
ll) gj ~ Customer Engineering

IBM 7040-7044 Data Processing Systems

Central Processing Unit

R23-2651

Manual of Instruction

Preliminary Edition

il) g 5 ~ Customer Engineering
®

IBM 7040-7044 Data Processing Systems

Central Processing Unit

© 1963 by International Business Machines Corporation

R23-2651

Manual of Instruction

Preliminary Edition

PREFACE

This manual contains instructional information on the
7106 and 7107 Central Processing Unit (CPU), cover­
ing such items as CPU registers, timing and basic
cycles, CPU instructions including floating point,
memory protection, trapping, and the operator's
console. Channel A, power supply, and the memory
units are covered in separate manuals.

It is assumed that the student is familiar with the
binary and octal numbering I:>Yl:>tems, and is proficient
in converting numbers between the decimal, binary,
and octal systems. The numbering systems and
number conversions are described in the IBM 7040
and 7044 Student Text manual, form C22-6732.

SECTION 1 - GENERAL
Data Processing .
Element Functions

Storage
Central Processing Unit.
Peripheral Equipment

7040/7044 Configurations and Optional
Packages
Configurations .
Optional Packages

Instructions and Operands
Addressing.
Programming.

SECTION 2 - INTERRELATION OF SYSTEM
AREAS AND DESCRIPTION OF CPU
REGISTERS.

Interrelation of System Areas
Description of CPU Registers

Storage Register .
Program Register
Other Program Register
Tag Register
Adder.
Accumulator.
MQ Register.
Swap Register
Latch Register .
Index Registers
Instruction Counter
Address Register
Shift Counter
Position Register
Field and Count Registers

SECTION 3- CPU DETAILED ANALYSIS
Shift Cells and Latches

General .
Pulse Generation.

Pulse Generation
Clock Timing Ring
Clock .

Machine Cycles
I Cycle
I Cycle Timing
E Cycle .
E Cycle Timing.
L Cycle .
L Cycle Timing.
B Cycle
U Cycle •
C Cycle •
C Cycle Timing
Interval Timer Interruption.

Instruction Decoding.
Bits S, 1, and 2

5
5
6
6
6
7

7
7
7

10
11
11

13
13
13
17
17
17
17
17
17
17
17
17
18
18
18
18
18
18

19
19
21
21
21
21
27
27
27
27
29
29
29
32
32
35
35
35
39
39
39

CONTENTS

Operation Decoding
POD
SOD
Flag Bit Decoding •
Tag Bit Decoding

Adder
Lookahead Adder
Summary

Addressing.
Addressing Core Storage

Parity
Parity Checking

SECTION 4 - INSTRUCTIONS.
Subtraction - Machine Method.

Fixed-Point Arithmetic.
Addition •
Subtraction .
Multiplication
Multiplication - Machine Operation
Division •
Division - Machine Operation

Variable- Length Arithmetic •
VLM, VMA, and VDP

Floating Point Arithmetic .
Single-Precision Floating-Point Addition

and Subtraction .
Single-Precision Multiplication
Single-Precision Division •
Double-Precision Addition and Subtraction
Double-Precision Multiplication
Double-Precision Division •

Index Operations .
Index Arithmetic
Address Modification.
Addressing •

Transfer Operations.
Unconditional
Conditional .

Store Operations
Logical Operations
Character Handling Operations
Shifting Operations
Rotate Operation •
Sign Alteration and Test Operations.
Special Storage Sign Handling Operations •
Execute Operation
Transmit Operation.

SECTION 5 - MEMORY PROTECTION
Set Protect Mode (SPM) Instruction
Memory Protect Examples •
Memory Protect Control Setup

39
43
43
43
43
47
47
53
54
54
59
63

64
64
65
66
66
66
69
70
72
72
75
75

79
82
84
85
89
92
95
95
97
97
99
99

101
102
105
106
106
108
108
110
110
110

115
115
116
116

SECTION 6 - TRAPPING
General
Trap Control
Types and Priority

Interval Timer (IT) Blast
Memory Protect Violation •
Parity .
Instruction •
Pre-Interrupt Memory Protect
Interval Timer Overflow
Direct Data .
Channel Traps

Trapping Scheme •
Channel Trap
Pre-Interrupt Trap
Priv ileged Instruction Trap
Floating Point Trap

Trapping Execution
Trap Mode Setup
Trap Requests •
Request Recognition
Individual Traps
Channel A Trapping

Summary

120
120
120
121
122
122
122
123
124
124
124
124
126
1"1)
129
130
130
131
133
133
133
142
142
143

SECTION 7 - OPERATOR'S CONSOLE.
General.
Switches and Functions •

Channel Bit Density Switches
Storage Clock Switch •
Entry Switches •
Any-Key Pulse Generation.
Automatic-Manual Status
1-0 Interlock Control Switch
START Key Operation
Continuous Enter Instruction Operation.
RESET Key Operation
CLEAR Key Operation
Storage Test and Parity Check Controls
Enter Storage Operation.
Display Storage Operation .
Enter Instruction Operation.
LOAD Key Operation •
Step Mode Selector Switch Functions
Single-Step and Multiple-Stop Operations
Sense Switches •

Indicators •

APPENDIX A: TIMING CHARTS.

164
164
164
164
164
164
166
166
168
168
168
168
171
171
171
171
174
174
174
174
179
179

186

The 7040-7044 Data Processing System is a medium­
size scientific machine. High flexibility is realized
in this system through the use of an integrated
central processing unit (CPU) and core storage
combined with a highly elastic input-output (I-O)
capability. Two basic system concepts are em­
ployed:

1. A basic system using a nonoverlapped* 1-0

channel to which buffered card equipment and mag­
netic tape may be attached.

2. An overlapped* system which can accommodate
up to four overlapped 1-0 channels to which tape
adapters, direct data, and corporate interface
devices may be attached.

A vail able with the basic instruction set are the
following options:

1. An extended performance instruction group
which includes indexing, logical, and character
handling operations.

2. Single-precision floating-point arithmetic
class.

3. A double-precision floating-point arithmetic
class.

4. A memory protection arrangement.
5. An interval timer option.

DATA PROCESSING

Data processing is the execution of sequential oper­
ations on facts to realize a desired result. Two
elements constitute the foundation of all data
processing: procedures to follow and devices to
perform the procedures. Procedures are constant,
and devices are variable; e. g., arithmetic is the
same whether performed in Europe, Asia, Africa,
or America. Symbols may change, but the concepts
remain the same. Devices, however, are varied:
the pencil and paper of the student, the slide rule
of an engineer, the calculator of a clerk, the ma­
chine of the business man. These, theoretically,
have equal potential. The difference is time, for as
the slide rule and calculator are faster than pencil
and paper, the machine is faster than either the
slide rule or the calculator.

There are many types of data processing systems,
varying in size and complexity. However, re­
gardless of the data to be processed or the devices
to be used, four basic requirements must be satis­
fied:

1. A means of entering source data and pro­
cedures in the system.

* overlapped and non-overlapped operations refer to simultaneous

and non-simultaneous 1-0 and CPU operations, respectively.

SECTION 1 - GENERAL

2. A means of storing the source data and pro­
cedures until they are needed.

3. A means of processing the source data.
4. A means of converting the processing result

into a form useful for human handling.
Input devices sense coded data recorded on a

prescribed medium. The prescribed medium can be
a card, a paper tape, or a magnetic tape. The code
can be a configuration of punched holes or magnetic
spots. Paper documents containing characters
printed in magnetic ink may also be used.

Storage devices hold source data to be processed
and the series of operations used to direct process­
ing. In early data processing machines, storage
devices consisted of interchangeable panels, relays,
cards, or paper tapes. Instructions and data had to
be wired or read into the machine in small batches.
Processing was therefore limited in both volume and
speed. A substitute for the early storage devices is
the magnetic core. This core is a small ring of
ferro-magnetic material easily magnetized in either
of two polarities to represent a digit or symbol. A
related group of digits or symbols represents a
word; therefore, a related group of ferromagnetic
cores can store a word.

Another type of storage device is the magnetic
drum. A magnetic drum is a steel cyclinder en­
closed in a copper sleeve, which is plated with a
cobalt and nickel alloy to form the actual storage
medium. In this device, a magnetize9- spot
represents a digit, and a group of magnetized spots
represents a word. Although the time necessary to
place information on a drum and to take information
off a drum exceeds that for ferromagnetic cores,
the magnetic drum greatly surpasses both the speed
and the capacity of the early semimanual devices.

A storage device similar to the magnetic drum is
the magnetic disk. The magnetic disk is a thin
metal disk, coated on both sides with a ferrous oxide
recording material. Information is placed on a disk
as magnetized spots located in concentric tracks.
The time required to enter data on and to take data
off a disk exceeds that for the magnetic drum.

The key ingredient of a data processing system is
the proceSSing device, the nerve center of the entire
system. It has two basic areas: the arithmetic­
logical area and the control area. The arithmetic­
logical area performs arithmetic, number compari­
sons, shifting, etc.; the control area directs and
coordinates the entire system, including the input,
storage, and output devices.

Output devices record the results of processing
operations on cards or paper and magnetic tapes.
Printed information is also available from output

5

devices. In addition, L1.e product of an output device
can take the form of electrical signals for trans­
mission to other data processing centers.

ELEMENT FUNCTIONS

Each element ofa data processing system has definite
functions. These functions are defined in the follow­
ing paragraphs.

Storage

Storage is the space provided in a data processing
machine for the safekeeping of information. Three
types of storage devices are used: core storage,
magnetic drum storage, and magnetic disk storage.
In each type, information can be placed in, held in,
or removed, as needed. The information involved
can be:

1. Instructions to direct the processing sequence.
2. Data to be processed or to reflect the results

of processing.
3. Reference data necessary for processing

(tables, arithmetic constants, etc.).
Storage is generally categorized as either main or

auxiliary. Main storage accepts data from the input
units, supplies instructions to the CPU, exchanges
data with the CPU, and furnishes data to an output
unit. All instructions to direct processing and all
data to be processed pass through main storage to
the CPU. Magnetic core storage generally serves
as the main storage device.

Auxiliary storage augments the capacity of main
storage and houses all reference data associated
with processing. Magnetic drum storage and mag­
netic disk storage are examples of auxiliary storage
devices. Generally, auxiliary storage is not directly
accessible to input devices. Input information is
usually routed through main storage to auxiliary
storage. The CPU cannot reference auxiliary
storage for either instructions or operands. When
auxiliary storage information is needed, that infor­
mation is written into main storage. The CPU then
accesses main storage for the desired information.
Similarly, output devices generally cannot access
auxiliary storage. When output information is in
auxiliary storage, that data is first written into
main storage and then read out of main storage to
the output device.

Information written into a storage location destroys
the original contents of that location. Information
read out of a storage location, however, does not
affect the original contents of that location. This is
called nondestructive readout. Nondestructive read­
out applies directly to drum and disk storage. When
dealing with core storage, the actual readout is
destructive; however, the end result is nondestructive.

6

In any case, by preserving the original contents of
a storage location after readout, the same infor­
mation may be used many times.

Any storage operation requires identification of
the desired location and transfer of information
either into or out of that location. The time involved
to realize these two actions is called access time.
The more access time needed, the slower the device.
Core storage is the fastest device, followed by mag­
netic drums and magnetic disks.

Core storage is very often referred to as memory
because memory is the function of reproducing what
has been learned. A computer, in effect, learns
when information is written into storage and re­
members when storage is accessed for information.
In data processing, the terms storage and memory
are synonymous.

Central Processing Unit

The CPU is responsible for almost all the process­
ing in the data processing system. To satisfy this
function, the CPU must be able to determine the
type of processing desired, must have access to all
source. data, must be able to establish the necessary
transfer paths for a specific operation, and must be
able to perform the specified operation.

The type of pperation to be performed is specified
by an instruction. Instructions are stored in core
storage in predetermined locations. The CPU
makes all instruction fetches by r'eferencing these
predetermined core storage locations. The in­
struction contained iIl the referenced location is
transferred into the CPU, where it is decoded. The
result of the decoding tells the CPU precisely what
type of processing to perform and the location of an
operand to be processed. The CPU then references
core storage for the desired operand. When the
operand is transferred to the CPU, circuits neces­
sary to accomplish the operation are established,
and the specified processing is performed.

The CPU also controls 1-0 operations. Initially,
an instruction is fetched from core storage. The
instruction is decoded, and the necessary transfer
paths are established. If additional information is
required, the decoded instruction tells the CPU to
fetch it. The CPU then fetches the additional infor­
mation from core storage and sends it to the proper
control circuits. With this action completed, a
transfer is effected either from core storage to an
output device or from an input device to core stor­
age.

The following are CPU operations:
1. Instruction fetching.
2. Instruction decoding.
3. Operand fetching.
4. Circuit setup.

5. Processing.
6. Information exchange.

Of these six functions, all but processing are ac­
complished in the CPU control area; processing is
accomplished in the arithmetic and logical area.

Peripheral Equipment

Peripheral equipment is that equipment operationally
removed from the CPU. This 1-0 equipment includes
card readers, magnetic tape units, paper tape
readers, punches, and printers, etc.

Card readers enter punched card data in main
storage. The punched information on a card is
converted into an electronic form and rearranged
into machine words. These words are then trans­
ferred into main storage. Generally, a program is
initially entered in a machine via the card reader.

Magnetic tape units can serve as either an input
or an output device. A tape unit initially receives
information from main storage and writes this
information on the magnetic tape. When the infor­
mation is needed by the CPU, the magnetic tape is
read and the information is transferred into main
storage. Once a program is entered in main storage,
it can be transferred to a magnetic tape. The mag­
netic tape can then serve to enter the program in the
machine on subsequent runs.

Paper tape readers are similar to card readers.
Data is represented on paper tape by means of
punched holes. These holes are converted into elec­
tronic impulses, which are assembled into machine
words. The machine words are then transferred
into main storage.

Punches convert electronic impulses into punched
holes. Two types of punches are available: card
punches and paper tape punches. Information
punched out on either paper tapes or cards is
received from main storage. A punch is an output
device.

Printers provide a visual record of processing
results. A printer receives data in the form of
electronic pulses from main storage. The electronic
pulses drive circuits which, in turn, actuate printing
elements. All printing devices have a paper trans­
port which automatically moves the paper as printing
progresses.

7040-7044 CONFIGURATIONS AND OPTIONAL
PACKAGES

Configurations

For small applications, necessitating only card and
printer equipment, the configuration shown in
Figure 1 could be used. The CPU is used as a

processing unit and as a transfer path for 1-0
operations. A single 1414 1-0 synchronizer *
services a 1403 printer and a 1402 card read punch.
This synchronizer connects these devices with the
CPU. In addition, a console printer, which is in­
cluded as standard equipment, is available for use
as an output device. An operator's console is also
standard equipment. This console is physically part
of the CPU, but is useful in both CPU and 1-0 opera­
tions.

For installations requiring a higher 1-0 speed,
magnetic tape units can be installed to operate with
a separate 1-0 synchronizer but using the CPU as a
transfer path. Figure 2 shows this kind of arrange­
ment.

The basic 7040-7044 configuration, then, includes
a single 1-0 channel, called data channel A. Data
channel A is realized by using the CPU circuits for
1-0 operations. Since the same circuits are used
for both processing and 1-0 operations, either opera­
tion can be performed at a time, but not both.
Consequently, data channel A is a non-overlapped
channel: that is, processing must stop while an 1-0
transfer is in progress. Only two examples of the
possible configurations are shown in these figures.
Potentially, a great many more configurations are
possible using data channel A.

The 1-0 capability can be further expanded and its
speed increased with the incorporation of the 7904
data channel (Figure 3). With this configuration, an
alternate path is provided to core storage which by­
passes the CPU entirely. The 7904 is called data
channel B; the 7040-7044 can accommodate as many
as four. Each additional 7904 data channel is given
a different alphabetical label; thus, with a maximum
configuration, 7904 data channels are identified as
data channel B, data channel C, data channel D, and
data channel E, all identical.

The 7904 type data channel is intended to service
high-speed 1-0 devices and auxiliary storage devices.
Consequently, the figure illustrates tape and disk
systems using this type of data channel. Notice that
a synchronizer connects the tapes to the data
channel, whereas a file control connects the disk
storage to the data channel. The data channel, in
turn, provides a common connection for both to
core storage. Again, not all possible configurations
are shown.

Optional Packages

Instructions

Optional packages in a data processing machine
basically are measured in terms of instructions that

* several models of the 1414 1-0 synchronizer exist. The model

chosen depends on the 1-0 equipment controlled.

7

r---------,
I I
I I
I I
I I
I I
I I
I I L_ ---.J

CPU

CORE
STORAGE

OPERATORS

CONTROL~LOGIC CONSOLE

CIRCUITS AND
DATA CHANNEL

A

--1----------

1414 I/O CONSOLE
SYNCHRONIZER PRINTER ,

t
1403 1402
PRINTER CARD READ

PUNCH

FIGURE I. 7040-7044 WITH CARD SYSTEM CONFIGURATION, NON- OVERLAPPED OPERATION

r--------~-----_,

1414 I/O
SYNCHRONIZER

1403
PRINTER

1402
CARD READ
PUNCH

I I
CORE
STORAGE I

I

I
OPERATORS I
CONSOLE I

CONTROL-LOGIC
CIRCUITS AND I DATA ;HANNEL I

I I L ___ I--_____ ---.J

1414 I/O
SYNCHRONIZER

729 II
TAPE UNIT

729 IV
TAPE UNIT

CONSOLE
PRINTER

7330
TAPE UNIT

FIGURE 2. 7040-7044 WITH CARD AND TAPE SYSTEMS CONFIGURATION, NON-OVERLAPPED OPERATION

8

•
729 II
TAPE UNIT

r -- -n"04MrACHA'NNELsa:E --1
I I

I---------;;p~

, ! CORE I I
I
I
1

I

.------+-1
1

-+--1 ---.. STO"GE I

1 I I
CONTROL
AND
TRANSFER
CIRCUITS

1 I - OPERATORS I
CONTROL-LOGIC CONSOLE

I I CIRCUITS AND I
DATA CHANNEL

A

I I I I
L_~ _______ J

1414 I/O
SYNCHRONIZER

729 V
TAPE UNIT

•
7330
TAPE UNIT

7631
FILE CONTROL

1301
DISK
STORAGE

L __ ~~ ___ ~_J

I

1403

1414 I/O
SYNCHRONIZER

~

1402 CARD
PRINTER READ PUNCH

CONSOLE
PRINTER

FIGURE 3. 7040-7044 WITH CARD, TAPE, AND DISK SYSTEM CONFIGURATION, OVERLAPPED OPERATION

can be executed by the machine. To realize the
merits of the optional instrucW5ris requires famili­
arity with the basic instruction set. The instructions
forming the basic set and each optional package are
given in the IBM Reference Card 7040-7044 Codes,
Form X22-6696, and in the Appendix B of the IBM
7040 and 7044 Data Processing Systems Student
Text, Form C22-6732.

Memory Protect Option

This option permits the programmer to protect a
portion of memory against alteration by storing. Two
instructions are associated with this option, Set
Protect Mode (SPM, -1160), and Release Protect
Mode (RPM, -1004). The SPM instruction puts the
machine in a memory protect mode and specifies the
memory block to be protected. The RPM instruction
takes the machine out of memory protect mode.
Attempts to store in a protected area can result in
"trapping", a feature discussed in detail later in
this manual.

Interval Timer Option

Unlike the other options, no specific instructions are
associated with the interval timer option. When this
option is incorporated into a machine, circuits are
provided which generate a C cycle. During a C
cycle, core storage location 000058 is periodically
incremented whenever system power is on. Normal
processing is interrupted for two cycles in a 7040
machine a..l1d for t~ree cycles in a 7044 nlachille to
read out location 000058, increment it by 1, and
return the incremented value to location 000058.
The sign position of this location is not used, but,
if it is negative initially, it will be made positive
during the first increment cycle.

Location 00005 may be set to any value under
program control and thus serve as a real-time clock.
If an overflow occurs while it is being incremented,
the contents of the instruction counter at the time of
the overflow are stored in location 000068 and the
next instruction for execution is fetched from lo­
cation 00007 8. Consequently, location 000058 can
also serve as an interval timer. The stepping rate
of location 000058 is once every 1/60 second, there­
by maintaining 7090 compatibility.

INSTRUCTIONS AND OPERANDS

A data processing machine is directed to perform
each of its operations by an instruction. An in­
struction, then, is a master command telling the
machine what to do, what logic circuits to establish,
what information is needed, and where to get it.

10

Processing is a series of actions leading to an end.
Since an instruction effects a single action, it is the
basic element of processing.

Because instructions direct the operations of a
data processing machine, the entire collection of
instructions associated with a particular machine is
known as the instruction set. An instruction set is
divided into logical groups of instructions possessing
common characteristics. These logical groups are
called classes. For example, all instructions that
deal with arithmetic fall within the arithmetic class,
all instructions that place information in main
storage from the CPU fall within the store class,
and instructions which effect 1-0 operations fall
within the 1-0 class. AlLxiliary storage is generally
read and written into with 1-0 instructions.

The general makeup of an instruction is known as
the instruction word format. The term format
embraces:

1. the length of an instruction.
2. the fields of an instruction.

The length of an instruction is the number of binary
digits (bits) needed to code the entire instruction in
the machine. In a particular machine, the
instruction word length generally is fixed. In the
7040-7044, for example, the instruction word length
is 36 bits: 36 binary digits are required in the 7040-
7044 to define each operation accommodated by the
instruction set.

Instructions may be divided into t.1.ree general
fields: operation code, address, and modifier fields.
The operation code field defines the general action
to be performed. The address field, in most appli­
cations, identifies the storage location of the desired
operand. The modifier field complements the
operation and address fields. For the 7040-7044,
the basic instruction word format is as follows:

OPERA TION CODE MODIFIERS ADDRESS

S 11 12 20 21 35

An operand is a magnitude or quantity upon which
a mathematical operation is performed. In a word,
an operand is data. More . specifically, an operand
is a unit of data: one quantity. The format of an
operand or data word is determined by the machine
involved and the type of arithmetic employed. The
machine involved determines the length of an operand,
and the type of arithmetic determines field definition,
if any. In the 7040-7044, the basic data word format
consists of a sign bit and 35 magnitude bits:

MAGNITUDE 35

The 7040-7044, however, alRo has provision for
floating-point operations. A floating-point data word
is the same length as the basic operand, but the word
is broken into three fields:

Is 11 CHARACTERISTIC 81 9 FRACTION

The time involved in a CPU operation may be
divided into two periods, known as instruction time
and execution time. Generally, the only real distinc­
tion between instructions and data is the time when
they are brought into the CPU. If a data word is
brought into the CPU during instruction time, the
CPU interprets the data word like an ins truction.
Conversely, if an instruction word is brought into the
CPU during execution time, the instruction word is
treated like data. Consequently, the CPU can operate
on its own instructions.

ADDRESSING

In a data processing system, an address is a place
where a unit of data may be communicated with.
Each unit of data is placed in a register for safe­
keeping until needed for machine operations. A
register located in main storage consists of ferrite
cores. A register located in the CPU may consist
of tubes or transistors in auxiliary memory, mag­
netic spots on a smooth surface. Wherever a register
which serves to store data is located, an address is
assigned to identify it. The address is nothing more
than a group of numbers, unfolding sequentially; the
concept is identical with that of locating a particular
dwelling on a street.

Each instruction in a given set has an address field.
The address contained in this field identifies some
register or location in the data processing system
whose contents are needed for processing or whose
contents are to be replaced. This sort of addressing
is explicit; that is, the desired address is specifically
stated. In the 7040-7044, the category of explicit
addressing may be divided into two types: direct
addressing and indirect addressing.

Direct addressing is the straightforward expression
of a desired location; that is, the address stated by
the instruction word is the real address of the
desired location. However, an instruction word
address field can be modified by arithmetic; such
action is called address modification. In the modi­
fier field of an instruction word, provision is made
to specify the location of a register whose contents
can be algebraically added to or subtracted from the
instruction word address field. The result of this
arithmetic is the effective address. The register
whose contents are added to or subtracted from the

instruction word address field is known as an index
register. Another name for the instruction word
address field is the base address. Consequently, an
effective address is obtained by adding to or subtract­
ing from the base address the contents of the speci­
fied index register. If no index register is specified,
or if the index register specified contains all O's, the
base address becomes the effective address. For
direct addressing, then, the effective address speci­
fies the desired location.

Indirect addressing is the roundabout expression of
a desired location - it is not straight to the point.
For indirect addressing, the effective address, as
defined above, specifies a location whose address
field specifies the real address of the desired
location. Address modification can also be applied
to the location whose contents specify the real
address. For example, assume the instruction word
effective address specifies location 100 as containing
the real address. Only the address portion of address
100 is used. If an index register is specified by the
address 100 modifier field, the contents of that index
register are fetched and added to or subtracted from
the address 100 address field. The resultant effective
address becomes the real address of the desired
location.

In summary, the category of explicit addressing is
divided into direct addressing and indirect addressing.
Each of these types can employ address modification.
Address modification involves changing a base address
to realize an effective address. An effective address
is the usable address.

Another category of addressing is implicit address­
ing. An implicit address is an address understood
but not expressed. Implicit addresses are stated by
the instruction word operation code field. For
example, the Add instruction tells the CPU to add the
contents of the effective address to the contents of the
accumulator. The accumulator, then, is the implied
address, and the accumulator contents form the
implied operand. No group of numbers is associated
with an implied address. Necessary transfer circuits
connecting to the implied address are formed as a
result of decoding the instruction word operation code
field. Address modification does not, therefore,
apply to implicit addressing.

PROGRAMMING

A program is a series of instructions coded in a form
recognized by the processing unit and calling for
operations to be performed by the processing unit in
an order necessary to solve a given problem. For
example, the solution of a simple arithmetic problem
requires a program, whether solved by a data
processing machine or by a man with a pencil and
paper. The man can recognize the necessary steps

11

in a program, but the machine must be given step­
by-step directions for the solution of any problem.
Without this series of instructions, the machine can­
not perform any type of operation.

The necessity for programming is apparent: it is
needed to initiate and exercise control over the
operations of the processing unit. This control may
be predetermined through the use of a specific
instruction or may depend on the value of the number.
being manipulated at any particular point. In addition
to controlling arithmetical operations, programs
are used for various other functions, such as mainte­
ance and monitoring.

A program is designed after obtaining a statement
of the problem to be analyzed. With this initial re­
quirement satisfied, four subsequent phases are
required to produce a finished program:

1. Problem analysis.
2. Program organization.
3. Program coding.
4. Program testing.

Generally, the first phase is handled by mathema­
tiCians, and the other three by programmers.
Frequently, however, problem analysis determines
the organization of the program and is therefore done
either by a mathematician-programmer or by a
mathematician and a programmer working together.

After a statement of the problem is obtained, all
factors that may be encountered have to be examined
and arranged in a mathematical expression, which
must represent the problem as simply as possible.
This expression is usually complex at this pOint and
must be reduced to simpler terms (addition, sub­
traction, etc.) by a mathematical technique known
as numerical analysis.

Numerical analysis involves reducing complex
mathematical operations to arithmetic operations
within the capabilities of the machine being pro­
grammed. Examples are calculus operations
reduced to simpler arithmetic operations, such as
changing integration to an approximate summation
operation and changing differentiation to an approxi­
mate difference-quotient operation. These changes
result in approximations which can be as exact as
desired.

Given a method of approximation, the programmer
must then determine the program to obtain the result.
The first step involves organizing a program to solve
the problem, using the arithmetic methods outlined
in the numerical analysiS. Program organization
involves sequencing the operations to be performed
so as to simplify coding and to minimize execution
time and, if pOSSible, the number of storage locations
required.

At this point, a flow chart is useful, both to keep
the entire program in view and to develop the sequence
of operations in the proper order. Figure 3-A is a flow

12

chart of the structure of the program. An exact flow
chart of a complex problem will necessarily start out
in rough form and become finalized only after con­
siderable thought and reworking. Once a tentative
flow chart has been prepared, the program can be
coded. The coding operation is ofter performed
block by block by block from the flow chart. Both
the data provided by the preceding block and the data
required by the following block must be considered.
Coding, then, is the selection of the precise
instruction(s) to accomplish the action in a given
block. The product of the coding phase is a
mnemonically coded program, ready for testing.

Once a program is completely coded, it is tested
to ensure its proper operation in solving the given
problem. The logical design of the program is test­
ed and revised until it correctly performs its intended
function. During testing, modifications of both the
program organization and the coding may be required
to get the program into proper operation.

ADD A+B

MULTIPLY

I BY C

DIVIDE BY D

STORE RESULT

HALT

FIGURE 3A. BASIC FLOW CHART

SECTION 2 - INTERRELATION OF SYSTEM AREAS AND DESCRIPTION OF CPU REGISTERS

INTERRELA TION OF SYSTEM AREAS

Each system basically contains four operational
areas: core storage, the central processor, data
channel A, and the 7904 data channels. Figure 4, a
register level diagram of a 7044 data processing
system, shows that a single core storage services
the central processor, data channel A, and the 7904
data channel. Data is transferred into and out of
core storage via a single storage bus which connects
to the other three operational areas. The desired
core storage location is identified by the use of a
memory address register (MAR). This register
receives two inputs: one from the address register
in the central processor and the other from the 7904
data channel address register. Associated control
circuits determine which input is accepted into the
MAR and where the information in the corresponding
location is transferred from the storage bus. Core
storage is phYSically part of the central processing
unit (CPU).

The central processor satisfies the operational
control and processing requirements of the system.
One register, the storage register, is used both as
an input path from core storage to the central
processor and as an output path from the central
processor to core storage. When satisfying the input
function, the storage register receives instructions
in accordance with the program being executed and
any operands called for by those instructions. Since
a single register handles both instructions and
operands, distinction between the two is made with
the timing scheme. Simply stated, storage register
contents are treated as an instruction at one time and
as an operand at another time. When instructions
are received from core storage via the storage bus,
the entire instruction enters the storage register.
However, parts of the instruction also enter other
registers associated with the decoding function of the
central processor. These other registers basically
serve to identify the type of instruction and to indicate
whether the instruction word base address is to be
modified and, in character handling operations, which
character is involved. Only the address portion of
the instruction word is significant to the storage
register. When operands are received from core
storage via the storage bus, the entire operand enters
the storage register and is significant only to the
storage register; that is, the other registers serviced
by the storage bus do not act on operands.

The output function of the storage register is used
only by store type operations.

Arithmetic is accomplished in the adder and is
binary. Three types of arithmetic are available:
fixed point, variable length, and floating point. In

fixed-point and floating-point arithmetic, addition,
subtraction, multiplication, and division can be
performed. In variable length, however, only
multiplication, division, and a combined operation
of multiplication and addition can be performed.

Data channel A serves as a transfer path through
the central processor for 1-0 operations. The
selection function of a data channel A operation is an
extension of central processor instruction decoding,
and the control function of a data channel A operation
is a combination of central processor operand fetch­
ing and a specialized use of the accumulator. The
transfer function is satisfied, in part, by circuits
unique to 1-0 operations and by circuits normally
used in central processor operations. Note that data
enters and leaves data channel A on the core storage
side via the storage register and on the 1-0 device
side via an interface. Data channel A is physically
part of the CPU.

The 7904 data channel is also used for 1-0 trans­
fers. It provides a second path between core storage
and I -0 devices. This data channel is a physical unit
apart from the CPU. A 7904 data channel operation
is selected similarly to a data channel A operation;
that is, the 7904 data channel operation select function
is also an extension of central processor instruction
decoding. The control function, again, is identical
with central processor operand fetching. However,
the control word for a 7904 data channel operation
goes to this data channel, as opposed to a data
channel A operation, which uses the accumulator to
hold the control word. Once the control word is
fetched, a 7904 data channel operation is independent
of central processor circuits. Because of this char­
acteristic, the 7904 data channel is known as an over­
lapped data channel.

Both the data channel A and the 7904 data channel
are discussed in separate manuals.

The above discussion applies equally to the 7040
data processing system. Though Figure 4 illustrates
a 7044 system, the central processor, data channel
A, and the 7904 data channel are identical for a 7040
system. The only configuration difference between
the two systems is found in core storage: a 7040
system uses a 7106 core storage; a 7044 system uses
a 7107 core storage. If the former were inserted in
place of the latter in Figure 4, a 7040 data processing
system would be illustrated.

DESCRIPTION OF CPU REGISTERS

The 7040 data processing system uses a 7106 CPU,
whereas the 7044 data processing system uses a 7107
CPU. Each CPU is an integrated unit combining an

13

74 LINES

f f t
I I I
I I I
I I I

74 LINES

I ! I
.. 1:.:2""8.::.L::.�N:::E.::.S. ______ ~f_- -+ _ 74 PL~NES --t--

I 128

I Y SELECTION J ; l AND DRIVERS

~~ 5 '-----r------'

MAR 3 TO
SENSE AMPS

Z DRIVERS

& MDRt

1 MEM ADR REG (MAR)

FROM
CHANNEL
ADDRESS
COUNTER

L
lsi

l
I

L1

1J

PROGRAM REG (PR)

J
~

OPERATION I DECODER

INSTR COUNTER (IC)

ADDRESS REGISTER (AR)

1 SHIFTCTR(SC)

PI lL.;.;1O;.,.----r_....,..;;.J171

I i I
I I I
I I i

128 LINES

x SELECTION 1
AND DRIVERS

35

L

J21

74 LlN~

ICOUNT REG

32

FIELD REG J
L

27

SENSE AMPLIFIERS \I
L--r __ ~3~6~4~0 ____ r-____ '\~"\7 ~61~

1 l "8" SEGMENT

Z
"A" SEGMENT 1

DRIVERS Z DRIVERS

74 LlNESt .74 LINES

t

MAR

3

MAR

rli-----------...... --+---------I~--------_r--_1-----} ·'HAN. C-E

~TOMAR
35 ~2~1 _____________ __

CHAN W D CTR (CWe) q
IL3~ ________________ ~~ I

I
1

\\'-r----.-~.J.TII~I
t---1~--1h====~A~SS~E~M~BL3Y~R~E~G~IS2T~ERG&~G~A~TI~N@GG(~A~SM~)c:====~\\~-------_i1

I; \ \"--1---........ 35 _---,

I
I
I I I~-~S~EN~S~E~O~U~T~RE~G~--_il
I ~L.;...-8 _-.--~17
I

t SC 13 • I
READ TXLATOR .l WRITE TXLATOR CHARACTER

I
I BCD~BIN ~

B A 8 4 2 1 IJ-oIt-------l-t------t __ B_A...,..8 _4_2_1...... COU NTER ...

J PARITY J
~1~--1====~~~JL--C-O-N-TR-OL-S-J~~---~J--~
~ J ~E~~ !~\ J I C

t
1

.1
t

WRITE BUS
BA8421

P.. \=MEMORY DATA REGISTER \ ,,(MDR) 1

U '\ I~ 4~1 '\'\ I~ a f--M-:-AR

• t 3

I I ~:i;T I I ~I~~~~ATE I UNIT ADR_ ::;~~I:' II

SENSE LINES INTERFACE INTERFACE _______ SC 10 & 12 _____ ... ADAPTER & '! & ADAPTER ADAPTER ,- L-_I_N_TE..,R .. FA_C_E __ ~

L _________ ~------_
7904
DATA
CHANNEL

WORD BANK
KEYS

t

L STORAGE REGISTER \ \ (SR) 1
TAG REG

18 20

IPROG. REG .1

1 (PR)

24 26 27

EXTERNAL
DEVICE

1 POSITION REG 1
1

(POS)

13 15 17

:~~\~NCJ l ~~tL J r-:~-~ .. 4R-\-'I-1 ..

•• I/O SYNC

1009,1011J
1014, TTY

7750 J
PCTU

1301 J
DISK

TAPE J-III----...., 1
729, 7330 t

UNITS I ~

1 1622)1 1402,1403 OUTPUT I
CARD READ 1009,1011, TYPE WRT

PUNCH 1014, TTY

1
1414 III
IV OR V
I/O SYNC

729, 1330 I
TAPE

UNITS

1401 1
DPS

IL.::.L.:.S 1"T'"""'"..--r"~~ "\~L-.-.r-"T"""'l3 51 J
J

SWAP REGISTER --" ~ pJ T----CHAR.
SEL.

l :~g~I~~C ~R
- ___ .L __ -- -- --- --, - --,' -I--- ----

I" ADDER (AD) 01 P 11

TO CLASS
IL9 ____________ ~~ i ADR DECODER

LATCH REGISTER J ~

IL9 _____________ ~ ~
I:CHANNE~I DECODER

24 26

XRX

35~l~-i-------------------t---t-----IN-D-E-X-R-E-G-.-A-(-XR-A-)-----;
F-'

~ INDEX REG. B (XRB)

""--- INDEX REG. C (XRC)

21 35

INT REG

15

POS. 13 & 14
TO MISC.
I/O CONTROL

17

L CHANNEL A

r-----....., INTF 0 1414 INTF 1 1 INTF 2 I INTF 3 lilNTF 4 OUT-RI INTF 5
INTERFACE I, II OR VII NOT NOT 1414 III PUT TYPE 1401
DECODER ADAPTER USED USED OR IV, V WRT ADAPTER ADAPTER

l t,-----------...t t

BA8421 J
READ BUS

J

UNIT
ADR

•
PARITY

:ONTROLS

CLASS
ADR

i
BA8421
WRITE BUS I

CLASS &
UNIT ADR

;i:o~~ss I I L
DECODER i---J

UNIT
ADDRESS
DECODER

'" " 35
ACCUMULA TOR)"'\-(:-:-A-=C)-..:=.jl

S 11 ~ ~ 3J<:J
1 MULTIPLlER- \ ~'r::\O"'U:::O:::T:::IE:CN:::T""RE::-:G::-.----:(M:-:-O':::;-t) 1 l 9AB421 I t -' 9A8421 I

27 10 11 14 17

SC 13 TO CHANNELS4--'--_SC 10 & 12 TO OVLP CHANNELS f
READ TXLATOR,----~t--------"" WRITE TXLATOR
303132333438 r 'I 912345

SC 13
BCD/ BIN J

FIGURE 4. 7044 DATA PROCESSING SYSTEM, BLOCK DIAGRAM

15

~
."

'" Gi c
A:
~

* I
Cj
t:
Q
.c
V>

~
;!!
'ii m
0

~
0
()

'" 0
:;;:
~
l> s:

I STORAGE BUS \~
1511 12 3 4 1516 71 8 I 9 1011111211 34 35 C

r- -- ---- ------ -- _._--- -- -- r----------- .. ------------- -1
I
I
I

TO
MAR

WORD BANK KEYS-

~
I

PROGRAM REG (PR) I I STORAGE REGISTER (SR)\ \ I

1511\2131415116171891 IS 112 31 4 51 6 7181 9 10 111 1<\\33 341 351C I

'~'ft';~, ~/ t"" . / ,
I OPERATION DECODER J

I
~ilWTRUCTION cv,;;:m (SC). J

21 22 23i:"'~5126127128129130L31l32t331341351

t
I ADDRESS REGISTER (AR) L I

ADDER (AD) \\ I
121122123124125126127128129[30131 1 321331 34]35J tQ P 11 ,213 .4-' 5 61718 91 101 11 1\ '\l33134 35

I
COUNT REGI

132133134135 1
LOCATION ~EYS-

I FIELD REGISTER I
1.2112212312412512612714"-

~
I SHIFT COUNTER (SC) I ACCUMULATOR (AC) \\ l
110111112113114115 16\171 I 5 I Q I P 11 I 2 3 14 5 161 71 8 I 9110\\<1331341351

l l
~ OTHER PR I Ip051T10N REGI

;W,,~O ow,~ .-
, "I "1"1" I"~' , •

18 19 20 1241251261271 1131141 15116 \171

1
CHA!NEL CHA!CTER

LATCH REG

9110111112113114115 35
OPERATIONS SELECTION

&
INTERFACE
DECODER

,

INDEX REG X (XRX)

INDEX REG A (XRA)

t: INDEX REG B (XRB)

INDEX REG C (XRC)

,
J MULTIPLIER - QUOTIENT (MQl REGISTER \~
1511\21314151671819110111\12113\14\1516\133435 C

L...- ____________________________________ - __________________ --I

arithmetic and a control area, a core storage, an
operator's console, and a nonoverlapped data channel.
Operationally, the CPU may be considered a con­
figuration of arithmetic and control circuits and is
treated as such in this section. Although the other
elements are physically part of the CPU, their
operations are distinctly different from CPU oper­
ations.

With respect to register configuration and data
flow transfer paths, the 7106 CPU and the 7107 CPU
are identical. This discussion of Figure 5, a block
diagram of the 7040-7044 CPU, applies to both
equipments.

Storage Register (02.01. 00-35)

The 37 -bit storage register (SR) (a sign bit, 35 in­
formation bits, and a parity bit) is composed of shift
cells and serves as the input to the CPU from core
storage for both instructions and data. Parity bit C
provides an indication of memory word parity on all
CPU storage readout operations. The storage regis­
ter is fed directly from the storage bus (SB) on all
instruction word and operand fetches and, in each
case, receives a full 37 -bit word. On an instruction
fetch, however, only bits 21-35 or 28-35 (depending
on the instruction) are used in the storage register.
On an operand fetch, the entire word is used.

Program Register (02.04.00-09)

The program register (PR) , a lO-bit latch register,
receives the operation code portion of an instruction
from the storage bus on an instruction fetch. Prograrr.
register contents are decoded to generate control
signals for instruction execution; these control
signals are called primary operation decoder (POD)
signals and secondary operation decoder (SOD)
signals.

other Program Register (02.04. 47)

The other program register (OPR) , also a latch
register, is actually an extension of the program
register. However, the OPR is Significant only to
data channel operations and is discussed under that
topic.

Tag Register (02. 04. 20)

This is a three position latch register used to select
the three index registers in address modifications
and other operations involving index registers. The
tag register latches are set by instruction word bits
18, 19, and 20 directly from the storage bus to select
the index registers C, B, and A, respectively. In

any index operation, when more than one tag register
latch is set, the corresponding index registers will
be selected to produce multiple outputs; when corres­
ponding bit positions in two selected index registers
contain 011 and 010, for example, their combined
outputs will be 011. In operations where an index
register is to be loaded, all selected index registers
will receive the same input.

~ (02.02.00-37)

The adder is a 37-bit binary adder used for perform­
ing all binary arithmetic as well as address modifi­
cation through indexing. The adder is discussed in
detail in the next section.

Accumulator (02.02.00-37)

The 38-bit shift cell accumulator register holds one
factor during arithmetic operations and receives the
result from adders. In addition, data can be shifted
one bit at a time to the left or right in the accumulator.
The accumulator contains two overflow bit positions,
Q and P, in addition to a sign bit position and 35 data
bit positions. Bit positions Q and P retain adder
overflows for control purposes. The P bit position is
also used as the highest order bit in logical oper­
ations.

MQ Register (02.01. 00-35)

The MQ register is a 36-bit shift cell register (S, 1-
35) which, during a multiply operation, initially
holds the multiplier and, finally, the low-order
portion of the product. During a division operation,
the MQ register initially holds the low-order portion
of the dividend and, finally, the quotient. The MQ
register can also be shifted in conjunction with the
accumulator or rotated within itself.

Swap Register (02.30. 82-90)

The swap register is a 27 -bit auxiliary register
(shift cells) used to temporarily hold fractions during
double-precision floating-point operations. Its only
input is from SR bit positions 9-35, and its only out­
put is to SR bit positions 9-35.

Latch Register (02.30.82-90)

The latch register is a 27 -bit auxiliary register used
to temporarily hold fractions during double-precision
floating-point operations. Its only input is from SR
bit positions 9-35, and its only output is to SR bit
positions 9-35.

17

Index Registers (02.03.21-35)

Three index registers (latch type) are included in
the CPU register configuration: index register A
(XRA), index register B (XRB), and index register
C (XRC). These registers are specified by tag
register contents. A 1 in tag register bit 20 speci­
fies XRA; a 1 in tag register bit 19, XRB; a 1 in tag
register bit 18, XRC. Thus, XRA is also known as
index register 1; XRB, as index register 2; XRB,
as index register 4. The only input to an index
register is a 15-bit index value from index register
X (XRX), a buffer used in loading the index registers.
XRX is loaded from adder bit positions 21-35. Out­
puts from the index registers are a 15-bit value in
2' s complement form to adder bit positions 21-35
and a 15-bit value in true form to SR bit positions
21-35 or 3-17.

Instruction Counter (02.04.21-35)

The 15-bit (shift cells) instruction counter (IC)
provides for sequential instruction execution. The
only input to the instruction counter is from the
address register. Outputs from the instruction
counter are to the address register and to SR bit
positions 21-35.

Address Register (02.04.21-35)

The 15-bit (latchcs) address register (AR) is used
to transmit instructions and operand addresses to the
core storage M-AR. Inputs to t..~e address register
are from adder bit positions 21-35, from the
instruction counter, and from the operator's console
location keys.

Outputs from the address register are to MAR in
core storage, to the instruction counter, and to stor­
age register bit positions 3-17 (trap operation).

Shift Counter (02.04.10-17)

The 8-bit (shift cells) shift counter (SC) is used to
count the number of shifts specified in shifting
operations. The shift counter also holds part of the
instruction in 1-0 select type operations. Further,
in transmit operations, the shift counter controls
the number of words transmitted.

Position Register (02.04.18-19)

The 5-bit position register (latches) receives
instruction word bits 13-17 directly from the
storage bus. Position register contents are used
only for character-handling operations. In these
cases, pOSition register bit positions 15, 16, and

18

17 specify which character in the word specified by
the effective address is to be used in the operation.
The only outputs from this register are gating signals
which cause the specified character to be gated from
its word position in the storage bus to SR bit positions
30-35 or which cause accumulator bits 30-35 to be
gated into the specified character position in the
storage register.

Field and Count Registers (02.16.01-03)

The 7 -bit field register is used only in the memory­
protection mode. This latch register is loaded with
bits 21-27 of the Set Protect Mode (SPM) instruction
word effective address. Working with the field
register is the count register, also latch-type, which
receives §EM instruction word bits 32-35. Field
register contents form the pattern with which subse­
quent memory references are compared. Count
register contents are used as follows:

1. Bit 32 specifies whether an equal or an unequal
compare represents a protected area violation.

2. Bits 33-35 specify the number of high-order
address bits to be examined on subsequent memory
references. The field register has one input from
adder bit positions 21-27, whereas the only count
register input is from SR bits 32-35. Both the field
register and the count register have one output going
to control circuits, where the signals are combined
to produce resultant signals which feed compare
circuits.

This chapter provides a detailed analysis of the
control and transfer circuits within the CPU.

The term CPU is often used instead of central
processor. Strictly, the terms are applied more
accurately when restricted to the physical and
functional sense, respectively. However, since
maintenance personnel commonly use CPU when
referring to central processor operations, the terms
are used interchangeably. In areas where confusion
might result, a distinction is made between physical
confines and functional operations.

Although Trapping and Memory Protection would
logically be taken up in this section, they are treated
separately in the last two sections of this manual
because of their complexity, and because the rest of
the CPU functions can be learned independent of
these two subjects. Channel A, the 10 function of
CPU, is described in a separate manual: IBM 7040-
7044 Data Processing System, Channel A CEMI,
Form R23-2652.

SHIFT CELLS AND LATCHES

The CPU uses two types of circuits for register
formation, shift cells and latches. Before studying
the actual CPU controls, it is important to become
familiar with these circuits.

Figure 6 shows a logic representation of the shift
cell, a Circuit used to make up most of the CPU
registers. The shift cell is a bistable device very
similar to a trigger. It has on and off outputs, and
it stores one of two conditions. Instead of separate
AC set and reset inputs, however, the single shift
input is connected to both sides of the shift cell the
same as a trigger is connected for binary operation.
The single gate input determines which side of the
shift cell is affected by the shift input. If the gate
is -B, the shift input turns the cell on; if the gate is
+B, the shift input turns the cell off. The gate
(positive or negative) must be active for at least
200ns before the shift pulse. This characteristic
of the shift cell prevents shifting a bit more than one
position with a single set pulse when the shift cells
are arranged in series, as in a register.

Figure 7 is the logic equivalent of a latch. Although
this circuit appears more complicated than the shift
cell, the latch is also very simple and straight­
forward in concept: +A1 is the set device, and +A2
is the reset device. Assume the entire circuit is
void of input circuits. +A1 needs two positive
signals to be satisfied. Assume these signals are
now present. Their presence causes the +A1 output,
an in-phase output, to go positive. With a positive

SECTION 3 - CPU DETAILED ANALYSIS

output from +A1, the OR circuit is satisfied, causing
the OR circuit out-of-phase output to go negative.
The negative output of the OR circuit feeds an
inverter (I) which inverts the signal, making it
positive. The pOSitive output of the inverter serves
two functions:

1. It is the output of the latch representing a binary
1.

2. It is used as a feedback signal to realize the
latch function.
Note that, following the feedback loop, the positive
output signal from the inverter conditions one input
to the +A2 reset. The other line is the reset line,
which is negative only when a reset signal is gener­
ated. Consequently, this reset line is most often
positive. Since it is positive, the +A2 input is satis­
fied, causing the +A2 in-phase output to go positive.
This positive output feeds the OR circuit, thereby
maintaining the negative output from the OR circuit
and, by extension, the positive latch output and feed­
back Signal. With this arrangement, the +A 1 inputs
can be removed (made negative) without affecting the
latch status. The only way to alter the latch is to
generate the negative reset signal and apply it to +A2.
This negative input to +A2 de conditions +A2, causing
the +A2 output to go negative. A negative output from
+A2 deconditions one of the OR inputs. The other OR
input is de conditioned by the absence of the +A1 inputs.
Logically, a +OR is also a -A. At this point, two
negative inputs are present at the OR circuits; thus,
the -A requirements are satisfied. The +OR, which
is now functioning as a -A out-of-phase output, goes
positive, causing the I input to go positive. Conse­
quently, the I output goes negative. The negative
output signal represents:

1. A binary zero.
2. The feedback signal of the latch, because this

negative signal to +A2 causes the +A2 output to re­
main negative.
With the +A2 output negative, the +OR circuit cannot
function unless the +A1 circuit receives new inputs to
condition it. Therefore, with a negative output signal,
the latch is functioning logically, because the reset
input to +A2 can again go positive without any effect
on the latch.

Comparing the shift cell and the latch reveals that
each is a binary bistable device. However, that is
where the comparison ends. The shift cell inverts
and retains the gate input, whereas the latch, in
effect, passes the set input. A shift cell does not
have to be cleared before data can be placed in it, but
a latch does. Lastly, the set pulse used in the shift
cell is the same pulse that changes the CPU clock and
is called a cell-driver-output pulse. Therefore, the

19

(+) OR H GATE M

-SC

(-) SET PULSE Q

FIGURE 6. SHIFT CELL

+x

+A

+y 1

- RESET

+A

2
;--

FIGURE 7. LATCH

20

B +B ON

D +B OFF

+X·Y

+0

;--

I--

-

I

+ LATCH OUTPUT
TO SOME REG ISTER

actual information is not set into the shift cell until
the pulse time following the set pulse, but the latch
input inform[>tion is set into the latch immediately
upon receipt.

The CPU latch register, the program register, the
address register, index register X, index registers
A, B, and C, the tag register, and the position
register are formed by latches. All other CPU
registers are formed by shift cells.

PULSE GENERA TION

General

The complex - though not complicate9 - job of keep­
ing the computer running smoothly and properly is
the function of a multitude of timing pulses. These
timing pulses all originate from a single, free­
running oscillator; the oscillator's output is trans­
formed - via a timing ring and a series of AND
circuits - into all the raw timing pulses necessary
for computer operation.

The raw timing pulses are refined into working
pulses (or levels) by AND'ing them together with
various other conditions to obtain the proper pulse
at the proper time. For instance, before an E cycle
can start, a raw timing pulse is AND'ed with a level
indicating that it is all right, with regard to the
machine, to enter an E cycle; this level, of course,
is contingent on many factors; e. g., a higher priority
cycle has not been requested, or the previous cycle
is finished. The. raw timing pulses, then, do no
actual machine work but check on various contingen­
cies for proper machine operation; the pulses (or
levels) resulting from the "contingency checks" are
the actual working pulses.

Both the 7040 and 7044 CPU's have a machine
cycle of 2. 5 microseconds (usec). Since the 7044
uses the 7107 memory, which has a 2. 5 -usec
memory cycle, the two units are compatible with­
out any special circuit innovations. However, the
7040 uses the 7106 memory, whose memory cycle
is 8.0 usec. In the 7040, then, circuitry is used to
effectively - though not actually - slow its machine
cycle down to be compatible with the 7106 memory
cycle; this effective slowing down is required only
when the 7040 is actively using the memory. When
the 7040 is performing a function independently of
memory - for example, a shift operation - it will
operate at its 2. 5-usec machine cycle rate. So, in
the case of the 7040, the timing circuitry has the
additional function of buffering the CPU to the
memory.

Pulse Generation

All timing pulses originate from a free-running
oscillator that begins generating pulses the instant
power is brought up in the CPU and continues
generating them until power is dropped. The
oscillator and its associated circuitry are shown in
Figure 8, A. The oscillator feeds a pulse generator
whose output is a continuous string of narrow pOSi­
tive pulses every 416 nanoseconds.

Since a machine cycle is 2. 5 usec long, and since
the pulse generator yields one pulse every 416
nanoseconds, there are six oscillator pulses in a
machine cycle. For ease of reference, the first
raw timing pulse(oscilJator pulse) of a machine cycle
is called AO; the second, A1, etc., through A5. The
next pulse after A5 is AO of the following machine
cycle. The output, then, of the oscillator and pulse
generator is thought of as being in groups of six
pulses, numbered AO through A5.

These pulses are fed to a clock timing ring, where
they are developed into useful pulses.

Clock Timing Ring

The function of the clock timing ring (shown simpli­
fied in Figure 8, B) is to transform pulses from the
oscillator and pulse generator into levels that can
be used in the system.

The clock timing ring keeps running as long as
power is up. The result is the output wave shapes
shown in Figure 8, C. Each third pulse causes a
given shift cell to switch, so the output of each cell
is +B for a duration of three pulses and -B for a
duration of three pulses. Since oscillator pulses
are 416 nanoseconds apart, a duration of three
pulses is 3 times 416, or 1248, nanoseconds, one­
half of a machine cycle.

Both the in-phase and the out-of-phase outputs
of the shift cells are used (not shown in Figlire 8
for SimpliCity) and are fed through inverters for
powering. The result is the six levels shown in
Figure 8, C.

The levels are labeled to indicate exactly what
kind of level (pulse) it is. For instance, in the
pulse labeled -B A1 D3, -B tells the polarity. A
indicates a raw timing pulse (a refined pulse would
carry a different letter to designate the kind of cycle;
e. g., an E cycle pulse would have an K instead of
the A. The 1.. tells at what time the pulse goes to
a -B in this case. If the pulse were a +B pulse,
the 1.. would indicate at what time the pulse became
+B. The 1.. of course, indicates the second
oscillator pulse of a machine cycle, so its time is
1 times 416 nanoseconds after pulse AO. The times
of the other pulses are calculated the same way; the
m means duration of the three pulses. This

21

LOGIC 02.15.17.1 (SIMPLIFIED) LOGIC 02.15.18.1 (SIMPLIFIED)

I l AO AI A2

OSC - I ~ PG OLY I CO +A - -SC f--- +A t-- -SC t-- +A - -SC

I
@* I CD CD CD - I ,..- r-- ~~ r-- ~- ~

I
I 0-

4

I -B CLOCK RESET

a} PULSE GENERATION I b} CLOCK TIMING RING ___________________ --1 __ _

I I I I
I" ·1 I" 2.5 MICROSECONDS ·1
I I I I I I
lAO AI A2 A3 A4 A5 I I I

{PULSE WIDTH, 40 NANOSECONDS
I I I INPUT I -- PULSE FREQ: ONE PULSE EVERY4i6 I I

NANOSECONDS
I I
I I
I I

OUTPUT 2 -B AO D3 >- +B AO 03

OUTPUT 3 1 _ -B AI 03 >---- 1·1
+B AI 03

....... _---1 -B A2 03 >---- +B A2 03

FIGURE 8. CLOCK TIMING RING

+8 AO 03 +A I +8 AO 01

-8 A1 03

+8 A1 03 +A I +8 A1 01

-8 A2 03

+8 AO 03 +A I +8 A2 01

+8 A2 03

-8 AO 03 +A I +8 A3 01

+8 A1 03

-8 A1 03 +A I
+8 A4 01

+8 A2 03

-8 AO 03 +A I +8 A5 01

-8 A2 03

+8 AO 03 -------1 +A 1------- +8 AO 02

-8 A2 03 -------1

+8 AO O? 1 I

+A I

+8 A3 03

+8 A1 02

+8 A1 03

+8 A1 03 1 I

+A I

+8 A4 03

+8 A2 02

+8 A2 03
,-

-

-8 AO 03 +A I
+8 A3 02

+8 A2 03

-8 AO 03 +A I +B A4 02

-8 A1 03

-8 A1 03 +A I +8 A5 02

-8 A2 03 <"" \:l :t: I ~ ..

~ I .-, +8 A5 03

- A rtrJ'~

t; FIGURE 9. CLOCK

' .. I

OSC. PULSES

I
+B AO Dl n ,

I
+B Al Dl

I
+B A2 Dl

I
I
I

+B A3 Dl I
I
I

+B A4 Dl

I
I

+B A5 Dl I
I

+B AO D2 I
I

-B AO D3 -B A3 D2
I--+A I +B A3 D2 ~ +B Al D2

I
+B A2 D2 I

+B A2 D3 I
I

+B A3 D2 I
I

+B A4 D2 I
I
I

+B A5 D2 I

+B AD D3 I
-B AO D3

,
W +B Al D3

+B A2 D3 +B A2 D3

+B A3 D3

+B A3 D2

+B A4 D3

+B A5 D3

FIGURE 10. SINGLE CLOCK STAGE FIGURE 11. TIMING PULSES

24

2.5 US 2.5 US .. ' ,
I

I I

n I
I

I I I n , I
I I

n I n I
I I
I I n I n I I I ,

rLJ n , , , ,
n n

I
I
I
I
I
I
I
I

LJ
I
I
I

r , ,
~

I
I , I

I I
I I ,

I

l
,

W I
I

I -,
I I

I ,

r
I
I
I

CHANNEL E CAC TO MAR

CHANNEL D CAC TO MAR

CHANNEL C CAC TO MAR

CHANNEL B CAC TO MAR

AC 21-35 TO MAR

SET MAR ~ 5

IC TO AR TO MAR

AR TO MAR

AR TO MAR

NO CORE REFERENCE

FIGURE IIA. CYCLE REQUEST PRIORITY

BEGIN

NOTE: CHANNELS E ,D ,C, AND B !,RE IN
ORDER OF REMOTENESS, WITH E THE MOST
REMOTE.

r-------- ------------- ---------, I 02.15.30.1 02 12 50 1

+B END OP TGR - B MASTER I TGR +B MASTER I I-B AR-MAR

I +A -0 - B PAR TRAP REQ +A

I +B AO D2

I - B MASTER C

- B MASTER B I +B A5 D1 i f--- ~ ..- r-

I
+0 I +A I

r---~ __ ----J

- B MASTER E . \ ~. ' .. /

- B MAST)L

+A I ,....- r-- I--

I r --wGiC"02.l5-:J3.1--'

I
+ B A5 D1 I +B ALPHA EARLY

- B fND OP OR MASTER I FIGURE 4-6 +B ALPHA LATE
t-- +A '-- +0

I I
HAS THE DETAILS

If +B A2 D2 AND TIMING - B BETA EARLY

+B A5 D1

I I +B BETA EARLY

-B STOP TGR A

I ~ I +B A2 D1 ALPHA-BETA +B BETA LATE
L _____ -.J L __ ~T~ ___

I--------J
I r-----------02.15.39.1 1

I
I
I
I
I
I

r--------, 02.15.31.1

- B BETA EARLY I +B I EARLY I
- B MASTER I I -A L i

+ B BLK TGR B CYCLJ

-B I EARLY
I

I +B MASTER C I

i I
L~~ 02.15.40.1 .J -------

r02.i5.30.1----,- ----------,
I I LATE I - +A

I +B A2 D2 -B I LATE I '1-I I +B STOP TGR A +B I LATE

+A f--- +0 I

I +A I
I - B SINGLE CYCLE

- B A2 D1 I S I I I
L ______________ --l

FIGURE 12. I CYCLE TIMING

I
I
I
I~
I
I
I
I -

I
I

+B END OP
+A

+B A4.5 D1
l-

+A f--- +A '- +0

- I---

TGR

+B END OP TGR
I

END OP TRIGGER

-B END OP TGR

I
I
I
I

l _________ I J

~f\t-\, l=t
END OP OR MASTER r r-- '---- .----:.:,-
"""''-'''-='-=='-'--+--1 - OA +A

GO TO C

----·=::1 i~-------1

r - +0 r-- I --< , t 8 A2 D2 I I--- f-- ··8 ALPHA LATE 1
I I I - +0 I I

.--+I----'~ +. - I'" ": ~ ~ I
II r - . ALPHA, I I' r- r- ALPHA I

I / EARLY I LATE I
L ___ '--~:.-=--_-~=--_-~=--=--_-~=--_"'-'. ___ .J l ~ ______ . __ . __ ----1

B eye REQ OR MASTER B

GO TO E OR MASTER E

-A A

-

+B A5 D1

r-- ----·--7-· ----, r---------,
, ~ 0."" " +8 BETA E/,RLyL j I

+A , ~" ! I +A

j, ~J" I :,_ jl

HI A2 D2 I r-- _ +a BETA LATE I t-- +0 r--<t- I - I i +0 I I
i +A t-- +A 1· ... A2DI I I r- I I +A r- I

i r t- BETA I I r- I- BETA I I I EARD' I LATE I
'---________________ . ______ .--.l Lr----__________ . ____ ..I

8 MICROSECOND MEMORY CYCLE

rA5
----' -----.,

AO AI A2 A3 A4 AS AO AI A2 A3 A4 AS AO Al A2 A3 A4 A5 AO

I I
ex .) I

I

J L I
+B ALPHA EARLY I

--I

+3 ALPHA LATE 1 l 1
,,1';, 1 J

+8 BETA EARLY ,: I 1
I

J I i I I I +B BETA LATE J I ~ I I ·1 I

~j I I I I

L J I I I
+B MEM ~ElECT ~ll~

J
J i J

I I
. t.. L. I

.t--
I : j I -. ;S"Ii I I I I

-6 MASTER I I I I
A ,. I cYCLE PULSES HELD UP UNTIL MEM WORD NOW IN MDR ! FIGURE 13. ALPHA-BETA MEM CY~ '" STARTED ARR~VAL OF BETA EARLY LEVEL AND AVAILABLE TO CPU I CYCLE ENDS

indicates the time the pulse remains -B in this case.
So, -B Al D3 indicates a negative pulse starting 416
nanoseconds after the start of a machine cycle, re­
maining negative for 1248 nanoseconds, and then
returning to a positive level. By comparing wave­
shape 1 in Figure 8, C, with the other waveshapes,
the various pulse designations should become clear.

Clock

The clock (shown simplified in Figure 9) receives the
six pulses developed by the clock timing ring and
AND's each of them with each of the other pulses to
obtain 12 +B pulses of varying starting times and
durations. It also inverts three of the input pulses
without AND' ing to obtain three new pulses. All the
pulses developed by the clock, plus all the pulses
developed by the timing ring, make up the raw timing
pulses for the 7040 and 7044 CPU. Though Figure 9
shows only + B pulses out of the clock, it should be
realized that the complement (-B) of each pulse is
also available: the -B is available directly off the
AND output; the +B is available after the AND output
is inverted.

All the AND's in the clock function identically, so
by looking at one in detail the entire clock should be
understood. Figure 10 shows one of the clock's AND
circuits selected at random. The two AND inputs
are -B AO D3 and +B A2 D3. The only time the AND
is conditioned is when both inputs are + B at the same
time; the timing relationship shown in Figure 10
indicates that this time is from A3 time to A5 time;
in other words, A3 for a duration of 2 (D2). The AND
output, then, is -B A3 D2, which is run through an
inverter to obtain +B A3 D2.

One thing may not be immediately clear in Figure
9: How can +B AO D3 be fed directly through an in­
verter and come out as +B A3 D3? The same
question applies to +B Al D3 and -B A2 D3 becoming
+B A4 D3 and +B A5 D3, respectively. These are
the three pulses shown in the lower portion of
Figure 9 that do not go through inverters. The
answer is simple: +B AO D3, after going through an
inverter, becomes -B AO D3, but a -B AO D3 is
identical with +B A3 D3. The relationship of these
pulses can be readily seen in the timing ring pulses
in Figure 8, C.

The final result of the pulse generator, the clock
timing ring, and the clock is the 18 pulses shown
in Figure 11. Only the +B pulses are shown, but
the -B pulses are also available.

Two machine cycles are shown in Figure 11 to
illustrate that some pulses originate in one cycle
and end in the following cycle. The need for this is
to allow the CPU to prepare for a subsequent cycle
ahead of time, thus saving time overall.

All the raw timing pulses just discussed go out to
a multitude of places in the CPU to control the
operations.

MACHINE CYCLES

Though the CPU performs its operations by executing
a series of machine cycles, the machine cycles are
not the same. The only thing all machine cycles
have in common is that they are 2. 5 usec in duration
and they are all controlled by the raw timing pulses.

There are six basic types of machine cycles:
1. I (instruction cycle): Fetches instruction words

from core storage and decodes them.
2. E (execution cycle): Fetches operands from

core storage and stores operands in core storage.
3. L (logic cycle): Performs CPU functions that

do not require reference to core storage; for
example, shift operations are performed during a
logic cycle.

4. U (unoverlapped cycle): Allows channel A to
access core storage via the CPU. All channel A
data transfers occur during U cycles; at this time,
the CPU is used exclusively for channel A operations.

5. B (buffered cycle): Allows channels B through
E to access core storage. These channels can access
storage without going through the CPU, so it is
possible for the CPU to perform L cycles while a B
cycle is being performed.

6. C (clock cycle): Allows the interval timer
(real time clock), which is in storage location 00005,
to be brought from storage, incremented by 1 in the
adder, and then replaced in location 00005; this
operation occurs every 60th of a second.
A seventh cycle - an IA cycle (indirect addressing) -
could be included, though it really is a variation of
an E cycle. Figure 11A shows the priority of these
cycles.

I Cycle

The I cycle is the time during which an instruction is
fetched from memory and decoded. If specified,
address modification by indexing is performed during
the I cycle. Further, some instructions can be
completely executed during an I cycle.

The sequence of events during an I cycle is as
follows:

1. Reset address register.
2. Load AR with IC contents. The signals XEC,

trap, transfer successful, and end-operation must be
present before this action can be effected.

3. MDR is conditioned to transfer information to
the SB.

4. Select memory (reset MAR and MDR).
5. Transfer AR contents to MAR.

27

6. Transfer AR contents to IC.
7. Transfer MDR contents to SB.
8. Transfer SB data into SR, PR, tag register,

and position register.
9. Decode instruction in operation decoders.

10. Step IC.
11. Perform address modification by indexing, if

specified:
a. Transfer SR bit positions 21-35 to adder

positions 21-35.
b. Transfer 2's complement of contents of

specified index register to adder positions
21-35.

12. Transfer adder bits 21-35 to AR. If the
instruction in progress is a transfer instruction and
the attempted transfer is unsuccessful, the IC contents
are transferred to the AR and the transfer of adder
bits 21-35 to AR is blocked. If the instruction in
progress is an I cycle index register load type in­
struction, adder bits 21-35 are transferred to the
XRX rather than to the AR.

Indirect-Addressing Cycle

The IA cycle occurs only if indirect addressing is
specified in the instruction word, and, when it is
specified, the IA cycle follows the I cycle. The
sequence of events during an IA cycle is as follows:

1. Select memory.
2. Transfer AR contents to MAR.
3. Transfer MDR contents to SB.
4. Transfer SB data to SR and tag register.
5. Perform address modification by indexing, if

specified.
6. Transfer adder bits 21-35 to AR.

I Cycle Timing

In order for an I cycle to perform its function of
fetching and decoding instruction words, several
working levels must be developed specifically for
the I cycle: master I, I early, I late, and (in the
7040 only) alpha and beta levels. Figure 13 (simpli­
fied logic) illustrates the development of these levels.

Master I

The master I level, which is developed first, has
four requirements:

1. An end-op trigger, signifying that the instruc­
tion currently in progress is in its final machine
cycle (almost finished).

2. An A5D1 raw timing pulse.
3. No master E level, which will be present only

if an E cycle has been initiated.
4. No master L level, which will be present only

if an L cycle has been initiated.

28

A latch arrangement is used to hold the master I
level up after the timing pulses and end-op-trigger
disappear. Note that master I will be discontinued
only by the advent of either an E cycle or an L cycle.

After being AND'ed to be sure that a parity trap
request, a C cycle, or a B cycle has not been initiated,
the master I goes out at AO D2 time to initiate the
transfer of the address register to the memory
address register (AR-MAR). This, of course, starts
the instruction fetch.

Alpha-Beta

As mentioned earlier in this chapter, the 7040, be­
cause of the use of the slow memory, must buffer the
2. 5-usec CPU to the 8. O-usec memory. This buffer­
ing is accomplished by alpha and beta levels. The
alpha-beta circuitry is not present in the 7044.

Anyone of the following levels will cause alpha
and beta levels to be generated:

1. End-op or master I
2. B-cycle-req or master B
3. Go to C
4. Go to E or master E

Regardless of which level initiates the level generation,
the alpha-beta circuitry functions the same. There­
fore, though this discussion is in reference to an I
cycle, it should be understood that the same holds
true for a B, C, or E cycle.

The alpha-beta block in Figure 12 shows its
functional relationship to the other blocks in the I
cycle; Figure 13 shows the details of alpha-beta level
development. Both figures should be referred to
during this discussion.

The end-op or master-I level initiates all the alpha
and beta levels during an I cycle; the alpha-early
comes up immediately and allows the master-I to
effect the AR-MAR transfer. Also, the memory-
. select level is .. geneIl'!:.t~<:iJQlIlttrg~t.!lly. . .s.tg.:rt. the ..
memory clock "at AODI time. Once the memory clock
starts, Ttta:kes~approxlm·ately 4 usec before the
memory word is read out into the MDR and available
to the CPU; an additional 4 usec are required to
complete the memory cycle. Since a machine cycle
is only 2.5 usec, the I cycle would be all over before
the instruction word was ever read out of memory
unless some method of delaying I cycle pulses was
employed. The absence of a beta-early level delays
the I cycle pulses until approximately 1. 6 usec before
the memory word is due to be put into the memory
data register (MDR). Once in the MDR, the word is
available to CPU. By the time the I cycle pulses are
ready to use the word from memory, the word will be
ready for use. Even so, the I cycle pulses will take
the word from the MDR, decode it, and be completed
long before the memory cycle is completed.

Subsequent memory cycles, however, cannot start
until the current memory cycle is completed; this is
because the memory select level depends on the
absence of alpha and beta late.

I Ea:rly

The development of the I-early level is contingent on:
1. Having a master-I level (both 7040 and 7044).
2. Not having a master-B level (both 7040 and

7044).
3. Not having a master-C level (both 7040 and

7044).
4. Having a beta-early level (7040 only).
The I cycle cannot commence until the I-early

level is developed. In the 7044, it is developed
immediately after the master I comes up, but in the
7040, because of the beta-early contingency, the I
early is delayed from being developed until a full
machine cycle after the master I is developed.

The I-early level goes out to initiate the I-late
level and also out to turn off the end-op trigger.

Like the other levels being discussed, the I Early
goes out to various places in the CPU to perform
functions in connection with the I cycles. The
purpose of this section is to show that levels are
developed, how they are developed, and why they
are developed; the actual work done by the pulses is
discussed as the individual CPU sections that utilize
the pulses are discussed.

End-Operation Trigger and I Late

The I-early turns off the end-op triggers, allowing
subsequent cycles (E or L) to be initiated.

The end-op trigger is turned on at A4. 5Dl time if
a +B end-op level is present. The +B-end-op level
comes up only if the CPU is nearing the end of an
instruction. The +B-end-op then is, in effect, a go
to I cycle command from the CPU. There are many
sets of circumstances which will cause a +B-end-op
to be generated (02. 15. 35. 1) and an I cycle to be
initiated. Though the end-op is necessary for I
cycle initiation, it does not force an I cycle to be
initiated. For example, if a C cycle had been re­
quested, it would be executed in preference to the
I cycle.

The I late is initiated by the I early and goes to
many places in the CPU to finish executing the I
cycle.

E Cycle

The E cycle accommodates the transfer of an oper­
and either from or to memory. The sequence of
events during an E cycle for a from -memory

operation is as follows:
1. Select memory.
2. Transfer AR contents to MAR.
3. Transfer MDR contents to SB.
4. Transfer SB data into SR.
5. Transfer SR contents to adder. (Many trans­

fers are possible at this point; however, the SR-to­
adder transfer is most probable).

6. Perform some specified action; i. e., add.
During a to-memory operation, the sequence of

events during an E cycle is as follows:
1. Select memory.
2. Transfer AR contents to MAR ..
3. Inhibit transfer of data from specified memory

location to MDR.
4. Transfer data to be stored to SR.
5. Transfer SR contents to SB.
6. Transfer SB data into MDR.
7. Transfer MDR contents into specified core

location.

E Cycle Timing

In many respects, the E cycle resembles an I cycle
because both types of cycles reference memory,
causing information to be read out for CPU use. The
difference is that the I cycle brings out an instruction
word and the E cycle brings out a data word (or
stores a data word).

Figure 14 shows the functional blocks necessary
for E cycle pulse generation, which is almost
identical with I cycle generation (Figure 12). The
E-cycle levels (E early, late, etc.) are powered
through inverters (not shown) anI;! sent to the CPU
to execute an E cycle. The beta-early pulse (in the
7040 only) will delay the E cycle operation just as it
did the I cycle operation.

The difference between E cycle and I cycle pulse
generation is the go-to-E level, which sets the
master-E trigger. Figure 15 shows the conditions
necessary for a go-to-E level. A -B out of block 1,
plus a +B out of any of the other blocks, brings up
the go-to-E level. Block 1 will have a -B output
when the CPU is not completing an instruction. The
other blocks will have +B output in accordance with
the conditions shown in each block.

L Cycle

The L cycle is a non-core-storage reference cycle
in which logical and shifting operations are perform­
ed. This does not mean, however, that L cycles
are employed only to accommodate logical and
shifting type instructions. Other types of instructions
use L cycles; the criterion for entry into an L cycle
for these cases is time. Generally, if not enough
time is available in a given cycle to perform the

29

02 15 30 1 02 12 50 1

GO TO E ~ B MASTER E TGR +B MASTER E -B AR-MAR
-0

- B PAR TRAP REO
+A

A501
+B AO 02

MASTER - B MASTER C

- B MASTER B ~MASTER I E

'. MASTER L
02.15.33.1

-B GO TO E + B ALPHA EARLY

OR MASTER E

ALPHA-
BETA

- B 13ETA EARLY

02.15.31.1

-

E
~ BLK, B CYCLE EA,RLY

02.15.30.1

~'MASTER C +B E EARLY

+B A3 02 E
LATE

/

- B A3 01 RESET E LATE PULSES

FIGURE 14. E CYCLE TIMING

\

1.+-::0-:--------11
I +0 +A

+B HPR- . _ ~. I +B POD IX ._
------------------~ ,

I +B POD 7X I
I +B I OR\,A LMe r .~. -T--1 -------,

L_----=-~ __ .. 2 _____ ~

r-=~---------------l

I +A I
1 +B L LATE I

I-----+---~ L ______ 3 ____ ::.J
r-=A-:-----------------:;l
I ~ \ ott +A I
I +B PRE IA T!~' ",\ 'S \""~ I
L ______ 4 _____ ~1---t-------1

r-----~~~'---------.
I -B OPFP GO TO E 'L 1 I

-0 +A I

- B OISP ENTER OR CLEAR

LOGIC 02.15.34.1
(SIMPLIFIED)

02.15.39.1

1-.--.. -1 I (~; ; I 1

I +B END OP I
TRIGGER

I I
L __ ' __ ~

-A

+0
II - B PARTIAL STORE TGR II

~~!~------------~ I +B E LATE RAW .. ,-,.---,.... (;1
L _______ ~ __ !····· __ ; ~;~

,---------------.. ~
i .. ,., ~" '" "'~ I ~_t__-------I L ______ 6 ___ =--.J
r-=-TE----- ------------~I

I +A I
I +B ANY TRAP L ______ 7 ____ ._

FIGURE 15. GO TO E

+B GO TO E.I\

31

operation at hand, an L cycle is taken to complete
the action. For example, two CPU cycles are
necessary to load an index register with the contents
of a defined accumulator field. The first cycle
occurs because of the instruction and is therefore an
I cycle. However, because of the time required to
complete the necessary transfers as opposed to the
duration of an I cycle, not the entire operation as
specified by the instruction can be performed during
an I cycle. Since the instruction, in this case,
specifies the accumulator as containing the desired
information, there is no need for an IA cycle.
Further, since the accumulator is internal to the
CPU, there is no need to communicate with memory
and, therefore, no need for an E cycle. Thus, any
part of the operation that is not realized during I
cycle time is realized by entering an L cycle.

Another example of an instruction other than a
logical or shift type instruction using an L cycle is
the multiply instruction. In performing multipli­
cation, repetitive steps are executed during which
addition and shifting or only shifting are effected.
For a repetitive step that requires both, the addition
phase and the shifting phase are effected during L
cycles.

For a shift type instruction, the shift counter
generally controls the number of individual opera­
tions performed during an L cycle. For example,
a single L cycle can accommodate approximately
six I-position shifts. A shift count value greater
than 6, then, requires more than one L cycle; a
shift count value greater than 1210 requires more
than two L cycles; etc.

L Cycle Timing

The logic cycle is the simplest of all cycles as far
as pulse generation is concerned. The L cycle does
not use core storage or (in the 7040) the alpha-beta
circuitry. To perform its various functions (shift­
ing, for example), the L cycle requires an L-early
and an L-Iate level. Development of these two
levels is shown in Figure 16, A. (Note the similarity
to I and E level development.)

The go-to-L level is the key to L cycle timing, and
its development is shown in Figure 16, B. An L
cycle follows any I cycle that is not followed by an
E cycle or any E cycle that is not followed by an
I cycle or another E cycle.

B Cycle

A B cycle is generated as the result of a B cycle
request being sent to the CPU from one of 1-0
channels B through E. The B cycle request indi­
cates that the requesting channel wants to either

32

read from or store into memory (core storage). It
is the function of the B cycle to control the memory
for the 1-0 channel and to prevent the CPU from
using memory at the same time that the 1-0 channel
is using it; this task is fairly simple because channels
B-E enter memory directly through the storage bus
(SB) without using any portion of the CPU.

Figure 17 shows the B cycle timing and how it
controls the use of core storage.

Cycle Generation

At A5 D2 time, a B cycle request effects generation
of the master-B level. The master-B level is re­
generated every A5 D2 time as long as the B cycle
request is present; however, the first A5 Dl that
appears turns the master-B off if a B cycle request
is not present. This means that the 1-0 channel,
not the CPU, determines the number of B cycles.

The master-B originates two other levels, a B­
early and a B-cycle-requested-or-master-B. The
former is used in parity checking circuitry. The
latter performs two important functions:

1. It starts the alpha-beta level operation
(Figute 13), an identical function with the I and E
cycles.

2. It prevents an AR-MAR transfer (Figures 12
and 14). It can now be seen just how a B cycle
breaks into CPU operation. The B cycle allows the
I and E cycles to generate a master level but pre­
vents them from generating early or late levels.
This action hangs up CPU operations (except for any
L cycle operations being executed) but does not alter
anything. As soon as the B cycle is finished, the I
or E cycle is allowed to bring up ~arly and late
levels as though nothing had happened. Of course,
the B cycle has no effect on an L cycle because the
L cycle never uses memory and there can be no
conflict.

Memory Control

Master B goes out to control the memory lines by
being AND'ed with a write-memory level from the
1-0 channel. This write-memory line is down when
the 1-0 channel wants to read from memory instead
of storing into it.

If a write is requested, the read-mei:nory line is
a -B. This causes the +B store cycle to come up,
thus generating a store cycle. In addition, the -B
causes the storage bus (which contains the infor­
mation from the 1-0 channel) to be transferred to
the MDR, where it is automatically written into
memory during the second half of a memory cycle.

If a read is requested, the read-memory line is
up and the contents of the MDR are gated out to the

02.15.30.1 02.15.31.1 02.15.30.1

+B L EARLY

+B GO TO L

+A
- B MASTER L +B L EARLY

-A +A
-B L LATE

+B BLOCK
+B A5 D1

TGRC,' f; r +0 I -
+B MASTER C +B A2 D2

+0 I -
- B MASTER I

+A
,.--

- B A2 D1
- B MASTER E +A

-

,....- -

,.-- -

a) L CYCLE LEVELS

02 15 34 1

-B GO TO E

+A
,

.(-B TMT E OR L LATE

+B E LATE RAW '~ +B GO TO L

+0 -A

-B GO TO E

+A - r-

-B TMT E OR L LATE'>

"""" "

+B I LATE
~

+B END OP TGR ,""
b) GO TO L

t; FIGURE 16. L CYCLE TIMING

34

+8 A5 D2 +8 MASTER B - +0 +A

+B A5 Dl
+A +A +B BETA EARLY -

+B BETA LATE

r -wRiTE --;;;;:5;;- -- - ---- - --- ---'1
I -B ANY MEM CYCLE EARLY +B SB-MDR

-A I -B A2 Dl ,

I - I
! I
1\ +B ALPHA EARLY _ L STORE f---4-- CYCLE +B STORE CYCLE 'I

+/\ +II !

I ."0" - I
L ________________ r--_________ J

- B B EARLY

02.15.33.1

START ALPHA BETA
(SEE FIGURE 13)

02.12.50.1

PREVENT AR-MAR_
(SEE FIGURE 12
AND 14)

r-----------, r---------l
i ., ~"" , +A ~ +0 i 1" .M ",M +. ~ I ., MO< 0-% - '" I

+B ALPHA EARLY

I :;>;~:v~~ - I I :::-:, I
L _____ ~~~,~J I - +. >---- I .'M",~-'HO I

j
, +BMAR3 I
I +B READ MEM I

READ L ____________ ~,~~J

FIGURE 17. B CYCLE

storage bus. The MDR contains, at this time, the
information from core storage that was requested
by the I -0 channel.

U Cycle

The U cycle allows I -0 equipment to read from or
write into CPU core storage via channel A. The U
cycle request initiates an E cycle (Figurel5) because
most of the E cycle hardware and functions are the
same as those required by a U cycle. Any E cycle
function not required for a U cycle is inhibited by
a U cycle. Conditions that start a U cycle are
discussed in the channel A manual.

C Cycle

C cycles are used only to update the interval timer
(real time clock), which is memory location 00005.
Once every 60th of a second, memory location 00005
is read out, incremented by 1 in the adder, and re­
placed -in the same memory location. The prime
power 60-cycle source is used to originate C cycle
requests. Every time the 60-cycle power reaches a
peak (once every 60th of a second), a pulse is
generated which causes a pair of C cycles to be
initiated. These two C cycles, which access core
storage, have a third cycle sandwiched in between
them. This third cycle, called a 1st-C-cycle­
delayed cycle, does not access core storage. The
complete process of updating the interval timer
then consists of three machine cycles: a 1st C cycle,
a 1st C cycle delayed, and another C cycle.

During the first C cycle, the following occurs:
1. Force 00005 into MAR.
2. Select memory.
3. Transfer contents of location 00005 to MDR.
4. Transfer MDR contents to storage bus.
5. Transfer SB information into SR.
6. Initiate first C cycle delayed.
The first C cycle delayed cycle accommodates

the following:
1. Transfer SR contents to adder.
2. Add 1 to low-order adder bit 35.
3. Transfer accumulator contents to SR to keep

them from being destroyed.
4. Transfer adder contents to accumulator.
5. Transfer SR contents to adder.
6. Transfer accumulator contents to SR.
7. Transfer adder contents to accumulator,

restoring it.
During the last of the three cycles, which is the

second C cycle, the following occurs:
1. Force 00005 into MAR.
2. Select memory.
3. Transfer SR contents to SB.

4. Transfer SB information into MDR.
5. Transfer MDR contents into location 00005.

C Cycle Timing

Figure 18, the simplified C cycle logic, shows the
basic functions and timing. The first A4 D1 pulse
after each 60-cycle voltage peak generates a C cycle
request which will, in turn, initiate a go-to-C level.
The go-to-C level is contingent on not having a B
cycle or U cycle request. Conditions satisfied, the
go-to-C goes out to start the alpha-beta level
generation and to initiate a master-C level. The
master-C goes out to prevent execution of other
cycles and to start the memory readout. The
memory readout occurs because a 1 bit is forced
directly into MAR positions 15 and 17 (which will
decode as storage location 00005), and a read cycle
is started by the master-C ultimately starting the
memory clock.

The C-early level initiates a 1st-C-Iate level
(Figure 18). The C late transfers the storage bus
(which has the contents of location 00005) to the
storage register and initiates a 1st-C-cycle delayed.

The 1st-C-cycle delayed transfers the storage
register to the adder and adds 1 to the adder. The
incremented location 0005 is then transferred from
the adder to the accumulator. At the same time, the
accumulator is sent to the storage register to
preserve valid data the accumulator may have con­
tained. The storage register is now transferred to
the accumulator, through the adder, restoring the
accumulator content, while the accumulator is
transferred to the storage register. The up-dated
timer in the storage register is now ready to be
stored back in location 0005. This action completes
the first two machine cycles of the three required.

The end of the second machine cycle causes a C­
cycle-complete level to be generated. This level
causes the second C cycle, which:

1. Transfers the storage register to the storage
bus and causes it to be written back into memory.

2. Turns off various C cycle controls so the cycle
will stop.

Figure 19 shows the timing of the C cycles.
Figure 20 shows how a C cycle request is generated.
The 60-cycle (prime power) is fed into a clock clamp
whose two outputs, C and D, are as shown; C output
is up twice as long as D, and both are in the order of
milliseconds. A plus D output sets the 60-cycle
buffer latch at A2 D1; this latch is reset by a minus
C output at A4 D 1. However, the latch is not reset
by the A4 D1 immediately following the A2 Dl that
set it because the long C output is still up (plus) when
the A4 D1 appears. The 6O-cycle buffer remains
latched up until an A4 D1 appears coincident with a
down C output; this coincidence may be a matter of
milliseconds.

35

24V 60 CYCLE

+B A4 Dl

+ B (TURN OFF)

+B GO TO E

+ B B CYCLE REQ

+B RCHA

-B CHA SR REQ

I-B C EARLY

+B A2 D2

+ B (TURN OFF)

FIGURFJ.B. C CYCLE

02 1651 1

C
CYCLE

REQUEST

02.16.52.1

NO B,U
CYCLE

REQUEST

02.16.53.1

FIRST
C

CYCLE
LATE

- B C CYCLE REQ

+B A5 Dl

GO TO C

1

+ B BETA EARLY

02 16.52.1

MASTER
C

C
EARLY

I-_-..;:B..;.MA:.:.;:S..:.;TE:.:.:R..,;C:....-__ PREVENT U CYCLE

I---.::+~B..;.MA=S..:.;TE:::R....:C:....-.... _MEMORY CONTROL LINES (START MEMORY)

....-- KEEP B, E, I FROM AR-MAR

+B AD D2

02.15.31.1

02.16.52.1

SET
ADDRESS

INTO
MAR

~~~_~G~O~T~O~C ___________ • ___ • ___ ~~ +B ALPHA EARLY 

- B SB-SR (A3 TIME) 

-B 1ST C LATE 

- B A5 Dl 

02.16.54.1 

FIRST 
C 

CYCLE 
DELAYED 

L-____ . 

ALPHA 
BETA 

- B SR-AD (A5 TIME) 1 FULL CYCLE 

- B CARRY "1" INTO ADDER (AO TIME) 

- B AD-AC (A 1 TIME) & (A3 TIME) 

- B AC-SR (A 1 TIME) & (A3 TIME) 

+ B 1 ST C CYCLE DELAYED 

+B BETA EARLY 
- TO C EARLY 

.,......:-B~A....:L:.:..PH..;.A.;..::.LA.:.:T.=.E _~ TURN OFF MASTER C 

IINTERRUPT CAUSED BY U CYC~---l 02.16.53.1 

I +B E EARLY I I +A. I +B MASTER C FIRCST 

-B MAR 15 

-B MAR 17 

+B MEMORY CONTROL LINES (WRITE) 

- B SR-SB 

I I +B A4 Dl CYCLE 
COMPLETE I +B AO Dl 1--_....:R:::ES:!:E.!..T.::C~C:::Y:.::C:::.LE::...._..j!I-__________________ --IL-, _______ .... +B (TURN OFF C CYCLE) 

L _________ --.J 



ALD 

16.51 

16.51 

16.51 

16.52 

16.53 

16.54 

16.53 

TIC. ~ 
'( 

I I 
I 

(02.xx.xx) 
I I 
I I 
I 

I 
I 
I 

I 
I 

I 
I 

I 

I 
I 
I 

I 
I 

I 

I 

I 

I 

,.~:)~:,./' 

EARLY C REQU 

C REQU. I 

I 

CC 

I 
I u 

ON 
>-- ° 
0'" 
c.?~« 

1 

FIGURE 19. C CYCLE TIMING 

z::l 
-0 

1-1 56 - SR I I SR - 56 
w I SR - AD . '" I 

6 u -w>-O t---I 5 to MAR, SM ~HOTl .....- 5 to MAR, SM 
",U-
UlU « .....- SR S-AD P 

1-000 AD - AC 

1 
"""'" t--t ~ AC - SR 

~AC P - SR 5 
0, 

~TERLOCK ~Ro~~ AT 
>--

A\~\ "''"'~ -' w", AFTe'"R Tlc:..rc. 
-'« Uw 
>-U U ,,:-_ 
U::;EO 
>--0 .... 

CLE REQU (SAME S "GO TO C" EX EPT "GO TO C" DROPS DURING 0<. lATE ) ~.U « 

CHANNEL INTERRUPT WILL DROP 

~.~~ 
""c, 

1~lgl~ ~ ALPHA LATE 

J/~ 
MASTER C u'" ,« 

C EARLY C EARLY 

1 I~I 1 
t ~. t 

I~ u-' 

T ~I~>- 1ST C LAT ~C~ 
~ ~~ I~I 01 

t:;U~ en. 

::;E~~ ~~::n 
0+ ':;/. 
U 

U -
>->-

0 
U") 

-,UN 
lSTCDEL ') ~UO 

W>--N 

I I U~« 

t -' 0 
~- w_ 

W uS' "'0 
>-- ~O «N 1;;« -' U «, 
uGl - t 1ST CYC COMP U 
1;;« 

I \ - CHAN A U 
'c.c., CYCLE WILL 

,c " DROP 3 -~-.--, / , 1 
, 

2 ,/--.. 



'" 00 

CLOCK 
CLAMP 

24V 60 CYCLE 
C 

24V 60 CYCLE 

FIGURE 20. C CYCLE REQUEST 

~ A2 D1 

C I ' SET 

I 
I 
I 

J..JL.........r 
D I RESET 

I··' A4 D1 
I 

.' 

.. 

SET 

A2 D1 SET 

+ B (WHEN C IS NOT REQUESTED) RESET 

A1 D1 RESET 

LOGIC 02.16.51.1 I)IMPLIFIED) 

+ B (WHEN C IS REQ ) SET 
I---

SET 

60 CYCLE AO D1 SET EARLY C 
BUFFER REQUEST 
LATCH 

A1 D1 RESET 
LATCH 

RESET 

I---
RESET 

OFF SET + B C CYCLE REQ 

SET 

C REQUEST 
A4 D1 SET C CYCLE 

INTERLOCK A4 DI RESET REQUEST 
LATCH LATCH 

C EARLY RESET 

ON 1ST C CYCLE RESET - B C CYCLE REQ 

COMPLETED 



The 60-cycle buffer output sets (at AO D1) the 
early C request latch, whose output, in turn, sets 
(at A2 D1) the C request interlock and (at A4 D1) the 
C cycle request latch. 

The C request interlock allows the early C request 
to be reset and prevents it (the early C) from being 
set again as long as an IT operation is in process. 

The 1st-C-cycle-complete level (at A4 D1 time of 
the final IT machine cycle) resets the C-cycle­
request latch, and the IT operation is over until 
another C cycle request is automatically initiated 
(approximately 1/60 second later). 

Interval Timer Interruption 

The interval timer (IT) can be updated between U 
cycles. If a U cycle request occurs before the IT 
operation is finished, the U cycle takes precedence; 
this priority is necessary because the I/O devices 
are mechanical (they cannot wait) and must therefore 
be serviced immediately. The U cycle clears the 
storage register, thus destroying the IT word placed 
there during the C cycles. 

Note, in Figure 18, that the U cycle breaks into 
the IT operation by resetting the 1st-C-cycle­
complete latch with an E-early level at AO D1; this 
action prevents the incremented IT word from being 
written into memory and also prevents the C-cycle­
request from being dropped. Because the C cycle 
request is still up, the entire IT operation will recur 
as soon as the U cycle is finished. 

Note also (in Figure 18) that the 1st-C-cycle­
delayed level causes the AD-AC transfer and the AC­
SR transfer at Al time and again two pulses later at. 
A3 time. Since the IT operation can be sandwiched 
in between U cycles, the preceding U cycle would 
have information (a word count and an address 
count) stored in the accumulator. At Al time, the 
1st-C-cycle-delayed cycle starts to use the accumu­
lator. The accumulator contents (needed for the U 
cycles) are transferred to the storage register to 
prevent their loss. At A3 time, the IT operation 
needs to use the storage register, so its contents 
are put back in the accumulator and the accumulator 
goes to the storage register. Though this may sound 
confusing, it is really an accumulator/storage­
register swap to preserve information for the U 
cycle while the IT is being updated. 

INSTRUCTION DECODING 

All instruction words read from core storage and 
placed on the storage bus are just so many random 
bits and have no particular Significance unless they 
are interpreted at a speCific time, in accordance 
with certain rules, by an interpreting device de­
signed specifically for the application. During I 

I cycle time, all words on the storage bus are treated 
like instruction words; the rules for interpretation 
are the various instruction word configurations, and 
the interpreting device is the CPU hardware in the 
form of registers and decoders. 

Figure 21 shows the routing of bits out of the 
storage bus for decoding during I cycle time. The 
AND conditions reveal that not all bits are always 
decoded. In fact, only two actions occur on every 
I cycle: 

1. Bits 18, 19, and 20 are sent to the tag register. 
2. The entire storage bus is transferred broad­

side to the storage register and then to the adder. 
Figure 21 shows the transfer of bits concerned only 
with decoding. The remaining storage bus bits may 
or may not be decoded, depending on the particular 
ins truction. 

To better point up the varying decoding require­
ments of instructions, Figure 22 shows three typical 
instructions as they appear on the storage bus. These 
three instructions collectively utilize all the CPU 
decoding facilities. By carefully comparing the 
instruction decoding needs with Figure 21, it can be 
seen when and where they will be decoded. Just how 
the decoding takes place is the prime function of this 
section and is treated in detail; the when and where 
are treated only to the extent necessary for under­
standing the how. Also, decoding channel instructions, 
which goes further than CPU instruction decoding is 
described in the channel A instruction manual. 

Bits S, 1, And 2 

Before any other bit transfers or decoding can be 
started, SB bits S, 1, and 2 must be decoded (except 
for the transfer to the tag register, storage register, 
and adder as already mentioned). When these three 
bits decode to be +1, :!:.2, or .:!:.3, the SB S bit goes to 
the PR S bit position, the SB 1 bit to the PR 8 bit 
position, and the SB 2 bit to the PR 9 bit position; in 
this case, no other bits are transferred into the pro­
gram register and no bits are transferred into the 
position register, the IA control trigger, or the shift 
counter. Only five instructions, all transfer type, 
can cause this action: TIX (Figure 22), TXI, TNX, 
TXH, and TXL. 

The Simplified logic for decoding these three bits 
is shown in the inset in Figure 21. The S bit equal 
to 1 is minus, and equal to 0 is plus. 

Operation Decoding 

More than 150 different instructions can be executed 
by the 7040/7044; for the CPU to know exactly which 
instruction to perform, bits S through 11 of the 
instruction word must be decoded (except for TIX, 
TXI, TNX, TXH, and TXL). 

39 





NOTE 1 

'AND CONDITION 
SEE NOTE 1 
AND INSET AT 
BOTTOM 

PROGRAM REG 
02.04.00-09 

I 

~/~~---------------------~ I OP DECODER I) 

I LATE 

MOl A 

NOT POD7X 
INSTRUCTION MUST 
BE INDEXABLE 

'SB-PR 1-9 
A 

IA 
CONTROL 
TRIGGER 
02.10.65.1 a...,"""'-r-" 

GO TO 
IA CYCLE 

MISC I/O 
CONTROL 

'EXCEPT ON 5 INSTRUCTIONS (TXI, TlX, TNX, TXH, TXL), SB BITS 3 THRU 11 ARE TRANSFERRED AS 
SHOWN INTO PR 1 THRU 9; ON THESE 5 INSTRUCTIONS, ONLY BITS 5, I, 2 ARE TRANSFERRED, 
WITH SBI GOING TO PR 8, AND SB 2 TO PR 9. THE SIGN BIT IS ALWAYS TRANSFERRED IN EITHER 
CASE, BELOW SHOWS TRANSFER-LEVEL DEVELOPMENT. 

+B TRANSFER SB SIGN TO PR SIGN 

(SB - PRS) 

-B I LATE 

-B A3 02 

+BSBl=1 
+A -A 

1-----1 +0 

+8SB2=1 
+A 

+8sBS=O 
(LOGIC 02.12.32.1 SIMPLIFIED) 

FIGURE 21. INSTRUCTION DECODING 

+B TRANSFER SB 3-11 TO PR 1-9 
(SB-PR 1-9) 

+B TRANSfER SB 1 AND 2 TO PR 8 AND 9 

.. ,"-·,,"\-----1 
I I 
I OPCODE I 
I +1 I 
I ± 2 I 
I ±3 I 
I I 
I I L ______ ...J 

02.04.20 

'SB-PR 1-9 

SELECT CH-A I 
INTERFACE dl ,(t 

J~t ii 
STORAG E REG (SR) 

I-IA EARLY 
A 

A3Dl 

02.12.01 

ADDER (AD) 
I-IA LATE 

A 

M-D3 

02.12.08 

f\D(jI 

TO CLASS 
ADDRESS DECODER 

TO I 1 1 I I I I I I 
ADDRESS 4 _____ -' __ I_...J_-'_...J_...J_..J._.1_ 
REGISTER : ~ ') 

- < 01 ft S I , 

POD7X 
A 

I LATE 

AS 01 

02.12.37 

SHIFT 

COUNTER (SC) ,-...L,.,....J"-"..a.....,...1"-T"..L..,,"",-r-J....,r-Y 

PR27----~~~~~ 

SELECT 
I/O EQUIP 

41 



STORAGE 
BUS 

PROGRAM REG 

WRS 
(OP CODE +O766) 

S 2 3 4 5 6 7 8 9 10 II 

o o o o o 

" I I 
" I I 

" I I 
" I I 

" I I " , + , , + , t , t 

S 2 3 I 
I , 
I , 
I 
I 
I 
I 
I , 

POD 
76 

4 6 \ 7 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

SOD 
06 

8 

FIGURE 22. INSTRUCTION CONFIGURATIONS 

42 

STORAGE 
BUS 

STORAGE 
BUS 

STORAGE 
BUS 

S I 

OP 
CODE 
+2 

S I 2 

, 
SB S, I, 2 
TO 
PR S, 8, 9 

t 
DECODE 

S I 

OPERATION CODE 
-0500 

SB S, 3-11 
TO 
PR S, 1-9 

t 
DECODE 

3 

OPERATION CODE 
+0766 

, 
SBS,3-11 
TO 

PR S+ 1-9 

DECODE 

FIGURE 23. BIT LAYOUT 

IA 
CONTROL 
TGR 

t 
DECODE 

D 

~ S o I 

II 13 I 4 15 

\ II 
POSITION 
REG 

~ 
DECODE 

r 
20 21 

17 

TAG 
REG 

~ 
DECODE 

18 

T 

20 

TAG 
REG 

~ 
DECODE 

T 

17 18 20 

TAG 
REG 

~ 
DECODE 

21 

21 

CAL 

Y 

35 

TO ADR REG VIA SR & AD 
(NO DECODING NECESSARy) 

TlX 

Y 

35 

~ 

TO ADDERS 

WRS 

Y 

35 

BITS 24, 25 BITS 
26,27 28 THRU 35 
TO TO 
PROG REG SC VIA SR &AD 

+ + DECODE DECODE 



Bits S through 11 of the instruction word constitute 
the operation code and can usually be completely 
decoded in the primary operation decoder (POD). 
One class of instructions is an exception; this class 
requires a secondary operation decoder (SOD) to 
identify the instruction. This type is discussed after 
POD. 

Figure 23 shows a WRS operation code as it 
appears in the storage bus, the program register, 
and the operation decoders. 

Figure 24 shows the primary operation decoder in 
simplified form. The primary decoding is accom­
plished in two distinct steps: 

1. The outputs of program register positions 1, 
2, 3, 4, and 5 are AND'ed together to give 12 out­
puts, each active for a number of different instruc­
tions. 

2. The 12 outputs from the first stage are AND'ed 
in a manner that will give outputs for specific 
instructions only. 

For example, assume program register positions 
1 through 5 contain 001 10. This means the following 
program register outputs are active: 

a. PR 1 
b. 1?R2 
c. PR 3 
d. PR 4 
e. PR 5 
f. PR 6 assumed to be zero 

The first AND' ing stage has two AND circuits active: 
POD IX and POD X4. In the second stage, POD IX 
and POD X4 are themselves AND'ed together to give 
a POD 14; the only instruction with a POD 14 is 
TOV. 
Not all instructions are completely identified by a 
POD output as is the TOV instruction. For example, 
POD 40 can be either an ADD or §!l!! instruction. 
The only difference between an ADD and an SUB, 
with respect to the operation code, is the sign bit; 
so by AND'ing POD 40 with the signals PRS (PR S 
bit position contains a 1) or PRS (PR S bit position 
contains a 0), an ADD or SUB is determined. In 
the case of other instructions, the difference might 
be some bit other than the sign bit, but the same 
logic holds true: by AND'ing the second stage POD 
output with the particular bits involved (they do not 
necessarily have to be PR bits), the specific instruc­
tion is identified. Because of the number involved, 
not all the AND circuits used to resolve each specific 
instruction are illustrated. However, the illus­
trations do provide sufficient detail for a thorough 
understanding of decoding. If the development of 
the various POD levels is understood, understanding 
the breakdown within a particular POD is just a 

matter of noting the bit differences between the 
instructions and realizing that these differences are 
AND' ed with the POD to obtain the specific instruc­
tion. 

Note that the PR 6 and Pif6 signals are used in 
the second stage to differentiate between X2' s and 
X3' s. An example of this use is the generation of 
POD 52 and POD 53. The PR sign bit and bits 7, 8, 
and 9 are used to identify specific instructions within 
a POD in the manner discussed in the preceding 
paragraph. 

Because POD 76 embraces so many different instruc­
tions, a secondary operation decoder is necessary to 
completely identify a particular POD 76 instruction. 
Figure 25 shows a Simplified version of the SOD. 

The SOD is much like the POD, the main difference 
being the PR bits used. In the SOD, PR bits 6, 7, 
8, and 9 are AND'ed with a POD 76 to obtain the SOD 
levels. As with the POD, some SOD levels completely 
identify a given POD 76 instruction, while others 
must be further AND'ed to realize identification. 
Because of the many circuits involved, only the basic 
SOD levels are illustrated. 

Flag Bit Decoding 

Bits 12 and 13 of the instruction word are flag bits 
and are used to specify indirect addressing. These 
two bits are flag bits only in those instructions that 
can be indirectly addressed; otherwise, they may 
serve other purposes and are not decoded for in­
direct addreSSing. 

Flag bit decoding is simple (Figure 26). Ifbits 
12 and 13 of the instruction word are both l' s, and 
if the instruction is indexable and not a POD 7X 
instruction, a PRE IA trigger is initiated at I late 
time by an A4 D1. The PRE IA trigger ultimately 
causes an IA cycle (a type of E cycle), which is 
necessary for indirect addressing to be initiated. 

Tag Bit Decoding 

The tag bits are 18, 19, and 20 of every instruction 
word, and they denote which index register (if any) 
may be used. (Some instructions do not employ XR 
outputs,although the bits select an XR.) There are 
three index registers (A, B, and C), and they are 
usually used for address modification. Figure 27 
shows the tag bit decoding and index register 
selection. 

If instruction word bit 18 is a 1, the tag C latch 
is 'set at I late time by an A3 D2. The tag C latch 
output is AND'ed with the output of each latch 
pOSition on index register C. Thus, when bit 18 is 

43 





N .. 
11 
:u 
s: 
l> 
:u 
-< 
o 
11 
fT1 
:u 
l> 
_i 

o 
z 
o 
fT1 
() 

o 
o 
Z 
Gl 

lOGIC 02.04.00.1 
THRU 02.04.09.1 
SIMPLIFIED 

PROGRAM REGISTER 

.SB_5 __ "~~ __ ... : __ : 

S=8~. ____ 1~r-___ :~R~: 

DECODERS 

1ST STAGE 

Pin POD OX 

":'-':'----IOI-.....:P..:;O..:;D.:;O:;.:X 

PR 4 POD XO 

PR=5'-__ --101-.....:P..::0 ;.::D..:.X;::0 

PRf POD IX 

-:-32--000jOJo_.;P",0_D_I.X 

PR 4 POD X2 

'"'PR:..;5'-_---iUI-_...;P..:;O;;:;D..:.X.;:c2 

POD 2X 

PRI f7l 
":'"':=------UI-_...;P..:0..:;D..:2;;.;X 

POD 3X 

PR 2 
A 

PR 3 POD 3X 

PR 4 POD X4 

IOPR"5'-_~0"_"P.0_D"X~4 
POD 4X 

PRI f7l 
P"~~:=----~U~_":'P"::0:':D':;4":'X 

PR I 
POD 5X 

A 

PR 3 POD 5X 

POD X6 

·PR4 0 
"PR...;5 __ --t A POD X6 

POD 6X 

PRI 0 PR~2 ____ -1 A I-_":':':~" 
PR3 __ PQD6X 

POD 7X 
PRI 

PR 2 
A 

PO 3 POD IX 

, 

2ND SIAGE 

: ..:.:;;;:::..:..:~X:.o _____ ..,C1 ~"oo 
.:~:::.::~o~x:~ _____________ ~[JA 1-_____ ..:.PO~D.:;0~2 
PR6 POD 06 

POD 00 :r 

A 
POD OX POD 06 

POD X6 
POD 07 

A * NO\Z; POD 07 - •• 
PR6 

POD IX POD 10 /------...:..:T:::SX~ 

-----I~t. POD 10 

~m ~~ 
;.;;.;""=-------~ POD 12 

~::~:~~:~ _____________ _i[JA 1 _______ --" 
- POD 12 

POD 14 
POD X4 

A 

POD IX 

POD X6 

POD 20 
POD XO 

A 

POD 2X 

POD X2 

POD 24 
POD X4 

A 

POD 2X 

POD X6 

POD XO 
POD 30 

A 

POD 3X 

POD X2 

POD X4 
POD 34 

A 

POD 3X 

POD X6 

POD 40 
POD XO 

A 

POD 4X 

POD X2 

POD 50 
POD XO 

A 

POD 5X 

POD X2 

A 
PR6 

POD 5X 

POD X4 

POD 56 

POD5X ~. 

POD 16 

A 

POD 22 

A 

POD 26 

A 

POD 32 

A 

POD 36 

POD 42 

A 

POD 52 

A 

POD 54 

A 

TPl, TMI 
POD 14 

TOV 

POD )6 

POD 20 

MPY-VlM 

POD 22 

OVP-VDP 

POD 24 

POD 26 

POD 30 

POD 32 

ANA 

POD 34 
CAS-lAS-CCS 

POD 36 
ACl 

POD 40 

ADD-SUB 

POD 42 

HPR 

POD 50 

POD 52 

XEC 

POD 53 

Li!' 
1'1 

POD 54 

RCH 

POD 56 

lDQ-ENB 
_PO_D_X_6 _____ --ILw POD W 

..:.:~~D~::=---_____________ ..,[JA I-_____ ..:.P..:;O..:;D..:W" 

POD 62 . 

PR 6 

POD 6X POD 62 

POD X2 

POD 63 

A 

PR6 
POD 63 

POD 64 
POD X4 SXA-SXD 

A 
POD 64 

POD 6X 
SCH 

POD 66 

A 
POD X6 

POD 66 

POD XO 
POD 70 

A 
POD 70 

POD 7X TMT 

POD 72 

POD X2 
POD 72 

POD 74 
POD X4 

L· ~ 
L J... f) 

A 
POD 74 ~ 

PXA-PXD 
POD7X 

POD 76 

A 
PODX6 

POD 76 



6 SOD 00 
~ 

PR7 A (LOGIC 02.04.45.1 
SIMPLIFIED 

PR8 

PR9 
POD 76 SOD 00 - L{l.' 

PR6 ~ 
PR7 A 
PR8 ~. 
PR9 ~'i;/7 "-

SOD 02 cJ' - ~~. 
PR6 ~ (Ii IV 

PR7 A 
PR8 
PR9 

SOD 03 - LLS-LGL 

PR6 .lQ!I!.. 

PR7 A 
PR8 
PR9 

SO~ - BSR 

ii6 ~ 
PR7 A 
Pifi 
PR9 

SOD 05 

- LRS-LGR '-" - ~ ~ PR6 
A PR7 ><::;J 

PR8 

",,(t-? ""~ PR9 

SOD 06 Q cL' -
FIGURE 25. SECONDARY OPERATION DECODING 

(02.10.65.1 SIMPLIFIED) 

INDEXABLE? 

PR5 r---
A 

PR4 

-POD OX 
~- 0 

PR6 r---
A r-

-'" 
PR7 

-~ 

ARE 12 AND 13 BOTH ONES? 

SB 12 r---
A 

SB 13 

-
FIGURE 26. DECODE FOR INDIRECT ADDRESSING 

46 

-t'l 
, 

..... INDEXABLE 
, •• INSTRUCTION 

POD7X 
I LATE 
MOl 

GO TO IA? 

r---
A 

'---

SOD 07 ...--
PR7 A 
PR 8 TAG REGS (02.04.20.1) INDEX REGS (02.03.21.1) 
PR9 

SOD 07 XRC 
'---- ALS TAGC 

PR6 ~ 
PR7 A 

SB 18 
A 

PR8 LATCH 

PR9 XR C OUT 
SOD 10 

'---- WEF XR B 

PR6 ~ TAG B 
SB 19 

PR 7 A 
PR 8 

PR9 
SOD II 

XR BOUT 

'---- ARS XRA 

PR6 ~ 
PR 7 A 

TAG A 
.SB 20 

A LATCH 
PR 8 

PR9 
LATCH 

SOD 12 XR A OUT - REW-RUN 

PR6 ~ 
PR 7 A 
PR8 

PR9 
SOD 13 - RQL 

F2£.!i PR6 

lOR IA LATE 
A 

A ~f1 ,f~'~ 
, 

PR7 

~Ll. 
I~I 

'" SOD 14 

A3D2 

- AXT 
FIGURE 27. TAG DECODING 

PRE IA TRIGGER 



a 1, tag C is set and the index register C contents 
are gated out. Bit 19 sets tag B and controls index 
register B; bit 20 sets tag A and controls index 
register A. If none of the tag bits is a 1, it indicates 
that an index register is not required for that parti­
cular instruction, and, therefore, no index register 
is selected. 

ADDER 

The 37 -bit binary adder is used in performing all 
binary arithmetic and address modification through 
indexing. Several inputs and outputs are therefore 
necessary for these operations. Adder position 33 
and the inputs and outputs are shown in Figure 28 as 
a typical example. Inputs to block 4G of the adder 
come from the index registers (A, B, or C) or from 
the accumulator 33 position. Inputs to block 4H of 
the adder may be from storage register 33 or 
storage register 15. The combinations that can be 
added together are: 

1. Any index register 33 (XR A, B, or C) to 
storage register 33 or storage register 15. 

2. Accumulator 33 to storage register 33 or 
storage register 15. 
The adder position 33 output may be routed to one of 
five places (Figure 28): 

1. Accumulator 33 
2. Accumulator 34 
3. Index register X33 (XRX) , which is then sent 

to XRA 33, XRB 33, or XRC 33. 
4. Address register 33 
5. Shift counter 15 
The adder block shown in Figure 28 is identical 

for all adder positions. The +OR (4G) is considered 
the A input, and +OR (4H) the B input. The outputs 
from blocks 4G and 4H feed a -OR (3G) and a -AND 
(21). The -OR (3G) output represents an A or B 
(A + B) condition, and the output from -AND (21) 
represents an A and B (AB or A . B) combination. 
Ones and O's may be substituted for A and B -as 
follows: 

1. A by 1 
2. B by 1 
3. NotA, or A by 0 
4. Not B, or 13 by 0 

An AB condition causes a generate (G) level and a 
propagate (P) level (Figure 28). An AB (11), AB 
(01), or An (10) input condition causes a propagate 
(P) level. These outputs are sent to the lookahead 
(LA) circuits and to the carry generator. The 
important concepts to remember about the adder 
block are: 

1. All adder blocks are identical in operation. 
2. The following conditions cause generate (G) 

and propagate (P) outputs: G == AB Input, and P == AB 
or AB or AB inputs. 

3. The generate and propagate levels are sent to 
lookahead and provide adder carries. 

4. A positive output from the adder indicates a 
sum of 1. 

Lookahead Adder 

The basic principle behind connecting individual 
adders to make an adder unit is to take the carry-out 
of one adder block and connect to the carry-in of the 
next high-order position adder. If all adder positions 
contained a 1 and a 1 were added to the low-order 
position, a carry would have to ripple through the 
adder unit from the low-order position to the high­
order position. As the carry ripples through the 
adders, each adder block introduces additional delay. 
The lookahead adder contains additional logic circuits 
that provide a means of predicting how many positions 
would be affected by a ripple carry and injects the 
carry into all affected positions almost simultaneously. 

Lookahead Propagate and Generate Outputs 

The 7040/7044 adder contains an adder block for each 
adder position, a carry generator for each position, 
and three levels of lookahead. Figure 29 is a block 
diagram of the lookahead adder. The carry generators 
provide the carries into the affected positions. The 
first level of lookahead examines the adder outputs in 
groups of 4 and sends the generate and propagate 
outputs to the second and third lookahead circuits 
(Figure 29). The second and third levels of lookahead 
determine the carry in to various groups in the adder. 
The lookahead outputs and carries from lookahead are 
available almost immediately after data is sent to the 
adders, thereby eliminating the need for the carries 
to ripple through the complete adder. 

As shown in Figure 29, the generate and propagate 
levels from adder blocks 1-32 feed the first level of 
lookahead. The outputs are grouped in groups of four 
adder blocks, and the first lookahead level propagate 
and generate outputs are sent to the second and third 
lookahead levels. The second lookahead level provides 
carries into adder carry generators for adder P9si!. 
tions 20,24, and 28; the third lookahead lev~l provides 
carries for adder positions P, 4, 8, 12, and 16. The 
carry generators provide the carries for the remain­
ing adder positions. 

Figure 30 shows how the propagate and generate 
outputs and carries are caused from the three levels 
of lookahead. The following examples cause a carry 
1 into adder position 32 (Figure 30): 

47 



Carry into 32 33 34 35 
1 0 0 
1 0 0 

1 0 0 0 No carry into 35 
0 1 0 
1 1 0 No carry into 35 

1 0 0 0 
0 0 1 
1 1 1 No carry into 35 

1 0 0 0 
0 0 0 
1 1 1 Carry into 35 

1 0 0 0 
More than one AND may be conditioned to cause a 
33 carry h'tJ.to position 32. 

1 

1 
1 1 

o 0 
1 1 Carry into 35 
o 0 

The above combination conditions two AND's, which 
provide a carry into adder 32. To illustrate this 
statement, apply the following expression to Figure 
30: Hot 1 . 33P • 34P • 35P or 33G. If all l's 
are added together, resulting in a carry into position 
35, all four AND's for the 33 carry are conditioned. 
The remaining groups of the first level of lookahead 
provide no carries. These outputs are sent to the 
second and third levels of lookahead. 

The (29-32) G output is caused Similarly to the 
(33-35) G. The (29-32) P output shows that the 
propagate outputs from adder positions 29, 30, 31, 
and 32 must be present to the + AND (Figure 30). 
The remaining first-level lookahead outputs are 
caused the same as the (29-32) P and (29-32) G. 
Note that in lookahead outputs it is possible to have 
a generate output with no propagate output. 

The second lookahead level receives inputs from 
the first lookahead level. As a typical example, the 
29 carry output is generated if one of two or both 
conditions exist: a (29-32) G or (33-35) G and (29-
32) P. This is similar to the first lookahead level 
except that groups from the first level are examined 
instead of individual adder outputs to determine 
carries. 

Since floating-point arithmetic requires dividing 
the accumulator (Q, P, 1-8, and 9-35), the adder 9 
carry may be considered a special case for carry 
control. The second lookahead level combines 
outputs from the first lookahead level to cause the 
(9-20) G and (9-20) P outputs. If the instruction is 
not a floating-point operation, the second and third 
lookahead levels operate normally. If a floating­
point instruction is being executed, a 1 to adder 8 
provides the 9 carry. The 9 carry from adder 
positions 9-35 is inhibited from affecting the 8 
position for all floating-point instructions (Figure 
30). 

48 

The third lookahead level accepts outputs from the 
first and second levels to provide carries to high­
order bits 16, 12, 8, 4, and P (Figure 30). 

Adder Operation 

To obtain the correct sum, the adder must consider 
every possible combination that may appear at the 
inputs. The 7040/7044 adder may be divided into 
sections containing four adder blocks in each section. 
Figure 31 shows a 4-bit adder for adder positions 29, 
30, 31, and 32. Operation of positions 1-4, 5-8, 9-
12, 13-16, 17-20, 21-24, and 25-28 is the same as 
for adder positions 29-32 except for the differences 
in the generation of the carries from lookahead. The 
carries from lookahead can be determined from 
Figure 30. Adder positions 33-35 are a 3-bit adder 
with the carry-in from an external source. Positions 
P and Q are extensions of the adder with the carry into 
position P from the third level of lookahead. As 
shown in Figure 31, adder position 29 receives a not 
29 carry from the second lookahead level. See 
Figure 30 for the levels that cause the 29 carry. 

Since an adder block cannot distinguish between 0 
plus 1 and 1 plus 0, three combinations are possible 
at the inputs (00, 10 or 01, and 11). The possibilities 
double when a carry-in condition exists (six total 
possibilities). In a 4-bit adder, 272 combinations 
are possible. This includes a carry-in and a no­
carry-in to the low-order bit. Therefore, only a 
few examples of adder operation are explained in 
detail here, 

Example 1: 
0000 
0000 
0000 No carry-in 

When adding 0' s with no carry into position 32, all 
the AND's in the adder and carry generator are de­
conditioned. The sum output from each adder 
position is negative, which represents O's. 

Example 2: 
0000 
QQQQ 
0000 Carry into position 32 

If a carry-in (CI) to position 32 occurs, AND 2G 
in adder position 32 is conditioned, resulting in a 
positive output from inverter IF. A sum of 0001 is 
sent to the receiving register (Figure 31). 

Example 3: 
1010 
0101 
1111 No carry-in 

Assume that the above numbers are added together 
with no carry-in to position 32. In adder position 32, 
AND 2F is conditioned and a 1 is sent to the receiving 
register (Figure 31). One input to AND 2F is condi­
tioned by a 01 or 10 (A· B or A . B) input to the adder. 



XRA = I (SAME AS XRC) 

TAG A 

XRB = I (SAME AS XRC) 

TAG B 

Lr-------'I 

+A +0 

NOT RESET -:+-
SET XRC 

TAG C 

AC TO AD 

+0 

SET AC J 
AC TO AD 

-sc 

+A 

+A 

+A 

-

+0 

r-

A 
XR B 33 

02.03.33.1 C -------

+A 

t--

t-- +A 

02.02.33.1 AC33 ------------------

+00 -sc +A 

r-L....----....I 
SET SR J 
~SR~T~0~A~D~L7~-------~ 

___ 0~3_.1 __ ~ 

+00 -sc +A 

r-L....----....I 
SET SR J 
-------------------~ 
SR TO AD L3 

02.01.15.1 SR 15 ------------------
FIGURE 28. ADDER INPUTS AND OUTPUTS 

+AO 

XR TO AD 

T---~-----------) 

I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 

1 

+0 

4G 

+0 

I 4H L_ 

A+B 

-0 8ROPA -
GATE 

LA 

• 
3G 

-A 

+A 

t--

2F 

+A 

2G 

+A 

I--

+0 I---

IG IF 

I 
I 
I 
I 

I 
I 
I 
I 
I 

21 2H J 
________ ~.~ __ __ ~E~ ___ _ 

LA = LOOK AHEAD 

CG = CARRY GENERATOR 

AD TO AC 
+A +0 -sc -

r~ 
~SE~T~A~C~ ___________________ ~I 

02.02.33.1 AC 33 -- -- -- --- --- -- -- -- -- -- -- --
AD RT TO AC 

+A +0 -sc t--

I~ 
~S~ET~A~C~ _____ ~------------------------------~J 
_____ __ \ ____ 0~34_.1 __ AC 34 

SET XRX SET XRA 

+A +A 

- -

NOT RESET XRX 
r-----.' 

+A +0 I--'--+A 

-

SET XRB +A 

SET XRC 

__ ~ __ 0~ . .2..- _____ _ 

+A 

AD TO AR 

NOT RESET AR 
+A +0 

AR 33 02.04.33.1 -----------------------

+A +00 -sc 

AD TO SC 

1-------.... 
~S~ET~S~C~ _____________________________________ _JI 
____ --lC_15 __ ~5_.I __ _____ __ _ 

49 



(t -4)P,G 
(~-8)p,G 
(l3~16)P.G 

U7-20}P,G 

.--~----., CARRY INTO P (I CARRY) 

3rd 
LEVEL 

LA 

CARRY INTO 4 (3 CARRY) 

CARRY INTO S (9 CARRY) 

CARRY INTO 12 (13CARRY) 

CARRY INTO 16 (l7CARRY) 

.--J..:::.---!-~.!..!!l., CARRY INTO 20 (21 CARRY) --------------------1 
2nd 

LEVEL 
LA 

(9-12) p.G 
03-1&) p.G 
(17-20) P,G 
(21-24) P,G 
(25-28) P,G 
(29-32) PtG 

'" 1st '" 
LEVEL ~ :;:; 

LA V> 

0 

[NCLUDEJ 
.., 
" LOW II> 

ORDER '" CARRY 
GEN 

CARRY INTO 24 (25 CARRY) --------------------1 
CARRY INTO 28 (29 CARRY) ---------------1 

HOT I 

I 
1 
I 
I 

1 
I 
I 
I 
1 
I 
I 

INPUTS 80 OUTPUT OF ADDERS NOT SHOWN 
"p 80 G" REFER TO INDIVIDUAL ADDER STAGE "PROPAGATES GENERATE" 

FiGURE 29. ADDER LOOKAHEAD BLOCK DIAGRAM 

50 

I 
1 
1 

1 

---FIRST 
----- SECOND --***"- THIRD 

NUMBERS ADJACENT TO LINES SETWEEN CARRY GENERATORS 
- AND ADDER BLOCKS INDICATE CARRY INTO SPECIFIED ADDER STAGE 

~~ 
~~ U (29-32)P 

Tz5=-2iiii> (25=2SiG}---

Wi=~ril~ m,:~rilg SAME 
(13-16)P (l3-16)G AS 
(9 - 12) P (9-12)G A80VE 
(5-S)P (5-S)G 

IP~ 2P +A 
3P I (1-4)P 
4P 

2nd LEVEL LA 

(l7-20)P 
CARRY INTO 

(33-35)G 28 = (21-35) G 

(25-28) P 
(29-32)P 
(33-35)G ---,;_..r-1 

(29 CARRY) 

'----. NOT 29 
CARRY 

CARRY INTO 
24 

(25 CARRY) 

L-_--. NOT 25 CARRY 

(21-24)P 
(25-28)P 
(29-32)G 

wr--~r-~~CARRY INTO 

(21-24)P 

(25-28)G 

(21-24)G 

20 
(21 CARRY) 

..---~ NOT 21 CARRY 

(21-35)G 

NOTFP~ 19-201P (9-12)P +A I 
(13-16) P 
(17-20)P 

NOT FP 
(9-12)P 

(r3-16)P 
(17 -20)G --"_-1---, 

NOT FP 
(9-12)P 
(13-16)G 

(9-12)G 

19-20)G 

(17-20) G 

(13-16)P 
(l7-20)P 

=(21-35)G 

(13-16)P 

(17-20)G 

(l3-16)G 

=(21-35lG 

=(9-20)G 

(5-S)P 
= (9-20)P 
=121-35)G 

(5-S)P 

= (9-20)G 

(5-8)G 

(1-4)P 
(5-S)P 

=(9-20)P 
=(21-35)G 

/1-4 )P 

(5-S)P 
=(9-20)G 

11-4) P 
5-S)G 

3rd LEVEL LA 

0-4)G +A 

p: PROPAGATE, G:GENERATE , HOT: I TO AD 35, FP: FLOATING POINT, = 2nd LEVEL LA OUTPUTS 

FIGURE 30. ADDER LOOKAHEAD CIRCUITS 

CARRY INTO 
16 

(17CARRY) 

L-__ .. NOT 17 CARRY 

CARRY INTO 
12 

(13 CARRY) 

'----~ NOT 13 CARRY 

CARRY INTO 
8 

(9 CARRY) 

1-__ • NOT 9 CARRY 

CARRY INTO 
4 

(5 CARRY) 

L-_---<~ NOT 5 CARRY 

CARRY INTO 
P 

II CARRY) 

I---~ NOT I CARRY 



CI35 AND 
33 THROUGH 35 
PROP AND GEN 

I .~. ),,'- '- I I I 0-
~~I~ __________________ -. ______________________________ I~ _________________ ~~ ______ ~~ ______ ~C=I~~---------i-'I----------------------------------------~--------~"If~~'~~~~~ 

32 PROP 32 PROP 

+A 

-+A 

·+A - +0 +A ---_ .. 
@ 

GEN GEN 
PROP PROP 

+A 

32 GEN I I 32 GEN 

31 PROP I I 31 PROP 

31 GEN 

+A 

+A 

+0 +A 
-

-

31 GEN 

I 30 PROP 

I 
+A I 

~ I 
® I '---I----I~ 

I 
I 

L ......----. 
+0 

@ I 

30GEN 

29 PROP 

~ 

L~ 
I r--- 31C 

,....----........--------' I 
lr---.---'_ 30C I 

o GEN 

PROP 

I 
I GEN 

PROP 

(29-32)P 

FIRST 

LEVEL 

LOOK 

AHEAD 
(29-32) G 

SECOND 

LEVEL 

LOOK 

AHEAD 

t--

-

-f- -------- -- -- -- -- --'-- --------- ----------- -----+1-------

~ 
w 
o 
o ... 

+IF AC=I=B 

A+B 

+0 ~ -0 

A AB 

+0 -A 

-
+ IF SR=l=A 

-® 

+A 

+A 

ADDER 32 

FIGURE 31. 4-BIT ADDER OPERATION (POSITIONS 29, 30, 31, AND 32) 

+0 

+A 
+ IF AC=I=B 

A+B 

+0 ~-O 

+A 

A AB 

+ IF SUM=11 

+0 -A r--< +A 

I e 
I + IF ... SR-=I-=B-...... 

ADDER 31 

AeS+AeB.Ci 
+A.jj.a 

+0 • 

@ (0 

I I + IF AC=I=B 

I 
I 
I 
I 
I 
I 

+0 

A 

+ IF I 
SUM=1 

+0 

I @ 
I + IF SR=I=A 

+A 

A+B 

~ -0 

+A 

AB 

-A --< +A 

ADDER 30 

2 ( 

AeS+AeB.Ci 
+AeS.Ci 

+0 

-

I 
I 
I 
I 
I 
I 
I 
I 

+ IF I 
SUM=1

1 

+ IF AC=I=B 

+0 

+0 

e 
I + IF SR=I=A 

+A 

A+B 

-0 

+A 

AB 

-A +A 

-

ADDER 29 

'AeS+AeS.Ci 
+A.ii.CT 

+0 

-

I 
L9C 

I 
I 
I 
I 
I 
I 

+ IF I 
SUM=1

1 

51 





Both inputs to OR 1A in the carry generator are 
negative. The positive output of OR 1A conditions 
the second input of AND 2F. The +OR's (lD and 1G) 
in the carry generator outputs from positions 31 and 
30, respectively, are positive. AND 2F in position 
31 and AND 2F in position 30 are conditioned, and 
a sum of 1 is generated for both positions. In adder 
position 29, the output from the second lookahead 
level is positive, and an AND 2 F condition is met, 
causing a sum of 1 for position 29. 

Example 4: 
1010 
0101 

1 Carry 0000 Carry into position 32 
Assume that a carry-in occurs and the same two 

values in Example 3 are added together. A propagate 
output appears at all the inputs of the carry generator. 
In carry generator 32, AND 2B is conditioned (Figure 
31). The negative output of OR 1A is inverted by 
inverter 1B, causing a 32 carry (32C) into position 
31. Since the output of OR 1A is negative, AND's 2F 
and 2G (adder 32) are deconditioned and a zero sum 
results. The propagate levels from positions 32 and 
31 and the CI-to-AND-2C (position 31) level apply a 
positive input to OR 1D, causing a 31 carry (31C) 
into position 30 and de conditioning AND's 2F and 2G 
in adder position 31. In position 30, AND 2F in the 
carry generator is conditioned, causing a carry into 
position 29. Since a carry into position 32 occurred, 
the (33-35) G level to the input of the second lookahead 
level is present and the (29-32) P output is generated 
(Figure 30). These two conditions cause a 29 carry 
into adder position 28. The output from the second 
lookahead level is negative, deconditioning AND's 2F 
and 2G in adder position 29. The sum is 0000 and a 
carry into adder position 28. 

Example 5: 
1111 
1111 

1 Carry 1110 No carry-in 
In this example, the generate and propagate out­

puts appear at the inputs of all the carry generators 
for each adder position (Figure 31). With no carry 
into position 32, AND 2A in the carry generator is 
conditioned. The negative output of OR 1A is 
inverted (lB), causing a 32 carry into adder position 
31. Adder position 32 AND's (2F, 2G, and 2H) are 
de conditioned, resulting in a sum of zero for 
position 32. 

Carry generator position 31 and AND's 2E and 2D 
are conditioned by the 31G (AND 2E) and 32G and 
31P (AND 2D) levels. This causes a carry into 30. 
The 32C and the A . B (11) inputs to the adder, via 
OR's 4G and 4H, condition AND 2H in adder position 
31 (which results in a sum of 1). 

In carry generator position 30, AND's 21, 2H, and 
2G are conditioned, causing a carry into adder posi­
tion 29. AND 2H in adder position 30 is conditioned 
by the 31C and an A . B (11) input to the adder. The 
sum for position 29 is equal to 1. The second level 
of lookahead provides a 29 carry into adder position 
28. Figure 30 shows how this carry is generated. 

Example 6: 
1111 
1111 

1 Carry 1111 Carry into position 32 
Assume a carry into adder position 32 and a 1 plus 
1 input to adder position 32. AND 2H is conditioned, 
caUSing a sum of 1 (Figure 31). The same AND's as 
in Example 5 are conditioned in all positions, 
including AND 2 F in the carry generator 30 position. 
The following AND's are conditioned: 

Position 
32 
31 
30 
29 

Summary 

Carry Generator 
2A, 2B 
2C, 2D, 2E 
2F, 2G, 2H, 21 
Second level of lookahead output 
provides carry into adder 28. 

Adder 
2H 
2H 
2H 
2H 

Figure 32 summarizes the conditions that cause a 
carry to the next higher position for all 37 bits of the 
7040/7044 adder. If the propagate and generate 
levels from the adder are established, the carries 
can be determined. The logic involved in this figure 
is 02.02.40.1 through 02.02.50.1. Boolean Algebra 
symbols are used: a plus Sign (+) indicates an OR 
condition, and a dot ( .) indicates an AND condition. 

As shown in Figure 32, the 18 carry may be caused 
by a condition external to the adder. The Transmit 
and Reset and Load Channel A are the two instructions 
that require a carry into adder 17. 

The Transmit (TMT) instruction reads one area of 
memory and stores the data in another section of 
memory. Accumulator bits 3-17 are the from 
address, and accumulator bits 21-35 are the to 
address. Accumulator bits 3-17 and 21-35 must be 
incremented by 1 after each word is read and stored. 
When the shift counter goes to 0, the instruction ends. 
A hot 1 into position 35 increments accumulator 
positions 21-35. A carry 1 into accumulator 17 is 
necessary to increment 3-17 by 1. To cause a carry 
1 into adder position 17, two inputs to adder 18 are 
provided which represents a 1 plus 1 condition. 
These two inputs cause propagate and generate out­
puts to be sent to the carry generator, resulting in 
a carry 1 into adder 17 (logic 02.02.18.1). Figure 
32 shows the conditions that cause an 18 carry into 
adder 17. 

53 



When a Reset and Load Channel A (RCHA) instruc­
tion is executed, the channel command word is stored 
in the accumulator. Accumulator bits 3-17 contain 
the word count, and 21-35 contain the starting ad­
dress. Positions 21-35 are incremented by 1 when a 
hot 1 is sent to adder 35. The complement of the 
accumulator is sent to the adder, and a 1 is sent to 
adder 18 at U2 D3 time, causing a carry 1 into adder 
17 and decreasing the word count by 1. Two inputs 
to the adder are provided for an RCHA instruction, 
causing generate and propagate outputs to appear at 
the carry generator inputs. The carry 1 into adder 
17 is therefore realized (logic 02.02.18.1). 

The following concepts summarize the operation 
of the adder: 

1. Generate output: An A . B (11) input to the 
adder block. This provides a carry to the next 
higher-order position. 

2. When grouping generate outputs, a carry-out 
from the highest order position is indicated; i. e. , 
(25-28) G indicates a 25C. 

3. From the first, second, and third lookahead 
levels, it is possible to have a generate output with­
out a propagate output. 

4. Propagate: Any output from the adder other 
than an A . B (00) at the inputs or groups of 
propagate outputs are AND'ed together. 

5. A generate output from an individual adder 
block causes a propagate output. 

6. First, second, and third lookahead levels cause 
carries into certain positions in the adder (Figure 
30). 
The concepts of the adder have been presented in the 
following order: 

a. Inputs and outputs from adder position 33. 
b. Generate and propagate output conditions 

from the adder. 
c. Block diagram analysis of the adder. 
d. Conditions that cause first, second, and 

third lookahead generate and propagate 
outputs and carries. 

e. 4-bit adder analysis. 

ADDRESSING 

All information used in the 7040 and 7044 data 
processing systems must be placed in core storage 
to make it accessible for processing. The manner 
in which information is entered in and removed from 
core storage .must be orderly to prevent confusion 
and erroneous results. Consequently, each core 
storage register is assigned a number which serves 
as its address in the core array. References to 
memory are made with these addresses. Thus, an 
item of information is specified in the machine via a 
core storage address. This section provides a 
detailed analYSis of addressing as applicable to the 
7040 and 7044 CPU operations. 
54 

Addressing Core Storage 

Addressing is the process of referenCing a specific 
core storage location. The reason for referenCing 
a speCific core storage location depends on the user 
(CPU, channel A, or an overlapped channel). When 
the CPU is the user, memory is referenced for 
instructions, operands, or storing purposes. When 
either channel A or an overlapped channel is the user, 
a memory reference is made either to transfer the 
contents of the referenced location to an I-a device 
(write operation) or to transfer data from an I-a 
device to the referenced memory location (read 
operation). In each of these cases, however, the 
end result of addressLtlg is the transfer of an effective 
address to the memory address decoding circuits. 

The memory address decoding circuits are acti­
vated when the MAR is loaded. ReferenCing a core 
address therefore involves plaCing the effective 
address in MAR. Overlap channels do this directly 
by transferring the contents of the channel address 
register to the MAR. All CPU operations and data 
channel A operations load the MAR from the address 
register (AR). 

The most baSic form of addressing is illustrated 
by the instruction counter. Initially, the instruction 
counter contains some value; for example, 10008. 
This value is transferred from the instruction counter 
to the AR, and from the AR to the MAR, as the ad­
dress of the desired instruction. Note that no address 
modification is involved in this application of addresse­
ing. When the instruction contained in location 10008 
is received in the CPU and decoded, the instruction 
counter is incremented by 1 to the value 10018. This 
value represents the address of the next instruction 
to be executed by the CPU. 

Similar action occurs when an overlapped channel 
or data channel A represents the user. With an over­
lapped channel, the channel address register acts 
exactly like the instruction counter; that is, the con­
tents of the channel address register form the address 
of the desired core location. When this core location 
is loaded during a read operation or transferred to 
the I-a device presently in use during a write opera­
tion, the channel address register is incremented by 
1 to identify the next core location to reference. A 
channel A operation uses accumulator bits 21-35 in an 
identical manner. 

From the above illustrations, it can be concluded 
that referencing core storage via the instruction 
counter, the channel address register, or the accumu­
lator represents a basic application of the addressing 
concept. In addition, the effective action is identical 
in each case. 

When relating the concept of addressing to CPU 
operations, it is generally associated with the instruc­
tion word. In the 7040-7044, instruction word bits 



21-35 form the address field. The value contained 
in these bits is the base address. Instruction word 
bits 18-20 form the tag field, which serves to specify 
address modification by indexing when dealing with 
instructions that do not apply to the index registers. 
If the tag field contains value other than 0, address 
modification is specified. Actually, the tag field 
value identifies an index register whose contents are 
to be used for the address modification. The contents 
of the specified index register are subtracted from 
the base address to obtain the effective address. If 
no address modification by indexing is specified, the 
instruction word base address becomes the effective 
address. The effective address, in any case, is 
loaded into the AR and goes from the AR to the MAR 
as the address of the desired operand. 

The 7040-7044 also employs indirect addressing. 
Instruction word bits 12 and 13 are used to specify 
this type of addressing. These bits form the flag 
(F) field, and, when they contain a value of 112, 
specify indirect addressing. In this case, the 
effective address identifies a core location whose 
contents contain the effective address of the desired 
operand. 

Since the actions associated with CPU addressing 
occur during instruction decoding and during the 
action taken on an operand (in indirect addressing), 
CPU addressing is concerned only with I and E 
cycles. The reasons for resolving it to these cycles 
are as follows: 

1. B cycles are not at all concerned with the CPU. 
2. C cycles force an address directly into MAR. 
3. L cycles do not reference memory. 
4. U cycles initiate E cycles and so, in effect, 

are the same as E cycles. 
5. IA cycles are just a type of E cycle. 
6. IC memory referencing pertains to the se­

quence of instruction execution rather than to ad­
dressing as the result of instruction decoding. 

Figure 33 shows the general flow of information 
pertinent to CPU addressing. The key to this action 
is knowing what is loaded into the AR and when. 

Instruction Counter 

The 15-position (21-35) instruction counter (IC) 
keeps track of the program currently being executed 
by indicating to the CPU the address of the next 
instruction to be performed. Figure 34 shows the 
three least Significant positions of the instruction 
counter to illustrate how it is stepped; the various 
conditions that will step the instruction counter are 
also shown. Normally, the instruction counter is 
stepped once during I cycle time (block 1 of Figure 
34) but, under test conditions or during special 
instructions, can be stepped during E or L cycle 
time (blocks 2, 3, and 4 of Figure 34). 

Each step-IC level is fed to all IC positions (block 
5 of Figure 35) as is the set-IC level. Whenever 
present, these levels cause the least significant 
position (IC 35) to change its state; i. e., if IC 35 is 
a 1 (as shown in block 5), it changes to a 0 (-SC in­
phase output will be + B; out-of-phase, -B) when the 
set-IC level comes in, and, if it is a 0, it changes to 
a 1 when the combination of set-IC and step-IC is fed 
to it. Instruction counter 34 changes state with every 
other set and/or step input; IC 33, with every fourth; 
IC 32 with every eighth, etc. 

The OR input to the -SC of anyone of the IC posi­
tions must be -B for the set level to cause the -SC 
to switch to, or be maintained at, a 1 state. For the 
OR to feed a -B to the -SC, one of the OR's input 
AND circuits must be conditioned; if one of the AND's 
is not conditioned, the -SC switches to, or remains 
at, a 0 state. Each IC position is AND'ed so that the 
only time a given position switches to a 1 state is when 
it is already at a 0 state and all lesser Significant 
positions are l's. At the time a given position 
switches to a 1, all lower positions switch to 0' s; the 
given position then remains a 1 until all lower posi­
tions become all l' s again. When lower positions are 
all l's, and the given position is also a 1, the given 
position switches to a zero when it receives the next 
set level. Simply, if IC 33 is a 1, it does not switch 
to a 0 unless both IC 34 and IC 35 are also in a 1 
state; if IC 33 is a 0, it does not switch to a 1 unless 
both IC 34 and IC 35 are 1's. Block 5 of Figure 34 
shows how the circuits are connected to accomplish 
this. 

Address Register 

The address register contains 15 latches (21-35) which 
may be set from the corresponding bit position of 
either the adder, the instruction counter, or the 
address keys on the operator's console. Figure 35 
shows one address register position (all positions 
are the same) and the conditions that set and/or reset 
it. The most important items in Figure 35 are the 
conditions involved in determining which information 
source is transferred into the address register. A 
study of the figure will reveal that: 

1. The IC to AR transfer takes place in bringing 
out the next sequential instruction, (and for manual 
conditions). 

2. The AD to AR transfer takes place when data is 
to be fetched or stored, and when a I-cycle transfer 
instruction has been executed in which the transfer 
conditions have been met. 

55 



INSTRUCTION 

TRANSFER 
IC TOAR 
TOMAR 

FIGURE 33. ADDRESSING 

56 

INSTRUCTION WORD 

• SB 

/\ 
DECODE SR 

WILL NEXT REQUIRED WORD 
BE AN INSTRUCTION OR AN 
OPERAND? 

NO 

NO INDIRECT 

TRANSFER 
ADDER 21-35 
TO AR TO MAR 

ADDRESSING? 

NO 

OPERAND 

ADDRESS 
MODIFICATION? 

TRANSFER ADDER 
21-35 TO AR TO MAR 
AND PREVENT NEXT 
CYCLE FROM BEING 
INTERPRETED AS 
INDIRECT ADDRESSING 

SB TO SR 
AND 

SR TO AD 

YES 

ADD iN1m< 
REG TO ADDRESS 
BITS 21-35 IN 
THE ADDER 

ADD INDEX REG 
TO ADDRESS BITS 
21 - 35 IN ADDER 

TRANSFER ADDER 21 -35 TO AR TO MAR 



,---NORMAL ICSTEPPING---l 
II LATE I 

I MOl A 1-----.;.-, -I--e--------------I 
I fSX : 

+B STEP IC 

I~ I 
I DISP ENTER OR CLEAR I 
I I L ____ +-_________ J 
r----~---------I 

: ENTER INST 0 U : 
I CONT ENTER INST I 
I FORCE TRAP I 
ILOAD TGR I 
: I 
I ANY ONE OF THESE I 
I WILL PREVENT IC I 
L ____ ~~~PPIN~ _____ ..J 

A3DI A 

CLEAR OR STORAGE TE 

E EARLY 

TEST CONDITIONS 
r-+ EFFECT AR-IC XFER 

TSL INSTRUCTION A 
E EARLY 

AI 01 

PARTIAL STORE TGR ON 

TRANSFER AND STORE 
IC INSTRUCTION 

FIGURE 34. INSTRUCTION COUNTER 

2 

r- -- - - - - - -iC 33--- - - - - - -l i - - - - --- - - - ic 34-- - - - - - - -, 1"- - - - - - - - -Ic 35- - - - - - --I 

L · .0,,,.: : L. .oAA" ~~ • : 
~ I I I 
~ I I I ~ ~OM~ 

STEP I--- 0 r-- -sc +B IC33 I I ~ 0 r--- -sc r!!!~ r--- 0 _ -sc of!! IC ~ I 

~ 
~ 
STEP 

-
A 

A 

I I I 
II r- I 

I ~ A _ s!!, ~,.!S2i ~ A r- ~ ...:.~ I .. B IC 33 

I I 
I I 
I ~ r ~ r I 
I I 
I A I 
I~ I 
I STEP I 
I ,- I I I 
I f-- I I I 

L _________________ ~ I J I I L _________________ J L _________________ J 

4 

r--:--1-!--__ JL_r--:--lr----r-~~l_------~-~BgSELT~IC~------~ 
I CO 

-
+B CELL DRIVE 

5 

57 



AD-AR 
GO TO U 

A -

A5 Dl 

L --
SOD 14 

A -B AD-AR 

1 CY TRANS NOJ MET 

I-IA LATE 

BLAST CNTL OR ANY TRAP 

END OP TGR 
A r-

IMT AND E OR L LATE 

A5 CI 

AR POSITION 35 
5 

~ DLY AD-AR A 

IC-AR 2 
BLAST CNTL OR ANY TRAP 

E LATE OR L LATE OR I LATE. A 
AD 35 

END OP TGR *155 -
XEC 

-B IC-AR 
DLY IC-AR A TRANSFER COND MET 

A5 Dl 1 

L ENTER OR DISP STORAGE 
A -0 A 

IC 35 ------ - - *155 - r--

AK 35 
A 

STORAGE TEST SWiTCH 

I 
'---

-B CLEAR TGR 

DLY AK-AR 
I--

AK-AR -B RST AR 
A ~ 0 - I 

+B AR 35 

3 
ENTER OR DISP *155 f-

TOMAR 

AN D STORE TEST A -B AK-AR 

ENTER OR DISP STORAGE 

r-I LATE 

A5 DJ 

RESET AR 
4 

-0 - I -' 

-B TRAP AR RESET 

-B INTLK RST LINE 2 

FIGURE 35, ADDRESS REGISTER 

58 



Effective Address 

Effective address is the term usually applied to the 
actual address in core that is required by a particu­
lar instruction; it is the address that is placed in the 
address register from the adder to fetch an operand. 

The effective address can be obtained in any of 
three ways: 

1. The address may be taken directly from the 
address portion of the instruction word (Figure 36, 
A). When the instruction word is decoded, the tag 
bits (18, 19, and 20) indicate that an index register 
will not be selected to modify the address portion 
(21-35) of the instruction word; bits 12 and 13 indicate 
that indirect addressing will not take place. 80 the 
address is transferred, unaltered, -from the storage 
bus to the storage register, to the adder, to the AR, 
and then to MAR, where an operand fetch is effected. 

2. The address may be taken from the instruction 
word, modified by an index register, and then sent 
out to fetch an operand; this is called indexing or 
address modification (Figure 36, B). Decoding of 
instruction word bits 12 and 13 indicates indirect 
addressing will not take place; tag bits, however, 
indicate that index register A is to be used to modify 
the address of the instruction word. The instruction 
word goes from the storage bus to the storage 
register, and from the storage register to the adder; 
the contents of index register A also feed the adder 
(into positions 21-35). A 2' s complement subtraction 
between the address of the instruction word and the 
contents of the index register takes place in the 
adder; the result is the effective address. The 
effective address goes to the AR and then to the MAR 
to effect an operand fetch. 

3. The address portion of the instruction word 
may, instead of indicating the address of an operand, 
indicate the address of a word in core storage which 
contains the address of the operand; this technique is 
called indirect addressing (Figure 36, C). Decoding 
of bits 12 and 13 indicates that indirect addressing is 
to take place; the IA trigger is set, causing the next 
cycle to be an IA cycle. Bits 18, 19, and 20 indicate 
there is to be no indexing. (The address is capable of 
being indexed if so indicated by tag bits; for simpliCity 
no indexing has been selected.) The address goes 
from the storage bus to storage register, to adder, 
to AR, and then to MAR to effect the readout of the 
word in the specified locatiop. The word read out 
and placed on the storage bus is decoded. Bits 12 
and 13 are not decoded this time because the CPU is 
in an IA cycle, and the IA trigger can be set only 
during I late time (Figure 21). Bits 18, 19, and 20 
indicate index register B is to be used for address 
modification. The contents of index register B in 2' s 
complement form are subtracted from the address of 
the word in the adder; the resultant is the effective 

address of the operand. This effective address goes 
to the AR and then to the MAR to fetch the operand 
required by the CPU. 

Index Register 

The 7040/7044 has three identical index registers (A, 
B, and C), each with 15 latch positions (21-35). 
Figure 37 shows one position of one index register to 
illustrate how and when it may be set or read out. 
One 15-position register, XRX, loads all three index 
registers. The index registers can be loaded only 
from the XRX; the instruction tag bits determine 
which index register is to be loaded. The XRX is 
loaded from the adder as a result of anyone of the 
special instructions that cause an index register to 
have its contents changed. There are many combi­
nations of levels and timing pulses that reset and set 
both the XRX and the specified index register; in 
general, however, it can be said that any instruction 
that alters the contents of an index register causes 
the reset and set level to be generated. 

The specified index register may have its contents 
read out to either the adder or the storage register. 
In either a POD 63 or 74 class instruction, the read­
out is to the storage register; in all other instances, 
the readout is to the adder. The AND labeled 1 
(Figure 37) is the one concerned with address modi­
fication. The XR-AD transfer takes place at the 
same time, A4D3 during I-IA Late, as does the 8R­
AD (Figure 37), so the address portion of the instruc­
tion word becomes the effective address the instant 
it is transferred into the adder. 

PARITY 

The 7040/7044 is an odd-parity system; i. e., each 
word in core storage contains an odd number of l's. 
When storing a word, the CPU ascertains how many 
1 bits are in the word (bits 8 through 35). If there 
are an even number of l's, the CPU assigns an 
additional 1 bit into MDR position 36, making an odd 
total of 1 bits in the word being stored. If the word 
contains an odd number of 1 bits (8 through 35), the 
CPU lets MDR position 36 remain a O. Core storage 
words, then, have one more bit position than the 
words utilized by the CPU. This extra position, the 
parity bit, is used to check the validity of words 
read out of memory, called parity checking. The 
additional bit is labeled the check (C) bit but is 
commonly called the parity bit; the terms are 
synonymous. 

59 



OPERAND 
FETCH 

SB 

SR 

AD 

A) SIMPLE ADDRESSING ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- -------- ---- ---- ---- ---- ---- ---- ---- ----

MAR 

AR 

OPERAND 
FETCH 

WORD 
FETCH 

OPERAND 
FETCH 

FIGURE 36. OBTAINING EFFECTIVE ADDRESS 

60 

EFF 

SR 
S 

AD 
S 

SB 

____ B) ~S~FI~N __ __ 

'---y---J 
SET 
IA TGR 

NO IX 
REG 

I. DURING I CYCLE 

EFFECTIVE ADDRESS 

C) INDIRECT ADDRESSING 

INDEX 
REG A 

INDEX 
REG B 

SELECT INDEX 
REG A 

...... _-,----;;;;.,1 

SELECT INDEX 
REG B 

L:;.;..._..,..-_;;;;' 



1---------------------------1 ---------------' 
I AD21 A XRX21 I POD 63 0 XR-SR I 

I I I 
, SET XR X _ I POD 74 A I 
I " A3 Dl I 

E OR L LATE 

I ~ 'w I ~" -". I 
I RESET AND SET A - 0 I - I PR S PLUS 0 XR21"SR I 
I I ~ I 
I I I '''"'N", - I 
r-----------·-~--------------~--------------~ 

XR X 21 XR C 21 
A 

SET XR C 
DLY 

TAG C 155* 
A 

A - o 
RESET AND SET 

A 

, 
I 
I , 
I 
I 
I , 

1 
I 
I 
I 
I , 
I , 
I , 

XRA 21 

XR B 21 

XR C 21 

POD 53 

POD 72 

TSX 

TXH 

TlX 

TNX 

TXL 

TXI 

XR-AD 
o 

XR 21 

A - A 

A4 D3 

SEE FIG 4"19 FOR ..... >-_IN_D_EX_A_B_L_E_-I 
DEVELOPMENT -' INSTRUCTION 

I EARLY 

o A 

AO D2 

AO D2 
A 

L LATE 

o 

A 

L EARLY 

I ~OO ~ L ________________________ ~ _____________ ~ 

FIGURE 37. INDEX REGISTER 
61 



~ 
1ST LEVEL 2ND LEVEL 

....:!:!!2!!..! , \ 

'\1 I , 
~ 

~ 
-B SB 0-2 ODD 

0 

~ ~ ;-

-, I 
'A 

:"'\' 

-iA 1 0 

r-

A 

~ 

- ,0, 

~ " ~ - I -

t A , 0 
~ 

A 

~ I 

A 

I 
I 
I A 

-
·A 

I--~"-L..-__ --I 

~----

I 

I 
I A 

'--I--

r--L-__ ...I~ 

! 
I 

I -B SB 9-17 ODD 

i 
i 
I +B SB 18-26 ODC 

I 
I 
I 

! -B SB 27-35 ODD 

I 
1 
! 

FIGURE 38. PARITY CHECKING 

62 

+B O-B ODD 

I A 

I 
I -B 9-17 ODD 

I 
I 
I 
I 
I 

+B 18-26 ODD 

A 

I 

L 

A 
"".d~ ", 
Cd {~J 

A 
" 

-, 
" ',-

-

S 

0 A 

._-L-__ .... 

, " 

\-,' ..: 

~ ______ ~~-O--~~~r-----~~.-~-r~-A-,~ 

A 

+B 
GENERATE 
PARITY 

' ....... ~ '. 
_L c,,~, ~ 

+B SB - MDR 

A +B FORCES "A" "1" INTO 
MDR 36 WHICH IS THE 
PARITY BIT 

I -B 27-~1-__ ...I S 
~~_~ __ .tl-===-::====:::jb=.",t= ____ __________________ _ 

i 

i 
I 
I 

• ..Jl ODD PARITY , 

, ;,a ODD PARITY 

+8 ODD PARITY " 

c<ll ODD PARITY 

... -4-1-.+-----..-:.-'-'-' '-r----, r-____ r--'-r_-.::+B~E~V~E~N!P~AR~I~TYc...__r-:__,r-:::B~P:A~RI~TY~ER~RO~R __ , 

-A 'IA 1\ 

+B 5B 36 

1 

-0 

-B SB 36 

~---r--~l~--~~~ 

ERROR CHECK 

" READ 

A4 01 

ANY MEM CYCLE EARLY 
r--r..-__ --' 

\ \):"" ~ cJ"'--; , 
" " .. / 

\ f\ t 
-7l1(;~ I o "1 (111) '" r"r. ' t. .. 

..-~--~ ..... 

! " \, ' \, 

t 
I 

I 
".-. , 

~ POlI"Y 

(Wr:~-< 

I 
I 

<\'~ 
\ ~' '--I 

! 
I 



Parity Checking 

Parity checking is necessary because bits may be 
lost or gained during a store and/or readout process. 
Many factors could cause the losing or gaining of 
bits: noise buildup in memory, circuit malfunctions, 
improper inhibiting within memory, etc. 

The CPU ascertains whether all words read from 
memory contain an odd number of l' s. Any word 
whose I-bit count is not odd is considered to have a 
parity error. Usually, a parity error is undesirable, 
and the CPU program will be written so as to cause 
the CPU to go into a parity trap routine. However, 
the presence of a parity error in itself will not cause 
an automatic trap. 

Figure 38 shows how parity is assigned and check­
ed. All words on the storage bus, whether going to 
or coming from storage, have their parity checked 
automatically. 

Parity checking is accomplished in three stages or 
levels. The first level receives all 36 bits (S through 
35) from the word on the storage bus and groups the 
bits into 12 groups of three bits each. Each of the 
3-bit groups is AND' ed in a manner that will detect 
whether the group has an odd or even number of l's. 
For any 3-bit group, there are four combinations 
which will produce an odd number of l's: if all three 
bits are l' s or if anyone (and only one) of the three 
bits is a 1. The first-level parity will have 12 out­
puts (one for each 3-bit group); each output will 
indicate odd parity if the outputs are as shown in 
Figure 38, or even parity if opposite from that 
shown. 

The second-level parity receives the 1<:l outputs 
from the first-level parity and groups them into four 
groups of 3. Each of the second-level groups is 
AND'ed in effectively the same manner as the first 
level to determine whether the group has odd or even 
parity. The second level has four outputs; each out­
put is representative of nine bits of the word on the 
storage bus. 

The four outputs from the second-level parity feed 
into the third-level parity, where they are resolved 
into one output: a +B, indicating that the entire word 
(S-35) contained an even number of l's, or a -B, 
indicating an odd number. This one output is called 
a generate parity output and will, on a store opera­
tion, determine the contents of MDR position 36; if 
the generate-parity level were + B (indicating even 
parity), a 1 bit would be forced into MDR 36 when 
the SB-MDR transfer took place. 

Four inputs from the third-level parity network 
are fed into an error-checking network. In the 
error-checking network, the parity of the word from 
the storage bus is compared with SB 36 (parity bit) 
to determine whether the word has the parity count 
that the parity bit (SB 36) indicates it should have. 

For instance, if the storage bus word (S-35) contains 
an even number of l's, the parity bit should be a 1. 
The output of the error check should be -B to indicate 
correct parity. If, however, the error check output 
is +B even parity, an error is indicated. The +B 
even parity is AND'ed with a read to generate a -B 
parity-error indication. 

On write, the parity checking network assigns a 
parity bit to the word being stored in memory. On 
read, the parity-checking network determines 
whether the word contains the same number of 1 bits 
as when it was originally stored in memory; a parity 
error is generated if the word read out does not 
contain the number of l's indicated by the parity bit. 

63 



SECTION 4 - INSTRUCTIONS 

This section describes the majority of the 7040-7044 
instructions. Not included are the 1-0 instructions, 
which are covered in the Channel A instruction 
manual, form R23-2652, and in the Channel A refer­
ence manual, form R23-2644. 

Detailed flow diagrams of the instructions are 
found in the CPU Logic Diagrams manual, form 
R23-2659; refer to them when studying this section. 
A figure list in the front of the CPU Logic Diagrams 
manual lists the instruction flow diagrams alpha­
betically by mnemonic code. Only three flow diagramf 
are included in this section, not as detailed as those 
in the CPU Logic Diagrams manual, that illustrate 
add, subtract, multiply, and divide. The purpose of 
the three flow diagrams is to help in understanding 
these basic CPU operations. 

Also included in this section is a discussion of how 
the machine obtains the difference of two numbers 
using the complement method, and the Significance of 
the Q carry. 

Subtraction - Machine Method 

In contrast to the direct method of subtraction, where 
borrowing must take place and adjustments made 
accordingly, the machine subtracts by adding - the 
only function the adder can perform. This is possible 
because when the complement of a number is added 
to another number, in any numbering system, the 
difference of the tW0 ,"mbers is obtained. 

Binary 

Two types of binary complementing are used, a l's 
complement and a 2' s complement, as illustrated in 
the following example: 

100 100 Number 
011 011 l's Complement 
011 1002's Complement 

As the example shows, the l's complement of a 
binary number is the number with all its bits 
reversed; and the 2's complement of the same 
number is 1 greater than its l's complement. Both 
complement types are used by the machine in obtain­
ing the difference of two numbers. The examples 
given below illustrate the two methods, the results 
obtained, and the Significance of the high-order (Q) 
carry. In all cases, the subtrahend (number being 
subtracted) is complemented. 

64 

Case 1: 

Subtrahend 

Smaller 

Case 2: 

Subtrahend 

Equal 

Case 3: 

Subtrahend 

Greater 

Direct 

Method 

101 101 

1 's Complement 

Method 

101 101 

2 's Complement 

Method 

101 101 

1QQ.1QQ all all 1 's Comp all all 1 's Comp 

001 001 "001 000 (Q Carry) 1 Carry In 

1 Carry In "001 001 True Difference 

001 001 True Diff. (Q Carry) 

101 101 101 101 101 101 

!QUQ! 010 010 1 's Comp 010 010 l's Comp 
000 000 111 111 l's Comp 1 Carry In 

Diff. ' Q(j(j"(jOO True Difference 
(noQ (Q Carry) 

Carry) 

101 101 101 101 101 101 

110 101 001010 l's Comp 001 010 l's Comp 
001000 110 111 l's Comp Carry In 

Diff. 111000 2's Comp 
(no Q Diff. 

Carry) (no Q Carry) 

Note first that the 2's complement operation is ef­
fected by adding a 1 to the low order position along 
with the 1 's complement of the subtrahend. In the 
1 's complement operation, the 1 is added in a sepa­
rate addition, as a correction, when a Q carry re­
sults from the first. A Q carry is possible because 
leading 0' s in the subtrahend are introduced as l' s 
in the adder. 

Note also the significance of the Q carry; in both 
the 1 's and 2's complement operations, the Q carry 
indicates the true difference was obtained; where no 
Q carry occurred, the difference is in complement 
form. All the machine has to do is recomplement 
the difference in these cases to obtain the true differ­
ence. The Q carry further indicates that the subtra­
hend is the smaller number in l's complement opera­
tions; and that the subtrahend is the smaller or equal 
number in 2's complement operations. Here then is 
the real difference in the 1 's and 2's complement op­
erations: when equal numbers are subtracted, a Q 
carry and a true difference result iti. 2' s complement 
operations; no Q carry and a complement difference 
result in 1 's complement operations. This fact is 
useful in comparing two numbers. If a Q carry occurs 
while subtracting them in 2's complement, but does 
not occur when subtracting them in 1 's complement, 
the two numbers are equal. 

The following chart summarizes the Q carry indica­
tions for both types of operations. The subtrahend 
always refers to the complemented number. 



l's Complement 2's Complement 

Q Carry No Q Carry Q Carry No Q Carry 

True Comp (l's) True Comp (2's) 

Difference; Difference; Difference; Difference; 

Subtrahend Subtrahend Subtrahend Subtrahend 
Smaller Equal or Equal or Greater 

Greater Smaller 

Octal 

The l's and 2's complement of a binary number have 
their equivalent in the octal numbering system, as 
the 7's and 8's complement, shown in the following 
example: 
Binary Octal 

100 100 Number 44 

011 011 l's Complement 

011 100 2's Complement 

33 7's Complement 

34 8's Complement 

Besides directly interpreting its binary equivalent, 
the 7's complement of an octal number is derived by 
taking the difference of each digit and the highest 
number in the octal system (7). The 8's complement 
is 1 greater than the 7's complement. Using another 
example, the 7's complement of the octal number 320 
is 457; the 8's complement is 1 greater, or 460. 

Because the 7's and 8's complement in octal is equi­
valent to the l's and 2' s complement in binary, high 
order carries occuring in a complement add opera­
tion have the same significance in either system. In 
the chart above, the 7's and 8's complement could be 
substituted for the l's and 2' s complement, respec­
tively, and the chart would still be valid. 

This means that you can predict whether or not the 
machine will produce a Q carry in a given problem 
using the octal system, by substituting the 7's comple­
ment when the machine uses the l's complement, and 
the 8's complement when the machine uses the 2's 
complement. It's important to realize this because 
the machine makes many decisions based upon the 
presence or absence of the Q carry signal. As in case 
1 of the examples above, the Q carry tells the machine 
that the difference produced is true, but must be in­
creased by 1; in the 2's complement operation, the Q 
carry also indicates a true difference, but that no cor­
rection is necessary. The case 1 examples are re­
produced below using the oct,al numbers to show that 
the high-order (Q) carry occurs the same as in binary. 
Do the same for the remaining examples to prove it to 
yourself. 

Case 1: 
Subtrahend 

Smaller 

Direct 7's Complement 8's Complement 

55 55 55 
44 ~ 7's Comp ..1i 8's Comp 
11 '10 Carry .... 11 True Difference 

_1 Correction (Carry In) ( Carry) 

11 True Difference 

FIXED POINT ARITHMETIC 

Fixed-point arithmetic is the most basic form of 
arithmetic. Simply stated, it is the process of com­
putation using quantities whose magnitude is complete­
ly expressed by a single value field. The relationship 
of the magnitude to zero is expressed by a sign posi­
tion. In fixed-point arithmetic, the length of an oper­
and is generally determined by the smallest unit of 
data that can be accessed in core storage. In the 
7040-7044, fixed-point arithmetic operands have the 
following basic format: 

VALUE FIELD 

~I 
The sign bit S determines whether the magnitude is 
positive or negative. When S is a 0, the magnitude is 
positive; when S is aI, the magnitude is negative. 
The value field is 35 bits long and states the magni­
tude of the number. A fixed-point operand can then 
be defined as a unit of data 36 bits long, containing a 
sign bit and 35 magnitude bits. 

Fixed-point arithmetic in the 7040-7044 includes 
addition, subtraction, multiplication, and division. 
All operations involve only two operands: one operand 
is explicitly addressed; the other is implied. In ad­
dition and subtraction, the explicitly addressed oper­
and is obtained from the core storage location speci­
fied by the instruction word effective address. The 
implied operand is obtained from the accumulator. 
The former is generally known as the addressed oper­
and; the latter, as either the implied or accumulator 
operand. In the CPU, the addressed operand is pla­
ced in the storage register, which has the format 
shown above. The implied or accumulator operand 
has the following format: 

VALUE FIELD 

------- -..,., 

The accumulator value field is 37 bits long. The ad­
tional two bits, Q and P, are provided primarily to 
handle conditions which result in a carry of lout of 
position 1. Bits P and Q are therefore known as over­
flow bits and are treated as the two highest-order ac­
cumulator bits during the execution of fixed-point a­
rithmetic. 

The actual arithmetic takes place in the adder, 
which has the following format: 



Basically, the contents of the storage register are 
transferred simultaneously with the accumulator con­
tents into the adders. An addition or subtraction is 
effected, and the result is transferred into the ac­
cumulator. 

In multiplication, the addressed operand is ob­
tained from the core storage location specified by 
the instruction word effective address; the implied 
operand is obtained from the mUltiplier-quotient 
(MQ) register. In the CPU, the addressed operand 
is placed in the storage register, which has the basic 
format of a sign bit and a 35-bit value field. Storage 
register contents become the multiplicand. The MQ 
register contents form the multiplier, which has a 
format identical with the multiplicand. Multiplication 
is effected by a combination of right shifts and simple 
additions. A multiplication result is placed in the 
combined accumulator-MQ register. with MQ regis­
ter bit 35 the lowest-order bit. Multiplication is 
algebraic, and the result sign is placed in both the 
accumulator sign position and the MQ register sign 
position. 

In division, the addressed operand is obtained from 
the core storage location specified by the instruction 
word effective address; the implied operand is ob­
tained from the combined accumulator-MQ register. 
The addressed operand is placed in the CPU storage 
register and becomes the divisor; the combined ac­
cumulator-MQ register becomes the dividend. Divi­
sor format is the basic single sign bit and 35 value 
field I?its. The dividend format is a single sign bit 
and 72 value field bits: 

I~(------------ACCUMULATOR--------------~) I 

I<~-------MQ REGISTER::---------4)I 

The result or quotient is placed in the MQ register 
and has a format identical with the divisor. Remain­
der bits, if any, go into the accumulator, with a for­
mat of one sign bit and 37 value field bits; accumu­
lator bit 35 is the lowest-order remainder bit. Divi­
sion is effected by a combination of subtractions and 
left shifts. ' 

Addition 

In performJng addition in the 7040-7044, the general 
rules of algebra must first be applied to the signs of 
the quantities involved to determine whether the sum 
or difference of the quantities involved is to be ob­
tained. Therefore, when adding two positive quanti-

66 

ties, the result is the sum of those quantities with a 
positive sign. When adding a positive and a negative 
quantity is involved, the sum is actually the difference 
of the two quantities, with the result sign being the 
sign of the larger magnitude. Finally, when adding 
two negative quantities, the result is the sum of the 
quantities with a negative sign. 

Assume the quantity + 2008 is to be added to the ac­
cumulator, which contains +758. The result is +2758. 
To satisfy machine operand fOl'mat, convert the quan­
tities into their binary equivalents: 

a. +2008 = +010 000 000 
b. + 758 = + 000 111 101 

Insert these binary numbers in their respective data 
d 'th th ltd b't b wor s, WI e owes -or er I jlomg mto it 35: 
00 o 0 1 0 0 0 o 0 0 0 

a. S 1 26 27 28 29 ~O 31 32 33 ~4 35 

STORAGE REGISTER 

00 00 o 0 0 0 1 1 1 1 0 1 

b. S Q P 1 26 27 28 29 30 31 32 33 34 ~5 

ACCUMULA TOR 

Bits 1 through 26 are not needed to express the quan­
tities and are therefore all O's. Because accumulator 
bits Q and P are treated as part of the value field and 
the accumulator value is assumed as +758, bits P and 
Q are O's. Since each number is positive, a 0 is pla­
ced in the respective sign bit S. 

Adding the two operands produces a result magni­
tude of 010 111 101, with a result sign of O. In ma~ 
chine operand format, the result is illustrated as 
follows: 

00 00 0 o 1 o 1 1 1 101 

SQ P 1 26 27 28 29 30 31 32 33 34 35 

ACCUMULATOR 
If the same magnitudes are used but the signs 
changed to negative, the entire handling of the magnitude 
remains unchanged in performing the addition. The 
7040-7044 treats the sign bits separately. To cor­
rectly represent the negative values, simply insert a 
1 in the sign bit position of each of the operands an!;!. 
the result; this is what is done in the machine. 

Since ale:ebraic prinCiples are employed, addition of 
two quantities with unlike signs is effectively a. subtrac­
tion. USing the same values, but changing the sign of 
the accumulator operand to a minus, the problem be­
comes (+2008) + (-758)' To accomplish addition, line 
up the octal points and subtract: 

+2008 
+ 

- 075 8 
+1038 



To satisfy machine operand format, convert the 
values into their binary equivalent: 

a. +2008 = +010 000 000 
b. - 0758 = - 000 111 101 

Insert these binary numbers into their respective data 
words, with the lowest-order bit in each value going 
into bit 35: 

S 1 26 27 28 29 30 31 32 33 34 35 
STORAGE REGISTER 

b. S Q P 1 26 27 28 29 30 31 32 33 34 35 

ACCUMULATOR 

Bits 1 through 26 are not needed to express the quan­
tities and are therefore all 0' s. Accumulator bits Q 
and P are implied O's by the assumed accumulator 
value. 

The following describes how the machine effects 
addition of values having unlike signs. Refer to figure 
39, a simplified flow diagram of the Add-Subtract 
operation, while reading this text. A detailed flow 
diagram is in the CPU Logic Diagrams manual. 

a. Adds the complemented accumulator value field 
and storage register value field. 

b. Places the result in the accumulator. 
c. Checks for a Q carry: 

(a) If there is a Q carry, adds 1 to the accumula..., 
tor in the lowest-order position (bit 35), inverts the 
accumulator sign, and plaees the resultant operand 
in the accumulator. 

(b) If there is no Q carry, complements the ac­
cumulator value field. 

Overflow and Q Carry 

The term overflow means that the capacity of the ma­
chine has been exceeded: the arithmetic result can-
not be represented by the machine, because it con­
tains more than 35 value field positions. It was pre­
viously stated that accumulator bits Q and P are called 
overflow bits. The name, however, only provides an 
easy means of identifying these bits as a pair. Be­
cause they could originally contain 00, 01, 10 or 11, 
their significance depends on the problem. When 
dealing with values having like signs, a resultant 1 in 
either bit or in both bits indicates an overflow. In 
this case, the overflow is recorded, but subsequent 
action depends on the program being executed. When 
dealing with unlike signs, the overflow bits are signi­
ficant as a pair and, in this sense, either generate or 
do not generate a Q carry. If a Q carry is generated, 
it indicates (1) that the accumulator operand was the 
smaller operand and (2) that the number presently in 
the accumulator value field is a true number equal to 

1 less than the correct answer. If a Q carry is not 
generated, it indicates (1) that the accumul~tcir oper­
and was the larger operand and (2) that the number 
presently in the accumulator value field is the correct 
answer in complement form. 

Subtraction 

Subtraction in the 7040-7044 is algebraic and is ac­
complished as previously described, by complement­
ing and adding. At the start of the operation, the 
sign of the subtrahend (storage register operand) is 
inverted. Subtraction of unlike signs becomes addi­
tion, and whether the accumulator is the larger or 
smaller operand is inSignificant. Generation of a Q 
carry when dealing with unlike signs before inversion 
represents an overflow. 

The following describes how subtraction is effected. 
Refer to Figure 39. 

1. Complement storage register sign (actually 
occurs as sign bit enters the storage register 
from the storage bus). 

2. Compare accumulator and storage register signs: 
a. If alike, add accumulator and storage register. 
b. If unlike, add complemented accumulator to 

storage register. 
3. Place addition result in accumulator. 
4. a. If accumulator and storage register signs 

are alike, check for a carryout of adder 
value field position 1. The coincidence of 
like signs and a 1 carryout of value field 
position 1 indicates an overflow. 

b. If accumulator or storage register signs are 
unlike, check for a Q carry: 

(1) If there is a Q carry, add 1 to present accum­
ulator value field in low-order position, and invert ac­
cumulator sign. 

(2) If there is no Q carry, complement accumula­
tor value field. 

The Q carry serves to indicate the accumulator 
was the smaller operand and that the present accum­
ulator value field is in true form and 1 less than the 
correct answer, when dealing with operands having 
like signs. The absence of a Q carry, on the other 
hand, indicates the accumulator was the larger oper­
and arrl the present accumulator value field is the 
correct answer in complement form. 

Multiplication 

The rules for binary multiplication are similar to 
those of decimal multiplication. The rules for mul­
tiplying two single digits are the same in both systems. 
These rules are: 

Ox 0 = 0 
Oxl=O 
1 x 0 = 0 
1 xI = 1 

67 



(COMPDIFF,AC~SR) NO 

AC TO AD 
RETURN TO 

AC 

SUM IN 
AC 

(AC SIGN 
UNCHANGED 

~ __ .;...N--=O,---< INSTRUCT 10 N",>-.;...Y--=E:..::S ___ ~ 

SR TO AD 

AC TO AD 

RESUL T TO 
AC 

Q,P 1-35 

? 

? 

NO 

YES (TRUE DIFF, SR>AC) 

ACTOAD,"ONE" 
TO AD 35, RE­
TURN SUM TO AC 
Q,Pl-35 

YES 

CHANGE 
SR 

SIGN 

SR TO AD 

AC TO AD 

RESUL T TO 
AC 

Q,P 1-35 

SUM IN 
AC 

(AC SIGN 
UNCHANGED) 

(CORRECT DIFFERENCE, WHICH 
IS SMALL BY 1) 

CHANGE 
AC 

SIGN 
-{ 

SR)AC:. ~ 
MAKES AC SIGN 
SAME AS SR SIG 

FIGURE 39. 7040/44 ADD - SUBTRACT PROCESS 

68 



The general procedure when multiplying two multiple 
digit binary numbers is the same as that in decimal 
arithmetic; that is, the multiplicand is multiplied by 
a digit of the multiplier, and the partial product ob­
tained is placed so that the least significant digit is 
under the multiplier digit. When all the partial pro-

. ducts have been found, they are added to find the final 
product. The only difference between decimal and 
binary multiplication, therefore, is in the summing 
of the partial products. In binary, the binary addi­
tion table is used; in decimal, the decimal table is 
used. 

As can be seen from the following examples, the 
method of obtaining partial products and then adding 
them to obtain the final product is identical with that 
of decimal arithmetic: 
Multiplicand 
Multiplier 
First Partial Product 
Second Partial Product 
Third Partial Product 
Fourth Partial Product 
Final Product 

1010 
1101 
1010 

10.11 
100.1 
1 011 

1111 
1111 
1111 

0000 00 00 1111 
1010 000 0 1111 

1010 1011 1111 
100000101100.011 11100001 

Note the placement of the binary point in the second 
example. The same rules hold for its placement as 
for placement of the decimal point in decimal arith­
metic. 

The third example also illustrates an interesting 
point. This is the multiplication of the two largest 
possible 4-bit numbers. The product is eight bits 
long. In other words, the largest product that can 
result from the multiplication of two numbers will be 
no longer than the ~ of the number of bits in the 
multiplier and multiplicand. 
If a number is multiplied by the radix of the number 
system, this multiplication has the effect of shifting 
the number one place to the left with respect to the 
radix point. This is true in any number system. For 
example, multiply 12.5110 by 10 (the radix of the 
decimal system) and multiply the number 10.11 2 by 
2 (the radix of the binary system): 
Number 12.51 10.11 
Number Times Radix 125.1 101.1 

Binary multiplication, then, is nothing more than a 
series of add and shift operations. 

Multiplication --Machine Operation 

When performing multiplication in the 7040-7044, the 
contents of the storage register are multiplied by the 
contents of the MQ register. The actual multiplica­
tion is accomplished by repeated conditional addition 
of the storage register contents to the AC register 
contents, interspersed with a shift ofthe accumulator 
and MQ register one bit position to the right. Basically, 
for every multiplier bit that is a 0, the combined 
accumulator-MQ register value field is shifted 
right one position. For every multiplier bit that is 
a 1, the storage register contents are added to the 
accumulator contents, with the result going to the 
accumulator displaced right one poSition. As this 
result is placed in the accumulator, the MQ register 
value field is shifted right one position. As a result 
of the shifting, MQ register bit 35 is lost. 

IslJ8tf4Ls~mrs~ 
Introduce Lost 

A device called the shift counter is used to deter­
mine the number of repetitive shifts executed. In 
the machine, upon decoding a multiply operation, 
the shift counter is set to 438 (3510), Therefore, 
regardless of the number of high-order II bits, two 
35-bit numbers are multiplied. For ease of discus­
sion, the example given in this paragraph uses 6-bit 
numbers and, therefore, a value of 6 in the shift 
counter. 

Multiplication in the 7040-7044 is algebraic: posi­
tive X positive = positive; negative X negative=posi­
tive; positive X negative = negative. Therefore, in 
every multiplication operation, the sign bits of the 
operands involved are treated separately from the 
value fields. Before any adding or shifting takes 
place, the sign bits are compared, and the result 
sign is determined. 

69 



The following describes how the machine effects 
multiplication. Refer to Figure 40, a simplified flow 
diagram of the multiply operation, while reading this 
text. A detailed flow diagram of the multiply code is 
in the CPU Logic Diagrams mariual. 

a. Sets the shift counter to a value of 438 (3510) 
and then checks it for a value of O. 

1. If it is =0, ends the operation. 
2. If it is FO, continues. 

b. Tests the storage register for all O's (storage 
register contents are tested in accumulator): If all 
O's, clears MQ register bits S-35 and resets the shift 
counter. 

c. Clears the accumulaotr (Q-35). 
d. Compares the storage and MQ register Signs: 

1. If alike, sets the accumulator and MQ regis­
ter signs to 0 (positive). 

2. If unlike, sets the accumulator and MQ re­
gister signs to 1 (negative). 

e. Checks the shift counter for a value of 0; if 
SC = 0, ends the operation, whereas if SC F 0, checks 
MQ register bit 35: 

1. If it is a 0: 
(a) Shifts the combined accumulator- MQ re­

gister right one position. 
(b) Steps the shift counter (reduces value by 

1). 
(c) Repeats step e. 

2. If it is a 1: 
(a) Adds the storage register to the accumu­

lator, and places the result in the accumu­
lator displaced one posit~on to the right. 

(b) Shifi;s the MQ register right one position. 
(c) Steps the shift counter. 
(d) Repeats step e. 

Division 

Binary division is the process of counting the number 
of times a divisor goes into a dividend. The count of 
the number of times the divisor may be subtracted 
from the dividend before a negative remainder occurs 
is called the quotient. 

Direct binary division is performed by a series of 
subtractions of the divisor (actually a multiple of the 
divisor), just as it is in the decimal system. For 
example, divide 100 011 100 by 1110: 

1110 1100 
11 

(c) 
(f) 
(g) 
(1 ) 
(m) 

70 

bd ehi jk 
10 100.01 

011 100.00 
10 
111 1 
111 0 

100 00 
11 10 

10 

In the example, the first step is to place the divisor 
below the dividend in a position which is as far re­
moved to the left as possible (a), but which will allow 
a position difference to result when the divisor is 
subtracted from the dividend. Since the divisor' will 
go into this many bits of the dividend once, a 1 is 
placed in the quotient at b in the same column as the 
lowest-order digit of the divisor. The divisor is then 
multiplied by the quotient digit, and the resulting pro­
duct is subtracted from the dividend to produce the 
positive difference (c) called the current remainder. 
The next digit in the dividend is brought down to line 
c. Compare the divisor with line Cj note that the 
divisor is larger than line c, or that the divisor goes 
into line c 0 times. Therefore, place a 0 in the quo­
tient at the d pOSition. The next digit of the dividend 
is then brought down to line c. Comparing the divi­
sor with line c shows line c to be greater. Place a 
1 in the quotient at the e position. Multiply the divi­
sor by the last quotient bit to form line f. Subtract 
line f from line c to start line g. The next digit in 
the dividend is brought down to line g. Compare the 
divisor with line g; the divisor is greater, so place a 
o in the quotient at position h. Bring the next digit 
of the dividend down to line g; by comparison, line 
g is still smaller than the divisor. Place a 0 in the 
quotient in position i, and place the next dividend digit 
on line g. Line g is still smaller than the divisor, so 
a 0 is placed in the quotient at position j. Placing the 
next dividend digit on line g now makes line g greater 
than the divisor. Place a 1 in the quotient at position 
k, and multiply the divisor by this 1 to form line 1. 
Subtract line 1 from line k to start line m. Assuming 
a quotient has been developed of sufficient length, ter­
minate the operation. The qUotient is 10100.01 with 
a remainder of 10 (line m). 

Since the quotients bit is always either 0 or 1, the 
diviSion process can be reduced to a series of sub­
tractions of the divisor, multiplied by the power of 
the quotient bit being sought from t he dividend. Each 
time a subtraction results in a positive current re­
mainder, a 1 is placed in the corresponding quotient 
bit poSition, and the process is immediately repeated 
for the next quotient bit. Each time the subtraction 
results in a negative remainder, a 0 is placed in the 
corresponding quotient bit. In this case, the current 
remainder is restored to a positive number by adding 
the divisor back to it. Following: this, the next quo­
tient bit is obtained by the subtraction of the divisor 
multiplied by the power of the next quotient bit. 

Since the quotient bits are generated from left to 
right, the power of each quotient bit is one smaller 
than that of the last bit generated. This means that, 
as the divisor is successively subtracted from the 
dividend (or current remainder), the divisor is shif­
ted to the right in relation to the binary point. The 
division process can therefore be reduced to a pro-



CLEAR 
SC,MQ 

END OP 

(Zero M'cand) 

AC.AD 

(ACTIVE 
PRODUCT) 

Yes 

FIGURE 40. 7040/44 MULTIPLY INSTRUCTIONS 

LOAD 438 
(3510) in SC 

Yes 

Yes 

SR .-AD 

(M'CAND) 

SHIFT MQ 

1 POS RT 

No 

CLEAR AC 

REDUCE 
SC BY 1 

SHIFT 
MQ AND AC 

1 POS RT 

71 



cess of successive subtract and shift steps. 

Division--Machine Operation 

When performing division in the 7040-7044, the con­
tents of the combined accumulator -MQ register are 
divided by the contents of the storage register. MQ 
register bit 35 is the lowest-order dividend bit; ac­
cumulator bit 1 is the highest-order dividend bit. Al­
though not part of this dividend, accumulator bits 
Q and P must be 0 at the sta,rt of division. The sign 
of the dividend is the sign of the accumulator; the MQ 
register sign is not significant to the dividend. The 
quotient is placed in the MQ register, and the remain­
der, if any, is placed in the accumulator. Division is 
algebraic; therefore, like signs yield a positive result, 
and unlike signs, a negative result. Quotient sign 
determination is accomplished independently of the 
division, with the result sign being placed in the MQ 
register sign position. The sign of the accumulator 
remains unchanged throughout the divide process and 
is the sign of the remainder. This sign may differ 
from the sign of the quotient. 

The MQ register has a format of a Sign bit and 35 
value field bits. A quotient, therefore, can never 
exceed 35 bits in length; that is, it can never have a 
value greater than 235_1. A maximum value of 
235 _1 is established by comparing the maximum value 
a register can contain (its bits alII's) against the 
value of 2 raised to the number of bits in the register. 
For example, a 2-bit register can contain a maximum 
value of 112 or 3. The number of bits in the register 
is 2, and 2 raised to the second power is 22 or 4 
which is 1 more than the maximum value that the reg­
ister can contain. Extending this comparison to any 
size register confirms its validity. Further, the 
comparison provides the basiS for the value size 
limitation of the quotient. 

To insure that the quotient will fall within MQ re­
gister capacity, the dividend must be less than the 
divisor x 235• Ascertaining whether this condition 
ex"ists is quite simple. It is done by comparing ac,... 
cumulator bits Q-35 with storage register bits 1-35. 
If Q or P! is aI, a divide check will occur. If the 
value in the accumulator bits is smaller than the va­
lue in the storage register bits, a quotient will re­
sult that can be contained in the MQ register. The 
comparison is accomplished by complementing ac­
cumulator bits Q-35, and then addill{ the comple­
ment value to storage register bits 1-35. Genera­
tion of a Q carry indicates the value in the accumula­
tor bits is smaller and, therefore, the quotient can be 
contained in the MQ register. 

The following describes how the machine effects 
division. Refer to Figure 41, a simplified flow dia­
gram of the divide operation, while reading this text. 
A detailed flow diagram of the divide code is in the 
C;PU Logic Diagrams manual. 
72 

1. Set the shift counter to 438 (3510). 
2. Complement the accumulator (bits Q-35). 
3. Test for SC = O. If it is, end Op and re-comple­

ment the AC in the following I cycle. 
4. Add the storage register and accumulator value 

fields. (The result of this addition is not recorded). 
5. Check for a Q carry: 

a. If there is no Q carry, turn on the divide 
check trigger and reset the shift counter. 
Then complement ·the accumulator, and get 
the next instruction. 

b. If there is a Q carry: 
(1) Set the quotient Sign. 
(2) Complement MQ register bit!. 
(3) Shift accumulator bits P-35 and MQ regis­

ter bits 1-35 left one position. 
(4) Step the shift counter (reduce it by 1). 

6. Add the storage register and accumulator value 
fields. 

7. Check for a Q carry: 
(a) If there is no Q carry: 

(1) Place a 1 in MQ register bit 35. 
(2) Transfer the addition result into the 

accumulator; go to Step 8. 
(b) If there is a Q carry, go to Step 8. 

8. Check the shift counter for a value of 0: 
a. If SC f; 0: 

(1) Complement MQ register bit 1. 
(2) Shift accumulator bits P-35 and MQ 

register bits 1-35 left one position. 
(3) Step the shift counter. 
(4) Go back to Step 6, and repeat the action. 

b. If SC = 0: 
(1) Complement accumulator bits Q-35. 
(2) End the operation. 

VARIABLE- LENGTH ARITHMETIC 

Variable-length arithmetic is fixed-point arithmetic 
using operands of a length other than 35 bhs. Variable­
length operations include multiply, divide, and multi­
ply and add. Each of these operations requires the 
use of the shift counter, which is the key to variable­
length operations. In the variable-length instruction 
word, bits 12-17 form a count field .. When a variable­
length operation is decoded, the value in the count 
field is set into the shift co~ter, rather than 438. 

Although the count field can contain counts from 0 
to 778, certain counts are impractical or of no value. 
For instance, the count in a multiply operation speci­
fies the number of multiplier bits and identifies the 
low-order result bit. Consider the multiplier. It is 
contained in the MQ register, which is 35 bits long. 
Therefore, a multiplier exceeding 35 bits in length 
cannot be contained in the MQ register. This fact, 
however, is not important to machine operation be­
cause it bases its actions on the shift counter. As 
long as the shift comter does not equal 0, the machine 



No 

MAKE MQ 
SIGN = 1 

I 

LOAD SC 
WITH 438 
(35 10) 

COMP 
AC 

r-_______________ N~O_<~Y~ 
SR AND AC 

TOAD 

Q CAR? 

es 

No 

AC? SRL 

RESETSC, ~1~II~e~~,a~I __________ ~~ ____________________ -, 
DVD CHK 

SR AND Yes 

COMP 
AC 

AC SIGNS 
ALIKE 

MAKE MQ 
SIGN = 0 

I 

SHIFT 
AC AND MQ 

LEFT 1 

(SR>AC) 

MQ 1 
TO 

AC 35 

~t 

SR AND AC 

TO AD 

END 
OP 

I 
STEP 

SC BY 1 

I 

Y.'~~~N~O~ ... ~~A~C~>_=~S~Rl ______ --' 

SUCCESS I 
MAKE 

MQ35=1 

RETURN 

AD-AC 

I 

~ _______________ N_o-<~>-y_e_S ________________________ -J 

FIGURE 41. 7040/44 DIVISION PROCESS 

73 



performs its repetitive steps. Therefore, the mul­
tiplier bits needed to satisfy the number specified by 
the count field in excess of 35 are obtained from ac­
cumulator bit 35 with each right shift executed. Fur­
ther, if a count of 438 is specified for a variable­
length multiply, the operation performed is identical 
with a fixed-point multiply. Obviously then, variable­
length multiplication is intended for use with multi­
pliers of less than 35 bits in length. In this case, by 
setting the shift counter to the size of the multiplier, 
the time needed to execute the operation is reduced, 
thereby increasing machine efficiency. 

In multiplication, the count also serves to identify 
the low-order result bit. The count in fixed-point 
multiplication is always 438, and the highest-order' 
result bit is accumulator bit I, with MQ register bit 
35 the lowest-order result bit. In variable-length 
multiplication, accumulator bit 1 is also the highest­
order result bit, but the lowest-order result bit is 
not necessarily MQ register bit 35. The lowest-order 
result bit in variable-length multiplication is the MQ 
register bit corresponding to the count field value up 
to and including a count of 438, For example, with a 
count of I, MQ register bit 1 is the lowest-order re­
sult bit; with a count of 128, MQ register bit 10 is the 
lowest-order result bit, and any count over 438 causes 
the loss of low-order result bits, because they are 
shifted right, out of MQ register bit 35. In addition, 
when the count is stepped from 438 to 448, MQ regis­
ter bit 35 is actually the lowest-order result bit 
developed thus far. Therefore, subsequent multipli­
cations are performed using result bits as multiplier 
bits, with the final result being completely erroneous. 

The count in a division operation specifies (1) the 
number of significant dividend bits in the MQ register 
and (2) the number of quotient bits to be developed. 
For the moment, ignore the fact that the machine 
cannot execute a divide operation with a count of O. 
With a decimal count of 35 in the shift counter, the 
dividend is 70 bits long, extending from accumulator 
bit 1 through MQ register bit 35. Subtracting 35 from 
the shift counter makes it 0, and subtracting 35 from 
the dividend makes it 35. If a divide could be per­
formed with a count of 0, the smallest size dividend 
possible would be realized, which would be 35 bits 
long and extend from accumulator bit 1 through 
accumulator bit 35. For each increment of the count, 
therefore, the dividend picks up one more Significant 
bit, starting at MQ register bit 1. Thus, a count of 
1 makes the dividend accumulator 1-35 and MQ 1; a 
count of 148 makes the dividend accumulator 1 through 
35 and MQ 1 through 12; a count of 308 makes the 
dividend accumulator 1-35 and MQ 1 through 24. When 
the count is 438, the variable-length divide is identical 
with the fixed-point ~ivide. A count exceeding 438, in 
effect, is specifying a dividend beyond the capacity of the 

74 

machine. However, this condition poses no problem 
to the machine; as long as a value greater than 0 is 
in the shift counter, the repetitive steps are per­
formed, causing needed bits to be shifted left from 
MQ register bit 1 into accumulator bit 35, 

In the case of a count greater than 438, consider the 
contents of the accumulator and MQ register as the 
count goes from 438 to 448, At the lesser count, the 
contents of the accumulator form the current remain­
der, and the contents of the MQ register form the 
quotient developed thus far. Each, however, is 35 
bits long. When the count value goes to 448, the 
highest-order quotient bit is left-shifted into the ac­
cumulator. From this point on, division is performed 
using quotient bits as dividend bits; the final answer 
is meaningless. 

In fixed-point division, the count is always 438 and 
the quotient developed is always 3510 bits long. Sub­
tracting 438 from the count makes it 0, and subtrac­
ting 3510 from the quotient makes it 0 bit long. Thus, 
with every increment of the count, an additional bin­
ary position is developed in the quotient: a count of 
158 results in the development of 13 quotient bits; a 
count of 348, 28 quotient bits, etc, In each case, MQ 
bit 35 is the lowest-order quotient bit, with the higher­
order bits being developed in left adjacent positions. 
At a count of 438, a 35-bit quotient is in the MQ re­
gister, with the highest-order bit being MQ 1. When 
the count goes to 448, the highest-order quotient bit 
is lost; at 458, the next highest; etc. It is apparent 
that a count exceeding 438 is of no value, and a count 
of 438 is the same as fixed-point division. Variable­
length division, therefore, is best employed using 
dividends of less than 70 bits or, said another way, 
using a count of less than 438, 

. In the above diSCUSSion, the count is used in an as­
cending fashion. The machine does not use the count 
in this fashion. Rather, the machines decrements 
the count from its maximum value to 0, one decre­
ment at a time. An ascending count was used for 
ease of description. The effect, however, is the 
same. Saying the count is stepped from 438 to 448 is 
the same as saying the shift counter is stepped for the 
448 time. 

In the 7040-7044, indirect addressing can be used 
with arithmetic class instructions. Indirect address­
ing is specified by a 11 configuration in instruction 
word bits 12 and 13. Variable field length operations, 
however, also use these bits as part of the count 
field. Therefore, any count of 608 or above causes 
the instruction word' effective address to be inter­
preted as an indirect address. The contents of the 
location specified by the instruction word indirect 
address are referenced, and an effective address is 
formed in the normal manner. Further, the contents 



of bits 12 through 17 in the indirect address (instruc­
tion word effective address) are used to set the shift 
counter. The contents of the effective address are 
used as the multiplicand or divisor, depending on 
the operation. 

VLM, VMA, and VDP 

The variable length multiply, variable length multi­
ply and accumulate, and variable length divide or 
proceed instructions differ in their execution from 
their fixed-point counterparts in t he value loaded in 
the shift counter. As already mentioned, the fixed­
point multiply and divide instructions load the shift 
counter with 438 (3510), while the variable length 
instructions load the shift counter with the instruc­
tion word count field (bits 12 to 17). The VMA in­
struction further differs from fixed point multiply by 
not checking for a zero multiplicand at the beginning 
of the operation. The check is avoided because to do 
so would destroy whatever is in the accumulator, 
where the zero check takes place; also, the accumu­
lator is not cleared as it is in fixed-point multiply. 

Aside from these differences, the VLM, VMA and 
VDP instructions operate the same as the fixed-point 
operations. Refer to the detailed flow diagrams in 
the CPU Logic Diagrams manual to verify the differ­
ences and note the similarity between the fixed-point 
and variable-length instructions. 

F LOA TING-POINT ARITHMETIC 

The range of numbers anticipated during a calculation 
may be extremely large, extremely small or, in somE 
cases, unpredictable. Such situations make fixed­
point arithmetic difficult to work with for two reasons: 

1. The size of the number is limited by the size of 
the register (35 binary bits or 10 decimal digits). 

2. The programmer must keep track of the point 
in all numbers throughout the calculation. 

To meet the needs of large numbers and to auto­
matically keep track of the point, an alternative set 
of arithmetic instructions, called floating-point arith­
metic instructions, are available. 

As the name "floating-point" implies, the binary 
point does not have to be lined up before each opera­
tion or remain in the same position at the end of the 
operation. Instead, it IIfloats" or is re-positioned 
during calculations in much the same manner as the 
decimal point is repositioned when calculating with 
a pencil and paper. Floating-point arithmetic instruc­
tions automatically position the operands to be used 
and deliver the result in correct form. 

Scientific Notation 

The principle on which floating-point arithmetic works 

is basic in mathematics and is called scientific nota­
tion. Before floating-point ope:i.'ations are described, 
a review of scientific notation may help toward a 
thorough understanding of how floating-point arith­
metic is performed in the 7040-7044. 

Principles: When a quantity is measured, the number 
generated is the number of units contained in the quan­
tity. If the quantity is small, it is usually expressed 
directly; e. g., something "is 4 feet high" or "weighs 
100 pounds. 11 When dealing with large values, how­
ever, direct expreSSion is often cumbersome. For 
example, the value which constitutes one coulomb, or 
the unit of static charge, is approximately 6, 300, 000, 
000, 000, 000, 000 free electrons. This value is so 
large that it is seldom expressed in this manner, not 
only because it is cumbersome, but because it may 
very easily be expressed incorrectly by dropping one 
or more of the trailing zeros. To avoid direct ex­
preSSion of this quantity, a coulomb is usually defined 
as the unit of static charge present when 6.3 x 1018 
free electrons are collected on a single body. The 
expression 6.3 x 1018 denotes exactly the same value 
as the number written out with all the trailing zeros, 
but it is much easier to state and not so susceptible 
of error. 

Representation of value in the manner shown is 
referred to as scientific notation. This method of 
notation is arrived at by taking the scientific digits 
(coefficient) of a particular value and multiplying them 
by the radix of the number system being used, raised 
to a power (exponent) which will correctly express 
the magnitude of the number. Other examples of 
scientific notation are the velocity of light, expressed 
as 2.998 x 108 meters per second, and the angstrom 
unit, expressed as 1 x 108 centimeters. All these 
notations, if multiplied by the indicated power of 10, 
will give the value commonly associated with the 
measurement of the given quantity. 

If the significant digits of a value expressed by 
scientific notation are shifted so that the decimal 
point falls in a different place, the accuracy of the 
expreSSion can still be maintained by a corresponding 
change in the power to which the radix is raised. For 
example, all the notations below will yield exactly the 
same result if multiplied out: 

2.998 x 108 .2998 x 109 

29.98 x 107 .02998 x 1010 
299.8 x 106 .002998 x 1011 
2998 x 105 .0002998 x 1012 

It can be seen that, for each shift left of the number 
(assuming that the decimal point stays in a fixed posi­
tion), the power of 10 must be reduced by 1 to main­
tain the equality of the expreSSion. Similarly, for 

75 



every shift to the right, the value of the exponent is 
increased by 1. Shifting the significant digits of a 
value back and forth and making the corresponding 
changes in the power of the radix can be utilized to 
perform addition or any other arithmetic function. 
For example, assume that the following expressions 
are to be added: 

3.75 x103 
+ 445x102 

Because the exponents of the radix term s differ, a 
direct addition cannot be performed. However, one 
of the terms can be shifted until the exponents are 
of the same value; then the significant digits may be 
added, and the radix term may be carried to the sum. 
If the first expression is shifted, the -result is as 
shown below: 

3.75 x 103 shifted right one place =: 37.5 x 102 
37.5x102 

+445 x 102 
4S2.5 x 102 

Multiplying this notation out yields a result of 
4S,250, the same as would be obtained by obtaining 
the true value of each expression separately and then 
adding them. If the second expression were shifted, 
the result would be: 

445 x 102 shifted left one place =: 44. 5 x 103 : 

44.5 x103 

+3.75 xl 03 
4S.25 x103 

Multiplying 4S. 25 x 103 out also yields 4S, 250, the 
correct result. From this simple example, it can be 
seen that it is necessary only to make the exponents 
of the radixes the same value by shifting the signifi­
cant digits one way or the other and then performing 
the desired arithmetic operation. 

The principle of scientific notation can be sum­
marized by stating that it uses two factors to indi­
cate the magnitude of a measured value. One factor 
is the radix raised to a power (either positive or 
negative), and the second factor is the significant 
digits of the value. Changing one of these factors re­
quires a corresponding change in the other to main­
tain the validity of the expression. These same rules 
may be applied to the binary number system. 

Notation with Binary System: Because the binary 
system uses a radix of 2, all forms of scientific 
notation are expressed in terms of powers of 2. 

In addition, since only symbols of 0 and 1 are em­
ployed in this system, the significant part of the no­
tation will consist of a combination of 0' sand l' s. 
For example, the value 25610 expressed in binary is 
100 000 000(400S)' If this binary number is con­
sidered to be an integer, scientific notation of the 
value would be as shown below: 

100 000 000 x 2° 

76 

Of course, this expression .could be given in many 
forms, all equal in value, by shifting the bits of the 
expression and changing the exponent of the radix 2. 
For example, all the following expressions are equal 
to 100 000 000: 

010 000 000 x 21 
000 001 000 x 25 

000 000 00. 1 x 29 

The last expression has shifted the number so that it 
becomes a fraction, but no difficulty is encountered, 
since a binary fraction of this magnitude equals' 510, 
or 1/2. The 9th power of 2 equals 51210, and 1/2 x 
512 yields a result of 25610' the original value. 

This type of notation is adequate for paper and 
pencil, but in a computer a different way of express­
ing the power of the radix is necessary. Since the 
7040-7044 is a binary machine, the power of the radix 
must also be expressed in binary. This 29 power 
will appear in some other form inside the machine, 
although the power indicated is still 29 • 

Floating- Point Data 

It has aLready been stated that floating-point arith­
metic in the 7040-7044 uses operands expressed by 
scientific notation. Also, scientific notation has been 
defined as the significant digits of a value multiplied 
by the power of the radix. All that remains now is 
to show exactly how the power of the radix and the 
Significant digits (or bits in binary) are expressed in 
the 7040-7044. The format for a floating-point data 
word is as follows: 

1s \1 CHARACTERISTIC FRACTION 

Bit positions l-S, referred to as the characteristic 
of the word, indicate the power of 2 to which the sig­
nificant bits are raised. It can be assumed that 2 is 
the radix involved, since the binary system is being 
employed. If a characteristic of all zeros is arbi­
trarily chosen to represent 20, the range of expon­
ents possible with eight bit positions would be 20 -
2377 . However, this arrangement is impractical 
because it allows only positive exponfnts to be ex­
pressed, and it is desirable to express negative ex­
ponents as well. Therefore, the midpoint between 
the total number of exponents that can be expressed 
(400S) has been arbitrarily chosen to represent 20. 
This value is 200S' Thus, a positive power of 2 will 
be between the values 2008 and 3778, and a negative 
exponent will be between 08 and 1778, For example, 
to express 29 as it is done in the machine, the ex­
ponent must first be changed from decimal to octal 
form. Thus, 29 in the decimal system equals 211 in the 
octal system. The radix is understood to be 2, so only 
the power (11) need be expressed. If 20 equals 2008' 



then 211S equals 211. The actual appearance of the 
characteristic (in binary) which indicates 29 is as 
follows: 

10 001 001 
The characteristic part of the floating-point data 
word thus constitutes one of the two factors employed 
in scientific notation. 

Bits 9-35 of the data word, called the fraction, 
constitute the significant bits of the value, or magni­
tude. The term fraction is used because the data 
contained in this part of the word is considered to be 
in fractional form; that is, a binary pOint is effec­
tively located between bit positions S am 9, making 
all bits to the right of this point represent a value 
somewhere between -1 and +1. This fraction should 
not be confused with the fraction represented by a 
fixed-point data word. It is true that the numerical 
significance of these fractions is the same in that 
each position represents a power of 2, but the actual 
magnitude of the floating-point data word can be de­
termined only after the fraction has been multiplied 
by the power of 2 indicated by the characteristic. 
In fixed-point data words, the magnitude of a number 
can be determined after the various powers of 2 pre­
sent in a given word are added together. 

The sign bit position of a floating-point data word 
represents the sign of the fraction; that is, if the 
sign bit is 0, the fraction portion is positive, and if 
the sign bit is 1, the fraction portion is negative. 

A characteristic in the range Os to 177 S does not 
in itself indicate that the quantity is negative. To 
express a very small quantity may require a nega­
tive power of 2, but the quantity may still be positive. 
For example, to express the value of l/S in floating­
point form requires a negative exponent (assuming 
that the fraction is 1/2). The smallest position ex­
ponent that can be expressed is 200S or 20 , and mul­
tiplying this by 1/2 still yields a result of 1/2. To 
obtain the quantity l/S, a ch~racteristic of 176S is 
required when the fractional part of the data word is 
1/2. The characteristic of 176S represents 2- 2 , and 
multiplying this by 1/2 yields the desired quantity: 

2-2 x 1/2 - 1/22 x 1/2 - 1/4 x 1/2 = l/S 

Similarly, a value of -l/S would be shown as follows: 

S CHARACTERISTIC FRACTION 

1 176 4000000008 

This value is known to be negative because the sign 
bit is a 1. Thus, it is the sign bit, and only the 
sign bit, which determines the polarity of the value 
expressed. 

As an example of a .floating-point data word, as­
sume that it is deSired to express the value 25610 , 
This value may be represented in octal by 400 or in 
binary by 100 000 000. This term may be expressed 
in octal by 400 or in binary by 100 000 000. This 

term may be expressed in scientific notation by 
100 000 000 x 20 or 000 000 000.1 x 29• Taking the 
latter case and placing 29 (211 in octal) into the char­
acteristic bit positions yields a result of 211S' The 
fraction remains as is, and the sign bit is cleared; 
so the floating-point form of 25610 is as follows: 

S CHARACTERISTIC FRACTION 
0 211 .400000000 

Arithmetic operations with floating-point data words 
are performed in much the same manner as the addi­
tion of terms in scientific notation. The character­
istics are made the same by shifting one of the frac­
tions and making the corresponding change in the value 
of the characteristic. The two fractions are then 
added (assuming addition is the operation called for), 
and the characteristic is assigned to the sum. Though 
a certain amount of "lining up" may be necessary be­
fore a floating-point operation may take place (the 
characteristics must be made equal), this process is 
performed automatically by the machine and is not 
the concern of the programmer. Also, the result 
of the operation will be a value which does not re­
quire further manipulation before another arithmetic 
operation can take place. Thus, the floating opera­
tion which occurs in floating-point arithmetic is really 
nothing more than an adjustment of the characteristic 
to keep the value being expressed in the proper order 
of magnitude. 

Double Precision 

When a fixed-point fraction is changed to floating­
point form, the resulting characteristic and fraction 
may exceed 35 bits. In this case, additional hard­
ware is available to accommodate the longer length 
fraction. The addressed operand is always placed 
in the storage register. When a double-precision 
addressed operand is required, the low-order frac­
tion bits are housed in the swap register which is 
associated only with the storage register. In the 
case of the implied operand, the accumulator and the 
MQ register combine to house the double-precision 
number. The MQ register is assigned a character­
istic 2710 less than that of the accumulator because 
the fraction contained in the MQ register in bits 9-35 
is displaced 27 positions to the right of the accumula­
tor binary point - the point just to the left of accumu­
lator bit 9. No characteristic is assigned to the 
swap register because it serves to hold either the 
low-order addressed operand until it can be operated 
on or the partial result developed during an arith­
metic process. However, the MQ register always 
reflects the result of an operation; a separate char­
acteristic must be assigned because it is required to 
be very accurate in a floating-point operation, and 
these low-order bits must be dealt with separately. 

77 



The double-precision operand contained in the com­
bined storage-swap register is as follows: 

STORAGE 

HIGH ORDER 
FRACTION 

REGISTER 

[ LOW ORDER 
FRACTION 

SWAP REGISTER 

Bit S, the sign bit, is the sign of the entire fraction. 
When bit S is 0, the fraction is positive; when bit E1 is 
1, the fraction is negative. The characteristic indi­
cates the power of 2 to which the fraction is raised. 
In double-precision, the fraction is 54 bits in length; 
storage register bits 9-35, on the high-order frac­
tion bits, and the swap register, which is only 27 
bits long, form the low-order fraction. The accum­
ulator-MQ register double-precision operand is 
shown as follows: 

HIGH ORDER 
FRACTION 

LOW ORDER 
FRACTION 

The only difference between the accumulator-MQ 
register operand and the storage-swap register oper­
and is the existence of a characteristic for the low­
order fraction. Note that the MQ register sign bit is 
not used. 

Floating-Point Spill 

During the execution of a floating-point operation, 
the resultant characteristic in either the accumulator 
or MQ register may exceed eight bit positions in 
length. The existence of such a condition means that 
machine capacity has been exceeded: machine capa­
city is exceeded when the exponent goes beyond 3778 
or below 08' When the characteristic goes beyond 
3778 , a condition known as floating-point overflow is 
said to exist. Similarly, if the characteristic tries 
to go below 08, a condition known as floating-point 
underflow exists. These conditions are referred to 
collectively as floating-point spill. 

Overflow and underflow may occur in either the ac­
cumulator or the MQ register. Upon sensing the ex­
istence of either condition, the processing unit places 
the address of the instruction causing the condition 
plus 1 into bits 21-35 of location 00000. In addition, 
one of bits 14-17 of location 00000 is set to record the 
cause of the spill. 

Normalizing 

When a floating-point data word is being dealt with, 
it may be in one of two forms, normalized or unnor­
malized. A normalized number is one that contains 
the binary point of the fraction just to the left of the 
most significant bit. Since the binary point of the 
fraction is considered to be just to the left of accumu-

78 

lator bit 9 in a floating-point data word, bit 9 must 
contain a significant bit if the number is to be in nor­
malized form; that is, bit 9 must contain a 1. There­
fore, the absolute magnitude of the fractional part of 
a floating-point data word must be greater than or 
equal to 1/2, but less than 1 if the number is in nor­
malized form. If the most significant bit is not con­
tained in bit 9, the number is said to be unnormalized. 
Normalizing can be thought of as eliminating leading 
zeros from a fraction. 

At the completion of an arithmetic operation, the 
result may be in either normalized or unnormalized 
form. Certain instructions in the floating-point arith­
metic class of the 7040-7044 contain the option to 
normalize the result if so desired. When this is done, 
the fraction is shifted left until a Significant bit is con­
tained in the accumulator bit 9 position. However, to 
maintain the value of the expression, the characteris­
tic must be reduced by 1 for each shift to the left that 
occurs. As an example, assume the result of an 
arithmetic operation appeared in the combined accum­
ulator-MQ register as shown: 

O. 10 001 011 000 111 •.•........ O2 
The first eight bits of the accumulator contain the 
characteristic, 2138; bits 9-35 of the accumulator and 
9-35 of the MQ register contain the fraction, 
0700000000000000008, This expression is in unnor­
malized form because the fraction contains leading 
zeros. To normalize the fraction, the fraction is 
shifted left three places, with the bits leaving accum­
ulator bit 9 being lost, and to maintain the equality of 
the expression, the characteristic is reduced by 3. 
The normalized number becomes: 

0.210.7000000000000000008 
The value of the expression is maintained in both 
cases; however, the leading zeros have been elimin­
ated from the fraction in the normalized form. When 
the result of an arithmetic operation is to be norma­
lized, the normalizing process takes place automatic­
ally after the final result has been computed. Nor­
malization is specified by a positive sign (S bit is 0) 
in the floating-point instruction word. 

At this point, it may seem desirable to always have 
results appear in the normalized form. This would 
seem true because, as leading zeros are shifted out 
of the fraction, low-order bits enter the accumulator 
from the MQ register, thus increasing the accuracy 
of the answer. However, there are instances when 
it is desirable to perform an unnormalized opera­
tion. For example, if the values being dealt with 
contained very small characteristics (large nega­
tive powers of 2), a series of operations could 
cause accumulator underflow when normalizing takes 
place. If the magnitudes of the numbers are known 
to be very small, accumulator underflow may be 
avoided by leaving the answer in unnormalized form. 



Consider the MQ register after a floating-point 
operation. It may contain an expression whose char­
acteristic is always 2710 less than the accumulator 
characteristic. To maintain the difference in char­
acteristics between the low-order MQ register frac­
tion bits and the high-order accumulator fraction bits, 
normalizing is performed before the MQ register 
characteristic is computed. 

Zero Fraction 

A floating-point number having a zero fraction can be 
treated in a variety of ways because the significance 
of a zero fraction operand depends on the arithmetic 
process to be performed. In addition and subtrac­
tion, a zero fraction operand just means that the 
fraction portion of the answer is identical with the 
non-zero fraction operand. The result of the arith­
metic is meaningful. In the machine, a zero frac­
tion operand has no effect on the operation; the airth­
metic is performed, allowing normalization of the 
non-zero operand fraction if specified. Naturally, 
if both operands contain a zero fraction, the answer 
has no meaning and can never be normalized. Such 
a situation, however, is highly improbable. 

In multiplication, a zero fraction has a vastly dif­
ferent meaning and is therefore treated quite differ­
ently. In multiplication, a zero fraction multiplier 
results in a product containing a zero fraction: any­
thing times zero equals zero. Likewise, a zero 
raised to some power is still zero. It serves no 
purpose to perform the operation because the result 
will be meaningless. Also, a zero fraction can 
never be normalized. Consequently, in single-pre­
cision multiplication, a zero fraction multiplier 
causes the operation to be terminated and the char­
acteristic portion of the accumulator and MQ regis­
ters, which receive the result, to be cleared. In 
double - precision multiplication, the multiplicand 
is checked for a zero fraction. Effectively, a multi­
plicand with a zero fraction has the same meaning as 
a multiplier with a zero fraction: the result frac­
tion will be zero. Consequently, a zero multiplicand 
fraction in double-precision multiplication causes 
the operation to be terminated and the accumulator 
and MQ register characteristic portions to be cleared. 
In addition, a better use of hardware is realized by 
checking the multiplier in one case and the multipli­
cand in the other. The end result is a shortening of 
the time necessary to accomplish floating-point mul­
tiplication. 

When dealing with division, the divisor or the 
dividend could contain a zero fraction. Each case 
has a different meaning and is therefore treated dif­
ferently. The treatment, however, applies to both 
single-and double-precision operations. If the divi­
sor has a zero fraction, the quotient cannot be deter-

mined; a divide-check condition results, and the opera­
tion is ended. The dividend, however, remains un­
altered in this case. When the dividend contains a 
zero fraction, the quotient will be zero. Since the 
quotient will have no meaning, the operation is ended. 
However, in this case, the associated characteristic 
positions of the accumulator and MQ registers, which 
hold the result of a division, are cleared. 

The above discussion pertains only to zero fraction 
operands. There remains the condition of the result 
of a floating-point operation containing a zero frac­
tion. Since in multiplication and division the result 
is also influenced by zero fraction operands, these 
cases have already been covered. Only addition and 
subtraction, then, have not been discussed. In either 
of these operations, a zero fraction result causes the 
associated characteristic to be cleared and the opera­
tion terminated. 

Single-Precision Floating-Point Addition and Subtrac-

ll2!!. 

For single-precision floating-point addition in the 
7040-7044, the addressed operand is placed in the 
storage register, which has the follDwing format: 

FRACTION 

The sign bit serves as the fraction sign; the charac­
teristic, to indicate the power of 2 to which the frac­
tion is raised; the fraction, to express the Significant 
bits of the quantity. The second implied operand is 
tre accumulator, which has the following format: 

~sl Q C~~CTERISTIC 819 FRACTION 

In the accumulator, bits Q and P are interpreted as 
part of the characteristic. Field meaning is identi­
cal with that of the storage register. 

Single-precision floating-point addition is accom­
plished by adding the storage register contents to the 
accumulator contents. The result is placed in the 
accumulator. Addition is algebraic; sign determina­
tion is independent of the actual addition. The re­
sult sign is the sign of the largest operand. 

In the addition process, initial action involves 
determining which operand is larger; the larger 
operand is placed in the storage register. There­
fore, whenever the accumulator is the larger oper­
and, it is placed in the storage register, and the 
storage register operand is placed in the accumula­
tor. Although the original value of accumulator bits 
Q and P are used in determining which operand is 
larger, they are not transferred to the storage regis­
ter when the accumulator is found larger. In addi­
tion, in this case, bits Q and P are cleared when the 
storage register contents are placed in the accumu­
lator. 

79 



After the larger operand is in the storage register, 
the characteristics are equalized. This action sim­
ply involves subtracting the accumulator character­
istic from the storage register characteristic and 
placing the difference in the shift counter. The ac­
cumulator fraction, which will always be the smaller 
operand at this point in the addition, is shifted right 
the number of times specified by the shift counter. 
High-order fraction zeros are introduced into bit 9 
with each right shift. Bits shifted out of accumulator 
bit position 35 enter MQ register bit position 9. Dur­
ing equalization then, the MQ register can become 
part of the smaller fraction. Bits shifted out of MQ 
register bit position 35 are lost. 

When the characteristics are equalized, addition 
of the fractions can begin. However, two types of 
addition are possible: true addition and complement 
addition. A comparison of the storage register and 
accumulator signs determines which type to perform. 
If the signs are alike, true addition is performed; if 
the signs are unlike, complement addition is perfor­
med. With the latter type, the 1 's complement of the 
accumulator fraction is added to the storage register 
fraction. Whichever type is performed, the result is 
placed in the accumulator. 

The true addition of two 27-bit numbers can result 
in a 2S-bit sum: the true addition of two fractions can 
yield a mixed number. However, only a fraction can 
be expressed in the result. In such a case, the re­
sult must be shifted right one position, and the char­
acteristic must be updated. To simplify the equaliz­
ing action necessary when a 2S-bit sum results during 
true addition, the storage register characteristic, 
which is the result characteristic, is transferred to 
the adder with the storage register fraction at the 
time of addition. A carryout of bit 9 (a 9 carry) is 
allowed to propagate to characteristic bit S, thereby 
automatically updating the characteristic. The re­
sult fraction is then shifted right one position; shift­
ing at this point involves the combined accumulator 
MQ register fraction. Accumulator bit 9 is then set 
to 1 to complete the equalizing action. 

Complement addition is really subtraction. In this 
case, a 9 carry indicates that the storage register 
fraction was larger than the accumulator fraction 
and that the value in the accumulator is only a par­
tial result. A 9 carry in complement addition must 
therefore be added to the partial result to get the 
true result. It is possible at this time for the MQ 
register to contain significant bits of the partial re­
sult because of the equalizing action taken before the 
fraction addition was initiated. Therefore, the MQ 
register is checked for a value of zero. If it does 
equal zero, the 9 carry is added to accumulator bit 
35; if it does not equal zero, the 9 carry is added to 
MQ register bit 35. 

80 

No matter which type of arithmetic is performed, the 
sum of a floating-point addition is in the combined ac­
cumulator-MQ register. The low-order fraction bits 
or least significant portion of the sum appear in the 
MQ register fraction, and the high-order fraction 
bits or most significant portion of the sum appear in 
the accumulator. The result characteristic appears 
in the accumulator, and the MQ register is assigned 
a characteristic 2710 less than the accumulator char­
acteristic. In addition, the MQ register sign is set 
to the accumulator sign. 

The option to normalize the result is provided in 
single-precision addition. Normalization is speci­
fied by a positive instruction word sign. When nor­
malization is specified, accumulator bit 9 is inspec­
ted. If it is a 0, the combined accumulator-MQ re­
gister fraction is shifted left one position. A zero is 
introduced into MQ register bit 35, and the charac­
teristic is reduced by 1. This action is repeated un­
til a 1 enters accumulator bit 9. Note that normaliza­
tion, if specified, is completed before the MQ char­
acteristic is computed. 

Single-precision subtraction is identical with single­
precision addition, except the sign of the addressed 
operand is inverted before it enters the storage re­
gister. 

Machine Action 

The action taken in the 7040-7044 to perform single­
precision addition and subtraction is as follows: 

1. Determine which operand is larger: 
a. Reset MQ register. 
b. Transfer storage register bits 1-35 to 

adder. 
c. Transfer complement of accumulator 

characteristic (Q-S) to adder. 
d. Add characteristics by generating a 1 carry 

to adder position S. 
e. Place result in accumulator bits Q-8. 
f. Check for Q carry: 

(1) If a Q carry is present, the accumulator 
is equal to or smaller than the storage 
register; therefore, no operand inter­
change is necessary, so proceed to 
step 3, c (true difference in character­
istics is in the adder at this point). 

(2) If no Q carry is present, the accumu­
lator is greater than the storage 
register; proceed to step 2. 

2. Operand interchange action (larger number to 
SR): 

a. Simultaneously transfer accumulator sign 
to storage register sign position, and 
storage register sign to accumulator sign 
position. 



b. Transfer accumulator bits 1-35 to storage 
register. 

c. Transfer adder bits Q-35 to accumulator. 
3. Determine characteristic difference: 

a. Transfer complement of accumulator bits 
1-8 to adder. 

b. Generate a 1 carry to adder position 8. 
c. Check adder bits 1 and 2: 

(1) If either bit is a 1, the characteristic 
difference is equal to or greater than 
1008, so accumulator bits Q-35 are 
cleared; proceed to step 4. 

(2) If neither bit is a 1, the characteristic 
difference is less than 1008, and adder 
bits 3-8 are transferred into the shift 
counter. 

4. Equalize characteristics: 
a. Check shift counter for a value of 0: 

(1) If SC = 0, go to step 5. 
(2) If SC"" 0, go to step 4, b. 

b. Shift MQ register bits 9-35 right one 
position. 

c. Shift accumulator bit 35 right one position 
into MQ register bit 9. 

d. Shift accumulator bits 9-35 right one 
position, and introduce a ° into vacated 
accumulator position 9. 

e. Step shift counter. 
f. Return to step 4, a. 

5. Compare operand signs: 
a. Compare accumulator and storage register 

signs: 
(1) If alike, perform true addition (step 

6, a). 
(2) If unlike, perform complement 

addition (step 6, b). 
6. Addition: 

a. True addition: 
(1) Transfer storage register bits 1-35 

and accumulator bits 9-35 to adder, 
and add. 

(2) Place result in accumulator bits Q-35. 
(3) Check for a carryout of adder bit 9: 

(a) If no carry is present, normalize 
fraction if specified (step 7); if 
normalization is not specified, end 
operation (step 8). 

(b) If a carry is present: 
..1 Let carry propagate to adder 

bit 8. 
..b Shift right one position MQ 

register bits 9-35. 
..1: Shift right one position 

accumulator bit 35 into MQ 
register bit 9. 

..1: Shift right one position 
accumulator bits 9-35. 

5. Place a 1 in accumulator bit 9. 
Jh Normalize fraction if specified 

(step 7); if normalization is 
not specified, end operation 
(step 8). 

b. Complement addition: 
(1) Transfer storage register bits 1-35 

and complement of accumulator bits 
9-35 t(!) adder. 

(2) Place result in accumulator bits Q-35. 
(3) Check for a carryout of adder bit 9: 

(a) If no carry is present, complement 
accumulator bits 9-35; then 
normalize fraction if specified 
(step 7); if normalization is not 
specified, end operation (step 8). 

(b) If a carry is present, transfer 
storage register sign to accumu­
lator sign position (SR > AC). 

(4) Check MQ fraction for a value of 0: 
(a) If MQ = 0, transfer accumulator 

bits 9-35 to adder, generate a 
carry to adder bit 35, and place 
result in accumulator; then either 
normalize fraction (step 7) or end 
operation (step 8). 

(b) If MQ f. ° (subtract MQ from 
imaginary extension of SR): 
..1 Transfer MQ register bits 

9-35 to storage register. 
k Transfer storage register 

bits 9-35 to adder, thereby 
placing MQ register fraction 
in adder. 

..1: Transfer accumulator bits 
9-35 to storage register. 

...1:. Transfer adder bits 9-35 to 
accumulator (MQ register 
fraction is now in accumu­
lator). 

.i: Transfer complement of 
accumulator bits 9-35 to adder. 

jh Generate a 1 carry to adder 
bit 35, and place result in 
accumulator. 

7. Transfer storage register 
bits 9-35 to adder. 

~ Transfer accumulator bits 
9-35 to storage register. 

Jh Transfer adder bits 9-35 to 
accumulator . 

1Q, Transfer storage register 
bits 9-35 to MQ register 
bits 9-35. 

11. Normalize fraction (step 7) 
if specified; if not, end 
operation (step 8). 

81 



82 

7. Result normalization: 
a. Inspect accumulator bit 9. 
b. If accumulator bit 9 = 1, proceed to step 8. 
c. If accumulator bit 9 = 0: 

(1) Shift accumulator bits 9-35 left one 
position, and document shift counter, 
making it all l's. 

(2) Shift MQ register bit 9 left one posi­
tion into accumulator bit 35. 

(3) Shift MQ register bits 10-35 left one 
position. 

(4) Place a 0 in MQ register bit 35. 
(5) Transfer accumulator bits Q-8 to 

adder. 
(6) Add l's to adder bits Q, P, 1, and 2. 
(7) Transfer shift counter contents to 

adders. 
(8) Transfer adder bits Q-8 to accumu­

lator bits Q-8. 
(9) Repeat step 7, a. 

8. End operation: 
a. Transfer accumulator bits Q-8 to adder. 
b. Add l's to adder bits 0-3 and 6 and 8. 
c. Transfer accumulator sign to MQ register 

sign. 
d. Transfer adder bits 1-8 to MQ register 

positions 1-8. 
e. Check for accumulator and MQ fraction 

= 0: 
(1) If both = 0 and normalization is 

specified, reset accumulator bits 
Q-35 and MQ register bits 1-35. 

(2) If either = 0, or if neither = 0, the 
operation is complete. 

Single-Precision Multiplication 

In single-precision multiplication in the 7040-7044, 
the addressed operand is the multiplicand and is placed 
in the storage register. The format of the multipli­
cand is identical with the storage register operand 
in single-precision addition. The implied operand is 
the multiplier and is in the MQ register, which has a 
format identical with the storage register. Single­
precision multiplication, then, is accomplished by 
multiplying the storage register contents by the MQ 
register contents. 

The product of a single-precision multiplication 
appears in the combined accumulator-MQ register. 
The high-order fraction bits appear in the accumula­
tor; the low-order fraction bits, in the MQ register. 
The product or result characteristic appears in the 
accumulator, and the MQ register is assigned a 
characteristic 2710 less than the accumulator char­
acteristic. Multiplication is algebraic; therefore, 
like signs yield a positive result sign, and unlike 
signs, a negative result sign. The signs of the ac­
cumulator and the MQ register are set to the alge­
braic sign of the result. 

Initial action in multiplication involves determin­
ing whether the operation is normalized or unnormal­
ized. If the operation is unnormalized, machine cir­
cuits are automatically set up for the action and the 
product sign is determined. However, if the opera­
tion is normalized, the combined accumulator and 

MQ register fraction is checked for a zero value. The 
presence of a zero value causes the operation to be 
ended and the product sign to be determined. The ab­
sence of a zero value results in setting up the machine 
circuits to accomplish the multiply and in determining 
the product sign. 



Once the decision is made to perform the multiplica­
tion, the result characteristic is computed. When 
multiplying floating-point numbers, the characteris­
tics are added. Therefore, the MQ regi'ster charac­
teristic is added to the storage register characteris­
tic. Since 200S is used to represent 20 , the sum of 
the characteristics is the result characteristic plus 
200S. Consequently, 200S is subtracted from the 
sum of the characteristics to get the real result char­
acteristic. This value is placed in the accumulator. 

After the result characteristic is computed and in 
accumulator bit positions Q-S, the fractions are mul­
tiplied. Multiplication in this case is identical with 
fixed-point multiplication in that it is a series of right 
shifts or additions and right shifts. The only differ 
ence between single-precision multiplication and 
fixed-point multiplication is the setting of the shift 
count. In the former, two 2710 bit fractions are in­
volved and, therefore, the shift counter is set to 33S; 
in the latter, two 35-bit operands are involved and, 
therefore, the shift counter is set to 43S' 

When the repetitive steps that constitute multiplica­
tion are repeated and the result is in the combined 
accumulator-MQ register, the result is normalized 
if normalization is specified. Normalization is speci­
fied when the instruction word Sign bit is positive(O). 
However, in single-precision multiplication, provi­
sion is made to normalize only one pOSition. There­
fore, if accumulator bit 9 is a 0, the combined accumu· 
lator-MQ register fraction is shifted left one position. 
A trailing ° is introduced into MQ register bit 35, 
and the characteristic is reduced by 1. When this 
action is completed, accumulator bit 9 is not inspected 
further. 

The final action taken in Single-preCision multipli­
cation is the computation of the MQ characteristic. 
At this time, the result characteristic is in the ac­
cumulator. Accumulator bits Q-S are therefore 
transferred to the adder, where 2710(33S) is sub­
tracted from the Q-S value. The result is placed in 
MQ register bits I-S. Completion of this transfer 
ends the operation. 

Machine Action 

The action taken by the 7040-7044 during the execu­
tion of a Single-precision multiplication is as follows: 

1. Determine whether a multiply is possible and, 
if so, initiate the action: 

a. Check to determine whether operation is normal­
ized or unnormalized. 

b. If an unnormalized operation is specified, go to 
step e, but ignore not-zero-value contingency. 

c. If a normalized operation is specified, check 

combined accumulator and MQ register frac­
tion for zero value. 

d. If a zero value is found, end operation and go 
to step f. 

e. If a zero value is not found: 
(1) Set SC to 33S' 
(2) Transfer SR positions 1-35 to adder posi­

tions 1-35. 
(3) Transfer adder pOSitions Q-35 to accumula-

tor pOSitions Q-35. 
f. Compare SR sign with MQ register sign. 
g. If alike, make accumulator sign positive. 
h. If unlike, make accumulator sign negative. 
i. Check accumulator pOSitions Q-35 for zero 

value. 
j. If a zero value is found, make PR sign posi­

tion positive. 
2. Compute result characteristic: 

a. Transfer storage register bits I-S to adder. 
b. Transfer adder bits Q-S to accumulator (posi­

tions Q-S). 
c. Transfer MQ register bits I-S to storage regis­

ter positions I-S. 
d. Simultaneously transfer storage register bits 

I-S and accumulator bits Q-S to adder. 
e. Transfer result, adder bits Q-S, to accumula­

tor bits Q-S; the accumulator now contains the 
result characteristic plus 200. 

f. Subtract 200 from accumulator characteristic: 
(1) Transfer accumulator bits Q-S to adder. 
(2) Add 1 to adder bits Q, P, and 1. 
(3) Transfer result to .accumulator pOSitions Q-S. 

3. Multiply fractions: 
Test MQ register bit 35: 
(1) If MQ 35 = 0: 

(a) Shift combined accumulator -MQ register 
fraction (accumulator bits 9-35 and MQ 
register bits 9-35) right one position. 

(b) Step shift counter (reduce SC value by 1). 
(c) Test shift counter for a value of 0. 
(d) If SC = 0, proceed to step 4; if SC f. 0, 

repeat step 3, a. 
(2) If MQ 35 = 1: 

(a) Add storage register fraction to accumu­
lator fraction, and place result in accumu­
lator. 

(b) Shift combined accumulator-MQ register 
fraction right one position. 

(c) Step shift counter. 
(d) Test shift counter for a value of 0. 
(e) If SC = 0, proceed to step 4; if SC f. 0, 

repeat step 3, a. 
4. Normalize result, if specified (instruction word 
S bit = 0): 

S3 



Check accumulator bit 9: 
(1) If AC 9 = 1, proceed to step 5. 
(2) If AC 9 = 0: 

(a) Transfer accumulator bits Q-S to adder. 
(b) Add l's to bits Q-S (effectively subtract­

ing 1 from accumulator characteristics). 
(c) Place result in accumulator bits Q-S. 
(d) Shift combined accumulator-MQ register 

fraction left one position. 
(e) Proceed to step 5. 

5. End operation: 
(a) Transfer accumulator bits Q-S to adder. 
(b) Add 1 to bits Q, P, 1, 2,3,6, and S (effec­

tively subtracting 33S from accumulator 
characteristic) . 

(c) Transfer result to MQ register bits l-S. 
(d) Transfer accumulator sign to MQ sign. 

Single-Precision Division 

During single-precision division in the 7040-7044, the 
accumulator serves as the dividend, and the storage 
register, which contains the addressed operand, as 
the divisor. Their formats are identical: 

tsll CHARACTERISTIC 8\9 FRACTION 3S\ 

The quotient appears in the MQ register, and the re­
mainder appears in the accumulator. Both formats are 
identical with that shown above. In division, the result 
characteristic is obtained by subtracting the division 
characteristic from the dividend characteristic. This 
result characteristic is placed in the MQ register. A 
remainder characteristic is also computed; it is the 
dividend characteristic minus 2710 , 

Sign determination is governed by the rules of alge­
bra. Therefore, like signs yield positive results; un­
like signs, negative results. The remainder keeps 
the sign of the dividend. 

If the dividend is equal to or greater than twice the 
divisor, division is not allowed to take place, and the 
instruction is terminated. Also, if the dividend frac­
tion is 0, accumulator and MQ register bits 1-35 are 
reset to 0, and the accumulator sign is made positive. 
Further, the quotient characteristic is partially com­
puted. In a single-precision division, the quotient or 
result characteristic equals SR (l-S) + AC (l-S) + 200S' 

When the dividend is equal to or greater than the 
divisor, a quotient greater than 1 is implied. As the 
actual division takes place, this quotient greater than 
unity would be shifted out of the MQ register and into 
accumulator bit 35. To make sure that this shifted 
quotient bit appears in the highest-order quotient bit 
position (MQ 9), the shift counter is decremented, and 
the dividend characteristic is increased by 1 before 
the division begins. When the dividend is less than the 
divisor, the quotient will not spill into the accumulator; 

S4 

therefore, the dividend characteristic does not have 
to be altered. In this case, the dividend fraction is 
shifted left one position and the shift counter is de­
cremented. 

In the single-precision division process, the com­
plement of the dividend is subtracted from the divi­
sor. During the execution of the subtraction, a 
check must be made for a "simulated adder Scarry". 
This type of carry is the existence of a 9 carry due 
to a left shift and a second 9 carry due to the subtrac­
tion. When no simulated adder 8 carry exists, the 
result of the subtraction, which is in the adder, is 
placed in accumulator bits 9-35. This action con­
stitutes a successful reduction and is accompanied 
by the placement of a 1 in MQ register bit 35. When 
a "simulated adder S carry" exists, a reduction is 
not possible and, therefore, nothing is done to MQ 
register bit 35. After each attempted subtraction, 
successful or unsuccessful, and until the shift coun­
ter is decremented to 0, the combined accumulator­
MQ register fraction is shifted left one position. 

After division of the fractions is completed, com­
putation of the result characteristic is completed. 
The result characteristic is placed in MQ register 
bit positions l-S. With this action accomplished, 
the original characteristic of the accumulator is 
determined, and the sign of the MQ register is set 
to the algebraic sign of the quotient (like signs = 
positive; unlike signs = negative). The final action 
taken is to reduce the original accumulator charac­
teristic by 2710 if a remainder exists. 

Machine Action 

The action taken in the 7040-7044 during the execu­
tion of a single-precision division is as follows: 

1. Prepare to divide: 
a. Set MQ register to 0. 
b. Set shift counter to 33S' 

2. Determine whether a divide can be performed: 
a. Shift combined accumulator and MQ register 

fraction right one position, thereby dividing 
the dividend by 2. 

b. Transfer complement of accumulator bits 
9-35 to adder. 

c. Transfer storage register bits 9-35 to adder, 
and add. 

d. Check for a 9 carry: 
(1) If no 9 carry is present, the uncomple­

mented accumulator fraction is either 
equal to or greater than twice the storage 
register fraction value. Therefore, a 
divide will result in a quotient that equals 
machine capacity; the quotient will be 
greater than twice unity. End the opera­
tion by turning on the divide check indica-



tor and shifting the combined accumulator-MQ regis­
ter fraction left one position. 

(2) If a 9 carry is present, a divide can be 
performed, so proceed. 

e. Shift combined accumulator-MQ register 
fraction left one position. 

f. Check accumulator fraction for a value of 0: 
(1) If the accumulator fraction is 0: 

(a) Reset accumulator bits Q-S. 
(b) Set accumulator sign positive, regard­

less of divisor sign. 
(c) End operation. 

(2) If accumulator fraction is not 0, continue. 
3. Initiate computation of quotient characteristic: 

a. Transfer storage register bits l-S to adder. 
b. Transfer complement of accumulator bits 

Q-S to adder, and add. 
c. Place result in accumulator bits Q-S. _ These 

bits now contain the sum of the storage regis­
ter characteristic and the complement of the 
accumulator characteristic (SR + AC). 

d. Transfer complement of accumulator bits 
Q-35 to adder. 

e. Transfer adder bits Q-35 to accumulator. 
The accumulator characteristic bits now con­
tain the complement of the result of adding 
the storage register characteristic and the 
complement of the original accumulator char­
acteristic (SR + AC), which equals the re­
sult characteristic less 200. 

4. Check for the possibility of a quotient greater 
than 1: 

a. Subtract accumulator fraction from storage 
registcr fraction. Since the accumulator 
fraction is already in complement form, just 
transfer accumulator fraction and storage 
register fraction to adder, and add them. 

b. Check for a 9 carry: 

(1) If a 9 carry is present, the storage re­
gister fraction> the accumulator fraction, 
thereby indicating that a quotient less than 
1 will result. Therefore, shift accumula­
tor-MQ fraction left one position, and step 
shift counter. Remember this 9 carry for 
step 5, b (no 9 into AC). 

(2) If no 9 carry is present, the accumulator 
fraction>the storage register fraction, 
thereby indicating that a division will re­
sult in a quotient of unity, but less than 2; 
quotient will be 1 plus a fraction. In this 
case: 
(a) Transfer accumulator Q-S to adder. 
(b) Add 1 to position 8. 

(c) Place result in accumulator bits Q-S. 
(d) Step shift counter. 

5. Divide fractions: 
a. Simultaneously transfer accumulator bits 

9-35 and storage register bits 9-35 to adder, 
and add. 

b. Check for a simulated adder S carry (a carry­
out of bit 9 due to addition after a carryout of 
bit 9 due to left shifting): 
(1) If no S carry is present, proceed to step 

5, c (AC > SR). 
(2) If an S carry is present, shift combined 

accumulator -MQ fraction left one posi­
tion (SR> AC); proceed to step 5, d. 

c. Transfer result of addition to accumulator. 
d. Put a 1 in MQ 35. 
e. Shift combined accumulator-MQ fraction left 

one position. If a 1 is shifted out of position 
9 at this time, it must be remembered for 
step 5, b. 

f. Step shift counter. 
g. Check shift counter for a value of 0: 

(1) If SC = 0, complete characteristic com­
putation. 

(2) If SC -1o, repeat step 5,a. 
6. Complete characteristic computation: 

a. Transfer accumulator bits Q-S to adder. 
b. Add 1 to position 1. 
c. Place result in MQ register bits l-S. 

7. Compute accumulator characteristic: 
a. Transfer accumulator bits Q-S to adder. 
b. Transfer storage register bits 1-S to adder, 

then add. 
c. Place result (original accumulator charac-

teristic) in accumulator. 
d. Transfer accumulator bits Q-S to adder. 
e. Add 1 to positions Q,P,1,2,3,6, and 8. 
f. Place result in accumulator. 

S. Determine result sign: 
a. Compare accumulator and storage register 

signs. 
b. If they are alike, make MQ register sign 

positive (set it to 0). 
c. If they are unlike, make MQ register sign 

negative (set it to 1). 

Double-Precision Addition and Subtraction 

The addressed operand in double-precision addition 
is obtained from two sequential memory locations. 
The first memory location referenced must be an 
even-numbered location and contains the addressed 
operand characteristic and high-order fraction. The 
second memory location is automatically referenced 
and must be an odd-numbered location and one address 
higher than the first location referenced. In the 

S5 



second location, only the fraction bits are used, and 
these bits form the low-order fraction of the addres­
sed operand. The addressed operand is placed in the 
storage and swap registers: 

CHARAC-
S TERISTIC HIGH ORDER FRICTION LOW ORDER FRACTION 
189 3S9 3S 

STORAGE REGISTER SWAP REGISTER 

The combined accumulator-MQ register is the im­
plied operand in double-precision addition; its for­
m at is as follows: 

CHARAC- CHARAC- LOW-ORDER 
S TERISTIC HIGH ORDER FRACTIOJ\ TERISTIC FRACTION 

1 8 9 3S 1 N-27 8 9 35 

ACCUMULA TOR MQ REGISTER 

Bits I-S in the MQ regist er are used as a character­
istic for the low-order fraction. This characteristic 
is 2710 less than the accumulator characteristics. 

In the addition process, the addressed operand is 
algebraically added to the implied operand. The 
characteristic of the larger operand is placed in the 
storage register (SR), and the difference in charac­
teristics is placed in the shift counter. When the 
characteristic difference exceeds 100S. the accumula­
tor and MQ register fractions are cleared if the 
larger operand is the addressed operand. With a 
characteristic difference greater than 100S and the 
implied operand the larger operand, the accumulator­
MQ register fraction is cleared. A characteristic 
difference of less than IOOS results in equalization of 
the smaller operand. This action is accomplished by 
placing the fractions of the smaller operand in the 
accumulator and MQ registers and the larger oper­
and in the storage and swap registers. The combi­
ned accumulator-MQ register fraction is then shifted 
left the number of places specified by the shift coun­
ter. 

With the equalization completed, fraction true ad­
dition begins if the signs are alike. During fraction 
addition, the low-order fractions are initially swap­
ped with their associated high-order fractions. 
Therefore, one low-order fraction is in the storage 
register, and the other is in the accumulator. The 
accumulator is then added to the stor age register, 
with the result being the minor or low-order frac­
tion sum, which is placed in the accumulator. Gen­
eration of a 9 carry during this phase of addition 
must be remembered. 

After the low-order fraction addition, the register 
contents are again swapped: the accumulator with the 
MQ register, and the storage register with the swap 
register. Swapping involves only the fractions. Now 
the high-order fractions are in the storage register 
and accumulator. These registers are added. A 
carry 0 is used if the low-order fraction addition 
yielded no carry; a carry 1 is used if the low-order 
fraction addition yielded a carry. The result goes 

S6 

to the accumulator. The result characteristic also 
goes to the accumulator. 

After equalization, if the signs are unlike, the least 
Significant or low-order fractions are subtracted us­
ing the 2's complement. Fraction swapping is per­
formed identically with that in true addition, so that 
the difference in low-order fractions is obtained first. 
The result goes to the accumulator, and a 9 carry, if 
generated, is remembered. 

The storage and swap and accumulator and MQ re­
gisters are interchanged, and the 1 's complement of 
the accumulator fraction is added to the storage re­
gister fraction. The result is increased by 1 if a 9 
carry is remembered from the low-order fraction 
subtraction. If the storage register fraction is lar­
ger, the subtraction is complete; the accumulator 
sign is set to the storage register sign. If the re­
sult is zero, the accumulator or result character­
istic is cleared. If the accumulator fraction is lar­
ger, the combined accumulator-MQ register frac­
tion is complemented: the MQ register contents are 
swapped with the accumulator contents; then, the 2's 
complement of the accumulator contents is obtained. 
A 9 carry is remembered. Accumulator and MQ re­
gister contents are again interchanged. The accumu­
lator is complemented. A 1 is added to the result if 
a 9 carry is remembered from low-order fraction 
recomplementing. 

After the result is in the accumulator and MQ re­
gister in true form, normalization, if specified, is 
performed. After normalization is completed, the 
MQ register characteristic is computed. This ac­
tion marks the end of the operation. 

Double-precision subtraction is identical with 
double-precision addition, except the sign of the ad­
dressed operand is inserted before it enters the stor­
age register. 

Machine Action 

The action that takes place in the 70·40-7044 during 
double-precision addition and subtraction is as follows: 

1. Arrange addressed operand: 
a. Transfer storage register bits 9-35 to swap 

register. 
b. Transfer storage register bits I-S to adder 

positions I-S. 
c. Transfer adder positions I-S to MQ register 

positions I-S. 
d. Receive second operand bits 1-35 in storage 

register. 
e. Interchange storage register and swap regis­

ter fractions. 
f. Transfer MQ register bits I-S to storage re­

gister bits I-S. 
2. Determine which operand is larger: 

a. Transfer storage register bits 1-8 and com-



ment of accumulator bits Q-8 to adder. 
b. Add by generating a 1 to adder bit 8. 
c. Check for a Q carry: 

(1) If a Q carry is present, the storage re­
gister is transferred to the accumulator: 
(a) Check adder bits 1 and 2: 

.l:. If they are both 0, transfer adder 
bits 3-8 to shift counter. 

1:. If either or both are 1 (character­
istic difference 2: 10°8), reset MQ 
register, and transfer adder bits 
Q-35 to accumulator(reset accumu­
lator). 

(2) If no Q carry is present, the accumulator 
>the storage register: 
(a) Transfer accumulator bits 1-8 to stor­

age register pOSitions 1-8. 
(b) Transfer adder bits Q-8 to accumula­

tor positions Q-8; this is the charac­
teristic difference in complement form. 

(c) Transfer complement of accumulator 
bits Q-8 to adder. 

(d) Add by generating a 1 to adder bit 8 to 
get true difference. 

(e) Check adder bits 1 and 2: 
1.: If they are both 0, transfer adder 

bits 3-8 to shift counter. 
..b If either bit is a 1, remember and 

proceed to next step. 
3. Register Swap or Register Swap and Interchange: 

a. If a Q carry was generated in step 2: 
(1) Simultaneously transfer storage register 

bits 9-35 to swap register and swap regis­
ter bits 9-35 to storage register. 

(2) Simultaneously transfer storage register 
bits 1-35 to MQ register and MQ register 
bits 9-35 to storage register. 

(3) Swap storage register fraction and accum­
ulator fraction: 
(a) Transfer storage register bits 9-35 

to adder. 
(b) Transfer accumulator bits 9-35 to 

storage register. 
(c) Transfer adder bits 9-35 to accumula­

tor. 
(4) Swap storage register fraction and MQ 

register fraction: 
(a) Transfer MQ register bits 9-35 to stor­

age register. 
(b) Transfer storage register bits 9-35 to 

MQ register. 
b. If no Q carry was generated in step 2: 

(1) Swap storage register and accumulator 
fractions: 
(a) Transfer storage register bits 9-35 to 

adder. 

(b) Transfer accumulator bits 9-35 to storage 
register. 

(c) Transfer adder bits 9-35 to accumulator. 
(2) Swap storage register and swap register 

fractions: 
(a) Transfer storage register bits 9-35 to 

swap register. 
(b) Transfer swap register to storage regis­

ter. 
(3) Swap accumulator and storage register signs. 
(4) Swap storage register and accumulator frac­

tions: 
(a) Transfer storage register bits 9-35 to 

adder. 
(b) Transfer accumulator bits 9-35 to stor­

age register. 
(c) Transfer adder bits 9-35 to accumulator. 

(5) If characteristic difference is less than 1008' 
swap storage register and MQ register frac­
tions. 

(6) If characteristic difference is greater than 

1°°8: 
(a) Reset MQ register. 
(b) Transfer adder bits Q-35 to accumulator 

(reset accumulator). 
(7) Check shift counter: 

(a) If SC f. 0, proceed to step 4. 
(b) If SC = 0, compare storage register and 

accumulator signs: 
.b. If the signs are alike, proceed to step 

5. 
k If the signs are unlike, proceed to step 

7. 
4. Equalize fractions: 

a. Shift combined accumulator-MQ fraction right 
one pOSition. Because the low-order bits are 
in the accumulator, MQ register bit 35 goes 
into accumulator bit 9, and accumulator bit 
35 is lost. 

b. Step shift counter. 
c. Check shift counter for a value of 0: 

If SC = 0, compare storage register and ac­
cumulator signs: 
(1) If signs are alike, proceed to step 5. 
(2) If signs are unlike, proceed to step 7. 

5. Add low-order fractions; then swap for high-order 
add. 

a. Perform low-order add: 
(1) Transfer storage register bits 9-35 to ad­

der. 
(2) Transfer accumulator 9-35 to adder, and 

add. 
(3) Place result in accumulator bits 9-35. 
(4) If a 9 carry is generated, remember it. 

b. Swap 
(1) Transfer swap register to storage register. 

87 



(2) Transfer storage register bits 9-35 to 
adder. 

(3) Transfer accumulator bits 9-35 to stor­
age register. 

(4) Transfer adder bits 9-35 to accumulator. 
(5) Swap storage register and MQ register 

values: 
(a) Transfer storage register bits 1-35 

to MQ register positions 1-35. 
(b) Transfer MQ register bits 9- 35 to 

storage register positions 9-35. 
(c) Proceed to step 6. 

6. Add high-order fractions: 
a. Transfer storage register bits 1-35 to adder. 
b. Transfer accumulator bits 9-35 to adder. 
c. If a 9 carry was generated in step 5, add by 

generating a 1 to adder bit 35. 
d. If no 9 carry was generated, add by genera­

ting a ° to adder bit 35. 
e. Place addition result in accumulator bits 

Q-35. 
f. Check for a 9 carry: 

(1) If a 9 carry is present: 
(a) Shift combined accumulator and MQ 

register fraction right one position. 
(b) Make accumulator bit 9 a 1. 

(2) If no 9 carry is present, proceed to step g. 
g. Check combined accumulator-MQ register 

fraction for a value of 0: 
(1) If equal to 0, reset accumulator (Q-35) 

and .end operation. 
(2) If not equal to 0, check accumulator bit 9: 

(a) If accumulator bit 9 = 1, end operation. 
(b) If accumulator bit 9 = 0, normalize 

result (step 9). 
7. Subtract low-order fractions; then swap for high­

order subtract: 

88 

a. Transfer complement of accumulator bits 
9-35 to adder. 

b. Transfer storage register bits 9-35 to adder. 
c. Add by generating a 1 to adder bit 35. 
d. Transfer adder bits Q-35 to accumulator, 

and remember a 9 carry, if any. 
e. Swap storage register and swap register frac­

tions. 
f. Swap storage register and MQ register: 

(1) Transfer storage register bits 1-35 to MQ 
register. 

(2) Transfer MQ register bits 9- 35 to storage 
register. 

g. Swap storage register and accumulator frac­
tions: 
(1) Transfer storage register bits 9-35 to 

adder. 
(2) Transfer accumulator bits 9-35 to adder. 
(3) Transfer adder bits 9-35 to accumulator. 

h. Swap storage register value and MQ register 
fraction: 
(1) Transfer storage register bits 1-35 to MQ 

register. 
(2) Transfer MQ register bits 9-35 to storage 

register. 
i. Check for a 9 carry from step d. 

(1) If no 9 carry is present, proceed to step 
8. 

(2) If a 9 carry is present, proceed to step 8. 
8. Subtract high-order fractions: 

a. Transfer complement of accumulator bits 9-35 
to adder. 

b. Transfer storage register bits 1-35 to adder. 
c. If a 9 carry is present, generate a 1 to adder 

bit 35. 
d. If no 9 carry is present, generate a ° to ad­

der bit 35. 
e. Place adder bits 9-35 in accumulator bits 

9-35. 
f. Check for and remember a 9 carry, if gener­

ated. 
g. Transfer MQ register bits 9-35 to storage 

register. 
h. If a 9 carry is present: 

(1) Transfer storage register sign to accumu­
lator sign. 

(2) Check combined accumulator -MQ fraction 
for a value of 0. 
(a) If value is 0, reset accumulator and 

end operation. 
(b) If value is not 0, check accumulator 

bit 9: 
...b. If accumulator bit 9 = 1, end opera­

tion. 
..b. If accumulator bit 9 = 0, proceed to 

step 9. 
i. If no 9 carry is present, the combined accum­

ulator-MQ register fraction>the combined 
storage-swap register fraction, and the re­
sult must be complemented to obtain the true 
result. 
(1) Transfer storage register bits 9-35 to 

adder. 
(2) Transfer accumulator bits 9-35 to stor­

age register. 
(3) Transfer adder bits 9-35 to accumulator. 
(4) Make a 2's complement correction to 

accumulator: 
(a) Transfer complement of accumulator 

to adder. 
(b) Add 1 to bit 35. 
(c) Place result in accumulator. 
(d) Remember a 9 carry, if generated. 

(5) Place high-order difference in accumula­
tor: 



(a) Transfer storage register 9-35 to adder. 
(b) Transfer accumulator bits 9-35 to stor­

age register. 
(c) Transfer adder bits 9-35 to accumulator. 

(6) Complete 2' s complement correction: 
(a) Transfer storage register bits 1-35 to 

MQ register. 
(b) Transfer complement of accumulator bits 

9-35 to adder. 
(c) If a 9 carry is remembered, add 1 to ad­

der bit 35. 
(d) If no 9 carry is remembered, add ° to ad­

der bit 35. 
(e) Transfer adder bits 9-35 to accumulator. 

9. Normalize result: 
a. Check accumulator bit 9: 

(1) If it is a 1, end operation and assign MQ 
characteristic. 

(2) If it is a 0: 
(a) Shift accumulator bits 9-35 left one 

position, and decrement shift counter. 
(b) Shift MQ register bit 9 left one posi­

tion into accumulator bit 35. 
(c) Shift MQ register bits 10-35 left one 

position. 
(d) Place a ° in MQ register bit 35. 
(e) Transfer accumulator bits Q-S to ad­

der. 
(f) Add l's to adder bits Q, P, 1, and 2. 
(g) Transfer shift counter contents to ad­

der positions 3-S, and add. 
(h) Transfer adder bits Q-S to accumula­

tor bits Q-S. 
(i) Repeat step 9, a. 

10. Assign MQ characteristic: 
Check combined accumulator-MQ register 

fraction for a value of 0: 
a. If not equal to zero: 

(1) Transfer accumulator bits Q-S to adder. 
(2) Add 1 to adder bits Q, P, 1,2,3,6, and 

S. 
(3) Transfer result to MQ register bits l-S. 

b. If equal to zero: 
(1) Reset accumulator and MQ register. 
(2) Transfer accumulator sign to MQ regis­

ter sign position. 

Double-Precision Multiplication 

In double-precision multiplication, the multiplicand 
is placed in the storage and swap registers. The 
multiplicand characteristic and high-order fraction 
are obtained from an even-address memory location 
and appear in the storage register; the low-order 
fraction is obtained from the next-higher memory 
location and placed in the swap register: 

LOW.ORDER FRACTION 

9 3S 

STORAGE REGISTER SWAP REGISTER 

The multiplier characteristic and high-order fraction 
bits are contained in the accumulator; the low-order 
fraction bits, in the MQ register: 

HIGH ORDER FRACTION LOW ORDER FRACTION 
3S 

ACCUMULATOR MQ REGISTER 

The result appears in double-precision form in the 
accumulator and MQ registers, with the MQ register 
containing a characteristic 2710 less than the accumu­
lator characteristic: 

HIGH ORDER , CHARAC- LOW ORDER 
CHARAC-

FRACTION ~ TERISTIC FRACTION 
TERISTlC 

N R 19 35 ~ 1 N-27 819 35 

If the result fraction is zero, the accumulator and 
MQ register characteristics are set to zero. The sign 
of the result is the algebraic sign of the multiplication. 

Double-precision multiplication is based on the 
algorithm 

(All+Bll-27)(CID+DID-27)=(Aqll+m-l{Bqn-27+ID-I{AD)ll+m-27 -I{BD)ll+m-S4 

However, the last term in the expreSSion is not real­
ized. In the following discussion, (AC)n+nis called 
P3, (BC)n+n-27 is called P2, and (AD)n+m-27 is 
called Pl. 

Initially, the multiplier fraction is checked for a ° 
value. If it is 0, the accumulator and MQ register 
characteristics are cleared. If it is not 0, the action 
continues. 

When both the multiplier and multiplicand significant 
fractions (high-order fractions) are 0, the result is 0. 
These major fractions are tested; if both are 0, the 
operation ends. Further, the accumulator and MQ 
register characteristics are cleared. If neither is 0, 
the result sign is determined and set in the accumula­
tor sign bit. 

With the result sign determined, the high-order 
multiplicand fraction (A) and the Low-order multiplier 
fraction (D) are multiplied. To accomplish this, the 
accumulator fraction is placed in a 27 -bit register 
called the latch register. With this arrangement of 
operands effected, the accumulator fraction is cleared. 
If the MQ register is not ° at this time, multiplication 
takes place, identical with single-precision multipli­
cation. The result is 54 bits and appears in the com­
bined accumulator-MQ register fraction. Only the 
accumulator portion (PI) is saved and is equivalent to 

S9 



A x D in the algorithm. If the MQ register, how­
ever, is 0, the multiplication of A x D does not take 
place. 

Next, the low-order multiplicand fraction (B) and 
the high-order multiplier fraction (C) are multiplied. 
The appropriate registers are arranged for the mul­
tiplication: the low-order fraction multiplicand to 
the storage register and the high-order multiplier 
fraction to the MQ register. The accumulator frac­
tioh is cleared, but PI is saved. Multiplication is 
accomplished, and the result characteristic is deter­
mined. The result of the multiplication is placed in 
the combined accumulator-MQ register fraction, and 
the result characteristic is placed in the accumulator. 
The low-order result bits, which are in the MQ re­
gister, are dropped, and only the accumulator or 
high-order fraction bits are saved. These bits are 
equivalent to BC in the algorithm or P2. 

The results of the two multiplications performed 
thus far have identical characteristics. At this time, 
these two partial products are added (PI + P2), with 
their sum going to accumulator bits 9-35. If, as a 
result of this addition, a 9 carry is generated, it 
must be added to the major product, AC. Genera­
tion of a 9 carry at this time is remembered. 

The two major fractions are now multiplied. How­
ever, the sum of the two partial products is left in 
the accumulator. In one operation, the result of AC 
plus PI + P2 is realized. V"hen the operation is 
complete, accumulator bits 9-35 contain the high­
order result fraction bits and MQ register bits 9-35 
contain the low-order result fraction bits. If a 9 
carry is remembered from the addition of PI and P2, 
1 is added to the high-order result fraction. At this 
time, the multiplication is finished. 

Normalization, if specified and if necessary, is 
now performed. In double-precision multiplication, 
the result can only be normalized one position. After 
this action, the MQ register characteristic is com­
puted by subtracting 2710 from the accumulator 
characteristic. With the MQ register characteristic 
computed, double-precision multiplication is com­
pleted. 

Machine Action 

The action in the 7040-7044 during the performance 
of a double-precision multiplication is as follows: 

90 

1. Zero-test multiplier: 
a. If combined accumulator-MQ register 

fraction = 0, clear accumulator and MQ 
register fractions and end operation. 

b. If combined accumulator-MQ register 
fraction ~ 0: 
(1) Simultaneously transfer storage regis­

ter 9-35 to MQ register and MQ regis­
ter 9-35 to storage register. 

(2) Transfer storage register sign to MQ 
register sign position. 

c. Set shift counter to 33S' 
d. Transfer storage register bits I-S to ad­

der. 
e. Transfer adder bits I-S to MQ register 

bit pOSitions I-S. At this point, the 
multiplicand characteristic and high-order 
fraction bits are in the MQ register; the 
multiplicand high-order fraction is in the 
swap register; the low-order multiplier 
fraction is in the storage register; the 
multiplier characteristic and high-order 
fraction bits are in the accumulator. 

2. Zero-test high-order multiplicand fraction 
bits: 
a. Check combined accumulator-MQ register 

fraction for a value of O. 
b. If combined accumulator-MQ register 

fraction = 0: 
(1) Reset accumulator characteristic. 
'(2) Reset MQ register characteristic. 
(3) End operation. 

c. If combined accumulator-MQ register 
fraction FO: 
(1) Transfer storage register bits 9-35 to 

MQ register. 
(2) Transfer accumulator sign to storage 

register sign pOSition. 
(3) Receive second operand from storage 

in storage register; block receipt of 
sign bit. 

(4) Swap storage register fraction and 
swap register fraction. 

(5) Transfer MQ register bits I-S to stor­
age register bits I-S. The MQ regis­
ter still contains the sign of the multi­
plicand. 

(6) Compare storage register and MQ re­
gister signs: 
(a) If alike, make accumulator sign 

positive. 
(b) If unlike, make accumulator sign 

negative. At this point, the multi­
plicand characteristic and high­
order fraction are in the storage 
register; the multiplicand low-order 
fraction is in the swap register; the 
result sign and the multiplier char­
acteristic and high-order fraction 
are in the accumulator; the mul­
tiplicand characteristic and low­
order multiplier fraction are in the 
MQ register. 

3. Arrange operands so high-order multiplicand 
fraction can be multiplied by low-order multi­
plier fraction: 



a. Transfer storage register bits 9-35 to adder. 
b. Transfer accumulator bits 9-35 to storage 

register. 
c. Transfer adder bits 9-35 to accumulator. 
d. Transfer storage register bits 9-35 to latch 

register. 
e. Transfer accumulator bits 9-35 to storage 

register. 
f. Reset accumulator. 
g. Check MQ register fraction: 

(1) If = 0, proceed to step 5. 
(2) If t 0, proceed to step 4. At this point, 

the multiplicand characteristic and high­
order fraction bits are in the storage re­
gister; the multiplicand low-order frac­
tion bits are in the swap register; the 
high-order multiplier fraction in the latch 
register; the accumulator fraction is zero; 
the low-order multiplier fraction is in the 
MQ register. 

4. Multiply high-order multiplicand fraction by 
low-order multiplier fraction: PI 
a. Check MQ register bit 35: 

(1) If MQ 35 = 0, shift combined accumula­
tor-MQ register fraction right one po­
sition. 

(2) If MQ 35 = 1, add storage register 
fraction to accumulator fraction, and 
then shift combined accumulator-MQ 
fraction right one position. 

b. Step shift counter. 
c. Check shift counter for a value of 0: 

(1) If SC = 0, proceed to step 5. 
(2) If SC to, repeat step 4, a. 

5. Arrange operands so low-order multiplicand 
fraction can be multiplied by high-order mul­
tiplier fraction: 
a. Transfer swap register to storage regis­

ter fraction and storage register fraction 
to swap register. 

b. Transfer storage register bits 1-35 to MQ 
register. 

c. Transfer latch register to storage register 
fraction positions. 

d. Transfer storage register bits 9-35 to 
adder. 

e. Transfer accumulator bits 1-35 to storage 
register. 

f. Transfer adder bits 9-35 to accumulator. 
g. Transfer storage register bits 9-35 to 

latch register. 
h. Set shift counter to 33S. 
i. Transfer accumulator bits 1-35 to storage 

register. 
j. Reset accumulator. At this point, the 

storage register contains the multiplier 

characteristic and high-order fraction, 
the swap register contains the high-order 
multiplicand fraction, the latch register 
contains the first partial product, the ac­
cumulator contains the multiplier charac­
teristic and a zero fraction, and the MQ 
register contains the multiplicand charac­
teristic and the low-order multiplicand 
fraction. 

6. Multiply high-order multiplier fraction by 
low-order multiplicand fraction, and deter­
mine result characteristic: 
a. Check MQ register bit 35: 

(1) If MQ 35 = 0, shift combined accumu­
lator-MQ register fraction right one 
position. 

(2) If MQ 35 = 1, add storage register and 
accumulator fractions, and then shift 
combined accumulator-MQ register 
fraction right one position. 

b. Step shift counter. 
c. Check shift counter for a value of 0: 

(1) If SC = 0, proceed to step 7. 
(2) If SC to, repeat step_a. At this point, 

the storage register, swap register, 
and latch register contents are the same 
as before the multiply. However, the 
accumulator now contains the multiplier 
characteristic and the high-order bits 
of the second partial product, and the 
MQ register contains the multiplicand 
characteristic and the low-order bits of 
the second partial product. These low­
order bits are truncated. 

d. Position characteristics for adding: 
(1) Transfer storage register bits I-S to 

adder. 
(2) Transfer adder bits Q-S to Accumulator. 
(3) Transfer MQ register bits l-S to stor­

age register. 
e. Add characteristics: 

(1) Transfer storage register bits I-S and 
accumulator bits Q-S to adder, and add 
them. 

(2) Transfer result to accumulator bits Q-S. 
(3) Subtract 200S from result by transferr­

ing accumulator bits Q-8 to adder and 
adding l's to positions Q, P, and 1. 

(4) Place final result in accumulator bits 
Q-8. The accumulator now contains 
the final or result characteristic and 
the second partial product; the MQ re­
gister is considered to be empty; the 
storage register contains the multipli­
cand characteristic and high-order 
multiplier fraction; the swap register 

91 



92 

contains the high-order multiplicand 
fraction; the latch register contains 
the first partial product. 

7. Add partial products, and arrange operands 
so high-order multiplier can be multiplied 
by high-order multiplicand: 
a. Transfer storage register bits 1-35 to 

MQ register. 
b. Transfer latch register to storage regis­

ter fraction positions. 
c. Add storage register and accumulator 

fractions, and place result in accumula­
tor bits 9-35. 

d. Remember a 9 carry, if generated. 
e. Transfer swap register to storage regis­

ter. 
f. Set shift counter to 33S. -At this point, 

the storage register contains the multi­
plicand characteristic and high-order 
fraction, the swap register contains the 
multiplicand high-order fraction, the 
latch register contains the first partial 
product, the accumulator contains the re­
sult characteristic and the sum of the 
first and second partial products, and the 
MQ register contains the high-order mul­
tiplier fraction. 

S. Multiply high-order multiplicand fraction by 
high-order multiplier fraction: 
a. Check MQ register bit 35: 

(1) If MQ 35 = 0, shift combined accumu­
lator-MQ register fraction right one 
position. 

(2) If MQ 35 = 1, add storage register 
fraction to accumulator fraction, and 
then shift combined accumulator-MQ 
register fraction right one position. 

b. step shift counter. 
c. Check shift counter for a value of 0: 

(1) If SC = 0, proceed to step d. 
(2) If SC f:. 0, repeat step a. 

d. Check for a 9 carry: 
(1) If a carry is remembered from step 7, 

c: 
(a) Transfer accumulator bits Q-35 to 

adder. 
(b) Generate a 1 carry to adder bit 35. 
(c) Transfer adder bits Q-35 to accumu­

lator. 
(d) If a 9 carry was generated: 

-h Shift combined accumulator-MQ 
fraction right one position. 

.b. Make accumulator bit 9 a 1. 
(2) If no 9 carry is remembered from 

step 7, c, proceed to step S, e. At 
this point, the final characteristic is 

in the accumulator, and the final frac­
tion is in the combined accumulator­
MQ register. 

e. Normalize one pOSition: 
(1) Check accumulator bit 9. 

(2) If accumulator bit 9 = 1, assign MQ 
characteristic. 

(3) If accumulator bit 9 f:. 0: 
(a) Shift combined accumulator-MQ 

fraction left one position. 
(b) Transfer accumulator Q-S to adder. 
(c) Add l's to adder bits Q-S. 
(d) Transfer adder bits Q-S to accumu­

lator. 
(e) Assign MQ characteristic. 

9. Compute MQ characteristic: 
a. Check combined accumulator-MQ fraction. 
b. If it f:. 0: 

(1) Transfer accumulator Q-S to adder. 
(2) Add 1 to adder bits Q, P, 1,2,3,6 and 

S. 
(3) Transfer adder bits I-S to MQ register. 
(4) Transfer accumulator sign to MQ re­

gister sign position. 
C!. If it = 0: 

(1) Reset accumulator fraction. 
(2) Reset MQ register fraction. 

Double-Precision Division 

The addressed operand becomes the divisor in double­
precision division and is placed in the storage and 
swap registers. Storage registers contents are ob­
tained from some even-numbered memory location 
(Y); swap register contents are obtained from the 
next-higher location (Y + 1). Divisor format is iden­
tical with the double-precision multiplicand. The 
dividend is formed by the combined accumulator-MQ 
register and has a format identical with the double­
precision multiplier. Double-preciSion division, 
therefore, is the division of the contents of the accu­
mulator-MQ register by the contents of the combined 
storage-swap register. The answer appears as a 
double-precision quotient in the combined accumula­
tor-MQ register and has a format identical with the 
result in double-preciSion multiplication. When the 
dividend fraction is zero, the characteristic portions 
of the accumulator and MQ registers are cleared and 
the accumulator sign is made positive. 

The process of double-preciSion division is initi­
ated by a check of the dividend for a value of o. If 
a value of 0 is found, it is remembered. Next, a 
check is made to determine whether the dividend is 
greater than or equal to twice the divisor. In fixed­
point diviSion, the divisor must be greater than the 
accumulator portion of the dividend in order to con-



fine the quotient to the capacity of the machine re­
gisters. In floating-point division, the characteris­
tics of the operands can be adjusted to compensate 
for machine register size limitations. Therefore, 
the divisor may be smaller than the dividend in 
floating-point division. In the 7040-7044, an arbi­
trary maximum ratio of 2:1 between the dividend and 
the divisor was chosen for ease of characteristic ad­
justment. If the dividend is greater than or equal to 
twice the divisor, the divide check indicator is turned 
on and the instruction is ended. If the dividend is 
less than twice the divisor, but a value of 0 is re­
membered, the characteristics of the accumulator 
and MQ registers are reset, the accumulator sign is 
made positive, and the instruction ends. If the divi­
dend is less than twice the divisor and no value of 0 
is remembered, operand equalization is performed. 
Before equalization takes place, however, the differ­
ence in characteristics is obtained. 

A dividend equal to or greater than the divisor im­
plies a quotient greater than 1. When the division 
takes place, this 1 is shifted into accumulator bit 
position 35. However, the machine needs the 1 to 
appear in MQ register bit position 9. To make sure 
that it does appear there, prior to division, the shift 
counter is decremented by 1 and the characteristic 
is increased by 1. When the dividend is less than the 
divisor, the quotient will not spill and therefore no 
adjustment is necessary. 

93 



Double Precision Division Algorithm 

It will prove helpful to consider some of the limita­
tions that the computer hardware will impose (such 
as a 35 bit adder instead of a 70 bit adder) on an at­
tempt to divide double precision numbers. 

First let us consider a long division problem in the 
decimal numbering system, such as we might en­
counter in day-to-day arithmetic. 

43 /1500 

The quotient and method of solution should be famil-
iar. 

34 + 38/43 
43 /1500 

129 
210 
172 

38 

(Quotient) 

(Remainder) 

However, if we consider 43 to be a double "precision" 
number (the sum of single "precision" numbers 4 x 
10' and 3 x 100) and we consider 1500 to be a double 
"precision" number (the sum of 1 x 103 , and 5 x 102) 
we can see that the division process could not be 
carried out in the normal way if we were restricted 
to single precision addition or subtraction. In the 
above example, we would not have been able to per­
form the double precision subtractions (circled). 

Let's then explore the possibilities of arriving at 
a correct quotient without having to perform repeti­
tive double precision trial subtractions. 

If we perform the same division problem as above, 
only using 40 as a divisor instead of 43, we get: 

37 
40 /1500 
(+3)~ 

300 
280 

20 

We could now say that we have reduced the dividend 
by 40 x 37, leaving us with a remainder of 20 to still 
be divided by 40. 

However, if the original dividend were reduced by 
43 x 37 instead of 40 x 37, our remainder would be 
more accurate. It is presently in error by 1. x 37. 
If we adjust the remainder of 20 above by subtracting 
]. x 37 from it, we get: 

94 

37 
40 /1500 

(+3) AQ... 
300 

~ 
20 

-111 
-91 

Quotient 

(3 x 37) 
Corrected Remainder 

As a result of correcting our remainder, we see that 
further division is possible. Again using 40 as a 
divisor: 

-2 
40,r:gr­
(+3)~ 

11 
Once again our remainder is not as accurate as it 
could be. Instead of reducing -91 by 4..Q. x 2 it was 
redu(!ed by 40 x 2. We could correct our remainder 
of 11 by reducing it by .Q. x 2. 

This gives us: -2 
40 ;-::gr-
(+3)~ 

11 

-=-2-
5 

The quotient is -2 5/43. 
Since this second division was really a continuation 

of the first division, we will add our second quotient 
to the first. 

This gives us: 
37 + (-2 5/43) = 3438/43 

This is identical to the quotient we calculated in the 
original example solved by conventional methods. 

What advantage did we gain by the second method? 
We solved the problem of having to perform double 

precision trial subtractions. Instead. of having to 
subtract the double precision number 43 (or multiples 
thereof) from the dividend, we only had to subtract 
the single precision 4 x 10' (or multiples). The single 
precision 3 x 100 was only used to correct the re­
mainder. 

The advantage of this method becomes greatly mag­
nified when it is remembered that there are 2710 
"trial" subtractions in a single preciSion divide op­
eration. Only one remainder correction will be nec­
essary. 

Now let's apply "the method" to a double precision 
divide as it would occur in the computer. 

The double precision dividend will originally be 
contained in the AC and MQ. Let the dividend be: 

(A . 2n) + (B • 2n -27) 
A and B are the high and low order fractions respec­
tively, nand n-27 are the high and low order char­
acteristics respectively. 

We will say, for simplicity, that the dividend is 
A +B. 

The double precision divisor will originally be 
contained in the SR and SWR. 

Let the divisor be: 
(C • 2m) + (D • 2m - 27) 

C and D are the high and low order fractionsrespec­
tively, m and m-27 are the high and low order char­
acteristics respectively. 

We will say, for simplicity, that the divisor is 
C + D. 



Our computer problem then becomes: 

C +DfA+B 
Let's go back and again solve our decimal division 
problem, this time using the above letters along with 
the numbers they correspond to. 

43 /1500 

J~ l~ ~ Trailing Zeros 

37 
40(C) J 1500 

120 
300 
280 

1st Quotient (Q1) 
(A+B) 

20 1st Remainder (R1) 

This step could correspond to a single precision 
divide in the computer, namely: 

1 -

The next step involved correcting the remainder 
computed during the first steps: 

20 1st Remainder (R1) 
-111 3 x 37 Correction (Q1 • D) 

-91 (R1-Q1D) 

This step could correspond to a single precision 
multiplication followed by a single precision sub­
traction: 

2 - Q1 • D 
3 - R1 -Q1D 

Next we performed a second single precision division: 

-2 

40(C) /-91 
~ 

11 

2nd Quotient (Q2) 
(R1-Q1 D) 

2nd Remainder (R2) 

This step could correspond to another single preci­
sion divide, using the values of obtained previously 
for the dividend: 

4 - R1 - Q1 D (Q2) 
C 

In our decimal problem we then continued by cor­
recting our second remainder. However, in the 
computer this step will not be performed because 
the value computed would be too small in magnitude 
to affect the final answer. 

Out last step involved adding the second quotient 
to the first. 

37 + (-2) '" 35 Final Quotient 
This last step would correspond to the single pre­
cision addition of the two computed quotients: 

5 - Q1 +Q2 '" Final Quotient 

To summarize then, double precision division will 
be executed in the computer in five general steps: 

1. A+B (Q1) , R1 is saved ---c-
2. Q1 . D 
3. R1 -Q1D 

4. R1-Q]D (Q2) 
C 

5. Q1 +Q2 

These five steps are sometimes referred to as the 
double precision division ALGORITHM. 

INDEX OPERATIONS 

Index operations can be divided into two distinct areas: 
index arithmetic and address modification. The for­
mer involves activities which deal directly with the 
index facility; the latter pertains only to the modifi­
cation of an instruction word. 

Index Arithmetic 

Index arithmetic is the establishment and mainten­
ance of the index facility available in the 7040-7044 
equipment. Basically, any operation which deals 
exclusively with placing information in or storing 
information from an index register falls within the 
realm of index arithmetic. Three index registers are 
provided in the CPU: index register A (XRA), index 
register B (XRB) , and index register C (XRC). In­
struction word bits 18 through 20 serve to specify 
the desired index register. A configuration in these 
bits of 001 specifies XRA; a configuration in these 
bits of 010, XRB; a configuration in these bits of 100, 
XRC: bit 18 specifies XRC, bit 19 specifies XRB, and 
bit 20 specifies XRA. Therefore, the index registers 
are referred to as XRA, XRB, and XRC, or 1, 2, and 
4, respectively. 

Figure 42 shows the data flow paths used in loading 
index registers in the 7040-7044 CPU. Before dis­
cussing the loading operations, it is necessary to 
define the portions of a machine word that can be 
used to load an index register. These portions are 
the address field and the decrement field. The ad­
dress field is formed by bits 21 through 35 of the 
specified operand, and the decrement field is formed 
by bits 3 through 17 of the specified operand. A speci­
fied index register can be loaded with either the ad­
dress field or the decrement field in either true form 
or 2's complement form. The specified operand may 
be obtained from an explicitly addressed core storage 
location, from the accumulator, or from an AXT in­
struction word. In the last case, only the address 
field in true form can be used. An index register 
may also be set by the contents of the instruction 
counter. This case, however, is somewhat special 
because a transfer operation is associated with it. 

95 



7 7 

STORAGE REGISTER INSTRUCTION 
1 I 1 COUNTER 
13 171 121 35 

ADDER INDEX REGISTER 
X 

I 
121 35 (XRX) 

7 
ACCUMULATOR INDEX REGISTER INDEX REGISTER INDEX REGISTER 

A B C 
I 1 I (XRA) (XRB) (XRC) 13 171 121 35 

I 
TRUE 

l's COMPLEMENT 

TRUE 

FIGURE 42. INDEX REGISTER LOAD PATHS 

96 



Consider the load paths used when the operand is 
obtained from an addressed memory location. The 
addressed operand is received from memory in the 
storage register. From the storage register, the 
field to be used is transferred to adder positions 21 
through 35. If the address field is to be used, the 
transfer from the storage register to the adder is 
direct. If the decrement field is to be used, the bits 
are automatically right-shifted 18 places as they are 
transferred and enter the adder in positions 21 
through 35. 

From the adder, the field is transferred into 
index register X (XRX) which serves as an input buf­
fer to the index registers. The contents of XRX are 
then placed in the specified index register. If the 
true form of the specified field is used, the operation 
is finished at this point. However, if the complement 
form of the specified field is desired, -the l's comple­
ment of the specified index register is now transfer­
red back to the adder, where a hot 1 is added to 
adder bit position 35. The result of this action is the 
2' s complement of the original field. This 2' s 
complement is now transferred to XRX and, from 
here, to the specified index register. 

When us ing the accumulator to load an index reg­
ister, the field to be used (address or decrement) is 
transferred to corresponding storage register posi­
tions in true form. From this point, the action is 
identical with that when using the storage register 
positions in true form. From this point, the action 
is identical with that when using the storage register 
as a load source. 

One instruction is provided, Address to Index 
True (AXT) , which allows the address field of that 
instruction to be used for index register loading. 
In this case, the instruction word is received from 
memory in the storage register. The address field 
is then transferred directly to adder positions 21 
through 35. From these positions, the field is rout­
ed to XRX and, from here, to the specified index 
register. If the index register contents are to re­
place an address field, the contents of the specified 
index register enter the storage register in positions 
21 through 35. Then, storage register bits 21 
through 35 are transferred directly to corresponding 
memory data register positions. If the contents of 
the specified index register are to replace a decre­
ment field, the transfer from the index register to 
the storage register is directly to positions 3 through 
17. Storage register bits 3 through 17 are then 
transferred directly to memory data register posi­
tions 3 through 17. 

When transferring the contents of an index regis­
ter to the accumulator to replace an address field, 
the contents of the specified index register are 
initially transferred to storage register positions 
21 through 35 in true form. From here they go to 

adder positions 21 through 35. Adder bits 21 through 
35 are then transferred directly to accumulator bits 
21 through 35. However, if the decrement field is to 
receive the information from the index register, the 
contents of the specified index register are trans­
ferred to storage register positions 3 through 17. 
From here, the transfer is directly to adder positions 
3 through 17. From the adder, the information goes 
to the accumulator, entering in positions 3 through 
17. 

Address Modification 

Address modification is the subtraction of the con­
tents of a specified index register from the instruc­
tion word base address. The index register used is 
specified by bits 18 through 20 of the instruction 
word: bit 18 when a 1 specifies XRC, bit 19 when a 
1 specifies XRB, and bit 20 when a 1 specifies XRA. 
Subtraction is performed with the 2's complement 
method. The instruction word base address is trans­
ferred from storage register positions 21 through 
35 to corresponding adder positions. The l's com­
plement of the contents of the specified index register 
is transferred to adder positions 21 through 35. A 
hot 1 is then generated to adder position 35, and the 
quantities are added. The result is the difference 
between the quantities, which is the effective ad­
dress. This effective address is transferred to the 
CPU address register and, from there, eventually 
goes to the memory address register. 
Note: It is possible to select one, two, or three 

index registers for any operation that pro­
vides for the use of an index register. Mul­
tiple selection occurs when the instruction 
word tag field contains configurations of 011, 
101, 110, or 111. During a load operation, 
multiple selection causes all selected regis­
ters to be loaded with the specified value. 
During an index store operation or an address 
modification operation, multiple selection 
results in a logical addition of the contents 
of the selected register: corresponding bit 
positions must be zero to result in a zero; 
otherwise, the result bit is a 1. 

Assume index registers A, B, and C con­
tain 14, 1, and 3, respectively. With a tag 
field of III, the value of 178 , during address 
modification, is subtracted from the address 
field to form the effective address. During an 
index store, the value of 178 is stored in the 
specified field of the store location. 

Addressing 

The methods of addressing available in a particular 
machine are closely related to index operations, 

97 



although not a part of them. In the 7040-7044, two 
types of addressing are employed: direct and indi­
rect. No matter which method is used, the import­
ant factor is obtaining the effective address. The 
effective address is the usable address, the address 
that identifies the core storage location containing 
the desired operand. The following description de­
fines the effective address under all possible ad­
dressing combinations. 

Each instruction that references core storage for 
an operand contains a base address in bits 21 through 
35. If no indexing is specified, or if the index reg­
ister specified contains all 0' s, the instruction word 
base address becomes the effective address. How­
ever, if indexing is specified, and the specified index 
register contains some value other than 0, the differ­
ence between the instruction word base address and 
the contents of the specified index register forms the 
effective address. For example, assume the base 
address is 20008 and the contents of the specified 
index register are 1008' The effective address is 
20008 - 1008 or 17008' 

Determining the effective address appears to be­
come difficult when using indirect addressing. It is 
actually simple, however, when applied step by step. 
Indirect addressing is specified when instruction 
word bits 12 and 13 are both l's. Assume and Add 
instruction is given, the instruction word specifies 
only indirect addressing, and the base address is 
30008' In this case, the base address specifies a 
location in core storage whose contents are to be 
used to obtain the effective address; it is the indi­
rect address. Assume location 30008 contains CLA 
10008 with its tag field (18-20) all O's: no indexing 
is specified. Address 10008 becomes the effective 
address: the contents of location 10008 form the 
addressed operand of the Add instruction. Note that 
only the address and tag field bits of the indirect 
address are used; these are bits 21 thrOl.~gh 35 and 
18 through 20. All other bits in the indirect address 
are not used. 

Indirect addressing is also used when the instruc­
tion word specifies indexing as well as indirect ad­
dressing. Assume the base address is 30008 and the 
specified index register contains the value 2008. The 
indirect address is then 30008 - 2008 or 26008. As­
suming the indirect address contains ACL 15008 
with no indexing specified, the effective address is 

15°°8' 
Assume the instruction word does not specify 

indexing, but the contents of the indirect address do. 
Let the instruction word base address be 26008. 
This location is the indirect address. Assuming the 
address field in the indirect address to be 13008 and 
the index register specified in the indirect address 
to contain 4008' the effective address becomes 
13008 - 4008 or 7008' 

98 

Consider the case in which both the base address 
and the contents of the indirect address are indexed. 
Let the instruction word base address equal 45008 
and the contents of the index register specified by the 
instruction word equal 7008' The indirect address 
becomes 45008 - 7008 or 36008' Assuming the con­
tents of the address field in the indirect address 
equal 77008 and the contents of the index register 
specified by the contents of the indirect address 
equal 50°8' the effective address becomes 77008 -
5008 or 72008' 

The effective address in all cases is the final ad­
dress computed. When computing an effective address, 
take the instruction word base address (bits 21-35) 
and apply indexing if specified to get the indirect ad­
dress. If indexing is not specified, use the instruc­
tion word base address as the indirect address. 
When the indirect address is determined, examine its 
contents to get the effective address. Take the ad­
dress field in the indirect address: (1) if no indexing 
is specified, use the contents of this field as the ef­
fective address; (2) if indexing is specified, subtract 
the contents of the specified index register from the 
address field in the indirect address to get the effec­
tive address. 

A very important point to remember is that indirect 
addressing is effected only by bits 12 and 13 of the 
instruction word. Although the contents of the indirect 
address can have a 1 in positions 12 and 13, these 
positions are not decoded. 

When the instruction counter is used to load an in­
dex register, instruction counter contents are trans­
ferred to storage register positions 21 through 35. 
From here they are sent directly to adder positions 
21 through 35. Adder positions 21 through 35 then 
load XRX, and the contents of XRX are transferred to 
the specified index register. Mter the index register 
is loaded, the l's complement of its contents is trans­
ferred to adder positions 21 through 35. Here, a 1 is 
added to position 35 to produce the 2's complement. 
This value is then transferred via XRX to the speci­
fied index register. The transfer action associated 
with this operation is described under transfer 
operations. 

Figure 43 shows the data paths used when transfer­
ring information from an index register to some 
other register. In these operations, the contents of 
a specified index register may go to either core stor­
age or the accumulator. The information in these 
operations is always in true form and can be placed 
in either the address field or the decrement field of 
the specified location. 

When transferring the contents of an index regis­
ter to storage, the action is as follows. Instruction 
word bits 18 through 20 specify the index register to 
be used. The contents of the specified index register 
are then transferred to the storage register. 



TRANSFER OPERATIONS 

A data processing system is used by executing pro­
grams which basically consist of various routines. 
Each routine is formed by a sequence of instructions 
whicH are placed in core storage in ascending se­
quential locations. By extension, associated rou­
tines (all routines forming a single program) are 
found in sequential locations. Fetching of instruc­
tions is controlled by the CPU instruction counter. 
Initially, a value is placed in the instruction counter 
which specifies the first location to reference in the 
first routine to be performed. The contents of the 
location specified by the instruction counter are 
transferred into the CPU and decoded as an instruc­
tion, and the desired operation is performed. The 
instruction counter is incremented by 1, and the new 
value, which is the next sequential address, is the 
address of the next instruction to be executed. The 
f>equence of fetching and stepping in a sequential pat­
tern continues until it is altered by placing a new 
value in the instruction counter which is out of se­
quence with the preceding values. Since the instruc­
tion counter controls the instruction fetched for exe­
cution, it also controls the routine to be executed. 
Inserting in the instruction counter a new value 
which is out of sequence with the preceding values is 
called a transfer of program control. The inserted 
value generally is the first location to reference in a 
new routine. Program control is therefore trans­
ferred from one routine to another. 

It is possible for normal instruction counter step­
ping to transfer program control to a new routine. 
During the execution of a given program, however, 
it may be desirable to skip the next sequential rou­
tine or even several routines; this action of skipping 
one or more routines is termed a transfer opera­
tion. In addition, it may even be desirable to pro­
vide multiple paths through a single routine. Since 
provision is made to skip routines, the same in­
structions caa be used to choose one of the multiple 
paths that may exist in a single routine. 

Transfer operations may be divided into two 
areas: unconditional and conditional. Unconditional 
transfers effect the change of instruction counter 
contents regardless of existing conditions in the ma­
chine. Conditional transfers, however, change in­
struction counter contents only if a specific condi­
tion exists in the machine: the transfer is conditional 
on the presence of the specified condition. Besides 
changing instruction counter contents, a transfer 
operation may involve loading or modifying an in-
dex register, establishing trap and parity controls, 
or storing the present instruction counter contents. 

Unconditional" 

Unconditional transfers automatically place the in­
struction word effective address in the instruction 
counter. If some other action is also specified, it 
is accomplished before the transfer is effected. For 
example, assume an index register is to be incre­
mented along with the transfer. Before considering 
the possible data path to use, consider the instruc­
tion word. Bits 21 through 35 form the address field 
and specify the transfer address. Tag field bits 18 
through 20 serve to identify the index register to be 
incremented. Since the tag field is the only instruc­
tion word field that can specify the use of an index 
register, and since the index register specified is to 
be incremented, no provision is made for address 
modification. The instruction word base address is 
therefore the effective address. With bits 18 through 
35 used to identify the index register involved and 
the transfer address, the remaining bits (S through 
17) must be associated with specifying the increment 
and the operation code. Bits S through 2 serve as the 
operation code field, and bits 3 through 17 form the 
decrement field. This field is used as the increment 
value. 

The action unfolds as follows. Initially, the in­
struction word address (Figure 44), which is in stor­
age register positions 21 through 35, is transferred 
to adder positions 21 through 35. From here, the 
address is transferred to the address register. With 
the transfer address in the address register, the 
contents of the specified index register are trans­
ferred in l' s complement form to the adder when a 
hot 1 is added to adder position 35. The result is 
the 2' s complement of the contents of the specified 
index register. This value is returned to the speci­
fied index register via XRX. Following this action, 
the contents of the specified index register are 
again transferred to the adder. Instruction word 
bits 3 through 17 are also transferred to the adder; 
they are shifted right 18 positions during the trans­
fer and enter the adder in positions 21 through 35. 
A hot 1 is then generated to adder position 35. The 
result of this action is the addition of the instruction 
word decrement field and the contents of the speci­
fied index register. This result is transferred from 
the adder to the specified index register via XRX. 
With the associated action completed, the transfer 
is effected by transferring address register contents 
to the instruction counter. 

Another operation that can accompany an. uncondi­
tional transfer is storing of the instruction counter. 
In this case, the instruction word must specify the 
operation to be performed and provide a store ad­
dress as well as a transfer address. Since only 
one address field is available, some other means 

99 



ESS 
TO 
AD DR 
REGIS TEP 

I 
13 

I 
13 

A 

V-

I 
13 

w 
:::J 

'" f-

LU 
:::J 

'" f-

~ 

TO MEMORY 
DATA REGISTER 

• 

STORAGE REGISTER 

XRA 
I I 

171 121 35 

• 'I wlfl II 
:::J 

'" f-

ADDER 

I I v HOT 1 TO ADDER 35 
171 121 35 

I 
W 
:::J 

'" f-

~ 

ACCUMULA TOR 

I I 
17 I 121 35 

FIGURE 43. ADDRESS MODIFICATION AND INDEX REGISTER STORE OPERATIONS DATA PATHS 

TOMDR 

4~ 

STORAGE REGISTER 

I I I 
I 3 17 I 121 

w 

TRUE :::J 

'" f-

~> 
ADDER 

I 
121 

TO < I ADDRESS 
MAR REGISTER 

TO ::-
STORAGE ... 
REGISTER < I INSTRUCTION 

COUNTER POSITIONS 
21-35 

FIGURE 44. TRANSFER OPERATIONS DATA PATHS 

100 

35 

HOT 1 

35 ~ 
~ 

1 'S COMPLEMENT I 

XRB XRC 

II I 
TRUE FORM 

1 's COMPLEMENT 

XRX I 

I INDEX 
REGISTERS 



must be provided to accommodate the two addresses. 
This becomes apparent as the data flow is described. 
Since the action associated with the transfer involves 
the instruction counter, the instruction word tag field 
is available to specify an index register for address 
modification. In addition, indirect addressing is 
possible with this operation, although the following 
description does not include it. 

Initial action involves the transfer of the instruc­
tion word address field (base address) to the adder. 
If indexing is specified, the operation is performed 
at this time, and the result in the adder is the effec­
tive address. However, if no indexing is specified, 
the base address becomes the effective address. In 
either case, adder bits 21-35 are transferred to the 
address register; this transfer always involves the 
effective address. Since a storage address is needed, 
the contents of the address register, the instruction 
word effective address, are transferred to the mem­
ory address register (MAR). With the effective ad­
dress formed and in the address register and MAR, 
the instruction word base address is no longer need­
ed. At this time, the instruction counter contents are 
transferred to storage register positions 21-35. With 
this transfer accomplished, the address register 
contents are gated into the instruction counter. At 
this point, the effective address is in both the in­
struction counter and MAR, and the original instruc­
tion counter contents are in the storage register. 
The address in the storage register is the address of 
the transfer instruction plus 1. First, the storage 
register is transferred to the memory data register, 
is transferred to the memory data register, satisfy­
ing the store action. Then the instruction counter 
is stepped to specify the location from which the next 
instruction to be executed will be obtained; thus, the 
transfer action is completed. Returning to the in­
struction word, its effective address specifies the 
store address, and its effective address plus one 
specifies the transfer address. 

When trap and parity controls are to be established 
along with effecting a transfer of program control, 
the instruction word need on.J.y oiiecify the flJ,ti.on de­
sired and the transfer address. The tag and flag 
fields are therefore available for addressing: both 
address modification and indirect addressing are 
possible. 

Initially, the base address is transferred from the 
storage register to the adder, where indexing is 
performed if specified, following which the effective 
address is transferred from the adder to the address 
register. The appropriate controls are then turned 
on. With this action accomplished, the transfer is 
completed: address register contents (the effective 
address) are placed in the instruction counter. 

. The simplest unconditional transfer is the transfer 
that has no associated action. In this case, the 

instruction word can specify both indexing and indi­
rect addressing. In this case, the instruction word 
can specify both indexing and indirect addressing. 
Whether neither or both are used, a transfer from 
the adder to the address register is eventually ef­
fected. This transfer involves the effective address. 
From the address register, the effective address is 
inserted in the instruction counter, completing the 
operation. 

The action of setting an index register with the 2' s 
complement of the address of the transfer instruction 
can also accompany an unconditional transfer. In 
this case, no address modification is possible. The 
instruction word base address becomes the effective 
transfer address and is transferred via the adder to 
the address register. The instruction counter con­
tents are then transferred to the storage register. 
From the storage register, the address of the trans­
fer instruction goes to the adder, and from the adder 
to the specified index register via XRX. The contents 
of the specified index register are then transferred 
in l's complement form to the adder, where a hot 1 
is added to position 35. The result of this action is the 
2's complement, which is then transferred via XRX to 
the specified index register. Following this action, the 
address register contents are transferred to the in­
struction counter, terminating the operation. 

Conditional 

Conditional transfers are contingent on the presence 
of a specific condition. Such transfers can be divided 
into three groups: (1) those that just check an index 
register to determine whether a transfer condition 
exists; (2) those that check an index register to de­
termine whether a transfer condition exists and modi­
fy the index register checked; (3) those that check 
something other than an index register to determine 
whether a transfer condition exists. A description of 
each follows. 

When just checking an index register to determine 
whether a transfer condition exists, the instruction 
word decrement field (bits 3-17) is compared with the 
contents of the specified index register (Figure 44). 
No address modification is possible in this case, and 
the transfer condition is specified by the instruction 
word operation code. A transfer condition can be 
contingent on the index values being greater than the 
decrement or equal to or less than the decrement. 

Initial action involves transferring the instruction 
word base address, which becomes the effective ad­
dress, to the address register via the adder. With 
the potential transfer address in the address register, 
the instruction word decrement field is transferred 
in true form to adder positions 21 through 35. The 
l's complement of the specified index register is then 
transferred to adder positions 21 through 35. A hot 1 

101 



is added to adder position 35, thus effecting sub­
traction. If the index register value is the greater 
value, no carry is generated out of adder position 21, 
whereas a carryout of adder position 21 indicates the 
index register value is either equal to or less than 
the decrement. Therefore, the existence of the trans­
fer condition is ascertained by checking for a carry­
out of bit 21 (X carry). When the transfer is contin­
gent on the index register value's being larger, the 
absence of an X carry causes the address register 
contents to be transferred into the instruction 
counter, thereby effecting the transfer. However, 
when the transfer is contingent on the index register 
value's being equal to or less than the decrement, 
the presence of an X carry causes the address regis­
ter contents to be transferred to the instruction 
counter, thereby effective the transfer. 

For transfers which check an index register to 
determine whether a transfer condition exists and 
modify the index register checked, the action is 
similar. In this case, the instruction word tag field 
specifies the index register to be checked and modi­
fied; no address modification is possible. Conse­
quently, the instruction word base address becomes 
the effective address. Initial action involves trans­
ferring this address through address positions 21 
through 35 to the address register. With the potential 
transfer address in the address register, the pres­
ence of absence of the transfer condition is deter­
mined by comparing the instruction word decrement 
field with the contents of the specified index register. 
If the transfer is contingent on the index register 
value's being the larger value, the following takes 
place. The instruction word decrement field is trans­
ferred in true form to adder positions 21 through 35. 
The contents of the specified index register are 
transferred in l's complement form to adder position, 
21 through 35. A hot 1 is added to adder position 35, 
effecting a subtraction. Following the subtraction, a 
check is made for an X carry. If no X carry is pres­
ent, the transfer condition exists. The absence of an 
X carry, in this case, causes the contents of adder 
positions 21 through 35 to be transferred into the 
specified index register. FollOWing this action, the 
contents of the specified index register are trans­
ferred back to the adder in l's complement form, 
where a hot 1 is added to adder position 35. The 
result of this action is the true difference between 
the decrement field and the index register value. 
Said another way, the index register value has been 
reduced by the decrement value. This result is 
placed in the specified index register. In addition, 
the absense of an X carry causes address register 
contents to be transferred into the instruction counter 
after the specified index register is modified. Should 

102 

the transfer condition not exist, an X carry is gen­
erated, the operation is terminated, and the next 
sequential instruction is fetched for execution. 

When the transfer is contingent on the index regis­
ter value's being less than or equal to the decrement, 
the potential transfer address (instruction word base 
address, which becomes the effective address) is 
routed from the storage register through the adder 
to the address register. The instruction word dec­
rement field is then transferred to the adder in true 
form. The contents of the specified index register 
are also transferred to the adder, but in l's comple­
ment form. A hot 1 is added to adder position 35, and 
a subtraction takes place. If an X carry is generated, 
address register contents are transferred into the 
instruction counter, effecting the transfer. However, 
if no X carry is generated, the specified index regis­
ter value is reduced by the decrement value (loop the 
result of the subtraction from the adder to the speci­
fied index register, back to the adder, add a hot 1, 
and place this result in the specified index register) 
and the next sequential instruction is fetched for 
execution. 

The final group of conditional transfer operations 
checks for a specific condition in the CPU, and if 
the condition exists a transfer is effecteq. In one 
case, a turn-off action is associated with the trans­
fer. A transfer can be contingent on the following 
conditions: (1) if the accumulator sign is negative, 
(2) if the accumulator sign is positive, (3) if ac­
cumulator Q-35 is not equal to 0, (4) if accumulator 
Q-35 equals 0, (5) if the accumulator overflow indi­
cator is on. With the last case, the indicator is 
turned off before the transfer is effected. 

In any of the cases, the instruction can specify an 
index register to modify the base address. The ac­
tion takes place as follows. The instruction word 
base address is transferred to adder positions 21 
through 35, where it is modified if indexing is speci­
fied. Adder positions 21 through 35 are then trans­
ferred to the address register; this transfer always 
involves the effective address, which is the potential 
transfer address. Mter the transfer from the addel:' 
to the address register, the specified condition is 
checked for its presence. If present, address regis­
ter contents are transferred into the instruction 
counter. If the transfer condition is not present, the 
next sequential address is referenced for the next in­
struction to be executed. 

STORE OPERATIONS 

Store operations in the CPU involve placing the con­
tents of a register or portions thereof in a specified 
core storage location. Figure 45 shows the data 
flow paths for CPU store operations. Included are 



the paths used in the overlapped data channel store 
operations. 

When the contents of the instruction counter are 
stored, they contain the address of the store instruc­
tion plus 1. A transfer is effected from the 
instruction counter to storage register bits 21 through 
35. The contents of the ~tore address, the instruction 
word effective address, are transferred from core 
storage to the storage bus. For simplicity, this bus 
is shown as a register and its 37th check bit is not 
shown. The storage bus routes the contents of the 
store address to the storage register. However, 
only bits S through 20 are allowed to enter the stor­
age register. Thus, the original contents of the store 
address are modified. Storage register contents S 
through 35 are then placed on the storage bus and 
eventually returned to the store address. 

The above type of operation is called a partial 
store: only part of the contents of the store address 
is altered. Another example of a partial store is the 
storing of index register contents, previously de­
scribed. Further, the accumulator contents can be 
manipulated with partial store operations. For in­
stance, the operation store address causes accumu­
lator bits 21 through 35 to be transferred to storage 
register positions 21 through 35. The contents of the 
store address, except bits 21 through 35, are trans­
ferred via the storage bus into the storage register. 
Following this action, storage register contents are 
transfe:r;red via the storage bus to the store address. 

Similar action takes place when the accumulator 
decrement field is stored. In this case, accumulator 
bits 3 through 17 are transferred to storage register 
positions 3 through 17. The contents of the store ad­
dress, except bits 3 through 17, are transferred via 
the storage bus to the storage register. Following 
this action, storage register contents are placed on 
the storage bus and are eventually transferred into 
the store address. 

A full-word store can be accomplished with the 
contents of the accumulator or the MQ register. 
When using accumulator contents, either a machine 
word or a logical word may be stored. A machine 
word is 36 bits long with one sign bit and 35 data 
bits: S through 35. If a store instruction is given, 
accumulator bits Sand 1 through 35 are transferred 
to the storage register. From the storage register 
the word goes to the storage bus and eventually into 
the store address, -the instruction word effective 
address. Identical action takes place when a store 
logical word instruction is given, except accumula­
tor bit P is transferred to the storage register sign 
position in place of the accumulator sign. 

Execution of a store MQ register instruction 
causes the contents of the MQ register (bits S through 
35) to be transferred to the storage register, and 
from the storage register to the storage bus. The 

information eventually enters core storage, where it 
is placed in the store address. 

Another example of a full store is the storing of O's 
in the specified store address. This action has the 
same effect as resetting a register. The storing of 
0' s is accomplished by blocking the transfer of 
Storage Register contents to the Storage Bus. 

The operation store location and trap causes the 
location of the store instruction plus 1 to be placed in 
location 00000. Actually, this operation is a special 
case of the store instruction counter operation. Only 
bits S through 11 of the instruction word are used; the 
remaining instruction word bits are not used. Ad­
dressing is therefore implied by the operation code. 
Initially, the address register is cleared, thereby 
placing the desired address in this register. From 
the address register, the all-zero configuration goes 
to MAR, which effects the readout of the desired lo­
cation. The instruction counter is incremented, 
yielding the address of the store instruction plus 1. 
This value is transferred to storage register positions 
21 through 35. Although location 00000 is read out, 
its contents are destroyed by preventing them from 
being transferred into the MDR. Instead, storage 
register contents are transferred to the storage bus 
and eventually to location 00000. The final configu­
ration of location 00000 is all O's in bits S through 20 
and an address in bits 21 through 35. When the store 
action is complete, the value 000028 is loaded into 
the instruction counter. This value is the address of 
the next instruction to be executed. 

The CPU can be used as a transfer path for I/O 
operations. During such operations, information 
may be configured in 6-bit bytes. Each byte, then, 
would represent a character. A store accumulator 
character operation is available. In this operation, 
however, only accumulator bits 30 through 35 are 
involved. These bits are transferred to positions 
in the storage register which are specified by a count 
in the position register. Here they are joined with 
the remaining bits of the store address. The new 
word is then placed on the storage register for trans­
fer into the specified address. 

Note that in all CPU store operations the action 
centers around the storage register. It is in this 
register that either a full store or a partial store 
is effected. In contrast to this method is the method 
used with overlapped data channel stores. During 
such operations, both the word counter and the ad­
dress register of the specified data channel are 
transferred to storage bus positions 3 through 17 and 
21 through 35 respectively. Formation of the new 
contents of the store address is therefore effected 
on the storage bus in this case as opposed to the 
storage register during CPU store operations. In 

103 



STORAGE BUS 

~ 

Is 
STORAGE REGISTER 

I' ~ ~ 

"' :z "' 

I I TO SR 21-35 '" 
'7 

~ ~ N 
M 0 u '" I--

'" 
~ 

ei "' ~ 0 M 
0 INSTRUCTION I 0 d. I--

COUNTER I-- I--

"' 7 
+ "' '7 
~ 

M 

M J, g N 
u u u u 
<{ <{ <{ <{ 

Is 
ACCUMULATOR 

FIGURE 45. STORE OPERATIONS DATA PATHS 

'-

I 
'iii' 

'iii' :z :z '" !!!. '" !!!. <{ 
Z ;:£ 
<{ 0 

'- " 

Ii 
~ 

v 
'iii' 
M )q d. 

d. u 
::s- a 

::s-<{ 
z ;:£ 
<{ 

0 

I 0-
w 
I--
~ 

I INSTRUCTION COUNTER I 
FIGURE 46. LOGICAL OPERATIONS DATA PATHS 

104 

"I 
L-----------~T~O~S~T~O~RA~G~E~B~U~S~2~1-~3~5--------------~ 

TO STORAGE BUS 3-17 j---l ------- - ~---l 

II I wo RD ADDRESS I 
COUNTER REGISTER I I 

I 
I DATA CHANNELS B-E I L _________________ _ 

UIL------__ -----. 
TO STORAGE REGISTER 3-17 + 21-35 

MQ S-35 TO STORAGE REGISTER S-35 

MQ REGISTER 

STORAGE REG ISTER 

'iii' 'iii' 

:h :z 
'" '" !!!. !!!. 

3 ~ 

::i 

ADDER 

~ ~ 
'iii' 
M 0:: 0:: 
J, a a 
u u ::s- ~ ::s-
< ~ 

::;: 
u ::i 0 

u 

ACCUMULATOR 

ORA (AC P-35) 

INDEX 
REGISTERS 

I 

I 

1 

35 



either case, the information on the storage bus goes 
to the store address. 

LOGICAL OPERATIONS 

Logical operations provide the means for dealing with 
a 36-bit unsigned word. These operations are espe­
cially useful in working with BCD information. Fig­
ure 46 shows the data flow associated with each logi­
cal operation. Each of these operations is individually 
described in the following paragraphs. 

Consider first the operation AND-to-accumulator. 
In this operation, accumulator bits P through 35 are 
matched with storage register bits S through 35, 
which contain the contents of the instruction word ef­
fective address. Matching is accomplished by trans­
ferring each operand to the adder, where they are 
added. The adder contains lookahead circuits which 
determine whether a carry is going to be generated 
out of an individual position. If corresponding oper­
and bits are l's, or if corresponding operand bits 
are 1 and 0 with a carry from the preceding low­
order position, a carry is produced. The adder 
lookahead circuits can check for either of these con­
ditions. In the AND-to-accumulator operation, only 
that part of the lookahead circuits which checks for 
corresponding 1 bits is used. When corresponding 
bits are 1, the lookahead circuits generate a carry 
which, in this case, is returned to the corresponding 
accumulator position. An AND-to-accumulator op­
eration may be defined as the matching of the accum­
ulator operand P through 35 with the storage register 
operand S through 35 to produce a result operand 
which contains l's only in positions which originally 
contained a 1 in both operands. A 00 match or a 10 
match yields a 0 result bit. The result of the ac­
cumulator position P and storage register S match 
is placed in accumulator position P. 

Similar to the AND-to-accumulator operation is 
the OR-to-accumulator operation. In this operation, 
the accumulator operand P through 35 is matched 
with the storage register operand S through 35 to 
produce a result operand which contains a 1 in any 
position that contained a 1 in either of the original 
operands: the accumulator and storage register 
operands are logically added. The contents of the 
instruction word effective address are transferred 
into the storage register. Simultaneously, accumu­
lator bits P through 35 are transferred into the stor­
age register on top of the other operand. The result 
is a logical add, where a 1 results in any position 
that had a 1 in either of the original operands. Stor­
age register bits S through 35 are then transferred 
to adder bits P through 35. Adder bits P through 35, 
in turn, are transferred to accumulator bits P 
through 35. 

A compare-accumulator-with-storage operation is 
available which enables determination of the algebraic 
relationship between the operand contained in the 
effective address and accumulator bits S through 35. 
Initially, the l' s complement of the accumulator op­
erand is transferred to the adder along with the true 
form of the storage register operand. A subtraction 
results. After the subtraction, a check is made for 
a Q carry. The presence or absence of a Q carry is 
combined with the sign of each operand to determine 
whether the instruction counter is to be stepped: 

a. If the accumulator is positive, the presence of 
a Q carry has no meaning with respect to 
stepping the instruction counter. 

b. If the accumulator is negative, the instruc­
tion counter is stepped (incremented by 1) 
if no Q carry is present. 

c. If the storage register is positive, the pres­
ence of a Q carry causes the instruction 
counter to be stepped. 

d. If the storage register is negative, no stepping 
takes place, regardless of the presence or 
absence of a Q carry. 

Stepping of the instruction counter at this time indi­
cates that the accumulator operand is smaller than 
the storage register operand. Following this action, 
the original storage register operand is again trans­
ferred to the adder with the l's complement of the 
accumulator operand. A hot 1 is then added to adder 
bit 35, effecting subtraction. If a Q carry is gen­
erated, the accumulator operand is either equal to or 
smaller than the storage register operand and the 
instruction counter is stepped. This step determines 
the equal condition if the first step did not result in 
instruction counter stepping, and if the first step did 
result in instruction counter stepping, this step dis­
tinguishes from the equal result. Summarizing, (1) 
if the accumulator operand is greater than the stor­
age register operand, no instruction counter stepping 
takes place, (2) if the accumulator operand is equal 
to the storage register operand, the instruction coun­
ter is stepped once, and (3) if the accumulator oper­
and is smaller than the storage register operand, the 
instruction counter is stepped twice. 

A logical compare accumulator with storage oper­
ating enables the logical comparison of a 37-bit ac­
cumulator operand (Q, P, and 1-35) with a 36-bit 
storage register operand (S-35). The storage oper­
and is obtained from the instruction word effective 
address. Initially, the storage register operand is 
transferred in true form to the adder with the l' s 
complement of the accumulator operand; a subtrac­
tion results. A check is then made to determine 
whether a Q carry is present. If a Q carry is pres­
ent, the accumulator operand is the smaller operand 
and the instruction counter is stepped. If no Q car­
ry is present, the accumulator is either equal to or 

105 



greater than the storage register operand and no 
stepping takes place. Next, the action is repeated 
using the 2's complement of the accumulator operand. 
If a Q carry is generated this time, the instruction 
counter is stepped. The meaning of the Q carry de­
pends on whether a Q carry was generated on the first 
pass; if a Q carry was not generated on the first pass, 
operation of a Q carry on the second pass indicates 
equal operands, whereas generation of a Q carry on 
each pass indicates the accumulator is the smaller 
operand. In summary, (1) if the accumulator oper­
and is theJarger operand, no instruction counter 
stepping takes place, (2) if both operands are equal, 
the instruction counter is stepped once, and (3) if the 
accumulator is the smaller operand, the instruction 
counter is stepped twice. 

A complement magnitude operation is available 
which allows accumulator bits Q, P, and 1 through 
35 to be complemented: O's are made l's, and l's 
are made O's. In this operation, the l's complements 
of accumulator bits Q, P, and 1 through 35 are trans­
ferred to corresponding positions in the adder. Ad­
der positions Q, P, and 1 through 35 are then trans­
ferred to corresponding accumulator positions. The 
accumulator sign position. remains unaltered. 

CHARACTER HANDLING OPERATIONS 

Three character-handling operations are available 
which expedite handling of 6-bit character operations. 
In each case, instruction word bits 15, .16, and 17 
form a character position (c) field which specifies 
the character in the instruction word effective ad­
dress involved in the operation. Valid bit configura­
tions for the C field range from 000 to 101: 

000 - CO (bits S-5) 
001 - C1 (bits 6-11) 
010 - C2 (bits 12-17) 
011 - C3 (bits 18-23) 
100 - C4 (bits 24-29) 
101 - C5 (bits 30-35) 

In the place-character-from-storage operation, 
the instruction word effective address character 
specified by the instruction word C field is placed in 
accumulator positions 30 through 35. Initially, in­
struction word bits 13 through 17 are placed in the 
position register (Figure 47). An effective address 
is formed, and the specified location in core stor­
age is accessed. Its contents are routed to the CPU 
storage register. Position register bits 15 through 
17 are decoded to produce a character selection sig­
nal. This signal serves to gate only the desired 
character from its storage bus positions to 
storage register positions 30-35. The remaining 
storage register bits are cleared. Consequently, 

106 

the word in the storage register always has the 
selected character in positions 30-35. The complete 
storage register word is then transferred to corres­

ponding adder positions. Accumulator bits Q, P 
1-29 are also fed to the adder. The adder sum 
(accumulator Q, P, 1-29 and SR 30-35) is returned 
to the AC. 

The store-accumulator-character operation is 
similar. In this case, the character selection sig­
nal resulting from position register decoding gates 
accumulator bits 30 through 35 into the storage 
register positions corresponding to the selected 
character. The contents of the effective address 
are transferred into corresponding storage register 
positions, except for the selected character posi­
tions. Storage register contents are then transfer­
red to the effective address. 

The compare-character-with-storage operation 
compares the character formed by accumulator bits 
30 through 35 with a specified character in the ef­
fective address. Position register bits 15 through 
17 are decoded to select the data character from the 
storage bus for placement in storage register 
positions 30 through 35. The entire storage register, 

, including sign, is then gated to the adder along with 
the l's complement of the accumulator. A check is 
made for an adder 30 carry, and, if one is present, 
the accumulator character is the smaller character 
and the instruction counter is stepped. If a 30 carry 
is not present, the accumulator-character is the 
larger character and no stepping takes place. The 
action is repeated, using the true form of the storage 
register character and the 2' s complement of the 
accumulator character. Again a check is made for 
a 30 carry: if it is present, the instruction counter 
is stepped. Generation of a 30 carryon the second 
pass means (1) the accumulator character is the 
smaller character if a 30 carry was generated on 
the first pass or (2) both characters are equal if no 
carry was generated on the first pass. In summary, 
if the accumulator character is larger, no instruction 
counter stepping takes place, whereas the instruction 
counter is stepped once if both characters are equal 
and twice if the accumulator character is the smaller 
character. 

SHIFTING OPERATIONS 

Four shifting operations are available in the 7040-
7044. In each operation, instruction word bits 28 
through 35 form a shift count which specifies the 
number of places to shift. No shifting operation 
references core storage, but the instruction word 



.. 
MEMORY DATA 

" 
REGISTER 

~ 7 

I I STO~GE BUS I 
S 51 II i 12 17 18 124 

• 

"- I--

.. 7 

STORAGE REGISTER 

CO I CI I C2 I C3 I C4 
l I J I 

.<I L 
..., > ~ } 

........... 

... 30 CARRY TO STEP IC 

'.)' 
ADDER 

Q 

ACCUMULATOR 

S 

FIGURE 47. CHARACTER-HANDLING OPERATIONS DATA PATHS 

I 
29130 35 

J 
I C5 
I 

..., ). 

I 
I 
:30 35 

.<I 

"- ~ 

I 
:30 

FROM STORAGE 
BUS ON INSTR 

FETCH 

7 

POSITION 
REGISTER 

3 7 

CHARACT 
SELECTIO 
SIGNALS 

33 

107 

ER 
N 



address field is indexable. The direction of the shift 
is specified by the operation code. 

In the logical left shift operation, instruction word 
bits 21 through 35 are transferred from the storage 
register to the adder (Figure 48). Here indexing is 
performed if a configuration other than 0 is in the 
instruction word tag field. The result is the effective 
address. If no indexing is specified, the instruction 
word base address is the effective address. In either 
case, effective address bits 28 through 35 are loaded 
into the shift counter. The term effective address in 
this case is misleading. Perhaps the term effective 
count would be better. However, the operation is . 
identical with address modification, except the result 
is used differently. After the shift counter is loaded, 
a one position left shift is performed if the shift 
counter does not contain 0 using accumulator bits Q 
through 35 and MQ register bits S through 35. The 
bit shifted left out of MQ register bit S enters ac­
cumulator bit 35. Bits shifted out of accumulator 
position Q are lost. In performing the shift, MQ 
register bit position 35 is vacated, but this vacated 
position is made a O. After a one position shift is 
completed,' the shift counter is decreased by one. 
It is then inspected and if it is other than 0, another 
one position left shift is performed. This action of 
shifting one position and then checking the shift 
counter continues until the shift counter is reduced 
to O. 

Note that the accumulator sign is not affected by 
the shifting: it remains unaltered throughout the 
operation. It is possible to cause overflow on a 
logical left shift. An overflow condition results when 
a 1 bit is shifted out of accumulator bit position 1. 
In this case, the overflow indicator is turned on. 

A logical right shift is identical, except the shift 
direction is reversed and overflow cannot occur. In 
a logical right shift operation, accumulator bit 35 
enters MQ register bit S. Bits shifted out of MQ 
register bit position 35 are lost, and the vacated ac­
cumulator bit position Q is made O. 

Similar to the logical left and right shifts are the 
long left and right shifts. In these cases, the instruc­
tion word is handled identically, as is the one-posi­
tion-at-a-time shift. The only differences are the 
exclusion of MQ register bit position S in the shifting 
and handling of the accumulator sign position. During 
a long left shift, MQ register bit 1 enters accumula­
tor bit position 35. Bits shifted out of accumulator 
position Q are lost, and vacated MQ register position 
35 is made O. After the shifting operation is com­
pleted, the MQ register sign is transferred to the 
accumulator sign position. Again, overflow is possi­
ble. 

During a long right shift, accumulator bit 35 enters 
MQ register bit 1. Bits shifted out of MQ :register 
bit position 35 are lost, and vacated accumulator 
position Q is made O. At conclusion of shift operations 
AC (S) is transferred to MQ (S). 
108 

Shifting operations are useful in dealing with BCD 
information: arranging characters, sorting, etc. 
These operations also provide a means of getting the 
result of a division operation into the accumulator or 
of getting the accumulator into the MQ register for 
use as a multiplier. 

ROTATE OPERATION 

A rotate operation (Figure 49) is similar to a shift 
operation. The differences are (1) no bits are lost 
and (2) only the MQ register is involved in rotation 
operations. Instruction word handling is identical, 
and the MQ bits are rotated left one position at a 
time. 

First an effective address is formed in the adder. 
Bits 28 through 35 of the effective address are loaded 
directly into the shift counter. If the shift counter 
does not contain 0, the MQ register is rotated one 
position left with position S entering position 35. The 
shift counter is decremented by 1 and then checked 
for a 0 value. If it is 0, the operation is ended. If it 
is not 0, the MQ register contents are again rotated 
left one position. This pattern continues until the 
shift counter is reduced to O. 

Rotate operations are useful in positioning informa­
tion for transfer into the accumulator or storage. 

SIGN ALTERATION AND TEST OPERATIONS 

Sign alteration operations in the 7040-7044 center 
around the accumulator sign bit. The two operations, 
change sign and set sign plus, do not involve any 
data flow. With each address modification can be 
employed; however, such modification could change 
the operation to be performed because the address 
field of each associated instruction is used to hold 
part of the operation code. The change sign operation 
makes the accumulator sign negative if it is positive 
and positive if it is negative. The set sign. plus oper­
ation makes the accumulator sign positive regardless 
of its present condition. 

Test operations involve checking a specific bit of 
a particular register, the condition of a specific 
indicator, and the position of a specific switch on the 
operator's console. Five test operations are avail­
able: low-order bit test; P bit test; divide check test; 
sense switch test; input-output (I/O) check test. The 
low-order bit test effects a check of the current sta­
tus of accumulator bit 35. If this bit is a 1, the shift 
counter is stepped. This stepping is in addition to 
the normal stepping. Consequently, with a low-order 
bit test and a 1 in accumulator bit 35, the next se­
quential instruction is skipped. If bit 35 is a 0, no 
alteration of the programmed instruction sequence 
takes place. 



STORAGE BUS 

STORAGE REGISTER 

ADDER 

35 

LRS 
STEP 

LOST (LEFT) LLS o (LEFT) 

LGL 

ACCUMULATOR MQ REGISTER 

LGR 

LRS 
o (RIGHT) 

LLS LOST (RIGHT) 

FIGURE 48. SHIFTING OPERATIONS 

STORAGE BUS 

STORAGE REGISTER 

ADDER 

he 35 

MQ REGISTER 

109 

FIGURE 49. ROTATE OPERATION 



The P bit test is identical with the low-order bit 
test, except the accumulator P bit is checked for the 
stepping condition. 

During a divide check test, the divide check indi­
cator is inspected. If this indicator is on, it is turn­
ed off and the next sequential instruction is fetched: 
no additional stepping of the instruction counter is 
effected. However, if the indicator is off, an addi­
tional stepping of the instruction counter is effected. 
Consequently, the next sequential instruction is 
skipped. Identical action occurs with the I/O check 
test operation, except the I/O check indicator is the 
reference. 

Sense switch test operations provide a means of 
testing the status of each of the sense switches on 
the operator 1 s console. Only one switch can be tested 
at a time, and the operation code specifies the de­
sired switch. If the specified switch is in the de­
pressed (on) position, the instruction counter is 
stepped in addition to its normal stepping. This ac­
tion causes the next sequential instruction to be skip­
ped. If the specified switch is in the released (off) 
position, no additional instruction counter stepping 
takes place. The next sequential instruction is there­
fore fetched for execution. 

Each instruction used for test operations employs 
part of the address field to complete the operation 
code, and each instruction also has a provision for 
specifying address modification. Such modifications 
can result in changing the operation code. 

SPECIAL STORAGE SIGN HANDLING OPERATIONS 

Four special storage sign handling operations are 
available to set and test the sign position of a core 
storage word: make storage sign minus; make stor­
age sign plus; storage minus test; storage plus test. 
In a make-storage-sign-minus operation, the con­
tents of the instruction word effective address are 
transferred via the storage bus to the storage regis­
ter. The storage register sign is made a 1. Storage 
register contents are then transferred to core stor­
age via the storage bus, and eventually the original 
word with the sign bit made minus is returned to its 
original address. Identical action takes place in the 
make-storage-sign-plus operation except that, when 
the contents of the specified core storage address 
are in the storage register, the sign bit is made O. 

In a storage-minus-test operation, the contents of 
the effective address are transferred via the storage 
bus to the storage register. Here the sign position 
is tested. If it is minus (a 1), the instruction coun­
ter is stepped in addition to its normal stepping. 
This action causes the next sequential instruction to 
be skipped. If the sign position is positive, no addi­
tional instruction counter stepping takes place; 
therefore, the next sequential instruction is fetched 
for execution. 

110 

The storage plus test is identical, except the addi­
tional instruction counter stepping occurs if the sign 
position of the accessed storage location is a O. 

The most outstanding quality of these operations is 
that all the work is accomplished in the storage regis­
ter. Accumulator contents are not bothered by special 
storage sign handling operations and therefore do not 
have to be protected in another register or address. 

EXECUTE OPERATION 

The execute operation causes the contents of the in­
struction word effective address to be interpreted as 
an instruction which is then executed. Initially, the 
execute instruction is transferred from core storage 
to the CPU (Figure 50). The entire instruction enters 
the storage register, and instruction word bits Sand 
3 through 11 are also transferred to the program 
register. Storage register bits 21 through 35 are 
transferred to the adder, where they are indexed if 
indexing is specified by the instruction word tag field. 
In any case, a transfer is effected from adder bits 21 
through 35 to the address register. This transfer al­
ways involves the effective address. Address register 
contents are then transferred to MAR as an instruc­
tion fetch. 

Meanwhile, program register contents are decoded. 
This action reveals the presence of the execute in­
struction and results in blocking the instruction coun­
ter stepping signal. 

When the contents of the reference core storage lo­
cation are transferred to the CPU, they go to the stor­
age register, and bits S and 3 through 11 go to the 
program register. The instruction is performed in a 
normal fashion. However, decoding the new program 
register contents no longer indicates the presence of 
an execute instruction. Consequently, the instruction 
counter is stepped in the normal fashion. 

An execute operation allows execution of an addi­
tional instruction between two sequential instructions. 
Although the additional instruction may be any of those 
available and may be used as desired by the program­
mer, the additional instruction normally will not be a 
transfer instruction. If the additional instruction is a 
transfer instruction, the original instruction sequence 
may be altered. 

TRANSMIT OPERATION 

A transmit operation causes the contents of a specified 
core storage location or the contents of a block of 
specified core storage locations to be transferred to 
another core storage location or to another block of 
core storage locations. Before a transmit operation 
is performed, the accumulator must be loaded because 
accumulator bits 3 through 17 serve to specify the 
"from" address and accumulator bits 21 through 35 



STORAGE BUS 

I 
S III 35 

I 
A I 

PROGRAM K SAND 3-11 REG ISTER 
" 

(EXECUTE) 
STEP 

STORAGE REGISTER 

S 121 35 

INSTRUCTION 
COUNTER 

"-
ADDER 

I 
S 121 35 

ADDRESS A J 
REGISTER 

'" 

• ;, INDEX 

TO MAR 
REGISTERS 

FIGURE 50. EXECUTE OPERATION DATA PATHS 

111 



serve to specify the "to" address. Since the accum­
ulator is used in this fashion, it must be updated 
after each word relocation. To avoid undesired re­
sults when updating the accumulator, its bits 18 
through 20 should originally contain O's. 

Figure 51 shows the paths used during the execu­
tion of a transmit operation. The following is a step­
by-step account of the action: 

1. Receive the instruction from core storage 
in the storage register. 

2. Transfer storage register bits 21 through 35 
to adder positions 21 through 35. 

3. Determine the effective address. 
4. Load effective address bits 28 through 35 

into the shift counter. (Because of the 
physical size of the shift counter, the maximum 
count possible is 3778). 

5. Check the shift counter for a value of 0: 
a. If it is 0, end the operation. 
b. If it is not 0, continue. 

6. Transfer accumulator bits 3 through 17 to 
storage register positions 3 through 17. 

7. Transfer storage register positions 3 through 
17 to adder positions 21 through 35. 

8. Transfer adder positions 21-35 to the address 
register. 

9. Transfer address register contents (from 
address) to MAR to get the desired word. 

10. Receive the word from memory in the storage 
register. 

11. Transfer accumulator bits 21 through 35 
to adder positions 21 through 35. 

12. Transfer adder positions 21 through 35 to the 
address register. 

13. Transfer address register contents to MAR 
as a store (to) address. 

14. Transfer storage register contents to the 
storage bus and eventually into the "to" 
address. 

15. Decrement (step) the shift counter. 
16. Transfer accumulator bits Q through 35 to the 

adder. 
17. Add 1 to adder positions 35 and 17. 
18. Transfer the result to the accumulator. 
19. Return to step 5. 
At the completion of a transmit instruction, 

accumulator bits 3 through 17 specify the address of 
the last word transferred plus 1, and accumulator 
bits 21 through 35 contain the address of the last 
store location plus 1. Successive transmit operations 
can be performed if it is desired to transfer or 
relocate more than 3778 words. 

112 



STORAGE BUS 

S 

/ 

STORAGE REGISTER 

1 1 
S 13 171 

• 
ADDER 

1 1 
171 ;21 

.-----~------~~~~~~~~~~--~~~ 
r-__ I_N_S_TR_U_C_T_IO_N __ W_O __ RD __ E_F_FE_C_T_IV_E_A_D_D_R_E_SS __ B_IT_S_2_8_-3_5 ____ ~C~----~ 

SHIFT 
COUNTER 

I 

STEP 

u « 
VI 

r.:-:--:::-:-:--=-::-:-:-:-::-::::-::-:--:.,..-__ ----...,.-Iw~-------I:D~ 
FROM TO ADDRESSES (ADDER 21-35) ~ ~ r---

~ 0 
:::J « 

o 
0-

ACCUMULATOR 

1 

S 13 

\. 

35 

35 

-.. 
35 .... 

35 

CARRY TO 35 

CARRY TO 17 

FROM ADDRESS (AC 21-35) 
ADDRESS 
REGISTER 

U 
TO MAR 

FIGURE 51. TRANSMIT OPERATION DATA PATHS 

113 



FROM 
SPECIFIED { 
INDEX 
REGISTER 

STORAGE REGISTER 

'--__ B_IT ... S 21,..-..;.35 __ ...1 

FIGURE 52. MEMORY PROTECT SETUP 

I FIELD I I COUNT 
REGISTER REGISTER 

.. ~ .. 1:0-

I CONTROL CIRCUITS 

.. z ....... 

l COMPARE CIRCUITS 

FIGURE 53. MEMORY PROTECT APPLICATION 

114 

J I ADDRESS J REGISTER 

I 

j 



Memory protection is a feature whereby a specified 
block of core storage locations is protected from 
alteration through storing. Assume that a master 
program is stored in memory locations 20000 through 
37777, and that the programmer does not want an 
accidental intrusion (store) to destroy the program; 
by utilizing memory protection, locations 20000 
through 37777 cannot be disturbed during store 
operations, thus protecting the contents of that block 
of addresses. Locations 20000 through 37777 are 
used as an example; other blQcks (as desired) can be 
protected, but only one block can be protected at a 
time. 

To protect a block of addresses, a Set Protect 
Mode (SPM) instruction must be executed. The 
iidCi"ress field of the SPM instruction designates which 
block of memory locations is to be protected; it does 
this by setting up two registers, the count register 
and field register, which are used to monitor the 
contents of the CPU address register (Figures 52 
and 53). The contents of these two registers are 
compared with the high-order bits of an effective 
address (in the AR). The count register determines 
the number of high -order bits to be examined and 
the field register determines the pattern of bits to 
be compared against. Violations, attempts by the 
CPU to store data in a protected area, cause trapping 
by either an equal or an unequal compare result, 
according to the selected mode. 

The compare-equal mode operates in the following 
manner. The high-order bits in the field register 
indicate the block of addresses that are protected. 
Any time that the corresponding high-order bits in 
the address register are the same as those in the 
field register, CPU circuits interpret the identical 
comparison as an attempt to enter a protected area. 
The compare-unequal mode operates altogether 
differently. The high-order bits in the field register 
indicate the block of addresses that are not protected. 
Any time that the corresponding high-order bits in 
the address register are not the same as those in the 
field register, CPU circuits interpret the nonidentical 
compare as an attempt to enter a protected area. 

The field register is a 7 -position register whose 
bits are labeled 21 through 27; the count register is 
a 4-position register whose bits are labeled 32 
through 35. Figure 54 is a table that shows which 
field register and address register bits are compared 
for any given count register setting (C field count). 

SECTION 5 - MEMORY PROTECTION 

Set Protect Mode (SPM) Instruction 

The SPM instruction word format is as follows: 

OPERA TION CODE 

The operation code is formed by bit positions S-l1 
and is -1160. Indirect addressing can be employed 
with the.§EM instruction as indicated by the presence 
of a flag field in bit positions 12 and 13. Bit positions 
14-17 are not used by the lli:M. ins truction. The tag 
field is formed by bit positions 18-20, and the address 
field is formed by bit positions 21-35. 

FIGURE'54. BIT COMPARISON TABLE 

C Field Count Register and Address Register Bits Compared in 
(Octal) , Each Storage Size 

32K 16K 8K 4K 

00 None None None None 
01 21 None None None 
02 21-22 22 None None 
03 21-23 22-23 23 None TTap if unequal 
04 21-24 22-24 23-24 24 com nare result 
05 21-25 22-25 23-25 24-25 
06 21-26 22-26 23-26 24-26 
07 21-27 22-27 23-27 24-27 
10 None None None None 
11 21 None None None 
12 21-22 22 None None 
13 21-23 22-23 23 None Trap if equal 
14 21-24 22-24 23-24 24 compare result 
15 21-25 22-25 23-25 24-25 
16 21-26 22-26 23-26 24-26 
17 21-27 22-27 23-27 24-27 

Note: Bit 23 indicates addresses above 4K; bit 22 indicates addresses 

above 8K; bit 21 indicates addresses above 16K. 

Decoding an SPM instruction causes the field 
register to be loaded with bits 21-27 of the effective 
address and the count register to be loaded with 
instruction word bits 32-35. The field register is 
therefore loaded from the adder, and the count 
register, from the storage register. Instruction 
word bit 32 controls the mode of protection, whereas 
instruction word bits 33-35 specify the number of 
high-order address bits to be compared against 
corresponding field register bits on subsequent 
memory references in store operations. 

Note in Figure 52 that the count register receives 
instruction word bits (32-35) and that the field 
register receives effective address bits. In 
determining the effective address, the entire 

115 



instruction word address field or base address is 
used. Further, an SPM instruction does not refer­
ence memory unless indirect addressing is specified 
by the instruction word flag field. 

When an ~ instruction is decoded with the 
machine already in the protect mode, a trap occurs 
and the machine is removed from the memory 
protect mode. 

Memory protection is an optional feature and may 
not be available on all machines. If an attempt is 
made to execute an SPM instruction in a machine 
that does not have the memory-protect feature, a 
no-operation results and the next sequential 
instruction is fetched. 

The memory protect mode is also removed by 
program control. A Release .Protect Mode (RPM) 
is provided for this purpose. 

Memory-Protect Examples 

Assume it is desirable to protect memory locations 
20000 through 37777 from being referenced by store 
class instructions. Initially, then, the field register 
must be set as shown: 

Octal: 2 or 3 I 0-7 I 0-7 I 0-7 I 0-7 

, 0 11 I X I X I X I Xl xJ X I X I X I X I X I X I X I X I 
Field Register 

The X in posItIOns 23-27 indi~ates any value: these 
bits can contain either 1 or O. Why? 

In this case, only field register bits 21 and 22 are 
important because they are the only two bits that 
remain exactly the same for all addreS'Ses within the 
block to be protected; other blocks could require up 
to all seven positions of the register in order to be 
properly identified. 

Next set the count register as shown: 
Equal Compare 
~ 

1 
32 

Compare the 2 high-order positions 
.r---',r--~.r-'· 
o 1 0 (octal 12) 

33 34 35 

Why? This count designates that only field register 
bits 21 and 22 are to be compared with address 
r~gister bits 21 and 22, and that if the AR contains 
any address beginning with 01 there is an equal 
compare. (See Figure 54). 

If the AR does have an address beginning with 01 
(an equal compare), the store-cycle latch is prevented 
from being set, thus preventing a store in the core 
location, and the CPU program goes into a memory­
protect trap routine. 

116 

To illustrate the unequal-compare mode operation, 
protect all memory locations except 01400 through 
01777 from being referenced by store class 
instructions. Initially, the field register must be 
set as shown: 

Octal: 0 I 1 I 4-7 J 0-7 J 0-7 

101010101011111xlx Ixlxlxlxlxlxl 

121 22 23 24 25 26 27'L.1 ----.... ____ ....J 
I I 

Field Register Low-Order Address Bits (28-35) 

Why? In this case, all seven high-order bits of the 
specified addresses are exactly the same, so the 
field register must be set to reflect this. 

Next, set the count register as shown: 
Unequal Compare 

~ 
o 
32 

+ 
1 

33 

Compare the,7 high-order positions 

" + 1 1 (octal 07) 

34 35 

Why? This count designates that all field register 
bits must be compared with address 'register bits 
21 through 27, and that if the AR contains any 
address beginning with any digits other than 0000011 
there is an unequal compare. (See Figure 54). 

If the AR has an address that does not begin with 
0000011 (unequal compare), the store-cycle latch 
cannot be set, and the program transfers to a 
memory-protect trap routine. 

In the first eX:J.mple, memory locations 20000 
through 37777 are protected. In the second example, 
locations 00000 through 01377 and'02000 through 
77777 are protected. 

Memory-Protection Control Setup 

Figure 55 shows the memory-protection controls. 
The count register is loaded with bits 32 through 35 
of the ~ instruction directly from the storage 
regIster, which means that address modification 
cannot be performed on data going into the count 
register. Count register position 32 determines 
whether. the CPU will trap on an equal or on an 
unequal compare; the other count register positions 
determine which address register and field register 
bits will be compared (Figure 54). 

The field register is loaded with bits 21 through 
27 from the adder, which means address modification 
can be performed on data going to the field register. 
The outputs of the field register, along with outputs 
from the count registe.r, are AND'ed with address 
register bits 21 through 27 in a comparison network 
to determine whether the address register and field 
register have equal or unequal addresses. 







To illustrate the compare operation in terms of 
CPU signals: 

1. Given: 
field register 21 = 0 (iVi'P"'n.) 

address register 21 = 1 (AR 21) 
Count registers 33, 34, and 35 are all 
lIs (MP 4 or 2 or 1); this is necessary 
because bit 21 is always compared 
(Figure 54). 

2. What happens? 
The AND that is conditioned by MP 21, 
AR 21, and MP 4 or 2 or 1 has a +B 
output; the +B, through the OR, becomes 
the -B MP compare-unequal. If AR 21 
and MP 21 were the same (either OIS or 
lIs), neither AND would have a +B output; 
thus the OR would have a +B output, which 
is a compare-equal. 

The -B MP compare-unequal level is then ANDled 
with bit 32 of the count register to sense whether 
there has been a memory-protect violation. If the 
address register and field register do not compare, 
CR bit 32 must be a 0 (trap unequal) before an MP 
violation is sensed. 

If a violation is sensed, the resulting level is 
ANDled with several other levels to determine 
whether to request an MP trap. The two most 
significant levels involved in determining whether 
to request a trap are: MP mode and store ops. The 
MP-mode latch can only be set by an ~ instruction. 
The store-ops level is necessary because protection 
is needed only on a store operation; the CPU can 
read instruction and operand fetches from protected 
locations. 

When all conditions for a valid MP violation are 
met, the MP violation latch is set; the latch output 
effects an MP trap. Note that the store cycle latch 
is prevented from being set as soon as a violation 
is sensed. 

Memory protection is valid only when the CPU 
tries to store into protected locations; any 1-0 
channel can store into any memory location. 
Memory protection does not work for channels B 
through E because they enter storage directly 
through the MAR without going through the CPU 
address register. Channel A could have memory 
protection because it utilizes the CPU address 
register, but, to make channel A compatible with 
the other 1-0 channels, memory protection is 
suppressed for channel A. 

119 



SECTION 6 - TRAPPING 

GENERAL 

Trapping is a method of signaling unusual or special 
system conditions to a program without requiring 
special test instructions. With trapping, system 
status is constantly monitored, and, when a special 
condition is detected, the normal program sequence 
is interrupted and a transfer is made to a trap 
routine. 

An unusual or a special system condition can be 
either a normal condition or an error. For example, 
reading the end-of-file mark on a tape is normal, 
yet it is classified as a special condition. Such 
classification simplifies the program handling of the 
condition. On the other hand, the presence of 
floating-point spill is also considered an unusual 
condition. This classification appears more 
reasonable because it constitutes an error. 
However, each poses a question to the program in 
progress, and incorporating the trapping scheme 
Simplifies solution of the problem. 

Some types of traps are automatic; that is, under 
any machine conditions, their appearance causes a 
branch from the normal program sequence to a trap 
routine. Other types of traps, however, can occur 
only if the machine is in the trap mode. Still other 
types of traps can occur only if the machine is in the 
trap mode and the particular trap is validated. For 
example, floating-point spill automatically causes 
a trap, whereas the machine must be in the trap 
mope to act on an interval timer overflow. The 
machine must both be in the trap mode and have the 
parity-error circuits activated before action can be 
taken on a parity error. Similarly, a channel trap 
must be validated before the machine recognizes it. 
A channel trap is validated through the use of a 
mask register. The mask register is composed of 
latches, each allowing a different type channel trap 
when on. If a mask bit is a 1 (latch on) the 
corresponding trap condition is validated and will 
be recognized by the machine. If a mask bit is a 
o (latch off) the corresponding trap condition is 
considered invalid for trapping and will never be 
recognized by the machine. This method of 
validation provides great flexibility in programming 
the 7040-7044. 

In the trap scheme, each trap category is 
assigned two core storage locations. One location 
serves as a trap record location in which the 
conditions causing the trap and the instruction 
counter value at the time of trap recognition are 
stored. In this manner, a particular trap can be 
identified and, after execution of a trap routine, a 

120 

return to the point of program departure can be 
effected. In most instances the second reserved 
location sequentially follows the trap record location 
and is known as the instruction location. Following 
the recording of trap particulars in the record 
location, the instruction location value is forced into 
the instruction counter; therefore, the first instruction 
executed in a trap operation comes from the 
instruction location. 

The trapping scheme also provides for privileged 
instructions. Basically, a trap is recognized after 
the execution of the instruction causing the trap. 
With a privileged instruction, however, a trap cannot 
be recognized until after the execution of the 
instruction following the privileged instruction. The 
privileged instructions are: RDS, PRD, SEN, WRS, 
WBT, PWR, CTR, ENB, RC'T,ICT, and SPM. The -- -- -- -- -- -- ---
XEC is also a privileged instruction in that certain 
traps cannot occur between the XE C and the execution 
of its specified instruction. 

TRAP CONTROL 

For some types of traps, trap control is automatic; 
that is, regardless of the condition or state of the 
trapping-control triggers, the appearance of a 
certain condition causes a trap. For other than these 
special cases, trap control must be established: the 
machine must be placed in the trap mode. The trap 
mode is entered by turning on the trap-control 
trigger. Signals from this trigger serve as condition­
ing levels for many of the trap indication circuits. 
Three other triggers are also associated with trap 
control: parity-mode, memory-protect-mode, and 
channel-trap-control. Al though these triggers work 
in conjunction with the trap-control trigger, they are 
turned on independently of the trap-control trigger. 
In addition, because the trap mode is entered by 
turning on a trigger and trap circuits are established 
by turning on associated triggers, it is common to 
use the expression turn on trapping. 

The major portion of trap control is assigned to 
the trap-control trigger. This trigger can be turned 
on by executing a Transfer and Restore Traps (TRT) 
instruction. When the trap-control trigger is 0;:­
its output signals condition the memory protect, 
parity, interval timer overflow, and channel trapping 
circuits. Consequently, these types of traps cannot 
occur when the trap-control trigger is off. Another 
means of turning on the trap-control trigger is to 
execute a Transfer and Restore Parity (TRP) instruc­
tion. Executing a TRP causes all that a TR T causes 
and, in addition, turns on the parity-mode trigger. 
This trigger must be on to trap on any parity error. 



The memory-protect-mode trigger is turned on 
only by executing a Set Protect Mode (SPM) instruc­
tion. Note that execution of an SPM instruction with 
the memory-protect-mode trigger already on results 
in a memory protect violation trap. If a parity error 
occurs on the SPM instruction, a parity trap results 
and is given priority. 

The channel-trap-control trigger can be turned on 
by executing either an Enable (ENB) instruction or a 
Restore Channel Trapl(RCT) instruction. An ENB 
instruction also serves to set up the data channel 
trap mask. Each data channel contains a 4-bit mask 
register which is loaded with selected bits 'from the 
contents of the instruction word effective address. 
The bits loaded into a mask register may be either 
o or 1. A 0 mask register bit negates the associated 
condition for trapping, whereas a 1 mask register 
bit allows trapping when the associated condition 
occurs. The following listing defines the bits used 
to load each mask register: 

Effective if a 1 

Mask Bit Conditions Enabled Channel in Bit Position 

Operation Operation Complete or A 35 

EOF or Word Parity or 

Unusual End or End 

B 34 

C 33 

D 32 

E 31 

Direct Data Direct Data Interrupt B 25 

C 24 

D 23 

E 22 

Parity Word Parity or A 17 

Redundancy Check 

B 16 

C 15 
D 14 

E 13 

Attention 1401 Interrupt or A 8 

Teleprocessing Interrupt 

CIF Attention B 7 

C 6 

D 5 

E 4 

Unit Record Unit Record Interrupt A S 

The RCT instruction is not associated with the 
mask register; that is, execution of an E.Q1 
instruction only turns on the channel-trap-control 
trigger. Consequently, an ENB instruction must be 
executed to define the valid trap conditions in addition 
to turning on channel trap control. 

Why then is the liQ1' instruction available? After 
any trap occurs, the control trigger associated with 
that trap is turned off. To allow trapping during 
subsequent operations, trap controls must be re­
stored after the present trap is d~alt with. For 
channel trap operations, the E.Q.I instruction is 
provided: after a channel trap has been handled, 
executing an E£1 instruction restores the ability to 
trap (turns on the channel-trap-control trigger) with­
out affecting the mask. To turn off channel trap 
control without a trap, an ~ instruction refer­
encing a cleared location is executed. In this case, 
the control trigger is on, but no trap conditions are 
validated because of the zero masks. Channel 
trapping can be turned off manually by depressing the 
RESET pushbutton on the operator's console. How­
ever, depressing this pushbutton also resets all 
registers and indicators in both the CPU logic section 
and the data channels; the pushbutton must therefore 
be used discreetly. 

Memory protection is turned off each time a 
memory protect violation trap or an SPM trap occurs. 
It is restored by executing an SPM instruction. Only 
one instruction is provided, therefore, to establish 
memory protection. Further, memory protection 
may be turned off without waiting for or causing a 
trap by executing a Release Protect Mode (RPM) 
instruction. However, execution of an BEM auto­
matically causes a trap regardless of the condition 
of trapping-control triggers. The RESET pushbutton 
may also be used to turn off memory protection. 

The trap-control and parity-mode triggers can 
only be turned off by a trap. No instruction or 
manual means is available to reset these triggers. 
In fact, depressing the RESET pushbutton turns these 
triggers on. Normal operation therefore includes 
the trap mode. If a trap occurs that turns off either 
the trap-control or parity-mode trigger or both, 
executing either a :r.llI or '11ll', depending on the 
situation, will restore the desired trap control. 

TYPES AND PRIORITY 

There are approximately 15 types of traps in the 
7040-7044 system. These types follow in order of 
priority: 

1. Interval Timer Blast 
2. Memory Protect Violation 
3. Parity 
4. Instruction - .§..EM 

B.£M 
Floating Point 
.§TIl 

5. Pre-interrupt Memory Protect 
6. Interval Timer Overflow 
7. Direct Data 

121 



8. Channel E 
9. Channel D 

10. Channel C 
II. Channel B 
12. Channel A 
The instructions in..!.have equal priority. This 

situation does not pose any problem, because only 
one instruction can be executed at a time. 

In listing the channel traps, channel E was given 
highest priority for simplicity. Actually, the 
channel electrically farthest from core storage gets 
highest priority. This channel can be any of the 
overlapped channels. In fact, the arrangement of 
channels B through E with regard to priority has no 
limitations. 

Under any circumstances, channel A has the 
lowest priority, because it is always the closest to 
core storage. 

Interval Timer (IT) Blast 

Every 16 2/3 milliseconds, the interval timer 
requests two memory cycles to read out core 
storage location 00005, increment it by 1, and place 
the incremented value back in location 00005. The 
two cycles required for this operation can occur only 
(1) between instructions, (2) during an~, WET, 
PRD, SEN, WRS, PWR, CTR, BSR, REW, RUN, or 
WE F i~uction if ~ait is nec;ary for the 
channel, and (3) between unoverlapped cycles of an 
!l£.!!;i instruction. There are instructions in the 
instruction set and possible error conditions which 
prevent honoring of the interval timer request. If a 
second request for these cycles is made by the 
interval timer before the first request is honored, 
an interval timer blast trap occurs. 

The interval timer blast trap does not allow 
completion of the instruction in process. It resets 
all data channels, including channel A. It does not 
reset the AC or MQ register. It stores the contents 
of the instruction counter, normally the present 
instruction location plus 1, in positions 21-35 of 
location 00036, and the computer takes its next 
instruction from location 00037. Trap control is 
turned off, thus inhibiting all other traps, and the 
two waiting interval timer cycle requests are reset. 
This action means that the contents of location 00005 
are 2 less than they should be when an interval timer 
blast trap occurs. An interval timer blast trap also 
resets the interval timer overflow trap request if it 
is on. 

122 

Memory Protect Violation 

A memory protect violation trap occurs when: 
1. An ~ instruction is executed (RPM trap). 
2. Memory-protect-mode trigger is on when an 

SPM instruction is executed (SPM trap). 
3. The program attempts to store in a protected 

area while the memory-protect-mode trigger is on 
and the trap-control trigger is on (violation trap). 

4. Memory-protect-mode trigger is on and the 
trap-control trigger is on and a channel, direct data, 
or interval timer overflow trap is requested (pre­
interrupt memory protect trap). 

Input operations on any channel are allowed to store 
anywhere without causing a memory protect violation 
trap. 

Occurrence of any of the four traps listed above 
turns off the memory-protect-mode trigger and 
causes the location of the next sequential instruction 
to be stored in bits 21 through 35 of core storage 
location 00032. The next instruction to be executed 
is then obtained from location 00033. In the case of 
a pre-interrupt memory protect trap 00033 is stored 
in the address field of the location appropriate to the 
trap which caused the pre-interrupt memory protect 
trap. 

The following bits are set in the location 00032 
decrement field to identify the cause of the memory 
protect violation trap: 

a. 14 - ]EM executed with memory portect 
mode off. 

b. 15 - RPM executed with memory protect 
mode on. 

c. 16 - Violation trap - or an SPM trap. 
d. 17 - Pre-interrupt memory protect 

violation trap. 

Parity trapping is closely associated with machine 
cycles; therefore, the following cycle definitions 
are given: 

1. I - A cycle used to fetch an instruction. 
2. IA - A cycle used to access an indirect 

address. 
3. E - A cycle taken to read or store in the 

execution of an instruction. 
4. B ,- A cycle used to accommodate transfers to 

and from an 1-0 device on an overlap channel (the 
store cycle of an SCH and the readout of an !Qill2 in 
an !iQ!:! are E cycles, not B cycles). 

5. U - A cycle used to accommodate transfers to 
and from an 1-0 device on channel A (the store cycle 
of an SCHA and the readout of the lORD in an RCHA 
are E cycles, not U cycles). 



6. C - An interval timer cycle to either readout 
or store into location 00005. 

Since no parity is kept with CPU registers, a word 
that is stored has a check bit generated for it as it 
is stored. Therefore, CPU information is checked 
only during read cycles, which include I, lA, E, and 
C read cycles. If a parity error occurs during a 
read cycle, the word is returned to its original 
location in error. Parity is also checked during B 
and U cycle read and store activities. If a parity 
error is encountered during an 1-0 store cycle, the 
word is stored with a corrected parity bit. 

The following partial-word store instructions 
require one I cycle and two E cycles: STA, STL, 
SAC, SXA, SXD, STD, and TSL. The first E cycle 
serves to read out and check the store location. The 
memory word is regenerated as it was during the 
first E cycle. If a parity error is detected, a parity 
trap is initiated and the instruction is not completed. 
However, if no error is detected during the first E 
cycle, the storage word is placed in the CPU storage 
register, and the applicable portion of the storage 
register is replaced with the new information. During 
the second E cycle, the complete storage register 
word is stored, and no parity error can occur. 

If a parity error occurs during an I or IA cycle 
with the parity mode and trap-control triggers both 
on, the instruction is not executed. The location of 
the instruction in error, plus 1, is stored in the 
location 00040 address field. The address of the 
instruction in error is stored in the location 00040 
decrement field. Location 00040 bit 18 is set to 
indicate that the error occurred during an I or IA 
cycle. The next instruction to be executed is 
obtained from location 00041. 

If a parity error occurs during an E cycle with the 
parity-mode trigger on, the instruction is not 
executed and the location of the instruction in error, 
plus 1, is placed in the location 00040 address field. 
The address of the instruction in error is placed in 
the location 00040 decrement field. Location 00040 
bit 19 is set to indicate that the error occurred 
during an E cycle. The next instruction to be 
executed is obtained from location 00041. 

If a parity error occurs during a C cycle with the 
parity-mode and trap-control triggers both on, the 
computer waits until the instruction being executed 
is completed, and then the location of the next 
sequential instruction is placed in the location 00040 
address field. Location 00040 bit 1 is set to iIl-dicate 
the error occurred during a C cycle. The next : 
instruction to be executed is fetched from locatiob. 
00041. 

If a parity error occurs during an I, lA, E, or C 
cycle when either the parity-mode or trap-control 
trigger is off, the execution of instructions is not 
interrupted until both are turned on. At this time, 

the location of the next instruction to be executed is 
placed in the location 00040 address field. Location 
00040 bit S is set to 1 to indicate a stacked parity 
error. Bits are set in location 00040 positions 1, 18, 
and 19 to indicate the type of cycle in which a stacked 
error occurred. One or all of these bits can be set 
in a stacked error parity trap. 

Ins truction 

There are four types of instruction traps: §EM, ~, 
floating point, and §I!!. They have equal priority, 
and each can occur when the machine is not in the 
trap mode. 

SPM 

If the memory-protect-mode trigger is on when an 
SPM instruction is given, an SPM trap results. The 
location of the §EM instruction, plus 1, is placed in 
the location 00032 address field. Location 00032 bit 
16 is set to indicate the type of trap. When the SPM 
trap occurs, it causes a memory protect violation 
trap to occur. The next instruction to be executed 
is obtained from location 00033. 

RPM 

Execution of an :B.£M instruction causes the location 
of the RPM instruction, plus 1, to be placed in the 
location 00032 address field. Location 00032 bit 
positions S through 20 are made O's. The next 
instruction to be executed is obtained from location 
00033. If the memory-protect-mode trigger is on 
when an li£M instruction is executed, it is turned 
off and location 00032 bit position 15 is set to 1. If 
the memory-protect-mode trigger is off when the 
RPM instruction is executed, location 00032 bit 
position 14 is set to 1. 

Floating Point 

During the execution of floating-point instructions, 
the result characteristic in the accumulator and MQ 
register may exceed eight bit positions, thus mean­
ing the result is too large for storage. The capacity 
of the machine is exceeded when the exponent goes 
above +1778 or below -200 8, Above +1778 is called 
overflow, and below -2008 is called underflow. 
Overflow and underflow may occur in either the 
accumulator or the MQ register. Upon sensing either 
condition, the CPU places the address plus 1 of the 
instruction that caused the condition into the location 
00000 address field. The following location 00000 
bits are also set to indicate the type of error: 

123 



1. 12 - Double-precision instruction word effective 
address specifies an odd location. 

2. 14 - Single-precision divide instruction. 
3. 15 - Overflow in either the accumulator or the 

MQ register or both. 
4. 16 - Accumulator overflow or underflow. 
5. 17 - MQ register overflow or underflow. 

Location 00010 is then accessed for the next instruc­
tion to be executed. 

STR 

The location of the §.!!!. instruction, plus 1, is 
placed in the location 00000 address field. Positions 
S through 20 are made O's. The next instruction to 
be executed is fetched from location 00002. 

Pre-Interrupt Memory Protect 

If the memory-protect-mode trigger and the trap­
control trigger are both on and a channel, direct 
data, or interval time overflow trap is requested, a 
pre-interrupt memory protect trap results. The 
memory-protect-mode trigger is turned off, and 
the location of the next sequential instruction is 
placed in the location 00032 address field. Location 
00032 bit 17 is set to indicate the type of trap. The 
requested trap is then performed. 

Interval Timer Overflow 

When the interval timer increments location 00005 
and an overflow occurs, a trap is requested. This 
trap cannot occur, unless the trap-control trigger is 
on. Further, it cannot occur between the execution 
of a privileged instruction and the execution of the 
instruction following the privileged instruction. If 
the memory-protect-mode trigger is on when an 
interval timer overflow occurs, it must be deter­
mined that no pre-interrupt memory protect trap is 
present before the interval timer overflow trap can 
be handled (pre-interrupt memory protect trap has 
higher priority). 

Upon honoring an interval timer overflow trap, 
the contents of the instruction counter (normally the 
location of the next sequential instruction to be 
performed in the main program) replace positions 
21-35 of location 00006 and the computer takes its 
next instruction from location 00007. 

When an interval timer overflow trap request is 
waiting, the interval timer is blocked from 
incrementing location 00005. If the interval timer 
trap request waits more than 33 milliseconds, an 
interval timer blast trap will occur which resets 
the interval timer overflow trap request. 

124 

Direct Data 

A direct data trap is a means of enabling overlapped 
chalinels to signal or interrupt processing by trapping. 
When a direct data trap occurs, the contents of the 
instruction counter (the location of the next sequential 
instruction) are placed in the location 00003 address 
field. The location 00003 decrement field is used to 
identify the channel making the direct data trap 
request. Location 00004 is then accessed for the 
next instruction. Note that the instruction in location 
00004 must be an unconditional transfer instruction to 
ensure compatibility with the 7090. 

A direct data trap can occur only when the trap 
control trigger is on and the channel-trap-control 
trigger is on. Further, a direct data trap cannot 
occur between the execution of a privileged instruction 
and the execution of the instruction following the 
privileged instruction. A direct data trap turns off 
the channel-trap-control trigger, thereby preventing 
other direct data traps and channel traps until the 
channel-trap-control trigger is again turned on with 
either an ~ or RQ! in~truction. 

Each channel has an associated four bit mask 
register, of which one bit controls direct data interrupt 
requests from that channel. This mask bit can be 
made a 0 or a 1 by executing an :!2ill instruction. In 
addition, each overlapped channel contains a latch 
which is turned on only by the direct data device, and 
then only when a trap is requested. Recognition of 
the trap request, however, is possible only if the 
associated mask bit is a 1 coincident with the latch 
being on. When the latch is on but the associated 
mask bit is a 0, no recognition is possible. Further, 
when a direct data trap is honored, the associated 
latch effects storage of a 1 into the corresponding 
decrement field bit position in location 00003: 

13 - Channel E 
14 - Channel D 
15 - Channel C 
16 - Channel B 

If the trap is honored and the decrement bit is set, the 
latch is turned off. If the mask bit prevents honoring 
of the trap, the latch remains on. However, a direct 
data latch for a particular channel may also be turned 
off by executing an RCH instruction addressing that 
channel or by depressing the RESET pushbutton. 

Channel Traps 

A channel trap allows a particular channel to signal or 
interrupt proceSSing by trapping the CPU program. 
Channel traps may be initiated by the following: 

1. Completion of any channel operation. 
2. A redundancy check. 
3. An end of file. 



4. A word parity check (U or B cycles only). 
5. Tape word incomplete or corporate interface 

unusual end. 
6. Corporate interface attention. 
7. 1401 attention (channel A only). 
8. Teleprocessing interrupt (channel A only). 
9. Unit record interrupt (channel A only) 
When a channel trap occurs, the instruction 

counter value (the location of the next sequential 
instruction) is stored in the trap record location 
address field. Bits indicating the conditions which 
caused the trap are set in the trap record location 
decrement field. All other bit positions in this 
location are O. The next instruction to be executed 
is obtained from the next sequential address after 
the trap record location: the instruction location. 
Trap record and instruction locations for each 
channel are as follows: 

Trap Instruction 
Channel Record Location Location 

A 00012 00013 
B 00014 00015 
C 00016 00017 
D 00020 00021 
E 00022 00023 

Note that instructions in the instruction locations 
must be unconditional transfer instructions to be 
compatible with the 7090. 

A channel trap can occur only when both the trap­
control and channel-trap-control triggers are on. 
A channel trap cannot occur between the execution 
of a privileged instruction and the instruction 
following the privileged instruction. Further, a 
channel trap turns off the channel-trap-control 
trigger, thus preventing other channel traps and 
direct data traps until the channel-trap-control 
trigger is again turned on; this action can be 
accomplished by executing either an ENB or an RCT 
instruction. 

Each channel employs a 4-bit mask register to 
specify the currently valid trapping conditions. The 
mask bits are arranged by an ~ instruction. If 
an all -0 mask is desired (no valid traps), depress 
the CLEAR, RESET, or LOAD pushbutton on the 
operator's console, execute an RDC instruction, or 
execute an ~ instruction referencing a cleared 
storage location. 

For each condition that can cause a channel trap 
there is a latch, which can be turned on and off by 
certain conditions. A latch can only request a trap 
if the associated mask bit is a 1. When a trap re­
quest is made, each latch which is on places a 1 in 
the corresponding decrement field bit position of 

the trap record address. If a latch is on but the 
associated mask bit is a 0, the latch can be turned 
on or off, but a trap request cannot be recognized 
and a trap record location decrement field bit cannot 
be set. All latches in a particular channel are turned 
off by an RDC addressing that channel, or by depress­
ing the appropriate operator's console pushbuttons. 

When a trap request is recognized, the associated 
latch is automatically turned off. If recognition is 
prevented by a 0 mask bit, the associated latch 
remains unaltered. 

The following table (Figure 56) gives the various 
decrement field bits used in the trap record 
locations, the associated latches, the name of the 
associated mask bit, and the meaning of each. 

Decrement 

Field Bit 

Position 

8 

9 

10 

11 

FIGURE 56. CHANNEL TRAPS TABLE 

(THEIR IDENTIFICATION AND MEANING) 

Latch 

Mask 

Bit Remarks 

Unit Record Unit The latch is turned on whenever 

Interrupt 

Tele­

processing 

Interrupt 

1401 

Attention 

Corporate 

Interface 

Attention 

Record the following devices attached 

to the 1414-UI or IV have 

completed their cycle: card 

re ad buffer full; paper tape 

re ader full; card punch buffer 

empty; print buffer empty. The 
latch cannot request a trap unless 

the channel is not in use. This 

type of trap applies only to 

channel A. 

Attention The latch is turned on whenever 

an inquiry buffer in the 1414- IV 

or V has a message waiting, 

when an output buffer has 

emptied. Included in this area 

are local inquiry, teletype, and 

1009. The latch is masked by 

the attention bit and can request 

a trap even when the channel is 

in use. This type of trap applies 

only to channel A. 

Attention The latch is turned on by the 

1401 and is masked by the 

attention mask bit. The latch 

can request a trap even when 

the channel is in use. This type 

of trap applies only to channel A. 

Attention The latch is turned on by the 

corporate interface attention 

line and is masked by the 

attention mask bit. The latch 

can request a trap and store into 

the trap record location even 

when the channel is in use. This 
type of trap is not applicable to 

channel A. 

125 



Decrement 

Field Bit 

Position 

12 

14 

15 

126 

Latch 

Mask 

Bit Remarks 

Unusual End Operation The latch is turned on at the end 

of a tape operation if the total 

number of characters handled 

was not a multiple of 6. The 

latch is not used when an end of 

file is read. The latch is also 

turned on by the corporate 

interface unusual end line to 

indicate some unusual condition. 

A sense operation is generally 

required to determine the 

condition. The latch is masked 

by the ope~ation mask bit and 

cannot request a trap unless 

the channel is not in use. This 

type of trap is not applicable to 

channel A. 

Word Parity Parity or The latch is turned on by a word 

End of 

File 

Operation parity error during read or write 

U or B cycles to memory. It 

may also be turned on during 

channel write operations by 

checking the 37th bit of a word 

wi th the sum of the six parity 

bits of a disassembled word. 

When the parity mask bit is a 1 

and the word parity latch is on, 

the channel stops the transfer of 

information to or from memory. 

The channel address register 

contains the address, plus 1, of 

the last word transferred. There­

fore, if the parity enable bit is 

1 when an invalid word is fetched 

from memory during a write 

operation, executing an SCH 

will locate the invalid word if 

1 is subtracted from the address. 

This latch can be recognized 

only when the channel is not in 

use. Note that the latch is 

enabled by two different mask 

bits. The parity mask bit stops 

channel transmission when an 

error occurs; the operation mask 

bit does not. 

Operation The latch is turned on by the 

end-of-file signal from the 1-0 

device. When the associated 

channel operation mask bit is 

0, the latch may be tested and 

turned off with a TEF instruction. 

When the associated mask bit is 

a 1, the TEF does not transfer 

or turn off the latch. Latch 

recognition is possible only 

when the channel is not in use. 

Decrement 

Field Bit 

Position 

16 

Latch 

Mask 

Bit 

Redundancy Parity 

Check 

Remarks 

The latch is turned on by a 

parity check recei ved from the 

1-0 device or by the byte parity 

check in the channel. When 

he associated mask bit is 0, the 

latch can be tested and turned 

off by a TRC instruction. When 

the associated mask bit is 1, a 

TRC neither transfers nor turns 

off the latch. 

Coincidence of a 1 in the mask 

bit and the latch being on causes 

information transfers to stop. 

The channel address register 

contains the address, plus 1, of 

the last word transferred. Latch 

recognition occurs only when 

the channel is not in use. For 

read operations, the channel 

remains busy for the entire 

record, although nothing is 

transferred to memory. 

17 Operation 
Complete 

Operation The latch is turned on whenever 

TRAPPING SCHEME 

the channel in use indicator goes 

from on to off, which is at the 

completion of every read, write, 

sense, and control operation, 

when the tape completes a BSR 

or WEF, or after relays are 

picked for a RUN or REW. If 

a BSR or REW is given at load 

point, the latch is turned on, 

although no mechanical motion 

occurs. 'Alhen the channel in 
use indicator goes from off to 

on, the latch is turned on. 

The trapping scheme is shown in Figure 57. 
Although not every possible situation is covered in 
the following paragraphs, enough examples are given 
for a thorough understanding of trapping. 

Channel Trap 

Assume that a tape read operation is programmed 
using channel B, and that the instructions used precede 
entry of the program into an arithmetic loop. This 
condition could be programmed as follows: 

100 RTBB 1 
101 RCHB WRD 
102 
103 
104 
105 

CLA 
ADD 
SUB 
MPY 

B 
C 
D 
E 



FIGURE 57. TRAPPING SCHEME 

CONDITIONS 

PARITY ----+01 
TRAPCTl--~L-_~ 

TRAP 

UNDERFLOW, OVERFLOW, AND All DPFP 1-____ -+ ______ --, 
ODD INSTRUCTION ADDRESSES 

RDS, PRD, SEN, WRS, PWR, CTR, ENS, 
WST, RCT, lOT, SPM, XEC INSTRUCTION 

( TRT ) .. 0 

( TRP ) 

ACTION 

TRAP CTl ON 

IC TO (A)00040 
(D)00040 TO AR 
(A)00041 TO IC 
TAGS TO 
(P, T)00040 

CONDITIONS TRAP ACTION 

YES 

C l--t~------, 

( ICT ) -0 

( TRT ) ~® 

( TRP ) ~ A 

( ) ENS, ~G) RCT 

C 

127 





106 
107 
110 

§.IQ 
TPL 

I!bi 

F 
103 

** 
By the time channel B is ready to transfer data, this 
simple routine is looping through the arithmetic 
activities. This looping continues throughout the 
data channel B transfers. Data channel B manifests 
it is ready to stop transferring by generating a trap 
request. Therefore, the machine must be in the trap 
mode, the data channel trap control circuits must 
be on, and the associated mask must be of a con­
figuration that validates this particular type of trap. 
For simplicity, assume the following mask was 
previously established by an ~ instruction: 

Name Att Parity Direct Data Oper 
Bit 0 0 0 1 
Ref Loc Bit 7 16 25 34 

It is impossible to predict just where in the 
arithmetic loop the trap request will occur, so 
assume during the execution of the subtract instruc­
tion the channel ~ (read) operation is finished. 
As soon as the channel goes "not in use, " the trap 
request is generated. The trap request is honored 
at the completion of the instruction in progress (in 
this case, the subtract instruction). 

To trace the action for this data channel B trap 
operation, enter Figure 57 at point A. Since this is 
not an interval timl)r request trap, a memory protect 
violation trap, a parity trap, an SPM trap, an RPM 
trap, a floating-point trap, an STR trap, or a 
privileged instruction, the answer to each decision 
as to the type of trap being requested is no and the 
scan (which is what these decision blocks represent) 
falls through to the end operation decision block. It 
has already been stated that the trap request cannot 
be generated until th~ end of the operation (instruc­
tion) in progress. Since the priority is determined 
as a result of the trap request, the answer to this 
question not only is yes, but was yes upon entering 
the trap priority circuits. The yes condition directs 
priority determination to point C. Point C marks 
the beginning of the next group of decisions to be 
made concerning the type of trap, or, said another 
way, point C marks the beginning of the next level of 
priorities in the trapping scheme. 

Starting at point C, the priority circuits, in effect, 
ask whether this trap request is for a pre-interrupt 
memory protect trap, an interval timer overflow 
trap, a direct data trap, a channel E trap, a channel 
D trap, or a channel C trap. The answer to each is 
no, and the priority determination falls through to 
the decision channel B trap block. At this block, a 
yes is realized. This yes condition results in the 
routing of a signal to V, which is the turn-off input 

to the channel-trap-control trigger. Thus, upon 
recognition of the particular data channel trap, action 
is taken to prevent any other channel trap from 
occurring until the current data channel trap is satis­
fied. Simultaneously with the turn-off action, the 
present contents of the instruction counter are stored 
in location 148. These contents specify the location 
of the subtract instruction plus 1, or the location of 
the multiply instruction (1058). Along with storing 
the instruction counter contents, location 148 tag bit 
17 (operation complete) is set to identify the type of 
trap. Following this --,-c tion , the next instruction to 
be executed is fetchdd fron location 158. This 
instruction must bE., in th'.s case, a TRA to a trap 
routine for 7090 con'~atibility. 

The channel trap routine may be formed in many 
ways; however, it probably will determine the cause 
of the trap. Location 148 is therefore referenced 
by the routine and brought into the CPU. The trap 
cause is determined by checking location 148 bit 17. 
This bit can be checked in various ways. One way 
is to put the contents of location 14 in the accumulator 
and then shift the accumulator left 17 positions. This 
shift places location 148 bit 17 in accumulator bit 
position P. A P bit test can then be made. In any 
event, the check of tag bit 17 of location 148 must, 
in this case, effect the insertion of an address into 
the address field of location 1108. This inserted 
address, in turn, references another routine which 
acts on the data just read from the tape. After the 
address is inserted, an RCT instruction is executed 
to turn on the channel-trap-control trigger. 
Immediately following execution of the RCT, a TRA 
148 is executed which returns program control to the 
original program at location 1058. 

The functions of the trap routine may be summarized 

as follows: 
1. Check location 148 tag bit 17. 
2. Effect the insertion of an address in the location 

1108 address field. 
3. Restore channel trap control as the next-to-Iast 

step in the routine. 
4. Return control to the original routine as the last 

step in the trap routine. 

Pre-Interrupt Trap 

Using identical conditions as those assumed in the 
channel trap discussion, further assume that the 
memory-protect-mode trigger is turned on. Again, 
enter Figure 57 at point A, and examine each of the 
decision blocks. Each block yields a no until the end 
operation block is entered. Here, a yes results and 
the scan is directed to C. 

The first decision to be made at this point is 
whether this trap is a pre-interrupt memory protect. 
The answer is yes. Before proceeding, notice the 

129 



conditions necessary for this type of trap. First, 
the memory-protect-mode trigger must be on. 
Second, coincidence of the trap-control trigger being 
on and a timer overflow trap request must occur 
with the first condition, or the trap-control trigger 
must be on along with the channel-trap-control 
trigger and the associated mask must be other than 
all 0' s coincident with the first condition. Thus, 
conditions which honor channel traps or an overflow 
trap along with the memory-protect-mode trigger 
being on constitute the conditions for a pre-interrupt 
memory protect trap. 

During the last I cycle of the subtract instruction 
execution (the time during which end operation 
occurs and when normally the next instruction is 
fetched), the trap controls are set, thereby 
recognizing the trap request. During the following 
E cycle, the signal is generated to point L on the 
diagram which turns off the memory-protect-mode 
trigger. Further, during this E cycle, the contents 
of the instruction counter are stored in location 328, 
and bit position 17 of this location is set to identify 
the trap. Once the memory-protect trigger is turned 
off, the pre-interrupt memory protect trap is 
completed. 

Following this E cycle, an I cycle occurs during 
which location 338 is normally referenced for the 
next instruction to be executed. Instead, however, 
referencing of location 338 is blocked, and the 
channel trap is honored by setting up the channel 
trap controls. An E cycle is then entered during 
which the contents of the instruction counter, which 
contains 338, are stored in location 148, and tag bit 
17 is set. The channel-trap-control trigger is 
turned off, and then location 158 is referenced for 
the next instruction. 

The location 158 instruction, again, must be a 
TRA to a trap routine, which references location 148' 
and checks bit 17 of that location to determine the 
cause of the trap. Checking this bit must effect 
insertion of an address into the location 1108 address 
field which will reference a routine designed to take 
advantage of the data just read from the tape. The 
final actions in the trap routine must be as follows: 

1. An RCT to restore the channel trap circuits. 
2. A 1:!bi to location 148, which must contain a 

TRA. 
3. Since the location 148 address field contains 

338' the transfer to location 148 causes, in turn, a 
transfer to location 338' 

4. Location 338 must contain a TRA 32 which 
transfers program control to location 32 8, This 
location contains the original point of departure and 
effects transfer to that point. 
In addition, somewhere in the trap routine prior to 
restoring the channel trap circuits, provision must 
be made for restoring the memory-protect-mode 
trigger. 
130 

Privileged Instruction Trap 

If a trap request is generated during the execution 
of a privileged instruction, the trap is not recognized 
until the instruction following the privileged instruc­
tion is executed. This limitation is necessary be­
cause instructions classified as privileged are 
instructions that involve (1) data transfers, (2) the 
condition of trap control circuits, or (3) execution 
of an instruction out of sequence. 

With instructions that involve data transfers, 
selection of tape operations is the basic consideration. 
When a tape is selected, an llQ!! must be given 
within 3 to 15 milliseconds after the select instruc­
tion. Since this timing restriction is mandatory for 
tapes, it simplifies the trapping scheme to make it 
standard for all select instructions. All select 
instructions are therefore considered privileged 
because of this time limitation. Consequently, no 
trap can be honored between execution of a select 
instruction and execution of an RCH instruction, 
except on an interval timer blast trap. 

With instructions that involve the condition of trap 
control circuits (:§,@, RCT, ICT, SPM), the major 
pOint of consideration is their execution at the end 
of a trap routine. In this case, it must be insured 
that program control is returned to the original 
routine before a new trap is recognized. Thus, the 
programmer can maintain a clear record of the 
point of departure with each trap, and under almost 
any circumstances return to that point. 

The execution of an instruction out of sequence 
occurs when an XEC instruction is given. In this 
case, it is again important that program control be 
returned to the original sequence before a trap is 
recognized. 

When a trap is requested during a privileged 
instruction, the priority determination starts at 
point A (Figure 57). Each decision block is 
examined and yields a no condition until the privi­
leged instruction block is entered. Here, the yes 
condition is realized, and the action is looped back 
to point A. Between leaving the priority loop at the 
privileged instruction block and re-entering it at 
point A, the instruction following the privileged 
instruction is executed. 

Floating-Point Trap 

Assume that during the execution of a single­
preCision floating-point divide instruction, 
accumulator and MQ register underflow occur. 
Let the original accumulator characteristic, for 
example, be so small that underflow results from 
characteristic subtraction. Although a floating­
point-trap-request signal is immediately generated, 
the request is not recognized until the instruction is 



completely executed. During the last I cycle time, 
the end-operation phase of the instruction takes 
place. At this time, the request is recognized by 
setting up the trap controls: set the trap trigger, 
block instruction counter stepping, etc. 

Following this I cycle, an E cycle is taken, during 
which the present instruction counter contents are 
stored in location 00000, and bits 14 and 17 of that 
location are set to identify the type of trap. In 
addition, during this E cycle, the value 000108 is 
placed in the instruction counter. The next instruc­
tion to be executed is obtained from location 108, 
and this instruction must be a TRA to a trap routine. 

The trap routine referenced must inspect location 
00000 to determine the cause of the trap. With the 
type of trap assumed, the trap routine would probably 
provide for the adjustment of the operands used in 
the divide so that a legal operation can be performed. 
The last step in the routine must be a TRA to location 
00000, thereby returning control to the original 
program sequence. 

TRAPPING EXECUTION 

This portion discusses the timing of each individual 
trap, how each trap is enabled and requested, and 
how priority is established and executed. 

To effect a trap routine requires one I and one E 
cycle. During I time, the trap is established 
according to priority, and the storage location in 
which to store data pertaining to the trap is deter­
mined. During E time, the contents of the instruc­
tion counter (and address register if a parity error) 
and flag bits are stored in the predetermined 
location in storage. Also during E time, the trans­
fer-to location is determined, and the next instruc­
tion is taken from this transferred-to location. The 
program may take action on the trap, return to the 
point at which the trap occurred, or start a new part 
of the program. 

The trapping scheme as discussed in this section 
is divided into five paragraphs: 

1. General timing. 
2. Trap enabling. 
3. Trap request generation. 
4. Trap priority. 
5. Individual traps. 

Figure 58 is a timing chart of the I time and E time 
of a trap, showing data transfer and control during a 
trap routine. The traps are listed from left to right 
according to trap priority. From top to bottom are 
listed the important controls, register setting, and 
data transfer. In addition, this chart reflects the 
addresses used during each individual trap routine. 

Unlike ~e REM and STR instructions, the SPM 
trap (not included in Figure 58) does not cause an 
automatic trap. The SPM instruction is executed 

when not in memory-protect mode. If an §EM instruc­
tion in memory-protect mode is given, a memory­
protect-violation trap request is generated. This 
trap has second highest priority. 

Assume for this general discussion that all traps 
are enabled. If a trap is enabled, the trap is 
executed when a trap request occurs. The conditions 
that necessitate setting the blast-control trigger are 
a parity error and an interval timer blast. Occurrence 
of a parity error during an I or lA, E, or C cycle 
generates the parity request if parity traps are 
enabled. No other trap requests are honored until 
completion of the parity trap. A blast will not occur 
if a stacked parity trap occurs. If the interval timer 
(IT) has not been incremented for 33ms, an IT blast­
trap request is generated. As shown in the timing 
chart (Figure 58), the blast-control trigger is set at 
A4 time. Setting this trigger causes an immediate 
end-operation (A4.5 time), and the program register 
is reset by an A4 D2 pulse. The object is to get into 
trapping I time immediately, regardless of the 
instruction cycle in which the IT blast-trap request 
occurred. 

For an example of a typical trap, assume that an 
IT overflow trap request was generated and that all 
traps are enabled. At the completion of the instruc­
tion being executed, trapping I time is entered. At 
13 time, the program register is reset (Figure 58), 
and the IT trap trigger is set. The address register 
is reset, and 00006 is loaded into the address register 
by late 15 D1 and late 15 D2 pulses. During E time, 
the instruction counter is sent to the storage register 
by an EO D1 pulse. During EO time, the MAR is 
reset and loaded to specify the storage location. The 
storage register is sent to the storage bus during all 
of E early time. The contents of the instruction 
counter are stored in location 00006. During Elate 
time, bit 35 of the address register is set to a 1. 
Note that the address register is not reset at this 
time (E5 D1). The address is therefore equal to 
00007. Location 00007, then, is the address to which 
the program is transferred before entering the trap­
correction routine of the program. The address 
register is sent to the instruction counter at I1 time 
of the next instruction (location 00007). 

Channel traps and DD traps are not discussed in 
detail in this section (see the sections dealing with 
the theory of operation of the channel), but general 
data is given to show the similarity between various 
traps. 

The timing of any of the traps can be traced by 
referring to figure 58 and following the trap timing 
Similarly to the method explained above for the IT 
overflow trap. 

131 



... 
'" '" 

i
l4:---------TRAPPING TIME -----=t ~I 
i"'>-----I EARLY-------I0I ... ----E EARLY I EARLY ;, R~J:" 

~ .;,."&- ~ 
t, 0'.<:' .;,. 

r------------------------------------r---+--~--~--~--~--~~--~--r_--,_--_r--_r--_r--_r--_r--~--~ ~ ~c1 ~ ~ 
4 5 0 I 2 3 4 5 0 I 2 3 4 5 0 I ~ ~ S ,,'" '* 

1------1 LATE ------I I---E LATE 

BLAST CONTROL ]I 

*RESET PROGRAM REGISTER ]I 

*END OPERATION TRIGGER v 
RESET PROGRAM REGISTER ... ]I ]I ]I 

SET PROGRAM REG ISTER 

SET TRAP TRIGGER ]I ]I ]I 

STEP INSTRUCTION COUNTER -RESET ADDRESS REGISTER ]I ]I 

ADDRESS GENERATOR TO ADDRESS REGISTER 

ADDRESS REGISTER TO STORAGE REGISTER - ]I 

INSTRUCTION COUNTER TO STORAGE REGISTER - J/ J/ ]I 

RESET MEMORY ADDRESS REGISTER - - J/ ]I ]I 

ADDRESS REGISTER TO MEMORY ADDRESS REGISTER ]I ]I 

ADDRESS REGISTER TO MEMORY ADDRESS REGISTER J/ ]I ]I 

ADDRESS GENERATOR TO MEMORY ADDRESS REGISTER 40 

TAGS TO STORAGE BUS ]I ]I 

STORAGE REGISTER TO STORAGE BUS J/ ]I ]I 

STORAGE .BUS TO MEMORY DATA REGISTER - ]I ]I ]I 

END OPERATION TRIGGER ]I ]I ]I 

RESET ADDRESS REGISTER - ]I 

ADDRESS GENERATOR TO ADDRESS REGISTER 37 33 41 

ADDRESS REGISTER TO INSTRUCTION COUNTER 111-]1 ]I ]I 

* OCCUR.AS A RESULT OF SETTING THE BLAST CONTROL TRIGGER -
CHANNEL ** STORE LOCATION *** TRANSFER LOCATION 

A 00012 00013 
B 00014 00015 
C 00016 00017 
D 00020 00021 
E 00022 00023 

FIGUR~TRAP T .... 

]I ]I ]I ]I v' ]I 

]I 

]I ]I ]I ]I 

]I ]I 

]I ]I ]I ]I ]I ]I 

32 o o 

]I ]I ]I ]I ]I ]I 

]I ]I ]I ]I ]I ]I 

]I ]I ]I ]I ]I ]I 

]I ]I ]I ]I ]I ]I 

J/ ]I ]I ]I 

]I ]I ]I ]I ]I ]I 

]I ]I ]I J/ ]I ]I 

]I ]I ]I ]I J/ ]I 

]I 

33 2 10 7 *** 4 

V J/ ]I ]I 



Trap Mode Setup 

Four triggers control the honoring of the trap and 
trap requests: 

1. Trap-control trigger. 
2. Parity-mode trigger. 
3. MP-mode trigger 
4. Channel-trap-control trigger 

Figure 59, a table, lists the traps, the conditions for 
generating a trap-request level, the conditions for 
setting the trap trigger, and the trap-control triggers 
that are reset as a result of a particular trap. In 
Figure 60, which supplements the table in Figure 59, 
the triggers that enable trapping are shown in heavy­
weight lines; dashed lines indicate the trap, and 
normal-weight lines indicate the important logical 
actions that occur before entering the trap routine. 
As shown in Figure 59, not all traps are controlled 
by the triggers listed above. For example, the only 
means of preventing an interval-timer-blast trap is 
to turn off the STORAGE CLOCK switch, and, since 
a floating-point error results in erroneous compu­
tations, a floating-point trap is always honored . 
.R!:M and STR are instruction traps. All other traps 
are under control of the trap-control trigger and one 
other (parity-mode, MP-mode, or channel-trap­
control) trigger. A parity trap cannot occur without 
the trap-control and parity-mode triggers set; a 
memory-protect-violation trap cannot be honored if 
the trap-control and MP-mode triggers are reset. 
If an SPM instruction is executed in MP mode, the 
memory-protect-violation trap request is honored 
without additional trap restrictions. 

If a memory-parity error occurs during readout 
from memory of any instruction, including an RPM, 
STR, or SPM instruction, the parity trap is always 
executed (if traps are enabled). 

Trap Requests 

Three conditions determine the honoring of a trap: 
1. No enabling is needed to generate the trap 

request or to execute the trap. 
2. A trap request is generated and honored when 

the trap is enabled. 
3. A trap condition may exist, but a trap request 

is never generated. 
Since it is possible for the CPU to hang up on 

instructions that inhibit C cycles, the IT blast-trap 
request is generated and honored to eliminate the 
hang condition. Figure 61 shows how the interval­
timer-blast request is generated. No enabling is 
necessary to execute this trap. 

The second trap that is executed without enabling 
is the floating-point trap. The conditions that cause 
a floating-point trap are an overflow, an underflow, 
and a double-precision operand address odd. 

Figure 62 shows how the floating-point trap request 
is generated. 

The trap conditions that generate a trap request and 
that are honored when the trap is enabled are shown 
in Figures 63, 64, and 65. These traps are the parity 
trap, the MP violation trap (which is the pre-interrupt 
memory protect), interval timer overflow, channel 
traps, and direct-data traps. If a parity error occurs 
when traps are not enabled, the stacked PT trigger is 
set. When the trap-control and parity-mode triggers 
are set, a parity trap may occur. The stacked-PT 
trigger generates a flag bit (S position) and a flag bit 
indicating the cycle in which the parity occurred (I 
or lA, E, or C). Note that a blast does not occur 
if the parity trap is delayed. A flag in the S position 
of the stored location indicates that the contents of the 
instruction counter and address register as stored in 
memory do not indicate the point of error. An IT 
overflow trap request and a DD or channel-trap de­
mand are also honored when the traps are enabled 
(Figure 64). 

A pre-interrupt memory protect causes an MP 
violation trap routine to be executed. The MP 
violation request is not generated, but the MP-trap 
trigger is set and a trap routine is executed. The 
conditions that cause a pre-interrupt memory protect 
are shown in Figure 64. The pre-interrupt memory 
protect trap (MP-violation trap routine) resets the 
MP-mode trigger. The trap condition still exists, 
trap priority is re-established, and the original trap 
request is honored. 

Another trap condition that may exist and never be 
honored if traps are not enabled is memory-protect­
violation (Figure 65). Note that the §EM memory­
protect-violation trap is not controlled by the trap­
control trigger. 

Request Recognition 

Since it is possible for more than one trap request 
to be generated at any given time, a priority scheme 
must be established. Figure 66 is a flow diagram of 
the trapping priority scheme. The order of priority 
is as follows: 

1. Interval timer blast. 
2. Memory protect violation. 
3. Parity. 
4. Instruction traps. 

a. SPM 
b. RPM 
c. STR 
d. Floating point 

5. Pre-interrupt memory protect. 
6. Interval timer overflow. 
7. Direct data. 
8. Channel traps (channels A-E). 

133 



FIGURE 59. TRAP-ENABLE CONDITIONS TABLE 

Conditions For: Control Triggers 
Reset As a Result 

Trap Name Trap Request Generation Setting the Trap Trigger of a Trap 

Interval timer blast Storage clock on and no C cycle IT blast request Trap control 
within two clock cycles 

Memory protect 1. Storing in a protected area MP violation trap request MP mode 
violation in memory and trap-control 

and MP-mode triggers set. 
2. 8PM instruction when the 

MP-mode trigger is set. 

Parity 1. Trap-control and parity- Parity trap request 1. Trap Control 
mode triggers set and mem- 2. Parity Mode 
ory parity error. 

2. If the trap-control or parity 
mode trigger is reset, the 
stacked-PT trigger is set. 
The parity-trap-request 
level will cause a trap after 
both these triggers are set. 

RPM Instruction trap RPM instruction MP mode (if set) 

8TR Instruction trap STR instruction None 

Floating point Overflow, underflow, and/or Floating-point trap request None 
DPFP odd address 

Pre-interrupt IT overflow trap request or DD 1. Interval timer overflow MP mode 
memory protect trap request, or channel trap trap request and not-

request and MP mode trigger privileged instruction 

set. * and MP-mode trigger 
set. 

2. MP-mode trigger set 
and (DD trap request or 
channel trap request) 
and not-privileged 
instruction. 

Interval timer Overflow Not MP-mode trigger and None 
overflow trap-control trigger set. 

* Cannot get DD or channel trap requests unless the trap-control and channel-trap-control triggers are set. 

134 



IS TRAP CONTROL ,~Y~E~S~ ____________________________________ ~ ________________________________________ ~~ ____________________ --, 
TGR SET? 
02.13.03.1 

NO IS PARITY MODE 
TGR SET? 
02.13.03.1 

,---, 
YES 

02.13.01.1 
PARITY ERROR ) 

'--___ -1 

SET (1 OR IA PT TGR) 
+ (E CYCLE PT TGR) 
+ (C CYCLE PT TGR) 
02.13.01.1 

PARITY TRAP 
REQUEST 

FIGURE 60. TRAP ENABLE SCHEME 

YES 

YES 
,---, 

SPM INSTRUCTION ) 
02.16.05.1 

'-----' 

MP MODE TGR SET? rY.:;;ES'--_ .... 
02.16.05.1 

YES ~~RFLO-;;;,;;'\) 
REQUEST TGR SET? 

~~~_J 

MP MODE TGR SET?
02.13.05.1

YES

CHANNEL TRAP
CONTROL TGR SET
02.13.03.1

/CHANNELSA-E TRAP\
DEMAND OR DD TRAP)
DEMAND
~~ __ J

HONOR CHANNEL A-E OR
DD TRAP DEMANDS
ACCORDING TO PRIORITY.
RESET CHANNEL TRAP
CONTROL TRIGGER AT END
OF CHANNEL TRAP OR DD
TRAP

I I
YES IS STORAGE CLOCK

SWITCH ON?
02.16.51.1

SET EARLY C REQUEST TGR
EVERY 162/3 MILLISECONDS
02.16.51.1 (4D)

SET C REQUEST INTERLOCK
A2 (DI)
02.16.51.1 (4F)

SET C CYCLE REQUEST TGR
A4 (DI)
02.16.51.1 (5H)

RESET C REQUEST INTERLOCK
AI (DI)
02.16.51.1 (2H)

RESET EARLY C REQUEST TGR
Al (DI)
02.16.51.1 (2F)

~ HAS C CYCLE REQUEST
\ BEEN HONORED

NO

RESET C CYCLE REQUEST TGR
A4 (DI)
02.16.51.1 (3H)

MES HAS 33 MILLISECONDS ~O
ELAPSED? (EARLY REQUEST
C CYCLE REQUEST SET?)

SET IT BLAST REQUEST TGR
A2 (DI)
02.16.54.1 (4G)

(
IT BLAST REQUEST LEVEL T00
CAUSE IMMEDIATE INTERVAL
TIMER BLAST TRAP

FIGURE 61. INTERVAL TIMER BLAST TRAP REQUEST

136

YES

1
YES

IS AC CHAR> 377?

I
YES

IS MQ CHAR < OOO?

I
IS AC CHAR < OOO?

YES

I
IS MQ CHAR > 377?

YES

I
IS HIGH ORDER DOUBLE ~ES
PRECISION OPERAND
ADDRESS ODD?

SET DPFP TRAP TGR
FIRST E3 (D1)
02.20.41.1 (4F)

FIGURE 62. FLOATING-POINT TRAP REQUEST

FLOATING POINT
INSTRUCTION?

SET MQ OV UN TGR
A1 (D1)
02.20.41,1 (4A,4B)

I
J
I

OR

I

SET AC - MQ OV TGR
A1 (D1)
02.20.40.1 (4D,4E,5G)

I
L
I

I GENERATE FP TRAP REQUEST I 02.20.41,1 (2D)

I
(TO FLOATING POINT) TRAP ROUTINE

SET AC OV - UN TGR
A2 (D1)
02,20,40.1 (4H)

137

PARITY ERROR?
02.05.45.1

YES

YES DURING I OR IA CYCLE? ~
02.13.01.1 I

SET I OR IA PT TGR
AO (Dl)
02.13.01.1 (48)

SET E CYCLE PT TGR
AO (Dl)
02.13.01.1 (4D)

I

YES DURING E AND NOT U rO
CYCLE?
02.13.01.1

DURING C CYCLE?
02.13.01.1 ~ '---------

SET C CYCLE PT TGR
AO (Dj)
02.13.01.1 (4E)

~ ____ ___ N_O-< IS PARITY MODE TGR SET?)-Y_E_S _____
02.13.03.1

r--_______ ---N-O-(IS TRAP CONTROL TGR SET? J-Y_E_S __ --,

SET STACKED PT TGR
LATE (I+IA+E+C) 0 (Dl)
02.13.01.1 (3G)

WAIT FOR TRP INSTRUCTION
02.13.03.1 (5F)

WAIT FOR TRT OR TRP
INSTRUCTION
02.13.03.1 (5A)

FIGURE 63. PARITY TRAP REQUEST

138

I I
GENERATE PARITY TRAP
REQUEST
02.13.01.1 (1 B)

TO PARITY TRAP ROUTINE C BLAST) --

IS THERE AN IT OVERFLOW? YES
SET IT OVERFLOW TGR

(AC P ~ 1 WHEN INCREMENTING A2 (D1) FIRST C CYCLE

LOCATION 00005) DELAYED
02.16.54.1 (4E)

SET IT OVERFLOW TRAP
REQUEST TGR
A1 (D1) LAST C CYCLE
02.16.54.1 (51)

GENERATE IT OVERFLOW
REQUEST
02.16.54.1 (21)

YES CHANNEL OR DD
TRAP DEMAND
02.13.02.1 (IH, 2B)

I I
F-< IS A PRIVILEGED INSTRUCTION YES I EXECUTE PRIVILEGED .1

BEING EXECUTED INSTRUCTION AND THE

02.13.04.1 (31) I FOLLOWING INSTRUCTION

I WAIT FOR TRT OR TRP I NO lis TRAP CONTROL TGR SET? \ YES

INSTRUCTION I 02.13.03.1 (IB) I

I n IS MP MODE TGR SET? '\
YES

02.16.05.1 (2B)

YES
DD TRAP DEMAND

i\ I T OVERFLOW
OR CHANNEL A
TRAP DEMAND?

TRAP REQUEST?

02.13.02.1 (3B,3E)
02.13.05.1 (4Cj

I WAIT FOR RCT OR ENB I NO IS CHANNEL TRAP CONTROL~
INSTRUCTION I TGR SET?

02.13.03.1 (2E, Ie)

1

SET MP TRAP TGR

1
13 (D1)

NO I T OVERFLOW YES
02.13.05.1 (3G)

TRAP REQUEST?
02.16.54.1 (71)

~ IS CHANNEL TRAP CONTRO? EXECUTE PRE-INTERRUPT TRAP

TGR SET? ROUTINE. THE MP MODE

02.13.03.1 (IC) TRIGGER IS RESET AND TRAP
PRIORITY MUST AGAIN BE
ESTABLISHED

I WAIT FOR ENB OR RCT I
INSTRUCTION

(TO CHANNEL) (TO IT OVERFLOW
TRAP ROUTINE TRAP ROUTINE

FIGURE 64. INTERVAL TIMER OVERFLOW AND CHANNEL TRAP REQUESTS

139

IS AN INSTRUCTION
ATTEMPTING TO STORE
IN A PROTECTED AREA
IN MEMORY?
02.16.05.1

NO TRAP CONTROL TGR SET?
02.16.05.1

STORE IN PROTECTED
AREA. NO TRAP IS
REQUESTED

YES

SET MP VIOLATION TGR
Al (D1)
02.16.05.1 (3F)

FIGURE 65. MEMORY PROTECT TRAP REQUEST

140

SPM INSTRUCTION
02.16.05.1

MP MODE TGR SET?
02.16.05.1

SET MP VIOLATION TGR
14.5 (Di)
02.16.05.1 (3G)

EXECUTE SPM INSTRUCTION

NO

NO

NO

PRIVILEGED INSTRUCTION
BEING EXECUTED
02.13.05.1

FIGURE 66. TRAPPING PRIORITY SCHEME

HAS A PRE-INTERRUPT
MEMORY PROTECT

YES SET MP TRAP TGR
13 (Dl)
02.13.05.1 (3H)

YES

YES

YES

SET MP MODE TGR
10 (Dl)
02.16.05.1 (4A)

BIT 14 FLAG
02.13.12.1 (3D)

AUTOMATIC TRAP NEXT
INSTRUCTION FROM
LOCATION 00002

SET FLOATING POINT
TRAP TGR
13 (Dl)
02.13.06.1 (5C)

CONDITION BEEN MET? }-""':':::"'...j
SET MP TRAP TGR
13 (Dl)
02.13.05.1 (4F) NOTE:

02.13.05.1

IS THERE A DIRECT DATA

YES

TRAP REQ OR A CHANNEL }-"":';:::""...j
TRAP REQ
02 • .J3.02.1

ESTABLISH TRAPPING
PRIORITY AND EXECUTE
TRAP ROUTINE

NOTE:

SET MP VIOLATION TGR
"l'i •• Q>1l

02.16.05.1 (3G)

BIT 15 FLAG
02.13.11.1 3H

THE PRE-INTERRUPT MEMORY
PROTECT CONDITIONS ARE:

TGR SET ?
02.13.05.1

I 3Dl • IT BLAST REQ •
MP VIOLATION TRAP REQ.
DISP,ENTER,OR CLEARoFP
TRAP REQ • PARITY TRAP
REQ. PRIV INST • MP MODE.
[CHAN NEL TRAP REQ + DD
TRAP REQ + (IT OVERFLOW
TRAP REQ • TRAP CONTROL.
TRUE MANUAL)] LOGIC
02.13.05.1 (5E,4F,5G,5C)

SET IT TRAP TGR
13 (Dl)
02.13.05.1 (3A)

141

Instruction traps have equal priority. This
presents no problem since only one instruction can
be executed at a time. Note that the privileged
instruction is important in allowing certain traps to
be executed. The privileged instruction trigger
inhibits three types of traps for one additional
instruction (if not a privileged instruction). The
traps that must wait are:

1. Pre-interrupt memory protect.
2. Interval timer overflow.
3. All channel traps and DD traps.

When the privileged instruction trigger is reset, the
trap executed is determined by priority (Figure 66).

Individual Traps

Once the trap is enabled, the trap request generated,
and priority established, the tra~ routine is executed.
Each trap is flow-diagrammed in this program to
show the trap routine sequence. After entering the
trap routine, all other trap requests are inhibited
from setting their own trap triggers (regardless of
priority) until the trap routine is completed.

The flow diagrams show the logic action perform­
ed and the logical decisions. The timing, logic, and
location of the logic block are included to aid in
locating the action in logiC.

The flow diagrams are in sequential order accord-
ing to priority (Figures 67 through 74):

1. Interval-timer-blast trap (Figure 67).
2. Memory-protect-violation trap (Figure 68).
3. Parity trap (Figure 69).
4. SPM instruction trap (Figure 70).
5. !!.EM instruction trap (Figure 71).
6. STR instruction trap (Figure 72).
7. Floating-point trap (Figure 73).
8. Pre-interrupt-memory-protect trap and

interval-timer-overflow trap (Figure 74).
The channel and DD trap requests show how the

trap routine is entered. For the channel trapping
scheme, refer to the theory of operation of the
channels.

The interval timer blast request, interval timer
overflow request, channel trap request, or DD trap
request sets the start trigger (if the machine is in
automatic status) at A5 time. This is shown as a
machine restart in Figures 67 and 74.

Channel A Trapping

There are eight possible channel A traps:
1. Unit record interrupt.
2. Teleprocessing interrupt.
3. 1401 attention.
4. Unusual end.
5. Word parity.
6. End of file.

142

7. Redundancy check.
8. Operation complete.
A trap can be effected only if it has been enabled

either by a I!U' or TRP instruction which sets the
trap control latch or by an Enable (ENB) instruction
which sets up a pseudo mask register to deSignate
which traps are allowed to take place.

Figure 75 shows how the Enable instruction sets
up trap enables. Note that this instruction always
sets the channel trap control latch. The mask
register consists of four triggers, each of which
will be set if the appropriate bit of the ~ instruc­
tion's effective address is a 1. A mask register
trigger must be set in order for any of the traps
associated with the trigger to be effected.

Also note, in Figure 75, that the ENB instruction
resets the mask triggers before it sets any of them.
This resetting action eradicates the effects of any
previous ~ instructions.

Unit Record Interrupt

Figure 76 is a flow chart of the unit record interrupt
trap. Whenever the 1414-I1I or IV card reader,
paper tape reader, card ptLl1ch, or printer goes
from a busy condition to a not-busy condition, the
unit-record-interrupt trigger is set. If the mask
register trigger, in this case the enable-buffer­
interrupt trigger, is also set, a unit record interrupt
trap is effected. The UR INT TRAP stores a 1 in
bit position 8 of memory location 00012 and stores the
contents of the instruction counter in bit positions
21-35. Memory location 00013 is then brought out
and will contain an unconditional branch to the trap
routine.

Teleprocessing Interrupt

Figure 77 is a flow chart of the teleprocessing
interrupt trap. Whenever the 1414-IV or V has a
buffer inquiry or outquiry, the buffer-attention
trigger is set. If the mask register trigger, in this
case the enable-attention trigger, is also set, a
teleprocessing interrupt trap is effected. The
teleprocessing trap stores a 1 in bit position 9 of
memory location 00012 and stores the contents of
the instruction counter in bit positions 21-35.
Memory location 00013 is then brought out and will
contain an unconditional branch to the trap routine.

1401 Attention

Figure 78 is a flow chart of the 1401 attention trap.
An 1-06 select level from the 1401 sets the 1401
attention trigger. If the mask register trigger, in
this case the enable-attention trigger, is also set, a
1401 attention trap is effected. The 1401 attention

trap stores a 1 in bit position 10 of memory location
00012 and stores the contents of the instruction
counter in bit positions 21-35. Memory location
00013 is then brought out and will contain an un­
conditional branch to the trap routine.

Unusual End

Figure 79 is a flow chart of the unusual-end trap.
Whenever the total number of characters read from
or written onto tape is not a multiple of 6, the
unusual-end-trap trigger is set. If the mask register
trigger, in this case the enable-end trigger, is also
set, an unusual-end trap is effected. The unusual­
end trap stores a 1 in bit position 12 of memory
location 00012 and stores the contents of the instruc­
tion counter in bit pOSitions 21-35. Memory
location 00013 is then brought out and will contain
an unconditional branch to the trap routine.

Word Parity

Figure 80 is a flow chart of the word parity trap.
Whenever there is a word parity error during a U
cycle, the word-parity trigger is set. If the mask
register trigger is also set, a word parity trap is
effected. In this case, there are two mask register
triggers, either of which will cause the trap: the
enable-parity or the enable-end trigger. If the
enable-parity trigger is set, a 1 is stored in bit
position 14 of memory location 00012. If the enable­
end trigger is set, a 1 is stored in bit position 17 of
memory location 00012. If both triggers were set,
bits 14 and 17 would each set to a 1. Also, the
instruction counter contents are stored in bit
positions 21-35 of location 00012. Memory location
00013 is then brought out and will contain an
unconditional branch to the trap routine.

End of File

Figure 81 is a flow chart of the end-of-file trap.
Whenever there is an end-of-file signal from 1-0,
the end-of-file trigger is set. If the mask register
trigger, in this case the enable-end trigger, is also
set, an EOF trap is effected. The trap stores a 1
in bit position 15 of memory location 00012 and
stores the instruction counter contents in bit pOSi­
tions 21-35. Memory location 00013 is then brought
out and will contain an unconditional branch to the
trap routine.

Redundancy Check

Figure 82 is a flow chart of the redundancy check
trap. Whenever there is a byte check bit error, the
redundancy-cheek-indicator trigger is set. If the
mask register trigger, in this case the enable-parity
trigger, is also set, a redundancy check trap is
effected. The redundancy-check trap stores a 1 in
bit position 16 of memory location 00012 and stores
the contents of the instruction counter in bit
pOSitions 21-35. Memory location 00013 is then
brought out and will contain an unconditional branch
to the trap routine.

Operation Complete

Figure 83 is a flow chart of the operation complete
trap. Whenever an operation ends (signified by an
EOR) , the end-trap trigger is set. If the mask
register trigger, in this case the enable-end trigger,
is also set, an operation complete trap is effected.
The trap stores a 1 in bit position 17 of memory
location 00012 and stores the instruction counter
contents in bit pOSitions 21-35. Memory location
00013 is then brought out and will contain an uncondi­
tional branch to the trap routine.

SUMMARY

The table in Figure 84 summarizes each of the pOSSi­
ble traps incorporated in the 7040-7044 equipment.

143

SET IT BLAST
REQUEST TGR
A2 (Ol)
02.16.54.1 (4G)

RESET C CYCLE CONTROL TGRS 1 A4 (Ol)
02.16.52.1 (5E) T

SET BLAST CONTROL TGR
A4(01}

INHIBIT HONORING OTHER 02.13.04.1 {4C}

TRAP REQUESTS 1 02.13.05.1 (5E)
RESET PROG REG AN 0 SC

02.13.01.1 (IB) T
A4 (02)
02.13.04.1 (I0)

SET END OP TGR

RESET CHANNELS 1
A4.5 (Ol)

02.14.07.1 (2G) I
02.15.39.1 (3A)

BLOCK IC TO AR AND

I AD TOAR
02.12.34.1 (48 ,40)

MACH RESTART I TIME OF TRAP
(IN AUTOMATIC)
A5 (02) I I BLOCK AR TO IC
02.14.02.1 (3F) I 02.12.36.1 (50)

RESET BLAST CONTROl. TGR
12 (Ol)
02.13.05.1 (51) I BLOCK PR SET

1 L 02.12.32.1 (4E)

I 1

I RESET PR I SET IT TRAP TGR BLOCK SPM INST EXEC
02.12.32.1 13 (Ol) 02.16.01.1 (51)

02.13.05.1 (3B) 02.16.02.1 (51)

BLOCK PR SET 1
02.12.32.1 (4E) I T

RESET AR

BLOCK STEP IC I
15 (Ol)
02.13.08.1 (4G)

02.12.36.1 (5B) I

I
AOR GEN TO AR

BLOCK IC TO AR AND (31-34) (AR=36)
AD TOAR 15 (02)
02.12.34.1 (48,40) 02.13.09.1

(4FAG,2A,5A) I
I RESET IT 8LAST REQ TGR

E6 (Ol)

E TIME OF TRAP 02.16.54.1 (50)

1 I
I 1 1 I TIME OF NEXT

INSTRUCTION

RESET MAR RESET TRAP CONTROL TGR SR TO SB E EARLY

I EO (Ol) AO (01) 02.12.40: 1 (4G)

02.13.03.1 (5B) I I
RESET MAR

IC TO SR (21-35)
10 (Ol)

J AR TO MAR
EO (Ol)

EO (02)
02.12.05.1 (3B)

02.12.50.1 (31) I
AR TOMAR
10 (02)
02.12.50.1 (31)

S8 TO MOO

1 A2(01}
02.12.50.1 (2A)

l
AR TO IC
II (01)
02.12.36.1 (40)

ENOOP

I 02.15.35.1 (3B)

I RESET IT TRAP TGR
12 (Oil.

AOR GEN TO AR (35) 02.13.05.1 (51)
(AR=37)

1 E5 (02)
02.13.09.1 (50)

FIGURE 67. INTERVAL TIMER BLAST TRAP I (.EXECUTE NEXT INSTRUCTION)
FROM .LOCATION 00037

144

BLOCK PR SET
02.12.32.1 (4E)

BLOCK STEP IC
02.12.36.1 (S~

BLOCK IC TO AR
AND AD TOAR
02.12.34.1 (4B,4D)

RESET MP V10LATION

WAS A MEMORY PROTECT YES
VIOLATION SENSED? }-----------,
02.16.05.1 (3D)

ADR GEN TO AR (31,32,34),
(AR = 32)
15 (D2)
02.13.09.1
(2F, 5F, 5A)

TGR E5 (D1) I-----i>--------------.....
02.13.05.1 (2F)

RESET MP MODE TGR
E5 (D1)
02.13.05.1 (2F)

FIGURE 68. MEMORY PROTECT VIOLATION TRAP

ADR GEN TO AR (35)
(AR = 33)
E5 (D2)
02.13.09.1 (5D)

YES

YES

IN MEMORY PROTECT MODE.
ENTER STORAGE. ANY TRAP.
PARTIAL STORE. PRE IA •
GO TO U
02.16.05.1

AR TO IC
11 (01)
02.12.36.1 (40)

145

WAIT FOR A TRP INSTRUCTiON
TO SET PARITY MODE TGR
02.13.03.1

RESET PROG REG AND SC
A4 (02)
02.13.04.1 (10)

BLOCK IC TO AR
AND AD TO AR
02.12.34.1 (4B ,40)

BLOCK AR TO IC
02.12.36.1 (5D)

BLOCK PR SET
02.12.32.1 (4E)

BLOCK SPM INST EXECUTiON
02.16.01.1 (51)
02.16.02.1 (51)

FIGURE 69. PARITY TRAP (SHEET I OF 2)

146

PARITY ERROR. FORCE TRAP.
DISP ENTER OR CLEAR. MP
VIOLATiON REQ?
02.13.01.1

YES

(TRAP CONTROL. PARITY
YES MODE TGRS SEn

BLOCK PROG REG SET
02.12.32.1 (4E)

BLOCK STEP IC
02.12.36.1 (5B)

BLOCK IC TO AR
AND AD TO AR
02.12.34.1 (4B,4D)

t~R~E~ TO MAR
EO (D3) ~
02.13.09.1 (1 I)

FIGURE 69. PARITY TRAP(Sheet 2 of 2)

I OR IA PT REQUEST
02.13.10.1

I TIME OF NEXT
INSTRUCTION

RESET MAR
10 (01)

AR TOMAR
10 (02)
02.12.50.1 (30

AR TO IC
11 (01)
02.12.36.1 (40)

I TO 58(19)
E EARLY
02.13.10.1 (38)

IORIA
PT REO

E PT REO

CPT REO

RESET TRAP CONTROL TGR
E EARLY
02.13.06.1 (lA)

RESET PARITY MODE TGR
E EARLY
02.13.06.1 lIA)

RESET I OR IA PT • E CYCLE
PT. C CYCLE PT. STACKED
PT TGRS
E5 (01)
02.13.06.) (Ie)

147

SET PRIV INST TGR
A!5 (02)
02.13.04.1 (4H)

SR (32-35) TO
COUNT REG
15 (01)
02.16.01.1 (51)

FIGURE 70. SPM INSTRUCTION TRAP

148

AD (25-27) TO
FIELD REG (25-27)
15 (Dl)
02.16.03.1

SPM INSTRUCTION DECODED
02.16.05.1 (5A)

END OP
02.15.35.1 (2A)

SR TO AD
14 (03)
02.12.08.1 (4E)

AD (21-24) TO FIELD
REG (21-24)
15 (01)
02.16.02.1 (51)

NO WAS MP VIOLATION TGR

YES

SETTING THE MP VIOLATION TG
CAUSES A MEMORY PROTECT TRAP
ON THE NEXT I CYCLE. THE PRIV
INST TGR IS RESET AT 15 TIME OF
THE TRAP. TH IS TRAP RESETS THE
MP MODE TGR. ANOTHER SPM
INST IS REQUIRED TO SET THE MP

ODE TGR.

SET DURING THE SPM INST }-----..,
02.16.05.1

TO MEMORY PROTECT
VIOLATION TRAP ROUTINE

SR TO S8
E EARLY
02.12.40.1 (4G)

RESET MP MOOE TGR
E5 (01)
02.13.05.1 (2F)

FIGURE 71. RPM INSTRUCTION TRAP

AOR GEN TO AR (31,32,34)
(AR = 32)
15 (02)
02.13.09 .1
(2F,5F,5A)

ADR GEN TO AR
(35) (AR = 33)
E5 (D2)
02.13.09.1 (50)

NO

RESET MAR
EO (Dl)

AR TO MAR
EO (02) (AR=O)
02.12.50.1 (31)

FIGURE 72. STR INSTRUCTION TRAP

149

BLOCK PR SET
02.12.32.1 ('IE)

BLOCK STEP IC
02.12.36.1 (58)

BLOCK IC TO AR
AND AD TO AR
02.12.34.1 (48,40)

ADR GEN TO AR (32)
(AR = 10)
E5 (02)
02.13.09.1 (5G)

FIGURE 73. FLOATING POINT TRAP

150

WAS A FLOATING POINT
TRAP REQUESTED?
02.20.41.1 (:>.D)

YES

I TO S8 (15)
E EARLY
02.13.11.1 (31)

RESET FLOATING POINT TRAP
EXECUTION CONTROL TGRS
E5 (D1)
02.13.06.1 (2F)

I TO S8 (16)
E EARLY
02.13.11.1 (2E)

EXECUTE NEXT INSTRUCTION
FROM LOCA nON 00010

I TO SB (17)
E EARLY
02.13.11.1 (3E)

BLOCK PR SET
02.12.32.1 (4E)

BLOCK STEP IC
02.12.36.1 (SB)

BLOCK IC TO AR
AND AD TO AR
02.12.34.1 (4B,4D)

RESET [T OVERFLOW
TRAP REQ TGR
E6 (D1)
02.16.54.1 (5D)

I TiME OF NEXT INST

F1GURE 74. PRE-INTERRUPT AND INTERVAL TIMER OVERFLOW TRAPS

YES

IF A PRE-INTERRUPT MEMORY
PROTECT OCCURRED BEFORE
THIS TRAP, 33 IS PLACED IN
LOCATION 6. IF THE M.P.
MODE TRIGGER WAS OFF,
THE CONTENTS OF THE Ie
ARE STORED IN LOCATION 6.

MACHINE RESTART
IN AUTOMATiC
AS (D2)
02.14.02.1 (3F)

NO [S A PR[V [NST TGR SET?
02.13.05.1

BLOCK PR SET
02.12.32.1 (4E)

BLOCK STEP Ie
02.12.36.1 (SB)

BLOCK Ie TO AR
AND AD TO AR
02.12.34.1 (4B,4D)

RESET MP MODE TGR
E5 (D1)
02.13.05.1 (2F)

YES

HONOR CHANNEL TRAP
REQUEST OR DO TRAP
REQUEST. 33 IS PLACED
IN THE ADDRESS PORTION
OF THE STORE LOCATION

F THE CAUS!TIVE TRAP

SET CHANNEL TRAP
CONTROL LATCH
AODI
02.13.03.1 (3C) (2E)

r-

RESET
ENB ATT TGR
15 01
03.30.06.1 (5H) (4B)

RESET
ENB PARITY TGR
1501
03.30.06.1 (5H) (40)

RESET
ENB END TGR
1501
03.30.06.1 (5H) (4F)

RESET
ENB BU INT TGR
1501
03.30.06.1 (5H) (4H)

---,
I r-S-ET--~--"" SET SET SET

ENB ATT TGR ENB PARITY TGR ENB END TGR ENB BU INT TGR I ~~.~.06.1 (5B) (4A) ~~.~.06.1 (5B) (4q ~~.~.06.1 (58) (4E) ~~.~.06.1 (5B) (4G) I I
L _______ -2!S~R ___ ________________ -.J

'THESE 5 LATCHES REMAIN SET AFTER
TERMINATION OF THE ENABLE INSTRUCTION:

CHANNEL TRAP CONTROL LATCH (ALWAYS SET BY ENABLE INSTR)
ATTENTION TRIGGER (SET IF ENB OPERAND IHIT WAS A ONE)
PARITY TRIGGER (SET IF ENB OPERAND 17-BIT WAS A ONE)
END TRIGGER (SET IF ENB OPERAND 35-BIT WAS A ONE)
BUFFER INTERRUPT TRIGGER (SET IF EN8 OPERAND SIGN BIT WAS A ONE)

FIGURE 75. TRAP ENABLES

152

SET DISCONNECT
Al D1
03.10.10.1 (4H)

SET END OP CNTL
03.10.03.1 (4B)

GO TO I
A5 D1
02.15.39.1
02.1S.30.1

READER BUSY?
03.03.14.1

PUNCH BUSY?
03.03.14.1

PRINTER BUSY?
03.03.14.1

PAPER TAPE READER BUSY?
03.03.14.1

WAIT

RESET RD BUSY TGR
PU BUSY TGR
PR BUSY TGR CHANNEL IN USE?

03.03.1S.1 (lD) PTR BUSY TGR
A2 D1
03.03.15.1 (1C)
03.03.14.1

WAIT

ANY OTHER TRAPS REQ?
PRIVILEGED INSTRUCTION?
A3 Dl
02.13.0S.1 (SE) (4E)

RESET UR INT TGR
E4 D1
03.30.0B.l (4F)
03.30.1S.1 (4C)

MAKE SB 8 A "1"
E EARLY
02.13.12.1 (lA)
02.05.08.1

SET STORE
CYCLE LATCH
Al D1
02.12.S0.1 (4E)

SET ADDRESS REG
BIT 35 TO A"l"
E5 D2
02.13.09.1 (SD)
02.04.35.1

MEMORY LOCATION 00012 (STORE LOCATION) IS READ OUT,
AND A "1" IS STORED IN POS B OF THE DECREMENT FIELD
AND CONTENTS OF IC STORED IN BITS 21-35.

SET ADDRESS REG
POS 32 AND 34
EACH TO A "1"
15 D2 (TRAP I LATE)
02.13.08.1 (2A) (lB)
02.13.09.1 (SC) (SH)
02.04.32.1
02.04.34.1

MEMORY LOCATION 0013 (INSTRUCTION LOCATION) IS BEING
BROUGHT OUT. THIS ADDRESS WILL CONTAIN AN UNCON­
DITIONAL BRANCH INTO THE TRAP ROUTINE

RESET CHANNEL TRAP
CONTROL LATCH
ES Dl
02.13.06.1 (2H) (lG)
02.13.03.1 (3E)

'NOTE 1: THESE LATCHES SET BY
ENABLE INSTRUCTION.
SEE FIGURE 4-4B.

"NOTE 2: TRAP CONTROL LATCH SET
BY EITHER A TRT INSTR OR
A TRP INSTRUCTION.
(NOT ILLUSTRATED)

FIGURE 76. UNIT RECORD INTERRUPT (TRAP)

SET DISC SYNC
A4 DI
03.10.10.1 (5E) (4E)

GO TO I
A5 DI
02.15.39.1
02.IS.30.1

FIGURE 77. TELEPROCESSING INTERRUPT (TRAP)

1414 BUFFER INQUIRY
OR OUTQUIRY?
03.03.IS.1 (4E) (3E)

,...--...... ---~ "NOTE I

ENB A TT TGR SET?
03.03.IS.1 (lH)

""NOTE 2

""--~~--~"NOTE I

WAIT

ANY OTHER TRAPS REQ?
PRIVILEGED INSTRUCTION?
A3 DI
02.13.0S.1 (5E) (4E)

MEMORY LOCATION 00012 (STORE LOCATION) IS READ OUT,
AND A "I" IS STORED IN POS 9 OF THE DECREMENT FIELD,
CONTENTS OF IC STORED IN BITS 21-3S.

SET ADDRESS REG
POS 32 AND 34
EACH TO A "I"
15 D2 (TRAP I LATE)
02.13.08.1 (2A) (lB)
02.13.09.1 (SC) (5H)
02.04.32.1
02.04.34.1

MEMORY LOCATION 00013 (INSTRUCTION LOCATION) IS
BEING BROUGHT OUT. THIS ADDRESS WI'll CONTAIN AN
UNCONDITIONAL BRANCH INTO THE TRAP ROUTINE

TURN ON 1414
BUFFER ATT
INDICATOR
03.03.IS.1 (IE)

RESET CHANNEL TRAP
CONTROL LATCH
ES DI
02.13.06.1 (2H) (lG)
02.13.03.1 (3E)

RESET TRAP PRIORITY
TGR ES DI
03.30.09.1 (SE)

RESET TRAP PRIORITY
TGR E4 DI
03.30.09.1 (2E) (SD)

"NOTE I , THESE LATCHES SET BY
ENABLE INSTRUCTION.
SEE FIGURE 4-48

""NOTE 2: TRAP CONTROL LATCH
SET BY EITHER A TRT
INSTR OR A TRP
INSTRUCTION (NOT
ILLUSTRATED)

WAIT

106 SELECT
FROMI401?
03.05.06.1(5A)

rt>.NY OTHER TRAPS REQ?
PRIVILEGED INSTRUCTION? YES
A3 Dl
02.13.05.1 (5E) (4E)

RESET 1401 ATT TGR
E4 Dl

GENERATE TRAP LEVELS
02.13.07.1

03.30.0B.l (4G)
03.05.06.1 (3B)

SET ADDRESS REG
POS 32 AND 34
EACH TO A "1"

PREVENT IC STEP
02.12.36.1

15 D2 (TRAP I LATE)
02.13.0B.l (2A) (lB)
02.13.09.1 (5C) (5H)
02.04.32.1
02.04.34.1

MEMORY LOCATION 00013 (INSTRUCTION LOCATION) IS
BEING BROUGHT OUT. THIS ADDRESS WILL CONTAIN AN
UNCONDITIONAL BRANCH INTO THE TRAP ROUTINE

FIGURE 7B. 1401 ATTENTION (TRAP)

MAKE SB lOA "1"
E EARLY
03.30.07.1 (4B)
02.13.12.1 (31)

SET STORE CYCLE
LATCH
Al Dl
02.12.50.1 (4E)

SET ADDRESS REG
BIT 35 TO A "1"
E5 D2
02.13.09.1 (5D)
02.04.35.1

MEMORY LOCATION 00012 (STORE LOCATION) IS
READ OUT, AND A "1" IS STORED IN POS 10 OF THE
DECREMENT FIELD, CONTENTS OF IC STORED IN
BITS 21-35.

TURN ON 1401
ATTENTION
INDICATOR
03.05.06.1 (lA)

RESET CHANNEL TRAP
CONTROL LATCH
E5 Dl
02.13.06.1 (2H) (lG)
02.13.03.1 (3E)

CH IN USE?
03.30.09.1 (5D)

'NOTE1: THESE LATCHES SET BY
ENABLE INSTRUCTION
SEE F1GURE 4-48

**NOTE 2: TRAP CONTROL LATCH
SET BY EITHER A TRT
INSTR OR A TRP
INSTRUCTION. (NOT
ILLUSTRATED) •

155

GO TO I
AS 01
02.15.39.1
02.15.30.1

FIGURE 79. UNUSUAL END (TRAP)

156

SET TRAP
PRIORITY TGR
Al Dl
03.30.09.1 (4B) (3B)

MAKESBI2 A"I"
E EARLY
03.30.10.1 (2C)
02.13.12.1 (2G)

SET ADDRESS REG
BIT 35 TO A "1"
ES D2
02.13.09.1 (SD)
02.04.35.1

MEMORY LOCATION 00012 (STORE LOCATION) IS READ OUT,
AND A "1" IS STORED IN POS 12 OF THE DECREMENT FIELD,
CONTENTS OF IC STORED IN BITS 21-35.

SET ADDRESS REG
POS 32 AND 34
EACH TO A "1"
15 D2 (TRAP I LATE)
02.13.0B.l (2A)(IB)
02.13.09.1 (SC)(.'J-i)
02.04.32.1
02.04.34.1

MEMORY LOCATION 00013 (INSTRUCTION LOCATION) IS
BEING BROUGHT OUT. THIS ADDRESS WILL CONTAIN AN
UNCONDITIONAL BRANCH INTO THE TRAP ROUTINE

WAIT

RESET CHANNEL TRAP
CONTROL LATCH

RESET TRAP
PRIORITY TGR
ES Dl
03.30.09.1 (SE)

ES 01
02.13.06.1 (2H) (IG)
02.13.03.1 (3E)

*NOTE 1 : THESE LATCHES SET BY
ENABLE INSTRUCTION
SEE FIGURE 4-4B.

*"NOTE 2: TRAP CONTROL LATCH
SET BY EITHER A TRT
INSTR OR A TRP
INSTRUCTION. (NOT
ILLUSTRATED) •

GOTO I
A5Dl
02.15.39.1
02.15.30.1

FIGURE 80. WORD PARITY (TRAP)

RESET WORD PARITY TGR
E4Dl
03.30.0B.l (4C)
03.30.07.1 (4F)

PREVENT IC STEP
02.12.36.1

TURN ON TRAP
PRIORITY INDICATOR
03.30.09.1 (lC)

SET STORE
CYCLE LATCH
A1Dl
02.12.50.1 (4E)

WORD PARITY ERROR?
02.05.45.1
03.30.07.1 (4E)

CH IN USE?
03.30.07.1

WAIT

*NOTE 1

**NOTE 2

ANY OTHER TRAPS REQ?
PRIVILEGED INSTRUCTION?
A3Dl
02.13.05.1 (5E) (4E)

MAKE SB 14 A "1"
E EARLY
02.13.12.1 (5H) (3B) (20)
02.05.14.1

SET ADDRESS REG
BIT 35 TO A "1"
E5D2
02.13.09.1 (50)
02.04.35.1

MEMORY LOCATION 00012 (STORE LOCATION) IS READ OUT AND A
"1" IS STORED IN EITHER POS 14 OR ELSE 14 AND 17 OF THE
DECREMENT FIELD, CONTENTS OF lC STORED IN BITS 21-35.

SET ADDRESS REG
POS 32 AND 34
EACH TO A "1"
15 02 (TRAP I LATE)
02.13.0B.l (2A) (lB)
02.13.09.1 (5C) (5H)
02.04.32.1
02.04.34.1

MEMORY LOCATION 00013 (INSTRUCTION LOCATION) IS
BEING BROUGHT OUT. THIS ADDRESS WILL CONTAIN AN
UNCONDITIONAL BRANCH INTO THE TRAP ROUTINE

AUTO SWITCH?
02.14.02.1 (3F)

RESET CHANNEL TRAP
CONTROL LATCH
E5 Dl
02.13.06.1 (2H) (lG)
02.13.03.1 (3E)

*NOTE 1

RESET TRAP
PRIORITY TGR
E5 Dl
03.30.09.1 (5E)

RESET END TRAP TGR
E4 Dl
03.30.0B.l (4E)
03.30.07.1 (41)

*NOTE1: THESE LATCHES SET BY
ENABLE INSTRUCTION.
SEE FIGURE 4-4B

**NOTE 2: TRAP CONTROL LATCH SET
BY EITHER A TRT INSTR OR
A TRP INSTRUCTION.
(NOT ILLUSTRATED)

f
EOF FROM I/O? ~ I RESET CH IN USE TGR I 03.30.04.1

03.10.02.1 (3G)

• • I
SET END TRAP

I SET EOF TRIGGER (DISC SYNC)
03.30.04.1 (3A) 03.30.07.1 (2H)

• WAIT

pJ I TURN ON END OF I FILE INDICATOR [\ CH IN USE? TURN ON END TRAP
03.30.04. 03.30.07.1 (21) INDICATOR

03.30.07.1 (lH)

WAIT • ~ ENB END TGR SET?
·NOTE 1

03.30.07.1 (21) ~w" >l 03.1O.lD.l (4A) • r'< 'wOONmoe
*·NOTE 2 • LATCH SET?

SET DISC SYNC
02.13.03.1 {1C(

A4Dl
03.10.10.1 (5E) (4E)

t , « CHANNEL TRAP ·NOTE 1

SET DISCONNECT CONTROL
LATCH SET?

03.10.10.1 (4H) 02. 13.03. 1(lC)

• rET TRAP PRIORITY TGRI
AIDI

SET END OP CNTL
03.30.09 .I(4B) (3B)

03.10.03.1 (4B)

• WAIT

SET END OP TGR
A4Dl
03.10.03.1 (4F) ~N' o'""~" 'Q' r TURN ON TRAP 1 NO PRIVILEGED INSTRUCTION? YES F< AUTO SWITCH?

PRIORITY INDICA TOR A3Dl 02.14.02.1 (3F)
03.30.09.1 (1C) 02.13.05.1 (5E) (4E)

• _.
SET START TGR

I SET CHANNEL I
A5D2

TRAP LATCH 02.,14.02.1 (2H)

02.13.06.1 (5H) (41)

j

• i i i i • RESET END TRAP TGR GENERA TE TRAP LEVELS
MAKE SB 15 A "1"

SET ADDRESS REG RESET CHANNEL TRAP
EOFTGR 02.13.07.1 BIT 35 TO A "1" CONTROL LATCH RESET TRAP

E EARLY PRIORITY TGR
03.30.08.1 (4E) • 03.30.08.1 (4B)

E5 D2 E5 Dl E5DI
03.30.07.1 (41) 02.13.09.1 (50) 02.13.06.1 (2H) (IG) 03.30.09.(5E)
03.30.04.1 (3B) • 02.13.11.1 (31)

02.04.35.1 02.13.03.1 (3E)

I PREVENT IC STEP I
02.12.36.1

• SET STORE

I'C-SR I
CYCLE LATCH

AO 01 (E EARLy) A1Dl

02.12.05.1 (3B) (2C) 02.12.50.1 !-IE)

• END OP I SR-SB E EARLY I 02.15.35.1 02.12.40.1 (4G)

• +
GO TO I MEMORY LOCATION 00012 (STORE LOCATION) IS READ OUT,
A5 01 AND A "1" IS STORED IN POS 15 OF THE DECREMENT FIELD,
02.15.39.1 CONTENTS OF IC STORED IN BITS 21-35.
02.15.30.1

+ J • -,
RESET TRAPS SET ADDRESS REG
A2 01 (I EARLY) POS 32 AND 34
02.13.05.1 (51) EACH TO A "1"

• 15 02 (TRAP I LATE)
02.13.08.1 (2A) (IB)

RESET CHANNEL 02.13.09.1 (5C) (5H)

TRAP LATCH 02.04.32.1

02.13.06.1 (51) 02.04.34.1

~
MEMORY LOCATION 00013 (INSTRUCTION LOCATION) IS
BEING BROUGHT OUT. THIS ADDRESS WILL CONTAIN AN

THESE LATCHES SET BE UNCONDITIONAL llRANCH INTO THE TRAP ROUTINE *NOTE 1 ,
ENABLE INSTRUCTION • SEE FIGURE 4-48.

GO TO E
**NOTE 2 : TRAP CONTROL LATCH

(I LATE TIME) SET BY EITHER A TRT INSTR
02.15.34.1 (3D) OR A TRP INSTRUCTION • (NOT ILLUSTRATED) •

(IN TRAP

FIGURE 81. END OF FILE (TRAP)

GO TO I
A5D1
02.15.39.1
02.15.30.1

FIGURE 82. REDUNDANCY CHECK (TRAP)

NO

*NOTE 1

WC ZERO RESULTS IN A
COMMAND TO I/o TO
DISCONNECT. I/o
RESPONDS WITH AN EOR

MAKE SB 16A "1"
E EARLY
03.30.07.1 (3A)
02.13.11.1 (3B)
02.05.16.1

SET ADDRESS REG
BIT 35 TO A "1"
E5 D2
02.13.09.1 (50)
02.04.35.1

MEMORY LOCATION 00012 (STORE LOCATION) IS READ OUT,
AND A "1" IS STORED IN POS 16 OF THE DECREMENT FIELD,
CONTENTS OF IC STORED IN BITS 21-35.

SET ADDRESS REG
POS 32 AND 34
EACH TO A "1"
15 D2 (TRAP I lATE)
02.13.08.1 (2A) (IB)
02.13.09.1 (5C) (5H)
02.04.32.1
02.04.34.1

MEMORY lOCATION 00013 (INSTRUCTION lOCATION) IS
BEING BROUGHT OUT. THIS ADDRESS Will CONTAIN AN
UNCONDlTlONAl BRANCH INTO THE TRAP ROUTINE

RESET CHANNEL TRAP
CONTROL lATCH
E5D1
02.13.06.1 (2H) (IG)
02.13.03.1 (3E)

RESET TRAP
PRIORITY TGR
E5 D1
03.30.09.1 (5E)

*NOTE 1 : THESE LATCHES SET BY
ENABLE INSTRUCTION
SEE FIGURE 4-48

**NOTE 2: TRAP CONTROL LATCH
SET BY EITHER A TRT INSTR
OR A TRP INSTRUCTION
(NOT IllUSTRATED).

159

FIGURE 83. OPERATION COMPLETE (TRAP)

160

SET TRAP PRIORITY TGR
A1 DJ
03,30,09.1 (4B) (3B)

WAIT

MEMORY LOCATION 00012 (STORE LOCATION) IS READ OUT,
AND A "1" IS STORED IN POS 17 OF THE DECREMENT FIELD.
CONTENTS OF IC STORED IN BITS 21-35.

SET ADDRESS REG
POS 32 AND 34
EACH TO A "I"
15 D2 (TRAP I LATE)
02.13.08.1 (2A) (18)
02.13.09.1 (5C) (5H)
02.04,32.1
02,04,34,1

MEMORY LOCATION 00013 (INSTRUCTION LOCATION) IS
BEING BROUGHT OUT. THIS ADDRESS WILL CONTAIN AN
UNCONDITIONAL BRANCH INTO THE TRAP ROUTINE

*NOTE 1: THESE LATCHES SET BY
ENABLE INSTRUCTION,
SEE FIGURE 4-48

**NOTE 2: TRAP CONTROL LATCH SET
BY EITHER A TRT IN5TR OR
A TRP INSTRUCTION.
(NOT ILLUSTRATED).

HOW DISABLING

TRAP TRAP TRAP STORE *8 TRANSFER *9 DISABLING EFFECT EFFECT MAY BE

PRIORITY NAME REASON FOR TRAP WHEN TRAP CAN OCCUR RESTRICTIONS WCATION WCATION OF TRAP NULLIFIED

1 Interval A "e" cycle request A "e" cycle request may None 00036 00037 1) Trap control Trap control may

Timer is received before occur (and therefore a turned off be turned on by

Blast the preceding "e" Trap request) 2) Resets all channels executing a TR T

cycle request is 1) Between instructions 3) Resets program reg. or TRP instruc-
honored. 2) During RDS,PRD,SEN, in CPU and shift tion. Interval

33 milliseconds have WRS, PWR, CTR, BSR, ctr. timer may be'

expired since the in- REW,WBT,RUN,WEF 4) Resets waiting !le" corrected by:

terval timer was last instructions. cycle requests and CLA 00005

stepped. 3) Between !lUI! cycles dur- interval timer over- ADD ~02

ing execution of a ReHA flow trap requests. STO 00005

instruction. 5) Interval timer will

A trap request initiates contain 28 less than
an immediate trap. it should.

6} An interrupted in-
struction is not
completed.

2 MemolJ A store is attempted Immediately after an "E It 1} Trap control 00032 00033 1) Protect mode turned Protect mode may

** Protect in a protected area cycle attempting (it will on *, Bit 16 Flag off. be turned on by
Viola- of core. not succeed) to store in a 2) Protect mode 2) Violating instruc- executing a SPM

tion NOTE: Input inform a- protected area of core. on tion not allowed to instruction.
tion from an I/O de- *' If trap control store or complete
vice is never prevented is off. protect mod *'
from storing in a pro- on. and a violation
tected area. occurs, the store

will be successful
and a trap will not
occur.

3 Parity Storage parity error 1) Immediately after the 1) Trap control 00040 00041 1) Trap control turned Trap control and
*- during: "I","IA",ort!E"cycle on *2 Bit S Flag indi- off. parity control may

Memory Pro- 1) "1" or "IA" cycles causing the parity error. 2) Parity control cates error occur- 2) Parity control be turned on by

test Violation 2) "E II or TIC" cycles An instruction requiring on *2 red when parity or turned off. executing a TRP

and Parity which do not store. additional cycles will *2 parity errors trap control was 3) Parity errors de- instruction.

Traps are Mu- NOTE: Parity is not not complete. detected with off. *2 tected during multi- Trap control may

tually Exclu- checked during the "E" 2) For a parity error dur- either trap con- Bit 1 Flag "c" cycle instructions be turned on and
sive, and cycle of acapinstruc- ing a "c" cycle taken trol or parity off cycle error. will prevent any parity control left
therefore tion. during the execution of do not cause an Bit 18 Flag "I" or remaining cycles off by executing
their relative "B" or "U" Cycle par- an instruction. the in- immediate trap "!A1I cycle error. from being taken a TRT instruction.
priority is ity errors will not cause struction will be allowed and do notinter- Bit 19 Flag "E" to complete the
arbitrary. a parity trap. A chan- to complete before the rupt an instruc- cycle error. instruction.

nel trap may be re- trap is initiated. tion. However, Bits 3-17 will
quested if the opera- 3) For a parity error dur- the error is re- contain the loca-
tion or parity mask bit ing a "c" cycle taken be- membered and tion in error if
is enabled for that tween instructions. the will cause a trap nota "Cn cycle
channel. See channel trap will be immediate. as soon as trap or delayed
traps. and parity control error.
If bad parity is detect- are on.
ed when reading out of
core during any type
cycle, the word is re-
generated back in core
with bad parity.

4 SPM*7 SPM instruction with Execution of SPM instruc Protect mode on 00032 00033 Protect mode turned Protect mode may
protect mode on. tion causes the trap. Bit 16 Flag off. be turned on by

executing another
All instruction SPM instruction
traps aremu-
tuallyexclu- RPM*7 RPM instruction Execution of RPM instruc- None 00032 00033 Protect mode turned Protect mode may
sive and there- tion causes the trap. Protect mode off. be turned on by
fore have no On I Off executing a SPM
priority with Bit 151 Bit14 instruction.
regard to each Flag Flag
other. STR*7 STR instruction. Execution of STR instruc- None 00000 00002 None Not app icable.

tion causes the trap.
*7 H aparity Floating Floating-point instruc- After completion of instruc- None 00000 00010 Instruction not com- 1 .Not applicable.
error occurs Point tion and anyone or tion for (1) + (2) + (3) + (4). (5) yields Bit pleted for (5).
during an I combination of the After first HE n cycle for (5) 12 Flag
or IAcycle following: instruction will not complete (1) +(4) yields
for this in- 1) AC char. computed Bit 15 Flag
struction, a to exceed 377. (1) + (3) yields
parity trap 2) MQ char. computed Bit 16 Flag
occurs and lower than 000 (2) +(4)yields
the instruc- 3) AC char. computed Bit 17 Flag
tion trap does lower than 000*3 (1) + (2) +(3) +
not occur. 4) MQchar. comf,uted (4) during single

to exceed 377 4 prec. Divide
5) High order double yields Bit 14

precision operand Flag
address ODD.

*.3 can occur without
(2) during divide only.
*4 can occur without
(1) during divide only.

FIGURE 84-1,

161

HOW DlSABUNG
TRAP TRAP TRAP STORE *S TRANSFER *9 DISABUNG);;FFECT EFFECT MAY BE
PRIORITY NAME REASON FOR TRAP WHEN TRAP CAN OCCUR RESTRICTIONS WCATION WCATION °VRAP NULLIFIED

5 Pre- Interval timer overflow. Trap is initiated at the time 1) Trap control 00032 00033 1) Protect mode turn- Protect mode may
Inter- channel or direct data the causitive trap would on. Bit 17 Flag 33S will be ed off. be turned on by
rupt trap requested with have been initiated had 2) Protect mode placed in the 2) Delays execution executing a SPM
Memory protect mode OD. memory protect been off. on. store location of causitive trap instruction .
Protect Refer to individual causi- 3) Restrictions of the oausi- until protect mode

tive trapdescriptioDs. for causitive tivetrap. is turned off.
trap met. Causitive trap

will begin before
instruction in 33
is executed.

6 Interval Adder 1 carry while Mter "e" cycle storing - 1) Trap control 00006 00007 Blocks "e" cycle If trap execution
Timer interval timer is incremented interval timer on. requests while wait- is delayed long
Over- being incremented.. if "c" cycle occurred be- 2) Protect mode ing for trap to be enough to block
flow tween instructions. If "C" off. *6 executed. two "C" cycle

cycle occurred during a *6 If on, pre- requests, an in-
BSR,REW.RUN, WEF or interrupt memory terval timer blast
ReHA instruction, the in- protect trap will trap will be initiated
struction will complete be- be initiated to which will reset
fore trap is initiated. turn if off. overflow trap
If the trap request occurs request. At this
during or immediately time, the interval
after a privileged *5 in- timer should con-
struction, the trap will be tain 2S (it will con
delayed until after the tain OS). This may
completion of the instruc- be corrected by:
tion follOwing the privileged CLA =02
instruction. 8TO 00005

7 Direct Interrupt signal from ~er com.pletion of the in- 1) Trap control 00003 - f--- 1) Channel trap
Data direct data external SrXUction in progress when on. Channel B inter- The instruc- control turned control may be

device with direct data the interrupt signal 1s re- 2) Channel trap rupt yields Bit tiOD contained off. turned on by
mask bit for subject ceived. controlon. 16 Flag in this loca- Channel trap control executing a
channel a one. If the trap request occurs 3) Protect mode Channel C in- tion must be may also be turned RCT or ENB

Mask Blt*U during or immediately afte off. *10 terruptyields unconditional off by executing an instruction.
(From ENB a privileged *5 instruction, 4) Direct data Bit 15 Flag transfer to main-lCT instruction. The RCT instruc-

Channel Inst. the trap will be delayed mask bit for Channel i:J in- tain 7090/94 Direct data traps tion will allow the
B 25 until after the completion interrupting terrupt yields compatibility . may also be blocked mask bits specified
C 24 of the instruction following channel must Bit 14 Flag by an ENB 0 in- in thelastENBin-
D 23 the privileged instruction. be a one *11. Channel E in- struction. struction to retain
E 22 *10 If on, pre- terrupt yields control. Any inter-

interrupt memory Bit 13 Flag rupt signal receive
protect trap will *11 Flag Bits while channel trap
be initiated to will be stored control was off will
turn if off. only if themask be honored after

bit is on. It is execution of RCT.
possible to have The ENB instruc-
more than one tiOD will permit
Flag Bit stored an interrupt sig-
if the execution nal received while
of the trap is channel trap con-
delayed long trol was off to
enough to allow cause a trap if the
more than one mask bit for the
channel to send channel 1s turned
an interrupt sig- on by the new ENB
nal. Only one trap instruction, even

\ will be executed though the prior
in this case. ENB instruction

did not specify
that mask bit.
Waiting interrupt
requests are re-
Bet by a direct
data trap (only
for those channels
covered by a
mask bit) an RDCX
instruction{all
channels) or by
reading or writing
from the DD
channel requesting
the interrupt.

S Channe 1) An I/o operation After completion of the In- 1) Trap control 00022*15 00023*14 1) Channel trap 1) Channel trap
E completes with oper- struction in progress when on control turned off. control may be

Trap priority Channe ation "mask bit for the trap request is gener- 2) Channel trap 00020*15 00021*14 turned on by
among chan- D subject channel a ated. A trap request may b control on Channel trap control executing a RCT
nels is in Channe one. This will occur generated by a channel 3) Protect mode 00016*15 00017*14 may also be turned or ENB instruc-
order of C whenever any channel only whell it goes not in off *12 off by executing an tion.

00014*15 00015*15 ICT instruction.

FIGURE 84-2.

162

HOW DlSABUNG
TRAP TRAP TRAP STORE *S TRANSFER *9 DISABLING EFFECT EFFECT MAY BE
PRIORITY NAME REASON FOR TRAP WHEN TRAP CAN OCCUR RESTRICTIONS LOCATION LOCATION OF TRAP NULLIFIED

physical re- Channel command complete~. use. The exception to this 4) Appropriate The ReT instruc-
moteness B tapes complete a back is an attention request mask bit must be tion will allow the
from CPU. Channel space or write end of which does not have to on for both the 00012*15 00013*14 Channel traps may mask bits specified
Channel "At! A file or blank tape, or wait until the channel goes channel and the also be blocked by in the last ENB
has the low- when the relays pick not in use. condition for The store and *14 an ENB 0 instruc- instruction to re-
est priority. for a rewind. If the trap request occurs which the trap is transfer 10ca- The instruction tion. This is not ad- tain control.
For this dis- 2) Redundancy check" during or immediately after requested. tions associated contained in vis able however Any trap request
cuss ion , it from I/O device or a privileged*5 instruction. *12 if on, pre- with a specific this location because data trans- received while
is assuned channel parity error the trap will be delayed interrupt memory channel are must be an un- mission will not be channel trap
that Channel with "parity" mask until after the completion protect trap will fixed and do not conditional stopped in the event control was off
"E" is the bit for subject channel of the instruction following be initiated to change if physi- transfer to of a parity error or will be honored
furthest from a one *18. This will the privileged instruction. turn it off. cal remoteness maint~in 7090/ redundancy check after execution
CPU. stop thetransmission from CPU is 7094compati- with the "parity" of RCT.

of data although the altered. bility. mask bit off. This The ENB instruc-
No channel channel will remain *15 will also make it tion will permit
may request in use. (1) yields bit difficult to locate a trap request
a trap (ex- 3) End of file *13,18 17 Flag the word in error occurring while
cept an from tapes or from 1401 (2) yields bit because the channel channel trap
attention lliB instruction from 16 flag address counter will control was off
trap) while 1401), or when 1622 or (3) yields *13 continue to step to be honored
it is still in 1402 reader runs out of bit 15 flag after the error occurs. if the maskbit
use. How- cards with "operation" (4) yields bit for both the
ever, the mask bit a one. 14 flag channel and the
condition that 4) Word parity error (5) yields bit condition is
will event- while reading or writing 12 flag turned on by the
ually cause a from core during "U" (6) yields bit new ENB instruc-
trap request or liB" cycles or chan- 11 flag tion, even
may be pre- nel parity error during (7) yields bit though the prior
sent for much a write operation. Either 10 flag ENB instruction
of the channel "parity" mask hit (data (S) yields bit did not specify
operation. If a transmission stops) or 9 flag that mask hit.
higher priority "operation" mask bit

channel goes (transmission continues) (9) yields bit The conditions
"not in use" must be a one. Sflag that will request
and requests a 5) Unusual end *16 sig- More than one a trap can be re-
trap first, nal from simplex interface bit may be stored set by executing
even though I/O device with "opera- if the trap exe- the trap for that
the condition tion" mask bit a one. cution is de- channel or by
that caused its The significance of the layed long a RDCX instruo-
trap occurred signal depends upon the enough to allow tion (this will
after a trapping simplex interface device multiple trap- reset .!ill. trap-
condition in the and it will usually re- ping conditions ping conditions
channel that is quire a sense operation to occur on a on the specified
still in use. to determine the condi- single chaIUlel. channel).

tion. Only the first
6) Simplex interface *16 condition will
attention signal with request a trap.
"attention" mask bit. a
one. The significance
of the signal depends upon

the simplex interface 1/01
device.
7) 1401 attention signal
*17 with "attention" masK
bit a one. The attention II

signal is the result *5 Privileged instructions are:
of a ,!iF instruction RDS, PRD, SEN, WRS. PWR, WBT, SUMMARY OF MASK BITS FOR CHAN TRAPS
on the 1401. CTR, ENB, RCT, ICT, XllC, SPM Channel Bit Position of ENB Instruction
8) Teleprocessing atten- *8 The core address of the instruc.;.

Operation Parity Attention Unit Record tion signal *17 from 1414 tion following the instruction being
IV or V I/O sync with executed when a trap request occurs E 31 13 4 N/A
"attention" mask hit a will be stored in positions 21-35 of

D 32 14 5 N/A
one. It indicates a mes- the store location, in addition to
sage is waiting or an out- any indicated flag bits. C 33 15 6 N/A
put buffer is empty. *9 The final operation during a B 34 16 7 N/A
9) Unit record interrupt trap consists of starting memory

A 35 17 S S signal *17 with "unit with this address selected during
record" mask bit a one. I time.
It indicates the card *13 Channel "A" end of file can-
reader buffer is full. the not directly cause a trap, but will
punch or printer buffer is induce an "operation" complete
empty or the paper tape "Trap." In thi.s case bits will be
reader is full. stored in positions 15 and 17 of

Location 00012.
*16 Overlapped Data channels
only
"17 Channel 11 A" only
*18 If the mast bit for redundancy
check or end of file is a one, the
respective TRCX or TEFX instrUC-
tions will always be executed as no-
operations regardless of whether
the tested conditions exist.

FIGURE 84-3.

163

SECTION 7 - OPERATOR'S CONSOLE

GENERAL

The operator's console is mounted on the right end
(facing the wiring side) of the central processing
unit (CPU). It is divided into five panels, labeled A
through E from top to bottom.

In general, the operator's console contains the
pushbuttons (also called keys and switches) and
indicators that are provided as operator aids. An
understanding of the console and development of its
use will prove a valuable troubleshooting tool. This
chapter provides the data necessary- to understand
the function of the various operator console switches
and the meaning of each operator console indicator.
Switches and indicators pertinent only to power are
not included in this section but are discussed in the
7040-7044 Power Supply manual. Only the push­
buttons and indicators associated with CPU and
channel functions are described in this chapter.

Figure 85 shows the physical arrangement of all
the operator console pushbuttons and indicators.
Although not shown, a console printer (commonly
known as the output typewriter) is mounted on a
table below the operator's console. The output
typewriter is, as the name implies, an output
device. Operation of this device falls within the
realm of 1-0 operations and is therefore not included
in this chapter. Refer to the Channel A instruction
manual for typewriter operation.

SWITCHES AND FUNCTIONS

Channel Bit Density Switches

Five switches allow the operator to select the tape
bit density for each of the five 1-0 channels
(channels A-E).

Each switch is a 3-position switch with positions
labeled (Figure 85) as follows:

1. 556
200

2. 800
200

3. 800
556

The two numbers on each position indicate the high
density and the low density possible for each channel.
The operator sets the applicable switch to one of the
three available character density positions at the
operator's console. This action is a broad selection
which reduces the overall choice to one of two possible
character densities. The final selection is made at
the tape unit. The operator selects high or low
density on the tape unit. Assume that the channel

164

A CHANNEL BIT DENSITY switch is in the 556/220
position. The tape units connected to channel A
record characters per inch as either 556 or 220. The
switch setting on the tape unit determines the final
selection; that is, the actual character density used
in a given operation is determined by the setting of
the high-low denSity switch on the tape unit. It is
therefore possible to have several tape units on 556
and the remaining tape units on 200 characters per
inch on channel A.

The character denSity per inch also depends on the
tape unit model used with the 7040-7044 system.
The tape unit models and the character density
capabilities are as follows:

Tape Unit Model Character Density
729 II 200 556
729 IV 200 556
729 V
729 VI
7330 I
7330 II

Storage Clock Switch

200
200
200
200

556
556
556
556

800
800

800

The STORAGE CLOCK switch (also commonly known
as the Interval Timer switch) applies only to the
interval timer; it has no relationship to the timing
generation circuits sometimes referred to as the
"clock". Since a timer satisfies the same functions
as a clock, and since the timer, in this case, is
contained in core storage location 00005, the name
of the STORAGE CLOCK switch is appropriate.

When the STORAGE CLOCK switch is in the ON
position, storage location 5 is incremented auto­
matically 60 times each second. The clock is
stopped when the STORAGE CLOCK switch is in the
OFF position. The STORAGE CLOCK switch must
be in the OFF position when the SINGLE STEP or
MULTIPLE STEP key is being used in either the
cycle or pulse mode. The STORAGE CLOCK switch
must also be in the OFF pOSition when the DISPLAY
STORAGE key is in use, or the data displayed in the
storage register will be destroyed.

Entry Switches

There are two banks of entry switches. The first is
an 8 x 5 matrix of switches allowing the operator to
select a location in core storage in octal. The outputs
from these switches are gated to the address register.

The second bank is an 8 x 12 matrix of switches
enabling the operator to insert a word in the machine,
using its octal configuration. This bank is subdivided
into sign, instruction, tag, and address. When enter­
ing a word in core storage, proceed as follows:

Channel Bit Density
BQ!1 !ll!!l .!!2Q !ll!!l ~ .J

200 200 200 200 200
~ ••• l1QQ ~ ••• ~SS6 ••• @QQ ~ ••• ~5S6.·. 800
200 @ 556 200 @ 556 200 © 556 200 @ 556 200 ® 556

S'o"'i" Clock ..-:-:- 51 Mod
Off -0 On Inst.o Pulse ep e Cycle

Index A

1212223124252612728 '1'IIJO 31 32133 J4 351

I Th.nn~~ Ugh' I IMo.,., Powe, I
Connect IMo'~" Powe, I Disconn

I Nonn~pow"1 I Nonnol Pow",
Off DDDDDDDDDDDDOOD

L Channel in Use _ L Channel Chk I Position Reg I Index B

IA B C DEI A B C DEI F 14 15 16 171 121 22 23 I 24 25 26 I 27 28 '1'1 I JO 31 32 I 33 34 351

DDDDDDDDDDDDDDD DDDDDDDDDDDDDDD
Instruction Counte, Index C

121 22 23124 25 26127 28 '1'11 JO 31 nI33J4351 1212223124252612728 '1'IIJO 3132133 J4 351

DDDDDDDDDDDDDDD DDDDDDDDDDDDDDD
Instruction Shift Counte, I Tog I Address I

0 11 2 3 I 4 5 6 I 7 8 9 110 11 112 13 14 15 16 17 I 18 19 20 I 21 22 23 I 24 25 26 I 27 28 '1'1 I JO 31 32 I 33 J4 35 J

D DDDDDDDDDDDODDDDDDDDDDDDDDDDDDDDDDD
Storage

!Il 11 2 I 3 4 5 I 6 7 8 I 9 10 11 112 13 14115 16 17118 19 20 121 22 23124 25 26127 28 '1'11 JO 31 32 133 J4 351 ~

D DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD 0
Accumulator

[] @I011 2 13 4 5 1 6 7 8 1 9 10 11 112 13 14115 16 17118 19 20 1 21 22 23 1 24 25 26 127 28 '1'11 JO 31 3~ I 33 J4 35 1

DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD
MQ

[I] 11 2 1 3 4 5 1 6 7 8 1 9 10 11 112 13 14115 16 17118 19 20 121 22 23 124 25 26127 28 '1'11 JO 31 32 I 33 34 351 [S

D DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD D
Cycle Time Mas Prog Po, Tally Counter

I E L B a ~ Stop S'op Reody

Ok] 0 0 0 0 0 0 0 [I'~~.:~~:k [:] I Au'~a';c I Single I ~:~~:~ I GO DDDD[DOD Step

Clock Pulses
Ch

AccuDiv 10 Po, T'1' T,p Mom Q X 9 9 FP FP

I S;:::. II El~=' I j 00 DO [000 Inh Inh Ctl Prot Car Car Car Oflo 1 2

G Multiple DO 0 DDDOD DO ICon,'.:,"'.' Step

I Cleo, I

Sense location

(j) 0 0 0 (j)
Emergency G) G) 0 0 0 G)

Powe, <D <D 0 0 0 <D Off m CD CD 0 0 0 CD
<D 0) 0 0 0 G)
G) CD 0 0 0 CD
CD CD 0 0 0 G)

® 0 0 0 ®
Instruction Tog Add

(cl) tV 0 0 0 0 G) 0 0 0 0 (j)
@ (0 0 0 0 0 0 0 0 0 0 <D
G <D 0 0 0 0 G) 0 0 0 0 <D
(9) 0 0 0 0 0 CD 0 0 0 0 CD
@ <V 0 0 0 0 G) 0 0 0 0 <V
@ G) 0 0 0 0 G) 0 0 0 0 IV
C@ (0 0 0 0 0 CD 0 0 0 0 (j)
<t9> G) 0 0 0 0 (Q) 0 0 0 0 (Q)

FIGURE 85. OPERATOR'S CONSOLE PANEL

165

1. Place octal representation of location in core
storage to be referenced in location bank.

2. Place octal representation of actual word to be
entered in word bank.

3. Depress ENTER STORAGE key (with the
computer in MANUAL status).
When the ENTER STORAGE key is pressed, the word
in the word bank is automatically stored in the core
storage location as specified in the location bank.

The switches that use the location bank and the
word bank are as follows:

1. LOCA TION BANK switches
a. ENTER STORAGE
b. DISPLAY STORAGE

2. WORD BANK switches
a. CONT ENTER INST
b. ENTER STORAGE
c. ENTER INST
d. LOAD

The operation of these switches is discussed in this
section. Refer to the portion that discusses the
individual key to show how the LOCATION BANK and
WORD BANK switches are used.

Any-Key Pulse Generation

Depressing any of the keys that perform a logical
operation generates an any-key pulse. This pulse is
necessary to control the execution of the desired
operation. Figure 86 is a simplified diagram of the
generation of the 3-usec any-key pulse.

Activating a key conditions -AND 4A, thereby
triggering a single shot (SS), 3A. The 30-ms
negative pulse is inverted by -OR 2A. The positive­
going pulse from -OR 2A triggers single-shot 2B.
The output of single-shot 2B is then sent out as an
any-key pulse. In addition to the any-key pulse, an
auto-any-key and auto-A2-Dl or manual-control-Al­
Dl pulses are generated. These pulses depend on the
setting of the A UTOMA TIC switch.

Depressing the SINGLE STEP key generates the
any-key pulse as explained above. A step pulse is
generated if the program-stop trigger is off. Since
the program -stop trigger is set by an .!:!.E!! instruc­
tion, it is impossible to use the SINGLE STEP and
MULTIPLE STEP keys after an HPR instruction
without resetting the program-stop trigger.

The MULTIPLE STEP key allows instruction
execution, single cycles, or pulses to be generated
at a slow rate. The any-key pulse is generated
every 50 ms, starting another instruction cycle,
single cycle, or single-pulse cycle. If the
MULTIPLE STEP key is depressed and held, the
initial any-key pulse is generated as explained.
Depressing the MULTIPLE STEP key triggers single­
shot 3E. After 25 ms, Single-shot IF is triggered.

166

The outI?ut of single-shot IF goes positive 25 ms
later, conditioning AND 5F. The output of the AND
is a positive-going pulse, which again triggers SS
3E. This cycle (50 ms in duration) is continued until
the MULTIPLE STEP key is released. The output of
SS 3E triggers SS 2B via-OR 2A. The any-key pulse
is therefore generated every 50 ms.

The MULTIPLE STEP and SINGLE STEP keys as
operations are discussed later in this section.

Automatic-Manual Status

The AUTOMATIC switch is a dual-acting pushbutton
used to put the computer in automatic or manual
status. Moving this switch to the OFF position stops
the CPU after it has completed the instruction being
processed. If a channel is in use, the computer
continues to execute instructions and remains in the
automatic status until all channels have been dis­
connected. When the CPU stops, the machine is in
true manual status. If the interval timer switch is
on, the interval timer continues to function.

Figure 87 shows how the computer is switched to
manual status. When the A UTOMATIC switch is
placed in the manual position, one leg of AND 2C is
conditioned. If the 1-0 interlock switch is on or if
no channels are in use, the AND condition is met.
The next IlD2 pulse sets the master-stop trigger.
The setting of this trigger stops all logical computer
operations. The machine is now in true manual
status.

When the AUTOMA TIC switch is in the automatic
position, it is necessary to prevent the use of certain
switches. The switches that are operative in the
automatic status are as follows:

1. CLEAR
2. RESET
3. CONT ENTER INST (Single step is operational

with this switch on)
4. START
5. LOAD

The switches that are operative in manual status are
as follows:

1. RESET
2. CONT ENTER INST
3. START (clears the program-stop trigger only)
4. SINGLE STEP
5. MULTIPLE STEP
6. DISPLAY STORAGE
7. ENTER STORAGE
8. ENTER INST
9. LOAD

-B 30 MSEC

ANY KEY -A f-- SS r---

20 MSEC

~ SS f-- I '- .--
4A 3A

50 4B

25 MSEC

A SS ~t--

I 5F
r--- ·3E

MUL TlPLE STEP KEY

SINGLE STEP KEY

PROG STOP TGR

NOTE:
LOGIC 02.14.01.1

FIGURE 86. ANY-KEY PULSE GENERATION

AUTOMATIC SWITCH IN MANUAL

CHANNEL NOT IN USE

0 A

I/O INTERLOCK SWITCH ON 3C TRUE MANUAL
2C

02.14.06.1· 02.14.06.1

LAST TGR

I EARLY

Al 02

FIGURE 87. AUTOMATIC-MANUAL OPERATION

3 USEC

-0 '-- SS
""l...r

2A 2B ---
AUTO SWITCH

25 MSEC

SS f--
TRUE MANUAL ---
STOP TGR

Al 01

IF

'"1..J""

'-- I--
0 I--

TRUE MANUAL

A201

3H

"--

A

MASTER
STOP

48 ON

02.14.05.1
'-----

OFF

02.14.05.1

-A

IE

-A

3G

-A

lH

-A

11

ANY KEY

AUTO ANY KEY

MANUAL CONTROL

Al Dl

AUTO A201

STOPS COMPUTER
OPERATIONS

STEP

167

I-a Interlock Control Switch

The I-a interlock control switch is used in con­
junction with the A UTOMA TIC switch to help locate
I-a troubles. The I-a INTLK control switch push­
button light is normally off. The light is on when
the I-a interlock switch is on.

lf an I-a unit is selected with the I-a interlock
switch off, system operation reverts to automatic
status until the channel is no longer in use, even
though the A UTOMA TIC switch is in the manual
position. When a unit is selected, the channel-in­
use level will decondition AND 2C (Figure 87),
resulting in an automatic status until the channel
is no longer being used. The machine then returns
to manual status.

If the I -0 interlock control switch is on and the
machine is in manual mode when an I -0 unit is
selected, the machine executes the select instruction
and remains in manual status (Figure 87). The I-a
interlock control switch overrides the channel-in-use
level. Therefore, AND 2C remains conditioned,
maintaining the true-manual level.

START Key Operation

Depressing the START key continues calculation at
high speed. The START key continues the program
only when the computer is in automatic status.
Figure 88 is a simplified diagram of the function of
the START key. Note that the program-stop trigger
is set only on an .!:!EB: instruction. Setting the start
trigger resets the program -stop trigger. When the
START key is activated, the start trigger is set and
the program-stop trigger is reset in either auto­
matic or manual status. At A5 D1 time, the start
trigger is reset. The START key must be depressed
before the SINGLE STEP or MULTIPLE STEP key
can be operated if the HPR instruction is executed
and the computer is then placed in manual status.

When the computer is in automatic status, setting
the start trigger allows the start-machine level to
reset the master-stop trigger at A4 D2 time (Figure
88). The master-stop trigger allows the computer to
perform the logical operations necessary in executing
ins tructions.

Continuous Enter-Instruction Operation

The CaNT ENTER-INST key is a dual-acting push­
button. Operating this key forces the system to
continuously execute the instruction set in the word
bank. Figure 88 shows the function of this switch.
An AND (2D) is conditioned during every I early
cycle. When this AND is conditioned, the following
occurs, which is not common during a normal I
cycle:

168

1. Stepping of the instruction counter is inhibited.
2. Transfer of the memory data register to the

storage bus is inhibited.
3. Operator's keys are transferred to the storage

bus.
The data that is routed to the storage bus is sent to
the program register. Execution of the instruction
is the same as though it was taken from core storage.
The CaNT ENTER-INST key is valuable in trouble­
shooting because it provides an easy way to scope
the operation of a particular instruction. This
button is lighted when in the continuous-enter instruc­
tion mode. The continuous-enter instruction function
may also be used in manual status with the SINGLE
STEP and MULTIPLE STEP keys.

RESE T Key Operation

The RESET key is operative in both automatic and
manual status. This key resets all registers and
indicators in the logical section of the CPU and all
channels but does not affect core storage. Figure
89 is a flow diagram of the reset and clear functions.

Depressing the RESET key sets the reset II trigger
at A3 D1 time. Setting the reset 11 trigger sends a
reset level throughout the CPU and to all I-a
channels. The next A2 D1 pulse resets the reset II
trigger. The computer is stopped, and further
action must be taken by the operator.

Several degrees of resets are used in the 7040-
7044 system. In general, the various levels of
resets may be grouped. Following is a list of the
resets, what can cause them, and what is reset
(logic 04.14.07.1):

1. Interlock Reset (Power-On Reset; Reset, Load,
or Clear Key)

a. Reset or Cleared: All Channels (same
action as RDCA-E)
Program Register (both)
Shift Counter

b. Set or Turned On:

Position Register
Address Register
Tag Register
SR C Bit
IA Trigger
PRE-IA Trigger
Channel Trap Control
Pulse-Mode Trigger
Program-Reset Trigger
Program-Stop Trigger

End OP
Master-Stop Trigger
Trap-Control Trigger
Parity Mode
Carriage-Return
trigger (typewriter)

HPR

I LATE

AOOI

START TGR

START KEY

A

START

ANY KEY 4G ON

02.14.02.1 1-----
A402

A5Dl OFF -

02.14.02.1

AUTOMATIC SWITCH
IN AUTOMATIC

CONTINUOUS ENTRY
SWITCH

--
A5D2

I EARLY

FIGURE 88. START AND CONTINUOUS ENTER INSTRUCTION OPERATION

A

4F

02.14.06.1

A

START

31 MACHINE

02.14.02.1

A

2D

02.12.41.1

PROG STOP

ON

r----
OFF

02.14.06.1

MASTER STOP

ON

f----

OFF

02.14.05

INHIBIT STEP IC

02.12.36

INHIBITS USING THE
MUL TlPLE STEP AN D
SINGLE STEP KEYS

STOPS COMPUTER
OPERATIONS

INHIBIT MOR TO SB
02.12.43.1 & 02.12.44.1

OPK TO SB

169

CLEAR

RESET MASTER
STOPTGR
A4(D2)
02.14.05 (4E)

FIGURE 89 • CLEAR AND RESET CONTROLS

170

SLOCK ALL TRAPS
DURA TlON CLR TGR
02.13.01 (5A)
02.13.04 (5A)
02.13.05 (5S)

RESET

2. Computer Reset (Power-On Reset; Reset or
Clear Key)

Reset or Cleared: Storage Register
Accumulator
XRX

CLEAR Key Operation

XRA, XRB, XRC
Instruction Counter
MQ Register
Div-Check Trigger
IO-Check Trigger
AC-OV Trigger
Partial-Store Trigger
Load Trigger
Load Z Trigger
Master C Trigger
C-Cycle-Request Trigger
Early C Request Trigger
Memory Protect Mode
All Trap Latches
All Trap Request Latches
Blast Control Latch
Floating-Point Condition
Latches

With the computer in automatic status, activating
the CLEAR key sets all areas of core storage to
zero and resets all registers and controls in the
CPU and channels. The CLEAR key is inoperative
in manual status (Figure 89).

As shown in Figure 89, the reset trigger is set
when the CLEAR key is depressed, generating the
reset levels. In addition to the reset trigger being
set, the clear trigger is set. The clear trigger
controls the clearing of core storage.

When the clear trigger is set, an 800 NS single
shot is fired, resetting the clock timing ring. The
reset trigger is reset by clock ring pulse A2 D1.
At A4 D2 time, the master-stop trigger is reset.
At A5 D1 time, the block trigger is reset. The
computer will now begin an I cycle. At the end of
the I cycle, an E cycle is started with the AR
cleared. During E time, O's are stored in location
00000 of core storage (logic 02.12.50.1). At E3 D1
time, the instruction counter is stepped. The next
A5 D1 pulse transfers the contents of the instruction
counter to the address register (00001). Zeros are
then stored in location 00001. The machine will
continue performing E cycles and storing zeros in
each address of core storage.

When instruction counter overflow occurs, the
end-operation trigger is set, which, in turn, allows
setting of the master I trigger. The instruction
counter overflow sets the master-stop trigger, and
the next A1 D1 pulse resets the clear trigger. All
core storage locations now contain O's.

Storage Test and Parity Check Controls

Two switches are provided for use by Customer
Engineers in diagnosing memory problems:
storage-test and stop-on-storage-test-parity. These
switches are located on a subpanel behind the main
operator's station.

Storage-Test Switch

This on-off toggle switch controls the operation of
memory test circuits. With this switch on, the
ENTER STORAGE key causes the word set in the
word bank of the entry switches to be consecutively
stored in every position of core storage until the
switch is turned off or a reset occurs. The DISPLAY
STORAGE key causes consecutive locations to be read
out of core storage and checked for proper parity
until the switch is turned off or a reset occurs.

Stop-on-Storage-Test-Parity Switch

This on-off toggle switch is active only when the
storage-test switch is on. If the stop-on-storage­
test-parity switch is on and a parity error is detected
during the "display storage" function, the word in
error is displayed in the storage register and the
"word in error" location plus 1 is displayed in the
instruction counter. The "display storage" function
terminates when a parity error is detected.

Enter Storage Operation

If the ENTER STORAGE key is depressed and the
CPU is in manual status, the contents of the word
bank entry keys are stored in core storage at the
address specified in the location bank. If the
computer is in automatic status, no operation is
performed if the ENTER STORAGE key is depressed.

Figure 90 is a flow diagram of the sequence of
events that occur when the ENTER STORAGE key is
activated. Note that, if the storage-test switch is
on, all locations in core storage will contain the
data from the word bank.

Display Storage Operation

Figure 91 shows the sequence of events that occur
after the DISPLAY STORAGE key is activated with
the computer in MANUAL status and the various
memory test functions.

The contents of one location may be displayed in
the storage register, or all locations in core storage
may be read out and checked for correct parity. If
the storage-test switch is off, the location specified
in the location bank is read out of core storage and
displayed in the storage register. If the storage-

171

FIGURE 90. ENTER STORAGE

172

NO

BLOCK SETTING
I LATE TGR

NO

NO

YES

DEPRESS ENTER
STORAGE KEY
02.14.03.1 (SC)

MANUAL
CONTROL?

BLOCK PTY TRAP
AND BLAST
02.13.01.1 (SA)
02.13.04.1 (SA)

STORAGE TEST
SWON?

YES

YES

RESET BLOCK TGR
AS 01
.02.1S.39 (50)

NO

FIGURE 91. DISPLAY STORAGE

NO

NO

RESET DISPLAY
STORAGE TGR
15(Dll
02.14.03.1 (3B)

DEPRESS DISPLAY
STORAGE KEY
02.14.03.1 (5A)

YES

YES

YES

SET DISPLAY
STORAGE TGR
AO (D'l)
02.14.03.1

RESET MASTER
STOP TGR
A4 (D2)
02.14.05.1 (4F)

SET BLOCK TGR
.15 (Dl)
02. 15.39 (4C)

MEMORY DATA IS
DESTROYED IN SR
BECAUSE THE STORAGE
CLOCK IS INCREMENTED
60 TIMES EACH SECOND

NO

NO

BLOCK PTY TRAP
AND BLAST
02.13.01.1 (5A)
02.13.04.1 (5A)

173

test switch is off, the location specified in the
location bank is read out of core storage and dis­
played in the storage register. If the storage-test
switch is on, all locations of storage are read and
checked for correct parity. If a parity error occurs
and if the check switch is on, the computer will stop.
The storage register will contain the word in error,
and the error location plus 1 will be displayed in the
instruction counter. When activating the DISPLA Y
STORAGE key, turn off the INTERVAL TIMER switch
to prevent destroying the contents of the storage
register.

Enter Instruction Operation

To execute an instruction contained in the instruction
word bank, the computer must be in manual status
and the ENTER INSTRUCTION key depressed.
Figu.ce 92 is a flow diagram of the logical operations
performed when this key is activated. Activating
the ENTER INSTRUCTION key causes one instruction
to be executed.

LOAD Key Operation

The LOAD key is normally active hi automatic status
when the CPU is stopped and no channels are in
operation. If the LOAD key is depressed when in
manual status and an instruction is being executed,
the instruction is completed before an interlock
reset then occurs.

Depressing the LOAD key in automatic status
results in transferring the instruction in the word
bank to the program register and decoding the
instruction. If the instruction is a Read Select or a
Write Select, a control word (lORD) with infinite
word count and with an address of 00100 is loaded in
the selected channel, and a read or write operation
is performed. When an end of record is received
from the selected channel and the channel-in-use
trigger is reset, the computer transfers to location
00101 and proceeds from there.

If the instruction in the word bank is not a select
instruction, the final results may be erroneous;
therefore, any instruction other than a select
instruction is considered illegal when the LOAD key
is involved.

Figure 93 is a flow diagram of the operation of
the LOAD key. Assume that all conditions are met
for selecting a channel. Note that two instructions
are executed when activating the LOAD key. The
first instruction is a Read Select or a Write Select.
This ins truction is taken from the word bank as
entered by the operator. The second instruction is
a Reset and Load Channel (RCHX). The channel may
be used for reading or writing. The ability to
perform a Write Select is desirable when the contents

174

of core stora:ge must be saved for future reference.
Since an infinite word count is sent to the channel, a
write select to tapes requires manual intervention or
the tape will run off the end of the reel. In addition,
if a write select to interface 5 is given, data will be
continuously sent to the 1401 Data Processing System
until manually disconnected.

Step Mode Selector Switch Functions

This 3-position rotary switch controls the mode of
operation when SINGLE STEP or MULTIPLE STEP
is depressed. The three positions are INST, CYCLE,
and PULSE. The first position (INST) is the normal
operating position, which provides for execution of
a single instruction at a time when SINGLE STEP is
used. The second (CYCLE) and third (PULSE)
positions are CE functions, which allow the operation
to be slowed down still further to observe details of
a single instruction. The SINGLE STEP key initiates
a machine cycle (l or E or L) with the STEP MODE
switch in the CYCLE mode and a single pulse with
the switch in the PULSE mode. These two positions
are inoperative when the STORAGE CLOCK switch
is on.

Single-Step and Multiple-Step Operations

The single-step and multiple-step operations enable
the operator, when the CPU is in manual status, to
proceed with the program either step by step or at a
slow automatic rate of speed. If an instruction is
executed which causes an 1-0 unit to be selected, the
computer operates in the automatic mode until the
1-0 unit is disconnected. When the disconnect occurs,
the computer returns to manual status. The computer
should be placed in manual status and the START key
depressed before using the SINGLE STEP or
MULTIPLE STEP keys.

The differences between the SINGLE STEP and
MULTIPLE STEP keys are:

1. Single-step operation allows only one instruc­
tion cycle, one single cycle, or one single pulse.

2. Multiple-step operation allows an instruction
cycle, a single cycle, or a single pulse to occur
every 50 ms as long as the button is depressed.
The generation of the step pulse and the differences
stated are illustrated in Figure 86. The logical
operations performed by the SINGLE STEP and
MULTIPLE STEP keys depend on the setting 0f the
STEP MODE selector switch. Only the SINGLE
STEP key is referred to in explaining the operation
of the three positions of the STE P MODE switch.

NO YES

INSTRUCTION IN OPERATOR
INSTRUCTION SWITCHES COMPLETED

FIGURE 92. ENTER INSTRUCTION

SET ENTER
INSTRUCTION TGR
AO (D1)
02.14.03.1 (4E)

INHIBIT MDR TO SB
11 (D4)
02.12.43.1
02.12.44.1

RESET ENTER
INSTRUCTION TGR
15 (D1)
02.14.03.1 (4F)

INHIBIT STEP IC
14D1

02.12.36 (58)

175

FIGURE 93. LOAD KEY OPERATION (SHEET 1 OF 2)

176

SEE NOTE ON
SHEET 2 OF 2

NO

RESET LAST TGR
02.14.04.1 (4G)

CPU END OP
L4.5 (Dl)
02.15.35.1

PULSE AC SHIFT CELLS
15Dl
02.14.07.1 (5H)

CHANNEL "A" ACCUMULATED BYTE PARITY BLOCKED
ON A WRITE OPERATION (03.30.07-4D1

"SR NOT TRANSFERRED TO AD DURING E TIME (02.12.08.1) "'CAC 29 LOADED ONLY IF RDS IS DECODED.

NOTE, IF AN INSTRUCTION OTHER THAN SELECT IS IN THE KEYS -----

1. THE INSTRUCTION WILL BE REPEATED CONTINOUSLY UNLESS IT HAS AN L CYCLE IN WHICH CASE A HANG CONDITION WILL OCCUR.

2. ADDRESS 100 IS LOGICAlLY ADDED TO THE EFFECTIVE ADDRESS LOCATION DURING E CYCLES (100 IS FED TO AR AS LONG AS THE LOAD TRIGGER IS ON.)

3. TRANSFER OR SKIP INSTRUCTIONS WILL NOT TRANSFER OR SKIP.

4. PUSH RESET TO CLEAR LOAD TRIGGER.

FIGURE 93. LOAD KEY OPERATION (SHEET 2 OF 2)

177

Instruction Mode

Figure 94 is a flow diagram of the operation of the
Single Step instruction when in true-manual and in
instruction mode. Figure 95 is a simplified logic
diagram of the action that occurs when the STEP
key is depressed for an instruction cycle.

Assume that the STEP SELECTOR MODE switch
is in the INST position, the program-stop trigger is
reset, the computer is in manual status, and the
SINGLE STEP key is depressed (Figure 95). The
next AO Dl pulse conditions AND 4A, setting the
single-instruction trigger. The last trigger is reset
by the any-key pulse and set by I late (logic 02. 14.
04. 1). The master-stop trigger is then reset by the
A4 D2 pulse, and the instruction is executed. During
I time of the next instruction, an 11 Dl pulse sets
the master-stop trigger. No further instructions
are executed until the SINGLE STEP key is depressed
again. The single-instruction trigger is reset by
the next A5 Dl pulse.

The information in the internal registers may be
checked for accuracy. This provides a means of
troubleshooting machine malfunctions or isolating
a program error.

The clock ring is stepping and the CYCLE TIME
I indicator is on at the completion of the instruction.

Single -Cycle Mode

Figure 96 is a flow diagram of single-cycle operation
when the STEP key is depressed and the computer is
in true-manual and in cycle mode.

In the single-cycle mode, one I, or E, or L cycle
is executed each time the SINGLE STEP key is
activated. An instruction requiring I and E cycles
would require depressing the SINGLE STEP key
twice to complete the instruction.

The single-cycle mode of operation is illustrated
in Figure 95. Assume that the computer is in
manual status, the STEP SELECTOR MODE switch
is in cycle mode, the INTERVAL TIMER switch is
off, the program-stop trigger is reset, and the
SINGLE STEP key is activated. The next A2 D2
pulse conditions AND 4G, setting the Single-cycle
trigger. At A4 D2 time, AND 4E is conditioned to
reset the master-stop trigger. The machine begins
executing the instruction. Since the machine is in
the cycle mode, AND 4A will be conditioned at I late,
E late, or L late, and A4 time for a duration of three
clock ring pulses. The output of AND 4A sets the
master-stop trigger. After setting the master-stop
trigger, the next Al Dl pulse resets the single­
cycle trigger (AND 5H). If the last cycle executed
was an I cycle, the next cycle will be an E cycle for
all instructions requiring an E cycle.

178

Single-Pulse Mode

In troubleshooting a machine failure, it is often
necessary to single-pulse through an instruction to
find the point at which the failure occurred. The
single-pulse mode allows only one clock ring pulse
to be sent to the CPU with each depression of the
SINGLE STEP key. Figure 97 is a flow diagram of
the single-pulse function when in pulse mode and in
true-manual and the STEP key is activated. In normal
operation, the shift cell (IC) is set, allowing the
clock ring to run continuously (Figure 98). When in
the single-pulse mode, the shift cell is reset (clock
gate down) and the oscillator pulses are blocked. The
only time that the clock gate is down and the clock
ring stopped is when the computer is in true-manual
and in pulse mode.

Assume that the computer is in manual status, the
INTERVAL TIMER switch is off, and the STEP MODE
switch is in the PULSE position. These conditions
satisfy AND's 5A and 5B (Figure 98). When the next
A3 Dl pulse occurs, the AND 3D conditions are met,
setting the pulse-mode latch. Setting this latch
resets the shift cell. Dropping the clock gate level
blocks the oscillator pulses, and the clock ring stops
stepping.

After the pulse-mode latch is set, and if the alpha­
late trigger is reset, the master-stop trigger is
reset. If a channel is put in use in pulse mode, the
computer reverts to automatic status until the channel
is no longer in use. The pulse mode latch is reset if
in AUTOMATIC, allowing the clock ring to step.
When the channel goes not in use, the true-manual
level is restored and will satisfy the AND (5A, 5B)
condition and revert to pulse mode, manual status.

Figure 99, A and B, shows the clock-gate control
conditions before and after depressing the STEP key.

The initial starting conditions of -OR's 5C and 4C
are (Figure 99, A) (1) -OR (5C), both inputs negative,
and (2) -OR (4C), both inputs positive. Two inputs to
AND 3C are conditioned at this time. As shown in
Figure 86, the step pulse is generated when the
SINGLE STEP key or the MULTIPLE STEP key is
activated. Note that the program-stop trigger must
be reset before these keys are activated (Figure 86).
When the step pulse is generated, AND 3C (Figure 99,
B) is conditioned. The output of AND 3C allows
setting the shift cell on the next master-oscillator
pulse. The out-of-phase output from the shift cell
allows one output pulse from the clock ring to be
distributed to the CPU. The in-phase output of the
shift cell is now negative. This negative output
causes the output of -OR 4C to go positive. The out­
put of -OR 5C then goes negative, de conditioning AND
3C. The shift cell is reset by the next master­
oscillator pulse. The circled polarities in Figure 99,
B, indicate circuit conditions after resetting the shift

cell and before dropping the step level. The two
-OR's (5C and 4C) and AND 3C return to the initial
starting conditions, and the clock gate is down,
inhibiting stepping the clock ring until the SINGLE
STEP key is again activated.

In normal operation, the memory-select pulse is
sent to memory at AO DI time and the address regis­
ter is sent to the memory address register at AO D2
time. The memory-select pulse initiates a memory
cycle, which reads the data located in the specified
memory location.

In single-pulse mode, the timing of memory
selection occurs at the end of Al time but after the
SINGLE STEP key is activated for the A2 pulse.
During AO time, the clock ring is stepped to A 1.
Note that the clock ring levels are present at the
AND's even though the shift cell is reset. As shown
in Figure 98, an AND IF condition is met at Al D2
time, with the pulse-mode latch set and an any­
memory-cycle early level present. At this time,
the address register is transferred to the memory
address register. An Al DI output from the clock
ring conditions one input to AND 4H, and the shift
cell is reset, conditioning a second input. Assume
that the any-memory-cycle early level (the third
input) to AND 4H is also present. When the AND
condition is met, the pulse-mode-beta-IDI-delayed
trigger is set. When the SINGLE STEP key is again
depressed to generate the A2 pulse, setting the shift
cell conditions AND 1G. This output generates the
select-memory pulse, initiating the memory cycle.
The clock ring is also stepped to A2 time, perform­
ing the logical functions that occur during A2 time.
The next master oscillator pulse conditions AND 3H,
resetting the pulse-mode-beta-1DI-delayed trigger.
The memory cycle is completed, and the data from
memory is available at the storage bus.

Sense Switches

Six sense switches are used as programmers' tools.
Each sense switch may be individually checked by a
Sense Switch Test ~WT) instruction. If the sense
switch is on, the computer skips the next instruction
and proceeds from there. If the sense switch is off,
the next sequential instruction is executed. The
sense switch feature allows certain program routines
to be bypassed or selected. (See the CPU Logic
Diagrams Manual for a flow diagram of the operation
of the ~ instruction.)

INDICATORS

The indicators on the operator's console are provi­
ded as operator and CE aids. These indicators
give valuable information, such as type of error,
contents of a register, location in error, and status

of computer. The purpose of this section is to give
the function of the various indicators and the turn -on
and turn-off conditions. The following lists the
purpose of registers, counters, timers, and power
indicators (the conditions that light the power indi­
cators are discussed in the 7040-7044 Power Supply
manual):

1. Internal Registers: The contents of the internal
registers (accumulator, multiplier-quotient (MQ),
storage register, instruction counter, address
register program register, position register, shift
counter, and index registers A, B, and C) are dis­
played directly on the panel.

2. Cycle Time: The cycle time indicators indi­
cate the cycle in which the machine is currently
operating, B, I, L, or E time; the status of alpha
and beta triggers is also indicated for a 7106 CPU.

3. Tally Counter: The tally counter differentiates
between the L cycles of a floating instruction and
provides gating for their different operational steps.
The tally counter is divided into two stages. The
indicators on the test panel indicate which of the two
steps the machine is currently operating. Positions
I through 6 indicate the flow of a single-precision
floating point. Tally counters 10, 20, and 30, with
positions I through 6, indicate the flow of double­
precision floating point.

4. Clock Pulses: (AO through A5): These indi­
cators indicate the state of the timing ring.

5. Storage Register C Bit: This indicator indi­
cates the 37th bit of the memory word. This bit
always makes the word parity odd.

6. M-Q Register C Bit: This indicator indicates
the word parity bit of an 1-0 word being transferred
between CPU and channel A.

7. Tag: These indicators indicate the index
register to be used for the instruction.

8. CB Thermal: The CB thermal light will be on
whenever a logic d-c supply circuit breaker trips,
or a thermal or air flow switch opens within the
basic machine.

9. Power-On: The NORMAL POWER-ON light
will come on whenever all power-up sequencing is
completed. If the power-on light does not come on
after a suitable delay, the operator should check the
power sequence indicators within the power distri­
bution unit.

10. Master Power Connect: This pushbutton will
be lit when the input service line power .is connected
to the power sequencing control of the system. It
will be turned off when the MASTER POWER DISCONN
is depressed.

179

YES
MULT STEP?

FIGURE 94. STEP SINGLE INSTRUCTION

180

NO

NO OPERATION

NO

-+--.. SINGLE OR MULTIPLE

STOP TGR WI LL PREVENT
SETTING I LATE TGR.PR
WILL NOT CHANGE AND
C WI LL NOT SJEP

** LAST TGR SET AT
1401 OF INSTRUCTION

r;';"'---FINISHED

GENERATE ANY KEY PULSE (3USEC) EVERY 50 MSEC

MULT STEP KEY 1 D
LAST TGR

A4D2

SINGLE STEP KEY A 3H

02.14.01.1

ANY KEY (3 USEC)

PROG STOP TGR STEP
A 11

02.14.01.1 MASTER
AOD1 SINGLE '--- A STOP

INSTRUCTION MASTER STOP -
ON INST MODE

A - ON
4A

02.14.02.1 ---1---
4F

A OFF 02.14.05.1 OFF

TRUE MANUAL [4C 02.14.02.1 02.14.05.1
02.14.02.1

A SINGLE A5D1
STORAGE CLOCK SW ON CYCLE

1E ~ A 02.14.05.1
A2D2 ON

r-- ---4G
A A 02.14.03.1 OFF r-- -

INST MODE 4E

02.14.03.1 02.14.05.1
A4D2

PULSE MODE A1D1

4D
5H 1

02.14.02.1 02.14.03.1
AD

~

~

~
46

02.14.05.1

AD

LATEI+E+L

--
A1D3

4A

02.14.05.1 STEP LEVEL TO SINGLE PULSE CONTROLS

02.15.16.1

FIGURE 95. SINGLE INSTRUCTION AND SINGLE CYCLE OPERATION

I

K CYCLE MODE? NO

02.14.02 (4D)

(\ TRUE MANUAL?
NO

NO OPERATION

(\ ITON?
YES

DEPRESS STEP KEY SINGLE OR MULTIPLE
02.14.01 (51)

I
SET SINGLE CYCLE TGR
A2(D2)
02.14.03 (4G)

RESET MASTER STOP TGR
A4(D2)
02.14.05 (4E)

RESET BLOCK TGR
A5(Dl)

1

02.15.39 (5D)

I,
TAKE CYCLE

A5 TO NEXT I, E,
OR l - A5 LATE

SET MASTER STOP TGR
A4(D3) I, E, OR lLATE
02.14.05 (4A)

,

SET BLOCK TGR
A5(Dll
02.15.39 (4C)

RESET SINGLE CYCLE TGR
Al(Dl)
02.14.03 (5H)

50 MS EXPIRES YES
MUlT STEP? NO

02.14.01 (3E) FINISHED

FIGURE 96. STEP-SINGLE CYCLE

182

7044 7040

FIGURE 97. STEP SINGLE PULSE

NO

YES

NO

YES

MEM SEL
/l2D (416NS)
02.15.16 (lG)

YES

AR-MAR
/llD2
02.15.16 4G

NOTE 1 - THE CLOCK IS STOPPED BEFORE THE STEP PB IS DEPRESSED
NOTE 2 - BLOCK TRIGGER IS NOT INITIALLY TURNED OFF IF ATc:U01

TO PREVENT STARTING MEMORY TWICE IN A SINGLE '''{WI''' MEMORY CYCLE.
NOTE 3 - SINCE A STORE CYCLE WILL TRANSFER SB TO MDR AT

,82D1, MEMORY CANNOT BE STARTED ANY EARLIER.
NOTE 4 - THE OBJECTIVE IS TO TURN THE CLOCK BACK ON AND SET

THE BLOCK TRIGGER IF MACHINE IS BROUGHT OUT OF
PULSE MODE. IF THE TIME IN THIS BLOCK WERE 4D1
MEMORY WOULD NOT BE STARTED DURING AN ENTIRE

"-(fJT' MEMORY CYCLE. MEMORY PTY AND/OR STR TRAPS
WOULD RESULT.

NOTE 5 - ALLOWS MEMORY CYCLE TO COMPLETE

183

TRUE MANUAL
A

A3DI
A

PULSE MODE

INTERVAL TIMER OFF MASTER OSC LATCH

A

ON
MASTER

PULSE MODE SA 3D
r--- STOP

5B

f---- - IF ON
CHANNEL IN USE A -0 4F

ON

A r- OFF - ----
r--- -

>-- A OFF
I/O INTERLOCK SWITCH

5G 5D

I r 4E - - - 02.14.05.1

~ I
4G

4A

A4DI A

ALPHA LATE

5E A

AID2

IF
AR TO MAR

L J
PULSE MODE

-0 -0

r- 5C r- '-- A -SC
CLOCK GATE

4C

L (+B WHEN SET)

A
+B STEP Jl... MASTER OSC T A

3C IC PULSE MODE
BETA I DI
DELAYED

MEM SEL
AlDl f--- IG

ON
(PULSE MODE)

ANY MEMORY 4H r-
CYCl.E EARLY r----

"" NO FUNCTIONAL PU5HBUTTONS A2D2 A ARE BEING DEPRESSED r- OFF

NOTE,
LOGIC 02.15.16.1 EXCEPT MASTER
WHERE SHOWN UNDER THE OSC 3H -
LOGIC BLOCK

FIGURE 98. SINGLE PULSE OPERATION

+B OK PULSE MODE -
+ +A

-

® RAW OSC
+

+B STEP - ~ .-=- r-:--0 -0

,......:. ® + ®

A. CLOCK GATE BEFORE DEPRESSING STEP

+B OK PULSE MODE -
+ +A e
+

@ RAW OSC

0+

G <:) G)
+B STEP + ~ L....!.-

-0 -0 I---

G) ® 0 ® ,........:.... +

B. CLOCK GATE AFTER DEPRESSING STEP

FIGURE 99. CLOCK GATE CONTROL

Sc

@

-SC

®

NOTE:

+B CLOCK GATE
-

~

+B CLOCK GATE

e

+
10

CIRCLED POLARITIES AS A
T RAW RESULT OF THE FIRS

OSCILLATOR PULSE
FOLLOWING DEPRE SSION
OF STEP

185

APPENDIx A: TIMING CHARTS

Timing charts of the Basic Cycles, Trapping, and
Manual (Console) Operations are included here.
The figure number and names of these charts are
as follows:

Figure No.

Basic Cycles

Master I (7044) A 1
Instruction Cycle A 2
Master E (7044) A 3
Master L (7040 and 7044) A 4
I, E, L Cycles (7040 - 2 Cycles) A 5
I, E, L Cycles (7044 - 3 Cycles) A 6
B Cycle A 7
C Cycle A 8
Indirect Addressing A 9

Trapping

IT Blast Trap A 10
Parity Trap A 11
Floating Point Trapping A 12
IT Overflow Trap A 13
Memory Protect Violation A 14
Redundancy Trap (Overlap Channel) A 15
Disconnect Trap (Overlap Chanel) A 16

Manual (Console) Operations

Any Key and Multiple Step Key
Pulse Generation
Display Storage
Enter Storage
Load Key Operation
Single Instruction
Single + Multiple Cycle
Single Pulse Mode Control
Step Single Pulse (7044)

186

A 17
A 18
A 19
A 20
A 21
A 22
A 23
A 24

MASTER I

Ao AI A2 A3 A4 As Ac AI A2 A3 A4 Ali Ao AI A2 A3 A4 Ali Ao AI A2 A3 A4 As Ao AI A2 A3 A4 As Ao AI A2 A3 A4 As Ao AI A2 A3 A4 As

a f3 af3

E RL

~ L TE
('e ed ng yc e)

M ST RI

E D)P. E D ~ TGR 1 eo Iy' C)cle a f3

{' \ (0.< .1 .3 .1)

=~ A4 5 [2D ~ c n I e' set at hi tin e ~ ~
MJl T R I 02.15 .3C .1) M AS ER E a M AS ER L

~5[1- (02 15 3 .1)
A Dl - aE AR Y ~ ~ V 31

A2 1>2 ~
L TE

A Dl

./ A5 1
A Dl E"R Y

A D2 f3L ~T
A Dl ~

M ST

~'N f3 AR lEA L'I
~ot M ST R '- (0 .1 .3 .1

N tB oc T< R '.-,V
B y

U TE

........ "
(0 .1 .3 .1

A~D A2Pl

Cy Ie I

E~D OP EI' D (pp G e rly

A~.5 pI Jl 2D

)" ft'.S ER E
A5[1- ~t ST R I

~A(RI 0 TE
'M ~S ER L

~ ~ l\ ot ~as e'K I AR Y I EJl RL iRme ia ~Iy wi "t. AS ER I

l\ ot 10 k T f;R ~
I .AT A Dl

A.< D2

FIGURE AI. MASTER I (7044)

187

I
0 I 2 3 4 5 0 I 234 5 0 I 2 3 4 5 0 I 2 3 4 5 0 I 2 3 450 I 2 3 450 I 2 3 4 5

{l , l"iii a {l at. I
r ,

\' En 0 •
..... E d ptiJr 02 15 39

Ie rI 'A 01
A '5 I

En 0 t
A 101

M sle I (0 .1 .3)
M st E +

-.
to.. ast r I I Iorl (2. 5.1) . ' . .. c.
I eo Iy

~

I !>or I I Ie (0 .1 .3)1
A 02 1-·

10 e· f-o
..

1+ +
~ AR (0 .1 .3 ,

501
lot Ira ph JII' t',
Epd p j;r' J".. ~ ~~ ~ .~ d 10 ed (0 .1 .3)
101 ~~ V lj.2.! rl. P. ~

ICft>.R ~I R (02 .1 .3! ~.

)~ ~s~~

FIGURE A2. INSTRUCTiON CYCLE
IBB

~
r"" 11 ''\

"e se
\~ a ar Y' 1

Ina er •
ae rI)'~ 0

eo •
e rly A 01

lee (2.

~ Ins

AI ~ I-

5. 3)

Ie I 02 12 50 -
R (0 .1.51) 1· /~ ~.

'\ (~ I;

I e rl 'A 01' ~ IC (0 .1 .3) "
l' , .

. ~ a~ 1;;; ('
,

XE 'IFOp .J'

;: ~C (0 .1 .3)

I'
MPR f-. S8 (a' .1 .4) ~ cst r

(ea Iy
1\ 'o<i \,1\,

I ~te p!: jel R 02 12/32' C C ,~ I
A 01 .. - .

..
la

Am ~ ~ PR (0 .1 .3)

,1I0

PR 01 de !:ad r (0 .0 .0 /0) I I Ie
A pi

S fr', 9, 91(0: :.(). .2(I~~ I 01 • , ~,-

A~Oo~ ~ ~sl I"
lea Iy' ~~ SR (0 .1 .0) (~

3D ,

C ~ SR (.1 • P)
1-1--5

I(v'\"

I lat· ;:; pi 02 12 36[,.....5

x~
10_1' 'fs

~~: ~~ ~ (0 .1 I·D!

I lat· XRI
~

(02.12.1

A 03 !""'-
nd Ix i sl

I 10
~~ A (02.1 .3'

!~~ ~ tra pi

A[~-~~ ~lel R (02 123

Po I Z • ~f-< SC (~. 1 • 7)
I la t· 50 I)t'-

I lat G I E + (~. I • j4)

,

MASTER E

Ao AI Az A3 A4 A5 Ao AI Az A3 A4 As Ao AI Az A3 A4 As Ao AI Az A3 A4 As Ao AI Az A3 A4 As Ao AI Az A3 A4 A5 Ao AI Az A3 A4 A5

ex f3 a[l

fl E RLY

f3 LP TE

GO 0 02 15 34 1) IV as er E

C cl ex f3

A5 1, ¥-A TE E (0 .1 .3 .1 M~S ER I 7 ~O
""'- 0 = '=

A~I::)] M~S ER L

C LA E fl! AR Y
f3 LA E

!LA E
2[2 r- 1-""" A D1

A5~:)] V f3 A LY
D

A Dl f3 LA E - 1A2P1

NIB oc T R r C o-r-- E EA L" Rt W 02 15 31 1)

~~ STE Eo
l-N pI STE el-f-

lJ TE (0 .1 .3P·1

/' "" A3p1 AD -~.

"
C cl

Got E

" fAA TERE Vi AA TE I

l"- I:::: 0 r as e E
A~D 1-- 1--1 A TEf L

!~
NAS ER Cor--. E ARLY RA~

/
B 'T pR iB e y

l! TE

,

FIGURE A3. MASTER E (7044)

189

Ao AI A2 A3 A4 As Ao AI A2 A3 A4 All Ao AI A2 A3 A4 As Ao AI A2 A3 A4 As Ao AI A2 A3 A4 As Ao AI A2 A3 A4 As Ao AI A2A3 A4 As

Cy Ie L

I L T • ~O 'CO 0

E !AT • NC T (o 0 E

\ II
~jI
or

l t/ G D P (0 .1 ~.3 .1

1'0T El'D DP /' V
~ AS EF 1

MIAS ER L 1/ 0 (2. 5. O.)
.I5D 1 f- I" ~ AS EF E

L lIAR Y (2. 5. 1.)
B O(K GR

L !AT 2 1
.l2D f- (2. 5. O.)

,1 ~ a d ~ i

MI S ER L

FIGURE A4. MASTER L (7040 And 7044)

190

ElL

0 I 2 3 4 5 0 I 2 3 4 5 0 I 2 3 4 5 0 I 2 3 4 5 0 I 2 3 4 5 0 I 2 3 4 5 0 I 2 3 4 5

a f3 ~ a f3 a(i

End ti; En OF t9 (0 .1 .39)
I eo Iy' 2D 1

J 4·

fnd p pro Ma te I p2. 15 30) as er
A D1

G to E· M te E 02. 15. 30 ~ as er

A~D

G te L' N ast r (0 .1 .30)
.A5D

End !'a ~
a eo Iy 02 15 33 (0 o E a or y (2. 5. 3)

5D a:e f3 eo Iy 1A5) 1· W 'te ~ e prl

~e rI • a 10 e (2. 5. 3) a or y. iJ!1 te 02 15 33
A 2D 2[1 A2 f)2 J 2D1

a al~'
f3 ~ar y (2. 5. ~3) a ate- f3 eo Iy 02 15 33

5D1
5[1 ",5[2 A5D

~ e rly· 10 e p2. 5.33) S arl . f3 at (0 .1 .33)

AD p.2[1 2[2 A D1

ras I eprl (0 .1 .31) ma er E eo Iy 02 15 31 er •
f3 eo rly f3 eo Iy f3 e rly

I fori • I lot (2. 5. 0) E arl • EI te 02 15 30
3[1

A~D
A D1

APD

m ste L Le prl (O~. 1 5. 1)

eo Iy L lot (C .1 b.30)

A2 ~2 A2D1

I I Ie Got E 02 15 34 E at • Gp I L 02 15 34

En 0 t9 En 0 t9

~ as er I' Me In· ele cl 02 12 50 lias er Mem. el ct 02 12 50

a~ a~1 ·A D' - !l_ arl A PD1' -
a f3 ate a 73 ale

C cl s ,E, L 7C~0)

(2 cy cI€~)

FIGURE A5. I, E, L CYCLES (7040-2 CYCLES)

191

E L

0 I 2 3 4 5 0 I 2 3 4 5 0 I 2 3 4 5 0 I 2 3 4 5 0 I 2 3 4 5 0 I 2 3 4 5 0 I 2 3 4 5

En of' E d P ~r 02. 15 39)
A4 501

I eo Iy' 2C 1

En p~F
tg • m ste I 02 15 30

A5 lMa te E

po 0 ma te E 02. 15. ~O) via ter L

Go to L M ste L 02 15 30

fAa ter I" I eo Iy 02 15 31
e rly

I arl . I lot (2. 1 ~. 0)
A D2 A Dl

Iv last r E' E or ~y b2. 15Jl1

fl orl

E arl E lot (0 .1 .3D)

A D2 Jl3D

~ as er L E lor! (0 .1 ~.31)

L jarl • 10 e (2. 5. 0)

A D2 12D

I atE' G t E 02 15 34
nd op tgr

EI te Cot L 02 15 34
E d (j:> t r

~as er + E· r>e or se ec (0 .1 ~)
~e rI 'AC pi ~

:J.·fl Ilat

y Ie I, E, n04)
(3 (yc es

FIGURE A6. I, E, L CYCLES (7044-3 CYCLES)

192

Ao AI Az A3 A4 As Ac AI AziA3 A4 A5 Ao AI Az A3 A4 A5 AoAI Az A3 A4 A5 Ao A.I Az A3 A4 As Ao AI Az A3 A4As AoAI Az A3 A4 As Ao A,I Az A3 A4 As Ao AI Az A3 A4 As AoAI Az A3 A4A5

I a "73 ct

(1 EA L'I !c£ g
I- '--

~P a LA 'E

AR V

(3 L\t>-T

A D1 G W S·
~ V1 C ER). cl.-C E[EN AI'- D j:::: .-C H C Cl E')6. O. 3.

1M EI"RL V -/J 2D

PR Ol"D D

bl ck I AR V'
E A LV

/, AS ER B .---A D1 (2. 5. 1.)
2. 4. 9.

A5 D2 "-
I-I-- V 'AT. (U TE' --- (1 E RL

A D
(1 L TE

(3 E RL

(3 LA 1-

M ST R B 'EA LY D2. 5. ~9. 1
I

N[B CV l' D M "

" C B CV L I::::
B YC L'E DE fAA f'lD')6. 20. p3.1 REM :n 8 :Vc LE DE MA ND AlDl

A D1 I.--
:::::

FIGURE A7. B CYCLE

60 cycle
c req int

AODI

,

0 I 2

poll

e eo Iy

345 0 I 2

a

eql est (02 16.51

f:

E L

3 4 5 0 12 3 4 5 0 I 2 3 4

Il all

ycl e req'; lD

A
C

2[I' ere ues in erl ck (0 .1 .5)
ear y r~q

e
e

C

e rI re ue t-
r q int
AD,
c cl re~

o 0 (,

5C2

G

e cy Ie eq'

to e 02 16 52 Gc
10 e

Nost rC (0 2.1 6.:~)

M te C
1 t C de oy d, C ~r j 2. 6.

Il or y

C ear Iy' Is C
st C CIE cc~pl \ete

} 2D2

1 t (10 e'
1'5[2

G o 0 rem s lee (C~. 5. 3)

1i a CtE

AD 1 nem sel (0 .1 .5) -
~ AR 15 (0 .1 .5)

V -~ Mo ter C'

" OD ~ !! ~ (02 .1 .5)

e rly

1 t C 10 e' SB
~3[1 ~

1 t C de oy d

1 t (de oy d'

" OD

1 t C de oy d

1 t C de oy d'
'\H 1

1 t (de

1 t (de oy d'
2D

Re d 02. 12 50)

C cy Ie

FIGURE AS. C CYCLE

194

est ' (0 .1 .5 ~

to e 2.16. 52)

2)

lot (0 .1 6. 3)
A Dl

1 t C cy Ie del pye

Is C cy Ie el
; 4D

m m ele

... R (~2. 16. 53)

R ..) D ~2. 16 54)

~ ~ (02.1~ .54

~ ~ 02

7-f3l) 10

~ (P) -SR

A ~--~ (0
"liD 3E 1

~ ~ f-,

1 t C

a orl A D ./

st c cl c mp
mo ter '-

E

5 0 I 2 3 4 5 0 I 2 3 4 5 0 I 2 3 4 5

a Il all

Dro s m~c ft r 6 e 5

1st e ycl c mF let •
e rly

10 e

e cy lie eq
a; Tat ~A5D

C eo Iy 02 16 52

«(2. 1 6. 4)
A D

1 t (c Ie co hpl te 02 16 53
C cy e eq est'

AD 1

t (P2. 15. 33)

ren se (0 .1 .5)
~

~ R 1 -
~ !,.7 ',Master C prevents:

I, E early (02.15.31)
AR MAR (02.12.50)

Go to C can be interrupted"',
by B cycle' ch A request '

I I I I I I I I I
16 54 lst cycle de loyed can be

interrupted by go to U and
ch A request.

5)
1 st eye Ie comp lete co n be

.1 .5)
interrupted by E early'
AODI (U)

D P) 02 16 54

cy Ie on P' ~ 5 (0 .1 6.5~)
e rly

St~re (0 .1 .5) a flor y'

f6.0 1
ete

I E t
Ao AI A2 A3 A4 As Ao AI A2 A3 A4 A~ Ao AI A2 A3 A4 A~ Ao AI A2 A3 A4 A~ Ao AI A2 A3 A4 As Ao AI A2 A3 A4 As AoAI A2 A3 A4 As

I ii73 ap

E d p t r (2. 5. 9)
Ie rI ·A Dl

_rr~st r I 02 15 30

m st, r E (02.1 .3C

ec Iy E jear y

I lat E lat

E ea Iy· I ec rly (02 • 1~ .4C

I tg
A Ipte (0 .1 .41)

tA 3D) I la e· o!. ~R 2.12. 32)
es

3[2

I la e· o!. ~ pos eg
3C 2

Ie rly. ~ 1-: R (2.12. 01)
A Dl

I la e· 3D2 to re (2.C 4. 0) I I te· A Dl

14D l' 00 75· Pr IA t9 (0 .1 .6~ Ie te· 4' Dl
its ·12 13

re IA gr' 14 1 IAtgr o .J(.6 re ,A gr' 1\3 1

la e' fw .~ ~ (0 .1 .3)

Itro pre IA tgr

Pre IA tgr Re d b2 12 50

iSR f+. D 02 12 08

I la e' 403
XR t... ~D (0 .1 .1)

5D II\D ...- AR (02 12.34
I-

14D te IC (0 • I .3)
l-

re IA gr II te Got E 02 15 3~
En 0 tg

AI te 11\3 2 S8 ~ tag (0 .0 .2l) -
11\ E rI 'A DI58 1-SR 02 12 01 -
11\ I te A4D3 SR -AD (0 .1 .08

11\ I te A4 P3' XR ... AD (0 .1 .1)
ind x nst

IA I te' A5Pl ~ ~ AR (0 .1:1 .3)

IA ot • E d
IJ5/

~r. G to E b2. 15. P4)
\SOc 05< ·1 i{'

I ~di re ~ c dd es ing

FIGURE A9. INDIRECT ADDRESSING

195

E

o I 234 5 0 I 234 5 0 I 234 501 234 501 2 3 450 I 2 3 450 I 234 5

E Ipte AC 01
I Ir p

~,...,..m"s_teOil""C.,.0 .. 2 foil .. 6foi5iii2~,..,..,..,,"".,...,..+~ A D 1 IT 10 t r ~

IT blc st r q' 4[1 Sic t ell (P2. 3.p4)

IC - 00036

Xfcr -00037

I I I I I
IT blast req resets:

channel A'S,C'D'E
trap control (02.14.07)

Slast control prevents:
Parity request (02.13.01)
STR trap (02.13.07)
SS--PR (02.13.32)

las c I

las c I·
A 02

IC --AR • AO -AR (02.12.34)
Start machine on trap

IT trap latch prevents:
STR trap (02.13.07)
Step IC (02.13.36)
SS --PR (02.12.32)

FIGURE AI0. IT BLAST TRAP

196

I or y'~ 20

Er~ 0 « 2. 5. 5)

I epr!

I Ipte

Earl

E atE

I or!

I I te

I lot 'A 01
IT bla t

'-+o-:I...,:;tr.pj'P~Ia~ltC ... (12 3;,;, ... 5.) ~~ I or! .P~O

I lot 'A 01
I tap

I tr p' 50b· I Ie te·
I bl Sl

!;et f\R 02 1308

AR bit 3 ·3 ·3 ·3 (0 • 1 .O~)
-I-

I lot '0 Y t ap
nd op gr

GO" E 02 15 34

E ear y' or l'
an tr p

E ~ar Y'
a y tap

E or y.) 10 •
m slE E an tr p

~ .. ~ R (1- 5) (0 .12.0'

SR-SS (02.12.4(

For e tor c c I (0 . 1 .5b)
(eo ly·f'.ODl

E lot 'Po~ (X En o~ (0 .1 .3)

E I te y,.5 2'
IT op

I BAT

A bi 3 (0 .1 .0)
1-1-

0 I 2 3 4 5 0 I 2 3 4 5 0 I

Cl {3

TRT.TRP T kip o tro . ar ltv

I late.E early
Even parity

las C L 02 13 04 I ar y.) 2D

Blast nd op (02 l' .3.~
ctl

I e rI

II te

Parity error.
I or IA Elate +

& lst C late

Paroty tra re ue t (2. 13.

I lot 'A D

I I te a y t pp G t E
En 0 tg

IC r>-N ~~ R s ore ~ i OC pM I XF R AT m 0 104

If I los co tr 10 cu s
in 10 e, \He tel
IC (0 .1 .3 l

Sic t (pnt 01 re en
SII- ~ (0 .1 .3)
A-C (0 .1 .31S)
SR-pol nt jeq (0 .1 .0)
re et iel rE ~O

(0, .1 .0)
M P at h .1 .0)

blc t , pnt 01 es. P at
A4 1>2 (0 .1 .3 l

FIGURE All. PARITY TRAP

01)

02 IS 34

fpri
Cl ",r

ma

2 3 4 5

~

r.od

or ty ra~

~ t ap
~ • .A OD
ter E

lor

E

0 I 2 3 4 5 0 I 2 3 4 5 0 I 2 3 4 5 0

Cl (3 ri/l

la e' SC 1

,e< rly

E I te

E la e'A bD 'pa it tre"

10 ch 02 13 06

M rb t 1 02 13 09

E lear y' OD • IC -R 71 35) (0 .1 .0
ny ra l-

E lear y' OD .~ ;: R 3- 7) 02 12 OS

ari y t -ap

A T eq E ad • F aQ SB 18 02 13 10
P rit tr p

E F r q' E e rI . Faa SB 19 02 13 10
Par ty ra

T rlaq E ad . F"g B «(• 3. 0)
ari y t ap

Itra I>c)T' Flaa B ((17.1 3. 0)
P, rot m ~de

E lat 01 0 E d P):)2. IS. bS)

P rit tr p' EI teO jt.S 1 Re let R
I-

b2. 13. PS)

E lat 'A D2' ~ ~ !s3 -3 «(/).1 3.(19)
a y ap'

P rit tr p

P R T' T A

I 2 3 4

Cl

5

197

I early'
A2Dl

E

0 I 2 3 4 5 0 I 2 3 4 5 0 I 2 3 4 5 0 I 2 3 4 5 0 I 2 3 4 5 0 I 2 3 4 5 0 I 2 3 4 5

tl Cii3 -
Ol Ol tl Oltl Ol

I earl E ar y

I I te E lot

PC 00\ + F T ap eq es (0 • 2 .4) E ate'
A D1

PC 0 Ui' + FP Tr p

"0 O'v +U"
FP eq es • F T ap lot h (n. 13. P6) I arl .

I at •
AD A Dl

10 e' Got E (0 2 15.3
Ary t ap
m st r I

I la e' ,::tA (2.1 3. 8)
5E 1

E eo Iy FP trep B 10 1 (0 .1 .1)
,AO a + UN

~C 'JV +IN Fag 16 02 13 11

~C Mp)V F aq 15 02 13 11

{ ~C 'JV +l N
Fag 14 02 13 12

DP + ~C M ~ (v
~ 0 bv + N

E eo Iy .! SR (21 -3)(2. 2. 5)
.. O[l'

an tr p

E eprl .!; ~ M R 02 12 50
AOD2

Farce trap (FP trap latch) prevents:
ME A2Dl SB 1- R (2. 2. ~O)

Parity trap (02.13.01) -Blast ctl. (02.13.04)
IT trap (02.13 .05)
MP trap (02. 13.05} 10 e En o~ (0 .1 .3)
STR trap (02. 13.07}
SB _PR (02. 12.32)
Step IC (02.12.36)

A5 D2 • E lot . ~ R [it 2 (2. 3. 9)

I I I I I I I I
FP rap ~ ~

IIC-+OOOOO
00010 I Ill' arl • ~R ~ AR (0 .1 .S)

next instruction
ODI2 ~

FlPA IrG P Ol~ T ~R ~p PI ~G

FIGURE A12. FLOATING POINT TRAPPING

198

E

o I 2 3 4 5 0 I 234 501 234 501 234 501 2 3 450 I 2 3 450 I 234 5

lst C eye I dE lay
AC (P)'A2 I

T elve 10 10 ch (0 • I .5)
1A2D I IT av rfl w Of

B 'Iorl •
(ee lyAI I ~ ~~I~a~e_r~la~~t_r~!p_r.fq_,u .. st~0.2~16~5~4~~~ ~~~~ IT tra .. 10 e'! ODI

~ as er ((2. 6.12)

T ve flo tr p ~q'
tap car tral an

tr e n~n 01

IC-00006
XFER Location - 00007

IT trap request prevents:
ch trap request (02.13.02)
DD trap request (02.13.02)
forces start machine
on trap (02.13.05)

Force trap (IT trap) prevents:
Blast control (02.13.04)
Parity trap req (02.13.01)
Step IC (02.12.36)
STR trap (02.13.07)
SB -PR (02.12.32)

FIGURE A13. IT OVERFLOW TRAP

I ovt>rfl w ra A~D' ("at

I tre., r jqu st 102 13 05) I tr p E 10" t OD

I ear y

I I te

E lot

I e rly

I 10 t>',II3D -

~.~~q es'

I tra'« 2. 3. 5)

Pn I st

I ale A5PI'
I Ire p

ese A ((2.12. 5)
I-

I I Ie A5P2- ~~ts 3'3 (2. 3. 9)
IT rap

I Ie teo ny tra •
En a t9

Gp I E 02 15 34

Q! ear y' OD~­
me ste E

E eo Iy' ny tra

E ear y' OC I'
ny ra

E or y'; ID •

r-a ler E'a ry ral

E alE 'PO pO

A 1-- M R 02 12 50

"'-""-

R-~SB (2. 2. 0)

is. +: R (1- 5) (0 .1

!For e tor eel. (0

nd bp 02

I llote

I eo Iy 2C 1

.0)

.1 .5)
e rly AOPI

IS 35

I te'~51 2-
IT trap

IAR bit 35 02 13 09
1- ..

I:! -MAR (2. 2. 0)

T V RFLOW

199

0

a Iy Ie

SP tv A

I

Dl

2 :3 4 5 0 I

E

2 :3 4 5 0 I 2

M m de tgr (O~ .1 (.05

I (it ;32) tr p qu
er e ~P pre 01 c mp eq

tr p ne ua (b t 3~)
c mp pre un' que I Pro ed ec

S, nse MF vi I- ra ct . ~ P ro

E py Ie' ID' M
Se se vi latipn

F rCE re d (
Pr te te 10 at on

E or y

E at 'PC D X

IC 00032\
Xfer -00033

I I I I I
With Force trap we prevent:

blast contra I (02. 13 .04)
Parity trap req (02.13.01)
STR trap (02.13.07)
SB - PR (02.12.32)
Step IC (02.12.36)

FIGURE A14. MEMORY PROTECT VIOLATION

200

E

:3 4 5 0 I 2 :3 4 5 0 I 2 :3 4 5 0 I 2 :3 4 5 0 I 2 :3 4 5

E ate A5Dl tor ge trap

Tr p on rol (02 13.03

Ilia latipn 02 16 05

tior « 2. 6. 5) oc
a y t ap

vola io (0 .1 .0)
E lot A Dl St ra~ e tap

2.12. ~O) Fa ce Sic e 02 12 50)

E at

I arl

I Ipte

E arl

E Ipte

I arl

I I te

En a (0 .1 .3)

I Ipte 'A Dl' MP trap I tel (0 .1 .0)
M Vipla io an trpp' eo Iy A21>1

I lot 'A Dl ~t R (2. 2. 2)

tr p I
Fa ce tra (012.1 13·(7)

M tc

Sto ag tr p' I 10 e' AR bit 31'3, '3 (0 .1 .0)
50 ~ I-

'A 01
Res ft R (2. 3. 8)

I ate l-

II te an tr p' Ge To E 2.15. P4)
E d p t r

M ste 'E AR M R 02 .12 50)

APO -l-

E ear Iy' AO PI' ~R 21 35 (0 .1 .0)
an tr p

R- B 02 12 40
E ~r y'a ny raF

E arl "N P t ap 10 S 16 (02 .13 .11
MPv ole tio

E I 0 0
nd op (0 .1 .35

te'

AR bit 35 (02 13 09
E I te ~5 2 l-I-

I e rI 'A(~ -M r-R 02 12 50
01 !-

I E
0 I 2 3 4 5 0 I 2 3 4 5 0 I 2 3 4 5 0 I 2 3 4 5 0 I 2 3 4 5 0 I 2 3 4 5 0 I 2 3 4 5

I fOri

I I te

E E arl

E atE

se 16 15 14 13 E~B TC or W rd or ty 06. 16 00)

TU""' 'US ." ~B
isc co I (6. O. 2)

tcpe el chc usy' ch n isc A3Pl

T - I usy

C'll C= P'A 01' d di ct 06 20 13

dis c II· Al 1

rc (CT r-
ho di c'

R du do cy chE ck yn tg '(C ~.1 ~. 2) E lot 'ADD •

fA.4 1· ed n he k t pp ric rit

:hc n B sy c ec re ue I (6. 6. 2)
d c hec 'E NB C

:h ap Ide rlCln d'A o . rap pri cril H 6. 6. 3) can ra •
enol< Iro pc on 8u y. E alE 'A Dl
A 10 d pn ra s

rap pn pri y' ed nd nc Irlp p6. 16. 02)
he k teql esl

lap pri ri I • c an el ra (0 .1 .O~) eo Iy
I 10 e'A ~D A2)1

ch pn raF' AR bit 33 (02 13 09

I I p:::.r -~ Fh \;;;
,;! bi 33 (0 .1 .0)
~

I at 'an lop' E (0 • 1~ .3
En 0 I~

~ed n I ap 5 J)(s 1 ~ « 2.C3. 1)
h I ap E e prl

cny Ira • IC-~s (C 2.1 2.< 5)
ecrly AO~1 ...

a y ap A5 p2' ~ ~ 35 (0 .1 .0)

Ie e

E I pIe Po (5 R" 5(- Erd a p (2. 5. 5)

"Redundancy Check" with "ENB TCT" forces WC = 0
(02.12.15.1)

WC = 0 sends "Wrile Disc 10 TAU" (06.30.00.1)

TAU sends "TAU Not Busy"
Fed ~n ar cy tr p, (0 er ap ch an ne)

The I cycle is Ihe I cycle of Ihe first instruction found;
this instruction is not executed.

FIGURE AIS. REDUNDANCY TRAP (OVERLAP CHANNEL)

201

0 I 2 3 4 5 0 I 2 3 4 5 0 I 2 3 4 5 0 I 2 3 4 5 0 I 2 3 4 5

Ie rI~

I pIe

'.

S 3 + 3 3, + 1 Et B W • EO E,~D 06 .16 .00

kJis (0 .IP) ch B (yc ~.- r-- [7
can .2

~is ca I·) ~ A Dl
~C fa D L[D

ha di c' d sc yn (0 .1 ~.0t2)
A PI

isc sy c' b d sc eal esl Ito .1 .0 !)
nb E'II 'E PF- an ~

c an Ibu r >- p,.
ITu y' 1[l' t-- Irpp ric ri II (0 .1 .0)

~is re ue I·c
'"' I

cp.
ell pIe Ira p i r q V

dis r qu sl d sc raF (0 .1 .0)
lap pri ril/- f.-

or
~

ril er .- If' arc pc ril Ire p (6. '6. PI)
ha c·i fusy V-

lap pri ril //

rOf pri pri ~. t--po c an
1 I teo f'.3[1 r-

AF

e an Ira • tT
II te ~5 p2'

ct B eg ch E r g AR
I-

10 e' ny tra Got E 02
nd op tgr -

'The 1 cycle is the cycle of Ihe first instruc-
lion found after Ihe trapping.

"This instruction cannot be executed because
"CHANNEL TRAP" gives "FORCE TRAP"
which blocks the main gales of this instruc-
tion.

I
~O NN P liS C TRA ov rl p hi nr el

FIGURE A16. DISCONNECT TRAP (OVERLAP CHANNEL)

202

disc tra ' .sJ
ch tra 'E ear y r-

'liard po ity .-r-- s
ct tre p'E eo Iy

a y rap'
E e rI)'A(DI

ary

E lot ~.p

E

0 I 2 3 4 5 0 I 2 3 4 5

E arllY

E at<

1/ h I p~[I. Ie
- I-- 1

...... c isc yn

,..cI Ian ra
-...E la ~.p lD

1-- di C. ~ql tesl

f--~
cI tn p'E 4D

el tra (O~.I ~~ ,,.I ~ar y'
-; 2D

bi 32 (0 . I, .0)
l-

bi 33 (0 .13 .0) -
.15 .3~

no 1 10 . I ~lO)

po 1 (0 .1 • I~)

~ ~ R p2. 12 05)

cot: E I ote '-- ~R pil ~5 02 1309
ft'.5 2 r--

d (Px 75 E d p (02. 15. P5)

0 I 2 3 4 5 0 I 2 3 4 5 0 I 2 3 4 5 0 I 2 3 4 5 0 I 2 3 4 5 0 I 2 3 4 5 0 I 2 3 4 5

ml Itiple st p ey (Q .*. 1)

m It tep ke
he Id y t e ing r

55 25 m5
~ -01D2 09

(I) -
25 fn5 5 •

I

55 25 m5

0lD2B07 C
(3) -

5 5 5 5

an ke
01D2 05

(2E -

~
fl5 3 5

5 m

n k y (02. 14 0

ar k y

55 o i'S
o D ij05 S

(3) 30 m5

5 o nls

I~ 01D2 03 C
(5)- o n~

53 fl5

0lP2 05 C
(2B -

""'" ~fl

T e On 5e 55 pr ve ts he lOU rce o liP. N'I KEY" to efi e t e f.5 c 5.

h. 20 m5 c 5 told a ~el y f2 pm ec be ~e n depre sio 50 " ny ke 11

FIGURE A17. ANY KEY AND MULTIPLE 5TEP KEY PUL5E GENERATION

203

Ao AI Az A3 A4 A5 Ac AI Az A3 A4 A5 Ao AI Az A3 A4 A5 AoAI Az A3 A4 A5 Ao AJ Az A3 A4 A5 Ao AI Az A3 A4 A5 Ao AJ Az A3 A4 A5 Ao AI Az A3 A4 A5 AoAI Az A3 A4 A5

D SP A 5 OR iAG K Y (0 .1 .0 .1
~ --- WIT

r~ A~Y KE (3 ~ SE) 02 14 01 1)

l--- M N Al DI PL Y ST< R. TGR b2 14 03 1) /'
A Dl v' 5D

1\0. [/ ~ -.. - .~

l--- A(\ Y E'Y
LA T G (2. 4. 4.) ~ ~

DI P 5 0 LI ST' M~STfR TC P
LA T' MAS ER ST P

I~ A 1P2 • M 5 TO PI ~R (0.1 .0 .1 l"- • -.. " Al P2' ~
"As 1D ·1 EA L ./ ELO K TG ~ 02 15 39 1) I AR Y

5 OP TC R' A Dl 5Dl --.. " [---V
MJ ST R I

BL bc 5 A E AR Y AD

f,.\A TEl MAS ER I

I EA L' E ~L I EAR Y

/ V
I AT I"':: pC T[3R (II AT B OC KE I:> B i.tN AS ER ST pp. SI ~G E Y LE BL

DIF'P TC T PR D SP E(\ TEF 0 C EP~ 02. 15 34 1) LCCK IS " 01 P Y RA R Q" (0 .1 ~ .1
" LA T Y " 02 13 04 1) -.. - --

I Lfto,TE '- L ST G (2.14. b6.]) ----AD - I- --LA T GR 'D SP EN ER 0 C EA B OC K 0 Op< 02 04 00 1)
SO A(E ES S~ IT H 5 pF

C ISP ST p. t/ ~ RE ET AR (C ~.1 • 5.1)
fvlT H" S~ C L TE 'A Dl ST R ES N" W C N -~ AK --; ~A (2. 2. 5.) TC P HE OP RP TIC N ~I H

I ~ " ~ GC T P E
AR T't ER 0 IF WE H VE "5 0

"c5 X PN ER 0 0 ~"
M ST R E • E EA LY

E A

E NT R ~R DIS L TC - SB SR (0 .1 .0 .1

E"T R N D SP A(\ D TC T ST '-~ EN DC P (02 15.35 .1) OF ER AT o S tc Nt OlE
E LA E (C EN D (P GR 2. 5. 9. ~ DI)p Ail

AS pl' !--
~ "5 OR AC E ;;. 0 ~" v. In "5 ~ T ST SW '0 FF

DI PL STC - R SE A - (C 2. 2. 4.) - ~
ST P TE~ T---V - IC -I AR ,- -• _. _. _.

I Lp E' CO OE
E LA E' DI PL STC

P D OX ------Mf>,ST R • E EA L' -_. . --E A E
•• • • • -

SB~ SR (2. 2. 1.) - - - ~ -
S EP IC (0 .1 .3 .1 ST R ES .-1/ - - - ~ SO O~ E RR R· -E RL~' 3C 1- DI~PL ST p. ~ NPC P (02 15.35 .1)

P RI Y RR OR V EN DC Pl1 GR (02.1 5. 9. 1)
L f'TE

FIGURE A1S. DISPLAY STORAGE

E

0 I 2 3 4 5 0 I 2 3 4 5 0 I 2 3 4 5 0 I 2 3 4 5 0 I 2 3 4 5 0 I 2 3 4 5 0 I 2 3 4 5

I !!Or y

I I Ie

E arl

E lole

I ebrl

lI<le

en er la. ge ke ar~ k ~y 02 14 01

I 51 gr 02 1404
ar~ k y

an 01 nt r s ora ~e e
En er ~IO ag (0~.1 4.C~)

SI P I r· 501

lop Igr (0 .1 .0) rc;; IT r - A4 2· me nue I- me Ie slop I r (2. 4. 5)

En er 10 ag I eprl ·A O?

loc I r (C 2. 5. 9)
S';p t9r A5)1 SI p I~r.

E loc k I r.

AO

Er ler 510 ag b dsp y I ap n bl 51 02 13 01 04 an Sf- PRI (0 .1 .3 ~)

I al A 01 la I I r (2. 4. 4)

I 51 gr' bl ck pcO PX (0 .0 .OC

Enl r ~ lor ge

A 01 En er· lor ge· e -I R p2. 12. 34)

SI ra e I 51 W p~ ~

Er ler or r>is lay SI E+ I .ale. ~o 0 (0 .1 .3)
E do pI r· PO pC ><

En er 10 ag • P.K -R 02 12 35

I lole A5)1· ~
SI ra e I 51 W OF

e< rly·A3 pl· SI, pi (2. 2. 6)
Sora e esl or -

E ea Iy· OK ·5 B (2. 2. 1)
E ler SI rag

" ast r ./J 10 • SI re pye Ie 02 12. 50)

Enl r tor ge f\0 I

10 e e d· SB -<10 (2.1 2.~0)

e rly • 201 -
lete. En~ 0 (C 2.1 5. 5)

Enl r ~ lor ge

ENn R I>T ~RI G lor ge les 0

FIGURE A19. ENTER STORAGE

205

Ao AI A2 A3 A4 As Ac AI A2 A3 A4 A. Ao AI A2 A3 A4 A. Ao A I A2 A3 A4 A. Ao AI A2 A2 A3A4As AoAI A2A3 A4A.AoA, A2 A3 A.A. AoAI A2A3 A4 A. Ao AI A2 A3 A4 A. Ao AI A2 A3 A4 A.

W IT 0 I 5T U TI N
DE RE SI pN 0 BIN 3

~TSITH 51 G E TE E E(UT D

/,/ CHIN SE'

KE TR~E MINLAL (0.1 .0.1
'Ij • • • • '-~';';;~~~.~;;';~~I-~~~-+-+-+-~. • • • •. ~~ ~

I I T K W

1--

E RL

L TE

! E RL

I A LY (0.1 .31.1)

(.1. p.l I LA E

1<'-4 'l~I--l-I-~"""''''· • •

RL~ ~ AI U! L' M ST R T.C P.rf:;!.R .(0 •• 1 .0 .1 rL"s'~~.
I E~ L' P ~~""-+-+-+-+-IIA,-+511'" LE N TR
~12~ A~P2

BLO K TG l...PZ."._5.+9"'1-'1).,..!-+..,.+~~A5'iI5PjTG·
5D~- e- ••••• r ,- A5Pl

A~Y KE •
5 N(LE OR M LT PL.~5 li'E~P e;E b·;:t;t;;I-+-+-H-+-+~

PRGSTPG---

SS M THE f,\! H N ISH NPE F 0 I! UT P
I\I/AN~A D~RIN(APR GtN (1.

HE IN T ~C riC N N R(G S (~ Cpl< PL E A D
T l ~ PI 5TpP (HE LA T Y LE S SS~M D 0 BE
A,~ C CL •

HECP~' IL B I~ AT PP D T!TU Ut-ITLSN LE
• C ~ ~ UL IP E TE IS DI 'RI S D. T E FPL 0 'It G

It ST U TI N (8) WI L E XE U ED HE LA T Y LE
C T 15 IN TRUC "Ie N 5 55 M DOE N L YCLE

B\ IOJS Y, TH Cp~ FI URAT O~ () C F HE
L ST C C C AN BE DI FE Et-- T ofA' H~ S~O Nt-­
It T E IA3RW HEAC U LIMN VlIL D PHD
U 0 T E '1t.IN3EET EE~ HEFI ST N 'CP N[T E
D PR S5 m I C F HE m G E R UTILE ST P EY S.

5 EP (0 .1 .0 .1

FIGURE A21. SINGLE INSTRUCTION

EI D PP TG

I"-S T R (02 1 .0 .1) . . .

bp R TlO~ S O~S ~l

I G EN TFU(TI)N

7P4(

E

0 I 2 3 4 5 0 I 2 3 4 5 0 I 2 3 4 5 0 I 2 3 4 5 0 I 2 3 4 5 0 I 2 3 4 5 0 I 2 3 4 5

nast rl (02 .1: .3(

as ~r (0 .1 .3D)

rna ter L I

I
Ie rly E ariy

I I te E lot

a y k "y. St P (2.14. 01) 1ite (C~. 1 4. 1)
p r 9 s op tgr

.1

Sirg l + mu tip e k y

c cle (0 .1 .0) Sio gle cy Ie (02 14 05
s ep;cy Ie 1"0 e· Slngl top tg •
2D~'S pro ~e lock Al 1

Sto P t r (2. 4. 5) 5 ng e c ~cl St p gr 02 14 05 + + L pte' stpp gr 02 14 05

~4 2 ill ~r an 01·
in~ Ie yc e

loc t r (2. 5. 9) s'op '9r sop' block tg (0 .1 .3) blpck tg (0 .1 .3)

~ 5D 502

St o 0 E (0 .1 .3) ~to Erd 0 + Go to L

to execute this operation it is necessary to have:
cycle mode
manual
storage c lock off.

Stop tgr is set by: - program reset or in manual by the previous inst
reset by: - start machine

it preventsa early (02.15.33)

block tgr prevents I,E,L early (02.15.31)

master I is initially set by: previous instruction
enter storage
program reset (end op 02.15.35)

. I I I I .I I I I
mgle + mu Itlple cycle.

FIGURE A22. SINGLE + MULTIPLE CYCLE

208

ACTION OF PULSE MODE

(OlD2H05A) + 8 MASTER OSC (02.15.17.1)

I \ I \ I \ I \
\ I \ I \ I \ I

POSITION SHIFT OF ____ 40 NSEC
(01D2 J04E) -6 MASTER OSC

(01 D2 K06 M)
THE -8 MAST OSC' ~ n R
CLOCK GATE ~ r 416 NSEC (7044:

~--------------------

01D2K06K n n
DELAY OF~ I~ ______ ..J L ___ C_EL_L_D_R_IV_E_(0_1_D_1K_O_5_G_) ____ _

(02.15.18.1) A4

_____ ~C;:;:LO~C~K~G~A~T~E _______ ..J/NEGATIVE SHIFT OF THE - B MAST OSC
BLOCK THE CLOCK AT A4

ACTION OF SINGLE STEP

STEP

PULSE MODE' _ CLOCK GATE

NEGATIVE SHIFT OF THE - B MAST OS -.:::....
NEGATIVE SHIFT OF THE - 8 MAST OSC

_''''' _______In CELL DRIVE

A4

A5

S INGLE PULSE MODE CONTROL

FIGURE A23. SINGLE PULSE MODE CONTROL

209

4

RESET KEY· IT ON'Z TRUE MANUAL· PULSE MODE'l ~A3D 1·

5

-B MAST OSC
(02.15.17.1)

I
\J\

o 2 3

\J\ \J\ \J\
PULSE MODE LATCH (02. IS. 16. 1) (BLOCKS MEM SEL 02. 12.S0.1) LOAD KEY· ENTER INST KEY· ____ _________ ••• -------_ ... ---------

ENT STAR KEY·DISP STAR KEY"'::' SHIFT>O -til MASTER OSC

CLOCK GATE (02.15.16.1) /PULSE MOD~TCH'

"-B MASTER OSC (SHIFT< 0)

MASTER STOP TGR /PULSE MODE LATCH' ON -B MASTER OSC

CLOCK GATE - -
""-("02-.-1-S-.1-6-.1-)---'A4Dl' a LATE

ONLY ONE CTRL (02.16.16.1) _ ••• _

~ SHIFT<O'J

_... OFF _ ••• . - _ .. -
STEP (02.1S.16.1, 02.14.01,1) 3NSEC

I I I I CLOCK GA~I
I ~ CELL DRIVE (02.1S.17.1) I

(OFF)

I I I
-B MAST OSC (SHIFT 0)

BLOCK TGR (02.1S.39.1) /STOP TGR'
••• ---'ASDI ANY MEM CYCLE EARLY\

PARITY TRAp.A1D2 .~ ___ .Au,R __ M_AR (PULSE MODE) (02.1S.16.1)

PULSE MODE LATCH-- • •• -

CLOCK GATE' .~ _____ A2D2.

-til GATE (PULSE MODE
ANY MEM CYCLE EARLY"""" ------+B MASTER OSC (SHIFT 70)

-

(02.15.16.1) AlDl'~~~I~)\IDELAYEY

CLOCK GATE- MEM SEL PULSE MODE (02.1S. 16. 1)
+B CLOCK GATE

+B STEP

+ B GATE (PULSE MODE - --)

+8 STEP

+

FIGURE A24. STEP SINGLE PULSE (7044)

WITH" +B STEP" THE +A CIRCUIT
IS CONDITIONAL AND THE
"+B CLOCK GATE" IS OBTAINED.

+ B CLOCK GATE

OPERATOR'S CONSOLE

STEP S INGLE PULSE

7044

THE "ONLY ONE CONTROL" CIRCUIT
BLOCK THE +A. TO RETURN THE CIR­
CUIT TO ITS INITIAL STATUS, "+B CLOCK
GATE" AND "+B STEP" MUST BOTH BE OFF.

III
Z
-I
.JI
(!II
Zl
0 1
.J I
~I

I ...
:JI
o

FOL.D

COMMENT SHEET

IBM 7040-7044 CENTRAL PROCESSING UNIT

CUSTOMER ENGINEERING MANUAL. OF INSTRUCTION, R23-2651

FROM

NAME

OFFICE NO.

CHECK ONE OF THE COMMENTS AND EXPLAIN IN THE SPACE PROVIDED FOL.D

o SUGGESTE.D ADDITION (PAGE , TIMING CHART, DRAWING, PROCEDURE, ETC.)

o SUGGESTED DEL.ETION (PAGE

o ERROR (PAGE

EXPLANATION

FOL.D

NO POSTAGE NECESSARY IF MAILED IN U. S. A.
FOL.D ON TWO L.INES, STAPL.E, AND MAIL.

~IA""'L.e:

FOLD FOLD

.-- - - -- -- - ---- - --------------..---------------

OLD

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

POSTAGE WILL BE PAID BY

IBM CORPORATION

P.O. BOX 390

POUGHKEEPSIE, N. Y.

ATTN: CE MANUALS, DEPARTMENT 895

FIRST CLASS
PERM IT NO. 81

POUGHKEEPSIE. N.Y.

FOLD

1

III
Z

.J
(!)
Z
o
.J
(

I­
:J
o

8/63:700-EP-216

STAPLE STAPLE

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	replyA
	replyB

