Customer Engineering

Manual of Instruction

Preliminary Edition

IBM 7040-7044 Data Process’ing Systems
Central Processing Unit

R23-2651

u)n]
<<

Customer Engineering

®
Manual of Instruction

Preliminary Edition

IBM 7040-7044 Data Processing Systems

Central Processing Unit

© 1963 by International Business Machines Corporation

R23-2651

PREFACE

This manual contains instructional information on the
7106 and 7107 Central Processing Unit (CPU), cover-
ing such items as CPU registers, timing and basic
cycles, CPU instructions including floating point,
memory protection, trapping, and the operator's
console. Channel A, power supply, and the memory
units are covered in separate manuals.

It is assumed that the student is familiar with the
binary and octal numbering systems, and is proficient
in converting numbers between the decimal, binary,
and octal systems. The numbering systems and
number conversions are described in the IBM 7040
and 7044 Student Text manual, form C22-6732.

SECTION 1 - GENERAL
Data Processing
Element Functions
Storage
Central Processing Unit,
Peripheral Equipment
7040/7044 Configurations and Optional
Packages
Configurations
Optional Packages
Instructions and Operands e e e e
Addressing . . .
Programming .

SECTION 2 - INTERRELATION OF SYSTEM
AREAS AND DESCRIPTION OF CPU
REGISTERS

Interrelation of System Areas

Description of CPU Registers

Storage Register
Program Register e e e e e e e
Other Program Register
Tag Register
Adder
Accumulator.
MQ Register.
Swap Register
Latch Register
Index Registers
Instruction Counter
Address Register
Shift Counter
Position Register

Field and Count Registers

SECTION 3- CPU DETAILED ANALYSIS . .

Shift Cells and Latches e e e e e
General

Pulse Generation.
Pulse Generation

Clock Timing Ring
Clock
Machine Cycles
ICycle <
I Cycle Timing e e e e e e e e
ECycle
E Cycle Timing.
LCycle
L Cycle Timing.
BCycle +
UCycle « . + . .
CCycle
C Cycle Timing
Interval Timer Interruption.

Instruction Decoding.
Bits S, 1,and2

[I o> I PR e P IN) I |

RO

11
11

13
13
13
17
17
17
17
17
17
17
17
17
18
18
18
18
18
18

19
19
21
21
21
21
27
27
27
27
29
29
29
32
32
35
35
35
39
39
39

Operation Decoding

POD
sop
Flag Bit Decoding
Tag Bit Decoding
Adder
Lookahead Adder
Summary . .
Addressing . . .

.

Addressing Core Storage

Parity
Parity Checking

SECTION 4 - INSTRUCTIONS.
Subtraction - Machine Method

.

Fixed-Point Arithmetic.

Addition . . .
Subtraction . .
Multiplication .

Multiplication - Machine Operation

Division . . .

.

.

.

.

.

.

Division - Machine Operation .

Variable-Length Arithmetic

VLM, VMA, and VDP
Floating Point Arithmetic .

Single-Precision Floating-Point Addition

and Subtraction

.

Single-Precision Multiplication

Single-Precision Division

.

.

.

CONTENTS

.

Double—Precision Addition and Subtraction

Double-Precision Multiplication
Double—Precision Division .

Index Operations .
Index Arithmetic

.

Address Modification .

Addressing . .

Transfer Operations .

Unconditional .
Conditional . .
Store Operations .
Logical Operations

Character Handling Operations

Shifting Operations
Rotate Operation .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sign Alteration and Test Operations.

Special Storage Sign Handling Operations

Execute Operation
Transmit Operation

SECTION 5 - MEMORY PROTECTION
Set Protect Mode (SPM) Instruction
Memory Protect Examples .
Memory Protect Control Setup

.

.

.

.

39
43
43
43
43
47
47
53
54
54
59
63

64
64
65
66
66
66
69
70
72
72
75
75

79
82
84
85
89
92
95
95
97
97
99
99
101
102
105
106
106
108
108
110
110
110

115
115
116
116

SECTION 6 - TRAPPING . . .

General e e e e e e e
Trap Control
Types and Priority

Interval Timer (IT) Blast . .
Memory Protect Violation . .
Parity.
Instruction
Pre-Interrupt Memory Protect
Interval Timer Overflow . .
Direct Data
Channel Traps

Trapping Scheme
Channel Trap
Pre-Interrupt Trap
Privileged Instruction Trap .
Floating Point Trap

Trapping Execution
Trap Mode Setup

Trap Requests
Request Recognition
Individual Traps
Channel A Trapping
Summary

120
120
120
121
122
122
122
123
124
124
124
124
126

. 176

129
130
130
131
133
133
133
142
142
143

SECTION 7 - OPERATOR'S CONSOLE .
General
Switches and Functions
Channel Bit Density Switches . . .
Storage Clock Switch.
Entry Switches
Any-Key Pulse Generation
Automatic-Manual Status
I-O Interlock Control Switch . . .
START Key Operation

Continuous Enter Instruction Operation .

RESET Key Operation
CLEAR Key Operation

Storage Test and Parity Check Controls

Enter Storage Operation.
Display Storage Operation
Enter Instruction Operation. . . .
LOAD Key Operation.
Step Mode Selector Switch Functions

Single-Step and Multiple-Stop Operations

Sense Switches
Indicators

APPENDIX A: TIMING CHARTS . . .

.

.

164
164
164
164
164
164
166
166
168
168
168
168
171
171
171
171

. 174

174

. 174

174
179
179

186

The 7040-7044 Data Processing System is a medium-
size scientific machine. High flexibility is realized
in this system through the use of an integrated
central processing unit (CPU) and core storage
combined with a highly elastic input-output (I-O)
capability. Two basic system concepts are em-
ployed:

1. A basic system using a nonoverlapped* I-O
channel to which buffered card equipment and mag-
netic tape may be attached.

2. An overlapped* system which can accommodate
up to four overlapped I-O channels to which tape
adapters, direct data, and corporate interface
devices may be attached.

Available with the basic instruction set are the
following options:

1. An extended performance instruction group
which includes indexing, logical, and character
handling operations.

2. Single-precision floating-point arithmetic
class.

3. A double-precision floating-point arithmetic
class.

4. A memory protection arrangement.

5. An interval timer option.

DATA PROCESSING

Data processing is the execution of sequential oper-
ations on facts to realize a desired result. Two
elements constitute the foundation of all data
processing: procedures to follow and devices to
perform the procedures. Procedures are constant,
and devices are variable; e. g., arithmetic is the
same whether performed in Europe, Asia, Africa,
or America. Symbols may change, but the concepts
remain the same. Devices, however, are varied:
the pencil and paper of the student, the slide rule

of an engineer, the calculator of a clerk, the ma-
chine of the business man. These, theoretically,
have equal potential. The difference is time, for as
the slide rule and calculator are faster than pencil
and paper, the machine is faster than either the
slide rule or the calculator.

There are many types of data processing systems,
varying in size and complexity. However, re-
gardless of the data to be processed or the devices
to be used, four basic requirements must be satis-
fied:

1. A means of entering source data and pro-
cedures in the system.

* overlapped and non-overlapped operations refer to simultaneous
and non-simultaneous I-O and CPU operations, respectively.

SECTION 1 - GENERAL

2. A means of storing the source data and pro-
cedures until they are needed.

3. A means of processing the source data.

4. A means of converting the processing result
into a form useful for human handling.

Input devices sense coded data recorded on a
prescribed medium. The prescribed medium can be
a card, a paper tape, or a magnetic tape. The code
can be a configuration of punched holes or magnetic
spots. Paper documents containing characters
printed in magnetic ink may also be used.

Storage devices hold source data to be processed
and the series of operations used to direct process-
ing. In early data processing machines, storage
devices consisted of interchangeable panels, relays,
cards, or paper tapes. Instructions and data had to
be wired or read into the machine in small batches.
Processing was therefore limited in both volume and
speed. A substitute for the early storage devices is
the magnetic core. This core is a small ring of
ferro-magnetic material easily magnetized in either
of two polarities to represent a digit or symbol. A
related group of digits or symbols represents a
word; therefore, a related group of ferromagnetic
cores can store a word.

Another type of storage device is the magnetic
drum. A magnetic drum is a steel cyclinder en-
closed in a copper sleeve, which is plated with a
cobalt and nickel alloy to form the actual storage
medium. In this device, a magnetized spot
represents a digit, and a group of magnetized spots
represents a word. Although the time necessary to
place information on a drum and to take information
off a drum exceeds that for ferromagnetic cores,
the magnetic drum greatly surpasses both the speed
and the capacity of the early semimanual devices.

A storage device similar to the magnetic drum is
the magnetic disk. The magnetic disk is a thin
metal disk, coated on both sides with a ferrous oxide
recording material. Information is placed on a disk
as magnetized spots located in concentric tracks.
The time required to enter data on and to take data
off a disk exceeds that for the magnetic drum.

The key ingredient of a data processing system is
the processing device, the nerve center of the entire
system. It has two basic areas: the arithmetic-
logical area and the control area. The arithmetic-
logical area performs arithmetic, number compari-
sons, shifting, etc.; the control area directs and
coordinates the entire system, including the input,
storage, and output devices.

Output devices record the results of processing
operations on cards or paper and magnetic tapes.
Printed information is also available from output

devices. In addition, the product of an output device
can take the form of electrical signals for trans-
mission to other data processing centers.

ELEMENT FUNCTIONS

Each element of a data processing system has definite
functions. These functions are defined in the follow-
ing paragraphs.

Storage

Storage is the space provided in a data processing
machine for the safekeeping of information. Three
types of storage devices are used: core storage,
magnetic drum storage, and magnetic disk storage.
In each type, information can be placed in, held in,
or removed, as needed. The information involved
can be:

1. Instructions to direct the processing sequence.

2. Data to be processed or to reflect the results
of processing.

3. Reference data necessary for processing
(tables, arithmetic constants, etc.).

Storage is generally categorized as either main or
auxiliary. Main storage accepts data from the input
units, supplies instructions to the CPU, exchanges
data with the CPU, and furnishes data to an output
unit. All instructions to direct processing and all
data to be processed pass through main storage to
the CPU. Magnetic core storage generally serves
as the main storage device.

Auxiliary storage augments the capacity of main
storage and houses all reference data associated
with processing. Magnetic drum storage and mag-
netic disk storage are examples of auxiliary storage
devices. Generally, auxiliary storage is not directly
accessible to input devices. Input infermation is
usually routed through main storage to auxiliary
storage. The CPU cannot reference auxiliary
storage for either instructions or operands. When
auxiliary storage information is needed, that infor-
mation is written into main storage. The CPU then
accesses main storage for the desired information.
Similarly, output devices generally cannot access
auxiliary storage. When output information is in
auxiliary storage, that data is first written into
main storage and then read out of main storage to
the output device.

Information written into a storage location destroys
the original contents of that location. Information
read out of a storage location, however, does not
affect the original contents of that location. This is
called nondestructive readout. Nondestructive read-
out applies directly to drum and disk storage. When
dealing with core storage, the actual readout is

destructive; however, the end result is nondestructive.

6

In any case, by preserving the original contents of
a storage location after readout, the same infor-
mation may be used many times.

Any storage operation requires identification of
the desired location and transfer of information
either into or out of that location. The time involved
to realize these two actions is called access time.
The more access time needed, the slower the device.
Core storage is the fastest device, followed by mag-
netic drums and magnetic disks.

Core storage is very often referred to as memory
because memory is the function of reproducing what
has been learned. A computer, in effect, learns
when information is written into storage and re-
members when storage is accessed for information,
In data processing, the terms storage and memory
are synonymous.

Central Processing Unit

The CPU is responsible for almost all the process-
ing in the data processing system. To satisfy this
function, the CPU must be able to determine the
type of processing desired, must have access to all
source data, must be able tc establish the necessary
transfer paths for a specific operation, and must be
able to perform the specified operation.

The type of operation to be performed is specified
by an instruction. Instructions are stored in core
storage in predetermined locations. The CPU
makes all instruction fetches by referencing these
predetermined core storage locations. The in-
struction contained in the referenced location is
transferred into the CPU, where it is decoded. The-
result of the decoding tells the CPU precisely what
type of processing to perform and the location of an
operand to be processed. The CPU then references
core storage for the desired operand. When the
operand is transferred to the CPU, circuits neces-
sary to accomplish the operation are established,
and the specified processing is performed.

The CPU also controls I-O operations. Initially,
an instruction is fetched from core storage. The
instruction is decoded, and the necessary transfer
paths are established. If additional information is
required, the decoded instruction tells the CPU to
fetch it. The CPU then fetches the additional infor-
mation from core storage and sends it to the proper
control circuits. With this action completed, a
transfer is effected either from core storage to an
output device or from an input device to core stor-
age.

The following are CPU operations:

1. Instruction fetching.

2. Instruction decoding.

3. Operand fetching.

4. Circuit setup.

5. Processing.

6. Information exchange.
Of these six functions, all but processing are ac-
complished in the CPU control area; processing is
accomplished in the arithmetic and logical area.

Peripheral Equipment

Peripheral equipment is that equipment operationally
removed from the CPU. This I-O equipment includes
card readers, magnetic tape units, paper tape
readers, punches, and printers, etc.

Card readers enter punched card data in main
storage. The punched information on a card is
converted into an electronic form and rearranged
into machine words. These words are then trans-
ferred into main storage. Generally, a program is
initially entered in a machine via the card reader.

Magnetic tape units can serve as either an input
or an output device. A tape unit initially receives
information from main storage and writes this
information on the magnetic tape. When the infor-
mation is needed by the CPU, the magnetic tape is
read and the information is transferred into main
storage. Once a program is entered in main storage,
it can be transferred to a magnetic tape. The mag-
netic tape can then serve to enter the program in the
machine on subsequent runs.

Paper tape readers are similar to card readers.
Data is represented on paper tape by means of
punched holes. These holes are converted into elec-
tronic impulses, which are assembled into machine
words. The machine words are then transferred
into main storage.

Punches convert electronic impulses into punched
holes. Two types of punches are available: card
punches and paper tape punches. Information
punched out on either paper tapes or cards is
received from main storage. A punch is an output
device.

Printers provide a visual record of processing
results. A printer receives data in the form of
electronic pulses from main storage. The electronic
pulses drive circuits which, in turn, actuate printing
elements. All printing devices have a paper trans-—
port which automatically moves the paper as printing
progresses.

7040-7044 CONFIGURATIONS AND OPTIONAL
PACKAGES

Configurations
For small applications, necessitating only card and

printer equipment, the configuration shown in
Figure 1 could be used. The CPU is used as a

processing unit and as a transfer path for I-O
operations. A single 1414 I-O synchronizer *
services a 1403 printer and a 1402 card read punch.
This synchronizer connects these devices with the
CPU. In addition, a console printer, which is in-
cluded as standard equipment, is available for use
as an output device. An operator's console is also
standard equipment. This console is physically part
of the CPU, but is useful in both CPU and I-O opera-
tions.

For installations requiring a higher I-O speed,
magnetic tape units can be installed to operate with
a separate I-O synchronizer but using the CPU as a
transfer path. Figure 2 shows this kind of arrange-
ment.

The basic 7040-7044 configuration, then, includes
a single 1-O channel, called data channel A. Data
channel A is realized by using the CPU circuits for
I-O operations. Since the same circuits are used
for both processing and I-O operations, either opera-
tion can be performed at a time, but not both.
Consequently, data channel A is a non-overlapped
channel: that is, processing must stop while an I-O
transfer is in progress. Only two examples of the
possible configurations are shown in these figures.
Potentially, a great many more configurations are
possible using data channel A,

The I-O capability can be further expanded and its
speed increased with the incorporation of the 7904
data channel (Figure 3). With this configuration, an
alternate path is provided to core storage which by-
passes the CPU entirely. The 7904 is called data
channel B; the 7040-7044 can accommodate as many
as four. Each additional 7904 data channel is given
a different alphabetical label; thus, with a maximum
configuration, 7904 data channels are identified as
data channel B, data channel C, data channel D, and
data channel E, all identical.

The 7904 type data channel is intended to service
high-speed I-O devices and auxiliary storage devices.
Consequently, the figure illustrates tape and disk
systems using this type of data channel. Notice that
a synchronizer connects the tapes to the data
channel, whereas a file control connects the disk
storage to the data channel. The data channel, in
turn, provides a common connection for both to
core storage. Again, not all possible configurations
are shown.

Optional Packages

Instructions

Optional packages in a data processing machine
basically are measured in terms of instructions that

* several models of the 1414 I-O synchronizer exist. The model

chosen depends on the I-O equipment controlled.

CPU

CORE
STORAGE

o] OPERATORS

CONTROL-LOGIC CONSOLE

CIRCUITS AND

DATA CHANNEL
A

1414 1/O CONSOLE
SYNCHRONIZER PRINTER

|

1403 1402
PRINTER CARD READ
PUNCH

FIGURE 1. 7040-7044 WITH CARD SYSTEM CONFIGURATION, NON- OVERLAPPED OPERATION

r- CPU _I

CORE
STORAGE

OPERATORS
CONSOLE
CONTROL-LOGIC
—| CIRCUITS AND
DATA CHANNEL
A
L —
1414 1/O 1414 1/0 CONSOLE
SY'NCHRONIZER SYNCHRONIZER PRINTER
\ -
1403 w2 eAD 72911 79 IV 7330
PRINTER PUNCH TAPE UNIT TAPE UNIT TAPE UNIT

FIGURE 2. 7040-7044 WITH CARD AND TAPE SYSTEMS CONFIGURATION, NON-OVERLAPPED OPERATION
8

- 7904 DATA CHANNELS B-E -I
CONTROL
- AND -
TRANSFER
CIRCUITS
y y
1414 1/0 7631

SYNCHRONIZER

!

!

'

!

729 11
TAPE UNIT

729 V
TAPE UNIT

7330
TAPE UNIT

FILE CONTROL

1301
DISK
STORAGE

cpu
CORE
®1 STORAGE
OPERATORS
conTROL-LOGIC [™ consoLe
CIRCUITS AND
DATA CHANNEL
A
| |
CONSOLE
PRINTER
1414 1/O
SYNCHRONIZER
1403 1402 CARD
PRINTER READ PUNCH

FIGURE 3. 7040-7044 WITH CARD, TAPE, AND DISK SYSTEM CONFIGURATION, OVERLAPPED OPERATION

can be executed by the machine. To realize the
merits of the optional instructions requires famili-
arity with the basic instruction set. The instructions
forming the basic set and each optional package are
given in the IBM Reference Card 7040-7044 Codes,
Form X22-6696, and in the Appendix B of the IBM
7040 and 7044 Data Processing Systems Student
Text, Form C22-6732.

Memory Protect Option

This option permits the programmer to protect a
portion of memory against alteration by storing. Two
instructions are associated with this option, Set
Protect Mode (SPM, -1160), and Release Protect
Mode (RPM, -1004). The SPM instruction puts the
machine in a memory protect mode and specifies the
memory block to be protected. The RPM instruction
takes the machine out of memory protect mode.
Attempts to store in a protected area can result in
"trapping', a feature discussed in detail later in

this manual.

Interval Timer Option

Unlike the other options, no specific instructions are
associated with the interval timer option. When this
option is incorporated into a machine, circuits are
provided which generate a C cycle. During a C
cycle, core storage location 00005g is periodically
incremented whenever system power is on. Normal
processing is interrupted for two cycles in a 7040
machine and for three cycles in a 7044 machine to
read out location 00005g, increment it by 1, and
return the incremented value to location 000054.

The sign position of this location is not used, but,

if it is negative initially, it will be made positive
during the first increment cycle.

Location 00005 may be set to any value under
program control and thus serve as a real-time clock.
If an overflow occurs while it is being incremented,
the contents of the instruction counter at the time of
the overflow are stored in location 00006g and the
next instruction for execution is fetched from lo-
cation 00007g. Consequently, location 000055 can
also serve as an interval timer. The stepping rate
of location 000058 is once every 1/60 second, there-
by maintaining 7090 compatibility.

INSTRUCTIONS AND OPERANDS

A data processing machine is directed to perform
each of its operations by an instruction. An in-
struction, then, is a master command telling the
machine what to do, what logic circuits to establish,
what information is needed, and where to get it.

10

Processing is a series of actions leading to an end.
Since an instruction effects a single action, it is the
basic element of processing.

Because instructions direct the operations of a
data processing machine, the entire collection of
instructions associated with a particular machine is
known as the instruction set. An instruction set is
divided into logical groups of instructions possessing
common characteristics. These logical groups are
called classes. For example, all instructions that
deal with arithmetic fall within the arithmetic class,
all instructions that place information in main
storage from the CPU fall within the store class,
and instructions which effect I-O operations fall
within the I-O class. Auxiliary storage is generally
read and written into with I-O instructions.

The general makeup of an instruction is known as
the instruction word format. The term format
embraces:

1. the length of an instruction.

2. the fields of an instruction.

The length of an instruction is the number of binary
digits (bits) needed to code the entire instruction in
the machine. In a particular machine, the
instruction word length generally is fixed. In the
7040-7044, for example, the instruction word length
is 36 bits: 36 binary digits are required in the 7040-
7044 to define each operation accommodated by the
instruction set.

Instructions may be divided into three general
fields: operation code, address, and modifier fields.
The operation code field defines the general action
to be performed. The address field, in most appli-
cations, identifies the storage location of the desired
operand. The modifier field complements the
operation and address fields. For the 7040-7044,
the basic instruction word format is as follows:

OPERATION CODE MODIFIERS ADDRESS

S 11 {12 20) 21 35

An operand is a magnitude or quantity upon which
a mathematical operation is performed. In a word,
an operand is data. More specifically, an operand
is a unit of data: one quantity. The format of an
operand or data word is determined by the machine
involved and the type of arithmetic employed. The
machine involved determines the length of an operand,
and the type of arithmetic determines field definition,
if any. In the 7040-7044, the basic data word format
consists of a sign bit and 35 magnitude bits:

[s]t

MAGNITUDE 35 |

The 7040-7044, however, also has provision for
floating-point operations. A floating-point data word
is the same length as the basic operand, but the word
is broken into three fields:

S |1 CHARACTERISTIC 8 |9

FRACTION 35 J

The time involved in a CPU operation may be
divided into two periods, known as instruction time
and execution time. Generally, the only real distinc-
tion between instructions and data is the time when
they are brought into the CPU. If a data word is
brought into the CPU during instruction time, the
CPU interprets the data word like an instruction.
Conversely, if an instruction word is brought into the
CPU during execution time, the instruction word is
treated like data. Consequently, the CPU can operate
on its own instructions.

ADDRESSING

In a data processing system, an address is a place
where a unit of data may be communicated with.
Each unit of data is placed in a register for safe-
keeping until needed for machine operations. A
register located in main storage consists of ferrite
cores. A register located in the CPU may consist
of tubes or transistors in auxiliary memory, mag-
netic spots on a smooth surface. Wherever a register
which serves to store data is located, an address is
assigned to identify it. The address is nothing more
than a group of numbers, unfolding sequentially; the
concept is identical with that of locating a particular
dwelling on a street.

Each instruction in a given set has an addressfield.
The address contained in this field identifies some
register or location in the data processing system
whose contents are needed for processing or whose
contents are to be replaced. This sort of addressing
is explicit; that is, the desired address is specifically
stated. In the 7040-7044, the category of explicit
addressing may be divided into two types: direct
addressing and indirect addressing.

Direct addressing is the straightforward expression
of a desired location; that is, the address stated by
the instruction word is the real address of the
desired location. However, an instruction word
address field can be modified by arithmetic; such
action is called address modification. In the modi-
fier field of an instruction word, provision is made
to specify the location of a register whose contents
can be algebraically added to or subtracted from the
instruction word address field. The result of this
arithmetic is the effective address. The register
whose contents are added to or subtracted from the

instruction word address field is known as an index
register. Another name for the instruction word
address field is the base address. Consequently, an
effective address is obtained by adding to or subtract-
ing from the base address the contents of the speci-
fied index register. If no index register is specified,
or if the index register specified contains all 0's, the
base address becomes the effective address. For
direct addressing, then, the effective address speci-
fies the desired location.

Indirect addressing is the roundabout expression of
a desired location - it is not straight to the point.

For indirect addressing, the effective address, as
defined above, specifies a location whose address
field specifies the real address of the desired
location. Address modification can also be applied

to the location whose contents specify the real
address. For example, assume the instruction word
effective address specifies location 100 as containing
the real address. Only the address portion of address
100 is used. If an index register is specified by the
address 100 modifier field, the contents of that index
register are fetched and added to or subtracted from
the address 100 address field. The resultant effective
address becomes the real address of the desired
location.

In summary, the category of explicit addressing is
divided into direct addressing and indirect addressing.
Each of these types can employ address modification.
Address modification involves changing a base address
to realize an effective address. An effective address
is the usable address.

Another category of addressing is implicit address-
ing. An implicit address is an address understood
but not expressed. Implicit addresses are stated by
the instruction word operation code field. For
example, the Add instruction tells the CPU to add the
contents of the effective address to the contents of the
accumulator. The accumulator, then, is the implied
address, and the accumulator contents form the
implied operand. No group of numbers is associated
with an implied address. Necessary transfer circuits
connecting to the implied address are formed as a
result of decoding the instruction word operation code
field. Address modification does not, therefore,
apply to implicit addressing.

PROGRAMMING

A program is a series of instructions coded in a form
recognized by the processing unit and calling for
operations to be performed by the processing unit in
an order necessary to solve a given problem. For
example, the solution of a simple arithmetic problem
requires a program, whether solved by a data
processing machine or by a man with a pencil and
paper. The man can recognize the necessary steps

11

in a program, but the machine must be given step-
by-step directions for the solution of any problem.
Without this series of instructions, the machine can-
not perform any type of operation.

The necessity for programming is apparent: it is
needed to initiate and exercise control over the
operations of the processing unit. This control may
be predetermined through the use of a specific
instruction or may depend on the value of the numbers
being manipulated at any particular point. In addition
to controlling arithmetical operations, programs
are used for various other functions, such as mainte-
ance and monitoring.

A program is designed after obtaining a statement
of the problem to be analyzed. With this initial re-
quirement satisfied, four subsequent phases are
required to produce a finished program:

1. Problem analysis.

2. Program organization.

3. Program coding.

4. Program testing.

Generally, the first phase is handled by mathema-
ticians, and the other three by programmers.
Frequently, however, problem analysis determines
the organization of the program and is therefore done
either by a mathematician-programmer or by a
mathematician and a programmer working together.

After a statement of the problem is obtained, all
factors that may be encountered have to be examined
and arranged in a mathematical expression, which
must represent the problem as simply as possible.
This expression is usually complex at this point and
must be reduced to simpler terms (addition, sub-
traction, etc.) by a mathematical technique known
as numerical analysis.

Numerical analysis involves reducing complex
mathematical operations to arithmetic operations
within the capabilities of the machine being pro-
grammed. Examples are calculus operations
reduced to simpler arithmetic operations, such as
changing integration to an approximate summation
operation and changing differentiation to an approxi-
mate difference-quotient operation. These changes
result in approximations which can be as exact as
desired.

Given a method of approximation, the programmer
must then determine the program to obtain the result.
The first step involves organizing a program to solve
the problem, using the arithmetic methods outlined
in the numerical analysis. Program organization
involves sequencing the operations to be performed
so as to simplify coding and to minimize execution
time and, if possible, the number of storage locations
required.

At this point, a flow chart is useful, both to keep
the entire program in view and to develop the sequence
of operations in the proper order. Figure 3-A is a flow

12

chart of the structure of the program. An exact flow
chart of a complex problem will necessarily start out
in rough form and become finalized only after con-
siderable thought and reworking. Once a tentative
flow chart has been prepared, the program can be
coded. The coding operation is ofter performed
block by block by block from the flow chart. Both
the data provided by the preceding block and the data
required by the following block must be considered.
Coding, then, is the selection of the precise
instruction(s) to accomplish the action in a given
block. The product of the coding phase is a
mnemonically coded program, ready for testing.

Once a program is completely coded, it is tested
to ensure its proper operation in solving the given
problem. The logical design of the program is test-
ed and revised until it correctly performs its intended
function. During testing, modifications of both the
program organization and the coding may be required
to get the program into propei' operation.

l

ADD A+B

MULTIPLY
BY C

DIVIDE BY D

STORE RESULT

HALT

FIGURE 3A, BASIC FLOW CHART

SECTION 2 - INTERRELATION OF SYSTEM AREAS AND DESCRIPTION OF CPU REGISTERS

INTERRELATION OF SYSTEM AREAS

Each system basically contains four operational
areas: core storage, the central processor, data
channel A, and the 7904 data channels. Figure 4, a
register level diagram of a 7044 data processing
system, shows that a single core storage services
the central processor, data channel A, and the 7904
data channel. Data is transferred into and out of
core storage via a single storage bus which connects
to the other three operational areas. The desired
core storage location is identified by the use of a
memory address register (MAR). This register
receives two inputs: one from the address register
in the central processor and the other from the 7904
data channel address register. Associated control
circuits determine which input is accepted into the
MAR and where the information in the corresponding
location is transferred from the storage bus. Core
storage is physically part of the central processing
unit (CPU).

The central processor satisfies the operational
control and processing requirements of the system.
One register, the storage register, is used both as
an input path from core storage to the central
processor and as an output path from the central
processor to core storage. When satisfying the input
function, the storage register receives instructions
in accordance with the program being executed and
any operands called for by those instructions. Since
a single register handles both instructions and
operands, distinction between the two is made with
the timing scheme. Simply stated, storage register
contents are treated as an instruction at one time and
as an operand at another time. When instructions
are received from core storage via the storage bus,
the entire instruction enters the storage register.
However, parts of the instruction also enter other
registers associated with the decoding function of the
central processor.- These other registers basically
serve to identify the type of instruction and to indicate
whether the instruction word base address is to be
modified and, in character handling operations, which
character is involved. Only the address portion of
the instruction word is significant to the storage
register. When operands are received from core
storage via the storage bus, the entire operand enters
the storage register and is significant only to the
storage register; that is, the other registers serviced
by the storage bus do not act on operands.

The output function of the storage register is used
only by store type operations.

Arithmetic is accomplished in the adder and is

.binary. Three types of arithmetic are available:
fixed point, variable length, and floating point. In

fixed-point and floating-point arithmetic, addition,
subtraction, multiplication, and division can be
performed. In variable length, however, only
multiplication, division, and a combined operation
of multiplication and addition can be performed.

Data channel A serves as a transfer path through
the central processor for I-O operations. The
selection function of a data channel A operation is an
extension of central processor instruction decoding,
and the control function of a data channel A operation
is a combination of central processor operand fetch-
ing and a specialized use of the accumulator. The
transfer function is satisfied, in part, by circuits
unique to I-O operations and by circuits normally
used in central processor operations. Note that data
enters and leaves data channel A on the core storage
side via the storage register and on the I-O device
side via an interface. Data channel A is physically
part of the CPU.

The 7904 data channel is also used for I-O trans-
fers. It provides a second path between core storage
and I-O devices. This data channel is a physical unit
apart from the CPU. A 7904 data channel operation
is selected similarly to a data channel A operation;
that is, the 7904 data channel operation select function
is also an extension of central processor instruction
decoding. The control function, again, is identical
with central processor operand fetching. However,
the control word for a 7904 data channel operation
goes to this data channel, as opposed to a data
channel A operation, which uses the accumulator to
hold the control word. Once the control word is
fetched, a 7904 data channel operation is independent
of central processor circuits. Because of this char-
acteristic, the 7904 data channel is known as an over-
lapped data channel.

Both the data channel A and the 7904 data channel
are discussed in separate manuals.

The above discussion applies equally to the 7040
data processing system. Though Figure 4 illustrates
a 7044 system, the central processor, data channel
A, and the 7904 data channel are identical for a 7040
system. The only configuration difference between
the two systems is found in core storage: a 7040
system uses a 7106 core storage; a 7044 system uses
a 7107 core storage. If the former were inserted in
place of the latter in Figure 4, a 7040 data processing
system would be illustrated.

DESCRIPTION OF CPU REGISTERS
The 7040 data processing system uses a 7106 CPU,

whereas the 7044 data processing system uses a 7107
CPU. Each CPU is an integrated unit combining an

13

' !
74 LINES I __CHANNEL DATA REGISTER (CDR) CHAN WD CTR (CWC) | CHAN ADR CTR (CAC) | \
c 5P TO MAR
0 35 3 7] 21
] SENSE AMPLIFIERS l — ASSEMBLY REGISTER & GATING (ASM) \ \
0 36{40 76 MAR -
T - | : N
| I I 74 LINES I f x)3 ‘ l
| BCD/BIN
I | READ TXLATOR | _ WRITE TXLATOR CHARACTER
| ! | BAg421 [@ " Bas4a COUNTER
128 LINES, __ _l_7APLANES __, _ i
—+ 1262 Im I
| | I PARITY
| CONTROLS
| | 74 LING
SENSE OUT REG
| |] MAR | READ BUS WRITE BUS
| "B" SEGMENT "A" SEGMENT 5 BAB421 BAB421
L I 8 17 c ¢
Z | DRIVERS Z | DRIVERS
128 LINES
74 LINES{ J74 LINES |]) 1
DIRECT CORPORATE 1414 1, 11
AND DR IVERS AND DRIVERS o W T | Tl oam SiveLex e o
MAR 5 _Me _(MDR) SENSE LINES INTERFACE INTERFACE sC108 12 ADAPTER &
M [
s 5 \\ Jc | SL \\ c - & ADAPTER ADAPTER [0 INTERFACE
RS 0l1 36{40 76 MAR I 7904
maR3TO 2 DRIVE 3 ! DATA
SENSE AMPS } f L Al
& MDR r —_— - or _ CHANNEL
1414 V1 7613
STORAGE BUS (SB) 1/O SYNC FILE 1414 1, 729, 7330
MEM ADR REG (MAR) CNTRL
sh sl c 1 OR Vil TAPE
\ ’ e 1/O SYNC UNITS
) 17 t L
) WORD BANK EXTERNAL 1009, 1011 7750 1301
KEYS DEVICE 10i4, TTY PCTU DISK
1622 1402, 1403
PROGRAM REG (PR) - carp reao| 10091013, | QIR | B
PUNCH 1014, TTY
FROM 2 2 A
CHANNEL 729, 7330
ADDRESS TAPE
COUNTER UNITS 1414 11
OPERATION TAG REG PROG. REG | POSITION REG IV OR v
DECODER STORAGE REGISTER | | (sR)) 705 \ 1/O SYNC
[\\ l 18 20 2 26 27 3 1517 14141,
s)1 35 C 1HOR VI
’ T3 Y 1/0 SYNC R
INSTR COUNTER (IC) SWAP REGISTER \ \ (SWR) R 2 L_’CS‘;’:*R
21 35 9 35 ADR DECODER F CHANNEL A
CHANNEL INT REG
INTF 0 1414 INTF 1 INTF2 | INTF3 |INTF4 OUT-| |NTF5
\ #| LATCH REGISTER | | DECODER — B?LEORZQRCE #1, 1OR VII| NOT NOT 1414 11 JPUT TYPE 1401 |@——ClLASS &
ADDRESS REGTSTER 0 \\ 24 26 TR, ADAPTER USED USED OR IV, V [WRT ADAPTER{ ADAPTER UNIT ADR
9 35 t f 4 [}
2 3 COUNT REG Y
] 32 35 > XRX os v
POS. 13 & 14
ADDER (AD) i TO MISC.
FIELD REG 1 3 INDEX REG. A (XRA) 1/O CONTROL
LOCATION KEYS T
UNIT
21 27 INDEX REG. B (XRB) ADR c;l\)SRS
BAB421 BAB421
- INDEX REG.. C (XRC) | ReapBUs WRITE BUS
SHIFT CTR (SC) 21 35
PR 27 9
10 17 - :—
1 Y PARITY
CLASS UNIT ZONTROLS
S | e S 2]
ACCUMULATOR) ' (AQ) MULTIPLIER-))QUOTIENT REG. (MQ) 9AB421 ‘ 9A8421
27 10 11 14 17 READ TXLATOR ‘ WRITE TXLATOR
303132333438 912345
SC 1370 CHANNELS t—Y g SC 10 & 12 TO OVLP CHANNELS] BCSC/ lele

—y

1 ““HAN, C-E

"

FIGURE 4. 7044 DATA PROCESSING SYSTEM, BLOCK DIAGRAM

15

91

WY¥OVIA 30078 Q3l41TdWIS ‘NdD #¥0L-0¥0Z *S JWNOIS

TO
MAR

SWAP REG {SWR) .
9 lio[i12]13]14]15] {435

LATCH REG
DONBEZIE

TAG REG OTHER PR POSITION REG
18]19]20 24]25]26[27] 13}14]15]16]17

INDEX REG X (XRX)

INDEX REG A (XRA)

‘INDEX REG B (XRB)

INDEX REG C (XRC)

\)
CHANNEL
OPERATIONS

STORAGE BUS
sli]2]3]4]s5[e] 7] 8] o]10]11f12]i\\34[3s|c
[
I- WORD BANK KEYS =
! ‘
PROGRAM REG (PR) STORAGE REGISTER (SR) \
SEBBABRHEE s[1]2]3]4]s[e]7]8]9[10}1[A\R3]s4|35{c
o Lfeli & as i
OPERATION DECODER
INCTRUCTION CCUNTER (sC).
21]22]25). | 5[26]27[28]29]30] 31]32]33] 3435
T
ADDRESS REGISTER (AR) ADDER (AD) \\
21]22]23]24]25]26]27]28]29]30] 31 | 32] 33| 34] 35 Qe 123415678 o J10]11]\}[33]34]as
3
- COUNT REG
32{33[34]35
LOCATION ¥EYS
FIELD REGISTER
21[22]23]24]25]26 |2
\
SHIFT COUNTER (SC) ACCUMULATOR (AC)

—— e —— ——

10 11]12]13]14]15[16]17

)

A

CHARACTER
SELECTION
&
INTERFACE
DECODER

sJalr[1T23T4 s e[7]8]9]i0\¢[33]34]35

MULTIPLIER - QUOTIENT (MQ) REG!STER\

sli]2]3[4]s5]6[7]8]9[ro]r1]i2]13]14[15]16]) 8] 34]35] c

arithmetic and a control area, a core storage, an
operator's console, and a nonoverlapped data channel.
Operationally, the CPU may be considered a con-
figuration of arithmetic and control circuits and is
treated as such in this section. Although the other
elements are physically part of the CPU, their
operations are distinctly different from CPU oper-
ations.

With respect to register configuration and data
flow transfer paths, the 7106 CPU and the 7107 CPU
are identical. This discussion of Figure 5, a block
diagram of the 7040-7044 CPU, applies to both
equipments.

Storage Register (02.01.00-35)

The 37-bit storage register (SR) (a sign bit, 35 in-
formation bits, and a parity bit) is composed of shift
cells and serves as the input to the CPU from core
storage for both instructions and data. Parity bit C
provides an indication of memory word parity on all
CPU storage readout operations. The storage regis-
ter is fed directly from the storage bus (SB) on all
instruction word and operand fetches and, in each
case, receives a full 37-bit word. On an instruction
fetch, however, only bits 21-35 or 28-35 (depending
on the instruction) are used in the storage register.
On an operand fetch, the entire word is used.

Program Register (02.04.00-09)

The program register (PR), a 10-bit latch register,
receives the operation code portion of an instruction
from the storage bus on an instruction fetch. Program
register contents are decoded to generate control
signals for instruction execution; these control

signals are called primary operation decoder (POD)
signals and secondary operation decoder (SOD)
signals.

Other Program Register (02. 04. 47)

The other program register (OPR), also a latch
register, is actually an extension of the program
register. However, the OPR is significant only to
data channel operations and is discussed under that
topic.

Tag Register (02. 04. 20)

This is a three position latch register used to select
the three index registers in address modifications
and other operations involving index registers. The
tag register latches are set by instruction word bits
18, 19, and 20 directly from the storage bus to select
the index registers C, B, and A, respectively. In

any index operation, when more than one tag register
latch is set, the corresponding index registers will
be selected to produce multiple outputs; when corres-
ponding bit positions in two selected index registers
contain 011 and 010, for example, their combined
outputs will be 011. In operations where an index
register is to be loaded, all selected index registers
will receive the same input.

Adder (02.02.00-37)

The adder is a 37-bit binary adder used for perform-
ing all binary arithmetic as well as address modifi-
cation through indexing. The adder is discussed in
detail in the next section.

Accumulator (02.02.00-37)

The 38-bit shift cell accumulator register holds one
factor during arithmetic operations and receives the
result from adders. In addition, data can be shifted
one bit at a time to the left or right in the accumulator.
The accumulator contains two overflow bit positions,

Q and P, in addition to a sign bit position and 35 data
bit positions. Bit positions Q and P retain adder
overflows for control purposes. The P bit position is
also used as the highest order bit in logical oper-
ations.

MQ Register (02.01.00-35)

The MQ register is a 36-bit shift cell register (S, 1-
35) which, during a multiply operation, initially
holds the multiplier and, finally, the low-order
portion of the product. During a division operation,
the MQ register initially holds the low-order portion
of the dividend and, finally, the quotient. The MQ
register can also be shifted in conjunction with the
accumulator or rotated within itself.

Swap Register (02.30. 82-90)

The swap register is a 27-bit auxiliary register
(shift cells) used to temporarily hold fractions during
double-precision floating-point operations. Its only
input is from SR bit positions 9-35, and its only out-
put is to SR bit positions 9-35.

Latch Register (02. 30. 82-90)

The latch register is a 27-bit auxiliary register used
to temporarily hold fractions during double-precision
floating-point operations. Its only input is from SR
bit positions 9-35, and its only output is to SR bit
positions 9-35.

17

Index Registers (02.03.21-35)

Three index registers (latch type) are included in
the CPU register configuration: index register A
XRA), index register B (XRB), and index register
C XRC). These registers are specified by tag
register contents. A 1 in tag register bit 20 speci-
fies XRA; a 1 in tag register bit 19, XRB; a 1 in tag
register bit 18, XRC. Thus, XRA is also known as
index register 1; XRB, as index register 2; XRB,
as index register 4. The only input to an index
register is a 15-bit index value from index register

X (XRX), a buffer used in loading the index registers.

XRX is loaded from adder bit positions 21-35. Out-
puts from the index registers are a 15-bit value in
2's complement form to adder bit positions 21-35
and a 15-bit value in true form to SR bit positions
21-35 or 3-17.

Instruction Counter (02.04.21-35)

The 15-bit (shift cells) instruction counter (IC)
provides for sequential instruction execution. The
only input to the instruction counter is from the
address register. Outputs from the instruction
counter are to the address register and to SR bit
positions 21-35.

Address Register (02. 04.21-35)

The 15-bit (latches) address register (AR) is used
to transmit instructions and operand addresses to the
core storage MAR. Inputs to the address register
are from adder bit positions 21-35, from the
instruction counter, and from the operator's console
location keys.

Outputs from the address register are to MAR in
core storage, to the instruction counter, and to stor-
age register bit positions 3-17 (trap operation).

Shift Counter (02.04.10-17)

The 8-bit (shift cells) shift counter (SC) is used to
count the number of shifts specified in shifting
operations. The shift counter also holds part of the
instruction in I-O select type operations. Further,
in transmit operations, the shift counter controls
the number of words transmitted.

Position Register (02.04. 18-19)

The 5-bit position register (latches) receives
instruction word bits 13-17 directly from the
storage bus. Position register contents are used
only for character-handling operations. In these
cases, position register bit positions 15, 16, and

18

17 specify which character in the word specified by
the effective address is to be used in the operation.
The only outputs from this register are gating signals
which cause the specified character to be gated from
its word position in the storage bus to SR bit positions
30-35 or which cause accumulator bits 30-35 to be
gated into the specified character position in the
storage register.

Field and Count Registers (02.16.01-03)

The 7-bit field register is used only in the memory-
protection mode. This latch register is loaded with
bits 21-27 of the Set Protect Mode (SPM) instruction
word effective address. Working with the field
register is the count register, also latch-type, which
receives SPM instruction word bits 32-35. Field
register contents form the pattern with which subse-
quent memory references are compared. Count
register contents are used as follows:

1. Bit 32 specifies whether an equal or an unequal
compare represents a protected area violation.

2. Bits 33-35 specify the number of high-order
address bits to be examined on subsequent memory
references. The field register has one input from
adder bit positions 21-27, whereas the only count
register input is from SR bits 32-35. Both the field
register and the count register have one output going
to control circuits, where the signals are combined
to produce resultant signals which feed compare
circuits.

This chapter provides a detailed analysis of the
control and transfer circuits within the CPU.,

The term CPU is often used instead of central
processor. Strictly, the termrs are applied more
accurately when restricted to the physical and
functional sense, respectively. However, since
maintenance personnel commonly use CPU when
referring to central processor operations, the terms
are used interchangeably. In areas where confusion
might result, a distinction is made between physical
confines and functional operations.

Although Trapping and Memory Protection would
logically be taken up in this section, they are treated
separately in the last two sections of this manual
because of their complexity, and because the rest of
the CPU functions can be learned independent of
these two subjects. Channel A, the IO function of
CPU, is described in a separate manual: IBM 7040-
7044 Data Processing System, Channel A CEMI,
Form R23-2652.

SHIFT CELLS AND LATCHES

The CPU uses two types of circuits for register
formation, shift cells and latches. Before studying
the actual CPU controls, it is important to become
familiar with these circuits.

Figure 6 shows a logic representation of the shift
cell, a circuit used to make up most of the CPU
registers. The shift cell is a bistable device very
similar to a trigger. It has on and off outputs, and
it stores one of two conditions. Instead of separate
AC set and reset inputs, however, the single shift
input is connected to both sides of the shift cell the
same as a trigger is connected for binary operation.
The single gate input determines which side of the
shift cell is affected by the shift input. If the gate
is -B, the shift input turns the cell on; if the gate is
+B, the shift input turns the cell off. The gate
(positive or negative) must be active for at least
200ns before the shift pulse. This characteristic
of the shift cell prevents shifting a bit more than one
position with a single set pulse when the shift cells
are arranged in series, as in a register.

Figure 7 is the logic equivalent of a latch. Although
this circuit appears more complicated than the shift
cell, the latch is also very simple and straight-
forward in concept: +A1 is the set device, and +A2
is the reset device. Assume the entire circuit is
void of input circuits. +Al needs two positive
signals to be satisfied. Assume these signals are
now present. Their presence causes the +Al output,
an in-phase output, to go positive. With a positive

SECTION 3 - CPU DETAILED ANALYSIS

output from +A1, the OR circuit is satisfied, causing
the OR circuit out-of-phase output to go negative.
The negative output of the OR circuit feeds an
inverter (I) which inverts the signal, making it
positive. The positive output of the inverter serves
two functions:

1. It is the output of the latch representing a binary

2. It is used as a feedback signal to realize the
latch function.

Note that, following the feedback loop, the positive
output signal from the inverter conditions one input
to the +A2 reset. The other line is the reset line,
which is negative only when a reset signal is gener-
ated. Consequently, this reset line is most often
positive. Since it is positive, the +A2 input is satis-
fied, causing the +A2 in-phase output to go positive.
This positive output feeds the OR circuit, thereby
maintaining the negative output from the OR circuit
and, by extension, the positive latch output and feed-
back signal. With this arrangement, the +A1l inputs
can be removed (made negative) without affecting the
latch status. The only way to alter the latch is to
generate the negative reset signal and apply it to +A2,
This negative input to +A2 deconditions +A2, causing
the +A2 output to go negative. A negative output from
+A2 deconditions one of the OR inputs. The other OR
input is deconditioned by the absence of the +A1l inputs.
Logically, a +OR is also a -A. At this point, two
negative inputs are present at the OR circuits; thus,
the -A requirements are satisfied. The +OR, which
is now functioning as a -A out-of-phase output, goes
positive, causing the I input to go positive. Conse-
quently, the I output goes negative. The negative
output signal represents:

1. A binary zero.

2. The feedback signal of the latch, because this
negative signal to +A2 causes the +A2 output to re-
main negative.

With the +A2 output negative, the +OR circuit cannot
function unless the +A1l circuit receives new inputs to
condition it. Therefore, with a negative output signal,
the latch is functioning logically, because the reset
input to +A2 can again go positive without any effect
on the latch.

Comparing the shift cell and the latch reveals that
each is a binary bistable device. However, that is
where the comparison ends. The shift cell inverts
and retains the gate input, whereas the latch, in
effect, passes the set input. A shift cell does not
have to be cleared before data can be placed in it, but
a latch does. Lastly, the set pulse used in the shift
cell is the same pulse that changes the CPU clock and
is called a cell-driver-output pulse. Therefore, the

19

ES :
(+) OR (-) GATE M

-SC

() SETPULSE Q

+B ON

+B OFF

FIGURE 6. SHIFT CELL

+X

+A

+Y 1

+XY

- RESET

+A

+0

FIGURE 7. LATCH

20

LATCH OUTPUT
TO SOME REGISTER

actual information is not set into the shift cell until
the pulse time following the set pulse, but the latch
input informaotion is set into the latch immediately
upon receipt.

The CPU latch register, the program register, the
address register, index register X, index registers
A, B, and C, the tag register, and the position
register are formed by latches. All other CPU
registers are formed by shift cells.

PULSE GENERATION
General

The complex - though not complicated - job of keep-
ing the computer running smoothly and properly is
the function of a multitude of timing pulses. These
timing pulses all originate from a single, free-
running oscillator; the oscillator's output is trans-
formed - via a timing ring and a series of AND
circuits - into all the raw timing pulses necessary
for computer operation.

The raw timing pulses are refined into working
pulses (or levels) by AND'ing them together with
various other conditions to obtain the proper pulse
at the proper time. For instance, before an E cycle
can start, a raw timing pulse is AND'ed with a level
indicating that it is all right, with regard to the
machine, to enter an E cycle; this level, of course,
is contingent on many factors; e.g., a higher priority
cycle has not been requested, or the previous cycle
is finished. The.raw timing pulses, then, do no
actual machine work but check on various contingen-
cies for proper machine operation; the pulses (or
levels) resulting from the "contingency checks' are
the actual working pulses.

Both the 7040 and 7044 CPU's have a machine
cycle of 2.5 microseconds (usec). Since the 7044
uses the 7107 memory, which has a 2.5 -usec
memory cycle, the two units are compatible with-
out any special circuit innovations. However, the
7040 uses the 7106 memory, whose memory cycle
is 8.0 usec. In the 7040, then, circuitry is used to
effectively - though not actually - slow its machine
cycle down to be compatible with the 7106 memory
cycle; this effective slowing down is required only
when the 7040 is actively using the memory. When
the 7040 is performing a function independently of
memory - for example, a shift operation - it will
operate at its 2. 5-usec machine cycle rate. So, in
the case of the 7040, the timing circuitry has the
additional function of buffering the CPU to the
memory.

Pulse Generation

All timing pulses originate from a free-running
oscillator that begins generating pulses the instant
power is brought up in the CPU and continues
generating them until power is dropped. The
oscillator and its associated circuitry are shown in
Figure 8, A. The oscillator feeds apulse generator
whose output is a continuous string of narrow posi-
tive pulses every 416 nanoseconds.

Since a machine cycle is 2. 5 usec long, and since
the pulse generator yields one pulse every 416
nanoseconds, there are six oscillator pulses in a
machine cycle. For ease of reference, the first
raw timing pulse(oscillator pulse) of a machine cycle
is called A0; the second, Al, etc., through A5. The
next pulse after A5 is A0 of the following machine
cycle. The output, then, of the oscillator and pulse
generator is thought of as being in groups of six
pulses, numbered A0 through A5,

These pulses are fed to a clock timing ring, where
they are developed into useful pulses.

Clock Timing Ring

The function of the clock timing ring (shown simpli-
fied in Figure 8, B) is to transform pulses from the
oscillator and pulse generator into levels that can
be used in the system.

The clock timing ring keeps running as long as
power is up. The result is the output waveshapes
shown in Figure 8,C. Each third pulse causes a
given shift cell to switch, so the output of each cell
is +B for a duration of three pulses and -B for a
duration of three pulses. Since oscillator pulses
are 416 nanoseconds apart, a duration of three
pulses is 3 times 416, or 1248, nanoseconds, one-
half of a machine cycle.

Both the in-phase and the out-of-phase outputs
of the shift cells are used (not shown in Figure 8
for simplicity) and are fed through inverters for
powering. The result is the six levels shown in
Figure 8, C.

The levels are labeled to indicate exactly what
kind of level (pulse) it is. For instance, in the
pulse labeled -B A1 D3, -B tells the polarity. A
indicates a raw timing pulse (a refined pulse would
carry a different letter to designate the kind of cycle;
e.g., an E cycle pulse would have an E instead of
the A. The 1 tells at what time the pulse goes to
a -B in this case. If the pulse were a +B pulse,
the 1 would indicate at what time the pulse became
+B. The 1, of course, indicates the second
oscillator pulse of a machine cycle, so its time is
1 times 416 nanoseconds after pulse A0. The times
of the other pulses are calculated the same way; the
D3 means duration of the three pulses. This

21

(44

LOGIC 02,15,17,1 (SIMPLIFIED) LOGIC 02,15,18,1 (SIMPLIFIED)

A0 Al A2

0sC | PG DLY cb [1 +A -SC +A -SC +A -$§C

1 O© » | @ +a_@ 5

O— : :

-B CLOCK RESET

a) PULSE GENERATION b) CLOCK TIMING RING
| it | | |
je———————2.5 MICROSECONDS ————————={ [*——2.5 MICROSECONDS————————=
1
{ ! l
1a0 Al A2 A3 A4 A5 | } |
PULSE WIDTH: 40 NANOSECONDS I |
INPUT 1 <——— < PULSE FREQ: ONE PULSE EVERY-416 | |
NANOSECONDS I |
| |
. . | |
OUTPUT 2 -BA0D3 _S>————— | ———p +B AO D3

OUTPUT 3 -BA1D3 >-'———— 1 —-————L +B A1 D3

OUIPUT 4 -BA2D3 D=t | +B A2 D3

FIGURE 8. CLOCK TIMING RING

+B A0 D3 +A I +B A0 D1
-BA] D3 =]

+B A1 D3 +A I +B A1 D1
-BA2D3

+B AQ D3 +A | +B A2 D1
+B A2 D3

-B A0 D3 +A | ——————— A3DI
+B A1 D3

- +B A4 D1

B Al D3 +A I

4B A2 D3 e

-B A0 D3 +A I +B A5 D1
-B A2 D3

+B A0 D3 +A | ————————— 4B A0D2
-B A2 D3 —————————

I +B A3 D3
+B A0 D3 +A | l———————— 4B AID2
+B A1 D3

B A4 D3

I +H

+B A1 D3 A | l———————— B A2D2

-

+B A2 D3 = 1

-B A0 D3 +A I +B A3 D2
+B A2 D3

-B A0 D3 +A | +B A4 D2
-B Al D3

-B A1 D3 +A I +B A5 D2

D2

-B A2 D3 - 2 T

o w & :

TA50% i @ , ‘ +B A5 D3

& FIGURE9. CLOCK

N
&)
[
«n

2,5US

A
|
Ijo Al A2 A3 Ad AS A0 Al A2 A3 A4 A5 I
osc. putses ImEEEEEEEEEE
| | :
+B A0 D1 I | I | |
| I
+B A1 DI L | | —_—
lr | | BEGIN
B B '
+8 A2 DI . | | .
lr : | < CHANNEL E CAC TO MAR CHANNEL NO
r—‘ I_l E
+B A3 DI ! | :
| |
| B
| I I ! | | | CHANNEL D CAC TO MAR CHANNEL NO
+B A4 DI r — | D
| I
1B A5 DI } I I | | .
| | | < CHANNEL C CAC TO MAR CHANNEL NO
l C
+B A0 D2 I I I | =
| I i
-B A0 D3 =B A3 D2 | 8 A3D2 | I l CHANNEL B CAC TO MAR CHENNEL NO
+A I +B A1 D2 | | B
| I l
I I
s L_——ﬁ : ﬁ_| |
+B A2 D3 | | __ AC21-35TO MAR CHANNEL NO
l | m A
+B A3 D2 L I I !
| LB
! | |
C
I I I I I _ SETMAR=5 CYCLE NO
: | +B A4 D2 o
1A0 Al A2 A3 A4 A5 ! ﬁl [ﬁl rl
J I-l I +B A5 D2 l ! | ‘
I I A ~ | |
| | l | IC TO AR TO MAR CYCLE NO
] | PR
[[I | | | l
I ! +B A0 D3 | I I
5A003 | | | IA
L | | | ___ARTO MAR CYCLE NO
| | +B A1 D3 : -
I I I
|] l |
! I'_- I | | |
+8 A2 D3 | | 1
' I +B A2 D3 I l < AR TO MAR CYELE NO
| | oo | | | | |
+ L
‘ |
I I I 5 a3p2 I | L
:] ' ﬁ ﬁ fl NO CORE REFERENCE CYCLE
+B A4 D3 | l |
| I
ﬁ [_L—'j r-Jl_ NOTE: CHANNELS E,D,C, AND B ARE IN
15 A5 D3 | ORDER OF REMOTENESS, WITH E THE MOST
' I REMOTE.
FIGURE 10. SINGLE CLOCK STAGE FIGURE 11. TIMING PULSES FIGURE 11A. CYCLE REQUEST PRIORITY

24

14

F
02,15.30,1 02.12.50.1 1
+B END OP TGR -B MASTER | TGR +B MASTER | I -B AR-MAR
+A -0 b eAR RAP REQ| TR H
+B A0 D2 l
I -B_MASTER C
-B_MASTER B l
+B A5 DI —
+0 1 +A I
J
-B MASTER E I ' i)
l +A
B MASTER L I LOGIC 02,15.33.1 |
l +B A5 D] | +B ALPHA EARLY
-B END OP OR MASTER | FIGURE 4-6 +B ALPHA LATE
TA +0 HAS THE DETAILS
+B A2 D2 B AND TIMING -B BETA EARLY
+B A5 DI B +B BETA EARLY
-B STOP TGR A
+B A2 D1 | ALPHA-BETA +B BETA LATE
| MASTER I _]
r_ 02,15.39.1 -'
+B END OP
[02.15.31.1 —| +A
-B BETA EARLY - +B_| EARLY
- B MASTER | -A
-B | EARLY
| +B A4,5 D1
+B BLK TGR B CYCLE
+B MASTER C
+B A2 DI -B END OP TGR
-/ 1 +A +A +0
| I EARLY 02.15,40. 1 _
[o2.15.30.1 I
I LATE
+A
+B A2 D2 -B | LATE TGR
+B END OP TGR
|
+B STOP_TGR A +B | LATE
1 +a +0 1
+A
END OP TRIGGER
-B A2 DI

-B SINGLE CYCLE

L

FIGURE 12. | CYCLE TIMING

D>

A

6. 18,52

3 Lz% & k4
E3 — —— —
END _OP OR MASTER | I
~0A

B CYC REQ OR MASTER B

GO 10 C

GO TO E OR MASTER E

+A

+B ALPHA EARLY]

— ——

+A

ALPHA
EARLY

+A

+0 [1

-B ALPHA LATE

—— ——— ———

ALPHA '
LATE I

+B A5 D1 I
|
|
i
]
i

FIGURE 13. ALPHA-BETA

[

+8 ALPHA EARLY

L

+B ALPHA LATE

o
o a gt

E

+B BETA EARLY

4

i

Lo

]
r +A
| ! a-
3 A2 D2 3 BETA LATE
+0 T | |+ i w0 1 .
6 A2 DI ‘
+A +A I ——'l_ +A
BETA I I M BETA
(— EARLY LATE
e e e ——— — — e e e (. S St LJ______.._—._.______.__.,..____J
8 MICROSECOND MEMORY CYCLE
A5 A0 Al A3 A4 A5 A0 Al A2 A3 A4 A5 A0 Al A2 A3 A4 AS

+B BETA LATE

A

Jézl
©n
r3

[SN N —— S——

+B MEM SELECT

e

-B MASTER | k
MEM CY&LE STARTED

| CYCLE PULSES HELD UP UNTIL
ARRIVAL OF BETA EARLY LEVEL

MEM WORD NOW IN MDR
AND AVAILABLE TO CPU

| CYCLE ENDS

——— 4 z)

Aooy
= (3} & M
£~ Se¢
oo
sorand” ?

indicates the time the pulse remains -B in this case.
So, -B A1l D3 indicates a negative pulse starting 416
nanoseconds after the start of a machine cycle, re-
maining negative for 1248 nanoseconds, and then
returning to a positive level. By comparing wave-
shape 1 in Figure 8,C, with the other waveshapes,
the various pulse designations should become clear.

Clock

The clock (shown simplified in Figure 9) receives the
six pulses developed by the clock timing ring and
AND's each of them with each of the other pulses to
obtain 12 +B pulses of varying starting times and
durations. It also inverts three of the input pulses
without AND'ing to obtain three new pulses. All the
pulses developed by the clock, plus all the pulses
developed by the timing ring, make up the raw timing
pulses for the 7040 and 7044 CPU. Though Figure 9
shows only +B pulses out of the clock, it should be
realized that the complement (-B) of each pulse is
also available: the -B is available directly off the
AND output; the +B is available after the AND output
is inverted.

All the AND's in the clock function identically, so
by looking at one in detail the entire clock should be
understood. Figure 10 shows one of the clock's AND
circuits selected at random. The two AND inputs
are -B A0 D3 and +B A2 D3. The only time the AND
is conditioned is when both inputs are +B at the same
time; the timing relationship shown in Figure 10
indicates that this time is from A3 time to A5 time;
in other words, A3 for a duration of 2 (D2). The AND
output, then, is -B A3 D2, which is run through an
inverter to obtain +B A3 D2.

One thing may not be immediately clear in Figure
9: How can +B A0 D3 be fed directly through an in-
verter and come out as +B A3 D3? The same
question applies to +B Al D3 and -B A2 D3 becoming
+B A4 D3 and +B A5 D3, respectively. These are
the three pulses shown in the lower portion of
Figure 9 that do not go through inverters. The
answer is simple: +B A0 D3, after going through an
inverter, becomes -B A0 D3, but a -B A0 D3 is
identical with +B A3 D3. The relationship of these
pulses can be readily seen in the timing ring pulses
in Figure 8, C.

The final result of the pulse generator, the clock
timing ring, and the clock is the 18 pulses shown
in Figure 11. Only the +B pulses are shown, but
the -B pulses are also available.

Two machine cycles are shown in Figure 11 to
illustrate that some pulses originate in one cycle
and end in the following cycle. The need for this is
to allow the CPU to prepare for a subsequent cycle
ahead of time, thus saving time overall.

All the raw timing pulses just discussed go out to
a multitude of places in the CPU to control the
operations.

MACHINE CYCLES

Though the CPU performs its operations by executing
a series of machine cycles, the machine cycles are
not the same. The only thing all machine cycles
have in common is that they are 2.5 usec in duration
and they are all controlled by the raw timing pulses.

There are six basic types of machine cycles:

1. I (instruction cycle): Fetches instruction words
from core storage and decodes them.

2. E (execution cycle): Fetches operands from
core storage and stores operands in core storage.

3. L (logic cycle): Performs CPU functions that
do not require reference to core storage; for
example, shift operations are performed during a
logic cycle.

4, U (unoverlapped cycle): Allows channel A to
access core storage via the CPU. All channel A
data transfers occur during U cycles; at this time,
the CPU is used exclusively for channel A operations.

5. B (buffered cycle): Allows channels B through
E to access core storage. These channels can access
storage without going through the CPU, so it is
possible for the CPU to perform L cycles while a B
cycle is being performed.

6. C (clock cycle): Allows the interval timer
(real time clock), which is in storage location 00005,
to be brought from storage, incremented by 1 in the
adder, and then replaced in location 00005; this
operation occurs every 60th of a second.

A seventh cycle - an IA cycle (indirect addressing) -
could be included, though it really is a variation of
an E cycle. Figure 11A shows the priority of these
cycles.

1Cycle

The I cycle is the time during which an instruction is
fetched from memory and decoded. If specified,
address modification by indexing is performed during
the I cycle. Further, some instructions can be
completely executed during an I cycle.

The sequence of events during an I cycle is as
follows:

1. Reset address register.

2. Load AR with IC contents. The signals XEC,
trap, transfer successful, and end-operation must be
present before this action can be effected.

3. MDR is conditioned to transfer information to
the SB.

4, Select memory (reset MAR and MDR).

5. Transfer AR contents to MAR.

27

6. Transfer AR contents to IC.

7. Transfer MDR contents to SB.

8. Transfer SB data into SR, PR, tag register,
and position register.

9. Decode instruction in operation decoders.

10. Step IC.

11. Perform address modification by indexing, if
specified:

a. Transfer SR bit positions 21-35 to adder
positions 21-35.

b. Transfer 2's complement of contents of
specified index register to adder positions
21-35.

12. Transfer adder bits 21-35 to AR. 1If the
instruction in progress is a transfer instruction and
the attempted transfer is unsuccesstul, the IC contents
are transferred to the AR and the transfer of adder
bits 21-35 to AR is blocked. If the instruction in
progress is an I cycle index register load type in-
struction, adder bits 21-35 are transferred to the
XRX rather than to the AR.

Indirect-Addressing Cycle

The IA cycle occurs only if indirect addressing is
specified in the instruction word, and, when it is
specified, the IA cycle follows the I cycle. The
sequence of events during an IA cycle is as follows:

1. Select memory.

2. Transfer AR contents to MAR.

3. Transfer MDR contents to SB.

4, Transfer SB data to SR and tag register.

5. Perform address meodification by indexing, if
specified.

6. Transfer adder bits 21-35 to AR.

I Cycle Timing

In order for an I cycle to perform its function of
fetching and decoding instruction words, several
working levels must be developed specifically for

the I cycle: master I, I early, Ilate, and (in the
7040 only) alpha and beta levels. Figure 13 (simpli-
fied logic) illustrates the development of these levels.

Master I

The master I level, which is developed first, has
four requirements:

1. An end-op trigger, signifying that the instruc-
tion currently in progress is in its final machine
cycle (almost finished).

2. An A5D1 raw timing pulse.

3. No master E level, which will be present only
if an E cycle has been initiated.

4, No master L level, which will be present only
if an L cycle has been initiated.

28

A latch arrangement is used to hold the master I
level up after the timing pulses and end-op-trigger
disappear. Note that master I will be discontinued
only by the advent of either an E cycle or an L cycle.
After being AND'ed to be sure that a parity trap
request, a C cycle, or a B cycle has not been initiated,
the master I goes out at A0 D2 time to initiate the
transfer of the address register to the memory
address register (AR-MAR). This, of course, starts
the instruction fetch.

Alpha-Beta

As mentioned earlier in this chapter, the 7040, be-
cause of the use of the slow memory, must buffer the
2.5-usec CPU to the 8.0-usec memory. This buffer-
ing is accomplished by alpha and beta levels. The
alpha-beta circuitry is not present in the 7044.

Any one of the following levels will cause alpha
and beta levels to be generated:

1. End-op or master I

2. B-cycle-req or master B

3. GotoC

4., Go to E or master E
Regardless of which level initiates the level generation,
the alpha-beta circuitry functions the same. There-
fore, though this discussion is in reference to an I
cycle, it should be understood that the same holds
true for a B, C, or E cycle.

The alpha-beta block in Figure 12 shows its
functional relationship to the other blocks in the I
cyclie; Figure 13 shows the details of alpha-beta level
development. Both figures should be referred to
during this discussion.

The end-op or master-I level initiates all the alpha
and beta levels during an I cycle; the alpha-early
comes up immediately and allows the master-I to
effect the AR-MAR transfer. Also, the memory-

select level is generated to ultimately start the

meniory clock at AOD1 time. Once the memory clock
starts, it takés approximatély 4 usec before the
memory word is read out into the MDR and available
to the CPU; an additional 4 usec are required to
complete the memory cycle. Since a machine cycle
is only 2. 5 usec, the I cycle would be all over before
the instruction word was ever read out of memory
unless some method of delaying I cycle pulses was
employed. The absence of a beta-early level delays
the I cycle pulses until approximately 1.6 usec before
the memory word is due to be put into the memory
data register (MDR). Once in the MDR, the word is
available to CPU. By the time the I cycle pulses are
ready to use the word from memory, the word will be
ready for use. Even so, the I cycle pulses will take
the word from the MDR, decode it, and be completed
long before the memory cycle is completed.

Subsequent memory cycles, however, cannot start
until the current memory cycle is completed; this is
because the memory select level depends on the
absence of alpha and beta late.

I Early

The development of the I-early level is contingent on:

1. Having a master-I level (both 7040 and 7044).

2. Not having a master-B level (both 7040 and
7044).

3. Not having a master-C level (both 7040 and
7044).

4, Having a beta-early level (7040 only).

The I cycle cannot commence until the I-early
level is developed. In the 7044, it is developed
immediately after the master I comes up, but in the
7040, because of the beta-early contingency, the I
early is delayed from being developed until a full
machine cycle after the master I is developed.

The I-early level goes out to initiate the I-late
level and also out to turn off the end-op trigger.

Like the other levels being discussed, the I Early
goes out to various places in the CPU to perform
functions in connection with the I cycles. The
purpose of this section is to show that levels are
developed, how they are developed, and why they
are developed; the actual work done by the pulses is
discussed as the individual CPU sections that utilize
the pulses are discussed.

End-Operation Trigger and I Late

The I-early turns off the end-op triggers, allowing
subsequent cycles (E or L) to be initiated.

The end-op trigger is turned on at A4.5D1 time if
a +B end-op level is present. The +B-end-op level
comes up only if the CPU is nearing the end of an
instruction. The +B-end-op then is, in effect, a go
to I cycle command from the CPU. There are many
sets of circumstances which will cause a +B-end-op
to be generated (02. 15.35. 1) and an I cycle to be
initiated. Though the end-op is necessary for I
cycle initiation, it does not force an I cycle to be
initiated. For example, if a C cycle had been re-
quested, it would be executed in preference to the
I cycle.

The I late is initiated by the I early and goes to
many places in the CPU to finish executing the I
cycle.

E Cycle
The E cycle accommodates the transfer of an oper-

and either from or to memory. The sequence of
events during an E cycle for a from-memory

operation is as follows:

1. Select memory.

2. Transfer AR contents to MAR.

3. Transfer MDR contents to SB.

4. Transfer SB data into SR.

5. Transfer SR contents to adder. (Many trans-
fers are possible at this point; however, the SR-to-
adder transfer is most probable).

6. Perform some specified action; i.e., add.

During a to-memory operation, the sequence of
events during an E cycle is as follows:

1. Select memory.

2. Transfer AR contents to MAR.

3. Inhibit transfer of data from specified memory
location to MDR.

4. Transfer data to be stored to SR.

5. Transfer SR contents to SB.

6. Transfer SB data into MDR.

7. Transfer MDR contents into specified core
location.

E Cycle Timing

In many respects, the E cycle resembles an I cycle
because both types of cycles reference memory,
causing information to be read out for CPU use. The
difference is that the I cycle brings out an instruction
word and the E cycle brings out a data word (or
stores a data word).

Figure 14 shows the functional blocks necessary
for E cycle pulse generation, which is almost
identical with I cycle generation (Figure 12). The
E-cycle levels (E early, late, etc.) are powered
through inverters (not shown) and sent to the CPU
to execute an E cycle. The beta-early pulse (in the
7040 only) will delay the E cycle operation just as it
did the I cycle operation.

The difference between E cycle and I cycle pulse
generation is the go-to-E level, which sets the
master-E trigger. Figure 15 shows the conditions
necessary for a go-to-E level. A -B out of block 1,
plus a +B out of any of the other blocks, brings up
the go-to-E level. Block 1 will have a -B output
when the CPU is not completing an instruction. The
other blocks will have +B output in accordance with
the conditions shown in each block.

L Cycle

The L cycle is a non-core-storage reference cycle

in which logical and shifting operations are perform-
ed. This does not mean, however, that L cycles

are employed only to accommodate logical and
shifting type instructions. Other types of instructions
use L cycles; the criterion for entry into an L cycle
for these cases is time. Generally, if not enough
time is available in a given cycle to perform the

29

0¢

FIGURE 14. E CYCLE TIMING

02.15.30.1 02.12.50.1

GO TO E -B MASTER E TGR +B MASTER E

-0 -B PAR TRAP REQ +A
A5 DI
+B A0 D2
-B MASTER C
MASTER
H4BF MASTER | E -B MASTER B
B MASTER L
02.15.33.1 i
APhasronret. -B GO TO E +B ALPHA EARLY
OR MASTER E
ALPHA-
BETA
-B BETA EARLY
02.15.31.1
E
~®T BLK, B CYCLE EARLY
= : 02.15.30.1
RESET 1 g MASTER C +B E EARLY
+B A3 D2 E
LATE
'x“ Vi
-B A3 DI RESET ~E LATE PULSES

-B AR-MAR

\

+B POD O0X I
+0 +A
+B HPR —]
+B POD 1X "B
| +B POD 7X |
I +B | OR{IA LATE ' l
s —
| 2 |
— J—
+B GO TO U
+A
+B L LATE
3
+B | LATE
+A
\ ’\‘2")
g VT
[T
+B PRE IA TGR
4
[7L
-B DPFP GO TO E
I -0 +A

-B PARTIAL STORE TGR

-B DISP ENTER OR CLEAR

LOGIC 02.15.34,1
(SIMPLIFIED)

—

+0

+B E LATE RAW

t

+B END OP

TRIGGER

+ 60 10l -
-A Fi B
?mé <«

¢ é/,///&m'

+A
+B TMT AND E OR L LATE
6
+B | LATE
+A
+B ANY TRAP
7

FIGURE 15. GO TO E

[
=
s

31

operation at hand, an L cycle is taken to complete
the action. For example, two CPU cycles are
necessary to load an index register with the contents
of a defined accumulator field. The first cycle
occurs because of the instruction and is therefore an
I cycle. However, because of the time required to
complete the necessary transfers as opposed to the
duration of an I cycle, not the entire operation as
specified by the instruction can be performed during
an I cycle. Since the instruction, in this case,
specifies the accumulator as containing the desired
information, there is no need for an IA cycle.
Further, since the accumulator is internal to the
CPU, there is no need to communicate with memory
and, therefore, no need for an E cycle. Thus, any
part of the operation that is not redlized during I
cycle time is realized by entering an L cycle.

Another example of an instruction other than a
logical or shift type instruction using an L cycle is
the multiply instruction. In performing multipli-
cation, repetitive steps are executed during which
addition and shifting or only shifting are effected.
For a repetitive step that requires both, the addition
phase and the shifting phase are effected during L
cycles.

For a shift type instruction, the shift counter
generally controls the number of individual opera-
tions performed during an L cycle. For example,

a single L cycle can accommodate approximately
six l-position shifts. A shift count value greater
than 6, then, requires more than one L cycle; a
shift count value greater than 121 requires more
than two L cycles; etc.

L Cycle Timing

The logic cycle is the simplest of all cycles as far
as pulse generation is concerned. The L cycle does
not use core storage or (in the 7040) the alpha-beta
circuitry. To perform its various functions (shift-
ing, for example), the L cycle requires an L-early
and an L-late level. Development of these two
levels is shown in Figure 16,A. (Note the similarity
to I and E level development.)

The go-to-L level is the key to L cycle timing, and
its development is shown in Figure 16,B. An L
cycle follows any I cycle that is not followed by an
E cycle or any E cycle that is not followed by an
I cycle or another E cycle.

B Cycle
A B cycle is generated as the result of a B cycle
request being sent to the CPU from one of 1-O

channels B through E. The B cycle request indi-
cates that the requesting channel wants to either

32

read from or store into memory (core storage). It
is the function of the B cycle to control the memory
for the I-O channel and to prevent the CPU from
using memory at the same time that the I-O channel
is using it; this task is fairly simple because channels
B-E enter memory directly through the storage bus
(SB) without using any portion of the CPU.

Figure 17 shows the B cycle timing and how it
controls the use of core storage.

Cycle Generation

At A5 D2 time, a B cycle request effects generation
of the master-B level. The master-B level is re-
generated every A5 D2 time as long as the B cycle
request is present; however, the first A5 D1 that
appears turns the master-B off if a B cycle request
is not present. This means that the I-O channel,
not the CPU, determines the number of B cycles.

The master-B originates two other levels, a B-
early and a B-cycle-requested-or-master-B. The
former is used in parity checking circuitry. The
latter performs two important functions:

1. It starts the alpha-beta level operation
(Figure 13), an identical function with the I and E
cycles. '

2. It prevents an AR-MAR transfer (Figures 12
and 14). It can now be seen just how a B cycle
breaks into CPU operation. The B cycle allows the
I and E cycles to generate a master level but pre-
vents them from generating early or late levels.
This action hangs up CPU operations (except for any
L cycle operations being executed) but does not alter
anything. As soon as the B cycle is finished, the I
or E cycle is allowed to bring up early and late
levels as though nothing had happened. Of course,
the B cycle has no effect on an L cycle because the
L cycle never uses memory and there can be no
conflict.

Memory Control

Master B goes out to control the memory lines by
being AND'ed with a write-memory level from the
I-O channel. This write-memory line is down when
the I-O channel wants to read from memory instead
of storing into it.

If a write is requested, the read-memory line is
a -B. This causes the +B store cycle to come up,
thus generating a store cycle. In addition, the -B
causes the storage bus (which contains the infor-
mation from the I-O channel) to be transferred to
the MDR, where it is automatically written into
memory during the second half of a memory cycle.

If a read is requested, the read-memory line is
up and the contents of the MDR are gated out to the

02.15.30.1 02.15.31.1 02.15,30.1

+B L EARLY
+B GO TO L ‘
+A
-B MASTER L +B L EARLY
-A +A
-B L LATE
5 A5 DI +B BLOCK —
+ H &
+0 I — TGRO# {§ ¢
+B MASTER C +B A2 D2
‘ +0 |
-B MASTER |
+A
-B A2 DI
-B MASTER E +A
a) L CYCLE LEVELS
02.15.34.1
e -B GO TOE
,) +A
S ¢ ZB TMT E OR L LATE
+B E LATE RAW % = +B GO TO L
+0 -A
e
-B GO TO E
+A
g TMT E OR L LATE
+B | LATE
+B END OP TGR &
b) GO TO L

w

& FIGURE 16. L CYCLE TIMING

3 PULSE GENERATION (2.15.%.1) |

+A

+B A5 D2 +B MASTER B -B B EARLY
+0 l +A

+B A5 D1

+A +A +B BETA EARLY

+B BETA LATE

T
I

-B B.CYC REQ OR
+0 MASTER B
02,15.33.1
—
|— WRITE (02.12.50.1)
START ALPHA BETA
o -B ANY MEM CYCLE EARLY x| +B SB-MDR (SEE FIGURE 13)
-B A2 DI
02.12.50.1
PREVENT AR-MAR;
] (SEE FIGURE 12
AND 14)
STORE CYCLE
+B ALPHA EARLY +B STORE CYCLE
- +A T +A i
+B A0 DI
[T 1
+B MASTER B +B READ MEM +B MDR 0-36 - SB
+A +0 +A I
+B ALPHA EARLY
-B MAR 3
+B Al DI
+B WRITE MEM - B OPK-5B
(FROM 1/0)
\
| \ CONTROL (02.12.50.1) +B MDR 40-76 - SB
™ L +B MAR 3
+B READ MEM
5 READ

L (02.12.43,1 & 44.1) J

FIGURE 17. B CYCLE

storage bus. The MDR contains, at this time, the
information from core storage that was requested
by the I-O channel.

U Cycle

The U cycle allows I-O equipment to read from or
write into CPU core storage via channel A, The U
cycle request initiates an E cycle (Figurel5) because
most of the E cycle hardware and functions are the
same as those required by a U cycle. Any E cycle
function not required for a U cycle is inhibited by

a U cycle. Conditions that start a U cycle are
discussed in the channel A manual.

C Cycle

C cycles are used only to update the interval timer
(real time clock), which is memory location 00005.
Once every 60th of a second, memory location 00005
is read out, incremented by 1 in the adder, and re-
placed in the same memory location. The prime
power 60-cycle source is used to originate C cycle
requests. Every time the 60-cycle power reaches a
peak (once every 60th of a second), a pulse is
generated which causes a pair of C cycles to be
initiated. These two C cycles, which access core
storage, have a third cycle sandwiched in between
them. This third cycle, called a 1st-C-cycle-
delayed cycle, does not access core storage. The
complete process of updating the interval timer
then consists of three machine cycles: a 1st C cycle,
a 1st C cycle delayed, and another C cycle.

During the first C cycle, the following occurs:
Force 00005 into MAR.
Select memory.
Transfer contents of location 00005 to MDR.
Transfer MDR contents to storage bus.
Transfer SB information into SR.
. Initiate first C cycle delayed.
. The first C cycle delayed cycle accommodates
the following:
- 1. Transfer SR contents to adder.

2. Add 1 to low-order adder bit 35.

3. Transfer accumulator contents to SR to keep
them from being destroyed.

4, Transfer adder contents to accumulator.

5, Transfer SR contents to adder.

6. Transfer accumulator contents to SR.

7. Transfer adder contents to accumulator,
restoring it.

During the last of the three cycles, which is the
second C cycle, the following occurs:

1. Force 00005 into MAR.

2. Select memory.

3. Transfer SR contents to SB.

SO

4. Transfer SB information into MDR.
5. Transfer MDR contents into location 00005.

C Cycle Timing

Figure 18, the simplified C cycle logic, shows the
basic functions and timing. The first A4 D1 pulse
after each 60-cycle voltage peak generates a C cycle
request which will, in turn, initiate a go-to-C level.
The go-to-C level is contingent on not having a B
cycle or U cycle request. Conditions satisfied, the
go-to-C goes out to start the alpha-beta level
generation and to initiate a master-C level. The
master-C goes out to prevent execution of other
cycles and to start the memory readout. The
memory readout occurs because a 1 bit is forced
directly into MAR positions 15 and 17 (which will
decode as storage location 00005), and a read cycle
is started by the master-C ultimately starting the
memory clock.

The C-early level initiates a 1st-C-late level
(Figure 18). The C late transfers the storage bus
(which has the contents of location 00005) to the
storage register and initiates a 1st-C-cycle delayed.

The 1st-C-cycle delayed transfers the storage
register to the adder and adds 1 to the adder. The
incremented location 0005 is then transferred from
the adder to the dccumulator. At the same time, the
accumulator is sent to the storage register to
preserve valid data the accumulator may have con-
tained. The storage register is now transferred to
the accumulator, through the adder, restoring the
accumulator content, while the accumulator is
transferred to the storage register. The up-dated
timer in the storage register is now ready to be
stored back in location 0005. This action completes
the first two machine cycles of the three required.

The end of the second machine cycle causes a C-
cycle-complete level to be generated. This level
causes the second C cycle, which:

1. Transfers the storage register to the storage
bus and causes it to be written back into memory.

2. Turns off various C cycle controls so the cycle
will stop.

Figure 19 shows the timing of the C cycles.
Figure 20 shows how a C cycle request is generated.
The 60-cycle (prime power) is fed into a clock clamp
whose two outputs, C and D, are as shown; C output
is up twice as long as D, and both are in the order of
milliseconds. A plus D output sets the 60-cycle
buffer latch at A2 D1; this latch is reset by a minus
C output at A4 D1. However, the latch is not reset
by the A4 D1 immediately following the A2 D1 that
set it because the long C output is still up (plus) when
the A4 D1 appears. The 60-cycle buffer remains
latched up until an A4 D1 appears coincident with a
down C output; this coincidence may be a matter of
milliseconds.

35

9¢

02.16.51.1 02.16.52.1
24V 60 CYCLE -B C CYCLE REQ -
B MASTER C PREVENT U CYCLE
+B A5 D1 STER
+B A4 D1 C MA c +B MASTER € MEMORY CONTROL LINES (START MEMORY)
CYCLE
GO TO C
)b KEEP B, E, | FROM AR-MAR
REQUEST 1 1 . 02.16,52.1
+B (TURN OFF) +B BETA EARLY [Y [
EARLY
SET
+B A0 D2 ADDRESS
INTO
02.16.52.1 02.15.31.1 MAR
+B GO TO E GO TO C +B ALPHA EARLY
+B B CYCLE REQ
No B,U ALPHA +B BETA EARLY
+B RCHA CYCLE BETA TO C EARLY
REQUEST
-B CHA SR RE -B Al
Q LPHA LATE TURN OFF MASTER C
02.16.53.1
-B C EARLY -B SB-SR (A3 TIME)
FIRST
+B A2 D2 c
CYCLE
LATE 02.16,54.1
+B (TURN OFF) -B 1ST C LATE -B SR-AD (A5 TIME) 1 FULL CYCLE
- win ME!
FIRST B CARRY "1° INTO ADDER (AO TIME)
C -B AD-AC (A1 TIME) & (A3 TIME)
CYCLE -B AC-SR (A1 TIME) & (A3 TIME)
DELAYED
-B A5 DI +B 1ST C CYCLE DELAYED

INTERRUPT CAUSED BY U CYCLE

+B E EARLY

+B A0 DI

+A

RESET C CYCLE

————

-B MAR 15

-B MAR 17

+B MEMORY CONTROL LINES (WRITE)

-B SR-SB

02.16.53.1
+B MASTER C FIRST
(o}
+B A4 D1 CYCLE
COMPLETE

h———’————

+B (TURN OFF C CYCLE)

FIGURE 18, C CYCLE ‘

LE

TICK
Y

28 pei SB - SR f— - SR - SB
! 5 & I——] SR - AD
| —
| 8%0 o 5 10 MAR, SM pmmemed HOT 1 ot 5 to MAR, SM
wge
ALD (02.xx. VL < Jommmni SR S-AD P
(0230 30) EARLY C REQU |} i AD - AC
| i jued AC - SR
16.51 f . Tl ACP-SRS
|
|
C REQU. IINTERLOCK 3 DRoPS AT
| > ApL ¥
| w f(AFTER Tics
16.51 o
| S5z
| 593
| C CYCLE REQU (SAME AS "GO TO C" EXICEPT, "GO TO C" IDROPS DURING eXLATE) ‘ 5
16.51 CHANNEL INTERRUPT WILL DROP
' L) p R S 5 w
o« o
| = a ALPHA LATE ~ ALPHA LATE C,G <=
(@] \ g 0
< [¢) <
O™ MASTER C ’ oy
| C EARLY CEARLY
16.52 —t l&,
<
- t
l @ >
ot ot 4
in[ake 15T C LATH el S
| slos 0 < Q
2y k4
16.53 | 30 Ig’ ‘3 -
O
| S -
o
' 10 o 2
zlo 4 ISTCDEL <
I w S N
Ol—-<
16.54 —+ o <
o~ o
w [a) [a)
| = O s g o
o« 5 < U<
a pd
SR Y1ST £ CYC COMP ” U
| o<
- CHAN A U
16.53 p— CYCLE WILL
; DROP , - e /
' 1 S 2 3! A >4
FIGURE 19. C CYCLE TIMING

T 8¢

CLOCK
CLAMP

24V 60 CYCLE

24V 60 CYCLE

FIGURE 20. C CYCLE REQUEST

LOGIC 02.16,51.1 (SIMPLIFIED) !

A2 D1 +B (WHEN C IS REQ) SET
SET ‘ SET
60 CYCLE _A0D1_ SET | EARLY C
BUFFER wser | REQUEST
LATCH LATCH
RESET ‘ RESET
A4 D1 RESET
SET OFF SET +B C CYCLE REQ
A2 D1 SET SET
C REQUEST 2401 SE ¢ CYCLE
INTERLOCK a4 D1 wserl REQUEST
LATCH ——— LATCH
+B (WHEN C IS NOT REQUESTED) ~ RESET C EARLY RESET
Al D1 RESET | ON 1ST C CYCLE RESET -B C CYCLE REQ
COMPLETED

The 60-cycle buffer output sets (at A0 D1) the
early C request latch, whose output, in turn, sets
(at A2 D1) the C request interlock and (at A4 D1) the
C cycle request latch.

The C request interlock allows the early C request
to be reset and prevents it (the early C) from being
set again as long as an IT operation is in process.

The 1st-C-cycle-complete level (at A4 D1 time of
the final IT machine cycle) resets the C-cycle-
request latch, and the IT operation is over until
another C cycle request is automatically initiated
(approximately 1/60 second later).

Interval Timer Interruption

The interval timer (IT) can be updated between U
cycles. If a U cycle request occurs before the IT
operation is finished, the U cycle takes precedence;
this priority is necessary because the 1/0 devices
are mechanical (they cannot wait) and must therefore
be serviced immediately. The U cycle clears the
storage register, thus destroying the IT word placed
there during the C cycles.

Note, in Figure 18, that the U cycle breaks into
the IT operation by resetting the 1st-C-cycle-
complete latch with an E-early level at A0 D1; this
action prevents the incremented IT word from being
written into memory and also prevents the C-cycle-
request from being dropped. Because the C cycle
request is still up, the entire IT operation will recur
as soon as the U cycle is finished.

Note also (in Figure 18) that the 1st-C-cycle-
delayed level causes the AD-AC transfer and the AC-
SR transfer at Al time and again two pulses later at.
A3 time. Since the IT operation can be sandwiched
in between U cycles, the preceding U cycle would
have information (a word count and an address
count) stored in the accumulator. At Al time, the
1st-C-cycle-delayed cycle starts to use the accumu-
lator. The accumulator contents (needed for the U
cycles) are transferred to the storage register to
prevent their loss. At A3 time, the IT operation
needs to use the storage register, so its contents
are put back in the accumulator and the accumulator
goes to the storage register. Though this may sound
confusing, it is really an accumulator/storage-
register swap to preserve information for the U
cycle while the IT is being updated.

INSTRUCTION DECODING

All instruction words read from core storage and
placed on the storage bus are just so many random
bits and have no particular significance unless they
are interpreted at a specific time, in accordance
with certain rules, by an interpreting device de-
signed specifically for the application. During I

I cycle time, all words on the storage bus are treated
like instruction words; the rules for interpretation
are the various instruction word configurations, and
the interpreting device is the CPU hardware in the
form of registers and decoders.

Figure 21 shows the routing of bits out of the
storage bus for decoding during I cycle time. The
AND conditions reveal that not all bits are always
decoded. In fact, only two actions occur on every
I cycle:

1. Bits 18, 19, and 20 are sent to the tag register.

2. The entire storage bus is transferred broad-
side to the storage register and then to the adder.
Figure 21 shows the transfer of bits concérned only
with decoding. The remaining storage bus bits may
or may not be decoded, depending on the particular
instruction.

To better point up the varying decoding require-
ments of instructions, Figure 22 shows three typical
instructions as they appear on the storage bus. These
three instructions collectively utilize all the CPU
decoding facilities. By carefully comparing the
instruction decoding needs with Figure 21, it can be
seen when and where they will be decoded. Just how
the decoding takes place is the prime function of this
section and is treated in detail; the when and where
are treated only to the extent necessary for under-
standing the how. Also, decoding channel instructions,
which goes further than CPU instruction decoding is
described in the channel A instruction manual.

Bits S, 1, And 2

Before any other bit transfers or decoding can be
started, SB bits S, 1, and 2 must be decoded (except
for the transfer to the tag register, storage register,
and adder as already mentioned). When these three
bits decode to be +1, +2, or +3, the SB S bit goes to
the PR S bit position, the SB 1 bit to the PR 8 bit
position, and the SB 2 bit to the PR 9 bit position; in
this case, no other bits are transferred into the pro-
gram register and no bits are transferred into the
position register, the IA control trigger, or the shift
counter. Only five instructions, all transfer type,
can cause this action: TIX (Figure 22), TXI, TNX,
TXH, and TXL.

The simplified logic for decoding these three bits
is shown in the inset in Figure 21. The S bit equal
to 1 is minus, and equal to 0 is plus.

Operation Decoding

More than 150 different instructions can be executed
by the 7040/7044; for the CPU to know exactly which
instruction to perform, bits S through 11 of the
instruction word must be decoded (except for TIX,
TXI, TNX, TXH, and TXL).

39

STORAGE BUS (SB)

/[L

/ [[L L L L

L /L
TBI? I 0TII|I2|l3|l4[15|16I17I18| l20‘21'22'23'24'?5LZS[Z?FBIZ?130I3II32|33l34|35

L L L L L L L L
Llilzfslefs]e]-
1
*AND CONDITION :
SEE NOTE 1
AND INSET AT
BOTTOM

PROGRAMREGlSllLI3l4I5—I [7[3[9

02.04.00-09

[SPE—

I-1A LATE

yd
[OP DECODER
A3 D2
02.04.20
ILATE 1A
e I CONTROL
A4 D1 TRIGGER
NOTPOD7X | 02,10.65.1 Lo 7
INSTRUCTION MUST [
BE INDEXABLE ' | 4
GO TO
A POSITION
IA CYCLE IISII4I15|16II7 REG o
*SB-PR 1-9 I : 1«&
/y,&\“' INTERFACE
03.10.07
?:Acl)srgrlv{ gl_ SELECT CH-A
NOTE 1 INTERFACE .
*EXCEPT ON 5 INSTRUCTIONS (TXI, TIX, TNX, TXH, TXL), SB BITS 3 THRU 11 ARE TRANSFERRED AS ; P
SHOWN INTO PR 1 THRU 9; ON THESE 5 INSTRUCTIONS, ONLY BITS S, 1, 2 ARE TRANSFERRED, H
WITH SB1 GOING TO PR 8, AND SB 2 TO PR 9, THE SIGN BIT IS ALWAYS TRANSFERRED IN EITHER &/
CASE, BELOW SHOWS TRANSFER-LEVEL DEVELOPMENT, 1-1A EARLY
/1 A
+B TRANSFER SB SIGN TO PR SIGN
(SB - PRS) A3 01
-B | LATE | +B TRANSFER SB 3-11 TO PR 1-9
A +A (SBPR 1-9) 02.12.01
-B A3 D2 1-1A LATE
1 A
|
A4-D3
+BSB1=1 +B TRANSFER SB 1 AND 2 TO PR 8 AND 9
BB1-1 | _ 02.12.08
+A A (SB1&2-PR8&Y)
+0 - 9
|]
: OP CODE I
i +1 |
2
+8582=1 |
2R2711 I £3 :
| |
+BSBS=0 b —— 4
(LOGIC 02,12,32,1 SIMPLIFIED)
FIGURE 21. INSTRUCTION DECODING

SELECT| INDEX REG

*SB-PR 1-9

02.04.20

OTHEL /7
PROGRAM
REG

CHANNEL
DECODER

SELECT AN 1/O CHANNEL
(A, 8, C, D, ORE)

l [[/ [/

f

TO CLASS
ADDRESS DECODER

BN

STORAGE REG (SR)

A

20I2|I22I23|24 ZSl26|27 28|29l30T31I32|33T34 35J

ADDER (AD)

NN N

i
NN N N N N

ol rf]

|
SNONCONONON NN NN N
2o|£|22i23|24T25|26|27|28r29L30|31|32|33|34[35
o NERRE HEHBIBEE
ADDRESS — — — — — — ! ——l—-l--'_.J__l..._l_..l. L I I I _1
REGISTER
R
/ /7 /7 /L S L
SHIFT
COUNTER (5C) 15|16 | 17

02.12.37

PR27 ———

UNIT ADDRESS

CLASS DECODER
ADDRESS -
DECODER” 02.04.42 02.04.40
SELECT
1/0 EQUIP

41

WRS
(OP CODE +0766)

s 1 2 3 4 5 6 7 8 9 10 11
STORA
STORAGE 1 0 0 1] 1] 1 0 1 1 0
< T T T T T T T T T
AN | | I I I I I | I
AN I | | | | | | I |
N | ! I | i | | | |
AN I 1 I I I I I | |
N
Y v Vv ¥ v vV ¥V v ¥
PROGRAM REG 0 1 1 1 1 1 0 1 1 0
s 1 2 3 | 4 5 8 v
I //
]
)
]
]
|
]
!
]
]
POD
76

FIGURE 22. INSTRUCTION CONFIGURATIONS

42

CAL

STORAGE OPERATION CODE]
BUS -0500 F T
S 1 11f12 13]14 21718 20]21 35
SB'S, 3-11 1A TAG TO ADR REG VIA SR & AD
TO CONTROL REG (NO DECODING NECESSARY)
PR S, 1-9 TGR
DECODE DECODE DECODE
TIX
OP
STORAGE | copk T
BUS 42
s 1 213 i7{18 __ 20]21 35
SBS, 1,2 TAG TO ADDERS
TO REG
PRS, 8, 9
DECODE DECODE
WRS
STORAGE OPERATION CODE slo I T
BUS +0766 /
S 1 npisiafis 17§18 zo0f21 35
SB'S, 3-11 POSITION TAG BITS 24, 25 BITS
TO REG REG 26, 27 28 THRU 35
PR'S, 1-9 TO TO
PROG REG SC VIA SR & AD
DECODE DECODE DECODE DECODE DECODE

FIGURE 23. BIT LAYOUT

Bits S through 11 of the instruction word constitute
the operation code and can usually be completely
decoded in the primary operation decoder (POD).
One class of instructions is an exception; this class
requires a secondary operation decoder (SOD) to
identify the instruction. This type is discussed after
POD.

Figure 23 shows a WRS operation code as it
appears in the storage bus, the program register,
and the operation decoders.

POD

Figure 24 shows the primary operation decoder in
simplified form. The primary decoding is accom-
plished in two distinct steps:

1. The outputs of program register positions 1,

2, 3, 4, and 5 are AND'ed together to give 12 out-
puts, each active for a number of different instruc-
tions.

2. The 12 outputs from the first stage are AND'ed
in a manner that will give outputs for specific
instructions only.

For example, assume program register positions
1 through 5 contain 001 10. This means the following
' program register outputs are active:

a. PR1
PR 2
PR 3
PR 4
PR 5

f. PR 6 assumed to be zero
The first AND'ing stage has two AND circuits active:
POD 1X and POD X4. In the second stage, POD 1X
and POD X4 are themselves AND'ed together to give
a POD 14; the only instruction with a POD 14 is
TOV.

Not all instructions are completely identified by a
POD output as is the TOV instruction. For example,
POD 40 can be either an ADD or SUB instruction.
The only difference between an ADD and an SUB,
with respect to the operation code, is the sign bit;
so by AND'ing POD 40 with the signals PRS (PR S
bit position contains a 1) or PRS (PR S bit position
contains a 0), an ADD or SUB is determined. In
the case of other instructions, the difference might
be some bit other than the sign bit, but the same
logic holds true: by AND'ing the second stage POD
output with the particular bits involved (they do not
necessarily have to be PR bits), the specific instruc-
tion is identified. Because of the number involved,
not all the AND circuits used to resolve each specific
instruction are illustrated. However, the illus-
trations do provide sufficient detail for a thorough
understanding of decoding. If the development of
the various POD levels is understood, understanding
the breakdown within a particular POD is just a

erov

matter of noting the bit differences between the
instructions and realizing that these differences are
AND'ed with the POD to obtain the specific instruc-
tion.

Note that the PR 6 and PR 6 signals are used in
the second stage to differentiate between X2's and
X3's. An example of this use is the generation of
POD 52 and POD 53. The PR sign bit and bits 7, 8,
and 9 are used to identify specific instructions within
a POD in the manner discussed in the preceding
paragraph.

SOD

Because POD 76 embraces so many different instruc-
tions, a secondary operation decoder is necessary to
completely identify a particular POD 76 instruction.
Figure 25 shows a simplified version of the SOD.

The SOD is much like the POD, the main difference
being the PR bits used. In the SOD, PR bits 6, 7,
8, and 9 are AND'ed with a POD 76 to obtain the SOD
levels. As with the POD, some SOD levels completely
identify a given POD 76 instruction, while others
must be further AND'ed to realize identification.
Because of the many circuits involved, only the basic
SOD levels are illustrated.

Flag Bit Decoding

Bits 12 and 13 of the instruction word are flag bits
and are used to specify indirect addressing. These
two bits are flag bits only in those instructions that
can be indirectly addressed; otherwise, they may
serve other purposes and are not decoded for in-
direct addressing.

Flag bit decoding is simple (Figure 26). If bits
12 and 13 of the instruction word are both 1's, and
if the instruction is indexable and not a POD 7X
instruction, a PRE IA trigger is initiated at I late
time by an A4 D1. The PRE IA trigger ultimately
causes an IA cycle (a type of E cycle), which is
necessary for indirect addressing to be initiated.

Tag Bit Decoding

The tag bits are 18, 19, and 20 of every instruction
word, and they denote which index register (if any)
may be used. (Some instructions do not employ XR
outputs, although the bits select an XR.) There are
three index registers (A, B, and C), and they are
usually used for address modification. Figure 27
shows the tag bit decoding and index register
selection.

If instruction word bit 18 is a 1, the tag C latch
is set at I late time by an A3 D2, The tag C latch
output is AND'ed with the output of each latch
position on index register C. Thus, when bit 18 is

43

‘vz 38N9I14

ONIAOOD3Ad NOILVI3IdO AdVIWING

Sy

2ND SIAGE
POD 00
A
_J POD 02
POD 02
A
POD 02
POD 06
DECODERS A POD 06
POD 0X
POD X6 _J POD 07
T _ Qo &
LT | oo
POD 10 TSX
POD 1X
—_— POD 10
TZE, TNZ
POD X0 ‘ u POD 12
1ST STAGE POD 1X A
POD X2 POD 2
POD 14
_ POD 0X POD X4 ™, TMI
LOGIC 02,04,00,1 3l A POD 14
THRU 02,04.09,1 __ A TOV
SIMPLIFIED L]
"3 POD 0X POD 1X POD 16
l A
POD X6 POD 16
PROGRAM REGISTER POD 20
__ POD X0 POD X0
J— R4 A POD 20
RS e B
MPY-VLM
SBS
H s POD X0 POD 2X POD 22
PR S = r A
POD X2 POD 22
POD 24 I ove-vor
_ POD 1X POD X4
PR S — A A pOD 24
R 2
——
B3 1 - 0D 1X POD 2X] POD 26
PR 1 — | A
POD X6 POD 26
POD 30
__ POD X2 POD X0
PR 2 PR4 A POD 30
fsssse— A
B4
_— 2 RS POD X2 POD 3X | POD 32
PR 2 | A
POD X2 POD 32
POD 34 ANA
— POD 2X POD X4
R3 R A — A POD 34
s PR 2 CAS-LAS-CCS
S8 I
—— 3 w3 POD 2X POD 3X POD 36
PR 3 | A
POD X6 POD 36
POD 40 — 1 ACL
— POD 3X POD X0
L] ulll A A POD 40
R2 ADD-SUB
556— 4 PR3 POD 3X POD 4X POD 42
PR 4 l
—— A
POD X2 POD 42
POD 50 —— HPR
POD X4 POD X0 [
R A POD 50
R 3
f— A
SB7 5 o POD X4 POD 5X POD 52
MR5 ————— I A
R
POD X2 °
POD 53
. POD 4X .
R
R L B
e A PR 6
POD 5X I)
B8 1 = POD 4X POD 54
PR 6 A
POD X4 POD 54
POD 56 RCH
POD 5X POD 5X
R LR = A POD 56
w3 A LDQ-ENB
. m2
21 ma POD 5% POD X6 _J POD 60
R 7
J POD 6X A <
b
POD X0 POD 60
POD 62
POD X6 —
- R4 RS 1 POD 62
A POD 6X
POD X2
$B 10 s s $OD X6 POD 63
oR 1 8 .
RS | Popé&s
POD 64 SXA-SXD
POD 6X POD X4
w5 R 1 & POD 64
A
2 SCH
SB 11 9 "3 POD 6X POD 6X POD 66
Or2 PR 9 A
POD X6 POD 66
POD 70
POD 7X POD X0
Rl A POD 70
A
PR2 T™T
— POD 7X
- POD 7X Q ‘ FOD 72
A
POD X2
POD 74
POD X4 L
A poD 74
PXA-PXD
POD 7X POD 76
I A
POD X6 POD 76
¢ Ep)
\ o
i ! ‘\.V,L;U

{
7 FRNI S B o
N WL /?t

3 SOD 00 we SOD 07
_— (LOGIC 02.04,45,1
R7 A SIMPLIFIED R7 A
R8 PR8
5 R
b0 7 SOD 00 SOD 07
L ALS
— LB’ SOD 10
PR 6 ,-S-cm PR 6 !
PR7 A R7 A
PR 8 R 8
R9 X
SOD 10
WEF
"3 SOD 03 PR 6 ‘SOD Ll
R7 A PR 7 A
w8 PR 8
PR 9 PR Y
SOD 03 SOD 11
LLS-LGL ARS
- so w6 SOD 12
R7 A PR7 A
RE PR 8
RO PR 9
songt SOD 12
BSR REW-RUN
w2 SOD 05 R 6 ‘SOD 13
R7 A R7 A
Re PR 8
PR 9 R9
SOD 05
LRS-LGR
_ > SOD 14
wa ‘son 06 W "6
PR 7 A < R7 A
PR 8]
] eo
2 Wt 7o w e
SOD 06 ~ .
FIGURE 25. SECONDARY OPERATION DECODING
(02.10,65.1 SIMPLIFIED)
INDEXABLE?
R5
A
PR 4
POD 0X
+8
PR 6 INDEXABLE
A
PR7
pLIAN—
ARE 12 AND 13 BOTH ONES? GO TO IA?
SB 12 POD 7X
A I LATE A
A4 D1
SB 13 PRE IA TRIGGER

FIGURE 26. DECODE FOR INDIRECT ADDRESSING

46

TAG REGS (02,04,20,1)

INDEX REGS (02,03,21,1)

i
|
: x& C
TAG C
sB 18 |
I LATCH A
LATCH I
| XR C OUT
: XR B
TAG B
SB 19 |
| LATCH A
LATCH |
‘ | XR B OUT
| XR A
. TAG A |
: : LATCH A
LATCH |
| XR A OUT
‘ |
1
|
|
|
1 OR IA LATE |
A |
|
A3 D2 l
|

FIGURE 27. TAG DECODING

a 1, tag C is set and the index register C contents
are gated out. Bit 19 sets tag B and controls index
register B; bit 20 sets tag A and controls index
register A. If none of the tag bits is a 1, it indicates
that an index register is not required for that parti-
cular instruction, and, therefore, no index register
is selected.

ADDER

The 37-bit binary adder is used in performing all
binary arithmetic and address modification through
indexing. Several inputs and outputs are therefore
necessary for these operations. Adder position 33
and the inputs and outputs are shown in Figure 28 as
a typical example. Inputs to block 4G of the adder
come from the index registers (A, B, or C) or from
the accumulator 33 position. Inputs to block 4H of
the adder may be from storage register 33 or
storage register 15. The combinations that can be
added together are:

1. Any index register 33 XR A, B, or C) to
storage register 33 or storage register 15.

2. Accumulator 33 to storage register 33 or
storage register 15.
The adder position 33 output may be routed to one of
five places (Figure 28):

1. Accumulator 33

2. Accumulator 34

3. Index register X33 (XRX), which is then sent
to XRA 33, XRB 33, or XRC 33.

4. Address register 33

5. Shift counter 15

The adder block shown in Figure 28 is identical
for all adder positions. The +OR (4G) is considered
the A input, and +OR (4H) the B input. The outputs
from blocks 4G and 4H feed a -OR (3G) and a -AND
(21). The -OR (3G) output represents an A or B
(A + B) condition, and the output from -AND (2I)
represents an A and B (AB or A . B) combination.
Ones and 0's may be substituted for A and B as
follows:

1. Aby1

2. Bby1

3. NotA, or Aby0

4, NotB, or Bbyo0
An AB condition causes a generate (G) level and a
propagate (P) level (Figure 28). An AB (11), AB
(01), or AB (10) input condition causes a propagate
(P) level. These outputs are sent to the lookahead
(LA) circuits and to the carry generator. The
important concepts to remember about the adder
block are: ’

1. All adder blocks are identical in operation.

2. The following conditions cause generate (G)

and propagate (P) outputs: G = AB Input, and P = AB
or AB or AB inputs.

3. The generate and propagate levels are sent to
lookahead and provide adder carries.

4. A positive output from the adder indicates a
sum of 1.

Lookahead Adder

The basic principle behind connecting individual
adders to make an adder unit is to take the carry-out
of one adder block and connect to the carry-in of the
next high-order position adder. If all adder positions
contained a 1 and a 1 were added to the low-order
position, a carry would have to ripple through the
adder unit from the low-order position to the high-
order position. As the carry ripples through the
adders, each adder block introduces additional delay.
The lookahead adder contains additional logic circuits
that provide a means of predicting how many positions
would be affected by a ripple carry and injects the
carry into all affected positions almost simultaneously.

Lookahead Propagate and Generate Outputs

The 7040/7044 adder contains an adder block for each
adder position, a carry generator for each position,
and three levels of lookahead. TFigure 29 is a block
diagram of the lookahead adder. The carry generators
provide the carries into the affected positions. The
first level of lookahead examines the adder outputs in
groups of 4 and sends the generate and propagate
outputs to the second and third lookahead circuits
(Figure 29). The second and third levels of lookahead
determine the carry into various groups in the adder.
The lookahead outputs and carries from lookahead are
available almost immediately after data is sent to the
adders, thereby eliminating the need for the carries
to ripple through the complete adder.

As shown in Figure 29, the generate and propagate
levels from adder blocks 1-32 feed the first level of
lookahead. The outputs are grouped in groups of four
adder blocks, and the first lookahead level propagate
and generate outputs are sent to the second and third
lookahead levels. The second lookahead level provides
carries into adder carry generators for adder posi o
tions 20,24, and 28; the third lookahead level provides
carries for adder positions P, 4, 8, 12, and 16. The
carry generators provide the carries for the remain-
ing adder positions.

Figure 30 shows how the propagate and generate
outputs and carries are caused from the three levels
of lookahead. The following examples cause a carry
1 into adder position 32 (Figure 30):

47

Carry into 32 33 34 35
1 0 0
1 0 0
1 0 0 0 Nocarry into 35
0 1 0
1 1 0 No carry into 35
1 0 0 O
0o 0 1
1 1 1 No carry into 35
1 0 0 0
0 0 o0
1 1 1 Carry into 35
1 0 0 0
More than one AND may be conditioned to cause a
33 carry intc position 32.
1 0 0
1 1 1 Carryinto 35
1 1 0 0

The above combination conditions two AND's, which
provide a carry into adder 32. To illustrate this
statement, apply the following expression to Figure
30: Hotl - 33P -+ 34P - 35Por 33G. Ifall 1's
are added together, resulting in a carry into position
35, all four AND's for the 33 carry are conditioned.
The remaining groups of the first level of lookahead
provide no carries. These outputs are sent to the
second and third levels of lookahead.

The (29-32) G output is caused similarly to the
(33-35) G. The (29-32) P output shows that the
propagate outputs from adder positions 29, 30, 31,
and 32 must be present to the + AND (Figure 30).
The remaining first-level lookahead outputs are
caused the same as the (29-32) P and (29-32) G.
Note that in lookahead outputs it is possible to have
a generate output with no propagate output.

The second lookahead level receives inputs from
the first lookahead level. As a typical example, the
29 carry output is generated if one of two or both
conditions exist: a (29-32) G or (33-35) G and (29-
32) P, This is similar to the first lookahead level
except that groups from the first level are examined
instead of individual adder outputs to determine
carries.

Since floating-point arithmetic requires dividing
the accumulator (Q, P, 1-8, and 9-35), the adder 9
carry may be considered a special case for carry
control. The second lookahead level combines
outputs from the first lookahead level to cause the
(9-20) G and (9-20) P outputs. If the instruction is
not a floating-point operation, the second and third
lookahead levels operate normally. If a floating-
point instruction is being executed, a 1 to adder 8
provides the 9 carry. The 9 carry from adder
positions 9-35 is inhibited from affecting the 8
position for all floating-point instructions (Figure
30).

48

The third lookahead level accepts outputs from the
first and second levels to provide carries to high-
order bits 16, 12, 8, 4, and P (Figure 30).

Adder Operation

To obtain the correct sum, the adder must consider
every possible combination that may appear at the
inputs. The 7040/7044 adder may be divided into
sections containing four adder blocks in each section.
Figure 31 shows a 4-bit adder for adder positions 29,
30, 31, and 32. Operation of positions 1-4, 5-8, 9-
12, 13-16, 17-20, 21-24, and 25-28 is the same as
for adder positions 29-32 except for the differences
in the generation of the carries from lookahead. The
carries from lookahead can be determined from
Figure 30. Adder positions 33-35 are a 3-bit adder
with the carry-in from an external source. Positions
P and Q are extensions of the adder with the carry into
position P from the third level of lookahead. As
shown in Figure 31, adder position 29 receives a not
29 carry from the second lookahead level. See
Figure 30 for the levels that cause the 29 carry.
Since an adder block cannot distinguish between 0
plus 1 and 1 plus 0, three combinations are possible
at the inputs (00, 10 or 01, and 11). The possibilities
double when a carry-in condition exists (six total
possibilities). In a 4-bit adder, 272 combinations
are possible. This includes a carry-in and a no-
carry-in to the low-order bit. Therefore, only a
few examples of adder operation are explained in
detail here.
Example 1:
0000
0000
0000 No carry-in
When adding 0's with no carry into position 32, all
the AND's in the adder and carry generator are de-
conditioned. The sum output from each adder
position is negative, which represents 0's.
Example 2:
0000
0000
0000 Carry into position 32
If a carry-in (CI) to position 32 occurs, AND 2G
in adder position 32 is conditioned, resulting in a
positive output from inverter IF. A sum of 0001 is
sent to the receiving register (Figure 31).
Example 3:
1010
0101
1111 No carry-in
Assume that the above numbers are added together
with no carry-in to position 32. In adder position 32,
AND 2F is conditioned and a 1 is sent to the receiving
register (Figure 31). One input to AND 2F is condi-
tioned by a 01 or 10 (A- B or A :B) input to the adder.

XRA =1 (SAME AS XRC)
/ +A
TAG A
XRB=1 (SAME AS XRC)
+A
+0 +A0
TAG B
_-1
+A +0 I "l‘ +A
NOT RESET [| »
XR TO AD B
SET XRC
TAG C A
XR B 33
02.03.33.1 c
AC TO AD I
+A
A A+B
+0 -SC +0 -0 PROPA- +A
GATE
— +A]
SET AC 4G 3G 2F
. +A +0 |
AC TO AD
02.02.33.1 AC33 &
w
<€
00 sC +A &
+ — .
R A b g 2G 1G IF
+0 < A [—¢ +A
SET SR
SR TO AD L7
02.01.33.1 SR
33 H 21 2H
02.02.33.1 ADDER 33
+00 1+ +A
- LA = LOOK AHEAD
CG = CARRY GENERATOR
SET SR
SR TO AD L3
02.01.15.1 SR 15

FIGURE 28. ADDER INPUTS AND OUTPUTS

AD TO AC
— N | +0 -s¢ [
SET AC |
02.02.33.1 AC 33
AD RT TO AC
-] +A +0 -SC [—
r
SET AC |
A 02.02.34.1 AC 34
SET XRX SET XRA
+A — +A
- A
NOT RESET XRX ‘
+A +0 I +A
y
SET XRB +A
SET XRC
XRX 33 02.03.33.1
+ +A
AD TO AR
NOT RESET AR
- +A +0 |
AR33 02.04.33.1
+A +00 -SC
AD TO SC
SET SC I
SC 15 02.04,15.1

49

CARRY INTO P (1CARRY)

x

% X X% %
3rd CARRY INTO 4 (3 CARRY)

LEVEL
LA

CARRY INTO 8 (9 CARRY)
% X% X% 3

x

b 4

x
x

X

x

x

x
x

x
-3¢

X% 3 3 X% X% —% X% * X% X—
(1-41PG CARRY INTO 12 (I3 CARRY)
et ¥4 V) ¥ M " " o v v v «
(s-eree % X ¥ % % 3 * % % % *
172000 CARRY INTO 16 (17 CARRY)
e
i
NOT
ITOA CARRY CARRY CARRY CARRY
GEN GEN GEN GEN
] I !
28 '24 120 X16 K12 (8 X4 X
) o 31 v l27 o 23 o 19 o XI5 o X! X7 v X3 v Xp
@ 34 o |30 |o o |22 o lis o Y2 o %o o Y6 o %2 o 8
@ 33 9I32| |29 @ © 2 @ 37 @ Ti3 © 9 5 o T @
(9-12)P,6)
e) HE R4 35 | AD AD AD AD AD AD AD AD A AD
(21-24) P,6 35-33 32-29 28-25 24-2 20-17 16-13 12-9 8-5 a-i P,Q
(25-28) P,G
(29-32)P,6
® ® G é) C ® 5
&
I st z
LEVEL
[
LA a
INCLUDES] 5
LOW @
ORDER | @ FIRST
GEN | | e SECOND
—X¥%— THIRD

INPUTS & OUTPUT OF ADDERS NOT SHOWN

“P&G" REFER TO INDIVIDUAL ADDER STAGE "PROPAGATE & GENERATE"

FIGURE 29. ADDER LOOKAHEAD BLOCK DIAGRAM

50

NUMBERS ADJACENT TO LINES BETWEEN CARRY GENERATORS

" AND ADDER BLOCKS INDICATE CARRY INTO SPECIFIED ADDER STAGE

Ist LEVEL LA

2nd LEVEL LA

3rd LEVEL LA

CARRY INTO 32
(33 CARRY)

G arae
- l-
(17-20)p (17-20)6 y SAME

(33-35)6

(29-32)6

(25-28)P
(29-32)6

(13- IG)P (13-16)6 AS |
(9-12)P (9-12)G ABOVE
(5-8)P (5-8)6

(29-32) P

(33-35)6

CARRY INTO
28
(29 CARRY)

NOT 29
CARRY

CARRY INTO
24
(25 CARRY)

NOT 25 CARRY

(21-24)P
(25-28)p — +A
(29-32)P
(33-35)6

(21-24)P
(25-28)P
(29-32)6
(21-24)P
(25-28)G

NOT FP

(9- I2)P
(13-16)P
(17 -20)6

(9-12)P

CARRY INTO
20
(21 CARRY)

NOT 21 CARRY
(21-35)G

(9-12)P—| +A 1 (9-20)P
(13-16)P
(I7-20)P

(I7-20)P
=(21-35)6 CARR;}: INTO
(17 CARRY)
(17-20)6G NOT 17 CARRY‘
}-—- ________ — ——
(13-16)P
17-20)P
=(21-3516 CARRY INTO
12
(13-16)P

(13 CARRY)

NOT 13 CARRY

=(9-20)P —{ 4A
CARRY INTO
=(21-35)6 +0 8

(9 CARRY)
=(9-20)6

NOT 9 CARRY
(5-8)P
= (9-20)P— +A
=12I-35)6
CARRY INTO
CEOLES P +0 4
— (92016 (5 CARRY)
NOT 5 CARRY
(5-8)6
(1-4)P
(5-8)P§T—A
=(9-20)P
=(21-35)6)
(1-a)p i CARRY INTO
(5-8)P P
=(9-20)6 (I CARRY)
u-ayp— A NOT | CARRY
5-816
(1-4)6

P = PROPAGATE , G=GENERATE , HOT= | TO AD 35, FP= FLOATING POINT, = 2nd LEVEL LA OUTPUTS

FIGURE 30. ADDER LOOKAHEAD CIRCUITS

C135 AND
33 THROUGH 35
PROP AND GEN
o | l I
el oN
..n;‘,cn : Cl 1 Lt (29-32)P ,
32 PROP | | 32 PROP DA |
32 GEN 1 1 o] FIRST % SECOND % - ek
31 PROP] SROPY teve | gpagc | LeveL Rt
31 GEN 1 31 GEN v
. oFor] LOoK 4 LOOK
' | 30 GENI AHEAD ’ AHEAD I
d 29 PROP (29-32) G
l I 29 GEN I
L]
| o
1 +A 1 +A I (::) I I
&] +A
0] -
2 +A | = Y l
&
§ @]
8 +A — 1 A — +0 [™ A @) e
N
g ® |
g @) @
' ® | Q) © | |
H | | |
L | 31c | L 1 30c I M~ I
GEN GEN O l GEN @ I GEN |
PROP PROP PROP PROP
KIF:KLB._l KQF:R_’_B.—(Zoﬁji.Bo_l
+AeBeCl +AeBeCl +AeBeC
> - ™ +a ™ o+
HF AC=1-3 I +IF AC=1=B I + IF AC=1=8 I + IF AC=1=B l
29¢
B A+B @ l B A+B @ I B A+B @ | B A+ @ I
+0 -0 I +0 -0 I +0 -0 I +0 -0 I
‘ © A |) A l @ A | D A |
o
A | |]
2 +0 I +0 | +0 1 +0 I
A AB : : I A AB : : I A AB : : I AB : : l
+0 -A +A +0 -A +A . +0 ~-A +A +0 -A +A I
+IF SUM=1 SUM=1 +IF +IF
| I SUM=1| sum:ll
@ | ® U @ @ U ® | O D) | @ [@& U ® |
4 IF SR=1=A | + IF SR=1=B +IF SR=1=A +1F SR=1=A
ADDER 32 l ADDER 31 I ADDER 30 I ADDER 29 I

FIGURE 31. 4-BIT ADDER OPERATION (POSITIONS 29, 30, 31, AND 32)

51

ic
(1-4)G + (1-4)P o (5-8)G + (1-4)P o (5-8)P & (9-20)G + (1-4)P o (5-8)P @ (9-20)P o (21-35)G 02.02.40.1
5C
(5-8)G + (5-8)P @ (9-20)G + (5-8)P o (9-20)P & (21-35)G 02.02.41.1
_ _ _ _ 9¢ THIRD LEVEL
CARRY TO AD 8 + (9-12)G ¢ FP + (9-12)P o (13-16)G @ FP + (9-12)P @ (13-16)P o (17-20)G o FP + (9-20)P o (21-35)G FP 02.02.42.1 & 02.02.43.1 LOOKAHEAD
(9-12)G + (9-12)P o (13-16)GG+
(9-12)P @ (13-16)P o (17-20)G +
(13-16)G + (13-16)P » (17-20)G + (13-16)P @ (17-20)P » (21-35)G 202,441 [RC | U12P e (1316P 8 (17-200P ¢ (21-339G
17C * « " «
(17-20)G + (17-20)P o (21-35)G 02.02.45.1 w 5 & o
Q [0)
—— o c— om— —— o —— S— S—— [— — — — — —_— - —_— T — O — —— — — " —t—
o >5 aZg
z g o]
21c g o S so0d
(21-24)G + (21-24)P o (25-28)G + (21-24)P o (25-28)P (29-32)G + (21-24)P o (25-28)P @ (29-32)P o (33-35)G 02.02.46.1 y 5 o = 8
g 2w z
OnOER o._
BOE (S
o D~ o« .._D.. A_A W
25¢ A2Zz8a . Lo
(25-28)G + (25-28)P ® (29-32)G + (25-28)P o (29-32)P e (33-35)G 02.02.47.1 ac%za<« =8
<z w<o o 2 SECOND LEVEL
OCog¥o s LOOKAHEAD
.uln —EFEW
52Zzz4
29C So06220
(29-32)G + (29-32)P o (33-35)G 02.02.48.1. * 'S wFu =5y
2=25%%
Zo8gzgY
Cl 35 = 52w
o &3¢ f2P50&
H Q H « A) « _
&
™ [0} (0] |9} + Q
. 2 S 2 z g R 2
5| o od os 9 o2 ox . o 52 3 8
‘e 2% 8 S5 g 88 3 % el .68 25 R 8s 8 Q& - + o | FrsT LEvEL LookarEAD
o +a + o a + o +e'e + g + 9% + e + 9% N —2< 05 + g + e e + g +e'e 1% Qs ? Qx + = | AND CARRY GENERATOR |
™ m% 0a 9 Oa Oa o] Qo Oa o Q Oa Oa o S} O D.CI:.“ Oa a O O a (O Q OQa Oa o + 9 +t o0 e MR G.
.8 L. +MM. L0 +nﬂ Rt +mzv. +R% +T/..W.N. +ﬁ +%M +BRB] RS MNM s = 20 LeRoR) +B +n.,u === Q Qs g 9 os 9as o +PW
L] e o °)) .) e e e . ° e P . + = + + o + + . e e) + + + + + + 7 Y
Qo OQa @ [O] Did [0} [0} [0) o [0} o 10} A = o o0 A LA o . T e e e oo . ° o oo .
85 | | 330 | [2883||| 85 | |355 | |38&5 8% || SR8 | |8%%s S N R W R g8 | |f&& | [r2? 8888 8% | [85| [9xs5s Q& | 2= Bess 8s ||oxs]| 8353 9x ||9ss | [9xas o | 1888
L
35C 34C 33C 32¢ 31C 30C 29C 28C 27C 26C 25¢ 24C 23C 22C 21C 20C 19C 18C 17C 16C 15¢ 14C 13C 12¢ 1c 10C 9¢C 8C 7C 6C 5C 4c 3C 2c 1c PC
¢ .J .J .J L @ Q CARRY
.9 Yy % & & F | \ t
ADDER 35| |ADDER 34] JADDER 8_ (ADDER 32] |ADDER 31] ADDER 30] [ADDER 29| |ADDER 28] |ADDER 27| JADDER 26} |ADDER 25] JADDER 24| |ADDER 23] |aDDER 22] faDDER 21] |ADDER 20| |ADDER 19] |ADDER 18] JaDDER 17] JADDER 16| |ADDER 15| |ADDER 14| |ADDER 13| JaDDER 12| |ADDER 11| |ADDER 10} | ADDER 9| JADDER 8 | | ADDER 7 | | ADDER 6| | ADDER 5| | ADDER 4| JADDER 3| |ADDER 2| | ADDER 1] | ADDER P| JADDER @ mr_u%mMm

FIGURE 32, ADDER CARRY GENERATION
52

Both inputs to OR 1A in the carry generator are
negative. The positive output of OR 1A conditions
the second input of AND 2F. The +OR's (1D and 1G)
in the carry generator outputs from positions 31 and
30, respectively, are positive. AND 2F in position
31 and AND 2F in position 30 are conditioned, and
a sum of 1 is generated for both positions. In adder
position 29, the output from the second lookahead
level is positive, and an AND 2F condition is met,
causing a sum of 1 for position 29.
Example 4: i
1010
0101
1 Carry 0000 Carry into position 32
Assume that a carry-in occurs and the same two
values in Example 3 are added together. A propagate

output appears at all the inputs of the carry generator.

In carry generator 32, AND 2B is conditioned (Figure
31). The negative output of OR 1A is inverted by
inverter 1B, causing a 32 carry (32C) into position
31. Since the output of OR 1A is negative, AND's 2F
and 2G (adder 32) are deconditioned and a zero sum
results. The propagate levels from positions 32 and
31 and the CI-to-AND-2C (position 31) level apply a
positive input to OR 1D, causing a 31 carry (31C)
into position 30 and deconditioning AND's 2F and 2G
in adder position 31. In position 30, AND 2F in the
carry generator is conditioned, causing a carry into
position 29. Since a carry into position 32 occurred,

the (33-35) G level to the input of the second lookahead

level is present and the (29-32) P output is generated
(Figure 30). These two conditions cause a 29 carry
into adder position 28. The output from the second
lookahead level is negative, deconditioning AND's 2F
and 2G in adder position 29. The sum is 0000 and a
carry into adder position 28.
Example 5:

1111

1111
1 Carry 1110 No carry-in

In this example, the generate and propagate out-
puts appear at the inputs of all the carry generators
for each adder position (Figure 31). With no carry
into position 32, AND 2A in the carry generator is
conditioned. The negative output of OR 1A is
inverted (1B), causing a 32 carry into adder position
31. Adder position 32 AND's (2F, 2G, and 2H) are
deconditioned, resulting in a sum of zero for
position 32.

Carry generator position 31 and AND's 2E and 2D
are conditioned by the 31G (AND 2E) and 32G and
31P (AND 2D) levels. This causes a carry into 30.
The 32C and the A - B (11) inputs to the adder, via
OR's 4G and 4H, condition AND 2H in adder position
31 (which results in a sum of 1).

In carry generator position 30, AND's 2I, 2H, and
2G are conditioned, causing a carry into adder posi-
tion 29. AND 2H in adder position 30 is conditioned
by the 31C and an A * B (11) input to the adder. The
sum for position 29 is equal to 1. The second level
of lookahead provides a 29 carry into adder position
28. Figure 30 shows how this carry is generated.

Example 6:

1111

1111
1 Carry 1111 Carry into position 32
Assume a carry into adder position 32 and a 1 plus
1 input to adder position 32. AND 2H is conditioned,
causing a sum of 1 (Figure 31). The same AND's as
in Example 5 are conditioned in all positions,
including AND 2F in the carry generator 30 position.
The following AND's are conditioned:

Position Carry Generator Adder
32 2A, 2B 2H
31 2C, 2D, 2E 2H
30 2F, 2G, 2H, 21 2H
29 Second level of lookahead output 2H
provides carry into adder 28.
Summary

Figure 32 summarizes the conditions that cause a
carry to the next higher position for all 37 bits of the
7040/7044 adder. If the propagate and generate
levels from the adder are established, the carries
can be determined. The logic involved in this figure
is 02.02. 40. 1 through 02. 02.50. 1. Boolean Algebra
symbols are used: a plus sign (+) indicates an OR
condition, and a dot (-) indicates an AND condition,

As shown in Figure 32, the 18 carry may be caused
by a condition external to the adder. The Transmit
and Reset and Load Channel A are the two instructions
that require a carry into adder 17.

The Transmit (TMT) instruction reads one area of

memory and stores the data in another section of
memory. Accumulator bits 3-17 are the from
address, and accumulator bits 21-35 are the to
address. Accumulator bits 3-17 and 21-35 must be
incremented by 1 after each word is read and stored.
When the shift counter goes to 0, the instruction ends.
A hot 1 into position 35 increments accumulator
positions 21-35. A carry 1 into accumulator 17 is
necessary to increment 3-17 by 1. To cause a carry
1 into adder position 17, two inputs to adder 18 are
provided which represents a 1 plus 1 condition.
These two inputs cause propagate and generate out-
puts to be sent to the carry generator, resulting in
a carry 1 into adder 17 (logic 02.02. 18. 1). Figure
32 shows the conditions that cause an 18 carry into
adder 17.

53

When a Reset and Load Channel A (RCHA) instruc-
tion is executed, the channel command word is stored
in the accumulator. Accumulator bits 3-17 contain
the word count, and 21-35 contain the starting ad-
dress. Positions 21-35 are incremented by 1 when a
hot 1 is sent to adder 35. The complement of the
accumulator is sent to the adder, and a 1 is sent to
adder 18 at U2 D3 time, causing a carry 1 into adder
17 and decreasing the word count by 1. Two inputs
to the adder are provided for an RCHA instruction,
causing generate and propagate outputs to appear at
the carry generator inputs. The carry 1 into adder
17 is therefore realized (logic 02. 02. 18. 1).

The following concepts summarize the operation
of the adder:

1. Generate output: An A - B (11) input to the
adder block. This provides a carry to the next
higher-order position.

2. When grouping generate outputs, a carry-out
from the highest order position is indicated; i.e.,
(25-28) G indicates a 25C.

3. From the first, second, and third lookahead
levels, it is possible to have a generate output with-
out a propagate output.

4. Propagate: Any output from the adder other
than an A - B (00) at the inputs or groups of
propagate outputs are AND'ed together.

5. A generate output from an individual adder
block causes a propagate output.

6. First, second, and third lookahead levels cause
carries into certain positions in the adder (Figure
30).

The concepts of the adder have been presented in the
following order:

a. Inputs and outputs from adder position 33.

b. Generate and propagate output conditions
from the adder.

c. Block diagram analysis of the adder.

d. Conditions that cause first, second, and
third lookahead generate and propagate
outputs and carries.

e. 4-bit adder analysis.

ADDRESSING

All information used in the 7040 and 7044 data
processing systems must be placed in core storage
to make it accessible for processing. The manner
in which information is entered in and removed from
core storage must be orderly to prevent confusion
and erroneous results. Consequently, each core
storage register is assigned a number which serves
as its address in the core array. References to
memory are made with these addresses. Thus, an
item of information is specified in the machine via a
core storage address. This section provides a
detailed analysis of addressing as applicable to the
7040 and 7044 CPU operations.

54

Addressing Core Storage

Addressing is the process of referencing a specific
core storage location. The reason for referencing

a specific core storage location depends on the user
(CPU, channel A, or an overlapped channel). When
the CPU is the user, memory is referenced for
instructions, operands, or storing purposes. When
either channel A or an overlapped channel is the user,
a memory reference is made either to transfer the
contents of the referenced location to an I-O device
(write operation) or to transfer data from an I-O
device to the referenced memory location (read
operation). In each of these cases, however, the

end result of addressing is the transfer of an effective
address to the memory address decoding circuits.

The memory address decoding circuits are acti-
vated when the MAR is loaded. Referencing a core
address therefore involves placing the effective
address in MAR. Overlap channels do this directly
by transferring the contents of the channel address
register to the MAR. All CPU operations and data
channel A operations load the MAR from the address
register (AR).

The most basic form of addressing is illustrated
by the instruction counter. Initially, the instruction
counter contains some value; for example, 1000g.
This value is transferred from the instruction counter
to the AR, and from the AR to the MAR, as the ad-
dress of the desired instruction. Note that no address
modification is involved in this application of address-~
ing. When the instruction contained in location 1000g
is received in the CPU and decoded, the instruction
counter is incremented by 1 to the value 1001g. This
value represents the address of the next instruction
to be executed by the CPU.

Similar action occurs when an overlapped channel
or data channel A represents the user. With an over-
lapped channel, the channel address register acts
exactly like the instruction counter; that is, the con-
tents of the channel address register form the address
of the desired core location. When this core location
is loaded during a read operation or transferred to
the I-O device presently in use during a write opera-
tion, the channel address register is incremented by
1 to identify the next core location to reference. A
channel A operation uses accumulator bits 21-35 in an
identical manner.

From the above illustrations, it can be concluded
that referencing core storage via the instruction
counter, the channel address register, or the accumu-
lator represents a basic application of the addressing
concept. In addition, the effective action is identical
in each case.

When relating the concept of addressing to CPU
operations, it is generally associated with the instruc-
tion word. In the 7040-7044, instruction word bits

21-35 form the address field. The value contained
in these bits is the base address. Instruction word
bits 18-20 form the tag field, which serves to specify
address modification by indexing when dealing with
instructions that do not apply to the index registers.
If the tag field contains value other than 0, address
modification is specified. Actually, the tag field
value identifies an index register whose contents are
to be used for the address modification. The contents
of the specified index register are subtracted from
the base address to obtain the effective address. If
no address modification by indexing is specified, the
instruction word base address becomes the effective
address. The effective address, in any case, is
loaded into the AR and goes from the AR to the MAR
as the address of the desired operand.

The 7040-7044 also employs indirect addressing.
Instruction word bits 12 and 13 are used to specify
this type of addressing. These bits form the flag
(F) field, and, when they contain a value of 119,
specify indirect addressing. In this case, the
effective address identifies a core location whose
contents contain the effective address of the desired
operand.

Since the actions associated with CPU addressing
occur during instruction decoding and during the
action taken on an operand (in indirect addressing),
CPU addressing is concerned only with I and E
cycles. The reasons for resolving it to these cycles
are as follows:

1. B cycles are not at all concerned with the CPU.

2. C cycles force an address directly into MAR.

3. L cycles do not reference memory.

4. U cycles initiate E cycles and so, in effect,
are the same as E cycles.

5. IA cycles are just a type of E cycle.

6. IC memory referencing pertains to the se-
quence of instruction execution rather than to ad-
dressing as the result of instruction decoding.

Figure 33 shows the general flow of information
pertinent to CPU addressing. The key to this action
is knowing what is loaded into the AR and when.

Instruction Counter

The 15-position (21-35) instruction counter (IC)
keeps track of the program currently being executed
by indicating to the CPU the address of the next
instruction to be performed. Figure 34 shows the
three least significant positions of the instruction
counter to illustrate how it is stepped; the various
conditions that will step the instruction counter are
also shown. Normally, the instruction counter is
stepped once during I cycle time (block 1 of Figure
34) but, under test conditions or during special
instructions, can be stepped during E or L cycle
time (blocks 2, 3, and 4 of Figure 34).

Each step-IC level is fed to all IC positions (block
5 of Figure 35) as is the set-IC level. Whenever
present, these levels cause the least significant
position (IC 35) to change its state; i.e., if IC 35 is
a 1 (as shown in block 5), it changes to a 0 (-SC in-
phase output will be +B; out-of-phase, -B) when the
set-IC level comes in, and, if it is a 0, it changes to
a 1 when the combination of set-IC and step-IC is fed
to it. Instruction counter 34 changes state with every
other set and/or step input; IC 33, with every fourth;
IC 32 with every eighth, etc.

The OR input to the -SC of any one of the IC posi-
tions must be -B for the set level to cause the -SC
to switch to, or be maintained at, a 1 state. For the
OR to feed a -B to the -SC, one of the OR's input
AND circuits must be conditioned; if one of the AND's
is not conditioned, the -SC switches to, or remains
at, a 0 state. Each IC position is AND'ed so that the
only time a given position switches to a 1 state is when
it is already at a 0 state and all lesser significant
positions are 1's. At the time a given position
switches to a 1, all lower positions switch to 0's; the
given position then remains a 1 until all lower posi-
tions become all 1's again. When lower positions are
all 1's, and the given position is also a 1, the given
position switches to a zero when it receives the next
set level. Simply, if IC 33 is a 1, it does not switch
to a 0 unless both IC 34 and IC 35 are alsoin a 1
state; if IC 33 is a 0, it does not switch to a 1 unless
both IC 34 and IC 35 are 1's. Block 5 of Figure 34
shows how the circuits are connected to accomplish
this.

Address Register

The address register contains 15 latches (21-35) which
may be set from the corresponding bit position of
either the adder, the instruction counter, or the
address keys on the operator's console. Figure 35
shows one address register position (all positions

are the same) and the conditions that set and/or reset
it. The most important items in Figure 35 are the
conditions involved in determining which information
source is transferred into the address register. A
study of the figure will reveal that:

1. The IC to AR transfer takes place in bringing
out the next sequential instruction, (and for manual
conditions).

2. The AD to AR transfer takes place when data is
to be fetched or stored, and when a 1-cycle transfer
instruction has been executed in which the transfer
conditions have been met.

55

INSTRUCTION

TRANSFER
IC TO AR
TO MAR

FIGURE 33. ADDRESSING

56

INSTRUCTION WORD

DECODE

WILL NEXT REQUIRED WORD

BE AN INSTRUCTION OR AN OPERAND
OPERAND?
/
NO ADDRESS YES
‘ MODIFICATION ?
ADD TNBEX
REG TO ADDRESS
BITS 21-35 IN
THE ADDER

NO

TRANSFER
ADDER 21-35
TO AR TO MAR

1 v

INDIRECT YES
ADDRESSING?

TRANSFER ADDER
21-35 TO AR TO MAR
AND PREVENT NEXT
CYCLE FROM BEING
INTERPRETED AS
iNDIRECT ADDRESSING

!

SB TO SR
AND
SRTO AD

NO ADDRESS YES
MODIFICATION

ADD INDEX REG
TO ADDRESS BITS
21 - 35 IN ADDER

|

TRANSFER ADDER 21-35 TO AR TO MAR

SPECIAL INSTRUCTIONS

FIGURE 34. INSTRUCTION COUNTER

+B CELL DRIVE

| " NORMAL IC STEPPING 1]
1 | LATE |
| AdDI A | +B STEP IC
| I :
| X |
| DISPENTER OR CLEAR I
| |
.- e ____1
r'—___ ———— " T
| ENTER INST :
| CONT ENTER INST |
| FORCE TRAP |
:LOAD IGR |
---—-——-—-——-——-— - - - — ———— --—————_—_—_—_—_-— _- - - - ——— -
| ' | IC 33 10 IC 34 r IC 35 |
] ANY ONE OF THESE | | | [1
| WILL PREVENT IC I ' | | I l
FROM STEPPING
L — — — TO AR 3% l A 1O AR STEP A |
| -BIC 34 l | s I I |
[l | STEP | : TO AR 35 |
2 || Sree 0 —s¢ |eelicss : || 23 0 —sc |licss } | 0 _s¢ ﬂaI Ic 35 |
A3D1 A |
| I | |
CLEAR OR STORAGE TE | l | I |
| | ARs33] SET] <BIC33 | I AR 34 A SET] Bics | || s A SET] -BIC 35 I
E EARLY
| :] [|
|
TEST CONDITIONS || A |] aric | : AR-IC }
— EFFECT AR-IC XFER | | |
| | || |
3 l | A Il {
TSL INSTRUCTION A | ‘ +8 IC 35 | | |
E EARLY D] B3 | STEP l |
|| micss [| |
Al D1 | | | |
— | | ster | |
PARTIAL STORE TGR ON | | | | | |
| b | | |
TRANSFER AND STORE - - Jo- __ _—_ |\ N R T F J
|IC INSTRUCTION
0
CHANNEL SKIP
SENSE SKIP
LAS-CAS SKIP
| A
A4 D1 ‘
L EARLY - -B SET IC
A 0 I ch
L EARLY
Al DI

57

AD—AR

GOTOU

A5 D1

B

SOD 14 A -8 AD-AR

1 CY TRANS NOT MET

1-1A LATE

BLAST CNTL OR ANY TRAP

END OP TGR

IMT AND E OR L LATE

A5 D

AR POSITION 35
DLY AD-AR A

IC—AR 2
BLAST CNTL OR ANY TRAP
E LATE OR L LATE OR | LATE

AD 35

END OP TGR *155

XEC

R -B IC-AR IC-AR
TRANSFER COND MET DLY

A -0 l_ A }_ IC 35

*155

A5 D1 1

ENTER OR DISP STORAGE

AK 35
STORAGE TEST SWITCH

-B CLEAR TGR |

AK—AR BRSTAR A 1 0o | 1 AR TO MAR

ENTER OR DISP *155
AND STORE TEST A -B_AK-AR

DLY AK-AR

ENTER OR DISP STORAGE

| LATE l
A5 D]

RESET AR

-0 - 1 -

-B TRAP AR RESET

-B INTLK RST LINE 2

FIGURE 35. ADDRESS REGISTER

58

Effective Address

Effective address is the term usually applied to the

actual address in core that is required by a particu-
lar instruction; it is the address that is placed in the
address register from the adder to fetch an operand.

The effective address can be obtained in any of
three ways:

1. The address may be taken directly from the
address portion of the instruction word (Figure 36,
A). When the instruction word is decoded, the tag
bits (18, 19, and 20) indicate that an index register
will not be selected to modify the address portion
(21-35) of the instruction word; bits 12 and 13 indicate
that indirect addressing will not take place. So the
address is transferred, unaltered, from the storage
bus to the storage register, to the adder, to the AR,
and then to MAR, where an operand fetch is effected.

2. The address may be taken from the instruction
word, modified by an index register, and then sent
out to fetch an operand; this is called indexing or
address modification (Figure 36,B). Decoding of
instruction word bits 12 and 13 indicates indirect
addressing will not take place; tag bits, however,
indicate that index register A is to be used to modify
the address of the instruction word. The instruction
word goes from the storage bus to the storage
register, and from the storage register to the adder;
the contents of index register A also feed the adder
(into positions 21-35). A 2's complement subtraction
between the address of the instruction word and the
contents of the index register takes place in the
adder; the result is the effective address. The
effective address goes to the AR and then to the MAR
to effect an operand fetch.

3. The address portion of the instruction word
may, instead of indicating the address of an operand,
indicate the address of a word in core storage which
contains the address of the operand; this technique is
called indirect addressing (Figure 36,C). Decoding
of bits 12 and 13 indicates that indirect addressing is
to take place; the IA trigger is set, causing the next
cycle to be an IA cycle. Bits 18, 19, and 20 indicate
there is to be no indexing. (The address is capable of
being indexed if so indicated by tag bits; for simplicity
no indexing has been selected.) The address goes
from the storage bus to storage register, to adder,
to AR, and then to MAR to effect the readout of the
word in the specified location. The word read out
and placed on the storage bus is decoded. Bits 12
and 13 are not decoded this time because the CPU is
in an IA cycle, and the IA trigger can be set only
during I late time (Figure 21). Bits 18, 19, and 20
indicate index register B is to be used for address
modification. The contents of index register B in 2's
complement form are subtracted from the address of
the word in the adder; the resultant is the effective

address of the operand. This effective address goes
to the AR and then to the MAR to fetch the operand
required by the CPU.

Index Register

The 7040/7044 has three identical index registers (A,
B, and C), each with 15 latch positions (21-35).
Figure 37 shows one position of one index register to
illustrate how and when it may be set or read out.
One 15-position register, XRX, loads all three index
registers. The index registers can be loaded only
from the XRX; the instruction tag bits determine
which index register is to be loaded. The XRX is
loaded from the adder as a result of any one of the
special instructions that cause an index register to
have its contents changed. There are many combi-
nations of levels and timing pulses that reset and set
both the XRX and the specified index register; in
general, however, it can be said that any instruction
that alters the contents of an index register causes
the reset and set level to be generated.

The specified index register may have its contents
read out to either the adder or the storage register.
In either a POD 63 or 74 class instruction, the read-
out is to the storage register; in all other instances,
the readout is to the adder. The AND labeled 1
(Figure 37) is the one concerned with address modi-
fication. The XR-AD transfer takes place at the
same time, A4D3 during I-IA Late, as does the SR-
AD (Figure 37), so the address portion of the instruc-
tion word becomes the effective address the instant
it is transferred into the adder.

PARITY

The 7040/7044 is an odd-parity system; i.e., each
word in core storage contains an odd number of 1's.
When storing a word, the CPU ascertains how many
1 bits are in the word (bits S through 35). If there
are an even number of 1's, the CPU assigns an
additional 1 bit into MDR position 36, making an odd
total of 1 bits in the word being stored. If the word
contains an odd number of 1bits (S through 35), the
CPU lets MDR position 36 remain a 0. Core storage
words, then, have one more bit position than the
words utilized by the CPU. This extra position, the
parity bit, is used to check the validity of words
read out of memory, called parity checking. The
additional bit is labeled the check (C) bit but is
commonly called the parity bit; the terms are
synonymous.

59

FIGURE 36. OBTAINING EFFECTIVE ADDRESS

60

2, DURING IA CYCLE
C) INDIRECT ADDRESSING

OP oo Y
$B H 01010 ADDRESS
ls CODE 1112113 1819120]21 35
ot It
FETCH —— —
NOT NO IX
1A REG \
MAR SR
s 2021 35
Y
ARYy 35 ADs 20]21 35|
t EFFECTIVE ADDRESS
A) SIMPLE ADDRESSING
OP H % o
ssf S oo / 01011 ADDRESS
s CODE \1i2b13p7 1819 20)21 35
OPERAND + +
FETCH RS A & SELECT INDEX
NOT REG A
1A y
MAR SRy 20)21 35 ‘
INDEX
REG A |21 35
b |
ARl 1 35 ADJs 20§21 35
T EFFECTIVE ADDRESS
B) ADDRESS MODIFICATION —_—
o ©F 1 ’/ 0jojo| ADDRESS
] s CODE 13)12n3 18819 120]21 35
TRERIL
FETCH
e — —
SET NO IX
IA TGR REG]
MAR SR
S 20]21 35
ARL AD
21 35 s 20|21 35
1. DURING | CYCLE
WORD FROM MEMORY
OPERAND 7//// H /// 01110| ADDRESS
SB 1]
FETCH 12113 18419120|21 35
_Yt \) SELECT INDEX
NOT ® RreG B
MAR
INTERPRETED
. |
s le 35
INDEX
AR
21 35) REG B |21 35
ADlg 20|21 35
EFFECTIVE ADDRESS

RESET AND SET

155*

s e s s s s e

POD 63
AD 21 A XR X 21 =2 | XR —SR |
SET XR X POD 74
A |
A3 DI |
E OR L LATE
XR - SR I
A I
PR S PLUS
A 0
XR 21-SR I
PR'S MINUS l
XR X 21 XR C 2l XRA2l | XR—AD
XR B 21
SET XR C XR C 21 XR 21
DLY
TAG € 155 |
A
‘ |
(-B)RESET XR C 1-1A LATE XR 21-AD
0 | A A
RESET AND SET
A A4 D3 l
SEE FIG 4-19 FOR INDEXABLE l
DEVELOPMENT INSTRUCTION
POD 53 I EARLY
A
SEE TAG C POD 72 A0 D2
FIG 4-20 —
5X
A0 D2
A
L LATE
TXH
TIX
TNX
XL
X1
A
L EARLY
A2 D3

FIGURE 37.

INDEX REGISTER

61

+B SB 0

+B SB 1
—_—

B2 7

+B SB O

-B SB 1

-B SB 2

-B SB 0

+B SB 1/

-B SB 2

IST LEVEL

2ND LEVEL

-BSBO

-BSB1

+B SB 2

+B SB 3

+B 5B 4| SAME AS FOR
=B 58 5] 5B 0-2 ABOVE

-B SB 3-5 ODD

+

+B SB 6

+B SB 7§ SAME AS FOR
+B SB 8 | SB 0-2 ABOVE

-B SB 6-8 ODD

+B 5B 10} SAME AS FOR
BB 11| SB 0-2 ABOVE

+B SB 9-11 ODD

+B SB 12
+B SB 13} SAME AS FOR
+B SB 14} SB 0-2 ABOVE

+B SB 12-14 ODD

SAME TYPE
(OF ANDING

+B SB 15

+B SB 16 SAME AS FOR

SB 0-2 ABOVE
+BSB 17

+B SB 15-17 ODD

NETWORK

JAS ABOVE FOR
SB 0-2

SB 3-5

SB 6-8

+B SB 19§ SAME AS FOR

25 58 20 SB 0-2 ABOVE

-B SB 18-20 ODD

-B SB 9-17 ODD

+B SB 22§ SAME AS FOR |

+B SB 23] SB 0-2 ABOVE

-B SB 21-23 ODD

SAME TYPE
OF ANDING
NETWORK

+B SB 25§ SAME AS FOR
+B SB 26 | SB 0-2 ABOVE

-B SB 24-26 ODD

+B SB 28] SAME AS FOR
+B SB 29| SB 0-2 ABOVE

+B SB 27-29 ODD

AS ABOVE FOR
SB 0-2
SB 3-5
SB 6-8

+B SB 18-26 ODD

3RD LEVEL
AW

£
7
[
‘(/""“"\

#

el

GENERATE

4B PARITY

+B SB ~ MDR

s
¥

"+B FORCES "A" "1" INTO
MDR 36 WHICH IS THE

PARITY BIT

+B EVEN PARITY

+B SB 31] SAME AS FOR

+B SB 32] S8 0-2 ABOVE |

+B SB 30-32 ODD

+B SB 34 | SAME AS FOR
+B SB 35| SB 0-2 ABOVE

+B SB 33-35 ODD

FIGURE 38. PARITY CHECKING

62

SAME TYPE

OF ANDING
NETWORK

AS ABOVE FOR
SB 0-2

SB 3-5

SB 6-8

-B SB 27-35 ODD

B 0-8 ODD
A 0
-B 9-17 ODD
+B 18-26 ODD
A 0
-B 27-35 ODD
=B ODD PARITY
-B ODD PARITY
+B ODD PARITY
~+B ODD PARITY
+B SB 36
-B SB 36

READ

A4 D1

ANY MEM CYCLE EARLY

-B PARITY ERROR

Parity Checking

Parity checking is necessary because bits may be
lost or gained during a store and/or readout process.
Many factors could cause the losing or gaining of
bits: noise buildup in memory, circuit malfunctions,
improper inhibiting within memory, etc.

The CPU ascertains whether all words read from
memory contain an odd number of 1's. Any word
whose 1-bit count is not odd is considered to have a
parity error. Usually, a parity error is undesirable,
and the CPU program will be written so as to cause
the CPU to go into a parity trap routine. However,
the presence of a parity error in itself will not cause
an automatic trap.

Figure 38 shows how parity is assigned and check-
ed. All words on the storage bus, whether going to
or coming from storage, have their parity checked
automatically.

Parity checking is accomplished in three stages or
levels. The first level receives all 36 bits (S through
35) from the word on the storage bus and groups the
bits into 12 groups of three bits each. Each of the
3-bit groups is AND'ed in a manner that will detect
whether the group has an odd or even number of 1's.
For any 3-bit group, there are four combinations
which will produce an odd number of 1's: if all three
bits are 1's or if any one (and only one) of the three
bits is a 1. The first-level parity will have 12 out-
puts (one for each 3-bit group); each output will
indicate odd parity if the outputs are as shown in
Figure 38, or even parity if opposite from that
shown.

The second-level parity receives the 12 outputs
from the first-level parity and groups them into four
groups of 3. Each of the second-level groups is
AND'ed in effectively the same manner as the first
level to determine whether the group has odd or even
parity. The second level has four outputs; each out-
put is representative of nine bits of the word on the
storage bus.

The four outputs from the second-level parity feed
into the third-level parity, where they are resolved
into one output: a +B, indicating that the entire word
(S-35) contained an even number of 1's, or a -B,
indicating an odd number. This one output is called
a generate parity output and will, on a store opera-
tion, determine the contents of MDR position 36; if
the generate-parity level were +B (indicating even
parity), a 1 bit would be forced into MDR 36 when
the SB-MDR transfer took place.

Four inputs from the third-level parity network
are fed into an error-checking network. In the
error-checking network, the parity of the word from
the storage bus is compared with SB 36 (parity bit)
to determine whether the word has the parity count
that the parity bit (SB 36) indicates it should have.

For instance, if the storage bus word (S-35) contains
an even number of 1's, the parity bit should be a 1.
The output of the error check should be -B to indicate
correct parity. If, however, the error check output
is +B even parity, an error is indicated. The +B
even parity is AND'ed with a read to generate a -B
parity-error indication.

On write, the parity checking network assigns a
parity bit to the word being stored in memory. On
read, the parity-checking network determines
whether the word contains the same number of 1 bits
as when it was originally stored in memory; a parity
error is generated if the word read out does not
contain the number of 1's indicated by the parity bit.

63

SECTION 4 - INSTRUCTIONS

This section describes the majority of the 7040-7044
instructions. Not included are the I-O instructions,
which are covered in the Channel A instruction
manual, form R23-2652, and in the Channel A refer-
ence manual, form R23-2644,

Detailed flow diagrams of the instructions are
found in the CPU Logic Diagrams manual, form
R23-2659; refer to them when studying this section.
A figure list in the front of the CPU Logic Diagrams
manual lists the instruction flow diagrams alpha-
betically by mnemonic code. Only three flow diagrams
are included in this section, not as detailed as those
in the CPU Logic Diagrams manual, that illustrate
add, subtract, multiply, and divide. The purpose of
the three flow diagrams is to help in understanding
these basic CPU operations.

Also included in this section is a discussion of how

_the machine obtains the difference of two numbers
using the complement method, and the significance of
the Q carry.

Subtraction - Machine Method

In contrast to the direct method of subtraction, where
borrowing must take place and adjustments made
accordingly, the machine subtracts by adding - the
only function the adder can perform. This is possible
because when the complement of a number is added

to another number, in any numbering system, the
difference of the two nnmbers is obtained.

Binary

Two types of binary complementing are used, a 1's
complement and a 2's complement, as illustrated in
the following example:

100 100 Number

011 011 1's Complement

011 100 2's Complement

As the example shows, the 1's complement of a
binary number is the number with all its bits
reversed; and the 2's complement of the same
number is 1 greater than its 1's complement. Both
complement types are used by the machine in obtain-
ing the difference of two numbers. The examples
given below illustrate the two methods, the results
obtained, and the significance of the high-order (Q)
carry. In all cases, the subtrahend (number being
subtracted) is complemented.

64

Direct 1's Complement 2's Complement
Method Method Method
Case 1: 101 101 101 101 101 101
Subtrahend 100 100 011 011 1'sComp 011011 1's Comp
Smaller 001 001 001 000 (Q Carry) 1 Carry In
1 Carry In "001 001 True Difference
001 001 True Diff, (Q Carry)
Case 2: 101 101 101 101 101 101
Subtrahend 101 101 010010 1's Comp 010010 1's Comp
Equal 000 000 111 111 1's Comp 1 Carry In
Diff. %000 000 True Difference
(no Q (Q Carry)
Carry)
Case 3: 101 101 101 101 101 101
Subtrahend 110 101 001 010 1's Comp 001 010 1's Comp
Greater 001 000 110111 1's Comp 1 Carry In
Diff, 111 000 2's Comp
(no Q Diff.
Carry) (no Q Carry)

Note first that the 2's complement operation is ef-
fected by adding a 1 to the low order position along
with the 1's complement of the subtrahend. In the
1's complement operation, the 1 is added in a sepa-
rate addition, as a correction, when a Q carry re-
sults from the first. A Q carry is possible because
leading 0's in the subtrahend are introduced as 1's
in the adder.

Note also the significance of the Q carry; in both
the 1's and 2's complement operations, the Q carry
indicates the true difference was obtained; where no
Q carry occurred, the difference is in complement
form. All the machine has to do is recomplement
the difference in these cases to obtain the true differ-
ence. The Q carry further indicates that the subtra-
hend is the smaller number in 1's complement opera-
tions; and that the subtrahend is the smaller or equal
number in 2's complement operations. Here then is
the real difference in the 1's and 2's complement op-
erations: when equal numbers are subtracted, a Q
carry and a true difference result in 2's complement
operations; no Q carry and a complement difference
result in 1's complement operations. This fact is
useful in comparing two numbers. If a Q carry occurs
while subtracting them in 2's complement, but does
not occur when subtracting them in 1's complement,
the two numbers are equal.

The following chart summarizes the Q carry indica-
tions for both types of operations. The subtrahend
always refers to the complemented number.

1's Complement 2's Complement

Q Carry No Q Carry Q Carry No Q Carry

True Comp (1's) True Comp (2's)
Difference; Difference; Difference; Difference;
Subtrahend Subtrahend Subtrahend Subtrahend

Smaller Equal or Equal or Greater

Greater Smaller

Octal

The 1's and 2's complement of a binary number have
their equivalent in the octal numbering system, as
the 7's and 8's complement, shown in the following
example:

Binary Octal
100 100 Number 44
011 011 1's Complement 33 7's Complement

011 100 2's Complement 34 8's Complement

Besides directly interpreting its binary equivalent,
the 7's complement of an octal number is derived by
taking the difference of each digit and the highest
number in the octal system (7). The 8's complement
is 1 greater than the 7's complement. Using another
example, the 7's complement of the octal number 320
is 457; the 8's complement is 1 greater, or 460.

Because the 7's and 8's complement in octal is equi-
valent to the 1's and 2's complement in binary, high
order carries occuring in a complement add opera-
tion have the same significance in either system. In
the chart above, the 7's and 8's complement could be
substituted for the 1's and 2's complement, respec-
tively, and the chart would still be valid.

This means that you can predict whether or not the
machine will produce a Q carry in a given problem
using the octal system, by substituting the 7's comple-
ment when the machine uses the 1's complement, and
the 8's complement when the machine uses the 2's
complement. It's important to realize this because
the machine makes many decisions based upon the
presence or absence of the Q carry signal. As in case
1 of the examples above, the Q carry tells the machine
that the difference produced is true, but must be in-
creased by 1; in the 2's complement operation, the Q
carry also indicates a true difference, but that no cor-
rection is necessary. The case 1 examples are re-
produced below using the octal numbers to show that
the high-order (Q) carry occurs the same as in binary.
Do the same for the remaining examples to prove it to
yourself.

Direct 7's Complement 8's Complement
Case 1: 55 55 55
Subtrahend 44 33 7's Comp 34 8's Comp
Smaller 11 “10 Carry ®11 True Difference

1 Correction (Carry In)
11 True Difference

(Carry)

FIXED POINT ARITHMETIC

Fixed-point arithmetic is the most basic form of
arithmetic.. Simply stated, it is the process of com-
putation using quantities whose magnitude is complete-
ly expressed by a single value field. The relationship
of the magnitude to zero is expressed by a sign posi-
tion. In fixed-point arithmetic, the length of an oper-
and is generally determined by the smallest unit of
data that can be accessed in core storage. In the
7040-7044, fixed-point arithmetic operands have the
following basic format:

N VALUE FIELD

The sign bit S determines whether the magnitude is
positive or negative. When S is a 0, the magnitude is
positive; when S is a 1, the magnitude is negative.
The value field is 35 bits long and states the magni-
tude of the number. A fixed-point operand can then
be defined as a unit of data 36 bits long, containing a
sign bit and 35 magnitude bits.

Fixed-point arithmetic in the 7040-7044 includes
addition, subtraction, multiplication, and division.
All operations involve only two operands: one operand
is explicitly addressed; the other is implied. In ad-
dition and subtraction, the explicitly addressed oper-
and is obtained from the core storage location speci-
fied by the instruction word effective address. The
implied operand is obtained from the accumulator.
The former is generally known as the addressed oper-
and; the latter, as either the implied or accumulator
operand. In the CPU, the addressed operand is pla-
ced in the storage register, which has the format
shown above. The implied or accumulator operand
has the following format:

VALUE FIELD

The accumulator value field is 37 bits long. The ad-
tional two bits, Q and P, are provided primarily to
handle conditions which result in a carry of 1 out of
position 1. Bits P and Q are therefore known as over-
flow bits and are treated as the two highest-order ac-
cumulator bits during the execution of fixed-point a-
rithmetic.

The actual arithmetic takes place in the adder,
which has the following format:

o|pl1 35

65

Basically, the contents of the storage register are
transferred simultaneously with the accumulator con-
tents into the adders. An addition or subtraction is
effected, and the result is transferred into the ac-
cumulator.

In multiplication, the addressed operand is ob-
tained from the core storage location specified by
the instruction word effective address; the implied
operand is obtained from the multiplier-quotient
(MQ) register. In the CPU, the addressed operand
is placed in the storage register, which has the basic
format of a sign bit and a 35-bit value field. Storage
register contents become the multiplicand. The MQ
register contents form the multiplier, which has a
format identical with the multiplicand. Multiplication
is effected by a combination of right shifts and simple
additions. A multiplication result is placed in the
combined accumulator-MQ register. with MQ regis-
ter bit 35 the lowest-order bit. Multiplication is
algebraic, and the result sign is placed in both the
accumulator sign position and the MQ register sign
position.

In division, the addressed operand is obtained from
the core storage location specified by the instruction
word effective address; the implied operand is ob-
tained from the combined accumulator-MQ registéer.
The addressed operand is placed in the CPU storage
register and becomes the divisor; the combined ac-
cumulator-MQ register becomes the dividend. Divi-
sor format is the basic single sign bit and 35 value

field bits. The dividend format is a single sign bit

and 72 value field bits:

Siq A 1 35

| € ACCUMULATOR — |
1 35

l¢ MO REGISTER: 5|

The result or quotient is placed in the MQ register
and has a format identical with the divisor. Remain-
der bits, if any, go into the accumulator, with a for-
mat of one sign bit and 37 value field bits; accumu-
lator bit 35 is the lowest-order remainder bit. Divi-
sion is effected by a combination of subtractions and
left shifts.

Addition

In performing addition in the 7040-7044, the general
rules of algebra must first be applied to the signs of
the quantities involved to determine whether the sum
or difference of the quantities involved is to be ob-

tained. Therefore, when adding two positive quanti-

66

ties, the result is the sum of those quantities with a
positive sign. When adding a positive and a negative
quantity is involved, the sum is actually the difference
of the two quantities, with the result sign being the
sign of the larger magnitude. Finally, when adding
two negative quantities, the result is the sum of the
quantities with a negative sign.

Assume the quantity +200g is to be added to the ac-
cumulator, which contains +75g. The result is +275g.
To satisfy machine operand format, convert the quan-
tities into their binary equivalents:

a. +200g =+010 000 000

b. + T5g =+ 000 111 101
Insert these binary numbers in their respective data
words, with the lowest-order bit going into bit 35:

0{0 0jo0j1]j0j0|0j0|0|O|O

a. S1 26|27 |28 [29 30|31 [32 B3 [34 B5
STORAGE REGISTER

o0jojojlo ojojofoj1|1|1yj1fo0}1

b. S| Q| P|1 2627128129 |30]31 132 (33|34 35
ACCUMULATOR

Bits 1 through 26 are not needed to express the quan-
tities and are therefore all 0's. Because accumulator
bits Q and P are treated as part of the value field and
the accumulator value is assumed as +75g, bits P and
Q are 0's. Since each number is positive, a 0 is pla-
ced in the respective sign bit S.

Adding the two operands produces a result magni-
tude of 010 111 101, with a result sign of 0. In ma-
chine operand format, the result is illustrated as
follows:

ofofofo ojojtjof1j1jrytjo|t

S{Q|P|1 26127128129 130{31 323334 |35

ACCUMULATOR
If the same magnitudes are used but the signs

changed to negative, the entire handling of the magnitude
remains unchanged in performing the addition. The
7040-7044 treats the sign bits separately. To cor-
rectly represent the negative values, simply insert a
1 in the sign bit position of each of the operands and
the result; this is what is done in the machine.

Since algebraic principles are employed, addition of
two quantities with unlike signs is effectively a subtrac-
tion. Using the same values, but changing the sign of

the accumulator operand to a minus, the problem be-

comes (+200g) + (-75g). To accomplish addition, line
up the octal points and subtract:

+200g
+
-075 8

+103g

To satisfy machine operand format, convert the
values into their binary equivalent:

a. +200g = +010 000 000

b. -0758 = -000 111 101
Insert these binary numbers into their respective data
words, with the lowest-order bit in each value going
into bit 35:

ofo ojojtfofojojojojolo
s 1 26 27 28 29 30 31 32 33 34 35
STORAGE REGISTER
0{ojojo ofojojof1|11|1{o0f1
b.s QP1 26 27 28 29 30 31 32 33 34 35

ACCUMULATOR

Bits 1 through 26 are not needed to express the quan-
tities and are therefore all 0's. Accumulator bits Q
and P are implied 0's by the assumed accumulator
value.

The following describes how the machine effects
addition of values having unlike signs. Refer to figure
39, a simplified flow diagram of the Add-Subtract
operation, while reading this text. A detailed flow
diagram is in the CPU Logic Diagrams manual.

a. Adds the complemented accumulator value field

and storage register value field.

b. Places the result in the accumulator.

c. Checks for a Q carry:

(a) If there is a Q carry, adds 1 to the accumula-
tor in the lowest-order position (bit 35), inverts the
accumulator sign, and plaees the resultant operand
in the accumulator.

(b) ¥ there is no Q carry, complements the ac-
cumulator value field.

Overflow and Q Carry

The term overflow means that the capacity of the ma-
chine has been exceeded: the arithmetic result can-
not be represented by the machine, because it con-
tains more than 35 value field positions. It was pre-
viously stated that accumulator bits @ and P are called
overflow bits. The name, however, only provides an
easy means of identifying these bits as a pair. Be-
cause they could originally contain 00, 01, 10 or 11,
their significance depends on the problem. When
dealing with values having like signs, a resultant 1 in
either bit or in both bits indicates an overflow. In
this case, the overflow is recorded, but subsequent
action depends on the program being executed. When
dealing with unlike signs, the overflow bits are signi-
ficant as a pair and, in this sense, either generate or
do not generate a Q carry. If a Q carry is generated,
it indicates (1) that the accumulator operand was the
smaller operand and (2) that the number presently in
the accumulator value field is a true number equal to

1 less than the correct answer. If a Q carryis not
generated, it indicates (1) that the accumulator oper -
and was the larger operand and (2) that the number
presently in the accumulator value field is the correct
answer in complement form.

Subtraction

Subtraction in the 7040-7044 is algebraic and is ac-
complished as previously described, by complement-
ing and adding. At the start of the operation, the
sign of the subtrahend (storage register operand) is
inverted. Subtraction of unlike signs becomes addi-
tion, and whether the accumulator is the larger or
smaller operand is insignificant. Generation of a Q
carry when dealing with unlike signs before inversion
represents an overflow.

The following describes how subtraction is effected.
Refer to Figure 39.

1. Complement storage register sign (actually
occurs as sign bit enters the storage register
from the storage bus).

2. Compare accumulator and storage register signs:
a. If alike, add accumulator and storage register.
b. If unlike, add complemented accumulator to

storage register.

3. Place addition result in accumulator.

4. a. If accumulator and storage register signs

are alike, check for a carryout of adder
value field position 1. The coincidence of
like signs and a 1 carryout of value field
position 1 indicates an overflow.

b. If accumulator or storage register signs are

unlike, check for a Q carry:

(1) If there is a Q carry, add 1 to present accum-
ulator value field in low-order position, and invert ac-
cumulator sign.

(2) If there is no Q carry, complement accumula-
tor value field.

The Q carry serves to indicate the accumulator
was the smaller operand and that the present accum-
ulator value field is in true form and 1 less than the
correct answer, when dealing with operands having
like signs. The absence of a Q carry, on the other
hand, indicates the accumulator was the larger oper-
and ard the present accumulator value field is the
correct answer in complement form.

Multiplication

The rules for binary multiplication are similar to
those of decimal multiplication. The rules for mul-
tiplying two single digits are the same in both systems.
These rules are:

0x0=0
0x1=0
1x0=0
1x1=1

67

Y
CHANGE
SR
SIGN

A Y

SR TO AD ’ SR TO AD
1'S COMP —
AC TO AD AC TO AD
Y
RESULT TO RESULT TO
AC AC
Q,P1-35 Q,P 1-35

SUM IN
(COMP DIFF, ACZSR) NO YES (TRUE DIFF, SR>AC) AC
(AC SIGN
UNCHANGED)
y y
T TO AD ACTO AD,"ONE"
RETURN TO TO AD 35, RE-
AC TURNSUMTOAC [. (CORRECT DIFFERENCE, WHICH
Q,P1-35 IS SMALL BY 1)
y
SUM IN CHANGE SRY>AC..
AC AC ‘ MAKES AC SIGN'\)
(AC SIGN SIGN SAME AS SR SIG
UNCHANGED)

FIGURE 39. 7040/44 ADD - SUBTRACT PROCESS

68

The general procedure when multiplying two multiple
digit binary numbers is the same as that in decimal
arithmetic; that is, the multiplicand is multiplied by
a digit of the multiplier, and the partial product ob-
tained is placed so that the least significant digit is
under the multiplier digit. When all the partial pro-
ducts have been found, they are added to find the final
product. The only difference between decimal and
binary multiplication, therefore, is in the summing
of the partial products. In binary, the binary addi-
tion table is used; in decimal, the decimal table is
used.

As can be seen from the following examples, the
method of obtaining partial products and then adding
them to obtain the final product is identical with that
of decimal arithmetic:

Multiplicand 1010 10.11 1111
Multiplier 1101 100.1 1111
First Partial Product 1010 1 011 1111
Second Partial Product 0000 00 00 1111
Third Partial Product 1010 000 O 1111
Fourth Partial Product 1010 1011 1111

Final Product 10000010 1100.011 11100001

Note the placement of the binary point in the second
example. The same rules hold for its placement as
for placement of the decimal point in decimal arith-
metic.

The third example also illustrates an interesting
point. This is the multiplication of the two largest
possible 4-bit numbers. The product is eight bits
long. In other words, the largest product that can
result from the multiplication of two numbers will be
no longer than the sum of the number of bits in the
multiplier and multiplicand. '

If a number is multiplied by the radix of the number
system, this multiplication has the effect of shifting
the number one place to the left with respect to the
radix point. This is true in any number system. For
example, multiply 12.511, by 10 (the radix of the
decimal system) and multiply the number 10.115 by
2 (the radix of the binary system):
Number 12,51
Number Times Radix 125.1

10.11
101.1

Binary multiplication, then, is nothing more than a
series of add and shift operations.

Multiplication --Machine Operation

When performing multiplication in the 7040-7044, the
contents of the storage register are multiplied by the
contents of the MQ register. The actual multiplica-
tion is accomplished by repeated conditional addition
of the storage register contents to the AC register
contents, interspersed witha shift of the accumulator
and MQ register one bit position to the right. Basically,
for every multiplier bit that is a 0, the combined
accumulator-MQ register value field is shifted

right one position. For every multiplier bit that is
a 1, the storage register contents are added to the
accumulator contents, with the result going to the
accumulator displaced right one position., As this
result is placed in the accumulator, the MQ register
value field is shifted right one position. As a result
of the shifting, MQ register bit 35 is lost.

-~ D) _ - -
STEBLIRS Fb Ll I LSS Fh b
</ o O T D = AW,
Introduce Lost

A device called the shift counter is used to deter-
mine the number of repetitive shifts executed. In
the machine, upon decoding a multiply operation,
the shift counter is set to 43g (35;(). Therefore,
regardless of the number of high-order 0 bits, two
35-bit numbers are multiplied. For ease of discus-
sion, the example given in this paragraph uses 6-bit
numbers and, therefore, a value of 6 in the shift
counter.

Multiplication in the 7040-7044 is algebraic: posi-
tive X positive = positive; negative X negative=posi-
tive; positive X negative = negative. Therefore, in
every multiplication operation, the sign bits of the
operands involved are treated separately from the
value fields. Before any adding or shifting takes
place, the sign bits are compared, and the result
sign is determined.

69

The following describes how the machine effects
multiplication. Refer to Figure 40, a simplified flow
diagram of the multiply operation, while reading this
text. A detailed flow diagram of the multiply code is
in the CPU Logic Diagrams manual.

a. Sets the shift counter to a value of 43g (357)
and then checks it for a value of 0.

1. If it is =0, ends the operation.
2, If it is #0, continues.

b. Tests the storage register for all 0's (storage
register contents are tested in accumulator): If all
0's, clears MQ register bits S-35 and resets the shift
counter.

c. Clears the accumulaotr (Q-35).

d. Compares the storage and MQ register signs:

1. If alike, sets the accumulator and MQ regis-
ter signs to 0 (positive).

2, If unlike, sets the accumulator and MQ re-
gister signs to 1 (negative).

e. Checks the shift counter for a value of 0; if
SC = 0, ends the operation, whereas if SC # 0, checks
MQ register bit 35:

1. If it is a 0:

(a) Shifts the combined accumulator-MQ re-
gister right one position.

(b) Steps the shift counter (reduces value by
1).

(¢) Repeats step e.

2, Ifitis a 1:

(a) Adds the storage register to the accumu-
lator, and places the result in the accumu-
lator displaced one position to the right.

(b) Shifts the MQ register right one position.

(c) Steps the shift counter.

(d) Repeats step e.

Division

Binary division is the process of counting the number
of times a divisor goes into a dividend. The count of
the number of times the divisor may be subtracted
from the dividend before a negative remainder occurs
is called the quotient.

Direct binary division is performed by a series of
subtractions of the divisor (actually a multiple of the
divisor), just as it is in the decimal system. For
example, divide 100 011 100 by 1110:

bd ehi jk
10 100.01
100 011 100.00
11 10
() 111 1
@ 111 0
(g) 100 00
@) 11 10
(m) 10

1110

70

In the example, the first step is to place the divisor
below the dividend in a position which is as far re-
moved to the left as possible (a), but which will allow
a position difference to result when the divisor is
subtracted from the dividend. Since the divisor will
go into this many bits of the dividend once, a 1 is
placed in the quotient at b in the same column as the
lowest-order digit of the divisor. The divisor is then
multiplied by the quotient digit, and the resulting pro-
duct is subtracted from the dividend to produce the
positive difference (c) called the current remainder.
The next digit in the dividend is brought down to line
¢. Compare the divisor with line c; note that the
divisor is larger than line ¢, or that the divisor goes
into line ¢ 0 times. Therefore, place a (in the quo-
tient at the d position. The next digit of the dividend
is then brought down to line c. Comparing the divi-
sor with line ¢ shows line c to be greater. Place a

1 in the quotient at the e position. Multiply the divi-
sor by the last quotient bit to form line f. Subtract
line f from line c to start line g. The next digit in
the dividend is brought down to line g. Compare the
divisor with line g; the divisor is greater, so place a
0 in the quotient at position h. Bring the next digit

of the dividend down to line g; by comparison, line

g is still smaller than the divisor. Place a 0 in the
quotient in position i, and place the next dividend digit
on line g. Line g is still smaller than the divisor, so
a 0 is placed in the quotient at position j. Placing the
next dividend digit on line g now makes line g greater
than the divisor. Place a 1 in the quotient at position
k, and multiply the divisor by this 1 to form line 1.
Subtract line 1 from line k to start line m. Assuming
a quotient has been developed of sufficient length, ter-
minate the operation. The quotient is 10100. 01 with
a remainder of 10 (line m).

Since the quotients bit is always either 0 or 1, the
division process can be reduced to a series of sub-
tractions of the divisor, multiplied by the power of
the quotient bit being sought fromthe dividend. Each
time a subtraction results in a positive current re-
mainder, a 1 is placed in the corresponding quotient
bit position, and the process is immediately repeated
for the next quotient bit. Each time the subtraction
results in a negative remainder, a 0 is placed in the
corresponding quotient bit. In this case, the current
remainder is restored to a positive number by adding
the divisor back to it. Following this, the next quo-
tient bit is obtained by the subtraction of the divisor
multiplied by the power of the next quotient bit.

Since the quotient bits are generated from left to
right, the power of each quotient bit is one smaller
than that of the last bit generated. This means that,
as the divisor is successively subtracted from the
dividend (or current remainder), the divisor is shif-
ted to the right in relation to the binary point. The
division process can therefore be reduced to a pro-

LOAD 43g
(3510) in 8C

Y&> SC =02
No
PLACE
OPERAND (ear)
IN AC
Yes No
AC = O?
(Zero M'cand) c=0°
CLEAR
SC,MQ
vy Y
CLEAR AC
DETERMINE
SIGN AND
PUT IN AC
AND MQ
T‘ — /SC= 0?
END OP
Yes P MQ 35 = 17 >0
AC »AD SR »AD SHIFT
MQ AND AC
(ACTIVE (M'CAND)
PRODUCT) 1 POS RY
AD—»AC SHIFT MQ
1 POSRT 1 POSRT

FIGURE 40. 7040/44 MULTIPLY INSTRUCTIONS

L

|

REDUCE
SCBY 1

71

cess of successive subtract and shift steps.

Division--Machine Operation

When performing division in the 7040-7044, the con-
tents of the combined accumulator -MQ register are
divided by the contents of the storage register. MQ
register bit 35 is the lowest-order dividend bit; ac-
cumulator bit 1 is the highest-order dividend bit. Al-
though not part of this dividend, accumulator bits

Q and P must be 0 at the start of division. The sign
of the dividend is the sign of the accumulator; the MQ
register sign is not significant to the dividend. The
quotient is placed in the MQ register, and the remain-
der, if any, is placed in the accumulator. Division is
algebraic; therefore, like signs yield a positive result,
and unlike signs, a negative result. Quotient sign
determination is accomplished independently of the
division, with the result sign being placed in the MQ
register sign position. The sign of the accumulator
remains unchanged throughout the divide process and
is the sign of the remainder. This sign may differ
from the sign of the quotient.

The MQ register has a format of a sign bit and 35
value field bits. A quotient, therefore, can never
exceed 35 bits in length; that is, it can never have a
value greater than 239-1, A maximum value of
235_1 is established by comparing the maximum value
a register can contain (its bits all 1's) against the
value of 2 raised to the number of bits in the register.
For example, a 2-bit register can contain a maximum
value of 115 or 3. The number of bits in the register
is 2, and 2 raised to the second power is 22 or 4
which is 1 more than the maximum value that the reg-
ister can contain. Extending this comparison to any
size register confirms its validity. Further, the
comparison provides the basis for the value size
limitation of the quotient.

To insure that the quotient will fall within MQ re-
gister capacity, the dividend must be less than the
divisor x 235 Ascertaining whether this condition
exists is quite simple. It is done by comparing ac-
cumulator bits Q-35 with storage register bits 1-35.
If Qor Plis a1, a divide check will occur. If the
value in the accumulator bits is smaller than the va-
lue in the storage register bits, a quotient will re-
sult that can be contained in the MQ register. The
comparison is accomplished by complementing ac-
cumulator bits Q-35, and then adding the comple-
ment value to storage register bits 1-35. Genera-
tion of a Q carry indicates the value in the accumula-
tor bits is smaller and, therefore, the quotient can be
confained in the MQ register.

The following describes how the machine effects
division. Refer to Figure 41, a simplified flow dia-
gram of the divide operation, while reading this text.
A detailed flow diagram of the divide code is in the
7CPU Logic Diagrams manual.

2

1. Set the shift counter to 43 (3510).
2. Complement the accumulator (bits Q-35).
3. Test for SC =0, If it is, end Op and re-comple-
ment the AC in the following I cycle.
4. Add the storage register and accumulator value
fields. (The result of this addition is not recorded).
5. Check for a Q carry:
a. If there is no Q carry, turn on the divide
check trigger and reset the shift counter.
Then complement the accumulator, and get
the next instruction.
b. If there is a Q carry:
(1) Set the quotient sign.
(2) Complement MQ register bit1l.
(3) Shift accumulator bits P-35 and MQ regis-
ter bits 1-35 left one position.
(4) Step the shift counter (reduce it by 1).
6. Add the storage register and accumulator value
fields.
7. Check for a Q carry:
(a) If there is no Q carry:
(1) Place a 1 in MQ register bit 35.
(2) Transfer the addition result into the
accumulator; go to Step 8.
(b) If there is a Q carry, go to Step 8.
8. Check the shift counter for a value of 0:
a. If SC # 0:
(1) Complement MQ register bit 1.
(2) Shift accumulator bits P-35 and MQ
register bits 1-35 left one position.
(3) Step the shift counter.
(4) Go back to Step 6, and repeat the action.
b. If SC = 0:
(1) Complement accumulator bits Q-35.
(2) End the operation.

VARIABLE-LENGTH ARITHMETIC

Variable-length arithmetic is fixed-point arithmetic
using operands of a length other than 35 blits. Variable-
length operations include multiply, divide, and multi-
ply and add. Each of these operations requires the

use of the shift counter, which is the key to variable-
length operations. In the variable-length instruction
word, bits 12-17 form a count field.. When a variable-
length operation is decoded, the value in the count

field is set into the shift counter, rather than 43g.
Although the count field can contain counts from 0

to 77g, certain counts are impractical or of no value.
For instance, the count in a multiply operation speci-
fies the number of multiplier bits and identifies the
low-order result bit. Consider the multiplier. It is
contained in the MQ register, which is 35 bits long.
Therefore, a multiplier exceeding 35 bits in length
cannot be contained in the MQ register. This fact,
however, is not important to machine operation be-
cause it bases its actions on the shift counter. As
long as the shift comter does not equal 0, the machine

LOAD SC
WITH 438

(350)

COMP
AC

SR AND AC
TO AD

(AC 2 SRy

RESET SC, |lliegal

DVD CHK _
COMP
AC
MAKE MQ MAKE MQ END
SIGN = | SIGN = O oP
SHIFT MQ 1 STEP
AC AND MQ 70
LEFT 1 AC 35 ScBYl
SR AND AC
TO AD

(sgq Yes Q CAR. 2 NO (AC 2 SR)
SUCCESS |
MAKE RETURN
MQ 35 =1 AD—-AC

No “sc=07 Yes

FIGURE 41. 7040/44 DIVISION PROCESS

performs its repetitive steps. Therefore, the mul-
tiplier bits needed to satisfy the number specified by
the count field in excess of 35 are obtained from ac-
cumulator bit 35 with each right shift executed. Fur-
ther, if a count of 43¢ is specified for a variable-
length multiply, the operation performed is identical
with a fixed-point multiply. Obviously then, variable-
length multiplication is intended for use with multi-
pliers of less than 35 bits in length. In this case, by
setting the shift counter to the size of the multiplier,
the time needed to execute the operation is reduced,
thereby increasing machine efficiency.

In multiplication, the count also serves to identify
the low-order result bit. The count in fixed-point
multiplication is always 43g, and the highest-order
result bit is accumulator bit 1, with MQ register bit
35 the lowest-order result bit. In variable-length
multiplication, accumulator bit 1 is also the highest-
order result bit, but the lowest-order result bit is
not necessarily MQ register bit 35. The lowest-order
result bit in variable-length multiplication is the MQ
register bit corresponding to the count field value up
to and including a count of 435. For example, with a
count of 1, MQ register bit 1 is the lowest-order re-
sult bit; with a count of 12g, MQ register bit 10 is the
lowest-order result bit, and any count over 43g causes
the loss of low-order result bits, because they are
shifted right, out of MQ register bit 35. In addition,
when the count is stepped from 43g to 44g, MQ regis-
ter bit 35 is actually the lowest-order result bit
developed thus far. Therefore, subsequent multipli-
cations are performed using result bits as multiplier
bits, with the final result being completely erroneous.

The count in a division operation specifies (1) the
number of significant dividend bits in the MQ register
and (2) the number of quotient bits to be developed.
For the moment, ignore the fact that the machine
cannot execute a divide operation with a count of 0.
With a decimal count of 35 in the shift counter, the
dividend is 70 bits long, extending from accumulator
bit 1 through MQ register bit 35. Subtracting 35 from
the shift counter makes it 0, and subtracting 35 from
the dividend makes it 35. If a divide could be per-
formed with a count of 0, the smallest size dividend
possible would be realized, which would be 35 bits
long and extend from accumulator bit 1 through
accumulator bit 35. For each increment of the count,
therefore, the dividend picks up one more significant
bit, starting at MQ register bit 1. Thus, a count of
1 makes the dividend accumulator 1-35 and MQ 1; a
count of 145 makes the dividend accumulator 1 through
35 and MQ 1 through 12; a count of 308 makes the
dividend accumulator 1-35 and MQ 1 through 24. When
the count is 43g, the variable-length divide is identical
with the fixed-point divide. A count exceeding 43g, in
effect, is specifying a dividend beyond the capacity of the

74

machine. However, this condition poses no problem
to the machine; as long as a value greater than 0 is
in the shift counter, the repetitive steps are per-
formed, causing needed bits to be shifted left from
MQ register bit 1 into accumulator bit 35,

In the case of a count greater than 43g, consider the
contents of the accumulator and MQ register as the
count goes from 43g to 44g. At the lesser count, the
contents of the accumulator form the current remain-
der, and the contents of the MQ register form the
quotient developed thus far. Each, however, is 35
bits long. When the count value goes to 44g, the
highest-order quotient bit is left-shifted into the ac-
cumulator. From this point on, division is performed
using quotient bits as dividend bits; the final answer
is meaningless.

In fixed-point division, the count is always 43g and
the quotient developed is always 351 bits long. Sub-
tracting 43g from the count makes it 0, and subtrac-
ting 351 fromthe quotient makes it 0 bit long. Thus,
with every increment of the count, an additional bin-
ary position is developed in the quotient: a count of
15g results in the development of 13 quotient bits; a
count of 34g, 28 quotient bits, etc. In each case, MQ
bit 35 is the lowest-order quotient bit, with the higher-
order bits being developed in left adjacent positions.
At a count of 43g, a 35-bit quotient is in the MQ re-
gister, with the highest-order bit being MQ 1. When
the count goes to 44g, the highest-order quotient bit
is lost; at 45g, the next highest; etc. It is apparent
that a count exceeding 43g is of no value, and a count
of 43¢ is the same as fixed-point division. Variable-
length division, therefore, is best employed using
dividends of less than 70 bits or, said another way,
using a count of less than 43g.

In the above discussion, the count is used in an as-
cending fashion. The machine does not use the count
in this fashion. Rather, the machines decrements
the count from its maximum value to 0, one decre-
ment at a time. An ascending count was used for
ease of description. The effect, however, is the
same. Saying the count is stepped from 43g to 444 is
the same as saying the shift counter is stepped for the
444 time.

In the 7040-7044, indirect addressing can be used
with arithmetic class instructions. Indirect address-
ing is specified by a 11 configuration in instruction
word bits 12 and 13. Variable field length operations,
however, also use these bits as part of the count
field. Therefore, any count of 60g or above causes
the instruction word effective address to be inter-
preted as an indirect address. The contents of the
location specified by the instruction word indirect
address are referenced, and an effective address is
formed in the normal manner. Further, the contents

of bits 12 through 17 in the indirect address (instruc-
tion word effective address) are used to set the shift
counter. The contents of the effective address are
used as the multiplicand or divisor, depending on

the operation.

VLM, VMA, and VDP

The variable length multiply, variable length multi-
ply and accumulate, and variable length divide or
proceed instructions differ in their execution from
their fixed-point counterparts inthe value loaded in
the shift counter. As already mentioned, the fixed-
point multiply and divide instructions load the shift
counter with 43g (351(), while the variable length
instructions load the shift counter with the instruc-
tion word count field (bits 12 to 17). The VMA in-
struction further differs from fixed point multiply by
not checking for a zero multiplicand at the beginning
of the operation. The check is avoided because to do
so would destroy whatever is in the accumulator,
where the zero check takes place; also, the accumu-
lator is not cleared as it is in fixed-point multiply.

Aside from these differences, the VLM, VMA and
VDP instructions operate the same as the fixed-point
operations. Refer to the detailed flow diagrams in
the CPU Logic Diagrams manual to verify the differ-
ences and note the similarity between the fixed-point
and variable-length instructions.

FLOATING-POINT ARITHMETIC

The range of numbers anticipated during a calculation
may be extremely large, extremely small or, in some
cases, unpredictable. Such situations make fixed-
point arithmetic difficult to work with for two reasons:

1. The size of the number is limited by the size of
the register (35 binary bits or 10 decimal digits).

2. The programmer must keep track of the point
in all numbers throughout the calculation.

To meet the needs of large numbers and to auto-
matically keep track of the point, an alternative set
of arithmetic instructions, called floating-point arith-
metic instructions, are available.

As the name '"floating-point' implies, the binary
point does not have to be lined up before each opera-
tion or remain in the same position at the end of the
operation. Instead, it "floats' or is re-positioned
during calculations in much the same manner as the
decimal point is repositioned when calculating with
a pencil and paper. Floating-point arithmetic instruc-
tions automatically position the operands to be used
and deliver the result in correct form.

Scientific Notation

The principle on which floating-point arithmetic works

is basic in mathematics and is called scientific nota-
tion. Before floating-point opesrations are described,
a review of scientific notation may help toward a
thorough understanding of how floating-point arith-
metic is performed in the 7040-7044.

Principles: When a quantity is measured, the number
generated is the number of units contained in the quan-
tity. If the quantity is small, it is usually expressed

directly; e.g., something "is 4 feet high" or "weighs
100 pounds.' When dealing with large values, how-
ever, direct expression is often cumbersome. For
example, the value which constitutes one coulomb, or
the unit of static charge, is approximately 6, 300, 000,
000, 000, 000, 000 free electrons. This value is so
large that it is seldom expressed in this manner, not
only because it is cumbersome, but because it may
very easily be expressed incorrectly by dropping one
or more of the trailing zeros. To avoid direct ex-
pression of this quantity, a coulomb is usually defined
as the unit of static charge present when 6.3 x 1018
free electrons are collected on a single body. The
expression 6.3 x 1018 denotes exactly the same value
as the number written out with all the trailing zeros,
but it is much easier to state and not so susceptible
of error.

Representation of value in the manner shown is
referred to as scientific notation. This method of
notation is arrived at by taking the scientific digits
(coefficient) of a particular value and multiplying them
by the radix of the number system being used, raised
to a power (exponent) which will correctly express
the magnitude of the number. Other examples of
scientific notation are the velocity of light, expressed
as 2.998 x 108 meters per second, and the angstrom
unit, expressed as 1 x 108 centimeters. All these
notations, if multiplied by the indicated power of 10,
will give the value commonly associated with the
measurement of the given quantity.

If the significant digits of a value expressed by
scientific notation are shifted so that the decimal
point falls in a different place, the accuracy of the
expression can still be maintained by a corresponding
change in the power to which the radix is raised. For
example, all the notations below will yield exactly the
same result if multiplied out:

2.998 x 108 .2998 x 10°
29.98 x 107 .02998 x 1010
299.8 x 106 .002998 x 1011
2998 x 109 .0002998 x 1012

It can be seen that, for each shift left of the number
(assuming that the decimal point stays in a fixed posi-
tion), the power of 10 must be reduced by 1 to main-
tain the equality of the expression. Similarly, for

75

every shift to the right, the value of the exponent is
increased by 1. Shifting the significant digits of a
value back and forth and making the corresponding
changes in the power of the radix can be utilized to
perform addition or any other arithmetic function.
For example, assume that the following expressions
are to be added:
3.75 x 103
+ 445x 102

Because the exponents of the radix terms differ, a
direct addition cannot be performed. However, one
of the terms can be shifted until the exponents are
of the same value; then the significant digits may be
added, and the radix term may be carried to the sum.
If the first expression is shifted, the result is as
shown below:

3.75 x 103 shifted right one place = 37.5 x 102

37.5 x 102

+445 x 102

482.5 x 102

Multiplying this notation out yields a result of
48,250, the same as would be obtained by obtaining
the true value of each expression separately and then
adding them. If the second expression were shifted,
the result would be:

445 x 102 shifted left one place =44.5 x 103:
44.5x103
+3,75x103
48.25 x10°
Multiplying 48. 25 x 103 out also yields 48, 250, the
correct result. From this simple example, it can be
seen that it is necessary only to make the exponents
of the radixes the same value by shifting the signifi-
cant digits one way or the other and then performing
the desired arithmetic operation.

The principle of scientific notation can be sum-
marized by stating that it uses two factors to indi-
cate the magnitude of a measured value. One factor
is the radix raised to a power (either positive or
negative), and the second factor is the significant
digits of the value. Changing one of these factors re-
quires a corresponding change in the other to main-
tain the validity of the expression. These same rules
may be applied to the binary number system.

Notation with Binary System: Because the binary
system uses a radix of 2, all forms of scientific
notation are expressed in terms of powers of 2.
In addition, since only symbols of 0 and 1 are em-
ployed in this system, the significant part of the no-
tation will consist of a combination of 0's and 1's.
For example, the value 256, . expressed in binary is
100 000 000(400g). If this binary number is con-
sidered to be an integer, scientific notation of the
value would be as shown below:

100 000 000 x 2°

76

Of course, this expression could be given in many
forms, all equal in value, by shifting the bits of the
expression and changing the exponent of the radix 2.
For example, all the following expressions are equal
to 100 000 000:

010 000 000 x 21

000 001 000 x 2°

000 000 00.1 x 29

The last expression has shifted the number so that it
becomes a fraction, but no difficulty is encountered,
since a binary fraction of this magnitude equals * 510,
or 1/2, The 9th power of 2 equals 5121, and 1/2 x
512 yields a result of 2567, the original value.

This type of notation is adequate for paper and
pencil, but in a computer a different way of express-
ing the power of the radix is necessary. Since the
7040-7044 is a binary machine, the power of the radix
must also be expressed in binary. This 29 power
will appear in some other form inside the machine,
although the power indicated is still 29,

Floating-Point Data

It has already been stated that floating-point arith-
metic in the 7040-7044 uses operands expressed by
scientific notation. Also, scientific notation has been
defined as the significant digits of a value multiplied
by the power of the radix. All that remains now is

to show exactly how the power of the radix and the
significant digits (or bits in binary) are expressed in
the 7040-7044. The format for a floating-point data
word is as follows:

N FRACTION

CHARACTERISTIC glo

1 35

Bit positions 1-8, referred to as the characteristic
of the word, indicate the power of 2 to which the sig-
nificant bits are raised. It can be assumed that 2 is
the radix involved, since the binary system is being
employed. If a characteristic of all zeros is arbi-
trarily chosen to represent 20, the range of expon-
ents possible with eight bit positions would be 20 _
2317, However, this arrangement is impractical
because it allows only positive exponents to be ex~
pressed, and it is desirable to express negative ex-
ponents as well. Therefore, the midpoint between
the total number of exponents that can be expressed
(400g) has been arbitrarily chosen to represent 20,
This value is 200g. Thus, a positive power of 2 will
be between the values 200g and 377g, and a negative
exponent will be between 0g and 177g. For example,
to express 29 as it is done in the machine, the ex-
ponent must first be changed from decimal to octal
form. Thus, 29 in the decimal system equals 211 inthe
octal system. The radix is understood to be 2, so only
the power (11) need be expressed. If 20 equals 200g,

then 211g equals 211, The actual appearance of the
characteristic (in binary) which indicates 29 is as

follows:
10 001 001

The characteristic part of the floating-point data
word thus constitutes one of the two factors employed
in scientific notation.

Bits 9-35 of the data word, called the fraction,
constitute the significant bits of the value, or magni-
tude. The term fraction is used because the data
contained in this part of the word is considered to be
in fractional form; that is, a binary point is effec-
tively located between bit positions 8 and 9, making
all bits to the right of this point represent a value
somewhere between -1 and +1. This fraction should
not be confused with the fraction represented by a
fixed-point data word. It is true that the numerical
significance of these fractions is the same in that
each position represents a power of 2, but the actual
magnitude of the floating-point data word can be de-
termined only after the fraction has been multiplied
by the power of 2 indicated by the characteristic.

In fixed-point data words, the magnitude of a number
can be determined after the various powers of 2 pre-
sent in a given word are added together.

The sign bit position of a floating-point data word
represents the sign of the fraction; that is, if the
sign bit is 0, the fraction portion is positive, and if
the sign bit is 1, the fraction portion is negative.

A characteristic in the range 0g to 177g does not
in itself indicate that the quantity is negative. To
express a very small quantity may require a nega-
tive power of 2, but the quantity may stillbe positive.
For example, to express the value of 1/8 in floating-
point form requires a negative exponent (assuming
that the fraction is 1/2). The smallest position ex-
ponent that can be expressed is 200g or 20, and mul-
tiplying this by 1/2 still yields a result of 1/2. To
obtain the quantity 1/8, a characteristic of 1764 is
required when the fractional part of the data word is
1/2. The characteristic of 176g represents 2-2, and
multiplying this by 1/2 yields the desired quantity:

272 x1/2-1/22x1/2-1/4x1/2=1/8
Similarly, a value of -1/8 would be shown as follows:

S | CHARACTERISTIC
176

FRACTION
4000000008

This value is known to be negative because the sign
bit is a 1. Thus, it is the sign bit, and only the
sign bit, which determines the polarity of the value
expressed.

As an example of a floating-point data word, as-
sume that it is desired to express the value 256.
This value may be represented in octal by 400 or in
binary by 100 000 000. This term may be expressed
in octal by 400 or in binary by 100 000 000. This

term may be expressed in scientific notation by

100 000 000 x 20 or 000 000 000.1 x 29, Taking the
latter case and placing 29 (211 in octal) into the char-
acteristic bit positions yields a result of 211g. The
fraction remains as is, and the sign bit is cleared;
so the floating-point form of 256, is as follows:

S CHARACTERISTIC
0 211

FRACTION
. 400000000

Arithmetic operations with floating-point data words
are performed in much the same manner as the addi-
tion of terms in scientific notation. The character-
istics are made the same by shifting one of the frac-
tions and making the corresponding change in the value
of the characteristic. The two fractions are then
added (assuming addition is the operation called for),
and the characteristic is assigned to the sum. Though
a certain amount of "lining up" may be necessary be-
fore a floating-point operation may take plaece (the
characteristics must be made equal), this process is
performed automatically by the machine and is not
the concern of the programmer. Also, the result
of the operation will be a value which does not re-
quire further manipulation before another arithmetic
operation can take place. Thus, the floating opera-
tion which occurs in floating-point arithmetic is really
nothing more than an adjustment of the characteristic
to keep the value being expressed in the proper order
of magnitude.

Double Precision

When a fixed-point fraction is changed to floating-
point form, the resulting characteristic and fraction
may exceed 35 bits. In this case, additional hard-
ware is available to accommodate the longer length
fraction. The addressed operand is always placed

in the storage register. When a double-precision
addressed operand is required, the low-order frac-
tion bits are housed in the swap register which is
associated only with the storage register. In the
case of the implied operand, the accumulator and the
MQ register combine to house the double-precision
number. The MQ register is assigned a character-
istic 271 less than that of the accumulator because
the fraction contained in the MQ register in bits 9-35
is displaced 27 positions to the right of the accumula-
tor binary point - the point just to the left of accumu-
lator bit 9. No characteristic is assigned to the
swap register because it serves to hold either the
low-order addressed operand until it can be operated
on or the partial result developed during an arith-
metic process. However, the MQ register always
reflects the result of an operation; a separate char-
acteristic must be assigned because it is required to
be very accurate in a floating-point operation, and
these low-order bits must be dealt with separately.

77

The double-precision operand contained in the com-
bined storage-swap register is as follows:

gg}‘g‘sﬁ’c‘ HIGH ORDER LOW ORDER
FRACTION FRACTION
STORAGE REGISTER SWAP REGISTER

Bit S, the sign bit, is the sign of the entire fraction.
When bit S is 0, the fraction is positive; when bit S is
1, the fraction is negative. The characteristic indi-
cates the power of 2 to which the fraction is raised.
In double-precision, the fraction is 54 bits in length;
storage register bits 9-35, on the high-order frac-
tion bits, and the swap register, which is only 27
bits long, form the low-order fraction. The accum-
ulator-MQ register double-precision operand is
shown as follows:

CHARAC- CHARAC-
| TERISTIC HIGH ORDER TERISTIC LOW ORDER
N FRACTION] N-27 FRACTION

The only difference between the accumulator-MQ
register operand and the storage-swap register oper-
and is the existence of a characteristic for the low-
order fraction. Note that the MQ register sign bit is
not used.

Floating-Point Spill

During the execution of a floating-point operation,
the resultant characteristic in either the accumulator
or MQ register may exceed eight bit positions in
length. The existence of such a condition means that
machine capacity has been exceeded: machine capa-
city is exceeded when the exponent goes beyond 377
or below Og. When the characteristic goes beyond
377g, a condition known as floating-point overflow is
said to exist. Similarly, if the characteristic tries
to go below 0g, a condition known as floating-point
underflow exists. These conditions are referred to
collectively as floating-point spill.

Overflow and underflow may occur in either the ac-
cumulator or the MQ register. Upon sensing the ex-
istence of either condition, the processing unit places
the address of the instruction causing the condition
plus 1 into bits 21-35 of location 00000. In addition,
one of bits 14-17 of location 00000 is set to record the
cause of the spill.

Normalizing

When a floating-point data word is being dealt with,

it may be in one of two forms, normalized or unnor-
malized. A normalized number is one that contains
the binary point of the fraction just to the left of the
most significant bit. Since the binary point of the
fraction is considered to be just to the left of accumu-

78

lator bit 9 in a floating-point data word, bit 9 must
contain a significant bit if the number is to be in nor-
malized form; that is, bit 9 must contain a 1. There-
fore, the absolute magnitude of the fractional part of
a floating-point data word must be greater than or
equal to 1/2, but less than 1 if the number is in nor-
malized form. If the most significant bit is not con-
tained in bit 9, the number is said to be unnormalized.
Normalizing can be thought of as eliminating leading
zeros from a fraction.

At the completion of an arithmetic operation, the
result may be in either normalized or unnormalized
form. Certain instructions in the floating-point arith-
metic class of the 7040-7044 contain the option to
normalize the result if so desired. When this is done,
the fraction is shifted left until a significant bit is con-
tained in the accumulator bit 9 position. However, to
maintain the value of the expression, the characteris-
tic must be reduced by 1 for each shift to the left that
occurs. As an example, assume the result of an
arithmetic operation appeared in the combined accum-
ulator-MQ register as shown:

0. 10 001 011 000 111 «vuuvsuesaaOo
The first eight bits of the accumulator contain the
characteristic, 213g; bits 9-35 of the accumulator and
9-35 of the MQ register contain the fraction,
070000000000000000g. This expression is in unnor-
malized form because the fraction contains leading
zeros. To normalize the fraction, the fraction is
shifted left three places, with the bits leaving accum-
ulator bit 9 being lost, and to maintain the equality of
the expression, the characteristic is reduced by 3.
The normalized number becomes:

0.210.700000000000000000g
The value of the expression is maintained in both
cases; however, the leading zeros have been elimin-
ated from the fraction in the normalized form. When
the result of an arithmetic operation is to be norma-
lized, the normalizing process takes place automatic-
ally after the final result has been computed. Nor-
malization is specified by a positive sign (S bit is 0)
in the floating-point instruction word.

At this point, it may seem desirable to always have
results appear in the normalized form. This would
seem true because, as leading zeros are shifted out
of the fraction, low-order bits enter the accumulator
from the MQ register, thus increasing the accuracy
of the answer. However, there are instances when
it is desirable to perform an unnormalized opera-
tion. For example, if the values being dealt with
contained very small characteristics (large nega-
tive powers of 2), a series of operations could
cause accumulator underflow when normalizing takes
place. If the magnitudes of the numbers are known
to be very small, accumulator underflow may be
avoided by leaving the answer in unnormalized form.

Consider the MQ register after a floating-point
operation. It may contain an expression whose char-
acteristic is always 27, less than the accumulator
characteristic. To maintain the difference in char-
acteristics between the low-order MQ register frac-
tion bits and the high-order accumulator fraction bits,
normalizing is performed before the MQ register
characteristic is computed.

Zero Fraction

A floating-point number having a zero fraction can be
treated in a variety of ways because the significance
of a zero fraction operand depends on the arithmetic
process to be performed. In addition and subtrac-
tion, a zero fraction operand just means that the
fraction portion of the answer is identical with the
non-zero fraction operand. The result of the arith-
metic is meaningful. In the machine, a zero frac-
tion operand has no effect on the operation; the airth-
metic is performed, allowing normalization of the
non-zero operand fraction if specified. Naturally,

if both operands contain a zero fraction, the answer
has no meaning and can never be normalized. Such
a situation, however, is highly improbable.

In multiplication, a zero fraction has a vastly dif-
ferent meaning and is therefore treated quite differ-
ently. In multiplication, a zero fraction multiplier
results in a product containing a zero fraction: any-
thing times zero equals zero. Likewise, a zero
raised to some power is still zero. It serves no
purpose to perform the operation because the result
will be meaningless. Also, a zero fraction can
never be normalized. Consequently, in single-pre-
cision multiplication, a zero fraction multiplier
causes the operation to be terminated and the char-
acteristic portion of the accumulator and MQ regis-
ters, which receive the result, to be cleared. In
double - precision multiplication, the multiplicand
is checked for a zero fraction. Effectively, a multi-
plicand with a zero fraction has the same meaning as
a multiplier with a zero fraction: the result frac-
tion will be zero. Consequently, a zero multiplicand
fraction in double-precision multiplication causes
the operation to be terminated and the accumulator
and MQ register characteristic portions to be cleared.
In addition, a better use of hardware is realized by
checking the multiplier in one case and the multipli-
cand in the other. The end result is a shortening of
the time necessary to accomplish floating-point mul-
tiplication.

When dealing with division, the divisor or the
dividend could contain a zero fraction. Each case
has a different meaning and is therefore treated dif-
ferently. The treatment, however, applies to both
single-and double-precision operations. If the divi-
sor has a zero fraction, the quotient cannot be deter-

mined; a divide-check condition results, and the opera-
tion is ended. The dividend, however, remains un-
altered in this case. When the dividend contains a
zero fraction, the quotient will be zero. Since the
quotient will have no meaning, the operation is ended.
However, in this case, the associated characteristic
positions of the accumulator and MQ registers, which
hold the result of a division, are cleared.

The above discussion pertains only to zero fraction
operands. There remains the condition of the result
of a floating-point operation containing a zero frac-
tion. Since in multiplication and division the result
is also influenced by zero fraction operands, these
cases have already been covered. Only addition and
subtraction, then, have not been discussed. In either
of these operations, a zero fraction result causes the
associated characteristic to be cleared and the opera-
tion terminated.

Single-Precision Floating-Point Addition and Subtrac-
tion

For single-precision floating-point addition in the
7040-7044, the addressed operand is placed in the
storage register, which has the following format:

FS| CHARACTERISTIC FRACTION

S 1 8|9 35

The sign bit serves as the fraction sign; the charac-
teristic, to indicate the power of 2 to which the frac-
tion is raised; the fraction, to express the significant
bits of the quantity. The second implied operand is
the accumulator, which has the following format:

FS| CHARACTERISTIC FRACTION
Q P 1 819 35

In the accumulator, bits Q and P are interpreted as
part of the characteristic. Field meaning is identi-
cal with that of the storage register.

Single-precision floating-point addition is accom-
plished by adding the storage register contents to the
accumulator contents. The result is placed in the
accumulator. Addition is algebraic; sign determina-
tion is independent of the actual addition. The re-
sult sign is the sign of the largest operand.

In the addition process, initial action involves
determining which operand is larger; the larger
operand is placed in the storage register. There-
fore, whenever the accumulator is the larger oper-
and, it is placed in the storage register, and the
storage register operand is placed in the accumula-
tor. Although the original value of accumulator bits
Q and P are used in determining which operand is
larger, they are not transferred to the storage regis-
ter when the accumulator is found larger. In addi-
tion, in this case, bits Q and P are cleared when the
storage register contents are placed in the accumu-

lator.
79

After the larger operand is in the storage register,
the characteristics are equalized. This action sim-
ply involves subtracting the accumulator character-
istic from the storage register characteristic and
placing the difference in the shift counter. The ac-
cumulator fraction, which will always be the smaller
operand at this point in the addition, is shifted right
the number of times specified by the shift counter .
High-order fraction zeros are introduced into bit 9
with each right shift. Bits shifted out of accumulator
bit position 35 enter MQ register bit position 9. Dur-
ing equalization then, the MQ register can become
part of the smaller fraction. Bits shifted out of MQ
register bit position 35 are lost.

When the characteristics are equalized, addition
of the fractions can begin. However, two types of
addition are possible: true addition and complement
addition. A comparison of the storage register and
accumulator signs determines which type to perform.
If the signs are alike, true addition is performed; if
the signs are unlike, complement addition is perfor-
med. With the latter type, the 1's complement of the
accumulator fraction is added to the storage register
fraction. Whichever type is performed, the result is
placed in the accumulator. _

The true addition of two 27-bit numbers can result
in a 28-bit sum: the true addition of two fractions can
yield a mixed number. However, only a fraction can
be expressed in the result. In such a case, the re-
sult must be shifted right one position, and the char-
acteristic must be updated. To simplify the equaliz-
ing action necessary when a 28-bit sum results during
true addition, the storage register characteristic,
which is the result characteristic, is transferred to
the adder with the storage register fraction at the
time of addition. A carryout of bit 9 (a 9 carry) is
allowed to propagate to characteristic bit 8, thereby
automatically updating the characteristic. The re-
sult fraction is then shifted right one position; shift-
ing at this point involves the combined accumulator
MQ register fraction. Accumulator bit 9 is then set
to 1 to complete the equalizing action.

Complement addition is really subtraction. In this
case, a 9 carry indicates that the storage register
fraction was larger than the accumulator fraction
and that the value in the accumulator is only a par-
tial result. A 9 carry in complement addition must
therefore be added to the partial result to get the
true result. It is possible at this time for the MQ
register to contain significant bits of the partial re-
sult because of the equalizing action taken before the
fraction addition was initiated. Therefore, the MQ
register is checked for a value of zero. If it does
equal zero, the 9 carry is added to accumulator bit
35; if it does not equal zero, the 9 carry is added to
MQ register bit 35.

80

No matter which type of arithmetic is performed, the
sum of a floating-point addition is in the combined ac-
cumulator-MQ register. The low-order fraction bits
or least significant portion of the sum appear in the
MQ register fraction, and the high-order fraction
bits or most significant portion of the sum appear in
the accumulator. The result characteristic appears
in the accumulator, and the MQ register is assigned
a characteristic 27, less than the accumulator char
acteristic. In addition, the MQ register sign is set
to the accumulator sign.

The option to normalize the result is provided in
single-precision addition. Normalization is speci-
fied by a positive instruction word sign. When nor-
malization is specified, accumulator bit 9 is inspec-
ted. If it is a 0, the combined accumulator-M@ re-
gister fraction is shifted left one position. A zero is
introduced into MQ register bit 35, and the charac-
teristic is reduced by 1. This action is repeated un-
til a 1 enters accumulator bit 9. Note that normaliza-
tion, if specified, is completed before the MQ char-
acteristic is computed.

Single-precision subtraction is identical with single-
precision addition, except the sign of the addressed
operand is inverted before it enters the storage re-
gister.

Machine Action

The action taken in the 7040-7044 to perform single-
precision addition and subtraction is as follows:
1. Determine which operand is larger:

a. Reset MQ register.

b. Transfer storage register bits 1-35 to
adder.

c. Transfer complement of accumulator
characteristic (Q-8) to adder.

d. Add characteristics by generating a 1 carry
to adder position 8.

e. Place result in accumulator bits Q-8.

f. Check for Q carry:

(1) If a Q carry is present, the accumulator
is equal to or smaller than the storage
register; therefore, no operand inter-
change is necessary, so proceed to
step 3, ¢ (true difference in character-
istics is in the adder at this point).

(2) If no Q carry is present, the accumu-
lator is greater than the storage
register; proceed to step 2.

2. Operand interchange action (larger number to
SR):

a. Simultaneously transfer accumulator sign
to storage register sign position, and
storage register sign to accumulator sign
position.

b. Transfer accumulator bits 1-35 to storage
register.

c. Transfer adder bits Q-35 to accumulator.

Determine characteristic difference:

a. Transfer complement of accumulator bits
1-8 to adder.

b. Generate a 1 carry to adder position 8.

c. Check adder bits 1 and 2:

(1) If either bit is a 1, the characteristic
difference is equal to or greater than
100g, so accumulator bits Q-35 are
cleared; proceed to step 4.

(2) If neither bit is a 1, the characteristic
difference is less than 100g, and adder
bits 3-8 are transferred into the shift
counter.

Equalize characteristics:

a. Check shift counter for a value of 0:

(1) If SC = 0, go to step 5.

(2) If SC#* 0, go to step 4,b.

b. Shift MQ register bits 9-35 right one
position.

c. Shift accumulator bit 35 right one position
into MQ register bit 9.

d. Shift accumulator bits 9-35 right one
position, and introduce a 0 into vacated
accumulator position 9.

e. Step shift counter.

f. Return to step 4, a.

Compare operand signs:

a. Compare accumulator and storage register

signs:

(1) If alike, perform true addition (step
6,a).

(2) If unlike, perform complement
addition (step 6, b).

Addition:

a. True addition:

(1) Transfer storage register bits 1-35
and accumulator bits 9-35 to adder,
and add.

(2) Place result in accumulator bits Q-35.

(3) Check for a carryout of adder bit 9:
(a) If no carry is present, normalize

fraction if specified (step 7); if
normalization is not specified, end
operation (step 8).

(b) If a carry is present:

1. Let carry propagate to adder
bit 8.

2. Shift right one position MQ
register bits 9-35.

3. Shift right one position

accumulator bit 35 into MQ

register bit 9.

Shift right one position

accumulator bits 9-35.

1N

5. Place a 1 in accumulator bit 9.
6. Normalize fraction if specified
(step 7); if normalization is
not specified, end operation

(step 8).

b. Complement addition:

(1) Transfer storage register bits 1-35
and complement of accumulator bits
9-35 to adder.

Place result in accumulator bits Q-35.
Check for a carryout of adder bit 9:

@)
@)

(4)

(@)

()

If no carry is present, complement
accumulator bits 9-35; then
normalize fraction if specified
(step 7); if normalization is not
specified, end operation (step 8).
If a carry is present, transfer
storage register sign to accumu-
lator sign position (SR > AC).

Check MQ fraction for a value of 0:

@)

g

If MQ = 0, transfer accumulator
bits 9-35 to adder, generate a
carry to adder bit 35, and place
result in accumulator; then either
normalize fraction (step 7) or end
operation (step 8).

If MQ # 0 (subtract MQ from

imaginary extension of SR):

1. Transfer MQ register bits
9-35 to storage register.

2. Transfer storage register
bits 9-35 to adder, thereby
placing MQ register fraction
in adder.

3. Transfer accumulator bits
9-35 to storage register.

4. Transfer adder bits 9-35 to
accumulator (MQ register
fraction is now in accumu-
lator).

5, Transfer complement of
accumulator bits 9-35 to adder.

6. Generate a 1 carry to adder
bit 35, and place result in
accumulator.

_7. Transfer storage register
bits 9-35 to adder.

8. Transfer accumulator bits
9-35 to storage register.

9. Transfer adder bits 9-35 to
accumulator.

10. Transfer storage register

bits 9-35 to MQ register
bits 9-35.

11, Normalize fraction (step 7)

if specified; if not, end
operation (step 8).

81

82

7.

Result normalization:

a.
b.
c.

Inspect accumulator bit 9.

If accumulator bit 9 = 1, proceed to step 8.

If accumulator bit 9 = 0:

(1) Shift accumulator bits 9-35 left one
position, and document shift counter,
making it all 1's.

(2) Shift MQ register bit 9 left one posi-
tion into accumulator bit 35.

(3) Shift MQ register bits 10-35 left one
position.

(4) Place a 0 in MQ register bit 35.

(6) Transfer accumulator bits Q-8 to
adder.

(6) Add 1's to adder bits Q, P, 1, and 2.

(7) Transfer shift counter contents to
adders.

(8) Transfer adder bits Q-8 to accumu-
lator bits Q-8.

(9) Repeat step 7, a.

End operation:

a.
b.
c.

Transfer accumulator bits Q-8 to adder.
Add 1's to adder bits 0-3 and 6 and 8.
Transfer accumulator sign to MQ register
sign.

Transfer adder bits 1-8 to MQ register

positions 1-8.

Check for accumulator and MQ fraction

=0:

(1) If both = 0 and normalization is
specified, reset accumulator bits
Q-35 and MQ register bits 1-35.

(2) If either = 0, or if neither =0, the
operation is complete.

Single-Precision Multiplication

In single-precision multiplication in the 7040-7044,
the addressed operand is the multiplicand and is placed
in the storage register. The format of the multipli-
cand is identical with the storage register operand

in single-precision addition. The implied operand is
the multiplier and is in the MQ register, which has a
format identical with the storage register. Single-
precision multiplication, then, is accomplished by
multiplying the storage register contents by the MQ
register contents.

The product of a single-precision multiplication
appears in the combined accumulator-MQ register.
The high-order fraction bits appear in the accumula-
tor; the low-order fraction bits, in the MQ register.
The product or result characteristic appears in the
accumulator, and the MQ register is assigned a
characteristic 2710 less than the accumulator char-
acteristic. Multiplication is algebraic; therefore,
like signs yield a positive result sign, and unlike
signs, a negative result sign. The signs of the ac-
cumulator and the MQ register are set to the alge-
braic sign of the result.

Initial action in multiplication involves determin-
ing whether the operation is normalized or unnormal-
ized. If the operation is unnormalized, machine cir-
cuits are automatically set up for the action and the
product sign is determined. However, if the opera-
tion is normalized, the combined accumulator and

MQ register fraction is checked for a zero value. The
presence of a zero value causes the operation to be
ended and the product sign to be determined. The ab-
sence of a zero value results in setting up the machine
circuits to accomplish the multiply and in determining
the product sign.

Once the decision is made to perform the multiplica-
tion, the result characteristic is computed. When
multiplying floating-point numbers, the characteris-
tics are added. Therefore, the MQ register charac-
teristic is added to the storage register characteris-
tic. Since 2008 is used to represent 2°, the sum of
the characteristics is the result characteristic plus
200g. Consequently, 200g is subtracted from the
sum of the characteristics to get the real result char-
acteristic. This value is placed in the accumulator.

After the result characteristic is computed and in
accumulator bit positions Q-8, the fractions are mul-
tiplied. Multiplication in this case is identical with
fixed-point multiplication in that it is a series of right
shifts or additions and right shifts. The only differ
ence between single-precision multiplication and
fixed-point multiplication is the setting of the shift
count. In the former, two 271 bit fractions are in-
volved and, therefore, the shift counter is set to 338;
in the latter, two 35-bit operands are involved and,
therefore, the shift counter is set to 43g.

When the repetitive steps that constitute multiplica-
tion are repeated and the result is in the combined
accumulator-MQ register, the result is normalized
if normalization is specified. Normalization is speci-
fied when the instruction word sign bit is positive(0).
However, in single-precision multiplication, provi-
sion is made to normalize only one position. There-

fore, if accumulator bit 9 is a 0, the combined accumu-

lator-MQ register fraction is shifted left one position.
A trailing 0 is introduced into MQ register bit 35,
and the characteristic is reduced by 1. When this
action is completed, accumulator bit 9 is not inspected
further.

The final action taken in single-precision multipli-
cation is the computation of the M@ characteristic.
At this time, the result characteristic is in the ac-
cumulator. Accumulator bits Q-8 are therefore
transferred to the adder, where 2710(338) is sub-
tracted from the Q-8 value. The result is placed in
MQ register bits 1-8. Completion of this transfer
ends the operation.

Machine Action

The action taken by the 7040-7044 during the execu-
tion of a single-precision multiplication is as follows:
1. Determine whether a multiply is possible and,

if so, initiate the action:
a. Check to determine whether operation is normal-
ized or unnormalized.
b. If an unnormalized operation is specified, go to

step e, but ignore not-zero-value contingency.
c. If a normalized operation is specified, check

combined accumulator and MQ register frac-
tion for zero value.

d. If a zero value is found, end operation and go
to step f.

e. If a zero value is not found:

(1) Set SC to 33g.
(2) Transfer SR positions 1-35 to adder posi-

tions 1-35.

(3) Transfer adder positions Q-35 to accumula-

tor positions Q-35.

f. Compare SR sign with MQ register sign.

g. If alike, make accumulator sign positive.

h. If unlike, make accumulator sign negative.

i. Check accumulator positions Q-35 for zero
value.

j. If a zero value is found, make PR sign posi-
tion positive.

2, Compute result characteristic:

a. Transfer storage register bits 1-8 to adder.

b. Transfer adder bits Q-8 to accumulator (posi-
tions Q-8).

c. Transfer MQ register bits 1-8 to storage regis-
ter positions 1-8.

d. Simultaneously transfer storage register bits
1-8 and accumulator bits Q-8 to adder.

e. Transfer result, adder bits Q-8, to accumula-
tor bits Q-8; the accumulator now contains the
result characteristic plus 200.

f. Subtract 200 from accumulator characteristic:
(1) Transfer accumulator bits Q-8 to adder.

(2) Add 1 to adder bits Q, P, and 1.

(3) Transfer result to accumulator positions Q-8.
3. Multiply fractions:

Test MQ register bit 35:

(1) If MQ 35 =0:

(a) Shift combined accumulator -MQ register
fraction (accumulator bits 9-35 and MQ
register bits 9-35) right one position.

(b) Step shift counter (reduce SC value by 1).

(c) Test shift counter for a value of 0.

(d) I SC =0, proceed to step 4; if SC #£0,
repeat step 3,a.

(2) f MQ 35 = 1:

(a) Add storage register fraction to accumu-
lator fraction, and place result in accumu-
lator.

(b) Shift combined accumulator-MQ register
fraction right one position.

(c) Step shift counter.

(d) Test shift counter for a value of 0.

(e) If SC = 0, proceed to step 4; if SC # 0,
repeat step 3,a.

4. Normalize result, if specified (instruction word
S bit = 0):

83

Check accumulator bit 9:

(1) If AC 9 =1, proceed to step 5.

(2) If AC 9 =0:

(a) Transfer accumulator bits Q-8 to adder.

(b) Add 1's to bits Q-8 (effectively subtract-
ing 1 from accumulator characteristics).

(c) Place result in accumulator bits Q-8.

(d) Shift combined accumulator-MQ register
fraction left one position.

(e) Proceed to step 5.

5. End operation:

(a) Transfer accumulator bits Q-8 to adder.

(b) Add 1 to bits Q, P, 1, 2,3,6, and 8 (effec-
tively subtracting 33g from accumulator
characteristic).

(c) Transfer result to MQ register bits 1-8.

(d) Transfer accumulator sign to MQ sign.

Single-Precision Division

During single-precision division in the 7040-7044, the
accumulator serves as the dividend, and the storage
register, which contains the addressed operand, as
the divisor. Their formats are identical:

IFS| CHARACTERISTIC FRACTION
1 819 35

The quotient appears in the MQ register, and the re-
mainder appears in the accumulator. Both formats are
identical with that shown above. In division, the result
characteristic is obtained by subtracting the division
characteristic from the dividend characteristic. This
result characteristic is placed in the MQ register. A
remainder characteristic is also computed; it is the
dividend characteristic minus 27 10°

Sign determination is governed by the rules of alge-
bra. Therefore, like signs yield positive results; un-
like signs, negative results. The remainder keeps
the sign of the dividend.

If the dividend is equal to or greater than twice the
divisor, division is not allowed to take place, and the
instruction is terminated. Also, if the dividend frac-
tion is 0, accumulator and MQ register bits 1-35 are
reset to 0, and the accumulator sign is made positive.
Further, the quotient characteristic is partially com-
puted. In a single-precision division, the quotient or

result characteristic equals SR (1-8) + AC (1-8) + 200g.

When the dividend is equal to or greater than the
divisor, a quotient greater than 1 is implied. As the
actual division takes place, this quotient greater than
unity would be shifted out of the MQ register and into
accumulator bit 35. To make sure that this shifted
quotient bit appears in the highest-order quotient bit
position (MQ 9), the shift counter is decremented, and
the dividend characteristic is increased by 1 before
the division begins. When the dividend is less than the
divisor, the quotient will not spill into the accumulator;

84

therefore, the dividend characteristic does not have
to be altered. In this case, the dividend fraction is
shifted left one position and the shift counter is de-
cremented.

In the single-precision division process, the com-
plement of the dividend is subtracted from the divi-
sor. During the execution of the subtraction, a
check must be made for a '"simulated adder 8 carry'.
This type of carry is the existence of a 9 carry due
to a left shift and a second 9 carry due to the subtrac-
tion. When no simulated adder 8 carry exists, the
result of the subtraction, which is in the adder, is
placed in accumulator bits 9-35. This action con-
stitutes a successful reduction and is accompanied
by the placement of a 1 in MQ register bit 35. When
a "simulated adder 8 carry'" exists, a reduction is
not possible and, therefore, nothing is done to MQ
register bit 35. After each attempted subtraction,
successful or unsuccessful, and until the shift coun-
ter is decremented to 0, the combined accumulator-
MQ register fraction is shifted left one position.

After division of the fractions is completed, com-
putation of the result characteristic is completed.
The result characteristic is placed in MQ register
bit positions 1-8. With this action accomplished,
the original characteristic of the accumulator is
determined, and the sign of the MQ register is set
to the algebraic sign of the quotient (like signs =
positive; unlike signs = negative). The final action
taken is to reduce the original accumulator charac-
teristic by 271 if a remainder exists.

Machine Action

The action taken in the 7040-7044 during the execu-
tion of a single-precision division is as follows:
1. Prepare to divide:
a. Set MQ register to 0.
b. Set shift counter to 33g.
2. Determine whether a divide can be performed:
a. Shift combined accumulator and MQ register
fraction right one position, thereby dividing

the dividend by 2.

b. Transfer complement of accumulator bits

9-35 to adder.

c. Transfer storage register bits 9-35 to adder,
and add.
d. Check for a 9 carry:

(1) If no 9 carry is present, the uncomple-
mented accumulator fraction is either
equal to or greater than twice the storage
register fraction value. Therefore, a
divide will result in a guotient that equals
machine capacity; the quotient will be
greater than twice unity. End the opera-
tion by turning on the divide check indica-

tor and

shifting the combined accumulator-MQ regis-

ter fraction left one position.

(2) If a 9 carry is present, a divide can be
performed, so proceed.

e. Shift combined accumulator-MQ register

f.

fraction left one position.
Check accumulator fraction for a value of 0:
(1) If the accumulator fraction is 0:
(a) Reset accumulator bits Q-8.
(b) Set accumulator sign positive, regard-
less of divisor sign.
(c) End operation.
(2) If accumulator fraction is not 0, continue.

3. Initiate computation of quotient characteristic:

a.
b.

C.

Transfer storage register bits 1-8 to adder.
Transfer complement of accumulator bits
Q-8 to adder, and add.

Place result in accumulator bits Q-8._ These
bits now contain the sum of the storage regis-
ter characteristic and the complement of the
accumulator characteristic (SR + AC).
Transfer complement of accumulator bits
Q-35 to adder.

. Transfer adder bits Q-35 to accumulator.

The accumulator characteristic bits now con-
tain the complement of the result of adding
the storage register characteristic and the
complement of the original accumulator char-
acteristic (SR + AC), which equals the re-
sult characteristic less 200.

4. Check for the possibility of a quotient greater

than 1:

a. Subtract accumulator fraction from storage

register fraction. Since the accumulator
fraction is already in complement form, just
transfer accumulator fraction and storage
register fraction to adder, and add them.
Check for a 9 carry:

(1) If a 9 carry is present, the storage re-
gister fraction>the accumulator fraction,
thereby indicating that a quotient less than
1 will result. Therefore, shift accumula-
tor-MQ fraction left one position, and step
shift counter. Remember this 9 carry for
step 5,b (no 9 into AC).

(2) If no 9 carry is present, the accumulator
fraction >the storage register fraction,
thereby indicating that a division will re-
sult in a quotient of unity, but less than 2;
quotient will be 1 plus a fraction. In this
case:

(a) Transfer accumulator Q-8 to adder.
(b) Add 1 to position 8.

(c) Place result in accumulator bits Q-8.
(d) Step shift counter.

5. Divide fractions:

a,

o

Simultaneously transfer accumulator bits
9-35 and storage register bits 9-35 to adder,
and add.

. Check for a simulated adder 8 carry (a carry-

out of bit 9 due to addition after a carryout of

bit 9 due to left shifting):

(1) If no 8 carry is present, proceed to step
5,c (AC > SR).

(2) If an 8 carry is present, shift combined
accumulator -MQ fraction left one posi-
tion (SR> AC); proceed to step 5,d.

Transfer result of addition to accumulator.

Put a1 in MQ 35.

. Shift combined accumulator-MQ fraction left

one position. If a 1 is shifted out of position
9 at this time, it must be remembered for
step 5,b.

Step shift counter.

g. Check shift counter for a value of 0:

(1) If SC = 0, complete characteristic com-
putation.

(2) If SC # 0, repeat step 5, a.

Complete characteristic computation:

a.
b.
c.

a.
b.

C.

e.
f.

a.

b.

C.

Transfer accumulator bits Q-8 to adder.
Add 1 to position 1.
Place result in MQ register bits 1-8.

. Compute accumulator characteristic:

Transfer accumulator bits Q-8 to adder.
Transfer storage register bits 1-8 to adder,
then add.

Place result (original accumulator charac-
teristic) in accumulator.

. Transfer accumulator bits Q-8 to adder.

Add 1 to positions Q,P,1,2,3,6, and 8.
Place result in accumulator.

. Determine result sign:

Compare accumulator and storage register
signs.

If they are alike, make MQ register sign
positive (set it to 0).

If they are unlike, make MQ register sign
negative (set it to 1).

Double-Precision Addition and Subtraction

The addressed operand in double-precision addition
is obtained from two sequential memory locations.
The first memory location referenced must be an
even-numbered location and contains the addressed
operand characteristic and high-order fraction.
second memory location is automatically referenced
and must be an odd-numbered location and one address
higher than the first location referenced.

The

In the

85

second location, only the fraction bits are used, and

these bits form the low-order fraction of the addres-
sed operand. The addressed operand is placed in the
storage and swap registers:

CHARAC-
TERISTIC | HIGH ORDER FRICTION
1 8 |9 35

[%2)

LOW ORDER FRACTION
9 35

STORAGE REGISTER SWAP REGISTER

The combined accumulator-MQ register is the im-
plied operand in double-precision addition; its for-
mat is as follows:

CHARAC- CHARAC-| LOW-ORDER
S| TERISTIC | HIGH ORDER FRACTIONJTERISTIC FRACTION
1 8 19 35 41 N-27 8|9 35

ACCUMULATOR MQ REGISTER
Bits 1-8 in the MQ register are used as a character-
istic for the low-order fraction. This characteristic
is 271 less than the accumulator characteristics.

In the addition process, the addressed operand is
algebraically added to the implied operand. The
characteristic of the larger operand is placed in the
storage register (SR), and the difference in charac-
teristics is placed in the shift counter. When the
characteristic difference exceeds 100g, the accumula-
tor and MQ register fractions are cleared if the
larger operand is the addressed operand. With a
characteristic difference greater than 100g and the
implied operand the larger operand, the accumulator-
MQ register fraction is cleared. A characteristic
difference of less than 100g results in equalization of
the smaller operand. This action is accomplished by
placing the fractions of the smaller operand in the
accumulator and MQ registers and the larger oper-
and in the storage and swap registers. The combi-
ned accumulator-MQ register fraction is then shifted
left the number of places specified by the shift coun-
ter.

With the equalization completed, fraction true ad-
dition begins if the signs are alike. During fraction
addition, the low-order fractions are initially swap-
ped with their associated high-order fractions.
Therefore, one low-order fraction is in the storage
register, and the other is in the accumulator. The
accumulator is then added to the storage register,
with the result being the minor or low-order frac-
tion sum, which is placed in the accumulator. Gen-
eration of a 9 carry during this phase of addition
must be remembered.

After the low-order fraction addition, the register
contents are again swapped: the accumulator with the
MQ register, and the storage register with the swap
register. Swapping involves only the fractions. Now
the high-order fractions are in the storage register
and accumulator. These registers are added. A
carry 0 is used if the low-order fraction addition
yielded no carry; a carry 1 is used if the low-order
fraction addition yielded a carry. The result goes

86

to the accumulator. The result characteristic also
goes to the accumulator.

After equalization, if the signs are unlike, the least
significant or low-order fractions are subtracted us-
ing the 2's complement. Fraction swapping is per-
formed identically with that in true addition, so that
the difference in low-order fractions is obtained first.
The result goes to the accumulator, and a 9 carry, if
generated, is remembered.

The storage and swap and accumulator and MQ re-
gisters are interchanged, and the 1's complement of
the accumulator fraction is added to the storage re-
gister fraction. The result is increased by 1 ifa 9
carry is remembered from the low-order fraction
subtraction. If the storage register fraction is lar-
ger, the subtraction is complete; the accumulator
sign is set to the storage register sign. If the re-
sult is zero, the accumulator or result character-
istic is cleared. If the accumulator fraction is lar-
ger, the combined accumulator-MQ register frac-
tion is complemented: the MQ register contents are
swapped with the accumulator contents; then, the 2's
complement of the accumulator contents is obtained.
A 9 carry is remembered. Accumulator and MQ re-
gister contents are again interchanged. The accumu-
lator is complemented. A 1 is added to the result if
a 9 carry is remembered from low-order fraction
recomplementing.

After the result is in the accumulator and MQ re-
gister in true form, normalization, if specified, is
performed. After normalization is completed, the
MQ register characteristic is computed. This ac-
tion marks the end of the operation.

Double-precision subtraction is identical with
double-precision addition, except the sign of the ad-
dressed operand is inserted before it enters the stor-
age register.

Machine Action

The action that takes place in the 7040-7044 during
double-precision addition and subtraction is as follows:
1. Arrange addressed operand:
a. Transfer storage register bits 9-35 to swap
register.
b. Transfer storage register bits 1-8 to adder
positions 1-8.
c. Transfer adder positions 1-8 to MQ register
positions 1-8.
d. Receive second operand bits 1-35 in storage
register.
e. Interchange storage register and swap regis-
ter fractions.
f. Transfer MQ register bits 1-8 to storage re-
gister bits 1-8.
2. Determine which operand is larger:
a. Transfer storage register bits 1-8 and com-

ment of accumulator bits Q-8 to adder.
b. Add by generating a 1 to adder bit 8.
c. Check for a Q carry:

(1) If a Q carry is present, the storage re-
gister is transferred to the accumulator:
(a) Check adder bits 1 and 2:

1. If they are both 0, transfer adder
bits 3-8 to shift counter.

2. If either or both are 1 (character-
istic difference=100g), reset MQ
register, and transfer adder bits
Q-35 to accumulator(reset accumu-
lator).

(2) If no Q carry is present, the accumulator
>the storage register:

(a) Transfer accumulator bits 1-8 to stor-
age register positions 1-8.

(b) Transfer adder bits Q-8 to accumula-
tor positions Q-8; this is the charac-
teristic difference in complement form.

(¢) Transfer complement of accumulator
bits Q-8 to adder.

(d) Add by generating a 1 to adder bit 8 to
get true difference.

(e) Check adder bits 1 and 2:

1. If they are both 0, transfer adder
bits 3-8 to shift counter.

_2. If either bit is a 1, remember and
proceed to next step.

3. Register Swap or Register Swap and Interchange:

a. If a Q carry was generated in step 2:

(1) Simultaneously transfer storage register
bits 9-35 to swap register and swap regis-
ter bits 9-35 to storage register.

(2) Simultaneously transfer storage register
bits 1-35 to MQ register and MQ register
bits 9-35 to storage register.

(3) Swap storage register fraction and accum-
ulator fraction:

(a) Transfer storage register bits 9-35
to adder.

(b) Transfer accumulator bits 9-35 to
storage register.

(c) Transfer adder bits 9-35 to accumula-
tor.

(4) Swap storage register fraction and MQ
register fraction:

(a) Transfer MQ register bits 9-35 to stor-
age register.

(b) Transfer storage register bits 9-35 to
MQ register.

b. If no Q carry was generated in step 2:
(1) Swap storage register and accumulator

fractions:

(a) Transfer storage register bits 9-35 to
adder.

4.

5.
add.

(b) Transfer accumulator bits 9-35 to storage
register.
(c) Transfer adder bits 9-35 to accumulator.

(2) Swap storage register and swap register

fractions:

(a) Transfer storage register bits 9-35 to
swap register.

(b) Transfer swap register to storage regis-
ter.

(3) Swap accumulator and storage register signs.

(4) Swap storage register and accumulator frac-

tions:

(a) Transfer storage register bits 9-35 to
adder.

(b) Transfer accumulator bits 9-35 to stor-
age register.

(c) Transfer adder bits 9-35 to accumulator.

(5) If characteristic difference is less than 100g,
swap storage register and MQ register frac-
tions.

(6) If characteristic difference is greater than
100g:

(a) Reset MQ register.
(b) Transfer adder bits Q-35 to accumulator
(reset accumulator).
(7) Check shift counter:
(a) If SC # 0, proceed to step 4.
(o) If SC = 0, compare storage register and
accumulator signs:
1. If the signs are alike, proceed to step
5.
2. If the signs are unlike, proceed to step
7.

Equalize fractions:

a. Shift combined accumulator-MQ fraction right
one position. Because the low-order bits are
in the accumulator, MQ register bit 35 goes
into accumulator bit 9, and accumulator bit
35 is lost.

b. Step shift counter.

c. Check shift counter for a value of 0:

If SC = 0, compare storage register and ac-
cumulator signs:
(1) If signs are alike, proceed to step 5.
(2) If signs are unlike, proceed to step 7.
Add low-order fractions; then swap for high-order

a. Perform low-order add:
(1) Transfer storage register bits 9-35 to ad-
der.
(2) Transfer accumulator 9-35 to adder, and
add.
(3) Place result in accumulator bits 9-35.
(4) If a 9 carry is generated, remember it.
b. Swap
(1) Transfer swap register to storage register.

87

338

(2) Transfer storage register bits 9-35 to
adder.
(3) Transfer accumulator bits 9-35 to stor-
age register.
(4) Transfer adder bits 9-35 to accumulator.
(5) Swap storage register and MQ register
values:
(a) Transfer storage register bits 1-35
to MQ register positions 1-35.
(b) Transfer MQ register bits 9-35 to
storage register positions 9-35.
(c) Proceed to step 6.

6. Add high-order fractions:

a.

Transfer storage register bits 1-35 to adder.

. Transfer accumulator bits 9-35 to adder.

If a 9 carry was generated in step 5, add by
generating a 1 to adder bit 35.
If no 9 carry was generated, add by genera-
ting a 0 to adder bit 35.
Place addition result in accumulator bits
Q-35.
Check for a 9 carry:
(1) If a 9 carry is present:
(a) Shift combined accumulator and MQ
register fraction right one position.
(b) Make accumulator bit 9 a 1.
(2) If no 9 carry is present, proceed to stepg.
Check combined accumulator-MQ register
fraction for a value of 0:
(1) If equal to 0, reset accumulator (Q-35)
and end operation.
(2) If not equal to 0, check accumulator bit 9:
(a) If accumulator bit 9 =1, end operation.
(b) If accumulator bit 9 = 0, normalize
result (step 9).

7. Subtract low-order fractions; then swap for high-
order subtract:

Transfer complement of accumulator bits

9-35 to adder.

Transfer storage register bits 9-35 to adder.

Add by generating a 1 to adder bit 35.

Transfer adder bits Q-35 to accumulator,

and remember a 9 carry, if any.

Swap storage register and swap register frac-

tions.

Swap storage register and MQ register:

(1) Transfer storage register bits 1-35 to MQ
register.

(2) Transfer MQ register bits 9-35 to storage
register.

Swap storage register and accumulator frac-

tions:

(1) Transfer storage register bits 9-35 to
adder.

(2) Transfer accumulator bits 9-35 to adder.

(3) Transfer adder bits 9-35 to accumulator.

h.

a.

b.
c.

d.

i.

Swap storage register value and MQ register

fraction:

(1) Transfer storage register bits 1-35 to MQ
register.

(2) Transfer MQ register bits 9-35 to storage
register.

Check for a 9 carry from step d.

(1) If no 9 carry is present, proceed to step
8.

(2) If a 9 carry is present, proceed to step 8.

. Subtract high-order fractions:

Transfer complement of accumulator bits 9-35
to adder.

Transfer storage register bits 1-35 to adder.
If a 9 carry is present, generate a 1 to adder
bit 35.

If no 9 carry is present, generate a 0 to ad-
der bit 35.

. Place adder bits 9-35 in accumulator bits

9-35.

Check for and remember a 9 carry, if gener-
ated.

Transfer MQ register bits 9-35 to storage
register.

. If a 9 carry is present:

(1) Transfer storage register sign to accumu-
lator sign.
(2) Check combined accumulator -MQ fraction
for a value of 0.
(a) If value is 0, reset accumulator and
end operation.
(b) If value is not 0, check accumulator

bit 9:
_1. If accumulator bit 9 =1, end opera-
tion.
_2. If accumulator bit 9 = 0, proceed to
step 9.

If no 9 carry is present, the combined accum-
ulator-MQ register fraction>the combined
storage-swap register fraction, and the re-
sult must be complemented to obtain the true
result.
(1) Transfer storage register bits 9-35 to
adder.
(2) Transfer accumulator bits 9-35 to stor-
age register.
(3) Transfer adder bits 9-35 to accumulator.
(4) Make a 2's complement correction to
accumulator:
(a) Transfer complement of accumulator
to adder.
(b) Add 1 to bit 35.
(c) Place result in accumulator.
(d) Remember a 9 carry, if generated.
(5) Place high-order difference in accumula-
tor:

(a) Transfer storage register 9-35 to adder.
(b) Transfer accumulator bits 9-35 to stor-
age register.
(c) Transfer adder bits 9-35 to accumulator.
(6) Complete 2's complement correction:
(a) Transfer storage register bits 1-35 to
MQ register.
(b) Transfer complement of accumulator bits
9-35 to adder.
(c) If a9 carry is remembered, add 1 to ad-
der bit 35.
(d) If no 9 carry is remembered, add 0 to ad-
der bit 35.
(e) Transfer adder bits 9-35 to accumulator.
9. Normalize result:
a. Check accumulator bit 9:
(1) If it is a 1, end operation and assign MQ
characteristic.
(2) If it is a 0:
(a) Shift accumulator bits 9-35 left one
position, and decrement shift counter.
(b) Shift MQ register bit 9 left one posi-
tion into accumulator bit 35.
(c) Shift MQ register bits 10-35 left one
position.,
(d) Place a 0 in MQ register bit 35.
(e) Transfer accumulator bits Q-8 to ad-
der.
(f) Add 1's to adder bits Q, P, 1, and 2.
(g) Transfer shift counter contents to ad-
der positions 3-8, and add.
(h) Transfer adder bits Q-8 to accumula-
tor bits Q-8.
(i) Repeat step 9, a.
10. Assign MQ characteristic:
Check combined accumulator-MQ register
fraction for a value of 0:
a. If not equal to zero:
(1) Transfer accumulator bits Q-8 to adder.
(2) Add 1 to adder bits Q, P, 1,2,3,6, and
8.
(3) Transfer result to MQ register bits 1-8.
b. If equal to zero:
(1) Reset accumulator and MQ register.
(2) Transfer accumulator sign to MQ regis-
ter sign position.

Double-Precision Multiplication

In double-precision multiplication, the multiplicand
is placed in the storage and swap registers. The
multiplicand characteristic and high-order fraction
are obtained from an even-address memory location
and appear in the storage register; the low-order
fraction is obtained from the next-higher memory
location and placed in the swap register:

CHARAC-
TERISTIC | HIGH ORDER FRACTION LOW.ORDER FRACTION

1 8|9 35119 35
STORAGE REGISTER SWAP REGISTER

n

The multiplier characteristic and high-order fraction
bits are contained in the accumulator; the low-order
fraction bits, in the MQ register:

CHARAC-
TERISTIC
1 8

wn

HIGH ORDER FRACTION LOW ORDER FRACTION
9 35119 35
ACCUMULATOR MQ REGISTER

The result appears in double-precision form in the
accumulator and MQ registers, with the MQ register
containing a characteristic 277 less than the accumu-
lator characteristic:

CHARAC- | HIGH ORDER / CHARAC- | LOW ORDER
s| TERISTIC | FRACTION / TERISTIC | FRACTION
-27
N g s N2 el 35

If the result fraction is zero, the accumulator and
MQ register characteristics are set to zero. The sign
of the result is the algebraic sign of the multiplication.

Double-precision multiplication is based on the
algorithm

n-27+m n+m-54

WA D)n+m =27

+BD)

(ABP-27y cHD™ =24 A B
However, the last term in the expression is not real-
ized. In the following discussion, (AC)R*nis called
P3, (BC)M+n-27 ig called P2, and (AD)RTM-27 jg
called P1.

Initially, the multiplier fraction is checked for a 0
value. If it is 0, the accumulator and MQ register
characteristics are cleared. If it is not 0, the action
continues.

When both the multiplier and multiplicand significant
fractions (high-order fractions) are 0, the result is 0.
These major fractions are tested; if both are 0, the
operation ends. Further, the accumulator and MQ
register characteristics are cleared. If neither is 0,
the result sign is determined and set in the accumula-
tor sign bit.

With the result sign determined, the high-order
multiplicand fraction (A) and the Low-order multiplier
fraction (D) are multiplied. To accomplish this, the
accumulator fraction is placed in a 27-bit register
called the latch register. With this arrangement of
operands effected, the accumulator fraction is cleared.
If the MQ register is not 0 at this time, multiplication
takes place, identical with single-precision multipli-
cation. The result is 54 bits and appears in the com-
bined accumulator-MQ register fraction. Only the
accumulator portion (P1) is saved and is equivalent to

89

A x D in the algorithm. If the MQ register, how-
ever, is 0, the multiplication of A x D does not take
place.

Next, the low-order multiplicand fraction (B) and
the high-order multiplier fraction (C) are multiplied.
The appropriate registers are arranged for the mul-
tiplication: the low-order fraction multiplicand to
the storage register and the high-order multiplier
fraction to the MQ register. The accumulator frac-
tion is cleared, but P1 is saved. Multiplication is
accomplished, and the result characteristic is deter-
mined. The result of the multiplication is placed in
the combined accumulator-MQ register fraction, and
the result characteristic is placed in the accumulator.
The low-order result bits, which are in the MQ re-
gister, are dropped, and only the accumulator or
high-order fraction bits are saved. These bits are
equivalent to BC in the algorithm or P2.

The results of the two multiplications performed
thus far have identical characteristics. At this time,
these two partial products are added (P1 + P2), with
their sum going to accumulator bits 9-35. If, as a
result of this addition, a 9 carry is generated, it
must be added to the major product, AC. Genera-
tion of a 9 carry at this time is remembered.

The two major fractions are now multiplied. How-
ever, the sum of the two partial products is left in
the accumulator. In one operation, the result of AC
plus P1 + P2 is realized. When the operation is
complete, accumulator bits 9-35 contain the high-
order result fraction bits and MQ register bits 9-35
contain the low-order result fraction bits. Ifa 9
carry is remembered from the addition of P1 and P2,
1 is added to the high-order result fraction. At this
time, the multiplication is finished.

Normalization, if specified and if necessary, is
now performed. In double-precision multiplication,
the result can only be normalized one position. After
this action, the MQ register characteristic is com-
puted by subtracting 27;(from the accumulator
characteristic. With the MQ register characteristic
computed, double-precision multiplication is com-
pleted.

Machine Action

The action in the 7040-7044 during the performance
of a double-precision multiplication is as follows:
1. Zero-test multiplier:

a. If combined accumulator-MQ register
fraction = 0, clear accumulator and MQ
register fractions and end operation.

b. If combined accumulator-MQ register
fraction # 0:

(1) Simultaneously transfer storage regis-
ter 9-35 to MQ register and MQ regis-
ter 9-35 to storage register.

90

(2) Transfer storage register sign to MQ
register sign position.

c. Set shift counter to 33g.
d. Transfer storage register bits 1-8 to ad-

der.

e. Transfer adder bits 1-8 to MQ register

bit positions 1-8. At this point, the
multiplicand characteristic and high-order
fraction bits are in the MQ register; the
multiplicand high-order fraction is in the
swap register; the low-order multiplier
fraction is in the storage register; the
multiplier characteristic and high-order
fraction bits are in the accumulator.

2. Zero-test high-order multiplicand fraction
bits:
a. Check combined accumulator-MQ register

fraction for a value of 0.

b. If combined accumulator-MQ register

fraction = 0:

(1) Reset accumulator characteristic.
12) Reset MQ register characteristic.
(3) End operation.

c. If combined accumulator-MQ register

fraction #0:

(1) Transfer storage register bits 9-35 to
MQ register.

(2) Transfer accumulator sign to storage
register sign position.

(3) Receive second operand from storage
in storage register; block receipt of
sign bit.

(4) Swap storage register fraction and
swap register fraction.

(5) Transfer MQ register bits 1-8 to stor-
age register bits 1-8. The MQ regis-
ter still contains the sign of the multi-
plicand.

(6) Compare storage register and MQ re-
gister signs:

(a) If alike, make accumulator sign
positive.

(b) If unlike, make accumulator sign
negative. At this point, the multi-
plicand characteristic and high-
order fraction are in the storage
register; the multiplicand low-order
fraction is in the swap register; the
result sign and the multiplier char-
acteristic and high-order fraction
are in the accumulator; the mul-
tiplicand characteristic and low-
order multiplier fraction are in the
MQ register.

3. Arrange operands so high-order multiplicand
fraction can be multiplied by low-order multi-
plier fraction:

a.
b.

(%]

Transfer storage register bits 9-35 to adder.
Transfer accumulator bits 9-35 to storage
register.

Transfer adder bits 9-35 to accumulator.

Transfer storage register bits 9-35 to latch

register.

Transfer accumulator bits 9-35 to storage

register.

Reset accumulator.

Check MQ register fraction:

(1) If = 0, proceed to step 5.

(2) If # 0, proceed to step 4. At this point,
the multiplicand characteristic and high-
order fraction bits are in the storage re-
gister; the multiplicand low-order frac-
tion bits are in the swap register; the
high-order multiplier fraction in the latch
register; the accumulator fraction is zero;
the low-order multiplier fraction is in the
MQ register.

Multiply high-order multiplicand fraction by

low-order multiplier fraction : P1

a. Check MQ register bit 35:

(1) If MQ 35 = 0, shift combined accumula-
tor-MQ register fraction right one po-
sition.

(2) If MQ 35 =1, add storage register
fraction to accumulator fraction, and
then shift combined accumulator-MQ
fraction right one position.

b. Step shift counter.

c. Check shift counter for a value of 0:

(1) If SC = 0, proceed to step 5.

(2) If SC # 0, repeat step 4, a.

Arrange operands so low-order multiplicand

fraction can be multiplied by high-order mul-

tiplier fraction:

a. Transfer swap register to storage regis-
ter fraction and storage register fraction
to swap register.

b. Transfer storage register bits 1-35 to MQ
register.

c. Transfer latch register to storage register
fraction positions.

d. Transfer storage register bits 9-35 to
adder.

e. Transfer accumulator bits 1-35 to storage
register.

f. Transfer adder bits 9-35 to accumulator.

g. Transfer storage register bits 9-35 to
latch register.

h. Set shift counter to 33,.

i. Transfer accumulator bits 1-35 to storage
register.

j. Reset accumulator. At this point, the
storage register contains the multiplier

characteristic and high-order fraction,
the swap register contains the high-order
multiplicand fraction, the latch register
contains the first partial product, the ac-
cumulator contains the multiplier charac-
teristic and a zero fraction, and the MQ
register contains the multiplicand charac-
teristic and the low-order multiplicand
fraction.

6. Multiply high-order multiplier fraction by

low-order multiplicand fraction, and deter-
mine result characteristic:
a. Check MQ register bit 35:

(1) If MQ 35 = 0, shift combined accumu-
lator-MQ register fraction right one
position.

(2) If MQ 35 =1, add storage register and
accumulator fractions, and then shift
combined accumulator-MQ register
fraction right one position.

b. Step shift counter.
c. Check shift counter for a value of 0:

(1) ¥ SC = 0, proceed to step 7.

(2) If SC # 0, repeat step.a. At this point,
the storage register, swap register,
and latch register contents are the same
as before the multiply. However, the
accumulator now contains the multiplier
characteristic and the high-order bits
of the second partial product, and the
MQ register contains the multiplicand
characteristic and the low-order bits of
the second partial product. These low-
order bits are truncated.

d. Position characteristics for adding:

(1) Transfer storage register bits 1-8 to
adder.

(2) Transfer adder bits Q-8 to Accumulator.

(3) Transfer MQ register bits 1-8 to stor-
age register.

e. Add characteristics:

(1) Transfer storage register bits 1-8 and
accumulator bits Q-8 to adder, and add
them.

(2) Transfer result to accumulator bits Q-8.

(3) Subtract 200g from result by transferr-
ing accumulator bits Q-8 to adder and
adding 1's to positions Q, P, and 1.

(4) Place final result in accumulator bits
Q-8. The accumulator now contains
the final or result characteristic and
the second partial product; the MQ re-
gister is considered to be empty; the
storage register contains the multipli-
cand characteristic and high-order
multiplier fraction; the swap register

91

92

contains the high-order multiplicand
fraction; the latch register contains
the first partial product.

7. Add partial products, and arrange operands
so high-order multiplier can be multiplied
by high-order multiplicand:

.

b.

Transfer storage register bits 1-35 to
MQ register.

Transfer latch register to storage regis-
ter fraction positions.

. Add storage register and accumulator

fractions, and place result in accumula-
tor bits 9-35.

. Remember a 9 carry, if generated.

Transfer swap register to storage regis-
ter.

Set shift counter to 33g. -At this point,
the storage register contains the multi-
plicand characteristic and high-order
fraction, the swap register contains the
multiplicand high-order fraction, the
latch register contains the first partial
product, the accumulator contains the re-
sult characteristic and the sum of the
first and second partial products, and the
MQ register contains the high-order mul-
tiplier fraction.

8. Multiply high-order multiplicand fraction by
high-order multiplier fraction:
a. Check MQ register bit 35:

b.
c.

(1) If MQ 35 = 0, shift combined accumu-
lator-MQ register fraction right one
position.

(2) If M@ 35 =1, add storage register
fraction to accumulator fraction, and
then shift combined accumulator-MQ
register fraction right one position.

Step shift counter.

Check shift counter for a value of 0:

(1) If SC = 0, proceed to step d.

(2) If SC # 0, repeat step a.

d. Check for a 9 carry:

(1) If a carry is remembered from step 7,
c:
(a) Transfer accumulator bits Q-35 to
adder.
(b) Generate a 1 carry to adder bit 35.
(c) Transfer adder bits Q-35 to accumu-
lator.
(d) If a 9 carry was generated:
_1. Shift combined accumulator-MQ
fraction right one position.
_2. Make accumulator bit 9 a 1.
(2) If no 9 carry is remembered from
step 7, c, proceed to step 8,e. At
this point, the final characteristic is

in the accumulator, and the final frac-
tion is in the combined accumulator-
MQ register.
e. Normalize one position:
(1) Check accumulator bit 9.
(2) If accumulator bit 9 =1, assign MQ
characteristic.
(8) If accumulator bit 9 # 0:
(a) Shift combined accumulator-MQ
fraction left one position.
(b) Transfer accumulator Q-8 to adder.
(c) Add 1's to adder bits Q-8.
(d) Transfer adder bits Q-8 to accumu-
lator.
(e) Assign MQ characteristic.
9. Compute MQ characteristic:
a. Check combined accumulator-MQ fraction.
b. If it # 0:
(1) Transfer accumulator Q-8 to adder.
(2) Add 1 to adder bits Q, P, 1,2,3,6 and
8.
(3) Transfer adder bits 1-8 to MQ register.
(4) Transfer accumulator sign to MQ re-
gister sign position.
c. Ifit =0:
(1) Reset accumulator fraction.
(2) Reset MQ register fraction.

Double-Precision Division

The addressed operand becomes the divisor in double-
precision division and is placed in the storage and
swap registers. Storage registers contents are ob-
tained from some even-numbered memory location
(Y); swap register contents are obtained from the
next-higher location (Y + 1). Divisor format is iden-
tical with the double-precision multiplicand. The
dividend is formed by the combined accumulator-MQ
register and has a format identical with the double-
precision multiplier. Double-precision division,
therefore, is the division of the contents of the accu-
mulator-MQ register by the contents of the combined
storage-swap register. The answer appears as a
double-precision quotient in the combined accumula-
tor-MQ register and has a format identical with the
result in double-precision multiplication. When the
dividend fraction is zero, the characteristic portions
of the accumulator and MQ registers are cleared and
the accumulator sign is made positive.

The process of double-precision division is initi-
ated by a check of the dividend for a value of 0. If
a value of 0 is found, it is remembered. Next, a
check is made to determine whether the dividend is
greater than or equal to twice the divisor. In fixed-
point division, the divisor must be greater than the
accumulator portion of the dividend in order to con-

fine the quotient to the capacity of the machine re-
gisters. In floating-point division, the characteris-
tics of the operands can be adjusted to compensate
for machine register size limitations. Therefore,
the divisor may be smaller than the dividend in
floating-point division. In the 7040-7044, an arbi-
trary maximum ratio of 2:1 between the dividend and
the divisor was chosen for ease of characteristic ad-
justment. If the dividend is greater than or equal to
twice the divisor, the divide check indicator is turned
on and the instruction is ended. If the dividend is
less than twice the divisor, but a value of 0 is re-
membered, the characteristics of the accumulator
and MQ registers are reset, the accumulator sign is
made positive, and the instruction ends. If the divi-
dend is less than twice the divisor and no value of 0
is remembered, operand equalization is performed.
Before equalization takes place, however, the differ-
ence in characteristics is obtained.

A dividend equal to or greater than the divisor im-
plies a quotient greater than 1. When the division
takes place, this 1 is shifted into accumulator bit
position 35. However, the machine needs the 1 to
appear in MQ register bit position 9. To make sure
that it does appear there, prior to division, the shift
counter is decremented by 1 and the characteristic
is increased by 1. When the dividend is less than the
divisor, the quotient will not spill and therefore no
adjustment is necessary.

93

Double Precision Division Algorithm

It will prove helpful to consider some of the limita-
tions that the computer hardware will impose (such
as a 35 bit adder instead of a 70 bit adder) on an at-
tempt to divide double precision numbers.

First let us consider a long division problem in the
decimal numbering system, such as we might en-
counter in day-to-day arithmetic.

43 /1500

The quotient and method of solution should be famil-
iar,
34 +38/43
43 /1500
129
210
172
38 (Remainder)

(Quotient)

However, if we consider 43 to be a double "precision"
number (the sum of single "precision' numbers 4 x
10" and 3 x.10°) and we consider 1500 to be a double
"precision'' number (the sum of 1 x 103, and 5 x 102)
we can see that the division process could not be
carried out in the normal way if we were restricted
to single precision addition or subtraction. In the
above example, we would not have been able to per-
form the double precision subtractions (circled).
Let's then explore the possibilities of arriving at
a correct quotient without having to perform repeti-
tive double precision trial subtractions.
If we perform the same division problem as above,
only using 40 as a divisor instead of 43, we get:
37
40 /1500
(+3) 120
300
280
20

We could now say that we have reduced the dividend
by 40 x 37, leaving us with a remainder of 20 to still
be divided by 40.

However, if the original dividend were reduced by
43 x 37 instead of 40 x 37, our remainder would be
more accurate. It is presently in error by 3 x 37.

If we adjust the remainder of 20 above by subtracting
3 x 37 from it, we get:

37 Quotient
40 /1500
(+3) _120
300
280
20
-111

(3 x 37)
-91

94 Corrected Remainder

As a result of correcting our remainder, we see that
further division is possible. Again using 40 as a
divisor:

-2

40 /79T

(+3) _80_
11

Once again our remainder is not as accurate as it
could be. Instead of reducing -91 by 43 x 2 it was
reduced by 40 x 2. We could correct our remainder
of 11 by reducing it by 3 x 2.

This gives us: -2

40 /-91
(+3)_80
11
=6
5
The quotient is -2 5/43.

Since this second division was really a continuation
of the first division, we will add our second quotient
tothe first.

This gives us:

37 + (-2 5/43) = 34 38/43
This is identical to the quotient we calculated in the
original example solved by conventional methods.

What advantage did we gain by the second method ?

We solved the problem of having to perform double
precision trial subtractions. Instead, of having to
subtract the double precision number 43 (or multiples
thereof) from the dividend, we only had to subtract
the single precision 4 x 10' (or multiples). The single
precision 3 x 10° was only used to correct the re-
mainder.

The advantage of this method becomes greatly mag-
nified when it is remembered that there are 271
"trial" subtractions in a single precision divide op-
eration. Only one remainder correction will be nec-
essary.

Now let's apply ""the method" to a double precision
divide as it would occur in the computer.

The double precision dividend will originally be
contained in the AC and MQ. Let the dividend be:

(A - 20y + (B - 20n-27)
A and B are the high and low order fractions respec-
tively, n and n-27 are the high and low order char-
acteristics respectively.

We will say, for simplicity, that the dividend is
A +B.

The double precision divisor will originally be
contained in the SR and SWR.

Let the divisor be:

(C - 2m) + (D . 2727
C and D are the high and low order fractions respec-
tively, m and m-27 are the high and low order char-
acteristics respectively.

We will say, for simplicity, that the divisor is
C +D.

Our computer problem then becomes:

C +D/A+B
Let's go back and again solve our decimal division
problem, this time using the above letters along with
the numbers they correspond to.

4
f

CDh AB

3 /1500
tn
Trailing Zeros

37 1st Quotient (Qq)
40(C) /1500 (A +B)
120
300
280

20 1st Remainder (Rq)

This step could correspond to a single precision
divide in the computer, namely:

1- AP @)

The next step involved correcting the remainder
computed during the first steps:

20 1st Remainder (R1)
-111 3 x 37 Correction (Q1 - D)
-91 (R1-Q1D)

This step could correspond to a single precision
multiplication followed by a single precision sub-
traction:

2 - Ql . D
3- R1-QiD
Next we performed a second single precision division:
-2 2nd Quotient (Qz)
40(C) /-91 R1-Q1D)
80
11 2nd Remainder (Ro)

This step could correspond to another single preci-
sion divide, using the values of obtained previously
for the dividend:

4- B1-@aD q,
c

In our decimal problem we then continued by cor-
recting our second remainder. However, in the
computer this step will not be performed because
the value computed would be too small in magnitude
to affect the final answer.

Out last step involved adding the second quotient
to the first.

37 +(-2) =35 Final Quotient

This last step would correspond to the single pre-
cision addition of the two computed quotients:

5 - Q1 +Q2 = Final Quotient

To summarize then, double precision division will
be executed in the computer in five general steps:

1. A—EE (Q1) » Ry is saved
2, Q1D
3. Ry-QD
4, R1-D Qo)
1= "2
5. Q*Q

These five steps are sometimes referred to as the
double precision division ALGORITHM.

INDEX OPERATIONS

Index operations can be divided into two distinct areas:
index arithmetic and address modification. The for-
mer involves activities which deal directly with the
index facility; the latter pertains only to the modifi-
cation of an instruction word.

Index Arithmetic

Index arithmetic is the establishment and mainten-
ance of the index facility available in the 7040-7044
equipment. Basically, any operation which deals
exclusively with placing information in or storing
information from an index register falls within the
realm of index arithmetic. Three index registers are
provided in the CPU: index register A (XRA), index
register B (XRB), and index register C (XRC). In-
struction word bits 18 through 20 serve to specify

the desired index register. A configuration in these
bits of 001 specifies XRA; a configuration in these
bits of 010, XRB; a configuration in these bits of 100,
XRC: bit 18 specifies XRC, bit 19 specifies XRB, and
bit 20 specifies XRA. Therefore, the index registers
are referred to as XRA, XRB, and XRC, or 1, 2, and
4, respectively.

Figure 42 shows the data flow paths used in loading
index registers in the 7040-7044 CPU. Before dis-
cussing the loading operations, it is necessary to
define the portions of a machine word that can be
used to load an index register. These portions are
the address field and the decrement field. The ad-
dress field is formed by bits 21 through 35 of the
specified operand, and the decrement field is formed
by bits 3 through 17 of the specified operand. A speci-
fied index register can be loaded with either the ad-
dress field or the decrement field in either true form
or 2's complement form. The specified operand may
be obtained from an explicitly addressed core storage
location, from the accumulator, or from an AXT in-
struction word. In the last case, only the address
field in true form can be used. An index register
may also be set by the contents of the instruction
counter. This case, however, is somewhat special
because a transfer operation is associated with it.

95

STORAGE REGISTER < INSTRUCTION

COUNTER
35
\J

ADDER ~ | INDEX REGISTER
X
{21 35 (XRX)

T\

]
7l 12

He—

\NZ

ACCUMULATOR INDEX REGISTER INDEX REGISTER INDEX REGISTER
A B C
35 (XRA) (XRB) (XRC)

]
12]

==
L =

TRUE
1's COMPLEMENT

TRUE

FIGURE 42. INDEX REGISTER LOAD PATHS

96

Consider the load paths used when the operand is
obtained from an addressed memory location. The
addressed operand is received from memory in the
storage register. From the storage register, the
field to be used is transferred to adder positions 21
through 35. If the address field is to be used, the
transfer from the storage register to the adder is
direct. If the decrement field is to be used, the bits
are automatically right-shifted 18 places as they are
transferred and enter the adder in positions 21
through 35.

From the adder, the field is transferred into
index register X (XRX) which serves as an input buf-
fer to the index registers. The contents of XRX are
then placed in the specified index register. If the
true form of the specified field is used, the operation
is finished at this point. However, if the complement
form of the specified field is desired, -the 1's comple-
ment of the specified index register is now transfer-
red back to the adder, where a hot 1 is added to
adder bit position 35. The result of this action is the
2's complement of the original field. This 2's
complement is now transferred to XRX and, from
here, to the specified index register.

When using the accumulator to load an index reg-
ister, the field to be used (address or decrement) is
transferred to corresponding storage register posi-
tions in true form. From this point, the action is
identical with that when using the storage register
positions in true form. From this point, the action
is identical with that when using the storage register
as a load source.

One instruction is provided, Address to Index
True (AXT), which allows the address field of that
instruction to be used for index register loading.

In this case, the instruction word is received from
memory in the storage register. The address field
is then transferred directly to adder positions 21
through 35. From these positions, the field is rout-
ed to XRX and, from here, to the specified index
register. If the index register contents are to re-
place an address field, the contents of the specified
index register enter the storage register in positions
21 through 35. Then, storage register bits 21
through 35 are transferred directly to corresponding
memory data register positions. If the contents of
the specified index register are to replace a decre-
ment field, the transfer from the index register to
the storage register is directly to positions 3 through
17, Storage register bits 3 through 17 are then
transferred directly to memory data register posi-
tions 3 through 17.

When transferring the contents of an index regis-
ter to the accumulator to replace an address field,
the contents of the specified index register are
initially transferred to storage register positions
21 through 35 in true form. From here they go to

adder positions 21 through 35. Adder bits 21 through
35 are then transferred directly to accumulator bits
21 through 35. However, if the decrement field is to
receive the information from the index register, the
contents of the specified index register are trans-
ferred to storage register positions 3 through 17.
From here, the transfer is directly to adder positions
3 through 17. From the adder, the information goes
to the accumulator, entering in positions 3 through
17.

Address Modification

Address modification is the subtraction of the con-
tents of a specified index register from the instruc-
tion word base address. The index register used is
specified by bits 18 through 20 of the instruction
word: bit 18 when a 1 specifies XRC, bit 19 when a
1 specifies XRB, and bit 20 when a 1 specifies XRA.
Subtraction is performed with the 2's complement
method. The instruction word base address is trans-
ferred from storage register positions 21 through
35 to corresponding adder positions. The 1's com-
plement of the contents of the specified index register
is transferred to adder positions 21 through 35. A
hot 1 is then generated to adder position 35, and the
quantities are added. The result is the difference
between the quantities, which is the effective ad-
dress. This effective address is transferred to the
CPU address register and, from there, eventually
goes to the memory address register.

Note: It is possible to select one, two, or three
index registers for any operation that pro-
vides for the use of an index register. Mul-
tiple selection occurs when the instruction
word tag field contains configurations of 011,
101, 110, or 111, During a load operation,
multiple selection causes all selected regis-
ters to be loaded with the specified value.
During an index store operation or an address
modification operation, multiple selection
results in a logical addition of the contents
of the selected register: corresponding bit
positions must be zero to result in a zero;
otherwise, the result bit is a 1.

Assume index registers A, B, and C con-
tain 14, 1, and 3, respectively. With a tag
field of III, the value of 178, during address
modification, is subtracted from the address
field to form the effective address. During an
index store, the value of 178 is stored in the
specified field of the store location.

Addressing

The methods of addressing available in a particular
machine are closely related to index operations,

97

although not a part of them. In the 7040-7044, two
types of addressing are employed: direct and indi-
rect. No matter which method is used, the import-
ant factor is obtaining the effective address. The
effective address is the usable address, the address
that identifies the core storage location containing
the desired operand. The following description de-
fines the effective address under all possible ad-
dressing combinations.

Each instruction that references core storage for
an operand contains a base address in bits 21 through
35. If no indexing is specified, or if the index reg-
ister specified contains all 0's, the instruction word
base address becomes the effective address. How-
ever, if indexing is specified, and the specified index
register contains some value other than 0, the differ-
ence between the instruction word base address and
the contents of the specified index register forms the
effective address. For example, assume the base
address is 2000g and the contents of the specified
index register are 100g. The effective address is
2000g - 100g or 1700g.

Determining the effective address appears to be-
come difficult when using indirect addressing. It is
actually simple, however, when applied step by step.
Indirect addressing is specified when instruction
word bits 12 and 13 are both 1's. Assume and Add
instruction is given, the instruction word specifies
only indirect addressing, and the base address is
3000g. In this case, the base address specifies a
location in core storage whose contents are to be
used to obtain the effective address; it is the indi-
rect address. Assume location 3000g contains CLA
1000g with its tag field (18-20) all 0's: no indexing
is specified. Address 1000g becomes the effective
address: the contents of location 1000g form the
addressed operand of the Add instruction. Note that
only the address and tag field bits of the indirect
address are used; these are bits 21 through 35 and
18 through 20. All other bits in the indirect address
are not used.

Indirect addressing is also used when the instruc-
tion word specifies indexing as well as indirect ad-
dressing. Assume the base address is 3000g and the
specified index register contains the value 200g. The
indirect address is then 30008 - 2004 or 2600g. As-
suming the indirect address contains ACL 1500g
with no indexing specified, the effective address is
1500g.

Assume the instruction word does not specify
indexing, but the contents of the indirect address do.
Let the instruction word base address be 2600g.
This location is the indirect address. Assuming the
address field in the indirect address to be 1300g and
the index register specified in the indirect address
to contain 400g, the effective address becomes
1300g - 400g or 700g.

98

Consider the case in which both the base address
and the contents of the indirect address are indexed.
Let the instruction word base address equal 45008
and the contents of the index register specified by the
instruction word equal 700g. The indirect address
becomes 4500g - 700g or 3600g. Assuming the con-
tents of the address field in the indirect address
equal 7700g and the contents of the index register
specified by the contents of the indirect address
equal 500g, the effective address becomes 7700g -
500g or 7200g.

The effective address in all cases is the final ad-
dress computed. When computing an effective address,
take the instruction word base address (bits 21-35)
and apply indexing if specified to get the indirect ad-
dress. If indexing is not specified, use the instruc-
tion word base address as the indirect address.

When the indirect address is determined, examine its
contents to get the effective address. Take the ad-
dress field in the indirect address: (1) if no indexing
is specified, use the contents of this field as the ef-
fective address; (2) if indexing is specified, subtract
the contents of the specified index register from the
address field in the indirect address to get the effec-
tive address.

A very important point to remember is that indirect
addressing is effected only by bits 12 and 138 of the
instruction word. Although the contents of the indirect
address can have a 1 in positions 12 and 13, these
positions are not decoded.

When the instruction counter is used to load an in-
dex register, instruction counter contents are trans-
ferred to storage register positions 21 through 35.
From here they are sent directly to adder positions
21 through 35. Adder positions 21 through 35 then
load XRX, and the contents of XRX are transferred to
the specified index register. After the index register
is loaded, the 1's complement of its contents is trans-
ferred to adder positions 21 through 35. Here, a 1 is
added to position 35 to produce the 2's complement.
This value is then transferred via XRX to the speci-
fied index register. The transfer action associated
with this operation is described under transfer
operations.

Figure 43 shows the data paths used when transfer-
ring information from an index register to some
other register. In these operations, the contents of
a specified index register may go to either core stor-
age or the accumulator. The information in these
operations is always in true form and can be placed
in either the address field or the decrement field of
the specified location.

When transferring the contents of an index regis-
ter to storage, the action is as follows. Instruction
word bits 18 through 20 specify the index register to
be used. The contents of the specified index register
are then transferred to the storage register.

TRANSFER OPERATIONS

A data processing system is used by executing pro-
grams which basically consist of various routines.
Each routine is formed by a sequence of instructions
which are placed in core storage in ascending se-
quential locations. By extension, associated rou-
tines (all routines forming a single program) are
found in sequential locations. Fetching of instruc-
tions is controlled by the CPU instruction counter.
Initially, a value is placed in the instruction counter
which specifies the first location to reference in the
first routine to be performed. The contents of the
location specified by the instruction counter are
transferred into the CPU and decoded as an instruc-
tion, and the desired operation is performed. The
instruction counter is incremented by 1, and the new
value, which is the next sequential address, is the
address of the next instruction to be executed. The
sequence of fetching and stepping in a sequential pat-
tern continues until it is altered by placing a new
value in the instruction counter which is out of se-
quence with the preceding values. Since the instruc-
tion counter controls the instruction fetched for exe-
cution, it also controls the routine to be executed.
Inserting in the instruction counter a new value
which is out of sequence with the preceding values is
called a transfer of program control. The inserted
value generally is the first location to reference in a
new routine., Program control is therefore trans-
ferred from one routine to another.

It is possible for normal instruction counter step-
ping to transfer program control to a new routine.
During the execution of a given program, however,
it may be desirable to skip the next sequential rou-
tine or even several routines; this action of skipping
one or more routines is termed a transfer opera-
tion, In addition, it may even be desirable to pro-
vide multiple paths through a single routine. Since
provision is made to skip routines, the same in-
structions can be used to choose one of the multiple
paths that may exist in a single routine.

Transfer operations may be divided into two
areas: unconditional and conditional. Unconditional
transfers effect the change of instruction counter
contents regardless of existing conditions in the ma-
chine. Conditional transfers, however, change in-
struction counter contents only if a specific condi-
tion exists in the machine: the transfer is conditional
on the presence of the specified condition. Besides
changing instruction counter contents, a transfer
operation may involve loading or modifying an in-
dex register, establishing trap and parity controls,
or storing the present instruction counter contents.

Unconditional

Unconditional transfers automatically place the in-
struction word effective address in the instruction
counter. If some other action is also specified, it
is accomplished before the transfer is effected. For
example, assume an index register is to be incre-
mented along with the transfer. Before considering
the possible data path to use, consider the instruc-
tion word. Bits 21 through 35 form the address field
and specify the transfer address. Tag field bits 18
through 20 serve to identify the index register to be
incremented. Since the tag field is the only instruc-
tion word field that can specify the use of an index
register, and since the index register specified is to
be incremented, no provision is made for address
modification. The instruction word base address is
therefore the effective address. With bits 18 through
35 used to identify the index register involved and
the transfer address, the remaining bits (S through
17) must be associated with specifying the increment
and the operation code. Bits S through 2 serve as the
operation code field, and bits 3 through 17 form the
decrement field. This field is used as the increment
value.

The action unfolds as follows. Initially, the in-
struction word address (Figure 44), which is in stor-
age register positions 21 through 35, is transferred
to adder positions 21 through 35. From here, the
address is transferred to the address register. With
the transfer address in the address register, the
contents of the specified index register are trans-
ferred in 1's complement form to the adder when a
hot 1 is added to adder position 35. The result is
the 2's complement of the contents of the specified
index register. This value is returned to the speci-
fied index register via XRX. Following this action,
the contents of the specified index register are
again transferred to the adder. Instruction word
bits 3 through 17 are also transferred to the adder;
they are shifted right 18 positions during the trans-
fer and enter the adder in positions 21 through 35.

A hot 1 is then generated to adder position 35. The
result of this action is the addition of the instruction
word decrement field and the contents of the speci-
fied index register. This result is transferred from
the adder to the specified index register via XRX.
With the associated action completed, the transfer
is effected by transferring address register contents
to the instruction counter.

Another operation that can accompany an uncondi-
tional transfer is storing of the instruction counter.
In this case, the instruction word must specify the
operation to be performed and provide a store ad-
dress as well as a transfer address. Since only
one address field is available, some other means

929

TO MEMORY
DATA REGISTER

STORAGE REGISTER
XRA XRB XRC
' [}
13) 171 121 35
s w TRUE FORM
= =
§!
ADDER C 1's COMPLEMENT
, 1) ADDE
! . 35 |ag—HOT 1 TO ADDER 35
TO A w w
ADDRESS <‘ 2 2
REGISTER. = =
1\/?
ACCUMULATOR
' 1]
13 171 12 35

FIGURE 43. ADDRESS MODIFICATION AND INDEX REGISTER STORE OPERATIONS DATA PATHS

TO MDR

STORAGE REGISTER

' i
I3 171 21 35
A L [
L__I:I’
TRUE 2
AN
ADDER f———————HOT |
121 35 ') XRX
INDEX
1'S COMPLEMENT REGISTERS
N\Z
TO ADDRESS
MAR REGISTER
TO
STORAGE AV4
REGISTER < : INSTRUCTION
POSITIONS COUNTER
21-35

FIGURE 44. TRANSFER OPERATIONS DATA PATHS

100

must be provided to accommodate the two addresses.
This becomes apparent as the data flow is described.
Since the action associated with the transfer involves
the instruction counter, the instruction word tag field
is available to specify an index register for address
modification. In addition, indirect addressing is
possible with this operation, although the following
description does not include it.

Initial action involves the transfer of the instruc-
tion word address field (base address) to the adder.
If indexing is specified, the operation is performed
at this time, and the result in the adder is the effec-
tive address. However, if no indexing is specified,
the base address becomes the effective address. In
either case, adder bits 21-35 are transferred to the
address register; this transfer always involves the
effective address. Since a storage address is needed,
the contents of the address register, the instruction
word effective address, are transferred to the mem-
ory address register (MAR). With the effective ad-
dress formed and in the address register and MAR,
the instruction word base address is no longer need-
ed. At this time, the instruction counter contents are
transferred to storage register positions 21-35. With
this transfer accomplished, the address register
contents are gated into the instruction counter. At
this point, the effective address is in both the in-
struction counter and MAR, and the original instruc-
tion counter contents are in the storage register.
The address in the storage register is the address of
the transfer instruction plus 1. First, the storage
register is transferred to the memory data register,
is transferred to the memory data register, satisfy-
ing the store action. Then the instruction counter
is stepped to specify the location from which the next
instruction to be executed will be obtained; thus, the
transfer action is completed. Returning to the in-
struction word, its effective address specifies the
store address, and its effective address plus one
specifies the transfer address.

When trap and parity controls are to be established
along with effecting a transfer of program control,
the instruction word need oniy specify the action de-
sired and the transfer address. The tag and flag
fields are therefore available for addressing: both
address modification and indirect addressing are
possible.

Tnitially, the base address is transferred from the
storage register to the adder, where indexing is
performed if specified, following which the effective
address is transferred from the adder to the address
register. The appropriate controls are then turned
on. With this action accomplished, the transfer is
completed: address register contents (the effective
address) are placed in the instruction counter.

The simplest unconditional transfer is the transfer
that has no associated action. In this case, the

instruction word can specify both indexing and indi-
rect addressing. In this case, the instruction word
can specify both indexing and indirect addressing.
Whether neither or both are used, a transfer from
the adder to the address register is eventually ef-
fected. This transfer involves the effective address.
From the address register, the effective address is
inserted in the instruction counter, completing the
operation.,

The action of setting an index register with the 2's
complement of the address of the transfer instruction
can also accompany an unconditional transfer. In
this case, no address modification is possible. The
instruction word base address becomes the effective
transfer address and is transferred via the adder to
the address register. The instruction counter con-
tents are then transferred to the storage register.
From the storage register, the address of the trans-
fer instruction goes to the adder, and from the adder
to the specified index register via XRX. The contents
of the specified index register are then transferred
in 1's complement form to the adder, where a hot 1
is added to position 35. The result of this action is the
2's complement, which is then transferred via XRX to
the specified index register. Following this action, the
address register contents are transferred to the in-
struction counter, terminating the operation.

Conditional

Conditional transfers are contingent on the presence
of a specific condition. Such transfers can be divided
into three groups: (1) those that just check an index
register to determine whether a transfer condition
exists; (2) those that check an index register to de-
termine whether a transfer condition exists and modi-
fy the index register checked; (3) those that check
something other than an index register to determine
whether a transfer condition exists. A description of
each follows.

When just checking an index register to determine
whether a transfer condition exists, the instruction
word decrement field (bits 3-17) is compared with the
contents of the specified index register (Figure 44).
No address modification is possible in this case, and
the transfer condition is specified by the instruction
word operation code. A transfer condition can be
contingent on the index values being greater than the
decrement or equal to or less than the decrement.

Initial action involves transferring the instruction
word base address, which becomes the effective ad-
dress, to the address register via the adder. With
the potential transfer address in the address register,
the instruction word decrement field is transferred
intrue form to adder positions 21 through 35. The
1's complement of the specified index register is then
transferred to adder positions 21 through 35. A hot 1

101

is added to adder position 35, thus effecting sub-
traction. If the index register value is the greater
value, no carry is generated out of adder position 21,
whereas a carryout of adder position 21 indicates the
index register value is either equal to or less than
the decrement. Therefore, the existence of the trans-
fer condition is ascertained by checking for a carry-
out of bit 21 (X carry). When the transfer is contin-
gent on the index register value's being larger, the
absence of an X carry causes the address register
contents to be transferred into the instruction
counter, thereby effecting the transfer. However,
when the transfer is contingent on the index register
value's being equal to or less than the decrement,

the presence of an X carry causes the address regis-
ter contents to be transferred to the instruction
counter, thereby effective the transfer.

For transfers which check an index register to
determine whether a transfer condition exists and
modify the index register checked, the action is
similar. In this case, the instruction word tag field
specifies the index register to be checked and modi-
fied; no address modification is possible. Conse-
quently, the instruction word base address becomes
the effective address. Initial action involves trans-
ferring this address through address positions 21
through 35 to the address register. With the potential
transfer address in the address register, the pres-
ence oT absence of the transfer condition is deter-
mined by comparing the instruction word decrement
field with the contents of the specified index register.
If the transfer is contingent on the index register
value's being the larger value, the following takes
place. The instruction word decrement field is trans-
ferred in true form to adder positions 21 through 35.
The contents of the specified index register are
transferred in 1's complement form to adder position;
21 through 35. A hot 1 is added to adder position 35,
effecting a subtraction. Following the subtraction, a
check is made for an X carry. If no X carry is pres-
ent, the transfer condition exists. The absence of an
X carry, in this case, causes the contents of adder
positions 21 through 35 to be transferred into the
specified index register. Following this action, the
contents of the specified index register are trans-
ferred back to the adder in 1's complement form,
where a hot 1 is added to adder position 35. The
result of this action is the true difference between
the decrement field and the index register value.

Said another way, the index register value has been
reduced by the decrement value. This result is
placed in the specified index register. In addition,
the absense of an X carry causes address register
contents to be transferred into the instruction counter
after the specified index register is modified. Should

102

the transfer condition not exist, an X carry is gen-
erated, the operation is terminated, and the next
sequential instruction is fetched for execution.

When the transfer is contingent on the index regis-
ter value's being less than or equal to the decrement,
the potential transfer address (instruction word base
address, which becomes the effective address) is
routed from the storage register through the adder
to the address register. The instruction word dec-
rement field is then transferred to the adder in true
form. The contents of the specified index register
are also transferred to the adder, but in 1's comple-
ment form., A hot 1 is added to adder position 35, and
a subtraction takes place. If an X carry is generated,
address register contents are transferred into the
instruction counter, effecting the transfer. However,
if no X carry is generated, the specified index regis-
ter value is reduced by the decrement value (loop the
result of the subtraction from the adder to the speci-
fied index register, back to the adder, add a hot 1,
and place this result in the specified index register)
and the next sequential instruction is fetched for
execution.

The final group of conditional transfer operations
checks for a specific condition in the CPU, and if
the condition exists a transfer is effected. In one
case, a turn-off action is associated with the trans-
fer. A transfer can be contingent on the following
conditions: (1) if the accumulator sign is negative,

(2) if the accumulator sign is positive, (3) if ac-
cumulator Q-35 is not equal to 0, (4) if accumulator
Q-35 equals 0, (5) if the accumulator overflow indi-
cator is on. With the last case, the indicator is
turned off before the transfer is effected.

In any of the cases, the instruction can specify an
index register to modify the base address. The ac-
tion takes place as follows. The instruction word
base address is transferred to adder positions 21
through 35, where it is modified if indexing is speci-
fied. Adder positions 21 through 35 are then trans-
ferred to the address register; this transfer always
involves the effective address, which is the potential
transfer address. After the transfer from the adder
to the address register, the specified condition is
checked for its presence. If present, address regis-
ter contents are transferred into the instruction
counter, If the transfer condition is not present, the
next sequential address is referenced for the next in-
struction to be executed.

STORE OPERATIONS

Store operations in the CPU involve placing the con-
tents of a register or portions thereof in a specified
core storage location., Figure 45 shows the data
flow paths for CPU store operations. Included are

the paths used in the overlapped data channel store
operations.

When the contents of the instruction counter are
stored, they contain the address of the store instruc-
tion plus 1. A transfer is effected from the
instruction counter to storage register bits 21 through
35. The contents of the store address, the instruction
word effective address, are transferred from core
storage to the storage bus. For simplicity, this bus
is shown as a register and its 37th check bit is not
shown. The storage bus routes the contents of the
store address to the storage register. However,
only bits S through 20 are allowed to enter the stor-
age register. Thus, the original contents of the store
address are modified. Storage register contents S
through 35 are then placed on the storage bus and
eventually returned to the store address.

The above type of operation is called a partial
store: only part of the contents of the store address
is altered. Another example of a partial store is the
storing of index register contents, previously de-
scribed. Further, the accumulator contents can be
manipulated with partial store operations. For in-
stance, the operation store address causes accumu-
lator bits 21 through 35 to be transferred to storage
register positions 21 through 35. The contents of the
store address, except bits 21 through 35, are trans-
ferred via the storage bus into the storage register.
Following this action, storage register contents are
transfexred via the storage bus to the store address.

Similar action takes place when the accumulator
decrement field is stored. In this case, accumulator
bits 3 through 17 are transferred to storage register
positions 3 through 17, The contents of the store ad-
dress, except bits 3 through 17, are transferred via
the storage bus to the storage register. Following
this action, storage register contents are placed on
the storage bus and are eventually transferred into
the store address.

A full-word store can be accomplished with the
contents of the accumulator or the MQ register.
When using accumulator contents, either a machine
word or a logical word may be stored. A machine
word is 36 bits long with one sign bit and 35 data
bits: S through 35. If a store instruction is given,
accumulator bits S and 1 through 35 are transferred
to the storage register. From the storage register
the word goes to the storage bus and eventually into
the store address, the instruction word effective
address. Identical action takes place when a store
logical word instruction is given, except accumula-
tor bit P is transferred to the storage register sign
position in place of the accumulator sign.

Execution of a store MQ register instruction
causes the contents of the MQ register (bits S through
35) to be transferred to the storage register, and
from the storage register to the storage bus. The

information eventually enters core storage, where it
is placed in the store address.

Another example of a full store is the storing of 0's
in the specified store address. This action has the
same effect as resetting a register. The storing of

0's is accomplished by blocking the transfer of
Storage Register contents to the Storage Bus.

The operation store location and trap causes the
location of the store instruction plus 1 to be placed in
location 00000. Actually, this operation is a special
case of the store instruction counter operation. Only
bits S through 11 of the instruction word are used; the
remaining instruction word bits are not used. Ad-
dressing is therefore implied by the operation code.
Initially, the address register is cleared, thereby
placing the desired address in this register. From
the address register, the all-zero configuration goes
to MAR, which effects the readout of the desired lo-
cation. The instruction counter is incremented,
yielding the address of the store instruction plus 1.
This value is transferred to storage register positions
21 through 35. Although location 00000 is read out,
its contents are destroyed by preventing them from
being transferred into the MDR. Instead, storage
register contents are transferred to the storage bus
and eventually to location 00000, The final configu-
ration of location 00000 is all 0's in bits S through 20
and an address in bits 21 through 35. When the store
action is complete, the value 00002g is loaded into
the instruction counter. This value is the address of
the next instruction to be executed.

The CPU can be used as a transfer path for I/0
operations. During such operations, information
may be configured in 6-bit bytes. Each byte, then,
would represent a character. A store accumulator
character operation is available. In this operation,
however, only accumulator bits 30 through 35 are
involved. These bits are transferred to positions
in the storage register which are specified by a count
in the position register. Here they are joined with
the remaining bits of the store address. The new
word is then placed on the storage register for trans-
fer into the specified address.

Note that in all CPU store operations the action
centers around the storage register. It is in this
register that either a full store or a partial store
is effected. In contrast to this method is the method
used with overlapped data channel stores. During
such operations, both the word counter and the ad-
dress register of the specified data channel are
transferred to storage bus positions 3 through 17 and
21 through 35 respectively. Formation of the new
contents of the store address is therefore effected
on the storage bus in this case as opposed to the
storage register during CPU store operations. In

103

STORAGE BUS

35

{\

TO STORAGE BUS 21-35

TO STORAGE BUS 3-17

r I B 77" "71
|
' |
| WORD ADDRESS |
| COUNTER REGISTER |
STORAGE REGISTER : |
35 L DATA CHANNELS B-E |
—————————————————— -
(\ (\ WA
8
Ps 3
TO SR 21-35 o - TO STORAGE REGISTER 3-17 + 21-35
[stfel o] |z |
z 3 z e INDEX
INSTRUCTION ol 1Z] le] B
COUNTER NEBRNRE REGISTERS
— o) © '
a1 12] 18] (= MQ $-35 TO STORAGE REGISTER 5-35
&
[0} [0}
=] |2] |=
ACCUMULATOR MQ REGISTER.
35 s 35
FIGURE 45. STORE OPERATIONS DATA PATHS
STORAGE REGISTER
3 @ 53 g
» P & s
wv
g g 8 3
v %3
z
< 3 3 3
ADDER
7S 7N {\ 7N
5)
g = it X
d 3 g i~ IS
a [l ~ >~
2 2 o o o
3 : z 2 g
< % 2 - =
] 2 9]
,))
4
AV A4 \/
ACCUMULATOR
&
%]
\
INSTRUCTION COUNTER
ORA (AC P-35)

FIGURE 46. LOGICAL OPERATIONS DATA PATHS

104

either case, the information on the storage bus goes
to the store address.

LOGICAL OPERATIONS

Logical operations provide the means for dealing with
a 36-bit unsigned word. These operations are espe~
cially useful in working with BCD information. Fig-
ure 46 shows the data flow associated with each logi-
cal operation. Each of these operations is individually
described in the following paragraphs.

Consider first the operation AND-to-accumulator.
In this operation, accumulator bits P through 35 are
matched with storage register bits S through 35,
which contain the contents of the instruction word ef-
fective address. Matching is accomplished by trans-
ferring each operand to the adder, where they are
added. The adder contains lookahead circuits which
determine whether a carry is going to be generated
out of an individual position. If corresponding oper-
and bits are 1's, or if corresponding operand bits
are 1 and 0 with a carry from the preceding low-
order position, a carry is produced. The adder
lookahead circuits can check for either of these con-
ditions. In the AND-to-accumulator operation, only
that part of the lookahead circuits which checks for
corresponding 1 bits is used. When corresponding
bits are 1, the lookahead circuits generate a carry
which, in this casé, is returned to the corresponding
accumulator position. An AND-to-accumulator op-
eration may be defined as the matching of the accum-
ulator operand P through 35 with the storage register
operand S through 35 to produce a result operand
which contains 1's only in positions which originally
contained a 1 in both operands. A 00 match or a 10
match yields a 0 result bit. The result of the ac-
cumulator position P and storage register S match
is placed in accumulator position P.

Similar to the AND-to-accumulator operation is
the OR-to-accumulator operation. In this operation,
the accumulator operand P through 35 is matched
with the storage register operand S through 35 to
produce a result operand which contains a 1 in any
position that contained a 1 in either of the original
operands: the accumulator and storage register
operands are logically added. The contents of the
instruction word effective address are transferred
into the storage register. Simultaneously, accumu-
lator bits P through 35 are transferred into the stor-
age register on top of the other operand. The result
is a logical add, where a 1 results in any position
that had a 1 in either of the original operands. Stor-
age register bits S through 35 are then transferred
to adder bits P through 35. Adder bits P through 35,
in turn, are transferred to accumulator bits P
through 35.

A compare-accumulator-with-storage operation is
available which enables determination of the algebraic
relationship between the operand contained in the
effective address and accumulator bits S through 35,
Initially, the 1's complement of the accumulator op-
erand is transferred to the adder along with the true
form of the storage register operand. A subtraction
results. After the subtraction, a check is made for
a Q carry. The presence or absence of a Q carry is
combined with the sign of each operand to determine
whether the instruction counter is to be stepped:

a. If the accumulator is positive, the presence of

a Q carry has no meaning with respect to
stepping the instruction counter.

b. If the accumulator is negative, the instruc-
tion counter is stepped (incremented by 1)
if no Q carry is present.

c. If the storage register is positive, the pres-
ence of a Q carry causes the instruction
counter to be stepped.

d. If the storage register is negative, no stepping
takes place, regardless of the presence or
absence of a Q carry.

Stepping of the instruction counter at this time indi-
cates that the accumulator operand is smaller than
the storage register operand. Following this action,
the original storage register operand is again trans-
ferred to the adder with the 1's complement of the
accumulator operand. A hot 1 is then added to adder
bit 35, effecting subtraction. If a Q carry is gen-
erated, the accumulator operand is either equal to or
smaller than the storage register operand and the
instruction counter is stepped. This step determines
the equal condition if the first step did not result in
instruction counter stepping, and if the first step did
result in instruction counter stepping, this step dis-
tinguishes from the equal result, Summarizing, (1)
if the accumulator operand is greater than the stor-
age register operand, no instruction counter stepping
takes place, (2) if the accumulator operand is equal
to the storage register operand, the instruction coun-
ter is stepped once, and (3) if the accumulator oper-
and is smaller than the storage register operand, the
instruction counter is stepped twice.

A logical compare accumulator with storage oper-
ating enables the logical comparison of a 37-bit ac-
cumulator operand (Q, P, and 1-35) with a 36-bit
storage register operand (S-35). The storage oper-
and is obtained from the instruction word effective
address. Initially, the storage register operand is
transferred in true form to the adder with the 1's
complement of the accumulator operand; a subtrac-
tion results. A check is then made to determine
whether a Q carry is present. If a Q carry is pres-
ent, the accumulator operand is the smaller operand
and the instruction counter is stepped. If no Q car-
ry is present, the accumulator is either equal to or

105

greater than the storage register operand and no
stepping takes place. Next, the action is repeated
using the 2's complement of the accumulator operand.
If a Q carry is generated this time, the instruction
counter is stepped. The meaning of the Q carry de-
pends on whether a Q carry was generated on the first
pass: if a Q carry was not generated on the first pass,
operation of a @ carry on the second pass indicates
equal operands, whereas generation of a Q carry on
each pass indicates the accumulator is the smaller
operand. In summary, (1) if the accumulator oper-
and is the larger operand, no instruction counter
stepping takes place, (2) if both operands are equal,
the instruction counter is stepped once, and (3) if the
accumulator is the smaller operand, the instruction
counter is stepped twice.

A complement magnitude operation is available
which allows accumulator bits Q, P, and 1 through
35 to be complemented: 0's are made 1's, and 1's
are made 0's. In this operation, the 1's complements
of accumulator bits Q, P, and 1 through 35 aretrans-
ferred to corresponding positions in the adder. Ad-
der positions Q, P, and 1 through 35 are then trans-
ferred to corresponding accumulator positions. The
accumulator sign position remains unaltered.

CHARACTER HANDLING OPERATIONS

Three character-handling operations are available
which expedite handling of 6-bit character operations.
In each case, instruction word bits 15, 16, and 17
form a character position (c) field which specifies
the character in the instruction word effective ad-
dress involved in the operation. Valid bit configura-
tions for the C field range from 000 to 101:

000 - CO (bits S-5)

001 - C1 (bits 6-11)

010 - C2 (bits 12-17)

011 - C3 (bits 18-23)

100 - C4 (bits 24-29)

101 - C5 (bits 30-35)

In the place-character-from-storage operation,
the instruction word effective address character
specified by the instruction word C field is placed in
accumulator positions 30 through 35. Initially, in-
struction word bits 13 through 17 are placed in the
position register (Figure 47). An effective address
is formed, and the specified location in core stor-
age is accessed. Its contents are routed to the CPU
storage register. Position register bits 15 through
17 are decoded to produce a character selection sig-
nal. This signal serves to gate only the desired
character from its storage bus positions to
storage register positions 30-35. The remaining
storage register bits are cleared. Consequently,

106

the word in the storage register always has the
selected character in positions 30-35. The complete
storage register word is then transferred to corres-

ponding adder positions. Accumulator bits Q, P
1-29 are also fed to the adder. The adder sum
(accumulator Q, P, 1-29 and SR 30-35) is returned
to the AC.

The store-accumulator-character operation is
similar. In this case, the character selection sig-
nal resulting from position register decoding gates
accumulator bits 30 through 35 into the storage
register positions corresponding to the selected
character. The contents of the effective address
are transferred into corresponding storage register
positions, except for the selected character posi-
tions. Storage register contents are then transfer-
red to the effective address. '

The compare-character-with-storage operation
compares the character formed by accumulator bits
30 through 35 with a specified character in the ef-
fective address. Position register bits 15 through
17 are decoded to select the data character from the
storage bus for placement in storage register
positions 30 through 35. The entire storage register,

_including sign, is then gated to the adder along with

the 1's complement of the accumulator. A check is
made for an adder 30 carry, and, if one is present,
the accumulator character is the smaller character
and the instruction counter is stepped. If a 30 carry
is not present, the accumulator-character is the
larger character and no stepping takes place. The
action is repeated, using the true form of the storage
register character and the 2's complement of the
accumulator character. Again a check is made for

a 30 carry: if it is present, the instruction counter
is stepped. Generation of a 30 carry on the second
pass means (1) the accumulator character is the
smaller character if a 30 carry was generated on

the first pass or (2) both characters are equal if no
carry was generated on the first pass. In summary,
if the accumulator character is larger, no instruction
counter stepping takes place, whereas the instruction
counter is stepped once if both characters are equal
and twice if the accumulator character is the smaller
character.

SHIFTING OPERATIONS

Four shifting operations are available in the 7040-
7044. In each operation, instruction word bits 28
through 35 form a shift count which specifies the
number of places to shift. No shifting operation
references core storage, but the instruction word

MEMORY DATA

REGISTER
I | STORAGE BUS | |
S 5 } I {lz |7]|s le4 29}30 35
VAN FROM STORAGE
BUS ON INSTR
FETCH
<3
i\/ \/
STORAGE REGISTER POSITION
co : Ci : c2 { c3 } c4 } c5 REGISTER
] H i] B 3
CHARACTER
SELECTION
SIGNALS
CARRY TO STEP IC
a ¥
ADDER |
Q 130 35
\L
7
ACCUMULATOR |
S 130 33

FIGURE 47. CHARACTER-HANDLING OPERATIONS DATA PATHS

107

address field is indexable. The direction of the shift
is specified by the operation code.

In the logical left shift operation, instruction word
bits 21 through 35 are transferred from the storage
register to the adder (Figure 48). Here indexing is
performed if a configuration other than 0 is in the
instruction word tag field. The result is the effective
address. If no indexing is specified, the instruction
word base address is the effective address. In either
case, effective address bits 28 through 35 are loaded
into the shift counter. The term effective address in
this case is misleading. Perhaps the term effective
count would be better., However, the operation is '
identical with address modification, except the result
is used differently. After the shift counter is loaded,
a one position left shift is performed if the shift
counter does not contain 0 using accumulator bits Q
through 35 and MQ register bits S through 35. The
bit shifted left out of MQ register bit S enters ac-
cumulator bit 35. Bits shifted out of accumulator
position Q are lost. In performing the shift, MQ
register bit position 35 is vacated, but this vacated
position is made a 0. After a one position shift is
completed,” the shift counter is decreased by one.
Itis then inspected and if it is other than 0, another
one position left shift is performed. This action of
shifting one position and then checking the shift
counter continues until the shift counter is reduced
to 0.

Note that the accumulator sign is not affected by
the shifting: it remains unaltered throughout the
operation. It is possible to cause overflow on a
logical left shift. An overflow condition results when
a 1 bit is shifted out of accumulator bit position 1.

In this case, the overflow indicator is turned on.

A logical right shift is identical, except the shift
direction is reversed and overflow cannot occur. In
a logical right shift operation, accumulator bit 35
enters MQ register bit S. Bits shifted out of MQ
register bit position 35 are lost, and the vacated ac-
cumulator bit position Q is made 0.

Similar to the logical left and right shifts are the
long left and right shifts. In these cases, the instruc-
tion word is handled identically, as is the one-posi-
tion-at-a-time shift. The only differences are the
exclusion of MQ register bit position S in the shifting
and handling of the accumulator sign position. During
a long left shift, MQ register bit 1 enters accumula-
tor bit position 35. Bits shifted out of accumulator
position @ are lost, and vacated MQ register position
35 is made 0. After the shifting operation is com-
pleted, the MQ register sign is transferred to the
accumulator sign position. Again, overflow is possi-
ble.

During a long right shift, accumulator bit 35 enters
MQ register bit 1. Bits shifted out of MQ register
bit position 35 are lost, and vacated accumulator
position Q is made 0. At conclusion of shift operations

AC (S) is transferred to MQ (S).
108

Shifting operations are useful in dealing with BCD
information: arranging characters, sorting, etc.
These operations also provide a means of getting the
result of a division operation into the accumulator or
of getting the accumulator into the MQ register for
use as a multiplier.

ROTATE OPERATION

A rotate operation (Figure 49) is similar to a shift
operation. The differences are (1) no bits are lost
and (2) only the MQ register is involved in rotation
operations. Instruction word handling is identical,
and the MQ bits are rotated left one position at a
time.

First an effective address is formed in the adder.
Bits 28 through 35 of the effective address are loaded
directly into the shift counter. If the shift counter
does not contain 0, the MQ register is rotated one
position left with position S entering position 35. The
shift counter is decremented by 1 and then checked
for a 0 value. If it is 0, the operation is ended. If it
is not 0, the MQ register contents are again rotated
left one position. This pattern continues until the
shift counter is reduced to 0.

Rotate operations are useful in positioning informa-
tion for transfer into the accumulator or storage.

SIGN ALTERATION AND TEST OPERATIONS

Sign alteration operations in the 7040-7044 center
around the accumulator sign bit. The two operations,
change sign and set sign plus, do not involve any
data flow. With each address modification can be
employed; however, such modification could change
the operation to be performed because the address
field of each associated instruction is used to hold
part of the operation code. The change sign operation
makes the accumulator sign negative if it is positive
and positive if it is negative. The set sign plus oper-
ation makes the accumulator sign positive regardless
of its present condition.

Test operations involve checking a specific bit of
a particular register, the condition of a specific
indicator, and the position of a specific switch on the
operator's console. Five test operations are avail-
able: low-order bit test; P bit test; divide check test;
sense switch test; input-output (I/0) check test. The
low-order bit test effects a check of the current sta-
tus of accumulator bit 35. If this bit is a 1, the shift
counter is stepped. This stepping is in addition to
the normal stepping. Consequently, with a low-order
bittest and a 1 in accumulator bit 35, the next se-
quential instruction is skipped. If bit 35 is a 0, no
alteration of the programmed instruction sequence
takes place.

STORAGE BUS

b

N

STORAGE REGISTER

1\/7
ADDER '
1
18 35
SHIFT
COUNTER
LRS
STEP
LOST (LEFT) LLS 0 (LEFT)
LGL
ACCUMULATOR MQ REGISTER
slalp 34|35 s|i]2 3435
LGR
LRS
0 (RIGHT) s LOST (RIGHT)

FIGURE 48. SHIFTING OPERATIONS

STORAGE BUS

N

STORAGE REGISTER

\Z

ADDER
!28 X 35
SHIFT
COUNTER
STEP
MQ REGISTER
S 35

FIGURE 49. ROTATE OPERATION

109

The P bit test is identical with the low-order bit
test, except the accumulator P bit is checked for the
stepping condition.

During a divide check test, the divide check indi-
cator is inspected. If this indicator is on, it is turn-
ed off and the next sequential instruction is fetched:
no additional stepping of the instruction counter is
effected. However, if the indicator is off, an addi-
tional stepping of the instruction counter is effected.
Consequently, the next sequential instruction is
skipped. Identical action occurs with the I/0 check
test operation, except the I/O check indicator is the
reference.

Sense switch test operations provide a means of
testing the status of each of the sense switches on
the operator's console. Only one switch can be tested
at a time, and the operation code specifies the de-
sired switch. If the specified switch is in the de-
pressed (on) position, the instruction counter is
stepped in addition to its normal stepping. This ac-
tion causes the next sequential instruction to be skip-
ped. If the specified switch is in the released (off)
position, no additional instruction counter stepping
takes place. The next sequential instruction is there-
fore fetched for execution.

Each instruction used for test operations employs
part of the address field to complete the operation
code, and each instruction also has a provision for
specifying address modification. Such modifications
can result in changing the operation code.

SPECIAL STORAGE SIGN HANDLING OPERATIONS

Four special storage sign handling operations are
available to set and test the sign position of a core
storage word: make storage sign minus; make stor-
age sign plus; storage minus test; storage plus test.
In a make-storage-sign-minus operation, the con-
tents of the instruction word effective address are
transferred via the storage bus to the storage regis-
ter. The storage register sign is made a 1. Storage
register contents are then transferred to core stor-
age via the storage bus, and eventually the original
word with the sign bit made minus is returned to its
original address. Identical action takes place in the
make-storage-sign-plus operation except that, when
the contents of the specified core storage address
are in the storage register, the sign bit is made 0.
In a storage-minus-test operation, the contents of
the effective address are transferred via the storage
bus to the storage register. Here the sign position
is tested. If it is minus (a 1), the instruction coun-
ter is stepped in addition to its normal stepping.
This action causes the next sequential instruction to
be skipped. If the sign position is positive, no addi-
tional instruction counter stepping takes place;
therefore, the next sequential instruction is fetched

for execution.
110

The storage plus test is identical, except the addi-
tional instruction counter stepping occurs if the sign
position of the accessed storage location is a 0.

The most outstanding quality of these operations is
that all the work is accomplished in the storage regis-
ter. Accumulator contents are not bothered by special
storage sign handling operations and therefore do not
have to be protected in another register or address.

EXECUTE OPERATION

The execute operation causes the contents of the in-
struction word effective address to be interpreted as
an instruction which is then executed. Initially, the
execute instruction is transferred from core storage
to the CPU (Figure 50). The entire instruction enters
the storage register, and instruction word bits S and
3 through 11 are also transferred to the program
register. Storage register bits 21 through 35 are
transferred to the adder, where they are indexed if
indexing is specified by the instruction word tag field.
In any case, a transfer is effected from adder bits 21
through 35 to the address register. This transfer al-
ways involves the effective address. Address register
contents are then transferred to MAR as an instruc-
tion fetch.

Meanwhile, program register contents are decoded.
This action reveals the presence of the execute in-
struction and results in blocking the instruction coun-
ter stepping signal.

When the contents of the reference core storage lo-
cation are transferred to the CPU, they go to the stor-
age register, and bits S and 3 through 11 go to the
program register. The instruction is performed in a
normal fashion. However, decoding the new program
register contents no longer indicates the presence of
an execute instruction. Consequently, the instruction
counter is stepped in the normal fashion.

An execute operation allows execution of an addi-
tional instruction between two sequential instructions.
Although the additional instruction may be any of those
available and may be used as desired by the program-
mer, the additional instruction normally will not be a
transfer instruction. If the additional instruction is a
transfer instruction, the original instruction sequence
may be altered.

TRANSMIT OPERATION

A transmit operation causes the contents of a specified
core storage location or the contents of a block of
specified core storage locations to be transferred to
another core storage location or to another block of
core storage locations. Before a transmit operation

is performed, the accumulator must be loaded because
accumulator bits 3 through 17 serve to specify the
"from' address and accumulator bits 21 through 35

STORAGE BUS

s 35
PROGRAM
REGISTER < 3 AND 3-11
(EXECUTE)
STEP STORAGE REGISTER
121 35
INSTRUCTION
COUNTER
ADDER
121 35
ADDRESS
REGISTER
INDEX
REGISTERS

TO MAR

FIGURE 50. EXECUTE OPERATION DATA PATHS

serve to specify the "to'" address. Since the accum-
ulator is used in this fashion, it must be updated
after each word relocation. To avoid undesired re-
sults when updating the accumulator, its bits 18
through 20 should originally contain 0's.

Figure 51 shows the paths used during the execu-
tion of a transmit operation. The following is a step-
by-step account of the action:

1. Receive the instruction from core storage

in the storage register.
2. Transfer storage register bits 21 through 35
to adder positions 21 through 35.
3. Determine the effective address.
4. Load effective address bits 28 through 35
into the shift counter. (Because of the
physical size of the shift counter, the maximum
count possible is 377g).
5. Check the shift counter for a value of 0:
a. If it is 0, end the operation.
b. If it is not 0, continue.

6. Transfer accumulator bits 3 through 17 to
storage register positions 3 through 17.

7. Transfer storage register positions 3 through
17 to adder positions 21 through 35.

8. Transfer adder positions 21-35 to the address

register,

9. Transfer address register contents (from

address) to MAR to get the desired word.

10. Receive the word from memory in the storage
register.

11. Transfer accumulator bits 21 through 35
to adder positions 21 through 35.

12. Transfer adder positions 21 through 35 to the
address register.

13. Transfer address register contents to MAR
as a store (to) address.

14. Transfer storage register contents to the
storage bus and eventually into the ''to"
address.

15. Decrement (step) the shift counter.

16. Transfer accumulator bits Q through 35 to the
adder.

17. Add 1 to adder positions 35 and 17.

18. Transfer the result to the accumulator.

19. Return to step 5.

At the completion of a transmit instruction,
accumulator bits 3 through 17 specify the address of
the last word transferred plus 1, and accumulator
bits 21 through 35 contain the address of the last
store location plus 1. Successive transmit operations
can be performed if it is desired to transfer or
relocate more than 377g words.

112

STORAGE BUS

S 35
N\
STORAGE REGISTER
]] ;
s 13 17} 21 35
N
CARRY TO 35
ADDER g
1 ! ' CARRY TO 17
s 13 17} 121 35
v 11
8 i
INSTRUCTION WORD EFFECTIVE ADDRESS BITS 28-35 & «
y 2
<
wv
= 4
FROM TO ADDRESSES (ADDER 21-35) | < =
g a
SHIFT > <
COUNTER {/ o
ACCUMULATOR
1] :
s 13 17} 121 35
b
STEP A4
FROM ADDRESS (AC 21-35)
ADDRESS
REGISTER
TO MAR

FIGURE 51. TRANSMIT OPERATION DATA PATHS

STORAGE REGISTER

FROM

REGISTER

SPECIFIED
INDEX ar——

BITS 21-35

ADDER

REGISTER

FIGURE 52. MEMORY PROTECT SETUP

BITS 32-35

COUNT
REGISTER

ADDRESS
REGISTER

FIELD COUNT
REGISTER REGISTER
<z
CONTROL CIRCUITS
N2

COMPARE CIRCUITS

FIGURE 53. MEMORY PROTECT APPLICATION

114

Memory protection is a feature whereby a specified
block of core storage locations is protected from
alteration through storing. Assume that a master
program is stored in memory locations 20000 through
37777, and that the programmer does not want an
accidental intrusion (store) to destroy the program;
by utilizing memory protection, locations 20000
through 37777 cannot be disturbed during store
operations, thus protecting the contents of that block
of addresses. Locations 20000 through 37777 are
used as an example; other blacks (as desired) can be
protected, but only one block can be protected at a
time.

To protect a block of addresses, a Set Protect
Mode (SPM) instruction must be executed. The
address field of the SPM instruction designates which
block of memory locations is to be protected; it does
this by setting up two registers, the count register
and field register, which are used to monitor the
contents of the CPU address register (Figures 52
and 53). The contents of these two registers are
compared with the high-order bits of an effective
address (in the AR). The count register determines
the number of high-order bits to be examined and
the field register determines the pattern of bits to
be compared against. Violations, attempts by the
CPU to store data in a protected area, cause trapping
by either an equal or an unequal compare result,
according to the selected mode.

The compare-equal mode operates in the following
manner. The high-order bits in the field register
indicate the block of addresses that are protected.
Any time that the corresponding high-order bits in
the address register are the same as those in the
field register, CPU circuits interpret the identical
comparison as an attempt to enter a protected area.
The compare-unequal mode operates altogether
differently. The high-order bits in the field register
indicate the block of addresses that are not protected.
Any time that the corresponding high-order bits in
the address register are not the same as those in the
field register, CPU circuits interpret the nonidentical
compare as an attempt to enter a protected area.

The field register is a 7-position register whose
bits are labeled 21 through 27; the count register is
a 4-position register whose bits are labeled 32
through 35. Figure 54 is a table that shows which
field register and address register bits are compared
for any given count register setting (C field count).

SECTION 5 - MEMORY PROTECTION

Set Protect Mode (SPM) Instruction

The SPM instruction word format is as follows:

OPERATION CODE | F %

S 11 12713 14 17 18
The operation code is formed by bit positions S-11
and is -1160. Indirect addressing can be employed
with the SPM instruction as indicated by the presence
of a flag field in bit positions 12 and 13. Bit positions
14-17 are not used by the SPM instruction. The tag
field is formed by bit positions 18-20, and the address
field is formed by bit positions 21-35.

ADD

C
2021 31 32 35

FIGURE 54, BIT COMPARISON TABLE

C Field | Count Register and Address Register Bits Compared in
(Octal) || Each Storage Size
32K 16K 8K 4K

00 None None None None

01 21 None None None

02 21-22 22 None None

03 21-23 22-23 23 None Trap if unequal

04 21-24 22-24 23-24 24 comnare result

05 21-25 22-25 23-25 24-25

06 21-26 22-26 23-26 24-26

07 21-27 22-27 23-27 @ 24-27

10 None None None None

11 21 None None None

12 21-22 22 None None

13 21-23 22-23 23 None Trap if equal

14 21-24 22-24 23-24 24 compare result

15 21-25 22-25 23-25 24-25

16 121-26 22-26 23-26 24-26

17 21-27 22-27 23-27 24-27

Note: Bit 23 indicates addresses above 4K; bit 22 indicates addresses
above 8K; bit 21 indicates addresses above 16K.

Decoding an SPM instruction causes the field
register to be loaded with bits 21-27 of the effective
address and the count register to be loaded with
instruction word bits 32-35. The field register is
therefore loaded from the adder, and the count
register, from the storage register. Instruction
word bit 32 controls the mode of protection, whereas
instruction word bits 33-35 specify the number of
high-order address bits to be compared against
corresponding field register bits on subsequent
memory references in store operations.

Note in Figure 52 that the count register receives
instruction word bits (32-35) and that the field
register receives effective address bits. In
determining the effective address, the entire

115

instruction word address field or base address is
used. Further, an SPM instruction does not refer-
ence memory unless indirect addressing is specified
by the instruction word flag field.

When an SPM instruction is decoded with the
machine already in the protect mode, a trap occurs
and the machine is removed from the memory
protect mode.

Memory protection is an optional feature and may
not be available on all machines. If an attempt is
made to execute an SPM instruction in a machine
that does not have the memory-protect feature, a
no-operation results and the next sequential
instruction is fetched.

The memory protect mode is also removed by
program control. A Release.Protect Mode (RPM)
is provided for this purpose.

Memory-Protect Examples

Assume it is desirable to protect memory locations
20000 through 37777 from being referenced by store
class instructions. Initially, then, the field register
must be set as shown:

Octal: 2or3 |

Lofs]x] XIXIXI XIXIXI XIXIXI XIXIX 1

[21 22 23 24 25 26 [
Low-Order Address Bits (28—35)

Field Reglster

The X in positions 23-27 indicates any value: these

bits can contain either 1 or 0. Why?

In this case, only field register bits 21 and 22 are
important because they are the only two bits that
remain exactly the same for all addresses within the
block to be protected; other blocks could require up
to all seven positions of the register in order to be
properly identified.

Next set the count register as shown:

Equal Compare Compare the 2 high-order positions
3 ¥ J N
1 0 1 0

32 33 34 35

(octal 12)

Why ? This count designates that only field register
bits 21 and 22 are to be compared with address
register bits 21 and 22, and that if the AR contains
any address beginning with 01 there is an equal
compare. (See Figure 54).

If the AR does have an address beginning with 01
(an equal compare), the store-cycle latch is prevented
from being set, thus preventing a store in the core
location, and the CPU program goes into a memory-
protect trap routine.

116

To illustrate the unequal-compare mode operation,
protect all memory locations except 01400 through
01777 from being referenced by store class
instructions. Initially, the field register must be
set as shown:

GLol oo ils 14'71xfx13£ﬁx|'x1§'?a

121_22 23 24 25 26 27)L_

Octal:

Field Reglster Low-Order Address Bits (28-35)

Why ? In this case, all seven high-order bits of the
specified addresses are exactly the same, so the
field register must be set to reflect this.

Next, set the count register as shown:

Unequal Compare Compare the|7 high-order positions

L ¥ ¥
0 1 1 1

32 33 34 35

(octal 07)

Why ? This count designates that all field register
bits must be compared with address 'register bits

21 through 27, and that if the AR contains any
address beginning with any digits other than 0000011
there is an unequal compare. (See Figure 54).

If the AR has an address that does not begin with
0000011 (unequal compare), the store-cycle latch
cannot be set, and the program transfers to a
memory-protect trap routine.

In the first exgmple, memory locations 20000
through 37777 are protected. In the second example,
locations 00000 through 01377 and’ 02000 through
77777 are protected.

Memory-Protection Control Setup

Figure 55 shows the memory-protection controls.
The count register is loaded with bits 32 through 35
of the SPM instruction directly from the storage
register, which means that address modification
cannot be performed on data going into the count
register. Count register position 32 determines
whether the CPU will trap on an equal or on an
unequal compare; the other count register positions
determine which address register and field register
bits will be compared (Figure 54).

The field register is loaded with bits 21 through
27 from the adder, which means address modification
can be performed on data going to the field register.
The outputs of the field register, along with outputs
from the count register, are AND'ed with address
register bits 21 through 27 in a comparison network
to determine whether the address register and field
register have equal or unequal addresses.

COUNT REGISTER

02, 16, 01
SR 32 AD 21
A
MP 32 ,
SET +B TRAP EQUAL (LATCH SET)
LATCH
AD 22
+B TRAP UNEQUAL (LATCH CLEAR)
SR 33 MP 4
A
MP 33
SET MP4 A
0
MP 4 AND 2 o2
LATCH
MP4 OR 2
SR 34
A i
0
MP 34
SET MP2
LATCH MP4 OR 20R 1
r
s .
SR 35
A L]
AD 24
MP 35
- SET MP1 MP4 OR 1
LATCH MP 1
I1-1A LLATE
A p— AD 25
A4,5 DI 0
MP RESET
SPM
MP2 OR 1
1 OR 1A LATE
A
SPM
14
A5 D1 . SET MP ADDRESS
" /TRAP EQUAL
—_—] A SENSE MP VIOLATION AD 26
ANY TRAP
"B MP COMPARE UNEQUAL _
- 0 TRAP CONTROL
o A
4 ——— PROTECTED LOCATION
: ENTER STORAGE , PREVENT SETTING OF
; : ADTERSTORAGE] STORE CYCLE LATCH
AD 27
A
_STOREOPS]
E CYCLE AND ALPHA
TRAP UNEQUAL
sem
A
MP MP
11DI1 MODE VIOLATION
D SET MP MODE SET MP VIOLATION TRAP REQUEST
A 0
LATCH oM LATCH
A4 DI
| LATE
-8 MPV TRAP RESET l l‘
~ 02, 16, 05 .
FIGURE 55, MEMORY PROTECT CIRCUIT

FIELD REGISTER COMPARE
AR 2T
02, 16, 02—03 02, 16, 04
MP 21
set MP 21 MP4 OR2OR 1
0
LATCH
AR 21 1
W7
MP 22 AR 22)
SET MP 22
LATCH
p 22
MP4 OR 2
MP 23 [
SET MP 23
AR 22 2
LATCH
MP 23
AR 23
MP4 OR 1
MP4 OR 2 .
AR 23 3
MP 24
SET MP 24
AR 24
LATCH
MP 24
MP 25 MP4
SET MP 25 [
LATCH AR 24 4
MP 25
AR 25
MP2 OR |
MP4 | l o
AR 25 5
MP 26
SET MP 26
LATCH J—
AR26
MP 26
e 27 MP4 AND 2
SET MP 27 0
LATCH AR 26 6
MP 27
AR 27
MP1
"MP4 AND 2 I
0

AR 27

117

To illustrate the compare operation in terms of
CPU signals:
1. Given:
field register 21 =0 (MP 21)
address register 21 = 1 (AR 21)
Count registers 33, 34, and 35 are all
1's (MP 4 or 2 or 1); this is necessary
because bit 21 is always compared
(Figure 54).

2. What happens ?
The AND that is conditioned by MP 21,
AR 21, and MP 4 or 2 or 1 has a +B
output; the +B, through the OR, becomes
the -B MP compare-unequal. If AR 21
and MP 21 were the same (either 0's or
1's), neither AND would have a +B output;
thus the OR would have a +B output, which
is a compare-equal.

The -B MP compare-unequal level is then AND'ed
with bit 32 of the count register to sense whether
there has been a memory-protect violation. If the
address register and field register do not compare,
CR bit 32 must be a 0 (trap unequal) before an MP
violation is sensed.

If a violation is sensed, the resulting level is
AND'ed with several other levels to determine
whether to request an MP trap. The two most
significant levels involved in determining whether
to request a trap are: MP mode and store ops. The
MP-mode latch can only be set by an SPM instruction.
The store-ops level is necessary because protection
is needed only on a store operation; the CPU can
read instruction and operand fetches from protected
locations.

When all conditions for a valid MP violation are
met, the MP violation latch is set; the latch output
effects an MP trap. Note that the store cycle latch
is prevented from being set as soon as a violation
is sensed.

Memory protection is valid only when the CPU
tries to store into protected locations; any I-O
channel can store into any memory location.
Memory protection does not work for channels B
through E because they enter storage directly
through the MAR without going through the CPU
address register. Channel A could have memory
protection because it utilizes the CPU address
register, but, to make channel A compatible with
the other I-O channels, memory protection is
suppressed for channel A,

119

SECTION 6 - TRAPPING

GENERAL

Trapping is a method of signaling unusual or special
system conditions to a program without requiring
special test instructions. With trapping, system
status is constantly monitored, and, when a special
condition is detected, the normal program sequence
is interrupted and a transfer is made to a trap
routine.

An unusual or a special system condition can be
either a normal condition or an error. For example,
reading the end-of-file mark on a tape is normal,
yet it is classified as a special condition. Such
classification simplifies the program handling of the
condition. On the other hand, the presence of
floating-point spill is also considered an unusual
condition. This classification appears more
reasonable because it constitutes an error.
However, each poses a question to the program in
progress, and incorporating the trapping scheme
simplifies solution of the problem.

Some types of traps are automatic; that is, under
any machine conditions, their appearance causes a
branch from the normal program sequence to a trap
routine. Other types of traps, however, can occur
only if the machine is in the trap mode. Still other
types of traps can occur only if the machine is in the
trap mode and the particular trap is validated. For
example, floating-point spill automatically causes
a trap, whereas the machine must be in the trap
mode to act on an interval timer overflow. The
machine must both be in the trap mode and have the
parity-error circuits activated before action can be
taken on a parity error. Similarly, a channel trap
must be validated before the machine recognizes it.
A channel trap is validated through the use of a
mask register. The mask register is composed of
latches, each allowing a different type channel trap
when on. If a mask bit is a 1 (latch on) the
corresponding trap condition is validated and will
be recognized by the machine. If a mask bit is a
0 (latch off) the corresponding trap condition is
considered invalid for trapping and will never be
recognized by the machine. This method of
validation provides great flexibility in programming
the 7040-7044.

In the trap scheme, each trap category is
assigned two core storage locations. One location
serves as a trap record location in which the
conditions causing the trap and the instruction
counter value at the time of trap recognition are
stored. In this manner, a particular trap can be
identified and, after execution of a trap routine, a

120

return to the point of program departure can be
effected. In most instances the second reserved
location sequentially follows the trap record location
and is known as the instruction location. Following
the recording of trap particulars in the record
location, the instruction location value is forced into
the instruction counter; therefore, the first instruction
executed in a trap operation comes from the
instruction location.

The trapping scheme also provides for privileged
instructions. Basically, a trap is recognized after
the execution of the instruction causing the trap.

With a privileged instruction, however, a trap cannot
be recognized until after the execution of the
instruction following the privileged instruction. The
privileged instructions are: RDS, PRD, SEN, WRS,
WBT, PWR, CTR, ENB, RCT, ICT, and SPM. The
XEC is also a privileged instruction in that certain
traps cannot occur between the XEC and the execution
of its specified instruction.

TRAP CONTROL

For some types of traps, trap control is automatic;
that is, regardless of the condition or state of the
trapping-control triggers, the appearance of a
certain condition causes a trap. For other than these
special cases, trap control must be established: the
machine must be placed in the trap mode. The trap
mode is entered by turning on the trap-control
trigger. Signals from this trigger serve as condition-
ing levels for many of the trap indication circuits.
Three other triggers are also associated with trap
control: parity-mode, memory-protect-mode, and
channel-trap-control. Although these triggers work
in conjunction with the trap-control trigger, they are
turned on independently of the trap-control trigger.
In addition, because the trap mode is entered by
turning on a trigger and trap circuits are established
by turning on associated triggers, it is common to
use the expression turn on trapping.

The major portion of trap control is assigned to
the trap-control trigger. This trigger can be turned
on by executing a Transfer and Restore Traps (TRT)
instruction. When the trap-control trigger is on,
its output signals condition the memory protect,
parity, interval timer overflow, and channel trapping
circuits. Consequently, these types of traps cannot
occur when the trap-control trigger is off. Another
means of turning on the trap-control trigger is to
execute a Transfer and Restore Parity (TRP) instruc-
tion. Executing a TRP causes all that a TRT causes
and, in addition, turns on the parity-mode trigger.
This trigger must be on to trap on any parity error.

The memory-protect-mode trigger is turned on
only by executing a Set Protect Mode (SPM) instruc-
tion. Note that execution of an SPM instruction with
the memory-protect-mode trigger already on results
in a memory protect violation trap. If a parity error
occurs on the SPM instruction, a parity trap results
and is given priority.

The channel-trap-control trigger can be turned on
by executing either an Enable (ENB) instruction or a
Restore Channel Trap(RCT) instruction. An ENB
instruction also serves to set up the data channel
trap mask. Each data channel contains a 4-bit mask
register which is loaded with selected bits from the
contents of the instruction word effective address.
The bits loaded into a mask register may be either
0 or 1. A 0 mask register bit negates the associated
condition for trapping, whereas a 1 mask register
bit allows trapping when the associated condition
occurs. The following listing defines the bits used
to load each mask register:

Effective if a 1
Mask Bit Conditions Enabled Channel in Bit Position
Operation Operation Complete or A 35
EOF or Word Parity or
Unusual End or End
B 34
C 33
D 32
E 31
Direct Data | Direct Data Interrupt B 25
C 24
D 23
E 22
Parity Word Parity or A 17
Redundancy Check
B 16
C 15
D 14
E 13
Attention 1401 Interrupt or A 8
Teleprocessing Interrupt
CIF Attention B 7
C 6
D 5
E 4
Unit Record| Unit Record Interrupt A S

The RCT instruction is not associated with the
mask register; that is, execution of an RCT
instruction only turns on the channel-trap-control
trigger. Consequently, an ENB instruction must be
executed to define the valid trap conditions in addition
to turning on channel trap control.

Why then is the RCT instruction available ? After
any trap occurs, the control trigger associated with
that trap is turned off. To allow trapping during
subsequent operations, trap controls must be re-
stored after the present trap is dealt with. For
channel trap operations, the RCT instruction is
provided: after a channel trap has been handled,
executing an RCT instruction restores the ability to
trap (turns on the channel-trap-control trigger) with-
out affecting the mask. To turn off channel trap
control without a trap, an ENB instruction refer-
encing a cleared location is executed. In this case,
the control trigger is on, but no trap conditions are
validated because of the zero masks. Channel
trapping can be turned off manually by depressing the
RESET pushbutton on the operator's console. How-
ever, depressing this pushbutton also resets all
registers and indicators in both the CPU logic section
and the data channels; the pushbutton must therefore
be used discreetly.

Memory protection is turned off each time a
memory protect violation trap or an SPM trap occurs.
It is restored by executing an SPM instruction. Only
one instruction is provided, therefore, to establish
memory protection. Further, memory protection
may be turned off without waiting for or causing a
trap by executing a Release Protect Mode (RPM)
instruction. However, execution of an RPM auto-
matically causes a trap regardless of the condition
of trapping-control triggers. The RESET pushbutton
may also be used to turn off memory protection.

The trap-control and parity-mode triggers can
only be turned off by a trap. No instruction or
manual means is available to reset these triggers.

In fact, depressing the RESET pushbutton turns these
triggers on. Normal operation therefore includes
the trap mode. If a trap occurs that turns off either
the trap-control or parity-mode trigger or both,
executing either a TRT or TRP, depending on the
situation, will restore the desired trap control.

TYPES AND PRIORITY

There are approximately 15 types of traps in the
7040-7044 system. These types follow in order of
priority:
1. Interval Timer Blast
2. Memory Protect Violation
3. Parity
4. Instruction - SPM
RPM
Floating Point
STR
5. Pre-interrupt Memory Protect
Interval Timer Overflow
7. Direct Data

&

121

8. Channel E
9. Channel D

10. Channel C

11. Channel B

12. Channel A

The instructions in 4 have equal priority. This
situation does not pose any problem, because only
one instruction can be executed at a time.

In listing the channel traps, channel E was given
highest priority for simplicity. Actually, the
channel electrically farthest from core storage gets
highest priority. This channel can be any of the
overlapped channels. In fact, the arrangement of
channels B through E with regard to priority has no
limitations.

Under any circumstances, channel A has the
lowest priority, because it is always the closest to
core storage.

Interval Timer (IT) Blast

Every 16 2/3 milliseconds, the interval timer
requests two memory cycles to read out core
storage location 00005, increment it by 1, and place
the incremented value back in location 00005. The
two cycles required for this operation can occur only
(1) between instructions, (2) during an RDS, WBT,
PRD, SEN, WRS, PWR, CTR, BSR, REW, RUN, or
WEF instruction if a wait is necessary for the
channel, and (3) between unoverlapped cycles of an
RCHA instruction. There are instructions in the
instruction set and possible error conditions which
prevent honoring of the interval timer request. If a
second request for these cycles is made by the
interval timer before the first request is honored,
an interval timer blast trap occurs.

The interval timer blast trap does not allow
completion of the instruction in process. It resets
all data channels, including channel A. It does not
reset the AC or MQ register. It stores the contents
of the instruction counter, normally the present
instruction location plus 1, in positions 21-35 of
location 00036, and the computer takes its next
instruction from location 00037. Trap control is
turned off, thus inhibiting all other traps, and the
two waiting interval timer cycle requests are reset.
This action means that the contents of location 00005
are 2 less than they should be when an interval timer
blast trap occurs. An interval timer blast trap also
resets the interval timer overflow trap request if it
is on.

122

Memory Protect Violation

A memory protect violation trap occurs when:

1. An RPM instruction is executed (RPM trap).

2. Memory-protect-mode trigger is on when an
SPM instruction is executed (SPM trap).

3. The program attempts to store in a protected
area while the memory-protect-mode trigger is on
and the trap-control trigger is on (violation trap).

4. Memory-protect-mode trigger is on and the
trap-control trigger is on and a channel, direct data,
or interval timer overflow trap is requested (pre-
interrupt memory protect trap).

Input operations on any channel are allowed to store
anywhere without causing a memory protect violation
trap.

Occurrence of any of the four traps listed above
turns off the memory-protect-mode trigger and
causes the location of the next sequential instruction
to be stored in bits 21 through 35 of core storage
location 00032. The next instruction to be executed
is then obtained from location 00033. In the case of
a pre-interrupt memory protect trap 00033 is stored
in the address field of the location appropriate to the
trap which caused the pre-interrupt memory protect
trap.

The following bits are set in the location 00032
decrement field to identify the cause of the memory
protect violation trap:

a. 14 - RPM executed with memory portect
mode off.

b. 15 - RPM executed with memory protect
mode on.

c. 16 - Violation trap - or an SPM trap.

d. 17 - Pre-interrupt memory protect
violation trap.

Parity

Parity trapping is closely associated with machine
cycles; therefore, the following cycle definitions
are given:

1. I - A cycle used to fetch an instruction.

2. IA - A cycle used to access an indirect
address.

3. E - A cycle taken to read or store in the
execution of an instruction.

4. B - A cycle used to accommodate transfers to
and from an I-O device on an overlap channel (the
store cycle of an SCH and the readout of an JORD in
an RCH are E cycles, not B cycles).

5. U - A cycle used to accommodate transfers to
and from an I-O device on channel A (the store cycle
of an SCHA and the readout of the IORD in an RCHA
are E cycles, not U cycles).

6. C - An interval timer cycle to either readout
or store into location 00005.

Since no parity is kept with CPU registers, a word
that is stored has a check bit generated for it as it
is stored. Therefore, CPU information is checked
only during read cycles, which include I, IA, E, and
C read cycles. If a parity error occurs during a
read cycle, the word is returned to its original
location in error. Parity is also checked during B
and U cycle read and store activities. If a parity
error is encountered during an I-O store cycle, the
word is stored with a corrected parity bit.

The following partial-word store instructions
require one I cycle and two E cycles: STA, STL,
SAC, SXA, SXD, STD, and TSL. The first E cycle
serves to read out and check the store location. The
memory word is regenerated as it was during the
first E cycle. If a parity error is detected, a parity
trap is initiated and the instruction is not completed.
However, if no error is detected during the first E
cycle, the storage word is placed in the CPU storage
register, and the applicable portion of the storage
register is replaced with the new information. During
the second E cycle, the complete storage register
word is stored, and no parity error can occur.

If a parity error occurs during an I or IA cycle
with the parity mode and trap-control triggers both
on,the instruction is not executed. The location of
the instruction in error, plus 1, is stored in the
location 00040 address field. The address of the
instruction in error is stored in the location 00040
decrement field. Location 00040 bit 18 is set to
indicate that the error occurred during an I or IA
cycle. The next instruction to be executed is
obtained from location 00041.

If a parity error occurs during an E cycle with the
parity-mode trigger on, the instruction is not
executed and the location of the instruction in error,
plus 1, is placed in the location 00040 address field.
The address of the instruction in error is placed in
the location 00040 decrement field. Location 00040
bit 19 is set to indicate that the error occurred
during an E cycle. The next instruction to be
executed is obtained from location 00041.

If a parity error occurs during a C cycle with the
parity-mode and trap-control triggers both on, the
computer waits until the instruction being executed
is completed, and then the location of the next
sequential instruction is placed in the location 00040
address field. Location 00040 bit 1 is set to indicate
the error occurred during a C cycle. The next
instruction to be executed is fetched from location
00041.

If a parity error occurs during an I, IA, E, or C
cycle when either the parity-mode or trap-control
trigger is off, the execution of instructions is not
interrupted until both are turned on. At this time,

the location of the next instruction to be executed is
placed in the location 00040 address field. Location
00040 bit S is set to 1 to indicate a stacked parity
error. Bits are set in location 00040 positions 1, 18,
and 19 to indicate the type of cycle in which a stacked
error occurred. One or all of these bits can be set
in a stacked error parity trap.

Instruction

There are four types of instruction traps: SPM, RPM,
floating point, and STR. They have equal priority,
and each can occur when the machine is not in the

trap mode.

SPM

If the memory-protect-mode trigger is on when an
SPM instruction is given, an SPM trap results. The
location of the SPM instruction, plus 1, is placed in
the location 00032 address field. Location 00032 bit
16 is set to indicate the type of trap. When the SPM
trap occurs, it causes a memory protect violation
trap to occur. The next instruction to be executed
is obtained from location 00033.

RPM

Execution of an RPM instruction causes the location
of the RPM instruction, plus 1, to be placed in the
location 00032 address field. Location 00032 bit
positions S through 20 are made 0's. The next
instruction to be executed is obtained from location
00033. If the memory-protect-mode trigger is on
when an RPM instruction is executed, it is turned
off and location 00032 bit position 15 is set to 1. If
the memory-protect-mode trigger is off when the
RPM instruction is executed, location 00032 bit
position 14 is set to 1.

Floating Point

During the execution of floating-point instructions,
the result characteristic in the accumulator and MQ
register may exceed eight bit positions, thus mean-
ing the result is too large for storage. The capacity
of the machine is exceeded when the exponent goes
above +177g or below -200g. Above +177g is called
overflow, and below -200g is called underflow.
Overflow and underflow may occur in either the
accumulator or the MQ register. Upon sensing either
condition, the CPU places the address plus 1 of the
instruction that caused the condition into the location
00000 address field. The following location 00000
bits are also set to indicate the type of error:

123

1. 12 - Double-precision instruction word effective
address specifies an odd location.

2. 14 - Single-precision divide instruction.

3. 15 - Overflow in either the accumulator or the
MQ register or both.

4. 16 - Accumulator overflow or underflow.

5. 17 - MQ register overflow or underflow.
Location 00010 is then accessed for the next instruc-
tion to be executed.

STR

The location of the STR instruction, plus 1, is
placed in the location 00000 address field. Positions
S through 20 are made 0's. The next instruction to

be executed is fetched from location 00002.

Pre-Interrupt Memory Protect

If the memory-protect-mode trigger and the trap-
control trigger are both on and a channel, direct
data, or interval time overflow trap is requested, a
pre-interrupt memory protect trap results. The
memory-protect-mode trigger is turned off, and
the location of the next sequential instruction is
placed in the location 00032 address field. Location
00032 bit 17 is set to indicate the type of trap. The
requested trap is then performed.

Interval Timer Overflow

When the interval timer increments location 00005
and an overflow occurs, a trap is requested. This
trap cannot occur unless the trap-control trigger is
on. Further, it cannot occur between the execution
of a privileged instruction and the execution of the
instruction following the privileged instruction. If
the memory-protect-mode trigger is on when an
interval timer overflow occurs, it must be deter-
mined that no pre-interrupt memory protect trap is
present before the interval timer overflow trap can
be handled (pre-interrupt memory protect trap has
higher priority).

Upon honoring an interval timer overflow trap,
the contents of the instruction counter (normally the
location of the next sequential instruction to be
performed in the main program) replace positions
21-35 of location 00006 and the computer takes its
next instruction from location 00007.

When an interval timer overflow trap request is
waiting, the interval timer is blocked from
incrementing location 00005. If the interval timer
trap request waits more than 33 milliseconds, an
interval timer blast trap will occur which resets
the interval timer overflow trap request.

124

Direct Data

A direct data trap is a means of enabling overlapped
channels to signal or interrupt processing by trapping.
When a direct data trap occurs, the contents of the
instruction counter (the location of the next sequential
instruction) are placed in the location 00003 address
field. The location 00003 decrement field is used to
identify the channel making the direct data trap
request. Location 00004 is then accessed for the
next instruction. Note that the instruction in location
00004 must be an unconditional transfer instruction to
ensure compatibility with the 7090.

A direct data trap can occur only when the trap
control trigger is on and the channel-trap-control
trigger is on. Further, a direct data trap cannot
occur between the execution of a privileged instruction
and the execution of the instruction following the
privileged instruction. A direct data trap turns off
the channel-trap-control trigger, thereby preventing
other direct data traps and channel traps until the
channel-trap-control trigger is again turned on with
either an ENB or RCT instruction.

Each channel has an associated four bit mask
register, of which one bit controls direct data interrupt
requests from that channel. This mask bit can be
made a 0 or a 1 by executing an ENB instruction. In
addition, each overlapped channel contains a latch
which is turned on only by the direct data device, and
then only when a trap is requested. Recognition of
the trap request, however, is possible only if the
associated mask bit is a 1 coincident with the latch
being on. When the latch is on but the associated
mask bit is a 0, no recognition is possible. Further,
when a direct data trap is honored, the associated
latch effects storage of a 1 into the corresponding
decrement field bit position in location 00003:

13 - Channel E

14 - Channel D

15 - Channel C

16 - Channel B
If the trap is honored and the decrement bit is set, the
latch is turned off. If the mask bit prevents honoring
of the trap, the latch remains on. However, a direct
data latch for a particular channel may also be turned
off by executing an RCH instruction addressing that
channel or by depressing the RESET pushbutton.

Channel Traps

A channel trap allows a particular channel to signal or
interrupt processing by trapping the CPU program.
Channel traps may be initiated by the following:

1. Completion of any channel operation.

2. A redundancy check.

3. An end of file.

4. A word parity check (U or B cycles only).

5. Tape word incomplete or corporate interface
unusual end.

6. Corporate interface attention.

7. 1401 attention (channel A only).

8. Teleprocessing interrupt (channel A only).

9. Unit record interrupt (channel A only)

When a channel trap occurs, the instruction
counter value (the location of the next sequential
instruction) is stored in the trap record location
address field. Bits indicating the conditions which
caused the trap are set in the trap record location
decrement field. All other bit positions in this
location are 0. The next instruction to be executed
is obtained from the next sequential address after
the trap record location: the instruction location.
Trap record and instruction locations for each
channel are as follows:

Trap Instruction
Channel Record Location Location
A 00012 00013
B 00014 00015
C 00016 00017
D 00020 00021
E 00022 00023

Note that instructions in the instruction locations
must be unconditional transfer instructions to be
compatible with the 7090.

A channel trap can occur only when both the trap-
control and channel-trap-control triggers are on.

A channel trap cannot occur between the execution
of a privileged instruction and the instruction
following the privileged instruction. Further, a
channel trap turns off the channel-trap-control
trigger, thus preventing other channel traps and
direct data traps until the channel-trap-control
trigger is again turned on; this action can be
accomplished by executing either an ENB or an RCT
instruction.

Each channel employs a 4-bit mask register to
specify the currently valid trapping conditions. The
mask bits are arranged by an ENB instruction. If
an all -0 mask is desired (no valid traps), depress
the CLEAR, RESET, or LOAD pushbutton on the
operator's console, execute an RDC instruction, or
execute an ENB instruction referencing a cleared
storage location.

For each condition that can cause a channel trap
there is a latch, which can be turned on and off by
certain conditions. A latch can only request a trap
if the associated mask bit is a 1. When a trap re-
quest is made, each latch which is on places a 1 in
the corresponding decrement field bit position of

the trap record address. If a latch is on but the
associated mask bit is a 0, the latch can be turned

on or off, but a trap request cannot be recognized

and a trap record location decrement field bit cannot
be set. All latches in a particular channel are turned
off by an RDC addressing that channel, or by depress-
ing the appropriate operator's console pushbuttons.

When a trap request is recognized, the associated
latch is automatically turned off. If recognition is
prevented by a 0 mask bit, the associated latch
remains unaltered.

The following table (Figure 56) gives the various
decrement field bits used in the trap record
locations, the associated latches, the name of the
associated mask bit, and the meaning of each.

FIGURE 56. CHANNEL TRAPS TABLE
(THEIR IDENTIFICATION AND MEANING)

[Decrement
Field Bit Mask

Position Latch Bit Remarks

8 Unit Record | Unit
Record

The latch is turned on whenever
the following devices attached
to the 1414-III or IV have
completed their cycle: card
read buffer full; paper tape
reader full; card punch buffer
empty; print buffer empty. The
latch cannot request a trap unless

Interrupt

the channel is not in use. This
type of trap applies only to
channel A.

Attention |The latch is turned on whenever
an inquiry buffer in the 1414-IV
or V has a message waiting,

9 Tele-
processing
Interrupt
when an output buffer has
emptied. Included in this area
are local inquiry, teletype, and
1009. The latch is masked by
the attention bit and can request
a trap even when the channel is
in use. This type of trap applies
only to channel A.

Attention [The latch is turned on by the
1401 and is masked by the
attention mask bit. The latch
can request a trap even when

10 1401
Attention

the channel is in use. This type
of trap applies only to channel A
Attention |The latch is turned on by the
corporate interface attention

11 Corporate
Interface
Attention line and is masked by the
attention mask bit. The latch
can request a trap and store into
the trap record location even
when the channel is in use. This
type of trap is not applicable to
channel A.

125

Decrement
Field Bit
Position

Latch

Mask
Bit

Remarks

Decrement
Field Bit
Position

Latch

Mask
Bit

Remarks

12

14

15

Unusual End

Word Parity

End of
File

Operation

Parity or
Operation

Operation

The latch is turned on at the end
of a tape operation if the total
number of characters handled
was not a multiple of 6. The
latch is not used when an end of
file is read. The latch is also
turned on by the corporate
interface unusual end line to
indicate some unusual condition.
A sense operation is generally
required to determine the
condition. The latch is masked
by the operation mask bit and
cannot reqfxest a trap unless

This
type of trap is not applicable to

the channel is not in use.

channel A.

The latch is turned on by a word
[parity error during read or write
U or B cycles to memory. It
may also be turned on during
channel write operations by
checking the 37th bit of a word
with the sum of the six parity
bits of a disassembled word.
When the parity mask bitisa 1
and the word parity latch is on,
the channel stops the transfer of
information to or from memory.
The channel address register
contains the address, plus 1, of
the last word transferred. There-
fore, if the parity enable bit is
1 when an invalid word is fetched
from memory during a write
operation, executing an SCH
will locate the invalid word if

1 is subtracted from the address.
This latch can be recognized
only when the channel is not in
use. Note that the latch is
enabled by two different mask
bits. The parity mask bit stops
channel transmission when an
error occurs; the operation mask
bit does not.

The latch is turned on by the
end-of-file signal from the I-O
When the associated
channel operation mask bit is

0, the latch may be tested and
turned off with a TEF instruction.
When the associated mask bit is
a 1, the TEF does not transfer
or turn off the latch. Latch
recognition is possible only
when the channel is not in use.

device.

16

17

Redundancy
Check

Operation
Complete

Parity

Operation

The latch is turned on by a
parity check received from the
1-O device or by the byte parity
check in the channel. When
the associated mask bit is O, the
latch can be tested and turned
loff by a TRC instruction. When
the associated mask bitis 1, a
TRC neither transfers nor turns
off the latch.

Coincidence of a 1 in the mask
bit and the latch being on causes
information transfers to stop.
The channel address register
contains the address, plus 1, of
the last word transferred. Latch
recognition occurs only when
For
read operations, the channel
remains busy for the entire
record, although nothing is
transferred to memory.

The latch is turned on whenever

the channel is not in use.

the channel in use indicator goes
from on to off, which is at the
completion of every read, write,
sense, and control operation,
when the tape completes a BSR
or WEF, or after relays are
picked for a RUN or REW. If
a BSR or REW is given at load
point, the latch is turned on,
although no mechanical motion
When the channel in
use indicator goes from off to

occurs.

on, the latch is turned on.

126

TRAPPING SCHE ME

The trapping scheme is shown in Figure 57.
Although not every possible situation is covered in
the following paragraphs, enough examples are given
for a thorough-understanding of trapping.

Channel Trap

Assume that a tape read operation is programmed
using channel B, and that the instructions used precede
entry of the program into an arithmetic loop. This
condition could be programmed as follows:

100
101
102
103
104
105

mUOWiH
w)

CONDITIONS TRAP
START
PRIORITY
TIMER RESET
CONDITIONS

INTERVAL

NO YES

ACTION

IC TO (A)00036

TIMER
RESET

®- (A)00037 TO IC
NO TAGS

—®

CONDITIONS

TIMER RESET

TRAP

CONDITIONS

NO

INTERVAL

YES

ACTION

TIMER
RESET

IC TO (A)00036
(A)00037 TO IC
NO TAGS

IC TO (A)00032
(A)00033 TO ICH
TAG TO{(17)00032

IC TO (A)00006
(A)00007 TO IC
NO TAGS

:

IC TO (A)00003
(A)00004 TO IC
TAGS TO(D)00003

:

@‘—0

IC TO (A)00022
(A)00023 TO IC
TAGS TO (D)00022

:

@4—4»

LIC TO (A)00020
(A)00021 TO IC
TAG TO (D)00020

!

(e

IC TO (A)00016
(A)00017 TO IC
TAG TO (D)00016

:

=t

IC TO (A)00014
(A)00015 TO IC
TAG TO (D)00014

:

OFF ON _ PROTECT MODE ON
@—-—— MEMORY D
PROTECT
ON MODE | OFF —r.
PARITY OR PRE-INTERRUPT\\ v
PARTTY MEMORY
PROTECT
AND
SET PROTECT > Ao —e
MODE i
mor N | Teomes] o o o
MEMORY VIOLATION NO TAGS FLOW TRAP AND
PROTECT D REQUEST > ’
VIOLATION o
OFF
NO /' INTERVAL m;E\ YES
RAP CTL ON
: ON TRAP CTL o TRAP OVERFLOW
ON
@ ON ®-—> CHANNEL | o\ Lo
PARITY ON — TRAP AND
OFF MODE AND @-.{ CONTROL
\ IC TO (A)00040 OFF L, Vs
PARITY | NO YES (D)00040 TO AR DIRECT DATA
ERROR PARITY (A)00041 TO IC F—’.
TAGS TO ENB MASK —
(P, T)00040
A
PARITY =———————»1 AND
TRAP CTL —»}
L\ CHANNEL
NO VEs IC TO (A)00032 TAAP
SPM » (A)00033 TO IC CONDITIONS
TAGS TO{(16)00032 ;.\ .
NO /" channeL B Y
RPM
INSTRUCTION
RELEASE L\ IC TO (A)00032
YES
PROTECT (A)00033 TO IC \
MODE TAGS (14, 15)00032 NO YES
CHANNEL D
UNDERFLOW, OVERFLOW, AND ALL DPFP
ODD INSTRUCTION ADDRESSES
IC TO (A)00000
FLOATINGLvES H (A)OO%](())TO I
POINT NO YES
TAGS TO (D)00000 CHANNEL C
STR
INSTRUCTION ’
STORE \ IC TO (A)00000 -)
LOCATION JYES (A)00002 TO IC ® NO YES
AND TRAP NO TAGS CHANNEL B
TRT (®)
RDS, PRD, SEN, WRS, PWR, CTR, ENB,
WBT, RCT, IOT, SPM, XEC INSTRUCTION '
TRP L—\
PRIV!LEGEDMES e 0 NO YES
INSTRUCTION (1) ® CHANNEL A
TRT
ENB,
TRP RCT @®
END YES =@
OPERATION
RESET KEY RESET KEY >—>®

FIGURE 57. TRAPPING SCHEME

ééééee @

=

‘IC TO (A)00012
(A)00013 TO IC
TAG TO (D)00012

:

127

106 STO F

107 TPL 103
110 TRA **

By the time channel B is ready to transfer data, this
simple routine is looping through the arithmetic
activities. This looping continues throughout the
data channel B transfers. Data channel B manifests
it is ready to stop transferring by generating a trap
request. Therefore, the machine must be in the trap
mode, the data channel trap control circuits must
be on, and the associated mask must be of a con-
figuration that validates this particular type of trap.
For simplicity, assume the following mask was
previously established by an ENB instruction:

Name Att | Parity |Direct Data | Oper
Bit 0 0 0 1
Ref Loc Bit | 7 16 25 34

It is impossible to predict just where in the
arithmetic loop the trap request will occur, so
assume during the execution of the subtract instruc-
tion the channel RCHB (read) operation is finished.
As soon as the channel goes 'not in use,' the trap
request is generated. The trap request is honored
at the completion of the instruction in progress (in
this case, the subtract instruction).

To trace the action for this data channel B trap
operation, enter Figure 57 at point A. Since this is
not an interval timer request trap, a memory protect
violation trap, a parity trap, an SPM trap, an RPM
trap, a floating-point trap, an STR trap, or a
privileged instruction, the answer to each decision
as to the type of trap being requested is no and the
scan (which is what these decision blocks represent)
falls through to the end operation decision block. It
has already been stated that the trap request cannot
be generated until the end of the operation (instruc-
tion) in progress. Since the priority is determined
as a result of the trap request, the answer to this
question not only is yes, but was yes upon entering
the trap priority circuits. The yes condition directs
priority determination to point C. Point C marks
the beginning of the next group of decisions to be
made concerning the type of trap, or, said another
way, point C marks the beginning of the next level of
priorities in the trapping scheme.

Starting at point C, the priority circuits, in effect,
ask whether this trap request is for a pre-interrupt
memory protect trap, an interval timer overflow
trap, a direct data trap, a channel E trap, a channel
D trap, or a channel C trap. The answer to each is
no, and the priority determination falls through to
the decision channel B trap block. At this block, a
yes is realized. This yes condition results in the
routing of a signal to V, which is the turn-off input

to the channel-trap-control trigger. Thus, upon
recognition of the particular data channel trap, action
is taken to prevent any other channel trap from
occurring until the current data channel trap is satis-
fied. Simultaneously with the turn-off action, the
present contents of the instruction counter are stored
in location 14g. These contents specify the location
of the subtract instruction plus 1, or the location of
the multiply instruction (105g). Along with storing
the instruction counter contents, location 14g tag bit
17 (operation complete) is set to identify the type of
trap. Following this .ction, the next instruction to
be executed is fetched frogi location 15g. This
instruction must be, in this case, a TRA to a trap
routine for 7090 con'natinility.

The channel trap routine may be formed in many
ways; however, it probably will determine the cause
of the trap. Location 14g is therefore referenced
by the routine and brought into the CPU. The trap
cause is determined by checking location 14g bit 17.
This bit can be checked in various ways. One way
is to put the contents of location 14 in the accumulator
and then shift the accumulator left 17 positions. This
shift places location 14g bit 17 in accumulator bit
position P. A P bit test can then be made. In any
event, the check of tag bit 17 of location 14g must,
in this case, effect the insertion of an address into
the address field of location 110g. This inserted
address, in turn, references another routine which
acts on the data just read from the tape. After the
address is inserted, an RCT instruction is executed
to turn on the channel-trap-control trigger.
Immediately following execution of the RCT, a TRA
14g is executed which returns program control to the
original program at location 105g.

The functions of the trap routine may be summarized
as follows:

1. Check location 14g tag bit 17.

2. Effect the insertion of an address in the location
110g address field.

3. Restore channel trap control as the next-to-last
step in the routine.

4. Return control to the original routine as the last
step in the trap routine.

Pre-Interrupt Trap

Using identical conditions as those assumed in the
channel trap discussion, further assume that the
memory-protect-mode trigger is turned on. Again,
enter Figure 57 at point A, and examine each of the
decision blocks. Each block yields a no until the end
operation block is entered. Here, a yes results and
the scan is directed to C.

The first decision to be made at this point is
whether this trap is a pre-interrupt memory protect.
The answer is yes. Before proceeding, notice the

129

conditions necessary for this type of trap. First,
the memory-protect-mode trigger must be on.
Second, coincidence of the trap-control trigger being
on and a timer overflow trap request must occur
with the first condition, or the trap-control trigger
must be on along with the channel-trap-control
trigger and the associated mask must be other than
all 0's coincident with the first condition. Thus,
conditions which honor channel traps or an overflow
trap along with the memory-protect-mode trigger
being on constitute the conditions for a pre-interrupt
memory protect trap.

During the last I cycle of the subtract instruction
execution (the time during which end operation
occurs and when normally the next instruction is
fetched), the trap controls are set, thereby
recognizing the trap request. During the following
E cycle, the signal is generated to point L on the
diagram which turns off the memory-protect-mode
trigger. Further, during this E cycle, the contents
of the instruction counter are stored in location 328,
and.bit position 17 of this location is set to identify
the trap. Once the memory-protect trigger is turned
off, the pre-interrupt memory protect trap is
completed.

Following this E cycle, an I cycle occurs during
which location 33g is normally referenced for the
next instruction to be executed. Instead, however,

-referencing of location 33g is blocked, and the
channel trap is honored by setting up the channel
trap controls. An E cycle is then entered during
which the contents of the instruction counter, which
contains 33g, are stored in location 14g, and tag bit
17 is set. The channel-trap-control trigger is
turned off, and then location 15g is referenced for
the next instruction.

The location 15g instruction, again, must be a
TRA to a trap routine, which references location 14g,
and checks bit 17 of that location to determine the
cause of the trap. Checking this bit must effect
insertion of an address into the location 110g address
field which will reference a routine designed to take
advantage of the data just read from the tape. The
final actions in the trap routine must be as follows:

1. An RCT to restore the channel trap circuits.

2. A TRA to location 14g, which must contain a
TRA.

3. Since the location 14g address field contains
33g, the transfer to location 14g causes, in turn, a
transfer to location 33g.

4. Location 33g must contain a TRA 32 which
transfers program control to location 32g. This
location contains the original point of departure and
effects transfer to that point.

In addition, somewhere in the trap routine prior to
restoring the channel trap circuits, provision must
be made for restoring the memory-protect-mode

trigger.
130

Privileged Instruction Trap

If a trap request is generated during the execution
of a privileged instruction, the trap is not recognized
until the instruction following the privileged instruc-
tion is executed. This limitation is necessary be-
cause instructions classified as privileged are
instructions that involve (1) data transfers, (2) the
condition of trap control circuits, or (3) execution
of an instruction out of sequence.

With instructions that involve data transfers,
selection of tape operations is the basic consideration.
When a tape is selected, an RCH must be given
within 3 to 15 milliseconds after the select instruc-
tion. Since this timing restriction is mandatory for
tapes, it simplifies the trapping scheme to make it
standard for all select instructions. All select
instructions are therefore considered privileged
because of this time limitation. Consequently, no
ti'ap can be honored between execution of a select
instruction and execution of an RCH instruction,
except on an interval timer blast trap.

With instructions that involve the condition of trap
control circuits (ENB, RCT, ICT, SPM), the major
point of consideration is their execution at the end
of a trap routine. In this case, it must be insured
that program control is returned to the original
routine before a new trap is recognized. Thus, the
programmer can maintain a clear record of the
point of departure with each trap, and under almost
any circumstances return to that point.

The execution of an instruction out of sequence
occurs when an XEC instruction is given. In this
case, it is again important that program control be
returned to the original sequence before a trap is
recognized.

When a trap is requested during a privileged
instruction, the priority determination starts at
point A (Figure 57). Each decision block is
examined and yields a no condition until the privi-
leged instruction block is entered. Here, the yes
condition is realized, and the action is looped back
to point A. Between leaving the priority loop at the
privileged instruction block and re-entering it at
point A, the instruction following the privileged
instruction is executed.

Floating-Point Trap

Assume that during the execution of a single-
precision floating-point divide instruction,
accumulator and MQ register underflow occur.

Let the original accumulator characteristic, for
example, be so small that underflow results from
characteristic subtraction. Although a floating-
point-trap-request signal is immediately generated,
the request is not recognized until the instruction is

completely executed. During the last I cycle time,
the end-operation phase of the instruction takes
place. At this time, the request is recognized by
setting up the trap controls: set the trap trigger,
block instruction counter stepping, etc.

Following this I cycle, an E cycle is taken, during
which the present instruction counter contents are
stored in location 00000, and bits 14 and 17 of that
location are set to identify the type of trap. In
addition, during this E cycle, the value 00010g is
placed in the instruction counter. The next instruc-
tion to be executed is obtained from location 10g,
and this instruction must be a TRA to a trap routine.

The trap routine referenced must inspect location
00000 to determine the cause of the trap. With the
type of trap assumed, the trap routine would probably
provide for the adjustment of the operands used in
the divide so that a legal operation can be performed.
The last step in the routine must be a TRA to location
00000, thereby returning control to the original
program sequence.

TRAPPING EXECUTION

This portion discusses the timing of each individual
trap, how each trap is enabled and requested, and
how priority is established and executed.

To effect a trap routine requires one I and one E
cycle. During I time, the trap is established
according to priority, and the storage location in
which to store data pertaining to the trap is deter-
mined. During E time, the contents of the instruc-
tion counter (and address register if a parity error)
and flag bits are stored in the predetermined
location in storage. Also during E time, the trans-
fer-to location is determined, and the next instruc-
tion is taken from this transferred-to location. The
program may take action on the trap, return to the
point at which the trap occurred, or start a new part
of the program.

The trapping scheme as discussed in this section
is divided into five paragraphs:

1. General timing.

2. Trap enabling.

3. Trap request generation.

4. Trap priority.

5. Individual traps.

Figure 58 is a timing chart of the I time and E time
of a trap, showing data transfer and control during a
trap routine. The traps are listed from left to right
according to trap priority. From top to bottom are
listed the important controls, register setting, and
data transfer. In addition, this chart reflects the
addresses used during each individual trap routine.

Unlike the RPM and STR instructions, the SPM
trap (not included in Figure 58) does not cause an
automatic trap. The SPM instruction is executed

when not in memory-protect mode. If an SPM instruc-
tion in memory-protect mode is given, a memory-
protect-violation trap request is generated. This

trap has second highest priority.

Assume for this general discussion that all traps
are enabled. If a trap is enabled, the trap is
executed when a trap request occurs. The conditions
that necessitate setting the blast-control trigger are
a parity error and an interval timer blast. Occurrence
of a parity error during an I or IA, E, or C cycle
generates the parity request if parity traps are
enabled. No other trap requests are honored until
completion of the parity trap. A blast will not occur
if a stacked parity trap occurs. If the interval timer
(IT) has not been incremented for 33ms, an IT blast-
trap request is generated. As shown in the timing
chart (Figure 58), the blast-control trigger is set at
A4 time. Setting this trigger causes an immediate
end-operation (A4.5 time), and the program register
is reset by an A4 D2 pulse. The object is to get into
trapping I time immediately, regardless of the
instruction cycle in which the IT blast-trap request
occurred.

For an example of a typical trap, assume that an
IT overflow trap request was generated and that all
traps are enabled. At the completion of the instruc-
tion being executed, trapping I time is entered. At
I3 time, the program register is reset (Figure 58),
and the IT trap trigger is set. The address register
is reset, and 00006 is loaded into the address register
by late I5 D1 and late I5 D2 pulses. During E time,
the instruction counter is sent to the storage register
by an E0 D1 pulse. During EO time, the MAR is
reset and loaded to specify the storage location. The
storage register is sent to the storage bus during all
of E early time. The contents of the instruction
counter are stored in location 00006. During E late
time, bit 35 of the address register is set to a 1,
Note that the address register is not reset at this
time (E5 D1). The address is therefore equal to
00007. Location 00007, then, is the address to which
the program is transferred before entering the trap-
correction routine of the program. The address
register is sent to the instruction counter at I1 time
of the next instruction (location 00007).

Channel traps and DD traps are not discussed in
detail in this section (see the sections dealing with
the theory of operation of the channel), but general
data is given to show the similarity between various
traps.

The timing of any of the traps can be traced by
referring to figure 58 and following the trap timing
similarly to the method explained above for the IT
overflow trap.

131

44

TRAPPING TIME

I EARLY

E EARLY I EARLY

I LATE le——— LATE
BLAST CONTROL F 14 14
*RESET PROGRAM REGISTER 14 vV
*END OPERATION TRIGGER * 14 14
RESET PROGRAM REGISTER H VIiviv ViVvIiVIiVIiV|V
SET PROGRAM REGISTER * V|V
SET TRAP TRIGGER VIiVv|V VvV Vv
STEP INSTRUCTION COUNTER VIV
RESET ADDRESS REGISTER H VI iVv] vIiVvVIivVIivVvIiVviVv
ADDRESS GENERATOR TO ADDRESS REGISTER * 36 |32 2|0 0o | 6| |3
ADDRESS REGISTER TO STORAGE REGISTER H |4
INSTRUCTION COUNTER TO STORAGE REGISTER H VIV viviviviv|iVv
RESET MEMORY ADDRESS REGISTER H J— ViV|Vv vViv|iviv]|ivVviv
ADDRESS REGISTER TO MEMORY ADDRESS REGISTER h Viv ViVvIVIiV]|VIV
ADDRESS REGISTER TO MEMORY ADDRESS REGISTER V|V |V VivIiVIivVvi V]|V
ADDRESS GENERATOR TO MEMORY ADDRESS REGISTER m 40
TAGS TO STORAGE BUS %ﬁ VIV 14 14 VIV
STORAGE REGISTER TO STORAGE BUS W VIiv]vVv VIiViVIVIVIV
STORAGE BUS TO MEMORY DATA REGISTER H vViv|vVv VivIiVIiVv|V]V
END OPERATION TRIGGER viviv viviviv|iviv
RESET ADDRESS REGISTER H 14 14
ADDRESS GENERATOR TO ADDRESS REGISTER H 7 |3 |a Bl 2w 7 | |4
ADDRESS REGISTER TO INSTRUCTION COUNTER H VIiViv vivI V]V

* OCCUR-AS A RESULT OF SETTING THE EMST CONTROL TRIGGER

CHANNEL ** STORE LOCATION *** TRANSFER LOCATION
A 00012 00013
B 00014 00015
C 00016 00017
D 00020 00021
E 00022 00023

FIGURGTRAP TigG

Trap Mode Setup

Four triggers control the honoring of the trap and
trap requests:

1. Trap-control trigger.

2. Parity-mode trigger.

3. MP-mode trigger

4. Channel-trap-control trigger
Figure 59, a table, lists the traps, the conditions for
generating a trap-request level, the conditions for
setting the trap trigger, and the trap-control triggers
that are reset as a result of a particular trap. In
Figure 60, which supplements the table in Figure 59,
the triggers that enable trapping are shown in heavy-
weight lines; dashed lines indicate the trap, and
normal-weight lines indicate the important logical
actions that occur before entering the trap routine.
As shown in Figure 59, not all traps are controlled
by the triggers listed above. For example, the only
means of preventing an interval-timer-blast trap is
to turn off the STORAGE CLOCK switch, and, since
a floating-point error results in erroneous compu-
tations, a floating-point trap is always honored.
RPM and STR are instruction traps. All other traps
are under control of the trap-control trigger and one
other (parity-mode, MP-mode, or channel-trap-
control) trigger. A parity trap cannot occur without
the trap-control and parity-mode triggers set; a
memory-protect-violation trap cannot be honored if
the trap-control and MP-mode triggers are reset.

If an SPM instruction is executed in MP mode, the
memory-protect-violation trap request is honored
without additional trap restrictions.

If a memory-parity error occurs during readout
from memory of any instruction, including an RPM,
STR, or SPM instruction, the parity trap is always
executed (if traps are enabled).

Trap Requests

Three conditions determine the honoring of a trap:

1. No enabling is needed to generate the trap
request or to execute the trap.

2. A trap request is generated and honored when
the trap is enabled.

3. A trap condition may exist, but a trap request
is never generated.

Since it is possible for the CPU to hang up on
instructions that inhibit C cycles, the IT blast-trap
request is generated and honored to eliminate the
hang condition. Figure 61 shows how the interval-
timer-blast request is generated. No enabling is
necessary to execute this trap.

The second trap that is executed without enabling
is the floating-point trap. The conditions that cause
a floating-point trap are an overflow, an underflow,
and a double-precision operand address odd.

Figure 62 shows how the floating-point trap request
is generated.

The trap conditions that generate a trap request and
that are honored when the trap is enabled are shown
in Figures 63, 64, and 65. These traps are the parity
trap, the MP violation trap (which is the pre-interrupt
memory protect), interval timer overflow, channel
traps, and direct-data traps. If a parity error occurs
when traps are not enabled, the stacked PT trigger is
set. When the trap-control and parity-mode triggers
are set, a parity trap may occur. The stacked-PT
trigger generates a flag bit (S position) and a flag bit
indicating the cycle in which the parity occurred (I
or TA, E, or C). Note that a blast does not occur
if the parity trap is delayed. A flag in the S position
of the stored location indicates that the contents of the
instruction counter and address register as stored in
memory do not indicate the point of error. An IT
overflow trap request and a DD or channel-trap de-
mand are also honored when the traps are enabled
(Figure 64).

A pre-interrupt memory protect causes an MP
violation trap routine to be executed. The MP
violation request is not generated, but the MP-trap
trigger is set and a trap routine is executed. The
conditions that cause a pre-interrupt memory protect
are shown in Figure 64. The pre-interrupt memory
protect trap (MP-violation trap routine) resets the
MP-mode trigger. The trap condition still exists,
trap priority is re-established, and the original trap
request is honored.

Another trap condition that may exist and never be
honored if traps are not enabled is memory-protect-
violation (Figure 65). Note that the SPM memory-
protect-violation trap is not controlled by the trap-
control trigger.

Request Recognition

Since it is possible for more than one trap request
to be generated at any given time, a priority scheme
must be established. Figure 66 is a flow diagram of
the trapping priority scheme. The order of priority
is as follows:

1. Interval timer blast.

2. Memory protect violation.

3. Parity.

4, Instruction traps.
a. SPM
b. RPM
c. STR
d. Floating point
Pre-interrupt memory protect.
Interval timer overflow.
Direct data.
Channel traps (channels A-E).

0 N o O

133

FIGURE 59. TRAP-ENABLE CONDITIONS TABLE

Conditions For: Control Triggers
Reset As a Result

of a Trap

Trap Name Trap Request Generation Setting the Trap Trigger

Interval timer blast

Storage clock on and no C cycle
within two clock cycles

IT blast request

Trap control

Memory protect
violation

Parity

1. Storing in a protected area
in memory and trap-control
and MP-mode triggers set.

2. SPM instruction when the
MP-mode trigger is set.

1. Trap-control and parity-
mode triggers set and mem-
ory parity error.

2. 1If the trap-control or parity{

mode trigger is reset, the
stacked-PT trigger is set.
The parity-trap-request
level will cause a trap after
both these triggers are set.

MP violation trap request

Parity trap request

MP mode

1. Trap Control
2. Parity Mode

RPM

Instruction trap

RPM instruction

MP mode (if set)

STR

Instruction trap

STR instruction

None

Floating point

Overflow, underflow, and/or
DPFP odd address

Floating-point trap request

None

Pre-interrupt
memory protect

IT overflow trap request or DD
trap request, or channel trap
request and MP mode trigger
set. *

1. Interval timer overflow
trap request and not-
privileged instruction
and MP-mode trigger
set.

2. MP-mode trigger set
and (DD trap request or
channel trap request)
and not-privileged
instruction.

MP mode

Interval timer
overflow

Overflow

Not MP-mode trigger and
trap-control trigger set.

None

* Cannot get DD or channel trap requests unless the trap-control and channel-trap-control triggers are set.

134

IS TRAP CONTROL \ yEs
TGR SET? *
02.13,03.1
R -
NO IS PARITY MODE \ YES YES MEMORY PROTECT ves ,// 1TOVERFLOW TRAP N CHANNEL TRAP
OR TGR SET ? VIOLATION?) REQUEST TGR SET?) ND CONTROL TGR SET
02.13,03.1 \ 02.16.05.1 \ 02.13.05,1 02.13,03.1
— — — —_— —— T s —
/ CHANNELS A-E TRAP\
ND YES /' PARITY ERROR YES / SPM INSTRUCTION MP MODE TGR SET? _YES DEMAND OR DD TRAP
{ 02.13.01.1 \ 02,16.05.1 02.13,05.1 DEMAND
| Y | Y \oz3.021 __ _f
>
=
o
=
E .
TE Lt P TR 2 MP MODE TGR SET?) YES vo /- oD PRIV INSTRUCTION
+ (C CYCLE PT TGR) g 02.16.05.1 02.13.05.1 02,13,05.1
02.13.01.1 3
SET STACKED PT TGR SET MP VIOLATION TGR SET MP TRAP TGR gAEF:'rMODE TGR
02,13,01.1 02.16.05,1 02.13.05.1 02.16,05.1
WAIT FOR INST SO THAT EXECUTE MP TRAP ROUTINE SET MP TRAP TGR
BOTH TRAP CONTROL (RESET MP MODE TGR) 02.13.05.1
AND PARITY TGRS ARE SET #1900
AND AND SET IT TRAP TGR EXECUTE PRE-INTERRUPT
02.13,05.1 MEMORY PROTECT TRAP
AND RESET MP MODE TGR

(S@gﬁs?” > (BLAST) C TRAP ROUTINE)

HONOR CHANNEL A-E OR
DD TRAP DEMANDS

MEMORY PROTECT ACCORDING TO PRIORITY,

VIOLATION TRAP RESET CHANNEL TRAP

REQUEST CONTROL TRIGGER AT END
OF CHANNEL TRAP OR DD
TRAP

FIGURE 60. TRAP ENABLE SCHEME

YES

IS STORAGE CLOCK
SWITCH ON?
02,16,51.1

SET EARLY C REQUEST TGR
EVERY 16 2/3 MILLISECONDS
02.16,51.1 (4D)

SET C REQUEST INTERLOCK
A2 (D1)
02.16.51.1 (4F)

SET C CYCLE REQUEST TGR
A4 (D1)
02.16.51.1 (5H)

RESET C REQUEST INTERLOCK
Al (D1)
02.16.51.1 (2H)

RESET EARLY C REQUEST TGR
Al (D1)
02.16.51.1 (2F)

YES

[

HAS C CYCLE REQUEST \ NO

BEEN HONORED

RESET C CYCLE REQUEST TGR

A4 (D1)
02.16,51.1 (3H)

FIGURE 61. INTERVAL TIMER

136

HAS 33 MILLISECONDS
ELAPSED? (EARLY REQUEST
C CYCLE REQUEST SET?)

A2 (D1)

SET IT BLAST REQUEST TGR

02.16.54.1 (4G)

IT BLAST REQUEST LEVEL TO
CAUSE IMMEDIATE INTERVAL

TIMER BLAST TRAP

BLAST TRAP REQUEST

YES

4

T
\ YES

FLOATING POINT

\ INSTRUCTION?

IS AC CHAR > 3772 /

\ YES

IS MQ CHAR < 000°? /

IS AC CHAR < 000? \ YES

C

IS MQ CHAR > 3772

\ YES
/

IS HIGH ORDER DOUBLE \ YES

A

PRECISION OPERAND
DDRESS ODD? /

SET DPFP
FIRST E3
02.20,.41

TRAP TGR
()
.1 (4F)

SET MQ OV UN TGR
Al (D1)
02.20.41.1 (4A, 48)

SET AC - MQ OV TGR
Al (D1)
02.20.40,1 (4D, 4E,5G)

SET AC OV - UN TGR
A2 (D1)
02,20,40.1 (4H)

FIGURE 62, FLOATING-POINT TRAP REQUEST

OR

02,20.41,1 (2D)

GENERATE FP TRAP REQUEST

TO FLOATING
TRAP ROUTINE

POINT)

137

PARITY ERROR? YES
02.05.45,1

YES / DURING I OR IA CYCLE? NO

\02.13.01.1
ves / DURING E AND NOT U NO
CYCLE? '
02,13,01.1
YES DURING C CYCLE?
02.13,01.1

SET | OR IA PT TGR SET E CYCLE PT TGR SET C CYCLE PT TGR
A0 (D1) A0 (D1) A0 (D1)
02.13,01,1 (4B) 02.13,01,1 (4D) 02.13.01.1 (4E)

NO /IS PARITY MODE TGR SET? \ YES

* \02.13.03.1
NO /us TRAP CONTROL TGR SET? Yoo
SET STACKED PT TGR
LATE (I+IA+E+C) 0 (D1)
02.13.01.1 (3G)
WAIT FOR TRP INSTRUCTION WAIT FOR TRT OR TRP
02.13.03.1 (5F) INSTRUCTION
02.13.03.1 (5A)
GENERATE PARITY TRAP
REQUEST
02.13.01.1 (1)
TO PARITY TRAP ROUTINE (BLAST

FIGURE 63. PARITY TRAP REQUEST

138

IS THERE AN IT OVERFLOW?
(AC P =1 WHEN INCREMENTING

YES

SET IT OVERFLOW TGR
A2 (D1) FIRST C CYCLE

LOCATION 00005)

DELAYED
02,16,54,1 (4E)

SET IT OVERFLOW TRAP
REQUEST TGR

Al (D1) LAST C CYCLE
02.16.54.1 (51)

GENERATE IT OVERFLOW
REQUEST

02,16,54,1 (21)

CHANNEL OR DD

YES
TRAP DEMAND

02,13.02,1 (IH, 28)

WAIT FOR TRT OR TRP
INSTRUCTION

IS A PRIVILEGED INSTRUCTION
BEING EXECUTED
02,13,04.1 (31

NO

o (

IS TRAP CONTROL TGR SET?\ YES
02,13,03.1 (I1B)

NO /" is Mp MODE TGR SET? __YES

EXECUTE PRIVILEGED
INSTRUCTION AND THE
FOLLOWING INSTRUCTION

YES

\ 02.16.05.1 (28) -/

YES

IS CHANNEL TRAP CONTROL

FIGURE 64,

DD TRAP DEMAND
OR CHANNEL A
TRAP DEMAND?
02.13.02.1(38B,3E)

I T OVERFLOW
TRAP REQUEST?.
02.13.05.1 (4C)

YES

SET MP TRAP TGR
13 (D1)
02.13,05.1 (3G)

| EXECUTE PRE-INTERRUPT TRAP

i’ ROUTINE, THE MP MODE

i TRIGGER 1S RESET AND TRAP

i PRIORITY MUST AGAIN BE
ESTABLISHED

WAIT FOR RCT OR ENB NO
TGR SET?
INSTRUCTION \02,13.03.1 (2E, 10)
NO I T OVERFLOW YES
TRAP REQUEST?
02.16.54,1 (21)
NO IS CHANNEL TRAP CONTROL YES
TGR SET ?
02.13.03.1 (10)
WAIT FOR ENB OR RCT
INSTRUCTION
TO CHANNEL TO IT OVERFLOW
. TRAP ROUTINE

TRAP ROUTINE

INTERVAL TIMER OVERFLOW AND CHANNEL TRAP REQUESTS

139

IS AN INSTRUCTION

YES ATTEMPTING TO STORE
IN A PROTECTED AREA

IN MEMORY?

02.16,05,1

NO TRAP CONTROL TGR SET?
02.16.05.1

NO MP MODE TGR SET?
02.16.05.1

STORE IN PROTECTED
AREA. NO TRAP IS
REQUESTED

FIGURE 65. MEMORY PROTECT TRAP REQUEST

140

YES

YES

YES

YES

SPM INSTRUCTION
02,16,05,1

MP MODE TGR SET? NO

02,16.05,1

SET MP VIOLATION TGR
Al (DY)
02,16.05.1 (3F)

SET MP VIOLATION TGR

14.5 (D1)

02.16.05.1 (3G)

EXECUTE SPM INSTRUCTION

1

TO MEMORY PROTECT
VIOLATION TRAP
ROUTINE

?

NO HAS AN INTERVAL TIMER
BLAST BEEN REQUESTED?
02,16.54,1 QW)

1

NO / HAS A MEMORY PROTECT
VIOLATION TRAP BEEN

SET BLAST CONTROL TGR

REQUESTED?
02.16,05.1 (A 6)

1

No / HAS A PARITY TRAP BEEN
REQUESTED?
02.13.01.1 (18)

lb—ﬁ

02.16,05.1 (5A) /

1 I

NO/ RPM INSTRUCTION? \

No / seMINSTRUCTION? \
\

\ 02.16.05.1 (51) /

NO [STR INSTRUCTION?

\ 02.13:07,1 3

NO HAS A FLOATING POINT
TRAP BEEN REQUESTED
02.20.41.1 (3v)

NO PRIVILEGED INSTRUCTION YES

BEING EXECUTED
02,13,05.1

WAIT

®

HAS A PRE-INTERRUPT
MEMORY PROTECT
CONDITION BEEN MET?
NOTE:
02,13,05.1

1

NO /INTERVAL TIMER ovemov\

YES
A4 (D1)
02,13.04.1 (4C)
SET IT TRAP TGR
13 (D1)
02.13.05.1 (38)
YES SET MP TRAP TGR
13 (D)
02,13.05.1 (3H)
ves | SET BLAST CONTROL TGR
E4(D1) OR 14(D1) OR IA4(D1)
02,13.04,1 (4B)
SET PARITY TRAP TGR
13(D1)
02.13.06,1 (5A)
YES
IS%T(';\]P) MODE TGR NO S MP MODE TGR SET? YES SET MP v1|(‘)‘|‘.sA&|§N TGR
02.16.05.1 (4A) 02.16.05.1 @® 02.16.05.1 (3G)
YES AUTOMATIC TRAP NEXT
INSTRUCTION FROM
LOCATION 00033
BIT 14 FLAG NO PROTECT TGR SET? YES | BIT 15 FLAG
02,13,12.1 (3D) 02.16,05.1 02,13,11.1 3H
YES AUTOMATIC TRAP NEXT NOTE:
INSTRUCTION FROM THE PRE-INTERRUPT MEMORY
LOCATION 00002 PROTECT CONDITIONS ARE:
13D1 o TT BLAST REQ ®
MP VIOLATION TRAP REQ o
DISP,ENTER, OR CLEAR’FP
SET FLOATING POINT TRAP REQ e PARITY TRAP
YES TRAP TGR REQ o PRIV INST ¢ MP MODE e
13(D1) [CHANNEL TRAP REQ + DD
02.13,06.1 (5C) TRAP REQ + (IT OVERFLOW
TRAP REQ e TRAP CONTROL o
TRUE MANUAL)] LOGIC
02,13,05,1 (5E,4F,5G,5C)
YES SET MP TRAP TGR

13 (D1)
02,13.05.1 (4F)

YES

TRAP REQUEST ?
2,13,05.1 j

1

IS THERE A DIRECT DATA
NO TRAP REQ OR A CHANNEL

TRAP REQ

02.13.02,1

FIGURE 66. TRAPPING PRIORITY SCHEME

WAIT FOR TRT OR NO
TRP INST
02.13.03.1 (5A)

L

YES

ESTABLISH TRAPPING
PRIORITY AND EXECUTE
TRAP ROUTINE

1S TRAP CONTROL
TGR SET ?
02,13.05.1

SET IT TRAP TGR
13 (D1)
02,13,05.1 (3A)

141

Instruction traps have equal priority. This
presents no problem since only one instruction ean
be executed at a time. Note that the privileged
instruction is important in allowing certain traps to
be executed. The privileged instruction trigger
inhibits three types of traps for one additional
instruction (if not a privileged instruction). The
traps that must wait are:

1. Pre-interrupt memory protect.

2. Interval timer overflow.

3. All channel traps and DD traps.

When the privileged instruction trigger is reset, the
trap executed is determined by priority (Figure 66).

Individual Traps

Once the trap is enabled, the trap request generated,

and priority established, the trap routine is executed.

Each trap is flow-diagrammed in this program to
show the trap routine sequence. After entering the
trap routine, all other trap requests are inhibited
from setting their own trap triggers (regardless of
priority) until the trap routine is completed.

The flow diagrams show the logic action perform-
ed and the logical decisions. The timing, logic, and
location of the logic block are included to aid in
locating the action in logic.

The flow diagrams are in sequential order accord-
ing to priority (Figures 67 through 74):

1. Interval-timer-blast trap (Figure 67).

Memory-protect-violation trap (Figure 68).
Parity trap (Figure 69).
SPM instruction trap (Figure 70).
RPM instruction trap (Figure 71).
STR instruction trap (Figure 72).
Floating-point trap (Figure 73).

8. Pre-interrupt-memory-protect trap and
interval-timer-overflow trap (Figure 74).

The channel and DD trap requests show how the
trap routine is entered. For the channel trapping
scheme, refer to the theory of operation of the
channels.

The interval timer blast request, interval timer
overflow request, channel trap request, or DD trap
request sets the start trigger (if the machine is in
automatic status) at A5 time. This is shown as a
machine restart in Figures 67 and 74.

o U W N

Channel A Trapping

There are eight possible channel A traps:
1. Unit record interrupt.

Teleprocessing interrupt.

1401 attention.

Unusual end.

Word parity.

End of file.

D U W N

142

7. Redundancy check.

8. Operation complete.

A trap can be effected only if it has been enabled
either by a TRT or TRP instruction which sets the
trap control latch or by an Enable (ENB) instruction
which sets up a pseudo mask register to designate
which traps are allowed to take place.

Figure 75 shows how the Enable instruction sets
up trap enables. Note that this instruction always
sets the channel trap control latch. The mask
register consists of four triggers, each of which
will be set if the appropriate bit of the ENB instruc-
tion's effective address is a 1. A mask register
trigger must be set in order for any of the traps
associated with the trigger to be effected.

Also note, in Figure 75, that the ENB instruction
resets the mask triggers before it sets any of them.
This resetting action eradicates the effects of any
previous ENB instructions.

Unit Record Interrupt

Figure 76 is a flow chart of the unit record interrupt
trap. Whenever the 1414-III or IV card reader,
paper tape reader, card punch, or printer goes

from a busy condition to a not-busy condition, the
unit-record-interrupt trigger is set. If the mask
register trigger, in this case the enable-buffer-
interrupt trigger, is also set, a unit record interrupt
trap is effected. The UR INT TRAP stores a 1 in

bit position 8 of memory location 00012 and stores the
contents of the instruction counter in bit positions
21-35. Memory location 00013 is then brought out
and will contain an unconditional branch to the trap
routine.

Teleprocessing Interrupt

Figure 77 is a flow chart of the teleprocessing
interrupt trap. Whenever the 1414-IV or V has a
buffer inquiry or outquiry, the buffer-attention
trigger is set. If the mask register trigger, in this
case the enable-attention trigger, is also set, a
teleprocessing interrupt trap is effected. The
teleprocessing trap stores a 1 in bit position 9 of
memory location 00012 and stores the contents of
the instruction counter in bit positions 21-35.
Memory location 00013 is then brought out and will
contain an unconditional branch to the trap routine.

1401 Attention

Figure 78 is a flow chart of the 1401 attention trap.
An I-O 6 select level from the 1401 sets the 1401
attention trigger. If the mask register trigger, in
this case the enable-attention trigger, is also set, a
1401 attention trap is effected. The 1401 attention

trap stores a 1 in bit position 10 of memory location
00012 and stores the contents of the instruction
counter in bit positions 21-35. Memory location
00013 is then brought out and will contain an un-
conditional branch to the trap routine.

Unusual End

Figure 79 is a flow chart of the unusual-end trap.
Whenever the total number of characters read from
or written onto tape is not a multiple of 6, the
unusual -end-trap trigger is set. If the mask register
trigger, in this case the enable-end trigger, is also
set, an unusual-end trap is effected. The unusual-
end trap stores a 1 in bit position 12 of memory
location 00012 and stores the contents of the instruc-
tion counter in bit positions 21-35. Memory
location 00013 is then brought out and will contain

an unconditional branch to the trap routine.

Word Parity

Figure 80 is a flow chart of the word parity trap.
Whenever there is a word parity error during a U
cycle, the word-parity trigger is set. If the mask
register trigger is also set, a word parity trap is
effected. In this case, there are two mask register
triggers, either of which will cause the trap: the
enable-parity or the enable-end trigger. If the
enable-parity trigger is set, a 1 is stored in bit
position 14 of memory location 00012. If the enable-
end trigger is set, a 1 is stored in bit position 17 of
memory location 00012. If both triggers were set,
bits 14 and 17 would each set to a 1. Also, the
instruction counter contents are stored in bit
positions 21-35 of location 00012. Memory location
00013 is then brought out and will contain an
unconditional branch to the trap routine.

End of File

Figure 81 is a flow chart of the end-of-file trap.
Whenever there is an end-of-file signal from I-O,
the end-of-file trigger is set. If the mask register
trigger, in this case the enable-end trigger, is also
set, an EOF trap is effected. The trap stores a 1
in bit position 15 of memory location 00012 and
stores the instruction counter contents in bit posi-
tions 21-35. Memory location 00013 is then brought
out and will contain an unconditional branch to the
trap routine.

Redundancy Check

Figure 82 is a flow chart of the redundancy check
trap. Whenever there is a byte check bit error, the
redundancy-check-indicator trigger is set. If the
mask register trigger, in this case the enable-parity
trigger, is also set, a redundancy check trap is
effected. The redundancy-check trap stores a 1 in
bit position 16 of memory location 00012 and stores
the contents of the instruction counter in bit
positions 21-35. Memory location 00013 is then
brought out and will contain an unconditional branch
to the trap routine.

Operation Complete

Figure 83 is a flow chart of the operation complete
trap. Whenever an operation ends (signified by an
EOR), the end-trap trigger is set. If the mask
register trigger, in this case the enable-end trigger,
is also set, an operation complete trap is effected.
The trap stores a 1 in bit position 17 of memory
location 00012 and stores the instruction counter
contents in bit positions 21-35. Memory location
00013 is then brought out and will contain an uncondi-
tional branch to the trap routine.

SUMMARY

The table in Figure 84 summarizes each of the possi-
ble traps incorporated in the 7040-7044 equipment.

143

RESET C CYCLE CONTROL TGRS

A4 (D1)
02.16,52,1 (5E)

SET IT BLAST
REQUEST TGR
A2 (D1)
02.16,54,1 (4G)

INHIBIT HONORING OTHER

TRAP REQUESTS
02.13.05.1 (5E)
02.13.01.1 (1B)

RESET CHANNELS
02,14,07.1 (2G)

MACH RESTART
(IN AUTOMATIC)
A5 (D2)
02,14.02.1 (3F)

BLOCK PR SET
02,12,32.1 (4E)

SET BLAST CONTROL TGR
A4 (D1)
02,13.04,1 (4C)

RESET PROG REG AND SC
A4 (D2)
02,13.04.1 (1D)

SET END OP TGR
A4,5 (D1)
02,15,39.1 (3A)

BLOCK IC TO AR AND
AD TO AR
02,12,34,1 (48,4D)

| TIME OF TRAP

BLOCK AR TO IC
02,12,36,1 (5D)

RESET BLAST CONTROL TGR
12(D1)
02,13,05,1 (51)

RESET PR
02,12,32,1

BLOCK PR SET
02,12,32,1 (4E)

SET IT TRAP TGR
13 (D1)
02,13.05.1 (3B)

BLOCK STEP IC
02,12.36,1 (58)

8LOCK IC TO AR AND
AD TO AR
02,12,34,1 (48,4D)

o

BLOCK SPM INST EXEC
02.16.01.1 (51)
02.16,02.1 (51)

RESET AR
15 (D1)
02,13.08,1 (4G)

ADR GEN TO AR
(31-34) (AR=36)
15(D2)
02,13,09.1
(4F,a6,2A,5A)

E TIME OF TRAP

RESET IT BLAST REQ TGR
E6 (D1)
02.16.54,1 (5D)

|

RESET MAR
£0 (D1)

RESET TRAP CONTROL TGR
A0 (D1)
02,13,03.1 (5B)

SRTO SB. EEARLY
02,12.40.1 (4G)

I TIME OF NEXT
INSTRUCTION

AR TO MAR
EO (D2)
02,12.50.1 (31)

FIGURE 67. INTERVAL TIMER BLAST TRAP

144

IC TO SR (21-35)
E0 (D1)
02.12,05.,1 (38)

RESET MAR
10 (D1)

SB TO MDR
A2(D1)
02.12,50,1 (24)

AR TO MAR
10 (D2)
02,12,50.1 (31)

END OP
02,15,35,1 (3B)

AR TO IC
11(D1)
02.12,36,1 (4D)

ADR GEN TO AR (35)
(AR=37)

E5 (D2)
02.13,09.1 (5D)

RESET IT TRAP TGR
12 (D),
02,13,05.1 (51

FROM LOCATION 00037

(EXECUTE NEXT INSTRUCTION

D)

WAS A MEMORY PROTECT \ YES
VIOLATION SENSED? /

02,16,05.1 (3D)

< TRAP CONTROL TGR SET?\ _ YES

02,16,05,1 (5E) / |

IN MEMORY PROTECT MODE @
YES ENTER STORAGE @ ANY TRAP o

PARTIAL STORE @ PRE A @
GOTOU
02,16,05,1

BLOCK STORING DATA IN SET MP VIOLATION TGR
PROTECTED AREA X1 (D1)
02,12,50,1 (3F) 02.16,05.1 (3F)

COMPLETE INSTRUCTION
EXECUTION BUT DO NOT
STORE

1 TIME OF TRAP

SET MP TRAP TGR
13 (D1)
02.13.05.1 (3H)

BLOCK PR SET
02,12,32.1 (4E)

RESET AR
15 (D1)
02.13.08.1 (4G)

BLOCK STEP IC
02.12,36.1 (5€)

ADR GEN TO AR (31, 32, 34).
(AR = 32)

15 (D2)
BLOCK IC TO AR 02,13,09.1

AND AD TO AR (2F, 5F, 5A)
02,12,34.1 (48,4D)

E TIME OF TRAP

1 TO SB (16) SR TO SB | TIME OF NEXT
E EARLY E EARLY INSTRUCTION
02.13.11,1(3D) 02.12.40.1 (4G)
RESET MAR l - |
EO (D1) T I
RESET MAR
IC TO SR (21-35) 10 (D1)
EO (D1)
AR TO MAR 02,12,05,1 (38)
EO (D2)
02,12,50.1 (31} AR TO MAR
10 (D2
SB TO MDR
13
A2(o0) 02,12,50.1 (31)
02,12,50.1 (2A)
AR TO IC
11 (D1)
£ND OP 02.12,36.1 (4D)
02,15.35,1 (38)
RESET MP VIOLATION
TGR E5(D1)
02.13.05.1 (2F) RESET MP TRAP TGR
12 (D1)
ADR GEN TO AR (35) 02,13,05.1 (51)
(AR = 33)
E5 (D2)
RESET MP MODE TGR
£5 (D1) 02.13,09.1 (5D)
02,13,05.1 (2F) EXECUTE NEXT INSTRUCTION
L FROM LOCATION 00033

145

FIGURE 68. MEMORY PROTECT VIOLATION TRAP

PARITY ERROR e FORCE TRAP o

DISP ENTER OR CLEAR ¢ MP
VIOLATION REQ?
02.13.01.1

YES

YES /

PARITY ERROR DURING \ NO

| OR 1A CYCLE?
02,13,01,1

YES

PARITY ERROR DURING E\ NO
AND NOT U TIME
vz.la.om (56)

SET 1 OR IA PT TGR

SET E CYCLE PT TGR

SET C CYCLE PT TGR

A0 (D1) A0 (D1) A0 (D1)
02.13.01.1 (4B) 02.13,01.1 (4D) 02.13.01.1 (4E)
] [
(TRAP CONTROL @ PARITY

NO

SET STACKED PT TGR
(H+IA+E+C) LATE
A0 (DI)
02,13.01.1 (3G) _
1]

WAIT FOR A TRP INSTRUCTION
TO SET PARITY MODE TGR

02.13.03.1
|

ALLOW PARITY TRAPS? YES

02,13.01.1

MODE TGRS SET)

PARITY TRAP REQ
02,13,01.1 (1B)

RESET PROG REG AND SC

SET BLAST CONTROL TGR
14 OR E4 (D1)
02,13,04.1 (4B)

A4 (D2)
02,13.04.1 (1D)

BLOCK IC TO AR

SET END OP TGR
A4.5 (D1)
02.15,39.1 (3A)

AND AD TO AR
02,12,34.1 (4B ,4D)

BLOCK AR TO IC

1

02,12,36.1 (5D)

BLOCK PR SET

I TIME OF TRAP

02,12,32.1 (4E)

BLOCK SPM INST EXECUTION
02.16.01.1 (51)

RESET BLAST CONTROL TGR
12 (D1)
02.13.05.1 (51)

02.16,02,1 (51)

SET PARITY TRAP TGR
13 (D1)
02.13.06.1 (5A)

YES / PARITY ERROR DURING

C CYCLE
02,13,01,1

[

BLOCK AR TO MAR
02,12,50.1 (31)

E TIME OF TRAP

FIGURE 69. PARITY TRAP (SHEET 1 OF 2)

146

BLOCK PROG REG SET
02,12,32,1 (4E)

BLOCK STEP IC
02,12,36,1 (5B)

BLOCK IC TO AR
AND AD TO AR
02,12,34.1(48,4D)

O)

NO STACKED REQUEST? \YES IETE?ARS&(S)
02.13,10,1
-13.10. 02.13.10.1 (3H)

e 1 OR IA

1 TO SB (18)
NO 1 OR IA PT REQUEST YES
02,13,10.1 E EARLY

02,13.10.1 (3A)

Yes,
I E PT REQ
(CPTREQ) NO 1 TO SB (19)

E PT REQUEST YES

| E EARLY
02,13,10.1 02.13.10.1 (38)

:),
SR TO SB 1 TO SB (1)

E EARLY E EARLY
02,12.40.1 (4G) 02.13.10.1 (3C)

RESET MAR gl‘iﬁ.}% BSI; TO SB, AND
€0 oD 02,13,10.1, 02.12.40,1

[&
ADR GE
AGA(RI? f%)TO e AR TO sJ;(a 17) IC TO s_l (21-35)
2.13.09.1 (1 1) £0 (D1) EO (D)

02,12,05,1 (3H) 02.12,05.1 (38)

l °]
1

Qu

SB TO MDR
A2 (D1)
02,12,50,1 (2A)

RESET TRAP CONTROL TGR
E EARLY
02.13.06.1 (14)

RESET AR
E5 (D1)
02,13,08,1 (4F) RESET PARITY MODE TGR

E EARLY
] 02.13.06.1 (1)

ADR GEN TO AR (30, 35)

0. RESET 1 OR IA FT o E CYCLE
L]

68 .1 21,500 PT @ C CYCLE PT o STACKED

T PT TGRS

E5 (D1)

END OP 02.13.06.1 (1C)

02.15.,35.1 (38)

1

I TIME OF NEXT
INSTRUCTION

RESET MAR
10 (D1)

AR TO MAR
10 (D2)
02.12.50.1 (31

AR TO IC
11 (D1
02.12.36,1 (4D)

RESET PARITY TRAP TGR
12 (D1)
02,13.,05.1 (51)

|

EXECUTE NEXT INSTRUCTION
FROM LOCATION 00041

FIGURE 69. PARITY TRAP(Sheet 2 of 2)

SET PRIV INST TGR

SPM INSTRUCTION DECODED
02,16,05.1 (5A)

A5 (D2)
02.13.04.1 (4H)

02,16,05.1

END OP
02,15,35.1 (2A)

SR TO AD
14 (D3)
02,12,08.1 (4E)

SR (32-35) TO
COUNT REG

15 (D1)
02,16.01.1 (51)

AD (25-27) TO

FIELD REG (25-27)
15 (D1)
02.16,03.1

AD (21-24) TO FIELD
REG (21-24)
15 (D1)
02.16,02.1 (51)

SET MP MODE TGR
17 (D1)
02,16,05,1 (4A)

SPECIFIED AREA IN
MEMORY PROTECTED

IN MEMORY
PROTECT MODE?

YES

I TIME OF SPM
INSTRUCTION

SET MP VIOLATION TGR
14.5 (D1)
02,16.05.1 (3G)

SETTING THE MP VIOLATION TG
CAUSES A MEMORY PROTECT TRAP
ON THE NEXT | CYCLE, THE PRIV
INST TGR IS RESET AT 15 TIME OF
THE TRAP, THIS TRAP RESETS THE
MP MODE TGR. ANOTHER SPM

INST IS REQUIRED TO SET THE MP
ODE TGR.

NO / WAS MP VIOLATION TGR

EXECUTE NEXT
SEQUENTIAL
INSTRUCTION

RESET PRIV INST TGR
A5 (D1)
02,13,04.1 (41)

NO TRAP CONTINUE
PROGRAM

FIGURE 70. SPM INSTRUCTION TRAP

148

02,16,05.1

SET DURING THE SPM INST

YES

TO MEMORY PROTECT
VIOLATION TRAP ROUTINE

l RPM INSTRUCTION DECODED I

02,16.05.1 (51) SET PR
13 (D2)
02.12.32,1 (4E)
STEP IC
14 (D1)
02.12.36.1 (4A)
DECODE STR
I INSTRUCTION
RESET AR 02,13.07,1 (3C)
15 (D1)
02,13,08.1 (4G)

l STEP IC

14 (D1)
ADR GEN TO AR (31,32, 34)
(AR ~33) +32 02.12.36.1 (4A)
15 (D2)
02.13,09.1
(2F, 5F, 5A)
RESET AR
15 (D1

02,13.08.1 (4G)
E TIME
E TIME
) NO IN MEMORY PROTECT MODE YES
02.16,05.1

SR TO SB
E EARLY
02,12.40.1 (4G)
SR TO SB 1 TO SB (14) 1 TO SB (15) -
E EARLY E EARLY E EARLY
02,12.40.1 (4G) 02.13.12.1 (3D) 02.13.11.1 (3H) RESET MAR
E0 (D1)
L |
I l IC TO SR (21-35)
IC TO SR (21-35) EO0 (D1)
EO (D1) 02,12,05.1 (38)

02,12,05,1 (38)

SB TO MDR AR TO MAR SB TO MDR
A2 (D1) EO (D2) (AR=0) A2 (D1)
02,12,50.1 (2A) 02.12.50.,1 (31) 02,12,50.1 (2A)

ADR GEN TO AR (34)

ADR GEN TO AR (AR =2)
RESET MP MODE TGR
£5 (D1) (35) (A)R =33) £5 (D2)

£5 (D2 02.13.09.1 (58)
02,13.05.1 (2F) 0.159.1 (5)

END OP END oP
02,15,35,1 (38) 02,15,35,1 (38)

I TIME OF NEXT | TIME OF NEXT
INSTRUCTION INSTRUCTION

RESET MAR RESET MAR
10 (D1) 10 (D1)
AR TO MAR AR TO MAR
10 (D2) 10 (D2)
02,12,50.1 (31) 02,12,50.1 (31)
AR TO IC AR TO IC
11 (D1) 11 (O1)
02,12,36.1 (4D) 02,12,36.1 (4D)
EXECUTE NEXT INSTRUCTION EXECUTE NEXT INSTRUCTION
FROM LOCATION 00033 FROM LOCATION 00002
FIGURE 71. RPM INSTRUCTION TRAP FIGURE 72. STR INSTRUCTION TRAP

149

WAS A FLOATING POINT
TRAP REQUESTED?
02,20.41,1 Cab)

YES

BLOCK PR SET
02.12.32.1 (4E)

SET FLOATING POINT
TRAP TGR
13 (D1)

02.13,06.1 (5C)

BLOCK STEP IC
02.12.36.1 (S8)

BLOCK IC TO AR
AND AD TO AR
02.12,34,1 (48,4D)

RESET AR
15 (D1)
02,13,08,1 (4G)

E TIME OF TRAP

AS HIGH ORDER DOUBLE

FIGURE 73. FLOATING POINT TRAP

150

PRECISION OPERAND YES
ADDRESS ODD? [
02,20 41,1
. DID MQ CHARACTER 170 S8 (12)
YES N
EXCEED 3777 o E EARLY
02.20.41.1 02.13.12.1 (3H,
VES / DID AC CHAR NO
EXCEED 3772
\ 02.20,40.1
170 B (15
SR TO SB L1038 (19 VES / WAS AC CHAR LESS \ NO
£ EARLY 2.13.11.1 (3D THAN 0007
02.12.40.1 (4G) \ 02.20,40. 1
IC TO SR (21-35) 170 B (16) VES WAS MQ CHAR
E0 (D1) E EARLY LESS THAN 0002
02.12.05.1 (3B) 02,13.11.1 (2E) 02.20.41.1
$B TO MDR 1
A2 (D1) 17O SB (17)
02.12,50.1 (2A) E EARLY
1 02.13.11.1 (36)
END OP
02.15.35.1 (38)
| SINGLE PRECISION DIVIDEY, g
ADR GEN TO AR (32) RESET FLOATING POINT TRAP (')';'Sggtf(ﬂo“
(AR = 10) EXECUTION CONTROL TGRS -20.40.
£5 (D2) E5 (D1)
02.13.09.1 (5G) 02.13.06.1 (2F)
1 TO SB (14)
| E EARLY
] 02.13.12.1 (2E)
I TIME OF NEXT ff (TD?)'C
INSTRUCTION 02,12.36.1 (4D)
RESET MAR RESET FLOATING TRAP TGR
10 o) 12 (D1)
02.13.05.1 (51)
f‘g (TD°2)MAR EXECUTE NEXT INSTRUCTION

02,12,50,1 (31)

L

FROM LOCATION 00010

SET IT TRAP TGR

@1
02,13.05.1 (3A)

BLOCK PR SET
02,12,32,1 (4E)

BLOCK STEP IC
02,12.36.1 (5B)

RESET AR
15 (D1)
02.13.08.1 (4G)

o

BLOCK IC TO AR
AND AD TO AR
02,12,34.1 (4B,4D)

ADR GEN TO AR (33,34)
(AR = &)

15 (D2)

02.13.09.1 (24, 5A)

l

E TIME OF TRAP

l

IS THERE AN IT OVERFLOW \ YES
TRAP REQ

MACHINE RESTART
IN AUTOMATIC
A5 (D2)
02.14,02.1 (3F)

IS TRAP CONTROL TGR SET \

YES

AND NOT IN MANUAL?
02.13.05.1

WAIT FOR A TRT
OR TRP INST
02,13,03.1

1

BLOCK PR SET
02,12,32,1 (4E)

1

SET MP TRAP TGR
13 (01)
02.13,05,1 (4F)

)|

BLOCK STEP IC
02,12.36,1 (5B)

pl

BLOCK IC TO AR
AND AD TO AR
02.12.34.1 (48,4D)

RESET AR
15 (D1)
02,13,08,1 (4G)

ADR GEN TO AR (31,32, 34)
(AR = 32)

15 (D2)

02,13.09.1 (2F, 5F, 5A)

[WAIT

NO / IS A PRIV INST TGR SET?

MP MODE TGR SET? YES

02,13.05.1

E TIME OF TRAP

02,13,05.1

IT OVERFLOW TRAP REQ

EXECUTE CHANNEL OR

DO TRAP ROUTINE

SR TO B
E EARLY
02.12.40.1 (4G)
)| 02.13.05.1
| 1
RESET MAR IC TO SR (21-35)
EO (D1) EO (D)
02.12.05.1 (38)
| t
AR TO MAR $B TO MDR
£0 (D2) A2 (D1)
02.12.50.1 (31 02.12.50.1 (2A)
ADR GEN TO AR (35)
*R=7)
£5 (D2)
02.13.09.1 (5D)
)y
[1
RESET T OVERFLOW
RESET IT OVERFLOW TGR TRAP REQ RO
E6 (D1) gt
02.16.54.1 (5D) %541 (5D)
L 1
1
| TIME OF NEXT INST
RESET MAR
10 (01)
AR TO IC
| 1 (o1
02.12.36.1 (4D)
AR TO MAR
10 (02) I

02,12,50.1 (31)

IF A PRE-INTERRUPT MEMORY
PROTECT OCCURRED BEFORE
THIS TRAP, 33 IS PLACED IN
LOCATION é, IF THE M,P.
MODE TRIGGER WAS OFF,
THE CONTENTS OF THE IC
ARE STORED IN LOCATION 6,

[t
SRTO 5B 10 sB8(17)
£ EARLY E EARLY
02.12.40.1 (4G) 02.13.10.1 (3F)
RESET MAR < o
£0 (1) 02.12.05.1 (38)
AR TO MAR S8 TO MDR
£0 (D2) A2 (D1)
02.12.50.1 (3)) 02.12.50.1 (24)
[1
RESET MP MODE TGR a‘i“_%g’; TO AR (35)
£5 (D1) =
02.13.05.1 (2F) - o 50y
| TIME OF NEXT
INSTRUCTION
AR TO IC
1101

02,12,36,1 (4D)

RESET MP TRAP TGR
12 (01
02.13,05.1 (51)

YES

IT OVERFLOW TRAP

RESET IT TRAP TGR
12 (D2)
02.13.05.1 (51)

EXECUTE NEXT INSTRUCTION
FROM LOCATION 00007

FIGURE 74, PRE-INTERRUPT AND INTERVAL TIMER OVERFLOW TRAPS

REQUEST?

HONOR CHANNEL TRAP
REQUEST OR DD TRAP
REQUEST. 33 IS PLACED
IN THE ADDRESS PORTION
OF THE STORE LOCATION
QF THE CAUSITIVE TRAP,

ENABLE
INSTRUCTION

'

!

SET CHANNEL TRAP
CONTROL LATCH
A0 DI

02.13.03.1 (3C) (2E)

| TIME

RESET RESET RESET RESET

ENB ATT TGR ENB PARITY TGR ENB END TGR ENB BU INT TGR

15 D1 15D1 15 D1 15 D1

03.30.06.1 (5H) (4B) 03,30.06,1 (5H) (4D) 03.30.06.1 (5H) (4F) 03.30.06.1 (5H) (4H)
E TIME

1

OPERAND FETCHED
FROM MEMORY

l

ISBIT8A "1v2 \ YES

03.,30,06,1 (4A)

ISBIT 17 A "1"?
03.,30.06.1 (4C)

-

ISBIT35 A "1"?
03.30,06.1 (4E)

IS SIGN BIT A "1"?
03.30.06.1 (4G)

*
SET
ENB ATT TGR

03,30.06.1 (5B) (4A)

I E5D1

SET

E5 D1

ENB PARITY TGR

03.30.06.1 (5B) (4C)

SET

E5 D1

ENB END TGR

03.30.06.1 (5B) (4E)

MASK REGISTER

SET
ENB BU INT TGR

E5 D1

03.30,06.1 (5B) (4G)

—

*THESE 5 LATCHES REMAIN SET AFTER

TERMINATION OF THE ENABLE INSTRUCTION:

CHANNEL TRAP CONTROL LATCH (ALWAYS SET BY ENABLE INSTR)

ATTENTION TRIGGER (SET IF ENB OPERAND 8-BIT WAS A ONE)
PARITY TRIGGER (SET IF ENB OPERAND 17-BIT WAS A ONE)
END TRIGGER (SET IF ENB OPERAND 35-BIT WAS A ONE)
BUFFER INTERRUPT TRIGGER (SET IF ENB OPERAND SIGN BIT WAS A ONE)

FIGURE 75. TRAP ENABLES

152

€8T

READER BUSY?
03.03.14.1

PUNCH BUSY? PRINTER BUSY?
03.03.14.1 03.03.14.1

SET RD BUSY TGR SET PU BUSY TGR SET PR BUSY TGR
03.03.14.1 (3A) 03.03.14.1 (3C) 03.03.14.1 (3E)

WAIT WAIT WAIT

RD STILL BUSY?
03.03.14.1 (24)

PR STILL BUSY?
03.03.14.1 (2E)

PU STILL BUSY?
03.03.14.1 (2C)

PAPER TAPE READER BUSY?\ YES
03.03.14.1

SET PTR BUSY TGR
03.03.14.1 (3G)

WAIT

PTR STILL BUSY?
03.03.14.1 (2G)

WAIT

NO YES

SET DISC SYNC
A4 D1
03.10.10.1 (5E) (4E)

SET DISCONNECT
A1 D1
03.10.10.1 (4H)

|

SET END OP CNTL
03.10.03.1 (48)

SET UR INT TGR
A4 D1 (NOT E LATE)
03.03.15.1 (4B) (38)

* WAIT

[]

RESET RD BUSY TGR
PU BUSY TGR

PR BUSY TGR

PTR BUSY TGR

CHANNEL IN USE?
03.03.15.1 (1D)

TURN ON UNIT RCD
INT INDICATOR
03.,03.15.1 (1B)

A2 D1
03.03.15.1 (1C)
03.03.14.1

*NOTE 1
ENB BU INT TGR SET? \ YES
03.03.15.1 (1D)

**NOTE 2
TRAP CONTROL

LATCH SET?
02.13.03.1 (1C)

*NOTE 1

CHANNEL TRAP
CONTROL LATCH SET?
02.13.03.1 (1)

—

SET TRAP PRIORITY TGR
A1D1
03.30.09.1 (4B) (38)

+ WAIT

TURN ON TRAP
PRIORITY INDICATOR
03.30.09.1 (1C)

ANY OTHER TRAPS REQ?
PRIVILEGED INSTRUCTION?\ YES

A3 D1
02,13.05.1 (5E) (4E)

AUTO SWITCH?
02.14.02.1 (3F)

SET START TGR
A5 D2
02.14.02.1 (2H)

SET CHANNEL
TRAP LATCH
02.13.06.1 (5H) (41)

. ! .

{ 3 y { {

Y

GENERATE TRAP LEVELS EESSI UR INT TGR MAKE SB 8 A "1" ;ETT %DEORE;i?x":EG (R:%STESICTXIT%HTRAP égsg TRAP PRIORITY TGR|
02.13.07.1 03.30.08.1 (4F) gﬁg“{z 1 OA) E5 D2 E5 D1 03.30.09.1 (5E)
03.30.15.1 (4C) 0205081 02.13.09.1 (5D) 02.13.06.1 (ZH)) (16)
0908 02.04.35.1 02.13.03.1 (3E

SET END OP TRIGGER
A4 D1
03.10.03.1 (4F)

Y

3 i

PREVENT IC STEP SET STORE
02.12.30.1 CYCLE LATCH
Al D1
* 02.12.50.1 (4E)
IC-SR

AO D1 (E EARLY)
02,12.05.1 (38) (2C)

v

SR-SB
E EARLY
02.12.40.1 (4G)

Y

RESET CHANNEL
TRAP LATCH
02,13.06.1 (51)

END OP
02.15.35.1
i \ Y Y
- MEMORY LOCATION 00012 (STORE LOCATION) IS READ OUT,
GOTolI AND A "1" IS STORED IN POS 8 OF THE DECREMENT FIELD
A5DI1 AND CONTENTS OF IC STORED IN BITS 21-35.,
02.15.39.1
02.15.30.1
)
RESET TRAPS SET ADDRESS REG
A2 D1 (I EARLY) POS 32 AND 34
02.13.05.1 (51) EACH TO A "1v

15 D2 (TRAP | LATE)
02.13.08.1 (2A) (1)
02.13.09.1 (5C) (5H)
02.04.32.1
02.04.34.1

'

MEMORY LOCATION 0013 (INSTRUCTION LOCATION) IS BEING
BROUGHT OUT, THIS ADDRESS WILL CONTAIN AN UNCON-
DITIONAL BRANCH INTO THE TRAP ROUTINE

[}

GO TOE
(I LATE TIME)
02.15,34.1 (3D)

IN TRAP

FIGURE 76. UNIT RECORD INTERRUPT (TRAP)

*NOTE 1: THESE LATCHES SET BY
ENABLE INSTRUCTION,
SEE FIGURE 4-48,

**NOTE 2 : TRAP CONTROL LATCH SET
BY EITHER A TRT INSTR OR
A TRP INSTRUCTION,
(NOT ILLUSTRATED)

¥S1

1414 BUFFER INQUIRY
OR OUTQUIRY?
03.03.15.1 (4E) (3E)

—

SET BUFFER ATT TGR
A4 D1
03.03.15.1 (3E) (2F)

YES

WAIT

EOR?
03.10.10.1 (4A)

SET DISC SYNC
A4 D1
03.10.10.1 (5E) (4E)

!

SET DISCONNECT
03.10.10.1 (4H)

'

SET END OP CNTL
03.10.03.1 (4B)

Y

SET END OP TGR

A4 D1
03.10.03.1 (4F)

¥

. TURN ON 1414
NOTE 1 BUFFER ATT
INDICATOR

03.03.15.1 (1)

ENB ATT TGR SET?
03.03.15.1 (1H)

TRAP CONTROL \ “NOTE 2

LATCH SET?
02.13.03.1 (1C)

*NOTE 1

CHANNEL TRAP
CONTROL LATCH SET?
02.13,03.1 (1C)

[

SET TRAP PRIORITY TGR
A1DI1
03.30.09.1 (4B) (38)

* WAIT

TURN ON TRAP
PRIORITY INDICATOR
03.30.09.1 (1C)

YES

AUTO SWITCH?
02.14.02.1 (3F)

I |

ANY OTHER TRAPS REQ?
PRIVILEGED INSTRUCTION?
A3DI1

02.13.05.1 (5E) (4E)

SET START TGR
A5 D2
02.14.02.1 (2H)

SET CHANNEL
TRAP LATCH
02.13.06.1 (5H) (41)

. . Y . .

Y

¥ 1 v Y

RESET BUFFER ATT TGR MAKE SB 9 A "] seT ADDRESS REG | [ReseT cranNeL TRap] no /e N Use?
03.03.15.1 (3F) GENERATE TRAP LEVELS £ EARLY BIT 35 TO A "I" CONTROL LATCH 03.30.09.1 (5D)
02.13.07.1 -
03.30.08.1 (4G) 03.30.07.1 (4A) E5 D2 E5D1
02.13.12.1 (18) 02.13.09.1 (50) 02.13.06.1 (2H) (1G)
02.04.35.1 02.13.03.1 (36)
v)] RESET TRAP PRIORITY RESET TRAP PRIORITY
. TGR E5DI TGR E4 D1
PREVENT (C STEP SET STORE CYCLE 03.30.09.1 (5E) 03.30.09.1 (26) (5D)
-12.36. LATCH AlDI
i 02.12.50.1 (4E)
IC-SK
A0 D1, (E EARLY)
02.12.05.1 (38) (20)
SR-SB E EARLY,
02.12.40.1 (4G)
END OP
02.15.35.1
'] i L}
MEMORY LOCATION 00012 (STORE LOCATION) IS READ OUT,
GOTOI AND A "1" 1S STORED IN POS 9 OF THE DECREMENT FIELD,
A5DI CONTENTS OF IC STORED IN BITS 21-35.
02.15.39.1
02.15.30.1

!

y

RESET TRAPS
A2 D1 (I EARLY)
02.13.05.1 (51)

Y

RESET CHANNEL
TRAP LATCH
02,13.06.1 (5)

SET ADDRESS REG *NOTE 1: THESE LATCHES SET BY

POS 32 AND 34 ENABLE INSTRUCTION.

EACHTO A "1" SEE FIGURE 4-48

15 D2 (TRAP | LATE)

02.13.08.1 (2A) (1B) **NOTE 2 : TRAP CONTROL LATCH

02.13.09.1 (5C) (5H) SET BY EITHER A TRT

02.04.32.1 INSTR OR A TRP

02.04.34.1 INSTRUCTION (NOT
* ILLUSTRATED)

MEMORY LOCATION 00013 (INSTRUCTION LOCATION) IS
BEING BROUGHT OUT. THIS ADDRESS WILL CONTAIN AN
UNCONDITIONAL BRANCH INTO THE TRAP ROUTINE

y

GOTOE
(I LATE TIME)
02.15.34.1 (3D)

IN TRAP

FIGURE 77. TELEPROCESSING INTERRUPT (TRAP}

WAIT

10 6 SELECT
FROMI4017 YES
03.05.06.1(5A)

SET 1401 ATT TGR
A4 D1
03.05.06.1 (4A) (3A)

EOR?
o \03.10.10.1 (4A)

—

SET DISC SYNC
A4 D1
03.10.10.1 (5E) (4E)

y

SET DISCONNECT
03.10.10.1 (4H)

YES

*NOTE 1 ‘

ENB ATTN TGR SET? TURN ON 1401
o5 0e 06 1 (1) ATTENTION
-05.06. INDICATOR

03.05.06.1 (1A)
**NOTE 2

TRAP CONTROL
LATCH SET?
02.13.03.1 (IC)

YES

CHANNEL TRAP
CONTROL LATCH SET?,
02.13.03.1 (1C)

YES

Al D1

; SET TRAP PRIORITY TGR

03.30.09.1 (4B) (38)

SET END OP CNTL
03.10.03.1 (4B)

Y

WAIT

SET END OP TGR
A4 D1
03.10.03.1 (4F)

TURN ON TRAP
PRIORITY INDICATOR

03.30.09.1 (1C) A3 D1

JANY OTHER TRAPS REQ?
NO PRIVILEGED INSTRUCTION?

02.13.05.1 (5E) (4E)

AUTO SWITCH?
02.14,02.1 (3F)

YES YES

SET CHANNEL

SET START TGR

02,13.08.1 (2A) (1B)
02.13.09.1 (5C) (5H)
02,04.32.1

.1

02.04,
1

MEMORY LOCATION 00013 (INSTRUCTION LOCATION) IS
BEING BROUGHT OUT. THIS ADDRESS WILL CONTAIN AN
UNCONDITIONAL BRANCH INTO THE TRAP ROUTINE

[

GOTOE
(1 LATE TIME)
02.15.34.1 (3D)

Y

IN TRAP

FIGURE 78. 1401 ATTENTION (TRAP)

TRAP LATCH A5D2
02.13.06.1.(5H) (41) 02.14.02.1 (2H)
| Y Y 1
SET ADDI RESET CHANNEL TRAP
RESET 1401 ATT TGR GENERATE TRAP LEVELS MAKE SB 10 A "1" alasis el T
E4 D1 02.13.07.1 E EARLY £5 D2 E5 01
03.30.08.1 (4G) 03.30.07.1 (48) 02.13.09.1 (50) 02.13.06.1 2H) (1G)
03.05.06.1 (38) 02.13.12.1 @)) 02.04.35.1 02.13.03.1 (36)
END OP ‘ ‘
02.15.35.1 SET STORE CYCLE o s
PREVENT IC STEP LATCH CH IN USE?
02,12.36.1 A1D1 03.30.09.1 (5D)
02.12.50.1 (4E)
SO 101 ‘
A5D1
02.15.39.1 IC-5R RESET TRAP PRIORITY TG
02.15.30.1
alooi: A0 D1 (E EARLY) E5 D1
- 02.12.05.1 (38) (2C) 03.30.09.1 (5E)
RESET TRAPS SR-SB ESET TRAP PRIORITY TGR)
A2 D1 (I EARLY) E EARLY E4 D1
02.13.05.1 (51) 02.12.40.1 (4G) 03.30.09. 1 (2E) (5D)
RESET CHANNEL SETSAsDE:fIEIS; :’:‘fG ; y
TRAP LATCH ESCHZTO o MEMORY LOCATION 00012 (STORE LOCATION) I$
02.13,06.1 (51 wqn
() 15 D2 (TRAP | LATE) READ OUT, AND A "1" IS STORED IN POS 10 OF THE

DECREMENT FIELD, CONTENTS OF IC STORED IN
BITS 21-35.

*NOTE 1: THESE LATCHES SET BY
ENABLE INSTRUCTION
SEE FIGURE 4-48

**NOTE 2 : TRAP CONTROL LATCH
SET BY EITHER A TRT
INSTR OR A TRP
INSTRUCTION, (NOT
ILLUSTRATED).

155

TAPE WORD
INCOMPLETE?
03.00.10.1 (41)
03.30.10.1 (3A)

SET U END TRAP TGR
03.30.10.1 (3A)

¥

TURN ON U END
TRAP INDICATOR
03.30.10.1 (1A)

WAIT

EOR?
03.10.10.1 (4A)

SET DISC SYNC
A4 D1
03.10.10.1 (5E) (4E)

SET DISCONNECT
03.10.10.1 (4H)

SET END OP CNTL
03.10.03.1 (4B)

SET END OP TGR
A4 D1
03.10.03.1 (4F)

¥

RESET CH IN
USE TGR
03.10.02.1 (3G)

v

SET END TRAP
(DISC SYNC)
03.30.07.1 (2H)

WAIT

NO CH IN USE? YES
03.30.07.1 (21)

Yes //ENB END TGR SET?\ *NOTE 1
03.30.07.1 (21)
TRAP CONTROL \ ,
YE (' LaTcH seT? *NOTE 2
02.13.03.1 (1C)

‘CHANNEL TRAP
CONTROL LATCH SET?
02.13.03,1 (IC)

YES *NOTE 1

P |

SET TRAP
PRIORITY TGR

A1 DI

03.30.09.1 (4B) (38)

TURN ON END
‘TRAP INDICATOR
03.30.07.1 (1H)

TURN ON TRAP

WAIT

ANY OTHER TRAPS REQ?
PRIVILEGED INSTRUCTION?

AUTO SWITCH?

RESET END TRAP TGR
U END TRAP TGR
03.30.08.1 (4E)
03.30.07.1 (41)
03.30.10.1 (38)

END OP

02,15.35.1

GOTO I
A5 D1
02,15.39.1
02.15.30.1

PRIORITY INDICATOR A3 D1 02.14.02.1 (3F)
03.30.09.1 (1C) 02.13.05.1 (5E) (4F)
i SET START TGR
SET CHANNEL A5 D2
TRAP LATCH 02,14.02.1 (2H)
02.13.06.1 (5H) (41)
GENERATE TRAP LEVELS MAKE SB 12 A *1° SET ADDRESS REG RESET CHANNEL TRAP) RESET TRAP
02.13.07.1 DALy BIT35TO A "1" CONTROL LATCH PRIORITY TGR
63,30 10.1 (20) E5 D2 E5 D1 E5 D1
02.13.12.1 (26) 02,13,09.1 (5D) 02.13.06.1 (2H) (1G) 03.30.09.1 (5E)
-13.12. 02.04.35.1 02.13.03.1 (36)
PREVENT IC STEP
02.12.36.1
('S SET STORE
oR E\IK%LIE LATCH
A0 D1 (E EARLY)
02.12.05.1 (38) (2€) 02.12.50.1 (4E)

AND A "1 IS STORED IN POS 12 OF THE DECREMENT FIELD,

MEMORY LOCATION 00012 (STORE LOCATION) IS READ OUT,
CONTENTS OF IC STORED IN BITS 21-35.

RESET TRAPS
A2 D1 (1 EARLY)
02.13.05.1 (51)

]

RESET CHANNEL
TRAP LATCH
02.13.06.1 (51)

FIGURE 79. UNUSUAL END (TRAP)

156

SET ADDRESS REG
POS 32 AND 34
EACHTO A "1"

15 D2 (TRAP | LATE)
02.13.08.1 (2A)(1B)
02.13.09.1 (5C) (Hy
02,04,32.1
02,04.34.1

'

*NOTE 1 :

**NOTE 2 :

MEMORY LOCATION 00013 (INSTRUCTION LOCATION) IS
BEING BROUGHT OUT. THIS ADDRESS WILL CONTAIN AN
UNCONDITIONAL BRANCH INTO THE TRAP ROUTINE

(]

GO TOE
(I LATE TIME)
02.15.34.1 (3D)

IN TRAP

THESE LATCHES SET BY
ENABLE INSTRUCTION
SEE FIGURE 4-48.

TRAP CONTROL LATCH
SET BY EITHER A TRT
INSTR OR A TRP
INSTRUCTION. (NOT
ILLUSTRATED).

WAIT

NO

\ 03.10.10.1 (4A) /

WORD PARITY ERROR?

YES

02.05.45.1
03.30.07.1 (4E)

—

U4 D1

SET WORD PARITY TGR

03.30.07.1 (4E) (3E)

NO / CH IN USE?

YES

EOR? YES

——

SET DISC SYNC
A4 D1
03.10.10.1 (5E) (4E)

v

SET DISCONNECT
03.10.10.1 (4H)

*NOTE 1

03.10,11.1 (4D)

ENB PARITY SET?
03.10.11.1 (4D)

—

SET WC ZERO TGR
03.10.11.1 (4D) (3C)

WC ZERO RESULTS IN A
COMMAND TO I/O TO
DISCONNECT. /O

RESPONDS WITH AN EOR

RESET CH IN USE TGR
03.10.02.1 (3G)

'

SET END TRAP TGR
(DISC SYNC)
03.30.07.1 (2H)

SET END OP CNTL
03.10.03.1 (48)

v

WAIT

NO CH IN USE? YES

03.30.07.1

P |

YES

IS EITHER ENB PARITY
OR ENB END TGR SET?
03.30.07.1 (2F) (4G) (21)

3

YES

TRAP CONTROL
LATCH SET?
02,13.03.1 (1C)

I

CHANNEL TRAP
YES CONTROL LATCH SET?
02.13.03.1 (1C)

1

A1 D1

SET TRAP PRIORITY TGR

03.30.09.1 (48) (3B)

*NOTE 1

**NOTE 2

*NOTE 1

l

A RC IND

TURN ON CH

03.30.03.1 (2E) (1F)

TURN ON TRAP
PRIORITY INDICATOR
03.30.09.1 (1C)

A3 D1

ANY OTHER TRAPS REQ?
PRIVILEGED INSTRUCTION?

02,13.05.1 (5E) (4E)

WAIT

I

SET CHANNEL
TRAP LATCH
02,13.06.1 (5H) (41)

P |

AUTO SWITCH?
02,14.02.1 (3F)

A5 D2

SET START TGR

02.14.02,1 (2H)

——

y

¥

] .
]

¥

RESET WORD PARITY TGR

E4 D1
03.30.08.1 (4C)
03.30.07.1 (4F)

GENERATE TRAP LEVELS
02.13.07.1

y

MAKE SB 14 A "1"
E EARLY

02.13.12.1 (5H) (3B) (2D)

02.05.14.1

E5 D2

02.04.35.1

SET ADDRESS REG
BIT35TO AMI"

02,13.09.1 (5D)

il I

E5D1 PRIORITY TGR
E5 D1

02.13.06.1 (2H) (1G)

02.13.03.1 (3F) 03.30.09.1 (5E)

PREVENT IC STEP
02.12.36.1

SET STORE
CYCLE LATCH
A1 DI
02.12.50.1 (4E)

v
IC-SR

A0 D1 (E EARLY)

02.12.05.1 (3B) (2C)

SET END OP TGR
A4 D1
03.10.03.1 (4F)

v

END OP
02,15.35.1

¥

GO TO |
A5 D1

02.15.39.
02.15.30.

(=3

'

SR-SB E EARLY
02.12.40.1 (4G)

—

ENB END SET?
03.30.07.1 (21) (11)

*NOTE 1

'

MAKE SB 17 A "1" RESET END TRAP TGR
E EARLY E4 D1

02.13,10.1 (3D) 03.30.08.1 (4E)
03.30.07.1 (41)

MEMORY LOCATION 00012 (STORE LOCATION) IS READ OUT AND A
"1" IS STORED IN EITHER POS 14 OR ELSE 14 AND 17 OF THE
DECREMENT FIELD, CONTENTS OF IC STORED IN BITS 21-35,

y
RESET TRAPS
A2 D1 (I EARLY)
02.13.05.1 (51)

v

RESET CHANNEL
TRAP LATCH
02.13.06.1 (51)

FIGURE 80. WORD PARITY (TRAP)

LST

SET ADDRESS REG
POS 32 AND 34
EACHTO A "1"

15 D2 (TRAP | LATE)
02.13.08.1 (2A) (1B)
02.13.09.1 (5C) (5H)
02.04.32.1
02.04.34.1

v

MEMORY LOCATION 00013 (INSTRUCTION LOCATION) IS
BEING BROUGHT OUT. THIS ADDRESS WILL CONTAIN AN
UNCONDITIONAL BRANCH INTO THE TRAP ROUTINE

y

GOTOE
(I LATE TIME)
02.15.34.1 (3D)

IN TRAP

*NOTE 1: THESE LATCHES SET BY
ENABLE INSTRUCTION,
SEE FIGURE 4-48

**NOTE 2 : TRAP CONTROL LATCH SET
BY EITHER A TRT INSTR OR
A TRP INSTRUCTION.
(NOT ILLUSTRATED)

8ST

EOF FROM /07 _YES
03.30.04.1

SET EOF TRIGGER
03.30.04.1 (3A)

!

¥

FILE INDICATOR
03.30.04,

TURN ON END OF

WAIT

EOR?
03.10.10.1 (4A)

SET DISC SYNC
A4 D1
03.10.10.1 (5E) (4E)

K

SET DISCONNECT
03.10.10.1 (4H)

Y

SET END OP CNTL
03.10.03.1 (4B)

]

SET END OP TGR
A4 D1
03.10.03.1 (4F)

y

RESET CH IN USE TGR
03.10.02.1 (3G)

|

SET END TRAP
(DISC SYNC)
03.30.07.1 (2H)

WAIT

CH IN USE?
03.30.07.1 (21)
ENB END TGR SET?
03.30.07.1 (21)

TRAP CONTROL
LATCH SET?
02.13.03.1 (1)

NEL TRAP
ROL

LATCH SET?
02.13.03.1(IC)

P |

SET TRAPPRIORITY TGR
Al DI
03.30.09.1(4B) (3B)

CHAN
CONT

TURN ON END TRAP
INDICATOR
03.30.07.1 (1H)

*NOTE 1

**NOTE 2

*NOTE 1

TURN ON TRAP
PRIORITY INDICATOR
03.30.09.1 (1C)

P

WAIT

ANY OTHER TRAPS REQ?
PRIVILEGED INSTRUCTION?
A3 D1

02,13.05.1 (5E) (4E)

I

SET CHANNEL
TRAP LATCH
02.13.06.1 (5H) (41)

oV

AUTO SWITCH?
02.14,02.1 (3F)

I |

SET START TGR
A5 D2
02.14.02.1 (2H)

-O-

y

v

RESET END TRAP TGR
EOF TGR

03.30.08.1 (4E)
03.30.07.1 (41)

GENERATE TRAP LEVELS
02.13.07.1

Y Y

(]

MAKE SB 15 A "1"
E EARLY
03,30.08.1 (48)

Y

02.13.11.1 (3)

SET ADDRESS REG | [RESET CHANNEL TRAP
BIT35TO A "I CONTROL LATCH R AR R
E5 D2 €5 D1 D
02.13.09.1 (5D) 02.13.06.1 (2H) (1G) 03.30.09,(5€)
02.04.35.1 02.13.03.1 (36)

SET STORE
CYCLE LATCH
A1 D1
02.12.50.1 §4E)

Y

MEMORY LOCATION 00012 (STORE LOCATION) IS READ OUT,
AND A "1" IS STORED IN POS 15 OF THE DECREMENT FIELD,
CONTENTS OF |C STORED IN BITS 21-35.

03.30.04.1 (3B) i
PREVENT IC STEP
02.12.36.1
IC-SR
A0 D1 (E EARLY)
02.12.05.1 (3B) (2€)
END OP SR-SB E EARLY
02.15.35.1 02.12.40.1 (4G)
GOTOI
A5 D1
02.15.39.1
02.15.30.1

]

RESET TRAPS
A2 D1 (1 EARLY)
02.13.05.1 (51)

[}

RESET CHANNEL
TRAP LATCH
02.13.06.1 (51)

FIGURE 81. END OF FILE (TRAP)

"SET ADDRESS REG
POS 32 AND 34
EACHTO A "1"

15 D2 (TRAP | LATE)
02.13.08.1 (2A) (1B)
02.13.09.1 (5C) (5H)
02.04.32.1
02.04.34.1

-

MEMORY LOCATION 00013 (INSTRUCTION LOCATION) IS
BEING BROUGHT OUT. THIS ADDRESS WILL CONTAIN AN
UNCONDITIONAL BRANCH INTO THE TRAP ROUTINE

[]

GO TOE
(I LATE TIME)

02,15.34.1 (3D)

IN TRAP

*NOTE 1: THESE LATCHES SET BE
ENABLE INSTRUCTION
SEE FIGURE 4-48,

**NOTE 2 : TRAP CONTROL LATCH
SET BY EITHER A TRT INSTR
OR A TRP INSTRUCTION
(NOT ILLUSTRATED).

BYTE PARITY ERROI YES
03.30.03.1 (4E) (4F;

—

SET RC IND TGR
STROBE C1
03.30.03.1 (3G)

NO /' CH IN USE?

WAIT

03.10.11.1 (4D)

EOR?
03.10.10.1 (4A)

SET DISC SYNC

D1
03.10.10.1 (5E) (4E)

SET DISCONNECT
03.10.10.1 (4H)

*NOTE 1

ENB PARITY SET?

03.10.11.1 (4D)
SET WC ZERO TGR
03.10.11.1 (4D) (3C)

WC ZERO RESULTS IN A
COMMAND TO I/0 TO
DISCONNECT. 1/O

RESPONDS WITH AN EOR

RESET CH IN USE TGR
03.10.02.1 (3G)

SET END OP CNTL
03.10.03.1 (48)

SET END OP TGR
A4 D1
03.10.03.1 (4F)

WAIT

CH IN USE?
03,30.08.1 (4A)

ENB PARITY TGR SET?
03.30.08.1 (4A)

TRAP CONTROL
LATCH SET?
02.13.03.1 (1C)

*NOTE 1

**NOTE 2

02. 13. 03. 1 (1C)

SET TRAP PRIORITY
TGR

TURN ON
CH A RC IND
03.30.03.1 (2E) (1F)

Al DI
| 03.30.09.1 (4B) (38)

TURN ON TRAP
PRIORITY INDICATOR
03.30.09.1 (1C)

A3
02.

R

ANY OTHER TRAPS REQ?
PRIVILEGED INSTRUCTION?

D1
13.05.1 (5E) (4E)

WAIT

SET CHANNEL
TRAP LATCH
02.13.06.1 (5H) (41)

AUTO SWITCH?
02.14.02.1 (3F)

SET START TGR
A5 D2
02.14.02.1 (2H)

1

11 1

R .
1 ¥

y

RESET RC IND TGR
E4 D1

03.30.08.1 (4D)
03.30.30.1 (3H)

END OP
02.15.35.1

GOTO1I
A5 D1
02,15.39.1
02,15,30.1

RESET TRAP
PRIORITY TGR
E5DI1
03.30.09.1 (5€)

GENERATE TRAP LEVELS MAKE B 16 A "1" SET ADDRESS REG RESET CHANNEL TRAP
3 E EARLY BIT35TO A "1 CONTROL LATCH
03.30.07.1 (3A) E5 D2 E5D1
02.13.11.1 (38) 02.13.09.1 (5D) 02.13,06.1 (2H) (1G)
02.05.16.1 02.04.35,1 02.13.03.1 (3E)
PREVENT IC STEP
02.12.36.1
T SET STORE
oo 2\1((‘:;‘5 LATCH
AOD] (E EARLY) 4E
02,12,05.1 (38) (2€) 02.12.50.1 (46)

SR-SB E EARLY

02,12.40.1 (4G)

AND A "1" IS STORED IN POS 16 OF THE DECREMENT FIELD,

MEMORY LOCATION 00012 (STORE LOCATION) IS READ OUT,
CONTENTS OF IC STORED [N BITS 21-35,

A
RESET TRAPS

A2 D1 (I EARLY)
02,13.05.1 (31)

]

RESET CHANNEL
TRAP LATCH
02,13,06.1 (51)

FIGURE 82. REDUNDANCY CHECK (TRAP)

SET ADDRESS REG
POS 32 AND 34

EACHTO A "I

15 D2 (TRAP | LATE)
02.13.08.1 (2A) (1B)
02.13.09.1 (5C) (5H)
02.04.32.1
02,04.34.1

Y

MEMORY LOCATION 00013 (INSTRUCTION LOCATION) IS
BEING BROUGHT OUT, THIS ADDRESS WILL CONTAIN AN
UNCONDITIONAL BRANCH INTO THE TRAP ROUTINE

]

GOTOE
(1 LATE TIME)
02.15.34.1 (30)

IN TRAP

*NOTE 1: THESE LATCHES SET BY
ENABLE INSTRUCTION
SEE FIGURE 4-48
**NOTE 2: TRAP CONTROL LATCH
SET BY EITHER A TRT INSTR
OR A TRP INSTRUCTION
(NOT ILLUSTRATED),

159

EOI
03.10.10.1 (4A)

SET DISC SYNC
A4 D1

4 D
03.10.10.1 (5E) (4E)

K|

RESET CH IN USE TGR|
03.10,02. 1 (3G)

]

SET END TRAP
(DISC SYNC)
03.30.07.1 (2H)

! i

WAIT

SET DISCONNECT
03.10.10.1 (4H)

TURN ON END
TRAP INDICATOR
03.30.07.1 (1H)

*NOTE 1

ENB END TGR SET?
03.30.07.1 (21)

TRAP CONTROL \ “NOTE 2

LATCH SET?
02,13.03.1 (1C)

*NOTE 1
¢/ CHANNEL TRAP CONTROL

LATCH SET?
02.13.03.1 (1€)

[|

SET TRAP PRIORITY TGR
A1 D1
03.30.09.1 (48) (38)

1]

SET END OP CNTL
03.10.03.1 (48)

TURN ON TRAP
PRIORITY INDICATOR
03.30.09.1 (1C)

v

SET END OP TGR
A4 D1
03.10,03.1 (4F)

WAIT

AUTO SWITCH?
02.14,02.1 (3F)

ANY OTHER TRAPS REQ?
PRIVILEGED INSTRUCTION?\ YES

A3 D1
02,13,05.1 (SE) (4E)

SET START TGR
A5 D2
02,14.02,1 (2H)

SET CHANNEL TRAP LATCH
02,13.06.1 (5H) (41)

] iK1

] R
1 1 1 Y

SET ADDRESS REG RESET CHANNEL TRAP| [RESET TRAP PRIORITY TGH]
RESET END TRAP TGR ?25';‘35“:775] TRAP LEVELS MAKE SB 17 A 1" BIT35TO A "1t CONTROL LATCH 5 D1
(5)3 l;; 08.1 U 2.15.07. E EARLY E5 D2 E5 D1 03.30.09.1 (5E)
o -07~' (4) 02,13.10.1 (3D) 02.13.09.1 (5D) 02,13,06.1 (2H) (1G)
03.30.07.1 (41) 02.04.35.1 02,13.03.1 (3E)
PREVENT IC STEP SET STORE
02,12,26.1 CYCLE LATCH
A1DI
02,12,50.1 (4E)
IC-5R
A0 D1 (E EARLY)
02.12.05.1 (38) (2C)
SR-SB E EARLY
02.12.40.1 (4G)
END OP
02.15.35.1
A \
MEMORY LOCATION 00012 (STORE LOCATION) IS READ OUT,
GO TO| AND A "1" IS STORED IN POS 17 OF THE DECREMENT FIELD,
A5 D1 CONTENTS OF IC STORED IN BITS 21-35,
02.15.39.1
02.15.30.1

RESET TRAPS
A2 DI (I EARLY)
02.13.05.1 (51)

]

RESET CHANNEL
TRAP LATCH
02.13.06.1 (51)

FIGURE 83. OPERATION COMPLETE (TRAP)

160

SET ADDRESS REG
POS 32 AND 34
EACH TO A 1"

15 D2 (TRAP | LATE)
02.13,08.1 (2A) (18)
+13.09.1 (5C) (5H)

.04
.04

SS8

v

MEMORY LOCATION 00013 (INSTRUCTION LOCATION) IS
BEING BROUGHT OUT, THIS ADDRESS WILL CONTAIN AN
UNCONDITIONAL BRANCH INTO THE TRAP ROUTINE

(]

GOTOE
(I LATE TIME)
02.15,34.1 (3D)

IN TRAP

*NOTE 1: THESE LATCHES SET BY
ENABLE INSTRUCTION.
SEE FIGURE 4-48

**NOTE 2: TRAP CONTROL LATCH SET

BY EITHER A TRT INSTR OR
A TRP INSTRUCTION.,
(NOT ILLUSTRATED).

HOW DISABLING

DNIAdVYL 0 AYVINIAS

TRAP TRAP TRAP STORE *8 TRANSFER *9| DISABLING EFFECT |EFFECT MAY BE
PRIORITY NAME |REASON FOR TRAP WHEN TRAP CAN OCCUR | RESTRICTIONS LOCATION LOCATION OF TRAP NULLIFIED
1 Interval |A ""C" cycle request A "'C" cycle request may None 00036 00037 1) Trap control Trap control may
Timer |is received before occur (andtherefore a turned off be turned on by
Blast |the preceding "C" Trap request) 2) Resets all channels |executing a TRT
cycle request is 1) Between instructions 3) Resets program reg.| or TRP instruc-
honored. 2) During RDS,PRD, SEN, in CPU and shift tion. Interval
33 milliseconds have WRS, PWR, CTR, BSR, ctr. timer may be'
expired since the in- REW,WBT,RUN,WEF 4) Resets waiting "'C'" | corrected by:
terval timer was last instructions. cycle requests and CLA 00005
stepped. 3) Between ""U" cycles dur- interval timer over-| ADD =02
ing execution of a RCHA flow trap requests. | STO 00005
instruction. 5) Interval timer will
A trap request initiates contain 2g less than
an immediate trap. it should.
6) An interrupted in-
struction is not
completed.
2 Memory| A store is att d Immediately after an "E" 1) Trap control 00032 00033 1) Protect mode turned| Protect mode may
had Protect | in a protected area cycle attempting (it will on *' Bit 16 Flag off, be turned on by
Viola- |of core. not succeed) to store in a 2) Protect mode 2) Violating instruc- |executing a SPM
tion NOTE: Input informa- protected area of core. on tion not allowed to | instruction.
tion from an /O de- *' If trap control store or complete
vice is never prevented is off, protect mod »,
from storing in a pro- on, and aviolation
tected area. occurs, the store
will be successful
andatrap will not
occur.
3 Parity | Storage parity error 1) Immediately after the 1) Trap control 00040 00041 1) Trapcontrol turned | Trap control and
** during: "T", "IA", or "E" cycle on *2 Bit S Flag indi- off. parity control may
Memory Pro- 1) "I" or "IA" cycles causing the parity error. | 2) Parity control |cateserror occur- 2) Parity control be turned on by
test Violation 2) "E" or ""C"cycles An instruction requiring on * red when parity or turned off. executing a TRP
and Parity which do not store. additional cycles will *2 parity errors |trapcontrol was 3) Parity errors de- instruction.
Traps are Mu- NOTE: Parity isnot not complete. detected with off, *2 tected during multi-| Trap control may
tually Exclu- checked during the "E" 2) For aparity error dur- either trapcon- Bit 1 Flag "C" cycle instructions | be turned on and
sive, and cycle of acapinstruc- ing a ""C" cycle taken trol or parity off |cycle error. will prevent any parity control left
therefore tion. during the execution of do not cause an Bit 18 Flag"I" or remaining cycles off by executing
their relative ""B" or "U" Cycle par- an instruction, the in- immediate trap "IA" cycle error. from being taken a TRT instruction.
priority is ity errors will not cause struction willbe allowed | and donotinter- |Bit 19 Flag "E" to complete the
arbitrary. a parity trap. Achan- to complete before the rupt an instruc- |cycle error. instruction.
nel trap may be re- trap is initiated. tion. However, Bits 3-17 will
quested if the opera- 3) For a parity error dur- theerror is re- contain the loca-
tion or parity maskbit ing a ""C" cycletakenbe-| membered and tion in error if
is enabled for that tween instructions, the will cause atrap |nota'C'" cycle
channel. See channel trap will be immediate. as soon as trap or delayed
traps. and parity control |error.
If bad parity is detect- are on.
ed when reading out of
core during any type
cycle, the word isre-
generated bdck in core
with bad parity.
4 SPM*7 | SPM instruction with Execution of SPM instruc- | Protect modeon 00032 00033 Protect mode turned | Protect mode may
protect mode on. tion causes the trap. Bit 16 Flag off. be turned on by
executing another
Allinstruction SPM instruction
traps are mu-
tually exclu- RPM*7 | RPM instruction Execution of RPMinstruc- | None 00032 00033 Protect mode turned | Protect mode may
sive and there- tion causes the trap. Protect mode off. be turned on by
fore have no On Off executing a SPM
priority with Bit15 | Bit14 instruction.
regard toeach | Flag | Flag
other. STR*7 | STR instruction. Execution of STR instruc- None 00000 00002 None Not applicable.
tion causes the trap.
*7If aparity Floating Floating-point instruc- After completion of instruc-| None 00000 00010 Instructionnot com- Not applicable.
error occurs Point | tion and any one or tionfor (1) +(2) +(3) +(4). (5) yields Bit pleted for (5).
during an I combination of the After first "E" cycle for (5) N 12 Flag
or IAcycle following: instruction will not complete (1) +(4) yields
for thisin- 1) AC char. computed Bit 15 Flag
struction, a to exceed 377. (1) +(3) yields
parity trap 2) MQ char. computed Bit 16 Flag
occurs and lower than 000 (2) +(4)yields
the instruc- 3) AC char. computed Bit 17 Flag
tion trapdoes lower than 000*3 (1) +(2) +(3) +
not occur. 4) MQchar. comlauted (4) during single
to exceed 37774 prec. Divide
5) High order double yields Bit 14
precision operand Flag
address ODD.
*3 canoccur without
(2) during divide only.
*4 canoccur without
(1) during divide only.

FIGURE 84-1,

161

HOW DISABLING
TRAP TRAP TRAP STORE *8 TRANSFER *9| DISABLING EFFECT | EFFECT MAY BE
PRIORITY NAME | REASON FOR TRAP WHEN TRAP CAN OCCUR | RESTRICTIONS LOCATION LOCATION OF TRAP NULLIFIED
5 Pre- Interval timer overflow, | Trap is initiated at the time| 1) Trap control 00032 00033 1) Protect mode turn- | Protect mode may
Inter- | channel ordirect data the causitive trap would on. Bit 17 Flag 33g will be ed off. be turned on by
rupt trap requested with have been initiated had 2) Protect mode placed in the 2) Delays execution executing a SPM
Memory protect mode on, memory protect been off. on. store location of causitive trap instruction.
Protect, Refer to individual causi- 3) Restrictions of the causi- until protect mode
tive trapdescriptions. for causitive tive trap. is turned off.
trap met. Causitive trap
will begin before
instruction in 33
is executed.
6 Interval| Adder 1carry while After ""C'" cycle storing - 1) Trap control 00006 00007 Blocks ''C" cycle If trap execution
Timer | interval timer is incremented interval timer on. requests while wait~ | is delayed long
Over- | being incremented. if "C" cycle occurred be- 2) Protect mode ing for trap to be enough to block
flow tween instructions. If ""C" off. *6 executed., two "'C'" cycle
cycle occurred during a *6 If on, pre- requests, an in-
BSR,REW,RUN, WEF or interrupt memory terval timer blast
RCHA instruction, the in- protect trap will trap will be initiated
struction will complete be- | be initiated to which will reset
fore trap is initiated. turn if off, overflow trap
If the trap request occurs request. At this
during or immediately time, the interval
after a privileged *5in~ timer should con-
struction, the trap will be tain 2g (it will con-|
delayed until after the tain 0g). This may
completion of the instruc- be corrected by:
tion following the privileged| CLA =02
instruction. STO 00005
7 Direct | Interrupt signal from After completion of the in~ | 1) Trap control 00003 00004 1) Channel trap 1) Channel trap
Data direct data external siruction in progress when on. Channel B inter- |The instruc- control turned control may be
device with direct data the interrupt signal is re- 2) Channel trap rupt yields Bit tion contained off. turned on by
mask bit for subject ceived. control on. 16 Flag in this loca- Channel trap control executing a
channel a one. If the trap request occurs 3) Protect mode |Channel C in- tion must be ar{ may alsobe turned RCT or ENB
Mask Bit *11 during or immediately after] off. *10 terruptyields unconditional | off by executing an instruction.
a privileged *5 instruction, | 4) Direct data Bit 15 Flag transfer tomainICT instruction. The RCT instruc-
the trap will be delayed mask bit for Channel D in- tain 7090/94 Direct data traps tion will allow the
until after the completion interrupting terrupt yields |compatibility. | may also be blocked mask bits specified
of the instruction following channel must Bit 14 Flag by an ENB O in- in the last ENBin-
the privileged instruction. be a one *11, | Channel E in- struction, struction to retain
*10 If on, pre- terrupt yields control. Any inter-
interrupt memory | Bit 13 Flag rupt signal received
protect trap will *11 Flag Bits while channel trap
be initiated to will be stored control was off will
turn if off, only if themask be honored after
bit is on. It is execution of RCT.
possible to have The ENB instruc-
more than one tion will permit
Flag Bit stored an interrupt sig-
if the execution nal received while
of the trap is channel trap con-
delayed long trol was off to
enough to allow causeatrap if the
more than one maskbit for the
channel to send channel is turned
an interrupt sig- on by thenew ENB
nal, Only onetrap instruction, even
\|will be executed though the prior
in this case. ENB instruction
did not specify
that maskbit,
Waiting interrupt
requests are re-
set by a direct
data trap (only
for those channels
covered by a
mask bit) an RDCX
instruction(all
channels) or by
reading or writing
from the DD
channel requesting
the interrupt.
8 Channell 1) An 1/0O operation After completion of the in- | 1) Trap control 00022*15 00023*14 1) Channel trap 1) Channel trap
E completes with oper- struction in progress when | on control turned off. control may be
Trap priority | Channelf ation ""mask bit for the trap request is gener- | 2) Channel trap 00020*15 00021*14 turned on by
among chan- D subject channel a ated. A traprequest may bel control on Channel trap control | executing aRCT
nels is in Channel| one. This will occur generated by a channel 3) Protect mode 00016*15 00017*14 may also be turned or ENB instruc-
order of C whenever any channel only when it goes not in off *12 off by executing an tion.
00014*15 00015*15 ICT instruction.

FIGURE 84-2,

162

HOW DISABLING

est priority.
For thisdis-
cussion, it
is assumed
that Channel
"E'" is the
furthest from
CPU.

No channel
may request
atrap (ex-
cept an
attention

trap) while

it is still in
use. How-
ever, the
condition that
will event-
ually cause a
trap request
may be pre-
sent for much
of the channel
operation. Ifa
higher priority
channel goes
"not in use"
and requests a
trap first,
even though
the condition
that caused its
trap occurred
after atrapping
condition inthe
channel that is
still in use.

for a rewind.

2) Redundancy check
from 1/0 device or
channel parity error
with "parity" mask

bit for subject channel

a one *18. This will
stop the transmission

of data although the
channel will remain

in use.

3) End of file *13,18
from tapes or from 1401
(KB instruction from
1401), or when 1622 or
1402 reader runs out of
cards with "operation"
mask bit a one.

4) Word parity error
while reading or writing
from core during '"U"

or "B" cycles or chan-
nel parity error during
a write operation. Either|
"parity" mask bit (data
transmission stops) or
"operation" maskbit
(transmission continues)
must be a one.

5) Unusual end *16 sig-
nal from simplex interface
1/0 device with"opera-
tion" mask bit a one,
The significance of the
signal depends upon the
simplex interface device
and it will usually re-
quire a sense operation
to determine the condi-
tion.

6) Simplex interface *16
attention signal with
"'attention' mask bit a
one. The significance
of the signal depends upon
the simplex interface I/0
device.

T) 1401 attention signal
*17 with "'attention" mask
bit a one. The attention |

If the trap request occurs
during or immediately after
aprivileged*5 instruction,
the trap will be delayed
until after the completion
of the instruction following
the privileged instruction.

which the trap is
requested.

*12 if on, pre-
interrupt memory
protect trap will
be initiated to
turn it off.

transfer loca-
tions associated
with a specific
channel are
fixed and donot
change if physi-
cal remoteness
from CPU is
altered.

*15

(1) yields bit
17 Flag

(2) yields bit
16 flag

(3) yields *13
bit 15 flag
(4) yields bit
14 flag

(5) yields bit
12 flag

(6) yields bit
11 flag

(7) yields bit
10 flag

(8) yields bit
9 flag

(9) yields bit

8 flag

More than one
bit may be stored
if the trap exe-
cution is de-
layed long
enough to allow
multiple trap-
ping conditions
to occur on a
single channel.
Only the first
condition will
request a trap.

The instruction|

contained in
this location

mustbe anun- | mission will not be channel trap
conditional stopped in the event control was off
transfer to of a parity error or will be honored
maintx\iin7090/ redundancy check after execution
7094 compati- | with the "parity" of RCT.

bility. mask bit off. This The ENB instruc-

tion. This is notad-
visable however
because data trans-

will also make it
difficult to locate

TRAP TRAP TRAP STORE *8 TRANSFER *9 | DISABLING EFFECT | EFFECT MAY BE
PRIORITY NAME [REASON FOR TRAP WHEN TRAP CAN OCCUR | RESTRICTIONS LOCATION LOCATION OF TRAP NULLIFIED
physical re- Channell command completes, use. The exception to this 4) Appropriate The RCT instruc-
moteness B tapes complete a back is an attention request mask bit must be tion will allow the
from CPU. Channel| space or write end of which does not have to on for both the 00012*15 00013*14 Channel traps may mask bits specified|
Channel "A" A file or blank tape, or wait until the channel goes | channel and the also be blocked by in the last ENB
has the low- when the relays pick not in use. condition for The store and *14 an ENB O instruc- instruction to re-

tain control.

Any traprequest
received while

tion will permit
a trap request

after the error occurs.

the word in error occurring while
b the ch 1 h 1 trap
address counter will | control was off
continue to step to be honored

if the maskbit
for both the
channel and the
condition is

turned on by the
new ENBinstruc-

tion, even

though the prior
ENB instruction

did not specify
that mask bit.

The conditions

that will request
a trap can be re-
set by executing
the trap for that

channel or by

a RDCX instruc
tion (this will
reset all trap-
ping conditions
on the specified
channel).

signal is the result
of a KF instruction
on the 1401,

*5 Privileged instructions are:

RDS, PRD, SEN, WRS, PWR, WBT,

SUMMARY OF MASK BITS FOR CHAN TRAPS

8) Teleprocessing atten-
tion signal *17 from 1414|
IV or V I/O sync with
"attention' mask bit a
one, It indicates a mes-
sage is waiting or anout-

put buffer is empty.
9) Unit record interrupt
signal *17 with "unit
record'" mask bit a one.

CTR, ENB, RCT, ICT, XEC, SPM Channel Bit Position of ENB Instruction

*8 The core address of the instruc-

tion following the instruction being Operation | Parity | Attention | Unit Record
executed whén a trap request occurs E 31 13 4 N/A
will be stored in positions 21-35 of

the store location, in addition to D 32 1 5 N/A
any indicated flag bits. [o] 33 15 6 N/A

*9 The final operation during a B 34 16 7 N/A
trap consists of starting memory

with this address selected during A 35 d 8 8

I time.

It indicates the card
reader buffer is full, the
punch or printer buffer is}
empty or the paper tape
reader is full.

*13 Channel "A" end of file can-
not directly cause a trap, but will
induce an "operation' complete
"Trap.'" In this case bits will be
stored in positions 15 and 17 of
Location 00012,

*16 Overlapped Data channels
only

*17 Channel "A" only

*18 If the mast bit for redundancy
check or end of file is a one, the
respective TRCX or TEFX instruc-
tions will always be executed as no-
operations regardless of whether
the tested conditions exist.

FIGURE 84-3,

163

SECTION 7 - OPERATOR'S CONSOLE

GENERAL

The operator's console is mounted on the right end
(facing the wiring side) of the central processing
unit (CPU). It is divided into five panels, labeled A
through E from top to bottom.

In general, the operator's console contains the
pushbuttons (also called keys and switches) and
indicators that are provided as operator aids. An
understanding of the console and development of its
use will prove a valuable troubleshooting tool. This
chapter provides the data necessary to understand
the function of the various operator console switches
and the meaning of each operator console indicator.
Switches and indicators pertinent only to power are
not included in this section but are discussed in the
7040-7044 Power Supply manual. Only the push-
buttons and indicators associated with CPU and
channel functions are described in this chapter.

Figure 85 shows the physical arrangement of all
the operator console pushbuttons and indicators.
Although not shown, a console printer (commonly
known as the output typewriter) is mounted on a
table below the operator's console. The output
typewriter is, as the name implies, an output
device. Operation of this device falls within the
realm of I-O operations and is therefore not included
in this chapter. Refer to the Channel A instruction
manual for typewriter operation.

SWITCHES AND FUNCTIONS

Channel Bit Density Switches

Five switches allow the operator to select the tape
bit density for each of the five I-O channels
(channels A-E).

Each switch is a 3-position switch with positions
labeled (Figure 85) as follows:

1. 556
200
2. 800
200
3. 800
556

The two numbers on each position indicate the high
density and the low density possible for each channel.
The operator sets the applicable switch to one of the
three available character density positions at the
operator's console. This action is a broad selection
which reduces the overall choice to one of two possible
character densities. The final selection is made at
the tape unit. The operator selects high or low
density on the tape unit. Assume that the channel

164

A CHANNEL BIT DENSITY switch is in the 556/220
position. The tape units connected to channel A
record characters per inch as either 556 or 220. The
switch setting on the tape unit determines the final
selection; that is, the actual character density used
in a given operation is determined by the setting of
the high-low density switch on the tape unit. It is
therefore possible to have several tape units on 556
and the remaining tape units on 200 characters per
inch on channel A.

The character density per inch also depends on the
tape unit model used with the 7040-7044 system.
The tape unit models and the character density
capabilities are as follows:

Tape Unit Model Character Density

729 1I 200 556
729 IV 200 556
729 'V 200 556 800
729 VI 200 556 800
7330 I 200 556
7330 1I 200 556 800

Storage Clock Switch

The STORAGE CLOCK switch (also commonly known
as the Interval Timer switch) applies only to the
interval timer; it has no relationship to the timing
generation circuits sometimes referred to as the
"clock'". Since a timer satisfies the same functions
as a clock, and since the timer, in this case, is
contained in core storage location 00005, the name
of the STORAGE CLOCK switch is appropriate.

When the STORAGE CLOCK switch is in the ON
position, storage location 5 is incremented auto-
matically 60 times each second. The clock is
stopped when the STORAGE CLOCK switch is in the
OFF position. The STORAGE CLOCK switch must
be in the OFF position when the SINGLE STEP or
MULTIPLE STEP key is being used in either the
cycle or pulse mode. The STORAGE CLOCK switch
must also be in the OFF position when the DISPLAY
STORAGE key is in use, or the data displayed in the
storage register will be destroyed.

Entry Switches

There are two banks of entry switches. The first is
an 8 x 5 matrix of switches allowing the operator to
select a location in core storage in octal. The outputs
from these switches are gated to the address register.
The second bank is an 8 x 12 matrix of switches

enabling the operator to insert a word in the machine,
using its octal configuration. This bank is subdivided
into sign, instruction, tag, and address. When enter-
ing a word in core storage, proceed as follows:

1

29!30 31 32 r33 34 35'

1

— — —

M
J
—J L
r1r
S S)
P —
L1 L
L

1
|
|

.
1
[

L4 L
—

Tally Counter

|
|

S ROy B
LI L
Index C

Index B

L1
-

1
1

]
|

_.___.._...__I_JLJn_»_

I U O B
e T e T T S

25 2627 28

L
It rrir

-

18
it
i
10
il

il

L

[2 22 23]24 25 227 28 29[30 31 32]33 3¢ 35

(2022 2324 25 26[27 28 29[30 31 32 [33 34 35]

LJ L
LJ L)
—J LJ
7
LJLd

|
]

OROEEEOE
00000000,
WOOOOOOOO
0/0]0/0/0/0/0]0,

OEOEEEOE

OLOEOEEOG
00000000
WOOOOOOOO
00000000

00000000

0[2n 22 23]24 25 26[27 B 29T30 EEEIEIENE

20[21 22

19 20l21 22 23|24 25 2 I27 28 29T30 3 32|33 34 35'

il
(]

i

Off

LICIOCCCCICIC]

Normal Power

ulator

1718 19

Storage
MQ

Cycle Time
Clock Pulses

Accumi

]
1

800

556

i QEOEOE

—
L

800
200
®

©800 556 g®¢ 800 556 @800 556 ¢® @800 556 %@

556 200

]

1
1

5]6 7 8[9 10 n[12 13 14[15 16 17]18 19

noooodog

556 200
Shift Counter

67 8 9 [lo nfi213 415 16

1

200

iz 13 a5 e 17[8

556 200 (©) 556 200 (©)
.'3;:': Step Mode Cycle

On Inst

ity

| Position Reg

T
(W —

Disconn

1M1

S S [N I S
I -

800
200

Channel Bit Dens

1

B C D E|F 14 15 16 17|

S
(00000000

800
200
(@]

i

Houoonuubn

4 56 7 89 10 112 13 14]15 16 17]18 19 20|21 22 23 [24 25 26]27 28 2930 31 32 | 33 34 35

ster Power
Connect
tion

ruc

lock

orage Cl
O

= Tl
Inst

]’—‘
L

]_—1
L

2 [3
—

800
200
(N S

23] 24 25 2] 27 28 29[3 31 32[33 34 3|

200
St @

556 @®

-
—

U

2 3[4 5

[23 4

1

[

L
Bl[PIf 213 4 s]e 7 s[5 10

0

[Channel in Use 4L Channel Chk

(O
1l

Thermal Light
[2 22

1000

(]
[
|

OO0OOOO0O
0/0]00/0/0/0]0)
0/0]0/0/00/0]0;
MOOOOOOOO

celeeleelee)

QECREBGE

165

FIGURE 85, OPERATOR'S CONSOLE PANEL

1. Place octal representation of location in core
storage to be referenced in location bank.
2. DPlace octal representation of actual word to be
entered in word bank.
3. Depress ENTER STORAGE key (with the
computer in MANUAL status).
When the ENTER STORAGE key is pressed, the word
in the word bank is automatically stored in the core
storage location as specified in the location bank.
The switches that use the location bank and the
word bank are as follows:
1. LOCATION BANK switches
a. ENTER STORAGE
b. DISPLAY STORAGE
2. WORD BANK switches
a. CONT ENTER INST
b. ENTER STORAGE
c. ENTER INST
d. LOAD
The operation of these switches is discussed in this
section. Refer to the portion that discusses the
individual key to show how the LOCATION BANK and
WORD BANK switches are used.

Any-Key Pulse Generation

Depressing any of the keys that perform a logical
operation generates an any-key pulse. This pulse is
necessary to control the execution of the desired
operation. Figure 86 is a simplified diagram of the
generation of the 3-usec any-key pulse.

Activating a key conditions ~AND 4A, thereby
triggering a single shot (SS), 3A. The 30-ms
negative pulse is inverted by -OR 2A. The positive-
going pulse from -OR 2A triggers single-shot 2B.
The output of single-shot 2B is then sent out as an
any-key pulse. In addition to the any-key pulse, an
auto-any-key and auto-A2-D1 or manual-control-A1l-
D1 pulses are generated. These pulses depend on the
setting of the AUTOMATIC switch.

Depressing the SINGLE STEP key generates the
any-key pulse as explained above. A step pulse is
generated if the program-stop trigger is off. Since
the program-stop trigger is set by an HPR instruc-
tion, it is impossible to use the SINGLE STEP and
MULTIPLE STEP keys after an HPR instruction
without resetting the program-stop trigger.

The MULTIPLE STEP key allows instruction
execution, single cycles, or pulses to be generated
at a slow rate. The any-key pulse is generated
every 50 ms, starting another instruction cycle,
single cycle, or single-pulse cycle. If the
MULTIPLE STEP key is depressed and held, the
initial any-key pulse is generated as explained.
Depressing the MULTIPLE STEP key triggers single-
shot 3E. After 25 ms, single-shot 1F is triggered.

166

The output of single-shot 1F goes positive 25 ms
later, conditioning AND 5F. The output of the AND
is a positive-going pulse, which again triggers SS
3E. This cycle (50 ms in duration) is continued until
the MULTIPLE STEP key is released. The output of
SS 3E triggers SS 2B via-OR 2A. The any-key pulse
is therefore generated every 50 ms.

The MULTIPLE STEP and SINGLE STEP keys as
operations are discussed later in this section.

Automatic-Manual Status

The AUTOMATIC switch is a dual-acting pushbutton
used to put the computer in automatic or manual
status. Moving this switch to the OFF position stops
the CPU after it has completed the instruction being
processed. If a channel is in use, the computer
continues to execute instructions and remains in the
automatic status until all channels have been dis-
connected. When the CPU stops, the machine is in
true manual status. If the interval timer switch is
on, the interval timer continues to function.

Figure 87 shows how the computer is switched to
manual status. When the AUTOMATIC switch is
placed in the manual position, one leg of AND 2C is
conditioned. If the I-O interlock switch is on or if
no channels are in use, the AND condition is met.
The next I1D2 pulse sets the master-stop trigger.
The setting of this trigger stops all logical computer
operations. The machine is now in true manual
status.

When the AUTOMA TIC switch is in the automatic
position, it is necessary to prevent the use of certain
switches. The switches that are operative in the
automatic status are as follows:

1. CLEAR

2. RESET

3. CONT ENTER INST (single step is operational
with this switch on)

4, START

5. LOAD
The switches that are operative in manual status are
as follows:

RESET

CONT ENTER INST

START (clears the program-stop trigger only).
SINGLE STEP

MULTIPLE STEP

DISPLAY STORAGE

ENTER STORAGE

ENTER INST

LOAD

© O =N O WN

-8
ANY KEY _

30 MSEC 3 USEC
. ss ss ANY KEY
- T -0
s
20 MSEC
A AUTO ANY KEY
- —] — 1
$s A 3A 24 28
AUTO SWITCH
5D 48 1E
25 MSEC 25 MSEC
- A MANUAL CONTROL
A §s §8 TRUE MANUAL Al DI
STOP TGR
Al DI
5F 3E IF 3G
-
_A AUTO A2D1
MULTIPLE STEP KEY — -
0 TRUE MANUAL
A2D1
SINGLE STEP KEY H
3H
STEP
— -A
PROG STOP TGR '
1
NOTE:
LOGIC 02.14,01.1
FIGURE 86. ANY-KEY PULSE GENERATION
AUTOMATIC SWITCH IN MANUAL
CHANNEL NOT IN USE
0 A
1/O INTERLOCK SWITCH ON ac x TRUE MANUAL
A
02.14.06.1 02,14,06.1 ST
MASTER

LAST TGR STOP

| EARLY

A1 D2 5 ON STOPS COMPUTER

OPERATIONS
02.14.05.1
OFF

FIGURE 87. AUTOMATIC-MANUAL OPERATION

02.14,05.1

167

1-0 Interlock Control Switch

The I-O interlock control switch is used in con-
junction with the AUTOMATIC switch to help locate
I-O troubles. The I-O INTLK control switch push-
button light is normally off. The light is on when
the I-O interlock switch is on.

If an I-O unit is selected with the I-O interlock
switch off, system operation reverts to automatic
status until the channel is no longer in use, even
though the AUTOMATIC switch is in the manual
position. When a unit is selected, the channel-in-
use level will decondition AND 2C (Figure 87),
resulting in an automatic status until the channel
is no longer being used. The machine then returns
to manual status.

If the I-0O interlock control switch is on and the
machine is in manual mode when an I-O unit is
selected, the machine executes the select instruction
and remains in manual status (Figure 87). The I-O
interlock control switch overrides the channel-in-use
level. Therefore, AND 2C remains conditioned,
maintaining the true-manual level.

START Key Operation

Depressing the START key continues calculation at
high speed. The START key continues the program
only when the computer is in automatic status.
Figure 88 is a simplified diagram of the function of
the START key. Note that the program-stop trigger
is set only on an HPR instruction. Setting the start
trigger resets the program-stop trigger. When the
START key is activated, the start trigger is set and
the program-stop trigger is reset in either auto-
matic or manual status. At A5 D1 time, the start
trigger is reset. The START key must be depressed
before the SINGLE STEP or MULTIPLE STEP key
can be operated if the HPR instruction is executed
and the computer is then placed in manual status.

When the computer is in automatic status, setting
the start trigger allows the start-machine level to
reset the master-stop trigger at A4 D2 time (Figure
88). The master-stop trigger allows the computer to
perform the logical operations necessary in executing
instructions.

Continuous Enter-Instruction Operation

The CONT ENTER-INST key is a dual-acting push-
button. Operating this key forces the system to
continuously execute the instruction set in the word
bank. Figure 88 shows the function of this switch.
An AND (2D) is conditioned during every I early
cycle. When this AND is conditioned, the following
occurs, which is not common during a normal I
cycle:

168

1. Stepping of the instruction counter is inhibited.

2. Transfer of the memory data register to the
storage bus is inhibited.

3. Operator's keys are transferred to the storage
bus.
The data that is routed to the storage bus is sent to
the program register. Execution of the instruction
is the same as though it was taken from core storage.
The CONT ENTER-INST key is valuable in trouble-
shooting because it provides an easy way to scope
the operation of a particular instruction. This
button is lighted when in the continuous-enter instruc-
tion mode. The continuous-enter instruction function
may also be used in manual status with the SINGLE
STEP and MULTIPLE STEP keys.

RESET Key Operation

The RESET key is operative in both automatic and
manual status. This key resets all registers and
indicators in the logical section of the CPU and all
channels but does not affect core storage. Figure
89 is a flow diagram of the reset and clear functions.

Depressing the RESET key sets the reset II trigger
at A3 D1 time. Setting the reset II trigger sends a
reset level throughout the CPU and to all I-O
channels. The next A2 D1 pulse resets the reset II
trigger. The computer is stopped, and further
action must be taken by the operator.

Several degrees of resets are used in the 7040~
7044 system. In general, the various levels of
resets may be grouped. Following is a list of the
resets, what can cause them, and what is reset
(logic 04. 14.07. 1):

1. Interlock Reset (Power-On Reset; Reset, Load,
or Clear Key)

a. Reset or Cleared: All Channels (same
action as RDCA-E)
Program Register (both)
Shift Counter
Position Register
Address Register
Tag Register
SR C Bit
IA Trigger
PRE-IA Trigger
Channel Trap Control
Pulse-Mode Trigger
Program-Reset Trigger
Program-Stop Trigger

b. Set or Turned On:

End OP

Master-Stop Trigger
Trap-Control Trigger
Parity Mode
Carriage-Return
trigger (typewriter)

HPR
A
| LATE PROG STOP
AOD1 INHIBITS USING THE
— ON MULTIPLE STEP AND
START TGR o SINGLE STEP KEYS
02.14.06.1
OFF
START KEY 02140001
A .
START
MASTER STOP
ANY KEY © on R
ON STOPS COMPUTER
02.14.02.1] [OPERATIONS
A4 D2 E—
ASD1 OFF START
3l MACHINE OFF
02.14,02,1 02.14.02.1
AUTOMATIC SWITCH 02.14.05
IN AUTOMATIC
INHIBIT STEP IC
02.12.36
CONTINUOUS ENTRY
SWITCH A
A5D2
1 EARLY 20 INHIBIT MDR TO SB
02.12.43.1 & 02,12.44,1
02.12.41.1

FIGURE 88. START AND CONTINUOUS ENTER INSTRUCTION OPERATION

OPK TO SB

169

CLEAR RESET

YES. AUTO? NO

PUSH CLR BUTTON
02.14.04 (4C) DEPRESS RESET PB
SET CLR TGR SET RESET | TGR
02.14.04. (3E) 02.14.04 (4C)
RESET CPU CLOCK BLOCK C CYCLES SET RESET Il TGR
FOR'800 NS DURATION CLR TGR B3(DN+ YN
02.14.06.(3A) 02.16.51 (4G) 02.14.04 (3C)
RESET MASTER BLOCK ALL TRAPS RESET RESET | TGR NEXT COMP, INTLK AND
STOP TGR DURATION CLR TGR A1(D1) CHANNEL RESET
A4(D2) 02.13.01 (5A) 02.14.04 (5A) 02.14.07
02.14.05 (4E) 02.13.04 (5A) |
g 02.,13,05 (5B)
RESET RESET Il TGR
A2(D1)
2,14, D
RESET BLOCK TGR 02.14.04 (30)
A5(D1)
02.15.39 (5D)
| TIME
02.15.35 (11) I
(FROM INTLK RESET)
CLEAR SB TO MDR
E2(D1)
02.,12.50 (2A)
BLOCK DECODING STR VES
DURATION CLR TGR [
02.04.00 (4H)
STEP IC
E3(D1)* .SET IC OV TGR
E3 D1*
02.12.36 (4C
“o 02.14.20(4E)
BLOCK STEP IC
14(D1)
02.12.36 (4A)
/ \ YES
[NO IC OVERFLOW?
IC TO-AR N/
925(?2])34 (3H) SET MASTER STOP TGR END OP
i E4(D1) E4(D1)
02.14,05 (5H) 02.12.35 (28B)
E TIME I
02.15.34 (3A-C) SET BLOCK TGR RESET CLR TGR RESET IC OV TGR
E5(D1) A1(D1) 11D1*
02.15.39 (4C) 02, 14.04 (5E) .02.14.20(2E)
FORCE STORE CYCLE
EI(D1)
02.12.50 (4E)

FIGURE 89. CLEAR AND RESET CONTROLS

170

2. Computer Reset (Power-On Reset; Reset or
Clear Key)
Reset or Cleared: Storage Register
Accumulator
XRX
XRA, XRB, XRC
Instruction Counter
MQ Register
Div-Check Trigger
I0-Check Trigger
AC-OV Trigger
Partial-Store Trigger
Load Trigger
Load Z Trigger
Master C Trigger
C-Cycle-Request Trigger
Early C Request Trigger
Memory Protect Mode
All Trap Latches
All Trap Request Latches
Blast Control Latch
Floating-Point Condition
Latches

CLEAR Key Operation

With the computer in automatic status, activating
the CLEAR key sets all areas of core storage to
zero and resets all registers and controls in the
CPU and channels. The CLEAR key is inoperative
in manual status (Figure 89).

As shown in Figure 89, the reset trigger is set
when the CLEAR key is depressed, generating the
reset levels. In addition to the reset trigger being
set, the clear trigger is set. The clear trigger
controls the clearing of core storage.

When the clear trigger is set, an 800 NS single
shot is fired, resetting the clock timing ring. The
reset trigger is reset by clock ring pulse A2 D1.
At A4 D2 time, the master-stop trigger is reset.
At A5 D1 time, the block trigger is reset. The
computer will now begin an I cycle. At the end of
the I cycle, an E cycle is started with the AR
cleared. During E time, 0's are stored in location
00000 of core storage (logic 02.12,50.1). At E3 D1
time, the instruction counter is stepped. The next
A5 D1 pulse transfers the contents of the instruction
counter to the address register (00001). Zeros are
then stored in location 00001. The machine will
continue performing E cycles and storing zeros in
each address of core storage.

When instruction counter overflow occurs, the
end-operation trigger is set, which, in turn, allows
setting of the master I trigger. The instruction
counter overflow sets the master-stop trigger, and
the next A1 D1 pulse resets the clear trigger. All
core storage locations now contain 0's.

Storage Test and Parity Check Controls

Two switches are provided for use by Customer
Engineers in diagnosing memory problems:
storage-test and stop-on-storage-test-parity. These
switches are located on a subpanel behind the main
operator's station.

Storage-Test Switch

This on-off toggle switch controls the operation of
memory test circuits. With this switch on, the
ENTER STORAGE key causes the word set in the
word bank of the entry switches to be consecutively
stored in every position of core storage until the
switch is turned off or a reset occurs. The DISPLAY
STORAGE key causes consecutive locations to be read
out of core storage and checked for proper parity
until the switch is turned off or a reset occurs.

Stop-on-Storage-Test-Parity Switch

This on-off toggle switch is active only when the
storage-test switch is on. If the stop-on-storage-
test-parity switch is on and a parity error is detected
during the "display storage' function, the word in
error is displayed in the storage register and the
"word in error' location plus 1 is displayed in the
instruction counter. The "display storage' function
terminates when a parity error is detected.

Enter Storage Operation

If the ENTER STORAGE key is depressed and the
CPU is in manual status, the contents of the word
bank entry keys are stored in core storage at the
address specified in the location bank. If the
computer is in automatic status, no operation is
performed if the ENTER STORAGE key is depressed.

Figure 90 is a flow diagram of the sequence of
events that occur when the ENTER STORAGE key is
activated. Note that, if the storage-test switch is
on, all locations in core storage will contain the
data from the word bank.

Display Storage Operation

Figure 91 shows the sequence of events that occur
after the DISPLAY STORAGE key is activated with
the computer in MANUAL status and the various
memory test functions.

The contents of one location may be displayed in
the storage register, or all locations in core storage
may be read out and checked for correct parity. If
the storage-test switch is off, the location specified
in the location bank is read out of core storage and
displayed in the storage register. If the storage-

171

DEPRESS ENTER
STORAGE KEY
02.14,03.1 (5C)

_1

RESET LAST TGR
ANY KEY PULSE
02.14.04.1 (4G)

NO / MANUAL \ YEs
\ CONTROL? / |

NO OPERATION SET ENTER STORAGE TGR
PERFORMED A0 (D1)

02.14.03.1 (3C)

BLOCK DECODING]
STR INST ESET MASTER STOP TGR
02.04.00.1 (4G) BLOCK PTY TRAP R
AND BLAST A4 (D2)
02.13.01.1 (5A) 02.14.05.1 (4F) -
02.13.04.1 (5A) RESET BLOCK TGR

A5 DI

BLOCK SB TO PR .02.15.39 (5D)

13 (D2)
02.12.32.1 (4F) 1 TIME
SET LAST TGR
14 (D1)
02.14.04.1 (4F)
NOo /7 STORAGE TeST YES
| \ SWON? / | |
ADDRESS KEYS TO AR IC TO AR
15 (D1) A5 (D1)
02.12.35.1 (4E) 02.12.34.1 (3H)
E TIME E TIME
02,15.34.1 (3A) 02.15.34.1 (3C, 4A)
OPK TO SB STEP IC
E EARLY E3(D1)
02.12.41.1 (3C) 02.12,36.1 (4C)

SET STORE CYCLE TGR
Al (D1)
02.12.50.1 (4E)

SB TO MDR
r_— A2 (D1)
02.12.50.1 (2
END OP 2
E3 (D1)
02.15.35.1 (2H)
NO STORAGE TEST _ \ YES
SW ON ?
1 TIME
SET MASTER STOP TGR BLOCK SETTING
n (D2) | LATE TGR
02.14,05.1 (48)
RESET ENT STOR TGR SET BLOCK TGR
15 (D1) 15 DI
02.14.03.1 (3D) .02.15.39 (4C)

OPERATOR KEY
DATA STORED IN

STORAGE

FIGURE 90. ENTER STORAGE

172

DEPRESS DISPLAY
STORAGE KEY
02,14.03.1 (5A)

No /

\ YES

MANUAL

RESET LAST TGR

YES

YES

[\ CONTROL? /'] ANY KEY PULSE
02.14,04.1 (4G)
NO OPERATIONS SET DISPLAY
(PERFORMED) STORAGE TGR
A0 (D1)
02,14,03,1
PN
I i
BLOCK DECODING STR RESET MASTER BLOCK PTY TRAP
02.04.00. 1(4G) STOP TGR AND BLAST
RESET BLOCK TGR A4 (D2) 02.13.01.1 (5A)
‘[5 (D1) 02,14.05.1 (4F) 02.13.04.1 (5A)
02.15.39 (5D) _q
BLOCK SB TO PR
13 (D2
02.12.)32.1 (4F) I TIME
T .
b |
NO /' STORAGE TEST \ YES SET LAST TGR
\ SWON? / 14 (D1)
02,14.04.1 (4F)
|
ADDRESS KEYS TO-AR IC TO AR
15(D1) A5 (D1)
02.12.35.1 (4E) 02,12.34.1 (3H)
I]
E TIME E TIME
02.15.34.1 (3A) 02.15.34.1 (3C, 3A)
]
SB TO SR 1
E3(D1) SB TO SR STEP IC
02.12.01.1 (4C, 4F) E3(D1) E3 (D1)
02,12.01.1 (4C, 4F) 02.12.36,1 (4C)

STOP ON

NO

STORAGE TEST
PARITY SW ON?

NO

END OP END OP
E4 (D1) E4(D1)
02,15,35,1 (2H) 02.15,35.1 (2F)
L N]
| TIME
1

SET MASTER STOP TGR
11(D2)

02,14.05.1 (4B)

BLOCKS SETTING
I LATE TGR

r

\ ¢ PARITY ERROR?).

RESET DISPLAY
STORAGE TGR
15(01)
02.14,03.1 (38)

SET BLOCK TGR
JI5 (D1)
02. 15, 39 (4C)

/ storace \ ye
NO CLOCK SW YES

MEMORY DATA
DISPLAYED IN SR

)

FIGURE 91.

DISPLAY STORAGE

\ ON? /

MEMORY DATA IS
DESTROYED IN SR
BECAUSE THE STORAGE

CLOCK IS INCREMENTED

60 TIMES EACH SECOND

test switch is off, the location specified in the
location bank is read out of core storage and dis-
played in the storage register. If the storage-test
switch is on, all locations of storage are read and
checked for correct parity. If a parity error occurs
and if the check switch is on, the computer will stop.
The storage register will contain the word in error,
and the error location plus 1 will be displayed in the
instruction counter. When activating the DISPLAY
STORAGE key, turn off the INTERVAL TIMER switch
to prevent destroying the contents of the storage
register,

Enter Instruction Operation

To execute an instruction contained in the instruction
word bank, the computer must be in manual status
and the ENTER INSTRUCTION key depressed.

Figure 92 is a flow diagram of the logical operations
performed when this key is activated. Activating

the ENTER INSTRUCTION key causes one instruction
to be executed.

LOAD Key Operation

The LOAD key is normally active in automatic status
when the CPU is stopped and no channels are in
operation. If the LOAD key is depressed when in
manual status and an instruction is being executed,
the instruction is completed before an interlock
reset then occurs.

Depressing the LOAD key in automatic status
results in transferring the instruction in the word
bank to the program register and decoding the
instruction. If the instruction is a Read Select or a
Write Select, a control word (IORD) with infinite
word count and with an address of 00100 is loaded in
the selected channel, and a read or write operation
is performed. When an end of record is received
from the selected channel and the channel-in-use
trigger is reset, the computer transfers to location
00101 and proceeds from there.

If the instruction in the word bank is not a select
instruction, the final results may be erroneous;
therefore, any instruction other than a select
instruction is considered illegal when the LOAD key
is involved.

Figure 93 is a flow diagram of the operation of
the LOAD key. Assume that all conditions are met
for selecting a channel. Note that two instructions
are executed when activating the LOAD key. The
first instruction is a Read Select or a Write Select.
This instruction is taken from the word bank as
entered by the operator. The second instruction is
a Reset and Load Channel (RCHX). The channel may
be used for reading or writing. The ability to
perform a Write Select is desirable when the contents

174

of core storage must be saved for future reference.
Since an infinite word count is sent to the channel, a
write select to tapes requires manual intervention or
the tape will run off the end of the reel. In addition,
if a write select to interface 5 is given, data will be

~continuously sent to the 1401 Data Processing System

until manually disconnected.

Step Mode Selector Switch Functions

This 3-position rotary switch controls the mode of
operation when SINGLE STEP or MULTIPLE STEP
is depressed. The three positions are INST, CYCLE,
and PULSE. The first position (INST) is the normal
operating position, which provides for execution of

a single instruction at a time when SINGLE STEP is
used. The second (CYCLE) and third (PULSE)
positions are CE functions, which allow the operation
to be slowed down still further to observe details of
a single instruction. The SINGLE STEP key initiates
a machine cycle (I or E or L) with the STEP MODE
switch in the CYCLE mode and a single pulse with
the switch in the PULSE mode. These two positions
are inoperative when the STORAGE CLOCK switch

is on.

Single-Step and Multiple-Step Operations

The single-step and multiple-step operations enable
the operator, when the CPU is in manual status, to
proceed with the program either step by step or at a
slow automatic rate of speed. If an instruction is
executed which causes an I-O unit to be selected, the
computer operates in the automatic mode until the
I-O unit is disconnected. When the disconnect occurs,
the computer returns to manual status. The computer
should be placed in manual status and the START key
depressed before using the SINGLE STEP or
MULTIPLE STEP keys.

The differences between the SINGLE STEP and
MULTIPLE STEP keys are:

1. Single-step operation allows only one instruc-
tion cycle, one single cycle, or one single pulse.

2, Multiple-step operation allows an instruction
cycle, a single cycle, or a single pulse to occur
every 50 ms as long as the button is depressed.

The generation of the step pulse and the differences
stated are illustrated in Figure 86. The logical
operations performed by the SINGLE STEP and
MULTIPLE STEP keys depend on the setting of the
STEP MODE selector switch. Only the SINGLE
STEP key is referred to in explaining the operation
of thie three positions of the STEP MODE switch.

DEPRESS ENTER
INSTRUCTION KEY
02.14.03.1 (5E)

|

NO MANUAL YES RESET LAST TGR
CONTROL? ANY KEY PULSE

02.14,04.1 (4G)

NO OPERATIONS SET ENTER
PERFORMED INSTRUCTION TGR
A0 (D1)
02,14,03.1 (4E)
 —
RESET MASTER STOP TGR INHIBIT MDR TO SB
A4 (D2) 11 (D4)
RESET BLOCK TGR 02.14.05.1 (4F) 02.12.43.1
A5D1 S e— 02,12.44,1
02.15.39 (5D) *
| OPK TO SB
11 (D4)

02,12,41,1 (2D)

I TIME

l SB TO PR
13 (D2)

02,12.32.1 (4E)

EXECUTE INSTRUCTION SET LAST TGR
LOCATED IN 14D1
OPERATORS SWITCHES 02.14.04 (4F)
END OP INHIBIT STEP IC
02,15.35.1 14D1
02.12.36 (58)
1 EARLY

RESET ENTER

SET MASTER STOP TGR INSTRUCTION TGR

11 (D2) 15 (D1)

02.14.05.1 (48) 02.14.03.1 (4F)
INSTRUCTION IN OPERATOR iESL?"OCK TGR
INSTRUCTION SWITCHES COMPLETED 02.15.39 (40)

FIGURE 92. ENTER INSTRUCTION

02.14.04.1 (5H)

DEPRESS LOAD KEY

RESET LAST TGR
02.14.04.1 (4G)

YEs /~ automatic \ NO
] [\ STATUS?
no/ CHANNEL IN
USE® M STOP YES
TGR?

SET LOAD TGR
02.14,04,1(4H)

1
INTERLOCK RESET 100 TO AR
02,14,07.1 02.04.29.1 (2E)

RESET M STOP TGR
A4 (D2)
02,14.05.1

SET END OP TGR
02,15,35,1 (11)

|

SET PROGRAM
RESET TGR 02.14.20(4G)

l

RESET LOAD TGR
02.14.06 (26)

SET PROGRAM
RESET | TGR
A3DI 02.14.20 (3H)

INTERLOCK RESET
A3DI
02.14.07 (3E)

I

IC TO AR
RESET BLOCK TGR AIDI
5 (D1) %’j TO S8 02. 12.34(4F)
02.15,39.1 (5D) AR TO [C (100) 02.12.41.1(2D) I
11 (D7)
02.12.36.1 (3E) RESET PROG
T RESET | TGR
] A2DI - 02.14.20 (31)
START MEM BEGIN I TIME STEP IC (101) SB TO PR
A0(D1) A0(DT) 14 (D1) 13(D2) PERFORM RDS OR
02.12,30.1 (1C) 02.15.31.1 (4A) 02.12.36.1 (4A) 02.12,32.1 (4E) WRS INSTRUCTIONS BLOCK MDR TO $B
11(D4)
| .L _ | ll 02.12.43.1 (3C)
DECODE INST L TimE
1
CH END OP
SELECT
o\ INSTRUCTION? 03.10,03.1 OR
06.20.01
(ILLEGAL OPERATION) I * 1
CPU END OP
SHEET 2 OF 2 Mt 02.15.35.1
06.20 [.02(4A) —
|
hd

SET LOAD 2 TGR
L4e5(D1)
02.14.06,1 (4H)

|

IC TO AR (101)
L5(D1)
02.12,34,1 (4D)

| TIME
(MEMORY STARTED)

+

BLOCK MDR TO SB
11(D4)e LOAD TGR
02.12.43.1 (3C)

AR TO IC (101)
| 1D1*
02.12.36.1 (4D)

]

‘DURATION LOAD 2 TGR

BLOCK SB TO PR

02,12.32.1 (4F)

RESET PR
13(D1)

02.12.32.1 (5C)

BLOCK DECODING STR
DURATION LOAD 2 TGR
02.04.00.1 (4F)

FIGURE 93. LOAD KEY OPERATION (SHEET 1 OF 2)

176

{

BLOCK STEP IC

DURATION LOAD 2 TGR

02.12.36.1 (5B)

O

PULSE AC SHIFT CELLS 1 TO AC (29) + CAC 29***

AD TO AR
15(01) 15D1 15D1 OR
02.12,34,1 (4B) 02.14,07.1 (5H) 06.12.15 (2E)
E TIME ** RCH TO CHANNEL INHIBIT WC=0
02.15.34.1 (3A) D (CIU) LEVEL
T 02.14.07.1 (51) 02.02.38.1(3C) OR
06.12.15 (2D)
E(E,S(%T];'OAD TCR &f:ff’ﬁgRRECgR'NST CHANNEL "A" ACCUMULATED BYTE PARITY BLOCKED
02.14.06.1 (3G) FROM UNIT ON A WRITE OPERATION (03.30.07-4D)
CHANNEL DISC
Al (D1)
03.10.10.1 (4H) OR
06.20 | .12. (2E)
i;“(\g’]')"ﬂ END OP CPU END OP
03.10.03.1 (48) OR 02.15.35.1 (11)
06.20} .01
RESET CH IN IC TO AR
USE TGR A5 (DI))
03.10.02.1 (3G) OR 02.12.34,1 (4D)
06.20 .02 (4C)

| TIME

RESET LOAD 2 TGR
02,14,06.1 (51)

NEXT INSTRUCTION
FROM ADDRESS 00101

SR NOT TRANSFERRED TO AD DURING E TIME (02.12.08.1) *CAC 29 LOADED ONLY IF RDS IS DECODED.

NOTE:

IF AN INSTRUCTION OTHER THAN SELECT IS IN THE KEYS -----
THE INSTRUCTION WILL BE REPEATED CONTINOUSLY UNLESS IT HAS AN L CYCLE IN WHICH CASE A HANG CONDITION WILL OCCUR.

ADDRESS 100 1S LOGICALLY ADDED TO THE EFFECTIVE ADDRESS LOCATION DURING E CYCLES (100 IS FED TO AR AS LONG AS THE LOAD TRIGGER IS ON.)
TRANSFER OR SKIP INSTRUCTIONS WILL NOT TRANSFER OR SKIP.

PUSH RESET TO CLEAR LOAD TRIGGER.

FIGURE 93. LOAD KEY OPERATION (SHEET 2 OF 2)

Instruction Mode

Figure 94 is a flow diagram of the operation of the
Single Step instruction when in true-manual and in
instruction mode. Figure 95 is a simplified logic
diagram of the action that occurs when the STEP
key is depressed for an instruction cycle.

Assume that the STEP SELECTOR MODE switch
is in the INST position, the program-stop trigger is
reset, the computer is in manual status, and the
SINGLE STEP key is depressed (Figure 95). The
next A0 D1 pulse conditions AND 4A, setting the
single-instruction trigger. The last trigger is reset
by the any-key pulse and set by I late (logic 02. 14.
04.1). The master-stop trigger is then reset by the
A4 D2 pulse, and the instruction is executed. During
I time of the next instruction, an I1 D1 pulse sets
the master-stop trigger. No further instructions
are executed until the SINGLE STEP key is depressed
again. The single-instruction trigger is reset by
the next A5 D1 pulse.

The information in the internal registers may be
checked for accuracy. This provides a means of
troubleshooting machine malfunctions or isolating
a program error.

The clock ring is stepping and the CYCLE TIME
I indicator is on at the completion of the instruction.

Single-Cycle Mode

Figure 96 is a flow diagram of single-cycle operation
when the STEP key is depressed and the computer is
in true-manual and in cycle mode.

In the single-cycle mode, one I, or E, or L cycle
is executed each time the SINGLE STEP key is
activated. An instruction requiring I and E cycles
would require depressing the SINGLE STEP key
twice to complete the instruction.

The single-cycle mode of operation is illustrated
in Figure 95. Assume that the computer is in
manual status, the STEP SELECTOR MODE switch
is in cycle mode, the INTERVAL TIMER switch is
off, the program-stop trigger is reset, and the
SINGLE STEP key is activated. The next A2 D2
pulse conditions AND 4G, setting the single-cycle
trigger. At A4 D2 time, AND 4E is conditioned to
reset the master-stop trigger. The machine begins
executing the instruction. Since the machine is in
the cycle mode, AND 4A will be conditioned at I late,
E late, or L late, and A4 time for a duration of three
clock ring pulses. The output of AND 4A sets the
master-stop trigger. After setting the master-stop
trigger, the next Al D1 pulse resets the single-
cycle trigger (AND 5H). If the last cycle executed
was an I cycle, the next cycle will be an E cycle for
all instructions requiring an E cycle.

178

Single-Pulse Mode

In troubleshooting a machine failure, it is often
necessary to single-pulse through an instruction to
find the point at which the failure occurred. The
single-pulse mode allows only one clock ring pulse

to be sent to the CPU with each depression of the
SINGLE STEP key. Figure 97 is a flow diagram of
the single-pulse function when in pulse mode and in
true-manual and the STEP key is activated. In normal
operation, the shift cell (1C) is set, allowing the
clock ring to run continuously (Figure 98). When in
the single-pulse mode, the shift cell is reset (clock
gate down) and the oscillator pulses are blocked. The
only time that the clock gate is down and the clock
ring stopped is when the computer is in true-manual
and in pulse mode.

Assume that the computer is in manual status, the
INTERVAL TIMER switch is off, and the STEP MODE
switch is in the PULSE position. These conditions
satisfy AND's 5A and 5B (Figure 98). When the next
A3 D1 pulse occurs, the AND 3D conditions are met,
setting the pulse-mode latch. Setting this latch
resets the shift cell. Dropping the clock gate level
blocks the oscillator pulses, and the clock ring stops
stepping.

After the pulse-mode latch is set, and if the alpha-
late trigger is reset, the master-stop trigger is
reset. If a channel is put in use in pulse mode, the
computer reverts to automatic status until the channel
is no longer in use. The pulse mode latch is reset if
in AUTOMATIC, allowing the clock ring to step.
When the channel goes not in use, the true-manual
level is restored and will satisfy the AND (5A, 5B)
condition and revert to pulse mode, manual status.

Figure 99, A and B, shows the clock-gate control
conditions before and after depressing the STEP key.

The initial starting conditions of ~-OR's 5C and 4C
are (Figure 99, A) (1) -OR (5C), both inputs negative,
and (2) -OR (4C), both inputs positive. Two inputs to
AND 3C are conditioned at this time. As shown in
Figure 86, the step pulse is generated when the
SINGLE STEP key or the MULTIPLE STEP key is
activated. Note that the program-stop trigger must
be reset before these keys are activated (Figure 86).
When the step pulse is generated, AND 3C (Figure 99,
B) is conditioned. The output of AND 3C allows
setting the shift cell on the next master-oscillator
pulse. The out-of-phase output from the shift cell
allows one output pulse from the clock ring to be
distributed to the CPU. The in-phase output of the
shift cell is now negative. This negative output
causes the output of -OR 4C to go positive. The out-
put of -OR 5C then goes negative, deconditioning AND
3C. The shift cell is reset by the next master-
oscillator pulse. The circled polarities in Figure 99,
B, indicate circuit conditions after resetting the shift

cell and before dropping the step level. The two
-OR's (5C and 4C) and AND 3C return to the initial
starting conditions, and the clock gate is down,
inhibiting stepping the clock ring until the SINGLE
STEP key is again activated.

In normal operation, the memory-select pulse is
sent to memory at A0 D1 time and the address regis-
ter is sent to the memory address register at A0 D2
time. The memory-select pulse initiates a memory
cycle, which reads the data located in the specified
memory location. ,

In single-pulse mode, the timing of memory
selection occurs at the end of Al time but after the
SINGLE STEP key is activated for the A2 pulse.
During A0 time, the clock ring is stepped to Al.
Note that the clock ring levels are present at the
AND's even though the shift cell is reset. As shown
in Figure 98, an AND 1F condition is met at A1 D2
time, with the pulse-mode latch set and an any-
memory-cycle early level present. At this time,
the address register is transferred to the memory
address register. An Al D1 output from the clock
ring conditions one input to AND 4H, and the shift
cell is reset, conditioning a second input. Assume
that the any-memory-cycle early level (the third
input) to AND 4H is also present. When the AND
condition is met, the pulse-mode-beta-1D1-delayed
trigger is set. When the SINGLE STEP key is again
depressed to generate the A2 pulse, setting the shift
cell conditions AND 1G. This output generates the
select-memory pulse, initiating the memory cycle.
The clock ring is also stepped to A2 time, perform-
ing the logical functions that occur during A2 time.
The next master oscillator pulse conditions AND 3H,
resetting the pulse-mode-beta-1D1-delayed trigger.
The memory cycle is completed, and the data from
memory is available at the storage bus.

Sense Switches

Six sense switches are used as programmers' tools.
Each sense switch may be individually checked by a
Sense Switch Test (SWT) instruction. If the sense
switch is on, the computer skips the next instruction
and proceeds from there. If the sense switch is off,
the next sequential instruction is executed. The
sense switch feature allows certain program routines
to be bypassed or selected. (See the CPU Logic
Diagrams Manual for a flow diagram of the operation
of the SWT instruction.)

INDICATORS

The indicators on the operator's console are provi-
ded as operator and CE aids. These indicators
give valuable information, such as type of error,
contents of a register, location in error, and status

of computer. The purpose of this section is to give
the function of the various indicators and the turn-on
and turn-off conditions. The following lists the
purpose of registers, counters, timers, and power
indicators (the conditions that light the power indi-
cators are discussed in the 7040-7044 Power Supply
manual):

1. Internal Registers: The contents of the internal
registers (accumulator, multiplier-quotient (MQ),
storage register, instruction counter, address
register program register, position register, shift
counter, and index registers A, B, and C) are dis-
played directly on the panel.

2. Cycle Time: The cycle time indicators indi-
cate the cycle in which the machine is currently
operating, B, I, L, or E time; the status of alpha
and beta triggers is also indicated for a 7106 CPU.

3. Tally Counter: The tally counter differentiates
between the L cycles of a floating instruction and
provides gating for their different operational steps.
The tally counter is divided into two stages. The
indicators on the test panel indicate which of the two
steps the machine is currently operating. Positions
1 through 6 indicate the flow of a single-precision
floating point. Tally counters 10, 20, and 30, with
positions 1 through 6, indicate the flow of double-
precision floating point.

4. Clock Pulses: (A0 through A5): These indi-
cators indicate the state of the timing ring.

5. Storage Register C Bit: This indicator indi-
cates the 37th bit of the memory word. This bit
always makes the word parity odd.

6. M-Q Register C Bit: This indicator indicates
the word parity bit of an I-O word being transferred
between CPU and channel A,

7. Tag: These indicators indicate the index
register to be used for the instruction.

8. CB Thermal: The CB thermal light will be on
whenever a logic d-c supply circuit breaker trips,
or a thermal or air flow switch opens within the
basic machine.

9. Power-On: The NORMAL POWER-ON light
will come on whenever all power-up sequencing is
completed. If the power-on light does not come on
after a suitable delay, the operator should check the
power sequence indicators within the power distri-
bution unit.

10. Master Power Connect: This pushbutton will
be lit when the input service line power is connected
to the power sequencing control of the system. It
will be turned off when the MASTER POWER DISCONN
is depressed.

179

YES

YES

INST MODE?

-

TRUE MANUAL?

NO

NO OPERATION

DEPRESS STE “©Y ———t——s SINGLE OR MULTIPLE

RESET LAST TGR

SET SINGLE INST TGR
A0 (D1)
02,14.02 (4A)

RESET MASTER STOP TGR
A4 (D2)
02.14,05 (4F)

RESET BLOCK TGR
A5 (D1)
02.15.39 (5D)

¥

PERFORM INSTRUCTION
(A5 THRU 13 OF NEXT INST)

SET MASTER STOP TGR
11 (D2) o LAST TGR
02.14.05 (48)

SET BLOCK TGR
15(D1)
02,15.39 (4C)

50 MS EXPIRES YES
02.14.01 (3E)

-

FIGURE 94. STEP SINGLE INSTRUCTION

180

"RESET SINGLE INST TGR

MULT STEP?

02.14.04 (4G)

STOP TGR WILL PREVENT
SETTING | LATE TGR.PR

WILL NOT CHANGE AND
C WILL NOT STEP

** |AST TGR SET AT
14D1 OF INSTRUCTION

181

GENERATE ANY KEY PULSE (3USEC) EVERY 50 MSEC

MULT STEP KEY o
LAST TGR
A4D2
SINGLE STEP KEY A
3H
02,14.01.1
ANY KEY (3 USEC)
PROG STOP TGR STEP A
1
MASTER
AODI 02,14,01.1 SINGLE A STOP
INSTRUCTION MASTER STOP
ON
INST MODE
A 4A ON
02.14.02.1 S, -
4
OFF 02.14.05.1 OFF A
TRUE MANUAL
4C 02.14,02.1 02.14,05,1
02.14.02.1 .
A SINGLE
B — CYCLE ﬁ_‘—
STORAGE CLOCK SW ON "
A 02.14.05.1
A2D2 ON
4G -
A A
02.14,03.1 OFF
iNST MODE 4
02.14.03.1 02.14,05.1
. A4D2
PULSE MODE AlDL
4 oH
02.14.02.1 02.14.03.1
- AO
LAST TGR
| EARLY
A1D2
48
02.14.05.1
AO
LATEI+E+L
A1D3 .
1A
02.14,05.1 STEP LEVEL TO SINGLE PULSE CONTROLS

02,15.16.1

FIGURE 95. SINGLE INSTRUCTION AND SINGLE CYCLE OPERATION

YES

CYCLE MODE?
02.14.02 (4D)

YES

NO

TRUE MANUAL?

- 1

IT ON?

1

YES

NO OPERATION

DEPRESS STEP KEY —
02.14.01 (51)

—= SINGLE OR MULTIPLE

SET SINGLE CYCLE TGR
A2(D2)
02.14.03 (4G)

RESET MASTER STOP TGR
A4(D2)
02.14.05 (4E)

RESET BLOCK TGR
A5(DT1)

02.15.39 (5D)

TAKE CYCLE

A5 TO NEXT I, E,
ORL - A5 LATE

SET MASTER STOP TGR
A4(D3) I, E, OR L LATE
02.14.05 (4A)

SET BLOCK TGR
A5(D1)
02.15.39 (4C)

RESET SINGLE CYCLE TGR
A1(D1)
02.14.03 (5H)

50 MS EXPIRES YES

02,14.01 (3F)

FIGURE 96. STEP-SINGLE CYCLE

182

MULT STEP?

NO FINISHED

TRUE MANUAL?

-YES

CLOCK GATE

o}

A3D1?

[

DEPRESS STEP PB
02.15,16 (3C)

ON ?

B4D1 +74D]

PULSE MODE
LATCH ON?

SET MASTER STOP TGR
A4 D1
02.15.16 (4F)

RESET PULSE

02.15.16 (4D)

MODE LATCH
NOTE 5 A4 DI
WALIT 5 US 02.15.16 (4E)

SET PULSE MODE LATCH
02.15.16 (30)

TURN ON CLOCK GATE
02.15.16 (1C)

NOTE 1

TURN OFF CLOCK GATE
A3DI*
02.15.16 (2A)

TURN OFF CLOCK GATE
NEXT RAW OSC
02.15.16 (3C)

NO / BLOCK TGR OFF AND

YES

BID1?

7044 7040

TURN ON CLOCK GATE
02.15.16 (3B, 2A)

PULSE MODE
LATCH ON?

BLOCK MEM START AT
AOD1 DURATION TGR
02.12.50 (4A)

BLOCK MEM START AT
©0D1 DURATION OF
PULSE MODE TGR
02,12.50 (4A)

XPULSE MODE

- 1

84D1 + H4Dl

NOTE 3

MEM SEL
B2D (416NS)
02.15.16 (1G)

i

AR-MAR
B1D2
02.15.16 4G

L

02.15.16 (IF)

RESET MASTER; STOP TGR

NOTE 2

A5 D1
02.15.39 (5D)

RESET BLOCK TGR

FIGURE 97. STEP SINGLE PULSE

NOTE 1 - THE CLOCK IS STOPPED BEFORE THE STEP PB IS DEPRESSED
NOTE 2 - BLOCK TRIGGER IS NOT INITIALLY TURNED OFF IF AT&4D1

TO PREVENT STARTING MEMORY TWICE IN A SINGLE 'XB8%" MEMORY CYCLE.

NOTE 3 - SINCE A STORE CYCLE WILL TRANSFER SB TO MDR AT
B2D1, MEMORY CANNOT BE STARTED ANY EARLIER.
NOTE 4 - THE OBJECTIVE IS TO TURN THE CLOCK BACK ON AND SET
THE BLOCK TRIGGER IF MACHINE IS BROUGHT OUT OF
PULSE MODE. IF THE TIME IN THIS BLOCK WERE 4D1
MEMORY WOULD NOT BE STARTED DURING AN ENTIRE
"e{BT" MEMORY CYCLE. MEMORY PTY AND/OR STR TRAPS

WOULD RESULT.

NOTE 5 - ALLOWS MEMORY CYCLE TO COMPLETE

8T

TRUE MANUAL A3DI
A A
PULSE MODE
INTERVAL TIMER OFF MASTER OSC LATCH A
MASTER
PULSE MODE 5A ON STOP
3D
58
— — — — - IF ON
CHANNEL IN USE A 0 : - ON
OFF —
_ — A OFF
1/O INTERLOCK SWITCH
56 5D
I 4 02.14,05.1
> 1
4G
4
A4D1 A
ALPHA LATE 5 A
AID2
. AR TO MAR
I l PULSE MODE
-0 -0
— CLOCK GATE
¢ 4C A s¢ +B WHEN SET)
gL '
+B STEP
. 3c MASTER OSC 1c A PULSE MODE
BETA 1DI
DELAYED
= 16 MEM SEL
oN (PULSE MODE)
ANY MEMORY 4H
CYCLE EARLY
* NO FUNCTIONAL PUSHBUTTONS A2D2 A
ARE BEING DEPRESSED OFF
NOTE:
LOGIC 02,15,16,1 EXCEPT MASTER
WHERE SHOWN UNDER THE osc 3H
LOG IC BLOCK

FIGURE 98. SINGLE PULSE OPERATION

+B OK PULSE MODE

+

+A

RAW OSC

SC

+B CLOCK GATE .

A. CLOCK GATE BEFORE DEPRESSING STEP

+A

RAW OSC

+B CLOCK GATE

©)

4B STEP + +
pLICIL S W——
~0 *
D) :
+B OK PULSE MODE
n
T
O +
® ©
+B STEP + +
—_—— —e
-0

B. CLOCK GATE AFTER DEPRESSING STEP

FIGURE 99, CLOCK GATE CONTROL

NOTE:

CIRCLED POLARITIES AS A
RESULT OF THE FIRST RAW
OSCILLATOR PULSE
FOLLOWING DEPRESSION
OF STEP

185

APPENDIX A: TIMING CHARTS

Timing charts of the Basic Cycles, Trapping, and
Manual (Console) Operations are included here.
The figure number and names of these charts are
as follows:

Figure No.
Basic Cycles
Master I (7044) A1
Instruction Cycle A 2
Master E (7044) A 3
Master L (7040 and 7044) A 4
I, E, L Cycles (7040 - 2 Cycles) A 5
I, E, L Cycles (7044 - 3 Cycles) A 6
B Cycle A7
C Cycle A 8
Indirect Addressing A9
Trapping
IT Blast Trap A 10
Parity Trap A1l
Floating Point Trapping A 12
IT Overflow Trap A 13
Memory Protect Violation A 14
Redundancy Trap (Overlap Channel) A 15
Disconnect Trap (Overlap Chanel) A 16
Manual (Console) Operations
Any Key and Multiple Step Key
Pulse Generation A 17
Display Storage A 18
Enter Storage A 19
Load Key Operation A 20
Single Instruction A 21
Single + Multiple Cycle A 22
Single Pulse Mode Control A 23
Step Single Pulse (7044) A 24

186

MASTER |

AolA1{A2|A3|A4{As| Ao At|A2{A3|AalAs{Ao|AI|A2(A3|A4{As|Ac|A1|A2|A3{A4a|As|A0|AI[A2|A3|A4|As[A0|Al |[A2|A3|Aa|As|Ao|AI|A2|A3|As|AS
a ’ B af
A EARL
LATE
B (ale ed ng Fyc e)
MASTER |
ENID OP ENID DP|T | learly * Cylcle| af B
T A RRhIck \ (02.15.39.1)
A415 01 A20 7040
cqn He r¢set| at this time by
MASTER 1{(02.15.30. 1) MASTERE of MASTER |L
A5D 1] (02.15].33.1)
A3D1
- UATE] = QEARLY
B UATE]
A2D24 a LATE
A
/A5ﬂ)]
A3D1 | B EARLY
A%D2 8 LATE
A2D 1
MASTER I
B EARLY-
ﬂqof MAST! R(:—-X LEARLY] (02.15.3].1
N¢t Block TGR ¢r |~
B Qy
LATE o s
|~ 2.15.30.1
ApD3~] \~A2D1
Cygle|l
elplopt |END @P IGH edrly
ARD
Ad.5D1
MJASTER [E
a5 1| IMASTER ||
17T , o MASTER |
A i MJASTER |L 7004
Not Master 2 § | 1 BARLY || EARLY imjmediiately|with MASITER] I
Not Blogk TGRx
‘LATE -AZD1
A2D2

FIGURE A1. MASTER | (7044)

R af o 8 @B
. - N
{
N %
Enliob - : Ehd ¢p thr K02}15}39 | bl AdD 1
A4-5D1
L
Enl op tgr* Mastef | | (02.15.3D) N N
A>T 7| Mester E|+
) Master | 1garly (D2.]15.81)) | .
Blea ly . L
F]
| garly I Igte | (02.15.30)
A2D2] .
R
1+ B+ 1 lafe* ICHAR 1(02.12.34
.A.5_R] o
Not fragpirig* T\ |
End bp for* NN 1G— AR délayed | (02.12.38
Not XEC * ;2 -t e |)
Not [XFdr | 1ot
IC-|AR Reget AR {(02[.12.35 12
- et
Master I sellect (02.]5.33)
Alatk* Blafe Al
mem seject - mem selegt (02412} 50]
agarly - AOQ T = g
taster | - AR-MAR |(02.12.50) %
v eprly+ ADD2)

I egrly-AIDIf |ARFIC| (02.1p.3) |

Enq of tof* p—
XEC- tapping

SEYIC| (0.1
D
Read® MPR-+-#SB (0?.h W43) Master B
early[AQD1] afearly
\ QR
I kater Reget PR (02.112,32' N LS &1
AJDY| | - i e H

lates | |SB{—etPR| (O.10.3p)
ABD

bR opldefoder [(02.04.00/0B) |1 latef

ot S¢T thg reg | (02.04.20

SR {(02.12.01)

cpe| |sed SRl (o2.15.20)

Sp—sR | ™)
- AT
| {lat- Stdp I€ (02} 12}36) _I§
AfDT- | = A1
XEC1TS
1 late SR|—AD |(02].12,.08)
AlD3
1 latee | [XRl—PAD ((02].12,13
A4D3
ndex imst ‘
1 Hlate - AD —+AR |(02[.12.34
ABD1- .
AQ—pAR Eet AR [(02].12]35
Pod 71 | ADI—aSC (02.12.37)
1 |latk* A5D|1 7S
I{late Gl t¢ E [+ U (02.155.34)
L |

FIGURE A2, INSTRUCTION CYCLE
188

MASTER E

Ao[A1|A2|A3|AalAs|AolAi|A2[A3(Aa|As|Ao|AI|A2|A3|Aa|As|Ao|AI[A2|A3{Aa|As|A0|AI[A2|A3|A4[As|A0lAI |A2{A3{A4{As|A0|AI|A2|A3[As|AS
a B aB
B EARLY
B| LATE
GOTOE 02[15}34[1) Master|E
Cyclg a} 8
ASD14 MASTER E (0R.15.3D.1 /—MAS]ER 7040
o]
ASD1 ™ MASTER L
of LA[TE R
B| LATE \ i
At
QLATE
A202 ~— ~+AZD1
ASD1- BEARLY ABD
Ngt Block TGR or B CY« E|EARLY| RAW (02]15 31 1)
1o ABTeR €] ==
Nbt MASTER 4—T]
£ LATE| (0R.15.3p.1
ABD? A3D1
\
E Clcle
Gpo 19 ER| | MASTER |
N b B TRE_L 1 [0 Nlaster] E
ABD1—T] S~ MAYTER L
7044
P —
MASTERIC- | E FARLY RAW
B{*TGR4B Qy
LATE

FIGURE A3. MASTER E (7044)

Ao|Ai1[A2|A3[Aa|As|AclAI|A2{A3|Aq|As| AojAI|A2|A3|A4|As|AojA1|A2|A3|A4|As|A0|AI|A2|A3|A4|A5|A0|AI |A2[A3|As|As|A0|A1|A2|A3|A4|AS

Cytle|L

1 LATH - NOff o fO E

E LATE - NQT GO [TO|E

N
or
l._.eno (Op.1p.3¢.1
d
NotleNo o | 7] |
MAS[TER/ |
¢ | MASTERIL | [| of ©2.15.30.})
A5DI1 - N MASITER E
L BARLY ©2.15.31.))
BUOQK {GR|
] L UAT A2D) 1
A202 |- (92.]5.30.])

7040 and [1044

MASTER| L

FIGURE A4, MASTER L (7040 And 7044)

190

| ElL

Of1(2({3[4|5(0]|!I 3/4|5/0]{1/2]|3]|4|5]|0[!1]2|3|{4|5|0({1[2{3[/4|5]|0|1|2{3}]4|5]|0/1/2]3/4]|5
a B 0B o B aB
End op- End op tgr (02.15.3F) .
A1 Ieadly"A2D1
End op tgr- Masterq | (02.[15/30) thastler
A3D1
Gb tol B+ Master E (02.115.30 Master L
AS5D1
GptdL* Master L (02.15.3D)
A5D 2
End op tgre alearly {02315,33 Go tfo E* « parly (02.15.33)
A5D{-af Tate B learly IASD 1< fyplate B eprly
o eqrlyle a| late (§2.)5.33) a parlye | pldte [02}15]33
ARD} A2D1 A2D2 A2D|l
alotd | [Pl 02-15.83) s o latels | 8 eatly (02} 1533
AsD|1 ASD2 Al5D
4 vl late (02.115.33) B s¢arlys (B latq (OR.15.38)
A e -4 A20)1 \202 ARD]
aster |+ [1eprhy (0B.15.31) naster E+ | H eafly (02[15{31
Bl early B|eafly B eqrly
1 barlle | 1llate (32.15.30) | , | E tarlys | E late {02}15}30
Abp3 AZD1 ABD A3D1
wasteh LI L ehrly 02.15.31)
Il early L {late (02.15.30)
A2D2 A2D1
| lhte Gp t¢ E (02}15(34] E latg « Gb to L {02{ 1534
End op tgr End op tof
Master I+ Mem. select (02112450 Master E« Mem. select (02} 12[50]
o early*AQD |- - p_earlyADDII p—
4B late akB late
cycles |, E, L [7040)
(2| cycles)

FIGURE A5. I,E,L CYCLES (7040-2 CYCLES)

End of* Epd ¢p tgr (02.15.39)
A4}t5D]1

l{eadly*A2D(1

End oq tgf* master | (021530
A5D1 Master| E
Go fto B master E (02 J15.30) Aaster [L
Go|to|L |Mgstet L [02}15,30
Magter|I* I|early (02415{31
B eqrly]
1 garly* | {latg (02.1}5.30) |
AZD2 AZD1
Master E|* E ear] 2.15.31
B early
E ¢arlly* | Ellatg (0p.15.3D)
A3D2 A3D
Master | L eprly (0R.15.3]1)
Lq0f| . L la e (2. 5.30)
A2D2

| Jatee | Gop tq E {02]15{34

End|op ftgr
E late Go tp L {02} 15.34]
End op tgr
Masfer | +E* memory seject (02.12.5D)
ty early*AQD1 m [
B late

cycles 1,E, L (7048
(3 gycles

FIGURE Aé. I,E,L CYCLES (7044-3 CYCLES)

192

€61

Ao|A1|A2|A3|AalAs|AcjAl A2|A3 Aa4|As|Ao|AI|A2|As|Ae|As|Ao|AI[A2]|A3|As|As|A0|AI|A2|A3|As|As|A0|AI |A2|A3|A4|As|A0|A1|A2(A3|As|As|A0|AI|A2|A3|A4|AS|AD|AI [A2|A3|AslAS|A0|AI|A2]
| 1
a A af B ¢ A
@ |[EARLY] eyl
o |LATE 1040
£ EAR,LIY
Bl LATH
A3D1{CH WRS+
C ZERO - 8 ClYCILE GEMAND |dH B CYCLE*
TME ERRLY -1 LSSk EaAN 6. 0. D3.
DR LOADED]
bldcks| | BARLY -
E EARLY
LASD1 02, 15. B1. 0
ASD2 Lasliid | 02. 14, B9. | ()
d LATE*(B ATE *~—| o | EARLY
A5D1 ==
o | LATE
B | EARL
S
MASTER b BIEARLY 02. 15, 9. [
B|CYELE DEMAND < - 18 CYCLE|DEMAND |+
" N
REMOTE B CYELEDEMAND| 1 ettt <[A 01 06. 20. 3.
AOD1+]

FIGURE A7. B CYCLE

E L E
O/1]2(3|4({5]|0]I 3/4|5[/0]1}2 4|5(0]1 3|4|5|0]!1 3/4/5/0]1]2]3]4|{5|0[1|2{3]|4
B @ 8 B @ B B
60 cycles | Clealy nequest|(02].14.51 ’
Creq inte C gycle req*A1D
AOD1
A201 C|redues} interlpck| (02.14.51) Drops 8 msec pftdr 60 CPS
C early req
C edrly request» Clcyg¢le teqbest (04.16.5]) 1st|C gycle completd -
Crgq [int C edrly
AUD 1+
C cycle refy Go tolC (02416152 Gd to|C (P2.]16./52)
@ lafe v late
do to de Master G (02.16.52)
A5D2 Cleydle req
Masted C of Tate*ASD
daste L
13t C|defayads C gar 2.16.52) eqfly [02}16}52
B garly
Clear]ly* Ist Cllate (OR. 16.53)
st € cycle completef AZD1
A2DPR ;
14t d lafe s 13t C| cygle deloyef (02.16.54)
A502 ApD1
Isf Cleygle del] lﬁfC cycle|complete [02116}53
A4D) ™ ’E_ Cleydle reqdesti
AOD1
Go fo C* mem| sdlect (02.15.33) mem delect (P2.015.83)
a-Blat
AOD 1 mem|sel|(02.12.50) her se| (02.12.5D)
o j—
MAR| 15((04.16.52) IMAR 15
Master|C*, \
:OeDrA ; \\Mﬁzaﬂ.lé.ﬂ MAR 17 \Master C prevents:
 eqrly I+ E early (02.15.31)
1t g lates [SB 1+ $R (2.)16.53) AR > MAR (02.12.50)
A3D1 - .
] Go to C can be interrupted
13t C dejayed R 1»AD (02.[16/54) by B cycle » ch A request |
13t Cl dejayed* Haf 1/(02].16]. 54} l ‘
ADD]
13t d defayed IAC|-» SR (02} 16]54 Ist cycle delayed can be
— interrupted by go to Uand
A1D]I A3D ch A request.
13t d defayed* &(P)—DSR S)
A1D1 Ist cycle complete can be
interrupted by E early *
15t G de _A_?_"& (02.16.54) AODT (U)
ATD - A3n)i
13t G dejayed* BR (S) 1#AD (P) (021654
A2Dp
13t C|cy¢le comp* 9&’55 (0R.16.58)
Q€ edrly
Read (02.]12450) Stpre| (02.12.50) a parlys
=~
o éarly AIDT] AOT
st C cycle cqmplete
magter |C
C|cycle

FIGURE A8. C CYCLE

194

Ao[A1|A2|A3[Aa|As|AojAi|A2|A3|Ase|As|Ao|Al A2|A3A4 As|AolA1[A2|A3(A4|As|Ao|AI|A2|A3|A4|As|A0|AI [A2|A3|As|As]|A0IA1|A2IA3|A4lAS

End dp tgr (02.15.39)

| eprly*A2D1
mpstar | (02} 15(30
master E ((02].15.30
early E lear)y
1 {lat E|late
Eeafly* 14 edrly|(02].15.49
A tor A lote](04.14.41)
fesqt ASDY) 1 lofe SB++ PR (D2.)12.82)
A3D2
I lage. SB4# pos [eg
A3D2
| earlyle SBT#$R (D2.012.01)
A1 ™™
I loke"A3D2 fogreg (02.04.70) IA Iqtes| A3D1
14D[1 -AOD 7% Prg |A tai (02.10.65) E cAde
f-Hon 7 2 E Idte-Ad-ED]
re IA tgre| 14D1 1A[tgr!(02.1Q.65 bre gr'A3lJ.Pl

late *KEG: Endop|(02.14 .35)

lfra pref 1A |tgr

Pre|lA [tgr Regd (02.12.50)
ISR AD (02 12{08

| late*A4D03

XR1*AD|(02.12.13)

5D AD e AR [(02} 1234
o
14D Btep 1 (02.1R.3¢)
—

re IA for 41 lated Glo t¢ E 02[15134
End op tof

A lgteA3D2 | SB|—»tagl (02.04.20)

1A Eprly*ABD1| SB|~#1SR (02} 12} 01

1A late1A4D3 SR+ AD[(02. 12.08]

1A IqteqA4D3¢| |XR|~»|AD|(02.12.13)
index {nst

1A lgte|ASD] AD[—®AR|(02.12.34)
—

IA atg < Epd ¢p tore Gg to|E (02.]15.34)
Pod 0X * TX - X

hdirect Tid ressing

FIGURE A9. INDIRECT ADDRESSING

O|12[3|4|5|0|1|2|3]|4|5]|0|1|2]|3|4]|5|0[1]2[3|4|5]|0(1({2{3[4|5{0|!|2]3]|4
A2D1°C early reqe 1T|blabt req (02./16 {54) E lptetAQD1
C gycle ref IT trap
mdster C |(02}16} 52 A4D 41T blast reﬁ
IT|bldst req°A4D1 |Blast gtl (02.[13.04)
| par|y*A2D
las} cfl End op (42.15.35)
p—
las} ctil- Reset PR
A4D2
1 efrrly
| late
E garl
E jate|
| earl
| late
| llate-A3D1 IT trgip latch (02.13.05) .
(T [blabt early A
I {late*ASD1 Redet AR (02,13408
IT ttap e
IT trap-ASDR « || lgte* AR|bits 31-32-33-34 (OR.1B.0p)
1T blgst
| {late*any ttap Gl to E (02}15}34
Endlop frgr
E fear|y*AOD1* C 1+ 9R (R1-85)(02.12.05
=
any trap
IC — 00036
E fear|y- SR{—#{SB [(02].12}.40)
Xfer - 00037 arly ttap ‘
I l I l ‘ E garly*A1D]* Forte $tore cycld (OR.12.5D)
IT blast req resets: mester Et any trop] Qeatly’AODI
channel A<B-C+D-E
t trol (02.14.
rap control (02.14.07) E [latg-Pol QX End og (02.15.3%)
Blast control prevents:
Parity request (02.13.01)
STR trap (02.13.07) E lhte A5D2: AR bit 35 (02.13.0
SB—+ PR (02.13.32) IT frap
IC—+ AR * AD —» AR (02.12.34)
Start machine on trap
IT trap latch prevents: IT BLABT
STR trap (02.13.07)
Step IC (02.13.36)
L SB—PR (02.12.32)

FIGURE A10. IT BLAST TRAP

196

TRT.TRP Trop Corjtro| + Parilty mode late "A5D|1

I late:E early-J_Blast CTL _{02013104] | | Lar|y-A2D

Even parity
Blast End|op {(02].15(.35
ctl
1 erly eqrly
| Igte E Ipte
Parity error. 1y It t+ (02.013
lorIA E late + Parfty lrop repuet (0213 01) E| late*ABD |-pafity trap
& 1st C late
Il late“ABD 1 Parity frap| latich [02{13}06 [early*
A2D1
| late karly trpp Go tq E {02]15]34)
End op tg
Perity triap Mar bjt 12 (02113{09,
a early *APD3-
master|E
E lear|y"AOD[l* |IC 1+ $R (21-85){(02.12.03
gny (tra
E lear y'AODZ' IAR - BR (3- 7) 02{12105
Rarity trap
IC AND AR storefi ir} 00049 Ifor JA PT req t E earlye Flag|SB {18 {02}13}10
XFER LOCATION 0004 Parity trqp
E PTrdq - [E epriy- Flag|SB |19 (02}13}10
Parfty frag
If Blas§ coptrdl o¢curs IC BT req 1 E garly* Flog 5B | (02.13.10)
in | late, e steg Barity trap
1C [(02.12.36)
trap CI T Flag 5B $ (02.13.10)
Pgrity mgde
E |late « POD O: Epd ép (02.]15.335)
Blast cpntiol preyen .
Tsatr [(01.12.39 Parity frgp-[E Igte'pSD1 | | Reset AR (02.113.08)
AR->IC | (02.1p.36) .
SR-®¢tolint req [(02.16.01)
reget field req |(02.14.02) E llatg*ASD2|* AR bits 30-35 (0p.13.09)
MVP Patéh |(04.14.05) ahy trap|e
Parity trap
blast control feset PR af|
A4D2 | (02.1R.3#)

PAR|TY TRAR

FIGURE A11. PARITY TRAP

197

a B aB a B ap o
| earl E ear
| Igte E flatd
AC MQ|OVI+ | FP Tiup feqlest (02.20.4]) E |atee
A3D1p
AC MG|UN + FP{ Trgp
MQ |OVi+U
FP fequest* FP Trap [latgh (D2.)13.06) I garly-
| late -
ABD ARD1
lafe* Glo to E|(02} 15,34
Any trap
master |
Ilate| Resdt AR (42.13.08)
Aspl | -

H eafly { FPl trap [SB Flag 17 (02.18.10)
-MQIOY +UN

AC OV[+ UN Flag [16 [02}13} 11

AC + MQ OV F&E%ﬁll

AC OV |+ UN
DP| + AC M@ Qv [Flog 14 (02413112
NQDV|+ YN
B eafly 9 1Q —SR| (21-33) (92.12.05)
AOD 1+ e
any trop

E eprly* AR - MAR (021250
AOD2

Force trap (FP trap latch) prevents:
A2D1 SB{-*MDR ()2.12.50)
Parity trap (02.13.01) e
Blast ctl. (02.13.04)
IT trap (02.13.05) |

MP trap (02.13.05) £ late Eng op (02.15.3%)
STR trap (02.13.07)
SB —-PR (02.12.32)
Step IC (02.12.36)

A5D2 |+ E|late « AR Wit 32 (?2. 3.09)
EEEEREN M
R-»MAR (02.12.50
1C -+ 00000 a:c(:)r[l) 2. (02.12.50)
next instruction 00010

FLOATING | POINT TRAPPING

|

FIGURE A12. FLOATING POINT TRAPPING

198

O[112(3]|4[/5[0]1]2[{3|4|65[{0|1|2[3|4|5[0|1]|2]|3|4|5[{0]I1|2{3[{4|/5|/0(!|{2{3]|4]/5]|0
1st C cycld dellayt |T qverflow lakch|(02.14.54)
AC (P):A2Dp1 AZ#I IT|overflow Lup
B eprly*)
Q earlytA1D1 IT overtlow trdp request 02316454 IT|trap,” laje*A0D
Noster € (02.16.52) 1T ovbrflow frag ABD1* dlatd
T gvetflow trop feq® 1T] trap request (02413 J05) 1T trdp H late A
trap |control| on|
trye nangal lecry
| lgte
E early
E {latg
1 egrly|
I lnte]
I| late*A3D | 1T] trap (02.13.05)
T ttap feqpest* lleadly A20(1
Prilv inst
1 latel!A5D 14 Rﬁj‘ Al (02.]2.35)
IT trdp
| latetA5D2| | ARibits 33+ 3# (42.13.09)
T trap|
| ldte*any|trap* Gb tq E (021534
End op tgi
olear y'ﬁ oDR2°* AR MAR (02]12{50
ten E
E|early’dny|trap SR—t#SB (02.]2.40)
Eleary*AoDli* | fcH>9R (21-B5)|(02.12.05)
dny frag -
E par|y*A1D[* Forke store cycld (02.12.50)
nagter |E*any frap [— g eqriytAOD]
1C—* 00006
XFER Location - 00007 E [atePOD 0K 4&2{% L15135)
IT trap request prevents:
ch trap request (02.13.02) E ldteA502~ IAR [bit|35 02| 13}09
DD trap request (02.13.02) IT|trap I ——
forces start machine
on trap (02.13.05) I efrly AGD1 IAR| - MAR (02.12.50)
o
Force trap (IT trap) prevents:
Blast control (02.13.04)
Parity trap req (02.13.01)
Step IC (02.12.36) T OVERALOW
STR trap (02.13.07)
SB —PR (02.12.32)
1 1 1 1 1 1 1 1 1 1

FIGURE A13. IT OVERFLOW TRAP

| eqfly MR mode|tgr{(02.14.05
SPM AQD1

E late] A5D 1 ktorpgel trap
Trgp dontrol [(02{ 13(.03

trop equal (bit 32)
cemppre [equal
triip ynedual (b
cgmppre|unequg

Sense MP Viollatibn {02]16}05)

—

Protected Jocatioh (42.16.05)

Sense|MP vigl® ftrag ct|* MP mode arly tlap
E kydle*AID| MP violatiod (0R.16.05) |
Sehse|vidlatibn E|late ASD 1| Stgrage trap
Fgrce read (P2.]12.}50) Force|Store (02412 J50),
Prptetted logation
E early
E |ate
| garlly
| lpte
E earlly
E lote
| early
| late
Eng op (02.15.35)
E'|atePQD 0X
| late| *ASD 1) MP| trap Igtch (02.13.0%)
ME Viplation any trape] early1A2
lard-ago1| Rept R (21242
MR trdp 1htch Fofceltrap (0R.13.07)
Storage trape| lafe+ AR |bitg 31(+32+34 (02.13.09)
A5DR
1 latekadn Restt AR (92. 3.08)
| Idte {any trop*|Gd To| E (02.[15.34)
End gp tgr
Mdstel'E | [ARTMAR (02.1250)
ADD?
E karly +|AOP 1 C-BR (21135) (02.12.05)
any trgp [
, KR-5B (021240
E early*apy trap
IC -+ 00032 E garly*MP tiap Flag SB16{(02].13. 11
Xfer -» 00033 MP violgtio
! ‘ drebob ok Endlopl02.15.33
With Force trap we prevent: i
blast confrol (02..13.04) E IptefasD2 ARlbil[35 (02:13,.09
Parity trap req (02.13.01)
STR trap (02.13.07) AR-MAR (02]12}50
SB — PR (02.12.32) I earlyl*AQD1 —
Step IC (02.12.36)
B S S N O N N S |

FIGURE A14. MEMORY PROTECT VIOLATION

200

| E
Ooli1|2]|3]4]|5]|0]|1]|2]|3]|4|5|0|1|2]|3[4]|5]|0]|1]|2][3|4|5[0]|1[2|3]|4{5]/0|1]2]|3[4|5({0]|1|2{3]|4]|5
| garl
1 Igte
E darl
E Jate
SB 16+15#14413 ENB [TCT or] Wqrd Parity (06.]16J00)
disq call (06.20.12)
+Al4D]
L’:e AenaN ooy} chdn disc| A3D1
T} - Bl Busy
CWC=0-APD1* cH digct {06{20/13)
dis¢ cqll- AlD1
cycle
Lhah dikc- Rédundancy|chgck yn¢ t%r’(Oé.lé.QZ) E|late-ADD T+
A4D 1+Redpn ¢hegk trap prigrity
:hqn Bisy check requekt (06.)6.02)
Rd chedk-ENB(TC]
h frap demanf-AllD | rap| pripritly (Cé. 6.03) cHan brag -
Renfotel trap chan| Bugy - E latd*A1D1
Allow chan frags
rap pribrifly * Redynddncy trap (06.[16.02)
thetk request
;Tp p.l;}')' . chande! frap (0211 .06) eafly
afe A2D1
chon fra- | [AR[bit33](02}13}09
I IhtetA5D2 4
ch B reqech E freq|
AR bit 33((02.13.09)
| Jatd-any top* Go tp E[(02.15.39)
Enf op tor
Redyn tfap SB pes 16 (02.03.11)
th traptE eprly
dny [trag. IIC—#®SR (d2.12.05)
E edrlytAOD 1 o
afy traplA5pP2- LARibit 35/(02.13.01)
E Idte
E lhte{Pod OR-TX Erd op (42.15.35)
"Redundancy Check" with "ENB TCT" forces WC =0
(02.12.15.1)
WC =0 sends "Write Disc to TAU" (06.30.00.1)
Reduindaricy|trap, | (oyer)ap| chanine|)
TAU sends "TAU Not Busy"
The | cycle is the | cycle of the first instruction found;
this instruction is not executed.
| I N

FIGURE A5, REDUNDANCY TRAP (OVERLAP CHANNEL)
201

| E
O|1(2[3]|4|5]|0]|1|2]|3|4|5/|0|!1|2]|3|4|5[{0f{1]2]{3]|4|5]|0|1]2]|3]|4|{5|0}1]|2]|3{4|5|0|1]|2|3|4]|5
| eqrly
I late]
E early
E Jate
SB34+33 432+ ENIB CWT - EOF EIND {(06/.16/.00
chiB dycle ~1—__| chan dis¢ (0p.2D.1B)
gisd ca}l-A2D | T~ AJDI
C+0 4 DR LOD -
ghan disc disc $yn¢ (0p.16.0R) _dh tap E Idte <
ADIT— —T—AOD1
disc|syrfc’ 1z disc teguest!(04.14.02) _disc sync
Enb EWT-EDFland™> e
chan|budy
Bupy ‘AIDIT- trpp priority] (06.16.03) _chan frag*
disq rehue tech trop-\/7 E|late*AID
B 4
rempte|trap pti req
diskc r qu! tf..‘\ disc rap (0‘ .1 S.OZ) /,di)C request
trap|priprity—
Word phrityert-— | Word parity] trdp (06.16.D1) | L cH trdp+E4D
ghar disc-Busy} = -]
trap pribrity/
rag priorifly « T~ chanhel |trap (02.1B.06) A fearly*
I lgte-A3Q1 T “A2D)
AR bif 32(02.13.09)
chan |trap *
| late jA5D2¢ Z
ch B deg {ch|E rég AR bif 33((02.13.09)
lafe*qny |trap * Clo to E[(02].15].34
bnd(op ftgr+—T
disc [trag Tﬁ.‘_\ﬂm 17 (02,13,10)
ch|trap*E learly +—1

The | cycle is the cycle of the first instruc~ Word pafity|~_| SH pop 14 (02.13.19)
tion found after the trapping. cH trdp B eclrly-*—-D
**This instruction cannot be executed because IC 1 $R (02.12.105
"CHANNEL TRAP" gives "FORCE TRAP" . ‘”YI [:’a[')l o~ 12:09)
which blocks the main gates of this instruc- "
fion. ahy frap|E Ihte} | AR bit B5 {02]13}09

A502

E|lateePdd DX 17X End D2.15.85
DISCONNECT TRAP (ovérlap ¢hann el)

FIGURE Al6, DISCONNECT TRAP (OVERLAP CHANNEL.)
202

e

multiple|step key|(02. 1'4. 1)

held by the fingpr

SS |25 ms
01p2809 ¢
(18)

5 ms

SS 125 ms
01D2B07 | C
(3E) P5 s

25

lany| ke:

01D2805

(28) u L

10

any key (D214

s

0y

any key

SS B0 ms

(=]

D2B05
(3p)

fe)

30| ms

S20

o™

012803
(5D)

SS Jus

01D2H05
(28,

10

Bus

The 30 msed SS| prevents the bouhces of| "ANY| KHY " [to

The 20| msec $S Holds a Helpy qf 2D msec|between 2 depre:

efite the 3

sions of 'd

15

ny

FIGURE A17. ANY KEY AND MULTIPLE STEP KEY PULSE GENERATION

203

02

Ao|A1[Az|A3|A4{As|AclAI|A2|A3|As|As|Ao|A1|A2|A3|A4|As|A0jA1|A2|A3|A4|As|A0|AlI|A2|A3|Aa|A5|A0|AI |A2|A3|A4|As Ao|A)|A2|A3|A4a|As]Ac|AI |A2|A3|A4[As|A0|A||A2|A3|Ag
D|SPLAY STORAGE KEY | (02.14.03.1)
o om o e WAIT
f! ANYJKEY (3NSEE) (02} 1410111)
\-/MAN bAL DISPLAY STQR.|TGR (02]1403]1) AAPT . /750 ‘
= - -ﬂ Jl - 1
./LANY BVl |LabT ToR (92.)4.04.1)
- LAST LABT*
_PIg sfo MhsTER kTdP TN MRASTER [STOP
<—_A@2~ MAS JTOP TGR | (02.14.05.1 - - J. ADZ:;
LAST | L AIDR 1| EARLY BLOEK|TGR (02J15)3941) i I BARLY |
—1STOP|TGR* | ApD1 A5D!1— - - - -
MASTER | BLOCKS | AT E EARLY ABD1—]
MASTER | MASTER
| [EARLY]
P e EARLY I EARLY
BLOCK TR : (I UATE BUOQKED BY MASTER|STOP-| STNGLE CYGLE
DIsP 57TQ TGR D|sP|ENTER OR CLEAR (02.15/34]1) BLOCKS "| OR IA PTY TRAP REQ"| (02.13.0] .1
"BLAST CYL" {02} 13[04} 1) || | |
1 LATE. LAST TGR Q214061
LAST TGR|-D|sP ENrrER OR CLEAR BLOGQK HOD OX [02}04}00}1)
STORAGE TEST SWITCH IS OFF
DliSP/ ST +— jmed |RESET|AR| (02 102.35.1)
LATE} ASDTF ITH “ISTQR TEST SW ON*{WE CAN
il | [AK|—PAR (02.12.35.1) TOP THE [OPERATIQN WITH A
N ARJTY| ERROR IF|WE HAVE| "sJO
bOD gX—— GO TOE ON|ERROR ON™

MASTER B+ E|EARLY

E |ATE
ENTER QR PISPL $TQ *J '1 SBT*I5R | (02.12.01.1
EFITEVR;NE DIsP |AND §T0) TEST{;—} END QP |(02} 15.35. 1) OPERATJONS ICONSOLE
e EILATET e [END OP TR (02..15.39.) DISPLAY
b loTe .J;_ REset Ak — (2. 12.94.1) — STORAGE TES-T OMN" F WITH -qﬂ TEST [SW|' OFF J
STO [TEST i
amp |[CT®AR -— =1 -t - —
. q
(el | dofrole E|LATE-[DI9PL [sTQ
POD O - e - e -
MASTER E - E|EARLY
L IR B0 B BN AL J
E LATE
- - ... -
sB—SRl (02.12.41.1) h— - - - —
STEPIC |(03.12.34.1 | [STOR *EST:‘;— e o p— STOR ON ERRQR-| =
E EARLY+ A3D(1 DISPLISTO = END QP (02} 15,35, 1)
PIRITY ERROR 4
LhTE s END QP TGR| (02.15.39.

FIGURE A18. DISPLAY STORAGE

1 kar y
| Igte
E garl
E late
| eprl
| lgte
enfer dtortige| ke any key (02,1401
lpst fgr [02]14}04)
anly key
manyal ntér stordge key Entter Stofage (0R. 14.08) Stdp Hyr s
gfop tgr| (03.14.04 Tadridr - [Adp2- manual * makter stop tgr (02.014.05)
] Enfter Stofag I early*A|D2
lock tgr (d2.15.39
{) Stop [tgr{ASD 1 Stap tgr. Blogk tar
ABDZ
Enfter stofag blocks pty ttap and blast (02413101/04) and SB —t PR|(02.12.32)
1 latd A4D1 last tgr (02.)4.04)
lgst lgr* bidckd PQD OX|(02.04.00
Enter Storage
A3D1|Enfer-$torpgel* 1C T#AR (02.12.34)
o

torade test BWON

Enjter|or Display|Sté+ [E + | fatels Go fo § (02.15.3f)
End op tgr- [POP OX
Enter torage AK 7o AR (02{12135
I [ntetA5D1° o
Storade test PW [OFF
E earlyFA3D 1" Step 1€ (92.12.36)
Storage test|ON —
E|eanly* ORK 1 5B (02.]2.41)
Erjter|Stqrage
Master B *AID1* Store cydle 027]2“50)
Enter Jtorage AOD 1
Btore gycle* SB + MDR (02.1/2.50)

E early] » A2D[1 f—

E Idte | Enfd op (02.15.35)

Enter Storagep

ENTER STORAGE $tortgel test off

FIGURE A19. ENTER STORAGE

AolA1|A2[A3lA4(As[ACAI[A2|A3A4lAsIAC|AIIA2|A3A4|AS|AGAIA2(A3lA4|AS|A0|AI[A2|A3]|A4|AS|A0JAI |A2|A3|A4AS|ACIAI|AZ] |A3AAARA A1 |A2|A3|A4|As|AclAI|A2|A3|A4|As|AC]AI|A2]|Az|A4|AS|AGIA I [A2lAS|AS
LOJAD KEY (02.[14/04{1) .
ANY KHY 3NSEC| (0p.14.01) o
IAUFO |SW[TCH- %8
CH TN USE E EARLY Z
1 LOAD|TGR *oz 14)04]1) [{aop1 2%
I STOP| TGR TTLOAD 2 B
|_TANY KE [
INTERLOCK RESET (92.]4.07.1)
TNTEJLOCK|RESET
A4b2 MASTER STOP TGR (d2.14.05.1)
“TLQAD
LOAD|TGR
| AR 100 ON[LQAD| (02.14.d4.1)
HINTLK RESET
)
- AuJ—olc
BLA
p
P [RESET PR
1LATE -ladn 1= |
At SFEP|IC | (02.12.36.1) (IC 410})
-
6o O Goro|L
MASTER U+ LIEARL - - MABTER L L EARLY, MASTER L|-L [EARLY
L LATE L|LATE L LATE
-|m |-
1 PR ON RDY)
OPNSE 1+ RPSA
ORERATION|RDSA INPUT MODE (03.03.12.]1) Y
REFER [TO| THE PR+-+[IFR (03.10.01.1)
DIAGRAM OF THIS
ORERATION SEL 1IR3 [03}10107}1) [I S T T
SE{ READER
END [OP[CTL (p3.[10.03,1) END OP €T
CH| A ENID GP (03.14.03.1) CH|A BND| Of e
EIND [OP|TGR {02}15{39} 1) END| OF TGR -
READ TGR
|-
CH|IN|USE
Y U R R iy
L L LATE" 1 EARLY
LOAD ~I OAD ol |- LBUOGKSICPU WC 2 0 (oz.w,) F
END OPY BLOCKS pob dx (02]04J00]1) [THE PR BEING RESET YIELDS LOAD TG
L LATE|*ASD 1| — fued [ICT*(AR | (02.12.34.1 "POD(OX" WHICH WOULD BLOCK| "GO TO E* WITH I LATE)
A KN RS RESET heg (2.14.07J1)
LOAD{CH IN USE 1+AC(PQS 2§ (02.02.29.1) WE =(000
WITH THIS CELL DRIVE, JAC IS RESET BXCEPT|AQ PS 29 IN WHICH|WE PUT A TBIT | | ADD [-100g
GOTOE
MASTER & -E[EARLY
E LATE
EH JN JSH®. M
RGHA ON LOAD (0214407}
LOAD b |- -
A
OPERATION HCHA READ EQR TIGR! (08.10.1p.1
ACTIONSIATIOFERATOR'Y CON o% REFER TO THE|DIAGRAM OF DISC|SYINC| (d3.70.10.1
Lrs NSTRUCTION RDS CHANNEL A JF 3 REAQER) IN THE WORD BANK s gEEREAoT'{%(" clks oidcdnmed
ACHINIE IN AUTOMATIC HEN 5C 2 4 SR REQ P [(03}20[.03}. 1)
DEPRESS "LOAB" KE
FILL MQ|CTL (p3.[10.11.1])
CH A SHIFT|MQ LEFTBY/6
CH A STEP $C
P | CH AMQ—#SR (03.20.p7.0)
- Gotfop
U LATE
SR LDP
N
|

FIGURE A20." LOAD KEY OPERATION

206

202

AoA||AzA3A4A5AoA| A2|A3|Aa|As|AojAI|Az|A3[A4|As|A0lA1|Az|A3|A4|AS|AC|AI|A2 l | A2(A3{As|As|Ao|A1|A2|A3|AalAs|Ao|AI|A2|A3)AdlAs|AojAI|Az|A3 A4[AsiAo|A1|Az|A3{AalAs|Ao|AI|AZ|AS
WAIT FOl INISTRUGTION
DEPRESSIPN| OF BEING
A ot SINIG [E TEA EXEQUTED
SAPTO SWITEH KF TRUE MANUAL| (0p. 1.0k, 1) | . oLl
L BN BN BN]
CHIN USE|-
“V:lu\n]; sw
eND pr TG ENID DP|TGR
MASTER |i
L] L] LA] L}
o EARL
q LATE
B EARLY
ALAE
IMASTER 11|
BLOCK TIGRIOf B CYQLE|-— 1 1 EARLY| (0p.15.31.1
MASTER q —5% ¢
STNGJLE EYCLE
(©2.15.30.7) 1[LAJE OP TGR 1
A2p21”
LAST|TGR ©2.)14.p4.1) ANY KE Uast TGR [(02] 14.04.1)
L RE BN B Wi} [~ LEE BE NE AN N)
A4D 1]
FRUE MANUAL MASTER §TOP TGR| (02. 14.05.1 |-LAST TGR:
IHEARLY * = CHERE L RE] J SINGLE JNYTR
ATp21] rA4D2
BLOCK|TGR (02.15.59.]1) _1STOP[TCR:
AsDh—t TRt ASD1
ANY [KEY- J
SINGLE |OR MYLT{PLE STEP KEY-— STEP |(04.14.01.1
PROG[STOP JGR|
. STOP
N5t M SINGLLE [INST TGR| (02.14.02. 1
—r— LER BE NI BN BN J
TRUE MANURALT
A3
SSUME THE MACH|NE I1SICHANGED FROM AUTO TO
MANUAL DURING A[PROGRAN (1).
THE|INSTRUCTION [N PRQGRESY (A) COMPLETES AD
THE ¢PU STIOP (THE[LAST GYQLE |S ASSUMED TO|BE
AN HCYCLE.
THE[CPU WILL BE IN A STOPPED STATUS UNTIL S|NGLE]
MULJIPLE STEP IS| DEPRESSED . | THE FOLLOWING
INSTRUQTION|8) WILL BE BXECUTED|. THE[LAST CYQLE
THIS|INFTRUCTION |5 ASSUMED TO BE AN|L dYCILE
BVIOUSIY, | THE CONFIGURATION (C) GF THE b
LAST| | CYCLE CIAN BE{DIFFERENT FROM THAkS OWN DPERATIONS ¢ SJ:"
NI THE DIAGR THE|[ACTUAL TIM{NG Wi LL DEPENID q
UPONI THE T |Nsarsrv EEN THE[FIRST END QP AND THE pINGLE INSTRUCTIDN
DEPRESS|ON! OF THE [SINGIE OR MUL TIALE ST1P EY|S. M0

FIGURE A21. SINGLE INSTRUCTION

0|1/2]{3]|4|5]|0|1|2]|3]|4|5]|0|1]|2(3{4|5|0{!|2|3|{4|5[0|!1[2]3]|4|5(0|!|[2][3]|4[5[0|!]|2]3[4|5
master 1{(02].15.3(
master § (02.15.3D)
master|L 4 |
| eqrly E early
| late E|latg
arly key-| | Step (D2.[14.01) Step (02.14.01)
Prqg sfop|tgrd)
Sipgle + Imultiple kpy
steprcy¢le mode« Single cyicle|(04.14.03) Stop| tgr+ Single| cytle [(02} 14} 05)
A2DR-Storage glogk AIDIT
Stop tgr (92.14.95) Single clycle Stop tgr (0241405 +E +L latef stop for (02114105
A402 \TD3 manyal
singlle ¢ycle
Rlock tdr (02.15.39) sfop fgri sfopl blpck| tgr] (02.15.3%) blpck|tgr (02.15.3
A5D ASD2
Std Go o H (02.15.34) Sto End op +|Golto|L
to execute this operation it is necessary to have:
cycle mode
manual
storage clock off.
Stop tgr is set by: - program reset or in manual by the previous inst
resetby: - start machine
it preventsa early (02.15.33)
block tgr prevents I, E, L early (02.15.31)
master | is initially set by: previous instruction
enter storage
program reset (end op 02.15.35)
l t l l $ingle + multiple cycle.

FIGURE A22. SINGLE + MULTIPLE CYCLE

208

ACTION OF PULSE MODE

(01D2HO5A) +B MASTER OSC (02.15.17.1)

(01D2 JO4E) -B MASTER OSC

(01 D2 K06 M)

POSITION SHIFT OF ~>—a— 40 NSEC
THE -B MAST OSC:-

416 NSEC (7044,
CLoCK GATEN 6 NSEC (7044)

01D2K06K
DELAY OF 30 N ssc\\

H CELL DRIVE (01D1K05G)

(02.15.18.1)

PULSE MODE- —___

I
l

A3D1

A4

PULSE MODE LATCH _(02.15.16. 1)

+ B MAST OSC—

NEGATIVE SHIFT OF THE - B MAST OSC

CLOCK SATE <" BLOCK THE CLOCK AT A4
ACTION OF SINGLE STEP
STEP
PULSE MODE- CLOCK GATE
Lo —_NEGATIVE SHIFT OF THE - B MAST OSC

NEGATIVE SHIFT OF THE - B MAST OSC —

ﬂ CELL DRIVE

A4

SINGLE PULSE MODE CONTROL

FIGURE A23. SINGLE PULSE MODE CONTROL

209

012

| 5 | ol 1t lalszl 4 5 | o) | | | 2 | 3
-8 MAST OSC
AVAVAVAVAVAY! U\ arern S\ \ \/\)

RESET KEY- 1T ON~-

TRUE MANUAL - PULSE MODE - 7 /A3D1' PULSE MODE LATCH (02.15.16.1) (BLOCKS MEM SEL 02.12.50.1)
[OAD KEY - ENTER INST KEY*~— - awa i . ame
ENT STAR KEY - DISP STAR KEY- SHIFT>0 48 MASTER OSC
CLOCK GATE (02.15.16.1) PULSE MODE LATCH- CLOCK GATE
T L ——
B MASTER OSC (SHIFT< 0) SHIFT< 0~
MASTER STOP TGR _~PULSE MODE LATCH- =B MASTER OSC
(02.15.16.1) TSA4DT e a LATE ON
ONLY ONE CTRL (02.16.16.1) smme = = s a———— OFF ——— e e - » == a8 E— ——
STEP (02.15.16.1, 02.14.01,1) SNSEC —— —
(OFF)
CLOCK GATE ~_
t 11111 I ceworive 02.15.17.1) | 1 | i
-B MAST OSC(SHIFT 0)
BLOCK TGR (02.15.39.1) _ - STOPTGR:
LN N]
~—A5D1 ANY MEM CYCLE EARLY"
PARITY TRAP» A1D2 *—_\ AR MAR- (PULSE MODE) (02.15.16.1)"
PULSE MODE LATCH—
CLOCK GATE* A2D2 ¢
AIDTe— PULSE MODE IDI DELAYED\/ 02.15.16.1)
7
18 GATE (PULSE MODE) ANY MEM CYCLE EARLY: +B MASTER OSC (SHIFT 70)

ONLY ONE CTRL

CLOCK GATE MEM SEL PULSE MODE (02.15.16.1)

+ + + +B CLOCK GATE
-0 T | tA +0 SC -
- = - -B MAST OSC +
+B STEP

= WITH * +B STEP" THE +A CIRCUIT
IS CONDITIONAL AND THE
*B GATE (PULSE MODE - - -) " +B CLOCK GATE" IS OBTAINED.

ONLY ONE CTRL

Sl gy e + oy i B CLOCK GATE THE "ONLY ONE CONTROL" CIRCUIT
BLOCK THE +A. TO RETURN THE CIR-
+ ~B MAST OSC | = CUIT TO ITS INITIAL STATUS, "+B CLOCK
- _— | GATE" AND "+B STEP" MUST BOTH BE OFF.
+B ST

+

OPERATOR'S CONSOLE
STEP SINGLE PULSE
7044

FIGURE A24, STEP SINGLE PULSE (7044)

CUT ALONG LINE

COMMENT SHEET

IBM 7040-7044 CENTRAL PROCESSING UNIT

CUSTOMER ENGINEERING MANUAL OF INSTRUCTION, R23-2651

FROM

NAME

OFFICE NO.

FOLD CHECK ONE OF THE COMMENTS AND EXPLAIN IN THE SPACE PROVIDED
O suscesTep ADDITION (PAGE sy TIMING CHART, DRAWING, PROCEDURE, ETC.)
[suGGESTED DELETION (PAGE)
[0 error (PAGE)
EXPLANATION
FOLD

NO POSTAGE NECESSARY IF MAILED IN U.S.A.

FOLD ON TWO LINES, STAPLE, AND MAIL

FOLD

FOLD

SDI1IAFLE

FIRST CLASS
PERMIT NO, 8l

POUGHKEEPSIE, N. Y.
[]
BUSINESS REPLY MAIL n—
NO POSTAGE STAMP NECESSARY IF MAILED IN U, S, A,
]
I
POSTAGE WILL BE PAID BY SE——
1BM CORPORATION —
P.O. BOX 390 —
]
POUGHKEEPSIE, N.Y. —
L]
]
ATTN: CE MANUALS, DEPARTMENT B95 —
]
g]
]
o T el

8/63:700-EP-216

7

V4
7

STAPLE /02 7/ ‘/'/f’ :?*«i 7 STAPLE

¢

CUT ALONG LINE

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	replyA
	replyB

