
Systems Reference Library

IBM 705/7080 Programming Systems

COBOL: Additional Specifications·

This publication, when used with the IBM publi­
cation COmmon Business Oriented Language
(COBOL), General Information, Form F2S-S053,
provides the information required to write COBOL
programs for the 705 and 70S0 Data Processing
Systems. The information in this publication applies
to both the 705S COBOL Processor (#0705-PR-131)
and the 70S0 COBOL Processor (#70S0-CB-933).
Any differences between these processors are noted,
and specific requirements for the individual proces­
sors are described.

File Number 70S 0-24
Form J2S-6177-3

MAJOR REVISION (April 1964)

This publication, Form J28-6177 -3, supersedes the previous edition,

Form J28-6177-2, and converts it to Systems Reference Library

(SRL) format. The previous edition is now obsolete. The informa­

tion supplied in Technical Newsletter N28-1058 has been incorpo­

rated into the present edition.

This edition also includes descriptions of several changes in

the 7080 COBOL Processor that were made subsequent to the

a ppe arance of the technic al newsletter. These changes ate:

1. Hypertape capabilities have been added.

2. The ADD CORRESPONDING and SUBTRACT

CORRESPONDING options have been implemented.

3. The BLIXT macro-instruction (to save and restore storage

banks) is generated automatically in an interrupt program.

4. The implied AT END option of the READ statement is

disallowed. (The 7058 COBOL Processor now produces a warning

message with no other change in former generation.)

Copies of this and other ffiM publications can be obtained through IBM Branch Offices.

Address comments concerning the contents of this pUblication to:

ffiM Corporation, Programming Systems Publications, Dept. D91, PO Box 390, Poughkeepsie, N.Y. 12602

@1961, 1962 by International Business Machines Corporation

INTRODUCTION

Prerequisite Reading
Acknowledgement ,.

PHYSICAL DESCRIPTION OF THE PROCESSORS

PROCESSOR-ORIENTED SPECIFICATIONS

General

Identification Division

Environment Division

Configura tion Section

Special-Names Paragraph

Input/Output Section

File -Control Paragraph

I-O-Control Paragraph.

Data Division •

File Description Entries

Record Description Entries

Procedure Division •

Additional Specifications

Procedure Division Verbs

Add Corresponding Option

Subtract Corresponding Option

APPENDIX A: TAPE LABELS AND SPECIALIZED ROUTINES

Label Control Cards

Date Control Card

File Serial Header Control Card

70S III End Control Card

7080 End Control Card •

Labels and Special Processing Considerations

Checking the Record Count

Coding Special Routines When Using the 7080 IOCS

Use of Specialized Routines

Input Files

Output Files

5

5

5

6

7

7

7

7

7

8

9

9

11

13

13

14

17

17

17

19

19

20

20

20

20

20

20

20

20

21

21

21

22

CONTENTS

APPENDIX B: USE OF IOCS 23

70S III Only 23

7080 Only 23

APPENDIX C: PREASSEMBLED IOCS FOR THE 70S III

(7058 COBOL PROCESSOR ONLY) 24

Introduction 24

Assembling an IOCS 24

Macro-Instructions Used in an IOCS Assembly 25

IODEF (Define IOCS) • 25

BLSYS (Include Input/Output Control System) 25

BLHSK (Include Input/Output Housekeeping Section of IOCS) 26

Assembling an Object Program To Be Used With a

Preassembled IOCS 26
Inclusion ofthe 70S IIIPreassembled IOCS With the

Object Program 27

APPENDIX D: PREAS SEMBLED IOCS FOR THE 7080 28

Introduction 28

Assembling an IOCS 28

Assembling an Object Program To Be Used With a

Preassembled IOCS 28

Inclusion of the 7080 Preassembled IOCS With the

Object Program 28

APPENDIX E: DEFERRED ELEMENTS OF THE COBOL

LANGUAGE 29
APPENDIX F: COMPLETE LIST OF COBOL RESERVED

WORDS 30

APPENDIX G: ADDITIONAL CONSIDERATIONS 34

Restrictions on the Use of the COBOL Language 34

Language Incompatibility 34

Verbs 34

Clauses 34

Special Characters 34

INDEX 35

The publication COmmon Business Oriented
Language (COBOL), General Information, Form
F2B-B053-2, describes the COBOL language in detail
but does not supply information pertaining to specific
computers or to particular COBOL processors. The
present publication provides the programmer with
additional specifications he needs to write complete
COBOL source programs for the IBM 705 and 70BO
Data Processing Systems.

This publication applies to both the 705B COBOL
Processor and the 70BO COBOL Processor. Where
differences between these processors exist, they are
noted, and specific requirements for the individual
processors are described. All Hypertape references
apply to the 70BO COBOL Processor only.

PREREQUISITE READING

The reader of this publication should be familiar
with the contents of the following IBM publications:

COmmon Business Oriented Language (COBOL),
General Information, Form F2B-B053

IBM 705/70BO Applied Programming Tape Format
and Labeling Standards, Form J2B-6123

Input/Output Control System for the IBM 705 III ,
Form C2B-6019

IBM 70BO Input/Output Control System for Use
with 729 M~entic Tape Units, Form C2B-6237

IBM 70BO InputOutput Control System for 7340
Hypertape Drives -- #70BO-IO-932, Form
C2S-6341

ACKNOWLEDGMENT

In accordance with the requirements of the official
government manual describing COBOL, the
following extract from that manual is presented for
the information and guidance of the user:

"This publication is based on the COBOL Sys­
tem developed in 1959 by a committee composed of
government users and computer manufacturers.
The organizations participating in the original
development were:

Air Materiel Command, United States Air Force
Bureau of Standards, United States Department

of Commerce
Burroughs Corporation
David Taylor Model Basin, Bureau of Ships,

United States Navy
Electronic Data Processing Division, Minne-

apolis-Honeywell Regulator Company
International Business Machines Corporation
Radio Corporation of America
Sylvania Electric Products, Inc.
UNIVAC Division of Spe"rry Rand Corporation

''In addition to the organizations listed above,
the following other organizations participated in the
work of the Maintenance Group:

INTRODUCTION

Allstate Insurance Company
The Bendix Corporation, Computer Division
Control Data Corporation
E. I. du Pont de Nemours and Company
General Electric Company
General Motors Corporation
Lockheed Aircraft Corporation
The National Cash Register Company
Philco Corporation
Standard Oil Company (New Jersey)
United States Steel Corporation

''This COBOL-61 manual is the result of con­
tributions made by all of the above-mentioned
organizations. No warranty, expressed or implied,
is made by any contributor or by the committee as
to the accuracy and functioning of the programming
system and language. Moreover, no responsibility
is assumed by any contributor, or by the committee,
in connection therewith.

''It is reasonable to assume that a number of
improvements and additions will be made to COBOL.
Every effort will be made to insure that the improve­
ments and corrections will be made in an orderly
fashion, with due recognition of existing users'
investments in programming. However, this pro­
tection can be positively assured only by individual
implementors.

"Procedures have been established for the
maintenance of COBOL. Inquiries concerning
the procedures and the methods for proposing
changes should be directed to the Executive
Committee of the Conference on Data Systems
Languages.

"The authors and copyright holders of the
copyrighted material used herein: FLOW-MATIC
(Trade-mark of Sperry Rand Corporation),
Programming for the UNIVAC ® I and II, Data
Automation Systems © 1955, 1959. Sperry
Rand Corporation; IBM CommercIal Translator,
Form No. F2S-S013, copyrighted 1959 by IBM;
FACT, DSI 27A5260-2760, copyrighted 1960 by
Minneapolis-Honeywell, have speCifically
authorized the use of this material, in whole or
in part, in the COBOL specifications. Such
authorization extends to the reproduction and
use of COBOL specifications in programming
manuals or similar publications.

"Any organization interested in reproducing the
COBOL report and initial specifications in whole
or in part, using ideas taken from this report or
utilizing this report as the basis for an instruction
manual or any other purpose is free to do so.
However, all such organizations are requested to
reproduce this section as part of the introduction to
the document. Those using a short passage, as in
a book review, are requested to mention 'COBOL'
in acknowledgment of the source, but need not
quote this entire section. "

Introduction 5

PHYSICAL DESCRIPTION OF THE PROCESSORS

A COBOL source program will be compiled by
either the 7058 or 7080 COBOL Processor into
Autocoder entries in blocked card-image form on
tape. The Autocoder entries will then be assembled
by the 7058 or 7080 Processor into an object pro­
gram.

The 7058 COBOL Processor is designed to
operate on the 705 II, 705 III, or 7080, and will
compile source programs written for the 705 I,
705 II, 705 III or 7080. The 7080 COBOL
Processor will operate only on the 7080 and is
designed to compile only source programs written
for the 7080.

It is always possible to proceed immediately to
compilation, but it is generally advisable to make
an analysis run first. The analysis run is several
times faster than a full compilation, and a listing
of all source statements together with diagnostic
messages is produced.

During compilation, a listing of the following
information will be produced in sequence, along
with the object program:

1. A list of Autocoder literals.
2. A transcription of the COBOL Identification

Division.
3. Diagnostic messages from COBOL.
4. A transcription of the COBOL Environment

Division.
5. A list of file-names and their assigned tape

units, followed by IOCS file tables, when the
OBJECT-COMPUTER is the 705 III or 7080.

6. The COBOL Data Division entries organized
as follows:

6

a. File Section -- for each file and its
associated records, a transcription of
the File Description entry followed by a
transcription of the first record (level
01 and all subordinate Record Descrip­
tion entries), followed by the generated
Autocoder entries for the first record;
a transcription of the second record, if
any, etc.

b. Working-Storage and Constant Sections
-- a transcription of the first independ­
ent Record Description entry (level
77) followed by its generated Autocoder
entries, followed by a transcription of
the second independent Recorq Descrip­
tion entry, if any, etc.; a transcription
of the first group item (level 01 and all
subordinate Record Description entries)
followed by its generated Autocoder
entries, followed by a transcription of
the second group item, if any, etc.

7. The COBOL Procedure Division entries
organized as follows: a transcription of each pro­
cedural paragraph followed by the generated Auto­
coder ~ntries for the paragraph.

8. Miscellaneous generated Autocoder entries.
9. Glossaries of cross references between

COBOL names and Autocoder tags generated by the
Processor, listed both in order of the source state­
ments and alphabetically by tag name.

The numeric and alphanumeric literals in the
COBOL Procedure Division will be converted into
Autocoder literals or constants, as required.

GENERAL

The programmer should be aware of the following
specifications in coding his COBOL program for the
705/7080:

1. The computer character set (using set H
representation where applicable) shown in collating
sequence from left to right is as follows:

+ -
Blank .) * + $ * - / , (= , 0 A to I 0 J to R "=t=

S to Z 0 to 9

2. The figurative constant LOW-VALUE is
represented by the blank character. The figurative
constant HIGH-VALUE is represented by the 9
character. It should be remembered that HIGH­
VAL UE, like all figurative constants except ZERO,
is considered to be alphanumeric and should only be
used where an alphanumeric literal would be
appropriate.

3. Literals are limited to 120 character
pOsitions. If a numeric literal contains a decimal
point, however, the literal may not contain more
than 99 digits on either side of the decimal point. In
addition, a numeric literal is limited to 18 digits
when it appears in an arithmetic expression.

4. The splitting of words or literals between
coding lines requires that a hyphen be written in
column 7 of the line containing the continuation. In
addition, the continuing portion of alphanumeric
literals must be preceded by a quotation mark. In
effect, a continuing alphanumeric literal contains at
least three quotation marks -- the first begins the
literal, the second begins the continuation of the
literal on the next line, and the third ends the literal.

5. Condition-names that are written in the Data
or Environment Divisions may appear only in con­
ditional expressions in the Procedure Division.
Further, they may not be cross-referenced by an
Autocoder tag in the Environment Division (see
"Special-Names Paragraph'~.

IDENTIFICATION DIVISION

[DATE-COMPILED. any sentence]

When the current date has been entered into the 705/
7080 at compilation time, the Processor will insert
the date into the transcription of the DATE­
COMPILED paragraph on the Autocoder output listing
and will replace "any sentence" that may have been
written. In addition, the date will appear in the
heading at the top of each page of the Autocoder out­
put listing along with the name (first six characters)
of the program written in the PROGRAM-ID
paragraph.

PROCESSOR-ORIENTED SPECIFICATIONS

ENVIRONMENT DIVISION

When specific Environment Division source entries
have been written, they must be entered into the
705/7080 in the following sequence:

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. ---­
OBJECT-COMPUTER. ---­
SPECIAL-NAMES. ---­
INPUT-OUTPUT- SECTION.
FILE-CONTROL. ---­
I-O-CONTROL. ----

Within a given paragraph, the order of clauses (or
sentences) is not critical. Details of specific entry
formats are discussed in the remainder of this
chapter.

Standard formats must be used in entries calling
for the device-names shown below.

Card Readers: READER 01cu
where c represents the card reader
control unit number (0 through 9 on
the 714 Card Reader, 0 only on the
7502 Card Reader) and
u represents the 714 or 7502 Card
Reader number (0 through 9).

Tape Units: 729-m c
729- m 02 CU (705 III)
729- m 2C Ott (7080)
HYPERTAPE- UNIT (S) cu (7080)

where m represents the tape unit
model number (lor 3 on the 705 III;
2, 4, 5, or 6 on the 7080),
c represents the channel number (0
through 3 for 729 tape units; 0, 1, 4
through 7 for HYPERT APE-UNITS) ,
and
u represents the tape unit number (0
through 9).

Configuration Section

The Configuration Section is concerned with
describing the computers on which the Processor and
object programs are to be run and with relating the
names of computer components and devices to names
written by the programmer in the Procedure
Division of his source program.

SOURCE-COMPUTER. computer-.name.

Qomputer-name should be 705-2, 705-3, or 7080 if
the 7058 Processor is used. Computer-name must
be 7080 if the 7080 Processor is used.

Processor-Oriented Specifications 7

OBJECT-COMPUTER. computer-name

Computer-name should be 705-1, 705-2, 705-3, or
7080 if the 7058 Processor is used. If the OBJECT­
COMPUTER is a 7080 being operated in 705 III mode,
705-3 should be specified. Computer-name must be
7080 if the 7080 Processor is used.

[MEMORY SIZE

integer-l CHARACTERS]

ADDRESS integer-2 [THRU integer-3]

The MEMORY option is required only for 705 III or
7080. Integer-1 under the CHARACTERS option
should be 40000, 80000, or 160000. Integer-2 under
the ADDRESS option represents a program origin
(starting point) other than standard on any of the
above computer-names. On the 705 I and 705 II,
standard origin is 0160. On the 705 III and 7080, the
Channel or Tape Tables begin at 0240 and 0500,
respectively. If another origin is specified, it will
cause the balance of the program (but not the tables)
to begin at the specified location. If that location
overlaps the tables, the program will originate
immediately following them. Integer-3 under
the ADDRESS option must be specified on the
705 III or 7080 as 39999, 79999, or 159999.

PREASSEMBLED

1
roes ADDRESS integer-4 I
HYPERTAPE-roCS ADDRESS integer-5

roes ADDRESS integer-4 HYPERTAPE-IOes ADDRESS integer-5

IOHSK ADDRESS integer-6 THRU integer-7

When the 705 III or 7080 Input/Output Control System
(IOCS) has been preassembled, the PREASSEMBLED
IOCS option must be specified. Integer-4, integer-5,
and integer-6 represent the starting locations of 729
IOCS, Hypertape IOCS, and IOHSK, respectively.
Integer-7 represents the ending location of IOHSK.
Integer-6 will also be considered the first address
of erasable housekeeping by the Processor and will
be used as the starting location of the IOCS output
areas.

IOnteger-s TAPE-UNIT(S!] l
L.g.nteger-9 HYPERTAPE-UNIT(S~

8

This optional clause is used if the Processor is to
check to insure that the number of tapes as signed in
the File-Control Section does not exceed the number
of available tapes. TAPE- UNIT(S) refers to 729
tape units only.

Special-Names Paragraph

The SPECIAL-NAMES paragraph is never required.
If it is written, however, any of the following
clauses may. appear:

(!LTERATION-SWITCH 091u [IS mnemonic-name]

[2N STATUS IS condition-name-1J

U?FF STATUS IS condition-name-~ .. J
There are six Alteration switches available on the
705 and 7080. The letter u represents the switch
number (1 through 6). The mnemonic-name
option is required only when condition-name-1 or
condition-name-2 is not unique. Mnemonic-name
should then be used to qualify the condition-names
when referenced in the Procedure Division.
Mnemonic-name itself may not be qualified.
Condition-names assigned to Alteration switch
settings may appear only in conditional expressions
in the Procedure Division, and, since the switches
are external console switches, they cannot have
storage space reserved for them through an entry in
the Data Division.

1
READER Olcu l
TYPEWRITER

PUNCH 0300

PRINTER 0400

IS mnemonic-name ••.

READEROI CU may be assigned to a mnemonic-name
associated with the ACCEPT verb in the Procedure
Division.

TYPEWRITER, PRINTER 0400, and PUNCH 0300
may be assigned to a mnemonic-name associated
with the DISPLAY verb in the Procedure Division.

Any of the above device-names may be assigned
to as many different mnemonic-names as desired, as
long as they are correctly associated with the
ACCEPT and DISPLAY verbs. Mnemonic-name may
not be qualified.

Input/output messages are always displayed on the
console typewriter by the 705 III or 7080 IOCS
regardless of any device-names specified in this
paragraph.

[Autocoder-tag ~ COBOL -name . ..]

When Autocoder entries are written under an ENTER
A UTa CODER statement in the Procedure Division, it
may be desirable to refer to COBOL procedure­
names or data-names in Autocoder language. This
may be accomplished by as signing Autocoder tags to
COBOL names in this paragraph. Autocoder tags
must satisfy all of the Autocoder rules for defining
tags. In addition, they are limited to five characters
in length, they may not consist of an alphabetic
character followed by four digits, and they may not
begin with CS (7080 only), BL, or 10.

COBOL names may be procedure-names or data­
names and may include qualification. They may not,
however, be condition-names.

It should be remembered that assigning Autocoder
tags to COBOL names allows only an Autocoder
instruction to reference an item defined in COBOL
language. It does not allow a COBOL statement to
reference an item defined in Autocoder language.
The latter situation requires an ENTER AUTOCODER
statement followed by the appropriate Autocoder
instruction.

[PROGRAM-START ~ procedure-name]

At object time, program execution normally begins
with the first procedure-name written in the
Procedure Division (after lacs Housekeeping has
been accomplished on the 705 III or 7080). To begin
execution at some procedural statement other than
the first statement written in the Procedure Division,
a procedure-name should be designated as
PROGRAM-ST ART under this paragraph.

The procedure-name designated may be a section­
name, or it may be a paragraph-name with or with­
out qualification by a section-name. However, it
must not be a paragraph.-name preceding the NOTE
verb.

Input/Output Section

In the absence of standard tape-record formats and
tape-handling conventions for the 705 I and 705 II, all
tape input/output operations must be coded in Auto­
coder. Using the ENTER AUTOCODER statement
in the Procedure Division, the programmer should
code his own blocking, deblocking, reading, writing,
and label-checking routines. The SPECIAL-NAMES
paragraph, as outlined above, will be used to
establish equivalences between names of work areas
that the programmer has defined in the Working­
Storage Section of the Data Division and the Auto­
coder tags used in the blocking and deblocking
routines.

Input/ output handled by the on-line card reader,
card punch, or 717 Printer may, however, be

written in COBOL language for the 705 I and 705 II,
as well as the 705 III and 7080, using the appro­
priate clauses in the FILE-CONTROL paragraph
and the File Description entry in the Data
Division. The I-a-CONTROL paragraph is not
used on either the 705 I or 705 II.

The following discussion of 10CS procedures is
directed toward the IBM 705 III and 7080 10CS.

lacs automatically blocks and deblocks records,
performs checks, and schedules tape movement for
maximum efficiency. A brief discussion of some of
the terms used in specifying tape input/output
operations follows. The actual method of writing the
necessary entries will be covered after this general
discussion.

lacs contains a Tape Reel Control System that
includes routines for checking inp~t reels to insure
that they belong to the proper file and that they are
processed in proper sequence. Output reels are
checked to make sure valuable information cannot be
destroyed through operator error. These checks are
regulated by the header (beginning-of-reel) and
trailer (end-of-reel or end-of-file) labels.

Standard header labels contain such information
as the date the file was written, the length of time
the file is to be saved, a file identification, a file
serial number, and a reel sequence number, w here­
as standard trailer labels contain an end-of-reel or
end-of-file indication and a record count. (For
complete specifications of standard header and
trailer labels, see the Tape Format publication.)

In addition to the information provided by labels,
lacs requires such additional information as the
current date and the serial numbers of the first reel
of each input file. This information must be supplied
at object time through label control cards (see
Appendix A) that are read either from the card
reader or from the beginning of the first reel of an
output file. The manner of loading the label control
cards is specified in the "File-Control Paragraph. "

Checking of labels is automatic only if labels are
standard as specified in the Tape Format publication.
If the program uses files with nonstandard or omitted
labels, the programmer must provide his own check­
ing routines. He can write these special routines in
COBOL language in the Procedure Division (see
APPLY under "I-O-Control Paragraph" and Appendix
A).

Additional procedures, such as taking checkpoint
and dumping unreadable tape records, will be
accomplished automatically by lacs if the program­
mer supplies the necessary entries under the FILE­
CONTROL and I-O-CONTROL paragraphs. Pro­
vision for restarting a program that has been
interrupted is also made available.

File- Control Paragraph

Every file name referenced in the Procedure
Division must be selected and assigned in this
paragraph. Input files may be card or tape. Out­
put files may be card, tape, or printer.

Processor-Oriented Specifications 9

~jile-name-l ASSIGN TO

jile-name-2

729-m CO:} ~29-m 1::: I··J
I!'0R MULTIPLE REE~

HYPERTAPE-UNIT cu ~TH AUTOLOADE~

READER Olcu

PUNCH 0300

PRINTER 0400

[WITH AUTOLOADEru·· J

The file-name-2 option of ASSIGN implies merely
that the tape units assigned to file-name-2 will be
assigned to file-name-1. This option may only be
utilized in conjunction with tape files and would
normally be used to assign an input file to the same
units as an output file when these files are to be used
sequentially. (See the CLOSE verb in the Procedure
Division.)

The MULTIPLE REEL clause has no significance
to IOCS and therefore will only be transcribed by the
Processor.

Specific assignments must follow these rules:
1. On the 705 III, all tape units assigned to a file

must be of the same model and must be attached to
the same channel.

2. For any program, a maximum of five tape
units may be assigned to a file.

3. On the 7080, Hypertape units and 729 units
may not be mixed for a file.

4. On the 7080, it is recommended (though not
required) that all tape units assigned to a file be
attached to the same channel.

The remaining options of the ASSIGN clause may
be specified for files other than tape.

[RENAMING file-name-3]

RENAMING implies that the File and Record
Description entries written in the File Section of the
Data Division for file-name-3 are to be used in con­
junction with file-name-l. However, both files must
be selected and assigned, and a tape file may rename
only a tape file. This clause would normally be
written when the file characteristics of an input and
and output file are identical and when both files are
to share a common record storage area.

10

File-name-2 under the ASSIGN clause and file­
name-3 may be the same name only when sequential
use of two files is desired. (See the CLOSE verb
in the Procedure Division.)

[RESERVE 1~:eger-21 ALTERNATE AREA(S) J

The RESERVE clause is meaningful only when
standard IOCS is used on the 705 III or 7080 and the
input/output medium is tape. If the clause is not
specified, two input/output areas will be reserved.
If NO is specified, one input/output area will be
reserved. If integer-2 is specified, it may range
from 1 through 7, and the total number of areas
reserved will be 2 through 8.

Additional File-Control Specifications

Four special "files If may be specified under the
FILE-CONTROL paragraph when the 705 III or 7080
IOCS is used. These are files that are under
exclusive control of IOCS and must not be referenced
by the programmer in the Procedure Division. When
these files are specified, the RENAMING and
RESERVE clauses are never written. In addition,
when a Data Division File Description entry is
required, as explained below, the BLOCK, RECORD,
and DATA RECORD clauses (as well as the Record
Description entries for data records) should never
be written. The format and description of each of
these special files are as follows.

SELECT ERROR-DUMP ASSIGN TO

1
TYPEWRITER

HYPERTAPE-UNIT cu

1
02cu !

729-m
2cOu

[!nTH AUTOLOADEil!

This file is provided when the programmer wants
IOCS to dump tape input records that are unreadable.
If TYPEWRITER is assigned, no File Description
entry is required. If a tape unit is assigned, it must
be a separate tape unit and, as such, a File
Description entry is required in order to specify
label requirements (and also DENSITY on the 7080).
(See also APPLY in the "I -O-Control Paragraph. ") If
ERROR-DUMP is not selected, the console type­
writer will be assigned automatically.

SELECT RERUN-WORK ASSIGN TO

HYPERTAPE-UNIT cu [WITH AUTOLOADE~

l
02CU !

729-m
2cOu

file-name-n

When checkpoints are to be taken, an additional work
tape (other than the one containing the checkpoint
records) is required. The tape is always reposi­
tioned. and assigning an output file as RERUN­
WORK in no way affects the file. If a separate tape
unit is assigned, a File Description entry is required
in order to specify label requirements (and also
DENSITY on the 7080). No trailer labels may be
specified for RERUN-WORK. (See also APPLY in
''I-O-Control Paragraph. ")

If file-name-n is specified, it may be either a
source program output file or ERROR-DUMP. If an
output file is specified, the file must not be closed
until all checkpoints have been passed. If ERROR­
DUMP is specified, it must have been assigned to a
tape unit. No File Description entry is required
under this option.

[1
READER 01 cu]

SELECT LABEL-DATA ASSIGN TO . .
jzle-name-n

As explained in Appendix A, IOCS requires certain
control information for automatic checking of
standard labels. This information may be entered
into the computer from either the card reader or
from the first reel of a source program output file.
No File Description entry is required under either
option. If this statement is omitted and label cards
are required, the card reader will be assumed to be
the input device.

SELECT RESTART ASSIGN TO

1
READER Olcu

HYPERTAPE-UNIT cu

l
02cu! . 729-m
2cOu

GrTH AUTOLOADE~ !
When it is desired to restart a program from a
checkpoint, provision should be made for loading the
restart program. The restart unit may be either the
card reader or a separate tape unit not used for
other purposes. No File Description entry is
required in either case.

If a tape unit is specified, the tape may have
ei ther a standard program tape header (see the
Tape Format publication) or no header. If present,
the header must contain instructions to space over
the tape mark, read the first record of the restart
program into storage, and turn off the I/O indicator
(IOF) before transferring control to the restart
program.

1-0- Control Paragraph

I-O-CONTROL paragraph entries may be specified
in conjunction with tape files only when standard
IOCS is used on the 705 III or 7080.

APPLY

~GINNING-REEL procedure-name -1 I1HRU procedure-name-m

[iNDING-REEL procedure-name-3 [2:'HRU procedure-name-4j]

~NDING-FILE procedure-name-5 I}'HRU procedure-name-6j]

~LE-PROTEC!J

ON file-name-1

The APPLY clause should be written if certain
procedures not a part of IOCS are to be executed at
the beginning of each reel of a file, at the end of
each reel of a file, or at the end of the file, as
appropriate. Each procedure-name refers to the
name of a paragraph or section written in the
Procedure Division. Each of the above procedures
must be self-contained, both logically and physically;
i. e., only the IOCS may transfer control to these
procedures, and control must be returned to the
IOCS when the procedure is completed. No entrance
into or exit from these procedures by means of the
GO TO or PERFORM verbs is permitted, except that
return to the IOCS must be provided by the pro­
grammer. The statement GO TO NORMAL-IO­
RETURN or GO TO ALTERNATE-IO-RETURN
should be written as the final statement to be
executed (see the LABEL RECORD clause in the Data
Division and also Appendix A for additional infor­
mation) . If a given procedure exceeds a single
paragraph or section, the THRU option must be
written in order to properly define the first and last
statements contained within the procedure.

A BEGINNING-REEL entry is required only if a
special procedure not a part of 10 CS is to be
executed at the beginning of each reel of a file. For
example, when nonstandard header labels are used,
procedure-name-l (THRU procedure-name-2) must
define a procedure for label checking.

An ENDING-REEL entry is required only when a
special procedure not a part of 10CS is to be
executed at the end of each reel of a file. It will be
executed on every reel of an input file and on every
reel of an output file except the last. For example,

Processor-Oriented Specifications 11

when trailer labels are not used, a procedure must
be written to determine at the end of each reel of an
input file whether an end-of-reel or end-of-file
condition exists. Procedure-name-3 (THRU pro­
cedure-name-4) defines such a procedure. It should
be remembered that, on the 705 III, the ENDING­
REEL procedure will be executed before the last
data record or block of records has been processed;
hence, data record counts should not be taken. This
restriction does not apply to the 7080.

A procedure to be executed at the end of the last
reel of a file is reached by the ENDING-FILE entry.
On both the 705 III and 7080, the ENDING-FILE
procedure will be executed only after all data
records have been processed. If specified for an
input file, procedure-name-5 (THRU procedure­
name-6) will be executed prior to the IOCS transfer
of control to the AT END statement. If specified for
an output file, the procedure will be executed on a
CLOSE statement.

The FILE-PROTECT option is valid only when
applied to a Hypertape file. When used, an
indicator will be set on the Hypertape cartridge at
each end of reel or end of file to prevent subsequent
use of that cartridge for output.

RERUN

t {
HYPERTAPE_UNIT ell

ON 02eu
- 729-rn

- 2cOu

~TH AUTOLOADE~ }]

EVERY END OF REEL OF file-name-l [rile-name-2 .. J.

12

The 705 II or 7080 IOCS provides for resuming a
program that has been interrupted before completion.
In order to restart the program, a recording of the
complete status of the machine is taken at intervals
known as "checkpoints." Checkpoint records are
written on the RERUN file, that is, on either the
reels of a source program output file or else on a
reserved tape unit.

When the ON option is utilized to assign the
RERUN file to a separate tape unit, checkpoints will
be taken at the end of each reel of each source pro­
gram input and/or output file-name written after
REEL. A File Description entry named RERUN is
required in order to specify label requirements (and
also DENSITY on the 7080). However, no trailer
labels will be allowed under this option. (See the
LABEL RECORDS clause in the Data Division and
the APP L Y clause above.)

When the ON option is omitted, only file-name-l
may be written after REE L. In this case, file­
name-l must be a source program output file.
Checkpoints will be taken at the end of each reel of
file-name-l except the last and will be written at
the beginning of each alternate reel of file-name-l.

Under either option, the specification of a second
tape, known as the RERUN-WORK file, is always
required (see "File-Control Paragraph").

Note: If RERUN and/or RERUN-WORK is as­
signed to a shared Hypertape output file(s), the
file(s) will be opened in IOCS Housekeeping prior to
execution of the programmer I s initial OPEN state­
ment. Execution of the OPEN statement will cause
the file(s) to be re-opened. If a BEGINNING-REEL
routine has been specified for either of these files,
it will be executed twice.

DA T A DIVISION

The following discussion is concerned with the
limitations and specifications of the 705/7080 COBOL
Data Division entries.

File Description Entries

File Description entries are the means by which files
of data are described to the COBOL Processor. The
programmer should be aware of certain consider­
ations in coding such entries for the 705/7080.

Whenever a file is card input, card output, or
printer output, the File Description entry consists
only of the level indicator FD, the file- name, and
the DATA RECORDS clause. Input/output operations
for these file types may be coded in COBOL language
for all models of the 705/7080.

Tape input/output operations may be coded in
COBOL language only for the 705 III and 7080; they
must be coded in Autocoder for the 705 I and 705 II.
The following entry format specifications are
directed toward tape files when the 705 III or 7080
laCS is used.

RECORDING MODE IS

[{:~: } DE~ITY l [pmNTER-72~
G PACKED U UNPACKED UNTERCHANGEABL.J } J

[fHECKPOINi] ~O-LENGTH-CHECKJ

When the OBJECT-COMPUTER is the 7080, HIGH or
LOW DENSITY must be specified for each 729 tape
file.

When an output file is to contain records pre­
pared for off.,.line printing on a Model 720 or 730
printer, PRINTER-720 should be specified only if
the final character in a block of records is a record
mark. When PRINTER-720 is specified, the final
character in a block of records, regardless of its
nature, is deleted. Such files must be written in
LOW DENSITY and cannot re-enter the system as
input. Therefore, the remaining options are in­
applicable.

PACKED or UNPACKED is relevant only for
Hypertape files attached to a high-speed channel.
PACKED is used if data compression is desired.
UNPACKED is used if data compression is to be dis­
allowed. If the option is omitted, PACKED will be
assumed.

INTERCHANGEABLE (relevant only for Hypertape
files) is used for files containing variable-length

rorrn J""O-O.1II-.:I

Page Revised July 31, 1964

By WL N28-1164

. records in the inter-machine Hypertape format. If
this option is used, the RECORDING MODE must be
UNPACKED.

When an input file contains checkpoint records,
CHECKPOINT must be specified.

Every block of a variable-format tape file must
begin with a five-character field, the last two
characters of which specify a blocking factor of 99
records or less. The remaining three characters
may be used to specify the block size. When the
block size is present, it will be checked against the
actual block size read into the computer. If the
block size is not specified, NO-LENGTH-CHECK
must be specified. Since the block size and blocki!1g
factor are automatically written onto COBOL output
tapes of this type, NO-LENGTH-CHECK should
never be specified for input files that were created
as output from a previous COBOL run. (See the
Tape Format publication.)

~ I RECORD(S) U
BLOCK CONTAINS integer-l

CHARACTERS

This clause is required unless a block contains one
and only one complete record.

The following rules apply to fixed-length blocks:
1. When RECORD(S) is written, integer-l

represents the exact number of records in each
block.

2. When CHARACTERS is written or when
RECORD(S) is omitted, integer-l represents the
exact number of characters in each block.

The following rules apply to variable-length
blocks:

1. When CHARACTERS is written or when
RECORD(S) is omitted, integer-l represents the
number of characters in the largest block, including
the five-character blocking factor field (see the Tape
Format publication).

2. When it is desired to control the number of
records in a block of an output file, RECORD(S) may
be specified, in which case integer-l represents the
fixed number of variable-length records in each
block. The RECORD clause must also be written and
both integer-2 and integer-3 must be specified.

[~CONTAINS rnteger-2 TO] integer-3 CHARACTERS]

This clause is always required when describing
variable-length records. Integer-2 represents the
number of characters in the smallest record, and
integer-3 represents the number of characters in the
largest record.

If desired, the RECORD clause may be written
when describing fixed-length records. In this case,
integer-2 must not be written, and integer-3
represents the exact number of characters in each
record.

It should be remembered that each IOCS­
controlled record must start in a 0 or 5 memory

Data Division 13

Form J28-6177-3

Page Revised 9/11/64

By TNL N28-1178

LABEL RECORD(S) 1 IS t
ARE~

STANDARD

[JEGINNING-TAPE-LABELJ I
OMITTED

[!O-TAPEMARKJ i .
[ENDING-TAPE-LABELJ ~

location, and, with the exception of unblocked, fixed­
length records, must be a multiple of five characters
in length and must end with a record mark (see the
discussions of SYNCHRONIZED and PICTURE).
The LABEL RECORDS clause is required only when
the file is assigned to tape. When OMITTED is
specified for an input file, the programmer must
determine, as part of the end-of-reel routine for
each reel, whether an end-of-reel or end-of-file
condition exists. It should be remembered that on
the 705 III the last record or block of records may
not have been processed when the tape mark was
sensed and therefore cannot be relied upon to
provide end-of-file detection. (See the APPLY
clause in "1-0- Control Paragraph. ") STANDARD
implies that both header and trailer labels exist and
are in the format described in the appropriate 10CS
publication. If this clause applies to a Hypertape
file, the only valid option is STANDARD. Additional
operations may be performed on header and/or
trailer labels by defining the labels in Record
Description entries with the level 01 fixed data­
names BEGINNING-TAPE-LABEL and/or ENDING­
TAPE-LABEL for 729 files, and BEGINNING­
HYPERTAPE-LABEL and/or ENDING-HYPERTAPE­
LABEL for files assigned to Hypertape drives. (See
the APPLY clause in ''I-O-Control Paragraph. ")

The remaining information describing the LABEL
RECORDS clause applies only to 729 labels.

Nonstandard label records must be no longer than
80 characters. IOCS will read and write these labels
into and from the IOCS label area. The header label
named BEGINNING-TAPE-LABEL or the trailer
label named ENDING-TAPE-LABEL or both should
be specified under the LABEL RECORDS clause. A
tape mark will separate trailer label records from
data records. Header label records will also be
separated from data records by a tape mark unless
NO-TAPEMARK is specified. Record Description
entries with the level 01 fixed data-names
BEGINNING-TAPE-LABEL and/or ENDING-TAPE­
LABE L must be provided. (See the APPLY clause
in the "I -O-Control Paragraph. ")

When BEGINNING-TAPE-LABEL and/or ENDING­
T APE-LABE L appear as label record names of two
or more files, they must be qualified by their
associated file-names whenever referenced in the
Procedure Division.

No trailer labels will be allowed on RERUN­
WORK orRERUN files when they are assigned to
separate tape units. (See the discussions of FILE-

14

CONTROL and I-O-CONTROL in the Environment
Division.)

Header and trailer labels other than the types
described above must be named under the DATA
RECORDS clause and must be completely pro­
grammed as data records. In this case, OMITTED
must be specified, and the names BEGINNING­
TAPE- LABEL and ENDING-TAPE-LABEL are
disallowed. In addition, the automatic end-of-tape
indications must be circumvented.

[
m

VALUE OF

IDENTIFICATION

IS 'up to 10 alphanumeric characters
excluding special characters'

[PURGE-CYCLE IS up'" 3 digits 1]

The VALUE clause must be written when label
records are STANDARD. The PURGE-CYCLE
option can be written for output files only (see
Appendix A).

Record Description Entries

Record Description entries are the means by which
items of data are described to the COBOL Processor.
The programmer should be aware of certain con­
siderations in coding such entries for the 705/7080.
The remainder of this discussion is devoted to
specific limitations and interpretations.

[
SYNCHRONIZED I LEFT I]

RIGHT

SYNCHRONIZED RIGHT has no Significance to the
705/7080 and will be ignored by the Processor.

SYNCHRONIZED LEFT causes data to be stored
beginning in a 0 to 5 memory location. This clause
must be written in the File Section when the tape
label or data records described are under control of
the 705 III or 7080 IOCS (see the discussion of
PICTURE). It may also be used in the Working­
Storage and Constant Sections to position data
suitably for high-speed transmission. The size of
the item must be a multiple of five characters in
length and, on the 705 II, must also end in a record
mark (see PICTURE).

On the 7080, a level 77 entry containing a
SYNCHRONIZED LEFT clause, or a level 01 entry
that becomes a left-synchronized as a result of a
lower-level entry containing a SYNCHRONIZED
LEFT clause, will be assigned memory locations
beginning in a 0 position. If the item is a multiple
of ten characters in length and ends in a record·
mark (see the discussion of PICTURE), the ten­
character transmission feature will be available.

The SYNCHRONIZED clause should be written
only in an elementary item Record Description entry;
it has no effect on the efficiency of arithmetic
operations.

I!>ICTURE IS any allowable combination oj J L COBOL characters and symbols

The PICTURE symbols J and K have special uses on
the 705/7080. Both symbols may be required when
specifying records in the File Section, and both may
be used wherever desired in the Working-Storage and
Constant Sections.

Data records that are to be read from or written
on tape in blocked format (using the IOCS) must be a
multiple of five characters, must be left-synchronized,
and must end in a record m ark. Variable-length
records must begin with a five-position field contain­
ing the data record length (see Tape Format publica­
tion).

Note: No more than five digits can be contained
within the parentheses after the significant charac­
ter in a PICTURE clause.

An entry consisting of only a level number, data­
name, or FILLER, in combination with the PICTURE
IS J clause, will cause the Processor automatically
to insert a record mark in the next 4 or 9 memory
position. This clause may also be written in Record
Description entries in the Working-Storage and Con­
stant Sections when it is desired to take advantage of
high-speed transmission, provided that the data is a
multiple of five characters and is left-synchronized.

Data records that are to be written on the on-line
card punch or 717 Printer must be followed by a
group mark. An entry consisting of only a level
number, data-name, or FILLER, in combination
with the PICTURE IS K clause, will cause the
Processor automatically to insert one group mark.
Normally, this clause would be written only in the
File Section, but under certain circumstances it may
be desirable to write it in either the Working-Storage
or Constant Sections.

The following interpretations and restrictions are
peculiar to 705/7080 Record Description pictorials.

1. Numeric items:
a. When the assumed decimal point (V)

appears in a PICTURE, the item may not
contain more than 99 positions on either
side of the decimal point.

b. When a NUMERIC item appears in an
arithmetic expression, it is limited
to 18 numeric characters.

2. Report items:
a. A report item may not contain more than

18 numeric characters.
b. An actual decimal point (.) should not

appear as the rightmost character in a
PICTURE. It will be considered a period.

c. The letter Z and an * may not appear in
the same PICT URE .

d. The letter Z or an * may be preceded
only by another Z or *, respectively, a

Form J28-6177-3

Page Revised 9/11/64

By TNL N28-1178

single $, a comma (,) an actual decimal
point (.) or an assumed decimal point (V).

e. The letter Z, a $, or an * may appear to
the right of an actual decimal poi nt (.) or
an assumed decimal point (V) only if all
numeric character positions are
represented by Z, $, or *, respectively.

f. The letter Z or an * may not appear in the
same PICTURE with more than one $
(floati ng dollar sign).

g. When a PICTURE contains one or more
commas, the Processor generates an
edited field with a comma after every
third character to the left of the decimal
point. If there is no decimal point, the
Processor generates an edited field with a
comma after every third character to the
left, assuming the field to be an integer.
ill either case, the leftmost character
cannot be a Comma. If commas are not
specified in the PICTURE, commas will
not be generated.
For example, a PICTURE containing
commas should be written as illustrated
below.

With a decimal point:
Z, ZZ Z , Z Z Z , Z Z Z . Z Z- or Z Z Z , Z Z Z ,
ZZZ. ZZ-

With no decimal point:
Z,ZZZ,ZZZ,ZZZ, ""'jor ZZZ,

ZZZ,ZZ-Z·~-' '

When the CLASS of an item is NUMERIC, an
operational sign, if any, will appear over the units
position of the item as a I2-zone (+) or II-zone
(-). The sign of the item will be considered always
present if the SIGNED clause or the "S" character in
PICTURE is written, and never present otherwise.
In order to produce efficient coding for computations,
NUMERIC items on the 705/7080 should be signed in
the units position and left-protected. Left-protection
occurs whenever the rightmost character of the
preceding item is not an unsigned digit. If the
preceding item, as described by its Record Descrip­
tion entry, does not always contain such a character
in the rightmost position, the progranlmer should
consider rearranging the data or inserting a blank
character. Note that an ALPHABETIC item always
affords left-protection to the item on its right, while
an ALPHANUMERIC item mayor may not do so.

Elementary non-report ALPHANUMERIC items,
which do not always contain an alphabetic character,
i. e. , whose PICTURE contains no A's, will be
treated as unsigned integers when referenced by an
arithmetic verb or when associated with NUMERIC
or report items, as in a MOVE operation. A
warning message will be produced by the Processor.

Data Division 15

Alphanumeric items of the report type will never
contain operational signs over the units position.
However, when an arithmetic verb references a
report item, an object-time scan of the item will be
provided which will extract the numeric contents of
the item; taking into account any decimal positions
and sign indication. Thus computations are allowed
on report items. Similarly, a report item will be
moved arithmetically to a NUMERIC item, another
report item, or a non-report item, as described
above.

[I COMPUTATIONALI]
USAGE IS

!ffijPLAY

Since all data represented within the 705/7080 is in
external format, the DISPLAY option of the USAGE
clause is not meaningful and will be ignored by the
Processor. However, if an item is specified as
being COMPUTATIONAL, it must be a NUMERIC
item.

[VALUE IS literal]

16

The VAL UE clause has no meaning in a Record
Description entry that describes a report item, and
it cannot be used to specify an initial value. This
restriction also implies that a level 88 condition­
name entry cannot be associated with a report item.

When the VALUE clause appears in an entry at the
group level, the size of the literal must be equal to
the size of the group item, i. e. , the total size of the
lower-level items within the group. The group area
will be initialized without consideration for the
individual elementary or group items contained with­
in this group. The decimal pOint and operational
sign must not be written in a numeric literal at the
group level. A figurative constant may be specified
at the group level only if the SIZ E clause is also
written in the entry.

[REDEFINES datu-IIUlIle]

The entries redefining an area must immediately
follow the entries originally describing the same
area. Multiple redefinitions are possible, however,
provided that they occur at the same level and with­
out other entries intervening at that level.

An entry containing the REDEFINES clause must
not be written at a lower level within another entry
containing a REDEFINES clause, unless the latter
entry is at the 01 level, in which case one such
lower level redefinition is permitted at a time.

PROCEDURE DIVISION

The following discussion contains specifications
concerning 705/7080 COBOL Procedure Division
entries. The first part of the discussion contains
specifications not included in the COBOL general
information publication, whereas the second part
discusses Processor limitations and interpretations
pertaining to specific verb formats.

Additional Specifications

Data items that appear in relational expressions may
not contain more than 255 character positions.

When a data-name written in a Data Division
Record Description entry is not unique, it must be
qualified by one or more additional names to make
it unique, whenever it is referenced in the Procedure
Division. A file-name written in a Data Division
File Description entry is the highest level name that
may be used as a qualifier. In addition a file':':'name
that is RENAMING another file-name in the Environ­
ment Division FILE-CONTROL paragraph may be
used as a qualifier for an associated Data Division
data-name.

When the OCCURS clause is written in a Data
Division Record Description entry, the name of the
item can be referenced in the Procedure Division by
means of subscripting only. In addition, any item
that is subordinate to an item described by the
OCCURS clause must also be referenced in the
Procedure Division by means of subscripting.

When the OBJECT-COMPUTER is a 705 I or 705
II, the OPEN, READ, WRITE, and CLOSE verbs
may only be written in conjunction with card input,
card output, or printer output files.

The Class Condition IF data-name NUMERIC
(ALPHABETIC) . . . may be used only to test an
ALPHANUMEIUC item at object time to determine
whether it is wholly numeric or wholly alphabetic in
content. An item will be considered NUMERIC if it
consists of unsigned digits only or if all character
positions except the units position are unsigned
digits and the units position contains one of the digits
o through 9 with a 12-zone (+) or II-zone (-). It
is therefore possible for a one-character data item
to be considered NUMERIC or ALPHABETIC
depending upon which test is made.

Conditional statements may be written in three
basic forms, as shown in Figure 1.

Option 1 IF conditional expression statement-l.

Statement-l can be only a simple or compound
imperative statement.

State me nt- 2, statement-3, and statement-7 can be
either imperative or conditional. If conditional, they
can, in turn, contain conditional statements in
arbitrary depth. When the statements are condi­
tional, the conditions within them are "nested. "

Statement-4 must be a READ statement,
statement-5 must be an arithmetic statement, and
statement-6 can be only a simple or compound
imperative statement. Statement- 8 followed by
statement-9 (to which the previous paragraph applies
since it is conditional) is an illustration of an
imperative statement followed by a conditional state­
ment. This is logically equivalent to statement-8
followed by a period followed by statement-9 begin­
ning a new sentence. Option 3 in its entirety may be
substituted for statement-2 and/or statement-3 under
option 2.

It is important to note that, when conditional
statements are nested, an ELSE or OTHERWISE is
always associated with the IF, READ, or arithmetic
verb with ON SIZE ERROR that most closely pre ...
cedes it. An ELSE or OTHERWISE must be explic­
itly written for every conditional statement within a
sentence. However, the phrase ELSE (OTHERWISE)
NEXT SENTENCE may be eliminated if and only if
the phrase immediately precedes the period ending a
sentence.

Procedure Division Verbs

The remainder of this chapter discusses specific
verb format limitations and interpretations that the
programmer should understand before he incorpo­
rates such verbs into his 705/7080 source program.

ACCEPT data-name [FROM mnemonic-name]

The standard ACCEPT device on the 705/7080 is the
card reader. When the FROM option is not written,
the card reader address 0100 will be assumed by the
Processor. (See the "Special-Names Paragraph. ")

Since the AT END clause may only be written in
conjunction with the READ verb, the programmer
must provide his own end-of-file procedures when
using ACCEPT.

I statement-2 I rTHERWISE I rtatement-3 I
Option 2 !¥ conditional expression

NEXT SENTENCE ELSE NEXT SENTENCE

Option 3

I statement-4 AT END II statement-6 I I OTHERWISE II statement-7 I
statement-5 ON SIZE ERROR NEXT SENTENCE ELSE NEXT SENTENCE

any imperative statement-8 followed by any conditional statement-9

Figure 1. Conditional Statement Options

Procedure Division 17

DISPLAY ldata-name-lj [ldata-name-2j . .. J
literal-l literal-2

[UPON mnemonic -name]

The standard DISPLAY device on the 705/7080 is the
console typewriter. When the UPON option is not
written, the typewriter address 0500 will be assumed
by the Processor. (See "Special-Names Para­
graph. ")

WRITE record-name [FROM area-name]

When record-name is associated with more than one
output file, either explicitly by means of the DATA
RECORDS clause in the File Description entry or
implicitly by means of the FILE-CONTROL para­
graph RENAMING option. it must always be qualified
by the appropriate file-name.

The FROM option implies that the area-name will
be moved directly to the file output area associated
with the record-name. The record-name area will
be left unchanged.

CLOSE file-name-l [WITH LOCK] [file-name-2 ...]

At the present time, the LOCK option is the only
available option of the CLOSE verb permitted for use
with the 705 Ill/7080 IOCS. If LOCK is specified, all
reels of a file will be made unavailable for reading
or writing when the CLOSE verb is executed and
when intermediate reels of a file reach the physical
end of tape. A subsequent attempt to OPEN a locked
file will be rejected. If any CLOSE verb referencing
a file uses the LOCK option, all CLOSE verbs for
that file will be interpreted by the Processor as
having used the LOCK option,.

When a reel or a series of reels is to contain both
input and output files within the course of a program,
i. e. , when an output file created by the program is
to be read as an input file or when an input file
used by the program is to be written over
as an output file, the LOCK option is appro-
priate only when closing the last file. In
addition, each file must have a unique file-
name.

ENTER language -name

For all models of the 705 and 7080, the programmer
may code in Autocoder language. In fact, all input/
output operations for tape files must be coded in

18

Autocoder on the 705 I and 705 II. In Autocoder the
programmer has access to the FORTRAN language,
the Report/File and Decision languages, and all
other special languages normally available. Auto­
coder entries may be placed anywhere within the
Procedure Division, provided each group of entries
is preceded by the statement ENTER AUTOCODER
and terminated by a COBOL paragraph whose first
statement is ENTER COBOL. When the Procedure
Division ends with a group of Autocoder entries, a
final paragraph-name followed by the sentence .
ENTER COBOL must be written. The names AUTO­
CODER and COBOL are the only language-names
permitted with the ENTER verb.

A paragraph-name associated with an ENTER
A UTOCODER statement may be referenced directly
in COBOL language by the GO TO and PERFORM
verbs. A paragraph-name associated with an
ENTER COBOL statement may only be referenced
indirectly in Autocoder language. An Autocoder tag
should be assigned to the COBOL paragraph-na:rne in
the SPECIAL-NAMES paragraph of the Environment
Division.

The 705/7080 Auxiliary Storage Unit (ASU) settings
are determined by the COBOL Processor. ASU 01
through ASU 05 are set to one to five positions,
respectively. ASU 13 is set to ten and ASU 14 is set
to four. These settings are fixed in each program.
ASU 15 and the accumulator are used as variable­
length storage units.

The settings of ASU 06 through ASU 12 normally
vary from one source program to another. These
ASUs will be set by the Processor according to the
sizes of items most frequently referenced in the
Procedure Division. However, it is possible to
preset any of these ASUs by modifying the Autocoder
Communication Word prior to compiling the COBOL
source program. The Processor will honor such
settings and compile accordingly.

When a programmer wants to write in Autocoder
language by means of the ENTER AUTOCODER
statement, he may wish to alter the settings of
certain ASUs for that phase of the program. This is
permissible as long as the Autocoder ASU macro­
instruction is never written and as long as those
ASUs that have been altered by Autocoder instructions
are reset by the programmer before returning to the
COBOL language.

The required settings of ASUs 01 through 05 and
13 and 14 are known at the time the program is
being written. They may be reset accordingly.
However, the settings of ASU 06 through ASU 12 are
not available until the program has been compiled.
In order for the programmer to be able to reset any
of these ASUs without prior knowledge of their
ultimate settings, specific Autocoder tags have been
assigned to each setting. BLASU06 through BLASU12
may be written as the operands of Autocoder SET
instructions in order to reset the appropriate ASUs.
The numeric columns (21 and 22) of the Autocoder
coding sheet should contain a number from 06 to 12
that identifies the ASU involved.

literal

It is recommended that STOP RUN be written in
every source program to indicate the end of the
program.

On the 705 III or 7080, STOP RUN initiates IOCS
end-of-job procedures (such as closing the check­
point tape) before the final halt is reached.

On all models of the 705/7080, the message END
OF RUN will be displayed on the console typewriter
and a STOP 9999 followed by a transfer back to the
stop will be produced by the Processor.

Add Corresponding Option

The CORRESPONDING option of the ADD verb allows
the programmer to specify the addition of corre­
sponding items in one operation in a manner similar
to MOVE CORRESPONDING.

The general form of ADD CORRESPONDING is:

ADD CORRESPONDING data-name-l TO data-name-2

~OUNDEDJ tN SIZE ERROR any imperative statement]

Numeric elementary items within data-name-l are
added to numeric elementary items with matching
names in data-name-2. Data-name-l and data­
name-2 must be nonelementary items. The rules
stated for the simple ADD verb apply to each pair of
items in the ADD CORRESPONDING option.

Only the initial description of items in data-name-
1 and data-name-2 is considered in the implemen­
tation of the ADD CORRESPONDING option. That is,
where a REDEFINES clause has been used within
data-name-l or data-name-2, the description of the
data contained within the REDEFINES clause is
ignored by ADD CORRESPONDING. The ROUNDED
option and the SIZE ERROR option may be used with
ADD CORRESPONDING. For a detailed description
of these options, the reader is referred to the
COBOL general information publication.

Note: The SIZE ERROR test is made only after
the completion of all the add operations. If any of
the additions produced a SIZE ERROR, the resultant
field for that add remains unchanged and the "any
imperative statement" is executed.

To illustrate the use of the ADD CORRESPONDING
option, assume that the programmer wishes to add
items from a work area named RE CEIPTS to corre­
sponding items in an area designated STOCK-ON­
HAND. The programmer could write this statement:

ADD CORRESPONDING RECEIPTS TO
STOCK-aN-HAND

Figure 2 shows what will result from this statement.
Note that noncorresponding items in the STOCK-ON­
HAND area are not affected.

RECEIPTS

STOCK-ON-HAND
(Before execution)

STOCK-ON-HAND
(After execution)

ITEM-9 ITEM-10 ITEM-l ITEM-4 ITEM-6 ITEM-a

~r--_---ll l
ITEM-l ITEM-2 ITEM-3 ITEM-4 ITEM-5 ITEM-6 ITEM-7

IVI vi vlVlvlvl vi
ITEM-l ITEM-2 ITEM-3 ITEM-4 ITEM-5 ITEM-6 ITEM-7

Figure 2. Add Corresponding

Subtract Corresponding Option

The CORRESPONDING option of the SUBTRACT verb
functions in the same way as the CORRESPONDING
option of the ADD verb. The general form of
SUBTRACT CORRESPONDING is:

SUBTRACT CORRESPONDING data-name-l

FROM data-name-2 [ROUNDED]

GN SIZE ERROR any imperative statement]

Procedure Division 19

APPENDIX A. TAPE LABELS AND SPECIALIZED ROUTINES

LABEL CONTROL CARDS

Label control cards are used whenever tape files
with standard header labels are to be written or
read. They may be read from either the card
reader or the first reel of a source program output
file. (See "File-Control Paragraph. ")

The Date control card must be the first read in.
It is required if any file has standard headers and
is used in conjunction with the purge cycle to check
the erasability of output tapes.

A File Serial Header control card must be
provided for every input fi~e with standard header
labels. It is used to insure that the correct reel
has been mounted.

An End control card is required as the last of
the label control cards.

It should be noted that information from the label
created for output files will be typed automatically
after the label is placed on tape (IOCS Message
10298). The information is in the following order:
tape serial number, file serial number, reel
sequence number, file identification, creation date,
purge cycle.

The formats of the cards are described below.

Date Control Card

Columns

1-6

7

8-9

10-12

Information

Program identification (first six characters of the

name written in PROGRAM-ID paragraph)
Blank

Year (e.g •• 64)

Calendar day (001 to 366)

File Serial Header Control Card

Columns

1-10

11

12-15/16

Informa tion

File identification (same as that entered in the File

Description entry for this file)

Blank

File serial number of all reels of an input file (see

Tape Format publication). Four digits for 729 tape

files; five digits for Hypertape files.

705 III End Control Card

Columns

1-6

7

8-10

20

Information
Program identification (first six characters of the

name written in PROGRAM-ID paragraph)

Blank

The characters END

7080 End Control Card

Columns

1-6

7-15

16-18

Information

Program identific ation (first six characters of the

name written in PROGRAM-ID paragraph)

Blank

The characters END

LABELS AND SPECIAL PROCESSING
CONSIDERATIONS

When nonstandard labels (729 files only) are used, or
when the programmer wishes to put special informa­
tion in the standard label, the label format should be
placed in Record Description entries with the level
01 fixed data-names BEGINNING-T APE-LABEL
and/or ENDING-TAPE-LABEL (or BEGINNING­
HYPERTAPE-LABEL and/or ENDING-HYPERTAPE­
LABEL for Hypertape files). The label in the
Record Description entry may be used for either
label checking or writing.

.The programmer should note that IOCS will
automatically do the following:

1. Check the file serial number and reel sequence
number on standard input header labels.

2. Check to see if the output file can be written
on, and place a label identification, file serial
number, reel sequence number, creation date, purge
cycle, file identification, and record format in
standard output header labels.

3. Check the standard input trailer label termi­
nation code to determine whether end of reel or end
of file has been reached.

4. Insert the record count and skip count in
standard output trailer labels.

Checking the Record Count

For standard labels, the 7080 IOCS automatically
compares the number of tape records read with the
number specified in the trailer, prior to transferring
to the ENDING-REEL or ENDING-FILE routine. If
the counts are not equal, a message is typed and the
programmer has the option of continuing or restart­
ing from the last checkpoint.

If standard labels are not used on the 7080, and
the programmer desires to compare the tape record
count or skip count fields of the trailer label of an
input file with those accumulated by IOCS, he must
use a special ENDING-REEL or ENDING-FILE
routine. Such a routine is required for the check­
ing on the 705 III. In addition to coding the returns

correctly (see below), the programmer must
ENTER AUTOCODER for each of the routines. The
counts accumulated are referred to by the follow ing
tags:

705 III

7080 (729)

7080 (Hypertape)

Tape-record Count

IOWRKFTREC

CSF0003022

CSFCSHYFRC

Noise/Skip Count

IOWRKFTSKP

CSF000302

CSFCSHYTSK

Both fields are signed numeric: Tape-record Count
is six positions and Noise/Skip Count is two.

Coding Special Routines When Using the 7080 IOCS

The 7080 IOCS normally operates in the interrupt
program. This results in a shift of the Starting
Point Counter from bank 0 (accumulator) to bank 3
(CASUs) when the interrupt program is entered.
Since 7080 IOCS does not leave the interrupt program
upon entering a special routine; the Processor will
generate a BLIXT macro-instruction that will shift
the Starting Point Counter to bank 0 and save the
contents of bank 0 and bank 1 before executing the
special routine.

Immediately. before each transfer to NORMAL or
ALTERNATE-IO-RETURN, the Processor generates
a BLIXT macro-instruction that restores the saved
contents of bankO-and bank 1 and shifts the Starting
Point Counter to bank 3.

USE OF SPECIALIZED ROUTINES

Special header routines (BEGINNING-REEL), or
trailer routines (ENDING-REEL or ENDING-FILE)
are coded in the Procedure Division with a return to
the IOCS at either NORMAL-IO-RETURN or
ALTERNATE-IO-RETURN. The specifications that
follow should be used to determine which return
point to use.

It is important to note that no tape input/output
commands can be executed during a BEGINNING­
REEL, ENDING-REEL, or ENDING-FILE routine.

Input Files

Standard Labels

Beginning-Reel Routine: This routine is executed
upon opening a file and at the beginning of alternate
reels, and can be used for additional checking. If the
reel is proper, return must be made at NORMAL­
IO-RETURN. If the reel is improper, processing
should be stopped and a message typed directing the
operator to mount a new reel; return must be made
at ALTERNATE-IO-RETURN. (The routine will then
be repeated.)

Ending-Reel Routine: This routine is executed when
a standard end-of-reel trailer is encountered. It is
used only for extra checking. Return .must be made
at NORMAL-IO-RETURN.

Ending-File Routine: This routine is executed when
a standard end-of-file trailer is encountered (at end,
of last reel). It is used only for extra checking.
Return must be made at NORMAL-IO-RETURN.

Nonstandard Labels (729 Files Only)

Beginning-Reel Routine: This routine is required to
check header labels, and is executed upon opening
a file and at the beginning of alternate reels. If it
has been determined that the reel is the proper one,
return must be made at NORMAL-IO-RETURN.
Otherwise, operator action should be specified by a
message and return made at ALTERNATE-IO­
RETURN. The computer then stops processing and
displays message 30291; the operator should follow
the instructions associated with the message number.

Ending-Reel Routine: This routine is executed when
a tape mark and nonstandard tr ailer are encountered,
and is required for determining whether an end-of­
reel condition exists. If an end-of-reel condition
does exist, return must be made at NORMAL-IO­
RETURN; if not, return must be made at
ALTERNATE-IO-RETURN. If the return was made
at ALTERNATE-IO-RETURN, the system assumes
that an end-of-file condition exists; if an ENDING­
FILE routine exists, it will be executed.

Ending-File Routine: This routine, which is optional,
is executed after the ENDING-REE L routine has
determined that no end-of-reel condition exists; it
then continues label checking. Return is made at
NORMAL-I07"RETURN if an end-of-file condition
exists; otherwise, return is made at ALTERNATE­
IO-RET URN and the computer stops processing and
displays message 30293. The operator should follow
the instructions associated with the message number.

No Labels (729 Files Only)

Beginning-Reel Routine: This routine, which is
optional, is executed upon opening a file and at the
beginning of alternate reels. Return is made at
NORMAL-IO-RETURN.

Ending-Reel Routine: This routine is executed when
a tape mark has been reached. It is required to
determine if there is an end-of-reel condition. If
the end of reel has been reached, return must be
made at NORMAL-IO-RETURN. If not, return must
be made at ALTERNATE-IO-RETURN. IOCS
assumes that the end of file has been encountered if
return was made at ALTERNATE-IO-RETURN and
will transfer to the ENDING- FILE routine if one
has been specified.

Ending-File Routine: This routine is executed when
the ENDING-REEL routine has returned at
ALTERNATE-IO-RETURN. It continues the check­
ing that was begun ,by the ENDING-REEL routine
with return at NORMAL-IO-RETURN.

Appendix A 21

Output Files

Standard Labels

Beginning-Reel Routine: This routine, which is
optional, is executed upon opening a file and at the
beginning of alternate reels. It is used to add
information to header labels. Return is made at
NORMAL-IO-RET URN.

Ending-Reel Routine: This routine, which is
optional, is executed at the end of reel (reflective
spot) . It is used to add information to trailer labels.
Return is made at NORMAL-IO-RETURN unless the
programmer wants to ignore the end-of-reel
condition and continue writing, in which case
ALTERNATE-IO-RETURN should be specified.
When ALTERNATE-IO-RETURN is specified, IOCS
will branch to the ENDING-REEL routine for each
subsequent tape record placed on the reel until
NORMAL-IO-RETURN is specified. When NORMAL­
IO-RETURN is specified, a tape mark, a trailer,
and a final tape mark will be written following the
last record on the reel.

Ending-File Routine: This routine, which is
optional, is executed upon closing a file. It is used

. to add information to trailer labels. Return should
be made at NORMAL-IO-RETURN.

Nonstandard Labels (729 Files Only)

Beginning-Reel Routine: This routine is required to
check the header label of the output tape and to insure
that it is erasable; if so, it creates a new header in
the label area. If the tape is erasable, returnshould
be at NORMAL-IO-RETURN; if not, operator action
should be specified by a message and return made at
ALTERNATE-IO-RETURN. After ALTERNATE­
IO-RETURN, the computer automatically stops
processing and displays message 30290; the operator
should follow the instructions specified. The
procedure will then be repeated.

22

Ending-Reel Routine: This routine is required to
create a trailer label that includes end-of-reel
indication. Return is made at NORMAL-IO-RETURN
unless the programmer chooses to ignore the end~of­
reel condition and continue writing, in which case he
specifies ALTERNATE-IO-RETURN. When
ALTERNATE-IO-RETURN is specified, IOCS
branches to the ENDING-REEL routine for every
subsequent tape record placed on the file until return
at NORMAL-IO-RETURN is specified. On a
NORMAL-IO-RETURN, a tape mark, a trailer, and
a final tape mark will be written following the last
record on the reel.

Ending- File Routine: This routine is required to
create an end-of-file trailer. It is executed upon
closing a file. Return is at NORMAL-IO-RETURN.

No Labels (729 Files Only)

Beginning-Reel Routine: This routine, which is
optional, is executed upon opening a file and at the·
beginning of alternate reels. Return is at
NORMAL-IO-RETURN.

Ending-Reel Routine: This routine, which is
optional, is executed at the end of reel (reflective
spot). Return is made at NORMAL-IO-RETURN
unless the end-of-reel condition is to be ignored in
order to write additional records on the reel, in
which case ALTERNATE-IO-RETURN should be
specified. When ALTERNATE-IO-RETURN is
specified, IOCS will go to ENDING-REEL routine
for every subsequent tape record placed on the file
until return at NORMAL-IO-RETURN is specified.
After NORMAL-IO-RETURN, a tape mark, a trailer,
and a final tape mark will be written following the
last record on the reel.

Ending-File Routine: This routine, which is
optional, is executed upon closing a file. Return
is made at NORMAL-IO-RETURN.

The following list of input/output assumptions and
restrictions should be studied by programmers
familiar with laCS.

1. An OPEN command primes all input (buffer)
areas.

2. The record-length-checking feature of laCS
will always be used when reading fixed-length
records or variable-length records that contain the
block size, and when writing any record.

3. No provision for accumulating hash totals is
included.

4. Input headers will not be typed unless they
are erroneous.

5. The V label option (a special case of standard
labels where the EOF or EOR indicator in the
trailer is ignored) is not available.

6. The first three characters of the file
identification for standard labels should not be
numeric since the Cycle Checking option is not
allowed.

7. Tape files that have been assigned to the same
base tape will share input/output buffer areas if
they are all input or all output. Two such files
should never be open at the same time.

705 III ONLY

1. The ASUSA VE and ASURESTORE options are
not used.

APPENDIX B. USE OF IOCS

2. The Checkpoint routine records all of
memory, the contents of the accumulator, ASU 06
to ASU 15, and the Alteration switch settings.

3. The INITIATE mode is assigned to all files
with only one data record per block, except input
files with only one input area.

4. The STACKING mode is assigned to input
files with only one data record per block and only
one input area, and to all blocked files (files with
more than one data record per block).

5. For blocked files, the READ command
includes a test for ready channel. Input/output
operations will be initiated on each channel that is
in ready status.

7080 ONLY

1. The Checkpoint routine records all of
memory, the contents of central storage, and
Alteration switch settings.

2. The INITIATE mode is assigned to all files
using only one input/output area.

3. The STACKING mode is assigned to all files
using more than one input/output area.

4. Mode 2 end of reel will be specified for all
files.

Appendix B 23

APPENDIX C. PREASSEMBLED IOCS FOR THE 705 III (7058 COBOL PROCESSOR ONLy)

INTRODUCTION

COBOL programs compiled for the 705 III with Data
Synchronizers may make use of a preassembled
Input/Output Control System. The chief advantage of
the preas sembled IOCS is a substantial saving of
machine time during compilation.

In order to prepare for the use of preassembled
IOCS, it is necessary to compile a version of the
IOCS that is adequate to the needs of all of the
programs with which it is to be used. This compi­
lation must be done using the Autocoder entries
described below. A COBOL System Tape must be
used for this compilation, and the full IOCS library
must be present.

Once the preas sembled IOCS has been compiled,
most of the IOCS library routines may be deleted
from the COBOL System Tape.

The macro-instructions BLHSK, BLSY, and
BLSYS and all the Class B subroutines of the IOCS

, except those listed below may be removed:
IOAA
10950
10952
10954
10956
10958
10960
10962

COBOL programs that are to be run using the
preassembled IOCS must include the PREASSEM­
BLED entries under the OBJECT-COMPUTER
paragraph in the Environment Division. In all other
respects, they are coded as if there were no pre­
assembled IOCS.

The two entries entitled IOCS ADDRESS and
IOHSK ADDRESS are used to indicate to the COBOL
Processor the memory areas required by the IOCS.
The format and content of these entries are given
below.

ASSEMBLING AN IOCS

The IOCS being assembled must be assigned to lower
memory and must be set up so that the Input/Output
Housekeeping routines will be the last section of the
IOCS. This is required because during the COBOL
compilation of source programs using this IOCS,
memory assignment (with the exception of the
Channel Tables) will begin at the initial location of
the Input/Output Housekeeping section.

Output areas will be assigned to overlap the
Input/Output Housekeeping routines, and the
remainder of the object program will be located
following this section. The Channel Tables always
begin at memory location 0240 and consist of a 55-
character table for each DS used in the object
program.

In order to assemble an IOCS, the following
Autocoder statements are required:

24

1. LITOR @l240 +55n

where: 240 is the initial memory location for the Channel

Tables.

55 is the length of each Channel Table.

n is the ,maximum number of DSs (channels) used

in any of the COBOL object programs to be used

with this IOCS.

The LITOR assigns the IOCS literals.

2. LASN @l200 + location specified in the LITOR.

The LASN locates the IOCS following the 200-position memory

area required by the IOCS literals.

3. IODEF

The operands of the IODEF macro-instruction define the sections

of the IOCS being assembled.

4. BLSYS

The operands of the BLSYS macro-instruction define the options

for each section of the IOCS being assembled.

5. BLHSK

The operands of the BLHSK macro-instruction define the Input/

Output Housekeeping routines required in the IOCS being assembled.

These five cards are entered as input to an
Autocoder assembly using a 7080 Compiling System
tape.

For example, the following Autocoder cards
could be used to assemble an IOCS that will be
located in lower memory immediately following the
two Channel Tables.

Line Tag Operation Num Operand

01 LITOR @350
02 LASN @550
03 IOOEF IOSYSJ:I lOOTS OIOEOF =
04 BLSYS 2J:1STACKJ:l3J:1CKLNGJ:lM==
04A ERRORDUMPt:a:I
05 BLHSK 1 2 J:I ST ACK t:a:I ERRORDUMP J:I

where:
01 assigns the IOCS literals.

02 locates the IOCS, allowing 200 positions for the maximum

number of literals required.

03 defines the IOCS as a system that will not include

checkpoint or tape labeling routines.

04 specifies a system for two DSs that will handle a

maximum of three input/output areas per file,

for both fixed- and variable-length records, and

will include routines for dumping unreadable

records.

05 specifies the Input/Output Housekeeping routines

that are associated with the features specified for

the IOCS. The entry of a 1 in the numerical

column indicates that this IOCS (including Housekeeping)

is to be used with COBOL programs that may not contain

the OPEN ALL FILES command.

MACRO-INSTRUCTIONS USED IN AN laCS
ASSEMBLY

The following pages describe in detail the formats
and contents of the macro-instructions used in
creating the preassembled IOCS.

IODEF (Define IOCS)

Function

The function of IODEF is to define the sections of
the IOCS that are to be included in this assembly of
an IOCS.

Instruction Format

Tag Operation Num Operand

IODEF Xl IlX2 IlX3tlX4 tlX5Il

Instruction Format

Tag Operation Num Operand

BLSYS XltlX2IlX3Il ••. XI2 tl

where:

Xl is a one-digit number specifying the maximum number of

DSs used.

X2 is STACK.

X3 is a one-digit number (1-8), specifying the maximum

number of input/ output areas used by any tape file

handled by IOCS.

X4 is CKLNG.

XS is F, V or M.

If F, routines that handle only fixed-length records are to be

included in the IOCS to be assembled.

If V, routines that handle only variable-length records are to

be included in the IOCS to be assembled.

If M, routines that handle both fixed- and variable-length

records are to be included in the IOCS to be assembled.

X6 is STANDARD. NONSTAND, or omitted.

where: If STANDARD, routines for handling standard header labels,

as well as nonstandard header labels of 80 characters or
Xl

X2

X3

X4

is IOSYS.

is IODTS.

is IOEOF.

is IOTRS or omitted •.

If IOTRS, the tape labeling section of IOCS will be included

in the IOCS to be assembled. Must be used if any programs

specify either STANDARD or nonstandard labels.

If omitted, the tape labeling section will not be included in

the IOCS to be assembled.

X5 is IOMRD or omitted.

If IOMRD. the checkpoint/restart section of IOC S will be

included in the IOCS to be assembled.

If omitted. the checkpoint/restart section will p.ot be included

in the IOCS to be assembled.

Coding Generated: None

Memory Requirements: None

BLSYS (Include Input/Output Control System)

Function

The function of BLSYS is to call the IOCS routines
from the COBOL System Tape. BLSYS defines
options for each section of IOCS specified in the
macro-instruction IODEF.

less, will be included in the IOCS to be assembled.

If NONST AND, routines for handling standard header labels

will not be included, but those routines that handle non­

standard header labels of 80 characters or less will be

included.

If omitted, no routines for handling header labels will be

included. This operand must be omitted if IOTRS is not an

operand of the macro-instruction IODEF.

X7 is STANDARD. NONSTAND. or omitted.

If STANDARD, routines handling standard trailer labels, as

well as nonstandard trailer labels of 80 characters or less,

will be included in the IOCS to be assembled. If NONST AND.

routines for handling standard trailer labels will not be

included, but routines for handling nonstandard trailer labels

of 80 characters or less will be included.

If omitted, no routines for handling trailer labels will be

included. This operand must be omitted if IOTRS is not

an operand of the macro-instruction IODEF.

X8 is ASUANDSWS or omitted.

ASUANDSWS must be specified if the checkpoint routines

are to be included in the IOCS to be assembled; i.e., if

IOMRD is an operand of the macro-instruction IODEF.

The operand must be omitted if IOMRD is not an operand

of the macro-instruction IODEF.

X9 is a one digit number (2 or 4) or omitted.

If the checkpoint routines are to be included, i.e., if IOMRD

is an operand of the macro-instruction IODEF, operand X9

specifies the number of memory quadrants: 2 for a 40K

Model III or 4 for an 80K Model III.

Appendix C 25

This operand must be omitted if IOMRD is not an operand of

the macro-instruction IODEF.

Xl0 is omitted.

Xll is ERRORDUMP.

Routines associated with the dumping of unreadable records

will be included in the IOCS to be assembled.

X 12 is omitted (single lozenge required).

Note: The routines described in the above
operan:ds can be included in the IOCS assembly, if
desired, even if a given object program does not use
all of the features.

Coding Generated

Tag Operation Num Operand

INCL IOaaa

INCL IObbb
NAME 0
RCD 0

BLSYS xxxxx

where:
aaa and bbb are the first and last IOCS subroutines to be

included.

xxxxx is the number of memory positions used by IOCS.

Memory Requirements

The memory requirements are those specified by
xxxxx under BLSYS "Coding Generated. "

BLHSK (Include Input/Output Housekeeping Section
of lOCS)

Function

The function of BLHSK is to call the Input/Output
Housekeeping routines from the COBOL System Tape.

Instruction Format

Tag Operation Num Operand

BLHSK Xl X2oX30X4oX50

where:
Xl is 1.

26

1 must be specified in the numeric columns since ~ of

the COBOL ob ject programs to be used with the IOCS being

assembled may contain the command OPEN ALL FILES.

X2 is a one -digit number specifying the total number of DSs

used. Operand X 1 in the macro-instruction BLSYS should

specify the same one-digit number.

X3 is STACK.

X4 is STANDARD or omitted.

XS

If STANDARD, routines associated with the handling of

standard header labels will be included in the Input/Output

Housekeeping to be assembled. Operand X6 in the macro­

instruction BLSYS should also specify STANDARD.

If omitted, routines associated with the handling of

standard header labels will not be included. Operand X6

in the macro-instruction BLSYS should be omitted or

specify NONST AND.

is ERRORDUMP.

Routines associated with the dumping of unreadable

tecords will be included in the Input/Output Housekeeping

to be assembled. OpEi!rand X11 in the macro-instruction

BLSYS should also specify ERRORDUMP.

Note: The routines described in the above
operands can be included in the Input/Output House­
keeping assembly, if desired, even if a given object
program does not use all of the features.

Coding Generated

Tag

BLHSK

where:
aaa and bbb

xxxxx

Operation Num Operand

INCL IOaaa

INCL IObbb
NAME 0

RCD 0
xxxxx

are the first and last IOHSK subroutines to be

included.

is the number of memory positions used by IOHSK.

Memory Requirements

The memory requirements are those specified by
xxxxx under BLHSK "Coding Generated. "

ASSEMBLING AN OBJECT PROGRAM TO BE USED
WITH A PREASSEMBLED IOCS

The COBOL source program to be used with a pre­
assembled IOCS must include the IOCS ADDRESS and
IOHSK ADDRESS entries under the OBJECT­
COMPUTER paragraph of the Environment Division.

The IOCS ADDRESS entry specifies, in five-digit
form, the initial and final memory locations of the
IOCS, excluding the literals and the Input/Output
Housekeeping section. These locations may be
obtained from the preas sembled IOCS listing beneath

the coding generated for the macro-instruction
BLSYS. The initial location is specified in the
NAME entry and the final location in the ReD entry
tagged BLSYS.

The IOHSK ADDRESS entry specifies, in five­
digit form, the initial and final memory locations of
the Input/Output Housekeeping section. These
locations may be obtained from the preassembled
IOCS listing beneath the coding generated for the
macro-instruction BLHSK. The initial location is
specified in the NAME entry and the final location,
in the RCD entry tagged BLHSK.

In all other respects, the source program must
be set up in the manner described in this publi­
cation and in the COBOL general information publi­
cation.

The source program compilation is a normal
COBOL compilation.

INCLUSION OF THE 705 III PREASSEMBLED IOCS
WITH THE OBJECT PROGRAM

After the source program has been compiled, the
program cards should be combined with the pre­
assembled lOCS program deck as follows:

1. Load program (or object program load card)
2. Preassembled IOCS
3. Object program
4. Object program "00" card
The "00" card and load card of the preassembled

IOCS should be discarded. The object program load
card must be discarded if an alternate load program
is used.

Appendix C 27

APPENDIX D.PREASSEMBLED IOCSFOR THE 7080

INTRODUCTION

The 7058 COBOL Processor cannot generate a 7080
Input/Output Control System. Therefore, a pre­
assembled' 7080 10CS must be incorporated into
object programs compiled by this processor. The
7080 COBOL Processor is capable of generating a
7080 IOCS as part of a normal compilation. How­
ever, a preassembled IOCS is also acceptable. The
chief advantage to be derived from the preas sembled
10CS is a substantial saving of machine time during
compilation.

In order to prepare for the use of the preasserrl­
bled IOCS, it is necessary to compile a version of
the IOCS that is adequate to the needs of all of the
programs with which it is to be used. Once this has
been done, COBOL programs that are to be run using
the preassembled IOCS must include the PRE­
ASSEMBLED entries under the OBJECT-COMPUTER
paragraph in the Environment Division. In all other
respects, they are coded as if there were no pre­
assembled IOCS.

The entries IOCS ADDRESS and IOHSK ADDRESS
are used to indicate to the 7080 COBOL Processor
the memory areas required by the IOCS. The
formats and contents of these entries are given
below.

ASSEMBLING AN IOCS

The IOCS being assembled must begin at memory
location 0500 and must be set up so that the Input/
Output Housekeeping routines will be the last section
of the IOCS. This is required because, during the
COBOL compilation of source programs using this
IOCS, memory aSSignment will begin at the initial
location of the Input/Output Housekeeping section.

Output areas will be assigned to overlap the
Input/Output Housekeeping routines, and the
remainder of the object program will be located
following this section. The Tape Tables always
begin at memory location 0500.

Full details of specifying the 10CS to be assembled
are given in the following publications:

28

IBM 7080 Input/Output Control System for Use
with 729 MagnetiC Tape Units, Form C28-6237

IBM 7080 Input/Output Control System for 7340
Hypertape Drives -- #7080-10-932, Form
C28-6341

ASSEMBLING AN OBJECT PROGRAM TO BE USED
WITH A·· PREASSElVIBLED IOCS

The COBOL source program to be used with a pre­
assembled 10CS must include the IOCS ADDRESS
and 10HSK ADDRESS clauses (for 729 files) and/or
the HYPERTAPE-IOCS ADDRESS clause (for
Hypertape files) under the OBJECT-COMPUTER
paragraph of the Environment Division.

The IOCS ADDRESS clause specifies, in five­
digit form, the initial memory location of the IOCS,
excluding the Input/Output Housekeeping section.
This location should be 00500.

The HYPERTAPE-IOCS ADDRESS clause
specifies, in five-digit form, the initial location of
the Hypertape IOCS. This location can be obtained
from the preas sembled IOCS listing by referring to
the Autocoder tag CSHYOPLBL.

The IOHSK ADDRESS clause specifies, in five­
digit form, the initial and final memory locations of
the Input/Output Housekeeping section. These
locations may be obtained from the preassembled
IOCS listing by referring to the Autocoder tag
CSA028005 and the highest memory location used by
IOCS.

In all other respects, the source program must
be set up in the manner described in this publication
and in the COBOL general information publication.

INCLUSION OF THE 7080 PREASSEMBLED 10CS
WITH THE OBJECT PROGRAM

Following the compilation of the COBOL object
program, the program cards should be combined
with the preas sembled 7080 IOCS in the following
order:

1. Load program
2. Preas sembled IOCS
3. Object program
4. Object program "00" transfer control card

The "00" card and load program of the preas sembled
IOCS should be discarded.

Note: The object program load cards must be
discarded if an alternate load program is used.

APPENDIX E. DEFERRED ELEMENTS OF THE COBOL LANGUAGE

The following items, which appear in the COBOL
general information publication, will be deferred
features of COBOL for the 705/7080:

1. Environment Division.
a. COpy clause wherever it appears.
b. OBJECT-COMPUTER paragraph: ASSIGN

option.
c. FILE-CONTROL paragraph.

i. OPTIONAL file-name option of
SELECT.

ii. All features that provide for Processor
assignment of tape units to a file.

2. Data Division.
a. COPY clause wherever it appears.
b. JUSTIFIED clause.
c. PICTURE - Report Items.

i. + or - on the left option.
ii. Floating + or - option.

iii. 0 and B options.
3. Procedure Division.

a. NO REWIND option of the CLOSE verb.
b. REEL option of the CLOSE verb.
c. Implied AT END option following the READ

verb.

Appendix E 29

APPENDIX F. COMPLETE LIST OF COBOL RESERVED WORDS

The words bisted below are an inherent part of the
COBOL System. Their use as data or procedure
names should be avoided. The list includes all
words that have special meaning as either key words
or optional words for any IBM COBOL Compiler.

ABOUT

ACCEPT
ADD
ADDITIONAL-LABEL-INFO

ADDRESS

ADDRESSES
ADVANCING
AFTER

ALL
ALL-FILES

ALPHABETIC
ALPHANUMERIC

ALTER
ALTERATION -SWITCH

ALTER-LABEL-INFO

ALTERNATE

AL TERNATE-10-RETURN
ALT-SWITCH-n
AN

AND
APPLY
ARE

AREA
AREAS

AS
ASCENDING
ASSEMBLY -PROGRAM

ASSIGN
AT

AUTHOR

AUTHORS

AUTOCODER
AUTOLOADER

BCD
BEFORE

BEGINNING

BEGINNING-FILE-LABEL

BEGINNING -HYPER T APE- LABEL

BEGINNING -REEL
BEGINNING-TAPE-LABEL

BINARY

BIT

BITS

BLANK

BLOCK
BLOCKS
BLOCK-COUNT

BLOCK-OR-CHECKSUM-ERROR

BLOCK- SEQUENCE-ERROR

BUFFER -OVERFLOW
BY
CALL

CARD-PUNCH

CARD-READER

30

CARDS

CF
CH
CHARACTER

CHARACTERS

CHECK

CHECKPOINT
CHECKPOINT - UNIT

CHECKSUM
CHECKSUM-ERROR

CLASS

CLOCK-UNITS

CLOSE

COBOL [-xxxxJ
CODE

COLLATE-COMMERCIAL
COLLA TE-MACHINE
COLUMN

COMMUNICA nON -MODE

COMPUTATIONAL

COMPUT ATIONAL-l
COMPUT ATIONAL-2
COMPUTE

CONFIGURATION
CONSOLE-PRINTER
CONSOLE-SWITCH

CONSTANT

CONTAIN
CONTAINS
CONTROL

CONTROL-COUNT -ERROR
CONTROLS

COPY

CORRESPONDING
CREATION-DATE

CREATION-DAY

CREATION - YEAR
DATA

DATE-COMPILED

DA TE-WRITTEN
DE

DEC LARA TlVES
DEFINE

DENSITY
DEPENDING

DESCENDING
DETAIL

DIGIT

DIGITS
DISPLAY

DIVIDE
DIVIDED

DIVISION
DOLLAR

DOUBLE-PRECISION

ELECTRONIC-SWITCH

ELIMINATION
ELSE
EL-SWITCH-n
END

ENDING

ENDING-FILE

ENDING-FILE-LABEL

ENDING-HYPERTAPE-LABEL

ENDING-REEL
ENDING-TAPE-LABEL
END-OF -FILE

END-OF -REEL

END-OF -TAPE

ENTER

ENVIRONMENT
EOF-SIU
EQUAL

EQUALS

ERROR
ERROR-CONDITION
ERROR-DUMP
ERROR-FILE-ADDRESS

ERROR-RECORD

EVEN
EVERY

EXAMINE

EXCEEDS
EXIT
EXPONENTIATED

FD

FILE

FILE-CONTROL
FILE-IDENTIFICA nON

FILE-PROTECT
FILE-REFERENCE

FILE-SERIAL-NUMBER
FILES

FILLER

FILLING
FINAL

FIRST
FLOAT

FLOA TING -POINT -HARDWARE
FOOTIN"G

FOR

FORMAT

FROM

GENERATE

GIVING
GO
GREATER

GROUP
HASHED

HEADER
HEADER -LABEL

HEADIN"G

HIGH

HIGH-VALUE

HIGH-VALUES

HYPERTAPE-IOCS
HYPERT APE- UNIT

HYPER T APE- UNITS

IBM-1401

IBM-1410
IBM-1460
IBM-70S-1

IBM-70S-2
IBM-70S-3

IBM-7010

IBM-7040

IBM-7044
IBM-7070

IBM-7072

IBM-7074
IBM-7080

IBM-7090

IBM-7094
I-O-CONTROL

I-O-SWITCH

ID
IDENTIFICA TION

IF

IN
INCLUDE
INCOMPLET E-WORD-ERROR

INDEX-WORD-n
INDICATE

INITIATE

INPUT
INPUT -OUTPUT

INST ALLA TION
INTERCHANGEABLE

INTO
INV ALID-CHARACTER-CHECK

IOCS

IOHSK

IORETURN
IORTN1

IORTN2
IS

JUSTIFIED
KEY
KEY-S
KEY-1

KEY-3S

LABEL
LABEL-DATA

LABEL-IDENTIFIER

LABEL-RECORDS

LAST

LEADING

LEAVING
LEFT

LESS

LIBRARY

LIMIT
LIMITS
LINE

LINE-COUNTER

LIN"ES

LIN"KAGE-MODE

LOAD

LOCATION
LOCK

LONG-LENGTH-RECORD

LOW
LOW-VALUE
LOW-VALUES
LOWER-BOUND

LOWER-BOUNDS

MEMORY
MEMORY-DUMP
MEMORY -DUMP-KEY

Appendix F 31

MINUS
MIXED-MODE-ERROR

MODE
MODULES
MONITOR-DATE
MONITOR-SWITCH

MOVE
MULTIPLE
MULTIPLIED

MULTIPLY
NEGATIVE

NEXT

NO
NO-LENGTH-CHECK
NO-MEMORY -DUMP

NONE
NON -ST ANDARD

NO-OVERLAP
NO-PRINT -STORAGE

NO-RELEASE
NO- T APEMARK
NO- TAPE-MARK
NORMAL-10-RETURN

NOT
NOTE

NUMBER

NUMERIC
OBJECT -COMPUTER

OBJECT -PROG RAM
OCCURS

ODD

OF

OFF

OH

OMITTED

ON

OPEN
OPEN - WITHOUT -REWIND

OPTIONAL

OPTIONAL-USAGE

OR

OTHERWISE

OUTPUT

OUTPUT-FILES

OV

OVERFLOW
OVERLAP-FILE-AREA

PACKED

PADDING
PAGE

- PAGE-COUNTER

PARITY
PERFORM

PERMANENT - WRITE-ERROR

PF
PH

PICTURE

PLACE

PLACES

PLUS
POINT

POSITION

POSITIVE
PREASSEMBLED

32

PREPARED

PRINTER
PRINTER-720

PRIORITY
PROCEDURE

PROCEED
PROGRAM-ID

PROGRAM-START

PROTECT

PROTECTION

PUNCH
PURGE-CYCLE

PURGE-DATE

QUOTE

QUOTES

RANGE
RD
READ
READER

RECORD
RECORD-COUNT

RECORDING
RECORD-MARK

RECORDS

REDEFINES
REDUNDANCY -ERROR

REEL
REEL-NUMBER

REELS
REEL- SEQUENCE-NUMBER

REEL- SERIAL-NUMBER

REFERENCE

RELEASE
REMARKS

REMEMBER

RENAMES

RENAMING
REPLACING

REPORT
REPORTING

REPORTS

RERUN
RERUN-RECORDS

RERUN-WORK
RESERVE

RESET

RESTART
RETENTION -CYCLE

RETENTION -PERIOD

RETURN
REVERSED

REWIND

RF

RH
RIGHT
ROUNDED

RUN
SAME

SD
SECTION
SECURITY
SEGMENT - LIMIT

SELECT
SELECTED

SENSE- SWITCH-1-6

SENTENCE

SENTINEL

SEQUENCE-CHECK

SEQUENCED

SHORT-ALPHA-WORD

SHORT -LENGTH-RECORD

SIGN

SIGNED

SIZE

SORT

SOURCE

SOURCE-COMPUTER

SPACE

SPACES
SPECIAL-NAMES

STANDARD

ST ANDARD-LABEL

STATUS
STOP

SUBTRACT

SUM

SUPERVISOR

SUPPRESS

SYNCHRONIZED

SYNCH-N

SYSTEM-INPUT - UNIT

SYSTEM-OUTPUT -PRINTER

SYSTEM-OUTPUT-PUNCH

SYSTEM-OUTPUT - UNIT

TALLY

TALLYING
TAPE

TAPES

TAPE-UNIT

TAPE-UNITS

T APE-WITH- LABELS

TAPE-WITHOUT-LABELS

TERMINATE

TEST -P AT TERN

THAN

THEN

THROUGH

THRU

TIME

TIMES
TO

TRAILER -LABEL

TYPE
TYPEWRITER

UNEQUAL

UNIT -RECORD-I-O-RECORD

UNOPENED-FILE

UNPACKED

UNTIL

UPON

UPPER-BOUND

UPPER-BOUNDS

USAGE

USE

USING

VALUE

VALUES

VARYING

WHEN

WITH

WITH-LABELS
WITHOUT -LABELS

WORDS

WORKING-STORAGE

WRITE

ZERO

ZEROES

ZEROS

1401-SS

1402-P

1402-R

1403-CT

1403-P

1403-P-CB

1403-P-CV

1403-P-C9

705-1

705-2

705-3

729-m

7080

Appendix F 33

APPENDIX G. ADDITIONAL CONSIDERATIONS

.RESTRICTIONS ON THE USE OF THE COBOL
LANGUAGE

The implied AT END with READ statement is
disallowed on the 7080 COBOL Processor.

The format of a READ statement is:

READ file-name AT END any imperative statement

Each READ statement must have an explicit AT
END. If no AT END is specified by the programmer,
the Processor will create an ending routine, con­
sisting of a loop, for that particular READ state­
ment.

LANGUAGE INCOMPATIBILITY

If the COBOL program is to be compiled for more
than one computer, the following verbs and clauses
should be avoided as much as possible since their
definitions may' not be compatible in all systems.

I

34

Verbs

The following COBOL verbs and their associated
language specifications cannot be defined in com­
patible terms in any two systems.

1. ACCEPT
2. UPON option of the DISPLAY verb
3. ENTER
4. USE

Clauses

The three editing clauses, ZERO SUPPRESS,
CHECK PROTECT, and FLOAT DOLLAR SIGN are
redundant, since the PICTURE clause can be used
for all their functions. In addition, certain errors
in their specification, resulting in conflicting
requirements, make implementation difficult. It
is therefore recommended that PICTURE be used
whenever editing of this kind is required.

Special Characters

The 7058 and 7080 COBOL Processors permit
alphanumeric literals to contain any character in the
computer's character set. However, only the
COBOL character set will insure complete com­
patibility with other IBM systems.

ACCEPT 8,11

ADD 2, 19

ADDRESS 8

ALPHABE TIC 15, 17

ALPHANUMERIC 15, 17

Alphanumeric literals 6

AN 15
Analysis run 6

APPLY 11

Assembling an IOCS:
For the 705 III 24

For the 7080 28

ASSIGN 10, 11

ASU settings 18

ASUSAVE 23

AT END 2, 17, 29, 34

Autocoder tags

AUTOLOADER

7,9, 18

10, 11, 12

BEGINNING-HYPER TAPE-LABEL 14, 20

BEGINNING-REEL 11, 21, 22

BEGINNING-TAPE-LABEL 14, 20

BLASU06 18
BLASU12 18

BLHSK 24, ~

BLIXT 2,.ll

BLOCK 1O,ll
BLSY 24

BLSYS 24, 22..

CASU settings 21

Channel tables 8,24

Character set 7

CHARACTERS 8,~

Checking:

of labels 9, 20

of record count 20

of record length 23

of reels 9, 20

CHECKPOINT 13

Checkpoint taking 9, 11, 12, 13, 23

CLASS 15

Class B subroutines 24

CLOSE 12, 17, 18, 29

Compilation listing 6

Compilation run 6

Conditional statements 17

Condition-names 7

Configuration Section 7

Control cards 20
CORRESPONDING 2, 19

DATA RECORD 10

Date 7
Date control card 20

DA TE-COMPILED 7

Deblocking 9

Decimal point 15

Deferred features 29

Device name formats 7

Diagnostic messages 6 \

DISPLAY 8, 15, 1&

ELSE 17

End control card 20

END OF RUN message 19

ENDING-FILE 11, 20

ENDING-HYPERTAPE-LABEL 14, 20

ENDING-REEL 12, 20

ENDING-TAPE-LABEL 14, 20

ENTER 18

ENTER AUTOCODER 9, 21

Environment Division 7

ERROR 17, 19

Error Checking 20

ERROR-DUMP 10

FILE-CONTROL 9

File Description entries 13

FIlE-PROTECT 12
File Serial Header control card 20

Format of device names 7

Format of input and output 12

FROM 17

GO TO 11, 18

Hash totals 23

Header labels 9, 14

HIGH 13

HIGH-VALUE 7

Hyperta pe capabilities 2, 5

Identification Division 7

IF 17

Incompatibility 34

INITIATE mode 23
Input/Output section 9

Input reel checking 9

INTERCHANGEABLE 13

I-O-CONTROL 11

IOCS use 23

IODEF 24,~

Label control cards 20

LABEL-DATA 11

Labels 9, 13, 20

LASN 24

LEFT 14
Limitations on verb formats 17

Listing, from compilation 6

Literals 7

LIT OR 24

NOTE: Underscored numbers indicate the principal reference.

LOCK 18

LOW 13

LOW-VALUE 7

Mac ro- instructions:

BLHSK 24, 26

BLIXT 21

BLSY 24

BLSYS 23, 24

IODEF 24

MEMORY 8

Messages, diagnostic

Mnemonic name 8

MOVE 15

M UL TIPLE REEL 10

NO 10
NO-LENGTH-CHECK

N 0-T APEMARK 14

NUMERIC 15, 17

Numeric items 15

Numeric literals 6

INDEX

6

13

OBJECT-COMPUTER ~ 13, 17, 24

OCCURS 17

OMITTED 14

ON SIZE ERROR 17

OPEN 17. 18, 23

OTHERWISE 17

Output reel checking 9

PACKED

PERFORM

PICTURE

13

11, 18

14

PREASSEMBLED 8, 24, 26,

Preassembled IOCS 24, 26

Procedure Division 17

PROGRAM-ID 7

PROGRAM-START 9

Q UALIFICA TION 17

READ 17, 23, 29, 34

RECORD 10, 1~

Record blocking 9

Record counts 12, 20

Record Description entries 14

Record length checking 23

RECORDING 13

REDEFINES

RENAMING
Report items

RERUN 12

16

.!Q, 17
15

RERUN-WORK 11

RESERVE 10

Index 35

J28-6177 -3

Reserved words 30

RESTART 11

Restrictions 34

RIGHT 14

ROUNDED 19

RUN 19

SELECT 10

SIZE 16, 17, 19

Size errors 17

SOURCE-COMPUTER 7

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N. Y. 10601

SPECIAL-NAMES

STACKING mode

STANDARD 14

STOP 19

8, 17

23

SYNCHRONIZED 14

SUBTRACT 2, 19

Tape Reel Control System 9

Tape unit assignment 10

Trailer labels 9, 14

UNPACKED 13

UPON 17, 18

USAGE 15

V label option 23

VALUE 16

WRITE 18

ZERO 7

