
Proornmmino " _--"

the

IBM 7090:

A Self-Instructional

Programmed Manual

JAMES A. SAXON

Saxon Research Corporation

PRENTICE-HALL, INC., ENGLEWOOD CLIFFS, N. J. 1 963

PRENTICE-HAll INTERNATIONAL, INC, London

PRENTICE-HAll OF AUSTRALIA, PTY., lTD., Sydney

PRENTICE-HALL OF CANADA, LTD., Toronto

PRENTICE-HALL FRANCE, SAR.l., Paris

PRENTICE-HALL OF JAPAN, INC, Tokyo

PRENTICE-HALL DE MEXICO, SA, Mexico City

©1963 by PRENTICE-HALL, INC, Englewood Cliffs, N. J.
All rights reserved. No part of this book may be reproduced

in any form, by mimeograph or any other means, without

permission in writing from the publisher.

library of Congress Catalog Card Number 63-10543

Printed in the United States of America

73033-C

ACKNOWLEDGEMENT

The technical assistance and constructive criticism
given by Dr. George Forsythe and Mr. James Watt,
both of Stanford University, and Mr. Ted Medin of
General Dynamics, Astronautics, is greatly appre
ciated by the author.

INTRODUCTORY NOTE

This Self-Instructional Text Book is designed to perform
the function of teaching you to program for the IBM 7090
computer.

There will be no formal test at any time throughout the
course. You will go through it as fast or as slowly as you
desire. It is recommended that study periods should not
extend beyond two hours and that no more than two such
(two hour) periods be utilized during anyone day.

There are large numbers of problems and exercises scat
tered throughout the book. In every case, the correct
answer is given on the back of the page. You are to work
each problem in the space allotted to it in the book and
then check your answer with the correct answer given. If
your answer was incorrect, go back to the previous page for
an additional review.

There is nothing to keep you from cheating by looking
at the correct answer before you have attempted to work
the prob~em except the realization that you will B£1 learn
to program if you do so. The fact that you have this book
in front of you indicates that you want to learn to pro
gram. If this is true, then please follow all instructions
to the letter. Thank you for your cooperation.

Computer manufacturers are constantly making advances
and some of the limitations listed in this text will be
exceeded, but as long as the 7090 or similar computers are
used, the general information and programming methodology
will be applicable.

iv

TABLE OF CONTENTS

PAGE

GENERAL INFOR}~TION. vii

LESSON 1
Decimal, Octal and Binary Numbering Systems. • 1
Binary Arithmetic. • • • • • • • • • • • • 5
Converting Octal to Decimal. • • • • • • • • • 10
Converting Decimal to Octal. • • • • • • • 11

LESSON 2
Machine Words. • • • • 0 • • • • • • • •

Registers. • • • • • • • • • • • • • • •
Format o£ Instructions • • • • • • • • 0

LESSON J

· . .
• • •
• • •

15
17
21

Fixed Point Numbers, Operations. • • • • • • • 27
Format £or Writing a Program • • • • • • • • • 32
Binary Point • • • • • • • • • • • • • • • • • 37
Instr: CLA, ADD (pg. 27). SUB, MPY, DVH, STO

(pg. 29). LDQ, STQ, HTR (pg. 30).
TZE, TOV (pg. 31).

LESSON 4 Floating Point Numbers • •
Floating Point Arithmetic. • • • • • • • • • •
Over£low and Under£low • • • • • • • •
Instr: FAD, FSB, FMP, FDH (pgo 46).

ARS, TPL, TMI, XCA (pg. 47).
(pg. 52).

• • • •
ALS,
NZT, ZET

LESSON 5
Symbolic Coding. • • •
Symbolic Coding Sheet.
Symbolic Language, Use

• • • • • • • • • • • • ·
o£ Asterisk, Plus or · Minus •••

Pseudo Ope Codes: COUNT, END, BSS (pg. 60)

LESSON 6

41
45
51

55
59

63

Additional Instructions. • • • • • • • • • • • 69
Instr: DVP, RND, DCT (pg. 69). STZ, LLS,

LRS, TRA (pg. 73). CAS, NOP (pg. 77).

LESSON 7
Use o£ Constants and Literals •••••••
Pseudo Ope Codes: PZE, EQU, OCT (pg. 81).

DEC (pg. 82).
Instr: STA, STD, STT, STP (pg. 89).

v

• 0 83

CONTENTS continued

LESSON 8
Use o~ Index Registers •••••••
Use o~ Two or Three Index Registers
Instr: LXA, LXD, TSX, AXT (pg. 94).

· ·
TIX, TXI,

TXL, TXH (pg. 95)

LESSON 9
Quick Re~erence - Instructions and their

Meanings (First Ha1~) •••••••••
Review and Se1~ Test •••••••••••

LESSON 10
Tape - De~initions ••••••••••••••
Input/Output Instructions and Commands. • • •
Flow Chart - Read Tape Routine ••••••••
Flow Chart - Write Tape Routine • • • • • • •
Instr: 14 I/O Instructions and Commands

(pg. 120)

LESSON 1-1
Use of Subroutines - Subroutine Linkage •
Logical Operations (AND-OR) • • • • • • •
Masking, Packing and Unpacking. • • • • •
Instr: CAL, SLW, ANA, ANS (pg. 138). ORA,

ERA (pg. 139). LGR, LGL (pg. 142).

LESSON 12

· . · . · .
ORS,

Sense Indicator Operations ••••••••••
Sense Lights. • • • • • • • • • • • • • • • •
Indirect Addressing • • • • • • • • • • • • •
Pseudo Ops: SWT (pg. 148). SLN, SLF, SLT

(pg. 152).
Instr: PAI, PIA, LDI, STI, ONT, OFT, TIO, TIF

(pg. 148).

LESSON 13
General Considerations. . . . • • • • • • · .
Trapping. • • • • • • • • • • • • • • • •
Sorting • • •
Program Testing • • • • • • • • • • • • • • •
Instr: ETM, LTM, TTR (pg. 163).

LESSON 14
Quick Reference - Instructions and their

Meanings (Complete Course) ••••
Review and Sel~ Test. • • • • ••••••

LESSON 15
Sample of a Complete Program. • • • • • •
Concluding Remarks ••••••••••••

INDEX • • • • • • • • •

vi

· . · .

· .

93
103

109
111

119
12.0
122
124

133
137
140

147
152
156

161
162
164
167

177
181

195
202

203

GENERAL INFORMATION

Before getting into the mechanics of programming for
the 7090, a certain amount of general information relating
to the characteristics and operation of the machine, should
be discussed.

The 7090 is a scientific computer. Although it
can, and does, do other work, its major function is that of
solving complex mathematical problems. Despite complex
formulas, every problem can be broken down to the four
basic arithmetic operations of addition, subtraction, multi
plication and division. This is the method the computer
uses in solving its problems. It may have to multiply a set
of numbers a thousand times (or a million times), but this
poses no problem as each operation is executed in a tiny
fraction of a second. The computer is controlled and told
what to do by human beings through the use of programs,
which are interpreted and executed by the machine.

A program, is a sequence of instructions, stored
internally in the machine, which tell the computer exactly
what to do with the data to be processed. It must take
into account every eventuality and all possibilities.
Nothing must be left to chance because the machine has no
capacity for thinking. It can only do what it has been
told to do by the program. For example, if an overflow
occurs during an arithmetic operation and the programmer
has not provided for this possibility in his program, the
machine will not be able to handle it.

There are three phases in computer processing:
INPUT, CONPUTATION and OUTPUT. The input phase consists of
placing the instructions and data to be processed into the
computer. Input may be punched cards or magnetic tape al
though magnetic tape is more commonly used as it is a much
faster method.

The computation phase carries out the instructions.
It has two functions, that of arithmetic and control.
Arithmetic simply carries out those instructions that are
concerned with arithmetic operations and control carries
out the instructions in a specified order. Normally, the
computer carries out instructions sequentially (one after
the other), but the programmer may use certain control
instructions which may instruct the computer to proceed to
any instruction in the program.

vii

The output phase consists of reporting the results
of the computer action. This may be in printed form f on
punched cards or on tape. It is most economical to pro
duce the output on tape, then if one of the other products
is desired, it may be accomplished off-line (detached from
the computer), saving considerable machine operating time.

Tape, card and printer units are connected to the
DATA CHANNEL (DC), which is connected to the Central Pro
cessing Unit of the computer. The DC allows input and
output of information at the same time that computation is
taking place. Channels A through H are available.

Each Channel may have up to ten tape units. A
printer, card reader and punch may be attached to each
Channel. All Channels may operate at the same time, but
only one input/output unit per Channel may be in operation
at anyone time.

The printer writes at the rate of 150 lines per
minute. The card reader reads cards at the rate of 250
cards per minute. The Punch can punch cards at the rate of
100 cards per minute. These are all extremely high speeds,
but they can not be compared to the speed attained by mag
netic tape. For this reason, tape is the most commonly
used input/output device on the 7090.

Tape may be operated on either high or low density
mode. In low density, 200 characters are packed to each
inch of tape. In high density, 556 characters to an inch.
Tape may be run at high or low speed. Using tape drive,
model 729-II, tape passes at the rate of 75 inches per
second and using tape drive, model 729-IV, it passes at
the rate of l12t inches per second. A normal tape is about
2400 feet long. In low density mode, about 900,000 machine
words may be put on a reel of tape. In high density mode,
about 2t million words will fit on a single reel. This
should effectively demonstrate the fantastic speeds at
tained in the input or output of information utilizing
tapes.

The following paragraphs are presented for the
benefit of those students who have little, or no, computer
background:

PLANNING: After an application to be processed is selected,
it must be thoroughly planned. Planning consists of the
following steps:

riil

1. Analysis of the application
2. Planning and sequencing steps to be used
J. Writing the instructions
4. Determining which areas of storage will be used

for various purposes

FLOW CHARTING: Before writing machine instructions, it is
usually advisable to express the necessary steps to be
taken in block diagram form. This is called flow charting.
A flow chart may be quite general or very detailed, de
pending on the needs of the programmer. Generally speak
ing, the larger and more complex the problem, the more
detailed the flow chart should become.

A flow chart attempts to cover all aspects
of a problem. Every problem contains a multitude of detail
which must be analyzed, organized and dealt with each in
its own turn, with nothing left out and nothing forgotten.
Tne flow chart is a way of accomplishing this purpose. It
is also useful in making modifications and corrections to
programs already written. It is advantageous to use a
standardized set of symbols so that others may more easily
interpret a programmers' flow chart. A few of the more
commonly used signs and forms are shown below.

Greater Less Card
Than Than Unegual Input/Output

> <
Processing

Block
Decision

Block

DO

(

Connector
(link to anoth.

section)

Tape Printed
Input/Output Output

0
Direction
of Flow

---1[>

Entries
and Exists

o
C __)

READING A PUNCHED CARD: It is not necessary for a fledge
ling programmer to be able to read punches on a card as
fluently as he reads English, but it is necessary for him
to understand the code used and to be able to decypher the
punche,s if it becomes necessary to do so. A punched card
may contain up to BO characters of information in a hori
zontal line and it has 12 vertical positions.

r,...l!2 PUNCH
u

4------1 r--- SPACE FOR 80 CHARACTERS -------....
114--+-11 PUNCH

..... --1- 0 PUNCH

14----1_1

The code is as follows:

, f-----+_ 2

14------1_3

1 1--------+ 4

14--------1_5

14---------+-6

1~~--------1_7

~----------~8
1~~----------_;_9

12 PUNCH 1 PUNCH together in a column = A, l2-2=B, l2-J=C,
l2-4=D, l2-5=E, l2-6=F, l2-7=G, l2-B=H, l2-9=I.

r~ PUNCH - 1 PUNCH together in a column = J, ll-2=K, ll-J=L,
;'\ ll-4=M, ll-5=N, ll-6=¢, (Slash through 0 indi-
\ cates it to be alphabetic), ll-7=P, ll-B=Q,

ll-9=R.

o PUNCH - 2 PUNCH together in a column = S, O-J=T, 0-4=u,
0-5=V, 0-6=W, 0-7=X, O-B=Y, 0-9=Z.

For numeric 1 through 9, punch only the number, omitting
all three of the top columns. Special characters (i.e.
comma, period) require special groupings of punches.

~OMPUT~R-PROGRAMMER INTERACTION: Very briefly, this is how
the sY5tem works: The programmer is assigned to do a job.
Re analyzes, flow charts, then programs it on special
programming work sheets. These work sheets go to keypunch,
where cards are punched from them. This is called the
source program. A special program called FAP (Fortran
Assembly Program) is loaded into the computer and the
source program cards are then fed into the computer. Trans
lation of the cards into language the machine will under
stand is accomplished automatically by the FAP program.

The new program is then ready for operational use and may be
left on cards or put on magnetic tape. When operational
data is ready for processing, the program is loaded into the
____ __ 1...._~ ___ '&"'1-_ -1_"&"_ ..: __ " _ ... _ .. _~ _ __ ~__ T .. T1- __ -1_ _
..,; UU1Vu" ..,t;::J,.- UC..1. u~'e "'~J.C ua. "cz. ..L.~ CL...L.~VW'1::U v ~.l.1. ..,c~·. nJ.~C~1. UC1 ILrd.

does enter, the program takes over and processes according
to the specifications of the job.

INSTRUCTIONS: Approximately one hundred instructions will
be covered in detail in this course. Many instructions will
not be covered since there is a limit to the size of such a
course, but the most important, or useful, ones are covered
and the others may be picked up from the reference manual
prepared by IBM, entitled, "Reference Manual - 7090 Data
Processing System."

COURSE FORMAT: Throughout the course, a small amount of in
formation will be imparted, followed by detailed examples
and problems covering the area of information just covered.
You are to work the problems in the space provided on the
problem page and then check your answers with the correct
answers given on the following page.

Pages xiii and xiv will give you an example of
how this is done. Work the problems on page xiii to see how
much you have retained from your reading of pages vii through
x. When you have finished, check your answers with the
correc t answers given on page xiv.

Each time you pick up the book, it is a good
policy to review the portion already covered before starting
on the new section. It is difficult to retain everything
you read from one learning session to the next and this re
view will help you keep the knowledge already gained.

xi

WORK AREA

Work the problems in this space, then check your answers
with the correct answers given on the next page.

PROBLEMS

Ao A sequence of instructions, stored internally by the
computer is called a ':'.' '----------------------

B. The three phases of computer processing are ,
and ---------

-------------------------_.

C. How many Channels are available to the 7090? __________ •

D. In low density, characters are packed to each
inch of tape. In high density, characters
are packed to an inch.

E. What is the length of a normal tape?

F. Define the following flow-charting symbols:

1. D 0

2. <> 0

G. Give the alphabetic representation of the following
punches in a card:

1. 12 PUNCH 4 8. 0 PUNCH 8
\(

,~

2. 0 PUNCH 4 9. 11 PUNCH 9 1"-

3. 11 PUNCH 4 /1,./\ 10. 12 PUNCH 1 ~.

/

4. 0 PUNCH 2 11. 11 PUNCH 2 i 1\
r -'l

5. 12 PUNCH 6 12. 0 PUNCH 9 ,..:.

6. 12 PUNCH 9 ~ 13. 12 PUNCH 2 G
14. 8 '"'.

7. 11 PUNCH 1 11 PUNCH .::J~

xiii

C~T ANSWERS

A. Program (see page vii)

B. Input, Computation and Outp!t (see page vii)

C. $ (see page viii)

D. 200 556 (see page viii)

E. 2400 feet (see page viii)

F. 1. Processing Blode (see page ix)

2. Decision Block (see page ix)

G. (see page ix)

1. D $. y

2. U 9. R

3. M 10. A

4. s il. K

5. F 12. Z

6. I 13. B

7. J :14. Q

If you have answered all of these questions correct~, turn
the page and start studying Lesson 1.

xiv

LESSON 1

DECTHAL, OCTAL AND BINARY NUMBERING SYSTEMS: The IBM 7090,
and nearly all other large scale computers, operate on the
BINARY numbering system. We are all familiar with the
DECI~~L system, which utilizes 10 digits as its base, but
many people are completely unfamiliar with the other two
systems mentioned below. To program for the 7090, it is
absolutely essential to become familiar with both BINARY
and OCTAL systems.

The BINARY system is a ~ two system, utilizing only
two digits, zero and one. This is most convenient for com
puters because an electrical current may be "on" or "off"
and a magnetic field may be "magnetized" or "not magne
tized". These are also ~ ~ types of actions. Since
computers use BINARY circuits, the internal arithmetic of
computers is BINARY in nature.

BINARY numbers tend to be extremely long (roughly 3.3
times longer than a DECI~~L number). For this reason, a
shorthand method is used, called the OCTAL system. OCTAL,
is a ~ eight numbering system, from zero through seven
(0-7). OCTAL numbers are used when working with the 7090,
but it must be remembered that the machine itself works in
the BINARY system.

The relationship between OCTAL and BINARY is so 5~-:::>i:

that conversion of numbers from one system to the other may
be accomplished quite easily. A very complete set of
tables has been designed to convert DEC~~L to OCTAL and
OCTAL to DECIMAL numbers, but it is not necessary to de
pend on these tables as it is fairly simple to make the
necessary conversion with pencil and paper. When working
with the computer and large volumes of numbers, the con
version tables become very useful.

On the following pages, each of these two new number
ing systems will be examined in detail including some simple
arithmetic problems. For the time being, we will deal with
whole numbers (integers) exclusively. Fractions and decimal
fractions will not be discussed at this time. Fraction con
version tables are available in the event that need for them
should arise.

1

Lesson 1, (cont'd)

BINARY NUMBERING SYSTEM: Counting in the BINARY system is
as follows:

DECDtAL BINARY DECIMAL BINARY

0 0 5 101
1 1 6 110
2 10 7 III
3 11 S 1000
4 100 9 1001

Since the BINARY system only contains 0 and 1, it is
necessary to take the same "move" at 2, that is taken at 10
in the DECIMAL system. This is to place a "1" to the left
and start again with "0". Therefore, a DECIMAL 2 is a
BINARY 10, 3=11 and then another shift must be made, adding
"1" to the left and starting again with "0".

For convenience, BINARY numbers are usually grouped in
threes (001 010 100). Consider the BINARY position to
the right as the "ones" position, then double the number
for each pOSition to the left (twos, fours, eights, etc.).
By using this approach, we can determine the DECIMAL
equivalent of any BINARY number.

EXAMPLE:
o 0 I

+
64

o 1 0

1321161S I
+ + 16 +

I 0 I

• t
4 + I =S5

Add together all numbers
that have BINARY "ones".
Disregard "0".

A DECIMAL "7" is written as BINARY III (4 + 2 + 1 = 7)
A DECDIAL "15" is written as BINARY 001 III (S + 4 + 2 + 1

= 15)

Rather than referring to the three systems by name, it
is more convenient to designate any number with the system
being used, as follows:

DECl}~ 11 will be written 1110

OCTAL 11 will be written lIS

BINARY 11 will be written 0112 , but it is obvious by
i~spection if a number is written in BINARY, as it usually
consists of a long series of zeros and ones.

2

Lesson 1, (cont'd)

lVORl(AREA

Work the problems in this space, then check your answers
with the correct answers given on the next page.

PROBLE~IS :

1. Convert 1710 to BINARY notation. to OOLI

2. Convert 1810 to BINARY notation. 10 OJ DI

3. Convert 2610 to BINARY notation. 7-1 C'..t cd

4. The l~ollowing BINARY figures convert to what
DECD1AL figures?

a. 000 001

b. 010 101

c. 001 011

d. 001 010

e. 010 100

f. 001 001 001

g. 001 010 100

11
.2-/ 1

iii
j ~ I

.I.>i::' 1

.... ~ i
;,; I

5. Convert 23310 to BINARY notation.

() 1/ I::;, 1 c C..tl

3

Lesson 1, (cont'd)

CORRECT ANSWERS

1. 010 001 (16 + 1 = 1710)

2. 010 010 (16 + 2 = 1810)

3. 011 010 (16 + 8 + 2 = 2610)

4. a. 1

b. 16 + 4 + 1 = 2110

c. 8 + 2 + 1 = 1110

d. 8 + 2 = 1010

e. 16 + 4 = 2010

f. 64 + 8 + 1 = 7310

g. 64 + 16 + 4 = 8410

5. 011 101 001 (128 + 64 + 32 + 8 + 1 = 23310)

As you can see from problem 5, when the number gets
fairly large, it becomes quite difficult to convert in this
manner. This is one of the reasons why OCTAL is used as an
intermediate step between DECIMAL and BINARY.

4

Lesson 1, (cont'd)

BINARY ARITHMETIC: Only a few rules need to be observed to
accomplish simple arithmetic in BINARY form.

ADDITION: Rule 1: Zero plus zero equals zero.
Zero plus one equals one.

EXAMPLE:

Rule 2:
Rule J: One plus one equals zero with a carry

of one to the left.

(column) sixteens eights fours twos ones

~~~~,~ 
(carry) 

+ {: ~51~) 
1 0 1 1 0 16 !04 + 

'., 
L 

2 = 2210) 
, . J 

In the "ones" column, Rule J applies. In the 
"twos" column, Rule J applies again, but we must further 
add the "carry", so the result is 1 with a "carry". The 
same thing happens in the "fours" column. In the "eights" 
column, Rule 2 applies, but again we must add the "carry", 
so now Rule J takes over and we end up with zero and a 
"carry". In the "sixteens" column, Rule 1 applies, then 
add the "carry", which winds it up with a 1. 

SUBTRACTION: Rule 1: Zero minus zero equals zero. 
One minus one equals zero. 
One minus zero equals one. 

EXAMPLE: 

Rule 2: 
Rule J: 
Rule 4: Zero minus one equals one, with one 

borrowed from the left. 

Subtract 1510 - 710 

(column) sixteens eights fours twos ones 
tborrow~) 

0 1 1 1 1 = 1510 
0 0 1 1 1 = 710) 

0 1 0 0 0 (= 8 10 ) 

Applying the rules above, in the "ones" column, 
Rule 2 applies. Also in the "twos" and "fours" columns. 
In the "eights" column, Rule J applies. In the "sixteens" 
column, Rule 1 applies. 

Similar, but somewhat different rules are used 
for multiplication and division. They are nothing more 
than sequences of addition and subtraction, extremely cum
bersome with paper and pencil, but very rapidly accom
plished with the high speeds attained by modern computers. 
This page demonstrates the way arithmetic is actually 
accomplished within the computer. 

5 



Lesson 1, (cont'd) 

EXAMPLES: 
fours twos ones 

1. Add: (carries) 

~5~ 
1 1 o (4 + 2 = 6) 

In the "ones" column, Rule 3 applies. In the "twos" 
column, two steps must be taken; first, 1 + 1 = 0 with a 
carry; second, the 0 (resulting from the first step) + 1 
(from the previous carry) = 1. In the "fours" column, two 
steps must be taken; first, 0 + 0 = 0, second, this 0 + 1 
(from the previous carry) = 1. Each time there is a "carry", 
the second step must be taken. 

fours twos ones 
(carries) 

1 0 0 (4) 
0 1 1 (3) 

1 1 1 
(4 + 2 + 1 = 7) 

eights fours twos ones 

r-~~i 
(carries) 

1 ~~~ 0 

1 1 0 1 
(8 + 4 + 1 = 13) 

4. Subtract: 1210 - 410 eights fours twos ones 
(borrows) 

1 1 0 0 (12) 
0 1 0 0 (4) 
1 0 0 0 ( = 8) 

5. Subtract: 1210 - 710 eights fours twos ones 

~~~ 
(borrows)

~12)
7)

0 1 0 1 (4 + 1 = 5)
In the "ones" column, Hule 4 applies, but since there is

no "1" to borrow in the "twos" column, we must get it from
the "fours" column, changing the 1 to a 0 in the "fours" and
the 0 to a 1 in the "twos". In the "twos" column, Rule 2
applies. In the "fours ll column, 0-1 causes a "borrow" from
the "eights" column, leaving it a 0, which results in 0 for
the final subtraction.

6

Lesson 1, (conttd)

,VORl(AREA

Work the problems in this space, then check your answers
with the correct answers given on the next page.

PROBLEMS

6.

8.

9.

10.

11-

Add:

+

Result:

Add:

+

Result:

Add:

+
Result:

Subtract:

Result:

Subtract:

Result:

Subtract:

Result:

sixteens eights fours twos

o
o
,
.~ ,

1
o
!

I

o
1

o
1

sixteens eights fours twos

1
o

1
o

o
1

o
1

sixteens eights fours twos

ones
(carries)

1 ~~~ o

ones
(carries)

1 (25)
o (6)

ones
(carries)

1 0 1 0 (10)
______ -,-__ 0-,-__ ~1~ __ ~1~----1 (7)

~") .) ~ \

sixteens ei~hts fours twos ones

f (borrows)
0 ;a: '-"0 0 1 (9)
0 0 1 1 0 (6)

i

sixteens ei~hts fours twos ones

~. {O
(borrows)

1 0 1 ~25)
0 0 1 1 0 6)
., :: .. ! j v ,,-,.;

sixteens ei~hts fours twos ones

Ci -to
(borrows)

:.l: 1 0 ~10)
0 1 1 1 7)

t 1 r .1

7

Lesson 1, (cont'd)

CORRECT ANSWERS

6. sixteens eights fours twos ones
(carries)

0 1 0 0 1 ~9)
+ 0 0 1 1 0 6)

Result: 0 1 1 1 1 (8 + 4 + 2 + 1 = IS)

7. sixteens eights fours twos ones
(carries)

1 1 0 0 1 ~2S)
+ 0 0 1 1 0 6)

Result: 1 1 1 1 1
(16 + 8 + 4 + 2 + 1 = 31)

8 0 sixteens eights fours twos ones

1~ (fl~ (curries)

t l=~ 1=~'~ 0 l10)
+ 1 7)

Result: 1 0 0 0 1 16 + 1 = 17)

9. sixteens eights fours twos ones
1 ~borrows)

0 ~~~/~ 1 9)
0 0 (6)

Result: 0 0 0 1 1 (2 + 1 = 3)

10. sixteens ei~ts fours twos ones
1 (borrows)

1 <O)-1~~ 1 (2S)
0 0 (6)

Result: 1 o 1 1 (16 + 2 + 1 = 19)

11. sixteens eights fours twos ones
~1 /1 (borrows)

~-'<j; ~ ~ ~~)
Result: 0 0 --1t 1 (2 + 1 = 3)

8

Lesson 1, (cont'd)

OCTAL NillIBERING SYSTEN: This is a base 8 system, using the
digits rrom u through 1. Counting in the OCTAL system is as
follows (notice that "8" and "9" are never used):

DECD-lAL OCTAL DECIl-'lAL OCTAL
0 0 8 10
1 1 9 11
2 2 10 12
3 3 11 13
4 4 12 14
5 5 13 15
6 6 14 16
7 7 15 17

The relationship between OCTAL and BINARY is so simple
that conversion may be made instantaneously. Consider every
BINARY number in groups of threes (001010101 = 001 010 101).
Now, each grouping of three BINARY digits is identified by
"ones," "twos," and "fours" positions and these are used to
convert to OCTAL, as follows:

fours twos ones fours twos ones fours twos ones
0 0 1 0 1 01' 1 0 1
" I' " " V

I'
V v

OCTAL 1 2 5

EXAMPLES:

1. Binary: 011 011 010 III
'-' V V V

Octal: 3 3 2 7

2. Binary: 10 010 If the Binary digits do not
'-' V come out in groups of "three",

Octal: 2 2 add zeros to the left until
the final group also contains
three digits.

3. Binary: 0 100 010 110
'-' V V V

Octal: 0 4 2 6

9

Lesson 1, (cont'd)

CONVERTING FROM OCTAL TO DECIMAL: This is usually accom
plished by looking up the number in a conversion table (see
7090 Reference Manual, Appendix B and C). It may be accom
plished manually in the following manner:

Multiply each Octal position in turn
with the high-order (left-most) position.
next number to the result, until the last
(this one is not to be multiplied).

EXAMPLE 1: xJrs

+_3_
27

x 8
216
+ 2
218
x 8

1744
+ 7

by 8, starting
Then, add the

digit is reached

1751 10 Result (33 2 78 = 175110)

EXAHPLE 2:

xJWs
+ 2
J4

x 8
272
+
278 10 Result (426 8 = 27810)

10

Lesson 1, (cont'd)

CONVERTING FROM DECIMAL TO OCTAL: This procedure is also
generally accomplished by checking the conversion table,
but it may be done manually in the following manner:

Successively divide the decimal figure by 8, until no
further division is possible. The Octal result will be the
last quotient figure, followed by each of the remainders,
starting from the last and finishing with the first.

EXA~iPLE 1:

218 27 J
1751 ~ lU27)
16 16 24
15 58 ~J
~ 22.------

71 2
64 .----------

7 Result: 175110 = 33278

EXAMflLE 2:

EXAHPLE 3: 1527310
1909 238 29 3)

~ 15273 ~ 1909 tl2J8 .!U29
8 16 16 24 -- --72 30 78 5
E.. 24 E..~

73 69 _____ 6
'E 64~
14·~-------------5

Result: 1527310 = 356518

11

Lesson 1, (cont'd)

With what we have learned to this point, it becomes
obvious that it is not necessary to add or subtract in
BINARY form. Simply convert to OCTAL and from OCTAL to
DECIMAL before doing the arithmetic operation.

EXAMPLES:

1. BINARY

010 III
+ 110 010

?

2. BINARY

110 010
010 III

1

3. BINARY

001 010
+ 001 001

?

CHANGE TO OCTAL CHANGE TO DECIMAL

27 62 2 78
+ 6 28 xlt x~ 2 310 16 48

? 5 010 + + 2

CHANGE TO OCTAL

6 28
2 78

?

CHANGE TO OCTAL

100 1 2 48
101 + 1 1 58

?

23 50 7 310

CHANGE TO DECIMAL
5 010
2 310
2 710 Result

CHANGE TO DECIMAL

124 x 115
x

Result

x ~J !J + 2 + 8 410 10 9 +7 710 x 8 x 8
80 72 1 6 110

+ 4 +....2. Result 84 77

To set up a BINARY number (starting with a DECIMAL
number), convert in the other direction.

4. 95610 = 12

DECIMAL CHANGE TO OCTAL

956 10 = 1674 8

'{RITE TIlE OCTAL OUT IN BINARY FORM

= 001 110 III 100
'-' '-' '-' '-'

1 6 7 4
J.!2. 14

~ 956 §.Jll9 1)
8 ~ ~
15 39 8

8 .ll~6
76~7
E.

4

12

Lesson 1, (cont'd)

PROBLEMS :UORK AREA
Work the problems in this

12. space, then check your an565 10 = ? 8

Result:

13. 5 6 58 =
Result:

124210

Result:

15. 010 101

Result:

16. 13510 =
Result:

17. 135 8 =
Result:

18. III 100

Result:

19. Result

Result:

~
?10

= ?
2

I
110 = ?

"10

? 8

1 10

001 = ? 8

of' problem 18

c=J

) I

=1 10

13

swers with the correct an
swers given on the next p~~.

'1 ','-

Lesson 1, (cont'd)

CORRECT ANSWERS

12. 10658 70 8

81 ~) ~ ~
56 64

5" "6 ...
13. 37310

14. 010 011 011 010 (23328)

14

LESSON 2

MACHINE WORDS: The Memory, or Storage Unit, of the 7090
contains space for 32,768 machine words. The term word,
refers to a unit of information. It may be an instruction
to the machine or a piece of ~ which will be processed
by the machine. The 7090 is a fixed word length machine.
This means that every machine word is exactly the same size
as every other word. The words are numbered from 00000
through 32,767 and each word may be called upon by the pro
grammer. This is termed addressing a word. The word it
self is 36 positions (binary bits) in length and may be
shown symbollically in the following manner:

q I
t ' I' 2' 3' 4' 5' 6'7'8' 9 '10'11'12'13'14'15'16'17'18'19'20'21222324252627282930'3132'33'34''35

SIGN
(+ OR-)

A "zero" in the sign position indicates "+". A "one" indi
cates "_". This leaves 35 pos-i tions, or Binary bits, for
the word itselfQ

WORK AREA

Work the problems in this space, then check your answers
with the correct answers given on the next page.

PROBLEMS:

20. Convert 32,76710 to Octal.

21. A machine word is always

22. Each word may be

/' "

Re suI t: !-I ~~.r_-' __ · ""--->

posi tions in length.

by the programmer.

23. Convert the result of problem 20 to Binarl·

Result: \ '\ \ I , \ " \

24. A plus sign (+) is always designated by a
-'"

Binary •

25. A minus sign (-) is always designated by a

Binary •

26. ~lachine words are numbered from through -",,0';"-..;.'~ __ •

27. A word may be either an

a piece of

15

to the 7090, or

Lesson 2, (cont'd)

CORRECT ANSWERS

20. 777778

21. 36

22. Addressed

23. III III III III III

24. 0

25. 1

26. 00000 through 32,767

27. instruction data

If any of your answers were incorrect, please turn
back to page 15 and read it over again.

16

Lesson 2, (cont'd)

REGISTERS: There are several registers in the Central Pro
cessing Unit (CPU) of the 7090, which are used for specific
processing actions. A brief description of each register
will be given here.

1. AC (Accumulator) and MQ (Multiplier-Quotient) Registers:

All arithmetic operations are handled through these two
registers. A great deal more will be said about them later.
Symbolically represented, they look like this:

AC

FIRST OVERFLOW POSITION
SECOND OVERFLOW POSITION

SIGN (this is a 38 bit regis ter)

MQ

(36 bit register)

These two registers may be considered to be working to
gether, with the MQ as the right-most extension of the AC.

2. SI (Sense Indicator Register):

It is possible to manipulate individual ~ in this
register, using them as switches.

, ,

I 2

(36 bit register)

3. XR (Index Registers):

, ,

3536

35

There are three Index Registers, which are referred to
as XR 1, XR 2 and XR 4. Index Registers are extremely use
ful to count or decrement sequences of numbers and to move
the program to subroutines and back to the main program ~m
subroutines.

. , t I

I 2 1415

(15 bit registers)

All of the registers will be discussed in detail as
they become useful in programming. There are other regis
ters which are not mentioned here because, although they
are necessary for machine processing, they are not appli
cable to programmer manipulation. These registers are the
Storage Register and Instruction Register.

17

Lesson 2, (cont1d)

AC AND MQ REGISTERS: All arithmetic operations are handled
through these two registers.

Addition and Subtraction: These operations always take
place in the AC and since the result may be larger than
each of the figures being added or subtracted, positions
liP" and "Q" are provided for any overflow that may occur.

One of the numbers (to be added
or subtracted) is moved into the AC, going into the right
most portion of the register. Any unused portions would be
filled with zeros at this point in time.

EXAMPLE: Move 4268

~oIOIO,", ,
SQPI23

(+)

into the AC

.0, I ,0, ° ,0,1,0, I, 1,01
272829303132333435
'-4" y Y

Then the add (or subtract) in-
struction is given, addressing the storage position where
the other number is located. This will add (or subtract)
into the number already stored in the AC. The result then
may be moved from the AC to a specific location in storage,
and further processing may continue.

Multiplication and Division: In these operations, the MQ
is considered to be attached to the AC, to form a 72 bit
register (not counting the sign positions). In multiplica
tion, the most significant-half of the product will be in
the AC and the least significant half in the MQ. In divi
sion, the remainder will be in the AC, while the quotient
will be in the MQ (including the sign)_ These operations
will be discussed in much more detail later in the course.

Plus zero and Minus zero: It is quite often necessary to
compare the number in the AC with a number in storage to
determine whether the number in the AC is less than (~)J
equal to (=) or greater than (~) the number in storage_
In these comparisdns, it is important to understand that
the computer considers +0 as greater than -0.

18

Lesson 2, (conttd)

\WR!(AREA

Work the pr~blems in this space, then check your answers
with the correct answers given on the next page.

PROBLEMS:

28. Most of the registers used in the 7090, are
positions in length, containing one position for the

and additional positions for the
machine word.

29. Which register has two additional positions? __________ __

30. These two additional positions are used to take care of
in and operations.

31. How many positions does an Index Register have?

32. The three Index Registers are called
and •

33. Identify the following signs:

a.

b.

34. The
subtraction.

Register must be used for addition or

35. In multiplication, the most significant half of the
product will be in the Register.

36. In division, the quotient will be in the ____ Register.

37. Add the following figures, and show the result in the
AC. Also show the sign:

42710
37610 24410

= ? -:
. ""'

~ II"
S Q P 1 2

19

,-. '-'I ~ '\ II t ~ I \ I I
' , , , , I ' • ...; I''', I ;, , .J , v, i ,,,"' , ! I "

20212223242526272829303132333435
'-.-/ "-../ "-../ "'-/

Lesson 2, (cont'd)

CORRECT ANSWERS

28. 36 sign 35

29. Accumulator (AC)

30. overflow addition subtraction

31. 15

32. XR1 XR2 XR4

33. a. Greater than

b. Less than

34. AC

35. AC

36. MQ

37. 4 27 10
37610
24410

104710 = 202 7 8

~01010,"''''1-, ---------------,-~ 0,1,0,0,0,0,0,1 ,0,1 , I, II
I 2 242526272829303132333435

'--'" '--'" '--'" ~

~----- The sign is plus (+) unless indicated otherwise.

20

Lesson 2, (cont'd)

FORMAT OF INSTRUCTIONS: An instruction ~ consists of 35
Binary ~ a~d a sign. It is divided into parts, each of
which is named and performs a specific function. There are
five major groupings of instructions which will be referred
to as Type A B, C, D and E. There are also three formats
used by the ~i (discussed on page viii), which will be shown
at a later time.

TYPE A INSTRUCTION FORMAT

Icgbd DECREMENT I TAG I ADDRESS (Y) I
S,I,2 3 1718 2021 35

OPe CODE (Operation Code): This is always a 3 digit
found at the beginning of the word, as shown above.
tells the machine what operation is to be performed.

code
It

DECREMENT: This field is used for a group of instructions
which test or change the contents of an Index Register.
(To be discussed in detail later in the course.)

TAG: These 3 digits are used to identify the Index Register
to be used (if any). (These will be discussed in detail
later in the course.)

001 = XRl, 010 = XR2, 100 = XR4

ADDRESS: This is the location in storage of the data to be
used with the instruction a This will be referred to as c(Y)
(contents of Y - "Y" being the storage address where the
data may be found) when discussing the various instructions.

TYPE B INSTRUCTION FORMAT

OP CODE ADDRESS (Y)

S,I 35
OPe CODE: In this OV. Code includes the

This deals with address
modification, as do the Index Registers. This will be dis
cussed in detail later in the course. If "one" bits are in
both positions 12 and 13, this is known as a flag for in
direct addressing.

TYPE C INSTRUCTION FORMAT

I OP CODE I COUNT I TAG I
S,I 910 1718 -2021

OPe CODE: ln this type instruction,
sign and the first 9 positions.

ADDRESS (Y) I
35

Ope Code includes the

COUNT: This area contains ~ which are tested during the
execution of an instruction. More detail will be furnished
as instructions of this type are used.

21

Lesson 2, (cont'd)

TYPE D INSTRUCTION FO~~T

S, I II 18
~: The Sense Indicator (SI)
dress and tag fields as a ~.
in the course.

MASK OR CONTROL

35
instructions use the ad
More detail on this later

TYPE E INSTRUCTION FORMAT

S,I II 18- 20 24 35
OPe CODE: In this type, Ope Code includes not only posi
tions S and 1-11, but also positions 24-35. It is most im
portant when using Type E instructions, not to place any
thing into what is normally the address portion, as this
would have the effect of changing the Ope Code.

All of these instruction formats seem very confusing, but in
reality a little further study will help to clarify them to
a certain extent. Actual use of the various instructions
will do more than anything else to straighten them out in
the mind of the student. As the function of each instruc
tion becomes clear, the various parts will also become clear
as to use and function.

EXCEPTIONS: In one Type A instruction, positions 3-35 are
not used. In one Type C instruction, the grouping of the
bits is slightly different from that shown in the format.

The Ope Code always contains a sign (+ or -) and the binary
code which tells the machine which operation it is to per
form. For example: ADD, would he +00100000000 in binary
form. It is more convenient to write this in octal: +0400.
TRANSFER ON INDEX LOW would be: - 11000000000. In Octal:
-3000.

Type A instructions (in Octal) always have a single
non-zero digit, followed by three zeros. These zeros may 00
covered up by the decrement portion of the instruction with
out losing the instruction. Since the first Octal digit of
the Ope Code is represented by only two Binary digits,
Type A can only include 1000, 2000 and 3000 (also may be
-1000, -2000, -3000). All other Ope Codes start with a zero
after the Sign position and these are never Type A instruc
tions.

Type B instructions may be distinguished by the fact
that no part of the instruction is used for testing or
control.

Type C has a "test" area in positions 10-17. The Octal
representations of these instructions must end in 4, so that
the last two digits will be zeros which may be overlapped
by the Count field.

Type D has a "mask", or "control", area in the entire
second half of the word, from 18 through 35.

Type E is easily distinguished from the others as the
Ope Code is jn two sep:l.rate p:l.rts of the 'WOrd (S, 1-11 and 24-35).

22

Lesson 2, (cont'd)

Not only does the 7090 have several different instruction
formats, but it also has well over 150 different instruc
tions. It is not necessary to memorize all of the instruc
tions. The IBM 7090 Reference Manual lists all of them,
including their Octal codes. About one-third of the in
structions are basic and most commonly used. The greatest
stress will be placed on th~se instructions throughout this
course.

One final point before looking at some of the actual in
structions. Although each ~ of instruction contains
several parts, they are not all used in every instruction.
For example, the Tag portion may be used if an Index Regis
ter is involved. Otherwise it is disregarded. In most of
the instructions, the Address {contents of storage location
Y} is needed so that the computer will know where to go to
get the data that is to be processed and all instructions
must have an Operation~, so that the computer will know
what operation to carry out.

Example of an instruction as it would look in storage:

ADD 2 110

ADD = +0400

Example 2:
SUB 57910

SUB = +0402

This means, "Add the contents of storage
location 2 110. 11

01

~ '--" __ 01 1213 18 2021

+ 0 4 Q 0
(Type B Instruction)

This means, "Subtract the contents of
storage location 57910 ."

OP CODE IA TAG

+ 0 4 2

(Type B. Instruction)

23

ADDRESS(Y)

001000011

35
'-" '-" '-" .

I 0 3

Lesson 2, (cont'd)

Additional Examples: The meaning of these instructions is
not important at this time.

3. Instruct~on: XCA (+0131)

S

~0,0,0,0, ~,~,~~:~,o, 110"':-I-, ___ ,_, __ ,_M_~_~_K_, ------, ,0 I
o '-./ -...- 11 12

+ 0 I 3 1
35

(TYPE D INSTRUCTION)

4. Instruction: RND (+0760)

~o, 0, I '~~" ~~I~ ~, ° ,0,01 0, , ___ ,_,_, _, _,-+_, _,_,_0_, P_, _~_~_D_~_,_~ ,0 I
-J..., -...- '-" 0 1 24 35

+ 0 7 6 0
(TYPE E INSTRUCTION)

5. Instruction: CRQ (-0154)

s
OP CODE COUNT TAG ADDRESS <Y)

0001 101 100 0

0 '-" -...- ~ 1718 2021 35

- 0 I 5 4

(TYPE C INSTRUCTION)

6. Instruction: MPY ,(+0200) Storage location 7058

7. Instruction: TIX (+2000) Storage location 1178

s OP

~I,olo,.,
123 -...-

+2

DECREMENT TAG

, I , I , I I I "I
1718 2021

ADDRESS tY)

, ,., 0, 0, 1 , 0,0, I, I , I , I I
'-./ -...- 3~

I , 7
(TYPE A INSTRUCTION)

24

Lesson 2, (cont'd)

lo[QRK AREA

Work the problems in this space, then check your answers
with the correct answers given on the next page.

PROBLEr.fS: Write the instructions and addresses into the
words below.

38. Instruction: HPR (+04208) Type D instruction.

S
~OP CODE MASK

~)~~ ':=') I :;,)VVI I
I 1112 35

39. Instruction: HTR (+00008) Storage location 21510
"

Type B. •
121510 = ~81 s "-, ' [1 OP TAG ADDRESS J ~

:1 1 1 D1! 0 1 a" \ 1
II 18-2021 35

40. (-06258) '" Instruction: STL Storage location 5710 Type B.

S
1

5710 = ,18 1 .' ADDRESS

" 18-2021 35

41. Instruction: CLA (+0500S) Storage location 210 Type B.

1
210 =~1sl S

~
OP TAG ADDRESS

'"
' , ,~ -" I I - ,,-,! ,", I (' 1 " .) " '... . " .

1 II 18- 2021 35

42. Instruction: NOP (+0761S) Type D instruction.

S

~
OP MASK

J 0 ' , 1 ~, ~ 1:1'111
I 1112 35

43. Instruction: TXH (+3000S) Storage location 910
Type A.

S 910 :;OJ 1 sl [ftp DECR TAG ADDRESS

I I ~I "1\ ~ \ I ' 11
123 1718-2021 35

25

Lesson 2, (cont'd)

CORRECT ANSWERS

38.

S
fOl OP

LT-l
j

00,1,0,0,0,1,0,0.0,01

o '-" '-'" -.J '
+ ° 4 2 0

39. 21510 = 3278

S

~o,o,o,o,~,~,o,o,o,o,ol
'-.!..." '-../ '-" 0'

+ 0 ° 0 0

21

ADDRESS
01 10101 , ,

'--'" '--'"
3 2

I ,II
35

'--'"
7

40. 5710 = 718

41.

42.

S
ril OP

~o,o,', 1,0,0,1,0,' ,0, II
~ "-" '-" 0 1

- ° 625

210 = 28

o '-./ '-./ 0 I

+ ° 7 6 I

s

21

21

ADDRESS

,1,1,1,0,0, 'I
"-" 0 5

ADDRESS

7 I

,0,1,01

35-
2

~ro~P-r ________________________ .-______ A_D_D_R_E_S_S ______ ~

~I,II ,0,0,1,0,0,1\

'" I ? 21 35
'--' '--'" '--'" + 3 I I

26

LESSON 3
FIXED POINT NUMBERS: When it is easy to determine where a
decimal point is to be placed in an arithmetic operation,
fixed point instructions are used. A fixed point number
contains a ~ and 35 bit positions containing the number

;::"8:£· ~Ol'·!!!' I """"""""""" ,,~ql,o,ol
+ ~O 20 3233~5

4
When fixed point operations are used, it is up to the pro-
grammer to decide where the decimal point is to be placed.
The point that separates the whole number from the fraction
is called a binary point.

, , , , , • , , , , ' , , ,~, 0,1,0,0,0, 1,01

20 ~2r~5
BINARY POINT

~t is called fixed point because the programmer determines
the positioning of the point, as opposed to floating point,
in which the point is automatically maintained by the com-
puter.

BASIC FIXED POINT OPERATIONS:
INSTRUCTION: CLA (Clear and ADD) Octal code: +0500
FORMAT: (Type B)

lop CODE IIA~TAGI Y
S,I I! 12-13 18-2021 35

Description: The c(Y) replace the c(AC). This means, "The
contents of storage location, specified as Y, replace the
contents of the Accumulator." Always specify the address
of the piece of data, or information, that is to be moved.
This tells the computer to move whatever it finds at that
address. Positions P and Q are set to zero and the c(Y)
remain unchanged.

INSTRUCTION: ADD (Add) Octal code: +0400
FORMAT: (Type B)

I OPCODE IIA Wff$MTAGI Y
S,I 1112-13 18-2021 35

Description: The c(Y) are added algebraically to the c(AC)
and the sum is placed in the AC. The c(Y) remain unchanged.
Numbers of the same magnitude, but with different signs
(+2, -2; +407, -407) will result in zero with the original
sign of the AC.

Examples of algebraic addition:

SUM:

+5
.:tL
+8

-5
-3

-8

+5
=L
+2

+3
.::.!L
-2

27

+5 (Y)
,,::.2..JAC)

-0

-5 (Y)
.±.L(AC)

+0

Lesson 3, (conttd)

Example 1: CLA 25 (This means, "Clear the contents of the
AC and place the contents of storage word 25
into the AC.") --

If the c(Y) (storage location 25) = 25738 , after
execution of the instruction the AC would look

101 like this:

~ololo ~ , ~ ° I ° I ° I I I I ° I 1\
Q PI' . Z4326~1'282930'313233'M35

+ Z 5 7 3

+

Now that we have a number in the AC, we can add
another number to it. ADD 27 (This means, "Take
the contents of the word at 27 and add it to the
contents of the AC."r-

If the c(Y) (storage location 27) = 128 , after
execution of the instruction the AC would look
like this:

128 = + 1010
141310 = 26058

~o'o'o,"'~I---------------'~o; 1,0, 1,1,0,0,0,0,1,0, II
Q P I 242526272829303132333435

+ '2 '6 0 5"'
Example 2: Storage Location Data in Storage

Step 1:
Step 2:

15 2578
22 1738

Add the two numbers together.

Move c(15) into the AC with the CLA instruction.
Add c(22) to it. Sum of the two numbers will
be in the AC.

To get the sum (with pencil and paper) that will
finally be in the AC, we must convert:

2578 = 17510
1738 = 12 310

= 29810 = 45 28

(Change the Octal to
Decimal - add -
then change the sum
back to Octal)

INSTRUCTIONS: CLA 15
ADD 22

Contents of the AC after execution:

~OIOIO, ~
Q P I

+

28

.,0,1,0,0,1,0,1,0,1,01
27 2829303132333435

'-../ '-../ '-../

452

Lesson 3, (conttd)

INSTRUCTION: SUB (Subtract) Octal code: +0402
FORMAT: (Type B)

I OP CODE I IA _TAG I y i
S,I 1112-13 18-2021 35

Description: The c(Y) are algebraically subtracted from the
c(AC). The difference replaces the c(AC). The c(Y) remain
unchanged.

Examples of algebraic subtraction:

-5 +5 +5 +3 -5 -3 +3 -3
.±..L.::L.:t.l....±2...-.::L=..L.::L.:tL

Diff:-8 +8 +2 -2 -2 +2 +8 -8

-2
-2
-0

INSTRUCTION: MPY (Multiply) Octal code: +0200
FORMAT: (Type B) lop CODE I IA IW$&TAG I y

+2
+2

S,I 1112-13 18- 2021 35

Description: The c{MQ) are multiplied algebraically by the
c(Y). The product replaces the c(AC and MQ) with the most
significant 35 bits in the AC and the least significant 35
bits in the MQ. Overflow is not possible and the product
is positioned to the right with enough leading zeros to
completely fill both registers.

Sign Control for algebraic Multiplication
Sign of multiplicand + - + -
Sign of multiplier + +
Sign of product + - - +

INSTRUCTION: DVH (Divide or Halt) Octal code: +0220
FORMAT: (Type B)

lop CODE IIA _TAGI y
S,I I 112-13 18-2021 35

Description: The c(AC-MQ) are divided algebraically by the
c(Y). The quotient replaces the c(MQ) and the remainder re
places the c(AC). If division can not take place (ex: di
visor of zero), the computer halts and a "divide-check"
indicator turns on. The dividend must be placed into the
AC-MQ prior to giving the DIVIDE instruction. If it o.c
cupies only one register, the programmer must clear the
other, by placing zeros into it.

Sign Control for algebraic Division
Sign of divisor + + - -
Sign of dividend + - + -
Sign of quotient + - - +
Sign of remainder + - + -

INSTRUCTION: STO (store) Octal code: +0601
FORMAT: (Type B)

I OP CODE II A Wff$/4TAG I y
S,I 1112-13 18-2021 35

Description: The c(AC) replace the c(Y). The sign and bits
1-35 of the AC move into the storage location specified by
(Y). The c(AC) remain unchanged.

29

Lesson 3, (cont'd)

INSTRUCTION: LDQ (Load MQ Register) Octal code: +0560
FOro-lAT: (Type B)

I OP CODE I lA _TAG I y

S. I 1112-13 18- 2021 35
Descri tion: The c(Y) replace the c(MQ). The bits at the

move into the MQ. The c(Y) remain unchanged.

INSTRUCTION: STQ (Store from MQ Register) Octal code:-0600
FORMAT: (Type B)

lop CODE IlA_TAGI y
S. I 1112-13 18-2021 35

Description: The c(MQ) replace the c(Y). The bits in the
MQ move into the storage location specified by (Y). The
c(MQ) remain unchanged.

INSTRUCTION: HTR (Halt or Transfer) Octal code: +0000
FORMAT: (Type B)

I OP CODE IlA _ TAGI y

S,I 1112-13 18- 2021 35

Description: When this instruction is executed, the com
puter halts. If the operator presses the START button, the
program will continue by going to the (Y) address for its
next instruction. If the address given in (Y) is the same
as that given for the HALT instruction, the computer will
simply do another program stop.

REVIEW AND EXPLANATION OF THE NINE INSTRUCTIONS COVERED:

CLA - used to move data into the AC prior to an operation
(i. e. add)

ADD - used to add the c(Y) address to the c(AC).
SUB - used to subtract the c(Y) address from the c(AC).
MPY - used to multiply, but first the multiplicand must be

placed into the MQ. This is done with the LDQ in
struction.

DVH - used to divide, but first the dividend must be placed
into the AC-MQ. This is also done with the LDQ in
struction. If we wish to move the quotient back to a
storage address, the STQ instruction is used.

STO - used to move the c(AC) to a storage address. This
would be used after add or subtract - or if the re
mainder of a division problem is to be saved. Also
if data is to be moved from one storage location to
another.

HTR - used to stop the program.

Another way to remember this is:
CLA moves data into the AC from storage. ~~~C
STO moves data into storage from the AC. AC -. Y
LDQ moves data into the MQ from storage. Y ~ MQ
STQ moves data into storage from the NQ. MQ.... Y

The other five instructions are: add, subtract, multiply,
divide and halt. These are self explanatory.

30

Lesson 3, (conttd)

EXAMPLES PROGRAM RE~IARKS

1. ADD Step ,
CLA A Hove A into the AC .L.

A + B 2. ADD B Add B to A
and place sum 3. STO 50 Store "sum" into loco 50
into storage 4. HTR Halt
at pOSe 50

20 Place the 1. CLA A Move A into AC
di:f:f. o:f A-B 2. SUB B Subtract B :from A
into storage 3. STO 150 Store "dif:ference" into 150
loco 150 4. HTR Halt

3. Place the 1. LDQ A Move A into the MQ
prod. o:f AxB 2. MPY B l-lul tiply A x B
into 10c.520 3. STO 520 Store "product" into 520

4. HTR Halt

4" Place the 1. CLA 0 Place zeros in AC prior to Div.
quotient o:f 2. LDQ A Move dividend into AC-MQ
A+B into loco 3. DVH B Divide A . B
600. Place 4. STQ 600 Store "quotient" into 600
"remainder 5. STO 20 Store "remainder" into 20
into loco 20 6. HTR Halt

Note: When the dividend is placed in the MQ (Step 2), the
sign o:f the AC should be made to agree with the sign o:f the
MQ to assure that algebraic division will take place if the
dividend is negative. This means that a Long Left Shift o:f
zero should be placed between Steps 2 and 3. This has been
omitted here and in pages 34, 36 and 38. Since the Long
Le:ft Shi:ft instruction has not yet been studied, it will be
presumed that the dividends are positive numbers.

INSTRUCTION: TZE {Trans:fer on Zero} Octal code: +0100
FORMAT: (Type B) I OP CODE IIA _TAGI y

S.I 1112·13 18-2021 35

Description: I:f the c(AC) is zero, the next instruction is
taken :from the location speci:fied by (Y). I:f the c(AC) is
not zero, program will take the next instructioninsequence.

INSTRUCTION: TOV {Transfer on Overflow} Octal code: +0140

FORMAT: (Type B) I I ~ I
. OP CODE .IA _TAG. Y

S, I 1112-13 18-2021 35
Description: In addition and subtraction, if an over:flow oc
curs, the AC over:flow indicator is turned on. This instruc
tion tests the indicator. If it is "on", it is turned "off"
and the next instruction is taken :from the location speci
:fied by (Y). If the indicator is "of:f", the program will
take the next instruction in sequence.

Do not continue beyond page 36 until the use of these in
structions is completely clear to you. If necessary, go
back to page 27 and read through the lesson again.

31

Lesson J, (cont'd)

FORMAT FOR WRITING A PROGRAM: In the problems and examples
to follow, coding will be accomplished under the following
headings:

~LO--C----O-P-------A-D-D-RE--S-S----------RE--MARK----s~1

LOC - refers to the storage location of the instruction
or data. Instead of referring to "steps", we will
assign storage locations to each instruction step.

OP - refers to the operation code.

ADDRESS - refers to the location containing the information
or instruction with which the operation is con
cerned.

REMARKS - refers to a brief explanatory note of what is
being accomplished. This is a very handy device
for the programmer to use as it gives him a clear
picture of what he is doing at all times.

EXAMPLES:

1. Start the program
in loco 100 and
the "if zero" part
of the program in
loco 400. A is in
loco 50 and B is
in loc. 60.

Place the sum of
A + B into loco
200. If sum is
zero, also place
the sum into loco
210.

2. Start program in
loco 100. A is
in loco 50, B is
in loco 60.

Place the dif
ference of A-B
into loco 200.
If overflow oc
curs, go to loco
150, place A in
to loco 400 and
B into loco 450,
then stop the
prog.

LOC
100
101
102
10J

104

400
401

LOC
100
101
102

10J

104

150
151

152
153
154

OP
CLA
ADD
STO
TZE

HTR

STO
HTR

OP
CLA
SUB
TOV

STO

HTR

CLA
STO

CLA
STO
HTR

32

ADDRESS
50
60

200
400

104

210
401

ADDRESS
50
60

150

200

104

50
400

60
450
154

PROGRAM

REMARKS
Move A into AC
Add A + B
Sum into 200
If zero, program
jumps to loc. 400
for next instruc
tion.
If not zero, hal t
(loco address re
peated to force
halt)
Sum into 210
Halt

REr-IARKS
Hove A into AC
Subtract B from A
Test for over
flow. If "yes",
go to loco 150
for next instr.
If no overflow,
store difference
in 200
Halt

Move A into AC
Store into loco
400
Hove B into AC
Store into 450
Halt

Lesson 3, (cont'd)

WORK AREA

PROBLEMS: ABC D

For all problems, use storage locations: ~~0[§
Start all programs in location 100 and any jumps in loca
tion 200.

44.. Place the sum of' A + B into location 400. If' the sum
is zero, also place A - B into location 300.

LOC OP ADDRESS REMARKS

45. Place the sum of' A + B + C into location 425.

LOC OP ADDRESS REMARKS

46. Place the product of' B x C into location 350.

LOC OP ADDRESS REMARKS

47. Place the quotient of' A 7 D into location 325. Place
the remainder into location 326.

LOC OP ADDRESS REMARKS

33

Lesson 3, (conttd)

CORRECT ANSWERS
PROBLE~lS :

44. LOC OP ADDRESS REMARKS

100 CLA 50 Move A into AC
101 ADD 60 Add B to A
102 STO 400 Place tI sum" into 400
103 TZE 200 If' sum is zero, jump to 200 f'or

next instr.
104 HTR 104 If' not zero, halt.

200 CLA 50 !-love A into AC again
201 SUB 60 Subtract B f'rom A
202 STO 300 Place into 300
203 HTR 203 Halt

45. LOC OP ADDRESS REMARKS

100 CLA 50 l<love A in to AC
101 ADD 60 Add B to A
102 ADD 70 Add C to sum of' B and A
103 STO 425 Place sum into loc. 425
104 HTR 104 Halt

46. LOC OP ADDRESS REMARKS

100 LDQ 60 Move B into MQ
101 MPY 70 Multiply by C
102 STO 350 Place into loc. 350
103 HTR 103 Halt

47. LOC OP ADDRESS REMARKS

100 CLA 0 Place zeros into AC
101 LDQ 50 Move A into MQ
102 DVH 80 Divide by D
103 STQ 325 Place quotient into loc. 325
104 STO 326 Place remainder into loc. 326
105 HTR 105 Halt

34

Lesson 3, (conttd)

WORK AREA

PROBLEM: Use the same general instructions as on page 33.

48. Compute: A B
C - D i£ an over£low occurs, place the

number 5 (presently in loc. 90) into location 325 and halt.
Otherwise, continue the problem and place the quotient into
location 400 and the remainder into location 401 (See note
below) •

LOC OP ADDRESS REMARKS

100

NOTE: All arithmetic operations take place in the AC and
MQ. I£ several di£ferent operations must be accom
plished and the results need to be saved for a later
operation, the results are moved to temporary storage
locations and recalled £rom there when needed.

In the above problem, the result o£ A x B and the
result of C - D must both be saved so that the final
division may be accomplished. It makes no di£ference
where they are placed in storage as long as those
storage locations are not being used for anything
else.

35

Lesson), (cont'd)

CORRECT ANSWERS

When a problem begins to be complicated, it should be flow
charted before it is coded. A flow chart of this problem
would look like this:

MULTIPLY
A X B

PROBLEIvl:

48. LOC

100
101
102

10)
104
105

106

107
108

109

110
III
112

200
201
202

OP

LDQ
MPY
STO

CLA
SUB
STO

TOV

CLA
LDQ

DVH

STQ
STO
HTR

CLA
STO
HTR

PRODUCT
INTO TEMP.

STORAGE

ADDRESS

50
60
600

70
80
650

200

o
600

650

400
401
112

90
325
202

SUBTRACT
C-O

REHARKS

DIFFERENCE
INTO TEMP.

DIVIDE PROD.
OF AX B BY
DIFFERENCE

OF C-D

QUOTIENT
INT0400

REMAINDER
INT0401

Move A into MQ
1-1ul tiply by B

PLACE NO.
5 INTO

LOC. 325

Place product into temporary
loco 600
Move C into AC
Subtract D from C
Place difference into tempo
rary loco 650
Test for overflow. If "yes"
jump to loco 200 for next
instruction
Move zeros into AC
If no overflow, move result
of multo into MQ so that
division may be accomplished.
Divide by result of subtrac
tion.
Place quotient into loco 400
Place remainder into loco 401
Halt - end of job

Move "5" into AC
Place into loco 325
Halt 2 - end of job

)6

Lesson 3, (conttd)

BINARY POINT: It was pointed out on page 27, that the
Binary Point must be determined by the programmer when work
ing with Fixed Point numbers. A few examples may clarify
this further. Fraction conversion may be accomplished by
referring to Appendix C, IBM 7090 Reference Manual.

Result: EXAMPLES:
1. Add: 15. 210

3. 27410
18.47410

2. Multiply:

@l°, 1---------~1011.010.1.0.0.1.1.1.1.° 1 °.1.11
+ I 21 35

= 22.363
8

'-- '- '- '-,
2 2 3 6 3

ts..:SINARY POINT

a. Assign the first Octal integer (whole number) as a
flag (converting to Binary)

EXAMPLE:

~01110,1.1.1.
123456
'-"",

2 A~

Binary point between posi
tions 3 and 4. Flag is 3
(we will call it B 3 - the B
representing Binary and also
indicating fixed point
numbers)

b. Set up a flag for both multiplicand and multiplier.

c. After multiplication, consider the AC and MQ as one
long 70 bit register (no count is taken of the S, Q,
P in the AC, or the S in the MQ). The position of
the Binary Point will be the sum of the two flags.

Qii.
Q P I

AC

EXAMPLE: B 3 and B 35

EXAMPLES:

MQ
, I !~II'

35 363738 70

= B 38---A{this is the location of
the B.P. in product.)

1. Multiply a B6 number and a B30 number. Show the loca
tion of the Binary Point in the AC - MQ.

B6 + B30 = B36
AC

.~.!
MQ

I I
Q P I 35 3637 70

A~Binary Point

2. Multiply 32.6578 by 3.444448. Show the location of the
Binary Point of the product in the AC - MQ.

Step 1: 32.657 (two Octal integers before the fraction)
Flag = B 6

3.44444 (one Octal integer before the fraction)
Flag = B 3

Step 2: B6 + B3 = B9q II ... ~~. I I

9

37

.R. HQ

35 36

i1:....--Binary Point

, I
70

Lesson 3, (conttd)

3. Division: Assign flags for both the divisor and the
dividend, as in multiply operations. However, when the
dividend is brought into the AC-MQ, consider both AC
and MQ as a 70 bit register with the flag located in the
proper position of the 70.

EXAMPLE: The dividend is 16.58

The first step is to clear the AC (CLA 0)
The second step is to load the dividend into AC-MQ (LDQ X)

~ololo,--_A_C ______ ,oHo,o, 1,1 ! I,O! I ,o,I~:01
35 363738394Qq1424344 70

Y -6-
Binary6 poi~t = B4l (flag)

The quotient will be in the MQ and the remainder in the AC,
so after divide has been accomplished, the MQ must again be
considered as a 35 bit register.

If we divide by a B27 number,. ~the quotient in the MQ will be
4l-27=B14 q MQ

, , , I I I , , , I I 14'6 '3~
EXAMPLE 2: If the divisor happens to be quite small, it is
possible to lose a portion of the quotient.

Divide 274.5558 by 15.3218

SteE 1:

SteE 2:

SteE 3:

SteE 4:

Dividend 274.5558 = B9 (3 Octal = 9 Binary)

Move to MQ = B44 (35 in AC + 9 in MQ = 44)

Divide by a B6 number (15.3218 = B6 2 Octal =
6 Binary)

B44 - B6 = B38
MQ

I ----1
I _L . ..J_J

35 386

The three trailing positions would be lost

In these examples and in the problems that follow, all
numbers are assumed to be left adjusted. This means that
the digits are located in the extreme left part of the word
in storage.

q \WRD IN STORAGE

XXXXXXXXX
I I t I • I I • i

I ~ 35
BINARY POINT

38

Lesson 3, (cont'd)

WORK AREA

PROBLEMS: (All hypothetical numbers will be considered to
be in Octal, left adjusted and all dividends
loaded in to the ~lQ)

Multiply and show location
of Binary point of the product
in AC - MQ.

49. XXX.X by XX.XXX

Product: B

50. • XXXXX by • XXXX

Product: B

51. X.XXXXX by X.XXXX

Product: B

52. XXXX. by XXXX.

Product: B

53. XXXXXXXXXX.X by XXX.X

Product: B

54. XXXXXXXXXXXX.XXX by

XXXX.XXX

Product: B

55. .XXX by X.XXX

Product: B

39

Divide and show location of
Binary point of the quotient
in the MQ.

56. X.XX I XXX.XX

Quotient: B

57. .Xxxxxxx XXXXX.XXX

Quotient: B

58. XXXXXXXX. X XXXXX.XXXX

Quotient: B

59. .XX I XXX.XX

Quotient: B

60. xxxxxxxxxxx XX.XX

Quot.ient: B

61. ~

Quotient: B

62. XX.X XX.XX

Quotient: B

Lesson J, (cont'd)

CORRECT ANSWERS
PROBLEMS:

49. B9 + B6

SO. BO + BO

51. BJ + BJ

= BIS

= BO

= B6

S6. ~

BJ5 + B9 = B44 (after
move into MQ)

B44 - BJ = B4l

S2. B12 + B12 = B24 q, MQ

5J. BJO + B9 = BJ9

54. BJ6 + B12 = B48

55. BO + BJ = BJ

Problems 61 and 62 show that
whenever the dividend and
divisor have the same "B"
number, the Binary Point will
be at BJ5 in the MQ.

q~ _____ M~Q~ ____ ~.1

35
!J.

I

57. B2l B15

BJS + BIS

BSO - B2l

58. B24 B15

BJS + BIS

BSO - B24

S9. ~
BJ5 + B9

B44 - BO
trailing
would be

60. BJJ B6

BJ5 + B6

B4l - BJJ

61. ~
BJS + BO

BJ5 - BO

62. J&..lB6
BJ5 + B6

B4l - B6

40

= B50
(dividend)

= B29 (in MQ)

= B50

= B26

= B44

= B44 (9
positions
lost)

= B4l

= B8

= BJ5

= BJ5

= B4l

= BJS

LESSON 4
FLOATING POINT NU1-'IBERS: If the range of numbers in a calcu
lation is apt to be quite large or unpredictable, fixed
point numbers no longer serve the purpose because it be
comes impossible to calculate the position of the Binary
Point. An alternative set of Floating Point instructions
are available and should be used for such calculations.
With these instructions, the Binary Point is automatically
maintained between the 8th and 9th digit of the word. A
Floating Point number is stored in a word as shown below:

BINARY POINT

(EXPONENn FRACTION (MANTISSA) S CHARACTER

I 89 35

The fraction (also called the Mantissa) is always stored in
positions 9-35 and the characteristic (exponent) is in posi
tions 1-8. This portion must be explained in more detail:

A floating point number may be expressed as a signed
proper fraction multiplied by some power of 10. The number
is normal (or normalized) if the power is chosen in such a
way that the decimal point is to the left of the most sig
nificant digit.
EXAMPLES:

.350 10 = .35
3.5010 = .35

35.010 = .35
350 • 10 = .35

= .35 x 10-1

.35 x 10-2
.035 10
.003510 =

Note that the powers of 1, 2,
and 3 are in direct ratio to
the number of places the deci
mal point is moved to the left.

If the decimal point is moved
to the right, it works in the
same way except, that the
power is then negative.

A floating point Binary number may be expressed in the
same manner as the Decimal numbers above except that·it will
be multiplied by some power of 2.
EXAMPLES:

.001
100.000
{Binary

= .100 x 2;2 (Binary point moved two
= .100 x 2 positions to right)

point moved three positions to left)

If the number is normal, bit position 9 will alw·ays be a 1.
If it is not normal, bit position 9 will always be a zero.

The characteristic is formed by adding +128 to the ~
ponent (the exponent being the number of the power). Con
verting to Octal: +128 = +200.
EXAMPLE: = 5. 8 = 101. 2 101. = .101 x 2 3 Add 200 +3

to go into the characteristic. The fraction goes
into the Mantissa portion of the word.

Since there are only eight positions in the character
istic, the leftmost Binary position is dropped. If an ~
flow occurs, it may be checked by the program.

41

Lesson 4, (cont'd)

ADDITIONAL EXA:t-1PLES:

1. Show normalized, floating point 1010 as it would look in
a machine word.

Step 1: Chg from Dec to Oct to Bin Final Step: Move result
1010 = 128 = 001 010. 2 of Step 3 into Charact.

Step 2: Move Binary point Move result of Step 2
4 into Mantissa 001 010. = .1010 x 2

@l1000010~1010" Step 3: Add Exp to Oct 200 ~ol
200 4 204

-.;;;.,.... -..- '-" 35 + = +2 0 4

Note that although the Octal number was 128 , in theMantissa,
it now looks like a 5. The programmer must be aware of
this apparent change.

2. Show normalized floating point .003910 as it would look
in a machine word.

Step 1: .003910 = .0028 = .000 000 0102 When the exponent

• 000 000 010 = .10 x 2-7 will be a minus, the
Step 2: Octal 200 and the
Step 3: 2008 - 78 = 12810 - 7 10 =

= 171
8

Step 4: Step 3 into Charact. Step
into Mantissa

@IOI I 1 I 00 III 0001
......... 35

+1 7

3. Show normalized floating point
a machine word.

Step 1: 44. 10 = 54 • 8 = 101 100. 2

Step 2: 101 100. = .101100 x 26

Step 3: 200 + 6 = 2068

12110

2

4410

Final

exponent must be
converted to Deci
mal, then converted
back to Octal.

as it would look in

Step:

~100001I0110110" ~ol
-..- '-" -..- 35

+2 0 6

4. Show normalized floating point -2010 as it would look in
a machine word.

Step 1; -20'"10 = -24. 8 = -010 100. 2 Final Step:

Step 2: -010 100. = -.10100 x 2 5 @ll 00001 0111 010" -01
"'-../,, 35

Step 3: 200 + 5 2058
+ 2 0 5 =

Warning: Be sure to remember that the Characteristic is
always derived in Octal. Very bad mistakes can be made if
the exponent is not converted to Octal before adding to
2008 •

42

Lesson 4, (cont'd)

IVORK AREA

PROBLEMS:

63. Show normalized floating point 310 as it would look in
a machine word.

Step 1: Step ;3:

Step 2: Final Step:

q-~------.

64. Show normalized floating' point .00310 as it ·would look
in a machine word.

Step 1: Step 3:

Step 2: Final Step:

65. Show normalized floating point 23210 as it would look
in a machine word.

Step 1: Step 3:

Step 2: Final Step:

43

Lesson 4, (cont'd)

CORRECT ANSWERS

PROBLEMS:

63.

Step 1: 310 = 38 = 011_ 2 Step 3: 200 + 2 = 2028

Step 2:

64.

Step 1:

Step 2:

011. 2 = .11 x 2 Final Step:

~I 00000101110 .. 41----------.. 01

"'-" '-" '-"
+2 0 2

.00310 = .003068 = .000 000 011 000 1102

= .1100011 x 2-7

Final Step:

~OIJ II 0011110001 I o 44r-------.01

'-" '--'" '-"
+ I 7 I

Step 1: 23210 = 3508 = 011 101 000. 2

Step 2: = .11101 x 2
10

(8 not permitted in Octal - always
jumps to 10 after 7)

Step 3: 200 + 10 = 2108

Final Step:

@:II 0001000111
'-" '-" '-"

+2 0

I 0 10 1--------•• 0 I

The material covered on page 41 may be entirely ne,., to the
student, even to the terms "power", "exponent", "normalized",
etc. If it is new, please go over it a second time and
make up some additional problems to get extra practice in
this area. Use the Octal/Decimal conversion tables (Ap
pendix B and C) in the 7090 Reference Manual to speed up
the conversion of both integers (whole numbers) and
fractions.

44

Lesson 4, (cont'd)

FLOATING POINT ARITHMETIC: The location of the decimal
pOint, or Binary point, is an extremely important problem
in programming. Just as in "pencil-and-paper" arithmetic,
decimal points must be lined up and additional zeros must
be added where required.

EXAMPLE: Add + 100.0 and - 0.1002. If they were not lined
up, they would look like this:

+ 100.0
- 0.1002

To line them up, the lower number must be shifted to the
right two places and three trailing zeros must be added to
the upper number:

+ 100.0 10001
0.1 002

The same numbers in floating point (Decimal) form, normal
ized, would look like this:

+ .1000 x 103
- .1002 x 10

0

To equalize the exponent, the lower number is again
shifted to the right and trailing zeros are added to the
upper number, as follows:

+ .1000 10001
- .[QQQJl 002

If the result is not normal, it must be shifted right to
finish with a normalized number:

+.1000000 x 103
-.0001002 x 103

Since the programmer does not usually work with actual
numbers, but with quantities where only the maximum and
minimum size is known, the problem becomes much greater.
This text must, of necessity, be limited to fundamentals
of 7090 programming, therefore this will not be covered in
detail here.

45

Lesson 4, (cont'd)

FLOATING POINT OPEI~TIONS:

INSTRUCTION: FAD (Floating ADD) Octal code: +0)00

FOR~lA T: (Type B)

5,1 1112-13 18-2021 35
Description: The floating point number in Y is added alge
braically to the floating point number in the AC. The most
significant part of the number is in the AC as a normalized
floating point number and the least significant part is in
the MQ as a floating point number with a characteristic 33
less than the AC characteristic. The sign in both the AC
and MQ will be that of the larger factor.

INSTRUCTION: FSB (Floating Subtract) Octal code: +0)02

FOIDrlAT: (Type B) I OP CODE IIA~/~TAGI y

5,1 1112-13 18- 2021 35

Description: The floating point number in Y is subtracted
algebraically from the floating point number in the AC.
The result is always normalized and located in the AC.

INSTRUCTION: FMP (Floating Hultiply) Octal code: +0260

FORMAT: (Type B) I OP CODE I LA W';0iTAG I y

5,1 1112-13 18-2021 35

Description: The floating point number in Y is multiplied
algebraically by the floating point number in the HQ. The
most significant part of the product will be in the AC and
the least significant part in the MQ. If either of the
numbers is not normalized, the product mayor may not be in
normalized form.

INSTRUCTION: FDH (Floating Divide or Halt) Octal code:

FORMAT: (Type B) +0240
lop CODE I IA Wffi1TAGI y
5,1 1112-13 18-2021 35

Description: The c(AC) are divided algebraically by the
c{Y). The quotient will be in the MQ and the remainder will
be in the AC. If the size of the fractional part of the AC
is equal to or greater than twice the fractional part of the
number in Y (this would only happen in unnormalized num
bers), or if the number in Y is zero, the Divide Check
Indicator turns on and the computer stops. The quotient
will be in normalized form if both the dividend and
divisor were normalized.

46

Lesson 4, (conttd)

INSTRUCTION: ALS (Accumulator Left Shift) Octal code: +0767
FORMAT: (Type B)

lOp CODE I IA Wffffh1 TAGI

S,I 1112-13 18- 2021 35

Description: The c(AC) are shifted to the left the number
of places specified in positions 28-35 of the address por
tion of the instruction. Vacated positions are automati
cally filled with zeros. If the instruction calls for a
shift larger than the bit capacity of the AC, it will be
completely filled with zeros.

INSTRUCTION: ARS (Accumulator Right Shift) Octal code:+007l
FORMAT: (Type B)

y

S,I 1112-13 18-2021 35

Description: Identical to the ALS instruction except that
the shift is to the right.

INSTRUCTION: TPL (Transfer
FORMAT: (Type B)

on Plus) Octal code: +0120

y

S,I 1112-13 18-2021 35

Descri tion: If the sign position of the AC is positive
Binary zero), the computer takes its next instruction from

location Y. If the sign is negative (Binary one), the com
puter goes to the next instruction in sequence.

L~STRUCTION: TMI (Transfer on Minus) Octal code:
FORMAT: (Type B)

-0120

I OP CODE IrA _TAG I y

S,I 1112-13 18-2021 35

If the sign position of "the AC is negative
Binary one), the computer takes its next instruction from

location Y. If it is positive (Binary zero), the computer
goes to the next instruction in sequence.

INSTRUCTION: XCA (Exchange AC and MQ) Octal code: +0131
FORMAT: (Type D)

lop CODE W/II///// ///!III/IIIII/IM
S,I II

Description: The c(AC) and the c(MQ) are exchanged. Posi
tions P and Q in the AC are cleared to zeros.

47

Lesson 4, (cont'd)

EXA~lPLES: Use storage locations as f'ollows:

ABC D
~[2][Z£I~

Start program in location 100 and any jumps in location 200.

1. AB + CD = T (f'loating point numbers) Place T into loca
tion 400. If' T is positive, compute ~-B and place the dif'
f'erence into location 450.

2.

LOC

100
101
102
103
104
105
106
107

108

200
201
202
203

A
D

=

OP

LDQ
FMP
STO
LDQ
FMP
FAD
STO
TPL

HTR

CLA
FSB
STO
HTR

ADDRESS

50
60
300
70
80
300
400
200

108

50
60
450
203

P (f'loating point

REMARKS

Move A into MQ
Multiply A x B
Product stored in temporary loco
Move C into MQ
Multiply C x D
Add product of' AB to product of' CD
Place sum (T) into location 400
If' T is +, go to loco 200 next
instr.
If' T not +, end of' program

Move A into AC
Subtract B f'rom A
Place dif'f'erence into loco 450
Halt 2 - end of' program

numbers) If' P is negative, place

into location 400. If' not negative, place into location 450
and do not place into location 400.

LOC

100
101
102

103

104

200
201

OP

LDQ
FDH
TMI

STQ

HTR

STQ
HTR

ADDRESS

50
80
200

450

104

400
201

REMARKS

Move A into MQ
Divide by D
If' sign of' quotient is -, go
loco 200 next instruction
If' sign not -, store quotient
location 450
Halt - end of' job

Store quotient into loco 400
Halt 2 - end of' job

48

to

into

Lesson 4, (cont1d)

EXAMPLES Continued:

3. A - B = W (floating point) Place W into location 900.

LOC OP ADDRESS REMARKS

100 CLA 50 Ivlove A into AC
101 FSB 60 Subtract B from A
102 STO 900 Store difference into loco

900
103 HTR 103 Halt - end of job

PROBLEM: (Storage locations the same as for examples on
page 48)

(Also, X in location 90)

66. A + BX + X2 = T (floating point)
C

Place T into location
500.

Flow chart the problem before attempting to code it.

LOC OP ADDRESS REMARKS

100

Lesson 4, (cont'd)

PROBLEM:

66.

MULTIPLY
X BY

ITSELF

(X)

EXCHANGE
AC ANDMQ

(TO MOVE
QUOT.INTOAC)

LOC OP

100 LDQ
101 FNP
102 STO
103 LDQ
104 F}IP
105 FAD
106 FDH
107 XCA

108 FAD
109 STO

110 HTR

CORRECT ANSWER

STORE IN
TEMPORARY
LOCATION

ADD x2

FROM TEMP.
LOCATION

(~+X2)
C

ADDRESS

90
90
300
60
90
50
70

300
500

110

MULTIPLY
BxX

(ex)

REsuLT
INTO LOC.

500

REMARKS

ADD A
TO PRODUCT

(A+ ex)

HALT
ENO-OF-JOB

}love X into MQ

DIVIDE
ey c

A+ ex
C

~lul tiply X by X tb get X 2

Store result in temporary
Move B into MQ
lvIul t iply B by X
Add A to product
Divide by C

loco

To move quotient from MQ to
AC
Add X2 to previous total
Store final result into loco
500
Halt - end of job

If the XCA instruction had not been used (loc. 107), it
would have taken two instructions to move the quotient from
the MQ into the AC, so that addition could be accomplished.
The alternative would have been to move the quotient from
the l-IQ into storage and back from storage into the AC. Use
of the XCA simplifies this for us.

50

Lesson 4, (cont'd)

OVERFLOW AND UNDERFLOW: The "characteristic" contains eight
OJ.. 1:; pOSJ.. 1:;J..ons. If all eight lvere filled with ones, the re
sultant number would be J77S = 25510 • We add +12Sl0 to the

exponent to derive the characteristic, therefore any
characteristic larger than +177S (+12710) would cause an
overflow (the result is too large for storage to contain).
Also, any characteristic below -200S (-12S

10
)would cause

an underflow.

The maximum and minimum characteristic capability of the
machine is +12710 and -12Sl0 • If these figures are ex-

ceeded, the computer will put the address plus one of the
instruction causing the trouble into the address portion of
location 0000. An identifying code which tells whether an
overflow or underflow occurred and whether the most signi
ficant result is in the AC or MQ, is placed in the Decrement
portion of location 0000. The computer continues by exe
cuting the instruction at OOlOS, and continuing on from
there. This is called a floating point trap and the over
flows and underflows are called spills.

The spill codes are as follows:

Operation

Add, Subtract

Multiply

Round
Round

Divide
Divide
Divide
Divide

AC

underflow

overflow
overflow

underflow
underflow

...mL

underflow

underflow

overflow

underflow

underflow
overflow

Decrement

0 0 0 1

0 0 1 1

0 1 1 0
0 1 1 1

1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 1

These codes are used to aid the programmer in checking for
overflow and underflow conditions. The programmer places a
transfer instruction in location OOlOS, transferring the
program to a routine which is designed to take care of the
overflow or underflow condition. Every programming group
has such a routine developed and ready for use "\vith most
programs.

51

Lesson 4, (cont'd)

INSTRUCTION: NZT (Storage Not Zero Test) Octal code: -0520

FORMAT: (Type B)
y

5,1 II 12-13 18-2021 35

Description: If the contents of Yare not zero, the com
puter skips one instruction. If the c(Y) are zero, the
computer takes the next instruction in sequence. The c(Y)
remain unchanged.

EXAMPLE: (Use storage locations as in the earlier examples)

If location 400 contains zeros, place the sum of floating
point A + B into it. If it does not contain zeros, place
the sum of A + B into location 600. Show a partial program
to accomplish this action.

LOC

100
101
102
10)

104

105

200
201

OP

CLA
FAD
NZT
TRA

STO

HTR

STO
HTR

ADDRESS

50
60
400
200

600

105

400
201

52

REMARKS

Move A into AC
Add B to A
Test Loc. 400 f-or zeros
If zeros in 400, trans. to
location 200
Store sum in 600 (since the
test showed no zeros - or
the program would never get
this instruction)
Halt - end of job

Store sum -into 400
Halt 2 - end of job

Lesson 4, (cont1d)

INSTRUCTION: ZET (Storage Zero Test) Octal Code: +0520

FOID-lA T: (Type B)
lop CODE I IA W$!,1TAGI y
5,1 11I2'1~ 18-2021 35

Description: If the contents of Yare zero, the computer
skips one instruction. If the c(Y) are not zero, the com
puter takes the next instruction in sequence. The c(Y)
remain unchanged. This is exactly the reverse of the NZT
instruction.

EXAMPLE: (Use storage locations as in earlier examples)

If location 400 contains zeros, place the sum of floating
point A + B into it. If it does not contain zeros, place
the sum of A + B into location 600. Show a partial program
to accomplish this action. (Note: This is the same problem
as the one on page 52, but notice the difference in the
program when the ZET instruction is used).

LOC

100
101
102
103

104

10:2

200
201

OP

CLA
FAD
ZET
TRA

STO

HTR

STO
HTR

ADDRESS

50
60
400
200

400

105

600
201

53

REMARKS

Move A into AC
Add B .to A
Test loc. 400 for zeros
If not zero in 400, trans-
fer to 200
Store sum into 400 (since
test must have showed
zeros - or the program
would not have reached
instr.}
Halt - end of job

Store sum into 600
Halt 2 - end of job

this

Lesson 4, (cont'd)

HOST SIGNIFICANT AND LEAST SIGNIFICANT: In Floating Add and
Floating Hultiply, the statement was made that the most sig
nificant part of the result would be in the AC and the least
significant part in the MQ.

Under normal circumstances, the sum and/or the product may
be considered to be in the AC and the STO (Store) instruc
tion is used to move the data back into memory.

Occasionally this will cause trouble for the following
reason; in a floating point number, the first eight posi
tions of the word are taken up by the Characteristic. This
leaves 27 positions (or 9 Octal digits) for the sum or
product. If the numbers to be added or multiplied are large
enough to result in a sum or product larger than 9 Octal
digits, the least significant portion will be in the HQ and
will be lost if the data is moved back into storage with a
STORE instruction.

EXAMPLE: Add (Octal) 1000000000.
+ 1.0012

SUM: 1000000001.00120000
'---v--'1 '---y-/

This will be in) l This will be in
AC since only : MQ, also in the
9 Octal will fit I fraction part
into frac. ~ (posit. 9-35)

I

In this case, if only the STO instruction were used, a very
important part of the number would be lost. The STQ must
also be used and the total sum stored in two words since it
is too large to fit into one word.

Unless the programmer knows that this is an important
factor in a particular program, he may forget about the
least significant portion, but if it is important to save
fractions to the very last point, then he must arrange in
the program to protect the result of FAD and FMP.

54

LESSON 5

SYMBOLIC CODING: We have been using symbolic operation
codes because they are simpler and more easy to remember
than either Binary or Octal (ADD is more easily remembered
than +04008 or the Binary form: 000 100 000 OOO). Symblic
coding may also be used in the other parts of an instructUn
(address, tag, decrement).

In a large program, keeping track of actual addresses can
become extremely difficult and error prone. If the pro
grammer wanted to add A + B, it would be much simpler to
write: CLA A; ADD B, than to assign specific storage lo
cations to each symbol.

When writing programs in "symbolic," every symbol used in
the program must be defined by the programmer, preferably
at the end of the program. This is most easily explained
with an example:

EXAMPLE: Add A + B. Store sum in HOLD.

LOC

END

A

B

HOLD

OP

CLA
ADD
STO
HTR

BSS

BSS

BSS

ADDRESS

A
B

HOLD
END

1

1

1

REMARKS

Move "A" into AC
Add A +B;
Sum to 10c. HOLD
Halt (since actual loca
tions are no longer used,
placing the same symbol
(END) in both LOC and AD
DRESS, accomplishes the
purpose of permanently
halting the program.
Allocates 1 Word of
Storage to "A"
Allocates 1 Word of
Storage to "B"
Allocates 1 Word of
Storage to "HOLD"

The BSS instruction is a pseudo-instruction (explained on
page 60). The important thing to remember is that any
symbol used in the address, tag, or decrement part of an
instruction must be defined in the LOC field, as shown above.

The symbol itself may be anything the programmer desires,
but it must be six characters or less, in length and there
must be at least one non-numeric character.

If a symbol is used in the address field, but does not ap
pear in the location field, it is undefined. If it appears
more than once in the location field, it is mu1tip1e
defined. In either case, the program will not be executed
by the computer.

55

Lesson 5, (cont'd)

ADDITIONAL EXAl-'IPLE:

1. Store into symbolic location X, the sum of the contents
of locations A and B. If the sum is zero, do not store the
sum into X. Instead, store the contents of symbolic loca
tion FEED 1 into X.

LaC

tI STORE
I

OP

CLA
ADD
TZE

STO

ADDRESS

A
B
JUMP

X

(STOP HTR STOP
\ JUMP CLA FEED 1
" TRA STORE

" I ------------- ---,~

REMARKS

Move "A" into AC
Add A + B
If sum is zero, go to JUMP
for next instruction
If not zero, store sum into
X
Halt - end of job
Move "FEED 1" into AC
Transfer back to loco
STORE, which will now move
FEED 1 (which is in the AC)
into X.

B BSS 1 Assigns storage Locations
A BSS 1 }

FEED 1 BSS 1 to A, B, and FEED 1

Notice that each symbol in the address field has just one
counterpart in the location field.

The word JUMP was arbitrarily used to jump the program if
the sum was zero. Any other symbol would have worked just
as well, as long as it was carried over to the location
field (Jl, XYZ, or Whatever).

A symbol was placed in the location field of the STORE in
struction so that a return could be made on the TRANSFER.
This was not absolutely necessary, but it saved two in
structions, because after moving FEED 1 into the AC, we
have to store it into X, then Halt. These two instructions
were already available to us, therefore it was not neces
sary to repeat them. This little procedure is called a
loop.*

Any symbol may be used in the address field as many times
as is necessary, but it may only be defined in the location
field once.

Study the above example until it is completely clear before
continuing with the problems on page 57.
* If a certain group of instructions are to be executed
several times during the course of a program, it is ex
tremely wasteful to repeat the instructions over and over
again. It is more practical to include a few instructions
that will take care of any necessary modifications and that
will allow the single set of instructions to be used re
peatedly but coded only once. The example above is not
really a loop since it is not to be repeated over and over,
but it will give the student an idea of how a loop works
without going into the details of address modification.

56

Lesson 5, (conttd)

WORK AREA

PROBLEMS: Write in "symbolic".

67. Compute A-B. If an overflow occurs, store result
in Y. Otherwise store result in Z.

LOC OP ADDRESS REMARKS

68. Compute AX + X
2

(fixed length numbers). Place the
sum into symbolic location T. If the sum is zero, place
the contents of symbolic location Pinto T instead of the
sum of the original computation.

LOC OP ADDRESS REl-IARKS

57

Lesson 5, (cont'd)

PROBLENS:

68.

LOC

END

Jl

A
B
Y
Z

LOC

MPY

STORE

END

Jl

A
X
T
P

OP

CLA
SUB
TOV

STO

HTR

STO
TRA

BSS
BSS
BSS
BSS

OP

LDQ
MPY
STO

LDQ
MPY
ADD
TZE

STO

HTR

CLA
TRA

BSS
BSS
BSS
BSS

CORRECT ANSWERS

ADDRESS

A
B
Jl

Z

END

y
END

1
1
1
1

ADDRESS

x
X
HOLD

A
X
HOLD
Jl

T

END

P
STORE

1
1
1
1

58

REI-lARKS

Move "A" into AC
Subtract A - B
If overflow, go to Jl for
next instr.
N~ overflow, store result
into Z
Halt - end of job

Store result into Y
Transfer to loco END, which
halts the program.

}
Allocate
to A, B,

REI-lARKS

store locations
Y and Z

I-Iove X into MQ 2
Multiply by X (X)
Move into temporary
storage loco
Move "A" into MQ
Multi~lY by X
Add X to product
If sum is zero, go to Jl
for next instr.
If not zero, place sum
into T
Halt - end of job

Move "PH into AC
Go to loco STORE for next
instr. {this will move "PH
(now in AC) into "T", then
halt)

}

Allocate Store locations
to A, X, T and P

Lesson 5, (cont1d)

SDlBOLIC CODL'J"G SHEET: Pre-printed sheets are available to
the programmer to be used in program writing. The following
is a typical coding sheet layout:

709 STIIBOLIC CODING SHEET

PROGRAM _JOB NO. _____ DATE ____ PAGE OF

LOCATION OPERATION ADDRESS, TAG, DECREMENT
I 6 7 a)516

COMMENTS IDENTI~ICATlql)!
7273 au

LOCATION - Start in Column 1. A symbol is used here if the
program is to refer back to a previous instruction (example:
page 56, TRA STORE). Also used to jump the program away
from the normal flow (example: pg 56, TZE JUMP). Also used
to define any symbol used in the original problem (example:
pg 56, BSS A, D, FEED 1).
OPERATION - Start in Column 8. Symbolic Op Code, 3 to 7
characters in length.

ADDRESS. TAG. DECREMENT - May start in column 12, but
better to always start in column 16. There must be at
least one blank between Op Code and the variable field.
Address, tag and decrement are to be separated by commas.
If remarks are used, separate from the last variable field
by a blank.

IDENTIFICATION - First card is generally marked with a de
scriptive title and the rest of the cards numbered sequen
tially (0000, 0010, 0020, etc.). There are two reasons for
this: (1) if you wish to find a card in a large program, it
is easy to check the number on the program print-out and go
right to it and (2) if the card deck should accidentally be
dropped, it can easily be sorted back into order. Columns
73-80 may be left blank.

In writing the little practice problems, always remember
that if coding sheets were available, LOC would start in
column 1, OP would start in column 8 and ADDRESS, in
column 16.

Special symbols must be used for the assembly program to
recognize symbol arithmetic in the variable field. The
symbols are as follows:

Add
Subtract
~ful tiply
Divide

+

*
/

Multiply A by B, may no longer be written AB, as in normal
algebraic notation. It must be written: A * B.

59

Lesson 5, (conttd)

PSEUDO OPERATION CODES: These codes are so named because
they are not true machine operation codes. They do not
have an Octal equivalent and they do not become a part o£
the actual program. They are instructions to (FAP) the
assembly program (which will change the symbolic program
written by the programmer into Binary £orm) , executed by
the assembly program and then £orgotten.

PSEUDO OP: COUNT
DESCRIPTION: This must be the £irst card o£ the symbolic
card deck (re£er to page X in introduction). The total
number o£ cards in the program deck will be speci£ied in
the address £ield - written as a decimal integer.

PSEUDO OP: END
DESCRIPTION: This must be the last card o£ the symbolic
card decko It tells the assembly program that the symbolic
program being converted to Binary, is £inished. The END
card must be in every program.

PSEUDO OP: BSS (Block Started by Symbol)
DESCRIPTION: This causes the assembly program to reserve
a block o£ storage locations o The number speci£ied in the
address portion o£ the instruction indicates the number o£
storage locations to be reserved. It does not indicate a
storage address (see pages 55 and 56 £or ex;;Ples o£ BSS).

The programmer should not assume that locations reserved
by BSS contain zeros. It is always sa£er to use the STZ
instruction to clear these areas out prior to using them
£or processing.

60

Lesson 5, (cont'd)

WORK AREA

PROBLEM:

69. Compute: A * X + B * Y = T (fixed point numbers).
Store T in location Z. If an overflow occurs, store
product of A * X into location P and product of B * Y into
location Q and Halt. If result of addition is zero, place
the c9ntents of location A into location Z and Halt. If
not zero, original computation is OK, so Halt program.
Flow-chart this problem before attempting to code it. Use
the pseudo op. codes that are necessary.

LOC OP ADDRESS REHARKS I LOC OP ADDRESS REMARKS

61

0\
N

PROBLEM: CORRECT ANSWER
69.

LOC OP
COUNT

LDQ
MPY
STO
LDQ
MPY
STO

ADD
STO
TOV
TZE

END HTR

LOAD A
INTO MQ

MULTIPLY
BY X

STORE
PRODUCT

TEMPORARILY

STORE T
INTO

LOCATIONZ

A *X
INTO

LOCATION

ADDR
30
A
X
HOLD
B
Y
HOLD I

HOLD
Z
JI
J2
END

REMARKS

MOVE A
INTO AC

Total of 30 instructions
Load A into MQ
Multiply by X
Store temporarily
Load B into MQ
Multiply by Y
Store temp. but it is
still in AC also
Add two products
Total into loco Z
Go to JI if overflow
Go to J 2 if zero
I£ neither overflow nor
zero - Halt

This is the end of the main program. The
rest is used only if overflow occurs (JI)
or if the sum is zero (J2). Allocation of
storage locations is necessary to define
the symbols used in the address field.

LOC
JI

J2

LOAD B
INTO MQ

B *Y
INTO

LOCATIONQ

STORE INTO
LOCATION Z

OP
CLA
STO
CLA
STO
TRA

AD DR
HOLD
P
HOLD
Q
END

CLA A
STO Z
TRA END

Y BSS I
A BSS I
X BSS I
HOLD BSS I
B BSS I
HOLDIBSS I
Z BSS I
P BSS I
Q BSS I

MULTIPLY
BY Y

STORE
PRODUCT

TEMPORARILY

HALT
END-OF-JOB

REMARKS
Move HOLD into AC
Store into loco P

I Move HOLD I into AC
Store into loco Q

ADD THE
PRODUCTS TO

GETT

Transfer to loco END, which halts
the program

Move A into AC
Store into loco Z
Transfer to END - Halt

Allocate storage locations to
symbols used in the program

END Last card
Count up total number of instructions used and
place into address field of first card (COUNT).

Lesson 5, (cont'd)

SYllBOLIC LANGUAGE: In discussing symbolic coding (page 55),
We have mentioned that SymbOlS may be used as long as they
are defined in the program. It may be worth while to give
a definition of the various types of symbols and the names
of each type.

ELE}ffiNT - any plain symbol is called an element.
(i.e. AA, BETA, HOLD, END, TOTAL, AI, A2, A3)

TERM - a combination of elements, separated by the multiply
(*) or divide (/) signs, are called terms.
(i.e. A * B, X2 / D, X~ Y * Z, SUBTOT / CONST)

EXPRESSION - terms and elements, separated by the add (+) or
subtract (-) signs, are called expressions.
(i. e. A * B + Z, A / B - X, A9 + HOLD - X * Y)

USE OF ASTERISKS AND PLUS OR MINUS: The * (asterisk) is
the sign used for multiply, but it has a variety of other

. uses in coding. Some of these may be shown by the follow-
ing examples:

OP ADDRESS

TRA * + 3

TRA * - 4

CLA * + 2

STO * * 2

CLA* * *

l-fEANING

Transfer to "present locati.on of
the instruction" plus 3 (in other
words, transf. to 3 instr. past the
transfer instruction).
Transfer to "present loco of the
instr." minus 4.
Clear and Add "prese"nt loc. of
instr." + 2.
Store into this location times 2 (or
double what is in this location.)
Go to loco 0000 and use the address
and tag of 0000 to get the location
to put into AC.

It is also possible to use a symbol + or -, as follows:

TRA HOLD + 2 Transfer to the location containing
HOLD, plus two instructions (in
other words, the second instruction
past HOLD in the program). This is
very handy for loops.

63

Lesson 5, (cont'd)

EXAMPLES:

1. Suppose that somewhere in a program, you want to be sure
that the Divide Check Indicator is Off. This would be
accomplished in the following manner:

OP

DCT
TRA

ADDRESS

* + 1

REMARKS

Test Indicator and turn if Off
Trans. to next instruction in
sequence

It would not have been right to continue right on with
the program after giving the DCT, because under one
condition the computer takes the next instruction and
under another condition it skips one instruction. A
NOP could also have been used instead of the TRA * + 1.

2. On a Halt or Transfer instruction (HTR), we have been
using the same symbol in the Loc. and Address fields
to make sure that the program comes to a permanent
halt. This may be accomplished very simply as follows:

OP ADDRESS

HTR *
This accomplishes the same purpose because when the
operator pushes the START button, the program goes
right back to the Halt instruction and the machine
will not restart.

Simply remember that the first * in address field
indicates location and the second indicates multiply.

ADDRESS

* * 1004--times 100

~location of itself

64

Lesson 5, (cont'd)

PROBLEM:

70. Three fixed point numbers are stored in loco STO 1,
STO 2 and STO J. Find the number which is algebrai
cally the largest and check the sign. If it is minus,
place in loco HOLD and halt. If it is plus, place in
loco STAND and halt.

FLOW CHARTING:

The importance of flow charting can not be over
emphasized. A problem such as the one above, should not be
coded by a novice, until it is analyzed and flow charted.

Flow charting may be generalized or detailed depending
on the desires and needs of the programmer, but usually,
the larger and more complex the problem, the more detailed
the flow chart should become.

It is extremely important to follow the problem
through all possible paths until a logical conclusion is
reached. The flow chart is a map and should be followed
when coding a problem. How the map is drawn is not
important as long as it is understandable to anyone who
looks at it. For this reason, it is a good policy to use
standardized symbols, such as the ones shown on page ix, at
the beginning of the book.

Always flow chart the normal flow of the operation
first, leaving the unusual possibilities hanging open.
Then go back and run down each possibility in turn until
all are covered. Never leave any loose ends open as the
computer has no way of deciding what to do if it hits a
loose end.

A programmer is responsible for any run he writes
even after a considerable length of time has elapsed and
it is no longer fresh in his mind. If changes or modifi
cations need to be made at a later date, he can refresh
his memory by reviewing the flow chart and he can insert
the change more easily by understanding just where in the
program it should go.

The program shown above is repeated on the following
page and the analysis and development of a flow chart is
shown. The problem is to be coded on page 67.

65

Lesson 5, (cont'd)

PROBLEM 70 - (Restated)

Three fixed point numbers are stored in loco STO 1,
STO 2 and STO J. Find the number which is algebraically
the largest and check the sign. If it is minus, place in
loco HOLD and haJ,t. If it is plus, place in loco STAND
and halt.

First step in the analysis is to determine which one
of the three numbers is the largest.

2 IS THE YES
LARGEST

3 IS THE
LARGEST

YES I IS THE
LARGEST

When the largest number has been located, we must dis
cover whether it is plus or minus, then place into HOLD or
STAND accordingly.

PLACE INTO
STAND

NO YES

PLACE INTO
HOLD

The question "Is it minus?" must be asked three times
(once for each of the three possibilities in the first half
of the flow chart). Once the flow cl1art has been developed,
the process of coding becomes fairly routine. Of course,
it is necessary to be familiar with the instructions and
what each one can do, to make the job of coding easier.

66

Lesson 5, (cont'd)

liORK AREA

PROBLEM 70:

LOC OP ADDRESS REMARKS

67

Lesson 5, (cont'd)

CORRECT ANSWER
PROBLEM 70:

LOC OP ADDRESS REHARKS

START

END

C2vs3

ISLG

HOLD
STAND
ST¢ 1
ST¢ 2
sT¢ 3

COUNT
STZ
STZ

CLA
SUB
TMI

CLA
SUB
TIU

CLA

TMI

STO
HTR

CLA
SUB
TMI

CLA

TMI

TRA

STO
TRA

CLA
TMI

TRA

BSS
BSS
BSS
BSS
BSS
END

30
HOLD
STAND

STO 1
STO 2
C2vs3

STO 1
STO 3
ISLG

ST¢ 1

ISLG 2

STAND
END

STO 2
STO 3
ISLG

STO 2

* + 2

END-l

HOLD
END

STO 3
ISLG-2

END-l

1
1
1
1
1

NOTE: This instruction ex
plained in Lesson 6

Is 1> 2?
If result -, 1 < 2, so go to
cmp 2 vs 3
If result +, go on to next cmp
Is 1> 3?
If result -, 1 ~ 3, so 3 is
largest, go to ISLG
If result +, 1 is largest, move
back into AC
If sign -, go to STORE, to place
in HOLD
If sign +, store in loc. STAND
Halt - end of job

Is 2 > 31
If sign -, 2 <: 3, so 3 is
largest, go to ISLG
If sign +, 2 is largest, move
back into AC
If 2 is -, go to STORE, to place
in HOLD
If 2 is +, go to STORE, to place
in STAND
If 2 is +, store in HOLD
Go to END, to halt program

If 3 is -, go to 2nd Instr. be
fore ISLG to store HOLD
If 3 is +, go to END-l to store
STAND

Allocate storage locations

68

LESSON 6
ADDITIONAL INSTRUCTIONS:

INSTRUCTION: DVP (Divide or Proceed) Octal code: +0221
FORJ.IAT: (Type B)

I OP CODE ItA ~TAG I y

5.1 1112-13 18-2021 35

Description: This instruction is identical to the DVH in
struction (page 29), with one extremely important exception.
If' division can not take place, the "divide-check" indicator
turns on as in the DVH instruction, but instead of' stopping
the computer, it continues to the next instruction in se
quence. If' this instruction is used, it is usual to check
the indicator immediately af'ter the Divide instruction. with
a DCT instruction.

INSTRUCTION: RND (Round) Octal code: +0760 0010
FORMAT: (Type E)

10PCODE W&'IMTAGWhl OP CODE

5,1 II 18-20 24 35

Description: Used particularly af'ter divide operations. If'
the product of' multiplication is to be rounded, a special
instruction (Multiply and Round) is available. If' position
1 of' the MQ contains a 1, position 35 of' the AC is increased
by 1. If' position 1 of' the MQ contains a zero, the AC re
mains unchanged. In either case, the MQ remains unchanged.
AC overf'low is possible, so a test f'or overf'low should be
made af'ter the Round instruction.

INSTRUCTION: DCT (Divide Check Test) Octal code: +0760 0012
FORMAT: (Type E)

lOp CODE ~TAGWI OP CODE

5.1 II 18-20 23 35

Description: If' the Indicator is lion", it is turned "of'f'"
and the computer takes the next instruction in sequence. If'
the Indicator is "of'f'", the next instruction is skipped and
the computer takes the f'ollowing instruction.

The Indicator is lion" under two Divide conditions only; (1)
if' the divisor is zero and (2) if' the c(AC) are greater than
or equal to the c(Y). The only other way the Indicator may
be turned "on" was discussed brief'ly under Floating Divide
on page 46.
Usually all "check" indicators are turned of'f' at the begin
ning of' a program. If' a Divide instruction is not carried
out, the indicator is turned on and the DCT instruction al
ways turns it of'f' again. The DCT is usually f'ollowed by a
"Transf'er" or "No Operation" instruction (see pages 73 and
77). The next instruction in the normal f'low of' the program
is alw·ays the second instruction af'ter the DCT.

69

Lesson 6, (cont'd)

EXAt-IPLES :

1. ~= T
B

Assume fixed point numbers and round the re
sults. If division does not take place, put the
dividend into loc. SET. Other,vise put the
quotient (T) into loco GET and the remainder
into loco GOT.

*
**

LOC OP

LDQ
CLA
LLS

DVP
DCT

(*)TRA
RND
STQ
STO
lITR

JUMP STQ
lITR

ADDRESS

A
ZERO
ZERO

B

JUMP

GET
GOT

*

SET

*

RE:tvlARKS

Move A into MQ
AC Must be cleared before divide
To make sign of AC agree with MQ
(see Note, page 31)
Divide by B
Divide-Check Test
If no divide, go to loco JUMP
If divide, round result
Put quotient into loco GET
Put remainder into loco GOT
Halt - end of job

Put dividend into loco SET
Halt 2 - end of job

A
B = T Assume fixed point numbers and round the result.

If division does not take place, turn off indi
cator and continue program. Otherwise put (T)
into loco SET.

LOC OP ADDRESS REt-lARKS

LDQ A Move A into MQ
CLA ZERO AC l>1ust be cleared before divide
LLS ZEHO To make sign of AC agree with MQ
DVP B Divide by B
DCT To turn off indicator if no dive

(**)NOP To skip one instruction after DCT
RND If divide, round result
STQ SET If divide, T into loco SET (If no

divide, dividend (A) into loco
SET)

HTR * Halt - end of job

See page 73
See page 77

70

Lesson 6, (cont1d)

PROBLEMS:

71.

72.

LOC OP

A B = T
D

LOC OP

WORK AREA

Assume fixed point numbers and round
the result. If no division, turn off
indicator. Place T into loco HOLD.
Assume all Binary points at position
35 (B35).

ADDRESS REMARKS

Assume fixed point numbers and round
result. If no division, place dividend
into loco SET. Otherwise place T into
loc. HOLD and the remainder into loc.
HOLD + 1.

ADDRESS REMARKS

71

Lesson 6, (cont'd)

CORRECT ANSWERS

PROBLEMS:

71.
LOC OP ADDRESS REMARKS

LDQ A Move A into MQ
(A2~ MPY A Multiply by itself

MPY A Multiply by itself (AJ

STO TEMP Store into temporary loc.
CLA ZERO To clear AC prior to Divide
LDQ B Move B into MQ
LLS ZERO To make sign of AC agree with MQ
DVP C Divide by C
DCT Turn off indicator if no divide
NOP To skip one instruction
RND Round result of division
XCA To mov.e quotient from MQ to AC
ADD TEMP Add AJ from temp. loc.
STO HOLD Place T into loc. HOLD
HTR * Halt - end of job

72.
LOC OP ADDRESS REMARKS

LDQ A }l1ove A into MQ
MPY B l'-lu1 tip1y by B
CLA ZERO To clear AC prior to Divide
LLS ZERO To make sign of AC agree with MQ
DVP D Divide product of A x B by D
DCT Divide check test
TRA JIDIP If no divide, go to loc. JUMP
RND If divide, round result
STQ HOLD Place T into loc. HOLD
STO HOLD + 1 Place remainder into loc. HOLD

+ 1
HTR * Halt - end of job

JIDIP STQ SET Place dividend into loc. SET
HTR * Halt 2 - end of job

72

Lesson 6, (cont'd)

INSTRUCTION: STZ (Store Zeros) Octal code: +0600

FORfvlAT: (Type B)
y

5,1 1112-13 18-2021 35

DESCRIPTION: The c(Y) are replaced by zeros. The sign at
the (y) address is made a plus. This is a very useful in
struction. An example of this was shown in Lesson 5.

INSTRUCTION: LLS (Long Left Shift) Octal code:

FORMAT: (Type B)
y

5,1 1112-13 18-2021 35

DESCRIPTION: The c(AC), including positions P and Q, and
the c (~IQ) are treated as one long register. The shifting
of bits to the left is determined by the number placed into
positions 28-35 of the instruction. This is not to be con
fused with an address in storage. The sign of the AC 1S

made to agree with the sign of the MQ. If a non-zero bit
is shifted into position P, the AC overflow indicator is
turned on and any bits shifted past position Q are lost.

INSTRUCTION: LRS (Long Right Shift) Octal code: +0765

FORMAT: (Type B) I OP CODE IIAW$JTAGI y

5,1 1112-13 18-2021 35

DESCRIPTION: This is identical to the LLS instruction
above except that the shift is to the right from the AC to
the MQ. In this instruction, the sign of the MQ is made to
agree with the sign of the AC and bits shifting past posi
tion 35 of the MQ are lost.

INSTRUCTION: TRA (Transfer) Octal code: +0020

FORMAT: (Type B)
y

5,1 1112-13 18-2021 35

DESCRIPTION: This instruction is used as an unconditional
transfer. The computer takes its next instruction from the
storage location specified in the (Y) address portion of
the instruction.

73

Lesson 6, (cont'd)

EXAMPLES:

1. iie want the sign of A to be the same as the sign of B.
Show a partial program to accomplish this •

OP ADDRESS

LDQ B
CLA A
LLS 0

. REMARKS

Place B into MQ
Place A into AC
Nothing moves except the sign from B
(in MQ) to A (in AC)

This could also be done with a long right shift:

OP ADDRESS REMARKS

LDQ A Place A into MQ
CLA B Place B into AC
LRS 0 Moves sign from B (in AC) to A (in MQ)

2. We want to multiply two fixed point numbers (A+B) and we
want the most significant digits to be to the right of the
Binary point, which is to be between positions 17 and 18
(B17). Show a partial program to accomplish this.

OP ADDRESS

LDQ A
MPY B
LRS 17

Before the LRS:

REMARKS

Place A into MQ
Hultiply by B
The Binary point in fixed point numbers
is always assumed to be in front of the
first position, unless otherwise indi-.
cated. Therefore, the product (in AC)
must be moved right 17 positions to
place it to the right of the desired
Binary point position.

PRODUCT

q~
AC R MQ

f1
BINARY POINT

After the LRS:
PRODUCT

q AC ~

r=l
MQ

XXXXXXXXX

1718
f1
BINARY POINT

In this case, since all the action was in the ACt the
instruction could have been used equally effectively.
only difference is that with the LRS, the sign of the
is made to agree with the sign of the AC.

74

ARS
The

MQ

Lesson 6, (cont'd)

WORK AREA

PROBLEr.lS

73. Assume two fixed point numbers (A and B) with the
Binary point of each fixed between positions 18 and 19
(B 18). Multiply A by B and place the product from the
AC into Loc. C. Where will the Binary point be lo
cated within location C. Show the location of the
Binary point in the AC-MQ before the final Move in
struction is given.

Word A

AC

1819
A

Word C

Word B

1819
A

MQ

? q~----------~

74. In the problem above, shift left so that the Binary
point will be between positions 18 and 19 of the AC.
Show a partial program to accomplish this.

LOC OP ADDRESS REMARKS

LDQ A Place A into MQ
MPY B Multiply by B
LLS D ? Shift left ? posi-

tions
STO C Store from AC into

Loc. C
HTR * Halt - end of job

75

Lesson 6, (cont'd)

CORRECT ANSWER

PROBLEMS:

73.

ql...-__ A_c __ ---JR ! ,
MQ

I 2
b. BINARY POINT

q WORD C

(NO BINARY POINT)
'---__ -----J

The Binary point will be between positions 1 and 2 of the
MQ. As in any problem in multiplication, the product will
have as many Binary points as the sum of the digits to the
right of the positions in the two numbers being multiplied (18
+ 18 = 36). Since the product fills the entire AC and MQ,
the 36 rightmost positions will be beyond the Binary point.
Therefore, there will be no Binary point in the AC or in
Word C.

In decimal arithmetic, if you multiply XX.XXX by X.XXX, the
product will have six decimal places. It is no different
in Binary multiplication.

74.

LOC OP ADDRESS REMARKS

LDQ A Place A into MQ
MPY B Multiply by B
LLS 18 Shift left 18 posi-

tions
STO C Store from AC into

Loc. C
HTR * Halt - end of job

The Binary point was in the MQ, between positions 1 and 2.
The long Left Shift 18 would move the point 18 positions
to the left, between 18 and 19 of the AC.

q" .
AC

, , , H .. MQ

Q P I 1819 35 I 2 35
A b. l ________ j

'--y--/
17 + 1 = 18

76

Lesson 6, (cont'd)

INSTRUCTION: CAS (Compare AC with Storage)Octal code: +0340
FORMAT: (Type B)

I OP CODE IrA W////ATAG I V

DESCRIPTION:

the c(Y), the
quence.

the c(Y}, the

the c(Y), the

AC<V
SKIP TWO

INSTRUCTIONS

S,I 1112-13 18-2021 35

This is the only instruction that allows for
a three way branch.
1. If the c(AC) are algebraically greater than
computer takes the next instruction in se-

2. If the c(AC) are algebraically equal to
computer skips one instruction.
3. If the c(AC) are algebraically less than
computer skips two instructions.
This could be flow charted as follows:

< > AC>V
>---eotGO TO NEXT

INSTRUCTION

This should cause
the program to
branch to a sub
routine away from
the main flow of

This continues the program.
the main flow of~--~----~
the program. This should also cause

SKIP ONE t----
AC=V {

INSTRUCTION the program to branch
away from the main flow.

EXAMPLE:

LOC OP ADDRESS REMARKS

100 CAS 350 Compare AC with Loc. 350

101 (If c(AC) > c(350), the computer takes this instr.)

102 (If c(AC) = c(350), the computer takes this instr.)

103 (If c(AC) < c(350), the computer takes this instr.)

INSTRUCTION: NOP (No Operation) Octal code: +076L
FORMAT: (Type D)

I OPCODE ~//II!h1
S,I II

DESCRIPTION: This causes no action on the part of the com
puter. It merely skips this instruction and continues to
the next instruction in sequence. One example of the use
of NOP was shown on page 70. Another use would be if only
a two way decision is needed after the CAS instruction.
For example, if both the > and = should take the program
to the same place, the instruction after CAS should be NOP.

77

Lesson 6, (cont'd)

EXAMPLE: Use locations as in previous examples.

Compute in ~loating point: (A + B)C= T Compare T with
c(SET). I~ T> c(SET), subtract A - B and store result in
GET. Otherwise store T in Loc. GET + 1.

LOC OP

CLA
FAD
XCA

FMP
CAS
TRA

NOP

STO

HTR

CLA
FSB
STO
HTR

ADDRESS

A
B

C
SET
JUMP

GET + 1

*

A
B
GET

*

REMARKS

Move A into AC
Add B to A
Move sum ~rom AC to MQ to pre
pare ~or multiplication
Multiply by C
Compare AC with c(SET)
I~ AC ;> , take next instr. ~rom
loco JUMP
Skip = compare, since both = and
< go the same way
I~ < or =, store T into Loc.
GET + 1
Halt - end o~ job

Move A into AC
Subtract A - B
Store into Loc. GET
Halt 2 - end o~ job

78

Lesson 6, (cont'd)

¥OPJ(AP~A

PROBLEM:

Use locations as in previous problems.

75. Compare A and B. If A>B, store A in loc. SET and
B in loc. BET. If A = B, store A in loc. SET and B
in loc. GET. If A<:B, store A in loc. SET and B in
loc. LET.

It would be worth while to take a piece of scratch
paper and flow chart this problem before attempting to
code it. Always use as few instructions as possible.

LOC OP ADDRESS

79

Lesson 6, (cont'd)

CORRECT ANSWER
PROBLEM:

75.
MOVE A
INTO AC

<

STORE A
INTO SET

STORE B __ -< STORE B
INTO 8ET INTO LET

LOC OP

CLA
STO
CAS
TRA
TRA
CLA
STO
HTR

JUMP CLA
STO
HTR

JUMP I CLA
STO
HTR

ADDRESS

A
SET
B
JUMP
JUMP I
B
LET

*

B
BET

*

B
GET

*

=

STORE B
INTO GET

HALT
END- OF- JOB

HEMARKS

Move A into AC
Store A into loc. SET
Compare A (in AC) with B
I:f AC>, go to loc. JUMP
I:f AC = , go to loc. JUMP 1
Move B into AC
AC ~ , store B in loc. LET
Halt - end o:f job

Move B into AC
Store B into loc. BET
Halt 2

Move B into AC
Store B into Loc. GET
Halt J

Since A goes into location SET under all three conditions,
it is easier to do it at the beginning than to repeat it
three times.

80

LESSON 7
ADDITIONAL PSEUDO OP. CODES:

PSEUDO OP. PZE (Plus Zero)
DESCRIPTION: This pseudo OPe code is primarily used to pro
vide constants in desired parts of a register. It describes
one word only and places zeros into the Sign and positions 1
and 2 of the word. The address, tag, and decrement may be
specified in the normal manner.

Examples: PZE Places zeros in Addr. , Tag, and Deer.
PZE 3 Places a 3 into Address
PZE 0,3 Places a 3 into Tag
PZE 0,0,3 Places a 3 into Decrement
PZE 3,3,3 Places a 3 into all three fields

Examples of the use of this pseudo op. code may be found in
Lesson 8.

PSEUDO OP. EQU (Equivalent or Equals)
DESCRIPTION: This pseudo OPe code is used to define a sym
bol. It means, "The symbol in the location field is equiva
lent to whatever is placed in the Address field." It may
also be used to equate one symbol to another.

Examples: Hold EQU 300 Hold = 300
CLA ALPHA*HOLD move ALPHA multiplied by 300

(HOLD) into AC.
A EQU 10 A = 10
X EQU 3 * 2 + 2 X = 8

PSEUDO OPe OCT (Octal Data)
DESCRIPTION: This pseudo OPe code defines a constant as an
Octal number. If the number of digits written in the ad
dress field is less than 12, the assembly program always
right adjusts.

Example: It is desired to place all (Binary) ones into a
word called X.

LOC. OP. ADDRESS
X OCT -377777777777

The word in storage will look like this:

~I,I,I,I,I,I,I,I,I,I,I,. • II
~"-" "-"""-.../

-3 7 7 7
If we wish to fill positions 24-35 of word X with 45678

LOC OP ADDRESS
X OCT

Result: @1o, -------. 0,1,0,0,1,0,1,1,1,0,1,1,,, (right adjusted)
'>.oJ '-" '-../ '-"

+ 4 5 6 7

81

Lesson 7, (cont'd)

PSEUDO OP: DEC (Decimal Data)
DESCRIPTION: This pseudo OPe code defines a constant as a
Decimal number. The following three rules must be observed
in writing constants in Decimal notation.

1. If floating point, must contain decimal point(.) or
(E), but not (B).

2. If fixed point, must contain (B) or be completely
free of all three signs (.) (E) (B).

3. If data contains (B), it is fixed point even if (.)
or (E) is also used.

Examples: fixed point numbers (refer back to page 37)

LOC OP
X DEC

x
X

DEC

DEC

ADDRESS
IlB32 the number 32 designates the Binary point

position.

11.B32 (same as above)

00101 1
, " ", I I

32 35
~I:J.
3

IlB5 Binary point after position 5: ~O!I,O!I!I,
1 5

'---" -..-
+1 3

X DEC 11 If Binary point is not designated, it is
presumed to be after position 35.

floating point numbers

X DEC 3.1415926BB non-integer (has fraction part)
Binary point at position 8

X DEC lIE (In floating point, the Binary point is
always fixed between positions 8 and 9)

X DEC llElO This means: 11 x 10
10

X DEC lIE3 This means: 11 x 103

X DEC 11.9

The only limitations to the number of Decimal numbers that
may be written in one line is that they may not extend be
yond column 71 and that they must be separated by commas.

FAP recognizes Decimal, Octal, and Hollerith data.
Hollerith is used primarily for headings and titles and will
not be discussed in detail here. Sufficient to say that
Hollerith was one of the developers of electrical contact
reading for the 1890 census. His work led to the present
day punched card system and his name is associated with cer
tain notation, primarily alphabetic, which is made accept
able to the computer by the use of the BCI or BCD pseudo OPe

codes or a literal (mentioned on the next page).

82

Lesson 7, (cont'd)

USE OF CONSTANTS AND LITERALS: Most programs deal with
a certain amount of data and very few programs are written
without the use of a number of constants. Constants are
usually made a part of the program, while the data, although
it may be part of the program, usually is used at the time
the program is executed.

A literal
position 16 of
dress field).
codes and they
follows:

OP
SUB
ADD

is specified by the equal (=) sign located in
the Coding Sheet (first position of the Ad
Literals are usually not used with pseudo OPe

are most easily explained by examples, as

ADDRESS
= 5
= 5
= ¢2777
= H JONES

REMARKS
Subtract 5
Add 5
Octal literal (2777)
Hollerith literal (JONES)

Constants are usually set up with the pseudo OPe codes
OCT or DEC. There are times when it is more practical to
use a literal. For example, if we were to add 5 to a se
quence of numbers, it could be accomplished in either of
two ways: (1) when the place to add was reached simply write
the instruction: (ADD = 5) and (2) set up a constant with
some label such as NOW (NOW DEC 5), and when the place to
add was reached, write the instruction (ADD NOW). This
second method takes one additional instruction to define
the constant (5).

EXAMPLES OF OCTAL AND DECIMAL CONSTANTS:

1. Show the Octal representation of the bits in
a storage location, of the following: (each Octal no. rep
resents 3 Binary digits except the first, which represents
only 2).

a. DEC -7 -000000000007

b. DEC 9 +000000000011

c. DEC 18 +000000000022

d. DEC IlBll +0013POOOOOOO

e. DEC 11.B29 +000000001300
A

83

Lessop 7, (cont'd)

EXAMPLES--continued

f. DEC 11BO

g. DEC • 125BO

h. OCT -2777

i. OCT 12345

j. Floating Point

1. DEC 7E - 6

2. DEC 1.

3. DEC 5.17E2

+000000000000
This would shift the entire number
out of the register as the Binary
point (or unit position of the num
ber) is to be in the zero position.

+040000000000
Here the Binary point is zero
again, but the fraction part will
go to the right of the point •
• 12510 = .18 = 0.0012 In Binary,

the word would look

~ 0,0, I ,0.0 '

like this:

~ +Ao 4
-000000002777

+000000012345

(refer to page 41)

This means: 7 x 10-6

•

char. mantissa

In Binary: @ll, 0,0,0,0,0,0,111,0,0,
............. ~,

+2 ° I 4
In Octal: I 2 ° I 4 ° ° I

• Normalized 1
= .lx2 ~O= 18 001. 2 (2008 + 1 8=2018)

This means: 5 17 -_ 102
•

51710 = 10058 = 001000000101. 2

= .100000010100 x 212 (Octal)
(2008 + 128 = 2128)

char. mantissa

2 I 2 4 ° 2 4

84

Lesson 7, (cont'd)

WORK. AREA

PROBLEMS:

76. Show the Octal representation of the following
constants: (Also indicate the sign)

a. DEC J5 qL-...-____ -----I

b. DEC J5. qL....-.--____ -----l

c. OCT -J77777
qL...,...-. ----~

d. DEC 27B26

e. OCT (blank) qr-------------,

f. DEC -J.5El ql...----___ ----J

g. DEC .171875 q~ ___ ----J

h. DEC 5.498BO q~--------.!

85

Lesson 7, (conttd)

CORRECT ANSWER

PROBLEM 76:

a.etto 0 0 0 0 0 0 0 0 0 4 31

b. Gi 2 0 6 4 3 0 0 0 0 0 0 0 I

c. r=J 0 0 0 0 0 0 3 7 7 7 7 71

d.~ 0 0 0 0 000 3 3 0001

e.G1 0 0 0 0 0 0 0 0 0 0 0 0 I

f.~ 2 0 6 4 3 0 0 0 0 0 0 01

g.~ 1 7 6 5 4 0 0 0 0 0 0 01

Fixed point

Floating point because of the
decimal point.

Right adjusted

Binary point fixed at posi
tion 26.

Blank after the pseudo-ope
code means zero.

3510 = 438 = 100011. 2 =
.100011x26 (2008+68 = 2068)

.17187510 =

.0010110002
12810 - 210

.1308 =

= .101100

= 12610 =

h.~ 3 7 7 0 0 0 0 0 0 0 0 01 .49810 = .3778

the whole number is lost,
since the Binary point is
set at zero

Examples of the use of a constant in a program may be

found on pages 100 and 102.

86

Lesson 7, (cont'd)

WORK AREA

PROBLE~l:

77. Fifty floating point numbers are in loco A through
A + 49. All words that are equal to J, will be added and
placed into loco B. Display B in the MQ when job is done.
Flow chart the problem before attempting to code it.

LOC OP VARIABLE REHARKS

87

Lesson 7, (cont1d)

PROBLEM 77:

ZERO BAND
AN AREAFOR
COUNTING

PICK UP
A

INCREASE
PICKUP

BY I

INCREASE
COUNTER

BY I

MOVE B
INTO MQ

CORRECT ANSWER

LOC

PICKUP

OP
COUNT
STZ
STZ
CLA
CAS
TRA

TRA

BUMP CLA
ADD

STO
...------, CLA

ADD TO B ADD
AND STORE STO

IN B
'----r------' SUB

TZE
TRA

EQUAL FAD
STO
TRA

THRU LDQ
HTR

COUNTR PZE
B PZE
A BSS
THREE DEC
ONE DEC
FIFTY DEC

END

VARIABLE
28
B
COUNTR
A
THREE
*+2

EQUAL

PICKUP
ONE

PICKUP
COUNTR
ONE
COUNTR
FIFTY

THRU
PICKUP

B
B
BUHP
B

*

50
3.0
I
50

REl-IARKS

Move A into AC
compare AC with 3
not equal, go to 2nd
instr.
is =, go to EQUAL
routine

}
Increase A to A + I,
etc. (see Note below)

}Increase counter by 1

To check if counter
= 50
If = 50, go to THRU
Otherwise, back to
PICKUP to go through
loop again
Add to B
Store in B
go back to BlJl.1P rout.
Move B to MQ
Halt - end of job

Note: Address modification is covered in Les
son 8. Essentially, the three instructions
used here modify the address, using algebraic
addition. This type of programming must be
done very carefully because of the possibility
of making mistakes. All variables involved
here are positive. If the instruction at PICK
UP had a negative operation code, the desired
address modification would not be obtained.

88

Lesson 7, (cont'd)

INSTRUCTIONS: The instructions that follow make it possible
to store part of the contents of the
ponding part of a word in storage.

corres--

INSTRUCTION:- STA (Store address) Octal code: +0621
FOID-IAT: (Type B)

I OP CODE IlA ~TAG I y

S,I 1112-13 18-2021 35

DESCRIPTION: The c(AC) positions 21-35, replace the c(Y)
positions 21-35. The contents of Y (Sl-20) and the c(AC)
remain unchanged.

INSTRUCTION: STD (Store DECREMENT) Octal code: +0622
FORMAT: (Type B)

I OP CODE I IA W/aTAG I y

5,1 1112-13 18-2021 35

DESCRIPTION: The c(AC) positions 3-17 replace the c(Y)
positions 3-17. The contents of Y (S,1,2,18-35) and the
c(AC) remain unchanged.

INSTRUCTION: STT (Store TAG) Octal code: +0625
FORMAT: (Type B)

lOp CODE IlA WMTAGI y

5,1 1112-13 18-2021 35

DESCRIPTION: The c(AC) positions 18-20 replace the c(Y)
positions 18-20. The contents of Y (S, 1-17, 21-35) and
the c(AC) remain unchanged).

INSTRUCTION: STP (Store Prefix) Octal code: +0630
FORMAT: (Type B)

S,I 1112-13 18-2021 35

DESCRIPTION: The c(AC) positions P, 1, 2 replace the c(Y)
positions S, 1, 2. The contents of Y (3-35) and the c(AC)
remain unchanged.

89

Lesson 7, (cont'd)

EXAHPLES:

1. Place the TAG of the word presently in location
TOTAL, into loco Al. Place the Address into loco A2.

LOC OP ADDRESS REMARKS
COUNT 11 Total of 11 cards

used for program.
STZ Al Clear out loco Al
STZ A2 Clear out loco A2
CLA TOTAL Move TOTAL into AC
STT Al Store TAG into Al
STA A2 Store Address into A2
HTR * Halt

TOTAL BSS 1
Al BSS 1 } Allocate storage
A2 BSS 1 space for symbols

used
END End of 12ro~ram

2. The Ope Code of the instruction in loco HOLD is
CLA. Store this Ope Code into loco AB2. This must be done
in a rather devious way since the instructions just covered
do not move digits 1-11.

LOC OP ADDRESS REMARKS
COUNT 10 Total of 10 cards in

program

MQ STZ AB2 Clear out loco AB2

q 1,2,3, ~ 5, 6?,S,9,IO,II, LDQ HOLD Move HOLD into MQ

AC MQ LLS 8 Shift left to move
,1,2,3,4,5,6, 7,sR9 ,10,11, Ope Code into AC

(leavin~ off the last
J digits since they

Q AC
are Octal zero) •

S / /I,2,3,4,5,6,7,S, ALS 27 AC left shift to put
Ope Code in the • QP

proper place in AC

STO AB2 Store from AC to
loco AB2

HTR * Halt

HOLD BSS 1 }Allocate storage po-
sitions

AB2 BSS 1

END End of program.

90

Lesson 7, (cont'd)

WORK AREA

PROBLEN:

78. A Type B instruction is in location HOLD. Move
the Ope Code into loc. Bl, the TAG into loc. B2 and the Ad
dress into loco BJ.

LOC OP ADDRESS REMARKS

91

Lesson 7, (cont1d)

PROBLEM 78:

LOC

HOLD

Bl

B2

B3

CORRECT ANSWER

OP ADDRESS

COUNT 17
STZ Bl

STZ B2

STZ B3

LDQ

LLS

ALS

STO

CLA.

STT

STA

HTR

BSS

BSS

BSS

BSS

END

HOLD

11

24

Bl

HOLD

B2

B3

*

1

1

1

1

92

REMARKS

Move HOLD into MQ

Shi£t le£t 11 places
to move Op. Code into
AC (since we do not
know what the last
Octal no. o£ Op. Code
is, we must move it
all) •

AC le£t shi£t to move
Op. Code into proper
position in the AC
(11 + 24 = 35)
Store Op. Code into Bl

Move HOLD into AC

Move TAG into B2

Move Address into B3

Halt - end o£ job

LESSON 8

USE OF INDEX REGISTERS: The primary use of Index Registers
is for purposes of counting and address modification. The
7090 contains three Index Registers, commonly referred to as
XR1, XR2, and XR4 (please refer back to page 17, par. 3 and
page 21, definition of TAG). There is no provision for a
sign, so the contents of an Index Register are always con
sidered to be positive.

PRESUMPTIVE AND EFFECTIVE ADDRESSES: When an addre s s is to
be modified by using an Index Register, a TAG is specified.
In this case, the address of the instruction is not the ~
address, but is called the presumptive address. The true
address (called the effective address) is the presumptive
address minus the contents of the specified Index Register.

EXAMPLE: CLA 200,2 This tells the computer to place
the contents of location 200 minus the contents of XR2 into
the AC. If XR2 contained a 10, the effective instruction
would be:

CLA 190

In this way, the address of the instruction has been modi
fied.

ADDRESS MODIFICATION: There are many reasons why an address
should be modified in a program. For example, if we want to
add a fixed amount to a large number of sequential addresses.
This could be accomplished by a large series of ADD instruc
tions, but it would be extremely wasteful of storage. It is
much more advantageous to give the ADD instruction once,
modified by an Index Register which will be incremented or
decremented in a loop which will continue until all of the
desired addresses are modified.

A more detailed example of this process involves in
structions which are found on pages 94 and 95. The examples
on pages 97 and 98 attempt to show the process of address
modification and counting in greater detail.

Two, and even three, Index Registers may be used, de
pending on the complexity of the problem. Pages 103 and 104
go into more detail on the use of multiple Index Registers.

It is extremely import-ant to understand Indexing and
the reasoning behind the use of Index Registers because they
are used very extensively in programming. For this reason
it is recommended that Lesson 8 be studied and restudied
until all points have been understood.

93

Lesson 8, (cont'd)

INSTRUCTIONS: The following instructions are used to load
and store the contents of index registers. The TAG speci
fies the Index Register (or Registers) to be affected (see
page 21 for Binary codes for Index Registers.

INSTRUCTION: LXA (load Index from Address) Octal code:+0534
FORMAT: (Type B)

I OP CODE WI. TAG I y

5.1 II 18- 2021 35

DESCRIPTION: The address part of the c(Y) (positions 21-35)
replaces the number in the specified Index Register (XR).
The c(Y) are unchanged.

INSTRUCTION: LXD(Load Index from Decrement) Octal code: -0534.
FORMAT: (Type B)

I OPCODE ~TAGI Y

5,1 II 18- 2021 35

DESCRIPTION: The decrement part of the c(Y) (positions 3-
17) replaces the number in the specified Index Register (XR).
The c(Y) are unchanged.

INSTRUCTION: AXT (Address to Index True) Octal code: +0774
FORMAT: (Type B)

I OP CODE VII #ffi'#h1 TAG I y

5,1 II 18- 2021 35

DESCRIPTION: This is identical to the LXA instruction above
except that instead of the contents of Y moving into the
Index Register, whatever is in Y will move into it. See
examples on page 96.

INSTRUCTION: TSX (Transfer and Set Index) Octal code: +0074
FORMAT: (Type B)

OP CODE IlA W~TAG I y

5.1 1112-13 18- 2021 35

DESCRIPTION: This instruction places the 2'5 complement of
the instruction counter contents into the Index Register
specified by the TAG.

EXAMPLE: 10010"110
01101001

1
01101010

94

l's compl. (simply reverse)
2's compl. (add 1)

Lesson 8, (cont'd)

INSTRUCTIONS: The following instructions are used to test
or modify (or both test and modify) the contents of the Index
Register specified by the TAG.

INSTRUCTION: TIX (Transfer on Index) Octal code: +2000
FOR}IAT: (Type A)

lop I DECREMENT ITAG I y
5,1,23 1718-2021 35

DESCRIPTION: If the contents of the Index Register, speci
fied by the TAG, are greater than the Decrement, the number
in the Index Register is reduced by the Decrement and the
next instruction is taken from the location specified by Y.
Otherwise, the TAG remains unchanged and the computer goes
on to the next instruction in sequence.

INSTRUCTION: TXI (Transfer with
Octal code: +1000

Index Incremented)

FORMAT: (Type A)
y

5,1,23 1718-2021 35

DESCRIPTION: The decrement portion of the instruction (pos.
3-17) is added to the contents of the Index Register speci
fied by the TAG. The resulting sum moves into the Index
Register and the computer then takes its next instruction
from the location specified by Y.

INSTRUCTION: TXL (Transfer on Index Low or Equal)
Octal code: -3000

FOIDfA T : (Type A)

lop I DECREMENT ITAG I y

5,1,23 1718-2021 35

DESCRIPTION: If the contents of the Index Register, speci
fied by the TAG, are less than or equal to the Decrement,
the next instruction is taken from the location specified
by Y. Otherwise, the computer takes the next instruction
in sequence.

INSTRUCTION: TXH (Transfer on Index High) Octal code: +3000
FORMAT: (Type A)

y

5,1,23 1718-2021 35

DESCRIPTION: If the contents of the Index Register, speci
fied by the TAG, are greater than the Decrement, the next
instruction is taken from the location specified by Y. Other
wise, the computer takes the next instruction in sequence.

95

Lesson 8, (cont'd)

EXAMPLES:

OP

1. LXA

VARIABLE FIELD
(Address, Tag,

Decrement)

HOLD, 2

HOLD PZE 15

2. LXD

Jl PZE

3. TSX
HTR

HOLD TRA

4. AXT

5. TIX

6. TXI

TXL

8. TXH

Jl, 1

10, 3, 6

HOLD, 4

*

1, 4

200, 1

Start, 2, 5

AB2, 2, 7

HOLD, 4, 13

HOLD, 1, 3

96

REMARKS

15 is loaded into XR2 (De
rined by the PZE below)

6 is loaded into XRl (The
PZE derines 10 ror Address,
3 ror Tag and 6 ror Decre
ment.)

Computer transrers to loc
HOLD and sets XR4 equal to
minus the loc or the TSX.
Thus a transrer to 1, 4 at
HOLD will return the com
puter to the location or
the TSX plus 1.

This means: move the digits
20010 into XRl. Not the
contents or loc. 200, but
the actual numbers (200)
move into XRl.

This means: ir c(XR2) are
greater than the Decrement
or 5, the number in XR2 is
reduced by 5, and control
is transrerred to location
START. Otherwise, on to
the next instruction.

This means: add Decrement
or 7 to the c(XR2) and
transrer control to loc AB2.

This means: ir c(XR4) are
less than or equal to the
Decrement or 13, transrer
control to location HOLD.
Otherwise, on to the next
instruction.

This means: ir c(XRl) are
greater than the Decrement
or 3 transrer control to
location HOLD. Otherwise,
on to the next instruction.

Lesson 8, (cont1d)

EXAMPLE:

PROBLEM: A block of 20 numbers are stored consecutively in
storage, beginning in location TABLE. Store this block of
numbers in the same order in storage beginning with location
XYZ. Show a partial program to accomplish this action.

LOC OP

LXA
START CLA

ST~

TIX

HTR

STORE PZE

TABLE BSS

XYZ BSS

VARIABLE FIELD

STORE, 2
Table + 20, 2

XYZ + 20, 2

START, 2, 1

*
20

20

20

REMARKS

Move 20 to XR2
Move 1,2,3---through 20 to
AC
Move 1 to loco XYZ, 2 to
XYZ + I, etc.
If c(XR2) is greater than
1, subtract 1 and go to
START
Halt - end of job

Set up one word containing
20 in address field
Allocate 20 storage posi
tions to TABLE
Allocate 20 storage posi
tions to XYZ

Let us examine what has been accomplished by this
program:

(1) Since there are 20 numbers, 20 is loaded into an
Index Register.

(2) The CLA instruction moves the first of the 20 num
bers into the AC. (It says, "move TABLE + 20 - XR2 (which
contains 20»." Therefore the first of the 20 numbers in
loco TABLE goes into the AC.

(3) The STO instruction works the same way, XYZ + 20 -
20 = xyz.

(4) The next step is to compare the contents of XR2 with
the Decrement of 1. The number in XR2 is reduced by the
Decrement of 1, so XR2 now stands at 19, the program goes
back to START and goes through the loop again, moving the
second number since now we have TABLE + 20 - 19. Again, 1
drops from the Index Register and this continues until XR2
finally stands at 1, at which time all 20 numbers have been
moved and since XR2 is equal to the Decrement of 1, the
program goes on to the HALT instruction and the job is done.

Please review this example until it is thoroughly
understood. Read over the TIX instruction on page 95, as
this problem demonstrates its use very effectively.

97

Lesson 8, (cont'd)

EXAMPLE: Given 50 floating point numbers stored in DATA
through DATA + 49. Sum all positive numbers and store in
location TOTAL. Sum all negative numbers and store in loca
tion NEGNO. Show a partial program to accomplish this
action.

FLOV[CHAIn:

ZERO OUT
TOTAL AND

NEGNO

LOC OP
STZ
STZ
AXT

LOOP CLA

TMI

FAD

STO

TEST TIX

HTR

NEG FAD

STO

TRA

TOTAL BSS
NEGNO BSS

SET UP
XR =50

VARIABLE
TOTAL
NEGNO
50, 2

PICK UP
NUMBER

TAGGED BY
XR

ADDTO
NEGNO

REf.lARI<:S

ADD TO
TOTAL

Zero out position TOTAL
Zero out position on NEGNO
Set up 50 in XR2

YES

DATA + 50, 2 :r-iove DATA + 50-50 into AC
This moves in :first word (DATA)
I:f number is negative, jump
to loco NEG.

NEG

TOTAL

TOTAL

LOOP,

*

NEGNO

NEGNO

TEST

1
1

2, 1

If not -, must be +, add to
whatever is in TOTAL
Move from AC, back to storage
loco TOTAL
Has XR2 dropped to 17 If not,
take of:f 1 and go back to
LOOP (the second time through
LOOP, move DATA + 50-49, or
DATA + 1 into AC.
HALT - When the program has
gone through LOOP 50 times,
XR2 will = 1 and that is the
finish o:f the job o

I:f no. was - in :first instr.
past LOOP, program comes here
and add to whatever was in
NEGNO.
Move from AC to storage loco
NEGNO
Go back to test XR to see if
:finished.
Allocate 1 position to TOTAL
Allocate 1 position to NEGNO

Notice that AXT was used to set up 50 in Index Register,
rather than LXA. This saves one instruction as we don't
need to set up a constant with the PZE instruction o

98

Lesson 8, (cont'd)

WORK AREA

PROBLEM:

79. Twenty fixed point numbers are stored consecutively,
starting in location HOLD. Twenty other fixed point num
bers are stored consecutively, starting in location STAND.
Place HOLD - STAND into location TOTAL, HOLD + 1 - STAND + 1
into loc. TOTAL + 1, HOLD + 2 - STAND + 2 into loc. TOTAL
+ 2, etc. If an overflow occurs, replace that difference
by ~ bits in all positions of the word. Show a partial
program to accomplish this action.

Loe OP VARIABLE FIELD REMARKS

99

Lesson 8, (cont'd)

PROBLE:t-l 79:

LOC OP

TOV

AXT
START CLA

SUB

TOV

STO

TIX

HTR

GO CLA

TRA

OCTAL OCT

HOLD BSS
STAND BSS
TOTAL BSS

CORRECT ANSWER

VARIABLE FIELD

* + 1

20, 1
HOLD + 20, 1

STAND +20, 1

GO

TOTAL +20, 1

START, 1, 1

*

OCTAL

START + 3

-377777777777

20
20
20

REMARKS

Make sure over£low
indicator is o££.
Place 20 into XRl
Move HOLD, HOLD + 1,
HOLD + 2, etc. to AC
Subtract HOLD - STAND
etc.
I£ over£low, jump to
GO
Di££erences into
TOTAL, TOTAL + 1, etc
(or all liS)
I£ c(XR1) is greater
than 1, go to START
Otherwise HALT - end
o£ job.

Replace over£low di£-
£erence with all ones.
Go to third instruc-
tion past START

Set up Octal constant
to produce all ones.

Allocate storage
locations

This works exactly the same as the example shown on
page 97. One or two additional things were thrown in, but
these should not have obscured the basic problem o£ moving
a series o£ numbers £rom one place in storage to another
place in storage.

100

Lesson 8, (conttd)

WORK AREA

PROBLEM:

80. Generate a table of numbers from 0 through 1000, in
increments of 5. store the first number in location 500.
Show a partial program to accomplish this action. Flow
chart the problem on scratch paper before starting to code.

LOC OP VARIABLE REMARKS

101

Lesson 8, (cont'd)

CORRECT ANSWER

PROBLEM 80.

STORE
ZEROS

IN TABLE

LOC OP

STZ
CLA
STO

AXT
LOOP SUB

TZE
CLA
ADD
STO
TXI

STO
TRA

HALT HTR

FIVE DEC

TABLE DEC

PLACE
ZEROS

INTO LOC.500

VARIABLE

TABLE
TABLE
500

0, 1
= 1000

HALT
TABLE
FIVE
TABLE
*+1, 1,

500, 1
LOOP

*
5

INCREASE
TABLE BY

5

SET UPXR
WITH

ZEROS

ALGEBR.
SUBTRACT

1000

INCREASE
POSITION

BY I

-1

REMARKS

HALT
END- OF-JOB

Store zeros into TABLE
Move TABLE into AC
Store TABLE (containing
zeros) into loco 500
Set up XRl with zeros
Algebraic subtract a storage
position containing 1000
If TABLE = 1000, go to HALT
If not 1000, bump

table by
five

Bump XRl by -1 and go to
next instruction (*+1)
Store this number away
Go back through the LOOP
again

Halt - end of job

Set up constant of 5 to in
crement the numbers.
Set up a number at rando~ in
location called TABLE. This
will be zeroed out by first
STZ instruction.

In this case by using TXI and using -1, we are actually
increasing the address of the STORE by 1. Since we started
with zero, the program continues through the LOOP until 1000
is reached, at which time it transfers to HALT.

Note the connector{l)in the flow chart above. Connec
tors are used in flow ~arting instead of crossing over
lines. This is particularly necessary in large flow charts
that cover more than one page or where there are a number
of returns to earlier parts of the flow chart.

102

Lesson 8, (cont'd)

USE OF TWO OR TIlREE Il~DEX REGISTERS ~ The problem to be
solved may be complex enough to require more than one Index
Register. The computer allows the programmer the capability
of using two, or even three, Index Registers at the same
time to do different jobs.

For example, if we wished to move 50 sequential words
located at A through A + 49, to iocation B through B + 49
and we also wanted to move every tenth word to C through
C + 4, this could be accomplished by setting up two Index
Registers (one to make 50 moves and the other to pick up
every tenth move).

In the same manner, if the problem calls for three dif
ferent types of action at the same time, three Index Regis
ters may be used to control the action.

Generally, Index Registers are used in the execution of
a LOOP, where the program goes around and around the LOOP
until that part of the job is finished. In using more than
one Index Register, great care must be taken that the two
(or three) loops do not interfere with each other and that
each one does its own job.

On the following pages, the simple example given above
will be flow charted and programmed as an example of the
use of two Index Registers. Follow it through carefully
before attempting the problem on page 106.

103

Lesson 8, (cont'd)

EXAMPLE:

Move 50 sequential words located at A through A + 49 to
location B through B + 49. Also move every tenth word to
location C through C + 4. Use XRl to make the 50 word move
and XR4 to pick up every tenth word.

MOVE TO

LOC.C
MODIFY

XR4

!1&! CHART

YES

SETUP
XRI ANDXR4

MOVE A TO
B MODIFIED

BY XRI

104

NO MODIFY
XRI

Lesson 8, (cont1d)

PROGRAM

LOC OP VARIABLE REMARKS

COUNT 19

AXT 50, 1 }set up){R's AXT 5, 4

LOOP CLA A + 50, 1 ~fove A into AC

STO B + 50, 1 Store in loc. B

CNPXR4 TXL MXR4, 1, 40 Moved 10 words?

TIX LOOP, 1, 1 No, moved 50 words?

HTR * Through - Halt

MXR4 STO C + 5, 4 Put 10th word into C

CLA CNST 1 Put 40 into AC

SUB = 10BI7 Subtract 10

STD CNPXR4 Changes 40 to JO, etc.
(by storing Decrement
of AC to replace 40,
etc.)

STO CNST 1 Save for next subtract

TXI Cl>fPXR4 + 1, 4, -1 Decrement XR4

CNST 1 DEC 40B17 Constant for XR4 in
Decr.

A BSS 50

B BSS 50 }A110cate storage to A,
B, and C

C BSS 5

END

105

Lesson 8, (cont'd)

WORK AREA

PROBLEJ.l:

81. Expand the problem on page 104 as follows:

~love 50 sequential words located at A through
A + 49 to location B through B + 49. Also move every fifth
word to location C through C + 9 and every tenth word to
location D through D + 4. Use XRl to make the 50 word
move, XR2 to pick up every fifth word and XR4 to pick up
every tenth word.

FLOW CHART

106

Lesson 8, (cont 1 d)

WORK AREA

PROGRAM:

LOC OP VARIABLE REMARKS

107

Lesson 8, (cont'd)

PROBLEM 81:

FLOW· CHART

MODIFY
XR2

MOVE TO
LOC. C

YES

MODIFY
XR4

MOVE TO

LOC. D

SETUPXRI,
XR2,AND

XR4

MOVEA TO
B MODIA~D

BYXRI

NO

CORRECT ANSWER

LOC OP
COUNT

AXT
AXT
AXT

LOOP CLA
STO

CMPXR2 TXL
CMPXR4 TXL

TIX

HTR
MXR2 STO

MXR4

CONST 1
CONST 2
A
B
C
D

MODIFY
XRI

XCA
CLA
SUB
STD

STO
XCA
TXI

STO

CLA
SUB
STD

STO
TXI

DEC
DEC
BSS
BSS
BSS
BSS
END

VARIABLE REMARKS
31
50, 1 }
10, 2 Set up XR's
5, 4
A + 50, 1 Move A to AC
B + 50, 1 Store in loc. B

MXR2,1,45 moved 5 ~ords?
MXR4 , 1,40 no. moved 10 words?
LOOP,l,l no. 50 words,

through?
* Halt - finished
C + 10,2

CONST 1
=5B17
CMPXR2

CONST 1

Put 5th word in C
Save AC in MQ
Put 45 into AC
Subtract 5
This changes 45
to 40, etc.

CMPXR4, 2 J

Save for next sub.
Restore AC from MQ
-1

D + 5, 4

CONST 2
=10B17
CMPXR4

CONST 2
CMPXR4

45B17
40B17
50
50
10
5

Decrement XR2

Put 10th word
into D
Put 40 into AC
Subtract 10
This changes 40 to
30, etc.
Save for next sub.

+1, 4, -1
Decrement XR4

Constant for XR2
Constant for XR4

}
Allocate storage
to A, B, C and D

108

LESSON 9
QUICK REFERENCE

Ref'er to
Pag:e No.

1.

47

30

77

2.

27
29
29

69

29

MISCELLANEOUS INSTRUCTIONS

XCA (+0131) EXCHANGE AC AND MQ - Reverses two
f'ields

HTR (+0000) HALT AND TRANSFER - Halts program,
if' restart, goes to Y.

NOP (+0761) NO OPERATION - Program continues
with next instruction.

FIXED POINT ARITHMETIC INSTRUCTIONS

ADD ~+0400) ADD - Add Y to AC
SUB ~+0402~ SUBTRACT - Subtract Y f'rom AC
MPY \+0200, }?JLTIPLY - Multiply Y by MQ, product

in AC (and MQ if' needed)
RND (+0760-0010) ROUND - Increase AC by Binary 1

if' posit. 1 of' MQ contains 1.
DVH (+0220) DIVIDE OR HALT - AC and MQ are

dividend, Y is Divisor, Quotient in
MQ, remainder in AC. If' can't
divide, Halt.

69 DVP (+0221) DIVIDE OR PROCEED - As above, ex-
cept that if' can't divide, continue
with program with Div. check light
on.

69 DCT (+0760-0012) DIVIDE CHECK TEST - If' indica-

46
46

46
46

tor on, takes next instruction. If'
indicator of'f', skips one instr.

3. FLOATING POINT ARITHMETIC INSTRUCTIONS

FAD ~+0300~ FLOATING ADD - Add Y to AC
FSB +0302 FLOATING SUBTRACT - Subtract Y from

AC
FMP (+0260) FLOATING MULTIPLY - Multiply Y by MQ
FDH (+0240) FLOATING DIVIDE OR HALT - AC divided

by Y. Quotient in MQ, remainder in
AC. If' can't divide, HALT.

4. SHIFTING INSTRUCTIONS

47 ALS (+0767) AC LEFT SHIFT - The AC shif't lef't
no. position in Y 28-35.

47 ARS (+0071) AC RIGHT SHIFT - As above, only
shif't to the right.

73 LLS (+0763) LONG LEFT SHIFT - AC and MQ as one
register, shif'ted lef't, no. places
specif'ied in Y 28-35.

73 LRS (+0765) LONG RIGHT SHIFT - As above, only
shif't to the right.

109

Lesson 9, (cont'd)

Ref'er to
Page No.

27
29
30
30
73

89

89

89

89

73
31

31

47

47

77

52

53

5. STORE ~~ LOAD n~STRUCTIONS:

CLA
STO
LDQ
STQ
STZ

+0500
+0601
+0560
-0600
+0600

CLEAR AND ADD - Move Y into AC
STORE - Move AC into Y
LOAD HQ REGISTER - Move Y into HQ
STORE FRO],! ~iQ REGISTER - Move MQ into Y
STORE ZEROS - Move zeros into Y, sign
to +

STA (+0621) STORE ADDRESS-From AC 21_
35

to Y21-
35

STD (+0622) STORE DECRE~mNT-From AC
3

_
17

to Y
3

-
17

STT (+0625) STORE TAG - From AC18_20 to Y18- 20
STP (+0630) STORE PREFIX-From ACS ,1,2to YS ,l,2

6. TRANSFER INSTRUCTIONS (NO INDEX):

TRA (+0020) TRANSFER - Trans. to instr. spec. by Y
TZE (+0100) TRANSFER ON ZERO - If' AC = Zero trans

f'er to Y Otherwise on to next instr.
TOV (+0140) TRANSFER ON OVERFLOW-If' AC overf'low

TPL (+0120)

TNI (-0120)

CAS (+0340)

N:t:T (-0520)

ZET (+0520)

indicator on, transf'er to Y, otherwise
on to next instruction.
TruL~SFER ON PLUS - If' sign of' AC +,
transf'er to Y, otherwise to next instr.
TRANSFER ON :f.IINUS-If' sign of' AC-,
trans. to Y, otherwise to next instr.
CmlPARE AC WITH Y-If' c(AC» c(Y) go to
next instr. If' =, skip one instr. If'
< , skip two instr.
STORAGE NOT ZERO TEST - If' c(Y) are
not 0, skip instr. If' c(Y) are 0, on
to next instr.
STORAGE ZERO TEST - This is the op-
posite of' NZT instr.

7. TRANSFER INSTRUCTIONS (INDEX):
95 TIX (+2000) TRANSFER ON INDEX-If' c(XR»Decr., XR

reduced by Deer. and on to Y. Other
wise on to next instr.

95 TXI (+1000) TRANS. WITH INDEX INCREHENTED - Adds
Deer. to XR and on to Y

95 TXL (-3000) TRANS. ON INDEX LOW OR EQUAL-If' c(XR)
<:or = Deer. go to Y, otherwise on to
next instr~

95 TXH (+ 3000) TRANS. ON INDEX HIGH - If' c (XR) >
Decrement, go to Y, otherwise on to
next instruction.

95 TSX (+0074) TRANS. AND SET INDEX - Places 2's
comp1. of' instruction CTR into XR,
next instruction f'rom loc. Y.

110

Lesson 9, (cont'd)

Refer to
Page No.

94

94

94

60

60
60

81

81
81

82

8. INDEXING INSTRUCTIONS:

LXA (+0534) LOAD INDEX FROM ADDRESS -
:Hoves into specified XR.

C(Y)21-35

- c(Y)3-17 LXD (-0534) LOAD INDEX FROM DECREMENT
~Ioves into specified XR.

AXT (+0774) ADDRESSEE TO INDEX TRUE - Positions21_35 of this instruction, moves into
specified XR.

9. PSEUDO OPERATION CODES:

COUNT - COUNT - First card of symbolic deck. Gives

END
BSS

PZE

EQU
OCT

DEC

number of cards in program.
- END - Last card of symbolic deck.
- BLOCK STARTED BY SYMBOL - Allocates block of

storage. First loco of block tagged by a
symbol.

- PLUS ZERO - Assigns one word and puts zeros
into S, 1, 2. Can specify address, tag,
decrement.

- EQUIVALENT - Used to define a symbol.
- OCTAL DATA - Data generating, series of

variables.
- DECl}~L DATA - Data generating, decimal

integers, fixed pt. or floating pt.

REVIEW AND SELF-TEST

"The following pages touch on those areas with which the
student should now be familiar. Page references will be
given with the correct answers and it is suggested that the
reference be checked on all questions answered incorrectly.

Consider this to be a self-administered, open book quiz.
There will be 25 questions covering the first eight lessons
and a problem to be flow-charted and coded. Answer all the
questions and complete the coding before checking the
correct answers. The correct answers to the 25 questions
may be found on page 116 and the correct solution to the
problem on pages 117 and 118.

Subtract two points for each question missed (if half a
question is missed, subtract one point) and subtract one
point for each coding error from a total possible of 100.
Total score on the two parts should be 70 or over and three
hours is maximum time for the entire quiz.

The quick reference of the 43 instructions and 7 pseudo
OPe codes at the beginning of this lesson, is to aid the
student in the quick recall of instructions.

111

Lesson 9, (cont'd)

PROBLEMS

83. Convert 75910 to Binary notation.

84. Add: 001 101 110 011
+ 000 100 011 001

85. a. Which is considered greater by the computer?
circle one

b. A Binary "one" in the
sign position o£ a word B B indicates

86. In Division, the Quotient is always in the ________ __
register.

87. Show the Ope Code o£ STQ, as it would look in storage.

q.,." .. ",1
1234567891011

88. a. Show a machine word containing the £ollowing
£ixed point number:

7342.12318 ~~---------------------------
b. Indicate the position o£ the Binary point.

89. Instructions
CLA A
SUB B

90. a. Add: +35
(+) .=J2

Sign o£D
Result:

Divide: ill.

Contents o£ A
1278

Contents o£ B.
368

Subtract:
(-)

+35
.::l2.

D

Result
in AC:

Multiply: +35
(X) .=.l2.

D
Quo. Rem.

(+) -39 D D

112

Lesson 9, (cont'd)

91. Show the following in normalized form:
- -'- xlO .0027610

i
a. 1 0 '.10 c. I
b. 22.1610

xlO d. 100.0112 I
92. Show the "characteristic" of the following floating

point number:

q , ,C~~R:
12345678

93. Show the entire floating point word for the following
number: n Cbar. Mantissa

32610 !

94. Add two fixed point numbers (A + B). Move so that the
Binary point in the AC will be between positions 9 and 10.

OP
CLA
ADD

0 1

VARIABLE
A
B

0 1

95. The only instruction allowing for a three-way branch,
is

96. In writing a program on a Symbolic Coding Sheet, the
Loc. Code is placed starting in column • the Ope
Code starts in column and the Address in
column • Comments may not extend beyond column •

97. To indicate whether each of the following is an Element,
Term or Expression, use the following symbols. Element:
E, Term: T, Expression: X.

a. 500/7520 d. HOLD + A2 * c

b. TOTAL e. ABZ * AB3/X

c. ALPHA * BETA f. A + B * C + X2 _ z

98. TRA *+2 means:

113

Lesson 9, (cont'd)

99. HOLD PZE 15, 2, 27. Show the contents of storage loca
tion HOLD in Binary form(leave Sign and pOSe 1 and 2 blank).

~
100. Show the Octal representation of the following con

stants:

a. DEC 26B26

b. OCT 2211

c. DEC .003906BO

d. DEC 7.

101. Take the result of problem 99 and apply the following
instructions:

STA 200
STD 300
STT 400

Show the pertinent portions of the above locations
after the instructions have been executed.

q~--~----~ wo q~-=~--~
300

102. When an instruction contains a TAG, the address of the
instruction is called the address.

103. Index Register 2 looks like this:rclol.,4;============= •• ~,0),III,II~,oml

The instruction is: TIX A9, 2, 3.
a. After instruction executed,

how will XR2 look?

b. Will control go to A9 or to next instruction? ______ __

104. Contents of XR4

Instruction: TXL HOLD, 4, 124
Control would be transferred to __________________ _

105. a. What do we put into an Index Register, to change the
address of an instruction from 130 to 125? -------------------

b. Which instruction is best used for this purpose?

----------------------. 106. Instruction: STO ** 5 This means: ____________________ __

107. ADD = 250 means: __ _

114

Lesson 9, (contJd)

PROBLEM:

108. Given 10 floaXing point numbers located in AA
through AA + 9. Given one floating point number located in
BONE. The numbers that are greater than zero and alge
braically less than or equal to BONE, will be added together
in location TOTAL and those that are greater than BONE will
be added together in location HOLD. Ignore numbers less
than or equal to zero. Flow chart before attempting to
code the problem.

LOC OP VARIABLE REMARKS

115

Lesson 9, (cont'd)
CORRECT ANSWER

PROBLEH
~. 75910 = 13678

= 001 011 110 1112 (pg. 11)

~. 15638 = 88310
043 1 8 = 28110

1164 = 22148= 10
010 010 0011002 (pg. 12)

22. 32610=5068=101000110.2

= .10100011 X 211
(200 + 11 = 2118)

101 CHAR. MANTISSA

~ ',0,0.0,',0,0,111,0,',0,0,0, ',1,0,-
"'--'" ""'--'" """--"" '--"""

+2 I 15 06

~. ~ [2] (pg. 74)

q 1,2 3,4,5,6, 7,8,9
1
X,X,

.§2. a. +0 (pg. 18) .2..2. I CAS I
b. minus (-) (pg. 15)

------------------1 .2§.. 1, 8, 16, 72

(pg. 77)

86. MQ (pg. 18)

~. STQ (-0600) (pg. 23)

rIio,o, 1,',0,0,0.0.0,0,0,
"""--'" ""'-'"" """"--""' """"--"" - ° 6 ° °

88. (pg. 27)

~oooOOOOO",O,llooo,ooo,o,oo,lOo,1
-'--'- "'-"-....-- ""'-"""""""--"""'--'

+ ° 0 0 0 7 3 4 2A I 2 :3 1
BINARY POINT

.§.2. 1278 = 8710
368 = 3010

5710=
(pg. 28)
7 1 8

2.Q. a.G b.0 c{':]

d.~~ (pgs. 27,29)

2!. a. .765 X 10J
2

b. .2216 X 122
c. .276 X 10
d. .100011 X 2 3

(pg. 41)

~. 2210=26 8 = 010110. 2
= .10110 x 25(200+5=2058)
S 101 CHAR.

~I'O,O,O,o,',O,11 - ----- '--' + 2 0 5

(pg. 41)

(pg. 59)

2:/... a. T d. X
b. E e. T
c. T f'. X(pg. 63)

2§. Transf'er to the second
instr. beyond the
"Transf'er" instr.

1510=178
/~ddress

2 710=338
Decrement

(pg. 63)

DECREMENT TAG ADDRESS

~O" • 011 011101010. ..0011111
'-"" '--"" '-'

:3 :3 2 , 7

(pg. 81)

!QQ. a. +000000032~000
b. +000000002211
c. +002000000000
d. +203700000000

(pg. 83)

ill· q LOC,200

10-011111
21 35

q LOC.300

10-0,10111 I
3 17

LOC400

q 10101 I

18-20

(pg. 89)

116

Lesson 9, (cont'd)

CORRECT ANSWER

102. Presumptive (pg. 93) 105. a. 5

103.
------------------------------~ b. AXT (pg. 96)

a. ~10~4~============~.~0~1~1~1 ~-----------------------------
106. store the contents of the

AC into this location
times 5.

b. A9 (pg. 95)
(pg. 63)

104. HOLD (XR4 of 123 is lessr-----------~ ______________ __
than Decrement of 174). Re
member that all instructions
are written in Decimal unless
otherwise specified.

(see page 96)

107. Add a constant of 250.

(pg. 83)

FLOW CHART OF PROBLEN: 108

SET UP
XR FOR

10

CLEAR
HOLD AND

TOTAL AREAS

PICK UP

NUMBER

ADDTO
HOLD

117

ADD TO
TOTAL

NO

Lesson 9, (cont'd)

PROBLEH 108:

LOC

START

CHKBI

ADDHI

BONE
AA
HOLD
TOTAL

OP

COUNT
AXT
STZ
STZ
CLA.
TPL
TIX
HTR

CAS
TRA
TRA
FAD
STO
TRA

FAD
STO
TRA

BSS
BSS
BSS
BSS
END

CORRECT ANSWER

VARIABLE

22
10, 1
HOLD
TOTAL
AA + 10, 1
Clll(BI
START + J, 1, 1

*

BONE
ADDHI
* + 1
TOTAL
TOTAL
CIIKBI-2

HOLD
HOLD
CHKBI-2

1
10
1
1

118

REMARKS

If zero, go to CHKBI
Back to the CLA instr.

with BONE

Transfer to TIX instr.

Transfer to TIX instr.

} Allocate storage
locations.

LESSON 10

TAPE: On page viii; at the beginning of the book: several
paragraphs were included on Data Channels and on tape. It
may be worthwhile to review it at this time. There are a
number of terms used in connection with tape, that the be
ginner must familiarize himself with before he can start the
study of tape handling.

Proper handling of Input and Output is one of the most
difficult areas to learn in programming. This course will
not attempt to cover it in an exhaustive manner as only ex
perience can give the programmer a complete understanding of
this topic. The major aspects and instructions will be
covered--enough so that a general understanding will be
gained by the student.

REFLECTIVE SPOT: A normal tape is about 2400 feet long. It
takes 6 to 8 feet on each end to wind on the tape drives.
The tape has a little magnetic mark, called reflective spot,
near the beginning. This is the Load Point of the tape
(where ~ or Write will begin). There is also a reflec
tive spot near the end of the tape, beyond which writing
should not be done. Checking for the reflective spot at the
end of the tape must be done by the program.

TAPE MARK, END-OF-RECORD GAP, END-OF-FILE GAP: At the bot
tom of the page is a symbolic representation of a tape
which shows all of the areas named here. A tape record con
tains the same bits that we have been dealing with in com
puter storage except that they are stored on tape as mag
netic spots. Between the groups of magnetic spots are blank
areas of tape, approximately! inch wide. These are called
end-of-record gaps. The gap after the last record on tape
is called the end-of-file gap. This last gap and the tape
~ which precedes it, constitute the end-of-file and when
this is reached, the tape may be rewound and unloaded from
the tape drive. It must be understood that an end-of-file
(designated by the tape mark) is a record just like any
other record on tape.

Total Length of Tape - 2400 feet
EOF GAP

LBFT-T .f - Q RECORD

l.

I ~ ~. D °T
I I --8FT-

REFLECTIVE EOR EOR REFLECTIVE SPOT
SPOT GAP GAP (EOT POINT)

(LOAD POINT) TAPE MARK

119

Lesson 10, (cont'd)

INPUT/OUTPUT INSTRUCTIONS AND CO~~NDS

1. MISCELLANEOUS

RTD (READ TAPE DECIMAL) Octal code: +0762. Channel (A
through H) must be specified (i.e. RTDA). This instruction,
followed by an RCH instruction causes the computer to read
one record into storage. Reading will be accomplished from
the Input/Output device specified in Y. The Channel must
also be specified in Y. Tape density must be compatible. In
other words, attempting to read a tape in one density, that
was recorded in another density, will cause both detected
and undetected errors.

\1TD (1illITE TAPE DECDIAL) Octal code: +0766. Channel (A
through H) must be specified (i.e. WTDA). This instruction
without the accompanying RCH instruction causes 3.75 inches
of blank to be written. It is used to jump over a bad spot
in the tape. With the RCH (page 121), a normal record is
written on tape.

2. INPUT/OUTPUT OPERATIONS

BSR (BACKSPACE RECORD) Octal code: +0764. This instruc
tion causes the tape, designated by Y, to back up until an
end-of-record gap or load point is reached. It is used in
the tape error routines. Channel (A-H) must be specified.

WEF (WRITE END-OF-FILE) Octal code: +0770. This instruc
tion causes the tape, designated by Y, to write an end-of
file gap and a tape mark, indicating the end-of-file (EOF).
Channel (A-H) must be specified.

REW (REWIND) Octal code: +0772. This instruction causes
the tape, designated by Y, to rewind to the load point. At
this time it is ready to be run again. Channel (A-II) must
be specified.

RUN (REWIND AND UNLOAD) Octal code: -0772. This instruc
tion causes the tape, designated by Y, to rewind to the load
point and automatically set to be unloaded. Channel (A-H)
must be specified.

3. CONTROL INSTRUCTIONS

TCO (TRANSFER IF ClUiliNEL IN OPERATION) Octal code: +0060.
If the specified channel (A-H) is in operation, the com
puter takes its next instruction from location Y. If the
channel is not in operation, the computer takes the next
instruction in sequence.

120

Lesson 10, (contld)

TRC (TRANSFER ON REDUNDANCY) Octal code: +0022
TtLe Charillel (A-H) must be specified. This concerns ~he ~n
ternal parity check. If parity is bad, an indicator turns
on. The indicator is tested with this instruction. If the
indicator is on, Lt is turned off and the computer takes its
next instruction from Location Y. If the indicator is off,
the computer takes the next instruction in sequence.

TEF (TRANSFER ON END-OF-FILE) Octal code: +0030
When the EOF gap is reached while reading, an indicator is
turned on. This instruction tests the indicator. If it is
on, it is turned off and the computer takes its next in
struction from location Y. If it is off, the computer takes
the next instruction in sequence. Channel (A-H) must be
specified.

4. CHANNEL INDICATORS:

BTT (BEGINNING-OF-TAPE TEST) Octal code: +0760.
Channel (A-H) must be specified. If there is a backspace
(BSR) given \vhen tape is at load point, an indicator turns
on. This tests the indicator. If it is on, it is turned
off and the computer takes the next instruction in sequence.
If it is off, the computer skips one instruction.

ETT (END-OF-TAPE TEST) Octal code: -0760.
Channel (A-H) must be specified. When end of tape is
reached on writing, an indicator turns on. This tests the
indicator. If it is on, it is turned off and the computer
takes the next instruction in sequence. If it is off, the
computer skips one instruction.

5. INPUT/OUTPUT TRANSMISSION INSTRUCTION:

RCll (RESET AND LOAD Cl~NNEL) Octal code: +0540 (for
Channel A). Channel (A through ll) must be specified.
instruction must be given immediately following a Read
lect or a Write Select instruction, if transmission of
is to occur. The computer will not Read into storage
Write on tape unless the RCll instruction is present.

6. DATA CHANNEL Cm.1HANDS

IOCD (I/O UNDER COUNT CONTROL AND DISCONNECT)

This
Se
data

or

For input--this command will read the number of words speci
fied in the Decrement, beginning with the word specified by
the Address.
For output--outputs the number of words specified in the
Decrement, beginning with the word specified by the Address.
After completion, stops the execution of any other Channel
Command.

121

Lesson 10, (cont'd)

IORT (INPUT/OUTPUT OF A RECORD AND TRANSFER)
Input--always disconnects the Channel at the end of a record
or when the count in the Decrement goes to zero (whichever
comes first).
Output--writes a record containing the number of words
specified in Decrement portion of the Command. Starts to
write from what is in the Address portion of the Command.

If a Load Channel Command (LCH) is waiting, the next
Command will be taken from the Address portion of the Load
Channel, otherwise a normal disconnect occurs.

2

ZERO
CHECK

COUNTER

READ RTDA

READ TAPE ROUTINE

T,iE TAPE RCHA

3

WAIT TCOA
UNTIL THRU

7

5
HALT

END-OF- JOB

ERROR ROUTINE r------------------I
TRCA I B 9 II I

YES I INCREASE NO I
>--~ CHECK CNTR. BACKSPACE

I BYI I I
I YES BSRA I
I
I
I HALT

PROCESS UNREADABLE
RECORD I RECORD

ON WITH
PROGRAM

L __________________ _

122.

Lesson 10, (cont'd)

EXPLANATION

An initial decision is made to try to read the tape ten
times in the event o£ a bad piece o£ tape. There is an in
ternal "bit" check (called parity check) which tells the
computer i£ there is anything wrong with what it is reading.

Block 1: A counter is set up at zero to keep track o£ .,
reading until ten "reads" are reached.

Block 2: A tape record is read by the computer.

Block J: No £urther processing until end-o£-record is
reached.

Block 4: Test £or end-o£-£ile.

Block 5: I£ it is end-o£-£ile, there is nothing more to
be read, so the tape is rewound and unloaded.

Block 6: Check £or ·tape error (called parity check).

Block 7: I£ there is no tape error, the program con
tinues with its normal processing o£ the record which is now
located in computer storage.

Block 8: I£ there is a tape error (called parity error),
increase the Check Counter by one until a total o£ ten tries
have been made to read the tape.

Block 9: Check to see i£ the Counter is at 10.

Block 10: I£ it is 10, halt the program. The record
cannot be read by the computer.

Block 11: I£ it is not 10, backspace the record and go
back to Block 2, to try to read the same record again.

Note the Input/Output Instructions associated with the
various blocks. These are shown in greater detail £or both
Read and Write operations on pages 126 and 127. Channel A
was arbitrarily chosen £or the example.

No· instructions are designated £or blocks 1, 5, 7, 8, 9,
and 10 since these are not speci£ically input/output in
structions.

123

Lesson 10, (cont'd)

ZERO
CHECK

COUNTER

2

WRITE
A RECORD

3

WAIT
UNTIL THRU

WTDA
RCHA

WRITE TAPE ROUTINE

,--- ---l
I ,....14_....1.----, I

TCOA I TURN OFF TRCA I
r - - - - - ERROR ~OUTI~ ____ ~ Ptl~'JTY :

I 9 12 13 I
INCREASE

./'-~--tCHECK C'NTR
NO BACKSPACE

">-~~ RECORD
ERASE
TAPE

I
I
I
I
I

8

WRITE
EOF

I

BY I

ON WITH
PROGRAM

WEFA

RUNA

B$RA

124

WTDA
(NO RCHA)

Lesson 10, (cont'd)

EXPLANATION

An initial decision is made to try to write five times
in the event of a bad piece of tape. The parity check
mentioned in the Read Tape Routine, also applies to write
tape.

Block 1: A counter is set up at zero to keep track of
writing until five "writes" are reached.

Block 2: A record is written on tape by the computer.

Block 3: No further processing until the writing of the
record is completed.

Block 4: Test for tape error (parity error).

Block 5: If no tape error, test for end-of-file.

Block 6: If it is not end-of-file, the program continues
with its normal processing.

Block 7: If it is end-of-file, write end-ef-file.

Block 8: Rewind and unload this tape and if processing
is not finished, have the operator load a new tape.

Block 9: In Block 4, if there is a tape error, increase
the check counter by one.

Block 10: Test the Check Counter for 5.

Block 11: If it is 5, write has been attempted five
times without success. Stop the program.

Block 12: If it is. not 5, backspace the record.

Blocks 13 and 14, Erase the tape, turn off the tape
error (parity) light and try to write the record again.

125

Lesson 10, (cont'd)

EXAMPLE: Read tape unit 4 on Channel A. Process the data
and write out on Channel C, tape unit 1. Stop when end o£
£ile (EOF) is reached. (See note at bottom o£ the page.)

LOC OP VARIABLE FIELD REMARKS

(See X TAPENO A4B, De£ines X as Chan. A,
Note) unit 4, Binary

Y TAPENO CIB De£ines Y as Chan. C,
unit 1, Binary

READ STZ CTX Store zeros in Read
counter

TCOX * Wait
RTDX Read Chan. A, unit 4,

Binary
RCHX IOIN Reset and load Chan. A
TCOX * Wait until record is

read
(End o£
Read Routine)TEFX EOF I£ it is End-o£-File,

go to EOF
TRCX PEX I£ there is Parity

Error, go to PEX

Process record and place output into AREA 1

WRITE STZ CTY Store zeros in Write
Counter

TCOY * Wait
WTDY Write a record
RCIlY IOOUT £rom Area 1
TCOY * Wait until through

writing
TRCY PEY I£ there is parity

error, go to PEY
ETTY Is it End-o£-Tape?
TRA EOF I£ End-o£-Tape, go to

EOF
(End o£ TRA READ I£ not End-o£-Tape, go
Write back to read next
Routine) record

Note that at the beginning o£ the program, the Ope Code
TAPENO, with a one character location code was used to de
£ine the Channel, Tape Unit, and type o£ notation (Binary).
This is much simpler than using the actual channels (A
through H) on each succeeding instruction. Also notice how
easily the counter is increased and checked with the use o£
literals in the error routines on the next page.

126

Lesson 10, (cont'd)

EXAMPLE--continued

LOC

CTX
CTY
IOIN

AREA

EOF

PEX
(Error rou
tine for
Read) -

OP

PZE
PZE
IORT

BSS

HTR

CLA
ADD
STO

SUB

TZE

BSRX

TRA.

IOOUT IOCD

AREA 1 BSS

PEY
(Error
routine for
Write)

CLA
ADD
STO
SUB

TZE

BSRY
WTDY
TCOY
TRCY
TRA

VARilBLE FIELD

AREA, , 100

100

*

REMARKS

Define CTX (X counter)
Define CTY (Y counter)
Channel Command for
input. Decrement of
100 (chosen arbitrarily)
Allocate 100 positions
for AREA
Halt - end-of-job

Pick up loose ends

CTX
= 1
CTX

= 10

EOF

READ + 1

AREA 1, , 45

45

CTY
= 1
CTY
= 5

EOF

*
*
WRITE + 1

127

Increase co~~ter by 1

To check if counter
equals 10
If 10 tries, go to EOF
to halt program. Un
readable tape
If not 10 tries, back
space record
Go back to READ + 1 and
try again

Outputs number of words
specified in Decrement
Allocate 45 storage po
sitions to AREA 1
(again arbitrarily
chosen)

Increase counter by 1

To check if counter
equals 5
Unwriteable tape, go
to EOF
Back up and erase tape

Wait
Turn off parity light
Go back to WRITE + 1,
and try again.

Lesson 10, (conttd)

BUFFERING: A burrer is not a separate piece or equipment.
It is an area or storage, assigned by the programmer,
specirically to accept Input/Output inrormation.

The Read and 1{ ri t e rou tine s shown on page s 122 and 124,
do not show how this is accomplished with Burrering. In
some instances, using the bur£ering technique speeds up the
procedure considerably since one recprd may be processed at
the same time that another is being read.

This technique is not shown here because most installa
tions now have ready-made Input/Output Packages which do
the job or reading and \vriting in the most optimum malUler.
Where the Package is available, it should be used in
prererence to writing individual Input/Output routines.

Host organizations have prepared
Input Output programs which may be utilized in conjunction
with nearly all normal programs. This saves considerable
time in programming because usually a great deal or the
programming e£rort deals with Input and Output processing.

The new programmer must ramiliarize himselr with the
Input/Output Package or his organization and merely tie it
in to his own program.

The preceding pages, dealing with Input and Output
routines, were important primarily so that the new pro
grammer would have a working understanding o£ what occurs
during Read and Write operations. Also, there are occasions
when Input/Output Packages are not available and there£ore
Input and Output must be programmed along with the basic
problem.

128

Lesson 10, (cont'd)

WORK AREA

PROBLEM:

109. Read tape unit 8 on Channel E. Place the first
word of the record into storage at loc. HOLD, go back and
read another record, placing the first word into HOLD + 1.
Halt when end-of-file is reached.

129

Lesson 10, (cont'd)

PROBLElwl 109:

LOe

Z

READ

PE

OP

TAPENO

STZ

RTDZ
RCHZ
TCOZ

TEFZ

TRCZ
CLA
ADD
STO

TRA

CLA
ADD
STO
SUB

TZE

BSRZ

TRA

COUNT BSS

EOF HTR

BT EQU

IOC IORT

HOLD BSS

CORRECT ANSWER

VARIABLE FIELD

E8B

COUNT

IOC ..
EOF

PE
IOC
= 1
IOC

READ

COUNT
= 1
COUNT
= 10

BT

READ + 1

1

..
EOF

HOLD, , 1

1000

130

RENARKS

De£ining tape unit 8,
Chan. E, Binary
Store zeros into
counter
Read £irst word o£
one record.
Wait until record is
read
I£ we have reached end
o£ £ile, go to EOF.
I£ tape error, go to PE
Increase location by
one to store the one
word £or the next
record to come in.
Go back to beginning to
read next record.

Move counter into AC
Add 1
Place back into storage
Check to see i£ counter
has gone to 10 (i£ so,
indicates bad tape).
I£ tried to read 10
times, bad tape. Go to
BT (which is equivalent
to EOF)
I£ not yet 10 tries,
backspace the record.
Go back to try reading
the record again.

Allocate one storage
position to counter.

End o£ £ile. Halt prog.

De£ine that BT is equi
valent to EOF

I/O command to read
£irst word o£ each
record.

Lesson 10, (cont'd)

WORK AREA

PROBLE~f:

110. Take the data from loc. HOLD, HOLD + 1, HOLD + 2,
etc., and write it out on Channel H, tape unit 3. When
HOLD + 999 is reached, write EOF and stop the program.

LOC OP VARIABLE FIELD RE~urnKS

131

Lesson 10, (conttd)

CORRECT ANSWER

PROBLE1-I 110:

LOC OP VARIABLE FIELD RE1-IARKS

X TAPENO H3B Defining tape 3, Chan.
H, Binary

STZ CT Stores zeros into

LOOP WTDX
RCHX
TCOX

TRCX

STZ

LOOP 1 WEFX
(End-of- TCOX
fi1e
routine) TRCX

BT HTR

PE CLA
ADD
STO
SUB

(parity TZE
error BSRX
routine) WTDX

PE1

(parity
error
routine
for EOF)

IO

TCOX
TRCX
TRA

CLA
ADD
STO
SUB
TZE
BSRX
WTDX
TCOX
TRA

IOCD

CT PZE

IO

*
PE

CT

*
PE1

*
CT
= 1
CT
= 5
BT

*
*
LOOP

CT
= 1
CT
= 5
BT

*
LOOP 1

HOLD, , 100

132

counter

Write a record

Wait unti1 through
writing
If there is parity
error, go to PE
If no parity error,
zero counter

Write end-of-fi1e
Wait unti1 write is
finished
If parity error for EOF,
go to PE1

Bad tape - Ha1t

Move counter into AC
Add 1
Put back into storage
Have we tried 5 times?
If yes, go to BT to Ha1t
If no, backspace record
Erase tape
Wait unti1 through
Turn off parity 1ight
Go back to try to
write again

Outputs no. of words
specified in Decr. (100)

LESSON 11

SUBROUTINES: In nearly all program \iri ting it becomes
necessary to repeat certain program steps. It is usually
not desirable to write these steps over and over as the
need arises. It is much more practical to write the steps
once and then arrange to jump to this group o£ steps when
necessary. A subroutine is essentially just this--a group
o£ program steps which may be used repeatedly as required.

There are two types o£ subroutines: Open and Closed.
The Open subroutine is inserted into the main program and
the Closed subroutine is separate anti apart £rom the main
program. The Closed subroutine is the most economical and
the most commonly used, but it is di££icult to instruct the
subroutine as to where in the main program it should return
when it is £inished processing. The process used is
subroutine linkage.

SUBROUTINE LINKAGE: There are several ways o£ linking a
subroutine to the main program. One o£ the most simple and
economical is to use Index Registers to provide a path to
and £rom the main program. This has the added advantage
that the programmer need not be aware o£ the actual address
o£ the return jump and may continue to write his program
in symbolic. Some o£ the other linkage methods require the
knowledge o£ the actual address £or the return jump to the
main program. An example o£ subroutine linkage may be
£ound on the £ollowing page.

Symbolically represented, subroutine linkage would look
like this:

101ain Program
I

Jump to Subr.

Jump to

Subroutine 2
Jump to --

Jump to Subr.

-- -- - __ ~nd. RETURN ------
- Return

IJJ

Lesson 11, (cont'd)

EXAMPLE 1: Suppose that it was necessary to sum three
variables and leave the sum in a fourth variable and it was
necessary to do this for many different sets of variables.
A portion of the program could be:

TSX
PZE
PZE
PZE
PZE

SUM, 4
A
B
C
D

see Lesson 8 for explanation of TSX)
1st variablej
2nd variable
3rd variable
answer)

If the program were as above, the subroutine could be:

SUM CLA*
FAD*
FAD*
STO*
TRA

1., 4
2, 4
3, 4
4, 4
5, 4

The asterisk (*) after the Ope Code means that the
instruction is indirectly addressed. Detailed explanation
of this technique and additional examples may be found in
Lesson 12. It may be worth while delaying the detailed
study of this example until Indirect Addressing has been
covered in Lesson 12.

EXAMPLE 2-: Let us suppose that there is a long program,
with a number of parts, each going to a particular subrou
tine, and from there back to the beginning of the loop. The
flow chart below shows such a program. (This is the flow
chart for the program on the following page. It is not
truly a closed subroutine, but it does show how a program
can be manipulated with Index Registers.)

Notice that on each test for transfer, if the condition
is minus, the program goes to an interchange routine and
from there back to the beginning of the loop. This may be
graphically represented as follows:

PROGRAM

LOOP CLA

TPL
TRA

N02

TPL
TRA

N03

TPL
TRA

No4
HTR

INTER
TRA

}

First part of loop. Transf. on + to
next part. If not +, go to subr. INTER

N02
INTER

N03
INTER

No4
INTER

*
LOOP

}

Second part. TPL to next part or go to
subr.

}

Thl.rd part. TPL to next part or go to
subr.

Fourth part. Finish program.

Subroutine. Always goes back to start
of LOOP

134

Lesson 11, (conttd)

Q

CLA I

}

TO DETERMINE
WHICH IS
LARGEST

WORK AREA

INTERCHANGE
C(3) aC(4)

TRANSFER
FIELDS 1-4

TO
HOLDi-4

PROBLEM 111. Given fixed point integers, located sequen
tially in Field 1, Field 2, Field 3 and Field 4. Sort so
that the largest value will go into location HOLD, next
largest in HOLD + 1, etc.

LOC OP VARIABLE LOC OP VARIABLE

135

Lesson 11, (cont'd)

CORRECT ANSWER

PROBLEH Ill.

LOC OP VARIABLE RE}fARKS

COUNT JZ
LOOP AXT 0, 1

CLA FIELD, 1 start of LOOP
TXI * + 1, 1, -1 Compare 1 and 2
SUB FIELD, 1 (XRl = -1)
TPL 2VSJ If 1> 2, go to 2VSJ
TRA INTER If 1 < 2, go to subr.

2VSJ CLA FIELD, 1 (XRl = -1)
TXI * + 1, 1, -1 Compare 2 and J
SUB FIELD, 1 (XRl = -2)
TPL JvS4 If 2> J, go to Jvs4
TRA INTER If 2 < J, go to subr.

Jvs4 CLA FIELD, 1 (XRl = -2)
TXI * + 1, 1, -1 Set XR for 4
SUB FIELD, 1 (XRl = -J)
TPL MOVE If J > 4, go to MOVE
TRA INTER If J < 4, go to subr.

MOVE AXT 4, 2
}].jove to HOLD CLA FIELD + 4, 2 area

STO HOLD + 4, 2
TIX * -2, 2, 1 Small loop back to CLA

until all 4 numbers
are moved.

lITR * Halt - end of job.

INTER CLA FIELD, 1
(Sub- TXI * + 1, 1, 1 jrEXChange - last cell
routine) LDQ FIELD, 1 defined by XRl with

STO FIELD, 1 previous cell (word)
TXI * + 1, 1, -1
STQ FIELD, 1
TRA LOOP Back to start of LOOP

FIELD BSS 4
HOLD BSS 4

END

IJ6

Lesson 11, (cont'd)

LOGICAL OPERATIONS: Logical operations have a special way
of operating on a 36 bit word. They are used primarily for
masking operations, which are discussed on page 140. The
sign position is s£mp1y another bit and is not considered
separately from the other 35 bits in the word.

Specia~ rules apply when two numbers are combined by
logical instructions. These rules are as follows:

1. Logical AND operations: Ones in both numbers equal
one. Otherwise zero.

Example: 001011
001101

= 001001

0
0
1
1

+
+
+
+

0 = 0
1 = 0
0 = 0
1 = 1

2. Logical OR operations: A one in either number
causes a one in result. Otherwise zero.

Example: 001011
001101

= 001111

0
0
1
1

+
+
+
+

0 = 0
1 = 1
0 = 1
1 = 1

3. Exclusive QR operations: A one in only one of the
numbers equals one. Otherwise zero.

Example: 001011
001101

= 000110

0
0
1
1

+
+
+
+

0 = 0
1 = 1
0 = 1
1 = 0

In logical operations, when two numbers are combined,
they are matched bit for bit as shown in the examples
above. Notice the differences in the resultant numbers.
Converting the Binary numbers above to Octal:

AND OPe 13
~

OR OPe 13
~

Exc1. OR OPe 13

= 178

Do not confuse logical operations with the normal
arithmetic operations.

137

~

= 68

Lesson 11, (cont'd)

INSTRUCTION: CAL (Clear
FORMAT: (Type B)

and Add Logical Word) Octal code:
-0500

I OP CODE I I A wz;aTAG I y

5,1 1112-1:3 18-2021 35

DESCRIPTION: This is identical to the CLA (Clear and Add)
instruction except that the sign goes into the P position I
of the AC.

INSTRUCTION: SLW (Store Logical Word) Octal code: +0602
FORt·JA T : (Type B)

I OP CODE 11 A l2Z@TAG I y

5,1 1112-13" 18-2021 35

DESCRIPTION: This is identical to the STO (Store) instruc
tion except that the bit in position P of the AC goes into
the sign position of the word.

INSTRUCTION: ANA (AND to Accumulator) Octal code: -0320
FOID-IAT: (Type B)

lOp CODE I IA ~TAGI y

5,1 1112-13 18-2021 35

DESCRIPTION: Each bit of the c(Y) is matche~with the cor
responding bit in the c(AC) (positions P, 1-35). The result
of the matching (using the rules laid down in page 137) will
be in the AC. AC positions S, Q are set to zero.

INSTRUCTION: ANS (AND to STORAGE) Octal code: +0320
FORMAT: (Type B)

5,1 1112-13 18-2021 35

DESCRIPTION: Each bit of the c(AC) (positions P, 1-35) is
matched with the corresponding bit in the c(Y). The result
will be in storage at location Y.

EXAMPLES:
BEFORE INSTRUCTION AFTER

AC ANA 11 0 0 1 01 in AC

11 0 o 1 11
ANS 11 001 01 in Y

Y

I 1 1 o 1 01

138-

Lesson 11, (cont'd)

INSTRUCTION: ORA (OR to Accumulator) Octal code: -0501
FOR}~T: (Type B)

lop CODE I IA ~TAG I y

5,1 1112-13 18- 2021 35

DESCRIPTION: Each bit of the c{Y) is matched with the cor
responding bit in the c(AC) CPt 1-35). The result (using
the rules on page 137) will be in the AC. The c(Y) and the
S and Q positions of the AC remain unchanged. The sign of
Y will be in the P position in the AC.

INSTRUCTION: ORS (OR to STORAGE) Octal code: -0602
FORMAT: (Type B)

lOp CODE IIA ~TAG I y

5,1 1112-13 18-2021 35

DESCRIPTION: As above. except that the result will be in
the c{Y} and the bit in position P of the AC will be in the
sign position of r.

INSTRUCTION: ERA (Exclusive OR to Accumulator) Octal code:
FORMAT: (Type B) +0322

lOp CODE IIA W}jTAG I y

5,1 1112-13 18- 2021 35

DESCRIPTION: Exactly the same as the ORA instructions
above, except that the rules for ERA apply (as shown on
page 137).

EXAMPLES:

BEFORE INSTRUCTION AFTER

AC

11 o 0 1 11 ORA 11 1 0 1 11 in AC

Y ORS 11 1 0 1 11 inY

11 1 0 1 01 ERA 10 1 0 0 11 in AC

139

Lesson 11, (conttd)

}~SKING - PACKING AND UNPAillCING: Quite o£ten, the items to
be used in a computer operation are small enough that more
than one could £it into a machine word. This process is
called packing. For example, i£ the numbers are no larger
than three Decimal digits, they would convert to no larger
than £our Octal digits and three such numbers (complete with
sign) could be placed into one machine word.

XI X2 X3

I 4- OCTAL 4 OCTAL 4 OCTAL

S,I 1112 2324 35

In this example, the signs would be in positions S, 12 and
24.

Packing a word in this manner, not only saves storage
space, but also speeds up machine operating time since it
takes less time £or the computer to read or write the data.

If it is necessary to operate on one o£ the numbers
packed into a word, it is necessary to mask out the other
numbers. The mask may be set up by using the OCT pseudo
OPe code.

EXA}lPLE: Two numbers are packed into a word as £ollows:

location HOLD: I AI A2
5,1 89 35

A2 is needed £or other work. Mask out Al (this is unpacking)

LOC OP VARIABLE FIELD

CAL HOLD
ANA MASK

ALS 9

SLY A2

MASK OCT 000777777777

REMARKS

Move word into AC
Add logical-MASK (de-
£ined below)
Le£t shi£t to bring A2
into proper place in AC
Store £rom AC into
loc. A2

This will put 9 zeros
into S-8 and 27 ones
into 9-35 o£ the Mask
word (Using AND rules-
zeros will blank out
the word while ones
will have no effect).

Assume that Al = 1238 and A2 = 323323323S

AC be£ore MASK:

AC a£ter MASK:
(using AND rules)

......"" '-' '-'""" J5
23323323

I 89
"-" '--'" "-"" '-'" '-" '-" '--'" '--'"

3233233
BLANKED OUT NO CHANGE

140

J5
3

Lesson 11, (cont 1 d)

EXA}WLES continued:

Three numbers are packed into a word as £ollows:

location STAND: I XI X2 X3
5,1 89 1718

Mask out X2 and move Z2 (I Z2
position.

into the vacated X2 ~_---JI)

LOC OP
CAL
ANS

CAL
ARS

ORS
MASK OCT

5,1

VARIABLE FIELD
:HASK
STAND

Z2
9

STAND
777000777777

8

REMARKS
Place MASK into AC
Match MASK, bit £or bit with
c(STAND). This blanks out
X2 in storage.
Move Z2 into AC
Shi£t right 9 positions to
line up with positions 9-17
OR to storage 10c. STAND
Sign and 1-8 will be ones,
9-17 will be zeros and 18-35
will be ones (Using OR rules
- zeros will have no a££ect
on the word while ones will
blank out the word).

Assume that X2 = 1238 and Z2 = 4568

Be£ore execution o£ ANS instr.
(Mask in AC)

I 89 1718 35
-....;;'-'~'-''-/'-/--'-'"'-'''-''''"'''
777000777777

Xl, X2, X3 in loco STAND:

A£ter execution o£ ANS instr.
(contents o£ loco STAND)

q XI 10010100111

8L '-/ ...)7.18

NO I 2 3

n CHANGE BLANKEDOUT

! X I 10000000001

I 89 1718

X3

NO CHANGE

X3

35

35

Be£ore execution o£ ORS instr. q
(Z2 now in the AC) ~" __ X_I __ ~11_00 __ I_O_II_I_O~I _____ X_3 ______ ~

A£ter execution o£ ORS instr.
(Z2 moves intact into loco
STAND)

q XI

89 1718
'-/ '-'" '-'"
4 5- 6

Z2

11001011101 X3

89 1718
'-' '-'" '-'
4 5 6

The zeros in loc~ STAND are compared to 4568 in the AC.
Using the rules £or OR, the 4568 in the AC moves intact
into 10c. STAND and the job is £inished.

141

35

]
35

Lesson 11, (cont'd)

EXA.l-lPLES continued:

Xl, X2, and X3 are to be packed into location HOLD.
Xl = 22228 X2 = 33338 X3 = 44448

Before packing:

Xlq 101001001 001 ~

X2q
24 35

~11011 0110111

X3Y
4 35

11001001001001
24 35

LOC OP VARIABLE FIELD REMARKS

CAL Xl AC =1 XI

ALS 12 XI

ORA X2 XI X2

ALS 12 XI X2

ORA X3 XI X2 X3

SLY HOLD Store from AC into loc.
HTR * Halt - end of job

HOLD

INSTRUCTION: LGR (Logical Right Shift) Octal code: -0765
FORMAT: (Type B)

I OPCODE IIA ~ TAGI y

5,1 1112-13 18- 2021 35

DESCRIPTION: The contents of the AC and MQ are treated as
one long register (this includes the S,Q,P in the AC, and
the S in the MQ). The contents are shifted to the right the
number of places specified in positions 28-35 of (Y) the
address portion of the instruction. Thesign ~f the AC
will remain unchanged.

INSTRUCTION: LGL (Logical Left Shift) Octal code: -0763
FORMAT: (Type B)

rl-OP~·C-O-DE'I-IA·~~~-~-G~I------Y----~

5,1 1112-13 18- 2021 35

DESCRIPTION: Identical to the LGR instruction, except that
the shift is to the left. In both of the above instruc
tions, vacated positions are filled with zeros. Any bits
shifted left of position Q in the AC, will be lost.

142

Lesson ll~ (cont'd)

EXAMPLES:
1. The example shown on page 142 may also be accomplished

with the LGR instruction.

Xl = I XI I
24 35

X2 = I X2 I
24 35

X3 = I X3 I Store in loc. HOLD.
24 35

LOC OP VARIABLE FIELD REHARKS
AC MQ

CAL X3 I X3

LGR 12 I X3 I

CAL X2 IX2 IX3 I
LGR 12 I x~ I X3

CAL Xl Ix I IX2 I X3

LGR 12 I Ix I IX2 IX3

STQ HOLD Store from MQ into loco HOLD
HTR * Halt - end of job

2.
Xl =1 XI I

5,1 II

X2 =1 I X2 I
12 23

X3 =1 X3 Store in loco HOLD.
5,1 II

LOC OP VARIABLE FIELD REMARKS
AC MQ

CAL X3 IX3 I

ARS 24 IX3

LGR 12 IX3 I

CAL X2 IX2 IX3 I

ARS 12 I X2 IX3 I

LGR 12 IX2 I X3 I

CAL Xl 1 XI IX21x3

ARS 24 I XI IX21x3

LGR 12 I X I I X2 IX3

STQ Hold Store from MQ into loco HOLD

143

Lesson 11, (cont'd)

A ~ may be used very effectively to change instruc
tions. This process is a little tricky at first, because
the bits must be shuffled to do the required job.

EXMiPLE:

1. We wish to use a Mask to change the following instruc-
tion:

LOC OP VAR. to LOC OP VAR.
ABC STO HOLD ABC SLY HOLD

In this case, only the OPe code is to be changed:
From: STO = +0601

To: SLY = +0602

A mask may be set up with the pseudo OPe OCT or with a
literal (see page 83). The following instructions will do
the job.

LOC OP

CAL

STORAGE CONTAINS
100011 101000\00 q __ ORS
o 6 0 I

CAL

VARIABLE FIELD

=~000200000000

ABC

=¢777677777777

ANS ABC

2. Change FAD (+0300), located in AA, to

LOC OP

CAL

STORAGE CONTAINS
100010 I 1100010 oOl--oRS

o 3 0 0

VARIABLE FIELD

=~002000000000

AA

REMARKS

into AC
1000100010 0 010 1 OJ

o 0 0 2
into store
100011 10100010 I 11-

o 6 0 3

into AC
II I III I III I III 101-

7 7 7 6
into store
100011 I 0100010 I 01-
060 2

ANS (+0320)

RENARKS

into AC
100 010 0 OJO I 0100 q--
002 0

into storage
1000101 qOI 010001-

o 3 2 0

The Octal 2 in the mask simply drops into place to re
place the Octal zero. Many people find it easier to think
in Octal rather than in Binary when preparing a mask.

144

Lesson 11, (conttd)

PROBLEJ.IS:

112. Pack Xl, X2 and X3 into loco HOLD.

Xl = I XI I
5,1 II

X2 = I I X2
12 23

X3 = X3 I
5,1 II

This is the -same as example 2 on page 143, bu tin this
problem, \york :from the HQ into the AC, using le:ft shi:fts.

LOC OP VARIABLE FIELD REMARKS

113. Use a mask to change the :following instructions:

'zz CLA XYZ to ZZ CAL XYZ
(+0500) (-0500)

LOC OP VARIABLE FIELD REMARKS

114. At the completion o:f problem 112, Xl, X2 and X3
are packed in loc. HOLD. Unpack X2 and place it into loco
STAND, in orig. position.

LOC OP VARIABLE FIELD REHARKS

145

Lesson 11, (cont'd)

PROBLEM 112.

LOC

TEMP

OP

LDQ

LGL

LDQ

SL'W

LGL

CAL

LGL

LDQ

LGL

SLW
HTR
BSS

PROBLEM 113.

LOC OP
CAL
ORS

CORRECT ANSWERS

VARIABLE FIELD REMARKS
AC 1<IQ

Xl

12

X2

TEMP Save AC in temporary location

12 I X2 I

TEMP I XI IX2

12

X3 I XI I X2

12 Ix I I X2 I X3 I

Store into loc. HOLD HOLD

*
1

Halt - end of job
Allocate storage posit. to
TEHP

VARIABLE FIELD
=¢4oooooo00000
zz

REMARKS

The Octal 4 will put a one bit into the sign position,
changing the + to a -.

PROBLEH 114.

LOC OP VARIABLE FIELD REMARKS
CAL HOLD ?-Iove HOLD into AC
ANA =~OOOO77770000 Literal - the 7's will

all be ones. This will
leave X2, while masking
out Xl and X3.

SL'W STAND Store into loc. STAND

146

LESSON 12

SENSE INDICATOR OPERATIONS: Before going into
turn back to page 17 and review subparagraph 2
Indicator Registers.

+l..."; ____ _
v a a. ... C'CL,

on Sense

There are two types of switches on the 7090: (1) Sense
Switches, which are located on the computer console, and
are manipulated by the operators and (2) Sense Indicators,
which are intern~l to the machine and are manipulated by
the program.

There are six Sense Switches. The. pseudo OPe SWT (page
148) tests the setting of any switch. A group of sense
indicator instructions are used to manipulate and test the
sense indicators.

Each of the 36 bits in the Sense Ind·icator Register (SI
Register) may be used as a switch or bits maybe used in
groups. They are turned on when the bits are set to "one"
and off when set to "zero." The bits are manipulated by
the programmer by the use of a ~ (see page 140).

Sense switches may be compared to switches on a rail
road. In a railroad operation, it is known that at certain
points along the track, the train must switch to either one
of two branches depending on certain conditions that occur
at the time the train reaches the switch or at some pre
vious point in time. In the same manner, at the time a
program is being written, it may be known that conditions
will arise which will require that the program proceed
along one of two branches at a later point.

At the point where the decision is to be made as to
which branch to be taken, an instruction is used to test
the sense switch. This is also true of sense lights
(covered on page 152).

A few of the most valuable Sense Indicator instructions
are defined on the following two pages. The instructions
on page 148 are concerned with the movement of ,the fUll 36
bit word between the SI Register and either the AC or
storage. The instructions on page 149, are used to test
the SI Register. There are a number of other instructions
used to test or to modify the SI Register. These may be
found in the 7090 Reference Manual and will be self
explanatory when the following instructions are thoroughly
understood.

147

Lesson 12, (cont'd)

PSEUDO OP. CODE: SWT (Sense Switch Test)
DESCRIPTION: This is a pseudo op. code which tests whether
the sense switch (Y) is on or o££. (Where Y = 1, 2, 3, 4,
5, or 6). If the sense switch is on, the computer skips
one instruction. If the sense switch is o££, the computer
takes the next instruction in sequence.

INSTRUCTION: PAI (Place AC in Indicators) Octal code: +0044
FORMAT: (Type D)

10p.CODE_

5,1 II

DESCRIPTION: The c(AC), positions P and 1-35, replace the
contents of the Sense Indicator Register. The c(AC) remain
unchanged.

INSTRUCTION: PIA (Place Indicators in AC) Octal code: -0046
FO~~T: (Type D)

DESCRIPTION: This is the reverse o£ the PAI instruction
above. Contents o£ the Indicator Register move into the
AC (positions P, 1-35). Positions S and Q of the AC are
cleared and the S~ remains unchanged.

INSTRUCTION: LDI (Load Indicators) Octal code: +0441
FORMAT: (Type B)

lOp. CODE IIA~TAG I y

5,1 1112~13 18-2021 35

DESCRIPTION: The c(Y) replace the contents of Sense Indi
cator Register. The c(Y) remain unchanged.

INSTRUCTION: STI (Store Indicators) Octal code: +0604
FORMAT: (~ype B)

I OP. CODE IrA ~,TAG I y

5,1 1112-13 18-20 21 35

DESCRIPTION: The c(SI Register) replace the c(Y) in
storage. The c{SIR) remain unchanged.

148

Lesson 12, (cont'd)

INSTRUCTION: ONT (On Test for Indicators) Octal code: +0446
~nnUA~. (~Y. __ n\
.... v~·.&.n..a. • \.&. plll:ll .u I

I OP. CODE I I A VI/I !/M TAG I y

5,1 1112-13 18- 2021 35

DESCRIPTION: For each bit in the c(Y) that is a one, the
corresponding bit of the Sense Indicator Register is
examined. If all the positions examined in the SI Register
are ones, the computer skips one instruction. If any of
the positions examined in the SI Register do not contain a
one, the computer takes the next instruction in sequence.

INSTRUCTION: OFT (Off Test for Indicators) Octal code:+0444
FORMAT: (Type B)

I OF. CODE IIA VI/111m TAG I y

5,1 1112-13 ra-20 21 35

DESCRIPTION: This is identical to the ONT instruction ex
cept that the SI Register is examined for zeros to compare
with the ones in the c(Y). All zeros, skip one instruction.
Any non-zeros, take the next instruction~

INSTRUCTION: TIO (Transfer when Indicators On) Octal code:
FORMAT: (Type B) +0042

I OP. CODE I IA Wffll1 TAG I y

5,1 1112-13 18 -20 21 35

DESCRIPTION: For each bit in the c(AC) that is a one, the
corresponding bit of the SI Register is examined. If all
the positions examined in the SI Register are ones, the
computer takes its next instruction from location Y,
Otherwise the computer takes the next instruction in
sequence,

INSTRUCTION: TIF (Transfer when Indicators Off) Octal code:
FORMAT: (Type B) +0046

lOp. I I A VIII! /l1 TAG I y

5,1 1112-13 18-2021 35

DESCRIPTION: The ones in the AC are compared with corres
ponding zeros in the SI Register. If all ones match zeros,
the computer takes its next instruction from location Y.
Otherwise the computer takes the next instruction in se
quence, In all of the above instructions; the contents of
both registers being examined remain unchanged.

149

Lesson 12, (conttd)

EXAMPLES:

1. Pick up a location called TOTAL. If bit 35 is "one,"
go to SUERI and if bit 35 is zero, go to SUBR2. Place the
word in location TOTAL into the AC before going to the
subroutine.

OP VARIABLE FIELD

LDI TOTAL

PIA

ONT =lB35

TRA SUBR2

TRA SUBRI

REMARKS

Place TOTAL into
Indicator
Also place it into
AC
If bit 35 of Indi
cator is on, skip
one instruction
If bit 35 is off
(zero) go to SUBR2
Bit 35 was on (one),
go to SUBRI

2. Assume ·that there is a "flag" word already in AC.
If bit 31 is on, go to HOLD; if bit 1 is on, go to STAND
and if bit P is off, go to STOP.

OP VARIABLE FIELD

PAI

CAL =lB3l

TIO HOLD

CAL =lBl

TIO STAND

CAL = -0

TIF STOP

150

REMARKS

Place c{AC) into
Indicator

Pick up proper bit
for compare

If bit 31 is on,
go to HOLD

Bit 31 was of'f,
pick up next bit
for compare pur
poses

If bit 1 is on, go
to STAND

This puts a minus
sign in position P
(see page 138)

If P bit is off,
go to STOP

Lesson 12, (cont'd)

EXAMPLES

J. Assume that an end-or-tape has been reached in
writing output on Channel A, tape 7 (A7). Check Sense
Switch J. Ir it is on (in down position), this is the end
or-job (EOJ). Ir it is orr~ ~ position), go to another
tape to continue writing.

LOC

ET

HALT
EOJ

OP

ETTA

TRA

TRA

RUNA

SWT

TRA

TRA

NO CONTINUE

REWIND
AND UNLOAD

TAPE

WRITE COMMENT

TO OP ERA TOR TO

LOAD NEW TAPE

VARIABLE FIELD

ET

CONT

7

J

C01-GINT

EOJ

PROCESSING

RE~IARKS

Is it end-or-tape?

Yes, go to ET
routine

No, go on proces-
sing

Rewind and unload
tape 7

Test S.S.J ror end-
or-rile

No (switch is up)
go to write CmlMNT

Yes (switch is
down) , go to EOJ

Since this is only a tiny portion or a program to show
use or SWT, CONT, CO~~INT, and EOJ are not derined.

151

Lesson 12, (cont'd)

SENSE LIGHTS: There are four Sense Lights, designated by
(Y), where Y represents lights 1, 2, J or 4 correspondingly
defined by positions 97, 98, 99 and 100. In the use of
Sense Lights, a particular condition will not automatically
turn on a sense light. When the programmer has determined
that a particular condition exists, he must use an instruc
tion to turn a sense light on or off to be used as an indi
cation of the existence of that condition.

PSEUDO OP: SLN (Sense Light On) (Y)
DESCRIPTION: This pseudo instruction turns on the Sense
Light designated by (Y).

PSEUDO OP: SLF (Sense Lights Off)
DESCRIPTION: This pseudo instruction turns off all Sense
Lights.

PSEUDO OP: SLT (Test Sense Light) (Y)
DESCRIPTION: This pseudo instruction tests whether Sense
Light (Y) is on or off. If Sense Light (Y) is on, it is
turned off and the computer skips one instruction. If the
light is off, the computer takes the next instruction in
sequence.

EXAMPLE:

To understand the use of Sense Lights, let us assume
that we have a program with the following peculiarities:
During certain computations, a number will be in the AC
whose sign is to indicate whether SUBRI or SUBR2 is to be
followed at a later time in the program. If the sign is
plus, SUBRI is to be entered and if the sign is minus,
SUBR2 is to be entered. Unfortunately, between the time
that the indicator appears in the AC and the time the de
cision is to be made, other operations occur using the AC,
so that the indicator is destroyed. This type of problem
may be solved with the use of Sense Lights as shown below:

152

Lesson 12, (cont'd)

LOe

JUMP

SUBR2

SUBR1

OP

SLF

SLT

NOP

TPL

SLN

SLT

TRA

VARIABLE FIELD

1

JUMP

1

1

SUER 1

l5J

REMARKS

Sense Li.ghts
turned off at be
ginning of program

Turn off Sense
Light 1

Skip one instruc.

If sign +, go to
JUMP, skipping one
instruction

Sign was -, turn on
Sense Light 1 to
indicate SUBR2 will
be entered

Further computa
tions

Test Sense Light 1

If light is off,
go to SUER1

If light on, go to
SUBR2

Lesson 12, (cont'd)

EXAMPLE:

Write a subroutine to read f'rom A3. However, if' Sense
Light 4 is on, reading will be f'rom A2. Records are 22
words in length from both tapes and will be placed ~to
location HOLD, HOLD + 1, etc. The Sense Light will be
turned on, if necessary, each time a record is processed
and the subroutine is called again. When EOF is reached,
the job is finished.

SET

FROM CALLER
(SEE NOTE BELOW)

A2

SET
COUNTER
TO ZERO

A3 SET
COMMANDS --< :>---1'" COMMANDS

FOR A3 FOR A2

HALT -EOJ

READ
TAPE

RETURN TO
CALLER AND

MAIN PROGRAM

INCREASE
COUNTER

BY I

BACKSPACE
RECORD

Note: The instruetion in the Main Program that leads to a
subroutine is named the caller. When the subroutine is
finished, control is returned to the Main Program. Each
time the caller is encountered in the Program, the sub
routine is entered (see page 133 for subroutine linkage).

154

Lesson 12, (cont'd)

EXAMPLE--continued

LOC

x

y

READ

RDS
(Read

Routine)

EOJ

PEX
(parity
error
routine)

BSR

IO
HOLD

A2
AJ

OP

TAPENO

TAPENO

STZ
CLA

SLT
CLA

STA

STA

TCOX

RTDX
RCHX
TCOX
TEFX
TRCX
TRA

HTR

CLA
ADD
STO
SUB
TZE

BSRX
TRA

IORT
BSS

RTDY
RTDX

CNT PZE

VARIABLE FIELD REMARKS

AJB De~ine X as Chan. A,
tape J, Binary

A2B Define Y as Chan. A,
tape 2, Binary

CNT Set counter to zero
A2 Move A2 (defined below)

into AC
4
AJ

RDS

BSR

*

IO

*
EOJ
PEX
1, 4

*
CNT
= 1
CNT
= 10
EOJ

RDS

HOLD, , 22
22

Test Sense Light 4
Light off, move AJ (de
fined below) into AC
Preset to read either
AJ or A2
Preset to backspace
either AJ or A2- (Note
Octal codes under A2
and AJ below)
Wait until through

Preset to A2 or AJ

Return to caller

Halt - end of job.

Unreadable record (if
zero)
Preset to A2 or AJ

Read 22 words
Assign 22 locations to
HOLD
In Octal: 076600001222
In Octal: 07660000l22J

(RDS = 076200001222)
(BSR = 07640000l22J)

Note: The last 4 Octal characters of location RDS and BSR
specify the channel, mode and tape unit. Thus the STORE
address (STA) does not change the operation, only the
Input/Output device.

155

Lesson 12, (contfd)

INDIRECT ADDRESSING: (IA) A brief definition of Indirect
Addressing was given on page 21. Please review it before
continuing on this page. Any instruction that is Indirectly
Addressable may be used to set the IA flag (one bits in
positions 11-12). A list of these codes may be found in
Appendix E of the IBM 7090 Reference Manual.

An instruction that is indirectly addressed calculates
the presumptive location, goes to this location and gets
its actual location from the effective location of the new
instructions (effective location defined on page 93). This
statement is rather difficult to follow. It will be fur
ther explained by a number of examples.

An asterisk (*) placed directly after the Ope Code
indicates that this instruction is indirectly addressed.
This is a very powerful and useful programming tool and
should be studied very carefully.

EXAJ.1PLES:

1. ~LO __ C ______ O~P~ _____ V~ARIA~~B_LE~ __ ~RE~~~~~RK~S

CLA. (*\-~'H-OiD'1 Presumptive loc. of
- '7-"" CLA. is HOLD. Program

/ goes to HOLD and finds
/ the effective loco to

//
// be AREA. This is then

// moved into the AC and
/ ____ _ ~ ,. __ ._, the STO operation is
, HOLD 1'"" STO __ .(AREA) ignored.
~ ~-- ------- -----

Without the asterisk (*), the contents
would be placed into the AC. Since it
dressed, the contents of location AREA

of location HOLD
is indirectly ad
will be placed into

the AC.

2. ..;;;;LO C ____ O._.P ___ V._.AR.......,.IA__...B_L_E _____ RE""'--"MARK ____.S

AXT 1 1
STO (€}-~HOLD-:-i)

.... _-----
/

/

.".,---- -- ,----
// CLA /AREA)

/ ;--- ..
J .--_.-..,*"'" ___ L _ ".~

.. HOLD Y CLA BLOCK \. ____ 1

This moves 1 into XRl
Indirectly addressed,
modified by XRl takes
us to AREA, since it
says in effect, HOLD-I.
If XRl is less than 1
(zero) the effective
address would be BLOCK.

Using an Index Register ccmplicates the problem, but makes
IA more powerful as a tool. In this case, the indirectly
addressed STO instruction will place the contents of the AC
into location AREA, unless XRl is zero, in which case the
contents of the AC would be placed into location BLOCK.

156

Lesson 12, (cont'd)

EJCAl.IPLE :

J. =LO~C ______ O~P~ _____ V~A=RIA~=BL==E~ __ ~RE~}~~==S

AXT
AXT
STZ (il

1, 2
-1, 1

'SAVE-;--f'1 "'--------i
I
I
I
I

SAVE CLA *)OlAP 2 I

CLA* _-.:~~~_~y ------IAB}oit-- -- - PZE \:_-,

LAP PZE
CD PZE
MAP PZE

P~ace 1 into XR2
Place -1 into XR1
(go to save + 1, and
store zeros in LAP -1
(AB PZE)

The STZ (indirectly addressed) will store zeros into
LAP -1, unless XRl is zero, in which case it will store
zeros into MAP -1. If XR2 is zero, then zeros would be
stored in LAP.

The indirect addressing on SAVE and SAVE + 1 has no
effect on the STZ instruction.

The lines in the example above show the steps taken by
the computer to determine just where zeros are to be
stored in the case where XR1 is -1. If XRl and XR2 are
both zero, it would be as follows:

AXT 0, 2

AXT 0, 1

STZ (~)"(SAVE~l),
'-----_ \

I

CLA * (MAP--2'~ -----... , / --- ---------
SAVE

/
,,' CLA* LAP, 2

/
lAB,
I
1-----
\ HAP)
----'

PZE

PZE

157

zeros are stored in
10c. MAP

Lesson 12, (cont'd)

EXAMPLES:

4. Assume that we want a subroutine that will calculate
3* X + 4 (floating point). The address of X is in the AC
(positions 21-35) ~pon entrance to the subroutine. The
answer will be left in the AC upon exit from the subroutine.

LOC

(caller
will be:)

CALC

5. In the
to:

CALC

OP VARL<\BLE

TSX CALC, 4

Subroutine

STA CLA

CLA **

FAD * CLA

FAD* CLA

FAD = 4.
TRA 1, 4

problem above, if the

TSX CALC, 4

PZE X

REMARKS

This is in the Main
Program

Address of X into CLA
instruction

Pick up X into AC.
Preset to loco X

Calculate 2X

Calculate 3X

Calculate 3X + 4

Return to "caller,"
end of subroutine

"caller" was changed

________ Subroutine, ______ __

CLA* 1, 4 Bring X into AC

FAD * 1, 4 Calculate 2X

FAD* 1, 4 Calculate 3X

FAD = 4. Calculate 3X + 4

TRA 2, 4 Return to caller

158

Lesson 12, (cont'd)

115. Write
respectively.
point) (2 * A
answer in the

a subroutine with arguments A, B, and C
In the subroutine, calculate (in floating

+ B) Ic and return to]'Iain Program with the
AC (solve with Indirect Addressing).

Assume the caller looks like this:

LOC OP VARIABLE FIELD REMARKS

TSX CALC, 4

TSX A

TSX B

TSX C

return

SUBROUTINE:

LOC OP VARIABLE FIELD RE]'1ARKS

CALC

159

Lesson 12, (conttd)

PROBLEM 115:

LOC OP

CALC LDQ*

FMP

FAD*

FDH*

XCA

TRA

CORRECT ANSlvER

MOVE A
INTO MQ

MULTIPLY
BY 2

ADD B

DIVIDE
BY C

RETURN
TO MAIN

PROGRAM

VAHIABLE

1, 4

= 2.

2, 4

), 4

4, 4

160

FIELD REMARKS

Pick up A in MQ

Multiply by
literal of' 2

2 * A + B

(2 * A + B) Ic

Hove quotient to
AC

Return to program

LESSON 13

GENERAL CONSIDERATIONS:

1. Always start the program by rewinding the tapes that are
to be used.

2. If temporary storage areas are to be used, always clear
them out at the beginning of the program with STZ instruc
tions to make certain that the areas contain nothing but
zeros. Never assume that anything is zero initially.

J. Consider a large program as a series of subroutines.
This gives you the advantage of being able to check out one
routine at a time.

4. Always flow chart the problem before attempting to code
it. This is the easiest way to catch logic errors and it
simplifies the problems of coding, debugging and modifying
programs.

5. Take maximum advantage of Input/Output. Use prepared
programs if available.

6. Always check for End-of-File (when reading) and End-of
Tape (when writing).

7. If buffer areas are to be used, be sure that they are
large enough.

8. If the program is long enough to run over 10 minutes on
the 7090, it should have restart capability. In this way,
if there is trouble in running the program, it isn't neces
sary to go back to the beginning and start over. Can go to
the nearest restart point.

9. Do only what is essential on-line. All possible outputs
should be off-line. Stick to tape input and tape output
on-line.

10. ~f Sense Lights are to be used in the program, turn them
off at the beginning.

11. Use as many system checks as possible:

a. Keep record count of nunlber of records in storage
b. Keep control total if possible
c. Keep limit checks (compare to a limit which is not

to be exceeded)
d. Keep tape labeling checks if tapes are to be

mounted in sequence.

12. Use messages to the operator where it will help to
make things clear to him in running your program.

161

Lesson 13, (cont'd)

TRAPPING: Floating point traps were discussed briefly on
page 51. Another form of trapping is called Transfer
trapping. There are special instructions to enter and to
leave the Transfer Trapping Mode of operation. These in
structions are shown on page 163.

When the computer is operating in the trapping mode,
control is transferred to location 0001, whenever the con
ditions for transfer have been met.

EXAMPLE: TZE (Transfer on Zero)

Normally, if the AC = zero, transfer to instruction
contained in loco Y. Otherwise computer takes the next
instruction in sequence.

In the Trapping Mode, if the AC = zero, the computer
transfers to location 0001 for its next instruction.

EXAMPLE 2: TRA (Transfer)

This is an unconditional transfer, therefore the condi
tion for transfer is always met and control is always
transferred to location 0001 in the Trapping Mode.

Whenev.er the condition for transfer is not met, the in
struction is executed in the normal manner.

The major use of the Transfer Trap Mode is in checking
out a program. When operating in this Mode, the location
of every transfer instruction (With the exception of trap
transfer instructions) replaces the address part of loca
tion 0000. This occurs whether the condition for tr~sfer
is met or not.

A special trap trace program may be written, starting
in location 0001, which will wr.i te out on a special tape,
all transfer instructions for subsequent off-line printing.
At the end of the trace program, control is returned to the
main program which will continue until another transfer in
struction returns it to the trace program.

When the information accumulated by the trap trace pro
gram is printed out, it will give the programmer a record
of the contents of various registers at each transfer in
struction, providing the conditions for transfer were met.
This can be extremely useful information to a programmer in
checking a program which is not functioning properly.

When the program has been debugged (corrected), the
Enter Trapping Mode instruction may be replaced by a NOP
instruction, cutting off the entire trace program.

162

Lesson 13, (conttd)

~·lPLE: The trap trace progr-~u could store the rollowing
inrormation, beginning with a location designated TRAP.

TRAP positions S, 1-35
TRAP + 1"

C~AC)
c AC) positions P and Q in bit posi-
tions 34 and 35

TRAP + 2 c ~~1Q)
TRAP + 3 c XRl) in the decrement part or the

word
TRAP + 4 c(XR2) in the decrement part or the

word
TRAP + 5 c(XR4) in the decrement part or the

word

INSTRUCTION: ETM (Enter Trapping Mode) Octal code: +0760
FORMAT: (Type E) 0007

lOp. CODE V/////II~TAGVM OP. CODE

5,1 II 18-20 23 35

DESCRIPTION: This instruction causes the computer to enter
the transfer trapping mode. It turns on the trapping indi
cator and the trap light on the operators console. The
computer will continue to operate in the trapping mode until
a "leave trapping mode" instruction is executed or until
the "clear" or "reset" keys are pressed on the operators
console.

INSTRUCTION: LTH (Leave Trapping Mode) Octal code: -0760
FORMAT: (Type E) 0007

I OP. CODE Wl/I////JTAGf1h'j OP.CODE

5,1 II 18-20 23 35

DESCRIPTION: This instruction turns orr the trap indicator
and the trap light on the operators console. Another E~1
instruction would be required to put the program back into
the trapping mode.

INSTRUCTION: TTR (Trap Transrer) Octal code: +0021
FOIDIAT: (Type B)

lOp. CODE I IA WIIMTAGI y

5,1 1I1~-13 18-2021 35

DESCRIPTION: This instruction causes the computer to take
its next instruction rrom location y~ This makes it pos
sible to have an ordinary transrer even when in the trap
ping mode. This is the only transfer instruction that will
not cause control to be transrerred to location 0001, when
the conditions for transrer have been met and the machine
is in the trapping mode.

163

Lesson 13, (cont'd)

SORTING: TIlis term refers to the procedure of arranging
data according to certain specified characteristics. For
example; a group of numbers may be sorted in such a way that
the smallest_number comes first, followed sequentially by
the next largest number, until all numbers are in order from
smallest to largest.

Sorting on the 7090 is quite difficult. Fortunately,
most organizations have "Sort Routines" already developed
and the programmer merely has to use the applicable routine
if he desires to do a sort in the program. Sorting is a
slow process, taking up considerable machine time.

On the following pages, an example of sorting is shown.
This is not the fastest or best way, but it is fairly
simple to understand.

The problem is stated on page 165. What the program
does is:

1. Finds the smallest number by searching through the
entire 100 numbers and places it into the first
position of a temporary location.

2. Although it has been moved to a temporary location,
it is still present in the original 100 numbers, so
the numbers are shifted so that all "words" above it
:aove down one, covering up the one we have moved.

3. This process continues until all of the numbers have
been moved to the Temporary area. Now they are in
numerical sequence.

4. The entire 100 numbers are then moved back to the
original area as required by the problem.

5. The job is done.

Note: The term cells is used both in the flow chart and
the program on the next two pages. This term is
used to indicate a machine ~ and it is more
commonly used among programmers than the term
machine word.

164

Lesson 1), (cont'd)

EXAMPLE:

PROBLEM: One hundred numbers are stored consecutively
beginning in location STORE. Sort the numbers (put them in
sequential order) from smallest to largest, leaving them in
the original block of locations. There are two instructions
in the following program that have not beer. previously de
fined (SXA and TNX). Look them up in the 7090 reference
manual.

SAVE
THE LOC. IT

OCCURRED IN

MOVE ALL W'OS
ABOVE IT DOWN

ONE CELL

PUTTHIS
NO. INTO .------....

AC

PICK UP LOC.
OF SMALLEST

WORD

PRESET NO. OF
CELLS TO STORE

I N TEMP. LOC.

PRESET NO. OF
CELLS IN LOC.

STORE

PICK UP
A WORD

SET ITS LOC.
IN CASE IT

IS SMALLEST

YES

PLACE C(AC)
IN NEXT AVAIL.
CELL OF TEMP.

TRANSF ALL
OF TEMP.

BACK TO STORE

Lesson 13, (cont'd)

LOC

START

LOOP

CAS

TEST

SX2

OP

AXT

AXT

CLA

SXA

SXA
CAS
TRA
TRA

TIX

STO
TNX

AXT

CLA
STO
TXI
TXL
LXA
TXI

VARIABLE FIELD REJ.IARKS

100, 1 Preset no. o:f cells to
store into TEHP

100, 2 Preset the no. o:f words in
STORE

STORE + 100, 2 Pick up :first word le:ft in
STORE

SX2, 2

NINS, 2
STORE + 100, 2
S'fITCH
* + 1

* - 3, 2, 1

TEHP + 100, 1
TlffiU, l, 1

**, 2

Save loco in case 1st word
is smallest
Save the no. le:ft in STORE
Is this STORE no. less?
Yes (~), set new'compare
No (=), move down to
next instruction
No (~), are we thru? No,
compare rest o:f STORE
Yes, save in TEMP area
Is TEMP area :full, yes -
go to THRU.

No, pick up loco o:f
smallest no.

STORE + 99, 2 } Move all numbers
STORE + 100, 2 above, down one
* + 1, 2, 1
* - 3, 2, 99
NINS, 2
LOOP, 2, -1

Is XR 2 ~ 99? Yes
No, all. have been shi:fted
Repeat :for next smallest no.

SWITCH SXA SX2, 2 Save location o:f smallest
no.

THRU

STORE
TEMP
NINS

CLA STORE + 100, 2
TRA TEST

AXT
CLA
STO
TIX

100, 2
TEHP + 100, 2 } rrans:fer
STORE + 100, 2 to store
* -2, 2, 1

HTR* *

BSS
BSS
BSS

100
100
1

166

back

Lesson 13, (cont'd)

PROGRA}I TESTL~G:

On page ~, a very brief summary of computer-programmer
interaction was given. Now we will touch lightly on each
step of the process from coding to final output product.
To prepare a program for operational use, the following
steps must be observed after the problem has been analyzed,
flow charted and coded on the appropriate coding sheets.

1. The coding sheets must be sent to the keypunch
organization. It is important to request that the cards be
interpreted (this means that whatever is punched in a card
will be printed across the top of it). Each line of the
coding sheet will become a punched card.

2. When the cards come back from Keypunch, they must be
compared with the coding sheets. The comparison must be
extremely careful and detailed, digit for digit. Any card
containing errors must be destroyed and replaced with a
corrected card.

30 The deck of cards you now have is called the source
program. The source program is sent to Machine Operations
organization for assembly. The Fortran Assembly Program
operates on the source program, changing the symbolic source
program into language that is understandable to the com
puter. This is accomplished automatically by the computer.
You request an Assembly Print-Out when submitting the source
program for assembly. This allows you to make a final check
of the program and the print-out will show the locations in
storage of constants and assigned work areas. The assembled
program is called the object program.

4. Before the object program may be run against live
~, it must be debugged (freed of all possible errors).
The best and least expensive way of doing this is by run
ning the program against Test~. Test data is written
by the programmer to attempt to simulate operational data
and to attempt to cover each different action taken by the
program. Since the programmer is writing the test data,
he can easily determine what the results should be after
the data is run through the machine. In this manner, he
can check out his program before it is allowed to work on
operational data. The test data must also be key punched
and ~ checked.

5. The object program card deck and test card deck are
sent to Machine Operations for a test run~ Again, a print
out of the result is requested. The two card decks are
transferred (off-line-not on the main computer) to tape,
loaded into the 7090 and the program execution is begun.

167

Lesson I), (cont'd)

6. If the program processes the test deck all the way
through, it is still necessary to check the print-out to
make sure that the results obtained are as expected.

7. If the computer hangs B£ (stops before processing is
finished), a memory print will automatically be furnished
by the operator to give the programmer an idea of where the
trouble occurred so that he may try to find and correct the
error.

8. If correction is to be made, the corrected card (or
cards) must be put into the original card deck of the source
program, replacing the cards that were in error. The pro
gram must then be reassembled before attempting to run
again. It is possible to patch a program in such a way that
reassembly is avoided, but patching will not be elaborated
upon here.

9. After corrections have been made, another test run
is attempted and this process is continued until the program
is clean (no more errors apparent). A new program almost
never runs through without errors. A programmer always ex
pects a few ineffective runs before he can clean up his
program, but the important thing is to work as carefully
as possible to avoid foolish clerical errors.

10. It is also extremely important to avoid errors in
basic logic when the program is in the planning stage.
Careful flow charting and anticipating all contingencies in
advance help to make for better programs. A good flow
chart also helps others to understand the workings of your
program ~~d greatly assists you if modifications or cor
rections are required.

11. When the output product is to be in printed form,
it must be remembered that Binary words written on tape by
the 7090, are not intelligible. Each installation has
several good subroutines for converting Binary numbers to
Decimal characters. These subroutines should be used and
the process should be accomplished off line whenever
possible.

168

Lesson 1Jt (cont'd)

PROBLEM:

116. Write a routine to compute the follo'\ving
expression:

A2 + BX + C (floating point numbers)

Where At B t and C are stored consecutively beginning in
location HOLD and X is in the MQ. The Decrement part of
the AC contains the address to which the routine will
transfer upon completion of the problem.

LOC OP VARIABLE RENARKS

169

Lesson 13, (cont'd)

PROBLE}'! 116:

SAVE THE
RETURN

ADDRESS

CALCULATE
a x X

CORRECT ANSWER

ADD C
TO ax

SAVE IN
TEMPORARY

STORAGE

CALC A2
AND ADD

TEMP.

PLACE INTO
LOC.STORE

LOC OP VARIABLE REMARKS

ENTRY

RTN

A
B
C

TEMP
STORE

ARS
STA
FMP
FAD
STO
LDQ
FMP
ADD
STO
TRA

DEC
DEC
DEC

BSS
BSS

18
RTN
B
C
TEl-IP
A
A
TEHP
STORE

**

1.95
3.84
.98E-4

1
1

170

Save return address by
storing it in RTN
Calculate BX
Calculate BX + C
Save in temporary storage

Calculate A2

Calc. A2 + EX + C
Place into loc. STORE
Return to Main program

Constants (values chosen
at random since none were
given in problem)
Allocate storage positions
to Temp. storage and the
answer

Lesson lJ, (cont'd)

PROBLE:H:

117. Read a 5 word record £rom Channel A, unit 6, in
Binary. Place in location HOLD, HOLD + 1, etc. Solve the
£ollowing equation using HOLD as A, HOLD + ,1 as B and HOLD
+ 2 as C.

A2 + B2
R = 2 (1 - C2) £loating point numbers

Assume that there will be no over£low or under£low and that
the result o£ each arithmetic operation may be contained
l'iithin one register. The answer (R) will be placed into
loc. COHP. liri te the result on Channel C, unit 5, Binary,
as a 5 word record:

1st word = A, 2nd word = B, Jrd word = C, 4th = R,
5th = C2 • Stop at EOF or EOT.

Remember, that the Read and Write routines must be as com
plete as they are in lesson 10. Flow chart on this page
and code on the next two pages.

FLOW CHART

171

Lesson 13, (conttd)

PROGRAM

LOC OP VARIABLE RENARKS

172

Lesson 13, (cont'd)

PROORA}.i--cnntinnen

LOC OP VARIABLE REl-IARKS

173

Lesson 13, (cont'd)

PROBLEM 117:

HALT-EOJ

HALT-EOJ

CORRECT ANSWER

ZERO READ
COUNTER

READ A
RECORD FROM

AS INTO
HOLD,ETC.

CALCULATE
R

STORE INTO
COMP

WRITE ON
C5 USING

3 CHANNEL
COMMANDS

174

YES ERROR
ROUTINE

YES ERROR
ROUTINE

NO

Lesson 13, (cont'd)

CORRECT ANSWER

PROGRAM

LOC OF VARIABLE REMARKS

X TAPENO A6B
Y TAPENO C5B

START STZ CNT Preset counter f'or Read
RX RTBX

(Read RCHX IOIN Read tape

Routine)
TCOX *
TEFX EOJ End of' f'ile?
TRCX PEX Parity error?

(calcu- LDQ HOLD
A2 lation) FMP HOLD Calculate

STO A2
LDQ HOLD + 1 Calculate It FMP HOLD + 1
STO B2
LDQ HOLD + 2 2 Calculate C Fl>-IP HOLD + 2
STO C2
CLS A2

_A2 _B2
FSB B2 Calculate

/C
2

FDH C2 Calculate _(A2 + B2)
XCA
FAD =1.
XCA

(A
2

+ B2)
FMP =2. Cal. 2 (1 - C2

)

STO COl-IP

(Write STZ CNT Preset counter f'or Write
Routine) TCOY *

AGAIN WTBY
RCHY IOOUT Write a record
TCOY *
TRCY PEY Parity error?
ETTY End of' tape?
TRA STOP
TRA START

175

Lesson lJ, (cont'd)

PROGRAM--continued:

LOC

EOJ

STOP

PEX

(Error
Routine
f'or Read)

PEY

(Error
Routine
f'or
'Write)

IOOUT

IOIN

CNT
HOLD
A2
BZ
C2

OP

HTR

EQU

CLA
ADD
STO
SUB
TZE
BSRX
TRA

CLA
ADD
STO
SUB
TZE

BSRY
'WTBY
TCOY
TRCY
TRA

IOCP
IOCP
IOCD

IORT

BSS
BSS
BSS
BSS
BSS
END

VARIABLE

*

EOJ

CNT
= 1
CNT
=10
EOJ

RX

CNT
= 1
CNT
= 5
STOP

*
*
AGAIN

HOLD, , J
COMP, , 1
CZ, 1

HOLD, , 5

1
5
1
1
1

176

RENARKS

Bad tape, if' yes-go to EOJ
If' no, backspace
Back to try to read again

Bad tape, if' yes - go to
STOP
If' no, backspace

Back to try writing again

Output At B and C
Output R in same record
Output C2 in same record
and stop
Input Command

A110cate storage locations.

Ref'er

LESSON 14

QUICK REFERENCE

INSTRUCTIONS AND THEIR }iEANINGS

to Page 1. MISCELLANEOUS INSTRUCTIONS:

47 XCA (+0131) Exchange AC and MQ - Reverses the two
f'ields

30 HTR (+0000) Halt and Transf'er - Halts Program, if'
restart, goes to Y

77 NOP (+0761) No operation - Program continues to

27
29
29

69

29

46
46

46
46

next instruction

2. FIXED POINT ARITHMETIC INSTRUCTIONS:

ADD 1+0400j ADD - Add Y to AC
SUB +0402 SUBTRACT - Subtract Y f'rom AC
MPY +0200 MULTIPLY - Multiply Y by MQ, Product

in AC (and MQ if needed)
RND (+0760 0010) ROUND - Increase AC by Binary 1

if' posit. 1 of' J.iQ contains 1.
DVH (+0220) DIVIDE OR HALT - AC and MQ are

Dividend, Y is Divisor, Quotient in
MQ, Remainder in AC. If' can't
divide, HALT.

DVP (+0221) DIVIDE OR PROCEED - as above, except
that if' can't divide, continue with
program with Div. Check Light on.

DCT (+0760 0012) DIVIDE CHECK TEST - if' indica
tor on, takes next instruction. If'
indicator of'f', skips one instruction.

3. FLOATING POINT ARITHMETIC INSTRUCTIONS:

FAD
FSB

FMP
FDH

(+0300)
(+0302)

(+0260)
(+0240)

FLOATING ADD - Add Y to AC
FLOATING SUBTRACT - Subtract Y f'rom
AC
FLOATING MULTIPLY - Multiply Y by MQ
FLOATING DIVIDE OR HALT - AC
divided by Y. Quotient in MQ, re
mainder in AC. If'can't divide HALT.

4. SHIFTING INSTRUCTIONS:

47 ALS (+0767) AC LEFT SHIFT - The AC shif't lef't No.
posit. in Y 28-35

47 ARS (+0071) AC RIGHT SHIFT - As above, only
shif't to the right.

73 LLS (+0763) LONG LEFT SHIFT - AC and MQ as one
register. Shif'ted lef't no. places
specif'ied in Y 28-35_

73 LRS (+0765) LONG RIGHT SHIFT - As above, only
shif't to the right.

177

Lesson 14, (cont'd)
Re£er 5. STORE AND LOAD INSTRUCTIONS:
to Page

27
29
30
30
73

CLA
STO
LDQ
STQ
STZ

(+0500)

1
+0601)

+0560 j
-0600
+0600

CLEAR A:t."D ADD - Nove Y into AC
STORE - :Hove AC into Y
LOAD 1'-IQ REGISTER - 1-1ove Y into HQ
STORE FRmf !-IQ REGISTER - Move MQ to Y
'STORE ZEROS - Hove zeros into Y,
Sign to +

89 STA (+0621) STORE ADDRESS - £rom AC21_25to Y21-
35

89 STD (+0622) STORE DECREMENT - £rom AC
3

_17to Y
3

- 17
89 STT (+0625) STORE TAG - £rom AC18_20 to Y18- 20
89 STP (+0630) STORE PREFIX - £rom ACS , 1, 2 to

Y
S, 1, 2

6. TRANSFER INSTRUCTIONS (No Index):

73 TRA (+0020) TRANSFER - Trans£er to instruction
speci£ied by Y

31 TZE (+0100) TRANSFER ON ZERO - I£ AC = Zero
trans£. to Y, otherwise to next instr.

31 TOV (+0140) TRANSFER ON OVERFLOW - I£ AC over£low

47

47

77

52

53

TPL (+0120)

nIT (-0120)

CAS (+0340)

NZT (-0520)

ZET (+0520)

indicator on, trans£er to Y, other
wise on to next instruction
TRANSFER ON PLUS - I£ sign o£ AC +,
transL~~ otherwise to next instr.
TRANSFER ON l-ITNUS - I£ sign o£ AC -,
trans£. to Y, otherwise to next instr.
COMPARE AC WITH Y - i£ c (AC) > c (Y) go
to next instr. I£ = skip one instr,
i£<, skip two instructions
STORAGE NOT ZERO TEST - I£ c(Y) are
not 0, skip 1 instr. I£ c(Y) are 0,
on to next instruction
STORAGE ZERO TEST - This is the op-
posite o£ NZT instruction

7. TRANSFER INSTRUCTIONS (INDEX)

95 TIX (+2000) TRANSFER ON INDEX - I£ c(XR):::S Deer.
XR reduced by Deer. and on to Y.
Otherwise on to next instruction

95 TXI (+1000). TRANSFER WITH INDEX INCREMENTED-Adds

95

95

95

TXL (-3000)

TXH (+3000)

TSX (+0074)

Deer. to XR and on to Y
TRAN"S. ON INDEX LOW OR EQUAL-I£ c(XR)
~ or = Deer. go to Y. Otherwise on
to next instruction
TRANS. ON INDEX HIGH-I£ c(XR» Deer.,
go to Y. Otherwise on to next instr.
TRANS. AND SET INDEX-Place 2'8 Compl.
o£ Instr. CTR into XR. Next instr.
£rom loc. Y.

178

Lesson 14, (conttd)

120

120

120
120

3..20

120

120

121

121

121

121

121

121

122

138

138

8. INDEXING INSTRUCTIONS:

LXA (+0534) LOAD INDEX FROM ADDPESS -
1>loves into specified XR

LXD (-0534) LOAD INDEX FROM DECREMENT

,,(v\
-\4'21-35

- c (Y) 3-17
Moves into specified XR

AXT (+0774) ADDRESS TO INDEX TRUE - Positions
21-35 of this instruction moves
into specified XR.

9. INPUT/OUTPUT INSTRUCTION AND COMMANDS:

RTD (+0762) READ TAPE DECIMAL - Will select tape
to be read from if followed by RCH

WTD (+0766) WRITE TAPE DECIMAL - 'With the RCH
will select tape to write, otherwise
writes blank

BSR ~+0764) BACKSPACE RECORD - Backspace 1 record
WEF ,+0770) WRITE END-OF=FILE - Writes EOF gap

and tape mark
REW (+0772) REWIND - Tape rewinds to load point.

Ready to run again.
RUN (-0772) REWIND AND UNLOAD - Rewinds tape to

load point and unloads it
TCO (+~6~) TRANS. IF CHAN 0 IN OPe - If Channel

in operation, takes next instruction
from loc. Y

TRC (+~;~) TRANS. ON REDUNDANCY - If parity in
dicator on, turned off and next in
struction from loco Y

TEF (CHoA) TRANS. ON END-OF-FILE - If" EOF indi+0030
cator on, turned off and next in
struction from loco Y

BTT (+0760) BEGINNING-OF-TAPE TEST - If" indicator

ETT (-0760)

RCH (CH.A)
+0540

on, turned off and takes next instr.
in sequence. If off, jumps one instr.
END-OF-TAPE TEST - As for EXT, except
tests EOT indicator
RESET AND LOAD CHAN. - Used with the
Read or Write instr. to specify First
Data Channel Command

IOCD-I/O UNDER COUNT CNTRL, DISCON. - Reads or
Writes the number of words specified
in Decrement

IORT - I/O OF RECORD, TRANS. Reads to end of re
cord or until word count to zero.
Writes number of words specified in
Decrement. Next command from LCH or
else disconnects.

10. LOGICAL INSTRUCTIONS:

CAL (-0500) CLEAR AND ADD LOGICAL VID. - As the
CLA except sign goes into posit. P

SLY (+0602) STORE LOGICAL WORD - As the STO ex
cept that bit from P goes into Sign
position.

179

Lesson 14, (cont'd)

Page 10. LOGiCAL INSTRUCTIONS--continued

138 ANA (-0320) AND TO ACClJ}1ULATOR - Bits are matched,
using AND rules, result into AC

138 ANS (+0320) AND TO STORAGE - As for ANA, except
result into storage loco Y

139 ORA (-0501) OR TO ACCUMULATOR - Bits are matched,
using OR rules, result into AC

139 ORS (-0602) OR TO STORAGE - As for ORA, except
result into storage loco Y

139 ERA (+0322) EXCLUSIVE OR TO AC - As for ORA, ex-
cept rules for EXCLUSIVE OR apply

142 LGL (-0763) LOGICAL LEFT SHIFT - AC and MQ
treated as one. Shifted left no.
places in 28-35. Sign of AC no chg.

142 LGR (-0765) LOGICAL RIGHT SHIFT - As for LGL,

148

148
148
148
149

149

149

149

11.

only shift is to right.

SENSE INDICATOR INSTRUCTIONS:

PAI (+0044) PLACE AC IN INDICATORS - c(AC)P, 1-35

PIA
LDI
STI
ONT

(-0046j
(+0441
(+0604
(+0446

into Indicator
PLACE INDICATOR IN AC-Reverse of PAI
LOAD INDICATORS - c(Y) into Indicator
STORE INDICATORS - Reverse of LDI
ON TEST FOR INDICATORS - One bits in
Y and SI are compared. If =, skip one.
instr. If not =, takes next instr.

OFT (+0444) OFF TEST FOR INDICATORS - As ONT, ex
cept SI checked for zeros.

TIO (+0042) TRANS. IF INDICATORS ON - One bits in
AC and SI are compared. If =, next
instruction from loco Y

TIF (+0046) TRANS. IF INDICATORS OFF - Ones in AC
compared with zeros in SI. If =, next
instruction from loco Y

12. TRAPPING INSTRUCTIONS:

163 ETN (+0760 0007) ENTER TRAPPING MODE - Causes
computer to enter trans. trap. mode

163 Ln.i (-0760 0007) LEAVE TRAPPING HODE - Turns off
trap indicator and trap light. Takes
the computer out of trap. mode

163 TTR (+0021) TRAP TRANSFER - Next instruction from

60

60
60

loco Y. Only normal transfer allowed
when in trapping mode.

13. PSEUDO OPERATION CODES:

COUNT - COUNT - First card of symbolic deck.
Gives number of cards in program.

END END - Last card of symbolic deck.
BSS BLOCK STARTED BY SYMBOL - Allocates

block of storage. First loco of block
tagged by a symbol.

180

Lesson 14,

Page 13.
0,
V..L

81
81

82

148

152

152

152

(cont'd)

PSEUDO OPERATION CODES--continued

EQU -
OCT

PLUS ZERO - Assigns one word and puts zeros
into S, 1, 2. Can specify Address, TAG,
Decrement
EQUIVALENT - Used to define a symbol
OCTAL DATA Data generating, series of
variables

DEC - DECl}~L DATA - Data generating, decimal in
tegers, fixed PT or floating PT.

SWT - SENSE SWITCH TEST - If Sense Switch (1-6)
is on, skip one instr. Otherwise takes next

SLN - SENSE LIGHT ON - Turns on Sense Light
designated by Y.

SLF - SENSE LIGHT OFF - Turns off all Sense
Lights.

SLT - SENSE LIGHT TEST - Tests Sense Light
designated by Y. If on, turns off and skips
one instruction.

REVIEW AND SELF-TEST

The following pages contain another review and
self-test. Again, page references will be given with the
correct answers and it is suggested that the reference be
checked on each question answered incorrectly.

Consider this test to be closed~. Use only
the quick reference to instructions at the beginning of
this lesson. Do not refer to any other part of the book
while you are working the problems.

There will be 25 questions covering the high
lights of the entire course and a problem to be flow
charted and coded. Answer all questions and complete the
coding before checking the correct answers. The answers
to the 25 questions may be found on pages 190, 191 and the
flow chart and correct solution to the problem on pages
192, 193 and 194.

Score this test as you did the previous one in
Lesson 9. Your total score on the two parts of the test
should be 70 or over and you should not take over two
hours in completing the entire quiz.

181

Lesson 14, (cont'd)

PROBLEHS:

118. Flo"\'l chart a typical Read Tape error routine:

YES READ
TAPE
AGAIN

119. Flow chart a typical Write Tape error routine:

YES WRITE
RECORD
AGAIN

120. Using AND logical rules with }~SK OCT 000777777777

Before:

After:

~Oll 01 I II 001 101 II I o ~--------, •• ol
'-" '-" '-" '-" '-"" '-""

+157 5 7

q'---____ -----..J

121. Using OR logical rules with ~~SK OCT 007777000000

Before:

After:

~II 011 I 1001101 II I O f------.. ~ 01

'-" '-" '-" '-" '-" '-"
+157 157

q~ ___ ----J

122. Using EXCLUSIVE OU logical rules with MASK as in
problem 120

Before: ~Oll 0 II I 100110 I I I I O f------.. ~ol

After:

'-"" '-" '-" '-" '-.../ "-/
+151157

q~---------!

182

Lesson 14, (cont'd)

123. a. How many sense switches are ~here?

b. How many sense lights are there?

124. Assume that a "flag" word is already in the AC.
If bit 15 is Qn, go to AREA and if bit 27 is off, go to
STOP. Write a partial program to accomplish this action.

LOC OP VARIABLE REMARKS

OP VARL4..BLE RE}'!A..ttKS

AXT 1, 1

STO* Block, 1

STO HOLD

BLOCK CLA AREA

STO FIELD

In the little program above, the STO* will place c(AC)
into location _________________ •

126. In the program above, if the AXT looked like this:

AXT -1, 1

The STO* will place c(AC) into location~ __________ •

127. When operating in the tr.apping mode, control is
transferred to what location when the conditions for
transfer have been met?

Location~ ________ __

128. The program, before assembly, is called the

183

Lesson 14, (cont'd)

129. LOC OP VARIABLE
LXD HOLD, 1

HOLD PZE 6, 4, 2

What is loaded into XRl?

130. XR4 contains the number'?

Instr.
AA

TIX
CLA

HOLD, 4, 5
AREA

a. A:fter execution, what is in XR4?

b. Program moves to location _______ _

131. In problem 130, i:f the number in XR4 was 3:

a. A:fter execution, what is in XR4? __________ _

b. Program moves to location _______ _

132. XRl contains the number 2:

Instr.
AA

TXI
CLA

HOLD, 1, 5
AREA

a. A:fter execution, what is in XRl? _____ _

b. Program moves to location ________ _

133. XR2 contains the number 138

Instr.
AA

TXL
CLA

HOLD, 2, 12
AREA

a. Program moves to ______ __

b. A:fter execution, what
is in XR2? _____________ _

134. In storage, location HOLD
looks like this?

CLA 50, 2
(+0500)

Ope Variable

Show the instructions that will move the Ope Code into
loc. AA, TAG into loc. BB and Address into loc. CC.

184

Lesson 14. (cont'd)

135. Show storage locations AA, BB and CC after problem
134 has been executed.

AA

q'-------~
r-------'-'----------, q BE

Ci~ _____________ C_C ______________ ~

136. Show the Octal representation of the following
constants.

a. DEC l7B14

b. DEC 12

c. OCT 17563

d. DEC 4E-4

137. Problem: If A> B, go to loc. HOLD. If A = B,
go to loc. HOLD + 1. If A <B, go to loc. HOLD + 2. Show
a partial program to accomplish this action.

LOC OP VARLl\.BLE REMARKS

138. Show the floating point word for the following
number:

Show the word in Octal.

Char. Mantissa

qL-----L--__ _

185

Lesson 14, (cont'd)

139. Show the following numbers in normalized form.

c. 101 001
2

140. Show the Characteristic (in Octal) for the follow
ing floating point numbers:

n CHAR.

IL--_-------I

b. 16310 qL... ______ ...J

141. Four numbers are packed into a word at loco HOLD
as follows:

~~ __________ ~ ____ 2 ____ ~ ____ 3 ______ L-____ 4 ____ ~
89 1718 2627 35

Unpack number 3 and place into location HOLD 1
in positions S, 1-8. Show a partial program to accomplish
this action:

LOC OP VARIABLE REMARKS

142. Add two fixed point numbers; A(BO) and B.{BO).
Hove in the AC so that' the Binary point will be at B16 and
store in HOLD.

LOC OP VARIABLE REMARKS

186

PROBLEM:

143. On Tape 1, Channel A, are 100 values of X. On
Tape 2, Channel A, are 100 values of Y (both sets in 2
floating point). For each pair of X and Y, calculate X ,

y2 and XY. Write a record on Tape 5, Channel C, containing
2 2 X, Y, X ,Y and XY (in the order given and also in float-

ing point). Stop at end-of-tape.

Use Storage loc. HOLD for X, HOLD + 1 for Y, HOLD + 2
2 2

for X " HOLD + 3 for Y and HOLD + 4 for XY.

FLOW CHART

187

Lesson 14, (conttd)

LOC OP

PROGRAJ.l

VARIABLE

188

REMARKS

Lesson 14, (cont'd)

PROGRAM--continued

LOC OP VARIABLE REMARKS

189

Lesson 14, (cont'd)

PROBLEM

118.

INCREASE

CORRECT ANSWERS

NO READ
COUNTER I---~ >----..(BACKSPACE TAPE

BY I

119.

YES

HALT
UNREADABLE RECORD

AGAIN

(page 122)

YES INCREASE
>----t~ COUNTER BACKSPACE ERASE

TAPE

TURN OFF WRITE
PARITY RECORD

120.

Af'ter:

121.

Af'ter:

122.

Af'ter:

123.
a. 6

b. 4

124.

BYI LIGHT AGAIN

(page 124)

~OOOOOOOOOOII 01111 0-' -----~ol (page 137)

""-' - --- --- --- ~ + 0 0 0 I 5 7

~Oll 011111 I 11111110 .. -------01 (page 137)

"-.-/ ~ ~ ~ '-" '-"
t I 5 7 7 7 7

~IIOIIII 1100100001" -------~" (page 137)

-~- --- --+ I

LOC

5 7 6 2 0

(page 147)

(page 152)

OP VARIABLE

PAI

CAL =lBlS

TIO AREA

CAL =lB27

TIF STOP

(pages 148-149)

190

REMARKS

Place c(AC) into
Indicator
Pick up bit 15 to
compare
If' 15 on, go to
AREA
If' of'f', pick up
bit 27
If' of'f', go to STOP

Lesson 14, (cont'd)

_1_2_5_. __ H_0_LD _____ (_p_ag_e __ 1_5_6_) ____ -;1 136. a. +00021AOOOOOOO
b. +204600000000

126. FIELD (page 156) c. +000000017563
d. +165644000000

127. LOC. 0001 (page 162) (page 83)

128. Source program (pg.167) 137. LOC OP VAR. REM.
CLA A

129. 2 (page 94) CAS B
TRA HOLD A>
TRA HOLD 1 A =

130. a. 2 TRA HOLD 2 A<
(page 95) (page 77)

b. HOLD
138. C!1 CHAR MANTISSA

1
4240

-
.. 01 2 I I

131~ a~ 3
(page 95) (page 41)

b. AA
.12476 X 105 139. a.

132. a. 7 b. .35 X 10-3

(page 95)
c. .101001 X 2 3

b. HOLD
.11725 X 103 d.

133. a. HOLD 1210 = 148 (page 41)

(page 95)
140. -2510=-318 =-011001. 2 =

b. 138 .11001x2 5 (200+5 = 2058)

134. LDQ HOLD
a. ~2 0 51

LLS 8 To move 16310=2438 =
ALS 27 Ope Code

010100011. 2 = STO AA
CLA HOLD To move .10100011x2

1O

.§.!! BB TAG (200 + 10 = 210
8

)
STA CC To move

b. ~2 Address I 01
(pg. 41)

135. 141.

~ AA LOC OP VAR. REMARKS ~:OOIOIOOOOOO~
CAL HOLD l-love to AC + 1,-", '-'" _II
ANA MASK Blank all 0 5 0 0

BB but 3

~Ol 010 ALS 18 Shif't Lef't

18 20 SLW HOLD 1 Store
......... l-IASK OCT 000000777000

2
teage 146) cc

~O- .. 01100101 142. LOC OP VAR REH
CLA A 21 35

"---'- ADD B
6 2 LRS 16

STO HOLD • 4 (pg 7)

191

Lesson 14, (cont'd)

PROBLEM 14:3:
FLOW CHART

SET ERROR
COUNTER

BRING IN
ALLOFX

ANDY

SET COUNTER
TO 100

MOVEX AND
YTOHOLD

AND HOLD+I

CALCULATE
X2y2XY ••

AND STORE IN
HOLD+2,3,4

WRITE OUT
THE RECORD

YES ERROR
ROUTINE

ERROR
ROUTINE

DECREMENT
NO XRI TO PICK

192

UP NEXT VALUE
OF XAND Y

Lesson 14, (cont'd)

PROGRAM

LOC OP VARIABLE RE1-fARKS

X TAPENO AlB
Y TA PEN 0 A2B
Z TAPENO C5B

START AXT 10, 1 Set counter to try again
TCOX *

RDX RTBX Read a record
RCHX IOX
TCOX *
TEFX STOP
TRCX PEX
AXT 10, 1 Set counter to try again,
TCOY * reading Y

RDY RTBY
RCHY IOY
TEFY STOP
TRCY PEY

AXT 100, 2 Set counter to 100

LOOP CLA X + 100, 2
STO HOLD Move X andY to
CLA Y + 100, 2 output area
STO HOLD + 1

LDQ X + 100, 2 2
FMP X + 100, 2 Calculate X

STO HOLD + 2

LDQ Y + 100, 2 2
FMP Y + 100, 2 Calculate Y

STO HOLD + 3

LDQ X + 100, 2 Calculate XY Fl-IP Y + 100, 2

STO HOLD + 4

193

Lesson 14, (cont'd)

PROBLEM 143:

LOC

WDZ

STOP

PEX

PEY

PEZ

IOO
IOY
IOX
X
Y
HOLD

OP

TCOZ
AXT
WTBZ
RCHZ

TCOZ
TRCZ
ETTZ
TRA
TIX

HTR

BSRZ
TIX
TRA

BSRY
TIX
TRA

BSRZ
WTBZ
TCOZ
TRCZ
TIX
TRA

IORT
IORT
IORT
BSS
BSS
BSS
END

PROGRAM--continued

VARIABLE

*
5, 1

100

*
PEZ

STOP
LOOP, 2, 1

*

RDX, 1, 1
STOP

RDY, 1, 1
STOP

*
*
lVDZ, 1, 1
STOP

HOLD,
Y,

, 5
100

, 100 X,
100
100
5

REHARKS

Set number of' times to try
Write a record on tape

End of' Tape?
Yes, go to STOP
No, go back to loop

End of' job

Try 10 times
Bad tape

Backspace
Erase tape

Try again? Yes, to WDZ
No, bad tape

Output Command
Input Y Command
Input X Command
Allocate input areas f'or
X and Y
Allocate output area

LESSON 15

SAMPLE PROG~l: Most of the examples and problems through
out this book showed only partial programs, enough to solve
the particular problem being presented. The sample program
that follows attempts to show a complete source program,
starting with the statement of the problem to be solved and
followed by the programmers' flow chart and the coding re
quired to execute the problem.

The Source Program on pages 198 and 199 shows the
actual print-out the programmer will receive. Each line
represents one punched card of the Source Card Deck (refer
to page 167).

The following five pages show the cards of the Object
Program after assembly. These contain all the information
contained in the Source Program, ready to be used by the
computer to operate on live data.

PROBLEI-l

Given a block of no more than 1000 floating point
numbers, located at AREA, AREA + 1, etc. The last word in
the block contains all binary ones.

Find the number of words in the block (excluding the
word containing all ones) and place the number into
location NIB, in floating point.

Find the average of all of the words and place it into
location TAVE.

Find the average of all plus words and place into
location PAVE.

Find the average of all the minus words and place into
loca tion ~1A VE.

When all averages have be~n found and put into the
proper locations, the job is done.

195

Lesson 15, (cont'd)

FLOW CHART

INCREASE NO NIA
DECREMENT -~

TAG XR

SET NO. IN
AREA =

ZERO

SET XR
=1000 FOR
USE AS TAG

CONVERT
NIB TO

FL T. POINT

SAVE IN
NIB

PRESET TAG
TO SUM

AREA,AREA+I
ETC.

PRESET
SUM=O

SUM THE
BLOCK OF
NUMBERS

CALCULATE
AVERAGE
AND SAVE

196

Lesson 15, (cont'd)

ADD TO
MINUS
TOTAL

INCREASE
MiNUS
COUNT.

ThQ}! CHART--continued

NO

PRESET MINUS
{{P.LUS TOTALS
/ COUNTS =

ZERO

PRESET XR
TO TOTAL
IN AREA

PRESET XR
TO USE AS TAG
IN CALCULATN

DECREMENT
TAG XR

CALCULATE +
AVERAGE AND
AVERAGE AND

SAVE

197

NO

ADD TO
PLUS

TOTAL

INCREASE
PLUS

COUNT

9/05/62 PAGE 1

~g .. o 0~. •. _q17 4_. 00 _1 __ o..9.QQg_~_~~J. .. ~~.!~ ... _____ _ g.!_l_. __ . _____ .. _. ___ _ __ ... ___ ____ .. __ _
00001 0774 00 2 01750 AXT 1000,2
00002 0500 00 2 02030 LOOP CLA ARSA+1000,2 IS IT THE END
00003 0402 00 0 02045 SUB --- ~0;f117i77777;:.ri--woRb-.----- ----------------------------- ..

00004 0100 00 0 00007 TlE TNIB YES
-6666s---1CfoooT-l 00006 ------ - TXI *+l~-l~-i--------r;«,-;---BUMP--ft:r£COuNt--(fF NIB
00006 1 77777 2 00002 TXI LOOP~2,-1 TRY NEXT WORD

--ooi)'(f;r-·~6754-00r--06(f6-6-----TN 'fe--·-rxr-·---;I------··PU T -COUNT-iNAt-~··----

00010 0634 00 1 02030 SXA FXNIBtl SAVE FIxeD POINT COUNT
ooolf '::'05010-0 -6 ·-02044---- -----ORA------~:;;;6233boo06oobo'--CONVER r--j:-fxEbpolf·n-yo------·
00012 0300 00 0 02042 FAD =0 FLOA TI NG PO I NT
00 a 1 3 0601 00 a 6-2 0-3 C----- -- - -5 i-o"" ------N la---------,5 AV E F L OA i'[NGPoI N r--;'f[e-- --- -------
00014 0600 00 0 02032 STl TOTAL PRESET SUM Te ZERe

-o'(f61~f .' -"0''77 4--00"2"'"Q"oO()'O--'------'---'" iX"r"-----o-;2--'---""----"--P'R ESETTAGFORADi5"l NG ifffE-i;--AR e A ... 1 , ETC :--
0001_6 050000 2 00060 _ ~OOPJ_'<;J.A AREA.t.L _______ .St,J_tLIHE _______________________ ._' __________ _
00017 0300 00 0 02032 FAD TOTAL BLOCK OF NUMBERS

__ 00020 1 77777 2 00021 _, _______ TXI __ !_+l!.£t-=l ______ ~.U,~P. __ ~AG ___ FO-'i~~_t;;A ___ . __ _
00021 2 00001 1 00016 TIX LeOP1,1,l ALL THRU SUMMING, NO

___ QQ.Q.~_~. __ " _QL~ J .9_()" a .. .Q_2 Q :3 L.. __ ,,_,, __ F ~_~ ____ NJJL ___ .. _ .. _____ JE..? .1. __ C _~1-G.Y.!:.A I~. _____ ._._. ______ _
00023 -0600 00 0 02033 STO rAVE AVERAGE AND SAVE
00024 0600 00 0 02034 STZ PTOT PRESET TOTALS
00025 0600 00 0 02035 - ----S-TZ----- MiaT " --ANO-coUi\jTs------------"--------------------
00026 __ o_600 00 0 02036 S T ~_____P~i~T___ __ _________________ _
00027 0600 00 0 02037 STZ MCNT

___ ..Q.9_Q}9 u5~_i...Q9 __ .L 9~20JQ ___ ,,_ .. ,, __ ""' __ l:.!A. _____ .. E~~IB, 1 PICK UP NUMBER IN BLOCK
00031 0774 00 2 00000 AXT 0,2---"PRE"sE"':"r TAG--FOR AREA
00032 0500 00 2 00060 lOOP2 CL~_ AREA,2 __________ PICK UP NUMBER
00033 012000 0 00052 TPL PLlJS IS-'lT-PLljS~---YES-----------'"--·------"---------- .. ""--·---.-----,,-

00034 030000_0. _020..,35 FAD Mr9l __________ .. _~_(L _____________ "" ______________________________ . __
00035 0601 00 0 02035 ST0 MTOT

~QQ.;H~ __ ~_Q?J?_Q..._oO.Q ___ ,9 ?_OXl ,_ , _______ ," I;L A . , ,_,"_M,c;.~ 1 ___ .. __ __ .!tlJ.t1p. .. ~().~t:-J.'LJJ£, _ .. __ .. ____ .. ___ .. ,,_._,"'. __ ,, __ .. _____ _
00037 0300 00 0 02043 FAD =1.0 MINUS NUMBERS
00040 0601 09 0 0?_Q31 STP MCNT

-n
o
I:i
d-..
Cl< -

UUU~j U?UU UV u ULU~~

00044 0241 _Q~_g 02 O~L ___ . ___ , __ ,_~J?,!:, ___ "_, __ .. -':'_~J __ , __ .. ,,, .. " _,_,.f>J.,.Y_?'_,_~ '/..EB.AGE,."" ___ .. _,_._ .. ,, ... _ ._,,,, ." ,,",... ... "-"-.,-,,-, "._. __ .. "
00045 -0600 00 0 02040 STa PAVE

_00046 050.0 00 0 .l>2_QJ5"" ____ ' J~~"~ _. _____ MTOI, ____ . ,CALCULATe M [NUS
00047 0241 00 0 02037 FOP MCNT AVERAGE

_Q0050 0601 .QJL.9....JL2_9_'t..L __ , __ ,_. ___ ~TO .. _ ... "tJ,AVE_._ . __ . __ ._
00051 0000 00 0 00051 GTap HTR. ALL THRU STOP

_ 00 Q.5 2 0 J 0 0 -.9_<>-,9 __ 92 034 __ P L U S __ f. AD ______ ,eJ.Q.I , .. ___ ___ ... , ?_Id .~PJ~ u~ .J~!J. M,B f:;.~~._ ___ ... , .. __ , ., __ . "' ___ ... ,,'" ___ ,,, .. ,_ ... __ ,. __ ,
00053 0601 00 0 02034 STO PTOT
00054 050JL.QQ._LQ,?_Q.~Q_ CLA PCNT BUMP PLUS
00055 0300 00 0 02043 FAD =1.0 ceUNT
00056 0601 00 0 02QAf:>_. ___ "_. __ ._~_!<L_, ___ Pc:~T ___ ._. ____ ._, ..
00051 0020 00 0 00041 TRA TEST
00060 ARE #\,, __ J.3_&. __ . __ ... 1 0 C 0. ___ __ _,_. ___ ... __ ". _._____._",_. ___ .. _ , __ , .. __ ." ... "" ' __ '_'___ ' .. _._. __ . __ .. " __ .
02030 FXNIB BSS 1 B35 caUNT OF NUMBEH. IN AREA
02031 ._._" ____ 1i!J~_. __ ,_BSS __ .. _l_" .. _______ FLOATING POINT caUNT OF NU;~BER It\\ AREA
02032 TOTAL BSS 1 faTAL OF ALL NUMBERS
0203 3_. ___ ..!~_\t~.~S_ .. ___ 1 __ . ___ ."" __ .A V E~ AGE 9F. ALL NU M,B E-R S
02034 PTOT BSS 1 PLUS NUMBERS TOTAL
02. 0 35 _, __ --11 T 0 T._~. S S _L __________ . __ ._ M IJ~!,J"~.,_",iiV.!'1,~~_~.~ __ n;tL~ 1"' ____ .. ,.,_,, .. __ ,., __ '_'_" ______ '"'_""''' __ '''_
02036 PCNT BSS 1 PLUS NUMBERS caUNT

-----,---._-_." ._"

---------_ ... _ _-_ ... ---

~/05/62 PAGE 2

02037 MCNT BSS 1 MINUS NUMBERS COUNT
02040
02041

-----'-PA-V"E-- --B ss--Y"'-' .. p-C'u S --N Uj;fSE"R S-·w·.A\/ERAGE-·~-··-·'--··-"-·-··""- .-~ ... -. _ .. ~_~_ .. M~_· • k ._, •••• ' .~-,-... --.

MAVE BSS 1 MINUS NUMBERS AVERAGE
----------.~------ .. -- ._-_._--_ .. - ----... --.~--.. --.----- - --". ".-. -."'. --_. -._.-. -- ---- --

END
-----.-~.- ._-----_._-_. ------------ .--_.-

LITERALS
02042 000000000 O_<!L.. ______ . ____ .. ___ . ___ ."' ___ , _____ ___ ,_ .. _______ " __ ._. ___ . ___ .. __ ,, ___ , _____ , __ . _ . _" __ ._. __ .. _ , __ . ______ . __ ._ ... _. __ ,._ .. _
02043 201400000000
02044 2 33000000000. ___ ._ .. _. __ . __ . ,, __ ~ _____ . __ __ . __ ... _. _____ __ __ ._._.. ... __ __
02045 717171777177

--.

,-...
(')

o
:::s
c+ -jl.

Lesson 15. {cont'd}

· --- ---------------- --- - -- - ------ -------- ----------------------

o

.;-------
. ----

.!---,

POSTPROCESSOR ASSEM-sLY· DATA---------

,,-- --'2 046 f 5 -fH~ .. FTRS-T-l oC-AT I oN'Nor-us E[j"-ff\i"-fHTs - -ptfO-G-R-M

.~ ______ REFEREi~;~ TO ~i~INED l;:MB(J~~
,

~ -- --- -·-·---------?1· _.- '~-6 a~' ---' -.' .-~ ~ --,-, _U?_L_ 32 ______ ------ ----.----. -._._-

.! ____ 2041 MAVE 50
2037 MeNT 27, · -. 203~ MTOT 25,
2040 PAVE 45

36,
34,

47
46

2q.3_~_. __ pc~'\jr_ _~~ , _____ 4_~ L_. _ ',i4 t ______ 5_6____ _ .. _ ____ . __________ .

• .-
•

52 PLUS 33
2034 PlOT 24,

~l STOP
2033 lAVE

41 TEST
_____ ! TN I e
2030 FXNI8

L6 LOOP1
32 LOOP2
o START

2032 feTAL

23
57

4
10,
21
42

14,

43,

30

17

• _ NQ ERROR IN ABOVE ASSEMBLY.

• TIME TO COMPILE/ASSEMBLE WAS

• _._0 __ -

52, 53

3 MILLIHOURS.

74175 7Ei 7717879 80

1111111111
I I

2 12212221222
1 I

3313331333
~ I I
I-' 4414441444

I I
5515551555

1 I
6616Ei61666

I 1
417717771777

I I
2 Is SIS S: 81S SI3

I 1
9919991999

~
l\)

2 I 2 12.
r

I I
111111110
7417576771787980

111111111
I I

2212221222
I I

3313331333
I I

,,4414441444
I I

5515551555
I I

6616661666
I I

7717771777
I I

8818881888
I I

9919991999

~
"'"

1

I
I

1111110
74175 76 TlI7S 79 80

11111111111
1 I

22122~~1221
1 I

33133~H333
1 1

4414441444
1 I

55155~il555
I 1

66166!il666
I I

I
I

I I
1111111110
7417576 nl78 7!' 80

11111111'1
I I

2 121212 I 2 L'2'~,'1 21",:;i2'J 21~:;?::~1 2 1~:7,~~~:1 2122122212~2
I I

_. _ . . . '. , .'., "<;';;01;"; 1 ':.',1:' 3 31 d 11 11 11 11 11'11 r~t ~'.' 1 "', 1 3 3 313 . I ~ w';w N,< .•.... '.' N -NIl: ~*' ~;x. '" . . ~",<" ",~';,.':: ,,,/(1),, ~ ;':,.:1:- ~., ~~ I I
+'- I ZL~I/.I'A:..I 'A, 151 ~~I'AI 'A' f<A51 ~~I'A~I,~ ,~, ;A~"'~ ,~,,~, ,~~L ~A'_A.- ~A' '" .• A>' 44144414 1:4

I I
5 515 5 515 ~, 5

I I
661666161;6

I I
4177177717" 7

I I
2 18 818 8 818 1113

I I
99199919 H 9

~

I
I

I I
11110110
7417576 T/178 79 80

1111f11111
I I

2 1221222~1222
I I

331332il333
I I

441444144
I I

55155~11555
I I

66166Ei1666
I I

77177 i'17 7 7
I I

88188 BI8 88
I I
99$11999

Lesson 15, (cont'd)

CONCLUDING REMARKS: As a final step in this course of
instruction, turn to the Index at the back of the book and
read each term and phrase. If there are any that you do
not understand thoroughly, please turn to the indicated
page (or pages) and review the topic.

It must be understood that what you have learned is
only the beginning of the learning process. To become an
accomplished programmer, you must work with the machine and
with the problems to be solved by the machine. Nothing can
be substituted for experience.

Many of the areas covered in the book only give you a
basic idea that such a method exists. No more is possible
in a book of this nature (or in a short lecture course, for
that matter). Constant use of the concepts and instruc
tions will do more than anything else to implant them
firmly in your mind.

You will find this book to be helpful as a source of
review and reference as you learn more about programming.
The only way to learn more about programming is to work
as a programmer.

You now have enough knowledge of the terminology,
techniques, and operating instructions of the 7090 com
puter, that you should feel confident in being able to
pull your own weight as a fledgeling programmer. Working
under the supervision of an experienced programmer will
complete your education.

If there are any areas in the book that you feel are
inadequately covered, feel free to write to the author
with your comments and remarks. They will be evaluated
and, if acceptable, will be used for future revisions of
the book.

INDEX

Addressing, 15
Address modification, 93, 98
Algebraic addition, 27
Algebraic subtract, multiply, divide, 29
Arithmetic operations, vii, 27, 29, 45, 46
Arithmetic symbols, 59
Assembly, x, 60, 167
Asterisk (*), use of, 63, 64

Binary arithmetic, 5
Binary numbering system, 1, 2
Binary, Octal, Decimal conversion, 12
Binary point, 27, 37, 41, 74
Bits, 15
Buffer. 18~ 128

Call or Caller, 154
Card Reader, viii
Cells, 164
Central Processing Unit (CPU), 17
Channel, viii, 120, 121
Characteristic, 41, 42, 51, 54
Check indicators, 69
Clean program, 168
Closed subroutine, 133
Computation phase, vii
Connector, 102
Constants, use of, 81, 83

Data Channel, viii , 120, 121
Debug, 162, 167
Decimal numbering system, 1
Decimal to Octal conversion, 11
Define symbol, 55, 56, 63, 81
Density (high, low), viii
Desk check, 167

Effective address, 93
Element, 63
End-of-File gap, 119
End-of-Record gap, 119
Exponent, 41, 42, 51
Expression, 63

207

Fixed point operations, 27, 29
Fixed 'V'ord length, 15
Flag, 37, 38, 150, 156
Floating point arithmetic, 45
Floating point operations, 41, 46
Floating point trap, 51
Flow charting,ix, 36, 65, 66, 102
Format for program writing, 32
Format of instructions, 21, 22
Fortran Assembly Program (FAP), x, 60, 82, 167

General program considerations, 161

Hang-up, 168
Header label, 119
High dens it y, viii
Hollerith, 82

Index Registers, 17, 93, 97, 103
Indicators, 69
Indirect addressing, 21, 156
Input ,vii, 120
Input/Output Package, 128
Instruction formats, 21, 22
Integer, 37, 44
Interpret punched cards, ix/x, 167

Keypunch, x, 167

Labels, 119
Least significant, 54
Left adjusted, 38
Literals, use of, 83, 126, 127
Live data, 167
Load pOl.nt;, lJ.~

Logical operations (AND, OR), 137
Loop, 56, 6), 93, 97, 102, 103
Low dens i ty, viii

Machine word, 15
}-Iantissa, 41
Masking, 22, 140, 144, 147
Memory, 15
J.lemory print, 168
Host significant, 54
Multiple defined symbol, 55

208

Normalized number, 41

Object program, 167
Octal to Decimal conversion,
Octal numbering system, 1, 9
Off-line,vii, 164, 168
Open subroutine, 133
Output ,vii, 120
Overflow, 31, 51

Packing, 140
Parity check, 123, 125
Parity error, 123, 125
Patching, 168
Planning, viii, 161
Power, 41
Presumptive address, 93
Printer, viii
Print-out, 167
Program, vii
Program considerations, 161
Program testing, xl 167, 168
Pseudo instructions, 55, 60
Punch, viii

,r-.
.£.v

Quick Reference - instructions, 109-111, 173-177

Reading punched cards, ixlx, 167
Read Tape routine, 122, 123
Reassemble. 168
Reflective spot, 119
Registers:

AC and MQ registers, 17, 18, 35
SI (Sense Indicator) register, 17, 147
XR (Index) registers, 17, 93

Review, 111-118, 177-194
Right adjusted, 81, 86

Self Test, 111-118, 177-194
Sense indicators, 17, 22, 147
Sense lights, 152
Sense switches, 147
Sorting, 164
Source program, xl 167, 168
Spills, 51
Storage, viii
Storage location, 15
Storage unit, 15
Symbolic coding, S5
Symbolic coding sheet, 59
Symbolic language, 63
Symbols for arithmetic operations, 59

209

Tape, viii , 119
Tape mark, 119
Term, 63
Test data, 167
Trailer label, 119
Transfer trapping, 162
Trapping, 51, 162
Trap trace program, 162, 163

Undefined symbol, 55
Underflow, 51
Unnormalized number, 41
Unpacking, 140

Word, 15
Write Tape routine, 124, 125

210

	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210

