EVALULNATE i (7 07 N\ | __ |meons
. Ggaenor” \aterzx Psier20 O
A X
GLoK SHVE
DTN D ws7e
stz LENEZT &
-— [H5 --
1 .
) GFPAELZ
_J Lo .
f i) - I 'r’Jj T
1 i t
| | ; l IR : : b :
i . N H NN TED) . ,
ll_ j :L' ! DLNL24LY . ! |
. e A — e - - —— e} — L s | [|

CHART AF, CNOP SUBROUTINE

2-68

. . oSCIL
Al i - . B ' IR AN !

SES L I .
PR U] | o [(ENTEY .
e : .
SEART ‘ o f
. V- - e
) ! B - LR :
SET L .
oS B Vo a4 |
BB THEL £
o” (42) SEACCH - ‘ '
KIS e
et e |
] ANKE 2 LY FAN -
T STIALTL . @%ﬁ;%%g ao”
B ML AEA |
@
Dl e o - : - CULAE
L ‘ R _ [Sarial daidl 111270 MONES
! : sAvE o 7
i : cgeay —{ |HAE oy
i i NANE SIArGL o
AL .
P =9 765757 L?
r"'f‘ = - T
‘ 22N ons
G
LS TASG
! Ny 714
R (-FH—f - -
; i ; T ASAGA
. 4 SN ALY INE
: ' : P ATEL
IL — +.___._j ‘Lﬁ_"—.:,, 1
[A — PGH - - -
1 i ! |
| . | i
* + 1 N
! : ! :
[L
¢ HY - [THS — 1
| ! ! :
1 < ‘ 4
i . | i
| SN L

CHART AG1. CSECT, DSECT SUBROUTINES (SHEET 1 OF 3)

2=69

SET L OF

7

i

[

N «
) :
i 1
| SO 'Y
[e
I |
| .
4 -
' .
| .
[Ve
-kl

CHART AG2,

CSECT,

t

- — d -

|
|
+
|
|

NEWLILD

)
| @222 /p

N QM
REZ/y

TL0 NONE

7o
<o @ wass

A
V7 2 et
. 6F

GO -t =y
: !
|
ot ¢
; :
[
MG = g = mem
’ i
|
it
!
| ;
SO
=39 ==
! i
i 1
i
— '
v e
72
NEW e
' I

DSECT SUBROUTINES (SHEET 2 OF 3)

2=70

A1 757 Gt A

27 . YA
N T §Epdd
2N &
i AANIE
T
. . b %
i SET P C oo :
i ' ZVATNOST/ D : : .
| | é# I Ry :
Lo] Lo o
S L
-Cl— 0 B [~ Cd = A
| , A7 | inEs | i :
| ! AT ” ! ! i
! | 2 727 j .
L. _ S . e e o -el 4 '.,-;..-_.,._...,.g
) e e —
sET AT
oveeldy —@
SR TS
. IR Tp— A=
OPECT @ , 4 -
B4 ; i i
e — L.,_».{_.,_. L
(- [FR 4) R [Fd— A - —
| i I . ! } | ,
| | | | | i | |
1 4 4 1 1 4 B 4
| ! | ! | | ! !
I I i | I 1 i H
b e e Lo | : [| Lo e

CHART AG3. CSECT, DSECT SUBROUTINES (SHEET 3 OF 3)

2-71

. A Y . Mﬂﬂ(é:z, . N
S ’ : ZERD LOC. SR AL
) : e ov A (ENTERS
B : cont ST (Consd 7)
i _:- I J' edron 7/-/5[5' o s

NOTE L

Bl 4 Centsae
' - — - . - '
1 A2 O " e e

" ! 22 . Lo g
i | DINGSTIO s s2e

! | e c-”xg’%/

b - |

Sl A= = -

Ol - . Srzoc
i], SINTRY AUA STERL NPME
| [CREATE 2
t 1 &Y
! i
L i
r N 1
i
[
AI'
- ‘. i,
Lo o (..
,r-sa-4---—»,' A
]) | i
: H i 1
i I |
. N by L 4
r @/&MZ" ‘ e s
(/72 7~ Rrx ??;’0 %qﬂe . | {_
2507 paisag éjj 7w 1 i
. |onrE CRD oy | ATy i I <
7z () REZN ADDGEZS o L
B
75 . -
(o |\ eswe Gt - R AT ,
|I t i) gf[&'f/& [1 Il . !
; j) ! ey ;] .;
| t) | 72 cetils. i ! | !
! | ! | AR oA : | | .
l___.;...,-l | 1 t —_ — .1 {- f
P K2 4 - - P P K
|] | ' i t H | {
| | [[VW% ‘ X ' '
: : H ‘I \errne of sy 1 'l .
I ' ' ! ! (
o) i ‘ |

CHART AH., CSECT, DSECT, COM SUBROUTINES

2=72

2o

g 27
= 2z
qzzgi. e | ol v 047
, ‘ IND e D SIAEL,
L1 (N
|
- . .
Ty LT ptteD GXL !
V224 SIAULLATE R
Ll DO NN T RETLINLS
024 0) AODVTERS ‘
V27777 (e
)70 WOV Gz AP
y AT
PUIBEL
5?5‘,2?‘/”” TAGLE
I - -
ey e
/V(’A/df%’
bl
. £ - -t —- -7 3
, ‘ [5Z7 27
| ! ovigal
UL oA A
! b 7 Tt 2
s O
2
L Bz
' i NEEATNT TN A
| i VA T B A 7E
1 ! AT {ﬁﬁ?
| ! Lons g v 2%
FG) - e e . [T
| i H i
| l ; |
¥ 1 + "
! ! ! !
L] oo
[onia) B - |
. , Az L !
' } Y ‘ j
: { L TELAL . !
[_,+___'J I e
[t A i V2 B! bt =y
1 | } | I8 i
. . 275 * ;
Lo ‘ %./ ;
Lo i , .I : .
CHART AI. DCDS SUBROUTINE

Tanizl qud7

2=73

- —
: f
S 1
[—
t, i
0 |
: i
:)
' |
[S ——
bl
L7420 L NONVE
FROTELET
— FIATEL
TR
NER LY
@
: :
i
[|
= h = - =
| |
i) :
5 +
i |
! |
SR - |
IS St
! !
i [
; i
| 1
Lo oy
A
te I
| !
' 4
I i
! ,
| O |
[e
! g
| I
{ 1
| |
' !
S ' .

o REGY TS
@EE—
\EN7RY LD o

ENTRY
SET 2

AAL P AL
2z
| ENTRY &
| e 27/

CRR N
TN >

27
ZAGNOSTHT
NO. &7

CHART AJ,

ey

; T sol)
' B4l B
! ENTRY

i ZABLE

ENTRY SUBROUTINE

2-=74

il e 1

1 i |

! ! i

4 4 i

i { 1

I i |

ey | | U |
S HA-- 1 — = —HA - a-— -
| | !

| i !

+ - +

) . i

[} i :

e e o e —

ErofLOW

(7B ~wsH
LICH. O A

s Al el

M il N = Ls
- L BRLPO op (AD

e e ——

SN AL

02,7 e f“5'+“"j

A4 72 ;
\AA 77T
K7 V7.4 s ;A | ;
] ']
P 41/ P A, 734‘*“‘*7 rDS— =
7z 247 sEAe ; i ! 5
ATELD SIAMBIL . ! . S |
<777 7ABLE : i ! | i
) : . : ~ L__}__1
EVIL A7 " [A2 - S
EVUATE VUL 7E '
Vsl NEXT -
HEAND ‘ i
=Tl S
k !
|
: :
B I
:11/3255‘
N W
BNORE
S 7eH
|
¢ M s e g
|
]
4
V20 o C’Jrc/‘ ;
AN AEA S
o Tl s B =5 - = —
.) X]
B AT ' !
&y 0P agzy . T
e o Lo]

CHART AK. EQMAMI, TEQU SUBROUTINES

2=75

EXTRN

SET WP
RS S7ERS
Ve -
AND SN
[SHUE CLR LA ENTRY
Preard |y
TR FoANY. AL
A’(z’//vaj oo AL
()m&%“ r
7L i T
; !
| AT i -
AT ! }
7B STEARH e i
P . S|
4 “smesan
AABRKLP AL STFLLL NaNE
YALIDATE : R0
\EXTRN EX- ;%gg%
(RESSN oERELoW

1
m
N

i

;

7

|

|

Lo

CHART AlL.

e — —
NEX 7EX

w are 7o ﬂ@@?AEV
RZLE 1D EXRE A2
N Cennty £ & DAZ
RN FAELL 1D
o
sty | :
SIAABOL ! i
TABLE ! c

SO
RN L LSR5
TR
rac<z ot Vs /4
ERF Lo
e HG -—~“
e
: |
i +
! 1
. t
| SN
o I J4—1——'——1'
APDL 7% ’ ﬁ
/D CTR i E
)
K3 -9 [fKA—+ — =
| | ;; :
+ 1 + 4
| | " |
1 | H |
EXTRN SUBROUTINE

2=76

INAT S
AU~
L S |

4
o=
7

EXTFN

| S L ?
2T & £SO
O N ety
ey

SAVE A/
NEXT VAL
OSEC T

EL A28

LITANZ

ey : SET 4P R g e vy
s ___ (Zwr=e = (TS N ____| et enve
RO L7ORE @ D w1 4/; . S2ECTN
op (AD) ‘ ‘ AULTIALEST . |AaTE .
[O | [S
272 GB '
o e &) NG . CBH A
Y B =z v U
' LN L7 LENG TH ! ' ' !
1 7 i + 4
; : 5 e ALK FOC 1 ; | {
Lo www%g/ K2 7 L]
-C5— +———
| 1
I. !
1 +
| !'
{ g b
w12,
—Dl— +— — l//(/]?’)/ D I—-DS — =
r ! AL ATAL PR — . 1 '
| | VdLd7 | '
t + 1 +
| | ‘ ,
! !
 DSRSETIEU | O
FEE— A —
i
L______'F,*M_.J
rf9 =
1 {
| |
4 +
| !
[|
S ——
3 G5 — 4 =y
! |
4 4
i
! |
| I
Hi- —- - HG - e = — S5 — 4 =
r B STNIR) Al &7 prmrTT [‘
n | R 7 CRLE T : ! !)
N i oo, B ety : T f
! 7Y, | ! '
L_._.+—_-__] = 'Qy - L,,_._F___._a' L. — -
" : :f//?'/ﬂ . 4 J ,
-4 - —-] — = T I N 5 =g
r i L1275 45240 f ; e o ! |
| | A 1 i 1 ! I I
4 4 2700 f * ! 1 " H
| : \TATEANN T : (i 1 | }
L - [| | | L. 4 o—]
r~K4<""—-'} ’K‘»—i— |
t] I
| | | |
4. 4 i 4
i ! | X
1 t 1 '
4

CHART AM.

2=77

LTORG SUBROUTINE (SHEET 1

7oL

Leoe NEW

llllll - “.Ilalvvv‘J “ﬁllm[.*lll.ﬂ. ﬁ.ll.*ll.)_u mll|+ —_— “'
- - - + % % b % % T 1
S TS A
ARSI S TN R AU S AN B SR
L \
e —— == e Fo=TTeT)
| ﬁ J cd J | | Y
i | i ! ! | _ | N
¢ : L , i ¥ + N
, - | ; | i | 0\
2) & L A o A | ‘W
e] e e C e i e A
R N R vy
N N it
AN . & ANRIIR N
Y A et] e
R

B N
’ Xy RN
XN
yEasy [8SR
.._.- W-J [
; b !
: Lo 3

| i |
| = d

Sorn 2

FINTRY 474/

PR

e

[

s -

_—— e ——

ﬁllwnld

Fvd—1 -
1
H#
I
i

-
|
|

+
|
i
ey

I3 ==
!
|
+
|
|

[P
.

—— e ——

[

.
!

2
SR
|ttt
L
|

+
|

<

x
L. .
Lo

LTORG SUBROUTINE (SHEET 2 OF 2)

CHART AN,

2=78

o7

045 .

(ENER O\ ___|Feens
\oR& ASELL LD

[enzey

o

SET P

T2
O OSPERE -
NP SN

WEVAL VA2,

EpL A TE
XF EX-
PLESKTN

V17278 NON
e

DU
ANC. 66

e
TP

ey 2 e
70 A Lol
SeE Daf _
vALLE (B N =L
W B
LIT TR

CHART AO1.

ENOCLX

| 7202
TN T
7 T2 AN

STAK,
\ene
a4%r

2 72

Sk -

2=-79

\ A7y TR
ey

AL

AT ASHL

AT END
\ S TEAENT

(R ATAL
207 NLIST
STHTEARENT
AC AEZ

e R

)

'

ORG, END SUBROUTINES (SHEET 1

\ 7

(EX/ 7 Jo W72
\ L INTRL,

| 2 7 22}
Sge gl
| AECT
AU

oA
LT ORE

1 (ST
¥ G/ 2.
(o7 i)

i

ST
L8 4L
T8 EL5IHT

AT AL

A
7o,
G L/ST

ZEL D NI

AL

OF 3)

e

JRPSU T ,

PSHARCN

SE7

/1,517/(/%///\/&
aars
&5
By -7
{
i
:
|
AL 7D

a2 0
' :
!
1
Lo
. [t |
NS !
i
e
- R T
! g]
‘ S 1
I
| S T L h y;__] | ,+______]
@/yzm
[R s |
SE7 SE7 | !
crE (| (P : !
[A |
; 57 o K - e
i AT i !
. /AT j '
e | e
J'—+—~j: /g/t/ﬁl/73’ :fu'a -
' a7 ! ‘
: NwEe 45, H i
é L hoRE [!
_ 4 — —-.d [P - [—h —am e
[?éﬁﬁwzf
TR ‘ v |eERAN L v -

. : i
i o
i + 1
! ' t
| |) ;
. ! | ’ .

CHART AO2, ORG, END SUBROUTINES (SHEET

2=80

2

Lo
r‘BL‘ i

|

|

4

|

|
e e —
4--

V774

ﬁ‘,.-._;‘___._
rDS —Am =
| I
| i
1 :
| i
Lo
ES— +———
] .
i
+
!
!
e e e -
["FSMAL_—‘A
i
|
+
<
i
Lo
rG5 -t sl
i
1
|
|
r HS -~ 4+~ —
I
1
|
|
[i
| .
L
i
i
1
[
!»'(‘l i
I
4
!
|
OF 3)

YAl
TN

N leeap gans
ool s/

AL

27 LS
AS tvokE| -

‘zl@wgv

T
LU TL R TLS

V=77 ;
e
AAAGE -

T
el
n
4+
s
|
[

e 3

VA7V p— ! 2 | T
N, | i
LIST P X N 1 H
ALALS ! ' J |
P -y [P 2 B (Th e —
sz7 ']] |
SANCHE ﬁ ! . 41 : ;
i

;1'44 i i : : | } :
= —. _ _J S O, _J L — 4 ——

o7 ‘
—Cl — R ey R B ~Ga— 4 —
| | | 1] 1
. ' | { r ! ! |
<. + + + { + 1 4
b | i ! t | | |
) i l t] | | I
: 1 ! ! ' ! S PI |

CHART AO3. ORG, END SUBROUTINES (SHEET 3 OF 3)

2-81

BEL] TABUE Lo 7

CHIELD
NI

SEE

i ACTEL

‘T

LEND

ok 2 1F
AVALAELE

SIBOL TABLE LRBATE -

SYMDOL | CURRENT

LOCATION

HIGHEST
LOCATION

o 74 8 o 1

1

AVE ST
LB /D e
Loz E7&

7 P
VTR

PRAZCANS
Loc a772)

el Xy
|78« sc4N

Lo

ZERO
O7ECT
NTRY
Loz @7

7
!
i
!
i
i

AL CSE7
LENZTH
7o R
o 72

TELWARD Mo

ALITN

-

cTDVE
7o /&7
ASECT L

N (RO
UM L
270 START)

SRR RS

EXTT 7T TNSBOL.
oz z//@{% 2 ¥

i

R

|-
: NOJE 2.
! !
' 1

CHART AP.

SET P FoR
SIEL 751
SCAN AND
SECT AL
LR AP

\ toow cr”
\esecr
| &y SyAr-
Bot /D2

Yoo 4 . WOTE L. ENTRY FOA END

SBETN (Aook)

ENTRY FROA
OSHETT TEL, LA
arz)

2=-82

ARCIE
GASE 72
AN

FATAL
2%

e e

-

|
I
I
t
!
i
!

INTERLUDE=TABLES UPDATE

LEXIT 70 £5DN
G

B/ 7INVE AP

-
i

: |

: 4

! P

|

P e =y

| !

I i

i +

| !

| t

L e —d

[Fh oy

I i

X 1

| 0

! J

 LFEXT ExTeA

~AY - —ar : AR - ——
r Aros AN AN COAAON gzgzgs o _ ',éW?iy ;
% - & .
N TEE 2 AL . | mee !
(/,’m;«;ew/) jgfgg/,;g{, emmton
ks A o ESP (APT2)
/vaffj — S e
. o ZFIPET e . .
V77125 s Go 7| L T
Ceenr e | - K ER s ﬂ%j}’ %f !
2N 4 A O/ =& ’
ae U/ CUE ok L TALLE ROZRAN/ i
E2 ZARL AT LEMATE ESD AR
322/ o es—a
' S C5 - —q
e ;ffj/p A MoTEL ENTRY Fans
oy 27T : T EES L
e anrey iy . GArLs) i
T CANG e, Lo i |
. L_. —— et .
05 -4 —-
Tk | A
LGN ! | L
G 70 ! * 4
(250 -0 , L !
sonpaey J b —
, - FES— ke ——
ARIESD AN AN 0 2 , [;
Y3 £520 AL 6 . | o |
ST ANE Y TAL 7 : 4 H +
Z0 e o o ; : | :
A2 Zogn 7] o A
st [Wpe =]
. P —FE e
e A R G I
| |eeazeinrs cpro ARHUILE . 1
ESP cHRL | &7 cHep FIELL | L |
=Gl e ~Ch- |- TGSt —
4 ; W7 ESTO AN, 0eTESY ANAL I ; I
ZX77 70 T AR 22, ‘ I - |
@ | fee| |
L7 4 CSET L . ! : |
: ; AW ESL AW ES ' . i .
O NN P ——— e — —
(mHI- b - - % R]
5 ‘ BLANCZ L44Z Fo ZDNEXT WEREANT | !
; : 27 T - NwensE ‘ H
! ; AN TABLE FIELD
i 3D 2ARD W el oA !
b oo - - . - ———
[A B e - 5 = = —
i [. I
Zae0 :
! : (X777 EX, '
1 . Q@S’d@//}f%{; sACH S 1
[.) 2/l L |
! R | Vool Y U |
T L
e S 4 - A e BT
i ‘ o ' Lo T |
! ' i . ' V228 j
, f i ’ , . , EXTRN 1
| ' [' ;) EGO AL | ; !
L . _ ‘ PR |

CHART AQ. INTERLUDE=-ESD GENERATOR (SHEET 1 OF 2)

2=83

—_—————

S s

Bl = — -

e e b s

——— = —

| I |

ENIRY

TIENT

|

BUANK 70
fTELD NV
AANEH
ALEA

N T L
YA ELE
ASELL

LN

@f.?&//f?' -

£ 7o Nk
ENIRY
TALLE

~asz 77

570 A

ANT
A7 EZD
LINE

AN

a7
TRy
ESD (UL

3

|

CHART AR,

Hl-- T

{
+
|
|
.___.1,._.__1

1

AL SLRLAP /=

SEALXS
St
THAGLE

3= +—~-—'—]
! |
I [
4 1
: !
| . |
[N IS R
{*'03 + ——}
! |
* 1
| . 1
t !
—

L37YAL

V=
N oy nor

GorprronN

G

V0 J4.0
HNT
AL
EANTRRY
70 CHAL

DA

NG X2
=i
T U P -

FEN ESZ

2-84

ey &

SyEL7E
wKL

AN CK
E UG
Wkt

INTERLUDE=-ESD GENERATOR (SHEET 2 OF 2)

G 2t ! AR — W [) ,
: = ENTRY FgoM : C i :
| _ |t o , ; L o
I 2o . i i ! :
L7DREZ v ! ; ! ?
S ! e e - A b - !
MRUTS LMITIAL G)
Al - SETING CORAS e @ e s
: /?é/?ff S | , ' ' g !
' HE | oUINAL P o ! o f
STALIANT : ' 1. i ;
y N
Z&‘(?W e EN ___\._J v'l_.A — e = e ‘TI - IL,_ —— e e -
SETCE e e A e i
TeN o S7RE A2 Co « ENTRY FRoN] : !
Y FLENGTH y ' XN didd) | L
ST 457 A4<p2S” 5 ! o 5% é’/—) \G7rerss
. 4 L w4 ’ ; g
_ UTREL e . ,
| | B Sl
Wi 7H A2 = ' ! C
CHLE ARTET B 7% : ; .
<. < ‘
&”ﬁ/,e ' ST TEAEN o } -
L E = - R IR e e s R -
r] i : 1 e i AP JoNE
L. ‘ (74N 7 o ! : o7
i : LW FNT ; : : Nounesne
| [: : | ' { ro. 7
I S e L e [T A
F1 ' F3 Fa - AALSIAT
~eFle — = -2 - —— = - F¢ -
g 1 | i r : | ! % LU A
| t ; : ' ! ! ; S
! i . ; ! | | i ooy
i |
| S _d LAY | :.] = o |L___ ~ 4 J 7%5‘4
—Gt = --5 D Y e rC3—4 - G4~ + - -4
| ! i | H ! 1 |
| ' ; | | f | i
t 1 1 + 1 H H i
] | | | i | | l
I ! ! I i | i
[N L ‘ | S | | [, : Loy 1
—HI-) (TP 4 e [rHI— 4 — - oHE =+ o=
! i ') ! 1 | I
i I) i | | i '
+ + + + i Bl + r
1 [| i 1 !
! ! . I H | \
| f — . 1 I | [I, | S R
U A poedooeem oy chd- v xYooFLo |
- . i t i
f f : . ! i ! L RETIRN 720\
; : : ! ; \ o CALLIVE /T,
L o) o Lo L . L

CHART AS, MPUTS, CTFULL SUBROUTINES

2-85

1,

CENED]
(zﬁmzm/)

i
1

be —

277N

Al e

.

'

i

LEOAC AL

VUL LI 7E
LITERAL
W&Qﬁﬁey

sdone

leniey

(-
|
'
4
!
!
L.

P27 02
AL INE EF
R

D 7O NEXT
LI7ERAL

ENTEY Féatd

TALLE

[-02" 4= -

CHART AT,

& ofEe]
P LT

S |
—F3—=4 — =
| !
| !
It
! 1
| |
L — 4 N
931 -
| R i
| |
+
! |
| |
| S ad
[RBe meen
| |
! |
t 4
| H
I
| S
EE Rl M|
] I
| |
1 1
| 1
} '
[PR |

SHVE SHLE
LENGTTHST SKES

22T

D27

LITRTN SUBROUTINE

2-86

LDFLo
! N wie s
_V N &
a0 2Ny Y
THE72L/ T
A 2
CREATE L/7-, LD AONE
2
G412 2 USFNOST A |
AL & LI77
e Ao 75
(I R |
AVE SRS) |
[EATH - ; |
ALY A +
O LITT 1
CEC oD R
- --E5— 4———1
277 AL 1 !
=274 ' !
{27524, ! T
RE2EL i 1
T |
r - P ——
| { t |
V(& 72) ! i
CHLLA A7 M !
‘ :
e ey
-G4- +- — G5 —+ -——-
] i r |
; b |
, . 1 .
i !]
. g e)
- H4 - HE — 4= ——-
3 0 e 1
j ! 4 |
4 + § 1
f i . \
i | | i
I) Lo o =)
poJe -7 IS = ey
I i { |
j ! | |
1{. i 1 4
t | § |
1 1 | |
" N [|

PAL—A D A3 e =y A AAE o
i adE ' : .y o7 pey |
curEe N\ G A5ET ' i rEL \oons? | |
\swmrs) 255 ‘ ! ! 5&4///4//[i
i EQuAL . i | s ;
{ L 7oL e v _eAmer]
STALT) +
FYMVAL
e e L
GLANK i i , i
swtbor |- ; ' ! !
/{/ﬂ/?% | I :
]
£ELL Loy Y
FHNG o, - : AL T
P ol P R PR | : !
i ; - vize i, a7z
T : | UL, LR, ENITRY A
Ao (| ! A \Tos:
N ! i 7, | zsmver
b e 1
(. SHETY
Il s — —+ ——
j r } HRPD NONE.
i | | A ﬂ////‘) T)
H H 1 sy 2 (pPrecras 7
e S | J
E2 -y b3 - rE4- -1 [EC 4 =
: i | " ! ! |
) R ' (720 7% !]
| H i ' 4/1//1/4?/‘ . i
! 1 | I t h
e Lo — LA—«A_._Q______]‘. L___‘_____.}
2z A R S A B S
a7 4 | I 4' |
DANOSTI? , ' i 5 1
! | i
Ao 2 I | IL_._‘+~._._] [A__JI
ATVRAL CErcoR , :
(S e 0 CRE TN f-’ I— ———1' :——64-4— -———,’ rGS,—0 -———]‘
LA LITE ' | | i | |]
(AN B
7o 4057 ¢ ¥ H
| e L
[IELD Lo e] LA_+_ . | S | | I |
e Vaveres D e g M- e e
i H1 ey ‘ 2 i 1 -—1! :'H5 + jl 'r H4 — + 1I (—HJ 4 —1|
(ETLCN 76N : : ! | 1 1 | i
\qune 2)es : ! ! 1 H 1 H
i ! 1 i | | |
Lo bl R N SO Lo
CHART AU. SYMVAL, STNTRY SUBROUTINES

2=87

i T ENTER flon,
! TAEC . _‘&A/é)/o EPAIAML -

! . a eV AL Tl eoRs?
i : ’l 1 _97/1’(27—
O . | S e S
rRimAm G/ EXVAL ZAYL et
i . !
4 | CHALATE : !
P : EXESETOM | ;
= _J [

EXDAG
V27D NONE

AUT EXVAL Lg
DPAGNE™
777

YPDIAZ

| -
! AL 7D NONG

72 Lener 7
P 443 N0 7IE

No. 17

LS
)

e -
e e

}

[

3 /?/‘fz//(//Z' //z
|

1

i

CHART AV, MEVAL SUBROUTINE

2-88

AL ey O S — P I
I - i : ENZRY S | 1
N T ' .oy i |
—-———ldT2) R - s 4
(Aﬂe&%ﬁ} TNEE g |
1 i ALoL) ‘ |
e - L -~ . | S ,4’ — —
| REBRAL P N
2 GRAL AL PR =T eI
Az A7 . i ! .
AN : 1 ! ¢
 EXNPESEPN ; ! i |
RSP | Lo i
70 W
27 Bkt~
W77
1R/ NN f“i— o
V78 i
AN TR 1
(o 7 R D
7770 N A
AT , !
oS 7 K
AIVELENS e
T) . T R P22l
VAL ENENT™ ; i IV
v laide : : \Gneg 77
. : {
/‘7&20 t L-———-—; L‘"_+_"'."J
ML .
» f_"3 — A - |
Ay 7720 ' :
A7 Zno ' 4
|
_

SUFF/X
RN T
AL 7z
STYAIED,

gt -

-
i

I
4

|

|
L

AGenlf s
AZ7LroN

/2SN 7D
LTLLIAE AT

:A%%«% J

[

CHART AW, MBRKUP SUBROUTINE

2-89

Ncbtonw ez
EXTN ESL
N enviey esp
SEE MOTEL [

LIS A

FNT

CHART AX,

SET /DN
’A@%VMQ%

2 e
Connmn)

Netmweer

|EXTRN 72

(:)ﬁ%éﬂﬁ

Ep -1
7B E8CP/E

AMOVE

YN
ArEL

NLENZ7H

LAANK

BIMF

aSvvio

aWVER”

LT 7D
E&

.

-7
m
n

i

|

)

I

ey

|
!
|
|

l___ ;.__.._l

e
V7 7z 07744
Ve esepe

PUTESD,

2=90

PRTESD SUBROUTINES

W AL
AL

N T 7D
L ESTLYUD

A/TES

a7 Az

AT ESLD
cacs

—G4- | —~—n
N 7o

LN AT
L
H4 - +———
!

|

_'L

|

I |
[i i
|

4

SRR Y g s 0PAP : O/é"ﬂ A R - S B
;::- CPET) o e
. ENTED @@M@ a ‘ ! E ':» !
\G2e74L 227 N | f%/é’ff R : E L
: I U] SEAN WX LEAIGTY _ et !
e ‘ . - S T T | L _— K
A 72 SYPLOP e e
AReE DAY G o Zrsa| o 1 reeemt
. oL O LAST - | ' - |
‘ ?’ZM o AENL e - 4 4o 1
STATEAMN Y Y L é I
- Lol e = | R
DT 1O {"CL}"4 - ~FC§_ A 1
75 &0 [| | Ji
% sy ; I 1
oA ! 1 ! !
S L __1_.,_.____1
i 04 - - . DS —d- =
. { i . [
i ! 1 i
t 4 1 -
B] . 3 1
| . | ' i
(T o U
o e
{szanx T ,
L ENET7H |
o G Ty | :
& AWVE 72] : :
o7 AEA AREA]
% i L Zae o
| | 0 BT PRy | e
% : , TP XTI T ;
/YT A e AEA ArEA 1
& C : 5 " 20X N OE I
~0GP- A4-— - o .
Wz { AL TE EFT-A, %
SYALELE i I B4, {{%/A/E% ¢ EAD ST 7E -
2ENCTH ' + | A7, & =D N AENT 4 D0
ANDAOE : ! ovE 72 Y LS 0077207
2 77 L 777 ARA 44 0857
U ‘ ' —_—
V% memttr e [T ; i : ;
! \(eEZERN 75N ! ' : |
(NN F7) : ,
4 . | | ' i
i IL e [| [.
[JA3— 4 - = [TYd - — (s + ,
1 i | [!]
1 | | [! |
1 4 + 4 ' +
! ! ! ! i o
| ! [! | !
bee e 4 - [~ - : a4 J
IR 1 ,-‘w. - (e ;
| i ! i ' '
1 ! ! ! ' i
+ + i t ‘ T
! | | ’u : |
|
CHART CA, IOGET1 ROUTINE

'*__'
= Bl — 4 — = o
i |
t 1
{ 1
1 1
N N |

. ey
ENTEL N\] Aons
A2 J° LDR2E 7L
" . : t=/ /74 '
Lo .
— A1 P
A (P o
2LV i : |
AP, & + 4
NRLT EOF ! N
RETNN AR L__+W_J

- s 1 "3_ pu— -
o 7 V225 o '
| | STHRED |
+ t U 7o +
| 1 AT ;
N B AREA e
NTER
o
jpots o JE . —E3 e ——
AP 2442 r 1 | B
AL t I | I
S| 0
AENT L e Lo o
(:}—_—” UK
—F3— 4 — -
o], [, |
CENT 7o : ! !
e gcer TN ; it
VP SRy S LONT . | !
eI T AR L
} Y/
Gl — 4+ —— o --- G3— F — —=
i N swro o f ;
I ! (7o) 7o\ - | *
: H) CALLNE 2T l* 1
i i |
Loy Lo |]
CHART DA, RDMRG, ENTER SUBROUTINES

2-=92

e

1
|
|
4
|

(F0d= A==

e

7"
B NRT
AreA

{-
oo pm

DS
HyEp

SENLST

SEANNX T

1
!
|

4
1
i
|

2-=93

~J3 — A e — -

PREAD SUBROUTINE (SHEET 1 OF 2)

CHART DB,

Eib_-xfaa
R SWRIES

ENDRES

ke

4"
i
i
2
AfVE P&V ASUE
OR2 7 % ggggﬁr
y 7
;//gé_/; AT
' ArEA
W 2% 70 el
CFL- - —~F2 .-
B e
I ! I |
i + { +
i | | !
I 1 I |
SO — | [S |
CHART DC.

M

|

H t
{ 4
' |
| |
S S |
03—+ ——
| [
| I
+ +
[|
| !
—]
e
f

+

|

1

N Rt |
P = oy
. i
! |
4 4
: {
[I
L. .

2=-94

7
2/
AL
Al feE P
sz
OSECT
258
EXTRN, ek Foe
OSECT ENTRY
255 g;,(}//f ANoA)
HE% R AE [
NTZY B JNALT
4%2%
., NEexw
SUE D] ; 'E?]
wloveE ! &2
TR, i R
7B INAUT : .
AREA - J'
B4 KL

PREAD SUBROUTINE (SHEET 2 OF 2)

—Di =)
| ! SET
! | SecE
1. 1 SN
! i 72 NAYT
B o - _ -_l
RLCARD
FYERL27 SV
V AL
STATEANT G TEAKN T
a%? RO
wokxd NPT
INCEMEN S
DUNT F
RS
AKEAD
|——61~— [(L - =
| ! ; i
i h (TN 7
i i \er2une P7.
f
L] Lo
CHART DD,

[|

(17 o &2
(&ﬁ%@é)

b,wwmeféwzz)

READ SUBROUTINE

2=95

PN, AN 27777 oANEN T AP LT REF
KECaCD e 22 Leccoer
(;DS ‘— ! ‘—04 -
i I ' I
i . I i |
T + 1
f { i !
X H | '
[SR R L]
} E3 —{ —- E4— +——n
/70 Zecoer . , r - r |
L ENZTH 72 | i ! | | |
teeens 4 +- 1 + 1 +
B FER ! i ! ! t !
ENTZY L L ! | ! g
'———'-——————1 M | QU ——— _.__+~—_I
AN sone’ .
“ : o —F4— 4 — -
\tace SET %
7 ALE ;
) ; LARHE 224 '
AST A LED A :
— SITHEST
2 N e - EWNLD =
%%/’M,CE/Q 1./4/@6(/2 Za P
iy 24 AALAELE N Wk Z
IR H2 - 4 — = HI—4 - —- HA ~ + —
v " f] re) r i
sgawem@) [| i } 1 j
\ M/VJP/': \ ||) ; : I
i t !
L L. oy oo]
[~dl =4 —— (2= = — U= — = Fvd—1 ———
i | i t
. ' : [| | | !
+ 4 4 4 1 4 + 4
e i | | ! | | |
| |] ! { ' | |
SR | [| e g [|
CHART NA, IOPUT1 ROUTINE

2=-96

LN
OVERFLOW

s = |
1 |

= o Y
\srsconr

i |
Lee e

e A2 - fe - e ©AD - PR oo e A - -
s b ! b Y S 1
' | FNTER . UL AaH3) !
f i NLoPLRLP J-= T T g A4SD2Z ’ j
| w » w J2 ' !
Lo oo R @__)___ I |
' Lok
B2 -~ 4 PoBY-4 =y B 4 - 1
) | SE7 P AU o ' “ i
| i | VmeR AL Do i |
i - AP PT INAULY E 4 1
| } AP DE FOR ! : ; |
SO | /?/.‘(/'ﬂ/t//%eé‘ b e e —

r—C5—+—~~—|
i |

(2N 5\
LA 57
»Z—j |
I, SO
R |
. |
. o
+ +
; |
t

RO I
il R
]

|

- +
]

]

_ -

|

1

H

;

— e

CHART EA. BLOPLKUP ROUTINE

2=-97

A2
' AN
TTT T Y o
: Poit<ited

L SLALL P

(BT

!
[

SLSZALP

g s "
Lo ARSI S St B A LCTA . S e IR
e B b ~ r o
| bl N NN
. Pl NI N W% :
A. P 3k 3NN AN

g~ 1 8 RN R
[| | I, 04 f” I.lﬂ A
T S I i s L
U | _ N { . ‘ !
A) N
i W,NJ_ | | ' X
" bos SR L S _
_II|J||L “ ”ﬂfﬁ e e — | J e~ ——

zwwymr

AN

IRUNRY
r-- -7 WE;!J. el e R S
f | | | | | m | [L ! |
! ol h S ! | % i P !
' m 4_ i _ ! ."1 i " 4. .”ﬂ |
¥ [.- m L8 - boos _
e P [e R R L]

N
zﬁ X rTtTTTT r T
N M} Q N R P |
3 NN N SNy L ol .
W WKWE/H E %WAZWWW j Wﬁm ! | . ! m
N AR S amm%a : B\ ¢+ = 5 !
N W,W4/§z NUROK - RRY | Ten]
9

BLSLKUP ROUTINE
2-98

CHART FA,

Al

ZERO 7=
. |\rT T &
FET END OF
STTA TEALEN T
ADLR.

NG TRLIZE
T8, CHECK
il 12 AU 7Y
Tt INALT
cwaeao 2R

7EST

TRANSGLA7E
AN T
] CHA R CTERS

v ZZP
AELE -

USE 1ALLE
T2 FE7
RN TINVE
APLRESTS

&o 7o

FROFIER
DLl TINE
7E j57)

I TBEL
SONTEL
WRNEXT

TAE 7

&)~ 4SS
CUEENT
UL

CHART GA,

2-=99

____._.____..) - A0S b= r—'/\‘;--'l |
ENTRY FRoM) - :
U (ZPS, | i !
[277N ok : i ! b
sz (ons) ; | |
ROUTINES CALLED BY MAINLINE
™ !']‘_ *
: ELEMENT * IP ELEMENT IS ll" ELEMENT, SEQUENCE
\ IN PROCESS SPECIFJED 1S mOT ‘ OF CALLS
. (EXPLICIT) SPECIFIED
{ ;
]
L
- "
—Ce ..
s HMULTIPLICITY MMULTY MHROLD PiKST CALL .
. GDAl ° GBIY .
N .
'
L N ;
-
i
i TYPB TTYPE RTH - TRGLD RTH BECOND CALL
. e Ry S
- e -
: _
' LENGTE LLNGTH RTH | LHOLD RTH TRIRD CALL
i K GDAY - GEA1l .
i
—Fl
; - -
; . ;
! . “BCALIHG SSCALE RTN SHOLBYENTRY POURTH CALL
. . GFA1Y IN SSCALE)
- GFDT
° i . . WOTE- 17 AN XN:’IuD ELEMENT IS .DmCTED
rn . DURING TABLE H&OKUP, CONTROL XS
ot s e — e} " . PASSED TO 'H:Il TCERR ROUTINE
SICALE X . .
@z cCL | | 1
""" 1474 | | !
b L g
[KA
ﬂﬂ/f//l/fé_ t |
7274, . ! !
za—'/\/éfz?’ s i
dfi/./lf/ﬁ‘/é’/")/ | I
TAAE | '
7) N
LIRS - -
| -
| t
+ 4
! |
l Loeoo gy L
. \ . k= oa -
phe FINEULO Lo ! ;
: ' ENIT 70 CAINNE- .
. , \&vzzing ‘ :
I i | | | !
' . , i
BLCONMOD MAINLINE

AY RN

AL 7Y :

NFEER Gd 5
EVRUNATE
N 7ECEL
EXVPXRESKION

SHLE L
a7 EXFHIESS
VA AU T A/~
Y7y IN o7~
AT LT

24

—=Ci-- - -

!
WRERALN 75N
\GANLINE Gicrr

1 {
Loy

| SET AL T 7~
ALY oL
A oL T
2/ 7

:——m B IS

CE 77 75
INLNE S22/

Al ey

} E

| |

| [
CHART GB.

(5/V7€/(’) B
AArL 7Y T

vy ENTRY Fitons
o —- e e
AN LINE] 7
AL ‘ ‘M_'
i e — .
' ! I
4 i :
[| H
. | ;
| S | oo
ce e 7 LT GAAL
; ! Y/ imt7
! | A PRESTUM
t SR ———
[f0a— ="
! !
. i D NEXT
: ! i
T | o -
[remTn e
{1 ! CHARAC /R N 7 S
. x N sz G,
'1 J B sl &
e A —— o t - }/-

- Ledrs YRS
EATCY ‘ DSLATGET Gy WYz (sl
Zj/ﬂ/‘/l/f e ' | Hit L A7 AT
s ‘ EXREEZTN AN

-) t - —
i Vo
B/ 77 7

PrAT w2
e S TEXT

ce g — -

MMULTY, MHOLD ROUTINES, INTGER SUBROUTINE

2=100

—— e

J

AV ek e S ——
{ : TRy
nEL ___ _JAcots !
\77yas AN LINE
f ; (G14)
| S ——
TTYFE -
t - == —\|
 wocszE i i
ECUSTER K H
]
G2 - —-'\
| {
|)
1 4
i !
{ R
o
MAE T
|72 neex7 ‘ L
ENIY K
N TFTEY. g
V2274 o
T TIVE B B
conE NP ;
27N B
ATFT ,
7ABLE)
[S R [S,
|
TEXXT
(e loe dks?
ez ZT7 P
MEXT CHAL
A DNOLD
AANLINE
r o Hi=— - -
| .
' 72N T2
INLNVE
CHART GC.

TTYPE, THOLD ROUTINES

2=-101

) Ny
EATES N\ ____| Aot)
THOLL ALANLINE
@A~L)
THULD
. ~ 258]
SET TVE b :
corE o8 o ;
& TYRE : |
[1
(—C3~ 11— [—C4— -
l | ! |
\ec72 e : !
(i '
| . i |
e e — |
(D3 —4 = DG — y
| | I |
| ; : i
+ -+ 4 +
| 1 1 H
\ 1 | '
| R | [N
CED oy B -
i : \ !
! - i) i
+ + 1 4
1 1 i !
| 1 {)
Lo e 2 N i
r P34+ - - s - 1
i ! H '
! I ; !
o g - g
—C3—4 2 , Ga- .
| ! . !
{ i | .
1 P :
[| i
| S| :
e - - Lol
]
| :
+ .
| :
1 1
e i

\

(lﬁmf‘

LET7a8E
TS

‘--(Jl - .—“ﬂ
i !

|
[
reHi .4- -
| I
) i
1
!
1 ;
[
= - =
i |
. !
Bl +

1
(Cene EXTX 7o !
\ceee emvfas ;

;) ' Ny
ENTERT Ao
Nz)= =\ aamncne
! L (GAL)
NG '
DAL ZA - ! ;
7N ST : !
BAEXT - i !
AR ! {
TR L) L N
<577

BV A

VW ra 2/ /4
N T

CHART GD.

L 7%

N TBREE T3

EVALL7E

INTEGEC

LASHL

AL T2 Y
SV LAY
GEANYIBYE
ZJP 5T
LENGTH

LEV7E

NG FEAF

EVALLATE
NTECREL

N n P

(A A L~

K7 77
LENZTH N
ATFLI T

e

LT BY
Y- e
TWE 72
FIND ArdX
LENETH

NGAL AT
Lo

: !
4 -

|
i) I
ol e
B9 -
1

[_'_* 4o
[os e
! I
3 "
' ll

i
i e

LEXXT

SHVE LEAE,
2L N XTI

2=102

LLNGTH ROUTINE

7B £ SAVE
A

r4
LIGHRASEN 7
D& AL
Ly 7E

VEs/oes
AEGUSTEA?

ot

(EAST 7T
/NVENE GHEL

. I

P

. T
.».f/V}éf,{? —_] Vo 37:%4
LAY L ALLNLINE

Lo f GAFAL

L2

VNV 7E
AP ELD
LENE7X

U TV
e 24D
vy v
722 N ‘
AT 7BL : L

S YR D i ;
T AL i i
Lz AND T +
aeE N L ;
R T BL ' !

Y 7Y 7D
T NANLAED
BT LENETH
V2 S8 N
LT] T

P

TR
| ezsvees g

L I - . i-ce-
! |

|
(RN 75 ! i
N\ANLAE GASL : |
; ; !
J

!
| -

CHART GE. LHOLD ROUTINE

2-103

NITHLIZE
TEK P JFHE

| ETy EoR
EXCLICTT
HLE G FL

EXIT
)

o e

fC2 -+ ——-
I

NS

70 NEXT
AR

|
(Gt czdLE N
ANLIE EafZ e
‘ | TABLE
T)
—02- i — = o SHOLL
[| S VE ADDC
! ! OF 140005
| i Vs
: | : ST
; Il————-_;__,»__J AN
SIVEUO
EV-AASTS
3 LEFT
AEEA
= 7 74
| os178 7 GAAL. C
EXTT O
\ 7Ll 7 ezl
EXEE ST % AN
Loo”~

KT
AEN

- ;
' i
L e _l
7 Tk AN
VLA 7 LS
EXPETSTIN Po7E

S24 e
Lt

rfxvp LV
A2 I

(7
G biome

—©

2=104

i
i
i

il
|
1
i
I
i

CHART GF, SSCALE ROUTINE

1

—_——— =

X7 D AN
N AN NE J 7.2

[Sve e
07

/7 LTz
L STnc
W O T

TR 72
e 7 GyiE

(A7, S TG
7L &

TR A4S

TIREUE L EALT/P

R A ey [8B — - -
ENTER : ; ! I i
et |] I r]
g«?p?" ! ; 1 {

i b |
| TN (GrB) o]

czed .

B4 4 ——— RS = = -
| STEFDNXT o ' J%?ﬂfz%%gs
\CHACAT/EL e 2o\ A w2
2 NS 1A ‘Q%@weé}y W gy

zz/ ar22 |
\ e 7 ! | ’
- . P R D | | SR |
[la<=77./4
Fe5— 4= ——
7P | i

VALLIE)]

L/S7 Y i

e | | ! |

AN L |

.__.——_;_..__._.
CeBRNZ
> rDS —+ -
=7 P | !

244 o i !

AVALIZLY i |

FEMINATED ! J

. S T .

Ea- -7 [E5— d———

. , !
By S) . 1 [
O 7E \erne AT T

, !

Lo e lL___._._._____JI
r—r-."—-—k————ﬁl ,—F4-+——;-—1 8 —"4——"
! i]
| N l j | :
+ + + + 4 +
1 | | ! | |
t ! | i | |
[._,+____J ‘L__.__+_.____J L.__+.____.l
—G3i—+ -—— —G64—+—— I—G5——+ -
I |])]
; S b 1

+
o L |
(S | [S |
—Hi— ¢t ——— -.r-Hq—-!-"——;\ erl'—'fv—‘—'ﬁ
' ! t { |
(AT D ! ! I !
2 L H 1 ;
i : P ! f)
[R | I | IS |
U p ey PR
SAVE 4002 i i | |
OF END | ! ! i
- vALLE | H) (
LASTT 1 { f |

[| S |
TR IR FKA— 4 — =y (K5 =y
t | | f |

i I § |

[4 4 1

| ! ' !

\fEXIT 7 !
ANLINE LAZ,
‘ V2 HFZ/

CHART GG.

CCI ROUTINE

2=105

+——

3=

o eNZ

F==T""0 7 roTTon TTTTTTH TR
M _ i [Lo T M
i | | | ; P | i |
+ + + + 4 o4 s s
i | . I i | 1 | | |
3 | 3 I ! I | g |
I | o | I | L e
e [~ i mnih | e
| | | | | I I | | |
1 | J i | | ! 1 | |
- 1 3 - Poo. +t +
| ! , . i ' ' i | :
2 “ " 8 I .o .
L - R [S, I
N N 3

NN G At Wl

NN NP NS

S3EY) [BNes§] [IREN] 8RR

1||.Ti‘l‘ %l|| |1|IJ T — mll|.1|.lJ_

: s s -

e = [IR | [e

-

< Loc

EXTT PP
A
R FEHT

Cex /77

e

HHI ROUTINE

CHART GH.

2=106

117.%5%4

AZD NITRAL
| B/7 LEMTTH
75 s 1

COAIAIA

~GI .
! i
| |
1 1
|]
i I
| |
:—»Hx—-*-w—]l
| |
+ +
. !
! 1
[DI

N T BT

v/

C-AR - - (A oA = 1_.
[SrocE B77 : i | ' { {
LEMITZ) | | ! | !
SVEN W H 4 4 4 4 L
A o o |
% ’ i
(B'L//Vf [U R | e — _ SO P 2
r-B3— A4 —— rB,fl--+—~—|' . BS54
! | | i
| | | gl]
+ 4 + + 4
|] o |
| IS I | '.L,.___4_._.__] Looee e o
= il Ca—+—— rCes—+———
NITIALIZE IITIRLLZE) \ 1]
FOR PUO7E Qe AT l l -l j
457 7201, UGN AS? | | :
|4, erd) | | .
7o =z /TAfag - l____,.___J' U
74
- F03--4 ——m MR, l [05— ——
t 1 B MEXT (e
! i ! U A CTER , |
- .} —— —

rALLE
2/87

HWE A8
AL END o

— 63—+ ——=
LANL /7 T 1
LENG & | |
2 A
LENE TH ! |

e o

H2 - - ==
r B
\(EXT] JOALL
G2
b
[Ay Rt s |

| |

: | : |

4 4 1 +

| | l 1

1 | § 1

| | LA.‘._A4___.-._.J
CHART GI.

2-=107

- el 7E
 PZREST TV

1 &2

ZaAL AL

\(ERROR EXTT N\
A
NCezensl e i

t
U |

VVI ROUTINE

SN |
(S it el
I

i

! !
t i
| P |

<«

-

o

['

s PV 1 P B 6. 1
P : I | | -l ‘
((ENTER N___ . _|seott | ,| . I .
\zz/ SECALE 1 t | H i
o i | | 1 o !
vl S ceret) e g 1 @ i
zz/ , . : Zennes
B2 — FeB3— - —m—eq ~BA-3 - - =
| | l /77
INYTIAL~ . ¥ : - R | zifzk
3 8 +
1ZATIEN o i ; 3 A N Y
i | t
] i - a4 £0S7

L7 coye 77
LENG 77

|\eyarone
COUNTER
VALUES

NCREASE '
7D NEXT {

ZASOLZ

NOREAZE
2 nex
20

TER 7o AKT BIE N
x> 2 BYIES?

ETNETEAEN 7| AN VL
NL ND. O

2
UNTER L7

(17 72
\MANLINE gae?,

LFE;\’/fZé‘/&Z
oy

-

UL TE
EY7E
LENETH
LEST L

| AN STE
Vo0 NEeXx 7
AT
L SAKEA A)
WNTELS

-

r— -
i

- S
, :

@ TT ‘
WNLINE
\LBT FEFTIZ

GAEZ

bt |

PR

CHART GJ. 2ZI ROUTINE

2-=108

zsuzes

SHVE
RETUSTER

BBV AAaz

EVALLATE
R ST

NTRZY Aol

ENTER NIFER (55)ae
‘QQM%V‘}—_'—§M¢QE 2

(&~) .

RS2
\e&vaszze

CHART GK.

LO4PZ

T Al

@_ S
! DUCNOS77:7

NCREATE
e
L AN 77T

2-=109

ALUNLIVE UL
WNICER GRI2
TN P33
SLULE GEEZ
ZLM//’/ 1</ 4

ERL

G AN\
2,

GSE LU
VB ALK
& =T
248 cons

b oo

vzt

T8 DU
e N

ES -7
] .

(EXTT 78

AN LNE
| LOZ FEXTT2.
=277 2

CFE e e em e q

o

(
I
i
!
i
Lo ..

—— e

e e

!__._..-a._

DSUBRT SUBROUTINE, CERR ROUTINE

HEAOP, 5LV,
M@MMJW&&M"l}__éVMM#F

P ML
i 5%@7-M'
ENTE
NGl EXVIC, AP o€
‘ set ok IN ST
[-4 '
BLEXVAL
I R - -
0
N\ wznas- ! 'L
4
247N ! ;
|
[4o —
> 22 A — —
B P TAAL | ‘1|
BREAK P i)
(EXADESSTON T T
& cHEKE ! |
S

p7 74

STUNN 4244

vacsxoon|
ELEMENT

: INK A4 L

| EVALLA7E

AN L8
NI ey .
| 53 27—
\ECEOR o
ST
N7
Ao FRCOR
TVFE -
g
" o0
: géam¢a7
'75,(/1 ' e ™
77%@&7&5’ AT
Gt @4 Piigioln
77 oA
ABLE _
AUT VALUE o o
KeLac TN 75
AND STEN LM
W TELS : |
NCEATE RGN 1
AOLR o ,
pALE o |
RELAE ,
TAELES o !

CHART HA,

EXVAL MAINLINE

o0 /P &
V?’/;‘A/ //t/
AEL? 7B

NS
//'751&’/

SE7 DUS
V2@ o arn v |
EXRESS N
ELEASEN T

AT RS,

2%«2
SE7

f%a/g—zf(
i a7z

AEGLE

K74
NOHEANS T

‘ i
‘ | 2o /L
) H N7Z PREV,
i] /D Lol
S
AT

17 e B
f | ey, A
: ! B o0 < s
:) AN TES AAELO?
! ! CANTER
i [
[4 - | - ’h @ | .
1] i N
! | : .
‘ | NOTE -KELOC VALUE N LET
! X) : AR JE EXFRES
{ oo L. Loy U Y R AU E

4 MEG AL AL

2=110

(SHEET 1 OF

3)

@ A8 - V4282 EUALL
v Er e j , AL IZE ST
p 70 ZE ‘ ‘ 0 By - Tl A
W OUTELT [') A2 OF - o TAST
TABLE ; THELE
- e —
) EXTT
swLoc o _ - e
R P | vszZLp f ‘%9 !
Lo 2 I | ; : i
W T T ! . : t
7/?3‘5 | ! { 1
Lo P | Lo
.| . ALOLT
C3- A+
SET UL AL i | A2L
AL TV LA | i
TN AND 1 1 YaLue »
rsvon | i 7O74L
Lo yoe
o o7
. . .
B Al r 7 | szs7eqcs
Lreny [[t
Veezoe & H | ~eonr A
SN B MECQ L B " 7O74L
FEl= 4= =y e, [E4- == [~Es~ -
I . i MGEASTE | ! :
H | | s ES ; 4]
1 ! N 7o NEXT i | i
| { 44 NTRY ! [[
| S T | N . l,_._.._‘_._..-_] ST,
Y ,
Ll F3— o —— ~F4— +—— F5 — = —
! jl SET P r ; | —71]
! . SN OF H i] | i .
| | ol | | | : | |
b] A oo g L et [
-6l = +—'—~—~—= ;—-Ga--+———. [65—+ —=1
L. i | : | :
1 i ! + 1 4
| | t t | i
1
Lﬁ~¥k__1l [t___.A_.__J | |
roHi— - — =y i (~Ha - = ——— [—115f4<——-~1
| | V2 7¥Z9%] | I' :
! . 2 pALLES ! ! K i
. ! v STBeE ; : i k
L_“.-_J O Lo o]
R | - S (~J5 = - — =
Vo i V7= NAE . ' ! |
! ! TALLES” v VALLE ¥ : ! ! !
; . “V\eensoE STENREE \ | i !
! i T EAS T ! | . j
. 4 - [P - e e e = :
é DOV B2
v 4 . ot | ‘ 3 ¢ !
i 1 | SE 7”2 ' '
! ! ‘ o2 42, | ' !
) ‘ 1) o ASON f ! ,
| ! : : DA CNET777 ; ! : ,
i) ' 1 - }

p

CHART HB, EXVAL MAINLINE (SHEET 2 OF 3)

2-111

roAl b s Al Al -) ¢ A - 1
SE7 TN ek B : ! ;
2T OLT : ; ; !

@—4 ELEMENT ELENMENT ! e » :

Swr e ‘ g i !

-9 L e ap = - . S

P TR) N et : g e ey [rES-- 4 1

H | i M&VE i ' | {

i | ! \ VAN . i i i N

! } } s B . + i + 4

! ! } AEZPAT ; : ; ! ;

L L AAG AT Lo] Lo

A A 72N) B

{—u —te “: :_(‘2 T —A']l Al gl A/&fé'—‘r_;/)/?m o

! | | AL TRUN G 7708 ‘
' ’ ceaae s

1 1 ! i ML 70 (A mepns

I] | i | SN OST ; i

R U S| - S U

o P -

B e m 05 e
FT AL T ! NTASTE ‘ !

: ! 29%%52 y AU IHNSTHC !

+ : 72722 DEAINED | H A wSTT .

: |4 EXTL SIFoL TN TN !

Lo Ty 245, COVE. S

I"('J——"— 7 I":_f‘ 1 : ”[/Z/A/ AE:j 4 |

| | | i NOEASTE 5

‘ ‘ ! ! ceane i

1 ! | T GOUNT” . !

! @ ! i &Y L i

Lo . oL 0

Y NOTE- LLTEL W
T ELEALNT
e /7 TECAANA 7
9L o+ o
LG e !
G2 72 ;
JEL LD W .1
SES AN Tt Ao f
7D L v AopE . | UAEENT SEANXLS i !

LIAEN T . + DL - : |

ELD ! WO, T acoe ; i

MALBEL . ZUINST . L |

7

—Hi-- 1 R B S [H5 -1

! I | | 77 ST) . |

| ; . ! eae 7y e ' | ! !

4 + + 4 & 2L - + | 4 +

! ! . ; T £ ; ; | ;

Lo | R BUNT [| L B

T e

pod - 9 [z — e R EXAT ~ ods - al '[—\/"1 -t ,

1 i | l TR ! ; {

i) ' i RN ' . :

) | ! |

[1 R ' ~ ‘ i L B -

Lo . b ! o) PR - [l

: ' (T 7 :

: ' ' <4mmﬂﬁv> ;

{ |‘ l i —_ .j

2-=112

CHART HC. EXVAL MAINLINE (SHEET 3 OF 3)

I . .
ASCANY VIS F ELEM OMLY)
RECANL O THERI (ST

VA

NIy

| 2eons

EAVAL :
ALANLINE '

o T
s e

SET P

NEGER

AL MeTEL

K@&d@ﬂ//\/&’ JERM. RET2N

VD ELEMENT 70 EXVAL)

HINCLED - ALANLINE CHLL

ar oyER,) LOINT A4 A
[P |

(:)ﬂp_. 7ERM
j %78

RES 72
| e TTERST

ez

2,7
ELENREA T
VaLLEe o
ouTALT
JABLE

~ 5

STAET AL

SAVE rELOC
1G24 Np & suew
LacAzeN Vo 772471
OF SIRIEL TAELE
ceeE |

A

7,
= (=44

LS80

| ST
| 77 oo
K Z2+4

(Se7 wr 7ok !
P2 <4 |
(7 - N q
(525/5\/7) .
s 1
/8K o

CONERT NOTE - RIS LOOP.
Y sl BHERTS N
N # 4
 GIUTE A
N7 Y L ' o

I

CHART HD,

H3— T

e o

[

SZAH

SE7 RELOC
L7

Vo pviosT
2

S

SET 0
SN 7B
27 (2)

MN

SET L OC
SN 7o
ALV

N7
7D NEXT

SET VALLE

2&44 7/75&_%
XAV

V. AETC
L 2

e sE
B AT
CELEAENT

RES 7O

| 77/ ERS|

2-113

SET kL2,
IARA O
O AL T

2y (4

'
4

No7E 2
ERCIR LETLRN 7D

SCANX SUBROUTINE (SHEET 1

EXVAL AL “

GHLLING %j’f,’ .
NO7E _F

NOCAAL. RERNN

70 EXVHL Acdp/~

LNVE il P7rF

i
'

OF 2)

SE7 ULUP UG
2 BAP
SHYMBOL

¥ RES/DRE
REGYSTERS

SH -

(G 5
&z /,654"2/4

ANO7E -~

THEL ST,
7Dyl
Sngrn F45uE

L

oer

NEREASE
o NEXT

—5)
czeneny | - K7 ;

e
/ =
Yria s NREASE
AR ¥ 7)
T IE STYAILL
W BV L
TP ST Al
AN~
e e 1150,
A 457 Ziey
XA
7Y s
ney
R
f {7 NTEE

WASYE
e F 3 s
NEEASE : !
B nexr TP\ 2 e :
AELL ;
L R S T, _
FriRen dem— o 63 4 —--m
. |
| 1 I |
1 + t 1
. ; | i
@ X . L
LEVG SEUE
I
NOGEASTE NEEEASE
V2 sonsoL o SIMEDL
2 AT KL
&7 &7
SrBoL YA
7/4’45 7)/515
ey 7y
TARE 2w aPsiziie}
S EN TRy AR 7
TN
¥ //Pﬂ.(VALUE
655%z Eéf&m
CHART HE., SCANX

2=114

SEX

ZEXO
FIRCACE
Vi

ma@%ﬂ?

T s
NN T

1 zoern7

N

&V L

Aéﬂﬁ ‘

NAAVE CHAL
B STARE
A ¥ STEL
o NEXT
WALAL7ER

SEUET
ou7AULT
AREAS FoUR

’!"ES"* EEEEEES
(ERR RET. 70
Ny Pr

2R

eZoVE
LETTER E—
WWove 7o
7T

AP G 72
/7T
(24,845

Lr sEx
VALLE)

NCGEASE
72 NEXT
L EAENT

SUBROUTINE (SHEET 2 OF 2)

L SUNEFE
ENTRY AU ST, 7o
S ?@% : . @ ﬁ/A’;{//FfA’ D2 e
CAN. ' ". LN
: aw 7 / D
SER TN L ; 46415? SIS,
LETCH . V-t 74
[S el e aam
AOVE 2-W0e) i ‘ ot ,ﬁeﬁgz
SHASSOL ! | WEREAST sz 7 Dpa
+ i TO NVEXT coe NOF
78 CHEK 3 N ELENENT T 9%
Aeed L ’) OEFINED
- - + —_ ___] .
Jp g
ove £-noRD o }'
 sBurBoL # i Y
78 CHECK i ! RIS
ALEA i i
i S R |
- : D4— 4 ——— =
ASOVE r al
CURRZENT WNOREASE ! : : SE7
GUIAL 1E1ER J2 NEXT i H | sEcoms
D END OF SAELLD ; ' ELL
Syl L B ALAG
| _ .
. w2 s a e ol
= ~ B3 — -7 >
N\ Liee2 T NEXT . H Egz /774 g AT
B END OF i ! 7B ECEL VALLIE
SYALBOL ELEAENT i J s gl
£
ez |
rFa- o ——- —F3— 4 ——y F5— 4 — -
WA ST ; ; ! ! ! |
B NMEXT X 1 Vv X7 7S '
ELEMENT ! 3 1 ; %ﬂﬁ%%%%}
SRR I S L.
o7 W OF
GLIZKUL (ALY SE7 LP FOR mee T 7 &P
Cor g 710 R B i e
sl b %ZZ%%BV i ! 9 SVSTER TEANED
TABLE TAGLE T] Sty A SIMBOL
{b;/;z/ /SO
' LU SIAL 5
EEDR L1S7,
SET DA,
ST
CERSTERS

-

/(F? Cﬂl/_
o ;,?
Aa’//}

o NEXT
vy

CHART HF. SGET SUBROUTINE

2=115

ST B . . . i .
. ' ENTRY Egord ST TEAL %P AL
; 2
(%"Eggf,gp)_..___%%_;:g . sBar SHU2 2
i | INAL Y, 204 NEXT
L N Az Wory
FL BRKUF
- R -4 -B3 . oBA e ey
| | |- | H
NITHAL~ : i . | : !
1ZA7oN ! it 1 ! 1 H
| ! .
L ! L. N L o
a2z Pl
KPP TEAYL ‘ ~
SkP e A S7RE
NEXT \ oaenvasze
worp ‘
.a/ 3 e .
CET MMER, C [sErwraooR SHRE TEAL e
Fotay = FOR HITFU ‘

I LTS & FOR s e |
AR e xPRESS/IA 7 ! |
TAGLE TERAINATOR Il @ J

. V-

ZT SINTAX SKIL TBAY Vszzr e
THELE RESTDEE 2 7 STIAS AN
ENIRY FOR LTS T T o

W/MZE/VT weorer
[Fl - —— P 2 R ~F3 ;

o ! ! l H
! ! YETT 7\ ! :
'f ‘ ‘I* e 47, ; v
| H « |
L ! ‘ : _l L @ ¥
, ‘
_USE_SYNTAX TABLE TO FIND BRANCH o”3 .
- I SE7 P
BRANCH MEANING
E. sToRE | e o200
JA-D2 TERMINATOR FOUND UENOST7E a7
JA-A3 " STORE CHARACTER ~ =~~~ ° - | cons
] oa-ca SKIP TO NEXT WORD,STORE
. CHARACTER THEN SKIP TO
1: NEXT WORD ~
4} JA-G3 SET UP DIAGHOSTIC AND e == ~HG — =,
i CONTINUE TO PROCESS \
JA-D3 STORE CHARACTER, THEN 1
!

I
t 1
i i
! SKIP TO NEXT WORD ' T
laa-a4 SKIP TO NEXT WORD, THEN X i i |
1 STORE CHARACTER [. Lo
STEP TO NEXT CHARACTER,

IGNORE CURRENT ONE %

(‘4/ 7

jr"A-c‘: SET UP DIAGNOSTIC AND
EXIT LSET TBL
1.9n-E4 SET UP FOR MATCH OF STEX B ACHEET
1.1 FIRST QUOTE 7o NEXT New/wel
loa-a4 RESET TO ACCEPT EITHER /4 zyvoe OF
TYPE OF QUOTE N oeworE

CHART JA,

BLBRKUP ROUTINE

2=116

AL [At ; LA S T e
e~ | R : g o ! ENTRY
‘ = : ; : ENTER N ;
(S7roes === 7M. N : G - M
A : BLECKLP ; | N 7Y o7
[! | S b ot — e e S
S7erE SKYP ‘
B - e — R s T - BE— o
s § B i . e ; |
CHARL N *‘ i i 1 A s o7 . Jll
2 74/=774) [1 1 V2 /CEENT : N
LAS7T | | | | WOR L 1V 7= ; 1
o pe L e Ly LS G
A peEs Ay %= ooy
AN 7ERST AP ; | |
N EXT7 CHAE 4 N !
e TAU T caT. | | -
U T T LS | i |
- . L —— e e

ETUP :
DUENOSTIC W27 (A el
CorE care
g2 - —= " ' : FEs— |~ ——
| ! X)
YWEXI7 75 0P F\ s 704 EXTTIE Oz
e NNELBEPIN , \Gs ' N,
i | ’ ! f 1
|t___..,._._J YR P ! e - R

CHART JB. STORE, SKIP SUBROUTINES

2=117

P . e ; ,wrfz\‘ P N
' g ‘ " T ey ety !
M S AI L1B, ESD CEN, v
= Gl RITESD A Lani caod
UTTZ % UL, DES,
Lo e END CARRS B
HE e =y =Ry 4 -9 (B
: ! | ' 1
! | I ! !
' ! i 1 + M
| { ! H |
! X ! i I
O (. PN Jv L
- o i Cq—4-——
SYeA, cee r B
N ! N !
SL5T UL : ; ! ; !
I. [2 [L e
N AN R 04— 4 —
e SN T ez
! ' '
I ! ANCH . i | !
: 1 cARL v ; T H X
' 1 cae0 2 . |
L —_——t — B TR | L,.__‘_'____.._J
-El—+—— = —E3 mam =, E4— +——7
] B uP e ! ; r 5
! ! T ,SET i i i i
| i YEPNEXT : i A X
' I Rz 12 R g l
| U | JS SV U | b =
Pt e AnaW C o rFE o prFd = e
. : ! ‘ ! | !
! % %/Z:‘m,% ; i ! :
H ; \EAEUTE I | 5
{.,, - _l G| '(-_.__+_____J
R ~G3--4 ——x 64— 4-— ——
H]
i | . | !
4 4 + 4 4
1, ! ! | |
| i | | . |
S |] L e e e
- - —_) L - 144 4
! ; (2747 a3 T e 4
! i K A THT i !
X | AP FOL er o . I
| I L AN » ALXTE i j
| - L J4 — s ——=
P ; o . I 3 :
X ‘ | e 7e e ! ! .
! A NEXT , | 5
: : AT R Lo
N - - - YA 4 -
nNeeN X R
! 1

——— ko

(KLU 7D
CALLNE LT

N R R . ' ' i

CHART UA. PUNC2 ROUTINE

2=118

£ = ey i
WZ 7Vl miaite V7 7 Y4 o

i YA Z
-__,+._.A.__J [C R .
AATAF
Be— b : S BG e =,
i O e :
i ' wAZE e |] ;
i I
: - | |
L..__._+,___.._J SN T, |
et [Ca— - =
ENDSY + 4
N 72 ; :
S |
|
[~o2:- -+ - - 04— 4= —
1 | : [
i | . |
+ t <_€Z> i
| i i |
L‘.-+_ — [| i
o7 — 21677 FETZRNS HERE™
. ONLY N PHCKED 20D
‘I_EZ— 4"'—7 SO | /5 REALY A NRE -
| | W JE i I
4 + DD 1 !
i ! &v%paﬂ ! !
Lo ALXTL Loy
ADIOE
—F2— +— ——
| | .
| | AKETTEWZE
1 T LEEes?
I
. _d
o — G4 |- -
AEAC PN ! !
\ENSH ; NVCA TR X +
WIRH 72 NSE o !
‘ i e — o
H2 = 4 — i H4 -
r K SR r ‘
I | | STER S .
+ + + ¢/ '
| ! EETL LN TS !
L ‘__J S TP . o
2— 4y "Jl’\—— —_—— r 4 = —
! [: i :
1 | ! PR v
: H \eena 77 !
; | | VN ANGZ 4572 B

CHART UB. PAKTAP SUBROUTINE

2-119

o ey S v - :
) AR ; o : e ey
eaere - : FUNEZ ptaft co w3
: bz | o . 3
o '
AAKTXT T —
y FIORE 78 RN T
| Prigas i i
e o g2 ARA
EX17A Y rra ‘
e Fewpagep | TN E AN
AOVE AL SN G SER
B SR ST
. - NURA GRS
o zalll .
ol =7 e
MOVE ARD T aruee TNIA TR
% p | | eeanezEes L 8 UK TAP
D GUAER e i 4
A PR Ry D ARz
EXVT2
e ENI T ZE Con e o
] ! O START 9 j@i@é&v .
g ‘ BUFER fe AN 7 '

_h 5 NEXT A ANAETERS S
prFl— e —F2 - - R : r—¢3—"".——*"1 Rl Rt -
| I ! . | ' [

! ! (RETTRAT 78 ; ! '

: i 1L)T i

Lo B} WAZAPLETS : A

-Gl — - - r G- L G3 - - - =

! | P rt T R AL

! i ! ' ' ! LESPST !

! : ! i H | P ’

L | o L St TO LR B L
cHrDCD . |

SETLP e YR e e orTen R

RECT : : | ! j :

SN 7 . . : I3 : + :

FAKTXT o/ . : ; ' : ‘

NEXT fASTE o . ' \ L

S R Pt i R :

RE T 750 ' i ! ! :

CALNE 77, ‘ S \ ,

POZNGZ (172

CHART UC, PAKTXT SUBROUTINE

2=120

KL

FUNCE
FAACE AS
F-LINE

. Ve 2us?
NN TR

T
cVsprs?

ARNT
B-L/INE

SE7 70
aEaT Wb
AN TING
TN

oveER

| =

crres”
N7D
SUBHEALD

LNE
Ceen'’7”

NOCAENT

YRS

RNT
onvE o
TN L/NES

sysees

RN T
c LvE

RESET

a seons
ZXOOUE

(:))

eAR
N
AREA

CHART VA,

SE7
HEARR WY
ﬂA&’ﬂ/a

STV SR

o174
AEALLEL

2=121

BLLIST ROUTINE

VRS
NT
SUHEAD

SET PO B
25 2
D
LNEST

3.0 PASS 2 DESCRIPTION

a. Function

Pass 2 of the IBM 9020 Assembler produces object
language from the statements processed and tables
built up by pass 1. Pass 2 also builds the RLD
table and converts storage addresses into the
base-displacement form required in object language.
As determined by the job control card, pass 2 may
also prepare the program listing, the object deck,
and object text for immediate execution.

b, Organization

Pass 2 of the assembler is executed by the BLPAS2
routine which uses some of the routines loaded
with the BLPAS1 routines from BAL, Those routines
not described in the preceding section of this
manual are described in this section.

3.1 BLPAS2

The BLPAS2 routine, the main body of the assembler
second pass, consists of a mainline section that divides
into three routines: new statement, machine operation, and
pseudo-operation., (See Figure 3-1,) 1In addition, the
BLPAS2 program includes a series of independent subroutines.,

After initialization by the INIT3 subroutine in BAL,
BLPAS2 processes one record during each iteration. In the
new statement routine, the statement is obtained from the
intermediate buffer (or .WORK2 after the buffer is emptied)
and checked for type. A comment or ignore statement is
printed immediately (if a listing was requested); a
diagnostic record is stacked for issuance after the statement
to which it applies. A literal reference record is saved to
obtain the attributes of the literal in the following statement.

For a BAL statement (which meets none of the above tests),
look up of the operation code determines whether it calls for
a machine operation or a pseudo-operation. If the statement
is a machine operation, the operands are assembled by
appropriate subroutines, the statement is printed and/or punched
if requested, and the instruction length is added to the location
counter, followed by a return to get the next statement. If the
statement is a pseudo-operation, the proper pseudo-operation
processing subroutine is called. Upon completion of the selected
subroutine, the statement is printed and/or punched before return
is made to get the next statement,

3-1

MAPIFHERS

ASTEMBLE
AERAND(S)

DONT
AN
STA7ENENT,
NCREASE
Loc o7

FIGURE 3-1,

) ENTER
LAASZ =TT NTZ N
~7 GAL
V-£4
P4 -M{/V ST TEACENT
a7 4
STATEMENT,
oy ANT IR
T DIAG O Y
527,/6\’/ o STAGK

aERD.

[

o o)
N ineE 70

ROCESTT
Y A
spEET 2Z)

END

l

RNT
e)

STA7E -
MENT AS

AR AU TE

(5,{//7 2 //V/?f
W EAL

PASS 2 (SHEET 1 OF 2)

aew END N
ALIGN AT PRI T END
DoELE ; STATEMEN,
WORR. AND : AN ANY

N Assznis1Es ; TXNT CACL
ELEAENTF . , LREMAINING
2 s, ot USING |
. EVALUATE T | EALLATE | ARRANGE
, ; MOLIFHERS : ExaeESSTION vy 2
g ; AND ALIGY ‘ (BASE LD DS
. L] Lo0 CTR ! VALUE)

oNOP | |

BEUE . PRNT™ ‘) '
NOPE) 2 STATEMENT EVALLATE AN
ALIEAMENT jég/’@f;ff@ [EETTER NDEUD
SPECHIEL. Loc C7 Y 3
|
s - AL O
: ‘Ea’ : EVALLATE "Eé' i EANTER BASE (A T2
; | CONSTANT. , ; pALLIE IN .
s) 1 SN T . . + SEC LISV (EX77 7T NTH
: : AN THE 0 i TAL, & N EAL
e o STATEMENT . L ENTRY
oo ey peecr l
SiorE Lo [- r
a7 N ! Aﬁ“ﬂ V27
RE WIS ! 7D GASE -
Vol ' | 7 /477
_ Ny :
| m/mm/wmfzr
SETLa? aNT v 428 Lok P
a7z FEOM AONETANT TINEY AND
NEW FFE 7 LENT P 7O EX TR
ENTRY Log 27 IALLE
o > —— (- oL e
: ' i ! ! ¥ !
- : | ! | |
- 1 ‘f -1 { . b
) r | t !
. | | ‘ | oo ! 4 _
DU, TRACE, Dent 7~ é‘/vfm/ JEZY 2o . - o?
ek ' LOAK P LVALLATE Nevicid 7=
TS AN VALIPATE SYATEL ANP <G L EARETION
AU TE AND MAKE
L85 AP EXNTEAIN i LA ALE NLo& e

'.j'-

|

|
i
i
i
I
i

@

'

NOTE =~ FOE OTHER RSEL-CP ROUTIHES] SEE
THE ZETANED Lo AR, &5;5(/‘

7O JALBLE ON CHALT 2

FIGURE 3-1, PASS 2 (SHEET 2 OF 2)

The pseudo-operation subroutines (shown in Figure 3-=1)
each process one type or several related types of pseudo-
operation statements. Of particular note, the END statement
signals the end of the source program. When it is
encountered, the END subroutine puts out the Relocation List
Dictionary (RLD), then exits to INIT4 in BAL to terminate BLPAS2,

3.1.1 BLPAS2 Mainline
3.1.1.1 New Statement Routine (PASS2)

FUNCTION: This routine (Chart OA) obtains a source statement
and determines whether it is a machine operation or a
pseudo-operation,

ENTRY: This routine is first entered at BLPAS2 from INIT3
in BAL. Each successive iteration re-enters at PASS2,.

OPERATION: This routine calls BLIOGET2 to get a statement
from the intermediate buffer (or from .WORK2 after the buffer .
is emptied). A comment is passed to the COMMEN subroutine,

a diagnostic is stacked by the DIAG routine, or an ignore
record is passed to the BLPRINT routine. A literal reference
record is stored for use in assembling the literal in the
following source statement. Return is made after handling
any of these four types to PASS2 for the next statement.

For a machine=- or pseudo-operation statement, the
operation code is checked for valid length, then submitted
for a search of the operation code table by the BLOPLKUP
routine,

EXIT: If the operation code is a pseudo-operation, this
routine branches to PSEUDO in the pseudo-operation routine.
If the operation code is a machine operation, this routine
falls through to the machine operation routine.

ERRORS: If an overlong operation code is encountered, this
routine calls the ILLOP subroutine to process the error,

3.1.1.2 Machine Operation Routine

FUNCTION: This routine (Chart OB) assembles the symbolic
operands of the machine operation statement into object
language along with the object operation code from the
operation code table, then prints and/or punches the
statement and object text. |

ENTRY: This routine is entered from the new statement
routine., Entry is also made at NOMOR from the EXBC and
EXBCR subroutines,

OPERATION: This routine first edits the object operation
code (taken from the operation code table), checks location
counter alignment, and gets the operand count for this
instruction from the operation code table.

Next, for each operand, the routine determines the
required operand type from the operation code table and
calls the appropriate operand edit subroutine. After the
operands have been assembled and their terminators checked,
a check is made for a privileged operation code before the
statement is printed and punched. Finally, the instruction
length is added to the location counter.

EXIT: This routine exits to PASS2 in the new statement
routine,

ERRORS: If the location counter is not aligned to a
halfword boundary, diagnostic 16 is issued and alignment
is made before the routine proceeds.

An invalid terminator for the first or second operand
bypasses processing of any succeeding operands and diagnostic
14 is issued,

If a privileged operation code is encountered, diagnostic
13 is issued.

If no pointer is found in the operation code table, exit
is made to SYSTER terminating the assembly operation.

If the location counter overflows, the overflow is
fixed (erased) and diagnostic 77 is issued for the next
statement,

COMIMENTS: Errors in the source statement operands are
handled by the operand edit subroutines and described with
those subroutines,

3.1.1.3 Pseudo-Operation Routine

FUNCTION: This routine (Chart OC) selects the proper
subroutine to process a pseudo-operation statement,

ENTRY: This routine is entered at PSEUDO from the new
statement routine.

OPERATION: This routine uses a pointer in the MASTER
operation code table to select the proper subroutines,
These subroutines are described separately below.

EXIT: This routine exits to PASS2 in the new statement
routine,

ERRORS: If a disallowed pseudo-operation code is found or

an operation code not in the opération code table is found,
this routine calls the ILLOP subroutine.

3.1.1,4 EJECT Subroutine

FUNCTION: This subroutine causes the listing to skip to a
new page, by calling the BLLIST routine to space X*3F° lines.

ENTRY: This subroutine is entered at EJECT from the pseudo=
operation routine,

EXIT: This subroutine exits to PASS2 in the new statement
routine,

3,1.1.5 SPACE Subroutine

FUNCTION: This subroutine (Chart OC) causes the listing to
space the specified number of lines (less than a full page)
by calling the BLLIST routine.

ENTRY: This subroutine is entered at SPACE from the pseudo-
operation routine.

EXIT: This subroutine exits to PASS2 in the new statement
routine,

COMMENTS: MNo diagnostics are issued even if the operand
contains errors.
3.1.1.6 ISEQ and SSEQ Subroutines

FUNCTION: These subroutines initiate or suppress sequence
number checking.

ENTRY: These subroutines are entered at ISEQ or SSEQ,
respectively, from the pseudo-operation routine.

EXIT: These subroutines exit to PASS2 in the new statement
routine,

3.1.1.7 NLIST and LIST Subroutines

FUNCTION: These subroutines temporarily suppress or resume
listing,

ENTRY: These subroutines are entered at NLIST or LIST,
respectively, from the pseudo-operation routine,

EXIT: These subroutines exit to PASS2 in the new statement
routine,

3.1.1.8 SPEIM and RPEM Subroutines

FUNCTION: These subroutines suppress or resume the printing
“of possible-error messages with selective suppression of
privileged operation, void expression, and all other p0551ble
error messages (except the previously named two).

ENTRY: These subroutines are entered at SPEM or RPEM,
respectively, from the pseudo-operation routine,

EXIT: These subroutines exit to PASS2 in the new statement
routine.

3.1.1.9 IGNORE Subroutine

FUNCTION: This subroutine handles statements that are ignored
by BLPAS2 (e.g., EXTRN, LIB), calling the BLPRINT routine for
listing.

ENTRY: This subroutine is entered at IGNORE from the pseudo-
operation routine,

EXIT: This subroutine exits to the new statement routine
at PASS2.

3.1.1.10 MISPL Subroutine

FUNCTION: This subroutine handles statements that are
disallowed by the system or that should not have reached

BLPAS2 (e.g., ICTL), by issuing diagnostic 15.

ENTRY: This subroutine is entered at MISPL from the pseudo-
operation routine,

EXIT: This subroutine exits to the new statement routine
at PASSZ2,

3.1.1,11 CCW Subroutine

FUNCTION: This subroutine (Chart OD) validates and assembles
a CCW,.

ENTRY: This subroutine is entered at CCW from the pseudo-
operation routine,

OPERATION: This subroutine begins by aligning the location
counter at a doubleword boundary. It then validates and

moves to the object area the CCW command code, data address,
flags, and data count., The data address is also entered in

the RLD table if it is relocatable, Finally, the CCW statement
is submitted to the BLPRINT routine and the doubleword length
is added to the location counter,

EXIT: This subroutine exits to PASS2 in the new statement
routine,

CRRORS: A bad terminator following any element of the CCW
bypasses processing of all succeeding elements and diagnostic
14 is issued.,

An error in an element prevents its assembly into the
CCW (with diagnostics issued by the validation subroutine)
with two exceptions.

1. A nontruncated flag byte (last 3 bits not 0) is
truncated before assembly and diagnostic 9 is
issued,

2, A nonabsolute data count is assembled and diagnostic
54 is issued.

If entry of the data address in the RLD table causes
overflow, diagnostic 45 is issued.

If addition of the CCW length to the location counter
causes its overflow, the overflow is ¢fixed® (high=order
byte zeroed) by the LOGOVF, which issues diagnostic 77 for
the succeeding statement, indicating an incorrect location
counter for that statement.

3.1.1.,12 EXBC and EXBCR Subroutines

FUNCTION: These subroutines (Chart OD) assemble extended
mnemonic branch instructions,

ENTRY: These subroutines are entered at LEXBC or at EYBCR
from the pseudo-operation routine.

3-8

OPERATION: These subroutines begin by moving the operation
code and condition (first operand) from the operation code
table entry to the object area, then check the alignment

of the location counter. Finally, the subroutines call the
appropriate operand edit subroutine for its branch address.

EXIT: These subroutines exit to NOMOR in the machine
operation routine to check the operand terminator, print
the statement, and add the instruction length to the
location counter.

ERRORS: If the location counter is not aligned to a
halfword boundary, diagnostic 16 is issued and the HALF
subroutine is called to perform the alignment.

Any errors in the operand are handled by the edit
subroutine,

3.1.1,13 CNOP Subroutine

FUNCTION: This subroutine (Chart OE) assembles one or more
NOP instructions, as needed, to align the location counter as
specified by the CNOP subroutine, '

ENTRY: This subroutine is entered at CNOP from the pseudo-
operation routine.,

OPERATION: This subroutine begins by aligning to a halfword
boundary if required (using the HALF subroutine), then calls
BLEXVAL twice to evaluate the two CNOP operands, With the
desired alignment now available, the location counter is
checked to determine the alignment increment required. Then,
as required, a 4-byte NOP (BC format) is put out, the length
is added to the location counter, and the CNOP statement is
printed.

EXIT: This subroutine exits to PASS2 in the new statement
routine, .

ERRORS: If addition of the NOP instruction length to the
location counter causes overflow, the overflow is *fixed®
and a diagnostic is stacked for issuance with the next
statement,

3.1.1.14 COM Subroutine

FUNCTION: This subroutine (Chart OE) initiates or resumes
the common section, first saving the location counter in
the current CSECT entry.

ENTRY: This subroutine is entered at COM from the pseudo-
operation routine,

EXIT: This subroutine exits to PASS2 in the new statement
routine,

3.1.1.15 CSECT and DSECT Subroutines

FUNCTION: These subroutines (Chart OF) initiate or resume
the control section named in the statement.

ENTRY: These subroutines are entered at CSECT or at DSECT
(depending on the statement operation code) from the pseudo-
operation routine,

OPERATION: These subroutines first save the location counter
in the current CSECT=-EXTRN table entry, then search that table
for the entry named in the statement. If no match is found,
the search is repeated for an entry with a blank name. Next,
the entry found is checked for whether it is CSECT or a DSECT,
and the DSECT switch is set accordingly. Finally, the
location counter is set from the table entry and the statement
is printed.

EXIT: These subroutines exit to PASS 2 in the new statement
routine.

COMMENTS: Since the BLPAS1 program allows a DSECT statement
to resume a CSECT entry and vice versa (issuing a diagnostic
to call attention to the occurrence), these subroutines must
allow for the same possibility; i.e., that a DSECT statement
may be resuming a CSECT or vice versa,

3.1.1.16 DCODS Subroutine

FUNCTION: This subroutine (Charts 0OG, OIl) handles a DC,
DS, or DCL statement to reserve storage space for its operand,
and, if appropriate, set up object code for the constant value.

ENTRY: This subroutine is entered at DCODS from the pseudo-
operation routine.

OPERATION: This subroutine begins by calling BLCONMOD to
evaluate the constant modifiers. The alignment code from
BLCONMOD is then used to align the location counter for the
constant. A DS statement is simply printed (and given to
BLPUNC2 which will punch the current card) and the length
of the constant is added to the location counter without
assembling object code for loading into storage.

3=10

For a DC or DCL statement (the latter issued by BLPAS1
to define a literal), the multiplicity is checked for nonzero.
Next, BLCONVAL is called to evaluate the constant. Its value

is then assembled as object code, and punched, and the constant

length is added to the location counter. If the multiplicity

was greater than 1, the object code is repeated and its length

added to the location counter as many times as called for by
the multiplicity. If it is an adcon, each iteration is
re=evaluated after stepping the -location counter,

EXIT: This subroutine exits to PASS2 in the new statement
routine.

ERRORS: If a DC or DCL statement lacks a value list,
diagnostic 19 is issued and the statement is handled as

.if it were a DS statement (no object code but storage space
allocated).

If a DC statement with zero multiplicity is encountered,
the statement is printed without assembly to object code or
reservation of storage.

If BLCONVAL finds errors in the constant, its diagnostic
messages are issued but processing continues normally.

If the location counter overflows at any point, the
overflow is ¢fixed® and a diagnostic is stacked for issuance
with the next statement or line on the listing,

3.1.1.17 DROP Subroutine

FUNCTION: This subroutine (Chart OI) validates the register
operand(s) of a DROP statement, then removes the designated
register(s) from the USING table and base-displacement
address calculations.

ENTRY: This subroutine is entered at DROP from the pseudo-
operation routine,

OPERATION: This subroutine begins by calling the ABSS
subroutine to validate the register specification, then
checks that the specified register was marked in the USING
table as in use for base-=displacement calculations. Finally,
the table entry is marked as unavailable and, if no further
registers are specified in the DROP statement, the statement
is printed.

EXIT: This subroutine exits to PASS2 in the new statement
routine,

3-11

ERRORS: If the register specification is in error, diagnostic
21 is issued and no check is made of the USING table,

If the specified register was not in use, for base-
displacement calculations, diagnostic 20 is issued.

3.1.1.18 DUMPT Subroutine

FUNCTION: This subroutine (Charts 0S, OT) validates a tape
dump request and assembles the DBG card for it.

LNTRY: This subroutine is entered at SUMPT from the
pseudo=-cperation routine,

OPERATION: This subroutine validates and assembles the
dump format label, logical tape drive number, ‘from file,®
sfrom record,® °‘to file,® ¢‘to record,®’ and ‘bytes per record.’
The dump format and label are extracted and validated in
succession, using the BLBRKUP routine for the extraction.
The next five (or six) terms in the request are evaluated
in succession by the INROUT subroutine and further tested
for maximum value in this subroutine before being assembled
onto the DBG card. Tinally, the request is identified as
logical or physical, the DBG card is punched, and the tape
dump statement is printed.

L¥IT: This subroutine exits to PASS2 in the new statement
routine,

ERRORS: An error in any element of the dump request causes
issuance of an appropriate diagnostic and a ‘no DBG card’
diagnostic (22); the dump request statement is printed but
no DBG card is produced.

The diagnostics issued are as follows.

a, Format error = BLBRKUP diagnostic
b Invalid format = number 23

Co Invalid label = number 24

d. Integer error = number 31

e, Integer too large = number 25

f. Bad terminator = number 14

N blank format specification is forced as hexadecimal
(IEX) format.

3=-12

3.1.1.19 DUMP Subroutine

FUNCTION: This subroutine (Charts 0J, OK, OL) validates a
storage and/or register dump request and assembles the DBG
card for it.

ENTRY: This subroutine is entered at DUMP from the pseudo-
operation routine,

OPERATION: This subroutine validates and assembles the dump
format, label, ¢from loc,® and ‘to loc,® then determines
the dump request type to select further processing.

The dump format and label are extracted and validated
in succession, using the BLBRKUP routine for the extraction.
If a *from loc® is specified (indicating storage dump as
well as register dump), the EXVR subroutine is called to
evaluate it. If the ¢from loc® is absolute, a special
subroutine is entered to ensure that the ‘to loc® is also
absolute. Similarly, a check is made that both the ¢from
loc® and *to loc® are or are not in common. In either case,
EXVR is used to evaluate the °to loc.®

After the storage dump addresses (if present) have
been assembled, the dump type is examined to determine further
processing if any. An emergency dump request (DUMPE) is
finished at this point. An unconditional dump request (DUMP)
is completed by evaluating the ‘*point of dump® address. The
two types of conditional dump request (DUMPC and DUMPR) are
each handled by a separate subroutine that processes the
conditions specified in the request.

There are two subroutines within the DUMP subroutine:
CONVT and GTLOC. The CONVT subroutine converts a 3-byte
address into EBCDIC characters. The GTLOC subroutine
evaluates the symbolic ‘point of dump®.

EXIT: This subroutine exits to PASS2 in the new statement
routine.

ERRORS: An error in any element of the dump request causes
issuance of an appropriate diagnostic and a *no DBG card’
diagnostic (22); the dump request statement is printed but
no DBG card is produced.

.The diagnostics issued are as follows.

a, Format error - BLBRKUP diagnostic

b. Invalid format = number 23

C. Invalid label - number 24
d. Bad address = number 26
e, Bad integer = number 25
f. Bad condition = number 27
g. Bad register = number -28

A blank format specification is forced as HEX format.

3.1.1.20 TND Subroutine

FUNCTION: This subroutine (Charts OIf, ON) validates the
‘begin’ location if specified in the END statement, puts
out all entries in the RLD table, and exits to INIT4,
ending BLPAS2,

ENTRY: This subroutine is entered at END from the pseudo-
operation routine,

OPERATION: This subroutine begins by calling the print
subroutine to punch the final TXT card. It then calls
the EXVR subroutine to evaluate the ‘begin® location. If
the location was defined in a control section, its value
is moved to the FND card. If not and the location is not
absolute, BLBRKUP is called to extract the symbol (an
EXTRl) for moving to the END card. The ILND statement is
then printed,

If any entries are present in the RLD table, the table
entries are printed and RLD cards are punched. TIinally,
the last RLD card is punched whether full or not and the
END card is then punched. The sequence number of the LND
card is saved for the XPLI' routine.

The PRRLD subroutine, included in the THuD subroutine,
prints a line of the PLD table each time it is called, if
a listing has been requested.

EXIT: This subroutine exits to INIT4 in BAL, ending BILAPS2.
ERRORS: Any errors found in the ¢begin® location by IXVR
cause BLEXVAL diagnostics to be issued, followed by
diagnostic 30, and assembly of the ¢‘begin® location to be
omitted.

If the ¢beqgin’® location is absolute, diagnostic 30 is
issued and the location is not assembled on the END card,

3=-14

3.1.1.21 ENTRY Subroutine

FUNCTION: This subroutine (Chart 0OI) evaluates the ENTRY
symbol (s) and determines that the symbol has been defined
in a control section or in common.

ENTRY: This subroutine is entered at ENTRY from the pseudo-
operation routine.

OPERATION: This subroutine calls the EXVR subroutine to
evaluate the symbol, If the expression contains no errors
and identifies a location defined in a control section or

in common, the ENTRY symbol is accepted. After all symbols
in the ENTRY operand field have been valldated the statement
is printed.

EXIT: This subroutine exits to PASSZ2 in the new statement
routine.

ERRORS: If the entry symbol was defined in a dummy control
section, diagnostic 62 is issued.

If the last symbol is not terminated by a blank
character, diagnostic 14 is issued,

COMMENTS: Errors found by BLEXVAL (called by the EXVR
subroutine) cause diagnostics to be stacked before return
is made to this subroutine,

3.1.1.22 PRNT Subroutine

FUNCTION: This subroutine (Chart 00) validates the operands
of a PRINT statement to determine how much of each assembled
constant (from a DC statement) will be listed and whether
literals will be listed.

ENTRY: This subroutine is entered at PRNT from the pseudo-
operation routine,

OPERATION: This subroutine begins by calling the BLBRKUP
routine to extract and validate the first operand., If the
operand is void or °DATA,°® constants will be printed
completely in the listing; if the operand is ¢NODATA,°
only the first 16 bytes of each constant will be printed.

This subroutine then calls BLBRKUP again to extract
and validate the second operand., If the operand is void or
‘LIT,® all literals will be printed; if the operand is
*NOLIT,® literals will not be printed when the literal table
is put out. The PRINT statement is then printed.

3=-15

EXIT: This subroutine exits to PASS2 in the new statement
routine,

ERRORS: If errors are found by BLBRKUP in either operand,
the BLBRKUP diagnostic(s) is issued, followed by diagnostic
31; further operand processing is bypassed.

A bad terminator of the first operand allows the operand
to be processed, but diagnostic 31 is issued and the second
operand is ignored.

3.1.1.23 TITLE Subroutine

FUNCTION: This subroutine (Chart 00) validates the punch
ID (if present on the TITLE card) and causes the TITLE page
of the listing to be printed.

ENTRY: This subroutine is entered at TITLE from the pseudo-
operation routine,

OPERATION: If a punch ID is present on the TITLE card, this
subroutine calls BLBRKUP to extract it. If wvalid, the 1ID
is moved to the card sequence number field.

The subroutine then picks up the title, prints the
statement, and causes the listing to skip to a new page,

EXIT: This subroutine exits to PASS2 in the new statement
routine,

ERRORS: If the punch ID is invalid, diagnostic 32 is issued
and the ID is not moved to the card sequence number field.

3.1.1.24 TRACE Subroutine

FUNCTION: This subroutine (Charts OP, 0Q) validates a trace
request and assembles the DBG card for it.

ENTRY: This subroutine is entered at TRACE from the pseudo-
operation routine.

OPERATION: This subroutine validates and assembles the trace
label, start (°¢from loc®), and end (‘to loc®) onto a DBG card.
The label is extracted from the statement by BLBRKUP and, if

it is not void, is moved to the DBG card. Next, if a *from
loc*®. is specified, the EXVR subroutine is used to evaluate the
¢from loc® and the ‘to loc® in succession., If the ¢‘from loc’

is absolute, a special subroutine is entered to ensure that

the ¢from loc® and °*to loc® are or are not in the common section.
Finally, the trace type (TRACE or TRACB) is moved to the DBG
card, the card is punched, and the statement is printed.

3-16

The CVT subroutine, included in the TRACE subroutine,
converts a 3-byte address into EBCDIC characters.

EXIT: This subroutine exits to PASS2 in the new statement
routine,

ERRORS: An error in the label or either address in the trace
request causes issuance of the appropriate diagnostic (24

for label or 26 for address), followed by a °‘no DBG card®
diagnostic (22); the trace request statement is printed but
no DBG card is produced.

3.1.1.25 USING Subroutine

FUNCTION: This subroutine (Chart OR) validates the value and
registers specified in a USING statement for base=-displacement
calculations.

ENTRY: This subroutine is entered at USING from the pseudo-
operation routine,

OPERATION: This subroutine begins by calling the EXVR
subroutine to evaluate the values specified for the first
base register. If the value is valid and the expression
properly terminated, the subroutine then validates the
general register specified as base register. If other

than register 0 is specified, the register entry in the
USING table is marked as available for base-displacement
calculations, the relocation ID is moved into the entry, and
the value is moved into the entry. If another register is
specified, the value is increased by 4096 before the register
specification is validated and entry made. Finally, the
USING statement is printed.

EXIT: This subroutine exits to PASS2 in the new statement
routine.

ERRORS: If the EXVR subroutine finds a value error, it puts
out diagnostics selected by the BLEXVAL routine. Diagnostic
33 is then issued and no entry is made in the USING table.

If a register specification is in error, diagnostic 34
is issued and no entry is made for that specification.

If register 0 is specified with a zero value, the entry
is made but diagnostic 52 is issued as well.

If register 0 is specified with a non-zero value, entry

is made in register 0 for a zero value but diagnostic 53 is
issued.

3=17

3.1.1.26 LTORG Subroutine

FUNCTION: This subroutine aligns the location counter to a
doubleword boundary in preparation for the literals (put out
as DCLs) to follow and prints the LTORG statement.

ENTRY: This subroutine is entered at LTORG from the pseudo-
operation routine.

EXIT: This subroutine exits to PASS2 in the new statement
routine.

3.1.1.27 ORG Subroutine
FUNCTION: This subroutine evaluates the ORG statement operand,

sets the location counter to that value, and prints the ORG
statement.

ENTRY: This subroutine is entered at ORG from the pseudo-
operation routine,

EXIT: This subroutine exits to PASS2 in the new statement
routine,

ERRORS: 1If the TEQU has been used, the ORG could be for an
incorrect CSECT., 1In this case, diagnostic 66 will be issued
and the ORG ignored.

3.1.1.28 ILLOP Subroutine
FUNCTION: This subroutine is called for an invalid operation
code; it issues diagnostic 35, sets up a 4-byte NOP, and adds

this length to the location counter.

ENTRY: This subroutine is entered at ILLOP from the pseudo-
operation routine or from the new statement routine.

EXIT: This subroutine exits to PASS2 in the new statement
routine.

3.1.1.29 QUAL Subroutine

FUNCTION: This subroutine picks up the new qualifier given
in the QUAL statement and prints the statement.

ENTRY: This subroutine is entered at QUAL from the pseudo-
operation routine,

EXIT: This subroutine exits to PASS2 in the new statement
routine,

COMMENTS: A QUAL statement containing errors would be found
in BLPAS1 and marked to be ignored by BLPAS2,

3.1.1.30 TEQU Subroutine

FUNCTION: This subroutine (Chart OU) changes the location
attribute of the symbol named in the TEQU statement to the
value of the statement operand and prints the TEQU statement.

ENTRY: This subroutine is entered at TEQU from the pseudo-
operation routine.

OPERATION: This subroutine first calls BLSLKUP to find the
symbol given in the statement name field in the symbol table.
Next, the EXVR subroutine is called to evaluate the operand.
The value is converted for listing, both it and its symbolic
attribute are moved into the location field of the symbol
table entry, and the TEQU statement is printed,

EXIT: This subroutine exits to PASS2 in the new statement
routine,

ERRORS: If the EXVR subroutine finds errors in the TEQU
statement operand, diagnostic 55 is issued in addition to
the diagnostics issued by the subroutine and the new
location is not entered in the symbol table.

COMMENTS: Errors in the operand would be found by PASST
and the TEQU statement would be marked to be ignored by
PASS2,

3.1.1.31% EQMXMN Subroutine

FUNCTION: This subroutine (Chart OU) assembles the location
specified by the statement START, EQU, MAX, or MIN, then
prints the statement. Re-evaluation may be required if

TEQU has been used,

ENTRY: This subroutine is entered at EQMXMN from the
pseudo-operation routine.

EXIT: This subroutine exits to PASS2 in the new statement
routine,

3.1.2 BLPAS2 Common Subroutines

Included within the BLPAS2 program are 20 subroutines
that are called to perform various operations for the main
body of the program., These subroutines, listed below, are
each described separately.

1. COMMEN - Print a comment record

3=19

17.

18,

19,

20,

3.1.2.1

FUNCTION:

INROUT - Evaluate an integer

ABS8 - Evaluate an absolute expression

EXVR - Evaluate an expression

LOCOVF - Process location counter overflow

DOUB = Align location counter to doukbleword boundary
HALF - Align location counter to halfword boundary
COVX = Convert fullword to EBCDIC characters.,
USBASE = Compute base and displacement

REGST - Evaluate register operand

LITYP - Evaluate register operand (R2 = 0)

INT8 - Evaluate 8=bit immediate operand

SHFT = Evaluate shift operand

SA = Evaluate storage-address operand

XA - Evaluate indexable-storage-address operand

SLA4Q - Evaluate storage-address operand with 4-bit
length specification

SLA - Evaluate storage-address operand with 8-bit
length specification

SI8Z - Evaluate storage-address operand with 8=bit
length = 0 :

SA4Z - Evaluate storage-address operand with 4-=bit
length 0

DIAG - Stack a diagnostic

Print A Comment Record Subroutine (COMMEN)

This subroutine (Chart OV) accepts comments,

JOVIAL statements, and JOVIAL diagnostics, printing them
if listing is requested and adding to the serious and
possible error counts.

3=20

"ENTRY: This subroutine is entered at COMMEN from the new
statement routine.

EXIT: This subroutine exits to PASS2 in the new statement
routine.

3.1.2.2 Evaluate An Integer Subroutine (INROUT)

FUNCTION: This subroutine (Chart OV) evaluates an integer
and validates it.

ENTRY: This subroutine is entered at INROUT from the DUMP
or DUMPT subroutine.

EXIT: This subroutine returns to the calling point if an
error was found in the integer or to the instruction following
the calling point (normal return) if no error was found.

3.1.2.3 Evaluate Absolute Expression Subroutine (ABS8)

FUNCTION: This subroutine (Chart OW) evaluates an absolute
expression and validates it against a maximum value
stipulated by the calling routine,

ENTRY: This subroutine is entered at ABS8 by the DROP
and USING subroutines and by the operand subroutines REGST,
SA, XA, SLA4Q, SLA, and LITYP,

OPERATION: This subroutine calls EXVR to evaluate the
expression, then tests that it is absolute and less than
the maximum specified by the calling routine.

EXIT: This subroutine exits to the instruction following
the calling point (normal return) if no error is found; to
the calling point (error return) if an error is found.

3.1.2.4 Evaluate Expression Routine (EXVR)

FUNCTION: This subroutine (Chart OW) evaluates an expression
submitted to it.

ENTRY: This subroutine is entered at EXVR by the CCW, DUMP,
END, ENTRY, TRACE, USING, and TEQU subroutines or by the
ABS8, SA, XA, SLA4Q, and SLA subroutines,

OPERATION: This subroutine calls BLEXVAL if the expression
is not a literal or gets the literal characteristics from
the symbol table., This subroutine issues diagnostics for
any errors found,

EXIT: This subroutine exits to the instruction following

the calling point (normal return) if no error is found; to
the calling point (error return) if an error is found.

3=21

3,.1.2.5 Process Location Counter Overflow Subroutine (LOCOVF)

FUNCTION: This subroutine stacks diagnostic 77, calling
attention to the location counter overflow, and *fixes’ the
overflow by zeroing the location counter high-order byte.

ENTRY: This subroutine is entered at LOCOVF whenever a
location counter overflow is encountered in BLPAS2,

EXIT: This subroutine exits to the calling point,

COMMENTS: This subroutine is usually called after listing

of the entry that caused the location counter overflow (which
overflow will affect the location assigned to the subsequent
entry). The ‘overflow® diagnostic is thus listed following
the next entry, whose location is incorrect because the
counter has been ‘fixed.°®

3.1.2.6 Align to Doubleword Subroutine (DOUB)
FUNCTION: This subroutine (Chart 0OX) checks, and, if
necessary, aligns the location counter to a doubleword

boundary.

ENTRY: This subroutine is entered at DOUB from the CCW,
DCODS, or LTORG subroutine,

EXIT: This subroutine exits to the calling point,
3.1.2.7 HALF Subroutine

FUNCTION: This subroutine (Chart OX) aligns the location
counter to a halfword boundarvy.

ENTRY: This subroutine is entered at HALF from the machine
operation routine or from the EXBC, EXBCR, CNOP, or DCODS
subroutine.

EXIT: This subroutine exits to the calling point,

3.1.2.8 Convert Fullword to EBCDIC Subroutine (COVX)

FUNCTION: This subroutine (Chart 0X) produces an EBCDIC
representation of a fullword presented to it, converting
each hexadecimal digit (4 bits) into one of the characters
0 through 9 or A through F representing its value,

ENTRY: This subroutine is entered at COVX from the END,
USING, TEQU, or EQMXMN subroutines or from the REGST, SA,
USBASE, XA, SLA4Q, SLA, INT8, or LITYP subroutines,

EXIT: This subroutine exits to the calling point,

3=22

3.1.2.9 Compute Base and Displacement Subroutine (USBASE)

FUNCTION: This subroutine (Chart 0OY) searches the USING
table to develop a base register specification and the
smallest displacement for the effectlve address submitted
to the subroutine.

ENTRY: This subroutine is entered at USBASE from the SA, XA,
SLA4Q, or SLA subroutines,

OPERATION: This subroutine begins by calling the COVX
subroutine to convert the effective address into EBCDIC
characters for object listing, then searches the USING

table for a base register with acceptable base value (same
relocation ID and base value < effective address < base value

+ 4096) . The displacement is computed and saved with the
register specification. If another acceptable base register

is found, its displacement is compared with the previously
computed one to select the smaller (or later equal) displace-
ment., After the entire USING table has been searched, the COVX
subroutine is again called to convert the register specification
and displacement for object area listing.

EXIT: This subroutine exits to the second instruction
following the calling point (normal return) if an acceptable
base register and displacement have been found.

ERRORS: If no acceptable base register is found, diagnostic
38 is issued and return is made to the instruction following
the calling point (error return),

3.1.2.10 Evaluate Register Operand Subroutine (REGST)

FUNCTION: This subroutine (Chart 0Z) evaluates the register
gspecified as an operand and determines that the specified
register type is that required for the statement operation
code.,

ENTRY: This subroutine is entered at REGST from the machine
operation routine.

EXIT: This subroutine exits to the calling point.

ERRORS: 1If the register specification is in error, it is
not moved to the object area; diagnostics calling attention
to the errors are issued by the ABS8 subroutine or by the
EXVR subroutine called by it.

If the specified register type does not match that
required by the operation code, the register specification
is assembled into the object area but a diagnostic is issued,
either 36 or 37,

3=-23

If the specified register value is too large, diagnostic
54 is issued.

3.1.2.11 Evaluate Register Operand, No R2 Subroutine (LITYP)

FUNCTION: This subroutine (Chart 0Z) evaluates a register
operand (R1 with R2 = 0).

ENTRY: This subroutine is entered at LITYP from the machine
operation routine,

EXIT: This subroutine exits to the calling point,

ERRORS: If the register specification is in error, it is
not moved to the object area; diagnostics calling attention
to the errors are issued by the ABS8 subroutine or by the
EXVR subroutine called by it.

3.1.2.12 Evaluate 8-Bit Immediate Operand Subroutine (INT8)

FUNCTION: This subroutine (Chart 0Z) evaluates an integer
specifying an 8-bit immediate operand.,

ENTRY: This subroutine is entered at INT8 from the machine
operation routine,

' EXIT: This subroutine exits to the calling point.

ERRORS: 1If the integer specification is in error, it is not
moved to the object area; diagnostics calling attention to
the errors are issued by the ABS8 subroutine or by the

EXVR subroutine called by it.

3,1.2.13 Evaluate Shift Operand Subroutine (SHFT)

FUNCTION: This subroutine (Chart 0Z) evaluates a shift
operand,

ENTRY: This subroutine is entered at SHFT from the machine
operation routine,

EXIT: This subroutine exits to the calling point unless
an error is found in the XA subroutine,

ERRORS: If the base register specification developed by the
XA subroutine in its determination of base displacement is
not 0, diagnostic 40 is issued and the R2 specification
developed there is not substituted for the base,

Errors found in the XA subroutine or in subroutines
that it calls cause diagnostics to be issued for them.
Certain errors cause the XA subroutine to exit to PRIVBK
in the new statement routine rather than returning to this
subroutine.

3.1.2.14 Evaluate Storage Address Operand Subroutine (SA)

FUNCTION: This subroutine (Chart PA) evaluates a storage
address operand with an implied or specified base register.

ENTRY: This subroutine is entered at SA from the machine
operation routine.

OPERATION: This subroutine first calls the EXVR subroutine

to evaluate the operand to obtain the effective address.

Next, the USBASE subroutine is called to compute the
displacement for an implied base register. If a base register
is specified in the operand, the ABS8 subroutine is used to
evaluate it., Finally, the address alignment is checked.

EXIT: This subroutine exits to the calling point, except
when a terminator error is encountered,

ERRORS: If the operand contains errors, the EXVR subroutine
_issues diagnostics and the effective address is rejected.

If the effective address cannot be converted into a
displacement and base, the USBASE subroutine issues a
diagnostic and the displacement and base are not assembled.

If the implied base register found by USBASE is not
register 0 and a base register is specified, diagnostic 40
is issued and the specification is not used (implied base
is used).

If the effective address is misaligned, diagnostic 39
is issued,

If the register specification is not properly terminated,
diagnostic 14 is issued and the subroutine exits to PRIVBK
in the new statement routine.
3.1.2.15 Evaluate Indexable Storage Address Subroutine (XA)

FUNCTION: This subroutine (Chart PB) evaluates an indexable
storage address operand with implied or specified base
register.

ENTRY: This subroutine is entered at XA from the machine
operation routine or from the SHFT subroutine.

3=25

OPERATION: This subroutine first calls the EXVR subroutine

to evaluate the effective address operand. Next, the USBASE
subroutine is called to compute the displacement for an implied
base register, If an index register is specified, the ABS8
subroutine is used to evaluate it., If a base register is
specified, the ABS8 subroutine is used to evaluate it. Finally,
the address alignment is checked,

EXIT: This subroutine exits to the calling point, except
when a terminator error is encountered.

ERRORS: 1If the operand contains errors, the EXVR subroutine
issues diagnostics and the effective address is rejected.

If the effective address cannot be converted into a
displacement, the USBASE subroutine issues a diagnostic and
the displacement is not assembled,

If either register specification is in error, the ABSS
subroutine issues a diagnostic and the specification is not
used.

If the implied base register is not register 0 and a
base is specified, diagnostic 40 is issued and the implied
base is used (specification is ignored).

If the register(s) specification is not properly
terminated, diagnostic 14 is issued and the subroutine exits
to PRIVBK in the new statement rcutine,

If the effective address is misaliqgned, diagnostic 39
is issued.

3.1.2.16 Evaluate Storage Address with 4-Bit Length
Subroutine (SLA4Q)

FUNCTION: This subroutine (Chart PC) evaluates a storage
address with an implied or explicit length and with an
implied or explicit base register specification.

ENTRY: This subroutine is enteréd at SLA4Q from the machine
operation routine or from the SA4Z subroutine

OPERATION: This subroutine first calls the EXVR subroutine
to evaluate the effective address, then calls the UBASE
subroutine to develop the displacement and implied base

(if any). If there is no explicit length, the implied
length is validated and assembled. If an explicit length
is supplied in the operand, the ABS8 subroutine is used to
evaluate it.

3=26

If a base register specification follows the length
specification or when the SLA4Q subroutine is called by SA47Z,
the explicit base register is evaluated by ABS8. Finally,
the effective address alignment is tested.

EXIT: This subroutine exits to the calling point.

ERRORS: If the operand contains errors, the EXVR subroutine
issues diagnostics and the effective address (including base
and displacement) is ignored.

If the effective address cannot be converted into a
displacement, the USBASE subroutine issues a diagnostic
and the displacement is not assembled.

If the implied length is too large, diagnostic 41 is
issued, assembly of the length is bypassed, and the effective
address alignment is not checked.

If the ABS8 subroutine finds an error either in the
explicit length or explicit base register, it issues a
diagnostic and its error return bypasses use of the term in
error,

If the explicit length is void (blank) or not properly
terminated, the implicit length is used in its place. (An
error in the explicit length, found by ABS8, blocks use of
either length.)

If an explicit base register is specified and the
implicit base register is not register 0, diagnostic 40 is
issued and the implied base is used.

If either the explicit length or the explicit base
register is not properly terminated, diagnostic 14 is issued.

If the effective address is not properly aligned,
diagnostic 39 is issued.
3.1.2.17 Evaluate Storage Address with 8-Bit Length
Subroutine (SLA)
FUNCTION: This subroutine (Chart PD) evaluates a storage
address with an implied or explicit length and an implied

or explicit base register specification.

ENTRY: This subroutine is entered at SLA from the machine
operation routine or from the SI8%Z subroutine,

3=27

OPERATION: This subroutine first calls the EXVR subroutine
to evaluate the effective address, then calls the USBASE
subroutine to develop the displacement and implied base (if
any). If no explicit length is given, the implied length
is validated and assembled. If an explicit length is given
in the operand, the ABS8 subroutine is called to evaluate
it, If the opcode is MVW and the length is implicit, it is
divided by four to give a word length instead of a byte
length.,

If a base register specification follows the length
specification or when the SLA subroutine is called by S18%,
the explicit base register is evaluated by ABS8. Finally,
the effective address alignment is checked,

EXIT: This subroutine exits to the calling point, except
when a terminator error is found,

ERRORS: If the operand contains errors, the EXVR subroutine
issues diagnostics and the effective address (including base
and displacement) is ignored.

If the effective address cannot be converted into a
displacement, the USBASE subroutine issues a diagnostic
and the displacement is not assembled,

If the implied length is too large, diagnostic 41 is
issued, assembly of the length is bypassed, and the effective
address alignment is not checked.

If the ABS8 subroutine finds an error either in the
explicit length or explicit base register, it issues a
diagnostic and its error return bypasses use of the term
in error,

If the explicit length is void (blank or not properly
terminated, the implicit length is used in its place. (An
error in the explicit length, found by ABS8, blocks use of
either length,)

If an explicit base register is specified and the implicit
base register is not register 0, diagnostic 40 is issued and
the implied base is used.

If either the explicit length or the explicit base
register is not properly terminated, diagnostic 14 is issued
and exit is made to PRIVBK in the new statement routine.

If the effective address is not properly aligned,
diagnostic 39 is issued,

3-28

3.1.2.18 Evaluate Storage Address with 8=-Bit Length = 0
(s182)

FUNCTION: This subroutine (Chart PE) evaluates a storage
address in the SI format with the immediate byte (length)
containing all zeros.

ENTRY: This subroutine is entered at SI8%Z from the machine
operation routine,

OPERATION: This subroutine uses the SLA subroutine to
evaluate the storage address, then validates the length, the
assembled base, and the register specification.

EXIT: This subroutine exits to the calling point,

ERRORS: If the immediate byte is not assembled as all zeros
and either the assembled base is not zero or both R1 and R2
are not zero, diagnostic 4 is issued.

3.1.2.19 Evaluate Storage Address with 4-Bit Length = 0
Subroutine (SZ42)

FUNCTION: This subroutine (Chart PE) evaluates a storage
. address with a length halfe-byte of all zeros.

ENTRY: This subroutine is entered at SA4%Z from the machine
operation routine.

OPERATION: This subroutine uses the SLA4Q subroutine to
evaluate the storage address, then validates the length
field.

EXIT: This subroutine exits to the calling point.

ERRORS: If the length is not assembled as all zeros,
diagnostic 40 is issued,

3.1.2.20 Stack A Diagnostic Routine (DIAG)

FUNCTION: This routine (Chart RA) is used by BLPASZ to place

a diagnostic code and statement symbol in a stack of diagnostics
applying to that statement. The BLPRINT routine prints, after
the statement, the corresponding diagnostic message for each
code in the stack.

ENTRY: This routine is entered at DIAG from BLPAS2,

EXIT: This routine returns to the calling point in BLPAS2.

3.2 GET A STATEMENT DURING BLAPS2 ROUTINE (BLIOGET2)

FUNCTION: This routine (Chart QA) is used by BLPAS2 and
BLANALY to get a statement from the intermediate buffer,
until it is emptied. Thereafter, the routine gets a
statement from .WORK2 if it is available.

ENTRY: This routine is entered at BLIOGETZ by BLPAS2 or
BLANALY,

OPERATION: This routine first checks whether the intermediate
buffer has been emptied. If not, the record to be delivered
is examined to determine its length and the pointer to the
next record. Once the buffer is emptied, this routine reads

a record from .WORK2 each time it is called.

EXIT: This routine exits to the calling point in BLPAS2 or
BLANALY.

3.3 EVALUATE CONSTANT (BLCONVAL)

Routine BLCONVAL evaluates constants, using as input the
modifiers (multiplicity, type, length, etc.) developed by
BLCONMOD, The results of BLCONVAL operations are stored in
an output table that gives the address of the assembled
constant, its length, and diagnostic information. (The
BLCONVAL output format is described in Subsection 6.3.)

BLCONVAL also builds the Relocation List Dictionary (RLD) table.

Routine BLCONVAL has five major parts, each identified
by its initial entry point, which are clearly marked in the
assembly listing. The names and functions of these are as
follows.

1. BLCONVAL Mainline = This directs BLCONVAL operations
and processes decimal, hexadecimal, and character
constants.

2. BSUBRT Routine - This evaluates fixed and floating-
point constants.,

3. ASUBRT Routine = This processes address constants.

4, USBAS Subroutine = This finds base and displacement
for an S-type address constant.

5. QRLD Subroutine = This makes an entry in the

Relocation List Dictionary table for a relocatable
A-type address constant.

3=30

3.3. 1 BILCONVAL Mainline

FUNCTION: This mainline (Charts KA, KB, KC, KD) initiates
BLCONVAL operations, selects the routine or subroutine required
to process the input constant, and converts decimal, hexadecimal,
and character type constants.

ENTRY: This mainline has two entries as follows.

1. Location BLCONVAL, entered from the BLPAS2 program.
The BLPASZ2 program supplies the BLCONMOD output
table address in a general register,

2, Location BACK, used by the BSUBRT routine at the
end of processing,

OPERATION: After initialization, the mainline tests for type
of constant and branches to the BSUBRT routine for a fixed-

or floatingepoint type or to the ASUBRT routine for an address
constant. Other types are handled within the mainline.

For a decimal (P or Z) type, the mainline establishes
the sign, scans for a decimal point, and moves numeric
characters to a work area until the end of the value list
is read. 1Invalid characters are replaced with a zero, and a
single diagnostic is stored in the BLCONVAL output. In Z-type
conversion, the number of characters in the work area is then
compared to the explicit length given by BLCONMOD, and the
start address of the character string is modified by any
difference. Highe-order characters are truncated and a
diagnostic is set if the length is less than the number of
characters; if the length is greater, the field is padded
with highe-order zeros. Finally, the required number of
characters is moved to the BLCONVAL output table. In P=type
conversion, the number of positions needed to allocate the
characters in the work area is compared to the explicit
length, and the start address of the character string is
modified if truncation or padding is required.

Location DFIN (Chart KB) marks the end of processing
for Z-, P-, and X-type constants. Here, explicit length
is stored in the output table as the total length of the
constant., Next, mainline checks whether any odd bits were
specified and, if so, tests for bit truncation., A diagnostic
is stored and excess bits are zeroed if significant bits
were lost. Finally, the error count is saved before return
is made to BLPASZ2,

3=31

In C-type conversion (Chart KC), characters are stored
unchanged in the work area until end of input is detected.
After testing explicit length, the mainline moves the
specified number of characters to the output table, truncating
or padding if necessary. (Padding in this case means supplying
trailing blanks.) The mainline then tests for odd bits, as
described before, branching to the exit point.,

In Xetype converions (Chart KD), hexadecimal characters
are moved to the work area until the end of the wvalue list is
found. Hexadecimal characters A through F are translated
before being stored, invalid characters are replaced with a
zero and a single diagnostic is set. The bytes needed to
store all characters in the work area are compared with the
specified byte length, and padding or truncation is performed
accordingly. When there are more than 15 characters, the
output table is packed in two or three steps before the
segment branches to location DFIN for odd bit checking,

EXIT: The mainline can transfer control to any of three
locations.

Te At the end of processing, return is made to the
calling program. This is the only exit from the
BLCONVAL program,

2, Location ASUBRT, in the ASUBRT routine, used for
an A= or S=type constant.

3. Location BSUBRT, in the BSUBRT routine, used for
an Fe, He, D=, or E=type constant.

ERRORS: Mainline may initiate the following diagnostic
messages.

INVALID CHARACTER FOUND

VALUE SPECIFICATION MISSING - POSSIBLE ERRORS
(no numeric value supplied for a P=- or Z-type constant)

TRUNCATION OF CONSTANT = POSSIBLE ERROR

3.3.2 BSUBRT Routine

FUNCTION: This routine (Charts KE, KF, KG, KH, KI) evaluates
F and H (fixed-point) and E and D (floatinge-point) constants,
Provided no error is detected, these constants are set up
for conversion by the FROMF or FROMD routine and the resulting
value is stored in the BLCONVAL output table.

3=32

ENTRY: The routine has three entry points.

1. Locate BSUBRT, entered from the BLCONVAL mainline
when an F=, H=, D=, or E-type constant is discovered.

2. Location BTEND1, entered from the ABUBRT routine
after address constant processing to check whether
the entire value list has been handled.

3. Location BENDRT, entered from the ASUBRT routine
when no further value list processing is desired,

OPERATION: The routine begins with a syntactical scan of
the input to ready a constant for either the FROMF or FROMD
routine, A sign is set and numeric characters are moved to
a work area, which is arranged as the output table for a
call to FROMF or FROMD. (The format of this table is
described in Subsection 6.3.) When a decimal point appears,
the character count is also stored in the work area to show
the number of integer digits. An E results in a branch to
BEXP1 (Chart KF) to process an explicit exponent. There,
either the BLEXVAL routine is called to compute the value of
the expression given for the exponent, or a sign is
established and a scan is made for no more than two significant
digits which are converted to binary and saved., Finally,
after exponent conversion or upon encountering the end of
the value list, the routine completes the work area/output
table. It stores a terminator (a quote) after the last
character if there are fewer than 23 characters; stores the
total character count if no decimal point appeared; and also
stores any exponent and scale factor. A branch is then taken
for either fixed- or floatinge-point operations. (Any error
detected during this set-up portion results in a branch

to store a diagnostic code in the BLCONVAL output table and
to end processing of the constant.)

For a floatingepoint constant, the routine calls FROMD
(Chart KG) and tests its return. If no error is indicated,
the constant value supplied by FROMD is truncated to
specified size, if necessary, and rounded at the rightmost
bit. Next, this result is tested to ensure the rounding
did not cause a carry-over to the exponent or, if scaling
was involved, to the vacated portion. If carry=-over did
occur, the constant is adjusted and realigned before the
result is moved to the BLCONVAL output table. The routine
then branches to location BTEND1 (Chart KH) to see whether
the value list contains more constants.

3=33

For a fixed-point constant, bit length is added to the
parameters in the work area before the FROMF call (Chart KH),
Upon return, the FROMF result is checked for error indications
and, if there are none, moved to the BLCONVAL output table.
When an odd bit length is specified, the routine aligns the
constant value before storing it.

The routine next checks (at location BTEND1, Chart KH)
whether it has finished the wvalue list., If not, it tests
the next constant for type and either calls the ASUBRT
routine for an A= or S-type or loops back to process the
new constant. When the value list is complete, the routine
passes control to the BLCONVAL mainline at the exit point,
after first storing the output length and error count in the
output table,

EXIT: This routine may exit to either of two locations,

1. Location BACK, in the BLCONVAL mainline, taken
when the value list has been finished. BACK is
the only exit point from the BLCONVAL program,

2, Location ASUBRT, in the ASUBRT routine, taken
when the next constant in the value list is an
A= or S=type.

ERRORS: The BSUBRT routine generates diagnostic codes for
the following messages.,

kk*%*INVALID CHARACTER FOUND

k%%%*FTIELD n HAS A SYMBOL OR NUMBER WIICH IS TOO LONG
k%%%*PTELD n HAS A RELOCATABLE IN PLACE OF ABSOLUTE
k%% % *TNCOMPATIBLE SCALING - POSSIBLE ERROR

% %% ® CONSTANT HAS BEEN ROUNDED AND TRUNCATED

** %% *EXPONENT IS INVALID

*%%%%FIELD n RESULTED IN A CONSTANT WHICH WAS TOO LARGE
- POSSIBLE ERROR

* %% **FRACTION PART LOST = POSSIBLE ERROR
**% % *FLOATING POINT EXPONENT UNDERFLOW = POSSIBLE ERROR
The routine also moves to the BLCONVAL output table any

diagnostic codes generated by the BLEXVAL program; for these
messages, see the BLEXVAL description,

3-34

3.3.3 ASUBRT Routine

FUNCTION: This routine (Charts KJ, KK) evaluates address
(A= and S-type) constants.

ENTRY: There are two entry points to this routine,

1. Location ASUBRT, entered from the BLCONVAL mainline
when an A= or S-type constant is encountered.

2, Location ARES, entered from the BTEND1 sequence of
the BSUBRT routine when a subsequent expression in
a multiple value list of an A= or S-type constant
is found.

OPERATION: Any value handled by this routine is either an
expression or a literal. For the first, the routine calls
the BLEXVAL program to develop the expression value. For
the other, it calls the BLSLKUP routine to get the address
of the literal, using as input a dummy label stored in the
assembler communications region. The return is then used
to build a dummy BLEXVAL output table so that processing by
the QRLD or USBAS subroutine, called later, will be uniform.
If a literal is discovered but none has been indicated for
the statement, the routine issues a diagnostic and passes
control, via BSUBRT, to the BLCONVAL exit point.

Once a valid value is obtained, the constant type
determines subsequent operations.

For an S-type constant, the USBAS subroutine is called
to break the value into a base and displacement. The
result, always a halfword, is then put in the BLCONVAL
output table. If no usable base register is available,
USBAS will generate a diagnostic message.

For an A-type constant, the routine checks whether
the specified length is less than a fullword. 1If so, it
aligns the constant value as specified and, if truncation
of a significant bit occurs, sets a diagnostic code. The
value is then stored in the BLCONVAL output table before
the QRLD subroutine is called to build the RLD Table.

For either type, multiplicity is checked for greater
than one., If this is found, the location counter is advanced
by the length of the constant and the routine loops back
and ree-evaluates the constant at the new location to insure
proper value if ¢¢*°*® jg involved. The multiplicity is
reduced by one on each iteration until satisfied,

3=35

Since no value is acceptable after a literal, exit from
the routine depends on whether a literal or an expression
was processed,

EXIT: The routine can exit to either of two locations, both
within the BSUBRT routine,

Te Location BTEND1, used to check whether the value
list has been completed. This exit is taken
after expression handling.

2, Location BENDRT, taken to set up for an exit from
BLCONVAL., This is used after literal processing,

ERRORS: The routine can generate diagnostic codes for the
following messages,

FIELD n HAS BEEN TRUNCATED = POSSIBLE ERROR

Issued if a significant bit is lost when an
A-type constant is aligned to specified length,

ERROR IN VALUE LIST

Issued if a character other than a right
parenthesis follows a literal.

FIELD n HAS AN ERROR IN LITERAL DEFINITION

Issued when a literal is found but no literal
has been indicated for the input parameter.

FIELD n RESULTED IN A CONSTANT WHICH WAS TOO LARGE =
POSSIBLE ERROR

Issued if an expression value exceeds 24 bits.

The routine also moves to the BLCONVAL output table any
diagnostic codes generated by the BLEXVAL program., For those
messages, see the BLEXVAL description.

3.3.4 USBAS Subroutine
FUNCTION: This subroutine (Chart KL) searches the assembler
USING table to develop base and displacement for an Setype

address constant.

ENTRY: The only entry, location USBAS, is entered from the
ASUBRT routine,

3=36

OPERATION: Using the value supplied in the BLEXVAL output
table format by the ASUBRT routine, USBAS scans the entire
USING table to find the corresponding base register and
displacement value. (The format of the USING table appears
in Subsection 6.1.) If several base registers have usable
values, the one offering least displacement is selected., If
displacement is the same with several registers, the register
first encountered is chosen,

When no base register covers the input value, the
subroutine issues a diagnostic through a call to the DIAG
routine before returning control,

EXIT: Return is to the calling point.,

ERRORS: The subroutine sets up the following diagnostic
message if a valid base register value cannot be found.

FIELD n HAS ADDRESS WHICH IS NOT COVERED BY A USING

3.3.5 QRLD Subroutine

FUNCTION: This routine (Chart KM) makes an entry in the RLD
table for a relocatable address constant.

ENTRY: Location QRLD is entered from the ASUBRT routine as
part of A-type constant processing.

OPERATION: The subroutine begins by aligning the constant
on a word boundary, if specified by the alignment code given
in the BLCONVAL input. For a relocatable expression, the
subroutine moves the contant®s location, length, sign, and
relocation ID number, along with the relocation ID of the
current control section, to the RLD table. (The format of
this table is given in Subsection 6.1.) A check is then
made for table overflow before the subroutine adds the
length of the constant to a dummy location counter value

and returns control.

If the expression proves absolute, the subroutine
merely increases the location counter value before exiting,

EXIT: Return is to the calling point.

ERRORS: The subroutine sets up the following message for
the DIAG routine if a table overflow is found,

RLD TABLE OVERFLOWED

3.4 CONVERT TO FIXED POINT ROUTINE (FROMF)

FUNCTION: This routine (Charts LA, LB, LC, LD, LE) converts

a decimal number, containing 1 to 23 digits in EBCDIC, to

a doubleword, fixed-point, binary representation. The maximum
value that can be represented is 9,223,372,036,854,775,807;
the minimum is .1084203 x 10=18, If negative scaling is
specified, the maximum value that can be converted is
+9,999,999,999,999,999,999.

ENTRY: This routine is entered at location FROMF from
BLCONVAL. BLCONVAL supplies in a special data format (labeled
TABLEA) the input number, exponent and length information,

and scale factor. (The format of TABLEA is detailed in
Subsection 6.3.4)

OPERATION: After calculating and validating the input
number length and true exponent, the routine processes the
integer and fraction parts of the number separately. Large
segments of the routine are skipped if the input contains
only an integer or fraction. Both of these number parts
are handled in portions, each of which is assumed to be a
right=justified integer containing a specific number of
digits and an exponent., After the portions have been
multiplied (or, for fraction portions, divided) by the
power of 10 indicated by their exponent, they are added
together to form the integer and fraction binary values.
Finally, these two values are aligned according to the
specifications given in TABLEA and added to obtain the
fixed-point representation.

Integer processing is done in a series of loops. One
loop (starting at location CL4, Chart LA) divides the integer
into portions of 9 characters or less and converts them to
binary. Another loop (starting at location LM6, Chart LB)
multiplies each portion by 10 raised to the power of the
portion exponent. The maximum exponent for the first
integer portion is 10; the second portion can have an
exponent of 1 or 0; the third portion, if present, contains
only one digit with a 0 exponent., Multiplication is done
by shifting and adding so that a multiplicand larger than
31 bits can be used without exceeding the doubleword limit.
But this is not true if the scale factor is minus., So if
an overflow occurs and the scale factor is minus, the
routine tries to save the integer output by shifting the
binary portions one bit to the right and by decreasing the
scale factor. Carries from the highere-value portions are
saved in the next lower portion so that the bit actually
shifted out is in the lowest portion and has the least
significance. If a nonzero bit is lost, the truncation flag

3-38

is set, but processing still continues by restarting the
multiplication loop with the new portion values,

After multiplication, the portions are added together
to form the integer binary output. Overflow may occur at
this time becuase of negative scaling or because the sum
equals the maximum negative value. If the latter is the case,
the maximum negative number is stored for output. If scaling
caused the overflow, the sum of the portions is righteshifted
until the scale factor is reduced to zero. The truncation
flag will be set if a nonzero bit is shifted out.

If the input number contains fractional digits, the
routine uses several loops to develop the fraction binary
output. Three loops (beginning at locations CLI9, CKI1O0,
and CLI101; Chart LB) determine the exponent for the fraction.
If an exponent is furnished, it is complemented to positive
for processing, but is understood to be negative. Therefore,
it is incremented for each zero and digit found in a lefteto-
right scan, and reduced for each zero found in a righte-to-left
scan. (If the exponent exceeds 20 before the first significant
digit is found, the fraction is too small to represent in 63
bits.) Another loop divides the fraction into 8=-character
portions and converts these to binary. Finally, a three-time
loop handles exponentiation by dividing each portion by the
corresponding power of 10. To gain maximum accuracy, a 96=bit
number is used as the dividend., Fach division produces a
third of this number: the quotient of the first division is
stored in the first 32 bits and its remainder is divided to
get the next 32-bit value; the remainder of the second division
is then divided to get the final 32-bit value., Shifting and
rounding take place several times during this operation in
order to prevent a fixed-point overflow or the loss of lowe-
order bits. When division is completed, the fraction portions
are added together, rounded, and shifted to make up the
fraction part of the output.

The routine aligns the integer and fraction binary values
by using the length and scale factor information provided by
BLCONVAL in TABLEA. The two values are then added together
to obtain the fixed-point representation of the input number.,
If the input sign was minus, the representation is complemented
to negative before it is moved to the output area, TABLEA.

EXIT: This routine exits to BLCONVAL,

3=39

ERRORS: The routine may set any one of the following flags.

LE Invalid length or scale factor specification. The
output is zero,

IN Lost integer; i.e., an uncorrectable overflow
occurred. The output is zero.

FR Lost fraction. The integer value, if any, is still
placed in the output area and supplied to BLCONVAL,

LT Low=order truncation of an integer; i.e., a
significant bit was lost. The remainder of the
constant is supplied to BLCONVAL,

Any diagnostic messages resulting from these errors are issued
by BLCONVAL, |

3.5 CONVERT TO FLOATING POINT ROUTINE (FROMD)

FUNCTION: This routine (Charts MA, MB) converts a decimal
number given in EBCDIC notation to its double-precision
floating-point representation. The maximum_value that can
be represented is +.723700557733226211 x 1076; the minimum
value is +.5397605346934028 x 10=78,

ENTRY: This routine is entered at location FROMD from the
BLCONVAL program, which supplies the input number (along
with exponent-and scale factor) in the data area TABLEA,

also used for the output. (The formats are described in
Subsection 6.3.)

OPERATION: After checking for a valid exponent, the routine
processes the input number in portions of eight digits or
less. Each portion is assumed to be an integer with its own
exponent, a positive or negative power of ten. After the
portion has been converted, it is multiplied by the
appropriate power of ten obtained from one of two tables:
TABP for a positive exponent; TABM for a negative. The
entries in these tables are floating-point representations,
each consisting of a hexadecimal exponent and 60 fraction
bits for greater accuracy.

For a nonzero exponent between +76 and =75, the routine
finds the location of the proper table entry by adding the
portion exponent multiplied by 9 to the table address. The
first time through, when greatest accuracy is needed, the
table entry forms two multipliers: one with the entry
exponent and high-order fraction bits; the other with the
same exponent and the loweorder bits., The floatinge-point

3-40

representation of the portion is the sum of the two products:
algebralcally, N(A+B) , where A and B are the multipliers and
N is the portion.

The remaining portions are processed more directly, using
only a single multiplier, since the saving of low-order bits
for these portions would be superfluous. Each is scaled to
have the same exponent as the first portion and rounded
before it is added to the first portion value. The final
total of the portions is the floating-point representation.

If the first portion is =76 or less, a special method is
needed because the smallest power of 10 in the negative
table is 10=735, Two entries are therefore used at location
LESS; one for 10 to the power of =75 and one for 10 to the
power of the given exponent +75. The exponent of the first
entry is increased by 8 to avoid underflow in the partial
results, This increase is compensated for when the final
result is obtained., Moreover, the first entry is split as
previously explained to get two multipliers and products,
which are then multiplied by the corresponding parts of the
second table entry. The sum of these, after necessary
adjustments, is the floatinge-point representation. (When
the first portion exponent is less than =75, only one portion
is handled, for the value of the other portions would be
too small to represent.) For example, if N is the floating-
point representation of the glrst portion and has an exponent
of 10=78, it equals N x 107/°x10=3 Let A1 and B1 represent
the hlgh- and lowe-order portions of the 10-75 entry and A2
and B2 stand for the corresponding parts of the 10=3 entry.

N(166B1) (16°B2)
NA1(166B2) +NA2 (16%B1) + 166
166

78 o _
10 N = Na1a24

The factor 16™% is used to raise B1 and B2 to a higher value
so that their products, which might otherwise be lost because
of exponent underflow at multiplication time, are saved.,
Adjustments for the factor are performed in fixed-point
registers by righteshifting fractions, and no significant
bits are lost. At the same time, the products are scaled

and rounded to prevent the loss of loweorder bits when they
are finally added together.,

When scaling is requested, the routine proceeds to
location LR12 after developing the floating-point representation.
The fraction is righteshifted four bits for each unit of the
scale factor, then rounded at the rightmost bit. If the
rounding causes a carry-out into the vacated area, an additional
four-bit shift and a corresponding exponent adjustment follow.

3-41

Before exiting, the routine places its output, along
with an appropriate flag, in TABLEA. A zero in the flag field
marks a successful conversion.,

EXIT: This routine returns to the calling point.

ERRORS: If the routine finds an overflow or underflow
. during processing, it zeros the output area and sets a flag:
=1 for an overflow; =2 for an underflow.

3.6 BLPRINT ROUTINE

The BLPRINT routine consists of 15 logical sections:
the BLPRINT mainline and 14 subroutines. These are described
separately on the following pages. The names and functions
of these sections are as follows:

1. BLPRINT Mainline: This identifies the input
statement and calls subroutines to prepare a
print line, to print the statement in the assembly
listing, and, if requested, to arrange TXT cards
for punching,

2, DSECT Subroutine: This subroutine processes all
types of input statements when a listing is being
prepared and a DSECT is indicated.

3. DIAGX Subroutine: This subroutine prints any
~diagnostic messages for the input statement and
sets error indicators in the assembler communcations
region. The PRINT routine usually returns control
to the calling program at the end of this subroutine,

4, SEQ Subroutine: This subroutine checks the sequence
number of a statement when necessary, and sets a
flag in the listing if an error is found.

5, INCSTA Subroutine: This subroutine generates the
line number for a statement and moves it to the
print area.

6. STA2PR Subroutine: This subroutine sets up .a
statement for printing and moves it to the print
area.

7. ASMLOC Subroutine: This subroutine sets up the
current location counter value and places it
in the print area.

8. ASMCON Subroutine: This subroutine sets up a

constant generated for alignment and places it
in the print area.

3=42

9. ROUT Subroutine: This subroutine sets up a print
line for a constant requiring two or more lines
and moves it to the print area.

10. PRTIT Subroutine: This subroutine prints a line
in the assembly listing,

11. PUN Subroutine: This subroutine handles the
punching of TXT cards, storing object code in a
card area until ready for punching.

12, NUCD Subroutine: This subroutine is used to fill
out and punch a card during DC, DCL, and alignment
statement processing.

13. PUCD Subroutine: This subroutine punches the
information stored in the card area.

14, DS1 Subroutine: This subroutine handles DS
statements when there is no listing. The
subroutine causes the contents of the card area
to be punched.

15, DS Subroutine: This subroutine prints DS statements
when there is a listing and causes the contents of
the card area to be punched.

3.6.1 BLPRINT Mainline

FUNCTION: Depending on the type of input statement, the
mainline (Charts TA, TB, TC) calls subroutines to arrange
the statement for printing and print it in the assembly
listing, to set up and punch TXT cards, and to print
diagnostic messages. One statement is processed on each
call to BLPRINT,

ENTRY: The mainline has a primary entry point, location
BLPRINT, which is entered from the BAL and BLPAS2 programs,
The calling program provides the statement address and a
return address in general registers.,

There are two secondary entry points: location EXIT,
entered from many subroutines within the BLPRINT routine
when they have finished their operations; and location
COMNT, entered from the DSECT subroutine during comment
processing.,

3-43

OPERATION: The mainline may take either of two paths,
depending on whether or not a listing is currently in
progress. Each path processes according to the type of
input statement. However any statement with a diagnostic
will be forced through the ¢¢listing-on®® path.

When a listing has not been requested or is presently
suppressed, the mainline calls the PUN subroutine to set up
TXT cards for source, DCL, and alignment statements, and
branches to the DS1 subroutine for DC-type statements.,
Ignore and comment statements are disregarded. When listing
is temporarily suppressed, the mainline also calls the SEQ
subroutine to check the sequence numbers of all statements
except alignment and DCL,

When a listing is being prepared, the mainline first
checks whether a DSECT is in progress. If so, control passes
to the DSECT subroutine for all types of statements. Otherwise,
the mainline processes the input statement.

A source statement results in a series of branches to
subroutines to check the sequence number; set up the line
number; move the statement to the print area; get the current
location counter value; print the resulting line; and, if
desired, set up a TXT card with the object code generated
by the statement.

An ignore statement (a statement previously found in
error) is assigned a line number and printed. No punching
is done,

For an alignment statement (issued by the assembler to
set a DC or instruction at the proper word boundary),
subroutines are called to arrange and print the current
location counter wvalue and the alignment constant. Another
branch is taken to punch the object code generated for the
statement if there is currently a partiallyefilled TXT
card, or force reinitialization on the next TXT card.

A comment is given a sequence check, assigned a line
number if it appears after the program START card, and
printed. No punching is performed.

A DCL (literal) statement is handled according to
programmer request. If the printing of literals is
suppressed, the PUN subroutine is called to set up a TXT
card with the object code generated by the statement.
Otherwise, the mainline moves a flag to the print area to
signal a literal and processes the statement much like a
DC.

3=44

A DC-type statement is sequence checked, assigned a line
number, and moved to the print area only if its multiplicity
is one. All DC-type statements are assigned the current
location counter value. When more than one print line is
needed (a DC may extend up to 255 bytes), subroutines are
called to set up and print the constant in 16-byte increments,
although only the first such line is printed if the programmer
has requested no data. Finally, the object code generated by
the statement is issued to the PUN subroutine. A DS statement,
detected as a DC-type with zero object length, is printed and
causes the DS subroutine to punch the contents of the card
area.

After statement processing is completed, the mainline
branches to the DIAGX subroutine to issue any diagnostic
messages stored for the current statement. Final exit from
the BLPRINT routine is usually made from the DIAGX subroutine,
However, an alignment statement, which cannot have a diagnostic,
causes the mainline to exit directly to the calling programn.

EXIT: The mainline can exit to three locations, depending on
the type of input statement.

1o To the DIAGX subroutine, taken to print any
diagnostic messages for the current statement,
DIAGX returns control to the program that called
BLPRINT,

2, To ‘the DSECT subroutine to print all statements
within a DSECT.

3. To the calling program. The mainline makes this
return, at EXIT, when an alignment statement was
processed.

ERRORS: No error messages are issued, .but the mainline does
set flag D in the print line when a literal is listed. 1In
this case, the meaning of the flag appears at the end of

the listing,

A DATA CONSTANT WAS GENERATED AS A RESULT OF A LITERAL
SPECIFICATION,

3.6,2 DSECT Subroutine

FUNCTION: This subroutine (Chart TD) handles the printing

of all types of statements within a DSECT (dummy control
section), It operates only when a listing is to be prepared.

3=45

ENTRY: . This subroutine has only one entry point, location
DSECT. It is generated from the BLPRINT machine when a
listing and a DSECT are both indicated.

OPERATION: The subroutine identifies the type of statement
and then calls appropriate subroutines to ready and print
it,.

For alignment statements and for lines generated for a
constant requiring multiplicity, only the current location
counter value is printed. All other types of statements are
sequence checked, if required; assigned a line number in the
assembly listing; set up for printing; and then printed.
Source, DCL, and DC-type statements are also assigned the
current location counter value before printing,

EXIT: This subroutine can exit to two locations,

1. COMNT, in the BLPRINT mainline, used to set up
and print a comment statement.

2, EXIT, in the BLPRINT mainline, taken when the
DSECT subroutine has finished.

COMMENT: Object code within a DSECT is not punched. When
there is no listing, tests within the individual BLPRINT
subroutines prevent the punching of object code within a
DSECT,

3.6.3 DIAGX Subroutine

FUNCTION: This subroutine (Chart TE) prints all diagnostic
messages generated during assembly for the current statement.
It also maintains, in the assembler communications region,
counts of all serious and possible errors in the source
program, and sets the fataleerror switch in the communications
region when a serious error is found.

ENTRY: The subroutine has one entry point, location DIAGX.
It is entered from the BLPRINT mainline after the current
statement has been printed and/or punched.

OPERATION: If there is no diagnostic code in the diagnostic
stack area, the subroutine immediately exits to the program
that called BLPRINT,

When a code is found, the subroutine uses a loop to
process all diagnostics for the current statement. If a
listing has been requested, each code results in the
corresponding diagnostic message being moved from an
internal table to the message print area, after adjustments,

3-46

if required, to include a symbol or field number. DIAGX
then calls the BLLIST routine to print the message. Serious
error messages are always printed when there is a listing;

' possible error messages may be suppressed by programmer
request.

Regardless of whether printing occurs, DIAGX increments
the proper error count in the assembler communications region
for every code encountered. For a serious error, it also
sets the fatal-error switch, thus preventing execution of
the current job.

EXIT: The DIAGX subroutine exits to the calling program,
This marks the end of BLPRINT routine processing.

COMMENT: BAL informs the programmer of the number of
possible and serious errors by printing the count(s) even

if no listing was requested., If one or more serious

errors exist, it will also signal the monitor that execution
of the current program is not permitted, causing the
following monitor message to be printed:

PROGRAM CANNOT BE EXECUTED,
unless the °“°*LOAD’®® option was specified.
3.6.4 SEQ Subroutine

FUNCTION: This subroutine (Chart TF) wvalidates the number
of the current statement when sequence number checking is
requested. If the statement is out of sequence, SEQ moves
a flag to the print area,

ENTRY: This subroutine has one entry point, location SEQ.
It is entered from many points in BLPRINT.

OPERATION: The subroutine tests an indicator in the
assembler communications region (MASTER) to find whether
sequence checking was requested, If so, SEQ locates the
sequence number of the current statement and compares it
to the last sequence number. If the current number is
smaller or equal, a flag is moved to the print area and

an indicator is set in MASTER to indicate the errors: SEQ
then stores the current number for the next comparison.

EXIT: The subroutine exits to the calling point.

3=47

ERRORS: Where the current sequence number is lower than
the preceding one, SEQ inserts flag A in the print area.
The meaning of the flag, defined at the end of the assembly
listing is as follows:

SEQUENCE NO. OF STATEMENT IS SMALLER THAN OR EQUAL
TO PREVIOUS AND ISEQ WAS REQUESTED,

3.6.5 INCSTA Subroutine

FUNCTION: This subroutine (Chart TF) increments the line
number, converts it to EBCDIC for printing, and moves it
to the print area.

ENTRY: Entry to this subroutine is location INCSTA. It is
entered from many points in BLPRINT,

EXIT: The subroutine exits to the calling point.
3.6.6 PRTIT Subroutine

FUNCTION: This subroutine (Chart TF) prints one line of
the assembly listing each time it is called.

ENTRY: The only entry to this subroutine is location
PRTIT. It is entered from many points in BLPRINT,

OPERATION: The subroutine prints the contents of the print
area by callihg BLLIST. When an eject or space is needed,
the subroutine also branches to the BLLIST subroutine.

3.6.7 STA2PR Subroutine

FUNCTION: This subroutine (Chart TG) sets up a statement
for printing and moves it to the print area.

ENTRY: The subroutine has one entry pdint, location STA2PR,
It is entered from the PRINT mainline and from the DSECT
subroutine,

OPERATION: The subroutine moves statement fields one by

one to the print area, testing the symbol, operation code,

and operand fields for excessive length., For the first two
fields, excessive length results merely in the readjustment

of the starting location of the next field. For an excessively
long operand and field, STA2PR moves a flag to the print area,
sets an indicator in the assembler communications region,

and then moves only 59 bytes of the operand. Columns 72=80

of the statement are moved to the print area without
inspection.

3-48

EXIT: This subroutine exits to the calling point.

ERRORS: Subroutine STA2PR places flag B in the print area
if an operand of excessive length is found. The meaning of
this flag, defined at the end of the assembly listing is

as follows:

STATEMENT TRUNCATED ON LISTING BECAUSE THE ENTIRE
OPERAND-COMMENT COULD NOT FIT ON A LINE

3.6.8 ASMLOC Subroutine

FUNCTION: This subroutine (Chart TH) converts the current
location counter value from hexadecimal to EBCDIC repre-
sentation and places the result in the print area.

ENTRY: The subroutine is entered at location ASMLOC from
the DSECT subroutine and from several points in the BLPRINT
mainline.

OPERATION: After setting up the location counter wvalue and
the proper storage area, this subroutine makes use of the
loop beginning at location ASLP to convert hexadecimal
characters to EBCDIC. This loop is also shared by the
ASMCON and ROUT subroutines.,

Conversion is accomplished by fetching two hexadecimal
characters at a time, moving each to a separate byte and then
operating on the bytes. Hexadecimal digits of value 9 or
less are zoned with a hexadecimal F; digits A through F are
reduced by 9 and zoned with a hexadecimal C. The loop
starting at ASLP continues until all hexadecimal characters
have been converted and stored in the designated area.

EXIT: This subroutine exits to the calling point.
3.6.9 ASMCON Subroutine

FUNCTION: This subroutine (Chart TH) converts a generated
constant from hexadecimal to EBCDIC representation and
places the result in the print area.

ENTRY: There is one entry point, location ASMCON. It is
entered from the BLPRINT mainline when an alignment statement
is being processed.

OPERATION: This subroutine obtains from the assembler
communications region the constant generated during pass 2
to align a DC or an instruction on the proper word boundary. .
The subroutine then uses the loop beginning at location ASLP
to convert the constant to EBCDIC. For a description of
loop operation, see ASMLOC subroutine,

3-49

EXIT: This subroutine exits to the calling point.

"3.6,10 ROUT Subroutine

FUNCTION: This subroutine (Chart TH) converts a designated
portion of a DC statement from hexadecimal to EBCDIC
representation and places the result in the print area.

ENTRY: The subroutine has one entry point, location ROUT.
It is entered from the BLPRINT mainline when a DC statement
requires more than one print line,

OPERATION: The calling routine provides, in general registers,
the location of the constant value to be converted and the
number of bytes involved. Usually, ROUT is requested to
convert 16 bytes on each call. If the last line to be printed
has fewer bytes, the exact number will be indicated by the
calling routine, ROUT uses the loop beginning at location
ASLP (shared with the ASMCON and ASMLOC subroutines) to
convert value to EBCDIC. See the ASMLOC subroutine for a
description of loop operation,

EXIT: This subroutine exits to the calling point,

3.6.,11 PUN Subroutine

FUNCTION: When punching is valid, this subroutine (Chart

TI) stores the object code generated by a statement on each
call. The number of bytes stored in the card area determines
when PUN calls the BLPUNC2 routine or the PUCD and NUCD
subroutines to punch a card.

ENTRY: This subroutine has only one entry point, location
PUN. It is entered from many points in BLPRINT, whenever
the object code is ready for punching.

OPERATION: The subroutine begins by examining switches in
the assembler communications region (in BAL) to decide
whether punching is valid, exiting immediately to the
BLPRINT mainline if a DSECT is indicated or if there is

no punch or execute request. The subroutine then sets up
a card area for the initial statement and for the next
statement after a DS. (The card area is automatically
punched by the DS or DS1 subroutine when a DS statement is
processed; an indicator is set to inform PUN.) Statement
type determines further processing.

For reqular statements (see BLPRINT Mainline) the segment
beginning at location PUN3 is used to store the object code
in the card area, after first converting EBCDIC characters
-to hexadecimal, When the contents of the card area plus
the code for the current statement exceed the card length,
the card area contents are moved to the punch area and
punched by a call to the BLPUNC2 routine, The code for the
current statement is then moved to the cleared card area to
begin packing of the next card., ’

For DCL, DC, or alignment statements, which may be
much longer than a single card, the segment beginning at
PUN4 is used. The PUCD subroutine is called to punch a
full card only; NUCD is called to fill out the card before
punching, using bytes from the current statement, and to
continue punching full cards until the remaining bytes of
the constant fit within a card. Subroutine NUCD then
moves these remaining bytes to the card area for future
punching.

Comment and ignore statements are disregarded.
EXIT: This subroutine can exit to two locations.

1. EXIT, in the BLPRINT mainline, taken after PUN
completes its operations for a statement.

2, NUCD, in the NUCD subroutine, taken to fill out
and punch a card during DC, DCL, and alignment
statement processing. NUCD does not return to
PUN, but transfers directly to LXIT in the BLPRINT
mainline.

COMMENT: When an END card is encountered during pass 2,
the assembler generates a DS to ensure that the code for
the last statements processed is punched,

3.6.12 PUCD Subroutine

FUNCTION: This subroutine (Chart TJ) moves the contents
of the card area to the punch area, calls the BLPUNC2
routine to punch a card, and reinitializes the card area.
This function is performed each time PUCD is called.
ENTRY: The subroutine has one entry point, location PUCD.
It is entered from the NUCD, DS, DS1, and PUN subroutines
when a card is to be punched.

EXIT: This subroutine exits to the calling subroutine.

3=51

3.6.13 NUCD Subroutine

FUNCTION: This subroutine (Chart TJ) punches cards during
DC, DCL, and alignment statement processing until the number
of bytes of object code left in the current statement will
fit within the card,

ENTRY: The only entry to this subroutine is location NUCD.
It is entered from the PUN subroutine when a card is ready
to be punched and a DC, DCL, or alignment statement is
being processed.

OPERATION: The subroutine begins by moving to the card area
enough bytes from the current statement to fill a card; it
then calls PUCD for punching. Since the length of a constant
may greatly exceed the length of a single card, the subroutine
loops to issue full cards until the unpunched bytes of object
code for the statement can be contained within a card. These
are stored in the card area for future punching before the
subroutine exits,

EXIT: This subroutine exits to location EXIT in the PRINT
mainline.

3.6.,14 DS1 Subroutine

FUNCTION: This subroutine (Chart TK) inspects a DCetype
statement and, if certain conditions are met, initiates
punching. DS1 operates only when a listing is not being
prepared,

ENTRY: The subroutine has one entry point, location DS1.
It is entered from the BLPRINT mainline when a DC-type
statement is detected and there is no listing,

OPERATION: This subroutine begins by determining whether
the current statement is a DC or DS, - A DC statement is
passed on to the PUN subroutine for possible punching. For
a DS statement, the DS1 subroutine sets a switch in PUN so
that the card area will be reinitialized before the next
punch. It then makes a series of tests to find whether
punching is permissible, calling the PUCD subroutine,

when necessary, to punch the current contents of the card
area,

EXIT: This subroutine can exit to two locations.

1. PUN, in the PUN subroutine, used when the statement
is a DC. No return is made to DS1.

2, ‘EXIT, in the BLPRINT mainline, taken after DS
processing is finished.

3.6,15 DS Subroutine

FUNCTION: This subroutine (Chart TK) initiates printing and,
when certain conditions are met, punching for a DS statement.
The DS subroutine operates only when there is a listing.

ENTRY: The subroutine has only one entry point, location DS.
It is entered from the BLPRINT mainline when a DS statement
(DC=-type statement with zero object length) has been detected.

OPERATION: This subroutine calls the PRTIT subroutine to
print the DS statement in the listing, after setting a switch
in the PUN subroutine so that the card area is reinitialized
before the next card is punched. The subroutine then performs
the same tests made by the DS1 subroutine to determine whether
punching is valid. If so, PUCD is called to punch the present
contents of the card area.

EXIT: This subroutine exits to location EXIT in the BLPRINT
mainline,

3-53

- s T2 AL
RET

Corar BT e
L,t P 0 ﬁp |\ ST TEALSEN 7
[|

| |

! |

1 i

i |

1 |

S S |

I S 0
| ! [

! |

: ¥

i 1 ™

I | |

| Jr—| [
r' EI - ‘{‘ - '—v'i

| |

i I

+ i

! .

| |

L U
T

X |

| |

4 4

! .

i

1 . _

61—+ - =

p— N

LA Z

@

Y7572

(NTER)
AT 2

ENRY

RO,
NS

N ZAL

‘ EXTRALT
' or cac¥

[

LOOK L

ar carE
w o
COLE JASLE

Kl

e AL

N T
CHMIREN 7™
STATZAENT

AN

UG ~AAL

SET th”
o STHEL

AN 77

SINOZ

BLINT 7TAAL

T eeafE

N7 -

STATEMENT

V7.4

AR L1 L7
B AND
SPUNRETE -
LENEH, SET

GLOALARYP EAAZ

T SHITERS

CHART OA.

3=-54

PASS2 ROUTINE

EA7 P Ny - TABLE LOOKUP OF OPERAND -~ '~
PE L | ARON NEW EXIT SUBROUTINE
OB TECT ST TEAENT ,
//5’/’7/3/4 /Z’A/u) OPERAND TYPE GO TO SUBROUTINE
. REGISTER. REGST OZA1
ALIEER SA (STORAGE ADDRESS) SA PAA1
XA (INDEXABLE XA PBA1
i?i;i;ﬁ?yﬁz 7 ?TORAGE ADDRESS) ; :
SLA(4-BIT LENGTH) SLA4Q PCA1
ALEN SLA(8-BIT LENGTH) SLA PDA1
DAGNG77 7 8-BIT IMMENDIATE INTB 0ZA3
SI(8 BITS ZERO) SI8Z PEA1
He. /lé) . SA (4 BITS ZERO) SA47Z PEA4
« | SHIFT AMOUNT SHFT OZAS
LI TYPE LITYP 0ZA2
LTE INSGTR VALS OXA S OTHER OERR
z%’/j/é; 7z ALGN L7 -
ZERD ST o AT ;
OF OBEST ’ \ :
g HALFHORD SR L !
GET ORERAND P 1 e e r ba- - -
N7 i % | { i ; ;
SO OF ' ! 1 H i *
COLE JAfLE ;_.<;> j L !]
ELT [o7 e TR E4 - -
L. FOL oA, FOR ‘ ; ! ‘
LISTING N LSTINGE N " (E TN R : : :
S | [| [z |
< A . =7 i
,;%Qgg ghs s _ <j§m@AFWEr - K
7EEe
2482 fAAL -
Sk ; !
LAD 7ENS
ZYENSTTIET .
N) i
i
AT AL 1
STACK AV, j ;
ar corE 1 i
PANISTTHT : .
NO. /5D O K

EXIT IND
R, fOr
LISTING: /N
* |\sEeT A0 |
GeE JAELE)

Jrr
OCERAND

ARINVEK <

GLAINT ZAAL

aNT
ANEY)

AL WETE.
LGTH 72

Lo e

CHART OB.

i

CEELRNC RE/R LN
. CGNT OAFINGD

STATENENT

| ELT SBRING

LOcoVF NopE
PR
VAGNRAZT7E

ANL A7 X
OUHERFLOW

MACHINE OPERATION ROUTINE

(75 (247522 INVEN
STZATENEN T OAT2

PEELO
ENTES
ol
i
!
ENTRY
A%M/AEW’
STATENENT
oAz

ey

LY
22 (943

' v
j : TABLE LOOKUP PSEUDO PROCESSING ROUTING _
»| OP CODE GO TO OP CODE GO TO .
BC EXTENDED EXRC ODA4 SPACE " SPACE ocD2
BCR EXTENDED EXBCR ODAS TITLE TITLE ODAS
CCW . cew ODA1 TRACE,TRACB . TRACE __ OPA2
CNOP " CNOP OEA1 ™ USING USING ORA1
coM | © CcoM OEA4 ORG ORG
CSECT . CSECT OFA1 ILLEGAL . ILLOP OUA1
DC,DS,DCL , DCODS DGA1 QuAL QUAL
DROP ¢ DROP oInt TEQU TEQU OUA3
DSECT . ' DSECT OFA3 SPEM SPEM
;| puMP , DUNPE, . RPEM . RPEM
|| DUMPR/DUMPC ~ DUMP OJA2 TDMP , TDML DUMPT 0SA2
Il EaECT \ " EJEGT SSEQ SSEQ
} END - ' END OMA 1 NLIST NLIST
i| ENTRY !\ ENTRY OIA4 LIST LIST
IGNORE , IGNORE OCH1 EQU,MAX,KIN EQMXMN OUAS
ISEQ ISEQ MISPLACED MISPL
LTORG '. LTORG NOT FOUND ILLOP OUA1
PRINT | PRNT OCA2 START EQMXMN OUAS
e - (o) RER
i ' !
| I :
i + t :
] I H *
| ! :
[_l ' L
[F R i i e ;
! | ! - !
| | | i
j 1 +) -
1] H i
I I '
[e ‘ R -
STEBLNK
S24CE g
SET P
o STAGF T
ONVE LINE
ABSE owdZ @ '
EVALLYATE
N, OF LNEZ .
72 SKL :
AAX. = 52) .
: STERR
A SET N, -
oS 7O ZED
W TUEALZ
VAT STIACK
1

[
V5 /ST L AAL

- grAE
L1Z TN

' ' .

CHART OC,

T 4572 NANE

TAEAANT) 572,

3=56

PSEUDO ROUTINE

SN~ V7 / <3 >
’ /{S’eﬂ' [ré plrazes

LN\ N ' LN AT
27, ~ e A4 Y. 2§
oaro 2 UE o\asL UL RAAL Korer AOHE O A5 a0
ALV L08 ST J;’ﬁ A'N/i .-:}4;%’-’4/\//—7
S TN e /,
R A7 RN : o o | ST
o 2 CRIEST N\ 70 as ey
PELILC, UE N 7 AcEA AREA
~oL .| | THRAEL
ALSE o2 o /_
FIALLATE &7 TERD LAST /f//ﬂ/C
EXNRESTION P I OF /LﬁifZ?
ALAX. S Sy | eglEer
Ep X% : AEA
| NOTHLY '
NG ERCOR K DU E AL OAF AL
A RESTLT R/l 4 7
2T
AIALANL TERAINA D, -
g;@f& a5~ | it (A ALIEN UL ALINY
LT AECEA . AL pe. 8 AL NO. 75 -
EXNVE onMd =z % AL a4 S AL AT
EVALUATE L ALIEN LOC ALsgw Loo
P GIR 72 ez »
EXNFRESTZoN AALF A AL g
G WAL RY SoNDARY
rre—— T
EXVR OuAZ ¢ XA as4L REZST ozl
EVALUATE ek | AT
2w : o= fj,g/\/ GREFAND /?:;/Lﬂé— =%
EXRESSS N Naeaves S
NVl 4208 AL
' CANT YL
AN R, LAG RA44L .
AA/ZZ/EQ%Z’ SIH 2 NG (5B Aot
Py NONABSDL) AH P O MK 0 A5~
A4 ARG, AN SH
. 1 '
| 7 ol |
ZAG FA4AL
o (2D AoLE NOTEL
OUNT B ENTRY RO
oveRrZOU,) 287E0T a0 9P CCA4S
AE ND. 405 AREA .
LR
AWK PAGT £A4L
FTAK e
_ TEXAINA T2
(1o 7N (5 sranie.
VAGNG. p4f
cANT
ALSTE oz BLNT ZAAL
EVALUATE Z20) N T AoD & 7B
EXPRESS0, . :
ﬂwm<¢é¥v AN Lo a7
s STATEAAN T
Lo8IE P ONE] ,
L Y sl IR 1/
ZACNOT7E | OUECL N STARAMN T A2
AND X
e stonS '
CHART OD, CCW, EXBC, EXBCR SUBROUTINES

3=57

P4l

- e
ENTRD SN
V757,04 . L TR N - ENTEZ
L0 Qxb;gﬁé - Gons
AELET 07037
A (D) STLTEH

HALF OXAS

SET N
LN 2T AN ST
a7 A7 6’(/ ”z?f/\/ 7
AL HORLD Zﬁ%/
BoNPARY : xzr%y/
ﬂ&”"'{* NeZ l
mez AL o NP f;ﬁ/t/ff 721;71 SLAPINT AL
VALLA TE N T (FLNCH,
h %zgyf P seR) | - |\ cond
ot ORERUND YA AND NP (7t 7EAMENT
- SUTE FATEAENT |
. T |
GLEXVAL A4/ ; : ALD 2 BV SE7 R85
ez | ; 7B 100 OTR. b
| 2o : 5) _ NEET ENOF At
' SUy7CH Tx7

B ASED SN MEL
T TEAN T 252

?%/ gg TN, e OV YONVE
sy SES /f/f?,‘—;/fﬁ -
% AR Ll AND S
AL ALIEA OUERAZOU

&ﬁ%gﬁ%ﬂ Ga . INT 7444
T
/e//m/) 7| L RN
7)) b CNOP one” -
S TEMEN T STATEANT
A2D ¥ ~ .
SVIES 70 ‘ CZQ&KZ?X?%/
. TEALNT JOAL2
Low CTZ ,
Lo nonveE
RN LUAF
A@@ﬁ?
AND X
UL

4
CHART OE, CNOP, COM SUBROUTINES

3=58

3=59

CEEZT 28] .
X 7IAC
G ooy
e G — @B
eSET e asEea7” MM{/;@A// DL
S20075H L FATEMENT ;
1
N i l I
.¢4Vf§g’z/§zac ENTRY SUHVE LR LT ENTRY
W CSECT 7BY Aot N ST TBL S
ST e AP0 ST 2 AN
SEARCH o7 (a1 3) ST (BAZ) e -
AT
- -— - ~C5— ke
0 T ; | ¢
SET 2L : !
sz | ; |
L s i I,
ANOEXT |
fﬂﬁg@égg G 7 NEXT RS B lrcs IR
L | ,
T NN yid ; ; ;
=7 IHTA 7A. ! | ;
Ve NIy U SRR
&7 AAL - -
e SO GE !
oy | L
STATEMENT , , N L
] LOKDE)/ NOpST
(227 | [FZer [zzr]) [= Pt
FEC] TBs - - ECT 7Y HSTECT osECT
PR BLAN K IR EL, R BLANK T B =4
Adnse X7 NANIE L o
| |
o s A]
SETR. LT ;
SN DT f .
S TAELE i :
MENT o482 EWIRY. SET 4
7 T TyEE -
& 7 pEXT B G TONEXT I
awTT B bl gl
NTRY ALLE | o5
N ENTRY STUTEMEN 7~
B - - LR SELE -
' ' ; 7B FATT2 Y AENW
, . A TEALSS o432,
CHART OF. CSECT, DSECT SUBROUTINES

K7 NoEAAL
i e
7 2 7A ‘ ﬁf’é/ (z,f/ﬂ/«/f/‘ gz ”%ngfw >
TIFE SET 246, . 2o
P Zé;—%g worp jjif;//g Q//ﬁ‘c \8yrE oF %m?) ?5/%75
ONASL .
PR CNATOD P A) ,
| B EANNADD CZAXL BN OoXAL
EVALLATE }z/&v V%
T s ‘
NS - BALRNAD
M IER. BOONIARY
CET ALIGN. AALL A3 SRR
WO] AL Lor : | . :
ST ALICN. agx2 | ! i
St . HALF = D . E L
TYFE . GHNLARY . _ B S ;
247 AAAL - Bz2en 7241 .
STAGE 2ENT % i
oD {Zc//ng/{///) : :
ZIANETH ZEROS P
I . .
App .. P I o~ 1 ’
NOREAENT | ;
Jo Loz ;
UL RAAL ZERT - - -
[szace pe-ne ABIECT
VALLE 1457 AREU ST
B forcE
UG (M. /%) N -
SET LT LIV NavE | Zepon 7 7447 S e
ASETE Ve . !
oo | e gon |
27
27 DVERFLOU SHATERAEN T .
% .
K] SREVENT L BLANK (2) r
OB IEZT ‘ N 2L
AL | AN SET
AAINTNGE. : L7 TYEE '
\GLAZeN T AAL : »L{:> LOCoVF
ZNT ! : (SEE
STEAAEN 1 " 2nAgNasTT7C
AN DA - ' 1 AND X
Nos7778(5) ; . | % OVERCFLOW
. Co S . Vo et]
o 7 2 I AEU : ’ 5B 12 N NEW
SAZMNT OAEZ ‘ ‘ VAZEMEN) AB2Z
CHART O0OG. DCODS SUBROUTINE (SHEET 1 OF 2)

3=60

SET
RETLRN
B sl 7’

@ e laes

SET 2474
TYE

GENLT

woONE |

Ll AL

FVALLATE
NGTANT

7o aETECT
AREA '

NS TANT |

RETINN T
GETAILT

ERDCLF

FXLLX

SET
STHTEANT

N suraez?

SHN T

I

OHE RAAL

STTACK
g@ﬂ%ﬂ .
HAENETTLT

RETE

AL T
BY oNE

AND SE7
L7 TYAE

LARNT 7A4L

SN

ST TEMENT
v OEIE2T
AREA

l

ALp

TNETANT
LENGTH 72
Loz o7 .

CHART OH,

NPT

FLIENT AAL

N7
AN
aEITEZTT

oLE

APL CONEANT

ey o

L0 C7R AND
RELE

W ITHTA N
RUFIEL
S s
A, A

AETULRN 70
‘wrer

A T3 2TV |

SAVE L5777
SN SET
SWuI7CH 70
SUPRESTS
LT

LOEOVF NNVE

P
AN
AL TN

ovERFLOW

No 7K

s
&/77
R
SUHEL AT
DINTFX

]

LODYE NOVE
SSYAE
ZAGNCE T
AND FIK
VRS

RESET
STATEMENT
SLAUCESTS?
SHITEH

)

DCODS

0 STUHSEIZ 1

Ve
SN AN T ES

SUBROUTINE (SHEET 2 OF 2)

3=61

DROP

ENTRY

SET WP NI SE7
FOR FIELD TER s PR S5 D e
NMBER 2RoP)T azrion | Mgz —\ VRY
NOIHT70N oF (@3) NIEA 7 L AwrEL
= R
N [z bz . : ENVRZ M7
NOTE L
EVALLATE ENTRY Fey EVAL 7T
L pEe LU0 0P ENTIRY
AN ERS (0CAF) SFYAEL.
/Jj ! . 1.
Y2/ .
SE7 P B4L
LG 7
DA77
e 2)
“wru |
7 U7 feAL
T
\wene sAGK L
JABLE LUANaST77
ENTRY .
ST 10 DA,
L LR -
LW NOT
N AT
N, ..2('/3
AR ENTY LIS KAAL
. . LIACK BAL
AL VAL, DY
AR BASE DVAGNESTIT
REG (/e WO £2)
. NoV
sE7 .
SPRESS G B
Loc o7& NEXT
N T SINIEDL
SrITCH
G/ ZyN] 744, 47 ~A44L
Go 7 N T STACK BAL
— NEXT BEGE e 757@&4///%47@?
L LA
rec SATENENT e)
O WRE et 1
: ST ~
I Y i SLIPRESTT
: Erd SA7E o8 e
‘ AN T 0452, | w7z
BEre T 7441
RN .
A o R
T
FIATENMENT N7 HAZ
CHART OI. DROP, ENTRY SUBROUTINES

LET @__‘ .
. B AL Tl
- éy‘;;J/M ENOT Vo ‘— AIOVE Ry
ENTED —_
/;’ﬂ/@w/f MOVE L4RZ. | - : LE D,
: J%Aé/ufyf % 257 a4 @ 2 287 o
S | ' ERNDRS
- : ST P BAL
ENIRY
~eonf NI TIA LI ZE TEIAINA T |
EUNO DB UL ZUAINOL T/
OF (od43) - 0 Ao 152)
wezr |7] i '
P— NN DAL ao ks ovas
TES] AND i K TESL T AN
BRP /,(/)@/;{’/‘/ j@ . . ALAN =
LOR 72,5 ey
ﬂMg/mg_Wg o LRIVE NO- >\ . LR N,
HEXET r___@ CH) s .
- S SET P -
N AaeaE ’ O TELER
e L g ERZOOR
X L) DBAINESTIE
AT (Ao, 32)
rE o ST L2
i ' OV TEGELL
i ‘ TB00 LARGE |
i DUAGNOT T
SV R 5 v, 257)
i hor 1_@ |
: AdouE R aE s
' ggif/jfw e LOSHAL : wecaer
D/Z;/Wf/?& 'ﬂ NAT 72 AL ZINE - : WMIEER
NNIEGERL 7o
oo 27) LY er D87 29D e B B AR
v ~ as?
- .l
UG #d 4L : N KT P [
4 WA AR
AT . %)
NOCZ T :
ZAG CAAL BLECKUE AL KRS T OV S) NG T OYAS
f?}d« //;,;dﬂ EXTRACT 7é:¢74g TESTAND
PET & A2t ACANFE
ZIAGNSTIAT LABEL M RN E 7O ST
. 22) STA7EALEN T NN Nz
LAV A4
7z 7.44
JAE NP
STA7EENT
AHEZ) BAD [AGEL.
W THE T |\Hen AT
MENT 2AE2 oo 24)
CHART OS. DUMPT SUBROUTINE (SHEET 1 OF 2)

é’aan«&
Ao 7 ovAs TN T U e N e
TEETAND EET AN LA L BT,
ARRINGE 76 il S Ty 7o Ve
FEC’&(D A0 DB 42 7 o
s - cd
BLAANED, U4A2 - wl
2T) +|
2EZ CARD : ;
- . : [N .
(627227 7444 -y
2eNT }
THRE A2 -
ST BAENT o J
A" 7o JE NOT ZE80 : ok
recorp” e GVES A !
M. TO . R esaoep | R SEE :
D882 Uep 70 D87 o460 AENT CHEE2 L J’
- Gl é) (] ' =i B, D e ey
{ i : | ' H |
| | i | !
t 4 + 4 + + 1
i ! | !)) '
i s | 1 . :
Loy _i [' co 4 | -
CHART OT. DUMPT SUBROUTINE (SHEET 2 OF 2)

LR

(:) HEXE

Yy

B ERP TAAL
EXTRR4ET S
o (5)
STATEMENT . ;
R !
ENTRY
N 7dc /2 o
DEE cARD L OF
e (Oc4z)
v SET P
BRULP

TGN 7767

e
(HEXL)
FPORMAT

N2

ENOT 0>
AVE LAY
7o LEEZ.
AR

ST L
L2 NS
NO. 2E

AR
DUAP (o
AzQ g

7O CALL

[exe owdz @ nyf

EVALUATE

Yeeons Lo ~

\EALRESTSTON '%g

ENA

FET P
BAD AL0E
LBHENOSTIE
M. 78

NfoLE
FORNIET
7B PBE-
2420
.z SET P
(AL A RN T
NI T TERNINATENR
AN ~
N 25
[:>%ﬁrﬁ AL
45 AL L Gek? TAAL
K e, | ETHET
LU AT oz o]
G STATEAN T
LVAE A4S a7 NavE
STACK MO NIERT
DEBIZ D %?@;%g”
A zhis
.- 7L/
N 22) éfi?ec}
LRI AAL FET L A@¢%azm/
RNT BAD LABLL 220 vl E
STA AN T WA 777 VA2 s
A LNTH) No. 24 AL
CHART OJ.

3=65

®

DUMP SUBROUTINE (SHEET 1 OF 3)

NS L0
TEXAANATRR >
A

EAVR omA 3

EVALLATE
vosloz "
EXEESTSN/

AR
N Loe &7 st

CAT 7
A
Y
207 NONE

dINELT 7B

200 VALLE

TOEBILVE
g2

(vene 2 coc

AND AR
NANE 72

L AL

'

O SHTRTZ X Afy
A AT

SN

RESET |
o2 .
cAp
S

SN VT NONVE

CONERT 72
B VSyZ Y772
O EGILE
OHAR .

AVE VALLE
NG BLANK
NAME 7D

& CARD

SET P
LENOSTIZ
NO. 26

ol

CHART OK.

CYANYT Aonel
SOANERE T
SRS LS 2
VALLIE S
ETEULNT SHAR

AOVE
yasE 7o
2BE LKL

V7227 24

: AL Deon e
1 TNEEL 7

. &

z}?

ENVR oUH 3
EVALLATE
B Loz
EXESTIN

AOVE Aoty
AANME LY ALP
TIES B
I AL

“ |zt cuer

F72o7 OAH T

OF DbgP
o2l 770N

LN

Lol W NS
LU 2

V7 MonE)
TINNVERT T
L2 VALYE
70 BN
CHAL .

AVE VALLE
AND ZERO
NANE 7o

2B ZARD

¢ o

ERNY

(CAR KL 70
ULLNF 7

ATHRX

EXIRACT
5’)% ﬂ/léﬁq
LAL /7
g/efféwr
IR A2
G gyl

AVR oui 3

EVALUAIE
SIMBOL

DUMP SUBROUTINE

3=66

DPEF ARD

LW ZAAY
RNT
P

STA TEACENT

(2 L5722 WXtz
STAZAAN T SN 522

BNV MWE
VLT

B LU 7D

eBeos

CHAL .

Vi 74
Lo L2 o Loz
W RO, ;/Zet;;ﬂ
AnE 7o A
A= 75
ZLEF ARL 285 AL

AGNIAL 21N/
70 AL LY
LN T LU 4

1

(SHEET 2 OF 3)

g ngﬁi%ﬂ
e sene? E?SZZZK
>
L LCMAE
TELN

EB}_N%EZ)Z
/ \2sg cuarr

NRXT OYA.

s SETLPELD
ARRAINGE TAET T G T
ANPEVERY gl | L AINESTTC
NMAELER : . 75

A7/05‘?/"
L -
3
RS |
AfovE SET Covp
VALLE 7o | 725 on
ZEBLT REZ AL
LARLD W AR

a@? l*ﬂb

2774

SET oND,
|7 2z
@ O5E
UL

ST ND, EXVIR ONA T
VALUE 70 P _<Ea EVALULATE
& CARP oN PEF I CAND

AL Loz

INROUT VA5 T 77 o a7 AONE
TEST ANP : N [eeiERs
L7 AN G [o
AF7ER) NO.] o ZARL CHAR .
ERNT | oz
: SET UPBALD 7 VD, e e
G RN % o aoe 7
> DV 2
777 . 75) 24 er DEFCARD
N 1%
) /\/;2?/‘ £ecoN B
ArovE @ | SZ7 ¢ 1/75//{/0
VALLIE 72 . coney 770, -
ACGNCSTIC
JAF HCD oo 270
R
@ € AAEZEST g
a? o ZeRo L 1ove A
MANME 7O NANE 7B
255 ARL D UL
aaé%zz E%iéiwz
CHART OL. DUMP SUBROUTINE (SHEET 3 OF 3)

3=-67

3-68

. ND AL 7z
Pt e O AN ST JAAL [t AE
' - - 2 AMonE i@ 22K
AL AL LN T LD 7o LD
B NOTE L TXT CARD AR AR]
AL .
\Z e 5L 7N ZAAL I TALNTE Tas2:/782 il
EFVHLATE | aneH RESTZCT | | 2w
/02 N END AN L AND EY AN
SH BN TXTACD A LD A0
()fxt’é@(’ I .f/(ﬁ ~q. .
YA RAAL SET P) .
e | | |22 3
; MEALEL
AN
e s2) ¥ FLAEZ -
e éD o RRLD NES *
; ONT RLD
! ENTRY i
L. - . [-
AN 7z
e Arpe ZT AL gfﬁljﬁf
phtaisiog 4 R 5\ | e v
VX, LENM
s GH |20 0
Baver
i -9 - %
: 4 2R 4 £y Y
? LENETH
] ~ V4
LI T ‘ ‘ SET AR
?%f i e 2 gy |3
AABL. ! X VLN .
D) | |
N . o 72
ALOVE ‘ SET ZAF
%’/‘ggg , towe 28575
§
(e V74 ! \LEAZ 7H
@FU/VEA/ - Feoy ‘
BLIONT A, ! 47 /0 /S A2
- : 72 2T AL
| 2INT END } NEXT #LD i o
SIATEMENT NTRY . k
ANOTEL
' ENIRY s
t PEELID OF (DCA3)
CHART OM, END SUBROUTINE (SHEET 1 OF 2)

CENCD | LERO LEASA

2ASL AR
NEXT KD
ENTRY
ON CALD

| AL oS

HINT
LD STA 7E
MENT

Co 7»
NEXT LD
ENTRY

CHART ON.

LoD
SLRNMIZ L4, 42,
FLnNCy

END CALD

A=
N\ SEEperance
No. OF
END C’<4 L

NN
A E
VA 2D
LENFIH 7P
L2 21RO
.
SHESLUL ‘
SET AR 2 702 ehA2
A SANNE
HEA 2 o1V | Nz
wE)
! e b
ST LA ! ! {
S S EYE ; ¥
\cenez7 i ; ! :
L | ol T
W R
SET F2AE |
AR Y EIE H
LENZTH !
: __l
W J
- "
ZER0 LA !
R L BYIE i
LENMITH |
e
Z T -
&7 uz ok XA 4 i |
. . = ! !
o 25 | |9 gf ; |
7 EBC
LENCTH H ‘; B
é/{ - < q - . —_—
D /S LN Sy L .
e A 2T : |
Sgrcicr s i : '
Sonesans W LENPTH o
we
MO ALDE, v AR
DD N ERTT
v GFo 7o
WERT 1L P g
ENTRY - 2
orE0T LT VAAL
AP L IANE R
T R - w e
S AN /;/%j/{gf
HRLD N HEALER
BLLITT . T 1
SNT _J ! !
LD LINE | : .
1

3=69

END SUBROUTINE (SHEET 2 OF

i
|

b

RE 720N T
\Greenez o
AT, oNES)
i | 1

2)

ARNT

A BN AT

EXTRACT
sE :

ORRIND

ENTEL I
~

@/yf,«?f I

ZAg RAdAL

ST K

BRELF
DAGNOSZE

TAA
ZA4E R44L

STACK
DACNOS77C,
o FL

&

2A7 <;>

SEV PATA DEAR DAY

i%zgégﬁ SWITCH T2
et Bur Vi ?’,5//1/2;/7;(/\/73’

g BVTES

GONGTTANTE? COMPLETE

down |

G Bk JAAL

EXTRA T

np

OFEAAND

42

LITERALS -

N TIVE

KT L/T
K2

ORINTINEE

: Lo ARN7 THAL

)z

ZRINT
IRNT
STATEAEN T

CHART 0O,

PRNT,

Aot
AXTEL D20 o

ENTHY

(OZAZ)
L -

L ASLBRAT TA4L
EXTRACT
_ned o | -

5%5@4669%
PGEL LD
P (OCAZ)

Jro0E
DUFE AL
STAHCK

DrAGNoST7A7
No. T2

BLANCZ L 4A2

ANCH
CUREENT
E24RD 15 ANY

AMovE SRR B
PUNCH /D :
2 ARD SED
ANIEER

cwre |
BLANK
ZILE AREA
Ll gy aovE |
AW
FITE : -

I

\&L 2eNT AL
N7
TE
SQTEAMENT|

&/L/S7 VAAL

kP T
MW ATE

75 FASKZ XNEW
TR RNENT) (0452)

e

75 B2 v

FHATEAEN 7 (adB2)

3=70

TITLE SUBROUTINES

CRACE

V=7

70 ASTZ P e/
TATEMEN) B2

'

’ A3 A=
NTAL A2 SRy : S Vo2V
EN TEL2 : ’ - “ b
- 208" 7 7P 2428
‘ 2BF a0 o2) AL ig
AL
' : W
. P l
o % EdBe12 TAAL . @
. e RO
| E@A/;O) 02 17 Y
AL Ao ESUUTE
O (@243 SATEAENT “g
. A2
. N T
> 7 ot
: Zozie N 208 1V Gops !
! Qv con SpNTEH
L % S .
i P H
] ZRopAS :
! o’ /g ;
: EXTN :
- NA ,
- convd |
Pl VT NN
; CMERT
oy Lo’
viaclLrE 72
EESCTL/NT
CHA .
- I
SET P EAL / B APOVE 52N, ;
LAGEL ZABEL. iy i
A 428 1 Le/E ,
DAGNET7E TERAMNATOR e .
“ 5 D DESZ
A0, 24) : a4.ep
M vz "
24 AAAL EXVR OWAZ “
STACK EVALLLATE ,
PUNOST7T P |
VAT AL EXNVR OMAS
STAK NO
PBE cARD EVALLATE
DUCNOS I
e, 22) .
N7 7A4AL) SETP BAD -
ANT AL
FIATENLEN T DVAGNOS 772 [
e 2nen) . 26)

V7T NoveE

CONVERT

EBLLUECHA,

AOUE 72 1]
VALLE AN
AOF AMANTE
7o 2582
40

Vi
. @ G

CHART OP. TRACE SUBROUTINE (SHEET 1 OF 2)

3-71

7R @ w5

[/7‘/\/{'/\/‘
CINVERT
'f”dA/lﬂa
LALULE 7D
LEZNC CHAL
NT_NONE L core Jerond orE roace [reacs
, C’ﬂ/ﬁl/ﬁ/’:@f/ﬁ MIMZK/E Ty 4 TN L
s P & oEs % o % 2z
HAR. CARL L |Gaes 4L
B V. onie — o
AfOVE VAL B ANA2 A2 [?
2 ZANK | |
D nak AINCH ! !
CRHL. ANVD PEEF 2420 ! 1
&7 cond'S T
PR S|
ot 1 VR CUHZ ZL T A FD’““”‘ﬁ
| |- 2NT |
R | < 4&5 ST TEAEN T | |
l____+_.____J | T |
[Il SRR [CEA- ==
| i 1) !
i } ‘(B a2 : |
i i N NEQ H :
1 . 4£M a, ! 2
i Zond e
Flee 4 - — A f - - Fa- -4 -
! i 7 NOVE 3 k i |
¢ | Wo/w/f,?fz‘o | 1 | |
\T 00 HLE K t 1 1
i i EBINT CHAR. { i ; u
IR | AR | Lo gom
Gl ~ +—— s 63— 14 ~ G- A== =
r 0 Love e 4ad”] O 1 }
| I LALLAE E- | | i
+ + Zexw RO + + + +
1 : NANE 7O ! : : :
'L U | 28 A& oy el J IO |
e Ay o He @ \ [-H3- 4 -»;\ L HA = ey
: | ! | : “ i ;
4 -I& 4’ 4| + -: l +
N ! | | | I | |
I | i] | | | I
AR S| IS | | : | L. Vo e
pmdb = - R e [rY3= o= [FUa-
| ! | 1 | 1 1 |
| i | | | 1 | |
4. 4 + 1 + 1 i, +
| L L | | |
!
L1 S| L e [
Kl 1 -1 R S | r¥3i- 4 b} . K4 v - 3
| | 1 ' | i] ‘ |
| { [|] | \ |
4 4 t [1 4 i |
f i ; |) : [I
Lo { R : ! i ! R

CHART 0Q. TRACE SUBROUTINE (SHEET 2 OF 2)

3=72

1

N 7E y
STIAER

N Y
wIsNE |
577
ﬂ/ﬁ/’(/é‘:éf’y

EXNE NS
EVALUATE L7
XL
G REZ
pALE)

oVX oXA4
lcoVERLT
VALLE 7O
esep

O LIS TNG

AIOVE KESTH.,
75 0BIECT
A (AORL)
sarE

L0 1D

247 AAAL
ST
10400
LA FNOT A
0. 75)

YT S

ALK

ABGS OHAZL .
EVALLATE LR
EXNFRESTSe; g)
A, EFT N5

Look P

ISTNEE TEL
NTRY Ao
|77 EL7
ALGUSTER

B

D47 AL
STACK AL
EF ST

7
%Z.3¢

e e b e

b

5L oNT A

N7
L SING

ST EAEN 7|

o

'
[P T Rl
.

CHART OR

(TP FASTSD M NEW
SHHEAMEN Jer B2

ZVAZ jodAL
LAy, AND STALK DA
AOLE FELED LEF ONOT
w70 7L PRZ 17778
ENTRY A SE)
C:%Y%K .
ALOVE SOE O
. = % vaLs
vacs 2 BEE O LTV
Gah i THELE
ENTRY gy
APD 407
7o 4LLE
Lo Nex T
AEGETELRS

'
]

AOTE L

ENTY FRON.

| BN OF (BA3Z)

(- R

=4
lo enzzy
A AL —
ABLEAS

PRS-

P P,

A CHOREEE |

s
'
'
3

Nnrove AfOVE O
\eczoc 1.2 ez o 2
T\ B asLE T JALLE
V7= ENTRY
-]
S22 | ,
T a7 /ead? 7) 3
Nozaezsonv : f
Ve o v ! 1
Vaw. 52) : ;
| S - i

« USING SUBROUTINE

3=73

—— e

——— e

[A

A/&'JZF.Z o e : i\:h i

: _ — ‘ o ENTZY FEOM : . oL I
CNTER ENTER P00 0F L (CAED S !
\ “ecor TEGS (DAT) EA TN T
L s ; NOTEL NOTEL - . K
nLor TELY , EQUNNN
DAG A TR L e I, Loree s
STACK LOOK (/P 1 Lol A4S i |
LeEgds, SyniBoL i : RS o< ; -
! 55 : . ; SLTLKLY { ;
- E L v ‘ ’
TP reen e o BLAKD AL e
NOP N ! i i :
DETELT | . L '
ARE4 i X STYNIEL, ¥
DT S | - R SO
- 0B nd e
G A X NAS bt
|7 EVALATE !
uncy) : EXREIN :
STATEAEN T Do i
e e
| SER EVEBC
A4 IAL i oxA _
ok s, CONVERT AL ST
- Loc 2o]
57 s 7o A 78
2 s ExCLe
et) B : R IR
D OXAE e | e ?
ONVERT ! ! TN N
s sex i 1 gggfggi Céwmwﬁﬁng
75 EECNE ; Aoo) ;
:) - - . FEG T —
ol ke] | LN TANL P 1
AXTE DA, S H ! ARNT H .
D X ;éf,j/iafgf ! ' ST 7EAN T ; i
ERF Loy eed 4008 b o o ;
:—-H?-A— ‘ : //é/aggér :*Hﬂ’: - e *»i :* !14' - : ‘ L R I "
! 2 &S : ‘ = ' |
7o FASTZ) ! (72 ASTLZ 17 ! ;
Gastf | [ogpees| - GEED -»
lL/fIE OALZ IRy ; l//éﬂ/f OALH2 :
bt e : ! o
e IR x| St e R - P -
; . 77T A4 ! ! b . | i
! ! ARINT : ! . ' g i
1 | V% ; b vorEL ! H
! | STAEAIEN T C ENIRY AR C i
b ; | BELDO OO L e
P T R [l - vnoa e | ova . T .
| | I : | I } I !
' ' \TE T2 | I i | i
1 . \Vew' s mze 1 A ! ! i
! 1
l i \ AT PABZ |] { | :
L. 4 - JRU I, . . [[') ! ! !
CHART OU. ILLOP, TEQU, EQMXMN SUBROUTINES

3=-74

3-75

»

Y , ‘ T
(ey ; f NTRY
e | RRA NEHS i N = i (2722
STHATEAENT ! i or L7 . ey 7
(Cale<2 . os : R
‘ IR T :
Pe) . LR e
v ; Nexrzicr
N
, BRERFE
BRI] AAL Ly A DAG AL
RNT AN STACK
TOVIAL Bexls/ P
| RN SATEAENT ATNCS 770
T .
a3 - ~Da-
N S ‘, : :
ARSFIELE (7 72 A2 !
Eroe NN S e
N7 ; ; !
INEASE e e
e e P | !
@(/A/Z‘ ! o, f B 9 +
|4 74l £/ ' ! |
Sz : 1_ L L
- - F2 - ~Fa.
i I I !
| f { }
i | | !
| f : |
— - A o | L
2 — e - GA- --
R e Vo arers | ENOT v
[
= ! I VO Ve e
JOWA/ i | : \GALLMZ PT), B o
|
DIAG W//Z] b . B Il.._ L] A
- PR =) B [
i !] | | . :
! ! j ! }r (Vacrids e
i | ! | | | D A LLNS
! | | t | | oI T ELLST 4L
. U § | I . | o
1 ————s Lg% - ey - U9 - — . ", .
L1157 _IAPL ! pee : ! ']I ! i
H !
SKIP 7O 4] 1I i 4 3
NEW HGE . ! : | ! i l !
{ I Lo ey L Lomee i _i
/ (. v [1 - (oEEs h !
| e | o . E
A ' T ! ! ‘ : f .
| ’ N N ' ' | X X i
g ; TATERTEN T 2 | ! ! ! ! |
FEE . . N - .. T il -
CHART OV, COMMEN, INROUT SUBROUTINES

NOJE 2

—— e

N ey Frond P/rff"z) é‘/V/'C) . i PHKZ
SARTNG : ' At | SERTNS. NS,
2R o v
SN % %
REEST X f/‘/f ﬂA//
% Z Qx
z , .
e % b %2 CLERR -
ATEF 1 oz 2ad
o ! ot A
. |EE STAHAAST
ST (Wo. 48)
C)dﬂ? ‘ . <:) _
IAG CAAL ENNC OWAS BEEKIAL AL Fhsu 2 Fadl NOLK
STAK NOT ., LOok ¢/~ (ERR BET
ABSOL EVALLATE EHLU7E | (/02
Ganoerer ARESTN eSO S Rt \HAUuUNE 7]
N0 17) . Antes 1) -
ABXE 2 !
| 4772050 7P ‘
é%mawu .
L THEL E 3 B
- - — —EE- .-
r ndd aAAL NGETLST : !
| A WNTTH, G
4 EXVAL A@wgé’f B
! DR 7 S 74
[- _ 1
NER : .
. - o PG5 - -
A Z RAAL 1 ;)
STACK 70 i)
LAREE + n q
| agvos7n? ; 5 !
N, 54] o
|G - et T - €5 |
1 | TERD AN f !
-:+ 4 Vo7 4 /1/5/(7- + 4 i
i : AT : |
[l . P | _ N
- H + - | [he i H
! ! | : E
. N (Woes a5 e
. " | A D CALLNE,
] J Ao T A #
[P L. PR
P P —
| B ' ! AL AL
! . ! ! (s xeroc-
0 \ ; ; \2uenosr2
e ! . i e . 7
! [- L. - N 1 J -
LA i k2o “ y 4 1Y
; ! ! ; 2 70%4 , P ‘
| | ' b WOAAL EXerers b !
! . ; : 72 AL, | i |
. : ! . {/uwrxm%7¢ ! ! :
t P . !
CHART OW, ABS8, EXVR, LOCOVF SUBROUTINES

3=76

Lo
1

LA 7E
ALIGNALEN T
NOREMENT| -

NTER
o274

SET P 7o
FRINT AND
it
AL
ZERIS

BEARNT 7AAL
LN
ANH,)
LN ZED

AP
JNCREMENT
75 00 TR

A

't e ENVICN Aoty SR
o N\ SBEEANE
'(c@ %) —
A 7E oy

EQRAN ol
(RESKT az

EATZY v
. |#enr A JERZ
T T aons HALF
GL 7R
e AOTE L
. \ AALE
L :)
; RN T AND
! ¢ AN L
X ALARA
: ZELD
e e}
L oy -«)
' ; BlaenT AL
: f 2EINT
!) AN
: H AN 2D
o — b 1
; AL 7D
: 202 87%
! .
LATOVF Nowe
TSUtE LYAE
AL 772
AND 7K
oL

l

LACOV WVE
JFSUE A
NOST72
AND X
ovECALon

Lo s
LNAL

)
AUNG PT

[T

CHART OX. DOUB,

(N 70
CALLING? P77

'
Lo i

,

e e o

HALF,

R 7
2128 WSEAE gy
'gw/g %
V775 SZ.
s oS | SE %
|\ 7 eV oz
Envp . ond
V74 77¥ oR
- (UH e
|
TRANSY A 77 i
SV .
SET
VN TER
7D LB
TR 7D\
(@zzmz /,7)
T T wre s

| AR Aoy

P AATINE P (25)
A%gaauaﬁae

2;y/wym&q

Lo - A G nans (2F)

e

Mo wo-- o

CONVX SUBROUTINES

VoA

S : 2L 4L
[ENTER sk Ao
(a@%ﬁf) égff
. N7 7
: NOTE L A, IL)

WFEASE
COVX X AL vy axA 4
MNVERT coELT ‘
ALLR 7D \FA T A % Ff' p7 @
eBeln? 267y 7o
AR, \ B BAR T
gAE [I B : O e ey
EFFECTIVE ; : _ |
0@ SET NONAL BTN !
P O D Gl LING : '
WA 4 P T ZLAS H ‘ i
SELRS DA it]
Ot r— = 03t = 04— g
| i '
| ! ! ! B ;
+ + T 4 t
i 1 1 1 1
1 | : | ' 1
L__._4+._.__J | S | l__._+_<____|
lr‘E\ - -%-—*-"‘]‘ dﬂ/l/ﬁ/ff “ :“5_'5 o- g --—~1i (—‘E“Y—‘*“—'—}
! | VS AITH ! o ! |
1 i TS Al ; H H !
t - VaLLE ; E o
- N T

. ENTRY oot 2452
R CmFle el P BTN -
o 1 i 2 o~ :
1 t 4 XA . Ve-2 +
; o : SAKY e ;
ol L - s2A z e
=51 - e . i -2 - Coder e — =
U |weasz T " }
. 4 AND A ; b : 4
! ! R AL : r !
Lo e e et : | S 1 [\ o

 B———
SHl = k- R — s - -
P ; o 70] 7 " O
i R pexTUIE | ! !
: JTAELE ! : t
e ENTRY U U

CHART OY., USBASE SUBROUTINE

3-78

NVER

-

C AOATINVG

NT

A 24 4L

3=79

w. ATE L

TS ENTEL i . ENTER
REASTT Zo7Ve NTF ST
: NOTE £ N V- 4 NOEL : NOFEL
L REEST 2757 NP ‘ ST
AESE A2 A58 WA Z A5 oun 2 XA EAL
EVALLA T é%?&%%? EIAL L 7E Ez7
; R, ST, NEREL ; SHET
;EZL;%QZ ALK AN N ANIHN T
Epsz 15) ep7 /L) cps? 225) e o
r—_’('.1~* —
" e l
: !
: !
|m L J
. pErRe
Nerar oxzay VK XA vk axA4 ZAE A4 AL
leovers N|aeviEer aIER T S
REF. SHED. - REL, P22 WTFEEER AL A
7 ERLC 7B ERTNT 78 EFINC RN
25 AR, e, . sz)
AOUE e AOVE i o ,Vy%f‘,?z'
: A7 2 - ; !
LESL T &N g N TR i i o saze
70 B IEET AREA AND 2 LT 5 ! ANLD
AR ED B2 AEA P B ZERD 22
Laak L 2eF p, > R
V=4 . { : SR
TWE NV OF EEWQVa TN B i ; (R 7
BE TASE LN S ALLNG 7 , 1 LN AT
ENTRY | o i : :
T . e e —s Lo 4 - [- :
{
6= - 3 P T TR G+ - e Gz b -y
|
!

ENTRY Aoy
Aﬁk%%%?épﬁ%y

o ZUF AL

! STACK NoT7T GIACK NOT

' EVEN RES A P72 .
ZAGNOS T1C o7/ .
v 37) wo. 3&)

x|
72N 75
LLIME P
CHART O0OZ, REGST, LITYP, INTS,

SHFT SUBROUTINES

ENTEL
(gA)

NoZE L

ENTRY Frent
L AACHNE OP (DF) -
Lol pWworEL S g
sA '
INITIALIZE A5TE OUWAZ :
A7 AETET eaa e I)
e SHEC - § .
VERAIND o : | :
s o /5) Eo L b om g
EXVR owA3 PR e o Cd A — -
EVALUATE : ! 0 :
oPERAND : 1 r 4
EESTION ; | 5 |
O || e —
ok '&Xﬂél AN ! -—" 04—
coNvERT : X S
Nere sz - + - +
7B EEL7 ;) : -
e e [
HHZES
&/S"ﬂS’é‘&%f/ pﬂg M/j e =y
CALANATE STACK : C
BASE ANG Z BASES - .
| 27 o7~ oRANESTHZ : |
~ | arE=nm .) . 4
pERSE | T T - A -
R : : |
o8 EET i ! 1
A=A ' !
IR | U |
ke
—— SAEXT
AOUE BASE AN T e
AND DL ALIGNIENT | !
7o o&TE2T ~“<:) B
AEA '
=7 s ;J| ‘ LEFH
AU lwez 2q4s DAZ AL
EFECTIE FAGE A
, |Ae2 7o BAD 2Ry LB D AL
OBTECT DHENESTTIE At N7
AREA N, 4) Gv. 37)

r
I
I
+
!
'

CHART PA,

(VO R VS
A, P IEGy=2

X7

| (RETZN 7D
ALentZ A7,

SA SUBROUTINE

3=80

, AESE WAZ
— @‘j EHALLATE

NO7ZEL
A :

(T
@,

ENVR oA T
EVALUL7E
OFPECAND
EXFPRESK eV

xAroK FASFES
AL o2
EVALYATE
LA o INVD L
STV, (AN ST, (AN
£, K5 EGL /S

oIy GNAY Covy axA4 4,

CoVVERT VERT
LER o KEL s78°
ELLZ O ESINT
CULd CHAR,

YSTEASE DIAL AINE ESF

jé/zd//l/ffé’ Ry zaagV 74

BASE AND N oBIEGT

5%¢Z,__i 4651‘

AIVE RES

SFEC 7o
BAszE N
OBIE7

AfOVE BASE
AND VS,
70 95T
ALEA
|,
KALEL I
, . ZET
'gﬁ”jfcwyf ALSNENT !
G 7 v Fns '
oz wnE ;
OBTELT A E .
152
A=A NOLAN T e
R
DIAG 2AAL
ST
D ALIEN
DU enas e
A 7,

CHART PB,

]

XA SUBROUTINE

3-81

ANOTE L
ENTRY Gt
AL INE S/ (©
AN SHFET (OZES

VAT _AAAL
STAK .

| D LGASTEL7
Bt GNO 77
e, #2

LAY Y :
EXVR Iz
EVALLATE
OPERAND
EXPRESSTON

KBAE 2IAL

CALEUNUATE
BAZE &
| 57,

MOV BASEE
AND DI

7D IBIECT
AREA

‘e
SFFECTIVE
AR 70

oBIECT
AREA

el @

.t

+

(r = e
{

NOTE £

T ENTRY FeoM spckoveE T

K174

oV XA

GNVERT

EEPE7 AR

l

MOVE

LENGETH

N7z atrECT
AEA

ALIZN,
DE oS
9P 27

TABLE
NCREAIENT

JOLONG

P S T ——

o e =

| sz

(U4 F RAAL ABGE oHH2 PG RAAL
G Jezza477 G
722 LN LENETH 2 BASES
JAGNOL 772 SHLEE (AN, NS 7T
N %Q } =7 /8) ﬂ@ﬁ4@)
D2RRTT g
o o AESE A2 '

EVALLATE

Nrner zezg

SUEIeICT
L FRAS
LENETH

w57 |

MOVE 72
OEBITEC]
AeEA AND
OMVERT
7o EECLYE
CHAR

A AL

| _cxAad

STAGE ZAD
L1
AN 77,7

ntpeR 39)

CONVEET
LENGTH
B LN
AR

| R

| P (08) AND SA4Z

NG

CHART

e —

PC,

3-82

|
i m

AOVE
LENC T

70 OBEE]
Az

24 F RA4L

STACK
BAL 7.
| AN a7 777

(A0 /)

é |

SLA4Q SUBROUTINE

R\
STA :

.}%}E

-
oS
P LN

GELZINLD,

VAL ivg 2

NOTE L

L ENTRY sy

ALY EHNE

. aﬂé%74€l

STEZ (L)

SZAXT

: ANO7E £
s%A - JOXNEF
EXNVR oUA43 DAL aaAl
EVALATE é?%ﬂ/?
oy T LV
T YAGNOS 74T
Ve
JAFLIEL
N LENE T
gy
[« .
S ovAL VK kA4 e
OANVERT :
CALLAZE s s AALIEL
AT VD N7 72 LENETH
275,
; . RN CHAR .
1 e
LENETH . -
70 O5IEET
AREA .
(:}————%5bmy
AOVE 845 4.{ /g/V/L/é‘/V 7
AND DVSEL COLE Ao,
72 087527 g;damf
AR NCREMENT ‘
?—[—"] SUERK
ArovE CUT AAL
EFFELTNAE STACK BAD
Ao2E 5 ALGN
aBIECT Z2UENSTT7E
AREA o 57)

|

CHART PD,

3-83

NEHAL L 7
| 4
| 2250 g ArdN
|ews” 252

ENOT 25

SUB T L
AN,
LENEGZS

. SZASE

SEACES

:)41"}’ K AAL
SR

": B e N T 5 _Sta:g)
% # /AL.V/ é‘é"7£
&":532/{&7(5;4/_'
sy owA2

(L 552)

EVALATE -
A7 52250

corAx.
s L5

AOLE 770
asIECT
Aeed AND
CONVERT 72
ELEC 24,2,

DVX ChAL

CNVERT
[E/V@ 7
R AR
é‘b(’p/,,”

Wexae

|

A
LENGTH
0 O5TEE]
AREH

- |WAF AAA4L

T
VA D 7EAS
AN O
0. /)

SLA SUBROUTINE

©

EXIT 72 FRINSA
NV ALACH . O

AV 542

——— ! P —
. ENTRY C) | ey
= N\] AN/ . . fENTER . AN T
HEZ A NE s ‘ SULZz fTTTT ACnE
R 74 o ’ Sz _ ‘
A oA, R : R (5720540 o2l
EVALLA 7 : _— EVHLLATE
AN EZT7 . : i R AL EDIT
ST, : |] o SPEAL
OFECAND., L Loo GRCANL S L
o) - R I)
i sl - |
! ! NGB GET | : T
! !
Lo d “ gLz e
sZER
05+ —— DAF aAAL
| i | \sw7atcx 2
v ' ! ! S5z
; i ' \IAGNOS 778 |
e b o NG g)
SUEER. 1
2492 RA4L :
! WA e :
[\ e :
Lt | CLEE ;
A0 . 40) e bl ey et
e o2 7o P . A _”_.—_‘, G = b - P FS e -
MVE L 72 Co : 5 | | !
ﬂffﬂ”ﬂ gwﬁ/vp 1 4 1 + ,; .
ZEro R2 e 2f : ; i { ;
) - Lo [, | S FMA_J | A
- - - Gd- + - —— = C5 -
1 K724 | ; ' | ‘ |
! XD 7o - : | i ! ‘
H \GHln? ~7 : ; T ! 1 :
'l._._..,, [L.,,,__ TR - : — v ___‘_: {__ﬂ.J,.A N [|

CHART PE. SI8Z, SA4Z SUBROUTINES

3-84

CHART RA,

o

EN 7ES
oAd

NCREASE
VG ST
AN TER

AND o7

1

MAE T4
s AND
SANABL

70 STAK

T

i

e NEW
S
/%mﬂﬁﬂ

LN S
I

- (eE RN 75
\GLenid ~

Gt pmee o

3-85

NIy
Aot
AUSTSTZ
SECINS
;
|
) . Ld
R
i |
t +
H !
}
L CRRE
I |
t i
" 1
1 !
H |
U
[— £2 -~ =7
I |
1
! +
ey e

DIAG ROUTINE

ENTKY
G NEW
SUHATEAIEN T
DAL2) AP

S (5E&2)

Core 7 AR |
SE7 &~ SET &~ SET L SET wF
AL el CETIDEL AEEORD SET PO
NG LN R LEMETY e LN A
L7 e DUCNGES 77 CorArEN 7" £ S ENORE
LEColr ercaep Lo RECrRL
[- I T
V72744 W% 2 A I
SVERDS N TE AND : 0
LEAL SAVE LN TER ’
- LR GUFFER
ACos 7 NEXT
s ok TP P
B B l | -t
| L gETEXT | |
! ! =72 N : :
‘ ULLING T~ :
- ') , N
CHART QA BLIOGET2 ROUTINE

ENTE S ("

ST

' . AEA
TATEL SR . <’L///¢@fé’7¢f«’ A
(TANAL) ===~ : - AL
PPy NANT
L ANAL
Ve
MTHALIZE NDEX AN
AR EN T SAYUEA TE
FARIEZAN] TECUNLAL
T FELAL
. B : ‘ : :
. STEGHANT !

Dyl MEIGENSENT
Goiede | e

20472 '———-@
ST P AT :

e NVALID
4 FATER, |
N\ nezsten
INDER

N7 70
EXUERT A

AHIE CHAR
X . G2 (OB
: Wz 2
ACRELENT

//W.f/ ALZE Pae Z 7Y
SO LELIp s | ConVvERS TN
ez

SR Ay
SUEN ANL
N AN
INLEXN

2L

LIESTL

V| SARE ANEHEALENT

20 SUTN 1 wrx

Ay
NEKLATENT
NIEK

CHART KA. BLCONVAL MAINLINE (SHEET 1 OF 4) U

3-87

o zEoF
’ ZRETCAIAE

NACALRER?
Pt AT
A 7Dl 52 7D

e 44

Lk
TALLLATE
= P | A NEER?
2 Al o7
Wl TS
(z 7y - ’ :)
PAZS .
AP Jo ST 2P DY, SET 4”2
NS ,é;f—%v fg DTN
LEAING 226207 e SR EETNS
LERAS A L/57
| e e AAE ST
; : & sV 67 CONGTENT
: : B i
[T —— . ' . - -
. IF THERE ARE A= 7244V
- PP e a8 craraciEES, Al
| ant | i ; E 17 DONE W THIo OR
i X5 x T ; - i | s STEPS
K ROEZZ NG T ! 3 ‘
1 E ' X ° f N il
Lo Rcad ﬁ%%%@?ﬁ%%&f
FROZEST NG, 5 2, 2 -
e N ;
LENG72 . N .
N AT T : i i
x) [| . e e . . L

ST AT
A R TR N
ALLALY S p0 zEo
L e s
NP
IRITE
(e] AND ST
\gsLECT AHGE ECRALZ
o7) i
|
CVRETN |
AT U
EG) TEZST

EXIT SRS
e 1AL

A7

.

CHART KB. BLCONVAL MAINLINL (SHEET 2 OF 4)

CHART KC.

INEZEALAT

/& LINITERS NN
Guors) O N T
Vi 2
AR A
7Er WK
e ANL
MEEASENT
NOEXES
CoNAF
: A
N Y \oHAZ e
L\ -ostER
RN TION

AOLE
CoNSTANT
7D O TELLT
£ o
BVIE LEMTH

G
o S1757
SEECUAED,

LI 7T
LN CATED,

ST
TN

conere |

STIRSA
LA
SIS

7P
578

—_

|

A
‘.

Nt\l

BLCONVAL MAINLIME (SHEET 3 OF 4)

X7EST

Ty - |SET U R '
R X TIE ¥
CONVERS 1oN 7
oMvERSION _

XIARL
+ +
TP
polm A 1 MOVE AR %uffp '
| T WORK HAR AN ,
‘+ i @A AND Mo 72 g
: ! INCRENENT MK A DAGNESTIC
(S NEEXES? //\/;Ef//ggﬂ.' ST
e e |
ot I NOVE ZE250
| ! ' ! B wark
b T : A, ANY
: | : . INCREASENT™
S | L_.__+_u.,~,i /ng
et =B ey Ed - ey
| , i
, | | ! !
i H : T o
.o i ' 1 !
. L P | e . [4.,_.,,]
X7TR glaas :
ELSOE - T
EXTENT o~ " ;
AALONE LY) i
SRETTTONGNEE :
JNOEXES C
|
. ;A‘.3~1.7~~ QP p—_— —_—
ok ARZYFY : ; ! :
A7 kil 1 ' ' :
i é4f£ (HPIIMANR : " : :
RNATON TRIEA TN i) o
1
: -- NELAAA T
SINOEXES?,
. G CE
T o7 L
y - LENVETH B T
e AUk
SN NN
Y437 N
22/
ALEA

1 rosES A7
5g) s

CHART KD, BLCONVAL MAINLINE (SHEET 4 OF 4)

3=90

SV

A7 o
)z A .
Tl 2R S

TERALNA TR
(o 7E)
7 JHSE

AOVE COAN T
af~ GHAL

ENTRY N 7o ST
FENTER AN e N P AR
(Ssslr J----- BLEONIAL Pk A
. N azz) A a :
BUEET g '
TALIZE - :
@ ENARY ad
RO TINE
CONVVELT AfopE
SEALE \ 24 RATTEE
FALTOL Jo TABLE,
;’a//x/%f AR T
NOTA 77N & INDENES
s
G 72 SET (/P
VAN
gToCE
ONVERTED
FCALE
AACTEN SHES O | T e
~ ZooP 72 43) Eicinr
GeEnl | P/?ﬂ(fc"\%;f ~
VALLE L ENETL
JNITIALIZE SAELLT ff@g] jé“”’f
o< :
N TS A i oF
QTS LECINAAL
/ RINT
| ESANZ
JETT AT
CHARAC TER
s YT
SENOT
o S/EN -
P LpA T
AL
AATTER
7O TAELE,
WO
Couen7 €
NETNEDT -
| STBET ZEXO e
e ColNT Ghan 25
OF W72 CHRALS”
242/ 757
CHART KE,

(A28 AT
ards) 7o
TAELE

BENDS

AOVE
EXPONEN]
& SCALE
AAZ7OL
70 A BLE

77 AL TN -
SOINT AOESST

- Y I AlNSS
K
! TEKTE
SR -
,(////v:{"/f/?ﬂ-’ ST
| EAFONENT 7 TS S K
NCOCEAN T ENTIAEN
INDEX FNEN T

'
I @

ARV

ST AP K
SALRELZIN
{ Tl 2N

SLEN YA A

ENALLp 7
ENFRETY

NCREALAT
INLEX

NOERENT
NEEX

SET
TIAC

CHART KF.

LENCL
N ELT
L@ 2
LT
EATTNENT
7 LINVAAY

BSUBRT

3=92

ROUTINE (SHEET 2 OF 5)

é | 1 : 4!}——-4&?&&%%0
<

£L RGN BL AL
TIUUNCA 7 V= s
STHLE
FACTIR

CONGTPNT

FROMD A4/
ALOVE
e,
e 2 | i |
i | 7B o 7P T |

LESTWE
AIAN 775574
et
A RAT-
TER TV
BLETIE ' .
AU
CNG7ANT
75 T
g ~ *'
| UTS T '
7O TR T i
TRUNCATE)
EXNCESXT
757
(ALL OF
A 7757574
(GLUAEZ A
SET Pl
Aedazon
LOFT IU4Z
AU
UAF N
EXR
LT

CHART KG.

INCCEASE
EXPONENT,
eeAlrien
AANTISEA
TRUNCATE
AGAN (AO
n o)

BSUBRT ROUTINE (SHEET 3 OF 5)

3=-93

ENTTY AR

AGENEXT N

AKRZT TN
KT

Nted
=y

BTN
T

b ALY ST
Wy 2

| AT
O TR

T AL
ASEALL

END 2
V2o

STHGE T
N vendzz
N THELE

NEVCEALEN T
NN

I
AL L AAL
N\ e
70 FINED
N7

Priea
NIECEL

NV TER

DT 2
ON LEFT

AT,
NS ZAEL?

=

CHART KH.

AU
IWETANT ALIEN
D OIS T ConNG 74N 7~
JAGLE
l N
(244 =7
IR ELD fg/f«,«g
SET P

UHENING
OF LEFT
OUWECFon

SETT Lol
YU S/
VNI
JAGNC T7enS
EV N T AL

-

A
A

p

7 AR T NVTCY KIS
AL = — . .
;“d) AN ST ANCLST A
ALY Ry el VASswBE T
ZAUNT TNV e
B
AT TIAL12E e
NS T TS En N EX77
DR NEXT S o
ALANLNE JIRTZ2 Gornds

vasie .

LOOF 7o s
MEX T WS ANT
N VAL 4/S77

BSUBRT ROUTINE (SHEET 4 OF 5)

)
BAZY :

SLLYFL ‘

B AZ7 ‘

i/}s%/ ki
se7 UP SET P Se7.e Kl &7 P
DAG |z rre e e Foe | | RAG R ﬂ/t{/é’ %4
FELD 770 LOGTHZLE VALLUE . Vs LS EXFONENT
LonvgZ EPRELTN 00 LACFE ARISTING CNRER (oW
e - l._c;g_:+, - : R RV
! 1 ! i ; et | H
. I . | : ; w ! :
+ 1 1 - :
| | i -
S DU 2 & S
Eddz LSS
li i | oA R e R N- ‘
* ! WVALID HLEGAL - NN T :
‘ % HALALTER EXPONENT SALNE o
V7) .
) 7 R [CET = e L SES= b
STACK | ! { ! y ! i ;
LrE7 e . 1 T
- E s
o X P2 b ey . : - P |1 PU
: S EXVAL , :
i IR B ot ; |
0 75 N ECOR ; ,
U777 ’ ; 2T 1 _J) .
- PO . pu— _——t — — - —
! .
CHART KI. BSUBRT ROUTINE (SHEET 5 OF 5)

ASEZT

& NVAL e
&apz) RLTNE,
ANLLT
R
SET LGP IR
| Ror EReae
V¥ /E',sz a
' SET L2 Dyiney| BLENVAL HAAL
' | LITERAL -
ﬂ//ff() ZENTRT LABEL R VAL L7
g%;%;Zj" :ﬁiﬁéf RN
s, .| ookerZ . . | A
AZULE
;Ml-_ 5 VS Baa s Py
| | ’ DUZ N
E : Py COMAL
' ; SN,
R)
< N
N '
; AVE ZEZD A
: 70 o7 LD TALE
-
E7ENDL N
| L5157,
) HAZ)
&7 P oAd f’f’//;j;f
EXNAL /. =
SO Ay~ | ‘
OCEL Al
TRLNCA TN i

ALIEN LN~ TR AL

AN ey
et &= ;f:

O STECAED AN 2

T=

AL
NSTANT
B ATFT

CHART KJ. ASUBRT ROUTINE (SHEET 1 OF 2)

3=96

P RA
CONSTANIST

AS 72

AOE :
GO STAN T
pALLE 72
LTS T

FRLD AMA3

Bl 2 RLD
: TAELE
AN
TN OFE
LITERAL”
NLUWEA TEXE
N AIASTTER

SET UP
DUAGNOSTIC
SR CHAKL
JOLLOWIN (R
LITERAL

CHART KK.

EXTT P2
SUWELT ARy

T2 L2724 TIoN

EENDCT (KHAS)
LEALY? PAECIL

70 BLIENNAL ENIT

ASUBRT ROUTINI

3=-97

(SHEET 2 OF 2)

p————
- e

= s
; 1
| |
t +
1 !
] '
[A—]
(Gl = +—mm
I]
I i
- 4
; :
i

[|

+ -

N TER R Aol .

BT

T2 -
Nz sne , o
LISTNE : =
AL

LENE T

e o |
7O ENTY .

ENTRY -
vALLE) e 5

NOCA7E
VIR Y 1S L4:)
LES) 57
AR
CHART KL,

& .

USBAS SUBROUTINE

NOEATE TeR T
T NEXT
ENTR Y E
N LGN :
TAFLE i
=05 - o
LBNOT
ST L0 ZHA
R N
| B4 =
EERTERL
SETLPEASE ZVASE RAAL
& DDA LT
AN T O A
wax | l
s SE7 e
LES 7aeE Ze S4E
G TTERS AND DA
' AL PEATENT
EXTT 7O
L LNE P
AT

ézf’@)v

ENTCY

. 1 e<ont

A SUERT
(A1)

ALIEN Lo
TR
—— AT NEXT
WORD
BotnNP4R Y

ETULI 7
CHLene
FONT KIS

CHART KM.

r AR -
i F URCENT
I NL e
L NTRY
1 AOTE - 72/ 2004 THN COWTER S
AR o AITLAALLY AN AREA LHTHIN
‘ a7V BLANVAL UICH, DN EATH AL
1 o TEL 70 BLOANNVAL, A?f@fZ?Z%F
| VALLE T LA TN FHN TR
' Wiens
N ENTEY
’ ‘ V:Za
Yoz e
LENEE 77/
. N ENTRY
el " T T
. D GF EES
: sECT/IoON
/4/‘/ SKTON
ﬂV&Nﬁ@"
[PTEVF
NOREASE | =7 =
p X RESSTION |
2004 770N PN A e
BANTERSY | . |Gy AND LD ABLE
CONGTANT G 70 NEXT Kol
LENCTH ENIR2 Y OVERFLO W
TS AAAL
kEQ@@i? Py .
AT V24 GNOSTT

@

ORLD SUBROUTINE

. ME3

- ‘ EVIRY R sET

L E EBsuER7 v AT

(Ceonye ;o BLCON VAL FrELL

: (ZyaL) 75 zE@o E;
FROME Zrr L—___E§>

KA S
. : “SSE

_ ‘ EXFONENT
Cearen sl 1
277 2 NUAL
/ 7z A AT N
L o : L e aeiioN

1
A PR ' 4%&%22;
) NOE L -~ 4 SINVTLE SVLPEX
+ FUOTE pndCus? S 7
: END OF INAUT NEXT
R U Lo v oo AR
it B Sl2— b - LoD FAS » é%) - i
! ! | MNIEER OF ‘ |
H H + 27 N o i ot -
; ! ; b 74 : ! ' :
[L e - eTIoN —.-d L -
TP -
NTEGER S0 }ﬂ————-
- RO LN prlem e m FES— k= e
‘ A LL ‘ ! i
AT EN] i !
MAEER OF , H
N7 N , '
- ~oezion . P "
Ky <9
Rl zw%%mag S
WY TH ZERD:
N7 ZERD T T
c AAST 7
LA CATEZS” B .-

ZERO - ST - -

ﬂmmwzﬁay -

QRIS 25825 _ -
CELUE i - A Bl o
EXPONENT | i
&Y 2 AND) i . ;

AINE [O AEXT : ' :
CEHARACTER e - N
T : ANE AT . :
N AEKPONENT : ONE BY INE) '
: 70 work ’
AREA
s |
NTEGEL .
TS conveER T
‘ erren
B ENALY

©

CHART LA. FROMF ROUTINE (SHEET 1 OF 5)

3=100

KESEEE
F=IAE Lo
O AL
£ Faciion
AT A THE

i

Loqr EnAey
WAL aF
asran g
AL I Y
Gy Lo

ERE
e 77N
EXFONENT

&Y £

A 737,

EXFONENT
N TERO

GTEEE
BNAY

EXLT

AAEFARE 72
FREESTS
NEXT

fa7ionN"

TS

SRGE
Sy
W TECER

G

VA LS
OF AL
AoTIenS

R Y=
NS T INTD

TUMP AL
ROCESST

AN TV LA 770N [E
| &Y SHATING T PAHLLE
LEF5T7 2T, APDNG 17
T2 QRUZINVAL VALLE 73N
SHUETING THE SRS LEFT
£ AECE BT

w4
LESTY LE
onszA~ Y
SUETNEE,
PRTIONS &
ZECREASING

;%&7&?

CHART LB,

e

et 558

| S7OCE AIAX.
NEE AUYMRER
AND CHANGE
SN 7D

R 2724

7O ZELO

EXANENT

EUE FOR
ARACTION
TN e
TB U7

3=101

e’ Lzoerveneny

\ A RNENT 7D
Frls E LD
A2, F ST
RN

N sTHLE

e
EXTEY
EYL 0B {f«f
AT (A COAG L
R4 7 N TELL
Tz LEFT

cZ Lol

FROMF ROUTINE (SHEET 2 OF 5)

L3

3=102

2402 Q%D“Mﬁ |
EE LEbs ARELNCE
AEAIAN, B AARCET
PR s 70 FET N iz
w00 ek | |Ree
' ' ZIDE
AZAAN, OF
AT IV
: T0 GET KD
‘ J2 B/
ZRL .]
LT TN N SF P
2o TION NOP SLUNTCH E2np G- TS
72 AC72AL B SET TENTE =
END OF FOR FIRSTT CEPUEELD O A0
| AELD 2ISTON ALCN oD ‘
%Zaﬁé i M Ry Z oW 74 AP G er
LI : TN
TN 7D E : ACEUWENT” iy
amarerERes | | ; oz Lo’ 1 o,
AOVE A toemm Rz - g RAND
T Wl X EXFONENT : CARR YT
ZERD : N A0
424 : Y
g . _ - I i 457 K .
szzvts |
”' - TR SHETLEFT
ENDPOFN_ 75 AN E
AR Ty S AT
erAN B T
—— e SH AT
L4143
WNVEST LTE LD O A 7L Y Lo B . AL
igeﬁam’ THE P AWER) &y TEELA 2 ! 77N
D EAALY Ul S5 2% LA e~ i VAN - OCLEL
B CE | 52,/57RACT A VT LB ! T OF
EXFON 7 Aoty D EAGE & GLARD BT
AXCIONGLY EXCONENT LS PN Gy (7L
: L I Ll .
i i . e for F2
e G LY Lo
T THE FASE
' h Sy 8 SUVE
' SN T A ST
) g2 BV
T o ! s N o LATE SECND
. WATEH 75 SToRE
‘ : ity F2 575 T
. ﬁgzggkp EXTENC A4 7o
1 ' // D
,) IIVISTONLS AEAA N DEZ
e Epary SAVE £ BT
T Gy Lo e 4 7N
N 5 THE GASE 70 Zodl T2 e
. £ 8 STBE VALLE 1 R PTHOA
FZ K7 oF AT 5T AROCES S
KLt] AT L
CHART LC. FROMF ROUTINE (SHEET 3 OF 5)

SE] L
ROCESTS?
aF BnARY
NIETER
VALLE LNz

STALE

Z’aA/ﬂWer
7oV
rAeT BT
NEGA 77 1vE
VeSS &
STDRE MU TE. I, g
e | | T
éiﬁﬁ?f WL ST L ArvE 7
e BYL oo e o7 ARA
' l | %
S2ETACT ST SHYET SHFET SBUAT RIGHT = A
LENCGTH OF NTECER INTECER By SHIFT AUE “
NAUT AN AUt/ 7 £ ST E/aNT BY 4T AL OER 7B
ﬁ%ﬁ%;? £ZZ§{%Z NEW SCALE LEE L ouTI T
Z STALE (L2
AU EY f%gz%> {?gwwm7 AND RN D AREA
eeri57 | smpp | |
\SsHET 2w SHIFT L
L AfOCE E/T AR BT RESRRE
& SETSCALE
AT \AND ALIGN LG TERS
7O Z2ERD SRART 7N

%
TANVLENMEN T
OF ST
A7

G
Y uny 57

NECER
LEFT 7O
AL/ R

Ol 7T

CHART LD.

ANVE FLAS
O LOST
L TION
TE HUDER

3-=103

ADD
ARAC AN
75 WN7EGEE

FROMF ROUTINE (SHEET 4 OF 5)

(,é’f 72/ ff i())
L CoNVA L
d;‘Az LN

N7
(RHLU /)

LS

ArE
OUER 2t
AAG Jo

ALAS
AOLDER

Laep Jo ZERD
LT Bl
EN/T

N THART L PRI
A4 770N ZEOCESKTALZ /-
FUE FRAOBC /S ZEZD
‘ . W Lo .
; ; FARATTON
o FLAR 72 N
. SOLLER
A g
R — N 2 - [L. AA . .
T o - e |
o : A TGS - e
+ . REURN Doz 7z . BI7OF :
g ; NECER FROESTING '
[. _— T W TECER
STASOD ,
- e 1 . I——Q(-»-.q T : "
| : | sTBeE P feey
‘ ' DUER SN 7D
B BLEEET ee 2
) TR /S AL
! A i o | WTEGER .
AT JNTECER ENARY PORTONS

WERE ARED BFETHER, 72//5
SEQPUENCE 7/ 72 cpr 2V
SA7E f‘ae/t///\é/!.{’gﬂf AICTOR

' |
i
'
1

RN TE
AZAE N
S o=

&zl |

/Fé‘ﬂ&C’é‘.ﬂf.%AF‘ s L
42708 5y L

AND ST

INTECER FY] !
NELW STULE | .
P 4 o 'y x .

Wi 274 S i '
@/ TS : |
ST AND : b ;
- \sET £

|\ togE g7 , . f .

sns8L |

e e e

.
1
+

i

t

STRRE
SNTECERD
AND SET
SZ2ALE
FATTERS
JE ZELD

@ CHART LE. FROMF ROUTINE (SHEET 5 OF 5)

3=-104

FRWD .

Y7z |

SCAN Jo [t
STENIF CHAR
D

N ENT EY
£ AR ELT 4 -
AROER 26

244

(ENTEL)
FRINAL

ANOTE L

I TTALIZATIN
O TE
EXFONENT

SETLPEND
aF IWUT
AELL (18-
A CTER

AIALGAL)

U 7E
END GFNE

N
V¥ OR LESE
FHAERTEES,

@

CHART MA.

A SINGULE Guio7E
AARKS END OF AN
INAULT NUMEBER
N7 NING LESRZ
THAN 23 DU/

CHAR
gUoTE

AL EE
EXFONENT
YL & ptope

CHARACTER
7O WORK
AREA .

L TION

END O
AELD

o=
ALTHLY

ZED “ B, |covEes
s Lo TION
| f;uzpaf , 2 AKED
7%%,~ : DRENIAL,
wF2 zg |
y T CERT
AforE & g
L A AN T
Pl 2B
L.
oUTEUT a7

meIioN &Y
Lo ORLER
ART OF

7L NIRY

SEC]N

AL 7752 Y
PaRTION
&y TAGLE
ENTRY

AL2 ART 1AL
RESLL]S
7z e

CONWL7E
At
OF s e sy
L2 Y
TALLE &LFELD 11V
755 kafﬁz

|
ML T7EY
ﬂ%WWJ%/ szd)/ .
SEH O ENTRY FRO
e aF . ESEEET Y
TAGLE BLCWVAL (KEEL)
NTY

3=105

FROMD ROUTINE (SHEET 1 OF 2)

ME
AL

LENN

AL TIFLY
RTIN EY
L0 75 72
B FONER

EILCE

EXFONENT
&Y 75 AND
CONLILTE

RN NINVEE
AT N
THAELE TAGN]

i

sz =

AR TIELY
BY Lo Tz THE)]

APD SALE
AT 7o
NN T

SHIFT .
FRAC770N

o A7
G TAIOST
&7

6

CHART MB.

AL
FACT7oN

P L yod

é%#7”¢
LT T 82
S LT
EXEONENT

sTaas

Sedron
AND
EXNENT

STEN NV

ArvE

CNSTANT
B /7T
AREA

R AL /NS

£LOATING
PONT ETUE-
SEANZAT7on

[,

Yo
L TERSS?

(RETL RN 7
PNV L G907

SN T KRG

3=-106

FROMD ROUTINE (SHEET 2 OF 2)

NTEY FRond .
é%u;»@gr

- .
GTATE MENT
TVE

AUSK"Z

SER NG

oy

GLANK
AN T AEA

AND EET
STATEMENT

.
7
i
!
i
]

SEpP TFAL

T ECU ANL

m—————

L 7E SE

NAIRER

AN 7iAL DS TAAZ
CHECK NP CHECUH AND
AN A2NCH

GTHIEANT 22 R D

I

o] 7PAZ2

AT
\S7TH AN T
N DSET

&

v

@7 7Ry
UBROL TINGS

AG JE4L

SSTUE
AN T

|

LN

(CETLIRN 7O
CALLUNG AT

CHART TA.

cNT

3=-107

SEP 7FA4L

ok an
LATE ST
MAMBER

-

PR
[

NETA 773

NCREASE

| STA 7EAMENT
MNSBER

I

ANE

T TFAY

FRINT
FTATEENT

T

BLPRINT MAINLINE (SHEET 1 OF 3)

ECST 78 SENR TEN, AL/R .
- A2/ N wm 7242 W23 [Aswziaz 774
CHECK IND COANERT, V77 %4
L TE T
SEDENE f_&” <
AT D ELL/D
Sty 7FAL AHIOoN [2
EHECK AND CEANVELT
LY OPATE ALEN,
N COE CNGTANT
NUAEER 7o £
as7d 7E 7 iz 2E777 Jd
NCEASE NIGEASE a2=eNT
STATEALNT S TEAN T ALIEN.
AASEER MUMEER : L
[womy T
STHZR 7ZA4L STAZPR TEAL N 7741
N e 4vo AOLE AND
e (/,DM‘ |\ SET WP - AN
ST TEMET STH 7EME AL/ .
o R T foR FRNT ‘m4f2<m‘
777 TAAY ~ I
ARNT :
JENORE s weExXi7T
REZARL : ;
= L
3] @ -) ',_.;:3_..4_'_.;_»
ST : %
1
Zed” |
[1stt/00 72A4L Ao CARD R
mwzg/p MM EER !
AVE NN 7N :
J%P;/}/,é/f 72 N7 ! i
AL S
,ecw [-—— A
Ao g@W’#ﬂ# 1e-
STA7ENMENT 2N
B 2aNT o TEAENT
AeEA
RTIT TFEA Y 57
ZCNT &
7 .
T TEANN T bl
N T4
ANCH Y " AN
KL STHTENENT
1.4 S B—
CHART TB.

3-108

A 774L

| ey

P4

ST 7AAL

CRIEU ANLD
LA 7E
SERENCE
NUNEER

NETTA AT

MDA
TR TEAANT
NUAAEERE

STHNZAC 7744 |+

AtCRE NG
| ST TEANT
SR AN

o L‘———~

ASatioc 744 L

CUWNVEET Lo
CBUNTER
Vo N (o7 ol

@

BLPRINT MAINLINE (SHEET 2 OF 3)

-

7o EXNI7T -

=TS - e

e e

A CCANGE 15
EWES foe
SEON TINGE

7T TFAY

RN
p4l#%F

2474 oN N\
LRINT

a4
AL
%

L0~

BUANK DT
N7
AcEA

27

ALGNT
STATEALENT
AND N
CUKEN
AL

2,

EXI7

AN 7544

awes
oz

70
D)z

CHART

V774 .
a7 7245) AT T3
AANGE /6 CCANGE /6
BLYVES o2 BVES rFoe
DN TING 2N TIVEE
ARTIT TAY FRTIT TFAY
ARNT FRNT
CoNET7ANT CeNETANT
LNE LNVE
AN TAA S
AN Cy
2z

TC. BLPRINT MAINLINE (SHEET 3 OF 3)

3=109

‘.

. ENTRCY
e __“0,5@”/
DsE27) AL SN LINE

(7AL3)

SEQ 77AL
CHECK AND
UFPATE SED.
NN EER

NCSTH S S
TNOREASE
SAJEMENT
MMIMEER

G 2L
MOUE & ST

(P 7T TE -
AIENT O
RN T

o e AL JHAL

T AND
AU L0
NTR, VALLE
70 LEINT

(z)ﬂ:]c'f.z _E———

PRIIT JFAL)

FINT ____45?57523zr
ST TEAEN T N BLPRINT

AN LNE JAK L

CHART TD. DSECT SUBROUTINE

3=110

ENTE
(Zage)1

24 -

NI
LA 77N

ENTZY
FROAS
AL AL INE
(TAHZ)

V/TE DT
o Jo
APPEST

PAN 7
AESTSTAE

PSS

AOVEDK }_“‘:

NCELSE
AT E

ENe
QXINT

AL LS
AT

B AU
ARFEA

ATOIEL L

AANE DA
A SEF 72

AL LA,
LEST
TSI

HL/STT

2eNT
METUGE

ETCT

NOREASE : /l\ : L FLLLST T
SERILT ECE
ERRNR CoNT~ LINE SR 2
el coentr o o
(e
SNITCH AW SAGE
| |
V74 . o
6D 75 NEXT™ ;
LTIV DUENOSTIE C
)/ ! ! .
LEAR M, ’ .
ArEA ANDL
CBECTK O
SHAiBoL O
FELL
ANLALEER
BLLr/ST
SwP L
LNE
NOs
(EXY T 70K TINE :
THAT CALFL BLITT
CHART TE. DIAGX SUBROUTINE

3=-111

NOTEL

GLLS7 T

SR 75
722 of~

e AE

AN CTA {)
» ANOTEL
ANETTH
; N S
. GvAey
. LNE
:) Aurrsze -
e &V L
SETUP fFOR convveEes
| cnmen 7 LNE ND
cUep swp. @ s
MArBER AND LNACK .
~ -ne -3 A
- : g LPATED
FELL ! + LNE NO.
! ! T2 PRINT
T o AESL
SET7 FLAZZ) S (i i i
AND L4 ' | SET 2
i | @» |z
e S AL 7r) LAE
Eeane R
e — |
ST f - - mry— - -
S : C 3 FLLTT
A N - L 1 ' | N T
AEVIHIS :
gdevia ! 1 ; Wz/mf
Lac 7708/ e Lo .
@_, (e e it - - G- sy
SFEXT i ! 1 !] '
T 7 7 i ! ! V2%
CALE 2T t i \@uentz 2
| 1 \
L.._A P [| ':_-_Fg-_,j [S
CHART TF. SEQ, INCSTA, PRTIT SUBROUTINES

3=-112

GLLISTT

Ky 724
ONE LveE

IR T

T

L |evry A - Ve
FATER N\ | |PRNT RV | oaEeaNp
SHZAR Nor o5 7B SN T
, SUERTN ARES
SHZR : i
T LMD . ‘ AOVE 2L .
e 24 o0 o ; 7Z AND /D
W SR ‘ : 1 78 UGN T .
L) AR ,
I
P REIN774L~
i SZE MOV
' NE UL 7]
; E o' T
[— - _ PO .
AVE 1 f’L *'“”; ' FO“" o
FAELD 72 i : i N2,
RN T i ; é%umaf)
ACEA ‘] Lo
Ao :
ADLTYSTT mEI o+ - "
|weove 2~ !
pooE N !
\ 7277707 e
1 .
S F2 .—F3—+~——-_—1|
| | i t
+ + + 4
z ; ! t
| S S | :._,....+_ .
AAOUE OF e cemrmn
conc 7o ; ! | !
N : » | |
AL L 'L.,__,._,___,:
UHIL
28 g et o
D77
AINVE ' .
CFERAN L
WSTRUC Toyy i
]

SET A (&)
E- ALAG
S AND
SET 7D
AsoE LY
5 STES

CHART TG. STA2PR SUBROUTINE

3=-113

~

ENTER
ASNAL .

No7z 1

Asutoe
e 2

N TEL
(;amav)

Asisittnr

NOZE 2,

| =77 7o
oNVERT
AND AVE
CENERA TED
aE

ASLP |
| sazae sex
EVE N

7

LrEVIED T\
(&27)

NOT7ES

\ ST P 7D
coNvEZT

AN AFVE
AL E O
CNS TGN T

a

LR HEX
URTT ST
AN
@7y
SEX

zz |

@ 4EX

7S >
REACT F
- Lanp 2zssx’
LR 4R T

CHART

lzmEs .

TH.

ity R
; |

ASMLOC, ASMCON,

3-114

7

NOTE £
ENITRY [FONA YN T R
OSEAT SL/EBEN :

.

AIE 2 .
L ENTRY SRS ALYD
(7557) .

NOTE S

L EATRY AR L
STAZNEN T
"V, Ph Z2)

ROUT SUBROUTINE

ENTER

lﬁ%ﬂ%
N7 O

ERTNGT

‘E[fwy
‘ LAPEEAETNT

AL 27,700
soy
DD NES
EANT

AL L CD

| AN D
T LN
ACEA

T

EYE
LENETH,

P

CHART TI.

AV o~
STTANT 2
TACL AND

TORE D
< 77N

57
»‘WZEN&V//

iy TAO2 AAZ
20 A o convERy #
SET e ELLT UNES
T CHARS” T D
TR O XA ZEE L
e c— ez |
T2 27 STEE -
WU 7L | CreeEmnN T INITIALSZE
DEEAND G- anep I
s 7V 22 AREH
T LS Y
20 AA pALA S '
: (72N TOXENY
§4VAzaawr
: A7 AL ;
N "\ avemenz
- 7042 :
N T Lo Ao oF
o A2 EEVTES 47
\cUeP 577N s
552%231~ e
! szan gy CURL

AL 7L

=24
VST AN
ON AL
& PuNCH

r

AL TAS
ST
57 ANCH
CTARL

CXT AN FRNT
A ANZve PALL

PUNl SUBROUTINE

3-115

A
REALNLERS

OECONETANT
B CHeL

ENTRY ENTY AN STEETNVET
~cons A) ‘N TEL
; (ﬁf?fi) ~
ez RV
‘ e
AopE GO T
7 BNCE .
AEA : oo
NIRE . [
N Slancz w442 et
DNTANT aners
AREA ' : o
AV |
STRE ‘ - o
KEVISTELD I T L !
AP (28 AL ¢
sV TN Py . |
AL CARE & LENGTH . L i
270 7oA 5 - Ed- e
-y 4 ET7 70 N (T !
s v srzemy LANE 7 -
CAMPLNE i
ELUNE) - - ~ o
To7HL EVIE ; : ;
L_Jctwn7 5 : ‘ !
AN T ;
ANHED | ‘ ;
CHART TJ. PUCD, NUCD SUBROUTINES

3=116

TENTER N\ |
o057 e

2

SET K
R 74

T 74
N
STHTEMENT|

eney

et
BLIKANT
ALANL N E

-+
|
e A e

ENTRY
" Aeons
BN
MANLINE

SET

R 7214
e OF

vl

e
AeEA 4
Ty

| SO - /1/'.‘ 4‘1
.
%

T p T ST

W Z

e

PLUNCH
PECK OR X0
CUESTT

Y 74

N

NV

200 7O4S
SET P

o AANCH
EXUSTTINGE
oA

@_.

(G 7N FNEX 7
. \wssenT
ALTNEIAE A

CHART TK,

DS,

DS 1

e e

SUBROUTINES

3=117

4.0 SYMBOLIC ANALYZER DESCFIPTION

If requested by the programmer, the symbolic analyzer
is called after pass 2 to prepare an alphabetic list of all
symbols used in the source program., For each symbol, the
list gives the number of the line where the symbol was defined
as well as the line numbers of all statements referring to
that symbol. Multi-defined and systems symbols are flagged.
A separate listing of any undefined symbols, including
reference line numbers, is printed after the defined symbols
list,

The analyzer list results from the merging of two
tables: the definitions table and the reference table.
The former contains all symbols in the symbol and system
symbol tables. During a scan of the source program, line
numbers, flags, and a count of number of references are
added to the definition table entries. The reference table
is built during the same scan, each entry including either
the address of a symbol in the definition table and a line
number, or an undefined code indicating an entry in the
undefined table. A third table, undefined table, contain
any undefined symbols that are found.

The definition table, followed immediately by the undefined
table, starts in lower storage and builds up; the reference
table starts in highest storage and builds down. Normally,
the analyzer completes processing in one pass. However, if
an overflow occurs (i.e., the reference table overlaps the
undefined table), the reference table is cancelled but the
first pass continues in order to finish the definition and
undefined tables, Additional passes are then made to complete
the reference table. By adding the number of reference counts
given in definition table entries and comparing this to the
storage available, the analyzer. selects a portion of the
definition table and makes another pass over the source
program. This time, the reference table is built for the
selected portion of the definition table only. After
printing, another portion is calculated and another segment
of the reference table is generated. This process continues
until all symbols and their references have been printed.

Figure 4-1 shows the processing flow of the analyzer.

- - | evrse cans : ;
EATES L0C iIVVTH ' o !
GLANALYZ J === 0y 8L : : i N .

-] /5542) S | o A,

CONDENSE v

WD ST DEFNITION
JAHELE ' i ; '
SHWEOLS : : ! ’ ; i i

AL A P sy
St/ R7E ‘ !
BoF AN N
\STHTEAAN T : X
& GHECK ; |
arPons -\ - L]

7
.o

Fay

|

+

t

|

i

r-—-—+

PRy . R,

EAD NEXT
NSTAZEAENT |

rE2- =y B3+ = T B4 -+~
| |
i |
+ +
| ;

ERN, :
W ALIO- TIMY | JING 22 TI7RE o T T
NVALID STGTENEN 7

AOEY Tl e L
1

e
m/y/@/dim&—@ ,
w7 AR f .
O AN TNV G b |

RELE T o

-
!
LoveE __@ i !
1z 72,748 / ' =
i ! L_

&Y £

PIND SIASEL Pk I : —Ha ~ 4 S
N Ll 7720V ' . -

| oL 2 AND :
Vo774 //;_ﬁf‘f-‘ . :
7 : . :
f/gf,?)/ . L L

¢

SINED ANY . v o .
s . .
pERCAND
Tl D & ALanE
E AL
s

ANV ANY CUECK ROAER
SHABL Y Ve o arse

W ocd 770 (D et = __@
LD B2 AR E st <z
REFTAELE oy eniey
ENTRY A RUEGRED

FIGURE 4-1, SYMBOLIC ANALYZER (SHEET 1 OF 2)

FND DB
N O EIND
SELL? AN

OVELEALON, THE

FHL N LEF l

TAELE

EN TR

NP SIN 50 A SIRRAST

WA Lzion N AERING

AL ANE AL & MALE]

AILL N EF RES TG E
4Bl

?/‘/ZC’//:.Y ENTRUES %

NP SN0, FND SHMBOLS

N LAY 7700/ N 2ERAND

AHELD AN FUELD FOR

G P T Ve s

ENTRIES ENTRIES

&/

NOTE - N JHEE /AN

ANA LYZER LS SET L7

NP SIABL, SR EF B

W oreeapD Ty NS 7 e
LD AND ASEREEE 75, END OF JHE 74277~
Wk oS N, AND AU, ANO PN TR 4T
7){551 EENIY eeIN T LONE AT 7THA T 7oA0E

SET P 7D
AL
| 2?25 A
S NEXT
217 aF
Q5. JABLE @
Soey
AEF
JABLE
AEHE NP
FRONS TELS
AN FINS
ANALYZEH
7 -

EXLT 70 LOCH DT
W EEAT 54,

FIGURE 4-1. SYMBOLIC ANALYZER (SHEET 2 OF 2)

-The analyzer consists of 20 logically distinct routines
and subroutines which are discussed individually on the following

pages.

1.

10,

1.

12.

The names and functions of these segments are as follows.,

BLANALYZ Routine - This routine condenses entries
from the symbol and system symbol tables and sorts
them in alphabetic order to form the principal part
of the definition table.

SXXX Routine - This routine reads a source program
statement and calls the proper routine for further
processing, depending on the operation code.

LOC3 Routine - This routine inspects twoe-character
operation code statements and controls the handling
of DC and DS statements.

LOC1F Routine = This routine decides the handling
of three-character operation code statements and
oversees END statement processing,

LOC2 Routine = This routine decides the handling
of fiveecharacter operation code statements,

LOC1B Routine = This routine processes dump and
trace statements,

LOC4A Routine = This routine processes CSECT, DSECT,
and TEQU statements.

DCDS Routine = This routine processes literals
and DC and DS statements.

EXTE Routine = This routine processes EXTRN
statements,

LOC10 Routine = This routine identifies symbols
in the name and operand fields of all machine
operation code statements, It is also used for
some pseudo-operation-statements.

SCH2 Routine = This routine looks up a symbol
in the definition (or undefined) table and builds
the undefined table.

ABKSET Routine = This routine examines an operand
field expression, identifies symbols, and makes
entries in the reference table.,

13. OVERFL Routine - This routine adds line numbers to
reference table entries and checks for a reference
table overflow.

14, MASTXX Routine - This routine initiates printing,
and translates the code used in the undefined table
in order to put undefined symbol references in
proper order,

15, SRTRT Routine -~ This routine modifies the sort
portion of the ANALY routine for reference table
processing.

16. PR Routine - This routine prints the analyzer
listing, merging entries from the definition and
reference tables.

17. INCSTA Subroutine - called by PR, this subroutine
edits an entry line number and converts it to
EBCDIC,

18, MASTO0 Routine = This routine sets up the analyzer
for additional passes when a reference table
overflow occurs.,

19. MAST3 Routine = This routine resolves any reference

table overflow that occurs during an additional pass.

20, XREF Routine - This routine punches XRF cards for
input to the XREF subprogram.,

4,1 CONDENSE AND SORT ROUTINE (BLANALYZ)

FUNCTION: This routine (Chart SA) begins analyzer processing
by building the defintion table with symbols from the system
symbol and symbol tables. Definition table entries are
filled out (with line numbers, reference counts, and flags)
by other analyzer routines. The sort portion of BLANALYZ is
also used to place reference table entries in alphabetical
order immediately before printing.

ENTRY: This routine has two entry points: BLANALYZ and
SRT1, 1Initial entry is made at BLANALYZ from BAL. SRT1 is
entered from the SRTRT subroutine when the reference table
is ready for sorting,

OPERATION: If there was symbol table overflow, this routine
immediately exits to XEOJBX in the MASTXX routine., The
routine checks to see if the XPEF option was selected on the
SBAL or $JOV card. If so, XRFINT is called. The routine

makes a series of loops to condense the symbol and system
symbol tables, thus preparing the definition table. The first
loop zeros out each symbol itself, and inserts a flag of S.
The next loop removes all incomplete or blank entries and

all literals from both the system symbol and symbol tables.

A third loop zeros out the symbol table entries, except for
symbols, and flags then with a blank. At this point, the
symbols are ready for sorting,

Symbols are placed in alphabetical order by a merge-
replace sort. In this sort, the initial and middle entries
in the table are compared and interchanged if they are not
in ascending order; then the second entry and the one
following the middle one are compared, and so on through the
first pass through the table. If the two elements x and y
are interchanged, the routine ¢‘backs up’’ to compare item
y to the items with which x has previously compared, intere
changing y with each new item until y has been placed in
proper sequence, Another pass over all items is then made
with the interval between items compared reduced to one-
half of its value on the preceding pass. (This interval
is identified as delta on Chart SA.) Succeeding passes
through the table are made, in nested loop fashion, each
with delta halved from the preceding pass,

The routine uses the °°test value®® to step through
the table, comparing items separated by the interval delta.
When the end of the table is reached, the test value is
incremented and the loop repeated., When the test value
exceeds delta, delta is halved and the test value reset
for the next pass. When the interval delta is less than
the entry length, the sort is complete.

EXIT: The routine can exit to two ibcations,

1. After building the definition table, the routine
exits to the SXXX routine,

2, After completion a reference table sort, the
routine transfers control to the analyzer print
routine, PR,

COMMENT: This routine is initially set to process 16-byte
entries. It is later modified by the SRTRT routine to
handle the 8-byte entries of the reference table.

4,2 LOCATE ACCEPTABLE STATEMENTS ROUTINE (SXXX)

FUNCTION: This routine (Chart SB) reads a source program
statement, checks the operation code, and determines the
action required by the anlayzer.

ENTRY: This routine has three entry points.,

1. Location SX¥X, from the BLANALYZ routine after the
definition table has been set up.

2. Location SE, from the MASTO routine, to reset the
start location of the reference table after an
overflow has occurred.

3. Location LOC1A, from many sections of the analyzer,
in order to fetch the next statement.

OPERATION: When first entered the routine stores the address
of the first and last entries in the definition table., The
latter address is saved in two locations, since the contents
of one will be altered if additional analyzer passes are
needed. The routine also sets the address of the first and
last entries in the undefined table, located 16 bytes after
the last entry in the definition table. The address of the
first entry in the reference table, which starts at the
highest storage location available, is developed and stored
along with addresses for the definition table.

The routine then calls the BLIOGET2 routine to read a
source program statement in canonical form. The first byte
of the statement is checked +to decide whether a comment,
ignore, or literal reference record is present. Ignore,
literal reference, JOVIAL, and comment statements are
disregarded, although the line counter is incremented for
a comment, Certain pseudo-~operation statements that require
no further handling are treated the same as comments. A
QUAL statement, if valid, results in storing the new symbol
qualification in the LOC4A, LOC10, LOC1B and ABKSLT routines,
so that the qualification character may be moved with the
rest of the symbol to which it applies.

All other types of statements cause a branch to the
proper routine, as long as the NLIST switch remains off.
This switch is set when an NLIST statement appears; all
statements are then ignored until a LIST is found.

EXIT: This routine may exit to one of six locations,
depending on the operation code of the statement read.

1o To the LOC3 routine, used for all twoecharacter
operation code statements,

2, To the LOCI1F routine, taken for all three-character
operation code statements.,

3. To the LOC2 routine, taken for all statements that
have operatiorn codes more than four characters long.

4, To location LOC1A1, in the LOC10 routine, used to
process the operand field of a TEQU statement,

5. To the LOC1B routine, taken for a dump or trace
statement.

6. To the LOC10 routine, used for all four-character
machine operation code statements.

4.3 TWO=-CHARACTER OPERATION CODE ROUTINE (LCC3)

FUNCTION: This routine (Chart SC) controls the processing
of statements with twoe-character operation codes.

ENTRY: Entry is at location LOC3 from the SXXX routine,
made when a twoecharacter operation code is recognized.

OPERATION: Any twoe=character operation code other than
a DC or DS results in an immediate exit to the LOC10 routine.

For a DC or DS, the routine first modifies the LOC10
routine so that it checks only the name field of a statement,
and then transfers to the LOC10 routine. Upon return, the
DCDS routine is set up for DC and DS processing and called
to check the statement operand field.

EXIT: Exit is to location ILOC1A in the S8XXX routine after

DC or DS processing., Otherwise, control is transferred to
LoC10.

4.4 THREE-CEARACTER OPERATION CODE ROUTINE (LOCI1F)

FUNCTION: This routine (Chart SD) completes the processing
of DCL, DC blank, COM, and LIB statements, and sets up for
END statement handling. Routine LOC1F passes all other
three-character operation code statements to the LOC10
routine.

ENTRY: This routine. is entered at location LOC1F from the
SXXX routine whenever a three-character operation code is
read. .

OPERATION: A DCL or DC blank operation code causes the
routine to decrement the line counter and exit to the SXXX
routine for the next statement., In effect, these two types
are ignored, If a COM or LIB is found, exit is also to

SXXX, but without decrementing the line counter. 2All other
three-character operation code statements, except END, result
in an exit to the LOC10 routine,

When an END statement is read by LOC1F, a switch is set
in LOC10 so that return is made to LOC1F2 after any symbol
in the statement has been processed. Two tests are then
made to determine the next action. If a reference table
overflow occurred during the first pass, a branch is taken
to set up for additional analyzer passes; if the analyzer is
now making an additional pass, a branch is made to initiate
printing of the current segment of the reference table. If
both tests are negative (the usual condition), printing of
the analyzer listing is started.

LEXIT

EXIT: This routine may exit to any of five locations
Te For DC blank, DCL, COM, and LIB statement, exit
is to LOC1A in the SXXX routine to fetch the

next statement.

2, For all other three-character operation code
statements, exit is to the LOC10 routine.

3. If no reference table overflow has occurred, the
return from END statement processing results in
an exit to the MASTXX routine to initiate printing
of the analyzer listing,

4, If a reference table overflow has occurred during
this pass, return from END statement processing
results in an exit to the MASTO0 routine, which
sets up for additional passes.

5. During additional passes, return from END statement
processing causes an exit to location MAST1 in the
MASTO routine to print the current segment of the
reference table.

4,5 FIVE-CHARACTER OPERATION CODE ROUTINE (LOC2)

FUNCTION: This routine (Chart SE) controls the action taken

for statements with operation codes of five or more characters.

ENTRY: Entry to this routine is at location LOC2. It is
entered from the SXXX routine when an operation code longer
than four characters is read.

OPERATION: The routine uses a series of comparisons to
determine the proper exit for each statement. If an NLIST
is found, LOC2 sets an indicator in the SXXX routine so
that subsequent source program statements are ignored
until a LIST occurs. If a START is found, a switch is

set to ignore all operands.

EXIT: There are six possible exits from this routine,

1. To the LOC10 routine, taken for an unidentified
operation code or an operation code with more
than five characters. '

2, To the LOC4A routine, taken for a CSECT or DSECT
statement.

3. To the EXTE routine, taken for an EXTRN,

4, To location LOC1A, in the SXXX routine, taken for
an NLIST, SPACE, EJECT, LTORG, TDMPL, TDMPP,
TITLE, or PRINT.

5, To location LOC1BT, in the LOC1B routine, taken
for a TRAC(x).

6. To the LOC1B routine, taken for a DUMP(x).

4.6 DUMP-TRACE ROUTINE (LOC1B)

FUNCTION: This routine (Chart SF) isolates symbols in the
name and operand fields of dump and trace statements.

ENTRY: According to the specific operation code being
processed, either of two entry points may be used.

1. LOC1BT, used by the LOC2 routine when a trace
statement is found.

2. LOC1B, used by the LOC2 routine for DUMP (x)
statements and by the SXXX routine for DUMP
statements,

4-10

OPERATION: A symbol in a trace statement should appear after
the first comma in the operand field. Thus, the trace entry
point (LOC1BT) sets the comma tally to one. For all dump
statements, symbols are assumed to be after the second comma,
and a two is loaded in the comma tally. Since a DUMPR
statement requires special handling (after the fourth comma,
two fields are skipped and the symbol following must be
processed) , the routine will take the branch to location
LOC33.

A symbol found in the name field of a dump or trace
statement is considered to be a reference only. In this
case, the symbol, its qualification, and the current line
nunber are readied for the reference table, Before calling
the SCH2 routine to check that the symbol was defined, LOC1B
sets up SCH2 to return through the ABKSET routine. There the
reference table entry will be completed before LOCI1B begins
its examination of the statement operand field.

After return from ABKSET, or if there is no symbol in
the name field, LOC1B scans the operand, reducing the comma
tally for each comma found. As soon as the tally becomes
zero, a pointer is set at the next byte and the routine
branches to the LOC10 routine to process the remainder of
the statement,

For a DUMPR statement, a switch is turned on in the
LOC10 routine so that a return is made to LOC1B (at location
LOCRC) after a single symbol is processed. By means of a
decremented tally, LOC1B makes two calls to LOC10. Then
it bypasses two fields and branches (with the return switch
off) to LOC10 to process the remainder of the statement.

EXIT: This routine can exit to either of two locations,

1. Location EX2, in the LOC10 routine, used when
LOC1B has completed examination of a statement,

2, Location LOC12, in the SXXX routine, taken if a
terminating blank is embedded in the operand field.

4,7 CSECT=DSLECT=TEQI ROUTINE (LOC4A)

FUNCTION: This routine (Chart SG) examines CSECT, DSECT,
and TEQU statements and, as appropriate, moves information
to a definition table entry or sets up an entry for the
reference table.

ENTRY: The routine has three entry points.

1. Location LOC4A, from the LOC2 routine when a CSECT
is detected. ’

2, Location LOC4, from the LOC10 routine for a TEQU
statement.

3. Location LOC4A0, from the LOC2 routine when a
DSECT is detected.

OPERATION: The routine checks only the name field of the
input statement, expecting a valid symbol definition., If
this proves true after a call to SCH2, LOC4A moves the
current line number to the definition table entry for the
symbol and exits,

If the symbol was previously defined (i.e., the table
entry already has a line number), operation depends on
whether a reference table overflow has occurred.

If there was an overflow, the symbol is treated as a
reference as long as it does not have the same line number
as the previous definition. When there is no overflow,
redefinitions in a TEQU statement are handled as references;
they are not an error. Previous definition of a CSECT or
DSECT symbol is also permissible, provided the first
definition was in a CSECT or DSECT statement. If this is
the case, the new definition is treated as a reference,
But if the earlier definition was in any other type of
statement, a multi-defined or multi-redefined flag is set
before preparing a reference entry. For a DSECT, the
QUAL character is ignored to provide proper handling of
EXTRNed DSECTs in qualified code.

EXIT: This routine has two exits.

1. Location LOC1A, in the SXXX routine, taken to get
the next statement.

2. Location ABK23, in the ABKSET routine, taken to
set up an entry for the reference table. Routine
LOC4A supplies location LOC1A as a return address
for ABKSET.

ERRORS: The routine sets an error flag (M or N) if, during
a nonoverflow pass, CSECT or DSECT statement has a symbol
that was defined before in another type of statement. The
legend printed for these flags appears in the PR routine
description,

4,8 DCDS Routine

FUNCTION: This routine (Chart SH) isolates an expression in
a literal or in the operand field of a DC or DS statement for
the ABKSET routine.

ENTRY: The routine has one entry point, location DCDS. It
is entered from the LOC3 routine for a DC or DS and from the
LOC10 routine for a literal.

OPERATION: The routine begins by searching for the start of
an expression, indicated by a left parenthesis, exiting if

it encounters a blank or comma. When a left parenthesis is
found, ABKSET is called to process any symbols in the
expression and to make the necessary entries in the reference
table., Upon return, the pointer will be at the expression
terminator. For a literal, signaled by a value that LOC10
put in a general register, a comma results in a return to the
calling routine. For a DC or DS, the loop through ABKSET
continues until an expression terminator other than a comma
is found.

EXIT: Exit is to the calling routine.

4,9 EXTRN ROUTINE (EXTE)

FUNCTION: This routine (Chart SI) controls the processing of
symbols in the operand field of EXTRN statements. Each symbol
is identified separately for the LOC10 routine by setting a
pointer to the first byte of the EXTRN statements. Each symbol
is identified. Symbols are definitions rather than references,

ENTRY: The only entry point is location EXTE, entered from
the LOC2 routine when an EXTRN is found. The calling routine
supplies the location of the first byte in the operand field.

OPERATION: The routine searches the operand field for symbols,
using an 8-byte maximum length as the criterion for a valid
symbol., The routine immediately exits if the first byte of
the operand is blank, Otherwise, it forms a loop to find a
terminator: a blank, comma, or period (indicating
qualification). Since processing of a symbol is identical
with the LOC10 routine handling of a name field, a blank or
comma results in a call to LOC10, which is set to return
after name field processing. Since a blank also marks the
end of the operand, the EXTRN exits upon return. A period
causes the routine to strip the qualification before resuming
standard processing.

When more than eight bytes are scanned before encountering
a terminator, the symbol is assumed invalid., If a comma
appears after the invalid symbol, the routine loops back to
start the next scan, thus ignoring the invalid symbol.

EXIT: This routine exits to location LOC1A in the SXXX
routine,

4,10 LOCATE SYMBOLS ROUTINE (LOC10)

FUNCTION: This routine (Charts SJ, SK) isolates symbols in
the name and operand fields of statements with machine
operation codes, It also helps process dump, trace, EXTRN,
END, TEQU, DC, and DS statements.

ENTRY: The routine has four entry points,

1. LOC10 from the SXXX, LOC1, LOC1F, and LOC2
routines for a machine operation code or for
a DC or DS statement.

2. LOC1A1, from the LOC1F routine for an END statement,
and from the SXXX routine for a TEQU.

3. EX2, from the LOC1B routine for a dump or trace,

4, LOC10A, from the EXTE routine, which sets up one
symbol to be processed as if it were in the name
field of a statement.,

OPERATION: Name field processing is bypassed if the field
has no symbol or if the analyzer is in an additional pass.
(All definition entries are completed in the first pass,
regardless of reference table overflow. In additional passes,
to save time, definition activity is inhibited.)

A symbol discovered in the name field is set up for the
SCH2 routine. Upon return, if SCH2 did not find the symbol
in the definition table, LOC10 increments the reference
count of the entry in the undefined table, moves the
definition information to the reference table, and calls
the OVERFL routine to complete the reference table entry.

If the symbol was found, a test is made to decide
which flag should be put in the definition table entry. A
multi-defined symbol is flagged with an R if a system symbol
or with an M if a source program symbol; a properly defined
symbol is flagged with either a T (system symbol) or D.
These flags serve as signals for other analyzer routines,

4-14

The segment of LOC10 beginning at location LOC1AB
examines an operand field for symbols, and thus looks for
possible entries for the reference table. There are two
special cases, however: a DC or DS statement is bypassed
because of a switch set by the LOC3 routine; a DUMPR statement
results in a return to the LOC1B routine after a single
operand symbol is handled.

For other statements, LOC10 begins a series of comparisons
to isolate expressions, continuing until the first blank
signals the end of the operand field., Each time an expression
is found, the routine branches to ABKSET so that possible
symbols may be processed for the reference table. An equal
sign, indicating a literal, results in a branch to the DCDS
routine, which is first set up for literal processing.

EXIT: This routine may exit to one of six locations.

1. If an EXTRN is being processed, the routine exits
to the EXTE routine after processing one symbol,

2, To the LOC3 routine, for a DC or DS after name
field processing.

3. To LOCRC in the LOC1B routine, taken if a DUMPR
statement is being processed,

4, If an END statement is in process, exit is to
location LOC1F2 in the LOCI1F routine.

5. If a machine operation code statement was processed,
the routine exits to LOC1A in the SXXX routine,

6, To location LOC4, in the LOC4A routine, for a
TEQU statement.

ERRORS: When the routine detects a multi-defined symbol,
it flags the definitions table entry with an M or an R.
These flags will appear in the analyzer listing.

4,11 SEARCH ROUTINE (SCH2)

FUNCTION: This routine (Charts SL, SM) finds the address
of a symbol in the definition or undefined table. It also
builds the undefined table to include any symbol not in
the definition table,

ENTRY: The routine has one entry point, location SCH2,
which may be entered from the LOC1B, LOC4A, LOC10, and
ABKSET routines. The calling routine will indicate whether
SCH2 is to place the address of the matching definition
table entry in the next available reference table location
or in a specific storage area.

OPERATION: In the first analyzer pass, this routine searches
the defintion table and, if required, the undefined table, If
a match for a symbol is not found, a new entry is made in

the undefined table. This table, like the definition table,
is always completed during the first pass.

In additional passes, operation is limited to a search
of the definition table. The undefined table, if present,
is then treated just like the definition table after all
definition table entries and references are printed.

The routine begins its search at the mid=-point of the
definition table, comparing the entry with the symbol socught
to decide which half of the table to scan.

The routine then sets starting and ending locations
for that portion of the table and continues this process
until it has found a match or exhausted the table. As soon
as a match is found, the routine stores the entry address
as directed by the calling routine and exits.

If the limit is reached in the selected portion of the
table and there is no match, the symbol is undefined, and
the first entry is made in the undefined table., This entry
is given a code number of 1; a code number is used rather
than an address, since the address may change as new entries
are added. (Each new undefined symbol is assigned the next
higher code number until the table limit of 255 is reached.)
After generating the entry, the routine places the undefined
code in the next available reference table location (if no
overflow has occurred) and exits,

For subsequent undefined symbols, the routine enters
the same loop used in definition table search, but with
the pointer now set to the undefined table. When a match
is found, the undefined code is moved to the reference
table; if there is still no match, the new undefined symbol
is entered in its proper alphabetic position in the
undefined table,

4-16

‘If a reference table overflow occurs, all subsequent
reference table entires for undefined symbols will carry an
undefined table address rather than an undefined code. Since
the undefined table is complete at the end of the first pass
and its entries are thus in proper alphabetic order, normal
table addresses can be used.

EXIT: Exit is to the calling point.

4,12 ABKSET ROUTINE

FUNCTION: This routine (Chart SN) develops the reference
table and increments the reference count in defintion and
undefined table entries.

ENTRY: The routine has three entry points.,
1. Location ABKSET, from the LOC10 and DCDS routines.
2. Location ABK23, from the LOC1B and LOC4A routines,
3. Location ABKO1, from the MAST3 routine.

The calling routine supplies the address of the
expression to be processed.,

OPERATION: The routine calls BLBRKUP to separate the input
expression into elements and operators, to find the number of
characters in each element, and to lozate the expression
terminator.

Routine ABKSET processing starts with a test of the
diagnostic code returned by BLBRKUP, If the expression proves
so long or complex that the entire statement is invalid, the
routine exits at once to get the next statement; immediate
return is made to the address provided by the calling routine
when any other kind of error is indicated. Otherwise, the
first character in an element, translated by an internal table,
determines the operations to be -performed. The path taken for
various types of first characters are as follows.

First Character Path

Number Branch to ABK1 and then to ABK00. 1In
effect, this element is ignored.

Alphabetic Branch to ABK21, where the symbol is

(except X, C, S, set up for the SCH2 routine,

T, L) or §

First Character ~ Ppath

Blank or Quote Branch to ABK3, where a scan is made to
the next quote. The characters read are
ignored, and the routine loops to ABKO0O0
to process the next element,

X or C Branch to ABK4, where a check is made
for quotes in the second byte., If found,
processing is the same as for an initial
quote. If quotes are not detected, the
path for alphabetic processing is taken.

S, T, or L, Processing continues with a test for
quotes in the second byte., If present,
the routine skips to the next character,
assumed to be the start of a symbol,
before continuing with alphabetic
processing.

Any other Treated the same as a number,
character.

Before calling the SCH2 routine, ABKSET sets up the
symbol it has isolated and checks whether special qualification
(signaled by a period immediately after the symbol) is
involved. If so, the qualification is placed after the
symbol, overlaying any current qualification, before transfer
of control. Routine SCH2 then scans the definitions table
and, if necessary, the undefined table to find the table
entry matching the symbol and moves that entry®s address or
undefined code to the next available location in the reference
table.

Upon return, ABKSET makes a series of tests before
incrementing the reference count for the current symbol (in
the definition or undefined table) and before calling the
OVERFL routine to make the reference table entry final,
Essentially, these tests prevent any additions to the
definition and undefined tables after the first analyzer
pass. If an overflow occurs in the first pass, the tests
forbid further entries in the reference table but allow
the definition and undefined tables to be completed. The
reference table will then, of course, be built in additional
passes,

EXIT: The routine normally exits to the address supplied

by the calling routine. At exit, the address of the expression
terminator is loaded into a general register for the use of

the calling routine. If the return from BLBRKUP shows that

the entire input statement is invalid, the routine exits to
LOC1A in the SXXX routine to read the next statement.

4-18

4.13 OVERFL ROUTINE

FUNCTION: This routine (Chart SO) places a line number in
the current reference table entry, develops the location

for the next entry, and checks for a reference table overflow.
When an overflow occurs, the routine sets switches to prevent
further building of the reference table and sets up for a
transfer to the MASTO0 routine when the END statement is read.

ENTRY: There is one entry point, location OVERFL, which is
entered from the ABKSET routine whenever a reference table
entry is ready. It is also entered from the LOC10 routine
when a reference to an undefined symbol is being processed,

EXIT: This routine has two exits.
1. The usual exit to the calling point,

2, If an overflow occurs during an additional pass,
the routine transfers control to the MAST3 (double
overflow) routine,

COMMENT: No reference table entry is final until this routine
has supplied the next reference entry location. If no new
location is given, the next entry moved to the table will

wipe out the previous one.

4,14 REFERENCE-TABLE=CODE TRANSLATE ROUTINE (MASTXX)

FUNCTION: This routine (Chart SP) initiates printing of the
analyzer listing (i.e., the reference table has not overflowed).
If necessary, it also translates undefined symbol codes,

used instead of addresses in the undefined table, so that
sorting will place references to undefined symbols in proper
order. The analyzer end-of-job sequence is also included in
this routine.

ENTRY: This routine has two entry points.

1. Location MASTXX, from the LOCI1F routine after END
statement handling.

2. Location XEOJB, from the PR or MASTO routine after

printing., Entry is from MASTO only if the reference
table overflowed during analyzer processing.

4-19

OPERATION: If there .are no undefined symbols, the routine
immediately calls SRTRT to initiate printing. Otherwise,

it builds an internal table to equate each undefined code
with the alphabetical position of its symbol in the undefined
table. (Undefined symbols are in alphabetic order, but codes
are assigned in the order the symbols were encountered.,)

Once this translation table is complete, the reference table
is read and each undefined code is replaced with its
corresponding sequence number. - Control then passes to the
SRTRT routine. Before the final EXIT to MASTER the routine
checks to see if the XREF option was selected. If so, the
XRFTRL subroutine is called.

EXIT: This routine has two exits.
1. To the SRTRT routine to begin printing,
2, To MASTER, indicating the end of analyzer operations.

ERRORS: The following message is printed if more than 255
undefined symbols appeared in the source program:

THE UNDEFINED SYMBOLS LIMIT HAS BEEN EXCEEDED,
THE FIRST 255 ARE LISTED.,

COMMENT: Translation of undefined codes is unnecessary in
additional passes. Since the undefined table is always
completed during the first pass, actual table addresses can
be used to identify references to undefined symbols.

4,15 PREPARE FOR SORT ROUTINE (SRTRT)

FUNCTION: This routine (Chart SQ) sets up the sort portion
of the ANALY routine for reference table processing,

ENTRY: Location SRTRT is the only entry point. Usually,

it is entered from the MASTXX routine when the analyzer
tables are complete. In case of overflow, entry is from

the MASTO0 routine to print a segment of the analyzer listing.,
In the unlikely event of a second overflow, entry is made
from the MAST3 routine to resolve the overflow.

OPERATION: The routine modifies BLANALYZ to sort reference
table entries into proper sequence., After saving registers

for PR, SRTRT alters the length values stored in BLANALYZ to

8 bytes, the length of reference table entries; and sets
switches to permit duplicate entries, (valid in the reference
table) and to cause BLANALYZ to exit directly to PR. Reference
table starting and ending locations and register increment
values are also established,

4-=20

Because of a first-time through indicator, SRTRT bypasses
its switchesetting and lengthemodifying operations in subsequent
calls.

EXIT: This routine exits to location SRT1 in the ANALY routine,

4.16 PRINT ROUTINE (PR)

FUNCTION: This routine (Charts SR, SS, ST) places the analyzer
listing on system output. Routine PR develops the listing by
merging and editing entries from the definition, reference,

and undefined tables.

ENTRY: The routine has one standard entry point and three
special entry points that are used during double=-overflow
processing., Location PR is the standard entry from the ANALY
routine after reference table sorting. The special entries
are as follows,

1. Location PRSW1, from the MAST3 routine, when a
double-overflow is discovered.

2. Location PR3, from the MAST3 routine, when the
preceding attempt to resolve the double-overflow
has failed and a partial 1line is stored in the
print area.

3. Location PR21, from the MAST3 routine, when the
preceding attempt to resolve the double-overflow
has failed and the print area is ready for a new
line,

OPERATION: This routine may operate in three situations,

1. In standard processing, the MASTXX routine makes
one call to PR (through the SRTRT and BLANALYZ
routines), Printing in this case is the last
analyzer operation; the entire listing is printed,
and exit is to end-ofe-job (XEOJB in MASTXX).

2, When a reference table overflow has occurred, the
MAST(Q routine calls PR (through SRTRT and BLANALYZ)
at the end of each additional pass to print a
segment of the analyzer listing,

3. When a double-overflow appears, the MAST3 routine
immediately calls PR (through SRTRT and BLANALYZ),
and the two routines interact until the special
overflow condition is resolved,

STANDARD PRINTING: The routine begins by saving the starting
and ending locations of the definition table. After finding
the first valid entry (i.e., one that contains a definition
line number or a nonzero reference count), it takes a firste
time branch to set up column headings for defined symbols

and ejects the listing to a new page.

The routine next examines the flag field of the entry.
A flag of D marks a properly defined symbol, and no flag
is moved to the print line. If the flag is greater, a
diagnostic switch is set in MASTER and the entry flag is
moved to the print area. Usually, this is either an R
(multi-redefined system symbol) or M (multi-defined symbol),
If the flag is T, it is converted to an S (for redefined
system symbol), which will be accepted by MASTER as a
proper entry.

The INCSTA subroutine (Chart SU) is now called to
edit the entry line number and convert it to EBCDIC, after
which it is moved to the print area, followed by the symbol
and its qualification, (if any). If a test of the entry
reference count shows there are no references for the symbol,
the contents of the print area are placed on system output,
and the routine loops back to fetch the next definition
table entry. When references are indicated, the line
numbers of the corresponding reference table entries are
edited, converted to EBCDIC, and moved to the print area.
Up to nine reference line numbers can be printed on the
same line with the symbol. Any additional references are
then printed on subsequent lines without repeating the flag,
definition line number, symbol, and qualification information.
Before a line is printed, the routine checks to see if the
XREF option is active. If so, Subroutine XRFBEG is called to
set up the symbolic card.

When entries in the definition table are exhausted, the
routine checks for undefined table entries, exiting to
end-of-job if there are none. Otherwise, it sets up for
the undefined table, prints page and column headings for
the undefined symbol listing, then loops back to begin
printing undefined symbols and their references. The process
is the same as for defined entries, except that the flag
and the definition line numbers are not printed.

PRINTING BY SEGMENTS: If the reference table overflowed,
nothing is printed at the end of the first analyzer pass,
and only a segment of the definition table (or undefined
table), along with its corresponding references, is printed
at the end of each subsequent pass. In this situation, the
starting and ending locations of the definition table are
set by the MASTO routine. PR operation for a segment is

4=22

the same as in the standard printing, but when the segment
is finished, exit is to the MASTO routine. Routine MASTO
will determine when the analyzer listing is complete,

PRINTING IN A DOUBLE=-OVERFLOW SITUATION: The operation of PR
in a double-overflow situation is controlled by the MAST3
routine., (See the description of that routine for the
procedure used.)

EXIT: Exit is to the address supplied by the calling routine.
In standard processing, return is to the end-of-job portion
of the MASTXX routine., In segment processing, return is to
the calling point in the MASTO routine. All exits in double-
overflow handling are to the MAST3 routine.

ERRORS: When an M, T (printed out as an S), or R flag is
detected in a definition table entry, the flag is moved to
the listing and a diagnostic switch is set in MASTER., Before
the assembler returns control to the utility monitor, it

will print a flag legend.

M ANALYZER HAS FOUND A SYMBOL TO BE MULTI=-DEFINED.

S ANALYZER HAS FOUND A SYSTEM SYMBOL WHICH WAS
REDEFINED IN THE PROGRAM, (This flag is for
information; it is not an error.)

R ANALYZER HAS FOUND A SYSTEM SYMBOL WHICH IS
MULTI-REDEFINED.

4,17 CONVERT TO EBCDIC SUBROUTINE (INCSTA)

FUNCTION: This subroutine (Chart SU) converts a binary
number to deciaml (EBCDIC representation) for printing,.

ENTRY: The one entry point, location INCSTA, is entered
from various segments of the PR routine,

EXIT: Exit is to the calling point in the PR routine,

4,18 DOUBLE=OVERFLOW ROUTINE (MAST3)

FUNCTION: This routine (Chart SW) manipulates the PR
routine to resolve a reference table overflow during an
additional pass. This double-overflow can happen only
when the references for a single symbol exceed the area
available for the entire reference table segment.

ENTRY: The routine has three entry points, which are used
in sequence,

1. Location MAST3, from the OVERFL routine when the
double=overflow is first detected. (This occurs
as the ABKSET routine tries to add and entry to
a full reference table,)

2, Location MAST31, from the PR routine just after
it sets up for printing,

3. Location MAST34, entered from PR after it has
performed the operation designated by MAST3,

OPERATION: When first called, the routine saves registers,
. sets two double-overflow switches in the PR routine, and
then calls SRTRT to initiate printing. The saved registers
preserve the exact conditions under which ABKSET began
processing the current reference; later, they will be
restored to restart ABKSET.

Once PR is ready for printing, it encounters the first
double-overflow switch and exits to MAST31. In turn, MAST3
passes control to location PRSW1 in PR to print all references
now in the reference table. As soon as this is done, PR
returns to MAST34, where MAST3 resets the start of the
reference table, restores registers, and exits to ABKSET
to resume processing the reference that caused the overflow.
(At this point, the print area may contain a partial line,
but this will be handled within the PR routine by the setting
of the second double-overflow switch when normal additional-
pass printing starts.):

If another overflow appears, the initial call and the
first entry from the PR are the same as before. But MAST3
now branches to location MAST36, where the contents of the
print area decide the next action., If there is information
in the print area, the routine exits to location PR3 to fill
out and print the line. If the print area is clear, the
routine exits to location PR21 to set up a new line. 1In
either case, printing continues until the current reference
table entries are exhausted. Upon final return from PR,
MAST3 exits as described below.

EXIT: Final exit is always to location ABKO1 in the ABKSET
routine., Other exits that may be used are as follows.

a. To the SRTRT routine to initiate printing.
b. To location PRSW1 in the PR routine to set up and
print the initial line(s) for the entry.

4-24

Cos To location PR3 in PR to complete and print
a partial line stored in the print area.

d. To location PR21 in PR to set up a new line
when the print area is clear,

4,19 REFERENCE TABLE OVERFLOW ROUTINE (MASTO)

FUNCTION: This routine (Chart SY) is called when the source
program END statement is read and an overflow has occurred.

On the first call, the routine sets up the analyzer for
additional passes so that it can build the reference table

in segments. At the end of each additional pass, the routine
initiates printing of the completed portions of the definition
and reference tables and sets up for the next pass.

ENTRY: Entry to this routine is at location MASTO from the
LOC1F routine when the END statement is in process and an
overflow is indicated. When the END statement is encountered
at the end of each additional pass, entry is at location
MAST1.,

OPERATION: As soon as overflow is detected, the reference
table becomes void and its area is surrendered to the
undefined table., The filling of entries in the definition

and undefined tables continues so that when the END statement
appears at the end of the first analyzer pass, these two tables
are complete and their length is fixed. Therefore, MASTO

can calculate the exact storage, and from it the maximum
number of entries available for the reference table. Then,
starting at the first entry in the definition table, the
routine adds up reference counts until they exceed the number
of possible entries, and sets a new definition table ¢‘‘end’’
address at the entry just before the one causing the excess,
The reference table will now be built for the selected portion
of the definition table only. When this segment of the
analyzer listing is printed, the next portion is established,
and the process continues until all symbols and references

are printed,

To prepare for additional passes, MASTO sets seven
switches: two in SCH2 to prohibit further entries in the
undefined table and to permit the reference table to be
built; two in ABKSET, one to inhibit building of the
definition table, the other to allow reference table entries;
one in the LOC10 routine to inhibit definition table building;
one in OVERFL so that a branch is taken to the MAST3 routine
if another overflow occurs; and one in LOC1F, causing a
return to MASTO (at location MAST1) the next time an END
statement is read.

EXIT: This routine may take either of two exits.,

1. Location SE, in the SXXX routine, taken to start
each additional pass.

2. Location XEOJB, in the MASTXX routine, taken when
printing has been completed. This exit is also
used if there is no storage available for the
reference table.

4,20 PUNCH XRF CARDS ROUTINE (XREF)

This routine punches XRF reference cards when requested
by the XREF option on the $BAL Control Card. The routine
consists of four subroutines.

1. XRFINIT Subroutine = This subroutine initializes
for the XREF function,

2, XRFBEG Subroutine = This subroutine processes each
symbol reference and builds the XRF symbol card
image.

3. XRFPCH Subroutine — This subroutine punches cards
for the XREF function,

4, XRFTRL Subroutine = This subroutine provides
termination of the XREF function,

4,20.1 XRFINIT Subroutine

FUNCTION: This subroutine (Chart SZ) performs necessary
initialization for the XREF function,

ENTRY: The subroutine has only one entry point at XRFINIT,
The entry is made from BLANALYZ if the XREF option was
requested.

OPERATION: This subroutine first checks to see the type

of assembly being made. If the assembly is for a Compool
Segment, no switches are set and return is made to the
BLANALYZ routine. If serious errors were encountered during
the Assembly, no switches are set and return is made to
BLANALYZ. Otherwise a switch is set to indicate that XRF
cards should be punched, The XRF header card is then prepared
and subroutine XRFPCH is called to punch the header card.

When the header card has been punched, return is made to

the calling point.

EXIT: Exit from this routine is made to the calling point in
the BLANALYZ routine,

4.20.2 XRFBEG Subroutine

FUNCTION: The purpose of this subroutine (Chart S2Z) is to
build XRF symbol cards.,

ENTRY: Entry is made at XRFBEG from the PR routine whenever
the Analyzer is ready to set up a line of print with a
referenced symbol,

OPERATION: The subroutine first checks to see that the
referenced symbol is a library routine name or a Compool
data name. If not return is made to the PR routine., The
symbol is put in the XRF card image and, if the card is
full, Subroutine XRFPCH is called to punch the card.

EXIT: Exit is made to the calling point in the PE routine.
4,20,3 XRFPCH Subroutine

FUNCTION: This subroutine (Chart. SZ) punches XPF cards.
ENTRY: The routine may be entered at XRFPCE from the
XRFINIT subroutine, the YRFBEG subroutine, or the XRFTRL

subroutine.

OPERATION: This routine places a sequence number on the
card to be punched and then punches the card.

EXIT: Exit is made to the calling point.
4,20.4 XRFTRL Subroutine

FUNCTION: This subroutine (Chart SZ). terminates the XREF
portion of the Analyzer,

ENTRY: This routine is entered at XRFTRL from the MASTXX
routine when the analyzer has completed its printing.

OPERATION: This routine calls XRFPCH to punch the last
reference card. It then builds the XRF trailer card and
calls XRFPCH to punch that card.

EXIT: Exit is made to the calling point in the MASTXX
routine,

AL e

X JZA/VAL Yz

TR

| ; NOCAAN T

! A '

(227 ez &Y
2274

wored ’ M7 2 f
JZAIVAZ)/Z 2,
;g Z"”ZE 4&75@/5{/ 5
otz y2ee ' EITERS
AR N i T

KNG T - —

eer |
s
, /M TN

ol

154 |' ‘

E7 ST / :
Py | WNCRAIENT

NI &2 TEST VALE
SETLF : BV ENTEY
CULEEENT | LN .|

ZEZ T

wrrz |

SETFIRZ 7O
A (Gt vzey).

LENETH # -
BT VAL |

ZEROLUST 7
BYTES 2SI,
A, i
R
ey
w7y kg
ez |
e
T ENTRIES
JI7H HEX O,
78,08 BLANE
L GITE
coA [
RO LAST T
7 a0e s
B ENTRIES,
AAZ 1177
SLANK stRr oney), o
SK7 l g————'—lpm 777774
. ,gz , ATNE N TN L
?Af;’fjigiﬁ A /f 2 A2 427
. VALLIE D z7 e o |
AND ENTRY engey 2 |8 %fa%[,
LN : ' : ' &Y DL T4
] @ l
;v B O T P
| : | P
‘: ¥aow WF//WW”/‘/ ST) (%l/épc’W}/ P
! Sttt At A 2 26
' | B s ; sac7 v))

CHART SA. BLANALYZ ROUTINE

4=-28

NOTE DY T IVVTIALLY 472 *¥4p"
LENVRTHST T NV 7ST NN ISR
DFENTHIES 82 Z¥HAS (7 L7
THAN O ELCLAL. TR N WA LS

LESTT 7,2/4/\/ 2R 2L L)

ENTTY £ 157 LOCA TN ALLOERTL
BY A7RL

| ENY 2 [T LT ARSI

B 2 ’ ! |
L .; ,-
i } |
| i !
e e e e - oy
ANOTEL
ca - | ENTRY FFENS INITSL,
P Yi,??/\/ N E4L
] | - '
; /1/075-‘2 T
| 5/\/77@//7@4/367,?7‘ ;
L (&) e ©EF SR,
[—04—+—_——| er)—‘}————j
| |
| ! ! l
4 4 T +
i i | i
| | | !
L SO SR |
E4— = —x (ES— iy
i i . 1
{ ! | |
T + + +
i | I !
[| | I
| I— o= - Lo 4 JE
r—f‘_"o’—‘l‘%-—-—] F5—+———
|
| i
1 +
|]
I 1
| I T |
GH —t ——n
) ,
N !
* 1
! |
o]
!'-I(S ey
’ |
| I
1 :
| i
[SR |
[R e
[|
! (B
. i
| i
| i
ST
ALOVE S VED
ENTCY 2 Jo
\emez sos v
ET P2 5
|t 1850 A LlE
A LULTA

@

K

A e vl
' ! T ’ Aens !
! i S S0 BLANALYZ
Lo L E CN(SHES)
SANA”
pmete SHUE DEF
! l JAGLE
1 ! LGN
i i AND END
PR ADORESSES |,
et e sEEIN
: E END
{ﬁ%fﬁafg, ADDRESS O
DN FHS | apvrermed
L - TALLE
: |
ot = é;amdm4zf“
| ! e s
+ LEEN AP,
i ! GF REF ‘
[T | TABLE
pEl e DNIEE ToTAL :
: (DIANEE
! | OF DEF TABLE ;2/ Sy
4 i NTRIETEY 2 s v
TS R riieisiondint B o2
7= |
e LND AD- 1
GEZBL, | e i
74? e ZUF. T E !
S AND STORE ;]
) w2z
I IR) 5 10572 UL o
| ! NOCEASENT
; : &7 A e N ipr .
; | SATEAENT HNTER
o = _) N R oLy)

ESET S
SwIew e
NN

| XTSI

ANEKEALEN T
\ LN AN TR
W 7
AONSER [T
o e

©

CHART SB.

4=-29

SXXX ROUTINL

ClZZ /A4
VAL

NETRUAT TN
AT NEW

ENTER

Lo Lo TN

DM -
NN A7 1o :
”/ﬂ)/» B U VU

75477 5’4],3{2 — 33—
CHECUK '

Shansos N
NNt
L L

. l
=T
N ~ne .
NS L . '
AROCESZSING L
SE7 P ez ST
X TNE .
O 27
or ns”
s Az | e e
ST
2B L :

SO 42 o
s o o

Ao~y V S
|
!
+
f

|
!
i
f
]
!
Lo

|
)
5
I
+
|

J

A ———

CHART SC, LOC3 ROUTINE

4=30

—Ci—-+ 1
i !
! I
+ +
N !
| . . |
(S ——
—Dl—=+- -7
!

| :
+ +
I 1
i {
L. - |
NOTE-ENTRY 7B
Loalo /ST A7
Locdl (Sus)

CHART SD,

€2 =+ ———
| |
4 +
1 t
A ,
[
e
av END
|\ st
(ExBE).
l
20040 SUHZ
NN
o
SHUTEAENT
ELINL
WK 2
RES T2
END
SH 7K
i}
[P

LOC1F ROUTINE

ENTER
RN

== Zxx

&s)
L0l F

\szsreser «
| seond zoneE
N TER

e
—_g - - -
. . |

|

1

i
: [
| |
B4 4 ey
1 |
| !
N 1
| t
| I
L. - 3

Ha -

Bl

(&7 Jo _

LS7AL

N szman

Lo 7ERC A7

OERAND
AELL

Lo

Rus7ed T4
ALONS LINE
PN 7EL
AND SE7

Wr

(EXTT D
SHXX LI/,
LT LA,
SHF2.

CHART SE.

[-
2 EXTAs
I %
v AL/STT
7%

LOC2 ROUTINE

4-32

EXEL

ey
SHXK TN

Z5os)

(ER/ 7 72
CRULO RIN,)T 2
g
[l R S
-
e
W LU RIN . SIT2
i._.._:v:_i...__‘_‘. * :

—04— +—— i

s 7 70

g z&emmz

e HA = e = e —m

\SET S 7
SEINORE

OFERAINL?

LIS

{ At pAT ! ”.'*‘“"} ij‘//i/{/}’//‘ﬂz?
N, ’ L (ETER i ! o
|(Zoors) (zacugf) ; i s
I 2 L == G BUY o T
ot e oc’’ |
' R e waovE Ao
SET ann ﬁﬁz”W%%‘ i L ANTER ANTER
74?14}/73 2 TALLY 7D L i N 7” NEXT] 7o NEXT
Do T__ +‘__JI W,,___. i)/ff N
Tt T TherE T T I R
: 5%8?;wm/a%7 g ‘
: s it 3) OR DK au;:grxzs’/"z%
i . ‘/5&{& ; | WSACS
[P e | SO T |
: NO7E Z
: , ENTER M LOZ2.
|sE7 e o == oy EEAD T ComreTa LAZO SHZ
sz | % | i | | ND ST
ROUTZ, - T t i t + t AN MAKE
WO ABKET ‘ Col ! ! I i R HBLE
ETLRN T | [AP ENTEY
l _ : — |
RNZ 2AL cE e e ety
Amgéggy : ! ! ! i ! |\ conmrt
(meaffﬁ _ i ; ; k ; 7,4,44)’
e L Lo Lo 7z Z |
Loousz pa——r : " , [
557- TR :—rz-‘_ﬂ.——w! ~F3—4— -/, —Fd— +——— r:f e
N TER T : i | { ; ', ’;“‘;’fé;/
START OF p t + 4 + ¥ :
O RAND ' : ! ; | : AT AR
LD o e oo L] b &F 2P
|) |
LD 4
LoD’ - - I - 64—+ - —- et —-n
| t i | |
RN TER { ! ! | ! |
7o NEXT | ’ ! ' ? J,‘ ’{
L__4n-J | | A
—~—--: . :——H}— ' ——-—-—: ;—- e g - *-*-——1\ rFiSM*—T——:
: ! - i ! ['
' t + + + 1 +
. ! | | | |
e L . 3 | I Lo o
lr' =S - — 1 [-JB— b - r 4 - - - ! :—JS— + “"i
' [i l |
| : | | t B | P
-+ - 3 + 4 + -+ + +
| o o It o
yooo ‘ , : { , ' | , ¥ T

CHART SF. LOC1B ROUTINE

4-33

ST S < . .- (- AR b BT AR '{”’\'\ t f
' : : ’ I b |
(ewz?) : : (ﬁWE?) Co . v 1
; LoC4A.) ‘axwwé ‘ oL - :
Lo P : N =4 L EnERAROM. .
- : L2072 R, .
Lazyd Locsqd

. - — N T L RLY S .
e ' ; e CaozE 2 S :
4%%%%? : SET s ol e SN :

. 'ayé‘g]/ : KT o L oot . ;
BT Y B : aNaE ; oS ;
{fﬂfé’&’g’ A {_ﬁ~ ___i f‘f’f‘...__,-ﬁ, [P | L e e e e =

ooy | : . -
b e e) —-— -C4—+— — FC5 = +— ——

|7 aenmns i ' B} | o
SELLD \ 2 I ' } . !
G o — &) ol
4 i - .

\s_’q’e@" — . L___*!\{?—EZ ———— [.____.‘_l._-_z_! »,L___ _;.__4»_1
pr e ' .) B
(22 7240 ,—oz—-_—t~——} {—03—4 ——-—! [—04—-+——-—: 05 ———-- -
| . { | !
; . | !
STL QP LK i H i ! ! H ! "
L DR | o ! ; z ! | |
SINS/EAL. [DR | | S L gt
i :
+ .
| |
| SRR Y _._7A;
AFAL 0F DAgAces
! _ A ZEENED SULRCE
%22/—7’”” AROGEANM SINIEOL,
ENTRY. A 7 NLBA7ES A
— FIETEAS SINLT,
Loruss éz?Wﬁigpwww
, . 3 — SPLCTE
- : f?3§22§" rm ' CHANGE AROTZANS, NETTREL
! ; " ‘ o G ESTE FLAL
(5224 ANTRYMONEY | e s ALAL 7 A WL APZAE 7
Gz Lisxser mae [T ‘ ot 77 7 DA WS
, ; ETLNRN 7) AN VIS
b e — e i | a7l d W SHKX Lo ! * ik BEENED VA
’ : ' &7 W DT,
Lo 2R 74
Il = Ay 92— - - I R B LR TR
| | | : " ‘
4 ! v !
n - : AGK2T NV <2
} WEASE T SN 1
] i
'l_A e e — .,{ 'L_. . PR, { e 3 ‘
SRR pre o, N ¥ N
. ! ! | t . .
! ! ! ! I . #LAE T2 R ‘
4 + + + — : >
I | : | | ! ARttt 77 - ;
; \ ! | . RIZAEFIEL) Lo

CHART SG., LOC4A ROUTINE

4=34

\zdzion !

Al e b = SAY ey L S T R P cAS — o e
T , ; A { P ENTER ! !
| | ! . S ENTE i R /‘;7&4// ! \ i
H S 1 ? { 2o)'_"'.""206’5' oe + |
! ! ' ! T Lo , !
L___-}_-__.v]. S O | | SRR A | - _ﬂf’ L___+__J
' ‘ 2C05 ;

ISR F R4 - [BS— Aoy
Loz - !) i
o 1
A |

"7

=

NOTE= LAV REZ2R2N T
ASETET, PN 4P)
POET7/ONED 47 -85 —% —-n
ENPRESZ/ON t |

] o
Ly S |
r‘Hl——-‘-*—-"} ' H5 —4—-——-—}
| ! | i
+ 4 s 4
) ! ! :
| R U — L e .
[| Bt Bt [-
‘ L
! Lozt 77 OF i
i EXRESSION :
TECAINY 7R ,
.o P Lo . - .o

; ' B : o7 o
f ' = , LT

CHART SH. DCDS ROUTINE

4-35

Ve !"““ (‘5?&/!// :
W L222 AND'
S Loty
EXTE : '
%z/zi-_t ‘:’52—4 -
N SET | : !
ZoniER ; : s
Vs i | LG
CIEAND e e — 1 ESIRGL.
ffap/ae AR S P2
m@e L ' ONTER g
IE—'F//V/fﬁ/\/ . P o gyE
GAVE ADDE oem 4= LIZ0STH 2
TNzl , | [iEZ
& S7DE AN + + \2cr ae cviee =
e 5> ! ! 7B EnTey
LENRTH /! ! ! |
AN 7E /2 e ADRSIAS - i
r £2-+——
1
+
= i
] [N

~ E—— -Gl — 4= — — G5 --+ — —
e T e
i (GTNE 82| H | PNTER |
; N el ! - LeyaE
L (EG77RS” Lo A
r"{l_"""'_f FH2—+———.‘ '_HS_ _-’-—]
: | H
Ve o ’
NV S Sz,
Loy o
Ty
’ !
!

CHART SI. L&TE ROUTINE

Al — 4 - = A 4

, \ENTER RN, A AS -+
; | SUNX (SIEHY) i « :

1
——_

-
i
*

1

» 20c2 (SEKS ! ! i
Locld) iodF (SCES ; N l
[. | Lozl F(ZrE3) ! x i : :
S DR S WA | L._.._._;.____l ol e o
NOTE= U 2770 ot
LTSHET Y ST4Z o - B3 - - B4 =4 - (-85 A oy
Mf‘/v;féf/\//\/&f 2N o ‘ ‘; R "’ I L
L AIND LTI EoL LN DEENED ! | ! I !
%%7%%(S : ; i E | 4:
O T ST Ly I Loy

' | E7 P~
| | SYMESL
1 1 Yo stz
(R GUTIVE
F'F|—4°‘-“_1l 2/ 7 SZAL - r—‘:3—"f—"'—~1’
L | ey o | |
! ' . o b 1
! 1
Lo SIREGL Uiy
Lockor
e T
e crn'”
R ENTIY
L covreravien
RLLE
~ Hs —+ ——7

i

i
: 1
| . {
| U U |

— I3+ ——
1

‘ ! ey ey
! . w7 L Wi A

- O I

CHART SJ. LOC10 ROUTINE (SHEET 1 OF 2)

4=37

Al -

LOClAE

A b

- ‘ o

1 ' \EiTey Lo l

) ! ENTER O\ EVC & 7Eges L

t @ O LOCLAL) STATEMENT H

7 N ‘ il
U Logtds

sy |7 viEe

4 ERA - G RECAND

TN o EnEL D |

L.__.A.Q-LAAJ‘ E e o amd

rCl=t-—m

' . |

i

! L

i i

| |

| S|

FO1l— +——7

i

| |

+ +

]]

1]

L_ _._|,._____l .

DAY e o e

EXe

e
Lo7Eedl

e ——

\ P
NEXT EVE

GO
L_._.__._‘__A,_'_J

2607 SHA.S

anoLE

wirERAL -

§’W5a4$7 :

}*455— +-—'——'|

LG5 e

: |
)
+

I
|
i

e e i

S

A~] -) .
| &7 5’9%1) sErem
ii%l &f : tﬁﬂfﬁ7
E A&? @ 73) i 1@%W5?
IR SR _1 I PR
S22 =
IMTIALIZE dﬂ€$?%?
S| (2
, GETNEEN
44%77 ‘ PoLsEs -
ST PONTER
,6AAW%W7
oF ZEF. :
AGLE
sy |
Nettawnsze A
4wm2m€wz' o oF |
ZELENLEN T ENTRESL
72772]

[E2=+—-—7

S
SCHE
AOVE ™
UNDEENED
cope Jo
X7 AT
THL ENTY
e EnTRY TW"T“'T
1o, A4S : i
REUANETTED . .
\oy cat s ! .
AU TINE : _ J
i [T
: |
| |
B |
2= ks =y
i 1
1 !
+ 4
b J
CHART SL,

ST

SET AN |
ALE AT
A%h%ﬁ? |

AO7E = JE LA ST

RN N~ -
INPEFIVNED

SYMECL .
\wwzicd7oe -
W Loclo

stid |
Erucme
vpsEvED
ALE

N TER 78

ALLLINT
OF UNDEF.
JAGLE

@

e e —
el — e —

s
[,

fiC i

INDEATES” JRE SRR,
WA NOT SRND AN
. THAT A AEF JARE

! OLERA O S AXRANRRD
;aemfuwawﬁp
y TABLE 44 FEAH 22
\ ST LT .
] : i
L e

|
]

SCE2 ROUTINE (SHEET 1 OF 2)

4-39

Stxuo - e SO/ 2.

4-40

- A5
/';f/lff/? - A e : ' ?/,(Zf(=
Jeeniien Con= P ERTIptE e
Y Ny AE B THROUSY :
AN hEno ey | o AT SIMEOLS
! 1 l
s V| aw7E- 707 STEHNEA PGEASTE SBa e ;
(NE ND | i 4 et el | enron, o : ST ANER
e o || GESEL Gear | L e
;) 1224 g i f p
TAGLE 760 N oy zion iw 7HE A Zﬁgf%é ; i ovoss
ONTER . 1| ANENED TAZE | FmRolgy Lo JEL ENTRY.
7t A=t s T
NS Z | | | |z
07 msE i i Fpissaid
e ! ! Loy,
NG Al Loy o NTRY
sty |
wE ey | ot ZéRo 27 [oe-+== F05 —12——7
ronze| | ,' AEXT 7™ j f | |
270 VEXT 112 H H BL ENVIRY - 1 4 T +
Vomass | ‘] ! | ! :
S S T | IS Lo
I—EE—*—-"——]I r-ES— +—-'—-l
| |
[i |
) ; : :
i . I |
l._.___,__._-ﬂj SO — |
sy '
i vy NAATE A rrs—remm
7 N TER NPEFANED ; ! ! i
2miex7 AGLE : ’ 1 1 H
. H |
WPEESS HERALN | Lo ey
A/%a‘;" al {"GZ'- —*——~: 'r—G3— o --"-‘: —G4—-+——— ‘—65—-4 ="
. ! | . |
HF/V4/QD A‘ . | | (=70 T5 ! | i I |
ey ' + \cauni 77), H i t H
SEQUEN 7 |] | i | | I |
ENTRY - (IO L) Lo Lo —
songz | '
r -‘H—(‘)/V%.F |'—H2—"1'"—'—’]|. rH3—+ ——— fo HA = H4e-m o [—HS"*-'——"—I
tt 1
A PAE i ! | | i l B |
@HAD : | : o i i ! .
ENIRY Lo Loy U Lo)
G527 - ' ‘
e || ! - L :
o e + 1 + + b 4 + 4
SInes : i : | | ! | {
R | U | L s emad L \- o | |
a i {»ww - Irhs 4+ -y pora = PRS- =
1 @ |) | \ |l |’ : v' |
+ 4 4 4 + 4 + 1 0 -+
| 1 I |) | | i ' !
! ! ! . | ! | ! ! ! !
CHART SM., SCH2 ROUTINE (SHEET 2 OF

AL+ - o

i ! evree M N
VenTEe . o ! i
N\ L <74 \ 2 | ;
L] or 222 e
ABKET . ,
f"”éﬁ/p‘%’l CoreTtTT MUE 7T , BT e
| SREA ' ' NEXT : a ! NEXT '
eS| N P A : R =72
ELAAMEN TS I S 2~ B R V2
452 | ‘ R
e R VP
7 NEXT : BNKT |
z) |cwrescre . HARATTER
< Z 24 ! \ a7 :
=
ME T
,Qfé’ffff NRENT
o rER A7 FUALLTERS -
TSR TON 7B SIALBL.
| Bt VAR SE7 (P
FE2-—— " | wano 7o - £4= i o D
! ! NEXT WORD ' Avt
C 5 |ereuer i L
B L qomn SynigoL WORD, . _
|
worD . o
é 4)787a1 I
A)E 72 ; ; AOVE N Tt
NEXT ‘ ! ! QUALLITZTR ; !
CHARAIER ; ! | 72 STIANEOL . !
o7 L | e T
Askz2_| ,
e ey e
_ e CUNT ‘
| SIMEOL 7D e ENRY : i
Sl ke
1 a "
”, SET TIARE Sl
TRANLGE [i
e Awam%%zag‘; NP 7 ABK e .
CHARICTER | areinc? ? SEARCH GHrL 1
“’a: /ZP/MA/ g? JBLT fe [<//V ,47:;’/./&7 !
7, SLAN, 7
Sy i y P SIpsoLS N .
S, 7 ok L _A3 |
NBER AR Ay~ 5 I)
Iorx/&?éyﬂﬂ f O 7o P gff?ﬂ.@/fp’ | o i
! i A : i CIMALETE !
" o m/fzgjf/\/f | : (L TASLE ‘
: , :) ; & LENTRY !

CHART SN. ABKSET ROUTINE

4-41

r‘A\l'—’-‘ - =
! ‘
| |
1 I
1 |
(SR |
(—Bl—+ -——
| |
u |
} }
| |
| 1
e e
]-—Cl——f-———]
|
1 |
£ +
| |
! {
L2l
~Dl— +———
1 !
VZ A R
k &
1 '
| S .
NOTE AT TS At
| FET N STUZ 4P
A@&%Dmmmgy
| .
| i
+ +
| i
1 |
_ [
—Fl— +——-ﬁ|
i |
1 +
t t
| |
|

S A e ey [NS e =
1]]]
H | '(5%22) _____
; : { OVELAL.
' L.-_._+._.._] R
_ oL .
rez=+- 7 A NE
| | AR T
} 1 CUTENT .
: 1 @F ABLE
L__+__.J E/Vfi)/_‘,d
I
Feesmtm Gelieta?
| | NEXT AEF
3 7 7o
| | ATRY !
| ISP — | E___.a___.__a
AT
o2) 03 A
}/ | 7. 4 | | i
DANAL el O
| .A/-A..J l_".._. vA_/_._l
T rE-r-——
2 NIELT :/EWW !
7 ! .
ﬁ;;gg;?ﬁ JgéuMax%
|
LT Lol F3 = e
G NE | ;
g?EX//"‘ — alk
AT ; ,
e | L
CHART SO, OVERFL ROUTINE

4-42

ATRY .
e
ABEE] ae
ey
B4 e - — =,
| {
l |
¥ +
| -
R
—C4—+—=—7
K i
! |
+ +
I L
! I
(IR {
r’-o4—'+———'—,
: |
+ +
1 P
| [
| I |

|

o

4

i

|
I
F4— 4= =
|

|

+

!

1-
e

4=-43

R i o - AS
e | i
. 40(’// : l
PR) DU N
SB2 - = e
] ! /t/f/ﬂ/
; | .
L__._.+__.,,__.J . X L._.___| _____ J
\serut roe FeemtTT ress czeal
WNOEPINED ! ! | i AN T AREA -
corE R : J B ZpE N
TRANSLATN e e L AAESIUSE
yZa . |
MIEANT roFm T T ;%,;5/)‘,5;‘77
demees | e
! 1 & Kﬂé
e Ly L Lo Lo [esszaze
1 oK }4———
Eﬁé//fé/;/ =R e (E3 =4 A
A ! ! ! | e |
1 ! H 1 l Laneez
SRR R I SO B I
MRS
GG T SRR R
TRANST A , !
NS ; }
ctnss? NV , i
L 2oc s i |
NTRUEST S e
D ENTRY cR3— g e
W N TNAL i .
Z S
ﬁ%;emy | |
MR A P
ez |
AtonE i o
LN T WPEF COPE ! |
1 SERNEN AL 7B SEPUAACTE| f b i
copE 770 e ST T 5 ; | !
ENTRY ENTRY | S | | co
CHART SP. LIASTXX ROUTINE

1
¢ |
Aonr P, |

Viraer o
ANALY
"‘Bb": + i
} |
| |

4
\ H
; |
L.~ _+__,_J
-G8 — +=——
I B
| |
¥ 4
v !

- c
L
L5 — -
| l
+ +
i |
! R !
S S |
FES— b
b |
) |
4 +
: |
! \
[|
FH =
i |
4 +
i i
i |
e e e = - A
NF7AY SZZBS
NAEF

TERMNA 20

I
|
|
|
L.

SN - R R .
U levise
ENTER N\ S Aot §
(SRTCT } MIASTXX
L ; OR AT
.74 f
R . = B84 -1+ - \
| scE . i
RECSTERS : e
Lo L
‘ HeTeTL
KT 72 N SETEND OF
SINE | ABLE
| THAXGH , T 5 ac0enT
LN ENIRY
g |
e ECTABLIS
S ENCRTH NN NG
PALES? eV REF 75 .
7o & m//t/%%@ :
‘ I
i AZACE
:, Z7 P e Jroncd
fX/f O . N EEAL AT
BLANALYE ALUE NV
o BLANALYZ
S l R IR
Arcon Y
aeure o 5?72
vrcies ”&wa_&%@)
L - . P e e o} e
CHART SQ. SRTRT ROUTINL

4-44

Vo

Lo e .| ’ 4/@5‘/4

SN 7 e

(€55< F----- e PLALIAATON
= : . 5»(4/\/41)2 . N2 zeNT
.E? oLt | G N .

V4
A ‘. . - H . N [T 1 —
SET ANTER | i DepALS '
£ 2 ENP o ; : s
; £, l i /2?04@{/’//
1:75 AGLE j ‘s ! SYMEB.
Lo Lo e e
PR ez -+ i oy N CEEET
%z;%ggge i i DA ENOSTE
; L7 i + f/(//fc?j/b/ - SET L
e DEF T | W Cost i :
(A Lo REGN A??fff??
ozt [s7zee re
! g ac N7
+ t ENTIES
1 i POSKUELE
Lo e R LINE
ARONE I
BT U ACE MoVE S B T AINT
E NS ALAR LD N TER AT
2 per | [or ponT /éfc Ay
SIMEAS ARA on
I FROZ
R MVE 242 ETLP
P 7o 72 FLAZ (RN T
e oF AELD OF ! c';;;fAfzf% o
NEW JUFE eNT AREA Loy CANERSTION .
P03 | : |
Zar v | fereee] o (R
EoneE e + N N P ! ! e
N7 oF - ! Bk R | | INE e
T ENTRY e - apvERToN o S BTN
WA LA e NwwvEe rex
] EANERT ! I LVE NO-
) e | 2z
HST73/ (Sl 5 ! ;
v) 7 E8/ em | AA
WOWE 257 AR ME TN T
amvE M2 ; I /%C/}/% Ve
y b 4 !
o fen | e
, 0 , | SosVTTEN
2 l
RN { ' : T T NEW
: ! ! j CLHRRENT
| o | i LA TATLE
! b Lo NTEY

|

CHART SR. PR ROUTINE (SHEET 1 OF 3)

4-45

‘,)' ‘_/gx ‘I ﬂfﬁ%f\/r 54«‘5“ " _4:.
') 770N 6 ! i
‘ ov i i i
| . 7 .
— NN . e [—
SCCE B - BULIST . ‘w@ -- 85—+ — —
- - ! i
CNTRY FR, N ! ! | !
ited S N YV B ; A ' !
. | . f [|
6’&’7’ e | I | S|

T LVE, |
g s 7o | 1
WEXTLVE]

rD5—-4———-1
. 1 ! | 1
MEN LiNE - : : 1 :
. ”?’”‘_4"?’5_{_: I Lo
L |

FP g = - p e —Eh- - — ES— 4——
5”‘/? o JLLLST SLank oy ; 1 i— B
77 A a2 0/‘ ' ' I)
. ({M_ - ;“,_i mprﬁ : {Fgli, :_. | ._J IL.,. —-«F_——.J)

R3 | ’ , .

[t R —Fe— 4= —— -7 === FS —4——
SLANK 0T ! : ; ! ,
A/ + = P :
j/f/? : | . 74 ! ! 1.
G g e ;__fﬂ?%‘; /i I S
G- s - rGS—* -—=3
: r

ABELJORE | ! =5

Wz« \/7A4L
I LCALLERY,

md _e L 4445’7%’ Lo
1 I XeoTs (f/%«))
! AASTE (V2%
. N I =7 4
B ,ws'/az (suesj
- (-5 = e — =
' [N |
< ! ‘
- 1 +
' 1 i
\ ot
O S SEF LD oF oo ;
. » UNBEFNED |
! : TA&LE AL : ;
i ‘ AN ar per ‘ I
! ' TAELE

CHART SS. PR ROUTINE (SHLEET 2 OF 3)

4-46

Wﬂ/(’//?:”

DEF. A&

SET P AT
AEADNE &

LLIANE A2
UNDEFNED
RYZ VA

|

TELLST

t

e

S S

7N o

CNDES SYLBOL,
SBUTTH (U,
70 Sk P LA
6 55 LINVE
//AA/pz/A/g ‘

TS SERUENCYE
| SETE wr e
| menirive :
CONRELINED :
R
(- B2 & -
! i
: |
i ;
A !
L"———r——.__l
2 +--—7
]
I i
+ +
| |
[—DZ’——(-—___!
‘ |
! |
H $
i \ I
']
[
{—:.Z— -___;
! i
—_—————

2y

TN OFFE
LT LE
0/E/QFMW
SWICH
N,

[
wrEsE; T
AASTTS
RLTINE
BINTIAL.
EONTION

a7
NO. OF gees?
Yoo s
ey |

AALE
aF REFS
W REF

OUNTER

N s seddencE opses s 0T T
NAFTER A 2aBLE OVéPFAaW

Apﬂ/ﬂaﬂ//’l PASTS F,?//y/y/\/ﬂ

————t— .
B4 -4~ —
; !
‘ [
H +
! i
! |
e e
.—:c'4-4-_..__l
; |
: |
t +
i

‘ |
[

=58 = = —

]

H

L

I

L

- r-H3 S — HA - 4 ——

| = :

. 4 ! FUL O .

' % Z&Z?i/” _ ! i PRETENT :

. TAEL i . 1

L- v . SIAEoL o e L._+5@¢‘ [

RN TN G

CHART ST. PR ROUTINE (SHEET 3 OF 3)

4-47

!
|
+
I
N
L
res—+—-——
' i
.I '
t +
! i
N ‘ |
I |
rDS —+—--—.__l‘
! !
1 +
! I
! I
L

r
|
i +
; !
L e
rGS—‘ ——
{
| !
T |
L“———O—— J—
rHS' + .
I
f +
!

A .\.A,_‘ ‘/\1 - -
I . I, g1 N
(ENTER ‘__;;f5VZ6€ .
\VES7A) AN
S DS B A
METH o
sBas . T B
RS/ 7B, o ;
{‘//W Ladl B + 3
ENARY : |-
MMEER Lo e

|

veer ! e
WUIEER i I
B KL !]
PECNML Ly
o
AMMEER)
AND ALK i ’ ;
@yg_‘,; T L e —
eSS = - (—E4— b — ——
woveE o ; {
{:‘5&0/& T i g
gaMay i i }
| S ol [

F3—F ey

r—r4-~+—i—-——-1"
ETRRE b g
REASTVERST 1 1
‘L*-A.l, . Lt {___,].‘_._‘_j
63—~} <= e Gh— A — —
| . ! ! |
V=T 7 : j
G A7) . i
| . 1 i
Loy L e

CHART SU., INCSTA SUBROUTINE

4=48

= AL = -) B '] r] I 1
paet | ENTER , i ' | , !
\ENTE Aot ‘ ! ! i ' !
<2 Shhhhk ; 4 + + + + +
N7) ovERA. ! | ; : ; !
L. ——d Lo e o) TR R S|
AAGTST - ' . ‘
B b= s r 82—+ —-—- 83—+ --— ~ B4d— 4 —— 85 + = — -,
STORE ! | ! : | i : :
ez szee ! v ' 4 1 - ! i
! | | | !
L_._-,-,4_.._.__j L__._+____.J| L_.___}'..___l L.___..}...._._J [T |
Wz 3’[f‘ '[—‘CZ—'F——*-‘ ’—-C3—< +——"—| r—C_4—'+—‘——| |—C5—+—’—'—1
| | | i !
HNERZLW | I : l 1 | | j
S THET . HE i H ,:, t 1 ;
4] |
wAR L Lo byl Loy
r-ol—{»————l 02— +———) S rb3—+ —— 05 —+—-7
I (| ! | i | |
EXIT 7o N\ ! | [] | !
| KT (CpA¥) ?) ? H H T E
Lo g Ly b e Lo e
FEl—+—— |—E2 »—-———, ,—é3—4——~—1 —E5— +———l
| | | - ! t
- | '&MmVAP ! ! (T a7
+ ? 'é%awgézé H , "&%ﬂ%{ 4)
_ L e __d__ N [
AASTTIL _ MASTIY
rfi= = TR oFr T SR B gd/e?/}r
| | RudsnE | i A A
H Cot OMER ALY s + ENTEY 75
5 i 17z : | SN
b e w AR ! [N EF. TABLE
-0 F3S—r oo
| KET B
it [EersTEeS
| - ; ;
b A TIONE? - e o
NASTF T : l ;
HI— +-—— N I B - - 5’?’/@ - ~—H5 -4 ——
SET Ll Foe NEEASTE R ' i {
| | Eor B AW N, - | ﬁ?f«ﬁg}' VZE
N T ooty oF 245 M1 »mif : @w&zﬁvly
Ly ool oy ove TR/ ABKSET (V)
e "7; G 7P e SHE7 P [’ T
b l l RETURN ! '
4 - d . L £/ 7 70 - I
| :) H 2 AUTTH 5 :
L e L FRoM R (A N R L
A T K2) i . : R LA
1 | ' ! B i |
f 3 ; ! CT7 7 2 ; j j
! | ONT I ewv/%y) : |
CHART SW., IMAST3 ROUTINE

4=-49

AUSTLO

. ’—/\I B RS f <. \ FAAa“_J ——— e AD e o e

: ! ENTER STASLEH] P i

'CDENZ% _____ eoond i e | (:D CATED

MAS’]‘@/ 2004~ , . ngf&;] B : i . ALAST 7L

A N R TS JABLE S ST

AT ’ :] ' AUSTL
SE7SwzEy | . IR SSARING ComBAy : .
v ez ops ; ! a%géﬁ; |] ? GRTRT P

B AT By I 7 : ' ‘ ‘

L ! | (s AL ! S sk

bt ; L. B e ' | A@w?%%?'

'|7 - bos e Neznrz e Bt e e
N esszer aer v

BL ~NHIEYT %Z’% 7

SWITOHE? . AE‘/Yf

72 Ao |- ‘

, ' ,4@6’4/42&

NTR/ES ./émQPV

SETLWP o - gy ~D4m A

TRANSTEC [! ! 2 ’

M%waa@gv i ; P : 4

5M96%€ - C N i i

, i : OF 1= i

LS EAD . AL E - L +___-_;

SET P e e a7 Y

G B ; l LSET 2 AL D { |
. AT L ; L \ear7 o” AL SBRLEE ; |

INDTHE s z By TR 1 M

NELAL W 3 R fApiitsid amevez, i '{

O™ . [SRR P — cres~ L. m%,wh;“.._..—i | SO |

[I o

SE7 - - P T S —~F3- e ~Fa- e —

S Tmes e . : ‘ ! (Fo -+

T2 WY T . ‘i (Fé_ﬂ/ /Vﬂ . : ; 'l !

| oone? o i : 4 . + 1 . '

2T 4 i :M@W‘K2 ~ !) ! | i

5L .. [S _T.-J U | N L____{ﬁ_._.__J . L____..‘___..:

SHINE AL p e TN F mGaT A = [es—+ =7

e | z D SHITH 5 X ! '

w7y N i : =Ty 5 + f 4

INIBONED g | Lo~ | | | |

AELE. e |REIVE b Lo

I ‘

CHL A TE A I 1 [“"'3*‘ sy HA — - —— l‘||3—+——-—-‘|

i W2 j i T = ! : ! :

SIOSTELE ; - =z 1

ENTZET N , ‘E AXY (552 H } +
-

TN ASLE) N] Lo
3= e A ey U5 A -)
| t 1 | ! |
1 !] 1 I R
. ‘ } 4 4 4
| ! ! i ? |
| I . [[- -

Shes ! e oo ! (K3 e ! L S b -

AN NO. OF ~ i | : : | | |

POTTIELE 1 H ! : ' ! ' 1

NS A 4 ! 5 ‘ | I E

\ . : I + -
CHART SY. MASTO ROUTINE

4-=50

vrEe
| eont
LLANALYZ.

-023- - ~ DA4—+H ——
IZM@V@V‘ {
'A/ZE/C ‘ + +‘
%&%Mﬁ%’ “ i
e U
NEFINI7TE
5%7“'"—ﬁ
ﬁ-‘wfﬂa-:"
Al 552
fﬂ%%/&mp
) CHCD -
A ENTER T T Ha- T
T\, | BPIENOE !
XRFAH NKSLEE
l : N7y ae MAEERL \
[ERUN WAEINGT 2 Jo SE0 e
XREFFCH XRANITD | .
A7 - G2— e e P - Ga -t = =y
SR ENE { f ﬁzzzgg ' ? :
MM BEH t 4 ; ‘ : |
oN xaErs ; i AR 3 |
KAIQD,,.-,, S | S, o &A/QD | S SN |
| l
T FHe s e XEFRH SZFL o HA e
A ! | N ; :
o X/?E-F + 4 N, 1 4}
AL | N HEADER ‘
b e [AL [_
e PRt ! NTALIZE S
\cZE4R L : REFERENCE i
| caRD + 1 e 1
; ! ; D
A L gAY o
g . poK2 '(por KA :
5&7 [i e al IR i
,44/,,/(7/)/ ! ! \H2ennid 77 :
L | 1l i
CHART SZ. XREF ROUTINE

4-=51

I

(znv7ze
X

Wy sizes

ABNCW LIST
AEFECENCE
UL i

LTSI
T W
A ALER
caer.

|

S st

/2//\/6’//

s
AN
aaer - - -

P

5.0 STORAGE AND TIMING

5.1 STORAGE REQUIREMENTS

The BAL assumbler can operate in a minimum environment of
one Storage Element (SE) (32K words). Although it can be run
in any larger configuration, it will use a maximum of eight SEs.
Any additional storage beyond 8 SEs will simply be ignored.

The actual storage required to assemble a given program
is dependent on the availability of WORK2 and on the size
of the program. Accompanying tables 5=1 and 5=2 give the
maximum program parameters that can be accommodated in each
memory configuration with and without WORK2, respectively.

Figure 5-=1 illustrates the storage layout of the
assemblies that comprise the BAL assembler., Figure 5=2
summarizes the layout of the buffers and variable length
tables that are used by BAL,

5.2 = TIMING

There is no simple formula to determine the timing for
the BAL assembler, as it is highly dependent on machine
configuration, especially storage and WORK2 availability.
However, for any given configuration, the time for a non-
compool assembly will be roughly proportional to the number
of input statements.,

When a compool is involved, timing will be proportional
to number of statements from SYSIN plus number of statements
actually processed from the compool, plus an overhead
factor representing tape time to find the first compool
segment and tape time to skip unwanted segments.,

Use of the PUNCHC option will add time for an additional
pass over the compool tape, plus assembly time for those
statements selected from the compool.

TABLE 5-=1. ASSEMBLER SES VS VARIABLES (.WORK2 AVAILABLE)
Number of SEs
Variables 1 2 3 4 5 6 7 8
Maximum number of 1024 4096 8192 8192 16384 16384 16384 20480
symbols
Maximum number of 5i2 2048 4096 4096 8192 8192 8192 8192
address constants
Maximum number of 128 1024 2048 2048 4096 4096 4096 4096
literals.

£-G

TABLE 5-=2, ASSEMBLEP VS VARIABLES (.,WORK2 NOT AVAILABLE)
Number of SEs
Variables 1 2 3 4 5 6 7 8
Maximum number of 144 719 129¢ 1872 2248 3023 3600 4176
symbols
Maximum number of 72 359 646 934 1221 1509 1796 2048
address constants)
Maximum number of 72 359 646 934 1221 1509 1796 2048
literals
Approximate number 478 2778 5078 7378 9678 11978 14278 16578
cards

STORAGE ADDRESS
X9000’

X‘A700°

X'AD0OO

XF0o0’

X‘16000°

X17000

END OF AVAIL-
ABLE STORAGE

BAL

INITIALIZATION
MODULE

ZXMASTER

COMMUNICATION
AREA

BLLIST

PRINTING AND
PAGE CONTROL

BLPUNC2

OBJECT CODE
PUNCHING

BLOPLKUP
OP-CODE LOOK-UP

BLSLKUP

SYMBOL TABLE
LOOK-UP

BLBRKUP

FIELD DELIMETER
DETERMINATION

BLEXVAL

EXPRESSION
EVALUATION

BLCONMOD

CONSTANT
MODIFIER
VERIFICATION

BLPAS1
BAL PASS 1

ZXBFRS

USED FOR
BUFFERS TO
STACK COMPCOL
SEGMENTS ON WK1

X‘F000’

X‘12800°

X'15000°

X‘16D00’

BLPAS2
PASS 2

BLCONVAL
CONSTANT

- EVALUATION

BLPRINT

LISTING
FORMATTER

X‘F000’

BLANALYZ

SYMBOLIC
ANALYZER
PASS

BLIOGET2
READ WORK2

BLIOGET2
READ WORK2

VARIABLE
LENGTH

TABLES AND BUFFERS

FIGURE 5-1.

BAL PROGRAM STORAGE REQUIREMENTS

5-4

X‘17000°

OPTIONAL
WK2 BUFFERS

2 808 BYTE BUFFERS

OPTIONAL 800
BYTES FOR WK1
BUFFERS (JOVIAL
INPUT)

INTERMEDIATE
BUFFER

STORES CANONICAL
FORM BAL STATEMENTS
FOR MULTIPLE BAL
PASSES

SIS

SYSTEM SYMBOL
TABLE
(624 BYTES)

SYMBOL
TABLE

N

CSECT/EXTRN
TABLE
(253x16 BYTES)

COMMON ENTRY (32 BYTES)

0 ssiis)

RLD TABLE

AT ////////

LITERAL TABLE

FIGURE 5-2,

5-5

SYMBOLIC
FOR ADDRESS

ADWK18

ZXBGINTB

ZXENINTB

ZXBSYSYB

ZXESYSYB
ZXBGSYMB

ZXENSYMB

ZXBGCST

ZXCMNCST

ZXBGRLDT
ZXENRLDT

ZXBGLITB

ZXENLITB

ZXSYMRF (END ANALYZER
SYMBOL REFERENCE
TABLE)

BAL BUFFERS AND TABLES

6.0 DATA SPECIFICATIONS

6.1 TABLE FORMATS
6.1.1 Symbol Table

The symbol table is built by BLPAS1 and used by BLPAS2
and BLANALYZ, Every symbol defined in the source program
creates an entry in this table in the format shown in
Figure 6-=1,

6.1.2 System Symbol Table

The system symbol table, containing permanently defined
- system symbols, is appended to the end of the symbol table
when the symbol table is set up by the INIT1 routine of

BAL. Entries in the system symbol table have the same format
as those in the symbol table (see Figure 6-=1).

6.,1.3 CSECT=-EXTRN Table

The CSECT=-EXTRN table is built by BLPAS1 and updated
during its interlude. Entries are made for CSECT, DSECT,
COM, and EXTRN statements in the format given in Figure 6-2,

6.1.4 ENTRY Table

The ENTRY table is built by BLPAS1 from symbols

" designated by ENTRY statements. All defined ENTRY symbols
(i.,e., those also entered in the symbol table) are put out
during the interlude as ESD cards. Each entry in the ENTRY
table contains a symbol in an eightebyte field and its
qualifier in a one-byte field. The format of an entry is
shown in Figure 6-3,

6.1.5 Literal Table

The literal table is built by BLPAS1 and emptied
after an LTORG statement and/or .after the END statement,
Each literal being put out as DCL statement for BLPAS2 is
assigned a location by entering the literal dummy name in
the symbol table. The format of an entry in the literal
table is shown in Figure 6-4,

6.1.6 RLD Table
The RLD table is built by BLPAS2 to develop the

relocation dictionary for the object program. Each entry
in the table is in the format shown in Figure 6-=5,

Field Symbol | Qual | Location ?gloc Length | Control Type | Scale

Byte No. 0 7 8 9 11 12 13 14 15

Bytes 8 1 3 1 1 1/2 1/2 1
where

Symbol - EBCDIC characters, left-justified

Qual - EBCDIC character

Location = address assigned to symbol

Reloc ID - 0 = absolute; 1 through 254 = CSECT or DSECT ID; 255 = Common ID
Length - one less than length defined or implied, in bytes

Control - 0 = empty; 1 = defined; 3 = multi-defined; 5 = symbol is TEQUATED,
re-evaluate the equate

(hexadecimal)

(EBCDIC)

(packed decimal)

(zoned decimal)

(fixed point halfword)
(fixed point word)

(floating point, singleword)
(floating point, doubleword)
(instruction label)

(address constant, word)
(base and displacement, halfword)

Type -

CWVWONOUTEWN=O
| 1 | | I | B I |

MmpHOoOEHYITDNYONX

e

Scale Factor - Binary (2°s complement) 10100000 to 10011111 (-96 to 4159 decimal)

FIGURE 6-=1. SYMBOL TABLE ENTRY FORMAT

Current Highest Reloc ESD
Field Symbol Location Location ID Type
Byte No. 0-7 8-10 11-13 14 15
Bytes) 8 3 3 1 1
where:

Symbol = Section name or EXTRN symbol, EBCDIC characters

Current Location - Location counter for section, 0
through 224.-1

Highest Location - Location counter for current end
of section, 0 through 2241

Reloc ID = see definition under symbol table (Figure 6-1)

ESD Type = C = X*02°* =

X¢0A® = COM

CSECT; D = DSECT:; EXTRN;

FIGURE 6-=2, CSECT-EXTRN TABLE ENTRY FORMAT

Field Symbol Qual
Byte No, 0 8
Bytes 8 1

FIGURE 6-=3., ENTRY TABLE ENTRY FORMAT

Source Object | Source
Field Length | Dummy Name | Length | Format
Byte No. 0 1-8 9 10-n
Bytes 1 8 1 variable
where:

Source Length - length in bytes of literal source format

Dummy Name - =000 followed by a four-byte identifying
number, assigned in order of entry (= is X*7E°’)

Object Length - one less than the literal object length,
in bytes

Source Format -— the literal as written in source program

FIGURE 6-4., LITERAL TABLE ENTRY FORMAT

Reloc | Reloc
Field Location | ID 1 ID 2 | Sign Length
Byte No. 0-3 4 5 6 7
Bytes 4 1 1 1 1
where:

Location - storage location of address constant

Reloc ID1 - ID of address constant (ID of section
containing the Adcon)

Reloc ID2 - ID of symbol in address constant (ID
of section containing the symbol)

Sign - addition or subtraction of symbolic in address
constant

Length - length of address constant (1, 2, 3, or 4 bytes?
FIGURE 6-5. RLD TABLE ENTRY FORMAT

6.,1.7 USING Table

The USING table records for BLPAS2 the general registers
that are available as base registers in any given segment of a
source program and the value that is held in each base register,
The table contains 17 entries, two for register 0 and one each
for every other general register. The first entry for register
0 is always available with a value of zero and is unaffected by
USING or DROP statements. All remaining entries are affected
by USING and DROP statements, except that the switchable entry
for register 0 always has a value of zero. The format of each
entry in the USING table is shown in Figure 6-=6.

Reloc Reg Reg
Field Avail ID No., No. Value
Byte No, 0 1 2 3 47
Bytes 1 1 1 1 4
where:.

. Avail = 1 = available for use as base register; 0 =
not available :

Reloc ID = ID of symbol in expression for base value
Reg No, = general register number in EBCDIC
Reg No. = general register number in hexadecimal

Value = base value for computation of displacement
FIGURE 6=6. USING TABLE ENTRY FORMAT

6.1.8 Operation Code Table

The operation code table, contained in BLOPLKUP, contains
an entry for every machine operation code and every valid
pseudo-operation code (as well as for some invalid pseudo-
operation codes). These entries are arranged alphabetically
by mnemonic, but the entries are of two types: one for
machine operation codes and another for pseudo-operation
codes. The table is used by both BLPAS1 and BLPAS2. The
format for a machine operation code entry is shown in Figure 6-7,

6=5

9=9

Type | Align | Type | Align | Type | Align | Oper Operation
Field Mnemonic | Obj 1 1 2 2 3 3 Count | Type

Byte No. 0-4 5 6 7 8 9 10 11 12-=14 15
Bytes 5 1 1 1 1 1 1 1 3 1
where:

Mnemonic = operation code mnemonic, leftejustified, in EBCDIC

Obj - object code in hexadecimal

Type — operand format type (number designates operand): 0 = no operand; 4 = register;
8 = storage address; 12 = indexable storage address; 16 = storage address with 4-bit
length field; 20 = storage address with 8-bit length field; 24 = 8-bit integer; 28 =
storage address (SI) with I, field zeroed; 32 = storage address with zeroced 4-bit
length field; 36 = shift count; 40 = R1 register operand with R2 zero.

Align - alignment code for operand (number designates operand): code 0 = no

alignment; 1 = halfword; 2 = word; 3 = doubleword. If type is a register operand:
0 = no special register; 1 =

only even register; 4 = floating point register.

Oper Count = number of operands required by the instruction.

Operation Type - non-privileged (code = 0) or privileged (code = 1)

FIGURE 6-=7., MACHINE OPERATION ENTRY FORMAT

The format for a pseudo-operation code entry is shown
in Figure 6-8,

BLPAS1 BLPAS2
Field Mnemonic Obj N/A | Mask Pointer Pointer
Byte No. 0-4 5 6 7 8-11 12=15
Bytes 5 1 1 1 4 4
where:

Mnemonic = operation code mnemonic, left-justified, in EBCDIC
Obj = hex 00, identifying entry as pseudo-operation

N/A = not used

Mask = used for extended branch mnemonics

BLPAS1 Pointer — pointer to processing subroutine in

BLPAS1 for this pseudo-operation

BLPAS2 Pointer - pointer to processing subroutine in
BLPAS2 for this pseudo-operation

FIGURE 6=8, PSEUDO=OPERATION ENTRY FORMAT

6.1.9 Definition Table

The definition table is built in alphabetical order by
the analyzer from symbols in the symbol and system symbol
tables. During analyzer processing, line number, flags,
and count (number of references to symbol), are added. The
format of this table is shown in Figure 6-9.

6.1.10 Reference Tables

The reference table is built during analyzer processing.

The format of entries made in this table is shown in Figure
6—10.

6.,1.11 Undefined Table
The undefined table is built during analyzer processing.

The format of entries made in this table is shown in Figqure
6“110

Field Symbol | Qual | Flag | Line No. | Count

Byte No. 0==7 8 9 10=12 13-=15
Bytes 8 L 3 3
where:

Symbol = EBCDIC characters, left-justified with trailing
blanks

Qual - EBCDIC character (blank if no qualification
specified for symbol)

an undefined symbol (not printed)

a defined symbol (not printed)

a multiedefined symbol

a multi-redefined system symbol

any system symbol (an S§ flag, as such,
is not printed out)

= a redefined system symbol (printed out
as S)

Flag -

Ny 2OP
non o ouou

=
|

Line No. = line number of the assembly listing statement
in which the symbol is defined

Count - number of times the symbol is used in operands

FIGURE 6=9., DEFINITION TABLE ENTRY FORMAT

Field Peference Line No.

No. of Bytes 4 4

where:

Reference = address of the symbol®’s entry in the
Definition Table - or, if a symbol is undefined, an
undefined code that indicates an entry in the
Undefined Table.

Line No., = number of line in the assembly listing in
which the symbol appears in the operand field

FIGURE 6-10. REFERENCE TABLE ENTRY FORMAT

Undefined
Field Symbol | Qual | N/A Code Count
' Byte No. | 0-=7 8 9 10-12 13-15
Bytes 8 1] 1 3 3
where:

Symbol - EBCDIC characters, left-justified with trailing
blanks .

Qual = EBCDIC character

N/A = not used

Code - the undefined code is a sequential number,
beginning with one, assigned to undefined symbols as

they are discovered

Count = number of times the symbol is used in operands
FIGURE 6-11., UNDEFINED TABLE ENTRY FORMAT

6.1.12 Segment Table

The segment table is built and used by BLPAS1. If the
PUNCHC option is specified, it is written out on WORK1 at
the end of BLPAS1 and read in after completion of BLPAS2 and
BLANALYZ to allow copying of the compool to WORK1,

Each entry in the table corresponds to a PSEG segnam
statement. The format of entries made in this table is
shown in Figure 6-12,

Field Flag | Length | Name
Byte No., 0 1 2-7
Bytes 1) 1 6

where:

Flag — 0 = entry not used; 1 = segment waiting to be read;
2 = segment already read or in error; X°*FF° = end of table.

Length - length minus one (in characters) of segment
name (suitable for EX’ing CLC, etc.)

Name - segment name, left-justified with trailing blanks.

FIGURE 6-12, SEGMENT TABLE ENTRY FORMAT
6-9

6.2 ° INTERNAL DATA FORMATS

These records are built by BLPAS1 and placed in the
intermediate work file., They are read and processed by
both BLPAS2 and BLANALYZ.

6.2.1 Statement Record

Statements in canonical form are in the format shown in
Figure 6-13,

6.2.2 Ignore Statement Record

Ignore statement records are identical in format to
statement records except that their first character is #(X¢7B’)
and their length is accordingly one byte longer. The format
of a statement record is shown in Figure 6-13.

Ignore statement records are issued during BLPAS1 for
certain erroneous statements. BLPAS2 will not process these
records but they will be printed on the listing. The error
is indicated by a diagnostic record which precedes the ignore
statement record.

Comment records are in the format shown in Figure 6-14,

6.2.3 Diagnostic Record

The need for diagnostics necessitates a special recorxd
that is put out during BLPAS1. BLPAS2 presents these records,
as well as its own diagnostics, to a routine that will print
the diagnostic. The format of a diagnostic record is shown
in I'igure 6-15,

6.2.4 Literal Reference Records

Literal reference records are issued in BLPAS1 for
every statement containing a literal. The format of literal
reference records is shown in Figure 6-16.

LL=9

Field Li| Lo | Ly | Ly Symbol Operation | Operand=-Comments Cols. 72-80A
Byte No. 0 1 2 3 * * * *

Bytes 1 1 1 1 0-8 1=5 0-69]
where:

Lq — is the byte length of the entire record in binary (14 < L4 < 85)

L, — is the byte length of the symbol (0 < L; < n) where n is the number of
non=blank characters in the field

L3 = is the byte length of the operation code (0 < Ly < n)

Ly - is the byte length of the operand-comment field with all but one trailing
blank suppressed (0 < Lg < 69)

Note: In the fields foflowing Ly, * indicates a field of variable length and position.
Symbol - EBCDIC characters, left-justified with blanks suppressed
Operation Code = EBCDIC characters, left-justified with blanks suppressed

Operand.Comments = EBCDIC characters with all but two trailing blanks suppressed.
If a quote (°®) appears in the operand, the entire operand field is included

Cols. 72-80 = appear exactly as punched on the card. A noneblank in column 72 is
ignored

FIGURE 6=13. STATEMENT RECORD FORMAT

Columns 2-71 as
on original
Field * statement Columns 72-=80
Byte No. 0 1=70 71-79
Bytes 1 70 9

Note that the first character of this record is *(X+¢5C°).

FIGURE 6-=14, COMMENT RECORD FORMAT

Field > I Code Symbol
Byte No. 0 |1-4 5-12
Bytes - 1 4 8

Note that the first character of the record is °*(X¢7D*).

where:

Code = a four=-byte code identified with the diagnostic
message to be printed (see Subsection 6.4)

Symbol - the symbol will be printed along with the
diagnostic message, if a symbol is involved

FIGURE 6-=15. DIAGNOSTIC RECORD FORMAT

Field , = Dummy Name Source Length

Byte No, 0 1-8 9

Bytes 1 8 1

Note that the first character of the record is = (X*7E’).

where:

Dummy Name - an 8=character, left-justified name
assigned to the literal appearing in the next
statement

Source Length = a byte indicating the number of
characters that are used on the source card for
the literal

FIGURE 6=16. LITERAL REFERENCE RECORD FORMAT

6.3 ROUTINE INPUT/OUTPUT FORMATS

Length, SYM Type, Scale Factor, and Control are described
in the symbol table and are taken from the first element
(symbol or integer) encountered in the expression.

Location is the value of the expression.

Reloc ID Sign = a one if minus is associated with
relocatable symbol.

Reloc ID is either zero, if absolute expression, or
nonzero ID if relocatable,

Error type = this is set by bits in the following
manner. .

a. Bit 31 is set if expression is complexly
relocatable
b. Bit 30 is set if expression may be in error

6-13

. Coe Bit 29 is set if rest of statement cannot be

evaluated
d. Bit 28 is set if expression is partially evaluated
€. Bit 27 is set if expression is multi-defined

Exrror Count = this is a count of the numkber of diagnostics
issued for the expression.

Diagnostic = following the count are the diagnostics
issued (for description see ¢°*Diagnostic Record®?®).

6,3, 1 BLCONMOD Routine Format

a. Input

Input Loc = The address of the first character of
the data component

Ind Loc - The address of the last character of the
operand field

b. Output

On return from BLCONMOD, register 1 will contain the
address of a table which contains the following.

1. Address of 1st character in the value list
- one word. Normally will reference a (,
quote, or blank

2, Address of the last character of the value
list = one word. Illormally will reference
a), quote, or Ilank

3. Multiplicity = one word

4., Length of first element of constant in bits
= binary word

5. Total length of constant in bytes -~ binary
word

6. Type = one byte

Length of first element in value list in bytes
(=1) - one byte (value suitable for use in

EXecuting CLC, MVC, etc.)

Alignment code - one byte
byte

halfword

word

doubleword

W N =

Scale factor = cne byte
7. Error count - one word
8, Diagnostic code 1 - one word (right-justified)
9-10., Error symbol - two words
11. Diagnostic code 2 - orne word (righte-justified)

12=13. Error symbol - two woxds

BLCONVAL Routine Format
Input

The starting address of the multiplicity, type,
length and scale factor.

Output

This routine uses the set of values (multiplicity,
type, length, etc.) determined in BLCONMOD to
evaluate the constant list. The routine requires
that a general register contain the starting
address of the above values,

On return from BLCONVAL, another general register
will contain the address of a table containing
the following.

1. Address of the assembled constant = cne word

2, Length of constant (after padding, excluding
multiplicity) - one word

3. Error count = cne word
4, Diagnostic code = one word (right=justified)
5 Error symbol - two words

6.3.3 FROMD Routine Format
a. Input (Figure 6=17)
The symbolic name of this table is TABLEA.
b, Output (Figure 6-18)
The symbolic name of this table is TABLEA
6.3.4 FROMF Routine Format
a. Input (Figure 6-19)
The symbolic name of this is TABLEA,
b. Output (Figure 6-=20)
The symbolic name of this is TABLEA
6.3.5 BLEXVAL Routine
a. Input

Register 1 contains the beginning address of the
expression,

.b. Output

On return from BLEXVAL, register 1 has the address
of an output table and register 2 has the address
of the expression terminator. The output table
contains the following.

Word Contents Position
Woxrd O Location (value)
Word 1 Length '
Word 2 SYM Type
Word 3 Scale Factor
Word 4 Control righte=justified
Word 5 Reloc ID Sign 1st halfword
(0=plus, 1=minus)
Reloc ID 2nd halfword
(right=justified)
Word 6 Error Type right-justified
Woxrd 7 Error Count
Word 8 Diagnostic Code rightejustified
Word 9-10 Error Symbol left-justified
Word 11 Diagnostic Code 2

Word 12-13 Error Symbol 2 etc.

6-16

Contents SF E N Number

Byte No. 0 4| 8 | 12=35

Bytes 4 4 4 24

where:

SF = Scale factor, if specified, 0 < SF < + 14, ECach
unit of the scale factor shifts the fraction part of
the converted number 4 bits to the right and increases
the exponent by one.

E = Exponent (signed integer)

N = Number of characters to the left of the decimal

point. Algebraic sum of E and N must be <+ 76 and
> "'78:

Number = EBCDIC representation of the number to be

converted

FIGURE 6=17. FROMD INPUT TABLE ENTRY FORMAT

where:

Contents F Representation
Byte No. 0 4
Bytes 4 8
F - 0 = successful conversion
=1 = overflow
=2 = underflow

Representation = doublee-precision floatinge-point
representation of the value constant.

I'IGURE 6-18. FROMD OUTPUT TABLE ENTRY FORMAT

6-17

Contents L4 LZ SF| E N S Number

Byte No. 0 4 8 12| 16 | 20 21
Bytes 4 4 4 4 4 1 23
where:

Ly = length in bytes of the input number

Ly = length in bits of input number

SF = scale factor

E = exponent

N = number of digits to left of decimal point

S = sign of the input number

Number = input number in EBCDIC

FIGURE 6-=19, FROMF INPUT TABLE ENTRY FORMAT

Contents F L Binary Constant
Byte No, 0 2 4
Bytes 2 2 8

where:
F = indicates an abnormal condition
LE = invalid length or scale
IN - lost integer
FR = lost fraction
LT = low=order truncation of an integer
Bp - absence of flag indicating normal output
L - length in bits of binary constant

Binary Constant - binary representation of decimal number
specified by BLCONVAL

FIGURE 6-=20. FROMF OUTPUT TABLE ENTRY FORMAT

6-18

6.4 DIAGNOSTIC MESSAGES

Codé Messages

1 FIELD n HAS INVALID PUNCTUATION

2 FIELD n HAS INVALID CHARACTER FOUND

3 FIELD n HAS A SYMBOL OR NUMBER WHICH IS TOO LONG

4 * FIELD n HAS AN EXPRESSION WHICH IS LONG OR COMPLEX

5 (symbol) IS AN UNDEFINED SYMBOL

6 FIELD n HAS AN INVALID USE OF *

7 FIELD n IS INVALIDLY COMPLEX RELOCATABLE

8 FIELD n HAS A VOID EXPRESSION - POSSIBLE ERROR

9 FIELD n HAS BEEN TRUNCATED - POSSIBLE ERROR

10 FIELD n HAS A RELOCATABLE SYMBOL WHICH IS MULTIPLIED
OR DIVIDED ~

11 FIELD n HAS TOO MANY ELEMENTS IN AN EXPRESSION

12 (symbol) IS A MULTI-DEFINED SYMBOL

13 USE OF PRIVILEGED OPERATION CODE - POSSIBLE ERROR

14 FIELD n HAS AN EXPRESSION INVALIDLY TERMINATED

15 PSEUDO=-OPERATION IS MISPLACED = POSSIBLE ERROR

16 HALF-WORD ALIGNMENT HAS OCCURRED = POSSIBLE ERROR

17 FIELD n HAS A RELOCATABLE iN PLACE OF ABSOLUTE

18 FIELD n HAS AN ERROR IN LITERAL DEFINITION

19 DC SPECIFIED BUT NO VALUE LIST = POSSIBLE ERROR

20 FIELD n HAS UNUSED REGISTER SPECIFIED FOR DROP -
POSSIBLE ERROR

21 FIELD n HAS A REGISTER EXPRESSION RELOCATABLE OR
GREATER THAN 15

22 NO DBG CARD GENERATED = POSSIBLE ERROR

23 FIELD n HAS INVALID FORMAT SPECIFICATION = POSSIBLE
ERROR

6-=19

Code Messages

24 FIELD n HAS AN INVALID LABEL - POSSIBLE ERROR

25 FIELD n HAS AN INVALID INTEGER = POSSIBLE ERROR

26 FIELD n HAS AN INVALID ADDRESS = POSSIBLE ERROR

27 FIELD n HAS AN INVALID CONDITION SPECIFICATION -
POSSIBLE ERROR

28 FIELD n HAS AN ERROR IN REGISTER SPECIFICATION -
POSSIBLE ERROR

29 (symbol) NOT USED

30 ADDRESS.ON END CARD IN ERROR

31 FIELD n HAS AN INVALID EXPRESSION VALUE

32 NAME FIELD ON TITLE CARD INVALIDLY SPECIFIED =
POSSIBLE ERROR

33 ADDRESS IN USING IS IVALID

34 FIELD n HAS AN INVALID RLCGISTER FOR USING

35 INVALID OPERATION CODE = NOP GENERATED

36 FIELD n IIAS A NON-FLOATING POINT REGISTER SPECIFIED
= POSSIBLE ERROR

37 FIELD n HAS A NOI-EVEN REGISTER SPECIFIED = POSSIBLE
ERROR

38 FIELD n HAS ADDRESS WIICH IS NOT COVERED BY A USING

39 FIELD n HAS ADDRESS WHICH MAY BE ERRONEOUSLY ALIGNED
= POSSIBLE ERROR

40 FIELD n HAS ADDRDESS FOR WHICH BOTH AN IMPLIED AND
SPECIFIED REGISTER APPLY

41 FIELD n HAS SYMBOL WHOSE IMPLIED LENGTI IS TOO
LARGE ‘

42 FIELD n HAS A SHIFT AMOUNT WHICH IS LARGER TIIAN 64

= POSSIBLE ERROR

43 (symbol) CAUSED SY!MBOL TABLE TO OVERFLOW

6=-20

Code Messages

44 FIELD n HAS DPIVISION WHICH RESULTED IN ZERO QUOTIENT

45 RLD TABLE OVERFLOWED

46 (symbol) HAS NOT BEEN PREVIOUSLY DEFINED

47 'ERROR IN MODIFIER(S)

48 FIELD n HAS TWO CONSECUTIVE QUOTES AFTER SYMBOL X

51 ERROR IN VALUE LIST

52 FIELD n USING REGISTER 0 AS A BASE — POSSIBLE ERROR

53 FIELD n ATTEMPT TO USE NON-ZERO VALUE FOR REGISTER
ZERO -

54 FIELD n HAS A VALUE WHICH IS TOO LARGE

55 SYSTEM ERROR

56 TRUNCATION OF CONSTANT — POSSIBLE ERROR

57 INCOMPLETE SCALING — POSSIBLE ERROR

58 FRACTION HAS BEEN OMITTED IN FLOAT. PT. NUMBER
POSSIBLE ERROR

59 FLOATING=POINT CONSTANT IS TOO LARGE — POSSIBLE
ERROR

60 CONSTANT HAS BEEN ROUNDED AND TRUNCATED — POSSIBLE
ERROR .

61 EXPONENT IS INVALID

62 FIELD n HAS ENTRY WHICH IS NOT IN PROGRAM OR
COMUMON .

66 FIELD n HAS EXPRESSION WITH INVALID RELOCATABILITY

67 (symbol) SYMBOL SHOULD MOT APPEAR IN NAME FIELD

68 ATTEMPT TO DEFINE NEW CONTROL SECTION PREVIOUSLY

DEFINED = POSSIBLE ERPOR

69 (symbol) IS A DUPLICATE DEFINED ENTRY POINT -
POSSIBLE ERROR

Code

70

71
72
73
74
75
76
77

78

79

80

81
82
83
84

85

Mes sages

(symbol) IS A DUPLICATE DEFINED EXTRN - POSSIBLE
ERROR

START CARD MISSING — POSSIBLE ERROR

DOUBLE WORD ALIGNMENT HAS OCCURRED = POSSIBLE ERROR
ERROR IN DATA ITEM

CSECT TABLE HAS OVERFLOWED

LITERAL TABLE HAS OVERFLOWED

ENTRY TABLE HAS OVERFLOWED

LOCATION COUNTER HAS EXCEEDED MAXIMUM

(symbol) IS NOT DEFINED, PERHAPS BECAUSE OF SYMBOL
TABLE OVERFLOW

LITERAL CANNOT BE REFERENCED BECAUSE OF SYMBOL
TABLE OVERFLOW

FIELD n RESULTED IN A CONSTANT WHICH WAS TOO LARGE
= POSSIBLE ERROR

FRACTION PART LOST = POSSIBLE ERROR

VALUE SPECIFICATION MISSING = POSSIBLE ERROR
FLOATING=-POINT EXPONENT UNDERFLOW = POSSIBLE ERROR
VALUE EXCEEDS 24 BITS. RESULT WILL BE TRUNCATED

JOVIAL INPUT RECORDS MISSING - POSSIBLE TAPE ERROR

Comment on forced °¢END® card: END CARD SUPPLIED BY
ASSEMBLY®* %% % % % %

6.5 INPUT FORMAT

An assembly language source program consists of a sequence
of statements punched into cards. An assembly language
statement is composed of from one to four fields; starting
from left to right, they are: name field, operation field,
operand field, and comments field. The identificatione-
sequence field (columns 73-80) is not part of the statement.

There are five general rules that must be observed when
writing assembly language statements.

1, Every statement requires an operation field;
additional fields are optional.

2, The fields in a statement must be in order, and
they must be separated from one another by at least
one blank, which acts as the field delimiter.

3. Because a blank is used as a delimiter, the name,
operation, and operand fields must not contain
embedded blanks. However, a blank may occur
within a character self-defining value, a character
constant, or a character literal,

4, Column 72 should always be blank.

5. If a card is completely blank (or if there is no
operation field), it will be ignored by the
assembly program.

In the various examples and statement formats throughout
this publication, characters and words that may be written
in assembly language statements are printed in capital letters.
Some of these characters and words have special meaning to
the assembly program (e.g., instruction mnemonics); others
are representative examples of what might be written in
statements,

Specifications for the various fields are presented
in the following text.

6.5,1 MName Field

The name field is used to assign a symbolic name to
a statement. Other statements can refer to a particular
statement by its symbolic name. If a name is used, it
must start in the begin column of the statement and it
may occupy up to eight columns. The begin column is
normally column 1, but it may be changed by the use of an
ICTL assembly instruction., A name is always a symbol

6-23

and must conform to the rules for symbols. The following
example shows the symbol FIELD234 used as a name.

Name Operation Operand

FIELD234 DS CL200

If the begin column is blank, the assembly program assumes
that the statement has no name. The begin column is also used

to indicate that a card is a comments card (see Subsection
6.5.4)'

6.5.2 Operation Field

The operation field is used to specify a machine instruction
or assembly instruction. This field may start in any column to
the right of the begin column, provided that at least one blank
separates it from the last character of the name. The operation
field may contain anv valid mnemonic operation code. A valid
machine=instruction or assembly=-instruction mnemonic cannot
exceed five characters.

The following example shows the mnemonic code for the
compare instruction (RR format) used in a statement named
COMPARES.

Name Operation Operand

COMPARES CR 5,6

6.5.3 Operand Field

The contents of the operand field provide the assembly
program with information about the instruction specified in
the operation field. If a machine instruction has been
specified, the operand field specifies such program elements
as registers, storage addresses, immediate data, masks, and
storage-area lengths. For an assembly instruction, the
operand field conveys whatever information the assembly
program requires for the particular instruction.

.The operand field may begin in any column to the right
of the operation. field, provided that at least one blank
space separates it from the last character of the mnemonic
code, '

Depending on the instruction, the operand field may be
composed of one or more subfields, called operands, Fach
operand must be separated from another by a comma. (Remember
that a blank delimits the field; thus, blanks may not
intervene between operands and commas.) The two operands
in the following example specify general registers 5 and 6,

Name Operation Operand

COMPARES CR 5,6

6.5.4 Comments Field

Comments are strictly for the convenience of the
programmer. They permit lines of descriptive information
about the program to be inserted into the program listing.
Comments appear only in the program listing; they have no
effect on the assembled object program. 2Any valid characters
(including blanks) may be used as couments.

The comments field must appear to the right of the
operand field; at least one blank must separate the comments
from the last operand. 2n entire card can be used for
comments by placing an asterisk in the begin column. If
multiple lines of comments are desired, they must be written
as separate comments cards with an asterisk in the begin
colurin. See the example below.

Name Operation Operand 72

*THE ASTERISK IMN COLUMM 1 MAKES THIS A COMMENTS CARD { SHOULD
*THE ASTERISK IS PEQUIRED I!l LACH COMILNTS CIARD BL
COMPARES CR 5,6 1O ASTERISK NEEDED BLANK

" The programmer may use comments in instructions that do
not require the operand field to be specified. In instructions
where an optional operand field is omitted but a comments
field is to be provided, the absence of the operand field
must be indicated by a comma preceded and followed bv one or
more blanks. The next example illustrates this rule.

Name Operation Operand
END », THESE ARE COMMENTS
6.5.5 Identification=Sequence Field

The identificationesequence field is used for program
identification and statement sequence numbers. This field
occupies columns 73=80 of the input cards. If the field, or
a portion of it, is used for program identification, the
identification is punched in every statement card, The
assembly program, however, does not normally check this
field; it merely reproduces the information in the field on
the output listing of the program.

If the identificatione-sequence field, or a portion of
it, is used for statement sequence numbers, the numbers are
punched in ascending sequence in successive input cards. By
using the ISEQ assembly instruction, the programmer requests
the assembly program to verify the ascendlng order of the
numbers which he has punched.

6.6 OUTPUT LISTING FORMAT

If the LIST option is specified on the $BAL (or $JOV) control
card, a program listing is produced during Pass 2 of the
assembly. Every statement in the program is printed as a
separate line, unless the programmer makes use of the
suppress option. The programmer may suppress the listing
by omitting the LIST option from the $BAL (or $JOV) control card,
or part of the listing mayv be suppressced by using the
PRINT, SPE! (suppresses printing of possible error messages),
or NLIST instructions in the BAIL source program.

- Figure 6-21 contains a sample of program listing., Page
01 of the listing contains the information given in the TITLE
card and any comment cards following the TITLE card. Page 02
of the listing is an external symbol listing, containing
program name, type, ESD=ID number, location in storage, length
(in hexadecimal), and card identification. The actual program
listing begins on page 03. Each line of the program listing
contains the following fields.,

Code Field
F Flag
LOC Location
oP h
RR
Assembled output
B=DIS
B=DIS
>
ADDR1
Effective address of operands 1 and 2
ADDR2 J
LINE Line number
SYMBOL Symbol (BAL)
oP Operation code (BAL)
- OPERAND=COMMENTS Operand (BAL) and comments
IDENT Identification sequence

The relocation dictionary follows the program listing, and

" contains the ESD=-ID of the section where the address constant

was defined (ID-LOC);: the LESD=ID of the defined address constant
(ID=-DEF); the number of bytes of the address constant (LENGTH) ;
the sign of the address constant (SIGN): and card identification
(CARD IDENT). A crossereference listing follows the relocation
dictionary listing, and is, in turn, followed by a list of
undefined symbols (if any) and a summary of errors.

The fields of the program listing are described in the
following text.

[WAIN PROGRAN FOR JOB

VERSION 08/01/64 OATE 10/7A/64 PAGE 01

ASSEMBLY CONTAOL CARDS
]

Haln TITLE MAIN PROGRAM FOR JOB . SARPLOIO
° FIRSY PROGRAM BEGINS AT LOCATION 63536 SABPLUZO
nalM PROGRAM FOR JuR . ERVERNAL DICTIUNARY VERSION 0B/01/G8 OATL 10/26/04 PAGE 07
NAHE lvrei £30-10 LoCATION LENGTH CARD IDENT
RAINPR PROGRAM ol 010000 * 0001¢0 MAINOQO!
COMMON FE 000000 000348 HATNODO2
sr1 EXTRN 02 000000 ' MALNDOOY
SR2 EXTRN 09 000000 MAINO0O)
aguy EXTRN 1] 000000 : MAINOOO4
LINE ENTRY. [010000 RAINOOOS
[£14 31 ENTRY ot 010000 HAINOOOY
HALN ENTRY o1 . 010199 HALNOOOS
HAIN PROGRAM FCR JOB VERSION 08/01/64 DATE 10/28/64 FAGL 03
F LOC OP RR B-DIS A-DIS ADORL ADDRZ LENE SYMBOL 0P OPERAND-COMMEINTS 1DENT
N
010000 00001 MAINPR 3TARY X°10000°% ' SAMPLOIO
00002 ENTRY LINE,CSCTI MAIN.X SAMPLO4O
00000CSCT1 IS A MUL1I-DEFINED SYHBOL
00003 ERTRN SAL,3R2 SAMPLOSO
00004 o MAIN PAOCAAM SAMPLOLO
° 00009 15€Q SAMPLOTO
010000 09 €0 00006 €SCT1 BALR 14,0 SAMPLORO
X 010002 00007 USING 0,16 SAMPLOYO
010002 38 £0 € 176 010178 00000 L 15;0A(CONB) SAMPL10O
€10006 41 10 E OCF 010000 . 00009 La 1,LINE . SAMPLLIO
01000A 02 BY € OCE £ 03 010000 010040 00010 MYC LINE(16) BLANKS SAMPLIZ20
010010 02 0B € 008 0 000 01000A 00011 MYC LINEOLO(12),PHANE SAMPLL40
©0000PHAME IS AN UNDEFINED SYMBOL
010016 92 F1 € OCE 010000 00012 VL LINE,C?1Y SAMPL 150
010014 58 A0 [17A 01017¢ 00013 L 10,94(3R1) SAMPLLTO
01001C 035 04 00014 BALR 13,10 SAMPLLAO
010020 98 AC F 7€ ‘010180 00013 4 3Oy 12:0A15,COMBOL TADLEONENTRIES (SR2) SAMPLL9O
010024 05 0C : 00016 BALR 13,12 SAMPLZ00
010026 02 87 € OCE £ 03¢ 010000 010040 00OIT . HVC LINE(L36) ,BLANKS SAMPLZID
01002C 02 02 € 006 € 1BE 0L00DA 0l01%0 00018 MVC CINEOLO(D),oCoNODY 3AMPL220
A 010032 0A 1B 00019 £04 $YC SYSEOJ SAMPLID/
A 010034 07 00 00020 RERET CHOP 2,4
A 010036 38 E0 € 03A 01003C 00021 \ 14,8vsCT
A 01003A 05 DE 00022 BALR 13,14
A 01003C 000L017¢C 00023 $vsct 0C AloA(SRLD)
010040 00024 CNOP 0,4 SAMPL260
A 00025 PRINT NODATA,
010040 40604040406040404040404050604040 00026 BLANKS DC CLLGe 3AMPL270
00027 PRINT OATA,
010000 00028 CNOP 0,0 SAMPL280
010000 00029 LINC 0$ 150¢ SAMPLZ90
Q10166 D4CLCIV540070906CTOIC DA 00030 PNAME v C'MALIN PAOGRAM? SAMPLIOO
A

00031 TITLE UEFINE COMMON . SAMP

DCFINE COMHON

F LOC 0P RR B-DIS B-015

000000

LI
000000
A

ADDARLY ALDR2 LINE SYMBOL op OPERAND-COMMENTS 10ENT

000932 con sAMPLILO
600000 00033 Comd (1Y) L} SAMPLYZ?O

00034 o SAMPLE TARLE ENTRY CHMANGES WITH EACH ASSEMBLY

00035 TaABLE 03 iz SAMPLI50

00036 o VARIABLE NUMBER OF ENTRICS SAHMPL 360
000014 00037 MENTRIES QU 20 SAMPL 360

00038 TITLE STCOUND CSTCT SAMPLITO

VLRSION 08/01/04 DATE 10/728/66 PAGE 04

R S USRS W L

FIGURE 6=-21,

SAMPLE PROGRAM LISTING (SHEET 1 OF 3)

628

SECOML CstCT VERSION 08/01/64 DATL 10/20/66 FAGY 05
fLOC oF RR 8-013 B8-D1S ADURE A40URZ LINC SYMAOL OP OPERAND-COMMENTS ot 10ENT
00039 QuaL X SAMPL IR0
010198 00080 C3CT2 cyret SAMEL 390
. . . 0004) ORG MAINPR.4K'2000° SAMPLA00
0asooF ILLD 1 NAS C(XPRESSION WITH INVALID agLoCATABILITY
oto19e 03 €O 00042 MAIN BALR 12,0 SAMPL4A1O
- 010194 00043 USING »412 SAHPLE D
, 010194 47 00 0 000 00044 SWITCH NOP EXJT SAMPLA YN
sseaalRIT IS AN UNDEFINEU SYMRUL
01019€ 90 28 © 000 00043 STH 2,11, TEHP SAMPL 440
®e00sTEMP IS5 AN UNDIFINCD SYMAOL
00046 CATRN ROUT SAMPI &40
010142 58 UO € 184 01010C 00047 L 13, =A(ROVT) SAMPL4 GO
010146 05 (0 . 00049 BALA 14,13 SAMPLATO
010148 0000 00049 oc AL2UTABLE.) SAMPL4NO
C101AA 000008 - 00050 DC ALI(SRY.4B) SAMPLAYD
010140 00000074 00051 [\14 FLar A2 SAHPLY0U
010101 00
4900sHALF WORO ALIGNMENT HAS ODCCURRED - POSSIBLE (RAOR .
010182 %8 00 0 000 00052 L 13,=(ROUT) . SAMFLY10
vanadFICLO 2 HAS AN ERROR [N LITLRAL OEFINITION
€10186 05 €O 00053 BALRA 14,13, . SAMPL520
010188 0A 19 00054 EOPG SVC SYSRET, . SAMILY30
00055 $3€Q SAMP
00056 TITLE ADD 10 COMMON DECLARATION SAMPL
ADD T0 CUMMON DECLARATION VERSION 08/01/64 DAVE 10/28/64 PAGE 06
F LOC OP AR 8-DIS B-DIS ADORL AODRZ LINE SYHBOL 0P OPCRAND-CORHENTS 10CNT
€0000C 00057 com SAmMPL
€0000C 00058 . 03 200F Samp
00032¢C 00059 ENDYS 0s 2 SAMPL
000330 40, 00080 RECORD OC 20¢ 0 SAMPL
€00331 40
000332 40 .
.€00333 40
000334 40
€00)35 40 S
000336 40
C00337 40 .
000336 40
000339 40 .
Q00334 40
000338 40
00033C 40
£00330 40
00033E 40
0C033F 40
000340 40
000341 40 :
000342 40
000343 40 .
00061 TITLE ENO OF FIRST CSECT SAMPL
END OF FIRST CSECT VCRSIUN 0B/01/64 DAIf 10/28/64 PAGF Q7
F LOC OP RR B-DIS B-O[S ADORL ADOR2 LINE SYMBUL OP OPERAND- COMMENTS LDENT
: 00062 QUAL SAMPL
010172 00063 CSCTY (3114 Samp
®9000CSCTL IS A MULTI-DEFINED SYMBOL
00064 o DEFINC CONSTANTS SANP
oto172 00069 L10RG SAMP
010172 000€CC00CQ00
0.010178 000C0000 oc a(come)
0 01017¢ ochboocoq - [A(SRL)
0 010180 000C0C05CC000Q#00000000D {4 A5, COMDEL " TABLESNENTRIES SR2)
D G1018C 0COCCLOO oc - almoumn)
seaesROUT IS AN UNDEFINED SYMBOL
0 010190 C505C4 oc Crenpe
. -
ON CARD-ID MAINOOL) 00068 €04 DUMP ALPH,COMMON,COMB (TABLESL* TARLEONENTRIES SAmp
00067 SHITCH DUMPC MTXyCONDMP,X'10000,X*15000',3,10 ¢ SAmMp
@e00uF LELD 3 MAS INVALID PUNCTUATION .
eeoF [ELD 3 HAS AN INVALID ADORCSS - POSSIBLE ERROR
©e099NO DBG CARD GENERATED - POSSIBLE ERACR
ON CARD-1D RAINOOL4 00068 TRACE LOOPTR MAIN.R,EOPG, X Samp
00049 DUMPE MEXI,EMERG,HAINP® (EOPG Samp
e0aeof0PG IS AN UNOEFINED SYMBOL
FIELD & MAS AN INVALIO ADORESS - POSSIBLE ERROR
NO DBG CARD GENERATED - POSSIBLE ERRCR
€10193 01000 00070 END MAINPR SAMP
re
FIGURE 6-21, SAIPLE PROGRAM LISTING (SHEET 2 OF 3)

6=-29

END OF FIERST CSHCT RELUCATION DICTIONARY VERASION OR/OL/e4 DATE 10/2R/6A HAGC OA
LOCATICN 1D0-L0C F0-0LF LENCTH SIGN CARD IDENT,
01003¢C a1 ot) ° HAINDO LG U
010148 o1 £r 2 o HAINOD LG
010184 o1 a2] o HAINOD L6
010178 (1} fr L] . BAINDOLA
Q1017C (1} a? 4 . HAINOOLS
010184 o1 o 4 . MAINOD 18
gloies ot 03 a ' HAINOOLT
D OF FLRST CSCCT] SYHROLIC AEFERENCES VLASION OA/OL/¢4 DATE 10/28/64 PALE 09
FLAG DLFINED SYMBOL quat REFERENCES
00026 BLANRS 00010 00017
00033 conp 00008 00013 00066
[00006 cscr 00002 00063
0C040 cscr? X
00059 NuTe X . -
00019 oy 00066
00054 £0PG X 00068
00029 LINF 00002 60009 03010 60011 voo12 00017 00018
00042 naAtN X 00002 00068 .
00001 HAfNPR 00041 00069 00070
00037 NENTRIES 00015 0004¢ R
00030 PHAHE
00060 RICURD X
00020 RERET .
- 00046 ROUY X 00047 00052
00003 SRt 00013 00023 000350
00003 sa2 00018
00044 SHITCH X
3 00023 syscT 00021
SYSEQY 00019
SYSRETY 00054 -
00035 TaBLC 00013 00049 00066 00068
END OF FIRST CSECY UNDET INED SYMBOLS VEASIUN 08/01/64 DATE 10/28/68 PAGL 10
svnaoL Quat AEFERENCES
.
€006 00080
exty 1 00049
PHAHE 0001t
ROUT *
SHITCH 00067
TERP] 00043 .
END OF FIRST CSEC? VCASLON 0B/Q1/64 DAVE 1D/26/64 PALC 3

LEGEND FOR ¥LAG FITLOD - F ALAMING OF PLAG

SCQUENCE MO, OF STATEYEMT [3 ELQUAL YO OR SHALLER THAN PREVIOUS AND 1320 WAS REQUESTED.
SYATEMINT TRUNCATZO ON LISTING BECAUSE THE ENTIAT OPFAAND-COMMENT 7I1QLO COULD NUT FIT ON & LINC.
807N A IEQUINCE NO. ERAROR AND STATFRINT TARUNCATION OCCURACD ON THL LINE.

o
& DATA CONSTANT wWAS GENERATLO AS . RCSULT OF A LITERAL SPECIFICATION.

® o o e »

00TH STATCHENT TAUNCATION AND GINCAATED OC #OR LITEAAL MAVE OCCURRED.

L] AMALYIER 1HAS FOUND SYMBOL O BE MULTI-DEFINED

ANALYZER HAS POUND A SYSTLAM SYHROL MMICH uAS AI-D[HN(D'IN THE PROGRAR

R ANALYIGR HAS POUND A SYSTLHM 3YHMAOL WHICH I3 MULTI-REOLFINED

00009 POSSIBLE EARCRS - 00010 S€ALOQUS ERACRY
M PROGAAM CANNOT B EXECUTED

ASSEHBLY CCHPLETED. - UNSUCCESSFUL

LOADING MILL 8E SUPPAESSED. .
,_\/\/'_/'\-—w

FIGURE 6-21, SAMPLE PROGRAM LISTING (SHEET 3 OF 3)

6.6.1 F Field

The F field is usually blank, but may contain one of
the following alphabetic characters if the specified condition
exists (these flags apply to the program listing and do not
affect assembly of the program).

Flag Conditions
A Indicates an error in sequence numbers (sequencing

is checked only if an ISEQ request is made in the
BAL source program),

B Indicates an excessively long operand field (will
not fit on the line),

o

Indicates that both a sequencing error and an
excessively long operand field occur in the same
statement.

D Indicates a constant that has been generated by
a literal (printing of literals may be suppressed
by the PRINT instruction in the BAL source program),

F Indicates that both an excessively long_ operand
field and a constant generated by a literal occur
in the same statement.

M Indicates that the analyzer found a multi-defined
symbol,

S Indicates that the analyzer found a system symbol
which was redefined in the problem program. This
flag is for information only; it does not signal
an error.

R Indicates that the analyzer found a system symbol
which was multi-redefined

Whenever an entrv appears in the flag field, the
assembler automatically prints a legend for the flags at
the end of the listinc. See page 11 of the listing in
Figure 6-21.

6.€,2 10C Field

The LOC field corntains a sixe-character hexadecinal
representatior of the address assigned to the first byte
of the object code produced for the statement.

6.6.3 Assembled Output

The assembled output corntains the object code procduced
for the statement, This field is divided into four subfields.,

Subfield Contents
op A two=character OP code in hexadecimal.

RR A two-character subfield containing register and
length information, v

B=DIS The first base register and displacement (blank if
none) .

B=DIS The second base register and displacement (blank
if none).

6.6,4 OPERAND 1 and 2 Addresses

Subfield Conitents
ADDR1 Effective address of the first operand (blank if
: none) ,
ADDR2 Effective address of the seconc¢ operand (blank if
none) , '

For constants, 16 bytes are printed on each line. If
the constant requires more than 16 bytes, additional lines
are used to print it (unless a PRINT statement in the BAL
source program has suppressed the additional lines). Constants
that have a multiplicity greater than one require multiple
lines for printing.

6.6.5 LINE Field

The LINE field contains a numker assigned to each input
statement ky the assemkler. This line number is used by the
synbolic analyzer for identifying the location of symbol
definitions and references,

6.6.6 SYMBOI:, Field

The SYMBOL field contains the symbol appearing in the
same field of the BAL source statement., If there is none,
the field remains blank.

6.6.7 OP Field

The OP field contains the operation code appearing in
the operation field of the BAL source statement.

6.6.8 OPERAND=-COMMENTS Field

The OPERAND-COMMENTS field contains the operand and
contents of the comments field specified in the BAL source
statement.

6.6,9 IDENT Field

The IDENT field contains the contents of columns 73-30
of the BAL source statement, which are used by the SPT edit
program or for card identification and sequencing.

6.6.10 Cross=-Reference Listing of Symbols

When the ANALYZ option on the $BAL (or $JOV) control
card is specified, the symbolic analyzer is called to
produce a crosse-reference listing of all symbols used in
a program. This option forces generation of a program
listing. The NLISTed statements are not processed by
the BAL analyzer. Consequently, any multi-defined symhols,
system symbol redefinitions, etc. which occur in NLISTed
code will not be detected by the analyzer and the appropriate
flags will not appear in the listing., The crosse-reference
listing entitled ‘‘Symbolic Peferences,’® appears after the
relocation dictionary listing.

The symbolic analyzer is a part of the assembler, and
the use of this option requires at least one additional pass
to produce the crosse-reference listing. The listing gives
the line number of each symbol definition and the line numbers
of all statements that refer to the symhol. Multi-defined
symbols and redefined system symbols are flagged. A separate
listing of any undefined symbols ‘is printed after the symbol
listing. The symbolic analyzer can handle any number of
references, but if more than 255 undefined symbols occur,
only the first 255 are printed and a diagnostic message,
stating that there are unlisted and undefined symbols, will
be printed.

6.6.11 Diagnostics

The assembler prints a diagnostic message in the
program listing for errors discovered during processing
of a BAL source program. The diagnostic message(s) is
printed immediately after the erroneous statement. If
no LIST option was present on the $BAL card, or if an NLIST

6-33

is in effect for the erroneous statement, the assembler will
force printing of the statement and all unsuppressed diagnostics.
The asterisks that precede each message are for ease of
identification in the program listing,

6.7 OUTPUT CARD FORMAT

If the PUNCH option is used on the $BAL control card,
an object deck is produced by the assembler. The object
deck begins with a $OBJ control card and is followed by the
other cards described below.

The assembler may produce seven types of cards in the
object deck from the BAL source program: Text (TXT), External
- symbol Dictionary (ESD), Relocation List Dictionary (RLD),
rnd (END), Debug (DBG), Library (LIB), and Object ($OBJ).

The purpose and format of these cards are described in the
following text,

6.7.1 SOBJ Control Card

The S$OBJ control card is produced by the assembler and
placed at the beginning of the object deck. »Any object deck
used as input to the loader must be preceded by this card.,

6.7.2 ESD Card

The 9020 loader permits separately assembled programs
to be relocated, loaded, and executed together, These
assembled programs can be referred to each other and to
common storage. The ESD card makes it possible for one
program to refer to symbols defined in another program. The
ESD card contains the information necessary for the loader
to relocate the program and to assign addresses that werec
unknown at assembly time,

There are four types of entries on an LESD card. !More
than one type of entry can appear on a single card; each is
identified, and different information is supplied by the
assembler for each type. 72 maximum of three entries can
appear on one LSD card.

The following list shows the four types of entries and
describes the pertinent information that is filled in by
the assembler.

1. Program lName = The program name ISD card has
the same name as that supplied by the START card
in the compiler or assemhler source deck., There
will always be a program name I'SD card produced

6=34

by the assembler; if no program name was given,
the assemhler assigns the name of .NONAME. The
program name is always the first ESD entry, and is
assigned an identification number of 01 (LSD=ID).
In addition to the program name and ESD-ID number,
the ESD card included a code that identified the
entry as a program, the starting address assigned
by the assembler, and the number of bytes in the
program, There is only one program name card for
each assembly., The program name ESD may include a
code that indicates that the program is an overlay.
If so, the original or parent program must have
the same name and precede the overlay in the order
of loading.

Common Declaration - If the assembly (not produced
by JOVIAL source code) included a source BIL COM
card, an entry indicating a common declaration is
made on an LSD card., The information entered for
common storage includes an identifying code, a
starting address of zero, and the number of bytes in
common storage. Only one common declaration may

be made for a program, and the ESD entry is assigned
an arbitrary ESD=-ID of -255, Common storage may

be used by every subprogram in the same job load
which has a comnon declaration.

External Symbols = Ixternal symbols are symbols
(addresses) which are not defined in the same
program that refers to them. They are made known

to the assembler by means of the EXTRN pseudo=
operation., Fach external symbol, as it is discovered
by the assembler, is assigned a sequential ESD=-ID
number from 02 to 254 (01 is reserved for the
program name and 255 for common storage; separate
CSECTs not defined by the starting address of the
program are assigned ISD=ID numbers but do not of
themselves produce ESD cards of aay type). This
number is punched in the DSD card, together with the
symbol, and an address of zero. To conserve space,
only the first ISD=-ID is punched on the card. The
loader adds 1 to the first I'SD-ID to make the second
LSD=ID, etc.

Fntry Points = Entry points are symhols (addresses)
that are defined in one program and can he rcferred
to by LXTRlls in another program. They are ma:dlce

known to the assenbler by the ENTRY pseudo=-operation,
The entry symbol, a code identifying it as an entry
point, and the address at which it was asscnbled are
punched in the I'SD card. lio 1ISD=ID numbers are given
to entry points.

llote:

On an ESD card, all fields are hexadecimal, unless

otherwise noted, and appear in I'BCDIC card code. See the
IBM System/360 Reference Data Card, :X20-1703-5,

Column

13=-14
15=-16

17-=24

25

The format of an ESD card is as follows.

Content

12=2=9 multiple punch (identifies this as a card
acceptable to the loader).

ESD (identifies type of load card).

Blank.

Checksum, (If two blanks, checksum is ignored.)
lumber of bytes of text to be loaded from card:

if card contains one symbol, 16 (12=0-1-=8=9 and
12=11=1=8-9 multiple punches; in hex, 0010);

if card contains two symbols, 32 (12-0-1-80-9 and
11-0-1-8-9 multiple punches; in hex, 0020);

if card contains three symbols, 48 (12=0-=1=3-9
and 12-11=0=-1=8=9 multiple punches; in hex, 0030).

Blank.

ESD=ID number of program name (01 or in hex, 0001)
or first external symhol on card (02-254 in hex,
0002 = O0OFE) (blank, if all symbols are entry
points) .,

lame of fixst symbol on card (1-3 alphameric
characters in EBCDIC, left-justified). Blank if
common declaration, ‘

Number identifying type of synbol:

00 (12=-0-1-8-9 multiple punch, if program name) ;
01 (12=-2=9 multiple punch, if external svmbol);

OA'(12—2-8-9 multiple punch, if common declaration);

0B (12-3=8-9 multiple punch, if entry point in
common storaaqe).

Column

26-28

29

30-32

Mote:
card.

Content
If program name, assembler-assigned address of
the first byte of theé program. If entry point,
assembler-assigned address of entry point.

If external symbol or common storage:

zeros (12=0=1=8=9 multiple punches in all three
columns)

Blank.

If program name, number of bytes in assembled program,
If entry point, ESD-ID.

If external symbol, blank

If common declaration, number of bytes in common
storage.

Columns 33=71 are blank if only one symbol is on the
Columns 33-48 are used for the second symbol; columns

49=-64 are used for the third symbol.

Colunn

33=40
(49-56)

41
(57)

42-44
(58=60)

Content
Name of second (thirdy symbol on card

(1-8 alphameric characters, in EBCDIC, left-justified,
blank if common declaration).

Number identifying type of symbol:

01 (12=1=9 multiple punch, if entry point,

02 (12=2-9 multiple punch, if common declaration)
0A (12=2-8-=9 multiple-punch, if cormon declaration)

0B (12=-2=8=9 multiple punch, if entry point in
common storage)

If entry point:
assembler-assigned address of the entry point.

If external symbol or common storage, zeros
(12=0-1=8=9 multiple punches in all three columns),.

Column Content

45 Blank.,

(61)

46-48 If entry point or external symbol blank.

(62-~64).
If common declaration, number of bytes in common
storage,

65=71 Blank.

72 If name, of original program, blank,

If name of overlay program, any numeric punch,
73-80 Card identification,
6.7.3 TXT Card

The TXT cards contain the actual text of the object
program, Each gives the address of the first byte of text
to be loaded from the card, the number of bytes that the
card holds, and the text itself., The last of these is a
variable field that may contain up to 56 bytes of information
in EBCDIC.

Note: On a TXT card, all fields are hexadecimal, unless
otherwise noted, and appear in L[BCDIC card code. See the
IBM System/360 Reference Data Card, ¥20-1703=5,

The TXT card format is as follows.

Column Content

1 12=2=9 punch (identifies this as a card acceptable
to the loader).

2-4 TXT (identifies type of load card).
5 Blanlk,
6-8 24-bit assembled address of first byte of variable

field to be loaded from card.
9-10 Checlisum, (If two blanks, checksum is ignored.)

11=-12 Mumber of hytes of information in the variable
field. (Columns 17-72)

Column Content
13=-14 Blank.

15-16 01 or 255 - ESD=-ID number (255 is assigned by the
assembler to text in common storage). In hex,
0001 or OOFF,

17-72 Variable field (up to 56 bytes of object program
text in EBCDIC to be loaded).

73=80 Card identification.

6.7.4 RLD Card

Most relocatable addresses can be automatically relocated
by changing the contents of the base register (the displacement
remains constant). RLD cards must be provided to enable the
loader to relocate address constants. These cards indicate
to the loader those address constants that will have to be
changed if the program is relocated. There are three variables:
the assembler address of the address constant; the location of
this assembled address (whether it is in the program or in
cormmon storage), called the position header; and the identity
of the symbol whose relocated address must be filled in, known
as the relocation header. The postion header will be 01, if
the address constant is in the program, or 255, if it is in
common storage. The relocation header will be 01, if the
symbol is defined within the program. If the symbol is defined
by an EXTRN, the relocation header will be the identifying
ESD=ID number assigned to the symbol by the assembler. If
the symbol is defined in common storage, the relocation header
will bhe 255, ‘

LDach RLD entry on the card identifies four items: the
relocation header, position header, a flag, and the address
of the constant. The flag is coded to specify: (a) the lenath
(one to four bhytes) of the address constant, (bh) whether to
add or subtract the relocation factor, and (c) a continuation
code., The continuation code informs the loader that either
the next constant (following the current constant) on the
card has a new relocation header, position header, flag, and
address; or that it has the same rclocation leader and position
header as the previous one, and thercfore consists only of
a flag and addrcess.

‘Consider the following example.

PROG1 START 7 ¢800°
ENTRY PROG1A
PROG1A LR 14,15
ADCOMN1 rc A(PROG1A)
ADCON2 DC D (PROG2)
ADCON3 DC 2 (PROG2+8)
ADCOlI4 nc M{G-PLOGZ)
ADCONS DC I (8=PROG1R)
D

Assume that PROG1 is assembled at hexadecimal location
800, PROG1 will have an FESD-ID of 01, since it is a program
name, PROGI1A is an entry poirt and is assumed to ke assenbled
at location 880, PROG2 is an external symhol and has an
ESD=ID of 02. Under these conditions, the assembler will
assign the address constant ADCON1 a value of 880 and the
address constant ADCON2 a value of 0, since 2DCON2 contains
the address of the external symbol. The assembler will
assign both ADPCON3 and ADCOLA4 the displacement value +8,
since the value of the external symbol is assumed to bhe zero
during assembly., ADCONS would ke assigred a 4-byte negative
value of the difference of 8-=380 (hecadecinal 878). In the
RLD, the postion header for all address constants will be
01. The relocation headers will be 01 for ADCONT1 and ADCCNG:
02 for ADCON2, ADCON3, and ADCON4, At load time, if PROG1
werc loaded at 900 (the relocation constant thus Lkeing +100)
and PROG2 were loaded at 2100, the value of ARCON1T would he
increased by 4100 to become 980, The value of ADCON2 would
be +2100; 2ADCCN2 would be +42108; ADCON4 would be =20F8;
ADCOKNS5 would he =978,

6=40

Note: On an RLD card, all fields are hexadecimal, unless
otherwise noted, and appear in EBCDIC card code. See the
IBM System/360 Reference Data Card, X20-~1703=5,

Column Content

1 12=2=9 multiple punch (identifies this as a card
acceptable to the loader).

2=4 RLD (identifies the type of loader card).

5-8 Blank.

9-10 Checksum. (If two blanks, checksum is ignored.)

11-12 Number of bytes of information that follow.

17-18 Relocation header: ESD=ID number of the symbol

referred to in the DC statement if defined by an
EXTRN; 01 if defined within the program.

19=20 Position header: 01 if address constant is in
the program; 255 if in common storage. (In hex,
0001 or OOFF.)

21 Flag field: indicates the length of the address
constant, whether the relocation constant should
be added to or subtracted from the address constant,
and whether another address constant follows the
current one for this RLD euntry. (Tables 6-=1 and
6-2 show the information to be punched in this
column depending on whether the continuation flag
indicates the same or a new relocation header/
position header combination for the next item,
respectively.,)

22=24 Address of the address constant,

Note: If needed, 4-column fields in the same format as
columns 21-24 may be subsequently repeated in columns 25

and following provided they have the same relocation

header /position header combination. The format matches

that of column 21-24 and the continuation flag for all of
the 4-column fields except the last will be a Table 6-1

type flag. When a Table 6-2 type flag is found at any
point, it means that either an 8-column field, in the format
of columns 17-24 will be found next beyond the current field
or that this is the last field on the particular RLD card.

TABLE 6-1.

RLD=FLAG FIELD-SAME HEADER

Length of _

Address Relocation Constant Relocation Constant To
Constant To Be Added To Be Subtracted From
In Bytes Address Constant Address Constant

EBCDIC | Hexadecimal EBCDIC Hexadecimal
Card Punch | Equivalent Card Punch | Equivalent

1 Byte 12=1=9 01 12=3=9 03

2 Bytes 12=5=9 05 12-7=9 07

3 Bytes | 12-1-8-9 09 12-3-8-9 0B

4 Bytes 12=5=8=9 oD 12=7-8=9 oF

TABLE 6=2, RLD=FLAG FIELD-NEW HEADER
Length Of

Address Relocation Constant Relocation Constant To
Constant To Be Added To Be Subtracted From
In Bytes Address Constant Address Constant

EBCDIC Hexadecimal EBCDIC Hexadecimal
Card Punch | Equivalent Card Punch | Equivalent

1 Byte 12=0-1=8=9 00 12=2-9 02

2 Bytes 12=4-9 04 12=6=9 06

3 Bytes 12=8=9 08 12=2=8=9 0A
4 Bytes 12=4=-8=9 0cC 12=6=8=9 (1}ol

6-42

Example: A given RLD card has a Table 6-=1 flag in column
21. This means that a 4-column field begins in column 25.
Upon examining column 25, a Table 6-=2 flag is found. The
address in columns 26-28 has the same header combination as
that in columns 22-24, but an 8-column field begins in column
29 and the continuation flag will be in column 33. Suppose
column 33 has a Table 6-1 type flag. This means that a
4=-column field will begin in column 37. Now suppose that
the field from column 37-40 is the last field on the card.
Therefore the flag in column 37 must contain a Table 6-2
type flag.

6.7.5 END Card

The END card marks the conclusion of any object deck.
The END card is prepared by the assembler from the information
entered on the source program END statement. It may also
designate the first executable instruction of the job by
referring to the symbolic name or the assembled address of an
instruction., If the symbol in the END statement is defined
by an EXTRN, the assembler punches the alphanumeric symbol
on the loader END card (Type 2); otherwise, the assembled
address is punched on the loader END card (Type 1).

The three formats for the END card are listed in the
following text.

Note: On an END card, all fields are hexadecimal, unless
otherwise noted, and appear in EBCDIC card code. See the
IBM System/360 Reference Data Card, X20-1703-=5,

6.7.5.1 Type 1 END Card. The following format is used
when the END card designates the hexadecimal address of the
first executable instruction.

Column Content

1 12=2=9 punch (identifies this as a card acceptable
to the loader).

2-4 END (identifies type of load card).

5 Blank

6-8 24-bit assembled address of first executable

instruction. (It must occur within the program
terminated by the END card. It need not appear
in the ESD.)

9-14 Blank

6=43

Column Content

15-16 - ESD=ID number (must be 01 or 255).
17=22 Blank,
73-80 Card identification.

6.7.5.2 Type 2 END Card. The following format is used where
the END card designates the symbolic name of the first executable
instruction., ’

Column Content
1 - 12=2=9 punch (identifies this as a card acceptable

to the loader).

2-4 END (identifies type of load card).
5-16 Blank.
17=24 Symbolic name of first executable instruction

(alphameric, left-justified within the field).

The symbolic name must be defined on an ESD card

as an entry point or program name somewhere in

the job load. It need not be defined in the
particular object deck that the END card terminates.
For example, an END card terminating PROG1 may
designate PROG2 or an entry point in PROG2 providing
PROG2 is within the same job load.

73-80 Card identification.

6.7.5.3 Type 3 END Card., The following format is used if
the END card does not designate a hexadecimal address or a
symbolic name as first executable instruction.

Column Content

1 12=2=9 punch (identifies this as a card acceptable
to the loader).

2=4 END (identifies type of load card).,
5=72 Blank.,
73-30 Card identification.

6-44

6.7.6 DBG Card

The DBG card requests execution-time debugging, and is
produced from the programmer®s symbolic (BAL) debugging
request, As prepared for inclusion at assembly time, the
debugging requests are coded in BAL (described in the
publication IBM 9020 Data Processing System: Debugging System
User®s Manual (DEBUGG) and are translated by the assembler
into loader language. '

6.7.7 LIB Card

The LIB cards are used to place compiled JOVIAL programs
and/or routines on the library tape. If the compiler output
contains a statement which specifies that the program or routine
is to be placed on the library tape, the assembler produces
the LIB card. The LIB card is further described in the
publication Library Edit User®s Manual,

6.7.8 XREF Deck

Three types of cards may be produced by the assembler in
the XREF punched deck: an XRF header card (.XRF3), an XRF
symbol card (.XRF4), and an XRF trailer card (.XRF7). The
purpose of these cards is described in the following text;
the formats are described in the Subprogram Design for the
Compool Reference Matrix Program {(XREF).

6.7.8.1 +XRF3 Card. The XRF header card contains the name
of the program for which the XRF deck was punched. It informs
the XREF subprogram that an XRF deck follows.

6.7.8.2 .XRF4 Card. The XRF symbol card contains the
program name and up to eight compool data names and/or library
routine names referenced by the assembled program.

6.7.8.3 .XRF7 Card. The XRF trailer card contains the
program name and the count of the number of compool data names
and library routine names referenced by the assembled program,
This card informs the XREF Subprogram that the XRF deck has
been completed.

6.8 COMPOOL FORMAT

The assembler reads the ¢‘Reserves®® portion of a compool
as contained on a standard compool or MLC tape. See the
Utility NOSS Monitor User®s Manual (UTILITY) for the format
of a compool or MLC tape. See the Subprogram Design Document
(SDD) Compool Edit Program (CMPEDT) for the format of the
compool file on these tapes._

6-45

7.0 RESTRICTIONS, LIMITATIONS, AND ASSUMPTIONS

The BAL assembler, as herein documented, is designed to
operate as a System Processor under the NOSS Monitor. It
interfaces with the NOSS Monitor, and assumes that the minimum
NOSS hardware configuration, in addition to anything detailed
in this SDD, will be available.

The BAL Assembler is also designed to interface with the
JOVIAL Compiler and the JOVIAL Compool.

