
Il J ~~ lliJ Customer Engineering

Manual of Instruction

7100 Central Processing Unit

Issued to=-------------------------

Deportment or Telephone
Branch Office ____________ Number _______ _

. Address•--------------City ____ State ___ _

Home Addres5, ___________ City ____ State ___ _

If this manual is mislaid, please notify the above address.

© 1959 by International Business Machines Corporation
Printed in U.S.A.
Form 223-6860

CONTENTS

1. O. 00 GENERAL INFORMATION
1. 1. 00 Introduction
1. 2. 00 General Machine Logic
1. 3. 00 Physical Layout
1. 4. 00 Machine Language .

2. O. 00 EXTERNAL FUNCTIONS OR OPERATIONS
2. 1. 00 Input-Output
2. 2. 00 Control

3. O. 00 INTERNAL FUNCTIONS
3. 1. 00 Functional Components

3. 1. 01 Storage Register (SR)
3. 1. 02 Accumulator Register (AC)
3. 1. 03 Multiplier-Quotient Register (MQ)
3. 1. 04 Sense Indicator Register (SI)
3. 1. 05 Index Registers (XR) •
3. 1. 06 Program Register (PR)
3. 1. 07 Shift Counter (SC)
3. 1. 08 Program Counter (PC)
3. 1. 09 Address Register (AR)
3. 1. 10 Address Switches (AS)
3. 1. 11 Adders (AD)

3. 2. 00 Instruction Decoding and Processing
3. 2. 01 Operation Decoders
3. 2. 02 Control Circuits
3. 2. 03 Pulses

3. 3. 00 Basic Cycle
3. 4. 00 Common Data Flow and Timing

3. 4. 01 I Cycle .
3. 4. 02 Indirect Addressing

3. 5. 00 Instructions
3. 5. 01 Word Transmission Instructions
3. 5. 02 Shifting Instructions
3. 5. 03 Fixed-Point Arithmetic Instructions
3. 5. 04 Floating-Point Arithmetic Instructions
3. 5. 05 Transfer Instructions .
3. 5. 06 Trap Mode Instructions
3. 5. 07 Skip Instructions .
3. 5. 08 Control Instructions
3. 5. 09 Sense Indicator Instructions
3. 5. 10 Index Transmission Instructions
3. 5. 11 AND and OR Instructions
3. 5. 12 Convert Instructions

APPENDIX A
Alphabetic Listing and Index of 7090 Instructions

B3
B3
B3
B3
B3

B3
B3
B3

B5
B5

Bll
Bll
Bll
Bll
Bll
Bl2
B12
Bl2
Bl2
Bl2
B12
B17
B17
B17
B17
B17
B18
B18
B18
B20
B20
B25
B27

B40
B59
B64
B67
B75
B78
B87
B96
B99

Bl09

1. 0. 00 GENERAL INFORMATION

1. 1. 00 INTRODUCTION

The Central Pr_qcessing Unit (CPU) is the center of activity in the 7090 system. Its
functions are much the same as the central processing units in the 704 and 709 systems.
The CPU controls and does most of the information processing for the system except
some input-output (I-0) operations.

The instructions in the program control the CPU. The logic of the circuits of the
CPU control how the information is processed j;o perform an instruction,

1. 2. 00 GENERAL MACHINE LOGIC

Figure 1. 2-1 shows the paths that information can follow as it goes from one point
to another 'in the CPU. When the information will be moved and where it will be moved
to is controlled according to the instruction being operated on by the CPU.

1. 3. 00 PHYSICAL LAYOUT

The CPU for the 7090 system occupies two SMS Sliding Gate Modules. The modules
are called CPU 1 and CPU 2.

1. 4. 00 MACHINE LANGUAGE

Instructions and data used by the CPU must be in the form of binary numbers. Inputs
to the' 7090 system can be in many forms but, for the CPU to use the information, the
numbers' first have to be decoded by a program and put into binary form.

2. 0. 00 EXTERNAL FUNCTIONS OR OPERATIONS

2. 1. 00 INPUT-OUTPUT

The direct data input and .output for the 7090 system is core storage. Information
can be read from. cards or tape, and information can be taken out of the system on to
cards, tape, or a printed form. However, as data passes between I-0 and the CPU it
must go through core storage.

There is only one core storage and it must be used by both the CPU and the 1-0 sys­
tem. Only one of the two can use core storage at one time; interlocking circuits con­
trol this usage. Some control lin~s into or out of the CPU may also be considered inputs
or outputs. These control line.s run mostly between the CPU and the 1-0 devices. These
control lines allow the CPU program to control the whole system, yet allow the 1-0 sys­
tem operate independently of the CPU.

2. 2. 00 CONTROL

Th~ program controls the 7090 system. Instructions of the program are brought into
the CPU one at a time. The bit configuration of the instruction word determines what
the CPU is to do. When the instruction is brought into the CPU, the operation code goes
to the program register. From there the instruction is decoded to direct operation of
the units concerned,

B3

SB OR'ing Mvltiplexor

15 Pos

From Multiplexor SB
Op Panel Keys

Comp Inds

Indicators
0 35

Stg Reg

SC-+AD (1-8) 18 Pos

15 s Pr~g Reg 1 Shift Ctr
9 10 17

QI P XR

Prog Ctr . I l 13
Adr Sw

3 17 171 l l I I " u
<(

"-
E
0
u

I i
Lo-3s h1s1 J-'5 I

3 Adr Reg 17 1 j IHU.l P-5 I : AC MQ I 30~35

To Adr Sw in Multiplexor

FIGURE 1.2-1 . .7090 CENTRAL PROCESSING UNIT

3. 0, 00 INTERNAL FUNCTIONS

3. 1. 00 FUNCTION AL COMPONENTS

Figure 1. 2-1 shows the functional components of the CPU. Some components are
made up of shift cells so information can be shifted from one position to another or so
information can be put into and taken out of the register at the same time.

A basic shift cell is shown in Figure 3.1-1. Assume that one of the outputs of this
shift cell is connected to an input. This condition would be the same as putting informa­
tion into the shift cell, while at the same time sending information from this shift cell
to another. An input and a set pulse are required to turn the top trigger on. The drop
of the hold turns the lower trigger off. Even though the hold drops slightly before the
set rises, circuit delays keep the top trigger conditioned. Because of these delays the
top circuit will be turned on when the set pulse occurs. The hold coming up allows the
lower trigger to turn on. The end of the set pulse will turn the top trigger off. If the
set and hold pulse occur and there is no input, the lower trigger is turned .off.

The registers that contain shift cells are:
1. Storage register (SR)
2, Accumulator register (AC)
3. Multiplier-Quotient register (MQ)
4. Index register (XR)

The program register (PR) and the address register (AR) have one standard trigger
for each register position,

The sense indicators have one standard trigger for each position in addition to another
trigger used to invert.

The adders and addre.ss switches are g~oups of AND and OR connected to perform
the indicated function.

The program counter and shift counter are binary counters.

Binary Counters

A binary counter unit is a group of counter positions connected together so the input
pulses to the low order position are counted. A counter unit can be designed to count up
or down, determined by intended use. The program counter is an example of a count up
counter. It normally receives a stepping impulse once for each instruction and this is
used to obtain the address of the next sequential in~truction in core storage. The shift
counter is an example of a count down counter. It is preset to a desired number of shifts
and, each time a shift occurs, a stepping pulse is sent to the low order position of the
counter. When the counter has been stepped down to zero, it signals the CPU that the
desired number of shifts have been taken.

A basic counter position is shown in Figure 3. 1-2. This counter position can be
turned on to give a one output and turned off to give a zero output. To give a one output,
the counter must receive a plus input to +0(2). This input is supplied by +A(l) or +A(3),

B5

Inputs 0 TO

'r-- '1 I I

[I I
I '

TA
Set

ti·
L.....-

Set n TO

Hold u [-;; I r-i I

Input I I I
I I

L ' I
_J

TA
Hold I--< ~

Output Gating lines

tput of lower Tgr drops whim hold drops, but circuit delay keeps top T r ·~ g
conditioned until it is set on. t:;:ircuit delay also helps to provide a sqfety
factor when the hold comes up to turn the lower Tgr on.

FIGURE 3.1-1. SHIFT CELL

lnpvt P

Input!\ .

Ctr is 1
Hold Ctr on if Input D is Plus

Input D (l) l

+A

~
c (2)

Condition Ctr so
that, if off, Input +A

E going plus will -
turn Ctr on

lruw E
(3)

r

Hold Ctr on if
+A Input E is Plus

c

,......,....,..

~

FIGURE 3.1-2. BASIC COUNTER POSITION-STEPPING

To Ind light

DI

A

Output.·

A

I I

I---
i ! I
I r-:

(l) OutpvtX

+o A Putpvt v

J
(2)

+o Ctr is I

(3)

+o

tJ

The counter position is held on by either the input D or the input E lines being plus. If
input Dis plus, input E is minus; if input Dis minus, input E is plus.

Assuming that the counter position is on and holding through +A(l), it will be turned
off when input D_goes down and input E goes up.

If the counter position is being held on through +A(2), it will stay on when input E
goes minus and input D goes plus. Under these conditions, the hold used to keep the
counter position on is switched from +A(3) to +A(l).

When the counter position has just been turned off, input D is minus and input E is
plus. The next shift of the inputs will make input D plus and input E minus. This does
not turn on the counter position, however, +A(2) supplies a plus input to the bottom of
+A(3) through +0(3). The next plus shift on input E will once again turn on the counter
position through +A(3),

Referring to Figure 3. 1-3 it can be seen that a simple counter unit can be made by
connecting the X and Y outputs of one position to the D and E inputs of the next higher
position. For a count up counter, output Xis connected to input E and output Y is
connected to input D. For a count down counter, output Xis connected to input D and
output Y is connected to input E. A counter unit can be made as large as needed by
adding more counter positions.

Each time a counter position is turned off in a count up counter, the condition of the
next higher counter position is reversed (if on, it is turned off; if off, it is turned on).
In a count down counter, each time a counter.position is turned on, the condition of the
next higher position is reversed.

The chart on Figure 3. 1-4 illustrates the conditions of the counter positions in a
three position count up counter for a series of stepping pulses supplied to the low order
position (position 3).

Figure 3.1-5 illustrates the conditions of the counter positions in a three-position
count down counter for a series of stepping pulses supplied to the low order position
(position 3).

Counter Set and Reset. The basic counter circuit, Figure 3.1-2, shows only the
stepping inputs. However, a counter unit also has a set and a reset input. The set
input is necessary so the counter can be set to some predetermined number. The re­
set is used to put the counter in some initial starting condition, such a~ resetting all
counter positions to zero~

In Figure 3.1-2,the set input would be a plus pulse going to the input of +0(1) and +0(3),
The reset for a count up counter would be a minus pulse sent to the input of +A(3) and the
reset for a count down counter would be a minus pulse at the input of +A(l).

Speed-Up for Counter Circuits. Connecting the output of one counter position to the
input of the next higher position does produce a counter, The stepping of a low order
counter position may step all positions above it. The counter circuits introduce delay
into this action so the speed of operation is not acceptable for the 7090. Therefore,
circuits are attached to the counter unit to speed up counter operation. Figure 3. 1-6
and Figure 3. 1-7 show the logic of,the speed-up circuits used with the shift counter
and program counter.

B7

' I

Position Po~ition

2

X ond Y Outputs

- --""' \
\
~

Po~ition

3

L _______ _

I
I
I

' - - ~-,...... _,_
D and E Inputs

Stepping Pulses to Low Order
Position

FIGURE 3, 1-3. SIMPLE THREE-POSITION COUNTER UNIT

In
Pos l Pas 2 Pas 3 Ctr

Off Off Off 0

Step l Off Off On l

Step 2 Off On Off 2

Step 3 Off On On 3

Step 4 On Off Off 4

Step 5 On Off On 5

Step 6 On On Off 6

Step 7 On On On 7

Step 8 Off Off Off 0

FIGURE 3. l-4. CONDITIONS OF COUNTER POSITIONS,
THREE-POSITION COUNT UP COUNTER

Pos l Pas 2 Pos 3
In

Ctr

On On On 7

Step l On On Off '6

Step 2 On Off On 5

Step 3 On Off Off 4

Step 4 Off On On 3

St<j>_ 5 Off On Off 2

Step 6 Off Off On l

Step 7 Off Off Off 0

Step 8 On On On 7

FIGURE 3.1-5. CONDITIONS OF COUNTER POSITIONS,
THREE-POSITION COUNT DOWN COUNTER

Advance
PC

PC 15, 16

~-----l------l-..-----------l-+-----~----;lr---&----~andl7 ,......_ __ I,__, are 1

PC 6,7
.r;;-- and 8

t _L are l

A

Step PC
5

PC 9, 10
;--, I ~nd 11

~ ~ ~ Lj are 1

A

Step PC
8

PC 12, 13
+---i and 14

j, w L (lre l

A

Step PC
11

FIGURE 3.1-6. PROGRAM COUNTER STEP GENERATOR(J.05.08.1)

A

Step PC
14

Step PC
17

Step
SC

SC 16
and 17

1
Off Pre-
vious to
Step

A

SC 14 and
15 Off
Previous

.I to Step

r

A

SC 12 and
13 Off

n Previous
to Step

r

A

•
Step SC Step SC Step SC Step SC

11 13 15 17

FIGURE 3. l-7. SHIFT COUNTER STEP CONTROL

3. 1. 01 Storage Register (SR)

The storage register is a 37-position shift cell register and the register positions are
labeled (S), · (l ...:35), and (Q). All instructions and data coming into or leaving the CPU
gc;:i through the storage register, positions (S), (1-35), except a portion of the instru~tion
that goes dire'Ctly to the program register. Storage register positions (S), (1-35), and
(Q) are also used for holding factors and partial results during the execution of many
instructions.

3. 1. 02 Accumulator Register (AC)

The accumulator is a 38-position shift cell register used in nearly every arithmetic
operation. The register positions are labeled (S), (Q), (P), (1-35). Positions (S), (1-35)

· accommodate the word in standard operations. Positions (Q), and (P) are used as
overflow positions' because the sum of two 35-position numbers can be greater than 35
positions. Postion Palso holds the S bit of a word during logical operations, As the
name implies, the accumulator is the unit into which results accumulate; it does not
perform the addition.·

3. 1. 03 Multiplier-Quotient Register (MQ)

The multiplier-quotient register is a 36-position shift cell register with the positions
labeled (S), (l.:.35). This register has several uses. During a multiply operation it holds
the rnilltiplier; after the multiply operation it holds the least significant half of the prod­
uct. During a divide operation, it holds the least significant half of the dividend; after
the divide operation it holds the quotient. In several floating point operations, the MQ
holds the least significant 35 bits of the result.

3. 1. 04 Sense Indicator Register (SI)

The sense indicator register is a 36-position shift cell register, labeled (0-35). Each
position of the register contains two triggers. One of the triggers is used to retain in-

. formation in the register, and the other trigger is used as a remembering device during
an invert oper'ation. The sense>indicator register is controlled completely by the pro­
gram and is not used by the computer as a part of its arithmetic operations. It can be
used as a set of switches which are set and tested by the program to check the progress
or direction of the program. The SI register may also be used to store words or parts
of words temporarily and, in this way, it is useful for altering and testing words.

· 3. 1. 05 Index Registers (XR)

There are three 15-position shift cell registers called index registers A, B, and C.
The register positions are labeled (3-17), The three registers are identical in operation
and are used for temporary instruction address modification. They are activated by the
tag positions of an instruction and can be used singly or in parallel or combinations.
The'Jrnodify an address by adding the compliment of their contents tot he address; in
effect; the address is reduced by the contents of the index register.

There are many instructions which operate on the index registers and make them
Useful programming tOOlS for COUnting I WOrd alteration, program loop Control and SO

forth.

Bll

3.1. 06 Program Register (PR)

The program register is a ten-position trigger register whose po13itions are l~beled
(S), (1-9). The program register receives the operation oode of the instrtiction directly
from the storage bus and holds the operation code throughout the executiop. of the instruc­
tion. The output of the program register is decoded to initiate and cpntrol the CPU so
it will execute the instruction. Positions (1-5) contain the primary operation part of the
operation code; positions (6-9) contain the secondary part,

3. 1. 07 Shift Counter (SC)

The shift counter is an eight-position counter, labeled (10-17). It sometimes is con­
sidered part of the program register because, for some instructions, the shift counter
will contain part of the code that will determine system operation. The shift counter
has two additional main functions. The number of shifts required for a shifting opera­
tion can be set into the shift counter; when stepped down with each shift, it will indicate
when shifting is complete. It is also used to hold the unit and class address of an I-0
unit during a read or write select instruction.

3.1. 08 Program Counter (PC)

/ The program counter is a 15-position counter, labeled (3-17), used to locate instruc­
tions in storage. The storage addressing circuits are set to the address contained in
the program counter at the beginning of each instruction cycle. The program counter is
normally stepped at the end of an instruction cycle to cause the sequential selection of ·
instructions. This counter can also be changed by transfer, trap, or skip instructions,
giving flexibility to the programming.

3.1. 09 Address Register (AR)

The addre.ss register is a 15-position register whose positions are labeled (3-17).
The address register gets the desired core storage address before a word is brought out
of core storage. The address goes from the address register to the address selection
components in core storage.

3. 1. 10 Address Switches (AS)

The address switch is a 15-position gating circuit with positions labeled (3-17). Tl).e
switches receive information from the program counter or the adders and this informa­
tion can be gated through the switches to the address register, shift coQnter, or storage
register.

3.1. 11 Adders (AD)

The adders are transistor switching circuits used to combine binary numbers or words
into a binary sum. There are 37 separate adders (Q), (P), (1-35) in the adder unit capable
of combining two binary words.

The adders do the arithmetic calculation of the system. Basically all the system wUl
do is add. Subtraction is done by adding a complement number, Multiplication is accom­
plished by a series of additions and shifts. Division i$ acootnplished by a series of com­
plement additions and shifts,

Bl2

Figure 3.1-8 shows a basic adder circuit. The adder circuit is designed to use three
inputs at one time with one of the three inputs being a carry from the next low order
position. The adder produces two outputs, a sum and a carry. The adders are designed
to follow the example of binary addition illustrated in Figure 3.1-9. -

Some adders have several inputs because the adders have multiple uses. However, ,
only two of the outside inputs and the carry in can be active at the same time. The add­
ing function of these multipurpose adders is the same as shown in the basic adder cir­
cuit, Figure 3.1-8.

Adder Unit and Look Ahead Circuits (LAC). The basic principle behind connecting
individual adders together to make an adder unit ts to take the carry out of one adder
and connect to the carry in of the next high order position adder. This would mean
that, if all adder positions contained a one and a one was added to the low order posi­
tion, a carry would have to ripple through the adder unit from the low order position to
the high order position. As the carry ripples through the adders the logic circuits in­
troduce a delay into this action. The 7090 is too fast to accept these conditions. To
overcome this slow ripple condition in the adders, the 7090 adders have associated cir­
cuits that speed up the carry operation. These circuits determine how many adder pos,i­
tions the carry must go through, then send the carry almost immediately to a higher
order adder a few positions from the initial carry impulse. These carry speed-up cir­
cuits are called look ahead circuits (LAC), The logic of the operation of the look ahead
circuits is shown in Figure 3, 1-10 and Figure 3. 1-11. Notice that for look ahead pur­
poses_ the adders are grouped into six groups of five adders each and one group of six
adders. The output of the first stage LAC feeds the inputs of the second stage LAC.

All adder positions, except the Q position, have two LAC outputs. One is the OR
LAC and the other is the AND LAC. The OR LAC gives a usable output to the first
stage LAC when a bit is sent to either input 1 or input 2 or both. The AND LAC gives
a usable output to the first stage LAC when bits are sent to both inputs 1 and 2. ·

There are two outputs from the first stage LAC. One output is the carry out LAC
and the other output is active when all adders in the group are receiving at least one in­
put. This latter output is simply called look-ahead. The CO LAC is active when any
combination of bits in that particular group of adders would cause a carry out of the high
order adder of the group.

The second stage LAC uses the outputs of the first stage LAC, along with a line to
indicate a carry in or a bit to adder 35. These LAC initiate a carry into the low order
adder of the next higher group.

Following through the first and second stage LAC, note that if adder 35 has an AND
LAC output and adders 34-30 have OR LAC outputs, a carry in would be sent to adder
29. If all adders have an OR LAC output, these outputs would cause a carry in to be
sent to adders 29, 24, 19, 14, 9, 4, and Q almost simultaneously if a carry into adder
35 occurred.

Note that a carry has to ripple through a maximum of 6 adders rather than through
37 because of the look ahead circuits, and the carry operation through the adders has
been greatly speeded up.

Bl3

c
(-}l~utl

-0
(-) l~ut2.

Mi nus on Carrv In

-A
I(-) Bit Input l and 2

H ..._ __ ...
(+) Except for Bit on Both Inputs 1 and 2

~/ I--

+O
(-) (Bit Input 1)

+A '17' (Bit Input 2)

(+)Bit lnpu~ [.__ __ _.Q (-)Bit Input land 2

l or2o:/ L
Plus on Car!Y_ Out Both I and 2

-A -0

I-<>-
Minus on Carry Out (+) (Bit Input l),,,.. (Bit Input 2)

(-) (Carry In) and (Bit Input 1 '<;/Input 2)

L.......< Minus on l Output
from AD

+O +A

Plus on Carry In 1----1

FIGURE 3.1-8. BASIC ADDER CIRCUITS - 7090 CPU

Input 1 0 1 0 0 1 0 l l

INPUTS Input 2 0 0 1 0 1 I 0 l

Carry In 0 ·o 0 l 0 1 1 l

OUTPUTS Sum 0 l 1 1 0 0 0 l

Carry 0 0 0 0 1 1 l l

FIGURE 3.1-9. EXAMPLE OF BINARY ADDITION

19A J.±t.

34V ·1 ~v I ~ I iav 13v 33V + 27V + + 17V + 1£Y...j +
32V A 26V A A 16V A llV I A

31 v ~ 1 ------,___, l -----.___..., I

~:I 1~:1 l~:I 1~:1 lfil

2.02.46.1

A= 2 Bits

0

26V

25V

Co(35-30)
r02~46~ i

+
A

LA(29-25
2 .02.45. l

24V ·

23V

22V

21V

V = At Least 1 Bit Co = Carry Out

+
A

LA(24-20

2.02.44.l

+

Co(24-20)

2.02.44.l

LA = look Ahead

+
0

Co(l9-l5

2.02 .43. l

FIGURE 3.1-10. FIRST STAGE LOOK AHEAD CIRCUITS

+
0

o\]4-10

2.02.42.l
Co (4-P)
2.02.40. l

LA(4-9
2.02.40. l

Cin 35 Cin 35 Cin 4

+ + (3~
A" A 'A (29-25)LA A

(24-20)LA

(19-15)LA

Cin 29 Cin 24 Cin 19 · Cin 14

2.02.53.1 2.02.52.1 2.02.53.1 2.02.52.1 Cin 4
2.02.50.1

Cin - Corry In
Cin 9

2.02.51. l

FIGURE 3. 1-11. SECOND STAGE LOOK AHEAD CIRCUITS

Carry From Adder 9 to Adder 8. A special circuit can prevent or allow a carry from
adder 9 to adder 8. The reason for this is that a floating-point word has two separate
parts, a characteristic (positions 1-8) and a fraction (positions 9-35). During some
floating-point operations, a carry out of the fraction must not be allowed to gate to the
characteristic.

3. 2. 00 INSTRUCTION DECODING AND PROCESSING

The output of the program counter is gated to the address register through the address
switches. The outputyf the address register is then used to locate the address of the
instruction in core storage. The output of core storage is sent to the storage register
and the operation code is also sent to the program register. The output of the program
register then is decoded to instruct the system.

3. 2. 01 Operation Decoders

The output of the program register feeds two decoders, The outputs· of positions 1-5
feed the primary operation decoders (POD), and the outputs of positions 6-9 feed the
secondary operation decoders (SOD). The primary operation is used to establish the
basic execution control routing. The secondary operation decoder is used only for the
sense, or primary operations 76 instructions.

Some similar instructions have the same primary operation, Direct outputs of the
program register or storage register are sent to individual machine circuits to cause
the machine to operate according to the minor differences among these similar instruc­
tions.

3. 2. 02 Control Circuits

The control circuits cause the machine to operate according to the ctecoding of the
instruction, Specific control circuits cause data to be moved and functions to be per­
formed so the machine gives the desired results of the instruction.

3. 2. 03 Pulses

The control circuits require a great number of pulses and gates, These pulses and
gates, obtained by mixing clock pulses from the multiplexor clock, function in thE) 7090
as the circuit breakers function in electro-mechanical card machines. They are used
to establish proper sequence of operation in the system.

3. 3. 00 BASIC CYCLE

The basic cycle in the CPU is 2. 4 microseconds. It is dividE)d into 12 equal times
of 200 milli-microseconds each. The 12 times are given to the CPU by the multiplexor.

There are three different types of cycles used by the CPU. Thesa are:
1, Instruction I cycle
2. Execution E cycle
3. Logic L cycle

Every instruction has an I cycle. This cycle brings the instruction from core stor­
age to the CPU, where the instruction is decoded. Some instructions require only the
I cycle for their execution; most instructions require addition!'l-1 cycles,

Bl7

E cycles are used when information is to be moved between core storage and the CPU
to execute an instruction.

L cycles are used to execute an instruction when information from core storage is
not needed.

Most instructions use only one E or L cycle for their execution, but some instruc­
tions require multiple E or L cycles, For example: a convert instruction requires
several E cycles; a multiply instruction requires several L cycles.

3. 4. 00 COMMON DATA FLOW AND TIMING

3. 4. 01 I Cycle

I cycle operation is much the same for all instructions. E and L cycle operations
vary depending on the instruction.

I cycle operation is shown in Figure 3. 4-1. The end operation trigger (END OP TGR)
is turned on during the last cycle of an operation and for an initial starting condition.
This causes the I time trigger to be turned on. Also with the end operation trigger on,
the address of the instruction is sent to core storage. The instruction is then taken
from that address in core storage and sent to the CPU on the storage bus (SB). The
instruction is put into the storage register (SR) and the operation code is sent to the
program register (PR). Note the difference between instructions with a bit in positions
l and 2 and those without a bit in 1 or 2. Few instructions have a bit in positions 1 or 2.

When the instruction is decoded the computer will decide what kind of a cycle is to be
taken. Most instructions requiring an L cycle have operation codes 0-177 or from 700
on. Instructions with operation codes between these limits usually require an E cycle.
The exceptions to these general L and E time call rules are in the MF systems pages.

Some instructions require only one cycle; therefore, the end operation trigger is
turned on during I time. This forces "go to I time" on Systems El. 00. 12. l. "Go to I
time" will turn on the master I time trigger and will prevent turning on of the master
E or L time triggers.

The program counter is advanced to give the location of the next sequential instruc­
tion in core storage. The address portion of the instruction is sent to the address
register. For primary operations 76 it is sent to the shift counter. The address in
the address register is used to locate a particular address in storage if the next cycle
is an E cycle. Part of the address is sent to the shift counter on primary operations
76. The shift counter is used on these operations along with the program register to
instruct the system.

3. 4. 02 Indirect Addressing

Indirect addressing is a programming device which permits changing an instruction
address. Bits in positions 12 and 13 of an instruction are signals for indirect address­
ing. This causes an E cycle, during which the word located at the original instruction
address is read out of storage and its address portion is substituted for the instruction
address. The instruction then operates on the new address. Only indexable instruc-

Bl8

End Op Tgr
AlO 16
8.00.09. l

Go to I Time PC-.AS
AlO--ll Al 1 (Dl)

8.00.12. l 3.05.09.l

MST I Time Tgr AS-....AR
All -.All

8.00.18. l

L Time Call
19 (D3)

8.00.16.l

All (Dl)

3.06.18. l

AR-+MAR

AR+ PC
13 (Dl)

3.06.05. l

8.00.16. l

PR(l-5)
-POD

3.01.00.-

Go To L Time
19 - Al

Go to I Time Go To E Time
19 - Al

8.00.12. l

Turn On Mst
L Time Tgr

All
8.00.20. l

Yes

B.00.12. l

Turn on Mst
I Time Tgr

All
8.00.18. l

Yes

PR(6·9)
-SOD

3.07.00.-

SB --...SR
17 (02)

2.12.50.1

SB (S,3-11)
-.PR (S, 1-9)

18 (DI)
2.11.40. l

FIGURE 3.4-1. INSTRUCTION CYCLE

N

Reset Pr and
SC 17(01)

2.ll.40.l

SB (S, 1,2)
-+Pr (S,8,9)

18 (Dl)
2.11.40.1

Advance PC
19(Dl)

2.ll.50.l

AD(3-17)--AS
111(01)

3.06.16. l

AS (10-17)~C
I ll(Dl)

AS....--..AR
11l(C1)

3.06.18. l

tions may be indirectly addressed. The only change in operation of an instruction
caused by indirect addressing is the insertion of an E cycle. As with direct address
instructions, indexing is automatic.

Indirect addressing controls are shown in Figure 3. 4-2. Once an indirect addressing
condition is recognized, the IA control trigger is turned on to block normal operations'
and an E cycle is initiated. When the E cycle is completed, the trigger is turned off,
and normal execution is resumed.

3. 5. 00 INSTRUCTIONS

3. 5. 01 Word Transmission Instructions

Word transmission instructions are necessary to move information into and out of
the CPU. Factors must be brought in from core storage and results must be returned.
Instructions are available to move parts of words or whole words to or from core stor­
age.

Store STO +0601 Figure 3. 5-1

This instruction moves a full word to core storage. The contents of the AC(S, 1-35)
replace the contents of storage location X. The AC is unchanged. The store prefix,
decrement, tag, address, and MF store control lines are activated so a full word can
be put into core storage.

Store Logical Word SLW +0602

This instruction replaces the contents of storage location X with the contents of the
AC (P-35j. The AC is unchanged. Execution of this instruction is identical to that of
store except for the routing of AC(P) to the storage register-sign position. AC(P-35)
is gated to SR(S-35) on Systems 2. 12. 02.1.

Store MQ STQ -0600 Figure 3, 5-1

The contents of core storage location X are replaced by the contents of the MQ
register. The contents of the MQ are unchanged. This instruction operates similarly
to store, except that the word sent to the SR comes from the MQ rather than from the
AC.

Store Zero STZ +0600 Figure 3. 5-1

This instruction causes zeros to be placed in all positions of storage location X.
The operation of this instruction is similar to store, except that nothing is put on the
SB. Therefore, when the storage bus is gated to core storage, zeros are put into that
location of storage.

Store Prefix STP +0603 Figure 3. 5-2

This instruction places the contents of AC positions (P, 1 and 2) into core storage
location X, positions (S, 1 and 2). The contents of the AC and storage positions (3
through 35) are unchanged. MF store prefix and MF store control are activated to cause
core storage to store what is on SB(S, 1 and 2). To get the information to the storage
bus, it must be moved from the accumulator to the SR.

B20

SR {18-35)
-AD(P-17)

2.12.16.1

AD(3-17)+AS
lll(Dl)

3.06.16.1

AS-+AR
111 (Dl)

I Time
of Instr

3.06.18. 1

E Time

Turn On IA Tgr
19(D1)

2.10.65.1

No

Prevent Most of the
Normal E Time Out­
puts

2.15.13.1

58-+SR
E7 (Dl)

2.12.50.1

SR(18-35)-+
AD(P-17)

2.12.16.1

AD(3-17) +AS
E 11 (Dl)

AS-+AR
Ell(Dl)

3.06.16.1

Turn Off IA Tg
AO(Dl)

2.10.65 .1

3.06.18.l

Go To Next
Cycle Determined

by Inst

FIGURE 3.4-2. INDIRECT ADDRESSING

I Time
Pri Op 60

Store Ctrl

2.09.00. l

E Time

MF Store Ctr!

SR-SB
E4(D3)

.09 .00.1

SB-+ Memory

Data Reg

End Op

MF Store
Prefix

2.09 .01.1

MF Store
Deer

2.09.01.1

MF Store
Tag

2.09.01.1

FIGURE 3.5-1. STO +0601; STQ -0600; STZ +0600

MF Store
Address

2 .09 .01. l

Store Decrement STD +0622 Figure 3. 5-2

The contents of AC(3-l 7) replace the contents of positions (3-17) of core storage lo­
cation X. The remaining storage positions are unchanged, and the AC is unchanged.
This instruction operates similarly to store prefix, except that MF store decrement .
rather than MF store prefix is made active.

Store Tag STT +0625 Figure 3. 5-2

The contents of AC(lS-20) replace the contents of positions (18-20) of core storage
location X. The AC and the remaining positions of core storage are unchanged. This
instruction operates similarly to store prefix, -except that MF store tag rather than
MF store prefix is made active.

Store Address STA +0621 Figure 3. 5-2

The contents of AC(21-35) replace the contents of positions (21-35) of core storage
location X. The remaining positions of storage and the contents of the AC are un­
changed. This instruction also operates similarly to store prefix, except that MF store
address rather than MF store prefix is made active.

Store Left Half MQ SLQ -0620 Figure 3. 5-3

The contents of positions (S-1 'f) of the MQ replace the contents of positions (S-17) of
storage location X. The remaining storage positions and the contents of the MQ are
unchanged.. MF store prefix, MF store decrement, and MF store control lines are
activated so SB(S-17) can be read into storage. The word is sent from the MQ to the
SR so it can be put on the SB.

Store Instruction Location Counter STL -0625 Figure 3. 5-4

The contents of the program counter, which contains the location of the ST L instruc­
tion plus one, replace the contents of positions (21-35) of storage location X. The

: contents of the PC and the remaining positions of storage are unchanged. The MF store
address and MF store control lines are activated so the address portion of the storage
word can be changed. The PC co-ntents are sent to core storage on the SB. The con­
tents of the PC are sent to the SR through the AS and the output of the SR feeds the SB.

Load MQ LDQ +0560 Figure 3. 5-5

The contents of the MQ are replaced by the contents of storage location X. The
storage word is put into the SR, and the output of the SR is sent to the MQ.

Exchange AC and MQ XCA +0131 Figure 3. 5-6

The contents of the AC(S, 1-35) are interchanged with the contents of the MQ(S, 1-35).
AC positions Q and P are reset.

Exchange Logical Accumulator and MQ XCL -0130 Figure 3. 5-7

This instruction interchanges the contents of AC(P-35) and the contents of the MQ
(S-35). Positions (S) and (Q) of the AC are cleared. Execution is identical to that of
XCA except for the handling of AC positions (S) and (P). The contents of the MQ are
put into the SR. The contents of the SR(S, 1-35) and the AC(S, 1-35) are interchanged,
putting the original MQ in the AC. Gating the output of the SR(S, 1-35) to the MQ(S, 1-35)
places the original AC contents in the MQ. AC positions (Q) and (P) are cleared because
of normal shift cell operations.

B22

I Time
Pri Op 62

MF Store
Address

2.09.01. l

MF Store
Tag

2.09 .01. 1

MF Store
Ctrl

MF Store
Decrement

2 .09.01. l

2.09.00. l

AC(P-35)...,.SR
El(Dl)

2.12.02. l

SR -+SB
E4(D3)

2.09.00. l

MF Store
Prefix

2.09.0l.l

Portion of
SB--.Memory

Data Reg

End Op

FIGURE 3.5-2. STP +0630; STD +0622; STT +0625; STA +0621

I Time
Pri Op 62

MF Store
Ctrl
2.09.00. l

MF Store
Prefix

2.09 .OJ .1

End Op

MF Store
Deer

2 .09 .01. 1

FIGURE 3 .5-3. SLQ - 0620

I Time
Pri Op 62

"Adr Portion
of SB--.Mem

, Data Reg

End Op

MF Store

Address
2 .09 .01. l

FIGURE 3 .5-4. STL -0625

I Time
Pri Op 56

E Time

SB->SR E7(Dl)

2 .12.50 l

E End Op

8.00.00.l

I Time
Next Inst

SR (S-35)
-MQ 13(Dl)

2.12.41. l

FIGURE 3.5-5. LDQ +0560

I Time
Pri Op 12

l
MQ _..SR
llO(Dl)

2. 12 .07. l

1
End Op

l
I Time
l'lext Inst

I
SR(l-35)-AD
IO(D3)

2. 12.14. l

l ±]
r SR(3)-AC(S) AC(S, 1-35) AD(Q-35)

12 (Dl) _..SR 12(01) _..AC 12(Dl)

l 2.12.37.1 2. 12 .01. 1 2.12 .31. l

1 l J
I

SR (S-35J -
MQ 13(Dl)

2.12.40. l

FIGURE 3.5-6. XCA +0131

I Time
Pri Op 12

J
MQ -.SR
llO(Dl)

2 .12.07. l j

J
End Op

l
I Time
Next Inst

- l_
l l

SR (5-35)...,AD AD (Q-35)-+
(P-35) 10 (D6) AC 12 (Dl)

2 .12. 15. l 2. 12.31. l

l
AC(P-35) _..SR
(S-35) 12 (Dl)

2 .12.02. l

l

I
SR (S-35) -MQ 13 (Dl)

2.12.40. l

Set AC(S) (Plus)

I 6 (Dl)

2.12.92. l

FIGURE 3.5-7. XCL -0130

I Time
Pri Op 76

[~
End Op

~e
Next Inst

Op K_..SR
12 (DJ)

4.20 .14. l

SR 4-MQ

I 5(Dl)

2.12 .40. l

FIGURE 3.5-8. Et-JK +0760 ... 0004

Enter Keys ENK +0760 ... 0004 Figure 3. 5-8

The word represented in console keys (S, 1-35) replaces the contents of the MQ. This
is a primary operation 76 instruction. The word in .the keys is put into the SR and the
output of the SR is gated into the MQ.

3. 5. 02 Shifting Instructions

, Shift instructions are used to align words, or for fast multiplication or division by a
power of 2. Shifting moves the bits of the AC or MQ, or both, to the right or left within
the registers. Bits shifted out of the end of a register are lost and bits shifted away
from either end of a register are replaced by zeros. Because the shift counter receives
only the last eight positions of the instruction address, the maximum number of shifts
possible is 22510(11 111 1112).

Shifting to the left is the same as multiplying by a power of 2; shifting to the right
reduces or divides by a power of 2. The number of shifts is equal to the exponent.

Accumulator Left Shift ALS +0767 Figure 3, 5-9

This instruction causes the contents of the AC(Q-35)* to be shifted left a number of
places equal to the eight low order positions of the address. Zeros replace any bits
shifted away from position (35). Bits shifted past Q are lost. A "1" shifted into the P
position turns on the AC overflow indicator.

This instruction has a primary operation 76 which causes the SC to receive the
eight low order positions of the address. As long as the SC value is not zero the AC
is shifted and the SC is stepped down once for each master clock pulse. The computer
will continue in L cycles until the SC is stepped down to zero. This stops shifting and
turns on the end operation trigger.

Long Left Shift LLS +0763 Figure 3. 5-10

For this instruction the contents of the MQ and AC (except the sign positions) are
shifted left the number of places designated by the eight low order positions of the ad­
dress. The AC sign is set to agree with the MQ sign. Bits shifted past Q are lost and
bits shifted away from MQ(35) are replaced by zeros., Bits shifted into P cause the AC
overflow indicator to be turned on.

The number of shifts to be taken is set into the SC. As long as the SC value is not
zero, the MQ and AC are shifted left and the SC is stepped down once for each clock
pulse. Shifting and L cycles continue until the SC equals zero. Shifting is then stopped
and the end operation trigger is turned on.

Logical Left Shift LGL -0763 Figure 3. 5-10

This instruction shifts the contents of AC(Q-35) and MQ(S-35) left the number of
places designated by the address. Bits shifted from MQ(l) enter MQ(S), and from MQ
(S) enter AC(35), Bits shifted into AC(P) cause the AC overflow indicator to be turned
on. Bits shifted past AC(Q) are lost and bits shifted away from MQ(35) are replaced by
zeros. The operation of LGL is similar to LLS except for handling of the MQ sign.

*This text section uses (Q - 35) to represent (Q, P, l - 35).

B25

I Time
Pri Op 76

IAS(l0-17)-SC
I ll(Dl)

Step SC 6MC
DR Line

2.11.79.l

2.11.78.1

L Time

Shift Gate L 1 to
SC= 0

2.11.79.1

ALS Ctrl

2.09 .70. l

s-,,1a;;cr shift
AC Lt

2.12.33. l

SC Stepped and
AC Shifted Every

Clock Pulse

Yes

Turn On AC
Ov Tgr

2.10.36.1

L End Op
AlO(Dl)

8.00.01.1

FIGURE 3.5-9. ALS +0767

I Time
Pri Op 76

AS(l0-17) -sci
111 (Dl)

.1

L Time

Shift Gate L 1
to SC= 0

2.11.79.1

L End Op
AlO (Dl)

8 .00.01.1

LLS

Set
MQ(S)--AC(S)

2.12.42. l

MQ(l) -AC(35

1.12.42.1

LGL

Turn On_AC
Ov Tgr

MQ(l)-MO(S)

Step SC 6MC
DR Line

2.11.79.1

2.10.36.1

Set and Shi ft ACI
(P-35) and MO
(2-35) Lt
2.12.34.1
2.12.42.1

SC Stepped and
AC-MQ Shifted
Every Clock Pulse

2.12.42.1

FIGURE 3.5-10. LLS +0763; LGL -0763

MQ(S)-AC
(35)

2. 12.42.1

Accumulator Right Shift ARS +0771 Figure 3. 5-11

This instruction causes the contents of AR(Q-35) to be shifted right the number of
places indicated by the address. Bits shifted away from Qare replaced by zeros; bits
shifted past position (35) are lost. ARS is similar to ALS except for direction of the
shifting.

Long Right Shift LRS +0765 Figure 3. 5-12

The contents of the MQ and AC (except the sign positions) are shifted right the
number of places indicated by the address. The MQ sign is set to agree with the AC
sign. Bits shifted away from Qare replaced by zeros and shifted past AC(35) enter
MQ(l). Bits shifted past MQ(35) are lost. The SC is stepped down and the AC and MQ
are shifted once for each clock pulse, until the SC equals zero. When the shift counter
steps down to zero, shifting is stopped and the end operation trigger is turned on.

Logical Right Shift LGR -0765 Figure 3, 5-12

This instruction shifts the contents of the AC(Q-35) and MQ(S-35) right the number
of places designated by the address. ;Bits shifted out of AC(35) are entered into MQ(S)
and from MQ(S) to MQ(l). Bits shifted past MQ(35) are lost. The operation of LGR is
the same as LRS except for the handling of the MQ sign.

Rotate MQ Left RQL -0773 Figure 3, 5-13

This instruction shifts the contents of the MQ, including the sign, left the number
of places designated by the address. Bits shifted out of MQ(l) enter the sign position
and from the sign position enter MQ(35). The SC is stepped and a shift occurs once
for each clock pulse. When the SC equals zero, shifting is stopped and the end opera­
tion trigger is turned on.

3. 5. 03 Fixed-Point Arithmetic Instructions

Fixed-point arithmetic instructions are the bas~c calculating instructions. Addition
is the foundation of all of these instructions, and parts of the ADD instruction will be
found in all instructions. All arithmetic instructions use the accumulator.

Clear and Add CLA +0500 Figure 3, 5-14

The instruction clears the AC(S, Q-35) and loads positions (S, 1-35) with the con­
tents of the storage location indicated by the address. The word that is to be put into
the AC is brought from core storage to the SR during the E cycle, In the I cycle of the
next instruction, positions (1-35) are gated from the SR through the AD to the AC. The
sign position is gated directly from the SR to the AC.

Clear and Subtract CLS +0502 Figure 3. 5-14

This instruction replaces the contents of the AC with the word from the core storage
location indicated by the address. The sign of the word is reversed. Execution of this
instruction is the same as the CLA except that the sign of the word is inverted during
the E cycle after the word has entered the SR.

B27

I Time
Pri Op 7 6

AS(10-17)•SC
111 (Dl)

2.11.78.1

Shift Gate
LI to SC= 0

2.11.79.1

ARS Ctrl

2.09.70.1

Set and Shift
AC RT

2.12.33.1

Step SC 6MC
DR Line

2.11.79.1

FIG URE 3 . 5-11. ARS 4-0771

L End Op
AlO(Dl)

80.00.01.1

Step SC
6MC DR Line

2. 11.79.1

Shift Gate
LltoSC=O

2.11.79.1

Yes

LRS

s.,;i-c.r,ci Shift
AC(Q-35)

AC(S)+MQ(S) I IAC(35)-..MQ(l)

and MQ(l-35) RT
2.12.33.1
2.12.43.1

2.12.33.1

SC Stepped and
AC-MQ Shifted
Every Clock
Pulse

2.12.33 .1

FIGURE 3.5-12. LRS 4-0765; LGR -0765

LGR

L End Op
AlO(Dl)

8.00.01 .1

AC(35)•MQ(Sl I MQ(S)+MQ(l)I

2.12.33.1 11 2.12.43.1
I I

Shift Gate
Ll'to SC= 0

2.11.79.1

I Time
Pri Op 76
Sec Op 13

AS(10-17)+SC
I ll(Dl)

Yes

MQ(S)
-+MQ(35)

2.12.42. J

SC Stepped and
MQ Shifted

Every Clock Pulse

FIGURE 3.5-13. RQL -0773

Step SC
6MC DR Lin
2.11.79.l

L End Op
AJO(Dl)
8.00.0l. l

CLA,CLS
....--

SR(J-35)+AD
10 (D3)

2.12. J4. J

SR(S) -+AC(S)
12 (DJ)

2. J2.37. J

I Time
Pri Op 50

Change SR (S)
E9(Dl)

I Time

Next Inst

CAL

AD(Q-35)..,..AC
12 (DJ)

2.J2.31.1

SR (S-35) ...,.. AD
AD(P-35)

10 (D6)

2. J2. J5. J

Set AC (S) (Plus)
16 (DJ)

2.12.92.1

FIGURE 3.5- J4. CLA +0500; CLS +0502; CAL - 0500

Clear and Add Logical Word CAL -0500 Figure 3, 5-14

This instruction clears the AC (S, Q, P, 1-35) and enters the word stored at the location
indicated by the address into AC (P, 1-35). This instruction operates the same as C LA
exceptfor thehandlingof theSandPpositions. The signofthe word in the AC is positive.

Add ADD +0400 Figure 3. 5-15

This instruction causes the word, stored at the location indicated by the address, to
be added algebraically, to the contents of the AC. The resulting sum or difference re­
places the AC factor.

The following rules of addition are used during the execution of the add instruction:
1. Accumulator and storage register signs alike:

a. Add true accumulator factor to the storage register factor.
b. The accumulator sign is unchanged.

2. Accumulator and storage register signs unlike:
a. Add l's complement of the accumulator factor to the storage register

factor.
(1) If no end-carry results, complement the accumulator factor and

leave the accumulator sign unchanged.
(2) If an end-carry results, add one to the result and change the

accumulator sign.

Except for bringing a word from storage to the SR, most of the execution of this
instruction is accomplished during the I cycle of the next instruction. The contents of
the AC or the l's complement of the AC and the contents of the SR are added in the
adders. Whether to use true AC or complemented AC is determined by the comparison
between the AC and SR signs. Complement addition is used to obtain the difference be­
tween the contents of the SR and the contents of the AC.

The difference between the SR and AC contents can be a complement number or a
true number. The result will be in complement form if the AC is larger than the SR
factor. A true number will result if the AC factor is smaller than the SR factor. Dur­
ing the addition a carry out of AD position Q indicates that the AC factor is smallerand
no Q carry indicates that the AC factor is larger. To remember the carry, a Q carry
trigger is turned on by a carry out of AD position (Q).

If the result of the complement addition is a true number it is one less than it should
be because the l's complement rather than the 2's complement was used inthe addition.
Therefore, a one is added to the result in the AC to get the correct difference. If the
result of the addition is a complement number, it must be re..'..complemented to get the
correct true number. The sign of the result in the AC is set the same as the sign of
the largest original factor, as determined by the status of the Q carry.

Example 1
Signs Alike

-7 + (-6) = -13
-0111 SR(7)
-0110 AC(6)
-1101 Result in AC (13)

B30

Sub

Invert SR (S)
E9(Dl) ' ..

2.09.95.l

Yes

Turn on Ace
OV Tgr

2.10.:J..6. l

SUB, SBM

Sb'!'

Minus +SR(S)
E9(Dl)

2.09.95.1'

Alike

AC (Q-35)
+AD 10 (D3)

2.12.22.1

Comp AC+AD
14(D3)

2.12.22.1

No

I Time
Pri Op 40,

ADD, ADM

Adm

Plus +SR(S)
E9.(Dl)
2.09.95.1

Yes

Unlike

omp AC (Q-35 .
+AD 10 (D3)

2.12.24.1

AC-+AD
14(D3)

Carry +AD
(35) 14(D3)

AD..,AC
16 (Dl)

2.12.31 .1

2.12.24. l 2.12.29.1

Add

FIGURE 3.5-15. ADD +0400; ADM +0401; SUB +0402; SBM -0400

Invert AC(S)
l6(Dl)

2. 12.92.1

Example 2
Signs Unlike, AC Smaller

7+(-6)=+1
+0111 SR(7)
-1001 l's comp of AC(6)
-0000 Q carry

1 Add one
-0001 Result in AC
+0001 Change sign

Add Magnitude

Example 3
Signs Unlike, AC Greater

6 + (-7) = -1
+0110 SR(6)
-1000 l's comp of AC(7)
-1110 No Q carry, Result in AC
-0001 Comp AC

ADM +0401 Figure 3. 5-15

For this instruction, the word at the storage location indicated by the address is to
be considered positive. This positive word is added, algebraically, to the contents of
the AC. ADM operates the same as ADD, except that the sign of the word is set posi­
tive after it has entered the SR.

Subtract SUB +0402 Figure 3. 5,...15

This instruction algebraically subtracts the word at the storage location indicated by
the address from the contents of the AC. The execution of SUB is similar to ADD,
except that the sign of the word in the SR is inverted.

Subtract Magnitude SBM -0400 Figure 3. 5-15

For this instruction the sign of the storage word indicated by the address is considered
negative. This negative word is added algebraically to the contents of the AC. The
execution of SBM is the same as ADD, except that the sign of the SR word is forced
negative.

Add and Carry Logical Word ACL +0361 Figure 3. 5-16

This instruction adds the 36-bit logical word stored at the location indicated by the
address to the contents of the AC(P-35). AC(S) is ignored; AC(Q) is cleared. A
carry out of AC(P) is added to position 35 in the adders. The operation of this instruc­
tion is the same as ADD, except for the handling of the (S), (Q), and (P) positions.

Multiply MPY +0200 Figure 3. 5-17

This instruction multiplies the word stored at the location indicated by the address
by the contents of the MQ. The 35 most significant bits of the 70-bit product replace
the AC (1-35), and the 35 least significant bits replace the MQ(l-35). Positions (Q)
and (P) of the accumulator are clea:red, and the signs of the AC and MQ are set to the
algebraic sign of the product.

00 0110 Multiplicand (SR)
1011 Multiplier (MQ)
0110 Partial Product

0110 II If

0000 II If

0110 If II

1000010 Product (AC and MQ)

B32

R(S-35)-MD
P-35)1 0 (D6)
2.12.15. 1

No

2.12.29. l

AD(P-35) -+AC
15 (Dl)

2.12.30. l

FIGURE 3.5-16. ACL +0361

I Time
Pri Op 20

Set AC and MQ
Signs Plus 16
(Dl)
2.12.92. l

No

Set AC and MQ
Signs Minus
16 (Dl)

2.12.92. l

Set 43s in SC
E9(D1)

2.11.78. l

L Time

AddCycleMPY,
MPR, VLM LO(D3),
L4(D3) LB(D3)

2.09.54.1

AC-AD
LO(D3), L4(D3)
LB(D3)

2.12.24. l

AD -AC L2(Dl)
L6(Dl), LlO(Dl)

2.12.31. l

FIGURE 3.5-17. MPY+0200

ShMQ and AC 11 Sh MQ and AC Rt
Rt L3(D1),L7(Dl) Any or Every Clock
Lll(Dl) Time

2.09.54.1

MPY End
Op
2.09.53. l

2.09.54. l

No

In the 7090, ·multiplication follows this procedure closely. Starting at the right of the
multiplier in the MQ, only one position of the multiplier is scanned at a time. In the
7090 there is no means of remembering partial products so they may be added after
each position of the multiplier has been used. Therefore, if the multiplier position be­
ing scanned is a one, the multiplicand is added tb any previous partial product that is in
the AC. In the 7090, multiplication is done as follows:

-
0110 Multiplicand (SR)
1011 Multiplier (MQ)
0000 Start with zeros in AC

+0110 Right MQ position scanned
0110 Partial Product

+0110 Next MQ position scanned
10010 Partial Product

0000 Next MQ positions scanned
010010 Partial Product

+0110 Next MQ position scanned
1000010 Product (AC and MQ)

In this example, each time the multiplicand is added to the previous partial product,
the multiplicand must be moved to the left to correctly line up the bit positions. In the
7090, the partial product is moved to the right rather than the multiplicand moving to
the left. The end result is the same.

Multiplication in the 7090 breaks to two major procedures:
1. Addition of SR and AC contents.
2. Shifting the contents of the AC and MQ right.

Figure 3. 5-17 shows a MPY operation in the 7090. During the E cycle, in addition
to bringing the multiplicand to the SR, the AC is cleared. This allows the MPY to start
with the AC containing zeros. Also during the E cycle the word coming from storage is
tested to see if all positions contain a zero. If the multiplicand is zero the product is
to be zero. To save machine time, the MQ is cleared and the instruction ends opera­
tion. For a non-zero multiplicand, 438 (3510) is put into the SC. The SC will be used
to indicate when all bits of the MQ have been tested. Also, because the storage word
was not zero, the computer is put into L time for multiplication.

Now MQ(35) is tested for a bit. If there is a bit in MQ(35), the SR and AC contents
are added and the result is put into the AC. If MQ(35) had no bit, this addition would
not have been done because the sum of zero and a number equals the same number. The
AC and MQ are shifted right to put the next position of the multiplier in MQ(35) to be
tested, and put the partial product in correct alignment with the multiplicand. This
type 0f shift1 is called a slow-speed shift. High-speed shifting (shifting once for each
clock time) will occur if both MQ(34) and MQ(35) contain zeros. This is done to speed
the multiplication operation. Each time the AC and MQ are shifted, the shift counter
is stepped and, as long as the shift counter does not equal zero, MQ(35) is once more
tested and the process starts again. When the SC has been stepped down to zero, the
computer signals that multiplication is complete. Because all positions of the multi­
plier have been scanned and all additions have been completed, MPY then ends operation.

All that remains is to put the algebraic sign of the product in the AC and MQ. This
is done during the I cycle of the next instruction.

B34

Note that three additions can be done during each cycle of MPY. The maximum num­
ber of shifts during an L cycle can be 12, depending on positions (34) and (35) of the MQ.
·Maximum number of machine cycles required for MPY is 14; minimum is two.

Multiply and Round MPR -0200 Figure 3. 5-18

This instruction executes a multiplication followed by rounding the AC contents. T}le
multiplication is identical to MPY; the rounding is accomplished by adding one to AC
(35) if MQ(l) contains a one.

Variable-Length Multiply VLM +0204 Figure 3. 5-19

This instruction operates much the same as MPY, except that the number of multi­
plier bits to be used is specified by a number in the decrement portion of the instruc­
tion. The difference between MPY and VLM occurs in the E cycle. A count from the
decrement portion of the instruction is put into the SC rather than 43g. Usually this
count will be less than 438. Therefore, VLM usually takes less time than MPY because
end operation still occurs when the SC equals zero.

Divide or Halt DVH + 0220 Figure 3. 5-20

This instruction divides the contents of the AC and MQ, taken together as the dividend,
by the word stored at the location specified by the address. A 35-position quotient is
developed in the MQ, and the remainder of the dividend is left in the AC. The sign of
the MQ is set to the algebraic sign of the quotient, as determined by the SR and AC
signs. The sign of the remainder remains the same as the sign of the dividend. The
size of the registers restricts the size of the factors to be divided. If the AC portion
of the dividend were greater than or equal to the divisor, the quotient would be too large
for the MQ. In this case, division cannot take place, and the computer is stopped with
the divide check indicator on.

The following demonstrates binary division:
0110 Quotient (MQ)

1011) 1000010 Dividend (AC and MQ)
1011
01011

1011
00000

0000
0000 Remainder (AC)

Note that the divisor will go once or not at all into the high order positions of the
dividend. Therefore, it is only necessary to determine if the divisor is equal to or
smaller than these positions of the dividend. If the divisor is equal to or smaller than
the selected positions of the dividend, a one is put in the quotient and the divisor is
subtracted from that portion of the dividend. If the divisor is larger than the selected
portion of the dividend, a zero remains in the quotient. Another position of the dividend
is now taken into account, and the procedure starts again. This continues until all posi­
tions in the dividend have been used.

In the 7090, the SH and AC are complement added to determine if a reduction of the
high order positions of the dividend is possible. If the reduction is possible, these

I Time

Next Inst

MQl ~ 1

Yes

N

AC(Q-35) ->AD
10 (D3)

Carry -. AD(35)
10 (D3)

2.12.24.1

l

2.12.29. l

AD(Q-35)->AC
12 (Dl)

2.12.31.1

Operates the Same as MPY, Except
that the Above is also Done During
the I Cycle after,MPY.

FIGURE 3.5-18. MPR - 0200

E Time

...
SR(S, l-35)->AD
(P-35) EO(D3)

2.12.15.1

l
AD(3-17) ->AS As(12-11) +sc
E2(Dl) E2(Dl)

3.06.16.1 2.11.78.l

l J
Prevent 43a->
SC E9(Dl)

2. l l .78. 1

Operates the Same as MPY, Except
that the Above is also Done During
the E Cycle.

f IGURE 3 .5-19. VLM + 0204

positions of the dividend are reduced by the amount of the divisor and the difference is
put into the AC. If a reduction is not possible the AC remains the same. A successful
reduction causes a one to be put info MQ(35). After the reduction time, the AC and MQ
are shifted left to bring the next position of the dividend into the AC and another reduc­
tion is tried, This operation continues until all positions of the MQ portion of the divi­
dend have been moved to the AC.

Figure 3. 5-20 shows the sequence of a DVH operation. Because subtraction in the
7090 is accomplished through complement addition, the AC contents are put into comple­
ment form early in the E cycle. This complement and the contents of the SR are added
to determine if the quotient will be small enough for the MQ register. A Q carry indi­
cates that division is possible and a no Q carry indicates that division is not possible.
Also, during the E cycle, 43g is put into the SC and this will be used to indicate when
all dividend positions have been used,

When there is no Q carry as a result of the E cycle test, the divide check trigger is
turned on and the computer is signalled to divide check end operation, An L cycle
occurs before actual end operation because the divide check end operation signal comes
too late in the E cycle. During the I cycle of the next instruction, the master stop trig­
ger is turned on and this causes B cycle interrupt to be activated. B cycle interrupt
prevents I, E, and L cycles,

A Q carry as the result of the E cycle test allows normal divide operation to take
place. 'Toward the end of the E cycle the AC and MQ are shifted left and the SC is
stepped. This brings the next position of the dividend into the MQ. Note that while
shifting from MQ(l) to AC(35), the information is complemented because a complement
number is used in the AC.

The computer then goes into L cycles. A reduction is attempted and a l is put into
MQ(35) if the reduction is successful. Again there is a left shift of the AC and MQ and
the SC is stepped. This attempted reduction and shifting procedure continues until the
SC equals zero. When the SC=O, divide end operation is actuated.

During the I cycle of the next instruction the AC is again complemented to make the
remainder a true number. The sign of the MQ is set to the algebraic sign of the quo­
tient.

Divide or Proceed DVP +0221 Figure 3. 5-20

The execution of this instruction is identical to DVH except that the computer is not
stopped for the divide check violation, but proceeds to the next instruction. The divide
check trigger is not allowed to turn on the master stop trigger during the I cycle of the
next instruction.

Variable-Length Divide or Halt VDH +0224 Figure 3. 5-20

This instruction operates the same as DVH, except that the number of reductions to
be taken is specified by the count in positions (12-17) of the instruction. The number of
positions in the quotient is equal to the count and will be contained in the low-order
positions of the MQ. The count should be restricted to a number between 0 and 433. A
zero count ends operation in E time and prevents the shift at the end of the E cycle. A
count of 438 will give the same result as DVH. A count greater than 433 causes part of
the quotient to be shifted into the AC, where it can be altered.

B37

SR-AD
E8(D3)

Comp AC-+AD
E4(D3)

2.12.22.1

AD--AC
E6(Dl)

2.1 •

SB-SR
E7(Dl)

2.12.50.1

AC->AD
E8(D3)

2.12.14. l 2.12.24. l

(SR f: AC)

~' To Div
Check
Fig. 3 .5-208

A

No

I Time
Pri Op 22

E Time

DVH
DVP

438---.sc
E9 (Dl)

2.11.78. l

VDH, VDP

SR(S, 1-35)
-AD(P-35)

EO(D3)
2.12.15. l

AD (3- 17) ..,AS
E2(Dl)

AS(l2-17)
-+SC E2(Dl)

3.06.16.1 2.11.78.1

Yes

No

Yes (SR)AC)

Div Shift
E 1 l(Dl)

2.09 .50. l

Div Shift
Ctrl

2.09.51. l

E End Op

To End Op
Figure

3 .5-208

B

Comp MQl Sh AC(P~35) MPY- Div
-+-AC(35)

2.12.42. l

and MQ(2-35)
2.12.34.1
2.12.42. l

To L Time
figure 3.5-208

Step SC

2.09.51. l

FIGURE 3.5-20A. DVH +0220; DVP +0221; VDH +0224; VDP + 0225

l
L Time

_J -i
SR-AD AC-AD LO

L Time (D3) L4 (D3)
LB (D3)

2.12.14.1 -2.ll.24. l
l j

Div Shift Ctrl ·~y., L3(Dl), L7(D1)
Ll I (Dl)
2.09.51.1

1'
0 l

I Comp MQl--> Sh AC(P-35) MPY-Div StepSC
1....,.MQ(35)L2 AD-.AC L2(Dl AC(35) and MQ(2-35)Lt L3 (DI), Lt (DI)
(Dl),L6(Dl) L6(Dl), L!O(Dl) 2.12.34.1 Ll 1 (Dl)
LlO(Dl) 2.12.42.1 2.12.42.1 2.09.51. l

2.09.51.1 2.12.31. I 1
1 J

l
A

Yes ~No ,,.,
SC - 0

Div End Op
1 !

2.09.50. l Turn on Div Divide Ck
Ck Tgr Ell End Op Ell

2.10.53.1 2.09.50. j

l' T
T

L Time

:I

End Op
Off Comp AC...,.AD Div Ck Tgr

I 0 (D3)

I Time
2.12.22. l

On Next Inst

AD-AC

VDH<S> 12(Dl)

Turn On Mst DVH 2.12.31.1
Stop Tgr 15

4.20.11.1
DVP, VDP r]

SR and AC SR and AC
Signs Unlike Signs Alike

B Cycle Inter A 11 2.12.94.1 2.12.94 .1
8.00.13.1 Prevent
l, E and L Cycles 1 --r

Set MQ Sign Set MQ Sign
Minus 16 Plus I 6

2.09 51. 1 2.09.51. 1

FIGURE 3.5-20B. DVH + 0220; DVP + 0221; VDH + 0224; VDP + 0225

Variable-Length Divide or Proceed VDP +0225 Figure 3. 5-20

The execution of this instruction is the same as VDH, except that the computer will
not stop for a divide check, but will proceed to the next instruction.

Round RND +0760 ... 0010 Figure 3. 5-21.

This instruction examines the contents of MQ(l} and if it contains a one, the magni­
tude of the AC is increased by one. If MQ(l) contains a zero, the AC is unchanged. The
MQ is not changed in either case. AC overflow is possible. This is a primary opera­
tion 76 instruction. The contents of the AC are sent to the AD and, if MQ(l) contains
a one, a one is sent to AD(35) and the output of the AD replaces the contents of the AC.

Clear Magnitude CLM +0760 ... 0000 Figure 3. 5-22

This instruction puts zeros in AC(Q-35). CLM is a primary operation 76 instruction.
The operation is accomplished by gating the AD to the AC, with nothing in the adders.

Complement Magnitude COM +0760 ... 0006 Figure 3. 5-22

The contents of the AC(Q-35) are complemented. Positions containing ones are
changed to zeros and.positions containing zeros are changed to ones. This instruction
is executed by complementing the AC to the AD and replacing the contents of the AC
with this complement.

3. 5. 04 Floating-Point Arithmetic Instructions

The range of numbers anticipated during a calculation may be extremely large,
extremely small or, in some cases, unpredictable. Such situations make fixed-point
arithmetic difficult to work with for two reasons:

l. The size of the number is limited by the size of the register
(35 binary bits qr 12 decimal digits).

2. The programmer must keep track of the point in all numbers throughout
the calculation.

To meet the needs of large numbers and to automatically keep track of the point, an
alternative set of arithmetic instructions, called floating-point arithmetic instructions,
are available.

Floating-point arithmetic is merely arithmetic dealing with numbers in exponential
form. The numbers 5, 6 x 103 or 56000 x lo-4 have a familiar form. The numbers
are made of three parts; a fraction (5. 6 or 56000), an exponent (3 or -4), and a base (1 O).

Floating-point numbers in binary are similar to decimal floating-"point numbers.
The major difference is the base. Numbers in the 7090 use 2 as a base, because it is
a binary computer. The other difference is one of terms. Instead of a decimal point,
we will call it a binary point.

The following chart gives a comparison of fixed-point binary numbers and floating­
point binary.

B40

C(Q-35)--l>
ADIO(D3)
2.12.24. l

I Time
Pri Op· 76

L- Carry+AD (35) I 0 (D3)
2.12.29. l

I~-

AD(Q-35)
+AC 12(Dl)

2 .12 .31 'l

FIGURE 3.5-21. RND +0760 ... 0010

Turn on Ace
OV Tgr

2.10.36. l

CLM

I Time
Pri Op 76

AS(12-l7)
.,..5c I l l(Dl)

2.11.78.1

--i

[

pAC(Q-35)
AD IO(D3)

I 1~.22. l

AD(Q-35)
_,.AC 12(Dl)

2.12.31 .1

FIGURE 3.5-22. CLM +0760 ... 0000; COM +0760 ... 0006

Fixed-Point Binary
(4) 000100
(11) 001001

Floating Point

.1 x 2 Oll

.1001 x 2100

Because the 7090 works in binary, all floating-point numbers will be to the base 2.
Therefore, to represent a floating-point number in the computer, there is no need to
carry the base along with the number. This cuts our need to representing the fraction
and the exponent. The exponent is represented in positions (1-8) of the word and is
now called the characteristic. The fraction is contained in positions (9-35). The
binary point is to the left of the 9 bit. The sign position is used to sign the fraction.
Word layout takes this format:

s 1 ----------- 8 .9---------------------35

Characteristic Fraction

The value of the number in the characteristic field signifies the exponent and its
sign. The characteristic is derive;:l by adding 2008 to the exponent. If the character­
istic is 2008 the exponent is zero. If the number is 201 to 377, the exponent is posi­
tive. If it is 0 to 177, the exponent is negative. The following chart gives examples
of exponential numbers and their floating point representation:

Exponential Floating Point
Binary S 1 - 8 9 - 35

+ • 1 x 2°11 + 10000011 10000----0
-. 01 x 2001 10000001 0100-----0
+ . 1 x rou + 01111101 1000-----0

Normal and Unnormal Forms

A floating-point number is said to be in normal form when the digit immediately to
the right of the point is a significant bit (1). If the number is a zero, it is said to be in
unnormal form. The exception to this rule is a normal zero: a normal zero is a
floating-point number whose characteristic and fraction are both zero.

To go along with the two type of numbers, the instructions are also divided into two
categories, normal and unnormal. The difference in computer operation is that the
normal instructions always attempt to produce a normal answer and the unnormal in­
structions do not.

Arithmetic of Floating Point

Addition of floating-point numbers is done by adding the fractions of floating-point
numbers which have equal characterlstics. The characteristics are set equal pre-

,1 ceding the addition by placing the number with the smallest characterist.ic in the AC.
The fraction is then shifted right,· and for each right shift one is added to the character­
istic. When the characteristics of the AC equals the characteristic of the SR, shifting
stops, and the fractions of the AC and SR are added. Bit shifted out of AC(35) enter
MQ(9). The sum appears in the AC and forms the most significant part of the answer.
The least significant part is the bits that were shifted into the MQ. The MQ character­
istic is set 2710 less than the AC characteristic to complete an unnormalized floating

B42

add. If it were a normalizing instruction, a check would be made to see if a 1 were in
AC position nine. If AC(9) does contain a 1, the operation would be complete; if not,
the AC would shift left until a one did appear in position nine. Shifting increases the
number, so to keep it the same, the characteristic is reduced by the number of left
shifts taken. Floating-point subtraction works the same except that the fractions are
subtracted.

Floating-point divide is accomplished by dividing the fraction of the dividend by the·
fraction of the divisor and subtracting the characteristics. During the subtraction of
the characteristics, the 2008 that is added to all exponents is lost. Therefore, before
the answer is final, 200 8 must be added to the quotient characteristic.

Floating multiply is accomplished by multiplying the fraction in the SR by the fraction
in the MQ. The exponents in multiply are added, so in a floating multiply, the computer
adds the characteristics. Because 200g had been added to each exponent originally,
the characteristic is increased by 4008 after the addition. Before the answer is final,
2008 must be subtracted from the characteristic. The most significant part of the prod­
uct is in the AC and the least significant part in the MQ.

Sign control is as follows:
Multiplication and Division

Addition and Subtraction

Floating-Point Tally Counter

Signs of factors alike; answer plus
Signs of factors unlike; answer minus
Answer always has sign of the largest factor

The floating-point add, multiply, and divide type instructions require an I, an E,
and sev~ral L cycles. Execution of the instruction. is accomplished during the L cycles.
To differentiate between the different types of L cycles, there is atally counter. This
is a five stage counter whose output is added with L time to direct the various phases
in the execution of the instruction. When the required operations are complete for
first step L time, the tally counter is stepped to produce seco~d step L time. This
causes the computer to go into the next phase in the execution of the instruction. The
operation continues to the next step, and so on. All five steps of the tally counter are
not used for every instruction; each instruction uses as many as i't requires.

Floating Add FAD +0300 Figure 3. 5-23

This instruction adds, algebraically, the floating-point number stored at the location
indicated by the address and the floating-point number contained in the accumulator.
The most significant portion of the result appears as a normalized floating-point number
in the accumulator. The least significant portion of the result appears in the MQ as a
floating-point number with .a characteristic 2710 less than the characteristic of the
number in the accumulator. The signs of the AC and MQ are set to the sign of the
larger factor. If both the resulting MQ and AC fractions are zero, the registers will
be reset to contain normal zeros with the signs corresponding to the original factor
having the smaller characteristic. If the characteristics were equal, the resulting
signs will correspond to the original AC sign.

The result in the AC is always normalized, whether the original factors were normal
or not. No attempt is made to normalize the MQ. ·

First Step L Time. As first step L time is entered, one of the floating-point words
to be added is in the AC and the other is in the SR. The objectives of 1st step L time
are to:

1. Put the word with the smallest characteristic in the AC.

B43

I Time
Pri Op 30

I

E Time

J_
SB-SR
E7(Dl)

2.12.50. l

J
L Time
lst Step

2.10.30.1

l 1 I 1 1
1--i..AD(8) Comp AC(l-8) Reset MQ SR(l-35)---.. AD Turn On T2
AO(D3) -.AD AO(D3) AD (D3) 1st Step L Tgr

2.13.27. l 2.13.22. l 2.13.95. l 2.13.21. l 2.10.38.1

l 1 J J

~ y 0 , (CSRlCAC)

CAC) CSR)

l I I l
SR(S) --i..AC(S) AD (Q-35) + AC(l-35)--.SR AC(S)-+ SR(S)
A6(Dl) AC A6 (Dl) A6(Dl) A6(Dl)

2.13.91. l 2.13.31.1 2.13.01.1 2.12.01.1

l J_ I J
_L

l J_
l -+AD(8) Comp AC(l-8) 1 AB(D3) -AD A8(D3)

L Time
2.13.27. l 2.13.22.1 2nd Step

l j
:J 2.10.31 .1

(CD ;if\?7al ~ (c~ff) n 8i
J No~Yes l

~LTime
AD (3-17) •AS ClearAC(Q-35) FP Shift Rt 3rd Step

AlO (Dl) AlO(Dl)
2.10.31.1

3.06.18. l 2.15.18. l 2.13.42.1

~
j_ J_

A5(3-8)-.SC -+ Sh AC (9-34) cmd

(12-17) MQ(l-34)Rt
Every Clock Time

2.12.33. l s

1 2.12.43.1 Turn Off T2
~

l AC(35)+MQ(9) Tgr

Every Clock 2.10.31.1
Time

2.13.42. 1

l
Step SC To AC. and SR Every Clock
Time Signs

2.13.71. l Fig 3.5-238

FIGURE 3 .5-23A. FAD +0300 l.. t

t

Unlike ~ Yes Col 9 No Alike

n

Carry

Off On
Comp AC (9-35 AC(9-35)-+AD SR(l-35)-AD

T2 Trigger +ADAO(D6) AO(D6) AO(D6)

Carry ..,..AD Turn On FP Tgr
2.13.22.1 2.13.24.1 2.13.21.1

(35) AO(D6) A6(D1) l t
2.13.27.1 2.10.29.1

1
l I AD(Q-35)->AC

MQ(l-35)...-SR
M(DI) ~ A6(D1)

2.13.12.1
2.13.31 .1

T ~omp AC(9-35) No Col 9

SR -AD _.AD AB(D3) Carry

AB(D3)
2.13.22.1

2.13.21.1
Yes

1
1 r J_

:I j_ Carry AD(9) FP Shift RT

SR(S)-AC(S) AD(9-35)-+AC AC-SR AD(9-35)->AC
->AD(B) AO(D6) A6(D1)

AlO(Dl) AlO(Dl) AlO(Dl) AlO(Dl) 2.10.46.1 2.13.42.1

2.13.91.l 2.13.31.1 2.13.01.1 2.13.31.1 I J.
J 1-AC(9) Sh AC (9-35) and

A6(D1) MQ (1-35) Rt
2.12.33.1

2.10.27.1 2.12.43.1
T T

L Time 4th

l
Step

2.10.33.1

~
1

f 1
On T2 Tgr

1+-AD(35) Comp AC(9-35)
AO(D3) _.ADAO(J::3)

n 2.13.27.1 2.13.22.1

A 0(9-35) ->AC Off T T
A2(D1)

2.13.31.1 No Col Yes

J 1 9 Carry

SR(l-35)_.AD Turn Off FP
M(D3) Tgr AlO(Dl)

2.13.21 .1 2.10.29.1

1
J_ 1

~"' AD(Q-35)-+AC AC(l-35)->- SR jAD(Q-35)->AC

A6(Dl) A6(Dl)

1 2.13.31.1 2.13.01.1 2.13 .31.1

l J]_

I To 5th Step To End Op

SR(l-35) ->MQ L Time Figure 3 .5-23C
AB(Dl) Fig. 3.5-23C

2.13.41. l 1 1
FIGURE 3.5-238. FAD +0300

l
FP Shift Lt

2.13.42. l

Sh AC(J0-35)
and MQ(2-35)
Lt Every Clock
Time

2.12.34. l
2.12.42.1

1
L Time
5th Step

2.10.34.1

AC(9)

=O

Step SC Every
Clock Time

2.13.71. l
]

= l

MQ (9)-AC
(35) Every
Clock Time

2.13.42.1

J

1
Turn On FP Tgr
A7(Dl}

SC(l 0-17)-.AD
5th Step L

AC(Q-8)-AD
5th Step L

2.13.24.1 2.10.29.1 3.04.15.1

l

l

AD(Q-8)->AC
All(Dl)

2.13.31. l

FP End Op

2.10.35.1

J:.
I Time
Next Inst

J
A~(Q-8).-.AD 1--.AD(Q,P,
10 (D3) 1,2,3,6,8)

10 (D3)
2.13.24.1 2.13.27.1

l J
l

l l_
AD(l-8)-SR AC(S)-MQ
12(Dl) (S) I 2(Dl)

2.13.04.1 2.13.91.1

l~n j
'"' ~

SR(l -8) -. MQ
13(D1)

2.13 .41. l

FIGURE 3 .5-23C FAD +0300

2. Determine the difference between AC and SR characteristics.
a. If the difference is less than 1008 , put the difference in the SC.
b. If the difference is greater than 77 8 , clear the AC.

To determine which characteristic is smaller, the 2 1s complement of the AC char­
acteristic is added to the SR characteristic. Also, during this time the MQ is reset
and T2 trigger is turned on. These are the initial starting conditions for T2 and the MQ.
Trigger T2 will be used later, during the execution of the instruction, if the MQ con- '
tains a zero or not.

A Q carry, because of the complement addition of the AC characteristic to the SR
characteristic, means that the SR characteristic is larger.· No Q carry means that the
AC characteristic is larger. Therefore, the word in the SR is moved to the AC and the
word in the AC is moved to the storage register.

Again, the 2's complement of the AC characteristic is added to the SR characteristic
to determine the exact difference between the characteristics. A characteristic differ­
ence of less than 1003 causes the difference to be put into the SC ~nd a difference greater
than 77 8 causes the AC to be cleared. The AC is cleared f_or _a d~fference greater than
77 8 because, due to this difference, the information eventually would be: shifted out of
the AC and MQ anyway. Shifting the MQ and AC fracti·ons right makes possible setting
the characteristics of the SR to the characteristic of the AC;· It takes 79s shifts to move
a bit from AC fraction position (9) out through MQ fraction position (35). The character­
istic difference is checked for 77 8 rather than 708 because this is easier to do in the
computer. The AC is cleared rather than let shifting take place because machine time
is saved.

Second Step L Time. Second step L time is used to shift the AC.and MQ fractions
right a number of places equal to the difference between the AC and MQ characteristics.
The principle here is the same as moving the point to the left and increasing the expo­
nent by one for each position that the point is moved. The changing of the characteristic
is done later. ·However, the fraction is adjusted for this change during second step.
The AC and MQ fractions are shifted right until the SC is stepped down to zero.

Third Step L Time. Third step L time occurs when the SC equals 0. The objectives
of the third step are to:

1. Set the AC characteristic equal to the SR characteristic.
2. Add, algebraically, the AC fraction to the SR fraction.
3, Make AC sign equal to the algebraic sign of the result of the addition.

The AC characteristic is set equal to the SR characteristic as a result of the addition
because the AC(9-35) or the 1 's complement of AC(9-35) is sent to the adders with SR
(1-35). Therefore, when AD(Q-35) are gated back to the AC, the correct characteristic
is set into the AC along with the result of the addition.

When binary fractions with like signs are added, there is a possibility of a carry out
of the high order fractfon position. This is.the same as a carry across a decimal point.
The 7090 has no register position to hold this carry (1), therefore, the fraction and
characteristic of the sum must be adjusted. This is done by moving the AC and MQ
fractions one position to the right, putting the one in the high order position of the AC
fraction, and increasing the characteristic by one. The characteristic is automatically
increased by one during the addition because the carry out qf AD(9) goes to the AD(8).

B47

When signs are unlike, a complement addition occurs. A column 9 carry resulting
from this addition means the AC fraction was smaller than the SH fraction and the re­
sult placed in the AC is a true number. Assuming the MQ to be zero, this true number
is l less than the sum, because the l 1 s of the AC fraction were used for the addition.
Therefore, a one is added to the AC fraction, If the MQ contains something other than
zero, the result of the addition is l minus MQ fraction less than it should be. There­
fore, one is not added to the AG fraction, but the MQ is subtracted from this one. This
is done by, in effect, complementing the MQ. De cause no provisions are in the circuits
to complement the MQ, the MQ contents are moved to the AC through the SR. The re­
sult of the addition is moved to the SH when the MQ contents are brought into the AC.

Fourth Step L Time. Fourth step L time is used to:
1. Complement the AC fraction.

a. AC contains original MQ fraction if the MQ was not zero.
b. If original MQ fraction was zero, it was not moved to the AC; therefore,

this complementing is used to test the AC fraction for a zero result of the
addition.

2. If the MQ and AC are zero, clear the AC to give a zero characteristic.
3. End operation if normalizing is not needed.

a. If AC and MQ are zero.
b. If AC (9) contains a one.

After complementing the AC fraction with the F P trigger on (MQ was not zero), the
complement is sent to tho MQ and the result of the addition is moved from the SR back
to the AC. Again available circuits must be used to get the complement to the MQ.
Therefore, the AC is gated to the SR and the SH is gated to the MQ.

Fifth Step L Time. Fifth step L time is used for normalizing the result and ending
operation. Normalizing is done by (1) shifting the AC and MQ fractions left until AC(9)
receives a one, (2) counting the number of shifts, and (3) subtracting the number of
shifts from the characteristic. The SC is used to count the number of shifts. Since the
SC is a count down counter which starts from zero, the 2's complement of the number
of shifts will be in the SC when shifting is stopped. Adding this complement to the
characteristic of the AC gives the correct adjusted characteristic.

I Time. I time of the next instruction sets the MQ(S) and characteristic. The AC(S)
is gated to the MQ(S) so both signs are the same.

For an MQ fraction that is not zero, the characteristic of the MQ is set 2710(33 8)
less than the AC characteri:;;tic. This is done by adding the 2' s complement of 333 to
the AG characteristic and putting the result into the MQ characteristic.

Unnormalized Floating Add UFA -0300

This instruction algebraically adds two floating-point numbers in the same manner
as FAD. The result, however, is not normalized. The sequence of operation for UFA
is the same as FAD with these exceptions:

1. For like SR and AC signs, UFA ends operation at the end of the third step
because a normalizing step is not needed.

2. UFA ends operation at the end of the third step if AC and SR signs are unlike
and there is no column D carry as a result of the addition. This is because
the correct unnormalized result is in the AC and IVIQ at the end of the 3rd step.

B48

Floating Add Magnitude FAM +0304

This instruction algebraically adds the magnitude of the floating-point number stored
at the location designated by the address to the floating-point number in the accumulator.
The sequence of operations is identical to that of FAD except that the SR sign is set
positive during the E cycle. This control line is on Systems 2. 09. 95. l.

Unnormalized Add Magnitude UAM -0304

This instruction operates the same as FAD, with the exceptions pointed out in UFA
and FAM.

Floating Subtract FSB +0302

This instruction algebraically subtracts the floating point number stored at the loca­
tion indicated by the address from the floating-point number in the accumulator. FSB
operates the same as FAD, except that the sign of the word in the SR is inverted during·
the E cycle. This is shown on Systems 2. 09. 95. l.

Unnormalized Floating Subtract UFS -0302

This instruction algebraically subtracts two floating-point numbers without normal­
izing the result. Execution is the same as FAD with the exceptions noted in UFA and
FSB.

Floating Subtract Magnitude FSM +0306

This instruction algebraically subtracts the magnitude of the floating-point number
stored at the location indicated by the address from the floating-point number in the
accumulator, Execution of this instruction is the same as FAD, except that the sign of
the word in the SR is forced minus during the E cycle, This is shown on Systems
2. 09. 95. 1.

Unnormalized Subtract Magnitude USM -0306

This instruction operates the same as FSM, with the exceptions explained under
UFA.

Floating Multiply FMP +0260 Figure 3. 5-24

This instruction multiplies the floating-point number stored at the location designated
by the address by the floating-point number stored in the MQ. The product appears as
two floating-point numbers: the most significant part in the accumulator, and the least
significant part in the MQ. The signs of both registers are set to the algebraic sign of
the product. If the multiplicand is zero, the product will be two normal zeros with
proper algebraic signs. If the AC fraction is zero, the AC is reset to a normal zero,
and no characteristic is assigned to the MQ. If the AC fraction is not zero, the MQ is
assigned a characteristic 27 10 less then the AC characteristic.

Remember that when multiplying numbers using exponents, the fractions are multi­
plied and the exponents are added. Multiplying the fractions is done much the same as
in a MPY operation, by shifting and adding. Adding the characteristic is not enough

B49

I Time
Pri Op 26

1
E Time

I
Gated Out of MQ MQ(9-35)~SR

But not Into SR EO(D3)

2 .12.07. l

No~
Yes

MQ Zero Turn
FP Tgr On A2
(Dl)

2.12.07. l Zero to
l'

) CSR J.
rTurn On FPJ rD(l-8) l

Tgr -SR
2.10.29. l 2 .13.04. l

T :J

SR(l-8)-MQ
Zero to E4(Dl)
CMQ

2.13.41.1

SB-SR E7(Dl) Yes
Stg ~ 0 M1cand

J in SR
MPY Stg 2.12.50.1

No I Zero

Yes FP 333---.. SC 2.09 .53 .1
Tgr On E9 (Dl)

No 2. l l.78. l _l
1 Exec Ctrl End

AD(Q-35) AC Op In E .______,
AlO(Dl)

Reset AC 2 .09 .46. l
2.1331.l

Reset MQ

1
2.15.18 .1

l
To End Op

Figure 3 .5-24

-!
A

FIGURE 3.5-24A. FMP • 0260

L Time
1st Step

2.10.23

r
SR(l-8) -AD
AO(D3)

2. 13.21. l

1

i

]
Ones -+AD
(Q, P, l) AO(D3j

2. 13.27. l

J

f
Sub 2008
ram CsR

by Adding
2 's Comp

l
AD(Q-8)--->-AC

True No. I f CsR
Greater

A2(D1)
is 2008 or

2.13 .31. l
Comp No.
is Less than

T
AD(l-8)-SR Clear SR(l
M(Dl)

2.13.04. l

J
l

1
MQ(l-8) ~SR SR(l-8)-. ..,MQ
A6(Dl) A6(Dl)

2. 13. 12.1 2.13.41. l

1 J

l 1
SR(l -8) ->-AD AC(Q-8)-...AD
A8(D3) A8(D3)

2.13.21. l 2.13.24.1

1:
I

J

-8)

Zero to

CMQ

AD(Q-8)-.+AC
AlO(Dl)

Characteri
of Final P

stic
roduct

2.13.31. l

T
To L Time
2nd Step

Fig. 3.5-248

J_
L Time

2nd Step

2.10.24. l

-1
Yes

SC~ 0 '

No

Yes
M0(35) ~ f 1

Add Cycle MPY; MPR; No
VIM; LO(D3); l4(03);
l8(D3) Yes M0(34) ~ 2.09.54.l

1 1

SR(9-35)-.AD AC(0-35)~AD No

2nd Step AO/D3),A4(D3) l I 1 AS D3) FP MPY Shift Sh AC and MO Minus On MPY 2.13.21.l 2 .12.24. l
Every Clock Rt Shih
Time

~
2.13.42.l 2.09.54. l 2.09.54.1

J T I
AC(35) _.,_MO Sh MC:ff]-34) MPY- Div Step

(9) Every Clock and AC (9-34) Rt SC Every Clock
Time 2.12.43. l Time

y

2.13.42.1 2.12.33. J 2.09.51.1
]_Yes 1 J Carry AD(9)

..,..AD(8)

2.10.46. l

l

AD(0-35)__,..
AC A2(Dl),A6
(Dl),AJO (Dl)

2.12.31. l

l' 1
FP MPY Shift Sh AC &MO Rt Minus on MPY
A3(Dl),A7(Dl) A3(Dl),A7(Dl) A3(Dl),A7(Dl)
All(Dl) Al 1 (Dl) Al J(Dl)

2.10.27. l 2.09.54. l 2.09.54.l

1
I -+-AC(9) AC(3')->MJ r MO(H')& MPV-Div
A3(Dl),A7(Dl) (9) C(9-34) Rt Step SC
AJJ(Dl) ~-12.~3.1 2.09.51 .1 2.10.27. l 2.13.42. l .12. 3 .1

1
J

]_
To Turn On
FP Tgr

Fig. 3 .5-24C

T
FIGURE 3.5-24B. FMP + 0260

A

Get Char 2710

Less Than C AC

Sub 1
from CAc

=1

Turn On FP
Tgr A6(Dl)

Ones -AD
(Q-8) AB(D3)

AC(Q-8)--..AD
A8(D3)

2.10.24.1

FP Shift Lt
AlO(Dl)

2, 13,42.1

2.13.24.1

AD(Q-8)--w\C MQ(9)-AC
AlO(Dl) (35) AlO (Dl)

2.13.31.l 2.13.42.1

Sh AC(l0-35)
MQ LT AlO(Dl)

2, 12.34.1
2.1 .42. l

End Op

I Time
Next Inst

amp 328 -AD
10(03)

AC(Q-8)-AD
10(03)

2.13.27.1 2.13.24.1

AD(Q3-5)-AC

Reset AC A3(D1)

2.13.31. l

Unlike

Set AC and
Q Signs Minus

16(Dl)
2.13.91.1

Comp AC(9-35)
-.AD 10(03)

2.13.22.1

AD(l-8)- SR
I 2(Dl)

2.13.04. l

Alike

1-+AD(35)
10(03)

2.13.27.1

SR(l-8)-MQ
13(Dl)

2.13 .41.1

Set Ac and MQ
Signs Plus.16
(Dl)

2.13.91.1

FIGURE 3.5-24C. FMP + 0260

Check for AC
Fraction = 0

to produce the proper characteristic of the product. Because both of the original char­
acteristics are the exponent plus 2008 , adding these characteristics would produce a
resultant characteristic 2008 too large. Therefore, the addition of the characteristics
must be adjusted by 200 8 .

The execution of this instruction is accomplished by I, E, and L cycles. The L
cycles are divided into first step L time and second step L time.

The E cycle, in addition to bringing the word from storage, has the following objec­
tives:

1. For a zero MQ fraction
a. Put zeros in the characteristic of the SR and the MQ
b, End operation at the end of the E cycle

2. For a zero storage fraction
a. Reset the MQ
b. End operation at the end of the E cycle

3. Set 33g in the SC (used to count the number of shifts)
4. Reset the AC

If either the MQ or the storage fraction is zero, the product must also be zero.
Therefore, for this zero condition the MQ(l-35) and the AC(Q-35) contain zeros at the
end of the E cycle. This is a normal zero product. For this zero condition end opera­
tion comes at the end of E time because no further multiplication is necessary.

To check the MQ fraction for zero, MQ(9-35) is gated to the SR. The set and hold of
the SR are not operated; the information does not go to the SR but to the zero checking
circuits on Systems 2. 12. 47.1. The FP trigger is used to remember the MQ zero
condition and to cause end operation at the end of the E cycle.

First step L time is used to get the initial characteristic of the final product. This
characteristic may be changed at the end of FMP if normalizing is required.

The characteristic of the SR is reduced by 200g so the characteristic of the product
will be only 200g greater than the exponent. The multiplicand characteristic minus
200g is put into the AC, and the multiplier characteristic is put into the SR. The two
characteristics arc added to produce the AC characteristic for the product. During
this time the MQ characteristic is set to zero.

Second step L time is used to do the fraction multiplication and to normalize the
product. The multiplication is done the same as in MPY, by shifting apd adding. For
no bits in 1VIQ(34-35) fast shifting occurs, otherwise only three shifts per cycle take
place. If there is a carry out of AC(9) during tho add cycle it goes to AD(S) to increase
the characteristic by one. To correct the fraction for this carry, a one is put into AC
(9) when the AC and MQ are shifted right.

When 33 8 shifts are complete, the fraction multiplication is accomplished and the
shift counter equals zero. The shift counter going to zero turns on the FP trigger, and
the trigger is used to instruct the system that the multiplication part of the instruction
is finished.

If AC(9) is zero, a single normalizing step is performed. One step is the maximum
needed if two normal numbers were used for the multiplication.

B53

During I time of the next instruction, the AC fraction is checked for zero by adding
one to ~he l's complement of the fraction. If the fraction is zero, the addition will
cause a column 9 carry. For a zero AC fraction, the whole AC is set to zero and the
characteristic of the MQ is left at zero. If the AC fraction is not zero, there is no
column 9 carry and the MQ characteristic is set 2710 less than the AC characteristic.
During I time of the next instruction, the AC and MQ signs are set to the algebraic sign
of the product.

Unnormalized Floating Multiply UFM -0260

This instruction multiplies the floating-point number stored at the location indicated
by the address by the floating-point number in the MQ. This instruction operates the
same as FMP except that the result is not normalized or tested. The minus PR(S)
pre'Vents FP normalizing gate on Systems 2. 10. 2. 4. 1. The PR(S) not being plus pre­
vents the reset of the AC during the following I cycle, on Systems 2. 10. 25.1.

Floating Round FRN +0760 ... 0011 Figure 3. 5-25

This instruction examines the contents of MQ(9) and if MQ(9) contains a bit, a one
is added to the contents of the AC. A carry out of AC(9) increases the characteristic
by one, causes the fraction to be shifted right, and a one to be placed in AC(9).

Floating Divide or Halt FDH +0240 · Figure 3. 5-26

This instruction divides the floating-point number stored in the AC by the floating­
point number stored at location X. The result is a floating-point quotient in the MQ
and the floating-point remainder of the dividend in the AC. The sign of the MQ is the
algebraic sign of the quotient. The sign of the AC is the sign of the dividend. The
characteristic of the MQ is equal to the difference between the dividend and divisor
characteristics, increased by 12810 . The characteristic of the remainder is 2710 less
than the original dividen.d characteristic.

If two normalized numbers are used as divisor and dividend fractions, the dividend
fraction cannot be twice as large as the divisor fraction. Therefore, the 7090 is
designated to halt only when the dividend fraction is at least twice as large as the divisor
fraction. The divide check indicator is turned on to cause the halt.

A zero dividend fraction causes the division to be skipped, but does not halt the
computer. A normal zero quotient results. If the initial factors are normal floating­
point numbers, the quotient is also normal.

As in any division using exponents, the fractions are divided and the exponent of the
divisor is subtracted from the exponent of the dividend. The result is the correct quo­
tient factor and exponent. Division of the fractions is done in the same manner as DVH,
by attempting reduction and shifting left. When the reduction is successful, a bit is put
into MQ(35). Only 2710 reductions are attempted in FDH because the fractibn is' con­
tained in 2710 positions.

FDH uses an E cycle and several L cycles. The L cycles are divided into three
types (first, second, and third step) through use of the tally counter.

B54

AC(Q-35)
_,..AD LO(D6)

2.13.24.1

AD(Q-35)
-.Ac L5(Dl)

2.l0.27.1

r
I Time I
Pd °"" j g

FP Rnd Gate
LO (D6)

2.10.27.1

No

One+AD(35)
LO(D6)

2.13.27.1

No

Sh AC(9-34)
Rt L8(D1)

..J.12.33.1

CorryAD(9)
-+AD(8)

2.10.46.l

End Op

FIGURE 3.5-25. FRN +0760 ... 0011

One+AC(9)
L8(D1)

2.10.27.1

Divide AC
Frac by 2

FP Shift Rt
ElO(Dl)
2.13.42.1

Sh AC (9-34) and
Q Rt ElO (Dl)
2.12.33. l
2.12.43.1

I Time
Pri Op 24

AC (35)+-MO
(9) ElO (Dl)

2.13.42. l

L Time
1st Step
2. 10.41.1

Comp AC(9-35)
--.. AD AO(D3)

2 .13.22. l

SR(9-35) +-AD
AO(D3)

2.13.21 .1

AC Frac >
No 2 = SR Frac

2.10 .29. l

TurnonT2
Tgr A2(Dl)

2.10.38.1

Turn On FP
Div Ck Tgr
A2(D1)
2.10.53.1

Alike

FIGURE 3.5-26A. FDH +0240

Set MO Sign
Minus A3(Dl)

Turn Or Col 9
Carry Tgr

MQ Sign was Reset
During the E Cycle

MO(l)-AC
(35) A3(Dl)

2 .13.42.1

AC Frac = 0

Char Diff

Comp AC frac for Red
Get Proper Char Di ff
(True or Comp) No.

Comp AC (Q-35)
-..AD AO (D3)

2.13.22. l

AC frac = 0

Set AC(S)Plus
A 10 (Dl)

2.13.91. l

Turn On T2 AD(Q-35)-MC
Tgr AlO (Dl) AlO (Dl)

2.10.38. l 2.13.31. l

'-------+------'--------> Reset AC

Turn Off FP
Tgr A2(D1)

AD(Q-35)-+AC
A2(Dl)

AC(Q-35)_,.
AD A4(D3)
2 .. 13 .24.1

Step SC
Al (Dl)

2. 13.ll. l

2.13.31. l

AD(Q-8) ._,,.
ACA6(Dl)
2.13.31.l

Corry-i.AD(B) To Increase AC Char by l
A4(D3) ifQuo>I
2.13.21.1

Ac Frac < SR Frac

1 _...AC(35)
Al (Dl)
2.13.42.1

Sh AC (10-35) and
r./IQ Lt Al (DJ)

2.12.34.1
2.12.42.1

Used as the High Tum On 9
Order Position Ov Tgr
of the AC Frac 2. lO .39. l

FIGURE 3.5-26B. FDH + 0240

= 1

AD (Q-8)­
AC AlO (Dl)
2.13.31.1

c::

End Op

2.10.35.1

L Time 3rd Step

2.10.43. l
2.10.44. l

SR(9-35) -+AD
3rd Step L

2.13.21.l

AC(Q-35)­
AD 3rd Step L

2.13.24.1
Comp AC(9-35)
-+AD 10 (D3)

2.13.22. l

AC(Q-8) -+AD Ones_.. AD I 2's Comp
I 0 (D3) Q,P, 1,2,3,6,8, of 338

10 (D3)
2.13.24.l 2.13.27.1

No ~No Simulated 8 Carr,r)

Yes - AD(9-35) -Ac
A2(Dl),A6(Dl)
AlO (Dl)

2.13.31. 1

(SC =0) On

FP Shit!Lt A3\Dl
A7(Dl)All (Dl)

2.13.42.1

Sh AC(l0-35) and
MQ Lt

2.12.34.1
2.12.42.1

1-MQ(35)
A2(Dl), A6(Dl)
AIO (Dl)

2.13.42.1

Step~SC A3(D1),
A7 (Dl) Al l(Dl)

2.13.71.1

1-+AC(35) A3(DT)
A7(Dl) A11(Dl)

2.13.42.1

No

Turn On
FP Tgr.
2.10.29.1

FlGURE 3.5-26C. FDH + 0240

Mst Stop Tgr
15

4.20.11.1

B Cycle Inter
All 8.00.13.1
Prevent I, E, and

L Cycles

Off

AD Q-35 +AC Char of
12 (Dl) Remainder

. is 27]0 less
2.13.31.1 than Original

Dividend Char

The E cycle is used to:
1. Reset the MQ
2. Bring the divisor from storage
3. Set 33g (2710) into the SC (used to count the number of shifts during divide)
4. Divide dividend fraction by 2 by shifting the fraction right one place (to be

used for comparison of dividend fraction to divisor fraction)

First step L time is used to:
1. Determine if dividend fraction is more or less than two times the divisor

fraction
2. Set the MQ(S) to the algebraic sign of the quotient
3. Shift dividend left one place to put dividend back to initial position
4, Check AC fraction for zero
5. Get the difference between divisor and dividend characteristics
6. End operation if the AC fraction is zero or if the dividend fraction is twice

as large or larger than the divisor fraction
7. Reset the whole AC if the AC fraction is zero

Second step L time is used to:
1. Increase the characteristic difference by one if dividend fraction is equal to

or greater than the divisor fraction
2. Shift the dividend fraction left one place if the dividend fraction is less than

the divisor fraction
3. Step the shift counter dovm to 26 10--the desired number of shifts to move a

bit from MQ(35) to MQ(9).

Third step L time is used to do the actual division. The objectives of third step L
time are to:

1. Attempt to reduce the AC fraction by the amount of the divisor fraction
2. If the reduction is successful put a l in MQ(35)
3. Shift AC and MQ left one place, step shift counter, and put al in AC(35)
4. Repeat steps 1, 2, and 3 until the SC equals zero
5. Compute the characteristic of the quotient and put it into the MQ
6. End operation when the shifting and reductions are complete

I time of the next instruction is used to:
1. If there was no divide check and the dividend fraction was not zero:

a. AC fraction is re-complemented to get true number
b. Characteristic of the remainder is set to 27 10 less than the original

characteristic of the dividend
2. Stop the machine if there was a divide check

Floating Divide or Proceed FDP +0241

This instruction operates the same as FDH, except that a divide check cfoes not
halt the computer.

3. 5. 05 Transfer Instructions

Transfer instructions are used to alter the sequence of instructions. The condi­
tional transfers allows automatic testing of problem conditions without stopping the

B59

computer. The transfer instructions greatly reduce program length by allowing program
loops and subroutine operation.

Transfer TRA +0020 Figure 3. 5-27

The transfer instruction causes the computer to take its next instruction from loca­
tion X and resets the instruction counter to X. The address portion of the transfer in­
struction is substituted for the instruction counter when setting the address register to
locate the next instruction. The instruction counter is then set to this new address,
and the instruction sequence continues from the new location,

Transfer on MQ Plus TQP +0162 Figure 3. 5-28

If the sign of the MQ register is positive, a transfer will be taken to storage location
X. If the MQ sign is minus, the computer proceeds to the next instruction in sequence.

Transfer on Plus TPL +0120

If the sign of the accumulator is plus, a transfer is taken to storage location X.
If the sign is minus, the computer proceeds to the next instruction in sequence. TPL
is executed in the same manner as TQP, except that the AC sign rather than the MQ
sign is tested. See Systems 2.10. 08.1.

Transfer on Minus TMI -0120

If the sign of the AC is minus, a transfer is taken to storage location X. If the AC
sign is plus, the computer proceeds to the next instruction in sequence. The execu­
tion of this instruction is the same as TQP, except that the AC sign rather than the
MQ sign is tested. See Systems 2. 10. 08. 1.

Transfer on Overflow TOV +0140

If the AC overflow trigger is on as a result of a previous operation, a transfer is
taken to storage location X, and the overflow trigger is turned off. If the overflow
trigger is off, the computer proceeds to the next instruction in sequence. Execution
of TOV is much like TQP, except that the overflow trigger rather than the MQ sign is
tested. See Systems 2. 10. 08. 1. The AC overflow trigger is turned off on Systems
2.10. 36. 1.

Transfer on No Overflow TNO -0140

If the AC overflow trigger is off, the next instruction is taken from storage location
X. Ii the overflow trigger is on, no _transfer is taken. Operation of this instruction
is the same as TQP, excent that the overflow trigger rather than the MQ sign is tested.

Transfer on Zero TZE +0100 Figure 3. 5-29

If the contents of the AC (including the overflow positions) are zero, a transfer is
taken to storage location X. If the contents are not zero, the computer proceeds to
the next instruction in sequence. In either case the contents of the AC are not changed.

B60

Any Trans or
Store and T rep

2.11.55.1

I Time.
Pri Op 02

One Cycle
Trans Cond
Not Met
2.10.08.J

5"R\18-35)->AO
(P-17) 19 (03)

AR-+PC
13(01)
3.06.05. l

FIGURE 3.5-27. TRA +0020

SR(lB-35)->AO
(P-17) 19(03)

2.12.16.1

A0(3-17)+AS
111 (01)
3.06.16. l

I Time
Pri Op 16

Any Trans or
Store and Trap

2.11.55.l

One Cycle
Trans Cond Metl

AS ->AR
111(01)

3.06.18.1

Prevent
PC-+AS
3.05.09.1

FIGURE 3.5-28. TQP + 0162

AR .+PC
13(01)
3.06.05. l

I Time
Pri Op 10

Any Trans or
Store and T rep

L End Op

B.00.01.1

FIGURE 3.5-29. T4E + 0100; TNZ - 0100

To test for a zero condition, the accumulator is complemented to the adders, and a one
is added to position 35. If a zero condition exists, a carry results which ripples through
all of the adders and turns on the Q carry trigger. The Q carry trigger is used to condi­
tion the transfer circuits.

Transfer on No Zero TNZ -0100 Figure 3. 5-29

If the contents of the AC are not zero, the next instruction is taken from storage lo­
cation X. If the contents are zero, the computer proceeds to the next instruction in
sequence.

Transfer on Low MQ TLQ +0040 Figure 3. 5-30

An algebraic comparison is made between the MQ and the accumulator contents. If
the MQ contents are lower than the accumulator contents, an instruction transfer is
made to storage location X. If the AC is greater or equal, no transfer is taken. For
this instruction a +0 is considered to be larger than a -0. The contents of both registers
are left unchanged.

The operation is performed by adding the contents of the MQ to the complemented
accumulator contents. The Q carry trigger is then matched with the register signs to
determine whether the conditions for transfer have been met. To pryvent transfers

·when the factors are equal, a one is added to AC(35) to produce a Q carry when the AC
factor is plus.

The following table illustrates comparisons which might be made, along with the
desired result:

No. in AC No. in MQ Q Carry Transfer

-7 -6 No No
-6 -6 No No
-0 -6 Yes Yes
-0 -0 No No
+O -0 Yes Yes
-0 +O No No
-6 +6 No No
+0 +6 Yes No
+6 +6 Yes No
+7 +6 No Yes

Transfer on Channel in Operation TCO +XXXX Figure 3. 5-31

This instruction causes a transfer to storage location X if the particular data channel
is in use. Operation codes +0060 through +0067 are used to check data channels A through
H, respectively.

Transfer on Channel Not in Operation TCN -XXXX Figure 3. 5-31

TCN causes a transfer to storage location X if the data channel is not in operation.
Operation codes -0060 through -0067 are used to select data channels A through H,
respectively.

B62

AD(3- l7)...,. AS
111 (Dl)

3.06.16. 1

Comp AC(Q-35)
-+AD L Time

2.12.22.1

I Time
Pri Op 04

Any Trans or
Store and Trap

2.11.55.1

Trans Cndtl
AD-+AS

2.10.09.1

L Time

MQ(S-35) -+SR
L2 (Dl}

2.12.07.1

SR-+AD
L5(D7)

2 .12.14.1

AS -+AR
111 (Dl)

3.06.18.1

No

Yes

Carry-+
AD (35)

1---._4 _ __, No Transfer
on Equals

FIGURE 3.5-30. TLQ + 0040

Condition
Met

2.10.07.1

Minus on TR

Met L9 (Dl)

2.10.09. l

AR-+ PC
L9 (Dl)

3.06.05.1

End Op

Transfer on Data Channel Redundancy Check TRC ± XXXX Figure 3. 5-32

If the data channel redundancy check trigger is on, a transfer is taken to location X
and the trigger is turned off, If the trigger is off, the computer takes the next sequential
instruction, Operation codes +0022, -0022, +0024, -0024, +0026, -0026, +0027, and
-0027 are used to select data channels A through H, respectively.

Transfer on Data Channel End of File TEF ±xxxx Figure 3. 5-32

If the data channel end-of-file trigger is on, a transfer is taken to storage location
X and the trigger is turned off. If the trigger is off, the. computer takes the next in­
struction in sequence. Operation codes +0030, -0030, +0031, -0031, +0032, -0032,
+0033, and -0033 are used to select data channels A through H, respectively.

3. 5. 06 Trap Mode Instructions

The 7090 can be operated in either of two modes, normal or trapping. Entrance to
trapping mode is gained by executing the ETM instruction. Exit is accomplished by
using the LTM instruction or the clear or reset keys on the console. Trapping mode
effects the operation of transfer instructions. In trapping mode, the location of each
successful transfer instruction is stored in the address portion of location 0000. Trans­
fers are not executed; instead, an instruction transfer, or trap, is taken to location
0001. One instruction, trap transfer, is immune to trapping mode. The locating of
successful transfers and the trap to a common check point make trapping mode useful
for debugging program flow.

Enter Trapping Mode ETM +0760 ... 0007

This instruction places the computer in trapping mode by turning on the trap mode
trigger on Systems 2.10. 53.1. The computer remains in trapping mode until a LTM
instruction is executed or the clear or reset buttons are depressed. ETM is a primary
operation 76 instruction and requires an I and an L cycle.

TRA in Trapping Mode TRA +0020

The effect of trapping mode on· a transfer is shown in Figure 3. 5-33.

Leave Trapping Mode LTM -0760 ... 0007

This instruction returns the computer to normal mode by turning off the trap mode
trigger on Systems 2.10. 53.1. This is a primary operation 76 instruction, and an I
and an L cycle are required.

Trap Tran~fer TTR +0021

This is the only instruction which provides an instruction transfer to location X
regardless of the operating mode of the computer. The TTR instruction nullifies the
transfer blocking circuits of trapping mode and operates like TRA.

Store Location and Trap STR -1000 Figure 3, 5-34

This instruction stores its location plus one in the address portion of storage loca-

B64

I Time
Pri Op 06

Any Trans or

Store and Trap

2.11 .55.1

Trans Cndtl
AD -..As

2.10.09.l

AD(3-17)·,.AS
I ll(Dl)
3.06' 16. 1

End Op

AS -AR
I ll(Dl)
3 .06. 18 .1

FIGURE 3.5-31. TCO + 0060; + 0061; +0062; Etc.
TCN - 0060; - 0061; - 0062; Etc.

I Time
Pri Op 02

Any Trans or

Store and Trap

2.11.55.1

Trans Cndtl
AD-AS

2.10.09.1

AD(3-17)-..AS
I ll(Dl)

3.06.16. l

AS-+AR
lll(Dl)
3.06.18. 1

FIG URE 3. 5-32. TRC + 0022; -0022; + 0024; Etc.
TEF + 0030; -0030; + 003 l; Etc.

MF Store
Ctrl

2.09 .00.1

I Time
Pri Op 02

Prevent Xfer
Cndt I AD -o.AS

2.10.09.1

Prevent Step of
PC

Prevent I End
Op

AS,.AR
Ill (DJ)

3.06. 18.1
Zero in AR

8 .00.02. 1

MF Store
Addre~s

2.09.01.1

PC-AS
EO(D3)

AR-;J
3.06.05.1 Zero in PC

SR-SB
E5(D7)

2.09.00.1 1

Prevent SB-SR
E7(DT)
2.12.50.1

Advance PC
E9(Dl)

2.11.50.1

FIGURE 3.5-33. TRA +0020 TRAP MODE

MF Store I
Address

2.09.01.1

I

One in PC

Prevent AD
(3-17)-AS
lll(Dl)
3.06.16.

I Time
Pri Op 00

AS-AR
11 l(Dl)

3.06.18.1

I MF Store I I PC-AS
Ctr I EO(D3)

2.09.00.1 3.05.09.1

AS-SR (21-
35) El(Dl)

. 3.06.12. l

SR-SB Prevent

E4(D3) sB--sR
E7(Dl)

2.09.00.1 2.12.50.1

FIGURE 3.5-34. STR -1000

Zero in AR

One -¥.S
(16) ElO(D2)

AS-AR ., rrevent PC
Ell(Dl) -As Ell

3.06.18.1 J?dJ.09.1

I Two in AR

AR--PC
13(01) I Two

I in I 3.06.05.1 PC

tion 0000. It then traps or transfers the computer to location 0002 where the instruction
sequence is resumed. STR does not place the computer in trapping mode.

3. 5. 07 Skip Instructions

The skip instructions allow the programmer to alter the program to meet special
conditions without stopping the computer. These instructions are similar to the condi­
tional transfer instructions but, instead of transferring, they cause one or two instruc­
tions to be skipped. Skipping is accomplished by supplying an extra adnnce pulse to
the instruction counter.

Most skip instructions cause the computer to skip when the condition being tested is
met. The exceptions are the error testing and I-0 testing instructions, which cause
skipping when the condition being tested is not met; e.g., when there are no errors.
This exception (skip on no error) allows a straight-line program until an error is de­
tected. To process an error, an instruction transferring to an error subroutine usually
follows the test instruction. Another exception, the CAS instruction, has three possible
results: it can fail to skip for AC greater, skip once for equal, or skip twice for AC less.

P Bit Test PET -0760 ... 0001 Figure 3. 5-35

A bit in accumulator (P) position causes the computer to skip one instruction. If
there is no bit in (P), the computer takes the next instruction in sequence.

Low-Order Bit Test LBT +0760 ... 0001 Figure 3. 5-35

A bit in accumulator (35) causes the computer to skip one instruction. If there is
no bit in (35), the computer takes the next instruction in sequence.

Storage Zero Test ZET +0520 Figure 3. 5-36

If the contents of storage location X, except the sign, are zero, the computer will
skip one instruction. If storage is not zero, the computer proceeds to the next instruc­
tion in sequence, Storage is unchanged. The information from storage on the SB is
tested for zero as shown on Systems 2. 12. 52. 1.

Storage Non-Zero Test NZT -0520 Figure 3. 5-36

If positions (1-35) of storage location X are not zero, the computer skips the next
instruction. If the contents of storage location X are zero, no skip is taken. Storage
is unchanged.

Compare Accumulator with Storage CAS +0340 Figure 3. 5-37

The accumulator is compared with the word at storage location X. Comparison is
accomplished by taking an algebraic difference, If the accumulator is greater than the
word in storage, no skip is taken. If the accumulator is equal to the word in storage,
one instruction is skipped. If the accumulator is less than the word in storage, the
nextc two instructions are skipped. Neither the accumulator nor the word in storage is
changed.

B67

I Time
Pri Op 76

I Time
Pri Op 52

Off

On I I ~-
E (Dl)

~ I I
._.-3..12.50. l

No I I No

To Sense
Skip
2.09.58. l

t
Sense Ski
L9(Dl) p
2 .09 .59. 1

t ; I Advance PC
Turn Off Div
Ck Tgr Ll i(Dl)

2.11.50 l I I . I
I . 2.10.53.l

I I
End Op

End Op

FIGURE 3.5-35. PBT-0760 ... 0001; LBT +0760 ... 0001; DCT-!:0760 ..• 0012 FIGURE 3.5-36. ZET +0520; NZT-05?.0

LAS

SR(S-35)-AD
(P-35) l Time

2.12.15. l

I Time
Pri Op 34

E Time

SB--SR
E7(Dl)

2.12.50.1

SR(l-35) -ADJ 'Comp AC(Q-35)
L Time --AD L Time

2.12.14. l

Turn On Q
Corry Trigger

2. 10.36. l

2.12.22.] No

End Op

FIGURE3.5-37. CAS+0340; LAS-0340

CAS

On

CAS

On

To execute this instruction, an E cycle is required to bring the word in storage to
the storage register; then an L cycle is used for two comparisons in the adders, For
the first comparison, the SR and the complement of the AC are fed to the adders; the
Q carry and sign conditions are matched to condition the first possible skip. The sec­
ond comparison is made after a one has been added to the difference, to differentiate
words of equal magnitude.

The following illustrate some of the possible combinations:

Number in Number in Q Carry Tgr
Accumulator Storage 1st Comp 2nd Comp Result

-6 -7 On On Next Instruction
-6 -6 Off On Skip 1 Instruction
-6 -4 Off Off Skip 2 Instructions
-6 +6 Off On Skip 2 Instructions
-0 +O Off On Skip 2 Instructions
+O -0 Off On Next Instruction
+6 -6 Off On Next Instruction
+6 +4 Off Off Next Instruction
+6 +6 Off On Skip 1 Instruction
+6 +7 On On Skip 2 Instructions

Logical Compare Accumulator with Storage LAS -0340 Figure 3. 5-37

This instruction compares the contents of the AC(P, 1-35) with the logical word (S, 1-35)
stored at location X. The sign of the AC is disregarded; the contents of the AC and
storage are unchanged.

If the contents of the AC are greater than the contents of storage location X, the
computer takes the next instruction in sequence. If the AC equals storage, the computer
skips one instruction. If the contents of the AC are less than the contents of storage,
the computer will skip the next two instructions.

This instruction is executed the same as CAS, except that the signs are not used for
an algebraic comparison and AC(P) is compared against SR(S).

Plus Sense PSE +0760 ... XXXX

This instruction provides a means to test the status of any of the six sense switches,
to turn on or off the four console sense lights, and to permit the transmission of an
impulse to or from the exit or entry hubs of either the printer or punch.

The address portion of the instruction determines whether a light, switch, printer,
or card punch is being sensed; further, it determines which light, switch, or hub is
being sensed. The octal addresses for the different sense instructions are:

Address Instruction

0140 Turn off all sense lights (Figure 3. 5-38)

0141-0144 Turn on sense light 1, 2, 3, or 4, respectively (Figure
3, 5-39)

B70

I Time
Pri Op 76

SR(18-35)-AD
(P-17) 19(03)

2.12.16.1

Sense Op Pnl
Class Adr AJ4

3.02.01 .J

AS(12-17) +SC
11 l(DJ)
2. 11.78.1

UAOO

3.03.00. J

Turn Off Sense
Lights LJ 1(DJ)

2.09.60. J

FIGURE 3.5-38. PSE +0760 •.• 0140

I Time
Pri Op 76

SR(18-35) ,...AD
(P-17) 19(03)

2.12. 16.J

AD (3- J ?)•AS
111(01)

3.06.16.1

Sense Op Pnl
Class Adr AJ4

3 .02.01. J

AS(J 2- 17) -..SC
I 11(01)

2.JJ.78.1

L Time

UA 1 ,2,3, or 4

3.03.01.1
..... 3.03.04. J

Turn On Sense
Light 1,2,3,
or 4

2.09 .60. J

FIGURE 3.5-39. PSE +0760 •.. 0141, 0142, 0143, 0144

I Time
Pri Op 76

SR(l8-35f+AD
(P-17) 19(01)

2.12.16.1

Sense Op Pnl
Class Adr B 16

3.02.01.1

UA 1,2,3,4,
5 or 6
3 .03 .01. J

•3.03.06. l

Sense Skip
L9(DJ)

2.09.59.1

End Op

FIGURE 3.5-40. PSE +0760 .•• 0161, 0162, ETC.

Address

0161- 0166

1341- 1342
2341- 2342
3341- 3342
4341- 4342
5341- 5342
6341- 6342
7341- 7342

10341-10342

1360
2360
3360
4360
5360
6360
7360

10360

1361- 1372
2361- 2372
3361- 3372
4361- 4372
5361- 5372
6361- 6372
7361- 7372

10361-10372

Minus Sense

Instruction

If the corresponding sense switch is down (on), the
computer skips the next instruction, If the sense switch
is up (off), the computer takes the next instruction in
sequence (Figure 3. 5-40).

The computer causes an impulse to appear at the specifie'd
exit hub of the control panel of the card punch attached to
Data Channel A, B, C, D, E, F, G, or H respectively
(Figure 3. 5-41).

If an impulse is present at the entry hub of the control
panel of the printer attached to Data Channel A, B, C, D,
E, F, G, or H respectively, the computer skips the next
instruction, If there is no impulse, the computer takes
the next instruction in sequence (Figure 3. 5-42).

The computer causes an impulse to appear at the specified
exit hub of the control panel of the printer attached to Data
Channel, A, B, C, D, E, F, G, orH, respectively
(Figure 3. 5-43).

MSE -0760, .. XXXX Figure 3. 5-44

If the sense light, on the operatOr's console, corresponding to the address portion
of the instruction is on, this light is turned off and the computer skips the next instruc­
tion, If the sense light is off the computer takes the next instruction in sequence.
Addresses 0141-0144 correspond to sense lights 1-4, respectively.

Input-Output Check Test IOT +0760 ... 0005 Figure 3. 5-45

If the I-0 check trigger is on, the indicator is turned off and the computer takes the
next instruction in sequence, If the I-0 check indicator is off, the computer skips the
next instruction,

Divide Check Test DCT +0760 ... 0012 Figure 3. 5-35

This instruction examines the status of the divide check trigger. If the trigger is
off, the next instruction is skipped. If the trigger is on, it is turned off and the computer
takes the next instruction in sequence,

B72

AD(3-17)
-AS I ll(Dl
3.06.16.1

Select Channel'

6.00.05. T
-+-6.00.07.1

I Time
Pri Op 76

SR(l 8-35) -+AD
(P-17) 19 (D3)

2.12.16.1

AS(l2-17)
-.scllHDI)
2.11.78.I

put from Punch
Sense Ctrl Panel
Hublor2

End Op

UA l ar 2
3.03.01.1
3.03.02.1

FIGURE 3.5-41. PSE +0760 .•• 1341, 2342, 3341, ETC.

Select Channel

6.00.05.1
~.00.07.1

I Time
Pri Op 76

SR(l 8-35) -A
(P-17) 19 (D3)

Sense Skip
L9 (DI)

End Op

FIGURE 3.5-42. PSE +0760 ... 1360, 2360, ETC.

I Time
Pri Op 76

AD (3-17)
+AS I 11 (Dl)
3.06.16.1

Select Channel

6.00.05.1
-')o-6.00.07.1

Produce Output
from one of the 10
Printer Sense Ctrl
Panel Hubs

End Op

FIGURE 3.5-43. PSE +0760 ... 1361, 1372, 2361, 2362, ETC.

I Time
Pri Op 76

SR(lB-35)-+AD
(P-17) 19 (D3)

2.12.16. l

0(3-17)-+
AS 111 (Dl)
3.06.16.1

Sense Op Pnl
Class Adr Al4

3.02.01.1

Turn Off Sense
Light Ll l(Dl)

2.09.60. l

Sense Skip
L9(Dl)

End Op

AS(12-17)~

SC 111(01
2.11.78.l

UA 1,2,3or4
3.03.01. l

-+3.03.04.l

FIGURE 3.5-44. MSE -0760 ... 0141, 0142, 0143, 0144

I Time
Pri Op 76

SR(18-35) -•AD
(P-17) 19 (Dl)

2.12.16. l

0(3-17) ~
ASlll(Dl)
;i.06.16. 1

AS(l2-17)~
SC 11 l(Dl)

2.11.78. l

Yes

Turn Off 1/0
Ck Tgr Ll l(Dl)

2.10.53. 1

To Sense Skip
DOT Or

2.09.58. l

Sense Skip
L9(Dl)

2.09.59.1

Advance PC

2.11.50.1

End Op

FIGURE 3.5-45. IOT +0760 ... 0005

Beginning-of-Tape Test BTT +0760 ..• XXXX Figure 3. 5-46

This instruction tests the status of the beginning-of-tape· indicator in a particular
data channel. Address 1000-10000 selects data channels A-H respectively. If the
beginning-of-tape indicator for the selected channel has been turned on by a previous
instruction, the indicator is turned off and the computer takes the next instruction ·in
sequence. If the indicator is already off, the computer skips the next instruction.

End-of-Tape Test ETT -0760 ... XXXX Figure 3. 5-46

This instruction uses address 1000-10000 to select the data channel in which the
end-of-tape indicator is to be tested. If the indicator is on, it is turned off and the
computer takes the next instruction in sequence. If the indicator is off, the computer
skips the next instruction.

3, 5, 08 Control Instructions

Control instructions are provided so the programmer may change the problem condi­
tions or service the computer.

Halt and Proceed HPR +0420 Figure 3. 5-47

This instruction causes the computer to stop at the end of I time. When the start
button is depressed, the computer proceeds to the next instruction in sequence.

Halt and Transfer HTR +0000 · Figure 3. 5-48

This instruction causes the computer to stop at the end of I time by turning on the
master stop trigger at I11(Dl). Depressing the start button causes the computer to
proceed in L time of a transfer operation and the computer takes ariinsfruction trans­
fer to location X.

No Operation NOP +0761

The NOP instruction performs no active function, but is used to reserve space for
other instructions. Since this instr·uction has a primary operation 76, an I and an L
cycle are required.· The only function of this instruction is to turn on the end operation
trigger to allow the computer to proceed to I time of the next sequential instruction.
SOD 01 on Systems 3. 07. 01.1 causes LEND OP on Systems 8. 00. 09.1.

Execute XEC +0522 Figure 3. 5-49

This instruction causes the computer to perform the instruction at location X. The
program counter is not altered; therefore, after the instruction at location X has been
executed, the computer proceeds to the next sequential instruction (instruction in next
position beyond the XEC instruction). XEC prevents AR to PC on Systems 3. 06. 05.1.

Set Sign Plus SSP +0760 ... 0003 Figure 3. 5-50

This instruction places a zero (a plus) in the accumulator sign position. Positions
(Q-35) of the accumulator are unchanged.

B75

BTT

6.01.10. l

Turn On Ind
Sync Tgr Ll(Ol

60.32.03.l

End Op

ETT

6.0l.10. l

Turn Off BOT
Ind 12 (02)

60.32.02.1

FIGURE 3.5-46. BTT +0760, ETT-0760

Turn Off EOT
Ind 12 (02)

60.32.02. l

I Time
Pri Op42

Halt Ctrl

8.00.33.1

Turn On Mst Stop
Tgr I 11 (01)

4.20.11. 1

Prevent l,E, and
L Time

.0.oo.1a.1
8.00.19.l
8.00.20.1

Turn On Mst L
Time Tgr I l l(Ol)

8.00.20.l

Turn On Start
Tgr AO-+AS

4.20.07.1

Turn Off Mst L
Time Tgr All
(Ol)

8.00.20.1

Turn Off Mst
Stop TgrA6(01)

4.20.11.1

Turn Off B Cycle
Interrupt All (Ol)

8.00.13. l

Turn On Mst I
Time Tgr All
(01)

8.00.18. l

FIGURE 3 .5-47. HPR -+0420

I Time
Pri Op 00

Prevent PC
Advance 19 (01

Turn on Mst Stp
Tgr 111(01)

4.20.11.1

Turn On Mst L
Time Tgr 111
(01)
8.00.20. l

2.11.50.1

Turn On Start
Tgr AO+AB

4.20.07.1

lntlk Reset

4.20.12.1

Cond Met Up
from I Time

2.10.07 .1

Minus on TR
Met Ln 2 L9
(01)

2.10.09.

AR-PC

3.06.05.1

End Op

FIGURE 3 .5-48. HTR + 0000

Set Sign Minus SSM -0760 ... 0003 Figure 3. 5-50

This instruction places a one (a minus) in the accumulator sign position. Positions
(Q-35) of the accumulator are unchanged.

Change Sign CHS +0760 ... 0002 Figure 3. 5-51

This instruction complements the sign position of the accumulator. A one is re­
placed by a zero and a zero is changed to a one. Positions (Q-35) of the accumulator
are unchanged.

3. 5. 09 Sense Indicator Instructions

The sense indicator instructions are a group of instructions which operate on the sense
indicator register. These instructions enable the computer to set and test the indicators
under program control.

Load Indicators LDI t0441 Figure 3. 5-52

The contents of storage location X (S, 1-35) are placed in indicator positons (0-35).
The contents of storage are unchanged.

Store Indicators STI +0604

The contents of indicator positions (0-35) replace the contents of storage location X.
The indicators are unchanged. Execution of this instruction is the same as STO
(Figure 3. 5-1, Section 3. 5. 01) except that SI(0-35) is taken to the SR rather than AC
(S, 1-35). SI(0-35) to the SR(S, 1~35) is shown on Systems 2.12.13. 1.

OR Storage to Indicators OSI +0442 Figure 3. 5-52

This instruction places the logical OR of the word at storage location X and the
contents of the indicators in the sense indicator register. Storage is unchanged.

Invert Indicators from Storage IIS +0440 · Figure 3. 5-52

This instruction inverts the positions of the SI register which have corresponding
"l" bits in the word at storage location X.

Reset Indicators from Storage RIS +0445 Figure 3. 5-53

This instruction utilizes the word at storage location X to reset the sense indicator
:register position. A "l" bit in any position of the word causes the corresponding sense
indicator trigger to be turned off. Indicator positions which correspond to "0" bits are
unchanged, Storage is unchanged.

Set Indicators of Right Half SIR +0055 Figure 3. 5-54

For this instruction, the control field (18-35) of the instruction is OR 'ed with the
right half of the sense indicator register. A 111 11 bit in either the control field or the
indicator places a 11 1 n bit in the corresponding sense indicator. Because the only

B78

Pri Op 52 '"~
Prevent PC
Advance
19(D1)

t
..2.:.l..!...:10.1

SR(lB-35)-AD
(P-17) 19(D3)

2.12.16. l I

D(3-17) - AS
11 l(Dl)

AS -AR
I ll(Dl)

3.06.16. l

End Op

B.00.02.1

3.06.18.1

FIGURE 3.5-49. XEC + 0522

J

I

I

I

2.09.57.1

I Time
Pri Op 76

L Time

End Op

I Time
Next Inst

Set AC(S)
16(D1)

2.12.92.1

I

I

I

Minus

2.09.57.1

FIGURE 3.5-50. SSM - 0760 ... 0003; SSP + 0760 ... 0003

I

I

l

I Time
Pri Op 76

l Time

End Op

I Time
Next Inst

2.12.92.1

FIGURE 3.5-51. CHS +0760 ..• 0002

SR Output
Hanging on
Input to SI

llS OSI

· I Time
Pri Op 44

Electronic Reset
of SI EO(D3)

2.12.64.1

Set SI
ElO(Dl)
2.12.63.1

Set SI Posi­
tion for Bit
in SR Position

!IS

Invert SI Posi
tion for Bit in

SR Position.

FIGURE 3.5-52. LDI +0441; OSI +0442; 115 +0440

I Time
Pri Op 44

Reset SI
ElO(Dl)

2.12.62.1

Each SI Position,
Corresponding to a
Position of the SR
Containing a 1 Bit

is Reset

FIGURE 3.5-53. RIS +0445

SIR, RIR, I IR

SR(lS-35) ~AD
18-35) IO(D3)

2.12.14.1

RIR,RIL

Reset SI
14(Dl)

2.12.62. l

Reset SI Position
for Bit in SR

Position

I Time
Pri Op 04

AD(P-35) ~SR
(S-35) I 2(Dl)

2.12.04.1

Invert SI Posi­
tion for Bit in
SR Position

SIL, Rll, Ill

SR(lS-35) ~AD
{P-17) I O(D3)

2.12.16. l

Set SI
14 (Dl)
2.12. 3.1

Set SI Postion
for Bit in SR

Position

FIGURE 3 .5-54 SIR+ 0055; SIL - 0055; RIR + 0057;
RIL - 0057; llR + 0051; Ill - 0051

SR Output
Honging on

SJ Input

input to the sense indicator register is from the SR, the control field must be placed in
the right half of the SR, and the left half of the SR must be cleared before setting the
indicators. This is accomplished by gating only the right half of the SR to the adders
and then gating adders (P, 1-35) to SR(S, 1-35).

Set Indicators of Left Half SIL -0055 Figure 3. 5-54

· t.is instruction OR's the control field (18-35) of the instruction with the left half of
tht ·inse indicator register. Execution is the same as SIR except that the control field
mu. 11'9 switched to the left half of the SR, and the right half of the SR must be cleared
befo. : ·hl' indicators can be set. This is done by routing SR(18-35) to AD(P-17).

Rest. Indicators of Right Half RIR +0057 Figure 3. 5-54

This instruction causes the reset of the positions of the right half of the sense indica­
tor register which correspond to ones in the control field (18-35) of the instruction.
Indicator positions corresponding to zeros are unchanged, Execution of this instruction
is identical to SIR, except that the reset-indicators input is used instead of set indicators.

Reset Indicators of Left Half RIL -0057 Figure 3. 5-54

For this instruction, the control field of the instruction is used as a reset mask for
the left half .of the indicator register. A one in the control field resets the correspond­
ing indicator position. Execution of this instruction is similar to that of SIL except that
the reset-indicators pulse is used.

Invert Indicators of Right Half IIR +0051 Figure 3. 5-54

This instruction inverts positions of the right half of the indicator register which
correspond to ones in the control field of the instruction. Indicator positions corre­
sponding to zeros are unchang~d. Execution is identical to that of SIR except that the
invert-indicators pulse to the indicator input is used.

Invert Indicators of Left Half IIL -0051 Figure 3. 5-54

This instruction inverts positions of the left half of the indicator register which
correspond to ones in the control field (18-35) of the instruction, Indicator positions
corresponding to zeros are unchanged, Execution of this instruction is identical fo
that of SIL, except that an invert-indicators pulse is used.

Place Indicator in Accumulator PIA -0046 Figure 3. 5-55

The contents of sense indicators {0-35) are placed in positions (P, 1-35) of the
accumulator. The sense indicators -are unchanged.

Place Accumulator in Indicators PAI +0044 Figure 3, 5-55

The contents of the accumulator (P, 1-35) are placed in the sense indicator register.
The accumulator is unchanged.

B82

PIA

SR(S-35) _,.. AD
(P-35) 14(03)

2.12.15. l

AD(Q-35)+AC
16(01)

2.12.31.1

I Time
Pri Op 04

No

lectronic Reset
f SI 19 (03)

RIA

Reset SI
14(01)

2.12.62.1

Reset SI Po~i ti on
for Bit in SR
Position

llA, RIA, OAI,, PAI

AC(P-35) +SR
(S-35) 12(01)

Invert SI Position
for Bit in SR
Position

FIGURE 3.5-55. PAI +0044; PIA-0046; OAI +0043;
RIA -0042; ITA +0041

SR Output
Hanging on SI

Input

OAI, PAI

Set SI
14(01)

2.12.63. l

Set SJ Position
for Bit in SR

Position

OR Accumulator to Indicators OAI +0043 Figure 3. 5-55

The logical OR of the contents of the accumulator and the indicators is placed in the
sense indicator register. If a position in either register contains a one, a one will be
placed in that position of the indicator, The accumulator is unchanged. Execution is
accomplished using the sequence of PAI but omitting the indicator reset.

Reset Indicators from Accumulator RIA -0042 Figure 3, 5-55

The positions of the sense indicator register which correspond to the positions of
the AC(P, 1-35) having 11 1 11 bits are reset to zero. Indicator positions which correspond
to 11 0 11 bits are unchanged. The AC is unchanged.

Invert Indicators from Accumulator IIA +0041 Figure 3, 5-55

This instruction inverts any sense indicator position for which there is a corre­
sponding "l" bit in the accumulator.

Transfer if Indicators On TIO +0042 Figure 3, 5-56

If all ones in the AC are matched by ones in the indicator register, an instruction
transfer is taken to location X. AC positions containing zeros are not compared with
indicator positions.. If all of the ones are not matched, the computer takes the next
instruction in sequence. To execute this instruction, the complement of the AC is
OR'ed with the indicator. If the ones match, the re.sult will be all ones. The result
of the OR is stored in the SR and fed to the adder, A carry to adder (35) will ripple
down the adder and carry out of the AC(P). The adder (P) carry is used to conditio.n
the transfer.

Transfer if Indicators Off TIF +0046 Figure 3, 5-56

If all of the ones in the AC are matched by zeros in the indicator register, an instru~­
tiori transfer is taken to location X. AC positions containing zeros are not compared
with indicator positions. If all of the ones are not matched, the computer takes the
next instruction in. sequence. Execution of this instruction is identical to that of TIO,
except that the complement of the indicators is OR 'ed to the complement of the AC.
Test procedure remains the same.

On Test for Indicators ONT +0446 Figure 3, 5-57

If the ones contained in the word stored at location X are matched by ones in the
corresponding indicator register positions, the next instruction will be skipped, If all
of the ones are not matched, the computer will take the next instruction in sequence.
Positions of storage location X which· contain zeros are not compared. Execution of
this instruction requires an E cycle to obtain the test word from storage and two L
cycles to complete the test. The test is accomplished by moving the test word to the
accumulator, where it can be complemented. The complement is OR 'ed with the in­
dicators and returned to the SR. The result of the OR will be all ones if the ones in
the test word match the indicator. To test for all ones a carry is added to the OR which
will result in an adder (P) carry to condition the advance instruction counter. The
contents of the accumulator are saved and restored to normal during execution of the
instruction.

B84

I Time
Pri Op04

Any Trans ar
Store and Trap

AS ~AR
I 1 l(Dl)

3.06.18.1

Comp AC(Q-35
-AD LO(D3)

SR S-35) _..AD
P-35) LS(D7)

2.12.15.1

AD(P-35) _.,.SR
(5·35) L2(Dl)

2.12.04.1

Carry _...AD(35)
L5(D7)

2.12.29.1

FIGURE 3.5-56. TIO+ 0042; TIF + 0046

I Time
l'ri Op 44

SR(S-35) _.AD
P-35) LO(D3)

2.12.15.1

AC(Q-35)-SR
(Q,S-35)L2(Dl)

2.12.01. l

SR(S-35) -AD
(P-35) L8(D3)

2.12.15.1

AD (Q-35)_.
ACllO(Dl)
2.12.31. l

SR (Q)-AC (Q)l I AC(Q-35) .. SR
LlO (Dl) (Q,S-35)L10 (Dl)
2.12.38. l

SR(S-35) _.AD
(P-35) LO(D3)

2.12.15.1

2nd

Carry-AD
(35) LO (03)
2.12.29.l

FIGURE 3.5-57. ONT +0446, on+a444

Off Test for Indicators OFT +0444 Figure 3. 5-57

If the ones contained in the word stored at location X are matched by zeros in the
corresponding indicator positions, the computer will skip one instruction. If all of the
ones are not matched by zeros, the computer will take the next instruction in sequence.
Positions in the test word from storage which contain zeros are not compared, Execu­
t.ion of this instruction is identical to that of ONT, except that the complement of the
indicator is used for the OR operation instead of the true indicator.

Hight-Half Indicators, On Test RNT +0056 Figure 3. 5-58

This instruction matches the ones in the control field (18-35) of the instruction
against the corresponding positions of the right half of the indicator register. If all of
the ones are matched by ones, the computer skips one instruction. If all are not
matched, the computer takes the next instruction in sequence. Positions of the control
field containing zeros are not compared. Execution of this instruction is the same as
ONT except that only positions (18-35) of SR are used.

Left-Half Indicators, On Test LNT -0056 Figure 3. 5-58

If the ones in the control field of the instruction are matched by ones· in the corre­
sponding positonis of the left half of the indicator register, the computer will skip the
next instruction. If all ones are not matched, the computer takes the next instruction
in sequence. Execution of this instruction is the same as ONT, except that the SR
(18-35) is compared against SI(0-17).

Right-Half Indicators, Off Test RFT +0054 Figure 3. 5-58

If the ones in the control field of this instruction are matched by zeros in the right
half of the indicator register, the computer will skip one instruction. If all ones are
not matched by zeros, the computer will take the next instruction in sequence. Posi­
tions of the control field containing zeros are not compared. This instruction is exe­
cuted the same as OFT, except that only positions (18-35) of the SR are used.

Left-Half Indicators, Off Test LFT -0054 Figure 3. 5-58

If the ones in the control field of this instruction are matched by zeros in the left
half of the indicator register, the computer will skip one instruction. If all are not
matched, the computer will take the next instruction in sequence. Positions of the
control field containing zeros are not compared. The control field and the indicator
register are unchanged. Execution of this instruction is the same as OFT, except that
SR(18-35) is compared with SI(0-17).

3. 5.10 Index Transmission Instructions

These are the instructions which operate on or with the index registers. They are
used to load or modify the index registers, to alter instructions from the index regis­
ters, or to control program flow.

There are three shift cell index registers containing 15 positions each. The tag bit
positions (18-20) of the instruction control which index registers are to be used. Any

B87

index register or combination of index registers may be selected. The tag bits are
retained by the tag register on Systems 2. 08. 01. 1. SB(lS-20) outpqts are used to turn
on the tag register triggers during I time of the instruction. The output of the index
register, when gated to the adders, is always complemented. To make this a 2's
complement, a carry is gated to adder (17) at the same time the XR is gated to the AD.

Many instructions are indexable, as controlled by their tag positions, allowing the
address portion of the instruction to be modified. Appendix A shows which instructions
are indexable.

Transfer with Index Incremented TXI +1000 Figure 3. 5-59

This transfer adds its decrement to the specified index register and causes an un­
conditional transfer to location X. The index register outputs are always complemented
to the adders. Thus, to add the decrement, the index register must be cycled through
the adders so they contain a complement before the addition.

Transfer on Index TIX +2000 Figure 3. 5-60

If the number in the specified index register is greater than the decrement, the
contents of the index register will be reduced by the amount of the decrement, and an
instruction transfer will be taken to storage location X. When the number in the index
register is equal to or less than the decrement, no reduction is made and the computer
takes the next instruction in sequence. The comparison between the index register
contents and the decrement is made by gating the decrement and the 2 's complement
of the index register contents to the adders. No carry from adder (3) indicates that
the index register contents are greater and that the transfer and index register reduc­
tion are to be made. A carry from adder (3) will, therefore, block the transfer and
index register reduction.

Transfer on No Index TNX -'2000 Figure 3. 5-60

If the number in the specified index register is greater than the decrement, the
contents of the index register will be reduced by the amount of the decrement, and the
computer will proceed to the next instruction in sequence. When the number in the
index register is equal to or less than the decrement, no reduction is made, but an
instruction transfer will be taken to storage location X.

The sequence of operations for this instruction is like that of TIX, except that the
conditional transfer circuits are activated with the adder (3) carry trigger on.

Transfer on Index High TXH +3000 Figure 3. 5-60

If the number in the specified inaex register is greater than the decrement, an
instruction transfer is taken to storage location X. If the number in the index register
is less than or equal to the decrement, the computer takes the next instruction in
sequence. Execution of this instruction is identical to that of TIX except that the differ­
ence in the adders is not routed to the inde~ register' because no reduction is to be
made.

B88

R NT, RFT

_[
SR(lB-35) +AD I
18-35) LO(D3)

2.12.14.1

AD(Q::.-35) -+ACI
L2(Dl)

2.12.31. l

l Time
Pri Op 04

/ , . ~ LFT, LNT

SR (5-35).,..AD
(P-35) LS (D3)

2.12.15.1

I SR(18-35) +AD
(P-17) LO(D3)

2.12.16. l

AC(Q-35)~SR
(Q,S-35) L2(D1)

2.12.01.1

~

I

I

I

AD (Q-35)+ SR(Q)+AC
AC LlO (Dl) (Q) LlO(Dl)

2.12.31.l 2.12.38.l

AC(Q-35)+SR
(Q,S-35)LlO(Dl)

2.12.01.1

SR{S-35) -+AD 1 rarry -+AD
(P-35) LO(D3) 35) LO(D3)

I 2.12.50.1 2.12.29. l

/~
No

FIGURE 3.5-58. RNT +0056;~T - 0056; RFT +0054; LFT - 0054

RNT,
LNT

c;J
SR(lS-20)
-Tag Reg

2.08.01.1

SR(18-35)4>AD
(P-17) 19(D3)

AD (3-17)­
AS 111 (Dl)
3.06.16.1

Comp XR->AD
L Time

2.12.19. I

SR(S-35) ->AD
(P-35) L4(D3)

2.12.15.1

AD (3-17)-XK
L6 (Dl)

2.12.70.1

End Op

FIGURE 3.5-59. TXI +1000

SR(l 8-35) -+AD
(P-17) 19 (D3)

2.12.16.1

AD(3-17)+-AS
111 (Dl)

3.06.16.1

Comp XR->AD
L Time

2.12.19.1

AS+AR
111 (Dl)
3.06.18.1

AD(3-17)+XR
L5(Dl), LlO(Dl)
2.12.70.1

TNX
TXL

TIX
TXH

Yes (XR~Decr)

TNX
TXL

Index Trans
Met
2.12.76.1

3.06.05.1

End Op

.

TIX
TXH

FIGURE 3.5-60. TIX +2000; TNX -2000; TXH +3000; TXL -3000

Transfer on Index Low or Equal TXL -3000 Figure 3. 5-60

If the number in the specified index register is greater than the decrement, the
computer takes the next instruction in sequence. If the number in the index register is
equal to or less than the decrement, an instruction transfer will be taken to storage
location X. Execution of this instruction is identical to that of TNX except that, because
no reduction is required, the adders will not be routed to the index register,

Transfer and Set Index TSX +0074 Figure 3. 5-61

This instruction places the 2's complement of the instruction counter (the location of
the TSX instruction) in the specified index register and causes an instruction transfer
to storage location X. Execution of this instruction requires, in addition to the normal
transfer controls, the.routing of the instruction counter to the index register. This
involves use of the address· switch, storage register, and adders. To obtain the re­
quired 2.'s complement, the index register contents must also be cycled through the
adders after receiving the contents of the instruction counter.

Place Address in Index PAX +0734 Figure 3, 5-62

This instruction places the contents of AC(21-35) in the specified index register in
true form. To shift the address field to the decrement positions of the adders, AC
(21-35) is routed through the SR to AD(P-17).

Place Decrement in Index PDX -0734 Figure 3. 5-62

This instruction places the true contents of AC(3-l 7) in the specified index register.
Because no shift is required to execute this instruction, AC(3-l 7) is sent to AD(3-l 7)

through the SR.

Place Complement of Address in Index PAC +0737 Figure 3. 5-62

This instruction places the 2 's complement of AC(21-35) in the specified index
register. The AC is unchanged, The complementing is accomplished by putting the
address in the XR and then cycling the XR through the adders.

Place Complement of Decrement in Index PDC -0737 Figure. 3~ 5-62

This instruction loads the 2's complement of AC(3-17) in the specified index ~egister.
The AC is unchanged, The complementing is accomplished in the same manner as in
PAC.

Place Index in Address PXA +0754 Figure 3. 5-63

This instruction places the true contents of the specified index register in AC(21-35),
Positions (S, Q, P-20) of the AC are cleared. To obtain the true contents of the index register
for executing this instruction, the index register contents are cycled through the adders.
The index register contents are then rerouted to the adders and routed to the storage
register by way of the address switch to shift the index register contents to the address
field.

B91

R(18-35)+AD
(P-17) 19 (D3)

2.12.16.1
c;;::

AD(3-17)
-+AS lll(DI
3.06.16.1

I Time
Pri Op 06

Suppress PC
Advance ot 19

2.11.50.1

AS_.AR
111(01)
3.06.18.1

SR(18-35)+AD
(P-17) L4(D3)

2.12.16.1

AD(3-17)-XR
L5(Dl)

2.12.70.1

XR-AD
L8(D3)
2.12.19.1

FIGURE 3.5-61. TSX +0074

End Op

PAX, PAC

~R(18-35)-¥.D
(P-17) 10(03)

2.12.16.1

I Time
Pri Op72

PAC. PDC

XR .. AD
14 (00)
2.12.19.1

Carry +AD
(17) 14(03)
2.12.19.1

FIGURE 3.5-62. PAX +0734; PDX -0734; PAC +0737; PDC -0737

AD(Q-35)
-MC 12(01)
2.]2.31.1

I Time
Pri Op 74

Prevent SR(l 8-35)
•AD(P-17) 19 (03)

2.12 .. 16. l

MF Store
Deer ;

2.09.01. I

PXA

Put Zeros in SR(l-20)by
Operating Set and Hold Lines

Zero Already in SR(S)
L..:.-:.=.;,:.=.:.......i AS Goes to SR(2l-35)

AD(Q-35)
,._AC 16(01)

2.12.31.1

I Time
Pri Op 62

SXD

AD(P-35) -+SR
(S-35) E3(Dl)

2.12.04.1

FIGURE 3.5-63: PXA +0754; PXD-0754 FIGURE 3.5-64. SXA +0634; SXD -0634

MF Store
Adr

2.09 .OJ.1

Place Index in Decrement PXD -0754 Figure 3. 5-63

This instruction places the true contents of the specified index register in positions
(3-17) of the AC. The remainder of the AC is cleared. Execution of this instruction
is similar to PXA. However, because no shift is required, the index register contents
can be routed directly from the adders to the AC.

Store Index in Address SXA +0634 Figure 3. 5-64

This instruction stores the true contents of the specified index register in the
address field (21-35) of storage location X. The remaining positions of location X are
unchanged. The logic of the execution of this instruction is similar to PXA. However,
an E cycle is needed to put the information in core storage.

Store Index in Decrement SXD -0634 Figure 3. 5-64

This instruction stores the true contents of the specified index register in the
decrement (3-17) of storage location X. The remaining positions of location X are
unchanged. Execution of this instruction is similar to SXA but, because there is no
shift required, the output of the adders goes directly to the SR.

Address to Index True AXT +0774 Figure 3. 5-65

This instruction loads the specified index register with the address field (21-35) in
true form.

Address to Index Complemented AXC -0774 Figure 3. 5-65

This instruction loads the specified index register with the 2 's complement of the
address portion (21-35) of the instruction. Execution of AXC is similar to that of AXT
except that the index register contents must be cycled through the adders during the
following I cycle to obtain the 2's complement.

Load Complement of Address in Index LAC +0535 Figure 3. 5-66

This instruction loads the 21s complement of the address (21-35) of storage location
X into the specified index register. Execution of this instruction requires an E cycle
to obtain the word from storage. The address portion i's transferred to the index regis­
ter by way of the adders at the end of the cycle,and, to obtain the 2's complement, the
index register is cycled during the following I cycle.

Load Complement of Decrement in Index LDC -0535 Figure 3. 5-66

This instruction loads the 2 's complement of the decrement field (3-17) of storage
location X into the specified index register. Execution of this instruction is identical
to that of LAC except that the SR decrement, instead of the address, goes to the adders.

Load Index from Address LXA +0534 Figure 3. 5-66

This instruction loads the specified index register with the contents of the address
field (21-35) of storage location X in true form. Execution of this instruction is
identical to that of LAC, except that the complementing operation is not required.

B94

I Time
Pri Op 76

SR(l8-35)+AD
I (P-17) I 9(D3)

2.12.16.1

XR -+AD
I O(D3)
2.12.19.1

Carry+AD
(17) IO(D3)
2.12.19.1

AXT

AXC

AD(3- l 7)-> XR
12(Dl)

2.12.70.1

FIGURE 3.5-65. AXT +0774; AXC -0774

2.12.16.1

XR-AD
JO(D3)

I Time
Pri Op 52

AD(3-17).+XR
Ell(Dl)

2. 12.15.1

Carry-+ AD
(17) IO(D3)

2.12.19. l 2.12.19. l

LAC,

LDC

AD(3-17)-+XR
12(Dl)

2.12.70. l

FIGURE 3.5-66. LXA +0543; LXD -0534; LAC +0535; LDC-0535

Load Index from Decrement LXD -0534 Figure 3. 5-66

This instruction loads the specified index register with the contents of the decrement
field (3-17) of storage location X in true form. Execution of LXD is identical to that of
LDC, except that the complementing operation is not used.

3, 5. 11 AND and OR Instructions

The AND and OR instructions are used to produce logical combinations of bits. These
are useful for masking or matching words.

OR to Storage ORS -0602 Figure 3. 5-67

This instruction st.ores the logical OR of the word stored at location X and the AC
(P, 1-35) in location X. The logical OR is obtained by matching the two words and stor­
ing ones in all positions which have ones in either word. For this instruction, the OR is
developed in the memory data register during the E cycle. The words from core stor­
age and the SB both go the memory data register and the result in the memory data regis­
ter is put back into core storage.

OR to Accumulator ORA -0501 Figure 3. 5-68

This instruction places the logical OR of the word stored at location X and AC(P-35)
in the accumulator. The OR is produced by matching the two words and placing ones in
all positions of the AC which have ones in either word. The OR is developed in the SR
by gating both the storage and AC words into the SR at the same time.

AND to Accumulator - ANA -0320 Figure 3. 5-69

This instruction places the logical AND of the word stored at location X and the AC
(P, 1-35) in the accumulator (P, 1-35). The logical AND is obtained by matching the two
words and placing ones in all positions of storage location X which have corresponding
ones in both the AC and storage. This instruction is executed by adding the complement
of .both words and then complementing this sum.

AND to Storage ANS +0320 Figure 3. 5-69

This instruction stores the logical AND of the word stored at location X and the
contents of the AC(P, 1-35) in location X. The logical AND is obtained by matching the
two words and placing ones in all positions of storage location X which have corre­
sponding ones in both the AC and storage. The contents of the AC(S, Q, P, 1-35) are un­
changed. The AND is accomplished the same fo,r this instruction as for ANA. An addi­
tional E cycle is required to put the AND in storage. The complement of the original AC
(P, 1-35) is returned to the AC and re-complemented to restore the contents of AC(P, 1-35).
During the execution, the original AC(Q) is saved in SR(Q) and then returned to AC(Q).

Exclusive OR to Accumulator ERA +0322 Figure 3, 5-70

This instruction matches AC(P, 1-35) with the logical word stored at location X. Zeros
replace all positions of the AC which match the corresponding positions of the logical
word. Accumulator positions (S) and (Q) are cleared.

B96

I Time
Pri Op 60

AC(P-35) -+ SR
(S-35) EJ(Dl)

2.12.02. l

MF Store
Prefix

2.09.01. l

MF Store
Deer

2.09.01 .1

r--- -.-

MF Store Ctrl

2.09.00.1

Allow Core
Word to Get to
MemData Reg

SB_,.. Mem
Data Register

End Op

FIGURE 3.5-67. ORS -0602

SB-SR
E7(Dl)

I Time
Pri Op 50

AC(Q,P-35)
~SR(Q, S-35)
E7(D1)

2.12.50. l 2.12.01.1

SR S-35)-..AD
(P-35) E9(D3)

2.12.15.1

End Op

FIGURE 3.5-68. ORA-0501

MF Store
Tag

2.09.01.l

MF Store
Adr

2.09.01.1

I Time
Pri Op 32

Comp AC(Q-35)
->AD E4(D3)

2.12.22.1

AD(Q-35) ->AC
E6(Dl)

2.12.31.l

AC(Q) +SR(Q)
E6(Dl)

2.12.0l.l

SB -+SR
E7(D1)

2.12.50.1

SR(S-35)-+ AD
(P-35) E9(D3)

2.12.1 •

C(P-35) ->SR
(S-35) E 11 (Dl)

2.12.02.1

AD(Q-35)-+AC
Ell(Dl)

2.12.31.1

Comp AC(Q-35)
-AD LO(D3)

2.12.22. l

AD(Q-35) ~Ac
l2(Dl)

2.12.31. l

SR(S-35) -.Ao
(P-35) L4(D3)

2.12.15

AD(Q-35)-+AC
L6(Dl)

2.12.31. l

Get Comp of
AC (P-35)..,..SR Orginal AC
(S-35) L6(Dl) Work Back

1--2_. 1_2_. 0,...2_. _1 ___,to AC

Comp of
AND in
SR

2.12.15. l

AD(Q-35) _..A

Comp of AND LlO(Dl)

in AC 2.12.31.1

I Time

D(P-35) -.AC

AND in AC 12(Dl)

2.12.30.1

AC(P-35) _.SR
(S-35) L lO(Dl)

2.12.02. l

Comp AC(Q-35)
->-ADEO(D2)

2.12.22. l

AD(Q-35) •AC
El (Dl)

2.12.31.1

SR(S-35)·+AD
(P-35) E2(D2)

2 .12.15.1

AND in AC

AD Q-35 +AC
E4(D1)

AC(P-35) _... SR AND • SR
(S-35) E3(Dl) in

2.12.31.1 2.12.02.1

Comp AC(Q-35)
... AD 10 (D3)

2.12.22. l

AD(P-35) _..AC
12(01)

2. 12.30. l

SR(Q)-+AC(Q)
I 2(Dl)

2.12.38.1

FIGURE 3.5-69. ANA-0320; ANS +0320

Logically speaking, the EXCLUSIVE OR is the result of OR 'ing bits from either one
word or the other, but not both. The computer, which can only AND and OR, makes
use of the following logical equation to develop the EXCLUSIVE OR:

EXCLUSIVE OR = 2 (A or B) - (A + B)

The derivation of the above equation can be shown with the following adder table:

Factor A 0 0 0 1 1

Facto+ B 0 0 1 0 1

A + B (carry not blocked) 0 1 0 0 0

Carry to be blocked 0 0 0 1 0

A + B (carry blocked) 0 0 1 1 0

EXCLUSIVE OR (A + B carry blocked) 0 0 1 1 0

A or B 0 0 1 1 1

2 (A+ B) 1 0 0 0 0

2 (A or B) 0 1 1 1 0

From the table it can be seen that the EXCLUSIVE OR is equal to the sum output or
the adders with all carries blocked. The carries cannot be blocked, but the EXCLUSIVE
OR can be obtained by subtracting an amount equal to the blocked carries from the sum
of two words:

1. EXCLUSIVE OR = (A + B) - blocked carries
The blocked carries can be simulated by subtracting twice the OR from twice
the sum of two words:

2. Blocked carries = 2 (A + B) - 2 (A or B) = 10000 - 01110 = 00010
' Substituting the equation 2 in equation 1:

3. EXCLUSIVE OR = (A + B) -[2 (A + B) - 2 (A o:r BO= 01000 - 00010 = 00110
And simplifying equation 3:

4. EXCLUSIVE OR = 2 (A or B) - (A + B) = 01110 - 01000 = 00110

3. 5, 12 Convert Instructions

The three convert instructions can materially reduce the time required for many
"housekeeping" and table-look-up routines. They can be used for number conversions,
for preparing print fields, and even for adding numbers in systems other than binary.

The convert instructions, like variable-length instructions, include a count field as
well as the operation code, address and tag bit. The convert instructions cause a series
of references to be made (maximum of six) and the address specifies the starting loca­
tion of the first storage table. The register (accuniu}ator or MQ) from which the refer­
ence is controlled is considered to be made up of six 6-bit groups. The first of these
groups is added to the instruction address to give the location of the first storage refer­
ence. The word stored at this location must contain, in addition to its conversion in­
formation, the starting location of the next storage table. The convert-by-replacement
instructions shift the controlling register six places, clearing the six places on the

B99

Sum in
AC

I Time
Pri Op 32

J
E Time

l
SB-SR
E7(Dl)

2.12.50.1

1
=r

l
AC(Q-35)-.AD SR(S-35) -AD
E9(D3) (P-35) E9(D3)

2.12.24.1 2.12.15. l

t: j
l

l 1 1
AD(P-35) ->AC AC(P-35)-SR SR(S-35) - SR

El l(Dl) (S-35) E1 l(Dl) (S-35)El l(Dl)

2.12.30. l 2.12.02. l 2.12. l l. 1

i J 1
l

L Time

J
Comp AC(0-35)
_,..AD LO(D3)

Comp of Sum
for Subtraction

2.12.22.1

J
AD(P-35)-+AC
L2(Dl)

2.12.30.1

]
SR(S-35)-+AD
(P-35) L4(D3)

2.12.15.1

I
J l

OR
in
SR

Com
in

p of Sum AC(P-35) -+SR AD(P-35) +AC OR in AC
SR (S-35) L6(Dl) L6(Dl)

2.12.02.1 2.12.30.1

1
1

J

f
SR(S-35).-..AD
(P-35) 14(D3)

~
2.]2.15.1

1
2(0R) - (Comp of Sum)

FIGURE 3.5-70. ERA +0322

l
Sh AC(P-35) Lt 2 (OR) in AC
L8(Dl)

2.12.34.1

*
End Op

l
I Time

1
1 1

AC(0-35)-..A~ Carry-+ AD
14 (03) (35) I 4(D3)

2.12.24.1 2.12.29.1

1 J
I

AD(P-35)+AC
16(Dl) Exclusive OR

2.]2.30. l

opposite end of the register. Positions(S-5)* of the table word are entered into the six
cleared positions, and the next group of six bits is in position to add to the starting lo­
cation of the next table. The process continues until up to six references have been
made, The controlling register is gradually replaced by six-bit entries from the stor­
age tables. When the number of references specified by the count has been made, the
conversion is complete.

The tag of the instruction has a unique function for the convert instructions. Positions
(18) and (19) are not used, but a bit in {20) will cause the storage table starting location
contained in the last reference word to be stored in index register A.

Convert by Replacement from Accumulator CVR +0114 Figure 3. 5-71

This instruction treats the contents of the AC(P, 1-35) as six 6-bit representations.
The instruction replaces a riumber of these representations, equal to the count of the
instruction, with the contents of positions (S-5) of a like number of words from storage.
These words are found by adding AC(30-35) (the first six-bit group} to SR(21-35)
(initially the instruction address) and directing storage to this modified address. The
word thus found is brought to the SR; the AC is shifted right six places; SR{S-5) re­
places AC(P, 1-5), SR(21-35)addstothenext six-bit group in AC(30-35) to locate the
next word in storage. The process is then repeated. After the required number of
replacements, the address portion of the last storage word can be stored in index
register A by including a "tag" bit in position (20) of the instruction.

The following illustrates the use and operation of CVR:

Direct Addition of BCD Numbers:

A
134589

+ B
+ 691593

c
826182

Table required in storage for this example:

Storage Contents Storage
Location (S-5) (21-35) Location

1000 0 1000 1010
1001 1 1000 1011
1002 2 1000 1012
1003 3 1000 1013
1004 4 1000 1014
1005 5 1000 1015
1006 6 1000 1016
1007 7 1000 1017
1008 . 8 1000 1018
1009 9 1000 1019

Instructions required for operation:

CAL A (First BCD word)
ADD B (Second BCD word)
CVR 6, 0, 1000 (Convert sum to BCD word)

*This text section uses (S-5) to represent (S, 1-5).

BlOl

Contents
(S-5) (21-35)

0 1001
1 1001
2 1001
3 1001
4 1001
5 1001
6 1001
7 1001
8 1001
9 1001

I Time
Pri Op 10
Sec Op 14

l Time

SR(S-35)-+AD
(P-35) LO(D3)

. 2.12.15. l

AD(3- l 7).,A.S
l2(Dl)

AS(l0-17) I No of Conversions
-+ SC l2(Dl) in SC

3.06.16.l

SR{18-35)_,..AD
(P-17) L9(03)

2.l2.16.l

2.11.78.l

AC(30-35)
+-AD(l2-17)

2.10.15.1

AD(3-17)+AS
Lll(Dl)

AS-.AR
Al l(Dl)

3.06.18. l

Yes

Develop Desired
Address in Table

End Op

2.09.49.l

6 Bit }
Replace-
ment for
AC

SR(S-5)-.AC
{P-5) ElO{Dl)

2.10.15.l

FIGURE 3.5-71. CVR +0114

E Time

Shift AC Rt
EO(D6)

2.12.33. l

Step SC
E6(Dl)

2.11.79.1

ss-sR
E7(Dl)

SR(l8-35)">AD
(P-17) E9(D3)

2.12.16.1

AD(3-17)+AS
El l(Dl)

6 Shifts

l Step

AC(30.:35)•AD rDevelop Desired
(P-17)E9(D3) Address in

2 • lO .15. 1 Table

Yes

End Op

2.09.49.1

AD(3-17)-+
XRA Ell (Dl)

2.12.70.1

Yes

Development of Program CONTENTS OF ACCUMULATOR
1-5 6-11 12-17 -23 -29 -35

CAL A(Clear AC, add logical word A)- 1 4 5 9 1st
Add B +6 1 3

(Unconverted binary sum) =7 onv
CVR 1000, 0, 6

Series of Steps within CVR
Table Next

C(AC) Start Table C(-) Start Loe
30-35 Loe Refer 1-5 C(-) 21-35

*@ + 1000 - 1012 2 7 12 5 10 17 Count =6
17 + 1001 - 1018 8 1001 ~' 8 2 7 12 5 10
10 + 1001 - 1011 1 1001

_,
1 8 2 7 12 5

5 + 1001 - 1006 6
_,

6 1 8 2 7 12
12 + 1000 - 1012 2 ,.I 2 6 1 8 2 7

7 + 1001 - 1008 8 ~I 8 2 6 1 8 2

Count= zero: if Tag= 1, 1000 iXRA
SLW C (Store converted BCD sum as logical word)

The execution of CVR requires one L cycle to set the count in the shift counter and
to calculate the initial table location. The instruction is completed in as many E cycles
as specified by the count.

Convert by Replacement from MQ CRQ -0154 Figure 3, 5-72

This instruction operates on the MQ, considered to be composed of six 6-bit repre­
sentations. The instruction replaces a number of these representations equal to the
count of the instruction, with the contents of positions (S-5) of a like number of words
from storage. The location of the first of these storage words is found by adding the
contents of MQ(S-5) to SR(21-35) (initially the instruction address), The word stored
at this modified location is brought to the SR, and the MQ is shifted left six places.
Positions (S-5) of the stored word are placed in MQ(30-35), and the location of the next
storage word is computed by again adding MQ(S-5) to SR(21-35) which is now the ad­
dress portion of the previous storage word. The process continues until the required
number of replacements have been made. At this time the presence of a tag bit in
position 20 of the instruction will cause the address portion of the final storage word
to be stored in index register A.

The following illustrates the use and operation of CRQ:

Prepare a BCD number for printing be replacing leading zeros with blanks:

Convert BCD number 007109 to BL BL 7109
Instructions required for this operation:
LDQ A (BCD number in storage)
CRQ 6, 0, 2000 (Convert from MQ)
STQ B (Store converted number)

Bl03

=5
=4
=3
=2
=1

I Time
Pri Op 14
Sec Op 14

l Time

SR(S-35)-AD
(P-35) l0(03)

2.12.15.1

AD(3-17)-¥.S
l2(Dl)

3.06.16. l

AS(l0-17)+5
L2(DJ)

2.11.78.1

No. of Conver•ions
in SC

R(lS-35)+-AD
(P-17) L9(03)

MQ(S-5)+-AD,Oevelop Desired
(12-17) L9(03) Address in Table

2.12.16. l 2.10.15.l

AD(3-17)•AS
Ll l(Dl)

AS -+AR
Al l(DJ)

3.06.18.1

Yes

End Op
2.09.49.1

6 Bit
Replacement
for MQ

FIGURE 3.5-72. CRQ -0154

SR(S-5}+MQ
(30-35)E10(01)

2.10.15.1

E Time

=r
Shift MQ Lt
EO(D6) I

2.12.42.1

=:I
Step SC
E6(01)

I
2.11.79.1

SB -SR'""
E7(01)

SR(JS-35)..o;:AD
(P-17)E9(03) I

2.12.16.1

AD(3-17)+AS
El l(OJ)

3.06.16.1

6 Shifts

1 Step

l (j;.:J7i e9(o3q Develop Desired
Address in Table

2.10.15.1

Yes

End Op
2.09.49.1

AD(3-17)-+
XRA Ell(DI)

2.12.10.1

Storage table required for CRQ (in decimal):

Sto:i;-age Contents
Location (S-5) (21-35)

200{) BL 2000
2001 1 2010
2002 2 2010
2003 3 2010
2004 4 2010
2005 5 2010
2006 6 2010
2007 7 2010
2008 8 2010
2009 9 2010

Development of Program

LDQ A

CRQ 2000, 0, 6

Series of Steps within CRQ

1st
Char
Conv

Sl-5
*O

Storage Contents
Location (S-5) (21-35)

2010 0 2010
2011 1 2010
2012 2 2010
2013 3 2010
2014 4 2010
2015 5 2010
2016 6 2010
2017 7 2010
2018 8 2010
2019 9 2010

CONTENTS OF MQ

6-11 12-17 -28 -29
0 7 1 0

-35
9

MQ
Shift
Left 6

Table Next Count
C(MQ)s Start Table C(-)s Starting Loe

1-5 Loe Refer 1-5 C(-) 21-35
*O + 2000 = 2000 BL 2000 0 9 BL 6

0 + 2000 = 2000 BL 2000
7 + 2000 = 2007 7 2010
1 + 2010= 2011 1 2010
0 + 2010 = 2010 0 2010
9 + 2010 = 2019

9 _..k BL_». BL 5

BL>.-BLY 7 4

B~7yl 3

7~1>.-----0 2
1 0 9 1

Count= O; ifTag=l, 0

The execution of CRQ is accomplished in one L cycle and a number of E cycles equal
to the count.

Convert by Addition from MQ CAQ -0114 Figure 3. 5-73

This instruction treats the MQ as six 6-bit representations, as does CRQ. This
instruction does not replace any of these representations, but uses them to locate a
number of storage words equal to the count of the instruction. The storage words are
located at the address developed by adding MQ(S-5) to SR(21-35) (initially the instruc­
tion address) and are brought to the SR. The storage words are then added to the
contents of the accumulator. The MQ is not replaced, but is merely rotated left six
places to allow the next six-bit representation to be added to the address portion of the
previous storage word. The process continues until a number of additions (to the AC)
equal to the count have been made. The operation is then complete. The address por­
tion of the last storage word used can be stored in index registers for future reference
by adding a tag bit in position 20 of the instruction.

Bl05

I Time
Pri Op 10 l Sec Op 14 6 Shifts

~·<§? 1 Rotate MQ Lt
j

EO(D6)
I Time
Next Inst

L Time 2.12.42.1

r 1 ~Off t
SR(S-35) -AD

SR(S-35)--AD AC(Q-35)-6.D

(P-35) LO(D3)
(P-35) E4(D3) E4(D3)

2.115.1
2 .J.2, 15 ,]_ ..2.J2, ?A .J. Lost

l t Addition_l :.1
_I

J_]_ Step SC
SR(S-35) -+-AD !A,c(Q-35) -AD

AD(3-17)-AS AS(l 0-17)-SC No. of
E6(Dl)

~Addition (P-35) I 4(D3) 14 (03)

L2(Dl) L2(D1) Additions 2.11.79.1
2.12.15.1 2.12.24.1

2.12.16_.1 _2_.Ll .78. 1
in SC 2.12.31.1 1:]"

~ '
J

"'T l
--1: :::1_

SR(J8-35)-+AD MQ (S-5) Develop
SB-+-SR AD(Q-35)-.AC

(P-17} L9(00) -AD(J2-17) Desired
E7(DI) 16(Dl)

L9(D3) Address 2...12..50...l
2.12.16.1 2.10.15.1 in Table _!

2.12.31.1

T T l]_
"T :;,,

jA"D(3-17) -AS
SR(18-35)-AD MQ(S-5)-AD Develop Desired

Ll 1(01)
(P-17) E9(D3) (12-17) E9(D3) Address in Table

2.12.16.1 2.10.15.1
3.06.16.1 t J" Turn On CAQ

I Tgr El I

~v •• AD(3-17)-A~

]_ Ell(Dl) 2.09.49.1

r End Op 1 3.06.16. l]
A'3°_JR 2.09.49.1

L

All(Dl) No Yes

3.06.18.1
SC= 0 J 1 _f Bit TR 20

1 AD(3-17)-
End Op XRA Ell(Dl)

E Time 2.09.49.1 2.12.70.1

1
1 - _f

FIGURE 3-.5~73. CAQ -0114

To illustrate the operation and use of CAQ, a program which will convert BCD to

binary follows.

Convert BCD Word to Binary

709542 (BCD) converted to 2, 551, 646 (Octal)

Instructions required for this operation:

LDQ A
CLM
CAQ 6, 0, 3000

ARS 1610
SLW B

(BCD word)
(Clear AC)
(Convert to binary)
(Position result in AC)
(Store result)

Storage table required for CAQ:

Storage Contents Storage
Location (S-19) J21-35) Location
Decimal Octal Decimal Decimal

3000 0 3100 3300

3001 303,240 3100 3301

3002 606,500 3100 3302

3003 1,111,740 3100 3303

3004 1,415,200 3100 3304

3005 1, 720,440 3100 3305

3006 2,223,700 3100 3306

3007 2,527,140 3100 3307
3008 3,032,400 3100 3308

3009 3,335,640 3100 3309

3100 0 3200 3400
3101 23,420 3200 I 3401

3102 47,040 3200 ' 4302
3103 72,460 3200 3403

3104 116, 100

I
3200

3105 141,520 320.0
3106 165,140 3200

3404
I 3405

3406

3107 210,560 3200 3407
3108 234,200 3200 3408

3109 257,620 3200 3409
3200 0 3300 3500

3201 1,750 3300 3501

3202 3, 720 3300 3502

3203 5,670 3300 3503

3204 7,640 3300 3504

3205 11, 610 3300 3505

3206 13,560 3300 3506

3207 15,530 3300 3507

3208 17,500 .3300 3508

3209 21,450 3300 3509

Bl07

Contents
(S-19) (21-35)
Octal Decimal

0 3400
144 3400
310 3400
454 3400
620 3400
764 3400

1,130 3400
1,274 3400
1,440 3400
1,604 3400

0 3500
12 3500
24 3500
36 3500
50 3500
62 3500
74 3500

106 3500
120 3500
132 3500

0
1
2
3
4
5
6
7

10
11

c:i
0
00

Development of Program

LDQ BCD WORD
CLM
CAQ 3000, 0, 6

Series of Steps

C(MQ)s Start Table
i-5 Loe Refer

7 + 3000 = 3007

0 + 3100 = 3100

9 + 3200 = 3209

5 + 3300 = 3305

4 + 3400 = 3404

2 + 3500 = 3502

ARS 16 (Binary Equivalent)

SLW

within CAQ

Table
C(-)s 1-19

2, 527' 140

0

21,450

764

50

2

Binary Equivalent

CONTENTS OF ACCUMULATOR

P, 1-19 21-35
xx xx
_Q_Q_ 00

RQL6

Next
Start Loe
CH 21-35) Count

3100 + 2,527,140 3100 6

3200 + 0 3200 5
= 2,527,140 6300

3300 + 21,540 3300 4
= 2, 550, 610 9600

3400 + 764 3400 3
= 2,551,574 13000

3500 + 50 3500 2
= 2,551,644 16500

- +· 2 - 1
= 2,551,646 16500

2,551,646 0

BCD Word

CONTENTS OF MQ

Sl-5 16-11 -35

I 1
1

,

o I 9 I 5 4 2 !1

·f 1<f21:1{
s - l,-4"' 1,, 2'' I. l'[.{.
4{2/f: 71.{.15
2 {1~0' ~9'[s' 1/4
7 0 9 5 4 2

Appendix A

Alphabetic listing and Index of 7090 Instructions

Ol'ERATION CODE
ALPHA OCTAL

ACL
ADD
ADM
ALS
ANA
ANS
ARS
AXC

AXT
BSF
BSR
BTT

CAL
CAQ

CAS
CHS
CLA
CLM
CLS
COM

CRQ

CVR

0361
0400
0401
0767

-0320
0320
0771

-0774

0774
--0764

0764
0760 .. xxxx

-0500
-Oll4

0340
0760 .. 0002
0500
0760. ,0000
0502
0760. ,0006

-01!54

0114

DCT 0760 .. 0012
DVH 0220
DVP 0221
ECTM --0760 .. 0006
EFTM -0760 .. 0002
ENB 0564
ENK 0760. ,0004
ERA 0322
ESNT -0021

ESTM
ETM
ETT
FAD
FAM
fDH
FDP
FMP
.FRN
!<'SB
FSM
HPR
HTR
HA
UL
IIR

us

IOT
LAC

LAS

LBT
LCHA
LCHB
LCHC

-0760. ,0005
0760 .. 0007

-0760 .. xxxx
0300
0304
0240
0241
0260
0760 .. 001 l
0302
0306
0420
0000
0041

-0051
0051

0440

0760 .. 0005
0535

-0340

0760 .. 0001
0544

-0544
0545

INSTRUCTION

Add and Carry Logical Word
Add
Add Mag·nitude
Accumulator Left Shift .
AND to Accumulator
AND to Storage
Accumulator Right Shift
Address to Index Comple-

mented
Address to Index True .
Backspace File
Backspace Record .
Beginning of Tape Test ...

Clear and Add Logical Word
Convert by Addition from

MQ.
Compare AC with storage.
Change Sign .
Clear and Add ..
Clear Magnitude .
Clear and Subtract .
Complement Magnitude ..

Convert by Replacement from
MQ.

Convert by Replacement from
AC

Divide Check Test
Divide or Halt ...
Divide or Proceed ...
Enter Copy Trap Mode .
Enter Floating Trap Mode ...
Enable ...
Enter Keys
Exclusive OR to Accumulator
Enter Storage Null.

and Transfer ..
Enter Select Trap Mode
Enter Trapping Mode .
E11d of Tape Test ..
Floating Add
Floating Add Magnitude ...
Floating Divide or Halt .
.Floating Divide or Proceed .
.Floating .Multiply .
Floating Round ..
Floating Subtract
floating Subtract Magnitude
Halt and Proceed
Halt and Transfer .. .
Invert Indicators from AC .
Invert Indicators of Left Half
Invert Indicators of Right

Half
Invert. Indicators from Stor­

age
Input-Output Check Test
Load Complement of Address

in Index
Logical Compare Accumula-

tor with Storage
Low-Order Bit Test .
Load Chtinnel A ..
Load Channel B ..
Load Channel C .

* Description not included in text.

xx 32
xx 30
xx 32
x 25
xx 96
xx 96
x 27

94
94

x *
x * x 75

xx 30

105

xx 67
x 78
xx 27
x 40
xx 27
x 40

103

101
x 72
xx 35
xx 37

xx *
x *
xx * x 25
xx 96

xx *
x * x 64
x 75
xx 43

xx 49
xx 54
xx 59

xx 49
x 54
xx 49
xx 49

75
xx 75

84
82

82

xx 78
x 72

94

xx 69
x 67

xx *
xx *
xx *

OPERATION (95

ALPHA OCTAL

LCHD -0545
LCHE 0546
LCHF -0546
LCHG 0547
U-:HH -0547

LDC -0535

LDI 0441
LDQ 0560
LFT -0054
LFT.M -0760 .. 0004
LGL -0763
LGR -0765
LLS 0763
LNT -0056
LRS 0765
LSNM -0760, .0010

INSTRUCTION

Load Channel D ___
Load Channel E .
Load Channel F .
Load Channel G
Load Channel H .. .

Load. Complement of Decre-
ment in XR.

Load Indicators
Load MQ
Left Half Indicators, Off Test
Leave floating Trap Mode
Logical Left Shift .
Logical Right Shift .
Long Left Shift ...
Left Half Indicators, On Test
Long Right Shift
Leave Storage

LTM
LXA
LXD
MPR
MPY
MSE
NOP
NZT
OAI

Nullification .Mode
-0760_ .0007 Leave Trapping Mode.

0534 Load Index from Address .
-0534 Load Index from Decrement..
-0200 .Multiply and Round .

0200 .Multiply
-0760 .. xxxx Minus Sense .

0761 No Operation
-0520 Storage Non-zero Test .

0043 OR Accumulator to Indica-

OFT
ONT
ORA
ORS
OSI
PAC

PAI

PAX
PBT
PDC

PDX
PIA

0444
0446

-0501
-0602

0442
0737

0044

0734
-0760 .. 0001
-0737

-0734
-0046

PSE 0760 .. xxxx
PXA 0754
PXD -0754
RCHA 0540
RCHB -0540
RCHC 0541
RCHD -0541
RCHE 0542
RCHE -0542
RCHG 0543
RCHH-0543
RCT -0760 .. 0014
RDS 0762
REW 0772
RFT 0054

RIA -0042

RIL -0057
RIR 0057

tors
OlI Test for Indicators ...
On Test for Indicators
OR to Accumulator ...
OR to Storage ..
0 R SLOrage to Indicators ..
Place Complement of Address

in XR
Place Accumulator in Indica-

tors
Place Address in XR
P-bit Test ..
Place Cornplement of Decre­

ment in XR.
Place Decrement in Index ...
Place Indicator in Accumula-

tor.
Plus Sense .
Place Index in Address .
Place Index in Decrement.. ..
Reset and Load Channel A
Reset and Load Channel B ...
Reset and Load Channel C.
Reset and Load Channel D ..
Reset and Load Channel E
Reset and Load Channel];' ..
Reset and Load Channel G
Reset and Load Channel H .. .
Restore Channel Traps .
Read Select .
Rewind
Right Half Indicators, Off

Test
Reset Indicators from Accu­

mulator
Reset Indicators of Left Half
Reset Indicators of Right

Half

Bl09

xx *
xx *
xx *
xx *
xx *

94

XX 78
xx 22

87

x * x 25
x 27
x 25

87

x 27

x * x 64
94
96

xx 35
xx 32
x 72

75
xx 67

84
xx 87
xx 84
xx 96

xx 96
xx 78

91

82
91

x 67

91
91

82
x 70

91
94

xx *
xx *
xx *
xx *
xx *
xx *
xx *
xx *
x *
x *
x *

87

84
82

82

OPERATION CODE
ALPHA OCTAL

RIS 0445
RND 0760, .0010
RNT 0056

RQL -0773
SBM -0400
SCHA 0640
SCHB -0640
SCHC 0641
SCHD -0641
SCHE 0642
SCHF -0642
SCHG 0643
SCHH -0643
SIL -0055
SIR 0055
SLQ -0620
SLW 0602
SSM -0760, .0003
SSP 0760 .• 0003
STA 0621
STD 0622
STI '0604
STL -0625

STO 0601
STP 0630
STQ -0600
STR -1000
STT 0625
STZ 0600
SUB 0402
SXA 0634
SXD -0634
TCNA -0060

TCNB -0061

TCNC -0062

TCND -0063

TCNE -0064

TCNF -0065

TCNG -0066

TCNH-0067

.TCOA 0060

TCOB 0061

TCOC 0062

TCOD 0063

TCOE 0064

TCOF 0065

TCOG 0066

TCOH 0067

T.EFA 0030

TEFB -0030

TEFC 0031

INSTRUGl'ION

Reset Indicators from Storage
Round
Right Half Indicators, On

Test
Rotate MQ Left
Subtract Magnitude
Store Channel A
Store Channel B
Store Channel C
Store Channel D
Store Channel E
Store Channel F
Store Channel G
Store Channel H
Set Indicator of Left Half
Set Indicator of Right Half
Store Left Half MQ
Store Logical Word
Set Sign Minus .,
Set Sign Plus
Store Address
Store Decrement
Store Indicators
Store Instruction Location

Counter
Store
Store Prefix
Store MQ
Store Location and Trap
Store Tag
Store Zero
Subtract ,
Store Index in Address
Store Index in Decrement..
Transfer on DSC A

Not in Operation
Transfer on DSC B

Not in Operation
Transfer on DSC C

Not in Operation
Transfer on DSC D

Not in Operation
Transfer on DSC E

Not in Operation
Transfer on DSC F

Not in Operation
Transfer on DSC G

Not in Operation
Transfer on DSC H

Not in Operation
Transfer on DSC A

in Operation
Transfer on DSC B

in Operation
Transfer on DSC C

in Operation
Transfer on DSC D

in Operation
Transfer on DSC E

in Operation
Transfer on DSC F

in Operation
Transfer on DSC G

in Operation
Transfer on DSC H

in Operation
Transfer on DSC A

End of File
Transfer on DSC B

End of File
Transfer on DSC C

End of File

* Description not included in text.

xx 78
x 40

87

x 27
xx 32

xx *
xx
xx
xx
xx
xx
xx
xx

*
*
*
*
*
*
* 82

78

xx 22
xx 20
x 78
x 75
xx 22
xx 22
xx 78

xx 22
xx 20
xx 20
xx 20

64
xx 22
xx 20
xx 32

xx
xx
xx
xx
xx
xx
xx
xx
xx

xx
xx
xx
xx

xx
xx
xx
xx

xx
xx

94
94

62

62

62

62

62

62

62

62

62

62

62

62

62

62

62

62

64

64

64

Ol'ERATION CODE
ALPHA OCTAL

TEFD -0031

TEFE 0032

TEFF -0032

TEFG 0033

TEFH -0033

TIF
TIO
TIX
TLQ
TMI
TNO
TNX
TNZ
TOV
TPL
TQO

TQP
TRA
TRCA

0046
0042
2000
0040

-0120
-0140
-2000
-0100

0140
0120
0161

0162
0020
0022

TRCB -0022

TRCC 0024

TRCD -0024

TRCE 0026

TRCF -0026

TRCG 0027

TRCH-0027

TSX
TTR
TXH
TXI

TXL

0074
0021
3000
1000

-3000

TZE 0100
UAM .:......0304

UFA -0300
UFM -0260

UFS -0302

USM -0306

VDH 0224

VDP 0225

VLM 0204
WEF 0770
WRS 0766
XCA 0131
XCL -0130

XEC 0522
ZET 0520

BllO

INSTRUCTION

Transfer on DSC D
End of File

Transfer on DSC E
End of File

Transfer on DSC F
End of File

Transfer on DSC G
End of File

Transfer on DSC H
End of File

Transfer if Indicators Off
Transfer if Indicators On
Transfer on Index
Transfer on Low MQ
Transfer on Minus
Transfer on No Overflow
Transfer on No Index
Transfer on No Zero
Transfer on Overflow
Transfer on Plus
Transfer on Quotient

Overflow
Transfer on MQ Plus
Transfer ,
Transfer on DSC A

Redundancy Check
Transfer on DSC B

Redundancy Check
Transfer on DSC C

Redundancy Check
Transfer on DSC D

Redundancy Check
Transfer on DSC E

Redundancy Check
Transfer on DSC F

Redundancy Check
Transfer on DSC G

Redundancy Check
Transfer on DSC H

Redundancy Check
Transfer and Set Index ,
Trap Transfer
Transfer on Index High
Transfer with XR Incre-

mented
Transfer on XR Low or

Equal
Transfer on· Zero
Unnormalized Add Magni-

tude
Unnormalized Floating Add ..
Unnormalized Floating Mul-

tiply
Unnormalized Floating Sub-

tract
Unnormalized Subtract
Magnitude
Variable Length Divide or

Halt
Variable Length Divide or

Proceed
Variable Length Multiply
Write End of File
Write Select
Exchange AC and MQ
Exchange Logical AC and

MQ
Execute
Storage Zero Test

A.ppendix

xx 64

xx 64

xx 64

xx 64

xx 64
xx 84
xx 84

88

xx 62
xx 60
xx 60

88

xx 62
xx 60
xx 60

xx *
xx 60
xx 60

xx 64

xx 64

xx 64

xx 64

xx 64

xx 64

xx 64

xx 64

91
xx 64

88

88

91

xx 60

xx 49

xx 48

xx 54

xx 49

xx 49

x 37

x 40
x 35

x ..
x *

22

22
xx 75
xx 67

