
--

Principles of Operation

- - -- ------- - - --- - - --- --- --- ---- _ ___._ - - - ---- - - - - --- ------- ---·-
8100 Information

System

GA23-0031-4
File No. 8100-00

Fifth Edition (March 1984)

This is a revision of, and obsoletes, GA23-003 J-3. The changes include both
technical and editorial clarification to improve accuracy and usability of the
publication, and are indicated by a vertical line in the left margin. Changes are
continually made to the information herein; before using this publication in
connection with the operation of IBM systems, consult the latest IBM System/370
Bibliography, GC20-001. for the editions that are applicable and current.

It is possible that this material may contain reference to. or information about,
IBM products (machines and programs), programming, or services that are not
announced in your country. Such references or information must not he construed
to mean that IBM intends to announce such IBM products, programming, or
services in your country.

Publications are not stocked at the address given below; requests for IBM
publications should be made to your IBM representative or to the IBM branch
office serving your locality.

A form for reader's comments is provided at the back of this publication. If the
form has been removed, comments may be addressed to IBM Corporation,
Department 52Q, Neighborhood Road, Kingston, New York 12401. IBM may use
or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation whatever. You may, of course, continue to use
the information you supply.

@Copyright International Business Machines Corporation 1979, 1984

Preface

The IBM 8100 Information System provides a coordinated set of information
processing equipment. The logical structure of the 8100 system, including the
processing and control element (PCE), is unique and permits several levels of
performance with the preservation of program compatibility.

This publication provides, for reference purposes, a detailed definition of the
machine functions performed by the PCE within an IBM 8100 Information
System processor. For purposes of this publication, the PCE is defined as the
logical entity that is the controlling center of the system. Additional definitions
are included in Chapter 1 and in the Glossary.

The manual describes each function to the level of detail that must be understood
to prepare a program that relies on that function. It does not, however, describe
all the notation and conventions employed in preparing such a program; for this
information, the user must instead refer to the appropriate assembler language
manual, such as IBM 8100 DPPX Assembler Programming: Language Reference
and Guide, SC27-0412.

The information in this publication is provided principally for use by assembler
language programmers, although anyone concerned with the functional details of
the IBM 8100 Information System processors will find it useful.

This manual is written as a reference document and should not be considered an
introduction or a textbook for the IBM 8100 Information System. It assumes the
user has a basic knowledge of data processing systems and, specifically, the IBM
8100. Such basic knowledge can be derived by selecting the appropriate hardware
and/ or software publications from the IBM 81 OO's system library.

All facilities discussed in this publication are not necessarily available on every
processor model in the IBM 8100 system. Furthermore, in some instances the
definitions are structured to allow certain extension capabilities to be described
even though they are not offered on any currently available processor model. An
example is the provision for the number of bits in an adjunct register. The
allowance for this type of extension should not be construed as implying any
intention by IBM to provide such capabilities. Appendix G provides a summary
of processor-specific parameters and functions identified as such within this
manual. For information about the characteristics and availability of features on
a specific processor model, refer to the appropriate publications for that model.
The availability of features on processor models is summarized in An Introduction
to the IBM 8100 Information System, GA27-2875.

Although processor models of the IBM 8100 system may differ in implementation
and physical capabilities, logically they are compatible. That is, within the
limitations described below, any program gives identical results on any model.

Preface iii

iv

The compatibility rule has four limitations:

1. The system's facilities used by the program should be the same in each case.
For example, the optional processor features and the storage capacity, as well
as the quantity and type of input/ output equipment, should be equivalent.

2. The program should be independent of the relation between instruction
execution times, input/ output data rates, storage access times, and elapsed
time values.

3. The program should not depend on functions identified in this manual as
processor-model dependent, on operations explicitly not defined, on results
defined to be unpredictable, or on special-purpose functions that are not
described in this manual.

4. The program should not use or depend on reserved fields unless they are
explicitly made available for program use. Additionally, the program should
not be designed to cause interruptions by means of format errors, such as the
use of undefined operation codes.

The information presented in this manual is grouped into 10 chapters and several
appendixes. The 10 chapters are organized in three parts: Part I, the first chapter,
is an overview description of the processing facilities provided by the IBM 8100
system. Part II consists of the next four chapters and pertains to functions that
are useful to all assembler language programmers. Part III, the last five chapters,
contains information normally used by programmers who develop or maintain
supervisory-type programs.

Part I. Overview

Chapter 1, Introduction to the Logical Structure, describes the processing
facilities available with the IBM 8100 Information System. It summarizes the
information provided in the remaining nine chapters.

Part II. Information Processing Facilities

Chapter 2, Storage and Registers, describes how the program refers to
instruction-operand information in main storage or a general register.

Chapter 3, Program Execution, explains the role of instructions and their formats
in program execution. It provides a detailed description of sequence of the
instructions and storage references. Program exceptions and the action taken by
the PCE as a result of these exceptions are also described.

Chapter 4, General Instructions, describes in detail the instructions available to all
programs for general use.

Chapter 5, Floating-Point Instructions, describes in detail the instructions
provided with the floating-point feature. Program exceptions relating to
floating-point operations are also described in this chapter.

Part III. Supervisory Facilities

Chapter 6, Register Organization, explains the organization and use of the groups
of register sets available to the program, and contains the descriptions of the
instructions for retrieving or storing information in any register set.

Chapter 7, Dynamic Address Relocation and Translation, explains the operation
of the machine facilities, including dynamic address relocation and dynamic
address translation, that ease the task of controlling the allocation and use of main
storage. The instructions used to manipulate the translation table are also
described.

Chapter 8, Input/Output Operations, explains the programmed control of J/O
devices by the channel and by the PCE. It includes detailed descriptions of the
I/ 0 instructions and other I/ 0 control formats.

Chapter 9, PCE Control, describes in depth the facilities for the switching of
system status, for protecting the system against the unauthorized modification of
system status, for defining a relative processing priority among programs, and for
temporarily disallowing the processing of one or more programs. It deals
specifically with PCE states, program modes, the program status vector, the
floating-point status vector, priority levels, control vectors, interruptions, and the
dispatching mechanism. It includes the detailed descriptions of the instructions
available for reading or altering PCE status information, and for directly
controlling certain attached system facilities.

Chapter 10, Dual-Mode Processing, describes the differences between processors
containing one PCE and processors containing two PCEs. It also describes
dual-mode processing and how it is implemented in those models that contain two
PC Es.

Preface V

Prerequisite Publications

Corequisite Publications

Related Publications

vi

The Appendixes include:

Lists of the instructions arranged in several sequences (App A)

Explanation of assembler language notation used in this manual (App B)

Summaries of instruction operations and result conditions (App C)

List of instruction formats arranged by operation code (App D)

Summaries of important formats (App E)

Summary of permanently assigned register sets (App F)

Summary of processor-specific functions (App G)

Table of the powers of 2 (App H)

Tabular information helpful in dealing with hexadecimal numbers (App I)

An EBCDl C chart (App J)

Information about number representation (App K)

A glossary of important terms used in this publication is provided at the back of
the manual, preceding the Index.

Primarily because the manual is arranged for reference purposes, certain words
and phrases appear, of necessity, earlier in the manual than the principal
discussions explaining them. The reader who encounters a problem of this sort
should refer to the Index, which will indicate the location of the key description
for the word or phrase concerned.

An Introduction to the IBM 8100 Information System, GA27-2875

IBM 8130 Processor Description, GA27-3196

IBM 8140 Processor Description. GA27-2880

IBM 815 0 Processor Description, GA23-0122

IBM 8100 DPPX Assembler Programming: Language Reference and Guide,
SC27-0412

IBM 8130 and 8 I 40 Processors Operator's Guide, GA27-3197

IBM 8150 Processor Operator's Guide, GA23-0123

Contents

Chapter 1. Introduction to the Logical Structure 1-1
Logical Structure 1-1
Information Formats 1-3
Main Storage Addressing 1-5
Registers 1-5
Instructions 1-6

Operands 1-7
Operation Classes and Instruction Formats 1-8

Register-to-Register 1-8
Register-and-Immediate 1-11
Register-and-Storage -Address Generation 1-12
Sequencing 1-14
Storage-to-Storage 1-14

General Instructions 1-15
Data Movement 1-15
Fixed-Point Arithmetic 1-19
Logical Operations 1-20
Sequencing 1-22

Floating-Point Instructions 1-23
Program - Environment Definition 1-24
Dynamic Address Transformations 1-26

Logical Addressing of Main Storage 1-27
Dynamic Address Relocation 1-27
Dynamic Address Translation 1-32

Register Organization 1-41
Principal Registers 1-41
Adjunct Registers 1-41
Floating-Point Registers 1-41
Access to Register Groups 1-41

PCE Control 1-41
Priority Levels 1-43
Interrupt Requests 1-45
Priority Level Dispatching 1-45
Interruption Action 1-46
Instructions for PCE Control 1-47

Input/Output Operations 1-47
Programmed 1/0 Operations 1-47
Channel 1/0 Operations 1-49

Chapter 2. Storage and Registers 2-1
Information Units 2-1
Main Storage 2-2

Addressing 2-2
Integral Boundaries 2-2

General Registers 2-3
Floating-Point Registers 2-9

Chapter 3. Program Execution 3-1
Instructions 3-1

Operands 3-1
Instruction Formats 3-2

Register Operand Specification 3-2
Immediate Operand Specification 3-4
Storage Operand Specification 3-4

Address Generation 3-4
Base Address 3 .. 4
Displacement 3-5

Execution of a Program 3-7
Program Status Vector 3-8
Floating-Point Status Vector 3-8
Instruction Execution 3-8

Branching 3-8
Introduction of a New PSV 3-10
Interruptible Instructions 3-10

Sequence of Storage References 3-10
Instruction Fetch 3-11

Contents vii

viii

Storage-Operand References 3-11
Storage-Operand Fetch References 3-11
Storage-Operand Store References 3-12
Storage-Operand Update References 3-12

Program Exceptions 3-12
Types of Ending 3-13
Exception Information 3-14
Program Exception Conditions 3-14

Specification Exception (code 0) 3-15
Access Exception (code 1) 3-17
Operation Exception (code 2) 3-18
Separation Exception (code 3) 3-19
Address Exception (code 4) 3-19
Register-Indirect Exception (code 5) 3-20
Fixed-Point-Overflow Exception (code 6) 3-21
Floating-Point Exception (code 7) 3-21

Handling of Multiple Program Exceptions 3-21

Chapter 4. General Instructions 4-1
Data Formats 4-1
Fixed-Point Numbers 4-1
Extended Fixed-Point Numbers 4-3
Instruction Descriptions 4-5

Instruction Name 4-6
Assembler Language Statement 4-6
Machine Instruction Format 4-6
Operation 4-7
Description 4-7
Result Conditions 4-9
Program Exceptions 4-9

Instructions 4-10
ADD (byte, register) 4-10
ADD (byte, register-immediate) 4-11
ADD WITH CARRY (byte, register) 4-11
ADD (halfword, register) 4-12
ADD (halfword, register-immediate) 4-13
ADD WITH CARRY (halfword, register) 4-14
ADD WITH CARRY (halfword, register, extended) 4-14
AND (byte, register) 4-16
AND (byte, register-immediate) 4-17
AND (halfword, register) 4-17
BRANCH AND LINK 4-18
BRANCH AND LINK (register) 4-19
BRANCH ON CONDITION 4-20
BRANCH ON CONDITION (register) 4-21
BRANCH ON COUNT (byte, register) 4-23
BRANCH ON INDEX (byte) 4-24
CALL PSV 4-25
COMPARE (byte, register) 4-26
COMPARE (halfword, register) 4-27
COMPARE WITH CARRY thalfword, register, extended) 4-28
COMPARE LOGICAL (bytes, storage) 4-29
COMPARE LOGICAL (halfwords, storage) 4-31
COUNT LEADING ZEROS (halfword) 4-33
DIVIDE (halfword, register) 4-34
EXCLUSIVE OR (byte, register) 4-35
EXCLUSIVE OR (byte, register-immediate) 4-36
EXCLUSIVE OR (halfword, register) 4-36
JUMP ON BIT ZERO (halfword) 4-37
JUMP ON CONDITION 4-38
LOAD ADDRESS 4-39
LOAD (byte) 4-40
LOAD (byte, with index) 4-41
LOAD (byte, with index decremented) 4-41
LOAD (byte, with index incremented) 4-42
LOAD (byte, register) 4-43
LOAD (byte, register-immediate) 4-44
LOAD (halfword) 4-44
LOAD (halfword, short form) 4-45
LOAD (halfword, with index) 4-46

LOAD (halfword, with index decremented) 4-46
LOAD (halfword, with index incremented) 4-47
LOAD (halfword, register) 4-48
LOAD (halfword, register, lower half from upper) 4-48
LOAD (halfword, register, upper half) 4-49
LOAD (halfword, register, upper half from lower) 4-49
LOAD (halfwords, quadrant) 4-50
LOAD (word) 4-51
MOVE (bytes, storage) 4-52
MOVE (halfwords, storage) 4-54
MULTIPLY (halfword, register) 4-55
OR (byte, register) 4-56
OR (byte, register-immediate) 4-57
OR (halfword, register) 4-58
PROGRAM EXCEPTION 4-58
ROTATE LEFT (byte) 4-59
ROTATE LEFT (halfword) 4-60
SHIFT LEFT (byte, logical) 4-61
SHIFT LEFT (halfword, logical) 4-62
STORE (byte) 4-63
STORE (byte, with index) 4-63
STORE (byte, with index decremented) 4-64
STORE (byte, with index incremented) 4-65
STORE (halfword) 4-65
STORE (halfword, short form) 4-66
STORE (halfword, with index) 4-67
STORE (halfword, with index decremented) 4-68
STORE (halfword, with index incremented) 4-69
STORE (halfwords, quadrant) 4-69
STORE (word) 4-71
SUBTRACT (byte, register) 4-71
SUBTRACT WITH CARRY (byte, register) 4-72
SUBTRACT (halfword, register) 4-73
SUBTRACT (halfword, register-immediate) 4-74
SUBTRACT WITH CARRY (halfword, register) 4-75
SUBTRACT WITH CARRY (halfword, register, extended) 4-76
TEST AND SET (byte) 4-77
TEST (byte, register-immediate) 4-78

Chapter 5. Floating-Point Instructions 5-1
Data Format 5-1
Guard Digit 5-2
Number Representation 5-2
Normalization 5-3
Floating-Point Status Vector 5-4

Ref erring to the FSV 5-4
Precision Modes 5-5
Exception Masks 5-5
Program Exceptions 5-5

Instructions 5-7
ADD NORMALIZED 5-8
ADD NORMALIZED (register) 5-8
ADD UNNORMALIZED 5-10
ADD UNNORMALIZED (register) 5-10
COMPARE 5-11
COMPARE (register) 5-11
DIVIDE 5-12
DIVIDE (register) 5-13
LOAD 5-14
LOAD (register) 5-14
LOAD AND TEST (register) 5-15
LOAD COMPLEMENT (register) 5-15
LOAD NEGATIVE (register) 5-16
LOAD POSITIVE (register) 5-16
LOAD ROUNDED (register) 5-17
MULTIPLY 5-18
MULTIPLY (register) 5-18
READ FLOATING-POINT CONTROL 5-20
READ FLOATING-POINT STATUS VECTOR 5-20
SET OVERFLOW MASK 5-21

Contents ix

x

SET PRECISION MODE 5-22
SET SIGNIFICANCE MASK 5-22
SET UNDERFLOW MASK 5-23
STORE 5-23
SUBTRACT NORMALIZED 5-24
SUBTRACT NORMALIZED (register) 5-24
SUBTRACT UNNORMALIZED 5-25
SUBTRACT UNNORMALIZED (register) 5-25
WRITE FLOATING-POINT CONTROL 5-26
WRITE FLOATING-POINT ST A TUS VECTOR 5-27

Chapter 6. Register Organization 6-1
Organization 6-1

Principal Registers 6-1
Adjunct Registers 6-4
Floating-Point Registers 6-11

Access to Register Contents 6-12
Instructions 6-13

LOAD (byte, register-indirect) 6-13
LOAD (halfword, register-indirect) 6-14
STORE (byte, register-indirect) 6-14
STORE (halfword, register-indirect) 6-15

Chapter 7. Dynamic Address Relocation and Translation 7-1
Logical Addressing of Main Storage 7-1
Dynamic Address Relocation 7-1

Address Control Vector 7-3
Address-Space Size 7-3
Address-Space Origin 7-5

Relocation Process 7-6
Dynamic Address Translation 7-7

Translation-Table Entries 7-8
Translation Process 7-9
Storage Access Protection 7-10
Separation Protection 7-11

Protection Keys 7-12
Translation Locks 7-12
Translation Lock and Protection Key Operation 7-12

Addresses Relocated and Translated 7-13
Translation-Table and Translation-Lock-Table Instructions 7-13

LOAD FROM ADDRESS TRANSLATION TABLE 7-13
LOAD FROM ADDRESS TRANSLATION LOCK TABLE 7-15
STORE TO ADDRESS TRANSLATION TABLE 7-16
STORE TO ADDRESS TRANSLATION LOCK TABLE 7-17

Chapter 8. Input/Output Operations 8-1
Attachment of Input/Output Devices 8-2

Input/Output Devices 8-2
Adapters 8-2
Channel 8-2

Types of Input/Output Operations 8-3
Methods of Data Transfer 8-3
Data-Unit Size 8-3

Programmed Input/Output 8-4
Compatibility of Operation 8-4
Programmed Input/Output Addressing 8-5
Programmed Input/Output Commands 8-5
Result Conditions 8-6
Program-Exception Interruptions 8-7
Abnormal Ending of Programmed Input/Output Operations 8-7

Instructions 8-8
INPUT /OUTPUT (byte) 8-8
INPUT/OUTPUT (byte, immediate) 8-10
INPUT/OUTPUT (halfword) 8-11

Basic Status Register 8-12
Equipment Check 8-13
Enabled 8-1 3
Interrupt Request 8-14
PIO Commands Related to the BSTAT 8-14

Reset BSTAT Under Mask 8-14
Set BSTAT Under Mask 8-15
Read BSTAT 8-15

Input/ Output Interruptions 8-15
Priority Level Assignment 8-15
Input/Output Interrupt Requests 8-16
Multiple Interruptions for the Same Priority Level 8-17

Resetting 1/0 Devices 8-17
1/0 System Reset 8-17
I/ 0 Selective Reset 8-17

Channel Input/Output 8-18
Channel Input/Output Operation 8-18
Execution of Channel Input/Output Operations 8-22

Blocking of Data 8-22
Channel Pointer 8-22
Designation of Storage Area 8-23
Channel Input/Output Commands 8-25
Channel Pointer Usage 8-26

Conclusion of Channel Input/Output Operations 8-27
Types of Conclusion 8-28

Enabling and Disabling of Channel Input/Output Operations 8-30
Channel Mask 8-31
Error Interrupt Request Vector 8-31

Channel Control Vector 8-31
Channel Control Vector Format 8-32
Command Code 8-33
Command Code Modifier Bits 8-33

Chapter 9. PCE Control 9· 1
PCE States 9-1
Program Modes 9-2
Program Status Vector 9··2

Program Status Vector Format 9-3
Exceptions Associated with PSV Introduction 9-5

PSV Format Exceptions 9-5
Other Exceptions 9-5

Address Control Vector 9-6
Exceptions Associated with ACY Introduction 9-6

ACY Format Exceptions 9··6
Other Exceptions 9-6

Floating-Point Status Vector 9-7
Floating-Point Status Vector Format 9-7
Ref erring to the FSV 9-8
Exceptions Related to the FSV 9-9

Priority Levels 9-9
Dual PSV I ACY Facility 9-10

Primary and Secondary PSV I ACY Pairs 9-10
Program Activation Vector 9-10

Interruptions 9-11
Interrupt Requests 9-12

1/0 Interrupt Request Vector 9-13
Programmed Interrupt Request Vector 9-13
Error Interrupt Request Vector 9-14

Enabling and Disabling 9-15
Master Mask 9-15
Common Mask 9-16

Priority Level Dispatching 9-17
Current and Last Priority Levels 9-18
Summary of the Priority Level Dispatching Process 9-18

Interruption Action 9-20
Control Given to a Program at a New Priority Level 9-20
Control Given to a New Program at the Current Level 9-21
Point of Interruption 9-21
Types of Ending 9-22
Execution of Interruptible Instructions 9-24

Interruption Information 9-24
Source Identification 9-25
System-Check Interruption 9-25

Error Interrupt Request Vector Format 9-25
System Checks 9-26

Contents xi

xii

Instructions for PCE Control 9-31
AND WITH PROGRAMMED INTERRUPT REQUEST VECTOR 9-32
DISPATCH NEW LEVEL 9-32
OR WITH PROGRAMMED INTERRUPT REQUEST VECTOR 9-34
READ CHANNEL MASK 9-34
READ COMMON MASK 9-35
READ CONDITION INDICATORS 9-35
READ CURRENT AND LAST LEVELS 9-36
READ ERROR INTERRUPT REQUEST VECTOR 9-36
READ I/0 INTERRUPT REQUEST VECTOR 9-37
READ MASTER MASK 9-J7
READ PRIMARY REGISTER SET NUMBER 9-38
READ PROGRAM ACTIVATION VECTOR 9-38
READ PROGRAMMED INTERRUPT REQUEST VECTOR 9-39
READ SECONDARY REGISTER SET NUMBER 9-39
RESET CHANNEL MASK 9-40
RESET MASTER MASK 9-40
RESET PROGRAMMED INTERRUPT REQUEST 9-40
SET CHANNEL MASK 9-41
SET MASTER MASK 9-41
SET PROGRAMMED INTERRUPT REQUEST 9-42
WRITE COMMON MASK 9-42
WRITE CONDITION INDICATORS 9-43
WRITE ERROR INTERRUPT REQUEST VECTOR 9-43
WRITE PRIMARY REGISTER SET NUMBER 9-44
WRITE PROGRAM ACTIVATION VECTOR 9-44
WRITE SECONDARY REGISTER SET NUMBER 9-45

Instruction for Direct Control 9-46
CONTROL DIRECT OUT 9-46

Instructions for Diagnostic Control Vector 9-46
READ DIAGNOSTIC CONTROL VECTOR 9-46
WRITE DIAGNOSTIC CONTROL VECTOR 9-47

Chapter 10. Dual-Mode Processing 10-1
Logical Structure 10-1
Storage and Registers 10-2
Program Execution 10-3

Execution 10-3
Sequence of Execution 10-4
Program Exceptions 10-4

General Instructions 10-4
Floating-Point Instructions 10-5
Register Organization 10-5
Dynamic Address Relocation and Translation 10-5
In pu ti Output Operations 10-6
PCE Control 10-6

Appendix A. Lists of Instructions A-1
Instructions Arranged by Name A-2
Instructions Arranged by Mnemonic A-6
Instructions Arranged by Type A- I 0

Appendix B. Assembler Language Operand Specification B-1
Generic Specification B-1
IBM 8100 DPPX Assembler Language Register Specifications B-4

General Registers B-4
Floating-Point Registers B-6

Appendix C. Instruction Operations and Condition Settings C-1
Instruction Operations C-2
Result Conditions C-11

Appendix D. Instruction Formats D-1
Operation Code D-1
Displacement Representation D-3
Comprehensive List of Instruction Formats D-4

Appendix E. Control Information Formats E-t

Appendix F. Assigned Register Locations F -1

Appendix G. Processor-Specific Functions G-1
Logical Storage Addressing G-1
Other Processor-Specific Functions G-1

Address Range Control G-2
Processor-Specific Error Reporting G-2

Disabling System-Check Interrupt Requests G-2
Reserved Program Information Code (PIC) Field G-3
Write Program Activation Vector Instruction G-3
Reserved Operand Bits in PCE-Control Instructions G-3
Reserved Channel Control Vector (CHCV) Command Codes G-3
Specification of Count for Interruptible Instructions G-3
Suspended PCE Operation in Dual-PCE Processors G-4
Instruction Address G-4
Address Exception G-4
Unit of Operation G-5
Prefetch Errors G-5
EIRV Variations G-5
Detection of Concurrent Program Exceptions G-6
Address Range Error G-6

Appendix H. Tables of Powers of 2 H-1

Appendix I. Hexadecimal Tables 1-1
Direct Conversion Tables I-1
Conversion Table: Hexadecimal and Decimal Integers I-6
Conversion Table: Hexadecimal and Decimal Fractions I-8
Hexadecimal Addition and Subtraction Table I-9
Hexadecimal Multiplication Table I-10

Appendix J. EBCDIC Chart J-1

Appendix K. Number Representation K-1
Fixed-Point with Two's Complement K-1
Floating Point K-3
Conversion Example K-4

Glossary GL-1

Index X-1

Contents xiii

Figures

xiv

1-1. IBM 8100 Information System Logical Structure 1-2
1-2. Examples of Information Formats and Alignment 1-4
1-3. Storage Addresses 1-5
1-4. Organization of Registers Assigned to a Program 1-6
1-5. Data Unit Allocation for a General Register 1-7
1-6. Example of Register-to-Register Operation (lower halfwords) 1-9
1-7. Example of Register-to-Register Operation (bytes) 1-10
1-8. Example of Register-and-Immediate Operation 1-11
1-9. Address Generation Using Base and Displacement Values 1-13

1-10. LOAD (halfword, register) Operations 1-15
1-11. LOAD (byte, register) Operations 1-16
1-12. LOAD (halfword, with index incremented) Operation 1-17
1-13. General Register Quadrants 1-18
1-14. Example of MOVE (bytes, storage) 1-18
1-15. Example of Extended-Precision Addition 1-19
1-16. SHIFT and ROTATE (halfwords) Operations 1-21
1-17. Example of COMPARE (bytes, storage) 1-21
1-18. Program-Execution Environment 1-26
1-19. Dynamic Address Relocation and Translation 1-28
1-20. ACY Control of Dynamic Address Relocation 1-29
1-21. Relocation Process 1-30
1-22. Dynamic Address Relocation (Translation Not Specified) 1-31
1-23. Nested Logical Address Spaces 1-32
1-24. Information Protection in Main Storage 1-33
1-25. Dynamic Address Translation 1-34
1-26. Translation Process 1-35
1-27. Information Sharing 1-36
1-28. Information Sharing with Different Types of Access 1-38
1-29. Example of Conservation of Main Storage 1-39
1-30. Example of Separation Protection 1-40
1-31. Principal and Adjunct Register Assignments 1-42
1-32. PSV and ACY /EBI Register Locations 1-44
1-33. PIO Operation (halfword) 1-48
1-34. Channel 1/0 Storage-Addressing Information 1-50
2-1. Integral Boundaries for Halfwords and Words 2-3
2-2. General Registers Within a Register Set 2-5
2-3. General-Register Word and Halfword Operands 2-7
2-4. General-Register Byte Operands 2-8
2-5. Registers in a Floating-Point Register Set 2-9
3-1. General Formats of Instructions 3-3
3-2. Displacement of RS-Long Format BRANCH Instructions 3-7
4-1. Symbols Used in Instruction Descriptions 4-8
5-1. Formats of Short and Long Floating-Point Numbers 5-2
6-1. Register Organization and Information Selection 6-2
6-2. Assignment of Principal and Adjunct Register Sets 6-3
6-3. PSV Locations in Principal Register Sets 6-4
6-4. Channel Pointers 6-5
6-5. ACY /EBI Pairs Associated with Primary PSVs 6-6
6-6. ACY /EBI Pairs Associated with Secondary PSVs 6-7
6-7. ACVs Associated with Channel Pointers 6-8
6-8. How Protection Keys Correspond to ACVs Associated with Primary PSVs 6-9
6-9. How Protection Keys Correspond to ACVs Associated with Secondary PSVs 6-10

6-10. How Protection Keys Correspond to ACY s Associated with Channel Pointers 6-11
7-1. Dynamic Address Relocation 7-2
7-2. Address Control Vector 7-3
7-3. Address Control Vector Formats 7-4
7-4. Logical Address Used by the Program or Channel 7-5
7-5. Correspondence of m and k to Address Space Sizes 7-5
7-6. Origin Address 7-6
7-7. Dynamic Address Relocation Process 7-7
7-8. Block-Index and Byte-Index Fields of an Address to Be Translated 7-8
7-9. Translation-Table Entry 7-8

7-10. Dynamic Address Translation 7-9
7-11. Format of Access-Control Field 7-10
7-12. Multiple Programs within a Logical Address Space 7-11

8-1. Logical Interconnection of I/0 Devices to PCE and Main Storage 8-1

8-2. Channel I/O Data Transfer Operation 8-2 l
8-3. Designation of Logical Storage Area 8-25
9-1. Program Status Vector Format 9-3
9-2. Floating-Point Status Vector Format 9-7
9-3. Determining the Dispatchable Priority Levels 9-19
9-4. Summary of Interruption Information 9-23
9-5. Format of Error Interrupt Request Vector 9-25
10-1. Logical Structure of Dual-PCE Processors l 0-1
B-l. General Register Specifications B-5
B-2. Byte Operand Specifications B-5
B-3. Floating-Point Register Specifications B-6

Figures XV

Summary of Changes

Fifth Edition (March 1984)

xvi

This edition includes information that relates to:

Separation protection, which uses translation locks and protection keys.

Exception block index (EBI) registers.

The LOAD FROM TRANSLATION LOCK TABLE (LATL) and STORE
TO TRANSLATION LOCK TABLE (STA TL) instructions.

The control immediate WRITE DIAGNOSTIC CONTROL VECTOR (Kl
192) and READ DIAGNOSTIC CONTROL VECTOR (KI 193)
instructions.

The 8130 Model B and the 8150, where applicable.

• Corrections and clarifications of the previous revision level.

PART I. OVERVIEW

Chapter 1. Introduction to the Logical Structure

Chapter 1. Introduction to the Logical Structure

Logical Structure

Note: Before using this manual, review the Preface that precedes the table of
contents. The Pref ace (I) describes the purpose and content of this manual, (2)
defines some assumptions made, (3) identifies the intended user, and (4) indicates
the prerequisite knowledge needed by the user.

Also, be aware that not all 8100 processor models implement every architectural
function. For example, the floating-point feature, exception block index (EBI)
registers, separation protection, two channels in dual-PCE processors, and certain
instructions are not available on all models. Refer to "Appendix G" for
processor-specific functions.

This chapter serves as an introduction to the major information formats and
processing facilities provided by the IBM 8100 Information System. The
description is mainly tutorial; it is not intended as a rigorous specification. The
remaining chapters and appendixes provide such a specification. Chapter 1
should be read before using this publication as a reference.

Available on all processors are control facilities that provide system functions,
such as I/ 0 interrupt request identification, programmable assignment of I/ 0
devices to priority levels, execution of direct-control (KDO) instructions, initial
program load (IPL), and system and I/O reset. These facilities for system control
as they apply to 8100 operation are described in the respective processor
description manuals listed in the Preface under ''Corequisite Publications".

The logical structure of an IBM 8100 Information System consists of main
storage, a processing and control element (PCE), a channel, and input/ output
devices attached to the channel through adapters. In IBM 8100 Information
Systems having the dual-mode capability, the logical structure includes an
interrupt control element (ICE) and a second PCE. Figure 1-1 shows this logical
structure.

The PCE is the logical entity that is the controlling center of the system. It
<;ontains the sequencing and processing controls for instruction execution,
interruption action, dynamic address transformations, and other control or
processing functions. The physical makeup of the PCE in the processor models of
the 8100 system may be different, but the logical function remains the same.

Some processor models contain two PCEs (primary and secondary) and also an
interrupt control element (ICE) that enables communication between the PCEs.
These models are ref erred to as dual-PCE processors, which can operate either in
dual or single mode. Dual mode is the normal operational mode and uses both
PCEs; single mode uses only the primary PCE.

Each PCE includes 32-bit registers used as general-purpose registers. Also
included are registers that are permanently assigned to hold control information.
Floating-point registers having 64 bits each are optionally available.

Three distinct types of processing are provided by the PCE: (1) logical
manipulation of bits, fixed-length information units, and character strings; (2)
fixed-point binary arithmetic; and (3) (optionally) floating-point arithmetic.

Chapter 1. Introduction to the Logical Structure 1-1

Main Storage

Processing

and Control

Element

(PCE)

The 8100 system is designed for use with a supervisory program that coordinates
the use of the system's resources. The PCE includes facilities for protection,
dynamic address transformations, interruption handling, and PCE control.

Processing

and Control

Element

_J.P.S~---
Channel

Main Storage

Processing

and Control

Element
(PCE) -------Channel

Second channel

not present on

all dual- PCE

processors. Refer

to the appropriate

description manual for details.

Interrupt

Control

Element

(ICE)
Channel

Adapter -------... 0
Adapter

1/0 Devices

1/0 Devices

Adapter ----o
1/0 Devices

Single-PCE Processors

Figure 1-1. IBM 8100 Information System Logical Structure

1-2

Adapter --.....-0 Adapter----r-----._ 0
Adapter 1/0 Devices Adapter 1/0 Devices

1/0 Devices 1/0 Devices

1/0 Devices 1/0 Devices

Dual-PCE Processors

Information Formats

Within any information format in the 8100 system, the bits making up the format
are numbered consecutively left to right, starting with 0. The basic building block
of all formats is an 8-bit unit of information. Flxed-length fields of one, two, four,
and eight consecutive 8-bit units are called bytes, halfwords, words, and
doublewords, respectively. For instructions operating on fixed-length fields, the
operation implies one of these four lengths as the operand length. When the
length of a field is not implied by the operation but is stated explicitly, the
information format is said to have variable field length. Variable field lengths are
variable by increments of a byte or a halfword.

The location of a field in main storage is identified by the address of the leftmost
byte of the field. Except for doubleword information formats, fixed-length fields
must be aligned in main storage on an integral boundary. That is, the field's
location must have an address that is a multiple of its length in bytes. For
example, a halfword integral boundary has an address which is a multiple of 2; a
word integral boundary has an address which is a multiple of 4. Doubleword
information formats must be aligned on a word boundary. Halfwords are the
basic building blocks of instructions. Instructions, thus, must be located at
addresses that are a multiple of 2.

Variable-length fields that are variable in increments of l byte may start at any
byte address. On the other hand, variable-length fields that are variable in
increments of 1 halfword must start at an address that is a multiple of 2. Figure
1-2 shows some examples of the information formats and alignment possibilities.

Chapter 1. Introduction to the Logical Structure 1-3

i..-----Word--------------- Word-------+------- Word-------41111t

word word word word word word
Half-+ Half-

BytetByte BytetByte

Half-+ Half- Half-+ Half-

BytetByte BytetByte BytetByte BytetByte

0

0

Word

I I
I I

Instruction

~
0 7 0

I
I

Halfword I
15

Instruction

Halfword I 1st Halfword 2nd Halfword I
15

I

31

0

Short Floating-Point Number

Isl c I Fraction

0 1 8

Long Floating-Point Number

s c
0 1 8

Fraction

I
I
I

I I
Variable-Length Field (Bytes)

, -B-y-te--.---B-y_t_e__,,...---By_t_e-.---8-y-te--.- - - - - - - - - --/

0 7 - - - ,- - - - - -I
I
I I

31

Variable-Length Field (Halfwords)

~--H_a_lf_w_o_r_d __ ~ __ H_a_lf_w_o_r_d_~ ___ H_al_f_w_o_rd __ ~I _ ~~---/f
0 15

Figure 1-2. Examples of Information Formats and Alignment

1-4

63

Main Storage Addressing

Registers

Main storage is addressed in units of bytes. Byte locations in storage are
numbered consecutively, left to right, starting with 0. Each number is considered
the address of the corresponding byte location. Storage addresses are represented
by unsigned 32-bit positive binary integers (see Figure 1-3).

0 2 3 4 232 -1

Byte Byte Byte Byte Byte ~1 Byte Byte

0 7 0

Figure 1-3. Storage Addresses

For purposes of addressing main storage, two types of addresses are recognized:
real and logical. Real addresses are the addresses assigned to physical main
storage locations. The addresses used by a program, or in a channel I/ 0
operation, to refer to storage locations are called logical addresses. Logical
addresses are transformed into real addresses by two means: dynamic address
relocation and dynamic address translation. Dynamic address relocation is always
applied to all logical addresses; dynamic address translation is controlled by a
supervisory program. These facilities are described under "Dynamic Address
Transformations" in this chapter.

Registers are organized in register groups and register sets. Sixty-four sets of
registers are provided in each of two register groups; each set consists of eight
32-bit registers numbered 0-7. One group of 64 register sets is known collectively
as the principal register group. Of these, 12 sets are permanently assigned to hold
control information, 4 are reserved, and the remaining 48 sets are available for
use by programs as general-purpose registers. The second group of 64 register
sets is known as the adjunct register group. Of these, 24 sets are permanently
assigned to hold control information, and the remaining sets are reserved.

A program has two sets from the principal register group assigned to it and, thus,
can address information in 16 general-purpose registers. General-purpose
registers can be used for addressing and to hold operands and results in arithmetic
and logical operations. Of the two register sets assigned to a program, one is
designated the primary set and the other the secondary set.

For processor models having the optional floating-point feature installed,
programs can address data in floating-point registers. Eight sets of floating-point
registers are provided in the floating-point register group. All eight sets are
available for assignment to programs. A program may address one set; each set
consists of four 64-bit registers numbered 0-3.

The assignment of register sets to programs is discussed further under
"Program-Environment Definition" in this chapter. Figure 1-4 shows the
organization of registers assigned to a program. A description of all register
groups is found under "Register Organization" in this chapter.

Chapter 1. Introduction to the Logical Structure 1-5

7

Primary
Set

Secondary
Set

General Register Sets

r-,. ____ 32 Bits---~~

)o..-----1 ~
L 1 ._I -------..J

)2..-----I ~
l 31 ,__ ____ ___,

)41.....----~
L 5 ._I ______ __.

) 6 I.---------.
L 7 I.___ _____ ~

fo _____ I ~
l_ 1

L--1 ______ __J

[:...--' -

)41...---
l_ 5

L-1 --------'

)6..-----1 ~
l_ 1 1_ ________ ___.

Floating-Point Register Set

"'~--------- 64 Bits--------•-!•

0
'---------------------~

2

3

Note: In certain cases, the operand specification for

the 8100 assembler language is not directly rep resented

in the machine instruction's operand field. General
registers, for example, are specified with the numbers

0, 2, 4, ... , 30 for the assembler language. The operand
field in the machine instruction designates the

corresponding general register as 0 through 7, in either

the primary or the secondary register set. The

correlation between the 8100 assembler language

operand specification and the machine instruction's

operand designation is provided in Appendix 8.

Note: The braces indicate

that the two general registers
may be coupled as a pair.

Figure 1-4. Organization of Registers Assigned to a Program

Instructions

1-6

Operations performed by the PCE are controlled by sequences of instructions,
which are the building blocks of programs. Each instruction consists of two major
parts: (1) operation-code fields which specify the operation to be performed by
the PCE, and (2) fields which specify the operands that participate in the
operation.

Operands

In the following sections, operands, operand specifications, and instruction
formats for the general instructions are discussed. Floating-point numbers,
operand specifications, and instruction formats are described under
"Floating-Point Instructions" in this chapter. PCB-control instructions are
summarized in other sections of this chapter where the associated control
functions are also described.

During instruction execution, the PCE monitors the existence of certain program
exceptions, including those resulting from improper specification or use of
instructions and data. These program exceptions normally result in an interruption
of the program. (See "PCE Control" in this chapter for a discussion of
interruptions.)

Note: Instructions are described in Chapters 4 through 10, and Appendix A
contains three lists that summarize these descriptions. These lists arrange the
instructions by name, by mnemonic, and by instruction type.

Operands can be grouped into three classes according to their location: operands
in general registers, immediate operands, and operands in main storage.

Operands located in general registers may be 1-byte, 2-byte (halfword), or 4··byte
(word) information units. The length of an operand in a general register is
implied by the operation-code fields of the instruction. The distinction between
the primary and secondary register sets applies in general to processing of byte
operands and is explained in detail later in this chapter.

A general register can be used to hold multiple information units, each of which
can be processed independently. Figure 1-5 shows the allocation of operands in a
general register. Bit positions 0-15 are referred to as the upper halfword of a
general register and bit positions 16-31 as the lower half word. Byte operands may
be located in bit positions 16-23 (upper byte) and 24-31 (lower byte) of a general
register. Thus in the 16 registers assigned to a program there are a maximum of 32
halfword-operand locations and a maximum of 32 byte-operand locations. For
operations which place the result in a general register, if the result is a byte or
halfword, only the indicated bit positions of the register are used for the result;
the remaining register bit positions are not changed.

I Word

0 31

I Halfword Halfword

0 rn 10 31

I Halfword Byte Byte

0 15 16 23 24 31

Figure 1-5. Data Unit Allocation for a General Register

Chapter 1. Introduction to the Logical Structure 1-7

Immediate operands are contained in a field within the instruction. The
immediate data may be 4 bits or 1 byte, depending on the instruction.

Operands in main storage may have either a fixed length implied by the
operation-code fields of the instruction, or a variable length specified by the
contents of a general register.

Operation Classes and Instruction Formats

Register-to-Register

1-8

Instruction formats differ primarily in the method of operand specification and, in
most cases, also in the allocation of fields for operation-code bits. Some
instructions contain fields that vary somewhat from the general format
descriptions.

An instruction is 1 or 2 halfwords long. Each instruction is in one of eight general
formats. Six of the eight formats are used for all instructions other than
floating-point instructions. The two remaining formats are used only for
instructions provided with the optional floating-point feature.

The first four bit positions of all instructions are an operation-code field which
identifies a general form for the instruction. Specification of the complete
operation code generally requires more than 4 bits. Bits 12-15 of most instruction
formats are used for this purpose; other fields may also be used in certain formats
to completely specify the operation code.

Differences among the operand-specification parts of the various instruction
formats depend on two factors: the number of operands required for the
operation, and their locations. For purposes of description, operands are
designated as first and second operands, and in some cases, third operands. In
general, two operands participate in an operation and the result replaces the first
operand. An exception is instructions with STORE in the name, where the result
replaces the second operand.

Operation classes are identified by the locations of the operands that participate
in the operation. The classes are: register-to-register, register-and-immediate,
register-and-storage, storage-to-storage, and sequencing. Operation classes and
the various instruction formats that are used for each operation class are discussed
in the following sections. Note that instruction-format names express, in general
terms, the form of operand specification provided, not the operation class that
may employ a particular format. An instruction format is used for more than one
operation class when these classes require similar forms of operand specification.

Operations in which the operands and result are held in general registers are
called register-to-register operations. All fixed-point arithmetic and logical
operations fall in this class. These operations generally use two operands and
produce a result which always replaces the first operand. Except for multiplication
and division, the first and second operands and the result all have the same
length. In certain operations, such as data movement. only the second operand is
used as input to the operation; the first operand is treated as an explicit result field
having the same length as the second operand.

For most arithmetic and logical operations on halfword data, both operands are
located in the lower halves of general registers. Several operations are also
provided in which operands are located in the upper halves (arithmetic) or in
either half (data movement). The operation code implies the register halves
(upper or lower) that contain the operands. Figure 1-6 shows arithmetic and
logical half word operations, which can be described by the fo11owing general
expressions:

Arithmetic and Logical:

(R1<16 .. 31>) <- (R1<16 .. 31>) QJ (.Ri<16 .. 31>)lower half
(R1<0 .. 15>) <- (R1<0 .. 15>) (X) (R2<0 .. 15>)upperhalf

Data Movement:

(R1<16 .. 31 >)
(R1 <0 .. 15>)
(R1<16 .. 31>)
(R1<0 .. 15>)

where:

<- (R2<16 .. 31>)
<- (R2 <16 .. 31>)
<- <Ri<0 .. 15>)
<- (R2 <0 .. 15>)

means "is replaced by"

lower half to lower
lower half to upper
upper half to lower
upper half to upper

represents an arithmetic or logical operation
denotes "the contents of the register designated by''
designate general registers containing the first and
second operand, respectively

<a .. b> designates bit positions a through b of the general register.

General Registers

R2~('~~~_._~~~~
0 15 16 31

Operation

Figure 1..,6. Example of Register-to-Register Operation (lower halfwords)

Chapter 1. Introduction to the Logical Strnctu re 1-9

15 16 23 24

Register-to-register operations on byte operands are also provided. For arithmetic
and logical operations on byte operands (see Figure 1-7), both the first and
second operand must be in the same register set. Two instructions are provided
for each such operation on byte operands: one obtains both operands from the
primary register set; the other obtains both from the secondary set.

Data-movement operations are provided in which the operand locations may be in
either set. Operation codes indicate the register set(s) that contains the operands.
General expressions for register-to-register operations on byte data, where r is
used to indicate specification of a byte operand, are:

(r 1) <- (r 1) CY) (r2) arithmetic, logical
(r1) <- (r2) data movement

Register-to-register operations require specification of two register operands. The
RR format is used for these operations. For this, as well as all other formats, the
format name expresses, in general, the types of operand specification, not the
operation class. In the format shown below, two registers are specified and thus
the name is RR. The RR format is also used for other classes of operations, such
as register-and-storage, where specification of two registers is required for a
particular instruction.

Op Code R1 R2 Op Code RR Format

0 3 4 7 8 11 12 15

For register-to-register operations on halfword operands, each R field designates
one of the general registers that contains an operand: R 1 designates the
first-operand register and R2 designates the second-operand register.

Operations on byte operands in general registers are also specified by instructions
in the RR format. In this case, the register-specification fields of the instruction
designate one of the 16 byte-operand positions in either the primary or the
secondary register set. The particular set is designated by an operation-code field
of the instruction.

General Registers

I
31 0 23 24 31

Figure 1-7. Example of Register-to-Register Operation (bytes)

1-10

Register-and-Immediate

General Register

[
0 23 24

Operations in which the first operand is located in a register and the second
operand is an immediate field in the instruction are called register-and-immediate
operations. The result always replaces the first operand. Figure 1-8 shows an
example of this type of operation.

For register-and-immediate operations on byte operands, the instruction format
shown below is used. Because a register and an immediate field are specified, this
format is called the RI format. In the RI format, the r 1 field designates one of the
16 byte-operand positions in the primary register set.

OP Code r1 RI Format

0 3 4 7 8 15

Certain register-and-immediate arithmetic operations are specified with RR
format instructions in which a 4-bit immediate-data field is defined in place of
one of the register-specification fields.

The RI format is also used for other classes of operations, such as programmed
input/ output (PIO) and PCE-control. For PIO operations, the immediate field
contains a command code for an I/ 0 device; for PCE-control instructions, it is
used as an extension to the operation code. For PCE-control instructions,
instruction bit positions 4-6 designate the first operand byte (located in register
bit positions 16-23) or word of a general register in the primary register set.
When a PCB-control operation does not use a register operand, the r 1 field should
contain O's.

Instruction

31

Figure 1-8. Example of Register-and-Immediate Operation

Chapter 1. Introduction to the Logical Structure 1-11

Register-and-Storage - Address Generation

1-12

All operations that refer to information in main storage (register-and-storage,
storage-to-storage), or that alter the sequence of instructions executed, require
specif~cation of logical main-storage addresses. Addresses are specified by means
of instruction formats that designate the contents of a general register as all or
part of the address. All logical addresses used by the program to refer to main
storage are treated as unsigned 32-bit positive binary integers.

Operations in which the first operand is located in a register and the second
operand is located in main storage are called register-and-storage operations.
Except for floating-point arithmetic, all register-and-storage operations are used
only for data movement between a register and main storage.

For register-and-storage operations, the simplest address specification is obtained
when the address is contained in one of the general registers. When this address
specification is used, the instruction has the RR format. The register containing
the first operand is specified by the R1 field; the ~ field designates a register that
contains the address of the second operand. The address so specified is usually
considered an index; that is, the address is used to select an element from a
one-dimensional array of like elements. Several instructions are provided that
include modification of the address as part of the operation.

More generally, address specification involves generation of an effective storage
address. An effective storage address, E, is an unsigned 32-bit positive binary
number given by E = B + D. Here, B represents an unsigned 32-bit positive
number called the base address. Base addresses can be used for independently
addressing different areas of storage. In many types of processing, the base
address is useful for locating a data structure (such as an array or record). The
base address may also be used for indexing purposes; for example, to select a
record from an array of records having a common format.

D represents a binary number, usually signed, called the displacement, which is
taken from a field in the instruction. The displacement provides for addressing
relative to the location specified by the base address; for example, for addressing
an elementary unit or field within a record.

The base and displacement are added as binary integers with the displacement
logically expanded to 32 bits. The result of this addition is used as the effective
ad dress (see Figure 1-9).

The principal instruction format for register-and-storage operations using a base
and displacement is RS-Long, which is shown below. In this format, the R 1 field
designates the register containing the first operand; the B2 and D2 fields designate
the components of the second-operand address. The B2 field designates the
general register containing the base address; any of 15 general registers may be
used to hold the base address. The D2 field is used to represent the displacement
as a signed binary integer.

0 3 4 7 8

Op Code

11 12 15 16 31

RS-Long
Format

Base Address

0 31

Main Storage

0 ..----------.........

E=B+D
(negative displacement)

D

------------~.i-- - - - .. - - - _, B

D

I E=B+D
(positive displacement)

N~---------'

Figure 1-9. Address Generation Using Base and Displacement Values

A special case of base-and-displacement address generation is provided when the
B2 field of an RS-Long format instruction contains all O's. ln this case, the
updated instruction address (address of the next sequential instruction) is used as
the base, instead of the contents of a general register. This provides for addressing
instructions and data relative to the current instruction's address. It is particularly
useful for branch addresses and references to local data because a register is not
needed to hold the base.

Base-and-displacement address generation for certain register·-and-storage
operations is provided in an abbreviated format, called the RS format, which is
shown below. The B2 field designates one of four general registers that can
contain the base address. The D2 field is used to represent an unsigned binary
integer.

~-o-p_c_o_d_e_..._ __ R_1 __ _._ __ B_2 __ ~ ___ n_2_~ RSFormat

0 3 4 7 8 9 10 14 15

Initialization, modification, and testing of addresses in general registers can be
performed using the operations for data movement and fixed-point arithmetic.
Further, an instruction can designate the same general register as containing an
address and as the location of an operand. Address generation is completed
before the register is used for an operand.

Chapter 1. Introduction to the Logical Structure 1-1 3

Sequencing

Storage-to-Storage

I Op Code

1 3 4 7 8

1-14

One instruction that provides several functions is the LOAD ADDRESS
instruction, which has the RS-Long format. The operation of LOAD ADDRESS
is given by the following expressions:

where B2 designates a general register

or

where IA is the updated instruction address
(the B2 field is all O's)

This instruction performs the calculation E = (B) + D and places the 32-bit
value, E, in the general register specified by R1 LOAD ADDRESS is also useful as
an add-immediate operation in which the D2 field is used as signed immediate
data. When the same general register is specified for R1 and B2, a convenient
update of that register's contents is obtained.

Sequencing operations are used to alter the sequential order of instruction
execution. These operations require specification of a main storage address that
designates the new sequence of instructions to be executed. Most sequencing
operations are specified in both RR and RS-Long format instructions. In the RR
format, the R2 field designates a general register containing the address. When
specified in the RS-Long format, the address is formed by a base and
displacement calculation.

A special case of address specification in sequencing operations applies to
instructions with JUMP in the name. These operations are specified with J format
instructions (shown below). The D2 field is used as a signed displacement which
is added to the updated instruction address to form the new instruction address.

Op Code 11 I~ I J Format

0 3 4 7 8 14 15

Operations on variable-length fields are called storage-to-storage operations.
Operand specification for these operations requires two addresses and a field
length (both fields are the same length). The length may vary from 1 to 256
units; the unit is a byte or ha1fword, depending on the operation.

Storage-to-storage operations are specified in the RR-Long instruction format
which is shown below. The starting addresses of the first and second operands
are contained in the registers designated by the R1 and R2 fields, respectively.
The length is contained in bit positions 24-31 of the register designated by the R 3
field.

I Op Code I Op Code

11 12 15 16 23 24

I Op Code I RR-Long
Format

27 28 31

In storage-to-storage operations, the data units are processed proceeding from left
to right. As the operands are processed, the storage addresses in the R 1 and Ri
registers are increased accordingly. The length in the R3 register is used as a count
of the units remaining to be processed and is reduced accordingly until a count of
0 is reached. Because address and count information is maintained in general

General Instructions

Data Movement

registers, these operations are interruptible and can be resumed automatically
following an interruption. This capability prevents delaying the execution of
other, high-priority programs while a long storage-to-storage operation is being
performed.

The following sections briefly summarize most general instructions, grouped
according to the operations they cause the PCE to perform. The types of general
instructions are: data movement, fixed-point arithmetic, logical operations, and
sequencing. In this discussion, the general instructions are described in terms of
these types as well as in terms of the classes of operations and the instruction
formats discussed in the previous section. Certain specialized operations are not
discussed.

Operations are provided that allow data to be moved unchanged (1) from one
general register to another, (2) between main storage and a general register, and
(3) from one main storage location to another.

Register-to-Register: In register-to-register load operations, the unchanged second
operand replaces the first operand. Four LOAD (halfword, register) operations
are provided, one for each combination of operand positions in upper and lower
halves of two general registers (see Figure 1-10).

General Registers

R2I~ ~~u-p_p_er~~__._l~~-'o_w,_e_r~----
0 15 16 31

-~--.------

R1'~~~u-p-pe_r~~~l.__~~'o_w_e_r~--'
0 15 16 31

Figure 1-10. LOAD (halfword, register) Operations

Movement of byte operands is accomplished by the LOAD (byte, register)
operation. Four instructions of this type are provided, one for each combination
of movement among primary and secondary register sets (see Figure 1-11).

Register-and-Storage: Operations for data movement from main storage to a
register (LOAD) and from a register to main storage (STORE) are provided. For
all LOAD or STORE operations that move 1 byte of information, the registe:
operand is located in the primary register set.

Chapter 1. lntroductio11 to the Logical Structure 1-15

1-16

Primary-Set Registers Secondary-Set Registers

15 16 23 24 31 15 16 23 24 31

r 1 l.....__ ______ _____._I ~I
0 15 16 23 24 31

Figure 1-11. LOAD (byte, register) Operations

The following are general expressions for data-movement operations specified in
the RS-Long format:

(R1) <- MS[(B2) + DJ
(R1<16 .. 31>) <- MS[(B2) + D 2]

(r1) <- MS[(B2) + D2]

MS[(B2) + 0 2] <- (R1)

MS[(B2) + D 2] <- (R 1<16 .. 31 >)

MS[(B2) + D2] <- (r1)

LOAD (word)

LOAD (halfword)
LOAD (byte)

STORE (word)

STORE (halfword)

STORE (byte)

where MS[(B 2) + D2] represents the contents of a main-storage location with an
address specified by the base and displacement.

These instructions provide for relative addressing of up to 32,768 bytes preceding
the base address and 32,767 bytes beyond it. LOAD (halfword) and STORE
(halfword) instructions are also provided in an abbreviated specification that uses
the RS format. These instructions provide for addressing data structures
consisting of up to 32 contiguous halfwords.

Register-and-storage data movement operations are also provided with RR format
instructions. These LOAD and STORE operations comprise a set of 12
instructions useful for processing one-dimensional arrays (or stacks) of halfword
or byte elements. The storage address contained in the register designated by R2 is
considered to be an index (or stack pointer). Operations are provided that include
increasing or decreasing the address by the length of the data unit (1 for bytes, 2
for halfwords). See Figure 1-12 for an example from this group of instructions.

The 12 instructions are obtained from all combinations of the following
specifications:

Operation

LOAD
STORE

Data Unit

byte
halfword

Addressing

index unchanged
index post-incremented
index pre-decremented

General Registers

0 15 16 31

Halfword

0 15
Increasing Addresses

Legend:

- - - Indicates original contents of general
register designated by R2
(Index before it is incremented)

Figure 1-12. LOAD (halfword, with index incremented) Operation

It is often convenient to transfer information between main storage and multiple
registers in a single operation (for example, as part of subroutine linkage). Groups
of eight halfword operands may be addressed as a single unit - the quadrant. In
the 16 general registers assigned to a program, there are four quadrants as
illustrated in Figure 1-13.

The instructions LOAD (halfwords, quadrant) and STORE (halfwords, quadrant)
transfer 8 halfwords between the consecutive operand positions in a quadrant and
consecutive locations in main storage.

The instruction LOAD (byte, register-immediate) is provided to place a byte of
immediate data into a general register in the primary set.

Storage-to-Storage: Movement of variable-length fields from one main storage
location to another is accomplished with MOVE operations. Two RR-Long
format instructions are provided: one that moves a field of consecutive byte data
units, and one that moves a field of consecutive halfword data units (see Figure
1-14).

Chapter 1. Introduction to the Logical Structure 1-17

0

2

3

4

5

6

7

Quadrant

2

0 15 16

Quadrant

0

31

Figure l-13. General Register Quadrants

At Initiation

Destination Address

0

x x x x

~byte~

At Completion

0

A B

~byte~

Primary

Register

Set

0

2

3

4

5

6

7

0

Quadrant

3

15 16

General Registers

Source Address

31

x x

A

~byte~

Figure l-14. Example of MOVE (bytes, storage)

1-18

Quadrant

' 31

Secondary

Register

Set

Length

R3{ ..__ ____ ._.__._,_! _5 ___.

0 23 24 31

Storage

B c D E

R31~-----~------------------------------------~------0--------'
0 23 24 31

Storage

B c D

Increasing Addresses

Fixed-Point Arithmetic

The basic arithmetic operand is the 16-bit fixed-point signed binary number. Byte
operands (8-bit fixed-point signed binary numbers) may also be specified for most
operations.

Fixed-point numbers may be signed or unsigned integers. In an unsigned number,
all bits are used to represent the magnitude of the number. In signed numbers, the
leftmost bit indicates the sign. Positive numbers are represented in true binary
notation with the sign bit set to 0. Negative numbers are represented in
twos-complement binary notation with a 1 in the sign-bit position. The value
zero is represented by all bits being 0.

Most fixed-point arithmetic is performed with register-to-register operations
specified in the RR instruction format. Unless otherwise stated, the halfword
operands occupy the lower half (bit positions 16-31) of a general register. Byte
operands may be located in either the primary or the secondary register set;
however, both operands are located in the same set.

ADD and SUBTRACT operations are provided for both 8-bit and 16-bit binary
numbers. MULTIPLY and DIVIDE operations are provided for unsigned 16-bit
multipliers, multiplicands, and divisors. Products and dividends are unsigned and
occupy 32 bit positions. Quotients and remainders are unsigned 16-bit binary
numbers.

Extended-and-mixed-precision fixed-point arithmetic is made convenient by use
of twos-complement representation and by provision for recognition and
retention of the carry from one field to another. One example of
extended-precision arithmetic, useful particularly for address modification, applies
to 32-bit binary numbers contained in general registers. ADD WITH CARRY
and SUBTRACT WITH CARRY operations are provided that combine operands
in the upper halves (bit positions 0-15) of two general registers with the carry
resulting from a previous operation on the lower halves (see Figure 1-15).

Step Two-

ADD WITH CARRY
(halfword, register, extended)

upper

upper

lower

31

Sum

lower R2 I
~~~~~~__._~~~~~---' 

0 1516 31 

Figure 1-15. Example of Extended-Precision Addition 

Step One-

ADD 
(halfword, register) 

ADD WITH CARRY and SUBTRACT WITH CARRY operations are also 
provided that combine operands in the lower halves of general registers with the 
value of the carry from a previous operation. Operations on both 8-bit and 16-bit 
fields are provided. 

Chapter 1. Introduction to the Logical Structure 1-19 



Logical Operations 

1-20 

Addition and subtraction of halfword and byte operands may also be performed 
with register-and-immediate operations. 

All arithmetic operations indicate certain result conditions that reflect the 
outcome of the operations (equal to 0, greater than 0, less than 0, overflow, or 
carry). These result conditions can be tested by operations that control the 
sequence of instructions executed. 

Arithmetic-compare operations are provided for comparing 8-bit, 16-bit, and 
extended-precision fixed-point binary numbers. COMP ARE operations are 
similar to the corresponding SUBTRACT operations except that the first operand 
is not replaced (no result is stored). 

A set of instructions is provided for the logical manipulation of data. The set of 
logical instructions includes comparing, boolean, bit testing, shifting, and rotating 
operations. 

As in fixed-point arithmetic, the boolean operations (AND, OR, EXCLUSIVE 
OR) are provided as register-to-register operations. Fixed-length logical data may 
be processed in 8-bit or 16-bit lengths. The boolean operations are applied 
bit-by-bit. All boolean operations indicate certain result conditions reflecting 
their outcome (all O's, all l's, or mixed O's and 1 's). 

Halfword operands are taken from the lower half of a general register. Byte 
operands may be located in either the primary or the secondary register set; both 
operands are located in the same set. Boolean operations on byte operands in the 
primary register set are also provided as register-and-immediate operations. 

Shifting and rotating operations are provided for use in isolating, concatenating, 
and aligning groups of contiguous bits. SHIFT LEFT and ROT ATE LEFT 
operations are provided in the RR instruction format for both 8-bit and 16-bit 
fixed-length fields. In this format, the number of bits moved is specified with 
immediate data in place of one R field. 

SHIFT operations cause bits shifted out of the high-order bit positions of the 
operand to be lost; O's are supplied in vacated low-order bit positions (see Figure 
1-16). ROT A TE operations wrap the operand; that is, bits shifted out of the 
high-order bit positions are entered consecutively in vacated low-order bit 
positions. 

Operations are provided for testing and comparing logical data. TEST (byte, 
register-immediate) is provided for testing byte operands in the primary register 
set. The operation selects for testing those bits in the byte that are designated by 
1 's in the corresponding bit positions of a mask. The collection of bits so selected 
are tested for three conditions: all O's, all l's, and mixed O's and l's. If the mask 
and operand are identical, this is also indicated. 

Logical comparison of two variable-length fields in storage is provided by the 
COMPARE LOGICAL operations. Two RR-Long format instructions are 
provided: one that compares fields of consecutive byte data units, and one that 
compares fields of consecutive halfwords (see Figure 1-17). Fields are logically 
compared by treating each byte or halfword as an unsigned positive binary 
number. The operation ends when an inequality between two corresponding units 
is found or when the end of the fields is reached. Three result conditions may be 
indicated: equal, low, or high. 



General Registers 

R 1 .__I ---.&..-...L..lxl _~ _ _--1-Jlol ~ 0 

0 15 16 30 31 

~ 

Figure 1-16. SHIFT and ROTATE (halfwords) Operations 

At Initiation General Registers 

First Comparand Address Second Comparand Address 

0 31 0 31 0 

B x D E A B 

~byte~ 

At Completion 

0 31 0 

A D E 

~byte~ ~byte~ 
Figure 1-17. Example of COMPARE (bytes, storage) 

SHIFT LEFT 
(halfword, logical) 

ROTATE LEFT 
(halfword) 

Storage 

c D 

D 

E 

E 

Length 

5 

23 24 

Residual 
Count 

2 

31 

31 

Increasing Addresses 

Chapter 1. Introduction to the Logical Structure 1-21 



Sequencing 

1-22 

Normally the PCE takes instructions in sequence. After an instruction is fetched 
from the location specified by the instruction address, the instruction address is 
increased by the number of bytes in the instruction. This addition is effectively 
performed before the fetched instruction is executed. 

The nmmal sequence of instruction execution may be changed by use of 
branching operations to perform decision making, loop control, and subroutine 
linkage. 

Conditional branching is accomplished by BRANCH ON CONDITION and 
JUMP ON CONDITION operations. These operations test five logical entities, 
called result conditions, which describe the outcome of arithmetic, logical, and 1/ 0 
operations. Each of the five result conditions can be set in one of two possible 
states: indicated or not-indicated. A conditional branch or jump operation can 
select combinations of resuit conditions as a criterion for branching. 

The specific meaning associated with any of the five result conditions depends on 
the particular instruction for which result conditions are specified. For example, 
results such as 0 sum, first operand high, equal, overflow, and non-0 may be 
indicated. Once set, the states of the result conditions remain unchanged until 
modified by a subsequent operation. Each operation that indicates result 
conditions sets the state of all five conditions. The states are derived from 
condition-indicator bits held in the PCE. 

The instructions for conditional branching include a mask field. The mask is used 
to select result conditions to be tested. If a selected result condition is indicated, 
the branch occurs. An unconditional branch can also be specified. A branch may 
be made if any one of several result conditions is indicated. This is accomplished 
using multiple mask positions to select the pertinent conditions for the branch. 

The branch address for BRANCH ON CONDITION specified with an RS-Long 
format instruction is formed by base and displacement address calculation. This 
instruction provides for addressing 65,536 bytes preceding the base address and 
65,534 bytes beyond it. In the RR format, the branch address is taken from the 
general register designated by the R2 field. 

JUMP ON CONDITION is specified with a J format instruction. The range 
covered by the displacement, which is added to the updated instruction address, is 
126 bytes preceding the JUMP ON CONDrTION instruction and 128 bytes 
beyond it. 

A more specialized conditional branch instruction is BRANCH ON COUNT 
(byte, register), which reduces a byte-operand count field by 1 and branches if 
the count is not 0. Another specialized conditional branch operation is provided 
by JUMP ON BIT ZERO (halfword). In this instruction, a specified bit position 
(any of positions 16-31) of an implied general register is tested. lf the specified 
bit position contains a 0, a jump is taken. The jump address is formed in the same 
way as for JUMP ON CONDITION. 

Subroutine linkage is provided by a BRANCH AND LINK operation (both RR 
and RS·-Long formats). The updated instruction address is saved in a designated 
general register. The saved address may be used directly to effect a return from a 
subroutine. After the link address is saved, control is transferred to the specified 



Floating-Point Instructions 

branch address. In the RR format, if the R2 field contains O's, the link address is 
saved but no branch takes place. This provides a convenient means of initializing 
a base register. Jn the RS-Long format, the new address is calculated from the 
specified base and displacement, similar to BRANCH ON CONDITION. 

The optionally available floating-point feature provides instructions used in 
calculations with numbers having a wide range of magnitude. These instructions 
yield results scaled to preserve precision. 

Floating-point numbers are specified in either of two fixed-length formats, short 
or long, which are illustrated in Figure 1-2. The fraction is expressed in 4-bit 
hexadecimal digits having a radix point to the left of the high-order digit. The 
sign of the fraction is indicated in the leftmost bit of the representation. The 
fraction is represented in true binary notation. 

The proper magnitude is determined by considering the fraction as multiplied by a 
power of the fraction radix (16). The characteristic expresses this power and is 
represented as a 7-bit excess-64 binary number. The power can range from -64 to 
63. 

Floating-point data may be normalized or unnormalized. Unnormalized numbers 
have at least one high-order 0 digit ( 4 bits) in the fraction. The range covered by 
the magnitude (M) of a floating-point number is: 

16 - 65 ~ M ~ 16 63 

or, in decimal terms, approximately: 

5.4x1Q-79 ~ M ~ 7.2x1Q75 

The format of floating-point numbers (short or long) is determined by the value 
of a precision-mode bit held in the PCE. A short-format operand occupies bit 
positions 0-31 of a floating-point register; bit positions 32-63 are ignored and 
remain unchanged in operations calling for short operands. A long-format 
operand occupies all 64 bit positions of a floating-point register. The instruction 
SET PRECISION MODE is provided to define the length of operands used in all 
subsequent floating-point operations. 

Register-to-register floating-point operations are specified in the FF instruction 
format shown below. In the FF format each F field designates one of the 
floating-point registers; F 1 designates the register containing the first operand and 
F 2 designates the register containing the second operand. In register-to-register 
operations, the result always replaces the first operand. 

Op Code F 1 Op F2 Op Op Code FF Format 
Cd Cd 

0 3 4 5 6 7 8 9 10 11 12 15 

Register-and-storage floating-point operations are specified in the FS instruction 
format shown below. In this format the F 1 field designates the floating-point 
register containing the first operand. The result of these operations always 
replaces the first operand. 

I OpCode I F1 

0 3 4 5 6 

Op 
Cd 

7 8 

Op Code 

11 12 15 16 29 30 31 

FS 
Format 

Chapter 1. Introduction to the Logical Structure 1-23 



The second-operand address is generated from a base and displacement. The 
floating-point instructions provide for addressing 32,768 bytes preceding the base 
and 32,764 bytes beyond it. Any of the 16 general registers may be used to hold 
the base address. Use of the instruction address as a base address is not provided 
by these instructions. 

Data movement operations are provided that transfer floating-point numbers 
from one floating-point register to another, or between floating-point registers 
and main storage. 

A register-to-register LOAD operation transfers the floating-point number 
(unchanged) from one register to another. Other register-to-register LOAD 
operations ( 1) allow changes to the sign of the fraction as well as movement of 
data, (2) test the sign of the fraction in the number moved, or (3) round a 
long-format number to a short-format number. 

Data is transferred unchanged between main storage and the floating-point 
registers by two instructions, LOAD and STORE, both specified in the FS format. 

Each arithmetic operation is provided in two forms: register-to-register and 
register-and-storage. General expressions for these two forms are: 

(F1) <- (F1) © (F2 ) register-to-register 
(F1) <- (F1) (X) MS[B+D] register-and-storage 

ADD, SUBTRACT, MULTIPLY, DIVIDE, and COMPARE operations are 
provided. All operations except MULTIPLY generate a result that has the same 
length as the operands. MULTIPLY produces a long-format result for both short
and long-format operands. The result conditions are set to reflect the outcome of 
addition, subtraction, and comparison operations. 

The initial operands of any operation need not be normalized. Automatic 
normalization of the result is provided for the arithmetic operations. ADD 
UNNORMALIZED and SUBTRACT UNNORMALIZED operations are 
provided (in both FF and FS formats), which produce the result without 
normalization. 

Intermediate results in all addition, subtraction, comparison, and multiplication 
operations may have one additional low-order digit. This low-order digit, the 
guard digit, increases the precision of the final result. 

Monitoring of three exceptions - exponent underflow, exponent overflow, and 
lost significance (vanishing fraction) - is provided under program control. A 
SET MASK operation is provided for each monitored exception to allow it to be 
controlled separately. Division by 0 is monitored at all times. 

Program-Environment Definition 

1-24 

An environment for program execution is defined in terms of the processing 
resources and the status information required for proper execution. Processing 
resources required for the program include registers and the set of addresses used 
for references to main storage. A program environment is described by two 
vectors of control information: a program status vector (PSV) and an address 
control vector (ACV). 



In general, the PSV is used to control instruction sequencing, to define general 
register assignments, and to hold the status of the PCE in relation to the program. 
The PSV that describes the program being executed is called the current PSV. If a 
different PSV is introduced as the current PSV, the state of the PCE is changed; 
execution then proceeds using the description contained in the new PSV. When 
the current PSV is stored, the state of the executing program is preserved so that 
execution may later be resumed. 

All addresses used by the program to ref er to main storage are called logical 
addresses. These addresses are not used directly to refer to physical main-storage 
locations. The set of logical addresses that may be used by a program is called its 
logical address space. Each program can be assigned a distinct logical address 
space. The size of the logical address space is defined by an ACV. 

An ACV is associated with each PSV; when a new PSV is introduced, a new 
ACV is introduced also. The new ACV describes the logical address space 
available to the program. The introduction of a new PSV I ACV pair and the 
storing of PSV information are discussed under "PCE Control" in this chapter. 

The dynamic address relocation and translation facilities are used to associate 
addresses in a logical address space with physical locations in main storage. ACV 
fields are used to control these address transformations. Further details are given 
under "Dynamic Address Transformations" in this chapter. 

When the optional floating-point feature is installed, a third control vector is used 
in defining a program environment: the floating-point status vector (FSV). The 
FSV provides additional information for the proper execution of programs using 
the floating-point instructions. In general, the FSV is used to define floating-point 
register assignments, to specify data formats, to control the reporting of 
exceptions, and to indicate exceptions and equipment malfunctioning. 

The definition of a program-execution environment by a PSV I ACV pair and an 
FSV is illustrated in Figure 1-18. The PSV is 64 bits long. The instruction address 
field of the PSV contains the logical address of the next instruction to be 
executed. The primary and secondary general-register sets assigned to the 
program are identified by two fields in the PSV. Other fields in the PSV include 
the condition indicators, the program mode, and the program information code. 

The program information code is used primarily to report information resulting 
from the monitoring of program exceptions by the PCE. The condition indicators 
reflect the results of arithmetic, logical, and I/O operations. 

To ensure the integrity of a supervisory program, instructions that alter 
PCE-control information are not available for general use. Only those programs 
whose PSV specifies the appropriate authorization may use these instructions. A 
hierarchy of instruction-use authorization is provided by four modes specified in 
the program-mode field of the PSV: master, supervisor, input/ output, and 
application. 

When the FSV is present, the floating-point register set available to the program is 
identified by the register-set field. The precision-mode field specifies the data 
format (short or long) used for floating-point operations. The remaining two 
fields (exception mask and exception indicators) are used for controlling, and for 
reporting the results from, the PCE's monitoring of program exceptions such as 
exponent overflow and lost significance. 

Chapter 1. Introduction to the Logical Structure 1-25 



ACV 

0 

FSV 

0 

Trnmlation Contrnl j 
Size t 11 

31 

0 

PSV 

0 

Logical Address 
Space 

Condition Indicators--------.---...., 

Program Information Code 

Program Mode------. 

Instruction Address 

3132 

Principal Register 
Group 

Secondary Register 

Set 

----------

Precision Mode 

Exception Masks 

Exception Indicators 

l 
23 

T 
Primary Register 

Set 

Floating-Point Register Group 

Floating-Point Register Set 

1 

Figure 1-18. Program-Execution Environment 

Dynamic Address Transformations 

1-26 

The dynamic address transformations performed by the IBM 8100 system PCE 
are provided as aids for storage management by a supervisory program. A 
supervisory program must deal with many functions concerning the management 
of main storage. Among these are: 

Allocation of storage space among programs with varying sizes and periods of 
activity 
Provision for sharing programs and data 
Protection of both shared and nonshared areas 



Logical Addressing of Main Storage 

The main-storage addressing arrangement is based on a logical separation of the 
addresses used by the program from the addresses assigned to the physical 
locations in main storage. That is, the addresses used by the program are not used 
directly to refer to main storage. This separation can provide extensive storage 
protection and ease the task of storage management. The dynamic address 
transformation facilities are provided to associate logical addresses used by the 
program with physical locations in main storage. 

An address space is a set of addresses used to refer to main storage. Byte locations 
are numbered consecutively starting with 0 and continuing to the largest address 
defined for the address space. 

Each program can have assigned to it a logically distinct address space. Similarly, 
a logically distinct address space can be assigned to each channel I/ 0 operation. 
These address spaces are called logical address spaces. All main-storage addresses 
used by the program or channel are treated as logical addresses. 

The real address space is the set of addresses assigned to the physical locations in 
main storage. The largest address in the real address space corresponds to the 
highest-numbered installed physical location. 

Also defined is an address space which comprises the complete set of logical 
addresses provided by the processor. This address space is called the PC E address 
space. The PCE address space is not the real address space which corresponds to 
physical storage locations. The size specified for a logical address space cannot 
exceed the size of the PCE address space. 

The information that defines a logical address space is contained in an ACV. An 
ACV is associated with each PSV; the ACV describes the logical address space 
available to the program. When a new PSV is introduced as the current PSV, a 
new ACV is introduced also. (See "Program-Environment Definition" and "PCE 
Control" in this chapter.) An ACV is also associated with an entity called a 
channel pointer. The ACV describes the logical address space available for the 
channel I/ 0 operation using the logical address in the corresponding channel 
pointer. 

During program execution and channel I/ 0 operations, the addresses in a logical 
address space are always dynamically relocated in the PCE address space. When 
dynamic address translation is not active, the relocated addresses are used as real 
addresses. When translation is active, a translation table is used by the PCE to 
translate the relocated addresses into real addresses. The translation facility 
allows contiguous blocks of relocated addresses to be assigned to noncontiguous 
blocks of physical main storage. The address spaces and dynamic relocation and 
translation facilities are illustrated in Figure 1-19 and discussed in the following 
sections. 

Dynamic Address Relocation 

The basic transformation of logical addresses is dynamic address relocation. Each 
logical address space is assigned a beginning location, called the origin address, in 
the PCE address space. The assigned size of the logical address space determines 
the maximum logical address that may be used by the program or channel I/ 0 
operation. The origin and size are represented by information placed in an ACV 
by the supervisory program. 

Chapter 1. Introduction to the Logical Structure 1-27 



IRelocot;oc------~ .. ~1 .... 1------------Translation 

Reel Addce" I 
Space 

Logical Address 
Space 

PCE Address 
Space 

1 l 

/ ._ ____ ___. 

LJ 

I 

/ 
I 

I 

I 
Translation 

Table 

/1L 
/ ~-~~~~~~ 

0 

M '--------J 

Figure 1-19. Dynamic Address Relocation and Translation 

1-28 

During each use of a storage address, the dynamic address re]ocation facility tests 
the logical address. If it exceeds the maximum address in the logical address space, 
a program exception is indicated. If the logical address does not exceed the 
maximum, it is combined with the origin address to produce an address in the 
PCE address space. This process maps the contiguous addresses in a logical 
address space into a set of contiguous addresses in the PCE address space, as 
illustrated in Figure 1-20. 



Logical Address PCE Address 
Spaces ACV Space 

0 0 

0 8 
A 

B 

ACV 
0 

0 8 

B 

A 

ACV OCJ 
0 8 

Figure 1-20. ACV Control of Dynamic Address Relocation 

Because dynamic address relocation is applied on each storage reference, an 
address space may be logically moved to a different location in the PCE address 
space by changing its assigned origin. Further, the origin addresses may be chosen 
so that address spaces are nested for sharing of programs and data (see Figure 
1-23). 

The ACV is 32 bits long and contains an origin field, a size field, and a 
translation-control bit. The size in bytes is defined as an integral power of 2 that 
is not less than 211 and not greater than 232. Thus, logical address space sizes may 
be 2,048, 4,096, 8, 192, 16,384, and so on, up to the size of the PCE address 
space. The number of bits needed in the ACV to express the size varies 
depending upon the size of the logical address space. Accordingly, the number of 
bits needed to specify the origin is also determined by the size of the space. 

Chapter 1. Introduction to the Logical Structure 1-29 



Origin Address 

lo o 
0 m 

ACV 

0 

Figure 1-21. Relocation Process 

1-30 

Specifically, the origin address of a logical address space within the PCE address 
space must be an integral multiple of the size of the logical address space. For 
example, a logical address space of 32,768 bytes may begin at any of the 
addresses 0, 32768, 65536, 98304, and so on, in the PCE address space. 

The binary representation of the origin address necessarily has a number of 
low-order O's which is not less than the number of low-order O's in the binary 
representation of the size of the logical address space. For example, the allowable 
origin addresses for a 32,768-byte logical address space have the following 
hexadecimal representations: 

Hexadecimal 

00000000 
00008000 
00010000 
00018000 

(Decimal) 

(O) 
(32768) 
(65536) 
(98304) 

• 

All of these addresses have at least 15 low-order O's in the corresponding binary 
representation. Further, the number of significant bits required to represent a 
logical address is not greater than the number of low-order O's in the binary 
representation of the size. For example, the largest address in a 32,768-byte 
address space is 32767 (00007FFF in hexadecimal), which has 15 low-order l's 
in its binary representation. 

Low-order O's in the origin address are not included in the origin field of the 
ACV. Relocation, which logically consists of adding the origin address to a 
logical address, is accomplished simply by concatenating the origin field from the 
ACV with the significant bits of the logical address supplied by the program or 
channel. The significant bits of the logical address are those low-order l's in the 
binary representation of the largest address in the logical address space. (The 
boundary of significant bit positions is indicated by min Figure 1-21.) 

Logical Address 

. o oj loo. o al 
31 0 m 31 

Origin 

31 

0 31 

Relocated Address 



Logical Address 
Spaces 

ACV OD 0 8 

ACV 
0 

0 8 

B 

ACV 

ol __ c_ 
0 8 

The low-order bit position of the ACV (bit 31) controls the dynamic address 
translation facility. When address translation is not specified, the relocated 
address is used directly to refer to a location in physical main storage (see Figure 
1-22). An attempt to refer to a location in the PCE address space corresponding 
to an uninstalled physical location causes a program exception to be indicated. If 
address translation is specified, the relocated address is transformed into a real 
address by the dynamic address translation facility~ which is described later. 

Figures 1-23 and 1-24 illustrate storage-management functions aided by dynamic 
address relocation. Figure 1-23 illustrates nesting of logical address spaces for 
sharing information. 

Figure 1-24 illustrates how the logical separation of address spaces provides a 
means for protecting information in main storage. When the ACV for program A 
is the current ACV, the information in main storage assigned to program B cannot 
be referred to by A. Similarly, program B cannot refer to information in main 
storage assigned to program A. 

PCE Address Real Address 
Space Space 

0 --o 

B B 

A A 

c 

IT 
Figure 1-22. Dynamic Address Relocation (Translation Not Specified) 

Chapter 1. Introduction to the Logical Structure 1-31 



Logical Address PCE Address Real Address 
Spaces 

ACV Space Space OD Size 
--o 

A,B, and A,B, and 

0 8 c c 

A and B A and B 

B B 
ACV 

0 Size 

0 8 

B 

M 

ACV N ...__ ___ _._. 

0 

0 8 31 

Figure 1-23. Nested Logical Address Spaces 

Dynamic Address Translation 

1-32 

Storage management is further aided by the dynamic address translation facility. 
This facility allows a supervisory program to manage assignment of contiguous 
logical addresses to noncontiguous areas of main storage. More efficient use of 
installed main storage can be obtained by allocating fragments of real address 
space to one contiguous logical address space. Also provided with this facility are 
means for controlling access to storage. 

For the purpose of address translation, the PCE address space and the real 
address space are both logically partitioned into equal-sized blocks. A block 
comprises 2,048 (2K) byte locations and begins at an address that is a multiple of 
2048. When dynamic address translation is specified in the ACV, addresses in the 
PCE address space are not used directly to refer to locations in main storage. 
Instead, a translation table is provided which allows a supervisory program to 
associate blocks in the PCE address space with blocks of real addresses (see 
Figure 1-25). 

One translation-table entry is provided for each block in the PCE address space. 
Each table entry is 32 bits long and contains a block-address field and a field for 

I access control. The translation-table entries are organized in the same sequence as 
the blocks in the PCE address space; contiguous blocks in the PCE address space 
are associated with contiguous entries in the translation table. When dynamic 
address translation is active (bit position 31 of the ACV is 1 ), each address (after 
relocation) is used to locate the corresponding entry in the translation table. The 
block address in the table entry designates the block of main storage associated 
with the block of PCE address space. 



Program A Active 

PCE Address Real Address 
Logical Address Space Space 

Spaces 

ACVI Origin Size I 0 I 0 0 

0 8 31~ OD Current ACV B 

Size 0 

0 8 31 

ACVI Origin Size I 0 I 
0 8 31 

----
0 

A A 

---M 
B 

N 

Program B Active 

PCE Address Real Address 
Logical Address Space Space 

Spaces 

Acvl I 0 I 
0 ----o 

Origin Size 

0 8 31 

OD B B 

!/° 
8 31 

ACV I Origin Size I 0 I 
0 8 31 

0 
A 

M 

B 

N 

Figure 1-24. Information Protection in Main Storage 

Chapter 1. Introduction to the Logical Structure 1-33 



0 

0 

Logical Address 
Spaces 

PCE Address 
Space 

Figure Translation ·c Address 1-25. Dynam1 

1-34 

\ 
\ 

\ 
\ 
\ 

\ 
\ 
\ 
\ 

\ 
\ 
\ 

Real Address 
Space 



The instructions LOAD FROM ADDRESS TRANSLATION TABLE and 
STORE TO ADDRESS TRANSLATION TABLE are provided to access or 
modify table entries. These instructions may be executed only by a program that 
has the proper authorization indicated in the program-mode field of its PSV. 

During the translation process, each relocated address is treated as having two 
parts: a block index and a byte index. The block index portion is used as an index 
to select an entry from the translation table. The table entry contains the 
high-order bits of the corresponding real address, which are then concatenated 
with the byte index to form the complete real address (see Figure 1-26). 

l 

1 
0 

Access 
Control 

Translation Table 

Block Address 

Figure 1-26. Translation Process 

0 

l 

J 
31 

0 

Relocated Address 

Byte Index 

20 21 

20 21 

Real Address 

31 

31 

Figure 1-2 7 shows information sharing by several programs that are otherwise 
separate. In this figure, programs A and B share information having the same 
addresses in both of their logical address spaces. Programs B and C share 
information that has different addresses in both of their logical address spaces. 
Note that in the latter case, shared data should not contain location-dependent 
information (for example, address values). 

When dynamic address translation is active, its translation facility provides 
protection against improper storage access by using the access-control field in the 
translation-table entries. Each 2048-byte block in the PCE address space may be 
assigned access protection. The access types allowed for the block are checked 
during each address translation. When main storage is accessed by a program and 
the access type is not allowed, a program exception occurs. The program 
exception code in the stored PSV is set to 1 to indicate an access exception, and 
depending on processor model, the exception block index (EBI) register 
associated with the active PSV contains the block index of the PCE address in 
error. When main storage is accessed by a channel I/ 0 operation and the access 

Chapter 1. Introduction to the Logical Structure 1-3 5 



Logical Address 
Spaces 

0 -----· 

type is not allowed, a channel exception occurs. EBI registers are not used for 
channel exceptions. The types of access control that can be specified are: ( 1) no 
accesses permitted, (2) store access not permitted, (3) instruction-fetch access not 
permitted, or ( 4) store by channel I/ 0 operations not permitted. Combinations 
can also be specified. 

PCE Address 
Space 

Shared 0 •• (f-0a0n~ !3~ • I- ••••••••••• ,__ ____ \ . \ 
A 

0 Shared --
• y; .a~~~). • 

---... . .... . . . . . . . 
B 

.......... . .. . . . . . 
Shared . .. 

(Band C) . . . . . .... . .. . . . . . . . . 

Figure 1-27. Information Sharing 

1-36 

. \ .. \ . \ .. \ .. \ 
.. \ 

\ 
\ 

\ 

. \ .. \ 
\ 

. .. 

\ 
\ 

\ 

. \ 

\ 

. \ .. \ 

\ 
\ 

Translation 
Table 

. . . ... 
•• • •l------------1 

/ 
/ 

/ 
/ 

/ 
/ 

/ 

N~2048----
I 

32 
~bits----

0 

Real Address 
Space 

A and B 

Band C 

Band C 



Depending on processor model, the dynamic address translation facility also 
provides separation protection by means of translation locks and protection keys 
when dynamic address translation is active. Separation protection is in addition to 
access-control protection. With the translation lock/protection key mechanism, 
multiple programs and/ or channel I/ 0 operations may coexist, but are logically 
separated within a common logical address space defined by a particular ACV 
value. 

A translation lock table contains an entry for each 2K-byte block in the PCB 
address space; each entry contains a translation lock. Whenever a program or 
CHIO operation becomes active, a protection key associated with the active ACV 
is also activated. When a main-storage block is accessed, the corresponding 
translation lock is compared with the active protection key. If the translation lock 
and protection key values are either identical or at least one value is zero, access is 
allowed. 

If a program attempts to access main storage and access is not allowed, a program 
exception occurs. The program exception code in the stored PSV is set to 3 to 
indicate a separation exception, and the block index of the PCB address in error is 
placed in the exception block index (EBI) register associated with the active 
ACV. 

If a CHIO operation attempts to access main storage and access is not allowed, a 
channel exception occurs. EBI registers are not used for channel exceptions. 

The LOAD FROM ADDRESS TRANSLATION LOCK TABLE and STORE 
TO ADDRESS TRANSLATION LOCK TABLE instructions are provided to 
access or modify translation-lock-table entries. These instructions may be 
executed only by a program that has the proper authorization indicated in the 
program-mode field of its PSV. 

Figures 1-28 and 1-29 show some examples of access control with dynamic 
address translation. Figure 1-28 illustrates how programs may be allowed 
different types of access to shared information. Partitioning of a program's 
instruction areas from data areas within an address space is also illustrated in this 
figure. An example of conservation of physical main storage is shown in Figure 
1-29. In this example, program B requires a smaller amount of storage than the 
next largest logical-address-space size (which is an integral power of 2). Only 
those main-storage blocks required by Bare allocated; program Bis not allowed 
to use logical addresses for which no main storage is assigned. Figure 1-30 shows 
an example of how separation protection is used to control storage access. 

Chapter 1. Introduction to the Logical Structure 1-3 7 



Logical Address 
Spaces 

01 
A 

PCE Address 
Space 

------•.------ r 

\ 
\ 

\ . . . . . . . . . . . . . . . . . . . . . . . . . 1------- . . \ 

Shared 
(A and C) 

0 --- ------
B 

Fetch and 
Execute 

..... 

·. \ ·.. \ 

---

. . . . . 

Translation 
Table* 

Fetch 
. . ····~--- - , ... 

• • • • • • z .. . . . . z 
"•I--=~--- I y 

y 

Any 
• • • • • • • • • • • • • • • • • • • • • • • • • • ~:-+------ I • •••••o&----- I 

L....-.--- ----- -- -- --

o~-------
L_J __ _ 

---
----

*Legend: X =all access types valid 
y = fetch access valid l"d 
Z = fetch and execute access types va ' 

f Sharing with Different Types of Access Figure 1-28. Infonna ion 

1-38 

--

Real Address 
Space 

A 

A and C 

B 

B 

B 

B 

B 

B 

-
-



Requested 
Space 

Size is 
a power 
of 2 

Logical Address 
Space 

B 

L+-~~ 

. .. 

PCE Address 
Space 

'"1--------I 

....... 
.................. 

I 

. . 

I 
I 

I 

-................... 

. . 

I 
I 

I 

-
*Legend: X =All access types are invalid; real storage 

is not allocated. 

Y =Al I access types are val id; real storage is 
allocated. 

Figure 1-29. Example of Conservation of Main Storage 

y 
y 
y 
y 
y 

Translation* 
Table 

Real Address 
Space 

Chapter 1. Introduction to the Logical Structure 1-39 



0 

D 
Single 

Logical Address 
Space 

A 

B 

c 

Shared 

(A, B, and C) 

Notes: 

-...... 
0 

-...... 

-...... 

-...... 

-...... 

PCE Address 
Space 

\ 
\ 
\ 
\ 
\ 
\ 

' ' ' 

-

~ 

~ 

_..... 

.... 

/ 

/ 
/ 

,, 

!' 

........... 

_._ -...... 

Translation 
Lock 
T bl a e 

Lock= A 

Lock= A 

Lock= A 

Lock= A 

Lock= B 

Lock = B 

Lock = B 

Lock= C 

Lock= C 

Lock= 0 

Lock = 0 

Lock= 0 

0 

Translation 
Table 

- - ---------..... 
0 - - --~-------1 

- - - -1----------1 
- - - -i----------4 

- - - -1-----------1 
- - - - -1----------1 

- - - -1----------t 
- - - -1----------1 
- - - -1----------1 
- - - -1-----------1 
- - - -1-----------1 
- - - -1----------1 

-l.... 

D When program A, B, or C is active, a unique protection key entry with a value 1-255 applies to 

the entire address space. 

fJ Translation lock values A, B, and Care unique values 1-255. A value of 0 allows access by any 

protection key. 

Figure 1-30. Example of Separation Protection 

1-40 

Real Address 
Space 

A 

A 

A 

A 

B 

Shared 

Shared 

B 

B 

c 

c 

Shared 



Register Organization 

Principal Registers 

Adjunct Registers 

Floating-Point Registers 

Access to Register Groups 

PCE Control 

The PCE provides three groups of registers: principal registers, adjunct registers, 
and (optionally) floating-point registers. All registers are organized in register 
sets. Each principal or adjunct register set consists of eight 32-bit registers 
numbered 0-7. The organization of principal and adjunct registers is illustrated in 
Figure 1-31. Each floating-point register set consists of four 64-bit registers 
numbered 0-3. 

The group of principal registers consists of 64 sets numbered 0-63. Principal 
register sets 0, 1, 4, 5, and 8-15 are permanently assigned to hold system control 
information; sets 16-63 are available for assignment by a supervisory program to 
programs for use as general registers. 

Principal register sets 0, 1, 4, and 5 are used to hold the PSV information. Sets 
8-15 are assigned as channel pointers and are used during channel I/O operations 
to address storage (see "Input/Output Operations'' in this chapter). Sets 2, 3, 6, 
and 7 are reserved and should not be used. 

I 
The group of adjunct registers consists of 64 sets numbered 0-63. Certain adjunct 
register sets are permanently assigned as follows: sets 0, 1. 4, and 5 contain ACVs 
and EBis, sets 8-15 contain ACVs, and sets 16, 17, 20, 21, and 24-31 contain 
protection keys. Because ACVs are logically associated with PSVs and channel 
pointers, adjunct register sets 0, 1, 4, 5, and 8-15 are logically associated with the 
correspondingly numbered principal register sets. The remaining adjunct register 
sets are reserved and should not be used. 

The group of floating-point registers consists of eight sets numbered 0-7. All 
floating-point register sets are available for assignment to programs. 

The contents of any register in both the principal and adjunct register groups may 
be referred to using register-indirect operations. Information may be transferred 
in byte or halfword units between an active general register and any principal 
register or any adjunct register, including those permanently assigned. These 
instructions can be used only by a program that has the proper authorization 
indicated in the program-mode field of its PSV. 

The PCE gives control to programs in response to requests for program execution. 
The functions performed by the PCE to determine which program is to be given 
control are called dispatching functions. The PCE performs dispatching functions 
automatically to provide fast response to requests for program execution. 
Requests come from three sources: 

Requests created by a program 
Signals from I/ 0 devices 
Requests generated by the PCE as a result of detecting certain errors 

Chapter 1. Introduction to the Logical Structure 1-41 



1-42 

Set 

0 

2 

3 

4 

5 

6 

7 

8 

• 
• 
• 

11 

12 

• 
• 
• 

15 

16 

Adjunct Register Group 

ACVs/E Bis 
Levels 0-3 
ACVs/EBls 
Levels 4-7 

Reserved 

ACVs/EBls 
Levels 0-3 
ACVs/EBls 
Levels 4-7 

Reserved 

AC Vs 
Channel 
Pointers 
32-63 

AC Vs 
Channel 
Pointers 
0-31 

Protection Keys Primary Levels 0-3 

17 Protection Keys Primary Levels 4-7 

18 
Reserved 

19 

20 Protection Keys Secondary Levels 0-3 

21 Protection Keys Secondary Levels 4-7 

22 

23 

24 

• 
• 
• 

27 

28 

• 
• 
• 

31 

32 

• 

Reserved 

Protection Keys 
Channel 
Pointers 
32-63 

Protection Keys 
Channel 
Pointers 
0-31 

Reserved 

Figure 1-31. Principal and Adjunct Register Assignments 

Principal Register Group 

Primary PSVs 
Levels 0-3 

Primary PSVs 
Levels 4-7 

Reserved 

Secondary PSVs 
Levels 0-3 

Secondary PSVs 
Levels 4-7 

Reserved 

Channel 
Pointers 
32-63 

Channel 
Pointers 
0-31 

General 
Register 

Sets 
16-63 

Set 

0 

2 

3 

4 

5 

6 

7 

8 

• 
• 
• 

11 

12 

• 
• 
• 

15 

16 

• 
• 
• 

63 



Priority Levels 

The allocation of unique general-register sets from the group of principal register 
sets, and the definition of a logical address space, allow a supervisory program to 
establish a distinct execution environment for a program. Because a distinct 
environment is defined, the state of the program is automatically preserved when 
program execution is suspended and restored when the program is subsequently 
resumed. 

Requests for program execution are serviced by the PCE according to their 
relative priorities. Eight levels of priority are defined. The eight priority levels are 
numbered 0-7. Level 0 is defined as the highest priority, level 1 is defined as the 
next highest priority, and so on to level 7, which is defined as the lowest priority. 
The priority level at which the PCE is executing instructions is called the current 
priority level. 

The priority levels can be enabled or disabled for requests for program execution. 
When a priority level is enabled, programs associated with that priority level can 
be given control in response to a request. When a priority level is disabled, all 
requests for programs at that level remain pending until the level is enabled. 

Whether priority levels are enabled or disabled is indicated and controlled by 
mask bits in the master mask and the common mask. The two masks provide a 
hierarchy of control. The 1-bit master mask controls priority levels 1-7 as a group. 
The 8-bit common mask provides individual control for each of priority levels 0-7. 
The master mask takes precedence over the common mask. 

A third mask, the 1-bit channel mask, determines whether channel input/ output 
operations are enabled or disabled. 

A program is given an execution priority by means of its PSV/ ACV pair. 
Associated with each priority level are principal and adjunct register locations that 
are permanently assigned to hold PSV I ACV information. The register locations 
that hold a PSV and its paired ACV are uniquely associated with one priority 
level. Thus, the priority level at which a program executes is determined by the 
register locations in which its PSV I ACV pair is held. 

When the optional floating-point feature is installed, one FSV is assigned to each 
priority level. The FSV provides information for the proper execution at that 
priority level of a program which uses the floating-point instructions. 

Register locations for two PSV I ACV pairs are associated with each priority level; 
one is designated the primary PSV I A CV pair and the other is the secondary 
PSV/ACV pair. This dual PSV I ACV facility allows a supervisory program and 
an application program to execute at the same priority level. The primary 
PSV / ACV pair should normally be used for a supervisory program, and the 
secondary PSV I ACV pair can be used for any program. 

PSV information is held in an even/ odd numbered pair of consecutive registers in 
a principal register set. Corresponding to the register locations of a PSV is an 
even/ odd numbered pair of register locations in an adjunct register set. This 
adjunct register pair is permanently assigned to hold the corresponding ACV and 
EBI. The PSV and ACV/EBI register locations and their association with the 
priority levels are illustrated in Figure 1-32. Information in the PSV and 
ACV /EBI register locations may be inspected or modified using register-indirect 
operations (see "Register Organization" in this chapter). 

Chapter 1. Introduction to the Logical Structure 1--43 



Level 

0 

2 

3 

4 

5 

6 

7 

Primary Pairs 

Set 0 

Adjunct 

Registers 

4 IA"CVI 
5~ 

6~ 
7~ 

Set 1 

Adjunct 

Principal 

Principal 

Figure 1-32. PSV and ACV /EBI Register Locations 

1-44 

Secondary Pairs 

Set 4 

Adjunct 

Registers 

0 BB I 

2 ACV 

3 EBI 

4~ 
5~ 

6~ 
7~ 

Principal 

Registers 

a 

Set 5 

0 

2 

3 

Adjunct 

Registers 

BB I 

Principal 

Registers 

B 

: 1,--A-E~-~----11 EPsv=j 



Interrupt Requests 

Priority Level Dispatching 

The PCE's dispatching mechanism operates in response to requests generated by a 
program, I/ 0 devices, or PCE-detected errors. These requests for program 
execution can result in an interruption of the current program and the 
introduction of a new PSV I ACV pair. For this reason, the request for program 
execution is called an interrupt request. An interrupt request is always associated 
with a priority level and represents a request for execution of a program at a 
specific priority level. 

Interrupt requests from I/ 0 devices are held in an I/ 0 interrupt request vector 
(IOIRV). Requests created by the currently executing program are held in a 
programmed interrupt request vector (PIRV). In both the IOIRV and the PIRV~ 
one bit position is defined for each of the eight priority levels. A request for 
program execution at a specific priority level is indicated by the bit associated 
with that level. For the purpose of indicating interrupt requests, an I/ 0 device 
can be assigned to a priority level. 

System checks result in a request for program execution at priority level 0 and are 
indicated in an error interrupt request vector (EIRV). The group of system 
checks includes machine checks, I/ 0 checks, channel exceptions, and those 
program exceptions detected while a primary PSV is active (usually indicating an 
error in a supervisory program). 

The three types of interrupt requests are generated independently of each other 
and may be present at any time in any combination. Two or more primity levels 
can, and often do, have simultaneous interrupt requests present. Depending upon 
the configuration of the system, a given priority level may be associated with only 
a single interrupt-request source, or the priority level may be shared for the 
processing of requests from more than one source. When a priority level is 
shared, the applicable sources must be examined to determine which one 
generated the interrupt request. 

The procedure performed by the PCE to select a priority level for program 
execution is called priority level- dispatching. Conceptually, the procedure to select 
a priority level for program execution is repeated after every unit of operation. 
The entire execution of a noninterruptible instruction is a single unit of operation. 
For interruptible instructions, a unit of operation may consist of only partial 
execution of the instruction. Interrupted instructions are normally resumed 
automatically with the next unit of operation when the interrupted program is 
next given control. 

The PCE determines which priority levels are eligible for selection by combining 
all requests and excluding those associated with disabled priority levels. Normally 
an interrupt request for a given level must be present in order for program 
execution to take place at that level. A PSV I ACV pair associated with the 
highest enabled priority level having an interrupt request present is given control. 

If the selected level is the same as the current level, program execution continues 
on the current level with the next unit of operation. In two cases, however, a new 
program is given control at the current priority level. The first of these is 
execution of the instruction CALL PSV, which introduces the opposite (dual) 
PSV I ACV pair for the same priority level (switches from the primary PSV I ACV 
pair to the secondary pair or from the secondary pair to the primary pair). The 

Chapter 1. Introduction to the Logical Structure 1-45 



Interruption Action 

1-46 

second case occurs when a program exception is encountered while a secondary 
PSV is active. In this case, the primary PSV I ACV pair for the current priority 
level is introduced. In both cases, the current level does not change even though a 
new PSV I ACV pair is introduced. An 8-bit control vector, the program 
activation vector (PAV), is updated to indicate which PSV I ACV pair is to be 
introduced when control is returned to the current level following an interruption. 

If the selected level and current level are different, program execution at the 
current level is interrupted and the program at the selected level is given control. 
A new priority level is selected when ( 1) there is a request for program execution 
at a level higher in priority than the current level, and the higher priority level is 
enabled, or (2) the request for program execution at the current priority level is 
removed or the current level is disabled, and another request is present that is 
associated with an enabled priority level. 

The PCB normally continues program execution at an enabled priority level only 
while an interrupt request is present for that level. The master mask can also be 
used lo continue program execution at the curreht level even when no interrupt 
request is present for that level. When the request sustaining program execution 
on the current priority level is removed, program execution on that level is 
considered to be concluded at the completion of the current instruction. 

The wait state is entered at the completion of the current instruction when 
program execution on the current priority level is concluded and no other 
interrupt request is present for an enabled priority level. When the wait state is 
ended because of an interrupt request, priority level dispatching is resumed as if 
the interrupt request were present at the completion of the last instruction. 

The numbers of the current priority level (CPL) and the last priority level (LPL) 
are automatically maintained by the PCE and can be read by the program. The 
CPL number indicates the currently active priority level. The LPL number 
designates the priority level that was active before the current PSV I ACV pair 
was introduced. 

An interruption is defined as the action performed by the PCE when control is 
taken from one PSV I ACV pair and given to another PSV I ACV pair. The 
program associated with the PSV I ACV pair from which control is taken is called 
the interrupted program. Interruptions occur when the PCE's dispatching 
mechanism determines that a new PSV I ACV pair is to be introduced (a new 
program given control), whether at the current priority level or at a higher level. 
The interruption action is performed automatically by the PCE. 

The interruption action includes storing the current PSV, updating certain control 
information, and introducing a new PSV and ACV. Information from the current 
PSV is stored in the register locations from which the PSV was loaded. The 
current ACV is not stored because its contents cannot be changed during program 
execution. When the floating-point feature is installed, the interruption action 
also includes making a new FSV active when a new priority level is dispatched. 
Processing resumes as specified by the new PSV I ACV pair. This interruption 
action is performed automatically by the PCE; no action by the program is 
necessary to store PSV information or introduce a new PSV I ACV pair. 

The stored PSV holds all necessary PCE-status information relative to the 
program being executed at the time of the interruption. When program execution 



is interrupted because of requests not associated with errors, the stored PSV 
contains the address of the instruction to be executed next. This permits 
automatic resumption of the interrupted program. 

When an interruption occurs as a result of a program exception or system check, 
information is stored in the PSV that permits identification of the instruction 
being executed when the interruption occurred. When appropriate, this 
information can also be used for resumption of the interrupted program. The 
cause is identified by additional information made available to the program. The 
specific information and its location depends on the interruption type. 

Instructions for PCE Control 

Input/Output Operations 

A class of instructions, the PCB-control instructions, is provided to read and 
modify active PCB-control information, as well as to perform other operations 
necessary for PCE control. Instructions that can modify active PCB-control 
information can be used only by a program that has the proper authorization 
indicated in the program-mode field of its PSV. Operations that read active 
PCB-control information are valid in all program modes. 

The transfer of information between an I/ 0 device and main storage, or between 
an I/ 0 device and a register in the PCE, is ref erred to as an input/ output 
operation. Two methods may be used to transfer data to or from an I/ 0 device. 
They are called programmed I/O (PIO) and channel I/O (CHIO). 

PIO refers to the transfer of a single unit of data between the I/ 0 device and 
the PCE. Specifically, the transfer occurs between the I/ 0 device and a 
general register designated in an I/0 instruction. PIO is used to selectively 
reset I/ 0 devices, and to read and modify device-status information. It is 
also used when distinct I/ 0 device operations are to be directly controlled by 
the program. Three I/ 0 instructions are provided. Two of the instructions 
transfer a single byte of data to or from the I/ 0 device; the third instruction 
transfers a single half word. I/ 0 instructions can be executed only by a 
program that has the proper authorization indicated in the program-mode 
field of its PSV. 

• CHIO refers to the transfer of multiple units of data between the I/O device 
and main storage. CHIO is used principally for transferring information at a 
high data-rate. After the program initiates a CHIO operation, the program is 
free to perform other work; that is, the channel transfers data asynchronously 
with respect to program execution. The internal facilities of the PCE may be 
shared by the channel for controlling CHIO operations. This sharing is 
accomplished automatically and the program is not affected except for an 
increase in execution time. 

Programmed 1/0 Operations 

Each of the three I/ 0 instructions specifies an 8-bit device address, an 8-bit 
command, and a general-register operand location from or into which data is 
transferred. Execution of an I/ 0 instruction consists of the logical selection 
(connection) of the addressed device, the transfer of the command to the device, 
and the transfer of one unit of data to or from the device. Execution of the I/O 
instruction is completed after the data unit is transferred. The condition 

Chapter 1. Introduction to the Logical Structure 1-4 7 



PCE 

0 15 16 

Figure 1-33. PIO 01>eration (halfword) 

1-48 

indicators in the current PSV arc set to reflect the outcome of the PIO operation. 
When the channel detects an error during execution of an I/ 0 instruction, a 
system-check interruption is generated. PIO is illustrated in Figure 1-33. 

INPUT/OUTPUT (byte) and INPUT /OUTPUT (byte, immediate) instructions 
designate a byte operand and are normally used with devices that transfer a single 
byte of data during each operation (these instructions may also be used with 
devices that transfer halfwords). INPUT /OUTPUT (halfword) specifies a 
halfword data operand and is provided for use only with devices that transfer a 
single half word of data during each operation. 

The device address is specified with the contents of a general-register byte 
operand designated by the I/O instruction; it provides for 256 unique addresses. 
The PIO command code specifies to the I/ 0 device the operation to be 
performed. The low-order bit of the command code identifies the direction of 
data transfer. Except for four commands discussed in the following paragraphs, 
the significance of the high-order seven bit positions of the command code 
depends on the type of I/O device. 

Each 1/0 device provides a basic status register (BSTAT). The information 
contained in the BST AT identifies certain device status. Basic-status information 
is made available to the program by means of the PIO command Read BSTAT. 
Ordinarily, the handling of I/ 0 interruptions by the program includes the reading 
of the BSTA T. Additional status information that may be provided by the device 
is made available by device-specific PIO commands. 

The BSTAT is also used by the device as a control register. Certain bits are used 
to control functions such as the generation of I/ 0 interrupt requests or the 
disabling of operations at the device. The PIO commands Set BSTAT Under 
Mask and Reset BST AT Under Mask allow the program to modify the BSTAT 
and, thus, control these functions. The command Reset Device is used to 
selectively reset I/ 0 devices. 

31 

command 

address 

data (read) 

I 
I 

... , 

data (write~ I 

Channel 

1/0 Devices 



Channel I I 0 Operations 

Channel I/ 0 operations are used to transfer multiple units of data between main 
storage and an I/O device. The channel synchronizes the transfer of data to or 
from main storage. 

The facilities in the channel may be shared by a number of concurrently operating 
I/ 0 devices. Each concurrently operating device obtains a time interval during 
which one or more units of data are transferred. The length of the interval 
depends on the operating characteristics of the device, such as the number of 
bytes in a burst and the device transfer rate. During such an interval, only one 
device is logically connected to the channel. 

The program initiates a CIDO operation with an I/O instruction. The PIO 
command code designated by the I/ 0 instruction is interpreted by the device as 
the initiation of a CHIO operation. The command code that initiates a CHIO 
operation depends on the specific device. 

Three elements of information are normally required to control a CHIO 
operation: the command, the beginning logical address in main storage, and the 
data count. Control information may be supplied to the device by means of one 
or more I/ 0 instructions executed before initiating the CIDO operation. 
Alternatively, control information may be written to the device as data during a 
CHIO operation. 

Operations such as reading or writing data and reading or writing address 
information can be specified by the CHIO command. The beginning 
main-storage address is obtained by specifying the number of a channel pointer 
that contains the logical address. 

A channel pointer is 32 bits long and is used by the channel during CHIO 
operations to address main storage. The IBM 8100 system provides 64 channel 
pointers for CHIO operations. Each channel pointer is permanently assigned to 
one of the principal registers from sets 8-15. During a CHIO operation, the 
channel maintains and updates the logical address in the channel pointer. 

The initial address in the channel pointer designates the location in main storage 
from or into which the channel transfers the first byte of data. The address can 
be supplied by a supervisory program or read from the I/ 0 device during a CHIO 
operation. Storage locations are used in ascending order of addresses. As 
information is transferred to or from main storage, the address in the channel 
pointer is incremented by the channel. When the operation is concluded, the 
channel has increased the address in the channel pointer by an amount equal to 
the number of bytes transferred to or from main storage. 

The channel pointer is associated with an ACV. All main storage addresses used 
by the channel are treated as logical addresses. The ACV defines the logical 
address space used by the channel during data transfer to or from main storage. 
During each storage reference, the logical address is relocated by means of the 
dynamic address relocation facility. When address translation is designated in the 
ACV, the relocated address is then translated to a real address by means of the 
dynamic address translation facility. Otherwise, the relocated address is used as 
the real address (see "Dynamic Address Transformations" in this chapter). 
Storage-addressing information for channel I/ 0 operations is illustrated in Figure 
1-34. 

Chapter 1. Introduction to the Logical Structure 1-49 



ACV 

Origin 

0 8 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Size 

31 

\.. __ _ 

0 

Channel Pointer 

31 

0 

----------- - - - - - -

Logical 
Address 
Space 

- - - - - - - - __ .._ _____ __J ... 

0 

PCE Address 
Space 

N~------' 

Figure 1-34. Channel 1/0 Storage-Addressing Information 

1-50 

The dynamic address translation facility also provides storage access protection 
for CHIO operation by means of the access-control field contained in the 
translation-table entries. Depending on processor model, it also provides 
separation protection by means of protection keys and translation locks. 

During a CHIO operation, the device maintains a count of the data units 
transferred. Data recorded by an I/ 0 device may be divided into physical blocks. 
The length of a block depends on the device. When a physical block length is 
defined, data-count information need not be supplied by the program to the 
device before the initiation of an I/ 0 operation. One or more blocks may be 
transferred in one CHIO operation. The capability to transfer multiple blocks in 
one CHIO operation, and the manner in which it is accomplished, depends on the 
particular device. 

For some devices or operations, blocks are not defined and the amount of 
information transferred is specified by the program. The data count, in this case, 



is provided to the device as control information before the data transfer. 
Functions peculiar to each device, such as rewinding a magnetic tape or 
positioning the access mechanism on a disk drive, are specified by means of 
device-specific protocols. That is, the format and meaning of control information 
specifying such functions, and the method used to supply the device with the 
information, depend on the particular device and operation. Device-dependent 
control information may appear in a PIO command code, or may be transferred to 
the device as data during a CHIO or PIO operation. 

Normally, a CHIO operation lasts until the final unit of information is transferred 
to or from the device. However, when the channel recognizes an exception or 
detects equipment malfunctioning, it terminates the data transfer immediately, 
logically disconnects the device, and generates a system-check interruption. 
When a channel I/ 0 operation is ended, the conclusion may be signaled by the 
device with an I/O interruption. For devices that do not generate an I/0 
interruption, the conclusion may be determined by programmed interrogation. 

At the conclusion of an operation, the device generates status information that 
indicates conditions pertaining to the execution of the CHIO operation. This 
status information is stored in the device's basic status register. Additional status 
information, if any, is stored in device-specific status registers. Status information 
may be obtained by the program by execution of one or more PIO commands that 
read the status information. 

Chapter 1. Introduction to the Logical Structure 1-51 





PART II. INFORMATION PROCESSING FACILITIES 

Chapter 2. Storage and Registers 
Chapter 3. Program Execution 
Chapter 4. General Instructions 
Chapter 5. Floating-Point Instructions 





Chapter 2. Storage and Registers 

Information Units 

This chapter describes the information units used in the 8100 system. It also 
describes the logical organization of main storage and general registers as 
observed by an executing program. The assignment of registers and storage for 
use by a program is normally controlled by a supervisory program. This control is 
discussed separately in Chapter 6, "Register Organization," and Chapter 7, 
"Dynamic Address Relocation and Translation." 

The IBM 8100 Information System transmits or operates on information in units 
of 8 bits, or a multiple of 8 bits, at a time. Each 8-bit unit of information is called 
a byte - the basic building block of all units. 

The bits in a byte are numbered consecutively, left to right, 0 through 7. Within 
any fixed-length information unit of multiple bytes, the bits making up the unit 
are consecutively numbered from left to right, starting with the number 0. 
Leftmost bits are sometimes referred to as the "high-order" bits, and rightmost 
bits are referred to as the "low-order" bits. 

For purposes of error detection, one or more check bits may be transmitted with 
each byte or with a group of bytes. Check bits are generated automatically by the 
system and cannot be directly controlled by the program. References in this 
manual to the size of information units and registers exclude mention of any 
associated check bits. All storage capacities are expressed in number of bytes 
provided, without regard to storage width. 

Bytes may be handled separately or grouped together in fields. A half word is a 
group of 2 consecutive bytes and is the basic building block of instructions. A 
word is a group of 4 consecutive bytes; a doubleword is a group of 8 consecutive 
bytes. The location of any field or group of bytes is identified by the address of 
its leftmost byte. 

The length of a field is either implied by the operation to be performed or stated 
explicitly as a parameter of the operation. When the length is implied, the 
information is said to have a fixed length, which can be either 1, 2, 4, or 8 bytes. 
When the length of a field is stated explicitly, the information is said to have 
variable field length. Variable-length fields are variable by increments of 1 byte or 
1 halfword. 

When information is placed in main storage, the contents of only those byte 
locations included in the designated field are replaced, even though the physical 
path may be wider than the field being stored. When information is fetched from 
main storage, the contents of those byte locations that are not included in the 
designated field are ignored, even though the physical path may be wider than the 
field being fetched. 

Note: Information units used as operands during instruction execution, or 
transferred during I I 0 operations, are usually referred to as data units. 

Chapter 2. Storage and Registers 2-1 



Main Storage 

Addressing 

Integral Boundaries 

2-2 

Main storage provides the system with directly addressable fast-access storage of 
data. Both data and programs must be loaded into main storage (usually from 

I input devices) before they can be processed. Main storage is shared by both 
PCEs in dual-PCB processors. 

Byte locations in storage are consecutively numbered, left to right, starting with O; 
each number is considered the address of the corresponding byte. A group of 
bytes in storage is addressed by the leftmost byte of the group. The number of 
bytes in the group is either implied or explicitly stated for the operation. The 
addressing arrangement uses a 32-bit binary address to provide an addressing 

I capability of 4,294,967 ,296 byte addresses. This addressing capability should not 
be confused with the maximum amount of physical main storage installed. 

Storage addresses are linear from address 0 to the maximum byte address. Storage 
addressing does not wrap from the maximum byte address to address 0. If the 
maximum-address boundary is crossed when main storage is referred to, a 
program exception is indicated. 

For purposes of addressing main storage, two types of addresses are recognized: 
real and logical. 

Real addresses are the lowest level of program-recognizable addresses, and in this 
publication they are considered to be the addresses of physical storage locations. 
A physical storage location is not associated with more than one real address. 

An address used by the program or in a channel I/ 0 operation is referred to as a 
logical address. A logical address is always transformed into a relocated address 
by the dynamic-address-relocation facility before main storage is accessed. When 
dynamic address translation is invoked, the relocated address is then translated to 
a real address before main storage is accessed. When dynamic address translation 
is not invoked, the relocated address is used as the real address. These address 
transformations are described in Chapter 7, "Dynamic Address Relocation and 
Translation." 

Main storage is normally assigned to contiguous real addresses starting at address 
0, and is always assigned in multiples of 2,048 bytes. A program exception is 
indicated when an attempt is made to access main storage by using a real address 
that does not correspond to a physical location. The program exception is 
indicated only when the information associated with the real address is actually 
required and not when the operation can be completed without using the 
information. 

Certain units of information must be located in main storage on an integral 
boundary (see Figure 2-1). A boundary is called integral for a unit of information 
when its storage address is a multiple of the length of the unit in bytes. For 
example, a halfword (2 bytes) is on an integral boundary when it is located in 
storage so that its address is a multiple of the number 2, and a word ( 4 bytes) is 
on an integral boundary when it has an address that is a multiple of the number 4. 



General Registers 

~-------Main Storage Locatiom (with Simplified Addresses) ---------J 

+ t 

~!~~;;~ 
Figure 2-1. Integral Boundaries for Halfwords and Words 

+ 
I 

Instructions must appear in storage on halfword integral boundaries. Halfword 
and word storage operands must also appear on integral boundaries. Both short 
and long floating-point storage operands must appear on word integral 
boundaries. The binary representation of storage addresses designating halfwords 
and words on integral boundaries contains 1 or 2 low-order 0 bits, respectively. 

Addresses used to designate information that must appear on an integral 
boundary are not checked for the correct number of low-order 0 bits. That is, the 
1 or 2 low-order bits of addresses that designate instructions or operands that are 
required to be located on integral boundaries are ignored and assumed to be 0. 

Programming Note: An address designating a unit of information that must 
appear on an integral boundary is assumed to contain the appropriate ( 1 or 2) 
low-order 0 bits. A word storage operand at location 2000, for example, can be 
ref erred to with any of the four addresses 2000, 2001, 2002, or 2003. However, 
the program should use addresses that correspond to the integral-boundary 
locations for halfword and word units of information. 

The PCE can address information stored in general registers. Each general 
register contains 32 bits. These registers may be used as base registers in main 
storage addressing and as accumulators in arithmetic and logical operations. A 
program may directly refer to 16 general registers. 

General registers are organized in register sets. Each set consists of eight general 
registers numbered 0-7. Forty-eight register sets are provided for assignment to 
programs. A program has two general register sets assigned, a primary register set 
and a secondary register set, for a total of 16 general registers. Two fields in the 
program status vector designate the numbers of the primary and secondary sets 

Chapter 2. Storage and Registers 2-3 



2-4 

assigned to the program. When a program is executing, the general register sets 
designated in its program status vector contain the active general registers 
available to the program. 

Note: This manual normally refers to the active general registers simply as the 
general registers. Explicit references to active general registers are made only when 
it is necessary to distinguish them from any of the register sets that may be assigned 
as general registers. For a complete description of all register sets and the privileged 
register-indirect instructions used to access a register in any register set, refer to 
Chapter 6. 

Operands in general registers may be 1-byte, 2-byte (halfword) or 4-byte (word) 
data units. For operations using word operands, all 32 bits of the register 
participate in the operation. If an operation produces a word result in a general 
register, all 32 bits in the register are replaced by that result. 

Operations on halfword operands in general registers use either bits 16-31 (called 
the lower half) or bits 0-15 (called the upper half) of the register. A halfword 
result placed in a general register replaces the contents of either the lower or 
upper half of the register. The contents of the other half of the register remain 
unchanged. 

Operations on byte operands can refer to either of the 2 low-order bytes in a 
general register: bits 16-23 (called the upper byte) or bits 24-31 (called the lower 
byte). A byte result placed in a general register replaces either the upper byte or 
the lower byte; the contents of the remaining bit positions in the register are not 
changed. Except for data movement by means of the privileged register-indirect 
instructions, bits 0-15 of a general register cannot be used for either operands or 
results in operations on byte data units. 

A general register may hold multiple data units, each of which can be processed 
independently. The three possible allocations of data units to a general register 
are either a 32-bit word (bit positions 0-31 ), two 16-bit halfwords (bit positions 
0-15 and 16-31 ), or one halfword (bit positions 0-15) and two 8-bit bytes (bit 
positions 16-23 and 24-31). Refer to Figure 1-5 for data unit allocation for a 
general register. 

General-register operands are designated by a 4-bit field in an instruction. The 
leftmost 3 bits of the field specify the binary number (0-7) of the general register 
within one of the two register sets assigned to the program. Figure 2-2 illustrates 
the numbering of general registers within a register set. The register set containing 
the general register is designated either by the rightmost bit of the 4-bit field or as 
part of the operation code. 

The 4-bit field designating general-register word and halfword operands is 
identified in this publication by the uppercase symboi R, and is called the R field. 
For general-register byte operands, the field is identified by the lowercase symbol 
rand is referred to as the r field. For word and halfword operands, the rightmost 
bit of the R field designates which of the two register sets (primary or secondary) 
contains the general register. For halfword operands, the operation code indicates 
whether the operand is located in the upper or lower half of the general register. 
Word and halfword operands in general registers and the associated R-field values 
are shown in Figure 2-3. 



General Registers 

Register Number R/r Field 
(within set) ~ 111-----32 Bits -----11~.i 

0 OOOx 

001x 

2 010x 

3 011x 

4 100x 

5 101x 

6 110x 

7 111 x 

Explanation: 

For word and halfword operands, the rightmost bit (x) of the instruction R field is used to designate 
the register set in which the general register is located: 

x = 0 designates the primary register set. 
x = 1 designates the secondary register set. 

For byte operands, the rightmost bit (x) of the instruction r field designates which of the two low-order bytes 
in the general register contains the operand: 

x = 0 designates the upper byte (bits 16-23) of the register. 
x = 1 designates the lower byte (bits 24-31) of the register. 

For byte operands, the primary/secondary register set is either implied or specified by the 
operation code. 

Figure 2-2. General Registers Within a Register Set 

Chapter 2. Storage and Registers 2-5 



2-6 

For byte operands, the rightmost bit of the r field designates which of the 2 
low-order bytes within the general register contains the operand. The operation 
code indicates which of the two register sets (primary or secondary) contains the 
general register. The r-field values for primary-register-set byte operands are the 
same as the values for the secondary-register-set byte operands, as shown in 
Figure 2-4. 

The general registers may be used as base-address registers in address generation. 
When general registers are used as base-address registers, they are designated by a 
4-bit B field in an instruction. The bits of this field have the same organization as 
the bits of an R field. 

For some operations, two adjacent general registers are treated as a pair. In these 
operations, the leftmost 3 bits of the R field in the instruction designate an 
even-numbered register. The next higher numbered register is implied to be the 
second register in the designated even/ odd pair. 

A number of general-register halfword operands may be addressed as a unit, 
called a quadrant. A quadrant consists of eight consecutive halfword operands. 
Within a register set there are two quadrants: one consisting of all of the 
halfword operands in the lower halves of the eight registers, and one consisting of 
all halfword operands in the upper halves of the registers. Thus, within the two 
register sets assigned to a program as general registers, there are four quadrants 
that the program can address. 



Register Register R-Field Word Operands Halfword Operands 
Set Number r 1 r-- upper---r--lower--1 

0 0000 I I I 

0010 

2 0100 

3 0110 

Primary 

4 1000 

5 1010 

6 1100 

7 1110 

0 0001 

0011 

2 0101 

Secondary 3 0111 

4 1001 

5 1011 

6 1101 

7 1111 

0 31 0 15 16 31 

Figure 2-3. General-Register Word and Halfword Operands 

Chapter 2. Storage and Registers 2-7 



Register 
Set 

Primary 

Secondary 

Register 
Number 

0 

2 

3 

4 

5 

6 

7 

0 

2 

3 

4 

5 

6 

7 

Upper Byte 
(Bits 16-23) 

0000 

0010 

0100 

0110 

1000 

1010 

1100 

1110 

0000 

0010 

0100 

0110 

1000 

1010 

1100 

1110 

Figure 2-4. General-Register Byte Operands 

2-8 

r-Field 

Lower Byte 
(Bits 24-31) 

0001 

0011 

0101 

0111 

1001 

1011 

1101 

1111 

0001 

0011 

0101 

0111 

1001 

1011 

1101 

1111 

Byte Operands 

I Upper I Lower 

!·.·.·.· ·.·.·.·.·1 ·:·::::::::::::;::::::::::::::: 
..... .... 

.·.··1 

... 

·.·.·.··1 
.... 

r··· -.:·· .. :::· ..... ·J 
0 16 23 24 31 



Floating-Point Registers 

Register Number 

(within set) 

0 

2 

3 

F-Field 

00 

01 

10 

11 

When the floating-point feature is installed, floating-point operations are 
provided on data residing in floating-point registers. Each floating-point register 
contains 64 bits (doubleword). These registers can be used as accumulators in 
arithmetic operations on floating-point data. 

Floating-point registers are organized in register sets. Each set consists of four 
floating-point registers numbered 0-3. Eight floating-point register sets are 
provided for assignment to programs when the floating-point feature is installed. 
Each program can have one floating-point register set assigned to it. A field in 
the floating-point status vector designates the number of the set currently 
assigned to the program. When a program is executing, the floating-point register 
set designated in the program's floating-point status vector contains the active 
floating-point registers. 

Operands in floating-point registers can be either short-format (32-bit) or 
long-format (64-bit) floating-point data. A short operand occupies the high-order 
bit positions (0-31) of a floating-point register. The low-order portion (bit 
positions 32-63) is ignored and remains unchanged in arithmetic operations 
calling for short operands and a short result. 

Floating-point registers are addressed by a 2-bit F field in instructions. These bits 
specify the floating-point register number within the register set assigned to the 
program. Figure 2-5 illustrates the numbering of floating-point registers within a 
register set. 

Floating-Point Registers ·r----------- 64 Bits -----------~~1 

Figure 2-5. Registers in a Floating-Point Register Set 

Chapter 2. Storage and Registers 2-9 





Chapter 3. Program Execution 

Instructions 

Operands 

This chapter describes the role of instructions during program execution, and 
discusses briefly program status information used by the PCE to control execution 
of a program. Included is a detailed description of program exceptions other than 
those related to floating-point operations. Chapter 5, "Floating-Point 
Instructions," describes floating-point in detail. The action taken by the PCE 
when an interruption occurs due to a program exception is described under 
"Interruptions" in Chapter 9, "PCE Control." 

Each instruction consists of two major parts: ( l) operation code fields, which 
specify the operation to be performed, and (2) fields which designate the 
operands that participate. 

Operands participating in an operation can be grouped in three classes: operands 
located in registers, immediate operands, and operands in main storage. Operands 
may be either explicitly or implicitly designated. For purposes of description, 
operations may be grouped according to the locations of their operands: 
register-to-register, register-and-storage, register-and-immediate, 
storage-to-storage, and sequencing. 

Register operands can be located in general or floating-point registers, with the 
type of register identified by the operation code fields. For all instructions except 
floating-point, the register containing the operand is specified by identifying the 
register in a 4-bit field, called the R field, in the instruction. (In the individual 
instruction descriptions, the 4-bit fields that designate general-register byte 
operands are denoted with a lowercase r in place of the uppercase R.) For 
floating point instructions, the floating-point register containing the operand is 
designated by a 2-bit F field. For some instructions, an operand is located in an 
implicitly designated register, in which case the register is implied by the operation 
code fields. 

Immediate operands are contained within instructions, and the field containing 
the immediate operand is called the I field. 

Operands in main storage may either have an implied length or a length specified 
by the contents of a general register. The addresses of operands in main storage 
may be specified by a format that uses the contents of a general register as all or 
part of the address. This makes it possible to: 

Specify a complete address by using an abbreviated notation. 

Perform address manipulation using instructions that employ general registers 
for operands. 

Modify addresses by program means without altering the instruction stream. 

Operate independently of the location of data areas by directly using 
addresses received from other programs. 

Chapter 3. Program Execution 3-1 



Instruction Formats 

Register Operand Specification 

3-2 

The address used to refer to main storage either is contained in a register 
designated by the R field in the instruction or is calculated from a base address 
and displacement, designated by the B and D fields, respectively, in the 
instruction. 

In describing instruction execution, operands are designated as first and second 
operands and, in some cases, third operands. In general, two operands participate 
in an instruction execution, and the result replaces the first operand. An 
exception is an instruction with STORE in the name, in which the result replaces 
the second operand. Except for storing the final result, and for instructions that 
include address modification as part of the operation, the contents of all registers 
and storage locations participating in the addressing or execution part of an 
operation remain unchanged. 

An instruction is 1 or 2 halfwords long and must be located in main storage on an 
integral halfword boundary. For purposes of describing operand designations, 
each instruction is treated as having one of eight general formats: RR, RR-Long, 
RS, RS-Lo:r:g, RI, J, FF, and FS. The format names express, in general terms, the 
form used to specify the operands that participate in the operation, not the class of 
operation. For example, the RR format is used for register-to-register operations, 
and for certain register-and-storage operations in which the address of the storage 
operand is contained in a register. In both types of operation, the two operand 
specification fields in the instruction designate general registers and thus the 
format name is RR. The eight general formats are illustrated in Figure 3-1. 

The RR-Long format is used for register-to-register operations, and for 
storage-to-storage operations in which the addresses of both operands are 
contained in registers. Both RS formats are used only for register-and-storage 
operations that require specification of a register operand and the base and 
displacement components of a main storage address. RI formats are normally used 
for operations that require specification of a register operand and immediate data. 
The J format is used for sequencing operations in which the instruction address is 
always used as a base addrnss. The FF and FS formats are used only for 
floating-point operations: FF is used for register-to-register operations and FS is 
used for register-and-storage operations. 

The first four bits of all instructions contain an operation code field (Op Code). 
For most instructions, additional fields are also used for operation code 
information. Some instructions contain fields that vary somewhat from the 
general format, and some instructions do not follow the general rules for operand 
specification stated in this section. All such exceptions are explicitly identified in 
the individual instruction descriptions. 

In the RR, RS, and RS-Long instruction formats, the R 
1 

field designates the 
general register containing the first operand. In the RR-Long format, the R1 field 
designates the general register containing the first operand for register-to-registn 
operations. In the RI formaL. the r 1 field designates the first operand which, in 
most cases, is one byte contained in a general register. For FF and FS formats, 
the floating-point register designated by the F 1 field contains the first operand. 



First Halfword 
Second Halfword 

Byte 0 Byte 1 

Op 
R1 I R2 

Op 

I RR Format Code Code 

0 3 4 7 1 8 1112 15! 
I 

I I 
I I 

Op 

I R1 I 82 I 02 1~1 RS Format Code 

0 3 4 7'8 9 10 14 151 
I I 
I I 

' 
I 

c~:. I 11 D2 1~1 J Format 

0 3 4 718 14 151 
I I 
I I 

Op 

I r1 I 12 I RI Format Code 

0 3 4 718 151 
I I 

I I 
I I 

Op 
F1 

Op 
F2 

Op Op 
Code Cd Cd Code FF Format 

10 3 4 6 718 9101112 15: 
I 
I 

I 
I I I 

I 
Op 

I R1 I R2 I c~~e I 
Op 

R3 
Op RR-Long 

Code Code Code Format 

:o 3 4 718 11 12 15 :16 23 24 27 28 31 
I I I I 

I I I 

I 
Op 

I 
R1 I B2 Op D2 

RS-Long 

Code Code Format 

10 3 4 7:8 1112 15: 16 311 

I 

I 
I I 
I I 

Op I F 1 I~~ I B2 I 
Op 

I D2 I ~~1 FS Format 
Code Code 

0 3 4 6 78 11 12 15 16 29 30 31 

Figure 3-1. General Formats of Instructions 

In the RR and RR-Long formats used for register-to-register operations, the~ 
field designates the general register containing the second operand. The R3 field 
of the RR-Long format is not defined for register-to-register operations. Jn the 
FF format, the F2 field designates the floating-point register containing the 
second operand. In all formats for register-to-register operations, the same 
register may be designated for the first and second operaliJs. The content of 
register 0 may not be used in certain operations. When register 0 is specified for 
these operations, the operand is either an implied 0 or the updated content of the 
instruction address. 

Operands in general registers may have lengths of 1 byte (8 bits), 1 halfword (16 
bits), or 1 word ( 3 2 bits); the second operand is the same length as the first. 

Chapter 3. Program Execution 3-3 



Operands in floating-point registers may be short-fonnat (32-bit) or long-format 
( 64-bit) floating-point data. The second operand has the same format, and thus 
the same length, as the first. 

Immediate Operand Specification 

Storage Operand Specification 

Address Generation 

Base Address 

3-4 

In the RI format used for register-and-immediate operations, the contents of the 
8-bit immediate-data field, the 12 field of the instruction, are used directly as the 
second operand. In certain operations specified in the RR format, a 4-bit 
immediate-data field, Ii, is defined in place of one of the R fields, and is used 
directly as the second operand. 

I 

For programmed input/ output or PCE-control operations using the RI format, the 
Ii field contains the command code for an I/ 0 device or an extension to the 
operation code, respectively. 

In the RR format for register-and-storage operations, the contents of the general 
register designated by the R2 field are used as the second-operand address. In the 
RS, RS-Long, and FS formats, the contents of the general register designated by 
the B2 field are added to the contents of the 0 2 field to form the second-operand 
address. In the RR-Long format for storage-to-storage operations, the contents 
of the general register designated by the R 1 field are used as the first-operand 
address. The contents of the general register designated by the R2 field are used as 
the second-operand address. The contents of bit positions 24-31 of the general 
register designated by the R3 field are used as the length of the operands in 
storage-to-storage operations. The second operand has the same length as the 
first operand. The length of the operands is 1 to 256 data units (bytes or 
halfwords). The maximum length is obtained by specifying a value of 0 in bit 
positions 24-31 of the general register specified by R3 . Results replace the first 
operand and are never stored outside the field specified by the first-operand 
address and the length. 

The address used to refer to main storage either is contained in a register 
designated by an R field in the instruction, or is calculated from the following two 
binary numbers: base address and displacement. 

The base address is a 32-bit unsigned binary integer, all bits of which are used to 
represent an address value that is treated as positive. The base address is ref erred 
to in instructions either as the contents of a general register, or as the updated 
instruction address. Base addresses can be used as a means of independently 
addressing each program and data area. In array-type calculations, they can 
specify the location of an array, and in record-type processing, they can identify 
the record. 

When the base address is the contents of a general register, the register is 
designated in the instruction's B field. Except in the RS instruction format, this 
field occupies four bit positions, which allows for the specification of any of the 
16 general registers as a base register. In the RS format, the B field occupies two 
bit positions. This field is considered to be the two low-order bit positions of an 
instruction R field in which the two high-order bit positions contain 1 's. The 4-bit 



Displacement 

R field is described in detail under "General Registers" in Chapter 2. Only 
general registers 6 and 7 in both the primary and secondary register sets may 
contain base addresses for operands of RS-format instructions. 

For instructions in the RS Long format when the B field contains all O's, the 
contents of the general registers are not used as the base address. Instead, the 
updated instruction address from the current program status vector is used. 
During address generation, the updated instruction address and the displacement 
are algebraically added without causing a carry from the low-order bit (bit 31): 

For LOAD (L, LH, LW), STORE (ST, STH, STW), and LOAD ADDRESS 
(LA) instructions, bit 31 of the updated instruction address is ignored 
(assumed to be 0). 

For BRANCH AND LINK (BAL) and BRANCH on CONDITION (BC) 
instructions, bit 31 of the instruction address participates during address 
generation. However, the value of bit 31 is unchanged, since only 
even-valued displacements are used in the address computation. 

For instructions in the J format, the updated instruction address is always used as 
a base address. 

The following conditions involving bit 31 of the instruction address should be 
considered when evaluating address generation: 

Instructions must appear on halfword integral boundaries. Thus, during 
instruction fetch references, bit 31 of the instruction address is ignored 
(assumed to be 0). 

Bit 31 is loaded only by means of a BRANCH type instruction or when a new 
PSV is introduced. During updating for the next sequential instruction, the 
instruction address is incremented by an even number of bytes (2 or 4 ), 
thereby preserving the value of bit 31 (O or 1) until a subsequent BRANCH 
type instruction is issued or when a new PSV is introduced. 

Bit 31 is saved by a BRANCH AND LINK (BAL or BALR) instruction, or 
when a new PSV is introduced. 

For BRANCH AND LINK (BAL) and BRANCH ON CONDITION (BC) 
instructions when the B field contains all O's, and for JUMP ON 
CONDITION (JC) and JUMP ON BIT ZERO (JBZ) instructions, the 
instruction address is updated by adding an even-valued displacement, 
thereby preserving the value contained in bit 31. 

Programming Note: For an RS-Long format instruction, the contents of primary 
general register 0 cannot be used as a base address. 

Displacement is a binary number contained in a field, called the D field, in the 
instruction. The displacement provides for addressing relative to the location 
designated by the base address. In array-type calculations, the displacement can 
be used to specify one of many items associated with an element. In the 
processing of records, the displacement can be used to identify items within a 
record. 

Chapter 3. Program Execution 3-5 



3-6 

Except for the RS instruction format, the displacement is designated as a signed 
binary integer. Positive displacements are represented in true binary notation 
with the sign bit set to 0. Negative displacements are represented in 
twos-complement binary notation with a 1 in the sign-bit position. In generating 
the address, a positive displacement is logically extended to 32 bits with 
high-order O's; a negative displacement is logically extended with high-order 1 's. 
A 0-value D field has no special significance. 

In the RS instruction format, the displacement is designated as an unsigned binary 
integer; all bits are used to represent the value which is treated as positive. An 
unsigned displacement is logically extended to 32 bits with high-order O's. 

During address generation, all 32 bits of the base address are added to all 32 bits 
of the logically extended displacement. The sum, which represents the generated 
address, is then checked for validity. If the sum is valid, the operation proceeds, 
treating the generated address as a 32-bit unsigned integer. When an invalid sum 
is computed, and a storage reference is attempted using the sum as the generated 
address, an address exception is indicated. 

The sum is considered invalid in the following cases: 

When the sum of the base address and an extended displacement is greater 
than the maximum logical address available to the program. 

When the sum of the base address and an extended displacement is less than 
0. This occurs when the magnitude of a negative displacement is greater than 
the base address (conceptually yielding a negative sum). 

An instruction can designate the same general register both as the base register 
and as the location of and operand. Address generation is completed before 
execution of the operation. The computed operand address designates an operand 
in main storage. For branching instructions, the second-operand address is used 
as the branch address. 

In the RS format, the displacement is contained in a 5-bit D field that specifies 
the displacement as an integral number of halfwords. The displacement is treated 
as an unsigned 6-bit positive binary integer by appending a 0 in the low-order bit 
position. This low-order 0 bit has the effect of multiplying the displacement by 2 
so that it is expressed in terms of an even number of bytes. The displacement 
provides for addressing of up to 62 bytes beyond the location specified by the 
base address. 

ln the J format the displacement is contained in a 7-bit D field that specifies the 
displacement as an integral number of halfwords. The displacement is treated as a 
signed 8-bit binary number by appending a 0 as the low-order bit. This low-order 
0 bit has the effect of multiplying the displacement by 2 so that it is expressed in 
terms of an even number of bytes. The displacement is combined with the 
updated instruction address, and thus provides for addressing 128 bytes preceding 
the location designated by the updated instruction address, and 126 bytes beyond 
it. 

In the RS-Long format, the displacement is contained in a 16-bit D field. For all 
instructions using the RS-Long format, except BRANCH ON CONDITION and 
BRANCH AND LINK, the D field contains a signed 16-bit binary integer that 



Execution of a Program 

specifies the displacement as an integral num her of bytes. The D field provides 
for addressing 32,768 bytes preceding the location designated by the base address 
and 32,767 bytes beyond it. 

The 16-bit D field in BRANCH ON CONDITION and BRANCH AND LINK 
instructions specifies the displacement as an integral number of halfwords. The 
contents of the D field are treated as a 17-bit signed binary integer. The 
low-order bit of the D field contains the sign bit. During address generation, the 
sign bit is moved to the high-order bit position in the PCE's representation of the 
displacement, and a iow-order 0 bit is appended to the representation. This 
low-order 0 bit has the effect of multiplying the displacement by 2 so that it is 
expressed in terms of an even number of bytes. Figure 3-2 illustrates this 
representation. The D field provides for addressing 65,536 bytes preceding the 
location designated by the base address and 65,534 bytes beyond it. 

D-Field 
Representation 

PC E's 
Representation 

I s I 
0 14 15 

I J 
{ __________ _ 
I s-1 I 0 I 

0 15 16 

Figure 3-2. Displacement of RS-Long Format BRANCH Instructions 

In the FS format, the displacement is contained in a 14-bit D field that specifies 
the displacement as an integral number of words. The contents of the D field are 
treated as a 16-bit signed binary integer by appending two low-order O's. These 
two low-order 0 bits have the effect of multiplying the displacement by 4 so that it 
is expressed in terms of a number of bytes. The D field provides for addressing 
32,768 bytes preceding the location designated by the base address and 32,764 
bytes beyond it. 

Certain operations include modification of an operand address, contained in a 
general register, as part of the operation. For all such operations, both the original 
address value and the modified address are treated as unsigned 32-bit positive 
binary integers. An address exception is indicated when an incremented address 
that exceeds the maximum logical address available to the program is used to refer 
to main storage. 

Normally, operation of the PCR is controlled by instructions executed in 
sequence. This sequence is governed by the program status vector which contains 
the primary information required for proper program execution. A change in the 
sequential operation may be caused by branching or by introduction of a new 
program status vector. 

Chapter 3. Program Execution 3-7 



Program Status Vector 

The program status vector (PSV) is 64 bits long and contains the information 
required for proper program execution. The PSV includes the instruction address, 
condition indicators, register--set numbers, and other fields. The PSV format is 
described in Chapter 9, "PCE Control." In general, the PSV is used to control 
instruction sequencing and to hold and indicate the status of the system in relation 
to the program currently being executed. The active or controlling PSV is called 
the current PSV. By storing the current PSV, the status of the PCE can be 
preserved for subsequent inspection. By loading a new PSV or part of a PSV, the 
state of the PCE can be initialized or changed. 

Floating-Point Status Vector 

Instruction Execution 

Branching 

3-8 

The floating-point status vector (FSV) is 24 bits long and contains additional 
information required for program execution when floating-point operations are 
used. The FSV includes the floating-point register-set number, masks, status 
indicators, and other fields. The FSV format is described in Chapter 9, "PCE 
Control." In general, the FSV is used to hold and indicate additional status for 
programs using floating-point operations. The active FSV is called the current 
FSV. 

In program execution, an instruction is fetched from the location designated by 
the instruction address in the current PSV. The instruction address is then 
increased by the number of bytes in the fetched instruction in order to address the 
next instruction in sequence. (This new value of the instruction address is 
referred to as the updated instruction address.) The fetched instruction is then 
executed, and the same steps are repeated using the new value of the instruction 
address. 

Instructions must appear on halfword integral boundaries. During the fetching of 
instructions, the low-order bit of the instruction address is ignored and assumed to 
be 0. 

The normal sequential execution of instructions may he changed by use of 
branching operations in order to perform subroutine linkage,,. decision-making, 
and loop control. 

Subroutine linkage is provided by the BRANCH AND LINK operations, which 
permit not only the introduction of a new instruction address but also the 
preservation of the return address. 

Facilities for decision making are provided by the BRANCH ON CONDITION 
and JUMP ON CONDITION operations. These operations test any of five 
logical entities, called result conditions, that indicate the outcome of arithmetic, 
logical. and I/ 0 operations. For example, such outcomes as 0 sum, first operand 
high, overflow, equal, mixed O's and l's, and carry may be indicated. BRANCH 
ON CONDITION and JUMP ON CONDITION instructions can specify 
combinations of the five result conditions as the criterion for branching. The 
4-bit Ml field of these instructions is used as a mask specifying the result 
conditions to be tested. 



The five result conditions are numbered 8, 4, 2, 1, and 0. These numbers 
correspond to the mask value represented in the Ml field as shown in the 
following table: 

Ml Field Mask Value Result Condition Tested 

1000 8 8 
0100 4 4 
0010 2 2 
0001 1 1 
0000 0 0 

The specific meaning associated with any result condition depends on the 
particular instruction. For example, result condition 8 indicates a 0 sum for an 
addition operation, and indicates equal operands for a comparison operation. 

After execution of an instruction for which result conditions are specified, each of 
the five conditions is placed in one of two possible states: indicated or 
not-indicated. Thus all five result conditions reflect only the outcome of that 
instruction. If a result condition is indicated, the outcome of the instruction 
execution is described by the meaning associated with the indicated condition. If 
a result condition is not-indicatt:d, the meaning associated with that condition 
does not apply to the outcome. Any result condition that is not assigned a 
meaning for a particular instruction is also not-indicated. The states of the five 
result conditions remain unchanged after execution of any instruction for which 
result conditions are not specified. 

Result conditions 8, 4, and 2 are mutually exclusive; that is, only one of these 
conditions can be indicated at any one time. For example, an addition cannot 
produce a result that is at the same time zero ( 8), less than zero ( 4), and greater 
than zero (2). One of the three, however, is always indicated. Result conditions 
1 and 0 are indicated independently; that is, one or both of these conditions may 
be indicated concurrently with condition 8, 4, or 2. Thus, one, two, or three result 
conditions are indicated at any one time. The states of the five result conditions 
are derived from the settings of condition-indicator bits in the current PSV (see 
Chapter 9, "PCE Control"). 

A branch or jump may be made on more than one result condition, except 
condition 0, by specifying a value in the M 1 field that is the sum of the individual 
result-condition numbers. For example, a mask value of 13 (binary 110 l) 
specifies that a branch is to be made if any combination of result conditions 8, 4, 
and 1 is indicated. An unconditional branch or jump is made by specifying a 
mask value of 14 or 15. 

Loop control can be performed by the use of the BRANCH ON CONDITION or 
JUMP ON CONDITION operations to test the outcome of address arithmetic or 
counting operations. For some particularly frequent combinations of counting and 
testing, the instruction BRANCH ON COUNT is provided. 

Another facility for decision making is provided by the instruction JUMP ON BIT 
ZERO. The jump criterion is satisfied if the specified bit has the value 0. 

Ann-way branch is provided by the instruction BRANCH ON INDEX, which 
uses the specified index value to select the new address from a table. 

Chapter 3. Program Execution 3-9 



Introduction of a New PSV 

Interruptible Instructions 

Sequential execution of instructions is also changed when a new PSV is 
introduced. This occurs as a result of an interruption or execution of CALL PSV 
or DISPATCH NEW LEVEL. One type of interruption, a program-exception 
interruption, occurs when the PCE recognizes a program exception. Program 
exceptions that cause an interruption are described in this chapter and in Chapter 
5, "Floating-Point Instructions." Refer to Chapter 9 for a detailed discussion of 
interruptions and DISPATCH NEW LEVEL and to Chapter 4 for a description 
of CALL PSV. 

The MOVE and COMPARE LOGICAL operations are referred to as 
interruptible instructions. That is, an interruption is permitted after partial 
execution of the instruction. Whenever discussion in this publication pertains to 
points of interruption that include those occurring within the execution of an 
interruptible instruction, the term unit of operation is used. This use of the term 
considers that the entire execution of a noninterruptible instruction consists, in 
effect, of one unit of operation. 

The execution of an interruptible instruction is considered to consist of a number 
of units of operation, and an interruption is permitted between units of operation. 
Depending on processor model, more than one unit of operation could be 
executed between points in the operation at which an interruption is allowed. In 
this case, the number of units of operation executed without allowing 
interruptions is predetermined. After each predetermined number of units of 
operation, the operand addresses and the count value are updated to correspond 
to the amount of data processed. The specific predetermined number of units of 
operation is fixed, except for the first and last execution groups. 

Sequence of Storage References 

3-10 

Conceptually, the PCE executes instructions one at a time, with the execution of 
one instruction preceding the execution of the following instruction. Also, the 
execution of the instruction specified by a successful branching operation follows 
the execution of the branch. The sequence of events implied by this manner of 
instruction execution is sometimes called the conceptual sequence or conceptual 
order. 

Physical storage width and the overlap of instruction execution with storage 
accessing may cause actual processing to be different. As observed by the 
program itself, each operation is performed sequentially, with one instruction 
being fetched after the preceding operation is completed and before execution of 
the following operation (the just-fetched instruction) is begun. With certain 
exceptions discussed in the following section, "Instruction Fetch," and in Chapter 
7, "Dynamic Address Relocation and Translation," the results generated are those 
that would have been obtained had the operation been performed in the 
conceptual sequence. 

Storage references associated with instruction execution are of the two types: 
instruction fetches and storage-operand references. Synchronization of storage 
references between PCEs in processors having two PCEs is described in Chapter 
10. 



Instruction Fetch 

Instruction fetching consists of fetching the 1 or 2 halfwords specified by the 
instruction address in the current PSV. The immediate-operand field of an 
instruction is accessed as part of an instruction fetch. If an instruction specifies a 
storage operand at the location occupied by the instruction itself, the location is 
accessed both as an instruction and as a storage operand. The instruction may be 
fetched multiple times for a single execution; for example, an interruptible 
instruction may be fetched more than once between units of operation. 

Instructions are not necessarily fetched in the order in which they are 
conceptually executed. In particular, the fetching of an instruction may precede 
the storage-operand references for a conceptually earlier instruction. As a 
consequence, modification of an instruction in storage by a conceptually earlier 
instruction does not change the pref etched copy of the instruction. In all cases, 
however, the instruction fetch occurs before all storage-operand references for 
conceptually later instructions. 

The number of instructions prefetched depends on the processor model. 
Therefore, programs that attempt to modify conceptually later instructions may 
not yield the same results on all processor models. Storing caused by channel I/ 0 
operations does not change the copy of prefetched instructions. 

Conceptual sequential instruction execution within a PCE is assured when either 
( 1) a new PSV is introduced, (2) an entry is stored in the translation table or the 

I translation lock table when dynamic address translation is active, or (3) a 
BRANCH or JUMP operation is executed causing the instruction address to be 
replaced with the branch or jump address. The latter case includes the 
designation of the address of the next sequential instruction as the branch or jump 
address. Refer to Chapter 10 for a description of instruction execution in 
dual-PCE processors. 

Programming Note: As observed by the program itself, instruction prefetching is 
not normally apparent; the only exception occurs when an instruction attempts to 
modify a conceptually later instruction that was prefetched by the PCE. If a 
program modifies the instruction stream, which could affect a prefetched 
instruction, and the change must take effect immediately, the instruction causing 
the change should be followed by a BRANCH or JUMP instruction, which causes 
the instruction address to be replaced. 

Storage-Operand References 

A storage-operand reference is the fetching or storing of the explicit operand or 
operands in the main storage locations specified by the instruction. 
Storage-operand references are of three types: fetches, stores, and updates. 

Storage-Operand Fetch References 

When the bytes of a storage operand participate in the instruction execution only 
as a source, the reference to the location is called a storage-operand fetch 
reference. 

All bits within a single byte of a fetch reference are accessed concurrently. When 
an operand data unit consists of more than 1 byte, the bytes may be fetched 

Chapter 3. Program Execution 3-11 



piecemeal from main storage. The bytes within a halfword, word, or doubleword 
data unit are not necessarily fetched in any particular order. The bytes, however, 
appear in the expected order in the destination. 

Storage-Operand Store References 

When the bytes of a storage operand participate in the instruction execution only 
to the extent of being replaced by the result, the reference to the location is called 
a storage-operand store reference. 

All bits within a single byte of a store reference are accessed concurrently. When 
an operand data unit consists of more than 1 byte, the bytes may be stored 
piecemeal into main storage. Unless otherwise specified, the bytes within a 
halfword, word, or doubleword data unit are not necessarily stored in any 
particular order. The bytes in storage, however, appear in the expected order. 

The results of one instruction are placed in main storage after the results of all 
preceding instructions are placed in main storage and before any results of the 
succeeding instructions are stored. For any one instruction that operates on 
multiple data units, the data units are stored in the order specified for that 
instruction. 

An operand data unit is not fetched from a main-storage location until all 
information destined for that physical main-storage location, due either to the 
execution of a preceding instruction or the current instruction, are placed in main 
storage. In a MOVE operation in which the operand fields overlap, for example, 
the store reference to a given main-storage location is completed before any 
conceptually later fetch reference to that location is made. As noted earlier, a 
prefetched copy of an instruction is not modified even when the instruction in 
storage is changed before the prefetched instruction is executed. 

Storage-Operand Update References 

Program Exceptions 

3-12 

In the instruction TEST AND SET, the storage-operand location participates both 
as a source and as a destination. In this case, the reference to the location consists 
first of a fetch and then of a store. The combination of the two accesses is 
referred to as an update reference. ln TEST AND SET, the update reference is 
interlocked against accesses to storage during instruction execution. 

Programming Note: Two programs may attempt to update information at a 
common main-storage location using a sequence of operations. Because of the 
priority-level dispatching mechanism, it is possible for both programs to fetch the 
same information, modify it, and then store the updated information. The change 
made by the higher-priority program in such a case is lost when the lower-priority 
program completes the update. The instruction TEST AND SET enables updating 
of such a common storage location. In order not to lose the change by either 
program, both programs should use this single instruction in an established 
program convention that provides an interlocked update. 

Exceptions resulting from execution of the program, including the improper 
specification or use of instructions and data, cause a program-exception 
interruption. A program-exception interruption causes the current PSV to be 
stored and a new PSV to be introduced. The information in the stored PSV 



Types of Ending 

permits identification of the program exception and the last instruction executed. 
Chapter 9, "PCE Control," describes in detail the storing and introduction of 
PSV information. 

When a program-exception interruption occurs, the instruction-address field and 
instruction-address-modifier field in the stored PSV identify the location of the 
instruction associated with the program exception. The bit in the 
instruction-address-modifier field indicates whether the instruction address 
designates the location of the first byte of the instruction or two bytes beyond it. 

When a program exception is recognized, instruction execution ends in one of 
four ways: completion, suppression, suspension, or termination. 

• When instruction execution is completed, results are provided as called for in 
the definition of the instruction. 

• When instruction execution is suppressed, the instruction is effectively not 
executed. That is, the contents of any result fields defined for this instruction 
are not changed. This includes the designated operand location, the condition 
indicators in the current PSV, and any address or count value due to be 
changed by the instruction. 

When instruction execution is suspended, the contents of any fields due to be 
changed by the instruction may be partially updated. The operation may have 
replaced all, part, or none of the contents of the designated operand locations, 
and it may have changed the condition indicators, an address value, or a 
count value, if such change was called for by the instruction. The instruction 
may be retried without software adjustment of register values, assuming the 
cause of suspension is removed. 

• When instruction execution is terminated, the contents of any fields due to be 
changed by the instruction are unpredictable. The operation may have 
replaced all, part, or none of the contents of the designated operand locations, 
and it may have changed the condition indicators, an address value, or a 
count value, if such change was called for by the instruction. 

When a program-exception interruption occurs after completion or suspension of 
a unit of operation of an interruptible instruction, all prior units of operation are 
completed. The address and count values are adjusted to c.orrespond with the last 
completed unit of operation. 

When a program-exception interruption occurs after the termination of a unit of 
operation of an interruptible instruction, all prior units of operation are 

I 
completed. The address and count values are adjusted to correspond to the last 
completed unit of operation. Depending on processor model and the point in the 
operation at which the exception is detected, one or more units of operation can 
be terminated before the interruption. 

Programming Note: Program-exception interruptions usually cause instruction 
execution to be suppressed, suspended, or completed. In some cases, however, the 
instruction may be terminated. The specific cases are noted under ''Program 
Exception Conditions" in this chapter and in the individual instruction 
descriptions. 

Chapter 3. Program Execution 3- l 3 



Exception Information 

The cause of a program exception is identified by the program information code in 
bit positions 40-47 of the stored PSV. The format of the program information 
code in the PSV is shown in the following figure: 

PEC 0 0 

40 41 42 45 46 47 

The fields in the program information code are allocated as follows after a 
program-exception interruption occurs: 

Program Exception: Bit position 40 of the stored PSV is set to 1 to identify the 
information as program-exception information. 

Intruction Address Modifier (M): Bit position 41 contains the instruction address 
modifier. A 0 in bit position 41 indicates that the instruction address field (bit 
positions 0-31) in the stored PSV contains a value 2 greater than the address used 
to fetch the first halfword of the instruction associated with the program 
exception. A 1 in bit position 41 indicates that the instruction address contains 
the address used to fetch the first halfword of the instruction. 

Program Exception Code (PEC): Bit positions 42-45 of the stored PSV contain 
the program exception code identifying the cause of the program exception, as 
shown in the following table. Only one exception can be indicated at a time. 

Bits 42-45 Code Program Exception 

0000 0 Specification Exception 
0001 1 Access Exception 
0010 2 Operation Exception 
0011 3 Separation Exception 
0100 4 Address Exception 
0101 5 Register-Indirect Exception 
0110 6 Fixed-Point-Overflow Exception 
0111 7 Floating-Point Exception 

0000-1110 8-14 Reserved, are not indicated 
1111 15 Available for programming use 

Reserved Bits: Bit positions 46 and 4 7 are reserved and are set to O's. 

Programming Note: Code 15 is not indicated by the PCE; it is intended to use by 
supervisory program. Bit positions 46 and 4 7 of the stored PSV are reserved. 
Therefore, a program should not depend on O's being placed in these bit positions. 

Program Exception Conditions 

3-14 

The conditions that cause a program-exception interruption are detailed in the 
following sections. In addition to these conditions, a program-exception 
interruption may be caused by executing the instruction PROGRAM 
EXCEPTION, as described in Chapter 4. 



Specification Exception (code 0) 

I 
I 

A specification exception is indicated for the following conditions: 

PSV/ACV Format: 

A PSV is introduced that contains a 1 in a reserved bit position (bit 
positions 32-35). 

An ACV is introduced that contains a 1 in a reserved bit position (bit 
positions 0-7). 

An ACV is introduced that contains an invalid value in the size field. The 
invalid value may exceed the maximum size provided by the PCE, or the 
value may not be defined. 

An ACV is introduced that contains an origin-address value that exceeds 
the maximum address in the PCE address space. 

The introduction of the new PSV and ACV is completed, but a 
program-exception interruption occurs thereafter. Refer to Chapter 9, 
"PCE Control," for a discussion of when the exceptions associated with 
the PSV and ACV are indicated. 

A program exception other than specification may be indicated when an 
invalid PSV or ACV, as defined by the preceding four points, is 
introduced. For more information, refer to "Handling of Multiple 
Program Exceptions" later in this chapter. 

Operand: 

The first operand of STORE TO ADDRESS TRANSLATION TABLE 
contains either ( l) a 1 in a bit position corresponding to a reserved bit 
position in the translation-table entry (bit positions 3, 5-10), or (2) a 
block address that designates a location that exceeds a specific value. This 
value depends on processor model, and is equal to the size of the PCE 
address space when dynamic address translation is inactive. 

The first operand of STORE TO ADDRESS TRANSLATION LOCK 
TABLE contains one or more l's in bit positions 16-23. 

The translation-table index specified in LOAD FROM ADDRESS 
TRANSLATION TABLE or STORE TO ADDRESS TRANSLATION 
TABLE exceeds the number of entries in the translation table provided by 
the PCE or, depending on processor model, bit positions 0-15 of the 
second operand for these instructions contain one or more 1 's. 

The translation-lock-table index specified in LOAD FROM ADDRESS 
TRANSLATION LOCK TABLE or STORE TO ADDRESS 
TRANSLATION LOCK TABLE exceeds the number of entries in the 
translation lock table provided by the PCE, or bit positions 0·-10 of the 
second operand for these instructions contain one or more l's. 

Depending on processor model, specifying nonzero values for the contents 
of r 1 corresponding to bit 7 of a WRITE EIRV, bits 0 and 1 of a WRITE 

Chapter 3. Program Execution 3-15 



3-16 

PRlMARY REGlSTER SET NUMBER and WRITE SECONDARY 
REGISTER SET NUMBER, and bit 4 of a DISPATCH NEW LEVEL 
instruction may cause a specification exception. 

The WRITE PROGRAM ACTIVATION VECTOR instruction attempts 
to change the state of the PAV bit corresponding to the active PSV I ACV 
pair. Depending on processor model, the PCE may indicate a specification 
exception and not allow the program to change the state of the PAV bit 
associated with the current priority level. 

Real Address: 

The PCE causes a reference to a physical main-storage location that is not 
installed. A real address designating an uninstalled storage location is referred 
to as invalid. 

When dynamic address translation is active, a specification exception is 
indicated when the real address, after translation, is invalid. When translation 
is inactive, the exception is indicated when the real address, after dynamic 
address relocation, is invalid. 

When part of an operand location is designated in installed main storage and 
part is not, storing may be performed in the part associated with the installed 
storage. A specification exception for an operand that is partially designated 
in uninstalled storage is not indicated when the operation can be completed 
without use of the inaccessible part of the operand. 

A specification exception due to fetching an instruction is indicated when an 
instruction halfword cannot be fetched without encountering the exception. 
The exception is indicated as part of the execution of the instruction. 

For BRANCH or JUMP operations, the target address is tested for validity as 
part of the execution of the BRANCH or JUMP operation. If a specification 
exception is detected for the first halfword associated with the target address, 
the IA in the stored PSV indicates the BRANCH or JUMP as the failing 
instruction. 

A specification exception is indicated only when the PCE attempts to execute the 
instruction with which the exception is associated. In particular, the exception is 
not indicated when the PCE attempts to prefetch an instruction from an 
inaccessible location or otherwise detects the specification exception, but a 
branching operation or an interruption changes the instruction sequence such that 
the instruction is not executed. 

A specification exception is recognized when the real address designated by a 
translation-table entry does not correspond to an installed physical location. 
Depending on the particular processor model and on the block-address value, 
either ( 1) a specification exception (for operand) is recognized when an attempt 
is made to store the entry, or (2) a specification exception (for real address) is 
recognized when the PCE attempts to refer to the uninstalled location. 

1 he PCE may indicate a specification exception instead of an address exception 
(code 4) when it encounters an address-limit condition. More details are 
provided under "Address Exception" later in this chapter. 



Access Exception (code 1) 

Execution of the instruction identified by the stored PSV is suppressed except for 
the following special cases: A MOVE, COMPARE LOGICAL, or LOAD 
QUADRANT operation is terminated and a STORE QUADRANT or 
floating-point LOAD or floating-point STORE operation is suspended when a 
specification exception for an invalid real address is detected. 

An access exception can be detected only when dynamic address translation is 
active (bit position 31 in the ACV is 1). An access exception is indicated when 
the program causes a reference to a main-storage location that is protected against 
that type of reference, as specified by the access-control field in the 
translation-table entry corresponding to the logical address. 

I 
Depending on processor model, when an access exception is indicated, the block 
index of the PCE address in error is placed in the EBI register associated with the 
active ACV. 

An ·access exception is indicated for the following conditions: 

Block Invalid: A reference of any type is made to a storage location when the 
block-invalid bit for the location is 1. 

Store Protection: A store reference is made to a storage location, the program 
is being executed in application mode, I/ 0 mode, or supervisor mode, and the 
store-protection bit for the location is 1. 

Execution Protection: An instruction-fetch reference is made to a storage 
location, the program is being executed in application mode, I/ 0 mode, or 
supervisor mode, and the execution-protection bit for the location is 1. 

An access exception for the block-invalid condition is indicated regardless of the 
mode in which the program is being executed. Conversely, an access exception 
for the store- or execution-protection condition is not indicated when the program 
is being executed in master mode (bit positions 38 and 39 of the current PSV 
contain the value 00). 

When fetching of protected information is attempted, the information is not 
loaded into an addressable register or moved to another storage location. When 
part of an operand location is protected against storing and part is not, storing 
may be performed in the unprotected part. The contents of a protected location 
remain unchanged. An access exception for a partially inaccessible operand is not 
indicated when the operation can be completed without use of the inaccessible 
part of the operand. 

An access exception due to fetching an instruction is indicated when an 
instruction halfword cannot be fetched without encountering the exception. The 
exception is indicated as part of the execution of the instruction. 

For BRANCH or JUMP operations, the target address is tested for validity as part 
of the execution of the BRANCH or JUMP operation. If an access exception is 
detected for the first halfword associated with the target address, the IA in the 
stored PSV indicates the BRANCH or JUMP as the failing instruction. 

An access exception is indicated only when the PCE attempts to execute the 
instruction with which the exception is associated. In particular, the exception is 

Chapter 3. Program Execution 3-17 



Operation Exception (code 2) 

3-18 

not indicated when the PCE attempts to prefetch an instruction from an 
inaccessible location or otherwise detects the access exception, but a branching 
operation or an interruption changes the instruction sequence such that the 
instruction is not executed. 

The PCE may indicate an access exception instead of an address exception (code 
4) when it encounters an address-limit condition. More details are provided 
under "Address Exception" later in this chapter. 

Execution of the instruction identified by the stored PSV is suppressed except for 
the following special cases: A MOVE, COMPARE LOGICAL, or LOAD 
QUADRANT operation is terminated and a STORE QUADRANT or 
floating-point LOAD or floating-point STORE is suspended when an access 
exception is detected. 

An operation exception is indicated for the following conditions: 

Invalid Operation: 

An instruction is encountered with an invalid value in an operation-code 
field. The operation code may not be defined or the instruction with that 
operation code may be defined for a feature not installed. If the 
floating-point feature is installed, and the PCE encounters an FF or FS 
format instruction with an undefined operation code, a floating-point 
exception (code 7) is indicated, not an operation exception. 

A l is encountered in any instruction bit position that is reserved and 
required to contain 0. 

If R 3 designates the same register as R 1 or R2 for a MOVE or COMPARE 
LOGICAL operation, the result is unpredictable. Depending on 
processor model, an operation exception may occur. 

Programming Note: Whenever the PCE encounters all l's in the first 
half word of an instruction, an operation exception is indicated. The 
PROGRAM EXCEPTION instruction is provided to cause an exception at a 
known location. 

Privileged Operation: A privileged instruction, other than an FS format 
instruction, is encountered that is not allowed by the program-mode field of 
the current PSV. Specifically, an operation exception for the 
privileged-operation condition is indicated in the following cases: 

The PCE encounters a supervisor-privileged instruction when the 
program-mode field specifies I/ 0 or application mode. 

The PCE encounters an I/0-privileged instruction when the 
program-mode field specifies application mode. 

I 
The PCE may indicate an operation exception instead of an address exception 
(code 4) when it encounters an address-limit condition. Refer to "Address 
Exception" later in this chapter for more information. 



Separation Exception (code 3) 

Address Exception (code 4) 

In all cases, the instruction is suppressed. 

Operation-exception conditions related to FF and FS format instructions are 
summarized later in this section under "Floating-Point Exception." A detailed 
description is in Chapter 5. 

On processor models that implement separation protection, a separation exception 
is indicated only with dynamic address translation active. When the program 
causes a reference to main storage, the protection key associated with the active 
ACV is compared with the translation-lock-table entry of the corresponding block 
in the PCE address space. A separation exception is indicated when the protection 
key and translation-lock-table values are not identical and neither value is zero. 

When a separation exception is indicated, the block index of the PCE address in 
error is placed in the EBI register associated with the active ACV. 

For MOVE, COMPARE LOGICAL, LOAD QUADRANT, STORE 
QUADRANT, or floating-point LOAD or STORE instructions, operation is 
suspended when a separation exception is detected. For all other instructions, 
execution of the instruction identified by the stored PSV is suppressed. 

An address exception is indicated when the program attempts to refer to a 
main-storage location using a logical address that is not available to the program. 
A logical address that is not available to the program is ref erred to as invalid. The 
storage location associated with an invalid address is considered unavailable. 

An address exception is indicated for the following conditions: 

Address Limit: The logical address is greater than the maximum logical 
address available to the program. The maximum address available to the 
program is 1 less than the value designated by the size field in the current 
ACV. 

Address Underflow: The magnitude of a negative displacement is greater than 
the base address or updated instruction address to which it is added during 
address generation. 

When fetching of information from an unavailable location is attempted, the 
information is not loaded into an addressable register or moved to another storage 
location. Similarly, when storing to an unavailable location is attempted, the 
information is not stored, and the contents of the unavailable location remain 
unchanged. When part of an operand location is available to the program and 
part is not, fetching or storing may be performed using the available part. An 
address exception for a partially unavailable operand is not indicated when the 
operation can be completed without referring to the unavailable part of the 
operand. 

An address exception due to fetching an instruction is indicated when an 
instruction halfword cannot be fetched without encountering the exception. The 
exception is indicated as part of the execution of the instruction. 

Chapter 3. Program Execution 3-19 



For BRANCH or JUMP operations, the target address is tested for validity as part 
of the execution of the BRANCH or JUMP operation. If an address exception is 
detected for the first half word associated with the target address, the IA in the 
stored PSV indicates the BRANCH or JUMP as the failing instruction. 

An address exception is indicated only when the PCE attempts to execute the 
instruction with which the exception is associated. In particular, the exception is 
not indicated in the following cases: 

• An invalid operand address is generated for an instruction that includes as 
part of its operation incrementing the operand address, but the instruction can 
be completed without referring to the unavailable location. 

The PCE attempts to prefetch an instruction from an unavailable location or 
otherwise detects the address exception, but a branching operation or an 
interruption changes the instruction sequence such that the instruction is not 
executed. 

Depending on processor model: 

A specification exception may be indicated when an invalid operand address 
is obtained for a BRANCH or JUMP operation but the instruction can be 
completed without referring to the unavailable location. 

An address exception may not be detected when an address-limit condition 
exists. This condition can occur when a logical address is generated that 
exceeds a specific value; the value is specific for the particular processor 
model and is greater than the maximum address in the PCE address space. If 
a program exception is detected, it is indicated as either a specification 
exception (code 0), an access exception (code 1), or an address exception 
(code 4). If this condition is not detected, the operation is completed with 
unpredictable results. 

An address exception may not be indicated when concurrent address-limit and 
invalid operation conditions exist during the fetching of an instruction. If the 
instruction fetch is not the result of a BRANCH or JUMP taken operation, an 
operation exception (code 2) may instead be indicated. 

Operation is suppressed except for the following special cases: A MOVE, 
COMPARE LOGICAL, or LOAD QUADRANT operation is terminated and a 
STORE QUADRANT or floating-point LOAD or floating-point STORE 
operation is suspended when an address exception is indicated. 

Register-Indirect Exception (code 5) 

3-20 

A register-indirect exception is indicated during register-indirect operations for 
the following causes: 

The register-indirect addressing vector contains a 1 in a reserved bit position 
(bit positions 2-5). 

The program attempts to refer to a byte or halfword of an adjunct register 
that is not available. In particular, the exception is indicated when the 
register-indirect addressing vector designates the high-order half of the 32-bit 
adjunct register (bit positions 0 and 1 of the register-indirect addressing 
vector contain the value 11), and either: 



Only the two low-order byte locations of the adjunct registers are 
available. 

Only the three low-order byte locations of the adjunct registers are 
available and LOAD (halfword, register-indirect) or STORE (halfword, 
register-indirect) is encountered. 

Only the three low-order byte locations of the adjunct registers are 
available and LOAD (byte, register-indirect) or STORE (byte, 
register-indirect) is encountered designating the high-order byte of the 
register (bit position 15 of the addressing vector contains a 0). 

In all cases, the operation is suppressed. 

Fixed-Point-Overflow Exception (code 6) 

A fixed-point overflow is indicated in fixed-point division when the divisor is 0 or 
the quotient exceeds 16 bits. 

The operation is suppressed. 

Floating-Point Exception (code 7) 

A floating-point exception is indicated in floating-point operations when the 
floating-point feature is installed and the exception relates to any of the following 
conditions: 

Floating-point operation 
Floating-point privileged operation 
Floating-point specification 
Floating-point divide 
Significance 
Exponent overflow 
Exponent underflow 

When the floating-point feature is not installed, and the PCE encounters an FF or 
FS format instruction, an operation exception (code 2) is indicated. See 
"Program Exceptions" in Chapter 5 for a detailed discussion of exceptions 
associated with floating-point operations. 

Handling of Multiple Program Exceptions 

When a program-exception interruption occurs, the PSV indicates only one 
exception type. However, more than one program exception can result from an 
instruction sequence, as one exception can cause another one to occur. Except for 
the case described earlier in this chapter under "Address Exception" where a 
processor model may indicate an operation exception instead of an address 
exception, the program exception code identifies the exception that has the 
highest priority. Thus, the program exception code may not indicate the valid 
(antecedent) exception. In particular, a specification exception due to a PSV or 
ACV format error may not be indicated when a new PSV and ACV are 
introduced if the instruction fetch that uses them detects an exception that has a 
higher priority, such as an address, access, or operation exception. 

Chapter 3. Program Execution 3-21 



3-22 

The following lists program exceptions in priority order, with 1 being the highest. 
The letters indicate exceptions that cannot occur together. For example, a 
floating-point exception (SC) or fixed-point-overflow exception (SB) cannot 
occur when a register-indirect exception (SA) is occurring. 

1. Address Exception (code 4) 
2. Separation Exception (code 3) 
3. Access Exception (code 1) 
4. Operation Exception (code 2) 
SA. Register-Indirect Exception (code S) 
SB. Fixed-Point-Overflow Exception (code 6) 
SC. Floating-Point Exception (code 7) 
6. Specification Exception (code 0) 



Chapter 4. General Instructions 

Data Formats 

Fixed-Point Numbers 

This chapter describes all of the unprivileged instructions that have general 
application. Within this class are instructions for fixed-point arithmetic, logical 
operations, and instruction sequencing control. Preceding the instruction 
descriptions in this chapter are descriptions of data formats, fixed-point numbers, 
and extended fixed-point numbers. 

A general instruction treats data as being one of three types: signed fixed-point 
numbers, unsigned fixed-point numbers, or unstructured logical quantities. 

Data resides in general registers or in storage, or is introduced from the instruction 
stream. 

In storage-to-storage MOVE and COMPARE LOGICAL operations, the operand 
fields may be defined in such a way that they overlap. The effect of this overlap 
depends upon the operation. When the operands remain unchanged, as in the 
compare instructions, overlapping does not affect execution of the operation. For 
the move instructions, one operand is replaced by new data, and the execution of 
the operation may be affected by the amount of overlap and the manner in which 
data is fetched or stored. For purposes of evaluating the effect of overlapped 
operands, data is considered to be handled one unit of data at a time, where the 
data unit is a byte or a halfword. All overlapping fields are considered valid to the 
PCE. 

Fixed-point numbers are treated as signed or unsigned integers. 

In an unsigned fixed-point number, all bits are used to express the absolute value 
of the number. When an unsigned fixed-point number participates in an operation 
such as addition or subtraction with a longer number, it is considered to be 
extended with high-order O's to the length of the longer number. 

For signed fixed-point numbers, the leftmost bit represents the sign, which is 
followed by the integer field. Positive numbers are represented in true binary 
notation with the sign bit set to 0. Negative numbers are represented in 
twos-complement binary notation with a 1 in the sign-bit position. 

Specifically, a negative number is represented by the twos complement of the 
positive number. The twos complement of a number is obtained by inverting each 
bit of the number and adding a 1 in the low-order bit position of the inverted 
number. 

This type of number representation can be considered the low-order portion of an 
infinitely long representation of the number. When the number is positive, all bits 
to the left of the most significant bit of the number are O's. When the number is 
negative, all these bits are 1 's. Therefore, when an operand must be extended with 
high-order bits, the expansion is achieved by setting the bits equal to the 
high-order (sign) bit of the operand. 

The notation for signed fixed-point numbers does not include a negative 0. It has 
a number range in which the set of negative numbers is 1 larger than the set of 

Chapter 4. General Instructions 4-1 



4-2 

positive numbers. The maximum positive number consists of an all-1 integer field 
with a sign bit of 0, whereas the maximum negative number (the number with the 
greatest absolute value) consists of an all-0 integer field with a sign bit of 1. A 
value of 0 consists of all O's including the sign bit. 

The complement of the maximum negative number cannot be represented in the 
same number of bits. When an operation, such as a subtraction of the maximum 
negative number from 0, attempts to produce the complement of the maximum 
negative number, an overflow occurs. An overflow does not result, however, 
when the maximum negative number is complemented and the final result is 
within the representable range. An example of this case is subtraction of the 
maximum negative number from minus 1. 

In discussions of signed fixed-point numbers in this publication, the expression 
"8-bit signed integer" denotes a 7-bit integer with a sign bit, and the expression 
"16-bit signed integer" denotes a 15-bit integer with a sign bit. In general, the 
expression "n-bit signed integer" denotes an integer of n-1 bits with a sign bit. 

The range of integer values (I) covered by an n-bit signed fixed-point number is: 

In the 8-bit format: 
-128 ~ I ~ 127 

In the 16-bit format: 
-32768 ~ I ~ 32767 

In the general n-bit format: 
-2 (n-1) ~I~ 2 (n-1) -1 

In addition or subtraction of signed fixed-point numbers, a carry out of the 
integer field is retained as the sign bit of the result; a carry out of the sign-bit 
position is retained as bit 56 of the current PSV. (Bit 56 is the 
condition-indicator bit that represents result condition 0.) If the carry out of the 
integer field agrees with the carry out of the sign bit, no overflow occurs and the 
result is properly indicated; otherwise, an overflow condition is indicated. In 
either case, however, the setting of result condition 8, 4, or 2 (which indicates 
whether the result is 0, less than 0, or greater than 0) is determined by the rules of 
algebra from the magnitude and sign of the operands, except that condition 8 is 
always indicated when the stored result is all O's, even if overflow occurred. 

In some operations, such as comparison or subtraction, the result is achieved by 
the use of the ones complement of the number. The ones complement of a number 
is obtained by inverting each bit of the number. 

Programming Notes: 

A signed fixed-point number may be considered to represent the sum of the 
integer part of the number, taken as a positive value, and the sign, 
representing a value of either 0 when the sign is 0, or the maximum negative 
number when it is 1. 

A 0 result with overflow occurs when two maximum negative numbers are 
added. For this particular situation, the rules of algebra (which call for a 
less-than-0 indication) are not used to determine the indicated result 
condition. Instead, a 0 sum (as well as overflow and carry) is indicated. The 



0-sum indication is required when the operands represent intermediate 
portions of two extended fixed-point numbers (described in the following 
section) that are of opposite sign and equal magnitude. When two such 
numbers are added, it is necessary to indicate the intermediate sum as 0 so 
that the final sum can be properly indicated as 0. 

In arithmetic operations involving signed fixed-point operands, the operands 
may be considered by the program as unsigned positive integers. When doing 
so, the program should interpret the result conditions as follows: 

Result conditions after addition of unsigned integers: 

8 Sum is 0 if condition 0 is not indicated. 
4 Sum is not 0. 
2 Sum is not 0. 
1 No meaning is associated with condition 1. 
0 Carry (sum overflowed). 

Result conditions after comparison of unsigned integers: 

8 Operands are equal. 
4 Operands are not equal. 
2 Operands are not equal. 
1 No meaning is associated with condition 1. 
0 First operand is high if condition 8 is not indicated; otherwise, 
operands are equal. 

Result conditions after subtraction of unsigned integers: 

Extended Fixed-Point Numbers 

8 Difference is 0. 
4 Difference is not 0. 
2 Difference is not 0. 
1 No meaning is associated with condition 1. 
0 Carry (difference is properly represented). 

The IBM 8100 system provides the capability to process extended fixed-point 
numbers. The format of an extended fixed-point number is the same as a basic 
fixed-point number (see "Fixed-Point Numbers" ear-lier in this chapter), except 
that the length of an extended fixed-point number consists of n bits, where n is a 
multiple of 8. 

For unsigned numbers, all n bits are used to express the absolute value of the 
number. For signed numbers, the leftmost bit represents the sign, which is 
followed by n-1 integer bits. For example, a "24-bit signed integer" denotes an 
extended fixed-point number with a high-order sign bit followed by a 23-bit 
integer field. 

Addition and subtraction of extended fixed-point numbers is accomplished by 
processing the operands right to left in increments of 8 bits or 16 bits, whichever 
is most convenient. Where applicable, both increment sizes may be used. For 
example, addition of two 24-bit numbers can be achieved by first adding the 
rightmost 16 bits of the numbers, and then adding the remaining 8 bits of the 
numbers. 

Chapter 4. General Instructions 4-3 



4-4 

ADD WITH CARRY and SUBTRACT WITH CARRY are the operations used, 
along with ADD and SUBTRACT, to process extended fixed-point numbers. The 
rightmost 8 or 16 bits of the two numbers must be processed first, using ADD or 
SUBTRACT. The remaining portion of the two numbers must be processed right 
to left using the corresponding "with carry" instructions. 

A carry out of the integer field at any intermediate step is retained as the sign bit 
of the extended fixed-point result. A carry out of the sign-bit position is retained 
in bit 56 of the current PSV (the condition-indicator bit that represents result 
condition 0), provided the program does'{lot execute a condition-setting 
instruction between the addition or subtra'ttion of adjacent portions of the two 
numbers. The carry retained in PSV-bit 56 participates in ADD WITH CARRY 
and SUBTRACT WITH CARRY as a low-order 0 or 1 (refer to the individual 
instruction descriptions). If the carry out of the integer field of the extended 
fixed-point result agrees with the carry out of the sign bit, no overflow occurs and 
the extended result is satisfactory; otherwise, an overflow co:rtdi!~on is indicated. 

At the completion of each intermediate step employing a "with carry" operation, 
a result of 0 is indicated as such only if the results of all previous intermedjate 
steps were 0. That is, result condition 8 can be indicated (reflecting a result of O) 
only if it was indicated at the beginning of the "with carry" operation. Thus, a, 
non-0 extended fixed-point result is properly indicated, even if one or more steps ' 
of the extended fixed-point calculation, including the last, yielded intermediate 
results of 0. 

When addition or subtraction of two extended fixed-point numbers is complete, 
the extended fixed-point result is in its proper form and the resulting conditions 
reflect the outcome as if the extended numbers were processed with a single 
arithmetic operation. In particular, the setting of result condition 8, 4, or 2 which 
indicates whether the extended result is 0, less than 0, or greater than 0) is 
determined by the rules of algebra from the sign and magnitude of the extended 
fixed-point operands, except that condition 8 is indicated when the stored 
extended result is all O's, even if overflow occurred. 

Processing extended fixed-point numbers of unequal length is accomplished in a 
similar manner by specifying the shorter number as the second operand. A 
provision of certain ADD WITH CARRY and SUBTRACT WITH CARRY 
instructions allows for the specification of an implied 0 value for the second 
operand. When an implied 0 is specified for the "with carry" instructions, the 
shorter number is effectively extended with high-order O's. The shorter number, 
therefore, is always treated as a positive extended fixed-point number. 

Two such extended fixed-point numbers are processed by first adding or 
subtracting the short number and the corresponding right-hand portion of the 
long number, and then completing the arithmetic using an implied 0 as the second 
operand of the "with carry" instructions. For example, addition of a positive 
8-bit immediate value to a 16-bit signed integer can be accomplished with ADD 
(byte, register-immediate), followed by ADD WITH CARRY (byte, register) with 
an implied 0 specified as the second operand. Subtraction of a positive 16-bit 
integer from a 32-bit signed integer may be achieved using SUBTRACT 
(halfword, register), followed by SUBTRACT WITH CARRY (halfword, 
register, extended) with 0 as the implied second operand. 



Instruction Descriptions 

Besides addition and subtraction, COMPARE WITH CARRY is provided for the 
comparison of two extended fixed-point numbers. Its operation is similar to 
SUBTRACT WITH CARRY except that the operands remain unchanged. The 
COMP ARE WITH CARRY instruction is normally used for the comparison of 
the high-order 16 bits of two 32-bit fixed-point numbers. 

Programming Notes: 

During the addition or subtraction of two extended fixed-point numbers 
whose sum or difference is 0, the result of every intermediate operation is 0. 

Addition of two fixed-point numbers of unequal length, in which the shorter 
number is negative, can be accomplished using a SUBTRACT WITH 
CARRY instruction for each intermediate operation that specifies an implied 
0 as the second operand. Similarly, subtraction of two such numbers is 
achieved using ADD WITH CARRY for each operation in which an implied 0 
is used as the second operand. 

Result conditions are indicated at the completion of each intermediate step of 
an extended-fixed-point calculation. However, because the indicated 
conditions reflect only that portion of the extended result that was processed, 
the indicated conditions reflect the full extended result only after the final 
step of the calculation is complete. 

A detailed description of each general instruction is given in this chapter under 
"Instructions." Instructions for floating-point operations are described in Chapter 
5. Instructions that indirectly access the principal and adjunct register groups are 
described in Chapter 6. Instructions for accessing the translation table are 
described in Chapter 7. Input/output instructions are described in Chapter 8. 
Instructions that read or modify system status information are described in 
Chapter 9. 

Note: Appendix A contains three lists that summarize the instruction descriptions. 
These lists arrange the instructions by name, mnemonic, and by instruction type. 

The same general organization is used for the detailed descriptions of all 
instructions. The description of each instruction includes: 

The instruction name 

An assembler language statement for the instruction 

A diagram of the machine instruction format 

A symbolic expression of the operation 

A detailed description of the operation 

Result conditions that may be indicated 

The program exceptions that cause an interruption 

Chapter 4. General Instructions 4-5 



Instruction Name 

The instruction name consists of the name of the operation and, where applicable, 
certain qualifiers of the operation. The operation name is in all uppercase. The 
operation qualifiers, if any, follow in parentheses; they may include a designation 
of the data-unit size, an indication of the type of operation (such as 
register-to-register or storage-to-storage), or other information needed to 
differentiate each instruction. 

Assembler Language Statement 

The assembler language statement contains the instruction mnemonic and 
symbolic operand specification defined for the IBM 8100 DPPX Assembler 
licensed program. One mnemonic is defined for each instruction name and, in 
general, symbolically represents the machine instruction's operation code. For 
operations involving byte data units, two or more machine instruction operation 
codes may be associated with one mnemonic. For these instructions, the operand 
specification includes the distinguishing operation-code information. 

The operand specification is represented as symbols that denote the type of 
specification. For example, in the operand specification for LOAD (byte), 
"rpb,db 16s(ra)", the symbol "rpb" denotes the specification of a byte-operand 
location in a primary general register, the symbol "dbl 6s" denotes the 
specification of a displacement value that is expressed in the machine instruction 
as a 16-bit signed value, and the symbol "ra" denotes the specification of a 
general register containing a base address. 

Operands are specified in the assembler statement in left-to-right order, beginning 
with the first-operand specification. Each specification is delimited from an 
adjacent specification with a comma. [n LOAD (byte), for example, the 
first-operand specification is "rpb" and the second is "db16s(ra)". 

Additional information pertaining to the operand specification that is defined for 
the IBM 8100 assembler language is in Appendix B. A detailed definition of the 
8100 assembler language is in IBM 8100 DPPX Assembler Programming: 
Language Reference and Guide, SC27-0412. 

Machine Instruction Format 

4-6 

In the format illustration for each individual instruction description, the op-code 
fields show the operation code in hexadecimal representation. The hexadecimal 
representation uses one graphic for a 4-bit code, and therefore two graphics for 
an 8-bit code. The graphics 0 through 9 are used for the codes 0000-1001; the 
graphics A through F are used for codes 1010-1111. Fields with less than 4 bits 
are shown in binary representation. 

The remaining fields in the format illustration pertain to the designation of 
operands. Operand fields are designated with symbols consisting of two 
characters: a letter and a subscript number. The letter indicates the type of 
information in the operand field. For example, "I" denotes immediate data, ''R" 
indicates a general-register designation, and "D" identifies a displacement value 
(see "Instructions" in Chapter 3. The subscript number denotes the operand to 
which the field applies. Subscript 1 denotes the first operand of an instruction, 
and subscript 2 denotes the second. In several instructions, a third operand is 
designated, which is denoted with subscript 3. 



Operation 

Description 

For most instructions, the operands in the machine instruction format are 
designated in left-to-right order beginning with the first operand, which 
corresponds to their order in the assembler language statement. However, a few 
machine instructions do not adhere to this general rule. For these instructions, the 
designation of the second operand precedes that of the first, thus reversing the 
order from that of the corresponding assembler language statement. These 
exceptions are identified in the programming notes for the applicable instructions. 

Note: In certain cases, the operand specification for the 8100 assembler language 
is not directly represented in the machine instruction's operand field. General 
registers, for example, are specified with the numbers 0, 2, 4, ... , 30 for the 
assembler language. The operand field in the machine instruction designates the 
corresponding general register as 0 through 7, in either the primary or the secondary 
register set. The correlation between the 8100 assembler language operand 
specification and the machine instruction's operand designation is provided in 
Appendix B. 

The operation of each instruction is depicted with a symbolic expression. The 
symbolic expression is intended only as a quick-reference reminder of an 
instruction's operation. The description of the instruction following the symbolic 
expression provides the detailed definition of the operation. 

The symbolic expression is presented as a sequence of statements designating the 
operands used and the results produced. The syntax of the symbolic statements is 
similar to that of high-level programming languages. The order of the statements 
corresponds to the conceptual order in which the PCE executes the steps of the 
operation. Conditional execution of steps is indicated by statements of the form 
If ... Then ... Else ... ; unconditional changes in the sequence are indicated by 
statements using Go To .... 

Figure 4-1 lists the symbols used in the instruction format illustration and in the 
symbolic expression of the operation. In the individual instruction descriptions, a 
subscript number following a symbol denotes the operand to which the symbol 
applies. Some abbreviations used in the symbolic expressions of operations may 
not be defined in Figure 4-1. Such abbreviations are defined in the Glossary. 

The prose description provides the detailed definition of the instruction. The 
specific operation of the instruction and any restrictions that may apply to the 
instruction's format and operand designation are described. 

The individual instruction descriptions do not provide a specification of every 
function related to the execution of the instruction. For example, information 
pertaining to the format of instruction fields (such as the R field or D field), the 
format of data (such as fixed-point or floating-point numbers), or the addressing 
of data units on integral storage boundaries, is found in this manual in the section 
dealing with the specific function, and is not normally included with each 
instruction description. 

Chapter 4. General Instructions 4-7 



4-8 

Symbol 

(n) 
<-
<== 
+ 
-
x 
I 
MOD 
11 . 

v 
.... 
~ 
: 

= 
{n+a} 
-::# 
Bn 
c 
Dn 
Fn 

In 
IA 
IOD[@] 
Mn 
MS[@] 
n<a> 
n<a .. b> 
NSI 
PG Rn 
Qn 

rn 

Rn 

RG[@] 
RQ<q> 
TEMP 

l- TL[@] 
TT[@) 

Meaning 

Contents of general register designated by n 
"is replaced by" 
"is determined by" 
Addition 
Subtraction 
Multiplication 
Division 
Modulo division 
Concatenation 
Boolean AND 
Boolean OR 
Boolean inverse (l's complement) 
Boolean exclusive OR 
Logical comparison 
Equal to 
General register designated by the sum of n and a 
Not equal to 
Instruction field designating a base register (operand number n) 
Condition indicator for "carry" in current PSV (bit 56) 
Displacement field of instruction (operand number n) 
Instruction field designating a floating-point register 
(operand number n) 
Immediate field of instruction (operand number n) 
Updated instruction address in current PSV 
I/O device designated by PIO address@ 
Mask field of instruction (operand number n) 
Contents of main-storage location addressed by @ 
Bit a of quantity identified by n 
Bits a through b of quantity identified by n 
Next sequential instruction 
Implied primary general register number n 
Instruction field designating register quadrant 
(operand number n) 
Field of instruction designating a general-register byte operand 
(operand n) 
Field of instruction designating a general register 
(operand number n) 
Contents of register-group location addressed by @ 
Contents of general-register quadrant designated by q 
Temporary working register within PCE 
Contents of translation-lock-table entry addressed by @ 
Contents of translation-table entry addressed by @ 

Figure 4-1. Symbols Used in Instruction Descriptions 



Result Conditions 

Program Exceptions 

For each instruction, the possible result conditions are listed. If no result 
conditions are listed, the condition indicators in the PSV remain unchanged. 

For some operations, only certain result conditions, such as 8, 4, and 2, may be 
indicated. In this case, the notation"--" is used for result conditions 1 and 0 to 
denote that no meaning is assigned for these conditions. This notation means that 
at the completion of the operation, the condition is not indicated. Note that a test 
of such a condition with a branching operation results in no branch. 

The possible program-exceptions that can be detected as part of the execution of 
the instruction are listed. These include exceptions in format, operand 
designation, or results. Not listed are exceptions, such as specification due to an 
invalid PSV I ACV format, or operation due to invalid operation code, as they are 
not directly related to the operation of any defined instruction. 

Each exception listed contains the program-exception name corresponding to a 
distinct program-exception code. When the listed exception applies to an operand 
or the designation of an operand, the particular operand (first or second) is 
indicated. When the exception identified by the program-exception code can be 
caused by several conditions, the applicable conditions are indicated. 

Chapter 4. General Instructions 4-9 



Instructions 

ADD (byte, register) 

4-10 

The general instructions and their mnemonics, formats, and operation codes 
follow. 

AR rpb,rpb 

RR Format 
7 rl r2 8 (primary-register-set operands) 

0 34 78 11 12 15 

AR rsb,rsb 

RR Format 
7 rt r2 9 (secondary-register-set operands) 

0 34 78 11 12 15 

Operation 
If r2 ¢ 0000 

Then (r 1) <- (r1) + (r2) 
Else (r1) <- ( r 1) + 00000000 

Description 
The second-operand byte is added to the first-operand byte, and the sum is placed 
in the first-operand location. Addition is performed by adding all 8 bits of both 
operands. The two operands are considered to be signed fixed-point numbers. 

An implied second-operand byte of all O's is used in place of the register contents 
when the r2 field of the instruction is all O's. 

The operands are located in the same register set, designated with bit positions 
12-15 of the instruction: hexadecimal "8" designates the primary set, and 
hexadecimal "9" designates the secondary set. 

Result Conditions 
8 Sum is 0. 
4 Sum is less than 0. 
2 Sum is greater than 0. 
1 Overflow. 
0 Carry out of sign-bit position. 

Program Exceptions 
None 

Programming Note 
The byte in bit positions 16-23 of register 0 in the primary and secondary register 
sets can be designated only as the first operand; it cannot be designated as the the 
second operand. 



ADD (byte, register-immediate) 

ARI rpb,i8s 

RI Format 

0 3 4 7 8 15 

Operation 
(r1) <- (r1) + I2 

Description 
The byte of immediate data, Ii, is added to the first-operand byte, and the sum is 
placed in the first-operand location. Addition is performed by adding all 8 bits of 
both operands. The two operands are considered to be signed fixed-point 
numbers. 

The first operand is located in the primary register set. 

Result Conditions 
8 Sum is 0. 
4 Sum is less than 0. 
2 Sum is greater than 0. 
1 Overflow. 
0 Carry out of sign-bit position. 

Program Exceptions 
None 

Programming Note 
The immediate operand can range in value from -128 to 12 7. Addition of a 
negative immediate value is equivalent to subtraction of the corresponding 
positive immediate value of the same magnitude. 

ADD WITH CARRY (byte, register) 

AYR rpb,rpb 

RR Format 
7 r 1 r2 A (primary-register-set operands) 

0 34 78 1112 15 

AR rsb,rsb 

RR Format 
7 r 1 r 2 B (secondary-register-set operands) 

0 34 78 1112 15 

Operation 
If f2 ::/= 0000 

Then (r1) <- (r 1) + (r2 ) + C 
Else (r1) <- (r1) + 00000000 + C 

Description 
The second-operand byte and the value of bit 56 (the carry-condition indicator) 
in the current PSV are added to the first-operand byte, and the sum is placed in 

Chapter 4. General Instructions 4-11 



ADD (half word, register) 

4-12 

the first-operand location. Addition is performed by adding all 8 bits of the 
second operand and a low-order 0 or 1, taken from bit 56 (C) in the current PSV, 
to all 8 bits of the first operand. The two operands are considered to be signed 
fixed-point numbers. 

An implied second-operand byte of all O's is used in place of the register contents 
when the r2 field of the instruction is all O's. 

The operands are located in the same register set, designated with bit positions 
12-15 of the instruction: hexadecimal "A" designates the primary set, and 
hexadecimal "B" designates the secondary set. 

Result Conditions 
8 Extended sum is 0. 
4 Extended sum is less than 0. 
2 Extended sum is greater than 0. 
1 Overflow. 
0 Carry out of sign-bit position. 

Program Exceptions 
None 

Programming Notes 
The ADD WITH CARRY instructions are provided for addition of extended 
fixed-point numbers. A carry from any ADD or ADD WITH CARRY instruction 
is accounted for by executing a subsequent ADD WITH CARRY instruction 
without executing an intervening instruction that changes the indicated result 
conditions. 

ADD WITH CARRY (byte, register) can be used to propagate only the carry, if 
any, from the previous ADD by specifying an implied second-operand byte of all 
O's. 

Result condition 8 can be indicated (reflecting a result of O) only if it was 
indicated at the beginning of the operation. 

The byte in bit positions 16-23 of register 0 in the primary and secondary register 
sets can be designated only as the first operand; it cannot be designated as the 
second operand. 

AHR rh,rh 

C R1 R2 8 RR Format 

0 34 78 1112 15 

Operation 
(R1<16 .. 31>) <- (R1<16 .. 31>) + (R2 <16 .. 31>) 

Description 
The second-operand halfword is added to the first-operand halfword, and the sum 
is placed in the first-operand location. Addition is performed by adding all 16 bits 
of both operands. The two operands are considered to be signed fixed-point 
numbers. 



The operands occupy the low-order 16 bits of the registers designated by the R 1 
and R2 fields. 

Result Conditions 
8 Sum is 0. 
4 Sum is less than 0. 
2 Sum is greater than 0. 
1 Overflow. 
0 Carry out of sign-bit position. 

Program Exceptions 
None 

ADD (halfword, register-immediate) 

AHRI rh,i4 

C I2 R 1 D RR Format 

0 34 78 1112 15 

Operation 
(R1<16 .. 31>) <- (R1<16 .. 31>) + 000000000000 I I [2 

Description 
The 4 bits of immediate data, Iv are added to the first-operand halfword and the 
sum is placed in the first-operand location. The immediate operand is treated as 
an unsigned 4-bit positive binary integer. Addition is considered to be performed 
by first expanding the immediate operand to 16 bits with 12 high-order O's. Then, 
all 16 bits of the expanded immediate operand are added to all 16 bits of the first 
operand. The first operand is considered to be a signed fixed-point number. 

The first operand occupies the low-order 16 bits of the register designated by the 
R 1 field. 

Result Conditions 
8 Sum is 0. 
4 Sum is less than 0. 
2 Sum is greater than 0. 
l Overflow. 
0 Carry out of sign-bit position. 

Program Exceptions 
None 

Programming Notes 
The second operand can range in value from 0 to 15, inclusive. 

Bit positions 4-7 and 8-11 of the instruction format contain the 12 and R1 fields, 
respectively. This is reversed from the normal left-to-right order for the RR 
instruction format. 

Chapter 4. General Instructions 4-13 



ADD WITH CARRY (halfword, register) 

AYHR rh,rh 

C R 1 R2 A RR Format 

0 34 78 1112 15 

Operation 
(R1<16 .. 31>) <- (R1<16 .. 31>) + (R2 <16 .. 31>) + C 

Description 
The second-operand halfword and the value of bit 56 (the carry-condition 
indicator) in the current PSV are added to the first-operand halfword, and the 
sum is placed in the first-operand location. Addition is performed by adding all 
16 bits of the second operand and a low-order 0 or 1, taken from bit 56 (C) in the 
current PSV, to all 16 bits of the first operand. The two operands are considered 
to be signed fixed-point numbers. 

The operands occupy the low-order 16 bits of the registers designated by the R1 
and R2 fields. 

Result Conditions 
8 Extended sum is 0. 
4 Extended sum is less than 0. 
2 Extended sum is greater than 0. 
1 Overflow. 
0 Carry out of sign-bit position. 

Program Exceptions 
None 

Programming Notes 
The ADD WITH CARRY instructions are provided for addition of extended 
fixed-point numbers. A carry from any ADD or ADD WITH CARRY instruction 
is accounted for by executing a subsequent ADD WITH CARRY instruction 
without executing an intervening instruction that changes the indicated result 
conditions. 

Result condition 8 can be indicated (reflecting a result of 0) only if it was 
indicated at the beginning of the operation. 

ADD WITH CARRY (half word, register, extended) 

A YHRE ruh, ruh 

F R1 R2 9 RR Format 

0 34 78 1112 15 

Operation 
If R2 ¢. 0000 

Then (R1<0 .. 15>) <- (R 1<0 .. 15>) + (R2 <0 .. 15>) + C 
Else (R1<0 .. 15>) <- (R1<0 .. 15>) + 0000000000000000 + C 

4-14 



Description 
The second-operand halfword and the value of bit 56 (the carry-condition 
indicator) in the current PSV are added to the first-operand halfword, and the 
sum is placed in the first-operand location. Addition is performed by adding all 
16 bits of the second operand and a low-order 0 or 1, taken from bit 5 6 ( C) in the 
current PSV, to all 16 bits of the first operand. The two operands are considered 
to be signed fixed-point numbers. 

An implied second-operand halfword of all O's is used in place of the register 
contents when the ~ field of the instruction is all O's. 

The operands occupy the high-order 16 bits of the registers designated by the R 1 
and R2 fields. 

Result Conditions 
8 Extended sum is 0. 
4 Extended sum is less than 0. 
2 Extended sum is greater than 0. 
1 Overflow. 
0 Carry out of sign-bit position. 

Program Exceptions 
None 

Programming Notes 
The ADD WITH CARRY instructions are provided for addition of extended 
fixed-point numbers. A carry from any ADD or ADD WITH CARRY instruction 
is accounted for by executing a subsequent ADD WITH CARRY instruction 
without executing an intervening instruction that changes the indicated result 
conditions. 

ADD WITH CARRY (halfword, register, extended) can be used following an 
ADD (halfword, register) instruction to perform word register-to-register 
addition. This instruction can also be used to propagate only the carry, if any, 
from the previous ADD by specifying an implied second-operand halfword of all 
O's. 

Result condition 8 can be indicated (reflecting a result of O) only if it was 
indicated at the beginning of the operation. 

The halfword in bit positions 0-15 of register 0 in the primary register set can be 
designated only as the first operand; it cannot be designated as the second 
operand. 

Chapter 4. General Instructions 4-15 



AND (byte, register) 

4-16 

NR rpb,rpb 

7 r 1 

0 34 

NR rsb,rsb 

7 rl 

0 34 

Operation 
If r2 ¢. 0000 

r 2 0 

78 11 12 

r2 

78 11 12 

Then (r1) <- (r1) • (r2) 

RR Format 
(primary-register-set operands) 

15 

RR Format 
(secondary-register-set operands) 

15 

Else (r1) <- (r1) • 00000000 

Description 
The AND of the first- and second-operand bytes is placed in the first-operand 
location. 

The operands are treated as unstructured logical quantities, and the connective 
AND is applied bit by bit. A bit position in the result is set to 1 if the 
corresponding bit positions in both operands contain a 1 ; otherwise, the result bit 
is set to 0. 

An implied second-operand byte of all O's is used in place of the register contents 
when the r 2 field of the instruction is all O's. 

The operands are located in the same register set, designated with bit positions 
12-15 of the instruction: hexadecimal "O" designates the primary set, and 
hexadecimal "l" designates the secondary set. 

Result Conditions 
8 Result is all O's. 
4 Result is all 1 's. 
2 Result is mixed O's and 1 's. 
1 
0 

Program Exceptions 
None 

Programming Notes 
This instruction may be used to set a bit to 0. 

The byte in bit positions 16-23 of register 0 in the primary and secondary register 
sets can be designated only as the first operand; it cannot be designated as the 
second operand. 



AND (byte, register-immediate) 

AND (half word, register) 

NRI rpb,i8s 

RI Format 

0 3 4 7 8 15 

Operation 
(r1) <- (r1) • Iz 

Description 
The AND of the first-operand byte and the byte of immediate data is placed in 
the first-operand location. 

The operands are treated as unstructured logical quantities, and the connective 
AND is applied bit by bit. A bit position in the result is set to 1 if the 
corresponding bit positions in both operands contain a 1; otherwise, the result bit 
is set to 0. 

The first operand is located in the primary register set. 

Result Conditions 
8 Result is all O's. 
4 Result is all l's. 
2 Result is mixed O's and l's. 
1 
0 

Program Exceptions 
None 

Programming Note 
This instruction may be used to set a bit to 0. 

NHR rh,rh 

C R 1 R2 0 RR Format 

0 34 78 1112 15 

Operation 
(R1<16 .. 31>) <- (R1<16 .. 31>) • ('Ri<16 .. 31>) 

Description 
The AND of the first- and second-operand halfwords is placed in the 
first-operand locatio1i. 

The operands are treated as unstructured logical quantities, and the connective 
AND is applied bit by bit. A bit position in the result is set to 1 if the 
corresponding bit positions in both operands contain a 1 ; otherwise, the result bit 
is set to 0. 

Chapter 4. General Instructions 4-1 7 



BRANCH AND LINK 

4-18 

The operands occupy the low-order 16 bits of the registers specified by the R1 and 
R2 fields. 

Result Conditions 
8 Result is all O's. 
4 Result is all 1 's. 
2 Result is mixed O's and l's. 
1 
0 

Program Exceptions 
None 

Programming Note 
This instruction may be used to set a bit to 0. 

BAL ra,dh 16s(ra) 

D 

0 34 78 1112 1516 

Operation 
TEMPl <-D2 
TEMP 1 <- TEMP 1 rotated right 1 position 
If B2 #:- 0000 

Then TEMP2 <- (B2) + TEMP 1 x 2 
Else TEMP2 <- lA + TEMP 1 x 2 

(R1) <- IA 
IA <- TEMP2 

Description 

31 

RS-Long 
Format 

The updated instruction address in the current PSV is loaded as a link address in 
the general register designated by the R1 field. Subsequently, the instruction 
address is replaced by the branch address. The second-operand address is used as 
the branch address. 

When the 8 2 field contains all O's, the branch address is computed using the 
updated instruction address in place of the contents of primary general register 0. 

The branch address is computed before the link address is loaded. 

I When a branch occurs, the branch address is tested for validity as part of the 
instruction execution. lf a specification, access, separation, or address exception 
is detected for the first halfword associated with the branch address, the IA in the 
stored PSV indicates the current instruction as the failing operation. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Specification (operand 2: real address) 
Access (operand 2: block invalid, execution protection) 

I Separation (operand 2) 
Address (operand 2: all) 



Programming Notes 
A jump-type address (an offset from the updated instruction address) is 
designated by specifying B2 as primary register 0. 

Specifying the same general register with R1 and B+$sub2. does not alter the 
operation of the instruction. 

Relative to the base address, the branch range, in bytes, covered by the 
displacement (D2 ) is -65536 ~ D2 x 2 ~ 65534. Note that the displacement can 
be specified only in terms of an even number of bytes. 

The sign bit for the D2 field is located in bit position 31 of this instruction. The 
formation of the branch address is described under "Address Generation" in 
Chapter 3, "Program Execution." 

BRANCH AND LINK (register) 

BALR ra,ra 

A R1 R2 3 RR Format 

0 34 78 1112 15 

Operation 
TEMP <- (R2) 

(R1) <- IA 
If R2 -:/:. 0000 

Then IA < - TEMP 
Else NSI 

Description 
The updated instruction address in the current PSV is loaded as a link address in 
the general register designated by the R1 field. Subsequently, the instruction 
address is replaced by the branch address. 

The contents of the general register designated by the R2 field are used as the 
branch address. The branch address is temporarily saved before the link address 
is loaded. However, when the R2 field contains all O's, the operation is performed 
without branching. 

I When a branch occurs, the branch address is tested for validity as part of the 
instruction execution. If a specification, access, separation, or address exception 
is detected for the first halfword associated with the branch address, the IA in the 
stored PSV indicates the current instruction as the failing operation. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Specification (operand 2: real address) 
Access (operand 2: block invalid, execution protection) 

I Separation (operand 2) 
Address (operand 2: address limit) 

Chapter 4. General Instructions 4-19 



Programming Notes 
Specifying the same general register with R1 and R2 does not alter the operation 
of the instruction. 

When R2 is specified as primary register 0, the link address is loaded without 
change. Thus, the instruction can be used to establish the updated instruction 
address as a base address. 

BRANCH ON CONDITION 

4-20 

BC m4,dh16s(ra) 

D 

0 34 78 1112 1516 

Operation 
If M1 specifies an indicated result condition 

Then TEMP < - D2 

TEMP <- TEMP rotated right 1 position 
If B2 ¥= 0000 

Then IA <- (B2 ) + TEMP x 2 
Else IA <- IA+ TEMP x 2 

Else NSI 

Description 

31 

RS-Long 
Format 

The updated instruction address in the current PSV is replaced by the branch 
address if any result condition designated by the M1 field is indicated in the 
current PSV. Otherwise, normal instruction sequencing proceeds with the 
updated instruction address. The second-operand address is used as the branch 
address. 

When the B2 field contains all O's, then branch address is computed using the 
updated instruction address in place of the contents of primary general register 0. 

The M1 field is used as a 4-bit mask. The 4 bits of the mask correspond, left to 
right, with the four result conditions 8, 4, 2, and 1. A 1-bit in the mask specifies 
that the corresponding condition is to be tested. A mask containing two or more 
1 's tests all corresponding conditions. A mask of all O's specifies a test for result 
condition 0. 

M 1 Field Mask Value Result Condition Tested 

1000 8 8 
0100 4 4 
0010 2 2 
0001 1 1 
0000 0 0 

The branch is successful whenever any tested result condition is indicated in the 
current PSV. The branch is not taken if none of the tested conditions are 
indicated. 



I When a branch occurs, the branch address is tested for validity as part of the 
instruction execution. If a specification, access, separation, or address exception 
is detected for the first halfword associated with the branch address, the IA in the 
stored PSV indicates the current instruction as the failing operation. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Specification (operand 2: real address) 
Access (operand 2: block invalid, execution protection) 

I Separation (operand 2) 
Address (operand 2: all) 

Programming Notes 
A jump-type address (an offset from the updated instruction address) is 
designated by specifying B2 as primary register 0. 

A branch can be made on more than one result condition, except condition 0, by 
specifying the pertinent conditions in the mask as the sum of their corresponding 
mask values. A mask value of 12 (binary 1100), for example, specifies that a 
branch is to be made if either result condition 8 or 4 is indicated. 

An unconditional branch is made by specifying a mask of 14 or 15. 

Result condition 8, 4, or 2 can be tested for its absence by specifying the other 
two conditions in the mask. A mask of 12, for example, will cause a branch to be 
executed if result condition 2 is not indicated. Result conditions 1 and 0 are each 
indicated independently, and the mask only provides for testing whether the 
corresponding condition is indicated. 

Relative to the base address, the branch range, in bytes, covered by the 
displacement (D2) is -65536 * D 2 x 2 * 65534. Note that the displacement can be 
specified only in terms of an even number of bytes. 

The sign bit for the 0 2 field is located in bit position 31 of this instruction. The 
formation of the branch address is described under "Address Generation" in 
Chapter 3, "Program Execution." 

BRANCH ON CONDITION (register) 

BCR m4,ra 

A M 1 R2 0 RR Format 

0 34 78 1112 15 

Operation 
If M 1 specifies an indicated result condition 

Then TA <- (R2 ) 

Else NST 

Chapter 4. General Instructions 4-21 



4-22 

Description 
The updated instruction address in the current PSV is replaced by the branch 
address if any result condition designated by the M1 field is indicated in the 
current PSV. Otherwise, normal instruction sequencing proceeds with the 
updated instruction address. The contents of the general register designated by 
the ~ field are used as the branch address. 

The M1 field is used as a 4-bit mask. The 4 bits of the mask correspond, left to 
right, with the four result conditions 8, 4, 2, and 1. A 1-bit in the mask specifies 
that the corresponding condition is to be tested. A mask containing two or more 
l's tests all corresponding conditions. A mask of all O's specifies a test for result 
condition 0. 

M 1 Field Mask Value Result Condition Tested 

1000 8 8 
0100 4 4 
0010 2 2 
0001 1 1 
0000 0 0 

The branch is successful whenever any tested result condition is indicated in the 
current PSV. The branch is not taken if none of the tested conditions are 
indicated. 

I When a branch occurs, the branch address is tested for validity as part of the 
instruction execution. If a specification, access, separation, or address exception 
is detected for the first halfword associated with the branch address, the IA in the 
stored PSV indicates the current instruction as the failing operation. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Specification (operand 2: real address) 
Access (operand 2: block invalid, execution protection) 

I Separation (operand 2) 
Address (operand 2: address limit) 

Programming Notes 
A branch can be made on more than one result condition, except condition 0, by 
specifying the pertinent conditions in the mask as the sum of their corresponding 
mask values. A mask value of 12 (binary 1100), for example, specifies that a 
branch is to be made if either result condition 8 or 4 is indicated. 

An unconditional branch is made by specifying a mask of 14 or 15. 

Result condition 8, 4, or 2 can be tested for its absence by specifying the other 
two conditions in the mask. A mask of I 2, for example, will cause a branch to be 
executed if result condition 2 is not indicated. Result conditions 1 and 0 are each 
indicated independently, and the mask only provides for testing whether the 
corresponding condition is indicated. 



BRANCH ON COUNT (byte, register) 

BCTR rpb,ra 

A r1 Ri 2 RR Format 

0 34 78 1112 15 

Operation 
TEMP <- (R2) 

(r1) <- (r1) - 1 
If ( r 1) ¢. 00000000 

Then IA <- TEMP 
Else NSI 

Description 
The first-operand byte is a count that is algebraically reduced by 1. When the 
resulting count is 0, normal instruction sequencing proceeds-with the updated 
instruction address. When the resulting count is not 0, the instruction address in 
the current PSV is replaced by the branch address. 

The contents of the general register designated by the Ri field are used as the 
branch address. The branch address is temporarily saved before the first operand 
is reduced. 

The counting operation is performed by treating the first operand as an unsigned 
8-bit positive binary integer, from which a low-order 1 is subtracted. The 
subtraction of 1 from an initial count of 0 yields a count of 25 5. 

The first operand is located in the primary register set. 

I When a branch occurs, the branch address is tested for validity as part of the 
instruction execution. If a specification, access, separation, or address exception is 
detected for the first half word associated with the branch address, the IA in the 
stored PSV indicates the current instruction as the failing operation. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Specification (operand 2: real address) 
Access (operand 2: block invalid, execution protection) 

I Separation (operand 2 ) 
Address (operand 2: address limit) 

Programming Notes 
An initial count of 1 results in 0, and no branching takes place; an initial count of 
0 results in 255 and branching occurs; an initial count of 255 results in 254 and 
branching occurs; and so on. In a loop, branching takes place each time the 
instruction is executed until the result is again 0. The maximum loop count of 256 
is attained by using an initial count of 0. 

Designating the first operand in the same general register as that specified by~ 
does not alter the operation of the instruction. 

Chapter 4. General Instructions 4-23 



BRANCH ON INDEX (byte) 

4-24 

BNX rpb,ra 

c r 1 ~ 5 RR Format 

0 34 78 1112 15 

Operation 
IA< 16 .. 31> <- MS[(R2 ) + (r1) x 2] 

Description 
The low-order 16 bits of the instruction address in the current PSV are replaced 
by the halfword from the main storage location designated by the branch-table 
address and the index. The high-order 16 bits of the instruction address remain 
unchanged. 

Th~ .. :c011tcnts of the general register designated by the R2 field are used as the 
bran·. h idble address. The byte operand designated by the r1 field is used as the 
index and is treated as an unsigned 8-bit positive binary integer. 

The main storage address is considered to be formed by multiplying the index by 
two, expanding the result to 32 bits with high-order O's, and adding the expanded 
index to the branch-table address. 

Normal instruction-address updating is suppressed. That is, the high-order 16 bits 
of the instruction address used to ref er to this instruction remain unchanged at the 
completion of execution. 

The first operand (the index) is located in the primary register set. 

I When a branch occurs, the branch address is tested for validity as part of the 
instruction execution. If a specification, access, separation, or address exception 
is detected for the first half word associated with the branch address, the IA in the 
stored PSV indicates the current instruction as the failing operation. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Specification (operand 2: real address; branch-table entry: real address) 
Access (operand 2: block invalid; branch-table entry: block invalid, 

execution protection) 
I Separation (operand 2; branch-table entry) 

Address (operand 2: address limit; branch-table entry: address limit) 

Programming Notes 
BRANCH ON INDEX provides an unconditional n-way branch, where "n" 
represents the index. 

The branch table designated by the branch-table address must be aligned on a 
halfword boundary. A maximum of 256 halfword entries may be contained in the 
branch table. 



CALLPSV 

The branch-table entries are limited to 16 bits in order to conserve the amount of 
main storage required for the branch table. Each entry, therefore, contains only 
the low-order 16 bits of a storage address. Because only the iow-order 16 bits of 
the instruction address are replaced with the table entry, and the high-order 16 
bits remain unchanged, the range of branch addresses (A) that may be designated 
with branch-table entries is limited to: 

M x 2 16 ~ A ~ (M+ 1) x 216-1 

where M denotes the value in the high-order 16 bits of the instruction address. 
That is, all branch addresses, of which only the low-order 16 bits are represented 
in the table entries, should designate locations within the set of 65,536 
consecutive byte locations that ( 1) includes the location of the BRANCH ON 
INDEX instruction, and (2) begins at an address that is an integral multiple of 
65536 (including 0). 

KI 0, 127 

6 000 

I 
0 

I 
7F 

0 3 4 6 7 8 

Operation 
Current-PSV <40 . .47> <-
LPL <- CPL 
If current-PSV =Primary 

Then Store primary PSV 
PAV<CPL> <- 1 
Load secondary PSV and A CV 

Else Store secondary PSV 
PAV<CPL> <- 0 
Load primary PSV and ACV 

Description 

RI Format 

15 

00000000 

The current PSV is stored into the register locations from which it was originally 
loaded, and the new PSV and ACV are loaded from the corresponding (dual) 
register locations for the current priority level. 

The bit position, in the program activation vector (PAV), associated with the 
current priority level is set to correspond to the new PSV. The PAV bit is set to 1 
when the secondary PSV is loaded; it is set to 0 when the primary PSV is loaded. 

The 8-bit program-information-code field (bits 40-4 7) in the stored PSV is set to 
all O's as part of the operation. The number of the last priority level is set equal to 
the number of the current priority level. 

I Bit positions 4-6 of the instruction are reserved and should contain all O's. 
Otherwise, the 8-bit program-information-code field in the stored PSV is 
unpredictable. 

Bit position 7 of the instruction is used as an extension to the operation code; the 
bit distinguishes this instruction from INPUT /OUTPUT (byte, immediate). 

Chapter 4. General Instructions 4-25 



COMPARE (byte, register) 

4-26 

Result Conditions 
The condition indicators in the stored PSV remain unchanged. 

Program Exceptions 
None 

Programming Notes 
After the new PSV is loaded, the result conditions are indicated as specified by 
the condition indicators in the new PSV. 

CALL PSV is valid in all program modes. It can be used by a supervisory 
program to dispatch an application program, and it can be used by an application 
program to call the supervisor. 

The high-order bit of the program information code (bit 40) in the stored PSV 
distinguishes whether the PSV was stored due to CALL PSV (bit 40 is 0) or a 
program-exception interruption (bit 40 is 1). 

CR rpb,rpb 

7 r1 

0 34 

AR rsb,rsb 

7 r 1 

0 34 

Operation 
If r2 #: 0000 

78 

78 

RR Format 
r 2 6 (primary-register-set operands) 

11 12 15 

RR Format 
r2 7 (secondary-register-set operands) 

11 12 15 

Then Result-Conditions < = = (r1) + -. (r2) + 1 
Else Result-Conditions < = = (r1) + -. 00000000 + 1 

Description 
The first operand is compared with the second operand; the comparison 
determines the indicated result conditions. The operands remain unchanged. 

Comparison is algebraic, treating both operands as 8-bit signed integers. It is 
performed by adding the ones complement of all 8 bits of the second operand and 
a low-order 1 to all 8 bits of the first operand, as in SUBTRACT (byte, register). 

An implied second-operand byte of all O's is used in place of the register contents 
when the r 2 field of the instruction is all O's. 

The operands are located in the same register set, designated with bit positions 
12-15 of the instruction: hexadecimal "6" designates the primary set, and 
hexadecimal "7" designates the secondary set. 

Result Conditions 
8 Operands are equal. 
4 First operand is low. 
2 First operand is high. 
1 Overflow. 
0 Carry out of sign-bit position. 



Program Exceptions 
None 

Programming Notes 
Although the comparison is algebraic, result condition 0 can be tested after the 
instruction is executed to determine the logical relation of the two operands when 
the operands are considered to be binary unsigned quantities. When a carry is 
indicated, the first operand is logically higher than or equal to the second operand. 
When a carry is not indicated, the first operand is logically lower. An indication 
of overflow (result condition 1) is not significant. 

The byte in bit positions 16-23 of register 0 in the primary and secondary register 
sets can be designated only as the first operand; it cannot be designated as the 
second operand. 

COMPARE (halfword, register) 

CHR rh,rh 

C R1 R2 6 RR Format 

0 34 78 1112 15 

Operation 
Result-Conditions<== (R1<16 .. 31>) + -.(R2 <16 .. 31>) + 1 

Description 
The first operand is compared with the second operand; the comparison 
determines the indicated result conditions. The operands remain unchanged. 

Comparison is algebraic, treating both operands as 16-bit signed integers. It is 
performed by adding the ones complement of all 16 bits of the second operand 
and a low-order 1 to all 16 bits of the first operand, as in SUBTRACT (halfword, 
register). 

The operands occupy the low-order halfwords of the registers designated by the 
R 1 and R2 fields. 

Result Conditions 
8 Operands are equal. 
4 First operand is low. 
2 First operand is high. 
1 Overflow. 
0 Carry out of sign-bit position. 

Program Exceptions 
None 

Programming Note 
Although the comparison is algebraic, result condition 0 can be tested after the 
instruction is executed to determine the logical relation of the two operands when 
the operands are considered to be binary unsigned quantities. When a carry is 
indicated, the first operand is logically higher than or equal to the second operand. 
When a carry is not indicated, the first operand is logically lower. An indication 
of overflow (result condition 1) is not significant. 

Chapter 4. General Instructions 4-27 



COMPARE WITH CARRY (halfword, register, extended) 

4-28 

CYHRE ruh,ruh 

F R1 R2 8 RR Format 

0 34 78 1112 15 

Operation 
If R2 "I: 0000 

Then Result-Conditions<== (R1<0 .. 15>) + ...,(R2 <0 .. 15>) + C 
Else Result-Conditions < = = (R1 <0 .. 15 >) + ..., 0000000000000000 + C 

Description 
The first operand is compared with the second operand; the comparison 
determines the indicated result conditions. Bit 56 (the carry-condition indicator) 
in the current PSV participates in the operation. The operands remain unchanged. 

Comparison is algebraic, treating both operands as 16-bit signed integers. It is 
performed by adding the ones complement of all 16 bits of the second operand 
and a low-order 0 or L taken from bit 56 (C) in the current PSV, to all 16 bits of 
the first operand, as in SUBTRACT WITH CARRY (halfword, register, 
extended). Algebraically, a borrow from the first operand occurs (due to the 
previous compare operation) when PSV-bit 56 is O; no borrow occurs when bit 56 
is 1. 

An implied second-operand halfword of all O's is used in place of the register 
contents when the R2 field of the instruction is all O's. 

The operands occupy the high-order halfwords of the registers designated by the 
R 1 and R2 fields. 

Result Conditions 
8 Extended operands are equal. 
4 First extended operand is low. 
2 First extended operand is high. 
1 Overflow. 
0 Carry out of sign-bit position. 

Program Exceptions 
None 

Programming Notes 
COMPARE WITH CARRY (halfword, register, extended) is provided for the 
comparison of extended fixed-point numbers. A carry from any COMP ARE 
instruction or the COMPARE WITH CARRY (halfword, register, extended) 
instruction is accounted for by executing a subsequent COMP ARE WITH 
CARRY (halfword, register, extended) instruction without executing an 
intervening instruction that changes the indicated result conditions. 

COMPARE WITH CARRY (halfword, register, extended) can be used following 
a COMPARE (halfword, register) instruction to perform word register-to-register 
comparison. This instruction can also be used to account for only the borrow, if 
any, due to the previous COMPARE by specifying an implied second-operand 
half word of all O's. 



Result condition 8 can be indicated (reflecting an equal comparison) only if it was 
indicated at the beginning of the operation. 

Although the comparison is algebraic, result condition 0 can be tested after the 
instruction is executed to determine the logical relation of the two extended 
fixed-point operands when the operands are considered to be binary unsigned 
quantities. When a carry is indicated, the first operand is logically higher than or 
equal to the second operand. When a carry is not indicated, the first operand is 
logically lower. 

The halfword in bit positions 0- I 5 of register 0 in the primary register set can be 
designated only as the first operand; it cannot be designated as the second 
operand. 

For compare operations, an indication of overflow (result condition I) is not 
significant. 

COMPARE LOGICAL (bytes, storage) 

CLS ra,ra,rh 

RR-Long 
E R3 F Format 

0 34 78 1112 1516 23 24 27 28 31 

Operation 
LOOP Result-Conditions<== MS[(R1)]:MS[(R2)] 

TEMPI <- (R1) 

TEMP2 <- (R) 
TEMP3 <- (R3<24 .. 3I>) 
(R1) <- TEMPI + 1 
(R2) <- TEMP2 + I 
(R3<24 .. 3I>) <- TEMP3 - 1 
If Result-Condition=Equal and (R3<24 .. 3 I> )#;00000000 

Then Go To LOOP 
Else NSI 

Description 
The first operand is compared with the second operand; the comparison 
determines the indicated result conditions. The operands remain unchanged. 

The locations of the leftmost bytes of the first- and second-operand fields are 
designated by the contents of the general registers specified by R1 and R 2 , 

respectively. The length of the first and second operands is designated by the 
contents of bit positions 24-3 I of the general register specified by Ry The 
contents of bit positions 0-23 of register R3 are ignored and remain unchanged. 
The length is specified in terms of bytes, and comparison is performed on a 
byte-by-byte basis. 

The comparison is logical, treating the first and second operands as binary 
unsigned quantities, with all binary values valid. The operation starts at the 
leftmost end of both fields and proceeds to the right in units of bytes. The 
operation ends when an inequality is detected or the end of the fields is reached. 

Execution of the instruction is interruptible between units of operation. 
Conceptually, after each unit of operation, including the last, the operand 
addresses in registers R1 and R2 are both increased by I and the count in bit 
positions 24-3 I of register R2 is decremented increased by 1. When, before the 

Chapter 4. General Instructions 4-29 



4-30 

last unit of operation, an I/ 0 interruption occurs, or a system-check interruption 
occurs due to a channel I/ 0 check, the operand addresses and the count are 
updated so that the instruction, when reexecuted, resumes at the point of 
interruption. 

Depending on processor model, more than one unit of operation may be executed 
between points in the operation at which an interruption is allowed. In this case, 
the number of units of operation executed without allowing an interruption is 
predetermined. After each predetermined number of units of operation, the 
operand addresses and count value are adjusted to correspond to the amount of 
data compared. The specific predetermined number of units of operation is fixed, 
except for the first and last execution groups. 

The first and second operands are of equal length. They may be from 1 to 256 
bytes. A count of 256 is designated with an initial value of all O's in bit positions 
24-31 of register R3• Depending on processor model, if R 3 designates the same 
register as R1 or ~, an operation exception may not be indicated and the result is 
unpredictable. 

When part of an operand is designated in an inaccessible location, but the 
operation ends because of an inequality by referring only to the available part of 
the operand, a program exception is not indicated. Otherwise, the exception is 
indicated. 

The program exception is detected at the time the inaccessible location is ref erred 
to, and execution of the instruction is terminated. That is, the contents of registers 
Rl' ~,and R3 may not be adjusted to correspond with the amount of data 
compared. 

Depending on processor model, if R3 designates the same register as R 1 or R2, an 
operation exception may not be indicated and the result is unpredictable. 

Result Conditions 
8 Operands are equal. 
4 First operand is low. 
2 First operand is high. 
1 
0 Carry out of high-order bit position of last byte compared. 

Program Exceptions (Termination) 
Specification (operand 1 or 2: real address) 
Access (operand 1 or 2: block invalid) 

!
Operation (depending on processor model, R3 = R1 or R2 ) 

Separation (operand 1 or 2) 
Address (operand 1 or 2: address limit) 

Programming Notes 
Since execution of the COMPARE LOGICAL (bytes, storage) is interruptible, 
the instruction cannot be used for situations in which interruptions are enabled 
and the program must rely on uninterrupted execution of the instruction. 

When R 1 and R2 specify the same register, data is compared with itself. 

For compare-logical operations, an indication of carry (result condition 0) is not 
significant. 



COMPARE LOGICAL (halfwords, storage) 

CLHS ra,ra,rh 

RR-Long 
E R3 F Format 

0 34 78 1112 1516 23 24 27 28 31 

Operation 
LOOP Result-Conditions<== MS[(R1)]:MS[(R2)] 

TEMP 1 <- (R1) 

TEMP2 <- (R2) 

TEMP3 <- (R3<24 .. 31>) 
(R1) <- TEMPI+ 2 
(R2) <- TEMP2 + 2 
(R3<24 .. 31>) <- TEMP3 - 1 
If Result-Condition=Equal and (R3<24 .. 3 l > )¢00000000 

Then Go To LOOP 
Else NSI 

Description 
The first operand is compared with the second operand; the comparison 
determines the indicated result conditions. The operands remain unchanged. 

The locations of the leftmost halfwords of the first- and second-operand fields are 
designated by the contents of the general registers specified by R1 and Ri, 
respectively. The length of the first and second operands is designated by the 
contents of bit positions 24-31 of the general register specified by R3. The 
contents of bit positions 0-23 of register R3 are ignored and remain unchanged. 
The length is specified in terms of halfwords, and comparisonis performed on a 
halfword-by-halfword basis. 

The comparison is logical, treating the first and second operands as binary 
unsigned quantities, with all binary values valid. The operation starts at the 
leftmost end of both fields and proceeds to the right in units of halfwords. The 
operation ends when an inequality is detected or the end of the fields is reached. 

Execution of the instruction is interruptible between units of operation. 
Conceptually, after each unit of operation, including the last, the operand 
addresses in registers R1 and Ri are both increased by 2 and the count in bit 
positions 24-31 of register R3 is decremented by 1. When, before the last unit of 
operation, an I/ 0 interruption occurs, or a system-check interruption occurs due 
to a channel I/ 0 check, the operand addresses and the count are updated so that 
the instruction, when re-executed, resumes at the point of interruption. 

Depending on processor model, more than one unit of operation may be executed 
between points in the operation at which an interruption is allowed. In this case, 
the number of units of operation executed without allowing an interruption is 
predetermined. After each predetermined number of units of operation, the 
operand addresses and count value are adjusted to correspond to the amount of 
data compared. The specific predetermined number of units of operation is fixed, 
except for the first and last executions of the groups. 

The first and second operands are of equal length. They may be from 1 to 256 
halfwords. A count of 256 is designated with an initial value of all O's in bit 
positions 24-31 of register R3. 

Chapter 4. General Instructions 4-31 



4-32 

When part of an operand is designated in an inaccessible location, but the 
operation ends because of an inequality by referring only to the available part of 
the operand, a program exception is not indicated. Otherwise, the exception is 
indicated. 

The program exception is detected at the time the inaccessible location is ref erred 
to, and execution of the instruction is terminated. That is, the contents of registers 
R1' R2, and R3 may not be adjusted to correspond with the amount of data 
compared. 

I Depending on processor model, if R3 designates the same register as R 1 or ~, an 
operation exception may not be indicated and the result is unpredictable. 

Result Conditions 
8 Operands are equal. 
4 First operand is low. 
2 First operand is high. 
1 
0 Carry out of high-order bit position of last halfword compared. 

Program Exceptions (Termination) 
Specification (operand 1 or 2: real address) 
Access (operand 1 or 2: block invalid) 

I Operation (depending on processor model, R3 = R 1 or R2 ) 

Separation (operand 1 or 2) 
Address (operand 1 or 2: address limit) 

Programming Notes 
Since execution of COMPARE LOGICAL (halfwords, storage) is interruptible, 
the instruction cannot be used for situations in which interruptions are enabled 
and the program must rely on uninterrupted execution of the instruction. 

COMPARE LOGICAL (halfwords, storage) can be used to compare two byte 
strings when the strings begin on halfword boundaries and contain an even 
number of bytes. Note, however, that when the instruction ends because of an 
inequality, the result conditions indicate the relation of the last halfwords 
compared. 

When R1 and R2 specify the same register, data is compared with itself. 

For compare-logical operations, an indication of carry (result condition O) is not 
significant. 



COUNT LEADING ZEROS (halfword) 

CTLZ rh,rh 

RR Format 

0 34 78 11 12 15 

Operation 
TEMP <- 0 

LOOP If (Ri<TEMP + 16>) ¢ 0 
Then (Ri<TEMP+16>) <- 0 

Go To END 
Else TEMP < - TEMP + 1 

If TEMP¢ 16 
Then Go To LOOP 
Else Continue 

END Result-Conditions < = = <Ri < 16 .. 31 >) 
(R1<16 .. 31>) <- TEMP 

Description 
A count of the number of leading (leftmost) 0 bits in the second-operand 
halfword is placed in the first-operand location, and the leftmost 1-bit in the 
second operand is made 0. The indicated result conditions are determined by the 
second-operand result. 

The count placed in the first-operand location is an unsigned binary integer. The 
count value can range from 0 to 16, inclusive. 

The operands occupy the low-order halfwords of the general registers specified by 
R1 and R2 . 

Result Conditions 
8 Second-operand result is all O's. 
4 
2 Second-operand result is mixed O's and l's. 
1 
0 

Program Exceptions 
None 

Programming Note 
If R1 and Ri specify the same register, the second operand is replaced with the 
count. 

Chapter 4. General Instructions 4-33 



DIVIDE (halfword, register) 

OHR rh,rh 

RR-Long 
E 0 3 Format 

0 3 4 7 8 11 12 15 16 23 24 27 28 31 

4-34 

Operation 
TEMPI<- (R1<I6 .. 3I>) I I ({R1+0010}<I6 .. 3I>) 
TEMP2 <- (R2 <I6 .. 3I>) 
(R1<I6 .. 3I>) <-TEMPI MOD TEMP2 
({R1+0010}<I6 .. 3I>) <- TEMPI/ TEMP2 

Description 
The dividend (first operand) is divided by the divisor (second operand), and the 
remainder and quotient are placed in the first-operand location. 

The dividend is an unsigned 32-bit positive binary integer. The high-order half 
and low-order half of the dividend occupies the two low-order halfwords, 
respectively, of the even-odd pair of consecutive registers designated by the R1 
field. The divisor occupies the low-order halfword of the register designated by 
the Rz field. The remainder and quotient replace the dividend in the even and 
odd registers, respectively. The high-order halfword of the general registers in 
which the dividend and divisor are located do not participate in the operation and 
remain unchanged. The remainder, quotient, and divisor are all treated as 
unsigned I6-bit positive binary integers. 

When the relative magnitude of the dividend and divisor is such that the quotient 
cannot be expressed by an unsigned I6-bit integer, or when the divisor is 0, a 
fixed-point overflow exception is indicated. If the R1 field contains xxix (where 
x may be 0 or I), specifying the odd register of an even-odd pair, the result is 
unpredictable, and a program exception due to the specification is not indicated. 

Bit positions 24-27 of the instruction are reserved and must contain all O's; 
otherwise, an operation exception is indicated. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Operation (bits 24-27 of instruction not all O's) 
Fixed-Point Overflow 



EXCLUSIVE OR (byte, register) 

XR rpb,rpb 

RR Format 
7 r 1 r2 4 (primary-register-set operands) 

0 3 4 7 8 11 12 15 

XR rsb,rsb 

RR Format 
7 r 1 r2 5 (secondary-register-set operands) 

0 3 4 7 8 11 12 15 

Operation 
If r2 :/:- 0000 

Then (r1) <- (r1) ~ (r2) 

Else (r. 1) <- (r1) "F 00000000 

Description 
The EXCLUSIVE OR of the first- and second-operand bytes is placed in the 
first-operand location. 

The operands are treated as unstructured logical quantities, and the connective 
EXCLUSIVE OR is applied bit by bit. A bit position in the result is set to 1 if the 
bits in the corresponding positions of both operands are unlike; otherwise, the 
result bit is set to 0. 

An implied second-operand byte of all O's is used in place of the register contents 
when the r2 field of the instruction is all O's. 

The operands are located in the same register set, designated with bit positions 
12-15 of the instruction: hexadecimal "4" designates the primary set, and 
hexadecimal "5" designates the secondary set. 

Result Conditions 
8 Result is all O's. 
4 Result is all 1 's. 
2 Result is mixed O's and l's. 
1 
0 

Program Exceptions 
None 

Programming Notes 
This instruction may be used to invert a bit. 

The byte in bit positions 16-23 of register 0 in the primary and secondary register 
sets can be designated only as the first operand; it cannot be designated as the 
second operand. 

Chapter 4. General Instructions 4-35 



EXCLUSIVE OR (byte, register-immediate) 

XRI rpb,i8 

RI Format 

0 3 4 7 8 15 

Operation 
(r.1) <- (r1) f- I2 

Description 
The EXCLUSIVE OR of the first-operand byte and the byte of immediate data is 
placed in the first-operand location. 

The operands are treated as unstructured logical quantities, and the connective 
EXCLUSIVE OR is applied bit by bit. A bit position in the result is set to 1 if the 
bits in the corresponding positions of both operands are unlike; otherwise, the 
result bit is set to 0. 

The first operand is located in the primary register set. 

Result Conditions 
8 Result is all O's. 
4 Result is all l's. 
2 Result is mixed O's and l's. 
1 
0 

Program Exceptions 
None 

Programming Note 
This instruction may be used to invert a bit. 

EXCLUSIVE OR (halfword, register) 

4-36 

XHR rh,rh 

C R1 Ri 4 RR Format 

0 34 78 1112 15 

Operation 
(R1<16 .. 31>) <- (R1<16 .. 31>) f- (R2 <16 .. 31>) 

Description 
The EXCLUSIVE OR of the first- and second-operand halfwords is placed in the 
first-operand location. 

The operands are treated as unstructured logical quantities, and the connective 
EXCLUSIVE OR is applied bit by bit. A bit position in the result is set to 1 if the 
bits in the corresponding positions of both operands are unlike; otherwise, the 
result bit is set to 0. 



The operands occupy the low-order 16 bits of the registers specified by the R 1 and 
R2 fields. 

Result Conditions 
8 Result is all O's. 
4 Result is all 1 's. 
2 Result is mixed O's and 1 's. 
1 
0 

Program Exceptions 
None 

Programming Note 
This instruction may be used to invert a bit. 

JUMP ON BIT ZERO (half word) 

JBZ n4,dh7s 

--9-~_1_1 _____ 0_2 
___ 1_~1 J Format 

0 34 78 14 15 

Operation 
If (PGR1<11+ 16>) = 0 

Then IA <- IA+ D2 x 2 
Else NSI 

Description 
The updated instruction address in the current PSV is replaced by the jump 
address if the specified bit in the implied halfword operand is 0. Otherwise, 
normal instruction sequencing proceeds with the updated instruction address. The 
second-operand address is used as the jump address. 

The implied operand occupies the low-order halfword of primary general register 
1. The I1 field contains an unsigned 4-bit binary integer that specifies the bit 
position in the implied-operand halfword. The value of I1 can range from 0 to 15 
(binary 0000 to 111 l). A value of 0 tests bit position 16 of primary general 
register 1; a value of 1 tests bit position 1 7; and so on. 

When a jump occurs, the jump address is tested for validity as part of the 
instruction execution. If a specification, access, separation, or address exception is 
detected for the first halfword associated with the jump address, the IA in the 
stored PSV indicates the current instruction as the failing operation. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Specification (operand 2: real address) 
Access (operand 2: block invalid, execution protection) 
Separation (operand 2) 
Address (operand 2: all) 

Chapter 4. General Instructions 4-37 



JUMP ON CONDITION 

4-38 

Programming Note 
Relative to the updated instruction address, the jump range, in bytes, covered by 
the displacement (D2) is -128 ~ D2 x 2 ~ 126. Note that the displacement can be 
specified only in terms of an even number of bytes. 

JC m4,dh7s 

.___9 _ _.___M_1 ___. ___ 0_2 __ ___.l_o ...... I J Format 

0 34 78 14 15 

Operation 
If M 1 specifies an indicated result condition 

Then IA <- IA + D2 x 2 
Else NSI 

Description 
The updated instruction address in the current PSV is replaced by the jump 
address if any result condition designated by the M 1 field is indicated in the 
current PSV. Otherwise, normal instruction sequencing proceeds with the 
updated instruction address. The second-operand address is used as the jump 
address. 

The M 1 field is used as a 4-bit mask. The 4 bits of the mask correspond, left to 
right, with the four result conditions 8, 4, 2, and 1. A 1-bit in the mask specifies 
that the corresponding condition is to be tested. A mask containing two or more 
l's tests all corresponding conditions. A mask of all O's specifies a test for result 
condition 0. 

M 1 Field Mask Value Result Condition Tested 

1000 8 8 
0100 4 4 
0010 2 2 
0001 1 1 
0000 0 0 

The jump is successful whenever any tested result condition is indicated in the 
current PSV. The jump is not taken if none of the tested conditions are indicated. 

IWhen a jump occurs, the jump address is tested for validity as part of the 
instruction execution. If a specification, access, separation, or address exception is 
detected for the first halfword associated with the jump address, the IA in the 
stored PSV indicates the current instruction as the failing operation. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Specification (operand 2: real address) 
Access (operand 2: block invalid, execution protection) 

lseparation (operand 2) 
Address (operand 2: all) 



LOAD ADDRESS 

Programming Notes 
A jump can be made on more than one result condition, except condition 0, by 
specifying the pertinent conditions in the mask as the sum of their corresponding 
mask values. A mask value of 12 (binary 1100), for example, specifies that a jump 
is to be made if either result condition 8 or 4 is indicated. 

An unconditional jump is made by specifying a mask of 14 or 15. When the D2 
field contains all O's, the jump instruction is equivalent to a no-operation. 

Result condition 8, 4, or 2 can be tested for its absence by specifying the other 
two conditions in the mask. A mask of 12, for example, will cause a jump to be 
executed if result condition 2 is not indicated. Result conditions 1 and 0 are each 
indicated independently, and the mask only provides for testing whether the 
corresponding condition is indicated. 

Relative to the updated instruction address, the jump range, in bytes, covered by 
the displacement (D2) is -128 S D2 x 2 S 126. Note that the displacement can be 
specified only in terms of even number or bytes. 

LA ra,db 16s(ra) 

D Ri 

0 34 

Operation 
If B2 #: 0000 

Then (R1) <-
Else (R1) <-

Description 

B2 

78 11 12 

(B2) + D2 
IA+D2 

B D2 

15 16 31 

RR-Long 
Format 

The sum of the base address and displacement, designated by the B2 and D2 fields, 
respectively, is placed in the general register designated by the R1 field. 

No storage references for operands take place and the computed address is not 
inspected for address exceptions. When the B2 field contains all O's, the address is 
computed using the updated instruction address in place of the contents of 
primary general register 0. 

The address computation follows the rules for address arithmetic for RS-Long 
format instructions. Specifically, the D2 field contains a 16-bit signed binary 
integer that is expanded to the left to 32 bits during address computation. The 
expansion is achieved by setting the 16 leftmost bits equal to the sign bit of the 
displacement. The computed address is then formed by adding all 32 bits of the 
expanded displacement to all 32 bits of the base address. The carry, if any, out of 
the high-order bit position is ignored. 

Result Conditions 
The conditions remain unchanged. 

I Program Exceptions 
None 

Chapter 4. General Instructions 4-39 



LOAD (byte) 

4-40 

Programming Notes 
The same general register may be specified by the R1 and B2 instruction fields, 
except that primary general register 0 can be specified only by the Re 1 field. In 
this manner, it is possible to increment or decrement the contents of a general 
register, other then a primary register 0, by the contents of the D2 field of the 
instruction. 

The range covered by the displacement (D2 ) is -32768 :::; D2 :::; 32767. 

L rpb,db16s(ra) 

D fl 

0 34 78 1112 1516 

Operation 
If B2 ¥- 0000 

Then (r1) <- MS[(B2 ) + D2] 

Else (r1) <- MS[IA + D2 ] 

Description 

31 

RS-Long 
Format 

The byte at the second-operand location is placed unchanged in the first-operand 
byte location. 

When the B2 field contains all O's,the second-operand address is computed using 
the updated instruction address in place of the contents of primary general 
register 0. 

The first operand is located in the primary register set. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Specification (operand 2: real address) 
Access (operand 2: block invalid) 

ISeparation (operand 2) 
Address (operand 2: all) 

Programming Note 
Relative to the base address for the second-operand location, the range, in bytes, 
covered by the displacement (D2) is -32768 :::; D2 :::; 32767. 



LOAD (byte, with index) 

LN rpb,ra 

A r1 R2 B RR Format 

0 34 78 1112 15 

Operation 
(r1) <- MS[(R)] 

Description 
The byte at the second-operand location is placed unchanged in the first-operand 
byte location. 

The contents of the general register specified by the R2 field are used as the 
second-operand address. 

The first operand is located in the primary register set. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Specification (operand 2: real address) 
Access (operand 2: block invalid) 
Separation (operand 2) 
Address (operand 2: address limit) 

LOAD (byte, with index decremented) 

LND rpb,ra 

8 r1 Ri F RR Format 

0 34 78 1112 15 

Operation 
(R2) <- (~) - 1 
(r1) <- MS[(Ri)] 

Description 
The contents of the general register designated by the R2 field are decremented by 
1, and the result is used as the second-operand address. The byte at the 
second-operand location is then placed unchanged in the first-operand byte 
location. 

The contents of the general register specified by ~ are reduced by 1 before the 
byte is placed in the first-operand location. 

The first operand is located in the primary register set. 

Decrementing the contents of register Ri through 0 causes a wraparound to 
4,294,967 ,295 (hex FFFF FFFF). 

Chapter 4. General Instructions 4-41 



Program exceptions pertain to the decremented second-operand address and are 
indicated only when the decremented second-operand field is inaccessible. 
Detection of the program exception occurs when a reference to the inaccessible 
location is attempted. The execution of the instruction is suppressed; that is, the 
first-operand location and the second-operand address remain unchanged. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Specification (operand 2: real address) 
Access (operand 2: block invalid) 

I Separation (operand 2) 
Address (operand 2: address limit) 

Programming Note 
The updated contents of the general register specified by R2 are partially 
overwritten with the byte fetched from main storage when the first operand is 
located in the general register specified by Rz. 

LOAD (byte, with index incremented) 

4-42 

LNI rpb,ra 

8 r 1 R2 B RR Format 

0 34 78 1112 15 

Operation 
TEMP <- MS[(Rz)] 
(R2) <- (R2) + 1 
(r1) <- TEMP 

Description 
The byte at the second-operand location is placed unchanged in the first-operand 
byte location. 

The initial contents of the general register designated by the R2 field are used as 
the second-operand address. The contents of the register specified by R2 are 
incremented by 1 after the byte is fetched from main storage and before it is 
placed in the first-operand location. 

The first operand is located in the primary register set. 

Program exceptions pertain to the initial second-operand address and are 
indicated only when the initial second-operand field is inaccessible. Detection of 
the program exception occurs when a reference to the inaccessible location is 
attempted. The execution of the instruction is suppressed; that is, the 
first-operand location and the second-operand address remain unchanged. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Specification (operand 2: real address) 
Access (operand 2: block invalid) 

I Separation (operand 2) 
Address (operand 2: address limit) 



LOAD (byte, register) 

Programming Note 
The updated contents of the general register specified by Ri are partially 
overwritten with the byte fetched from main storage when the first operand is 
located in the general register specified by Ri· 

LR rpb,rpb 

RR Format 
8 rl r2 4 (r1: primary; r2: primary) 

0 34 78 11 12 15 

LR rpb,rsb 

RR Format 
8 rl r2 5 (r 1: primary; r2: secondary) 

0 34 78 11 12 15 

LR rsb,rpb 

RR Format 
8 r1 r2 6 (r1: secondary; R2: primary) 

0 34 78 11 12 15 

LR rsb,rsb 

RR Format 
8 rt r2 7 (r1: secondary; r2: secondary) 

0 34 78 11 12 15 

Operation 
(r1) <- (r2) 

Description 
The second-operand byte is placed unchanged in the first-operand byte location. 

Bit positions 12-15 of the instruction indicate the register set or sets in which the 
first and second operands are located. 

Instruction First Operand 
Bits 12-15 (r 1) Location 

0100 (hex 4) primary 
0101 (hex 5) primary 
0110 (hex 6) secondary 
0111 (hex 7) secondary 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions 
None 

Second Operand 
(r2) Location 

primary 
secondary 
primary 
secondary 

Chapter 4. General Instructions 4-43 



LOAD (byte, register-immediate) 

LOAD (half word) 

4-44 

LRI rpb,i8 

0 3 4 7 8 

Operation 
(r1) <- 12 

Description 

RI Format 

15 

The byte of immediate data is placed unchanged in the first-operand byte 
location. 

The first operand is located in the primary register set. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions 
None 

LH rh,dbl 6s(ra) 

D 

0 34 78 1112 1516 

Operation 
lf 82 #= 0000 

Then (R1<16 .. 31 >) <- MS[(B2) + D 2] 

Else (R1<16 .. 31>) <- MS[IA + D 2] 

Description 

31 

RS-Long 
Format 

The halfword at the second-operand location is placed unchanged in the 
first-operand location. 

When the B2 field contains all O's, the second-operand address is computed using 
the updated instruction address in place of the contents of primary general 
register 0. 

The first operand occupies the low-order halfword of the general register specified 
byR 1• 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Specification (operand 2: real address) 
Access (operand 2: block invalid) 

I Separation (operand 2) 
Address (operand 2: all) 



Programming Notes 
Relative to the base address for the second-operand location, the range, in bytes, 
covered by the displacement (D2 ) is -32768 :5 D2 :5 32767. 

The contents of the general register specified by B2 are partially overwritten with 
the halfword fetched from main storage when the first operand is located in the 
general register specified by B2• 

LOAD (halfword, short form) 

LHS rh,dh5(ra) 

..___B_~_R_1 _____ B_2 _.....__ __ n_2 _ __._I 1 ...... I RS Format 

0 34 7 8 9 10 14 15 

Operation 
(R1<16 .. 31>) <- MS[(B2 ) + D2 x 2] 

Description 
The halfword at the second-operand location is placed unchanged in the 
first-operand location. 

The first operand occupies the low-order halfword of the general register specified 
by R 1. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Specification (operand 2: real address) 
Access (operand 2: block invalid) 

ISeparation (operand 2) 
Address (operand 2: address limit) 

Programming Notes 
The short form of the LOAD (halfword) instruction is provided to conserve 
program space. It can be used for base-plus-displacement addressing of data 
structures that comprise up to 32 contiguous halfwords. 

The contents of the B2 field represent the 2 low-order bits of a 4-bit R field in 
which the 2 high-order bits are both 1 's. The specification of the base register is 
therefore limited to primary general register 6 or 7, or secondary general register 6 
or 7, as shown in the following chart: 

B2 F'ield Bits 8, 9 Register Specified 

0 0 Register 6, Primary Set 
0 1 Register 6, Secondary Set 
1 0 Register 7, Primary Set 
1 1 Register 7, Secondary Set 

Chapter 4. General Instructions 4-45 



Relative to the base address for the second-operand location, the range, in bytes, 
covered by the displacement (D2 ) is 0 ::; D 2 x 2 ::; 62. Note that the displacement 
can be specified only in terms of an even number of bytes. 

The contents of the general register specified by B2 are partially overwritten with 
the halfword fetched from main storage when the first operand is located in the 
general register specified by B2 • 

LOAD (halfword, with index) 

LHN rh,ra 

A R 1 R2 9 RR Format 

0 34 78 1112 15 

Operation 
(R1<16 .. 31 >) <- MS[(R2 )] 

Description 
The halfword at the second-operand location is placed unchanged in the 
first-operand location. 

The contents of the general register specified by the R2 field are used as the 
second-operand address. 

The first operand occupies the low-order halfword of the general register specified 
byR1• 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Specification (operand 2: real address) 
Access (operand 2: block invalid) 

I Separation (operand 2) 
Address (operand 2: address limit) 

Programming Note 
The contents of the general register specified by R2 are partially overwritten with 
the halfword fetched from main storage when the first operand is located in the 
general register specified by R2 • 

LOAD (halfword, with index decremented) 

LHND rh,ra 

D RR Format 

0 34 7 8 I 1 12 15 

Operation 
(R2 ) <- (R2 ) - 2 
(R 1<16 .. 31 >) <- MS[(R2)] 

4-46 



Description 
The contents of the general register designated by the R2 field are decremented by 
2, and the result is used as the second-operand address. The halfword at the 
second-operand location is then placed unchanged in the first-operand halfword 
location. 

The contents of the general register specified by R2 are reduced by 2 before the 
halfword is placed in the first-operand location. 

The first operand occupies the low-order halfword of the register specified by R1. 

Decrementing the contents of register Ri through 0 causes a wraparound to 
4,294,967,295 (hex FFFF FFFF). 

Program exceptions pertain to the decremented second-operand address and are 
indicated only when the decremented second-operand field is inaccessible. 
Detection of the program exception occurs when a reference to the inaccessible 
location is attempted. The execution of the instruction is suppressed; that is, the 
first-operand location and the second-operand address remain unchanged. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Specification (operand 2: real address) 
Access (operand 2: block invalid) 

I Separation (operand 2) 
Address (operand 2: address limit) 

Programming Note 
The updated contents of the general register specified by Ri are partially 
overwritten with the halfword fetched from main storage when the first operand 
is located in the general register specified by R2 . 

LOAD (halfword, with index incremented) 

LHNI rh,ra 

8 R 1 R2 9 RR Format 

0 34 78 1112 15 

Operation 
TEMP <- MS[(R2)] 

(R2 ) <- (R2 ) + 2 
(R 1<16 .. 31>) <- TEMP 

Description 
The halfword at the second-operand location is placed unchanged in the 
first-operand halfword location. 

The initial contents of the general register designated by the R2 field are used as 
the second-operand address. The contents of the register specified by R2 are 
incremented by 2 after the halfword is fetched from main storage and before it is 
placed in the first-operand location. 

Chapter 4. General Instructions 4-4 7 



LOAD (half word, register) 

The first operand occupies the low-order halfword of the register specified by R 1. 

Program exceptions pertain to the initial second-operand address and are 
indicated only when the initial second-operand field is inaccessible. Detection of 
the program exception occurs when a reference to the inaccessible location is 
attempted. The execution of the instruction is suppressed; that is, the 
first-operand location and the second-operand address remain unchanged. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Specification (operand 2: real address) 
Access (operand 2: block invalid) 

I Separation (operand 2) 
Address (operand 2: address limit) 

Programming Note 
The updated contents of the general register specified by R2 are partially 
overwrittern with the halfword fetched from main storage when the first operand 
is located in the general register specified by R2 • 

LHR rh.rh 

3 RR Format 

0 34 78 11 12 15 

Operation 
(RI < 16 .. 3 1 >) < - ( R2 < 1 6 .. 3 1 >) 

Description 
The second operand is placed unchanged in the first-operand location. 

The first and second operands occupy the low-order halfwords of the general 
registers specified by R1 and R2 , respectively. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions 
None 

LOAD (halfword, register, lower half from upper) 

LHRLU rh,ruh 

F R2 R1 C RR Format 

0 34 78 1112 15 

Operation 
( R i < 1 6 .. 3 1 >) < - ( R2 < 0 .. 1 5 >) 

4-48 



Description 
The second operand is placed unchanged in the first-operand location. 

The first operand occupies the low-order halfword of the general register specified 
by R 1• The second operand occupies the high-order halfword of the general 
register specified by R2• 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions 
None 

Programming Note 
Bit positions 4-7 and 8-11 of the instruction format contain the R2 and R1 fields, 
respectively. This is reversed from the normal left-to-right order for the RR 
instruction format. 

LOAD (halfword, register, upper half) 

LHRU ruh,ruh 

F R1 R2 D RR Format 

0 34 78 1112 15 

Operation 
(R1<0 .. 15>) <- (R2 <0 .. 15>) 

Description 
The second operand is placed unchanged in the first-operand location. 

The first and second operands occupy the high-order half words of the general 
registers specified by R1 and R2, respectively. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions 
None 

LOAD (halfword, register, upper half from lower) 

LHRUL ruh,rh 

F Rl R2 B I 
...____,_______._ _ __..___ ... J 

0 34 78 l l l2 15 

Operation 

RR Format 

(R1<0 .. 15>) <- (~<16 .. 31>) 

Description 
The second operand is placed unchanged in the first-operand location. 

Chapter 4. General Instructions 4-49 



The first operand occupies the high-order halfword of the general register 
specified by R 1• The second operand occupies the low-order halfword of the 
general register specified by R2 • 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions 
None 

LOAD (half words, quadrant) 

4-50 

LHQ q2,ra 

8 

0 34 56 78 

Operation 
TEMP <- (R2 ) 

RQ<Q1> <- MS[TEMP] 
(R2 ) <- TEMP+ 16 

Description 

3 RR Format 

11 12 15 

The eight consecutive general-register halfword fields specified by the first 
operand (Q 1) are loaded from the main storage locations designated by the 
second-operand address. 

The contents of the register designated by R2 are used as the second-operand 
address. At the completion of the operation, the second-operand address is 
increased by 16, and the updated address is placed back in the register specified 
byR2 • 

The main storage area from which the halfwords are fetched starts at the location 
designated by the second-operand address and includes eight consecutive 
halfword locations. The general-register halfword fields are loaded in ascending 
order beginning with the first (lowest numbered) register of the set indicated by 
Q1. 

The register quadrant designated by the Q 1 field consists of the eight high-order 
or low-order halfword operands of the general registers that make up the primary 
or secondary register set, as shown in the following table: 

Register Quadrant 

Q 1 Operand Register Set Half word Fields 

00 primary low-order < 16 .. 31 > 
01 secondary low-order< 16 .. 31 > 
10 primary high-order <0 .. 15 > 
11 secondary high-order <0 .. 15 > 

I When any part of the second operand is inaccessible, a specification, access, 
separation or address exception is detected at the time the inaccessible location is 
referred to, and execution is terminated. That is, the updated second-operand 



LOAD (word) 

address may not be stored back in register R2 ; the original contents of the register 
fields that are loaded, if any, are lost. However, valid retry of the instruction can 
always be assured if R2 is specified as register 7 of either the primary or secondary 
register set. 

Bit position 4 of the instruction is used as an extension to the operation code; the 
bit distinguishes this instruction from ROT A TE LEFT (byte). Bit position 5 of 
the instruction is reserved and must be O; otherwise, an operation exception is 
indicated, and the operation is suppressed. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Termination/Suppression) 
Specification (operand 2: real address) 
Access (operand 2: block invalid) 
Operation (bit 5 of instruction is a 1 ) 
Separation (operand 2) 
Address (operand 2: address limit) 

Programming Notes 
When the register designated by R2 is in the register set indicated by Ql' the 
halfword field fetched from main storage is overwritten with the updated address. 

When the second-operand location (eight consecutive halfwords) is completely 
unavailable, execution of this instruction is suppressed due to the specification, 

I access, separation, or address exception. Therefore, termination of the operation 
can be avoided by locating the second operand starting at an address that is an 
integral multiple of 16. 

LW rw,dbl6s(ra) 

D Rl 

0 34 

Operation 
If B2 ¢. 0000 

Then (R1) <-
Else (R1) <-

Description 

B2 

7 8 11 12 

MS[(B2 ) +DJ 
MS[IA + D2] 

4 

15 16 31 

RS-Long 
Format 

The word at the second-operand location is placed unchanged in the first-operand 
location. 

When the R) field contains all O's, the second-operand address is computed using 
the updated "instruction address in place of the contents of primary general 
register 0. 

Result Conditions 
The conditions remain unchanged. 

Chapter 4. General Instructions 4-51 



MOVE (bytes, storage) 

MYS ra,ra,rh 

E 

Program Exceptions (Suppression) 
Specification (operand 2: real address) 
Access (operand 2: block invalid) 

I Separation (operand 2) 
Address (operand 2: all) 

Programming Notes 
Relative to the base address for the second-operand location, the range, in bytes, 
covered by the displacement (D2) is -32768 :::; D 2 :::; 32767. 

The contents of the general register specified by B2 are overwritten with the word 
fetched from main storage when the first operand is located in the general register 
specified by B2 • 

RR-Long 
R3 9 Format 

0 3 4 7 8 I l 12 1 5 16 23 24 27 28 31 

4-52 

Operation 
LOOP MS[(R1)] <- MS[(R2 )] 

TEMPI <- (R1) 

TEMP2 <- (R2 ) 

TEMP3 <- (R3<24 .. 31>) 
(R 1) <- TEMPI + 1 
(R2 ) <- TEMP2 + l 
(R3<24 .. 31 >) <- TEMP3 - 1 
If (R3 <24 .. 31 >) "# 00000000 

Description 

Then Go To LOOP 
Else NSI 

The second operand is placed in the first-operand location. 

The locations of the leftmost byte of the first- and second-operand fields are 
designated by the contents of the general registers specified by R1 and R2, 

respectively. The length of the first and second operands is designated by the 
contents of bit positions 24-31 of the general register specified by Ry The 
contents of bit positions 0-23 of register R

3 
are ignored and remain unchanged. 

The length is specified in terms of bytes, and the second-operand field is moved 1 
byte at a time. 

The operation starts with the leftmost byte of both fields and proceeds to the 
right. Each result byte is stored immediately after the necessary operand byte is 
fetched. The operation ends when the number of bytes specified by bit positions 
24-31 of register R3 is moved. 

Execution of the instruction is interruptible between units of operation. 
Conceptually, after each unit of operation, including the last, the operand 
addresses in registers R 1 and R2 are both increased by 1 and the count in bit 
positions 24-31 of register R3 is decremented by l. When, prior to the last unit of 



operation, an l/O interruption occurs, or a system-check interruption occurs due 
to a channel I/ 0 check, the operand addresses and the count are updated so that 
the instruction, when re-executed, resumes at the point of interruption. 

I Depending on processor model, more than one unit of operation may be executed 
between points in the operation at which an interruption is allowed. ln this case, 
the number of units of operation executed without allowing an interruption is 
predetermined. After each predetermined number of units of operation, the 
operand addresses and count value are adjusted to correspond to the amount of 
data moved. The specific predetermined number of units of operation is fixed, 
except for the first execution group. 

The first and second operands are of equal length. 

They may be from 1 to 25 6 bytes. A count of 25 6 is designated with an initial 
value of all O's in bit positions 24-31 of register R3. 

A program exception is indicated when any part of the first- or second-operand 
field is inaccessible. 

The program exception is detected at the time the inaccessible location is referred 
to, and execution of the instruction is terminated. That is, the contents of registers 
R 1, R2 , and R3 may not be adjusted to correspond with the amount of data moved. 

I Depending on processor model, if R3 designates the same register as R 1 or Ri, an 
operation exception may not be indicated and the result is unpredictable. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Termination) 
Specification (operand 1 or 2: real address) 
Access (operand l: block invalid, store protection; operand 2: block invalid) 

I Operation (depending on processor model, R 3 = R1 or R2 ) 

Separation (operand l or 2) 
Address (operand 1 or 2: address limit) 

Programming Notes 
Since execution of MOVE (bytes, storage) is interruptible, the instruction cannot 
be used for situations in which interruptions are enabled and the program must 
rely on uninterrupted execution of the instruction. Similarly, the program should 
normally not let the first operand of the MOVE instruction include the location of 
the instruction since the new contents of the location may be fetched for a 
resumption after an interruption. 

When R 1 and R2 specify the same register, data is replaced with itself. 

Chapter 4. General Instructions 4-53 



MOVE (halfwords, storage) 

MVHS ra,ra,rh 

RR-Long 
E R3 9 Format 

0 34 78 1112 1516 23 24 27 28 3 l 

4-54 

Operation 
LOOP MS[(R1)] <- MS[(R2)] 

TEMPl <- (R1) 

TEMP2 <- (R2 ) 

TEMP3 <- (R3<24 .. 31>) 
(R1) <- TEMPl + 2 
(R2 ) <- TEMP2 + 2 
(R3<24 .. 31 >) <- TEMP3 - 1 
If (R3 <24 .. 31 >) '# 00000000 

Description 

Then Go To LOOP 
Else NSI 

The second operand is placed in the first-operand location. 

The locations of the leftmost halfwords of the first- and second-operand fields are 
designated by the contents of the general registers specified by R 1 and R2 , 

respectively. The length of the first and second operands is designated by the 
contents of bit positions 24-31 of the general register specified by R3 . The 
contents of bit positions 0-23 of register R 3 are ignored and remain unchanged. 
The length is specified in terms of halfwords, and the second-operand field is 
moved one halfword at a time. 

The operation starts with the leftmost halfword of both fields and proceeds to the 
right. Each result halfword is stored immediately after the necessary operand 
halfword is fetched. The operation ends when the number of halfwords specified 
by bit positions 24-3 I of register R

3 
have been moved. 

Execution of the instruction is interruptible between units of operation. 
Conceptually, after each unit of operation, including the last, the operand 
addresses in registers R1 and R2 are both increased by 2 and the count in bit 
positions 24-31 of register R3 is decremented by 1. When, prior to the last unit of 
operation, an 1/0 interruption occurs, or a system-check interruption occurs due 
to a channel I/0 check, the operand addresses and the count are updated so that 
the instruction, when re-executed, resumes at the point of interruption. 

I Depending on processor model, more than one unit of operation may be executed 
between points in the operation at which an interruption is allowed. In this case, 
the number of units of operation executed without allowing an interruption is 
predetermined. After each predetermined number of units of operation, the 
operand addresses and count value are adjusted to correspond to the amount of 
data moved. The specific predetermined numher of units of operation is fixed, 
except for the first execution group. 

The first and second operands are of equal length. They may be from 1 to 256 
halfwords. A count of 256 is designated with an initial value of all O's in bit 
positions 24-31 of register Ry 



A program exception is indicated when any part of the first- or second-operand 
field is inaccessible. 

The program exception is detected at the time the inaccessible location is referred 
to, and execution of the instruction is terminated. That is, the contents of registers 
R1' R2 , and R3 may not be adjusted to correspond with the amount of data moved. 

I Depending on processor model, if R 3 designates the same register as R1 or R2 , an 
operation exception may not be indicated and the result is unpredictable. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Termination) 
Specification (operand 1 or 2: real address) 
Access (operand 1: block invalid, store protection; 
Operand 2: block invalid) 

I Operation (depending on processor model, R 3 = R1 or R2 ) 

Separation (operand 1 or 2) 
Address (operand 1 or 2: address limit) 

Programming Notes 
Since execution of MOVE (halfwords, storage) is interruptible, the instruction 
cannot be used for situations in which interruptions are enabled and the program 
must rely on uninterrupted execution of the instruction. Similarly, the program 
should normally not let the first operand of the MOVE instruction include the 
location of the instruction since the new contents of the location may be fetched 
for a resumption after an interruption. 

MOVE (halfwords, storage) can be used to move a byte string when the first and 
second operands begin on halfword boundaries and an even number of bytes is to 
be moved. 

When R 1 and ~ specify the same register, data is replaced with itself. 

MULTIPLY (halfword, register) 

MHR rh,rh 

E 

0 34 78 

0 BC 

11 12 15 16 23 24 

Operation 
If R 1 = xx Ox (where x can be 0 or I) 

0 

27 28 31 

RR-Long 
Format 

Then (R1<16 .. 31>) I I ({R1+0010}<16 .. 31>) <- ({R1+0010}<16 .. 31>) 
x (R2 <16 .. 31>) 

Else (R1<16 .. 3l>) <- (R1<16 .. 31>) x (R2<16 .. 31>) 

Description 
The product of the multiplier (second operand) and the multiplicand (first 
operand) replaces the multiplicand. 

Both multiplier and multiplicand are unsigned 16-bit positive binary integers. The 
product is an unsigned 32-bit positive binary integer. 

Chapter 4. General Instructions 4-55 



OR (byte, register) 

4-56 

The high-order half and low-order half of the product occupies the two low-order 
halfwords, respectively, of the even-odd pair of consecutive registers designated 
by R 1. The multiplicand is taken from the low-order halfword of the odd register. 
The contents of the even register replaced by the product are ignored, unless the 
register contains the multiplier. The low-order halfword of the register specified 
by R 2 contains the multiplier. The high-order halfwords of the registers in which 
the operands are located do not participate in the operation and remain 
unchanged. 

Because the multiplicand is replaced by the product, the R1 field must designate 
an even register in order to retain the 32-bit product. If R 1 designates an odd 
register, however, only the low-order 16 bits of the product are retained. The 
high-order 16 bits of the product are lost and a program exception for overflow, if 
it occurs, is not indicated. When R 1 designates an even register, an overflow 
cannot occur. 

Bit positions 24-27 of the instruction are reserved and must contain all O's: 
othl:nvi:;,.. :.in operation exception is indicated. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Operation (bits 24-27 of instruction not all O's) 

OR rpb,rpb 

RR Format 
7 r 1 r2 2 (primary-register-set operands) 

0 34 78 11 12 15 

OR rsb.rsb 

RR Format 
7 r 1 r 2 3 (secondary-register-set operands) 

0 34 78 11 12 15 

Operation 
If r2 ¢. 0000 

Then (r1) <- (r 1) v (r2) 
Else (r1) <- ( r 1) v 00000000 

Description 
The OR of the first- and second-operand bytes is placed in the first-operand 
location. 

The operands are treated as unstructured logical quantities, and the connective 
OR is applied bit by bit. A bit position in the result is set to 1 if the corresponding 
bit position in one or both operands contains a 1 ; otherwise, the result bit is set to 
0. 

An implied second-operand byte of all O's is used in place of the register contents 
when the r 2 field of the instruction is all O's. 



The operands are located in the same register set, designated with bit positions 
12-15 of the instruction: hexadecimal "2" designates the primary set, and 
hexadecimal "3" designates the secondary set. 

Result Conditions 
8 Result is all O's. 
4 Result is all 1 's. 
2 Result is mixed O's and l's. 
1 
0 

Program Exceptions 
None 

Programming Notes 
This instruction mll~Y be used to set a bit to 1. 

The byte in bit positions 16-23 of register 0 in the primary and secondary register 
sets can be designated only as the first operand; it cannot be designated as the 
second operand. 

OR (byte, register-immediate) 

ORI rpb,i8 

0 34 

Operation 

r 1 

7 8 

(r1) <- (r1) v 12 

Description 

RI Format 

15 

The OR of the first-operand byte and the byte of immediate data is placed in the 
first-operand location. 

The operands are treated as unstructured logical quantities, and the connective 
OR is applied bit by bit. A bit position in the result is set to 1 if the corresponding 
bit position in one or both operands contains a 1 ; otherwise, the result bit is set to 
0. 

The first operand is located in the primary register set. 

Result Conditions 
8 Result is all O's. 
4 Result is all l's. 
2 Result is mixed O's and l's. 
1 
0 

Program Exceptions 
None 

Programming Note 
This instruction may be used to set a bit to 1. 

Chapter 4. General Instructions 4-57 



OR (half word, register) 

PROGRAM EXCEPTION 

4-58 

OHR rh,rh 

C R1 R2 2 RR Format 

0 34 78 1112 15 

Operation 
(R1<16 .. 31>) <- (R1<16 .. 31>) v (R2 <16 .. 31>) 

Description 
The OR of the first- and second-operand halfwords is placed in the first-operand 
location. 

The operands are treated as unstructured logical quantities, and the connective 
OR is applied bit by bit. A bit position in the result is set to 1 if the corresponding 
bit position in one or both operands contains a 1; otherwise, the result bit is set to 
0. 

The operands occupy the low-order 16 bits of the registers specified by the R1 and 
R2 fields. 

Result Conditions 
8 Result is all O's. 
4 Result is all 1 's. 
2 Result is mixed O's and 1 's. 
1 
0 

Program Exceptions 
None 

Programming Note 
This instruction may be used to set a bit to 1. 

PC 

F F F F 

0 34 78 11 12 15 

Operation 
Operation Exception 

Description 
The PROGRAM EXCEPTION instruction will always cause a program exception 
to occur. If at any time an attempt is made to execute a halfword consisting of all 
ones, a program exception will result. 

The instruction does not require any operands. 

Result Conditions 
The conditions remain unchanged. 



ROTATE LEFT (byte) 

Program Exceptions (Suppression) 
Operation 

Programming Notes 
The programmer can use this instruction as a known program exception, that is, as 
a forced termination of a program at a known location. 

The results of this instruction are not different than if any undefined instruction 
execution is attempted. 

RL rpb,c3 

8 H 1, 

0 3 4 5 

RL rsb,c3 

8 H I2 

0 3 4 5 

Operation 

78 

78 

r 1 

r 1 

11 12 

11 12 

2 

3 

15 

15 

RR Format 
(primary-register-set operands) 

RR Format 
(secondary-register-set ope rands) 

(r1) <- (r1) rotated left by 12 amount 

Description 
The first-operand byte is rotated left the number of bits specified by the 12 field. 

The Ii field is an unsigned 3-bit positive binary integer. All 8 bits of the first 
operand participate in the operation. Bits rotated out of the high-order bit position 
of the operand are entered into the vacated low-order operand positions. An Ii 
field of all O's designates a 0 rotation amount, and the indicated result conditions 
are based on the contents of the operand. 

The first operand is located in either the primary or secondary register set that is 
designated with bit positions 12-15 of the instruction: hexadecimal "2" 
designates the primary set, and hexadecimal "3" designates the secondary set. 

Bit position 4 of the instruction is used as an extension to the operation code. The 
bit distinguishes this instruction from LOAD (halfwords, quadrant) and STORE 
(halfwords, quadrant). 

Result Conditions 
8 Result is all O's. 
4 Result has a 1 in the high-order bit position. 
2 Result has a 0 in the high-order bit position and 

one or more l's in the remaining bit positions. 
One or more 1 's were rotated out of the high-order 

bit position of the operand. 
0 

Program Exceptions 
None 

Chapter 4. General Instructions 4-59 



ROTATE LEFT (half word) 

4-60 

Programming Notes 
The rotation amount 0 2) may be an integer number from 0 to 7. Specifying the 
maximum rotation amount effectively rotates the operand one bit position to the 
right. 

Bit positions 5-7 and 8-11 of the instruction format contain the 12 and r 1 fields, 
respectively. This is reversed from the normal left-to-right order for the RR 
instruction format. 

RLH rh.c4 

C 12 R1 B RR Format 

0 34 78 1112 15 

Operation 
(R1<16 .. 31 >) <- (R1<16 .. 31 >) rotated left by Ii amount 

Description 
The first-operand half word is rotated left the number of bits specified by the 12 

field. 

The 12 field is an unsigned 4-bit positive binary integer. All 16 bits of the first 
operand participate in the operation. Bits rotated out of the high-order bit position 
of the operand are entered into the vacated low-order operand positions. An 12 
field of all O's designates a 0 rotation amount, and the indicated result conditions 
are based on the contents of the operand. 

The first operand occupies the low-order halfword of the register specified by R 1• 

Result Conditions 
8 Result is all O's. 
4 Result has a 1 in the high-order bit position. 
2 Result has a 0 in the high-order bit position and 

one or more l's in the remaining bit positions. 

0 

One or more l's were rotated out of the high-order 
bit position of the operand. 

Program Exceptions 
None 

Programming Notes 
The rotation amount 02) may be an integer number from 0 to 15. Specifying the 
maximum rotation amount effectively rotates the operand one bit position to the 
right. 

Bit positions 4-7 and 8-11 of the instruction format contain the 12 and R 1 fields, 
respectively. This is reversed from the normal left-to-right order for the RR 
instruction format. 



SHIFT LEFT (byte, logical) 

SLL rpb,c3 

0 3 4 5 

SLL rsb,c3 

8 H 
0 3 4 5 

Operation 

78 11 12 

12 r1 

78 11 12 

0 

15 

15 

RR Format 
(primary-register-set operands) 

RR Format 
(secondary-register-set operands) 

(r1) <- (r1) shifted left by 1z amount 

Description 
The first-operand byte is shifted left the number of bits specified by the I2 field. 

The 12 field is an unsigned 3-bit positive binary integer. All 8 bits of the first 
operand participate in the operation. Bits shifted out of the high-order bit position 
of the operand are lost. Zeros are supplied to the vacated low-order operand 
positions. An 1z field of all O's designates a 0 shift amount, and the indicated 
result conditions are based on the contents of the operand. 

The first operand is located in either the primary or secondary register set, 
designated with bit positions 12-15 of the instruction: hexadecimal "O" 
designates the primary set, and hexadecimal "l" designates the secondary set. 

Bit position 4 of the instruction is reserved and must contain a O; otherwise, an 
operation exception is indicated. 

Result Conditions 
8 Result is all O's. 
4 Result has a 1 in the high-order bit position. 
2 Result has a 0 in the high-order bit position and 

one or more l's in the remaining bit positions. 
One or more l's were shifted out of the high-order 

bit position of the operand. 
0 

Program Exceptions (Suppression) 
Operation (bit 4 of instruction is 1) 

Programming Notes 
The shift amount (lz) may be an integer number from 0 to 7. Specifying the 
maximum shift amount shifts the low-order bit of the operand to the high-order 
bit position of the result. 

Bit positions 5-7 and 8-11 of the instruction format contain the 12 and r 1 fields, 
respectively. This is reversed from the normal left-to-right order for the RR 
instruction format. 

Chapter 4. General Instructions 4-61 



SHIFT LEFT (half word, logical) 

4-62 

SLHL rh,c4 

C 12 R1 9 RR Format 

0 34 78 1112 15 

Operation 
(R1<16 .. 31>) <- (R1<16 .. 31>) shifted left by 12 amount 

Description 
The first-operand half word is shifted left the number of bits specified by the 12 

field. 

The 12 field is an unsigned 4-bit positive binary integer. All 16 bits of the first 
operand participate in the operation. Bits shifted out of the high-order bit position 
of the operand are lost. Zeros are supplied to the low-order operand positions. An 
12 field of all O's designates a 0 shift amount, and the indicated result conditions 
are based on the contents of the operand. 

The first operand occupies the low-order halfword of the register specified by R 1• 

Result Conditions 
8 Result is all O's. 
4 Result has a 1 in the high-order bit position. 
2 Result has a 0 in the high-order bit position and 

one or more l's in the remaining bit positions. 
1 One or more l's were shifted out of the high-order 

bit position of the operand. 
0 

Program Exceptions 
None 

Programming Notes 
The shift amount (I2 ) may be an integer number from 0 to 15. Specifying the 
maximum shift amount shifts the low-order bit of the operand to the high-order 
bit position of the result. 

Bit positions 4-7 and 8-11 of the instruction format contain the 12 and R 1 fields, 
respectively. This is reversed from the normal left-to-right order for the RR 
instruction format. 



STORE (byte) 

ST rpb,db16s(ra) 

D 

0 34 78 

STORE (byte, with index) 

11 12 15 16 

Operation 
If B2 # 0000 

Then MS[(B2 ) + D2 ] <- (r1) 

Else MS[IA + D 2] <- (r1) 

Description 

31 

RS-Long 
Format 

The first-operand byte is stored unchanged at the second-operand location. 

When the B2 field contains all O's, the second-operand address is computed using 
the updated instruction address in place of the contents of primary general 
register 0. 

The first operand is located in the primary register set. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Specification (operand 2: real address) 
Access (operand 2: block invalid, store protection) 
I Separation (operand 2) 

Address (operand 2: all) 

Programming Note 
Relative to the base address for the second-operand location, the range, in bytes, 
covered by the displacement (D2) is -32768 * 0 2 * 32767. 

STN rpb,ra 

A r 1 R 2 8 RR Format 

0 34 78 1112 15 

Operation 
MS[(R2)] <- (r1) 

Description 
The first-operand byte is stored unchanged at the second-operand location. 

The contents of the general register specified by the R2 field are used as the 
second-operand address. 

The first operand is located in the primary register set. 

Result Conditions 
The conditions remain unchanged. 

Chapter 4. General Instructions 4-63 



Program Exceptions (Suppression) 
Specification (operand 2: real address) 
Access (operand 2: block invalid, store protection) 

I Separation (operand 2) 
Address (operand 2: address limit) 

STORE (byte, with index decremented) 

4-64 

STND rpb,ra 

8 r 1 Ri C RR Format 

0 34 78 1112 15 

Operation 
TEMP<- (r1) 

(R2) <- (R2) - 1 
MS[(R2)]<- TEMP 

Description 
The contents of the general register designated by the Ri field are decremented by 
1, and the result is used as the second-operand address. The first-operand byte is 
then stored unchanged in the second-operand location. 

The contents of the general register specified by R2 are decremented by 1 after 
the byte is fetched from the first operand location and before it is placed in main 
storage. 

Decrementing the contents of register R2 through 0 causes a wraparound to 
4,294,967 ,295 (hex FFFF FFFF). 

Program exceptions pertain to the decremented second-operand address and are 
indicated only when the decremented second-operand field is inaccessible. 
Detection of the program exception occurs when a reference to the inaccessible 
location is attempted. The execution of the instruction is suppressed; that is, the 
second-operand address and main storage remain unchanged. 

The first operand is located in the primary register set. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Specification (operand 2: real address) 
Access (operand 2: block invalid, store protection) 

I Separation (operand 2) 
Address (operand 2: address limit) 

Programming Note 
When the first operand is located in the general register specified by R2 , the initial 
contents of the first operand are placed in main storage. 



STORE (byte, with index incremented) 

STORE (half word) 

STH rh.db l 6s(ra) 

D 

STNI rpb,ra 

8 r 1 R.i 8 RR Format 

0 34 78 1112 15 

Operation 
MS[(~)] <- (r1) 

(R2) <- (Rz) + I 

Description 
The first-operand byte is stored unchanged in the second-operand location. The 
contents of the general register designated by the ~ field are then incremented 
by 1. 

The initial contents of the general register specified by ~ are used as the 
second-operand address. The contents of the general register specified by R2 are 
incremented by 1 after the byte is placed in main storage. 

Program exceptions pertain to the initial second-operand address and are 
indicated only when the initial second-operand field is inaccessible. Detection of 
the program exception occurs when a reference to the inaccessible location is 
attempted. The execution of the instruction is suppressed; that is, the 
second-operand address and main storage remain unchanged. 

The first operand is located in the primary register set. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Specification (operand 2: real address) 
Access (operand 2: block invalid, store protection) 

I Separation (operand 2) 
Address (operand 2: address limit) 

Programming Note 
When the first operand is located in the general register specified by R2 , the initial 
contents of the first operand are placed in main storage. 

RS-Long 
Format 

0 34 78 1112 15l6 31 

Operation 
If B2 #= 0000 

Then MS[(B2 ) + D2] <- (R1<16 .. 31>) 
Else MS[(IA) + D2] <- (R1<16 .. 31>) 

Chapter 4. General Instructions 4-65 



Description 
The first-operand halfword is stored unchanged in the second-operand location. 

When the B2 field contains all O's, the second-operand address is computed using 
the updated instruction address in place of the contents of primary general 
register 0. 

The first operand occupies the low-order halfword of the general register specified 
byR1. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Specification (operand 2: real address) 
Access (operand 2: block invalid, store protection) 

I Separation (operand 2) 
Address (operand 2: all) 

Programming Note 
Relative to the base address for the second-operand location, the range, in bytes, 
covered by the displacement (D2) is -32768 :::; D2 :::; 32767. 

STORE (halfword, short I orm) 

4-66 

STHS rh,dh5(ra) 

......_B __._R1~1 B2__._l _D2 ~I 0] RS Format 

0 34 7 8 9 10 14 15 

Operation 
MS[(B2)+D2 x2] <- (R1<16 .. 3l>) 

Description 
The first-operand halfword is stored unchanged in the second-operand location. 

The first operand occupies the low-order halfword of the general register specified 
byR1• 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Specification (operand 2: real address) 
Access (operand 2: block invalid, store protection) 

I Separation (operand 2) 
Address (operand 2: address limit) 

Programming Notes 
The short form of the STORE (halfword) instruction is provided to conserve 
program space. It can be used for base-plus-displacement addressing of data 
structures that comprise up to 3 2 contiguous half words. 



The contents of the B2 field represent the 2 low-order bits of a 4-bit R field in 
which the 2 high-order bits are both l's. The specification of the base register is 
therefore limited to primary general register 6 or 7, or secondary general register 6 
or 7, as indicated by the following chart. 

B2 Field Bits 8, 9 Register Specified 

0 0 Register 6, Primary Set 
0 1 Register 6, Secondary Set 
1 0 Register 7, Primary Set 
1 1 Register 7, Secondary Set 

Relative to the base address for the second-operand location, the range, in bytes, 
covered by the displacement (D) isxO $ D2 x 2 $ 62. Note that the 
displacement can be specified only in terms of an even number of bytes. 

STORE (halfword, with index) 

STHN rh,ra 

A R1 R2 A RR Format 

0 3 4 7 8 11 12 15 

Operation 
MS[(Ri)J <- (R1<16 .. 31>) 

Description 
The first-operand halfword is stored unchanged at the second-operand location. 

The contents of the general register specified by the R2 field are used as the 
second-operand address. 

The first operand occupies the low-order halfword of the general register specified 
by R 1• 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Specification (operand 2: real address) 
Access (operand 2: block invalid, store protection) 

I Separation (operand 2) 
Address (operand 2: address limit) 

Chapter 4. General Instructions 4-67 



STORE (halfword, with index decremented) 

4-68 

STHND rh,ra 

8 R 1 R.i E RR Format 

0 34 78 1112 15 

Operation 
TEMP<- (R1<16 .. 31>) 
(R2)<- (R2 ) - 2 
MS[(R2)]<- TEMP 

Description 
The contents of the general register designated by the Ri field are decremented by 
2, and the result is used as the second-operand address. The first-operand 
halfword is then stored unchanged in the second-operand location. 

The contents of the general register specified by Ri are decremented by 2 after 
the half word is fetched from the first operand location and before it is placed in 
main storage. 

Decrementing the contents of register R2 through 0 causes a wraparound to 
4,294,967 ,295 (hex FFFF FFFF). 

Program exceptions pertain to the decremented second-operand address and are 
indicated only when the decremented second-operand field is inaccessible. 
Detection of the program exception occurs when a reference to the inaccessible 
location is attempted. The execution of the instruction is suppressed; that is, the 
second-operand address and main storage remain unchanged. 

The first operand occupies the low-order halfword of the general register specified 
by R1. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Specification (operand 2: real address) 
Access (operand 2: block invalid, store protection) 

I Separation (operand 2) 
Address (operand 2: address limit) 

Programming Note 
When the first operand is located in the general register specified by R2' the initial 
contents of the first operand are placed in main storage. 



STORE (halfword, with index incremented) 

STHNI rh,ra 

......__8_......__R_1_.....___R_2_.......__A _ _.J RR Format 

0 34 78 l1 12 

Operation 
MS[(R2)]<- (R1<16 .. 31>) 
CRi) <- (R2 ) + 2 

Description 

15 

The first-operand halfword is stored unchanged in the second-operand location. 
The contents of the general register designated by the Ri field are then 
incremented by 2. 

The initial contents of the general register specified by Ri are used as the 
second-operand address. The contents of the general register specified by R2 are 
incremented by 2 after the halfword is placed in main storage. 

Program exceptions pertain to the initial second-operand address and are 
indicated only when the initial second-operand field is inaccessible. Detection of 
the program exception occurs when a reference to the inaccessible location is 
attempted. The execution of the instruction is suppressed; that is, the 
second-operand address and main storage remain unchanged. 

The first operand occupies the low-order halfword of the register specified by R1• 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Specification (operand 2: real address) 
Access (operand 2: block invalid, store protection) 

ISeparation (operand 2) 
Address (operand 2: address limit) 

Programming Note 
When the first operand is located in the general register specified by R2' the initial 
contents of the first operand are placed in main storage. 

STORE (half words, quadrant) 

STHQ q2,ra 

8 

0 34 56 78 

Operation 
MS[(R2)]<- RQ<01> 
CR2) <- (R2) + 16 

R2 2 RR Format 

11 12 15 

Chapter 4. General Instructions 4-69 



4-70 

Description 
The eight consecutive general-register halfword fields specified by the first 
operand (Q1) are stored unchanged in the main storage locations designated by 
the second-operand address. 

The contents of the register designated by R2 are used as the second-operand 
address. At the completion of the operation, the second-operand address is 
increased by 16, and the updated address is placed back in the register specified 
byR2 . 

The main storage area in which the halfwords are placed starts at the location 
designated by the second-operand address and includes eight consecutive 
halfword locations. The general-register halfword fields are stored in ascending 
order beginning with the first (lowest numbered) register of the set indicated by 
Q1. 

The register quadrant designated by Q 1 consists of the eight high-order or 
low-order halfwords of the general registers that make up the primary or 
secondary register set, as shown in the following table: 

Register Quadrant 

Q 1 Operand Register Set Half word Fields 

00 primary low-order < 16 .. 31 > 
01 secondary low-order < 16 .. 3 1 > 
10 primary high-order <0 .. 15 > 
11 secondary high-order <0 .. 15 > 

I When any part of the second operand is inaccessible, a specification, access, 
separation, or address exception is indicated at the time the inaccessible location 
is ref erred to, and execution is suspended. That is, the initial second-operand 
address in register R2 remains unchanged; the original contents of the 
main-storage locations into which the fields are stored, if any, are lost. Valid 
retry of the instruction is possible. 

Bit position 4 of the instruction is used as an extension to the operation code. The 
bit distinguishes this instruction from ROT A TE LEFT (byte). Bit position 5 of 
the instruction is reserved and must contain a O; otherwise, an operation 
exception is indicated, and the operation is suppress0d. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suspension/Suppression) 
Specification (operand 2: real address) 
Access (operand 2: block invalid, store protection) 
Operation (bit 5 of instruction is a 1) 
Separation (operand 2) 
Address (operand 2: address limit) 

Programming Notes 
When the register designated by R2 is in the register set indicated by QI' the initial 
contents of register R2 are placed in main storage. 



STORE (word) 

When the second-operand location (eight consecutive halfwords) is completely 
unavailable, execution of this instruction is suppressed due to the specification, 

I access, separation, or address exception. Therefore, suspension of the operation 
can be avoided by locating the second operand starting at an address that is an 
integral multiple of 16. 

STU rw,db16s(ra) 

D 

0 34 78 1112 1516 

Operation 
If B2 ¢. 0000 

Then MS[(B2) + D2] <- (R1) 

Else MS[IA + D2] <- (R1) 

Description 

31 

RS-Long 
Format 

The first operand is stored unchanged in the second-operand location. 

When the B2 field contains all O's, the second-operand address is computed using 
the updated instruction address in place of the contents of primary general 
register 0. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Specification (operand 2: real address) 
Access (operand 2: block invalid, store protection) 

I Separation (operand 2) 
Address (operand 2: all) 

Programming Note 
Relative to the base address for the second-operand location, the range, in bytes, 
covered by the displacement (D2 ) is -32768 :5 0 2 :5 32767. 

SUBTRACT~yt~ng~reri 

SR rpb,rpb 

7 r 1 

0 34 

SR rsb,rsb 

7 rl 

0 34 

Operation 
If r2 ¢. 0000 

78 

78 

RR Format 
r2 c (primary-register-set operands) 

11 12 15 

RR Format 

r2 D (secondary-register-set operands) 

11 12 15 

Then (r1) <- (r1) + ..., (r2) + 1 
Else ( r 1) < - ( r 1) + ..., 00000000 + 1 

Chapter 4. General Instructions 4-71 



Description 
The second-operand byte is subtracted from the first-operand byte, and the 
difference is placed in the first-operand location. Subtraction is performed by 
adding the 1 's complement of all 8 bits of the second operand and a low-order 1 
to all 8 bits of the first operand. The two operands are considered to be signed 
fixed-point numbers. 

An implied second operand byte of all O's is used in place of the register contents 
when the r2 field of the instruction is all O's. 

The operands are located in the same register set, designated with bit positions 
12-15 of the instruction: hexadecimal "C" designates the primary set, and 
hexadecimal "D" designates the secondary set. 

Result Conditions 
8 Difference is 0. 
4 Difference is less than 0. 
2 Difference is greater than 0. 
1 Overflow. 
0 Carry out of sign-bit position. 

Program Exceptions 
None 

Programming Note 
The byte in bit positions 16-23 of register 0 in the primary and secondary register 
sets can be designated only as the first operand; it cannot be designated as the 
second operand. 

SUBTRACT WITH CARRY (byte, register) 

4-72 

SYR rpb,rpb 

RR Format 
7 r 1 r2 E (primary-register-set operands) 

0 34 78 1112 15 

SYR rsb,rsb 

RR Format 
7 r 1 r2 F (secondary-regis'fer-set operands) 

0 34 78 1112 15 

Operation 
If r 2 =I- 0000 

Then (r1) <- (r 1) + ..., (r2 ) + C 
Else (r1) <- (r1) + .... 00000000 + C 

Description 
The second-operand byte is subtracted from the first-operand byte, and the 
difference is placed in the first-operand location. Bit 56 (the carry-condition 
indicator) in the current PSV participates in the subtraction. 

Subtraction is performed by adding the l's complement of all 8 bits of the second 
operand and a low-order 0 or l taken from bit 56 (C) in the current PSV, to all 8 
bits of the first operand. Algebraically, a borrow from the first operand occurs 



(due to the previous subtract operation) when PSV-bit 56 is O; no borrow occurs 
when PSV-bit 56 is 1. The two operands are considered to be signed fixed-point 
numbers. 

An implied second operand byte of all O's is used in place of the register contents 
when the r2 field of the instruction is all O's. 

The operands are located in the same register set, designated with bit positions 
12-15 of the instruction: hexadecimal "E" designates the primary set, and 
hexadecimal "F" designates the secondary set. 

Result Conditions 
8 Extended difference is 0. 
4 Extended difference is less than 0. 
2 Extended difference is greater than 0. 
1 Overflow. 
0 Carry out of sign-bit position. 

Program Exceptions 
None 

Programming Notes 
The SUBTRACT WITH CARRY instructions are provided for subtraction of 
extended fixed-point numbers. A carry from any SUBTRACT instruction is 
accounted for by executing a subsequent SUBTRACT WITH CARRY instruction 
without executing an intervening instruction that changes the indicated result 
conditions. 

SUBTRACT WITH CARRY (byte, register) can be used to account for only the 
borrow, if any, due to the previous SUBTRACT by specifying an implied 
second-operand byte of all O's. 

Result condition 8 can be indicated (reflecting a result of 0) only if it was 
indicated at the beginning of the operation. 

The byte in bit positions 16-23 of register 0 in the primary and secondary register 
sets can be designated only as the first operand; it cannot be designated as the 
second operand. 

SUBTRACT (half word, register) 

SHR rh,rh 

C R 1 R2 C RR Format 

0 34 78 1112 15 

Operation 
(R1<16 .. 31>) <- (R1<16 .. 31>) + ...,(R2<16 .. 31>) + 1 

Description 
The second-operand halfword is subtracted from the first-operand halfword, and 
the difference is placed in the first-operand location. Subtraction is performed by 
adding the 1 's complement of all 16 bits of the second operand and a low-order 1 
to all 16 bits of the first operand. The two operands are considered to be signed 
fixed-point numbers. 

Chapter 4. General Instructions 4-73 



The operands occupy the low-order halfwords of the general registers specified by 
the R1 and Ri fields. 

Result Conditions 
8 Difference is 0. 
4 Difference is less than 0. 
2 Difference is greater than 0. 
1 Overflow. 
0 Carry out of sign-bit position. 

Program Exceptions 
None 

SUBTRACT (half word, register-immediate) 

4-74 

SHRI rh,i4 

C 12 R1 F RR Format 

0 34 78 1112 15 

Operation 
(R1<16 .. 31>) <- (R1<16 .. 31>) + ... 000000000000 I I 12 + 1 

Description 
The 4 bits of immediate data, Ii, are subtracted from the first-operand halfword, 
and the difference is placed in the first-operand location. The immediate operand 
is treated as an unsigned 4-bit positive binary integer. The first operand is 
considered to be a signed fixed-point number. 

Subtraction is considered to be performed by first expanding the immediate 
operand to 16 bits with 12 high-order O's. Then, the 1 's complement of all 16 bits 
of the expanded immediate operand and a low-order 1 are added to all 16 bits of 
the first operand. 

The first operand occupies the low-order halfword of the general register specified 
by the R 1 field. 

Result Conditions 
8 Difference is 0. 
4 Difference is less than 0. 
2 Difference is greater than 0. 
1 Overflow. 
0 Carry out of sign-bit position. 

Program Exceptions 
None 

Programming Notes 
The immediate operand can range in value from 0 to 15, inclusive. 

Bit positions 4-7 and 8- 11 of the instruction format contain the 12 and R1 fields, 
respectively. This is reversed from the normal left-to-right order for the RR 
instruction format. 



SUBTRACT WITH CARRY (halfword, register) 

SYHR rh,rh 

C R 1 R2 E RR Format 

0 3 4 7 8 11 12 15 

Operation 
(R1<16 .. 31>) <- (R1<16 .. 31>) + ...,(R2 <16 .. 31>) + C 

Description 
The second-operand halfword is subtracted from the first-operand halfword, and 
the difference is placed in the first-operand location. Bit 56 (the carry-condition 
indicator) in the current PSV participates in the subtraction. 

Subtraction is performed by adding the 1 's complement of all 16 bits of the 
second operand and a low-order 0 or 1 taken from bit 56 (C) in the current PSV, 
to all 16 bits of the first operand. Algebraically, a borrow from the first operand 
occurs (due to the previous subtract operation) when PSV-bit 56 is O; no borrow 
occurs when PSV-bit 56 is 1. The two operands are considered to be signed 
fixed-point numbers. 

The operands occupy the low-order halfwords of the registers specified by the R1 
and R2 fields. 

Result Conditions 
8 Extended difference is 0. 
4 Extended difference is less than 0. 
2 Extended difference is greater than 0. 
1 Overflow. 
0 Carry out of sign-bit position. 

Program Exceptions 
None 

Programming Notes 
The SUBTRACT WITH CARRY instructions are provided for subtraction of 
extended fixed-point numbers. A carry from any SUBTRACT instruction is 
accounted for by executing a subsequent SUBTRACT WITH CARRY instruction 
without executing an intervening instruction that changes the indicated result 
conditions. 

Result condition 8 can be indicated (reflecting a result of 0) only if it was 
indicated at the beginning of the operation. 

Chapter 4. General Instructions 4-7 5 



SUBTRACT WITH CARRY (halfword, register, extended) 

4-76 

SYHRE ruh, ruh 

F R1 R.i A RR Format 

0 34 78 1112 15 

Operation 
lf R2 i= 0000 

Then (R1<0 .. 15>) <- (R1<0 .. 15>) + .... (~<0 .. 15>) + C 
Else (R1<0 .. 15>) <- (R1<0 .. 15>) + -.0000000000000000 + C 

Description 
The second-operand halfword is subtracted from the first-operand halfword, and 
the difference is placed in the first-operand location. Bit 56 (the carry-condition 
indicator) in the current PSV participates in the subtraction. 

Subtraction is performed by adding the 1 's complement of all 16 bits of the 
second operand and a low-order 0 or 1 taken from bit 56 (C) in the current PSV, 
to all 16 bits of the first operand. Algebraically, a borrow from the first operand 
occurs (due to the previous subtract operation) when PSV-bit 56 is O; no borrow 
occurs when PSV-bit 56 is 1. The two operands are considered to be signed 
fixed-point numbers. 

An implied second-operand halfword of all O's is used in place of the register 
contents when the R2 field of the instruction is all O's. 

The operands occupy the high-order halfwords of the registers specified by the R 1 
and R2 fields. 

Result Conditions 
8 Extended difference is 0. 
4 Extended difference is less than 0. 
2 Extended difference is greater than 0. 
1 Overflow. 
0 Carry out of sign-bit position. 

Program Exceptions 
None 

Programming Notes 
The SUBTRACT WITH CARRY instructions are provided for subtraction of 
extended fixed-point numbers. A carry from any SUBTRACT instruction is 
accounted for by executing a subsequent SUBTRACT WITH CARRY instruction 
without executing an intervening instruction that changes the indicated result 
conditions. 

SUBTRACT WITH CARRY (halfword, register, extended) can be used following 
a SUBTRACT (halfword, register) instruction to perform word 
register-to-register subtraction. This instruction can also be used to account for 
only the borrow, if any, due to the previous SUBTRACT by specifying an implied 
second-operand of all O's. 



TEST AND SET (byte) 

Result condition 8 can be indicated (reflecting a result of 0) only if it was 
indicated at the beginning of the operation. 

The halfword in bit positions 0-15 of register 0 in the primary register set can be 
designated only as the first operand; it cannot be designated as the second 
operand. 

TS O,ra 

A 0 

0 34 78 11 12 15 

Operation 
Result-Conditions<== MS[(R)] 
MS[(R2)] <- 11111111 

Description 

RR Format 

The indicated result conditions are determined by the contents of the byte located 
at the second-operand address, and then the entire addressed byte is set to all l's. 

The byte in storage is set to all l's immediately after it is fetched for testing. An 
interruption is not allowed between the moment of fetching and the moment of 

!storing all 1 's. Additionally, in dual-PCE processors, accessing of this byte in 
storage by another PCE is not allowed between the fetching and storing 
operation. 

Instruction bits 4-7 are reserved and must be all O's; otherwise, an operation 
exception is indicated. 

Result Conditions 
8 Byte tested is all O's. 
4 Byte tested is all l's. 
2 Byte tested is mixed O's and l's. 
1 
0 

Program Exceptions (Suppression) 
Specification (operand 2: real address) 

!Access (operand 2: block invalid, store protection) 
Operation (bits 4-7 of instruction not all O's) 
Separation (operand 2) 
Address (operand 2: address limit) 

Programming Notes 
TEST AND SET can be used for controlled sharing of a common storage area by 
two or more programs in one or two PCEs. The interlock can be achieved by 
establishing a program convention. For example, an all-O's value in the byte 
indicates that the common area is available, and an all-1 's value means that the 
area is being used. Each using program then must examine the byte by means of 
TEST AND SET before making access to the common area. If result condition 8 
or 2 is indicated after the test, the area is available for use; if condition 4 is 
indicated, the area cannot be used. 

Chapter 4. General Instructions 4-77 



Because TEST AND SET does not permit an interruption or a storage reference 
from another PCE to occur between the moment of fetching (for testing) and the 
moment of storing all l's (setting), the possibility of a second program testing the 
byte before the first program is able to set it is eliminated. 

TEST (byte, register-immediate) 

4-78 

TRI rpb,i8 

5 

0 34 

Operation 

r 1 

78 

RI Format 

15 

Result-Conditions < = = (r 1) tested using mask 12 

Description 
The state of the first-operand bits selected by a mask is used to determine the 
indicated result conditions. The first operand remains unchanged. 

The byte of immediate data, 12 , is used as an 8-bit mask. The bits of the mask are 
made to correspond one for one with the bits of the first operand. A mask bit of 1 
indicates that the corresponding operand bit is to be tested. A mask bit of 0 
indicates that the corresponding operand bit is to be ignored. 

When all operand bits thus selected are 0, result condition 8 is indicated. 
Condition 8 is also indicated when the mask is all O's. When the selected bits are 
all 1 's, result condition 4 is indicated; otherwise, result condition 2 is indicated. 
In addition, when the first-operand byte is identical to the mask, result condition 
1 is indicated. 

The first operand is located in the primary register set. 

Result Conditions 
8 Selected bits are all O's, or the mask is all O's. 
4 Selected bits are all 1 's. 
2 Selected bits are mixed O's and 1 's. 
1 Mask and first-operand byte are identical. 
0 

Program Exceptions 
None 



Chapter 5. Floating-Point Instructions 

Data Format 

The 8100 system provides a set of floating-point instructions as an optional 
I feature on certain processor models (see "Appendix G"). The floating-point 

instructions are used to perform calculations on operands with a wide range of 
magnitude. These instructions yield results scaled to preserve precision. 

A floating-point number consists of a signed exponent (represented in the 
number's format by the characteristic) and a signed fraction. The quantity 
expressed by this number is the product of the fraction and the number 16 raised 
to the power of the exponent. The exponent is expressed in excess-64 binary 
notation (see "Number Representation" in this chapter); the fraction is expressed 
as a hexadecimal number having a radix point to the left of the high-order digit. 

Four floating-point registers are available to the executing program. The 
floating-point instructions provide for the loading, rounding, adding, subtracting, 
comparing, multiplying, dividing, storing, and controlling the sign of short and 
long operands. Short operands generally provide faster processing and require 
less storage than long operands. On the other hand, long operands provide 
greater precision in computation. Operations may be either register-to-register or 
register-and-storage. 

For addition, subtraction, multiplication, and division, instructions are provided 
that generate normalized results. Normalized results preserve the highest precision 
in the operation (see "Normalization" in this chapter). For addition and 
subtraction, instructions are also provided that generate unnormalized results. 
Normalized and unnormalized operands may be used in any floating-point 
operation. 

Result conditions are indicated to reflect the outcome of all sign-control, add, 
subtract, and compare operations. 

Instructions are also provided for setting the precision (short or long) for 
floating-point operations, and for enabling or disabling exponent-overflow, 
exponent-underflow, and significance exceptions. 

I One floating-point feature is allowed on dual-PCE processors and is restricted to 
a specific PCE. 

Floating-point data occupies a fixed-length format which may be either a 4-byte 
(short) format or an 8-byte (long) format (see Figure 5-1). The short and long 
formats may be designated as operands both in main storage and in the 
floating-point registers. Operands (both short and long) in main storage must be 
aligned on a word boundary; that is, the address of the leftmost byte of the 
operand must be a multiple of 4. 

The first bit of both formats is the sign bit (S). The subsequent seven bit positions 
are occupied by the characteristic. The following field contains the fraction which, 
depending on the format, consists of 6 or 14 hexadecimal digits. 

Chapter 5. Floating-Point Instructions 5-1 



Short Floating-Point Number 

7-Bit 

s Charac- 6---0igit Hexadecimal Fraction 

te ristic 

0 1 7 8 31 

Long Floating-Point Number 

7-Bit 

s Charac- 14-Digit Hexadecimal Fraction 

teristic 

0 1 7 8 63 

Figure 5-1. Formats of Short and Long Floating-Point Numbers 

Guard Digit 

Number Representation 

5-2 

Short floating-point numbers occupy only the leftmost 32 bit positions of a 64-bit 
floating-point register. When a floating-point register is used as the source of a 
short floating-point number, the rightmost 32 bit positions of the register are 
ignored. When a floating-point register is used as the destination of a short 
floating-point number, the rightmost 32 bit positions of the register remain 
unchanged. 

The entire set of floating-point arithmetic, load, and store instructions is available 
for short and long operands. These instructions generate a result that has the same 
format as the operands, except for MULTIPLY and LOAD ROUNDED. In the 
case of short MULTIPLY, a long product is produced from a short multiplier and 
multiplicand. LOAD ROUNDED provides for rounding from long to short 
format. 

Although final results of floating-point calculations have 6 fraction digits in the 
short format and 14 fraction digits in the long format, intermediate results in 
ADD NORMALIZED, SUBTRACT NORMALIZED, ADD UNNORMALIZED, 
SUBTRACT UNNORMALIZED, COMPARE, and MULTIPLY have one 
additional low-order digit. This low-order digit, the guard digit, increases the 
precision of the intermediate result. The final result is obtained when the 
intermediate result, including the guard digit, is shifted left as necessary and then 
truncated to the result-fraction length. 

The fraction of a floating-point number is expressed in hexadecimal digits with 
the radix point of the fraction assumed to be immediately to the left of the 
high-order fraction digit. The fraction is considered to be multiplied by the power 
of 16 indicated by the characteristic portion, bits 1-7, of the floating-point 
formats. The bits within the characteristic field can represent numbers from 0 
through 127. To accommodate large and small magnitudes, the characteristic is 
formed by adding 64 to the actual exponent. The range of the exponent is thus 
-64 through +63. This technique produces a characteristic in excess 64 notation. 

Both positive and negative quantities have a true hexadecimal representation of 
the fraction, the sign being indicated by the sign bit. The number is positive or 
negative, depending on whether the sign bit is 0 or 1, respectively. 



Normalization 

The range covered by the magnitude (M) of a normalized floating-point number 
is: 

In the short format: 

16-65 ~ M ~ (1-16-6) x 1663 

In the long format: 

In both formats, approximately: 

5.4 x 10-79 ~ M ~ 7.2 x 1075 

A number with a 0 characteristic, 0 fraction, and plus sign is called a true zero. A 
true zero may arise as the result of an arithmetic operation because of the 
particular magnitude of the operands. A result is forced to be true zero for any 
one of the following: 

An exponent underflow occurs and the exponent-underflow mask bit in the 
floating-point status vector is 1. 

The result fraction of an addition or subtraction operation is 0 and the 
significance mask bit in the floating-point status vector is 1. 

One or both operands of MULTIPLY, or the dividend in DIVIDE, has a 0 
fraction. 

When a program-exception interruption due to exponent underflow occurs, a true 
zero fraction is not forced; instead, the fraction and sign remain correct, and the 
characteristic is 128 too large. When a program-exception interruption due to the 
significance exception occurs, the fraction remains 0, the sign is positive, and the 
characteristic remains correct. When an exponent-overflow exception occurs, the 
fraction and sign remain correct and the characteristic is 128 less than the correct 
value, regardless of whether the exponent-overflow mask bit in the floating-point 
status vector is 0 or 1. The exponent-overflow and exponent-underflow 
exceptions are not recognized when the result has a 0 fraction. When a divisor has 
a 0 fraction, division is omitted, and a program-exception interruption for a 
floating-point-divide exception occurs. In addition and subtraction, an operand 
with a 0 fraction or characteristic participates as a normal number. The sign of a 
sum, difference, product, or quotient with 0fraction1s positive. 

A quantity can be represented with t11e greatest precision by a floating-point 
number of given fraction length when the number is normalized. A normalized 
floating-point number has a t10nzero high-order hexadecimal fraction digit. If 
one or more high-urd\!r fraction digits are 0, the number is said to be 
unnormalized. The process of normalization consists of shifting the fraction left, 
one digit at a time, until the high-order hexadecimal digit is nonzero and reducing 
the characteristic by the number of hexadecimal digits shifted. A number with a 0 
fraction cannot be normalized, and its characteristic therefore remains unchanged 
when normalization is called for. 

Chapter 5. Floating-Point Instructions 5-3 



Normalization usually takes place when the intermediate arithmetic result is 
changed to the final result. This function is called postnormalization. In 
performing multiplication and division, the operands are normalized before the 
arithmetic process. This function is called prenormalization. 

Floating-point arithmetic may be performed with or without normalization. 
Multiplication and division are performed only with normalization. Addition and 
subtraction may be specified either way. When unnormalized addition or 
subtraction is specified, high-order O's in the result fraction are not eliminated. 
The result may or may not be normalized, depending upon the original operands. 

In both normalized and unnormalized operations, the initial operands need not be 
in normalized form. Also, intermediate fraction results are shifted right when an 
overflow occurs, and the intermediate fraction result is truncated to the final 
result length after the shifting. 

Programming Note: Since normalization applies to hexadecimal digits, the 3 
high-order bits of the fraction of a normalized number may be O's. 

Floating-Point Status Vector 

Ref erring to the FSV 

5-4 

The floating-point status vector (FSV) is 24 bits long and contains information 
required for proper execution of floating-point operations. The FSV contains the 
floating-point register-set number, precision-mode bit, exception-mask bits, 
floating-point-check bit, and exception-indicator bits. The format of the FSV is: 

0 0 0 0 0 

0 4 5 

Regis
ter 
Set 

7 8 

Excep-
0 ti on C 

Masks 

101 'I 12 13 15 16 17 

Exception 
Indicators 

23 

The functions of the precision-mode, exception-mask, and exception-indicator 
bits are described in the following paragraphs. The remaining fields of the FSV 
are described in Chapter 9. The FSV associated with the current priority level is 
called the current FSV. 

Instructions are provided for referring to all of the FSV or to only a part of it. 
READ FLOATING-POINT STATUS VECTOR and WRITE 
FLOATING-POINT STATUS VECTOR are used, respectively, to access or 
change all of the FSV. These two instructions can be used to read or write the 
FSV associated with any priority level, including the current level. WRITE 
FLOATING-POINT STATUS VECTOR is supervisor-privileged. The 
instructions for referring to only a part of the FSV are: READ 
FLOATING-POINT CONTROL, WRITE FLOATING-POINT CONTROL, 
SET PRECISION MODE, SET UNDERFLOW MASK, SET OVERFLOW 
MASK, and SET SIGNIFICANCE MASK. These six instructions refer only to 
the current FSV. 



Precision Modes 

Exception Masks 

Program Exceptions 

The floating-point arithmetic, load, and store instructions operate on data in both 
the short ( 4-byte) and long ( 8-byte) formats. Operations on short floating-point 
numbers are accomplished in short-precision mode; operations on long numbers 
are performed in long-precision mode. The precision mode is designated by bit 11 
(P) of the FSV. 

The SET PRECISION MODE instructi9n is provided for setting the 
precision-mode bit. When the bit is set to 0, subsequent operations are performed 
in short-precision mode; when the bit is set to 1, subsequent operations are 
performed in long-precision mode. 

Instructions are provided for selectively allowing or preventing program-exception 
interruptions due to exponent-underflow, exponent-overflow, and significance 
exceptions. The instructions are: SET OVERFLOW MASK, SET 
UNDERFLOW MASK, and SET SIGNIFICANCE MASK. These instructions 
provide for setting individual bits, called masks, in the FSV to 0 or 1. The 
significance, exponent-overflow, and exponent-underflow masks occupy bit 
positions 13, 14, and 15, respectively, in the FSV. 

When a mask bit is set to 0, the associated floating-point exception results in a 
program-exception interruption, and the cause of the exception is identified with 
the exception-indicator bits in the FSV. When the mask bit is set to 1, the 
interruption does not occur, and the exception-indicator bits remain unchanged. 
The exponent-underflow and significance mask bits also determine the manner in 
which floating-point calculations are completed when the corresponding 
exception occurs. 

The cause of a program-exception interruption for certain floating-point 
exceptions is indicated only in the PSV. These exceptions are: operation (when 
the floating-point feature is not installed), specification, access, and address. 
With the exception of the floating-point LOAD and STORE instructions, these 
program exceptions result in the operation's being suppressed. For the LOAD 
and STORE instructions, an operation exception results in the operation's being 
suppressed, while specification, access, and address exceptions result in the 
operation's being suspended. The details of the "Program Exception Conditions" 
are described in Chapter 3. For all other floating-point exceptions, the cause is 
indicated with both the PSV and the FSV. The PSV indicates the occurrence of a 
floating-point exception, and the FSV defines the specific cause. 

Floating-point program exceptions are indicated with exception-indicator bits in 
the FSV (bits 1 7 -23). When a floating-point program exception is detected 
resulting in a program-exception interruption, the appropriate exception-indicator 

Chapter 5. Floating-Point Instructions 5-5 



5-6 

bit is set to 1 and the remaining indicator bits are set to O's. The 
exception-indicator bits are defined in the following list: 

Exception 
Indicator Bit 

17 
18 
19 
20 
21 
22 
23 

Program Exception 

Floating-point-operation exception 
Floating-point-privileged-operation exception 
Floating-point-specification exception 
Floating-point-divide exception 
Significance exception 
Exponent-overflow exception 
Exponent-underflow exception 

Each program exception is described in the following paragraphs. When an 
exception is detected, the current operation is either completed or suppressed. If 
the operation is suppressed, the contents of any result fields, including the 
condition indicators in the current PSV, are not changed. 

Floating-Point-Operation Exception: This exception is detected when an undefined 
operation code is encountered in bit positions 6, 7, 10, and 11 of FF format 
instructions, and bit positions 6, 7, 30, and 31 of FS format instructions. For 
these exceptions, the operation is suppressed. 

For the SET OVERFLOW MASK, SET PRECISION MODE, SET 
SIGNIFICANCE MASK, and SET UNDERFLOW MASK instructions, bit 
positions 4, 5, and 8 of the instruction represent an extension to the operatfon 
code. The four values of the undefined operation-code extensions are reserved 
and, if used, will produce unpredictable results. 

Floating-Point-Privileged-Operation Exception: This exception is detected when 
WRITE FLOATING-POINT STATUS VECTOR is executed in either 
input/ output or application mode. 

For this exception, the operation is suppressed. 

Floating-Point-Specification Exception: This exception is detected during 
execution of READ FLOATING-POINT STATUS VECTOR and WRlTE 
FLOATING-POINT STATUS VECTOR when bit position 4 of the first-operand 
word does not contain 0. A floating-point-specification exception is also detected 
during WRITE FLOATING-POINT STATUS VECTOR when bits 0-4 of the 
FSV (bit positions 8-12 of the first-operand word) are not all O's. 

For this exception, the operation is suppressed. 

Floating-Point-Divide Exception: This exception is detected during floating-point 
division when the divisor fraction is 0. For this exception, the operation is 
suppressed. 

Significance Exception: This exception is detected when the result fraction in 
floating-point addition or subtraction is 0. The interruption can be disallowed by 
the significance mask (bit 13) in the FSV. 

For this exception, the operation is completed. The significance mask also affects 
the result of the operation. When the mask is 0, the operation is completed 



Instructions 

without further change to the characteristic and sign of the result. When the mask 
is 1, the operation is completed by replacing the result with a true zero, and the 
significance-exception indicator (bit 21 ) in the FSV is not made a 1. 

Exponent-Overflow Exception: This exception is detected when the result 
characteristic in floating-point addition, subtraction, multiplication, or division 
exceeds 127 and the result fraction is not 0. The interruption can be disallowed 
by the exponent-overflow mask (bit 14) in the FSV. 

For this exception, the operation is completed. The fraction is normalized, and 
the sign and result remain correct. The result characteristic is made 128 smaller 
than the correct characteristic. When the mask is 1, the 
exponent-overflow-exception indicator (bit 22) in the FSV is not made a 1. 

Exponent-Underflow Exception: This exception is detected when the result 
characteristic in floating-point addition, subtraction, multiplication, or division is 
less than 0 and the result fraction is not 0. The interruption can be disallowed by 
the exponent-underflow mask (bit 15) in the FSV. 

For this exception, the operation is completed. The setting of the 
exponent-underflow mask also affects the result of the operation. When the mask 
bit is 0, the fraction is normalized, the characteristic is made 128 larger than the 
correct characteristic, and the sign and fraction remain correct. When the mask 
bit is l, the result is made a true zero, and the exponent-underflow-exception 
indicator (bit 23) in the FSV is not made a 1. 

The floating-point instructions and their mnemonics, formats, and operation 
codes follow. The procedure for describing the individual instructions, and the 
symbols used in the instruction formats and the expressions of the operations, are 
defined under "Instruction Descriptions" in Chapter 4. 

Note: An assembler-language statement containing the mnemonic and the symbolic 
operand specifications is shown with each instruction. For a register-and-storage 
operation using LOAD, as an example, "LF" is the mnemonic and "f,dw l 4s(ra)" 
are the operand specifications. In the FS instruction format for LOAD, the F1field 
is derived from the first operand specification "f"; the D2and BJ'ields, designating 
the second operand, are derived from "dw l 4s(ra) ". Refer to Appendix Bf or an 
explanation of the assembler language notation used ·in the instruction descriptions. 

Programming Note 

Relative to the base address of the storage-operand location for the PS-format 
instructions, the range, in bytes, of the displacement (D) is -32768 ~ D x 4 ~ 
32764. Note that the displacement can be specified only in terms of an integral 
multiple of 4 bytes. 

Chapter 5. Floating-Point Instructions 5-7 



ADD NORMALIZED 

AF f,dwl4s(ra) 

E 

0 34 56 78 

5 

11 12 15 16 29 30 31 

Operation 
(F1) <- (F1) + MS[(B2 ) + 0 2 x 4] 

Description 

FS 
Format 

See the ADD NORMALIZED (register) instruction. 

Result Conditions 
8 Result fraction is 0. 
4 Result is less than 0. 
2 Result is greater than 0. 
1 
0 

Program Exceptions (Suppression/ Completion) 
Specification (operand 2: real address) 
Access (operand 2: block invalid) 

I Operation (if the floating-point feature is not installed) 
Separation (operand 2) 
Address (operand 2: all) 
Exponent Overflow 
Exponent Underflow 
Significance 

ADD NORMALIZED (register) 

5-8 

FF Format 

0 34 56 78 910 D 12 15 

Operation 
(F1) <- (F1) + (F2) 

Description 
The second operand is added to the first operand, and the normalized sum is 
placed in the first-operand location. 

Addition of two floating-point numbers consists of characteristic comparison and 
fraction addition. The characteristics of the two operands are compared, and the 
fraction accompanying the smaller characteristic is shifted right, with its 
characteristic increased by 1 for each hexadecimal digit of shift until the two 
characteristics agree. When an operand is shifted right during alignment, the 
leftmost hexadecimal digit of the field shifted out is retained as a guard digit. The 
operand that is not shifted is considered to be extended to the right with a 0 guard 
digit. Both operands are considered to be extended to the right with a 0 when no 
alignment shift occurs. The fractions are then added algebraically to form an 
intermediate sum. 



The short intermediate-sum fraction consists of 7 hexadecimal digits and a 
possible carry. The long intermediate-sum fraction consists of 15 hexadecimal 
digits and a possible carry. If a carry is present, the sum is shifted right one digit 
position, and the characteristic is increased by 1. 

After the addition, the intermediate sum including the guard digit is shifted left as 
necessary to form a normalized number, provided the fraction is not 0. Vacated 
low-order digit positions are filled with O's, and the characteristic is reduced by 
the number of hexadecimal digits of shift. The intermediate-sum fraction is 
subsequently truncated to the proper result-fraction length. 

The sign of the sum is determined by the rules of algebra, unless all digits of the 
intermediate-sum fraction are 0, in which case the sign is made plus. 

An exponent-overflow exception is detected when a carry from the high-order 
position of the intermediate-sum fraction causes the characteristic of the 
normalized sum to exceed 127. The operation is completed by making the 
characteristic 128 less than the correct value. The result is normalized and the 
sign and fraction remain correct. A program-exception interruption for exponent 
overflow occurs if the exponent-overflow mask bit is 0. When exponent overflow 
occurs and the exponent-overflow mask bit is 1, the interruption does not take 
place. 

An exponent-underflow exception is detected when the characteristic of the 
normalized sum is less than 0 and the fraction is not 0. If the exponent-underflow 
mask bit is 0, the operation is completed by making the characteristic 128 larger 
than the correct value. The result is normalized, and the sign and fraction remain 
correct. A program-exception interruption for exponent underflow then takes 
place. When exponent underflow occurs and the exponent-underflow mask bit is 
1, the interruption does not take place; instead, the operation is completed by 
making the result a true zero. 

A significance exception is detected when the intermediate-sum fraction, 
including the guard digit, is 0. If the significance mask bit is 0, the 
intermediate-sum characteristic remains unchanged and becomes the 
characteristic of the result. No normalization occurs, and a program-exception 
interruption for significance takes place. If the significance mask bit is 1, the 
interruption does not occur; instead, the result is made a true zero. 

Result Conditions 
8 Result fraction is 0. 
4 Result is less than 0. 
2 Result is greater than 0. 
1 
0 

Program Exceptions (Suppression/ Completion) 
Operation (if the floating-point feature is not installed) 
Exponent Overflow 
Exponent Underflow 
Significance 

Programming Note 
Interchanging the two operands in a floating-point addition does not affect the 
value of the sum. 

Chapter 5.' Floating-Point Instructions 5-9 



ADD UNNORMALIZED 

AU f,dw14s(ra) 

E 

0 34 56 78 

5 

11 12 15 16 29 30 31 

Operation 
(F1) <- (F1) + MS[(B2 ) + D2 x 4] 

Description 

FS 
Format 

See the ADD UNNORMALIZED (register) instruction. 

Result Conditions 
8 Result fraction is 0. 
4 Result is less than 0. 
2 Re.,ult is greater than 0. 
1 
0 

Program Exceptions (Suppression/ Completion) 
Specification (operand 2: real address) 
Access (operand 2: block invalid) 
Operation (if the floating-point feature is not installed) 

I Separation (operand 2) 
Address (operand 2: all) 
Exponent Overflow 
Significance 

ADD UNNORMALIZED (register) 

5-10 

FF Format 

0 34 56 78 910 11 12 15 

Operation 
(F1) <- (F1) + (F2) 

Description 
The second operand is added to the first operand, and the unnormalized sum is 
placed in the first-operand location. 

Execm:ion of ADD UNNORMALIZED is similar to execution of ADD 
NORMALIZED, except that, after the addition, the intermediate-sum fraction is 
truncated to the proper result-fraction length without performing normalization. 
Leading O's are not eliminated in the result fraction, exponent underflow cannot 
occur, and the guard digit does not participate in the detection of a significance 
exception. A significance exception is detected when the intermediate-sum 
fraction, not including the guard digit, is 0. 



COMPARE 

CF f,dw14s(ra) 

E 

0 34 56 78 

COMPARE (register) 

Result Conditions 
8 Result fraction is 0. 
4 Result is less than 0. 
2 Result is greater than 0. 
1 
0 

Program Exceptions (Suppression/ Completion) 
Operation (if the floating-point feature is not installed) 
Exponent Overflow 
Significance 

5 

11 12 15 16 

Operation 

29 30 31 

FS 
Format 

Result-Conditions<== (F1) - MS[(B2 ) + D2 x 4] 

Description 
See the COMPARE (register) instruction. 

Result Conditions 
8 Operands are equal 
4 First operand is low 
2 First operand is high 
1 
0 

Program Exceptions (Suppression) 
Specification (operand 2: real address) 
Access (operand 2: block invalid) 
Operation (if the floating--point feature is not installed) 

lseparation (operand 2) 
Address (operand 2: all) 

CFR f,f 

4 FF Format 

0 3 4 5 6 7 8 9 10 11 12 15 

Operation 
Result-Conditions<== (F1) - (F2) 

Description 
The first operand is compared with the second operand; the comparison 
determines the indicated result condition. 

Comparison is algebraic, taking into account the sign, fraction, and exponent of 
each number. An equality is established by following the rules for normalized 

Chapter 5. Floating-Point Instructions 5-11 



DIVIDE 

DF f ,dw14s(ra) 

E 

0 34 56 78 

5-12 

floating-point subtraction. When the intermediate sum, including the guard digit, 
is 0, the operands are equal. An exponent inequality is not indecisive for 
magnitude determination since the fractions may have different numbers of 
leading O's. Neither operand is changed as a result of the operation. 

Numbers with 0 fractions compare as equal quantities even when they differ in 
sign or characteristic. 

An exponent-overflow, exponent-underflow, or significance exception cannot 
occur. 

Result Conditions 
8 Operands are equal 
4 First operand is low 
2 First operand is high 
1 
0 

Program Exceptions (Suppression) 
Operation (if the floating-point feature is not installed) 

5 

11 12 15 16 29 30 31 

Operation 
(F1) <-- (F1) I MS[(B2 ) + D2 x 4] 

Description 
See the DIVIDE (register) instruction. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression/ Completion) 
Specification (operand 2: real address) 
Access (operand 2: block invalid) 

FS 
Format 

Operation (if the floating-point feature is not installed) 
I Separation (operand 2) 

Address (operand 2: all) 
Exponent Overflow 
Exponent Underflow 
Floating-Point Divide 



DIVIDE (register) 

DFR f,f 

4 FF Format 

0 3 4 5 6 7 8 9 10 11 12 15 

Operation 
(Fl) <-(Fl) I (F2) 

Description 
The first operand (the dividend) is divided by the second operand (the divisor) 
and replaced by the normalized quotient. No remainder is preserved. 
Floating-point division consists of characteristic subtraction and fraction division. 
The operands are prenormalized, and the difference between the dividend and 
divisor characteristics of the normalized operands, plus 64, is used as the 
characteristic of the intermediate quotient. 

All dividend and divisor fraction digits participate in forming the fraction of the 
quotient. Postnormalizing the intermediate quotient is never necessary, but a 
right-shift of one digit position may be called for. The intermediate-quotient 
characteristic is adjusted for the shift. The intermediate-quotient fraction is 
subsequently truncated to the proper result-fraction length. 

The sign of the quotient is determined by the rules of algebra, unless the quotient 
is made a true zero, in which case the sign is made plus. 

An exponent-overflow exception is detected when the final-quotient 
characteristic exceeds 127 and the fraction is not 0. The result is normalized, the 
sign and fraction remain correct, and the characteristic is 128 less than the correct 
value. A program-exception interruption for exponent overflow occurs if the 
exponent-overflow mask bit is 0. When exponent overflow occurs and the 
exponent-overflow mask bit is 1, the interruption does not take place. 

An exponent-underflow exception is detected when the characteristic of the 
normalized quotient is less than 0 and the fraction is not 0. If the 
exponent-underflow mask bit is 0, a program-exception interruption occurs. The 
result is normalized, its sign and fraction remain correct, and the characteristic is 
made 128 larger than the correct value. If the exponent-underflow mask bit is 1, 
the interruption does not take place; instead, the operation is completed by 
making the quotient a true zero. 

Exponent underflow is not indicated when an operand characteristic becomes less 
than 0 during prenormalization or the intermediate-quotient characteristic is less 
than 0, but the final quotient can be expressed without encountering exponent 
underflow. 

A floating-point divide exception is detected when the divisor fraction is 0. The 
operation is suppressed, and a program-exception interruption for floating-point 
divide occurs. 

When the dividend fraction is 0, the quotient is made a true zero, and neither 
exponent overflow nor exponent underflow is indicated. A division of 0 by 0, 
however, causes the operation to be suppressed and a program-exception 
interruption for floating-point divide to occur. 

Chapter 5. Floating-Point Instructions 5-13 



LOAD 

LF f,dw14s(ra) 

E 

0 34 56 78 

LOAD (register) 

5-14 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression/ Completion) 
Operation (if the floating-point feature is not installed) 
Exponent Overflow 
Exponent Underflow 
Floating-Point Divide 

5 

11 12 15 16 

Operation 
(F1) <-MS [(B2) + D 2 x 4] 

Description 

I I 
29 30 31 

FS 
Format 

The second operand is placed unchanged in the first-operand location. 

I Specification, access, separation, and address program exceptions are detected at 
the time the inaccessible location is ref erred to, and execution is suspended. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suspension/Suppression) 
Specification (operand 2: real address) 
Access (operand 2: block invalid) 
Operation (if the floating-point feature is not installed) 

I Separation (operand 2) 
Address (operand 2: all) 

LFR f,f 

0 3 4 5 6 7 8 9 10 

Operation 
(F1) <- (F2) 

Description 

4 FF Format 

11 12 15 

The second operand is placed unchanged in the first-operand location. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Operation (if the floating-point feature is not installed) 



LOAD AND TEST (register) 

LTFR f,f 

0 3 4 5 6 7 8 9 10 

Operation 
(F1) <- (F2) 
Result-Conditions<== (F1) 

Description 

00 4 FF Format 

11 12 15 

The second operand is placed unchanged in the first-operand location, and its sign 
and magnitude are tested to determine the indicated result condition. 

Result Conditions 
8 Result fraction is 0. 
4 Result is less than 0. 
2 Result is greater than 0. 
1 
0 

Program Exceptions (Suppression) 
Operation (if the floating-point feature is not installed) 

Programming Note 
When the same register is specified for both the first-operand location and the 
second-operand location, the operation is equivalent to a test without data 
movement. 

LOAD COMPLEMENT (register) 

LCFR f,f 

0 34 56 78 910 

Operation 
(F1) <- (F2) 
(F1<0>) <- ...,(F1<0>) 

Description 

4 FF Format 

11 12 15 

The second operand is placed in the first-operand location with the sign changed 
to the opposite value. 

The sign bit is inverted, even if the fraction is 0. The characteristic and fraction 
are not changed. 

Result Conditions 
8 Result fraction is 0. 
4 Result is less than 0. 
2 Result is greater than 0. 
1 
0 

Program Exceptions (Suppression) 
Operation (if the floating-point feature is not installed) 

Chapter 5. Floating-Point Instructions 5-15 



LOAD NEGATIVE (register) 

LOAD POSITIVE (register) 

5-16 

LNFR f,f 

0 3 4 5 6 7 8 9 10 

Operation 
(F1) <- (F2) 
(F1<0>) <-1 

Description 

4 FF Format 

11 12 15 

The second operand is placed in the first-operand location with the sign made 
minus. 

The sign bit is made 1, even if the fraction is 0. The characteristic and fraction 
are not changed. 

Result Conditions 
8 Result fraction is 0. 
4 Result is less than 0. 
2 
1 
0 

Program Exceptions (Suppression) 
Operation (if the floating-point feature is not installed) 

LPFR f,f 

0 3 4 5 6 7 8 9 10 

Operation 
(F1) <- (F2) 
(F1<0>) <-0 

Description 

4 FF Format 

11 12 15 

The second operand is placed in the first-operand location with the sign made 
plus. 

The sign bit is made 0. The characteristic and fraction are not changed. 

Result Conditions 
8 Result fraction is 0. 
4 
2 Result is greater than 0. 
1 
0 

Program Exceptions (Suppression) 
Operation (if the floating-point feature is not installed) 



LOAD ROUNDED (register) 

LRFR f,f 

4 FF Format 

0 3 4 5 6 7 8 9 10 11 12 15 

Operation 
(F 1) < - (F 2) rounded long to short 

Description 
The long second operand is rounded to the short format, and the result is placed 
in the first-operand location. The low-order 32 bits of the first-operand register 
remain unchanged. The second operand remains unchanged as a result of the 
operation. 

Rounding consists of adding a 1 in bit position 3 2 of the long second operand, 
and propagating the carry, if any, to the left. The sign of the fraction is ignored, 
and addition is performed as if the fractions were positive. 

If rounding causes a carry out of the high-order digit position of the fraction, the 
fraction is shifted right one digit position, and the characteristic is increased by 1. 

The sign of the result is the same as the sign of the second operand. No 
normalization takes place. 

An exponent-overflow exception detected when shifting the fraction right causes 
the characteristic to exceed 12 7. The operation is completed by loading a number 
whose characteristic is 128 less than the correct value. The result is normalized, 
and the sign and fraction remain correct. A program-exception interruption for 
exponent overflow occurs if the exponent-overflow mask bit is 0. When exponent 
overflow occurs and the exponent-overflow mask bit is 1, the interruption does 
not take place. 

Exponent-underflow and significance exceptions cannot occur. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression/ Completion) 
Operation (if the floating-point feature is not installed) 
Exponent Overflow 

Programming Notes 
The operation of LOAD ROUNDED is the same in both short-precision and 
long-precision modes. 

The result is rounded away from 0. That is, when rounding takes place (a carry 
occurs out of bit position 32 of the long second operand), the short-format result 
is increased in magnitude. 

Chapter 5. Floating-Point Instructions 5-1 7 



MULTIPLY 

MF f,dwl4s(ra) 

E 

0 34 56 78 

MULTIPLY (register) 

5-18 

5 

11 12 15 16 29 30 31 

Operation 
(F1) <- (F1) x MS[(B2 ) + D2 x 4] 

Description 
See the MULTIPLY (register) instruction. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression/ Completion) 
Specification (operand 2: real address) 
Access (operand 2: block invalid) 

FS 
Format 

Operation (if the floating-point feature is not installed) 
I Separation (operand 2) 

Address (operand 2: all) 
Exponent Overflow 
Exponent Underflow 

0 3 4 5 6 7 8 9 10 

Operation 
(F1) <- (F1) x (F2 ) 

Description 

00 4 FF Format 

11 12 15 

The normalized product of the second operand (the multiplier) and the first 
operand (the multiplicand) is placed in the first-operand location. 

Multiplication of two floating-point numbers consists of exponent addition and 
fraction multiplication. The operands are prenormalized, and the sum of the 
characteristics of the normalized operands, less 64, is used as the characteristic of 
the intermediate product. 

The product of the fractions is developed such that the result has the exact 
fraction product truncated to the proper result-fraction length. When the result is 
normalized without requiring any postnormalization, the intermediate-product 
fraction is truncated to the result-fraction length, and the intermediate-product 
characteristic becomes the final product characteristic. When the 
intermediate-product fraction has one leading 0 digit, it is shifted left one digit 
position, bringing the contents of the guard-digit position into the low-order 
position of the result fraction. The intermediate-product characteristic is reduced 
by 1 to account for the left shift. The intermediate-product fraction is 
subsequently truncated to the result-fraction length. 



In short-precision mode, the multiplier and multiplicand have 6-digit fractions, 
and the product fraction has the full 14 digits of the long format, with the 2 
low-order fraction digits always 0. In long-precision mode, the multiplier and 
multiplicand fractions have 14 digits and the result product fraction is truncated 
to 14 digits. 

The sign of the product is determined by the rules of algebra, unless all digits of 
the product fraction are 0, in which case the sign is made plus. 

An exponent-overflow exception is detected when the characteristic of the 
normalized product exceeds 127 and the fraction of the product is not 0. The 
operation is completed by making the characteristic 128 less than the correct 
value. The result is normalized, and the sign and fraction remain correct. A 
program-exception interruption for exponent overflow occurs if the 
exponent-overflow mask bit is 0. When exponent overflow occurs and the 
exponent-overflow mask bit is 1, the interruption does not take place. 

Exponent overflow is not indicated if the intermediate-product characteristic 
exceeds 127 but is brought within range by normalization. 

An exponent-underflow exception is detected when the characteristic of the 
normalized product is less than 0 and the fraction of the product is not 0. If the 
exponent-underflow mask bit is 0, the operation is completed by making the 
characteristic 128 larger than the correct value, and a program-exception 
interruption for exponent underflow occurs. The result is normalized, and the 
sign and fraction remain correct. If the exponent-underflow mask bit is 1, the 
interruption does not take place; instead, the operation is completed by making 
the product a true zero. 

Exponent underflow is not indicated when the characteristic of an operand 
becomes less than 0 during prenormalization, but the characteristic of the 
normalized product is within range. 

When either or both operand fractions are 0, the result is made a true zero, and 
neither exponent overflow nor exponent underflow is indicated. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression/ Completion) 
Operation (if the floating-point feature is not installed) 
Exponent Overflow 
Exponent Underflow 

Programming Note 
Interchanging the two operands in a floating-point multiplication does not affect 
the value of the product. 

Chapter 5. Floating-Point Instructions 5-19 



READ FLOATING-POINT CONTROL 

RFC dwl4s(ra) 

E 

0 34 56 78 

5 

11 12 15 16 

Operation 

29 30 31 

FS 
Format 

MS[(B1) + D1 x4 + 2] <- Current-FSV<8 .. 23> 

Description 
The contents of bit positions 8-23 of the current FSV are placed in the low-order 
half of the word location designated by the first-operand address. The high-order 
16 bits of the word at the first-operand location remain unchanged. 

Bit positions 8-23 of the FSV contain the precision-mode bit, exception-mask 
bits, the floating-point-check bit, and exception-indicator bits. 

Bit positions 4 and 5 of the instruction are reserved and should contain O's. 

ResuJt Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Specification (operand 1: real address) 
Access (operand 1: block invalid, store protection) 

I Operation (if the floating-point feature is not installed) 
Separation (operand 1) 
Address (operand 1: all) 

READ FLOATING-POINT STATUS VECTOR 

RFS dw14s(ra) 

E 

0 34 56 78 

I Ignored I 0 I Level 

0 4 5 8 

5-20 

5 

11 12 15 16 

Operation 

29 30 31 

FS 
Format 

MS[(B1) + D 1 x 4 + 1] <- FSV[MS[(B1) + D 1 x 4]<5 .. 7>] 

Description 
The contents of the FSV associated with the specified priority level are placed 
right-justified in the word storage location designated by the first-operand 
address. 

The following illustrates the format of the first-operand word: 

FSV 

31 

The priority level associated with the FSV to be read is specified by the contents 
of bit positions 5-7 of the first operand. 



SET OVERFLOW MASK 

Bit positions 0-3 of the first operand are ignored. Bit position 4 is reserved and 
must contain a O; otherwise, a floating-point specification exception is indicated. 
The contents of bit positions 0-7 of the word in storage remain unchanged. 

Bit positions 4 and 5 of the instruction are reserved and should contain O's. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Specification (operand 1 : real address) 
Access (operand 1: block invalid, store protection) 
Operation (if the floating-point feature is not installed) 

I Separation (operand 1) 
Address (operand 1: all) 
Floating-point specification (operand 1: bit 4 of operand is 1) 

Programming Notes 
This instruction is intended for use by a supervisory program. 

When the current priority level is specified in the first operand, the current FSV is 
read. 

SFOM ml 

4 FF Format 

0 3 4 5 6 7 8 9 10 11 12 15 

Operation 
Current-FSV<14> <-M 

Description 
The exponent-overflow mask bit in the current FSV is replaced by the content of 
the M field of the instruction. 

The M field can contain either a 0 or a 1. When the M field contains a 0, 
subsequent exponent-overflow exceptions result in a program-exception 
interruption; when the M field contains a 1, the interruption for 
exponent-overflow does not occur. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Operation (if the floating-point feature is not installed) 

Chapter 5. Floating-Point Instructions 5-21 



SET PRECISION MODE 

SFPM ml 

4 

0 3 4 5 6 7 8 9 10 11 12 15 

Operation 
Current-FSV<ll> <-M 

Description 

FF Format 

The precision-mode bit in the current FSV is replaced by the content of the M 
field of the instruction. 

The M field can contain either a 0 or a l. When the M field contains a 0, 
subsequent floating-point arithmetic, load and store operations are performed in 
short-precision mode; when the M field contains a l, long-precision mode is used. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Operation (if the floating-point feature is not installed) 

SET SIGNIFICANCE ArlASK 

5-22 

SFSM ml 

4 

0 3 4 5 6 7 8 9 10 11 12 15 

Operation 
Current-FSV<13> <- M 

Description 

FF Format 

The significance mask bit in the current FSV is replaced by the content of the M 
field of the instruction. 

The M field can contain either a 0 or a l. When the M field contains a 0, 
subsequent significance exceptions result in a program-exception interruption; 
when the M field contains a 1, the interruption for significance does not occur. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Operation (if the floating--point feature is not installed) 

Programming Note 
The significance mask bit also determines the manner in which floating-point 
addition and subtraction are completed when a significance exception occurs. 
Refer to the individual instruction descriptions for details. 



SET UNDERFLOW MASK 

STORE 

STF f,dw14s(ra) 

E 

0 34 56 78 

SFUM ml 

4 

0 3 4 5 6 7 8 9 10 11 12 15 

Operation 
Current-FSV<15> <-M 

Description 

FF Format 

The exponent-underflow mask bit in the current FSV is replaced by the content 
of the M field of the instruction. 

The M field can contain either a 0 or a 1. When the M field contains a 0, 
subsequent exponent-underflow exceptions result in a program-exception 
interruption; when the M field contains a 1, the interruption for 
exponent-underflow does not occur. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Operation (if the floating-point feature is not installed) 

Programming Note 
The exponent-underflow mask bit also determines the manner in which 
floating-point normalized addition, normalized subtraction, multiplication, and 
division are completed when an exponent-underflow exception occurs. Refer to 
the individual instruction descriptions for details. 

5 

11 12 15 16 

Operation 
MS[(B2) + D2 x 4] <- (F1) 

Description 

29 30 31 

FS 
Format 

The first operand is placed unchanged at the second-operand location. 
J Specification, access, separation, and address program exceptions are detected at 

the time the inaccessible location is ref erred to and execution is suspended. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suspension/Suppression) 
Specification (operand 2: real address) 
Access (operand 2: block invalid, store protection) 
Operation (if the floating-point feature is not installed) 

I Separation (operand 2) 
Address (operand 2: all) 

Chapter 5. Floating-Point Instructions 5-23 



SUBTRACT NORMALIZED 

SF Ldw l 4s(ra) 

E 

0 34 56 78 

5 

11 12 15 16 

Operation 
(F1) <- (F 1) - MS[(B2) + D2 x 4] 

Description 

29 30 31 

FS 
Format 

See the SUBTRACT NORMALIZED (register) instruction. 

Result Conditions 
8 Result fraction is 0. 
4 Result is less than 0. 
2 Result is greater than 0. 
1 
0 

Program Exceptions (Suppression/ Completion) 
Specification (operand 2: real address) 
Access (operand 2: block invalid) 

I Operation (if the floating-point feature is not installed) 
Separation (operand 2) 
Address (operand 2: all) 
Exponent Overflow 
Exponent Underflow 
Significance 

SUBTRACT NORMALIZED (register) 

5-24 

SFR f,f 

4 FF Format 

0 34 56 78 910 11 12 15 

Operation 
(F1) <- (F1) - (Fz) 

Description 
The second operand is subtracted from the first operand, and the normalized 
difference is placed in the first-operand location. 

Execution of SUBTRACT NORMALIZED is similar to execution of ADD 
NORMALIZED except that the second operand participates in the operation with 
its sign bit inverted. 

Result Conditions 
8 Result fraction is 0. 
4 Result is less than 0. 
2 Result is greater than 0. 
1 
0 



Program Exceptions (Suppression/ Completion) 
Operation (if the floating-point feature is not installed) 
Exponent Overflow 
Exponent Underflow 
Significance 

SUBTRACT UNNORMALIZED 

SU f,dw14s(ra) 

E 

0 34 56 78 

5 

11 12 15 16 

Operation 
(F1) <- (F1) - MS[(B2) + D2 x 4] 

Description 

29 30 31 

FS 
Format 

See the SUBTRACT UNNORMALIZED (register) instruction. 

Result Conditions 
8 Result fraction is 0. 
4 Result is less than 0. 
2 Result is greater than 0. 
1 
0 

Program Exceptions (Suppression/ Completion) 
Specification (operand 2: real address) 
Access (operand 2: block invalid) 

I Operation (if the floating-point feature is not installed) 
Separation (operand 2) 
Address (operand 2: all) 
Exponent Overflow 
Significance 

SUBTRACT UNNORMALIZED (register) 

SUR f,f 

4 FF Format 

0 3 4 5 6 7 8 9 10 11 12 15 

Operation 
(F1) <- (F1) - (Fz) 

Description 
The second operand is subtracted from the first operand, and the unnormalized 
difference is placed in the first-operand location. 

Execution of SUBTRACT UNNORMALIZED is similar to that of ADD 
UNNORMALIZED except that the second operand participates in the operation 
with its sign bit inverted. 

Chapter 5. Floating-Point Instructions 5-25 



Result Conditions 
8 Result fraction is 0. 
4 Result is less than 0. 
2 Result is greater than 0. 
1 
0 

Program Exceptions (Suppression/ Completion) 
I Operation (if the floating-point feature is not installed) 

Exponent Overflow 
Significance 

WRITE FLOATING-POINT CONTROL 

WFC dwl4s(ra) 

E 

0 34 56 78 

5-26 

5 

11 12 15 16 

Operation 

29 30 31 

FS 
Format 

Current-FSV <8 .. 23> <- MS[(B1) + D 1 x 4 + 2] 

Description 
The contents of bit positions 8-23 of the current FSV are replaced with the 
contents of the low-order half of the word designated by the first-operand 
address. The high-order 16 bits of the word at the first-operand location are 
ignored. 

Bit positions 8-23 of the FSV contain the precision-mode bit, exception-mask 
bits, floating-point-check bit, and exception-indicator bits. 

Bit positions 4 and 5 of the instruction are reserved and should contain O's. 

Bits 8-10 and 12 of the FSV (bit positions 16-18 and 20 of the first-operand 
word) are reserved and should be written as O's. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Specification (operand 1: real address) 
Access (operand 1: block invalid) 

I Operation (if the floating-point feature is not installed) 
Separation (operand 1) 
Address (operand 1 : all) 

Programming Notes 
WRITE FLOATING-POINT CONTROL can be used to alter the state of the 
precision-mode and exception-mask bits. The instruction can also be used to clear 
the floating-point-check and exception-indicator bits. 

An interruption will not occur as a result of making the floating-point-check bit, 
or any of the exception-indicator bits, a 1 with this instruction. 



WRITE FLOATING-POINT STATUS VECTOR 

WFS dw 14s(ra) 

E 

0 34 56 78 

I Ignored I 0 I Level 

0 3 4 5 7 8 

5 
FS 
Format 

11 12 15 16 29 30 31 

Operation 
FSV[MS[(B1) + D 1 x4]<5 .. 7>] <-MS[(B1) + D1 x4 + 1] 

Description 
The contents of the FSV associated with the specified priority level are replaced 
with the contents of the rightmost 24 bit positions of the word designated by the 
first-operand address. 

The following illustrates the format of the first-operand word: 

FSV 

31 

The priority level associated with the FSV to be written is specified by the 
contents of bit positions 5-7 of the first operand. 

Bit positions 0-3 of the first operand are ignored. Bit position 4 of the first 
operand, and bits 0-4 of the FSV (bit positions 8-12 of the operand), are reserved 
and must contain O's; otherwise, a floating-point specification exception is 
indicated. The word in storage remains unchanged. 

Bits 8-10 and 12 of the FSV (bit positions 16-18 and 20 of the first-operand 
word) are reserved and should be written as O's. 

Bit positions 4 and 5 of the instruction are reserved and should contain O's. 

WRITE FLOATING-POINT STATUS VECTOR is supervisor-privileged. An 
attempt to execute this instruction in input/ output or application mode causes a 
program-exception interruption due to floating-point privileged-operation 
exception. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Specification (operand 1: real address) 
Access (operand 1: block invalid) 

I Operation (if the floating-point feature is not installed) 
Separation (operand 1 ) 
Address (operand 1: all) 
Floating-point privileged operation 
Floating-point specification (operand 1: bits 4 and 8-12 of 

operand are not all O's) 

Chapter 5. Floating-Point Instructions 5-27 



5-28 

Programming Notes 
WRITE FLOATING-POINT STATUS VECTOR can be used to assign a 
floating-point register set for use on the specified priority level, or to alter the 
state of the precision-mode and exception-mask bits. The instruction can also be 
used to clear the floating-point-check bit and exception-indicator bits. 

An interruption will not occur as a result of making the floating-point-check bit, 
or any of the exception-indicator bits, a 1 with this instruction. 

When the current priority level is specified in the first operand, the current FSV is 
replaced with the new FSV from main storage. 



PART Ill. SUPERVISORY FACILITIES 

Chapter 6. Register Organization 
Chapter 7. Dynamic Address Relocation and Translation 
Chapter 8. Input/ Output Operations 
Chapter 9. PCE Control 
Chapter 10. Dual-Mode Processing 





Chapter 6. Register Organization 

Organization 

Principal Registers 

This chapter describes the logical organization of three groups of registers 
provided in each PCE of an 8100 system. The permanent assignment of certain 
registers to hold control information is discussed. The supervisor-privileged 
operations used to refer to information in any register in the principal and adjunct 
register groups are also described. These operations are called the register-indirect 
operations. 

The PCE can address information held in various registers which are organized in 
groups and sets. Two groups of registers are always provided by the PCE: the 
principal register group and the adjunct register group. When the optional 
floating-point feature is installed, a third group of registers, the floating-point 
register group, is provided. 

Registers are organized in register sets within each group. Each principal or 
adjunct register set consists of eight registers numbered consecutively 0-7. Each 
principal or adjunct register contains 32 bits. The floating-point register sets each 
consist of four registers numbered consecutively 0-3. Each floating-point register 
contains 64 bits. This organization is illustrated in Figure 6-1, which also 
illustrates selection of information in the principal and adjunct register groups 
with register-indirect operations (see "Access to Register Contents" in this 
chapter). 

The group of principal registers consists of 64 register sets numbered 
consecutively 0-63 (with eight registers in each set). Principal register sets 0, 1, 4, 
5, and 8-15 are permanently assigned to hold information necessary for PCE 
control and channel input/ output operations. Principal register sets 16-63 are 
available for assignment to programs as general registers. Sets 2, 3, 6, and 7 are 
reserved. Figure 6-2 shows the permanent assignments of principal register sets. 

A program has two principal register sets assigned to it as general-register sets: a 
primary set and a secondary set. These two sets provide a program with 16 general 
registers of 32 bits each. Two fields in the program's PSV designate, respectively, 
the numbers of the primary and secondary register sets assigned to the program. 
Chapter 9, "PCE Control," describes the format and functions of the PSV. 

Principal register sets 0, 1, 4, and 5 hold PSV information. Information in the 
PSV is switched whenever the current PSV is stored and a new PSV is introduced. 
PSV information is stored in, and introduced from, permanently assigned 
principal register locations. 

Two PSVs, referred to as the primary PSV and the secondary PSV, are associated 
with each priority level. Accordingly, each priority level is assigned principal 
register locations that hold two PSVs. The primary PSVs are held in principal 
register sets 0 and 1 . Sets 4 and 5 provide the register locations for secondary 
PSVs. Chapter 9, "PCE Control," describes priority levels and the dual PSV 
facility. 

Chapter 6. Register Organization 6-1 



,-----, Group, Halfword Set, Register, 

Floating-point 
Group 

(optional) 

I 
I 
I 
I 
L 

Adjunct 
Group 

Principal 
Group 

- - ------
--------
-- - - ----

l 
---, "- - -~ ~--

- - -- - --

_.,._ "'""'-

1 T 

I 
- ...1 
~ 

I 
I 

-- l -- I 

I 
~J 

.... --

--

.......... 

T 

Figure 6-1. Register Organization and Information Selection 

6-2 

Each 64-bit PSV occupies a specific pair of registers in its assigned principal 
register set. Bit positions 0-31 of the PSV are held in the even-numbered register 
of the pair; bits 32-63 are held in the odd-numbered register of the pair. Figure 
6-3 shows the assignment of register locations that hold the primary and 
secondary PSV for each priority level. 

Principal register sets 8-15 are permanently assigned as channel pointers. 
I Channel pointers are used during channel I/ 0 operations to hold the addresses of 

main-storage locations referred to during the input/ output operation. Each 32-bit 
channel pointer occupies one register. Channel pointers 0-31 are assigned to 
register sets 12-15: channel pointers 32-63 are assigned to register sets 8-11. 
Figure 6-4 shows the assignment of channel pointers in principal register sets. 

Programming Notes: 

Any principal register set may be assigned as a primary or secondary 
general-register set. 

Because principal register sets 0, 1, 4, 5, and 8-15 are assigned as PSV 
locations and channel pointers, these register sets should not be assigned as 
general registers during normal system operation. 

I Principal register sets 2, 3, 6, and 7 are reserved. Reserved register sets should 
not be used by a program or channel. 



Set 

0 

2 

3 

4 

5 

6 

7 

8 

• 
• 
• 

11 

12 

• 
• 
• 

15 

16 

1--

1--

1--

........... 

Adjunct Register Group 

ACVs/EBls 
Levels 0-3 
ACVs/EBls 
Levels 4-7 

Reserved 

ACVs/EBls 
Levels 0-3 
ACVs/EBls 
Levels 4-7 

Reserved 

AC Vs 

Channel 

Pointers 

32-63 

AC Vs 

Channel 

Pointers 

0-31 

-

-

- -

Protection Keys Primary Levels 0-3 

17 Protection Keys Primary Levels 4-7 

18 
Reserved 

19 

20 Protection Keys Secondary Levels 0-3 

21 Protection Keys Secondary Levels 4-7 

22 

23 

24 

• 
• 

27 

28 

• 
• 
• 

31 

32 

• 

Reserved 

Protection Keys 

Channel 
Pointers 

32-63 

Protection Keys 

Channel 
Pointers 

0-31 

Reserved 

I--

I--

t---

Principal Register Group 

Primary PSVs 

Levels 0-3 
Primary PSVs 

Levels 4-7 

Reserved 

Secondary PSVs 

Levels 0-3 
Secondary PSVs 

Levels 4-7 

Reserved 

Channel 

Pointers 

32-63 

Channel 

Pointers 

0-31 

General 
Register 

Sets 
16-63 

-

-

-
""""--

Set 

0 

2 

3 

4 

5 

6 

7 

8 

• 
• 
• 

11 

12 

• 
• 
• 

15 

16 

• 
• 
• 

63 

Figure 6-2. Assignment of Principal and Adjunct Register Sets 

Chapter 6. Register Organization 6-3 



Register 
Set 0 

Register 
Set 1 

Primary PSV 
Locations 

31;} Level 0 
63 

0 0 
PSV 

1 32 

: PSV } Level 1 

i--------------t 

: ....._ ____ P_s_v _____ } Level 2 

6 
} Level 3 

----------------
31 } Level 4 
63 

PSV 
7 

0 0 
PSV 

32 

PSV 

2 
} Level 5 

i----------------~ 

} Level 6 

t---------------1 

} Level 7 
...._ ________________ __, 

PSV 
3 

4 
PSV 

5 

6 

7 

{ 

0 

32 

Secondary PSV 
Locations 

PSV 
31 0 

63 1 

{ .,__ ______ P_s_v _____ ---1 : 

{ ~----P_s_v _____ __. : 

Register 
Set 4 

{ 
PSV : 

i-----~ -~ 

{ 

0 

32 

31 0 
PSV 

63 1 

{ i-----PSV ------4 

{ .,__ ____ P_s_v ______ ---1 : 

2 

3 
Register 

Set 5 

{ 
PSV : 

...__________, _ ___.._______ 

Figure 6-3. PSV Locations in Principal Register Sets 

Adjunct Registers 

6-4 

The group of adjunct registers consists of 64 register sets numbered consecutively 
0-63 (with eight registers in each set). Adjunct registers are provided to hold 
address control vector (ACV), exception block index (EBI), and protection key 
information. An ACV contains information required for dynamic address 
relocation and for activation of dynamic address translation. Adjunct register sets 
0, 1, 4, and 5 contain ACVs and EBis associated with PSVs; sets 8-15 contain 
ACVs associated with channel pointers~ the even-numbered registers in sets 16, 
1 7, 20, 21, and all registers in sets 24-31 contain protection keys. Ad jun ct register 
sets 2, 3, 6, 7, 18, 19, 22, 23, and 32-63, register 1 in adjunct register set 0, and 
the odd-numbered registers in sets 16, 17, 20, and 21 are reserved. Reserved 
register sets should not be used by a program. 

One ACV is associated with each PSV and is introduced as the current ACV 
whenever the corresponding PSV is made active. Chapter 7, "Dynamic Address 
Relocation and Translation," describes the format and functions of the ACV. An 
ACV is also associated with each channel pointer, and is used to control 
addressing during channel I/ 0 operations that use the corresponding channel 
pointer. Chapter 8, "Input/Output Operations," discusses the role of the ACV 
and channel pointer in channel I/ 0 operations. The permanent assignments and 
pairings of principal and adjunct register sets are shown in Figure 6-2. 



CHP Numbers 0-31 

0 0 

1 

2 2 

Register 3 3 
Set 12 

4 4 

5 5 

6 6 

7 7 

0 8 

9 

2 10 

Register 3 11 

Set 13 
4 12 

5 13 

6 14 

7 15 

0 16 

17 

2 18 

Register 3 19 

Set 14 
4 20 

5 21 

6 22 

7 23 

0 24 

25 

2 26 

Register 3 27 

Set 15 
4 28 

L 
29 

30 

31 

Figure 6-4. Channel Pointers 

CHP Numbers 32-63 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 
... ,_,._ 

61 
r---·-

62 

63 

3 

4 

5 

6 

7 

0 

2 

3 

4 

5 

6 

7 

0 

2 

3 

4 

5 

6 

7 

0 

2 

3 ·- 4 

5 

6 

7 

Register 
Set 8 

Register 
Set 9 

j 

Register 
Set 10 

Register 
Set 11 

Chapter 6. Register Organization 6-5 



Adjunct 
Register 

Set 0 

3 

4 

5 

6 

7 

0 

2 

Adjunct 3 
Register 

Set 1 4 

l_: 

0 

0 

Adjunct register sets 0, 1, 4, and 5 are associated with principal register sets 0, 1, 
4, and 5, respectively, so that one 32-bit ACV /EBI pair corresponds to each PSV. 
Even-numbered registers in these adjunct register sets are used for ACVs; 
odd-numbered registers, with the exception of register 1 in register set 0, are used 
for EBis. There is no EBI register associated with the primary PSV I ACV for 
priority level 0. Figures 6-5 and 6-6 show the association of ACV register 
locations with PSV register locations. 

Adjunct register sets 8-15 are associated with principal register sets 8-15 so that 
one ACV corresponds to each channel pointer. Figure 6-7 shows the ACV 
register location associated with each channel pointer. 

Adjunct register sets 16, 17, 20, and 21 are associated with adjunct register sets 0, 
1, 4, and 5, respectively, so that one protection key corresponds to each 
PSV I ACV. Even-numbered registers in adjunct register sets 16, 17, 20, and 21 
are used for protection keys; odd-numbered registers in these sets are reserved. 
Figures 6-8 and 6-9 show how protection keys correspond to ACVs associated 
with PSVs. 

Adjunct register sets 24-31 are associated with adjunct register sets 8-15, 
respectively, so that one protection key corresponds to each channel 
pointer I ACV. All registers in adjunct register sets 24-31 are used for protection 
keys. Figure 6-10 shows how protection keys correspond to ACVs associated 
with channel pointers. 

Address Control Vectors Primary Program Status Vectors 

ACV 31 

Reserved 

ACV 

EBI 

ACV 

EBI 

ACV 

EBI 

} { 0 31 0 

1 
Level 0 PSV 

32 63 1 

} { 
2 

Level 1 PSV 
3 Principal 

Register 

} { 
4 Set 0 

Level 2 PSV 
5 

} { 
6 

Level 3 PSV 
7 

ACV 31 

EBI } { 0 31 0 
Level 4 PSV 

32 63 

ACV 

EBI 

ACV 

EBI 

ACV 

EBI 

} { 2 
Level 5 PSV 

3 Principal 
Register 

} { 
4 Set 1 

Level 6 PSV 

l 
5 

}_ Level 7 _ { 

6 
PSV 

7 

Figure 6-5. ACV /EBI Pairs Associated with Primary PSVs 

6-6 



0 0 

2 

Adjunct 3 
Register 

Set 4 4 

5 

6 

7 

0 0 

2 

Adjunct 3 
Register 

l __ ~ 

Depending on processor model, certain byte locations in adjunct registers are not 
necessarily made available to the program when the locations are used only to 
hold ACV information represented by all 0 bits. In particular, the two high-order 
byte locations (bits 0-15) are not made available on any processor model having a 
PCE address space that is never larger than 16, 777 ,216 bytes. These two byte 
locations are not made available because they always contain O's when the 
adjunct register is used to hold an ACV that describes a logical address space of 
16, 777 ,216 or fewer bytes. When an ACV is referred to by the PCE or channel, 
unavailable byte locations in the adjunct register are assumed to contain O's. 

An attempt by the program to refer to unavailable adjunct-register byte locations 
(using the register-indirect instructions) results in a program-exception 
interruption. 

Programming Note: Adjunct register sets 2, 3, 6, 7, 18, 19, 22, 23, and 32-63, 
register 1 in adjunct register set 0, and the odd-numbered registers in sets 16, 17, 
20, and 21 are reserved. Reserved register sets should not be used by a program. 

Address Control Vectors Secondary Program Status Vectors 

ACV 31 

EBI 

ACV 

EBI 

ACV 

EBI 

ACV 

EBI 

ACV 31 

EBI 

ACV 

EBI 

ACV 

EBI 

ACV 

EBI 

} 
} 
} 
} 

} 

Level o { .... :_2 ____ P_s_v ____ 6-

3

3 ...... 

1 :-T 
Level 1 { PSV 

3 Principal 
i--------------t Register 

{ 

4 Set 4 
Level 2 PS\/ 

5 

Leve13 { 
....,__ _________ __ 

{ 

0 
Level 4 

32 
1--------------t 

6 
PSV 

7 

31 0 
PSV 

63 

2 

Level 5 { PSV 
3 Principal 

1-----------------t 

Level 6 { 1-------P_s_v ____ ---t : 

Register 
Set 5 

} Level 7 { ___ P_sv ___ : 

Figure 6-6. ACV /EBI Pairs Associated with Secondary PSVs 

Chapter 6. Register Organization 6-7 



Adjunct 
Register 

Set 12 

Adjunct 
Register 

Sets 13-15 

Adjunct 
Register 
Set 8 

Adjunct 
Register 
Sets 9-11 

I'--

7 

0 

---

"f--

7 

0 

---

Address Control Vectors 

ACV 

ACV 

• 
• 
• 

ACV 

ACV 

ACV 

• 
• 

• 
• 

ACV 

ACV 

ACV 

• 

Figure 6-7. ACVs Associated with Channel Pointers 

6-8 

.__ 

-r--

.--...._ 

1--' 

l 

Channel Pointers 

0 

• 
~ • 

• 
7 

8 

9 

• .--...._ • ~ • 
31 

32 

33 

• .--...._ • ....... 
• 
39 

40 

41 

• 
~ • 

1--' 

~ 

-.-. 

...-..._ 
-r--

--I.-

Principal 
Register 
Set 12 

7_1 
0 

7 

0 

7 

0 

I 
Principal 
Register 

Sets 13-15 

Principal 
Register 
Set 8 

Principal 
Register 

Sets 9-11 



Adjunct 

Register 

Set 16 

3 

4 

5 

6 

7 

0 

2 

Adjunct 3 
Register 

Set 17 4 

l: 

0 

0 

Protection Keys 

Protection Key 

Reserved 

Protection Key 

Reserved 

Protection Key 

Reserved 

Protection Key 

Reserved 

Protection Key 

Reserved 

Protection Key 

Reserved 

Protection Key 

Reserved 

Protection Key 

Reserved 

31 

} Level 0 

} Level 1 

} Level 2 

} Level 3 

31 

} Leve14 

} Level 5 

} Level 6 

} Level 7 

{ 
{ 
{ 
{ 
{ 
{ 
{ 

{ 

Address Control Vectors 

Associated with 
Primary Program Status Vectors 

0 ACV 31 

Reserved 

ACV 

EBI 

ACV 

EBI 

ACV 

EBI 

0 ACV 31 

EBI 

ACV 

EBI 

ACV 

EBI 

ACV 

EBI 

0 

1 2 

3 Adjunct 

Register 
4 Set 0 

5 

6 

7 

0 

2 

3 Adjunct 
Register 

4 Set 1 

5 

l 6 

7 

Figure 6-8. How Protection Keys Correspond to ACVs Associated with Primary PSVs 

Chapter 6. Register Organization 6-9 



Adjunct 3 

Register 

Set 20 

Adjunct 

Register 

4 

5 

6 

7 

0 

2 

3 

Set 21 4 

1: 

0 

0 

Protection Keys 

Protection Key 31 

Reserved 

Protection Key 

Reserved 

Protection Key 

Reserved 

Protection Key 

Reserved 

Protection Key 31 

Reserved 

Protection Key 

Reserved 

Protection Key 

Reserved 

Protection Key 

Reserved 

) Level 0 { 
} Level 1 { 
) Level 2 { 
} Level 3 { 

} Level 4 { 
{ Level 5 

Level 6 { 

} Level 7 { 

Address Control Vectors 
Associated with 

Secondary Program Status Vectors 

0 ACV 31 

EBI 

ACV 

EBI 

ACV 

EBI 

ACV 

EBI 

0 ACV 31 

EBI 

ACV 

EBI 

ACV 

EBI 

ACV 

EBI 

Figure 6-9. How Protection Keys Correspond to ACVs Associated with Secondary PSVs 

6-10 

~T 
3 Adjunct 

4 

5 

6 

7 

0 

2 

3 

4 

5 

6 

7 

Register 

Set 4 

Adjunct 

Register 

Set 5 



Adjunct 
Register 
Set 28 

Adjunct 
Register 

Sets 29-31 

Adjunct 
Register 
Set 24 

Adjunct 
Register 

Sets 25-27 

I'-

7 

0 

_....,_ 
'I--

!--· 

............ 
'I--

7 

0 

Protection Keys 

Protection Key 

Protection Key 

• 
• 
• 

Protection Key 

Protection Key 

Protection Key 

• 
• 
• 

Protection Key 

Protection Key 

Protection Key 

• 
• 
• 

Protection Key 

Protection Key 

Protection Key 

• 

CHPO 

CHP1 

~ 

....... 

CHP7 

CHP8 

CHP 9 

--~ 
CHP 31 

CHP 32 

CHP 33 

............ 
~ 

CHP 39 

CHP 40 

CHP 41 

.......,.... 

--L-

"'"")---

~ 

r--

Address Control Vectors 
Associated with 
Channel Pointers 

ACV 

ACV 

• 
• 
• 

ACV 

ACV 

ACV 

• 
• 
• 

ACV 

ACV 

ACV 

• 
• 
• 

ACV 

ACV 

ACV 

• 

l-' 

7 

0 

~ 

1-

7 

0 

_....,_ 
....... 

7 

0 

Adjunct 
Register 
Set 12 

Adjunct 
Register 

Sets 13-15 

Adjunct 
Register 

Set 8 

Adjunct 
Register 

Sets 9-11 

L 11--Pr-otoc~-ion K-ey -----J CHP 63 T 
-------

"'""- • """--

• 
ACV 

--- ......._ 

Figure 6-10. How Protection Keys Correspond to ACVs Associated with Channel Pointers 

Floating-Point Registers 

The group of floating-point registers consists of eight register sets numbered 
consecutively 0-7. All floating-point register sets are available for assignment to 
programs. A program has one floating-point register set assigned to it. A field in 
the floating-point status vector designates the number of the floating-point 
register set assigned to the program. The format and functions of the 
floating-point status vector are described in Chapter 9, "PCE Control." 

Chapter 6. Register Organization 6-11 



Access to Register Contents 

6-12 

In general, instructions can refer to only the 16 active general-purpose registers 
assigned to the program. Exceptions exist for the supervisor-privileged 
register-indirect operations which can refer to any register in the principal and 
adjunct register groups. Information can be transferred between an active general 
register and any principal or adjunct register by means of the register-indirect 
instructions. These instructions can be executed only when the program-mode 
field of the current PSV specifies master or supervisor mode. Register-indirect 
operations are described under "Instructions" in this chapter. 

Information in floating-point registers can be referred to using instructions 
provided with the floating-point feature. Only the contents of the active 
floating-point registers can be accessed. 

The register-indirect operations use a register-indirect addressing vector to address 
a byte or halfword location in any principal or adjunct register. The 
register-iitdirect addressing vector is a 16-bit quantity organized as five fields, as 
follows: 

-

Halfword Selection (H): 
O - Lower halfword of register 

1 - Upper halfword of register 

Group Selection (G): 

0 - Principal register group 
1 - Adjunct register group 

Byte Selection (B): 
0 - High-order 8 bits of halfword 
1 - Low-order 8 bits of halfword 

,~ ,, ,, 
H G 0 0 0 0 Set Number 

Register 
B 

Number 

0 1 2 5 6 11 12 14 15 

The fields of the register-indirect addressing vector are allocated as follows: 

Half word Selection (H): A value of 0 in bit position 0 selects the lower 
halfword of a register; a value of 1 selects the upper halfword. Bit position 0 
must contain 0 for references to an adjunct register when the two high-order 
byte locations (bit positions 0-15) of the register are not available to the 
program. 

Group Selection (G): A value of 0 in bit position 1 selects the principal register 
group; a value of 1 selects the adjunct register group. 

Set Number: Bit positions 6-11 contain an unsigned, positive, binary integer 
that is the number of the principal or adjunct register set containing the 
register to be accessed. 



Instructions 

Register Number: Bit positions 12-14 contain an unsigned, binary integer that 
is the number of the register within a principal or adjunct register set. 

Byte Selection (B): A value of 0 in bit position 15 selects the byte contained in 
bit positions 0-7 of the halfword selected by bit 0 (H); a value of 1 selects the 
byte contained in bit positions 8-15. Bit position 15 is ignored for operations 
on halfword data units. 

Reserved Bits: Bit positions 2-5 of the register-indirect vector are reserved and 
must contain O's. 

Programming Note: Bit positions 6-15 of the register-indirect addressing vector, 
considered as one field, represent a consecutive numbering of byte locations in 
either the upper or the lower half of all registers in a group. 

The register-indirect instructions, including their mnemonics, formats, and 
operation codes, follow. The procedure for describing the individual instructions, 
and the symbols used in the instruction formats and the expressions of operations, 
are defined under "Instruction Descriptions" in Chapter 4. Ref er to Appendix B 
for an explanation of the assembler language notation used in the instruction 
descriptions. 

LOAD (byte, register-indirect) 

LRN rpb,ra 

A r 1 R2 F RR Format 

0 3 4 7 8 11 12 15 

Operation 
(r1) <-RG[(R2<16 .. 31>)] 

Description 
The byte at the second-operand location is placed unchanged in the first-operand 
location. The contents of the low-order 16 bit positions of the general register 
designated by the R2 field are used as a register-indirect addressing vector 
specifying the second-operand location. 

The first operand is located in the primary general register set. The second 
operand is located in any principal or adjunct register set. 

This instruction is supervisor-privileged. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Operation (privileged operation) 
Register-Indirect (operand 2) 

Chapter 6. Register Organization 6-13 



LOAD (halfword, register-indirect) 

LHRN rpb,ra 

A R1 R2 D RR Format 

0 34 78 1112 15 

Operation 
(R1<16 .. 31 >) <- RG[(R2 < 16 .. 31 > )] 

Description 
The halfword at the second-operand location is placed unchanged in the 
first-operand location. The contents of the low-order 16 bit positions of the 
general register designated by the Ri field are used as a register-indirect 
addressing vector specifying the second-operand location. 

The first operand occupies the lower half word of the general register designated 
by the R1 field. The second operand is located in any principal or adjunct register 
set. 

This instruction is supervisor-privileged. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Operation (privileged operation) 
Register-Indirect (operand 2) 

STORE (byte, register-indirect) 

6-14 

STRN rpb,ra 

A r1 R2 C RR Format 

0 3 4 7 8 11 12 15 

Operation 
RG[(Ri<16 .. 31>)] <- (r1) 

Description 
The first-operand byte is stored unchanged at the second-operand location. The 
contents of the low-order 16 bit positions of the general register designated by the 
~ field are used as a register-indirect addressing vector specifying the 
second-operand location. 

The first operand is located in the primary general register set. The second 
operand is located in any principal or adjunct register set. 

This instruction is supervisor-privileged. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Operation (privileged operation) 
Register-Indirect (operand 2) 



STORE (halfword, register-indirect) 

STHRN rh,ra 

A R1 ~ E RR Format 

0 34 78 1112 15 

Operation 
RG[(Ri<16 .. 31>)] <-(R1<16 .. 31>) 

Description 
The halfword first-operand is stored unchanged at the second-operand location. 
The contents of the low-order 16 bit positions of the general register designated 
by the R2 field are used as a register-indirect addressing vector specifying the 
second-operand location. 

The first operand occupies the lower halfword of the general register designated 
by the R1 field. The second operand is located in any principal or adjunct register 
set. 

This instruction is supervisor-privileged. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Operation (privileged operation) 
Register-Indirect (operand 2) 

Chapter 6. Register Organization 6-15 





Chapter 7. Dynamic Address Relocation and Translation 

This chapter describes the facilities of the IBM 8100 system PCE provided for 
storage management by a supervisory program. Included in this chapter are 

I 
discussions of dynamic address relocation, dynamic address translation, storage 
protection, and the information used to control these facilities. Also described are 
the supervisor-privileged instructions that allow access to information used for 
address translation and storage protection. 

Logical Addressing of Main Storage 

The addressing arrangement of the PCE is based on a logical separation of the 
addresses used by the program and channel from the addresses assigned to the 
physical locations in main storage. A set of addresses used to refer to main storage 
is called an address space. Byte locations are numbered consecutively, left to 
right, from 0 to the maximum address defined for the address space. Each 
number is considered the address of the corresponding byte location. 

Each program can have a logically distinct address space assigned to it. Similarly, 
logically distinct address spaces can be assigned to each channel I/ 0 operation 
that refers to main storage. These distinct address spaces are called logical 
address spaces. All main-storage addresses used by the program or channel are 32 
bits long and are treated as logical addresses - they are not used directly to refer 
to physical main storage. 

The real address space is the set of addresses assigned to the physical main-storage 
locations. Byte locations in the physical main storage are numbered consecutively, 
left to right, from 0 to the highest-numbered installed location. 

Also defined is an address space, called the PCE address space, which is the 
complete set of addresses provided by the PCE. The size of the PCE address 
space depends on the processor model. Depending on processor model, the PCE 
address space may have two sizes: one size that applies only when dynamic 
address translation is active and one that applies only when translation is not 
active. 

During program execution and channel 1/0 operations, all logical addresses used 
to refer to main storage are always dynamically relocated in the PCE address 
space. When dynamic address translation is not active, the relocated addresses 
are used directly as real addresses to refer to main storage. When dynamic 
address translation is active, a translation table is used to assign blocks of 
relocated addresses to blocks of real main storage. The dynamic address 
relocation and translation facilities are described in the following sections. 

Dynamic Address Relocation 

During every storage reference, the logical address supplied by the program or 
channel is mapped into the PCE address space. This mapping process is called 
dynamic address relocation, and is illustrated in Figure 7-1. 

Chapter 7. Dynamic Address Relocation and Translation 7-1 



0 

0 

Logical Address 
Spaces 

A 

B 

o -----' c______. 

ACV 

0 8 

ACV 

0 8 

ACV 

0 8 

Size 

PCE Address 
Space 

-,...------- 4--0rigin 

A 

B 

.--origin 
A 

--~I~~~~ ~~~ 4---0iigin 
c 

c 

Figure 7-1. Dynamic Address Relocation 

7-2 

The information that controls dynamic address relocation is contained in an 
address control vector (ACV). The activation of dynamic address translation is 
also controlled by information in the ACV. One ACV is associated with each 
program status vector (PSV) and is made the current ACV when the 
corresponding PSV is introduced as the current PSV. The switching of PSV and 
ACV information is described in Chapter 9. 

An ACV is also associated with each channel pointer. The logical address space 
for a channel I/O operation is defined by the ACV corresponding to the channel 
pointer used in the operation. This ACV is independent of, and does not replace, 
the current ACV which controls dynamic address relocation and translation 
during program execution. The ACV associated with a channel pointer controls 
dynamic address relocation and translation only within the scope of the channel 



Address Control Vector 

Address-Space Size 

I/O operation which uses the corresponding channel pointer. The relationship of 
the channel pointer and ACY in channel I/O operations is described in Chapter 
8, "Input/ Output Operations." 

Dynamic address relocation is controlled by two elements of information: the size 
of the logical address space, and its assigned beginning location in the PCE 
address space. The address in the PCE address space of the beginning of a logical 
address space, after relocation, is called the origin address. The relocation 
mechanism associates the contiguous addresses of a logical address space with a 
set of contiguous addresses in the PCE address space. 

The address-relocation facility tests the logical address used in each storage 
reference. If the logical address exceeds the maximum address in the logical 
address space assigned to the program or channel I/ 0 operation, an address 
exception is detected. If the logical address does not exceed the maximum 
address, it is combined with the origin address to produce a relocated address in 
the PCE address space. 

An ACY is 32 bits long and contains an address-space origin field, an 
address-space size field, and a translation-control field (see Figure 7-2). Bit 
position 31 controls the operation of dynamic address translation and is described 
under "Dynamic Address Translation" in this chapter. Bit positions 8-30 are 
allocated to the two variable-length fields: origin and size. Bit positions 0-7 are 
reserved and must contain O's. 

loooooooo Origin Size H 
0 7 8 k 30 31 

Figure 7-2. Address Control Vector 

The size of a logical address space is represented with a variable-length code in 
the size field of the A CV. The size must be an integral power of 2 that is not less 
than 211 (2048) and not greater than 232 ( 4,294,967 ,296). The size of the PCE 
address space is also an integral power of 2 in the same range. The size of a 
logical address space, however, may not exceed the size of the PCE address space. 
The number of ACY bit positions used to represent the size increases by 1 for 
each power-of-2 increase in the size of the logical address space; the number of 
bits in the origin field decreases by 1 accordingly. The format of the ACY for 
each address-space size is given in Figure 7-3. 

In Figures 7-2 and 7-3, bit-position k marks the variable boundary between the 
origin and size fields. Bit positions 8 through k-1 contain the origin; bit positions 
k through 30 contain the size. The boundary (bit position k) is determined by the 
address space size. For the smallest size (2048), 2 bits are used to define the size 
and k, therefore, is bit position 29. The maximum address-space size 
( 4,294,967 ,296) requires 23 bits to define the size and k is bit position 8. 

Chapter 7. Dynamic Address Relocation and Translation 7 -3 



7-4 

Address Space Size 
(Bytes) 

2,048 

4,096 

8,192 

16,384 

32,768 

65,536 

131,072 

262, 144 

524,288 

1,048,576 

2,097, 152 

4, 194,304 

8,388,608 

16,777,216 

33,554,432 

67, 108,864 

134,217,728 

268,435,456 

536,870,912 

1,073, 741,824 

2,147,483,648 

4,294,967,296 

0 7 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 

0 7 

Translation Control ---------,1 
k-~i + 

8 29 

Origin Joo 
Origin Jo o 1 

Origin Joo 1 0 

Origin Io o o 1 1 
i 

Origin Io o o , 1 1 

Origin l 0 0 0 1 0 1 1 

Origin Io o o o 1 1 1 1 

Origin loooo 1 0 0 1 1 

Origin ]00000 1 0 1 1 1 

Origin loooooo 1 1 0 1 1 

Origin ]0000000 1 1 1 1 1 

Origin 10000000 1 1 1 1 1 1 

Origin looooooo 1 0 1 1 1 1 1 

Origin loooooooo 1 1 1 1 1 1 1 

Origin l 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 

Origin l 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 

Origin l 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 

Origin l 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 

Ociginl 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 

1 1 1 ·1 1 1 1 1 1 1 l 00000000001 

] 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 

0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 

8 •----k 

31 

T 

T 

T 

T 

T 

T 

T 

T 

T 

T 

T 

T 

T 

T 

T 

T 

T 

T 

T 

T 

T 

T 

31 

Figure 7-3. Address Control Vector Formats 



Address-Space Origin 

Before a logical address is relocated, it is compared with the maximum address in 
the address space. lf the logical address does not exceed the maximum address, it 
is relocated. A logical address does not exceed the maximum address when the 
required number of its high-order bits are O's. The number of high-order bits that 
must be O's is determined by the size of the address space, as explained in the 
following paragraph. 

Figure 7-4 shows a representation of the 32-bit logical address used by the 
program or channel. In Figure 7-4, bit position m of the logical address marks the 
variable boundary to the left of which the high-order bits must be O's. Bit 
positions 0 through m-1 must contain O's; bit positions m through 31 contain the 
significant bits of the logical address. Bit position m may be any of bit positions 
0-21, corresponding to the address-space sizes represented in the size field of the 
ACV, as shown in Figure 7-5. 

Io o ................. 0 o 

0 m 

Figure 7-4. Logical Address Used by the Program or Channel 

Address Space Size 

2.048 
4,096 
8, 192 

16,384 
32,768 
65,536 

131,072 
262, 144 
524,288 

1,048,576 
2,097, 152 
4, 194,304 
8,388,608 

16,777,216 
33,554,432 
67, 108,864 

134,217,728 
268,435,456 
536,870,912 

1,073,741,824 
2,147,483,648 
4,294,967,296 

m 

21 
20 
19 
18 
17 
16 
15 
14 
13 
12 
11 
10 

9 
8 
7 
6 
5 
4 
3 
2 
1 
0 

k 

29 
28 
27 
26 
25 
24 
23 
22 
21 
20 
19 
18 
17 
16 
15 
14 
13 
12 
11 
10 

9 
8 

Figure 7-5. Correspondence of m and k to Address Space Sizes 

31 

The origin field in the ACV defines the beginning address (after relocation) of 
the logical address space within the PCE address space. A logical address space is 
located at an address in the PCE address space that is an integral multiple of the 
size of the logical address space. Thus, the representation of the origin address is 
determined by the size of the logical address space. The origin address necessarily 
has a number of low-order O's equal to the number of low-order O's in the binary 
representation of the address-space size (which must be a power of 2 between 21 1 

and 2 3 2, inclusive). 

Chapter 7. Dynamic Address Relocation and Translation 7-5 



Relocation Process 

7-6 

A 32-bit representation of an origin address is shown in Figure 7-6. Bit position m 
marks the variable boundary to the right of which all bits, including m, are O's. 
Thus for the smallest address-space size (2048) mis bit position 21 and bits 
21-31 of the origin address are O's. The largest size ( 4,294,967 ,296) has an 
origin address of 0 and mis bit position 0. The correspondence of m to 
address-space sizes is shown in Figure 7 -5. 

0 0 0 ........................ 0 0 0 

0 m 

Figure 7-6. Origin Address 

31 

Bits 0 through m-1 of the origin address can be used directly in bit positions 8 
through k- l of the ACV to represent the origin. Bits m through 31, which are O's, 
are not explicitly represented in the origin field of the ACV. The origin address 
cannot exceed the maximum address in the PCE address space. Thus, the origin 
field necessarily contains a number of high-order O's equal to the number of 
high-order O's in a 32-bit binary representation of the maximum address in the 
PCE address space. 

Programming Notes: 

• ACV information is held in permanently assigned adjunct-register locations. 
These register locations are described in Chapter 6, "Register Organization," 
as are the supervisor-privileged instructions used to access the adjunct-register 
locations. 

• Depending on processor model, certain byte locations in adjunct registers are 
not necessarily made available to the program when the locations are used 
only to hold ACV information represented by all 0 bits. In particular, the 
high-order byte location (bits 0-7) of an adjunct register is not necessarily 
made available on any processor model. This byte location may not be made 
available because it is used only to hold reserved (0) bits in an ACV. Further, 
the two high-order byte locations (bits 0-15) are not made available on any 
processor model having a PCE address space that is never larger than 
16,777,216 bytes. These two byte locations are not made available because 
they always contain O's when the adjunct register is used to hold an ACV 
describing a logical address space of 16, 777 ,216 or fewer bytes. When an 
ACV is referred to by the PCE or channel, unavailable byte locations in the 
adjunct register are assumed to contain O's. 

Address relocation is performed during each reference to main storage by the 
program or channel. The relocation process yields a relocated address in the PCE 
address space. The relocated address is obtained by concatenating the origin field 
from the ACV with bits m through 31 from the logical address, with the origin 
field forming the high-order part. The relocation process is shown in Figure 7-7. 



looooooool 

When dynamic address translation is active (bit 31 of the ACV is 1), the 
relocated address is translated into the corresponding real address before the 
storage reference. When dynamic address translation is not active (bit 31 of the 
ACV is 0), the relocated address is used directly as a real address to refer to a 
location in the physical main storage. If an attempt is made to refer to a physical 
main-storage location that is not installed, a specification exception is detected. 

Programming Note: Physical main-storage locations are installed, and real 
addresses are assigned, in integral multiples of 2048 bytes. The PCE address 
space size, however, is always a power of 2 between 21 1 and 2 3 2, inclusive. 
Therefore, in order to allow references to all physical locations, the size of the 
PCE address space is always equal to or greater than the size of installed main 
storage. 

Logical Address 

loo ..................... o o I 
0 m 31 

ACV 

Origin Size =ii] 
31 

' 
0 m 31 

Relocated Address 

Figure 7-7. Dynamic Address Relocation Process 

Dynamic Address Translation 

Dynamic address translation provides the ability to assign noncontiguous blocks 
of real storage addresses to a set of contiguous logical storage addresses. The 
translation function is perfonned without change or inspection of the program and 
its data, does not require any explicit programming conventions, and does not 
disturb the execution of the program. Also provided with this facility are means 
for controlling access to storage. 

Address translation is controlled by the translation-control field (bit position 3 l) 
in the ACV. When this bit is 1, translation is specified; when this bit is 0, no 
dynamic address translation takes place and relocated addresses are used as real 
addresses. When dynamic address translation is specified in the current ACV 
(during program execution) or in the ACV paired with a channel pointer (during 
a channel I/O operation), each relocated address is translated before a storage 
reference. 

The unit of information recognized for dynamic address translation is the block. 
A block is a set of 2048 (2K) consecutive byte addresses beginning with an 
address that is a multiple of 2048. A relocated address that is to be translated, is 

Chapter 7. Dynamic Address Relocation and Translation 7-7 



Translation-Table Entries 

7-8 

logically divided into a block-index field and a byte-index field. The block index 
starts with bit 0 of the address and extends through bit 20. The byte index 
comprises the remaining 11 low-order bits of the address as shown in Figure 7-8. 

Relocated addresses are translated into real addresses by means of a translation 
table, which reflects the current assignment of real addresses. The assignment of 
real addresses occurs in units of blocks; byte addresses are assigned sequentially 
within a block. Each entry in the translation table associates a block of addresses 
in the PCE address space with a block of addresses in the real address space. The 
translation-table entries are organized in the same sequence as the adjacent 
blocks in the PCE address space; there is one entry in the translation table for 
each block in the PCE address space. Thus, the number of entries in the 
translation table is equal to the size of the PCE address space (with translation 
active) divided by 2048. The blocks assigned to adjacent blocks in the PCE 
address space need not be adjacent in the real address space. 

Block Index Byte Index 

0 20 21 31 

Figure 7-8. Block-Index and Byte-Index Fields of an Address to Be Translated 

Entries in the translation table (see Figure 7-9) are 32 bits long and contain two 
fields: a block-address field, which provides the high-order bits of the real 
address; and an access-control field, which provides information for access 
protection. 

I Special considerations for the translation table in dual-PCE processors are 
described in Chapter 10, "Dual-Mode Processing". 

The translation table is not addressed as part of main storage. Two instructions, 
LOAD FROM ADDRESS TRANSLATION TABLE and STORE TO ADDRESS 
TRANSLATION TABLE, are provided to access or modify information in the 
translation table. These instructions are supervisor-privileged. 

Access Control Block Address 

0 10 11 31 

Figure 7-9. TransJaf:ion-Table Entry 

The fields in the translation-table entry are allocated as follows: 

Access Control: Bit positions 0-10 provide information used for storage access 
protection. The dynamic address translation facility provides protection 
against erroneous or unauthorized storing, instruction execution, or references 
of any type by the program or channel. Access exceptions are recognized for 
improper types of access. The operations of access protection are described 
under "Storage Access Protection" in this chapter. 



Translation Process 

L> l 
0 10 11 

Block Address: Bit positions 11-31 provide the leftmost 21 bits of a real 
storage address. When the block address and the 11 bits from the byte-index 
field of the relocated address are concatenated, with the block address 
forming the high-order part, the real address is obtained. 

A specification exception is recognized when the real address designated by a 
translation-table entry does not correspond to an installed physical location. 
Depending on the particular processor model and on the block-address value, 
either (1) a specification exception (for operand) is recognized when an attempt 
is made to store the entry, or (2) a specification exception (for real address) is 
recognized when the PCE attempts to refer to the uninstalled location. 

Dynamic address translation is performed by means of the translation table. The 
block-index portion of a relocated address is used as an index to select an entry 
from the translation table. This entry contains the high-order bits of the real 
address that corresponds to the relocated address. The byte-index field is used 
unchanged for the low-order bit positions of the real address. The translation 
process is shown graphically in Figure 7 -10. 

When no access exceptions are encountered in the translation process, the block 
address obtained from the translation-table entry and the byte-index portion of 
the relocated address are concatenated, with the block address forming the 
high-order part. The result forms the real address. 

Programming Note: When two or more relocated addresses are translated to the 
same real address, the results obtained are the same as if the relocated addresses 
were identical. 

Relocated Address 

t Block l~dex I Byte Index J 
0 J 20 21 31 

Block Address 

31 

l 
I 

_J 
Translation Table 

,, ,, 
0 20 21 31 

Real Address 

Figure 7-10. Dynamic Address Translation 

Chapter 7. Dynamic Address Relocation and Translation 7-9 



Storage Access Protection 

7-10 

Dynamic address translation includes functions for protection against erroneous 
or unauthorized store operations, instruction execution, or references of any type 
to main storage. Access protection is provided only when dynamic address 
translation is specified in the ACV. Protection is applied to blocks in the PCE 
address space. The access-control field in the translation-table entry (see Figure 
7-9) designates protection for the corresponding block. The format of the 
access-control field is given in Figure 7-11. 

When an access exception is indicated, the block index of the PCE address in 
error is stored in the EBI register associated with the active ACV. The address is 
not stored after an exception caused by a channel-store protection violation. 

The bit positions in the access-control field are allocated as follows: 

0 

Block Invalid (I): Bit position 0 controls whether any reference is allowed: a 
0 indicates that controlled access is permitted as specified by bit positions 1 , 
2, and 4 of the access-control field; a 1 in bit position 0 indicates that no 
access is permitted. 

Store Protection (S): Bit position 1 controls whether a store reference by the 
program is allowed: a 0 indicates that store references by the program are 
permitted; a 1 indicates that store references are not permitted. 

Execution Protection (E): Bit position 2 controls whether information may be 
fetched and interpreted as an instruction to be executed: a 0 indicates that 
the information may be interpreted as an instruction; a 1 indicates that the 
information may not be interpreted as an instruction. 

Channel-Store Protection (C): Bit position 4 controls whether a store 
reference by a channel 1/0 operation that refers to main storage is allowed: a 
0 indicates that store references are permitted; a 1 indicates that store 
references are not permitted. 

Reserved Bits: Bit positions 3 and 5-10 are reserved and must contain O's. 

2 3 4 5 10 

Figure 7-11. Format of Access-Control Field 



Separation Protection 

When master mode is indicated in the program-mode field of the current PSV, all 
references to main storage by the program are allowed, regardless of the state of 
bit positions 1 and 2, provided that bit position 0 contains 0. 

Each form of access protection is defined independently of the others, and more 
than one form may be designated by using multiple access-control bit positions. 
For example, 1 's in bit positions 1 and 4 define protection for a block against all 
store references - from both program execution and channel I/ 0 operations. If 
the type of access attempted by the program or channel is not permitted, an access 
exception is recognized. 

The dynamic address relocation and translation facilities allow more than one 
logical address to be translated to the same real address. Accordingly, access 
protection may be defined to allow different types of access to the same 
real-storage location when it is referred to using different logical addresses. 

Programming Note: All data-fetch references by the program or a channel 1/0 
operation are allowed regardless of the state of bit positions 1, 2, and 4, provided 
that bit position 0 contains 0. 

Depending on processor model and only with dynamic address translation active, 
multiple programs can coexist within the logical address space defined by a 
particular ACV (see Figure 7-12). Translation locks and protection keys allow the 
logical separation of programs within this address space. The following paragraphs 
explain how protection keys and translation locks are used to provide separation 
protection. 

PCE Address Space 

Program A 

Program B 

Program C 

Program D 

Program E 

Program F 

~ 
. 

"" 

Figure 7-12. Multiple Programs within a Logical Address Space 

Chapter 7. Dynamic Address Relocation and Translation 7-11 



Protection Keys 

Translation Locks 

Protection keys, which are used only with dynamic address translation active, are 
contained in register sets within the adjunct register group. Each 8-bit protection 
key is logically associated with a PSV I ACV or CHP I ACV pair. Therefore, each 
8-bit protection key can specify up to 25 5 unique user keys. This allows up to 25 5 
unique programs and/ or CHIO data buffers within the logical address space 
defined by a particular ACV. Additionally, a protection key value of all zeros 
(master protection key) allows references to any address within the logical 
address space. 

Each key resides in the low-order halfword of its corresponding register and is 
offset 16 register sets from its associated PSV I ACV or CHP I ACV. Only bits 
24-31 of the register contain the protection key; bits 16-23 must be zeros. 
Even-numbered registers are associated with a PSV I ACV, while both even- and 
odd-numbered registers are associated with a CHP I ACV. The 
supervisor-privileged register-indirect instructions are used to access the 
adjunct-register locations that hold protection key information. Refer to Figures 
6-8, 6-9 and 6-10 for how protection keys correspond to ACVs. 

Translation locks, which are used only with dynamic address translation active, 
are contained in the translation lock table. Each 8-bit entry in this table is 
logically associated with a single entry in the translation table, while each 
translation-table entry corresponds to a specific 2K-byte block in the PCE 
address space. Therefore, each translation-lock-table entry can specify up to 255 
unique translation-lock values, in addition to a value of all zeros. This zero value 
allows all programs and CHIO operations within the logical address space to 
access the corresponding block of main storage. 

The LOAD FROM ADDRESS TRANSLATION LOCK TABLE and STORE 
TO ADDRESS TRANSLATION LOCK TABLE instructions are used to access 
or modify the translation-lock-table entries. However, these instructions may be 
executed only by a program that has the proper authorization as indicated by the 
program-mode field of its PSV. 

Translation Lock and Protection Key Operation 

7-12 

Address relocation is performed during each program or CHIO reference to main 
storage. This process also checks the logical address to determine if it is within the 
logical address space defined by either the active ACV during program execution 
or the ACV paired with a channel pointer during CHIO operation. If the logical 
address is greater than the maximum available address, an address exception is 
indicated. 

With dynamic address translation active, the translation-lock-table entry of the 
corresponding block in the PCE address space is compared to the protection key 
associated with the active A CV. 

If the values are identical, the lock value is zero, or the protection key value is 
zero, dynamic address translation continues as described earlier in this 
chapter. 

If none of these conditions exist, a program or channel exception occurs, 
causing an interruption. Additionally, during program execution, the stored 
PSV indicates a PEC value of 3 (separation exception) and, except for 
primary priority level 0. the block index of the PCE address in error is placed 
in the EBI register that corresponds to the active ACV. 



Addresses Relocated and Translated 

All addresses specified by the program and used to ref er to main storage, for an 
instruction or an operand, are logical addresses. Logical addresses are always 

I 
subject to dynamic address relocation and, when specified in the current ACV, 
are subject to dynamic address translation. Depending on processor model, this 
may also include the logical separation of programs through the use of translation 
locks and protection keys. Similarly, all main storage addresses used by the 
channel during channel I/O operations are logical addresses, are always subject to 

I dynamic address relocation and, when specified in the ACV paired with the 
channel pointer, are subject to dynamic address translation. Also, depending on 
processor model, this may also include translation lock and protection key 
separation. Addresses indicated to the program on an interruption or as the result 
of executing an instruction, or addresses returned to the channel pointer at the 
end of a channel I/ 0 operation, are logical addresses. 

Programming Note: Relocation and translation are not applied to the logical 
address generated during execution of the LOAD ADDRESS instruction. 

Translation-Table and Translation-Lock-Table Instructions 

The LOAD FROM ADDRESS TRANSLATION TABLE, STORE TO 
ADDRESS TRANSLATION TABLE, LOAD FROM ADDRESS 
TRANSLATION LOCK TABLE, and STORE TO ADDRESS TRANSLATION 
LOCK TABLE instructions are provided to access and modify entries in their 
respective tables. These instructions are supervisor-privileged and can be 
executed only when the program-mode field of the current PSV specifies master 
or supervisor mode. A change to a table entry takes effect immediately. All main 
storage references, including those for instruction fetch, that are associated with 
an instruction following a STORE TO ADDRESS TRANSLATION TABLE are 
translated using the new table contents; all instructions that are associated with 
an instruction following a STORE TO ADDRESS TRANSLATION LOCK 
TABLE are logically separated using the new translation-lock-table contents. 

The instructions for manipulating the translation table and translation lock table, 
including their mnemonics, formats, and operation codes, follow. The procedure 
for describing the individual instructions, and the symbols used in the instruction 
formats and the expressions of operations, are defined under "Instruction 
Descriptions" in Chapter 4. Refer to Appendix B for an explanation of the 
assembly language notation used in the instruction descriptions. 

LOAD FROM ADDRESS TRANSLATION TABLE 

LAT rw,ra 

E 

0 34 78 

B4 0 

11 12 15 16 23 24 

Operation 
TEMP<- TT[(~< 11..31 > )] 
(~<11..31>) <-(R2 <11..31>) + 1 
(R1) <-TEMP 

Description 

c 

27 28 31 

RR-Long 
Format 

The translation-table entry at the second-operand location is placed unchanged in 
the first-operand location. 

Chapter 7. Dynamic Address Relocation and Translation 7-1 3 



7-14 

The initial contents of bit positions 11-31 of the general register designated by the 
~ field are used as an index into the translation table. The index is incremented 
by 1 and placed back in bit positions 11-31 of the general register after the 
translation-table entry is fetched and before it is placed in the first-operand 
location. The contents of bit positions 0-10 of the general register remain 
unchanged. 

The format of the general register specified by the Ri field is: 

000000000001 Translation-Table Index 

0 10 11 31 

I Bits 0-10 are reserved and should be all O's. Bits 11-31 contain the 
translation-table index. On processor models that provide PCE address spaces 
less than 134,217, 728 bytes, bits 16-31 contain the translation-table index and 
bits 11-15 may not be used during execution of this instruction. In this case, bits 
11-15 remain unchanged. When bits 11-15 are not used, all 16 high-order bits of 
the register contents (bits 0-15) are reserved and should be all O's. Depending on 

I processor model, a specification exception may be indicated when bits 0-15 are 
not all zeros. 

This instruction is supervisor-privileged. 

A specification exception is recognized when the initial index value exceeds the 
number of entries in the translation table provided by the PCE. 

Bit positions 24-27 of the instruction are reserved and must contain O's; 
otherwise, an operation exception is recognized. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Operation (privileged operation; bits 24-27 of instruction not 0) 

I Specification (operand 2: invalid translation-table index or, depending 
on processor model, bits 0-15 of register R2 not all 0) 

Programming Notes 
The translation-table index corresponds to the block-index field of a relocated 
address. The index designates the number of an entry in the translation table. 
Entries are numbered sequentially from 0 to the highest-numbered block in the 
PCE address space. 

If the same general register is specified in both the R1 and Ri fields, the 
incremented index is overwritten by the entry fetched from the translation table. 



LOAD FROM ADDRESS TRANSLATION LOCK TABLE 

LATL rh,ra 

E 

0 34 7 8 

B4 0 

11 12 15 16 23 24 

Operation 
TEMP <- TL[(Ri< 11..31 > )] 
(R2 <11..31>) <-CRi<l 1..31>) + 1 
(R1<16 .. 23>) <-00000000 
(R1 <24 .. 31 >) <-TEMP 

Description 

E 

27 28 31 

RR-Long 
Format 

The translation-lock-table entry at the second-operand location is placed 
unchanged in bit positions 24-31 of the first-operand location; bits 16-23 are set 
to zeros. 

The initial contents of bit positions 11-31 of the general register designated by the 
Ri field are used as an index into the translation lock table. The index is 
incremented by 1 and placed back in bit positions 11-31 of the general register 
after the translation-lock-table entry is fetched and before it is placed in the 
first-operand location. The contents of bit positions 0-10 of the general register 
remain unchanged. 

The format of the general register specified by the Ri field is: 

0 0 0 0 0 0 0 0 0 0 0 Translation-Lock-Table Index 

0 10 11 31 

Bits 0-10 are reserved and must be all O's; otherwise a specification exception is 
indicated. Bit positions 11-31 contain the translation-lock-table index. A 
specification exception is also indicated when the index value exceeds the number 
of entries in the translation lock table provided by the PCE. 

This instruction is supervisor-privileged. 

Bit positions 24-27 of the instruction are reserved and must contain O's; 
otherwise, an operation exception is recognized. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Operation (privileged operation; bits 24-27 of instruction not 0) 
Specification (operand 2: invalid translation-lock-table index, or 

bits 0-10 of R2 not all O) 

Programming Notes 
The translation-lock-table index corresponds to the block-index field of a 
relocated address. The index designates the number of an entry in the translation 
lock table. Entries are numbered sequentially from 0 to the highest-numbered 
block in the PCE address space. 

If the same general register is specified in both the R 1 and R2 fields, the 
incremented index is overwritten by the entry fetched from the translation lock 
table. 

Chapter 7. Dynamic Address Relocation and Translation 7 -15 



STORE TO ADDRESS TRANSLATION TABLE 

STAT rw,ra 

E 

0 34 78 

7-16 

B4 0 

11 12 15 16 23 24 

Operation 
TT[(Ri< 11 .. 31 > )] <- (R1) 

(R2< 11..31 >) <- (R2< 11..31 >) + 1 

Description 

D 

27 28 31 

RR-Long 
Format 

The first operand is stored unchanged in the translation-table entry at the" 
second-operand location. 

The initial contents of bit positions 11-31 of the general register designated by the 
R2 field are used as an index into the translation table. The index is incremented 
by 1 and placed back in bit positions 11-31 of the general register. The contents 
of bit positions 0-10 of the general register remain unchanged. 

The format of the general register specified by the R2 field is: 

000000000001 Translation-Table Index 

0 10 11 31 

I Bits 0-10 are reserved and should be all O's. Bits 11-31 contain the 
translation-table index. On processor models that provide PCE address spaces 
less than 134,217 ,728 bytes, bits 16-31 contain the translation-table index and 
bits 11-15 may not be used during execution of this instruction. In this case, bits 
11-15 remain unchanged. When bits 11-15 are not used, all 16 high-order bits of 
the register contents (bits 0-15) are reserved and should be all O's. Depending on 

I processor model, a specification exception may be indicated when bits 0-15 are 
not all zeros. 

This instruction is supervisor-privileged. 

A specification exception is recognized when the initial index value exceeds the 
number of entries in the translation table provided by the PCE. A specification 
exception is also recognized when an attempt is made to store an invalid 
translation-table entry. 

Bit positions 24-27 of the instruction are reserved and must contain O's; 
otherwise, an operation exception is recognized. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Operation (privileged operation; bits 24-27 of instruction not O) 

I Specification (operand 1: invalid translation-table entry; operand 2: 
invalid translation-table index or, depending on processor model, 
bits 0-15 of register R2 not all O) 

Programming Note 
The translation-table index corresponds to the block-index field of a relocated 
address. The index designates the number of an entry in the translation table. 
Entries are numbered sequentially from 0 to the highest-numbered block in the 
PCE address space. 



STORE TO ADDRESS TRANSLATJONLOCK TABLE 

STATL rh,ra 

E 

0 34 78 

B4 0 

11 12 15 16 23 24 

Operation 
TL[(R2 <11..31>)] <-(R1<23 .. 31>) 
(R2<11..31>) <-(R2 <11..31>) + 1 

Description 

F 

27 28 31 

RR-Long 
Format 

The first operand is stored unchanged in the translation-lock-table entry at the 
second-operand location. The translation-lock-table entry is contained in bit 
positions 24-31 of the general register specified by R 1• Bit positions 16-23 must 
contain zeros; otherwise, a specification exception is indicated. 

The initial contents of bit positions 11-31 of the general register designated by the 
R2 field are used as an index into the translation lock table. The index is 
incremented by 1 and placed back in bit positions 11-31 of the general register. 
The contents of bit positions 0-10 of the general register remain unchanged. 

The format of the general register specified by the~ field is: 

0 0 0 0 0 0 0 0 0 0 0 Translation-Lock-Table Index 

0 10 11 31 

Bits 0-10 are reserved and must be all O's; otherwise a specification exception is 
indicated. Bits 11-31 contain the translation-lock-table index. A specification 
exception is also indicated when the initial index value exceeds the number of 
entries in the translation lock table provided by the PCE. 

This instruction is supervisor-privileged. 

Bit positions 24-27 of the instruction are reserved and must contain O's; 
otherwise, an operation exception is recognized. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Operation (privileged operation; bits 24-27 of instruction not 0) 
Specification (operand 1: bits 16-23 of R 1 not all O's; operand 2: 

invalid translation-lock-table index, or bits 0-10 of R2 not all O) 

Programming Note 
The translation-lock-table index corresponds to the block-index field of a 
relocated address. The index designates the number of an entry in the translation 
lock table. Entries are numbered sequentially from 0 to the highest-numbered 
block in the PCE address space. 

Chapter 7. Dynamic Address Relocation and Translation 7-1 7 





Chapter 8. Input/Output Operations 

Input/ output (I/ 0) operations involve the transfer of information between main 
storage and an external I/ 0 device, or between general registers in the PCE and 
the external I/ 0 device. I/ 0 devices are logically attached to the PCE and main 
storage by means of a channel and adapters. 

The channel provides the logical data path and control-signal path used for 
transferring information between adapters and the PCE or main storage. The 
adapters provide the logical attachment of I/ 0 devices to the channel. Figure 8-1 
illustrates the logical interconnection of I/O devices to the PCE and main storage. 

!Depending on dual-PCE processor model, a channel is available on either one or 
both PCEs. 

This chapter describes the control of I/ 0 devices by the program and the channel. 
Formats are defined for the various types of 1/0 control information. The 
formats apply to all I/ 0 operations and are independent of the type of I/ 0 
device, its speed, and its mode of operation. 

The formats described include provisions for functions unique to some I/ 0 
devices. The way in which a device makes use of the format depends on the 
particular device. 

Note: Throughout this chapter, references are made to operations that are device 
specific, or to operations that depend on the particular device. Wherever such a 
reference appears, the user should ref er to the 8100 System Library (SL) 
publication for the device for further details. 

Processing and 
Control Element 

_ JP.fEJ _. -•'-------i 
Channel 

Adapter 

Adapter 

Main 
Storage 

1/0 Device 

1/0 Devices 

110 Devices 

Figure 8-1. Logical Interconnection of I/O Devices to PCE and Main Storage 

Chapter 8. Input/Output Operations 8-1 



Attachment of Input/Output Devices 

Input/Output Devices 

Adapters 

Channel 

8-2 

Input/ output devices provide either external storage or a means of 
communication between data processing systems or between a system and its 
users. Input/ output devices include such equipment as card readers, card 
punches, magnetic tape units, direct-access storage devices (disks), 
typewriter-keyboard devices, printers, display devices, loop communication 
equipment, and telecommunication equipment. 

Most types of I/ 0 devices, such as printers, disk devices, or magnetic tape 
devices, deal directly with external media and are physically identifiable. Other 
types consist only of electronic equipment and do not directly handle physical 
recording media. The IBM SDLC Communications feature, for example, provides 
for the transmission of information between the 8100 system and a remote 
station, and its input and output are signals on a communication line. 

An I/O device attaches to one adapter (see Figure 8-1 ). For some device types, 
two or more devices may be attached to a single adapter. 

The characteristics of an I/ 0 device are adapted to the common form of control 
provided by the channel by means of an adapter. The adapter accepts control 
signals from the channel, controls the timing of data transfer to and from the 
channel, and provides indications concerning the status of the device. One or 
more devices may be attached to an adapter. 

The I/ 0 device attached to the adapter may be able to perform only certain 
limited operations, or it may perform many different operations. A typical 
operation is moving the recording medium and recording the data. To accomplish 
these functions, the device needs detailed signal sequences peculiar to the type of 
device. The adapter decodes the commands received from the channel, interprets 
them for the particular type of device, and provides the signal sequence required 
for execution of the operation. 

From the program's point of view, most functions performed by the adapter can 
be merged with those performed by the 1/0 device. Therefore, this publication 
normally does not make specific mention of the adapter function; the execution of 
I/O operations is described as if the r/O devices communicated directly with the 
channel. Reference is made to the adapter only when emphasizing a function 
performed by it, or when sharing of the adapter among a number of devices 
affects the execution of I/ 0 operations. 

The channel provides for the logical attachment of different types of I/O devices, 
by means of their adapters, to the PCE and main storage. It accepts formatted 
control information and changes it into a sequence of signals acceptable to an 
adapter. For 1/0 operations to or from main storage, the channel maintains and 
updates an address that designates the destination or source of data in main 
storage. Similarly, when an I/O device signals an interruption, the channel 



transforms the signal to 1/0-interrupt-request information that can be used in the 
PCE. When the channel is not involved in an I/ 0 operation, it monitors the 
attached devices for channel I/ 0 service requests and I/ 0 interrupt requests. 

Types of Input/Output Operations 

Methods of Data Transfer 

Data-Unit Size 

An I/ 0 operation can be characterized in two ways: 

By the method used to transfer data 

• By the size of the data unit transferred during each cycle of the 1/0 operation 

Two methods may be used to transfer data to or from an I/ 0 device. They are 
called programmed input/ output and channel input/ output. 

Programmed input/ output refers to the transfer of data between the I/ 0 device 
and the PCE. Specifically, the transfer occurs between the device and a 
register-operand location designated in the I/ 0 instruction being executed by the 
PCE. Three I/ 0 instructions are provided, two of which transfer a single byte of 
data to or from the 1/0 device; the third instruction transfers a single halfword (2 
bytes). Programmed input/ output operations are described in detail under 
"Programmed Input/ Output." 

Channel input/ output refers to the transfer of one or more units of data between 
the I/ 0 device and main storage. After the program initiates the channel I/ 0 
operation, the program is free to perform other work, and the channel and I/ 0 
adapter synchronize the transfer of data. The data transfer may begin 
immediately after the program initiates the channel I/ 0 operation, or later. The 
moment at which the data transfer begins depends on the particular I/ 0 device. 
Channel input/ output operations are discussed in detail under "Channel 
Input/ Output." 

All devices can execute the programmed I/ 0 operations described later in this 
chapter under "Programmed Input/Output Commands." The capability of 
executing other, device-specific programmed 1/0 operations, or of executing 
channel I/ 0 operations, depends on the particular device. 

Programming Note: Programmed I/O is used for such functions as reading status 
information from the device or writing control information to the device. Other 
functions may also be accomplished using programmed 1/0, depending on the 
device. For a device that executes only programmed l/O operations, data is 
transferred to-or from the device solely by means of I/ 0 instructions. Channel 
I/ 0 operations are executed by devices that must transmit or receive data at a 
high data rate. 

The amount of data transferred during each cycle of an I/ 0 operation is either 1 
or 2 bytes. For purposes of error detection, one check bit is transmitted with each 
byte. The check bit, called a parity bit, is generated automatically and is not 
directly controlled by, or made available to, the program. An 1/0 device that 
transmits or accepts 1 byte of data during a cycle of an I/ 0 operation is said to 
operate in byte mode. Similarly, a device that operates in half word mode 
transfers 2 bytes of data during a cycle of an I/ 0 operation. The mode of an I/ 0 
device is normally fixed as part of its design. 

Chapter 8. Input/Output Operations 8-3 



Programmed Input/Output 

Compatibility of Operation 

8-4 

Programmed I/0 (PIO) operations are executed directly by means of I/O 
instructions. These instructions are decoded by the PCE and are part of the 
program. Three instructions are provided: INPUT I OUTPUT (byte), 
INPUT/OUTPUT (byte, immediate), and INPUT/OUTPUT (halfword). The 
instruction formats are common for all types of I/ 0 devices. Each of the three 
instructions specifies a PIO address, a command, and a register-operand location 
from or into which data is transferred. 

INPUT /OUTPUT (byte) and INPUT /OUTPUT (byte, immediate) designate a 
byte operand for data and may be used for operations with byte-mode and 
halfword-mode devices. INPUT /OUTPUT (halfword) specifies a halfword data 
operand and is provided for use with halfword-mode devices only. These three 
instructions are described in detail later in this chapter. 

Execution of an I/ 0 instruction consists of the logical selection (connection) of 
the addressed device, the transfer of the command to the device, and the transfer 
of one unit of data to or from the device. Execution of the I/ 0 instruction is 
completed after the data unit is transferred. The condition indicators in the 
current PSV are set to reflect certain results of the PIO operation. Refer to 
"Result Conditions" in this chapter for a complete discussion of the indicated 
results. 

When an error is detected during execution of an I/ 0 instruction, execution is 
terminated and a system-check interruption is generated. The cause of the 
interruption is indicated with the error interrupt request vector, in conjunction 
with status information provided by the device. Refer to "System-Check 
Interruption" in Chapter 9, "PCE Control," for the meanings of the bits in the 
error interrupt request vector. The status information provided by the device is 
described under "Basic Status Register" in this chapter. Device-specific status 
information is described in the SL publication for the particular device. 

Programming Note: A PIO operation consists of the execution of an I/0 
instruction, and the PIO operation is concluded when the I/0-instruction 
execution is completed (before execution of the next sequential instruction). The 
PIO operation may cause a subsequent I I 0 interruption, depending on the type of 
operation and the particular device. 1/0 interruptions, however, are not a 
specified part of PIO operations. 

As part of the execution of an I/0 instruction, the channel informs the device 
that the PIO operation is to be executed as either a byte-mode or a 
halfword-mode operation: byte mode for the INPUT /OUTPUT (byte) and 
INPUT /OUTPUT (byte, immediate) instructions, and halfword mode for the 
INPUT /OUTPUT (halfword) instruction. When the operating mode of the 
device is compatible with the instruction, the results obtained by the program are 
those described for the individual instruction. When the device and instruction are 
not compatible, the operation is considered invalid. 

INPUT/OUTPUT (byte) and INPUT/OUTPUT (byte, immediate) are 
compatible with both byte-mode and halfword-mode devices, whereas 
INPUT /OUTPUT (halfword) is compatible only with halfword-mode devices. 
When a byte-mode device is addressed with INPUT /OUTPUT (halfword), the 
results are unpredictable. 



Programming Note: Care should be taken to ensure that the PIO address 
specified with INPUT /OUTPUT (halfword) is assigned to a halfword-mode 
device. 

Programmed Input/Output Addressing 

The following description of programmed I/ 0 addressing is presented in terms of 
the I/O device. Logically, devices that do not share an adapter with other devices 
are not distinguishable from their adapter, and both are identified by the same 
PIO address. When two or more devices are attached to a single adapter, the PIO 
address is assigned to the adapter. In this situation, the address of the device 
appears either in the command code or as part of the data, depending on the 
operation and the particular adapter and device. 

An I/0 device is designated by a PIO address. The address is an 8-bit binary 
number associated with the device. The PIO address is specified by a 
general-register operand of an I/O instruction. For INPUT /OUTPUT (byte) and 
INPUT /OUTPUT (halfword), the register operand is designated in the 
instruction; for INPUT /OUTPUT (byte, immediate), the operand is contained in 
an implied register. 

The PIO address identifies the particular I/O device and adapter attached to the 
channel. Any number in the range 0-255 can be used as a PIO address. A device 
may be assigned only one PIO address. 

When an I/ 0 instruction is executed, one of three situations relating to the 
specification of the PIO address is possible: 

The I/ 0 instruction specifies the address of a device whose operating mode 
(byte or halfword) is compatible with the instruction. In this case, the device 
becomes selected for the operation. 

The I/ 0 instruction specifies the address of a device whose operating mode is 
not compatible with the instruction. In particular, this occurs when the PIO 
address specified with INPUT /OUTPUT (halfword) is assigned to a device 
that operates in byte mode. The resulting operation in this situation is 
unpredictable. (See the discussion of compatibility under "Compatibility of 
Operation" in this chapter.) 

The 1/0 instruction specifies the address of a device that either is not 
configured to the system or is not operational. No device is selected, and a 
system-check interruption occurs with I/ 0 timeout check indicated. 

Programmed Input/Output Commands 

PIO commands are designated by an 8-bit command code and specify to the I/O 
device the PIO operation to be performed. The command code is specified as a 
register operand in INPUT /OUTPUT (byte) and INPUT /OUTPUT (halfword), 
and as an immediate operand in INPUT /OUTPUT (byte, immediate). 

The low-order bit of the command code identifies to the channel the direction of 
data transfer. When the low-order bit is 0, the channel transfers the data from the 
PCE to the device; when the bit is 1, the channel transfers the data from the 
device to the PCE. The channel does not decode the high-order 7 bits of the 
command code. 

Chapter 8. Input/Output Operations 8-5 



Result Conditions 

8-6 

All 8 bits of the command code are transferred to the 1/0 device. The high-order 
7 bit positions specify how the command is to be executed. Except for the 
commands listed in the following table, the significance of the high-order 7 bit 
positions of the command code depends on the particular device: 

Code 

0000 0010 
0000 0100 
0000 0110 
0000 0111 

Command 

Reset Device 
Reset BST AT Under Mask 
Set BST AT Under Mask 
Read BSTAT 

These four commands are executed by all devices. The command Reset Device is 
used to selectively reset 1/0 devices. The Reset Device COMMAND is described 
later in this chapter under "I/0 Selective Reset." The remaining three commands 
are used to modify or inspect the basic status register (BSTA T) associated with 
the device. The basic status register is 8 bits long and indicates the status of the 
I/O device. The basic status register and the associated three PIO commands are 
described later in this chapter under "Basic Status Register.'' 

The PIO commands listed in the preceding table can be issued to both byte-P.1ode 
and halfword-mode devices using either INPUT /OUTPUT (byte) or 
INPUT /OUTPUT (byte, immediate). Whether the four commands can be issued 
to a halfword-mode device using INPUT/OUTPUT (halfword) depends on the 
device. 

Any PIO command codes not listed above are considered device specific. The 
I/O instructions that may be used to issue a device-specific command to a 
halfword-mode device depends on the command and on the particular device. In 
some cases, any of the three I/O instructions may be used. In other cases, the 
device may execute the command properly only if it is issued with 
INPUT /OUTPUT (byte) or INPUT /OUTPUT (byte, immediate), and not if it is 
issued with INPUT /OUTPUT (halfword); or the device may properly execute the 
command only if INPUT /OUTPUT (halfword) is used. Whether a system-check 
interruption is generated when an improper I/O instruction is used depends on 
the device. 

When more than one device is attached to a single adapter, Reset Device will reset 
the adapter and all attached devices. Similarly. the commands that refer to the 
basic status register pertain to the adapter and all attached devices. 

Certain conditions resulting from execution of PIO operations are indicated with 
the condition indicators in the current PSV. The result conditions are indicated 
when execution of the I/ 0 instruction is completed. The result conditions 
indicate the completion of the PIO operation, whether a data check occurred 
during an input operation, and whether the device detected any exceptional 
condition during the PIO operation. The indication of an exceptional condition 
does not necessarily indicate an error, and it has only one meaning for any 
particular command and type of device. 



The following result conditions are indicated only when a program-exception, 
system check, or system-check interruption does not occur because of the 
execution of the I/ 0 instruction: 

Result Condition Meaning 

8 
4 
2 
1 
0 

PIO operation completed. 
Data check on inbound data. 
Exception indicated by device. 

Result condition 2 is indicated when execution of the I/ 0 instruction is 
completed. (Result conditions 8 and 4 are not indicated.) 

Result condition 1 is indicated when: ( 1) the channel detects a data check 
(invalid parity) on the data transferred during an input operation, and; (2) the 
device indicates, by means of a control signal, that the system-check indication 
because of the data check, is to be suppressed. Correct parity is assigned to the 
data and the operation is completed. When the channel detects a data check 
during an input operation and the device does not signal that the system-check 
indication is to be suppressed, then: ( 1) the operation is suspended (storing of the 
data is inhibited) and; (2) a system check or a system-check interruption occurs 
with I/ 0 control check indicated. 

Result condition 1 is not indicated when an output operation is executed or when 
an input operation is executed without a data check. 

Result condition 0 is indicated when the device signals the channel that it 
encountered an exceptional condition that normally does not occur. The reasons 
for the result condition 0 indication depend on the command and particular 
device. 

I Programming Note: The capability to cause result condition 0 to be indicated is 
device-specific. 

Program-Exception Interruptions 

Before the channel is signaled to execute an I/ 0 instruction, the instruction is 
tested for validity by the PCE. A program exception detected at this time causes a 
program-exception interruption. The program-exception code in the stored PSV 
identifies the cause of the interruption. 

An operation exception causes a program-exception interruption. This exception 
is indicated when an 1/0 instruction is encountered and the current PSV specifies 
application mode. The instruction is suppressed before the channel is signaled to 
execute it. The condition indicators in the PSV and the state of the addressed 1/0 
device are not affected by the attempt to execute an I/0 instruction while in 
application mode. 

Abnormal Ending of Programmed Input I Output Operations 

A PIO operation is terminated if one of the following occurs: 

The channel or PCE detects equipment malfunctioning related to the PIO 
operation. 

The channel receives no response or an incorrect control-signal response from 
the device. 

Chapter 8. Input/Output Operations 8-7 



Instructions 

INPUT !OUTPUT (byte) 

8-8 

A PIO operation is suspended when the channel receives invalid parity during an 
input operation and the device has not signaled that the system-check indication 
is to be suppressed. 

At termination or suspension of the PIO operation, the channel signals halt to the 
device and logically disconnects the device. A system-check interruption is 
generated, with the type of error indicated in the error interrupt request vector 
(ElRV). The storing of data for input operations is inhibited. For output 
operations, data may be written to the device, depending on when in the sequence 
of the operation the error occurs. If the device had become selected, it 
acknowledges receipt of the halt signal by indicating equipment check in the basic 
status register associated with the device. 

Either l or 2 bits in the EIRV are set to 1 's, indicating the specific type of system 
check. The following system checks related to PIO operations are indicated in the 
EIRV: 

EIRV Bit(s) 

0 
1 
3 
5 

2 and 5 

System Check 

I/O Control Check (PIO operation is suspended) 
I/ 0 Timeout Check 
Exception 
Internal Control Check 
Internal Data Check 

System checks are described in detail under "System Checks" in Chapter 9, "PCE 
Control." 

The I/0 instructions and their mnemonics, formats, and operation codes follow. 
The procedure for describing the individual instructions, and the symbols used in 
the instruction formats and the expressions of the operations, are defined under 
"Instruction Descriptions" in Chapter 4. 

Note: An assembler-language statement containing the mnemonic and the symbolic 
operand specifications is shown with each instruction. For a byte-mode operation 
using INPUT/OUTPUT (byte, immediate) as an example, "JOI" is the mnemonic 
and "rlpb, i8 '· are the operand specifications. In the instruction format for 
INPUT/OUTPUT (byte, immediate), the r1 field is derived from the first operand 
specification. "rlpb "; the 12 field, designating the second operand, is derived from 
"i8 · '. Refer to Appendix Bf or an explanation of the assembler-language notation 
used in the instruction descriptions. 

IO rpb,rh 

7 

0 34 

Operation 

r 1 R2 4 RR Format 

7 8 11 12 15 

IOD[(R2 <16 .. 23> )] <- (Ri<24 .. 3 l >) 
If ( R2 < 3 1 >) = 0 

Then IOD[(R2 <16 .. 23>)] <- (r
1

) 

Else (r1) <- IOD[(R2 < 16 .. 23> )] 



Description 
A write or read operation is executed with the addressed I/ 0 device. The 
instruction is executed only when the program mode field in the current PSV 
specifies master, supervisor, or 1/0 mode. 

Bit positions 16-23 of the general register designated by Ri contain the PIO 
address of the device to which the instruction applies. Bit positions 24-31 of 
register Ri contain the command code. The low-order bit of the command code 
(bit position 31 of register !li) designates whether the data is to be written to the 
device or read from the device: a 0 designates a write (output) operation, and a 1 
designates a read (input) operation. 

The I/ 0 operation consists of selecting the addressed device, sending the 
command code to the selected device, and then transferring the byte of data. For 
a write operation, the byte of data is transferred from the first-operand location 
(designated by r1) to the device·. For a read operation, the direction of transfer is 
from the device to the first-operand location. 

During a write operation to a halfword-mode device, two copies of the byte of 
data are concatenated together and transferred as a halfword. Whether the 
device uses both copies depends on the particular device. During a read operation 
from a halfword-mode device, the low-order 8 bits of the halfword of data 
transferred by the device are placed in the first-operand location, and the 
high-order 8 bits are ignored. Only the low-order 8 bits are inspected for data 
check. 

The first operand is located in the primary register set. 

Result Conditions 
8 
4 

PIO operation completed. 2 
1 
0 

Data check on inbound data (system-check indication suppressed). 
Exception indicated by I/ 0 device. 

Program Exceptions (Suppression) 
Operation (privileged) 

Programming Notes 
INPUT I OUTPUT (byte) may be used with either a byte-mode device or a 
halfword-mode device. 

A data check on inbound data normally results in a system-check interruption, 
and the operation is suspended (storing of the data is inhibited). Otherwise, when 
the device causes the system-check indication to be suppressed, correct parity is 
assigned to the data and the operation is completed with result condition 1 
indicated. 

Chapter 8. Input/Output Operations 8-9 



INPUT/OUTPUT (byte, immediate) 

8-10 

IOI rlpb,i8 

0 3 4 6 7 8 

Operation 
TOD[(PGR0<16 .. 23>)] <- 12 

If 12 <7> = 0 

RI Format 

15 

Then IOD[(PGRO< 16 .. 23> )] <- (r 1) 

Else (r1) <- IOD[(PGRO< 16 .. 23> )] 

Description 
A write or read operation is executed with the addressed I/ 0 device. The 
instruction is executed only when the program mode field in the current PSV 
specifies master, supervisor, or I/0 mode. 

Bit positions 16-23 of primary general register 0 contain the PIO address of the 
device to which the instruction applies. The immediate field, I2 , contains the 
command code. Bit 7 of the command code (bit position 15 of the instruction) 
designates whether the data is to be written to the device or read from the device: 
a 0 designates a write (output) operation, and a 1 designates a read (input) 
operation. 

The I/ 0 operation consists of selecting the addressed device, sending the 
command code to the selected device, and then transferring the byte of data. For 
a write operation, the byte of data is transferred from the first-operand location 
(designated by r1) to the device. For a read operation, the direction of transfer is 
from the device to the first-operand location. 

During a write operation to a halfword-mode device, two copies of the byte of 
data are concatenated together and transferred as a haifword. Whether the 
device uses both copies depends on the particular device. During a read operation 
from a halfword-mode device, the low-order 8 bits of the halfword of data 
transferred by the device are placed in the first-operand location, and the 
high-order 8 bits are ignored. Only the low-order 8 bits are inspected for data 
check. 

The first operand is located in bit positions 24-31 (the lower byte-operand 
location) of a general register in the primary register set. This operand is 
designated by the r1 field. 

Bit position 7 of the instruction is used both as the low-order bit of a 4-bit r-ficld 
and as an extension of the operation code. In the latter case, the bit distinguishes 
this instruction from the CALL PSV instruction and the PCE-control (KI) 
instructions. 

Result Conditions 
8 
4 
2 PIO operation completed. 
l Data check on inbound data (system-check indication suppressed). 
0 Exception indicated by 1/0 device. 



Program Exceptions (Suppression) 
Operation (privileged) 

Programming Notes 
INPUT I OUTPUT (byte, immediate) may be used with either a byte-mode device 
or a halfword-mode device. 

A data check on inbound data normally results in a system-check interruption, 
and the operation is suspended (storing of the data is inhibited). Otherwise, when 
the device causes the system-check indication to be suppressed, correct parity is 
assigned to the data and the operation is completed with result condition 1 
indicated. 

INPUT/OUTPUT (halfword) 

IOH rh,rh 

A R1 R2 5 RR Format 

0 3 4 7 8 11 12 15 

Operation 
10D[(R2 <16 .. 23>)] <- (R2 <24 .. 31>) 
If (R2 <3 l >) = 0 

ThenIOD[(R2 <16 .. 23>)] <- (R1<16 .. 31>) 
Else (R1 <16 .. 31>) <- IOD[(R2 <16 .. 23>)] 

Description 
A write or read operation is executed with the addressed I/O device. The 
instruction is executed only when the program mode field in the current PSV 
specifies master, supervisor, or I I 0 mode. 

Bit positions 16-23 of the general register designated by R2 contain the PIO 
address of the device to which the instruction applies. Bit positions 24-31 of 
register R2 contain the command code. The low-order bit of the command code 
(bit position 31 of register R2 ) designates whether the data is to be written to the 
device or read from the device: a 0 designates a write (output) operation, and a 1 
designates a read (input) operation. 

The T/O operation consists of selecting the addressed device, sending the 
command code to the selected device, and then transferring the halfword of data. 
For a write operation, the halfword of data is transferred from the first-operand 
location (designated by R1) to the device. For a read operation, the direction of 
transfer is from the device to the first-operand location. 

The first operand occupies the low-order 16 bit positions of the register 
designated by the R 1 field. 

Result Conditions 
8 
4 
2 PIO operation completed. 
1 Data check on inbound data (system-check indication suppressed). 
0 Exception indicated by I/0 device. 

Chapter 8. Input/Output Operations 8-11 



Basic Status Register 

8-12 

Program Exceptions (Suppression) 
Operation (privileged) 

Programming Notes 
INPUT /OUTPUT (halfword) should be used only with halfword-mode devices. 

I Use of this instruction with a byte-mode device may produce unpredictable 
results. 

A data check on inbound data normally results in a system-check interruption, 
and the operation is suspended (storing of the data is inhibited). Otherwise, when 
the device causes the system-check indication to be suppressed, correct parity is 
assigned to the data and the operation is completed with result condition 1 
indicated. 

Each adapter provides a basic status register (BSTAT). The information provided 
in the BSTAT identifies certain status conditions of the adapter and attached 
devices, such as equipment check, whether the devices are enabled or disabled, or 
whether a device is generating an I/O interrupt request. The BSTAT may also 
indicate device-specific status conditions, which are not described in this 
publication. 

The basic-status information, and any udditional status information that may be 
provided by the device, is usually made available to the program by means of 
programmed I/0 commands such as Read BSTAT. Ordinarily, the handling of 
I/O interruptions by the program includes the reading of the BSTAT. By means 
of the basic-status information, the program can determine the cause of the 
interruption. The basic-status information also identifies errors that occurred 
during the last I/O operation. 

The BST AT is also used by the device as a control register. By means of the 
BST AT, the device is either enabled or disabled for generating I/O interrupt 
requests or initiating channel I/O burst transfers. Two programmed 1/0 
commands, Set BST AT Under Mask and Reset BSTAT Under Mask, allow the 
program to modify the BSTA T and, thus, enable or disable the device for these 
functions. 

The BST AT is logically 8 bits long for both byte-mode devices and 
halfword-mode devices. However, fewer than 8 bits may actually be installed. 
For any particular device, only those bits of the BSTAT needed for proper 
indication of status information are necessarily provided. Bits not installed are 
read as O's, and an attempt by the program to modify uninstalled bits is ignored. 

Two bit positions of the BST AT are designated as equipment check and interrupt 
request and are common to all devices providing this type of information. A third 
bit designated as enabled is provided by all devices. These three bit positions are 
defined below where the meaning applies when the respective bit is a 1: 

BSTAT Bit 

5 
6 
7 

Designation 

Equipment Check 
Enabled 
Interrupt Request 



Equipment Check 

Enabled 

Bits 5-7 are defined in the following paragraphs. The meanings of the remaining 
(leftmost) bits, if any, provided by the device depend on the particular device. 

Programming Note: An adapter may provide a status register that contains more 
than eight bit positions. Tn this case, the basic-status byte described above is 
contained in the low-order eight bit positions of the status register. For example, 
when a 16-bit status register is provided, the equipment-check, enabled, and 
interrupt-request bits are located in bit positions 13, 14, and 15, respectively. 

When bit 5 (equipment check) is a 1, the I/ 0 device or adapter has detected an 
unusual condition that is detailed by the other bit positions of the BST AT or by 
additional device-dependent status bits. Equipment check may indicate ( 1) that a 
programming error, such as an invalid command was detected, (2) that an 
equipment malfunction occurred, or (3) that an exceptional condition affecting 
the normal completion of the last operation occurred. The equipment-check bit 
represents a summary indication of the status conditions identified by 
device-dependent status information. 

When the channel or PCE detects the error (such as an I/ 0 timeout check or an 
internal control check), the channel notifies the I/O device of the error. The 
device executing the programmed I/ 0 or channel I/ 0 operation thereby sets the 
equipment-check bit and may, depending on the operation, set other status bits. 
In addition, the program is alerted of the error by means of a system-check 
interruption, with the type of error indicated in the EIRV. If the error occurs 
because of a channel I/ 0 operation, the device also sets the interrupt-request bit. 

When the device detects an invalid command during a programmed I/ 0 
operation, an equipment check is indicated in the BSTAT. The device then 
notifies the program by suppressing its response, thereby causing a system-check 
interruption with an I/ 0 timeout check indicated. The invalid command may be 
due to invalid parity on the command code, or the command code may not be 
assigned for the l/O device. Similarly, equipment check is indicated and a 
system-check interruption due to I/O timeout occurs when the device detects 
invalid parity on outbound data during a programmed 1/0 or channel I/O 
operation. 

Errors that originate at the I/ 0 device cause equipment check to be indicated 
and, depending on the particular device and type of operation, usually cause the 
device to also set the interrupt-request bit. An 1/0 interruption occurs as a result 
of setting the interrupt-request bit. A system-check interruption is not normally 
generated for such errors. 

When bit 6 (enabled) is a 1, the device is enabled for the purpose of generating an 
l/ 0 interrup · : equest or initiating a channel I/ 0 operation. When this bit is 0, 
the device is disabled; that is, it is inhibited from performing these functions. 

Whether enabled or disabled, the device executes the commands described under 
"Programmed Input/Output Commands" in this chapter. Whether the device 
executes other, device-specific, programmed I/ 0 commands when it is disabled 
depends on the command and the particular device. 

Chapter 8. Input/Output Operations 8-13 



Interrupt Request 

Programming Note: The state of the enabled bit is changed only ( 1) under 
program control by means of programmed 1/0 commands, or (2) when an I/O 
system reset occurs, which causes the bit to be made 0. 

When bit 7 (interrupt request) is a 1, and the enabled bit is a 1, the device is 
presenting an I/ 0 interrupt request. The interrupt request is associated with the 
priority level to which the device is assigned, and is signaled to the program by 
means of the l/O interrupt request vector. If the enabled bit is 0, the l/O 
interrupt request is held pending at the device and is not reflected in the I/O 
interrupt request vector. Details about the relation of the 1/0 interrupt request 
vector to the assignment of devices to priority levels are discussed in this chapter 
under "Input/ Output Interruptions.'' The interrupt-request bit is set by the device 
when it detects a condition that should be brought to the attention of the 
program. The condition may be associated (I) with a discrete event detected by 
the I/O device during its execution of an I/O operation, (2) with an 
asynchronous condition that is significant to the program, or (3) with the 
conclusion of a channel I/0 operation. 

The interrupt-request bit may also be set by the device when it encounters an 
error that results in the setting of the equipment-check bit. In particular, the 
device sets both the interrupt-request and equipment-check bits when it 
encounters an error during the execution of a channel 1/0 operation. 

PIO Commands Related to the BSTAT 

Reset BST AT Under Mask 

8-14 

The following three PIO commands are executed by all devices. These commands 
allmv the program to modify or read the contents of the ESTA T associated with 
the I/O device. 

When the Reset BST AT Under Mask command is issued, the data operand 
specified in the 1/0 instruction is used as an 8-bit mask to selectively reset 
corresponding bits in the BSTA T associated with the device. The 8 mask bits 
correspond left to right with the bit positions of the BST AT. A mask bit of 1 
causes the corresponding basic-status bit to be made 0 (reset). A mask bit of 0 
indicates that the corresponding basic-status bit is to remain unchanged. Any bit 
positions in the mask corresponding to bit positions in the BSTA T that are not 
provided by the device are ignored. 

Depending on the particular device, some device-specific BST AT bits may not be 
resettable by the program. Such bits may be reset indirectly when other status bits 
are reset, or when the device detects that the condition associated with the status 
indication is no longer present. Thus, the bit positions of the mask corresponding 
to these BSTA T bits are ignored. The equipment-check and interrupt-request 
bits, if provided, and the enabled bit can all be reset with this command. 

When the Reset BST AT Under Mask command is issued with the 
INPUT /OUTPUT (halfword) instruction to a halfword-mode device. the 8-hit 
mask is contained in the low-order byte of the designated halfword operand (bit 
positions 24-31 of the designated register). What use, if any. the I/0 device 
makes of the high-order byte of the halfword operand depends on the specific 
device. 



Set BST AT Under Mask 

ReadBSTAT 

When the Set BST AT Under Mask command is issued, the data operand specified 
in the 1/0 instruction is used as an 8-bit mask to selectively set corresponding bits 
in the BST AT associated with the device. The 8 mask bits correspond left to right 
with the bit positions of the BSTAT. A mask bit of 1 causes the corresponding 
basic-status bit to be made 1 (set). A mask bit of 0 indicates that the 
corresponding basic-status bit is to remain unchanged. Any bit positions in the 
mask corresponding to bit positions in the BST AT that are not provided by the 
device are ignored. 

Depending on the particular device, some device-specific BST AT bits, and the 
equipment-check and interrupt-request bits, if provided, may not be settable by 
the program. Such bits may be set indirectly when other status bits are set, or 
when the device otherwise detects the condition associated with the status 
indication. Thus, the bit positions of the mask corresponding to these BST AT bits 
are ignored. The enabled bit can be set with this command. 

When the Set BSTAT Under Mask command is issued with the INPUT /OUTPUT 
(halfword) instruction to a halfword-mode device, the 8-bit mask is contained in 
the low-order byte of the designated halfword operand (bit positions 24-31 of the 
designated register). What use, if any, the I/O device makes of the high-order 
byte of the half word operand depends on the specific device. 

The Read BST AT command causes the contents of the BST AT associated with 
the addressed device to be placed in the data-operand location designated in the 
I/ 0 instruction. Bit positions of the BST AT that are not provided by the device 
are read as O's. 

When the Read BSTAT command is issued with the INPUT /OUTPUT 
(halfword) instruction to a halfword-mode device, the 8-bit BSTA Tis placed in 
the low-order byte of the designated halfword operand (bit positions 24-31 of the 
designated register). What information, if any, is placed in the high-order byte of 
the halfword operand depends on the specific device. 

Input/Output Interruptions 

Priority Level Assignment 

Input/ output interruptions enable the PCE to change its state in response to 
conditions that occur in I/ 0 devices. These conditions can be caused by the 
program or by an external event at the device. I/ 0 devices are assigned to priority 
levels for the purpose of generating I/O interruptions. This assignment allows a 
system to be configured to permit fast response to 1/0 interruptions from devices 
requiring high-priority service, relative to other attached devices. 

An 1/0 interruption occurs when the PCE dispatches a new priority level in 
response to an I/0 interrupt request. The I/O interrupt request is indicated to 
the program by means of the I/O interrupt request vector (IOIRV). The IOIRV is 
8 bits long. The bit positions of the IOIRV correspond. left to right, with priority 
levels 0-7. The IO IRV is described in detail in Chapter 9, "PCE Control." 

f/O devices are assigned to priority levels for the purpose of presenting I/O 
interrupt requests. Each device is assigned to a given priority level, and more than 
one device may be assigned to the same ievel. The assignment may be fixed at 

Chapter 8. Input/Output Operations 8-15 



manufacturing time or installation time, or it may be set under program control. 
Once the assignment is made, the device presents its interrupt requests to the 
assigned level. 

The capability to assign an I/O device to a priority level under program control 
depends on the particular device and the processor model. For details concerning 
priority level assignment of I/0 devices under program control, refer to the 
description manual for the specific processor model. 

When two or more devices are attached to a single adapter, the priority level 
assignment applies to the adapter and all attached devices. 

Input I Output Interrupt Requests 

8-16 

Conditions that initiate I/O interrupt requests are asynchronous to PCE activity, 
and more than one request can occur at the same time. However, only one 
interrupt request at a time is acted upon by the PCE. I/O interrupt requests are 
preserved (held pending) in the I/0 device until recognized by the PCE. 

The PCE usually recognizes I/ 0 interrupt requests after executing every 
non-interruptible instruction. Depending on processor model, the PCE may delay 
this recognition for up to three instructions if it encounters an instruction string 
having short execution times. 

Conceptually, I/O interrupt requests are recognized after each unit of operation 
for interruptible instructions. Depending on the processor model, a delay of up to 
eight units of operation prior to interrupt request recognition may occur. 

An interrupt request generated by an I/O device is indicated in the BSTAT 
associated with the device. If the device is disabled (the enabled bit in the BST AT 
is 0), the interrupt request is held pending at the device. When the device is 
enabled (the enabled bit is a 1 ), the interrupt request is alsu indicated in the 
IOIRV. When the interrupt request is associated with an enabled priority level 
higher in priority (lower in number) than the current priority level, an I/ 0 
interruption occurs, and the level to which the device is assigned is dispatched. 
Otherwise, the I/ 0 interrupt request is held pending at the PCE until the 
associated priority level can be dispatched. Refer to Chapter 9, "PCE Control'' 
for a detailed description of the PCE's priority level dispatching mechanism. 

The I/O interrupt request continues to be indicated in the IOIRV so iong as the 
device is enabled and the interrupt-request bit in the BSTAT is 1. Disabling the 
device or resetting the interrupt-request bit in the BSTAT (making the bit 0) 
removes the I/ 0 interrupt request, provided no other device associated with the 
same priority level is presenting an interrupt request. When all I/ 0 interrupt 
requests for the same priority level are removed, the indication in the IOIRV is 
removed. 

I Depending on processor model, an interrupt request indicated in the error 
interrupt request vector (EIRV) causes an interrupt request for level 0 to be also 
indicated in the IOIRV; however, an 1/0 interrupt request for level 0 may not be 
present. Therefore the program handling level 0 interruptions should inspect the 
EIRV before inspecting the IOIRV. This order of inspection will ensure that the 
source of an interruption for level 0 is not misinterpreted. 



Programming Notes: 

1/0 instructions can alter the interrupt request status by removing the current 
priority level interrupt request from the IOIRV or creating a higher priority 
interrupt request by issuing an appropriate adapter command. The effect of 
these instructions depends on the response time of the adapter. If the adapter 
responds within the I/ 0 instruction, normally one more instruction in the 
current priority level is executed before the level change occurs. However, 
some model/ adapter configurations may result in a level change immediately 
after the I/ 0 instruction that alters the adapter interrupt request status. 
Because of the effects of intervening interrupt requests, even with slow 
adapters, the level change may occur before any more instructions (after the 
I/ 0 instruction) in the current priority level are executed. In general, the 
level change due to an I/O instruction can occur immediately or after an 
adapter dependent number of instructions are executed. 

When an I/ 0 interruption occurs, the interruption handling routine should 
( 1) generate a programmed interrupt request for the current priority level, (2) 
read the device's status information, and then (3) remove the I/O interrupt 
request. Generating the programmed interrupt request allows program 
execution to continue after the I/ 0 interrupt request is removed. The 
programmed interrupt request can be generated using the instruction SET 
PROGRAMMED INTERRUPT REQUEST. Removing the 1/0 interrupt 
request allows a subsequent I/ 0 interrupt request from the associated adapter 
to be properly indicated. Refer to the description of the interrupt-request bit 
under "Basic Status Register," and the related PIO command, Reset BSTAT 
Under Mask, earlier in this chapter. 

Multiple Interruptions for the Same Priority Level 

Resetting I/ 0 Devices 

I I 0 System Reset 

I I 0 Selective Reset 

When two or more I/ 0 devices are assigned to the same priority level, and an I/ 0 
interruption to that level occurs, the program must determine which device is 
presenting the interrupt request. If more than one device is presenting an interrupt 
request, the priority of service to the interrupting devices is determined by the 
program. Facilities that assist the program in distinguishing among multiple I/O 
interrupt requests to the same priority level are described in the description 
manual for the applicable processor model. 

Two types of resetting can occur in the I/ 0 system: an I/ 0 system reset and an 
I/O selective reset. Both types disable an 1/0 device by causing the enabled bit in 
its BSTAT to be made 0. The specific response of each I/O device to the two 
kinds of reset depends on the type of device. 

I/ 0 system reset causes a reset of all attached I/ 0 adapters and devices. This 
occurs when I/O reset is performed. Specific details about I/O reset are given in 
the description manual for the particular processor model. 

The I/ 0 selective reset is performed when the program executes the PIO 
command Reset Device. Only the devices attached to the adapter associated with 
the PIO address are reset. No other devices are affected. 

Chapter 8. Input/Output Operations 8-17 



Channel Input/Output 

The Reset Device command causes a reset operation to be executed at the 
selected 1/0 device. The reset state of the device depends on the particular 
device. For all devices, however, this command causes the enabled bit in the 
BST AT associated with the device to be made 0. 

This command disables the selected device. That is, when execution of the Reset 
Device command is completed, the device is prevented from generating an f/ 0 
interrupt request or executing a channel 1/0 operation. (See also the description 
of the enabled bit under "Basic Status Register" in this chapter.) 

The operation of the 1/0 instruction issuing the Reset Device command includes 
the output of data. Whether the data is meaningful to the selected device depends 
on the particular device. 

The transfer of information between main storage and an I/O device is 
accomplished by means of channel input/output (CHIO) operations. The term 
channel input/ output operation is used to denote the activity initiated at the I I 0 
device by a PIO command that specifies a start-CHIO type operation (described 
later under "Channel Input/Output Operation''). 

A CHIO operation consists of the transfer of one or more bursts of information. 
The burst can consist of the transfer of a few bytes of data, a whole block of data, 
address information, status information, or control information used for the 
initiation of a new CHIO operation. The number of bytes transferred during a 
burst is referred to as the burst length. The burst length depends on the device 
and the type of operation. The length may be fixed or it may be set under program 
control. During the burst transfer, the I/O device monopolizes the channel and 
stays logically connected to it. No other device can communicate with the channel 
during the time a burst is transferred. 

The facilities in the channel may be shared by a number of concurrently operating 
1/0 devices. This sharing is achieved when the CHIO operations are split into 
short intervals of time during which a burst of information is transferred. During 
such an interval, only one device is logically connected to the channel. The 
intervals associated with the concurrent operation of multiple I/O devices are 
sequenced in response to requests from the devices. The channel controls are 
occupied with any one operation only for the time required to transfer a burst of 
information. 

The system uses the facilities of the PCE for controlling CHIO operations. The 
sharing of common facilities between the channel and PCE causes PCE activity to 
be suspended during the transfer of a burst of information. This is accomplished 
automatically, however, and the program is not affected by the suspension of PCE 
activity, except for an increase in execution time. 

Channel Input I Output Operation 

8-18 

A CHIO operation is controlled by a channel control vector (CHCV), a channel 
pointer (CHP), and a data count. The CHCV is the formatted control 
information sent by the device to the channel at the beginning of each CHIO 
burst transfer. The content of the CHCV is not made available to the program. 
Whether the format of the CHCV is apparent to the program depends on the 
specific device. The CHCV may be provided directly to the de\ ice by the 



program, in which case the format is apparent. Alternatively, the device may 
generate the CHCV from other control information supplied by the program, and 
the program is not normally concerned with the CHCV format. 

The CHCV specifies a CHP number and a CHIO command. The CHP provides 
the logical address of the main-storage area to be used for the burst transfer. The 
CHIO command is executed by the channel and specifies such operations as the 
reading or writing of data. The data count represents the amount of data 
transferred during a CHIO operation, and is maintained by the I/ 0 device. 

Functions peculiar to a device, such as rewinding a magnetic tape or positioning 
the access mechanism on a disk drive, are specified by means of device-specific 
protocols. That is, the format and meaning of control information specifying such 
functions, and the method used to supply the device with the information, depend 
on the particular device and operation. For example, device-dependent control 
information may appear in the programmed I/ 0 (PIO) command code, or it may 
be transferred to the device as data during a CHIO or PIO operation. 

Figure 8-2 illustrates the use of the CHCV, CHP, and data count during a CHIO 
data transfer operation. The CHIO command, which is specified within the 
CHCV, designates the type of operation. Refer to "Channel Control Vector" 
later in this chapter for a description of the CHCV format. 

The program initiates a CHIO operation by issuing a PIO command to the I/O 
device. The device recognizes the command as a start-CHIO operation. The term 
"start CHIO" is the generic name for a class of device-specific commands. It is 
used in this publication to denote any PIO command that causes the device to 
initiate and execute a CHIO operation. The PIO command code designated as the 
start-CHIO command for a specific device is described in the SL publication for 
that device. 

The start-CHIO command may be an immediate-type command, for which 
accompanying data is ignored. Conversely, the command may specify a write 
operation, for which the data provides control information, such as the CHIO 
command, CHP number, or data count, that the device uses in the execution of 
the CHIO operation. Control information may also be supplied to the device by 
means of one or more PIO instructions executed before the start-CHIO command 
is issued. Alternatively, the CHIO operation may consist of the writing of control 
information to the device followed by the reading or writing of data. In this latter 
case, the distinction between control information and data is made at the I/ 0 
device; the channel treats the entire operation as a data transfer. 

The address of the storage area to be used for the data transfer is contained in the 
CHP specified in the CHCV. The address in the CHP designates the location in 
main storage from or into which the channel transfers the first byte of data. The 
address is placed in the CHP either before the program issues the start-CHIO 
command, or as part of the CHIO operation. 

The CHP is associated with an address control vector (ACV). All main storage 
addresses used by the channel are treated as logical addresses. The ACV defines a 
logical address space, which consists of the set of consecutive logical addresses 
from 0 to the maximum address specified by the ACV size field. During each 
storage reference, the logical address is relocated by means of the dynamic 
address relocation facility. When dynamic address translation is specified in the 
ACV, the relocated address is then translated to a real address by means of the 

Chapter 8. Input/Output Operations 8-19 



8-20 

dynamic address translation facility. On processor models that use separation 
protection, the translation lock is also compared with the protection key prior to 
allowing access to the associated translation-table entry and performing dynamic 
address translation. When address translation is not designated, the relocated 
address is used as the real address. Dynamic address relocation and translation, 
translation locks, protection keys, and the ACV are described in Chapter 7. 

When the CHIO operation is initiated, the device is set up to issue service requests 
to the channel, and the channel and device assume subsequent control of the 
operation. The moment at which the first CHIO burst transfer begins may occur 
at the completion of the PIO instruction issuing the start-CHIO command, or 
later. 

The channel executes the CHIO operation in response to service requests from 
the I/ 0 device. The device requests service of the channel whenever it is ready to 
send or receive a burst of information. When the channel grants service to the 
device, the device becomes logically connected to the channel and responds by 
transferring the CHCV to the channel. The channel decodes the CHCV, 
including the command code, fetches the storage address from the CHP 
designated in the CHCV, and initiates the reading or writing of the burst of 
information. The device maintains the data count of the burst, while the channel 
maintains and updates the storage address as information is transferred to or from 
main storage. 

The conclusion of a burst transfer is signaled by the device. It causes the channel 
to logically disconnect the device, and place the updated storage address back in 
the CHP. The updated address in the CHP is thus ready for use for the next burst 
transfer, if any. 

The CHIO operation consists of one or more burst transfers. The number of 
bursts and the amount of information transferred during each burst depend on the 
device and the type of operation. The CHIO operation is concluded when the last 
burst transfer of the operation has been completed. 

Depending on the particular device, the conclusion of a CHIO operation may be 
brought to the attention of the program with an I/ 0 interruption. When the end 
of the operation is not signaled with an I/O interruption, or when the priority 
level is disabled for the I/ 0 interruption, the conclusion may be determined by 
programmed interrogation of the I/ 0 device. In either case, the device status, 
which contains information concerning the execution of the CHIO operation, is 
available to the program by execution of one or more PIO operations, such as the 
PJO command Read BSTAT. 

Programming Note: A malfunction that affects the validity of data transferred in 
a CHIO operation generates a system-check interruption when the channel 
detects the error, and causes the operation to be terminated. A malfunction 
detected by the 1/0 device either results in termination of the CHIO operation 
and a system-check interruption, or is indicated after the operation is concluded, 
depending on the type of error. Data read during an input operation should not 
be useci unti1 the end of the CHIO operation has been reached and the validity of 
the operation has been checked. Similarly, on writing, the copy of data in main 
storage should not be destroyed until the program verifies that no malfunction 
affecting the transfer and recording of data was detected. 



PCE/Channel Main Storage 

Logical Address Space 

Channel Pointer 

B r~i ~~~~~~~~_____,~~ 
m L_ ___ _,.., 

Adapter /Device 

EJ 

CHCV D Data Count Data Block 

CMD 

1 D ... 

Notes: 

D CHCV supplied by device specifies channel pointer number and CHIO command (CMD). 

fJ Channel pointer designates startin~J location for burst transfer. 

EJ Datil is transferred (in this case, the fourth burst of the data tilock). 

D Device maintains count of data transferred. 

D At completion of burst transfer, channel pointer designates s1arting location 
for next burst transfer, if any. 

Figure 8-2. Channel I/O Data Transfer Operation 

Chapter 8. Input/Output Operations 8-21 



Execution of Channel Input I Output Operations 

Blocking of Data 

Channel Pointer 

8-22 

The execution of a CHIO operation is accomplished in one or more burst 
transfers. The channel executes a burst transfer at the request of the device. Each 
burst transfer is treated is an independent operation by the channel, which allows 
the channel to execute two or more concurrent CHIO operations by interleaving 
their burst transfers. A burst may include the transfer of data, the data address, or 
both. The type of information transferred and the direction of the transfer (input 
or output) is specified by the CHIO command. The CHIO commands are 
described in detail later in this chapter under "Channel Input/Output 
Commands." 

The CHIO command is contained in the CHCV, which is transmitted by the 
device to the channel at the beginning of each burst. The burst transfer begins 
when the channel accepts the CHCV from the I/O device, and lasts until 
end-of-burst is signaled by the device. 

Data recorded by an I/ 0 device may be divided into physical blocks. The length 
of a block depends on the device. For example, a block can be a card~ a line of 
printing, or the information recorded between two consecutive gaps on magnetic 
tape. 

A block of information may be transferred in one burst. Normally, however, a 
block is transferred in a number of bursts, each consisting of only a few bytes. 
One or more blocks may be transferred in one CHIO operation. The capability to 
transfer multiple blocks in one CHIO operation, and the manner in which it is 
accomplished, depends on the particular device. 

For some operations, such as writing on magnetic tape, blocks are not defined, 
and the amount of information transferred is specified by the program. The data 
count, in this case, is provided to the device as control information before the data 
transfer. The count may be supplied to the device as part of the CHIO operation 
or by means of a PIO operation. 

The channel pointer (CHP) is 32 bits long and is used by the channel during 
CHIO operations to address main storage. The CHP contains the logical address 
of a byte location in main storage. This logical address designates the first 
location ref erred to in the execution of a burst transfer of data bet,:veen main 
storage and an I/O device. The address may be placed in the CHP either (1) by 
the program by means of register-indirect instructions (described in Chapter 6, 
"Register Organization''), or (2) by the 1/0 device as part of the burst transfer. 
Alternatively, a burst transfer may use the address that the channel stored back 
into the CHP at the end of the previous burst transfer. This is typically the case 
for the second and subsequent burst transfers of a CHIO operation in which the 
data is transferred in multiple bursts. During the burst, storage locations are 
ref erred to in ascending order of logical addresses. When the burst transfer is 
concluded, the channel increases the address in the CHP by an amount equal to 
the number of bytes transferred to or from main storage. 



Designation of Storage Area 

The system provides 64 CHPs for CHIO operations. Each CHP number is 
permanently assigned to one of the principal registers from sets 8-15 as follows: 

CHP Register Set 

0-7 12 
8-15 13 

16-23 14 
24-31 15 
32-39 8 
40-47 9 
48-55 10 
56-63 11 

The eight registers within each set are assigned to the corresponding CHPs in 
ascending order. That is, CHP numbers 0-7 are respectively assigned to register 
numbers 0-7 in set number 12, CHP numbers 8-15 to register numbers 0-7 in set 
13, and so on to CHP numbers 56-63, which are respectively assigned to register 
numbers 0-7 in set 11. Figure 6-4 illustrates the allocation of principal registers 
to channel pointers. 

The CHP-number field in the CHCV designates 1 of the 64 CHPs. When a burst 
transfer to or from main storage begins, the channel fetches the storage address 
from the principal register assigned as the channel pointer designated in the 
CHCV. 

For burst transfers that include transferring the data address from the I/O device 
to the CHP, the channel stores the address into the principal register assigned as 
the CHP specified in the CHCV. Burst transfers that write the data address from 
the CHP to the 1/0 device cause the channel to fetch the address from the 
principal register assigned as the CHP specified in the CHCV. Only the principal 
register assigned as the specified CHP is referred to for these operations. 

Programming Note: The CHIO structure allows a single CHP to be used for the 
execution of two or more concurrent CHIO operations. However, the capability 
to share a CHP among concurrently executing CHIO operations should be used 
only when the 32-bit data address is read from the device as part of every burst 
transfer. This normally requires that the I/0 device maintain and update the 
storage address during the CHIO operation, thereby ensuring that each burst 
transfer begins at the proper storage location. 

The main-storage location at which a burst transfer begins is identified by the 
CHP designated in the CHCV, and the ACV associated with the CHP. The ACV 
defines the logical address space available to the channel for the transfer of a 
burst of data to or from main storage. The CHP contains the logical address of the 
first byte of data to be transferred. The extent of main storage referred to during 
the burst transfer is determined by the device. That is, the device controls the 
number of bytes transferred, and concludes the transfer after the last byte of the 
burst has been read or written. 

Consecutive storage locations are used in ascending order of logical addresses. As 
information is transferred to or from main storage, the logical address from the 
CHP is incremented. At the conclusion of the burst transfer, the logical address 
in the CHP is increased by the number of bytes transferred. Thus the amount of 

Chapter 8. Input/Outpul Operations 8-23 



8-24 

storage used during the burst transfer is reflected in the difference between the 
address in the CHP at the beginning of the transfer and the address stored back in 
the CHP at the conclusion of the transfer. 

Any main-storage location available to the channel can be used in the transfer of 
data to or from an I/O device, provided the location is not protected against the 
type of reference. Protection for CHIO operations is provided when dynamic 
address translation is active for the operation. Protection is specified by the 
block-invalid and channel-store-protection bits of the access-control field in the 
translation-table entries. Also, depending on processor model, separation 
protection is specified by the translation lock and its associated 
translation-lock-table entry in combination with the protection key associated 
with the ACV. For block-invalid and channel-store protection, an access 
exception is detected when the channel attempts to refer to a location protected 
against the type of reference. For separation protection, a separation exception is 
detected when the channel attempts to refer to a location without a valid 
translation lock. In either case, the transfer is terminated and a system-check 
interruption is generated with channel I/ 0 check and exception indicated. 

A main-storage location is available to the channel when ( 1) the physical storage 

I 

location is installed, (2) the corresponding logical address is w. ithin the logical 
address space defined for the burst transfer, and (3) the location is not protected 
against the type of reference. The ACV associated with the specified CHP defines 
the logical address space. That is, it defines the set of consecutive logical 
addresses, ranging from 0 to a maximum address, considered valid for the burst 
transfer. The maximum valid address in the logical address space is 1 less than 
the size of the space, which is designated by the size field in the ACV. The 
relationship of the CHCV, CHP, and ACV to the designation of the logical 
storage area is illustrated in Figure 8-3. 

When the channel attempts to refer to a physical storage location not installed, a 

I specification exception is detected. When it attempts to ref er to a storage location 
that is access-protected or separation-protected, an access or separation exception 
is detected. When it attempts to refer to a location specified by a logical address 
outside the logical address space, an address exception is detected. In either case, 
the burst transfer is terminated and a system-check interruption is generated with 
channel 1/0 check and exception indicated. The CHP contains the logical 
address of the first byte of data referred to, if any, for the terminated burst 
transfer. 

During an output operation, the channel may fetch data from main storage before 

I the time the I/ 0 device requests the data. Any number of bytes may be 
pref etched and buffered. A specification, access, separation, or address exc.eption 
detected during pref etching of data does not affect the execution of the operation 
and does not cause a system-check interruption until the I/O device actually 
requests the data. If the burst transfer is concluded before the data is requested, 
the exception is not brought to the attention of the program. 



l 

Adjunct 
Registers 

ACV 

ll 

• 

Principal 
Registers 

CHP 

1 
CHCV 

0 

D 

I 
I 
I 
I 

Logical 
Address 

Space 

jl 

Notes: 

EJ I 
I 
I 
L_ 

0 

- - - - - - - - - - __. ________ _ 

D The CHCV designates the CHP and its corresponding ACV. 

/ 
/ 

f) The origin field in the ACV defim!s the origin of the logical address space in the PCE address space. 
The origin address in the PCE address space corresponds to logical address 0. 

EJ The size field in the ACV defines the size of the logical address space. The maximum logical address 
available to the channel is 1 less than the size of the logical address space. 

D The cllannel-po111ter content desir;inates the starting location of the data area in the logical address 
space. 

Figure 8-3. Designation of Logical Storage Area 

Channel Input/Output Commands 

PCE 
Address 
Space 

T 

The CHIO command is part of the CHCV, and designates to the channel the type 
of burst transfer to be performed. The six CHIO commands executed by the 
channel are: 

Write Data 
Read Data 
Write Data Address 
Read Data Address 
Read Data Address And Write Data 
Read Data Address And Read Data 

Each command is described in the following paragraphs under the individual 
command names. Of the commands listed above, those that are implemented by a 
device depends on the specific device. 

Chapter 8. Input/Output Operations 8-25 



Channel Pointer Usage 

8-26 

Write Data: The channel writes a burst of data from main storage to the I/O 
device. Data in storage is fetched in an ascending order of logical addresses, 
starting with the address contained in the designated CHP. At the conclusion of 
the burst transfer, which is signaled by the device, the address in the CHP is 
increased by an amount equal to the number of bytes written to the device. 

Read Data: The channel reads a burst of data from the 1/0 device into main 
storage. Data is placed in storage in an ascending order of logical addresses, 
starting with the address contained in the designated CHP. At the conclusion of 
the burst transfer, which is signaled by the device, the address in the CHP is 
increased by an amount equal to the number of bytes read from the device. 

Write Data Address: The channel writes 1 to 4 bytes of address information from 
the designated CHP to the I/0 device. The information is fetched from the CHP 
in left-to-right order, starting at the location specified by the modifier bits in the 
command code. (The modifier bits are defined in this chapter under "Command 
Code Modifier Bits.") The operation ends when the transfer is concluded by the 
device. 

Read Data Address: The channel reads 1 to 4 bytes of address information from 
the 1/0 device into the designated CHP. The information is placed in the CHP in 
left-to-right order, starting at the location specified by the modifier bits in the 
command code. (The modifier bits are defined in this chapter under ''Command 
Code Modifier Bits.") The operation ends when the transfer is concluded by the 
device. 

Read Data Address And Write Data: The channel reads 1 to 4 bytes of address 
information from the I/0 device into the specified CHP, as described for the 
Read Data Address command. After information is placed in the rightmost byte 
location of the CHP, the channel writes a burst of data from main storage to the 
I/0 device, as described for the Write Data command. 

Read Data Address And Read Data: The channe] reads l to 4 bytes of address 
information from the I/0 device into the specified CHP, as described for the 
Read Data Address command. After information is placed in the rightmost byte 
location of the CHP, the channel reads a burst of data from the 1/0 device into 
main storage, as described for the Read Data command. 

Transfer of Data: Execution of the commands Write Data and Read Data consists 
of transferring a burst of data between main storage and the 1/0 device. The 
contents of the specified CHP are used as the logical address of the storage 
location at which the transfer begins. The number of consecutive storage locations 
used during the transfer is determined by the length of the burst. The burst length 
represents the number of bytes transferred and is controlled by the device. 

The burst ends when the device signals the conclusion of the transfer, at which 
time the channel increases the address in the CHP by the length of the burst. If an 
error is detected by the channel during the transfer of the burst of data, the 
channel terminates the transfer and generates a system-check interruption. In 
this case, the address in the CHP is not increased and remains unchanged. 

Transfer of Data Address: Execution of the commands Write Data Address and 
Read Data Address consists only of transferring address information to or from 
the specified CHP; no reference is made to main storage. The maximum number 



of address bytes transferred depends on the starting location in the CHP, as 
designated by the modifier bits. That is, a maximum of 4 bytes may be transferred 
when the modifier bits designate the leftmost byte of the CHP, whereas only 1 
byte is transferred when the rightmost byte is designated. The number of bytes 
transferred may be less than the maximum, depending on the device. For 
example, the burst may be concluded after 2 bytes are transferred to or from the 
two high-order byte locations of the CHP. When fewer than 4 bytes are read for 
the Read Data Address command, the remaining bytes in the CHP are not 
changed. 

The conclusion of the burst transfer is signaled by the device, and it may occur 
before, or concurrently with, the transfer of address information to or from the 
rightmost byte of the CHP. An attempt to transfer information beyond the 
rightmost byte of the CHP causes a system-check interruption with I/O timeout 
check and channel I/ 0 check indicated. 

When the channel detects an error during the transfer of the data address to or 
from the CHP, the transfer is terminated and a system-check interruption is 
generated. The extent to which the contents of the CHP are changed during 
execution of the Read Data Address command depends on the point at which the 
error occurs. 

Transfer of Data Address and Data: Execution of the command Read Data 
Address And Write Data and the command Read Data Address And Read Data 
consists of reading address information into the specified CHP and then 
transferring data to or from main storage. The channel reads 1 to 4 address bytes, 
depending on the modifier bits, and places the informatfon in the CHP. After the 
low-order address byte is placed in the rightmost byte location of the CHP, the 
channel proceeds to transfer data between main storage and the I/ 0 device in the 
manner described earlier for the commands Write Data and Read Data. All 32 
bits of the CHP contents are used as the data address, even when fewer than 4 
bytes of address information are read from the I/ 0 device. 

If the device signals the conclusion of the burst transfer before any data is 
transferred, no reference to main storage occurs. If the channel detects an error 
during the burst transfer, the transfer is terminated and a system-check 
interruption is generated. If the error is detected during the transfer of the data 
address, the extent to which the contents of the CHP are changed depends on 
when the error occurs. If the channel detects the error during data transfer to or 
from main storage, the contents of the CHP remain as modified during the 
reading of the address information. 

Conclusion of Channel Input I Output Operations 

When a CHIO operation is ended, the conclusion may be signaled by the device 
with an I/ 0 interruption, or it may be determined by programmed interrogation, 
depending on the particular device and operation. In either case, the device 
generates status information that indicates conditions pertaining to the execution 
of the CHIO operation. This device-status information is stored in the BSTAT 
associated with the device. Additional device-status information, if any, is stored 
in device-specific status registers. 

At the conclusion of a CHIO operation, the device-status information may be 
obtained by the program by executing one or more programmed 1/0 commands 
that read the status information. Alternatively, the device may transfer its status 
information into main storage as part of the CHIO operation. The BSTA T and 

Chapter 8. Input/Output Operations 8-27 



Types of Conclusion 

8-28 

the associated PIO commands are described under "Basic Status Register" in this 
chapter. The status information provided by the device and the manner in which 
the information is made available to the program depend on the particular device. 

Normally, a CHIO operation lasts until the device concludes the final burst 
transfer. When the channel recognizes a channel exception or detects equipment 
malfunctioning, the channel terminates the burst transfer immediately by 
signaling halt to the device and logically disconnecting the device. The device is 
also disconnected prematurely when system reset or I/ 0 reset is performed, or 
when the program issues the PIO command Reset Device. 

Normal Conclusion of Data Trans/ er: When a CHIO operation is initiated, the 
I/O device is set up for data transfer. The duration of data transfer operations 
may be variable and is controlled by the device. Unless an error is detected, or 
the operation is prematurely concluded by the Reset Device command, the CHIO 
operation lasts until it is concluded by the device. The device-status information 
indicates any unusual conditions encountered during the operation and may, 
depending on the device and type of operation, indicate the normal ending of the 
CHIO operation. For devices that do not provide a normal-ending indication, the 
program may assume normal conclusion of the CHIO operation when no errors 
are indicated. 

Termination Due to Channel Exception: When the channel detects a channel 
exception, the CHIO operation is terminated and a system-check interruption 

I occurs with exception and channel I/O check indicated in the EIRV. The 
channel detects the following exceptions: operation, specification, address, 
separation, or access. These channel exceptions are described below. 

Bits 0-4 of the CHCV are not all O's (operation exception for invalid 
operation). 

The format of the ACV associated with the burst operation is invalid 
(specification exception for ACV format). An ACV format is invalid ( l) 
when bits 0-7 of the ACV are not all O's, (2) when the size value is not 
defined or not available on the PCE, or (3) when the origin value exceeds the 
maximum address in the PCE address space. 

The channel attempts to refer to a storage location not available to the 
channel. A storage location is not available ( 1) when the logical address is 
greater than or equal to the value specified by the size field in the ACV 
associated with the burst transfer (address exception for address limit), or (2) 
when the physical storage location corresponding to the logical address is not 
installed (specification exception for real address). 

For processor models that implement separation protection, the channel 
attempts to refer to a storage location protected by the translation 
lock/protection key mechanism. The referenced storage location is logically 
separated from the channel I/ 0 operation and access is not allowed when 
dynamic address translation is active (ACV bit 31 set to I) and a translation 
lock/protection key mismatch occurs. This mismatch occurs if the value of the 
translation lock corresponding to the referenced storage block and the value 
of the protection key associated with the active ACY are not identical and 
neither value is zero. 



The channel attempts to refer to a storage location not accessible to the 
channel by access control. A storage location is not accessible when dynamic 
address translation is active (bit 31 of the ACV is 1) and the location is 
protected against the type of reference. Protection against the type of 
reference is specified by the access-control field in the translation-table entry 
corresponding to the logical address. The channel exception is detected if 
either ( 1) the channel attempts a reference of any type to the storage location 
and the block-invalid bit for the location is 1 (access exception for block 
invalid), or (2) the channel attempts to store into the location and the 
channel-store-protection bit is a 1 (access exception for channel store 
protection). Store-type references apply to the CHIO command Read Data 
and to the data transfer portion of the CHIO command Read Data Address 
And Read Data. 

A channel exception causes the channel to conclude the data transfer. The 
conclusion is signared to the device at the time the exception is detected. The 
channel sends a halt signal to the device causing the data transfer to cease. The 
channel then logically disconnects the device and causes a system-check 
interruption with exception and channel 1/0 check indicated in the EIRV. 

When the channel signals halt to the device, the device acknowledges receipt of 
the halt signal by setting the equipment-check and interrupt-request bits to l's in 
its BSTAT. Other device-status bits may also be set to l's, depending on the 
device and type of operation. Setting the interrupt-request bit to 1 generates an 
I I 0 interruption for the priority level to which the device is assigned. The I/ 0 
interruption is indicated to the program by means of the IOIRV. 

The channel exception may be recognized at the beginning of a CHIO operation 
or after data transfer has been initiated. When the exception is detected at the 
beginning of the CHIO operation, no data is transferred during the operation, and 
the device is signaled to terminate the operation without any reference to main 
storage. Whether a block of data is advanced at the device when no data is 
transferred depends on the particular device. 

Programming Note: See the programming notes under the heading "Termination 
Due to Equipment Malfunction" which follows. 

Termination Due to Equipment Malfunction: When equipment malfunctioning 
related to a CHIO operation is detected, or when invalid parity or control signals 
are received from the I/ 0 device, the channel terminates the operation. The 
recovery procedure and the subsequent state of the device depend on the type of 
error and the point in the operation at which the error occurs. The program is 
alerted to the termination by a system-check interruption, and the EIRV indicates 
the type of error encountered. Except for the difference in the type of error 
indicated in the EIRV, the action taken by the channel is the same as described 
under "Termination Due to Channel Exception.'' 

The channel causes bit position 4 of the EIRV to be set to 1, indicating a channel 
l/O check. One or two other bits in the EIRV are also set to l's, indicating the 

Chapter 8. Input/Output Operations 8-29 



specific type of system check. The following system checks related to a channel 
I/O operation may be indicated in the EIRV: 

EIRV Bit(s) 

0 
1 
2 
3 
4 
5 

2 and 5 

System Check 

I/ 0 Control Check 
I/ 0 Timeout Check 
Storage Data Check 
Exception 
Channel I/O Check (always indicated for CHIO errors) 
Internal Control Check 
lnternal Data Check 

These system checks are described in detail under "System Checks" in Chapter 9. 

Programming Notes: 

An interruption for a system check related to a CHI 0 operation occurs after 
the PCE completes execution of the current instruction, or the current unit of 
operation for interruptible instructions. The instruction address in the stored 
PSV for the interrupted program and the instruction address modifier in the 
EIR V designate the instruction that would have been executed next had the 
interruption not occurred. The instruction address modifier indicates whether 
the instruction address stored with the PSV for the interrupted program 
designates the location of the next instruction to be executed, or has been 
incremented by 2 to designate the location two bytes beyond the next 
instruction. The instruction address modifier bit is set to 1 if the instruction 
address has not been incremented by 2; otherwise it is not changed. If the 
address has been incremented, 2 must be subtracted from the stored 
instruction address before control is returned to the interrupted program. 

The detection of a system check related to a CHIO operation results in an 
1/0 interruption as well as a system-check interruption. When the 1/0 device 
is assigned to a priority leyel other than 0, the system-check interruption is 
always handled first. This is performed unless bit 0 of the common mask is 
reset to 0 on processor models that can disable priority level 0 for 
system-check interrupt requests. Priority level 0, therefore, should not be 
disabled so that the channel exception or malfunction can be handled 
properly. When the device is assigned to priority level 0, the program handling 
the interruption should inspect the EIRV before inspecting the IOIRV. 

Enabling and Disabling of Channel Input/Output Operations 

8 30 

The channel can be enabled or disabled for CHIO operations. When the channel 
is enabled, burst transfers can take place. When the channel is disabled, burst 
transfers are disallowed and the requests by the devices for initiating burst 
transfers are ignored. Depending on the particular device, a request to initiate a 
burst transfer may remain pending until the channel is enabled, or the device may 
remove the request before the channel is enabled. 

The enabling and disabling of CHIO operations is controlled by the channel mask 
and the EIRV. Burst transfers may take place only when the channel is enabled 
by hoth the channel mask and the EIRV. When the channel is disabled by either 
one, burst transfers are disallowed. 



Channel Mask 

Error Interrupt Request Vector 

Channel Control Vector 

The channel can become disabled during a CHIO operation. If the channel 
becomes disabled because of a system check, the CHIO operation causing the 
system check is terminated. When the system check is not related to the CHIO 
operation, or when the program disables the channel, any remaining burst 
transfers for the CHIO operation are held pending. The state of a CHIO 
operation and the associated device at the time the channel is subsequently 
enabled and the ability of the device to continue the CHIO operation depend on 
the type of operation, the particular device, and the amount of time that the 
operation is held pending. 

Programming Note: Disabling the channel for CHIO operations does not affect 
execution of PIO operations by the channel. 

The channel mask is a 1-bit mask. When the mask is 1, the channel is enabled for 
CHIO operations, provided the channel is not disabled by the EIRV. When the 
mask is 0, the channel is disabled. The channel mask is altered under program 
control. 

Three PCE-control instructions are provided to inspect or change the channel 
mask. READ CHANNEL MASK allows the program to determine the current 
value of the mask. SET CHANNEL MASK and RESET CHANNEL MASK 
provide for making the mask 1 or 0, respectively. 

The channel is disabled by the EIRV when a 1 is in any of the bit positions 0-3 or 
5 of the EIRV. When these bit positions contain all O's, and the channel mask is 1. 
the channel is enabled. 

If execution of the PCE-control instruction WRITE ERROR INTERRUPT 
REQUEST VECTOR places a 1 in any of the bit positions 0-3 or 5, the channel is 
disabled at the completion of the instruction. When O's are written into these bit 
positions, and the channel mask is l, the channel is enabled at the completion of 
the instruction. 

When a system check is detected by the PCE or channel. the system check is 
indicated with bit positions 0-5 of the EIRV. The channel becomes disabled 
when bits 0-3 or 5 are set to 1, and remains disabled as long as bits 0-3 or 5 of the 
ElRV are not all O's. The system-check interruption is not taken at the time the 
system check is detected when priority level 0 is active or, for processor models 
that can disable priority level 0 for system-check interrupt requests, when bit 0 of 
the common mask is reset to 0. 

Bit 4 of the ElRV is set with one or more other bits of the EiRV if the system 

I check results from a channel l/O operation. Bit 4 alone being set to l does not 
disable the channel. See Chapter 10 for bit 4 operation in duat-PCF processors. 

The channel control vector (CHCV) is the formatted control information sent by 
the 1/0 device to the channel at the beginning of each CHIO burst transfer. The 
CHCV designates for the burst transfer the CHIO command to be executed and 
the channel pointer (CHP) to be used. For commands that transfer data to or 
from main storage, the CHP provides the logical address of the storage area to he 
used for the burst transfer. 

Chapter 8. Input/Output Operations 8-3 l 



Channel Control Vector Format 

\ 0 
I 

0 0 0 0 

c 4 

8-32 

When a f'HIO operation consists of two or more bursts, the same copy of the 
CHCV may be used for each burst. Conversely, the CHIO operation may use 
several different CHCVs. One CHIO operation may include, for example, the 
transfer of the storage address to the channel pointer, control information to the 
I/O device, and data to main storage. At least two different CHCVs are used in 
this example. 

The CHCV is 16 bits long. Whether the format of the CHCV is made apparent 
to the program depends on the specific device. The CHCV may be provided to 
the device by the program, in which case the format of the CHCV is apparent to 
the program. Alternatively, the I/O device may generate the CHCV from control 
information it receives from the program, and the program is not normally 
concerned with the CHCV format. The following figure illustrates the CHCV 
format. 

CHP Command CoMmand 

No. 
. 3> 

CHP Number <1 .. 5> C0de <: 4> 

<O> Code <0 c<i=<1G 

5 6 9 10 14 15 

The functions of the CHCV fields are as follows: 

CHP Number: Bits 5 and 10-14 form the binary number of the channel 
pointer to be used for the burst transfer. Bit 5 is concatenated to the left of 
bits 10-14 in forming the 6-bit number. The CHP Number designates 1 of 64 
CHPs available for CHIO operations. 

Command Code: The CHIO command code specifies the type of burst 
transfer to be performed. Bits 6-9 represent the high-order 4 bits of the 5-bit 
command code. Bit 15 represents the low-order bit of the command code 
when the operation involves a byte-mode I/0 device. When the operation 
involves a halfword-mode I/O device, bit 15 is not used for the command 
code: instead, the channel assumes a 0 for the low-order bit of the code. 

Flag: When the burst transfer involves a halfword-mode I/O device, bit 15 
represents the CHCV flag. The flag bit, when a l. causes the channel to 
substitute O's for the eight high-order bit positions of the CHCV in place of 
the corresponding bits presented by the device; only the eight low-order bits 
of the CHCV are inspected for data check. When the flag bit is O. the 
channel uses all 16 bits supplied by the device as the CHCV. 

Reserved Bits: Bit positions 0-4 are reserved and must contain O's. Otherwise, 
a system-check interruption occurs with channel I/O check and exception 
indicated. 

Programming Notes: 

When a burst transfer is initiated by a byte-mode device, the de\ ice may 
transfer all 16 bits of the CHCV to the channel or only the low-order 8 bits. 
In the latter case. the channel assumes O's for the high-order 8 bits. Logically, 
a halfword-mode device may also transfer only the low-order 8 bits of the 
CHCV by setting bit 15 (the CI-ICY flag) to 1. 



Command Code 

Command Code Modifier Bits 

When O's are assumed by the channel for the high-order 8 bits of the CHCV: 
( 1) the range of CHP numbers that can be specified is limited to 0-31, (2) the 
CHIO commands that can be designated are limited to Write Data, Read 
Data, Write Data Address, and Read Data Address, and (3) only the 
low-order two bytes of the CHP can be accessed for Write Data Address and 
Read Data Address. 

The 5-bit command code specifies to the channel the type of burst transfer to be 
performed. Bits 0, 2, and 3 of the command code (bits 6, 8, and 9 of the CHCV) 
identify to the channel the type of burst transfer. Bits 1 and 4 of the code are 
treated as modifiers. Each command was described earlier under "Channel 
lnput/Output Commands" in this chapter. 

The command-code assignment is listed in the following table; the symbol m 
identifies a modifier bit. 

Code Bits Command 
01234 

0 0 0 0 0 Write Data 
0 0 1 0 0 Read Data 
0 m 0 1 m Write Data Address 
0 m 1 1 m Read Data Address 
1 m 0 0 m Read Data Address And Write Data 
1 m 1 0 m Read Data Address And Read Data 

Command codes not listed in the preceding table are reserved. If the channel 

I encounters a reserved command code, the result is unpredictable. Depending on 
processor model, a system-check interruption may occur. 

The modifier bits pertain to burst transfers that include reading or writing the data 
address. From 1 to 4 bytes of address information are transferred to or from the 
specified channel pointer, beginning at the location designated by the modifier 
bits and proceeding to the right. The two modifier bits specify the beginning 
location in the channel pointer as follows: 

Command Beginning Location in CHP 

Code Bits Byte-Mode Device Halfword-Mode Device 
1 4 

1 0 First Byte (bits 0-7) First Halfword (bits 0-15) 
1 1 Second Byte (bits 8-15) --
0 0 Third Byte (bits 16-23) Second Half word (bits 16-31) 
0 1 Fourth Byte (bits 24-31) --

Programming Note: For halfword-mode devices, bit 4 of the command code is 
always assumed 0 by the channel, and only the combinations 10 and 00 of the 
modifier bits apply. In this case, the address information transferred between the 
channel pointer and a halfword-mode device consists of either 2 or 4 bytes. 

Chapter 8. Input/Output Operations 8-33 





Chapter 9. PCE Control 

PCE States 

This chapter describes in detail the PCE facilities that provide for: switching the 
status of the PCE; protecting a program from interference by another program; 
and, in general, enhancing the efficiency, utility, and integrity of the IBM 8100 
system. 

The information defining the state of the PCE and controlling its operation 
resides in the program status vector (PSV), the address control vector (ACY), 
and in other vectors of PCE control information. 

By providing a supervisor mode for program execution, and a class of instructions 
that are valid only in the supervisor mode for changing the contents of the PSV, 
control vectors, permanently assigned register locations, the translation table, and 
the translation lock table, a means is provided for avoiding unauthorized or 
inadvertent change to the state and operation of the PCE. 

Further protection is furnished by the dynamic-address-relocation and 
dynamic-address-translation facilities. By allowing programs to execute in 
separate address spaces, dynamic address relocation protects main storage 
allocated to one program from destruction or misuse by another program. The 
dynamic-address-translation facility includes additional protection by means of 
translation locks, protection keys, and access controls. For programs executing in 
the same address space, translation locks and protection keys allow the programs 
to access blocks of common storage and, at the same time, provide private blocks 
of storage for each program. Access control provides protection against erroneous 
or unauthorized storing, instruction execution, or storage references of any type 
by the program or channel. The operations of the relocation and translation 
facilities are described in Chapter 7. 

Special considerations for PCE control in dual-PCE processors are described in 
Chapter 10. 

Excluding facilities provided for maintaining and testing equipment and programs, 
three PCE states are defined: wait, running, and initial. 

ln the wait state, no instructions are fetched or executed; in the running state, 
instruction fetching and execution proceed in the normal manner. A description 
of the wait and running states is included under "Priority Level Dispatching" in 
this chapter. 

The initial state is the name given to the srnte of the PCE as it appears after initial 
program load (IPL) and just before the first instruction is fetched from main 
storage. The initial state of the PCE depends on the processor model. Refer to 
the specific processor description manual for a definition of the PCE's initial 
state. 

Programming Note: Jn the wait state, the PCE does not make repeated references 
to main storage; therefore, the wait state is suitable for delaying operation until an 
external event occurs. References to main storage may, however, be made for 
channel l/ 0 operations. 

Chapter 9. PCE Control 9-1 



Program Modes 

Program Status Vector 

9-2 

Four distinct modes of execution are provided that determine which instructions 
may be used by a program. The four modes are hierarchical and are called 
application, input/output, supervisor, and master. Application is the least privileged 
mode and master is the most privileged. The four modes are distinguished by the 
portion of the full set of instructions that is valid for each mode, and, for master 
mode, the capability to override certain storage-access protection. 

In application mode, the valid instructions are those that are used for normal 
information processing. These instructions cannot be used to execute 
input/ output operations, nor can they be used to modify information that controls 
the PCE. 

In input/ output mode, the valid instructions are those that can be executed in 
application mode, plus three input/ output instructions and two PCE-control 
instructions. These latter five instructions are called the input I output-privileged 
instructions. A program-exception interruption occurs, with operation exception 
indicated, when an input/ output-privileged instruction is encountered in 
application mode. 

In supervisor mode, all instructions are valid. Those instructions that can modify 
PCE-control information, that can indirectly refer to any principal or adjunct 

I register, or that can access the translation table or the translation lock table, are 
called supervisor-privileged instructions. A program-exception interruption occurs, 
with operation exception indicated, when a supervisor-privileged instruction is 
encountered in either application or input/ output mode. 

In master mode, as in supervisor mode, all instructions are valid. In master mode, 
however, all references to main storage resulting from program execution arc 
allowed, regardless of the state of the associated access-control bits, provided the 
block-invalid bit is 0. An access exception is recognized when dynamic address 
translation is active and an attempt is made in any program mode to refer to main 
storage when the associated block-invalid bit is 1. 

The program mode is designated by a 2-bit program-mode field in the PSV. 

Programming Note: Channel l/0 operations are performed independently of a 
PSV. Therefore, the program mode does not affect either the validity of channel 
l/0 operations or the storage references resulting from these operations. 

The program status vector (PSV) is 64 bits long and contains the information 
required for proper program execution. In general, the PSV is used to control 
instruction sequencing and general-register assignments, and to hold and indicate 
the status of the PCE in relation to the program currently being executed. The 
PSV includes the instruction address, condition indicators, register set numbers, 
and other control fields. The active PSV is called the current PSV. The status of 
the program is preserved for subsequent use when the current PSV is stored. 

The state of the PCE is changed when a new PSV is introduced or when 
information is changed in the current PSV. The current PSV is stored and a new 
PSV is introduced as part of the interruption action performed by the PCE. The 



storing of the current PSV always precedes the introduction of a new PSV. PSV 
information is stored in, and introduced from, permanently assigned register 
locations. 

A number of instructions are provided to introduce new control information into 
certain fields of the current PSV; the old information replaced by these 
instructions is lost. The instruction address is updated by sequential instruction 
execution and replaced by successful jumps and branches. Instructions are also 
provided for retrieving certain information from the current PSV. These 
instructions place the contents of the corresponding PSV fields in the designated 
general register. BRANCH AND LINK places the instruction address in the 
designated general register. 

New PSV information becomes active (that is, the information introduced into the 
current PSV assumes control over the PCE) at the completion of the interruption 
action or instruction execution that introduced the new PSV information. 

Program Status Vector Format 

Instruction Address 

0 31 

Pro- Prngram Secondary Primary 
0 0 0 0 1 1 gram Information z H Reg1ste1 Set c v Register Set 

Mode Code Number Number 

32 35 36 37 38 39 40 47 48 49 50 55 56 57 58 63 

Figure 9-1. Program Status Vector Format 

Figure 9-1 illustrates the PSV format. 

The following is a summary of the functions of the PSV fields: 

Instruction Address: Bits 0-31 form the instruction address. This address is the 
logical address of the storage location containing the first half word of the 
next instruction. For a detailed description on the use of bit 3 l during 
address generation, see "Address Generation'' in Chapter 3. 

Program Mode: Bits 38 and 39 identify the program mode and control which 
instructions may be used by the executing program. Bits 38 and 39 also 
control the recognition of certain access exceptions. The program mode is 
identified by the following values of these bits: 

Bits 38-39 

0 0 
0 1 

1 
0 

Program Mode 

Master 
Supervisor 
Input/Output 
Application 

Chapte1· 9. PCE Control 9-3 



I 

9-4 

Program Information Code: Bits 40-4 7 in the PSV stored on a 
program-exception interruption, or during the execution of CALL PSV, 
identify the cause of the switch in PSVs. When a new PSV is introduced, the 
contents of this field are ignored. 

When a program-exception interruption occurs, bit 40 is made a 1, bit 41 
contains the instruction address modifier, and bits 42-4 7 contain the 
program-exception code. The low-order two bits of the program information 
code (PSV bits 46 and 47) are reserved and contain O's. A description of the 
instruction address modifier and program-exception code is given in "Program 
Exception Conditions'' in Chapter 3. 

When CALL PSV is executed, bits 40-4 7 in the stored PSV are set to 0. 
When an interruption occurs for any reason other than a program exception 
or execution of CALL PSV, bits 40-4 7 are reserved and their contents 
depend on processor model. 

Condition Indicators (Z, H, C, and V): Bits 48 and 49 are the two 
condition-indicator bits used to represent the states of result conditions 8, 4, 
and 2. Bits 56 and 5 7 are the two condition indicator bits that represent the 
states of result conditions 0 and J, respectively. Each result condition has two 
possible states: indicated and not-indicated. The states are derived from bits 
48, 49, 56, and 57 of the current PSV as follows (where x indicates that the 
bit is not significant in determining the state of the result condition): 

PSV Bits Result Condition 
48 49 56 57 Indicated 

l x x x 8 
0 l x x 4 

0 () x x 2 
x x x 1 I 
x x 1 x () 

Result conditions 8, 4, and 2 are derived from bits 48 and 49 such that only 
one of the three conditions is indicated at any one time (the other two are 
not-indicated); however, one of the three is always indicated. Result 
condition 8 is indicated whenever bit 48 is 1 and not-indicated when bit 48 is 
0, without regard to bit 49. Result conditions 1 and 0 can be indicated 
together and with result conditions 8, or 4, or 2. Result condition 1 is 
indicated whenever bit 5 7 is 1, and result condition 0 is indicated whenever 
bit 56 is I. Whenever bit 56 or 57 is 0, the corresponding result condition is 
not-indicated. 

Secondary Register Set: Bits 50-55 form the binary number of the secondary 
register set assigned to the program. 

Primary Register Set: Bits 58-63 form the binary number of the primary 
register set assigned to the program. 

Reserved Bits: Bit positions 32-3 7 are reserved. Bit positions 32-35 must 
contain O's; otherwise, a specification exception is recognized. Bit positions 
36 and 3 7 should contain l's for normal system operation. Depending on 
processor model, certain functions that are unique to that model may he 
invoked when these two bit positions do not contain 1 's. 



When an interruption occurs, the fields of the current PSV that are stored are 
the instruction address, the primary and secondary register-set numbers, and 
the condition indicators. Information stored in the program information code 
is described above. The program-mode field and the reserved bits are not 
stored; the contents of the corresponding bit positions in the assigned register 
locations for the PSV remain unchanged. 

Programming Notes: 

The PCE may be switched from one program mode to another only by 
introducing a new PSV. 

The contents of the program-information-code field (bits 40-4 7) in the stored 
PSV are defined only following a program-exception interruption or 
execution of CALL PSV. For all other interruptions, this field is reserved and 
the program should not depend on its contents. 

Exceptions Associated with PSV Introduction 

PSV Format Exceptions 

Other Exceptions 

Exceptions associated with the information in the current PSV may be recognized 
when the information is introduced into the PSV, or when the next instruction is 
fetched. 

When a 1 is introduced into reserved bit positions 32-35 of the PSV, a 
program-exception interruption for specification exception occurs after the PSV 
becomes active. The newly introduced PSV is stored unmodified, with the 
exception of the program information code, which identifies the cause of the 
interruption, and the possible exception of the instruction address, which may 
have been incremented by 2. The instruction address modifier (PSV bit 41) is 
reset to 0 if the instruction address has been incremented; otherwise it is set to 1. 

An instruction-fetch reference may be attempted before the program-exception 
interruption. Therefore, it is unpredictable whether the stored PSV indicates the 
specification exception or an exception related to the attempted instruction fetch. 

If an instruction-fetch reference is attempted before the program-exception 
interruption, an access, address, separation, or specification exception associated 
with the storage location of the fetched instruction may be recognized. It is then 
unpredictable whether the stored PSV indicates the specification exception or an 
exception related to the attempted instruction fetch. The instruction address 
stored because of the resulting program-exception interruption may be 
incremented by 2. The instruction address modifier (PSV bit 41) is reset to 0 if 
the instruction address has been incremented; otherwise it is set to 1. The other 
fields of the current PSV, except for the program information code, are stored 
unchanged. 

Depending on processor model and the value in the instruction address field, 
when an address exception is detected, a specification exception may be indicated 
instead (see ''Address Exception" in Chapter 3). 

Chapter 9. PCE Control 9-5 



Address Control Vector 

The address control vector (ACV) is 32 bits long and contains the information 
required for dynamic address relocation and for activating dynamic address 
translation. Dynamic address relocation, dynamic address translation, and the 
format and function of the ACV are discussed in Chapter 7. The active ACV is 
called the current ACV. 

A new ACV is introduced at the same time a new PSV is introduced. Unlike the 
switching of PSV information, however, the current ACV is not stored because 
the program cannot alter its contents. The new ACV becomes active at the encl 
of the interruption action that caused it to be introduced and remains unchanged 
until another PSV I ACV pair is introduced. 

An ACV also participates in channel input/ output operations. Chapter 8 
discusses the relation of an ACV to channel I/0 operations. 

Exceptions Associated with A CV Introduction 

ACV Format Exceptions 

Other Exceptions 

9-6 

Exceptions associated with the information in the current ACV may be 
recognized when the information is introduced into the ACV or when the next 
instruction is fetched. 

A program-exception interruption for a specification exception occurs after the 
ACV becomes active (1) when the origin field in the ACV designates an address 
that exceeds the maximum address in the PCE address space, (2) when the size 
field contains a value that is undefined or not provided by the PCE, or (3) when a 
1 is contained in a reserved bit position (bit positions 0-7). The action taken by 
the PCE is the same as the action previously described for recognition of a PSV 
format exception. 

When dynamic address translation is not invoked (bit 31 of the ACV is 0) and 
the origin field in the ACV designates the address of a physical main storage 
location that is not installed, a specification exception is recognized when the next 
instruction is fetched. The action taken by the PCE is the same as the action 
previously described for recognition of other exceptions associated with the PSV. 



Floating-Point Status Vector 

The floating-point status vector (FSV) is 24 bits long and contains the 
information required for proper execution of floating-point instructions. The FSV 
includes a register set number and other control and status information. In 
general, the FSV is used to (1) control floating-point register usage, (2) control 
the precision of floating-point operations, (3) control certain program-exception 
interruptions, and ( 4) hold and indicate floating-point errors associated with the 
program. 

The floating-point feature provides eight FSV s, one associated with each priority 
level. A new FSV is made active as part of the interruption action performed by 
the PCE when a new priority level is dispatched. The new FSV becomes active at 
the completion of the interruption action. The active FSV is called the current 
FSV. 

The program should initialize all FSVs by means of the floating-point instruction 
WRITE FLOATING-POINT STATUS VECTOR before executing any other 
floating-point instruction. 

Floating-Point Status Vector Format 

0 0 0 0 0 

0 4 5 

Regis
ter 
Set 

0 0 0 p 0 

78 1011 12 

Excep-
tion C 
Masks 

13 15 16 17 

Exception 
Indicators 

23 

Figure 9-2. Floating-Point Status Vector Format 

Figure 9-2 shows the FSV format; the following summarizes its meaning: 

Register Set: Bits 5-7 form the binary number of the floating-point register set 
available to programs executed at the priority level associated with the FSV. 

Precision Mode (P): Bit 11 controls the precision mode in which floating-point 
instructions are executed. Floating-Point instructions are executed in 
short-precision mode when the bit is 0 and in long-precision mode when the 
bit is 1. 

Exception Masks: Bits 13-15 are the three program-exception mask bits. Each 
bit is associated with a program exception recognized during execution of a 
floating-point instruction, as follows: 

Exception 
Mask Bit Program Exception 

13 Significance 
14 Exponent Overflow 
15 Exponent Underflow 

Chapter 9. PCE Control 9-7 



Referring to the FSV 

9-8 

When a mask bit is 0, the exception results in a program-exception 
interruption. When a mask bit is 1, no program-exception interruption 
occurs. The significance and exponent-underflow masks (bits 13 and 15) also 
determine the manner in which floating-point addition, subtraction, division, 
and multiplication are completed. 

Floating-Point Check (C): Bit 16 indicates an equipment check associated 
with the floating-point feature. This bit is made a 1 and a system-check 
interruption occurs when equipment malfunctioning is detected during the 
execution of a floating-point instruction. The floating-point check bit is set in 
the FSV associated with the current priority level, and the floating-point 
instruction is terminated. 

Exception Indicators: Bits 17-23 identify program exceptions recognized 
during execution of floating-point instructions and detected by the 
floating-point feature. Each bit is associated with a program exception as 
follows: 

huHcator 
Bil Program Exception 
~· 

17 Floating-Point-Operation Exception 
18 Floating-Point-Privileged-Operation Exception 
19 Floating-Point-Specification Exception 
20 Floating-Point-Divide Exception 
21 Significance Exception 
22 Exponent-Overflow Exception 
23 Exponent-Underflow Exception 

The indicator bit is made a 1 and a program-exception interruption occurs 
when the associated exception is detected. ff, however, an exception-mask bit 
is l at the time the associated exception occurs, the indicator bit is not made a 
I and a program-exception interruption does not take place. 
Reserved Bits: Bit positions 0-4 are reserved and must be 0. A 
floating-point-specification exception is recognized when an attempt is made 
to write a 1 into any of these bit positions. Bit positions 8-10 and 12 are also 
reserved, but are not checked for O's when they are written. When an 
interruption occurs that is not caused by a floating-point check or program 
exception, the contents of bit positions 8-10 and 12 are unpredictable. 

Programming Note: Bit positions 0-4, 8-10, and 12. which are reserved, should be 
written as O's. 

Instructions are provided to read or modify all of the FSV or only a part of it. 
The instructions that read or modify the entire FSV can refer to the FSV 
associated with any priority level, including the current level. The instruction that 
can modify the entire FSV is supervisor-privileged. All floating-point instructions 
are described in Chapter 5. 



Exceptions Related to the FS V 

Priority Levels 

An exception related to the FSV is recognized at the time the FSV is written. A 
program-exception interruption for a floating-point-specification exception occurs 
when the storage operand of the WRITE FLOATING-POINT STATUS 
VECTOR instruction contains a 1 in bit positions 0-4 of the FSV. The exception 
is identified in the FSV associated with the current priority level, even if an FSV 
for a different priority level was designated in the storage operand. Execution of 
the WRITE FLOATING-POINT STATUS VECTOR instruction is suppressed. 

The PCE gives control to programs in response to requests for program execution. 
The action performed by the PCE to determine which program is to be given 
control is called dispatching. The PCE performs dispatching functions in response 
to requests from three sources: requests created by a program, requests signaled 
by I/ 0 devices, and requests generated by the PCE as a result of detecting certain 
errors. To permit fast response to requests of high priority, eight priority levels 
are provided. A request for one of the priority levels must normally be present in 
order for program execution to occur. 

The eight priority levels provided are numbered 0-7. Level 0 is defined as the 
highest priority, level 1 as the next highest priority, and so on to level 7, which is 
defined as the lowest priority. The priority level associated with the currently 
executing program (current PSV) is called the current priority level. 

The PSV and ACV define the state of the associated program and its relationship 
to the PCE. A new ACV is introduced at the same time a new PSV is introduced 
and, thus, each PSV is associated with an ACV. A program is assigned an 
execution priority by means of its PSV I ACV pair. A unique set of permanently 
assigned register locations is associated with each priority level. These register 
locations are used to hold the PSV and ACV information that identifies a program 
to the PCE. The relative priority of a program is thus determined by the register 
locations in which its PSV I ACV pair is held. The assignment of register locations 
to hold PSV and ACV information is described in this chapter under 
"Interruption Action" and in Chapter 6. 

Programming Notes: 

The priority structure and associated PSV and ACV register locations allow 
the definition of a distinct execution environment for each program. These 
facilities also allow a single copy of a program to be associated with two or 
more priority levels. When a new PSV I A CV pair is introduced, the state of 
the associated program is defined for the PCE. The program state includes the 
definition of the logical address space, general registers, and program status 
and control information used during program execution. 

A supervisory program can establish a program's states and relative priority 
when it initializes the PSV and ACV register locations. The state of a 
program is preserved automatically when program execution is interrupted 
and is restored when the PSV I ACV pair is again introduced. This capability 
permits fast response to requests for program execution. 

Chapter 9. PCE Control 9-9 



Dual PSV I ACV Facility 

The PSY and ACY information stored in register locations may be inspected 
or modified using the register-indirect instructions. These instructions are 
described in Chapter 6. 

IThe dual PSY I ACY facility provides a means for a PCE (each PCE in dual-PCE 
processors) to associate two programs with each priority level. Each program is 
defined by its associated PSY I ACY pair. 

Primary and Secondary PS VI A CV Pairs 

Program Activation Vector 

9-10 

Two PSY I ACY pairs are associated with each priority level; one is designated the 
primary PSY /ACY pair and the other is the secondary pair. The format of a 
secondary PSY is identical to the format of a primary PSY. Primary and 
secondary ACYs also have identical formats. The primary and secondary 
PSY I ACY pairs are identified by the particular register locations used to hold the 
PSY and ACY. The primary PSYs are held in principal register sets 0 and 1; 
secondary PSYs are held in principal register sets 4, and 5. The ACYs paired with 
the PSYs are held in the corresponding adjunct register sets (0, l, 4, and 5). 

The instruction CALL PSY is provided to introduce the opposite (dual) 
PSY I ACY pair for the current priority level. If CALL PSY is executed when a 
primary PSY is active, the current (primary) PSY is stored and the secondary 
PSY I ACY pair for the current priority level is introduced. Similarly, if CALL 
PSY is executed when a secondary PSY is active, the current (secondary) PSY is 
stored and the primary PSY I ACY pair for the current priority level is introduced. 
CALL PSY is described in Chapter 4. 

Exceptions resulting from execution of a program cause a program-exception 
interruption. (Program exceptions are described in Chapter 3, "Program 
Execution.'') A program exception encountered while a secondary PSY is active 
causes the current (secondary) PSY to be stored and the primary PSV I ACV pair 
for the current priority level to be introduced. A program exception encountered 
while a primary PSY is active results in a request for program execution at priority 
level 0. 

Programming Note: The dual PSY I ACY facility provides a mechanism that 
allows both a supervisory and an application program to execute at the same 
priority level. The primary PSV I ACY pair is normally used for the supervisory 
program; the secondary PSV I ACY pair may be used for any program. 

A program activation vector (PAY) is an 8-bit control vector that indicates which 
PSY I ACY pair (primary or secondary) is to be introduced when a new priority 
level is given control by the PCE. The PAY is associated with the eight priority 
levels on a bit basis; that is, bit 0 of the PAY is associated with level 0, bit 1 with 
level 1, and so on to bit 7, which is associated with level 7. If the bit position 
corresponding to the new priority level contains a 0, the primary PSV./ ACV pair 
for that level is introduced; if the bit position contains a 1, the secondary 
PSV I ACV pair is introduced. 



Interruptions 

When the opposite (dual) PSV I ACV pair for the current level is introduced (by 
CALL PSV or by a program-exception interruption while the secondary PSV is 
active), the PAV is updated to indicate which PSV is made active. If the primary 
PSV is made active, the bit position corresponding to the current level is set to 0. 
If the secondary PSV is made active, the bit position corresponding to the current 
level is set to 1. 

The PCB-control instructions WRITE PROGRAM ACTIVATION VECTOR 
and READ PROGRAM ACTIVATION VECTOR allow the contents of the PAV 

I 

to be inspected or modified. For some p.rocessor models, modification of the state 
of the PAV bit associated with the current priority level is not allowed by 
hardware. When an interruption occurs, the current PSV is always stored in the 
register locations from which it was loaded regardless of the state of the PAV bit 
associated with the current priority level. 

I Programming Note:. For those processor models that allow modification of the 
PAV bit associated with the current level, the instruction WRITE PROGRAM 
ACTIVATION VECTOR should not be used to change this bit. If the bit 
associated with the current level is changed when the PAV is written, program 
execution at the current level may be prematurely concluded. This will occur, for 
example, if a higher priority level is given control because of an interruption 
before the program removes the interrupt request for the current level. When 
program execution at the current level is resumed, the opposite PSV / ACV pair 
will be introduced. Further, if priority level 0 is given control because of a system 
check, the PAV provides a misleading indication by identifying the opposite PSV 
as being active when the interruption occurred. 

An interruption is defined as the action performed by the PCE when control is 
taken from one PSV I ACV pair and given to another pair. The program 
associated with the PSV / ACV pair from which control is taken, is called the 
interrupted program. An interruption occurs when the PCE's dispatching 
mechanism determines that a new PSV I ACV pair is to be introduced, whether at 
the current priority level or at a different level. The interruption action is 
performed automatically by the PCE. 

An interruption always involves storing the current PSV in its assigned register 
locations and introducing a new PSV I ACV pair. Processing resumes as specified 
by the new PSV I ACV pair. The stored PSV holds all necessary PCE status 
information relative to the program. 

When program execution is interrupted because of a request that is not associated 
with an error, the stored PSV contains the address of the instruction that would 
have been executed next had the interruption not occurred, thus permitting 
automatic rescimption of the interrupted program. When an interruption occurs as 
a result of an error, specifically a program exception or a system check, 
information in the stored PSV or in control vectors permits identification of the 
error and the instruction last executed. Refer to "Interruption Information'' in 
this chapter for further description of the information made available following an 
interruption. 

Chaptei 9. PCf Co11trol 9-1 I 



Interrupt Requests 

9-12 

The PCE's dispatching mechanism uses requests for program execution to 
determine which program is to be given control. When program execution at a 
higher priority level is requested, or when program execution at a lower priority 
level is requested and the request for the current level is removed, the dispatching 
process results in an interruption of the current program. For this reason, the 
requests for program execution are called interrupt requests. Interrupt requests 
always designate a specific priority level. An interrupt request, thus, represents a 
request for execution of the program defined by a PSV I ACV pair associated with 
the designated priority level. When interrupt requests are present for two or more 
enabled priority levels, program execution occurs on the highest priority of these 
levels. 

There are three sources of interrupt requests: I/O devices, programs, and system 
checks. These sources of interrupt requests are identified by the control vectors in 
which requests from each source are held. Interrupt requests from 1/0 devices are 
held in the I I 0 interrupt request vector. Requests created by programs are held in 
the programmed interrupt request vector. System checks are errors detected by 
the PCE. the channel, or, when installed, the floating-point feature. When a 
system check is detected, an interrupt request is recorded in the error interrupt 
request vector. The error interrupt request vector also serves to identify the error. 

An interrupt request is generated when a bit position of an interrupt request 
vector is set to 1. The interrupt request is removed when the bit position is set to 
0. 

1/0 devices and executing programs can create requests for program execution at 
any of the eight priority levels. System checks always result in requests for 
program execution at priority level 0. The three types of interrupt requests 
function independently and may be present at one time in any combination. I/0 
and programmed interrupt requests for the same priority level can he present 
simultaneously on any level, whereas level 0 can have present any combination of 
all three types of interrupt requests. Further, two or more priority levels can, and 
often do, have interrupt requests present simultaneously. 

Instructions are provided for inspecting or modifying the interrupt request 
vectors. These instructions are described under "Instructions for PCE Control" in 
this chapter. 

Programming Notes: 

Although program execution at priority level 0 can be invoked by a request 
from any of the interrupt-request sources, this level is normally used for 
programs that handle system checks. 

Depending on the configuration of the system, a given priority level may be 
used only for a program invoked by interrupt requests from a single source, or 
the priority level may be used for a program that processes requests from 
more than one source. When the program is invoked by requests from a 
single interrupt-request source, the identity of the source is known implicitly. 
When the program is invoked by interrupt requests from several sources. it 
must explicitly examine the applicable sources to determine which one 



I/ 0 Interrupt Request Vector 

generated the interrupt request. When more than one source generates an 
interrupt request at the same time and for the same level, the sequence in 
which the program tests the sources determines their relative priority. 

A request for program execution at a particular priority level normally must 
be present for the duration of program execution at that level. When the 
interrupt request that is sustaining program execution at a priority level is 
removed, program execution at that level is concluded at the completion of 
the instruction that removes the interrupt request. The requirement for an 
interrupt request to be present so that program execution can take place does 
not apply when the master mask is 0. Refer to ''Enabling and Disabling" in 
this chapter for a description of the master mask. 

The PCE can enter the wait state with an interrupt request present when the 
associated priority level is disabled. 

The I/0 interrupt request vector (IOIRV) is an 8-bit control vector that holds 
interrupt requests generated by I/ 0 devices. The control vector is associated with 
the eight priority levels on a bit basis; that is, bit 0 (the leftmost bit) of the control 
vector is associated with level 0, bit 1 with level 1, and so on to bit 7, which is 
associated with level 7. The presence or absence of an I/ 0 interrupt request for a 
priority level is indicated by a 1 or 0, respectively, in the bit position associated 
with the priority level. 

READ 1/0 INTERRUPT REQUEST VECTOR permits inspection of the IO IRV. 
I/O interrupt requests are generated, maintained, and removed under control of 
I/O devices. Therefore, modification of the IOIRV by the program js performed 
indirectly with an I/ 0 instruction. Chapter 8 describes how the program can 
determine which l/O device is presenting an interrupt request when more than 
one device is assigned to the same priority level, and how the IO IRV may be 
modified indirectly. 

Programming Note: Typically, 1/0 interrupt requests are generated 
asynchronously with respect to program execution because of events occurring at 
the I/O device. They are removed by the program by means of Input/Output 
instructions. An 1/0 interrupt request can be generated when the PCE is in the 
running state or in the wait state. 

Programmed Interrupt Request Vector 

The programmed interrupt request vector (PIRV) is an 8-bit control vector that 
holds interrupt requests created by programs. The association of the PlRV with 
the eight priority levels, and the indication of the presence or absence of a 
programmed interrupt request, are the same as for the IO IRV. 

Five instructions are provided for inspecting or modifying the PIRV. RFAD 
PROGRAMMED INTERRUPT REQUEST VECTOR is used to inspect the 
control vector. OR WITH PROGRAMMED INTERRUPT RFQlHST VFCTOR 
and AND WITH PROGRAMMED INTERRUPT REQUEST VEC l()R provide 
for generating and removing, respectively, the interru pl requests for any of the 

Chapter'l.PCEC11it!ut 9-13 



Error Interrupt Request Vector 

9-14 

priority levels. SET PROGRAMMED INTERRUPT REQUEST and RESET 
PROGRAMMED INTERRUPT REQUEST permit the program to generate or 
remove the programmed interrupt request for the current priority level. 

Programming Note: The PIRV provides the primary mechanism for sustaining 
program execution at a priority level, particularly for programs that respond to 
interrupt requests from I/ 0 devices and must remove the request from the 
IOIRV. A programmed interrupt request can be generated only when the PCE is 
in the running state. 

The error interrupt request vector (EIRV) is an 8-bit control vector in which 
interrupt requests are recorded when system checks are detected. Unlike the 
IOJRV and PIRV, the EIRV is associated only with priority level 0. Bit positions 
0-5 of the EIRV are used to hold the interrupt request and identify the system 
check. When any of these bit positions is set to 1, a request for program execution 
at priority level 0 is created. If all of the bit positions 0-5 of the EIRV contain O's, 
no interrupt request present is related to a system check. Refer to Chapter 10 for I system check in dual-PCE processors. 

Bit position 6 of the EIRV contains the instruction address modifier bit. This bit 
position is not used as an error indicator and, when set to 1, does not create an 
interrupt request. Bit position 7 is reserved. The section "Interruption 
Information'' in this chapter describes the format and contents of the EIRV. 

Two instructions are provided for inspecting or modifying the EIRV. READ 
ERROR INTERRUPT REQUEST VECTOR permits the program to examine the 
ErRV. while WRITE ERROR INTERRUPT REQUEST VECTOR allows the 
program to modify its contents. The write instruction must be used to remove an 
error interrupt request; the PCE does not automatically clear the EIRV. The write 
instruction can also be used to generate an interrupt request by introducing a 1 
into any of bit positions 0-5 of the EIRV. 

When an error interrupt request is present, channel-1/0 burst transfers are 
suspended and are not resumed until all of bit positions 0-3 and 5 of the EIRV are 
made 0. Detailed information on suspension of channel-1/0 burst transfers is 
provided in Chapter 8. 

Programming Note: An error interrupt request can be generated when the PCE is 
either in the running state or in the wait state. 



Enabling and Disabling 

Master Mask 

The priority levels can be enabled or disabled for I/ 0 interrupt requests and 
programmed interrupt requests. When a priority level is enabled, a PSV I ACV 
pair at that priority level can be given control in response to one of these interrupt 
requests. When a priority level is disabled, I/ 0 interrupt requests and 
programmed interrupt requests for that level remain pending until the level is 
enabled. 

Whether pri0rity levels are enabled or disabled is indicated and controlled by bits 
in two masks: the master mask and the common mask. The two masks provide a 
hierarchy of control. The 1-bit master mask controls priority levels 1-7. The 
8-bit common mask provides individual control for each of the eight priority 
levels. 

Depending on processor model, bit 0 of the common mask can disable priority 
level 0 for system-check interrupt requests indicated in the EIRV, in addition to 
I/ 0 interrupt requests and programmed interrupt requests. Because of possible 
degradation of system integrity when system-check interrupt requests are held 
pending, the disabling of priority level 0 for system-check interruptions is not 
recommended. See "Common Mask" in this chapter. 

Programming Notes: 

The mask bits are not changed as part of the priority level dispatching 
process. 

The capability of disabling a priority level is intended primarily for disabling 
I/O interrupt requests. 

The operation of the PCE-control instruction DISPATCH NEW LEVEL is 
independent of the states of the master mask and common mask. The states 
of the master mask and common mask have no effect on the introduction of 
the dual PSV I ACV pair for the current level by CALL PSV or by a 
program-exception interruption. 

The master mask is a 1-bit mask that determines whether a PSV I ACV pair at 
priority levels 1-7 can be given control in response to an interrupt request. 

When the master mask is a 1, the priority levels are individually enabled or 
disabled by the bits of the common mask. When the master mask is 0, levels 1-7 
are all disabled except for the current level, which remains enabled. No priority 
level other than the current level and level 0 is eligible for selection by the PCE 's 
dispatching algorithm. Program execution on the current level continues even if 
the interrupt request for the current level is removed or the current level is 
disabled by the common mask. The wait state cannot be entered when the master 
mask is 0. The master mask does not disable priority level 0. See "Common 
Mask". 

Three instructions are provided to inspect or change the master mask. READ 
MASTER MASK allows the program to determine the current value of the mask. 
SET MASTER MASK and RESET MASTER MASK provide for making the 
mask 1 or 0, respectively. 

Chapter 9. PCE Control 9-15 



Common Mask 

9--16 

When RESET MASTER MASK is executed, the priority levels are disabled at the 
completion of the instruction. When a priority level other than level 0 is active at 
the time the instruction is executed, program execution continues on the current 
level so long as the mask remains 0 and no interrupt requests for priority level 0 
are generated. If an interrupt request for priority level 0 is generated, causing 
level 0 to be dispatched, program execution continues at priority level 0 as long as 
the master mask remains 0. Similarly, if level 0 is active at the time RESET 
MASTER MASK is executed, execution continues at level 0 as long as the master 
mask is 0. When SET MASTER MASK is executed, the priority levels become 
individually enabled or disabled by the common mask at the completion of the 
instruction. 

In dual-PCE processors, the master masks, one in each PCE, are interlocked so 
1hat simultaneous processing does not occur in both PCEs when both master 
masks are disabled. For a detailed description of the master mask in dual-PCE 
processors. see Chapter 10. 

Programming Notes: 

The master mask is intended primarily for use in situations in which the 
program must not be exposed to I/ 0 or program interruptions. For example, 
manipulation of a queue shared among two or more programs that execute at 
different priority levels can be performed by making the master mask 0 before 
operating on the queue, and restoring the mask to 1 when finished. Thus, the 
queue cannot be altered by a second program as a result of an I/ 0 
interruption during the time it is being operated upon by the first program. 
Note that this example does not apply when the queue is shared by a program 
executed at priority level 0. 

The master mask can a1so be used to continue program execution after the 
interrupt request for the current priority level is removed. This situation may 
arise, for example, when handling a system check. If the master mask is made 
a 0 by the program executing at priority level 0 and the EIRV is then cleared, 
program execution on level 0 will continue while allowing a second error, if 
any, to be properly indicated in the EIRV. After the error has been 
processed, the program can make the master mask a 1. \vhich concludes 
program execution on level 0. If, however, a second error has been indicated 
in the EIRV, program execution on level 0 will continue. allowing the second 
error to be processed. 

If a system-check interruption occurs while the master mask is 0, the 
instruction DISPATCH NEW LEVEL must be executed in order to return 
control from level 0 without altering the state of the master mask. 

The common mask is an 8-bit mask that provides selective control over the 
priority levels within a PCE for I/0 interrupt requests indicated in the IOIRV and 
programmed interrupt requests indicated in the PlRV. The mask bits (0-7) 
correspond with priority levels 0-7. The common mask provides control over 
levels l -7 only when the master mask is a 1, and over level 0 at any time. 

When a common-mask bit is 1, the associated priority level is enabled for program 
execution in response to I/O and programmed interrupt requests. When the mask 
bit is 0, the associated priority level is disabled and program execution in response 
to interrupt requests for that level cannot occur. 



Priority Level Dispatching 

I Depending on processor model, bit 0 of the common mask can disable priority 
level 0 for system-check interrupt requests indicated in the EIRV, in addition to 
I/O interrupt requests and programmed interrupt requests. 

Two instructions are provided to inspect or change the common mask. READ 
COMMON MASK retrieves the contents of the mask. WRITE COMMON 
MASK allows the program to change the mask bits. 

When the master mask is a 1, and a common-mask bit is changed from 1 to 0 or 
from 0 to 1, the associated priority level is considered disabled or enabled, 
respectively, at the completion of the instruction. When the common-mask bit for 
the current level is made 0 and the master mask is a 1, program execution at the 
current level is concluded with the completion of the instruction. Refer to 
"Master Mask'' in this chapter for more details about the interdependencies of the 
common mask and master mask. 

For processor models that can disable priority level 0 for error interrupt requests, 
disabling priority level 0 causes error interrupt requests to be held pending. When 
an error is detected during execution of an instruction and level 0 is disabled, the 
instruction is terminated and the PCE continues to fetch and execute instruczions 
with unpredictable results. Therefore, because of the possible degradation of system 
inzegrity, the program should not disable level 0 during normal system operation. 

Programming Note: If the execution of WRITE COMMON MASK writes all O's 
into the common mask and the master mask is a 1, or SET MASTER MASK is 
executed when the common mask is all O's, the PCE enters an uninterruptible wait 
state, except for possible system checks from pending I/ 0 operations. Reset must 
be manually initiated to leave the uninterruptible wait state. 

The action performed by the PCE to select a priority level for program execution 
is called priority level dispatching. Conceptually, the PCE selects after every 
operation the priority level at which the next operation is to be performed. The 
selection is made after one operation is performed and before a subsequent 
operation is started. The entire execution of a non-interruptible instruction is an 
operation. For interruptible instructions, an operation may consist in partial 
execution of the instruction. The priority level at which the next operation is 
performed is determined by the interrupt requests present and the priority levels 
enabled. The instruction DISPATCH NEW LEVEL (described in this chapter 
under "Instructions for PCE Control") allows the program to select the priority 
level at which the next operation is to be performed. 

A new priority level is selected in the following cases: 

When an interrupt request exists for a level higher in priority than the current 
level, and the higher priority level is enabled. 

When all interrupt requests for the current priority level are removed, or the 
current level is disabled, and another interrupt request is present for an 
enabled priority level. 

The wait state is entered at the completion of the current instruction when all 
interrupt requests for the current priority level are removed, or the current level is 
disabled. and no other interrupt request is present for an enabled priority level. 

Chapter 9. PCE Control 9-17 



Current and Last Priority Levels 

The PCE is interruptible in the wait state, provided the priority level designated 
by an interrupt request is enabled. To leave the wait state without manual 
intervention, a priority level must be enabled for an interrupt request. 

The PCE is in the wait state when no interrupt request is present for any enabled 
priority level and the master mask is 1. When a request is present for an enabled 
priority level or the master mask is 0, the PCE is in the running state. 

The current PSV and FSV are not stored when the wait state is entered. When 
the wait state is ended because of an interrupt request, priority level dispatching 
and the associated interruption action are resumed as if the interrupt request were 
present at the completion of the last instruction. If a new PSV I ACV pair is not 
introduced when the wait state is ended (execution resumes at the level that was 
active when the wait state was entered), any prefetched instructions are not 
discarded. 

The level numbers of the current priority level (CPL) and the last priority level 
(LPL) are automatically maintained by the PCE. The CPL number is the 3-bit 
binary number of the active level. The LPL number is the 3-bit binary number of 
the level active immediately before switching to the current PSV. The CPL and 
LPL numbers are maintained in two control vectors. 

As part of the interruption action associated with giving control to a program at a 
different priority level, the contents of the LPL vector are replaced with the CPL 
number, and then the contents of the CPL vector are replaced with the number of 
the new level. If the opposite PSV I ACV pair at the current priority level is 
introduced, the contents of the LPL vector are replaced with the number of the 
current level. 

The current and last priority-level numbers are not changed when the wait state is 
entered. Further, they are not changed when the running state is reentered by 
giving control to the same priority level that was active when the wail state was 
entered. 

An instruction is provided for reading the contents of the CPL and LPL vectors. 
READ CURRENT AND LAST LEVELS loads both level numbers into a 
designated general register. 

Programming Note: When one copy of a program is executed at two or more 
priority levels, the program can determine the current level number by executing 
READ CURRENT AND LAST LEVELS. The LPL number is provided primarily 
to allow the error-handling program executing at priority level 0 to determine 
which level was active at the time a system-check interruption occurred. Refer to 
the discussion in this chapter under "Interruption Information'' for further details. 

Summary of the Priority Level Dispatching Process 

9-18 

This summary describes the action performed by the PCE to select the next 
priority level for program execution. Conceptually, this action is repeated after 
execution of every instruction, or each unit of operation for the interruptible 
instructions. Determining which priority levels are eligible for selection is 
performed by combining all interrupt requests and excluding those associated with 
disabled priority levels. A PSV I ACY pair associated with the highest eligible 
priority level is then given control. 



Figure 9-3 summarizes the steps involved in determining the priority levels that 
can be selected. The illustration and description present the selection process as if 
the steps were performed sequentially. Two or more steps may actually be 
performed in parallel and not necessarily in the sequence presented. 

Step 1: 
W<0 .. 7> <-IOIRV<0 .. 7> v PIRV<0 .. 7> 

I 

Step 2: (Note) 
W<0 .. 7> 

Step 3: (Note) 
W<O> <-

<- W<0 .. 7> • CM<0 .. 7> 

EIRV<O> v EIRV<l> v EIRV<2> v 
EIRV<3> v EIRV<4> v EIRV<5> v W<O> 

Step 4: 
W<l..7> 

Step 5: 
W<CPL> 

Where: 

<
v 

11 

a<m> 
a<m .. n> 
CM 
CPL 
EIRV 
IO IRV 
MM 
PIRV 
w 

<-W<l..7>• 
(MMI IMMI IMMI IMMI IMMI IMMI IMM) 

<- W<CPL> v !MM 

"is replaced by" 
"logically ORed bit by bit with" 
"logically ANDed bit by bit with" 
"is concatenated with" 
"the logical inverse of" 
Bit position m of vector or mask a 
Bit positions m through n of vector or mask a 
The 8-bit common mask 
The current priority-level number 
The 8-bit error interrupt request vector 
The 8-bit I/0 interrupt request vector 
The 1-bit master mask 
The 8-bit programmed interrupt request vector 
An 8-bit working vector denoting the step-by-step result 

Step 1 determines the presence of 1/0 and programmed interrupt requests for priority levels 
0-7. 

Step 2 excludes from possible selection priority levels disabled by the common mask when 
one or more mask bits are 0. 

Step 3 determines the additional presence of system-check interrupt requests for priority 
level 0. 

Note: For processor models that can disable priority level 0 for system-check interrupt requests by 
resetting bit 0 of the common mask to 0, Steps 2 and 3 are conceptually reversed. That is, the 
additional presence of system-check interrupt requests for priority level 0 is determined in Step 3 
before excluding the priority levels from possible selection that are disabled by the common mask 
when one or more mask bits are reset to 0 as performed in Step 2. 

Step 4 excludes from possible selection all priority levels disabled by the master mask when 
the mask is 0. 

Step 5 enables the current priority level and generates a pseudo interrupt request for the 
current level when the master mask is 0. 

Figure 9-3. Determining the Dispatcbable Priority Levels 

Chapter 9. PCE Control 9-19 



Interruption Action 

At the completion of Step 5, the 8-bit result vector (W) designates, with l's in the 
respective bit positions, all enab1ed priority levels for which interrupt requests are 
present. The bit positions of the result vector correspond, left to right, with 
priority levels 0-7. 

The selection of the the highest-priority level is determined by the leftmost bit 
position of the result vector (W) in which a 1 appears. If the selected level is the 
same as the current level, program execution continues at the current level with 
the execution of the next operation. 1f the selected level and current level are 
different. program execution at the current level is interrupted, and the program 
at the selected level is given control. 

Programming Note: The wait state is entered when the result vector (W) is all O's; 
that is, when the master mask is 1 and ( 1) all priority levels for which interrupt 
requests are present are disabled by the common mask, or (2) no interrupt 
requests are present. 

An interruption consists of storing the current PSV, updating certain control 
information, and introducing a new PSV I ACV pair. Permanently assigned 
registers are used as the locations in which the current PSV is stored and from 
which the new PSV and ACV are loaded. The current PSV is always stored back 
into the same register locations from which it was loaded. The current ACV is not 
stored because its contents are not changed. This interruption action is performed 
automatically by the PCE; no action by the program is necessary to store PSV 
information or to introduce a new PSV I ACV pair. 

The PSV is held in a permanently assigned even and odd numbered pair of 
consecutive registers in a principal register set. Corresponding to the principal 
register locations for the PSV is a register location in an adjunct register set that is 
assigned to hold the ACV. The corresponding PSV and ACV register locations 
are considered to be paired together; that is, a PSV I ACV pair is always 
introduced from corresponding register locations. See Chapter 6 for a description 
of the register locations permanently assigned to hold PSV and ACV information 
and of the instructions that can be used to refer to these register locations. 

Control Given to a Program at a New Priority Level 

9-20 

The active program is interrupted when the PCE's dispatching algorithm 
determines that a program is to be executed on a priority level that is different 
from the current level. (Refer to ''Priority-Level Dispatching" in this chapter). 
The interruption action consists of ( 1) storing the current PSV, (2) replacing the 
contents of the LPL vector with the CPL number, (3) replacing the contents of 
the CPL vector with the new priority level number, and ( 4) loading the new PSV 
and ACV. When the floating-point feature is installed, the interruption action 
also includes switching from the current FSV to the new FSV. 

The new PSV and ACV arc loaded from the register locations that are associated 
with the new priority level. The dual PSV I ACV facility associates with each 
priority level, register locations that hold two PSV I ACV pairs. The PAV controls 
which of the two pairs is introduced when a program at a new priority level is 
given control. If the PAV bit position corresponding to the new priority level 
contains a 0, the primary PSV I ACY pair for that level is introduced; if the bit 
position contains a 1, the secondary PSV I ACV pair is introduced. 



When the floating-point feature is installed, the current FSV becomes inactive 
and the FSV associated with the new priority level is made the current FSV. The 
FSV s associated with the eight priority levels are accessible with the instructions 
READ FLOATING-POINT STATUS VECTOR and WRITE 
FLOATING-POINT STATUS VECTOR. 

Control Given to a New Program at the Current Level 

Point of Interruption 

The active program is interrupted and control is given to a new program at the 
current level in two cases: ( 1) when the instruction CALL PSV is executed, and 
(2) when a program exception occurs while a secondary PSV is active. If CALL 
PSV is executed when a primary PSV is active, the current PSV is stored in the 
register locations assigned to the primary PSV for the current level, and the 
secondary PSV / ACV pair for the current level is introduced. Similarly, if CALL 
PSV is executed when a secondary PSV is active, the current PSV is stored in the 
secondary-PSV register locations for the current level and the primary PSV / ACV 
pair for that level is introduced. A program exception that occurs while a 
secondary PSV is active causes the current PSV to be stored in the register 
locations assigned to the secondary PSV and the primary PSV I ACV pair for the 
current level to be introduced. 

The interruption action consists of (l) storing the current PSV, (2) loading the 
new PSV I ACV pair. (3) updating the program activation vector to indicate which 
of the two PSV I ACV pairs is made active, and ( 4) replacing the contents of the 
LPL vector with the number of the current level. The new PSV and ACV are 
loaded from the register locations that are assigned to the inactive PSV I ACV pair 
for the current priority leveL that is, the PSV I ACV pair loaded is opposite from 
the pair that is active at the time the interruption occurs. The program activation 
vector is updated to indicate the PSV I ACV pair that is made active. If the 
primary pair is made active, the bit position corresponding to the current level is 
set to 0. If the secondary pair is made active, the bit position corresponding to the 
current level is set to I. 

Conceptually, an interruption is permitted between operations; that is, an 
interruption can occur after one operation is performed and before a subsequent 
operation is started, where an operation is defined as the execution of an 
instruction. However, the MOVE and COMPARE LOGICAL operations are 
inlerruptible; that is, an interruption is allowed after partial execution of these 
instructions. Whenever this publication refers to points of interruption, including 
those that occur within the execution of interruptible instructions, the term unit of 
opera/ion is used. The use of this term considers that the entire execution of a 
noninterruptible instruction consists, in effect, of one unit of operation. 

With the exception of I/0 interrupt requests, interruptions may occur after 
execution of each nonintcrrnptible instruction. Depending on processor model, 
!/O interrupt requests may be delayed for up to three noninterruptible 
instructions if the PCE encounters an instruction string having short execution 
times. 

Fxecution of an interruptible instruction is considered to consist of a number of 
units of operation, and an interruption is permitted between units of operation. 
Depending on processor model, up to eight units of operation may be executed 
between points in the operation at which an interruption is allowed. In this case, 
the number of units of operation executed without allowing interruptions is 

Chapter 9. PCE Control 9-21 



Types of Ending 

9-22 

predetermined. After each predetermined number of units of operation, the 
operand addresses and count values are updated to correspond to the amount of 
data processed. The specific predetermined number of units of operation is fixed, 
except for the first and last execution groups. 

When a program-exception interruption occurs, the instruction-address and 
instruction-address-modifier fields in the stored PSV designate the point of 
interruption. When the instruction address modifier is 0, the instruction-address 
field contains a value 2 greater than the logical address of the first halfword of the 
instruction in which the program exception occurred. When the instruction 
address modifier is 1, the instruction address field contains the logical address of 
the first halfword of the instruction in which the program exception occurred. 

Instruction execution is said to end in one of four ways: completion, suppression, 
suspension, or termination. 

When execution of an instruction is completed, results are provided as called for in 
the definition of the instruction. If an interruption occurs after an instruction is 
completed without the detection of a program-exception condition. the instruction 
address in the stored PSV designates the next instruction to be executed. If an 
instruction is completed following the detection of a program-exception condition 
that results in a program-exception interruption. the instruction address and 
instruction address modifier in the stored PSV designate the compieted 
instruction. 

When execution of an instruction is suppressed, the instruction is effectively not 
executed. The contents of any result fields. including the condition indicators, are 
not changed. The instruction address and instruction address modifier in the PSV 
stored because of an interruption designate the suppressed instruction. Instruction 
execution is suppressed only for program-exception interruptions. 

When execution of an instruction is suspended. the contents of any fields due lo hl' 
changed by the instruction may be partially updated. The operation may ha VL' 

replaced all, part, or none of the contents of the designated operand locations. 

and it may have changed the condition indicators, an address vaiue. or a count 
value, if such change was called for by the instruction. The instruction may he 
retried without soft\vare adjustment of register values. assuming the cause of 
suspension is removed. 

When execution of an instruction is terminated, the contents of any ficids due to 
be changed by the instruction are unpredictable. The operation may have 
replaced all, part, or none of the contents of the designated result fields and may 
have changed the condition indicators if such change was called for by the 
instruction. If an instruction is terminated following the detection of a 
program-exception condition that results in a program-exception interruption. the 
instruction address and instruction address modifier in the stored PSV <.ksit! 1Ull' 
the terminated instruction. If the interruption occurs because of a system chcLk. 
the instruction address in the stored PSV and the instruction address modifier in 
the EIRV designate the terminated instruction. 

Figure 9-4 includes a summary of the types of endings for the various types of 
interruptions. 



I 

Interruption 
Type 

CALL PSY 

Programmed 

1/0 

Program 

exception 
(secondary PSY) 

Program 

exception 
(primary PSV) 

Channel 

exception 

System check 

(except program 
and channel 

exception) 

Where: 

Instruction 
Ending 

Completed 

Completed 

Completed 

Completed, 

suppressed, 
suspended, or 
terminated 

Completed, 

suppressed, 
suspended, or 
terminated 

Completed 

Completed. 

suspended a, 
or terminated. 

Instruction 
Address 

Next 
instruction 

Next 
instruction 

Next 

instruction 

Failing 

instruction II 

Failing 

instruction II 

Next 

instruction II 

Next or 

failing 
instruction 

llB 

Program 
Information 
Code 

00000000 

II 

II 

lmxxxxOO 

lmxxxxOO 

II 

II 

Other 
Information 

Program 
conventions 

PIRVEland 
program 
conventions 

IOIRY El and 

BSTATIJ 

CPL identifies 

current level 

EIRY=000100m0, 

LPL identifies 
interrupted level 

EIRY=000110m0. 

LPL identifies 
interrupted level, 
PAY identifies 

PSY on level II 
EIRY=zzzOzzmO. 

LPL identifies 
interrupted level. 

PAV identifies 

PSY on level II 

II The program-information-code field is reserved for these interruption types: its 
contents depend on processor model. 

El The PIRV or IOIRV bit position that corresponds to the priority level given control 
contains a 1. 

II The basic status register (BSTAT) associated with an 1/0 device indicates whether 
that device generated the I/O interruption. Chapter 8 describes the BSTAT. 

II The instruction address designates the instruction. or 2 bytes beyond it, as indicated 
by the instruction address modifier. Note that for program exception (primary PSV), 
the instruction address modifier is made available to the program in both the program 
information code and the EIRY. 

II \Vhen bit position 4 of the EIRY contains a 1, indicating a channel l/O check, the 
instruction address is associated with the next sequential instruction to be executed. 
Otherwise, the instruction address is associated with the failing instruction. 

II The PAY correctly identifies which PSY I ACY pair (primary or secondary) was active 
at a priority level if Lhe interrupted program did not change the state of the PAY bit 
associated with its priority level. 

0 Detection of a parity error on a PIO read operation causes the instruction to be 
suspended (storing of the data is inhibited). 

m Bit position containing instruction address modifier. 
x Bit positions containing program exception code. Chapter 3 identifies the program 

exception codes. 
z Bit positions in EIRY indicating cause of system check. 

Figure 9-4. Summary of Interruption Information 

Chapter 9. PCE Control 9-23 



Programming Note: Normally, instruction execution is terminated only as a result 
of equipment malfunctioning. Program exceptions that result in an interruption 

I generally cause the unit of operation to be suppressed, suspended, or completed. 
In some cases, however, the instruction may be terminated. The specific cases are 
noted under "Program Exception Conditions'' in Chapter 3 and in the individual 
instruction descriptions. 

Execution of Interruptible Instructions 

Interruption Information 

9-24 

Execution of an interruptible instruction (MOVE or COMPARE LOGICAL 
operations) is completed when all units of operation associated with the 
instruction are completed. When execution is completed, the instruction address 
in the PSV designates the next instruction to be executed. When an interruption 

I occurs after completion of a unit of operation, all prior units of operation are 
completed. 

On completion of a unit of operation other than the last one, the instruction 
address in the PSV stored because of an 1/0 interruption designates the 
interrupted instruction. For a system-check interruption because of a channel 
I/ 0 check, the instruction address in the stored PSV and the instruction address 
modifier in the EIRV designate the interrupted instruction. The address and 
count values are adjusted such that execution of the interrupted instruction can be 
resumed from the point of interruption when the PSV stored because of the 
interruption is made the current PSV. 

When a unit of operation of an interruptible instruction is terminated, the 
contents, in general, of any fields due to be changed by the instruction are 
unpredictable. When termination occurs because of a system-check interruption, 
the instruction address in the stored PSV and the instruction address modifier in 
the EIRV designate the interrupted instruction. 

For termination because of a program-exception interruption, the instruction 
address and instruction address modifier in the stored PSV designate the 
interrupted instruction. The address and count values are adjusted to correspond 
to the unit of operation last completed before the interruption occurred. One or 
more units of operation may have terminated before the interruption. The number 
terminated depends on the processor model and the point in the operation at 
which the exception is detected. 

Programming Note: The effect of resuming an interruptible instruction from the 
point of interruption after completion or suspension of a unit of operation is the 
same as if the instruction were executed without interruption. 

The PSV stored as part of the interruption action normally contains the address of 
the instruction that would have been executed next had the interruption not 
occurred, thus permitting resumption of the interrupted program. For 
interruptions because of program exceptions and system checks, an 
instruction-address-modifier bit is also stored that permits the program to identify 
the instruction being executed when the interruption occurred, and, when 
appropriate, resume execution of the interrupted program. 

Depending on processor model, when an access or separation exception causes a 
program-exception interruption, the block index of the PCE address in error is 
placed in the E BI register associated with the active ACV. 



Source Iden ti/ ication 

To identify the source of an interruption, seven types of interruptions are defined: 
CALL PSV, programmed, 1/0, program exception (secondary PSV), program 
exception (primary PSV), channel exception, and system checks other than 
program exception (primary PSV) and channel exception. For most of these 
types, the cause is defined by additional information made available to the 
program. The specific information and its location depends on the interruption 
type. Figure 9-4 gives the location of specific information for each type of 
interruption. 

When an interruption occurs because of a floating-point exception or a 
floating-point check, information identifying the floating-point exception or 
check is provided in bit positions 16-23 of the FSV that was active at the time the 
interruption occurred. Otherwise, these bit positions in the FSV are not changed 
as a result of an interruption. 

I Depending on processor model, certain high-order bits of the instruction address 
that are not needed to represent the maximum address in the PCE address space 
may not be stored with the current PSV when an interruption occurs. The 
contents of bit positions in the PSV register locations corresponding to the 
instruction-address bits that are not stored either remain unchanged or are set to 
0, depending on the particular bit position. 

Programming Note: Introducing a PSV with an instruction address that is greater 
than the maximum address in the PCE address space causes a program-exception 
interruption. Depending on processor model, a high-order bit position of the 
instruction address, which contained a 1, may be set to 0 when the PSV is stored. 
Thus, the stored instruction address may have been modified such that it is less 
than the maximum address in the PCE address space, making it appear to be 
valid. 

System-Check Interruption 

The system-check interruption provides a means for reporting to the program an 
error associated with the operation of system equipment, or with the execution of 
a supervisory program. The group of system checks includes those associated with 
machine errors, 1/0 errors, channel exceptions (usually caused by a programming 
error), and the program exceptions detected while a primary PSV is active 
(usually indicating an error in a supervisory program). System checks result in an 
interrupt request for program execution at priority level 0 and are indicated in the 
error interrupt request vector ( EIRV). The information in the EIR V may be used 
to determine the cause of the system-check interruption. 

Error Interrupt Request Vector Format 

Figure 9-5 shows the 8-bit EIRV format; the following describes the bit 
meanings. Each system check is described under ''System Checks" in this chapter. 

0 2 3 4 5 6 7 

Figure 9-5. Format of Error Interrupt Request Vector 

Chapter 9. PCE Control 9-25 



System Checks 

9-26 

Bit(s) 

0 
1 
2 
3 
4 
5 

2 and 5 
6 
7 

Meaning 

I/ 0 Control Check (I) 
I/ 0 Timeout Check (T) 
Storage Data Check (S) 
Exception (E) 
Channel I/0 Check (C) 
Internal Control Check (N) 
Internal Data Check (S and N) 
Instruction Address Modifier (M) 
Reserved 

Bits 0-5 provide a summary indication of the system check. 

Bit 6 is the instruction address modifier. The bit is inspected by the program to 
determine whether the instruction-address field in the stored PSV contains the 
address of the first halfword of the instruction, or 2 bytes beyond it. The 
instruction designated by the instruction address and the instruction address 
modifier is either ( 1) the failing instruction associated with the system check, or 
(2) the next instruction to be executed when the system-check interruption is 
caused by a channel I/ 0 operation. 

Bit 6 is set to 1 when the instruction-address field contains the address of the first 
halfword of the instruction. When the instruction-address field contains a value 2 
greater than the address of the first halfword of the instruction, bit 6 is left 
unchanged. Because the PCE does not change the state of bit 6 for the latter 
case, the program must set bit 6 to 0 before permitting a subsequent system-check 
interruption to occur. This ensures that bit 6 will be 1 or 0, respectively, for the 
two cases, and thus allows the program handling the system-check interruption to 
determine which of the two instruction-address values was stored. 

The value of bit 6 is significant when an interruption occurs because of any 
system check. That is, the value of bit 6 does not depend on the type of error 
indicated in bit positions 0-5 of the EIRV. 

Bit 7 is reserved; it is read as 0 and should be written as 0. 

Programming Note: When a program is given control en priority level 0, it cannot 
be interrupted because of a system check. Therefore, the level-0 program should 
retrieve the contents of the EIRV and then clear it as soon as possible, so that a 
subsequent error, if any, can be properly indicated in the control vector. This 
procedure can be performed by executing SET PROGRAMMED INTERRUPT 
REQUEST before clearing the EIRV, thus holding program execution on level 0. 

Equipment malfunctions and other errors that cause system-check interruptions 
are referred to as system checks. System checks are indicated to the program in 
the EIRV. When a system check is detected, one or more bits in the FIRV are set 
to 1, depending on the specific system check; the remaining bits in the EIRV are 
left unchanged. 

Four major classes of system checks are defined and are distinguished by the bits 
of the EIRV that are used to indicate the system check. The four classes are: 
input/ output checks, machine checks, certain program exceptions, and channel 
exceptions. 



Input/output checks are indicated with EIRV bits 0 and 1, separately. These 
system checks are usually caused by an 1/0 device. They include invalid parity 
and invalid control-signal responses detected by the channel during an I/O 

I 
operation. Bit 4 of the EIRV is also set to 1 if the system check results from a 
channel I/ 0 operation. Depending on processor model, EIR V bit 5 may also be 
set to 1 for certain system checks detected during a channel I/O operation. If the 
system check results from a programmed I/ 0 operation, bit 4 is left unchanged. 

Machine checks are indicated with EIRV bits 2 and 5, separately or together. 
These checks include errors detected on information fetched from storage, from a 
principal or adjunct register, from the translation table, or from the translation 

I lock table. Machine checks also include errors detected internally on PCE, 
channel, or floating-point-feature control logic. Machine checks detected as a 
result of channel 1/0 operations are indicated by also setting EIRV bit 4 to 1. 

I 
Program exceptions are indicated with EIRV bit 3 when they are detected while a 
primary PSV is active. Program exceptions detected while a secondary PSV is 
active are not treated as system checks, and do not cause a system-check 
interruption. Refer to Chapter 3 for a detailed description of program exceptions. 

Channel exceptions are indicated with EIRV bits 3 and 4, together. Thus, bit 4 
being 1 differentiates a channel exception from a program exception. This class 
represents system checks detected by the channel during channel 1/0 operations, 
usually resulting from a programming error. Channel exceptions include such 
programming errors as invalid storage address and ACV format. 

Each system check is described in detail in this section under the appropriate 
heading, such as "I/ 0 Control Check." 

Programming Notes: 

When handling a system-check interruption, the program executing on 
priority level 0 should read the contents of the EIRV and then clear it as soon 
as possible. This action will allow a subsequent system check, detected while 
level 0 is still active, to be indicated properly. Clearing the EIRV also enables 
the channel for channel I/0 burst transfers, provided the channel mask is 1. 

If two or more system checks are detected before the program can retrieve the 
contents of the EIRV, the resulting indication may be ambiguous. For 
example, if a storage data check and an internal control check are detected, 
the resulting content of the EIRV indicates an internal data check. This 
situation can arise ( 1) when multiple system checks are detected during one 
operation, (2) when a system-check interruption occurs and a subsequent 
system check is detected before the program clears the EIR V, or (3) for 
processor models that can disable priority level 0 for system-check interrupt 
requests, bit 0 of the common mask is reset to 0, thus allowing the indications 
of successive system checks to be accumulated. 

Since PCE operation may be unpredictable when a system-check interruption 
is not taken, the priority level 0 program should minimize, as much as it 
reasonably can, the possibility of encountering a system check. In particular, 
the program assigned to the primary PSV for priority level 0 should be 
thoroughly tested so as to preclude a program exception, and the program 
assigned to either PSV for priority level 0 should u~e only those facilities of 
the PCE necessary to perform its function. 

Chapter 9. PCE Control 9-27 



9-28 

Because of the possible loss of PCE integrity when a system-check interruption 
cannot he taken, the program on processor models that can disable priority level 
0 for system-check interrupt requests should not disable priority level 0 for any 
reason during normal system operation. 

Note: The following detailed description of system checks applies when detection 
of the system check causes an interruption; that is, the description applies when 
the current priority level is other than 0 at the time the system check is detected. 
This assumption is also made throughout this manual wherever the description 
refers to a system check. If priority level 0 is active, or for processor models 
that can disable priority level 0 for system-check inrerrupt requests and priority 
level 0 is disabled. detection of a system check does not cause an interruption, 
and the PC E proceeds to fetch and attempt to execute what it fetched as the next 
instruction. The results of this action are unpredictable. 

Whether or not the interruption occurs, the system check is indicated in the 
EIRV. However, if the interruption does not occur, and the system check is 
related to the PCE's processing of an instruction or interruption, the manner 
in which the instruction execution or interruption action is ended is 
unpredictable. If the system check is related to the execution of a channel I/ 0 
operation, the operation is terminated. In either case, the system-check 
interruption remains pending until the program executing on priority level 0 
services the interrupt request, or for processor models that can disable priority 
level 0 for system-check interrupt requests, until the interruption occurs when 
priority level 0 is subsequently enabled. 

If a program exception occurs while a primary PSV is active and the 
system-check interruption is not taken, the operation is completed with 
unpredictable results. 

1/0 Control Check: Bit 0 of the EIRV indicates that a data check (invalid parity) 
was detected on information transferred from an I/ 0 device to the channel. Bit 4 
and, depending on processor model, bit 5 of the EIRV are also set to 1 if the error 
occurs during a channel 1/0 operation. Bits 4 and 5 are left unchanged if the 
error occurred during a programmed I/O operation. 

I/ 0 control check is indicated when the channel detects invalid parity on inbound 
information, and the 1/0 device signals that invalid parity is to be treated as a 
system check. This information includes the data read during a programmed or 
channel I/O operation, as well as the address information, if any, read as part of a 
channel r/O operation. Invalid parity detected on channel-control:--vector 
information, read as part of a channel I/O operation. is always treated as a system 
check. 

Whenever l/O control check is indicated because of invalid parity on inbound 
information, the programmed I/0 operation is suspended (storing of the data is 
inhibited) or the channel J/0 operation is terminated. 

When the I/ 0 device signals that invalid parity is not to be treated as a system 
check. the information is stored with correct parity, and the operation proceeds to 
normal completion. For programmed 1/0 operations, result condition 1 is 
indicated to the program in place of the 1/0-control-check indication. For 
channel I/O operations, the information transfer proceeds with no error 
indication. 



I I 0 Timeout Check: Bit 1 of the EIRV indicates either that an expected 
control-signal response from a device was not received by the channel within the 
allowable time interval, or that a control-signal response from a device was held 
active beyond the allowable time interval or that an incorrect control-signal 
response from a device was detected. Bit 4 and, depending on processor model, 
bit 5 of the EIRV are also set to 1 if any of the conditions occur during a channel 
I/ 0 operation. Bits 4 and 5 are left unchanged if the timeout occurs during a 
programmed I/ 0 operation. 

The actual cause of the I/ 0 time-out check can originate in the PCE, channel, or 
adapter from such abnormal conditions as invalid control-signal sequences, 
invalid command codes, invalid parity on outbound data transfers, or hardware 
malfunction. For example, the absence of an expected control-signal response is 
detected when an I/O instruction is executed specifying a PIO address that is not 
recognized by any attached device. The PIO address may not be assigned to any 
attached device, or the device to which the PIO address is assigned may be 
powered off. 

Certain incorrect responses received either in combination with or in place of an 
expected response may not cause a system-check interruption. An example of the 
latter case is the instruction INPUT /OUTPUT (halfword) which is specified as 
compatible with halfword-mode devices only. However, when the instruction is 
executed designating the PIO address of a byte-mode device, the operation may 
be completed with no system-check indication, in which case the results are 
unpredictable. Whether the system check is indicated depends on the specific 
byte-mode device. 

Detection of an I/ 0 timeout check causes the programmed or channel I/ 0 
operation to be terminated. 

Storage Data Check: Bit 2 of the ElRV indicates that a data check was detected 
in the information fetched from or the information being stored in main storage. 
Such information is considered invalid. The malfunction causing the information 
to become invalid may be associated with the storage location from which the 
information was fetched, or it may be located on the path to or from storage. Bit 
4 of the EIR V is also set to 1 if the data check results from a channel I/ 0 
operation. 

Except for the following cases, detection of a storage data check causes the 
current operation to be terminated. If the storage data check results from an 
instruction-fetch reference, execution of the fetched instruction is suppressed. If 
the storage data check results from a channel 1/0 operation, the invalid 
information is not transmitted to the device. 

I 
Depending on processor model: 

• The pref etching of invalid information from storage may result in a 
system-check interruption before the information is actually needed. Further, 
the interruption may occur even if the invalid information would not have 
been used (such as instruction prefetch where the prefetched instruction is 
discarded). 

Chapter 9. PCE Control 9-2 9 



9-30 

In addition to bit 2, bit 5 of the E£RV may also be set to 1 for certain storage 
data check conditions. Additionally, when executing a floating-point 
PS-instruction, detection of a storage data check may set floating-point status 
vector bit 1 6 (Floating-Point Check) to 1. 

Exception: Bit 3 of the EIRV indicates that a program exception was detected 
while a primary PSV was active, or that a channel exception was detected during 
a channel I/O operation. Bit 4 of the EIRV is also set to 1 for the channel 
exception. 

Detection of a program exception causes the current operation to be to be 
suspended, suppressed, completed, or terminated, depending on the specific 
exception. The program information code in the stored PSV indicates the cause 
of the program exception. Refer to Chapter 3 for a detailed description of 
program exceptions. 

Detection of a channel exception causes the channel 1/0 operation to be 
terminated. Channel exceptions are described under "Termination Due to 
Channel Exception" in Chapter 8. 

Channel 1/0 Check: Bit 4 of the EIRV is set to 1 in conjunction with bits 0-3 and 
5 of the EIRV when the indicated system check results from a channel I/O 
operation. When the indicated system check is not associated with a channel I/O 
operation, that is, when it results from instruction fetch or execution, or from 
interruption action, bit 4 is left unchanged. 

Internal Control Check: Bit 5 of the EIRV indicates that an equipment 
malfunction has occurred in the PCE, channel, or. if installed, the floating-point 
feature. Malfunctioning includes errors on information being processed within 
the PCE, channel, or floating-point feature, as well as errors associated with the 
control logic of the PCE, channel, or floating-point feature. If the malfunction 
occurs in the floating-point feature, a floating-point check is additionally 
indicated in the floating-point status vector. Rit 4 of the EIRV is also set to 
when the malfunction results from a channel 1/0 operation. 

Detection of the internal control check causes the current operation to he 
terminated. The state of the PCE, channel, or floating-point feature after the 
internal control check is detected depends on the source of the fault and the roint 
in the operation at which the fault is detected. 

Internal Data Check: Bits 2 and 5 of the EIRV, together, indicate that a data 
check was detected in the information fetched from a principal or adjunct register, 

I or from the translation table or translation lock table. Such information is 
considered invalid. Bit 4 of the EIRV is also set to 1 if the internal data check 
results from a channel 1/0 operation. 

Except as stated below, detection of an internal data check causes the current 
operation to be terminated. 

I If invalid information is fetched from the translation table or translation lo. ck 
table as part of the dynamic-address-translation process, the associated storage 
reference may be attempted. For an instruction-fetch reference. execution of : he 
fetched instruction is suppressed. If invalid information is fetched from a genera[ 
register and the invalid information represents a storage address, the storage 
reference using the invalid address may be attempted. For an instruction-fetch 



reference, execution of the fetched instruction is suppressed. lf invalid 
information is fetched from a principal or adjunct register as part of a newly 
introduced PSV or ACV, the interruption action that caused the new PSV and 
ACV to be introduced is completed, and the instruction fetch associated with the 
invalid PSV or ACV may be attempted. However, execution of the instruction is 
suppressed. 

Depending on processor model, the prefetching of invalid information from the 
translation table or the translation lock table (during the 
dynamic-address-translation process), or from a register, may result in a 
system-check interruption before the information is actually needed. Further, the 
interruption may occur even if the information is not actually required (such as 
instruction prefetch when the prefetched instruction is discarded). When 
dynamic address translation is not active and invalid information is fetched from 
the translation table or the translation lock table during execution of the LAT or 
LATL instruction, only EIRV bit 5 may be set without bit 2. 

Instructions for PCE Control 

A class of instructions-the PCE-control instructions-is provided to access and 
modify information in control vectors, as well as to perform other operations 
necessary for PCE control. All PCE-control instructions are in the RI format, as 
shown in the following figure: 

6 

0 34 6 7 8 

12 
(operation) 

15 

RI Format 

The 8-bit Ii field is used as an extension to the operation code to designate the 
operation to be performed and, where applicable, the control vector used for the 
operation. If the 12 field designates an undefined value, an operation exception is 
indicated. 

This class of instructions is also called the control-immediate instructions. The 
mnemonic KI is used to designate the operation for all instructions in this class. 
The mnemonic KI and the RI format are also used for the instruction CALL PSV. 
This instruction is available for general use, however, and is not considered a 
PCE-control instruction. CALL PSV is described in Chapter 4. 

The R /r1 field designates a general-register byte operand or word operand for 
those operations that transfer information between a control vector and a general 
register. The operand byte is located in bit positions 16-23 (the upper 
byte-operand location) of a general register in the primary register set. The word 
operand is also located in a general register in the primary register set. For 
operations that do not use a register operand, the R/r1 field is reserved and 
should contain O's. 

PCE-control instructions used to alter information in control vectors are 
supervisor-privileged. Thus, instructions that set, reset, write, or perform logical 
operations on information in control vectors cannot be executed in input/ output 
or application mode. There are two exceptions to this: the instructions SET 
PROGRAMMED INTERRUPT REQUEST and RESET PROGRAMMED 
INTERRUPT REQUEST. These two instructions are input/ output-privileged 
and are invalid only in application mode. Operations that read information in 
control vectors are valid in all program modes. 

Chapter 9. PCE Control 9-31 



I Bit position 7 of the instruction is used both as the low-order bit of the 4-bit R/r1 

field and as an extension of the operation code. In the latter case, the bit 
distinguishes this instruction from the I/ 0 BYTE (immediate) instruction. 

The descriptions of the PCE-control instructions and their mnemonics, formats, 
and operation codes follow. 

Note: The procedure for describing the individual instructions and the symbols used 
in the instruction formats and the expressions of operations are defined under 
"Instruction Descriptions" in Chapter 4. The assembler language notation used in 
the instruction descriptions is explained in Appendix B. The second operand 
specification in the assembler language statement for each instruction is shown as a 

'

decimal number that identifies the PC £-control operation. In the instruction 
format. the corresponding 12 field is shown in hexadecimal representation. 

AND WITH PROGRAMMED INTERRUPT REQUEST VECTOR 

DISPATCH NEW LEVEL 

9-32 

KI rupb.6 

06 RI Format 

0 3 4 6 7 8 15 

Operation 
PIRV <- PIRV • (r1) 

Description 
The AND of the 8-bit programmed interrupt request vector (PIRV) and the byte 
at the first-operand location is placed in the programmed interrupt request vector. 

The operands are treated as unstructured logical quantities, and the connective 
AND is applied bit by bit. A bit position in the result is made a 1 if the 
corresponding bit positions in both operands contain a 1; otherwise, the result bit 
is made 0. 

The first operand is located in bit positions 16-23 of the designated primary 
general register. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Operation (supervisor-privileged operation) 

KI rupb.28 

I 
6 

I 
r 1 H 

0 34 6 7 8 

Operation 
If CPL ¥ (r1<5 .. 7>) 

Then Store current PSV 
LPL <-CPL 
CPL <- (r1<5 .. 7>) 

IC 

15 

RI Format 

Load new PSV /ACY pair indicated by PAV <CPL> 
Else NSI 



Description 
If the value in the three low-order bit positions at the first-operand location is not 
equal to the current priority level number, the new priority level designated by the 
first operand is dispatched; otherwise, no operation is performed. 

The current PSV is stored into the permanently-assigned register locations from 
which it was originally loaded. The last priority level (LPL) vector is then set to 
the current priority level (CPL) number, and the CPL vector is set to the value of 
the first operand. Subsequently, a PSV and ACV are loaded from the register 
locations assigned to the priority level indicated by the new value of the CPL 
number. 

The bit position in the program activation vector associated with the new priority 
level determines whether the primary or secondary PSV I ACV pair is loaded. If 
the PAV bit is 0, the primary pair is loaded; if the PAV bit is a 1, the secondary 
pair is loaded. 

The priority-level-dispatching mechanism, including interrupt-request and 
enabling-disabling information, is bypassed until one instruction, or part of one 
interruptible instruction, is executed on the new priority levyl (see "Point of 
Interruption" in this chapter). Priority level dispatching is resumed thereafter. 

If a system-check interruption occurs during this operation because of a channel 
I/ 0 check, the first instruction to be executed on the designated new priority level 
may be suppressed without indication to the program. Whether or not the first 
instruction on the new level is suppressed is unpredictable. 

An instruction may not execute on the new priority level if a program-exception 
condition is encountered. Additionally, if a secondary level is designated, a 
program exception may cause the primary PSV I ACV pair for the designated level 
to be activated. Whether or not an instruction is executed on the primary level 
before priority level dispatching resumes is unpredictable. 

Bits 5-7 of the first-operand byte contain the designated priority-level number. 

I Bits 0-3 of the operand are ignored. Bit 4 of the operand is reserved and should 
be 0. Depending on processor model, a specification exception may occur when 
bit 4 is not 0. 

The first operand is located in bit positions 16-23 of the designated primary 
general register. 

Result Conditions 
The condition indicators in the stored PSV remain unchanged. 

Program Exceptions (Suppression) 
Operation (supervisor-privileged operation) 
Specification (operand: depending on processor model, bit 4 not 0) 

Programming Note 
If a system-check interruption occurs while the master mask is 0, DISPATCH 
NEW LEVEL must be used in order to exit from priority level 0 without altering 
the master mask. 

Chapter 9. PCE Control 9-33 



OR WITH PROGRAMMED INTERRUPT REQUEST VECTOR 

READ CHANNEL MASK 

9-34 

KI rupb,4 

04 RI Format 

0 34 6 7 8 15 

Operation 
PIRV <- PIRV v (r1) 

Description 
The OR of the 8-bit programmed interrupt request vector (PIRV) and the byte at 
the first-operand location is placed in the programmed interrupt request vector. 

The operands are treated as unstructured logical quantities, and the connective 
OR is applied bit by bit. A bit position in the result is made a 1 if the 
corresponding bit position in one or both operands contains a 1 : otherwise, the 
result bit is made 0. 

The first operand is located in bit positions 16-23 of the designated primary 
general register. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Operation (supervisor-privileged operation) 

19 

0 34 6 7 8 15 

Operation 
(r1) <- 0000000 I I CHM 

Description 

RI Format 

The 1-bit channel mask (CHM) is placed unchanged in the byte at the 
first-operand location. 

The channel-mask bit is placed in bit position 7 of the first-operand byte; bit 
positions 0-6 are reserved and set to O's. 

The first operand is located in bit positions 16-23 of the designated primary 
general register. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions 
None 

Programming Note 
The channel mask controls whether channel 1/0 burst transfers are enabled or 
disabled (see Chapter 8, "Input/Output Operations"). 



READ COMMON MASK 

KI rupb,3 

03 RI Format 

0 34 6 7 8 15 

Operation 
(r1) <- CM 

Description 
The 8-bit common mask (CM) is placed unchanged in the byte at the 
first-operand location. 

The first operand is located in bit positions 16-23 of the designated primary 
general register. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions 
None 

READ CONDITION INDICATORS 

1B RI Format 

0 34 6 7 8 15 

Operation 
(r1) <- 0000 I I Current-PSV <48,49,56,57> 

Description 
The condition indicators in the current PSV are placed unchanged in the four 
low-order bit positions of the byte at the first-operand location. 

Condition indicators in bit positions 48 and 49 of the current PSV are placed in 
bit positions 4 and 5 of the first-operand byte; the indicators in bit positions 56 
and 57 of the current PSV are placed in bit positions 6 and 7. The four high-order 
bit positions of the first operand are set to O's. 

The first operand is located in bit positions 16-23 of the designated primary 
general register. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions 
None 

Chapter 9. PCE Control 9-35 



READ CURRENT AND LAST LEVELS 

OF RI Format 

0 34 6 7 8 15 

Operation 
(r1) <- O I I CPL I IO I I LPL 

Description 
The current priority level (CPL) and last priority level (LPL) numbers are placed 
unchanged in the byte at the first-operand location. 

The 3-bit CPL number is placed in bit positions 1-3 of the first-operand byte~ the 
LPL number is placed in bit positions 5-7. Bit positions 0 and 4 of the operand 
are reserved and made 0. 

The first operand is located in bit positions 16-23 of the designated primary 
general register. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions 
None 

Programming Note 
The instruction may be used by a level-0 program to determine which priority 
level was active when a system-check interruption occurred. 

READ ERROR INTERRUPT REQUEST VECTOR 

9-36 

09 RI Format 

0 34 6 7 8 15 

Operation 
(r 1) <- EIRV 

Description 
The 8-bir error interrupt request vector (EIRV) is placed unchanged in the byte at 
the first-operand location. 

The first operand is located in bit positions 16-23 of the designated primary 
general register. 

Bit position 7 of the error interrupt request vector is reserved and is read as 0. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions 
None 



READ 1/0 INTERRUPT REQUEST VECTOR 

READ MASTER MASK 

KI rupb,7 

07 RI Format 

0 34 6 7 8 15 

Operation 
(r1) <- IOIRV 

Description 
The 8-bit 1/0 interrupt request vector (IOIRV) is placed unchanged in the byte 
at the first-operand location. 

The first operand is located in bit positions 16-23 of the designated primary 
general register. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions 
None 

KI rupb, 1 

'1 H 
0 34 6 7 8 

Operation 
(r 1) <- 0000000 I I MM 

Description 

01 RI Format 

15 

The 1-bit master mask (MM) is placed unchanged in the byte at the first-operand 
location. 

The master-mask bit is placed in bit position 7 of the first-operand byte; bit 
positions 0-6 are reserved and set to O's. 

The first operand is located in bit positions 16-23 of the designated primary 
general register. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions 
None 

Chapter 9. PCE Control 9-37 



READ PRIMARY REGISTER SET NUMBER 

OB RI Format 

0 34 6 7 8 15 

Operation 
(r1) <- 00 I I Current-PSV<58 .. 63> 

Description 
The 6 bits of the primary-register-set field in the current PSV are placed 
unchanged in the low-order bit positions of the byte at the first-operand location. 

Bit positions 58-63 of the current PSV are placed in bit positions 2- 7 of the 
first-operand byte. Bit positions 0 and 1 of the first operand are reserved and set 
to O's. 

The first operand is located in bit positions 16-23 of the designated primary 
general register. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions 
None 

READ PROGRAM ACTIVATION VECTOR 

9-38 

Kl rupb, 12 l 

I 
6 

I 
r I H 79 RI Format 

0 3 4 6 7 8 15 

Operation 
(r 1) <- PAV 

Description 
The 8-bit program activation vector (PAV) is placed unchanged in the hyte at the 
first-operand location. 

The first operand is located in bit positions I 6-23 of the designated primary 
general register. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions 
None 

Programming Note 
With one exception, this instruction may be used by a level-0 program to 

determine which of the two PSV / ACV pairs (primary or secondary), ;Jssociated 
with the last (interrupted) priority level, was active when a system-check 
interruptjon occurred. The exception is when the interrupted program has altered 



the PAV bit corresponding to its priority level. In this case the PAV will provide a 
misleading indication by identifying the opposite PSV as being active when the 
interruption occurred. (See the programming note under "WRITE PROGRAM 
ACTIVATION VECTOR.") If the system-check interruption is caused by a 
program exception, it is not necessary to read the PAV since, by definition, the 
primary PSV I ACV pair was active. 

READ PROGRAMMED INTERRUPT REQUEST VECTOR 

KI rupb,5 

05 RI Format 

0 34 6 7 8 15 

Operation 
(r1) <- PIRV 

Description 
The 8-bit programmed interrupt request vector (PIRV) is placed unchanged in the 
byte at the first-operand location. 

The first operand is located in bit positions 16-23 of the designated primary 
general register. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions 
None 

READ SECONDARY REGISTER SET NUMBER 

0 34 6 7 8 

Operation 

OD 

(r1) <- 00 I I Current-PSV <50 .. 55 > 
Description 

RI Format 

15 

The 6 bits of the secondary-register-set field in the current PSV are placed 
unchanged in the low-order bit positions of the byte at the first-operand location. 

Bit positions 50-55 of the current PSV are placed in bit positions 2-7 of the 
first-operand byte. Bit positions 0 and 1 of the first operand are reserved and set 
to O's. 

The first operand is located in bit positions 16-23 of the designated primary 
general register. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions 
None 

Chapter 9. PCE Control 9-39 



RESET CHANNEL MASK 

RESET MASTER MASK 

KI 0,24 

000 H 
0 34 

Operation 
CHM <- 0 

Description 

6 7 8 

18 RI Format 

15 

The 1-bit channel mask (CHM) is made 0 (reset). 

Bit positions 4-6 of the instruction are reserved and should contain O's. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Ope.ratii 111 (supervisor-privileged operation) 

Program1.iing Note 
The channel mask controls whether channel I/ 0 burst transfers are enabled or 
disabled (see Chapter 8, "Input/Output Operations"). 

KI 0,0 

000 H 
0 34 

Operation 
MM<- 0 

Description 

6 7 8 

00 RI Format 

15 

The I -hit master mask (MM) is made 0 (reset). 

Bit positions 4-6 of the instruction are reserved and should contain O's. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Operation (supervisor-privileged operation) 

RESET PROGRAMMED INTERRUPT REQUEST 

9-40 

KI 0,37 

0 3 4 6 7 8 

Operation 
PIRV<CPL> <- 0 

Description 

25 RI Format 

15 

The bit position, corresponding to the number of the current priority level (CPL), 
in the 8-bit programmed interrupt request vector (PIRV) is made 0 (reset). 



SET CHANNEL MASK 

SET MASTER MASK 

Bit positions 4-6 of the instruction are reserved and should contain O's. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Operation (I/0-privileged operation) 

Programming Note 
This instruction may be used to remove the programmed interrupt request for the 
current priority level without first determining which level is active. This function 
is useful, for example, in a common exit routine that is executed on two or more 
priority levels. 

KI 0,38 

000 H 
0 34 

Operation 
CHM <- 1 

Description 

6 7 8 

26 RI Format 

15 

The 1-bit channel mask (CHM) is made a 1 (set). 

Bit positions 4-6 of the instruction are reserved and should contain O's. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Operation (supervisor-privileged operation) 

Programming Note 
The channel mask controls whether channel I/ 0 burst transfers are enabled or 
disabled (see Chapter 8, "Input/Output Operations"). 

KI 0,14 

000 H 
0 34 

Operation 
MM<- 1 

Description 

6 7 8 

OE RI Format 

15 

The 1-bit master mask (MM) is made a 1 (set). 

Bit positions 4-6 of the instruction are reserved and should contain O's. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Operation (supervisor-privileged operation) 

Chapter 9. PCE Control 9-41 



SET PROGRAMMED INTERRUPT REQUEST 

WRITE COMMON MASK 

9-42 

KI 0,35 

I 
6 I 000 H 23 RI Format 

0 34 6 7 8 15 

Operation 
PIRV<CPL> <- 1 

Description 
The bit position, corresponding to the number of the current priority level (CPL), 
in the 8-bit programmed interrupt request vector (PIRV) is made 1 (set). 

Bit positions 4-6 of the instruction are reserved and should contain O's. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Operation (I/ 0-privileged operation) 

Programming Note 
This instruction may be used to generate a programmed interrupt request for the 
current priority level without first determining which level is active. This function 
is useful, for example, in a common I/O interruption-handling routine that is 
executed on two or more priority levels. The interruption-handling routine may 
execute this instruction, then execute an I/ 0 instruction that removes the I/ 0 
interrupt request (allowing a subsequent I/O interrupt request to be indicated in 
the IOlRV), and then service the I/0 device. 

KI rupb,2 

02 RI Format 

0 34 6 7 8 15 

Operation 
CM <- (r1) 

Description 
The byte at the first-operand location is placed unchanged in the 8-bit common 
mask (CM). 

The first operand is located in bit positions 16-23 of the designated primary 
general register. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Operation (supervisor-privileged operation) 



I Programming Note 
For processor models that can disable priority level 0 for system-check interrupt 
requests, a system check detected while priority level 0 is disabled can result in 
loss of system integrity. Therefore, during normal system operation, the program 
should not write a 0 in bit position 0 of the common mask, thereby disabling level 
0. 

WRITE CONDITION INDICATORS 

IA RI Format 

0 34 6 7 8 15 

Operation 
Current-PSV<48,49,56,57> <- (r1<4 .. 7>) 

Description 
The 4 low-order bits of the byte at the first-operand location are placed 
unchanged in the condition-indicator bit positions of the current PSV. 

Bits 4 and 5 of the first-operand byte are placed in condition-indicator bit 
positions 48 and 49 of the current PSV; bits 6 and 7 are placed in indicator bit 
positions 56 and 57 of the current PSV. Bit positions 0-3 of the first operand are 
ignored. 

The first operand is located in bit positions 16-23 of the designated primary 
general register. 

Result Conditions 
The states of the result conditions are determined by the condition indicators in 
the current PSV at the completion of this operation. 

Program Exceptions (Suppression) 
Operation (supervisor-privileged operation) 

WRITE ERROR INTERRUPT REQUEST VECTOR 

KI rupb,8 

08 

0 34 6 7 8 15 

Operation 
EIRV <- (r1) 

Description 

RI Format 

The byte at the first-operand location is placed unchanged in the 8-bit error 
interrupt request vector (EIRV). 

The first operand is located in bit positions 16-23 of the designated primary 
general register. 

Chapter 9. PCE Control 9-43 



Bit 7 of the error interrupt request vector is reserved~ therefore, the corresponding 
low-order bit position of the first-operand byte should contain a 0. Depending on 
processor model, a specification exception may occur when bit 7 is not 0. 

The conditions remain unchanged. 

Result Conditions 
The condition remains unchanged 

Program Exceptions (Suppression) 
Operation (supervisor-privileged operation) 

I Specification (operand: depending on processor model, bit 7 not 0) 

Programming Note 
This instruction must be used to clear the EIRV. It may also be used to set a bit in 
the EIRV to 1. When any one of bits 0-5 is set to I, an interrupt request for 
priority level 0 is generated. 

WRITE PRIMARY REGISTER SET NUMBER 

KI rupb, !O 

I 
6 

I 
r I OA RI Format 

0 34 6 7 8 15 

Operation 
Current-PSV<58 .. 63> <- (r1<2 .. 7>) 

Description 
The 6 low-order bits of the byte at the first-operand location are placed 
unchanged in the primary-register-set field of the current PSV. 

Bits 2-7 of the first-operand byte are placed in bit positions 58-63 of the current 

' 

PSV. Bit positions 0 and 1 of the first-operand byte are reserved and should 
contain O's. Depending on processor model, a specification exception may occur 
when bit positions 0 and 1 are not 0. 

The first operand is located in bit positions 16-23 of the designated primary 
general register. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Operation (supervisor-privileged operation) 
Specification (operand: depending on processor model. bits 0 and 1 not 0) 

WRITE PROGRAM ACTIVATION VECTOR 

KI rupb, 120 

I 
6 

I 
r 1 .______._______...__._H_.~ RT Format 

0 34 6 7 8 l 5 

Operation 
PAV <- (r1) 

9-44 



Description 
The byte at the first-operand location is placed unchanged in the 8-bit program 
activation vector (PAV). 

The first operand is located in bit positions 16-23 of the designated primary 
general register. Depending on processor model, a specification exception may 
occur if the r 1 contents causes an attempt to change the state of the PAV bit that 
corresponds to the current priority level. 

I Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 

I Operation (supervisor-privileged operation) 
Specification (operand: depending on processor model, state change 

specified for current priority level) 

Programming Note 

I The program should not use this instruction to change the state of the PAV bit 
corresponding to the current priority level. This action is prevented by hardware 
in some processor models. In models that allow this bit to be changed, program 
execution at the current level still may be prematurely concluded. This will occur, 
for example, if a higher priority level is given control because of an interruption 
before the program removes the interrupt request for the current level. When 
program execution at the current level is resumed, the opposite PSV I ACV pair is 
made active. Further, if the interruption is caused by a system check, the PAV 
provides a misleading indication by identifying the opposite PSV as being active 
when the interruption occurred. 

WRITE SECONDARY REGISTER SET NUMBER 

oc RI Format 

0 34 6 7 8 15 

Operation 
Current-PSV<50 .. 55> <- (r1<2 .. 7>) 

Description 
The 6 low-order bits of the byte at the first-operand location are placed 
unchanged in the secondary-register-set field of the current PSV. 

Bits 2-7 of the first-operand byte are placed in bit positions 50-55 of the current 

I 

PSV. Bit positions 0 and l of the first-operand byte are reserved and should 
contain O's. Depending on processor model, a specification exception may occur 
when bit positions 0 and 1 are not 0. 

The first operand is located in bit positions 16-23 of the designated primary 
general register. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Operation (supervisor-privileged operation) 

I Specification (operand: depending on processor model, bits 0 and 1 not 0) 

Chapter 9. PCE Control 9-45 



Instruction for Direct Control 

CONTROL DIRECT OUT 

The following instruction is provided for the direct control of system-control 
facilities. 

KDO i4 

I F 11 0 F RR Format 

0 34 78 1112 15 

Operation 
SCP <- 11 

Description 
The 4-bit 11 field is made available to system-control facilities (SCP). The 
information in the 11 field is used to perform bui]t-in system functions. The 
processor description manual for the specific processor model describes these 
functions. 

Bit positions 8-11 of the instruction must be all O's; otherwise, an operation 
exception is indicated. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Operation (bits 8-11 of instructions not all O's) 

Instructions for Diagnostic Control Vector 

The following instructions are provided for system maintenance and initialization 
functions in certain processor models. 

READ DIAGNOSTIC CONTROL VECTOR 

9-46 

Cl RI Format 

0 34 6 7 8 15 

Operation 
(R1) <- DCV 

Description 
The diagnostic control vector (DCV) is placed unchanged in the word at the 
first-operand location. 

The DCV implemented in certain processor models provides system maintenance 
and initialization functions. Application and supervisory programs should not use 
the DCV. 

The first operand is located in bit positions 0-31 of the designated primary general 
register. 



Result Conditions 
The conditions remain unchanged. 

Program Exceptions 
None 

WRITE DIAGNOSTIC CONTROL VECTOR 

0 34 

Operation 
DCV <-(R1) 

Description 

6 7 8 

co RI Format 

15 

The word at the first-operand location is placed in the diagnostic control vector 
(DCV). 

The DCV implemented in certain processor models provides system maintenance 
and initialization functions. Application and supervisory programs should not use 
the DCV. 

The first operand is located in bit positions 0-31 of the designated primary general 
register. 

Result Conditions 
The conditions remain unchanged. 

Program Exceptions (Suppression) 
Operation (supervisor-privileged operation) 

Chapter 9. PCE Control 9-4 7 





Chapter 10. Dual-Mode Processing 

Logical Structure 

This chapter discusses dual-mode processing as it occurs in certain 8100 processor 
models. It describes the differences between single-PCE processors and dual-PCE 
processors. 

The logical structure of an 8100 Information System dual-PCB processor consists 
of shared main storage, two PCEs, either one or two channels, input/ output 
devices attached to the channels through adapters, and an Interrupt Control 
Element (ICE) for communication between the PCEs. This logical structure is 
shown in Figure 10-1. 

Processing 

and Control 

Element 

(PCE) 

Channel 

Main Storage 

Interrupt 

Control 

Element 

(ICE) 

1/0 Devices 

Processing 

and Control 

Element 

(PCE) 

Channel 

Adapter 

Second Channel 

not present on all 

processors. Refer 

to the appropriate 

description manual 

for details. 

1/0 Devices 

1/0 Devices 

1/0 Devices 

Figure 10-1. Logical Structure of Dual-PCE Processors 

Depending on dual-PCE processor model, additional system control facilities 
provide functions that enhance system availability, such as the capability to 
reconfigure around a failing system component and to connect an I/ 0 device to 
both channels for greater device availability. These system control facilities are 
described in the applicable processor description manuals. 

Chapter 10. Dual-Mode Processing 10-1 



Storage and Registers 

10-2 

The logical structure of both PCEs is identical. Each individual PCE provides 
independent sequencing and processing controls for instruction execution, 
interrupt action, dynamic address transformation, and other control and 
processing functions. 

The shared main storage facility permits both PCEs to address main storage 
locations and therefore execute any of the programs resident in main storage. In 
addition to a shared main storage, both PCEs have access to private 
translation-table entries which are mapped to unique storage blocks. These entries 
are accessed and updated on an independent basis and are accessible only by the 
owning PCE. Additionally, both PCEs have access to common translation-table 
entries which are mapped to shared storage blocks. 

I On processor models that implement separation protection, both PCEs have 
access to private and common translation-lock-table entries, corresponding 
respectively to the private and common regions of the translation table. 

Independent principal and adjunct register groups are provided for each PCE. 
Additionally, each PCE has independent, unique vectors that are permanently 
assigned to hold control information. Register groups and control vectors are 
addressed only by their respective PCE. 

Floating-point registers, each 64 bits long, are available when the floating-point 
feature is installed. One floating-point feature is allowed on dual-PCE processors 
and is restricted to a specific PCE. 

The ICE enables communication between the two PCEs during normal system 
operation. For a detailed description of the ICE, refer to either the IBM 8140 
Processor Description, GA27-2880 or the IBM 8150 Processor Description, 
GA23-0122. 

The normal mode of operation is dual mode, with both PCEs functional. The 
processor can also function in single mode, with only one PCE functional. 

Both PCEs in dual-PCE processors have access to main storage. Both data and 
programs must be resident in main storage before they can be processed. Since 
main storage is common, both PCEs are capable of executing any of the programs 
resident in storage. An address used by the program or in a channel I/O operation 
is referred to as a logical address. The formation of real addresses from logical 
addresses is as described in Chapter 7. The same real address is used by either 
PCE to ref er to a specific main storage location. 

Each PCE can address information in its associated register sets and control 
vectors. One PCE cannot address the register sets or control vectors of the other 
PCE. 

The organization and addressing of main storage and registers is described in 
Chapter 2. 



Program Execution 

Execution 

I The instructions executed by the PCEs in dual-PCE processors are identical to 
those executed in single-PCE processors. The PCE follows the same rules for 
register operand specification, immediate operand specification, storage operand 
specification, and address generation as described in Chapter 3. 

The execution of instructions by each PCE is identical to the qescription in 
Chapter 3 with the following exception: In dual-PCE processors, two PCEs may 
be executing programs concurrently. As such, each PCE may be referencing 
storage to fetch instructions which occur in the flow of a program, to fetch and/ or 
store data required to complete the execution of an instruction, or to transfer data 
during CHIO operations. The operation of an instruction or interruptible unit of 
operation for a single-operand reference is synchronized with storage. Thus, 
interference due to concurrent data or instruction references is prevented during 
the span of a single-operand reference for operands up to a fullword in length. 

The Test and Set (TS) instruction is a special case. The nature of the function and 
operation of this instruction provides two non-interruptible references to an 
identical storage location. Therefore, instruction storage synchronization is 
guaranteed for the entire span of the TS instruction. 

The operand length for most instructions is either a byte, a halfword, or a 
fullword. Such operands are always assumed to occur on an integral boundary. 
However, the operand lengths for the long-precision floating point and the 
LHQ/STHQ instructions are greater than a fullword. Therefore, if instruction 
storage synchronization is required for any instruction containing operands 
greater than a fullword in length, such synchronization must be explicitly provided 
by programming convention, using, for example, the TEST and SET instruction. 

When CHIO operations occur concurrently with references to main storage by a 
PCE, storage is synchronized on an integral word boundary basis provided the 
channel storage references are within a single burst of half word transfers. Storage 
synchronization for instruction and data references does not affect the 
interleaving of storage accesses for CHIO data bursts consisting of multiple 
halfwords which are greater than a word in length. Storage synchronization is not 
provided for CHIO byte transfers. 

For the class of interruptible instructions (MVS, MVHS, CLS, and CLHS), 
instruction storage synchronization for an operand reference is only guaranteed 
within a unit of operation. Synchronization is not ensured for the period between 
two operand references within the unit of operation. Similarly, for the 
floating-point instruction RFS (READ FLOATING-POINT STATUS 
VECTOR), synchronization is only guaranteed for the operand references and 
not for the period between the operand references within the instruction. 

Depending on processor model, more than one unit of operation may be executed 
between points in the operation at which an interruption is allowed. The program 
must not be dependent on the validity of instruction storage synchronization for 
the period between allowable interruptions. Synchronization is guaranteed only 
for the operand(s) within a single unit of operation. The operands within a unit of 
operation may be as short as one byte each. 

Chapter 10. Dual-Mode Processing 10-3 



Sequence of Execution 

Program Exceptions 

General Instructions 

10-4 

I Conceptually, both PCEs in a dual-PCE processor execute instructions serially, 
with the execution of one instruction preceding the execution of the following 
instruction without interaction from the other PCE. 

The conceptual sequential execution of instructions within a PCE is preserved 
when either ( 1) a new PSV is introduced, (2) an entry is stored by the executing 

I PCE into the translation table or the translation lock table when dynamic address 
translation is active, or (3) a BRANCH or JUMP operation is executed which 
results in the instruction address being replaced with the branch or jump address. 

Interaction with the translation table is such that the conceptual sequential order 
of execution is preserved within a precision of two instruction halfwords between 
two PCEs. 

Programming Notes: 

Dynamic modification of the entries in both the common translation table and 
common translation lock table must be carefully synchronized. Conceptual 
sequential instruction execution following a modification of the common 
translation table or the common translation lock table is ensured for the PCE 
initiating the change. However, for processor models employing the concept 
of instruction prefetching, the effect of such a change could be delayed for up 
to two instruction halfwords on the other PCE. To ensure synchronization, 
the TEST AND SET (TS) instruction can be used when both PCEs are 
operating. To discard the prefetched instructions of a PCE in the wait state, a 
halfword unconditional BRANCH or JUMP operation can be executed as the 
first instruction when the wait state is ended. 

The TEST and SET (TS) instruction can be used for controlled sharing of a 
common storage area by two or more programs within or across PCEs. This 
controlled sharing can be achieved by establishing a programming convention. 
For example, an all-O's value in the byte located at the second operand 
address of the TS instruction indicates that the common area is available, and 
an all-1 's value means that the area is being used. Each using program then 
must examine this byte by means of TEST AND SET before making access to 
the common area. Because TEST AND SET does not permit an interruption 
to occur between the moment of fetching (for testing) and the moment of 
storing (setting) and because of storage synchronization, the possibility of a 
second program testing this byte before the first program is able to set it is 
avoided. 

Exceptions resulting from the execution of a program, including the improper 
specification or use of instructions and data, cause a program-exception 
interruption. The types of endings and program exception conditions are as 
described in Chapter 3 and are independent of the other PCE in the 
configuration. 

The general instructions and their mnemonics, formats, and operations are as 
described in Chapter 4. From a user preception, the operation of the general 
instructions remains unchanged. 



Floating-Point Instructions 

Register Organization 

I The optional floating-point feature attaches to only one PCE and uses a unique 
set of instructions which execute only on that PCE. The floating-point 
instructions and their mnemonics, formats, and operations are as described in 
Chapter 5. 

Each PCE has its own unique registers. One PCE cannot address the registers of 
the other PCE. 

Two groups of registers are always provided by each PCE: the principal register 
group and the adjunct register group. When the optional floating-point feature is 
present, a third group of registers, the floating-point register group, is provided. 
The floating-point register group can be accessed only by the PCE that has the 
feature. 

Register organization, addressing register contents and register-indirect 
instructions, their mnemonics, formats, and operations are described in Chapter 6. 

Dynamic Address Relocation and Translation 

The addressing arrangement of the PCEs is based on a logical separation of the 
addresses used by a program and a channel from the addresses assigned to the 
physical locations in main storage. During every storage reference by either PCE 

I in the system, the logical address supplied by a program or a channei is mapped 
into the PCE address space. This mapping process is called dynamic address 
relocation, and is described in Chapter 7. 

When dynamic address translation is active, a single logical copy each of the 
translation table and translation lock table (for processor models that implement 
separation protection) is accessed by each respective PCE during the translation 
of logical addresses to real storage locations. Both tables contain four private 
entries that are available only to a specific PCE and allow corresponding entries 
of the translation table to translate addresses to different storage blocks and 
corresponding entries of the translation lock table to contain different translation 
locks. The private area for each table is designated in terms of logical storage 
addresses and displaces the corresponding entries in both the common translation 
table and the common translation lock table. The logical address of the private 
area for both tables starts at O; the remaining entries in the translation table and 
the translation lock table are common and are available to either PCE. 

The dynamic address translation mechanism includes functions for protection 
against unauthorized store operations, instruction execution, or references of any 
type to main storage. 

The process of dynamic address translation, storage access protection, separation 
protection, and the mnemonics, formats, and operations of the instructions which 
manipulate the translation-table and the translation-lock-table entries are 
described in Chapter 7. 

Chapter 10. Dual-Mode Processing 10-5 



Input/Output Operations 

PCE Control 

10-6 

Input/ output devices attach to a PCE through a channel. One PCE cannot access 
the channel attached to the other PCE. However, depending on dual-PCE 
processor model, an I/ 0 device can be made accessible to either PCE by 
connecting it to each PCE's channel by means of system control facilities. These 
facilities are described in the applicable processor description manuals. 

Programmed I/ 0 and channel I/ 0 operations and the mnemonics, formats, and 
operations of the instructions available are described in Chapter 8. 

I Each PCE in dual-PCE processors contains unique control information used in 
PCE management. This control information is accessible to the owning PCE. One 
PCE cannot access the control information of the other PCE. The operation of 
each individual PCE is described in Chapter 9. 

The Interrupt Control Element (ICE) enables communication between the two 
PCEs during normal system operation. Specific functions provided by the ICE are 
described in the IBM 8140 Processor Description, GA27-2880, and the IBM 
815 0 Processor Description, GA23-1022. 

The master mask operations of the PCEs are interlocked in such a manner that 
the two PCEs cannot operate simultaneously with their respective mask bits in the 
reset (set to 0) state. When one PCE is operating with its master mask reset and 
the other PCE executes a Reset Master Mask instruction (KI 0), the latter's 
master mask is reset but execution by the PCE is suspended. All interrupt requests 
at the suspended PCE, with the exception (depending on processor model) of a 
system-check interrupt request for priority level 0 during a CHIO operation, are 
held pending. If a PCE is suspended, CHIO operations for that PCE continue 
unless a subsequent channel error is detected. If an error is detected, the channel 
operation is terminated and, depending on processor model, either the interrupt 
request is held pending or an interruption to level 0 occurs. In either case, 
instruction execution remains suspended. 

When the PCE that was executing with its master mask reset again sets its master 
mask (KI 14 ), the PCE which was suspended resumes operation. Execution 
continues with the next sequential instruction following the instruction which 
originally reset the master mask, or an interruption to a new priority level occurs 
based on the contents of the interrupt request vectors and masks. Any EIRV 
conditions which were pending during the time operation was suspended are now 
indicated to the corresponding PCE. 

In normal (nonsuspended) operation, a channel becomes disabled when EIRV 
bits 0-3 or 5 are set to 1 in the corresponding PCE. When EIRV bit 4 only is set 
to 1 with a WRITE ERROR INTERRUPT REQUEST VECTOR instruction, the 
PCE's channel normally is not disabled. However, depending on processor model, 
a PCE that has set only EIRV bit 4 may have its channel disabled when 
instruction execution is suspended. 



Master mask synct~·onization allows serialization of a sequence of code which is 
shared between PCEs. Once the master mask is reset, it should not be set again 
until execution of the code sequence is completed. 

Whenever one active (nonsuspended) PCE detects a system-check condition, the 

I 
other PCE receives a signal that a system-check condition has been detected in 
the configuration. A detailed description of system-check signaling is contained in 
the IBM 8140 Processor Description and the IBM 8150 Processor Description. 

The instructions for PCE control and their mnemonics, formats, and operations 
are described in Chapter 9, with the exception of RESET MASTER MASK (KI 
0), which is synchronized between the PCEs and SET MASTER MASK (KI 14), 
thus allowing for the resumption of execution of a suspended PCE (Master Mask 
reset). 

Chapter I 0. Dual-Mode Processing I 0-7 





Appendix A. Lists of Instructions 

The following three lists are of instructions arranged by name, mnemonic, and 
type. The symbols used to label the characteristics columns mean: 

F Instruction format 
T Instruction type 
C Indication of whether the condition indicators are set 
P Indication of privilege classification of the instruction 

The symbols in the characteristics columns mean: 

Ac Access exception 
Ad Address exception 
C Condition indicators are set 
CC PCB-control instruction 
Eo Exponent-overflow exception 
Eu Exponent-underflow exception 
Fd Floating-point divide exception 
FF FF instruction format 
Fp Floating-point privilege exception 
FP Floating-point feature instruction 
Fs Floating-point specification exception 
FS FS instruction format 
G General instruction 
I I/ 0-privileged instruction 
IO Input/ Output instruction 
J J instruction format 
Op Operation exception 
Ov Fixed-point overflow exception 
Re Register-indirect exception 
RI RI instruction format 
RN Register-indirect instruction 
RR RR instruction format 
RRL RR-Long instruction format 
RS RS instruction format 
RSL RS-Long instruction format 
S Supervisor-privileged instruction 
Se Separation exception 
Si Significance exception 
Sp Specification exception 
TL Translation-lock-table instruction 
TT Translation-table instruction 

The symbols representing the operand specifications are defined in Appendix B. 

Refer to the instruction descriptions in the body of this manual for the types of 
endings associated with program exceptions recognized during instruction 
execution. 

Appendix A. Lists of Instructions A-1 



Instructions Arranged by Name 

Characteristics 
Name Mnemonic Operands F T c p Exceptions 

ADD (byte, register) AR rpb,rpb RR G c 
rsb,rsb 

ADD (byte, register-immediate) ARI rpb,i8s RI G c 
ADD (halfword, register) AHR rh,rh RR G c 
ADD (halfword, register- AHRI rh,i4 RR G c 
immediate) I ADD NORMALIZED AF f ,dw14s(ra) FS FP c Sp Ac Op Se Ad Eu Eo Si 
ADD NORMALIZED (register) AFR f ,f FF FP c Op Eu Eo Si 
ADD UNNORMALIZED AU f ,dw14s(ra) FS FP c Sp Ac Op Se Ad Eo Si 
ADD UNNORMALIZED (register) AUR f,f FF FP c Op Eo Si 
ADD WITH CARRY (byte, register) AYR rpb,rpb RR G c 

rsb,rsb 
ADD WITH CARRY (halfword, AYHR rh,rh RR G c 
register) 
ADD WITH CARRY (halfword, AYHRE ruh,ruh RR G c 
register, extended) 

AND (byte, register) NR rpb,rpb RR G c 
rsb,rsb 

AND (byte, register-immediate) NRI rpb,i8 RI G c 
AND (halfword, register) NHR rh,rh RR G c 
AND WITH PROGRAMMED INTERRUPT KI rupb,6 RI cc s Op 
REQUEST VECTOR 
BRANCH AND LINK BAL ra,dh16s(ra) RSL G Sp Ac Se Ad 
BRANCH AND LINK (register) BALR ra,ra RR G Sp Ac Se Ad 
BRANCH ON CONDITION BC m4,dh16s(ra) RSL G Sp Ac Se Ad 
BRANCH ON CONDITION (register) BCR m4,ra RR G Sp Ac Se Ad 
BRANCH ON COUNT (byte, BCTR rpb,ra RR G Sp Ac Se Ad 
register) 

BRANCH ON INDEX (byte) BNX rpb,ra RR G Sp Ac Se Ad 
CALLPSV KI 0,127 RI G 
COMPARE CF f ,dw 14s(ra) FS FP c Sp Ac Op Se Ad 
COMPARE (byte, register) CR rpb,rpb RR G c 

rsb,rsb 
COMPARE (halfword, register) CHR rh,rh RR G c I COMP ARE (register) CFR f,f FF FP c Op 
COMPARE LOGICAL (bytes, CLS ra,ra,riJI RRL G c Sp Ac Opm Se Ad 
storage) 

ra,ra,riJI Sp Ac opm se Ad COMPARE LOGICAL (halfwords, CLHS RRL G c 
storage) 
COMPARE WITH CARRY (halfword, CYHRE ruh,ruh RR G c 
register, extended) 

CONTROL DIRECT OUT KDO i4 RR cc Op 
COUNT LEADING ZEROS CTLZ rh,rh RR G c 
(halfword) 

DISPATCH NEW LEVEL KI rupb,28 RI cc s S~Op 
I DIVIDE DF f,dw14s(ra) FS FP Sp Ac Op Se Ad Eu Eo Fd 

DIVIDE (halfword, register) DHR ril,rh RRL G OpOv 
DIVIDE (register) DFR f,f FF FP Op Eu Eo Fd 
EXCLUSIVE OR (byte, register) XR rpb,rpb RR G c 

rsb,rsb 
EXCLUSIVE OR (byte, XRI rpb,i8 RI G c 
register-immediate) 
EXCLUSIVE OR (halfword, XHR rh,rh RR G c 
register) 
INPUT /OUTPUT (byte) IO rpb,rh RR IO c Op 
INPUT /OUTPUT (byte, immediate) IOI rlpb,i8 RI IO c Op 
INPUT /OUTPUT (halfword) IOH rh,rh RR IO c Op l JUMP ON BIT ZERO (halfword) JBZ n4,dh7s J G Sp Ac Se Ad 
JUMP ON CONDITION JC m4,dh7s J G Sp Ac Se Ad 
LOAD LF f,dw14s(ra) FS FP Sp Ac Op Se Ad 
LOAD (byte) L rpb,db 16s(ra) RSL G Sp Ac Se Ad 
LOAD (byte, register) LR rb,rb RR G 

A-2 



Instructions Arranged by Name (continued) 

Characteristics 
Name Mnemonic Operands F T c p Exceptions 

LOAD (byte, register-immediate) LRI rpb,i8 RI G 
LOAD (byte, register-indirect) LRN rpb,rJl RR RN s Op Re 
LOAD (byte, with index) LN rpb,ra RR G Sp Ac Se Ad 
LOAD (byte, with index LND rpb,ra RR G Sp Ac Se Ad 
decremented) 
LOAD (byte, with index LNI rpb,ra RR G Sp Ac Se Ad 
incremented) 
LOAD (halfword) LH rh,db l 6s(ra) RSL G Sp Ac Se Ad 
LOAD (halfword, register) LHR rh,rh RR G 

LOAD (halfword, register LHRN rh,raEJ RR RN s Op Re 
indirect) 

LOAD (halfword, register, LHRLU rh,ruh RR G 
lower half from upper) 
LOAD (halfword, register, LHRU ruh,ruh RR G 
upper half) 
LOAD (halfword, register, LHRUL ruh,rh RR G 
upper half from lower) 

rh,dh5 (rJI) LOAD (halfword, short form) LHS RS G Sp Ac Se Ad 
LOAD (halfword, with index) LHN rh,ra RR G Sp Ac Se Ad 
LOAD (halfword, with index LHND rh,ra RR G Sp Ac Se Ad 
decremented) 
LOAD (halfword, with index) LHNI rh,ra RR G Sp Ac Se Ad 
incremented) 
LOAD (halfwords, quadrant) LHQ q2,ra RR G Sp Ac Op Se Ad 
LOAD (register) LFR f,f FF FP Op 
LOAD (word) LW rw,dbl6s(ra) RSL G Sp Ac Se Ad 
LOAD ADDRESS LA ra,db 16s(ra) RSL G 
LOAD AND TEST (register) LTFR f,f FF FP c Op 
LOAD COMPLEMENT (register) LCFR f,f FF FP c Op 
LOAD FROM ADDRESS TRANSLATION LAT rw,ra RRL TT s Sp Op 
TABLE 
LOAD FROM ADDRESS TRANSLATION LATL rh,ra RRL TL s Sp Op 
LOCK TABLE 
LOAD NEGATIVE (register) LNFR f ,f FF FP c Op 
LOAD POSITIVE (register) LPFR f,f FF FP c Op 
LOAD ROUNDED (register) LRFR f,f FF FP OpEo I MOVE (bytes, storage) MYS ra,ra,riJI RRL G Sp Ac Opm Se Ad 

MOVE (halfwords, storage) MVHS ra,ra,rhlJ RRL G Sp Ac Opm Se Ad 
MULTIPLY MF f,dwl4s(ra) FS FP Sp Ac Op Se Ad Eu Eo 
MULTIPLY (halfword, register) MHR rh,rh RRL G Op 
MULTIPLY (register) MFR f,f FF FP OpEuEo 
OR (byte, register) OR rpb,rpb RR G c 

rsb,rsb 
OR (byte, register-immediate) ORI rpb,i8 RI G c 
OR (halfword, register) OHR rh,rh RR G c 
OR WITH PROGRAMMED INTERRUPT Kl rupb,4 RI cc s Op 
REQUEST VECTOR 
PROGRAM EXCEPTION PC RR G Op 
READ CHANNEL MASK Kl rupb,25 RI cc 
READ COMMON MASK Kl rupb,3 RI cc 
READ CONDITION INDICATORS KI rupb,27 RI cc 
READ CURRENT AND LAST LEVELS Kl rupb,15 RI cc 

I READ DCV Kl rpw, 193 RI 
READ ERROR INTERRUPT REQUEST KI rupb,9 RI cc 
VECTOR I READ FLOATING-POINT CONTROL RFC dwl4s(ra) FS FP Sp Ac Op Se Ad 
READ FLOATING-POINT STATUS RFS dw14s(ra) FS FP Sp Ac Op Se Ad Fs 
VECTOR 
READ 1/0 INTERRUPT REQUEST Kl rupb,7 RI cc 
VECTOR 

READ MASTER MASK KI rupb,1 RI cc 
READ PRIMARY REGISTER SET Kl rupb, 11 RI cc 
NUMBER 
READ PROGRAM ACTIVATION VECTOR KI rupb, 121 RI cc 

Appendix A. Lists of Instructions A-3 



Instructions Arranged by Name (continued) 

Characteristics 
Name Mnemonic Operands F T c p Exceptions 

READ PROGRAMMED INTERRUPT KI rupb,5 RI cc 
REQUEST VECTOR 
READ SECONDARY REGISTER SET KI rupb, 13 RI cc 
NUMBER 
RESET CHANNEL MASK KI 0,24 RI cc s Op 
RESET MASTER MASK KI 0,0 RI cc s Op 
RESET PROGRAMMED INTERRUPT KI 0,37 RI cc I Op 
REQUEST 
ROTATE LEFT (byte) RL rb,c3 RR G c 
ROTA TE LEFT (halfword) RLH rh,c4 RR G c 
SET CHANNEL MASK KI 0,38 RI cc s Op 
SET MASTER MASK KI 0,14 RI cc s Op 
SET OVERFLOW MASK SFOM ml FF FP Op 
SET PRECISION MODE SFPM ml FF FP Op 
SET PROGRAMMED INTERRUPT KI 0,35 RI cc Op 
REQUEST 
SET SIGNIFICANCE MASK SFSM ml FF FP Op 
SET UNDERFLOW MASK SFUM ml FF FP Op 
SHIFT LEFT (byte, logical) SLL rb,c3 RR G c Op 
SHIFT LEFT (halfword, logical) SLHL rh,c4 RR G c 
STORE STF f ,dw14s(ra) FS FP Sp Ac Op Se Ad 
STORE (byte) ST rpb,db 16s(ra) RSL G Sp Ac Se Ad 
STORE (byte, register-indirect) STRN rpb,rJJ RR RN s Op Re 
STORE (byte, with index) STN rpb,ra RR G Sp Ac Se Ad 
STORE (byte, with index STND rpb,ra RR G Sp Ac Se Ad 
decremented) 
STORE (byte, with index STNI rpb,ra RR G Sp Ac Se Ad 
incremented) 

STORE (halfword) STH rh,db 16s(ra) RSL G Sp Ac Se Ad 

STORE (halfword, register- STHRN rh,rJJ RR RN s Op Re 
indirect) 

STORE (halfword, short form) STHS rh,dh5(rJI) RS G Sp Ac Se Ad 
STORE (halfword, with index) STHN rh,ra RR G Sp Ac Se Ad 
STORE (halfword, with index STHND rh,ra RR G Sp Ac Se Ad 
decremented) 
STORE (halfword, with index ST HNI rh,ra RR G Sp Ac Se Ad 
incremented) 

STORE (halfwords, quadrant) STHQ q2,ra RR G Sp Ac Op Se Ad 
STORE (word) STW rw,db16s(ra) RSL G Sp Ac Se Ad 
STORE TO ADDRESS TRANSLATION STAT rw,ra RRL TT s Sp Op 
TABLE 
STORE TO ADDRESS TRANSLATION STATL rh,ra RRL TL s Sp Op 
LOCK TABLE 
SUBTRACT (byte, register) SR rpb,rpb RR G c 

rsb,rsb 
SUBTRACT (halfword, register) SHR rh,rh RR G c 
SUBTRACT (halfword, register- SHRI rh,i4 RR G c 
immediate) 
SUBTRACT NORMALIZED SF f ,dw l4s(ra) FS FP c Sp Ac Op Se Ad Eu Eo Si 
SUBTRACT NORMALIZED (register) SFR f,f FF FP c Op Eu Eo Si 
SUBTRACT UNNORMALIZED SU f,dw14s(ra) FS FP c Sp Ac Op Se Ad Eo Si 
SUBTRACT UNNORMALIZED (register) SUR f ,f FF FP c Op Eo Si 
SUBTRACT WITH CARRY (byte, SYR rpb,rpb RR G c 
register) rsb,rsb 

SUBTRACT WITH CARRY (halfword, SYHR rh,rh RR G c 
register) 

SUBTRACT WITH CARRY (halfword, SYHRE ruh,ruh RR G c 
register, extended) 

TEST (byte, register-immediate) TRI rpb,i8 RI G c 
TEST AND SET (byte) TS O,ra RR G c Sp Ac Op Se Ad 
WRITE COMMON MASK KI rupb,2 RI cc s Op 
WRITE CONDITION INDICATORS KI rupb,26 RI cc c s Op 
WRITE DCV KI rpw, 192 RI s Op 

A-4 



Instructions Arranged by Name (continued) 

Characteristics 
Name Mnemonic Operands F T c p Except-i~1~s 

IWRITE ERROR INTERRUPT REQUEST KI rupb,8 RI cc s SpiaOp 
VECTOR 
WRITE FLOATING-POINT CONTROL WFC dwl4s(ra) FS FP Sp Ac Op Se Ad 
WRITE FLOATING-POINT STATUS WFS dwl4s(ra) FS FP s Sp Ac Op Se Ad Fp Fa 
VECTOR 

WRITE PRIMARY REGISTER SET KI rupb, lO RI cc s spmop 
NUMBER 

WRITE PROGRAM ACTIVATION KI rupb,120 RI cc s Spiaop 
VECTOR 

WRITE SECONDARY REGISTER KI rupb, 12 RI cc s SpiaOp 
SET NUMBER 

Notes: 

II Only low-order 8 bits of register halfword participate in operation. 

m Register specification limited to 0, 4, 8, ... ,or 28 (DPPX assembler numbering). 

EJ Only low-order 16 bits of register participate in operation. 

m Register specification limited to 12, 14, 28, or 30 (DPPX assembler numbering). 

m Depending on processor model. 

Appendix A. Lists of Instructions A-5 



Instructions Arranged by Mnemonic 

Characteristics 
Mnemonic Name Operands F T c p Exceptions 

I AF ADD NORMALIZED f ,dw14s(ra) FS FP c Sp Ac Op Se Ad Eu Eo Si 
AFR ADD NORMALIZED (register) f,f FF FP c Op Eu Eo Si 
AHR ADD (halfword, register) rh,rh RR G c 
AHRI ADD (halfword, register- rh,i4 RR G c 

immediate) 
AR ADD (byte, register) rpb,rpb RR G c 

rsb,rsb 
ARI ADD (byte, register-immediate rpb,i8s RI G c 

I AU ADD UNNORMALIZED f ,dw14s(ra) FS FP c Sp Ac Op Se Ad Eo Si 
AUR ADD UNNORMALIZED (register) f,f FF FP c Op Eo Si 
AYHR ADD WITH CARRY (halfword, register) rh,rh RR G c 
AYHRE ADD WITH CARRY (halfword, register, ruh,ruh RR G c 

extended) 
AYR ADD WITH CARRY (byte, register) rpb,rpb RR G c 

rsb,rsb 
BAL BRANCH AND LINK ra,dh 16s(ra) RSL G Sp Ac Se Ad 
BALR BRANCH AND LINK (register) ra,ra RR G Sp Ac Se Ad 
BC BRANCH ON CONDITION m4,dh l 6s(ra) RSL G Sp Ac Se Ad 
BCR BRANCH ON CONDITION (register) m4,ra RR G Sp Ac Se Ad 
BCTR BRANCH ON COUNT (byte, register) rpb,ra RR G Sp Ac Se Ad 
BNX BRANCH ON INDEX (byte) rpb,ra RR G Sp Ac Se Ad 
CF COMPARE f,dwl4s(ra) FS FP c Sp Ac Op Se Ad 
CFR COMPARE (register) f,f FF FP c Op 
CHR COMPARE (halfword, register) rh,rh RR G c 
CLHS COMPARE LOGICAL (halfwords, ra,ra,rhll RRL G c Sp Ac Opm Se Ad 

storage) 

ra,ra,rhll Sp Ac Opm Se Ad CLS COMPARE LOGICAL (bytes, storage) RRL G c 
CR COMPARE (byte, register) rpb,rpb RR G c 

rsb,rsb 
CTLZ COUNT LEADING ZEROS (halfword) rh,rh RR G c 
CYHRE COMPARE WITH CARRY (halfword, ruh,ruh RR G c 

register, extended) 
I DF DIVIDE f ,dwl4s(ra) FS FP SpAcOpSeAdEuEoFd 

DFR DIVIDE (register) f,f FF FP Op Eu Eo Fd 

OHR DIVIDE (halfword, register) rhfl,rh RRL G OpOv 
IO INPUT/OUTPUT (byte) rpb,rh RR IO c Op 
IOH INPUT /OUTPUT (halfword) rh,rh RR IO c Op 
IOI INPUT /OUTPUT (byte, immediate) rlpb,i8 RI IO c Op I JBZ JUMP ON BIT ZERO (halfword) n4,dh7s J G Sp Ac Se Ad 
JC JUMP ON CONDITION m4,dh7s J G Sp Ac Se Ad 
KOO CONTROL DIRECT OUT i4 RR cc Op 
KI AND WITH PROGRAMMED INTERRUPT rupb,6 RI cc s Op 

REQUEST VECTOR 
KI CALLPSV 0,127 RI G 
KI DISPATCH NEW LEVEL rupb,28 RI cc s spmop 
KI OR WITH PROGRAMMED INTERRUPT rupb,4 RI cc s Op 

REQUEST VECTOR) 
KI READ CHANNEL MASK rupb,25 RI cc 
KI READ COMMON MASK rupb,3 RI cc 
KI READ CONDITION INDICATORS rupb,27 RI cc 
KI READ CURRENT AND LAST LEVELS rupb,15 RI cc 

I KI READDCV rpw, 193 RI 
KI READ ERROR INTERRUPT REQUEST 

VECTOR rupb,9 RI cc 
KI READ I/O INTERRUPT REQUEST VECTOR rupb,7 RI cc 
KI READ MASTER MASK rupb,l RI cc 
KI READ PRIMARY REGISTER SET NUMBER rupb, 11 RI cc 
KI READ PROGRAM ACTIVATION VECTOR rupb, 121 RI cc 
KI READ PROGRAMMED INTERRUPT 

REQUEST VECTOR rupb,5 RI cc 

A-6 



Instructions Arranged by Mnemonic (continued) 

Characteristics 
Mnemonic Name Operands F T c p Exceptions 

KI READ SECONDARY REGISTER SET 
NUMBER rupb,13 RI cc 

KI RESET CHANNEL MASK 0,24 RI cc s Op 
KI RESET MASTER MASK 0,0 RI cc s Op 
KI RESET PROGRAMMED INTERRUPT 

REQUEST 0,37 RI cc I Op 
KI SET CHANNEL MASK 0,38 RI cc s Op 
KI SET MASTER MASK 0,14 RI cc s Op 
KI SET PROGRAMMED INTERRUPT REQUEST 0,35 RI cc I Op 
KI WRITE COMMON MASK rupb,2 RI cc s Op 
KI WRITE CONDITION INDICATORS rupb,26 RI cc c s Op 

I KI WRITE DCV rpw,192 RI s Op 
KI WRITE ERROR INTERRUPT REQUEST rupb,8 RI cc s Op 

VECTOR 

KI WRITE PRIMARY REGISTER SET NUMBER rupb, 10 RI cc s sPlop 

KI WRITE PROGRAM ACTIVATION VECTOR rupb,120 RI cc s Sp.Op 
KI WRITE SECONDARY REGISTER SET 

NUMBER rupb,12 RI cc s splop 
L LOAD (byte) rpb,db 16s(ra) RSL G Sp Ac Se Ad 
LA LOAD ADDRESS ra,db 16s(ra) RSL G 
LAT LOAD FROM ADDRESS TRANSLATION 

TABLE rw,ra RRL TT s Sp Op 
LATL LOAD FROM ADDRESS TRANSLATION rh,ra RRL TL s Sp Op 

LOCK TABLE 
LCFR LOAD COMPLEMENT (register) f,f FF FP c Op 
LF LOAD f ,dw14s(ra) FS FP Sp Ac Op Se Ad 
LFR LOAD (register) f,f FF FP Op 
LH LOAD (halfword) rh,db16s(ra) RSL G Sp Ac Se Ad 
LHN LOAD (halfword, with index) rh,ra RR G Sp Ac Se Ad 
LHND LOAD (halfword, with index rh,ra RR G Sp Ac Se Ad 

decremented) 
LHNI LOAD (halfword, with index rh,ra RR G Sp Ac Se Ad 

incremented) 
LHQ LOAD (halfwords, quadrant) q2,ra RR G Sp Ac Op Se Ad 
LHR LOAD (halfword, register) rh,rh RR G 
LHRLU LOAD (halfword, register, lower rh,ruh RR G 

half from upper) 
rh,rJl LHRN LOAD (halfword, register-indirect) RR RN s Op Re 

LHRU LOAD (halfword, register, upper ruh,ruh RR G 
half) 

LHRUL LOAD (halfword, register, upper ruh,rh RR G 
half from lower) 

rHS LOAD (halfword, short form) rh,dh5(rJI) RS G Sp Ac Se Ad 
LN LOAD (byte, with index) rpb,ra RR G Sp Ac Se Ad 
LND LOAD (byte, with index decremented) rpb,ra RR G ~·Sp Ac Se Ad 
LNFR LOAD NEGATIVE (register) f,f FF FP c Op 
LNI LOAD (byte, with index incremented) rpb,ra RR G Sp Ac Se Ad 
LPFR LOAD POSITIVE (register) f,f FF FP c Op 
LR LOAD (byte, register) rb,rb RR G 
LRFR LOAD ROUNDED (register) f,f FF FP OpEo 
LRI LOAD (byte, register-immediate) rpb,i8 RI G 

LRN LOAD (byte, register-indirect) rpb,rJl RR RN s Op Re 
LTFR LOAD AND TEST (register) f,f FF FP c Op 
LW LOAD (word) rw ,db 16s(ra) RSL G Sp Ac Se Ad 
MF MULTIPLY f ,dw14s(ra) FS FP Sp Ac Op Se Ad Eu Eo 
MFR MULTIPLY (register) f,f FF FP OpEuEo 
MHR MULTIPLY (halfword, register) rh,rh RRL G Op 

MVHS MOVE (halfwords, storage) ra,ra,rhl RRL G SpAcO~SeAd 
MYS MOVE (bytes, storage) ra,ra,rhl RRL G Sp Ac O~ Se Ad 
NHR AND (halfword, register) rh,rh RR G c 

Appendix A. Lists of Instructions A-7 



Instructions Arranged by Mnemonic (continued) 

Characteristics 
Mnemonic Name Operands F T c p Exceptions 

NR AND (byte, register) rpb,rpb RR G c 
rsb,rsb 

NRI AND (byte, register-immediate) rpb,i8 RI G c 
OHR OR (halfword, register) rh,rh RR G c 
OR OR (byte, register) rpb,rpb RR G c 

rsb,rsb 
ORI OR (byte, register-immediate) rpb,i8 RI G c 
PC PROGRAM EXCEPTION RR G Op 
RFC READ FLOATING-POINT CONTROL dwl4s(ra) FS FP Sp Ac Op Se Ad 
RFS READ FLOATING-POINT STATUS VECTOR dwl4s(ra) FS FP Sp Ac Op Se Ad Fs 
RL ROTATE LEFT (byte) rb,c3 RR G c 
RLH ROTA TE LEFT (halfword) rh,c4 RR G c 
SF SUBTRACT NORMALIZED f ,dwl4s(ra) FS FP c Sp Ac Op Se Ad Eu Eo Si 
SFOM SET OVERFLOW MASK ml FF FP Op 
SFPM SET PRECISION MODE ml FF FP Op 
SFR SUBTRACT NORMALIZED (register) f,f FF FP c Op Eu Eo Si 
SFSM SET SIGNIFICANCE MASK ml FF FP Op 
SFUM SET UNDERFLOW MASK ml FF FP Op 
SHR SUBTRACT (halfword, register) rh,rh RR G c 
SHRI SUBTRACT (halfword, register- rh,i4 RR G c 

immediate) 
SLHL SHIFT LEFT (halfword, logical) rh,c4 RR G c 
SLL SHIFT LEFT (byte, logical) rb,c3 RR G c Op 
SR SUBTRACT (byte, register) rpb,rpb RR G c 

rsb,rsb 
ST STORE (byte) rpb,db l 6s(ra) RSL G Sp Ac Se Ad 
STAT STORE TO ADDRESS TRANSLATION 

TABLE rw,ra RRL TT s Sp Op 
STA TL STORE TO ADDRESS TRANSLATION rh,ra RRL TL s Sp Op 

LOCK TABLE 
STF STORE f ,dwl4s(ra) FS FP Sp Ac Op Se Ad 
STH STORE (halfword) rh,db l 6s(ra) RSL G Sp Ac Se Ad 
STHN STORE (halfword, with index) rh,ra RR G Sp Ac Se Ad 
STHND STORE (halfword, with index rh,ra RR G Sp Ac Se Ad 

decremented) 
ST HNI STORE (halfword, with index rh,ra RR G Sp Ac Se Ad 

incremented) 
STHQ STORE (halfwords, quadrant) q2,ra RR G Sp Ac Op Se Ad 

STHRN STORE (halfword, register-indirect) rh,rJJ RR RN s Op Re 

STHS STORE (halfword, short form) rh,dh5(rJI) RS G Sp Ac Se Ad 
STN STORE (byte, with index) rpb,ra RR G Sp Ac Se Ad 
STND STORE (byte, with index decremented) rpb,ra RR G Sp Ac Se Ad 
STNI STORE (byte, with index incremented) rpb,ra RR G Sp Ac Se Ad 

STRN STORE (byte, register-indirect) rpb,rJJ RR RN s Op Re 
STW STORE (word) rw ,dbl 6s(ra) RSL G Sp Ac Se Ad 
SU SUBTRACT UNNORMALIZED f,dwl4s(ra) FS FP c Sp Ac Op Se Ad Eo Si 
SUR SUBTRACT UNNORMALIZED (register) f ,f FF FP c Op Eo Si 
SYHR SUBTRACT WITH CARRY (halfword, rh,rh RR G c 

register) 
SYHRE SUBTRACT WITH CARRY (halfword, ruh,ruh RR G c 

register, extended) 
SYR SUBTRACT WITH CARRY (byte, register) rpb,rpb RR G c 

rsb,rsb 
TRI TEST (byte, register-immediate) rpb,i8 RI G c 

I TS TEST AND SET (byte) O,ra RR G c Sp Ac Op Se Ad 

A-8 



Instructions Arranged by Mnemonic (continued) 

Mnemonic 

IWFC 
WFS 

XHR 
XR 

XRI 

Notes: 

Name 

WRITE FLOATING-POINT CONTROL 
WRITE FLOATING-POINT STATUS 
VECTOR 
EXCLUSIVE OR (halfword, register) 
EXCLUSIVE OR (byte, register) 

EXCLUSIVE OR (byte, register
immediate) 

Operands 

dw14s(ra) 
dw14s(ra) 

rh,rh 
rpb,rpb 
rsb,rsb 
rpb,i8 

II Only low-order 8 bits of register halfword participate in operation. 

F 

FS 
FS 

RR 
RR 

RI 

fl Register specification limited to 0, 4, 8, ... ,or 28 (DPPX assembler numbering). 

ll Only low-order 16 bits of register participate in operation. 

IJ Register specification limited to 12, 14, 28, or 30 (DPPX assembler numbering). 

m Depending on processor model. 

T 

FP 
FP 

G 
G 

G 

Characteristics 
C P Exceptions 

c 
c 

c 

Sp Ac Op Se Ad 
S Sp Ac Op Se Ad Fp Fs 

Appendix A. Lists of Instructions A-9 



Instructions Arranged by Type 

Characteristics 
Name Mnemonic Operands F T c p Exceptions 

General Instructions 

ADD (byte, register) AR rpb,rpb RR G c 
rsb,rsb 

ADD (byte, register-immediate) ARI rpb,i8s RI G c 
ADD (halfword, register) AHR rh,rh RR G c 
ADD (halfword, register- AHRI rh,i4 RR G c 
immediate) 

ADD WITH CARRY (byte, AYR rpb,rpb RR G c 
register) rsb,rsb 
ADD WITH CARRY (halfword, AYHR rh,rh RR G c 
register) 

ADD WITH CARRY (halfword, AYHRE ruh,ruh RR G c 
register, extended) 

AND (byte, register) NR rpb,rpb RR G c 
rsb,rsb 

AND (byte, register- NRI rpb,i8 RI G c 
immediate) 
AND (halfword, register) NHR rh,rh RR G c 
BRANCH AND LINK BAL ra,dh16s(ra) RSL G Sp Ac Se Ad 
BRANCH AND LINK (register) BALR ra,ra RR G Sp Ac Se Ad 
BRANCH ON CONDITION BC m4,dh16s(ra) RSL G Sp Ac Se Ad 
BRANCH ON CONDITION (register) BCR m4,ra RR G Sp Ac Se Ad 
BRANCH ON COUNT (byte, BCTR rpb,ra RR G Sp Ac Se Ad 
register) 
BRANCH ON INDEX (byte) BNX rpb,ra RR G Sp Ac Se Ad 
CALLPSV KI 0,127 RI G 
COMPARE (byte, register) CR rpb,rpb RR G c 

rsb,rsb 
COMPARE (halfword, register) CHR rh,rh RR G c 
COMPARE LOGICAL (bytes, CLS ra,ra,riJI RRL G c Sp Ac Opm Se Ad 
storage) 

ra,ra,rhll Sp Ac Opm Se Ad COMPARE LOGICAL (halfwords, CLHS RRL G c 
storage) 
COMPARE WITH CARRY (halfword, CYHRE ruh,ruh RR G c 
register, extended) 
COUNT LEADING ZEROS (halfword) CTLZ rJJh RR G c 
DIVIDE (halfword, register) OHR r ,rh RRL G OpOv 
EXCLUSIVE OR (byte, register) XR rpb,rpb RR G c 

rsb,rsb 
EXCLUSIVE OR (byte, register- XRI rpb,i8 RI G c 
immediate) 
EXCLUSIVE OR (halfword, XHR rh,rh RR G c 
register) 

JUMP ON BIT ZERO (halfword) JBZ n4,dh7s J G Sp Ac Se Ad 
JUMP ON CONDITION JC m4,dh7s J G Sp Ac Se Ad 
LOAD (byte) L rpb,db 16s(ra) RSL G Sp Ac Se Ad 
LOAD (byte, register) LR rb,rb RR G 
LOAD (byte, register-immediate) LRI rpb,i8 RI G 
LOAD (byte, with index) LN rpb,ra RR G Sp Ac Se Ad 
LOAD (byte, with index LND rpb,ra RR G Sp Ac Se Ad 
decremented) 
LOAD (byte, with index LNI rpb,ra RR G Sp Ac Se Ad 
incremented) 
LOAD (halfword) LH rh,db 16s(ra) RSL G Sp Ac Se Ad 
LOAD (halfword, register) LHR rh,rh RR G 
LOAD (halfword, register, LHRLU rh,ruh RR G 
lower half from upper) 
LOAD (halfword, register, LHRU ruh,ruh RR G 
upper half) 

A-10 



Instructions Arranged by Type (continued) 

Characteristics 
Name Mnemonic Operands F T c p Exceptions 

LOAD (halfword, register, LHRUL ruh,rh RR G 
upper half from lower) 

rh,dh5(rJI) LOAD (halfword, short form) LHS RS G Sp Ac Se Ad 
LOAD (halfword, with index) LHN rh,ra RR G Sp Ac Se Ad 
LOAD (halfword, with index LHND rh,ra RR G Sp Ac Se Ad 
decremented) 
LOAD (halfword, with index LHNI rh,ra RR G Sp Ac Se Ad 
incremented) 
LOAD (halfwords, quadrant) LHQ q2,ra RR G Sp Ac Op Se Ad 
LOAD (word) LW rw,db16s(ra) RSL G Sp Ac Se Ad 
LOAD ADDRESS LA ra,db 1 JJra) RSL G 
MOVE (bytes, storage) MYS ra,ra,r RRL G Sp Ac Opm Se Ad 

MOVE (halfwords, storage) MVHS ra,ra,riJI RRL G Sp Ac O~ Se Ad 
MULTIPLY (halfword, register) MHR rh,rh RRL G Op 
OR (byte, register) OR rpb,rpb RR G c 

rsb,rsb 
OR (byte, register-immediate) ORI rpb,i8 RI G c 
OR (halfword, register) OHR rh,rh RR G c 
PROGRAM EXCEPTION PC RR G Op 
ROTATE LEFT (byte) RL rb,c3 RR G c 
ROT A TE LEFT (halfword) RLH rh,c4 RR G c 
SHIFT LEFT (byte, logical) SLL rb,c3 RR G c Op 
SHIFT LEFT (halfword, logical) SLHL rh,c4 RR G c 
STORE (byte) ST rpb,db 16s(ra) RSL G Sp Ac Se Ad 
STORE (byte, with index) STN rpb,ra RR G Sp Ac Se Ad 
STORE (byte, with index STND rpb,ra RR G Sp Ac Se Ad 
decremented) 
STORE (byte, with index STNI rpb,ra RR G Sp Ac Se Ad 
incremented) 
STORE (halfword) STH rh,db 16s(ra) RSL G Sp Ac Se Ad 

STORE (halfword, short form) STHS rh,dh5(rJI) RS G Sp Ac Se Ad 
STORE (halfword, with index) STHN rh,ra RR G Sp Ac Se Ad 
STORE (halfword, with index STHND rh,ra RR G Sp Ac Se Ad 
decremented) 
STORE (halfword, with index STHNI rh,ra RR G Sp Ac Se Ad 
incremented) 
STORE (halfwords, quadrant) STHQ q2,ra RR G Sp Ac Op Se Ad 
STORE (word) STW rw ,db 16s(ra) RSL G Sp Ac Se Ad 
SUBTRACT (byte, register) SR rpb,rpb RR G c 

rsb,rsb 
SUBTRACT (halfword, register) SHR rh,rh RR G c 
SUBTRACT (halfword, register- SHRI rh,i4 RR G c 
immediate) 
SUBTRACT WITH CARRY (byte, SYR rpb,rpb RR G c 
register) rsb,rsb 

SUBTRACT WITH CARRY SYHR rh,rh RR G c 
(halfword, register) 

SUBTRACT WITH CARRY SYHRE ruh,ruh RR G c 
(halfword, register, extended) 

TEST (byte, register-immediate) TRI rpb,i8 RI G c 
I TEST AND SET (byte) TS O,ra RR G c Sp Ac Op Se Ad 

Appendix A. Lists of Instructions A-11 



Instructions Arranged by Type (continued) 

Characteristics 
Name Mnemonic Operands F T c p Exceptions 

Floating-Point Instructions 

ADD NORMALIZED AF f ,dw14s(ra) FS FP c Sp Ac Op Se Ad Eu Eo Si 
ADD NORMALIZED (register) AFR f,f FF FP c Op Eu Eo Si 
ADD UNNORMALIZED AU f ,dwl4s(ra) FS FP c Sp Ac Op Se Ad Eo Si 
ADD UNNORMALIZED (register) AUR f,f FF FP c Op Eo Si 
COMPARE CF f ,dw14s(ra) FS FP c Sp Ac Op Se Ad 
COMPARE (register) CFR f,f FF FP c Op 
DIVIDE DF f ,dw14s(ra) FS FP Sp Ac Op Se Ad Eu Eo Fd 
DIVIDE (register) DFR f,f FF FP Op Eu Eo Fd 
LOAD LF f ,dw14s(ra) FS FP Sp Ac Op Se Ad 
LOAD (register) LFR f,f FF FP Op 
LOAD AND TEST (register) LTFR f ,f FF FP c Op 
LOAD COMPLEMENT (register) LCFR f,f FF FP c Op 
LOAD NEGATIVE (register) LNFR f ,f FF FP c Op 
LOAD POSITIVE (register) LPFR f,f FF FP c Op 
LOAD ROUNDED (register) LRFR f,f FF FP OpEo 
MULTIPLY MF f,dw14s(ra) FS FP Sp Ac Op Se Ad Eu Eo 
MULTIPLY (register) MFR f,f FF FP Op Eu Eo 
READ FLOATING-POINT CONTROL RFC dwl4s(ra) FS FP Sp Ac Op Se Ad 
READ FLOATING-POINT STATUS RFS dw14s(ra) FS FP Sp Ac Op Se Ad Fs 
VECTOR 
SET OVERFLOW MASK SFOM ml FF FP Op 
SET PRECISION MODE SFPM ml FF FP Op 
SET SIGNIFICANCE MASK SFSM ml FF FP Op 
SET UNDERFLOW MASK SFUM ml FF FP Op 
STORE STF f,dwl4s(ra) FS FP Sp Ac Op Se Ad 
SUBTRACT NORMALIZED SF f,dwl4s(ra) FS FP c Sp Ac Op Se Ad Eu Eo Si 
SUBTRACT NORMALIZED (register) SFR f,f FF FP c Op Eu Eo Si 
SUBTRACT UNNORMALIZED SU f,dw14s(ra) FS FP c Sp Ac Op Se Ad Eo Si 
SUBTRACT UNNORMALIZED SUR f,f FF FP c Op Eo Si 
(register) 

WRITE FLOATING-POINT CONTROL WFC dw14s(ra) FS FP Sp Ac Op Se Ad 
WRITE FLOATING-POINT STATUS WPS dw14s(ra) FS FP s Sp Ac Op Se Ad Fp Fs 
VECTOR 

Register-Indirect Instructions 

LOAD (byte, register-indirect) LRN rpb,rJl RR RN s Op Re 

LOAD (halfword, register- LHRN rh,rJJ RR RN s Op Re 
indirect) 

STORE (byte, register-indirect) STRN rpb,rJJ RR RN s Op Re 
STORE (halfword, register- STHRN rh,rJJ RR RN s Op Re 
indirect) 

Translation-Table Instructions 

LOAD FROM ADDRESS TRANSLATION LAT rw,ra RRL TT s Sp Op 
TABLE 
STORE TO ADDRESS TRANSLATION STAT rw,ra RRL TT s Sp Op 
TABLE I Translation-Lock-Table Instructions 

LOAD FROM ADDRESS TRANSLATION LATL rh,ra RRL TL s Sp Op 
LOCK TABLE 
STORE TO ADDRESS TRANSLATION STATL rh,ra RRL TL s Sp Op 
LOCK TABLE 

A-12 



Instructions Arranged by Type (continued) 

Characteristics 
Name Mnemonic Operands F T c p Exceptions 

Input/Output Instructions 

INPUT/OUTPUT (byte) IO rpb,rh RR IO c Op 
INPUT /OUTPUT (byte, immediate) IOI rlpb,i8 RI IO c Op 
INPUT /OUTPUT (halfword) IOH rh,rh RR IO c Op 

PCE-Control Instructions 

AND WITH PROGRAMMED KI rupb,6 RI cc s Op 
INTERRUPT REQUEST VECTOR 
CONTROL DIRECT OUT KDO i4 RR cc OR 
DISPATCH NEW LEVEL KI rupb,28 RI cc s spmop 
OR WITH PROGRAMMED INTERRUPT KI rupb,4 RI cc s Op 
REQUEST VECTOR 
READ CHANNEL MASK KI rupb,25 RI cc 
READ COMMON MASK KI rupb,3 RI cc 
READ CONDITION INDICATORS KI rupb,27 RI cc 
READ CURRENT AND LAST LEVELS KI rupb, 15 RI cc 

I READ DCV KI rpw, 193 RI 
READ ERROR INTERRUPT REQUEST KI rupb,9 RI cc 
VECTOR 
READ I/O INTERRUPT REQUEST KI rupb,7 RI cc 
VECTOR 
READ MASTER MASK KI rupb, 1 RI cc 
READ PRIMARY REGISTER SET KI ruph, 11 RI cc 
NUMBER 

READ PROGRAM ACTIVATION 
VECTOR KI rupb, 121 RI cc 

READ PROGRAMMED INTERRUPT KI rupb,5 RI cc 
REQUEST VECTOR 
READ SECONDARY REGISTER SET KI rupb,13 RI cc 
NUMBER 
RESET CHANNEL MASK KI 0,24 RI cc s Op 
RESET MASTER MASK KI 0,0 RI cc s Op 
RESET PROGRAMMED INTERRUPT KI 0,37 RI cc I Op 
REQUEST 
SET CHANNEL MASK KI 0,38 RI cc s Op 
SET MASTER MASK KI 0, 14 RI cc s Op 
SET PROGRAMMED INTERRUPT KI 0,35 RI cc I Op 
REQUEST 

WRITE COMMON MASK KI rupb,2 RI cc s Op 
WRITE CONDITION INDICATORS KI rupb,26 RI cc c s Op 

I WRITEDCV KI rpw,192 RI s Op 
WRITE ERROR INTERRUPT KI rupb,8 RI cc s Op 
REQUEST VECTOR 

spmop WRITE PRIMARY REGISTER SET KI rupb, 10 RI cc s 
NUMBER 

WRITE PROGRAM ACTIVATION KI rupb, 120 RI cc s spmop 
VECTOR 
WRITE SECONDARY REGISTER SET KI rupb,12 RI cc s spmor 
NUMBER 

Notes: 

II Only low-order 8 bits of register halfword participate in operation. 

a Register specification limited to 0, 4, 8, ... ,or 28 (DPPX assembler numbering). 

E Only low-order 16 bits of register participate in operation. 

m Register specification limited to 12, 14, 28, or 30 (DPPX assembler numbering). 

m Depending on processor model. 

Appendix A. Lists of Instructions A-13 





Appendix B. Assembler Language Operand Specification 

Generic Specification 

This appendix first defines the generic assembler language operand specification 
used in this publication, and then describes the assembler language register 
specifications supported by the IBM 8100 DPPX assembler licensed program. 

The assembler language operand specifications used in this publication are 
represented symbolically. The symbols consist of one or more characters and 
denote, in mnemonic form, the values that are considered valid for the assembler 
statement. The symbols denoting register specifications also include an indication 
of the portion of the register that participates in the operation. Each symbol is 
defined below, after the following general derivations. 

Immediate Specifications 

i#[s] 
c# 
m# 
n# 
q# 

Immediate operand 
Count 
Mask 
Bit number 
Register quadrant number 

A numeral (represented as#) designates the number of bits in the instruction 
format that are used to represent the binary value of the immediate specification. 

The characters denotes a signed immediate operand. The character is omitted if 
the operand is unsigned. 

Register Specifications 

r [ ~ J [ ~] General register containing a byte operand 

r[u]h General register containing a halfword operand 
rw General register containing a word operand 
ra General register containing an address 
f Floating-point register 

For byte operands, the character u or 1 denotes which byte (upper or lower) of the 
register participates in the operation. The character is omitted if either may be 
designated. The character p or s denotes the register set (primary or secondary) 
in which the register is located. The character is omitted if a register in either set 
may be designated. 

For halfword operands, the character u denotes that the upper halfword of the 
register participates in the operation. The character is omitted if the lower 
halfword participates. 

Appendix B. Assembler Language Operand Specification B-1 



B-2 

Displacement Specifications 

b 
d h #[s] Displacement value 

w 

The character b, h, or w denotes that the binary value represented in the 
instruction format is in terms of bytes, halfwords, or words, respectively. 
Accordingly, the range of values defined below for the displacements, which are 
always given in terms of bytes, must be specified as an integral multiple of 1, 2, or 
4. 

One or two numerals (represented as#) designate the number of bits in the 
instruction format that are used to represent the binary value of the displacement 
specification. 

The character s denotes that the displacement value is signed. The character is 
omitted if the displacement is unsigned. 

Operand Specifications 

The individual symbols that represent the operand specifications are defined as 
follows: 

c3 Count value, 0 to 7. 

c4 Count value, 0 to 15. 

i4 Immediate value, 0 to 15. 

i8 Immediate value, 0 to 255, or unstructured 8-bit value, 
00000000 to 1 1111 1 11 . 

i8s Immediate value, -128 to 127. 

ml A 1-bit mask value, 0 or 1. 

m4 Unstructured 4-bit mask value, 0000 to 1111 (may be specified 
as 0 to 15). 

n4 Bit number. 0 to 15. 

q2 Quadrant number, 0 to 3. 

rb Byte operand in the upper or lower byte-operand location 
(bit positions 16-23 or 24-31, respectively) of a primary 
or secondary general register. 

rpb Byte operand in the upper or lower byte-operand location 
(bit positions 16-23 or 24-3 1, respectively) of a primary 
general register. 



rsb Byte operand in the upper or lower byte-operand location 
(bit positions 16-23 or 24-31, respectively) of a secondary 
general register. 

rupb Byte operand in the upper byte-operand location (bit 
positions 16-23) of a primary general register. 

rlpb Byte operand in the lower byte-operand location (bit 
positions 24-31) of a primary general register. 

rh General register containing a halfword operand in the 
lower half (bit positions 16-31) of the register. 

ruh General register containing a halfword operand in the 
upper half (bit positions 0-15) of the register. 

rw General register containing a word operand. 

rpw Primary general register containing a word operand. 

ra General register containing a storage address, a register-
indirect addressing vector, a translation-table index, or a 
translation-lock-table index. 

f Floating-point register. 

dh5 Displacement, 0 to 62, specified as a multiple of 2. 

dh7s Displacement, -128 to 126, specified as a multiple of 2. 

dw14s Displacement, -32768 to 32764, specified as a multiple of 4. 

db16s Displacement, -32768 to 32767. 

dh16s Displacement, -65536 to 65534, specified as a multiple of 2. 

Appendix B. Assembler Language Operand Specification B-3 



IBM 8100 DPPX Assembler Language Register Specifications 

General Registers 

B-4 

This part of the appendix describes the assembler language specifications, 
supported by the IBM 8100 DPPX assembler licensed program, that pertain to the 
16 general registers and 4 floating-point registers available to a program. The 
specifications are the numbers used in the assembler language statement to 
designate the general registers, general-register operands, or floating-point 
registers for the machine instructions. 

I General registers may be used to address main storage, the principal and adjunct 
register groups, the translation table, and the translation lock table; they are also 
used for operations involving general-register word, halfword, or byte operands. 
The allocation of a general register for word, halfword, or byte operands is 
illustrated below. 

Word 

0 31 

Upper Halfword Lower Halfword 

0 15 16 31 

Upper Halfword Upper Byte Lower Byte 

0 15 16 23 24 31 

The IBM 8100 DPPX assembler treats the 16 general registers available to the 
program as being numbered 0,2,4, ... ,30. Numbers 0,2, .... 14 specify 
general-registers 0-7, respectively, in the primary register set, and numbers 
16,18, ... ,30 specify registers 0-7 in the secondary set. General-register word and 
halfword operands are specified by the numbers of the general registers in which 
they are located. Since two halfword operands may be allocated to one general 
register, the assembler language mnemonic indicates the operand location (upper 
or lower), where the lower location is considered the default. 

The location (upper or lower) of a byte operand in a general register is not 
indicated with the mnemonic; it is indicated with the operand specification. 
Therefore, the IBM 8100 DPPX assembler treats the general-register 
byte-operand locations as being numbered 0, 1,2, ... ,31. Byte-operand locations in 
the primary register set are numbered 0-15, and the locations in the secondary set 
are numbered 16-31. Each even/ odd pair of numbers specifies an upper and a 
lower byte-operand location (register bit positions 16-23 and 24-31, respectively) 
in the general register identified by the even number. The specifications, 
including the instruction R-field (r-field for byte operands), are listed in the 
Figures B-1 and B-2. 



Assembly Language Instruction 
Specification R-Field 

0 0000 
2 0010 
4 0100 
6 0110 
8 1000 

10 1010 
12 1100 
14 1110 
16 0001 
18 0011 
20 0101 
22 0111 
24 1001 

26 1011 
28 1101 
30 1111 

Explanation: 

Register Number 
Within Set 

0 
1 
2 
3 
4 
5 
6 
7 
0 
1 
2 
3 
4 
5 
6 
7 

Primary 
Register 
Set 

Secondary 
Register 
Set 

The general register specifications correspond to the generic notation as follows: 

Specification 1 

Generic Assembly Language Designation 

0,2,4, ... ,30 Any oi the 16 general registers 

1 For the instruction DIVIDE (halfword, register), the first-operand specification, 
denoted as rh, is limited to 0, 4, 8, ... , or 28. For instructions LOAD (halfword, 
short) and STORE (halfword, short), the base-register specification, denoted as ra, 
is limited to 12, 14, 28, or 30. 

Figure B-1. General Register Specifications 

Assembly Language 

Specification Instruction r-Field Register 

Number 

Upper Byte Lower Byte Upper Byte Lower Byte Within Set 

0 1 0000 0001 0 

2 3 0010 0011 1 

4 5 0100 0101 2 

6 7 0110 0111 3 

8 9 1000 1001 4 

10 11 1010 1011 5 

12 13 1100 1101 6 

14 15 1110 1111 7 
16 17 0000 0001 0 
18 19 0010 0011 1 

20 21 0100 0101 2 

22 23 0110 0111 3 

24 25 1000 1001 4 

26 27 1010 1011 5 

28 29 1100 1101 6 

30 31 1110 1111 7 

Explanation: 

The byte operand specifications correspond to the generic notation as fol lows: 

Specification 

Generic Assembly Language Designation 

Primary 

Register 

Set 

Secondary 
Register 

Set 

rb 

rpb 

rsb 

rupb 

rlpb 

0-31 

0-15 

16-31 

Any of the 32 byte-operand locations in the primary and secondary sets. 

Any of the 16 byte-operand locations in the primary set. 

Any of the 16 byte-operand locations in the secondary set. 

0, 2, 4, ... ' 14 Any of the 8 upper byte-operand locations in the primary set. 

1, 3, 5, ... ' 15 Any of the 8 lower byte-operand locations in the primary set. 

Figure B-2. Byte Operand Specifications 

Appendix B. Assembler Language Operand Specification B-5 



Floating-Point Registers 

Floating-point registers are used for floating-point operands. The allocation of a 
floating-point register for short or long floating-point numbers is illustrated 
below. 

Char. 6-Digit Fraction Short 

0 1 7 8 

0 1 7 8 

B-6 

31 32 63 

14-Digit Fraction Long 

63 

Floating-point register operands are specified by the numbers of the 
floating-point registers containing the operands. (Note that the distinction of a 
short or long floating-point operand is controlled by the precision bit in the FSV, 
and is not part of the instruction mnemonic.) The IBM 8100 DPPX assembler 
treats the 4 floating-point registers available to the program as being numbered 0, 
4, 8, and 12. 

The specifications for the registers, including the instruction F-field, are listed in 
Figure B-3. 

Assembly Language 
Specification 

0 
4 

12 

Explanation: 

Instruction Re!Jister Number 
F-Field Within Set 

00 0 
01 
10 
11 

2 
3 

Any of the floating-point register specifications, 0, 4, 8, or 12, may be desiqnated for the generic 
specification, f. • 

Figure B-3. Floating-Point Register Specifications 



Appendix C. Instruction Operations and Condition Settings 

The first part of this appendix contains a summary listing of the instruction 
operations; the second part summarizes the result conditions for the instructions. 

The symbols used in the operation expressions are listed below: 

Symbol 

(n) 

<-
<== 
+ 

x 
I 
MOD 
11 

v 

{n+a} 
¢ 

Bn 
c 
Dn 
Fn 

In 
IA 
IOD[@] 
Mn 
MS[@] 
n<a> 
n<a .. b> 
NSI 
PG Rn 
Qn 

rn 

Rn 

RG[@] 
RQ<q> 
TEMP 

hu@J 
TT[@] 

Meaning 

Contents of general register designated by n 
"is replaced by" 
"is determined by" 
Addition 
Subtraction 
Multiplication 
Division 
Modulo division 
Concatenation 
Boolean AND 
Boolean OR 
Boolean inverse (l's complement) 
Boolean exclusive OR 
Logical comparison 
Equal to 
General register designated by the sum of n and a 
Not equal to 
Instruction field designating a base register (operand number n) 
Condition indicator for "carry" in current PSV (bit 56) 
Displacement field of instruction (operand number n) 
Instruction field designating a floating-point register 
(operand number n) 
Immediate field of instruction (operand number n) 
Updated instruction address in current PSV 
1/0 device designated by PIO address@ 
Mask field of instruction (operand number n) 
Contents of main-storage location addressed by @ 
Bit a of quantity identified by n 
Bits a through b of quantity identified by n 
Next sequential instruction 
Implied primary general register number n 
Instruction field designating register quadrant 
(operand number n) 
Field of instruction designating a general-register byte operand 
(operand n) 
Field of instruction designating a general register 
(operand number n) 
Contents of register-group location addressed by @ 
Contents of general-register quadrant designated by q 
Temporary working register within PCE 
Contents of translation-lock-table entry addressed by @ 
Contents of translation-table entry addressed by @ 

Appendix C. Instruction Operations and Condition Settings C-1 



Instruction Operations 

Name 

General Instructions 

ADD (byte, register) 

ADD (byte, register-
immediate) 

ADD WITH CARRY (byte, 
register) 

ADD (halfword, register) 

ADD (halfword, register-
immediate) 

ADD WITH CARRY (halfword, 
register) 

ADD WITH CARRY (halfword, 
register, extended) 

AND (byte, register) 

AND (byte, register-
immediate) 

AND (halfword, register) 

BRANCH AND LINK 

BRANCH AND LINK (register) 

C-2 

The following list of instruction operations is intended as a quick-reference 
reminder of each instruction's operation. Ref er to the individual description of an 
instruction for its detailed specification. 

The symbolic expressions used to denote the instruction operations are presented 
as a sequence of statements designating the operands used and the results 
produced. The syntax of the symbolic statements is similar to that of high-level 
programming languages. The order of the statements corresponds to the 
conceptual order in which the PCE executes the steps of the operation. 
Conditional execution of steps is indicated by statements of the form 
"If ... Then ... Else ... "; unconditional changes in the sequence are indicated by 
statements using "Go To ... " 

Mnemonic Operation 

AR If r2 #: 0000 
Then (r1) <- (r1) + (r2) 

Else (r1) <- (r1) + 00000000 

ARI (r1)<- (r1)+I2 

AYR If r2 ¢ 0000 
Then (r1) <- (r1) + (r2) + C 
Else (r1) <- (r1) + 00000000 + C 

AHR (R1<16 .. 31>) <- (R1<16 .. 31>) + (R2<16 .. 31>) 

AHRI (R1<16 .. 31>) <- (R1<16 .. 31>) + 000000000000 I I I2 

AYHR (R1<16 .. 31>) <- (R1<16 .. 31>) + (R <16 .. 31>) + C 

AYHRE If R2 ¥: 0000 
Then (R1<0 .. 15>) <-(R1<0 .. 15>) + (R2<0 .. 15>) + C 
Else (R1<0 .. 15>) <-(R1<0 .. 15>) + 0000000000000000 + C 

NR If r2 #: 0000 
Then (r1) <- (r1) • (r2) 

Else (r1) <- (r1) • 00000000 

NRI (r1) <- (r1) • I2 

NHR (R1<16 .. 31>) <-(R1<16 .. 31>) • (R2<16 .. 31>) 

BAL TEMPl <-D2 
TEMPl <-TEMPl rotated right 1 position 
If B2 ¢ 0000 
Then TEMP2 <- (B2) + TEMPl x 2 
Else TEMP2 <-IA+ TEMP 1 x 2 

(R1) <-IA 
IA <-TEMP2 

BALR TEMP <-(R2) 

If R2 ¥: 0000 
Then IA <-TEMP 
Else NSI 

I 



Name Mnemonic Operation 

BRANCH ON CONDITION BC If M 1 specifies an indicated result condition 
Then TEMP <- D2 

TEMP <-TEMP rotated right 1 position 
If B2 "::# 0000 

Then IA<- (B2) +TEMP x 2 
Else IA <-IA+ TEMP x 2 

Else NSI 

BRANCH ON CONDITION BCR If M 1 specifies an indicated result condition 
(register) Then IA <- (R2) 

Else NSI 

BRANCH ON COUNT (byte, BCTR TEMP <-(R2) 
register) (r1) <- (r1) - 1 

If (r 1) "::# 00000000 
Then IA <-TEMP 
Else NSI 

BRANCH ON INDEX (byte) BNX IA<l6 .. 31> <-MS[(Ri) + (r1) x 2] 

CALLPSY KI Current-PSY<40 . .47> <-00000000 
LPL <-CPL 
If Current-PSY =Primary 
Then Store Primary PSY 

PAY<CPL> <- 1 
Load Secondary PSY and ACY 

Else Store Secondary PSY 
PAY<CPL> <- 0 
Load Primary PSY and ACY 

COMPARE (byte, register) CR If r2 "::# 0000 
Then Result-Conditions<==(r1) + -.(r2) + 1 
Else Result-Conditions<==(r1) + -.00000000 + 1 

COMPARE (halfword, CHR Result-Conditions<==(R1<16 .. 31>) + -.(R.i<l6 .. 31>) + 1 
register) 

COMPARE WITH CARRY CYHRE If R2 "::# 0000 
(halfword, register, Then Result-Conditions<==(R1<0 .. 15>) + -.(R2<0 .. 15>) + C 
extended Else Result-Conditions<==(R1 <0 .. 15>) + -.0000000000000000 + C 

COMPARE LOGICAL (bytes, CLS LOOP Result-Conditions<==MS[(R1)] :MS[(Ri)J 
storage) TEMPI <- (R1) 

TEMP2 <- (R2) 

TEMP3 <- (R3<24 .. 31>) 
(R1) <-TEMPI + 1 
(R2) <- TEMP2 + 1 
(R3<24 .. 31>) <-TEMP3 - 1 
If Result-Condition= Equal and (R3 <24 .. 31 >) "::# 00000000 

Then Go To LOOP 
Else NSI 

COMPARE LOGICAL CLHS LOOP Result-Conditions<==MS[(R1)] :MS[(R2)] 

(halfwords, storage) TEMPI<- (R1) 

TEMP2 <- (R2) 

TEMP3 <- (R3<24 .. 31>) 
(R1) <-TEMPI+ 2 
(R2) <-TEMP2 + 2 
(R3<24 .. 3 l>) <-TEMP3 - 1 
If Result-Condition=Equal and (R3 <24 .. 31 >) "::# 00000000 

Then Go To LOOP 
Else NSI 

Appendix C. Instruction Operations and Condition Settings C-3 



Name Mnemonic Operation 

COUNT LEADING ZEROS CTLZ TEMP <-0 
(halfword) LOOP If (R2<TEMP+16>)-::# 0 

Then (~<TEMP+16>) <-0 
Go To END 

Else TEMP <-TEMP+ 1 
If TEMP-::# 16 

Then Go To LOOP 
Else Continue 

END Result-Conditions<==(R2<16 .. 31>) 
(R 1< 16 .. 3I>) <-TEMP 

DIVIDE (halfword, register) DHR TEMPI<- (R1<I6 .. 3I>) I I (. .. R1+0010 <16 .. 3I>) 
TEMP2 <- (R2<I6 .. 3I>) 
(R1<I6 .. 3I>) <-TEMPI MODTEMP2 
( ... R1+0010 <I6 .. 3I>) <-TEMPI I TEMP2 

EXCLUSIVE OR (byte, XR If r2 -::# 0000 
register) Then (r1) <- (r1) f- (r2) 

Else (r1) <- (r1) p. 00000000 

EXCLUSIVE OR (byte, XRI (r1) <- <r1) f- I2 
register-immediate) 

EXCLUSIVE OR (halfword, XHR (R1<I6 .. 31>) <-(R1<16 .. 31>) F (~ <16 .. 3I>) 
register) I 

JUMP ON BIT ZERO (halfword) JBZ If (PGRI<I1+I6>) = 0 
Then IA <- IA + D2 x 2 
Else NSI 

JUMP ON CONDITION JC If MI specifies an indicated result condition 
Then IA <- IA + D2 x 2 
Else NSI 

LOAD ADDRESS LA If B2 -::# 0000 
Then (R1) <- (B2) + D2 
Else (R1) <-IA+ D2 

LOAD (byte) L If B2 -::# 0000 
Then (r1) <- MS[(B2) + D2] 
Else (r 1) <-MS[IA + D2] 

LOAD (byte, with index) LN (r1) <- MS[(R2)] 

LOAD (byte, with index LND (~) <-(~) - l 
decremented) (r 1) <- MS[(R2)] 

LOAD (byte, with index LNI TEMP<- MS[(R2)] 
incremented) (R2) <- (R2) + l 

(r1) <-TEMP 

LOAD (byte, register) LR (rl) <- (r2) 

LOAD (byte, register- LRI (r1)<-I2 
immediate) 

LOAD (halfword) LH If B2 -::# 0000 
Then (R1<16 .. 31>) <- MS[(B2) + D2] 
Else (R 1<I6 .. 31 >) <- MS[IA + D2] 

LOAD (halfword, short form) LHS (R1<16 .. 3I>) <-MS[(B2) + D2 x2] 

LOAD (halfword, with index) LHN (R1<16 .. 3I>) <-MS[(R2)] 

C-4 



Name Mnemonic Operation 

LOAD (halfword, with index LHND (~) <-(~)-2 
decremented) (R1<16 .. 31>) <-MS[(~)] 

LOAD (halfword, with index LHNI TEMP<- MS[(~)] 
incremented) (R2) <- (~) + 2 

(R1<16 .. 31>) <-TEMP 

LOAD (halfword, register) LHR (R1<16 .. 31>) <- (~<16 .. 31>) 

LOAD (halfword, register, LHRLU (R1<16 .. 31>) <- (~<0 .. 15>) 
lower half from upper) 

LOAD (halfword, register, LHRU (R1<0 .. 15>) <- (R2<0 .. 15>) 
upper half) 

LOAD (halfword, register, 
upper half from lower) 

LHRUL (R1<0 .. 15>) <-(R2<16 .. 31>) 

LOAD (halfwords, quadrant) LHQ TEMP<-(~) 
RQ<Ql> <-MS[TEMP] 
(R2) <-TEMP+ 16 

LOAD (word) LW If B2 #: 0000 
Then (R1) <- MS[(B2) + D2] 

Else (Rt)<- MS[IA + D2] 

MOVE (bytes, storage) MYS LOOP MS[(Rt)] <-MS[(~)] 
TEMPI <-(R1) 

TEMP2 <-(~) 
TEMP3 <- (R3<24 .. 31>) 
(R1) <-TEMPI + 1 
(R2) <-TEMP2 + 1 
(R3<24 .. 31>) <-TEMP3-1 
If (R3 <24 .. 31 >) #: 00000000 

Then Go To LOOP 
Else NSI 

MOVE (halfwords, storage) MVHS LOOP MS[(R1)] <-MS[(~)] 

TEMPI<- (Rt) 
TEMP2 <-(~) 
TEMP3 <- (R3<24 .. 31>) 
(R1) <-TEMPI + 2 
(R2) <- TEMP2 + 2 
(R <24 .. 31>) <-TEMP3-1 
If (R3<24 .. 31>) #: 00000000 

Then Go To LOOP 
Else NSI 

MULTIPLY (halfword, MHR If R1 = xxOx (where x can be 0 or 1) 
register) Then (R1<16 .. 31>) I I ( ... R1+0010 <16 .. 31>) <- (. .. R1+0010 <16 .. 31>) 

x (R2<16 .. 31>) 
Else (R1<16 .. 31>) <- (R1<16 .. 31>) x (R2<16 .. 31>) 

OR (byte, register) OR If r2 #: 0000 
Then (r 1) <- (r 1) v (r2) 

Else (r 1) <- (r1) v 00000000 

OR (byte, register- ORI (r1) <- (r1) v 12 
immediate) 

OR (halfword, register) OHR (R1<16 .. 31>) <- (R1<16 .. 31>) v (~<16 .. 31>) 

PROGRAM EXCEPTION PC Operation Exception Indicated 

ROTATE LEFT (byte) RL (r1) <- (r1) rotated left by I2 amount 

Appendix C. Instruction Operations and Condition Settings C-5 



Name Mnemonic Operation 

ROT A TE LEFT (halfword) RLH (R1<16 .. 31>) <- (R1<16 .. 31>) rotated left by 12 amount 

SHIFT LEFT (byte, logical) SLL (r 1) <- (r 1) shifted left by 12 amount 

SHIFT LEFT (halfword, SLHL (R1<16 .. 31>) <- (R1<16 .. 31>) shifted left by 12 amount 
logical) 

STORE (byte) ST If B2 ¢ 0000 
Then MS[(B2) + 0 2] <- (r1) 

Else MS[IA + 0 2] <- (r1) 

STORE (byte, with index) STN MS[(Ri)l <- (r1) 

STORE (byte, with index STND TEMP<- (r1) 

decremented) (Ri) <- (R2) - 1 
MS[(R2)] <-TEMP 

STORE (byte, with index STNI MS[(Ri)J <- (r1) 

incremented) <Ri) <- <Ri) + 1 

STORE (halfword) STH If B2 ¢ 0000 
Then MS[(B2) + D2] <-(R1<16 .. 31>) 
Else MS[IA + D2] <-(R1<16 .. 31>) 

STORE (halfword, short STHS MS[(B2) + 0 2 x 2] <- (R1<16 .. 31>) 
form) 

STORE (halfword, with STHN MS[(R2)] <- (R1<16 .. 31>) 
index) 

STORE (halfword, with STHND TEMP<- (R1<16 .. 31>) 
index decremented) <Ri) <- <Ri) - 2 

MS[(R2)] <-TEMP 

STORE (halfword, with STHNI MS[(R2)] <- (R1<16 .. 31>) 
index incremented) (R2) <- (R2) + 2 

STORE (halfwords, quadrant) STHQ MS[(R2)] <-RQ<Ql> 
(R2) <- (R2) + 16 

STORE (word) STW If B2 ¢ 0000 
Then MS[(B2) + D2] <- (R1) 

Else MS[IA + 0 2] <- (R1) 

SUBTRACT (byte, register) SR If r2 ¢ 0000 
Then (r1) <- (r1) + ...,(r2) + 1 
Else (r1) <- (r 1) + -.00000000 + 1 

SUBTRACT WITH CARRY (byte, SYR If r2 ¢ 0000 
register) Then (r 1) <- (r 1) + ...,(r2) + C 

Else (r 1) <- (r 1) + -.00000000 + C 

SUBTRACT (halfword, SHR (R1<16 .. 31>) <-(R1<16 .. 31>) + -.(Ri<16 .. 31>) + 1 
register) 

SUBTRACT (halfword, SHRI (R1<16 .. 31>) <- (R1<16 .. 31>) + .... 000000000000 I I 12 + 1 
register-immediate) 

SUBTRACT WITH CARRY SYHR (R1<16 .. 31>) <-(R1<16 .. 31>) + -.(R2<16 .. 31>) + C 
(half word, register) 

SUBTRACT WITH CARRY SYHRE If Ri ¢ 0000 
(half word, register, Then (R1<0 .. 15>) <- (R1<0 .. 15>) + -.(R2<0 .. 15>) + C 
extended) Else (R1<0 .. 15>) <- (R1<0 .. 15>) + -.0000000000000000 + C 

C-6 



Name Mnemonic Operation 

TEST AND SET (byte) TS Result-Conditions<== MS [ (R.i)] 
MS[(R.i)l <- 11111111 

TEST (byte, register- TRI Result-Conditions<==(r 1) tested using mask 12 
immediate) 

Floating-Point Instructions 

ADD NORMALIZED AF (F1) <- (F1) + MS[(B2) + D2 x 4] 

ADD NORMALIZED (register) AFR (Fl)<- (Fl) + (F2) 

ADD UNNORMALIZED AU (F1) <- (F1) + MS[(B2) + D2 x 4] 

ADD UNNORMALIZED (register) AUR (Fl) <- (F1) + (F2) 

COMPARE CF Result-Conditions<==(F1) - MS[(B2) + D2 x 4] 

COMPARE (register) CFR Result-Conditions<== (F 1) - (F 2) 

DIVIDE DF (F1) <- (F1) I MS[(B2) + D2 x 4] 

DIVIDE (register) DFR (F 1) <-(Fl) I (F2) 

LOAD LF (F1) <- MS[(B2) + D2 x 4] 

LOAD (register) LFR (Fl)<- (F2) 

LOAD AND TEST (register) LTFR (F1) <- (F2) 
Result-Conditions<==(F1) 

LOAD COMPLEMENT (register) LCFR (Fl)<- (F2) 
(F1<0>) <- -.(F1<0>) 

LOAD NEGATIVE (register) LNFR (F1) <- (F2) 
(F1<0>) <-1 

LOAD POSITIVE (register) LPFR (F1) <- (F2) 
(F1<0>) <-0 

LOAD ROUNDED (register) LRFR (F1) <- (F2) rounded long to short 

MULTIPLY MF (F1) <- (F1) x MS[(B2) + D2 x 4] 

MULTIPLY (register) MFR (F1) <- (F 1) x (F2) 

READ FLOATING-POINT RFC MS[(Bl) + Dl x 4 + 2] <- Current-FSV<8 .. 23> 
CONTROL 

READ FLOATING-POINT RFS MS[(Bl) + Dl x 4 + l] <-FSV[MS[(Bl) + Dl x 4]<5 .. 7>] 
STATUS VECTOR 

SET OVERFLOW MASK SFOM Current-FSV<l4> <-M 

SET PRECISION MODE SFPM Current-FSV<ll> <- M 

SET SIGNIFICANCE MASK SFSM Current-FSV<13> <-M 

SET UNDERFLOW MASK SFUM Current-FSV<15> <- M 

STORE STF MS[(B2) + D2 x 4] <- (F1) 

SUBTRACT NORMALIZED SF (F1) <- (F1) - MS[(B2) + D2 x 4] 

Appendix C. Instruction Operations and Condition Settings C-7 



Name Mnemonic Operation 

SUBTRACT NORMALIZED SFR (Fl) <-(Fl) - (Fz) 
(register) 

SUBTRACT UNNORMALIZED SU (Fl) <-(Fl) - MS[(Bz) +Dz x 4] 

SUBTRACT UNNORMALIZED SUR (F1) <-(Fl) - (Fz) 
(register) 

WRITE FLOATING-POINT WFC Current-FSV<8 .. 23> <- MS[(Bl) +DI x 4 + 2] 
CONTROL 

WRITE FLOATING-POINT WFS FSV[MS[(Bl) +DI x 4<5 .. 7>] <-MS[(BI) +DI x 4 + 1] 
STATUS VECTOR 

Register-Indirect Instructions 

LOAD (byte, register- LRN (r1) <-RG[(Rz<I6 .. 31>)] 
indirect) 

LOAD (halfword, register- LHRN (R1<16 .. 31>) <-RG[(R2<16 .. 31>)] 
indirect) 

STORE (byte, register- STRN RG[(Rz<I6 .. 3I>)] <-(r1) 
indirect) 

STORE (halfword, STHRN RG[(R2 <16 .. 3I>)] <- (R1<16 .. 31>) 

I 
registe r-i ndire ct) 

Translation-Table Instructions 

I LOAD FROM ADDRESS LAT TEMP <-TT[(Rz<l l..31>)] 
TRANSLATION TABLE (R2< 11..31 >) <- (R2 < 11..31>) + 1 

(R1) <-TEMP 

STORE TO ADDRESS STAT TT[(R2 <11..31>)] <-(R1) 

TRANSLATION TABLE (R2<11..31>) <-(R2<11..31>) + 1 

Translation-Lock-Table Instructions 

LOAD FROM ADDRESS LATL TEMP <-TL[(Rz<l l..31>)] 
TRANSLATION LOCK TABLE (R2<11..31>) <-(Rz<ll..3I>) + 1 

(R 1<16 .. 23>) <-00000000 
(R1<24 .. 31>) <-TEMP 

STORE TO ADDRESS STATL TL[(R2 <11..31 >)] <- (R1<24 .. 31 >) 
TRANSLATION LOCK TABLE (R2< 11..31>) <- (Rz<l 1..31>) + 1 

Input/Output Instructions 

INPUT /OUTPUT (byte) IO IOD[(R2 <16 .. 23>)] <- (R2 <24 .. 31>) 
If (Rz<31>) = 0 
Then IOD[(R2 <16 .. 23>)] <- (1l 
Else (r1) <-IOD[(R2<16 .. 23>) 

INPUT/OUTPUT (byte, IOI IOD[(PGR0<16 .. 23>)] <-I2 
immediate) If Iz<7> = 0 

Then IOD[(PGR0<16 .. 23>)] <- (rj) 
Else (r1) <- IOD[(PGR0<16 .. 23>) 

INPUT/OUTPUT (halfword) IOH IOD[(R2 <16 .. 23>)] <- (R2 <24 .. 3I>) 
If (R2<31>) = 0 

Then IOD[(R2 <I6 .. 23>)] <- (R1<16 .. 31>) 
Else (R1 <16 .. 31>) <--IOD[(R2 <16 .. 23>)] 

C-8 



Name Mnemonic Operation 

PCE-ControJ Instructions 

AND WITH PROGRAMMED KI PIRV <- PIRV • (r1) 
INTERRUPT REQUEST VECTOR 

DISPATCH NEW LEVEL KI If CPL#= (r1<5 .. 7>) 
Then Store Current PSV 

LPL<-CPL 
CPL<- (r1<5 .. 7>) 
Load new PSV I ACY pair indicated by PAV <CPL> 

Else NSI 

OR WITH PROGRAMMED KI PIRV <- PIRV v (r1) 

INTERRUPT REQUEST VECTOR 

READ CHANNEL MASK KI (r1) <- 0000000 I I CHM 

READ COMMON MASK KI (r1) <-CM 

READ CONDITION KI (r1) <-0000 I I Current-PSV<48,49,56,57> 
INDICATORS 

READ CURRENT AND KI (r 1) <- O I I CPL I I O I I LPL 
LAST LEVELS 

I READDCV KI (R1) <-DCV 

READ ERROR INTERRUPT KI (r1) <-EIRV 
REQUEST VECTOR 

READI/OINTERRUPT KI (r1) <-IOIRV 
REQUEST VECTOR 

READ MASTER MASK KI (r1) <-0000000 I I MM 

READ PRIMARY REGISTER KI (r1) <- 00 I I Current-PSV <58 .. 63> 
SET NUMBER 

READ PROGRAM ACTIVATION KI (r1) <-PAV 
VECTOR 

READ PROGRAMMED INTERRUPT KI (r1) <-PIRV 
REQUEST VECTOR 

READ SECONDARY REGISTER KI (r 1) <- 00 I I Current-PSV <50 .. 55> 
SET NUMBER 

RESET CHANNEL MASK KI CHM<-0 

RESET MASTER MASK KI MM<-0 

RESET PROGRAMMED KI PIRV<CPL> <-0 
INTERRUPT REQUEST 

SET CHANNEL MASK KI CHM <-1 

SET MASTER MASK KI MM<-1 

SET PROGRAMMED INTERRUPT KI PIRV<CPL> <- l 
REQUEST 

Appendix C. Instruction Operations and Condition Settings C-9 



Name Mnemonic Operation 

WRITE COMMON MASK KI CM <-(r1) 

I WRITE CONDITION KI Current-PSV<48,49,56,57> <- (r1<4 .. 7>) 
INDICATORS 

I WRITEDCV KI DCV <-(R1) 

WRITE ERROR INTERRUPT KI EIRV <- (r1) 

REQUEST VECTOR 

WRITE PRIMARY REGISTER KI Current-PSV<58 .. 63> <- (r1<2 .. 7>) 
SET NUMBER 

WRITE PROGRAM ACTIVATION KI PAV <-(r1) 

VECTOR 

WRITE SECONDARY REGISTER KI Current-PSV<50 .. 55> <- (r1<2 .. 7>) 
SET NUMBER 

Direct-Control Instruction 

CONTROL DIRECT OUT KDO SCF <-11 

C-10 



Result Conditions 

The following table summarizes the result conditions for all instructions that cause 
new result conditions to be indicated. 

Result Conditions 

Instruction 8 4 2 0 

General Instructions 

ADD (byte, register) 0 <0 >0 overflow carry 
ADD (byte, register-immediate) 0 <0 >0 overflow carry 
ADD WITH CARRY (byte, register) 0 <0 >0 overflow carry 
ADD (halfword, register) 0 <0 >0 overflow carry 
ADD (halfword, register-immediate) 0 <0 >0 overflow carry 
ADD WITH CARRY (halfword, register) 0 <0 >0 overflow carry 
ADD WITH CARRY (halfword, 0 <0 >0 overflow carry 
register, extended) 

AND (byte, register) O's l's mixed 
AND (byte, register-immediate) O's l's mixed 
AND (halfword, register) O's l's mixed 
COMPARE (byte, register) equal low high overflow carry 
COMPARE (halfword, register) equal low high overflow carry 
COMPARE WITH CARRY (halfword, equal low high overflow carry 
register, extended) 

COMPARE LOGICAL (bytes, storage) equal low high carry 
COMPARE LOGICAL (halfwords, storage) equal low high carry 
COUNT LEADING ZEROS (halfword) O's mixed 
EXCLUSIVE OR (byte, register) O's l's mixed 
EXCLUSIVE OR (byte, register-immediate) O's l's mixed 
EXCLUSIVE OR (halfword, register) O's l's mixed 
OR (byte, register) O's l's mixed 
OR (byte, register-immediate) O's l's mixed 
OR (halfword, register) O's l's mixed 
ROTATE LEFT (byte) O's leftmost leftmost rotated 

bit 1 bit 0 out 1 
ROT A TE LEFT (halfword) O's leftmost leftmost rotated 

bit 1 bit 0 out 1 
SHIFT LEFT (byte, logical) O's leftmost leftmost shifted 

bit 1 bit 0 out 1 
SHIFT LEFT (halfword, logical) O's leftmost leftmost shifted 

bit 1 bit 0 out 1 
SUBTRACT (byte, register) 0 <0 >0 overflow carry 
SUBTRACT WITH CARRY (byte, register) 0 <0 >0 overflow carry 
SUBTRACT (halfword, register) 0 <0 >0 overflow carry 
SUBTRACT (halfword, register, immediate) 0 <0 >0 overflow carry 
SUBTRACT WITH CARRY (halfword, register) 0 <0 >0 overflow carry 
SUBTRACT WITH CARRY (halfword, 0 <0 >0 overflow carry 
register, extended) 

TEST AND SET (byte) O's 1 's mixed 
TEST (byte, register-immediate) O's l's mixed equal 

Appendix C. Instruction Operations and Condition Settings C-11 



Result Conditions 

Instruction 8 4 2 0 

Floating-Point Instructions 

ADD NORMALIZED 0 <0 >0 
ADD NORMALIZED (register) 0 <0 >0 
ADD UNNORMALIZED 0 <0 >0 
ADD UNNORMALIZED (register) 0 <0 >0 
COMPARE equal low high 
COMPARE (register) equal low high 
LOAD AND TEST (register) 0 <0 >0 
LOAD COMPLEMENT (register) 0 <0 >0 
LOAD NEGATIVE (register) 0 <0 
LOAD POSITIVE (register) 0 >0 
SUBTRACT NORMALIZED 0 <0 >0 
SUBTRACT NORMALIZED (register) 0 <0 >0 
SUBTRACT UNNORMALIZED 0 <0 >0 
SUBTRACT UNNORMALIZED (register) 0 <0 >0 

Input/Output Instructions 

INPUT /OUTPUT (byte) PIO data device 
complete check exception 

INPUT /OUTPUT (byte, immediate) PIO data device 
complete check exception 

INPUT /OUTPUT (halfword) PIO data device 
complete check exception 

C-12 



Explanation: 

The states of the result conditions are represented by the condition indicators in 
the current PSV (PSV bits 48, 49, 56, and 57) as follows, where x means that the 
condition-indicator bit is not significant in determining the result condition 
indicated: 

(PSV Bits 48,49,56,57) 
Condition Indicators lxxx Olxx OOxx xxxl 

Result Condition Indicated 8 4 2 

The result conditions may also be changed by WRITE CONDITION 
INDICATORS and by the introduction of a new PSV. 

<0 
>0 
low 
high 
equal 
O's 
l's 
mixed 
overflow 
carry 

Result is less than 0. 
Result is greater than 0. 
First operand compares low. 
First operand compares high. 
First operand is identical to second operand. 
Result contains all O's. 
Result contains all 1 's. 
Result contains O's and l's. 
The operation resulted in an overflow. 
Operation produced a carry, PSV-bit 56 set. 
Result condition is not indicated. 

For SHIFT LEFT (byte/halfword, logical) and ROT A TE LEFT (byte/halfword): 

O's 
leftmost bit 1 
leftmost bit 0 

shifted out 1 

rotated out 1 

Result is all O's. 
High-order bit position is a 1. 
High-order bit position is a 0 and one or more l's 
are in the remaining bit positions. 
One or more 1 's were shifted out of the high-order 
bit position. 
One or more l's were rotated out of the high-order 
bit position. 

For TEST (byte, register-immediate): 

O's 
l's 
mixed 
equal 

Bits selected under mask are all O's, or mask is all O's. 
Bits selected under mask are all l's. 
Bits selected under mask are mixed, O's and l's. 
First-operand byte is identical to mask. 

For INPUT /OUTPUT (byte/byte immediate/halfword): 

PIO complete 
data check 
device exception 

PIO operation is completed. 
Parity check on inbound data. 
Device signaled an exception condition not normally 
encountered. Specific reason is device dependent. 

xxlx 
0 

Appendix C. Instruction Operations and Condition Settings C-13 





Appendix D. Instruction Formats 

Operation Code 

This appendix contains three parts, each pertaining to instruction formats. The 
first part provides a summary of all formats that differ by the location of 
operation code fields. The second part summarizes the representations of the 
different displacement fields. The third part lists the specific formats of all 
instructions. 

The following illustration summarizes the instruction formats by displaying the 
contents of only those fields that are used for the operation code. The formats are 
shown in ascending sequence based upon the value of the operation code. Listed 
to the right of each format is the applicable general format name. An asterisk ( *) 
indicates that the bit positions used for the operation code differ slightly from the 
general format. For these formats, as well as the two general formats, J and RS, 
the assembler language mnemonics are also listed. For the remaining formats, 
refer to the third part of this appendix, "Comprehensive List of Instruction 
Formats", which lists all instructions and their mnemonics. 

With the single exception pertaining to "Op Code" or "Op", noted below, only 
the operation codes that are explicitly listed are valid. Fields that are left blank 
are generally used for operand specifications (such as register designation, 
displacement value, or immediate value). These fields are not operation-code 
fields; their contents depend on the type of operand specification and can usually 
be any bit combination. The symbol "Op Code" or "Op" in the formats indicates 
that the specified bit positions constitute a part of the operation-code field(s); 
however, not all possible bit combinations represent valid operation codes. 

For all instruction formats, bits 0-3 represent a portion of the operation code. 
These first 4 operation-code bits determine the general format of the instruction 
for each combination of these 4 bits, except 1110 (hexadecimal E). For this latter 
case, bits 12-15 also have to be considered in determining the general format. 
Depending on the specific format, additional operation-code information may be 
contained in other bit positions of the instruction format. 

Appendix D. Instruction Formats D-1 



Contents of Fields Used for Operation Code 

0-5 I RI 

6 
1'

0 
I 

12 (operation) I RI* (Kl) 

6 
J 1 I ) RI* (IOI) 

0 4 7 8 15 

7 0-F RR 

I 8 I GI 0-3 RR* (SLL,RL) 

L 8 ! 1: I I 2,3 I RR* (STHO, LHO) 

0 4 5 8 12 15 

I 8 I 4-F I RR 

l 9 I l ~I J (JC, JBZ) 

0 4 8 15 

I A 0-F I RR 

B I~] RS (STHS, LHS) 

0 4 8 10 15 

c 0-6 I RR 

I c 8-F I RR 

I D 0-7, B I _J RSL 

I E 0 I BC 1, 3 I RRL 

11 E I 84 C, D, E, F I RRL 

0 4 8 12 16 24 28 31 

E I Op I Op I 4 I FF 

E Op 11 1 jl!~ IM j 1 0 4 I FF* (SFPM, SFSM, SFOM, SFUM) 

0 4 6 8 9 10 12 15 

E I Op 5 Op FS 

0 4 6 8 1,.., 
IL 16 30 31 

E I 8 54,94 9, F I RRL 

0 4 8 12 16 24 28 31 

F I 8-0, F RR 

0 4 8 12 15 

Note: * =op code bits differ from general format 

D-2 



Displacement Representation 

9 I 
0 4 8 

Is I 
0 

B I I 
0 4 8 

I 
D 

0 4 8 

D 

0 4 8 

E Op 

0 4 6 8 

The following illustration summarizes the five different displacement 
representations utilized within the instruction formats. For the RS-Long (RSL) 
format, two different representations are employed, one for the two branch 
instructions, BC and BAL, and the other for the remaining instructions that use 
this format. Each of the three other instruction formats (J, RS, and FS) contains 
a single displacement representation. 

Except for the RS format, all displacement values are represented as signed 
integers, the sign bit being indicated by the letter S. For the BC and BAL 
instructions, the low-order bit of the displacement field contains the sign bit, 
which is moved to the high-order bit positions in the PCE's representation of the 
displacement. Otherwise, the sign bit is located in the high-order bit position of 
the displacement field. The notation for the assembler-language operand 
specification is shown in each of the displacement fields. Refer to Appendix B for 
a definition of these symbols. 

(dh7s) I~ I J 

14 15 

i 
I 0 I 

7 

(dh5) Ji] RS 

10 14 15 

t 
la! 

0 5 

0-5, B (db16s) RSL 

12 16 31 

I'S I 
0 15 

6, 7 I (dh16s) I I RSL (BC, BAL) 

12 16 30 31 

_[ 1 T 

I s I I 0 I 
0 16 

I 5 I (dw14s) I Op I FS 

12 16 29 30 31 

Isl oo 

0 15 

Appendix D. Instruction Formats D-3 



Comprehensive List of Instruction Formats 

D-4 

The following table illustrates the specific formats for all the instructions. The 
formats are shown in ascending sequence based upon the value in the 
operation-code fields. 

The assembler-language mnemonic for each instruction appears to the left of the 
formats. In some cases, two or more instructions are assigned one 
assembler-language mnemonic. In such cases, additional information, such as the 
individual instruction name, appears to the right of the format to distinguish it 
from other formats assigned the same mnemonic. 



NRI 

ORI 

XRI 

ARI 

LRI 

TRI 

Kl 

Kl 

Kl 

Kl 

Kl 

Kl 

Kl 

Kl 

Kl 

Kl 

Kl 

Kl 

Kl 

Kl 

Kl 

Kl 

Kl 

Kl 

Kl 

Kl 

Kl 

Kl 

Kl 

Kl 

Kl 

Kl 

Kl 

Kl 

Kl 

IOI 

0 

0 

1 

2 

3 

4 

5 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 

6 I 

6 

6 

6 

4 

ri 

r1 

r 1 

r1 

r1 

r1 

0 0 0 

r 1 

r 1 

r 1 

r 1 

r 1 

r 1 

r 1 

r 1 

r 1 

r 1 

r 1 

r.1 

r 1 

0 0 0 

r 1 

0 0 0 

r 1 

r 1 

r 1 

r 1 

0 0 0 

0 0 0 

0 0 0 

r 1 

r 1 

0 0 0 

R1 

R1 

r1 

12 

12 

12 

12 

12 

12 

0 00 

0 01 

0 02 

0 03 

0 04 

0 05 

0 06 

0 07 

0 08 

0 09 

0 OA 

0 OB 

0 QC 

0 OD 

0 OE 

0 OF 

0 18 

0 19 

0 1A 

0 1B 

0 1C 

0 23 

0 25 

0 26 

0 78 

0 79 

0 7F 

0 co 

0 C1 

1 12 

7 8 15 

RESET MASTER MASK 

READ MASTER MASK 

WRITE COMMON MASK 

READ COMMON MASK 

OR WITH PROGRAMMED INTERRUPT REQUEST VECTOR 

READ PROGRAMMED INTERRUPT REQUEST VECTOR 

AND WITH PROGRAMMED INTERRUPT REQUEST VECTOR 

READ 1/0 INTERRUPT REQUEST VECTOR 

WRITE ERROR INTERRUPT REQUEST VECTOR 

READ ERROR INTERRUPT REQUEST VECTOR 

WRITE PRIMARY REGISTER SET NUMBER 

READ PRIMARY REGISTER SET NUMBER 

WRITE SECONDARY REGISTER SET NUMBER 

READ SECONDARY REGISTER SET NUMBER 

SET MASTER MASK 

READ CURRENT AND LAST LEVELS 

RESET CHANNEL MASK 

READ CHANNEL MASK 

WRITE CONDITION INDICATORS 

READ CONDITION INDICATORS 

DISPATCH NEW LEVEL 

SET PROGRAMMED INTERRUPT REQUEST 

RESET PROGRAMMED INTERRUPT REQUEST 

SET CHANNEL MASK 

WRITE PROGRAM ACTIVATION VECTOR 

READ PROGRAM ACTIVATION VECTOR 

CALL PSV 

WRITE DIAGNOSTIC CONTROL VECTOR 

READ DIAGNOSTIC CONTROL VECTOR 

Appendix D. Instruction Formats D-5 



NR 

NR 

OR 

OR 

XR 

XR 

CR 

CR 

AR 

AR 

AYR 

AYR 

SR 

SR 

SYR 

SYR 

SLL 

SLL 

RL 

STHO 

RL 

LHO 

LR 

LR 

LR 

LR 

STNI 

LHNI 

STHNI 

LNI 

STND 

LHND 

STHND 

LND 

D-6 

7 

7 

7 

7 

7 

7 

7 

7 

7 

7 

7 

7 

7 

7 

7 

7 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

8 

0 

r1 

r1 

r 1 

r1 

r1 

r1 

r1 

r1 

r1 

ri 

ri 

r1 

r1 

r1 

r1 

r1 

0 '2 

0 12 

0 '2 

1 0 l 01 

0 '2 

1 oj 01 

r1 

r1 

ri 

r1 

r1 

R1 

R1 

r1 

r1 

R1 

R1 

r 1 

4 5 6 8 

r2 0 primary-register-set operands 

r2 1 secondary-register-set operands 

r2 2 primary-register-set operands 

r2 3 secondary-register-set operands 

r2 4 primary-register-set operands 

r2 5 secondary-register-set operands 

r2 6 primary-register-set operands 

r2 7 secondary-register-set operands 

r2 8 primary-register-set operands 

r2 9 secondary-register-set operands 

r2 A primary-register-set operands 

r2 B secondary-register-set operands 

r2 c primary-register-set operands 

r2 D secondary-register-set operands 

r2 E primary-register-set operands 

r2 F secondary-register-set operands 

r1 0 primary-register-set operand 

r1 1 secondary-register-set operand 

r1 2 primary-register-set operand 

R2 2 

r1 3 secondary-register-set operand 

R2 3 

r2 4 ri: primary; r2: primary 

r2 5 r1 : primary; r2: secondary 

r2 6 r1 : secondary; r2: primary 

r2 7 r1 : secondary; r2: secondary 

R2 8 

R2 9 

R2 A 

R2 B 

R2 c 

R2 D 

R2 E 

R2 F 

12 15 



JC 9 M1 D2 0 

JBZ 9 11 D2 1 

BCR A M1 R2 0 

TS A 0 R2 1 

BCTR A r1 R2 2 

BALR A R1 R2 3 

10 A q R2 4 

IOH A R1 R2 5 

STN A r 1 R2 8 

LHN A R1 R2 9 

STHN A R1 R2 A 

LN A r 1 R2 B 

STRN A r 1 R2 c 

LHRN A R1 R2 D 

STHRN A R1 R2 E 

LRN A r1 R2 F 

STHS B R1 B2 D2 0 

LHS B R1 82 D2 1 

NHR c R1 R2 0 

CTLZ c R1 R2 1 

OHR c R1 R2 2 

LHR c R1 R2 3 

XHR c R1 R2 4 

BNX c q R2 5 

CHR c R1 R2 6 

AHR c R1 R2 8 

SLHL c 12 R1 9 

AYHR c R1 R2 A 

RLH c 12 R1 B 
-

SHR c R1 R2 c 
. -· 

AHRI c 12 R1 D 

SYHR c R1 R2 E 
-· 

SHRI c 12 R1 F 

'0 4 8 10 12 15 

Appendix D. Instruction Formats D-7 



L D ri B2 0 D2 

ST D ri B2 1 D2 

LH D R1 B2 2 D2 

STH D R1 B2 3 D2 

LW D R1 B2 4 D2 

STW D R1 B2 5 D2 

BC D M1 B2 6 D2 

BAL D R1 B2 7 D2 

LA D R1 B2 B D2 

MHR E R1 R2 0 BC 0 1 

OHR E R1 R2 0 BC 0 3 

LAT E R1 R2 1 B4 0 c 

STAT E R1 R2 1 B4 0 D 

I 

LATL 

STA TL 

E R1 R2 1 B4 0 E 

E R1 R2 1 B4 0 F 

AUR E F1 0 0 F2 0 0 4 16 24 28 31 

AFR E F1 0 0 F2 0 1 4 

SUR E F1 0 0 F2 1 0 4 

SFR E F1 0 0 F2 1 1 4 

MFR E F1 0 1 F2 0 0 4 

DFR E F1 0 1 F2 0 1 4 

CFR E F1 0 1 F2 1 0 4 

LFR E F1 0 1 F2 1 1 4 

LPFR E F1 1 0 F2 0 0 4 

LNFR E F1 1 0 F2 0 1 4 

LCFR E F1 1 0 F2 1 0 4 

LRFR E F1 1 0 F2 1 1 4 

LTFR E F1 1 1 F2 0 0 4 

SFPM E 0 1 1 1 1 M 1 0 4 

SFSM E 1 0 1 1 1 M 1 0 4 

SFOM E 1 1 1 1 0 M 1 0 4 

SFUM E 1 1 1 1 1 M 1 0 4 

0 4 6 8 9 10 12 15 

D-8 



AU 

AF 

SU 

SF 

MF 

OF 

CF 

LF 

STF 

WFC 

RFC 

WFS 

RFS 

MVS 

CLS 

MVHS 

CLHS 

CYHRE 

AYHRE 

SYHRE 

LHRUL 

LHRLU 

LHRU 

KOO 

PC 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

F 

F 

[= 

F 

F 

F 

F 

F 

0 

F1 

F1 

F1 

F1 

F1 

F1 

F1 

F1 

F1 

0 0 

0 0 

0 0 

0 0 

4 

0 0 

0 0 

0 0 

0 0 

0 1 

0 1 

0 1 

0 1 

1 0 

1 0 

1 0 

1 1 

1 1 

R1 

R1 

R1 

R1 

R1 

R1 

R1 

R1 

R2 

R1 

I 1 

F 

6 8 

82 5 02 0 0 

82 5 02 0 1 

82 5 02 1 0 

82 5 02 1 1 

82 5 02 0 0 

82 5 02 0 1 

82 5 02 1 0 

82 5 02 1 1 

82 5 02 0 0 

81 5 01 0 1 

81 5 01 1 0 

81 5 01 1 0 

81 5 01 1 1 

R2 8 54 R3 9 

R2 8 54 R3 F 

R2 8 94 R3 9 

R2 8 94 R3 F 

R2 8 16 24 28 30 31 

R2 9 

R2 A 

R2 8 

R1 c 

R2 0 

0 F 

F F 

12 15 

Appendix D. Instruction Formats D-9 





Appendix E. Control Information Formats 

This appendix summarizes of all the information formats used by the PCE to 
control instruction processing and interruption action, by the floating-point 
feature to control execution of floating-point operations, and by the channel to 
control channel I/ 0 operations. 

Program Status Vector 

0 

0 0 0 0 
Pro-

1 1 grarn 
Mcxi 

Instruction Address 

Program 
Information 

Code 
z H c v 

Primary 
Register Set 

Number 

32 47 4849 50 55 56 57 58 

38-39 Program Mode 

00 Master 
01 Supervisor 

11 Input/Output 
10 Application 

40-47 Program Information Code (after CALL PSV or program exception) 

00000000 

1 mOOOOOO 

1 m000100 

1m001000 

1 m001100 

1 m010000 

1m010100 

1 m011000 

1 m011100 

Call PSV Executed 

Specification Exception 

Access Exception 
Operation Exception 

Separation Exception 

Address Exception 

Register-Indirect Exception 

Fixed-Point Overflow Exception 

Floating-Point Exception (see FSV) 

48,49 

56,57 

(ZHCV) Condition Indicators 

1 xxx (Z=1) 

01 xx (ZH=01) 

OOxx (ZH=OO) 
xxx1 (V=1) 
xx1 x (C=1) 

Condition Indicated= 8 
Condition Indicated= 4 

Condition Indicated= 2 
Condition Indicated= 1 
Condition Indicated= 0 

Floating-Point Status Vector 

0 0 0 0 0 
Regis
ter 
Set 

0 0 0 p 0 
Excep
tion 
Masks 

c 

0 4 5 7 8 1011 12 13 15 16 17 

11 Precision Mode (0 Short, 1 = Long) 
13 Significance Mask (1 = Exception masked) 
14 Exponent Overflow Mask (1 = Exception masked) 

15 Exponent Underflow Mask (1 = Exception masked) 

16 Floating-Point Equipment Check 

17 Floating-Point Operation Exception 

18 Floating-Point Privileged Operation Exception 

19 Floating-Point Specification Exception 

20 Floating-Point Divide Exception 

21 Significance Exception 

22 Exponent-Overflow Exception 

23 Exponent Underflow Exception 

Exception 
Indicators 

31 

63 

23 

Appendix E. Control Information Formats E-1 



E-2 

Address Control Vector 

Jooooooool Origin Size 

u 7 8 k 

Bit position 

k-30 Address-Space Size (8S..J5..~29) 

00 (29 - 30) 2,048 
001 (28 - 30) 4,096 

0010 (27 - 30) 8,192 
00011 (26 - 30) 16,384 

000111 (25 - 30) 32,768 
0001011 (24 30) 65,536 

00001111 (23 - 30) 131,072 
000010011 (22 - 30) 262, 144 

0000010111 (21 - 30) 524,288 
00000011011 (20 - 30) 1,048,576 

000000011111 (19 - 30) 2,097,152 
0000000111111 (18 - 30) 4, 194,304 

00000001011111 117 - 30) 8,388,608 
000000001111111 116 - 30) lG,777,216 

0000000011111111 (15 - 30) 33,554,432 
00000000101111111 (14 - 30) 67' 108,864 

000000000111111111 (13 - 30) 134,217,728 
0000000001111111111 (12 - 30) 268,435,456 

00000000010111111111 (11 - 30) 536,870,912 
000000000011111111111 (10 - 30) 1,073,741,824 

0000000000111111111111 (9 - 30) 2, 14 7,483,648 
00000000001011111111111 (8 - 30) 4,294,967 ,296 

31 (T) Translation Control Bit ( 1 ~Translation Active) 

Dynamic Address Translation Table Entry 

Access Control 
Block Address 

IS E OC 000000 

0 2345 1011 

0 (I) Block Invalid (1 =No access of any type allowed) 
1 (S) Store Protection (1 =Storing by program not allowed) 
2 (E) Execute Protection (1 =Instruction execution not allowed) 
4 (C) Channel-Store Protection ( 1 = Storing by channel not allowed) 

Program Activation Vector 

Lvl 

0 

0 

Lvl 
1 

Lvl 
2 

2 

Lvl 
3 

3 

Lvl 
4 

4 

Current and Last Priority Levels 

0 

Current 
Level 

3 

0 

4 

Lvl 
5 

5 

5 

Contents of first-operand after execution of 

Lvl 
6 

6 

Last 
Level 

READ CURRENT AND LAST LEVELS (K11-ubp,15) 

Lvl 
7 

7 

7 

H 
31 

(2K) 
(4K) 
(81<.) 

(16K) 
(32K) 
(64K) 

(128K) 
(256K) 
(512K) 

(1M) 
(2M) 
(4M) 
(8M) 

(16M) 
(32M) 
(64M) 

(128M) 
(256M) 
(512M) 

(1G) 
(2G) 
(4G) 

31 



Interrupt Request Vectors 

Programmed Interrupt Request Vector 

Lvl Lvl Lvl Lvl Lvl Lvl Lvl 
0 1 2 3 4 5 6 

0 2 3 4 5 6_0 

Input/ Output Interrupt Request Vector 

Lvl 
0 

0 

Lvl 
1 

Lvl 
2 

2 

Lvl 
3 

3 

Lvl 
4 

4 

Error Interrupt Request Vector 

Lvl 
5 

5 

Lvl 
6 

6 

Lvl 
7 

7 

Lvl 

7 

7 

I I T I s I E I c I N I M a 
0 

0 
1 
2 
3 
4 
5 
2 and 5 
6 
7 

Masks 

2 

(I) 
(T) 
(S) 
(E) 

(C) 
(N) 

(Sand N) 
(M) 

3 

Common Mask 

Lvl Lvl Lvl Lvl 
0 1 2 3 

0 2 3 

Master Mask 

0 0 0 0 

0 

4 5 6 

1/0 Control Check 
1/0 Timeout Check 
Storage Data Check 
Exception 
Channel 1/0 Check 

7 

Internal Control Check 
Internal Data Cheek 
Instruction Address Modifier 
Reserved 

Lvl Lvl Lvl Lvl 
4 5 6 7 

4 5 6 7 

'-'J 

0 0 0 MM 

6 7 

Contents of first-operand location after execution of 

READ MASTER MASK (Kl rupb,1) 

Appendix E. Control Information Formats E-3 



0 0 0 0 0 

0 4 

E-4 

Channel Mask 

0 0 0 0 0 0 

0 6 7 

Contents of first-operand location after execution of 

READ CHANNEL MASK (Kl rupb, 25) 

Channel Control Vector 

CHP 
No. 
<O> 

5 6 

Command 
Code <0 .. 3> 

CHP Number <1 .. 5 > 

9 10 14 15 

6-9, 15 Command Code (bit 15=Command-Code <4> for byte-mode devicesl 

0 0 0 0 0 Write Datc:J 
0 0 1 0 0 Read Data 
Omo 1 m 
0 m1 1 m 

Write Data Address 
Read Data Address 

1 mO 0 111 Read Data Address and Write Data 
1 m1 0 m Read Data Address and Read Data 

~ 5 Flag (bit 15==CHCV Flag for halfword-mode devices) 
0 All 16 bits of CHCV are significant 
1 On!y bits 8-~5 of CHCV are significant, bits 0-7 assumerl O's 



Appendix F. Assigned Register Locations 

Set Reg Adjunct Principal Set Reg Adjunct Principal 

0 ACV Primary ~1 ACV 11 CHP 32 l 1 PSV Lvl 0 8 ( 
~r n I 2 ACV Primary ACV CHP 39 

0 3 EBI PSV Lvl 1 

9 ( 

ACV CHP 40 

4 ACV Primary 

~r TI I 5 EBI PSV Lvl 2 ACV CHP 47 

6 ACV Primary ACV CHP 48 

7 EBI PSV Lvl 3 
10 ( 

0 ACV Primary tI ACV TI CHP 55 I 1 EBI PSV Lvl 4 ACV CHP 56 

2 ACV Primary 11 ( 
3 EBI PSV Lvl 5 ~I ACV TI CHP 63 I 4 ACV Primary ACV CHPO 

5 EBI PSV Lvl 6 
12 ( 

6 ACV Primary ~r ACV JI CHP 7 I 7 EBI PSV Lvl 7 ACV CHP8 

( ~ _t- 13 ( 
2 

~I ACV TI CHP15 I ~r 1 ACV CHP16 

( 14 ( 
3 ~r ACV n CHP 23 1 7 ACV CHP 24 

0 ACV Secondary 15 ( ;c 11 J 1 EBI PSV Lvl 0 ACV CHP 31 

2 ACV Secondary 

3 
4 

EBI PSV Lvl 1 

4 ACV Secondary 

5 EBI PSV Lvl 2 

6 ACV Secondary 
7 EBI PSV Lvl 3 

0 ACV Secondary 

1 EBI PSV Lvl 4 

2 ACV Secondary 

3 EBI PSV Lvl 5 
5 

4 ACV Secondary 

5 EBI PSV Lvl 6 

6 ACV Secondary 

7 EBI PSV Lvl 7 

( 0 

6 -~ 

~r 1r 1 7 ( ~L =JL =J 
Explanation: Registers shown without designation are reserved. 

Assigned Register Locations (Part 1 of 2) 

Appendix F. Assigned Register Locations F-1 



Set Reg 

0 

1 

2 

16 3 

17 

4 

5 

6 

7 

0 

1 

2 

3 

4 

5 

6 

7 

18{ : 
19{ !! 
20 

21 

0 

2 

3 
4 

5 

6 

7 

0 

2 

3 

4 

5 

Adjunct 

Protection Key 

Protection Key 

Protection Key 

Protection Key 

Protection Key 

Protection Key 

Protection Key 

Protection Key 

Protection Key 

Protection Key 

Protection Key 

Protection Key 

Protection Key 

Protection Key 

Protection Key 

6 Protection Key 

7 

Principal 

Program D 
Assignable 

22{ lr--
23{ ;L =t 

Explanation: Registers shown without designation are reserved. 

D Principal register sets 16-63 may be assigned, by 

means of PSV bits 50-55 and 58-63, as secondary 

and primary register sets, respectively, for use as 

general registers. 

Assigned Register Locations (Part 2 of 2) 

F-2 

Set 

24 I 
251 

261 

21 \ 

281 

291 

30 I 
31 I 

Reg Adjunct 

~ J: .... __ P_r_o_te_c_t_i o_n_K_e_Y _ __, 

7 

0 

7 

0 

7 

0 

7 

0 

7 

0 

7 

0 

7 

0 

7 

Protection Key 

Protection Key 

Protection Key 

Protection Key 

Protection Key 

Protection Key 

Protection Key 

Protection Key 

Protection Key 

Protection Key 

Protection Key 

Protection Key 

Protection Key 

Protection Key 

Protection Key 

32

1 ~E-_____. 
331 ~'~~ .. ~ . 

: : ? c---=-----1 
631 /f- 4L= 

Principal 

Program D 
Assignable 

• • • 



TNL GN31-1498 (25 Oct 84) to GA23-003 l-4 

Appendix G. Processor-Specific Functions 

Logical Storage Addressing 

The processors provide a subset of the full addressing capability defined for the 
8100 system. The parameters of the specific design subset implemented on the 
processors are described below. 

8130 8130 
Model A Model B 

PCE Address Space (Bytes) 
Without Translation 1,048,576 2,097,152 
With Translation 4, 194,304 8,388,608 

Physical Main Storage 1,048,576 2,097,152 
Bytes 

Translation-Table Entries 2048 4096 

Translation-Table Entry Bits 3, Bits 3, 
Restrictions 5-22 must 5-21 must 

be zeros be zeros 

Translation-Table Index Bits 16-20 Bits 0-19 
(R2 in LAT/STAT) must be zeros must be zeros 

Other Processor-Specific Functions 

8130 
Model A 

Floating-Point Feature No 

Instruction Pre-fetch One 
Halfword 

Exception Block Index No 
Registers 

Separation Protection No 

Translation-Lock-Table No 
Entries 

Channels One 

LA TL/ST A TL No 

READ DCV /WRITE DCV No 

B Available only on one PCB. 

II For each PCB. 

8130 
Model B 

No 

Two 
Halfwords 

Yes 

No 

No 

One 

No 

Yes 

8140 8140 8150 8150 
ModelsA,B ModelC Model A Model B 

1,048,576 2,097,152 8,388,608 8,388,608 
4, 194,304 16,777,216 16,777 ,216 16,777,216 

1,048,576 2,097,152 4,194,304 8,388,608 

2048 8192 8192 8192 

Bits 3, Bits 3, Bits 3, Bits 3, 
5-22 must 5-21 must 5-19 must 5-19 must 
be zeros be zeros be zeros be zeros 

Bits 16-20 Bits 16-18 Bits 0-18 Bits 0-18 
must be zeros must be zeros must be zeros must be zeros 

8140 8140 8150 8150 
ModelsA,B ModeJC Model A ModeJB 

Yes YesB Yes YesB 

One Onell Two Two El 
Halfword Halfword Halfwords Halfwords 

No No Yes Yes 

No No Yes Yes 

No No 8192 8192 

One One One Two 

No No Yes Yes 

No No No No 

Appendix G. Processor-Specific Functions G-1 



Address Range Control 

Bits 36 and 37 of the current PSV control the storage-operand and instruction 
address ranges on all processors. 

Bit 36 controls the range of addresses for storage-operand references when the 
address is generated using the contents of a general register. When the bit is 0, 
the range covered by a storage-operand address (A) is 0 ::;; A ::;; 21 6-1. The 
high-order 16 bits of the designated general register are ignored and all O's are 
logically substituted in their place during address generation. 

Bit 36 also controls the updating of the storage-operand address for instructions 
that include address modification in their operation. When the bit is 0, only the 
low-order 16 bits of the register are replaced with the updated address; the 
high-order 16 bits remain unchanged. 

Bit 3 7 controls the range of addresses for sequential instruction execution, for 
successful branches and jumps, and for storage-operand references when the 
storage-operand address is generated using the instruction address in the PSV. 
When the bit is 0, the range covered by the instruction address for sequential 
instruction execution, by a jump address, by a branch address, and by a 
storage-operand address based upon the instruction address is M x 21 6 ::;; A ::;; 
(M + 1) x 2 1 6-1, where A denotes the address and M denotes the value in the 
high-order 16 bits of the instruction address. When bit 37 is 0 and a branch 
address is designated using the contents of a general register, the high-order 16 
bits of the register are ignored, and the high-order 16 bits of the instruction 
address are logically substituted in their place during address generation. 

Bit 3 7 also controls all modifications to the instruction address, and controls the 
loading of the instruction address into the register specified in the BRANCH 
AND LINK operations. When the bit is 0, only the low-order 16 bits of the 
instruction address are updated by sequential instruction execution and are 
replaced by successful jumps and branches; the high-order 16 bits are unchanged. 
When the bit is 0, BRANCH AND LINK operations place only the low-order 16 
bits of the instruction address in the specified register and leave the high-order 16 
bits of the register unchanged. 

Dynamic address relocation and translation take place after address generation 
and are not affected by PSV bits 36 and 37. During normal system operation, bits 
36 and 3 7 of the current PSV are 1 's. 

Processor-Specific Error Reporting 

The 8130, 8140, and 8150 report processor-specific error information in the 
following cases. Refer to the paragraph according to error type; within the error 
type, refer to processor model. If a particular processor model is not listed under 
the error condition, no processor-specific error information applies. 

Disabling System-Check Inte"upt Requests 

G-2 

8130 Model A, 8140. Priority level 0 is disabled for system-check interrupt 
requests when bit 0 of the common mask is reset to 0. Additionally, when a 
system-check interrupt request is indicated in the EIRV, bit 0 of the IOIRV is also 
set to 1. 



8130 Model B, 8150. Priority level 0 cannot be disabled for system-check 
interrupt requests. 

Reserved Program Information Code (PIC) Field 

The PIC field in the stored PSV is reserved for all interruption types except for 
CALL PSV and program exceptions. 

8130 Model A, 8140. When the PSV is stored for all other interruption types, the 
reserved PI C field contains zeros. 

8130 Model B, 8150. When the PSV is stored for all other interruption types, the 
reserved PIC field remains unchanged. 

Write Program Activation Vector Instruction 

8130 Model B. Instruction execution is suppressed and a specification exception is 
indicated when the instruction attempts to change the state of the PAV bit 
corresponding to the current priority level. 

8130 Model A, 8140, 8150. When the instruction attempts to change the state of 
the PAV bit corresponding to the current priority level, a specification exception 
is not indicated and the state change occurs. Refer to the Programming Note 
under "WRITE PROGRAM ACTIVATION VECTOR" in Chapter 9 for possible 
consequences. 

Reserved Operand Bits in PCE-Control Instructions 

8130 Model A, 8140. The following reserved bits in register rl of the PCB-control 
instruction are ignored and execution of the instruction completes with normal 
results. 

WRITE EIRV - bit 7 

• WRITE PRIMARY REGISTER SET NUMBER - bits 0, 1 

WRITE SECONDARY REGISTER SET NUMBER - bits 0, 1 

• DISPATCH NEW LEVEL - bit 4 

8130 Model B, 8150. A specification exception is indicated and the execution of 
the instruction is suppressed if the above reserved bits are not equal to zero. 

Reserved Channel Control Vector (CHCV) Command Codes 

8130 Model A, 8140. If the CHCV specifies a reserved command code, the results 
of the channel I/ 0 operation are unpredictable. 

8130 Model B, 8150. If the CHCV specifies a reserved command code, a channel 
exception is indicated with EIRV bits 3 and 4 set to 1, and a system-check 
interruption occurs. 

Specification of Count for Inte"uptible Instructions 

8130 Model A, 8140. When the register specified for the third operand (count) is 
the same as that specified for the first or second operand of the MOVE or 
COMPARE LOGICAL interruptible instructions, the results of the instruction 
are unpredictable and a program exception is not indicated. 

Appendix G. Processor-Specific Functions G-3 



TNL GN31-1498 (25 Oct 84) to GA23-0031-4 

8130 Model B. When the register specified for the third operand (count) is the 
same as that specified for the first or second operand of the MOVE or 
COMP ARE LOGICAL interruptible instructions, an operation exception is 
indicated and instruction execution is suppressed. 

8150. When the register specified for the third operand (count) is the same as that 
specified for the first or second operand of the MOVE or COMP ARE LOGICAL 
interruptible instructions, an operation exception is indicated and instruction 
execution is suppressed only if the primary and secondary register set number 
fields in the current PSV specify different register sets; otherwise, the results of 
the instruction are unpredictable and a program exception is not indicated. 

Suspended PCE Operation in Dual-PCE Processors 

Instruction Address 

Address Exception 

G-4 

8140 Model C. When instruction execution in the PCE that attaches the channel 
was suspended because that PCE has reset its master mask, and an error condition 
during a channel I/ 0 operation is detected in which one or more EIR V bits are 
set, an interruption does not occur immediately. PCE instruction execution 
remains suspended until the other PCE again sets its master mask. When 
instruction execution resumes, the PCE begins processing with a pending 
system-check interrupt request for priority level 0. 

When EIR V bit 4 has been set to 1 by a WRITE EIR V instruction and instruction 
execution is subsequently suspended in the PCE that attaches the channel, 
channel I/ 0 operations are allowed to occur. 

I 8150 Model B. When instruction execution in one of the PCEs was suspended 
because that PCE has reset its master mask, and an error condition during a 
channel I/ 0 operation is detected in which one or more EIRV bits are set, an 
interruption for priority level 0 occurs. PCE instruction execution remains 
suspended until the other PCE again sets its master mask. When instruction 
execution resumes, the PCE is at priority level 0 waiting to process the error 
condition. 

When EIR V bit 4 has been set to 1 by a WRITE EIR V instruction and instruction 
execution in one of the PCEs is subsequently suspended, channel I/ 0 operations 
in the suspended PCE are inhibited as long as the PCE remains suspended. 

8130 Model A, 8140 Models A and B. Introducing a PSV having an invalid 
instruction address causes a program-exception interruption. During the storing 
of the PSV because of this interruption, only bits 9-31 of the instruction address 
are stored; bits 0-7 in the PSV register location remain unchanged, and bit 8 is 
set to 0. 

8130 Model A, 8140 Models A and B. When a logical address that exceeds 
8388607 is generated by adding a positive displacement to the contents of a 
register containing a base address which is less than 8388607, the high-order 16 
bits of the generated address are set to zeros. If and when the modified logical 
address is used to reference main storage, a resulting program exception, if any, is 



Unit of Operation 

Pre/etch Errors 

EIR V Variations 

indicated as either a specification exception (code 0), an access exception (code 
1), or an address exception (code 4 ), depending upon the attributes associated 
with the modified address and its storage reference. 

When a logical address exceeding 8388607 is obtained in any way other than that 
described in the preceding paragraph, (for example, the initial contents of a 
base-address register or the register containing a logical address that is used to 
reference storage are greater than 8388607), a specification exception (code O) is 
indicated instead of an address exception (code 4). The exception is detected 
even if the address is not used to ref er to main storage, such as in a branching 
operation in which the branch is not taken. 

8140 Model C. When a logical address exceeding 33554431 is generated, a 
specification exception (code 0) is indicated instead of an address exception (code 
4 ). The exception is detected even if the address is not used to refer to main 
storage, such as in a branching operation in which the branch is not taken. 

8130 Model A, 8140. The interruptible instructions CLS, CLHS, MVS, and 
MVHS execute up to 8 units of operation between allowable interruptions, 
depending on the count value in R3 and, for COMP ARE LOGICAL instructions, 
the point at which an inequality is detected. The first grouping of units of 
operation will be less than 8 if the count is not a multiple of 8. For example, for 
MOVE operations, the groupings for a count of 19 would be 3, 8, and 8 units of 
operation. The operand address and count value are updated at the end of every 
grouping at which an interruption is allowed. If a specification, access, or address 
exception is recognized, the registers containing the addresses and count will 
reflect the last updated values. Thus, the updated addresses and count will be 
within 8 units of the invalid address. The units of operation corresponding to the 
range of addresses beginning with the one following the last updated address and 
ending with the invalid address are terminated. 

8130 Model B, 8150. The interruptible instructions CLS, CLHS, MVS, and 
MVHS execute one unit of operation between allowable interruptions. If a 
program exception occurs, the instruction execution is suspended. The registers 
containing the addresses and count will reflect the invalid address, and the 
instruction may be retried if the cause of the suspension is removed. 

8130 Model A, 8140. When a storage data check or internal data check is 
detected during the prefetching of information, a system-check interruption 
occurs even if the information is not used. 

8140. EIRV bit 5 may be set in addition to bit 2 when a storage data check is 
detected during the fetching of the second operand specified in a floating-point 
FS instruction. Additionally, floating-point status vector bit 16 (Floating-Point 
Check) may be set when executing the FS instruction. 

8150. EIRV bit 5 may be set in addition to bit 2 when a storage data check is 
detected during the fetching of either the second operand specified in a 
floating-point FS instruction or the first halfword of the first operand specified in 

Appendix G. Processor-Specific Functions G-5 



the LHQ instruction. Additionally, floating-point status vector bit 16 
(Floating-Point Check) may be set when executing the FS instruction. 

When dynamic address translation is active and an internal data check is detected 
during the fetching of the second operand from the translation table or the 
translation lock table specified in the LAT or LA TL instruction, respectively, only 
EIRV bit 5 is set. 

When an I/O control or timeout check is detected during a channel I/O 
operation, EIRV bit 5 may be set in addition to bits 0 and 4, or 1 and 4, 
respectively. 

Detection of Concu"ent Program Exceptions 

Address Range Error 

G-6 

8150. When an address limit condition is detected and subsequent program 
exception conditions are also detected during the fetching of the first half word of 
an instruction, an address exception may not always be indicated. This can occur 
if the referenced storage location contains information that can be interpreted as 
an invalid instruction. In this case, an operation exception may be indicated if it is 
the only other program exception detected. If a separation, access, or specification 
exception is also detected, an address exception is indicated. When the 
address-limit condition is detected for the target address of a BRANCH or JUMP 
operation that is taken, an address exception is indicated. 

8130 Model A, 8140. If either bit 36 or 37 in the current PSV is 0, a program 
exception is indicated when a carry out of the low-order 16 bits of the address 
occurs during address generation or sequential updating of the instruction address. 
Either a program exception code of 0 or 4 is indicated, depending on the 
operation and the activity in the PCE and channel at the time the exception is 
detected. Execution of the current instruction is terminated. 

8130 Model B. If either bit 36 or 37 in the current PSV is 0, a program exception 
is indicated when a carry out of the low-order 16 bits of the address occurs during 
address generation or sequential updating of the instruction address. An address 
exception (code 4) is indicated, and instruction execution is terminated. When an 
address exception results from the carry out of the low-order 16 bits of the 
instruction address and bit 3 7 of the current PSV is 0, the PSV is stored with bit 7 
of the instruction address set to 1 to indicate the address overflow. 

815 0. If either bit 36 or 3 7 in the current PSV is 0, a program exception is 
indicated when a carry out of the low-order 16 bits of the address occurs during 
address generation or sequential updating of the instruction address. An address 
exception (code 4) is indicated, and instruction execution is terminated. 

Execution of floating-point instructions produces unpredictable results when 
either bit 36 or 3 7 in the current PSV is 0. 



Appendix H. Tables of Powers of 2 

PLUS 

16 
32 
64 

128 

2 56 
51 2 

1. 0 2 4 
2. 0 4 8 

4,096 
8. 192 

16,384 
32,768 

65,536 
131,072 
262,144 
524,288 

1,048,576 
2,097,152 
4,194,304 
8,388,608 

16,777,216 
33,554,432 
67,108,864 

134,217,728 

268,435,456 
536,870,912 

1,073,741,824 
2,147,483,648 

4,294,967,296 
8,589,934,592 

17,179,869,184 
34,359,738,368 

68,719,476,736 
137,438,953 ,472 
274,877,906,944 
549,755,813,888 

1,099. 511,627, 776 
2,199,023,255,552 
4,398,046,511,104 
8,796,093,022,208 

17,592,186,044,416 
35,184,372,088,832 
70,368,744,177,664 

140,737,488,355,328 

281,474,976,710,656 
562,949,953,421,312 

1, 125. 899. 906 ,842 ,624 
2. 2 51. 7 99. 813. 6 8 5. 2 4 8 

4,503,599,627,370,496 
9,007,199,254,740,992 

18,014,398,509,481,984 
36,028,797,018,963,968 

72,057,594,037,q27,936 
144,115,188,075,855,872 
288,230,376,151,711,744 
576,460,752,303,423,488 

1,152,921,504,606,846,97fi 
2. 3 05. 8 4 3. 0 09. 213. 6 9 3. 9 5 2 
4,611,686,018,427,387,904 
9,223,372,036,854,775,808 

18,446,744,073,709,551,616 

Powers of 2 (Part 1 of 2) 

6 
7 

10 
11 

12 
13 
1 4 
15 

16 
17 
1 8 
19 

20 
21 
22 
23 

24 
2 5 
26 
27 

28 
29 
3 () 

31 

32 
33 
3 4 

35 

36 
37 
3 A 
39 

40 
41 
42 
43 

44 
45 
46 
47 

48 
49 
50 
51 

52 
53 
54 
55 

56 
57 
58 
59 

60 
61 
62 
63 

64 

MINUS 
1 . 0 
0. s 
0. 2 s 
0. 1 2 5 

0. 06 2 5 
0.03125 
0.01562 
0.00781 25 

0.00390 625 
0.001'15 3125 
0.00097 65625 
0.00048 82812 

0.00024 41406 25 
0.00012 20703 125 
0.00006 10351 5625 
0.00003 05175 78125 

0.00001 52587 89062 5 
0.00000 76291 94531 25 
0.00000 38146 97265 625 
0.00000 19073 48632 8125 

0.00000 09536 74316 40625 
0.00000 04768 37158 20312 
0.00000 02384 18579 10156 25 
0.00000 01192 09289 55078 125 

0.00000 00596 04644 77539 0625 
0.00000 00298 02322 38769 53125 
0.00000 00149 01161 1q394 76562 5 
0.00000 00074 50580 59692 38281 25 

0.00000 00037 25290 29846 19140 625 
0.00000 00018 62645 14923 09570 3125 
0.00000 00009 31322 57461 54785 15625 
0.00000 00004 65661 28730 77392 57812 

0.00000 00002 32830 64365 38696 28906 25 
0.00000 00001 16415 32182 69348 14453 125 
0.00000 00000 58207 66091 34674 07226 5625 
0.00000 00000 29103 83045 67337 03613 28125 

0.00000 00000 14551 91522 83668 51806 64062 
0.00000 00000 07275 95761 41834 25903 32031 25 
0.00000 00000 03637 97880 70917 12951 66015 625 
0.00000 00000 01818 98940 35458 56475 83007 8125 

0.00000 00000 00909 49470 17729 28237 91503 90625 
0.00000 00000 00454 74735 08864 64118 95751 95312 
0.00000 00000 00227 37367 54432 32059 47875 97656 25 
0.00000 00000 00113 68683 77216 16029 73937 98828 125 

0.00000 00000 00056 84341 88608 08014 86968 99414 0625 
0.00000 00000 00028 42170 94304 04007 43484 49707 03125 
0.00000 00000 00014 21085 47152 02003 71742 24853 51562 5 
0.00000 00000 00007 10542 7357fi 01001 85871 12426 7S781 25 

0.00000 00000 00003 55271 36788 00500 92q35 56213 37890 625 
o.ooono 00000 00001 77635 68194 002so 46457 78106 6d945 3125 
0.00000 00000 00000 88817 84197 00125 23233 89053 34472 65625 
0.00000 00000 00000 44408 92098 50062 61616 94526 67236 32812 

0.00000 00000 00000 2?204 4604q 25031 3080R 47263 33fi18 lh406 25 
0.00000 00000 00000 1110? ?3024 62515 65404 23611 66809 OR203 125 
0.00000 00000 00000 05551 1151? 31257 82702 11815 83404 54101 5625 
o.noooo 00000 00000 02115 55756 15628 91351 05907 91702 27050 78125 

0.00000 00000 00000 01387 77878 07814 45675 52953 95851 13525 39062 s 
0.00000 00000 00000 00593 88939 03qo7 22837 76476 97925 56762 69531 25 
0.00000 00000 00000 00346 94469 51953 6141A 88238 4Aq62 78381 34765 625 
0.00000 00000 00000 00173 47234 75976 80709 44119 24481 39190 67382 8125 

0.00000 00000 00000 00086 73fi17 37988 40354 7?059 62240 69595 33691 40625 
0.00000 00000 00000 00043 36A08 599g4 20177 36029 81120 34797 66845 70312 5 
0.00000 00000 00000 00021 68404 34497 10088 68014 90560 17398 83422 85156 25 
0.00000 00000 ooono 00010 84202 17248 55044 34007 45280 08699 41711 42578 125 

0.00000 00000 00000 00005 4?101 08624 27522 17003 72640 04349 70855 71289 0625 

Appendix H. Tables of Powers of 2 H-1 



18,l+L1€),744,0/3,709.S51,'31f 'i'• 
36,8CJ3,488,14"',419,1'1:,2J'.' h'i 

7 3 , -r 8 6 , CJ 7 fi , '"' 9 4 , 8 3 8 , : .. ; F, , 4 fi 4 F fi 
147,573,952,58q,676,412,928 67 

295,147,905,179,252,82'i,856 ffl 
590,295,818,358,705,651,7:2 ~9 

1,180,S91,620,717,4J.1,30J,"2o... 7r; 
2,361,183,241,LL34,82?,G'l6,848 71 

4,722,366,1+82,Afi9,fi45,21J,1'96 72 
9,U44,732,965,739,n0,427,3Cl2 73 

18 , 8 B 9 , '' 6 S , g 3 1 , 4 7 R , 5 R 0 , 8 S" , 7 B 4 7 4 

37,778,931,862,9S7,1fi1,709,S68 75 

7 5 • 5 5 7 • 8 6 3 • 7 2 5 • ') 11+ • 3 2 3 • lj 1 9 • 1 3 fj '"'! F, 

151,115,727,451,A28,64fi,838,27? 77 
302,231,454,903,657,293,G75,544 78 
604,462,909,807,31~ ,587,153,nBs 7q 

1,208,925,819,614,6?q,114,706,17f; 80 
2,417,851,639,729,258,1W9,41:,1:2 31 
4,835,703,278,458,516,~98,824,7C4 82 
9,671,406,55F.,917,033,3g7,64q,408 83 

19,342,813,113,834,066,795,298.~16 8~ 

38,685,626,227,f168,133,590,5g7,632 85 
77,371,252,455,336.2G7,181,1g5,264 Bfi 

154,742,504,910,672,534,362,390,528 87 

309,405,009,821,345.068,724,781,056 88 
618,970,019,fi4~,690,137,4LLQ,562,112 89 

1,237,940,03'J,'285,38n,27t.,Aqg,12u,22" 90 
2,475,880,078,570,7f10,54°,798,248,~48 91 

4,951,760,1.57,141,521,099,596,496,896 92 
9,903,520,314,283,0'.i2,1;'1,192,993,792 93 

19,807,040,628,566,084,398,385,987,584 94 
'.!9 ,614 ,oa1 ,257,132,168,796 ,111,915 ,168 95 

79,228,162,514,264,337,593,543,950,336 g5 
158,456,325,029,528,675,187,087,900,672 97 
316,912,650,057,057,350,374,175,801,344 QB 
633,825,300,114,114,700,748,351,602,688 99 

!,267,650,6J0,228,229,401,496,703,205,37G 100 
2,535,301,200,456,45A,802,993,406,410,752 101 
S,070,602,400,'312,917,G05,986,812,821,504 102 

10,141,204,801,825,835,211,973,625,643,008 103 

2 o • 2 e 2 , 4 o 9 , 6 o 3 • fi s 1 • 6 1 0 • 4 2 3 • 9 4 1 • 2 5 1 • 2 s s • o Hi 1 o u 
ll0,564,819,207,303,340,847,8'l4,502,572,1)32 105 
e1,129,638,414,605,681,695,78g,oo~.144,054 106 

1&2,259,276,829,213,363,391,578,010,288,128 107 

324,518,553,658,426,725,783,156,020,576,256 108 
649,')37,107,316 ,853 ,453 ,566 ,312 ,041,15? ,512 109 

1,298,074,214,633,706,907,132,624,082,305,021+ 110 
2,596,148,429,267,413,814,265,248,164,610,048 111 

S,192,296,65Fl,534,827,628,530,496,329,22n,o96 112 
10,384,593,717,069,655,257,060.992,658,440,192 113 
2 0 , 7 6 9 , 1 8 7 , 4 3 4 , 1 3 9 , 3 1 0 , 51 4 , 1 21 , 9 8 5 , 3 16 , 8 3 0 , 3 R 4 111+ 
41,538,374,868,278,621,028,243,970,633,760,7f18 115 

B3,0"'6,749,736,S57,24?,056,487,9LL1,267,521,53fi 116 
166,153,499,473,114,484,112, 0 75,882,535,QLL3,072 117 
332,3C6,998,946,228,969,22S,Q51,765,070,Cl86,144 118 
664,613,9~7.892,457,936,451,903,5J0,140,172,J88 119 

1,329,227,995,784,915,872,903,807,060,280,344,576 120 
2,658,455,991,569,831,7U5,807,E14,120,560,689,!52 121 
5,316,Cl11,983,139,1563,491,f15,228,24l,121,J78,304 122 

10,633,823,9156,279,3?.6,983,23C,456,482,242,756,608 123 

21,267,6"7,932,558,653,966,460,?12,964,485,511,216 124 
ii 2 , 5 3 5 • 2 g 5 , 9 6 5 • 11 7 , 3 O 7 , 9 3 2 , S 21 , e 2 5 , q 2 8 , g 7 1 , 'l 2 G , 4 3 2 1 2 5 
8 5 • 0 7 0 , 5'!1 , 7 3 0 , 2 3 4 , 6 1 5 , 8 6 5 , 8 4 :J , (, 5 1 , A 5 7 , 9 4 2 , 0 5 / , 8 f, 4 1 2 6 

170,l41,183,460,1+69,231,731,687,303,715,884,105,72A 127 

340,282,366,920,938,463,463,374,607,431,768,211,456 128 

Powers of 2 (Part 2 of 2) 

H-2 



Appendix I. Hexadecimal Tables 

Direct Conversion Tables 

0 2 3 

00 

I 
0000 0001 0002 0003 

01 0016 0017 0018 0019 
02 0032 00:33 003,1 0035 
03 I 0048 oo.rn 00;)0 00.51 

I 
006.S 0067 04 

I 

()064 0066 
0.5 - 0080 0081 0082 0083 
06 I 

()()()6 OOC)7 0098 0099 
07 __ 

I 
011:2 0113 0114 0115 

08 0128 0129 0130 0131 
09_ I () 1-1-t 01-Vi 0146 0147 
OA I 0!60 0161 01R2 0163 
OB 

I 
()] 7() 0177 0178 0179 

oc I 
OllJ2 01CJ3 0194 0195 

OD 
I 

02(l.\i ();2()C) 0210 0211 
OE 0224 0225 0226 0227 
OF I 02Hl 0241 02.12 02.-13 

10 I 02")() 02.57 02'58 02.59 
11 I 0272 027) 027-1 0275 
12 I tl:2SS 0289 ()2C)() 0291 
13 I ())()4 ()3{),") 0306 0307 
14 i ():)20 0321 0322 0.323 
15 I 

().''):36 03.'37 0338 0:339 
lG I OT52 0:3.'5:) 03.'14 03.S.'5 
17 I ( l:3fi8 (),)()9 0370 0371 I 
18 I 038·1 038.S 0386 0387 

I 19 I O-tOO 0401 0-102 0403 
IA 

I 
Ollfi 0417 0-118 0419 

1B 
I 

O-t:32 (lt:33 043-l 0435 
IC I 0448 0.1.rn 0450 0:1s1 
lD - I O-W-1 046::> ()!fl() 0467 
IE 

I 
().\.'-,() OH-Jl 0-482 0483 

lF ·- i 0-196 04S)I 0-198 0499 
I 

The following tables aid in converting hexadecimal values to decimal values, or 
the reverse. 

These table provide direct conversion of decimal and hexadecimal numbers in 
these ranges: 

Hexadecimal 
000 to FFF 

Decimal 
0000 to 4095 

To convert numbers outside these ranges, and to convert fractions, use the 
hexadecimal and decimal conversion tables that follow the direct conversion 
tables. 

4 5 6 7 8 9 A B c D E F 

0004 0005 0006 0007 0008 0009 0010 OOll 0012 0013 0014 0015 
0020 0021 0022 002.3 0024 0025 0026 0027 0028 0029 0030 0031 
()())() 0037 0038 ()(),39 0040 0041 0042 0043 0044 0045 0046 0047 
00.52 00.53 0054 005.5 00.56 0057 0058 0059 0060 0061 0062 0063 
00()8 006C) 0070 0071 0072 0073 0074 0075 0076 0077 0078 0079 
008-1 0083 0086 0087 0088 0089 0090 0091 0092 0093 0094 0095 
0100 0101 0102 0103 0104 0105 0106 0107 0108 0109 OllO Olll 
0116 0117 0118 0119 0120 0121 0122 0123 012'1 0125 0126 0127 
01.32 0133 01.34 013!) 0136 0137 0138 0139 0140 0141 0142 0143 
OH"i 0149 01.50 0151 01.52 0153 01.54 0155 0156 0157 0158 0159 
016-1 016.5 01()6 0167 0168 0169 0170 0171 0172 0173 0174 0175 
0180 0181 0182 0183 018-1 018.5 0186 0187 0188 0189 0190 0191 
019() 0197 0198 0199 0200 0201 0202 0203 0204 020.5 0206 0207 
0212 0213 0214 021.5 0216 0217 0218 0219 0220 0221 0222 0223 
022.S 022Y 0230 0231 0232 0233 0234 0235 0236 0237 0238 0239 
024c1 02-15 0246 02-17 0248 0249 0250 0251 02.52 0253 0254 0255 

0260 0:2fl1 02G2 0263 02()4 02(),') 0266 0267 0268 0269 0270 0271 
0276 0277 0278 0279 02.80 0281 0282 0283 0284 0285 0286 0287 
u2q2 029.'3 02Sl1 029.S 02<)6 0297 0298 0299 0300 0301 0.302 0303 
0308 (J:3(}D 0310 0311 0312 0313 0314 0315 0316 0317 0318 0319 
():)2..1 0325 0326 0327 0.'328 0329 0330 0331 0332 0333 0334 0335 
0:3.w 03-il 0342 03-13 03-14 03-t'5 03-16 0347 ().348 0349 03.50 0351 
(),)')() ().3.57 0358 03.59 03GO 0361 0362 0363 0364 0365 0366 0367 
0372 0.17.'3 0371 0373 037() 0377 0378 0379 0380 0381 0382 0383 
()388 0389 ().'390 0391 0392 0393 0394 0395 0396 0397 0398 0399 
0-10-± 0-IO.S 0406 0407 0-!08 0-109 0410 0411 0412 0413 0414 0415 
O-t20 0421 O•i22 0423 0--124 042.5 0426 0427 0428 0429 0430 0431 
O-.t36 O-i.37 0438 0439 (J.140 0441 0442 0443 0444 0445 0446 0447 
0-i.5:2 O-t.53 04.'54 0455 0-1.56 0457 0458 0459 0460 04()1 0462 0463 
O-ffi8 0469 0470 0471 0472 ()..173 0474 047.5 0-176 0477 0478 0479 
0481 0-1k5 0-48(:) 0487 0-188 0489 0490 0491 0492 0493 0·194 0493 
0.')()(l 05Ul 0.502 0503 0504 0505 0506 0507 0508 0509 0510 0511 

Appendix I. Hexadecimal Tables I-1 



I, 

20_ 
2L 
22 -
23 -
24 -
25 -
26 -
27 -
28 -
29 -
2A -
2B __ 

2C -
2D -
2E -

2F -

30 -
31 -
32 
~ 

33 -
34 -
35 -
36 -
37 --

38 __ 
39 
3A -
3B 
3C 
3D 
3E 
3F_ 

40 __ 
4L 
42 -
43 -
44 -
45 -
46_ 
47 -
48_ 
49 __ 
4A 
4B -

4C -
4D 

~ 

4E 
4F -

50 -
51 -
52 -
53 -
54 -

5S_ 
56 -
,57 -
58 __ 
59_ 
S.\ -
SB 

:SC -
.SD 

~ 

5E -
SF_ 

I-2 

I 

! 

I 

0 

0512 
0528 
0.544 
0560 

0576 
0592 
0608 
0624 
06-10 
06.56 
0672 
0688 
070-1 
0720 
0736 
0752 

0768 
078-1 
0800 
0816 
0832 
08-±8 
086-1 
0880 
0896 
0912 
0928 
0944 
0960 
0976 
0992 
1008 

0 

102-1 
10-10 
i056 
1072 
1088 
1104 
1120 
1136 
11.52 
1168 
llf).4 
12()() 

1:216 
12'32 
1248 
1261 

B'W 
129() 
1:312 
1328 

13·!1 
1360 
1376 
1392 

1408 
l-124 
14-10 
1456 
1-172 
1488 
1504 
IS:?.O 

1 

0513 
0529 
0545 
0561 
0577 
0.593 
0609 
062.S 
06-11 
06.57 
0673 
0689 
070.S 
0721 
0737 
07,53 

0769 
078.S 
0801 
0817 
0833 
0849 
08G5 
0881 
0897 
0913 
0929 -09-1.-:i 

0961 
0977 
0993 
1009 

1 

102,5 
1041 
rns7 
1073 

IOS9 
1105 
1121 
11:37 
i 1s:3 
l l(iCJ 
118,') 
1201 
1217 
12.3.) 
1219 
12G.5 

l2SI 
1297 
1:313 
132lJ 

1315 
13() I 
1377 
1:393 
1409 
l 12.5 
14·11 
1-1.57 

l·f73 
l-18D 
1505 
1521 

2 

0514 
0530 
0546 
0562 
0578 
059-1 
0610 
0626 

06-12 
0658 
067-1 
0690 
0706 
0722 
0738 
0754 

0770 
0786 
0802 
0818 
083-1 
0850 
0866 
0882 
0898 
091-1 
0930 
0946 
0962 
0978 
099-1 
1010 

2 

1026 
1042 
l(l58 
1074 
1090 
1106 
1122 
1138 
11.5·1 
] 170 
118() 
1202 
1218 
123-1 
12.50 
1266 

1282 
1298 
1314 
l.'3'30 

I :J.rn 
13()2 
1 '17S 
1.3~)4 

]410 
1126 
1·1-12 
1-458 

1474 
l-1CJO 
l,50€1 
1.52:?. 

3 

0515 
0531 
0547 
0563 
0579 
0595 
0611 
0627 

06-13 
0659 
0675 
0691 

0707 
0723 
07.19 
07.SS 

0771 
0787 
0803 
0819 
083.S 
08Sl 
0867 
0883 
0899 
091.S 
0931 

-09-11 
0963 
0979 
0995 
1011 

3 

1027 
1043 
1059 
1075 
1091 
1107 
1123 
113SJ 
ns:s 
1171 
1187 
1203 
1219 
12.35 
12.SI 
1267 

1283 
1299 
131 '5 
1331 

1347 
1363 
1379 
139.'5 

1411 
1-L?.7 
1-1·!:3 
l-t59 
].\/,') 

1 rn1 
1.507 
J .'):2:3 

4 

0516 
0532 
0548 
0564 
0.580 
0.596 
0612 
0628 

06-14 
06GO 
0676 
OG92 
0708 
0724 
0740 
0756 

0772 
0788 
0804 
0820 
083G 
08.52 
08G8 
088-1 
0900 
0916 
0932 

09G-1 
0%0 
0996 
1012 

4 

1028 
104-1 
1060 
1076 

1092 
1108 
112-1 
114() 

115G 
1172 
11<.JK 
120-1 
1220 
12.·w 
1232 
1268 

1281 
l.'300 
nm 
1332 

13-18 
1:)61 
13>.J() 
13<)6 

1412 
1-128 
l·f.1.1 
J.j(j() 

1176 
].Jl)2 
l S(Jk 
1524 

5 6 7 8 

0517 0518 0519 0.520 
0533 053-1 0535 0.536 
05-19 0550 0551 05.52 
0565 0.566 0567 0568 

0581 0582 0583 058-1 
0597 0598 0599 0600 
0613 061-1 0615 0616 
0629 0630 0631 0632 

06·t.5 0646 06-17 ()(i.48 

0661 0662 0663 OG6·1 
OG77 0678 0679 O()SO 
0693 OG9-1 0695 0696 

0709 0710 0711 0712 
072.S 0726 0-0-,_, 0728 
07-11 07-12 0743 0744 
07.37 07S8 0759 0760 

0773 0774 0775 0776 
0789 0790 0791 0792 
0805 0806 0807 0808 
0821 0822 0823 Oo2·1 

0837 0838 0839 08-10 
OSS:3 085-1 08,S:S 08'56 
0869 0870 0871 0872 
W)8,S 0886 0887 081)8 

0901 0902 0903 ()l)()! 
0917 0918 0919 ()C):2() 

mrn 093-1 09:3.S rhJ3G 
09\9 -09::>0 0951 -

0%5 09GG 0967 09()8 
0981 0982 0983 098·1 
0997 0998 0999 1000 
1013 1014 1015 1016 

,5 6 7 8 

1029 ln.'30 1011 1032 
10'1'1 10·1fi HJ.47 1018 
I Ofil 10()2 106.'3 lOG-1 
1077 1078 1079 1080 
1mJ3 1094 109.5 1096 
1109 1110 1111 1112 
1125 l I 2(i 1127 l 128 
11-11 ll ·i2 11.n 114·1 
1157 11'58 1159 1] 60 
1173 l l 7·t 117'5 1l7G 
lJ,'",l) 1190 11~)1 11 ~)2 
l 20S ] 206 1207 l 20S 
L221 1222 1223 122-1 
12')7 1:2.38 12.)l) 1211) 
12:-':i3 1231 1253 1:2')() 

1260 1270 1271 1272 

128.'5 1281) 1:287 l:2S8 
L301 1.302 l.'3<l'3 l ~)( 14 
L'll7 l31k 1:3 JlJ l 3:2() 
l.3'33 1:331 l:ns 1T3G 
1:3·!9 13.50 1.3.51 I '3"i2 
13hS 13G6 1367 J:)CiS 
13kl I.'382 138:3 l 3,S·I 
13CJ7 1398 1399 l ·WO 
l -1 l.'3 1-114 141.'5 1-1 ]() 
142CJ J-1:30 l-r31 1 l.l:?. 
i.1r) 1·1!6 Hl7 l l-15) 
] .l(i i l-rn2 l-lfi3 1161 
l !77 147S 147(J l·!.'i() 
l rn.3 1·19-1 WJ.5 l·llJG 
]')(ll) l.')] 0 1511 J.'512 
1.'52:5 JS2f:i 1527 J.'528 

-------·------~------·--------·-

9 A 

0521 052.2 
0537 0538 
(),55.1 055-1 
0569 0570 
O.S85 0586 
0601 0602 
0617 0618 
0633 063-1 
()(J.l C) OGSO 
()(i(i;) 0666 
()()81 ()()82 
06CJ7 069S 

0713 0714 
07:?.9 0730 
07-l,5 0746 
0761 0762 

0777 0778 
0793 079-1 
0809 0810 
0825 0826 

08·! 1 08.f2 
08'57 0858 
Oh7J mr;4 
OSS'j 08\JO 

( Jl)(J) ()l,()() 
rnJ::?.l 0922 
(l'J37 ()().38 

- -
()C)f)9 0CJ70 
<m8.5 ()')'-;() 

I()( I 1 l(l(l2 
1017 1018 

9 A 
-~----

10:3'3 1034 
IOHJ 1050 
]()(j') }()()() 

1081 1082 
]()C)7 10<)8 
1113 111-1 
1129 1130 
111.S 1146 
1161 1162 
l l ~ ~ l 17K 
jJln l HJ! 
12()lJ 1210 

1223 122() 
12n 1212 
I.,--- , ; 12'18 
127'3 127·1 

J 2,')l) l2CJ() 
I.)( l) 13()() 

1T2J 1'322 
l ,,,_ 

),) I 1.338 
[:1").'3 lT'd 
])()') IT:O 
l '.)~) l :)Sfi 
i rn1 1402 
].1 )7 ].tp) 

1133 l~:H 

j 11q l 150 
116.""i [ .i(i(j 

l ·lk 1 l-1S2 
J.;q7 ] .j\JK 

I.-, 1 3 LS! ·l 
Fi2'.J 1'5'30 

--------

B c D 

0,523 0'5:?A o.'52.S 
0539 0.5-10 0511 
()55,5 0,5,56 OSS7 
0.571 0572 0573 

0.587 0588 0.589 
0603 060·1 OGOS 
0619 0620 0621 
063.S 0636 0637 

06.51 06.52 0653 
0667 06(18 06G9 
0683 06°8-1 0685 
0699 0700 0701 

071.5 0716 0717 
0731 ()7.'32 073.) 
0747 07-18 0749 
07G3 07G1 07().5 

0779 0780 0781 
079,5 0796 0797 
0811 0812 0813 
0827 0828 0829 

08-13 mn1 08!.5 
0859 osno 08Gl 
087.S OS76 0')77 
0891 OSCJ2 089.'3 

0907 ()CJ()8 ()9(lC) 
0923 mJ2.1 ()SJ2,5 
0939 oqrn 09!1 -- - -
0971 0C)7:?. 0973 
0987 098S 0989 
1003 1004 IOOS 
1019 1020 1021 

B c D 
--~--~-·--·-----

1035 10.3G 1037 
1051 1n.s2 1 os:3 
1()()7 1068 lOml 
1083 108-1 10S5 
10()9 11 ()() 11 () l 
11 lS 1 l l6 1117 
1131 1132 11.'33 
1 J.17 11-18 li.19 
1163 1161 1165 
1119 11<'-J() IP-il 
l l ~)"j 1196 11 CJ7 
1211 l:?,12 1213 
1·-i:r __ , l22K 122CJ 
I :2 ll 121-l 12!."J 
12'Jl) 12()() 12hl 
127.S 1276 1,,--

-1 j 

12CJ1 l2CJ2 l2lJ3 
1307 1308 l '3( ll) 
1123 ]:12-1 ]:' ,-)_.) 

l '3J~j 1:3-10 l.311 

1.153 13.SG 1:357 
l :371 1372 1:373 
L3k7 1188 !Ji)C) 

1.103 J.t()J 1-W."5 

J.11 q I 120 [ 121 
l ·±.3'5 I ~'3() l L37 
11.51 l·fr.'.. j I.SJ 
1·167 1-16,) i.rnCJ 

1-11, 1 IK1 1 lb.S 
j-JqC) 150() ];)()] 

l.'51'5 1 '516 1'517 
l .'5.31 J S.'32 1531 

--

E 

052G 
05-12 
OSS8 
0574 
0.590 
OG06 
0622 
0638 
06S4 
OG70 
0686 
0702 
0718 
073-1 
07.SO 
0766 

0782 
079.'l 
081·1 
0830 
0846 
08G2 
0878 
089·! 
OSJIO 
()C)26 
rn.i12 

-
0974 
mno 
100() 
1022 

E 
·----

1038 
ios.1 
1070 
lilSfl 

1102 
111.'3 
11'\4 
J l.'5() 

116G 
1182 
11cm 
1214 
l 2:)0 
l2W 
12()2 
1278 

12CJ4 
1310 
l 32() 
l.312 

l .'3S8 
1:314 
1:3\)() 

1-10() 

J.1:22 
] !:38 
l.J:"'i! 
l·il() 

I ·ll:iG 
l ~.02 
1518 
l 

F I 
0527 
o.5n 
0.559 
0575 
0591 
0607 
0623 
0639 
06S.5 
0671 
OG87 
0703 

0719 
073.S 
07.51 
0767 

0783 
0799 
081.5 
0831 

0847 
08G.'3 
0879 
o~ms 

0011 
0927 
0943 

-09,::>9 I 
OCJ75 

0991JI 
1007 
1023 

F 

1039 
1053 
1071 
1087 

1103 
1119 
113.S 
1151 
1167 
l l 8.1 
l lmJ 
121.5 
1231 
12·!7 
12G3 
127Y 

12CJ'5 
1311 
1327 
1313 
13SC) 
137,3 
13(1) 
14G7 

1423 
l ·f.)lJ 
].!').=; 

l !71 

l l87 
1S03 
I.SJ lJ 



60_ 
61_ 
62_ 
63_ 

64_ 
65_ 
66_ 
67 -
68_ 
69 
6A_ 
6B_ 

6C_ 
6D_ 
6E_ 
6F_ 

70_ 
71_ 
72_ 
73_ 

74_ 
75 -
76_ 
77 __ 
78_ 
79 
7A_ 
7B __ 

7C_ 
7D_ 
7E_ 
7F_ 

0 

1536 
1552 
1568 
1584 
1600 
1616 
1632 
1648 

1664 
1680 
1696 
1712 
1728 
1744 
1760 
1776 

1792 
1808 
1824 
1840 

1856 
1872 
1888 
1904 

1920 
1936 
1952 
1968 

1984 
'.2.000 
2016 
2032 

0 

1.537 
1553 
1.569 
1585 
1601 
1617 
1633 
1649 

1665 
1681 
16q/ 
1713 

1729 
1745 
1761 
1777 

1793 
1809 
1825 
1841 

1857 
1873 
1889 
190S 

1921 
1937 
1953 
1969 

198S 
2001 
2017 
2033 

2 

1538 
1554 
1570 
1586 
1602 
1618 
1634 
1650 
1666 
1682 
1698 
1714 

1730 
1746 
1762 
1778 

1794 
1810 
1826 
1842 

1858 
1874 
1890 
1906 

1922 
1938 
1954 
1970 

1986 
2002 
2018 
2034 

2 

3 

1539 
1555 
1571 
1587 

1603 
1619 
1635 
1651 
1667 
1683 
1699 
1715 

1731 
1747 
1763 
1779 

1795 
1811 
1827 
1843 

1859 
1875 
1891 
1907 

1923 
1939 
1955 
1971 

1987 
2003 
2019 
2035 

3 

4 

1.540 
1556 
1572 
1588 

1604 
1620 
1636 
1652 
1668 
1684 
1700 
1716 

1732 
1748 
1764 
1780 

1796 
1812 
1828 
1844 

1860 
1876 
1892 
1908 

1924 
1940 
1956 
1972 

1988 
2004 
2020 
2036 

4 

.s 
1S41 
15.57 
1.573 
1589 
1605 
1621 
1637 
1653 
1669 
1685 
1701 
1717 

1733 
1749 
1765 
1781 

1797 
1813 
1820 
1845 

1861 
1877 
1893 
1909 

1925 
1941 
1957 
1973 

1989 
200.5 
2021 
2037 

6 

1542 
15.58 
1574 
1590 
1606 
1622 
1638 
1654 

1670 
1686 
1702 
1718 

17.'34 
1750 
1766 
1782 

1798 
1814 
1830 
1846 

1862 
1878 
1894 
1910 

1926 
1942 
1958 
1974 
1990 
2006 
2022 
2038 

6 

7 

1543 
1.559 
1575 
1.591 

1607 
1623 
1639 
1655 
1671 
1687 
1703 
1719 

1735 
1751 
1767 
1783 

1799 
1815 
1831 
1847 

1863 
1879 
1895 
1911 

1927 
1943 
1959 
1975 

1991 
2007 
2023 
2039 

7 

8 

1544 
1.560 
1576 
1.592 
1608 
1624 
1640 
1656 

1672 
1688 
1704 
1720 

1736 
1752 
1768 
1784 

1800 
1816 
1832 
HHS 

1864 
1880 
1896 
1912 

1928 
1944 
1960 
1976 

Hl92 
2008 
2024 
2040 

8 

9 

1545 
1561 
1577 
1593 
1609 
1625 
1641 
1657 
1673 
1689 
1705 
1721 
1737 
1753 
1769 
1785 

1801 
1817 
1833 
18·!9 

1865 
1881 
1897 
1913 

1929 
19,15 
1961 
1977 
1993 
2009 
20:2.5 
2()..11 

9 

A 

1546 
1562 
1578 
1594 
1610 
1626 
1642 
1658 
1674 
1690 
1706 
1722 
1738 
1754 
1770 
1786 

1802 
1818 
1834 
1850 

1865 
1882. 
1898 
191·1 
1030 
1946 
1962 
1978 
1994 
2010 
2026 
2042 

A 

B 

1547 
1.563 
1579 
1.595 
1611 
1627 
1643 
1659 
1675 
1691 
1707 
1723 

1739 
1755 
1771 
1787 

1803 
1819 
1835 
1851 

1867 
1883 
1899 
1915 
1931 
1947 
1963 
1979 

1995 
2011 
2027 
2043 

B 

c 
1548 
1.56·~ 

1580 
1596 
1612 
1628 
1644 
1660 

1676 
1692 
1708 
1724 

1740 
17.56 
1772 
1788 

1804 
1820 
1836 
1852 

1868 
1884 
1900 
mm 
1932 
1948 
19G4 
1980 

1996 
2012 
2028 
20-14 

c 

D 

1549 
1565 
1581 
1.597 
1613 
1629 
16·15 
1661 

1677 
1693 
1709 
1725 
1741 
1757 
1773 
1789 

1805 
1821 
1837 
1853 

1869 
188S 
1901 
1917 

1933 
1949 
1965 
1981 

1997 
201.3 
2029 
2045 

D 

E 

1550 
1566 
1582 
1598 
1614 
1630 
1646 
1662 

1678 
1694 
1710 
1726 
1742 
1758 
1774 
1790 

1806 
182.2 
1838 
1854 

1870 
1886 
1902 
1918 

1934 
1950 
1966 
1982. 

1998 
2014 
2030 
2.046 

E 

1551 I 
1.5671 
158.3 
1599 
161.5 
1631 
1647 
1663 
1679 
1695 I 
1711 
1727 

1743 
1759 
1775 
1791 

1807 
1823 
1839 
1855 

1871 
1887 
1903 
mm 
193.5 
19.51 
1967 
198.3 

1999 
2.015 
2031 
2047 

F 
,.--~~--+-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~--~~~~~-! 

80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
8:\ 
8B 

SC 
80 
SE 
8F 

90 
91 
\)2 

CJ3 

94 
9.5 
96 
97 
98 
99 
9A 
9B 

l)C -

CJD 
9F 
9F 

20·48 
2064 
2080 
2096 

2112 
2128 
2144 
2160 
2176 
2rn2 
2208 
2224 
2240 
2256 
:272 
2288 

2.:)04 
2320 
2.'136 
2:3=;2 

2368 
2384 
2400 
2416 
24::>2. 
2448 
2.464 
2480 

2-Fl6 

2528 
2.'5-14 

2049 
2065 
2081 
2097 

2113 
2129 
214.5 
2161 
2177 
2193 
2209 
2225 
2241 
:?.257 
2273 
:?.289 

230.S 
2321 
2337 
235.3 
2369 
238.5 
2401 
2117 

2433 
2449 
2465 
2481 

2-197 
2.Sl3 
2'529 
25·15 

2050 
2066 
2082 
2098 
2114 
2130 
2146 
2162 
2178 
2194 
:2210 
2.226 

22-t?. 
2258 
2274 
2290 

2306 
2322 
2338 
23,5.1 

2370 
2386 
2402 
2418 

2434 
2450 
2466 
2482 

2.498 
2.S14 
2.530 
2546 

2051 
2067 
2083 
2099 

2115 
2131 
2147 
2163 
2179 
219.5 
2211 
2227 

2243 
2259 
2275 
2291 

2307 
2323 
2339 
2.155 
2371 
2387' 
2403 
2419 

2435 
24.51 
2467 
2483 

2499 
251.S 
2531 
2547 

2052 
2068 
208,1 
2100 
2116 
2132 
2148 
2164 
2180 
2196 
2212 
2228 

2.244 
2260 
227() 
2292 

2308 
232·1 
2340 
2356 
2372 
2388 
2-104 
2120 

2436 
:?.tS:?. 
2·1G."l 
24S4 

2SOO 
2.516 
2532 
2.S48 

205'1 
:?.069 
208.S 
2101 
2117 
:2133 
2149 
216.5 

2181 
2197 
2213 
2229 

2245 
2261 
2277 
2293 

:?.309 
232.S 
2341 
2357 
2373 
:?.38l) 
240.5 
2421 

2437 
24.53 
2469 
24b.S 

2.501 
2.'517 
:?.53:3 
2549 

20.S4 
2070 
2086 
2102 

2118 
2134 
2150 
2166 
2182 
2198 
221·1 
2230 

2246 
2262 
2278 
229.4 

2310 
2326 
2:142 
2.358 
2374 
2390 
2·106 
2422 

2438 
24.S4 
2470 
2486 

2502 
2518 
2534 
2550 

2055 
2071 
2087 
2103 

2119 
2135 
2151 
2167 
2183 
2199 
2215 
2231 
2247 
2263 
2279 
2295 

2311 
2327 
2343 
2359 
2375 
2391 
2407 
2423 

2439 
24'5.S 
2471 
2487 

2503 
2'519 
2.S35 
2551 

20.'56 
2072 
2088 
2104 
2120 
2136 
2.1'52 
2168 
2184 
2200 
2216 
2232 

2248 
226·1 
2280 
2296 

231:?. 
2.32S 
23n 
236() 

2376 
23()2 
2408 
2424 

24·W 
24:-56 
2-172 
2488 
25().! 
2.'520 
2..S36 
2SS2 

20.57 
2073 
2089 
2105 
2121 
2137 
21.S3 
2169 
218.S 
2201 
2217 
2233 

2249 
2265 
2281 
2297 

2'11:3 
2.'329 
2:3-1.S 
2361 
2377 
2393 
2409 
2-12..S 

2-!4 l 
24.57 
2473 
2-189 
2.50.5 
2.'521 
2S:37 
25.')1. 

---------------------------------------·--

20.58 
2074 
2090 
2106 

2122 
2138 
21.54 
2170 
2186 
2202 
2218 
2234 

2250 
2:?.66 
2282 
2298 

231·1 
2330 
2346 
2362 
2378 
2394 
2410 
2426 

2442 
2458 
2474 
2·!90 
2.506 
2.'522 
2338 
2S5-1 

20.S9 
2075 
2091 
2107 

2123 
2139 
21.55 
2171 

2187 
220.3 
2219 
2235 

:?.251 
2267 
2283 
229'.·) 

:?.31.S 
2331 
2317 
2363 
2379 
239.S 
2411 
2427 

2-H3 
2459 
2·175 
2.rn1 

2.507 
2.523 
2.'53lJ 
2.555 

2060 
2076 
2092 
2108 

2124 
2140 
21.56 
2172 
2188 
220-1 
2220 
22.J6 

22.52 
22fl8 
228·1 
2300 

2'116 
2'332. 
2)·4"~ 

2:36-1 
2.'jf;() 

239() 
2·112 
2128 

2144 
2-160 
2-176 
2492 

2508 
2524 
2.540 
2.S.56 

2061 
2077 
2093 
2109 

2E5 
2111 
21.57 
2173 
2i89 
2205 
2221 
2237 

22.53 
2269 
228.S 
2.:301 

2.117 
233:3 
2349 
236.5 

2381 
23SJ7 
:?..!13 
242q 

2·44'5 
2461 
2·177 
24q3 

2.509 
2.'52'1 
2'5·11 
2557 

2062 
2078 
2094 
2110 

2126 
2142 
2158 
2174 

2190 
2206 
2222 
2238 

22.'54 
2270 
2280 
2302 

2.'318 
233·1 
23.'50 
2366 
2382 
239S 
2·±14 
2430 

2446 
2-162 
2-178 
2494 

2510 
2.526 
2542 
2.'5.58 

2063 
2079 
20lJ,S 
2111 
2127 
2143 ,

1 

21.59 
217.5 

2rn1 \ 
2207 I 
2223 I 

22391
1 

22.SS I 

2271 I 

2287 i 

z303 \ 

23191 
23:35 ' 
23.51 ! 

2367 i 
23831 
2.399 
24 J.5 I 
2431 I 

24471 
2463 
2179 I 

2 rn.s : 
I 

2.'51 l I: 

2'527 
2'54:3 
2.5SC) I 

Appendix I. Hexadecimal Tables I-3 



1-4 

AO 
Al 
A2 
A3 
A4 
A5 
A.6_ 
A7 
AS 
A9 
AA 
AB 
AC 
AD 
AE 
AF 

BO 
Bl 
B2 
B3 
B4 
BS_ 
BG __ 
B7 

BS 
B9 _ 
BA __ 
BB 

BC 
RD 
BE 
BF 

0 

2560 

1

2576 
2592 
2608 
2624 
'.:'.6-!0 
26.'56 
2672 
2688 
2704 
2720 
2736 
27.S2 
2768 
2784 
2800 

2816 
28.'12 
2848 
2861 

2880 
2896 
2912 

1 2928 
I 2Y44 

2960 
2976 
2992 
3008 
302-1 
'3040 
3056 

0 

CO_ 3072 
Cl I 3088 
C2 3104 
C3 3120 
C4 3136 
cs 31.52 
CG 3168 
C7 3181 
C8 :3200 
CCJ :Ql6 
CA 32.32 
CB :3248 
CC J2G4 
CD 3280 
CE .r.l296 
CF .'3.312 
!)() 

DJ 
02 
D3 

04 
D.S_ 
DG_ 
D7 
D8 
09 
DA 
DB 

or: 
DD 
DF 
DF 

3328 
'3.31-1 
3360 
3376 
33~)2 

3-108 
3-t?A 
3440 
3-tSG 
:H72 
.34'ik 
'3.50-1 
3.')20 
35.36 
:3.''5.52 
3.)(j.I) 

1 

2.561 
2.577 
2593 
2609 
2625 
26-11 
26.57 
2673 
2689 
270S 
2721 
2737 
2753 
2769 
2785 
2801 

2817 
2833 
28-19 
2865 
2881 
2897 
2918 
2929 
29-4.5 
2961 
2977 
2993 
8009 
30:?..5 
.3041 
30.57 

3073 
3089 
310'5 
3121 

31:37 
31:-53 
:il69 
.'318.S 

3201 
.3217 
:~23:3 
32.JcS) 

32().') 
3281 
3297 
:3313 

:?,)29 
:n.i.s 
33r i 
,3377 

3-109 
3·125 
3-t41 
.1-157 
3473 
3.rn9 
3505 
3.521 
:1537 
3.3.5'3 
:.l.569 

2 

2562 
2578 
2594 
2610 
2626 
2642 
2658 
2674 
2690 
2706 
2722 
2738 
27.5c1 
2770 
2786 
2802 

2818 
2834 
2850 
2866 
2882 
2898 
2914 
2930 
29-rn 
2962 
2978 
2994 
3010 
3026 
3042 
30.58 

2 

3074 
3090 
'3106 
.3122 
,'3138 
31S4 
3170 
3186 
J202 
3218 
3234 
32.50 
3266 
3282 
3298 
331-1 

3330 
3.3-W 
:33G2 
3:378 

33D4 
3410 
3426 
3-142 
345.q 
3474 
3490 
:3.506 
;).')22 
3."'i38 
3.5.5! 
:J570 

3 

2563 
2579 
2.595 
2611 
2627 
2643 
2659 
2675 
2691 
2707 
2723 
27.39 
2755 
2771 
2787 
2803 

2819 
2835 
2851 
2867 
2883 
2899 
291.5 
2931 
2947 
2963 
2979 
299.S 
3011 
3027 
30-43 
30.59 

3 

.3075 
3091 
3107 
3123 
3139 
31S5 
3171 
3187 
.J203 
32]9 
323.'5 
.12'51 
32G7 
32.>n 
3299 
331.5 

3331 
3347 
33G3 
3379 
3395 
;3411 
3-!27 
3443 
34,59 
347.5 
3·191 
3:'J07 
3523 
3539 
3.555 
3571 

4 

2564 
2580 
2596 
2612 
2628 
2644 
2660 
2676 
2692 
2708 
2724 
2740 
27.56 
2772 
2788 
2804 

2820 
2836 
2852 
2868 
2884 
2900 
2916 
2932 
2948 
2964 
2980 
2996 
3012 
3028 
3044 
3060 

4 

3076 
3092 
3108 
3124 
3140 
.31.Sfi 
3172 
3188 
3204 
3220 
32:3(-) 
32.52 
:1268 
-3281 
3.100 
3:316 

3312 
.3'1-ib 
3.30.1 
:3.'3k0 
33()6 
341:2 
3428 
3444 
3460 
3·t7G 
3-Hl2 
3508 

:3.524 
.1'540 
3.55{1 
-3.S72 

5 

2565 
2581 
2597 
261.'3 
2629 
2645 
2661 
2677 
2693 
2709 
2725 
2741 
27.57 
2773 
27W1 
2805 

2821 
2837 
28.53 
2869 
2885 
2901 
2917 
29.33 
2949 
2965 
2981 
2997 
3013 
3029 
3045 
3061 

5 

3077 
3093 
.3109 
312'5 
3141 
3157 
3173 
3UN 
320,"i 
3221 
3237 
32.53 
32()9 
328.5 
:no 1 
3317 

3333 
33·19 
::rrn.s 
3:381 

:3397 
.3413 
3429 
344.5 
34fil 
3477 
34q3 
:).')()() 

3S25 
T:;;1 
3.5.'57 
357:·) 

6 

2566 
2582 
2598 
2614 
2630 
2646 
2662 
2678 
2694 
2710 
2726 
2742 
27.58 
2774 
2790 
2806 

2822 
28.38 
28.54 
2870 
2886 
2902 
2918 
2934 
2950 
2966 
2982 
2998 
3014 
3030 
3046 
3062 

6 

3078 
3094 
3110 
3126 
3142 
3158 
3174 
3190 
.3206 
3222 
3238 
3254 
3270 
3286 
3:102 
3318 

3334 
.33.50 
3366 
3382 
3398 
341-i 
3430 
3446 
3162 
3478 
34<)4 
3510 

352G 
3542 
.3.558 
3.574 

7 

2.567 
2583 
2599 
2615 
2631 
2647 
2663 
2679 
269.5 
2711 
2727 
2743 
2759 
2775 
2791 
2807 

2823 
2839 
2855 
2871 
2887 
2903 
2919 
2935 
2951 
2967 
2983 
2999 
3015 
3031 
3047 
3063 

7 

8 

2568 
2584 
2600 
2616 
2632 
2648 
2664 
2680 
2696 
2712 
2728 
2744 
2760 
2776 
2792 
2808 

2824 
2840 
2856 
2872 
2888 
2904 
2920 
2936 
29.52 
2968 
2984 
3000 
3016 
3032 
3048 
3064 

9 

2569 
2585 
2601 
2617 
2633 
2649 
2665 
2681 
2697 
2713 
2729 
2745 
2761 
2777 
2793 
2809 

2825 
2841 
2857 
2873 
2889 
2905 
2921 
2937 
29.53 
2969 
298.5 
3001 
3017 
3033 
3049 
3065 

A 

2.570 
2586 
2602 
2618 
2634 
26.50 
2666 
2682 
2698 
2714 
2730 
2746 
2762 
2778 
2794 
2810 

2826 
2842 
28S8 
2874 
2890 
2906 
2922 
2938 
2954 
2970 
2986 
3002 
3018 
3034 
3050 
3066 

B 

2571 
2587 
2603 
2619 
2635 
2651 
2667 
2683 
2699 
2715 
2731 
2747 
2763 
2779 
279.5 
2811 

2827 
2843 
2859 
2875 
2891 
2907 
2923 
2939 
2955 
2971 
2987 
3003 
3019 
3035 
30.51 
3067 

c 
2572 
2588 
2604 
2620 
2636 
2652 
2668 
2684 
2700 
2716 
2732 
2748 
2764 
2780 
2796 
2812 

2828 
2844 
2860 
2876 
2892 
2908 
2924 
2940 
29.56 
2972 
2988 
3004 
3020 
3036 
30.52 
3068 

8 9 A B C 
.~~~--~~~~~~~~~~~ 

3079 
3095 
3111 
3127 
3H3 
31.59 
317.5 
3191 
3207 
:3223 
3239 
3255 
3271 
3287 
3303 
3319 

:3.33.S 
;3,3,51 
3367 
3383 
.'3399 
3-tl5 
3431 
34.17 

3463 
3479 
349.5 
.1511 
3.527 
.'3543 
35,59 
3.575 

3080 3081 3082 3083 3084 
3096 3097 3098 3099 3100 
3112 3113 3114 3115 3116 
3128 3129 3130 3131 3132 
3144 314.5 3146 3147 3148 
3160 3161 3162 3163 3164 
3176 3177 3178 .'3179 318() 
3192 319.3 3194 3195 3196 
3208 :3:209 3210 321 J 
3224 322S 3226 ,3227 
32-Hl 3:241 3242 3243 
3256 32.'57 3258 3259 
3272 3273 327 4 327.S 
3288 3289 3290 3291 
3.304 330.S 3306 3307 
3320 3321 3322 3323 

3336 3,337 3338 
33.52 :ns3 3354 
3368 :33fl9 3370 
3381 3385 3.386 
3400 ~3401 3402 
3416 3417 3418 
3-1.32 ~3433 3434 
3448 3449 3450 
346·1 3465 3466 
3480 3481 3482 
34SJ6 3497 3498 
3.S 1 2 3.513 3.S J 4 
3.528 3529 3530 
;3.S44 3.54.S 3546 
3560 356] 3562 
3,576 3577 3.578 

3339 
33.SS 
3371 
3387 
3403 
3419 
343.5 
3451 
3467 
3483 
3499 
3515 
.3.531 
3547 
3.563 
3579 

3212 
3228 
3244 
3260 
3276 
3292 
3308 
3324 

3340 
.1356 
:J372 
3388 
3404 
3420 
3436 
3-1.52 
3468 
348·1 
3.500 
3516 
3.532 
3.548 
.3564 
3580 

D 

2573 
2589 
2605 
2621 
2637 
2653 
2669 
2685 
2701 
2717 
2733 
2749 
2765 
2781 
2797 
2813 

2829 
2845 
2861 
2877 
2893 
2909 
2925 
2941 
2957 
2973 
2989 
3005 
3021 
3037 
3053 
3069 

D 

3085 
3101 
3117 
3133 
3149 
3165 
3181 
3197 
3213 
3229 
3245 
32()1 
3277 
.3293 
3309 
3.325 

3341 
3357 
337.'3 
3389 
3405 
3421 
3:137 
34.S3 

.'3469 
:3485 
3.SOl 
3517 
3.533 
3S-19 
3.565 
3581 

E 

2574 
2590 
2606 
2622 
2638 
2654 
2670 
2686 
2702 
2718 
2734 
2750 
2766 
2782 
2798 
2814 

2830 
2846 
2862 
2878 
2894 
2910 
2926 
2942 
2958 
2974 
2990 
3006 
3022 
3038 
3054 
3070 

E 

3086 
3102 
3118 
3134 
31.50 
3166 
3182 
3198 
3214 
3230 
3246 
3262 
3278 
3294 
3310 
3326 

3342 
3358 
3374 
3390 
3406 
3422 
3438 
34S4 
3470 
3486 
3502 
3518 
3.534 
35.50 
3.566 
3S82 

F 

2575 
2591 
2607 
2623 
2639 
2655 
2671 
2687 
2703 
2719 
2735 
2751 
2767 
2783 
2799 
2815 

2831 
2847 
2863 
2879 
2895 
2911 
2927 
2943 
2959 
2975 
2991 
3007 
3023 
3039 
3055 
3071 

F 

.3087 
~3103 

3119 
3135 
3151 
3167 
:3183 
3199 
3215 
3231 
3247 
3263 
3279 
329.5 
3311 
3327 

3343 
3359 
3375 
3391 
-3407 
3423 
3439 
3455 
3471 
3487 
3503 
3519 
3535 
3551 
3567 
3583 



0 1 2 3 4 5 
------

EO 3.584 3585 3586 3587 3588 3.589 -

El - 3600 3601 3602 3603 3604 3605 
E2 -- 3616 3617 3618 3619 3620 3621 
E3 3632 3633 3634 .3635 3636 3637 -

E4 3648 3649 3650 3651 3652 ~1653 -

ES_ 3664 3665 3666 3667 3668 3669 
E6_ 3680 3681 3682 3683 3684 3685 
E7 -- I 3696 3697 3698 3699 3700 3701 
EB 3712 3713 3714 3715 3716 3717 --

E9_ 3728 3729 3730 3731 3732 3733 
EA -- 3744 3745 3746 3747 3748 3749 
EB - 3760 3761 3762 3763 3764 3765 
EC_ 3776 .3777 3778 3779 3780 3781 
ED_ 3792 3793 3794 3795 3796 3797 
EE 3808 3809 3810 3811 3812 3813 -
EF_ 3824 3825 3826 3827 3828 3829 

FO_ 3840 3841 3842 3843 3844 3845 
Fl - 3856 3857 3858 3859 3860 3861 
F2 - 3872 3873 3874 3875 3876 3877 
F3 -- 3888 3889 3890 3891 3892 3893 
F4 - 3904 3905 3906 3907 3908 3909 
F5 - 3920 3921 3922 3923 3924 392.5 
F6 -- 3936 3937 3938 3939 3940 3941 
F7 - 3952 3953 3954 3955 ;3956 3957 
F8 __ 3968 3969 3970 3971 3972 3973 
F9_ 3984 3985 3986 3987 3988 3989 
FA -- 4000 4001 4002 4003 4004 4005 
FB - I 4016 40li 4018 4019 4020 4021 
FC - 4032 4033 4034 4035 4036 4037 
FD 4048 4049 4050 4051 4052 4053 
FE -- 4064 4065 4066 4067 4068 4069 
FF -- 4080 4081 4082 4083 4084 4085 

6 

3590 
3606 
3622 
3638 
3654 
3670 
3686 
3702 
3718 
3734 
3750 
3766 
3782 
3798 
3814 
3830 

3846 
3862 
3878 
3894 
3910 
3g25 
3942 
39,58 
3974 
3990 
4006 
4022 
4038 
4054 
4070 
4086 

7 

3,59 
360 
362 
363 
36.5 
367 

8 

3S92 
7 3608 
3 3624 
9 3640 

----

9 A B c D E F 
---------------·-----------

359;3 :3594 3595 3.596 .1.397 3598 ;3599 
3609 3610 3611 3612 .3613 :3Gl4 3615 
362.5 :1626 3627 3628 362:) 3630 3631 
~1641 35,i2 3643 3644 3645 3646 3647 
16.57 :36.58 36.59 ,)()60 3661 3662 3663 
3673 J674 3675 %76 ;3577 ;}()78 3679 

5 3656 
1 3672 
i 3688 
3 3704 

368' 3689 3690 3691 3692 3693 3694 369.5 
370 
371 
373 
375 
376 
378 
379 

9 .)720 
5 ,3735 
1 3752 
7 ;J768 

3705 3706 
:1721 3722 
3737 3738 
37.53 3754 
3769 3770 
3785 3786 
3801 3802 

3707 3708 
3723 3724 
3739 3740 
3755 3756 
3771 3772 
3787 3788 
3803 3804 

:3709 3710 3711 
3725 3726 3727 
3741 3742 3743 
3757 37.58 3759 
3773 3774 3775 
3789 3790 3791 
380:5 3806 3807 

3 3784 
9 3800 
5 3816 
l 3832 

381. 3817 3818 3819 3820 3821 3822 3823 
383 

384 
386 
387 
389 
391 
3~)2 

3~H 

3833 3834 3835 .3836 ~3837 3838 3839 

7 3848 J849 3850 3851 3852 :JS53 385kl 3~55 
3 3864 3865 38G6 3867 3868 3869 3870 3871 
9 3880 3881 38.~2 3883 3884 .'3885 :3886 3887 
5 389G 3897 3898 3899 3900 3901 3902 3903 

3912 3913 3914 3915 3916 3917 3918 3919 
7 3928 .3929 3930 3931 3932 :3933 39.34 :393.5 
3 3944 39·i5 394G 3947 3948 3grn 3950 3Y51 
9 3%0 3961 39fo~ 3963 :3864 3t!CC ]966 :39G7 ,395c 

5 3976 3977 3978 3979 3980 39Hl 3982 .'3983 397. 
399 l 3992 399:3 3994 :199.5 3996 ;3997 3908 :39Y9 
400 7 4008 400<.) <1010 4011 4012 4013 4014 4015 
402: ·W24 -102'5 40:?.fi 4027 4028 4029 4030 4031 
403, 9 4040 4041 4042 4043 4044 4045 4046 4047 

5 4056 40.57 4038 4059 4060 40Gl WG2 4063 
1 1012 4073 4074 407.s 4076 4077 4078 4079 I 
7 4088 4089 c1090 4091 4092 409.3 4094 4095 

40.5. 
407 
-WS ·----- _______ ., _____________________ _ 

Appendix I. Hexadecimal Tables 1-5 



Conversion Table: Hexadecimal and Decimal Integers 

HALFWORD HALFWORD 

BYTE 
r-------BYT_E ______________ B--Y-~~-----~--------B-Y---T--E ___ _ 

BITS: 0123 l 4567 L 0123 l 4567 0123 4567 l 0123 4567 

Hex Decimal ~ i Decimal I Hex Decimal l Hex Decimal Hex I Decimal Hex Decimal I Hex Decimal Hex Decimal 

~----OJ_O~-r-- - 0 I 0 ~-,-;:-~-0 1 0 0 0 0 0 l 0 0 
l 268 435,456 · 1 ~,777,21611 1,048,57~---t--J,_~,536 -1---+-r,--4--,0--9-6-+---1-+---25-6__,__1_t---_16 _ __,__1 _ _,__ __ 1 ___, 

2 53b;B70,9l2} 2 I 33,554~-+-12,097, 152 I 2 ~_.!]_1,072-__ -~2_-+-_.__-~8,___, 1~9-2-+-_~2-t-f----5~1~2--+-~2___. __ 3~2--+---,2-~_2,---l 
3 ~05,306,368 I 3 ~31,648 ; 3 . 3, 145,728 3 ~96,608 3 _j_ 12_[_28_8--+--_3_._ __ 7 __ 6_8__.__3--+ __ 48 __ _._!. _3_,___3____, 
4 1 073241 824 4 ~108_L86t-+- 4 I 4, 194,3--Q.4t-4 ' 262 144 4 l 16 384 4 1 024 4 64 4 4 
5 1,342, 177,28oT_ 5 1 83,886,aao 1 5 ; 5,242,88oh- t' 327,680 5 I 20,480 5 1,280 5 80 5 5 
6 1,610,612,736~a663~6 6,291,456 

1 

6 393,216 6 I _2_4~,_57 ___ 6_-+-_6_+-, _1~,5_3_6--+-_6_t---_96 __ -+-_6 _ _,___6 _ _, 
7 1,879,048,192] 7 }117,440,512 7 7,340,032 7 : 458L752 7 :- 281-672 7 T 1,792 i 7 112 7 7 

~ 2, 147,48_'.3,648 I ~ ! 134,2~~- 8 ! 8,388,608 
1

1 sp,288 8 ! 32,768-+-_8___,_2_'.L_048_-+--8-+--_1~28 _ __,__8==:=~:8~_: 
9 2,415,919, 104 9---T150,994,944 ~437, 184 9 . 589,824 9 ; 36,864 9 II, 2,304 ' 9 144 9 9 
A 2,684,354,56ol~67,772, 16o+ A 110,-485,760 I A : 655,360 A ! 40,960 A 2,56ot-A~-l-I -1607~-~A-+---10--1 
B 2 ~ 952 L790 < 01 ITT i I B4 < 5~·~:~-~ -, -- n Ll34 336 T B 7'°" 896 B :-450$6-+. "t---:2'--8cccl-6-+--0B---lr--7'1 7""'6--+-I --,CB---+---o-cl l----1 
c 3_L221_L225_L472 c 201 3~ c 12-1_582 912 1 c 7~~-3_2___. __ c_-~+-1 _4_9~15_2--+-_c __ +--_3~0_7_2--+-_c __ l--_192 __ +---+---12 _ _, 
D , 3,489,660,928 D 218, 1~808 

1 
D 1 13,6~~u D 8511-968 D 1

1 
531-248 D : 3 328 D 208 D 13 

E 3,758,096,384 E J 234,881,024 I' E ~064 I E 917,504 E 57,344 E 3,584 E 224 E 14 
~ 026, 5Jl I 840 F }251 , 658 I 240 i F ~ 640 I F ! 983, 040 F l 61, 440 F [_3_, 840_-+-_F ___,__2_·40_-+-_F __ ,_____1_5---1 

8 7 6 l 5 41 3 

TO CONVERT HEX AD EC IMAL TO DECIMAL 

1. Locate the column of decimal number.; corresponding to 
the left-most digit or letter of the hexadecimal; se!ect 
from this column and record the number that corresponds 
to the position of the hexadecimal dig;t or letter. 

2. Repeat step 1 for the next (second from the left) 
position, 

3. Repeat step 1 for the units (third from the left) 
position_ 

4. Add the number.; selected from the table to form the 
decimal number. 

1. (a) Select from the table the highest decimal number 
that is equal to or less than the number to be co;l
verted. 
(b) Record the hexadecimal of the column containing 
the selected number. 
(c) Subtract the selected decimal from the number to 
be converted . 

2. Us'ng the remainder from step 1 (c) repeat oil of step 1 
to develop the second position of the hexadecimal 
(and a remainder). 

3. Using the remainder from step 2 repeat al I of step l to 
develop the units position of the hexadecimal. 

4. Combine terms to form the hexadecimal number. 

POWERS OF 16 TABLE 
------- --------~-

EXAMPLE 

Conver.;ion of 
Hexadecimal Value 

1. D 

2. 

3. 4 

4. Decimal 

Conver.;ion of 
Decimal Value 

1. D 

2. 3 

3. 4 

4. Hexadecimal 

Example: 268,435,45610 ~ (2.68435456 x 108 ; 10 - 1000 0000;6 '~ (107)1 6 

16 
256 

4 096 
65 536 

048 576 
16 m 216 

I n 

0 

268 435 456 7 
4 294 967 296 

68 719 476 736 9 
099 511 627 776 

1
10 = A 

17 592 186 044 416 i 11 = B 
281 474 976 710 656 :12 = c 

4 503 599 627 370 496 \13 = D 
72 057 594 037 927 936 ! 14 = E 

~~~2~~ 846 ~7__6~ !1_~= F 

Decimal Values

I-6

D34

3328

48

4

3380

3380

-3328
~

D34

2

To convert integer number.; greater than the capacity of
table, use the techniques below:

HEXADECIMAL TO DECIMAL

Successive cumulative multiplication from left to right,
adding units position.

Example: D34 16 = 338010

DECIMAL TO HEXADECIMAL

D = 13
2ill_
208

= + 3
211
x16

3376
4 = +4

-3380

Divide and collect the remainder in reverse order.

Conversion Table: Hexadecimal and Decimal Fractions

BYTE

BITS 0123 4567

Hex I Decimal Hex Decimal Hex

.o I .oooo .00 .0000 0000 .000 .0000

.l I .0625 .01 .0039 0625 .001 .0002

.2 1 . 1250 .02 .0078 1250 .002 .0004

~_j__._1875 .03 .0117 1875 .003 .0007
.4 l . 2500 .04 .0156 2500 .004 .0009
.5 T .3125 .~0195 3125 .005 .0012
.6 T .3750 .06 I .0234 3750 .006 .0014
.7 l .4375 .07 .0273 4375 .007 .0017
.8 l .5000 .08 I .0312 5000 .008 .0019
.9 I .5625 .09 .0351 5625 .009 .0021

.A l .6250 .OA .0390 6250 .OOA .0024

.B I .6875 .OB I .0429 6875 .OOB .0026

.c I .7500 .oc .0468 7500 .ooc .0029

.D t .8125 .OD .0507 8125 .OOD .0031

. E .8750 .OE .0546 8750 .OOE .0034

. F I .9375 .OF .0585 9375 .OOF .0036

1 2

TO CONVERT .ABC HEXADECIMAL TO DECIMAL

Find .A in position l .6250

Find .OB in position 2 .0429 6875

Find .OOC in position 3 .0029 2968 7500

. ABC Hex is equal to .6708 9843 7500

TO CONVERT .13 DECIMAL TO HEXADECIMAL

HALPvVORD

3

BYTE

0123 4567

Decimal Hex Decimal Equivalent

0000
4414
8828
3242
7656
2070
6484
0898
5312
9726
4140
8554
2968
7382
1796
6210

0000 .0000 .0000 0000 0000 0000
0625 .0001 .0000 1525 8789 0625
1250 .0002 .0000 3051 7578 1250
1875 .0003 .0000 4577 6367 1875
2500 .0004 .0000 6103 5156 2500
3125 .0005 .0000 7629 3945 3125
3750 .0006 .0000 9155 2734 3750
4375 .0007 .0001 0681 1523 4375
5000 .0008 .0001 2207 0312 5000
5625 .0009 .0001 3732 9101 5625
6250 .OOOA .0001 5258 7890 6250
6875 .OOOB .0001 6784 6679 6875
7500 .oooc .0001 8310 5468 7500
8125 .OOOD .0001 9836 4257 8125
8750 .OOOE .0002 1362 3046 8750
9375 .OOOF .0002 2888 1835 9375

-~

4

To convert fractions beyond the capacity of table, use techniques below:

HEXADECIMAL FRACTION TO DECIMAL

Convert the hexadecimal fraction to its decimal equivalent using the same
technique as for integer numbers. Divide the results by 16n (n is the
number of fraction positions) .
Example: .8A7 = .54077110

8A716 = 221510 .540771
163 = 4096 4096 I 2215 . 000000

1. Find .1250 next lowest to
subtract

.1300
-.1250 = .2 Hex

2. Find .0039 0625 next lowest to .0050 0000
-.0039 0625 = .01

3. Find .0009 7656 2500 .0010 9375 0000
- . 0009 7 656 2500 = .004

4. Find .0001 0681 1523 4375 . 0001 1718 7500 0000
-.0001 0681 1523 4375 = .0007

. 0000 l 037 5976 5625 = . 2147 Hex

5 .. 13 Decimal is approximately equal to--------~

DECIMAL FRACTION TO HEXADECIMAL

Collect integer parts of product in the order of calculation.

Example: .540810 = .8A716

.5408

1
8 ~

A.._

7 .-

xl6
[ill. 6528

xl6
[2].4448

x16
[].1168

Appendix I. Hexadecimal Tables I-7

Hexadecimal Addition and Subtraction Table

Example: 6 + 2 = 8, 8 - 2 = 6, and 8 - 6 = 2

1 2 3 4 s 6 7 8 I 9
I

A B c D E l F

1 02 03 04 OS 06 07 08 09 OA OB oc OD OE OF I 10

2 03 04 OS 06 07 08 09 OA OB oc OD l OE O"+~ ·~
3 04 OS 06 07 08 09 OA OB oc OD OE I ffi~ ,;~
4 05 06 07 OB 09 OA OB oc OD OE OF 12 13

i
I

s 06 07 OB 09 OA OB oc OD OE OF 10 11 l 12 13 14

6 07 OB 09 OA OB oc OD OE OF 10 11 12 i 13
l

14 15

7 OB 09 OA OB oc OD OE OF 10 11 12 13 14 JS 16

B 09 OA OB oc OD OE OF 10 11 12 13 14 JS l 16 J7

9 OA OB oc OD OE I OF JO lJ :2 13 J4 JS 16 17 lB

A OB oc OD OE OF 10 lJ 12 13 14 lS 16 J7 lB 19

B oc OD OE OF 10 Jl J2 13 14 lS 16 I 17 lB 19 lA

c OD OE OF 10 11 12 13 14 JS 16 17 JB J9 JA lB

D OE OF JO lJ 12 J3 J4 JS J6 I J7 lB J9 lA 1 B lC

E OF 10 Jl J 2 13 14 lS 16 17 lB 19 lA 1 B JC JD

F JO lJ J2 13 14 lS 16 J7 lB J9 JA 1 B JC 1D l lE - 1---

Hexadecimal Multiplication Table
Example: 2 x 4 =OB, F x 2 = JE

1 I 2 3 4 s l 6 7 B 9 A c I D

2

OA OB OE OF 09 01

04 06

oc I OD

: ~: I ~ :: :: :~~~~l :: 1-:·:-~J-::-+-I -~-:__,1
14 J 9 1 E 23 2B 2D . 32 30 3C 4 J I 46 4B

-:-+-:-7--+--:-t--:-:--i-::-+-~-: :: :~ I :: t: kb_ 1 ·:t-::~~

:-+-:_B__._:_:__,1 __ - _: B_B _ _,_ ___ :: :: t :: I :: l :-~~f.-f:: r:-:: :: .
A-+-o_A___,1--J-4--+-J-E--+--_2B_--1-+-_3_2_-___ 3_c I .. - 50 J 5A 64 l 6E- -;s-+-82

1
sc

1

~l
16 ! 21 2C 37 1 42 to I 5S I 63 6q 79 I 84 _i SF I 9A 14

c+--oc-f--1_B_T+-. _2_4--+_3o__..1_3_c __ 1+---48-+-1 _54_ -f-°o 6C 7s 84 j 90 19.;- I AB j 84 •

o OD J A 27 34 4J T 4E SB 1 6B 1 7S B2 I BF • 9C 1 A9 1 B6 rc;-
--+----+---+-----+---+--~l--+---+~--t---+-- --i---t---+--~

E+--OE----1_1_c-+-_2_A_--+-_3_B-+-_46 __ i-~- , 62 70 l 7E BC 9A ~-~~__2_1
F~o_F~_J_E~_2_D~_3c __ ..__4_s_ I SA J!9 -~- 7B B7 96 _ ~~4_l-~_l~~J-~2J

02 03 04 05 r 06 07 08

02

3 03 06 09

4 04 OB QC

s OS QA OF

OB

l-8

Appendix J. EBCDIC Chart

00 01 JO II)sitPositions0,1

00
t---~-~-------+---------, ---.------ ------+--~-~--~----i

00 01 10 11 00 01 10 II 00 01 10 II IBitPositiom2,3
~-+-----+---+----+-------1 -----+-----+----+----+------I ---- -----+---+-----+--+-------!

01 II 10

4 5 6 7 8 9 A B C D E F I First Hexodecimal Digit

-g m 12 12 12 12 12 12 12 I
~ u II II l1 Tl 11 11 11 11
.~~§ f''7~H....--:7.,,....+_,.--0.....,.,.+1,.,.-,..--+-0-+--l--:0-t-'--0-1--0-+---1--0-+-0-+----l,....--+-0-1---1 Zone Punches

-~ g ~';· Digit Punches

____ .-9 9 9 9 9 9 9 9 jlf://'

I 0000 o .$-.1 Np DP DSCD © SP® /J) 0 CD I I CD (®i ® 0® 8_1

~00~01-+--1--t-"-1-t---s_o_H-+-o-c_1-+--s_o_s-l--~-+----+--I --~-1-@)_3 +--+--a-l--l--~-----+-~-----_= _ __j__ti - ~:;--~,~--1----1~-1~
f---00_1_0~2~-2~-sT_x-+--D-c_2-+-F-s_~_sv_N_~--+---41--+-~~-b-~-k~--s-~l_-_-~~-KlS 2 2

0011 3 3 ETX TM t C 1 L 3 3

moo 4 4 ec m m '" o -1 _"_ I ~ -~ u1 u ' ' ~0-1_0_1~5~-S~H-T-+----N-L-+--L-F-~R-S--l----+-------+----1--------0--e--i ~ +--: +-- --~ - f_-:-~1--V-!----5--1--5--l

~0_1_10-+-6-+-"~-6~L-C-+----BS-+----ET_B-~U-C---+---l-----f---+--~--f-l-----0P ___ + vx: I GF j __ Po--+---w--+--6-~-6.........i
0111 7 7' DEL IL ESC E OT g I x 7 7

,.-_ I
"';'._'"

1000 8 I}' GE CAN Q y 8 8

-"-

1001 9 .$".-1 RLF EM

1010 A _s;.,.2' SMM CC SM 8-2

f---io_1_1 +--B-+-8·_3-+--v_r-+_c_u_1_+_c_u2-~c_u_3_~----+--$--+-----+--#-- f------+-----+- -----+-------+---+--------+----+--' ---1--a--3~
<

\- J " ::

1100 c 8-4 fF %

1101 D·W CR

IFS DC4

!GS ENO NAK

--+-------+-- l --+-----+----~---+---~------f-------

1110 E $-6 SO IRS ACK + ; ~ '-f 86

t---+-~,~-..+---+---+---+-----+------4---4---->-1---~--r------+-------!------+---+-----+---+-----1----~
1111 F 8~] Si IUS BEL SUB I EO 8-7

r F'
I , 12 12 12 12 12 12 12. l

.: _·. 1,1 -"'- ..:....:._ I I 11 11 I l 11 11 11

... ~~~__,-+-'--.:H._...,..Q'--+L_,.,........,-+··--+...;....-1-0.;__.....i..-....._.1--0:;,.._+---+-_.:0:...._+_::_0_...+.-...:0:...._+--+-..::0_+-_.:0:_-l Zone Punches
7:"
'~ ~f '9 9 9 9 9 9

Card Hc:ikfcitt~r_n~

CD 12-0-9-8-1

0 12-11-9-8-1

0 11-0-9-8- l

© 12-11-0-9-8-1

C~trol Character Representatio~

ACK Acknowledge
BEL Bell
BS Backspace
BYP Bypass
CAN Cancel
CC Cu.-.or Control
CR Carriage Return
CUI Customer Use l
CU2 Customer Use 2
CU3 Customer Use 3
DC I Device Control l
DC2 Device Control 2
DC4 Device Control 4
DEL Delete
DLE Data Link Escape
DS Digit Select
EM End of Medium
ENO Enquiry

EO Eight Ones

CD
©
CD
CD

No Punches

12

II

12-11-0

EOT End of Transmission

ESC Escape
ETB End of Transmission Block
ETX End of Text
FF Form Feed
FS Field Separator

GE Graphic Escape
HT Horizontal Tab
IFS Interchange Fi le Separator

IGS lnterchonge Group Separator
IL Idle
IRS Interchange Record Separator

IUS Interchange Unit Separator

LC lower Case
LF Line Feed
NAK Negative Ac know lcdg1

NL New L ne
NUL Null

® 12-0

® 11-0

® 0-8-2

®

P ,- Punch Off
F:--.; Punch On

Restore

!,:l_F Reverse Line f-eed

Reader Stop
Shift In

SM Set Mode
SMM Sto1t of Manual Message
SO Shift Out
SOH S tort of Hcodi ng
SOS Start cf Siqnificance

SP Space
STX Start of Text
SUB Subshtute
SYN Synchronous Idle
TM Tape Mork

UC Upper Case
VT Vertical Tab

® 0-1

® 11-0-9-1

® 12-11

?pec;_:'i_c;;r~~~~-~~a~~~:~~

I
&

Cent Sign
Period, Decimal Point
Less-than Sign
Left Parenthesis

Plus Sign
Logical OR
Ampersand
Exclamation Point

Oollo1 Sign
Asterisk
Right Pa1enthesis

Semicolon
Logical ~'OT

Minus Sign, Hyphen

Slash

Verti ca I Line
Comma
Percent

Underscore

I

s
~
}
\
,j

I

Greater-than Sign
Ouestion Mork
Grove Accent
Colon
Number Sign
At Sign
Prime, Apostrophe
Equal Sign
Ouotation Mark

Ti Ide
Opening Brace

Hook
Fork
Closing Brace
Reverse Slant
Chair
Long Vertical Mork

Appendix J. EBCDIC Chart J-1

J-2

Extended Binary-Coded-Decimal Interchange Code

(EBCDIC)

The 256-position EBCDIC table, outlined by the heavy
black lines, shows the graphic characters and control char
acter representations for EBCDIC. The bit-position numbers,
bit patterns, hexadecimal representations and card hole
patterns for these and other possible EBCDIC characters are

also shown.
To find the card hole patterns for most characters, parti

tion the 256-position table into four blocks as follows:

1 3

2 4

Block 1: Zone punches at top of table;
digit punches at left

Block 2: Zone punches at bottom of table;
digit punches at left

Block 3: Zone punches at top of table;
digit punches at right

Block 4: Zone punches at bottom of table;
digit punches at right

Fifteen positions in the table are exceptions to the above
arrangement. These positions are indicated by small num
bers in the upper right corners of their boxes in the table.
The card hole patterns for these positions are given at the
bottom of the table. Bit-position numbers, bit patterns, and
hexadecimal representations for these positions are found in
the usual manner.

Following are some examples of the use of the EBCDIC

chart:

Character Type Bit Pattern Hex Hole Pattern

>------+ ------+------+-------
Zone-;unc~, ___ JDigit Punches

__££ Con!:_~~~~ 00 00 0_1~ ~-' ______ _!~g __
% I Sl"'c1al Graphic ' 01 10 1100 ' 6C f 0,- 8 - 4

-~1Upper Case ' 11 01 1001 --+159t--------iT".~-9---
_____ a__=-_:__wowe~--i -IO-CfO-OOOl-+ 81 12 -0-1

Control Character, I 00 11 0000 I 30 1 12 - 11 - 0 - 91- 8 - 1
i function not yet I : '
1 assigned 1

1 -Bit Positiom

01 23 4567

Appendix K. Number Representation

Fixed-Point with Two's Complement

A fixed-point number is a signed value, recorded as a binary integer. It is called
fixed-point because the programmer determines the fixed positioning of the radix
point. In any length representation, the first bit position (0) holds the sign of the
number, with the remaining bit positions used to designate the magnitude of the
number. Positive fixed-point numbers are represented in true binary form with a
zero sign bit. Negative fixed-point numbers are represented in two's-complement
notation with a 1 bit in the sign position. In all cases, the bits between the sign bit
and the leftmost significant bit of the integer are the same as the sign bit (that is,
all O's for positive numbers, all 1 's for negative numbers). Negative fixed-point
numbers are formed in two's-complement notation by inverting each bit of the
positive binary number and adding 1. For example, the true binary form of the
decimal value (+ 26) is made negative (-26) in the following manner:

S Integer

+26 0 000 0000 0001 1010
Invert 111 1111 1110 0101
Addl 1

- 26 111 1111 1110 0110 (Two's-complement form)

This is equivalent to subtracting the namber

0000 0000 0001 1010
from
0000 0000 0000 0000

The following addition examples illustrate the two's-complement arithmetic. Only
eight bit positions are used. All negative numbers are in two's-complement form.

l. +57 0011 1001
+35 0010 0011

+92 0101 1100

2. +57 0011 1001
-35 1101 1101 No overflow.

+22 0001 0110 Ignore carry; carry into high-order
position and carry out.

3. +35 0010 0011
-57 1100 0111

-22 1110 1010 Sign change only; no carry

4. -57 1100 0111
-35 1101 1101 No overflow.

-92 1010 0100 Ignore carry; carry into high-order
position and carry out.

Appendix K. Number Representation K-1

K-2

5. -57 = 1100 0111
-92 1010 0100

-149 = * 0110 1011 *Overflow; no carry into high-order
position but carry out.

6. +57 = 0011 1001
+92 = 0101 1100

149 = *1001 0101 *Overflow; carry into high-order
position, no carry out.

The presence or absence of an overflow condition may be recognized by the
condition of the carries.

• There is no overflow:

1. If there is a carry into the high-order bit position and also a carry out
(examples 2 and 4).

2. If there is no carry into the high-order bit position and no carry out
(examples 1 and 3).

There is an overflow:

1. If there is no carry into the high-order position but there is a carry out
(example 5).

2. If there is a carry into the high-order position but no carry out (example
6).

The following are 16-bit fixed-point numbers. The first is the largest 16-bit
positive number and the last, the largest 16-bit negative number:

Number Decimal S Integer

21s -1 32,767 0111111111111111
20 1 0 000 0000 0000 0001
0 0 0 000 0000 0000 0000
-20 -1 1111111111111111
_21s -32,768 1 000 0000 0000 0000

Floating Point

Floating-point arithmetic simplifies the programming of computations in which
the range of values used varies widely. It is called floating-point because the radix
placement, or scaling is automatically maintained by the machine. The key to
floating-point data representation is the separation of the significant digits of a
number from the size (scale) of the number. Thus, the number is expressed as a
fraction times a power of 16. A floating-point number has two associated sets of
values. One set represents the significant digits of the number and is called the
fraction. The second set specifies the power (exponent) to which 16 is raised and
indicates the location of the binary point of the number. The two numbers (the
fraction and exponent) are recorded in a single word or a double word. Since
each of these two numbers is signed, some method must be employed to express
two signs in an area that provides for a single sign. This is accomplished by
having the fraction sign use the sign associated with the word (or double word)
and expressing the exponent in excess-64 notation; that is, the exponent is added
as a signed number to 64. The resulting number is called the characteristic. The
characteristic can vary from 0 to 127, permitting the exponent to vary from -64
through 0 to + 63. This provides a scale multiplier in the range of 16- 6 4 to 166 3
A nonzero fraction, if normalized, must be less than 1 and greater than or equal
to 1Il6, so the range covered by the magnitude (M) of a floating-point number
is:

16·65 S M < 1663

or more precisely:

In the short format:

16·65 S M S (1 - 16-6) x 1663

In the long format:

1665 S M S (1 - 16 -14) x 1663

In decimal terms:

16·65 is approximately equal to 5 .4 x 10 -79

1663 is approximately equal to 7.2 x 1075

Appendix K. Number Representation K-3

Conversion Example

K-4

Floating-point data may be recorded in short or long formats. Each format uses a
sign bit in position 0, followed by a characteristic in bit positions 1-7. Short
floating-point operands contain the fraction in bit positions 8-31 ; long operands
have the fraction in bit positions 8-63.

Short Floating-Point Number

~ls_._l~_c_ha_ra_c_te_r_is_ti_c~_.__~_6-_D_ig-it~~
0 1 7 8 31

Long Floating-Point Number

I S I Characteristic 14-o•,!r Frnction

0 1 7 8 63

The sign of the fraction is indicated by a zero or one bit in position 0 to denote a
positive or negative fraction, respectively.

With a given fraction length (6 or 14 digits), a floating-point operation provides
the greatest precision if the fraction is normalized. A fraction is normalized when
the high-order digit (bit positions 8, 9, 10, and 11) is nonzero. It is unnormalized
if the high-order digit contains all zeros.

If normalization of the operand is desired, the floating-point instructions that
provide automatic normalization are used. This automatic normalization is
accomplished by left-shifting the fraction (four bits per shift) until a nonzero digit
occupies the high-order digit position. The characteristic is reduced by 1 for each
digit shifted.

Convert the decimal number 149.25 to a short-format floating-point operand.
(Appendix H provides tables for the conversion of hexadecimal and decimal
integers and fractions.

1. The number is decomposed into decimal integer and decimal fraction:

149.25 = 149 plus 0.25

2. The decimal integer is converted to its hexadecimal representation.

3. The decimal fraction is converted to its hexadecimal representation:

4. Combine the integral and fractional parts and express as a fraction times a
power of 16 (exponent):

95.416 = 0.95416 x 162

5. The characteristic is developed from the exponent and converted into binary:

base + exponent = characteristic
64 + 2 =66 = 1000010

6. The fraction is converted to binary and grouped hexadecimally:

0.95416 = 1001 0101 0100

7. The characteristic and the fraction are stored in the short format. The sign
position contains the sign of the fraction:

S Char Fraction

0 1000010 1001 0101 0100 0000 0000 0000

The following are sample normalized short floating-point numbers. The last
two numbers represent the smallest and- the largest positive normalized
numbers:

Number Powers of 16 s Char Fraction
---·---- ----

l.O +l/16' 16 1 0 100 0001 0001 0000 0000 0000 0000 0000

0.5 +8/16 '\ 16° () 100 0000 1000 0000 0000 0000 0000 0000

1/64 +4/16 \. 16 - l () 011 1111 0100 0000 0000 0000 0000 0000

0.0 +O:xl6-64 0 000 0000 0000 0000 0000 0000 0000 0000

-15.0 -15/16 x 16 1 l 100 0001 1111 0000 0000 0000 0000 0000
5.4:x\0_79

,.....,,,
+J/16 '\ 16-64 0 000 0000 0001 0000 0000 0000 0000 0000

7.2xI0 75
(I - 16-6)" 1663 0 111 1111 1111 1111 1111 1111 I 111 1111

Appendix K. Number Representation K-5

Glossary

This glossary includes definitions developed by the American
National Standards Institute (ANSI) and the International
Organization for Standardization (ISO). This material is
reproduced from the American National Dictionary for
Information Processing, copyright 1977 by the Computer and
Business Equipment Manufacturers Association, copies of
which may be purchased from the American National
Standards Institute, 1430 Broadway, New York, New York
10018.

Most entries in this glossary are defined as they apply to the
8100 Information System.

A

access control. The field of a translation-table entry that
controls the types of storage accesses permitted during the
fetching and execution of an instruction or during a channel
I/O operation.

ACV. See address control vector.

adapter. Hardware that is generally required to transfer data
and commands between the PCE and an I/O device.

address base. The field of an address control vector that
designates the origin of a logical address space in the PCE
address space. It is concatenated with a logical address during
dynamic address relocation.

address control vector (ACV). The formatted information used
to control dynamic address relocation and the activation of
dynamic address translation.

address limit. The field of an address control vector that
designates the maximum logical address in a logical address
space. It is used to check the validity of a logical address
during dynamic address relocation.

address-space origin. The field of an address control vector that
designates the beginning location of a logical address space in
the PCE address space. It is concatenated with the significant
bits of a logical address during dynamic address relocation.

address-space size. The field of an address control vector that
designates the size of a logical address space. It is used by the
PCE to check the validity of a logical address during dynamic
address relocation.

adjunct register. A 32-bit register used as storage for either an
address control vector (ACY), an exception block index (EBI),
or a protection key; only the low-order 16 bit positions are
available to the program.

adjunct register group. All the adjunct registers available to the
PCE.

adjunct register set. A set of eight adjunct registers located
consecutively in the adjunct register group.

application mode. The mode of program execution that allows
processing of all instructions, except those which are
supervisor-privileged or I/0-privileged.

assembler. (ISO) A computer program used to assemble.

B

base address. Either the instruction address or the content of a
general register from which a logical address is derived during
instruction execution by combination with a displacement.

basic status register (DST AT). A 1- or 2-byte register that
contains adapter status information.

block address. The field in a translation-table entry that
contains the common high-order bits of the real addresses
associated with a 2048-byte block of physical main storage.

DST AT. Basic status register.

byte operand. An eight-bit unit of data referenced as an
operand of an instruction.

c
C-bit. One of the four condition indicators.

channel. The facility that controls the transmission of
information between the PCE or main storage and an I/O
device.

channel control vector (CHCV). The formatted information that
specifies the controlling parameters, such as the channel I/O
command, used during a channel I/ 0 operation.

channel 1/0 (CHIO) burst transfer. That portion of a channel
operation during which the channel and an I/O device adapter
are logically connected for transferring information.

channel I/0 command. The field of a channel control vector
that directs a channel and an I/O device adapter to perform a
channel I/0 burst operation.

channel 1/0 (CHIO) operation. The transfer of data between
main storage and an I/O device. The operation consists of one
or more channel I/O burst operations. It is initiated by the I/O
device adapter rather than by the PCE, and is controlled by the
PCE's channel logic. PCE instruction execution is temporarily
suspended while a CHIO operation is in progress.

channel mask. The one-bit mask used to suspend channel I/0
operations.

channel pointer (CHP). The principal register containing the
logical address used during a channel I/O operation.

channel pointer number. The field of a channel control vector
that designates the channel pointer to be used during a channel
I/O operation.

CHCV. See channel control vector.

CHIO. See channel I/O (CHIO) operation.

CHP. See channel pointer.

common mask. The eight-bit mask used to selectively enable or
disable the dispatching of priority levels.

Glossary GL-1

condition indicators. The four bits in a program status vector
(PSV) that reflect the result of a previous arithmetic, logical, or
1/0 operation.

condition values. The values that are assigned to various
combinations of the condition indicators and that may be used
as mask values in conditional branching operations.

configuration. (1) (TC97) The arrangement of a computer
system or network as defined by the nature, number, and the
chief characteristics of its functional units. More specifically,
the term configuration may ref er to a hardware configuration
or a software configuration. (2) The devices and programs that
make up a system, subsystem, or network between the PCE or
main storage and an 1/0 device.

current priority level. The number of the active or controlling
priority level. Contrast with last priority level.

D

DAT. See dynamic address translat;on.

data area. A storage area used by a program to hold
information.

DCV. See diagnostic control vector.

diagnostic control vector (DCV). An implementation-dependent
register that provides system maintenance and initialization
functions.

displacement. The field of an instruction containing a signed or
unsigned value that is combined with a base address to
generate a logical address during instruction execution.

dual mode. Normal mode of processing for dual-PCE
processors, with both PCEs active.

dual program status vectors. The association of two program
status vectors with each priority level. used to facilitate the
definition of both an application program and a supervisory
program on a single priority level.

dynamic address relocation. The mapping of logical storage
addresses to relocated storage addresses.

dynamic address translation (DAT). The mapping of relocated
storage addresses to real storage addresses.

E

EBI. See exception block index registers.

EIRV. See error interrupt request vector.

error interrupt request vector (EIRV). The formatted
information used to indicate an interrupt request generated by
the PCE when a system-check condition is detected, and to
identify the system-check condition.

exception block index (EBI) registers. Fifteen registers, each
associated with a PSV I ACY pair and used during dynamic
address translation. The EBI is used to store the block
(translation-table) index of the address in error when an access
or separation exception occurs during a main storage
operation.

GL-2

F

floating-point register. A 64-bit register used for floating-point
operation.

floating-point register group. All of the floating-point registers
provided with the floating-point feature.

floating-point register set. A set of four floating-point registers
located consecutively in the floating-point register group.

floating-point register set number. The field in a floating-point
status vector that designates the number of the floating-point
register set assigned to a priority level.

floating-point status vector (FSV). The formatted information
used to allocate floating-point registers, to control exception
masking, to control precision, and to hold and indicate
floating-point check and program-exception conditions related
to floating-point operations.

FSV. See floating-point status vector.

G

general register. A 32-bit register, in the primary or secondary
register set, generally used for storage-address modification
and generation, fixed-point (binary) arithmetic, and logical
(boolean) operations.

H

H-hit. One of the four condition indicators.

halfword (HW). Two bytes of information.

halfword operand. A 16-bit unit of data referenced as an
operand of an instruction.

hex. hexadecimal

HW. See halfword.

ICE. See Interrupt Control Element.

initial program load (IPL). (1) The initialization procedure that
causes an operating system to begin operation. (2) The process
by which a configuration image is loaded into storage at the
beginning of a work day or after a system malfunction.

input/ output (1/0). (I) (ISO) Pertaining to a device whose
parts can be performing an input process and an output process
at the same time. (2) Pertaining to either input or output, or
both.

instruction address. The logical address that is used to fetch an
instruction.

instruction address modifier. The bit that indicates whether the
instruction address designates the starting location, or two
bytes beyond it, of the instruction being executed when a
program-exception or system-check interruption occurs.

interrupt control element (ICE). Logic that controls
communication between the two PCEs in dual-PCE processors.

interrupt request. A request for processing on a particular
priority level. It may be generated by the active program, the
PCE, or an 1/0 device.

1/0. See input/output.

I/O interrupt request vector (IOIRV). The formatted
information used to indicate an interrupt request generated by
an I/0 device.

IOIRV. See l I 0 interrupt request vector.

I/0 mode. The mode of program execution that allows
processing of all instructions except those which are
supervisor-privileged.

1/0-privileged instruction. An instruction that may be executed
in I/O, supervisor, or master modes but not in application
mode.

IOIRV. See 1/0 interrupt request vector.

IPL. See initial program load.

K

KOO. Control direct out.

L

last priority level. The number of the last (most recent) priority
level that was active prior to dispatching the current program
status vector. Contrast with current priority level.

lock. Set! translation lock and translation lock table.

logical address. The storage address that is either supplied to or
by a program during the fetching and execution of an
instruction, or is used as a channel pointer during a channel
1/0 operation. Contrast with relocated address.

logical address space. The set of logical addresses numbered
sequentially from zero to one less than the address limit. See
also address limit.

logical storage. The concept of storage space that may be
regarded as addressable main storage by a program or channel
I/O operation in which logical addresses are mapped into real
addresses.

M

master mask. A one-bit mask used to suspend the dispatching of
a new priority level.

master mode. The mode of program execution that allows
processing of all instructions and permits overriding
store-protection and execution-protection access control.

p

PAV. See program activation vector.

PCE. See processing and control element.

PCE address space. The set of relocated addresses numbered
sequentially from zero to the maximum available address.

PEC. See program exception code.

PIC. See program information code.

PIO. See programmed 1/0.

PIRV. See programmed interrupt request vector.

primary PSV. One of two program status vectors (PSVs),
associated with each priority level, normally used for the
definition of a supervisory program.

primary register set. One of two principal register sets assigned
to a program for use as general registers. See also secondary
register set.

primary register set number. The field in a program status
vector that designates the number of the primary register set.

principal register. A 32-bit register used as a general register, as
storage for half of a program status vector, or for storage of a
channel pointer.

principal register group. All principal registers available to the
PCE.

principal register set. A set of eight principal registers located
consecutively in the principal register group.

priority level. A number ranging from 0 to 7 that designates a
relative precedence among interrupt requests, so that
processing on one level may be temporarily suspended when an
interrupt request is generated for a level of higher priority
(lower number).

processing and control element (PCE). The part of the processor
that contains the sequencing and processing controls used for
instruction execution, interruption control, dynamic address
transformation, and other control and processing functions.

program activation vector (PAV). The formatted information
used to control which of two program status vectors is
introduced when a new priority level is made active. See also
dual program status vectors.

program exception. The condition recognized by the PCE
resulting from execution of a program, including the improper
specification or u~e of instructions, operands, or control
information.

program exception code (PEC). A four-bit code that identifies
the cause of a program exception.

program information code (PIC). A field in a program status
vector that either contains the program exception code or
indicates that a Call PSV instruction was executed.

program mode (PM). The field in a program status vector that
controls which instructions may be executed by the associated
program. See also application mode, 1/0 mode, master mode,
and supervisor mode.

program status vector (PSV). The formatted information used
to control the order in which instructions are executed, to
allocate general registers, and to hold and indicate the status of
the PCE in relation to a particular program.

programmed interrupt request vector (PIRV). The formatted
information used to indicate an interrupt request generated by
the executing program.

Glossary GL-3

programmed I/O (PIO) address. The information specified as
an operand of an 1/0 instruction that identifies the I/O device
adapter to be selected for a programmed 1/0 (PIO) operation.

programmed I/O (PIO) command. The information specified as
an operand of an 1/0 instruction that directs an 1/0 device
adapter to perform a programmed 1/0 operation.

programmed I/O (PIO) operation. The transfer of data between
the PCE and an 1/0 device as part of the execution of an I/O
instruction. The 1/0 instruction designates the address of the
1/0 device adapter, the command to be performed, and the
register into or from which the data is transferred.

protection key. One of 80 8-bit registers associated with a
PSV I ACY and CHP/ACV pair and used in conjunction with
the 8-bit translation lock to access addresses within that
2K-byte block. See also translation lock.

PSV. See program status vector.

R

real address. The address of a physical main storage location.

register (ISO). A storage device having a specified storage
capacity such as a bit, a byte, or a computer word, and usually
intended for a special purpose.

relocated address. The address in the PCE address space that is
derived during dynamic address relocation by concatenating
the high-order bits of the address base with the low-order bits of
the logical address. Synonym for real address when dynamic
address translation is not active.

result condition. One of five logical entities that describe the
result of arithmetic, logical, or I/O operations. Each result
condition has two possible states: indicated or not-indicated.

s
SCF. See system control facilities.

secondary PSV. One of two program status vectors, associated
with each priority level, normally used for the definition of an
application program.

secondary register set. One of two principal register sets
assigned to a program for use as general registers. See also
primary register set.

secondary register set number. The field in a program status
vector that designates the number of the secondary register set.

separation protection. Provides a method to logically separate
programs and/or channel I/0 operations within a logical
address space through the use of translation locks and
protection keys.

single mode. The mode that exists in dual-PCE processors when
only one PCE is operational.

supervisor mode. The mode of program execution that allows
processing of all instructions.

supervisor-privileged instruction. An instruction that may be
executed in supervisor or master modes but not in application
or 1/0 modes.

GL-4

suspended. The state of a PCE in dual-PCE processors when its
master mask is reset after the other PCE has reset its master
mask. While in this state, instruction execution cannot occur.

system check. An error that is detected by the PCE, channel,
or floating-point feature and is identified in the error interrupt
request vector. The error may be due to equipment
malfunctioning, an I/O check (such as an invalid PIO
command), an exception related to a channel 1/0 operation, or
a program exception recognized when a primary PSV is active.

system control facilities (SCF). Control facilities that provide
system functions, such as 1/0 interrupt request identification,
programmable assignment of 1/0 devices to priority levels,
execution of direct-control instructions, initial program load
(IPL), and system and I/ 0 reset.

T

translated address. The real address that is derived during
dynamic address translation by concatenating the block
address from a translation-table entry with the low-order 11
bits of the relocated address.

translation-control bit. The bit in an address control vector used
to activate dynamic address translation.

translation lock. An 8-bit lock associated with each 2K-byte
block of logical storage.

translation lock table. A table that provides an 8-bit lock for
each 2K-byte block of logical storage. See also translation lock.

translation table. The table that maps blocks of relocated
addresses to blocks of real addresses during dynamic address
translation.

translation-table entry. An entry in the translation table
containing access control information and the block address
that designates a 2048-byte block of physical main storage.

v
V-bit. One of the four condition indicators.

vector. One or more related fields of information in a specified
format, associated with the control of a PCE, a channel, or
floating-point facility.

w
wait. The state of the PCE when it cannot fetch or execute
instructions because no interrupt request is present for an
enabled priority level and the master mask is set to 1.

word. Four bytes of information.

word operand. A 32-bit unit of data referenced as an operand of
an instruction.

z
Z-bit. One of the four condition indicators.

Index

abnormal ending of PIO operations 8-7
access control bits (in translation table entry) 7-10
access exception 3-17
access protection 7-10, 8-23
access to main storage, control of 7-10
access to register contents 6-12
accesses (references), sequence of main storage 3-10
ACY (address control vector) 7-3, 9-6

assigned adjunct register locations 6-3
association with CHP 6-8, 8-22
association with PSV 6-6, 9-9
exceptions associated with ACY 9-6
format 7-3
origin field 7-5
size field 7-3
translation control bit 7-3, 7-6

adapters
attachment of 8-2
with multiple devices attached 8-5

ADD (byte, register) instruction (AR) 4-10
ADD (byte, register-immediate) instruction (ARI) 4-11
ADD (halfword, register) instruction (AHR) 4-12
ADD (halfword, register-immediate)

instruction (AHRI) 4-1 3
ADD NORMALIZED (register) instruction (AFR) 5-8
ADD NORMALIZED instruction (AF) 5-8
ADD UNNORMALIZED (register)

instruction (A UR) 5-10
ADD UNNORMALIZED instruction (AU) 5-10
ADD WITH CARRY (byte, register)

instruction (A YR) 4-11
ADD WITH CARRY (halfword, register)

instruction (A YHR) 4-14
ADD WITH CARRY (halfword, register, extended)

instruction (A YHRE) 4-14
address

base (in operand designation) 3-4
block (in translation table entry) 7-8
branch 3-7
instruction (in PSV) 9-3
invalid 3-), 3-19
logical 2-2, 7-1
PIO 8-5
real 2-2, 7-1
storage, designation of

(for CHIO operations) 8-20, 8-23
storage operand 3-4

address arithmetic (generation) 3-4
address control vector (see ACY)
address exception 3-19
address generation 3-4
address limit exception condition 3-19
address relocation (see dynamic address relocation)
address space

logical 7-1
PCE 7-1
real 7-1, 7-6

address space origin. logical 7-5
address space size, logical 7-3
address translation (see dynamic address translation)
address underflow exception condition 3-19
addresses

relocated 7-13
(see also dynamic address relocation)

translated 7-13
(see also dynamic address translation)

types of 2-2
addressing

capability 2-2
main storage 2-2
the adjunct and principal register groups 6-12
the translation table 7-8
vector, register indirect (see register indirect

addressing vector)
adjunct registers

partially available to program 6-4
permanently assigned 6-4
reserved 6-4

AND (byte, register) instruction (NR) 4-16
AND (byte, register-immediate) instruction (NRI) 4-17
AND (halfword, register) instruction (NHR) 4-17
AND WITH PROGRAMMED INTERRUPT REQUEST
VECTOR instruction (KI-6) 9-32

application mode 9-2, 9-3
arithmetic (see floating-point instructions;
general instructions)

assembly language operand specification (see Appendix B)
assigned register locations

(see also Appendix F)
adjunct registers assigned to hold ACVs and EBis 6-6
principal registers

assigned as CHPs 6-3
assigned to hold PSVs 6-3
available for use as general registers 6-1

attachment of I/O adapters and devices 8-2

B field of an instruction 3-4
base address (in operand designation) 3-4
basic status register (BSTAT) 8-12

accessing contents of 8-14
enabled bit in 8-13
equipment check bit in 8-13
interrupt request bit in 8-14

binary notation, excess-64 5-2
bit, check 2-1, 8-3
bits in a byte 2-1
block (of addresses) 7-8
block address (in translation table entry) 7-8
block index (field of an address) 7-8
block invalid bit (in translation table entry) 7-10
block invalid exception condition 3-17
blocking of data (CHIO operations) 8-22
boundaries in main storage, integral 2-2
branch address 3-6
BRANCH AND LINK (register) instruction (BA.LR) 4-19
BRANCH AND LINK instruction (BAL) 4-18
BRANCH ON CONDITION (register)

instruction (BCR) 4-21
BRANCH ON CONDITION instruction (BC) 4-20
BRANCH ON COUNT (byte, register)

instruction (BCTR) 4-23
BRANCH ON INDEX (byte) instruction (BNX) 4-24
branching, general description of 3-8, l 0-4
B ST AT (basic status register) 8-12
burst transfer (in CHIO operations) 8-18, 8-22

Index X-1

byte
definition 2-1
operands in a general register 2-3

byte index (field of an address) 7-8
byte-mode device 8-3

CALL PSY instruction (KI-127) 4-25
carry, fixed-point 4-2
channel (general description) 8-2
channel control vector (see CHCY)
channel exception 8-28, 9-30
channel input/ output 8-18

(see also CHIO)
check (system check) 8-28, 9-30
command codes 8-33
commands 8-25
operation 8-18

channel mask (CHM) 8-31
channel pointer (see CHP)
channel store protection bit (in translation table

entry) 7-10, 8-23
characteristic in floating-point operands 5-2
CHCY (channel control vector) 8-23, 8-32

CHIO command code 8-33
CHP number 8-33
flag 8-33
format 8-33

check bit 2-1, 8-3
checks, system (see system checks)
CHIO (channel input/output) 8-·18

blocking of data 8-22
burst transfer 8-18, 8-21
command codes 8-33

modifier bits 8-3 3
table of 8-33

commands 8-26
read data 8-25
read data address 8-26
read data address and read data 8-26
read data address and write data 8-26
write data 8-25
write data address 8-26

designation of storage area 8-23
operations

conclusion of 8-27
enabling and disabling 8-30
execution of 8-21, 10-3
general description 8-18
initiation of (by program) 8-18
start CHIO (definition) 8-18

CHM (channel mask) 8-31
CHP (channel pointer) 8-22

assigned principal register locations 6-4
associated with ACYs and EBls 8-23, 6-6
number (in CHCV) 8-33
numbering 6-4, 8-22
usage 8-27

CM (common mask) 9-16
code

CHIO command 8-3 3
PIO command 8-5
program exception 3-14
program information 9-3

command code modifier bits, CHIO 8-33
commands

CHIO 8-25
PIO 8-5

X-2

common mask (CM) 9-16
caution in use of 9-16

COMPARE (byte, register) instruction (CR) 4-26
COMPARE (halfword, register) instruction (CHR) 4-27
COMPARE (register) instruction (CPR) 5-11
COMPARE instruction (CF) 5-11
COMPARE LOGICAL (bytes, storage)
instruction (CLS) 4-29

COMPARE LOGICAL (halfwords, storage)
instruction (CLHS) 4-31

COMPARE WITH CARRY (halfword, register, extended)
instruction (CYHRE) 4-28

compatibility of operation (I/O instructions to devices) 8-4
completion (type of ending of instruction

execution) 9-22, 3-12
conceptual sequence (order) in instruction execution 3-10
conclusion (termination) of PIO operations 8-8
conclusion of CHIO operations 8-28

due to channel exception 8-29
due to equipment malfunction 8-30
normal 8-29

condition indicators (in PSY) 9-4
conditions

program exception (see program exceptions)
result (see result conditions)
system check (see system checks)

control
PCE 9-1
direct 9-47

control bits, access (in translation table entry) 7-10
CONTROL DIRECT OUT instruction (KDO) 9-48
control immediate instructions (KI) (see PCE control

instructions)
control information, CPU (see PCE control information)
control vector

address (ACY) 7-3
channel (CHCY) 8-32

COUNT LEADING ZEROS (halfword) instruction (CTLZ) 4-33
counter, instruction (see instruction address in PSY)
CPL (current priority level) 9-17
current

ACY 9-6, 7-2
FSV 9-6, 5-4
PSY 9-2

current priority level (CPL) 9-17

D field of instruction 3-5
data

address (in CHP for CHIO operations) 8-23
format

fixed-point numbers 4-1
floating-point numbers 5-1
unstructured logical quantities 4-1

prefetching and buffering of during CHIO
operation 8-26

transfer (I/O)
concluding of for CHIO operation 8-28
methods of 8-3

units
for instruction operands 2-2
for 1/0 devices 8-3

decision making by branching operations 3-10
designation of storage area

for CHIO operations 8-24, 7-1
for programs 7-l

device, 1/0
(see also input/ output device)
compatibility of with I/O instructions 8-4
description of 8-2

detected error 8-14
reset 8-18
status information 8-12

diagnostic control vector instructions 9-46
READ DIAGNOSTIC CONTROL VECTOR

instruction 9-46
WRITE DIAGNOSTIC CONTROL VECTOR
instruction 9-4 7

direct-control instruction 9-46
disabling, enabling (see enabling and disabling)
disabling priority level 0 (caution) 9-16
DISPATCH NEW LEVEL instruction (KI-28) 9-32
dispatching, priority level 9-16
displacement (in storage-operand designation)

(see also Appendix D)
general description 3-5
range of 3-6
signed 3-5

in branch instructions (RS-Long format) 3-7
in floating-point instructions (FS format) 3-7
in jump instructions (J format) 3-6
in load and store instructions (RS-Long format) 3-6

unsigned in load and store instructions (RS format) 3-6
DIVIDE (halfword, register) instruction (DHR) 4-34
DIVIDE (register) instruction (D FR) 5-13
DIVIDE instruction (DF) 5-12
doubleword (definition) 2-1
dual-mode processing

dynamic address relocation
and translation 10-5

floating-point instructions l 0-5
general instructions 10-4
input-output operations 10-6
logical structure 10-1
PCE control 10-6
PCEs 10-2
program execution

exceptions 10-4
execution 10-3
sequence of execution l 0-4

register organization 10-5
storage and registers 10-2

dual PSV I ACY facility 9-9
primary and secondary PSV I ACY pairs 9-9
program activation vector 9-10

dynamic address relocation 7-1, 10-5
ACY 7-3
address exception during 7-3
addresses relocated 7-11
logical address space 7-1

origin of 7-6
size of 7-3

process 7-6
specification exception during 7-7

dynamic address relocation and translation 7-1, 10-5
dynamic address transformations 1-28
dynamic address translation 7-7

access exception during 7-10
addresses translated 7-11
block size 7-8
process 7-9
specification exception during 7-9
table 7-8

entries, common 10-5
entries, number of 7-8
entries, private 10-5
lookup 7-9

table entry 7-8
access control field 7-8
block address 7-9

EBCDIC chart (see Appendix J)
EBI assignments 6-6, 6-7
EIRV (error interrupt request vector)

definition 9-13
format 9-26
instruction address modifier 9-26
system checks identified by 9-27

enabling and disabling
CHIO operations 8-31

by channel mask 8-32
by EIRV 8-32

floating-point program-exception interruptions 5-5
priority level interruptions 9-14

by common mask 9-16
by master mask 9-15

system check interruptions (cautionary
programming note) 9-28

ending of instruction execution, types of 9-22, 3-12
equipment check

device status bit (in B ST AT) 8-13
FSV status bit 9-7

error
input/output 8-8, 8-29
program 2-1 3
storage 9-29

error interrupt request vector (see EIR V)
exception block index (see EBI)
exception indicators (in FSV), floating-point 9-8, 5-5
exception masks (in FSV), floating-point 9-7, 5-5
exceptions

channel 8-29, 9-30
program 3-13

(see also program exceptions)
associated with ACY introduction 9-6
associated with PSV introduction 9-5
related to FSV 9-8

excess-64 binary notation (in a floating-point number) 5-2
EXCLUSIVE OR (byte, register) instruction (XR) 4-35
EXCLUSIVE OR (byte, register-immediate) instruction

(XRI) 4-36
EXCLUSIVE OR (halfword, register) instruction

(XHR) 4-36
execution

of a program 3-8
of CHIO operations 8-22
of interruptible instructions 3-10

execution protection bit (in translation table entry) 7-10
execution protection exception condition 3-17
exponent in a floating-point number 5-2
exponent overflow exception 5-7
exponent underflow exception 5-7

F field of an instruction 3-4, 2-9
feature, floating-point 5-1
fetch reference

instruction 3-11
storage operand 3-11

FF instruction format 3-2
field (see instruction format)
fixed-length operands 2-1
fixed-point

number representation
signed 4-1
unsigned 4-1, 4-3

numbers 4-1
numbers, extended 4-3

fixed-point overflow exception 3-20
flag, CHCV 8-33

Index X-3

floating-point
data format, short and long 5-1
equipment check 9-7
guard digit 5-2
instructions 5-1, l-23, 10-5
masking (disabling) exceptions 5-5
normalization 5-3
number representation 5-2
program exceptions 5-5, 3-20
register sets 2-9
setting precision mode 5-5

floating-point divide exception 5-6
floating-point exception 5-5, 3-20
floating-point feature 5-1, 10-2
floating-point operation exception 5-6
floating-point privileged operation exception 5-6
floating-point register 5-1, 2-7
floating-point specification exception 5-6
floating-point status vector (see FSV)
format

ACY 7-3
data

fixed-point 4- l
floating-point 5·· l

EIRV 9-26
FSV 9-7
PSV 9-3
translation table entry 7-8

formation
of relocated addresses 7-6
of translated (real) addresses 7-9

formats
control information (see Appendix E)
information 2-1
instruction 3-2

forming (generating) the operand address 3-4
fraction in floating-point operands 5-2
FS instruction format 3-2
FSV (floating-point status vector) 9-6, 5-4

current (definition) 9-6
exceptions related to the FSV 9-8
instructions for referring to the FSV 5-4

FSV format 9-7
equipment check bit 9-7
exception indicators 9-8
exception masks 9-7
floating-point register set number 9-7
precision mode bit 9-7
reserved bits 9-8

general instructions 4-1, 10-4
data format 4-1
extended fixed-point numbers 4-3
representation of fixed-point numbers 4-1

general register
definition 2-4
operands, usage for

byte 2-4
halfword 2-4
word 2-4

pair 2-7
quadrant 2-7
sets

assigning to a program (in PSV) 6-3, 9-4
primary 2-4, 6-3
secondary 2-4, 6-3

general registers 2-4, 10-2
guard digit, floating-point 5-2

X-4

halfword
alignment in main storage 2-2
definition 2-1
operands in a general register 2-4

halfword-mode device 8-3
handling of multiple program exceptions 3-21
handling of multiple system checks 9-28
hexadecimal tables (see Appendix I)

I-field in an instruction 3-4
identification of source of interruption 9-24
immediate operand 3-1
implicit (address) translation 7-7
implicit general-register operand 3-1
implied field length of operands 2-1
information

formats, control (see Appendix E)
positioning of on integral boundaries 2-2
units 2-1

initial state of PCE 9-1
INPUT/OUTPUT (byte) instruction (IO) 8-8
INPUT I 0 UTPUT (byte, immediate) instruction (I 0 I) 8-10
INPUT/OUTPUT (halfword) instruction (IOH) 8-11
input/output (1/0)

adapter 8-2
basic status register (BSTAT) 8-12
channel 8-2
commands

CHIO 8-26
PIO 8-5

device 8-2
address of, PIO 8-5
assignment of to priority level 8-16
attachment of 8-2
byte-mode 8-3
halfword-mode 8-3

general description 8-1, 10-6
instructions 8-8

compatibility of to devices 8-4
interrupt requests 8-17, 9-11
interruptions 8-16

multiple, for the same priority level 8-17
priority of 8-16

operations
channel (see CHIO operations)
programmed (see PIO operations)
types of 8-3

selective reset 8-18
system reset 8-18

input/output interrupt request vector (IOIRV) 9-13, 8-17
input/ output mode 9-2, 9-3
input/ output operations 8-1, 1-49
input/ output-privileged instruction (definition) 9-2
instruction

address
as a base address (in address generation) 3-6
in PSV 9-3
updated 3-9

address modifier bit
in EIRV 9-26
in PSV 3-14

B field 3-5
all O's in 3-5

D field 3-5
descriptions, explanation of 4-5
direct control 9-47
execution 3-8

conceptual sequence (order) of 3-11
F field 3-4, 2-9

fetch 3-11
formats

basic 3-2
summary of (see Appendix D)

I field 3-4
input/ output-privileged (definition) 9-2
mnemonics (see mnemonics, instruction)
operands 3-1
operation code 3-2

(see also Appendix D)
operations (see Appendix C for summary)
r field 3-4, 2-7, 3-1
R field 3-4, 2-7
supervisor-privileged (definition) 9-2

instructions (see Appendix A for listings)
instructions

assembly language notation for (see Appendix B)
fixed-point (see general instructions)
floating-point 5-7, l 0-5
format of 3-2
general 4-9
input/ output 8-8
interruptible 9-23, 3-10
logical (see general instructions)
PCE control 9-31
register indirect 6-10
translation table 7-11

integer (see fixed-point number representation)
integral boundaries (in main storage) 2-2
internal control check 9-30
internal data check 9-31
interrupt control element (ICE) 1-2, 10-2, 10-6
interrupt request 9-11
interrupt reque-st vector

error (EIRV) 9-13
input/ output (IO IRV) 9-13, 8-17
programmed (PIRV) 9-13

interrupt requests, priority of 9-11
interruptible instructions 9-23, 3-10
interruption, program exception 3-13

with primary PSV active 9-10, 9-27
with secondary PSV active 9-10, 9-21

interruption, system check 9-26
interruption (to program execution)

classes 9-24
general description 9-11
1/0 (input/output) 8-16, 9-24
point of (occurrence of) 9-21
priorities 9-1 1
program exception 3-13
programmed 9-13
source identification 9-24
system-check 9-26

interruption action 9-20
to a new priority level 9-20
within the current priority level 9-21

interruption classes
call PSY 9-21
input/ output 9-11, 8-16
program exception (with secondary PSY active) 9-21
programmed 9-1 1
system check 9-11, 9-26

channel exception 9-27
input/ output check 9-27
machine check 9-27
program exception (with primary PSV active) 9-27

interruption information 9-24
program exception 3-13, 9-24
source of 9-24

summary of 9-25
system check 9-27

interruption pending (I/O)
at PCE 8-17
at device 8-1 7

interruptions 9-11
invalid operation exception condition 3-18
I/O (see input/output)
I/O control check 9-28
I/ 0 instructions 8-8
II 0 selective reset 8-18
I/O timeout check 9-29
IOIRV (input/output interrupt request vector) 9-13, 8-17
IPL (initial program load) (see SL manual for
processor model)

J instruction format 3-2
JUMP ON BIT ZERO instruction (JBZ) 4-37
JUMP ON CONDITION instruction (JC) 4-38

last priority level (LPL) 9-17
length of operand 2-1

immediate operands 3-4
register operands 3-4, 2-4
storage operands 3-1 , 3-4

LOAD (byte) instruction (L) 4-41
LOAD (byte, register) instruction (LR) 4-43
LOAD (byte, register-immediate) instruction (LRI) 4-44
LOAD (byte, register-indirect) instruction (LRN) 6-13
LOAD (byte, with index) instruction (LN) 4-41
LOAD (byte, with index decremented)

instruction (LND) 4-41
LOAD (byte, with index incremented)

instruction (LNI) 4-42
LOAD (halfword) instruction (LH) 4-44
LOAD (halfword, register) instruction (LHR) 4-48
LOAD (halfword, register-indirect)

instruction (LHRN) 6-14
LOAD (halfword, register, lower half from upper)

instruction (LHRL U) 4-48
LOAD (halfword, register, upper half)

instruction (LHRU) 4-49
LOAD (halfword, register, upper half from lower)
instruction (LHRUL) 4-49

LOAD (halfword, short form) instruction (LHS) 4-45
LOAD (halfword, with index) instruction (LHN) 4-46
LOAD (halfword, with index decremented)

instruction (LHND) 4-46
LOAD (halfword, with index incremented)

instruction (LHNI) 4-47
LOAD (halfwords, quadrant) instruction (LHQ) 4-50
LOAD (register) instruction (LFR) 5-14
LOAD (word) instruciion (LW) 4-51
LOAD ADDRESS instruction (LA) 4-39
LOAD AND TEST (register) instruction (LTFR) 5-15
LOAD COMPLEMENT (register) instruction (LCFR) 5-15
LOAD FROM ADDRESS TRANSLATION TABLE

instruction (LAT) 7-13
LOAD FROM ADDRESS TRANSLATION LOCK TABLE

instruction (LATL) 7-15
LOAD instruction (LF) 5-14
LOAD NEGATIVE (register) instruction (LNFR) 5-16
LOAD POSITIVE (register) instruction (LPFR) 5-16
LOAD ROUNDED (register) instruction (LRFR) 5-17
logical address

definition 2-2
relocation of 7-6

Index X-5

space 7-1
(see also PCE address space; real address space)

logical structure
dual-mode processing 1-1, 10-1
single PCE processors 1-1

long floating-point number 5-1
LPL (last priority level) 9-17

machine check (class of system check) 9-27
machine check interruption (see system check interruption)
main storage

accesses, control of 7-10
addresses

logical 2-2
real 2-2

addressing 2-2
controlled sharing of by TEST AND SET (byte)

instruction 3-13
general description 2-2
integral boundaries 2-2
operands 3-1
physical 2-2, 7-1
references, sequence of

mask

actual operation 3-11
conceptual operation 3-1 l
shared 10-2

channel 8-32
common 9-16
master 9-15

mask values used in branching operations 3-9
masks, floating-point exception (in FSV) 5-5
master mask (MM) 9-15
master mode 9-2, 9-3
maximum logical address 7-5
methods of data transfer (l/O) 8-3
MM (master mask) 9-15
mnemonics, instruction

AF ADD NORMALIZED 5-8
AFR ADD NORMALIZED (register) 5-8
AHR ADD (halfword, register) 4-12
AHRI ADD (halfword, register-immediate) 4-13
AR ADD (byte, register) 4-10
ARI ADD (byte, register-immediate) 4-J 1
AU ADD UNNORMALIZED 5-10
AUR ADD UNNORMALIZED (register) 5-10
AYHR ADD WITH CARRY (halfword, register) 4-14
AYHRE ADD WITH CARRY (halfword, register,

extended) 4-14
AYR ADD WITH CARRY (byte, register) 4-11
BAL BRANCH AND LINK 4-18
BALR BRANCH AND LINK (register) 4-19
BC BRANCH ON CONDITION 4-20
BCR BRANCH ON CONDITION (register) 4-21
BCTR BRANCH ON COUNT (byte, register) 4-23
BNX BRANCH ON INDEX (byte) 4-24
CF COMPARE 5-11
CFR COMPARE (register) 5-11
CHR COMPARE (halfword, register) 4-27
CLHS COMPARE LOGICAL (halfwords, storage) 4-31, 10-3
CLS COMPARE LOGICAL (bytes, storage) 4-29, 10-3
CR COMPARE (byte, register) 4-26
CTLZ COUNT LEADING ZEROS (halfword) 4-33
CYHRE COMPARE WITH CARRY (halfword, register,
extended) 4-28

DF DIVIDE 5-12
OHR DIVIDE (halfword, register) 4-34
DRF DIVIDE (register) 5-12
IO INPUT /OUTPUT (byte) 8-8

X-6

IOH INPUT/OUTPUT (halfword) 8-11
IOI INPUT/OUTPUT (byte, immediate) 8-10
JBZ JUMP ON BIT ZERO (halfword) 4-37
JC JUMP ON CONDITION 4-38
KDO CONTROL DIRECT OUT 9-46
KI-0 RESET MASTER MASK 9-40, 10-6
Kl-1 READ MASTER MASK 9-37
KI-2 WRITE COMMON MASK 9-42
KI-3 READ COMMON MASK 9-35
KI-4 OR WITH PROGRAMMED INTERRUPT REQUEST
VECTOR 9-34

KI-5 READ PROGRAMMED INTERRUPT REQUEST
VECTOR 9-39

KI-6 AND WITH PROGRAMMED INTERRUPT REQUEST
VECTOR 9-32

KI-7 READ I/O INTERRUPT REQUEST VECTOR 9-37
KI-8 WRITE ERROR INTERRUPT REQUEST

VECTOR 9-43
KI-9 READ ERROR INTERRUPT REQUEST
VECTOR 9-36

KI-10 WRITE PRIMARY REGISTER SET NUMBER 9-44
KI-11 READ PRIMARY REGISTER SET NUMBER 9-38
KJ-12 WRITE SECONDARY REGISTER SET

NUMBER 9-45
KI-13 READ SECONDARY REGISTER SET
NUMBER 9-39

KI-14 SET MASTER MASK 9-41, 10-6
KI-24 RESET CHANNEL MASK 9-40
KI-25 READ CHANNEL MASK 9-34
KI-26 WRITE CONDITION INDICATORS 9-43
KI-27 READ CONDITION INDICATORS 9-35
KI-28 DISPATCH NEW LEVEL 9-32
KI-35 SET PROGRAMMED INTERRUPT
REQUEST 9-42

KI-37 RESET PROGRAMMED INTERRUPT
REQUEST 9-40

KI-38 SET CHANNEL MASK 9-41
Kl-120 WRITE PROGRAM ACTIVATION
VECTOR 9-44

KI-121 READ PROGRAM ACTIVATION VECTOR 9-38
KI-127 CALL PSV 4-25
L LOAD (byte) 4-40
LA LOAD ADDRESS 4-39
LAT LOAD FROM ADDRESS TRANSLATION
TABLE 7-13

LATL LOAD FROM ADDRESS TRANSLATION LOCK
TABLE 7-15

LCFR LOAD COMPLEMENT (register) 5-15
LFLOAD 5-14
LFR LOAD (register) 5-14
LH LOAD (halfword) 4-44
LHN LOAD (halfword, with index) 4-46
LHND LOAD (halfword, with index decremented) 4-46
LHNI LOAD (halfword with index incremented) 4-47
LHQ LOAD (halfwords, quadrant) 4-50
LHR LOAD (halfword, register) 4-48
LHRLU LOAD (halfword, register, lower half
from upper) 4·-48

LHRN LOAD (halfword, register-indirect) 6-14
LHRU LOAD (halfword, register, upper half) 4-49
LHRUL LOAD (halfword, register, upper half
from lower) 4-49

LHS LOAD (halfword, short form) 4-45
LN LOAD (byte, with index) 4-41
LND LOAD (byte, with index decremented) 4-41
LNFR LOAD NEGATIVE (register) 5-16
LNI LOAD (byte, with index incremented) 4-42
LPFR LOAD POSITIVE (register) 5-16
LR LOAD (byte, register) 4-43
LRFR LOAD ROUNDED (register) 5-17

LRI LOAD (byte, register-immediate) 4-44
LRN LOAD (bye, register-indirect) 6-13
LTFR LOAD AND TEST (register) 5-15
LW LOAD (word) 4-51
MF MULTIPLY 5-18
MHR MULTIPLY (half word, register) 4-5 5
MVHS MOVE (halfwords, storage) 4-54, 10-3
MYS MOVE (bytes, storage) 4-52, 10-3
NHR AND (half word, register) 4-17
NR AND (byte, register) 4-16
NRI AND (byte, register-immediate) 4-17
OHR OR (halfword, register) 4-58
OR OR (byte, register) 4-56
ORI OR (byte, register-immediate) 4-57
PC PROGRAM EXCEPTION 3-15, 4-58
RFC READ FLOATING-POINT CONTROL 5-20
RFS READ FLOATING-POINT STATUS
VECTOR 5-20, 10-3

RL ROTATE LEFT (byte) 4-59
RLH ROTATE LEFT (halfword) 4-60
SF SUBTRACT NORMALIZED 5-24
SFOM SET OVERFLOW MASK 5-21
SFPM SET PRECISION MODE 5-22
SFR SUBTRACT NORMALIZED (register) 5-24
SFSM SET SIGNIFICANCE MASK 5-22
SFUM SET UNDERFLOW MASK 5-23
SHR SUBTRACT (halfword, register) 4-73
SHRI SUBTRACT (halfword, register-immediate) 4-74
SLHL SHIFT LEFT (halfword, logical) 4-62
SLL SHIFT LEFT (byte, logical) 4-61
SR SUBTRACT (byte, register) 4-71
ST STORE (byte) 4-63
STAT STORE TO ADDRESS TRANSLATION
TABLE 7-16

STATL STORE TO ADDRESS TRANSLATION
LOCK TABLE 7-17

STF STORE 5-24
STH STORE (halfword) 4-65
STHN STORE (halfword, with index) 4-67
STHND STORE (halfword, with index decremented) 4-68
STHNI STORE (halfword, with index incremented) 4-69
STHQ STORE (halfwords, quadrant) 4-69
STHRN STORE (halfword, register-indirect) 6-14
STHS STORE (halfword, short form) 4-66
STN STORE (byte, with index) 4-63
STND STORE (byte, with index decremented) 4-64
STNI STORE (byte, with index incremented) 4-65
STRN STORE (byte, register-indirect) 6-14
STW STORE (word) 4-71
SU SUBTRACT UNNORMALIZED 5-25
SYHR SUBTRACT WITH CARRY (halfword,
register) 4-7 5

SYHRE SUBTRACT WITH CARY (halfword, register,
extended) 4-76

SYR SUBTRACT WITH CARRY (byte, register) 4-72
TRI TEST (byte, register-immediate) 4-78
TS TEST AND SET (byte) 4-77, 10-3, 10-4
WFS WRITE FLOATING-POINT STATUS
VECTOR 5-27

XHR EXCLUSIVE OR (halfword, register) 4-36
XR EXCLUSIVE OR (byte, register) 4-35
XRI EXCLUSIVE OR (byte, register-immediate) 4-36

mode, program (in PSV) 9-3
modifier bits in CHIO command code 8-34
MOVE (bytes, storage) instruction (MYS) 4-52, 10-3
MOVE (halfwords, storage) instruction (MVHS) 4-54, 10-3
multiple simultaneous interrupt requests

for a single priority level 9-12
for two or more priority levels 9-11

multiple simultaneous program exceptions 3-21

multiple simultaneous system checks 9-28
MULTIPLY (halfword, register) instruction (MHR) 4-55
MULTIPLY (register) instruction (MFR) 5-18
MULTIPLY instruction (MF) 5-18

n-way branching using BRANCH ON INDEX
instruction 4-24

normal conclusion of data transfer (CHIO) 8··29
normal sequential instruction execution 3-8
normalization in floating-point arithmetic 5-3
number representation

fixed-point 4-1
with twos complement 4-1

floating-point 5-2
numbering

bits of a byte 2-1
byte locations in main storage 2-2
channel-pointer 8-23, 6-5
priority-level 9-9
register

floating-point 2-7
general 2-4

register-set
adjunct 6-6
floating-point 6-10
principal 6-1

ones complement, use of in fixed-point operations 4-2
op code (operation code) 3-2
operand exception condition 3-15
operand field length 2-1
operands

immediate 3-1
in floating-point registers 3-1, 2-9
in general registers 3-1, 2-4

byte 2-4
halfword 2-4
word 2-4

in main storage 3-1
specification of 3-4
storage

fetch reference 3-12
store reference 3-12
updat~ reference 3-13

operation
CHIO 8-19
PIO 8-4
unit of 3-1 I

operation code (of an instruction) 3-2
(see also Appendix D)

operation exception 3-18
OR (byte, register) instruction (OR) 4-56
OR (byte, register-immediate) instruction (ORI) 4-57
OR (halfword, register) instruction (OHR) 4·-58
OR WITH PROGRAMMED INTERRUPT REQUEST
VECTOR instruction (Kl-4) 9-34

organization, register 6-1
origin field (in ACY) 7-6
overflow

exponent (in floating-point operations) 5-7
fixed-point 4-2

overlap (in MOVE instructions) 3-12
parity bit 8-3
PAV (program activation vector) 9-10

relation of to dual ACV /PSV facility 9-10
PCE (processing and control element)

dual-mode processors 10-2
general description 1-2

Index X-7

primary l 0-2
secondary 10-2
states 9-1

PCE address space 7-1
PCE control 9-1, 1-44, 10-6
PCE control information

address control vector 7-3, 9-6
channel mask 8-32
common mask 9-16
current and last priority levels 9-17
error interrupt request vector 9-13, 9-26
floating-point status vector 9-6, 5-4
input/output interrupt request vector 9-13, 8-17
master mask 9-15, 10-6
primary register set number 9-4
program activation vector 9-10
program status vector 9-2
programmed interrupt request vector 9-13
secondary register set number 9-4
summary of (see Appendix E)

PCE control instructions 9-31
AND WITH PROGRAMMED INTERRUPT REQUEST
VECTOR (KI-6) 9-32

DISPATCH NEW LEVEL (Kl-28) 9-32
OR WITH PROGRAMMED INTERRUPT REQUEST
VECTOR (KI-4) 9-34

READ CHANNEL MASK (KI-25) 9-34
READ COMMON MASK (KJ-3) 9-35
READ CONDITION IND I CA TORS (KI-27) 9-35
READ CURRENT AND LAST LEVELS (KI-15) 9-36
READERRORINTERRUPTREQUESTVECTOR

(Kl-9) 9-36
READ 1/0 INTERRUPT REQUEST VECTOR

(KI-7) 9-37
READ MASTER MASK (KI-1) 9-37
READ PRIMARY REGISTER SET NUMBER

(KI-11) 9-38
READ PROGRAM ACTIVATION VECTOR

(Kl-121) 9-38
READ PROGRAMMED INTERRUPT REQUEST
VECTOR (Kl-5) 9-39

READ SECONDARY REGISTER SET NUMBER
(Kl-13) 9-39

RESET CHANNEL MASK (Kl-24) 9-40
RESET MASTER MASK (KI-0) 9-40
RESET PROGRAMMED INTERRUPT REQUEST

(KI-37) 9-40
SET CHANNEL MASK (KI-38) 9-41
SET MASTER MASK (KI-14) 9-41
SET PROGRAMMED INTERRUPT REQUEST

(Kl-35) 9-42
WRITE COMMON MASK (KI-2) 9-42
WRITE CONDITION IN DI CA TORS (KI-26) 9-43
WRITE ERROR INTERRUPT REQUEST VECTOR

(KI-8) 9-43
WRITE PRIMARY REGISTER SET NUMBER

(Kl-I 0) 9-44
WRITE PROGRAM ACTIVATION VECTOR

(KI-120) 9-44
WRITE SECONDARY REGISTER SET NUMBER

(Kl-12) 9-45
PEC (program exception code) 3-14
physical storage location 2-2
PIC (program information code) 9-3, 3-13
PIO (programmed input/ output) 8-4

address 8-5
command code 8-5
commands 8-5

read BSTAT 8-16
reset BSTAT under mask 8-15

X-8

reset device 8-18
set BSTAT under mask 8-J 5

operations
1/0 instructions for 8-8
termination of 8-8

PIRV (programmed interrupt request vector) 9-13
PM (program mode) 9-3
point of interruption 9-21

for interruptible instructions 9-21
postnormalization 5-4
powers of two, table of (see Appendix H)
precision mode bit (in FSV) 9-7, 5-4
precision modes for floating-point operations

long 5-5
short 5-5

prenormalization 5-4
primary general registers 2-4
primary PCE 10-2
primary PSV 9-9

(see also dual PSV I ACY facility)
program-exception interruption action when

active 9-27, 9-20
primary register set 2-4, 6-1

assignment of 6-1
number (in PSV) 9-4

principal registers 6-1
permanently assigned 6-3
reserved 6-6

priority
of interrupt requests

for a single level 9-12
for two or more levels 9-11

of program exceptions 3-20
priority level dispatching 9-16

summary of the process 9-18
priority levels

assignment of to 1/0 devices 8-16
assignment of to programs 9-9
correspondence to assigned register locations for
ACVs and PSVs 6-6, 6-3

enabling and disabling 9-14
general description 9-8
numbering of 9-9
relation of

to EIRV 9-13
to IOIRV 9-13
to PIRV 9-13

privileged instructions
input/ output 9-2
supervisor 9-2

privileged operation exception condition 3-18
processing, dual-mode 10-1
program

exception codes 3-1 5
exception interruption 3-13, 10-4
execution 3-1, 10-4
information code (in PSV) 9--3, 3-14
logical address space 7-1

program activation vector (PAV) 9-10
program environment definition 1-24
program exception code (PEC) 3-14
program exception conditions 3-15
PROGRAM EXCEPTION instruction (PC) 3-15, 4-58
program exception interruption 3-13, 10-4

during execution of interruptible instruction 3-14
masking of during floating-point operations 5-5
point of 3-13
types of ending of instruction execution due to 3-13

when primary PSV is active 9-27
when secondary PSV is active 9-21

program exceptions 3-13, 5-5
access 3-17

block invalid 3-17
execution protection 3-17
store protection 3-17

address 3-18
address limit 3-18
address underflow 3-8

fixed-point overflow 3-20
floating-point 3-20, 5-5

divide 5-6
exponent overflow 5-7
exponent underflow 5-7
operation 5-6
privileged operation 5-6
significance 5-6
specification 5-6

handling of multiple 3-21
indicated in FSV 5-5
indicated in PSV 3-14
operation 3-19

invalid 3-19
privileged 3-18

priority of 3-2 J
register indirect 3-20
specification 3-15

operand 3-16
PSV I ACV format 3-15
real address 3-16

program execution 3-1
program information code (PIC) in PSV 9-3, 3-14
program mode (PM) in PSV 9-3
program modes 9-1

application 9-2
input/ output 9-2
master 9-2, 9-3
supervisor 9-2

program status vector (see PSV)
programmed input/ output 8-4

(see also PIO)
commands 8-5

programmed interrupt request vector (PIRV) 9-13
protection

key association 6-9, 6-10, 6-11
keys 7-12
of logical address space (using ACV) 7-3
within logical address space (using access control) 7-10

PSV (program status vector) 9-2
assigned principal register locations 6-3
associated with ACV 9-9, 6-6
condition indicators 9-4
current 9-2
exceptions associated with PSV 9-5
format 9-3
instruction address 9-3
primary register set number 9-4
program information code 9-3
program mode 9-3
reserved bits 9-4
secondary register set number 9-4

PSV I ACV format exception condition 3-15

quadrant, register 2-7

r field of an instruction 2-7, 3-4, 3-1
R field of an instruction 2-7, 3-4
read BSTAT (PIO command) 8-16
READ CHANNEL MASK instruction (Kl-25) 9-34
READ COMMON MASK instruction (Kl-3) 9-35
READ CONDITION INDICATORS
instruction (Kl-27) 9-35

READ CURRENT AND LAST LEVELS instruction
(Kl-15) 9-36

read data (CHIO command) 8-26
read data address (CHIO command) 8-26
read data address and read data (CHIO command) 8-27
read data address and write data (CHIO command) 8-27
READ DIAGNOSTIC CONTROL VECTOR instruction 9-46
READ ERROR INTERRUPT REQUEST VECTOR
instruction (Kl-9) 9-36

READ FLOATING-POINT CONTROL
instruction (RFC) 5-20

READ FLOATING-POINT STATUS VECTOR
instruction (RFS) 5-20, 10-3

READ 1/0 INTERRUPT REQUEST VECTOR
instruction (Kl-7) 9-37

READ MASTER MASK instruction (KI-1) 9-37
READ PRIMARY REGISTER SET NUMBER

instruction (KI-11) 9-38
READ PROGRAM ACTIVATION VECTOR
instruction (KI-121) 9-38

READ PROGRAMMED INTERRUPT REQUEST VECTOR
instruction (KI-5) 9-39

READ SECONDARY REGISTER SET NUMBER
instruction (Kl-13) 9-39

real address (of a main-storage location)
definition 2-2
formation of

from relocation (translation not active) 7-7
from translation 7-9

real address exception condition 3-17
real address space 7-1, 7-8
references to storage

instruction fetch 3-11
storage operand

fetch 3-12
store 3-12
update 3-13

register
adjunct 6-6
basic status (BSTAT) 8-12
floating-point 5-1
general (see general register)
locations, assigned (see assigned register locations)
principal 6-1

register indirect exception 3-20
register indirect instructions 6-10

accessing adjunct and principal registers using 6-10
addressing vector in 6-10

register operands, general 3-1, 2-4
register organization 6-1, 1-40, 10-4

adjunct register group 6-1
floating-point register group 6-1
principal register group 6-1

register set 6-1
adjunct 6-6
floating-point 6-10
primary (set of 8 general registers) 6·· 1, 2-4
principal 6-1
secondary (set of 8 general registers) 6-1, 2-4

Index X-9

register set number
floating-point (in FSV) 9-7
primary and secondary (in PSV) 9-4

register set numbering
adjunct 6-6
floating-point 6-10
principal 6-1

relocated addresses 7-11
relocation, dynamic address 7-1, 10-5
reset

(see also SL manual for processor model)
I/O system 8-18
selective I/0 (device) 8-18

reset BSTAT under mask (PIO command) 8-15
RESET CHANNEL MASK instruction (KI-24) 9-40
reset device (PIO command) 8-18
RESET MASTER MASK instruction (Kl-0) 9-40, 10-6
RESET PROGRAMMED INTERRUPT REQUEST

instruction (Kl-37) 9-40
result condition indications, derivation of

(from condition indicators) 9-4
result conditions

for PIO operations 8-6
state of

indicated 3-9, 9-4
not indicated 3-9, 9-4

summary of (see Appendix C)
testing of (with branching operations) 3-9

RI instruction format 3-2
right (control) of access to main storage 7-10
ROT A TE LEFT (byte) instruction (RL) 4-59
ROT ATE LEFT (halfword) instruction (RLI-1) 4-60
rounding instruction, floating-point (LRFR) 5-17
RR instruction format 3-2
RR-Long instruction format 3-2
RS instruction format 3-2
RS-Long instruction format 3-2
running state, PCE 9-17, 9-1

SCF (system control facilities) (see SL manual
for processor model)

secondary general registers 2-4
secondary PCE l 0-2
secondary PSV 9-9

(see also dual PSV I ACY facility)
program-exception interruption action when active 9-21

secondary register set 2-4, 6-1
assignment of 6-3
number (in PSV) 9-4

selective reset, I/ 0 8-18
separation protection 7-11
sequence of main storage accesses (references) 3-11
sequential execution of instructions

change in
by branching operations 3-9
by introduction of a new PSV 3-10

normal 3-9
set BSTAT under mask (PIO command) 8-15
SET CHANNEL MASK instruction (KI-38) 9-41
SET MASTER MASK instruction (KI-14) 9-41, 10--6
SET OVERFLOW MASK instruction (SFOM) 5-21
SET PRECISION MODE instruction (SFPM) 5-22
SET PROGRAMMED INTERRUPT REQUEST
instruction (Kl-35) 9-42

SET SIGNIFICANCE MASK instruction (SFSM) 5-22
SET UNDERFLOW MASK instruction (SFUM) 5-21
SHIFT LEFT (byte, logical) instruction (SLL) 4-61

X-10

SHIFT LEFT (halfword, logical) instruction (SLHL) 4-62
short floating-point number 5-1
signed displacement 3-5

(see also displacement, signed)
signed fixed-point numbers 4-1
significance exception 5-7
simultaneous interrupt requests, multiple (see priority

of interrupt requests)
size field (in ACY) 7-3
source, identification of interrupt request 9-24
specification exception 3-15
specification of operands 3-4
states, PCE

initial 9-1
running 9-1 7, 9-1
wait 9-17, 9-1

status
information, I/0 device specific 8-12
register, basic (BSTAT) 8-12

status vector
floating-point (FSV) 9-7
program (PSV) 9-2

storage
addressing

logical 2-2
real 2-2

main (see main storage)
operand 3-1
operand reference (access) 3-12

storage access protection 7-10
storage and registers 2-1, 10-2
storage data check 9-29
storage protection

access with dynamic address translation 7-10
logical with dynamic address relocation 7-3

STORE (byte) instruction (ST) 4-63
STORE (byte, register-indirect) instruction (STRN) 6-14
STORE (byte, with index) instruction (STN) 4-63
STORE (byte, with i,-1dex decremented)
instruction (STND) 4-64

STORE (byte, with index incremented)
instruction (STNI) 4-65

STORE (halfword) instruction (STH) 4-65
STORE (halfword, register-indirect)
instruction (STHRN) 6-15

STORE (halfword, short form) instruction (STHS) 4-66
STORE (halfword, with index) instruction (STHN) 4-67
STORE (halfword, with index decremented)
instruction (STHND) 4-68

STORE (halfword, with index incremented)
instruction (STHNI) 4-69

STORE (halfwords, quadrant) instruction (STHQ) 4-69
STORE (word) instruction (STW) 4-71
STORE instruction (STF) 5-23
store protection bit (in translation table entry) 7-10
store protection exception condition 3-17
store reference, storage operand 3-11
STORE TO ADDRESS TRANSLATION TABLE
instruction (STAT) 7-16

STORE TO ADDRESS TRANSLATION LOCK TABLE
instruction (ST A TL) 7-17

SUBTRACT (byte, register) instruction (SR) 4-73
SUBTRACT (halfword, register) instruction (SHR) 4-73
SUBTRACT (halfword, register-immediate)
instruction (SHRI) 4-74

SUBTRACT NORMALIZED (register)
instruction (SFR) 5-24

SUBTRACT NORMALIZED instruction (SF) 5-24

SUBTRACT UNNORMALIZED (register)
instruction (SUR) 5-25

SUBTRACT UNNORMALIZED i11struction (SU) 5-25
SUBTRACT WITH CARRY (byte, register)
instruction (SYR) 4-72

SUBTRACT WITH CARRY (halfword, register)
instruction (SYHR) 4-7 5

SUBTRACT WITH CARRY (halfword, register, extended)
instruction (SYHRE) 4-76

summary of interruption information 9-24
summary of the priority level dispatching process 9-18
supervisor mode 9-2, 9-3
supervisor-privileged instruction (definition) 9-2
suppression (type of ending of instruction

execution) 9-22, 3-12
system check (definition) 9-27
system check interruption 9-26
system checks 9-27

channel 1/0 check 9-30, 8-29
classes of 9-27

(see also interruption classes)
dual-mode processors 10-6
exception 9-30
indication of (in ElR V) 9-27
internal control check 9-30
internal data check 9-31
1/0 control check 9-28
I/O timeout check 9-29
storage data check 9-29

system control facilities (SCF) (see SL manual
for processor model)

system reset, I/ 0 8-18

termination
of CHIO operation 8-29

due to channel exception 8-29
due to equipment malfunction 8-30

type of ending of instruction execution 9-22, 3-13
TEST (byte, register-immediate) instruction (TRI) 4-78
TEST AND SET (byte) instruction (TS) 4-77, 10-3, 10-4
transfer, burst (in CHIO operations) 8-21, 8-18
translated addresses 7·-11
translation

(see also dynamic address translation)
control bit (in ACV) 7-3, 7-7
locks 7-12

process 7-9
table 7-8

entries, common 10-5
entries, general description 7-8, 10-2, 10-5
entries, instructions for modifying 7-11
entries, private 10-5
entry format 7-8
instructions 7-11

twos complement, use of in fixed-point operations 4-1
types of ending of instruction execution 9-22, 3-12
types of storage addresses 2-2

underflow, exponent (in floating-point operations) 5-7
unnormalized floating-point operation 5-4
unsigned displacement 3-5
unsigned fixed-point numbers 4-1, 4-3
unstructured logical quantities 4-1
update reference, storage operand 3-13

variable field length of operands 2-1
vector (see control vector; interrupt request vector;

status vector)
wait state, PCE 9-17, 9-1
word

alignment in main storage 2-2
definition 2-1
operand in a general register 2-4

WRITE COMMON MASK instruction (KI-2) 9-42
WRITE CONDITION INDICATORS

instruction (KI-26) 9-43
write data (CHIO command) 8-26
write data address (CHIO command) 8-26
WRITE DIAGNOSTIC CONTROL VECTOR instruction 9-47
WRITE ERROR INTERRUPT REQUEST VECTOR

instruction (KI-8) 9-43
WRITE FLOATING-POINT CONTROL

instruction (WFC) 5-26
WRITE FLOATING-POINT STATUS VECTOR

instruction (WFS) 5-27
WRITE PRIMARY REGISTER SET NUMBER

instruction (KI-10) 9-44
WRITE PROGRAM ACTIVATION VECTOR

instruction (KI-120) 9-44
WRITE SECONDARY REGISTER SET NUMBER

instruction (Kl-12) 9-45

Index X-11

. I

::C I

. @5 I
. U.. I

r z (/)
w::c I a..r -:J ...J
C3<
UJ LL.I

(/)
(..!)
zo
-t
r
c:::: LL.I
0 0..
(/) <

t
...J
-o
<LL.I ::c ::c

I:
U:J
t-4(..:J
r
<O:::
2: LL.I
OI
t-t
:J 0
< a:::
IO
r
-w
:::S> -CJ) r
::c -LL.I (/)
...JZ
CD LL.I
0 (/)
c::::
a.. LL.I

a:::
LL.I :::::>
(/) (/)
:J (/)
<LL.I uo:::

a.. z
<LL.I u (/)

:J
(/)
UJ LL.I
...J (/)
O..<
<LL.I
r...J
Cf) a..

LL.I
t
o z

IBM 8100 Information System
Principles of Operation

Order No. GA23-0031-4

READER 1 S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. You may use this form to communicate your
comments about this publication, its organization, or subject matter, with the understanding
that IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you. Your comments will be sent to the
author's department for whatever review and action, if any, are deemed appropriate .

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.

How did you use this publication?

] As an Introduction

] As a reference manual

] As a text {student)

] As a text {instructor)

Is there anything you especially like or dislike about the organization, presentation, or writing in
this manual? Helpful comments include general usefulness of the book; possible additions,
deletions, and clarifications; specific errors and omissions.

Page Number: Comment:

Newsletter number of latest Technical Newsletter (if any) concerning this publication:

If you wish a reply, give your name and address: _______________________ _

IBM branch office serving you ________________________________ _

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. {Elsewhere,
an IBM office or representative will be happy to forward your comments or you may mail
directly to the address in the Edition Notice on the back of the title page.)

GA23-0031-4

Reader's Comment Form

Fold and tape Please Do Not Staple Fold and tape

•••••••••••••••••••••••"'"'••.,•••••••••••••••••••••••••••••••vJ

11111

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department 520
Neighborhood Road
Kingston, New York 12401

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

.. f

Fold and tape Please Do Not Staple Fold and tape

------- - _._ ---~ ----- - - -~-
==-=~=@

I

I
I

G)
)>
N
w
6
0
w

.h..

l:
c:::

.a
. LL.

1-
Z <ll
w
l: :::c a. 1--::J ...J
C!<
UJ UJ

CJ)
(.!)
za
-1-
1-
c::: UJ
aa...
CJ)<

1-
...J
-c < UJ
l: l:

l:
u ::J
- t:J 1-
< C:::
J:: UJ
o:::c
I- 1-
::J 0
< c:::
:co
1-

- w >> -CJ) 1-

:r: -UJ (/')
...JZ
CD UJ
0 CJ)
c:::
a.. UJ

c:::
UJ ::l
CJ) CJ)
::J CJ)
<W
u a::

a.. z
<W
ucn

::J en
UJ UJ
...J CJ)
a..<
<W
I- ...J
CJ) a..

UJ
l
a z

IBM 8100 Information System
Principles of Operation

Order No. GA23-0031-4

READER 1 S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. You may use this form to communicate your
comments about this publication, its organization, or subject matter, with the understanding
that IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you. Your comments will be sent to the
author's department for whatever review and action, if any, are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.

How did you use this publication?

] As an Introduction

] As a reference manual

] As a text (student)

] As a text {instructor)

Is there anything you especially like or dislike about the organization, presentation, or writing in
this manual? Helpful comments include general usefulness of the book; possible additions,
deletions, and clarifications; specific errors and omissions.

Page Number: Comment:

V\lhat is your occupation?-----------------------------------

Newsletter number of latest Technical Newsletter (if any) concerning this publication:

If you wish a reply, give your name and address: _______________________ _

IBM branch office ser~ng you ________________________________ _

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere,
an IBM office or representative will be happy to forward your comments or you may mail
directly to the address in the Edition Notice on the back of the title page.)

GA23-0031-4

Reader's Comment Form

Fold and tape Please Do Not Staple Fold and tape

0
c

..,,
0

0.

~
0
:i

'°
r
:i
<D

•• , ... J

II l
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department 520
Neighborhood Road
Kingston, New York 12401

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

... t

Fold and tape Please Do Not Staple

- ---~ - _,. ---- -.. ------- - - -----==-= ':' =@

Fold and tape I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

G)
)>
I\.)
w
6
0
w

.h.

. I

E I
et::

.0
• LL

1-
Z Vl
UJ- I
E J:
CLI--::> _J
C!<
UJ UJ

(/')

" zo
-1-
1-
ct: UJ
0 a..
CtJ<
_J 1-

- c <UJ
EE

E
u ::>
-" I-
<et::
EUJ
OJ:
I- I
::> 0
<

ct:
J:O
1-
- UJ >> -CIJl-
EUJ (/')
.JZ
CD UJ
OVl
ct:
a.. UJ

et::
UJ :l en cn ::> (/)
<UJ
u et::

a.. z
<UJ u (/)
(/) ::>
UJ UJ
_J (/')
a..<
<UJ
I- ...J
Cf) a..

UJ
l
o z

IBM 8100 Information System
Principles of Operation

Order No. GA23-0031-4

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. You may use this form to communicate your
comments about this publication, its organization, or subject matter, with the understanding
that IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you. Your comments will be sent to the
author's department for whatever review and action, if any, are deemed appropriate.

Note: Copies of IBM publications are not stocked at the location to which this form is addressed.
Please direct any requests for copies of publications, or for assistance in using your IBM system, to
your IBM representative or to the IBM branch office serving your locality.

How did you use this publication?

] As an Introduction

] As a reference manual

] As a text (student)

] As a text (instructor)

Is there anything you especially like or dislike about the organization, presentation, or writing in
this manual? Helpful comments include general usefulness of the book; possible additions,
deletions, and clarifications; specific errors and omissions.

Page Number: Comment:

VVhat is your occupation? ----------------------------~----~

Newsletter number of latest Technical Newsletter (if any) concerning this publication:

If you wish a reply, give your name and address: ______________________ _

IBM branch office serving you-------------------------------~

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere,
an IBM office or representative will be happy to forward your comments or you may mail
directly to the address in the Edition Notice on the back of the title page.)

GA23-0031-4

Reader's Comment Form

Fold and tape Please Do Not Staple Fold and tape

••.••••••.•.•.••.• ~·J

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WI LL BE PAID BY ADDRESSEE:

International Business Machines Corporation
Department 520
Neighborhood Road
Kingston, New York 12401

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

I
I
I
I

.. ,
Fold and tape Please Do Not Staple Fold and tape

-~-- .------ -- --___ - -.... _..._._ - - - ----
=~=~=®

G>
)>
I\.)
w
6
0
w

.h.

--- ------ - ---- ---- - ---- - ------- --_ _.._. - Technical Newsletter

8100 Information System

Principles of Operation

©IBM Corp. 1979, 1984

This Newsletter No.

Date

Base Publication No.

File No.

Previous Newsletters

GN31-1498

25 Oct 1984

GA23-003 l-4

8100-00

None

This TNL provides information about the 8150 Model A and Model B enhancements. A change to

the text or to an illustration is indicated by a vertical line to the left of the change.

This TNL provides replacement pages for Appendix G of the base manual, GA23-003 l-4. Remove

pages from the base manual and replace with the attached TNL pages as follows:

Remove Insert

Gl to G4 Gl to G4

Summary of Amendment

This TNL provides information about the latest 8150 models.

Note: File this cover letter just before the back cover of the Principles of Operation manual.

Failure to do so will prevent you from tracking changes to the manual, if the need occurs.

IBM Corporation, Department 520, Kingston, New York 12401
© Copyright I BM Corp. 1984

Printed in U.S.A.

c

Printed in U.S.A. ---

GA23-0031-4
File No. 8100-00 ·

