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1. 0. 00 ADVANCED PROGRAMMING 

1. 1. 00 INTRODUCTION 

To make effective use of a system such as the 7090, there must be a means by which 
man can communicate with the machine rapidly and comprehensively. An easy way 
must be provided to instruct the machine as to the program steps necessary to solve the 
problem, a method of presenting the data to the machine and, finally, some means of 
compiling all the instructions and data in the proper sequence. 

Two programming tools, symbolics and the assembly program, are provided to help 
the programmer accomplish the above steps. 

1. 2. 00 SYMBOLIC PROGRAMMING 

The most efficient use of the computer, from the standpoint of machine operation, 
lies in the use of machine language. This consists of writing a program using only 
elementary instructions, which would use machine vocabulary and machine addresses. 
The use of machine language represents most efficient usage since, under this condi­
tion, each instruction is doing work to perform the specified transformation of data. 

Just as the system works most efficiently with machine language, so man works most 
efficiently in his own language. Machine language does not, in general, afford the 
programming ease that is provided with an abstract or symbolic coding system. 

The programmer, when writing a lengthy program, soon has difficulty in keeping 
track of the instruction and data locations. A program written in machine language, 
when executed, depends on its location in core storage, If the program is to be relo­
.cated or insertions and deletions are to be made, the program itself would require 
alteration. It is desirable to remove from a program its dependence on its location in 
storage. 

To overcome these difficulties, a method of writing programs has been evolved in 
which the programmer uses symbols to represent storage locations. Programs written 
in the symbolic form are readily changed and insertions and deletions do not affect 
other entries. 

To write out in machine language the instruction to add the contents of location 3 to 
the accumulator would be very awkward. It would involve a binary representation as 
follows: 000100000000000000000009000000000011. 

Mnemonics afford us a much easier way to write the instruction. Using mnemonics, 
it becomes CLA0003. It now has more meaning to a person reading it. However, to 
know the complete story, the person should know what is in location 3. To aid the 
programmer in this respect, the use of symbols may be extended to include the adqress­
es as well as the operation codes. For example: CLA TAX. Now the programmer can 
not only see what operation is to be performed but also what quantity is involved. Pro­
gramming in this manner becomes an instruction-by-instruction code in a familiar 
language. 

D3 



By use of mnemonics and symbols when writing a program, the instructions may 
easily be punched in cards using decimal numbers and words or symbols. 

Another process that would be long and involved in writing a program is keeping 
track of storage locations. Instead of trying to assign an absolute location to each in­
struction and piece of data, the programmer merely assigns symbols to a few locations 
and uses them as references. For example: 

START CLA A 
ADD B 
SUB D 
STO SAUIT 
LDQ D 
MPY SAUIT 
STO SAUIT +1 
TRA START +1 

SAUIT HLT 

Using symbols, the programmer can easily delete, add, or correct instructions in 
the program without disrupting the program sequence. The program written in symbol­
ics does not depend on absolute storage locations but merely on the symbolic references. 

1. 3. 00 ASSEMBLY PROGRAM 

Now that the use of symbols in program writing has been explained, there is' a need 
to make the machine recognize these symbols and use them. The programmer submits 
his program to the key punch operator written in words or symbols and decimal num­
bers. The key punch operator then produces a deck, called a symbolic deck, punched 
in IBM code. The deck is then run into the 7090 system under control of an assembly 
program. The assembly program reads the coded information and translates it to 
binary machine language, The instructions are assembled in storage in the same order 
in which the cards are fed into the system. The final output is a detailed listing of the 
program and a deck punched in binary form, The final deck is called the object deck 
and the assembled program is called the object program. 

The basic element of an assembly process is the assignment of absolute storage lo­
cations to the machine instructions, In the 7090, the. assignment is made by simply 
giving consecutive storage locations to symbolic language instructions as they are read 
in. This function is under control of an element of the assembly program known as the 
location counter. This counter is .given an initial value by the assembly program and, 
for each actual machine instruction encountered, it is advanced by one. Each instruc­
tion is assigned the value of the location counter at the time the instruction is first 
recognized by the program. Consider the following small program: 

Card 
1 
2 
3 
4 
5 
6 
7 

Location Fiela 
START 

B 
c 
D 

Operation 
CLA 
ADD 
SUB 
TRA 
decimal number 
decimal number 
decimal number 
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Variable Field 
B 
c 
D 
STAR'l' +1 



If the seven cards above were read into the system under control of an assembly pro­
gram, the machine would, upon reading the first card, assign 0000 to START, The lo­
cation 0000 would be the initial setting of the location counter. No absolute value would 
be assigned to B at this time. The location counter would then step to 0001 upon reading 
the next card, and 0001 would be assigned to ADD C. No location for C would be assigned 
at this time. This would continue until the fifth card is read. Upon reading the fifth 
card, the location counter is at 0004. Now Bis assigned its absolute location (0004). 
Similarly, C and D are assigned an absolute location upon reading cards 6 and 7, 

Notice that no symbol was given an absolute location until it appeared in the loc[!tion 
field. Once a symbol appears in the location filed it is said to be a defined symbol. 

Provided the storage capacity is not exceeded, every defined symbol in the deck is 
assigned a storage location. ~Symbols are limited to any six IBM characters, at least 
one of which is non-numerical, Tl!ere are, however, a few exceptions. The symbols 
+- - * / $ , = , cannot be used in a symbolic term. 

While the primary function of the assembly program is the assignment of absolute 
storage locations, assemblers usually provide additional information for the programmer. 
These include error print-outs, conversion routines, a means for calling in previously 
coded subroutines, and the ability to :rename symbols in portions of a code. The latter 
allows the combining of independently written programs. The assembly also produces 
a symbolic and machine language listing of the programs. 

1. 4. 00 SHARE 

SHARE is a customer's organization whose primary function is to distribute among 
its members the programming developments of the individual members. SHAHE is a 
completely voluntary organization. Through the realization that greater efficiency and 
more productivity could be attained through a cooperative effort, the SHARE member­
ship has freely dispensed valuable programming techniques, talent, and a library of 
utility programs. In addition, SHARE has been able to assist IBM in its quest to pro­
vide better service to its customers. Its request for alterations or additions to existing 
equipment are well thought out and authoritative. The principal obligation of a SHARE 
member is to have a cooperative spirit. 

For ease of communication, the SHAHE body has established programming standards 
and conventions and procedural standards. Each program written i.s properly identified 
as to author, date and classification. 

SHARE establishes a minimum system for use with its programs. If SHARE pro­
grams are written that utilize more than the minimum system, the additional features 
must be listed in the program description. 

SHARE has distributed many valuable programs to its members. These programs 
are kept in a permanent library at each installation, generally on magnetic tape and 
cards. Programs fall into one of many general categories. To list a few: arithmetic, 
elementary and complex functions, differential and integral equations, input-output, 
sorting, and executive routines. With this wealth of reliable material, the organiza­
tion of a master program is a matter of joining together the library subroutines, and 
those instructions and data that are unique to the particular program. Using the SHARE 
programs as basic building blocks and the ingenuity of the individual programmer as 
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mortar, the structure of the program takes shape, Certainly, as SHARE grows in scope 
and the distribution of more complex programs becomes more widespread, each pro­
grammer will have more time available for refining and originating his own programs. 

1, 5, 00 SYMBOLIC LANGUAGE 

The program written in symbolic language is a sequential series of instructions to -
the assembly program. The four principal parts of a symbolic instruction are recog­
nized as the: location symbol, operation, variable field, and comment. The location 

. field contains a symbol that represents either a storage location or other expression 
associated with the instruction. The operation determines the nature of the instruction · 
and guides the interpretation of the various parts. The variable field adds the informa­
tion necessary to complete the specifications of the instruction. The comment is not 
considered as far as·the running of the program is concerned. Its sole function is to 
describe aremark intended to appear in the listing. 

1. 6. 00 SYMBOLIC CARD FORMAT 

The following format is the SHARE standard for punching symbolic cards: 
Columns 

1-6 If an instruction has a location symbol, it appears in this 
field. For example, consider the following program: 

START 

FINISH 

;CLA A 
SUB B 
ADD C 
STO D 

For the CLA instruction, START would be punched in the location field. The next two 
instructions would have blank location fields. They would occupy the two absolute lo­
cations following START. If in the program it becomes necessary to transfer to 
the subtract instruction, the programmer can write TRA START +1 or TRA FINISH 
-2. The assembly program can perform + or - operations on the symbols. 

Columns 
7 

8-14 

11-72 

This column is always blank 
This field is devoted to the operation code. 
It may be a:ny three-to-seven-letter code. 
This is the variable field of the card and contains the address, 
tag, decrement, and remarks. The starting column of the 
variable field is dependent on the operation code. One blank 
column must follow the operation code. The separate portions 
of the variable field are separated by commas. A blank column 
indicates the_ end of the variable field. The following instruction 
is written in proper form: 

B CLA K, 1 

This symbolic instruction states that CLA is located at symbolic location B. The con­
tents of the effective address produced by subtracting the c·ontents of index register A 
from K will be added to the accumulator. Both Band K will have absolute addresses 
assigned to them. Bis punched in column 6, CLA is punched in columns 8, 9, and 10, 
K is punched in column 12, a comma is punched in column 13, and a one is punched in 
column 14. The lack of punching in column 15 indicates the end of the instruction. 
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Also, B TIX K, J+2, l is a suitable form. This instruction states that TIX is located 
at address B. Transfer to location K if the contents of index register J +2 are greater 
than 1, B,K, and J are assigned absolute values by the assembly program. With J 
established, J+2 is also established. 

If the variable field (12-72) is devoted to data, the punching may appear in either 
decimal or octal form. The data are assumed to be positive unless there is an 11 or 
12 punch in the first column of the data field. This punch must appear alone in column 
12 or it will be interpreted as a symbol. Sev~ral items may be punched in the same 
card as long as each item is separated by a comma, If, for example, a card contains 
START CLA 5,10026, 74, 35 the assembly assigns locations thus: 5 is located at 
location START, 10026 at START +l, 74 at START +2, and 35 at START +3, 
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2. 0. 00 SIIARE SOS SYSTEM 

2.1. 00 INTRODUCTION 

Tho SOS system is tho automatic program designed to provide program control, 
programming aids for the programmer, and a means of debugging 709 and 7090 pro­
grams. Tho objective of the program is to provide a method for remaining in the sym­
bolic language system efficiently throughout the preparation, verification, and execu­
tion of a program. 

The SOS system may be broken down into a six-part program: 
1. rn Monitor 
2. SCAT 

a. Compiler 
b. Assembler-Translator 

3. Debugging 
'!. I-0 Translator 
5. I-0 Transmission 
G. MockDonald Control System 

2. 2. 00 IB MONITOR 

The IB M.onitor reads in the control cards preceding a symbolic deck and provides 
the control during the performance of the job. The IB monitor is loaded by the load 
tape procedure. Immediately after loading, a halt is executed. When the start key is 
depressed, the entry keys are entered and stored as the system data. The input and 
output tapes are rewound. The first job is read in and processed according to the 
control cards. 

2.3. 00 SCAT 

SCAT' s primary purpose is to aid the programmer in debugging his program. It 
reads in the symbolic deck, assembles the program by assigning storage locations to 
the instructions and data, and translates the symbolic information to machine language. 

2. 3, 01 Compiler 

The compiler portion of SCAT is tho first program to act on the symbolic deck. It 
reads all of tho symbolic information and stores it to be processed later by the 
assembler-translator. 

The main task of the compiler is to set up the dictionary. The dictionary is the 
whole crux of the assembly process, and may be considered as a table of symbols. The 
dictionary contains all of the defined symbols in an ordered form. Each entry into the 
dictionary is coded with reference to the next location symbol in the program. This 
sets up the sequential flow of the program. 

Symbols can all be considered to consist of six positions. Using standard BCD 
coding for characters would require 36 bits to express a symbol. By recognizing 
that there arc only 49 characters plus a blank, it is possible to be somewhat more 
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conservative of bits than this. Any expression in the SCAT language may now be ex­
pressed as a number to the base 50. The numerical values of the characters are shown 
in Figure 2. 3-1. The symbol is considered as two three-digit numbers to the base 50. 
The maximum number of bits required in this manner to express a six-character sym­
bol is 34. 

As an example, take the symbol ACFYDT and, by using the values in Figure 2. 3-1, 
compute the value of this symbol: 

A = 1150 y = 3550 
C = 13 50 D = 1450 
F = 1650 T = 3050 

ACFYDT =(A·502 = C·50 + F) 217 + (Y·502 +D·50 + T) 
(11· 502 + 13· 50 + 16) 217 + (35· 502 + 14· 50 + 30) 
(27500 + 650 + 16) 217 + (81· 500 + 700 + 30) 
(28166) 21 7 + (88230) 

369186218210 = 334032542463 
0 011 Oll 100 000 011 010 101 100 010 100 ll02 

Character Equivalent Character I Equivalent 

Digits 0 1 0 25 
l 2 p 26 
2 3 Q 27 

3 4 R 28 
4 5 s 29 
5 6 T 30 
6 7 u 31 

7 8 v 32 

8 9 w 33 

9 JO x 34 
y 35 

Alphabet A 11 z 36 
B 12 
c 13 Special 37 
D 14 ( 38 
E 15 ) 39 
F 16 O(l 2-0) 40 

G 17 9(11-0) 41 
H 18 -(8-4) 42 
I 19 
J 20 Punctuation + 43 
K 21 44 
L 22 45 
M 23 I 46 
N 24 $ 47 

48 
49 

I 

FIGURE 2.3-1. LEGITIMATE SCAT CHARACTERS AND THEIR BASE-50 EQUIVALENTS 
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The dictionary is put into order by sorting the symbols in their base 50 encoding, 
Because of the order in which characters are assigned the base 50 digits, this sorting 
technique puts the dictionary in alphabetic order. 

The compiler also produces a squoze (squeezed) deck and an error listing. The 
squoze deck is a compacted, tightly encoded deck that is more conservative of bits than 
the SCAT language, and reduces the volume of cards to be handled. The squoze deck 
can then be easily used in further processing of the program. The two main reasons 
for obtaining and working with the squoze deck are: 

1. Modifications can be made in the original symbolic language and simply 
added to the deck by use of a modify and load card. 

2. All of the original symbolic information is retained during the program 
execution to permit the debugging program to give back printed output in 
the original symbolic language. 

The squoze deck also results in a general reduction in read-in time and, consequently, 
the time to process a program input. 

2. 3. 02 Squoze Deck 

The squoze deck is composed of the following parts: 
Part I Preface 

Heading 
Macro name 
Blank card 
Macro skeleton 
Introduction 
Dictionary 
Footnotes 

Part II 
Part III 

Text without commentary 
Text with commentary 

l. Either part II or III may be missing 
2. Part III is necessary only when listing or when a new deck is punched. 
3, If both parts II and III are present, the decoding will be done on part II 

sense switch settings. 
4. Indicate to SCAT which text should be used. 

Following is a description of the parts of the squoze deck: 
1. The preface contains the name or other identification of the object 

program, the sizes of the other sections of the squoze deck, and the 
relative position of key items in the dictionary. 

2. SCAT must know the names and skeletons of all programmer macro-instruc­
tions. This information is-carried in the macro-table of the squoze deck, 
which is divided into two sections. The first section contains the name and 
size of the various programmer macros; the second, the skeletons, i. e, , 
the actual instructions which constitute the macro-instruction. 

3. The introduction contains a record of the generative pseudo-operations. 
These are operations that generate data words, instructions, or subroutines. 

4, A heading table is included in the deck if any heading is used in the program. 
5. The dictionary contains an entry for each symbol in a location field or 

variable field, and for each principal pseudo-operation. Each entry is of 
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fixed length and consists of two words. The entry gives the name of the sym­
bol or pseudo-instruction; the entry number in the dictionary of the next sym­
bol in the program; a count of the card containing the instruction; and, in the 
case of pseudo-instructions, the location of the footnote entry. 

6, There is a footnote entry for each principal pseudo-operation. The footnote 
defines the variable field expressions of these pseudo-operations. 

7. The text is the source program in a compact or squoze form. For example, 
the operation code of machine instructions is expressed in a 5- or 9-bit code; 
the variable field of machine instructions is expressed in terms of the diction­
ary entries of the symbols involved. The text is in symbolic language and, for 
many instructions, requires .less space than would actual machine language. 
This squoze text along with the other information in the squoze deck enables 
modifications written in symbolic language to be incorporated into the program 
being executed. 
In order to execute the source program, the text is translated into actual ma­
chine language with all references to the dictionary being replaced by the 
absolute numerical values assigned to the symbols, and all variable field ex­
pressions being replaced by their numerical equivalences. 

Although it is the option of the assembly to produce an absolute binary program deck, 
the basic structure of the SOS system assumes that normal operation is to obtain a 
squoze deck. A squoze deck cannot be run into the machine unprocessed. It is the re­
sult of the first pass of the assembly operation. To obtain an executable deck, it is 
necessary to perform the second pass. This is done by the loader. The loader allows 
the programmer to make changes and on request can produce a new squoze deck or an 
absolute binary deck, as well as a listing of the modified program. 

As the squoze deck is compacted and contains more than one instruction per card, 
it is not possible to specify modifications in the same way as with symbolic cards. One 
cannot insert and delete instruction cards by simply shifting the individual cards. Thus, 
special modification specification cards are required. In general, these cards specify 
whether to insert or delete, where to do this, and, if deleting, how much to delete. 
Cards to be inserted, punched in the normal symbolic format, follow a modification 
specification card. For convenience, these modification specification cards are given 
a format identical with the instruction format of the symbolic language; thus, they 
may be considered as a special type of instruction: CHANGE, ALTER, ERASE, and 
ASSIGN. These instructions are discussed, in detail, in the SHARE 709 System (SOS) 
Manual, Part II, Modify and Load. 

2. 4. 00 DEBUGGING 

The debugging routine provides a set of instructions, which can be inserted in a 
program so that, at selected points in its execution, selected machine status informa­
tion is saved for future use. The execution of the program then continues without in­
terruption. 

2. 5. 00 1-0 TRANSLATION 

1-0 translation provides an easy and economical method to enter data for this pro­
gram and to put out the results. The programmer can specify the format he wishes to 
use for his input and output. 
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2. 6. 00 I-0 TRANSMISSION 

I-0 transmission provides a language in which a programmer can optimally arrange 
for parallel operations of input, output, and computing to achieve minimum problem 
time on the system. 

2, 7. 00 MOCKDONALD SYSTEM 

The MockDonald operating system accepts as input a group of jobs stored, each with 
its own input data, on a peripheral input tape. The MockDonald system has control of 
the 7090 between jobs and automatically loads the next job from the input tape. The 
MockDonald system provides certain functions for the program in the areas of input, 
output, and execution. Some of the functions are: 

1. Routines to help the programmer utilize the several trapping features of the 
7090 

2. Tape handling routines 
3. Debugging routines 
4. Input and output conversion routines 
5. Communication with the operator 

Communication between the program and the MockDonald system is done by means 
of a communication region. Entrance to system routines, and symbolic assignment of 
input-output units, is made through the communication region. 

The entire group of jobs on the input tap:l is processed in one or more successive 
phases. The number of phases needed to complete any particular job depends upon 
which method of input and output editing the job uses. 

All peripheral input or output tapes, and binary mediary tapes which transfer jobs 
and data from phase to phase, are read or written through system subroutines. Final 
output accumulates on one or more peripheral output tapes. 

The types of jobs that the MockDonald system can handle are: 
Type E: These jobs are processed in one phase, the Execution phase. The customer's 

executing program uses conversion subroutines directly to process the data on the pe­
ripheral tape. 

Type I-E: These jobs are processed in two phases, the Input and Execution phases, 
Data are converted automatically from BCD to binary and written on a binary tape dur­
ing the input phase. During the execution phase, the customer's program obtains its 
data from the binary tape just as if it were reading the peripheral input tape. The only 
difference is that the conversion has already been accomplished. 

Type E-0: These jobs are processed in two phases, Execution and Output. Input 
is accomplished the same as in type E jobs. During the execution phase it writes the 
information to be used as output on a binary tape using special system subroutines for 
this purpose. In the output phase a routine automatically converts the binary to BCD 
and writes the BCD data onto the peripheral output tape. 

Type l-E-0: These jobs are processed in three phases, Input, Execution, and 
Output. BCD data are converted in tho input phase and read from a binary tape during 
the execution phase in the same manner as in the type I-E jobs. The output data are 
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written on a binary tape during the execution phase and converted to BCD during the out­
put phase in the same manner as in the type E-0 jobs. 

The MockDonald system can accept an input tape containing one or any combination 
of the above type jobs. 

The various types of jobs are referred to by their configuration of input, execution, 
and output, using the initial letters, E, I-E, E-0, I-E-0. This reminded one of the 
legendary Scottish farmer, and the system was forthwith named the MockDonald system 
after him and one of the designers of the system, Owen Mock. 

The operation of the system is continuous and automatic between jobs and requires a 
minimum of operator intervention. The supervisory control routine is the basic control 
routine which is always reverted to between jobs. It performs certain initialization 
functions to start each job and certain conclusion functions to conclude the job. It brings 
into core storage the system routines that are necessary to whatever phase the job is in, 
I, E, orO. 

2. 8. 00 SCAT LANGUAGE 

The SCAT language is the heart of the whole SOS system in that it contains all of the 
controls essential to assemble a program written in symbolic language. The language 
used in conjunction with SCAT is a basis for the language used throughout the SOS sys­
tem. Therefore, a good understanding of SCAT leads to a more comprehensive under­
standing of the remaining sections of SOS. 

2, 8. 01 Symbolic Language and Arithmetic Expressions 

The basic units of the symbolic language are symbols, numbers, and operation codes. 
These units may be combined by punctuation marks, according to certain rules, to field 
expressions. 

A symbol is a combination of from one to six IBM code characters, at least one of 
which is non-numerical and none of which is punctuation; i.e. , a symbol may not con­
tain a plus, dash, asterisk, slash, dollar sign, equal sign, comma, or an imbedded 
blank. A blank is not considered a character in this case. A symbol is defined if and 
only if it appears in the location field of some instruction; otherwise, it is undefined. 
It is desirable to label a symbolic instruction with a location symbol only if it is neces­
sary to refer to this instruction in the program. An absolute location symbol (i. e. , 
one containing no non-numerical characters) is flagged as an error and is ignored. 

A number is a combination of digits which may be decimal or octal depending upon 
its context. An operation code may consist of from one to six characters, all alphabetic. 
An expression is a combination of symbols and integers separated by the following 
connectors or punctuation marks: + (addition), - (subtraction), *(multiplication) ,and/or 
/(division). 

An expression can occur only in the variable field of an instruction and it can be one 
of three kinds: simple, relative, and complex. A simple expression is a single symbol 
or number without any punctuation. A relative expression is a symbol plus or minus a 
number. All other expressions arc complex. An expression is terminated by a comma 
or a blank. 



2. 8. 02 Special Characters 

The asterisk character (*) has five different meanings in SCAT, depending upon its 
context. As a punch in column 1 of a card it defines the card as a remark. If it is 
found immediately after an operation code, it specifies indirect addressing. As a con­
nector in a variable field expression it connotes multiplication. As a Boolean operator 
it specifies intersection, e.g., the logical AND process. Finally, if it occurs immed-, 
iately after another connector or as the first character in a variable field, it is recog­
nized as a term. In this context it is interpreted as having the current value of the lo­
cation counter. 

The character$ may be preceded by a numerical, alphabetic, or special character, 
or it may commence a term followed by five or fewer characters in an expression. 
These arrangements cause SCAT to head the symbol with the given character rather 
than the current heading character. Reference from a headed region to an unheaded 
symbol is made by preceding the $ with a 0 or no heading character. (The significance 
of the character $ is explained further under the pseudo-instruction HEAD in the SHARE 
System SOS Manual.) 

2. 8. 03 Pseudo-Operations 

Every operation in the SOS system belongs to one of two classes. It is either a 7090 
machine operation (CLA, ADD, LXD, and so on) or else it is a non-machine operation. 
A non-machine operation is called a pseudo-operation. Instructions used to perform 
pseudo-operations are called pseudo-instructions. 

A machine instruction always generates one 36-bit binary machine word in the object 
program. A pseudo-instruction, however, may generate more than one word in the 
object program, or it may not generate any words at all. Not all of the pseudo-opera­
tions are covered in this manual. A few are covered in order to give a general idea 
of the types of operations pseudo-operations can perform. A complete and detailed 
coverage of SCAT may be found in the SHARE System (SOS) Manual. 

ORG (Origin) 

As the basic function of an assembly process is to assign absolute storage locations 
to machine instructions, there must be an address at which this assignment begins. In 
SCAT, this value is furnished to the assembly program by the program being assembled 
via the ORG pseudo-instruction. · ORG sets the location counter to the same integer 
value as that computed for its variable field. A location symbol associated with an ORG 
instruction is also assigned the computer value of the variable field. 

Symbol Location 
A 

Operation 
ORG 

A,T,D, 
100 

In the above example, ORG assigns a value of 100 to both the symbol A and the lo­
cation counter. The location counter determines the storage location to which subse­
quent instructions are assigned. Tho first instruction following the ORG card is 
assigned the location of the variable field value of the OHG card. 

ORG instructions may occur anywhere in a progrctm and the variable field of these 
instructions may be any combination of numbers [llld symbols acceptable to SCAT. 
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A symbol appearing in the variable field expression need not have been previously 
defined, i.e. , need not have appeared in the location field, columns 1-6, of some pre­
vious instruction or pseudo-instruction. However, a symbol in the expression which is 
not eventually defined in the program renders the variable field of ORG non-computable. 
If the program being assembled does not have an ORG pseudo-instruction, load-and-go 
sets the location counter to the lowest location in memory not required by the SCAT 
system. 

BSS (Block Started by Symbol) 

This pseudo-instruction is used to reserve a block of storage whenever the program 
being assembled demands it. The block reserved is equal in length to the value of the 
variable field expression. The associated location symbol is given the value that the 
location counter has when it encounters the BSS, and corresponds, therefore, to the 
first word of the block reserved. 

Location Counter 
250 
450 

Symbol Location 
A 

B 

Operation 
BSS 
xxx 

A,T,D, 
200 
xxx 

In the above example the BSS instruction reserves the 200 memory positions from 
locations 250 to 449, inclusive. The associated location symbol A is assigned the value 
250 and the location counter is set to 450. 

The rules for previous definition of symbols are the same as for the ORG pseudo­
instruction. A BSS can occur anywhere in a program. 

BES (Block Ended by Symbol) 

This pseudo-instruction is also used to reserve a block of storage at the direction of 
the program being assembled. A BES is the same as a BSS in every respect except 
for its result upon the associated location symbol. This symbol is given the value 
of the location counter plus the variable field value and corresponds, therefore, to 
the first word following the block reserved. 

Location Counter 
250/450 

Symbol Location 
A 

Operation 
BES 

A,T,D, 
200 

In the above example, the BES instruction reserves the 200 memory positions from 
locations 250 to 449 inclusive. The location counter, which is at location 250 when it 
encounters the BES, is reset to 450. The associated location symbol A is assigned the 
value 450. 

The rules for previous definition of symbols are the same as for the ORG pseudo­
instruction. A BES may occur anywhere in a program. 

TCD (Transfer Card) 

The purpose of this pseudo-instruction is to produce control information which directs 
the loading program to execute a transfer of control from the loading program itself to 
the program being loaded. The transfer is made to the storage location represented by 
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the value of the variable field expression of the TCD instruction. There can be more 
than one TCD instruction and they can appear anywhere in a program. 

If a TCD has an associated location symbol, the symbol is assigned the value that 
the location counter has when it encounters the TCD instruction. 

Location Counter 
200 

Symbol Location 
A 

Operation 
TCD 

A, T, D 
2500 

The above instruction sets A equal to 200 and transfer of control is made to location 
2500. 

END (End) 

Since, as previously explained with the ORG pseudo-instruction, the computer must 
know where to start assigning absolute storage location.s to machine instructions, it 
must also know when to stop this process. In SCAT, the termination of the assembly 
and loading operations is indicated by the END pseudo-instruction. It must appear in 
every program and it must be the last instruction read during the assembly process. 

As in the case with a TCD, the END instruction causes a transfer of control to be 
made to the storage location represented by the value of the variable field expression. 
The rules governing the associated location symbol if there is one, are the same as for 
TCD. 

Location Counter 
800 

Symbol Location 
A 

Operation· 
END 

A,T, D, 
1000 

The above instruction sets A equal to 800 and transfer of control is made to location 
1000. 

2. 8. 04 Macro-Operations and Instructions 

A special type of pseudo-operation, called a macro-operation is another feature of 
the SOS system. Macro, a combining term meaning long in extent, is a clue as to the 
type of operations these are. The most significant property of a macro-operation is 
that it generates N machine words, where N is greater than or equal to 1. Ordinarily, 
in a macro-operation, N is greater than 1. 

A macro-operation is regarded as an abbreviation for a block of instructions. The 
block of instructions generated is determined by the particular macro-operation. Each 
macro-operation has its own definition, consisting of a skeletal pattern of instructions. 

There are two classes of macro-operations. The first class consists of macro­
.J1.:nstructions which the programmer can arbitrarily define. The second class is a large 
. group of permanently defined macro-operations. The first class is called programmer 
macros, and the second, systems macros. 

Suppose that a programmer writes a sour·ce program with the following type of 
structure: 
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CLAA 
ADD B 
STO C 

CLA ALPHA 
ADD YUMA 
STO WAHOO 

CLA Z 
ADDM 
STOP 

Once the programmer realizes that the pattern of three instructions appears several 
times in his program., he can make a programmer's macro of them and insert them in 
the program with only one card containing the macro name. The only prerequisite is 
that he define the macro-operation in his program before he uses it. For example, 
call the three instructions used in the above program QSUM. They can be defined in 
the program in this way. 

Location 0Eeration Variable Field 
QSUM MACRO Vl, V2, V3 

CLA Vl 
ADD V2 

STO V3 
END 

QSUM is not a location in this instance, but a macro-operation name. Vl, 2, and 3 
define which piece of data in the variable field is to be associated with each following 
instruction. The first is associated with CLA, the second with ADD, and so on. CLA, 
ADD, and STO form the macro skeleton. This sequence generates no words in the 
object program, but merely defines the programmer macro called QSUM. 

Now that the macro-operation is defined, the programmer may obtain this sequence 
in his program by merely giving the instruction: 

Location Operation 
QSUM 

Variable Field 
A, B, C 

This will generate three words in his object program: CLA A, ADD B STO C. 

An example of a system's macro is an operation named CORE. If given in a program, 
this operation expands into the instructions necessary to write information from storage 
onto tape. The variable field defines what portion of storage the programmer wishes to 
print. For example: 

Location Operation 
CORE 

Variable Field 
0,2000 

The above macro-operation generates the following instructions: 
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Location 
A 

OQeration Variable Field 
STO x 
STL LOC 
TXL STPAN, 0, 7 
PZE 
PZE 

B CLA y 

Upon reaching this point in the program, the registers are stored to retain their 
condition and the location in the program is saved. The machine prints out storage from 
locations 0-2000 and then returns to the program and continues execution. 

2. 9. 00 INPUT DECKS 

The programmer may introduce any one of three possible job decks to the SOS system. 
The names of the jobdecks, their make-up, and their functions are as follows: 

Compilation Job Deck: This deck is the symbolic deck with three control cards. 
Compilation takes place on the first pass with SCAT and provides all relevant informa­
tion to the machine to set up the program. The results of processing this deck are an 
error listing and a squoze deck. The deck consists of the following cards in sequential 
order: 

1. Card punched JOB in columns 8-10 and any identification in columns 16-72 
2. Card punched CPLRB in columns 8-12. If column binary is used, punch 

CPL in columns 8-10. · 
3. Symbolic deck 
4. Card punched END in columns 8-10 and the starting point of the program 

punched in columns 12-72 

Listing Job Deck: This deck is made up of the squoze deck and three control cards. 
When processed with SCAT, it produces a symbolic and machine language listing of the 
program. The deck consists of the following cards in order: 

1. JOB card 
2. Card punched LS in columns 8-9 
3. Squoze deck 
4. Blank card 

Execution Job Deck: This deck consists of the squoze deck and four control cards. 
When read into the machine under control of SCAT, it causes execution of the program. 
The deck make up is as follows: 

1. JOB card 
2. Card punched LG in columns 8-9 
3. Squoze deck 
4. Blank card 
5. Card punched GO in colum?s 8-9 

There are several options that may be used with either of the three decks. The 
options are chosen by sense switch settings. The decks just covered are of the general 
format used. There are variations that produce an absolute binary deck, a new squoze 
deck, and so on. All of these variations are covered in the SOS System Operational 
Bulletins. 
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Figure 2. 9-1 is an example of the processing of a symbolic deck from compilation 
to execution. 

Program 
Data 
Compiled 

Error 
Listing 

Compilation 
Job Deck 

Listing 
Job Deck 

Dictionary 
Set Up 

Squoze Deck 

Absolute Values Assigned 
to All Symbolic Doto 
and Locations 

Symbolic 
and Mach 
Listing of 
Program 

Execution 
Job Deck 

Program 
Executed 

Compilation job deck read into the 
system 

Outputs 

Deck read in by modify and 
load portion of SCAT 

Outputs 

Deck read in by modify and 
and load portion of SCAT 

FIGURE 2. 9-1. PROGRAM ASSEMBLY USING SOS 
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3. O. 00 FORTRAN 

3, 1. 00 INTRODUCTION 

The Fortran system was developed to enable the programmer to write a program in 
a language similar to his own and obtain automatically an efficient machine program to 
carry out the procedure. 

The 18 man years needed to develop this program have resulted in reducing the pro­
grammer's task to approximately one-fifth the task it had been. 

Fortran is a two-part system. It consists of the Fortran language and the Fortran 
translator. The translator is commonly referred to as the executive routine. 

The Fortran language is a concise language, mathematical in background, employ­
ing familiar symbols which are readily translated to machine language. The language 
consists of 32 statements, many of which resemble algebraic formulas. The executive 
routine translates these statements into binary machine language; thus the name 
FORTRAN--FORmula TRAN slation. 

3. 2. 00 TRANSLATOR 

The. complete Fortran translator program is written on the Fortran system tape. 
The program is written and executed in six sections. What each section accomplishes 
can be seen by tracing a program as it is assembled by the Fortran system. 

The program steps are all listed in longhand, using the Fortran language. Each 
statement is then punched in an individual card. These cards form the Fortran source 
deck. The source deck is read into the machine under cont.rol of the Fortran system 
tape, section 1. The information from the cards is transmitted onto tape 2 in BCD. 
If tape input were used, the source program would originally be placed on tape 2 in 
BCD. 

The translator now proceeds to code all of the statements in the source program. 
Every statement receives a code number called the internal formula number (IFN). 
These numbers are assigned sequentially starting with 1. All future references to the 
original statements are made using the IFN as identification. This scanning of informa­
tion of the BCD file on tape 2 occurs only once. All information in this file is coded 
as it is read. 

The input statements are then classified as arithmetic or non-arithmetic. The noD;­
arithmetic statements are stored in a temporay buffer area in core storage. This 
buffer area is in lower storage and the buffer units are ten words long. When the buffers 
are full, the information is transposed to tape 4. 

The arithmetic instructions are scanned, checked for mode, and translated into ma­
chine language. The result of this analysis is a compiled instruction table (CIT) stored 
temporarily on tape 3. Once the CIT file is complete, it is placed in a record called 
COMPAIL (complete arithmetic, input-output, and logical). The COMPAIL file is on 
tape 2. 
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Fortran 11ow proceeds to section 2. This section arranges the non-arithmetic instruc­
tions associated with indexing in a COMPDO file. Because the program assumes the 
machine has many index registers, indexing loops are set up. 

In section 3, the COMPDO and COMPAIL files are merged into a single file. At the 
same time, the rest of the non-arithmetic instructions are translated to machine language 
instructions, At this point, the object program is complete but assumes the machine . 
has many index registers. 

Section 4 performs an analysis of the program flow, arranging and re-arranging it to 
obtain optimum operation using only the three available index registers. The object 
program may be run several hundred times in this section. 

The last section assembles the program and produces a machine language program 
on cards or tape ready for execution. 

3. 3, 00 FORTRAN LANGUAGE 

The Fortran language consists of 32 statements broken down into the following 
categories: 

1. Arithmetic formulas which permit the object program to carry out a 
numerical operation 

2. Control statements which govern the flow of the object program 
3. 1-0 statements which provide for the necessary 1-0 functions 
4. Three specification statements which provide various information required 

or desirable to make the program efficient 

· 3. 3. 01 Arithmetic Operations 

The Fortran arithmetic statements look exactly like a simple statement of equality 
(i.e. , A = 3x). The right side of all arithmetic statements is an expression which may 
involve parentheses, operation symbols, constants, variables, or functions, in accord­
ance with a set of rules similar to those of ordinary algebra. 

The symbols for the five basic arithmetic operations used in Fortran are: 
(+) A + B means add B to A. 
(-) A - B means subtract B from A. 
(*) A * B means multiply A by B. 
(/) A/B means divide A by B. 
(**) A **B means exponentiation, AB, 

The equation A= (B*C} + D/E - 3 is an equation in Fortran language, or a Fortran 
arithmetic statement. With Fortran, the programmer has the ability to express 
variables (A), operations (A*B, D/E), and constants (3). 

It is also possible to express functions. The number of functions possible is very 
large, and varies from computing center to computing center, }\:ach center has its own 
list with information concerning the use of the functions. Some of the typical functions 
and their use are: 

Fortran Symbol 
SQRTF (X) 
SINF (X) 
ARCTANF (F) 

Function 
x 
SIN X 
ARCTAN X 
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One of the roots of the quadratic equation 3X2 + l· 7 X - 31· 92 = O can be found by 
the equation: 

ROOT = -B + B2 -4AC 

2A 

Where A= +3, 
B = +l. 7, and 
c = -31. 92 

The four statements necessary to program this problem for solution using the 
Fortran system are: 

A= 3 
B = l· 7 
c = 31· 92 

ROOT = (-B + SQTF(B**2· -4· *A*C))/(2· *A) 

The statements are punched one to a card. The first statement assigns the value 
3 to A; the next two statements have similar meanings. The fourth statement means 
to evaluate the expression on the right side and assign the result to ROOT. 

The computer executes the statements in the order in which they are introduced to 
the machine. For example, if the fourth statement were placed first, the machine would 
evaluate ROOT first. Since the values of A, B, and C would not be known as yet, it 
would solve the equation using arbitrary, unknown values. 

Notice that no symbolic locations are expressed in the Fortran program. Using 
Fortran, the programmer has no control over the symbolic addressing, an advantage 
in that the programmer· need not concern himself with keeping track of the symbols. 
Fortran causes the machine to manufacture its own symbols for core storage addresses. 
These symbols appear in the symbolic listing of.the assembled Fortran program. 

3. 3. 02 Fortran Card Format 

Each statement of the Fortran source program is punched in a separate card. If a 
single statement is too long to fit on a single card under the card layout system speci­
fied below, it may continue over as many as nine continuation cards. 

3. 3. 03 Control Statements 

The machine instruction TRA N may be literally interpreted as "go to instruction N 
and proceed from there." The Fortran language has a control statement that makes use 
of this literal translation. It is a "GO TO" statement. The statement "GO TO N" trans­
fers control to statement N and execution proceeds from there. 

Another type of transfer statement is the i•JF" statement. IF statements are of the 
general form: IF (E) Ni. N2 , N3. This statement may be considered as a 3-way GO 
TO statement. E may be any arithmetic expression (i.e. , A-G, X+D, and so on). N is 
the statement the machine transfers to if E is negative; if E is zero it transfers to N2; 
and if E is positive it transfers to N3. To illustrate the use of these statements, con­
sider the following problem: 
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If this is a continuation card, 
a character other than zero 

is punched in column 6 FORTRAN STATEMENT 
The statement is punched 
in columns 7-72. 

The statement number, which 
must not exceed 32767, is 
punched in columns 1-5. 

If the statement is not completely 
punched by column 72, it must be 
continued on a continuation card. 

FIGURE 3.3-1 FORTRAN SOURCE CARD 

Given: Values A, B, C and D punched in a card 

72 73 80 

Columns 73-80 are 
ignored by Fortran . 

Problem: Solve (A+ B) C. If the result equals D, print the answer. If it is less 
than D, stop the machine. 

Statement Number Statement 
10 READ 1, A, B, C, D 
11 X = (A + B)*C 
12 IF (X-D) 13, 14, 15 
13 GO TO 16 
14 
15 
16 

PRINT 1, X 
GO TO 16 
STOP 

The first statement reads in the values of A, B, C, and D. Statement 11 solves the 
equation for X. Statement 12 checks the answer against D and transfers accordingly. 
If X is less than or greater than D, the machine transfers to a GO TO statement that 
transfers to a machine STOP. If X~equals zero, it transfers to statement 14, which 
prints the value of X. The statement following the PRINT causes the machine to trans­
fer to a machine STOP. 

3. 3. 04 I-0 Statements 

In a Fortran program, the I-0 statements make possible the transmission of informa­
tion between storage and I-0 devices. These statements may be grouped as follows: 
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l. READ, PUNCH, PRINT, READ INPUT TAPE, and WRITE OUTPUT TAPE, 
all of which call for the transmission of a list of quantities. 

2. FORMAT, a non-executed statement which defines the information format to 
be used (fixed or floating point, and so on). 

3. READ TAPE and WRITE TAPE, both of which are used only for transmission 
of binary quantities. 

4. END FILE, REWIND, and BACKSPACE are all used for the manipulation of 
tapes. 

Each of the statements calling for the transmission of information takes the following 
form: Statement, N, List. The statement signals the computer as to which I-0 device 
to read or write. N is the statement number of a FORMAT statement, which defines the 
type and layout of the information. The last portion lists the quantities to be transmitted. 

READ 1, A, B, C is a typical I-0 statement. Interpreted, it means "read three 
quantities from the card in the reader; assign A to the first, B to the second, and so 
on." The quantities are in a format in accordance with statement 1. 

The FORMAT statements that define the input or output format use one or any combin­
ation of the following three forms: Iw, Ew, d, Fw, d. The first form indicates an 
integer decimal number having a field width of w columns. The second format, Ew. d, 
indicates a floating decimal point number E, having a field width of w columns, and d 
places to the right of the decimal point. The third format, Fw. d, indicates a fixed 
decimal point number, having a field width of w columns, and d places to the right of 
the decimal point. 

For example: 
1 FORMAT (ElO. A, FS. 3, I3) 

READ 1, A, B, C 
could be used to read the following input data from cards: 

Field 1 Field 2 Field 3 
+. 8765E06 +345. 648 +81 

Field 1 is the decimal number 106x. 8765; fields 2 and 3 are decimal numbers in 
their familiar form. The FORMAT statement is not executed and may appear anywhere 
in the program. 
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